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Abstract

Today, with the increasing global concern regarding energy savings, CO2 emission and en-

vironmental protection, the development of low cost and environmentally friendly materials

for electrodes in energy storage devices and adsorbent in wastewater treatment becomes im-

portant. Graphene, as a new materials, has attracted lots of attention due to its high current

carrying capacity and high surface area. These properties give graphene the huge potential to

be used as electrode materials for energy storage devices and adsorbant materials for heavy

metal ions. However, the complicate synthesis methods and long reaction time limit its indus-

trial scale up application. In this thesis, the research is focused on development of graphene

based composite materials produced by fast, green and energy saving synthesis methods and

study their usage as electrodes and for Ni (II) ions removal by analysing the electrochemical

properties and Ni (II) ions absorb capacity.

Beside graphene, bismuth has also been considered as safe and non-toxic material. In addi-

tion, a large amount of bismuth is produced as a by-product of the copper and tin refining

industry. The long Fermi wavelength and high Hall coefficient give bismuth the possibil-

ity to reach high electronic conductivity with controlled structure. Therefore, bismuth com-

pounds were selected to decorate graphene for the electrode materials. In this study, reduced

graphene oxide bismuth composite (rGO/Bi, Bi2O3-GO, rGO/Bi2O2CO3) were synthesis at

60◦C or room temperature with short reaction time of 3 hrs. These composite materials ex-

hibit nano-structure and good electrochemical properties, such as high specific capacity and

long cycling life. In the rGO/Bi composite materials, bismuth particles with size around 20 to

50 nm were wrapped and protected by graphene layers from oxidation. This composite ma-

terials achieves a specific capacity value of 773 C g-1, which is in the range of its theoretical

value. In the Bi2O3-GO composite material, Bi2O3 shows a flower-like shape and linked by

graphene oxide layer. This material reaches a specific capacity value as high as 559 C g-1.

In the rGO/Bi2O2CO3 composite materials, nanosized bismuth subcarbonate were attached

on the graphene layers. This composite material shows stable cycling performance even af-
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ter 4500 cycles. With the low cost of initial materials, simple synthesis methods, low reac-

tion temperature, short reaction time, high specific capacity value and stable long cycling life,

graphene bismuth compounds could be the promising candidates for the future electrodes used

in electrochemical energy storage devices.

The ability of Ni (II) ions removal by graphene oxide (GO) with sodium dodecyl sulphate

(SDS) was also studied. Previous studies have proved that Ni is an excellent catalyst for car-

bon dioxide reforming. A robust Ni (II) ions removal absorbant is needed in order for this

technology to become widely acceptable. SDS has been widely used as the industrial sur-

factant in toothpaste and shampoo. By adding SDS to decorate GO, it helps prevent graphene

oxide sheets from stacking back together and then further enlarge the GO’s capacity of Ni (II)

ions removal. In this work, SDS was added to modify graphene oxide surface by a one-step

easy-to-handle method at room temperature. The effect of time on adsorption, initial concen-

tration of Ni (II) ions and pH value of the Ni (II) ion solutions with GO and GO-SDS were

analyzed. The driving force of the adsorption of Ni (II) ions on GO-SDS is proved to be by

electrostatic attraction, Ni (II) ions are adsorbed on the GO surface chemically and by ion ex-

change. By using SDS modified GO, the Ni (II) ions adsorption capacity was increased dra-

matically from 20.19 mg g-1 to 55.16 mg g-1 in respect to pure GO.
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Abbreviation

BET Brunauer-Emmett-Teller

CE Counter electrode

CHA Concentric hemispherical analyser

CV Cyclic voltammetry

DTA Differential thermal analysis

EDLC Electrochemical double layer capacitor

EDS Energy dispersive X-ray spectroscopy

ELS Electrophoretic light scattering

FTIR Fourier transform infrared spectrometer

GO Graphene oxide

HRTEM High resolution transmission electron microscopy

IHP Inner Helmholz plane

OHP Outer Helmholz plane

RE Reference electrode

rGO Reduced graphene oxide

SAED Selected area electron diffraction

SCE Saturated calomel electrode

SEM Scanning electron microscope

SHE Standard hydrogen electrode

TEM Transmission electron microscopy

TGA Thermos-gravimetric analysis

WE Working electrode

XPS X-ray photoemission spectroscopy

XRD X-ray diffraction
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Chapter 1

Introduction

Today, with the world population growing and the portable electronic devices getting popular,

the energy consumption keeps growing steadily [1]. The worldwide energy consumption in

2008 was estimated to be 144, 000 TWh [1]. The energy supplies are mainly from fossil fuel

and nuclear and also from renewable sources, such as solar, hydroelectric wind and geother-

mal [1]. The aim of this project is to synthesis a graphene based composite to reduce the im-

pact on environment and reduce CO2 emission. The development of efficient energy storage

devices is essential to balance the supply and the demand of energy and reduce the CO2 emis-

sion. In addition, Nickel has been proved as an excellent catalyst for CO2 reforming and cata-

lyst for hydration reaction of CO2 [2, 3]. However, the toxic effects of Ni (II) ions on both the

environmental and human health are of serious concern [4]. An effective Ni(II) ions absorbant

is needed in order for this technology to become widely acceptable. In this chapter, the mech-

anism of currently used energy storage devices and the widely used methods of wastewater

treatment were summarised and discussed.

1.1 Energy storage devices

Energy in different forms can be stored by different methods, such as hydroelectricity, pumped

storage, compressed air, flywheel energy storage and electrochemical devices. Hydroelectric-

ity captures energy from failing water, in which the kinetic energy is transformed into mechan-

ical energy and then is converted into electrical energy. Pumped storage devices store electri-

cal energy by moving water between an upper and a lower reservoir [5]. The rotational energy

stored in flywheel is obtained by accelerating the rotor of flywheel to a high speed. Energy can
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be extracted by reducing the rotational speed. Compressed air energy storage is a technology

that stores energy as compressed air and supplies energy at a gas turbine [1]. Electrochemi-

cal devices generate electrical energy from chemical reactions or electrostatic forces. Among

these different energy storage and conversion technologies, electrochemical one, such as bat-

teries, fuel cells and electrochemical supercapacitors, have been considered as the sustainable

and efficient devices [6].

1.1.1 Electrochemical devices

The electrochemical energy storage devices can be divided into batteries and electrochemi-

cal capacitors based on their energy storage mechanisms [7]. Lithium ions batteries are the

devices that convert chemical energy into electrical energy and vice versa [8]. It contains an

anode, a cathode and an electrolyte [8]. Graphite is commonly used as the commercial an-

ode material [9]. Even graphite has low cost and good cycle life, lots of research have been

done to investigate the substitute materials. This is because graphite only allows intercalation

of one lithium ion within its six carbon atoms [10]. The electrochemical properties of some

other materials, such as Mn3O4 [11], were also studied to further increase the capacity of an-

ode electrode. Transition metal oxides or phosphates active materials, such as LiCoO2 [12,13],

LiMn2O4 [14, 15], LiFePO4 [16, 17], are used as the cathode materials. Anode and cathode are

separated by a membrane filled with electrolyte contains lithium salts in alkyl organic carbon-

ates solution [9]. This separator prevents the contact between electrodes and allows the lithium

ions to diffuse between them [9]. During the discharge process, lithium ions flow from the an-

ode to the cathode allowing the conversion from chemical energy to electrical energy [9]. The

reaction happens in anode and cathode can be expressed as following equations 1.1 and 1.2

(use graphite and LiCoO2 as example for electrode materials) [9]:

C+ xLi+ xe-↔ LixC6 (1.1)

LiCoO2↔ Li(1−x)CoO2 + xLi+ xe- (1.2)

Lithium ions batteries are widely used as the energy storage devices for cellular phones, lap-

tops and digital electronics [9]. However, the energy density required to employ lithium ions

batteries in electric vehicles are two to five times more than the present technology can of-

fer [9, 18].
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Electrochemical supercapacitor is an energy storage device which has similar design as the

traditional capacitors. It contains two electrodes, an electrolyte and a separator that electrically

isolates the two electrodes [19]. Compared to the conventional capacitors, electrochemical

supercapacitors have higher energy densities [6]. For the electrochemical supercapacitors, the

electrodes are generally made by materials with high surface area and high porosity, such as

active carbon and metal oxide nanoparticles [19].

1.1.2 Electrochemical supercapacitors

The electrochemical supercapacitors can be classified into two types, electrochemical double

layer capacitors (EDLC) and pseudocapacitors, based on their charge storage mechanism.

Electrochemical double layer capacitors (EDLC)

In EDLC, the charge are stored by a non-faradaic method, which means the capacitance is

obtained by the accumulation of electrostatic charge at the interface of electrode and elec-

trolyte [19]. The charges generated at the electrode surface are contributed by both the surface

dissociation and the ion adsorption from electrolyte and crystal lattice defects [19, 20]. The

electrodes used in EDLC are generally made by high surface area carbon based materials [21].

In this type of supercapacitor, energy is stored in the electrode/electrolyte interfaces (double

layer). There has no ion exchanges occurred between the electrode and electrolyte [19]. In ad-

dition, the good wettability and electrical conductivity of electrolyte help reduce the internal

resistance of the electrodes and increase the mobility of ions into the pores of electrodes to

further increase the capacitance [22].

Activated carbons, which are generally produced by physically or chemically activation of

carbonaceous materials, such as wood [23, 24], coal [25, 26] and hemp [27], at high tem-

perature from 400◦C to 900◦C [25–27], have been widely used as the electrode materials for

EDLC [22]. This is because activated carbons have large surface area (from 500 m2 g-1 to

2400 m2 g-1 [28, 29]) and high pore volume (from 0.26 cm3 g-1 to 1.16 cm3 g-1 [28]). How-

ever, even with the high surface area and broad pore size distribution, activated carbon shave

only achieved a specific capacitance value of 160 F g-1 [22], which indicates that not all pores

are effective in the charge accumulation [30]. Therefore, beside the surface area, pore struc-

ture, electrical conductivity and surface functional groups may also affect the electrochemical

properties of the electrode materials [19]. To further improve the capacitance value, other car-

bon structures, such as ordered mesoporous carbon [31–33], carbon nanotubes [34–36] and
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graphene [37, 38], have been studied their potential applications as electrode materials [6].

Pseudocapacitors

When a voltage applied to pseudocapacitors, fast and reversible Faradaic reactions take place

on the electrode materials [19]. This procedure involves the passage of charge across the dou-

ble layers which leads to the Faradaic current passing through the supercapacitor cells [19].

Unlike the chemical reactions happen in the electrode of rechargeable batteries, the reactions

take place in pseudocapacitors are fast and reversible between the electrolyte and the electro-

active materials on the electrode surface [22]. Therefore, metal oxides, which have more than

one oxidation state, have been considered their applications as electrodes in pseudocapaci-

tors [22].

The electrochemical properties of both amorphous [39, 40] and crystalline [41] forms ruthe-

nium oxide (RuO2) have been widely studied in the past few decades due to their intrinsic re-

versibility and good conductivity [22, 41, 42]. In addition, the theoretical value of the specific

capacitance of RuO2 has been estimated in the range from 1300 F g-1 to 2200 F g-1 [41, 43].

The reaction takes place in the RuO2 electrode has been considered as following [41]

RuOa(OH)b +δH+ +δe-↔ RuO(a−δ )(OH)(b+δ ) (1.3)

This redox reaction involves the proton and electron double injection/expulsion of the oxyruthe-

nium groups [22, 41]. The Faradaic charge is stored and delivered through the redox reactions

between oxyruthenium groups of different oxidation states (Ru(IV)/Ru(III) and Ru(III)/Ru(II))

[22]. RuO2 can be synthesized through variety methods, such as chemical deposition, sol-gel

synthesis [44, 45], and electrochemical deposition [41]. The synthesized RuO2 exhibits great

electrochemical properties with a specific capacitance value as high as 1300 F g-1 [41]. The

rare metal nature and the high cost of ruthenium limit its scale up applications. Therefore,

researchers have also studied the electrochemical properties of other metal oxides, such as

NiO [46–48] and MnO2 [49, 50], and sought the appropriate materials for electrodes used in

future electrode devices.

In general, the advantages of electrochemical supercapacitors, such as fast charging time, sta-

ble cycle performance and broad application temperature ranges, give them the potential to

be used in electric vehicles, electronics devices and aircrafts [6]. However the relatively low

energy density and high manufacture price limit the scale up production of electrochemical

supercapacitors [6].
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1.2 Wastewater treatment

Heavy metal ions pollution is one of the serious worldwide environmental problems due to

their toxic and bio-accumulative nature [51]. To solve this problem, a wide range of technolo-

gies, such as chemical precipitation [52], ion exchange [53], membrane technology [54], elec-

trochemical treatment [55] and adsorption [56], have been developed to remove heavy metal

ions from the waste water [51].

Chemical precipitation used in wastewater treatment, such as hydroxide precipitation, sulphide

precipitation, cyanide precipitation and carbonate precipitation, involves the change of form of

materials from dissolved in water into solid particles [57]. The ionic constituents will be con-

tinuously removed from the water by adding counter-ions to reduce the solubility [57]. Chem-

ical precipitation is always followed by a solid separation or filtration procedure to remove the

precipitates [57]. By using ion exchange method, the undesirable ions are replaced by simi-

lar charged ions which could not contaminate the environment [53]. Membrane technology is

a physical process to remove particles, colloids and macromolecules in the waste water [54].

By using membrane with porous size smaller than 5 nm, small molecules and ions can be re-

moved [54]. In electrochemical water treatment, metal ions formed a cathodic deposition due

to the electric current applied [55]. Adsorption is a surface process, in which molecules or

ions are removed from the aqueous solution by adsorption onto solid surface [58].

Among all these physical and chemical methods, adsorption is believed to be the promising

one. This is due to its flexibility in operation, feasibility of producing high quality product,

low initial cost and the possibility to treat pollutants at a low concentration [51]. Because

adsorption is a surface based process, the ideal absorbent should have high surface area with

chemically functionalised pores and good adsorption capacity.

1.2.1 Ni ions pollution

Nickel is the 24th most abundant element in the Earth’s crust and has a wide range of both

industrial and commercial applications, including electroplating, battery manufacture, forg-

ing, metal finishing and mining. All these leads to Ni ions water pollution [56]. Nickel is also

known as a human carcinogen element [59]. Expose to high nickel contained environment

may cause serious lung and kidney problems, gastrointestinal distress, pulmonary fibrosis and

skin dermatitis [56, 59, 60].
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Recently, the catalytic activity of Ni in the form of Ni nanoparticles (NiNPs) for the reversible

hydration of carbon dioxide at room temperature and atmospheric pressure has been reported

[3]. NiNPs has been proved has the capability to accelerate the mineral carbonation processes

[3]. In order to get this technology widely accepted, a robust Ni adsorber is required as the

precaution against environmental accidents [56]. Therefore, a safe adsorber material synthe-

sized through a simple method for Ni ions removal is urgently needed.
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Chapter 2

Literature Review

Previous chapter has described the importance of developing electrode materials with good

electrochemical properties for efficient energy storage devices and absorbant for Ni (II) ions

removal. To achieve good electrochemical properties, including high specific capacity and

stable cycling life, materials should have both high surface area and good electronic conduc-

tivity. Graphene, as a single carbon atom layer, has a theoretical surface area as high as 2600

m2 g-1 [1]. It has the potential to reach high specific capacity and stable cycling performance

due to the electron adsorption and desorption on graphene surface. To further increase the

specific capacity, transition metal and transition metal oxides are used to decorate graphene

surface. The fast and reversible Faradaic reactions take place in metal and metal oxides can

contribute to a higher specific capacity. Among all the metal materials, bismuth not only has

excellent electronic properties but also is considered as environmentally friendly material [2].

In addition, as the by-product of copper and tin refining, the large amount of bismuth make

the graphene/bismuth composite materials possible for scale up production. Graphene oxide,

which is the intermediate product from graphite to graphene using Hummers’ method, also

has large surface area. This large surface area gives graphene oxide the potential to become an

efficient adsorbant due to the physical adsorption. Compared to graphene, graphene oxide has

higher absorption ability on heavy metal ions because the attached oxygen functional groups

give graphene oxide a negative surface charge.

In this chapter, the structure of graphene, bismuth, bismuth oxide and bismuth subcarbonate

were reviewed. The electrochemical properties of graphene and bismuth compound were sum-

marised. The adsorption abilities of graphene oxide on heavy metal ions were also reviewed.
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2.1 Review of graphene

Graphene has attracted tremendous attention since Geim and Novoselov have isolated single-

layer graphene and proved its existence as a 2-D stable material [3, 4]. Generally, as the thick-

ness of thin films decreases, the melting temperature of the materials decreases rapidly too [5].

Therefore materials will become unstable at the thickness of dozens of atoms layers [5]. How-

ever, graphene exists as a stable solid material at room temperature due to its physical proper-

ties such as a tuneable band gap, high mobility and high elasticity [6]. This single atom layer

material exhibits superb electronic properties and has been considered as the material for fu-

ture electronic devices [3].

2.1.1 Structure of graphene

Graphene is a two dimensional allotrope of carbon [7]. It is made of carbon atoms arranged

in a hexagonal honeycomb structure [7]. Graphene is the fundamental structure of carbon’s

other allotropes, such as fullerenes and carbon nanotubes [7]. Fullerenes can be seen as the

wrapped up graphene while carbon nanotubes can be seen as graphene rolling along a given

direction with reconnected carbon bonds [7, 8]. The lattice structure of graphene leads to an

unique band structure, which has been first calculated by Wallace [9]. In the hexagonal lattice

of graphene, each carbon atom is about 1.42 Å from its three nearest neighbours and shares

one σ bond with the neighbour carbon atoms (as in Figure 2.1) [10]. These σ bonds, formed

by the sp2 hybridization between one s orbital and two p orbitals, are responsible for the car-

bon lattice structure [7]. Based on the Pauli principle, these σ bonds have filled shell and form

a deep valence band [7]. The unaffected third p orbital binds covalently with neighbour carbon

atoms and forms π bond, leads to a half-filled conduction band [7, 11]. These π bonds are ori-

ented out of the plane in a z-direction [10]. The electronic band structure of graphene leads to

an unusual semi metallic behaviour [9]. The monolayer of graphene exists as a rippled form

with no stacking arrangements while the few layers of graphene may contains several stacking

arrangements, such as Bernal stacking and rhombohedral stacking [12, 13].

2.1.2 Methods of synthesis of graphene

Mechanical exfoliation of graphite

Graphene can be prepared by mechanical exfoliation of graphite. The ideal case is that graphene
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Figure 2.1: Hexagonal honeycomb lattice of graphene [10].

can be peeled from graphite, layer by layer, while overcoming van der Waals forces [14].

Previous studies have used AFM (atomic force microscope) tip to achieve highly oriented

graphite by plasma etching [15]. The obtained graphite have a thickness around 200 nm which

is approximately 600 layers [15]. Few layer graphene has been developed by K. R. Paton et.al.

using a shear exfoliation method [16]. Graphene layers prepared through mechanical exfolia-

tion method have large laterial size with no basal plane defects [16, 17]. However, mechanical

exfoliation method has limited scalability and is only suitable for research purposes [17].

Chemical exfoliation of graphite

Figure 2.2: Lerf-Klinowski model of grapehen oxide [18].

Graphene can also be synthesised by chemical exfoliation of graphite. By chemically modify-

ing graphite to produce an intermediate graphite oxide dispersion, the basal spacing between

carbon layers increases due to the attached oxidation functional groups [19]. In addition, the

hydrophilicity of graphite oxide leads water to intercalate between the carbon layers and sep-

arate them as individuals [11]. Graphene oxide has been described as a layer structured mate-

rial with hydroxyl and epoxy groups on the surface and carboxylic and carbonyl groups at the

edges, as in Figure 2.2 [18]. Reduced graphene oxide (rGO) can be obtained through thermal

reduction or chemical reduction by removal of the attached functional groups [20]. During

heat treatment, the rapid temperature increase causes the oxygen functional groups which at-
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tached on carbon layers decomposed into gases, therefore creates pressure between carbon

layers and prevents them from stacking back together [20]. Compared to thermal reduction,

chemical reduction process is more cheapter due to the less requirement for equipment [20].

Hydrazine has been widely studied and accepted as an effective reducing agent for graphene

oxide [21]. Chemical reduction method is able to prepare rGO on a large scale but cannot re-

move the functional groups fully [20].

Chemical vapour deposition (CVD)

Chemical vapour deposition is a method used to produce high quality solid material. By ex-

posing the substrate in a gases compounds environment, these gases compounds decompose

on the substrate surface and form a thin film [22]. Graphene layers can be prepared through

CVD method approach by the deposition onto transition metal substrates [23]. Previous study

successfully synthesised graphene layers with 300 nm thickness on SiO2/Si substrates using a

gas mixture of CH4, H2 and Ar under 1000◦C [6]. Ni, Pd, Ru, Ir and Cu have all been studied

as the metal substrates to prepare graphene [6, 24–27]. Graphene prepared by this method has

high quality with less structure defects [23]. Since most of the transition metals can be etched

by strong acids, the synthesized graphene can be easily transferred to other substrates [28].

2.1.3 Electrochemical properties of graphene

Graphene has been considered as the ideal material for supercapacitors [29, 30]. It has a high

carrier mobility (up to 200,000 cm2 V-1 s-1) and current carrying capacity as high as 109 A

cm2 [31, 32]. Based on the capacitance generation mechanism of graphene, in which ions are

adsorb and desorb on the material surface, graphene has been classified as the electrochemi-

cal double layer capacitor (EDLC) [33]. This type of supercapacitor has fast charge/ discharge

speed and excellent cycle life performance [34]. Ultrathin graphene paper with 25 nm thick-

ness shows a specific capacitance of 111 F g-1 [35]. Graphene paper prepared from graphene

aerogel by mechanically pressing method has a specific capacitance value as high as 172 F

g-1 at the charge/discharge rate of 1 A g-1 [36]. Graphene exfoliated under high vacuum at

200◦C shows high capacitance value of 200 F g-1 [37]. However, the capacitance value of

graphene reported in literature are much lower than its theoretical value, 550 F g-1 [17]. This

is because graphene sheets are easily stacked back together which causes difficulty for ions

in electrolytes to access [38]. Therefore, by decorating graphene with defects, impurities or

electroactive materials, such as metals or metal oxides, more active sites are obtained and high
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specific capacitance values can be achieved [17].

Chemically modified graphene with a specific capacitance of 135 F g-1 in aqueous electrolytes

was measured [39]. Graphene decorated by carbon nanotubes (with a ratio of 5:1) achieved a

specific capacitance of 177 F g-1 at the current density of 1 A g-1 [40]. This material has only

10% drop of its capacitance value after 1000 cycles [40]. By using KOH activation, graphene

with nano pores structure has a specific capacitance of 200 F g-1 at the current density of 0.7 A

g-1 [30]. Nitrogen doped rGO aerogel synthesized by hydrothermal method achieves a specific

capacitance as high as 765 F g-1 at the current density of 1 A g-1 [41].

2.1.4 Adsorption abilities of heavy metal ions by graphene oxide

The presence of metal ions in the environment is a major concern due to their toxic effect

on humans and the environment [42]. Metal ions, unlike other organic pollutants which can

undergo biological degradation, do not degrade into harmless final products and are toxic

to many life forms [43]. Some materials, such as activate carbon [44, 45], carbon nanotube

[46, 47], polymeric materials [48, 49], zeolites [50], and metal oxides [51], have been used

to remove heavy metal ions from water. Recently, graphene oxide has also been studied for

their adsorption abilities of heavy metal ions from aqueous solutions. Graphene oxide is a lay-

ered structured material with hydrogen and epoxy groups attached on its surface [52]. These

attached hydrophilic polar groups improve the dispersibility of graphene oxide in aqueous

media and result in swelling, intercalating and ions exchanging properties of the dispersion

[6, 52]. In addition, the large surface area of graphene oxide also provides the potential to

reach high adsorption abilities through both electrostatic and coordinate approaches [52, 53].

Previous studies have shown that graphene oxide has good adsorption abilities for Cu2+ [52],

Pb2+ [54], Hg2+ [55], Co2+ [56], and Ni2+ [57]. Some functional groups such as chitosan [58],

amino [59], poly(N-vinylcarbazole) [60], 4-aminothiophenol and 3-aminopropyltriethoxysilane

[61] were used to decorate graphene oxide to further enhance their adsorption ability.

Graphene oxide has a Ni2+ removal percentage as high as 89.90% with the initial concentra-

tion of 30 ppm of Ni2+ [42]. When the initial concentration increases to 200 ppm, the removal

percentage is reduced to 78.00% [42]. Fe3O4 decorated graphite oxide has a Ni2+ adsorption

capacity of 22.07 mg g-1 [62]. The adsorption equilibrium of Ni2+ was obtained after 240 min

with a removal percentage higher than 85% [62].
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2.2 Review of bismuth and bismuth compounds

As a transition metal, bismuth has a stable +3 oxidation state and can also exist at +5 oxida-

tion state. It has the potential to offer high electrical capacity based on the Faradaic redox re-

action between 0 and +3 oxidation state [63]. In addition, bismuth and most of its compounds

have been considered as safe, non-toxic, and non-carciogenic materials in spite of their heavy

metal nature [2].

2.2.1 Structure of bismuth and bismuth compounds

Bismuth is a metallic element in V group on the periodic table [64]. For bulk material, bis-

muth has a rhombohedral lattice structure as in Figure 2.3 [65]. In this rhombohedral struc-

ture, each bismuth atom has three equidistant neighbour atoms and three second neighbour

atoms with slightly further distance [65].

Figure 2.3: Bulk structure of Bi (rhombohedral unit cell) [65].

Bismuth, as a semimetal element, has many unique electronic properties based on its elec-

tronic structure [66]. It not only has a Fermi wavelength as long as 30 nm but also has the

highest Hall coefficient among all metals [66]. With the thickness of bismuth reduced, a high

density of states crossing the Fermi level is formed, which leads to the failure of band gap

opening [66]. Therefore, with the thickness of bismuth further reduced to nanometres, the

conducting properties of bismuth change from small gap semiconductor to metal as a func-

tion of its thickness [67]. Previous study indicates that the quantum size effects of bismuth has

been already observed in structures smaller than a few hundred nanometres [68].
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2.2.2 Synthesis method of bismuth and bismuth compounds

Bismuth

Bismuth nanowires can be synthesized within an alumina membranes through electrochemical

deposition technique [69]. Prepared Bi nanowires have an average pore diameter of 73 nm (as

in Figure 2.4 a)) [69]. Bismuth nanowires can also be prepared through a solvothermal pro-

Figure 2.4: Bismuth prepared by a) electrodeposition b) solvothermal c) thermal plasma [69–
71].

cess [70]. Ethylene diamine was added and used as the reducing agent [70]. The solvothermal

reaction was kept at 160◦C for 6 hours in a Teflon vessel [70]. Bi nanowires prepared through

this solvothermal method have diameters of 20-30 nm and lengths of 0.2-2.5 µm (as in Fig-

ure 2.4 b)) [70]. Bismuth nanoparticles have been reported to be prepared through the thermal

plasma method [71]. Bismuth powder was placed in Mo boat while the mixture of Ar/H2 was

used till the vacuum gauge reached 20 Pa [71]. Under high temperature condition, Bi nano-

clusters quickly collided and formed nano particles (as in Figure 2.4 c)) [71]. Polyol process,

in which ethylene glycol was used as the solvent, has been used to synthesise bismuth carbon

nanotube composite (Bi-CNT) [72].

These synthesized bismuth matertials were only charaterized by either X-ray diffraction (XRD)

or selected area electron diffraction (SEAD). No chemcial fingerprint such as X-ray photoe-

mission spectroscopy (XPS) were used for the surface charaterization. Previous studies have

reported that bismuth metal nanostructure, such as nanowires or nanoparticles, readily oxi-

dized when exposed to air at atmospheric pressure [73–75]. Metallic Bi wires typically have

an oxide layer of ∼1 nm thick after 4 h exposure to air [74]. After 48 h exposure, the thick-

ness of the oxide layer is ∼4 nm [74]. High temperature hydrogen attack (HTHA) and am-

monia environments were found to reduce the oxide without damaging the Bi metal after a

sufficient amount of time, but the oxide was found to reform in less than 1 min when exposure

to air [75]. Therefore, the surface of these synthesized bismuth materials may contain Bi2O3
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as impurity.

Bismuth oxide

Bismuth oxide nanoparticles with size around 50 nm have been synthesized by sol-gel method

and thermal decomposition method [76–78]. Bismuth oxide can also be synthesized through

electrodeposition method. Thin layer of Bi2O3 is deposited on the copper substrate in galvano-

static mode using chronopotentiometry [63]. The obtained thin film of Bi2O3 has a thickness

of 0.74 µm [63]. By using electron potential oscillation during electrodeposition, hierarchical

rippled Bi2O3 is achieved (as shown in Figure 2.5) [79]. These rippled Bi2O3 nanobelts have

width of 250-300 nm and thickness of 10-30 nm [79].

Figure 2.5: Images of rippled bismuth oxide a) SEM image b) TEM image [79]

Facile solvothermal method has been used to synthesis graphene/bismuth oxide composite

[80]. Graphene nanosheet decorated by nano-sized bismuth oxide composite was synthesized

through this method by using N, N-dimethyl formamide (DMF) as the solvent at 180◦C for 12

hours [80].

Bismuth subcarbonate

Bismuth subcarbonate can be synthesised from bismuth nitrate by hydrothermal method with

temperature around 180◦C [81, 82]. This material generally has a structure assembled from

Bi2O2CO3 nanosheets. By adding surfactant polyvinylpyrrolidone (PVP), the prepared Bi2O2CO3

shows a hierarchical flower-like structure as Figure 2.6 [82]. The flower-like Bi2O2CO3 has

a microsphere structure with diameter from 2-3 µm [82]. These as-prepared Bi2O2CO3 mi-

croflowers can then be mixed with graphene oxide for a further hydrothermal reaction and

form graphene- Bi2O2CO3 composite, as in Figure 2.7 [82].
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Figure 2.6: SEM images of flower-like structure bismuth subcarbonate [82]

Figure 2.7: TEM images of flower-like structure bismuth subcarbonate [82]

2.2.3 Electrochemical properties of bismuth and bismuth compounds

Bismuth and bismuth compounds are considered as battery-type electrode [33]. This type of

electrode exhibits high energy density and high specific capacity based on the fast and re-

versible redox reactions that happen on the electrode surface [33]. Compared to EDLC, bat-

tery type electrodes generally have higher specific capacity values but less stable cycling per-

formance [33]. The electrochemical properties of bismuth and bismuth compounds have been

studied. Bi2O3 with thin film structure synthesized through electrodeposition method achieves

a specific capacitance of 68 F g-1 at a scanning rate of 100 mV-1 [63]. Bi2O3 with rippled

film structure achieves higher specific capacitance of 250 F g-1 compared to the smooth sur-

face one [82]. β -Bi2O3 synthesised through a sol-gel method achieves a specific capacitance

of 527 F g-1 [83]. However, the capacitance retention has a nearly 40% drop after 1000 cy-

cles [83]. Previous studies have also reported the electrochemical properties of Bi2O3/ car-

bon composite materials [84]. Bi2O3 with rGO composite synthesised through hydrothermal

and thermal decomposition method has a specific capacitance of 94 F g-1 [84]. Bi2O3 with

activated carbon composite synthesized through vacuum impregnation and roasting process

achieved a specific capacitance of 333 F g-1 at the current density of 1 A g-1 [85]. Graphene

nanosheet bismuth oxide composite prepared through facile solvothermal method has obtained
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a specific capacitance of 255 F g-1 [80].

However, previous literature have pointed out that specific capacitance should only be used to

describe pure capacitor behaviours, which show rectangular cyclic voltammetry curve and tri-

angular charge discharge curve [86, 87]. For most of the bismuth compound materials, which

have redox peaks in cyclic voltammetry curves and plateau in charge discharge curve, specific

capacity is suggested to be used to describe their electrochemical properties [86–88].

2.3 Summary

In this chapter, the structure, synthesis methods and electrochemical properties of both graphene

and bismuth compounds were reviewed. The synthesis methods of bismuth and its compounds

generally involve high temperature, long reaction time, and special equipment which limits the

potential for scale up production. When considering their application as electrodes in electro-

chemical energy storage devices, bismuth and its compounds have high capacity value based

on the fast and reversible redox reaction while graphene, as an EDLC, shows good electronic

conductivity and stable cycling performance. Therefore, in this work (chapters 4, 5 and 6)

rGO/Bi, Bi2O3-rGO and rGO/Bi2O2CO3 were synthesized under relatively low temperature

and short reaction time. These composite materials have both high capacity value and good

cycling performance. In addition, the abilities of adsorption of Ni(II) ions on graphene oxide

and graphene oxide modified by sodium dodecyl sulfate (SDS) were studied in chapter 7.
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Chapter 3

Analytical instruments

The current chapter describes the analytical instruments and methods used in this thesis. X-ray

diffraction (XRD) was used to analyse the crystal structure of prepared rGO/Bi, Bi2O3-GO

and rGO/Bi2O2CO3 composite materials. Scanning electron microscope (SEM) and transmis-

sion electron microscopy (TEM) were used to study the morphology of these samples. En-

ergy dispersive X-ray spectroscopy (EDXS) and selected area electron diffraction (SAED)

were performed to confirm the chemical elemental components and crystal structures of pre-

pared samples. Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy were

used to further confirm the chemical composition and molecular structure of these samples.

X-ray photoemission spectroscopy (XPS) was used to analysis elemental and chemical states

of rGO/Bi and Bi2O3-GO. A potentiostat was used to analyse the electrochemical properties,

such as cyclic voltammetry, charge/discharge behaviour and cycling performance, of the syn-

thesized compounds. Electrophoretic light scattering (ELS) was used to determine the zeta

potential of GO and sodium dodecyl sulfate (SDS) modified GO.

3.1 X-ray diffraction

X-ray diffraction (XRD) can be used to identify the unknown crystal structure of a sample [1].

The positions and intensities of peaks shown in XRD pattern have a one-to-one correspon-

dence to that indexed peaks in the candidate diffraction pattern [1]. Therefore, the XRD re-

sults are considered as the ”fingerprint” for crystals in materials [1]. In this work, XRD was

used to characterize the crystal structures of GO, rGO/Bi, Bi2O3-GO and rGO/Bi2O2CO3.

Diffraction occurs when waves, which are defined as the distance between peaks by the wave-
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length, scatter from an object constructively interfere with each other [2]. Bragg first described

the diffraction of X-rays generated by constructive interference from the planes in a crystal by

the following equation 3.1 [3]:

2dsinθ = nλ (3.1)

where d is the interplaner spacing, θ is the incident angle of X-rays, λ is the wavelength of

X-rays and n is an integer.

When parallel X-ray beams incident on the lattice planes of a crystal material with an angle of

θ , diffraction happens with the same angle (as in Figure 3.1) [2]. Constructive interference oc-

curs only when the two waves are in phase [2]. Therefore the extra distance (AB+BC) should

be an integer number of the wavelength λ [2].

Figure 3.1: Diffraction of X-rays from the planes in a crystal [2].

3.1.1 Instrument

A typical diffractometer, which is used to record the powder patterns electronically, is shown

in Figure 3.2 [2]. The diffractometer contains an X-ray tube, a sample table, and a detector. To

meet the condition of the Bragg’s law, the sample is moved through an angle of θ while the

detector is scanned through an angle of 2θ [2].

The XRD measurements in this project were carried out at room temperature with an Altima

III, Rint 2000 from Rigaku Company in NIMS, Japan. In this XRD instrument, Cu-Kα with

a wavelength of 1.5418 Å was used as the radiation source. During the X-ray diffraction test,

an incident X-ray wave is directed to the material while a detector is moved to record the di-

rection and intensity of the outgoing diffractive wave [1]. The data were collected with a range

from 0◦ to 90◦ 2θ at a step size of 0.02◦.
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Figure 3.2: A typical diffractometer [2].

3.1.2 Data interpretation

A typical XRD pattern is described in terms of the following components: (1) peak position,

(2) peak intensity, (3) peak width and (4) peak shape [4].

(1) Peak position

Peak position (2θ ) and the Miller indices (h, k, l) in XRD patterns are used to determine the

interplanar distance (d) of a crystal system [5]. Peak position may be shifted due to the in-

strumental factors, like temperature [4]. The interplanar distance of materials with different

crystal lattice systems can be calculated following the Table 3.1, in which a, b, c are the crys-

tallographic axes and α , β , γ are the angles between them [5].

Table 3.1: Interplanar spacing [2, 5].
lattice system lattice parameters interplanar distance 1

d2

cubic a=b=c, α=β=γ=90◦ h2+k2+l2

a2

tetragonal a=b 6=c, α=β=γ=90◦ h2+k2

a2 + l2

c2

hexagonal a=b 6=c, α=β=90◦, γ=120◦ 3
4

h2+hk+k2

a2 + l2

c2

orthorhombic a 6=b6=c, α=β=γ=90◦ h2

a2 +
k2

b2 +
l2

c2

monoclinic a 6=b6=c, α=γ=90◦, β 6=90◦ h2

a2sin2β
+ k2

b2 +
l2

c2sin2β
+ 2hlcosβ

acsin2β

triclinic a 6=b6=c, α 6= β 6= γ 6=90◦ [ h2

a2sin2α
+ 2kl(cosβcosγ−cosα)

bc + l2

c2sin2γ

+ 2hl(cosαcosγ−cosβ )
ac + k2

b2sin2β
+

2hk(cosαcosβ−cosγ)
ab ]

1
(1−cos2α−cos2β−cos2γ+2cosαcosβcosγ)
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(2) Peak intensity

The intensity of a diffraction peak is controlled by both the diffractometer and the sample it-

self [1]. For example, with the temperature increased, the thermal vibration effect of atoms

become obvious and therefore a reduction in the intensity of diffracted X-rays from a crystal

sample can be detected [3]. In addition, if the material exhibits a “preferred orientation”, the

relative intensity of that peak in XRD pattern will deviate from the intrinsic intensity [4].

(3) Peak width

Crystallite size can be estimated from the peak width by the Scherrer equation (3.2) as follow-

ing [6]:

B(2θ) =
Kλ

L cosθ
(3.2)

where B(2θ ) is the mean size of the crystallites, K is a dimensionless shape factor, 0.9, λ is

the X-ray wavelength, L is the width at FWHM (full width at half its maximum intensity) and

θ is the Bragg angle.

(4) Peak shape

The diffraction pattern gives information of the real space periodicities in a material [1]. Ma-

terials with long repeat atomic periodicities have small diffraction angle while materials with

short repeat atomic periodicities have large diffraction angles [1]. Therefore, crystals with pre-

cise periodicities over a long distance have sharp and clear diffraction peaks in XRD patterns

while crystals with defects, which have short repeat periodicities, show broadened and weak-

ened peaks [1].

3.1.3 XRD characterization of rGO and bismuth

In the XRD pattern of graphite, a sharp peak is expected at 26.7◦, which corresponds to the

(002) crystal plane of carbon. After treated by mixed strong acid and potassium permanganate,

oxygen groups attach to the graphite layer and form graphene oxide. The peak in XRD pat-

tern of graphene oxide is shifted to around 12◦ [7]. The peak has a broadened and weakended

shape compared to the graphite peak because the attached oxygen groups destroy the long

range atomic periodicity. The internal distance of carbon layers in graphene oxide can be

determined from the peak position based on the Bragg’s equation. Reduced graphene oxide

(rGO) can be obtained after treating graphene oxide with reducing agents, such as hydrazine,

in order to remove the oxygen functional groups. Ideally rGO will not show any peak in its
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XRD pattern because it is a single carbon layer. However, in practical, rGO normally shows a

small hump at around 25◦ [8]. This broad and weak peak is formed by the disordered stacking

of rGO layers.

In the XRD pattern of metallic bismuth, the strongest three peaks appear at 27.60◦, 37.80◦ and

39.46◦, which correspond to the (012), (104) and (110) crystal planes of bismuth, respectively

(Natl. Bur. Stand. (U.S.)). Bismuth oxide normally has a monoclinic phase at low tempera-

ture. In the XRD pattern of monoclinic α-Bi2O3, the strongest three peaks appear at 27.27◦,

32.92◦ and 33.12◦, which correspond to the (120), (121) and (200) crystal planes of bismuth

oxide, respectively (Natl. Bur. Stand. (U.S.). In the XRD pattern of bismuth subcarbonate,

strong peaks appear at 23.90◦, 26.03◦, 30.24◦ and 32.69◦, which correspond to the (101),

(004), (103) and (110) crystal planes, respectively (Natl. Bur. Stand. (U.S.).

3.2 Scanning electron microscope

In a scanning electron microscope (SEM), an incoming (primary) electron beam supplies en-

ergy to electrons in a solid material and then releases secondary electrons with lower kinetic

energies [9]. These secondary electrons are collected and provide a secondary-electron image

of that solid material [9]. In this work, a SEM was used to study the morphology of prepared

GO, rGO/Bi, Bi2O3-GO, rGO/Bi2O2CO3 and GO-SDS materials (in chapters 4, 5, 6 and 7).

3.2.1 Instrument

A SEM can be divided into three components: an electron optical system, a sample stage, and

detectors as in Figure 3.3 [9].

The electron optical system contains an electron gun, two condenser lenses, and an objective

lens. Electron source is located at the top of column. Electrons are generated by field emission

from a filament and accelerated toward an anode. Condenser lenses are used to focus the beam

by reducing the magnification of the electron beam crossover diameter [9]. By adjusting the

size of apertures, an electron beam with desired spot size is obtained. Objective lens is used

for a further focusing of the electron beam [9]. Stigmator or astigmator corrector located in

the objective lens is used to reduce the aberrations of the electron beam. A sample stage is

located at the lower portion of the column. This sample stage is used to support the sample

and help it moves smoothly. The SEM instrument used in this project is a type JSM-7001F
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Figure 3.3: Schematic diagram of SEM [9].

from JEOL Company at NIMS, Japan. A field emission gun (tungsten) is used as the electron

source. This instrument provides a magnification up to 1,000,000x and a resolution of 1.2 nm.

3.2.2 Principles of the operation

A focused beam of high energy electrons (15 keV) incidents to the sample and generates a var-

ious signal due to the electron-specimen interactions [10]. These signals include secondary

electrons, backscattered electrons, diffraction backscattered electrons, high energy photons

and visible light [11]. All these provide detailed information including morphology, chemical

composition, crystalline structure, and orientation of the sample [11]. Secondary electrons are

resulted from the inelastic collisions and scattering of incident electrons (primary electrons)

by the crystal lattice of atoms. These secondary electrons are collected and amplified by a de-

tector to reveal the surface structure of the tested sample [9]. In addition, there are small frac-

tion of the primary electrons which are elastically backscattered with a diffraction angle larger

than 90◦ [9]. These backscattered electrons contain high kinetic energy which can be collected

after re-entering the surrounding vacuum and are used to determine the atomic number map-

ping [9].

3.3 Transmission electron microscope

In a transmission electron microscope (TEM), high energy electrons, generally between 60-

300 keV, with short wavelength are generated by raising the accelerating potential [9]. This

electron beam can penetrate a distance of up to several microns (µm) into a solid material and
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can be imaged by electrostatic lenses [9]. In this work, TEM was used to characterize the mor-

phology of GO, rGO/ Bi, Bi2O3-GO and rGO/Bi2O2CO3 (see chapters 4, 5, 6 and 7).

3.3.1 Instrument

Generally, a TEM can be divided into three components: an illumination system, an objective

lens/stage and an imaging system, as shown in Figure 3.4 [12].

Figure 3.4: Transmission electron microscope [12].

The illumination system contains an electron gun and a condenser lens [12]. By adjusting the

current of condenser lens, electrons from the electron gun will be transferred onto the speci-

men as a parallel beam [12]. The specimen stage is used to move the sample holder to a de-

sired position and orientation [12]. The electrons that are emerged from the surface of the

sample are collected by an objective lens to create a diffraction pattern on the back focal plane

and produce an image on the image plane [12]. The imaging system contains an intermediate

lens, a projector lens and a viewing screen [12]. By change of the strength of the intermediate

lens, diffraction pattern or image will be magnified by the projector lens and displayed on the

viewing screen [12].

The JEM-2100F Electron Microscope from JEOL Company (Figure 3.4) at NIMS, Japan was

used in this project. ZrO/W field emission gun was used under an accelerating voltage of 200

keV. This instrument has a point resolution of 0.19 nm.
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3.3.2 Imaging in TEM

In TEM, three types of imaging contrast can be obtained based on the different formation

mechanisms of contrast: mass thickness contrast, diffraction contrast and phase contrast [1,

12, 13].

Mass thickness contrast

Mass-thickness contrast results from the elastically scattered electrons [12]. When the elec-

trons pass through samples, they are scattered off axis with small angles due to the elastic in-

teraction with nucleus [12]. Samples with a high mass-thickness have more incident electrons

elastically scattered off axis, and therefore less electrons are focused on the image plane thus

show a darker brightness [12]. Either decreasing the accelerating voltage or using an objective

aperture on the back focal plane can enhance this mass-thickness contrast [13].

Diffraction contrast

Diffraction contrast can be used to identify the crystallites in samples [13]. If the angle be-

tween incident electrons and crystal lattices of grains fulfill the Braggs law, high intensity of

the elastically scattered electrons is achieved [13]. These elastically scattered electrons will be

removed by the objective aperture on the back focal plane (Figure 3.5) [13]. Therefore as less

electrons fall on the image plane, these crystallite parts show a darker brightness [13].

Figure 3.5: Imaging and diffraction in the TEM (schematic diagram) [13].

Phase contrast

Instrument which is designed for phase contrast is usually called HRTEM (high resolution
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transmission electron microscopy) [14]. A large objective aperture or no aperture, which al-

lows diffracted wave as well as transmitted beam to pass through the sample, is used to achieve

the phase contrast [13]. Spherical aberration corrector is used to reduce the lens aberration to

get a clear image. The incident wave is assumed as a plane wave [13]. The wavelength re-

mains the same as electrons pass through the crystal and only results in a phase shift at the

sample’s exit surface [13]. The transmitted and diffracted electrons with various phase changes,

interfere with each other and produce a phase contrast image with atomic resolution [13]. In

another word, the phase shift reflects the periodicity of the crystal [13].

3.3.3 Analytical possibilities in TEM

Electron diffraction

Diffraction pattern formed on the back focal plane could help to determine the distance be-

tween crystal lattice phase [13]. SAED (selected area electron diffraction) can be used to de-

termine both the single crystal structures and the polycrystalline structures [13]. Crystalline

samples have the point diagrams while polycrystalline samples have scattering curves as the

pattern of diffraction [13]. Equation 3.3 and Figure 3.6 explain the electron diffraction in

TEM [1, 13]:

tanθ =
r
L

(3.3)

where θ is the diffraction angle, r is the distance from central reflection measured on the screen

and L is the camera length, the product of the objective focal length and the magnification by

projective lenses.

Diffraction can also be explained by the Bragg’s law as equation 3.1 [13]

2dsinθ = nλ

where λ is the wavelength of incident electrons, which can be calculated from the accelerating

voltage, d is the distance between lattice planes.

In TEM testing, small diffraction angle (θ �1) is used. Therefore the above two equations 3.3
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Figure 3.6: Diffraction pattern in TEM [13].

and 3.1 can be combined and written as [13]:

λL = dr (3.4)

where λL is the apparatus constant.

Energy dispersive spectroscopy of characteristic X-rays (EDXS)

TEM can also be used to determine the chemical elements in the sample. During the inelas-

tic scattering, energetic state of atomic electron shell changes and emits a X-radiation with

an energy depending on the atomic number [13]. This X-radiation can be collected and used

to detect the element components [13]. Lithium doped silicon crystal is used as the detec-

tor [2]. When the X-ray photon enters this crystal, the photon is absorbed and creates a pho-

toelectron whose energy is equals to that of incident X-ray photon minus the binding energy

of the electron [2]. Then this energetic photoelectron loses its energy of 3.8 eV and creates an

electron [2]. The number of the electrons generated in such way is then counted by the detec-

tor [2]. This detector unit is embedded in a polymer window and cooled, including the pream-

plifier [13]. During the X-ray analysis, this detector is inserted into the pole piece gap of the

objective lens [13]. This detector can also be used in a SEM for elemental determination.

3.3.4 SEM and TEM characterization of rGO

Typical SEM and TEM images of graphene oxide and reduced graphene oxide were shown in

the figure 3.7 [15]. As in these figures, graphite shows a platelet-like crystalline structure [15].
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Figure 3.7: SEM and TEM images of GO and rGO. a)SEM image of graphite, b)SEM image
of GO, c)SEM image of rGO and d)TEM image of rGO [15].

The graphene oxide sheets are smaller and transparent compared to graphite [15]. Reduced

graphene oxide exhibits wrinkled structure which is caused by the sheet folding [15].

3.4 X-ray photoemission spectroscopy (XPS)

XPS is a surface analysis instrument for elemental and chemical state identification. In this

work, XPS was used for analysis of the chemical states of bismuth in rGO/Bi sample and the

chemical state of carbon in GO, rGO/Bi and Bi2O3-GO, as in chapters 4 and 5.

3.4.1 Measurement principles

XPS is a powerful technique which is used to identify and quantify the elemental composition

of the outer 10 nm of any solid surface [16]. All elements from Li to U are detectable [16]. A

photoelectron process is shown in Figure 3.8 [17]. For example, in the XPS measurement, an

X-ray photon of energy hv is directed to the sample. A 1s electron in K shell is ejected from

the sample and emited as a photoelectrons [17]. The kinetic energy of this emitted photoelec-
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tron is measured and used to calculate the binding energy and then determine the elemental

and chemical states of the material [17].

Figure 3.8: A XPS process with photoionization of an atom by the ejection of a 1s electron
[17].

The electron binding energy, which is elemental and environment specific, can be determined

by the following equation 3.5 [17]:

EB = hv−EK−W (3.5)

Where EB is the electron binding energy, hv is the photon energy, EK is the kinetic energy of

the electron and W is the spectrometer work function.

3.4.2 Instrument

High vacuum is the pre-requirement for XPS measurement. With an improved vacuum, de-

tection probabilities in XPS can be increased [16]. A XPS instrument consists of three com-

ponents, a X-rays source, an energy analyser and a detector [16]. X-rays is selected as the

incident beam because the source used in XPS must be able to produce photons of sufficient

energy to access core electron levels [16]. Photons of this energy lie in the X-ray region of the

electromagnetic spectrum [16]. A concentric hemispherical analyser (CHA), as in Figure 3.9,

is used to measure the kinetic energy of the ejected electrons [16]. It consists of two concen-

tric hemispheres, one insider the other, with the radius of R1 and R2 [17]. After applied a po-

tential difference across these two hemispheres, only the electrons with the following energy

(as in equation 3.6) can reach the detector [17].
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Figure 3.9: A concentric hemispherical analyser used in XPS [16].

E = e∆V
R1R2

R2
2−R2

1
(3.6)

Where E is the kinetic energy of the electrons, e is the charge on the electron, ∆V is the poten-

tial difference between the two hemispheres, R1 and R2 are the radius of the inner and outer

hemispheres. By change of the potential difference, electrons with different kinetic energies

can be selected and detected.

In this work, the XPS spectra were measured with a Kratos Axis Ultra spectrometer, using

monochromated Al Kα X-rays (hv=1486.6 eV). Samples were grind into powder for measure-

ment. High resolution XPS data were fitted using UNIFIT2007 and Winspec with a Shirley-

type background for secondary electrons.

3.5 Fourier transform infrared (FTIR) spectroscopy

FTIR spectrometer is a powerful technique which provides the information of chemical com-

position of the sample. The FTIR spectra of rGO/Bi, Bi2O3-GO, rGO/Bi2O2CO3 and GO-

SDS were presented in the chapters 4, 5, 6 and 7, respectively.

3.5.1 Measurement principles

When an infrared radiation (IR) light passes through a sample, the molecules in that sam-

ple absorb the infrared radiation and result in their vibration [18]. Functional groups within
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molecules absorb the infrared radiation in the same wavenumber range according to the struc-

ture of that molecule [18]. Every molecule has a slightly different vibrational modes from all

the other molecules and gives an unique infrared spectrum [19]. Therefore the infrared spec-

trum can be used to identify that molecule. Compared to the traditional infrared spectroscopy,

which called dispersive instrument, FTIR spectroscopy allows all the infrared radiation pass

through the sample and measure the infrared frequencies at the same time by a detector [18].

This is because Fourier transformation is used in FTIR spectroscopy to transform the mea-

sured signal into a final infrared spectrum. The Fourier transform that is used can be expressed

as [19]:

F(ω) =
∫ +∞

-∞
f (x)eiwxdx (3.7)

Where F(ω) is the spectrum, f(x) is the interferogram, ω is the angular frequency and x is the

optical path difference.

3.5.2 Instrument

Figure 3.10: An optical diagram of a Michelson interferometer [18].

A typical interferometer used in FTIR is shown in Figure 3.10 [18]. The IR light beam is di-

rected to a beam splitter, from where half of the light is transmitted and the other half is re-

flected [18]. These two beams of light reach a fixed mirror and a moving mirror and then both

reflect back toward the beam splitter [18]. Therefore, the detector catches two beams, one

from the fixed mirror and the other one from the moving mirror. These two beams come from

the same IR source but have an optical path difference which is determined by the position of

the two mirrors [18]. By change the position of the moving mirror for a particular frequency,
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the two beams interfere constructively or destructively [18]. After this beam passes through

the sample, the transmitted beam with a sinusoidal signal, also called interferogram, is col-

lected by the detector [18]. The IR source contains a wide range of frequencies, therefore the

detector output is a sum of all the interferograms. The Fourier transform is then used to trans-

form the interferograms into a spectrum [18].

A Varian 600 IR type FTIR spectrometers in Newcastle University, UK was used in this work.

All samples were grind into powder and tested under N2 environment with a wavenumber

range from 4000 cm-1 to 400 cm-1. This instrument has a resolution of 2 cm-1. Background

spectra were first collected. The spectra of samples are the ratio of the spectrum containing

sample against that of the background. 100 scans were collected for each sample.

3.5.3 XPS spectra of rGO and bismuth

In the XPS spectrum, C 1s lines appeared in the binding energy range from 280 eV to 295 eV.

The binding energy of graphite (C-C) is located at 284.4 eV binding energy. [20] The binding

energy of C 1s components, such as hydrocarbons (C-H), alcohol (C-OH), carbonyl (C=O),

ester (COOR) and satellite (π-π?), are located at 285.0 eV, 286.1-286.3 eV, 287.6-287.7 eV,

288.6-289.1 eV and 290.5-290.8 eV, respectively. [20] Graphite has an asymmetric C 1s peak

centred at 284.4 eV in the XPS spectrum. In addition, a small peak at 290.5-290.8 eV corre-

spond to the π-π? transition. In the XPS spectrum of graphene oxide, beside the graphite C

1s peak, more peaks that are in the binding energy range of 285.5-290.8 eV are due to the at-

tached oxygen functional groups. In the XPS spectrum of reduced graphene oxide, the peaks

appeared in the C 1s components region should become less dominant compared to these

peaks in graphene oxide sample. This is because majority of the oxygen functional groups

attached on graphene oxide sheets can be removed by the reducing agents.

Bi 4f peaks appear in the XPS spectrum within the binding energy region, 150-170 eV. Bi 4f

has well separated spin-orbit components, of 5.3 eV. Binding energies of Bi 4f peaks for Bi

are located at 162.3 eV (4f5/2) and 156.6 eV (4f7/2) [21]. Binding energy of Bi 4f peaks for

Bi2O3 are located at 161.5 eV (4f5/2) and 158.7 eV (4f7/2). [22]
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3.6 Raman spectroscopy

Raman spectroscopy and IR spectroscopy are complementary techniques to study the vibra-

tion modes of molecules [23]. Similar to FTIR spectroscopy, Raman spectroscopy is also

based on the interaction of the radiation with samples. Different from FTIR spectroscopy, Ra-

man spectroscopy identifies the molecule structure of the sample by measure the frequency

shift after radiation scattering. In general, Raman spectroscopy is good at measuring the sym-

metric vibrations of non-polar groups while IR spectroscopy is good at measuring the asym-

metric vibration of polar groups [23]. Raman spectroscopy was used in this work to analyse

the reduction from GO to rGO in chapters 4, 5 and 6.

3.6.1 Raman Scattering

A laser with monochromatic radiation is used to irradiate the sample in Raman spectroscopy

[23]. The scattering that happened can be divided into three types, Rayleigh scattering, Stoke

Raman scattering and anti-Stokes Raman scattering, based on the frequency shift of the inci-

dent radiation scattering, as in Figure 3.11 [23, 24].

Figure 3.11: Schematic illustration of Rayleigh scattering and Stokes and anti-Stokes Raman
scattering [23].

In the Rayleigh scattering, even there is no energy change in the system, this system still par-

45



ticipates in a scattering process [24]. An incident photon is absorbed momentarily by the tran-

sition from the ground state to the virtual state. A photon is then generated by this transition

from the virtual state to the ground state resulting in no frequency shift and energy change

[23]. The molecules initially in the ground vibrational state give rise to the Stokes Raman

scattering while the molecules initially in the excited vibrational state give rise to the anti-

Stokes Raman scattering [23].

3.6.2 Instrument

A basic Raman spectroscopic system is shown in the Figure 3.12 [25]. It consists of three

components, a light source, a sample light delivery and collection part and a detector [25]. The

excitation source is used to provide laser beam. This beam is focused by the objective lens and

directed to the sample. Raman scattered light is then collected by the detector and transformed

into electrical signals. The Raman spectrum is plotted as the Raman scattered light intensity as

the function of frequency shift.

Figure 3.12: A basic schematic of the Raman spectroscopic system [25].

A type HR800UV Raman spectrometer from HORIBA Jobin Yvon company was used in this

project. An argon ion laser of strong emission line at 514.5 nm with 10% filter was used as the

radiation source. Samples were first grind into powder and then pressed on a silica glass slide

for Raman study. An energy range from 1000 cm-1 to 1900 cm-1 was selected.

3.6.3 Raman spectra of GO and rGO

Previous studies show that graphite, graphene oxide and reduced graphene oxide have peaks

in the wavenumber range from 1000 to 1900 cm-1 [26]. The two main peaks in the Raman

spectra of carbon materials are located at 1560 cm-1 (G band) and 1360 cm-1 (D band) [26].
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The G band is caused by the in-phase vibration of the sp2 graphite lattice [27]. The D band is

caused by the structural defects and disorder in graphite lattice [27]. A typical Raman spectra

of carbon materials, including graphite, graphene oxide and graphene, are shown in the figure

3.13 [28]. Graphite shows a strong peak at 1575 cm-1 due to the in-phase vibration of graphite

Figure 3.13: Raman spectra of carbon materials, including graphite, graphene oxide and
graphene [28].

lattice [28]. In the spectrum of graphene oxide, the G band becomes broaden and exhibits

a blue shift to 1594 cm-1 [28]. A D band peak appears at 1354 cm-1 [28]. Graphene shows

a strong G band in Raman spectrum, which has the similar position as G band of graphite.

Graphene also has a low intensity D band because of the remained oxygen functional groups.

3.7 Electrochemical analyser

A potentiostat is an electronic instrument which can be used to measure the current flow be-

tween the working electrode and the counter electrode while controlling the voltage difference

between the working electrode and the reference electrode. The electrochemical properties,

such as cyclic voltammetry, charge/discharge behaviours and cycling performance, of rGO/Bi,

Bi2O3-GO and rGO/Bi2O2CO3 were tested and analysed by potentiostat in chapters 4, 5 and

6.
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3.7.1 Instrumentation

Potentiostat is used to perform analytical studies in electrochemistry field [14]. Figure 3.14 is

a typical schematic diagram of a three electrode potentiostat [29]. This potentiostat contains

a three electrodes system, operational amplifiers and feedback loops [29]. To reduce the ef-

fect of the ohmic potential drop, the reference electrode (RE) and the working electrode (WE)

should be placed as near as possible [29, 30]. Since no current flows through the reference

electrode and its position is close to the working electrode, the potential drop caused by the

cell resistance is minimized [29]. In addition, to minimize the current generated by the instru-

ment, an operational amplifier is used [14].

Figure 3.14: Schematic diagram of a three electrode potentiostat [29].

In this work, a VSP-300 multichannel potentiostat from the BioLogic Science Instruments was

used. This potentiostat has a potential resolution of 1 µV and a current resolution of 760 fA.

3.7.2 Electrochemical cells

An electrochemical cell is used for the electrochemical properties test. It consists of three

electrodes, an electrolyte and a container (Figure 3.15) [31]. Three electrodes that are used

are: a working electrode (WE) which defines the interface under study, a reference electrode

(RE) which maintains a constant reference potential, and a counter electrode (CE) which sup-

plies the current [31].

Reference electrode

Reference electrode is used to determine the electrode potential in a half cell measurement be-

cause it is difficult to compare an unknown system (working electrode) with a known, standard
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Figure 3.15: Electrochemical cell of a three electrodes system, CE (counter electrode), WE
(working electrode), and RE (reference electrode) [31].

system directly [32]. However, no standard electrode can be set up experimentally because the

standard state of an electrode is a hypothetical concept [32]. Therefore, all reference electrode

used practically should be converted into a standard hydrogen electrode (SHE), in which the

potential is taken as zero at all temperatures [32]. The standard hydrogen electrode requires an

ideal hydrogen gas at 1 atm pressure and the reaction can be written as equation 3.8 [32]:

H2(aq.soln.)⇔ 2H(adsorbedonmetal)⇔ 2H+
aq.soln.+2e- (3.8)

However, the requirement of the continuously control of the H2 pressure is difficult to achieve.

Saturated calomel electrode (SCE) and mercury-mercury oxide electrode (HgO|Hg), which

have stable potential values, were used as the reference electrodes in electrochemical tests in

this work.

SCE vs. SHE

SCE is a half-cells electrode based on the charge transfer reactions between mercury-mercury

chlorides in a saturated potassium chloride solution [33]. Because saturated KCl was used, the

electrode reaction only involves species at the unit activity (Hg2Cl2 and Hg) while the amount

of Cl– ions remain constant [34]. The reaction happens in SCE can be described as in equation

3.9 [34]:

Hg2Cl(2s)+ e-⇔ Hg(l)+Cl-
(aq) (3.9)

The standard potential of a half-cell SCE at 25◦C has been accurately measured as [33]:

ESCE = ESHE +0.241V (3.10)
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HgO|Hg vs. SHE

The HgO|Hg reference electrode involves the reaction between HgO and Hg as:

HgO(s)+H2O+2e-⇔ Hg(l)+2OH- (3.11)

When HgO|Hg is used as the reference electrode in an alkaline electrolyte, the potential of a

standard half-cell at 25◦C is 0.098V vs. SHE [35, 36]. When the concentration of the elec-

trolyte solution is considered, the potential of the HgO|Hg electrode can be expressed by the

Nernst equation as following [37]:

E = 0.0984− RT
zF

lnα(OH)- (3.12)

where E is the potential value of HgO|Hg electrode at a certain concentration of alkaline so-

lution, R is the gas constant, 8.314 JK-1 mol-1, T is the absolute temperature, 298.15 K, F is

the Faraday constant, 9.648×104 C mol-1, z is the number of moles of electrodes transferred

in the half-cell reaction, and α(OH)- is the activity of hydroxide ions in solution, which can be

estimated by:

α(OH)- = γm (3.13)

where γ is the mean activity coefficient of the hydroxide ion and m is the solution concentra-

tion in molarity. When the molarity (m) of electrolyte solution is 6 mol L-1, the mean activity

coefficient, γ , of KOH is 2.18 [36, 38]. Therefore the potential value of HgO|Hg electrode can

be calculated as

E = 0.0984−0.059× lg(6×2.18) = 0.0325V (3.14)

The potential different between HgO|Hg and SHE can then be written as:

EHgO|Hg = ESHE +0.0325V (3.15)

Counter electrode

A counter electrode is made of conducting and usually inert materials [30]. The surface area

of the counter electrode should be larger than the surface area of the working electrode [30].

In this work, a Pt wire was selected and used as the counter electrode.
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Working electrode

For rGO/bismuth compound composite materials, a mixture which contains 90 wt% of the

prepared samples and 10 wt% of the PTFE was used as the working electrode. The added

PTFE was used as the bonding agent. Nickel foam was used as the electron collector. Two

pieces of nickel foam (1cm×3cm and 1cm×1cm) were first cut and washed by ethanol in a

sonication bath. These nickel foams were dried in the vacuum at 60◦C overnight (more than

12 hours). The weight of these nickel foam was measured. After dropping the prepared slurry

onto one side of the nickel foam, this nickel foam was dried again in the vacuum at 60◦C

overnight. The weight change of this nickel foam is the weight of the attached active material

with PTFE.

3.7.3 Technique used in electrochemical test

Cyclic voltammetry (CV)

Cyclic voltammetry is the widely used technique to study the electrochemical properties of a

material in solution [29]. Its results give considerable information on the thermodynamics of

the redox process of a chemical reaction or an adsorption process [29]. During the CV test,

the electrode potential is changed linearly with the time within a settled voltage range, which

can be expressed by the scan rate (V s-1). During the potential changes, the potentiostat mea-

sures current changes resulting from the applied voltage [29]. In the cyclic voltammogram,

results are plotted as the applied potential (V) vs. the current (I) [39]. The potential is mea-

sured between the working electrode and the reference electrode while the current is measured

between the working electrode and the counter electrode. Figure 3.16 shows a typical cyclic

voltammogram of the graphene and the graphene/bismuth oxide composite material [40].

Graphene exhibits a rectangular cyclic voltammogram shape while graphene/bismuth oxide

composite shows obvious peaks in its cyclic voltammetry results. The capacitance obtained by

graphene is due to the adsorption and desorption of the electrons solely. In the cyclic voltam-

mogram of graphene/Bi2O3 composite material, the peak that appeared at around the -0.68 V

is result from the reduction reaction from Bi3+ to Bi(0) [40]. The two oxidation peaks at -0.5 V

and -0.3 V are attributed to the formation of Bi3+ from Bi(0) during the oxidation reaction [40].

Chronopotentiometry

Chronopotentiometry is used to study the charge/discharge behaviours of materials. During
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Figure 3.16: Typical cyclic voltammogram of graphene and graphene/bismuth oxide compos-
ite materials [40].

the chronopotentiometry test, the working electrode is tested between an applied potential at a

constant current density. This charge/ discharge test can also be repeated and used to analyse

the stability of the working electrode.

The typical curves of charge/discharge behaviours of rGO and Bi2O3 are shown in Figure 3.17

[40, 41]. In the chronopotentiometry curves of rGO/Bi2O3, a plateau that appeared at around

-0.4V in the charging process is due to the oxidation reaction of bismuth, which correspond to

the cyclic voltammetry results [40, 41]. The discharge process contains a slope and a plateau.

The slope is contributed by the electric double layer capacitance while the plateau is due to the

reduction reaction of bismuth from +3 oxidation state to Bi(0) [40]. For graphene electrode,

the discharge duration is attributed solely to the electric double layer capacitance [40]. Com-

pared to graphene, graphene/Bi2O3 has longer discharge duration time due to the contribution

of both the electric double layer capacitance and Faradaic reactions [40].

The specific capacitance of active materials deposited on the working electrode can be eval-

uated from the following equation 3.16 [39], which is used to describe the pure capacitor be-

haviour with rectangular CV curve and triangular charge discharge curve:

C =
i×∆t

∆V ×m
(3.16)

where, C is the specific capacitance (F g-1), i is the current (mA), ∆t is the discharging time

(s), ∆V is the potential (V) and m is the mass of active materials (mg).

Specific capacity, as in following equation 3.17, is suggested to be used to describe the elec-

trochemical properties from Faradaic reactions, which have redox peaks in a cyclic voltamme-
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Figure 3.17: a) Typical charge/discharge curves of a graphene/bismuth oxide composite ma-
terial [40] b) Typical discharge curves of graphene and graphene /bismuth oxide composite
materials [41].

try curve and the plateau in a charge discharge curve [42, 43]:

Cs =
i×∆t

m
(3.17)

where, Cs is the specific capacity (C g-1), i is the current (mA), ∆t is the discharging time (s)

and m is the mass of active materials (mg).

3.8 Electrophoretic light scattering (ELS)

During the electrophoretic light scattering, the particle motion caused by an applied oscillat-

ing electric filed resulted in a frequency shift of the incident laser beam. The electrophoretic

mobility determined by the frequency shift is then used to calculate the zeta potential of ma-

terials. The zeta potential of GO and sodium dodecyl sulphate (SDS) decorated GO were esti-

mated by ELS in chapter 7.

3.8.1 Zeta potential

Zeta potential is a parameter which is used to describe the surface charge of a material placed

in a liquid. It is generally used to predict the stability of the dispersion. Zeta potential can-

not be measured directly, but it can be determined by the electrokinetic effects, such as elec-

trophoresis and electro-osmosis [44]. Electrophoresis, which has been used to determine the

zeta potential by ELS, is the movement of a charged particles in a liquid under an external
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electric field [45]. The electro-osmosis is the movement of a liquid through immobilized set of

particles under an external electric field [45].

Zeta potential is defined as the potential at the slip plane of a particle in electrolyte as in Fig-

ure 3.18 [45]. The region between the particle surface and the inner Helmholz plane (IHP)

Figure 3.18: Schematic of the charges and potentials at a positively charged interface. IHP
(inner Helmholtz plane), OHP (outer Helmholtz plane) and slip plane from a charged particle
[45].

is called inner Helmholz layer [45]. This layer of the solvent is assumed to be fixed with the

particles and free of charge [44, 45]. The layer located between IHP and OHP is called outer

Helmholtz layer [45]. In this layer, unlike ions adsorbed on the particle surface in inner Helmholz

layer, ions interact with the surface charge through electrostatic forces [45]. Ions beyond the

outer Helmholtz plane to slip plane form the diffuse layer [45]. The slip plane marks the re-

gion from where liquid first begin to move with respect to the particles [44]. The electrostatic

potential in this slip plane relative to the potential in solution is defined as zeta potential [44].

3.8.2 Measurement principles

Electrophoretic light scattering (ELS), based on an electrophoresis principle, was used in this

work to estimate the zeta potential of GO samples [45]. Graphene oxide flakes were larger

than 1 µm, which is much larger than the double layer thickness. Therefore the Smoluchowski

equation is the suitable equation to be used to estimate the zeta potential of GO [46, 47]:

uE =
εζ

η
(3.18)

where uE is the particle mobility, ε is the dielectric constant of the dispersion medium, ζ is the

zeta potential and η is the dynamic viscosity of the dispersion medium (Pa s).
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3.8.3 Instrument

In this work, a Zetasizer Nano ZS from Malvern was used to estimate the zeta potential of GO

and GO-SDS samples within the pH range from 3 to 9. This instrument is able to measure

samples of size from 3.8 nm to 100 µm with a sensitivity as high as 10 mg mL-1.

The characterization method used by Malvern Instrument Zetasizer is illustrated in Figure

3.19 [44]. Two coherent beams from the laser, are split by a beam splitter and crossed at the

Figure 3.19: Schematic arrangement of the Malvern Zetasizer [44].

stationary level in capillary cell which contains the particle suspension [44]. At this intersec-

tion, a pattern of interference fringes is formed [44]. When the particles moves across this pat-

tern under the applied electric field, the scattered light shows similar fluctuations [44]. The

frequency of this fluctuation depends on the speed of particles movements [44]. These scat-

tered light is collected by a photomultiplier and analysed and extracted into the zeta potential

value [44]. Compared to other techniques, ELS can get measurement with a small amount of

sample in few seconds and the results are reproducible [45].

3.8.4 Zeta potential of graphene oxide

During the oxidation process from graphite to graphene oxide, functional groups are intro-

duced to graphene oxide sheets. Graphene oxide sheets have epoxy group on the basal plane

and carboxylic groups at the edges [48]. These functional groups weakly develop negative

charges in the solution and show a hydrophilic nature [48]. The negatively charged graphene

oxide sheets have been proved by zeta potential measurement, as in figure 3.20 [48]. In this

figure, zeta potential of graphene oxide synthesised at three different temperatures, 20◦C,

27◦C and 35◦C, were measured in a pH range from 2.5 to 10. [48]. All samples exhibit neg-
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Figure 3.20: Zeta potential of graphene oxide [48].

ative values of zeta potential. With the pH value increased, graphene oxide exhibits a more

negative value of Zeta potential.
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Chapter 4

Synthesis and characterisation of reduced

graphene oxide/bismuth composite for

electrodes in electrochemical energy

storage devices

4.1 Introduction

The efficient storage of energy is a key challenge in the adoption of renewable energy sources

and the deployment of clean power technologies. In recent years supercapacitors have been

considered as promising candidates for the next generation of energy storage devices [1, 2].

Compared with batteries, supercapacitors have higher power density and better cycle life [2–

5]. However, their low energy density and small potential window limit their applications [6].

It has been suggested that this problem may be addressed by hybrid systems which merge the

advantages of supercapacitors and batteries [6], often termed ‘supercapatteries’. Such hybrid

systems may involve an asymmetric cell structure of a capacitive and a battery electrode [7]

or, as reported here, composite electrodes which display elements of both supercapacitive and

battery behaviours [8].

There have been a number of previous studies in which composites of carbon and metal ox-

ide have been synthesized and their electrochemical properties analysed [9, 10]. However, few

studies have been reported on metal and metal composite materials [11–14]. Ag/C electrodes

prepared through a facile hydrothermal method followed by a calcination step achieved a ca-
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pacity value of 211 mAh g-1 [15], while Ru/mesoporous carbon composites synthesized by a

microwave assisted method reached a specific capacitance value of 287 F g-1 [12]. Ru/carbon

nanocomposites prepared by a polyol process at 170◦C have Ru particles attached to the car-

bon surface [13] and with 60% Ru loading, this composite achieved a specific capacitance of

549 F g-1 [13]. Some other metal nanoparticles, such as Au and Ag, have also been considered

in electrodes and achieved a capacitance of 70 F g-1 [14]. However, the relatively low abun-

dance and high cost of these noble metals limits their commercial applications. With increas-

ing global concern regarding energy saving, environmental protection and CO2 emissions, the

search for a low cost and environmentally friendly material for electrodes in energy storage

devices is important.

Bismuth, as one of the post-transition metals, has a stable +3 oxidation state and can also ex-

ist at a +5 oxidation state. Its good electrochemical properties and environmentally friendly

nature make bismuth an excellent candidate for use in electrode materials [6, 16–19]. Re-

cently, bismuth has been reviewed as one of the most extensively studied elements in solid

state physics due to its electronic properties, such as a long Fermi wavelength (around 30

nm [20, 21]) and high Hall coefficient [20]. A particularly attractive feature of bismuth is

that, in spite of its heavy metal status, it is considered as a safe and non-toxic material [22].

Moreover, a large amount of bismuth is produced as a by-product of the copper and tin refin-

ing industry [22]. All these attributes make bismuth a promising candidate for electrochemical

energy storage materials.

In this work, we report on a novel material, a reduced graphene oxide/bismuth composite

(rGO/Bi). This composite material was prepared by a modified low temperature polyol pro-

cess, in which hydrazine was used as the reducing agent [23] while ethylene glycol (EG) was

used as both solvent and reducing agent. An intermediate complex is formed by EG and the

metal ions absorbed on the rGO surface producing nano-sized particles and preventing aggre-

gation [24, 25]. Bi particles, which are oxidised and reduced during electrochemical cycling,

are formed with an approximate lateral size of 20 to 50 nm and attach to the reduced graphene

oxide sheets. Assembly of graphene into three-dimensional structures has the potential of cre-

ating electrodes with extremely large (and accessible) specific surface areas coupled with good

electrical conductivity which enables fast electron transfer [26]. The decoration of such struc-

tures with faradaic charge storage materials can create composite electrodes which maximize

electrode capacity beyond that offered by the theoretical upper limit of 550 F g-1 (550 C g-1 at

1 V) in carbon-based materials [26].
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Two composite materials, similar to that presented in this work, have been the subject of pre-

vious investigation. Wang et al. [27] investigated the electrochemical charge storage behaviour

of amorphous carbon-bismuth oxide composites with Bi2O3 contents of between ∼14% and

33%, which they incorrectly characterize as pseudocapacitive. It is important to differenti-

ate between the specific capacitance and the specific capacity of an electrode [28, 29]. The

former refers to the capacitance per unit mass and is only applicable to charge storage that is

(pseudo)capacitive in nature – i.e., demonstrates an almost rectangular cyclic voltammagram

and linear galvanostatic charge/discharge (GCD) characteristics. Materials displaying non-

capacitive faradaic charge storage (battery materials), which possess peaks in cyclic voltam-

magrams and plateau regions in charge/discharge curves should be characterized in terms of

the second quantity, the total charge stored per unit mass. From the GCD data presented by

Wang et al. [27] it is possible to derive a specific capacity for their amorphous carbon/Bi2O3

composite of ∼333 C g-1 at 1 A g-1.

The electrochemical behaviour of a reduced graphene oxide bismuth oxide composite con-

taining 23.85 wt% Bi2O3 has also been studied [19]. Once more this material was wrongly

described as pseudocapacitive, the GCD data showing battery-like behaviour. From the GCD

curve presented in that work it is possible to derive a specific capacity for the rGO-Bi2O3

composite of 204 C g-1 at 1 A g-1. Here we report the structure, composition and electrochem-

ical performance of a rGO-Bi composite with a specific capacity of 460 C g-1 at 1.2 A g-1,

which is substantially larger than that of the previously reported materials, and reaches 773

C g-1 at 0.2 A g-1. We suggest that the improved specific capacity of the composite detailed

in this work arises from the excellent electrical conductivity afforded by the rGO backbone,

the good electrical contact with the bismuth particles, which are initially deposited in metal-

lic form and a high utilization of bismuth during charge/discharge which is related to the mi-

crostructure of the composite.

4.2 Experimental

4.2.1 Chemicals

Natural graphite flake (99.8%) and sulphuric acid (98%) were purchased from VWR. Ana-

lytical reagent grade phosphoric acid (85%), potassium permanganate (99.0%), dihydrogen

dioxide (50%), bismuth (III) nitrate pentahydrate (>98%), and nitric acid (69%), hydrazine
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solution (35 wt%) were purchased from Sigma-Aldrich, as was the anhydrous EG (99.8%).

All chemicals were used without further purification.

4.2.2 Materials synthesis

Graphene oxide was prepared by a modified Hummers method [30]. 3 g of graphite and 8 g of

KMnO4 were weighed and added into a mixture of 100 mL H2SO4 and 20 mL H3PO3. This

suspension was kept at room temperature for three days with continuous stirring. H2O2 was

added into this mixture until it turned a bright yellow colour. This mixture was washed and fil-

tered using 5% HCl and followed by DI water (18 MΩ cm-1 resistivity) for several times until

a pH of 7 was achieved. Graphene oxide was obtained after drying the deposit in an oven at

60◦C overnight. 0.3 mmol bismuth nitrate (Bi(NO3)3·5H2O) and 0.03 g graphene oxide (GO)

were dispersed into a mixture of 23 mL ethylene glycol (EG) and 2 mL nitric acid (HNO3).

The suspension was sonicated to reach a homogeneous dispersion. This suspension was trans-

ferred into a round bottom flask. 5 mL hydrazine was added into this suspension under vig-

orous stirring. This reaction was held at 60◦C for 3 hours. The synthesized material was col-

lected in a small sample vial after being washed with DI water several times and dried in air

overnight. rGO was synthesized by the same approach to act as a control.

4.2.3 Sample characterization

The samples were characterized by X-ray diffraction (XRD, RINT Rigaku), Fourier trans-

form infrared spectroscopy (FTIR, Varian 670-IR), Raman spectroscopy (HR800UV, Horiba,

Jobin Yvon), scanning electron microscopy (SEM, XL30 ESEM-FEG, Philips), transmission

electron microscopy (TEM, JEM-2100, JEOL), X-ray photoelectron (XPS, Kratos Axis Ultra

spectrometer), differential thermal analysis and thermo-gravimetric analysis (DTA and TGA,

Setaram Labsys Evo). A potentiostat (Bio-logic Science instruments) was used to analyse the

electrochemical behaviour of the composites, via cyclic voltammetry and measurement of the

charge/discharge behaviours. Cyclic voltammetry results were used to study the mechanism

of the reaction taking place during the Faradaic redox reaction of bismuth. A small amount (9

mg) of sample was dispersed in DI water. PTFE (10 mg mL-1) was added as a binding agent

with a sample to PTFE weight ratio of 9:1. After obtaining a homogeneous suspension by

sonication, some drops were applied to a nickel foam substrate used as the current collector,

working electrode. A three-electrode system was used for the electrochemical properties test.
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2.48 mg mixture of rGO/Bi and PTFE pressed on Ni foam was used as working electrode. A

HgO|Hg (mercury-mercury oxide) electrode was used as the reference electrode. A Pt wire

was used as the counter electrode and a 6M KOH solution was used as the electrolyte. Current

densities are quoted in A g-1 in this paper as the true surface area of the electrodes is difficult

to determine.

Samples for SEM imaging were prepared so that a small amount of a sample was dispersed in

absolute ethanol. This mixture was sonicated until a homogeneous suspension was achieved.

One drop of the suspension was cast on an SEM sample holder and dried in air

The surface area of the samples was determined from N2 adsorption isotherms using a Surfer

system (Thermo Scientific). The samples were pre-degassed for 4 hours at 10-2 Torr before

analysis. The surface area was calculated by measuring the amount of adsorbed nitrogen gas

in a relative vapour pressure of 0.05 ∼0.3 at 77 K by Brunauer–Emmett–Teller analysis.

X-ray photoelectron spectra were measured with a Kratos Axis Ultra spectrometer, using

monochromated Al Kα x-rays (hν = 1486.6 eV) in normal emission geometry. High resolu-

tion XPS data were fitted using UNIFIT2007 [31] employing a Shirley-type background and

peaks defined by a convolution between Gaussian-Lorentzian lineshapes, with the exception of

the main C1s line, which is fitted with the asymmetric Doniach-S̆unjic̀ lineshape characteris-

tic of graphitic materials [32]. It was not possible to determine a unique value for asymmetry

parameter of the Doniach-S̆unjic̀ line and hence a value of 0.14, consistent with other nanos-

tructured graphitic carbons, was chosen [33, 34]. However, similar results were obtained using

asymmetries characteristic of bulk graphite [32]. The accuracy of resulting fits was attested to

by reduced χ2 values close to 1 and minimal systematic variation in the fit residuals.

DTA and TGA measurements were carried out in air with a heating rate of 10◦C min-1 from

100◦C to 800◦C. Pure alumina was used as the reference material. The accuracy of these anal-

yses is about 1-2%.

4.3 Results and discussion

4.3.1 XRD restuls of rGO/Bi

An X-ray powder diffractogram of the as-prepared rGO/Bi with a 2θ range from 10◦ to 90◦

is shown in Figure 4.1. The strongest three peaks appear at 27.06◦, 37.80◦, and 39.46◦, which
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Figure 4.1: X-ray powder diffractogram of rGO/Bi.

correspond to the (012), (104), and (110) reflections of bismuth, respectively (Natl. Bur. Stand.

(U.S.)), and therefore confirm the dominant presence of bismuth metal on the graphene sur-

face. The weak peak which appears at 12.64◦ indicates an interlayer spacing of 0.7 nm, which

could be related to graphene oxide [35]. The small hump around 25◦ is caused by the disor-

dered stacking of layers of rGO [36]. Peaks with positions at 30.02◦ and 32.66◦ cannot be

indexed with the crystal structure of Bi, but agree with the (103) and (110) crystal planes of

bismuth subcarbonate (Natl. Bur. Stand. (U.S.)). Both graphene oxide and EG, which were

used as starting materials, could be the carbon source for the Bi2O2CO3 observed. The ab-

sence of peaks related to bismuth oxides in the diffractogram of the as-prepared composite

indicates that the starting material primarily consists of rGO and bismuth metal. It has previ-

ously been observed that bismuth metal nanostructures, such as nanowires or nanoparticles are

readily oxidized when exposed to air at atmospheric pressure [37–39]. Metallic Bi wires typ-

ically have an oxide layer ∼1 nm thick after 4 h exposure to air [38]. After 48 h exposure, the

thickness of the oxide layer is ∼4 nm [38]. High temperature hydrogen and ammonia environ-

ments were found to reduce the oxide without damaging the Bi metal after a sufficient amount

of time, but the oxide was found to reform in less than 1 min of exposure to air [39]. We note

that graphene sheets act as impermeable atomic membranes to many gases [40] and therefore

it is likely that the absence of significant bismuth oxidation observed in the as-prepared mate-

rials is related to a retardation of this process though protection of bismuth by rGO.

4.3.2 FTIR and Raman spectroscopy of GO and rGO/Bi

FTIR spectra of GO and rGO/Bi are presented in Figure 4.2. The transmittance is recorded

within a wavenumber range from 400 cm-1 to 4000 cm-1. In the FTIR spectroscopy data of
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GO, a broad peak is present between 800 to 1400 cm-1 which is assigned to in phase C-C-

O stretching (800-1000 cm-1), out of phase C-C-O stretching (1000-1260 cm-1) and C-O-H

bending (1200-1430 cm-1) modes [41]. The peaks observed at around 1600 cm-1 and 1720

Figure 4.2: a) FTIR spectra of GO and rGO/Bi b) Raman spectra of GO, rGO/Bi and rGO.

cm-1 are attributed to the skeletal vibration from unoxidized graphitic domains and the C=O

stretching of unsaturated carbonyl groups, respectively [41, 42]. The broad peak appearing

at 3200-3600 cm-1 originates from the hydrogen bonded OH stretching vibration [41, 43]. In

the FTIR spectrum from rGO/Bi, the peak at 424 cm-1 mainly arises from the displacement

of oxygen atoms with respect to Bi causing Bi O bond elongation [44]. The peak which ap-

pears at 675 cm-1 results from Bi-O bonds of different lengths in distorted BiO6 units [45].

The broad peak at around 845 cm-1 can be attributed to the antisymmetric stretching of CO3

groups [46]. Compared with the FTIR result from GO, rGO/Bi has fewer peaks in the range

from 1200 to 2000 cm-1 and from 3200 to 3600 cm-1, which indicates the successful removal

of oxygen functional groups from the surface of GO.

Raman spectroscopy was used to compare the density of defects in GO, rGO/Bi and rGO, Fig-

ure 4.2 b). A wavenumber range from 1100 cm-1 to 1900 cm-1 is used. Two obvious peaks,

which appear at around 1580 cm-1 (G band) and 1350 cm-1 (D band), were observed in all

three materials. The peak at 1580 cm-1 is caused by the in-phase vibration of the sp2 graphite

lattice while the peak at 1350 cm-1 results from structural defects and disorder [47, 48]. The

intensity ratio of the D and G band peaks (ID/IG) changes from 0.90 in GO to 1.17 in rGO/Bi

and 1.29 in rGO, indicating a decrease in the average size of the sp2 domains. Similar re-

sults have been reported in the literature [23] and explained in terms of the creation of new

graphitic domains which are smaller in size but larger in quantity compared with those in GO.
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4.3.3 SEM and TEM images of rGO/Bi

The layered substance shown in the Scanning Electron Microscopy (SEM) images in Figure

4.3, with dimensions larger than 1 µm, can be identified as rGO [49]. Therefore, the particles

Figure 4.3: SEM images of the as prepared rGO/Bi composite at a) 80,000x, b) 100,000x, c)
100, 000x and d) 25, 000x magnification.

with lateral sizes in the range of 20 to 50 nm attached to the rGO layers are considered to be

bismuth (see also discussion below). In some parts of the rGO/Bi samples bismuth particles

are seen to have agglomerated and formed clusters with sizes larger than 500 nm, as demon-

strated by the white agglomeration in Figure 4.3 d).

Transmission Electron Microscopy (TEM) images of rGO and rGO/Bi are shown in Figure 4.4

a) and b) respectively. Agglomeration is observed to occur in isolated regions of the sample,

forming bismuth aggregates with sizes larger than 200 nm, as seen in Figure 4.4 c). A selected

area electron diffraction (SAED) pattern (Figure 4.4 d)) of one such particle in Figure 4.4 c)

confirms the crystal structure of metallic bismuth. Three rings are observed in this diffraction

pattern, which correspond to reflections from the (012), (110), and (300) planes of bismuth

metal (Natl.Bur.Stand.(U.S.)). The SAED pattern agrees well with the strong peaks associated

with metallic bismuth observed in XRD (Figure 4.1).

An additional crystalline structure, Figure 4.4 e), was observed in some locations in the sam-
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Figure 4.4: a) TEM image of rGO; b) TEM image of as-prepared rGO/Bi; c) TEM image of
rGO/Bi showing a region containing Bi agglomerates; d) selected area electron diffraction
(SAED) measured on rGO/Bi; e) crystalline structure observed by HRTEM in as-prepared
rGO/Bi; f) EDS from as-prepared rGO/Bi; g) TEM image of rGO/Bi after electrochemical cy-
cling; h) selected area electron diffraction (SAED) after electrochemical cycling showing the
presence of metallic Bi; i) TEM images of rGO/Bi after electrochemical cycling; j) selected
area electron diffraction (SAED) after electrochemical cycling, showing the presence of bis-
muth subcarbonate.
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ple. The atomic structure shown in the TEM image could be indexed with the (101) and (011)

crystal lattice planes of bismuth subcarbonate. This result confirms the existence of small

quantities of bismuth subcarbonate as impurities, again in agreement with the XRD results

presented in Figure 4.1. Energy dispersive X-ray spectroscopy (EDS) from the rGO/Bi com-

posite (Figure 4.4 f)) displays strong Bi, C, and Cu peaks. Bi peaks originate from bismuth

particles and bismuth subcarbonate and the C peak could contain contributions from both rGO

and Bi2O2CO3. The Cu peaks are a result from the Cu TEM support grid. The low C peak

intensity compared with the high Bi peak intensity suggests that the amount of bismuth sub-

carbonate is not great. Figure 4.4 g) and i) show TEM images of the rGO/Bi composite after

cycling. Agglomeration is observed to occur, forming particles with sizes from 100 to 200 nm.

Both bismuth, Figure 4.4 h), and bismuth subcarbonate, Figure 4.4 j), were observed in the

SAED patterns obtained after electrochemical cycling.

4.3.4 BET of rGO/Bi and rGO

Figure 4.5: Nitrogen adsorption-desorption isotherms of a) rGO/Bi b) rGO.

The microstructure and pore size distribution of rGO and rGO/Bi were determined from N2

adsorption-desorption isotherms, Figure 4.5 a) and b), respectively. Both isotherms can be

classified as type I isotherms for microporous solids [50]. The as-synthesized rGO/Bi is found

to have a specific surface area of 10.55 m2 g-1 with pore size diameters in the range from 2-

8 nm while the rGO has a specific surface area of 23 m2 g-1 with pore size diameters of 1∼3

nm. Compared with rGO, the rGO/Bi composite has a larger pore size, which may originate

from the insertion of Bi nanoparticles into the material and can facilitate more ready pene-

tration of ions into the composite electrode, increasing surface accessibility. Given that ap-

proximately half the weight of the rGO/Bi composite consists of rGO the reduction in specific

surface area by a factor of ∼2 suggests that the incorporation of bismuth has not significantly

changed the total surface area offered by the rGO component.
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4.3.5 XPS of rGO/Bi

Figure 4.6: XP survey spectrum obtained from 27 month-old rGO/Bi composite.

X-ray photoelectron spectroscopy (XPS) was performed on rGO/Bi composites 27 months

after fabrication. Figure 4.6 shows a survey spectrum obtained from the rGO/Bi composite.

There are strong peaks associated with bismuth, oxygen and carbon. A small signal from ni-

trogen is also present corresponding to a concentration of <2 at.% which, in the absence of

any signal from Bi(NO3)3 (see Figure 4.7), is likely to originate from nitrogen inclusion in the

rGO resulting from hydrazine treatment, as previously observed by Park et al. [51]. No other

elements can be detected.

Figure 4.7: a) Top panel: Bi4f XP spectrum of the rGO/Bi composite and associated fit. The
Bi 4f7/2 components are associated with metallic Bi, Bi suboxide and Bi in the +3 oxidation
state (Bi(III)). Bottom panel: Fit residuals in units of standard deviation of the data. b) Top
panel: C1s XP spectrum of the rGO/Bi composite and associated fit. The three largest fit com-
ponents, associated with sp2, sp3 carbon and C-OH are labelled. Bottom panel: Fit residuals
in units of standard deviation of the data. In both spectra black dots represent the experimental
data, the grey line the fit to the spectrum and the black lines the individual fit components and
Shirley background.

A high resolution XP spectrum of the Bi 4f lines is presented in Figure 4.7 a) along with the
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associated fit. Three components are necessary to fit the spectrum, the strongest a doublet with

the 4f7/2 component at 159.05±0.04 eV and a 4f5/2 component 164.38±0.04 eV which corre-

sponds to bismuth in the +3 oxidation state in Bi2O2CO3 [52] and Bi2O3 [53]. The doublet lo-

cated at 156.70±0.04 eV (4f7/2) and 162.03±0.04 eV (4f5/2) is due to metallic bismuth [54],

whilst the third doublet, located at 157.8±0.1 eV (4f7/2) and 163.1±0.1 eV (4f5/2), which

must be included to ensure an appropriate fit, can be attributed to bismuth suboxides, such as

BiO [55]. There is no evidence for Bi4f components associated with residual Bi(NO3)3 [54]

or Bi in the +5 oxidation state in the XP spectrum. The relative strength of the Bi(III)-related

doublet in comparison with that of the metal is explained by the surface sensitivity of XPS: us-

ing the approach of Tanuma, Powell and Penn [56] we determine the electron inelastic mean

free path for the Bi 4f lines to be ∼3 nm. Hence, a thin oxide layer present on Bi particles at

the surface of the composite would be expected to dominate the XPS signal. Indeed, the pres-

ence of a 4f component associated with metallic bismuth demonstrates that the surface oxide

layer is no more than a few nanometres in thickness.

A high resolution XP spectrum of the C1s region is shown in Figure 4.7 b). The signal is dom-

inated by an asymmetric graphitic line (Doniach-S̆unjic̀ lineshape, α= 0.14) with a binding

energy of 284.40±0.05 eV, consistent with graphitic materials. Small peaks (<5% of total C1s

intensity) associated with C-OH, C=O and O=C OH are located at 286.1±0.5, 287.3±0.5 and

288.7±0.5 eV binding energy, respectively, reflecting residual oxygen containing groups on

the rGO surface [57]. The fit component associated with C-OH is the largest of these, con-

sistent with previous observations that residual –OH groups are the most prevalent oxygen

containing groups in rGO after hydrazine treatment [57] (although there may also be a con-

tribution to this component from carbon bound to nitrogen [23]). In order to obtain a good fit

it was also necessary to include a minor peak (<10% of total C1s intensity) at 285.2±0.2 eV,

which has previously been associated with sp3 hybridised defects within nanostructured car-

bons [33, 34] suggesting that residual disorder remains in the rGO when oxygen-containing

groups are removed.

The composition of the rGO/Bi composite was determined from the XP spectra by standard

approaches [58] using photoelectron cross-sections calculated by Yeh and Lindau [59] and

inelastic mean free paths determined as above [56]. The composite was found to contain C, O

and Bi in the (atomic) ratio 0.78:0.18:0.03 (with an estimated error of ±0.02 for each species).

72



4.3.6 DTA and TGA of rGO/Bi and rGO

Figure 4.8: DTA and TGA curves of a) rGO/Bi b) rGO.

Differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) curves of rGO/Bi

and rGO are presented in Figure 4.8. The DTA data from the rGO/Bi composite, Figure 4.8 a),

show two broad exothermic peaks, P1 and P2, and two very small endothermic peaks, P3 and

P4. P1 can be attributed to the adsorption of oxygen at the surface of rGO in the presence of

Bi at low temperatures (175-250◦C). The small endothermic peak P3, at about 275◦C, is asso-

ciated with the melting of metallic bismuth. The exothermic peak P2 is very broad and repre-

sents an overlap of different exothermic processes: oxidation of bismuth between 325-375◦C

which involves a mass increase of 2-3 wt% and carbon combustion between 355-525◦C, ac-

companied by a mass loss of 18-20 wt%. The small endothermic peak, P4, at 730◦C has no

mass variation associated with it and probably corresponds to melting of bismuth oxide, with

the melting peak shifted to low temperatures due to the nanometer-scale dimensions of the

particles. The broad peak labelled P5 in the TGA data from rGO/Bi, showing a mass increase

of around 5 wt%, probably corresponds to the combined effects of the processes described by

the exothermic peak P1 and part of P2 in the DTA curve, attributed to bismuth oxidation.

The DTA curve of rGO powder, Figure 4.8 b), exhibits only one broad exothermic peak with

an onset temperature of about 400◦C. This exothermic behaviour is attributed to carbon com-

bustion in air and takes place with a mass loss of 74 wt%. In the absence of Bi the rGO com-

bustion peak is shifted to higher temperatures. Over the temperature 450◦C to 800◦C rGO/Bi

has a smaller weight loss compared with rGO. This might be because by adding the Bi nanopar-

ticles, the rGO/Bi has better graphitization and de-oxygenation with enhanced van der Waals

interactions between layers [60].

Based on the 5.13% weight gain (peak P5), bismuth and rGO have a weight ratio of 0.44:0.56.

This is in good agreement with the atomic ratio given by XPS (bismuth and carbon were found
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by XPS to have an atomic ratio of 0.03:0.78, as discussed above, which corresponds to a weight

ratio of 0.4:0.6).

4.3.7 Electrochemical properties of rGO/Bi and rGO

Electrochemical properties of the as-prepared rGO/Bi, rGO and Ni foam were analysed by

cyclic voltammetry under different scanning rates, as shown in Figure 4.9. Electrochemical

Figure 4.9: Typical CV results of rGO/Bi, rGO and Ni foam within different voltage range at
scan rates of a) 20mV s-1 b) 50mV s-1 c) 20mV s-1 d) 50mV s-1.

properties of the as-prepared rGO/Bi, rGO and Ni foam were analysed by cyclic voltammetry

under different scanning rates, as shown in Figure 4.9. Cyclic voltammetry measured at differ-

ent scanning rates, 20 mV s-1 and 50 mV s-1, presented similar shaped curves. Voltages from

0.2 to 0.8 V vs. standard hydrogen electrode (SHE) were applied. Three clear peaks (A, B

and C) and a small plateau (D) were observed in the cyclic voltammetry experiments. Peak A,

which appears at around -0.6 V, is associated with the reduction of Bi from the +3 oxidation

state to the metallic state (0 oxidation state) [61]. Peaks B and C, which appear at -0.45 V and

-0.25 V, represent the formation of BiO-
2 and Bi(OH)3 during the oxidation of Bi from metal

to the +3 oxidation state [61]. The surface layer of Bi was partially dissolved in the KOH elec-

trolyte and forms BiO-
2 in the first reduction reaction [62]. The plateau D may be due to the

oxidation of un-transformed Bi [61]. A previous study has shown that this plateau becomes
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dominant in bismuth films as the film thickness is reduced [61]. This plateau has only been

observed in thin Bi (metal) films with highly rough surface [61]. In ref [61] it is suggested that

very high Bi oxidation states of +4 or +5 might occur due to the hypothetical formation of gel

like electrolyte (when Bi metal is rough) and these oxidation states are responsible for the ob-

served plateau through Faradaic processes. However, CV curves of rGO/Bi in the range from

-0.2 to 0.24 V (Figure 4.9c) and d)) display a rectangular shape almost identical to that of rGO

when scaled for the rGO mass content. It is therefore more likely the constant capacitance

value in this potential window indicates that, over this range of potential, the rGO/Bi displays

an electric double layer (EDL) capacitance originating primarily from the rGO component in

the composite and that the composite electrode therefore demonstrates both supercapactive

and battery characteristics.

During the oxidation and reduction processes intermediate products, which include Bi(OH)3,

BiOOH, and BiO-
2, could be formed as following equations [61, 63]:

Peak A

BiO-
2 + e-→ BiO2-

2 (4.1)

BiO2-
2 +3H2O→ 2BiO-

2 +4OH- +Bi(0) (4.2)

Bi(0)→ Bi(metal) (4.3)

Peaks B and C

Bi(0)+OH-→ BiO-
2 +Bi(OH)3 +H2O (4.4)

Bi(OH)3→ BiOOH +H2O (4.5)

BiOOH +OH-→ BiO-
2 +H2 (4.6)

Cyclic voltammagrams of pure Ni foam and rGO were also measured and are presented in

Figure 4.9 b) for comparison. The CV of rGO measured at both 20 mV s-1 and 50 mV s-1

show rectangular shapes without any noticeable peaks, which indicates that the capacitance

of rGO only arises from electric double layer capacitance [64].

Chronopotentiometry was used to study the charge/discharge behaviours of the as-prepared

rGO/Bi and rGO materials. The charge/discharge curves were measured at different current

densities, ranging from 0.2 A g-1 to 1.2 A g-1 (Figure 4.10). The charge/discharge curves of

rGO/Bi show similar behaviour at different current densities. In the enlarged discharge curve

of rGO/Bi, as in Figure 4.10 c), both slope and plateau were observed.
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Figure 4.10: Typical charge/discharge behaviours of a) rGO/Bi at different current densities b)
rGO at different current densities c) enlarged discharge curve of rGO/Bi at 0.2 A g-1.

The quasi-linear behaviour at the beginning of the discharge curve indicates a contribution

from capacitor-like behaviour. This originates from charge stored electrostatically [29] on

the surface of rGO, as described above. The plateau indicates material undergoing a phase

transformation during the redox reaction [10], as described by peak A in Figure 4.9 a). The

charge/discharge curves of rGO/Bi show similar behaviour at different current densities. In

the enlarged discharge curve of rGO/Bi, as in Figure 4.10 c), both slope and plateau were ob-

served. Since the energy storage mechanism of rGO/Bi includes a significant non-capacitive

Faradaic or battery-like contribution, the appropriate way to measure the amount of charge

stored in the electrode is the specific capacity Cs using [6, 65]

Cs =
i×∆t

m
(4.7)

where Cs is the specific capacity (C g-1), i/m is the current density employed in the measure-

ment (A g-1), ∆t is the discharging time in seconds [65].

Figure 4.11 shows the specific capacity of the rGO/Bi composites calculated from the charge/discharge

curves. Composite samples achieved a specific capacity value as high as 773 C g-1 at a current
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density of 0.2 A g-1. The specific capacity is seen to decrease as the current density increases,

which can be attributed to incomplete utilization of the active material at high current densi-

ties [18]. When a high current density is used, the redox reaction only occurs at the surface

of active materials [17]. However, the rate at which the specific capacity drops decreases with

increasing current density, indicating that the electrode material can still show good capacity

even at high current density. When the current density reaches the range of 0.4 A g-1 to 1.2 A

g-1, the specific capacity maintains almost a constant value, in the range of 587 C g-1 to 494

C g-1. The specific capacitance of the pure rGO was found to be 283 F g-1 at a current den-

sity of 0.2 A g-1, which is comparable to the value of 205 F g-1 found for gas-phase reduced

rGO [66]. At a current density of 1.2 A g-1, the specific capacitance of rGO was found to de-

crease to 125 F g-1, which, at a potential of 1 V, stores approximately a quarter of the capacity

value found for the rGO/Bi material.

Figure 4.11: Specific capacity of rGO/Bi and rGO calculated from charge/discharge curves.

From the Bi content of the rGO/Bi composite it is possible to calculate the maximum theo-

retical contribution to the total specific capacity of the electrode from this component of the

material. The theoretical specific capacity value of bismuth can be estimated from the follow-

ing equation

C =
aF
M

=
3×96487Cmol-1

209gmol-1 = 1385Cg-1 (4.8)

where C is the theoretical capacity, a is the oxidation state changes during the faradaic reac-

tion, F is the Faraday constant and M is the molecular weight. The specific capacity associ-

ated with oxidation of bismuth is 1375 C g-1 resulting in a contribution to the electrode ma-

terial of 600±20 C g-1 (170±6 mAh g-1). If the specific capacitance of the rGO in the com-

posite is unaltered we would therefore expect a contribution to the specific capacity of the

electrode of 160±3 C g-1 when the voltage range of the galvanic discharge curve is 1 V (as

used in our experiments). Hence, we would expect a theoretical specific capacity of 760±20 C

77



g-1 for the composite over a potential of 1 V if all the bismuth present participates in electro-

chemical storage, which is remarkably close to the 773 C g-1 measured at a discharge current

of 0.2 A g-1. This result suggests high accessibility of the bismuth within the rGO/Bi compos-

ite, reflecting the larger pore size of the composite material, compared with rGO, as described

above.

Figure 4.12: Life-cycle test of rGO/Bi composite under 5 A g-1 current density.

Cycling performance was determined by repeating the charge/discharge test 800 times at a

current density of 5 A g-1. This sample achieves a specific capacity of 235 C g-1 at the start of

cycling, which gradually decreases to 175 C g-1 after 800 cycles. Hence, 74.5% of the specific

capacity was maintained after 800 cycles. The gradual decrease of capacity during cycling

may be due to degradation of the active material, Bi [24]. In addition, the relatively faster de-

crease in the capacity of rGO/Bi composite during the first 200 cycles and slower decrease

over the following cycles indicates that structural changes may also have taken place during

the charge/discharge cycles, such as the agglomeration observed in the TEM images shown

in Figure 4.4 g) and i). After the structure has changed, this sample has a more stable cycling

performance, demonstrating a moderate long term electrochemical stability.

4.4 Conclusion

A reduced graphene oxide (rGO)/Bismuth composite, in which the reduced graphene oxide

inhibits atmospheric bismuth oxidation, has been synthesized the first time through a polyol

process in which ethylene glycol was used as both the solvent and reducing agent. The low

reaction temperature, short reaction time and low cost of starting materials make this synthe-

sis procedure appropriate for large scale application. The composite material is found to con-

sist of bismuth nanoparticles with lateral sizes between 20 and 50 nm supported by rGO. The
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as-prepared rGO/Bi composites displayed specific capacity values as high as 773 C g-1 at a

current density of 0.2 A g-1. The capacity of the rGO/Bi composite described in this work can

be attributed to the excellent accessibility of the bismuth and the efficiency of electrochemi-

cal reaction resulting from high electrode conductivity and good contact between the bismuth

nanoparticles and rGO. Since the electrochemical behaviour of the composite shows contri-

butions from the electric double layer capacitance of the rGO and Faradaic charge storage

associated with bismuth, it is reasonable to describe rGO/Bi as a “supercapattery” material.

This material has a moderate stability in cycling tests even at current densities as high as 5 A

g-1. The excellent electrochemical properties of the rGO/Bi composite, simplicity of produc-

tion and low cost indicate that this material is a promising candidate as an electrode material

in electrochemical energy storage devices.
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Chapter 5

Low cost synthesis of Bi2O3-GO composite

as electrodes used in electrochemical

energy storage

5.1 Introduction

Bismuth is the heaviest stable element on the periodic table [1]. In spite of this, bismuth and

most of its compounds are safe, non-toxic and non-carcinogenic materials [1]. A large amount

of bismuth is produced as by-product of copper and tin refining [1]. This relatively low cost of

initial material allows bismuth to be used in a large-scale application.

Bismuth oxide (Bi2O3) is known as a transition metal oxide, which could have high capacity

value from the reversible redox reaction between 0 and +3 oxidation state [2]. Today, with the

increasing concern of the environment and CO2 emission, the study of using bismuth and bis-

muth compounds as electrodes in energy storage devices attracts tremendous interests. Some

research have been done on study the electrochemical properties of bismuth oxide with dif-

ferent structures. Bi2O3 thin films with smooth surfaces prepared by the electrodeposition

method have a thickness of 0.74 µm after 15 minutes of electrodeposition [2]. The highest

specific capacitance achieved by this Bi2O3 is 98 F g-1 [2]. Besides the smooth surface of

Bi2O3 films, hierarchical rippled Bi2O3 nanobelts have also been synthesized through the elec-

trodeposition method [3]. The obtained nanobelts have a rippled structure with widths of 250-

300 nm, thicknesses of 10-30 nm, and lengths of 1-5 µm [3]. Rippled Bi2O3 achieved specific

capacitance of 250 F g-1 which is much higher than the value of Bi2O3 with the smooth sur-
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face, 68 F g-1 [3].

rGO/Bi2O3 composite synthesized by thermal decomposition in a muffle stove reached a spe-

cific capacitance of 94 F g-1 at a current density of 0.2 A g-1 [4]. Bismuth oxide particles

with size varying from a few to 150 µm were randomly distributed in corrugated graphene

layers [4]. Gopalsamy et.al. synthesized graphene fibre/Bi2O3 nanotubes by hydrothermal

method [5]. This composite has a specific capacitance of 69.3 mF cm-2 at a current density 0.1

mA cm--2 [5]. Bi2O3 deposited on highly ordered mesoporous carbon were prepared by chem-

ical reduction followed by calcination [6]. With 62% of Bi2O3 loaded, this composite reached

a specific capacitance of 232 F g-1 at the scanning rate of 5 mV s-1 [6]. The drawbacks of pre-

vious synthesis methods have been discussed in chapter 4.

Capacitance has been widely used to estimate the electrochemical properties of bismuth oxide.

However, bismuth oxide has obvious redox peaks in CV curves and a flat discharge plateau

in the charge-discharge curve within the potential range from -1 V to 0 V vs. SHE. All these

behaviours of Bi2O3 are suited to the definition of Faradaic electrode rather than pseudoca-

pacitor [7, 8]. Therefore, specific capacity (C g-1), instead of specific capacitance (F g-1), is be

used to estimate the electrochemical performance of this kind of electrode.

In this work, we synthesized flower like Bi2O3-GO by a simple non-toxic chemical reduc-

tion method which involves low reaction temperature (60◦C) and short reaction time (3h). No

toxic chemicals, such as hydrazine, were used during the reaction [9]. This simple preparation

procedure allows this material to be synthesized in large scale with low cost. The synthesized

Bi2O3-GO composite has good electrochemical properties and can be used as electrodes in

electrochemical energy storage devices.

5.2 Experimental

5.2.1 Chemicals

Natural graphite flakes (99.8%) and concentrated sulphuric acid (98%) were purchased from

VWR International. Reagent grade phosphoric acid (85%), potassium permanganate (99.0%),

dihydrogen dioxide (50%), hydrogen chloride (>37%), bismuth (III) nitrate pentahydrate

(>98%), sodium hydroxide (>98%), potassium hydroxide (90%) and nitric acid (>69%) used

in this work were purchased from Sigma-Aldrich. All chemicals were used without further
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purification.

5.2.2 Materials synthesis

Graphene oxide was produced by oxidation and exfoliation procedure following the Hum-

mers method [10]. 3 g of graphite and 8 g of KMnO4 were added into a mixture of 100 mL of

H2SO4 (98%) and 20 mL H3PO3 (85%) solution. This dispersion was left at room temperature

with slow stirring to achieve a complete reaction. H2O2 was added into this suspension until

its colour is turned bright yellow. This suspension was first washed and filtered by 5% HCl

and then washed by DI water for several times. Graphene oxide was obtained by drying the

prepared slurry in an oven at 60◦C for 24 hours.

Bi2O3-GO composite was prepared by a modified reduction method following previous work

[11]. 0.03 g of prepared graphene oxide was first dispersed into 15 mL of DI water (18 MΩ

cm-1 resistivity). Then 2.5 mmol Bi(NO3)3 was dissolved in a mixture solution of 22.5 mL DI

water and 2 mL of HNO3 (67%). 12.5 mL of NaOH (3 M) solution was also prepared. These

solutions were mixed together and transferred into a round bottom flask after being pre-heated

to 60◦C. The reaction was held at 60◦C for 3 hours without stirring. The synthesized sample

was collected after filtration and washed by DI water for several times. Flower-like Bi2O3-GO

was obtained after kept the sample in oven at 60◦C for 6 hours.

GO without added bismuth nitrate was also synthesized with the same method in order to

study the effect of NaOH on GO. 0.03 g GO was dispersed into 15 mL DI water. 35 mL of

NaOH (3 M) was added into the GO dispersion. The reaction was hold at 60◦C for 3 hours

without stirring. NaOH washed GO was obtained after filtering this dispersion, which has

been washed by DI water several times.

5.2.3 Sample characterization

The samples were characterized by X-ray diffraction (XRD, RINT Rigaku), Fourier trans-

form infrared spectroscopy (FTIR, Varian 670-IR), Raman spectroscopy (HR800UV, Horiba,

Jobin Yvon), scanning electron microscopy (SEM, XL30 ESEM-FEG, Philips), transmission

electron microscopy (TEM, JEM-2100, JEOL) and X-ray photoelectron spectroscopy (XPS,

Kratos Axis Ultra spectrometer). A potentiostat (Bio-logic Science instruments) was used to

analyse the electrochemical behaviour of the composites, via cyclic voltammetry and mea-
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surements of the charge/discharge behaviour. Cyclic voltammetry results are used to study the

mechanism of the reaction that take during the Faradaic redox reaction of bismuth. A small

amount (9 mg) of sample was dispersed in DI water. PTFE (10 mg mL-1) was added as a bind-

ing agent with a sample to PTFE weight ratio of 9:1. After obtaining a homogeneous suspen-

sion by sonication, some drops were applied to a nickel foam substrate used as the current

collector, the working electrode. A three-electrode system was used for the electrochemical

properties test. 1.02 mg mixture of Bi2O3-GO and PTFE pressed on Ni foam was used as

working electrode. A HgO|Hg (mercury-mercury oxide) electrode was used as the reference

electrode. A Pt wire was used as the counter electrode and a 6M KOH solution was used as

the electrolyte. Current densities are quoted in A g-1 here as the true surface area of the elec-

trodes is difficult to determine. Instruments used to characterize the as-prepared Bi2O3-GO

and GO were described in chapter 3.

5.3 Results and discussion

5.3.1 XRD of Bi2O3-GO and GO

Figure 5.1: X-ray powder diffractogram of a) flower-like Bi2O3-GO b) graphene oxide.

Figure 5.1 a) shows the XRD pattern of synthesized flower-like Bi2O3 grown on GO. Most

peaks, including all the strong peaks, indicate the existence of Bi2O3. Three strong peaks

which appeared at 27.27◦, 32.92◦, and 33.12◦ correspond to the crystal planes of (120), (121),

and (200) of Bi2O3, respectively. The peak position of all Bi2O3 peaks matched the standard

value of monoclinic α-Bi2O3 phase (Natl. Bur. Stand. (U.S.)), which is normally formed

at low temperature. Other relatively weak peaks (appear at 12.91◦, 30.24◦, 52.23◦, 53.28◦,

54.44◦, 56.86◦) indicate the existence of Bi2O2CO3 as impurity (Natl. Bur. Stand. (U.S.)).
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Since the only carbon source is graphene oxide, during the reduction procedure, small amounts

of Bi(NO3)3 may have reacted with the functional groups attached on graphene oxide and

formed Bi2O2CO3. The relatively low intensity of Bi2O2CO3 peaks indicates the small amount

of Bi2O2CO3 present. In addition, the small peak appeared at 11.88◦ corresponds to the NaOH

washed graphene oxide. By adding NaOH in the reaction, the epoxy groups in graphene oxide

were destroyed and hydroxyl groups were generated [12]. These generated hydroxyl groups

may further react with Bi(NO3)3 and form Bi2O3 and Bi2O2CO3 on graphene sheets. There-

fore graphene will be attached to as-prepared Bi2O3 and linked them together. Figure 5.1 b

shows the XRD pattern of graphene oxide solely. A strong peak at 11.88◦, proves the success-

ful formation of graphene oxide. The distance between graphene oxide sheets was estimated at

0.744 nm based on the Bragg’s law [13]. The small peak at around 26◦ indicates the existence

of graphite, which failed to be oxidised to graphene oxide.

The formation of Bi2O3 and Bi2O2CO3, which is based on some previous findings in literature

[14, 15], is proposed as:

Bi(NO3)3 ·5H2O+HNO3 +H2O→ BiONO3 (5.1)

BiONO3 +OH-→ Bi2O3 · xH2O+NO-
3 (5.2)

Bi2O3 · xH2O→ Bi2O3 + xH2O (5.3)

BiONO3 +GO→ Bi2O2CO3 +NO-
3 (5.4)

Bismuth nitrate was first dissolved in nitric acid. Bismuth oxynitrate was formed after adding

sodium hydroxide to adjust the pH value of the solution to 12. Bismuth oxynitrate was further

reacted with sodium hydroxide and formed bismuth oxide hydrate. During the drying process,

bismuth oxide was formed after dehydration [14]. In this reaction, some of the bismuth ions

may react with the functional groups attached on graphene oxide and form bismuth subcar-

bonate [15].

5.3.2 Raman and FTIR of GO and Bi2O3-GO

FTIR (as in Figure 5.2 a)) was used to identify the functional groups in as-prepared GO and

Bi2O3-GO. In the FTIR spectra of GO, peaks appeared at 1060 cm-1, 1245 cm-1, 1361 cm-1,

1720 cm-1 are assigned to the in phase C-C-O stretching, out of phase C-O-C stretching, C-
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Figure 5.2: a) FTIR of GO and Bi2O3-GO b) Raman spectroscopy of GO and Bi2O3-GO.

OH bending, C=O stretching, respectively [16, 17]. The peak at 1600 cm-1 correspond to

the skeletal vibrations of unoxidized graphitic domains [16]. The broad peak from 3000 to

3600 cm-1 is contributed by –OH stretching vibration [18]. In the FTIR spectra of Bi2O3-GO,

the peak appeared at 420 cm-1 assigned to the Bi-O stretching mode [19]. The broad peak at

around 600 to 620 cm-1 indicates the Bi-O stretching vibration in BiO6 octahedral unit while

the sharp peak at 860 cm-1 indicates the symmetrical stretching vibration of the Bi-O bond in

BiO3 pyramidal unit [20]. In addition, the peaks in the region of 1163-1832 cm-1 are related to

the asymmetrical Bi-O bond in BiO3 unit [21]. The peak at 3448 cm-1 is due to the OH- in this

Bi2O3-GO sample [22].

Raman spectroscopy (as in Figure 5.2 b)) was used to analyse the defects and disorder density

in GO and Bi2O3-GO samples and study the structural changes from GO to GO in Bi2O3-GO.

For both the GO and Bi2O3-GO samples, two peaks were observed in the energy range from

1000 cm-1 to 1900 cm-1. One peak at 1580 cm-1 (G band) is due to the first order scattering

of the E2g mode, which is caused by the in phase vibration of graphite lattice [23, 24]. The

peak at 1360 cm-1 is contributed by the presence of defects in carbon materials [25]. The peak

intensity ratio ID/IG is changed from 0.87 in GO to 1.10 in Bi2O3-GO, which indicates de-

crease of the average size of sp2 domains. This increased ID/IG ratio from GO to rGO has been

reported previously in literature [26] and explained in terms of the creation of new graphitic

domains in rGO that are smaller in size but larger in quantity compared with those in GO.

5.3.3 XPS study of GO and Bi2O3-GO

To further study chemical changes from GO to GO in Bi2O3-GO, XPS spectra of C1s was

used to monitor the structural and chemical composition changes from GO to rGO. The peaks

appeared at 284.5 eV in both the Figure 5.3 a) and b) are assigned to the C-C and C=C stretch-

91



Figure 5.3: C1s XPS spectra of a) GO and b) Bi2O3-GO c) GO washed by NaOH d) GO
washed by hydrazine.

ing, which indicates the existence of sp2 graphite carbon [25, 27]. With the chemical shift of

+0.5 eV, +2.0 eV and +3.5 eV, the peaks at 285.0 eV, 286.5 eV and 288.0 eV are assigned to

C-H, C-O and C=O functional groups, respectively [28, 29]. The peak appeared at 291.1 eV

in Figure 5.3 b) is caused by the plasmon/shake up satellite (π-π* transition) of graphitic car-

bon [30]. The graphite peak in Bi2O3-GO XPS spectra is more dominant compared to this

peak in GO spectra. This might be because the NaOH destroys the epoxy groups in graphene

oxide and forms hydroxyl groups. To further study the affect of NaOH on graphene oxide,

XPS of GO washed by NaOH was also presented in Figure 5.3 c). Three main peaks are ob-

served in the XPS spectra of GO washed by NaOH. The peaks appeared at 284.5 eV, 286.5 eV

and 288.0 eV are corresponding to C-C and C=C stretching, C-O and C=O functional groups,

respectively. These peaks have the same position as XPS spectra of graphene oxide. How-

ever, the C-O and C=O peaks are less dominant, which indicates that less epoxy groups are

left in graphene oxide sheets after washing by NaOH. The XPS spectra of graphene oxide

sheets washed by hydrazine are also studied, see Figure 5.3 d). A very strong graphite car-

bon appeared at 284.5 eV, is assigned to the C-C and C=C stretching [25, 27]. Compared to

the NaOH washed sample, hydrazine washed graphene oxide has weak C-O and C=O peaks,

which indicates a more complete reduction.
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5.3.4 SEM images of Bi2O3-GO

Figure 5.4: SEM figures of flower-like Bi2O3-GO a) X1200 b) X12000 magnification.

In figure 5.4, SEM images show that prepared Bi2O3-GO composites have a self-assembled

flower-like structure. Each leaf of this flower-like Bi2O3 has a length ∼4µm. Corrugated

sheets attached to Bi2O3 are reduced graphene oxide sheets. Beside flower-like Bi2O3, there

are also some Bi2O3 particles with cubic structure (Figure 5.4 b)). These Bi2O3 cubic particles

are believed to be the initial nuclei of the self-assembled flower-like Bi2O3 leaf. Some of these

cubic particles have stayed separated in the solution and failed to assemble into the flower-like

structure.

5.3.5 TEM images of Bi2O3-GO

SAED (selected area electron diffraction) and EDS (energy dispersive X-ray spectroscopy)

were used to further confirm the crystal planes and elemental composition of prepared Bi2O3-

GO composites. Figure 5.5 a) shows an image of Bi2O3-GO. Graphene oxide sheets, with a

transparent colour are wrapped on the bismuth oxide stick. A SAED of this sample is done

on the specific area, which is labelled with a red cycle. The diffraction rings with increased

Figure 5.5: a) TEM image of Bi2O3-GO b) SAED of Bi2O3-GO c) EDS result of Bi2O3-GO.
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diameters in Figure 5.5 b) correspond to the crystal planes of (101), (103), (110), (114) and

(200) of Bi2O3 (Natl. Bur. Stand. (U.S.)). The ring-shaped diffraction pattern indicates that

this material has a nano-crystallite structure. The EDS spectra (Figure 5.5 c)) show strong Bi,

C and O peaks. Bi and O peaks are originated from Bi2O3, C peak is attribute to carbon film,

reduced graphene oxide and Bi2O3CO3. These data are in agreement with XRD results (Fig-

ure 5.1 a)).

5.3.6 Electrochemical behaviour of Bi2O3-GO composite

Figure 5.6: Cyclic voltammetry results of Bi2O3-GO composite.

Cyclic voltammetry was used to study the reaction of the Bi2O3-GO composite material in a

voltage range of 0.24 V to -0.76 V vs. SHE (standard hydrogen electrode) as shown in Figure

5.6. Three peaks with similar shapes were observed in this voltage range with different scan-

ning rates from 1 mV s-1 to 5 mV s-1. These peaks are due to the redox reaction that happens

during the electrochemical test, which involves the oxidation state changes of Bi between 0

and +3 [11, 31]. Peak A appeared at ∼ -0.65 V corresponding to the reduction reaction from

bismuth with oxidation state of three to metallic bismuth. peak B and C appeared at -0.45 V

and -0.3 V correspond to the oxidation reaction from metallic bismuth to bismuth with oxi-

dation state of three. These redox peaks in the CV curves can be explained by the following

equations [11]:

for peak A

Bi2O3 +2OH-→ 2BiO-
2 +H2O (5.5)

BiO-
2 + e-→ BiO2-

2 (5.6)

2H2O+3BiO2-
2 ⇐⇒ 2BiO-

2 +4OH- +Bi(0) (5.7)
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Bi(0)→ Bimetal (5.8)

for peaks B and C

Bimetal → Bi+ + e- (5.9)

3Bi+ ⇐⇒ Bi3+ +2Bimetal (5.10)

3OH- +Bi3+→ Bi(OH)3 (5.11)

Bi(OH)3→ BiOOH +H2O (5.12)

BiOOH +OH-→ BiO-
2 +H2O (5.13)

Reduction reaction of Bi from +3 to 0 oxidation state happens in peak A. The first step in the

reduction reaction consists of a partial dissolution of Bi2O3 into BiO-
2 [32]. Then this BiO-

2 is

further reduced into Bi metal [11]. Peak B and C illustrate the oxidation reactions of Bi into

BiO-
2 [31]. Small peaks (peak B) in Figure 5.6 could be due to the oxidation of some untrans-

formed Bi(0) in the reduction process [10, 29]. From these equations, Bi2O3 undergoes phase

transformations during these redox reactions [8]. In addition, the CV curves have redox wave

shapes, instead of rectangular shapes, which suggest that this Bi2O3-GO composite is a non-

capacitive faradaic electrode [7, 8].

Figure 5.7: Charge/discharge behaviour of Bi2O3-GO composite.

To analyse the electrochemical properties of the prepared Bi2O3-GO, the charge/discharge be-

haviours were studied at constant currents (of 0.18 A g-1, 0.36 A g-1, 0.54 A g-1 and 0.7 A g-1)

within a voltage range from 0.24 V to -0.76 V vs. SHE, shown in Figure 5.7. The discharg-

ing process normally contains two steps. A sudden voltage drop due to the internal resistance

and a flat platform due to the reversible faradaic reaction of Bi2O3 [2]. In the flat discharge
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plateau, faradaic reaction takes place and leads to phase transformation of Bi2O3, which cor-

responds to the reactions that happened in peak C, shown in Figure 5.7. The reaction that

takes place in the flat plateau of the charging process corresponds to peak A in Figure 5.6. The

plateaus in these charge/discharge curves further confirm the battery-like behaviour of this ma-

terial [7]. As the energy storage mechanism of this as-prepared Bi2O3-GO is a non-capacitive

faradaic, specific capacity in C g-1, rather than specific capacitance F g-1, is believed to be the

appropriate way to measure the charge stored in this electrode [33]. Specific capacity is calcu-

lated according to the following equation 5.14 [33]:

Cs =
i×∆t

m
(5.14)

where, Cs is the specific capacity (C g-1), i is the current (mA), ∆t is the discharging time (s)

and m is the mass of active materials (mg). Different current density values, 0.18 A g-1, 0.36 A

Figure 5.8: The calculated specific capacity of Bi2O3-GO for different current densities.

g-1, 0.54 A g-1 and 0.70 A g-1, were used to test the charge/discharge behaviours of this sam-

ple. The calculated specific capacity values for different current density are presented in Fig-

ure 5.8. Based on the calculation, Bi2O3-GO has a specific capacity value as high as 559 C g-1

at the current density of 0.18 A g-1. With the increase of current density, the specific capacity

values decreased from 559 C g-1 at 0.18 A g-1to 405 C g-1 at 0.7 A g-1. This is because of the

increased current density, the intercalation of ions only happen at the surface of activated ma-

terial [31]. The reduced rates of ion diffusion and charge transfer cause the decline of capac-

ity [34, 35]. However, at the current density of 0.7 A g-1, this Bi2O3-GO still has a very large

specific capacity value of 405 C g-1. Even with a 27% decrease of capacity from 0.18 A g-1

to 0.7 A g-1, the achieved specific capacity is still much higher than any previously reported

results [2, 3].
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Figure 5.9: Cycling performances of Bi2O3-GO composite.

Cycling performances of Bi2O3-GO composite were tested by repeat of the charge/discharge

tests 1000 times. Figure 5.9 shows the specific capacity changes with cycling numbers. After

1000 cycles, Bi2O3-GO has still kept a specific capacity value of 290 C g-1, which is 57% of

the initial capacity value. This capacity value after 1000 cycles is still much higher than pre-

viously reported value of rGO/Bi2O3 [4]. The continuous decreasing of specific capacitance

could be caused by the loss of active materials due to some loss of adhesion to the current col-

lector, Ni foam. In addition, degradation and dissolution of Bi2O3 into the electrolyte solution

may also contribute to the continuous deterioration during the cycling tests [36].

5.4 Conclusion

In summary, Bi2O3-GO composites are synthesized through a low cost non toxic chemical

reduction method with low reaction temperature (60◦C) and short reaction time (3hrs). Our

fast but low energy requirement synthesis method is promising for large-scale production of

this material. This prepared Bi2O3-GO composite material achieved high specific capacity of

559 C g-1 at a current density of 0.18 A g-1. Even with the current density increased to 0.7 A

g-1, the prepared sample still has a specific capacity of 405 C g-1. With high specific capacity

and non-toxic nature, this composite material shows huge potential to be used as the electrode

in the next generation of electrochemical energy storage devices.
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Chapter 6

Nanosized Bi2O2CO3 particles decorated

on graphene for electrode used in the

energy storage devices

6.1 Introduction

Carbon materials, such as active carbon, carbon fibre, carbon nanotube and graphene, are con-

sidered as good electrode materials for electrochemical double layer capacitor (EDLC) due to

their large surface area, high electrical conductivity and good chemical stability [1–4]. How-

ever, EDLC suffers from the low energy density compared to batteries [5]. To increase the en-

ergy density of electrode materials, transition oxides, in which fast and reversible faradic pro-

cesses take place, have been considered to be incorporated with carbon materials, especially

graphene [6, 7]. Among them, transition metal oxides with nanosized structure have attract

tremendous attention [7–10].

By merging reduced graphene oxide (rGO) with nanosized transition metal oxide particles,

high surface area and readily accessible mesoporous electrode materials can be obtained [11,

12]. Hydrothermal synthesis, which requires autoclave and high reaction temperature, is gen-

erally used to prepare nanosized composite materials [13, 14]. The drawbacks of previous syn-

thesis methods have been discussed in chapter 4.

In this work, we proposed a novel one step method to prepare rGO/Bi2O2CO3 nanocomposite

material. Bi2O2CO3, as one of the bismuth components, shares the non-toxic and environmen-

tal friendly properties of bismuth [15]. In this work, we successfully synthesized nanosized
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Bi2O2CO3 particles at room temperature within 3 hours. Bi2O2CO3 particles uniformly dec-

orated on the reduced graphene oxide surface. The presence of nanosized Bi2O2CO3 (5-10

nm) particles help this composite material to achieve a high electrical conductivity and elec-

trochemical storage capacity.

6.2 Experimental

6.2.1 Chemicals

Natural graphite flakes (325 mesh, 99.8%) and analytical reagent grade sulphuric acid (98%)

were purchased from VWR International. Reagent grade phosphoric acid (85%), potassium

permanganate (99.0%), dihydrogen dioxide (30 wt%), hydrogen chloride (>37%), nitric acid

(>69%), bismuth (III) nitrate pentahydrate (>98%) and anhydrous dimethyl sulfoxide (>99.9%)

were purchased from Sigma-Aldrich. All chemicals were used without further purification.

6.2.2 Material synthesis

Graphene oxide was prepared by oxidation and exfoliation graphite following a modified

Hummer’s method [16]. 3 g of graphite flake and 8 g of KMnO4 were added into a mixture

of 100 mL of H2SO4 (98%) and 20 mL of H3PO3 (85%). This reaction was kept at room tem-

perature for 3 days with slow stirring. H2O2 was added into this dispersion until it became a

bright yellow colour. Graphene oxide was obtained after this mixture was filtered by 5% of

HCl and then DI water for several times. 0.06 g of prepared graphene oxide was dispersed in

a 10 mL of DMSO (>99.9%) solution. 0.3 mmol of bismuth nitrate (>98%) was dispersed in

another sample vail with 10 mL of DMSO solution. Sonication was used for both solutions to

obtain a homogeneous suspension. 4 mL hydrazine was added after these two solution were

mixed together spontaneously. This reaction was held at room temperature with a stirring rate

of 500 rpm for 3 hours.

6.2.3 Sample characterization

The samples are characterized by X-ray diffraction (XRD, RINT Rigaku), Fourier transform

infrared spectroscopy (FTIR, Varian 670-IR), Raman spectroscopy (HR800UV, Horiba, Jobin
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Yvon) and scanning electron microscopy (SEM, XL30 ESEM-FEG, Philips), transmission

electron microscopy (TEM, JEM-2100, JEOL). A potentiostat (Bio-logic Science instruments)

is used to analyse the electrochemical behaviour of the composites, via cyclic voltammetry

and measurement of the charge/discharge behaviours. Cyclic voltammetry results are used to

study mechanism of the reaction taking place during the Faradaic redox reaction of bismuth.

A small amount (9 mg) of sample was dispersed in DI water. PTFE (10 mg mL-1) was added

as a binding agent with a sample to PTFE weight ratio of 9:1. After obtaining a homogeneous

suspension by sonication, some drops were applied to a nickel foam substrate used as the cur-

rent collector, working electrode. A three-electrode system was used for the electrochemical

properties test. Mixture of rGO/Bi and PTFE pressed on Ni foam was used as working elec-

trode. A HgO|Hg (mercury-mercury oxide) electrode was used as the reference electrode. A

Pt wire was used as the counter electrode and a 6M KOH solution was used as the electrolyte.

Current densities are quoted in A g-1 here as the true surface area of the electrodes is difficult

to determine.

Instruments used to characterize the rGO/Bi2O2CO3 and GO were described in chapter 3.

6.3 Results and discussion

6.3.1 XRD of rGO/Bi2O2CO3 composite material

Figure 6.1: X-ray powder diffractogram of rGO/Bi2O2CO3.

The XRD study was carried out to analyse the crystalline structure of as-prepared rGO/Bi2O2CO3

composite. Four strong peaks were observed in this XRD pattern. Peaks appeared at 23.90◦,

26.03◦, 30.24◦ and 32.69◦ are correspond to the (101), (004), (103) and (110) diffraction plane

of bismuth subcarbonate, respectively (Natl. Bur. Stand. (U.S.)). A broad peak at around 24◦
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to 30◦ is due to reduced graphene sheets, which was exfoliated into individual layers and then

agglomerated into a powder form [17]. A small peak that appeared at 12.02◦ indicates the ex-

istence of graphene oxide. This shows that GO material was reduced by hydrazine, but there

are still some oxygen functional groups attached on the graphene sheets.

6.3.2 FTIR and Raman spectroscopy of GO and rGO/Bi2O2CO3

Figure 6.2: a) FTIR of GO and rGO/Bi2O2CO3 b) Raman spectroscopy of GO and
rGO/Bi2O2CO3

FTIR spectra of GO and rGO/Bi2O2CO3 are presented in Figure 6.2 a). The transmittance is

recorded in the wavenumber range from 400 cm-1 to 1000 cm-1. In FTIR spectra of GO (Fig-

ure 6.2 a)), peaks at 1060 cm-1, 1245 cm-1, 1361 cm-1 and 1720 cm-1 are assigned to the pres-

ence of C-O stretching, out of phase C-O-C, C-OH bending and C=O in carboxylic acid and

carbonyl moieties, respectively [18]. The peak at 1600 cm-1 is due to the skeletal vibrations

of unoxidized graphitic domains [18]. The broad peak at 3000 cm-1 to 3600 cm-1 is due to the

existence of O-H stretching by intercalated water [19, 20]. More peaks at low frequencies were

observed for rGO/Bi2O2CO3. These peaks appeared at 436 cm-1 and 629 cm-1 are assigned

to the Bi-O bending and stretching vibrations in the BiO6 octahedral structure [21–23]. The

peaks at 848 cm-1 and 906 cm-1 are due to the bending modes of triangular CO3 group [24]. A

broad peak at 1188 cm-1 is related to the Bi-C vibration [25]. The peak appeared at 1612 cm-1

is due to the asymmetrical Bi-O bond in the BiO3 unit [26]. No obvious peaks, which are as-

signed to the C-O, C-OH and C=O, were found in the 1000 cm-1 to 1720 cm-1. In addition, the

O-H stretching peak at around 3000 cm-1 to 3600 cm-1 for rGO/Bi2O2CO3 composite is less

obvious compared to that peak in the FTIR curve of GO. This suggests that by using hydrazine

as the reducing agent, the functional groups attached to the graphene oxide sheets were re-

duced. To study the carbon structure changes, Raman spectroscopy was also used to further
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confirm the reduction from GO to rGO. The Raman spectra of GO and rGO/Bi2O2CO3 within

the wavenumber range from 1000 cm-1 to 1900 cm-1 is presented in Figure 6.2 b). For both

GO and rGO/Bi2O2CO3, two obvious peaks were observed in this wavenumber range. The

peak that appeared at 1580 cm-1 (G band) corresponds to the first order scattering of the E2g

mode from pristine graphite [27]. The peak at 1360 cm-1 (D band) resulted from the defects

in carbon materials [28], which corresponds to the breathing modes of sp2 atoms in rings [29].

The ratio of D and G peak intensity can be used to represent the oxidation level of the carbon

materials [28]. The decrease in the ID/IG ratio indicates an increase in oxidation level of the

material [28]. However, the ID/IG ratio was increased from 0.92 in GO to 1.27 in rGO, as seen

in Figure 6.2 b). This increased ID/IG ratio is explained as that the new graphitic domains are

created in rGO with smaller size but in larger number compared to the one present in GO [27].

6.3.3 SEM images of rGO/Bi2O2CO3

Small amount of rGO/Bi2O2CO3 was dispersed in the absolute ethanol. After sonication for

10 mins, one drop of this dispersion was dropped onto a SEM sample holder. SEM images of

Figure 6.3: SEM images of rGO/Bi2O2CO3 a) X30,000 b) X35,000 magnification

rGO/Bi2O2CO3, with different magnifications of 30,000 and 35,000, were presented in Fig-

ure 6.3 a) and b). Flake materials with winkles, which could be referred to reduced graphene

oxide, were observed in both images. These reduced graphene oxide sheets have size larger

than 2 µm. Previous studies showed that Bi2O2CO3 can exist as nanoparticles or nanosheets

[30–32]. However, no Bi2O2CO3 particles or flake were observed in Figure 6.3. To further de-

termine the existence of bismuth component, EDS (energy dispersive X-ray spectroscopy) was

used to test the chemical elemental composition of this composite material.

Figure 6.4 a) is a typical SEM image of rGO/Bi2O2CO3. This composite material shows a lay-
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Figure 6.4: EDS spectra of rGO/Bi2O2CO3 composite material a) a typical SEM image b)
carbon element in this area c) bismuth element in this area.

ered flake shape structure, as in Figure 6.4 a). Figure 6.4 b) and c) are the EDS results of car-

bon and bismuth element on this area. From these EDS results, both carbon and bismuth have

strong signal in every place of this sample. Therefore, the existence of both reduced graphene

oxide and bismuth composite can be proved.

6.3.4 TEM images of rGO/Bi2O2CO3

Figure 6.5: TEM images of a) rGO/Bi2O2CO3 b) rGO/Bi2O2CO3.

Figure 6.5 shows the detailed morphology of prepared rGO/Bi2O2CO3 obtained by TEM. Bis-

muth subcarbonate particles, with size ∼5-10 nm, are dispersed on reduced graphene oxide

sheets uniformly.

To further confirm the existence of Bi2O2CO3 particles, selected area diffraction pattern (SAED)

was used to analyse the selected area in Figure 6.6 a). The reflections shown in the SAED

images, Figure 6.6 b), formed a ring shape which indicates that this material is a polycrys-

talline composite. The diffraction patterns correspond to the (002), (101), (103), (114) and

(211) crystal planes of bismuth subcarbonate (Natl. Bur. Stand. (U.S.)). The lattice spacing in

HRTEM images (Figure 6.6 c) and d)) were directly measured as 0.37 nm, which match the

(101) crystal plane of tetragonal bismuth subcarbonate (Natl.Bur.Stand.(U.S.)).
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Figure 6.6: a) TEM image b) diffraction pattern c) HRTEM d) HRTEM of rGO/Bi2O2CO3.

6.3.5 Electrochemical properties of rGO/Bi2O2CO3 composite

Cyclic voltammetry is used to analyse the reactions that happen with rGO/Bi2O2CO3 compos-

ite as electrode in the selected voltage range from -0.76 V to 0.24 V vs. SHE.

Figure 6.7: Cyclic voltammogram of rGO/Bi2O2CO3 composite as electrode with different
scanning rates.

Figure 6.7 shows that the cyclic voltammetry (CV) curves of rGO/ Bi2O2CO3 composite with

different scanning rate from 1 mV s-1 to 40 mV s-1 have similarshapes. A voltage range from

-0.76 V to 0.24 V vs. SHE. is used. A reduction peak (A), appeared at -0.65 V, two oxidation

peaks (B and C), appeared at -0.45 V and -0.3 V and a plateau (D) were observed in this cyclic

voltammogram.
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When the scanning rate is increased from 1 mV s-1 to 40 mV s-1, the reduction peaks are shifted

toward more negative values while the oxidation peaks shifted to a more positive values. This

is due to the increase of the internal diffusion resistance as the scanning rate increases [33].

The reduction peak A that appeared at -0.6 to -0.7 V corresponds to the reduction reaction of

bismuth ions from +3 oxidation state to 0 metal site [34]. The oxidation peak B and peak C

are attributed to the formation of BiO-
2 and Bi(OH)3 from Bi(0) [34]. The redox peaks caused

by Faradaic reactions that appear in the cyclic voltammogram of rGO/Bi2O2CO3 indicate that

this composite exhibits a battery-like electrode performance [35] in the voltage range of -0.76

V to -0.2 V vs. SHE. This battery-like behaviour is contributed by the Faradaic reaction of

Bi2O2CO3. A plateau D appeared in the voltage range, -0.2 V to 0.24 V, vs. SHE has a rect-

angular shape which indicates the capacitor behaviour [35] of this composite. This plateau

D is caused by the capacitive contribution of both rGO and the surface species of Bi2O2CO3

[34]. Previous study proved that when the thickness of bismuth sample reduced, the plateau D

shown a dominant feature in the CV results [34]. The reduction and oxidation reactions that

happened during the cyclic voltammetry tests can be summarized as follow [34, 36]:

for peak A

Bi2O2CO3 +2OH-→ 2BiO-
2 +H2O (6.1)

BiO-
2 + e-→ BiO2-

2 (6.2)

2H2O+3BiO2-
2 ↔ 2BiO-

2 +4OH- +Bi(0) (6.3)

Bi(0)→ Bi(metal) (6.4)

for peaks B and C

Bi(metal)→ Bi+ + e- (6.5)

3Bi+↔ Bi3+ +2Bi(metal) (6.6)

3OH- +Bi3+→ Bi(OH)3 (6.7)

Bi(OH)3→ BiOOH +H2O (6.8)

BiOOH +OH-→ BiO-
2 +H2O (6.9)
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Figure 6.8: The charge/discharge behaviour of rGO/Bi2O2CO3 composite under various cur-
rent density.

The charge/discharge behaviours of rGO/Bi2O2CO3 were studied under various current densi-

ties from 1 A g-1 to 5 A g-1, as shown in Figure 6.8, in order to estimate the specific capacity

of the rGO/Bi2O2CO3 composite. In the charge/discharge curves, both the slope and plateau

were observed. The plateau that appeared at the voltage of -0.5 V, -0.25 V and 0.2 V are con-

tributed to the oxidation and reduction Faradaic reactions, in which Bi2O2CO3 undergoes a

phase transformation. The slope is resulted from the electric double layer capacitive of rGO.

This charge/discharge curves show that rGO/Bi2O2CO3 composite has a mix of both battery-

like and capacitor-like electrochemical performance, which have good agreement with the CV

results (Figure 6.7). Since the energy storage mechanism of rGO/Bi2O2CO3 is non-capacitive

or battery-like, specific capacity, as in the following equation, is suggested to be the appropri-

ate way to estimate the electrochemical performance of this material [35, 37, 38]:

Cs =
i×∆t

m
(6.10)

where, Cs is the specific capacity (C g-1), i is the current (mA), ∆t is the discharging time (s)

and m is the mass of active materials (mg).

The specific capacity value of of rGO/Bi2O2CO3 at different current densities were calculated

and listed in Figure 6.9. The specific capacity of rGO/Bi2O2CO3 achieved 254 C g-1 at the

current density of 1 A g-1. When the current density has increased to 2 A g-1 and 5 A g-1, the

specific capacity has reduced to 170 C g-1 and 75 C g-1, respectively.

Cycling performance of rGO/Bi2O2CO3 was obtained by repeating the charge/discharge test

for more than 4500 cycles. This nanocomposite material has excellent cycling performance

under high current density of 3 A g-1. Specific capacity has a sharp decreases from 128 C
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Figure 6.9: Specific capacity of rGO/Bi2O2CO3 changes with current density increase.

g-1 to 85 C g-1 in the first 50 cycles and then the capacity value was kept at a stable value at

∼85 C g-1 for more than 4500 cycles (Figure 6.10 a)). To further study the changes of capac-

ity at the first hundred cycles, specific capacity under the low current density of 1 A g-1 was

also tested, as in Figure 6.10 b). With the low current density applied, this composite material

has a more complete transition Faradaic reaction which provides high and accurate capacity

value [39]. With current density of 1 A g-1 is used, the cycling performance has an obvious

fluctuation in the first 20 cycles which might be due to the lose of adhesion between active

material and Ni foam.

Figure 6.10: The cycling performance of rGO/Bi2O2CO3 under the current density of a) 3 A
g-1 and b) 1 A g-1.

6.4 Conclusion

Nanocomposite material, rGO/Bi2O2CO3, was synthesis through a novel one step method.

This reaction only takes 3 hours at room temperature. In this synthesized composite material,

Bi2O2CO3 nanoparticles with size 5-10 nm have uniformly coated the surface of graphene
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sheets. Due to the stability of nanostructure of composite material and special quantum size

effect of bismuth, with only 6% of Bi2O2CO3 loaded on graphene sheets, this nanocomposite

material achieves 254 C g-1 at the current density of 1 A g-1 and outstanding cycling perfor-

mance till more than 4500 cycles.
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Chapter 7

Enhanced removal of Nickel (II) ions from

aqueous solutions by SDS-functionalized

graphene oxide

7.1 Introduction

Heavy metal pollution in the aquatic environment is a serious environmental problem. In re-

cent years, several methods for the treatment of waste water contaminated with heavy met-

als have been extensively studied and adsorption is now recognized as an effective and eco-

nomic approach. The adsorption process offers flexibility in design and operation of treatment

processes as well as producing high-quality treated effluent in many cases [1–4]. Adsorbents

which have large surface area, pore volume and proper functionalities can be expected to per-

form most effectively and, for this reason, graphene oxide (GO) and graphene nanosheets have

attracted tremendous interest. GO is functionalized graphene with various chemically bound

oxygen-containing groups and is a potential adsorbent for metal (especially cationic metal) ion

complexion through both electrostatic and coordination approaches, due to reactive functional

groups on GO surface [5].

In the literature there are a number of examples of the modification of GO with organics or

metal oxides for the removal of metal ions from water [5–10]. Madadrang et al. studied the

modification of GO with EDTA (ethylenediamine triacetic acid) the resulting material dis-

playing increased adsorption capacity for Pb (II) in comparison to GO [11]. Ren et al. used

a graphene/δ -MnO2 composite for the removal of Ni (II) ions from wastewater and obtained
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higher adsorption capacity with respect to graphene or MnO2 itself [12]. Graphene/δ -MnO2

was prepared under 80-90◦C which is energy and equipment demanding method. Zawisza et

al. used GO as a solid sorbent for the preconcentration of cobalt, nickel, copper, zinc and lead

[13]. The procedure in that study was based on dispersive micro-solid phase extraction and

showed the great potential of GO as an excellent sorbent for preconcentration [13]. Gaboardi

et al. synthesized Ni decorated graphene which showed increased hydrogen adsorption ca-

pacity compared to other common carbon based materials [14]. Ding et al. synthesized a re-

duced graphene oxide (rGO) supported chiral-modified Ni catalyst which they successfully

employed for asymmetric hydrogenation [15].

Nickel (Ni) is the 24th most abundant element in the Earth’s crust and is used in many in-

dustrial and commercial applications including electroplating, battery manufacture, forging,

metal finishing and mining; all of which lead to environmental pollution by Ni. Exposure to

highly Ni polluted environments has the potential to produce various pathological effects in

humans, such as contact dermatitis, lung fibrosis, cardiovascular and kidney diseases and can-

cer [16–19]. Nickel is also an excellent catalyst for carbon dioxide reforming of methane and

methane autothermal reforming with CO2+O2 in a fluidized-bed reactor [20,21] for production

of synthesis gas (CO and H2), which is the key step in the conversion of natural gas to liquid

fuels and chemicals. Ferdowsi et al. reported Ni nanoparticle modified graphite electrode for

the electro-catalytic oxidation of methanol [22].

The catalytic activity of nickel in the form of nickel nanoparticles (NiNPs) for the reversible

hydration of carbon dioxide at room temperature and atmospheric pressure has been recently

reported. This behaviour is potentially important for CO2 capture technologies and for miner-

alisation processes [23, 24] and it has been confirmed that NiNPs are capable of accelerating

mineral carbonation processes [23, 25]. Based on these results, technology to capture and min-

eralize CO2 in the presence of nickel nanoparticles has been proposed. In order for this tech-

nology to become widely acceptable, it is very important to develop robust nickel adsorbers as

precaution against environmental accidents (for example, after spillage dissolution of NiNPs

into Ni (II) ions could occur under prolonged exposure to rainfall).

Therefore there is an urgent need to develop simple synthetic route and safe adsorber for re-

moval of Ni(II) ions from water. Here we report an investigation into the use of GO for the

removal of Ni (II) ions from aqueous solutions as a function of time, solute concentration, pH

and adsorbent concentration. In addition a one pot and easy-to-handle method at room temper-

ature without additional chemicals for the modification of graphene oxide surface using SDS
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(sodium dodecyl sulphate) was developed, as it is expected to enhance Ni (II) ions removal

based on previous study on the removal of drugs using bentonite in the presence of surface

active agents by Çalışkan and Mahramanlıoğlu [26].

7.2 Experimental

Natural graphite flake (99.8%) and sulphuric acid (98%) were purchased from VWR. Ana-

lytical reagent grade phosphoric acid (85%), potassium permanganate (99.0%), hydrogen

peroxide (35%), nickel (II) chloride (98%) and sodium dodecyl sulphate (SDS, 98.5%) were

purchased from Sigma-Aldrich. All chemicals were used without further purification.

Graphene oxide (GO) was prepared by a modified Hummers method [27]. 3 g of graphite and

8 g of KMnO4 were weighed and added into a mixture of 100 mL H2SO4 and 20 mL H3PO3.

This suspension was kept at room temperature for three days with continuous stirring. H2O2

was added into this mixture until it turned a bright yellow colour. This mixture was washed

and filtered using 5% HCl and followed by DI water (18 MΩ cm-1 resistivity) for several

times until a pH of 7 was achieved. Graphene oxide was obtained after drying the deposit in

an oven at 70◦C overnight. Modified GO was prepared by stirring GO in a 1.2 g L-1 SDS dis-

persion for 24 hours at room temperature. This dispersion was then filtered and washed by DI

water for several times to remove excess SDS. Modified GO (GO-SDS) was obtained after

dried in oven at 70◦C.

The adsorption experiments were carried out by stirring certain amount of GO or GO-SDS in

a 25 mL Ni (II) ions solution for predetermined time at room temperature. After the materials

were filtered, the concentration of Ni (II) ions in the solution were measured spectrophotomet-

rically. The influence of pH on the Ni (II) ions adsorption was also studied by adding concen-

trated HCl or NaOH to adjust the pH value of the Ni (II) ions prepared solution. The Ni (II)

ions concentration retained in the adsorbent phase was calculated by the following equation

7.1 [28]:

q =
(C0−C)V

W
(7.1)

where, q is the adsorption capacity (mg g-1), C0 is the initial heavy metal ions concentration in

solution (mg L-1), C is the equilibrium concentration (mg L-1), V is the volume of the solution

used (L) and W is the mass of adsorbent used (g).

The kinetic parameters, such as the adsroption rate constant and the amount of Ni (II) ions
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adsorbed at the equilibrium, of the adsorption were determined by fitting the adsorption data

by the Lagergrene first order model and pseudo-second order model [29]. The rate limiting

step in this adsorption procedure was determined from the intraparticle diffusion plots [30].

The Giles isotherms plots were obtained from the equilibrium absorption Ni (II) ions data.

There equilibrium data were further analysed by Langmuir and the Freundlich isotherm mod-

els [31, 32]. The maximum Ni (II) ions adsorption at monolayer coverage in this experiment

were then calculated from these isotherm models.

In this project, the controlled groups, with no adsorbent added, were measured for each set of

the experiments. All the experiments were repeated three times under identical conditions and

the results were found reproducible with an experimental error lower than 3%.

The concentrations of Ni (II) ions in solution were measured by Inductively coupled plasma

optical emission spectroscopy (ICP-OES, UNICAM 701 series emission spectrometer) and

UV-Visible spectrophotometer (Cary 100 UV-Vis) by applying the Dimethylglyoxime method

[33]. The functional groups attached on the synthesised materials were tested by Fourier trans-

form infrared (FTIR, Varian 800) spectroscopy. The zeta potential of both GO and GO-SDS

were measured by zetasizer (Malvern, Nano ZS). The morphology of prepared materials were

tested by scanning electron microscopy (SEM, XL30 ESEM-FEG) and transmission electron

microscopy (TEM, Philips CM-100).

7.3 Results and discussion

7.3.1 Adsorption kinetics

Figure 7.1: Effect of contact time of Ni (II) ions on GO and GO-SDS.
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Figure 7.1 shows the effect of contact time of the Ni (II) ions adsorption on GO and GO-SDS.

An initial Ni (II) ions concentration (C0) of 40 mg L-1 was used. 25 mg of GO was used as

the adsorbent. The Ni (II) ions concentrations (C) in the solution were tested after every few

hours. For both GO and GO-SDS, the Ni (II) ions concentration in the solution has a fast de-

crease in the first few hours and then followed by a slowly but continually decrease. After 24

hours, the Ni (II) ions concentration in solution reached equilibrium for both GO and GO-

SDS. At the equilibrium point, the Ni (II) ions concentration reduced to 53% of the initial

value by using GO as adsorbate materials while by using GO-SDS the Ni (II) ions concentra-

tion reduced to 23% of the initial value which indicates that GO-SDS has stronger adsorption

ability of Ni (II) ions.

Based on the Ni (II) ions concentration changed with the contact time, the adsorption rate con-

stants of GO and GO-SDS on Ni (II) ions were calculated following the Lagergren first order

equation 7.2 and pseudo-second order rate equation 7.3 [29]

ln(qe−q) = lnqe− k1t (7.2)

t
q
=

1
k2q2 +

1
qe

t (7.3)

where, q is the amount of Ni (II) ions absorbed at the time t (mg g-1), qe is the amount of Ni

(II) ions absorbed at the equilibrium (mg g-1), k1 is the adsorption rate constant of the Lager-

gren first order model and k2 is the adsorption rate constant of the pseudo-second order model.

Figure 7.2: Ni ions adsorption by GO and GO-SDS fitted to the pseudo-second order model.

Adsorption of Ni (II) ions was fitted to the pseudo-second order model (Figure 7.2), which

shows better agreement with experimental data than the Lagergren first order model (plot not

shown), decided on the basis of the (R2) correlation coefficient values, listed in Table 7.1.

It is important to determine the rate-limiting step of the adsorption mechanism, in which has
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total three steps. The rate controlling mechanism can be one or any combination of the follow-

ing:

(1) Mass transfer across the external boundary layer film of the liquid surrounding the outside

of the adsorbant.

(2) Diffusion of the adsorbate molecules to an adsorption site either by a pore diffusion pro-

cess through liquid filled pores or by a solid surface diffusion mechanism.

(3) Adsorption at a site on the surface (internal or external), the energy of which will depend

on the binding process (physical or chemical); this step is assumed to be extremely rapid [30].

Figure 7.3: Intraparticle diffusion plots of GO and GO-SDS at different times.

Intraparticle diffusion plots (Figure 7.3) were used to analyse the mechanism of the adsorp-

tion in order to determine the rate-limiting step. To show the effect of intraparticle diffusion in

the adsorption process, the amount of Ni (II) ions adsorbed (q) at any time was plotted against

the square root of time (t1/2) [34, 35]. There is an initial steep curve followed by a straight

line, which indicates that two mechanisms are operating in the removal of Ni (II) ions with a

plateau that indicates the equilibrium region. The initial curve can be explained by the bound-

ary layer effect while the linear part corresponds to intraparticle diffusion. The linear portions

of the curves do not pass through the origin, denoting that intraparticle diffusion is not the

only rate controlling step for the adsorption of Ni (II) ions in this system [36]. The rate con-

stants of intraparticle diffusion were obtained from the slopes of the straight lines of the sec-

ond parts of the plots and are presented in Table 7.1.

The calculated adsorption rate constant and the amount of Ni (II) ions adsorbed in the equi-

librium, based on both the Lagergren first order model and the pseudo-second order model,

were listed in this table 7.1. Based on the correlation coefficient values R2 in these two fits,

pseudo-second order model shows better agreement with the experiment data in both the Ni
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Table 7.1: Kinetic parameters of the Ni (II) ions adsorption on GO and GO-SDS.
Lagergren 1 order model Pseudo 2 order model Intraparticle diffusion

k1 q1 R2 k2 q2 R2 kd R2

(h-1) (mg g-1) (g mg-1 h-1) (mg g-1) (mg g-1/2 h-1/2)
GO 0.1214 6.71 0.862 0.0597 18.08 0.998 0.99 0.977

GO-SDS 0.1425 18.00 0.942 0.0192 32.05 0.977 2.60 0.999

(II) ions adsorption on GO and GO-SDS. Based on this pseudo-second order model fitting,

the adsorption of Ni (II) ions achieved an equilibrium value of 18.08 mg g-1 and 32.05 mg g-1

with GO and GO-SDS as the absorbant, respectively. In the intraparticle diffusion plot, both

the curve and the linear parts were observed. The linear part of this plot was further fitted to a

linear model, in which the rate constant (the slope of the line) was calculated and listed in the

table 7.1. The correlation coefficient values R2 in the linear parts of the intraparticle diffusion

fitting indicates reliable rate constant results.

7.3.2 Equilibrium isotherm models

Giles developed the adsorption isotherm classification for solutes in dilute solution, which

relates the shape of the plots to the parameters of the solvent adsorption [37]. According to the

Giles isotherm classification, the shapes of the Giles isotherms for GO and GO-SDS (Figure

7.4) shows “L-type (Sub-group 2)” and “H-type (Sub-group 2)” behaviour respectively. L type

behaviour is characteristic of systems where the adsorbate presents high affinity towards the

adsorbent, and therefore indicates that no strong competition of the solvent with adsorbate

takes place for the active sites of adsorption. H type is a special case of the L curve, in which

the adsorbate has such high affinity to the adsorbent [38, 39].

Figure 7.4: Giles isotherms of the adsorption of Ni (II) ions on GO and GO-SDS.

Equilibrium data were analysed by using the Langmuir [31] and the Freundlich [32] isotherm
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models. Linear forms of the Langmuir and the Freundlich isotherm equations are presented in

equation 7.4 and equation 7.5, respectively:

Ce

qe
=

1
Qb

+
Ce

Q
(7.4)

lnqe = lnk+nlnCe (7.5)

where, Ce is the finial concentration at equilibrium (mg L-1), qe is the amount of adsorbate ad-

srobed per unit mass of adsorbent at equilibrium (mg g-1), Q is the maximum adsorption at

monolayer coverage (mg L-1), b is the adsorption equilibrium constant related to the energy

of adsorption in (L mg-1), k and n are the Freundlich constants representing the adsorption

capacity and the intensity, respectively. The constants associated with the equations were de-

termined and shown in Table 7.2.

Table 7.2: Adsorption isotherm parameters for the adsorption of Ni (II) ions on GO and GO-
SDS [31, 32].

Langmuir model Freundlich model
Q b R2 n k R2

(mg g-1) (L g-1)
GO 20.19 0.32 0.990 0.22 8.76 0.911

GO-SDS 55.16 0.40 0.992 0.26 22.03 0.960

The Langmuir model (as in Figure 7.5) gave a better fit than the Freundlich model for this pro-

cess on the basis of the correlation coefficient (R2) value, as in Table 7.2. From the Langmuir

model, the maximum Ni (II) ions adsorption at the GO monolayer coverage achieved 20.19

mg g-1. After decorated GO with SDS, this number reached 55.16 mg g-1.

Figure 7.5: The Langmuir model fitted of Ni (II) ions adsorption on GO and GO-SDS.
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7.3.3 Study the effect of pH on Ni(II) ions removal

The pH of the solution is one of the most important factors affecting the adsorption of metal

ions. This is partly because hydrogen ions themselves are strongly competing with metal ions.

In all solutions, there have been competitive adsorption among hydronium ions (H3O+) and

metal ions. At low pH values, hydronium ions are adsorbed more than other ions, since hydro-

nium ions have high concentration and more tendencies to be adsorbed. With an increasing pH

value, hydronium ions concentration is reduced and results in other ions being better and more

adsorbed [40, 41].

Figure 7.6: The adsorption capacities of GO and GO-SDS on Ni(II) ions changes with pH
value of the solution.

Ni can be presented in the forms of Ni (II) ions (i.e., Ni2+, Ni(OH)+, Ni(OH)0
2, Ni(OH)-

3) and

Ni(OH)2
4 in the medium depends on the pH of the solution [42]. The effect of solution pH on

the adsorption was studied at several pH values between 3 and 9, where the dominant specie

for nickel is the Ni2+ cation. Adsorption capacities of both the GO and GO-SDS at different

pH value Ni (II) ions solution were shown in Figure 7.6. With the pH value of Ni (II) ions so-

lution increased from 3 to 9, the adsorption capacities of GO and GO-SDS were increased

significantly from 7.23 mg g-1 to 31.24 mg g-1 and from 10.36 mg g-1 to 42.14 mg g-1, respec-

tively.

7.3.4 Study of the mechanism of Ni (II) ions adsorption

Ni (II) ions adsorption on a carbon adsorent may occur due to several mechanisms such as

physical adsorption, chemical adsorption, ion exchange or a combination of these. In order to

further understand the adsorption mechanism of Ni (II) ions, zeta potentials of the adsorbents

at several pH value (between 3 and 9) were measured and are shown in Figure 7.7. Zeta po-
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tentials of GO and GO-SDS have negative values at all pH value studied, which confirms that

the surface charge is negative [43]; and mainly decreases from pH 3 to 9. The negative zeta

potential even in acidic conditions indicates that GO and GO-SDS forms stable colloids due to

electrostatic repulsion of the ionized functional groups [44].

Figure 7.7: Zeta potential of GO and GO-SDS changes at different pH value.

Zeta potential is a physical parameter, used to quantify the adsorbent surface charge. By mea-

suring the zeta potential as a function of pH, the acidity or basicity of the adsorbent surfaces

can be determined. The zeta potentials of GO-SDS were more negative compared to those of

GO and were all the negative values within the pH range tested herein. This is probably due

to the presence of negative functional groups introduced by the SDS modifications. Numerous

investigations have also demonstrated that the zeta potentials of modified adsorbents are more

negative values than those of as produced ones and it also depends on the type of treatment for

modification [45–48].

The tendency of the zeta potential is in accord with the increase in adsorption capacities at

higher pH values. The effect of pH on adsorption and on zeta potentials of the adsrobents

show that the driving force of the Ni (II) ions adsorption on GO and GO-SDS surface is elec-

trostatic attraction between a negatively charged adsorbent surface and positively charged Ni

(II) ions. The more negative zeta potential values of GO-SDS than that of GO also explains

the better adsorption capacities found for GO-SDS.

Figure 7.8 show FTIR spectra obtained form GO and GO-SDS before and after the uptake

of Ni (II) ions. The broad adsorption band in between 3000-3500 cm-1 can be attributed to

OH groups. Absorption bands at around 1650 cm-1 are due to carbonyl and carboxyl groups.

Bands at around 950-1400 cm-1 are due to the C-O bonds from the hydroxyl or epoxy groups

[49–51]. Sharp peaks at around 2800 cm-1 appeared in the spectra of GO-SDS (after the treat-

ment of GO with SDS) which are associated with C-H stretching. A sharp peak at around
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Figure 7.8: FTIR of a) GO and b) GO-SDS before and after Ni absorption.

1200 cm-1 also appeared in the spectra of GO-SDS which is due to the sulphate groups of SDS

attached on GO. The peaks at around 950 cm-1 became sharp and changed shape in the spec-

tra of GO-SDS, which could be attributed to the sulphate and hydroxyl groups from SDS [52].

After contacting with Ni, a new sharp peak at 1020 cm-1 was observed for both of the adsor-

bents GO and GO-SDS due to Ni (II) ions adsorption [53]. According to these FTIR spectra,

SDS does not interact with the GO surface in a covalent manner when GO-SDS is formed.

Physicochemical modification methods had been most widely adopted, namely, covalent sur-

face modification and non-covalent surface modification, depending on whether or not cova-

lent bonding between the carbon structure and the functional groups and/or modifier molecules

is involved in the surface modification process. The advantage of non-covalent functionaliza-

tion is that it does not destroy the conjugation in the carbon structure. Non-covalent function-

alization strategies do not have any effect on the physical properties of the adsorbent because

they keep the structure of intrinsic sp2 hybridized orbital unchanged. This can be done by tak-

ing advantage of the p–p interaction between conjugated molecules and the graphitic struc-

ture [54–56].

7.3.5 Morphology of the GO and GO-SDS

SEM images of GO and GO-SDS before and after Ni (II) ions adsorption are shown in Fig-

ure 7.9. The surfactant layer on GO which forms GO-SDS can be seen in Figure 9 d) and e)

(as globules and strands, respectively). Chemisorption can occur by means of surface com-

plexation of Ni (II) ions with carbonyl and/or carboxyl groups of the adsorbent surface. After

GO and GO-SDS were used in Ni (II) ions solution, the Ni (II) ions concentration reduced and

formed NiO with flower-like shape on the surface of GO and GO-SDS (Figure 7.9 c) and 7.9
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Figure 7.9: SEM images of a) GO X1,000 b) GO X2,500 c) GO-Ni X2,500 d) GO-SDS
X1,000 e) GO-SDS X2,500 f) GO-SDS-Ni X2,500.
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f)). Another possible mechanism for Ni (II) ions uptake is ion exchange (cation exchange),

in which Ni (II) cations exchange with hydrogens of hydroxyl and/or carboxyl groups of the

adsorbent surface.

Figure 7.10: TEM images of GO.

GO has a thin layer structure, Dynamic light scanning (DLS), which does not give accurate re-

sults for non-spherical particles, is not suitable for GO size measurement. TEM images, as in

Figure 7.10, were used to estimate the size of GO. From these images, GO have a size larger

than 2 µm. SDS works as functional groups on GO, so it can be assumed that GO-SDS have

similar size as GO.

7.3.6 Comparison of Ni adsorption

Figure 7.11 shows a brief comparison of the removal of Ni (II) ions by GO and GO-SDS at

different loadings. By modified GO with SDS, the adsorption capacities of Ni (II) ions dra-

matically increased, although it does not change the time (24 hours) to reach equilibrium.

In these comparison experiments, 40 mg L-1 of Ni (II) ions were used as the initial solution.

The absroption experiment were carried out by using different amount of GO and GO-SDS

as absorbant. With the amount of GO increased from 5 mg to 50 mg, the percentage of Ni(II)

ions removal is increased from 10.5% to 71.9%. This increase in the percentage of Ni(II) ions

removal with the increasing of absorbant was also observed with GO-SDS. With the same

amount of absrobant used, GO-SDS shows better performance of Ni(II) ions removal than

GO. When 50 mg of GO-SDS was used as the absorbant, the percentage of Ni(II) ions re-

moval achieved 98.7%.

Beside the removal of heavy metal ions, adsorption technology is currently being applied ex-

tensively to the removal of organic and inorganic micro-pollutants from aqueous solutions and
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carbon nanostructures with different morphologies are assumed to be one of the major ele-

ments in nanotechnology [57, 58]. GO is an effective adsorbent for the removal of Ni (II) ions

from aqueous solutions and has the potential to be used for the treatment of waste or drinking

water.

Figure 7.11: Comparison of % Ni (II) ions removal with different amounts of GO and GO-
SDS.

Table 7.3: Comparison of various adsorbents for the removal of Ni (II) ions.
Adsorbent Adsorate mg g-1 (25◦C) Reference

Na-montmorillonite Ni 3.63 [59]
multiwalled carbon nanotubes Ni 6.89 [60]

γ-Fe2O3 Ni 23.60 [61]
DTPA-chitosan Ni 24.16 [62]
EDTA-chitosan Ni 24.35 [62]

vermiculite Ni 25.33 [59]
nano-alumina Ni 30.82 [63]

activated carbon Ni 34.72 [64]
GO-G Ni 36.63 [65]

graphene/δ -MnO2 Ni 46.55 [12]
GO-SDS Ni 55.16 this study

In the literature there are examples of the modification of graphene oxide with organics or

metal oxides [9, 11–15] for the removal of metal ions from water. Results from experiments

carried out at room temperature were listed in the table 7.3. Ren et al. have used Graphene/

δ -MnO2 for the removal of Ni (II) ions from aqueous solutions and found the adsorption ca-

pacity as 46.55 mg g-1 [12] which is lower than we found in our study (55.16 mg g-1). This

graphene/δ -MnO2 was prepared under 80-90◦C which is an energy and equipment intensive

method. Zhang and Wang [66] have studied the adsorption of Ni (II) ions between the tem-
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peratures of 40◦C and 75◦C. The adsorption capacity at 25◦C was not reported. Additionally,

we can understand from Zhang and Wang’s study that adsorption capacity of Ni (II) ions on

lignocellulose/montmorillonite nanocomposite tends to increase with temperature. They have

found the adsorption capacity around 67 mg g-1 at 40◦C and around 95 mg g-1 at 70◦C. Table

7.3 shows a comparison of various adsorbents from literature data for the adsorption of Ni (II)

ions that are comparable to our study.

7.4 Conclusion

In this work an one pot and easy-to-handle method at room temperature without additional

chemicals used for the modification of graphene oxide with surfactant is developed. Removal

of Nickel (II) ions from aqueous solutions by GO and GO-SDS was studied spectrophotomet-

rically at room temperature as a function of time, initial concentration and pH value. Adsorp-

tion capacity of the adsorbent was increased dramatically (from 20.19 mg g-1 to 55.16 mg g-1

found by Langmuir model) due to the functionalization of the surface by SDS. In this work we

show that the removal of Ni (II) ions from aqueous solutions onto GO and GO-SDS are highly

sensitive to pH changes. The driving force of the adsorption of Ni (II) ions is electrostatic at-

traction, Ni (II) ions adsorbed on the GO surface chemically and ion exchange.
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Chapter 8

Conclusion and future work

8.1 Conclusion

In this work, reduced graphene oxide/bismuth (rGO/Bi), reduced graphene oxide/bismuth ox-

ide (Bi2O3-rGO) and reduced graphene oxide/bismuth subcarbonate (rGO/Bi2O2CO3) were

synthesized at low temperature (60◦C and room temperature) and short reaction time (3 hr).

rGO/Bi was synthesized for the first time using a polyol process, in which hydrazine was

used as the reducing agent while ethylene glycol was used as both the solvent and reducing

agent. Metallic Bi particles with size of 20 to 50 nm were formed and attached to the reduced

graphene oxide sheets. In this composite, rGO sheets act as impermeable atomic membranes

to protect Bi particles from oxidation. This rGO/Bi composite reached a specific capacity of

773 C g-1 at the current density of 0.2 A g-1. This material not only has good power density

but also shows moderate stability in cycling tests with a current density as high as 5 A g-1. A

simple chemical reduction, without using any toxic chemicals, was used for Bi2O3-rGO syn-

thesis. The fast, green but low energy requirement synthesis method is promising for large-

scale production of this composite. This composite material exhibits a specific capacity as

high as 559 C g-1 at the current density of 0.18 A g-1. rGO/Bi2O2CO3 was synthesized by us-

ing dimethyl sulfoxide as the solvent. Bi2O2CO3 particles with size of 5 to 10 nm uniformly

coated on the rGO surface. With only 6% of Bi2O2CO3 used, this composite has a specific

capacity value of 254 C g-1 and excellent cycling performance for more than 4000 cycles.

The following table summaries the synthesis and characterization of these three graphene bis-

muth composites in this thesis.
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Table 8.1: Summaries of graphene bismuth composite materials.
rGO/Bi Bi2O3-GO rGO/Bi2O2CO3

initial materials GO, Bi(NO3)3 GO, Bi(NO3)3 GO, Bi(NO3)3
rGO percentage (wt%) 56 10 94

solvent NaOH, EG NaOH DMSO
reducing agents N2H4, EG none N2H4

reaction temperature ◦C 60 60 25
reaction time h 3 3 3

stirring yes no yes
structure nanoparticles flower like nanoparticles

specific capacity C g-1 773 559 254
cycling performance 800 cycles 1000 cycles 4500 cycles

These three composite materials were synthesised from the same initial materials, GO and

Bi(NO3)3, by controlling the GO weight percentage and reducing agents. In the rGO/Bi com-

posite, bismuth were successful reduced from the three oxidation state to metallic bismuth.

This is because the using of N2H4 were added as the reducing agents. To reach the nano-sized

bismuth particles, EG was added during the reaction to form an intermediate complex with the

bismuth ions, which absorbs on the metallic bismuth surface and prevent them from aggrega-

tion. The EG was worked as both the solvent and reducing agent in the synthesis of rGO/Bi.

In the synthesis of Bi2O3-GO, the oxidation state of bismuth did not change after the reaction

because no reducing agents were involved in the synthesis procedure. In this sample, without

using stirring in the reaction, Bi2O3 was grown and formed micro-sized flower like shape. In

the rGO/Bi2O2CO3 sample, DMSO was used as the solvent instead of NaOH while N2H4 was

used as the reducing agent. During the reaction, only GO was reduced to rGO. DMSO worked

as both the solvent and carbon sources for Bi2O2CO3. The specific capacity and cycling per-

formance of these three as-prepared samples were estimated from their charge/discharge be-

haviours. rGO/Bi has a specific value as high as 773 C g-1 at the current density of 0.2 A g-1.

After 800 cycles, 74.5% of its specific capacity was maintained. Bi2O3-GO achieves a spe-

cific capacity of 559 C g-1. After 1000 cycles, Bi2O3-GO still keeps 57% of its initial specific

capacity value. With only 6% of Bi2O2CO3 added, rGO/Bi2O2CO3 achieves a specific ca-

pacitance of 254 C g-1 at the current density of 0.18 A g-1. This composite material has stable

cycling performance till more than 4500 cycles.

The simple synthesis methods, low reaction temperature, short reaction times, relatively high

abundance and low price of bismuth, good specific capacity value of these graphene bismuth

composites make them as the promising candidates for the use as electrode materials in future

electronic devices.
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In addition, the Ni (II) ions adsorption capacity of graphene oxide (GO) was characterised.

The driving force of the adsorption of Ni (II) ions are electrostatic attraction, Ni (II) ions ad-

srobed on the GO surface chemically and ion exchange. In this work, an one step easy-handle

method at room temperature without any additional chemicals for the modification of graphene

oxide with surfactant is developed. By modified GO with sodium dodecyl sulfate (SDS), the

Ni (II) ions adsorption capacity was increased dramatically from 20.19 mg g-1 to 55.16 mg

g-1. Beside the analysis of Ni (II) ions adsorption mechanism, the pH values of the suspension

was also been proved have large effect on their Ni (II) ions adsorption capacity.

8.2 Future work

For Bi2O3-rGO and rGO/Bi2O2CO3, some more characterization can be done to further anal-

yse these materials. TGA can be used to analyse the accurate graphene to bismuth compounds

ratio for these two samples. To further explain the specific capacity decreases in cycling per-

formance, SEM and TEM of the samples after the cycling test can be done to study the mor-

phology changes. XPS, FTIR and Raman spectroscopy of the samples after cycling perfor-

mance can be tested and used to analyse the chemical and functional groups change. In addi-

tion, reduced graphene oxide synthesized with the same method as for Bi2O3-rGO and rGO/Bi2O2CO3

can be used as the controlled group to study how much the bismuth compounds contributed

to the electrochemical properties of the composite materials. For all the graphene bismuth

compounds (rGO/Bi, Bi2O3-rGO and rGO/Bi2O2CO3), different graphene and bismuth com-

pounds ratio can be used to synthesis the composite materials and study the optimum graphene

bismuth compounds ratio for the electrochemical properties of these materials. The applica-

tion of these graphene bismuth based composite materials in other fields can also been studied.

Beside the energy storage devices, these composite materials could also been used as light

emitters and gas sensors due to the good electronic properties. With the large surface area of

graphene and good photo-catalyst properties of bismuth compounds, these nano-composite

materials have the potential application in degradation of synthetic dyes in solutions.

In this project, only Ni(II) ions was studied in the wastewater treatment by GO-SDS. The ab-

sorption of other heavy metal ions by GO-SDS could also be analysed. In addition, the ability

of removing organic pollution, such as pigments, dyes and lubricants, in solution should also

be studied.
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