Responding to different types of damaged telomeres

Marta Aleksandra Markiewicz-Potoczny

Thesis submitted for the degree of Doctor of Philosophy

Institute for Cell and Molecular Biosciences

Newcastle University

October 2016

Abstract

Telomeres are bound by multiple 'capping' proteins, which protect chromosome ends from fusion and degradation. Mutations of telomeric proteins of *Saccharomyces cerevisiae*, cdc13-1 and $yku70\Delta$, induce a telomere uncapping, generation of ssDNA by nucleases, cell cycle arrest and the DNA Damage Response (DDR). In other context the Mec1 checkpoint kinase is activated by Ddc1, Dpb11 and Dna2 in response to DNA damage. I tested how Ddc1, Dpb11 and Dna2 affect cdc13-1 and $yku70\Delta$ fitness. DPB11 and DNA2 are essential genes, therefore I analysed checkpoint defective alleles of DPB11, DNA2 and DDC1. I showed that Dpb11 and Dna2 have no effect on $yku70\Delta$ fitness in contrast to Ddc1, which slightly affects $yku70\Delta$ fitness and might have a role in cell cycle arrest of $yku70\Delta$ mutants. I confirmed that Ddc1 strongly, whereas Dpb11 slightly, affects cdc13-1 fitness. Dpb11 may contribute to the checkpoint function of Ddc1. I also found that the cdc13-1 defect was suppressed by the dna2-W128A, Y130A allele when on a plasmid, but enhanced when integrated into the genome, and these effects might be due to variable dna2-W128A, Y130A copy number (in the genome versus on a plasmid).

Surprisingly, in the course of my experiments, I found that deletion of DDC1 suppressed $dna2\Delta$ lethality. I confirmed that deletion of RAD9 suppresses $dna2\Delta$ lethality, and I found that deletion of RAD17, CHK1, MEC1 and POL32 also allows $dna2\Delta$ viability. I observed that elimination of Tel1, Rad53, Exo1, Mre11 or Rad27 do not suppress $dna2\Delta$ lethality. Based on the observation that checkpoint gene deletions suppress $dna2\Delta$, whereas they exacerbate defects in other core DNA replication proteins, I propose that the essential function of Dna2 is in the telomeric Okazaki fragment processing.

I also found that deletions of HCM1, XBP1 and ULS1, genes selected from a genome-wide screen, suppress growth defect of cdc13-1 and $yku70\Delta$ mutants, and ULS1 suppresses stn1-13 defect. Finally, I showed that thermo-sensitive cdc13-1 and cdc15-2 strains adapt to chronic low-dose stress. Adapted cells are fitter if more stress is applied, but are less fit in the absence of stress. I found the consequences of adaptation to be reversible.

Dedication

This PhD is dedicated to my mother, Jolanta Markiewicz, who has always been an inspiration to me.

Acknowledgements

I would like to thank my supervisor, David Lydall, for giving me the opportunity to work in his lab, and for his great support and scientific guidance. Thanks for allowing me to think independently and for arousing my scientific curiosity. David Lydall's lab would not exist without all great people working in (and around) it, therefore I would like to thank all lab members, past and present, for their advice, encouragement and friendship throughout my PhD. Listed alphabetically: Peter Banks, Adrian Blackburn, Marion Dubarry, Eva-Maria Holstein, Conor Lawless, Alan Leake, Laura Maringele, Siddharth Narayanan, Greg Ngo, Cameron Robertson, Joana Cristina Pedro-Rodrigues, Victoria Torrance, Ben Wetherall. I would like to thank Peter Burgers, Judith Campbell, Marco Muzi-Falconi and Yeon-Soo Seo, who provided me with plasmids carrying alleles of *DDC1*, *DPB11* and *DNA2*. These contributions are detailed in full in the Appendix B. Finally, I would like to thank the Marie Curie ITN CodeAge project for funding my PhD; I am very grateful and fortunate to receive their support. Last, but not least, I thank my father, brother and loving husband for great support and permanent encouragement. Thank you for believing in me.

Table of contents

Abstract	iii
Dedication	iv
Acknowledgements	v
Table of contents	vii
List of Figures	xii
List of Tables	xv
Publications	xvi
Yeast and human nomenclature	xvii
List of Abbreviations	xviii
Chapter 1. Introduction	1
1.1 Yeast as a model organism	1
1.2 Aging and cancer	2
1.3 Telomeres and telomerase - structure and function	3
1.4 Telomere shortening – the end replication problem	5
1.5 Telomere binding proteins in budding yeast	7
1.5.1 CST complex	7
1.5.2 Ku heterodimer	10
1.5.3 Uncapped telomeres – cdc13-1 and yku70∆	12
1.6 DNA Damage Response (DDR)	15
1.6.1 Double Strand Break Repair – HR and NHEJ	16
1.7 Mec1-dependent cell cycle checkpoint	20
1.7.1 Ddc1 (DNA damage checkpoint protein)	22
1.7.2 Dpb11 (DNA polymerase B (II))	22
1.7.3 Dna2 (DNA synthesis defective)	23
1.8 DNA replication	23
1.9 Hormesis and adaptation to low doses of stress	27
Chapter 2. Materials and methods	29
2.1 Yeast strains	29
2.2 Yeast media	29
2.3 Yeast culture	30
2.4 Yeast passaging	30
2.5 Growth assay – "spot test"	30
2.6 Mating and diploid selection	30

	2.7 Sporulation	30
	2.8 Tetrad dissection	31
	2.9 Random Spore Analysis	31
	2.10 Yeast transformation	32
	2.10.1 Lithium acetate (LiAc) transformation	32
	2.10.2 One Step transformation	33
	2.11 Bacteria strains, media and transformation	33
	2.12 Plasmids	34
	2.12.1 Plasmids used in this study	34
	2.12.2 Plasmid purification	34
	2.12.3 Restriction digest	34
	2.12.4 DNA sequencing and alignment	35
	2.13 Gene deletion	35
	2.14 PCR	35
	2.14.1 Genomic/plasmid DNA PCR	36
	2.14.2 Colony PCR	36
	2.14.3 cdc13-1 PCR	36
	2.15 Agarose gel electrophoresis	37
	2.16 Cloning	37
	2.16.1 In vitro cloning	37
	2.16.2 In vivo cloning	37
	2.16.3 One-step isothermal assembly method in vitro (Gibson Assembly)	38
	2.16.4 Quick Change in vitro method	38
	2.16.5 Pop-in/Pop-out assay	39
	2.17 Genomic DNA preparation	39
	2.17.1 Yale quick DNA isolation method	39
	2.17.2 Phenol-based DNA isolation method	40
	2.18 Southern blotting	41
	2.19 Fluorescent in-gel assay	41
	2.20 Genomic quantitative PCR (qPCR)	41
	2.21 Synthetic genetic array (SGA)	43
	2.22 Image Processing	45
C	hapter 3. The roles of Ddc1, Dpb11 and Dna2 in telomere defective cdc	13-1
ar	nd $yku70$ Δ mutants	47
	3.1 The role of Ddc1 in the fitness of <i>cdc13-1</i> and <i>vku70</i> ∆ mutants	.49

3.1.1 Confirmation of the known cdc13-1 ddc1 Δ phenotype	49
3.1.2 Alleles of DDC1 chosen to study checkpoint function	51
3.1.3 Some DDC1 alleles strongly affect cdc13-1 fitness	54
3.1.4 The 9-1-1 complex mutations and rad24 Δ slightly affect yku70 Δ fitness	58
3.1.5 Yeast culture conditions affect the effect of the 9-1-1 complex and Rad	24
on yku70∆ fitness	64
3.1.6 Discussion/Conclusions	67
3.2 The role of Dpb11 in the fitness of <i>cdc13-1</i> and <i>yku70</i> ∆ mutants	69
3.2.1 Alleles of DPB11 chosen to study checkpoint function	69
3.2.2 Plasmids carrying DPB11 alleles are unable to rescue dpb11 Δ at high ra	ite
	69
3.2.3 DPB11 alleles affect cdc13-1 fitness much less than DDC1 alleles	73
3.2.4 DPB11 alleles do not affect yku70∆ fitness	75
3.2.5 Discussion/Conclusions	77
3.3 The role of Dna2 in cell cycle arrest of cdc13-1 and yku70∆ mutants7	' 9
3.3.1 Alleles of DNA2 chosen to study checkpoint function	79
3.3.2 Plasmids carrying DNA2 alleles are unable to rescue dna2∆ at high rate	81
3.3.3 Some DNA2 alleles strongly affect cdc13-1 fitness	84
3.3.4 cdc13-1 dna2 Δ pdna2-W128A,Y130A and cdc13-1 ddc1 Δ dna2 Δ pdna	2-
W128A,Y130A mutants rearrange telomeres	87
3.3.5 cdc13 Δ lethality is not bypassed by ddc1 Δ dna2-W128A,Y130A mutation	ns
	92
3.3.6 Aneuploidy or more copies of pdna2-W128A,Y130A plasmid impro	ve
cdc13-1 fitness	95
3.3.7 Integrated dna2-W128A, Y130A allele does not suppress cdc13-1 defects	98
3.3.8 DNA2 alleles do not affect yku70∆ fitness10	04
3.3.9 Potential mitochondrial defects caused by DNA2 and PIF1 mutation	ns
affect yku70∆ fitness10	06
3.3.10 Discussion/Conclusions10	09
Chapter 4. What is the essential function of Dna2?1	11
4.1 Deletion of some checkpoint and replication-related genes suppress dna	2∆
lethality11	1
4.1.1 Rare ddc1 Δ dna2 Δ clones indicate a novel pathway for dna2 Δ bypass .1	14
4.1.2 Some gene deletions affect dna2∆ viability at lower temperatures1	16
4.1.3 Viability of dna2 Δ is not caused by extra DNA2 copies	23

4.2 Viable dna2∆ strains recover fitness with time, but remain thermo-sensition	tive126
4.2.1 dna2 Δ mutants form colonies of heterogeneous size	126
4.2.2 dna2∆ mutants are thermo-sensitive	129
4.2.3 Viability of dna2 $∆$ mutants is not an effect of additional mutation	132
4.3 Telomeres of <i>dna2</i> ∆ mutants are long and diffuse	134
4.4. Synthetic Genetic Arrays (SGA) to understand mechanisms of	dna2∆
suppression	136
4.4.1 Genome-wide screens using dna2∆ pCAN1-URA3-DNA2 query str	ain 136
4.4.2 SGA reveals novel suppressors and enhancers of dna2 Δ	139
4.4.3 mph1 Δ suppresses dna2 Δ , while rtt109 Δ and dgr2 Δ do not affect	t dna2∆
fitness	144
4.4.4 Inability to lose pCAN1-URA3-DNA2 on canavanine impedes ver	ification
of dna2∆ suppressors in W303	147
4.4.5 W303 SGA results are different from the S288C SGA results	151
4.5 Discussion/Conclusions	154
Chapter 5. Novel genes with potential functions at telomeres	157
5.1 Selection and overview of genes with potential functions at telomeres	157
5.2 Hcm1 slightly affects the growth of $cdc13-1$ and $yku70\Delta$ mutants	161
5.3 Xbp1 slightly affects the growth of cdc13-1 and yku70∆ mutants	163
5.4 Uls1 similarly affects fitness of stn1-13, cdc13-1 and yku70∆ mutants	165
5.5 Irc5 and Rad1 do not affect the growth of $cdc13-1$ and $yku70\Delta$ mutants.	173
5.6 Discussion/Conclusions	173
Chapter 6. Hormesis and adaptation to low-doses of stress	177
6.1 Costs, benefits and redundant mechanisms of adaption to chronic lo	w-dose
stress in yeast	177
6.1.1 Abstract	177
6.1.2 Introduction	178
6.1.3 Results	183
6.1.4 Discussion	192
6.1.5 Materials and Methods	197
6.1.6 Supplementary material	199
Chapter 7. Discussion	207
7.1 Role of Dna2 in telomere biology	207
7.2 Ddc1, Dpb11 and Dna2 checkpoint control in yku70∆ and cdc13-1 muta	ints208
7.3 Hcm1, Xbp1 and Uls1 function at telomeres	210

7.4 Consequences of low-dose stress adaptation	210
Appendix A: Yeast strains	211
Appendix B: Plasmids	221
Appendix C: Primers	223
Appendix D. Gibson Assembly	224
Appendix E. Template of plate 15	226
Appendix F. 702 genes from S288C SGA	227
Appendix G. 308 genes selected for W303 SGA	243
References	249

List of Figures

Figure 1. Telomere replication	6
Figure 2. The telomere cap is evolutionarily conserved	8
Figure 3. Domain organization of the CST	9
Figure 4. Representation of yeast and human Ku structure	1
Figure 5. A model for the roles of checkpoint proteins in responding to cdc13-1 and	d
yku70∆-induced DNA damage1	4
Figure 6. Pathways for DNA double strand break repair	8
Figure 7. Role of protein complexes at the yeast replication fork	5
Figure 8. Model for Mec1 activation during the cell cycle	8
Figure 9. Ddc1 and Exo1 similarly affect fitness of cdc13-1 mutants 5	0
Figure 10. Alignment of <i>DDC1</i> and <i>ddc1</i> -M11 allele on plasmids	3
Figure 11. DDC1 alleles affect growth of cdc13-1 mutants	7
Figure 12. Effect of Ddc1 on yku70∆ fitness	9
Figure 13. Checkpoint proteins affect yku70∆ fitness	0
Figure 14. Unaltered ssDNA accumulation and telomere structure of $yku70\Delta$ mutant	S
with checkpoint gene deletions6	3
Figure 15. Culture conditions affect the apparent fitness of $yku70\Delta$ mutants with	h
deletions of checkpoint genes6	6
Figure 16. Spore viability prior to <i>DPB11</i> deletion and plasmid transformation 73	2
Figure 17. DPB11 alleles slightly affect growth of cdc13-1 mutants	4
Figure 18. <i>DPB11</i> alleles do not affect growth of <i>yku70</i> ∆ mutants	6
Figure 19. Spore viability prior to DNA2 deletion and plasmid transformation 8	3
Figure 20. DNA2 alleles affect growth of cdc13-1 mutants	6
Figure 21. $cdc13-1$ and $cdc13-1$ $ddc1\Delta$ mutants have telomeres rearranged in the	е
presence of dna2-W128A, Y130A9	0
Figure 22. $cdc13-1$ $dna2\Delta$ $pdna2-W128A, Y130A$ colonies have heterogeneous size9	1
Figure 23. $ddc1\Delta$ $dna2\Delta$ $pdna2-W128A, Y130A$ and $ddc1\Delta$ $dna2\Delta$ $pDNA2$ mutation	S
do not suppress the lethality of $cdc13\Delta$ 9	4
Figure 24. dna2∆ dna2-W128A,Y130A strains have more copies of pdna2	<u></u> -
<i>W128A</i> , <i>Y130A</i> plasmid	7
Figure 25. Pop-in/pop-out of dna2-W128A, Y130A allele into the genome 10	0
Figure 26. The effect of dna2-W128A, Y130A integrated into the genome and from	n
the plasmid on cdc13-1 fitness is divergent	2

Figure 27. dna2 mutations do not affect the fitness of yku70∆ mutants	105
Figure 28. Mitochondrial function affects yku70\Delta fitness	107
Figure 29. Checkpoint activation due to replication errors in the absence of I	Ona2.113
Figure 30. Unexpected <i>dna2</i> ∆ <i>ddc1</i> ∆ clones	115
Figure 31. $ddc1\Delta$, $rad17\Delta$ and $chk1\Delta$ suppress $dna2\Delta$ similarly to $rad9\Delta$	118
Figure 32. Quantification of suppressors and no-suppressors of $dna2\Delta$ lethal	lity 121
Figure 33. Viability of <i>dna2</i> ∆ mutants is not due to extra <i>DNA2</i> copies	125
Figure 34. dna2\(Delta\) mutants form heterogeneous colonies and slightly recovered	er fitness
with time	128
Figure 35. <i>dna2</i> ∆ mutants remain thermo-sensitive	131
Figure 36. Suppression of $dna2\Delta$ lethality is independent of "unknown" muta	itions.133
Figure 37. Telomeres of <i>dna2</i> ∆ mutants are long and diffuse	135
Figure 38. SGA plasmid method for dna2\(Delta\) pCAN1-URA3-DNA2 strain	138
Figure 39. S288C pilot SGA of plate 15 containing checkpoint gene deletion	s141
Figure 40. Single gene deletions affecting <i>dna2</i> ∆ fitness	143
Figure 41. $mph1\Delta$ suppresses $dna2\Delta$ similarly to $rad9\Delta$	146
Figure 42. pCAN1-URA3-DNA2 plasmid is not efficiently lost	150
Figure 43. W303 SGA of 308 genes	153
Figure 44. The model for Dna2 essential function at the terminal telomeric	o Okazaki
fragment	156
Figure 45. Genes with potential function at telomeres	159
Figure 46. Hcm1 slightly affects fitness of cdc13-1 and yku70∆ mutants	162
Figure 47. Xbp1 slightly affects fitness of $cdc13-1$ and $yku70\Delta$ mutants	164
Figure 48. Uls1 affects fitness of <i>stn1-13</i> , <i>cdc13-1</i> and <i>yku70</i> ∆ mutants	168
Figure 49. Role of SUMO-ubiquitin hybrid conjugates in protein targeting	171
Figure 50. Domain architecture of the E3 ubiquitin ligase Rad5 and its	s putative
orthologs SHPRH and HLTF	172
Figures in Chapter 6, numbered consecutively with the Figure number	ng from
a publication:	
Figure 1. Hormetic response to mild stress in human cell lines	182
Figure 2. Passaging procedure	184

Figure 3. The effects of adaptation to low-level of telomere stress in <i>cdc13-1</i> mutants
186
Figure 4. Adaptation to telomere stress in the absence of key stress response
proteins
Figure 5. Adaptation to low-level kinase inhibition in cdc15-2 mutants
Figure 6. The effects of adaptation to mild stress
Figure S1. The fitness of cdc13-1 and cdc15-2 mutants at a range of temperatures
Figure S2. The effects of adaptation to telomere stress in $cdc13-1 \ rad9\Delta$ mutants 201
Figure S3. The effects of adaptation to telomere stress in $cdc13-1$ exo1 Δ mutants 202
Figure S4. The effects of adaptation to telomere stress in cdc13-1 msn2\(Delta\) msn4\(Delta\)
mutants
Figure S5. The effects of adaptation to low level kinase inhibition in cdc15-2 mutants
204
Figure S6. The effects of adaptation to low level kinase inhibition in cdc15-2 msn2
<i>msn4</i> ∆ mutants

List of Tables

Table 1. Mutations of <i>DDC1</i> used	51
Table 2. Response of <i>DDC1</i> alleles to DNA damage	68
Table 3. Mutations of DPB11 used	69
Table 4. Response of <i>DPB11</i> alleles to DNA damage	78
Table 5. Mutations of DNA2 used	79
Table 6. Response of <i>DNA2</i> alleles to DNA damage	109
Table 7. The effect of each gene deletion on $cdc13-1$ and $yku70\Delta$ mutants	174
Table in Chapter 6, numbered consecutively with the Table numbering	from
a publication:	
Table S1 Strains used in this study	199

Publications

MARKIEWICZ-POTOCZNY, M. & LYDALL, D. 2016. Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast. Cell Cycle, 15, 2732-2741.

The above mentioned publication is presented in Chapter 6 of this thesis.

Yeast and human nomenclature

Yeast nomenclature

YFG Denotes that this is a wild-type gene

 $yfg\Delta$ Denotes that this gene has been deleted

yfg::XXX Denotes that the gene yfg has been disrupted by the integration of

gene XXX

yfg-1 Denotes a conditional mutation of YFG gene

yfg∆C Denotes a C-terminal truncation allele

 $yfg\Delta N$ Denotes an N-terminal truncation allele

Yfg Denotes that this is a protein

Human nomenclature

YFG Denotes a human gene

YFG Denotes a human protein

List of Abbreviations

5-FOA 5-fluoroorotic acid

aa Amino acid

ALT Alternative Lengthening of Telomeres

ATM Ataxia Telangiectasia Mutated

ATR Ataxia Telangiectasia and Rad3-related protein

ATRIP ATR-linteracting Protein in human

BLAST Basic Local Alignment Search Tool

bp Base pairs

BSA Bovine Serum Albumin

Cdc Cell division cycle replication protein

Chk1 Checkpoint kinase 1

CST Cdc13-Stn1-Ten1

DAmP Decreased abundance by perturbation of mRNA

Ddc1 DNA damage checkpoint protein 1

DDR DNA Damage Response

DDY Diploid yeast strain from Lydall Lab collection

DLY Haploid yeast strain from Lydall Lab collection

DNA Deoxyribonucleic aid

Dna2 DNA replication helicase 2-like

dNTP Deoxyribonucleotide triphosphate

Dpb11 DNA polymerase B 11

DSB DNA Double Strand Break

dsDNA Double stranded DNA

DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic acid

ESM Enriched Sporulation Medium

Est1,2,3 Ever shorter telomeres 1, 2, 3

Exo1 Exonuclease 1

FIGA Fluorescent In Gel Assay

g Gramme

GINS Go-Ichi-Nii-San (Sld5/Cdc105-Psf1/Cdc101-Psf2/Cdc102-Psf3)

GIS Genetic Interaction Strength

G418 Geneticin

HIS Histidine

HR Homologous Recombination

kb Kilobases

Ku Yku70/Yku80 complex

L Litre

LB Lysogeny Broth

LEU Leucine

LiAc Lithium Acetate

Lif1 Ligase-interacting factor 1

Lig4 Lligase 4
LYS Lysine
M Molar

μg Microgrammes

μL Microlitre

mg Milligrammes

mL Millilitre

MAT Mating type locus mtDNA Mitochondrial DNA

MRN Mre11/Rad50/Nbs1 complex
MRX Mre11/Rad50/Xrs2 complex
NER Nucleotide Excision Repair

ng nanogrammes

NHEJ Non-Homologous End Joining

PCNA Proliferating Cell Nuclear Antigen

PCR Polymerase Chain Reaction

PIKK Phosphatidylinositol 3-kinase-related protein kinase

qPCR Quantitative Polymerase Chain Reaction

Rad Radiation sensitive

Rap1 Repressor activator protein 1

rDNA Ribosomal DNA

RFC Replication factor C

Rif1,2 RAP1 interacting factor 1, 2

RNA Ribonucleic acid

RPA Replication Protein A, Rfa1/Rfa2/Rfa3

rpm Revolution per minute

s Seconds

SD Synthetic Dropout medium

SDS Sodium Dodecyl Sulphate

SGA Synthetic Genetic Array

SGD Saccharomyces genome database

SOC Super Optimal broth with Catabolite repression

SSC Saline Sodium Citrate

ssDNA Single stranded DNA

Stn1 Suppressor of cdc thirteen 1

TBE Tris/Boric Acid/EDTA

TE Tris/EDTA

Ten1 Telomeric pathways with Stn1

Tlc1 Telomerase component 1

Tm Melting temperature (of DNA)

TRP Tryptophan

ts Thermo-sensitive (e. g. mutation)

URA Uracil

UV Ultra Violet

WT Wild Type

YCp Yeast Centromeric plasmid

YEPD Yeast Extract/Peptone/Dextrose

 Δ Indicates gene deletion

Chapter 1. Introduction

1.1 Yeast as a model organism

"For many biological problems, there is an animal on which it can be most conveniently studied (...)" the statement of the Nobel prize laureate in 1920, August Krogh, indicates the importance of conducting experiments on the research model of correct choice. The aim of using model organisms is to obtain information and knowledge about other species which are more complex to study, like humans (de Magalhaes, 2004). It is inconvenient and difficult to study the processes of e.g. ageing and age-related pathologies in humans *in vivo*, because the long life expectancy of humans and ethical issues (Leonelli and Ankeny, 2013). Thus human cell culture and animal models, such as yeast, nematode, fruit fly and laboratory mouse are widely applied in research (Buffenstein et al., 2008, Yeoman et al., 2012).

Using the single cellular eukaryote *Saccharomyces cerevisiae* as a model organism is advantageous due to the easiness of breeding, rapid growth and cost-effectiveness (Lander et al., 2001, Liti, 2015). The genomic information of haploid budding yeast genome (12 Mb) is already well known as it was sequenced in 1996 (Goffeau et al., 1996). The genome does not contain many repetitive sequences, also non-coding DNA is less common than in higher eukaryotes, which is favourable for genetic studies (Goffeau et al., 1996, Conconi et al., 2005).

Budding yeast provide useful insights into genetics, molecular and biochemical processes (Kaeberlein et al., 1999, Boiteux and Jinks-Robertson, 2013, Sarto-Jackson and Tomaska, 2016). Diverse cellular pathways have been investigated in yeast; those include the influence of DNA damage factors or cytotoxic compounds on yeast physiology (Conconi et al., 2005, Saka et al., 2013). I used yeast as a model to investigate the role of genes, e.g. *DDC1* or *DNA2*, which have human orthologues, *RAD9* or *DNA2*, respectively. Human and yeast share similarities in some pathways that control key aspects of cell biology, e.g. cell cycle arrest (Hartwell, 2002), programmed cell death (Munoz et al., 2012), metabolism (Petranovic et al., 2010) and many other pathways (Mohammadi et al., 2015). It was proposed that about 50% of human genes involved in heritable diseases show the homology with budding yeast genes (Hartwell, 2002). *S. cerevisiae* serves also as a tool to investigate the

basis of longevity, cancer and other mammalian diseases. Although yeast culture can be propagated continuously, individual yeast cells age and eventually die (Lippuner et al., 2014). Each cell produces a number of buds during their lifespan, which is defined as a replicative lifespan. The replicative lifespan can be measured by counting cell divisions, reflected by the number of new buds appearing and being subsequently removed by microdissection. Another approach to study yeast aging is to measure the time a cell spends in a non-dividing state, known as the chronological lifespan (Lippuner et al., 2014).

1.2 Aging and cancer

Most definitions describe ageing as a process that is progressive, deleterious, irreversible, and connected to changes that adult organisms accumulate in time, finally leading to death. Ageing is a complex process which arises from environmental and inherited stimuli (Phipps et al., 2007). Cells are constantly prone to DNA damage that occurs due to errors of DNA replication, recombination and exogenous agents, such as UV radiation (Kobayashi, 2011, McIsaac et al., 2016). Accumulation of DNA damage with age is regarded as one of possible explanations of ageing (Soares et al., 2014). DNA damage accumulation may cause irreversible physiological alterations in, among others, cellular component synthesis, cell cycle machinery and signalling pathways that control cell cycle arrest (Lombard et al., 2005). Such alterations affect genome stability and cause the homeostasis loss, which in turn may accelerate ageing (Soares et al., 2014).

Telomeres, the nucleoprotein structures localized at the end of eukaryotic linear chromosomes, get shorter with each cell division in the process known as telomere shortening or the end replication problem (Okazaki et al., 1968, de Lange, 2009). Due to telomere shortening during an organismal lifespan, telomere length became a lifespan determinant (Harley et al., 1990). Shortening of telomeres can trigger the checkpoint and DNA damage response (DDR), leading to genomic instability (d'Adda di Fagagna et al., 2003, Fumagalli et al., 2012).

In some cells telomerase, an enzyme responsible for telomere elongation, protects telomeres from shortening (Churikov et al., 2013, Lu et al., 2013). Embryonic stem cells, germ cells and cell lines obtained from tumours have the telomerase active and do not enter replicative senescence (Hayflick, 1998, de Magalhaes, 2004).

Telomerase activity was also found in yeast (Cohn and Blackburn, 1995). In higher eukaryotes telomerase activity is undetectable; in most of somatic human tissues telomerase is absent, and in e.g. mice telomerase has a very low activity (Kipling, 1997). Due to absence or decreased activity of telomerase, telomeres become shorter with each cell division, which is considered a main factor contributing to ageing (Harley et al., 1990, Allsopp et al., 1995, Carneiro et al., 2016).

Telomeres are one of the most influential barriers of cancer development (Kiyono et al., 1998, Artandi, 2003). Most of cancer cells (85-90%) exhibit increased activity of telomerase resulting in telomere lengthening (Cesare and Reddel, 2010, Lu et al., 2013). Human cancers are also characterised by genomic instability arisen from defective telomeres and fusions between them (Negrini et al., 2010). Therefore senescence, which is a hallmark of aging, is believed to serve as an anti-cancer mechanism and contribute to the cell and organism survival (Coppe et al., 2010, Yeoman et al., 2012, Bhatia-Dey et al., 2016).

1.3 Telomeres and telomerase - structure and function

Telomeres are comprised of multiple telomere binding proteins and repeated DNA sequences. Mammalian telomeres form tandem repeats (TTAGGG) and measure between 5 and 15 kb (Palm and de Lange, 2008, Samassekou et al., 2010). *S. cerevisiae* telomeres consist of heterogeneous TG₁₋₃ repeats, the length of which is maintained at about 250-400 bp (Ray and Runge, 1999). Telomeres contain of short G-rich 3' overhangs, which possibly provide the substrate for telomerase function (Wellinger et al., 1993). Yeast contain also sub-telomeric X and Y' repeats. A single sub-telomeric X repeat exists at all natural budding yeast telomeres and consists of a 473 bp core sequence (Pryde and Louis, 1997). Approximately half telomeres contain one to four copies of Y' repeat (Louis et al., 1994). Y' repeats might be of two predominant sizes, 5.2 and 6.7 kb (Lundblad and Blackburn, 1993).

Human telomeres shorten with each cell division, while yeast telomeres are maintained by a ribonucleoprotein enzyme telomerase, which synthesizes telomere repeat units (Greider and Blackburn, 1985). Telomerase consists of a protein catalytic subunit, one or more associated proteins and an integral RNA component which serves as a template for telomeric repeat synthesis (Nugent and Lundblad, 1998). In *S. cerevisiae* Tlc1^{hTERC} is a noncoding, 1.2 kb RNA moiety of telomerase

which binds to catalytic subunit Est2^{hTERT} and to accessory proteins (Greider and Blackburn, 1985, Singer and Gottschling, 1994, Dandjinou et al., 2004). Est2^{hTERT} is a catalytic reverse transcriptase component of yeast telomerase, which uses a RNA subunit (Tlc1^{hTERC}) as a template for a *de novo* DNA synthesis (Lingner et al., 1997, Counter et al., 1997). The yeast telomerase associated proteins, Est1, Est3 and Cdc13/Est4, regulate access of telomerase to the telomere through direct and indirect associations between RNA and Est2 components (Chandra et al., 2001, Evans and Lundblad, 1999, Hughes et al., 2000).

Yeast cells lacking telomerase activity resemble mammalian somatic cells, which divide for a limited number of times before cell divisions are inhibited by short telomeres (Lundblad and Szostak, 1989). Such cells enter a senescence, a state of permanent growth arrest. Rarely, some "survivors" are generated; such cells can escape senescence by amplification of telomeric and sub-telomeric regions using recombination-dependent telomere elongation (Lundblad and Blackburn, 1993). Some immortalised human cells also use a recombination-dependent mechanism to maintain telomeres, known as alternative lengthening of telomeres (ALT) (Dunham et al., 2000, Varley et al., 2002). In buddying yeast amplification of Y' repeats leads to generation of Type I survivors, whereas amplification of G-rich repeats leads to generation of Type II survivors (Lundblad and Blackburn, 1993, Teng and Zakian, 1999). Cells with telomere capping defects, caused by the absence of telomere protective genes YKU70 and MRE11 (yku70 \triangle mre11 \triangle mutants), senescence rapidly during the early growth of germinated spores and are example of type I survivors (Maringele and Lydall, 2002, Maringele and Lydall, 2004a). Telomerase-deficient strains, for example est 1Δ , est 2Δ or $tlc 1\Delta$, are able to escape replicative senescence using a homologous-recombination-based mechanism and are example of type II survivors (Lundblad and Blackburn, 1993, Maringele and Lydall, 2004a).

Genes important for recombination at double-strand breaks (DSBs) are also responsible for amplification of telomeres in the absence of telomerase (Chen et al., 2001b). Such genes can be divided into two groups: *RAD51*, *RAD54*, *RAD55*, *RAD57*, *RAD52*-dependent pathway is responsible for Y' sub-telomeric region amplification, and *MRE11-RAD50-XRS2* (MRX complex, MRN in humans), *RAD52*, *RAD59*, *SRS2*, *TID1*-dependent pathway is responsible for TG-telomeric repeats amplification (Chen et al., 2001b). In addition, *EXO1* 5'-3' exonuclease, involved in

resection of DSBs, is important for generating recombination-dependent type I and II survivors (Maringele and Lydall, 2004b).

1.4 Telomere shortening – the end replication problem

Mammalian and yeast cells which are deprived of telomerase activity lose telomeric DNA with each cell division. Possible reason for DNA depletion is so called "end replication problem" (Watson, 1972, Olovnikov, 1973). DNA replication is performed by 5' to 3' polymerases from one RNA primer on the leading strand, and multiple primers discontinuously on the lagging strand (Fig. 1). A replication fork cannot replicate the 3' end of a telomere because the last primer that is required for lagging strand synthesis cannot be removed, thus this region is not synthesized (Fig. 1C). As a result, a G-tail is formed, and an unreplicated 3' tail is of the same length as before replication event, in the absence of nuclease activity. Possible role of single-stranded DNA (ssDNA) overhang is to provide a substrate for telomerase, as 3' overhang is in demand for telomerase function (Lingner and Cech, 1996, Wang and Blackburn, 1997). Replication of leading strand causes blunt chromosome end (Fig. 1D) (Lydall, 2003, Vega et al., 2003).

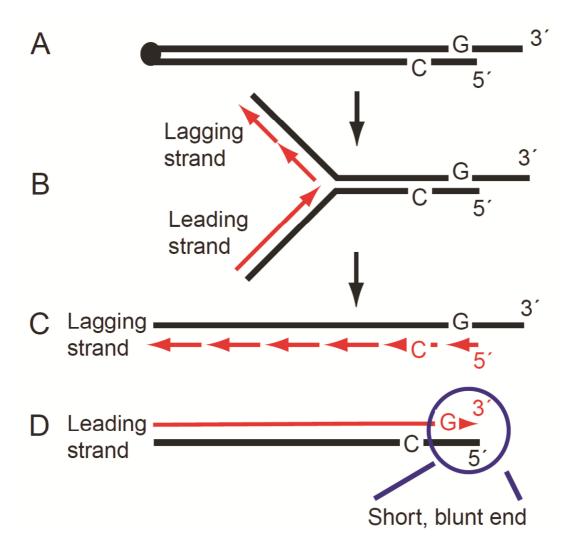


Figure 1. Telomere replication

Figure and text adapted from Figure 2 (Lydall, 2003).

- (A) Telomeres in all organisms contain a short 3' overhang on the G rich strand.
- (B) A replication fork moving towards the end of the chromosome.
- (C) The newly replicated, lagging C strand, will generate a natural 3' overhang when the RNA primer is removed from the final Okazaki fragment, or if the lagging strand replication machinery cannot reach the end of the chromosome. In the absence of nuclease activity the unreplicated 3' strand will be the same length as it was prior to replication. (D) The newly replicated leading G strand will be the same length as the parental 5' C strand, and blunt ended if the replication fork reaches the end of the chromosome. Therefore the newly replicated 3' G strand will be shorter than the parental 3' strand and unable to act as a substrate for telomerase because it does not contain a 3' overhang. If the leading strand replication fork does not reach the end of the chromosome a 5' rather than 3' overhang would be generated, but this would not be a suitable substrate for telomerase.

1.5 Telomere binding proteins in budding yeast

Telomeres resemble DSBs and in order not to be recognised as such, are bound by multiple protein complexes (Eckert-Boulet and Lisby, 2010, Kobayashi, 2011). Telomere-binding proteins are required for telomere maintenance and inhibition of DNA-damage responses, such as checkpoint pathways, homologous recombination and non-homologous end joining (de Lange, 2009). Telomere structure is conserved in eukaryotes, and analogous protein complexes exist from budding yeast to humans (Fig. 2). Telomeric DNA in budding yeast is bound by the CST (Cdc13-Stn1-Ten1), Yku (Yku70-Yku80) and Rap1-Rif1-Rif2 complexes (Gilson et al., 1993, Boulton and Jackson, 1996, Porter et al., 1996, Pennock et al., 2001). Since my work concerns *cdc13-1* and *yku70*Δ strains, I will describe only the CST and Yku complexes.

1.5.1 CST complex

Cdc13, together with Ten1 and Stn1, forms the heterotrimeric CST complex which exhibits telomere capping features (Fig. 3) (Pennock et al., 2001, Anbalagan et al., 2011, Churikov et al., 2013). In budding yeast the CST complex, like other telomeric complexes, protects telomeres from being processed as DSBs (Garvik et al., 1995, Surovtseva et al., 2009). Cdc13, Stn1 and Ten1 localize to chromosome ends by binding to the G-rich ssDNA (Nugent et al., 1996, Taggart et al., 2002). Yeast Stn1 and Ten1 contribute to the telomere capping role of Cdc13, and depletion of any subunit of the complex results in extensive C-strand degradation and cell cycle arrest (Weinert and Hartwell, 1993, Garvik et al., 1995, Grandin et al., 2001). Ten1 prevents accumulation of ssDNA at telomeres by limiting degradation of the 5' end by Exo1 (Xu et al., 2009). Stn1 interacts with Ten1 by its N-terminus (Puglisi et al., 2008), and competes with Est1 for binding to Cdc13, thus negatively regulates telomerase (Chandra et al., 2001, Puglisi et al., 2008). Cdc13, on the other hand, recruits telomerase to telomere ends (Chandra et al., 2001). Stn1 and Cdc13 have affinity to DNA polymerase α , allowing CST complex to mediate C-strand fill-in at the telomere end (Grandin et al., 1997, Puglisi et al., 2008).

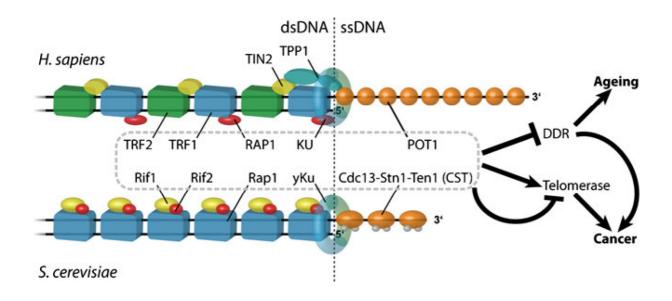


Figure 2. The telomere cap is evolutionarily conserved

Figure and text adapted from Figure 1 (Dewar and Lydall, 2012a).

Telomeres are nucleoprotein caps present at the ends of most eukaryotic chromosomes, consisting of dsDNA with a ssDNA overhang, bound by dsDNA- and ssDNA-binding proteins. Collectively, the telomere binding proteins "cap" the telomere and serve to regulate telomerase activity and inhibit the DDR. In budding yeast, the telomeric dsDNA is bound by Rap1, which recruits the accessory factors Rif1 and Rif2. In humans, the telomeric dsDNA is bound by TRF1 and TRF2 (held together by TIN2) and TRF2 recruits RAP1 to telomeres. In budding yeast, Cdc13 binds the telomeric ssDNA and recruits Stn1 and Ten1 to form the CST complex, while in humans, the telomeric ssDNA is bound by POT1. In human beings, POT1 and TRF1–TRF2–TIN2 are linked together by TPP1, which may permit the adoption of higher-order structures. In both budding yeast and humans, the Ku complex, a DDR component that binds to both telomeres and DSB, also binds and plays a protective role.

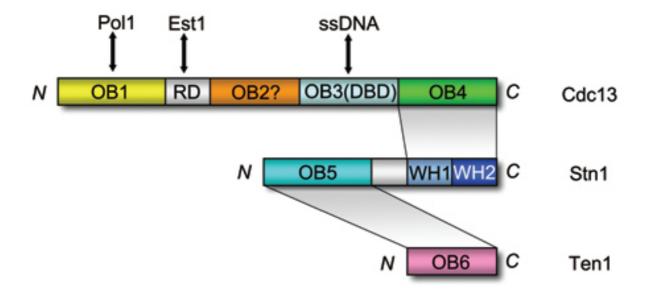


Figure 3. Domain organization of the CST

Figure and text adapted from Figure 1, upper panel (Sun et al., 2011b).

The CST complex. In Cdc13 the four OB folds from the N- to C-terminus, are colored in yellow, orange, light blue, and green, respectively. The RD domain between the first and second OB folds in Cdc13 is colored in gray. In Stn1 the OB folds are colored in cyan, the WH1 motif of Stn1 in marine, and the WH2 motif of Stn1 in blue. Ten1 is colored in pink. The shaded areas are used to indicate the interdomain interactions among the components within the complex. OB -oligonucleotide/ oligosaccharide binding; RD – telomerase recruitment domain; WH - winged helix—turn—helix motif.

The CST complex shows structural similarity to RPA, another heterotrimeric complex that binds ssDNA with high affinity (Wold, 1997), and is essential for chromosomal DNA replication, repair and recombination, as well as in DNA damage signaling in eukaryotic cells (Wold, 1997, Yuzhakov et al., 1999, Binz et al., 2004). In mammals the CST (CTC1, STN1 and TEN1) complex is important for telomere maintenance and replication, but not for telomere protection (Miyake et al., 2009). The shelterin capping complex, composed of TRF1, TRF2, POT1, RAP1, TIN2 and TPP1 proteins, is responsible for protecting telomeres in mammals

1.5.2 Ku heterodimer

Yeast heterodimeric Yku complex consists of two protein subunits, Yku70 and Yku80, and plays a role in telomere protection (Cosgrove et al., 2002). Yku affects telomerase function at telomeres by recruiting Est1 and Est2 to telomeres during S-phase, which suggest its role in telomere length maintenance (Stellwagen et al., 2003, Bianchi and Shore, 2008, Hass and Zappulla, 2015). The heterodimer has a ring-like conformation, so it can easily wrap around DNA (Fig. 4) (Walker et al., 2001, Balestrini et al., 2013). Yku has the affinity to double-stranded DNA (dsDNA) and inhibits resection by Exo1 at DSBs and telomeres, as its depletion increases the ssDNA telomeric overhangs formation (Maillet et al., 2001, Maringele and Lydall, 2002, Sun et al., 2011a). The Yku complex is also an important component of Non Homologous End Joining (NHEJ) repair pathway; it stabilizes DNA ends for ligation and recruits crucial proteins to DSBs (Daley et al., 2005, Clerici et al., 2008). There is evidence for two pools of Yku complexes in a cell, one binding directly to telomeric DNA in a mode similar to NHEJ, and one being associated with telomeric chromatin via Yku80-Sir4 interaction (Martin et al., 1999, Roy et al., 2004).

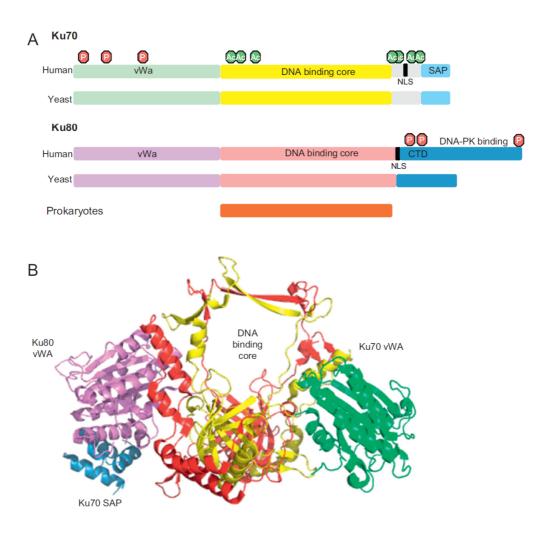
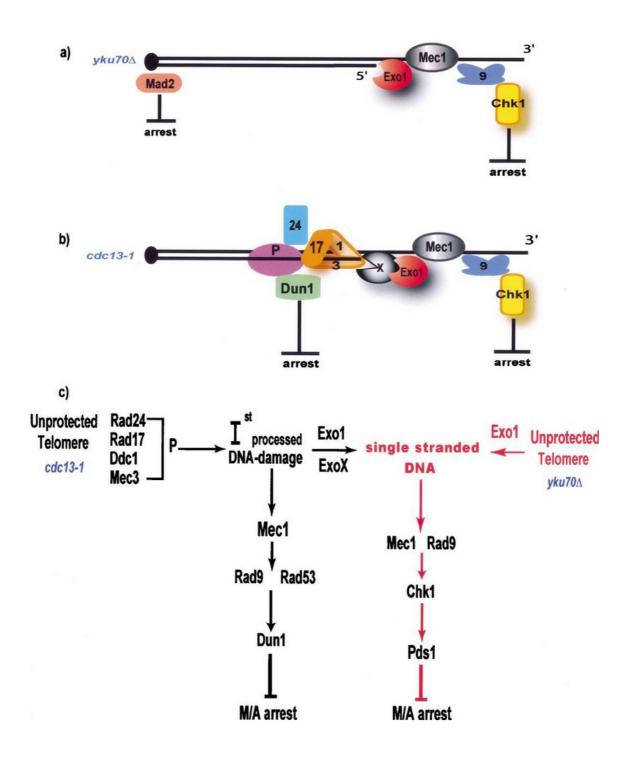


Figure 4. Representation of yeast and human Ku structure


Figure and text adapted from Figure 1 (Fell and Schild-Poulter, 2015).

- (A) Schematic diagram of domain representation of the Ku70 and Ku80 subunits. The subunit domain structure of yeast and human Ku consists of the alpha helix, beta barrel N-terminal vWA domain, a central DNA binding core and a C-terminal helical domain (CTD). The eukaryotic Ku80 CTD contains the region required for binding DNA-PKCS, while the Ku70 CTD is shorter and contains a SAF-A/B, Acinus and PIAS domain (SAP). The location of the nuclear localization signals and post translation modifications (phosphorylation and acetylation) on the human Ku protein is indicated. Yeast Ku is comprised of a similar domain structure to human Ku, except for a truncated C-terminal domain in Ku80. Prokaryotes encode for a single Ku subunit that is homologous to the eukaryotic core DNA binding domain.
- (B) The crystal structure of human Ku colored according to the domain structure. The dimer forms an asymmetrical basket structure with a positively charged ring large enough to accommodate two turns of the DNA. The Ku80 C-terminus is not included in this crystal structure.

1.5.3 Uncapped telomeres – cdc13-1 and yku70∆

Short 3' ssDNA overhangs can be found at sites of DNA damage as well as at telomeres. Although ssDNA generated as a result of DNA damage induces DNA repair pathways, at telomeres repair events are prevented. Telomeres are protected from being recognized and treated as DSBs by telomere binding proteins (de Magalhaes, 2004, Longhese et al., 2010). Telomere "uncapping", induced by inactivation of any subunit of telomere binding complexes, results in changes in telomere length, resection of telomeric DNA and chromosome fusions, consequently leading to cell cycle arrest, activation of DDR and senescence (Blasco, 2007, Lydall, 2009).

Budding yeast Cdc13, a member of the CST complex, is an essential protein. One of the most studied mutations of *CDC13* is the temperature sensitive *cdc13-1* allele. cdc13-1 mutants are functional at 23°C (permissive temperature), but gradually lose growth ability above 26°C (Weinert and Hartwell, 1993). At higher temperatures cdc13-1 strains have dysfunctional, uncapped telomeres and accumulate 3' ssDNA overhangs that become RPA bound on the 3' G-tail. The Mec1-dependent checkpoint pathway is activated through interaction with DNA-bound RPA, resulting in cell cycle arrest in G2 phase of the cell cycle (Fig. 5) (Garvik et al., 1995, Lydall and Weinert, 1995). Rad24, a member of a sliding clamp complex, loads the 9-1-1 checkpoint clamp to the site of DNA damage (Majka and Burgers, 2003). RAD24, RAD17, MEC3 and DDC1 are termed the RAD24 group because deleting any or all of these genes results in similar checkpoint and DNA damage sensitivity phenotypes (Lydall and Weinert, 1995). Rad24 contributes to ssDNA generation in *cdc13-1* mutants through regulation of nuclease activities (Lydall and Weinert, 1995, Zubko and Lydall, 2006). Deletion of RAD24 improves growth of cdc13-1 strains at 27-28°C (Lydall and Weinert, 1995, Zubko et al., 2004). Exo1 is also responsible for ssDNA generation in cdc13-1 mutants, and when deleted, levels of ssDNA are reduced and growth of cdc13-1 at 27°C is improved (Tsubouchi and Ogawa, 2000, Zubko et al., 2004). Rad9, a checkpoint mediator protein in a Mec1-dependent pathway, inhibits production of ssDNA in cdc13-1 mutants (Lydall and Weinert, 1995, Zubko and Lydall, 2006). Deletion of *RAD9* improves *cdc13-1* growth, presumably because cells cannot signal the presence of ssDNA at telomeres when checkpoint is defective (Weinert and Hartwell, 1993, Zubko et al., 2004).

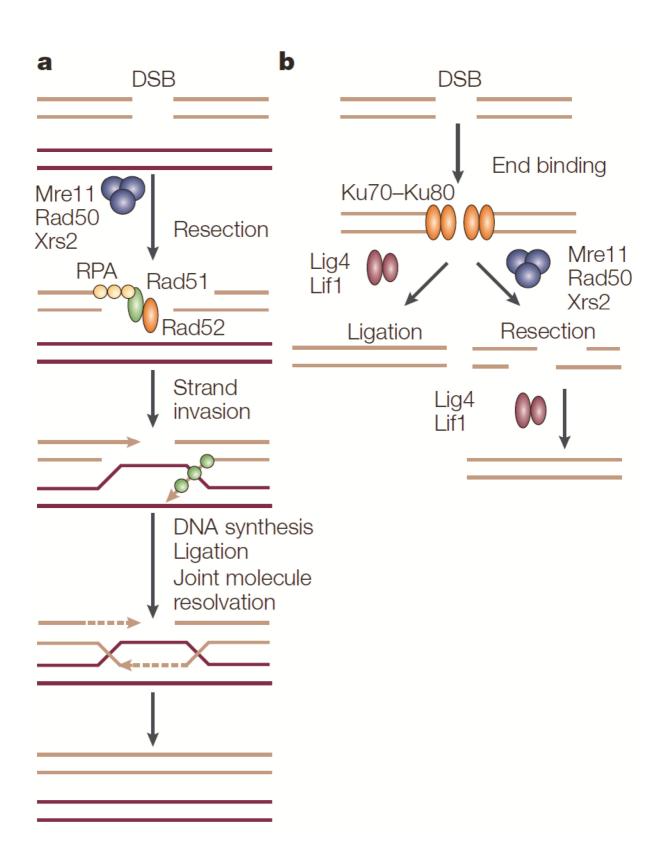
Figure 5. A model for the roles of checkpoint proteins in responding to *cdc13-1* and *yku70*∆-induced DNA damage

Figure and text adapted from Figure 8; Figure description was taken from text on p1928 (Maringele and Lydall, 2002).

(a) A representation of the proteins that are responsible for the arrest of $yku70\Delta$ mutants. (b) A representation of proteins that are responsible for the arrest of cdc13-1 mutants. (c) A schematic model of the DNA damage checkpoint pathways responsible for metaphase/anaphase arrest of *cdc13-1* and *yku70*∆ mutants. According to this model, in *cdc13-1* mutants, unprotected telomeres are perceived as DSB with a short 3' overhang. The Rad24p/Rfc2-5p clamp loader complex (Green et al., 2000) recognizes this structure and loads the Ddc1p, Mec3p, Rad17p sliding clamp (Venclovas and Thelen, 2000). The sliding clamp tethers an unknown protein, "P" (e.g., a helicase), which processes the telomeric termini to generate the "1st processed DNA damage". The "1st processed DNA damage" is the substrate that activates a Mec1p/Rad53p/Dun1p-dependent checkpoint pathway. Rad9p might also participate in Rad53p activation (Gilbert et al., 2001). Rad53p and Dun1p are known to be responsible for 50 % of the arrest observed in cdc13-1 mutants (Gardner et al., 1999). We suggest that protein "P" is then replaced by Exo1p and by another 5 to 3 exonuclease ExoXp, which have affinity for the "1st processed DNA damage." The ssDNA generated by Exo1p and ExoXp activates a Rad9p/Mec1p/Chk1p- and Pds1p-dependent pathway. Chk1p/Pds1p are required for 50 % of the arrest observed in cdc13-1 mutants. Thus, together Rad53p/Dun1p and Chk1p/Pds1p pathways are responsible for 100 % arrest of *cdc13-1* cells (Gardner et al., 1999, Sanchez et al., 1999). In yku70∆ mutants, unprotected telomeres are also perceived as DSB with a short 3' overhang. But in cells lacking Yku70p, Exo1p can be recruited independently of Rad24p and the Rad17p, Mec3p, Ddc1p sliding clamp. Exo1p generates ssDNA that activates the Rad9p/ Mec1p/Chk1p- and Pds1p-dependent checkpoint pathway. In yku70∆ mutants, this checkpoint pathway is responsible for the arrest of 75 % of cells, and together with a MAD2-dependent pathway, results in arrest of 95 % of cells.

Elimination of any subunit of Yku complex results in telomere shortening and temperature sensitive growth at high temperatures. *yku70*Δ mutants grow well at 30°C (permissive temperature), but are unable to form colonies at 37°C (Feldmann and Winnacker, 1993). Telomeres became uncapped and the resection occurs followed by ssDNA accumulation and cell cycle arrest (Maringele and Lydall, 2002, Zubko et al., 2004). Rad9 is required for efficient cell cycle arrest of *yku70*Δ mutants at non-permissive temperature (Maringele and Lydall, 2002). However in cells lacking Yku70, Exo1 can be recruited to damage telomeres independently of Rad24, Ddc1, Rad17 and Mec3, and generates ssDNA that activates Rad9/Mec1/Chk1-dependent checkpoint pathway (Maringele and Lydall, 2002).

1.6 DNA Damage Response (DDR)


For each cell it is essential to preserve genomic stability for proper cell functioning and transmission of genetic material to the progeny. However, DNA lesions occur frequently in chromosomal DNA as an effect of exogenous (e.g. ionizing radiation or genotoxic chemicals) and endogenous (e.g. replication errors or free radical species) DNA damaging factors (Eckert-Boulet and Lisby, 2010). Structural changes of DNA may affect the function of key genomic processes, such as transcription and replication, and play a major role in age-related diseases and cancer (Hoeijmakers, 2001, Hoeijmakers, 2009, Giglia-Mari et al., 2011). Therefore cells have evolved a sophisticated network of DDR systems, including DNA repair mechanisms, cell-cycle checkpoints and damage tolerance processes (Giglia-Mari et al., 2011). In response to genomic insults that are too severe, the cell cycle arrest might be activated, leading to senescence or apoptosis (Polo and Jackson, 2011, Finn et al., 2012).

Cellular DNA damage repair mechanisms include: Base Excision Repair (BER) pathway, which corrects small base lesions that do not significantly distort DNA structure (Wallace et al., 2012, Krokan and Bjoras, 2013), Nucleotide Excision Repair (NER) pathway, which removes single-strand lesions that cause local helix destabilization (Scharer, 2013, Marteijn et al., 2014) and DNA Double-Strand Break Repair (DSBR), which mediates the repair of the most deleterious form of DNA damage (Chapman et al., 2012). Since I studied yeast with uncapped telomeres which resemble a DSB, I will describe in details the mechanism of DSB repair.

1.6.1 Double Strand Break Repair – HR and NHEJ

Two most prominent DSBs repair mechanisms are homologous recombination (HR) and NHEJ (Fig. 6). HR is considered high-efficient and more accurate, because genetic information is copied directly from a homologous DNA template (Fig. 6a) (Kadyk and Hartwell, 1992, Guirouilh-Barbat et al., 2014). In yeast HR can take place between sister chromatids, between alleles on homologous chromosomes in a diploid cell or between non-allelic homologous sequences (Ira et al., 2004, Barzel and Kupiec, 2008, Jasin and Rothstein, 2013). While hundreds of nucleotides are required for HR, a few tens of nucleotides are sufficient for microhomology mediated end joining (MMEJ), an alternative NHEJ pathway (Betermier et al., 2014). The cell cycle can also affect the DSBs repair pathway choice – while HR is active in S and G2 phases, NHEJ is active throughout the cell cycle (Guirouilh-Barbat et al., 2008). In haploid cells NHEJ is critical in G1 cells and stationary phase cells, due to the lack of the homologous chromosome template (Lieber, 2010).

The initial step of HR involves the 5' to 3' resection of the DSBs to produce a ssDNA 3' overhang. The ssDNA overhang is important both for Mec1 checkpoint kinase association and for Rad51 recombination protein loading (Ira et al., 2004). The DSBs ends of sister chromatids are recognized by the MRX complex (Mre11-Rad50-Xrs2; in humans MRN, MRE11-RAD50-NBS1) (Pfeiffer et al., 2000, Zhou et al., 2014). Mre11 component of the MRX complex has a 3' to 5' exonuclease and DNA structure-specific endonuclease activities, and is involved in the formation of 3' overhang at DSBs (Paull and Gellert, 1998, D'Amours and Jackson, 2002). The function of the MRX complex depends on the Sae2 protein in the initial resection of approximately 100 nt 5' end DNA (Mimitou and Symington, 2008). Exo1, which possesses 5' to 3' dsDNA exonuclease and 5' flap-endonuclease activities, participates in HR, and has also roles in DNA damage signalling and telomere maintenance (Tran et al., 2004). Exo1 is involved in more extensive resection of DSB ends that have been initially processed by MRX-Sae2 (Zhu et al., 2008). Dna2, a 5' flap endonuclease and DNA helicase which forms a complex with Sgs1 helicase, acts redundantly with Exo1 in DSB ends resection (Mimitou and Symington, 2008, Symington and Gautier, 2011, Cannavo and Ceika, 2014).

Figure 6. Pathways for DNA double strand break repair

Figure and text adapted from Box1, (van Attikum and Gasser, 2005).

A DNA double strand break (DSB) can be repaired by homologous recombination (HR, a) or nonhomologous end joining (NHEJ, b).

a) HR: When a DSB occurs in one of two sister chromatids, the ends of the DSB are recognized by the Mre11-Rad50-Xrs2 (MRX) complex (or Mre11-Rad50-Nbs1 (MRN) complex in mammals). Processing of the ends occurs by the MRX complex and results in the formation of 3' single stranded (ss) DNA overhangs. The ssDNAbinding protein replication protein A (RPA) binds to the ssDNA overhangs, and Rad51 and Rad52 are recruited to the DSB. Both RPA and Rad52 help to load Rad51 onto ssDNA to form ssDNA-Rad51 nucleoprotein filaments. This nucleoprotein filament searches for the homologous duplex DNA in the undamaged sister chromatid. A successful search results in strand invasion, strand exchange and joint molecule formation. In yeast, these events are facilitated by one or more proteins from the Rad52 epistasis group, which, as well as Rad51, Rad52 and MRX, includes Rad54, Rad57 and Rad59. In mammals, these events involve the action of BRCA1, BRCA2 and the Rad51-like proteins XRCC2, XRCC3, RAD51B, RAD51C and RAD51D. DNA synthesis by DNA polymerases generates the genetic information that is required to seal the break. Ligation and the resolution of the two double helices joined by strand exchange complete this "error-free" repair event. b) NHEJ: The ends of a DSB are detected and bound by KU, a heterodimer consisting of Ku70 and Ku80 proteins. In mammals, KU forms a complex, known as DNA-PK, with DNA-PK catalytic subunit (DNA-PKcs). It is thought that KU holds the two ends together and facilitates end-to-end ligation by the complex of ligase 4 (Lig4) and ligase-interacting factor 1 (Lif1) in yeast (or XRCC4 in mammals), which usually results in accurate repair of the DSB (left branch of pathway). Alternatively, binding of the ends by KU can be followed by resection of the free ends by the MRX (or MRN) complex. Processing by MRX, followed by Lig4-Lif1-mediated ligation (Lig4-XRCC4 in mammals) has been implicated in the joining of ssDNA overhangs at regions where microhomology exists. This pathway generally leads to "error-prone" repair of the DSB (right branch of pathway).

The ssDNA resulting from the nuclease activities at DSBs is coated by Rad51 and forms a filament structure which then invades a template DNA to initiate synthesis (Li and Heyer, 2008). Rad51, a DNA-dependent ATPase, catalyses the reaction of homology search and DNA strand invasion during HR. In the nucleus, ssDNA is bound by ssDNA-binding replication protein A (RPA), which has higher affinity and specificity for ssDNA than Rad51 (Sung and Klein, 2006). The formation of Rad51 filaments on RPA-coated ssDNA is facilitated by mediator proteins which displace RPA from DNA: Rad55-Rad57 complex and Rad52 (Sung, 1997, Shinohara et al., 1998, Sugawara et al., 2003). Rad52 interacts with Rad51 and RPA, and accelerates displacement of RPA from DNA by Rad51 (Sugiyama and Kowalczykowski, 2002). The Rad51-ssDNA filament can then pair with the undamaged homologous duplex, if such homologous donor sequence has been found (Heyer et al., 2010). A structure known as D-loop (displacement loop) is formed between the target DNA and Rad51 filament, and DNA synthesis is primed from the 3' end (Renkawitz et al., 2014). The repair event is completed by DNA polymerases and ligases (van Attikum and Gasser, 2005).

In the NHEJ pathway DSB ends are joined in a less accurate manner than HR (Fig. 6b) (Daley et al., 2005). After DSBs formation the MRX complex is recruited to DNA to promote tethering of broken DNA ends together (Chen et al., 2001a, Lewis et al., 2004). The joining reaction includes recognition of broken ends by the Ku complex, followed by re-ligation (Fig. 6b, left panel) (Daley et al., 2005). The Ku complex, a DNA binding heterodimer consisting of Yku80 and Yku70, forms a β-barrel ring structure which binds DNA by slipping the DSB end through the ring (Walker et al., 2001). DNA binding by Ku may serve as a site for binding of other NEHJ proteins, e.g. Yku80 utilises the contact with Dnl4, a component of DNA ligase IV (Palmbos et al., 2008). The Ku complex also promotes NHEJ by inhibiting DNA resection (Downs and Jackson, 2004, Eckert-Boulet and Lisby, 2010).

DNA ends may be altered prior to ligation by removal of damaged nucleotides, and addition or removal of undamaged nucleotides (van Attikum and Gasser, 2005). Such alternative end joining, referred to as a microhomology-mediated end joining (MMEJ, Fig. 6b, right panel), is initiated by DNA resection due to the MRX and Sae2 nuclease activities, and is followed by DNA ligation (Lee and Lee, 2007).

1.7 Mec1-dependent cell cycle checkpoint

The cell cycle consists of DNA synthesis (S) and mitosis (M) phases, separated by gap phases, G1 and G2. The cell cycle progression is driven by the cyclin-dependent serine/threonine protein kinases (CDKs) and their regulatory subunits (cyclin); budding yeast have only one essential cyclin-dependent kinase Cdk1. CDKs phosphorylate key substrates to regulate different cell cycle events: progression through G1 phase and commitment to S phase; initiation and completion of DNA replication, enter into mitosis and restrain re-entry into G1 phase (Barnum and O'Connell, 2014).

The cell cycle checkpoints are signalling pathways that ensure the successful completion of preceding phases of the cell cycle, by controlling e.g. the cell size, DNA damage response, DNA replication or mitotic spindle checkpoint activation (Rhind and Russell, 2012, Barnum and O'Connell, 2014). DNA damage, resulting from e.g. intermediates of metabolism or attrition of telomeres, activates a signalling network that arrests the cell cycle by inactivating CDKs (Zhou and Elledge, 2000). The cell cycle arrest allows time for repair in order to enter the next phase of the cell cycle (Barnum and O'Connell, 2014). However, if the damage is too severe and cannot be repaired, cells may initiate cellular senescence, a naturally irreversible cell-cycle arrest that is induced by DNA damage response signalling. Alternatively, cells undergo programmed cell death (apoptosis) (Harper and Elledge, 2007, d'Adda di Fagagna, 2008).

Activation of DNA damage checkpoints is controlled by apical protein kinases that are members of phosphatidylinositol 3-kinase-related kinases (PIKKs) family. Tel1 and Mec1 are part of the PIKK family in *S. cerevisiae*, and orthologues of Tel1 and Mec1 in mammals are ATM (Ataxia Telangiectasia Mutated) and ATR (ATM and Rad3-related), respectively (Ritchie et al., 1999, Falck et al., 2005, di Domenico et al., 2009, Navadgi-Patil and Burgers, 2009). Tel1 functions in response to DSBs through the MRX complex. Mec1 is activated by its recruitment to RPA-coated ssDNA followed by replication stress or resection at DSBs (Puddu et al., 2008, Zeman and Cimprich, 2013). In budding yeast Tel1 plays a major role in telomere maintenance, whereas Mec1 is the principle kinase responsible for checkpoint

activation in response to replication stress and DNA damage, but also may participate in short telomere protection (di Domenico et al., 2009).

In this thesis I focused on the Mec1-dependent checkpoint pathway. Mec1 is the principle kinase responsible for checkpoint activation in S. cerevisiae, and together with Ddc2 (ATRIP, ATR-Interacting Protein in humans) forms a heterodimeric complex (Paciotti et al., 2000). In the Mec1-Ddc2 complex, Mec1 is the catalytic subunit required for checkpoint activation, and Ddc2 is the regulatory subunit responsible for binding to DNA by interacting with RPA (Zou and Elledge, 2003). Independently the heterotrimeric checkpoint clamp 9-1-1 is loaded onto RPA-coated ssDNA by the clamp loader Rad24-RFC, and may recruit Dpb11 (human TopBP1) (Navadgi-Patil and Burgers, 2011). Activation of Mec1 induces Mec1-dependent phosphorylation of many downstream proteins, including effector kinases like Chk1 and Rad53 in S. cerevisiae (in humans CHK1 and CHK2, respectively). Initially activated Rad53 undergoes autophosphorylation and promotes activation of the mediator protein, Rad9 or Mrc1 (53BP1, BRCA1, MDC1 or Claspin in humans). Mediator proteins regulate effector kinases and mediate the phosphorylation of target proteins, contributing to activation of downstream pathways, including cell cycle arrest (Harper and Elledge, 2007, Navadgi-Patil and Burgers, 2009, Finn et al., 2012).

Loading of the Mec1-Ddc2 complex onto RPA-coated ssDNA is not sufficient for Mec1 activation. Three sensors, Ddc1, Dpb11 and Dna2 (RAD9, TopBP1, DNA2 in humans, respectively) transduce the DNA damage response signal to Mec1 stimulating its kinase activity. In budding yeast, all three checkpoint initiators interact with and likely activate Mec1, since each contains an AAD domain, the homologous motif of ATR activation domain in mammals, that interacts directly with the Mec1-Ddc2 complex (Kumar and Burgers, 2013, Zhou et al., 2013).

1.7.1 Ddc1 (DNA damage checkpoint protein)

The 9-1-1 complex consists of Ddc1-Mec3-Rad17 and is required for Mec1 checkpoint activation (Davies et al., 2010). The complex shares homology of structure to proliferating-cell nuclear antigen (PCNA) which clamps onto DNA and confers processivity to DNA polymerases δ and ϵ (Venclovas and Thelen, 2000,

Hong and Roeder, 2002). In *S. cerevisiae*, the 9-1-1 checkpoint clamp functions in two pathways. First, Ddc1 directly activates the Mec1 kinase dependently on two conserved aromatic amino acids, tryptophans W352 and W544. Second, Ddc1 recruits Dpb11 to Mec1 through conserved Ddc1-T602 residue. Substitution of three residues into alanine, W352A, W544A and T602A, results in defective G2/M checkpoint, as Ddc1 is not able to stimulate Mec1 and recruit Dpb11 (Navadgi-Patil et al., 2011, Kumar and Burgers, 2013). The stimulatory activity of Ddc1 is located in the C-terminus, where localised are three residues that are target sites for cyclin-dependent kinase (Cdk) phosphorylation, and eight residues that are target sites for Mec1 phosphorylation (Puddu et al., 2008). Conversion of phosphorylatable residues into alanine in *ddc1-M8* mutant lacking Mec1 target sites, and in *ddc1-M11* mutant lacking Cdk and Mec1 target sites, results in loss of DNA damage-dependent phosphorylation of Ddc1 by Mec1 or Mec1 and Cdk1, respectively (Puddu et al., 2008).

1.7.2 Dpb11 (DNA polymerase B (II))

Dpb11 is a DNA replication initiation protein which loads DNA pol ϵ onto prereplication complexes at origins of replication. Dpb11 is also recruited to stalled replication forks by the 9-1-1 complex in order to activate Mec1 (Zegerman and Diffley, 2007). The interaction with Ddc1 involves the distal BRCT domain of Dpb11 and Ddc1-T602 residue (Puddu et al., 2008). Dpb11 plays an important role in three aspects of checkpoint signalling: cell-cycle regulation, mediator recruitment and the Mec1 kinase activation. Activation of Mec1 requires the T731 residue considered to be part of AAD (ATR activation domain) (Pfander and Diffley, 2011, Zhou et al., 2013). Human orthologue of Dpb11, TopBP1, was found to recruit topoisomerase TOP2A to anaphase bridges, which indicates the importance ofTopBP1 in maintaining the genome stability (Broderick et al., 2015).

1.7.3 Dna2 (DNA synthesis defective)

Yeast *DNA2* encodes a conserved and essential helicase/nuclease which is involved in Okazaki fragment processing during DNA replication and DNA resection at DSBs (Mimitou and Symington, 2009, Hu et al., 2012). In mammalian cells DNA2 preferentially associates with telomeres during replication and has a role in

G-quadruplex DNA cleavage. Expression of *DNA2* is significantly increased in human cancers (Lin et al., 2013, Ronchi et al., 2013, Strauss et al., 2014).

Yeast Dna2 contains an unstructured N-terminal domain (NTD). The NTD of Dna2 is important for Mec1 kinase stimulation, and two residues present in this region, tryptophan W128 and tyrosine Y130, were suggested to significantly affect Mec1 stimulatory activity (Kumar and Burgers, 2013). It was shown that deletion of the N-terminal amino acids of Dna2 resulted in temperature-sensitive growth of mutant cells (Bae et al., 2001b). Moreover, Dna2 mutants lacking N-terminal domain are defective in S-phase checkpoint (Lee et al., 2013). Downstream of the nuclease active site, Dna2 contains four highly conserved cysteines which are likely part of a Fe-S cluster. Fe-S clusters have been identified as essential components of a wide variety of DNA and RNA processing enzymes (Pokharel and Campbell, 2012). Any disruptions of this cluster reduce nuclease and helicase activity of Dna2, indicating critical physiological role of the Fe-S cluster (Pokharel and Campbell, 2012). In yeast, DNA2 deletion is lethal, but three mechanisms are known to suppress the lethality of dna2∆: overexpression of RAD27, a nuclease involved in Okazaki fragment processing, deletion of PIF1, a helicase involved in long flap formation during DNA replication, or deletion of RAD9, a DNA damage checkpoint protein (Budd et al., 2006, Budd et al., 2011).

1.8 DNA replication

DNA replication is a biological process during which a genetic information of a cell is duplicated, so that one DNA copy can be passed to a new cell. DNA replication requires opening of DNA into two individual DNA strands to allow DNA polymerases access the DNA. DNA unwinding occurs at DNA replication origin sites and in eukaryotes requires the presence of the Origin Recognition Complex (ORC) that binds to DNA replication origins (Blow and Laskey, 1988) and two additional proteins, Cdc6 and Cdt1. The complex then allows recruitment of the replicative helicase, Mcm2-7. Six Mcm2-7 subunits form a complex with a central channel that encircles DNA; the helicase activity of Mcm2-7 complex is stimulated by association of Cdc45 and GINS proteins (Kanemaki and Labib, 2006, Ilves et al., 2010). The recruitment of GINS and subsequent formation of the replicative helicase complex (CMG; Cdc45-MCM-GINS) requires Sld2 and Sld3 (Tanaka et al., 2007, Zegerman and Diffley, 2007, Yeeles et al., 2015). CDK-phosphorylated proteins Sld2 and Sld3 bind to and

activate Dpb11. Activated Dpb11 provides the interaction between GINS and DNA polymerase, and allows the formation of the CMG complex (Fig. 7) (Yeeles et al., 2015).

DNA replication in yeast is carried out by three B family DNA polymerases: Pol α , Pol δ and Pol ϵ (Fig. 7) (reviewed in Burgers, 2009). Pol α contains a primase domain which initiates replication by generating short, 7-14 nt long RNA primers onto leading and lagging strands (Brooks and Dumas, 1989, Foiani et al., 1997). The RNA primers are extended in a 5' to 3' direction by Pol α . Pol α is displaced by RFC, which then loads the homotrimeric ring PCNA (Pol30 in budding yeast) around dsDNA at primer-template junctions and recruits Pol ϵ or Pol δ (Lovett, 2007, Burgers, 2009). Pol ϵ is required for GINS recruitment to origins and thus for CMG assembly. Pol ϵ then allows the incorporation of dNTPs continuously in the direction of DNA unwinding, which results in the leading strand synthesis (Miyabe et al., 2011, Pursell et al., 2007).

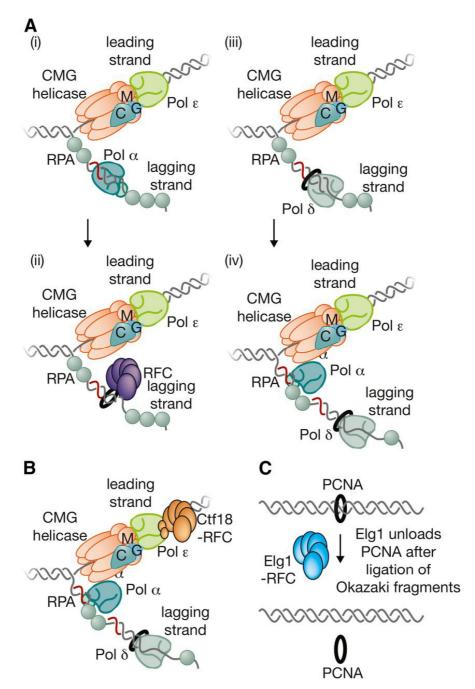


Figure 7. Role of protein complexes at the yeast replication fork

Figure and text adapted from Figure 8 (Bell and Labib, 2016).

(A) Pol α detaches from the template after synthesizing an RNA-DNA primer (i), and Rfc1-RFC is then very effective at competing for access to the 3' end of the primer bound to template, leading to loading of PCNA around dsDNA (ii). This in turn leads to recruitment of Pol δ (iii), which then extends the new Okazaki fragment (iv). (B) Ctf18-RFC associates with Pol ϵ and might contribute to loading of PCNA onto the leading-strand side of the fork. (C) Elg1-RFC is recruited to PCNA (aided by sumoylation) after ligation of Okazaki fragments, leading to removal of PCNA from the replicated DNA.

On the lagging strand the Pol α /primase complex elongates RNA primers by addition of 10–20 dNTPs. Subsequently Pol α is displaced by Rfc1-RFC/PCNA, and Pol δ , recruited by PCNA, replicates the lagging strand in short, ~200 nt long segments called Okazaki fragments (Okazaki et al., 1968, Bambara et al., 1997, Maga et al., 2001, Burgers, 2009, Georgescu et al., 2014). Due to the repeated cycles of RNA priming by Pol α , lagging strand is coated with multiple PCNA rings, while this mechanism does not apply to the leading strand, where a single primer is extended from the origin continuously. The PCNA removal from nascent chromatin is critical to restore the pool of free PCNA for new replication forks or for DNA repair reactions. Elg1-RFC is recruited to PCNA after Okazaki fragments ligation, and removes PCNA from the replicated DNA (Fig. 7) (Kubota et al., 2013).

Rad27, flap endonuclease1 in yeast (FEN1 in mammals), removes RNA primers and short flaps arising in the replication of the lagging strand (Harrington and Lieber, 1995, Bambara et al., 1997, Shen et al., 2005). Exo1, a 5'-3' exonuclease, was proposed to take the role of flap processing in *rad27*Δ mutants (Lee and Wilson, 1999, Jin et al., 2003). The FEN1-dependent flap removal is conserved and deficiency of FEN1 causes severe developmental defects in mice (Zheng et al., 2007). Deletion of *RAD27* in yeast decreases the growth rate at 30°C and causes cell death at 37°C. *rad27*Δ cells display a mutator phenotype, likely due to the ligation of unremoved flaps downstream of the Okazaki fragments (Reagan et al., 1995, Tishkoff et al., 1997, Xie et al., 2001, Singh et al., 2007).

Pif1, a DNA helicase, promotes the generation of 30 nt long flaps which cannot be processed by Rad27 (Pike et al., 2009). ssDNA flaps attract RPA, which bind ssDNA and inhibit the activity of Rad27 (Bae et al., 2001a). DNA bounded RPA recruits Dna2, which contains nuclease, ATPase and helicase domains (Budd et al., 1995, Bae and Seo, 2000). Dna2 removes a portion of DNA within the long ssDNA flap, generating a shorter flap (Bae and Seo, 2000, Masuda-Sasa et al., 2006). The resulting short flap constitutes a substrate for Rad27 (Budd et al., 2011). Levikova and Cejka proposed however that Dna2, although incapable of cleaving solely short flaps, can be responsible for cleaving the RPA-bound long flaps entirely, which suggests a separate, Rad27 independent pathway of Okazaki fragment processing (Levikova and Cejka, 2015).

1.9 Hormesis and adaptation to low doses of stress

Humans' telomeres shorten with time, which leads to DNA damage accumulation and telomeric stress, resulting in cell cycle arrest and DNA damage response activation. Studies of the cellular responses to telomere damage or telomere shortening are important for understanding the basis of human aging, age-related diseases and cancer. Yeast studies presented in this thesis involve yeast strains with defective telomeres, like *cdc13-1*, and contribute to understanding of the responses to telomere stress.

In recent years multiple observations of positive effects of low dose stress (e.g. toxic compounds, temperature or caloric restriction) on organismal fitness were reported (Ermolaeva et al., 2013, Calabrese et al., 2015, Le Bourg, 2015). The phenomenon of positive role of small dose stress on organismal fitness, such as improved growth, longevity or fertility, is known today as "hormesis". The mechanisms of hormesis are not understood or well documented, but it is proposed that positive effects of low dose toxic treatment may be beneficial to cells and organisms (Calabrese and Baldwin, 2003, Calabrese, 2004, Ermolaeva et al., 2013, Calabrese et al., 2015). Beneficial effects of hormesis on human health involve e.g. small doses of UV radiation in protection against cancer formation or dietary restriction on expanded longevity (Calabrese, 2004, Calabrese et al., 2015). Small doses of stress protect cells and organisms from higher doses of the same or different stress in model organisms, such as yeast, worms, birds or mice. On the other hand, often the improvement of one biological feature, such as longevity, may have an adverse effect on another, e.g. fertility.

Adaptive responses involve the environmental or cellular stress responses which are activated by variety of stresses (Stranahan and Mattson, 2012, Perry et al., 2014, Singh et al., 2015). As a result cells/organisms better tolerate higher doses of the same or other stress in contrast to cells/organisms that were never exposed to stress. Hormesis resembles the adaptation to low-dose stress in a sense that low doses of stress may improve organismal fitness.

Chapter 2. Materials and methods

2.1 Yeast strains

S. cerevisiae strains used in this study are given in the Appendix A. All strains are in the W303 genetic background (ade2-1 can1-100 trp1-1 leu2-3,112 his3-11,15 ura3 GAL+ psi+ ssd1-d2 RAD5+) apart from strains used for Synthetic Genetic Array screening (see below, 2.21), which are S288C.

2.2 Yeast media

For 1 L YEPD media 10 g/L yeast extract, 20 g/L bactopeptone, 2 % dextrose, 75 mg/L adenine were used. For 1 L YEPG media 10 g/L yeast extract, 20 g/L bactopeptone, 3 % glycerol, 75 mg/L adenine were used. Selective media were synthetic dropout (SD) media lacking tryptophan (-TRP), leucine (-LEU), histidine (-HIS) or uracil (-URA), or combination of those in 1.3 g/L amino acid powder, 1.7 g/L yeast nitrogen base, 5 g/L ammonium sulphate and 2 % dextrose. The amino acid powder contains: adenine 2.5 g, L-arginine (HCI) 1.2 g, L-aspartic acid 6.0 g, L-glutamic acid (monosodium salt) 6.0 g, L-histidine 1.2 g, L-leucine 3.6 g, L-lysine (HCI) 1.8 g, L-methionine 1.2 g, L-phenylalanine 3.0 g, L-serine 22.5 g, L-threonine 12.0 g, L-tryptophan 2.4 g, L-tyrosine 1.8 g, L-valine 9.0 g, uracil 1.2 g. Amino acid dropout powder was made by omitting the relevant amino acids from the dropout mix. Enriched sporulation media (ESM) was 1 g/L yeast extract, 0.05 % dextrose, 1 % potassium acetate, pH7.6.

Where specified, antibiotics were added to the media at the following concentrations: G418 - 200 mg/L, clonNAT - 100 mg/L, hygromycin B - 300 mg/L. Canavanine was added to the media at 50 mg/L. 5-fluoroorotic acid (5-FOA) medium was made with –URA dropout power (1.3 g/L), 6.7 g/L yeast nitrogen base, 50 mg/L uracil, 1 g/L 5-FOA and 2 % dextrose.

For solid media 20 g/L agar was added prior to autoclaving.

2.3 Yeast culture

Yeast strains were maintained at 23°C or 30°C. Strains routinely grown at 23°C were ts mutants, e.g. cdc13-1, cdc15-2 or $dna2\Delta$.

2.4 Yeast passaging

5-10 colonies of each strain, or a single colony from germinated spore, were streaked onto YEPD plates for single colonies and incubated for 3 days at 23°C, unless stated otherwise, before photographing. Pooled colonies (5-10), and single colonies at times, were then re-streak on new YEPD plates and pictures were taken.

2.5 Growth assay – "spot test"

A few yeast colonies were pooled, inoculated into 2mL YEPD and grown to saturation on a wheel at 23°C or 30°C. From saturated cultures 40 μ L were added to 160 μ L sterile water and 5-fold dilutions were prepared, if not stated otherwise, using a 96-well plate and multichannel pipette. Yeast culture series were spotted onto agar round or rectangular plates (YEPD or selective media) with a pin tool. The plates were incubated at a range of temperatures for 3 days, unless stated otherwise, before photographing. Temperatures used in the experiments are included in the range of 20-37°C. Such a wide variety is due to semi- and non-permissive temperatures of telomere defective cdc13-1 and $yku70\Delta$ mutants, as well as $dna2\Delta$ and cdc15-2 thermo-sensitive (ts) strains.

2.6 Mating and diploid selection

MAT a and *MAT alpha* parental strains were mixed together on YEPD plate and incubated at 23°C or 30°C overnight to mate. Diploid selection was based on growth of diploids on selective media that would only permit the growth of diploid cells.

2.7 Sporulation

Usually, diploid colonies were inoculated into 2 mL of YEPD and grown overnight at 23°C or 30°C on the wheel. 0.5 mL of the culture was washed twice in 5 mL sterile water and re-suspended in 2 mL ESM media. Cultures were incubated at 23°C for 3-5 days and the presence of spores was examined by the phase contrast microscopy (40x).

Some strains, e. g. with deletions of *DNA2* or *DPB11*, contained the plasmids. Tetrad dissection and spore germination of such diploids revealed frequent plasmid lost and sometimes poor spore viability when standard protocol (described above) was used. To avoid plasmid loss, strains containing the plasmids were grown in 2 mL media selective for plasmid (-LEU, -HIS, -TRP, -URA) prior to sporulation.

Diploids with deletion of *CDC13* did not sporulate at 23°, but formed tetrads at 20°. Therefore *cdc13*\(\triangle /CDC13\) diploids were sporulated at 20° for 5 days, and dissected spores were subsequently germinated at 23° for 10 days.

2.8 Tetrad dissection

Sporulated cultures were washed twice in 1 mL sterile water and finally re-suspended in 1 mL sterile water, then stored at 4°C. 20 μ L of cells were incubated with 1.8 μ L glusulase enzyme (Perkin Elmer) at 30°C for digestion of the asci surrounding tetrads. After 15-20 min cells were resuspended in 1 mL sterile water on ice, and 50 μ L of suspensions were spread on YEPD plates. Standard tetrad dissection technique was used, using a microscope with 10x and 20x lens and a microneedle to dissect spores onto YEPD plates. Spores were germinated at 20°C, 23°C or 30°C for 3-10 days before photographing, then patched onto YEPD plates and grown for 2-4 days at 23°C or 30°C. Strains grown on YEPD plates were then replica-plated onto selective plates to allow identification of tetrads' genotype. The mating types were determined by mating with DLY26 (MAT a) and DLY2440 (MAT α) on -4 (-HIS, -LEU, -TRP, -URA) selective plates. Thermo-sensitive mutations, like *cdc13-1* and *cdc15-2*, were determined by replica-plating onto YEPD plates followed by incubation at 36°C for 2 days. Ts strains fail to form colonies at 36°C.

2.9 Random Spore Analysis

Standard protocol for sporulation has been applied (2.7). Cells were washed twice with 1 mL sterile water and re-suspended in 0.5 mL Zymolyase-20T solution (1 mg/mL in sterile water) and 10 μ L 2- β -mercaptoethanol (Sigma). Cells were incubated overnight in 15 mL screw-cap Falcon tubes at 30°C on the wheel to allow lysis of diploid cells. The next day 5 mL of 1.5 % NP-40 detergent was added, cells were vortexed and spun down 3000 rpm for 5 min. 4 mL of supernatant were poured off and spores were resuspended in remaining 1 mL of solution, transferred to 1.5 mL

Eppendorf tubes and incubated on ice for 15 min. Spores were then sonicated (Sanyo Soniprep) on ice for 30 seconds at 10 microns power for 2 times, with 2 min periods of incubation on ice between cycles. Spores were spun at 13000 rpm for 30 seconds, supernatant was removed and spores were resuspended in 1 mL of 1.5 % NP-40. Sonication process was repeated twice, spores were spun again and resuspended in 1 mL of water. Finally, samples were sonicated one more time and were checked under the microscope for spore separation efficiency. Series of dilutions were prepared in sterile water (1:10 – 1:10000) for each sample and 100 μL of 1:1000 and 1:10000 dilutions were plated onto YEPD. If diploid strains used for RSA contained the plasmid, spore dilutions were plated onto selective plates to maintain the plasmid in haploid progeny. Spores were germinated at 20°C or 23°C for 4-10 days, and then strains were patched onto YEPD or selective media if spores contained a plasmid. Strains were genotyped by replica-plating onto appropriate selective plates.

2.10 Yeast transformation

Yeast were transformed in order to replace a gene of interest with a marker gene, introduce a plasmid carrying a specific allele of interest, or introduce an empty vector.

2.10.1 Lithium acetate (LiAc) transformation

Single colonies were inoculated into 2mL YEPD and incubated overnight at 23°C or 30°C. The next morning 49 mL of YEPD was inoculated with 1 mL of overnight culture, incubated in a shaking water bath until cells reach the concentration 2 x 10^7 cells/mL. The number of cells was defined by using the haemocytometer. Cultures were washed once in 25 mL sterile water, then in 1 mL 1X LiAc and finally resuspended in 400 μ L1x LiAc. Such prepared cells were kept on ice until ready for transformation. 50 μ L aliquots were spinned down (13000 rpm 15 sec), the supernatant was removed and following reagents were added: 240 μ L 50 % PEG, 36 μ L 10x LiAc, 50 μ L salmon sperm DNA (2 mg/mL), 50 μ L miniprep plasmid DNA in water (1:50) or 30 μ L PCR product, or 30 μ L digested plasmid. Water was used for a no-DNA control. The positive control contained a plasmid carrying appropriate marker gene that could be used for selection on selective media. Samples were vortexed and incubated at 23°C for 30min, then heat-shocked at 42°C for 20 min. The spun down cells (6000 rpm 15 sec) were resuspended in 200 μ L sterile water

and plated onto appropriate selective plates. Transformants were grown at 23°C or 30°C until colonies appeared. If strains were transformed with an antibiotic-resistance marker (e.g. *KANMX*, *NATMX*, *HPHMX*), transformants were grown on YEPD plates overnight and then were replica-plated onto media containing appropriate antibiotic. Individual colonies were collected with a toothpick and streaked for single colonies on selective media. Transformants were then purified by plating single colonies on selective media. If the genomic insertion occurred, transformants were verified by colony PCR as described below (2.14.2).

2.10.2 One Step transformation

In 1.5 mL Eppendorf tube the following reagents for One Step Buffer were mixed: 1 mL 10x LiAc, 3.5 mL 50 % PEG, 0.5 mL DTT (for 50 transformations). Fresh cells were scraped from an agar plate using a toothpick and resuspended in 100 μ L of One Step Buffer. 5.3 μ L of salmon sperm DNA 10 mg/mL and 1 μ L of plasmid DNA miniprep were added, samples were vortexed and incubated at 45°C for 30 min. After adding 100 μ L sterile water, cells were plated onto appropriate selective media. Transformants were streaked for single colonies and a single colony was picked for further experiments.

2.11 Bacteria strains, media and transformation

Bacteria used in this study were Top10 competent cells (Invitrogen) of *Escherichia coli*. Bacteria were grown on agar LB liquid media or agar plates (1 L contained: 10 g/L bactopeptone, 5 g/L yeast extract, 10 g/L NaCl, 20 g/L agar) or SOC liquid media (1 L contained: 20 g/L bactotryptone, 5 g/L yeast extract, 0.585 g NaCl/L, 0.166 g/L KCl, 10 mL 1M MgCl₂, 10 mL 1M MgSO₄, 3.6 g/L glucose). LB media were supplemented with Ampicillin (100 mg/L) when bacteria were carrying a plasmid, e.g. after transformation. 50 μL of *E. coli* competent cells were transformed with 1 μL of plasmid DNA and incubated on ice for 30 min in 1.5 mL Eppendorf tubes. Water was used for a no-DNA control. The positive control contained a pUC18 plasmid (Agilent) containing an Ampicillin resistance gene. Cells were heat-shocked at 42°C for 45 seconds and then incubated on ice for 5 min. 0.9 mL pre-warmed SOC medium was added to cells, and the cultures were then incubated on the wheel at 36°C for 1 hour. Cells were then transferred to sterile 1.5 mL Eppendorf tubes and spun for 5 min at 5000 rpm. 700 μL of supernatant was removed and cells were resuspended by

gentle pipetting in the remaining supernatant. Cells were then spread onto LB + Ampicillin plates and incubated overnight at 36°C. The next day usually two single colonies per plate were inoculated into 5 mL LB + Ampicillin (100 mg/L) liquid medium and incubated overnight on the wheel at 36°C.

2.12 Plasmids

2.12.1 Plasmids used in this study

Plasmids containing *DNA2*, *DPB11* and *DDC1* alleles and empty vectors were gifts from: Peter Burgers, Judith Campbell, Marco Muzi-Falconi and Yeon-Soo Seo (Appendix B). Received plasmids were amplified in bacteria as described above (2.11), purified using QIAprep Spin Miniprep Kit (Qiagen) and stored in the collection at -20°C. Afterwards, the plasmids were tested by restriction digests and sent for sequencing to GATC Biotech company to confirm presence of mutations (as in 2.12.4). Plasmids are listed in Appendix B.

2.12.2 Plasmid purification

Overnight cultures of single bacteria colony were centrifuged and QIAprep Spin Miniprep Kit (Qiagen) was applied to extract plasmid DNA, following the manufacturer's protocol.

2.12.3 Restriction digest

Restriction digest (RE) was used to distinguish the empty vectors from plasmids which carried genes. Usually two restriction enzymes were chosen based on ability to cut the corresponding plasmid once, if it was empty vector, or more times, if the plasmid carried wild type gene sequence or an allele. RE was also used for cloning experiments, described below (2.16). Restriction digestions were performed as follows: 1 µL plasmid DNA miniprep was cut with 10 units restriction enzyme (New England Biolabs, usually: *Spel*, *Xhol*, *Sacll*, *EcoRl*, *EcoRV*, *Ndel*, *Xmal*), 1x restriction enzyme buffer (New England Biolabs), 1x bovine serum albumin (BSA) and sterile water. Digests were incubated at 37°C (or another temperature appropriate for chosen enzyme) for 1-2 hours. Samples were run on a 1 % agarose gel, as described in 2.15.

2.12.4 DNA sequencing and alignment

In order to confirm the sites of mutations, plasmids and primers for amplification of DNA sequence were prepared according to recommendations from GATC Biotech company and sent for sequencing. Primers were designed to amplify about 1kb DNA, should the mutation be located at least 100 bp away from either forward or reverse primer in order to avoid any nucleotide variances scored during the process of sequencing. The sequencing capacity is to identify approximately 700 bp, and therefore in longer sequences the uncertainty of an accurate base is denoted by either the letter "t" or "N". To analyse sequences and visualise results the Peak Scanner 2 software was applied for viewing and printing chromatograms from the PC. The NCBI BLAST (http://www.ncbi.nlm.nih.gov) was used to compare acquired sequences to those provided by SGD (http://www.yeastgenome.org/).

2.13 Gene deletion

All the genetic modifications were made according to Longtine *et al.* (Longtine et al., 1998b). Genes were deleted by replacing the gene of interest with an antibiotic resistance cassette from a specific vector (Longtine et al., 1998a). An antibiotic resistance cassette was amplified by PCR as described below (2.14.1). Primers designed for gene deletion were 60 bp long, and had 40 bp homology to the region upstream (forward primer) or downstream (reverse primer) of the start or stop codons, respectively. Remaining 20 bp of primers were homologous to the antibiotic resistance cassette from the plasmid. PCR amplified fragments were transformed into yeast using lithium acetate as described above (2.10.1). Transformant colonies were streaked for single colonies on selective media, and events of integration were confirmed by colony PCR (2.14.2).

2.14 PCR

PCR was performed on the plasmid DNA template (for gene amplification and replacement), or on a single yeast colony (for confirmation of gene deletion). Primers were designed using the *ApE – A plasmid Editor* software and are shown in Appendix C.

2.14.1 Genomic/plasmid DNA PCR

Primers used for gene amplification from genomic or plasmid DNA were usually 20 bp long and were design to be complementary to the sequence app. 500 bp upstream and downstream of the target gene. The 20 μL PCR reactions consisted of 0.3 μM forward and reverse primers (Sigma Aldrich), 0.5 units ExTaq polymerase (TaKaRa Bio Inc.), 0.2 mM dNTPs, 1x ExTaq buffer, genomic or plasmid DNA and sterile water. The following conditions were usually applied: 5 min 95°C, 30 cycles of 30 s at 94°C, 20 s at 55°C and 1 min per 1 kb amplified DNA at 72°C, 5 min at 72°C. The lengths of amplified products were verified on 0.8 % agarose gel (2.15).

2.14.2 Colony PCR

Colony PCR was used to confirm the antibiotic resistance cassette integration into the genome after lithium acetate transformation (2.10.1). PCR primers were designed to anneal to app. 500 bp upstream the insert location (forward primer) and to anneal within the inserted marker gene (reverse primer). The 10 µL PCR reactions consisted of 0.3 µM forward and reverse primers (Sigma Aldrich), 0.5 units GoTaq HotStart polymerase (Promega), 0.2 mM dNTPs, 1x green GoTaq buffer, 25 mM MgCl₂, 1 µL cell suspension (in sterile water) and sterile water. PCR conditions usually were: 5 min 95°C, 30 cycles of 1 min at 94°C, 1 min at 55°C, 1 min per 1 kb amplified DNA at 72°C, 10 min at 72°C. The lengths of amplified products were verified on 0.8 % agarose gel (2.15).

2.14.3 cdc13-1 PCR

In *cdc13-1* strains residue P371 is mutated to a serine (S) and the sequence becomes recognizable by *EcoRI* restriction enzyme (Lin and Zakian, 1996). The PCR followed by restriction digest allows to verify whether *cdc13-1* restriction fragment length polymorphism (RFLP) is still present in e. g. temperature resistant strains. 358 bp sequence of *CDC13* was amplified by PCR using compatible primers (Appendix C). The PCR products were digested with *EcoRI*, and digests were run on 2 % agarose gel. Digestion of DNA isolated from *cdc13-1* strains results in 2 products on an agarose gel (product sizes 160 bp and 198 bp), while DNA isolated from *CDC13* strains results in one product on the gel – full length PCR product of 358 bp.

2.15 Agarose gel electrophoresis

Usually 0.8 % agarose gels were made in 0.5x TBE buffer. SYBR Safe DNA Gel Stain (1/10000 dilution; Invitrogen) was added to molten agarose. 6x loading buffer was added to DNA samples and loaded on the gel together with +1 kb DNA ladder (Invitrogen). Agarose gels were run at 80-100 V. Products were visualised using a Fuji LAS 4000 Imager.

2.16 Cloning

In vitro and in vivo cloning were performed in order to generate novel plasmids, e. g. integrative plasmids (Appendix B). These plasmids were then used to integrate an allele of interest into the genome, or to cover the deletion of a gene of interest by allele on a plasmid.

2.16.1 In vitro cloning

7 μL of QIAprep Spin Miniprep DNA plasmid vector was cut with 15 units of appropriate restriction enzyme (Spel, Xhol or Sacll, New England Biolabs) as in 2.12.3. The vector was initially pDL452 (Appendix B). The insert was obtained by PCR (2.14.1) using DNA from a wild-type strain (DLY3001), or by restriction digest of plasmid DNA. Digestion was confirmed by running cut and uncut vector on a 1 % agarose gel. Cut vector and insert were extracted from the gel using QIAquick Gel Extraction Kit (Qiagen) following the manufacturer's protocol. Then 1 μL 5x CIP phosphatase (New England Biolabs) was added, and samples were incubated for additional 30 min at 37°C. Vector and insert were ligated by adding 1 μL T4 DNA ligase to 2 μL purified vector and 6 μL purified insert in a 10 μL reaction containing 5x T4 DNA ligase buffer. Ligation took place at 16°C during overnight incubation. Digested vector-only and insert-only ligations served as negative controls. 10 μL of the ligated DNA was then transformed into 100 μL E.coli Top10 competent cells as in 2.11.

2.16.2 In vivo cloning

3 μ L of QIAprep Spin Miniprep DNA plasmid vector was cut once with 10 units of appropriate restriction enzyme (*Xma*I, New England Biolabs), as in 2.12.3. Digestion was confirmed by running cut and uncut vector on a 1 % agarose gel. The insert was obtained by PCR (2.14) of a gene (*DNA2*) from the plasmid (pDL1544).

The lithium acetate method of transformation was used with 10 μ L PCR-purified product, 5 μ L digested plasmid and 5 μ L water. A no-DNA control contained water and no DNA. Vector and insert controls contained water and 5 μ L or 10 μ L insert or digested vector, respectively. Transformant selection and verification was conducted as described above. The plasmid DNA was then isolated from yeast using the QIAprep Spin Miniprep Kit (Qiagen).

2.16.3 One-step isothermal assembly method in vitro (Gibson Assembly)

One-step assembly method was performed following the protocol described by Gibson et al. (Appendix D) (Gibson et al., 2009). Briefly, three DNA fragments were amplified by PCR as in 2.14.1, and primer sequences are in Appendix C. Two PCR fragments were adjacent sequences from the plasmid (pDL1672 and pDL1673), and one fragment was amplified from genomic DNA (DLY3001). The genomic DNA consisted of the promoter and the N-terminal sequence of *DNA2* gene. The three PCR fragments overlapped by 100 bp end fragments were reassembled into a circle DNA molecule. 5 µL (10-100 ng) of DNA fragments were added in equimolar amounts. The DNA fragments were assembled in 15 µL reactions consisting of the assembly master mixture: 5x isothermal reaction buffer (25 % PEG-800, 500 nM Tris-HCl pH 7.5, 50 mM MgCl₂, 50 mM DTT, 1 mM each of the four dNTPs and 5 mM NAD), T5 exonuclease (10 U/μL; Epicentre), *Taq* DNA ligase (40 U/μL; NEB), Phusion DNA polymerase (2 U/µL; NEB) and water. Samples were incubated at 50°C for 60 min. The assembled DNA was transformed into 100 µL *E.coli* as in 2.11, and then purified and tested by restriction digest and PCR (2.12.3, 2.14.1). PCR products were sent for sequencing, as in 2.12.4.

2.16.4 Quick Change in vitro method

Gibson Assembly resulted in a point mutation (T \rightarrow C) within a *DNA2* sequence located close to PCR fragments overlap. In order to revert the nucleotide, the Quick Change *in vitro* method was used by applying combined protocols of Stratagene and BioTechniques. Primers contained the nucleotide to be changed in the middle of the sequence (Appendix C). Individual reactions, one for forward and one for reverse primer were prepared. 25 μ L reactions were made of: 10x Pfu Buffer, dNTPs (2.5 mM), Pfu polymerase, forward or reverse primer (10 pm/ μ L), plasmid DNA (app. 100 ng) and water. Both reactions were run in a thermocycler separately at following

conditions: initial amplification for 1 min at 94°C, then 2 cycles of 30 sec at 94°C, 1 min at 55°C, 16 min at 68°C. Then the forward and reverse amplifications were combined and 1 μ L of Pfu polymerase was added. The PCR settings were: 1 min at 94°C, and 18 cycles of 30 sec at 94°C, 1 min at 55°C, 16 min at 68°C. The plasmid DNA which remained unchanged was degraded by following restriction digest with *DpnI* (10 U; New England Biolabs) at 37°C for 3 hours. The degradation of unaltered plasmid was check on 1 % agarose gel. 20 μ L reactions were transformed into 100 μ L *E.coli* as in 2.11, plasmids were purified and tested by restriction digest and sequencing.

2.16.5 Pop-in/Pop-out assay

URA3-marked integrative plasmids pDL1731 and pDL1733 were cut with *Nde*I restriction enzyme, and transformed into haploid yeast by high efficiency LiAc transformation (2.10.1). Single colonies from the transformation plates were restruck onto -URA plates to ensure purity. Single colonies were then patched onto YEPD plates, grown overnight at 23°C, replica plated to –URA and FOA, and allowed to grow overnight once more. This procedure was repeated (re-patching onto YEPD and replica-plating onto –URA and FOA) until single colonies were growing on FOA, but not on –URA plates, which indicated that strains had lost the plasmid. Colony PCR was used to confirm the pop-in and pop-out events. Purified PCR products were sent for sequencing to confirm the presence of point mutations.

2.17 Genomic DNA preparation

For Southern Blotting, and PCR at times, genomic DNA was prepared using the Yale DNA isolation method. For In-gel assay, and PCR at times, genomic DNA was extracted using phenol method according to (Dewar and Lydall, 2012b).

2.17.1 Yale quick DNA isolation method

2 mL saturated cultures were spun down and resuspended in 250 μ L of 0.1M EDTA (pH7.5), 1:1000 beta-mercaptoethanol and 2.5 mg/mL zymolyase 20T (Sigma Aldrich). After one hour incubation at 37°C, 55 μ L of 0.25M EDTA (pH 8.5), 0.5M Tris, 2.5 % SDS was added and samples were incubated at 65°C for 30 min. 68 μ L of 5 M potassium acetate (KAc) was added and samples were incubated on ice for 30 min. Samples were then spun for 20 min at 13000 rpm and the supernatant was

transferred to a new 1.5 mL Eppendorf tube. Each tube was filled with 100 % ethanol. Samples were inverted and spun for 10 min at 13000 rpm. The supernatant was removed and pellets were briefly dried before being resuspended in 130 μ L TE containing 1 mg/mL RNAse A. Samples were incubated at 37°C for 35 min. 150 μ L isopropanol was added, samples were inverted and spun for 20 min at 13000 rpm. 100 μ L of 70 % ethanol was used to wash samples by centrifuging for 5 min at 13000 rpm. The ethanol was removed and pellets were dried for 30 min under the hood. Pellets were incubated at 37°C for 30 min in 40 μ L TE (10 mM Tris–HCl, pH 8.0, 1 mM EDTA pH 8.0).

2.17.2 Phenol-based DNA isolation method

2 mL saturated cultures were washed twice in 1 mL sterile water and the cell pellets were stored at -80°C. Thawed pellets were resuspended in 400 µL of freshly made lysis buffer (2 % Triton X-100, 1 % SDS, 100 mM NaCl, 10 mM Tris-HCl, pH 8.0, 100 mM EDTA, pH 8.0) and app. 0.5 mL glass beads were added. 400 µL phenol:chlorofom:isoamyl alcohol (25:24:1, v/v/v) was added under the hood and cells were lysed using a Precellys 24 ribolyser (Bertin Technologies) on 5.5 power setting for 3 x 20 s, with a 2 min pause on ice between each 10 sec cycles. 400 µL TE buffer was added and samples were spun at 4°C for 5 min at 13000 rpm. At this time 2 mL light phase lock gel tubes (5-Prime) were centrifuged at 13000 rpm for 1 min. 750 uL of aqueous (upper) phase of each sample was transferred to the phase lock tube and 750 µL phenol:chlorofom:isoamyl alcohol (25:24:1, v/v/v) was added. Tubes were centrifuged at 13000 rpm for 5 min. The aqueous phase was transferred to the sterile 2 mL Eppendorf tubes and 100 % ethanol was added to fill the tubes. Tubes were left for 5 min at room temperature. Nucleic acid was harvested by centrifugation at 13000 rpm for 3 min. The pellet was air-dried for 5 min and then resuspended in 806 µL TE/RNAse solution (7.5 µg/mL RNAse) while samples were incubated at 37°C for 30 min. 50 µL of 3 M sodium acetate (pH5.2) was added along with 100 % ethanol (to fill the tube) to precipitate DNA for 15 min. Samples were centrifuged at 13000 rpm for 3 min and pellets were air dried. DNA was dissolved in 40 µL TE during incubation at 37 °C for 20 min. DNA yield and purity was determined using a Nanodrop 2000 (Thermo Scientific).

2.18 Southern blotting

Southern blot analysis was used to assess telomere length and performed as previously described (Dewar and Lydall, 2010a). The probe was acquired by digestion of 10 µL plasmid pDL987 using 10 units *BamH*I and 10 units *Xho*I in a 20 µL reaction with 2 µL 10x NEBuffer 4, 2 µL 10x BSA and 5 µL sterile water. pDL987 contains 120 bp of TG repeats and 752 bp of the upstream Y' element from telomere VIII-R. Plasmid was digested for 2-3 hours at 37°C and then was run on a 1 % agarose gel. Digestion product of 1 kb size (which contains the TG repeats and Y' element) was extracted from the gel using a Qiaprep Gel Extraction Kit (Qiagen) and served as the Southern blot probe. The probe was DIG labelled using the DIG High Prime Labelling and Detection Starter Kit II (Roche).

2.5 μL of DNA (isolated by Yale method) was run on a 1 % agarose gel and ImageJ software was used to equalize samples' concentrations for loading based on band intensity. 2.5 μL of DNA was then digested with 0.5 μL *Xho*I (20 units/μL), 2 μL 5x NEBuffer 4, 1 μL 10x BSA and 4 μL water for 3 hours at 37°C. Samples were run on a 1 % agarose gel at 19V for approximately 14 hours. The gel was photographed using a Fuji LAS 4000 imager and served as a loading control. Gel was then washed in 0.25M hydrochloric acid for 15 min, rinsed twice in sterile water and washed in 0.5M sodium hydroxide for 30 min. The gel was blotted to positively-charged nylon membrane (Roche) using a vacuum blotter (Model 785, BioRad) at 5 Hg in 10x SSC for 90 min. Afterwards DNA was cross-linked to the wet membrane using auto UV cross-linking (Stratalinker). The membrane was rinsed in sterile water and was allowed to air-dry. The labelled probe was hybridized to the DNA on the membrane and detected using the DIG High Prime Labelling and Detection Starter Kit II (Roche). The membrane was imaged using a Fuji LAS 4000 imager for chemiluminescence, for 20 min.

2.19 Fluorescent in-gel assay

In-gel assay was performed as previously described (Dewar and Lydall, 2010b). 10 μ L of phenol prep DNA samples were cut with *Xho*I (1.5 μ L *Xho*I (20 units/ μ L), 2 μ L NEB Buffer 4 (10x), 0.2 μ L BSA (100x), 5.8 μ L sterile water in a 37°C water bath overnight. The next morning samples were incubated at 65°C for 20 min to heat-inactivate *Xho*I. Then samples were incubated on ice, centrifuged briefly and 1 μ L of

IRDye 800 AC probe (M3157 oligo, 500nM) was added to each tube. The tubes were flicked, incubated at 37°C for 10 min to anneal the probe to TG ssDNA and then incubated 30 min on ice. No-DNA sample and the ladder were prepared by adding 10 μ L of TE (no-DNA) or 1 kb DNA ladder (Invitrogen) together with 1 μ L IRDye 800 AC oligo to 10 μ L solution of NEB buffer 4 (2x), BSA (2x) and water.

5 μL of Orange G Loading buffer (6x) was added to each tube and samples were run on a 1% agarose gel in 0.5x TBE (no SYBR Safe dye). Gel was run at 50 V for 180 min and signal was then detected on a LI-COR (Odyssey) imaging system. Gel was post-stained for 30 min using 1x SYBR Safe in 0.5x TBE buffer and total DNA was detected using a FUJI LAS-4000 imager. ssDNA of the IRDye 800 image was quantified using ImageJ software. Determined background signal was subtracted from quantified signal of ssDNA from each lane.

2.20 Genomic quantitative PCR (qPCR)

DNA for genomic qPCR was isolated using the Yale method. Primers were designed to amplify a 100bp region within the gene of interest, and the measurements were performed in triplicate for each sample. Quantitative PCR was performed in a 96-well reaction plate. 2 μ L of DNA (2 ng/μ L) were added to 5 μ L 1x Platinum SYBR Green qPCR SuperMix-UDG with ROX (Invitrogen), 2.6 μ L water, 0.2 μ L forward primer (10 μ M) and 0.2 μ L reverse primer (10 μ M). The no-DNA control contained water instead of DNA. A standard curve of DNA concentrations was generated from wild-type (DLY3001) genomic DNA. The standard curve was obtained by plotting the log (DNA concentration) versus CTs, and the efficiency of PCR was calculated as:

$$Efficiency = 10^{\left(-\frac{1}{slope}\right)-1} \times 100 \%$$

All primers used in this study had efficiencies of app. 95 %, and are listed in Appendix C.

The qPCR programme was 50°C for 2 min, 95°C for 2 min, 40 cycles of 95°C for 15s and 60°C for 30s, then 40°C for 1 min followed by melting curve analysis, using an ABI Systems StepOnePlus thermal cycler. *BUD6* or *PAC2* genes were used as internal controls to normalize the DNA loaded. Fold changes were calculated using the formula: $2^{-(Sample\ CT-Reference\ CT)}$. Data was then exported as an Excel sheet and analysed relative to WT values (WT fold change equals 1).

2.21 Synthetic genetic array (SGA)

An unbiased genome-wide screen was used to understand the mechanisms allowing suppression of $dna2\Delta$. *S. cerevisiae* yeast strains used for synthetic genetic array (SGA) high throughput screens were in the S288C or W303 genetic backgrounds. Single query strain $dna2\Delta$ pDL1758 (pCAN1-URA3-DNA2) was mated with a single gene deletion library of approximately 5,000 strains (S288C background). The SGA in W303 background included only 308 gene deletions from the library.

The query *dna*2Δ strain (*MAT*α, *dna*2::*NATMX*, containing *HPHMX* and *LEU*2 marker genes, and the *MAT*a-specific *STE*2 promoter cassette *can*1Δ::*STE*2*pr-Sp_his5* and *lyp*1Δ) carried the pDL1758 plasmid (*pCAN1-URA3-DNA2*), to assure successive *dna*2Δ *xyz*Δ strains viability during the process of further selection. The query strain was cultured in YEPD overnight at 23°C and spread onto YEPD + clonNAT plates. Plates were incubated for two days at 23°C until a lawn of culture was visible. All manipulations hereinafter described were conducted using a BM3 robot (S&P Robotics) and plates were photographed at each stage using a robotic plate imager (SPImager, S&P Robotics). The plates with the query strain were pinned to 18 fresh YEPD + clonNAT plates as 1536 individual strains per plate and were incubated for 2 days at 20°C. The *MAT*a library of approximately 5000 single deletion mutants was pinned to YEPD + G418 plates (384 individual strains per plate) and were incubated at 30°C for two days. The library was then pinned as 1536 colonies per plate (4 replicates of each strain from each 384-format plate) onto YEPD + G418 plates and were incubated for 2 days at 30°C.

The query strain was then mated with the library on YEPD and diploids were formed during 24-48 hours at 20°C. Diploids were then pinned to -URA + G418 and incubated for 1.5 days at 23°C before being pinned to sporulation media (ESM + G418), and were sporulated for 5 days at 23°C. Spores were pinned sequentially (and incubated for 2 days at 20°C) to:

- SD/MSG_rhlk_TNH (+hygromycin+thialysine+clonNAT)
- SD/MSG rhlk TGNH (+hygromycin+thialysine+clonNAT+G418)
- SD/MSG_rhlk_CTGNH (+hygromycin+thialysine+clonNAT+G418+canavanine; final selection media to remove the pDL1758 plasmid).

The selection process allowed for selection of MATa haploid strains harbouring both the query (dna2::NATMX) and library (yfg::KANMX) mutations and pCAN1-URA3-DNA2 plasmid. The final selection on plates containing canavanine was performed three times to remove pCAN1-URA3-DNA2 plasmid from $dna2\Delta xyz\Delta$ double mutants. The colony size of haploids from SGA, where $dna2\Delta xyz\Delta$ strains lost the pCAN1-URA3-DNA2 plasmid on CTGNH media, were compared to a control screen conducted on TGNH media.

Concentration of canavanine was 50 mg/L; thialysine was 50 mg/L; G418 was 200 mg/L; hygromycin was 300 mg/L and clonNAT was 100 mg/L. The robotic amino acid dropout recipe for robotic media was:

Adenine 3g

Inositol 2g

Para-aminobenzoic acid 0.2g

Alanine 2g

Arginine 2g

Asparagine 2g

Aspartic Acid 2g

Cysteine 2g

Glutamic acid 2g

Glutamine 2g

Glycine 2g

Histidine 2g

Isoleucine 2g

Leucine 10g

Lysine 2g

Methonine 2g

Phenylalanine 2g

Proline 2g

Serine 2g

Threonine 2g

Trytophan 2g

Tyrosine 2g

Valine 2g

Uracil 2g

2.22 Image Processing

All agar plate images were processed using Adobe Photoshop CS6 software. All agar plate images were adjusted identically within each Figure, there were slight differences across Figures. Images were adjusted as follows: in the Levels adjustment tool the low end of the intensity histogram was trimmed to between 80 - 120 and all other values left at default (1, 255). Using Photoshop's exposure tool, Exposure settings were adjusted to 0 - 0.8; Offset to 0.0 - -0.07; and Gamma Correction to 1 - 1.5. Colour was converted to greyscale after import into Adobe Illustrator. The drawings were created in Adobe Illustrator CS6 software, unless stated otherwise.

Chapter 3. The roles of Ddc1, Dpb11 and Dna2 in telomere defective *cdc13-1* and *yku70*△ mutants

Ddc1 was reported to play a role in Mec1 activation upon DNA damage (e.g. after UV or 4-NQO) (Puddu et al., 2008, Navadgi-Patil et al., 2011, Pfander and Diffley, 2011). DNA damage induced in telomere defective $yku70\Delta$ mutants activates a Mec1-dependent checkpoint pathway, but is independent of Ddc1 (Maringele and Lydall, 2002, Addinall et al., 2011). In another telomere defective mutant, cdc13-1, Addinall et al. identified deletion of DDC1 as a strong suppressor of cdc13-1 growth defect (Addinall et al., 2008). The different effect of $ddc1\Delta$ on cdc13-1 and $yku70\Delta$ fitness is intriguing, because cdc13-1 and $yku70\Delta$ employ similar DDR pathways, including Exo1, Rad9, Chk1 and Mec1-dependent checkpoint pathways (Maringele and Lydall, 2002, Zubko et al., 2004).

Ddc1, Dpb11 and Dna2 are direct Mec1 activators which function dependently of the phase of the cell cycle (Fig. 8). The hypothesis to be tested in this thesis is whether two DNA damage signal transducers, Dpb11 and/or Dna2, take the role of Ddc1 in Mec1-dependent checkpoint activation in *yku70*Δ mutants. In order to examine the impact of Ddc1, Dna2 and Dpb11 on fitness of *yku70*Δ strains, point mutations of *DDC1*, *DNA2* and *DPB11*, defective in Mec1 activation, have been chosen and analysed (Longhese et al., 1997, Bae et al., 2001, Puddu et al., 2008, Navadgi-Patil et al., 2011, Pfander and Diffley, 2011, Pokharel and Campbell, 2012, Kumar and Burgers, 2013). The same mutations were analysed in *cdc13-1* telomere defective strains.

For the purpose of this thesis, I adapted the word "fitness" which I used as a synonym of the word "growth". Therefore, in the context of e.g. cdc13-1 or $yku70\Delta$ decreased/increased fitness, I meant the ability of cdc13-1 or $yku70\Delta$ mutants to grow in the range of temperatures.

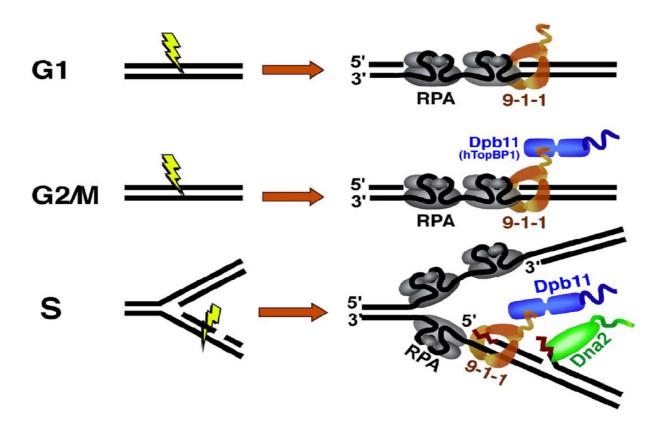


Figure 8. Model for Mec1 activation during the cell cycle

Figure and text adapted from Figure 2 (Wanrooij and Burgers, 2015).

Mec1^{ATR} activation during different cell cycle phases in *S. cerevisiae*.

Top panel, 9–1–1 (orange; Ddc1, Rad17, Mec3 in yeast) is the sole activator of Mec1 in G1 phase.

Middle panel, In G2/M, Mec1 can be activated through two redundant pathways that are separable. The first involves direct activation by 9–1–1 and depends on two aromatic residues in the unstructured C-terminus of the Ddc1 subunit of 9–1–1. The second pathway relies on activation by Dpb11 (in blue), although 9–1–1 is still required for Dpb11 recruitment.

Bottom panel, Dna2 (green), 9–1–1 (orange) and Dpb11 (blue) act in a redundant fashion to stimulate Mec1 upon replication stalling induced by hydroxyurea. Dna2 is depicted as bound to long flaps, while 9–1–1 and thereby Dpb11 bind 5'-ssDNA-dsDNA junctions.

3.1 The role of Ddc1 in the fitness of cdc13-1 and yku70∆ mutants

3.1.1 Confirmation of the known cdc13-1 ddc1∆ phenotype

DDC1 is not an essential gene, and the function of Ddc1 domains can be examined by introducing alleles of DDC1 on plasmids into haploid $ddc1\Delta$ strains. First, it was confirmed that $ddc1\Delta$ suppresses temperature sensitivity of cdc13-1 (Fig. 9) (Addinall et al., 2008). Strains were spot-tested on YEPD and incubated at a range of temperatures. Wild type, $ddc1\Delta$ and $exo1\Delta$ strains grew well at all temperatures in contrast to cdc13-1, which was unable to form colonies above 28° C (Fig. 9). cdc13-1 $ddc1\Delta$ mutants grew much better than cdc13-1 and similarly to cdc13-1 $exo1\Delta$ mutants. It was shown that Rad24 or Mec3, which work with Ddc1, affect fitness of cdc13-1 mutants (Zubko et al., 2004, Ngo and Lydall, 2010). DDC1, a member of the 9-1-1 complex, also seems to affect fitness of cdc13-1 strains, and the effect is similar to that of EXO1.

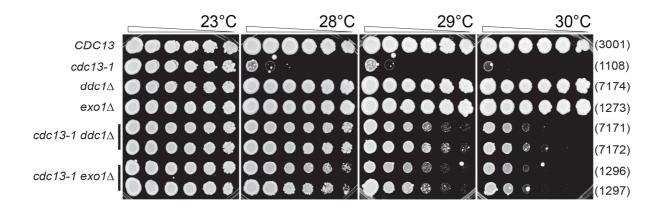


Figure 9. Ddc1 and Exo1 similarly affect fitness of *cdc13-1* mutants.

Pooled colonies were inoculated into 2 mL liquid YEPD and cultures were grown for 24 h at 23°C to saturation. Small aliquots were five-fold serially diluted in sterile water, spotted onto YEPD plates and incubated at shown temperatures for 3 days before being photographed. All 4 photographs had image features adjusted identically using Adobe Photoshop CS6. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A.

3.1.2 Alleles of DDC1 chosen to study checkpoint function

Specific alleles of *DDC1* had been reported to be Mec1-activation deficient upon DNA damage (Puddu et al., 2008, Pfander and Diffley, 2011, Kumar and Burgers, 2013). Some of these alleles, listed in Table 1, were chosen to test whether the effect on growth of *cdc13-1* strains may be observed. Figure 10 shows an alignment of the *DDC1* allele, *ddc1*-M11, with the wild type *DDC1* sequence. Other plasmids were analysed similarly and were used in further experiments.

Plasmid (pDL)	DDC1 alleles	Source	Mutation	Mutated sequence	
1543	pRS315-LEU2-DDC1	P. Burgers	WT	N/A	
1470	YCplac111-LEU2-ddc1-M3	M. Muzi- Falconi	S413A	serine AGT into alanine GCT	
			S436A	serine AGT into alanine GCT	
			T444A	threonine ACC into alanine GCT	
1472	YCplac111-LEU2-ddc1-M8	M. Muzi- Falconi	T342A	threonine ACC into alanine GCT	
			S469A	serine AGC into alanine GCT	
			S471A	serine AGT into alanine GCT	
			S495A	serine AGT into alanine GCT	
			T529A	threonine ACC into alanine GCT	
			S532A	serine TCT into alanine GCT	
			S580A	serine TCC into alanine GCT	
			T602A	threonine ACA into alanine GCT	
			T342A	threonine ACC into alanine GCT	
			S413A	serine AGT into alanine GCT	
			S436A	serine AGT into alanine GCT	
			T444A	threonine ACC into alanine GCT	
	YCplac111-LEU2-ddc1-M11	M. Muzi-	S469A	serine AGC into alanine GCT	
1474		Falconi	S471A	serine AGT into alanine GCT	
			S495A	serine AGT into alanine GCT	
			T529A	threonine ACC into alanine GCT	
			S532A	serine TCT into alanine GCT	
			S580A	serine TCC into alanine GCT	
			T602A	threonine ACA into alanine GCT	
1476	YCplac111-LEU2-ddc1-T602S	M. Muzi- Falconi	T602S	threonine ACA into serine TCA	
1479	YCplac111-LEU2-ddc1-T602A	M. Muzi- Falconi	T602A	threonine ACA into alanine GCT	
1546	pRS315- <i>LEU2-ddc1-W352A</i>	P. Burgers	W352A	tryptophan TGG into alanine GCG	
1547	pRS315-LEU2-ddc1-	P. Burgers	W352A	tryptophan TGG into alanine GCG	
1547	W352A,W544A		W544A	tryptophan TGG into alanine GCG	
1548	pRS315-LEU2-ddc1 W352A, W544A, T602A	P. Burgers	W352A	tryptophan TGG into alanine GCG	
			W544A	tryptophan TGG into alanine GCG	
			T602A	threonine ACA into alanine GCA	
1549	pRS315-LEU2-ddc1-(1-404), W352A	P. Burgers	K404- STOP	lysine AAA into STOP codon TAA,	
				aspartic acid GAC into STOP	
				codon TAG	
			W352A	tryptophan TGG into alanine GCG	
1550	pRS315-LEU2-ddc1-T602A	P. Burgers	T602A	threonine ACA into alanine GCA	

Table 1. Mutations of *DDC1* **used**. All mutations were confirmed by sequencing.

■Download ~ Graphics

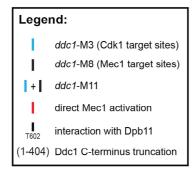
Sequence ID: ICI|48739 Length: 1151 Number of Matches: 1

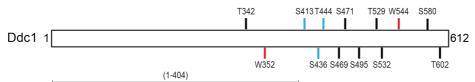
Range 1: 7 to 1149 Graphics				V Next Match ▲ Previous Match					
Score		Expect	Identities	Gaps	Strand				
1941 bit	ts(1051)	0.0	1110/1145(97%)	3/1145(0%)	Plus/Plus				
Query			CGATCACATAGTAAGCGTA			66			
Sbjct 7 AAANCAAGATAAGCGATCACATAGTAAGCGTAGAGAGCATATGAAAAGTATAATATTCAA 66									
Query			AAAAACTTCATAACGATAG			126			
Sbjct						126			
Query			AGTTTATGGTTTTGCCACC			186			
Sbjct						186			
Query			AAATTAGAATTGGTTGAAG			246			
Sbjct						246			
Query			TTCATAAAAACAGCAATCT			306			
Sbjct			TTCATAAAAACAGCAATCT			306			
Query		AGACAACAAAGAA	AGCTGCGAZAGT CCATTAA	AAAGCAAAACTGCTT:		366			
Sbjct			agctgcgaa gct ccattaa			366			
Query			GTGGCTGGAACTCGAAACA	GICCTTTGAAAGTGT(426			
Sbjct			GTGGCTGGAACTCGAAACG			426			
Query			ACAGTTGCTAAGACCTATA			486			
Sbjct	427	TGATAATGGAAGC	ACAGTTGCTAAGACCTATA	GAAATAACACGGCAA	GAAAATTATTCGT	486			
Query		GGAAGAACAAAGC	CAAAG-TACGAATTACGAA	CAAGATAAGCGGTTC		545			
Sbjct			rcaagcracgaattacgaa			545			
Query			CATGAATCGGGAACAAAGT	TTTGACATTGGTACG		605			
Sbjct			CATGAATCGGGAACAA GCT			605			
Query			TGAGAGCAATTCTTTAAAA 			665			
Sbjct			TGAGAGCAATTCTTTAAAA			665			
Query			CAACAATCTACATTTGCA	HIIIIIIIIIIII		725			
Sbjct	666	CTGAAGACCCCGC	icaacaa gciacattigca	AAAAGGGCAGACACC	ACTGTGACATGGG	725			
Query			AGCTGCAGATGATGAGGTT			785			
Sbjct	726	GAANAGCGTTACC.	AGCTGCAGATGATGAGGTT	TCATGCAGCAATATC	GATAGAAAAGGAA	785			
Query			AAAATTGAAGCATATGCAA			845			
Sbjct			AAAATTGAAGCATATGCAA			845			
~ -			ACAGGACAATAAAGAGATG			905			
Sbjct	846	GTAATCACAAGAA	ACAGGACAATAAAGAGATG	GAAGATGGGCTGGGT(CTA GCT CAAGTAG	905			
Query		11 11111111111	TATATTTGACTAAAACCAT	111111111111111111111111111111111111111		965			
Sbjct	906	AANAGCCAAGGGG	TATATTTGACTAAAACCAT	AATGCAAAATCAGTA:	TAAAGGCGTGTAA	965			
Query			TAGCAATTATCATGATAAT			1025			
Sbjct			TAGCAATTATCATGATAAT			1024			
~ -			GAGCGTGCGGCTGATGGTC			1085			
100			GAGCGTGCGGCTGATGGTC			1084			
~ -		HIHIHIHI		ППППППППППППППППППППППППППППППППППППППП	ПППППППП	1145			
C100-C100			TATNNNNNNTTGCATAGC	TTTTTACTTAATAGG	AACTTAAAAATTT	1144			
-		CATTG 1150							
Sbjct	1145	CNTTG 1149							

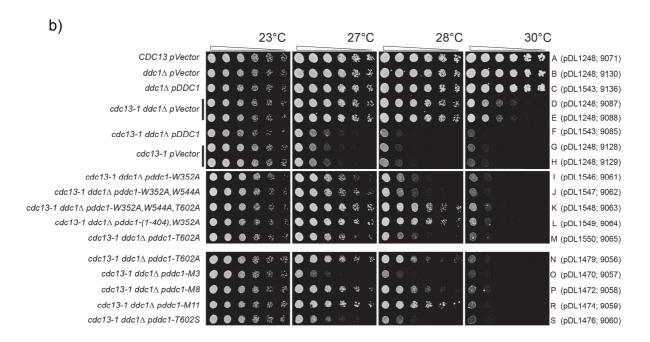
Figure 10. Alignment of DDC1 and ddc1-M11 allele on plasmids

Query – WT DDC1 sequence on pDL1543 plasmid; Subject – ddc1-M11 sequence on pDL1474 plasmid. Query and Subject sequences were sequenced by GATC Biotech company. Red boxes indicate the sites of mutations. Plasmid details are in Table 1 and Appendix B. WT DDC1 sequence from pDL1543 was also aligned to the WT sequence obtained from SGD (not shown).

3.1.3 Some DDC1 alleles strongly affect cdc13-1 fitness


It had been reported that Ddc1 can interact with Mec1 through two distinct pathways: i) directly, by two conserved aromatic amino acids, tryptophan W352 and W544, ii) indirectly, by recruitment of Dpb11 through threonine T602 (Navadgi-Patil and Burgers, 2009). When W352, W544 and T602 residues were changed into alanine, such *ddc1* mutants showed reduced phosphorylation of Rad53, a Mec1 downstream effector kinase, in response to DNA damage induced by 4-NQO or UV (Navadgi-Patil and Burgers, 2009, Navadgi-Patil et al., 2011, Kumar and Burgers, 2013). Three Cdk1 and eight Mec1 putative target sites of Ddc1 were also identified (Puddu et al., 2008). *DDC1* alleles in which three (M3 – CDK1 target sites), eight (M8 - Mec1 target sites) or eleven (M11 – CDK1 and Mec1 target sites) residues are changed into alanine, are denoted as *ddc1*-M3, *ddc1*-M8 and *ddc1*-M11 (Table 1).

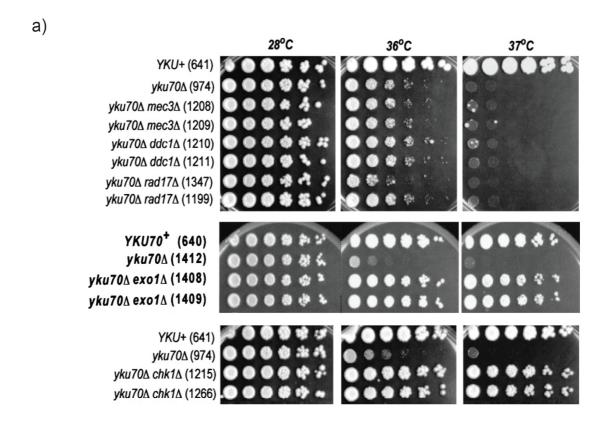

To test whether different *DDC1* alleles affect fitness of *cdc13-1* mutants, *cdc13-1 ddc1*∆ strains were transformed with plasmids shown in Table 1 (Table 1, Fig. 11a). *cdc13-1 ddc1*∆ mutants grew at 30°C, and *cdc13-1* mutants did not grow above 27°C (Fig. 11b D-E, F-H). All *DDC1* alleles suppressed *cdc13-1* ts at 27-28°C, apart from *ddc1*-M3 and *ddc1-T602S* alleles (Fig. 11b I-S). The strongest suppressors of *cdc13-1* ts at 28°C were: *ddc1-W352A, W544A, T602A, ddc1-(1-404),W352, ddc1*-M11 and *ddc1*-M8 alleles (Fig. 13b K-L and P-R, compare to F-H). However none of the alleles suppressed *cdc13-1* ts as *ddc1*∆ mutation at 30°C. The evaluation of suppression effects by *ddc1* mutations on *cdc13-1* is shown in Fig 11, bottom.


The *T602A* mutation was present in all *DDC1* alleles which strongly suppressed *cdc13-1* defect. The threonine T602 of Ddc1 is a site of Dpb11 recruitment in response to DNA damage in G2/M and S-phase of the cell cycle (Navadgi-Patil and Burgers, 2009, Navadgi-Patil and Burgers, 2011, Navadgi-Patil et al., 2011). T602 residue was also identified as one of Mec1 target sites in Ddc1 (Puddu et al., 2008). Apparently the recruitment of Dpb11 or interaction between Ddc1 and Mec1 in response to telomere damage might be important for Ddc1 checkpoint function. *T602S* mutation, which did not affect *cdc13-1* growth, probably still permits Dpb11 recruitment or Ddc1-Mec1 interaction.

ddc1-M8 and ddc1-M11 alleles with mutated sites for Mec1 or Cdk1 and Mec1 phosphorylation, respectively, strongly suppressed cdc13-1 defect at higher temperatures. In contrast, ddc1-M3 mutation, which was shown to be defective in the phosphorylation by CDK(Puddu et al., 2008), had no effect on cdc13-1 fitness. The suppression of cdc13-1 by ddc1-M8 and ddc1-M11 alleles suggests that the phosphorylation of Ddc1 by Mec1 might play an important role in response to damaged telomeres. Accordingly, lack of cdc13-1 suppression by ddc1-M3 suggests that Ddc1 phosphorylation by Cdk1 does not play an important role in response to damaged telomeres. It was shown that ddc1-M3 mutants maintained the checkpoint function after UV treatment (Puddu et al., 2008). It seems that in response to UV-generated damage and telomere defects, the checkpoint pathway remains functional in ddc1-M3 mutants. However, the phosphorylation of Ddc1 by Mec1 or Cdk1 was not tested in this thesis. I drew the conclusions about the checkpoint role of Ddc1 and the role of Ddc1 phosphorylation by Mec1 and Cdk1 based on the observed phenotypes of published ddc1 alleles.

Suppressors of cdc13-1:

$$ddc1\Delta > ddc1-M11 > \frac{ddc1-(1-404),W352A}{ddc1-W352A,W544A,T602A} > ddc1-M8 > ddc1-T602A > \frac{ddc1-W352A}{ddc1-W352A,W544A}$$


Figure 11. DDC1 alleles affect growth of cdc13-1 mutants

- a) Point mutations used (adapted from (Puddu et al., 2008)).
- b) Spot test done as in Figure 9. Yeast strains were spotted onto –LEU plates to select for plasmids. Strains A-M were grown on one rectangular plate. Strains N-S were grown on a different rectangular plate, which is indicated by wider space between bottom and top part of the picture. These strains were grown on the same batch of –LEU media, but on different days. The results acquired in this spot test are consistent with 2-3 other experiments prepared on the same batch of the media (not shown). *pVector* pRS315. The relevant genotypes of the strains are indicated on the left, plasmid and strain numbers on the right; strain details are in Appendix A. Letters A-S on the right of the figure are assigned to relevant genotypes from the left. Beneath is shown the evaluation of suppression effects on *cdc13-1* strains by tested *ddc1* mutations.

3.1.4 The 9-1-1 complex mutations and rad24∆ slightly affect yku70∆ fitness

It was shown that $yku70\Delta$ does not require Ddc1 checkpoint function in Mec1-dependent cell cycle arrest (Maringele and Lydall, 2002). I wanted to confirm previous data and therefore I generated and spot tested some new $yku70\Delta$ $ddc1\Delta$ strains (Fig. 12). Figure 12a from Maringele and Lydall shows that Ddc1, Mec3 and Rad17 components of the 9-1-1 complex, do not affect the growth of $yku70\Delta$ mutants (Maringele and Lydall, 2002). Figure 12b shows somewhat different growth patterns. Wild type, $ddc1\Delta$ and $exo1\Delta$ strains grew well at all temperatures, $yku70\Delta$ mutants did not grow above 36°C. Interestingly, the deletion of DDC1 mildly affected the fitness of $yku70\Delta$ strains above 36°C, which is different to published results (Maringele and Lydall, 2002). Consistent with previous results, $exo1\Delta$ had much stronger effect on fitness of $yku70\Delta$ mutants than $ddc1\Delta$.

In order to test whether other members of the 9-1-1 complex also affect $yku70\Delta$ fitness, more growth assays involving $mec3\Delta$, $rad17\Delta$, as well as $rad24\Delta$ and $chk1\Delta$, were carried out. One example is shown in Figure 13. Wild type strain and $ddc1\Delta$, $mec3\Delta$, $rad17\Delta$ strains grew well at all temperatures, $yku70\Delta$ mutants did not grow above 36°C (Fig. 13). Although there is a heterogeneity between strains of the same genotype, mutations of the 9-1-1 complex and $rad24\Delta$ slightly suppress $yku70\Delta$ ts. $chk1\Delta$ has the strongest effect on $yku70\Delta$ growth at higher temperatures, consistently with published data (Fig. 12a).

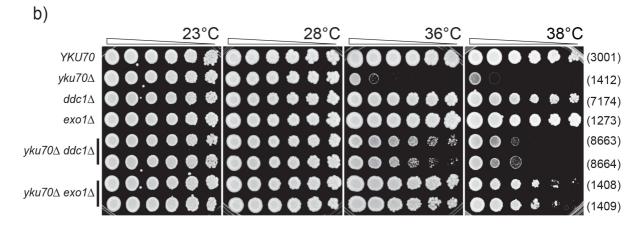
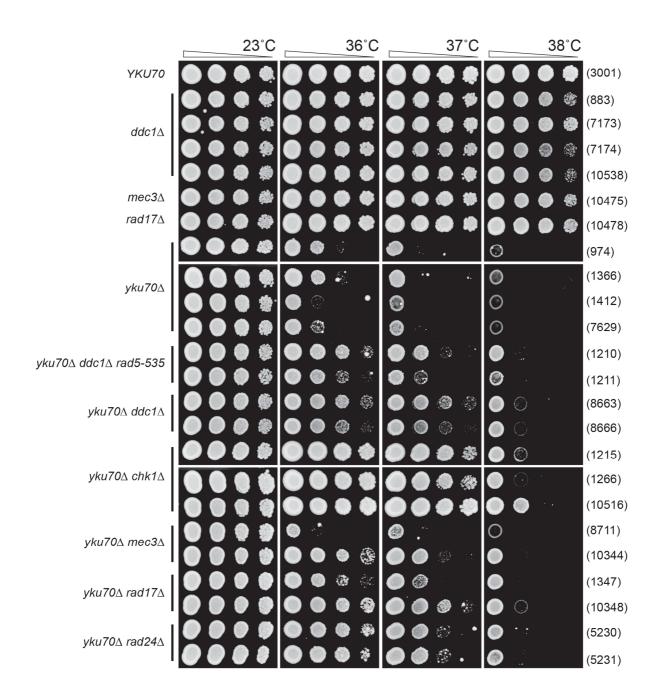
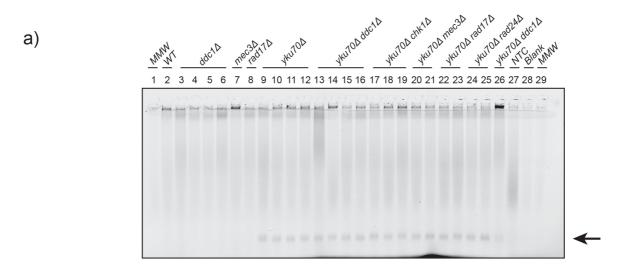
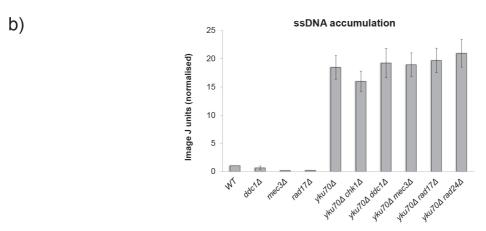


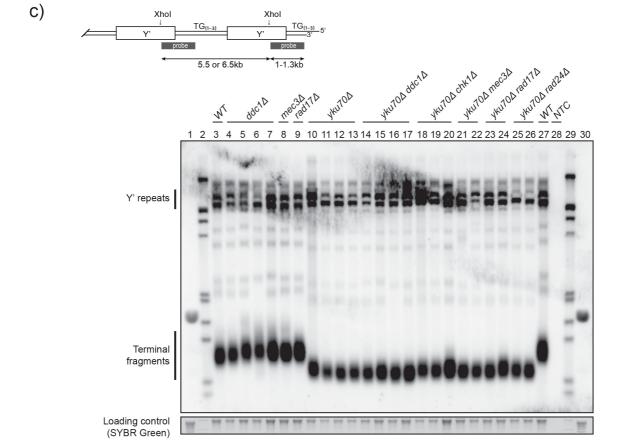
Figure 12. Effect of Ddc1 on yku70∆ fitness

- a) Figures and text adapted from (Maringele and Lydall, 2002), Fig.1a-c, Fig.6a, Fig.1g-i. Small aliquots of five-fold dilution series of several yeast strains were transferred to plates and incubated at the temperatures indicated for 2 days before being photographed. The relevant genotypes of the strains are indicated on the *left*, and the strain numbers shown in parentheses.
- b) Yeast strains were pre-grown at 30°C, spot test done as in Figure 9. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A.




Figure 13. Checkpoint proteins affect yku70∆ fitness


Yeast strains were pre-grown at 30°C, spot test done as in Figure 9. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A.


The 9-1-1 complex, Rad24 and Exo1 regulate ssDNA generation at telomeres (Maringele and Lydall, 2002, Ngo et al., 2014). Exo1 generates high levels of ssDNA in $yku70\Delta$ mutants, and contributes to ssDNA in cdc13-1 strains (Maringele and Lydall, 2002, Zubko et al., 2004). Rad24, Rad17 and Mec3 belong to one phenotypic group based on their checkpoint function and effects on DNA degradation (Lydall and Weinert, 1995). Rad24 and the 9-1-1 complex members belong to one functional group, and cdc13-1 mutants. (Lydall and Weinert, 1995, Zubko et al., 2004). It was shown that cdc13-1 mutants. (Lydall and Weinert, 1995, Zubko et al., 2004). It was shown that cdc13-1 mutants accumulated comparable amounts of ssDNA to cdc13-1 mutants (Maringele and Lydall, 2002). Due to the fact that I observed that the 9-1-1 complex and Rad24 affect cdc13-1 fitness in contrast to published data (Maringele and Lydall, 2002), I hypothesised that the 9-1-1 complex might be required for ssDNA generation in cdc13-1 mutants are the properties of the fact that the 9-1-1 complex might be required for ssDNA generation in cdc13-1 mutants.

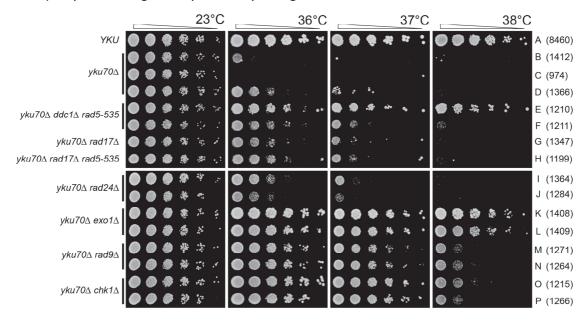
To test this hypothesis the fluorescent in-gel assay was used to measure the ssDNA accumulation (Fig. 14a and b). As expected, $yku70\Delta$ strains accumulated more ssDNA than control strains. $yku70\Delta$ mutants with deletions of members of the 9-1-1 complex, CHK1 and RAD24 accumulated ssDNA amounts comparable to $yku70\Delta$ cells (Fig. 14b). These results are consistent with published data (Maringele and Lydall, 2002). Cells, from which DNA was isolated and used (Fig. 14a-b), were in different phases of the cell cycle. Maybe the differences in ssDNA accumulation would be visible if DNA was isolated from synchronous cultures. The application of the Quantitative Amplification of Single-Stranded DNA (QAOS) method, which uses qPCR to measure ssDNA accumulation (Holstein and Lydall, 2012), might be more accurate to observe ssDNA accumulation than in-gel assay.

 $yku70\Delta$ strains with deletions of *DDC1*, *MEC3*, *RAD17* and *RAD24* were slightly fitter than $yku70\Delta$ mutants, which raised the possibility that double mutants' growth resulted from different telomere structures. To address this, telomere length was examined by Southern blot (Fig. 14c). Wild type, $ddc1\Delta$, $mec3\Delta$ and $rad17\Delta$ strains have similar telomere lengths (Fig. 14c lines 3-9, 27). $yku70\Delta$ mutants have short telomeres and deletions of *DDC1*, *MEC3* or *RAD17* did not affect telomere structure of $yku70\Delta$ strains (Fig. 14c lines 10-13, compare to line 14-26). I conclude that the 9-1-1 complex and Rad24 do not affect the telomere length of $yku70\Delta$ strains, and so the role of the 9-1-1 complex in this context remains unclear.

Figure 14. Unaltered ssDNA accumulation and telomere structure of $yku70\Delta$ mutants with checkpoint gene deletions

- a) 3 mL liquid cultures of indicated strains were incubated overnight at 30°C prior to phenol DNA isolation and In-gel assay. Image was adjusted in ImageJ. The black arrow indicates the position of ssDNA.
- b) Quantification of a). Wild type (WT) strain was given the value of 1; all other genotypes were expressed relative to the wild type strain. WT, $mec1\Delta$ and $rad17\Delta$ were single strains. For $ddc1\Delta$, $yku70\Delta$, $yku70\Delta$ $chk1\Delta$ and $yku70\Delta$ $ddc1\Delta$ the mean of three-four independent strain is shown, and error bars indicate the SD. For $yku70\Delta$ $mec3\Delta$, $yku70\Delta$ $rad17\Delta$ and $yku70\Delta$ $rad24\Delta$ the mean of two independent strains is shown and error bars indicate the individual values of each strain.
- c) Genomic DNA was isolated from the same yeast strains as in a) by Yale method after overnight incubation at 30°C. Telomeres were analysed by Southern blot. The probe (Y' and TG) used for Southern blot is shown. SYBR Safe was used as a loading control. Lines 1-2 & 29-30 molecular ladders. Strains were: YKU70 (DLY3001), $ddc1\Delta$ rad5-535 (DLY883), $ddc1\Delta$ (DLY7173), $ddc1\Delta$ (DLY7174), $ddc1\Delta$ (DLY10538), $mec3\Delta$ (DLY10475), $rad17\Delta$ (DLY10478), $yku70\Delta$ (DLY974), $yku70\Delta$ (DLY1366), $yku70\Delta$ (DLY1412), $yku70\Delta$ (DLY7629), $yku70\Delta$ $ddc1\Delta$ rad5-535 (DLY1210), $yku70\Delta$ $ddc1\Delta$ rad5-535 (DLY1211), $yku70\Delta$ $ddc1\Delta$ (DLY8663), $yku70\Delta$ $ddc1\Delta$ (DLY8666), $yku70\Delta$ $chk1\Delta$ (DLY1215), $yku70\Delta$ $chk1\Delta$ (DLY10316), $yku70\Delta$ $mec3\Delta$ (DLY8711), $yku70\Delta$ $mec3\Delta$ (DLY10344), $yku70\Delta$ $rad17\Delta$ (DLY1347), $yku70\Delta$ $rad1117\Delta$ (DLY10348), $yku70\Delta$ $rad24\Delta$ (DLY5231), $yku70\Delta$ $ddc1\Delta$ rad5-535 (DLY1210). Strain details are in Appendix A.

3.1.5 Yeast culture conditions affect the effect of the 9-1-1 complex and Rad24 on yku70∆ fitness


Results in this chapter so far show that the 9-1-1 complex affects the growth of $yku70\Delta$ mutants at higher temperature in contrast to previously published results (Maringele and Lydall, 2002). One possible explanation was different culture condition. In order to test whether the culture conditions influenced spot test assays, two methods of yeast culture were compared (Fig. 15). In a first method yeast strains were collected in the exponential phase as described before (Fig. 15a) (Maringele and Lydall, 2002). In a second method the same strains were grown till saturation and spot tested as earlier (Fig. 15b).

Strains grown till saturation prior to spotting exhibited stronger growth at all temperatures tested when compared to strains collected at exponential growth phase (Fig. 15b and a). The experiment is however not definite, because $yku70\Delta$ mutants exhibited heterogeneous growth independently of the method used (Fig. 15a and b, B-D). I will compare $yku70\Delta$ DLY1412 mutant (Fig. 15a and b B) with other strains, because it exhibits an average phenotype. Mutations of the 9-1-1 complex and RAD24 only slightly affected $yku70\Delta$ growth when cells from exponential growth phase were spotted (Fig. 15a E-J). It was easier to observe the suppression effect when strains were grown to saturation prior to spotting (Fig. 15b E-J). Consistent with the previous results $chk1\Delta$, $rad9\Delta$ and $exo1\Delta$ are much stronger suppressors of $yku70\Delta$ ts independently of method used (Fig. 15a and b, K-P) (Maringele and Lydall, 2002).

The yeast culture conditions had impact on $yku70\Delta$ strain growth. For reasons that are unclear, $yku70\Delta$ mutants are fitter at higher temperature when cells were first grown till saturation, being able to grow at 38°C. Cells from saturated culture might somehow escape telomere damage and cell cycle arrest, which resulted in improved fitness. The role of the 9-1-1 complex and Rad24 in $yku70\Delta$ cells, and the difference between saturated and the exponentially cultured cells should be clarified. One explanation for different growth might be the stress response (Gasch, 2007). Strains grown till saturation at permissive temperature started possibly experiencing nutrient depletion and the stress response was activated. In response to starvation cells may not resume growth but enter a quiescent state until nutrients become available. In

response to stress the environmental stress response (ESR) program is triggered and leads to gene expression changes which persist until starvation is alleviated (Gasch et al., 2000, Gasch and Werner-Washburne, 2002). The ESR is a general response observed regardless of the type of stress involved (Gasch et al., 2000). The budding yeast ESR genes are involved in oxidation processes, stress signalling, the Msn2/Msn4 network, as well as essential processes assuring optimal cell growth, e.g. ribosome biogenesis (Brion et al., 2016). It is therefore possible that when starved $yku70\Delta$ cells were spotted onto fresh YEPD at higher temperature the stress response could be activated. Such response before the first cell division would protect cells and facilitate their further growth.

a) Exponential growth prior to spotting

b) Saturation culture prior to spotting

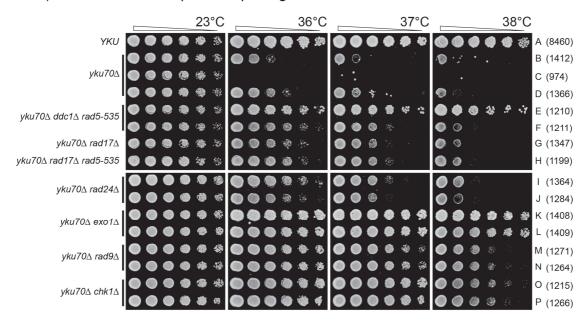


Figure 15. Culture conditions affect the apparent fitness of $yku70\Delta$ mutants with deletions of checkpoint genes

- a) Exponential growth method. Experiment performed as described previously (Maringele and Lydall, 2002).
- b) Saturation growth method. Yeast strains were pre-grown at 23°C, spot test done as in Figure 9. Plates were incubated at shown temperatures for 2 days before being photographed. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A. Letters A-P on the right of the figure are assigned to relevant genotypes from the left. Strains used in this study, apart from *YKU70*, are the same as published before (Maringele and Lydall, 2002).

3.1.6 Discussion/Conclusions

I confirmed that deletion of *DDC1* drastically suppresses the temperature sensitivity of *cdc13-1* strains and that growth of *cdc13-1* ddc1Δ is similar to *cdc13-1* exo1Δ mutants (Zubko et al., 2004, Addinall et al., 2008). I showed for the first time that mutations previously shown to be critical for Ddc1 checkpoint function upon DNA damage (e.g. induced by UV or 4-NQO) play similar role in response to defective telomeres of *cdc13-1* mutants (Table 2). However, none of tested alleles showed the same effect on *cdc13-1* fitness as *DDC1* deletion. All *DDC1* alleles which strongly suppressed *cdc13-1* fitness contained the *T602A* mutation. It seems that T602 residue, which facilitates Dpb11 recruitment and subsequent Mec1 activation (Navadgi-Patil and Burgers, 2009) is important for Ddc1 checkpoint function. Ddc1 protein with multiple mutated residues (e.g. in *ddc1*-M8, *ddc1*-M11 or *ddc1*-W352A, *W544A*, *T602A*) might not fold properly to acquire biologically functional conformation, which could result in checkpoint function loss by *DDC1* alleles.

I observed that yku70∆ strains with mutations of checkpoint genes were fitter at higher temperatures than yku70∆ mutants. The 9-1-1 complex and Rad24 had no effect on ssDNA accumulation or on telomere length of yku70∆ strains. I also showed that the method of cell culture affected subsequent yeast growth. I reproduced the published experiment where cells were in exponential growth phase (Maringele and Lydall, 2002). However, when cells were grown till saturation it was easier to observe the suppression effect of the 9-1-1 complex and *RAD24* mutations on *yku70*∆ growth. There are some possible explanations for difference in growth between saturated cells and exponentially grown culture: i) cells growing until saturation prior to spotting onto fresh YEPD may enter a quiescent state until nutrients become available or become arrested in G1 phase of the cell cycle. Subsequent growth at higher temperature might activate stress response, which protect cells from high temperature stress and facilitate growth; ii) perhaps yku70∆ cells, if arrested in G1 phase of the cell cycle, accumulated DNA damage due to defects in NHEJ repair pathway. This hypothesis would explain why mutations of checkpoint gene deletions slightly suppressed growth of yku70∆ cells at higher temperature; iii) first cell cycles after prolonged culture of $yku70\Delta$ cells might be longer, and therefore slower growing cells would be observed as "fitter" at higher temperatures; iv) problems at telomeres somehow might be not recognised by cells grown until saturation. None of these

explanations were tested in the thesis, and it might be interesting to see if any addresses the question. The effects of *DDC1* alleles on $yku70\Delta$ fitness were not tested and it would be interesting to see if mutation of T602 residue of Ddc1 affects the growth of $yku70\Delta$ mutants.

Source	DDC1 alleles	Growth of cdc13-1 at restrictive temp. §	UV- induced Ddc1 phospho- rylation	UV- induced Rad53 phospho- rylation *	4-NQO- induced Rad53 phospho- rylation	UV sensitivity (60-70 J/m²)	CPT sensitivity (10 µg/mL)
	ddc1-M3	_	+++	+++	N/A	N/A	N/A
M. Muzi-Falconi	ddc1-M8	++	_	_	N/A	N/A	N/A
	ddc1-M11	++	_	_	N/A	N/A	N/A
	ddc1-T602A	+	N/A	_	N/A	N/A	N/A
	ddc1-T602S	_	N/A	+++	N/A	N/A	N/A
	DDC1	_	+++	+++	N/A	N/A	N/A
	DDC1	_	N/A	N/A	+++	+	_
	ddc1 Δ	+++	N/A	N/A	_	+++	+++
P. Burgers	ddc1-W352A	+	N/A	N/A	++	+	+
	ddc1-W352A,W544A	+	N/A	N/A	+	+	+
	ddc1- W352A,W544A,T602A	++	N/A	N/A	_	++	++
	ddc1-(1-404),W352A	++	N/A	N/A	_	++	N/A
	ddc1-T602A	+	N/A	N/A	+	+	_

Table 2. Response of *DDC1* alleles to DNA damage

§ - analysed in this thesis; * - *dot1*∆ background. Response of tested alleles to DNA damage is indicated by: — - no response, + - weak response, ++ - moderate response, +++ - strong response; N/A – not tested. Based on (Puddu et al., 2008, Navadgi-Patil and Burgers, 2009).

3.2 The role of Dpb11 in the fitness of *cdc13-1* and *yku70*∆ mutants

3.2.1 Alleles of DPB11 chosen to study checkpoint function

Dpb11 is a candidate to take over the checkpoint role of Ddc1 in $yku70\Delta$ mutants. In order to examine the effect of DPB11 on $yku70\Delta$ fitness the DPB11 endogenous gene was knocked out. DPB11 is an essential gene and therefore was deleted in diploids: cdc13-1/CDC13 and $yku70\Delta/YKU70$ (DDY606 and DDY611, Appendix A). Point mutations of DPB11 shown previously to be crucial for Mec1 activation were introduced on plasmids (Table 3) (Navadgi-Patil et al., 2011).

Plasmid (pDL)	DPB11 alleles	Source	Mutation	Mutated sequence
1545	pRS313-HIS3-DPB11	P. Burgers	WT	N/A
1552	pRS313-HIS3-dpb11-(1-601)	P. Burgers	Y601-STOP	tyrosine TAC into STOP codon TAG
1553	pRS313-HIS3-dpb11-W700A	P. Burgers	W700A	tryptophan TGG into alanine GCG
1554	pRS313-HIS3-dpb11-Y735A	P. Burgers	Y735A	tyrosine TAT into alanine GCT
1555	pRS313-HIS3-dpb11- W700A, Y735A	P. Burgers	W700A	tryptophan TGG into alanine GCG
1555			Y735A	tyrosine TAT into alanine GCT
	pRS313-HIS3-dpb11- W700A, T731A, Y735A		W700A	tryptophan TGG into alanine GCG
1556		P. Burgers	T731A	threonine ACT into alanine GCT
			Y735A	tyrosine TAT into alanine GCT

Table 3. Mutations of *DPB11* **used**. All mutations were confirmed by sequencing.

3.2.2 Plasmids carrying DPB11 alleles are unable to rescue dpb11∆ at high rate

The plasmids carrying mutations of *DPB11* were introduced into diploid strains in order to rescue $dpb11\Delta$, then diploids were sporulated, spores were dissected and germinated. Haploid strains were used in further experiments. I observed higher than expected spore inviability of strains, in which *DPB11* was deleted and covered by a plasmid (Fig. 16a). If the plasmids fully rescued *DPB11* deletion and plasmids were transmitted at 100 % efficiency, 100 % of $dpb11\Delta$ spores should germinate into colonies. However, as presented in Figure 16a, on average 45 % of colonies contained the plasmid, and on average 27 % of colonies with the plasmid had the *DPB11* gene deleted (G418^r). I never observed $dpb11\Delta$ strain without the plasmid carrying *DPB11* or alleles. Due to poor spore viability and frequent plasmid loss

I wondered whether the spore lethality was caused by *DPB11* deletion in diploid strains. I tested the spore viability of "parental" diploid strains: prior to *DPB11* deletion and after *DPB11* deletion in cdc13-1 and $yku70\Delta$ backgrounds (Fig. 16b). Germination of spores of cdc13-1/CDC13 strain was less efficient than expected – spore viability was 75 % (Fig. 16b). 100 % spore viability was expected because there is no reason for spore lethality of cdc13-1 cells. When DPB11 was deleted the spore viability was 39 %. Spore viability of cdc13-1/CDC13 $dpb11\Delta/DPB11$ pDPB11 diploid was 53 % and plasmid pDPB11 (pDL1545) was transmitted to $dpb11\Delta$ cells at 29 % efficiency (Fig. 16a and b). Spore viability of $yku70\Delta/YKU70$ diploids was 94 %. When DPB11 was deleted, the spore viability was 50 % as expected for deletion of essential gene (Fig. 16c). In $yku70\Delta/YKU70$ $dpb11\Delta/DPB11$ pDPB11 diploid the spore viability was 73 %, and plasmid pDPB11 (pDL1545) was transmitted to $dpb11\Delta$ cells at 23 % efficiency (Fig. 16a and c).

The spore germination efficiency, shown in Figure 16b and c, indicates that meiotic problems in *cdc13-1/CDC13* strain might occur, as the spore viability was only 75%. The spore viability of *cdc13-1/CDC13 dpb11\D/DPB11* was also low and might be due to haploinsufficiency, when a single functional copy of the gene does not fulfil a gene's function in a diploid. *CDC13* and *DPB11* are essential genes; therefore mutations of both genes in one diploid might result in combined haploinsufficiency and/or other, unknown defects. Another problem observed was frequent plasmid loss. The alleles of *DPB11* were carried by centromeric plasmids and cells have the tendency to lose the plasmid during division.

a)

DDY	Plasmid (pDL)	No. of tetrads	No. of spores	No. of visible colonies from germinated spores (%)	No. of colonies with plasmid (%)	No. of G418 ^r colonies with plasmid (%)
cdc13-1/CDC13	p <i>DPB11</i>	40	160	85 (53)	41 (48)	25 (29)
<i>dpb11∆/DPB11</i> (DDY606)	p <i>DPB11</i> alleles	219	876	458 (52)	219 (48)	117 (25)
yku70∆/YKU70	p <i>DPB11</i>	16	64	47 (73)	18 (38)	11 (23)
<i>dpb11∆/DPB11</i> (DDY611)	p <i>DPB11</i> alleles	162	636	379 (59)	178 (47)	114 (30)
				On average:	45 %	27 %

cdc13-1/CDC13 (75 %)

cdc13-1/CDC13 dpb11\(\triangle DPB11\)

pDPB11 (DDY606/pDL1545) (53 %)

cdc13-1/CDC13 dpb11\(\triangle DPB11\)

pDPB11 (DDY606/pDL1545) (53 %)

Figure 16. Spore viability prior to *DPB11* deletion and plasmid transformation

- a) Spore viability of $dpb11\Delta/DPB11$ strains and plasmid transmission efficiency. $G418^r$ G418 resistant dpb11::KANMX cells, pDPB11 pDL1545.
- b) Examples of germinated spores of *cdc13-1/CDC13* diploids.
- c) Examples of germinated spores of yku70∆/YKU70 diploids.

Top panels – spores germinated of yeast strains before *DPB11* was deleted. Spore viabilities calculated for one plate of each genotype are shown.

Medium panels - spores germinated of yeast strains after *DPB11* deletion. Spore viabilities calculated for two plates of each genotype are shown.

Bottom panels – spores germinated of yeast strains after *DPB11* deletion and pDL1545 transformation. Spore viabilities calculated for four plates (a) and two plates (b) of each genotype are shown. *White cross* – no tetrad was dissected at this location. Strains were first grown in YEPD, or –HIS liquid if contained the plasmid. Then strains were sporulated in ESM, tetrads were dissected and germinated on YEPD plates. Pictures of colonies were taken after 5 days at 23°C for *cdc13-1* background (b), and after 2-3 days at 30°C for *yku70*Δ background (c). Strains were: *yku70*Δ/*YKU70* (DLY6885xDLY3001), *cdc13-1/CDC13* (DLY1108xDLY3001), *cdc13-1/CDC13* dpb11Δ/DPB11 (DDY606), *yku70*Δ/*YKU70* dpb11Δ/DPB11 (DDY611), *cdc13-1/CDC13* dpb11Δ/DPB11 pDL1545 (DDY606/pDL1545), *yku70*Δ/*YKU70* dpb11Δ/DPB11 pDL1545 (DLY611/pDL1545). Strain details are in Appendix A.

3.2.3 DPB11 alleles affect cdc13-1 fitness much less than DDC1 alleles

It was reported that three conserved aromatic amino acids of *DPB11*, W700, T731 and Y735, are critical for Mec1 activation by Dpb11 (Fig. 17a) (Pfander and Diffley, 2011, Navadgi-Patil et al., 2011). In order to test whether different *DPB11* alleles respond to telomere damage, *cdc13-1 dpb11*∆ haploid strains carrying *DPB11* alleles were generated. Figure 17 illustrates how alleles of *DPB11* affect the growth of *cdc13-1* cells.

All tested *DPB11* alleles slightly suppressed *cdc13-1* ts at 27-28°C, but not at 30°C (Fig. 17b G-P, compare to C-F). Due to a small effect of *DPB11* alleles on *cdc13-1* growth and the fact, that Dpb11 was shown to be recruited to the site of damage by Ddc1 (Navadgi-Patil and Burgers, 2009), I decided to combine $ddc1\Delta$ with $dpb11\Delta$ pdpb11-W700A, T731A, Y735A mutations in cdc13-1 background. I observed, that when *DDC1* was also deleted, the triple mutants, cdc13-1 $ddc1\Delta$ $dpb11\Delta$ pdpb11-W700A, T731A, Y735A were fitter than double mutants at all temperatures (Fig. 17c W-X, compare to T) and grew similarly to cdc13-1 $ddc1\Delta$ strains (Fig. 17c W-X, compare to U).

Residues W700, T731 and Y735 of Dpb11 were reported as important for Mec1 activation to some extent, and therefore point mutants show partial defects in the G2 checkpoint upon 4-NQO treatment, as measured by Rad53 phosphorylation (Navadgi-Patil et al., 2011, Pfander and Diffley, 2011). I observed that all *DPB11* alleles indicated in Table 3 had the same small effect on cdc13-1 growth, and the effect was much smaller than of $ddc1\Delta$. cdc13-1 strains with mutations of DPB11 and DDC1 grew like cdc13-1 $ddc1\Delta$ mutants. Dpb11 might contribute a little to Ddc1 checkpoint function. However, the role of Ddc1 is more important than of Dpb11.

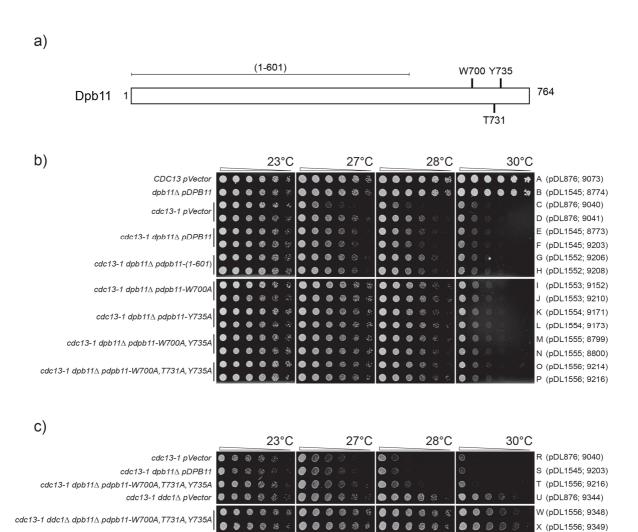


Figure 17. DPB11 alleles slightly affect growth of cdc13-1 mutants

- a) Mutations used (adapted from (Navadgi-Patil et al., 2011)). (1-601) Dpb11 C-terminal truncation.
- b-c) Spot test done as in Figure 9. Yeast strains were spotted onto –HIS plates to select for plasmids. Strains A-P were grown on one rectangular plate. Strains R-X were grown on a different rectangular plate. *pVector* pRS314. The relevant genotypes of the strains are indicated on the left, plasmid and strain numbers on the right; strain details are in Appendix A. Letters A-X on the right of the figure are assigned to relevant genotypes from the left.

3.2.4 DPB11 alleles do not affect yku70∆ fitness

In order to test how DPB11 alleles affect $yku70\Delta$ fitness the spot test was performed (Fig. 18). One $yku70\Delta$ $dpb11\Delta$ pDPB11 strain grew better at 35 - 36°C than the other strain (Fig. 18 D-E). The better growth of one strain might be caused e. g. by plasmid copy number, if cells contain more than one copy of pDPB11 plasmid. This however was not tested. I will compare $yku70\Delta$ $dpb11\Delta$ pDPB11 DLY8784 mutant with other strains.

All strains, apart from wild type, looked like $yku70\Delta$ and were less fit above 35°C (Fig. 18 F-N, compare to A-E). None of tested DPB11 alleles affected $yku70\Delta$ growth. Deletion of DDC1 in $yku70\Delta$ $dpb11\Delta$ pdpb11 W700A, T731A, Y735A mutants slightly improved strains fitness (Fig. 18 O-P, compare to M-N). The suppression of $yku70\Delta$ by $ddc1\Delta$ is hardly detectable, possibly because cells grow slower in selective media (-HIS) and might have been collected for spot testing at exponential growth phase. In sections 3.1.4 and 3.1.5 I showed that $ddc1\Delta$ slightly suppressed $yku70\Delta$ ts dependent on the culture conditions. The effect of culture condition remains to be tested by growing cells till saturation prior spotting. Also, the $yku70\Delta$ $ddc1\Delta$ pVector control strain was not included in this spot test, which makes comparisons hard to make.

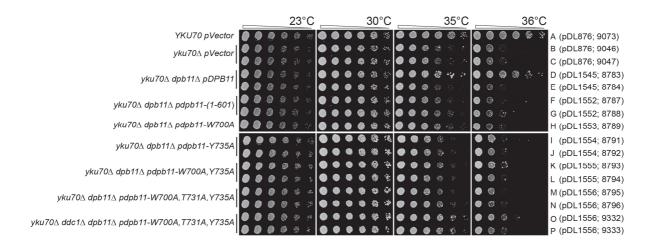


Figure 18. DPB11 alleles do not affect growth of yku70∆ mutants

Spot test done as in Figure 9. Yeast strains were spotted onto –HIS plates to select for plasmids. Strains A-P were grown on one rectangular plate. *pVector* – pRS413. The relevant genotypes of the strains are indicated on the left, plasmid and strain numbers on the right; strain details are in Appendix A. Letters A-P on the right of the figure are assigned to relevant genotypes from the left.

3.2.5 Discussion/Conclusions

Low spore viability was observed when *DPB11* was deleted in *cdc13-1/CDC13* strain. Cdc13 and Dpb11 are important for chromosomal and telomere replication, respectively (Boos et al., 2011, Tanaka et al., 2013, Chen and Lingner, 2013). It might be therefore possible that poor spore viability was caused by severe defects in replication process in a heterozygous cdc13-1/CDC13 $dpb11\Delta/DPB11$ diploid. Also, low spore viability might be the result of haploinsufficiency due to presence of only one functional copy of a gene in a diploid. I also observed that plasmids carrying DPB11 and its alleles are not efficiently transmitted to daughter cellsbecause on average only 45 % of viable spores contained the plasmid, and on average 27% of viable spores contained the plasmid and were G418 resistant ($dpb11\Delta$). Cells have the tendency to lose centromeric plasmids. If DPB11 alleles were integrated into the genome, it would probably facilitate addressing the question regarding the role of Dpb11 at uncapped telomeres.

All alleles of *DPB11* slightly suppressed the *cdc13-1* defect at higher temperatures. However, it was shown that only *dpb11-(1-601)* and *dpb11-W700A,T731A,Y735A* mutants lost Rad53 phosphorylation after 4-NQO treatment (Table 4) (Navadgi-Patil et al., 2011). It was also shown that Dpb11 cooperate with Ddc1 in Mec1 activation, and also that Ddc1 recruits Dpb11 in response to DNA damage (Puddu et al., 2011, Navadgi-Patil and Burgers, 2011, Pfander and Diffley, 2011). *cdc13-1 ddc1* Δ dpb11 Δ dpb11-W700A,T731A,Y735A mutants did not differ from a *cdc13-1 ddc1* Δ strain. This suggests that Ddc1 and Dpb11 function in the same pathway, but Ddc1 has much stronger phenotype and is more important in response to *cdc13-1* defective telomeres.

None of tested *DPB11* alleles affected growth of $yku70\Delta$ strains, and $yku70\Delta$ $ddc1\Delta$ $dpb11\Delta$ dpb11-W700A, T731A, Y735A mutants did not grow much better than $yku70\Delta$ $dpb11\Delta$ dpb11-W700A, T731A, Y735A strains. In section 3.1.5 I observed that $ddc1\Delta$ slightly suppressed $yku70\Delta$ ts, and the suppression was easier to observe when cells were grown until saturation prior spotting. In this experiment however, cells were grown in liquid–HIS medium in order to select for the plasmids at all times. It might be possible that cells carrying plasmids, although grown for approximately 24h in liquid –HIS, did not reach the saturation. This might explain why the effect of $ddc1\Delta$ on

 $yku70\Delta\ dpb11\Delta\ dpb11-W700A, T731A, Y735A$ cells is relatively weak. It might be interesting to test whether saturated cultures of $yku70\Delta\ ddc1\Delta$ mutants with DPB11 alleles would affects strains' growth more.

rce	<i>DPB11</i> alleles	Grow	_	Mec1 activity	4-NQO-induced Rad53	
Source	Di Di i dilolos	restrictive temp. §		stimulation	phosphorylation	
		cdc13-1	yku70∆			*
P. Burgers	DPB11	_	_	+++	+++	+++
	dpb11-(1-601)	+	_	_	+++	+
	dpb11-W700A	+	_	+	N/A	+++
	dpb11-Y735A	+	_	+	N/A	+++
	dpb11-W700A, Y735A	+	_	_	+++	++
	dpb11-W700A,T731A,Y735A	+	_	N/A	N/A	+
	ddc1∆ dpb11-W700A,T731A,Y735A	+++	+	N/A	N/A	+

Table 4. Response of *DPB11* alleles to DNA damage

§ - analysed in this thesis; * - *ddc1-W352A,W544A* background. Response of tested alleles to DNA damage is indicated by: — - no response, + - weak response, ++ - moderate response, +++ - strong response; N/A – not tested. Based on (Navadgi-Patil et al., 2011).

3.3 The role of Dna2 in cell cycle arrest of cdc13-1 and yku70∆ mutants

3.3.1 Alleles of DNA2 chosen to study checkpoint function

Dna2 is a conserved nuclease/helicase involved in DNA replication and telomere resection (Pokharel and Campbell, 2012, Ngo et al., 2014). In yeast, Dna2 shows partial redundancy with the 9-1-1 complex and Dpb11 in the replication checkpoint and Mec1 activation (Kumar and Burgers, 2013). Therefore Dna2 is another candidate to replace the checkpoint role of Ddc1 in $yku70\Delta$ mutants. In order to examine the effect of Dna2 on $yku70\Delta$ fitness, the DNA2 endogenous gene was knocked out. DNA2 is an essential gene and therefore was deleted in diploids: cdc13-1/CDC13 and $yku70\Delta/YKU70$ (DDY607 and DDY609, Appendix A). Point mutations of DNA2 shown previously to be important for Mec1 activation were introduced on plasmids (Table 5). Two alleles of DNA2, $dna2\Delta500$ and $dna2\Delta450$, turned out to be inviable and for this reason their effects in telomere defective strains could not be tested.

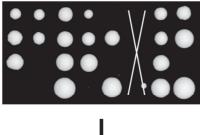
Plasmid (pDL)	DPB11 alleles	Source	Mutation	Mutated sequence
1544	pRS314-TRP1-DNA2	P. Burgers	WT	N/A
1561	pRS314-TRP1-dna2-	P. Burgers	W128A	tryptophan TGG into alanine GCC
	W128A, Y130A	u. g u. u	Y130A	tyrosine TAT into alanine GCT
1560	pRS314-TRP1-DNA2	Y. Seo	WT	N/A
1558	pRS314-TRP1-dna2∆500	Y. Seo	N-terminal Deletion	DNA sequence starts after phenylalanine TTT (F500)
1557	pRS314-TRP1-dna2∆450	Y. Seo	N-terminal Deletion	DNA sequence starts after lysine AAG (K450)
1568	pRS314-TRP1-dna2-C519A	J. Campbell	C519A	cysteine TGT into alanine GCT
1569	pRS314-TRP1-dna2-C768A	J. Campbell	C768A	cysteine TGT into alanine GCT
1570	pRS314-TRP1-dna2-C771A	J. Campbell	C771A	cysteine TGT into alanine GCT
1571	pRS314-TRP1-dna2-C777A	J. Campbell	C777A	cysteine TGC into alanine GCC

Table 5. Mutations of DNA2 used. All mutations were confirmed by sequencing.

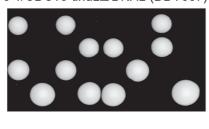
3.3.2 Plasmids carrying DNA2 alleles are unable to rescue dna2∆ at high rate

The plasmids carrying mutations of DNA2 were introduced into diploid strains in order to rescue $dna2\Delta$, as described for $dpb11\Delta$ (3.2.2). Plasmids with DNA2 alleles tend to be lost at higher rate than observed for DPB11 alleles (Fig.19 and Fig.16). On average only 29 % of viable colonies contained the plasmid carrying DNA2 or its alleles, and on average 12 % of colonies with the plasmid had the DNA2 gene deleted (G418^r) (Figure 19a).

I analysed the spore viability of "parental" diploid strains: prior to DNA2 deletion and after DNA2 deletion in cdc13-1 and $yku70\Delta$ backgrounds (Fig. 19 b and c), similarly as described for DPB11. Spore viability of cdc13-1/CDC13-1 was 75 % and spore viability of cdc13-1/CDC13-1 dna2 $\Delta/DNA2$ was 41 % (Fig. 19b). In cdc13-1/CDC13 dna2 $\Delta/DNA2$ pDNA2 diploid the spore viability was 42 %, and the plasmid pDNA2 was transmitted to $dna2\Delta$ cells at 4 % efficiency (Fig. 19a and b). Spore viability of $yku70\Delta/YKU70$ was 100 % and only 22 % when DNA2 was deleted (Fig. 19c). The spore viability of $yku70\Delta/YKU70$ dna2 $\Delta/DNA2$ pDNA2 (pDL1544) was 30 %, and plasmid pDL1544 was transmitted to $dna2\Delta$ cells at 17 % efficiency (Fig. 19a and c).

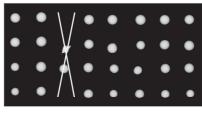

Poor spore viability of tested diploids might be a result of deficiency of one *DNA2* and one *YKU70* copy, leading to meiotic defects or haploinsufficiency. Cells also tend to lose the plasmid at a very high rate, since on average only 29 % viable colonies have the plasmid, and only 12 % of colonies with the plasmid are G418 resistant ($dna2\Delta$).

a)


DDY	Plasmid (pDL)	No. of tetrads	No. of spores	No. of visible colonies from germinated spores (%)	No. of colonies with plasmid (%)	No. of G418 ^r colonies with plasmid (%)
cdc13-1/CDC13	p <i>DNA2</i>	89	356	149 (42)	19 (13)	6 (4)
dna2∆/DNA2 (DDY607)	p <i>DNA2</i> alleles	189	756	308 (41)	51 (17)	18 (6)
yku70∆IYKU70	p <i>DNA2</i>	135	540	160 (30)	45 (49)	28 (17)
<i>dna2∆IDNA2</i> (DDY609)	p <i>DNA2</i> alleles	299	1196	391 (33)	147 (38)	71 (18)
				On average:	29 %	12 %

c)

cdc13-1/CDC13 (75 %)


cdc13-1/CDC13 dna2\(\triangle\)/DNA2 (DDY607) (41 %)

cdc13-1/CDC13 dna2∆/DNA2 pDNA2 (DDY607/pDL1544) (42 %)

yku70∆/YKU70 (100 %)

yku70\(\triangle YKU70 dna2\(\triangle /DNA2 \) (DDY609) (22 %)

yku70∆/YKU70 dna2∆/DNA2 pDNA2 (DDY609/pDL1544) (30 %)

Figure 19. Spore viability prior to DNA2 deletion and plasmid transformation

- a) Spore viability of *dna2∆/DNA2* strains and plasmid transmission efficiency. *G418*^r G418 resistant *dna2::KANMX* cells, *pDNA2* pDL1544.
- b) Examples of germinated spores of *cdc13-1/CDC13* diploids.
- c) Examples of germinated spores of *yku70∆/YKU70* diploids.

Top panels – spores germinated of yeast strains before *DNA2* was deleted. Spore viabilities calculated for one plate of each genotype are shown. *cdc13-1/CDC13* was a starting strain for *DPB11* and *DNA2* deletions, therefore the dissection of tetrads was performed once and the picture of *cdc13-1/CDC13* is also shown in Figure 16. Medium panels - spores germinated of yeast strains after *DNA2* deletion. Spore viabilities calculated for two plates of each genotype are shown.

Bottom panels – spores germinated of yeast strains after *DNA2* deletion and pDL1544 transformation. Spore viabilities calculated for six plates (a) and seven plates (b) of each genotype are shown.

White cross – no spores were scored at this location. Strains were first grown in YEPD, or –TRP liquid if contained the plasmid. Then strains were sporulated in ESM, tetrads were dissected and germinated on YEPD plates. Pictures of colonies were taken after 3-5 days at 23°C for cdc13-1 background (b), and after 2-3 days at 30°C for yku70Δ background (c). Strains were: yku70Δ/YKU70 (DLY1412xDLY3001), cdc13-1/CDC13 (DLY1108xDLY3001), cdc13-1/CDC13 dna2Δ/DNA2 (DDY607), yku70Δ/YKU70 dna2Δ/DNA2 (DDY609), cdc13-1/CDC13 dna2Δ/DNA2 pDL1544 (DDY607/pDL1544), yku70Δ/YKU70 dna2Δ/DNA2 pDL1545 (DLY609/pDL1544). Strain details are in Appendix A.

3.3.3 Some DNA2 alleles strongly affect cdc13-1 fitness

Kumar and Burgers reported that a double point mutation, dna2-W128A, Y130A, abrogated the checkpoint function of Dna2 (Kumar and Burgers, 2013). Pokharel and Campbell found that four mutations in nuclease domain, C519A, C768A, C771A, C777A, caused defects in DNA replication and repair (Pokharel and Campbell, 2012) (Fig. 20a). In order to test whether DNA2 alleles respond to telomere damage, the cdc13-1 $dna2\Delta$ haploid strains carrying DNA2 alleles were generated and spot tested.

Figure 20b illustrates that otherwise WT cells with *DNA2* alleles grew well, apart from *dna2-C771A* which was thermos-sensitve at 36°C (Fig. 20b A-E). Perhaps due to spore lethality and too few tetrads dissected no *cdc13-1 dna2*Δ *pdna2-C777A* strains were generated, and the effect of *pdna2-C777A* on *cdc13-1* was not tested. *cdc13-1* mutants with *pVector* were able to form colonies at 28°C. The heterogeneity between strains with *pVector* and *pDNA2* might be caused by *DNA2* copy number, if fitter cells carried more copies of *pDNA2* plasmid (Fig. 20b F-H). None of tested cysteine to alanine substitutions of *DNA2* suppressed *cdc13-1* defect (Fig. 20b I-M, compare to F-H). One *cdc13-1 dna2*Δ *pdna2-C771A* strain was extraordinary and grew up to 36°C, and I assume it was a single *dna2-C771A* mutant rather than *cdc13-1 dna2*Δ *pdna2-C771A* double mutant (Fig. 20b M, compare to E); I did not confirm my assumption. The double point mutation *dna2-W128A*, *Y130A* strongly suppressed *cdc13-1* defect so that double mutants grew at 30°C (Fig. 20b N-P, compare to F-H).

Mutation of two residues of Dna2, W128 and Y130, significantly affected the growth of *cdc13-1* strains. Such strong suppression might be due to defective Mec1 activation and cell cycle arrest, or defective nuclease function of Dna2. If Dna2 contributes to the checkpoint activation, than *ddc1*Δ and *dna2-W128A, Y130A* allele should have similar effect on *cdc13-1* fitness. To test this hypothesis the effect of *ddc1*Δ and *dna2-W128A, Y130A* mutations on *cdc13-1* was verified (Fig. 20c). *cdc13-1 dna2*Δ *pdna2-W128A, Y130A* double mutants grew up to 30°C, but were slightly less fit than *cdc13-1 ddc1*Δ strains (Fig. 20c G-H, compare to F and I-L). Surprisingly, *cdc13-1 ddc1*Δ *dna2*Δ *pdna2-W128A, Y130A* triple mutants grew at 36°C (Fig. 20c M-P, compare to I-L). It was reported that simultaneous mutations of *ddc1, dpb11* and *dna2*, which eliminate the checkpoint functions of all three genes, abrogate the

Mec1-dependent checkpoint (Kumar and Burgers, 2013). It might be possible thatin $cdc13-1\ ddc1\Delta\ dna2\Delta\ pdna2-W128A, Y130A$ triple mutants the Mec1-dependent checkpoint is defective due to lack of functional Ddc1, Dpb11 (which is recruited by Ddc1) and Dna2 checkpoint proteins. However, the Mec1 activation was not tested in this thesis, and at least another spot test involving cdc13-1 and $mec1\Delta$ mutation should be performed to compare to the phenotype of $cdc13-1\ ddc1\Delta\ dna2\Delta\ pdna2-W128A, Y130A$ mutants.

Alternative explanation for better growth of cdc13-1 $dna2\Delta$ pdna2-W128A, Y130A and cdc13-1 $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A mutants at higher temperatures might be less DNA damage in those strains. cdc13-1 $dna2\Delta$ pdna2-W128A, Y130A and cdc13-1 $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A mutants grow at 30°C and 36°C, respectively, and both contain a dna2-W128A, Y130A allele. It might be therefore possible that the dna2-W128A, Y130A allele counteracts the cdc13-1 defect. This could be the case if e.g. dna2-W128A, Y130A was defective in nuclease function of Dna2, or in nuclease recruitment to damaged telomeres. In turn, uncapped telomeres of cdc13-1 cells would not be resected and the accumulation of ssDNA would be abrogated. Such telomeres would not be detected as DNA damage by checkpoints and cdc13-1 cells, although uncapped, would be able to grow at higher temperatures. This is however a hypothesis which remains to be tested.

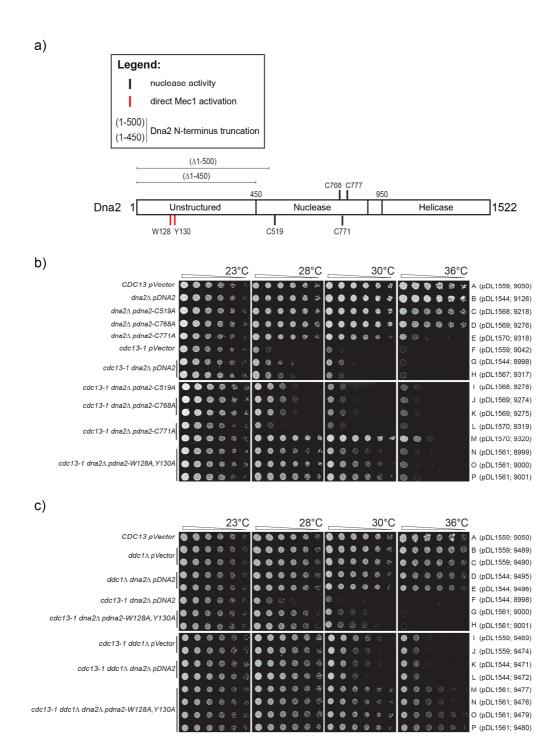


Figure 20. DNA2 alleles affect growth of cdc13-1 mutants

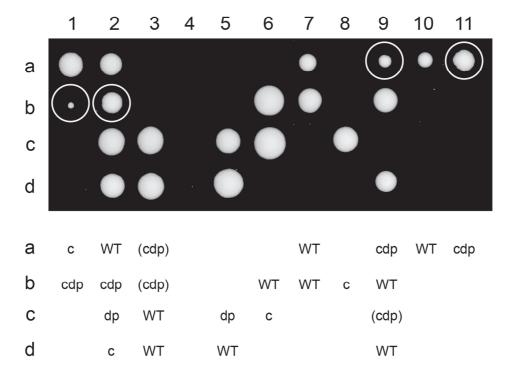
a) Mutations used (adapted from (Pokharel and Campbell, 2012, Kumar and Burgers, 2013)). (Δ 1-450), (Δ 1-500) – Dna2 N-terminal truncations.


b-c) Spot test done as in Figure 9. Yeast strains were spotted onto –TRP plates to select for plasmids. Strains A-P in b) and c) were grown on individual rectangular plates. Spot tests in b) and c) were performed on different days. *pVector* - pRS314. The relevant genotypes of the strains are indicated on the left, plasmid and strain numbers on the right; strain details are in Appendix A. Letters A-P on the right of the figure are assigned to relevant genotypes from the left.

3.3.4 cdc13-1 dna2∆ pdna2-W128A,Y130A and cdc13-1 ddc1∆ dna2∆ pdna2-W128A,Y130A mutants rearrange telomeres

To test whether *cdc13-1* mutation reverted into *CDC13*, I performed a PCR (as in 2.14.3) to distinguish a *cdc13-1* allele from *CDC13* in double and triple mutants (Fig. 21a). A *cdc13-1* allele has an *Eco*RI site which is not present in *CDC13* and allows for quick sequence distinction (Lin and Zakian, 1996). I confirmed that *cdc13-1* restriction fragment length polymorphism (RFLP) is still present in temperature resistant strains (Fig.21a). This indicates that *cdc13-1 ddc1*Δ *dna2*Δ *pdna2-W128A,Y130A* strains did not revert *cdc13-1* mutation into WT *CDC13* sequence.

To test the hypothesis about telomere rearrangements I determined the telomere structure of cdc13-1 $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A and control strains by Southern blot (Fig. 21b). Interestingly, cdc13-1 $dna2\Delta$ pdna2-W128A, Y130A and cdc13-1 $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A mutants indeed had rearranged telomeres (Fig. 21b, lines 10, 15-16, compare to 18-19). Some survivors maintain telomere length and recover at a low frequency by recombination and amplification of Y' or TG_{1-3} repeats (Lundblad and Szostak, 1989, Lundblad and Blackburn, 1993, Lydall, 2003). The telomere structures of cdc13-1 $dna2\Delta$ pdna2-W128A, Y130A and cdc13-1 $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A mutants were similar to telomeres of $tlc1\Delta$ mutant. Such similarity indicates that strains carrying the dna2-W128A, Y130A allele formed Type II survivors, which amplified TG_{1-3} repeats. Interestingly, colonies from germinated spores of a diploid carrying pdna2-W128A, Y130A plasmid were


heterogeneous in size and viability (Fig. 22), although survivors initially form small colonies and grow slowly. The formation of survivors in the presence of *dna2-W128A,Y130A* allele suggests, that *dna2-W128A,Y130A* allele is important for the telomerase function at uncapped telomeres of *cdc13-1* mutants, the mechanism of which is unclear to me. Based on the spot tests presented in Figure 20, and Southern blot shown in Figure 21, I conclude that the increased fitness of *cdc13-1* strains correlates with telomere rearrangements.

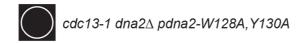


Figure 21. cdc13-1 and cdc13-1 $ddc1\Delta$ mutants have telomeres rearranged in the presence of dna2-W128A, Y130A

- a) The presence of mutation at P371S, which confers EcoRI restriction enzyme site (Lin and Zakian, 1996), was confirmed by PCR. Primers were M550 and M551, primer details are in Appendix C. DNA was isolated from strains grown overnight in liquid YEPD at 23°C using Yale method. Restriction digest of DNA was performed following PCR, and run on 2 % agarose gel. Orange stars – cdc13-1 dna2∆ pdna2-W128A, Y130A strains which grew at 30°C; red stars - cdc13-1 ddc1∆ dna2∆ pdna2-W128A, Y130A strains which grew at 36°C. Strain genotypes are indicated above gel lines. Lines 1 & 16 - +1kb molecular ladder. Lines 3-14 - DNA isolated from strains of passage 4. Strains were: 2 – CDC13 Vector (DLY9050), 3 – cdc13-1 dna2∆ pDNA2 (DLY8998), 4 - cdc13-1 (DLY1108), 5 - cdc13-1 dna2 \triangle pdna2-W128A, Y130A (DLY9000), $6 - cdc13-1 dna2\Delta pdna2-W128A, Y130A$ (DLY9001), $7 - ddc1\Delta \ Vector (DLY9490), 8 - cdc13-1 \ ddc1\Delta \ Vector (DLY9469), 9 - cdc13-1$ $ddc1\Delta$ Vector (DLY9474), $10 - cdc13-1 ddc1\Delta dna2\Delta pDNA2$ (DLY9471), 11 – cdc13-1 ddc1 \triangle dna2 \triangle pDNA2 (DLY9472), 12 – cdc13-1 ddc1 \triangle dna2 \triangle pdna2- $W128A, Y130A (DLY9476), 13 - cdc13-1 ddc1\Delta dna2\Delta pdna2-W128A, Y130A$ (DLY9479), $14 - cdc13-1 \ ddc1\Delta \ dna2\Delta \ pdna2-W128A, Y130A \ (DLY9480), 15 - NTC$ - H₂O.
- b) Genomic DNA from a) was used. Telomeres were analysed by Southern blot. SYBR Safe was used as a loading control. $tlc1\Delta$ and $yku70\Delta$ $mre11\Delta$ strains were used as controls for type II and I survivors, respectively (Maringele and Lydall, 2004). Lines 1-2 & 23-24 molecular ladders. Lines 4-17 DNA isolated from strains of passage 4. Strains were: $3 CDC13 \ Vector$ (DLY9050), $4 ddc1\Delta \ Vector$ (DLY9489), $5 ddc1\Delta \ Vector$ (DLY9490), $6 ddc1\Delta \ dna2\Delta \ pDNA2$ (DLY9495), $7 ddc1\Delta \ dna2\Delta \ pDNA2$ (DLY9496), $8 cdc13-1 \ dna2\Delta \ pDNA2$ (DLY8998), $9 cdc13-1 \ (DLY1108)$,
- $10-cdc13-1\ dna2\Delta\ pdna2-W128A, Y130A\ (DLY9001),\ 11-cdc13-1\ ddc1\Delta\ Vector\ (DLY9469),\ 12-cdc13-1\ ddc1\Delta\ Vector\ (DLY9474),\ 13-cdc13-1\ ddc1\Delta\ dna2\Delta\ pDNA2\ (DLY9471),\ 14-cdc13-1\ ddc1\Delta\ dna2\Delta\ pDNA2\ (DLY9472),\ 15-cdc13-1\ ddc1\Delta\ dna2\Delta\ pdna2-W128A, Y130A\ (DLY9476),\ 16-cdc13-1\ ddc1\Delta\ dna2\Delta\ pdna2-W128A, Y130A\ (DLY9479),\ 17-cdc13-1\ ddc1\Delta\ dna2\Delta\ pdna2-W128A, Y130A\ (DLY9480),\ 18-tlc1\Delta\ (DLY1845),\ 19-tlc1\Delta\ (DLY1846),\ 16-NTC-H_2O.\ Strain\ details\ are\ in\ Appendix\ A.$

cdc13-1/CDC13 dna2\(\triangle\)DNA2 pdna2-W128A, Y130A

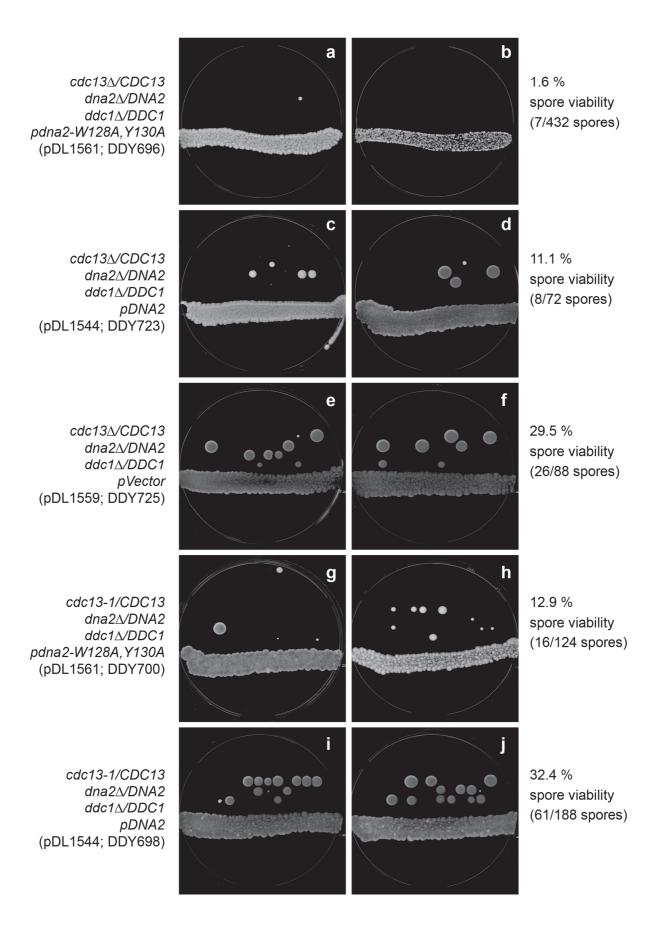
WT = wild type c = cdc13-1

 $d = dna2\Delta$

p = pDL1561 (pdna2-W128A, Y130A)

() = inferred genotype

Figure 22. *cdc13-1 dna2∆ pdna2-W128A,Y130A* colonies have heterogeneous size


Example of tetrad dissection (in total 69 tetrads were dissected) from a sporulated diploid (DDY607/pDL1561). Spores were germinated for 5 days at 23°C before photographing. Viable *cdc13-1 dna2*\(\Delta\) *pdna2-W128A*, *Y130A* strains are encircled.

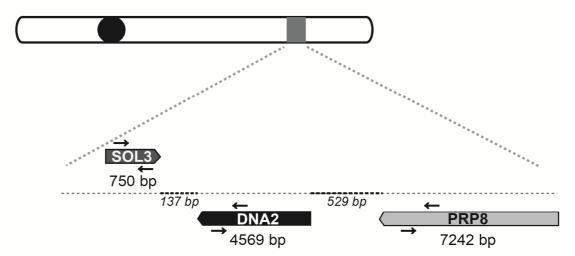
3.3.5 cdc13∆ lethality is not bypassed by ddc1∆ dna2-W128A,Y130A mutations

One of the hypotheses concerning the growth of $cdc13-1\ ddc1\Delta\ dna2\Delta\ dna2-W128A$, Y130A strains at 36°C was that $ddc1\Delta\ dna2\Delta\ dna2-W128A$, Y130A mutations may bypass $cdc13\Delta$ lethality, like defects of NMD do (Holstein et al., 2014). To test the hypothesis, $cdc13\Delta/CDC13\ ddc1\Delta/DDC1\ dna2\Delta/DNA2\ pdna2-W128A$, Y130A and other diploids were generated, sporulated and dissected (Fig. 23). Interestingly, none of the strains with deletion of CDC13 sporulated at 23°C, while those with cdc13-1 mutation did. Differently to the standard protocol of sporulation, all strains sporulated at 20°C within 5 days, then spores were dissected and germinated at 23°C.

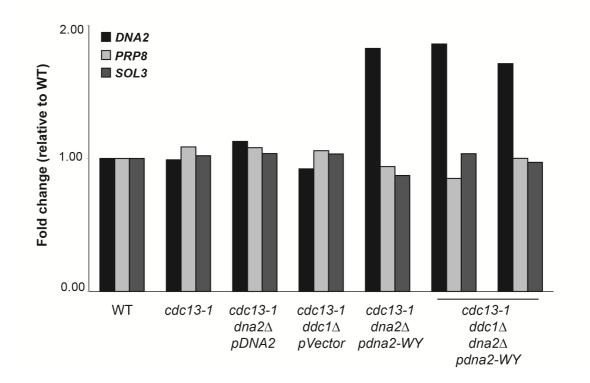
The massive spore lethality is noticeable for all diploids (Fig. 23 a-j). Spore viability of $cdc13\Delta/CDC13$ $ddc1\Delta/DDC1$ $dna2\Delta/DNA2$ pdna2-W128A, Y130A strain was only 1.6 %, and spore viability of other strains varied between 11.1-32.4 % (Fig. 23 a-b, compare to c-j). More spores were viable when diploid $cdc13\Delta/CDC13$ $ddc1\Delta/DDC1$ $dna2\Delta/DNA2$ carried pDNA2 plasmid (11.1 %) or an empty pVector (29.5 %) (Fig. 23 c-d and e-f). More spores were also viable when diploids contained a cdc13-1 mutation instead of CDC13 deletion and carried a pdna2-W128A, Y130A (12.9 %) or pDNA2 plasmid (32.4 %). CDC13 gene could not be deleted in $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A nor $ddc1\Delta$ $dna2\Delta$ pDNA2 backgrounds, and therefore the hypothesis of $cdc13\Delta$ bypass by $ddc1\Delta$ $dna2\Delta$ pdna2W128A, Y130A was discounted.

Spore viability of *cdc13*\(\textit{\textit{ddc1}\(\textit{\textit{d}}\) *ddc1*\(\textit{\textit{d}}\) *ddc1*\(\textit{\textit{d}}\) *ddc2*\(\textit{\textit{d}}\) *ddc1*\(\textit{\textit{d}}\) *ddc1*\(\textit{\textit{d}}\) *ddc2*\(\textit{d}\) *dna2*\(\textit{d}\) *dybe* if spores were germinated at 23°C (7 colonies out of 432 dissected spores (Fig. 23 a-b). Maybe if spores were germinated at 20°C and not at 23°C, more spores would form colonies. I conclude that simultaneous heterozygous deletions of *CDC13*, *DDC1* and *DNA2* cause severe defects in meiosis, resulting in generation of spores that are inviable. It is to be further tested whether such defects are related to genomic DNA replication and S-phase checkpoint or spindle checkpoint perturbations. I observed that p*Vector* and p*DNA2* allowed slightly higher spore viability (29.5 % and 11.1 %, respectively) than p*dna2-W128A*, *Y130A* (1.6 %). One explanation could be a dominant effect of the *dna2-W128A*, *Y130A* allele, which may cause e.g. an increased activity of a gene product, or a loss of gene function. However, this hypothesis was not tested.

Figure 23. $ddc1\triangle dna2\triangle pdna2-W128A,Y130A$ and $ddc1\triangle dna2\triangle pDNA2$ mutations do not suppress the lethality of $cdc13\triangle$


Examples of tetrad dissection from DDY696, DDY723, DDY725, DDY700 and DDY698 diploids. Strains were grown in -TRP liquid at 23°C, then were sporulated in ESM at 20°C for 5 days, tetrads were dissected and germinated on YEPD plates. Spores were germinated for 10 days at 23°C before photographing. The relevant genotypes of the strains are indicated on the left, spore viability (percentage of the number of viable colonies/number of total dissected spores) on the right; strain details are in Appendix A.

3.3.6 Aneuploidy or more copies of pdna2-W128A,Y130A plasmid improve cdc13-1 fitness


Aneuploidy is the condition of presence of an abnormal number (gain or loss) of chromosomes in a cell. Aneuploidy is associated with diseases and developmental disorders, and is observed in approximately 90 % of tumors (Weaver and Cleveland, 2006). Haploid yeast strains usually become aneuploid when they gain an extra chromosome which arises through chromosome missegregation, or as a result of endoreduplication (Schwerer et al., 2003, Bennett et al., 2014). Poor spore viability of diploids with deletion of *DNA2* in *cdc13-1* background, regardless of the presence of *dna2-W128A*, *Y130A* or *DNA2* on the plasmid, was a cause for concern. One explanation of spore lethality might be aneuploidy. Moreover, it has been reported that deficiency of *DNA2* in mice led to aneuploidy and development of aneuploidy-associated cancers (Lin et al., 2013). Therefore I examined whether there was a variety in the copy number of *DNA2* and its adjacent genes, *SOL3* and *PRP8*, in haploid *cdc13-1 ddc1*Δ *dna2*Δ *pdna2-W128A*, *Y130A* and control strains (Fig. 24).

As expected, analysis of genomic DNA revealed that *cdc13-1* and *cdc13-1* ddc1Δ strains have the same copy number of *DNA2*, *SOL3* and *PRP8* genes as WT strain (Fig. 24b). Interestingly, strains carrying the plasmid p*dna2-W120A*, *Y130A*, but not p*DNA2*, showed a 2-fold increase of *DNA2* level. These strains however did not have more copies of *SOL3* or *PRP8* genes. Sequencing revealed that *cdc13-1* ddc1Δ dna2-W128A, Y130A strains contained only dna2-W128A, Y130A but not WT *DNA2* sequence (not shown). The change in DNA level might be possibly due to additional copies of the plasmid carrying dna2-W128A, Y130A allele in these strains. One possible explanation is that *DNA2* allele on the plasmid does not fully fulfil the function(s) of Dna2, and therefore cells carrying more copies of the plasmid might be selected by the process of natural selection.

a) Chromosome VIII

b)

Figure 24. *dna2∆ dna2-W128A,Y130A* strains have more copies of p*dna2-W128A,Y130A* plasmid

a) Map showing the localization of DNA2 on chromosome VIII (adapted from SGD http://www.yeastgenome.org/). SOL3 and PRP8 are located in close proximity to DNA2, 137 bp and 529 bp away, respectively. The length of DNA2, SOL3 and PRP8 genes is shown, and primers designed to check the level of genomic DNA are marked as black arrows. Primers were: M3275, M3276, M3772, M3773, M3778, M3779, M3780, M3781. Black circle – centromere; dark square – location of *DNA2*, SOL3 and PRP8 on the chromosome VIII. DNA2 and PRP8 are encoded on Crick strand, SOL3 is encoded on Watson strand, indicated by the direction of arrows. b) gPCR analysis of DNA2, SOL3 and PRP8 DNA level in strains with pdna2-W128A, Y130A plasmid and control strains. DNA was as in Figure 21. The level of DNA from single independent strains were measured, each value was normalised to the level of BUD6 genomic DNA. pVector – pRS314. Strains were: CDC13 (DLY3001), cdc13-1 (DLY1108), cdc13-1 dna2∆ pDNA2 (pDL1554; DLY8998), cdc13-1 ddc1∆ pVector (pDL1559; DLY9469), cdc13-1 dna2∆ pdna2-W128A,Y130A (pDL1561; DLY9000), cdc13-1 ddc1∆ dna2∆ pdna2-W128A, Y130A (pDL1561; DLY9479), $cdc13-1 \ ddc1\Delta \ dna2\Delta \ pdna2-W128A, Y130A$ (pDL1561; DLY9480).

3.3.7 Integrated dna2-W128A, Y130A allele does not suppress cdc13-1 defect

To overcome problems such as observed poor spore viability and presence of more than one copy of the plasmid carrying *dna2-W128A,Y130A* allele, I decided to introduce *dna2-W128A,Y130A* allele into the genome of *cdc13-1* and WT strains. As a control, I also integrated the *DNA2* sequence into the genome. To integrate *dna2-W128A,Y130A* allele at its genomic locus, the pop-in/pop-out method was used (as in 2.16.5). I used a truncated version of *DNA2* (1599 bp instead of 4569 bp) (Fig. 25a). Thus the integrated plasmid should be flanked by a non-functional, truncated version of *DNA2* and the whole-length copy of *dna2-W128A,Y130A* allele (Fig. 25b-f).

DNA2 and dna2-W128A, Y130A sequences from pDL1544 and pDL1561 plasmids were used to generate integrative plasmids (Fig. 25a). However, sequencing of these plasmids revealed the presence of additional 4 base pairs (ATCC) next to the START codon of DNA2 and dna2-W128A, Y130A sequences. These 4 base pairs might significantly affect the initiation of the translation process (Kozak, 1989). To remove the additional 4 bp, the Gibson Assembly (as in 2.16.3 and Appendix D) and Quick Change (as in 2.16.4) methods were used. The Gibson Assembly method is an isothermal, single-reaction method which allows for assembling of multiple overlapping DNA molecules (Gibson et al., 2009). The assembly method was used to integrate the promoter sequence from genomic WT DNA2 into the integrative plasmid (Appendix D). The Quick Change site-directed mutagenesis was then used to change a single point mutation T→C within the DNA2 sequence which arose during Gibson Assembly.

The integration of the plasmids carrying *dna2-W128A*, *Y130A* and *DNA2* genes were confirmed by PCR and sequencing (not shown). Pop-out of the plasmid revealed that out of 20 sequenced colonies (10 *cdc13-1* and 10 WT) only one *cdc13-1* and two WT colonies had *dna2-W128A*, *Y130A* allele integrated (not shown). Remaining 17 colonies contained only *DNA2* sequence which might be due to reversion of *dna2-W128A*, *Y130A* mutation into WT *DNA2*, or integration of *DNA2* allele into a random locus.

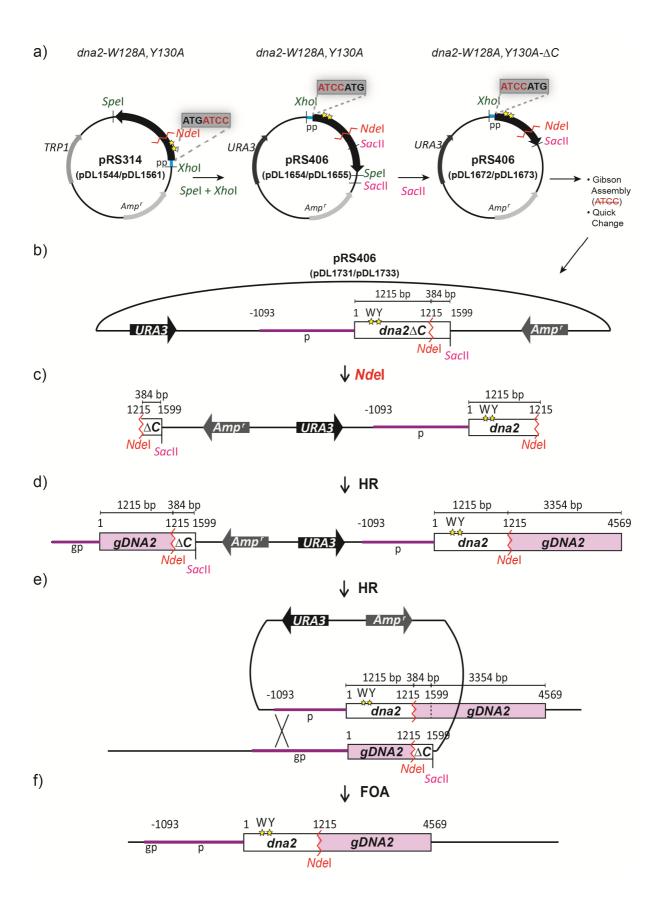
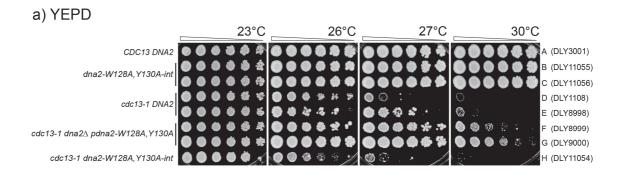



Figure 25. Pop-in/pop-out of dna2-W128A, Y130A allele into the genome a) dna2-W128A, Y130A (or DNA2 as a control) was cut out from a centromeric plasmid pRS314 (pDL1544/pDL1561) with Spel and Xhol restriction enzymes and cloned into an integrative plasmid pRS406 carrying URA3 marker gene (pDL1654-5). Reverse orientation of *DNA2* allele is due to the plasmid sequence; plasmids pRS406 contain polylinker oriented conversely compared with pRS314. From pDL1654-5 plasmids the C-terminal part of DNA2 or dna2-W128A, Y130A was cut out using SacII enzyme following plasmid re-ligation (pDL1672-3). Gibson Assembly was then used to get rid of the 4 bp (ATCC) upstream ATG codon, as described in Appendix D and in 2.16.3. During assembly, a single point mutation arose in the DNA2 sequence (T→C), and was reverted back into WT sequence using Quick Change method; as a result pDL1731/pDL1733 plasmids were generated. TRP1, URA3 – marker genes allowing for selection on –TRP or -URA media; Amp^r – bacterial selective marker from the plasmid; Spel, Xhol, Sacll – restriction enzyme sites; Ndel – unique site for Ndel restriction enzyme within DNA2 sequence. The Ndel site of URA3 gene from pRS406 was previously destroyed in pDL452 plasmid. pDL452 served then as a backbone; stars - point mutations (affected amino acids are tryptophan W128 and tyrosine Y130); pp – promoter sequence from the plasmid; p - promoter sequence amplified from genomic DNA using Gibson Assembly method. b) Truncated dna2-W128A, Y130A allele (1599 bp) contained 1093 bp endogenous promoter sequence and a unique *Ndel* restriction enzyme site. ΔC –C-terminal truncation of DNA2 (2970 bp was cut out).

- c) After restriction digestion with *Nde*I, linearized plasmid was transformed into yeast. The enzyme cut the plasmid in such a way that an N-terminal part (1215 bp) of *DNA2* allele was on one side of the linearized plasmid, and remaining shorter part of *DNA2* (384 bp) was on the other side.
- d) The event of HR resulted in the presence of two copies of DNA2 flanking the plasmid sequence on the chromosome. One copy contained endogenous promoter followed by 1215 bp of WT DNA2 sequence and small part from the plasmid (384 bp). The other copy consisted of 1215 bp dna2-W128A, Y130A allele from the plasmid and 3354 bp of genomic DNA2. gp genomic promotor sequence; HR homologous recombination event; gDNA2 endogenous DNA2 sequence.
- e) FOA selection would result in a pop-out event.
- f) *dna2-W128A*, *Y130A* allele driven by native promoter should remain on chromosome VIII. *FOA* 5-fluoroorotic acid.

The effect of *dna2-W128A*, *Y130A-int* mutation, integrated within *DNA2* locus, on *cdc13-1* fitness was tested (Fig. 26a). WT and *dna2-W128A*, *Y130A-int* strains grew well at all temperatures, and *cdc13-1* cells did not grow at 30°C (Fig. 26a D-E, compare to A-C). *cdc13-1 dna2*Δ *pdna2-W128A*, *Y130A* grew at 30°C, as shown previously (Fig. 26a, F-G, compare to D-E and Fig. 20b and c). However the *cdc13-1* strain in which *dna2-W128A*, *Y130A* allele was integrated in the genome grew much worse than strains with the same allele on the plasmid (Fig. 26a H, compare to F-G). Moreover, this strain was less fit than *cdc13-1* mutants at 26°C (Fig. 26a H, compare to D-E).

In section 3.3.6 I described that *cdc13-1 dna2\Delta pdna2-W128A*, *Y130A* strains contained more *pdna2-W128A*, *Y130A* copies, therefore I considered that extra copies of *dna2-W128A*, *Y130A* mutation might improve *cdc13-1* fitness. To test this hypothesis, *cdc13-1 dna2-W128A*, *Y130A-int* strains were transformed with plasmids carrying *DNA2* or *dna2-128A*, *Y130A* allele. *cdc13-1 dna2-W128A*, *Y130A-int* mutants grew worse than *cdc13-1* strains (Fig. 26b I-J, compare to C-D). Opposite to what was expected, more copies of *dna2-W128A*, *Y130A* allele from the plasmid slightly enhanced the ts of *cdc13-1 dna2-W128A*, *Y130A-int* mutants (Fig. 26b K-M, compare to I-J and C-D). On the other hand more copies of *DNA2* from the plasmid slightly improved *cdc13-1 dna2-W128A*, *Y130A-int* fitness (Fig. 26b N-P, compare to K-M and C-D).

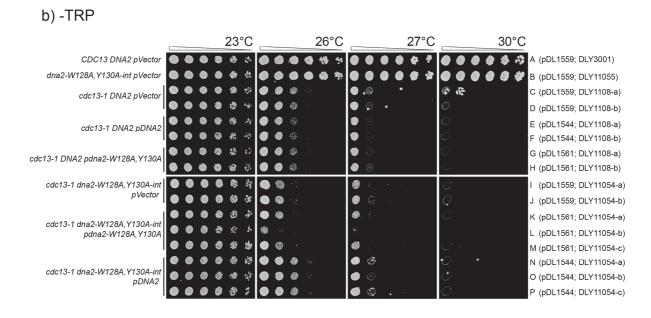


Figure 26. The effect of *dna2-W128A,Y130A* integrated into the genome and from the plasmid on *cdc13-1* fitness is divergent

a) Spot tests done as in Figure 9. Strains A-H were grown on one round YEPD plate.

b) Spot tests done as in Figure 9. Yeast strains were spotted onto –TRP plates to select for plasmids. Strains carrying *dna2-W128A,Y130A-int* allele and control strains were transformed with *pDNA2, pdna2-W128A,Y130A* or *pVector* and passaged several times on –TRP media. Spot test was performed from passage 5. Strains A-P were grown on one rectangular –TRP plate. Strains transformed with plasmids were not frozen down and therefore do not have the collection number. Individual transformants are assigned by colony name "a-c". *pVector* - pRS314. The relevant genotypes of the strains are indicated on the left, plasmid and strain numbers on the right; strain details are in Appendix A. Letters A-H in a) and A-P in b) on the right of the figure are assigned to relevant genotypes from the left.

I conclude that multiple problems arose during the process of strains mating and spores germination of *cdc13-1/CDC13 dna2*Δ/*DNA2 pdna2-W128A*, *Y130A* strains. Telomere capping and DNA replication/resection might be affected in *cdc13-1/CDC13 dna2*Δ/*DNA2* diploids if haploinsuffiency occurs. The altered *DNA2* promoter region from the plasmid (additional ATCC base pairs prior to START codon) might lead to protein deficiency in a cell, and in turn affect the *cdc13-1 dna2*Δ *pdna2-W128A*, *Y130A* fitness. Decreased levels of Dna2 might affect the checkpoint or nuclease functions of Dna2. The checkpoint or nuclease deficiency might lead to induction of alternative repair pathways, like HR, which favour cell growth despite the telomere damage. This however is only speculation and the deficiency of Dna2 function(s) was not tested.

Once integrated into the genome, *dna2-W128A*, *Y130A* allele should be transcribed and translated as endogenous gene. I observed that *dna2-W128A*, *Y130A-int* slightly enhanced *cdc13-1* ts. However, I cannot conclude whether *dna2-W128A*, *Y130A-int* mutants had defects in replication, nuclease function or checkpoint, and how these defect(s) influenced the growth of *cdc13-1* strains.

I noted in section 3.3.6 that *cdc13-1 dna2*Δ *pdna2-W128A*, *Y130A* and *cdc13-1 dna2*Δ *ddc1*Δ *pdna2-W128A*, *Y130A* strains had more copies of the plasmid carrying *dna2-W128A*, *Y130A*. More copies of *pdna2-W128A*, *Y130A* might be a result of plasmid instability due to segregational instability. Segregational instability occurs as a result of uneven partitioning of plasmid during cell division. Some daughter cells may receive two copies of a plasmid rather than one, and some may get no plasmid at all (Zhang et al., 1996). Sometimes, more copies of a plasmid might cause sickness and death due to plasmid centromeres interfering with natural chromosome segregation event (Stearns et al., 1990). Segregational instability might be due to the fact that *dna2-W128A*, *Y130A* allele is not fully functional, and cells compensate the partially loss of function of *dna2-W128A*, *Y130A* by selecting for more copies of the plasmid or gene. To sum up, I conclude that W128 and Y130 residues of Dna2 affect *cdc13-1* fitness, however the mechanism(s) are not fully understood.

3.3.8 DNA2 alleles do not affect yku70∆ fitness

In order to test whether DNA2 alleles affect $yku70\Delta$ fitness, spot tests were performed. Figure 27 illustrates that WT and $ddc1\Delta$ strains grew at all temperatures and $yku70\Delta$ grew less well at high temperature (Fig. 27a F-G, compare to A-E). $dna2\Delta$ pdna2-W128A, Y130A, $ddc1\Delta$ and $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A mutations did not affect growth of $yku70\Delta$ strains (Fig. 27a H-P, compare to F-G). The effects of dna2-C771A and dna2-C777A alleles on $yku70\Delta$ fitness were not tested. $yku70\Delta$ $dna2\Delta$ strains carrying pdna2-C771A or pdna2-C777A were not generated, possibly due to spore lethality and too few tetrads dissected. dna2-C519A and dna2-C768A mutations did not affect $yku70\Delta$ fitness (Fig. 27b E and G-H, compare to B). I conclude that Dna2 does not affect $yku70\Delta$ fitness, and therefore Dna2 might not be important in cell cycle arrest in $yku70\Delta$ strains.

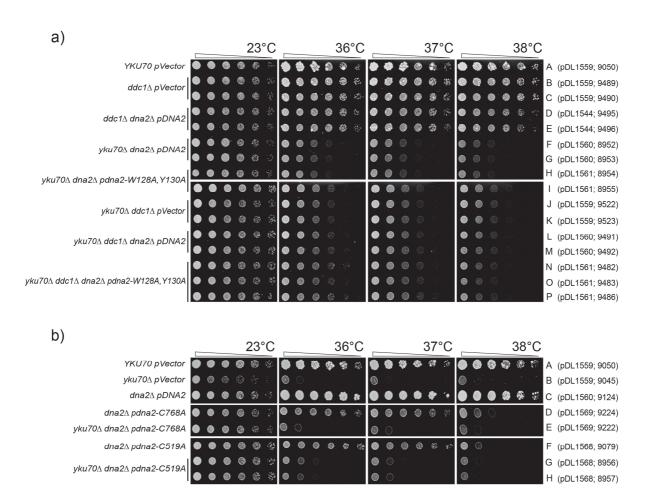


Figure 27. dna2 mutations do not affect the fitness of yku70∆ mutants

Spot tests done as in Figure 9. Yeast strains were spotted onto –TRP plates to select for plasmids.

- a) Strains A-P were grown on one rectangular plate.
- b) Strains A-H were grown on one rectangular plate. Pictures were cut and reorganised using Adobe Illustrator to make comparisons easier. *pVector* pRS314. The relevant genotypes of the strains are indicated on the left, plasmid and strain numbers on the right; strain details are in Appendix A. Letters A-P in a) and A-H in b) on the right of the figure are assigned to relevant genotypes from the left.

3.3.9 Potential mitochondrial defects caused by DNA2 and PIF1 mutations affect yku70∆ fitness

One of known suppressors of $dna2\Delta$ lethality is $pif1\Delta$ (Budd et al., 2006). Both Pif1 and Dna2 function in Okazaki fragment processing (OFP) and play important roles in maintaining the mitochondrial DNA stability in yeast and humans (Foury and Lahaye, 1987, Van Dyck et al., 1992, Budd et al., 2006, Cheng et al., 2007, Pokharel and Campbell, 2012). It was observed previously that $pif1\Delta$ suppresses $yku70\Delta$ growth defect at higher temperatures (J. Dewar PhD thesis), consistent with published data that Pif1 inhibits the growth of $yku70\Delta$ mutants (Vega et al., 2007, Smith et al., 2008). Pif1 and Dna2 have similar function in OFP and mitochondria, and deletion of PIF1 suppresses $yku70\Delta$ and $dna2\Delta$. I hypothesised that Dna2 may affect $yku70\Delta$ fitness similarly to Pif1. Therefore I decided to test how simultaneous mutations of PIF1 and DNA2 affect $yku70\Delta$ growth.

Spot tests of *yku70*∆ strains with mutations of *PIF1* and *DNA2* were performed on YEPG and YEPD plates (Fig. 28). Glycerol is a non-fermentable carbon and energy source that forces yeast to grow aerobically, therefore only cells which maintain mitochondrial function can grow on YEPG media. The YEPG media served as an indirect method to test the mitochondrial function (Fig. 28a). dna2∆ pDNA2 and dna2∆ pdna2-W128A, Y130A strains did not grow well 23°C (Fig. 28a B-E, compare to A). As expected $pif1\Delta$ mutants were ts at 38°C (Fig. 28a F-H). One $pif1\Delta$ dna2 Δ pDNA2 strain grew better at 38°C than another strain of the same genotype (Fig. 28a G and H). The fitter strain might carry more copies of the pDNA2 plasmid which could improve growth, but the plasmid copy number was not tested. *pif1*∆ suppressed the growth defect of *dna2*∆ mutants at all temperatures, and only slightly suppressed the growth defect of dna2∆ pdna2-W128A, Y130A mutants (Fig. 28a I-L). This might indicate that dna2-W128A, Y130A mutants have more severe defects in mitochondria maintenance than dna2∆. yku70∆ mutants were ts at 38°C (Fig. 28a M-P). Strikingly, yku70∆ dna2∆ pdna2-W128A, Y130A mutants looked like yku70∆ pif1∆ dna2∆ pDNA2 and pif1 \triangle dna2 \triangle pdna2-W128A, Y130A mutants and grew at 23°C, but not above 37°C (Fig. 28a R-U and I-J). Triple mutants yku70∆ pif1∆ dna2∆ dna2-W128A, Y130A and yku70∆ pif1∆ dna2∆ looked alike and did not grow well at 23°C (Fig. 28a V-X).

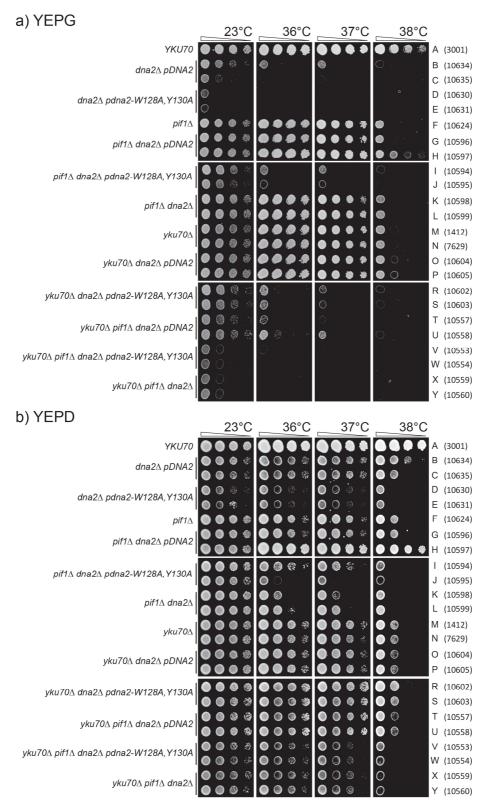


Figure 28. Mitochondrial function affects yku70∆ fitness

- a)-b) Spot tests done as in Figure 9. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A. Letters A-Y on the right of the figure are assigned to relevant genotypes from the left.
- a) Strains were grown on one rectangular YEPG plate.
- b) Strains from A were also spotted onto YEPD and grown on one rectangular plate.

A somewhat different growth pattern was observed on YEPD plates (Fig. 28b). Strikingly, *yku70*Δ mutants grew well at 37°C, and *yku70*Δ *dna2*Δ *pdna2-W128A,Y130A* strains were much less fit at 36°C (Fig. 28b M-P, compare to D-E). In contrast, previously I observed no effect of *pdna2-W128A,Y130A* on *yku70*Δ fitness (Fig.27). Possible differences in strains growth might be due to different media used (-TRP vs. YEPD), or different culture conditions, if strains from YEPD were grown till saturation prior spotting. However, these hypotheses were not tested.

dna2 Δ strains carrying pdna2-W128A, Y130A plasmid are unable to grow well on YEPG. For reasons I do not understand pif1 Δ dna2 Δ mutants are fitter than pif1 Δ dna2 Δ pdna2-W128A, Y130A mutants. Double point mutation of W128 and Y130 residues is more severe for cells than deletion of DNA2 in pif1 Δ background. It might be possible that W128 and Y130 residues of DNA2 are important for the mitochondrial DNA maintenance function of Dna2. For example, the interaction between Dna2 and unknown protein "A" through W128 and Y130 residues might be lost, but interaction(s) between Dna2 and protein "B" (which might be Dna2 inhibitor) could be maintained in pif1 Δ dna2 Δ pdna2-W128A, Y130A mutants. This is only a speculation which remains to be tested.

It was observed previously that $pif1\Delta$ $yku70\Delta$ strains grew better than $yku70\Delta$ mutants on YEPD plates (J. Dewar PhD thesis). I observed that $yku70\Delta$ $pif1\Delta$ $dna2\Delta$ pDNA2 mutants grew worse than $yku70\Delta$ mutants on YEPG plates (Fig. 28a and b T-U, compare to M-P). However the same $yku70\Delta$ $pif1\Delta$ $dna2\Delta$ pDNA2 strains resembled $yku70\Delta$ mutants on YEPD plates. I never observed that $pif1\Delta$ $dna2\Delta$ pDNA2 mutations suppressed $yku70\Delta$ growth defect. However, I did not use $yku70\Delta$ $pif1\Delta$ strains and for that reason it is not accurate to conclude the inconsistency with Dewar's observations. Another spot test should be performed on YEPG and YEPD plates, involving strains used by Dewar to clarify the effect of $pif1\Delta$ on $yku70\Delta$ fitness. It was shown that loss of Ku complex affects the rate of spontaneous mitochondrial deletions and repair of mitochondrial DSBs (Kalifa et al., 2012). I propose that Yku70 might be important in mitochondrial DNA maintenance since it probably interacts with Pif1 and Dna2 (Fig. 28a).

3.3.10 Discussion/Conclusions

None of tested mutations in nuclease domain of Dna2, *dna2-C519A*, *dna2-C768A*, *dna2-C771A*, affected growth of *cdc13-1* or *yku70*∆ strains, although all were shown previously as sensitive to MMS (Table 6) (Pokharel and Campbell, 2012). Two residues, W128 and Y130, which responded to 4-NQO and HU treatments, strongly affected growth of *cdc13-1* mutants (Kumar and Burgers, 2013).

Source	DNA2 alleles	Growth at restrictive temp.		4-NQO- induced Rad53	HU- induced Rad53	UV sensitivity	MMS sensitivit
		cdc13-1	<i>yku</i> 70∆	phospho- rylation	phospho- rylation *	(70 J/m ²)	y (0.01 %)
J. Campbell	dna2-C519A		_	N/A	N/A	N/A	++
	dna2-C768A	_	_	N/A	N/A	N/A	+++
	dna2-C771A	_	N/A	N/A	N/A	N/A	+++
	dna2-C777A	N/A	N/A	N/A	N/A	N/A	+++
	DNA2	_	_	N/A	N/A	N/A	+
P. Burgers	DNA2	_	_	+++	+++	+	N/A
	dna2-W128A,Y130A	++	_	+++	++	N/A	N/A
	dna2-W128A,Y130A ddc1 Δ	+++	_	N/A	+	N/A	N/A
	dna2-W128A,Y130A ddc1-(1- 404),W352A	N/A	N/A	_	N/A	++	N/A

Table 6. Response of DNA2 alleles to DNA damage

§ - analysed in this thesis; * - *tel1*Δ background. Response of tested alleles to DNA damage is indicated by: — - no response, + - weak response, ++ - moderate response, +++ - strong response; N/A – not tested. Based on (Pokharel and Campbell, 2012, Kumar and Burgers, 2013)

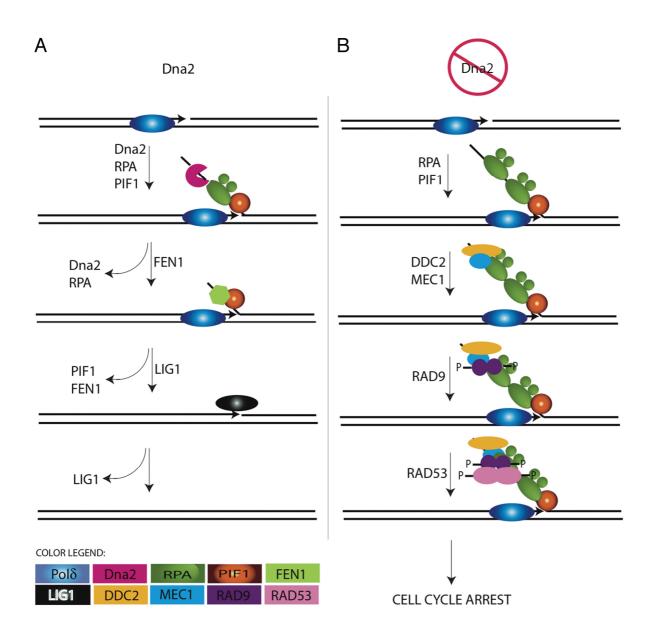
I showed that dna2-W128A, Y130A improved cdc13-1 growth when on a plasmid, but slightly reduced cdc13-1 fitness when integrated into the genome. cdc13-1 $dna2\Delta$ strains carrying pdna2-W128A, Y130A were able to grow at 30°C, and the growth was improved by deletion of DDC1. The checkpoint of cdc13-1 $ddc1\Delta$ $dna2\Delta$ pdna2-W128A, Y130A strains might be defective and thus permit strains growth at 36°C. Fit

strains carried more copies of *dna2-W128A*, *Y130A*, most likely due to additional copies of the plasmid, and had the telomeres rearranged. Possibly, *dna2-W128A*, *Y130A* allele is not fully functional and cells with Dna2 function deficiency select for more copies of the plasmid in favour of maintaining Dna2 functionality. It seems that more copies of *pdna2-W128A*, *W130A* led to telomere amplification and this caused a *cdc13-1* cell growth improvement. *dna2-W128A*, *Y130A* allele may be defective in an "unknown" function of Dna2, which could be: DNA resection, replication, checkpoint and DNA damage signalling, telomere maintenance or mitochondrial DNA maintenance, however none of these were examined in the context of *dna2-W128A*, *Y130A* allele.

dna2-W128A, Y130A slightly enhanced the growth of $yku70\Delta$ strains when on YEPD media, and strongly enhanced $yku70\Delta$ growth when on YEPG media. Deletion of PIF1 also enhanced growth defect of $yku70\Delta$ mutants, and mutations of DNA2 enhanced $yku70\Delta$ $pif1\Delta$ growth defect more. This indicates that Pif1 and Dna2 function in parallel pathways in mitochondrial DNA maintenance since deletion of both genes in $yku70\Delta$ mutants have an additive effect. Yku70, Dna2 and Pif1 might interact to provide mitochondrial DNA stability, although the mechanisms are not yet understood.

3.4 Discussion

I hypothesised that Dpb11 and/or Dna2 take the role of Ddc1 in cell cycle arrest of $yku70\Delta$ mutants, based on structural and functional similarities of Dpb1 and Dna2 to Ddc1. I expected to see that some alleles of *DPB11* or *DNA2* suppress the temperature sensitivity of $yku70\Delta$ cells at higher temperatures. This would indicate the potential role of tested alleles in cell cycle arrest.


I found that DNA2 alleles did not suppress the $yku70\Delta$ ts at higher temperatures. None of tested DPB11 alleles affected $yku70\Delta$ fitness, either. Surprisingly, I found that DDC1 deletion slightly suppressed the growth of $yku70\Delta$ strains, and the effect was stronger when yeast from saturated cultures were analysed. I conclude therefore that there is no evidence for Dpb11 or Dna2 to have a potential role in cell cycle arrest of $yku70\Delta$ mutants. Alternatively, Ddc1 seems to be the only one known Mec1 activator with likely function in cell cycle arrest of $yku70\Delta$ strains. It is still possible that there is another protein(s) which may take part in cell cycle arrest of $yku70\Delta$ mutants.

I found that two residues of Dna2, W128 and Y130, might be important for mitochondrial respiration, which has not been described before. It was shown that many mitochondrial genes are upregulated in telomerase-deficient strains and the interaction between mitochondria and telomeres appear to be evolutionary conserved (Nautiyal et al., 2002, Passos et al., 2007, Addinall et al., 2008). It was reported that Dna2 has a role in mitochondrial DNA maintenance (Budd et al., 2006, Duxin et al., 2009). dna2-W128A, Y130A allele might be upregulated in telomerase-deficient strains, but no experiments were done to confirm this hypothesis so far.

Chapter 4. What is the essential function of Dna2?

4.1 Deletion of some checkpoint and replication-related genes suppress *dna2*∆ lethality

DNA2 encodes a conserved and essential helicase/nuclease which is involved in DNA replication, Okazaki fragment maturation and DNA resection during DSB repair. In yeast, DNA2 deletion is lethal, but three mechanisms are known to date to suppress the lethality of $dna2\Delta$: overexpression of RAD27, a nuclease involved in Okazaki fragment processing, deletion of PIF1, a helicase involved in long flap formation during DNA replication, and deletion of RAD9, a DNA damage checkpoint protein (Budd and Campbell, 2000, Budd et al., 2006, Budd et al., 2011). One plausible reason for $rad9\Delta$ suppressing $dna2\Delta$ was defective checkpoint in response to replication errors. In the absence of Dna2 the Okazaki fragments remain unprocessed, are RPA-bound and activate Mec1 (Fig. 29). Mec1 phosphorylates Rad9 and Rad53, which induces cell cycle arrest. When RAD9 is deleted, Mec1 is not activated and cell cycle is not arrested (Budd et al., 2011).

Figure 29. Checkpoint activation due to replication errors in the absence of Dna2

Figure and text taken from (Budd et al., 2011), Figure 5.

In vitro, DNA strand displacement synthesis by pol ∆ in the presence of Rad27^{scFEN1} protein on a primer adjacent to an upstream fragment results in the appearance of cleaved flaps. Although most of the cleaved flaps are short, 8-12 nt, a small subset are about 30 nt (Ayyagari et al., 2003, Rossi and Bambara, 2006). Pol ∆ strand displacement is stimulated by Pif1, and a significant increase in the 30 bp cleaved product is observed in the presence of Pif1, although the 30 nt cleaved product is still only 1–2% of the total cleaved products (Rossi et al., 2008, Pike et al., 2009). The 30 nt flap synthesized by Pol\(\Delta/\)Pif1 becomes refractory to cleavage by Rad27^{scFEN1} in the presence of RPA, which may result in even further lengthening of the flap (Rossi et al., 2008, Pike et al., 2009). As shown in (A), in normal cells containing Dna2, the RPA bound flap is bound by Dna2, which cleaves the long flap, releasing RPA and allowing Rad27^{scFEN1} to further cleave the flap, resulting in a ligatable nick (Bae et al., 2001, Ayyagari et al., 2003, Bae et al., 2003, Stewart et al., 2008, Pike et al., 2009). In the absence of Dna2, (B), the RPA-bound flap, however, persists and can bind Mec1/Ddc2 kinase. The 5' flap-bound Mec1/Ddc2 then recruits and phosphorylates Rad9, which binds methylated histone H3-K79 with its Tudor domain. Mec1/Ddc2 may also phosphorylate histone H2A, providing an additional site for Rad9 binding to chromatin. Chromatin bound Rad9 then recruits Rad53, resulting in dimerization. autophosphorylation and Rad53 kinase activation, allowing Rad53 to activate the DNA damage response and cell cycle arrest. (Similarly, the MCM helicase and pol ε may target Mrc1 to Mec1-bound 5' flaps). After checkpoint activation, cells normally repair the DNA damage, deactivate the checkpoint and resume cell division. dna2\Delta strains would be unable to repair the unprocessed Okazaki fragments during the G₂ division delay; thus the Rad9/Mrc1-dependent G₂ division delay contributes to cell death rather than recovery.

4.1.1 Rare ddc1∆ dna2∆ clones indicate a novel pathway for dna2∆ bypass

As a result of dissection described in section 3.3.5 (Figure 23i), I used to find some $dna2\Delta\ ddc1\Delta\ colonies$ occasionally emerging (Fig. 30). The viability of $ddc1\Delta\ dna2\Delta\ clones$ was not expected because lack of suppression of $dna2\Delta\ lethality$ by $ddc1\Delta\ ddc1\Delta\ tel1\Delta\ sml1\Delta\ or\ ddc1\Delta\ mec1\Delta\ sml1\Delta\ was\ previously\ reported\ (Kumar\ and\ Burgers,\ 2013). Kumar\ and Burgers\ concluded that suppression of <math>dna2\Delta\ lethality\ was\ RAD9$ -specific and other checkpoint genes, like DDC1, TEL1 or MEC1, only indirectly function in DNA2 pathway (Kumar\ and Burgers, 2013). Dna2 processes Okazaki fragments, while the 9-1-1 complex is loaded onto dsDNA-ssDNA junctions and is important for checkpoint activation in response to e. g. replication stress (Ellison and Stillman, 2003, Majka et al., 2006, Navadgi-Patil and Burgers, 2009). Budd $et\ al.$ discovered the role of $rad9\Delta$ in $dna2\Delta$ suppression, but they did not verify whether other checkpoint proteins, apart from Rad9 and Mrc1, are also important for $dna2\Delta\ viability$.

cdc13-1/CDC13 ddc1∆/DDC1 dna2∆/DNA2 pDNA2

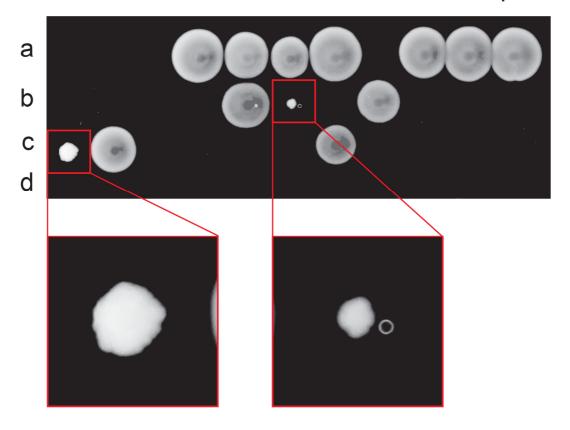
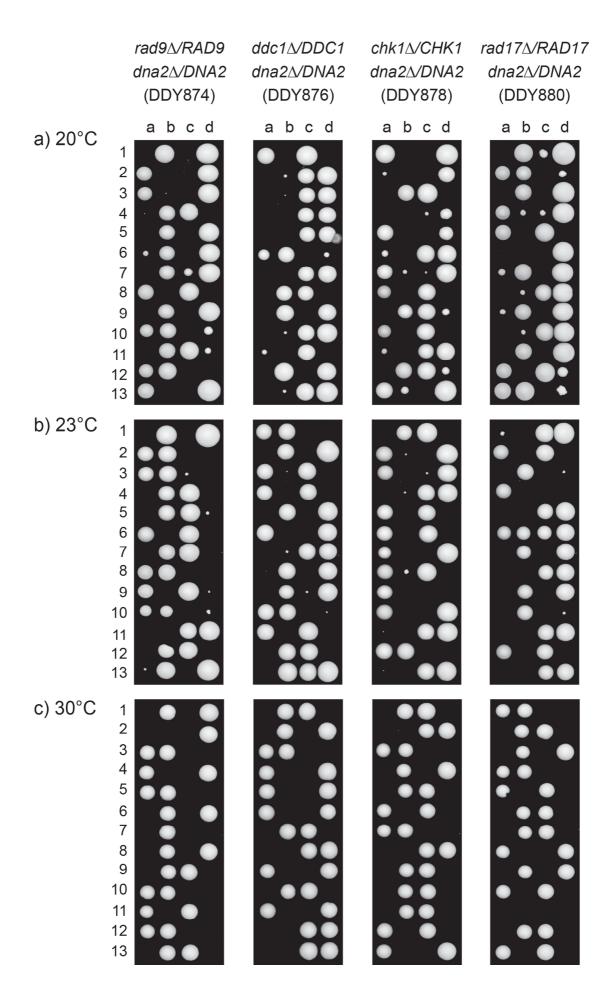


Figure 30. Unexpected *dna2∆ ddc1∆* clones


Magnification of Figure 23i. Example of tetrad dissection from a sporulated diploid (DDY698). Two colonies of $dna2\Delta$ $ddc1\Delta$ genotypes are shown in red squares. Strains were grown in -TRP liquid at 23°C, then were sporulated in ESM at 20°C for 5 days, tetrads were dissected and germinated on YEPD plates. Spores were germinated for 10 days at 23°C before photographing. Five $dna2\Delta$ $ddc1\Delta$ colonies out of 188 dissected spores were found from this particular cross.

4.1.2 Some gene deletions affect dna2∆ viability at lower temperatures

To test whether Ddc1, and perhaps other checkpoint proteins, affect *dna*2Δ viability I created diploids: *rad9*Δ/*RAD9 dna*2Δ/*DNA*2, a positive control for *dna*2Δ suppression, *ddc1*Δ/*DDC1 dna*2Δ/*DNA*2, *rad17*Δ/*RAD17 dna*2Δ/*DNA*2 and *chk1*Δ/*CHK1 dna*2Δ/*DNA*2. Spores of these diploids were dissected and germinated (Fig. 31). Usually spores are allowed to germinate at 23°C for a ts mutation and at 30°C for WT strains. Spores may be germinated at 20°C if mutants are sick or slow growing. Interestingly, when spores of all genotypes were germinated at 20°C some tiny colonies emerged (Fig. 31a). Small colonies appeared also, though less frequently, when incubated at 23°C(Fig. 31b), and were smaller than those that emerged at 20°C. Spore viability of spores germinated at 30°C was 50 %, as expected for deletion of essential *DNA*2 gene, and no small colonies were observed (Fig. 31c).

The small clones were verified as $dna2\Delta$ mutants with deletions of RAD9, DDC1, RAD17 or CHK1. Figure 31d summarizes that $rad9\Delta$, $ddc1\Delta$ and $chk1\Delta$ efficiently suppressed approximately 50 % of $dna2\Delta$ strains at 20° C, while $rad17\Delta$ suppressed 87 % of $dna2\Delta$ mutants. I conclude that double mutants with deletions of checkpoint genes and DNA2 are often viable but sick and grow slowly. Importantly, $ddc1\Delta$, $rad17\Delta$ and $chk1\Delta$ were similar to $rad9\Delta$ in the effect on $dna2\Delta$ mutants. Double mutants were viable only at lower temperature, indicating that $dna2\Delta$ mutants may be ts. Possibly at lower temperature cells have more time to repair the damage caused by deletion of DNA2, or have time to adapt to the damage. It is intriguing that $dna2\Delta$ was never suppressed at 20° C at 100 % by any of tested mutations. At lower temperature, e.g. 15° C, more spores might be viable, but this has to be tested.

I deduce that Kumar and Burgers never observed $dna2\Delta \ ddc1\Delta$ mutants (Kumar and Burgers, 2013) if spores were germinated at higher temperatures, such as 30°C. Budd $et \ al.$ presumably germinated spores at lower temperature, such as 23°C, because they worked with dna2-2 and dna2-1 ts mutants before (Budd et al., 2011). Deletions of DDC1, RAD17, CHK1 and RAD9 equally permit $dna2\Delta$ viability and I observed no differences between the effect of $rad9\Delta$ and $ddc1\Delta$ mutations on $dna2\Delta$ viability. I conclude that functional checkpoint is critical for $dna2\Delta$ lethality. My data is consistent with Budd $et \ al.$ and Kumar and Burgers at what I presume are the temperatures of spore germination.

d)

Temp.	Genotype	No. of visible colonies	No. of <i>yfg</i> ∆	No. of yfg∆ dna2∆	Suppression efficiency [%]
	rad9∆ $dna2$ ∆ (DDY874)	65 (n=104)	26	14	53.8
20°C	$ddc1\Delta$ $dna2\Delta$ (DDY876)	64 (n=104)	25	13	50.0
20 C	chk1∆ dna2∆ (DDY878)	65 (n=104)	26	14	53.8
	rad17∆ dna2∆ (DDY880)	63 (n=92)	23	20	87.0
	rad9∆ dna2∆ (DDY874)	58 (n=104)	28	7	26.9
23°C	$ddc1\Delta$ $dna2\Delta$ (DDY876)	63 (n=104)	27	11	42.3
23 0	chk1∆ dna2∆ (DDY878)	55 (n=100)	22	7	26.9
	rad17∆ dna2∆ (DDY880)	61 (n=104)	23	12	46.1
	rad9∆ dna2∆ (DDY874)	47 (n=100)	23	0	0.0
2000	$ddc1\Delta$ $dna2\Delta$ (DDY876)	51 (n=104)	25	0	0.0
30°C	<i>chk1</i> Δ <i>dna2</i> Δ (DDY878)	50 (n=104)	31	0	0.0
	rad17∆ dna2∆ (DDY880)	47 (n=100)	22	0	0.0

Figure 31. $ddc1\Delta$, $rad17\Delta$ and $chk1\Delta$ suppress $dna2\Delta$ similarly to $rad9\Delta$

dna2∆ pDNA2 strain was mated with checkpoint gene deletion strains. Diploids lost the plasmid by passaging on YEPD for approximately 5 times. Next strains were grown in YEPD liquid, sporulated in ESM, tetrads were dissected and germinated on YEPD plates. Spores were dissected on 2 plates for each diploid at each temperature; one plate for each diploid is shown.

- a) Spores germinated at 20°C for 10 days before photographing.
- b) Spores germinated at 23°C for 7 days before photographing.
- c) Spores germinated at 30°C for 4 days before photographing.
- d) Calculations of visible colonies (single and double mutants) grown at 20°C, 23°C and 30°C.

Suppression efficiency was calculated as follows:

Number of dissected spores (104, 100 or 92) was divided by 4 – the number of possible haploid genotypes (WT, $yfg\Delta$, $dna2\Delta$, $yfg\Delta$ $dna2\Delta$). Calculated number (26, 25 or 23) serves as 100 % and indicates the amount of colonies of each genotype. Scored number of $yfg\Delta$ $dna2\Delta$ double mutants was converted into %. The result is shown as % suppression efficiency.

To test if other checkpoint genes have similar suppressive role on dna2∆ lethality more diploids were generated, sporulated and spores were dissected; numbers of viable colonies are in Figure 32. MEC1, TEL1 and RAD53 are checkpoint genes and therefore it might be possible that, when deleted, suppress $dna2\Delta$ similarly to $rad9\Delta$, $ddc1\Delta$, $rad17\Delta$ and $chk1\Delta$. Mec1 and Rad53 remove the inhibitory effect of Sml1 on dNTP synthesis during DNA replication, and sml1∆ allows for bypass of RAD53 and MEC1 deletions (Zhao et al., 1998). SML1 serves here as a control for MEC1 and RAD53 deletions. EXO1 encodes an exonuclease which resects DNA in response to DNA damage (Zhu et al., 2008, Ngo and Lydall, 2010). Dna2 functions redundantly to Exo1 in DNA resection (Zhu et al., 2008, Ngo et al., 2014) so it might be possible that exo1∆ suppresses dna2∆ lethality. Rif1 acts synergistically with Rif2 in telomere length control; Rif1 is involved in DNA replication, and Rif1/Rif2 contribute to DNA resection at DSBs and elongated telomeres are present in null mutants (Wotton and Shore, 1997, Teixeira et al., 2004, Shi et al., 2013, Hiraga et al., 2014, Martina et al., 2014). It was hypothesised that long telomeres of rif1 Δ and rif2 Δ strains might suppress $dna2\Delta$ lethality. This assumption was based on the fact that $pif1\Delta$ mutants also have long telomeres and allow for *dna2*∆ bypass. Pol32 is a subunit of DNA polymerase delta and is involved in chromosomal DNA replication (Johansson et al., 2004). It was hypothesised that at lower temperature the deletion of *POL32* may suppress $dna2\Delta$ lethality similarly to $pif1\Delta$. $pol32\Delta$ was previously shown to improve the growth of *dna2-1* and *dna2-2* mutants, but not to suppress the lethality of *dna2*\Delta mutants (Budd et al., 2005, Budd et al., 2006).

While $pol32\Delta$ and $mec1\Delta$ suppressed $dna2\Delta$ lethality similarly to $rad9\Delta$, no suppression was noted when TEL1, RAD53, SML1, EXO1, MRE11, RAD27, RIF1 or RIF2 were deleted (Fig. 32). Long telomeres of $rif1\Delta$ and $rif2\Delta$ mutants did not bypass $dna2\Delta$ viability. This indicates that only a subset of proteins that are important in e.g. telomere biology (Ddc1, Rad9, Chk1, Mec1 and Pol32) influence the $dna2\Delta$ viability, while other proteins (Tel1, Exo1, Rad53, Sml1, Rif1, Rif2, Mre11, Rad27) do not affect $dna2\Delta$ viability. It is therefore interesting to examine whether the viability of $dna2\Delta$ is due to defects in DNA replication, or maybe is specific to telomere DNA replication. Although important, this question has not been addressed yet.

No. of visible colonies from germinated spores

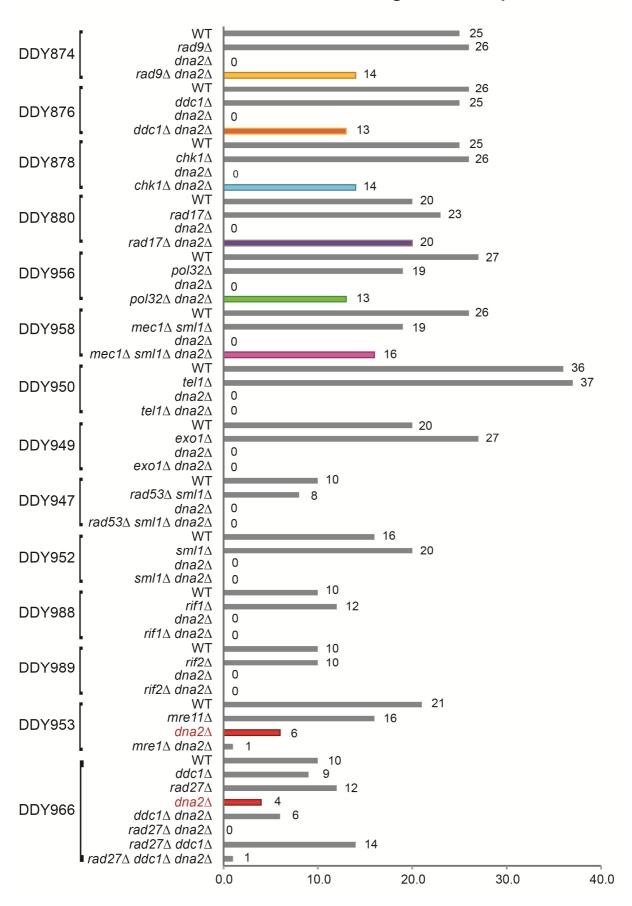
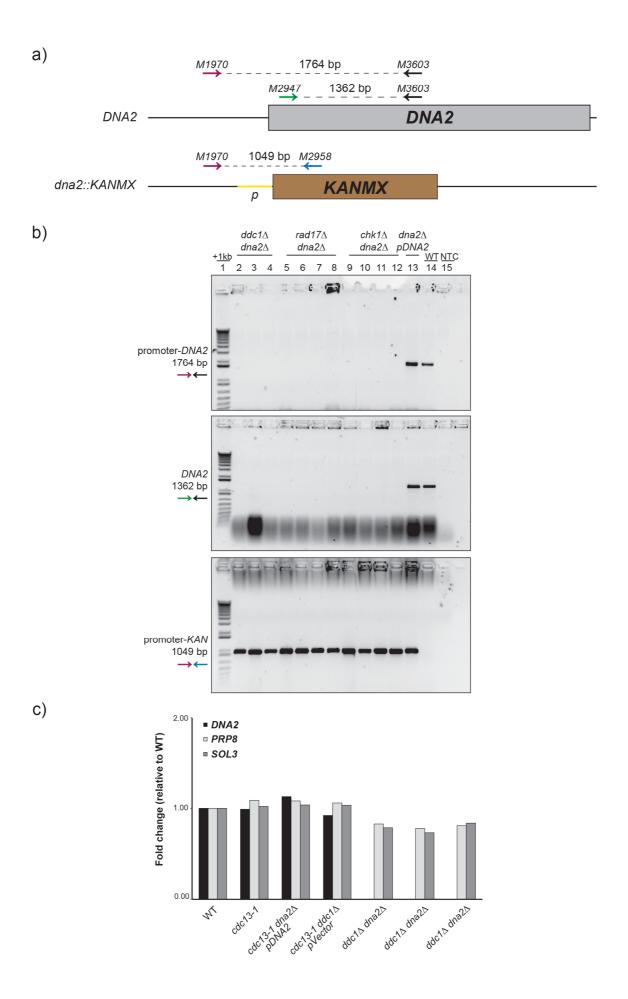


Figure 32. Quantification of suppressors and no-suppressors of $dna2\Delta$ lethality Spores (among others from Figure 31, DDY874, DDY876, DDY878, DDY880) were scored and plotted. Bars present numbers of viable colonies WT, $yfg\Delta$ and $dna2\Delta$ $yfg\Delta$ and (usually inviable) $dna2\Delta$ spores. **Grey bars** – WT or $yfg\Delta$; **coloured bars** – viable $dna2\Delta$ $yfg\Delta$; **red bars** – viable $dna2\Delta$; '0' and no bar – inviable $dna2\Delta$ or $dna2\Delta$ $yfg\Delta$.

Strains were: DDY874 (rad9Δ/RAD9 dna2Δ/DNA2), DDY876 (ddc1Δ/DDC1 dna2Δ/DNA2), DDY878 (chk1Δ/CHK1 dna2Δ/DNA2), DDY880 (rad17Δ/RAD17 dna2Δ/DNA2), DDY956 (pol32Δ/POL32 dna2Δ/DNA2), DDY958 (mec1Δ/MEC1 sml1Δ/SML1 dna2Δ/DNA2), DDY950 (tel1Δ/TEL1 dna2Δ/DNA2), DDY949 (exo1Δ/EXO1 dna2Δ/DNA2), DDY947 (rad53Δ/RAD53 sml1Δ/SML1 dna2Δ/DNA2), DLY6854xDLY10635 (sml1Δ/SML1 dna2Δ/DNA2), DDY988 (rif1Δ/RIF1 dna2Δ/DNA2), DDY989 (rif2Δ/RIF2 dna2Δ/DNA2), DDY953 (mre11Δ/MRE11 dna2Δ/DNA2), DDY966 (rad27Δ/RAD27 ddc1Δ/DDC1 dna2Δ/DNA2). Strain details are in Appendix A.

 $rad27\Delta$ and $mre11\Delta$ did not suppress $dna2\Delta$ lethality (Fig. 32). Strangely, some $dna2\Delta$ single mutants emerged when RAD27 or MRE11 were deleted in $dna2\Delta$ heterozygous background. The unexpected growth of $dna2\Delta$ colonies indicates that deletions of MRE11 and RAD27 along with DNA2 might cause severe genomic instability, aneuploidy and/or spontaneous mutations which promote the growth of $dna2\Delta$ cells. None of these events were tested nor confirmed. Whole genome sequencing would confirm additional mutations and aneuploidy. Simpler experiments involving qPCR would clarify the copy number of DNA2 gene if chromosome VIII carrying DNA2 underwent amplification in those diploids.


Mre11, a subunit of the MRX complex, functions in repair of DSBs and replication of telomeric DNA (D'Amours and Jackson, 2002, Lewis et al., 2004, Ghosal and Muniyappa, 2005). The MRX complex is regulated by the Tel1-dependent DSB signal (Usui et al., 2001) which suggests function of the MRX complex and Tel in the same pathway. However, dissection of diploid with heterozygous deletions of TEL1 and DNA2 did not promote the growth of single dna2∆ mutants, while diploid with deletions of MRE11 and DNA2 gave rise to dna2∆ cells (Fig. 32). It is possible that Mre11 and Tel1 have different effects on dna2∆ strains, and deletion of MRE11 cause severe genomic problems. Diploid with deletions of RAD27 and DNA2 also gave rise to dna2∆ cells. However, overexpression of RAD27 suppresses dna2∆ lethality (Budd and Campbell, 2000). It might be possible that overexpression of MRE11 affects $dna2\Delta$ growth, as was observed for overexpression of RAD27. To check the effect of MRE11 overexpression, high copy number plasmids (e.g. 2µ plasmid) carrying MRE11 might be introduced into dna2∆ mutants and growth assays performed. However, Mre11 is a member of the MRX complex which is involved in many different cellular functions e.g. in DSB end resection, DNA repair and telomere maintenance. Therefore it might be difficult to interpret any phenotypes associated with MRE11 overexpression.

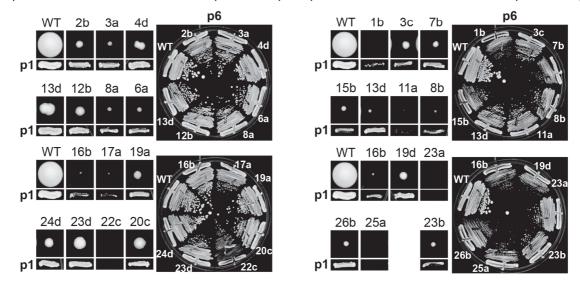
4.1.3 Viability of dna2∆ is not caused by extra DNA2 copies

Deficiency of *DNA2* might lead to aneuploidy as observed in mice (Lin et al., 2013). It might be therefore possible that in diploids with heterozygous deletions of *DDC1*, *RAD17*, *CHK1*, *RAD9*, *POL32* and *MEC1 SML1* in $dna2\Delta/DNA2$ background the aneuploidy resulted in more copies of *DNA2*. If so, additional *DNA2* copies might be inherited by haploid progeny. Such cells would be scored as $dna2\Delta$ due to the presence of selective marker gene used for deletion (*KANMX*), but the viability of strains would be a result of *DNA2* on the extra, unmarked chromosome. In order to test the hypothesis that $dna2\Delta$ mutants with deletions of checkpoint genes contain an extra *DNA2* sequence, the PCR was performed (Fig. 33). First, I looked whether viable $dna2\Delta$ strains with deletion of *DDC1*, *RAD17* or *CHK1* contained the *KANMX* cassette, or if they contained *DNA2* sequence at the *DNA2* locus (Fig. 33a and b). The PCR of WT and $dna2\Delta$ pDNA2 control strains resulted in appropriate *DNA2* sequence sizes (Fig. 33b, two top gels). As expected none of tested double mutants contained *DNA2* sequence, yet all contained the *KANMX* cassette at *DNA2* locus (Fig. 33b, compare bottom with top gels).

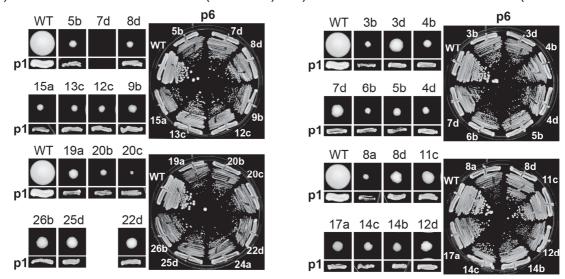
Second, I performed qPCR to compare the amount of DNA2 and two adjacent genes, PRP8 and SOL3, in the genome of some rare $dna2\Delta$ $ddc1\Delta$ clones (Fig. 33c). Strains used for qPCR were of the same genotype as strains from Figure 33b, but were generated in a different cross, and were not used for further study. qPCR analysis revealed that $dna2\Delta$ $ddc1\Delta$ strains had similar copy number of PRP8 and SOL3 genes as WT strains, but did not contain the DNA2 sequence at all (Fig. 33c).

I confirmed that genomic DNA2 was replaced with KANMX cassette in $ddc1\Delta$ $dna2\Delta$, $rad17\Delta$ $dna2\Delta$ and $chk1\Delta$ $dna2\Delta$ double mutants, and that no extra DNA2 sequence was present in the three $ddc1\Delta$ $dna2\Delta$ strains. To sum up the results of both PCRs indicate that the viability of $dna2\Delta$ depends on deletion of DDC1, RAD17 or CHK1 and not on aneuploidy.

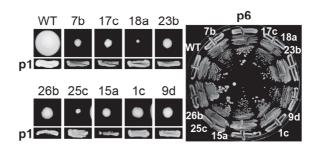
Figure 33. Viability of dna2∆ mutants is not due to extra DNA2 copies


- a) The presence of *KANMX* cassette and absence of *DNA2* was confirmed by PCR. Arrows primers used. Each primer has colour assigned: **red** M1970, **black** M3603, **green** M2947, **blue** M2958; *p KANMX* promoter from plasmid pDL1575.
- b) DNA was isolated from strains growing in YEPD liquid medium at 23°C for 24 h using Yale method. Strain genotypes are indicated above gel lines. Line 1 +1kb molecular ladder. Strains were: $2 ddc1\Delta \ dna2\Delta \ (DLY10971)$, $3 ddc1\Delta \ dna2\Delta \ (DLY10972)$, $4 ddc1\Delta \ dna2\Delta \ (DLY10974)$, $5 rad17\Delta \ dna2\Delta \ (DLY10979)$, $6 rad17\Delta \ dna2\Delta \ (DLY10980)$, $7 rad17\Delta \ dna2\Delta \ (DLY10981)$, $8 rad17\Delta \ dna2\Delta \ (DLY10982)$, $9 chk1\Delta \ dna2\Delta \ (DLY10975)$, $10 chk1\Delta \ dna2\Delta \ (DLY10976)$, $11 chk1\Delta \ dna2\Delta \ (DLY10977)$, $12 chk1\Delta \ dna2\Delta \ (DLY10978)$, $13 dna2\Delta \ pDNA2 \ (DLY10635)$, $14 WT \ (DLY3001)$, $15 NTC-H_2O$.
- c) qRT-PCR analysis performed as in Figure 24. The level of DNA from single independent strains were measured, each value was normalised to the level of BUD6 genomic DNA. Strains were: WT (DLY3001), cdc13-1 (DLY1108), cdc13-1 $dna2\Delta$ pDNA2 (DLY8998), cdc13-1 $ddc1\Delta$ pVector (DLY9469), $ddc1\Delta$ $dna2\Delta$ (DLY10616), $ddc1\Delta$ $dna2\Delta$ (DLY10617), $ddc1\Delta$ $dna2\Delta$ (DLY10618).

4.2 Viable dna2∆ strains recover fitness with time, but remain thermo-sensitive


4.2.1 dna2∆ mutants form colonies of heterogeneous size

As shown in section 4.1.2 spores of $dna2\Delta$ mutants germinated at 20°C into heterogeneous and slowly growing colonies. To test whether $dna2\Delta$ mutants with deletions of RAD9, DDC1, RAD17, CHK1 and MEC1 SML1 recover with time, strains were passaged six times on YEPD plates (Fig. 34). Double mutants become fitter during passaging, but they never look like WT strains, the colonies are always smaller than those of WT (Fig. 34). Strains of the same genotype often show heterogeneity in growth. I did not notice much difference in colony size or growth between $rad9\Delta$ $dna2\Delta$, $ddc1\Delta$ $dna2\Delta$, $rad17\Delta$ $dna2\Delta$ or $chk1\Delta$ $dna2\Delta$ strains. Therefore I conclude that deletions of RAD9, DDC1, RAD17, CHK1 and MEC1 SML1 suppress $dna2\Delta$ lethality alike. The inability of strains to recover completely and resemble WT strain indicates that $dna2\Delta$ mutants are sick and cannot recover because of reasons that remain to be defined.

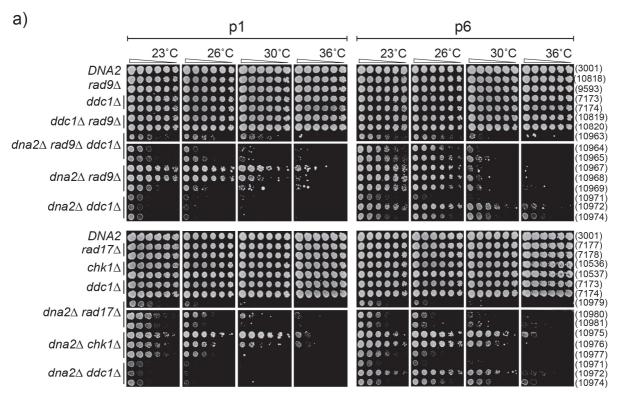

a) $rad9\Delta/RAD9 \ dna2\Delta/DNA2 \ (DDY874)$ b) $ddc1\Delta/DDC1 \ dna2\Delta/DNA2 \ (DDY876)$

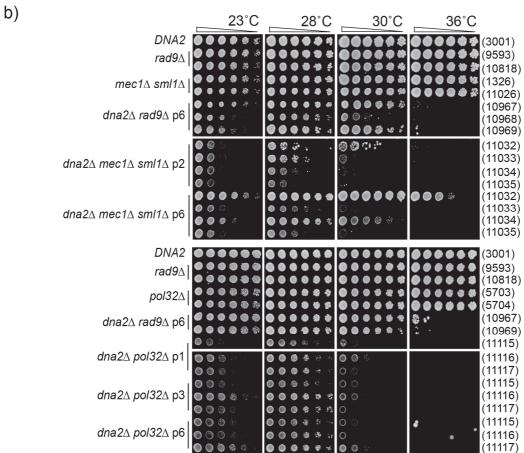
c) $chk1\Delta/CHK1 dna2\Delta/DNA2$ (DDY878) d) $rad17\Delta/RAD17 dna2\Delta/DNA2$ (DDY880)

e) mec1\(\triangle /MEC1\) sml1\(\triangle /SML1\) dna2\(\triangle /DNA2\) (DDY958)

Figure 34. *dna2*∆ mutants form heterogeneous colonies and slightly recover fitness with time

Representation of colony sizes from spores and passages 1 and 6 of double mutants. A single WT colony represents the colony size of WT strain and a single picture is used for comparison. Double mutants formed very small colonies which were then patched on YEPD and incubated for 4 days at 23°C before photographing. A small amount of each patch was then streaked for single colonies on YEPD plates and incubated for 4 days at 23°C. Then 5-10 colonies were pooled and streaked onto YEPD plates for 5 more passages. *p1*, *p6* – passage 1 and 6, respectively.


- a) Germinated spores of rad9∆/RAD9 dna2∆/DNA2 diploid (DDY874);
- b) Germinated spores of ddc1\(\triangle DDC1\) dna2\(\triangle DNA2\) diploid (DDY876);
- c) Germinated spores of *chk1*\(\triangle /CHK1 \) *dna2*\(\triangle /DNA2 \) diploid (DDY878);
- d) Germinated spores of rad17∆/RAD17 dna2∆/DNA2 diploid (DDY880);
- e) Germinated spores of *mec1\triangle/MEC1 sml1\triangle/SML1 dna2\triangle/DNA2* diploid (DDY958). WT colony and double mutant colonies (apart from e) were cut from Figure 31a using Photoshop CS6 and organised using Adobe Illustrator.

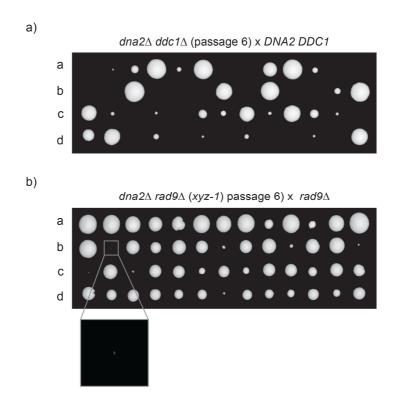

4.2.2 dna2∆ mutants are thermo-sensitive

 $dna2\Delta\ ddc1\Delta$ spores germinate more efficiently at 20°C than at 23°C. To see if the strains remain ts, the growth assays were performed for $dna2\Delta$ mutants with deletions of RAD9, DDC1, RAD17 and CHK1. Figure 35 shows that double mutants, perhaps apart from $rad9\Delta\ dna2\Delta$, slightly recover fitness with time, so that strains from passage 6 grow better at higher temperatures than strains from passage 1 or 2 (Fig. 35a). However, all $dna2\Delta$ strains remain thermo-sensitive and rarely grow above 36°C, and strains of the same genotype often show heterogeneity in growth.

Growth assays were also performed for deletions of *MEC1 SML1* and *POL32* in $dna2\Delta$ background (Fig. 35b). $mec1\Delta$ $sml1\Delta$ $dna2\Delta$ strains show heterogeneity in growth and remain thermo-sensitive (Fig.35b, top panel). Interestingly, $pol32\Delta$ $dna2\Delta$ strains seem to be more homogenous than other tested double mutants (Fig.35b, bottom panel). $pol32\Delta$ $dna2\Delta$ strains do not recover with time and look similar when spot tested from passage 1 and 6. These strains remain thermo-sensitive and do not grow above 30°C.

I conclude that $dna2\Delta$ strains are very sick and this correlates with thermo-sensitivity. I do not exclude that further passaging would suppress the $dna2\Delta$ growth defect more. It was proposed by Budd et~al. that Pol32, Dna2 and Rad9 function in Okazaki fragment processing and therefore might be in one functional group (Budd et al., 2011). However, based on the spot tests from Figure 35 I observe that $pol32\Delta~dna2\Delta$ mutants from passage 6 resemble strains from passage 1, and growth of individual strains of the same genotype is homogenous. This might indicate that the function of POL32 in $dna2\Delta$ lethality might be somewhat different from RAD9, DDC1, RAD17, CHK1, MEC1~SML1. It would be interesting to investigate this difference in growth, by e.g. analysing the cell cycle arrest of checkpoint defective mutants versus polymerase defective mutants with $dna2\Delta$ mutation.

Figure 35. dna2\(\Delta\) mutants remain thermo-sensitive


- a) Spot test done as in Figure 9. Strains within passage 1 were grown on two rectangular plates, indicated by wider white space between photographs, and were spot tested and incubated at the same time. Strains within passage 6 were grown on two rectangular plates, indicated by wider white space between photographs, and were spot tested and incubated at the same time.
- b) Spot test done as in Figure 9. Strains from the top and bottom panels were grown on two rectangular plates and on different days, indicated by wider white space between photographs. The relevant genotypes of the strains are indicated on the left, strain numbers on the right. Strain details are in Appendix A.

4.2.3 Viability of dna2∆ mutants is not an effect of additional mutation

In most cases checkpoint gene deletions suppressed $dna2\Delta$ lethality for approximately 50 %; half of double mutants were viable, while half were dead (Fig. 32). Such composition (50 %) of spore viability suggests that there might be another mutation, denoted 'xyz-1', which suppresses $dna2\Delta$ lethality. To test whether mutation was present in cells with deletions of checkpoint genes and DNA2, first a $ddc1\Delta$ $dna2\Delta$ strain was backcrossed to the WT strain. The diploid was then sporulated, and spores were dissected (Fig. 36a). $ddc1\Delta$ suppressed only 46 % of $dna2\Delta$ mutants (Fig. 36c). It might be therefore possible that a mutation xyz-1 inherited by $ddc1\Delta$ $dna2\Delta$ strains was passed to their progeny.

To better test for an xyz-1 mutation in $dna2\Delta$ strains, a diploid homozygous for checkpoint gene deletion was to be generated and dissected. This experiment however could not be performed in $ddc1\Delta/ddc1\Delta$ diploid due to likely low meiotic spore viability, as was observed for strains with defects of other members of the 9-1-1 complex and Rad24 (Lydall et al., 1996). Therefore another diploid, $rad9\Delta/rad9\Delta$ $dna2\Delta/DNA2$, was generated, sporulated and spores were dissected (Fig. 36b). If $rad9\Delta$ $dna2\Delta$ contained xyz-1 mutation, than $dna2\Delta$ strains would be viable only in the presence of xyz-1 mutation. Spore viability of $rad9\Delta/rad9\Delta$ $dna2\Delta/DNA2$ diploid should be 50 % if xyz-1 mutation suppresses $dna2\Delta$ lethality. Spore viability of 100 % would suggest there is no xyz-1 mutation suppressing $dna2\Delta$.

98 % spore viability and 96 % of suppression efficiency indicates there is no xyz-1 mutation (Fig. 36b and c). I conclude that there is no evidence for xyz-1 mutation suppressing the lethality of $dna2\Delta$ mutants. Rather, $rad9\Delta$, $ddc1\Delta$, $rad17\Delta$, $chk1\Delta$, $mec1\Delta$ and $pol32\Delta$, suppress $dna2\Delta$ without a requirement of an additional mutation(s). However, only $rad9\Delta$ $dna2\Delta$ strain was tested for containing an additional mutation(s), and other strains, e.g. $ddc1\Delta$ $dna2\Delta$ or $chk1\Delta$ $dna2\Delta$ should be tested as well.

c)	C) DDY	No. of tetrads	No. of spores	No. of visible colonies from germinated spores (%)	No. of G418 ^r and HIS3 colonies (%)	Suppression efficiency (observed/ expected) (%)
	dna2∆/DNA2 ddc1∆/DDC1	39	156	81 (52)	18 (22)	18/39 (46)
	dna2∆/DNA2 rad9∆rad9∆	52	208	203 (98)	100 (49)	100/104 (96)

Figure 36. Suppression of *dna2*∆ lethality is independent of "unknown" mutations

Strains were grown in YEPD liquid, sporulated in ESM, tetrads were dissected and germinated on YEPD plates. Pictures of colonies were taken after 10 days at 20°C.

- a) Tetrad dissection from a sporulated diploid $dna2\Delta/DNA2\ ddc1\Delta/DDC1$ (diploid strain was not frozen and was originated from the cross: DLY10974 x DLY8460). Three plates were dissected; one is shown. Suppression efficiency was 46 % (18 viable $dna2\Delta\ ddc1\Delta$ colonies out of 39 $dna2\Delta\ ddc1\Delta$ expected strains).
- b) Tetrad dissection from a sporulated diploid $dna2\Delta/DNA2 \ rad9\Delta/\ rad9\Delta$ (DDY1042). Four plates were dissected, one is shown. One colony of $dna2\Delta \ rad9\Delta$ genotype is in magnification (grey square).
- c) Spore viability of $dna2\triangle/DNA2$ strains and plasmid transmission efficiency. $G418^r$ G418 resistant dna2::KANMX cells, HIS3 ddc1::HIS3 or rad9::HIS3. Spore viabilities were calculated for three plates of $dna2\triangle/DNA2$ $ddc1\triangle/DDC1$ genotype and for four plates of $dna2\triangle/DNA2$ $rad9\triangle/rad9\triangle$ genotype.

4.3 Telomeres of dna2∆ mutants are long and diffuse

Dna2 has a role in telomeric DNA maintenance and was proposed to be involved in telomere replication (Choe et al., 2002, Chai et al., 2013, Lin et al., 2013). Thus it was possible that telomeres of $dna2\Delta$ strains might change structure and length. To test this hypothesis a Southern blot was performed to check if loss of *DNA2* leads to altered telomere structure.

Figure 37 shows that telomeres of *dna2*∆ mutants with deletions of *RAD17*, *DDC1* and POL32 are longer and more diffuse than WT telomeres. This is visible as early as passage 1, and remains so in passage 6 (Fig. 37 lines 20-25). Although telomeres were also slightly longer when RAD9, CHK1 and MEC1 SML1 were deleted, the difference was less noticeable (Fig. 37 lines16-19 and 26-27). For reasons that are unclear, one $rad17\Delta$ and one $ddc1\Delta$ strain have slightly longer telomeres when compared to other strains of the same genotypes or to WT. Longer telomeres might be inherited during meiosis of a diploid, if diploid strain had long telomeres, too (Petreaca et al., 2007). However, this hypothesis was not tested. Also observed longer telomeres might be a side effect of culture conditions (e.g. prolong culture with mutations accumulation), or an artefact arisen during DNA isolation. It is also possible that the longer telomeres of *rad17*∆ strain could affect the viability of spores shown in Figure 31a (87 % dna2\Delta suppression). I would suggest repeating the experiment by mating a rad17\(\Delta\) mutant which has WT telomere length with dna2\(\Delta\) pDNA2 strain. Overall, I conclude that longer telomeres might assist dna2\(Delta\) double mutants' viability.

In summary, I observed at least two classes of genes which suppressed $dna2\Delta$, based on: i) the heterogeneous growth of strains of the same genotype and ability to recover with time (deletions of RAD9, DDC1, RAD17, CHK1, MEC1 SML1 versus deletion of POL32 in $dna2\Delta$ mutants); ii) telomere length (deletions of RAD9, CHK1 and MEC1 SML1 versus deletions of DDC1, RAD17 and POL32 in $dna2\Delta$ mutants). I do not understand where the differences in $dna2\Delta$ suppression came from, and to test it unbiased robotic screens were used.

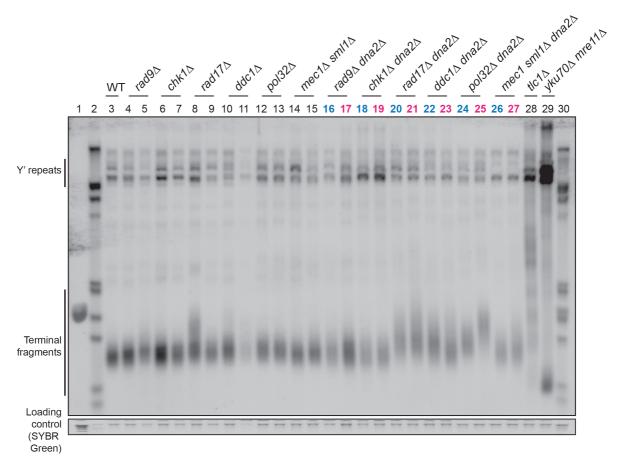
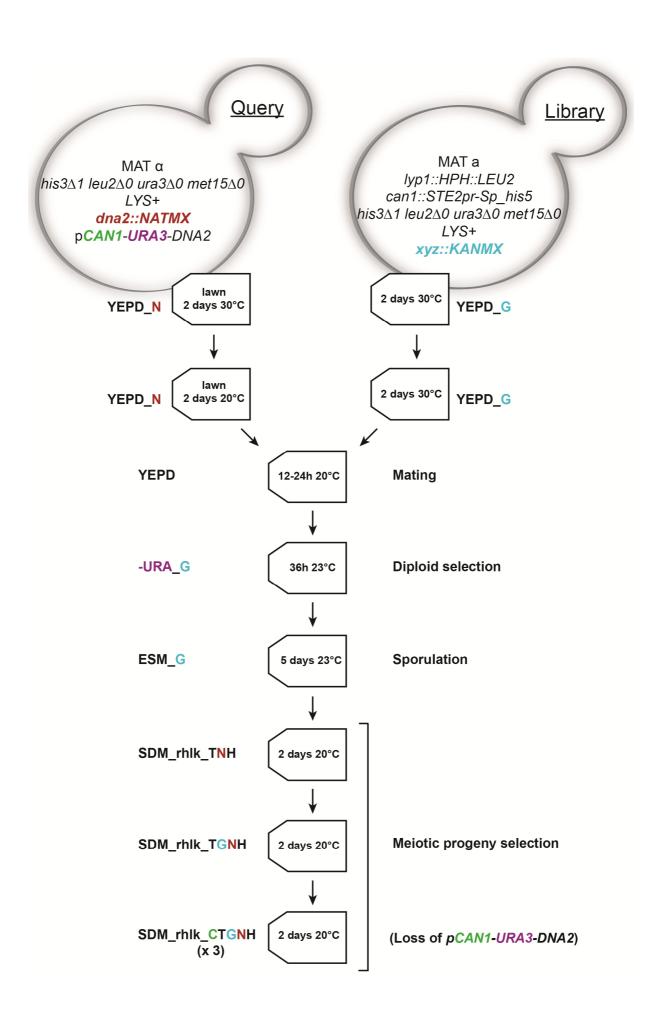


Figure 37. Telomeres of *dna2*∆ mutants are long and diffuse

Genomic DNA was isolated from yeast strains indicated using Yale method after 24 h incubation at 23°C. Telomeres were analysed by Southern blot. SYBR Safe was used as a loading control. Lines 1-2 & 30 – molecular ladders. $tlc1\Delta$ and $yku70\Delta$ $mre11\Delta$ strains were used as controls for type II and I survivors (Maringele and Lydall, 2004). Passage 1 – lines: 16, 18, 20, 22, 24, 26; Passage 6 – lines: 17, 19, 21, 23, 25, 27. Strains were: 3 - WT (DLY3001), $4 - rad9\Delta$ (DLY9593), $5 - rad9\Delta$ (DLY10818), $6 - chk1\Delta$ (DLY10536), $7 - chk1\Delta$ (DLY10537), $8 - rad17\Delta$ (DLY7177), $9 - rad17\Delta$ (DLY10478), $10 - ddc1\Delta$ (DLY7173), $11 - ddc1\Delta$ (DLY7174), $12 - pol32\Delta$ (DLY5703), $13 - pol32\Delta$ (DLY5704), $14 - mec1\Delta$ sml1 Δ (DLY1326), $15 - mec1\Delta$ $sml1\Delta$ (DLY11026), $16 - rad9\Delta$ dna 2Δ passage 1 (DLY10968), $17 - rad9\Delta$ dna 2Δ passage 6 (DLY10968), $18 - chk1\Delta dna2\Delta passage 1$ (DLY10976), $19 - chk1\Delta dna2\Delta passage 1$ $dna2\Delta$ passage 6 (DLY10976), $20 - rad17\Delta dna2\Delta$ passage 1 (DLY10982), $21 - rad17\Delta dna2\Delta$ $rad17\Delta dna2\Delta passage 6 (DLY10982), 22 - ddc1\Delta dna2\Delta passage 1 (DLY10972),$ $23 - ddc1\Delta dna2\Delta passage 6 (DLY10972), 24 - pol32\Delta dna2\Delta passage 1$ (DLY11116), $25 - pol32\Delta dna2\Delta passage 6$ (DLY11116), $26 - mec1\Delta sml1\Delta dna2\Delta$ passage 1 (DLY11033), $27 - mec1\Delta$ sml1 Δ dna2 Δ passage 6 (DLY11033), $28 - tlc1\Delta$ (DLY2147), $29 - yku70\Delta mre11\Delta$ (DLY1845). Strain details are in Appendix A.


4.4. Synthetic Genetic Arrays (SGA) to understand mechanisms of *dna2*∆ suppression

4.4.1 Genome-wide screens using dna2∆ pCAN1-URA3-DNA2 query strain

An unbiased genome-wide screen was used to understand the mechanisms allowing suppression of $dna2\Delta$. Synthetic genetic array (SGA) was performed using a query strain, to see if it is possible to identify genes that suppress and/or enhance $dna2\Delta$ lethality. Due to the fact that haploid $dna2\Delta$ mutants are inviable, the plasmid (pCAN1-URA3-DNA2; pDL1758) had to be maintained at all time to assure $dna2\Delta$ strain viability. Therefore so called 'plasmid SGA' was designed as a variation of standard protocol (Fig. 38).

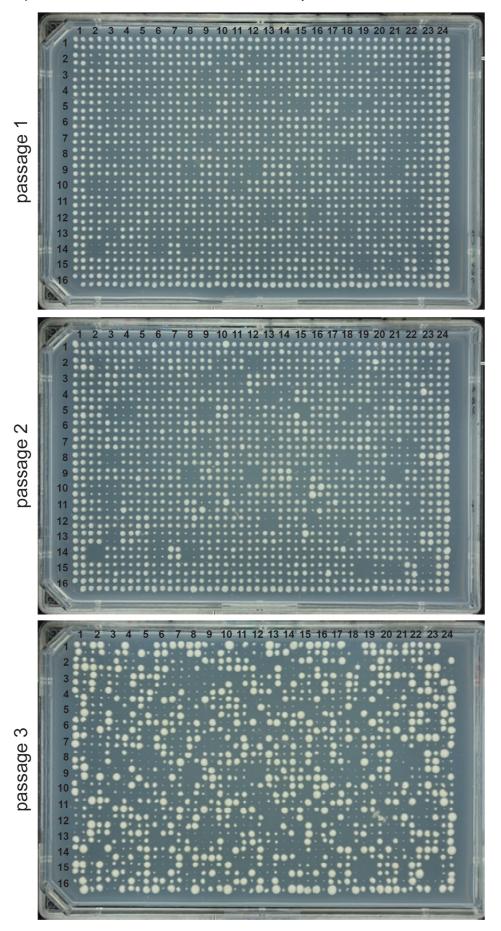
Single query strain $dna2\Delta$ pCAN1-URA3-DNA2 (Fig. 38 left panel) was mated with a single gene deletion library of approximately 5000 gene deletions, $xyz\Delta$ (Fig. 38 right panel). Diploids were sporulated and double mutants carrying plasmids were selected (Fig. 38 middle part). The plasmids had to be lost at the final stage of the SGA process to allow $xyz\Delta$ mutants to reveal the effect on $dna2\Delta$ viability. Plasmid loss was achieved by yeast growth on canavanine media (CAN) (Fig. 38, CTGNH media).

CAN1 gene from the plasmid encodes a membrane arginine permease which is involved in transmembrane transport of amino acid (Ahmad and Bussey, 1986). Canavanine is a toxic analogue of arginine and therefore can enter cell via an arginine transporter Can1 (Whelan et al., 1979). Mutation of CAN1 gene confers resistance to the toxic canavanine, which cannot be up-taken into the cell. Therefore $dna2\Delta \ xyz\Delta$ cells with can1 mutation should lose the pCAN1-URA3-DNA2 plasmid on canavanine media and proceed the growth if $xyz\Delta$ is a $dna2\Delta$ suppressor, or die if $xyz\Delta$ is not a suppressor.

Figure 38. SGA plasmid method for *dna2*△ *pCAN1-URA3-DNA2* strain

SGA protocol for crossing a $dna2\Delta$ pCAN1-URA3-DNA2 query strain with single gene deletion library (~5000 genes), sporulating diploids and obtaining $dna2\Delta$ $xyz\Delta$ haploids. Once haploid double mutants were selected, the colony sizes were measured. lyp1::HPH::LEU2 - lyp1 confers resistance to thialysine, HPH is a marker gene; can1::STE2pr- $Sp_his5 - can1$ confers resistance to canavanine, and STE2pr- Sp_his5 is a MAT locus specific promoter which allows for selection on –HIS media only when strain is MAT a; $his3\Delta$ $leu2\Delta0$ $ura3\Delta0$ $met15\Delta0$ – mutations in the genome which allow to use marker genes; LYS+ — strains can grow on –Lys media; $dna2\Delta$::NATMX - NATMX confers resistance to clonNat (N); pCAN1-URA3-DNA2 – pDL1758, allows yeast to grow on –URA media, and should be lost on canavanine; xyz::KANMX – gene deletion from the library, KANMX confers G418 resistance (G). N – clonNat; G – G418; H – hygromycine; T – thialysine, C – canavanine.

138


4.4.2 SGA reveals novel suppressors and enhancers of dna2∆

It was important to first check whether it was at all possible to obtain reliable and consistent results from SGA of $dna2\Delta$ pCAN1-URA3-DNA2 mutants. Therefore a pilot SGA was performed for $dna2\Delta$ pDNA2 query strain with plate 15 of the lab collection (Fig. 39). Plate 15 was chosen because it contains several copies of several checkpoint gene deletions which I showed earlier to suppress $dna2\Delta$, like $ddc1\Delta$ or $chk1\Delta$, and positive control $rad9\Delta$.

The final selection on CTGNH was performed three times, which allowed us to empirically choose the passage which gives the most reliable and informative results (Fig. 39a). Passage 1 revealed some synthetic lethal interactions of $dna2\Delta xyz\Delta$ mutants, but it was not possible to distinguish fitter colonies – feasible suppressors of $dna2\Delta$ lethality. Passage 2 gave the most reliable information about likely suppressors of $dna2\Delta$; usually all four colonies within a genotype were bigger than other colonies from the plate. Passage 3 on the other hand was a mosaic of big and small colonies. It was difficult to distinguish suppressors of $dna2\Delta$ on this plate, because often colony sizes were not consistent within genotypes, e. g. one colony was very big, two were of average size and one was small, like for TSA1 (Fig. 39a and b, Column 16 Row 11).

The most informative was passage 2 and analysis of a raw plate allowed to conclude that some gene deletions suppressed $dna2\Delta$ lethality, like expected $rad9\Delta$, $chk1\Delta$ etc., while many other gene deletions did not suppress $dna2\Delta$. I deduce that the pilot SGA of plate 15 was successful and consistent with my earlier observations that RAD9, RAD17, DDC1 and CHK1 suppress $dna2\Delta$ lethality.

a) Plate 15, CTGNH, 20°C, S288C pilot SGA

b)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1																								
2							Rad 24			Rad 52		Mre 11						Mre 11						
3			Rad9								Mre 11	Rad 24												
4													Rad 50	Rad 52	Rad 24									
5		Rad 24							Rad 50	Rad9														
6															Rad 17									
7			Rad 24																Rad 17					
8			Mre 11																				Chk1	
9				Rad				Rad 50						Rad9	Rad 50									
10																Chk1								
11								Rad 24	Rad 52															
12					Rad9								Rad 50											
13		Chk1	Mre 11	Rad9									Rad 17										Rad9	
14							Rad 17																Mre 11	
15															Rad 17								Rad 50	
16																								

Figure 39. S288C pilot SGA of plate 15 containing checkpoint gene deletions

- a) Pictures of final selection plates CTGNH, passage 1, 2 and 3 at 20°C. Double mutants were pinned in quadruples.
- b) Template of plate 15. Horizontal numbers numbers of columns; vertical numbers numbers of rows. The positions of several highlighted genes are assigned to their position on plates in a). Pink position of a gene whose deletion suppresses $dna2\Delta$ strains; grey position of a gene whose deletion enhances $dna2\Delta$ strains. The complete template of plate 15 is in Appendix E.

The SGA of $dna2\Delta$ pCAN1-URA3-DNA2 and the whole library of approximately 5000 gene deletions was performed and data acquired from passage 2 on CTGNH media were analysed. Figure 40 shows the colony sizes from the $dna2\Delta$ $xyz\Delta$ (CTGNH) and $dna2\Delta$ $xyz\Delta$ pCAN1-URA3-DNA2 (TGNH) SGAs plotted against each other. Highlighted on the plot are:

- Suppressors of dna2∆ lethality which I tested in sections 4.1 and 4.2, like RAD9, DDC1, RAD17, CHK1, POL32 (red dots);
- No-suppressors of dna2∆ lethality which I tested in section 4.1.2, like MRE11, RAD27, EXO1, RIF1, RIF2, TEL1, SML1 (blue dots);
- Genes which deletions might suppress dna2∆ lethality based on their localization on the plot (yellow rectangle, above the regression line), like RAD24, BUB3, CTF3, MPH1, LSM1, RTT109, CDC15, DBP7 (purple dots);
- Genes that may not affect dna2∆ viability, based on their localization on the plot (beneath the regression line) like SGS1, TOP3, BUB2 (purple dots).

I conclude that the SGA plasmid method was efficient. The suppressors of $dna2\Delta$ lethality which I identified by tetrad dissection were shown on the plot as gene deletions which suppressed $dna2\Delta$ growth defect, and were localised above the regression line (Fig. 40). No-suppressors (enhancers) of $dna2\Delta$ lethality were localized beneath the regression line, indicating that these gene deletions did not affect $dna2\Delta$ fitness. Based on the SGA screens I was able to select some novel suppressors of $dna2\Delta$ for further study, like $mph1\Delta$ or $rtt109\Delta$.

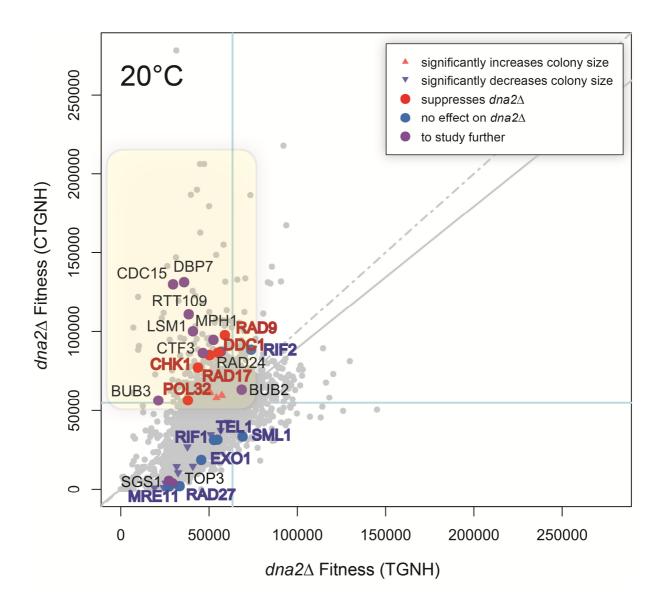
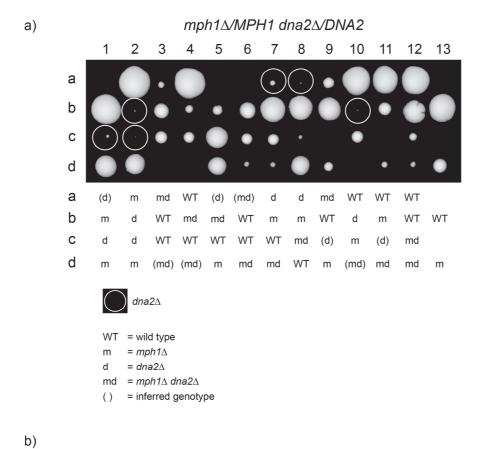


Figure 40. Single gene deletions affecting dna2∆ fitness

Median colony sizes from the two SGA screens indicated (from CTGNH media and TGNH media) were plotted against each other. The solid line - a regression line indicating population model of expected fitness. The dashed line - the line of equal growth. Fitness – colony size. **Red upwards arrows** - a single gene deletion that significantly increases $dna2\Delta$ colony size. **Purple downwards arrows** - a single gene deletion that significantly decreases $dna2\Delta$ colony size. **Red dots** - positions of gene deletions which suppress $dna2\Delta$ lethality (confirmed manually). **Blue dots** - positions of gene deletions which do not suppress $dna2\Delta$ lethality (confirmed manually). **Purple dots** - positions of gene deletions which suppress or enhance $dna2\Delta$ lethality and are to be studied. **Grey dots** – all remaining gene deletions (~5000). **Yellow rectangle** – indicates the area of interest in the sense that $dna2\Delta$ lethality may be suppressed by genes localized in this area.

4.4.3 mph1 Δ suppresses dna2 Δ , while rtt109 Δ and dgr2 Δ do not affect dna2 Δ fitness

The SGA of $dna2\Delta$ pCAN1-URA3-DNA2 strain gave insights into novel mechanisms that might be required for Dna2 viability. 702 genes were selected based on a q value (q \leq 0.05). This set of genes was then ordered by GIS (genetic interaction strength) which resulted in identification of 130 suppressors and 572 no-suppressors (enhancers) of $dna2\Delta$ defect (Appendix F).


MPH1, RTT109 and DGR2 were selected for further study in W303, because all three genes were in a group of 130 potential suppressors of dna2Δ lethality. MPH1 and RTT109 were chosen due to their roles in DNA replication, the process in which Dna2 functions, too. Dgr2 was a randomly selected gene. It was hypothesised that Mph1 and Rtt109 may interact with Dna2 based on e. g. shared common function in DNA replication. Mph1, a helicase acting in Okazaki fragment processing, was shown to stimulate Rad27 and Dna2 activities (Kang et al., 2009). Similarly to human FANCM protein, Mph1 is involved in stabilizing and remodelling of blocked replication forks (Yan et al., 2010). Rtt109, a histone acetyltransferase, is critical for cell survival in presence of DNA damage during

S-phase (Han et al., 2007, Ide et al., 2013). Dgr2 is a protein of so far unknown function (Ralser et al., 2008).

 $dna2\Delta/DNA2$ diploid strains of W303 background with heterozygous deletions of MPH1, RTT109 or DGR2 were generated, sporulated and tetrads were dissected. Only $mph1\Delta$ suppressed the lethality of $dna2\Delta$ (Fig. 41), while no $rtt109\Delta$ $dna2\Delta$ or $dgr2\Delta$ $dna2\Delta$ double mutants were observed (not shown). Surprisingly, six $dna2\Delta$ single mutants emerged when MPH1 was deleted in heterozygous $dna2\Delta$ background, similarly to what was observed for RAD27 and MRE11 deletions (Fig. 32). The role of $mph1\Delta$ on $dna2\Delta$ is different from $rad27\Delta$, because deletion of RAD27 did not suppress $dna2\Delta$ lethality, while deletion of MPH1 did suppress $dna2\Delta$ (Fig. 41 and Fig. 32). $mph1\Delta$ is also similar to $rad27\Delta$ in a sense that gave rise to $dna2\Delta$ single mutants. $dna2\Delta$ strains from germinated spores were struck on YEPD plates and incubated at 23°C, but none of the colonies proceed growth (not shown). $dna2\Delta$ mutants might continue to grow at lower temperature, e. g. 20°C or 18°C, but this was not tested.

I conclude that Mph1 regulates Dna2 activity and/or is involved in the same process (like Okazaki fragment processing) based on the fact that $mph1\Delta$ suppresses $dna2\Delta$. However, the mechanism of Mph1 regulation remains unknown, and should be studied in the future. Also, the similarities and differences in the roles of Mph1 and Rad27 on $dna2\Delta$ viability should be clarified. The growth of $dna2\Delta$ cells indicates that deletions of MPH1 along with DNA2 results in genomic instability or aneuploidy. Whole genome sequencing would confirm genomic instability. I did not observe the suppression of $dna2\Delta$ by $rad27\Delta$, it might be worth checking whether deletion of MPH1 suppresses $dna2\Delta$ $rad27\Delta$ lethality.

Deletions of RTT109 and DGR2 did not suppress $dna2\Delta$ lethality and therefore did not prove to be real hits in the SGA. It seems that $rtt109\Delta$ $dna2\Delta$ and $dgr2\Delta$ $dna2\Delta$ mutants formed fitter or bigger colonies, and thus were recognised and scored in the SGA as suppressors of $dna2\Delta$. One explanation for $dna2\Delta$ cells to form big colonies, apart from being suppressed, would be the maintenance of the pDNA2 plasmid. It might be possible that the selection pressure against the plasmid on canavanine media, the last stage of the SGA selection, was not strong enough for some cells to lose the plasmid. Such cells maintained the plasmid and grew well on canavanine, which could result in a false score as a $dna2\Delta$ suppression. Maybe another selection method would clarify the SGA hits. The pDNA2 plasmid carries CAN1 and URA3 genes, therefore the selection against the plasmid could be performed on 5-FOA media. The hypothesis concerning selection difficulties in the SGA remains to be tested.

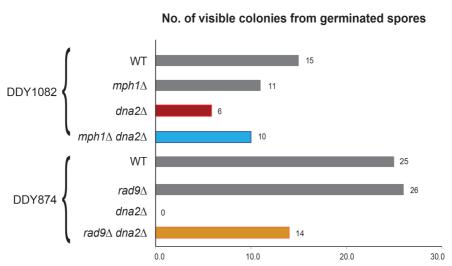


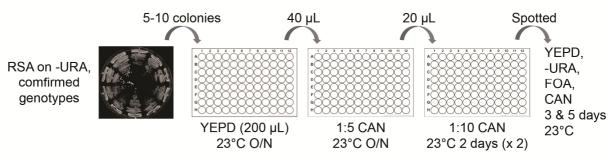
Figure 41. $mph1\Delta$ suppresses $dna2\Delta$ similarly to $rad9\Delta$

a) Example of germinated spores of $mph1\Delta/MPH1\ dna2\Delta/DNA2\ diploid\ (DDY1082)$. Spores were germinated at 20°C for 10 days before being photographed. $dna2\Delta$ pDNA2 strain was mated with $mph1\Delta$ strain, and diploid was treated as in Figure 31. b) Spores from a) were scored and plotted for comparisons with quantifications for $rad9\Delta$ (DDY874) from Figure 32. Bars present numbers of viable colonies WT, $yfg\Delta$ and $dna2\Delta$ $yfg\Delta$ and (mostly) inviable $dna2\Delta$ spores: **Grey bars** – WT or $yfg\Delta$; **coloured bars** – viable $dna2\Delta$ $yfg\Delta$; **red bars** – viable $dna2\Delta$; '0' and no bar – inviable $dna2\Delta$.

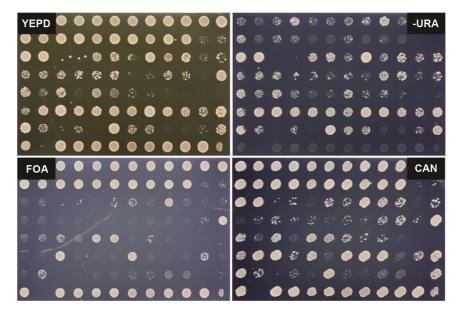
4.4.4 Inability to lose pCAN1-URA3-DNA2 on canavanine impedes verification of dna2∆ suppressors in W303

Twenty one hits which appeared on the S288C SGA plot as strong suppressors or no-suppressors (enhancers) of $dna2\Delta$ lethality, were randomly selected for further studies in W303 background and are indicated below. Diploid strains heterozygous for deletions of no-suppressors of dna2∆ (RAD51, XRS2, SGS1, EXO1, TOP3, BUB2) and likely suppressors of dna2∆ (RAD9, RAD17, RAD24, DDC1, CHK1, MPH1, BUB3, POL32, MEC1 SML1, CTF3, DGR2, LSM1, RPS4A, RTT109 and cdc15-2 mutation) in dna2∆/DNA2 pCAN1-URA3-DNA2 background were generated and random spore analysis was performed. Spores were germinated on –URA plates to select for the plasmid at all time. So called "manual SGA" was applied involving culture conditions which mimic the conditions of robotic SGA (Fig. 42a). Yeast strains dna2∆ xyz∆ pCAN1-URA3-DNA2 (xyz∆ indicates any of twenty one gene deletions tested) were cultured in liquid YEPD followed by growth for three passages in canavanine media to enhance the ability of strains to lose the *pCAN1-URA3-DNA2* plasmid. Finally the ability to lose the plasmid was assessed by spotting strains onto canavanine, FOA, YEPD and –URA plates (Fig. 42b and c). Yeast growth was assessed after 3 and 5 days incubation at 23°C. Such "manual SGA" was considered to be a more efficient and informative method, and at the same time less time consuming than tetrad dissection.

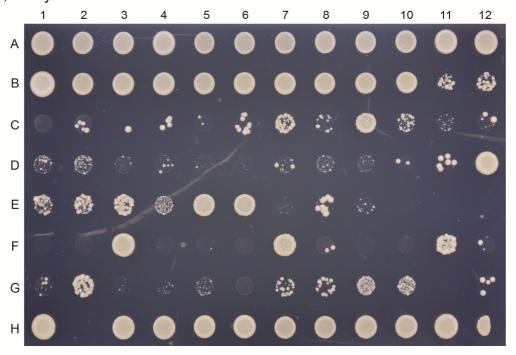
dna2Δ xyzΔ pCAN1-URA3-DNA2 double mutants and control strains carrying pCAN1-URA3-DNA2 plasmid were used. The plate template with assigned position of each strain on a plate, strain genotypes and numbers, is shown in Figure 42d. Some strains contained wild type CAN1 gene and served as a control for canavanine media (Fig. 42d 11-12B, 3-4C). Some control strains contained URA3 gene and served as a control for FOA media (Fig. 42d 1-2C). Finally, some strains did not contain the plasmid but were shown earlier to grow well despite dna2Δ mutation and served as positive control for dna2Δ suppression (Fig.42d 3-12H).


Most of yeast strains carrying *pCAN1-URA3-DNA2* plasmid were still able to grow on –URA, canavanine and FOA plates, which indicates that the plasmid was not efficiently lost. Moreover, yeast grew better on canavanine plate than on FOA, which suggests that FOA serves as a better media for plasmid counter-selection. The most

informative growth of yeast was observed on FOA plates after 5 days incubation at 23°C (Fig. 42c). WT and single gene deletion control mutants grew well on FOA plate, but did not completely lose the *pCAN2-URA3-DNA2* plasmid (Fig. 42c, compare to b, -URA). The control strains carrying *CAN1* gene on a chromosome were still able to from colonies on FOA plate, although the ability to growth should be lost during passaging in canavanine liquid media (Fig. 42c 11-12B, 3-4C). One strain carrying *URA3* gene on a chromosome formed colonies on FOA but should be inviable (Fig. 42c 1-2C).


Due to the fact that strains which served as controls for plate selection grew, the conclusions about the growth of $dna2\Delta xyz\Delta$ double mutants are difficult to make. Moreover, $dna2\Delta xyz\Delta$ strains exhibit very heterogeneous growth patterns, e. g. $dna2\Delta chk1\Delta$ (Fig. 42c and d, 10-12D) or $dna2\Delta rtt109\Delta$ (Fig. 42c and d, 1-2H).

I conclude that the experimental set up was not perfect and did not yield valuable and reliable information. It seems that prolong incubation in canavanine medium does not impose the plasmid loss, which is reflected by subsequent yeast growth on all types of selective media used. The difference in growth between control *dna2*Δ *pCAN1-URA3-DNA2* strains and *dna2*Δ *xyz*Δ double mutants is not obvious on selective canavanine plate, and is slightly better to notice on FOA plates. The possible explanation might be too low concentration on canavanine to force plasmid loss. Also, FOA may confer a more severe defect than canavanine. SGA may yield more reliable results if final selection step was performed on FOA, and not on canavanine media. Also, if strains were diluted in water before inoculation into canavanine media (and not in YEPD, Fig. 42a), cells might be more sensitive to canavanine.


a) "Manual SGA" Procedure

b) 3 days at 23°C

c) FOA, 5 days at 23°C

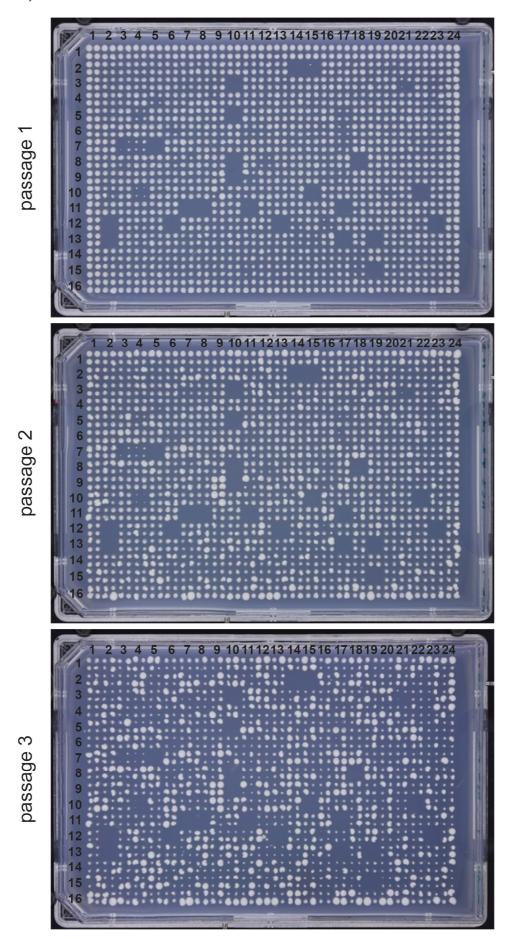
	1	2	3	4	5	6	7	8	9	10	11	12	
Н	· ·	rad51::KAN	rad9::HIS3	rad17::LEU2		ddc1::HIS3	chk1::HIS3	mph1::KAN	pol32::KAN	mec1::HIS3	xrs2::LEU2	sgs1::KAN	
A	WTp	р	р	р	р	р	р	р	р	sml1::KAN p		р	
	DLY11958	DLY11419	DLY11479	DLY11411	DLY11425	DLY11469	DLY11431	DLY11441	DLY11463	DLY11443	DLY11417	DLY11455	
	exo1::LEU2	top3::HPH	cdc15-2	bub2::HPH	bub3::HPH	ctf3::HPH	dgr2::HPH	lsm1::HPH	rps4a::HPH	rtt109::HPH	1457 (0	****	
В	р	р	р	р	р	р	р	р	р	р	WI (C	AN1) p	
ш	DLY11393	DLY11392	DLY11383	DLY11508	DLY11512	DLY11516	DLY11520	DLY11524	DLY11528	DLY11532	DLY5626	DLY5536	
c	rad50:	:URA	dna2::NA1	(<i>CAN1</i>) p	dna2::	<i>NAT</i> p	rad5	1::KAN dna::N	AT p	rad9	::HIS3 dna::N	<i>IAT</i> p	
	DLY10876	DLY10877	DLY11534	DLY11535	DLY11190	DLY11274	DLY11421	DLY11422	DLY11423	DLY11475	DLY11476	DLY11477	
D	rad17	::LEU2 dna::N	<i>IAT</i> p	rad24::TRP1 dna::NAT p			ddd	:1::HIS3 dna::N	AT p	chk1::HIS3 dna::NAT p			
	DLY11407	DLY11408	DLY11409	DLY11427	DLY11428	DLY11429	DLY11471	DLY11472	DLY11473	DLY11434	DLY11345	DLY11436	
E	mph	1::KAN dna::l	NAT	pol32::KAN dna::NAT			mec1::HI	S3 sml1::KAN	dna::NAT	xrs2::LEU2 dna::NAT p			
	DLY11481	DLY11482	DLY11485	DLY11465	DLY11466	DLY11467	DLY11447	DLY11448	DLY11449	DLY11413	DLY11414	DLY11415	
F	sgs	1::KAN dna::N	IAT	exo1	::LEU2 dna::N	<i>AT</i> p	top	3::HPH dna::N	<i>AT</i> p	cdc15-2 dna::NAT p			
	DLY11451	DLY11452	DLY11453	DLY11394	DLY11395	DLY11396	DLY11388	DLY11389	DLY11390	DLY11384	DLY11385	DLY11386	
G	bub2::HPH	dna::NAT p	bub3::HPH	dna::NAT p	ctf3::HPH	dna::NAT p	dgr2::HPH	l dna::NAT p	lsm1::HPH	dna::NAT p	rps4a::HPH	Idna::NATp	
	DLY11506	DLY11507	DLY11510	DLY11511	DLY11514	DLY11515	DLY11518	DLY11519	DLY11522	DLY11523	DLY11526	DLY11527	
н	rtt109::HPH	r#100··HDH dna··NAT n			:HIS3 rad17::LEU2 :AN (p6) dna2::KAN (p6)			::HIS3 (AN (p6)				S3 sml1::KAN !::NAT (p6)	
	DLY11530	DLY11531	DLY11195	DLY11196	DLY11199	DLY11200	DLY11201	DLY11202	DLY11197	DLY11207	DLY11205	DLY11206	

Figure 42. pCAN1-URA3-DNA2 plasmid is not efficiently lost

a) "Manual SGA" procedure.

Strains of appropriate genotypes obtained from RSA were grown at 23°C on –URA plates to select for pCAN1-URA3-DNA2 plasmid. Then 5-10 colonies of each strain were inoculated with a pipette tip into 200 μ L YEPD in 96-well plate and grown O/N at 23°C; 23°C temperature was maintained throughout the whole experiment. The next day cultures were diluted 1:5 in canavanine (CAN) media (40 μ L O/N culture + 160 μ L CAN) and grown O/N. The next morning cultures were diluted 1:10 in CAN (20 μ L O/N culture + 180 μ L CAN) and grown for 2 days (this step was repeated twice). Finally, cultures were spotted onto YEPD, -URA, CAN, FOA plates and grown for 3 and 5 days before photographing.

- b) YEPD, -URA, CAN, FOA plates after 3 days incubation at 23°C.
- c) Magnification of an FOA plate from a), after 5 days incubation at 23°C.
- d) Template of a plate set up. The position of each gene is assigned to their position on plates in b) and c). p pCAN1-URA3-DNA2 (pDL1758). Strain details are in Appendix A.


4.4.5 W303 SGA results are different from the S288C SGA results

Another way to confirm results acquired from 2S88C SGA in an unbiased and shorter manner was an SGA in W303 background. This time however only 308 out of ~5000 genes were tested (list of these genes is in the Appendix G). Figure 43a shows three passages of W303 strains on CTGNH media (containing canavanine). Colonies were rather homogeneous in size at passage 1, but became very heterogeneous at passage 3 (Fig. 43a). In contrast to passage 2 of S288C SGA (Fig. 39a), passage 2 of W303 SGA was much less informative in a sense that 4 replicates were usually heterogeneous and very few fit strains were noted (Fig. 43a). Moreover, none of previously shown gene deletions, like $rad9\Delta$ or $chk1\Delta$, effected the growth of $dna2\Delta$ in W303 SGA (Fig. 43a and b, Column 13 Row 15, Column 13 Row 4). $mph1\Delta$, which was selected in S288C SGA as a suppressor of $dna2\Delta$ lethality, and later confirmed by tetrad dissection, was synthetically lethal with $dna2\Delta$ in W303 SGA (Fig. 43a and b, Column 14 Row 2).

Due to enormous heterogeneity in fitness of strains of the same genotype, it is problematic to conclude the efficiency of W303 SGA and to select hits likely affecting $dna2\Delta$ viability. It might be that selection pressure against pCAN1-URA3-DNA2 was too weak for individual strains, either because canavanine concentration was low, or strains with the plasmid somehow adapted to the canavanine-caused stress and remained viable. It might be worth testing whether final growth on FOA would bring more uniform and reliable information.

Another explanation for a difference in growth between S288C and W303 backgrounds might be the background specificity. The genome of S288C was sequenced and the deletion and ORF libraries are available (Goffeau et al., 1996, Winzeler et al., 1999, Ghaemmaghami et al., 2003). Although other strains, e.g. W303, are used for studying particular aspects of biology, only their relevant genotypes, but not the complete background, is known (Young and Court, 2008). The S288C background is widely used for robotic screens and the phenotypes of certain gene deletions are known, in contrast to W303 background. W303 yeast may not tolerate the robotic conditions (e. g. incubation time and selection processes) as well and efficiently as S288C cells. Additionally, the W303 library had never been tested and the knowledge about it is not as comprehensive as of S288C library.

a) CTGNH, 20°C, W303 SGA

b)	24	HIS	HIS	HIS	HIS	SH	HIS	SH.	HIS	E E	£	HIS	HIS	HIS	HS	₽	£
	23	HIS	IES2	BRE2	SPT21	LGE1	TOP1	EST2	SIR2	SIR3	SIR4	UBP7	TEX1	TDH3	FRE5	RTG1	왍
	22	HIS	ASF1	HOG1	RRM3	MMS22	нех3	HAP4	IRC25	UBX3	ATG21	SAE2	QCR2	SHG1	HXT8	RCO1	HIS
	21	HIS	VPS74	GPA2	RAD6	MAD1	URM1	EST3	RRD1	GEF1	RAD27	СТК1	YKR 070W	ARP6	GIM3	CBC2	SH
	20	HIS	LEU1	ELG1	HIS3	RFM1	ELP3	нноч	COX10	SPE3	CLB5	CTF4	VPS4	EDE1	DCC1	SPE1	≅
	19	HIS	RIF2	TYE?	SUB1	CSM3	BUB2	NAM7	YKU80	SGS1	ESC1	SAP30	YKU70	FKH2	INP 52	ZWF1	₽
	18	HIS	UBP12	NUC1	AVT1	TIMA22	BNA1	MOG1	LST4	HSP104	DPH5	YPT6	PSY3	SKI2	VIP1	CDC73	₽
	17	HIS	PMR1	XRN1	SKIB	UPF3	PPT1	HGH1	NMD2	UBA4	RTT107	MPC2	FKH1	MLP2	POT1	RPE1	₽
	16	HIS	SOL2	OCA4	MBP1	RPP1B	PH013	RAD57	VPS41	ВМН2	SAN1	EBS1	SUM1	XRS2	SBP3	RAD54	£
	15	HIS	DBP7	DGR2	VPS27	YLR 407W	SSD1	RPL14A RAD57	APQ12	RFX1	YKL 069W	RPS4A	ннои	DBF2	SLA1	HMT1	£
	14	SIH	MPH1	PTC6	PAT	YNL 198C	YDR 209C	MSN5 F	LSM1	GCR2	MTC6	RTT109	PPZ1	STB5	RE11	SFL1	£
	13	SH	HFA1	YMR 111C	CHK1	RAD24	BUB3	RAD17	NUP170	СТІВ	YDJ1	SNC2 F	SOK1	YBR 206W	стгз	RAD9	왚
	12	HIS	RAD10	RPS 25A	IPK1	SPT8	TYE7	TMA7	PEX27	DIA1	RKM4	YIML 018C	IXR1	DDC1	GUF1	YPL 182C	왍
	11	SH HS	BAS1	DPH1	UME1	NUP60	LSM6	STII	ОРІВ	SFG1	PUB1	333	PAN2	POL32	FYV10	UBX7	웊
	10	HIS	RCF1	SPC1	ESBP6	RPL 35B	BNIS	SIF2	DPH6	COX5A	SAP 190	BNI4	PBP1	TKL1	HAT1	DPH2	£
	6	SH	KNS1	PAH1	SCS2	EST1	BEM2	VID28	HSP26	PR041	PUF6	RTT103	RPL 11B	P H 023	TYE7	ЕСМ30	£
	∞	HIS	0PI11	MAK3	DIA2	CHL1	RRP8	YDR 269C	AIM29	FIT2	YPR05	BMH1 F	CLB2	BST1	TIF2	MAK31	SH.
	7	HIS	TGS1	ARG82	YPL 102C	PUS4	RAD55	DEP1	UB14	LYS14	RAD52	APN1	::MRC1	MTC5	BCK1	RIC1	£
	9	HIS	BRE1	LOS1	SUR4	MRE11	NUP 188	FAR1	RPL 22A	_	RIF1	ELP2	RAD51	VPS51	MTC7	TIP41	£
	2	HIS	TIS11	VPS8	TEL1	HTZ1	CPA2	PPH3	HM01	BUD27	RTF1	ccs1	KTI12	DPB4	ELP4	PEX5	왍
	4	HIS	csez	CVRP1	IKI3	SRS2	SWM1	YGL 042C	SLX8	APC9 E	CTF18	UBC4	TSA1	ЕХОЛ	DOA1	RAD50	웆
	က	HIS	IRC21	TOP3 (RTT 106	-	CKB2	UBP6	MUM2	CHD1	VAM7	TRP1	SGF29	LU1	LEA1	YNR 005C	£
	2	SIH	CAC2	YMR 027W	TAD1	HDA1	OCA1	YLR 446W	\vdash	URC2	RIS1	YAP1	IES1	IES5	SKY1	SRN2	£
	-	HIS	SIH	SIH	SIH	HIS	SIH	SIH	SIH	SH	≅	HIS	HIS	SIH	SIH	SH	₽
		-	7	8	4	2	9	7	∞	6	9	7	12	13	4	15	16

Figure 43. W303 SGA of 308 genes

- a) Pictures of final selection plates CTGNH, passage 1, 2 and 3 at 20°C. Double mutants were pinned in quadruples.
- b) Template of a plate set up. Horizontal numbers numbers of columns; vertical numbers numbers of rows. The position of each gene is assigned to their position on plates in a).

4.5 Discussion/Conclusions

I observed at least two classes of genes which suppressed $dna2\Delta$, based on the growth pattern of strains of the same genotype and ability to recover with time; one group is RAD17, DDC1, MEC1 SML1, RAD9 and CHK1, and the other one is POL32. Genes can be divided in different groups when telomere length is considered; RAD9, CHK1 and MEC1 SML1 null mutants with $dna2\Delta$ have longer telomeres than single mutants, but the difference in telomere length is less obvious than in DDC1, RAD17 and POL32 null mutants with $dna2\Delta$. I do not understand where the differences between groups may come from. Maybe cell cycle arrest analysis of $dna2\Delta$ with deletions of RAD9, DDC1, RAD17, CHK1 MEC1 SML1 and POL32 strains would help to clarify the mechanisms of $dna2\Delta$ suppression.

Dna2 was shown to function at telomeres (Choe et al., 2002, Budd et al., 2006), and its essential role was proposed inOkazaki fragment processing and lagging strand synthesis (Budd et al., 2011). It is however possible that the essential function of Dna2 is in telomere replication, specifically in the synthesis/processing of the terminal telomeric Okazaki fragment, (Figure 44). This hypothesis of the essential role in telomeric DNA replication is based on several observations; first, most checkpoint gene deletions suppress $dna2\Delta$, whereas they exacerbate defects in other core DNA replication proteins (Dubarry et al., 2015). $dna2\Delta$ defect, like cdc13-1 defect, is suppressed by checkpoint mutations, which suggests that Dna2 is similar to telomere capping protein Cdc13, rather than DNA polymerases. Second, $dna2\Delta$ strains recover with time, which is characteristic for survivors with telomere rearrangements. Third,telomeres are long when DNA2 is deleted, which indicates the role of Dna2 at telomeres and, perhaps, interactions with telomerase.

The hypothesis that the essential role of Dna2 is in telomere replication fits published data, which show that DNA2 binds telomeres in yeast and mammalian cells, and is specifically required for maturation of telomeric DNA replication intermediates in yeast (Choe et al., 2002, Budd et al., 2005, Budd and Campbell, 2013, Lin et al., 2013). In addition, suppressors of *dna2*∆ lethality , *RAD9*, *DDC1*, *RAD17*, *CHK1 MEC1 SML1* and *POL32*, are important in telomere biology. Null mutations of other suppressors, *PIF1* and *RAD27*, increase telomere length (Parenteau and Wellinger, 1999, Gatbonton et al., 2006). Dna2 might be therefore a telomere-focused DNA

replication protein, similar to the CST complex. The mechanisms, by which Dna2 might perform its critical function in Okazaki fragment processing during telomere replication, remain to be tested.

S288C SGA brought some information regarding Dna2 regulation. It is difficult to distinguish mechanisms of $dna2\Delta$ suppression due the heterogeneity in strains growth. The heterogeneity might be a result of strains maintaining the plasmid (pCAN2-URA2-DNA2) despite the selection on canavanine against the plasmid, as was shown in "manual SGA experiment". Some cells might adapt to harmful conditions in the presence of canavanine and continue to grow. Another explanation is that the deletion of essential DNA2 gene resulted in genomic instability and aneuploidy. Aneuploid strains would exhibit heterogeneous growth pattern between cells of the same genotype. Also, if cells carried more copies of pCAN1-URA3-DNA2 plasmid, they could have more copies of DNA2 gene, which in turn might affect cells growth and viability. It was shown that upregulation of DNA2 in mice led to cancer formation (Lin et al., 2013) and it might be possible that upregulation of DNA2 in yeast cells causes genomic instability, too.

Despite problems in losing the plasmid, it was possible to select several novel suppressors of $dna2\Delta$ lethality in S288C SGA. Deletion of MPH1, a helicase which regulates Dna2 and Rad27 in Okazaki fragment processing, suppressed $dna2\Delta$ lethality. However, due to possible genome instability, single $dna2\Delta$ mutants emerged. Deletion of RTT109 gene, encoding acetyltransferase which acetylates histone H3 in response to DNA replication stress, did not suppress $dna2\Delta$ lethality. It has to be verified which gene highlighted in SGA as suppressors of $dna2\Delta$ affect $dna2\Delta$ fitness, to understand and indicate the mechanism(s) of $dna2\Delta$ suppression.

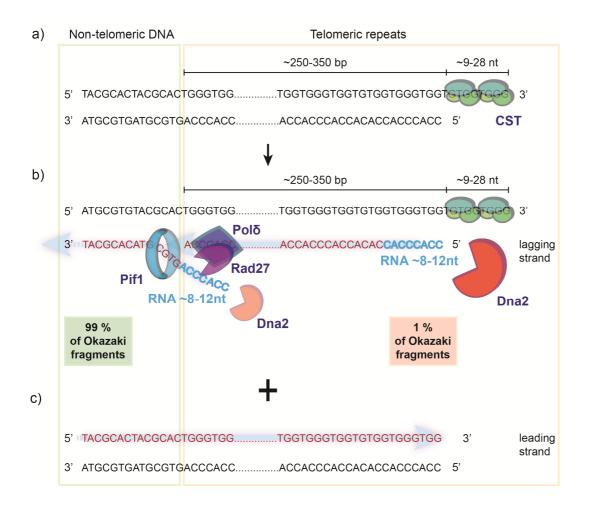
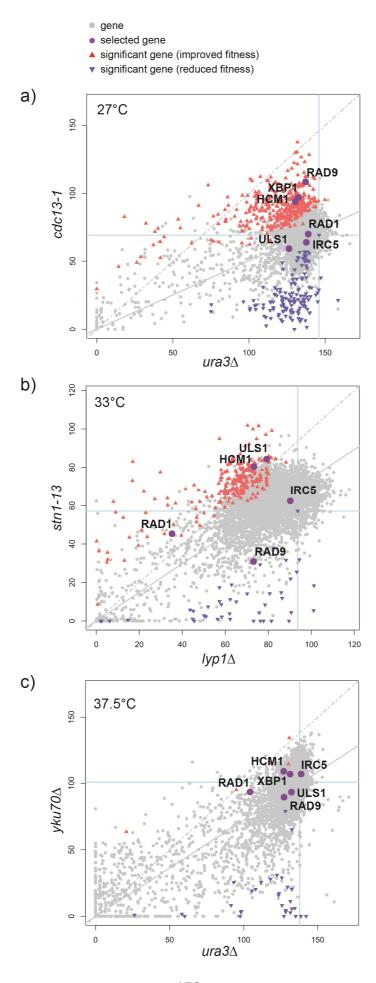


Figure 44. The model for Dna2 essential function at the terminal telomeric Okazaki fragment

- a) Budding yeast telomeres consist of 250-350 bp of repetitive sequences (TG₁₋₃/C₁₋₁ $^{-1}$
- $_{3}\text{A})$ and terminate in short 3' overhangs. The ssDNA binding CST complex, is shown.
- b) The lagging strand is synthesised by DNA Pol δ in short, ~200 bp long Okazaki fragments. Pol δ and Pif1 helicase displace the previously synthesised Okazaki fragment and a short flap is formed. The short flap is removed by Rad27^{FEN1} flap endonuclease. Randomly appearing long flaps are removed by Dna2 nuclease. In a haploid budding yeast cell 99 % of Okazaki fragments resemble the one from the non-telomeric DNA (green box), while 1 % forms terminal telomeric Okazaki fragments, TTOF (orange box). The 5' end of the TTOF is probably not displaced due to the lack of Pol δ /Pif1 activities at this site. The essential role of Dna2 might be in: i) separation the RNA from DNA to facilitate RNA primer degradation; ii) resection of 5' RNA fragment; iii) assembling the complex with Pol δ for TTOF synthesis and RNA degradation. RNA primers are indicated by blue font. Arrowheads indicate the direction of DNA synthesis.
- c) The leading strand is synthesised in a continuous manner by DNA pol ε.

Chapter 5. Novel genes with potential functions at telomeres

5.1 Selection and overview of genes with potential functions at telomeres


Genes that may play roles in telomere-defective strains have been identified in genome wide suppressor and enhancer screens, performed previously in the lab, using the R tool (Fig. 45) (Addinall et al., 2011). In the literature I searched for genes that were suggested to be involved in processes such as DNA damage repair or DNA replication, cancer development or aging. Some of these genes were proposed to function at telomeres in genome-wide screens, but their role in telomere biology was not well established. Among these genes I selected *HCM1*, *XBP1*, *ULS1*, *IRC5* and *RAD1* that are particularly interesting due to their potential role in ageing or cancer. Below is a short overview of these genes:

HCM1 (High-Copy suppressor of calmodulin)

Hcm1, a forkhead transcription factor, was identified in a genome-wide screen of genes whose deletions affect telomere length; *hcm1*Δ increases telomere length (Askree et al., 2004). Deletion of *HCM1* suppresses *cdc13-1* and *yku70*Δ mutants (Fig.44a and c). Hcm1 controls life span independently of calorie restriction, and deletion of *HCM1* results in decreased replicative lifespan (Maoz et al., 2015). The *Caenorabditis elegans* ortholog of *HCM1*, *PHA-4*, also regulates lifespan (Panowski et al., 2007, Sheaffer et al., 2008, Zhong et al., 2010). Hcm1 drives S-phase activation of genes involved in e. g. chromosome segregation, and activates genes involved in respiration or oxidative stress resistance (Pramila et al., 2006, Rodriguez-Colman et al., 2013).

XBP1 (Xhol site-Binding Protein)

Xbp1 is a transcription factor induced by various stresses and nutrient limitations; null mutants have shortened lifespan (Mai and Breeden, 1997, Choi et al., 2013, Miles et al., 2013). Xbp1 is important for maintaining G1 arrest, which is initiated before the diauxic shift (when the glucose from the media is used) (Miles et al., 2013). Xbp1 is upregulated in response to DNA damage in a Mec1-Rad9-Rad53 checkpoint pathway-dependent manner (Tao et al., 2011).

Figure 45. Genes with potential function at telomeres

Fitness plots comparing mean fitnesses for each $xyz\Delta$ in a query and control screen. **Red upward triangle** indicates a single gene deletion that significantly improves fitness of cdc13-1, stn1-13 or $yku70\Delta$. **Purple downward triangle** indicates a single gene deletion that significantly decreases fitness of cdc13-1, stn1-13 or $yku70\Delta$ fitness. **Purple dots** indicate selected gene deletions. **Grey dots** indicate gene deletions. Data in a) and c) are from (Addinall et al., 2011), data in b) are from M. Greetham (PhD thesis).

- a) Fitness plots of *cdc13-1* query screen at 27°C.
- b) Fitness plots of *stn1-13* query screen at 33°C.
- c) Fitness plots of $yku70\Delta$ query screen at 37.5°C.

ULS1 (Ubiquitin Ligase for SUMO conjugates)

Uls1 is a SUMO-Targeted Ubiquitin Ligase (STUbL) with a translocase activity (Uzunova et al., 2007). Uls1 is required for maintenance of NHEJ inhibition at telomeres by its role in translocation and ubiquitinylation of poly-sumoylated Rap1 for proteosomal degradation (Pardo and Marcand, 2005, Lescasse et al., 2013, Kramarz et al., 2014). Additionally, Uls1 is involved in repair of replication-associated DNA damage and facilitates Sgs1-dependent remodelling of stalled replication forks (Cal-Bakowska et al., 2011, Kramarz et al., 2014).

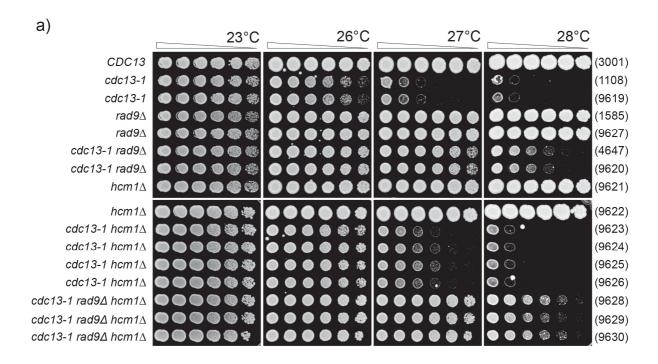
IRC5 (Increased Recombination Centers)

Irc5 is an ATPase and a putative DNA helicase belonging to Snf2 family with homology to the mammalian LSH/HELLS (Lymphoid-Specific Helicase) (Shiratori et al., 1999, McCarroll et al., 2004). Genetic interactions of the $irc5\Delta$ mutant correlate strongly with replicative proteins (e. g. $rad27\Delta$, $elg1\Delta$, pol30-79), suggesting that Irc5 may be involved in DNA replication (Alvaro et al., 2007). Deletion of IRC5 in yeast increases HR between homologous chromosomes (Zhou et al., 2008), and overexpression of HELLS was found in several human tumours (von Eyss et al., 2012).

RAD1 (RADiation sensitive)

Rad1 forms a complex with Rad10 which functions as ssDNA endonuclease and cleaves single-stranded DNA during nucleotide excision repair (NER) and DSB repair (Tomkinson et al., 1993, Ivanov and Haber, 1995). In addition to their requirement in NER, the *RAD1* and *RAD10* genes function in mitotic recombination (Schiestl and Prakash, 1990, Kirkpatrick and Petes, 1997). Inactivation of the human homolog, *XPF/ERCC4*, leads to the *Xeroderma Pigmentosum* (XP), a disorder in which the ability to repair damage caused by UV light is deficient (Sijbers et al., 1996). Importantly, *XPF/ERCC4* was found to process 3' overhang from uncapped telomeres in humans (Zhu et al., 2003)

The roles of selected genes in DNA damage repair, DNA replication, cancer formation or in telomere processing raise the possibility that those genes have some important roles at uncapped telomeres. In order to test this hypothesis I checked whether gene deletions affected the fitness of cdc13-1, $yku70\Delta$, and if $uls1\Delta$ affects stn1-13.


To test whether deletion of each gene, denoted 'YFG', affects the growth of cdc13-1 or $yku70\Delta$ mutants, diploids $yfg\Delta/YFG$ cdc13-1/CDC13 $yku70\Delta/YKU70$ $rad9\Delta/RAD9$ were generated, their haploid progeny was isolated and spot tested. Such diploid background served as a good starter strain for all tested gene deletions, because strains with cdc13-1 and $yku70\Delta$ mutations could be generated simultaneously. Moreover, $rad9\Delta$ is a known suppressor of cdc13-1 (Weinert and Hartwell, 1993, Zubko et al., 2004). At higher temperatures cdc13-1 strains have dysfunctional telomeres and activate Rad9-dependent checkpoint pathway which induces cell cycle arrest (Garvik et al., 1995). Deletion of RAD9 improves cdc13-1 fitness, presumably because cells cannot signal the presence of ssDNA at telomeres when checkpoint is defective (Weinert and Hartwell, 1993, Zubko et al., 2004). Although $rad9\Delta$ does not seem to affect $yku70\Delta$ growth in the genome-wide screen (Fig. 45c), it was in fact shown that $rad9\Delta$ suppresses $yku70\Delta$ fitness (chapter 3.1.5) (Maringele and Lydall, 2002). Thus $rad9\Delta$ served as a relevant control in this experiment.

5.2 Hcm1 slightly affects the growth of *cdc13-1* and *yku70*∆ mutants

Haploid strains with deletion of HCM1 in cdc13-1 and $yku70\Delta$ backgrounds were spot tested; in parallel, the effect of $rad9\Delta$ was compared (Fig. 46). The $hcm1\Delta$ mutation slightly suppressed cdc13-1 ts at 26-27°C, and this effect was much weaker than of $rad9\Delta$ on cdc13-1 mutation (Fig. 46a). $rad9\Delta$ suppressed cdc13-1 $hcm1\Delta$ strains so that triple mutants were able to grow slightly better than cdc13-1 $rad9\Delta$ mutants at 27-28°C.

 $hcm1\Delta$ mutation slightly suppressed $yku70\Delta$ ts at 36-37°C, and this effect was much weaker than of $rad9\Delta$ on $yku70\Delta$ mutants (Fig. 46b). Similarly to what was observed in cdc13-1 strains, $rad9\Delta$ slightly suppressed $yku70\Delta$ $hcm1\Delta$ growth.

Hcm1 in yeast, its orthologue in *C. elegans* PHA-4 and other forkhead proteins, regulate organismal lifespan (Maoz et al., 2015). $hcm1\Delta$ mutants have increased telomere length (Askree et al., 2004). I observe that deletion of *HCM1* resulted in improved growth of cdc13-1 and $yku70\Delta$ strains, which suggests that Hcm1 has a role at uncapped telomeres. It might be interesting to test the telomere length of cdc13-1 $hcm1\Delta$ and $yku70\Delta$ $hcm1\Delta$ strains versus $hcm1\Delta$ mutants.

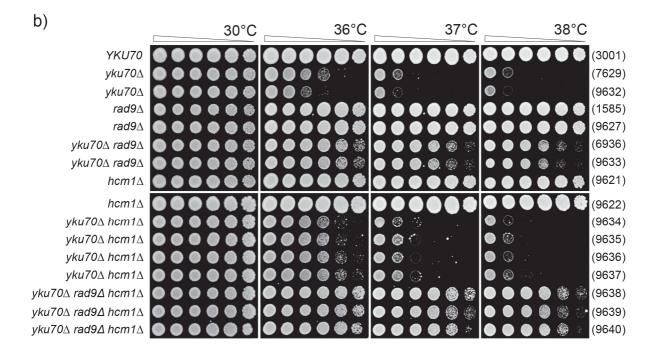
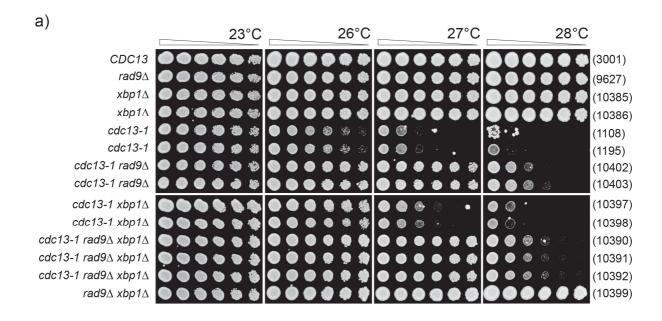


Figure 46. Hcm1 slightly affects fitness of *cdc13-1* and *yku70*∆ mutants

a-b) Spot tests done as in Figure 9. Strains in a) were grown on one rectangular plate. Strains in b) were grown on one rectangular plate. Spot tests in a) and b) were performed on different days. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A.


- a) The effect of $hcm1\Delta$ on cdc13-1 and cdc13-1 $rad9\Delta$ mutants.
- b) The effect of $hcm1\Delta$ on $yku70\Delta$ and $yku70\Delta$ rad 9Δ mutants.

5.3 Xbp1 slightly affects the growth of cdc13-1 and yku70∆ mutants

Haploid strains with deletions of *XBP1* in *cdc13-1* and *yku70* Δ backgrounds were spot tested and the effect of $rad9\Delta$ was compared (Fig. 47). Deletion of *XBP1* suppressed *cdc13-1* mutants at 26-28°C (Fig. 47a). The effect of $rad9\Delta$ on *cdc13-1* was much stronger than the effect of $xbp1\Delta$ mutation. Triple mutants grew slightly better than cdc13-1 $rad9\Delta$ strains at 28°C.

Similarly, deletion of *XBP1* suppressed $yku70\Delta$ mutants at 36-38°C (Fig. 47b). lobserve that Xbp1 slightly affects $yku70\Delta$ fitness. Deletion of RAD9 slightly suppressed $yku70\Delta$ fitness at 38°C.

Xbp1 is a transcription factor and is activated by various stresses and nutrient limitations; deletion of XBP1 reduces yeast lifespan (Mai and Breeden, 1997, Choi et al., 2013, Miles et al., 2013). Null XBP1 mutation affects cdc13-1 and $yku70\Delta$ growth and therefore Xbp1 might have a role in telomere biology. The mechanisms of Xbp1 function are not understood. It might be possible that transcription factor regulates transcription of DDR or checkpoint genes in response to telomere stress.

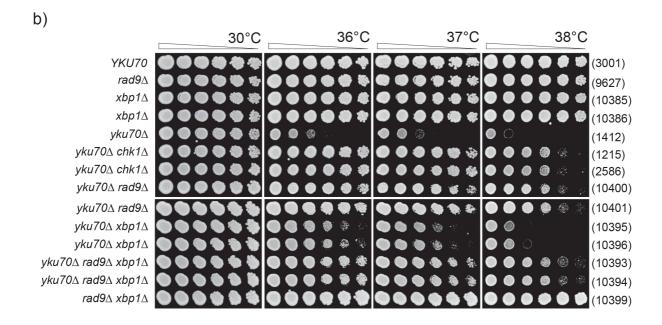
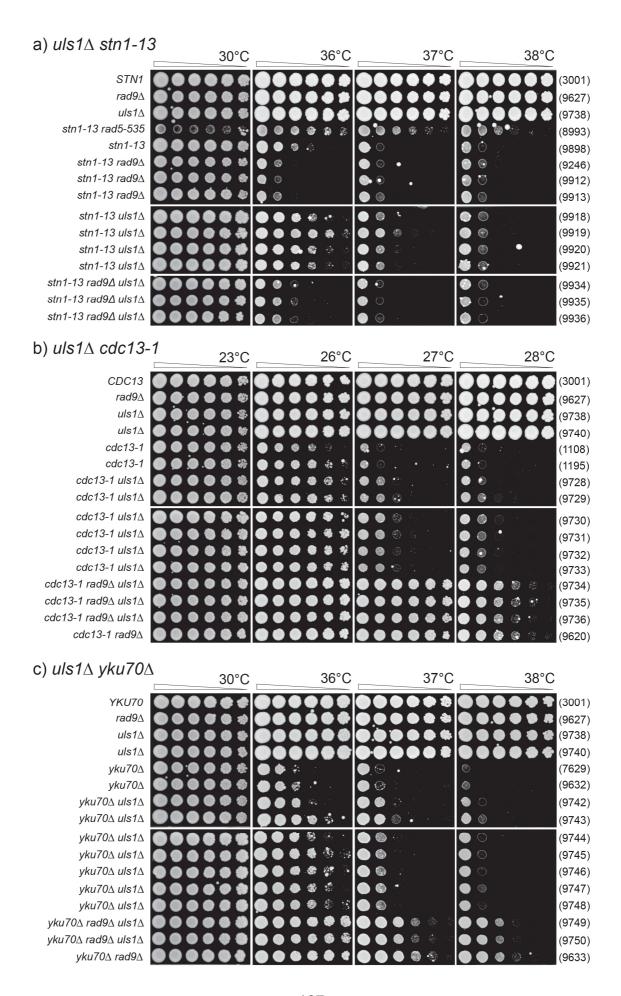


Figure 47. Xbp1 slightly affects fitness of cdc13-1 and yku70∆ mutants

a-b) Spot tests done as in Figure 9. Strains in a) were grown on one rectangular plate. Strains in b) were grown on one rectangular plate. Spot tests in a) and b) were performed on different days. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A.

- a) The effect of $xbp1\Delta$ on cdc13-1 and cdc13-1 rad 9Δ mutants.
- b) The effect of $xbp1\Delta$ on $yku70\Delta$ and $yku70\Delta$ rad 9Δ mutants.


5.4 UIs1 similarly affects fitness of stn1-13, cdc13-1 and yku70∆ mutants

It was suggested that in fission yeast SUMOylation of Tpz1 (TPP1 orthologue) inhibits telomerase and restricts telomere elongation through stimulation of Stn1-Ten1 association with telomeres (Garg et al., 2014). Stn1, together with Cdc13 and Ten1, forms the CST complex which binds telomeric ssDNA (Grandin et al., 1997, Grandin et al., 2001). Stn1, apart from a telomere capping function, was shown to interact with Pol12, a subunit of DNA Pol α , in telomere length regulation (Grossi et al., 2004). I analyzed the effect of defective SUMOylation on stn1-13 fitness in budding yeast by deleting $uls1\Delta$ in stn1-13 background. STN1 is an essential gene (Grandin et al., 1997) therefore a ts allele, stn1-13, defective in telomere capping, was used. The effects of $uls1\Delta$ on stn-13, as well as on cdc13-1 and $yku70\Delta$ growth were analyzed by spot tests (Fig. 48).

Two stn1-13 mutants were significantly different from each other; one strain was able to grow at 38°C, while the other one did not grow at 37°C (Fig. 48a). All strains used in Figure 47 have RAD5 gene, apart from the fitter stn1-13 strain which contains rad5-535 mutation. stn1-13 rad5-535 strain was used as a second control strains of stn1-13 mutation. It was not my intention to test the effect of rad5-535 mutation on stn1-13 because I assumed rad5-535 has no effect on stn1-13 growth, as it did not significantly affect the growth of $yku70\Delta$ mutants in Figure 15 (section 3.1.5). Apparently, rad5-535 mutation strongly affects the growth of stn1-13 and it would be interesting to investigate the mechanisms for stn1-13 suppression by rad5-535. However, in this section I describe the effect of $uls1\Delta$ on stn1-13, and therefore I will compare stn1-13 mutant (DLY9898), and not stn1-13 rad5-535 double mutant (DLY8993), with other strains.

Deletion of *ULS1* suppressed the *stn1-13* growth defect at 36-37°C (Fig. 48a). In contrary, $rad9\Delta$ decreased the fitness of stn1-13 and stn1-13 $uls1\Delta$ at higher temperatures. I conclude that Uls1 and Rad9 have different roles in stn1-13 strains; Uls1 has an inhibitory role on growth of stn1-13 mutants, while Rad9 facilitates stn1-13 viability. $uls1\Delta$ slightly suppressed cdc13-1 ts at 27-28°C, but the suppression was much weaker than of $rad9\Delta$ mutation (Fig. 48b). $uls1\Delta$ did not affect the fitness of cdc13-1 $rad9\Delta$ double mutants. I conclude that Uls1 and Rad9 may function in the

same pathway in *cdc13-1* strains. Uls1 may also contribute to Rad9-dependent checkpoint pathway, but this hypothesis was not tested.

Figure 48. UIs1 affects fitness of *stn1-13*, *cdc13-1* and *yku70*∆ mutants

a-c) Spot tests done as in Figure 9. Strains in a)-c) were grown on single rectangular plates. Spot tests in a), b) and c) were performed on different days. All strains are *RAD5* unless otherwise indicated. The relevant genotypes of the strains are indicated on the left, strain numbers on the right; strain details are in Appendix A.

- a) The effect of $uls1\Delta$ on stn1-13 and stn1-13 rad 9Δ mutants.
- b) The effect of $uls1\Delta$ on cdc13-1 and cdc13-1 $rad9\Delta$ mutants.
- c) The effect of $uls1\Delta$ on $yku70\Delta$ and $yku70\Delta$ $rad9\Delta$ mutants.

 $uls1\Delta$ slightly suppressed $yku70\Delta$ defect at 36-38°C, but the suppression was much weaker than of $rad9\Delta$ mutation (Fig. 48c). $uls1\Delta$ did not affect the fitness of $yku70\Delta$ $rad9\Delta$ double mutants. The same conclusions could be drawn as described for cdc13-1; Uls1 and Rad9 may function in the same pathway, or Uls1 can contribute to the function of Rad9.

I confirmed the genome-wide results that $uls1\Delta$ suppressed the fitness of stn1-13 (Fig. 45b). In contrast to genome-wide screen (Fig. 45a and c) I observed that $uls1\Delta$ also slightly suppressed the fitness of cdc13-1 and $yku70\Delta$ mutants. I also observed that RAD9 deletion enhances growth defect of stn1-13 strains. My observations are consistent with previous observations (M. Greetham, PhD thesis). It was suggested that the different effect of Rad9 on Stn1 and Cdc13 is due to the fact that Stn1 employs a separate capping mechanism (Petreaca et al., 2007).

Ubiquitin ligases, e. g. Uls1, bind polysumoylated chains attached to proteins and mediate polyubiquitination of those proteins and their subsequent targeting to the proteasome for degradation (Fig. 49) (Sriramachandran and Dohmen, 2014). Rfp1 and Rfp2, which share functional similarity with Uls1, function in DNA repair in fission yeast (Kosoy et al., 2007, Galanty et al., 2012). Uls1 also functions in DNA repair in budding yeast; the ligase can partially substitute Rdh54 and Rad54, the two DNA recombination proteins, in the removal of toxic, damage-associated Rad51-DNA complexes (Shah et al., 2010, Chi et al., 2011).

Uncapped telomeres of *cdc13-1*, *stn1-13* and *yku70*∆ mutants resemble DSBs, which triggers DNA damage responses and repair. Perhaps in the absence of ubiquitin ligase Uls1, defective protein-DNA complexes (e.g. mutated Cdc13-1 protein bound to telomeric ssDNA) are not polyubiquitinylated and targeted for the proteasomal degradation. As a consequence, mutated proteins, like Cdc13-1, may still be attached to DNA and exhibit the remnant function, thus permitting cells' growth at elevated temperature.

It was proposed that UIs1 functions in removing non-functional poly-SUMOylated Rap1 proteins from telomeres to ensure NHEJ inhibition (Lescasse et al., 2013). Sine Yku70 is a key player in NHEJ repair pathway, it might be possible that there is an

interaction between Uls1 and Yku70 in inhibiting the NHEJ at telomeres, or elsewhere in the genome, which remains to be tested.

Rad5 is a DNA helicase/ubiquitin ligase which is involved in postreplication repair and promotes synthesis of polyubiquitin chains (Fig. 50) (Torres-Ramos et al., 2002, Blastyak et al., 2007, Carlile et al., 2009, Chang and Cimprich, 2009). Strikingly, a stn1-13 rad5-535 strain has similar phenotype to stn1-13 $uls1\Delta$ (Fig. 48a), which reveals that different ubiquitin ligases might affect stn1-13 similarly (Fig. 49). This hypothesis was not tested, and more stn1-13 rad5-535 should be spotted to confirm the ability of double mutants to grow at higher temperatures..

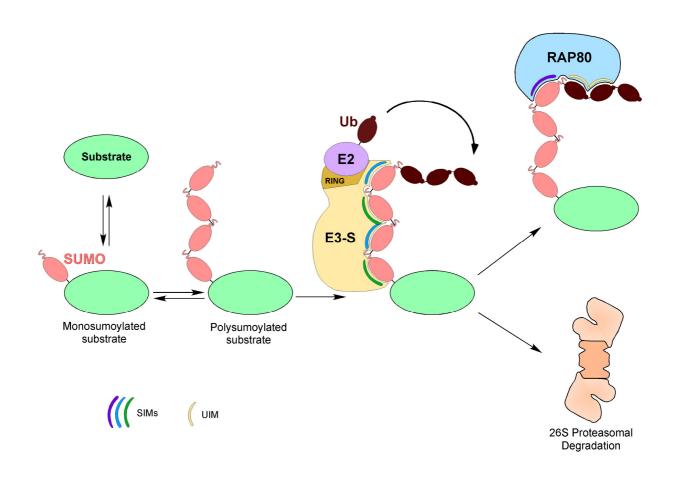


Figure 49. Role of SUMO-ubiquitin hybrid conjugates in protein targeting.

Figure and text adapted from (Sriramachandran and Dohmen, 2014), Figure 2. Depicted is a model illustrating targeting of sumoylated forms of a substrate mediated by ubiquitin ligases (E3) for sumoylated proteins (ULSs or E3-S). A mono-sumoylated form of a substrate can either be desumoylated by an ULP/SENP enzyme or be polysumoylated. The substrate-attached SUMO chain is recognized by multiple SUMO interaction motifs (SIMs) of the ULS enzyme, a RING finger protein that, in conjunction with a ubiquitin-conjugating enzyme (E2) attaches additional ubiquitin (Ub) moieties to the already SUMO modified substrate. The ubiquitin modification may finally result in targeting of the substrate to the proteasome (lower part). As an alternative (upper part), a substrate carrying a hybrid SUMO-ubiquitin chain is recognized by a protein such as Rap80 (a subunit of the Brca1 complex) bearing a SIM as well as ubiquitin interaction motifs (UIMs). This mechanism was shown to mediate recruitment of the Brca1-A complex to the sites of DNA damage, where such hybrid conjugates are generated as the result of the activity of the ULS Rnf4. ULP, SENP or SUSP - SUMO isopeptidases.

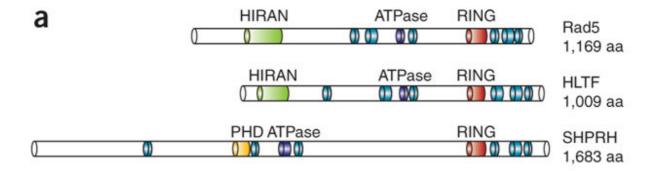


Figure 50. Domain architecture of the E3 ubiquitin ligase Rad5 and its putative orthologs SHPRH and HLTF.

Figure and text adapted from (Chang and Cimprich, 2009), Figure 4a.

a) Structural comparisons between *S. cerevisiae* Rad5 and its putative human orthologs, HLTF and SHPRH. Blue and purple modules represent the seven helicase motifs characteristic of the SWI/SNF2 family of ATP-driven motor proteins. Although these motifs are spread over the length of the protein, they are collectively referred to as a helicase domain. Other domain names and descriptions are as listed through the US National Center for Biotechnology Information conserved domain database and are described in the text. *HIRAN* - a hypothetical domain found in a group of known chromatin/DNA binding proteins, which suggests that it could be important for recognition of damaged DNA or stalled replication forks; *RING* - domain necessary for ubiquitination.

5.5 Irc5 and Rad1 do not affect the growth of cdc13-1 and yku70∆ mutants

Although *IRC5* and *RAD1* did not appear as suppressors or enhancers in the high-throughput screen, they were shown to function in DNA damage repair or DNA replication, cancer development and aging (Tomkinson et al., 1993, Zhu et al., 2003, Alvaro et al., 2007, von Eyss et al., 2012). The role in caner and aging was an indication for potential function of *IRC5* and *RAD1* in telomere biology, therefore I decided to test the roles of *IRC5* and *RAD1* in telomere defective strains. Haploid strains with deletions of *IRC5* and *RAD1* in cdc13-1 and $yku70\Delta$ backgrounds were spot tested and the effect of $rad9\Delta$ was compared (not shown). Deletion of *IRC5* and *RAD1* did not affect the fitness of cdc13-1 or $yku70\Delta$ mutants, and triple mutants grew like cdc13-1 $rad9\Delta$ and $yku70\Delta$ $rad9\Delta$ strains. Therefore
I observe that Irc5 and Rad1 do not affect fitness of telomere defective strains, which is consistent with the genome-wide results presented in Figure 44 (Addinall et al., 2011). I propose that Irc5 and Rad1 are not important in telomere biology in the context of cdc13-1 and $yku70\Delta$ mutants.

5.6 Discussion/Conclusions

The effects of deletions of genes with potential roles in telomere biology were tested in cdc13-1 and $yku70\Delta$ mutants and are presented in Table 7. Hcm1 and Xbp1 affect fitness of cdc13-1 and $yku70\Delta$ mutants, and this effect is much weaker than of $rad9\Delta$. Hcm1 and Xbp1 are transcription factors and may regulate the transcription and gene expression of genes involved in response to defective telomeres of cdc13-1 or $yku70\Delta$ strains, e.g. checkpoint genes and DDR genes (Mai and Breeden, 1997, Pramila et al., 2006, Miles et al., 2013, Rodriguez-Colman et al., 2013, Negishi et al., 2016). However, mechanisms of the transcriptional roles of Hcm1 or Xbp1 were not studied in this thesis.

Gene name	Name description	Ortholog(s)	QFA results	Function (SGD)	Effect on cdc13-1	Effect on yku70∆
НСМ1	High-Copy suppressor of calmodulin	PHA-4 (C. elegans)	No effect on yku70∆, suppressor of cdc13-1	Forkhead transcription factor, telomere maintenance role	Weak suppressor	Weak suppressor
XBP1	Xhol site- Binding Protein	N/A	No effect on yku70∆, suppressor of cdc13-1	Transcriptional repressor	Weak suppressor	Weak suppressor
ULS1	Ubiquitin Ligase for SUMO conjugates	RFP1/2 (S. pombe)	No effect on yku70∆ and cdc13-1	SUMO-Targeted Ubiquitin Ligase (STUbL)	Weak suppressor §	Weak suppressor
IRC5	Increased Recombination Centers	LSH, HELLS, PASG, SMARCA6	No effect on yku70∆ and cdc13-1	Putative ATPase containing the DEAD/H helicase-related sequence motif	No effect	No effect
RAD1	RADiation sensitive	XPF, ERCC4	No effect on yku70∆ and cdc13-1	Single-stranded DNA endonuclease (with Rad10p); involved in NER and DSBs repair	No effect	No effect

Table 7. The effect of each gene deletion on cdc13-1 and $yku70\triangle$ mutants \S - the same effect on stn1-13 strain.

A SUMO-targeted ubiquitin ligase Uls1 has a role in DNA repair (Shah et al., 2010, Chi et al., 2011). Since *uls1*Δ slightly suppresses *stn1-13*, *cdc13-1* and *yku70*Δ mutants I conclude that Uls1 functions at telomeres. Defective telomeres resemble DSB damage, hence the role of Uls1 in *cdc13-1*, *stn1-13* and *yku70*Δ mutants might affect the DNA repair machinery e.g. by inhibiting NHEJ at telomeres (Lescasse et al., 2013). Interestingly, it was found that SUMOylation of Cdc13 promotes the association of Cdc13-1 with Stn1 to inhibit telomerase function (Hang et al., 2011). SUMOylation-mediated accumulation of Stn1-Ten1 to telomeres could also serve as a regulatory mechanism for controlling telomerase activity in yeast (Miyagawa et al., 2014, Garg et al., 2014). Fission yeast Tpz1, an orthologue of TPP1, along with Rap1 and Poz1, facilitates the connection between Taz1 and Pot1 through protein–protein interactions (Miyoshi et al., 2008). Tpz1 SUMOylation prevents telomerase accumulation at telomeres by promoting recruitment of Stn1-Ten1 to telomeres (Miyagawa et al., 2014). It might be therefore possible that an interaction between Uls1 and Stn1, Cdc13 and Yku70 is important for telomere length homeostasis in

yeast. Strikingly, stn1-13 rad5-535 strain exhibit similar growth pattern to stn1-13 $uls1\Delta$, which suggests that a role of ubiquitin ligases might be conserved in the context of stn1-13 mutant.

Rad1 and Irc5 did not affect fitness of cdc13-1 and $yku70\Delta$ mutants. Rad1 is an endonuclease, which is involved in NER and DNA repair, and was shown to process ssDNA overhangs at uncapped human telomeres (Tomkinson et al., 1993, Ivanov and Haber, 1995, Zhu et al., 2003). Irc5 is a putative DNA helicase involved in HR (Shiratori et al., 1999, McCarroll et al., 2004). I conclude however that Irc5 and Rad1 have no role in telomere biology in the context of cdc13-1 and $yku70\Delta$ strains.

Chapter 6. Hormesis and adaptation to low-doses of stress

In recent years multiple observations of positive effects of low dose stress (e. g. UV radiation or toxic compounds) on organismal fitness were reported (Ermolaeva et al., 2013, Calabrese et al., 2015, Le Bourg, 2015). Small doses of stress seem to have a protective role when pre-treated cells and organisms are exposed to higher doses of the same or different stress, in contrast to cells/organisms that were never exposed to stress. In this thesis yeast with defects in cell division cycle, *cdc13-1* and *cdc15-2*, were used to test the effect of low-dose telomeric and mitotic kinase activity stresses, respectively.

The data obtained from studies on yeast adaptation to low-dose stress were published (Markiewicz-Potoczny and Lydall, 2016), and are presented in section 6.1 of this thesis. Figures are numbered consecutively with the Figure numbering from the publication (Figures 1 - 6, Supplementary Table 1 and Supplementary Figures 1 - 6).

6.1 Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast

Keywords: Adaptation, low-dose, stress, fitness, yeast

List of abbreviations

cdc – cell division cycle

ESR – environmental stress response

CSR - cellular stress response

DDR – DNA damage response

NMD – nonsense mediated RNA decay

6.1.1 Abstract

All organisms live in changeable, stressful environments. It has been reported that exposure to low-dose stresses or poisons can improve fitness. However, examining the effects of chronic low-dose chemical exposure is challenging. To address this issue we used temperature sensitive mutations affecting the yeast cell division cycle

to induce low-dose stress for 40 generation times, or more. We examined *cdc13-1* mutants, defective in telomere function, and *cdc15-2* mutants, defective in mitotic kinase activity. We found that each stress induced similar adaptive responses. Stress-exposed cells became resistant to higher levels of stress but less fit, in comparison with unstressed cells, in conditions of low stress. The costs and benefits of adaptation to chronic stress were reversible. In the *cdc13-1* context we tested the effects of Rad9, a central player in the response to telomere defects, Exo1, a nuclease that degrades defective telomeres, and Msn2 and Msn4, two transcription factors that contribute to the environmental stress response. We also observed, as expected, that Rad9 and Exo1 modulated the response of cells to stress. In addition we observed that adaptation to stress could still occur in these contexts, with associated costs and benefits. We conclude that functionally redundant cellular networks control the adaptive responses to low dose chronic stress. Our data suggests that if organisms adapt to low dose stress it is helpful if stress continues or increases but harmful should stress levels reduce.

6.1.2 Introduction

All organisms, from single celled bacteria and yeasts to complex mammals, experience a variety of environmental conditions, many of which are stressful. Organisms have evolved to adapt to different stresses and to thrive in varying conditions (Kirkwood, 2005). Experiments in bacteria, yeast, worms, fish and mammals have revealed that different types of stress each induce common responses, termed the environmental stress response (ESR) or the cellular stress response (CSR) (Gasch et al., 2000, Kultz, 2005, Lopez-Maury et al., 2008, Schulte, 2014, Young et al., 2013, de Nadal et al., 2011, Tauffenberger and Parker, 2014). Responses induced by the ESR/CSR affect oxidative stress responses, protein folding, protein degradation, carbohydrate and fatty acid metabolism, DNA damage responses and intracellular signalling (Gasch, 2002, Kultz, 2005, Hahn et al., 2013, Fulda et al., 2010). Organisms exposed to stress often become resistant to higher levels of the same stress and cross-resistant to other stresses (Lewis et al., 1995, Gasch, 2007, Milisav et al., 2012, Long et al., 2015, Tauffenberger and Parker, 2014). The evidence is that a complex network of interactions regulates general as well as more specific responses to stress (Berry et al., 2011, Guan et al., 2012, Chasman et al., 2014).

There is evidence that low-level stress can improve aspects of organismal fitness. In 1888 it was reported that yeast cells grew better when exposed to low-doses of poisons, such as arsenic trioxide, than in the absence of poison (Schulz, 1888). This type of dose-response relationship, in which exposure to low-doses of a "poison" (e.g. environmental factor or chemical agent) improves some aspect of the fitness of an organism, is known today as hormesis. Hormesis has been reported in a variety of different systems from bacteria to yeast to vertebrates (Calabrese and Baldwin, 2003, Calabrese, 2004, Calabrese et al., 2007, Mattson, 2008, Costantini et al., 2010, Ermolaeva et al., 2013, Cope et al., 2014, Calabrese et al., 2015). A hormesis type response can often be observed in human cells growing in culture. Figure 1, adapted from Cope et al., (Cope et al., 2014), shows an example where growth of two human cancer cell lines, as measured by tritiated thymidine incorporation, is increased by low-doses of a Tor kinase inhibitor (Fig. 1) (Cope et al., 2014). Numerous other studies with different biological end points, such as the effects of gamma radiation on mouse tumour formation or of DNA damage on worm longevity, support the idea that low-dose stresses can have a positive effect on organism fitness (Calabrese and Baldwin, 2003, Calabrese, 2004, Ermolaeva et al., 2013, Calabrese et al., 2015).

It is suggested that the biochemical mechanisms that explain hormesis are adaptive stress responses (Stranahan and Mattson, 2012, Perry et al., 2014, Singh et al., 2015). Any amount of extrinsic stress will cause harm, for example by damaging DNA or other cellular components. However, it is thought up-regulation of maintenance and repair systems, in response to low-dose stress, protects not only from the extrinsic stress but also from intrinsic stresses that affect carcinogenesis, ageing or other aspects of organismal fitness (Haendeler et al., 2004, Watson et al., 2004, Christmann and Kaina, 2013). If so, then perhaps it is mild induction of the ESR/CSR that explains the hormesis response (Douglas, 2008, Milisav et al., 2012). However, up-regulation of maintenance and repair systems must come at some type of metabolic cost, otherwise organisms would never reduce maintenance and repair levels (Kirkwood, 2005). These arguments suggest that hormesis is unlikely to occur very frequently.

When measuring the positive or negative effects of low-dose stress it is important to carefully consider what end point is measured. For example, mutations that extend

lifespan in worms, and are considered positive by this criterion, also dramatically reduce the ability of worms to produce offspring in the laboratory environment and therefore have clear negative effects too (Walker et al., 2000, Jenkins et al., 2004). Moreover, the biochemical mechanisms underlying any positive responses to low dose stresses are poorly understood (Schumacher, 2009, Vaiserman, 2010, Wiegant et al., 2012). The lack of good biochemical understanding of the response to chronic low-dose stresses or poisons stems, in part, because the effects induced are small and difficult to measure (Calabrese, 2004, Peake et al., 2015). Another difficulty, particularly for studies on the effects of chemicals, is that low-dose impurities, or chemical break down products, might confound interpretation. For example, at low concentrations the poison methotrexate improves viability of breast cancer cell lines (Kelly and Owusu-Apenten, 2015). If methotrexate were contaminated with the chemically similar growth promoter, folate, then this might make interpretation of any positive effects of methotrexate difficult to distinguish from the effects of lower concentrations of the contaminant folate.

In this paper we carefully examined the responses of budding yeast, *Saccharomyces cerevisiae*, to chronic low-dose stress. Budding yeast is perhaps the best-studied model organism and much is known about its responses to stress (Botstein and Fink, 2011). Although growth of yeast in the laboratory is artificial, for example with unlimited food supply or constant temperature, laboratory growth conditions mimic part of the natural yeast life cycle. It is thought that when yeast cells arrive on fruit, after being carried there by wasps, they divide rapidly from single cells (Liti, 2015). For this reason the rapid growth of yeast cultures in the laboratory is a biologically relevant measure of fitness.

To study the effects of chronic stress in yeast we used genetic mutations, rather than chemicals, to poison different aspects of the cell cycle. Temperature sensitive *cdc* (cell division cycle) mutations affecting different aspects of cell cycle progression were used (Hartwell et al., 1973, Weinert and Hartwell, 1993). We considered *cdc* mutations particularly attractive tools for this purpose because the dose of stress can be simply adjusted by controlling the culture temperature. The higher the temperature the more "poisoned" cell cycle events become. Furthermore, since each cell in the population carries the same mutation we can be sure that each cell in the environment is stressed to a similar extent. *cdc13-1* mutants are defective in

telomere related functions. At high temperatures telomeres of *cdc13-1* cells induce a DNA damage response, akin to the response to DNA double strand breaks elsewhere in the genome (Garvik et al., 1995, Lydall, 2009). In this sense, the effect of *cdc13-1* mutation mimics that of genotoxic agents. Temperature sensitive *cdc15-2* mutants are defective in a kinase required for exit from mitosis and arrest cell division in late anaphase at high temperatures (Schweitzer and Philippsen, 1991). Using these yeast genetic tools we asked: Does adaptation to chronic low-dose stress have a positive effect, a negative effect, neither, or both? We also addressed whether adaptation to stress is reversible and dependent on specific pathways.

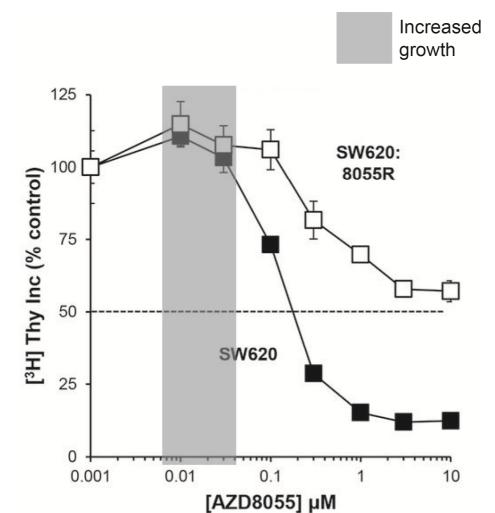


Figure 1. Hormetic response to mild stress in human cell lines

Human SW620 and SW620:8055R cell lines, the parental sensitive and a derived resistance line, were exposed to increasing concentrations of TOR kinase inhibitor, AZD8055, for 24 hours. Proliferation was assayed by [³H]thymidine incorporation. This figure is based on Figure 2A of Cope *et al.* (Cope et al., 2014). We added a grey box to highlight the area of increased fitness.

6.1.3 Results

cdc13-1 mutants adapt to chronic telomeric stress

To examine the response of yeast cells to chronic low-dose of telomere stress we used strains containing the *cdc13-1* allele, affecting the essential telomere capping protein Cdc13. *cdc13-1*, a point mutation, causes a P371S amino acid change and this induces temperature dependent Cdc13-1 protein degradation (Hughes et al., 2000, Gardner et al., 2005). In our lab *cdc13-1* strains are routinely cultured at 23°C (a permissive temperature). However, *cdc13-1* shows synthetic genetic interactions with mutations affecting the KU or MRX complexes at this temperature and thus we know that Cdc13-1 is not fully functional at 23°C (Polotnianka et al., 1998, Foster et al., 2006). Therefore we also sometimes culture *cdc13-1* strains at 20°C, where Cdc13-1 is more functional. At higher temperatures *cdc13-1* mutants have dysfunctional telomeres, generate long telomeric 3' ssDNA G-tails and activate Rad9-dependent cell cycle arrest (Garvik et al., 1995, Lydall and Weinert, 1995). We have previously reported that *cdc13-1* mutants cultured at 30°C, a normal temperature for growing yeast, induce the ESR (Greenall et al., 2008).

It is know that many recessive, loss of function mutations, for example affecting DNA damage response (DDR) or nonsense mediated RNA decay (NMD) pathways, improve the fitness of *cdc13-1* strains grown at >26°C (Weinert et al., 1994, Addinall et al., 2011). Therefore we performed all experiments in diploid cells to reduce the chance that recessive loss of function mutations affecting DDR, NMD or other genes were selected during our experiments. We passaged *cdc13-1* cells at 23°C, as usual, or at 25°C, a slightly higher temperature, to induce chronic low-dose telomere stress. 25°C slightly reduced the fitness (colony size) of *cdc13-1* mutants grown on agar plates, and therefore 25°C was considered the maximum permissive temperature (Garvik et al., 1995) (Supplementary Fig. 1A). Interestingly, there was heterogeneity in colony size after the first passage at 25°C, but this disappeared by the second passage (Fig. 2B). This suggests that all cells in the population have adapted to the increased stress by the second passage. The heterogeneity in colony size was never been observed when cells were passaged at 23°C (Fig. 2C).

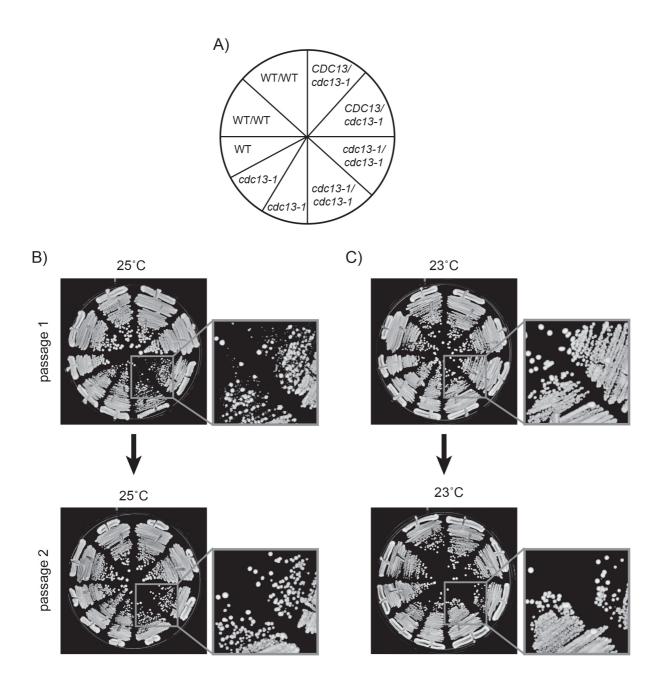


Figure 2. Passaging procedure

Freshly unfrozen strains were patched on YEPD agar plates and incubated at 23°C for 3 days, then passaged at 23°C or 25°C on YEPD agar plates as shown. 5 - 10 colonies from each genotype were pooled at each passage. Strains were: DDY81, 739, 738, 737, 736, 735, DLY1108, 1195, 3001. A) Genotypes of strains streaked on agar plates. B) Cells passaged for two passages at 25°C. C) Cells passaged for two passages at 23°C. DDY strains are diploids. DLY strains are haploids.

Importantly, we never observed, at any temperature or time, that *cdc13-1* cells grew better than *CDC13* cells grown on the same plate (Fig. 3). By this criterion we see no evidence for a hormetic effect in this experimental system. In other words we see no evidence that exposure to chronic low-dose telomere stress improved fitness. However, we did observe that *cdc13-1* strains previously passaged at 25°C grew better at 26°C or 27°C than genetically identical strains passaged at 23°C (Fig. 3). We conclude that, as expected, adaptation to chronic mild telomere stress improves the fitness of strains exposed to even higher levels of telomere stress.

Interestingly, we observed that *cdc13-1* strains, previously passaged at 25°C, grew less well at 20°C than genetically identical strains previously passaged at 23°C. This phenomenon is telomere stress related, rather than temperature stress related, since equivalent *CDC13* cells, previously passaged at 23°C, were fully fit at 20°C. The simplest interpretation of these data is that the adaptation to telomere stress caused by growth at 25°C comes at a cost (trade off) affecting growth rate when telomere stress is reduced. Thus, in this context, adaptation to chronic telomere stress reduces fitness and is, in a sense, the opposite of hormetic.

Finally we tested whether the positive and negative effects of passaging *cdc13-1* cells at 25°C were reversible. Cells grown for 7 passages at 25°C were grown for a further three passages at 23°C before fitness was assessed. At 26°C such cells exhibited an intermediate growth phenotype, somewhere between the fitness of strains previously grown at 23°C or 25°C. Thus adaptation to telomere stress seems to be at least partially reversible. As predicted, the haploid *cdc13-1* strain cultured at 25°C and then at 23°C did not reverse its ability to grow well at 26°C and above. Presumably this strain accumulated genetic mutations during growth at 25°C that suppressed *cdc13-1* defects. Interestingly, the cost of adaptation to growth at 25°C, seen at 20°C, seems to be fully reversed by growth for 3 passages at 23°C. Again, therefore, adaptation seems to be reversible and is, by this criterion, epigenetic rather than genetic.

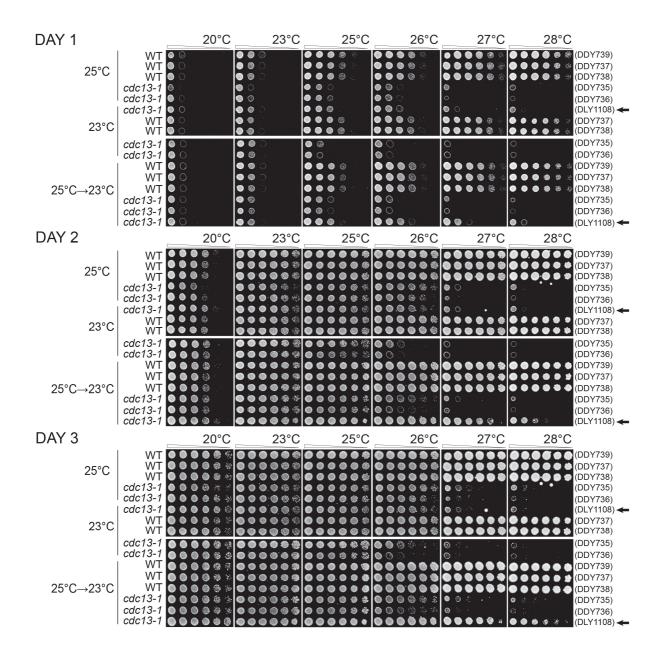


Figure 3. The effects of adaptation to low-level of telomere stress in *cdc13-1* mutants

Diploid strains with the genotypes indicated were grown on solid agar plates for 10 passages at 23°C, 10 passages at 25°C, or for 7 passages at 25°C followed by 3 passages at 23°C as indicated on the left of the Figure. Strains (DDY735, 736, 737, 738, 739 and DLY1108) were then inoculated into liquid and grown overnight at 23°C or 25°C. Fivefold dilution series of strains were set up in 96 well plates transferred to several independent solid YEPD agar plates using a pin tool. Individual plates were incubated at different temperatures, indicated across the top of the Figure, and photographs taken after 24, 48 and 72 hours of incubation. Arrows on the right indicate haploid cultures.

Adaptation to low-level of chronic telomeric stress is a robust response

Budding yeast responses to *cdc13-1* induced telomere defects are complex and have been well studied (Weinert and Hartwell, 1993, Garvik et al., 1995, Greenall et al., 2008, Addinall et al., 2011, Holstein et al., 2014). We tested whether removal of Rad9, a central player in the response to *cdc13-1* induced telomere defects, affected adaptation. Rad9 was the first DNA damage checkpoint protein to be classified and plays at least three critically important roles in *cdc13-1* mutants. Rad9 is essential for cell cycle arrest of *cdc13-1* cells in metaphase, to inhibit ssDNA production near uncapped telomeres, and to maintain cell viability (Weinert and Hartwell, 1988, Lydall and Weinert, 1995, Zubko et al., 2004, Ngo et al., 2014). Using temperature sensitive *cdc13-1 rad9*Δ mutants we performed analogous experiments to those performed on *cdc13-1* mutants. The maximum permissive temperature of *cdc13-1 rad9*Δ mutants is about 26°C, higher than *cdc13-1* mutants, presumably because low-levels of telomere damage induced at 26°C are sufficient to activate Rad9-dependent checkpoint pathways (inducing metaphase arrest), but insufficient to cause much cell death (as judged by colony size on plates) (Supplementary Fig. 1A).

Interestingly, we observed that cdc13-1 $rad9\Delta$ strains adapted after two passages at 26°C, similarly to cdc13-1 strains at 25°C (Fig. 4A-B, Supplementary Fig. 2). That is, cdc13-1 $rad9\Delta$ strains previously grown at 26°C grew better at higher temperatures, 28°C or 29°C, than genetically identical cells grown at 23°C (Fig. 4B). However, such cells exhibited poorer growth at lower temperatures, 20°C and 23°C. If cdc13-1 $rad9\Delta$ mutants were moved back from 26°C to 23°C, then the effects of adaptation were partially reversed. We conclude that cdc13-1 $rad9\Delta$ strains, like cdc13-1 strains, can adapt to telomere damage and that the adaptation is reversible and comes with costs and benefits.

We also tested adaptation in the absence of Exo1, an exonuclease that degrades defective telomeres in cdc13-1 strains (Ngo and Lydall, 2010). The maximum permissive temperature of cdc13-1 $exo1\Delta$ mutants is also about 26°C (Supplementary Fig. 1B). Similarly to what was observed in cdc13-1 $rad9\Delta$ strains, we observed that cdc13-1 $exo1\Delta$ strains adapted after two passages at 26°C and grew better at 27°C and 28°C but exhibited poorer growth at lower temperatures, 20°C and 23°C (Fig. 4C, Supplementary Fig. 3). When moved back from 26°C to

23°C, the effects of cells' adaptation were partially reversed. We conclude that $cdc13-1 \ exo1\Delta$ strains, like $cdc13-1 \ or \ cdc13-1 \ rad9\Delta$ strains, can adapt to telomere damage and that the adaptation is reversible and comes with costs and benefits.

Finally we tested adaptation in the absence of Msn2/Msn4, two transcriptional activators that underlie the transcriptional response to numerous stresses (Elfving et al., 2014, Gasch et al., 2000, Martinez-Pastor et al., 1996, Sadeh et al., 2011, Berry and Gasch, 2008). The maximum permissive temperature of *cdc13-1 msn2*Δ *msn4*Δ mutants is about 25°C (Supplementary Fig. 1C). *cdc13-1 msn2*Δ *msn4*Δ strains adapted to 25°C after two passages, and grew better at 26°C, but exhibited poorer growth at lower temperatures, 20°C and 23°C (Fig. 4D, Supplementary Fig. 4). As before, the effects of adaptation were partially reversed when cells were returned from 25°C to 23°C (Fig. 4D).

In summary Figure 4 clearly shows that loss of critically important components of the DNA damage or stress induction networks, active in *cdc13-1* strains, still permits *cdc13-1* strains to adapt to stress. Thus we conclude that adaptation to chronic telomere-induced stress involves a robust network of responses.

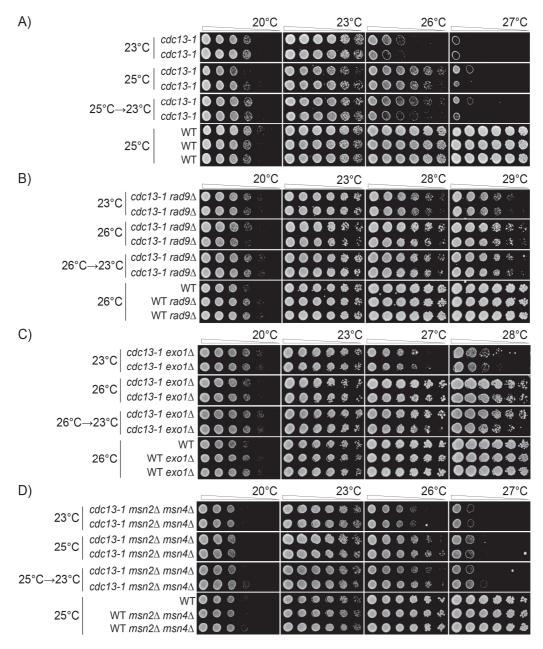


Figure 4. Adaptation to telomere stress in the absence of key stress response proteins

Diploid strains of different genotypes were analysed as in Figure 3 except that strains were passaged twice at high temperature (25°C or 26°C), or once at high temperature followed by a single passage at low temperature, before being spotted onto agar plates. A) Strains as in Figure 3. Strains were DDY735, 736, 737, 738 and 739. B) Strains were DDY739; 868, 869, 860 and 861. C) Strains were DDY739, 992, 993, 994 and 995. D) Strains were DDY739, 974, 975, 972, 973. All strains shown in each subsection, at each temperature, were grown on single agar plates but images have been cut and pasted to make comparisons easier. Images were taken at 48 hours of incubation. Images taken after 24, 48 and 72 hours incubation are shown in Supplementary Figures: 2, 3 and 4, respectively.

Adaptation to mitotic kinase inhibition

Mammalian cells exposed to low-doses of Tor kinase inhibitor grow better than cells not exposed to the inhibitor (Fig. 1) (Cope et al., 2014). We therefore extended our genetic studies to examine responses to low-level inhibition of kinase activity. We chose to examine mutations affecting the Cdc15 kinase, not a member of the Tor kinase family, but which is an essential component of the Mitotic Exit Network and is critical for the completion of mitosis (Jaspersen and Morgan, 2000, Bardin et al., 2003). Using temperature sensitive *cdc15-2* mutants we performed analogous experiments to those performed in telomere defective *cdc13-1* mutants. Since the maximum permissive temperature of *cdc15-2* mutants is about 31°C, the temperature used to cause mild stress was 30°C (Supplementary Fig. 1A, D). We determined that we could observe adaptation to growth at 30°C after as little as three passages (Fig. 5A, Supplementary Fig. 5).

We could draw very similar conclusions about how cells adapt to *cdc15-2* induced kinase defects as we had drawn earlier for *cdc13-1* mutants. We never observed, at any temperature or time, that *cdc15-2* cells grew better than *CDC15* cells grown on the same plate (Fig. 5A, Supplementary Fig. 5). By this criterion we see no evidence for a hormetic effect in *cdc15-2* strains. Analysis of *cdc15-2* mutants showed clear evidence for adaptation to kinase inhibition, a clear cost of adaption to kinase inhibition and strong evidence that adaptation was reversible (Fig. 5A). In fact, adaptation to *cdc15-2* stress seemed nearly fully reversible after two passages at 23°C (Fig. 5A).

We also examined the effects of Msn2/Msn4 in the context of Cdc15 defects. $cdc15-2 \,msn2\Delta \,msn4\Delta$ mutants adapted after two passages to 30°C, to exhibit better growth at 31°C and 32°C but poorer growth at lower temperatures, 20°C and 23°C (Fig. 5B, Supplementary Fig. 6). The effects of adaptation were partially reversed when moved from 30°C to 23°C (Fig. 5B).

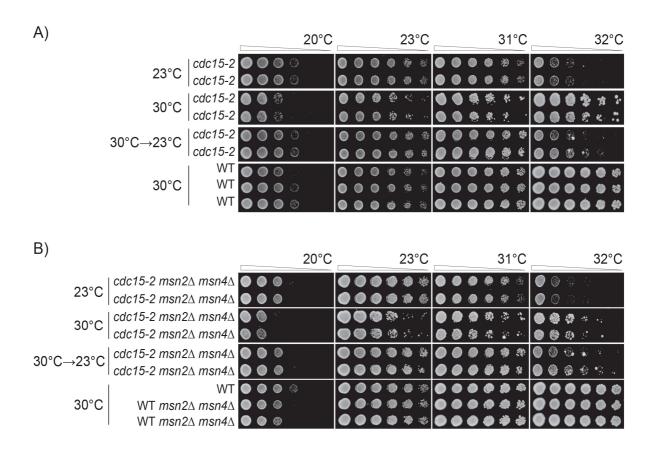


Figure 5. Adaptation to low-level kinase inhibition in cdc15-2 mutants

Diploid strains of different genotypes were analysed as in Figure 3. Strains were grown for 3 passages at 23°C or 30°C on agar plates, or for 1 passage at 30°C and two at 23°C. A) Strains were DDY739; 839, 840, 841, 842. B) Strains were DDY739; 1036, 1037 1038, 1039. All strains shown in each subsection, at each temperature, were grown on single agar plates. Images taken after 24, 48 and 72 hours incubation are shown in Supplementary Figures: 5 and 6, respectively.

6.1.4 Discussion

We analysed yeast mutants defective in the cell division cycle to measure the costs and benefits of adapting to chronic low-level stress. We were particularly interested to determine if we could find evidence for hormesis, which has been defined as "a low-dose stimulation or beneficial effect and a high dose inhibitory or toxic effect" (Mattson, 2008), in this simple model system. Figure 6 summarizes our observations and shows the positive and negative effects of adapting to different types of low-dose stress. We observe that previous exposure to low-dose stress improves the ability of yeast to survive higher doses of the same stress (Fig. 6, position B). However, the trade-off for adapting to low-dose stress is that cells are less fit, in comparison with unstressed cells, when grown in low stress conditions (Fig. 6, position A). We see no evidence for hormesis in this experimental system, that is that yeast cells exposed to low-dose stresses are fitter than cells not exposed to stress (Fig. 6, the predicted hormesis response curve, above the black dashed line). We cannot, of course, exclude that hormesis occurs in response to other types of stress, or could be observed if other biological end points were measured. For example, if we measured genetic stability rather than growth rate we might observe that cells with a slight induction of the DNA damage response were more stable than cells that had not induced the response.

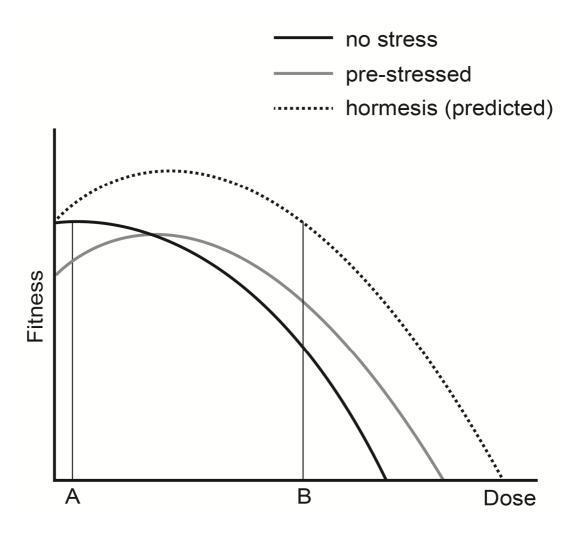


Figure 6. The effects of adaptation to mild stress

Three curves are used to represent the fitness of yeast cells that were previously not stressed (black line), pre-stressed (gray line) or show a hormetic response (dashed line). A and B indicate low and high doses of stress.

What mechanisms might explain the different effects of the adaptive response to low-dose stress? *cdc13-1* and *cdc15-2* affect different aspects of cell cycle progression, but we imagine the types of adaptive response are somewhat similar. Defective telomeres in *cdc13-1* mutants induce a DNA damage checkpoint kinase dependent network, involving at least five kinases, Mec1, Tel1, Chk1, Rad53 and Dun1 to affect cell cycle arrest and DNA repair. Therefore effects on phosphorylation-dependent biochemical processes such as signalling, transcription and proteolysis must underlie the adaptive responses. Rad9, for example, is essential for cell cycle arrest of *cdc13-1* strains, for activating downstream kinase activities and for inhibiting the accumulation of single stranded DNA near telomeres (Weinert and Hartwell, 1988, Lydall and Weinert, 1995, Gilbert et al., 2001, Usui et al., 2001, Jia et al., 2004, Sweeney et al., 2005, Lazzaro et al., 2008, Lydall, 2009, Ngo and Lydall, 2015). Furthermore rearrangements in telomere DNA structure can also reduce cellular dependence on Cdc13 (Larrivee and Wellinger, 2006).

Since adaptation can occur in $cdc13-1 \ rad9\Delta$, $cdc13-1 \ exo1\Delta$ and $cdc13-1 \ msn2\Delta$ $msn4\Delta$ strains, we conclude that much redundancy exists in the responses to telomere defects and that a strong network structure must underlie the adaptive responses. Consistent with this Berry et al., (Berry et al., 2011) have shown acquired stress resistance is complex and context dependent. The fact that adaptation can occur in the absence of Rad9, which plays so many different and important roles in telomere defective strains, shows how robust (and presumably important) this adaptive response is. The complex network structure that underlies adaption may explain that numerous mechanisms have been proposed to account for hormetic mechanisms (Schumacher, 2009, Vaiserman, 2010, Stranahan and Mattson, 2012, Wiegant et al., 2012, Perry et al., 2014, Singh et al., 2015). We have not examined the mechanisms that control adaptation to cdc15-2 defects but we imagine that these mechanisms are equally as robust since Cdc15 is part of the mitotic exit network. We found that cells adapting to *cdc13-1* or *cdc15-2* induced stress incurred a detectable cost to fitness when the stress was reduced. Furthermore, cells seemed to reverse adaptation to cdc15-2 stress more rapidly that they reversed adaptation to cdc13-1 stress. This comparison suggests that the each type of stress can induce quite different adaptive mechanisms.

All organisms live in stressful, variable environments, encountering harmful physical and chemical stressors such as sunlight, radiation and oxygen. All of these poisons are unavoidably dangerous and cells have evolved powerful mechanisms to overcome most, but not all, of their harmful effects. It is likely that complex networks of biochemical interactions help cells tolerate and thrive in the context of these different stresses. Presumably, therefore, *cdc* mutants growing at slightly elevated temperatures up-regulated responses that counteract the negative cues caused by *cdc* defects. This up regulation, or adaptation, is positive because it prepares cells for exposure to even more stress. On the other hand adaptation is harmful when the stress is removed. In a sense *cdc* adapted cells have become "addicted" to stress, presumably because the energetic cost of maintaining a stress response when stress is no longer present reduces fitness. In animals too there seems to be both a benefit and a cost of adapting to stress. Zebra finches exposed to heat stress in early life are more tolerant of heat later in life, but have shorter lifespans than unstressed birds if no further stress is received (Costantini et al., 2014).

cdc13-1, which essentially damages chromosomes, can be considered as a model for environmental stresses that cannot be avoided, such as radiation and oxygen exposure. We routinely grow *cdc13-1* cells at 23°C, although we know that telomeres of cdc13-1 mutants at 23°C are imperfect, because synthetic lethal interactions are seen in combination with $yku70\Delta$, $yku80\Delta$, $mre11\Delta$, $rad50\Delta$ and $xrs2\Delta$ mutations at this temperature (Polotnianka et al., 1998, Foster et al., 2006). Presumably, therefore, the *cdc13-1* strains growing at 23°C have adapted to growth with defective telomeres. Along similar lines, most mammalian cells are grown in the laboratory in 20% oxygen, yet when cells have adapted to grow in lower oxygen concentrations and are switched back to 20% oxygen, then a strong stress response is observed (Rupec and Baeuerle, 1995, Laderoute and Webster, 1997, Seko et al., 1997). Similarly, all organisms are exposed to low-levels of radiation, but exposure can be increased environmentally. Interestingly, the most recent studies show that comparatively small radiation exposure in radiation workers leads to increased risk of death from leukaemia (Abbott, 2015, Leuraud et al., 2015). Our experiments measured growth rate, as a measure of fitness, but of course there are many other relevant measures of organism fitness. For example, it is likely that if we were to measure genetic stability of *cdc13-1* or *cdc15-2* cells grown at high temperature then stability would be reduced.

Experiments on mammalian cells in culture clearly show hormetic type responses to stress (Cope et al., 2014), so why do we not see evidence for hormesis in yeast? We favour the explanation that culture of transformed cancer cells in the laboratory does not reflect the carefully regulated cell growth that occurs in an organism. In tissue culture, perhaps, slightly inhibiting growth promoting signal transduction pathways (e.g. TOR) actually improves the fidelity of cell division and increases fitness. We suggest that the yeast experimental system is a better model for real organism growth. We cannot exclude, of course, that with a different experimental set up we might see hormesis in yeast, as was apparently seen in 1888 (Calabrese, 2010).

If organisms could be truly fitter after exposure to a toxin/poison/stress, then natural selection would surely select for organisms that generated or mimicked their own toxin/poison/stress. Environments change rapidly and it is not possible to predict what stresses are in store for the future. Our data suggests the idea that responses to chronic low-dose stress are not universally positive. The good news is that organisms can, if necessary, adapt to stress and this helps them survive increased stress. The bad news is that there is a price to be paid if the stress reduces. It has been suggested that positive responses to low-doses poisons will protect humans against cancer and/or ageing (Calabrese, 2004, Calabrese et al., 2015). We caution against this view.

In summary our analyses of yeast cells exposed to chronic low-level telomere stress or mitotic kinase inhibition show clear evidence for adaption to stress. Adaptation improves cell fitness if cells are exposed to more of the same stress, but reduces fitness when stress levels are reduced. We found that adaptation to stress is reversible and that functionally redundant, robust networks of biochemical interactions must be responsible for the adaptive responses. Our results suggest that adaptation to low-level stress is favourable should stress remain or increase, but harmful when stress levels reduce.

6.1.5 Materials and Methods

Yeast strains used in this study

All *S. cerevisiae* strains used in this study are in the W303 genetic background: ade2-1 can1-100 trp1-1 leu2-3,112 his3-11,15 ura3 GAL+ psi+ ssd1-d2 RAD5+ and are shown in Supplementary Table 1.

Media

Strains contain an *ade2-1* mutation and therefore the liquid or solid medium was supplemented with adenine (1L YEPD: 10g yeast extract, 20g bactopeptone, 50ml 40% dextrose, 15ml 0.5% adenine, 935ml H₂0).

Cell passage

Yeast strains were passaged on YEPD agar plates by streaking by toothpick at the indicated temperatures. Between 5 to 10 colonies from each genotype were pooled at each passage. We counted the cells in representative colonies and estimate that for each passage, for a single cell to form a colony represents approximately 21 cell generations.

Spot test assays

Pooled colonies from cell passage plates were inoculated into 2ml liquid YEPD and grown on a wheel for 12-18 hours to reach saturation. Saturated liquid cultures were 5-fold serially diluted in sterile water in 96-well plates, and small aliquots were spotted onto YEPD plates with a sterile, metal pin-tool. Plates were incubated at the temperatures indicated and photographed at 24, 48 and 72 hours.

Image Processing

All agar plate images were processed using Adobe Photoshop CS6 software. In each Figure, all images were adjusted identically; there were slight differences across Figures. Images were adjusted as follows: in the Levels adjustment tool the low end of the intensity histogram was trimmed to between 100 - 130 and all other values left at default (1, 255). Using Photoshop's exposure tool, Exposure settings were adjusted to 0.3 - 0.8; Offset to -0.02 - -0.05; and Gamma Correction to 1.2 - 1.5. Colour was converted to greyscale after import into Adobe Illustrator.

Acknowledgements

We thank all our lab members and Phil Aldridge, Simon Cook, Audrey Gasch, Niall Kenneth, Tom Kirkwood, Ed Louis, Neil Perkins, Janet Quinn and Daryl Shanley for input. This work was funded by EU Marie Curie ITN network CodeAge and the BBSRC.

6.1.6 Supplementary material

Diploid strain no. (DDY)	Genotype	Origin (DLY x DLY)
81	CDC13/CDC13	640 x 641
735	cdc13-1/cdc13-1	1108 x 1195
736	cdc13-1/cdc13-1	1108 x 1195
737	cdc13-1/CDC13	1108 x 3001
738	cdc13-1/CDC13	1108 x 3001
739	CDC13/CDC13	3001 x 8460
837	yku70::HIS3/YKU70 exo1::LEU2/EXO1	1273 x 1412
838	yku70::HIS3/YKU70 exo1::LEU2/EXO1	1273 x 1412
839	cdc15-2/CDC15 yku70::HIS3/YKU70 exo1::LEU2/EXO1	1273 x 10725
840	cdc15-2/CDC15 yku70::HIS3/YKU70 exo1::LEU2/EXO1	1273 x 10725
841	cdc15-2/cdc15-2 yku70::HIS3/YKU70 exo1::LEU2/EXO1	10724 x 10726
842	cdc15-2/cdc15-2 yku70::HIS3/YKU70 exo1::LEU2/EXO1	10724 x 10726
860	cdc13-1/cdc13-1 rad9::HIS3/rad9::HIS3 rad24::TRP1/RAD24 exo1::LEU2/EXO1	1260 x 1692
861	cdc13-1/cdc13-1 rad9::HIS3/rad9::HIS3 rad24::TRP1/RAD24 exo1::LEU2/EXO1	1260 x 1692
868	cdc13-1/CDC13 rad9::HIS3/rad9::HIS3 rad24::TRP1/RAD24 exo1::LEU2/EXO1	1693 x 6931
869	cdc13-1/CDC13 rad9::HIS3/rad9::HIS3 rad24::TRP1/RAD24 exo1::LEU2/EXO1	1693 x 6931
972	cdc13-1/cdc13-1 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	4149 x 4153
973	cdc13-1/cdc13-1 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	4149 x 4153
974	cdc13-1/CDC13 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	4148 x 4153
975	cdc13-1/CDC13 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	4148 x 4153
976	msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	4148 x 4154
977	msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	4148 x 4154
992	cdc13-1/CDC13 exo1::LEU2/exo1::LEU2 yku70::HIS3/YKU70 rad24::TRP1/RAD24	1408 x 1696
993	cdc13-1/CDC13 exo1::LEU2/exo1::LEU2 yku70::HIS3/YKU70 rad24::TRP1/RAD24	1408 x 1696
994	cdc13-1/cdc13-1 exo1::LEU2/exo1::LEU2 yku70::HIS3/YKU70 rad24::TRP1/RAD24	5097 x 6793
995	cdc13-1/cdc13-1 exo1::LEU2/exo1::LEU2 yku70::HIS3/YKU70 rad24::TRP1/RAD24	5097 x 6793
996	exo1::LEU2/exo1::LEU2 yku70::HIS3/YKU70 rad24::TRP1/RAD24	1408 x 1701
997	exo1::LEU2/exo1::LEU2 yku70::HIS3/YKU70 rad24::TRP1/RAD24	1408 x 1701
1034	msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	11082 x 11097
1035	msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	11082 x 11097
1036	cdc15-2/CDC15 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	11083 x 11086
1037	cdc15-2/CDC15 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	11063 x 11097
1038	cdc15-2/cdc15-2 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	11065 x 11086
1039	cdc15-2/cdc15-2 msn2::URA3/msn2::HIS3 msn4::KAN/msn4::URA3	11063 x 11085
DLY1108	cdc13-1	
DLY1195	cdc13-1	
DLY3001	CDC13	

Table S1 Strains used in this study

All S. cerevisiae strains are in the W303 genetic background (ade2-1 can1-100 trp1-1 leu2-3,112 his3-11,15 ura3 GAL+ psi+ ssd1-d2 RAD5).

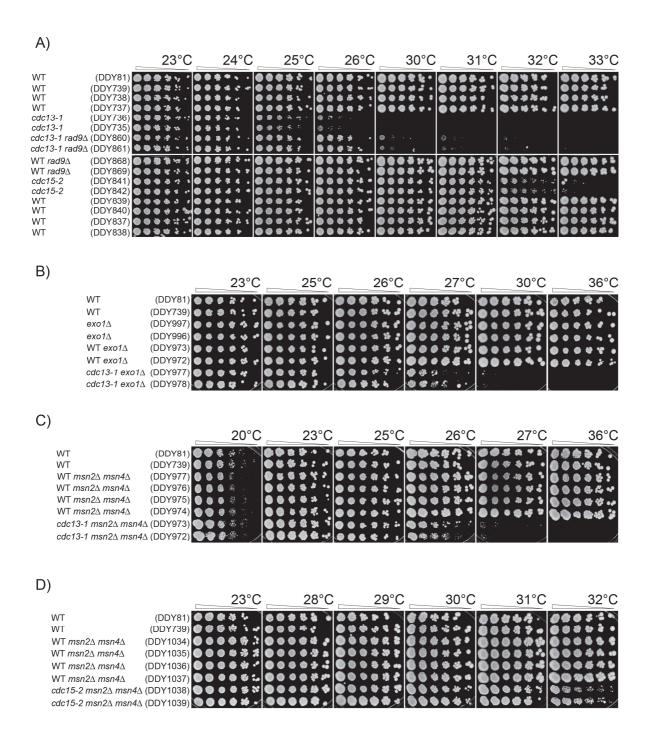


Figure S1. The fitness of *cdc13-1* and *cdc15-2* mutants at a range of temperatures

Diploid strains with different genotypes were grown for one passage at 23°C on YEPD plates. Spot tests were performed as described in Figure 3. Photographs were taken after 72 hours. All strains shown at each temperature were grown on a single agar plate within A). Strains' details are shown in Supplementary Table 1.

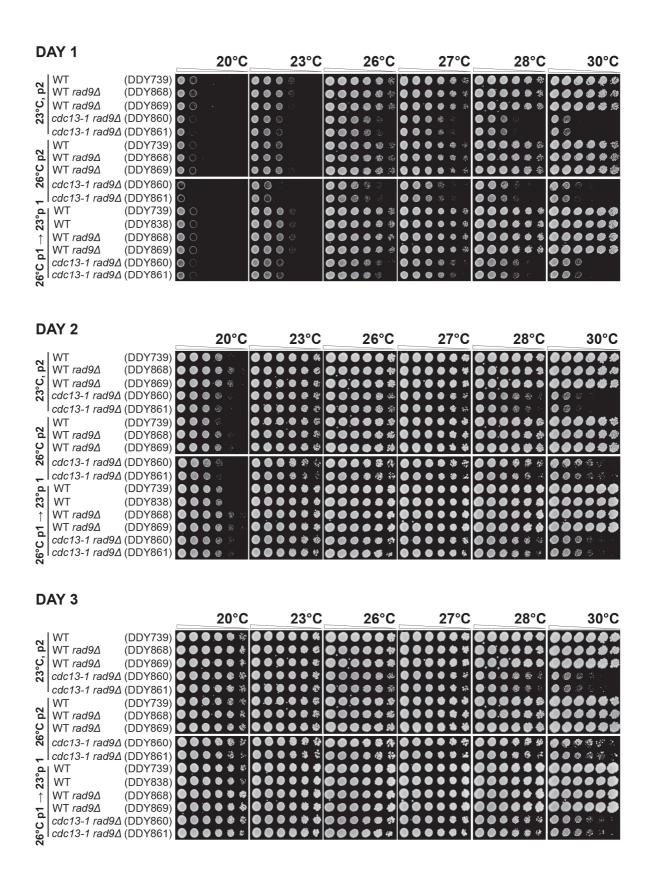


Figure S2. The effects of adaptation to telomere stress in $cdc13-1 \ rad9 \triangle$ mutants

Experimental design described in Figure 4.

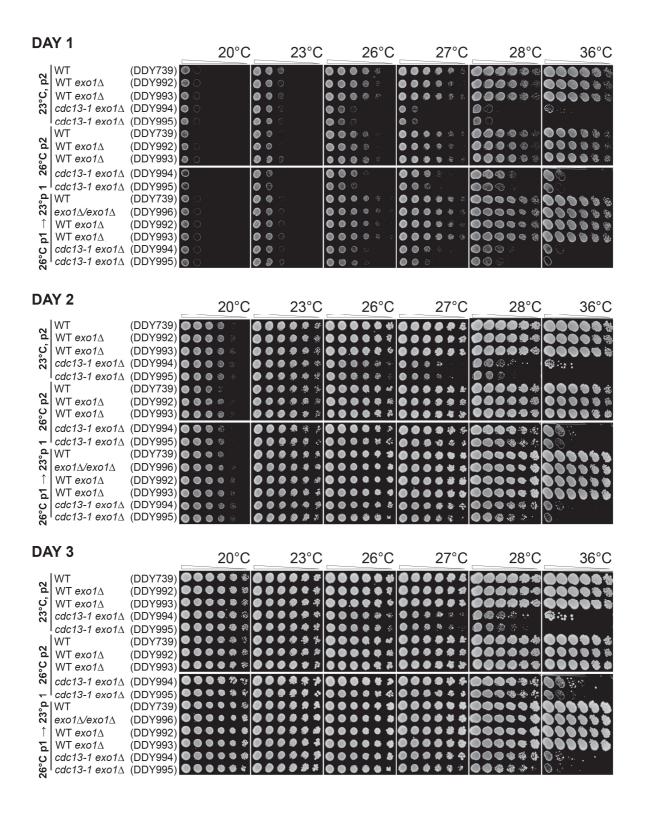


Figure S3. The effects of adaptation to telomere stress in cdc13-1 $exo1\Delta$ mutants

Experimental design described in Figure 4.

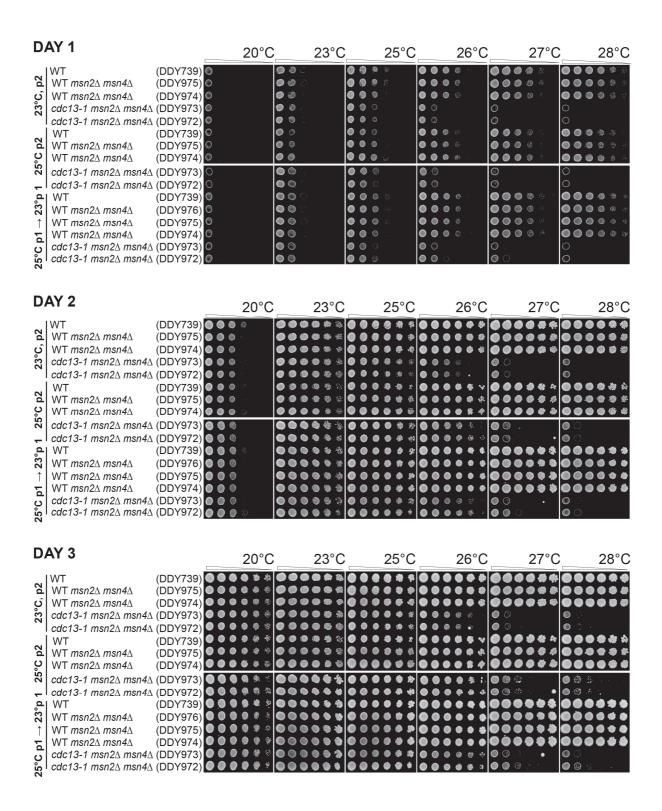


Figure S4. The effects of adaptation to telomere stress in *cdc13-1 msn2* \triangle msn4 \triangle mutants

Pictures were taken periodically after 24, 48 and 72 hours of incubation. Experimental design described in Figure 4.

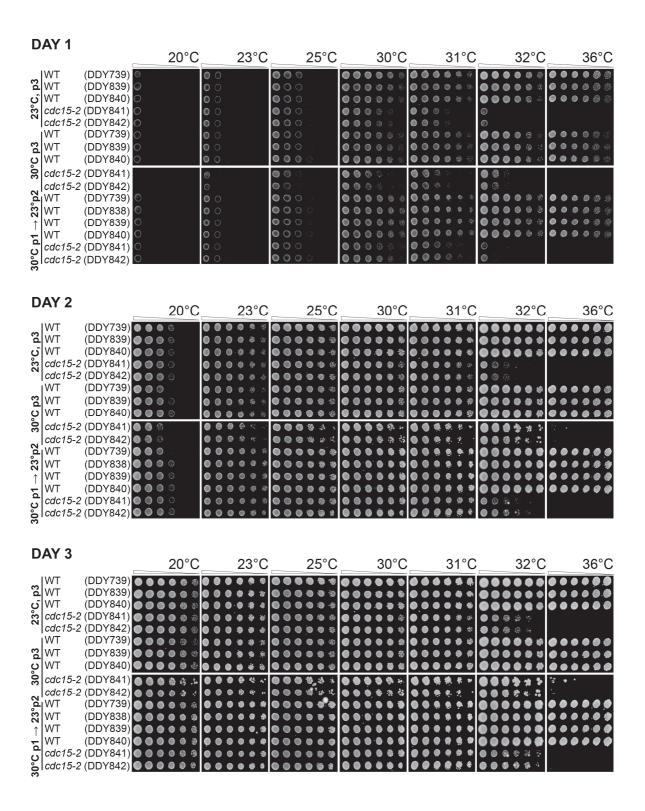


Figure S5. The effects of adaptation to low level kinase inhibition in *cdc15-2* mutants

Experimental design described in Figure 5.

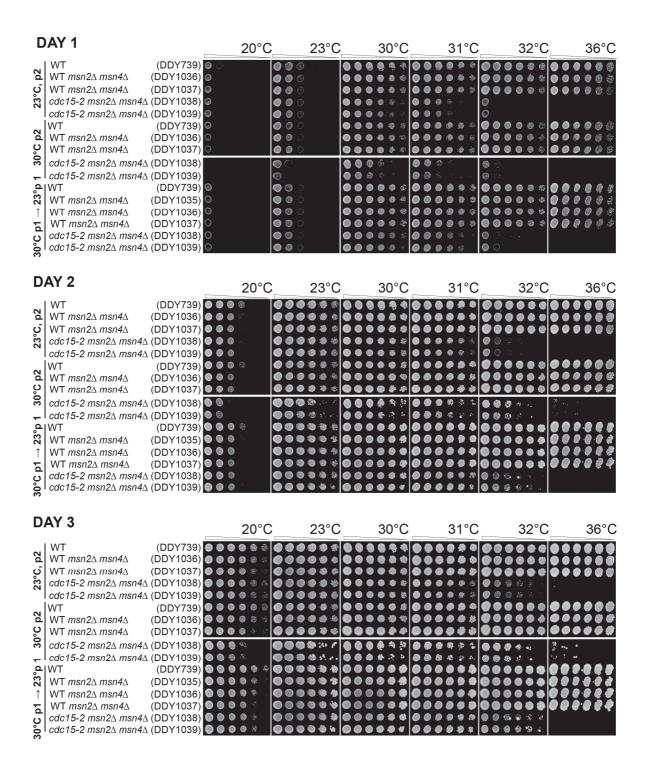


Figure S6. The effects of adaptation to low level kinase inhibition in cdc15-2 $msn2\Delta$ $msn4\Delta$ mutants

Experimental design described in Figure 5.

Chapter 7. Discussion

I will start my discussion with the results I acquired for Dna2 because I find the section about Dna2 the most interesting. Later, I will discuss the effects of Ddc1, Dpb11 and Dna2 on fitness of cdc13-1 and $yku70\Delta$ strains. Finally, I will mention the possible roles of Hcm1, Xbp1 and Uls1 at telomeres, and the consequences of yeast adaptation to low-dose stress.

7.1 Role of Dna2 in telomere biology

It was proposed that the essential function of Dna2 is in long flap processing during Okazaki fragment maturation (Fig. 32) (Budd and Campbell, 2000, Budd et al., 2006, Budd et al., 2011). However, my hypothesis is that Dna2 has the most critical role at telomeres, presumably in Okazaki fragment processing during telomere replication. DNA2 is an essential gene, but its lethality is bypassed by overexpression of RAD27 and deletions of PIF1 and RAD9. I now report that $dna2\Delta$ cells are also viable when DDC1, CHK1, RAD17, MEC1 (SML1) or POL32 genes are deleted, and in these other cases resemble $dna2\Delta$ $rad9\Delta$ mutants. Consistent with some of this data, it was previously shown that deletion of POL32 suppresses thermo-sensitivity of dna2-1 and dna2-2 mutants but not the lethality of $dna2\Delta$ (Budd et al., 2005, Budd et al., 2006). I also found that deletions of TEL1, RAD53, EXO1, RIF1, RIF2, MRE11 and RAD27 do not suppress $dna2\Delta$ lethality.

DDC1, RAD17, CHK1 and RAD9 checkpoint gene deletions suppress *dna2*Δ lethality. Interestingly, the same gene deletions suppress the *cdc13-1* fitness defect (Addinall et al., 2008), which indicates possible similarities between Cdc13 telomere capping protein and Dna2. On the other hand, DNA damage checkpoint mutations reduced fitness of DNA polymerase mutants (Weinert, 1992, Dubarry et al., 2015). In this respect Dna2 is different from a group of DNA polymerases and, possibly, general DNA replication enzymes. Choe *et al.* showed that in *S. cerevisiae* Dna2 localizes to telomeres in a cell cycle regulated manner (in late S-phase), and might have a role in telomere replication and capping (Choe et al., 2002). Similarly to Cdc13, Dna2 might regulate telomerase activity, or replication of telomeres. It would be interesting to confirm my hypotheses that Dna2, a proposed telomere capping protein, has its essential function in Okazaki fragment processing at telomeres, and to find the mechanisms for its function.

An unbiased genome-wide screen (yeast of S288C background) confirmed suppressors and enhancers of $dna2\Delta$, found earlier by tetrad analysis (e. g. $rad9\Delta$ or $ddc1\Delta$). The SGA screen also allowed for the identification of novel genes whose deletions suppress $dna2\Delta$ lethality. One of the $dna2\Delta$ suppressors is $mph1\Delta$, affecting a DNA helicase which stimulates activities of Rad27 and Dna2 (Kang et al., 2009). I found that in another genetic background (W303) $mph1\Delta$ also suppresses $dna2\Delta$ lethality, similarly to $rad9\Delta$. However, after tetrad dissection of $dna2\Delta/DNA2$ mph1 Δ /MPH1 diploid, some single dna2 Δ mutants emerged. Viability of such dna2 Δ cells might be a result of genome instability and/or aneuploidy events. Interestingly, although *dna2*∆ spores germinated into very small colonies, they ceased to grow after passaging onto fresh YEPD media, which implied that i) likely no other mutations suppress *dna2* Δ lethality in such cells, ii) presumably DNA damage in the dna2∆ cells is too severe to permit growth. Since Dna2, Pif1, Pol32, Mph1 and Rad27 function in Okazaki fragment processing, it might be interesting to test why deletions of PIF1, POL32 and MPH1, but RAD27 overexpression, suppress dna2\(\Delta\) lethality.

7.2 Ddc1, Dpb11 and Dna2 checkpoint control in yku70∆ and cdc13-1 mutants

It has been reported that DNA damage induced in telomere defective $yku70\Delta$ mutants activates a Mec1-dependent checkpoint pathway, but is independent of the Ddc1 checkpoint protein (Maringele and Lydall, 2002, Addinall et al., 2011). On the other hand $ddc1\Delta$ is a strong suppressor of another telomere defective mutant, cdc13-1 (Addinall et al., 2008). Ddc1, Dpb11 and Dna2 directly activate Mec1 in response to DNA damage (Puddu et al., 2008, Navadgi-Patil et al., 2011, Kumar and Burgers, 2013). In order to examine the impact of Ddc1, Dna2 and Dpb11 on fitness of $yku70\Delta$ and cdc13-1 strains, I analysed point mutations of DDC1, DNA2 and DPB11, defective in Mec1 activation.

I confirmed that $ddc1\Delta$ strongly suppresses cdc13-1 defect. Dpb11 may contribute to the checkpoint function of Ddc1 in cdc13-1 and $yku70\Delta$ strains, but its role is less important on fitness. Surprisingly, I found that out of the three, Ddc1 was the only protein that most clearly affects $yku70\Delta$ fitness and therefore might play a minor role in checkpoint of $yku70\Delta$ strains. The observations that $ddc1\Delta$ affected $yku70\Delta$ fitness were inconsistent with published data (Maringele and Lydall, 2002). I showed that yeast culture conditions affect the effect of $ddc1\Delta$ on $yku70\Delta$ fitness. Yeast cells

grown till saturation prior spotting were fitter at higher temperatures than strains spotted form the exponential culture.

There are differences in the growth of cells spotted from saturated and exponential cultures, and one possible explanation might be that first cell cycles of $yku70\Delta$ cells grown till saturation prior spotting might be longer. Longer cell cycle of such cells would result in slower growing, "fitter" cells at higher temperatures. Also, cells grown till saturation prior spotting onto fresh YEPD media might activate stress responses, which protect cells from high temperature stress. Another idea would be that telomere defects of $yku70\Delta$ mutants are somehow not recognised by checkpoint/ DNA damage machinery when cells were first grown till saturation. It might be interesting to test whether any of these explanations addresses the question regarding the role of culture conditions on yeast strains' growth.

The checkpoint function of Dna2 is affected by the dna2-W128A, Y130A allele (Kumar and Burgers, 2013). I observed that the dna2-W128A, Y130A mutation on a plasmid strongly suppressed cdc13-1 fitness. Such cells carried more copies of a plasmid and had telomeres rearranged. These cells might have selected for more copies of the plasmid with the dna2-W128A, Y130A allele. However, the same allele integrated into the genome slightly enhanced the growth defects of cdc13-1 strains. Interestingly, mutations of other telomere binding proteins (e. g. $yku70\Delta$) also enhance cdc13-1 fitness (Polotnianka et al., 1998, Addinall et al., 2008). It might be possible that the residues W128 and Y130 are important for the telomere protection role of Dna2.

Another role of Dna2 which seems to be affected in *dna2-W128A*, *Y130A* mutants is mitochondrial DNA maintenance. I observed that on glycerol *dna2-W128A*, *Y130A* mutants were sick, and deletion of *PIF1* slightly improved their fitness. Pif1 and Dna2 have roles in mitochondria (Duxin et al., 2009, Pokharel and Campbell, 2012), and I observed that strains carrying the *dna2-W128A*, *Y130A* allele were prone to forming petite colonies, an indication of mitochondrial problems. Based on my observations I propose that *dna2-W128A*, *Y130* allele is defective in the mitochondrial DNA maintenance. Protein stability, and therefore Dna2 enzyme function(s) might be reduced in *dna2-W128A*, *Y130A* cells.

Overall, Dna2 most likely does not take the role of Ddc1 in checkpoint arrest of $yku70\Delta$ and cdc13-1 mutants, while Dpb11 may contribute to the checkpoint function of Ddc1 in $yku70\Delta$ and cdc13-1 mutants. Ddc1 itself plays a major checkpoint role in cdc13-1 mutants, and may play a minor checkpoint role in $yku70\Delta$ strains.

7.3 Hcm1, Xbp1 and Uls1 function at telomeres

I tested whether Hcm1, Xbp1 and Uls1 have roles at uncapped telomeres. I found that Hcm1 and Xbp1 transcription factors affect telomeres, which might involve the regulation of transcription of genes important for the cell cycle arrest in telomere defective strains. Uls1, SUMO-targeted ubiquitin ligase, also plays a role in telomere biology. SUMOlyation and ubiquitynation are involved in regulatory mechanism for controlling telomerase function, e. g. it was shown that SUMOylation of Cdc13 promotes the association of Cdc13 with Stn1 to inhibit telomerase function (Hang *et al.*, 2011). I confirmed the results of genome wide screen in the context of *stn1-13*, cdc13-1 and $yku70\Delta$ in W303 (Addinall et al., 2011). However, mechanisms by which Hcm1, Xbp1 and Uls1 perform roles at telomeres remain to be tested.

7.4 Consequences of low-dose stress adaptation

I include published results regarding the consequences of yeast adaptation to chronic low-dose stress (Markiewicz-Potoczny and Lydall, 2016). We observed that yeast cells adapt to chronic low-dose stress, and grow better when higher doses of the stress are applied, in contrast to cells that were not pre-treated with stress; these effects are reversible. Adapted yeast cells are less fit in the stress-free environment; these effects are also reversible. Due to the fact that adaptation to low-dose stress reduces fitness in the absence of stress, precautions should be taken before putting the proverb "What doesn't kill you makes you stronger" into practice.

Appendix A: Yeast strains

S. cerevisiae strains used are in the W303 genetic background (*ade2-1 can1-100 trp1-1 leu2-3,112 his3-11,15 ura3 GAL+ psi+ ssd1-d2 RAD5+*) unless otherwise stated. Haploid strain numbers are prefixed DLY unless otherwise stated (DDY in diploid strains). *pDL* – plasmid. RSA – random spore analysis. Yeast strain are ordered by strain number.

Stra	in N	1		Origin	
no			Genotype	(If in this work)	pDL
640	а	WT W3	303		
641	α	WT W3	303		
883	а	ddc1::k	(AN rad5-535		
974	a	yku70::	HIS3 rDNA::ADE2		
1108	8 а	cdc13-	1		
119	5 α	cdc13-	1		
1199	9 а	yku70::	HIS3 rad17::LEU2 rad5-535		
1208	8 α	yku70::	LEU2 mec3::TRP1 rad5-535		
1209	9 а	yku70::	LEU2 mec3::TRP1 rad5-535		
121	0 a	ddc1::k	(AN yku70::LEU2 rad5-535		
121	1 α	ddc1::k	(AN yku70::LEU2 rad5-535		
121	5 а	yku70::	LEU2 chk1::HIS3		
126	4 α	yku70::	LEU2 rad9::HIS3		
126	6 а	yku70::	LEU2 chk1::HIS3		
127	1 a	yku70::	LEU2 rad9::HIS3		
127	3 α	exo1::L	.EU2		
1284	4 a	rad24::	TRP1 yku70::HIS3		
129	6 a	cdc13-	1 exo1::LEU2		
129	7 α	cdc13-	1 exo1::LEU2		
1320	δ α	mec1::I	HIS3 sml1::KAN		
134	7 α	yku70::	HIS3 rad17::LEU2		
1364	4 a	yku70::	HIS3 rad24::TRP1		
1360	δ α	yku70::	HIS3		
1408	8 а	yku70::	HIS3 exo1::LEU2		
1409	9 α	yku70::	HIS3 exo1::LEU2		
141	2 a	yku70::	HIS3		
158	5 α	rad9::K	'AN mfa::MFA1 pr-HIS3 can1 ura3 le	eu2	
		his3 lys	s2 (S288C)		
184	5 а	yku70::	:HIS3 mre11::hisG::URA3		
1840	6 α	yku70::	:HIS3 mre11::hisG::URA3		

2147	α	tlc1::HIS3				
2586	α	yku70::LEU2 chk1::HIS3				
3001	α	WT W303				
4647	а	cdc13-1 rad9::HIS3	cdc13-1 rad9::HIS3			
5230	а	yku70::HIS rad24::TRP				
5231	а	yku70::HIS rad24::TRP				
5536	а	ade2-1 trp1-1 <u>CAN1</u> leu2-3,112 his3-11,15 ura3				
		GAL+ psi+ ssd1-d2 RAD5 (W303 wild type)				
5626	а	ade2-1 trp1-1 <u>CAN1</u> leu2-3,112 his3-11,15 ura3				
		GAL+ psi+ ssd1-d2 RAD5 (W303 wild type)				
5703	а	pol32::KAN				
5704	α	pol32::KAN				
6854	а	sml1::URA3				
6936	а	yku70::LEU2 rad9::HIS3				
6885	а	yku70::LEU2				
7171	а	cdc13-1 ddc1::KAN				
7172	α	cdc13-1 ddc1::KAN				
7173	а	ddc1::KAN				
7174	α	ddc1::KAN				
7177	а	rad17::LEU2				
7629	α	yku70::LEU2				
8460	а	WT W303				
8663	а	yku70::HIS3 ddc1::KAN	1412 x 7174			
8664	а	yku70::HIS3 ddc1::KAN	1412 x 7174			
8666	α	yku70::HIS3 ddc1::KAN	1412 x 7174			
8711	α	yku70::LEU2 mec3::TRP1	6885 x 7182			
8773	а	cdc13-1 dpb11::KAN	1108 x 3001	1545		
8774	α	cdc13-1 dpb11::KAN	1108 x 3001	1545		
8783	α	yku70::LEU2 dpb11::KAN	6885 x 3001	1545		
8784	а	yku70::LEU2 dpb11::KAN	6885 x 3001	1545		
8787	а	yku70::LEU2 dpb11::KAN	6885 x 3001	1552		
8788	α	yku70::LEU2 dpb11::KAN	6885 x 3001	1552		
8789	а	yku70::LEU2 dpb11::KAN	6885 x 3001	1553		
8791	α	yku70::LEU2 dpb11::KAN	6885 x 3001	1554		
8792	а	yku70::LEU2 dpb11::KAN	6885 x 3001	1554		
8793	а	yku70::LEU2 dpb11::KAN	6885 x 3001	1555		
8794	α	yku70::LEU2 dpb11::KAN	6885 x 3001	1555		
8795	а	yku70::LEU2 dpb11::KAN	6885 x 3001	1556		
8796	α	yku70::LEU2 dpb11::KAN	6885 x 3001	1556		
8799	α	cdc13-1 dpb11::KAN	1108 x 3001	1555		
8800	а	cdc13-1 dpb11::KAN	1108 x 3001	1555		
8952	а	yku70::HIS3 dna2::KAN	1412 x 3001	1560		
8953	α	yku70::HIS3 dna2::KAN	1412 x 3001	1560		
8954	α	yku70::HIS3 dna2::KAN	1412 x 3001	1561		
8955	а	yku70::HIS3 dna2::KAN	1412 x 3001	1561		
8956	α	yku70::HIS3 dna2::KAN	1412 x 3001	1468		

8993 a stn1-13 rad5-535 8998 a cdc13-1 dna2::KAN 1108 x 3001 1544 8999 a cdc13-1 dna2::KAN 1108 x 3001 1561 9000 a cdc13-1 dna2::KAN 1108 x 3001 1561 9040 a cdc13-1 1108 876 9041 a cdc13-1 1108 876 9042 a cdc13-1 1108 1559 9045 a yku70::HIS3 1412 1559 9046 a yku70::LEU2 6885 876 9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9056 a cdc13-1 ddc1::KAN 7172 1479 9057 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1474 9060 a cdc13-1 ddc1::KAN 7172 1474 9058	8957	~	yku70::HIS3 dna2::KAN	1412 x 3001	1568
8998 a cdc13-1 dna2::KAN 1108 x 3001 1544 8999 a cdc13-1 dna2::KAN 1108 x 3001 1561 9000 a cdc13-1 dna2::KAN 1108 x 3001 1561 9040 a cdc13-1 1108 x 3001 1561 9041 a cdc13-1 1108 x 3001 1561 9042 a cdc13-1 1108 x 366 876 9045 a yku70::HIS3 1412 x 1559 9046 a yku70::LEU2 6885 x 676 9047 a yku70::LEU2 6885 x 676 876 885 x 676 9050 a WTW303 1412 x 3001 1559 9055 a cdc13-1 ddc1::KAN 7172 x 1470 9058 a cdc13-1 ddc1::KAN 7172 x 1470 9058 a cdc13-1 ddc1::KAN 7172 x 1472 9059 a cdc13-1 ddc1::KAN 7172 x 1474 9060 a cdc13-1 ddc1::KAN 7172 x 1476 9061 a cd		α	•	1412 X 3001	1300
8999 a cdc13-1 dna2::KAN 1108 x 3001 1561 9000 a cdc13-1 dna2::KAN 1108 x 3001 1561 9001 a cdc13-1 1108 x 3001 1561 9040 a cdc13-1 1108 876 9041 a cdc13-1 1108 1559 9045 a yku70::IEU2 6885 876 9047 a yku70::IEU2 6885 876 9047 a yku70::IEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9057 a cdc13-1 ddc1::KAN 7172 1479 9058 a cdc13-1 ddc1::KAN 7172 1479 9057 a cdc13-1 ddc1::KAN 7172 1472 9058 a cdc13-1 ddc1::KAN 7172 1479 9059 a cdc13-1 ddc1::KAN 7172 1474 9060 a cdc13-1 ddc1::KAN 7172 1476				1100 v 2001	1511
9000 a cdc13-1 dna2::KAN 1108 x 3001 1561 9001 c cdc13-1 dna2::KAN 1108 x 3001 1561 9000 a cdc13-1 1108 876 9041 a cdc13-1 1108 876 9042 a cdc13-1 1108 1559 9045 a yku70::LEU2 6885 876 9046 a yku70::LEU2 6885 876 9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9056 c cdc13-1 ddc1::KAN 7172 1479 9057 c cdc13-1 ddc1::KAN 7172 1470 9058 c cdc13-1 ddc1::KAN 7172 1470 9058 c cdc13-1 ddc1::KAN 7172 1474 9060 c cdc13-1 ddc1::KAN 7172 1474 9060 c cdc13-1 ddc1::KAN 7172 1474 9060 c cdc13-1 ddc1::KAN 7172 1476 9061 c cdc13-1 ddc1::KAN 7172 1546 9062 c cdc13-1 ddc1::KAN 7172 1547 9063 c cdc13-1 ddc1::KAN 7172 1547 9063 c cdc13-1 ddc1::KAN 7172 1547 9063 c cdc13-1 ddc1::KAN 7172 1548 9064 c cdc13-1 ddc1::KAN 7172 1548 9065 c cdc13-1 ddc1::KAN 7172 1549 9071 a WT W303 8460 1248 9073 c dc13-1 ddc1::KAN 7172 1549 9074 c cdc13-1 ddc1::KAN 7172 1549 9075 c cdc13-1 ddc1::KAN 7172 1549 9076 c cdc13-1 ddc1::KAN 7172 1549 9077 c cdc13-1 ddc1::KAN 7172 1549 9077 c cdc13-1 ddc1::KAN 7172 1549 9079 c cdc13-1 ddc1::KAN 7172 1543 9077 c cdc13-1 ddc1::KAN 7173 1543 9079 c cdc13-1 ddc1::KAN 9079 c cdc13-1 ddc1					
9001					
9040 a cdc13-1 1108 876 9041 a cdc13-1 1108 876 9042 a cdc13-1 1108 1559 9045 a yku70::HEV2 6885 876 9047 a yku70::LEU2 6885 876 9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9056 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1472 9059 a cdc13-1 ddc1::KAN 7172 1476 9060 a cdc13-1 ddc1::KAN 7172 1476 9061 a cdc13-1 ddc1::KAN 7172 1476 9062 a cdc13-1 ddc1::KAN 7172 1476 9063 a cdc13-1 ddc1::KAN 7172 1546 9064 a cdc13-1 ddc1::KAN 7172 1547 9065 a cdc13-1 ddc1::KAN 7172 1548 9064 a cdc13-1 ddc1::KAN 7172 1548 9064 a cdc13-1 ddc1::KAN 7172 1548 9065 a cdc13-1 ddc1::KAN 7172 1548 9067 a cdc13-1 ddc1::KAN 7172 1548 9073 a WT W303 8460 1248 9073 a WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 a cdc13-1 ddc1::KAN 7172 1248 9124 a dna2::KAN 1412 x 3001 1568 9126 a dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 7173 1248 9130 a ddc1::KAN 7173 1543 9152 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1555 9218 a dna2::KAN 1108 x 3001 1556					
9041 a cdc13-1 1108 876 9042 a cdc13-1 1108 1559 9045 a yku70::HS3 1412 1559 9046 a yku70::HS3 1412 1559 9046 a yku70::LEU2 6885 876 9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9056 a cdc13-1 ddc1::KAN 7172 1479 9057 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1474 9050 a cdc13-1 ddc1::KAN 7172 1474 9060 a cdc13-1 ddc1::KAN 7172 1476 9061 a cdc13-1 ddc1::KAN 7172 1546 9062 a cdc13-1 ddc1::KAN 7172 1546 9063 a cdc13-1 ddc1::KAN 7172 1546 9064 a cdc13-1 ddc1::KAN 7172 1549 9071 a WT W303 8460 1248 9073 a WT W303 8460 1248 9073 a WT W303 3001 876 9079 a dna2::KAN 7172 1548 9085 a cdc13-1 ddc1::KAN 7172 1549 9085 a cdc13-1 ddc1::KAN 7172 1549 9086 a cdc13-1 ddc1::KAN 7172 1549 9087 a cdc13-1 ddc1::KAN 7172 1549 9088 a cdc13-1 ddc1::KAN 7172 1549 9089 a dna2::KAN 7172 1549 9088 a cdc13-1 ddc1::KAN 7172 1248 9124 a dna2::KAN 7172 1248 9126 a dna2::KAN 7172 1248 9127 a cdc13-1 ddc1::KAN 7172 1248 9128 a cdc13-1 ddc1::KAN 7173 1248 9130 a ddc1::KAN 7173 1543 9150 a cdc13-1 dpb11::KAN 7173 1543 9151 a cdc13-1 dpb11::KAN 7173 1543 9171 a cdc13-1 dpb11::KAN 7173 1543 9171 a cdc13-1 dpb11::KAN 1108 x3001 1550 9200 a cdc13-1 dpb11::KAN 1108 x3001 1550 9218 a dna2::KAN 1108 x3001 1556					
9042 a cdc13-1 1108 1559 9045 a yku70::HIS3 1412 1559 9046 a yku70::LEU2 6885 876 9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9056 a cdc13-1 ddc1::KAN 7172 1479 9057 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1472 9059 a cdc13-1 ddc1::KAN 7172 1474 9060 a cdc13-1 ddc1::KAN 7172 1474 9061 a cdc13-1 ddc1::KAN 7172 1476 9061 a cdc13-1 ddc1::KAN 7172 1476 9062 a cdc13-1 ddc1::KAN 7172 1546 9062 a cdc13-1 ddc1::KAN 7172 1546 9063 a cdc13-1 ddc1::KAN 7172 1547 9063 a cdc13-1 ddc1::KAN 7172 1548 9064 a cdc13-1 ddc1::KAN 7172 1548 9065 a cdc13-1 ddc1::KAN 7172 1549 9065 a cdc13-1 ddc1::KAN 7172 1549 9065 a cdc13-1 ddc1::KAN 7172 1549 9071 a WT W303 8460 1248 9073 a WT W303 3001 876 9079 a dna2::KAN 7172 1543 9087 a cdc13-1 ddc1::KAN 7172 1543 9087 a cdc13-1 ddc1::KAN 7172 1543 9087 a cdc13-1 ddc1::KAN 7172 1543 9088 a cdc13-1 ddc1::KAN 7172 1248 9124 a dna2::KAN 7172 1248 9124 a dna2::KAN 7172 1248 9126 a dna2::KAN 7173 1543 9130 a ddc1::KAN 7173 1248 9130 a ddc1::KAN 7173 1543 9152 a cdc13-1 dpb11::KAN 7173 1543 9151 a cdc13-1 dpb11::KAN 7173 1543 9152 a cdc13-1 dpb11::KAN 7173 1543 9171 a cdc13-1 dpb11::KAN 7173 1543 9171 a cdc13-1 dpb11::KAN 7173 1554 9208 a cdc13-1 dpb11::KAN 7173 1555 9208 a cdc13-1 dpb11::KAN 7108 3001 1556 9218 a dna2::KAN 1108 x 3001 1556					
9045 a yku70::HIS3 1412 1559 9046 a yku70::LEU2 6885 876 9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9050 a WT W303 1412 x 3001 1559 9057 α cdc13-1 ddc1::KAN 7172 1479 9057 α cdc13-1 ddc1::KAN 7172 1470 9058 α cdc13-1 ddc1::KAN 7172 1472 9059 α cdc13-1 ddc1::KAN 7172 1474 9060 α cdc13-1 ddc1::KAN 7172 1474 9061 α cdc13-1 ddc1::KAN 7172 1546 9062 α cdc13-1 ddc1::KAN 7172 1547 9063 α cdc13-1 ddc1::KAN 7172 1548 9064 α cdc13-1 ddc1::KAN 7172 1549 9065 α cdc13-1 ddc1::KAN 7172 1549 9071 a WT W303 3001 876 9073 α WT W303 3001 876					
9046 a yku70::LEU2 6885 876 9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9056 a cdc13-1 ddc1::KAN 7172 1479 9057 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1474 9059 a cdc13-1 ddc1::KAN 7172 1474 9060 a cdc13-1 ddc1::KAN 7172 1476 9061 a cdc13-1 ddc1::KAN 7172 1476 9062 a cdc13-1 ddc1::KAN 7172 1546 9062 a cdc13-1 ddc1::KAN 7172 1547 9063 a cdc13-1 ddc1::KAN 7172 1547 9064 a cdc13-1 ddc1::KAN 7172 1549 9065 a cdc13-1 ddc1::KAN 7172 1549 9065 a cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 a WT W303 3001 876 9079 a dna2::KAN 7172 1548 9085 a cdc13-1 ddc1::KAN 7172 1549 9085 a cdc13-1 ddc1::KAN 7172 1549 9085 a cdc13-1 ddc1::KAN 7172 1549 9079 a dna2::KAN 1412 x 3001 1568 9085 a cdc13-1 ddc1::KAN 7172 1549 9085 a cdc13-1 ddc1::KAN 7172 1549 9124 a dna2::KAN 1108 x 3001 1568 9126 a dna2::KAN 1108 1248 9129 a cdc13-1 ddc1::KAN 7172 1248 9129 a cdc13-1 ddc1::KAN 7172 1248 9120 a cdc13-1 ddc1::KAN 7172 1248 9121 a dna2::KAN 1108 x 3001 1550 9122 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9130 a ddc1::KAN 7173 1543 9152 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1555 9218 a dna2::KAN 1108 x 3001 1556					
9047 a yku70::LEU2 6885 876 9050 a WT W303 1412 x 3001 1559 9056 a cdc13-1 ddc1::KAN 7172 1479 9057 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1470 9059 a cdc13-1 ddc1::KAN 7172 1474 9060 a cdc13-1 ddc1::KAN 7172 1476 9061 a cdc13-1 ddc1::KAN 7172 1546 9062 a cdc13-1 ddc1::KAN 7172 1546 9063 a cdc13-1 ddc1::KAN 7172 1547 9064 a cdc13-1 ddc1::KAN 7172 1548 9065 a cdc13-1 ddc1::KAN 7172 1548 9071 a wT W303 8460 1248 9073 a WT W303 3001 876 9079 a dna2::KAN 7172 1543 9085 a cdc13-1 ddc1::KAN 7172 1543 9086 a cdc13-1 ddc1::KAN 7172 1549 9085 a cdc13-1 ddc1::KAN 7172 1568 9085 a cdc13-1 ddc1::KAN 7172 1543 9087 a cdc13-1 ddc1::KAN 7172 1543 9087 a cdc13-1 ddc1::KAN 7172 1544 9188 a cdc13-1 ddc1::KAN 7172 1248 9184 a dna2::KAN 7172 1248 9185 a cdc13-1 ddc1::KAN 7172 1248 9196 a dna2::KAN 7172 1248 9197 a dna2::KAN 7172 1248 9198 a cdc13-1 ddc1::KAN 7173 1248 9199 a cdc13-1 ddc1::KAN 7173 1248 9190 a dcc13-1 ddc1::KAN 7173 1248 9190 a cdc13-1 dpb11::KAN 7173 1248 9191 a cdc13-1 dpb11::KAN 7173 1248 9190 a cdc13-1 dpb11::KAN 7173 1248 9191 a cdc13-1 dpb11::KAN 7173 1248 9100 a cdc13-1 dpb11::KAN 7170 1108 x 3001 1554 9200 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9200 a cdc13-1 dpb11::KAN 1108 x 3001 1555 9201 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9202 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 a cdc13-1 dpb11::KAN 1108 x 3001 1555 9204 a cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1108 x 3001 1556					
9050 a WT W303 1412 x 3001 1559 9056 a cdc13-1 ddc1::KAN 7172 1479 9057 a cdc13-1 ddc1::KAN 7172 1470 9058 a cdc13-1 ddc1::KAN 7172 1472 9059 a cdc13-1 ddc1::KAN 7172 1476 9060 a cdc13-1 ddc1::KAN 7172 1476 9061 a cdc13-1 ddc1::KAN 7172 1476 9062 a cdc13-1 ddc1::KAN 7172 1546 9062 a cdc13-1 ddc1::KAN 7172 1547 9063 a cdc13-1 ddc1::KAN 7172 1548 9064 a cdc13-1 ddc1::KAN 7172 1549 9055 a cdc13-1 ddc1::KAN 7172 1549 9071 a WT W303 3001 876 9071 a WT W303 3001 876 9079 a dna2::KAN 7172 1548 9085 a cdc13-1 ddc1::KAN 7172 1548 9086 a cdc13-1 ddc1::KAN 7172 1549 9071 a WT W303 7172 1548 9085 a cdc13-1 ddc1::KAN 7172 1548 9086 a cdc13-1 ddc1::KAN 7172 1548 9087 a cdc13-1 ddc1::KAN 7172 1248 9088 a cdc13-1 ddc1::KAN 7172 1248 9124 a dna2::KAN 7172 1248 9124 a dna2::KAN 7172 1248 9129 a cdc13-1 ddc1::KAN 7173 1248 9130 a ddc1::KAN 7173 1543 9152 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9200 a cdc13-1 dpb11::KAN 1108 x 3001 1555 9200 a cdc13-1 dpb11::KAN 1108 x 3001 1556					
9056 α cdc13-1 ddc1::KAN 7172 1479 9057 α cdc13-1 ddc1::KAN 7172 1470 9058 α cdc13-1 ddc1::KAN 7172 1476 9059 α cdc13-1 ddc1::KAN 7172 1476 9060 α cdc13-1 ddc1::KAN 7172 1476 9061 α cdc13-1 ddc1::KAN 7172 1546 9062 α cdc13-1 ddc1::KAN 7172 1547 9063 α cdc13-1 ddc1::KAN 7172 1548 9064 α cdc13-1 ddc1::KAN 7172 1549 9065 α cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 α WT W303 3001 876 9079 a dna2::KAN 7172 1543 9085 α cdc13-1 ddc1::KAN 7172 1248 9080 α cdc13-1 ddc1::KAN 7172 1248 <td></td> <td></td> <td>•</td> <td></td> <td></td>			•		
9057 α cdc13-1 ddc1::KAN 7172 1470 9058 α cdc13-1 ddc1::KAN 7172 1472 9059 α cdc13-1 ddc1::KAN 7172 1474 9060 α cdc13-1 ddc1::KAN 7172 1476 9061 α cdc13-1 ddc1::KAN 7172 1546 9062 α cdc13-1 ddc1::KAN 7172 1547 9063 α cdc13-1 ddc1::KAN 7172 1549 9064 α cdc13-1 ddc1::KAN 7172 1559 9071 a WT W303 8460 1248 9073 α WT W303 3001 876 9079 a dna2::KAN 7172 1543 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9126 a dna2::KAN 1112 x3001					
9058 α cdc13-1 ddc1::KAN 7172 1472 9059 α cdc13-1 ddc1::KAN 7172 1474 9060 α cdc13-1 ddc1::KAN 7172 1476 9061 α cdc13-1 ddc1::KAN 7172 1546 9062 α cdc13-1 ddc1::KAN 7172 1547 9063 α cdc13-1 ddc1::KAN 7172 1548 9064 α cdc13-1 ddc1::KAN 7172 1549 9065 α cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 α WT W303 3001 286 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001					
9059				· · · -	
9060					
9061 a cdc13-1 ddc1::KAN 7172 1546 9062 a cdc13-1 ddc1::KAN 7172 1547 9063 a cdc13-1 ddc1::KAN 7172 1548 9064 a cdc13-1 ddc1::KAN 7172 1549 9065 a cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 a WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 a cdc13-1 ddc1::KAN 7172 1248 9087 a cdc13-1 ddc1::KAN 7172 1248 9088 a cdc13-1 ddc1::KAN 7172 1248 9124 a dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9129 a cdc13-1 1108 1248 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
9062 α cdc13-1 ddc1::KAN 7172 1547 9063 α cdc13-1 ddc1::KAN 7172 1548 9064 α cdc13-1 ddc1::KAN 7172 1549 9065 α cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 α WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248					
9063 α cdc13-1 ddc1::KAN 7172 1548 9064 α cdc13-1 ddc1::KAN 7172 1549 9065 α cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 α WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9129 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9131 a cdc13-1 dpb11::KAN 7173 154					
9064 α cdc13-1 ddc1::KAN 7172 1549 9065 α cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 α WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 7172 1248 9126 a dna2::KAN 1412 x 3001 1560 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9130 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 7173 1543 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 <td></td> <td></td> <td></td> <td></td> <td></td>					
9065 α cdc13-1 ddc1::KAN 7172 1550 9071 a WT W303 8460 1248 9073 α WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9130 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1554 <					
9071 a WT W303 8460 1248 9073 α WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9152 α cdc13-1 dpb11::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556					
9073 α WT W303 3001 876 9079 a dna2::KAN 1412 x 3001 1568 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9130 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9204 α cdc13-1 dpb11::KAN 1108 x 3001 1552 </td <td></td> <td>α</td> <td></td> <td></td> <td></td>		α			
9079 a dna2::KAN 1412 x 3001 1568 9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 110		а			
9085 α cdc13-1 ddc1::KAN 7172 1543 9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9214 α cdc13-1 dpb11::KAN <t< td=""><td></td><td>α</td><td></td><td></td><td></td></t<>		α			
9087 α cdc13-1 ddc1::KAN 7172 1248 9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN		а			
9088 α cdc13-1 ddc1::KAN 7172 1248 9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1553 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::K		α			
9124 α dna2::KAN 1412 x 3001 1560 9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1553 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a ddc13-1					
9126 a dna2::KAN 1412 x 3001 1544 9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		α			
9128 a cdc13-1 1108 1248 9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		α			
9129 a cdc13-1 1108 1248 9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1553 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		а			
9130 a ddc1::KAN 7173 1248 9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1553 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		а			
9136 a ddc1::KAN 7173 1543 9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1553 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		а			
9152 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1553 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		а			
9171 a cdc13-1 dpb11::KAN 1108 x 3001 1554 9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		а			
9173 α cdc13-1 dpb11::KAN 1108 x 3001 1554 9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		α	•		
9203 α cdc13-1 dpb11::KAN 1108 x 3001 1545 9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		а	·		
9206 α cdc13-1 dpb11::KAN 1108 x 3001 1552 9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		α	·		1554
9208 a cdc13-1 dpb11::KAN 1108 x 3001 1552 9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568	9203	α			
9210 α cdc13-1 dpb11::KAN 1108 x 3001 1553 9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		α	·		
9214 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		а	·		
9216 α cdc13-1 dpb11::KAN 1108 x 3001 1556 9218 a dna2::KAN 1412 x 3001 1568		α			
9218 a <i>dna2::KAN</i> 1412 x 3001 1568	9214	α	·		1556
		α	•		
0000		а			1568
9222 a yku70::HIS3 dna2::KAN 1412 x 3001 1569	9222	а	yku70::HIS3 dna2::KAN	1412 x 3001	1569

0004		1.0.1/41	4440 0004	4500
9224	α	dna2::KAN	1412 x 3001	1569
9246	а	stn1-13 rad9::HIS3		
9274	α	cdc13-1 dna2::KAN	1108 x 3001	1569
9275	а	cdc13-1 dna2::KAN	1108 x 3001	1569
9276	α	dna2::KAN	1108 x 3001	1569
9278	α	cdc13-1 dna2::KAN	1108 x 3001	1568
9317	а	cdc13-1 dna2::KAN	1108 x 3001	1567
9318	а	dna2::KAN	1108 x 3001	1570
9319	а	cdc13-1 dna2::KAN	1108 x 3001	1570
9320	α	cdc13-1 dna2::KAN	1108 x 3001	1570
9332	α	yku70::LEU2 dpb11::KAN ddc1::HPHNMX	8796	1556
9333	α	yku70::LEU2 dpb11::KAN ddc1::HPHNMX	8796	1556
9344	а	cdc13-1 ddc1::HPHNMX	9040	876
9348	а	cdc13-1 dpb11::KAN ddc1::HPHNMX	9216	1556
9349	а	cdc13-1 dpb11::KAN ddc1::HPHNMX	9216	1556
9469	а	cdc13-1 ddc1::HPH	9042	1559
9471	α	cdc13-1 dna2::KAN ddc1::HPH	8998 $ddc1\Delta$	1544
9472	α	cdc13-1 dna2::KAN ddc1::HPH	8998 $ddc1\Delta$	1544
9474	а	cdc13-1 ddc1::HPH	9043 $ddc1\Delta$	1559
9476	а	cdc13-1 dna2::KAN ddc1::HPH	9000 $ddc1\Delta$	1561
9477	а	cdc13-1 dna2::KAN ddc1::HPH	9000 $ddc1\Delta$	1561
9479	α	cdc13-1 dna2::KAN ddc1::HPH	9001 $ddc1\Delta$	1561
9480	α	cdc13-1 dna2::KAN ddc1::HPH	9001 $ddc1\Delta$	1561
9482	α	yku70::HIS3 dna2::KAN ddc1::HPH	8954 <i>ddc1</i> ∆	1561
9483	α	yku70::HIS3 dna2::KAN ddc1::HPH	8954 $ddc1\Delta$	1561
9486	а	yku70::HIS3 dna2::KAN ddc1::HPH	8955 <i>ddc1</i> ∆	1561
9489	а	ddc1::HPH	9050 $ddc1\Delta$	1559
9490	а	ddc1::HPH	9050 $ddc1\Delta$	1559
9491	α	yku70::HIS3 dna2::KAN ddc1::HPH	8953 <i>ddc1</i> ∆	1560
9492	α	yku70::HIS3 dna2::KAN ddc1::HPH	8953 $ddc1\Delta$	1560
9495	а	dna2::KAN ddc1::HPH	9126 <i>ddc1</i> ∆	1544
9496	а	dna2::KAN ddc1::HPH	9126 <i>ddc1</i> ∆	1544
9522	а	yku70::HIS3 ddc1::HPH	9044 <i>ddc1</i> ∆	1559
9523	а	yku70::HIS3 ddc1::HPH	9044 $ddc1\Delta$	1559
9593	а	rad9::HIS3	4647 x 7629 <i>irc5</i> ∆	
9619	α	cdc13-1	4647 x 7629 hcm1∆	
9620	α	cdc13-1 rad9::HIS3	4647 x 7629 hcm1∆	
9621	α	hcm1::HPH	4647 x 7629 hcm1∆	
9622	а	hcm1::HPH	4647 x 7629 hcm1∆	
9623	а	cdc13-1 hcm1::HPH	4647 x 7629 hcm1∆	
9624	а	cdc13-1 hcm1::HPH	4647 x 7629 hcm1∆	
9625	а	a cdc13-1 hcm1::HPH 4647 x 7629 hcm1\(\triangle \)		
9626	α	cdc13-1 hcm1::HPH	4647 x 7629 hcm1∆	
9627	а	rad9::HIS3	4647 x 7629 hcm1∆	
9628	α	cdc13-1 rad9::HIS3 hcm1::HPH	4647 x 7629 hcm1∆	
9629	а	cdc13-1 rad9::HIS3 hcm1::HPH	4647 x 7629 hcm1∆	

9630	а	cdc13-1 rad9::HIS3 hcm1::HPH	4647 x 7629 hcm1∆
9632	а	yku70::LEU2	4647 x 7629 <i>hcm</i> 1∆
9633	α	yku70::LEU2 rad9::HIS3	4647 x 7629 hcm1∆
9634	а	yku70::LEU2 hcm1::HPH	4647 x 7629 hcm1∆
9635	а	yku70::LEU2 hcm1::HPH	4647 x 7629 hcm1∆
9636	а	yku70::LEU2 hcm1::HPH	4647 x 7629 hcm1∆
9637	а	yku70::LEU2 hcm1::HPH	4647 x 7629 hcm1∆
9638	а	yku70::LEU2 rad9::HIS3 hcm1::HPH	4647 x 7629 hcm1∆
9639	α	yku70::LEU2 rad9::HIS3 hcm1::HPH	4647 x 7629 hcm1∆
9640	а	yku70::LEU2 rad9::HIS3 hcm1::HPH	4647 x 7629 hcm1∆
9728	α	cdc13-1 uls1::HPH	4647 x 7629 uls1∆
9729	а	cdc13-1 uls1::HPH	4647 x 7629 uls1∆
9730	α	cdc13-1 uls1::HPH	4647 x 7629 uls1∆
9731	α	cdc13-1 uls1::HPH	4647 x 7629 uls1∆
9732	а	cdc13-1 uls1::HPH	4647 x 7629 <i>uls</i> 1∆
9733	а	cdc13-1 uls1::HPH	4647 x 7629 uls1∆
9734	α	cdc13-1 rad9::HIS3 uls1::HPH	4647 x 7629 <i>uls1</i> ∆
9735	а	cdc13-1 rad9::HIS3 uls1::HPH	4647 x 7629 <i>uls1</i> ∆
9736	а	cdc13-1 rad9::HIS3 uls1::HPH	4647 x 7629 uls1∆
9738	α	uls1::HPH	4647 x 7629 <i>uls1</i> ∆
9740	α	uls1::HPH	4647 x 7629 uls1∆
9742	α	yku70::LEU2 uls1::HPH	4647 x 7629 uls1∆
9743	α	yku70::LEU2 uls1::HPH	4647 x 7629 <i>uls1</i> ∆
9744	α	yku70::LEU2 uls1::HPH	4647 x 7629 uls1∆
9745	а	yku70::LEU2 uls1::HPH	4647 x 7629 <i>uls1</i> ∆
9746	α	yku70::LEU2 uls1::HPH	4647 x 7629 uls1∆
9747	α	yku70::LEU2 uls1::HPH	4647 x 7629 uls1∆
9748	а	yku70::LEU2 uls1::HPH	4647 x 7629 uls1∆
9749	α	yku70::LEU2 rad9::HIS3 uls1::HPH	4647 x 7629 uls1∆
9750	α	yku70::LEU2 rad9::HIS3 uls1::HPH	4647 x 7629 uls1∆
9898	α	stn1-13	9246 x 9746 <i>uls1</i> ∆
9912	а	rad9::HIS3 stn1-13	9246 x 9746 <i>uls1</i> ∆
9913	α	rad9::HIS3 stn1-13	9246 x 9746 <i>uls1</i> ∆
9918	α	uls1::HPH stn1-13	9246 x 9746 <i>uls1</i> ∆
9919	а	uls1::HPH stn1-13	9246 x 9746 <i>uls1</i> ∆
9920	а	uls1::HPH stn1-13	9246 x 9746 <i>uls1</i> ∆
9921	а	uls1::HPH stn1-13	9246 x 9746 <i>uls1</i> ∆
9934	а	rad9::HIS3 uls1::HPH stn1-13	9246 x 9746 <i>uls1</i> ∆
9935	а	rad9::HIS3 uls1::HPH stn1-13	9246 x 9746 <i>uls1</i> ∆
9936	α	rad9::HIS3 uls1::HPH stn1-13	9246 x 9746 <i>uls1</i> ∆
10344	α	yku70::HIS3 mec3::TRP1	8663 x 8714
10348	а	yku70::HIS3 rad17::LEU2	8663 x 8714
10385	а	xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆
10386	α	xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆
10390	α	cdc13-1 rad9::HIS3 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆
10391	а	cdc13-1 rad9::HIS3 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆

10392	а	cdc13-1 rad9::HIS3 xbp1::HPH	4647 x 7629 <i>xbp</i> 1∆	
10393	α	yku70::LEU2 rad9::HIS3 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆	
10394	α	yku70::LEU2 rad9::HIS3 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆	
10395	α	yku70::LEU2 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆	
10396	а	yku70::LEU2 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆	
10397	а	cdc13-1 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆	
10398	а	cdc13-1 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆	
10399	а	rad9::HIS3 xbp1::HPH	4647 x 7629 <i>xbp1</i> ∆	
10400	а	yku70::LEU2 rad9::HIS3	4647 x 7629 <i>xbp1</i> ∆	
10401	а	yku70::LEU2 rad9::HIS3	4647 x 7629 <i>xbp1</i> ∆	
10402	α	cdc13-1 rad9::HIS3	4647 x 7629 <i>xbp1</i> ∆	
10403	а	cdc13-1 rad9::HIS3	4647 x 7629 $xbp1\Delta$	
10475	α	mec3::TRP1	7110 x 8714	
10478	α	rad17::LEU2	7110 x 8714	
10516	а	yku70::LEU2 chk1::HIS3	1215 x 7198	
10536	α	chk1::HIS3	1215 x 7198	
10537	а	chk1::HIS3	1215 x 7198	
10538	а	ddc1::KAN	1215 x 7198	
10553	α	pif1::NAT yku70::HIS3 dna2::KAN	4872 x 9483	1561
10554	а	pif1::NAT yku70::HIS3 dna2::KAN	4872 x 9483	1561
10557	а	pif1::NAT yku70::HIS3 dna2::KAN	9495 x 5509	1544
10558	α	pif1::NAT yku70::HIS3 dna2::KAN	9495 x 5509	1544
10559	α	pif1::NAT yku70::HIS3 dna2::KAN	4872 x 9483	
10560	а	pif1::NAT yku70::HIS3 dna2::KAN	4872 x 9483	
10594	а	pif1::NAT dna2::KAN	4872 x 9483	1561
10595	а	pif1::NAT dna2::KAN	4872 x 9483	1561
10596	α	pif1::NAT dna2::KAN	9495 x 5509	1544
10597	α	pif1::NAT dna2::KAN	9495 x 5509	1544
10598	α	pif1::NAT dna2::KAN	4872 x 9483	
10599	а	pif1::NAT dna2::KAN	4872 x 9483	
10602	а	yku70::HIS3 dna2::KAN	4872 x 9483	1561
10603	α	yku70::HIS3 dna2::KAN	4872 x 9483	1561
10604	α	yku70::HIS3 dna2::KAN	9495 x 5509	1544
10605	α	yku70::HIS3 dna2::KAN	9495 x 5509	1544
10616	а	ddc1::HPH dna2::KANMX	4872 x 9483	
10617	а	ddc1::HPH dna2::KANMX	4872 x 9483	
10618	а	ddc1::HPH dna2::KANMX	4872 x 9483	
10624	α	pif1::NAT	4872 x 9483	
10630	α	dna2::KAN	4872 x 9483	1561
10631	а	dna2::KAN	4872 x 9483	1561
10634	а	dna2::KAN	9495 x 5509	1544
10635	α	dna2::KAN	9495 x 5509	1544
10818	а	rad9::HIS3	10539 x 9593	
10819	α	ddc1::KAN rad9::HIS3	10539 x 9593	
10820	а	ddc1::KAN rad9::HIS3	10539 x 9593	
10876	а	rad50::URA3		

10877	а	rad50::URA3			
10963	а	dna2::KAN ddc1::HPH rad9::HIS3	10615 x 9593		
10964	α	dna2::KAN ddc1::HPH rad9::HIS3	10615 x 9593		
10965	а	dna2::KAN ddc1::HPH rad9::HIS3	10615 x 9593		
10967	α	dna2::KAN rad9::HIS3 10635 x 959			
10968	а	dna2::KAN rad9::HIS3	10635 x 9593		
10969	α	dna2::KAN rad9::HIS3	10635 x 9593		
10971	α	dna2::KAN ddc1::HIS3	10635 x 8530		
10972	α	dna2::KAN ddc1::HIS3	10635 x 8530		
10974	а	dna2::KAN ddc1::HIS3	10635 x 8530		
10975	а	dna2::KAN chk1::HIS3	10635 x 10537		
10976	а	dna2::KAN chk1::HIS3	10635 x 10537		
10977	а	dna2::KAN chk1::HIS3	10635 x 10537		
10978	α	dna2::KAN chk1::HIS3	10635 x 10537		
10979	α	dna2::KAN rad9::LEU2	10635 x 7177		
10980	α	dna2::KAN rad9::LEU2	10635 x 7177		
10981	а	dna2::KAN rad9::LEU2	10635 x 7177		
10982	а	dna2::KAN rad9::LEU2	10635 x 7177		
11026	а	mec1::HIS3 sml1::KAN	1326 x 9788		
11032	а	mec1::HIS3 sml1::KAN dna2::NAT	1326 x 9788		
11033	α	mec1::HIS3 sml1::KAN dna2::NAT	1326 x 9788		
11034	а	mec1::HIS3 sml1::KAN dna2::NAT	1326 x 9788	38	
11035	а	mec1::HIS3 sml1::KAN dna2::NAT	1326 x 9788		
11054	а	cdc13-1-int dna2-W128A, Y130A-int	1108 colony 6R		
11055	α	dna2-W128A,Y130A-int	3001 colony 5G-2		
11056	α	dna2-W128A, Y130A-int	3001 colony 5G-5		
11115	α	pol32::KAN dna2::NAT	5703 x 9789		
11116	а	pol32::KAN dna2::NAT	5703 x 9789	x 9789	
11117	α	pol32::KAN dna2::NAT	5703 x 9789		
11190	а	dna2::NAT	9788	1758	
11195	α	dna2::KAN rad9::HIS3	10967 passage 5		
11196	а	dna2::KAN rad9::HIS3	10968 passage 5		
11197	а	dna2::KAN chk1::HIS3	10975 passage 5		
11199	α	dna2::KAN rad17::LEU2	10979 passage 5		
11200	α	dna2::KAN rad17::LEU2	10980 passage 5		
11201	α	dna2::KAN ddc1::HIS3	10973 passage 5		
11202	а	dna2::KAN ddc1::HIS3	10974 passage 5		
11205	а	dna2::NAT mec1::HIS3 sml1::KAN	11032 passage 5		
11206	α	dna2::NAT mec1::HIS3 sml1::KAN	11033 passage 5		
11207	а	dna2::KAN chk1::HIS3	10976 passage 5		
11274	α	dna2::NAT	DDY1070 RSA	1758	
11383	а	cdc15-2	DDY1096 RSA	1758	
11384	α	cdc15-2 dna2::NAT	DDY1096 RSA	1758	
11385	а	cdc15-2 dna2::NAT	DDY1096 RSA	1758	
11386	α	cdc15-2 dna2::NAT	DDY1096 RSA	1758	
11388	а	top3::HPH dna2::NAT	DDY1098 RSA	1758	

11389	α	top3::HPH dna2::NAT	DDY1098 RSA	1758
11390	α	top3::HPH dna2::NAT	DDY1098 RSA	1758
11392	α	top3::HPH	DDY1098 RSA	1758
11393	α	exo1::LEU2	DDY1100 RSA	1758
11394	α	exo1::LEU2 dna2::NAT	DDY1100 RSA	1758
11395	а	exo1::LEU2 dna2::NAT	DDY1100 RSA	1758
11396	α	exo1::LEU2 dna2::NAT	DDY1100 RSA	1758
11407	α	rad17::LEU2 dna2::NAT	DDY1103 RSA	1758
11408	а	rad17::LEU2 dna2::NAT	DDY1103 RSA	1758
11409	α	rad17::LEU2 dna2::NAT	DDY1103 RSA	1758
11411	а	rad17::LEU2	DDY1103 RSA	1758
11413	α	xrs2::LEU2 dna2::NAT	DDY1107 RSA	1758
11414	а	xrs2::LEU2 dna2::NAT	DDY1107 RSA	1758
11415	а	xrs2::LEU2 dna2::NAT	DDY1107 RSA	1758
11417	а	xrs2::LEU2	DDY1107 RSA	1758
11419	α	rad51::KAN	DDY1111 RSA	1758
11421	а	rad51::KAN dna2::NAT	DDY1111 RSA	1758
11422	а	rad51::KAN dna2::NAT	DDY1111 RSA	1758
11423	а	rad51::KAN dna2::NAT	DDY1111 RSA	1758
11425	α	rad24::TRP1	DDY1115 RSA	1758
11427	α	rad24::TRP1 dna2::NAT	DDY1115 RSA	1758
11428	а	rad24::TRP1 dna2::NAT	DDY1115 RSA	1758
11429	а	rad24::TRP1 dna2::NAT	DDY1115 RSA	1758
11431	α	chk1::HIS3	DDY1119 RSA	1758
11434	а	chk1::HIS3 dna2::NAT	DDY1119 RSA	1758
11435	α	chk1::HIS3 dna2::NAT	DDY1119 RSA	1758
11436	α	chk1::HIS3 dna2::NAT	DDY1119 RSA	1758
11441	α	mph1::KAN	DDY1123 RSA	1758
11443	а	mec1::HIS3 sml1::KAN	DDY1127 RSA	1758
11447	а	mec1::HIS3 sml1::KAN dna2::NAT	DDY1127 RSA	1758
11448	α	mec1::HIS3 sml1::KAN dna2::NAT	DDY1127 RSA	1758
11449	а	mec1::HIS3 sml1::KAN dna2::NAT	DDY1127 RSA	1758
11451	а	sgs1::KAN dna2::NAT	DDY1129 RSA	1758
11452	α	sgs1::KAN dna2::NAT	DDY1129 RSA	1758
11453	а	sgs1::KAN dna2::NAT	DDY1129 RSA	1758
11455	α	sgs1::KAN	DDY1129 RSA	1758
11463	α	pol32::KAN	DDY1135 RSA	1758
11465	а	pol32::KAN dna2::NAT	DDY1135 RSA	1758
11466	а	pol32::KAN dna2::NAT	DDY1135 RSA	1758
11467	а	pol32::KAN dna2::NAT	DDY1135 RSA	1758
11469	α	ddc1::HIS3	DDY1139 RSA	1758
11471	а	ddc1::HIS3	DDY1139 RSA	1758
11472	α	ddc1::HIS3 dna2::NAT	DDY1139 RSA	1758
11473	а	ddc1::HIS3 dna2::NAT	DDY1139 RSA	1758
11475	α	rad9::HIS3 dna2::NAT	DDY1141 RSA	1758
11476	α	rad9::HIS3 dna2::NAT	DDY1141 RSA	1758

11477	α	rad9::HIS3 dna2::NAT	DDY1141 RSA	1758
11479	α	rad9::HIS3	DDY1141 RSA	1758
11481	а	mph1::KAN dna2::NAT	DDY1143 RSA	1758
11482	α	mph1::KAN dna2::NAT	DDY1143 RSA	1758
11485	α	mph1::KAN dna2::NAT	DDY1143 RSA	1758
11506	а	bub2::HPH dna2::NAT	DDY1147 RSA	1758
11507	α	bub2::HPH dna2::NAT	DDY1147 RSA	1758
11508	а	bub2::HPH	DDY1147 RSA	1758
11510	а	bub3::HPH dna2::NAT	DDY1149 RSA	1758
11511	а	bub3::HPH dna2::NAT	DDY1149 RSA	1758
11512	а	bub3::HPH	DDY1149 RSA	1758
11514	α	ctf3::HPH dna2::NAT	DDY1151 RSA	1758
11515	а	ctf3::HPH dna2::NAT	DDY1151 RSA	1758
11516	α	ctf3::HPH	DDY1151 RSA	1758
11518	α	dgr2::HPH dna2::NAT	DDY1154 RSA	1758
11519	а	dgr2::HPH dna2::NAT	DDY1154 RSA	1758
11520	а	dgr2::HPH	DDY1154 RSA	1758
11522	α	Ism1::HPH dna2::NAT	DDY1156 RSA	1758
11523	а	Ism1::HPH dna2::NAT	DDY1156 RSA	1758
11524	α	Ism1::HPH	DDY1156 RSA	1758
11526	а	rps4a::HPH dna2::NAT	DDY1158 RSA	1758
11527	α	rps4a::HPH dna2::NAT	DDY1158 RSA	1758
11528	α	rps4a::HPH	DDY1158 RSA	1758
11530	а	rtt109::HPH dna2::NAT	DDY1160 RSA	1758
11531	α	rtt109::HPH dna2::NAT	DDY1160 RSA	1758
11532	а	rtt109::HPH	DDY1160 RSA	1758
11534	α	dna2::NAT <u>CAN1</u>	DDY1175 RSA	1758
11535	α	dna2::NAT <u>CAN1</u>	DDY1175 RSA	1758
11958	α	W303 WT	DDY1107 RSA	1758
DDY606		cdc13-1/CDC13 dbp11::KAN/DPB11	1108/pDL1467 x 3001	
DDY607		cdc13-1/CDC13 dna2::KAN/DNA2	1108/pDL1467 x 3001	
DDY609		yku70::HIS3/YKU70 dna2::KAN/DNA2	1412 x 3001/pDL1467	
DDY611		yku70::LEU2/YKU70 dpb11::KAN/DPB11	6885 x 3001/pDL1467	
DDY650		cdc13-1/CDC13 rad9::HIS3/RAD9	4647 x 7529	
		yku70::LEU2/YKU70		
DDY696		cdc13::HPH/CDC13 dna2::KAN/DNA2	1108 x 3001 <i>ddc1</i> ∆	1561
		ddc1::NAT/DDC1	cdc13∆	
DDY698		cdc13-1/CDC13 dna2::KAN/DNA2	1108 x 3001 <i>ddc1</i> ∆	1544
		ddc1::NAT/DDC1		
DDY700		cdc13-1/CDC13 dna2::KAN/DNA2	1108 x 3001 <i>ddc1</i> Δ	1561
		ddc1::NAT/DDC1		
DDY723		cdc13::HPH/CDC13 dna2::KAN/DNA2	1108 x 3001 <i>ddc1</i> Δ	1544
_ · · _ ·		ddc1::NAT/DDC1	cdc13∆	
DDY725		cdc13::HPH/CDC13 dna2::KAN/DNA2	1108 x 3001 <i>ddc1</i> Δ	1559
201120		ddc1::NAT/DDC1	cdc13∆	.500
DDY874		dna2::KAN/DNA2 rad9::HIS3/RAD9	10615 x 9593	
		and and an arrangement of the second	10010 / 3030	

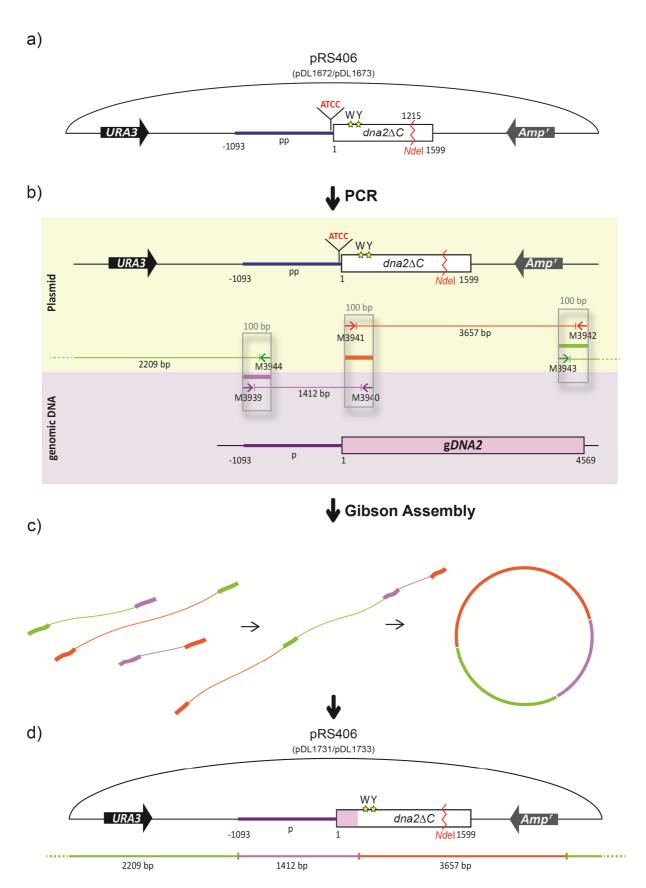
DDY876	dna2::KAN/DNA2 ddc1::HIS3/DDC1	10635 x 8530	
DDY878	dna2::KAN/DNA2 chk1::HIS3/CHK1	10635 x 10537	
DDY880	dna2::KAN/DNA2 rad17::LEU2/RAD17	10635 x 7177	
DDY947	rad53::HIS3/RAD53 sml1::URA3/SML1	6662 x 10635	
	dna2::KAN/DNA2		
DDY949	exo1::LEU2/EXO1 dna2::KAN/DNA2	5927 x 10635	
DDY950	tel1::NAT/TEL1 dna2::KAN/DNA2	6340 x 10635	
DDY953	mre11::URA3/MRE11 dna2::NAT/DNA2	4457 x 9788	
DDY956	pol32::KAN/POL32 dna2::NAT/DNA2	5703 x 9789	
DDY958	mec1::HIS3/MEC1 sml1::KAN/SML1	1326 x 9788	
	dna2::NAT/DNA2		
DDY966	dna2::KAN/DNA2 rif1::NAT/RIF1 rif2::HIS3/RIF2	10635 x 10954	
DDY988	rif1::NAT/RIF1 dna2::KAN/DNA2	10310 x 10635	
DDY989	rif2::HIS3/RIF2 dna2::NAT/DNA2	8931 x 9788	
DDY1042	dna2::KAN/DNA2 rad9::HIS3/rad9::HIS3	10967 x 9593	
DDY1070	pol32::KAN/POL32 dna2::NAT/DNA2	5704 x 11190	1758
DDY1082	mph1::KAN/MPH1 dna2::NAT/DNA2	4282 x 9789	1758
DDY1096	cdc15-2/CDC15 dna2::NAT/DNA2	10733 x 11274	1758
DDY1098	top3::HPH dna2::NAT	6118 x 11274	1758
DDY1100	exo1::LEU2/EXO1 dna2::KAN/DNA2	5939 x 11274	1758
DDY1103	rad17::LEU2 dna2::NAT	10478 x 11190	1758
DDY1107	xrs2::LEU2/XRS2 dna2::NAT/DNA2	1093 x 11274	1758
DDY1111	rad51::KAN/RAD51 dna2::NAT/DNA2	3485 x 11274	1758
DDY1115	rad24::TRP1/RAD24 dna2::NAT/DNA2	10534 x 11190	1758
DDY1119	chk1::HIS3/CHK1 dna2::NAT/DNA2	10536 x 11190	1758
DDY1123	mph1::KAN/MPH1 dna2::NAT/DNA2	4282 x 11274	1758
DDY1127	mec1::HIS3/MEC1 sml1::KAN/SML1	1326 x 11190	1758
	dna2::NAT/DNA2		
DDY1129	sgs1::KAN/SGS1 dna2::NAT/DNA2	4721 x 11274	1758
DDY1135	pol32::KAN/POL32 dna2::NAT/DNA2	5704 x 11190	1758
DDY1139	ddc1::HIS3/DDC1 dna2::NAT/DNA2	8530 x 11274	1758
DDY1141	rad9::HIS3/RAD9 dna2::NAT/DNA2	9594 x 11190	1758
DDY1143	mph1::KAN/MPH1 dna2::NAT/DNA2	11274 x 11275	1758
DDY1147	bub2::HPH/BUB2 dna2::NAT/DNA2	11305 x 11190	1758
DDY1149	bub3::HPH/BUB3 dna2::NAT/DNA2	11307 x 11190	1758
DDY1151	ctf3::HPH/CTF3 dna2::NAT/DNA2	11309 x 11190	1758
DDY1154	dgr2::HPH/DGR2 dna2::NAT/DNA2	11312 x 11190	1758
DDY1156	lsm1::HPH/LSM1 dna2::NAT/DNA2	11314 x 11190	1758
DDY1158	rps4a::HPH/RPS4A dna2::NAT/DNA2	11316 x 11190	1758
DDY1160	rtt109::HPH/RTT109	11318 x 11190	1758
DDY1175	dna2::NAT/DNA2 can1-100/CAN1	5626 x 11274	1758

Appendix B: Plasmids

Plasmids ordered by plasmid number (pDL).

*ddc1-M3: S413A, S436A, T444A; **ddc1-M8: T342A, S469A, S471A, S495A, T529A, S532A, S580A, T602A; *** ddc1-M11: T342A, S413A, S436A, S444A, S469A, S471A, S495A, T529A, S532A, S580A, T602A.

pDL	Construction	Related Figure/Notes	Reference
452	pRS406-delNdel	Backbone for cloning	Lab collection
876	pRS413-HIS3	Vector control	Lab collection
987	pYTel based on pBluescriptII SK2	For detecing Y' and telomere repeat	Tsubouchi and
		sequences at telomers	Ogawa (2000)
1042	pFA6a- <i>KANMX6</i>	For gene deletions	Longtine et al. (1998)
1239	pFA6a- <i>KANMX6</i>	For gene deletions	Longtine et al. (1998)
1248	pRS315- <i>LEU</i> 2	Vector control	Lab collection
1467	pRS316-CAN1-URA3	Backbone for cloning	Lab collection
1469	YCplac111-LEU2-DDC1	Figure 14, Figure 15	M. Muzi-Falconi
1470	YCplac111- <i>LEU2-ddc1-M</i> 3*	Figure 14, Figure 15	M. Muzi-Falconi
1472	YCplac111-LEU2-ddc1-M8**	Figure 14, Figure 15	M. Muzi-Falconi
1474	YCplac111-LEU2-ddc1-M11***	Figure 14, Figure 15	M. Muzi-Falconi
1476	YCplac111-LEU2-ddc1-T602S	Figure 14, Figure 15	M. Muzi-Falconi
1479	YCplac111-LEU2-ddc1-T602A	Figure 14, Figure 15	M. Muzi-Falconi
1543	pRS315-LEU2-DDC1	Figure 14, Figure 15	P. Burgers
1544	pRS314- <i>TRP1-DNA2</i>	Figure 23, Figure 30	P. Burgers
1545	pRS313- <i>HIS3-DPB11</i>	Figure 20, Figure 21	P. Burgers
1546	pRS315- <i>LEU2-ddc1-W352A</i>	Figure 14, Figure 15	P. Burgers
1547	pRS315- <i>LEU2-ddc1-W352A</i> , <i>W544A</i>	Figure 14, Figure 15	P. Burgers
1548	pRS315-LEU2-ddc1-	Figure 14, Figure 15	P. Burgers
	W352A,W544A,T602A		
1549	pRS315- <i>LEU2-ddc1-(1-404),W352A</i>	Figure 14, Figure 15	P. Burgers
1550	pRS315- <i>LEU2-ddc1-T602A</i>	Figure 14, Figure 15	P. Burgers
1552	pRS313- <i>HIS3-dpb11-601</i>	Figure 20, Figure 21	P. Burgers
1553	pRS313- <i>HIS3-dpb11-W700A</i>	Figure 20, Figure 21	P. Burgers
1554	pRS313- <i>HIS3-dpb11-Y735A</i>	Figure 20, Figure 21	P. Burgers
1555	pRS313- <i>HIS3-dpb11-W700A</i> , <i>Y735A</i>	Figure 20, Figure 21	P. Burgers
1556	pRS313- <i>HIS3-dpb11-</i>	Figure 20, Figure 21	P. Burgers
	W700A,T731A,Y735A		
1557	pRS314- <i>TRP1-dna2</i> ∆ <i>500N</i>	N/A	Y. S. Seo
1558	pRS314- <i>TRP1-dna2∆450N</i>	N/A	Y. S. Seo
1559	pRS314- <i>TRP1</i>	Figure 23, Figure 30	Y. S. Seo

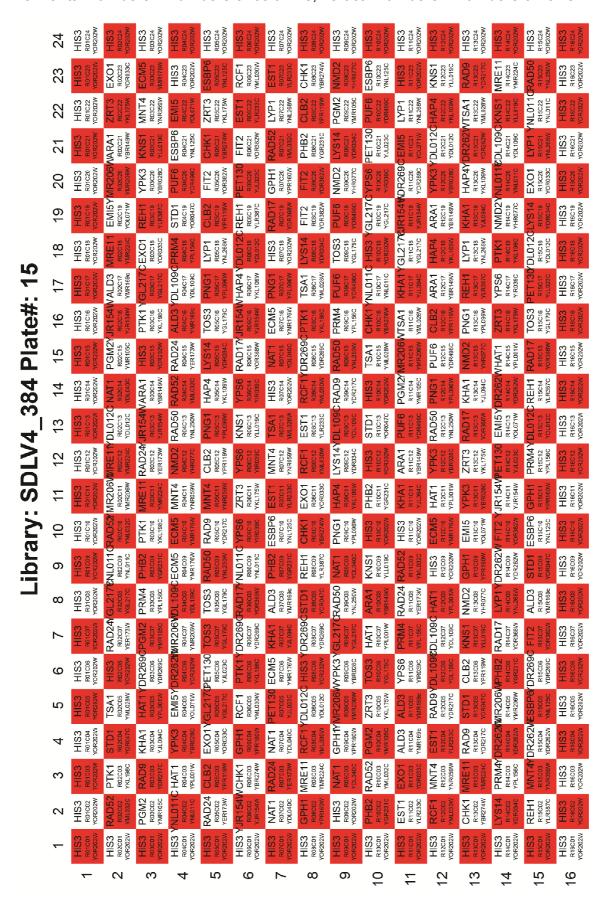

1560	pRS314-TRP1-DNA2	Figure 23, Figure 30	Y. S. Seo
1561	pRS314- <i>TRP1-dna2-W128A</i> , <i>W130A</i>	Figure 23, Figure 30	P. Burgers
1566	pRS314- <i>TRP1</i>	Figure 23, Figure 30	J. Campbell
1567	pRS314-TRP1-DNA2	Figure 23, Figure 30	J. Campbell
1568	pRS314- <i>TRP1-dna2-C519A</i>	Figure 23, Figure 30	J. Campbell
1569	pRS314- <i>TRP1-dna2-C768A</i>	Figure 23, Figure 30	J. Campbell
1570	pRS314- <i>TRP1-dna2-C771A</i>	Figure 23	J. Campbell
1571	pRS314- <i>TRP1-dna2-C777A</i>	N/A	J. Campbell
1575	pFA6a-KANMX6	For gene deletions	Longtine et al. (1998)
1583	pFA6a-HPHNT1	For gene deletions	Yeast (2004) 21, 947- 962
1599	pAG25-NATMX4	For gene deletions	Goldstein and
			McCusker, 1999
1654	pRS406-URA3del <i>Nde</i> l-DNA2	Cloning; pDL452 cut with Spel-Xhol	This work
		and ligated with DNA2 (cut with the	
		same enzymes) from pDL1544	
1655	pRS406-URA3del <i>Ndel-dna2-</i>	Cloning; pDL452 cut with Spel-Xhol	This work
	W128A,Y130A	and ligated with dna2-W128A, Y130A	
		(cut with the same enzymes) from	
		pDL1561	
1672	pRS406-URA3del <i>Nd</i> el- <i>DNA2</i> ∆C	Cloning; from pDL1654 C-terminal	This work
		part of <i>DNA2</i> cut out with <i>Sca</i> ll and	
		religated	
1673	pRS406-URA3del <i>Ndel-dna2-</i>	Cloning; from pDL1655 C-terminal	This work
	<i>W128A,Y130A</i> ∆ <i>C</i>	part of <i>dna2-W128A,Y130A</i> cut out	
		with Scall and religated	
1727	pRS316-CAN1-URA3	Re-amplification of pDL1467	
1731	pRS406-URA3del <i>Nde</i> l- <i>DNA2</i> ∆C-	Gibson Assembly; 2 PCR fragments	This work
	Gibson Assemby	from pDL1672 and <i>DNA2</i> promoter	
		region from genomic DNA assembled	
1732	pRS406-URA3delNdel-dna2-	Gibson Assembly; 2 PCR fragments	This work
	W128A, Y130A∆C-Gibson Assemby-	from pDL1673 and <i>DNA2</i> promoter	
4700	point mutation	region from genomic DNA assembled	- 1.
1733	pRS406-URA3delNdel-dna2-	Point mutation from pDL1732	This work
4750	W128A, Y130A∆C-Gibson Assemby	removed by QuickChange method	This words
1758	pRS316-CAN1-URA3-DNA2	Cloning; pDL1727 cut with <i>Xmal</i> and	This work
		ligated with <i>DNA2</i> from pDL1544	

Appendix C: Primers

Ordered by oligonucleotide number (M).

	No. (M)	Oligonucleotide Sequence	Target/Notes	Related Figure
-	550	ATTGGCACGATGATGATTCC	CDC13, to check the presence of cdc13-1 mutation	Figure 21
	551	TTCGATCAGGCTTTTCCAGT	CDC13, to check the presence of cdc13-1 mutation	Figure 21
	1970	ATCGTTCGGACAGAAAATGG	DNA2, used to confirm gene deletion	Figure 33
	2947	AAGAACAAGAGGTCTGCGAG	DNA2, used to confirm gene deletion	Figure 33
	2958	TGCTTGATGGTCGGAAGAGG	KANMX, used to confirm gene deletion	Figure 33
	3157	CCCACCACACACCCACACCC	Conjugated probe for in gel hybridisation that binds to ssDNA-TG repeats	Figure 14
	3275	GACCGGGCACATTTAATCAG	BUD6, used for genomic qPCR	Figure 24
	3276	TCAGCCTTGTCAATAGCTTCG	BUD6, used for genomic qPCR	Figure 24
	3603	TACCCAAGGATGTCGAACG	DNA2, used for amplification	Figure 33
	3772	AAAGTGGAGCCCAGGAAAGT	DNA2 used for genomic qPCR	Figure 24
	3773	TTGCCTGTTTTGGCTTGATT	DNA2 used for genomic qPCR	Figure 24
	3778	AGGTGGCGGCCTTTATTTAT	PRP8, used for genomic qPCR	Figure 24
	3779	GATCCTACGTGGCCTAATTGA	PRP8, used for genomic qPCR	Figure 24
	3780	ATTTGGTACTGTTGGGCTGTG	SOL3, used for genomic qPCR	Figure 24
	3781	GCAACTCTTTTGGTTGTTTCG	SOL3, used for genomic qPCR	Figure 24
	3939	TCAATTAGGCCACGTAGGATCC GTTCAGATAAGCAACATC	<i>DNA2</i> , used to amplify genomic <i>DNA2</i> for Gibson Assembly	Appendix D
	3940	AATTAGACATTTCCCGTTTCGGT TTAACTTGTGAATTTGG	<i>DNA2</i> , used to amplify genomic <i>DNA2</i> for Gibson Assembly	Appendix D
	3941	CGAAATACATCAAGAACAAAAGA TATAAACAAAGCAGTTA	pDL1672-1673, used to amplify plasmid region for Gibson Assembly	Appendix D
	3942	GACGAAAGGGCCTCGTGATACG CCTATTTTTATAGGTTAA	pDL1672-1673, used to amplify plasmid region for Gibson Assembly	Appendix D
	3943	CCGCGCACATTTCCCCGAAAAG TGCCACCTGACGTCTAAG	pDL1672-1673, used to amplify plasmid region for Gibson Assembly	Appendix D
	3944	GGTATGGATCCAACCGAGTAGT	pDL1672-1673, used to amplify plasmid region	Appendix D
	0505	TCAAGGCCTTCAGTATCC	for Gibson Assembly	F: 05
	3595	GTGTCCTAAAGTCAATAGCCGTT TCACAAGTACG	DNA2, used to revert point mutation by QuickChange	Figure 25
	3960	CGTACTTGTGAAACGGCTATTG	DNA2, used to revert point mutation by	Figure 25
		ACTTTAGGACAC	QuickChange	.3 0 _0

Appendix D. Gibson Assembly



Gibson Assembly method

- a) Plasmids pDL1672/pDL1673 contained additional, unwanted 4 bp (ATCC) upstream ATG codon.
- b) Three DNA sequences were amplified by PCR: two fragments were from plasmids pDL1672/pDL1673 and primers were: M3941 M3942 and M3943 M3944. One fragment was a promoter region of *DNA2* gene from genomic DNA of WT strain (DLY3001), primers were: M3939 M3940. Grey boxes and thick coloured lines (purple, orange and green) indicate 100 bp-long overlapping sequences of PCR products. *URA3* marker gene allowing selection on -URA media; *Amp*^r bacterial selective marker from the plasmid; *Ndel* unique site for *Ndel* restriction enzyme. The *Ndel* site of *URA3* gene from pRS406 was previously destroyed in pDL452 plasmid. pDL452 served as a backbone; stars point mutations (affected amino acids are tryptophan W128 and tyrosine Y130); *pp* promoter sequence from the plasmid; *p* promoter sequence amplified from genomic DNA.
- c) Three PCR products were assembled in a One-step isothermal assembly reaction. DNA fragments share 100 bp terminal sequence overlaps which allow for recognition of complementary sequences. PCR products are incubated for 1 h at 50°C in the assembly mix, which consists of T5 exonuclease (removes nucleotides from the 5' ends of double stranded DNA molecules), Phusion DNA polymerase (fills the gaps) and Taq DNA ligase (seals the nicks).
- d) Newly assembled plasmids do not contain additional 4 bp upstream ATG codon of *DNA2* gene.

Appendix E. Template of plate 15

Horizontal numbers – numbers of columns; vertical numbers – numbers of rows.

Appendix F. 702 genes from S288C SGA

R package version: 0.0-39 Summary type: mean Test type: t-test

x-axis treatment: 20°C

x-axis medium: SDM_rhlk_TGNH x-axis screen ID: SGA0188 x-axis screen name: dna2_PI_PI x-axis libraries: SDLV4 1536

x-axis client: MMA x-axis user: AAB x-axis date: 2016/01/06

x-axis PI: DAL

x-axis condition: SDM_rhlk_TGNH x-axis inoculation type: PIN x-axis fitness definition: Trimmed

y-axis treatment: 20°C

y-axis medium: SDM_rhlk_CTGNH

y-axis screen ID: SGA0189 y-axis screen name: dna2_PI_PI y-axis libraries: SDLV4_1536

y-axis client: MMA y-axis user: AAB y-axis date: 2016/02/06

y-axis PI: DAL

y-axis condition: SDM_rhlk_CTGNH y-axis inoculation type: PIN y-axis fitness definition: Trimmed

Light grey cells – genes identified in S288C SGA as "enhancers" of $dna2\Delta$. Dark grey cells – genes identified in S288C SGA as "suppressors" of $dna2\Delta$. Out of app. 5000 genes, 702 had q \leq 0.05 (False Discovery Rate (FDR) corrected p-value). These genes were ordered by GIS value and are presented in a table below (572 "enhancers" and 130 "suppressors" of $dna2\Delta$ lethality):

						Query	
No.	ORF	Gene	P	Q	GIS	Count	Type
1	YML102W	CAC2	0,0005	0,0105	-56141,5	4	Е
2	YMR034C	YMR034C	0,0010	0,0159	-55344,2	4	Е
3	YDR398W	UTP5	0,0001	0,0039	-49154	4	E
4	YOL102C	TPT1	0,0010	0,0162	-48853,9	4	Е
5	YMR027W	YMR027W	0,0032	0,0316	-47690,7	4	Е
6	YOR353C	SOG2	0,0025	0,0274	-45724,6	4	E
7	YGL243W	TAD1	0,0066	0,0489	-44766,4	4	Е
8	YOR139C	YOR139C	0,0001	0,0047	-42361,1	4	E
9	YOR140W	SFL1	0,0029	0,0301	-41251,1	4	Е
10	YNL021W	HDA1	0,0022	0,0255	-41191,4	4	Е
11	YNL099C	OCA1	0,0000	0,0013	-38535,6	4	Е
12	YNR006W	VPS27	0,000	0,0010	-37864,2	4	Е
13	YLR446W	YLR446W	0,0011	0,0169	-37286,5	4	E

14	YML117W-A	YML117W-A	0,0000	0,0010	-35961,7	4	Е
15	YML121W	GTR1	0,0030	0,0304	-33846,4	4	Е
16	YPL266W	DIM1	0,0023	0,0255	-33170,9	4	Е
17	YBR088C	POL30	0,0003	0,0076	-33144,6	4	Е
18	YOR191W	RIS1	0,0002	0,0052	-33140,2	4	Е
19	YDR293C	SSD1	0,0024	0,0264	-33081,1	4	Е
20	YML007W	YAP1	0,0005	0,0103	-32945	4	E
21	YDL162C	YDL162C	0,0004	0,0090	-32784,5	4	Е
22	YDR331W	GPI8	0,0010	0,0162	-32695,2	4	E
23	YLR386W	VAC14	0,0000	0,0018	-32462	4	E
24	YFL013C	IES1	0,0000	0,0018	-32349,4	4	E
25	YER092W	IES5	0,0003	0,0084	-32030,4	4	Е
26	YMR216C	SKY1	0,0004	0,0095	-31762,1	4	Е
27	YMR103C	YMR103C	0,0034	0,0327	-31570,6	4	Е
28	YLR176C	RFX1	0,0001	0,0041	-31384	4	Е
29	YLR119W	SRN2	0,0038	0,0352	-31020,4	4	Е
30	YCL054W	SPB1	0,0000	0,0016	-30796,6	4	Е
31	YDR363W	ESC2	0,0001	0,0035	-30765,6	4	Е
32	YOL097C	WRS1	0,0023	0,0255	-30418,5	4	Е
33	YDL193W	NUS1	0,0025	0,0268	-29881	4	Е
34	YMR073C	IRC21	0,0012	0,0176	-29878,9	4	Е
35	YLR234W	TOP3	0,0000	0,0001	-29562,3	4	Е
36	YLR200W	YKE2	0,0019	0,0224	-29355,7	4	Е
37	YMR277W	FCP1	0,0004	0,0094	-29044,7	8	Е
38	YMR029C	FAR8	0,0047	0,0404	-28979,3	4	Е
39	YDR455C	:::GUK1	0,0001	0,0036	-28890,5	4	Е
40	YDR274C	YDR274C	0,0000	0,0020	-28629,2	4	Е
41	YNL206C	RTT106	0,0002	0,0068	-28591,8	4	Е
42	YDL002C	NHP10	0,0004	0,0095	-28400,6	4	Е
43	YDR279W	RNH202	0,0001	0,0048	-28221,5	4	Е
44	YOR039W	CKB2	0,0000	0,0009	-28185,7	4	Е
45	YFR010W	UBP6	0,0000	0,0003	-28150,4	4	Е
46	YOR038C	HIR2	0,0068	0,0495	-27885,7	4	Е
47	YBR057C	MUM2	0,0000	0,0002	-27803,4	4	Е
48	YER164W	CHD1	0,0018	0,0220	-27582,8	4	E
49	YPR179C	HDA3	0,0063	0,0476	-27390,3	4	Е
50	YDL235C	YPD1	0,0055	0,0439	-27339,9	4	Е
51	YMR234W	RNH1	0,0001	0,0027	-27326,9	4	Е
52	YLR095C	IOC2	0,0001	0,0033	-27297,9	4	E
53	YNL091W	NST1	0,0001	0,0029	-27268,5	4	E
54	YGL212W	VAM7	0,0000	0,0012	-27252,8	4	E
55	YLR374C	YLR374C	0,0001	0,0052	-26920,2	4	E
56	YML027W	YOX1	0,0008	0,0146	-26882,7	4	E
57	YML020W	YML020W	0,0003	0,0073	-26751,4	4	E
58	YDR007W	TRP1	0,0001	0,0048	-26584,4	4	E
59	YLR441C	RPS1A	0,0036	0,0338	-26570,3	4	E

Fo YCL010C SGF29								
62 YGL142C GPH0 0,0028 0,0292 -26330,3 4 E 63 YDR123C INO2 0,0001 0,0043 -28257,2 4 E 64 YPL213W LEA1 0,0000 0,0003 -26100,2 4 E 65 YDL013W HEX3 0,0000 0,0024 -26008,5 4 E 66 YNR005C YNR005C 0,0000 0,0003 -26070,8 4 E 66 YNR005C YNR05C 0,0000 0,0003 -26790,9 4 E 68 YPL152W RRD2 0,0000 0,0020 -25758 4 E 70 YER041W YEM1 0,0001 0,0036 -25731,9 4 E 71 YBR036C CSG2 0,0000 0,0003 -25721,6 4 E 72 YLR337C WRP1 0,0036 -25321,5 4 E 72 YLR337C WRP1 <	60	YCL010C	SGF29	0,0002	0,0052	-26420,5	4	Е
63 YDR123C	61	YJL047C	RTT101	0,0010	0,0160	-26385,5	4	Е
64 YPL213W LEA1 0,0000 0,0003 -26100.2 4 E 65 YDL013W HEX3 0,0000 0,0024 -26088,5 4 E 66 YNR005C YNR005C 0,0000 0,0003 -26070.8 4 E 67 YOL058W ARG1 0,0001 0,0129 -25861.3 4 E 68 YPR070W MED1 0,0011 0,0165 -25731.9 4 E 69 YPL152W RRD2 0,0000 0,0002 -25731.9 4 E 70 YER041W YEM1 0,0001 0,0003 -25731.9 4 E 71 YBR036C CSG2 0,0000 0,0003 -25731.9 4 E 71 YBR036C CSG2 0,0000 0,0003 -25731.5 4 E 72 YLR337C WRP12 0,0004 0,0091 -25341.5 4 E 75 YOR303W	62	YGL142C	GPI10	0,0028	0,0292	-26330,3	4	E
65 YDL013W HEX3 0,0000 0,0024 -26008.5 4 E 66 YNR005C 0,0000 0,0003 -26070.8 4 E 67 YOL058W ARG1 0,0007 0,0129 -25861.3 4 E 68 YPR070W MED1 0,0011 0,0165 -25790.9 4 E 69 YPL152W RRD2 0,0000 0,0020 -25731.9 4 E 70 YER041W YEN1 0,0001 0,0003 -25731.9 4 E 71 YBR036C CSG2 0,0000 0,0003 -25731.5 4 E 72 YLR337C VRP1 0,0058 0,0456 -25381.5 4 E 73 YNL284C MRPL10 0,0001 0,0001 -25341.5 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241.1 4 E 75 YOR303W CPA1	63	YDR123C	INO2	0,0001	0,0043	-26257,2	4	Е
66 YNR005C QN000 0,0003 -26070.8 4 E 67 YOL058W ARG1 0,0007 0,0129 -25861,3 4 E 68 YPR070W MED1 0,0011 0,0165 -26790,9 4 E 69 YPL152W RRD2 0,0000 0,0002 -25788 4 E 70 YER041W YEM1 0,0001 0,0036 -26731,9 4 E 71 YBR036C CSG2 0,0000 0,0003 -25781,5 4 E 72 YLR337C VRP1 0,0058 0,0456 -25381,5 4 E 74 YGR206W MVB12 0,0001 0,0031 -25325,3 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 75 YOR303W CPA1 0,0001 0,0051 -25194,5 4 E 75 YOR304W HIR1	64	YPL213W	LEA1	0,0000	0,0003	-26100,2	4	Е
67 YOL058W ARG1 0,0007 0,0129 -25861,3 4 E 68 YPR070W MED1 0,0011 0,0165 -25790,9 4 E 69 YPL152W RRD2 0,0000 0,0020 -25758 4 E 70 YER041W YEN1 0,0001 0,0033 -25731,9 4 E 71 YBR036C CSG2 0,0000 0,0003 -25731,9 4 E 72 YLR337C VRP1 0,0058 0,0456 -25381,5 4 E 73 YNL284C MRPL10 0,0031 0,0309 -25341,5 4 E 74 YGR206W MVB12 0,0004 0,0091 -25241,1 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 75 YOR303W FKS1 0,0001 0,0011 -25194,5 4 E 78 YLR342W <	65	YDL013W	HEX3	0,0000	0,0024	-26088,5	4	Е
68 YPR070W MED1 0.0011 0,0165 -25790,9 4 E 69 YPL152W RRD2 0,0000 0,0020 -25758 4 E 70 YER041W YEN1 0,0001 0,0036 -25731.9 4 E 71 YBR036C CSG2 0,0000 0,0036 -25781.5 4 E 72 YLR337C VRP1 0,0058 0,0456 -25381.5 4 E 73 YNL284C MRPL10 0,0031 0,0091 -25325.3 4 E 74 YGR206W MVB12 0,0004 0,0091 -25325.3 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241.1 4 E 76 YBL008W HIR1 0,0001 0,0051 -25194.5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25194.5 4 E 79 YOR184W <	66	YNR005C	YNR005C	0,0000	0,0003	-26070,8	4	Е
69 YPL152W RRD2 0,0000 0,0020 -25758 4 E 70 YER041W YEN1 0,0001 0,0036 -25731,9 4 E 71 YBR038C CSG2 0,0000 0,0003 -25722,6 4 E 72 YLR337C VRP1 0,0058 0,0456 -25381,5 4 E 73 YNL284C MRPL10 0,0031 0,0099 -25325,3 4 E 74 YGR206W MWB12 0,0004 0,0091 -25325,3 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 76 YBL008W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25191,5 4 E 78 YCR184W SER1 0,0001 0,0052 -24490,7 4 E 79 YOR184W <	67	YOL058W	ARG1	0,0007	0,0129	-25861,3	4	Е
70 YER041W YEN1 0,0001 0,0036 -25731,9 4 E 71 YBR036C CSG2 0,0000 0,0003 -25722,6 4 E 72 YLR337C VRP1 0,0058 0,0456 -25381,5 4 E 73 YNL284C MRPL10 0,0031 0,0399 -25341,5 4 E 74 YGR206W MVB12 0,0004 0,0091 -25325,3 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 75 YOR303W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR342W FKS1 0,0001 0,0035 -24907,7 4 E 79 YOR184W SER1 0,0001 0,0044 -24860,5 4 E 80 YML013C-A	68	YPR070W	MED1	0,0011	0,0165	-25790,9	4	Е
71 YBR036C CSG2 0,0000 0,0003 -25722,6 4 E 72 YLR337C VRP1 0,0058 0,0456 -25381,5 4 E 73 YNL284C MRPL10 0,0031 0,0309 -25341,5 4 E 74 YGR206W MVB12 0,0004 0,0091 -25325,3 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 76 YBL008W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 79 YOR184W SER1 0,0001 0,0044 -24860,5 4 E 80 YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0002 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0002 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0102 -24450,9 4 E 88 YGL042C YGL042C 0,0010 0,0162 -24178,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C UBC4 0,0010 0,0011 -23658,3 4 E 96 YBR082C UBC4 0,0024 0,0024 -23628 8 E 97 YPR024W YME1 0,0001 0,0011 -23658,3 4 E 98 YBR143C SUP45 0,0011 0,0021 -23536,3 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0000 -23194,8 28 E 100 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 100 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 100 YML028W TSA1 0,0000 0,0000 -23194,8 28 E	69	YPL152W	RRD2	0,0000	0,0020	-25758	4	Е
72 YLR337C VRP1 0,0058 0,0456 -25381,5 4 E 73 YNL284C MRPL10 0,0031 0,0309 -25341,5 4 E 74 YGR206W MVB12 0,0004 0,0091 -25325,3 4 E 75 YOR303W CPA1 0,0001 0,0129 -25241,1 4 E 76 YBL008W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR384C IKI3 0,0001 0,0044 -24860,5 4 E 80 YML013C-A YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 81 YBR076W ECM8 0,0000 0,0001 -24790,5 4 E 81 YBR076W	70	YER041W	YEN1	0,0001	0,0036	-25731,9	4	Е
73 YNL284C MRPL10 0,0031 0,0309 -25341,5 4 E 74 YGR206W MVB12 0,0004 0,0091 -25325,3 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 76 YBL080W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR384C IKI3 0,0001 0,0042 -24860,5 4 E 80 YML013C-A 0,0052 0,0424 -24869,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -2479,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -2479,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1	71	YBR036C	CSG2	0,0000	0,0003	-25722,6	4	Е
74 YGR206W MVB12 0,0004 0,0091 -25325,3 4 E 75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 76 YBL008W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR384C IKI3 0,0001 0,0035 -24907,7 4 E 79 YOR184W SER1 0,0001 0,0044 -24860,5 4 E 80 YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECMB 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0002 -24790,5 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2	72	YLR337C	VRP1	0,0058	0,0456	-25381,5	4	Е
75 YOR303W CPA1 0,0007 0,0129 -25241,1 4 E 76 YBL008W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0035 -24907,7 4 E 78 YLR384C IKI3 0,0001 0,0044 -24860,5 4 E 80 YML013C-A YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24799,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0026 -24450,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24450,9 4 E 86 YPL167W	73	YNL284C	MRPL10	0,0031	0,0309	-25341,5	4	Е
76 YBL008W HIR1 0,0001 0,0051 -25194,5 4 E 77 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR384C IKI3 0,0001 0,0035 -24907,7 4 E 79 YOR184W SER1 0,0001 0,0044 -24860,5 4 E 80 YML013C-A YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL992W SRS2 0,0000 0,0002 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0005 -24450,0 4 E 87 YMR063W	74	YGR206W	MVB12	0,0004	0,0091	-25325,3	4	Е
77 YLR342W FKS1 0,0001 0,0051 -25131,5 4 E 78 YLR384C IKI3 0,0001 0,0035 -24907,7 4 E 79 YOR184W SER1 0,0001 0,0044 -24860,5 4 E 80 YML013C-A YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0002 -24450,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0002 -24450,9 4 E 87 YMR063W <td>75</td> <td>YOR303W</td> <td>CPA1</td> <td>0,0007</td> <td>0,0129</td> <td>-25241,1</td> <td>4</td> <td>Е</td>	75	YOR303W	CPA1	0,0007	0,0129	-25241,1	4	Е
78 YLR384C IKI3 0,0001 0,0035 -24907,7 4 E 79 YOR184W SER1 0,0001 0,0044 -24860,5 4 E 80 YML013C-A YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0002 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24450,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 87 YER069W <td>76</td> <td>YBL008W</td> <td>HIR1</td> <td>0,0001</td> <td>0,0051</td> <td>-25194,5</td> <td>4</td> <td>Е</td>	76	YBL008W	HIR1	0,0001	0,0051	-25194,5	4	Е
79 YOR184W SER1 0,0001 0,0044 -24860,5 4 E 80 YML013C-A YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0026 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24178,8 4 E 89 YER069W <td>77</td> <td>YLR342W</td> <td>FKS1</td> <td>0,0001</td> <td>0,0051</td> <td>-25131,5</td> <td>4</td> <td>Е</td>	77	YLR342W	FKS1	0,0001	0,0051	-25131,5	4	Е
80 YML013C-A YML013C-A 0,0052 0,0424 -24849,5 4 E 81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0026 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0005 -24450,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24450,1 4 E 87 YMR063W RIM9 0,0006 0,0120 -24178,8 4 E 87 YER069W ARG5 0,0001 0,0022 -2410,8 4 E 91 YNL299W <td>78</td> <td>YLR384C</td> <td>IKI3</td> <td>0,0001</td> <td>0,0035</td> <td>-24907,7</td> <td>4</td> <td>Е</td>	78	YLR384C	IKI3	0,0001	0,0035	-24907,7	4	Е
81 YBR076W ECM8 0,0000 0,0002 -24790,5 4 E 82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0026 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 87 YER069W RRG5 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 92 YER116C	79	YOR184W	SER1	0,0001	0,0044	-24860,5	4	Е
82 YML057W CMP2 0,0001 0,0038 -24729,1 4 E 83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0026 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 88 YGL042C YGL042C 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C	80	YML013C-A	YML013C-A	0,0052	0,0424	-24849,5	4	Е
83 YGL168W HUR1 0,0000 0,0014 -24720,1 4 E 84 YJL092W SRS2 0,0000 0,0026 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 88 YGL042C 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8	81	YBR076W	ECM8	0,0000	0,0002	-24790,5	4	Е
84 YJL092W SRS2 0,0000 0,0026 -24540,2 4 E 85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 88 YGL042C YGL042C 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 95 YMR078C	82	YML057W	CMP2	0,0001	0,0038	-24729,1	4	Е
85 YDR260C SWM1 0,0000 0,0002 -24459,4 4 E 86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 88 YGL042C 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 95 YMR078C CTF18 0,0004 0,0011 -23658,6 4 E 95 YMR024W YME1	83	YGL168W	HUR1	0,0000	0,0014	-24720,1	4	Е
86 YPL187W MF(ALPHA)1 0,0000 0,0005 -24450,9 4 E 87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 88 YGL042C 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23628 8 E 97 YPR024W YME1	84	YJL092W	SRS2	0,0000	0,0026	-24540,2	4	Е
87 YMR063W RIM9 0,0006 0,0120 -24360,1 4 E 88 YGL042C 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,1 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45	85	YDR260C	SWM1	0,0000	0,0002	-24459,4	4	Е
88 YGL042C QGL042C 0,0010 0,0162 -24178,8 4 E 89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23658,3 4 E 96 YBR082C UBC4 0,0024 0,0264 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23515,9 4 E 98 YBR143C <t< td=""><td>86</td><td>YPL187W</td><td>MF(ALPHA)1</td><td>0,0000</td><td>0,0005</td><td>-24450,9</td><td>4</td><td>Е</td></t<>	86	YPL187W	MF(ALPHA)1	0,0000	0,0005	-24450,9	4	Е
89 YER069W ARG5 0,0001 0,0029 -24140,8 4 E 90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23658,3 4 E 96 YBR082C UBC4 0,0024 0,0264 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23534,9 4 E 100	87	YMR063W	RIM9	0,0006	0,0120	-24360,1	4	Е
90 YML001W YPT7 0,0006 0,0121 -24085 4 E 91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23658,3 4 E 96 YBR082C UBC4 0,0024 0,0264 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W VAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	88	YGL042C	YGL042C	0,0010	0,0162	-24178,8	4	Е
91 YNL299W TRF5 0,0002 0,0068 -23829,7 4 E 92 YER116C SLX8 0,0000 0,0007 -23723,8 4 E 93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23658,3 4 E 96 YBR082C UBC4 0,0024 0,0264 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W	89	YER069W	ARG5	0,0001	0,0029	-24140,8	4	Е
92 YER116C	90	YML001W	YPT7	0,0006	0,0121	-24085	4	Е
93 YGR055W MUP1 0,0017 0,0210 -23723,1 4 E 94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23658,3 4 E 96 YBR082C UBC4 0,0024 0,0264 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W VAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W	91	YNL299W	TRF5	0,0002	0,0068	-23829,7	4	E
94 YLR102C APC9 0,0043 0,0378 -23658,6 4 E 95 YMR078C CTF18 0,0000 0,0011 -23658,3 4 E 96 YBR082C UBC4 0,0024 0,0264 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W VAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	92	YER116C	SLX8	0,0000	0,0007	-23723,8	4	Е
95 YMR078C	93	YGR055W	MUP1	0,0017	0,0210	-23723,1	4	Е
96 YBR082C UBC4 0,0024 0,0264 -23628 8 E 97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W YAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	94	YLR102C	APC9	0,0043	0,0378	-23658,6	4	Е
97 YPR024W YME1 0,0001 0,0031 -23615,9 4 E 98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W YAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	95	YMR078C	CTF18	0,0000	0,0011	-23658,3	4	Е
98 YBR143C SUP45 0,0017 0,0215 -23550,4 4 E 99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W VAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	96	YBR082C	UBC4	0,0024	0,0264	-23628	8	Е
99 YGR022C YGR022C 0,0051 0,0420 -23536,3 4 E 100 YLR434C YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W VAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	97	YPR024W	YME1	0,0001	0,0031	-23615,9	4	Е
100 YLR434C 0,0010 0,0162 -23534,9 4 E 101 YOR106W VAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	98	YBR143C	SUP45	0,0017	0,0215	-23550,4	4	Е
101 YOR106W VAM3 0,0002 0,0056 -23396,3 4 E 102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	99	YGR022C	YGR022C	0,0051	0,0420	-23536,3	4	E
102 YML028W TSA1 0,0000 0,0000 -23194,8 28 E 103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	100	YLR434C	YLR434C	0,0010	0,0162	-23534,9	4	E
103 YHR012W VPS29 0,0020 0,0232 -23184,9 4 E 104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	101	YOR106W	VAM3	0,0002	0,0056	-23396,3	4	E
104 YDR234W LYS4 0,0004 0,0089 -23109,8 4 E	102	YML028W	TSA1	0,0000	0,0000	-23194,8	28	E
	103	YHR012W	VPS29	0,0020	0,0232	-23184,9	4	E
105 YJL088W ARG3 0,0001 0,0033 -23077,9 4 E	104	YDR234W	LYS4	0,0004	0,0089	-23109,8	4	E
	105	YJL088W	ARG3	0,0001	0,0033	-23077,9	4	E

106	YGR089W	NNF2	0,0007	0,0131	-22794,5	4	E
107	YOR033C	EXO1	0,0000	0,0002	-22746,6	28	Е
108	YDR463W	STP1	0,0001	0,0033	-22706,4	4	Е
109	YPR180W	AOS1	0,0037	0,0347	-22623,3	4	E
110	YMR155W	YMR155W	0,0048	0,0407	-22572	4	Е
111	YKL213C	DOA1	0,0049	0,0412	-22478,9	4	E
112	YLR134W	PDC5	0,0005	0,0108	-22375,2	4	E
113	YBR014C	GRX7	0,0012	0,0176	-22332,1	4	E
114	YLR190W	MMR1	0,0000	0,0022	-22308,4	4	E
115	YLR087C	CSF1	0,0003	0,0076	-22257,1	4	E
116	YBR100W	YBR100W	0,0003	0,0087	-22252,6	4	E
117	YBR248C	HIS7	0,0000	0,0026	-22250,5	4	E
118	YFL013W-A	YFL013W-A	0,0007	0,0129	-22248,3	4	E
119	YMR116C	ASC1	0,0005	0,0109	-22215	4	Е
120	YLR242C	ARV1	0,0000	0,0014	-22166,7	4	Е
121	YFL010C	WWM1	0,0000	0,0010	-22141,1	4	E
122	YPL259C	APM1	0,0068	0,0499	-22120	4	Е
123	YMR166C	YMR166C	0,0004	0,0091	-22085,9	4	Е
124	YMR307W	GAS1	0,0068	0,0495	-21961,5	4	Е
125	YNL250W	RAD50	0,0000	0,0000	-21863,8	24	Е
126	YCR063W	BUD31	0,0000	0,0000	-21713,8	4	Е
127	YNL159C	ASI2	0,0011	0,0168	-21485	4	Е
128	YBR265W	TSC10	0,0024	0,0265	-21459,4	4	E
129	YCR008W	SAT4	0,0000	0,0001	-21443,9	4	E
130	YJR087W	YJR087W	0,0001	0,0036	-21374,9	4	Е
131	YKR072C	SIS2	0,0007	0,0132	-21360,5	4	E
132	YJL071W	ARG2	0,0000	0,0026	-21340,5	4	Е
133	YOR156C	NFI1	0,0037	0,0347	-21293,4	4	Е
134	YPL067C	YPL067C	0,0000	0,0012	-21146,2	4	Е
135	YPL094C	SEC62	0,0031	0,0309	-21141,8	4	Е
136	YPR176C	BET2	0,0048	0,0404	-20942,1	4	Е
137	YDR510W	SMT3	0,0001	0,0029	-20732,8	4	Е
138	YHR101C	BIG1	0,0000	0,0003	-20715,5	4	Е
139	YAL002W	VPS8	0,0000	0,0006	-20712,5	4	Е
140	YHL006C	SHU1	0,0002	0,0064	-20703,9	4	Е
141	YER159C	BUR6	0,0053	0,0432	-20690,5	4	Е
142	YBL088C	TEL1	0,0001	0,0039	-20600,6	4	Е
143	YML048W-A	YML048W-A	0,0018	0,0219	-20564,9	4	Е
144	YBR252W	DUT1	0,0000	0,0014	-20400,2	4	Е
145	YOL012C	HTZ1	0,0001	0,0050	-20398	4	Е
146	YJR109C	CPA2	0,0000	0,0010	-20336,6	8	Е
147	YGR105W	VMA21	0,0000	0,0003	-20326	4	Е
148	YDR075W	PPH3	0,0015	0,0198	-20295,2	4	Е
149	YBL024W	NCL1	0,0013	0,0183	-20265,7	4	E
150	YKL028W	TFA1	0,0055	0,0439	-20248,3	4	E
151	YDR174W	HMO1	0,0016	0,0208	-20238,8	4	E

152 YFL023W								
154 YGL244W	152	YFL023W	BUD27	0,0002	0,0068	-20178,9	4	Е
155 YLR370C ARC18 0,0009 0,0156 -20046,7 4 E	153	YNL244C	SUI1	0,0006	0,0123	-20132,3	4	Е
156 YMR038C CCS1	154	YGL244W	RTF1	0,0000	0,0016	-20054,8	4	Е
157 YJR033C RAV1 0,0015 0,0198 -19950,2 4 E	155	YLR370C	ARC18	0,0009	0,0156	-20046,7	4	E
158 YGR122W YGR122W 0,0011 0,0165 -19905.6 4 E 159 YDL194W SNF3 0,0015 0,0198 -19848.1 4 E 160 YKL110C KT112 0,0001 0,0031 -19830.7 4 E 161 YDR388W RVS167 0,0000 0,0026 -19778.7 4 E 162 YJL154C VFS35 0,0002 0,0088 -19736 4 E 163 YEL007W MIT1 0,0010 0,0160 -19679.2 4 E 164 YPR045C THP3 0,0018 0,0218 -19666.6 4 E 165 YGR042W YGR042W 0,0006 0,0120 -19635.9 4 E 166 YLR431C ATG23 0,0066 0,0487 -19591.5 4 E 167 YOR302W YOR302W 0,0000 0,0020 -19488.9 4 E 168 YDR265W PEX10 0,0012 0,0171 -19433.8 4 E 169 YGR100W MDR1 0,0010 0,0162 -19365.8 4 E 170 YGR260W TNA1 0,0026 0,0278 -19366.8 4 E 171 YBR131W CC21 0,0007 0,0132 -19341.3 4 E 172 YBR255W MTC4 0,0000 0,0000 -19293.1 4 E 173 YBR170C NPL4 0,0000 0,0000 -19293.1 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0001 -19337.5 4 E 176 YOR078W BUD21 0,0001 0,0038 -19237.5 4 E 177 YDR121W DPB4 0,0001 0,0038 -19237.5 4 E 178 YER161C SPT2 0,0000 0,0003 -19237.5 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126.8 4 E 181 YMR137C PSO2 0,0000 0,0003 -19126.8 4 E 182 YMR163C INP2 0,0025 0,0271 -19186 4 E 184 YBR247C ENP1 0,0003 0,0006 -19095.5 4 E 185 YOR304W ISW2 0,0002 0,0007 -18897.7 8 E 186 YDR245W MNN10 0,0001 0,0007 -18897.7 8 E 187 YPL105C SYH1 0,0001 0,0007 -18897.7 8 E 189 YPR108W RPN7 0,0062 0,0471 -18684.9 4 E 199 YCL030C HIS4 0,0001 0,0001 -18797.7 4 E 199 YCL030C HIS4 0,0001 0,0004 -18664.2 4 E 199 YPR108W FRE3 0,004 0,0060 -18698.2 4 E 199 YDR38HW FRE3 0,004 0,0060 -18698.2	156	YMR038C	CCS1	0,0000	0,0001	-19982,9	4	Е
159 YDL194W SNF3	157	YJR033C	RAV1	0,0015	0,0198	-19950,2	4	E
160 YKL110C	158	YGR122W	YGR122W	0,0011	0,0165	-19905,6	4	Е
161 YDR388W	159	YDL194W	SNF3	0,0015	0,0198	-19848,1	4	Е
162	160	YKL110C	KTI12	0,0001	0,0031	-19830,7	4	Е
163 YEL007W MIT1	161	YDR388W	RVS167	0,0000	0,0026	-19778,7	4	Е
164 YPR045C THP3 0,0018 0,0218 -19666,6 4 E 165 YGR042W YGR042W 0,0006 0,0120 -19635,9 4 E 166 YLR431C ATG23 0,0066 0,0487 -19591,5 4 E 167 YOR302W YOR302W 0,0000 0,0020 -19488,9 4 E 168 YDR265W PEX10 0,0012 0,0171 -19433,8 4 E 169 YGR100W MDR1 0,0010 0,0162 -19365,8 4 E 170 YGR260W TNA1 0,0026 0,0278 -19360,4 4 E 171 YBR131W CCZ1 0,0007 0,0132 -19341,6 4 E 172 YBR255W MTC4 0,0000 0,0010 -19341,3 4 E 173 YBR170C NPL4 0,0000 0,0010 -19341,3 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0038 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0003 -19126,8 4 E 182 YMR163C IMP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0001 0,0037 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0007 -18897,7 8 E 187 YPL105C SYH1 0,0001 0,0000 -18897,7 8 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0000 -18873,6 4 E 191 YLR372W SUR4 0,0001 0,0006 -18664,2 4 E 194 YPL26W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E	162	YJL154C	VPS35	0,0002	0,0068	-19736	4	Е
165 YGR042W YGR042W 0,0006 0,0120 -19635,9 4 E 166 YLR431C ATG23 0,0066 0,0487 -19591,5 4 E 167 YOR302W YOR302W 0,0000 0,0020 -19488,9 4 E 168 YDR265W PEX10 0,0012 0,0171 -19433,8 4 E 169 YGR100W MDR1 0,0010 0,0162 -19365,8 4 E 170 YGR260W TNA1 0,0026 0,0278 -19360,4 4 E 171 YBR131W CCZ1 0,0007 0,0132 -19341,6 4 E 172 YBR255W MTC4 0,0000 0,0000 -199341,3 4 E 173 YBR170C NPL4 0,0000 0,0000 -19341,3 4 E 174 YMR139W RIM11 0,0000 0,0001 -19341,3 4 E 175 YK	163	YEL007W	MIT1	0,0010	0,0160	-19679,2	4	Е
166 YLR431C	164	YPR045C	THP3	0,0018	0,0218	-19666,6	4	Е
167 YOR302W YOR302W 0,0000 0,0020 -19488,9 4 E 168 YDR265W PEX10 0,0012 0,0171 -19433,8 4 E 169 YGR100W MDR1 0,0010 0,0162 -19365,8 4 E 170 YGR260W TNA1 0,0026 0,0278 -19360,4 4 E 171 YBR131W CC21 0,0007 0,0132 -19341,6 4 E 172 YBR255W MTC4 0,0000 0,0000 -19293,1 4 E 173 YBR170C NPL4 0,0000 0,0006 -19265 4 E 174 YMR139W RIM11 0,0000 0,00362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W </td <td>165</td> <td>YGR042W</td> <th>YGR042W</th> <td>0,0006</td> <td>0,0120</td> <td>-19635,9</td> <td>4</td> <td>Е</td>	165	YGR042W	YGR042W	0,0006	0,0120	-19635,9	4	Е
168 YDR265W PEX10 0,0012 0,0171 -19433,8 4 E 169 YGR100W MDR1 0,0010 0,0162 -19365,8 4 E 170 YGR260W TNA1 0,0026 0,0278 -19360,4 4 E 171 YBR131W CCZ1 0,0007 0,0132 -19341,6 4 E 172 YBR255W MTC4 0,0000 0,0000 -19283,1 4 E 173 YBR170C NPL4 0,0000 0,0002 -19265 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 175 YKL048C ELM1 0,00001 0,0039 -19237,5 4 E 175 YKL048C ELM1 0,0001 0,0039 -19237,5 4 E 177 YDR121W	166	YLR431C	ATG23	0,0066	0,0487	-19591,5	4	Е
169 YGR100W MDR1 0,0010 0,0162 -19365,8 4 E 170 YGR260W TNA1 0,0026 0,0278 -19360,4 4 E 171 YBR131W CCZ1 0,0007 0,0132 -19341,6 4 E 172 YBR255W MTC4 0,0000 0,0010 -19341,3 4 E 173 YBR170C NPL4 0,0000 0,0000 -19293,1 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0048 -19208,2 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 177 YMR015C ERG5 0,0025 0,0271 -19186 4 E 179 YMR013C	167	YOR302W	YOR302W	0,0000	0,0020	-19488,9	4	Е
170 YGR260W TNA1 0,0026 0,0278 -19360,4 4 E 171 YBR131W CCZ1 0,0007 0,0132 -19341,6 4 E 172 YBR255W MTC4 0,0000 0,0010 -19341,3 4 E 173 YBR170C NPL4 0,0000 0,0000 -19293,1 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W	168	YDR265W	PEX10	0,0012	0,0171	-19433,8	4	Е
171 YBR131W CCZ1 0,0007 0,0132 -19341,6 4 E 172 YBR255W MTC4 0,0000 0,0010 -19341,3 4 E 173 YBR170C NPL4 0,0000 0,0000 -19293,1 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -1905,5 4 E 181 YMR137C	169	YGR100W	MDR1	0,0010	0,0162	-19365,8	4	Е
172 YBR255W MTC4 0,0000 0,0010 -19341,3 4 E 173 YBR170C NPL4 0,0000 0,0000 -19293,1 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C	170	YGR260W	TNA1	0,0026	0,0278	-19360,4	4	Е
173 YBR170C NPL4 0,0000 0,0000 -19293,1 4 E 174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0002 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 182 YMR163C	171	YBR131W	CCZ1	0,0007	0,0132	-19341,6	4	Е
174 YMR139W RIM11 0,0040 0,0362 -19265 4 E 175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0002 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C	172	YBR255W	MTC4	0,0000	0,0010	-19341,3	4	Е
175 YKL048C ELM1 0,0000 0,0018 -19237,5 4 E 176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W	173	YBR170C	NPL4	0,0000	0,0000	-19293,1	4	Е
176 YOR078W BUD21 0,0001 0,0039 -19237,5 4 E 177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W	174	YMR139W	RIM11	0,0040	0,0362	-19265	4	Е
177 YDR121W DPB4 0,0001 0,0048 -19208,2 4 E 178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C	175	YKL048C	ELM1	0,0000	0,0018	-19237,5	4	Е
178 YER161C SPT2 0,0000 0,0018 -19192,6 4 E 179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C	176	YOR078W	BUD21	0,0001	0,0039	-19237,5	4	Е
179 YMR015C ERG5 0,0025 0,0271 -19186 4 E 180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18873,6 8 E 199 YCL030C	177	YDR121W	DPB4	0,0001	0,0048	-19208,2	4	Е
180 YPL101W ELP4 0,0000 0,0003 -19126,8 4 E 181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C <td>178</td> <td>YER161C</td> <th>SPT2</th> <td>0,0000</td> <td>0,0018</td> <td>-19192,6</td> <td>4</td> <td>Е</td>	178	YER161C	SPT2	0,0000	0,0018	-19192,6	4	Е
181 YMR137C PSO2 0,0000 0,0026 -19095,5 4 E 182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0001 0,0010 -18797,7 4 E 191 YLR372W <td>179</td> <td>YMR015C</td> <th>ERG5</th> <td>0,0025</td> <td>0,0271</td> <td>-19186</td> <td>4</td> <td>Е</td>	179	YMR015C	ERG5	0,0025	0,0271	-19186	4	Е
182 YMR163C INP2 0,0028 0,0291 -19082,5 4 E 183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 193 YOR381W <td>180</td> <td>YPL101W</td> <th>ELP4</th> <td>0,0000</td> <td>0,0003</td> <td>-19126,8</td> <td>4</td> <td>Е</td>	180	YPL101W	ELP4	0,0000	0,0003	-19126,8	4	Е
183 YDR244W PEX5 0,0010 0,0160 -19042,1 4 E 184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W </td <td>181</td> <td>YMR137C</td> <th>PSO2</th> <td>0,0000</td> <td>0,0026</td> <td>-19095,5</td> <td>4</td> <td>E</td>	181	YMR137C	PSO2	0,0000	0,0026	-19095,5	4	E
184 YBR247C ENP1 0,0003 0,0087 -18953,8 4 E 185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E <td< td=""><td>182</td><td>YMR163C</td><th>INP2</th><td>0,0028</td><td>0,0291</td><td>-19082,5</td><td>4</td><td>E</td></td<>	182	YMR163C	INP2	0,0028	0,0291	-19082,5	4	E
185 YOR304W ISW2 0,0062 0,0471 -18942,5 4 E 186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W </td <td>183</td> <td>YDR244W</td> <th>PEX5</th> <td>0,0010</td> <td>0,0160</td> <td>-19042,1</td> <td>4</td> <td>E</td>	183	YDR244W	PEX5	0,0010	0,0160	-19042,1	4	E
186 YDR245W MNN10 0,0001 0,0037 -18921,1 4 E 187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C </td <td>184</td> <td>YBR247C</td> <th>ENP1</th> <td>0,0003</td> <td>0,0087</td> <td>-18953,8</td> <td>4</td> <td>Е</td>	184	YBR247C	ENP1	0,0003	0,0087	-18953,8	4	Е
187 YPL105C SYH1 0,0001 0,0029 -18912,6 4 E 188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	185	YOR304W	ISW2	0,0062	0,0471	-18942,5	4	Е
188 YDL074C BRE1 0,0000 0,0000 -18897,7 8 E 189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	186	YDR245W	MNN10	0,0001	0,0037	-18921,1	4	Е
189 YPR108W RPN7 0,0046 0,0400 -18873,6 8 E 190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	187	YPL105C	SYH1	0,0001	0,0029	-18912,6	4	Е
190 YCL030C HIS4 0,0000 0,0010 -18797,7 4 E 191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	188	YDL074C	BRE1	0,0000	0,0000	-18897,7	8	Е
191 YLR372W SUR4 0,0001 0,0041 -18793,6 4 E 192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	189	YPR108W	RPN7	0,0046	0,0400	-18873,6	8	Е
192 YMR224C MRE11 0,0000 0,0000 -18753,8 28 E 193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	190	YCL030C	HIS4	0,0000	0,0010	-18797,7	4	Е
193 YOR381W FRE3 0,0047 0,0404 -18688,4 4 E 194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	191	YLR372W	SUR4	0,0001	0,0041	-18793,6	4	Е
194 YPL226W NEW1 0,0002 0,0056 -18664,2 4 E 195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	192	YMR224C	MRE11	0,0000	0,0000	-18753,8	28	Е
195 YGL022W STT3 0,0024 0,0262 -18653,8 4 E 196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	193	YOR381W	FRE3	0,0047	0,0404	-18688,4	4	Е
196 YBR055C PRP6 0,0022 0,0248 -18649,9 4 E	194	YPL226W	NEW1	0,0002	0,0056	-18664,2	4	Е
	195	YGL022W	STT3	0,0024	0,0262	-18653,8	4	Е
197 YNR050C LYS9 0,0001 0,0033 -18526,4 4 E	196	YBR055C	PRP6	0,0022	0,0248	-18649,9	4	Е
	197	YNR050C	LYS9	0,0001	0,0033	-18526,4	4	E

198	YGL162W	SUT1	0,0015	0,0201	-18525,3	4	Е
199	YML103C	NUP188	0,0027	0,0287	-18491	4	Е
200	YLR193C	UPS1	0,0001	0,0036	-18458,9	4	E
201	YOL133W	HRT1	0,0004	0,0091	-18444,4	8	E
202	YLR317W	YLR317W	0,0001	0,0051	-18405,8	4	E
203	YLR061W	RPL22A	0,0002	0,0072	-18331	4	E
204	YOR014W	RTS1	0,0010	0,0161	-18292,3	4	E
205	YKR007W	MEH1	0,0000	0,0000	-18207,2	4	E
206	YKR059W	TIF1	0,0065	0,0485	-18149,7	4	Е
207	YBR094W	PBY1	0,0020	0,0235	-18119,9	4	Е
208	YDR330W	UBX5	0,0040	0,0362	-18105,2	4	Е
209	YLR089C	ALT1	0,0005	0,0104	-18009,1	4	E
210	YML006C	GIS4	0,0008	0,0133	-17993,2	4	E
211	YLR393W	ATP10	0,0000	0,0007	-17983,1	4	E
212	YDR276C	PMP3	0,0000	0,0020	-17948,6	4	Е
213	YJR139C	НОМ6	0,0024	0,0262	-17847,3	4	E
214	YJR128W	YJR128W	0,0001	0,0032	-17830,9	4	Е
215	YOL139C	CDC33	0,0016	0,0201	-17824,1	4	Е
216	YIR023W	DAL81	0,0031	0,0308	-17644,3	4	E
217	YBR275C	RIF1	0,0020	0,0231	-17579,5	4	Е
218	YGR200C	ELP2	0,0018	0,0218	-17530,6	4	Е
219	YOL001W	PHO80	0,0057	0,0450	-17496,1	4	Е
220	YMR053C	STB2	0,0037	0,0347	-17460	4	E
221	YOR008C	SLG1	0,0000	0,0000	-17405,2	4	E
222	YER095W	RAD51	0,0003	0,0084	-17379,2	4	E
223	YCL006C	YCL006C	0,0002	0,0052	-17368,6	4	E
224	YKR020W	VPS51	0,0035	0,0330	-17364,8	4	Е
225	YEL033W	MTC7	0,0002	0,0061	-17336,9	4	E
226	YBL089W	AVT5	0,0012	0,0171	-17296,7	4	Е
227	YLR078C	BOS1	0,0007	0,0127	-17247,8	4	E
228	YCL001W	RER1	0,0006	0,0123	-17238,5	4	E
229	YJL165C	HAL5	0,0004	0,0092	-17212,7	4	E
230	YPR040W	TIP41	0,0005	0,0102	-17205,1	4	Е
231	YLL040C	VPS13	0,0017	0,0210	-17165,3	4	E
232	YPR155C	NCA2	0,0007	0,0129	-17159,8	4	E
233	YPL157W	TGS1	0,0000	0,0027	-17003,7	4	Е
234	YDR173C	ARG82	0,0000	0,0001	-16937,6	4	E
235	YPL102C	YPL102C	0,0025	0,0268	-16914,4	4	E
236	YOR252W	TMA16	0,0011	0,0164	-16845,8	4	E
237	YER131W	RPS26B	0,0032	0,0316	-16821,2	4	E
238	YDR074W	TPS2	0,0001	0,0050	-16797,2	4	E
239	YDL163W	YDL163W	0,0039	0,0352	-16756,4	8	E
240	YGR058W	PEF1	0,0028	0,0293	-16690,8	4	E
241	YGL041C	YGL041C	0,0027	0,0289	-16668,9	4	E
242	YEL003W	GIM4	0,0027	0,0283	-16621,1	4	E
243	YDR273W	DON1	0,0001	0,0047	-16590,1	4	E

244	YPL177C	CUP9	0,0015	0,0198	-16554,9	4	E
245	YKL211C	TRP3	0,0052	0,0424	-16554,7	4	E
246	YBL017C	PEP1	0,0008	0,0145	-16549	4	Е
247	YOR357C	SNX3	0,0053	0,0428	-16491,2	4	E
248	YDR076W	RAD55	0,0020	0,0232	-16489,2	4	Е
249	YAL013W	DEP1	0,0004	0,0094	-16449,3	4	E
250	YLL039C	UBI4	0,0005	0,0102	-16424,4	4	Е
251	YKL220C	FRE2	0,0003	0,0085	-16410,3	4	Е
252	YOR050C	YOR050C	0,0065	0,0484	-16407,2	4	Е
253	YNR042W	YNR042W	0,0004	0,0095	-16402,7	4	Е
254	YDR034C	LYS14	0,0000	0,0000	-16392,2	28	Е
255	YBL037W	APL3	0,0029	0,0299	-16368,1	4	Е
256	YOR082C	YOR082C	0,0003	0,0089	-16360	4	Е
257	YER006W	NUG1	0,0003	0,0074	-16343,8	4	Е
258	YCL025C	AGP1	0,0031	0,0308	-16296,4	4	Е
259	YKL081W	TEF4	0,0001	0,0032	-16266,8	4	Е
260	YDL020C	RPN4	0,0016	0,0207	-16247,4	4	Е
261	YIL154C	IMP2'	0,0000	0,0018	-16235,2	4	Е
262	YCL011C	GBP2	0,0000	0,0015	-16154,8	4	Е
263	YML032C	RAD52	0,0003	0,0078	-16085,1	28	Е
264	YER083C	GET2	0,0005	0,0104	-16073,4	4	Е
265	YJR077C	MIR1	0,0006	0,0115	-16068	4	Е
266	YLR032W	RAD5	0,0012	0,0171	-16058,1	4	Е
267	YOL086C	ADH1	0,0042	0,0375	-15996,3	4	Е
268	YGL050W	TYW3	0,0005	0,0104	-15957	4	Е
269	YBL081W	YBL081W	0,0000	0,0004	-15949,5	4	Е
270	YNL227C	JJJ1	0,0014	0,0187	-15946,2	4	Е
271	YPL219W	PCL8	0,0002	0,0068	-15928,9	4	Е
272	YNL194C	YNL194C	0,0055	0,0439	-15918,9	4	Е
273	YKL114C	APN1	0,0046	0,0399	-15916,3	4	E
274	YLR019W	PSR2	0,0033	0,0319	-15911,4	4	E
275	YLR212C	TUB4	0,0009	0,0159	-15873,5	4	Е
276	YHR108W	GGA2	0,0005	0,0104	-15854,2	4	E
277	YDL189W	RBS1	0,0000	0,0016	-15823,2	4	E
278	YBL060W	YBL060W	0,0007	0,0123	-15811,4	4	E
279	YLR220W	CCC1	0,0013	0,0181	-15769,5	4	E
280	YKL010C	UFD4	0,0007	0,0129	-15699,3	4	Е
281	YCL060C	:::MRC1	0,0000	0,0005	-15602,2	4	Е
282	YGR032W	GSC2	0,0013	0,0183	-15533,6	4	Е
283	YDL133C-A	RPL41B	0,0001	0,0042	-15491	4	E
284	YPR183W	DPM1	0,0051	0,0420	-15434,8	4	E
285	YPL180W	TCO89	0,0007	0,0129	-15434,4	4	E
286	YPR060C	ARO7	0,0051	0,0420	-15422,9	4	E
287	YDR128W	MTC5	0,0008	0,0145	-15379,3	4	E
288	YJL095W	BCK1	0,0002	0,0066	-15356,3	4	E
289	YKR052C	MRS4	0,0027	0,0289	-15355,4	4	E

290	YDR512C	EMI1	0,0001	0,0042	-15279,4	4	Е
291	YLR039C	RIC1	0,0002	0,0068	-15264,8	4	E
292	YMR290C	HAS1	0,0018	0,0216	-15223	4	E
293	YLR001C	YLR001C	0,0011	0,0163	-15195,9	4	E
294	YPR044C	OPI11	0,0006	0,0115	-15109,4	4	Е
295	YOR273C	TPO4	0,0005	0,0102	-15093,1	4	E
296	YMR202W	ERG2	0,0028	0,0291	-15056,6	4	E
297	YJL204C	RCY1	0,0003	0,0080	-15041,1	4	E
298	YNL297C	MON2	0,0034	0,0329	-14982,2	4	Е
299	YJR088C	EMC2	0,0003	0,0072	-14881,2	4	E
300	YGL071W	AFT1	0,0006	0,0116	-14876,4	4	Е
301	YKL091C	YKL091C	0,0005	0,0113	-14840,7	4	Е
302	YLL013C	PUF3	0,0025	0,0268	-14810	4	Е
303	YPR051W	MAK3	0,0012	0,0175	-14800,4	4	E
304	YNR061C	YNR061C	0,0025	0,0268	-14753,7	4	E
305	YER113C	TMN3	0,0042	0,0371	-14701,1	4	Е
306	YOR112W	CEX1	0,0013	0,0181	-14695,2	4	Е
307	YDR435C	PPM1	0,0049	0,0412	-14653,7	4	Е
308	YOL013W-A	YOL013W-A	0,0020	0,0231	-14623,2	4	Е
309	YOR080W	DIA2	0,0036	0,0338	-14546,6	4	Е
310	YDR241W	BUD26	0,0002	0,0067	-14542,9	4	Е
311	YNL067W	RPL9B	0,0013	0,0183	-14488,1	4	E
312	YDL188C	PPH22	0,0039	0,0352	-14454,5	4	E
313	YBR098W	MMS4	0,0028	0,0293	-14451,1	4	E
314	YOL134C	YOL134C	0,0004	0,0093	-14438,8	4	E
315	YDR332W	IRC3	0,0014	0,0184	-14432,5	4	Ε
316	YJL029C	VPS53	0,0010	0,0162	-14367,5	4	E
317	YMR001C	CDC5	0,0038	0,0352	-14280,9	4	E
318	YHR184W	SSP1	0,0019	0,0229	-14250,9	4	E
319	YKL097C	YKL097C	0,0043	0,0378	-14241,4	4	E
320	YER134C	YER134C	0,0017	0,0214	-14229,1	4	E
321	YDR203W	YDR203W	0,0016	0,0205	-14155,4	4	E
322	YIL027C	EMC5	0,0010	0,0162	-14099	4	Е
323	YPR057W	BRR1	0,0018	0,0220	-14049	4	E
324	YPL232W	SSO1	0,0011	0,0165	-14025,3	4	Е
325	YCL064C	CHA1	0,0010	0,0160	-13986,7	4	E
326	YPL008W	CHL1	0,0028	0,0291	-13977,7	4	E
327	YHR114W	BZZ1	0,0013	0,0183	-13973,4	4	Е
328	YKL053C-A	MDM35	0,0001	0,0035	-13872,2	4	E
329	YCR037C	PHO87	0,0038	0,0349	-13870,3	4	E
330	YJR095W	SFC1	0,0018	0,0219	-13778,4	4	E
331	YLR390W-A	CCW14	0,0053	0,0432	-13737,6	4	E
332	YPL054W	LEE1	0,0022	0,0254	-13701,5	4	E
333	YNL077W	APJ1	0,0036	0,0343	-13658,3	4	E
334	YJL128C	PBS2	0,0064	0,0481	-13639,1	4	E
335	YJL014W	ССТЗ	0,0063	0,0477	-13628,3	4	E

336 YNL155W CUZ1 0,0010 0,0162 -13574,6 4 E 337 YKL160W ELF1 0,0010 0,0160 -13573,3 4 E 338 YDL179W PCL9 0,0001 0,0036 -13531,4 4 E 339 YNR014W YNR014W 0,0047 0,0404 -13481 4 E 340 YBR047W FMP23 0,0018 0,0218 -13477,5 4 E 341 YMR054W STV1 0,0068 0,0495 -13435,5 4 E 342 YER056C FCY2 0,0041 0,0363 -13426,1 4 E 343 YNR002C ATO2 0,0035 0,0333 -13369,4 4 E 344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W<	
338 YDL179W PCL9 0,0001 0,0036 -13531,4 4 E 339 YNR014W YNR014W 0,0047 0,0404 -13481 4 E 340 YBR047W FMP23 0,0018 0,0218 -13477,5 4 E 341 YMR054W STV1 0,0068 0,0495 -13435,5 4 E 342 YER056C FCY2 0,0041 0,0363 -13426,1 4 E 343 YNR002C ATO2 0,0035 0,0333 -13369,4 4 E 344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C<	
339 YNR014W YNR014W 0,0047 0,0404 -13481 4 E 340 YBR047W FMP23 0,0018 0,0218 -13477,5 4 E 341 YMR054W STV1 0,0068 0,0495 -13435,5 4 E 342 YER056C FCY2 0,0041 0,0363 -13426,1 4 E 343 YNR002C ATO2 0,0035 0,0333 -13369,4 4 E 344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W<	
340 YBR047W FMP23 0,0018 0,0218 -13477,5 4 E 341 YMR054W STV1 0,0068 0,0495 -13435,5 4 E 342 YER056C FCY2 0,0041 0,0363 -13426,1 4 E 343 YNR002C ATO2 0,0035 0,0333 -13369,4 4 E 344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W YDR210W 0,0034 0,0329 -13245,7 4 E	
341 YMR054W STV1 0,0068 0,0495 -13435,5 4 E 342 YER056C FCY2 0,0041 0,0363 -13426,1 4 E 343 YNR002C ATO2 0,0035 0,0333 -13369,4 4 E 344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W YDR210W 0,0034 0,0329 -13245,7 4 E	
342 YER056C FCY2 0,0041 0,0363 -13426,1 4 E 343 YNR002C ATO2 0,0035 0,0333 -13369,4 4 E 344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W YDR210W 0,0034 0,0329 -13245,7 4 E	
343 YNR002C ATO2 0,0035 0,0333 -13369,4 4 E 344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W VDR210W 0,0034 0,0329 -13245,7 4 E	
344 YHL027W RIM101 0,0059 0,0458 -13358,8 4 E 345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W YDR210W 0,0034 0,0329 -13245,7 4 E	
345 YDL226C GCS1 0,0000 0,0027 -13349,9 4 E 346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W YDR210W 0,0034 0,0329 -13245,7 4 E	
346 YDR083W RRP8 0,0055 0,0438 -13336,6 4 E 347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W VDR210W 0,0034 0,0329 -13245,7 4 E	
347 YJL192C SOP4 0,0053 0,0432 -13298,2 4 E 348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W VDR210W 0,0034 0,0329 -13245,7 4 E	
348 YNL183C NPR1 0,0010 0,0162 -13283,3 4 E 349 YDR210W 0,0034 0,0329 -13245,7 4 E	
349 YDR210W YDR210W 0,0034 0,0329 -13245,7 4 E	
350 YLR062C BUD28 0,0019 0.0231 -13231.2 4 E	
351 YHL044W	
352 YDL134C PPH21 0,0063 0,0476 -13179,7 4 E	
353 YDR458C HEH2 0,0062 0,0471 -13160,7 4 E	
354 YDR085C AFR1 0,0006 0,0114 -13129,8 4 E	
355 YKR015C YKR015C 0,0026 0,0279 -13128,8 4 E	
356 YKL074C MUD2 0,0011 0,0168 -13115,5 4 E	
357 YJR034W PET191 0,0042 0,0375 -13113,5 4 E	
358 YDR269C YDR269C 0,0000 0,0000 -13112,5 28 E	
359 YJL147C YJL147C 0,0025 0,0272 -13081,9 4 E	
360 YLR238W FAR10 0,0045 0,0394 -13076,9 4 E	
361 YJR118C ILM1 0,0005 0,0102 -13036,4 4 E	
362 YBR007C DSF2 0,0019 0,0224 -13033,7 4 E	
363 YGL154C LYS5 0,0037 0,0347 -13031 4 E	
364 YER090W TRP2 0,0064 0,0482 -12991,9 4 E	
365 YPR073C LTP1 0,0002 0,0064 -12988,5 4 E	
366 YDL006W PTC1 0,0017 0,0211 -12987,6 4 E	
367 YIL052C RPL34B 0,0016 0,0205 -12947,3 4 E	
368 YCR048W ARE1 0,0004 0,0092 -12919,7 4 E	
369 YOL053C-A YOL053C-A 0,0010 0,0160 -12897,1 4 E	
370 YKL093W MBR1 0,0012 0,0171 -12862,4 4 E	
371 YKR074W AIM29 0,0048 0,0407 -12748,7 4 E	
372 YOL091W SPO21 0,0058 0,0454 -12729,7 4 E	
373 YPR038W IRC16 0,0029 0,0302 -12666,6 4 E	
374 YJL064W YJL064W 0,0014 0,0191 -12617,4 4 E	
375 YOR382W FIT2 0,0000 0,0004 -12598 28 E	
376 YER007W PAC2 0,0061 0,0470 -12576,9 4 E	
377 YGR229C SMI1 0,0045 0,0393 -12525 4 E	
378 YGL009C LEU1 0,0012 0,0175 -12496,8 4 E	
379 YDL214C PRR2 0,0014 0,0184 -12489,9 4 E	
380 YDL112W TRM3 0,0007 0,0131 -12428,9 4 E	
381 YGR238C KEL2 0,0056 0,0444 -12415,8 4 E	

382	YOL054W	PSH1	0,0022	0,0251	-12335,7	4	Е
383	YDR092W	UBC13	0,0002	0,0068	-12314,6	4	Е
384	YBR043C	QDR3	0,0013	0,0181	-12211,3	4	Е
385	YGL001C	ERG26	0,0005	0,0104	-12188,1	4	Е
386	YKL142W	MRP8	0,0031	0,0309	-12168,3	4	Е
387	YBR016W	YBR016W	0,0029	0,0301	-12146,6	4	Е
388	YCR032W	BPH1	0,0016	0,0205	-12132,4	4	Е
389	YOL152W	FRE7	0,0034	0,0329	-12097,3	4	Е
390	YDR532C	YDR532C	0,0002	0,0060	-12057,4	4	E
391	YPR050C	YPR050C	0,0005	0,0103	-12053,8	4	Е
392	YAL031C	GIP4	0,0006	0,0123	-12028,7	4	Е
393	YDL100C	GET3	0,0013	0,0181	-12021,3	4	E
394	YDL155W	CLB3	0,0048	0,0404	-12009,2	4	E
395	YCL075W	YCL075W	0,0025	0,0268	-11972,2	4	Е
396	YMR195W	ICY1	0,0014	0,0187	-11909,5	4	Е
397	YBL069W	AST1	0,0054	0,0434	-11906,3	4	Е
398	YER168C	CCA1	0,0005	0,0102	-11849,1	4	Е
399	YER177W	BMH1	0,0001	0,0051	-11798,4	4	Е
400	YOR343C	YOR343C	0,0006	0,0123	-11775,6	4	Е
401	YJL053W	PEP8	0,0011	0,0165	-11767,4	4	Е
402	YFL014W	HSP12	0,0049	0,0412	-11754,7	4	Е
403	YDR101C	ARX1	0,0047	0,0404	-11752,7	4	Е
404	YDL122W	UBP1	0,0000	0,0013	-11731,2	4	Е
405	YAL040C	CLN3	0,0035	0,0335	-11723,2	4	Е
406	YJL149W	DAS1	0,0055	0,0439	-11676,9	4	Е
407	YDR067C	OCA6	0,0018	0,0219	-11665,6	4	Е
408	YBR214W	SDS24	0,0001	0,0039	-11658,9	4	Е
409	YPR170C	YPR170C	0,0039	0,0357	-11641,7	4	Е
410	YPR114W	YPR114W	0,0022	0,0255	-11580,6	4	Е
411	YBL051C	PIN4	0,0013	0,0180	-11527,3	4	Е
412	YBR010W	HHT1	0,0006	0,0117	-11482,8	4	Е
413	YDR108W	TRS85	0,0034	0,0329	-11454,2	4	Е
414	YGR164W	YGR164W	0,0010	0,0159	-11431,1	4	Е
415	YDL190C	UFD2	0,0014	0,0191	-11424,6	4	Е
416	YEL015W	EDC3	0,0013	0,0180	-11359,3	4	E
417	YNL170W	YNL170W	0,0014	0,0191	-11354,5	4	E
418	YKL103C	APE1	0,0011	0,0163	-11341	4	Е
419	YNR074C	AIF1	0,0000	0,0026	-11294,4	4	Е
420	YEL043W	YEL043W	0,0002	0,0066	-11238,3	4	E
421	YBL075C	SSA3	0,0009	0,0154	-11231,2	4	E
422	YIL005W	EPS1	0,0004	0,0101	-11223,2	4	E
423	YJR062C	NTA1	0,0013	0,0181	-11155,6	4	E
424	YOL088C	MPD2	0,0023	0,0259	-11125,1	4	E
425	YPR119W	CLB2	0,0062	0,0473	-11121,1	28	E
426	YKR036C	CAF4	0,0010	0,0160	-11112,2	4	E
427	YER167W	BCK2	0,0037	0,0347	-11079,5	4	E

428	YLR093C	NYV1	0,0054	0,0435	-10966,1	4	Е
429	YOR070C	GYP1	0,0010	0,0162	-10826	4	E
430	YLR177W	YLR177W	0,0020	0,0235	-10824,7	4	E
431	YFL025C	BST1	0,0016	0,0205	-10787,4	4	E
432	YJR096W	YJR096W	0,0046	0,0401	-10764,3	4	Е
433	YEL013W	VAC8	0,0000	0,0026	-10757,1	4	Е
434	YER088C	DOT6	0,0049	0,0410	-10749	4	Е
435	YIL029C	YIL029C	0,0030	0,0305	-10746,2	4	Е
436	YGR166W	TRS65	0,0003	0,0076	-10731,7	4	E
437	YNL167C	SKO1	0,0034	0,0327	-10714,8	4	E
438	YOR197W	MCA1	0,0020	0,0235	-10671,5	4	E
439	YLR334C	YLR334C	0,0064	0,0482	-10655,8	4	E
440	YLR433C	CNA1	0,0030	0,0306	-10637,4	4	E
441	YLR257W	YLR257W	0,0046	0,0401	-10619	4	E
442	YCR010C	ADY2	0,0050	0,0413	-10611,9	4	E
443	YJL138C	TIF2	0,0017	0,0211	-10607,9	4	E
444	YCR076C	FUB1	0,0055	0,0441	-10527	4	E
445	YCR102W-A	YCR102W-A	0,0003	0,0072	-10495,9	4	E
446	YKL033W-A	YKL033W-A	0,0012	0,0171	-10462,1	4	E
447	YNR049C	MSO1	0,0003	0,0085	-10419,2	4	E
448	YCR011C	ADP1	0,0003	0,0076	-10411,7	4	E
449	YOR121C	YOR121C	0,0013	0,0179	-10397,9	4	E
450	YOR371C	GPB1	0,0061	0,0469	-10328	4	E
451	YPR030W	CSR2	0,0056	0,0443	-10327,4	4	E
452	YBR288C	APM3	0,0030	0,0304	-10321,5	4	E
453	YFR025C	HIS2	0,0032	0,0319	-10317,8	4	E
454	YOL004W	SIN3	0,0011	0,0165	-10294,1	4	E
455	YJR007W	SUI2	0,0017	0,0214	-10288,3	4	E
456	YKR027W	BCH2	0,0002	0,0071	-10278,9	4	E
457	YLR168C	UPS2	0,0033	0,0321	-10258,6	4	E
458	YBR171W	SEC66	0,0040	0,0362	-10253,1	4	E
459	YCL032W	STE50	0,0003	0,0086	-10186,7	4	Е
460	YKL063C	YKL063C	0,0015	0,0196	-10177,2	4	Е
461	YOR161C	PNS1	0,0035	0,0335	-10146,8	4	Е
462	YCR020C-A	MAK31	0,0006	0,0123	-10142,5	4	E
463	YOR280C	FSH3	0,0038	0,0350	-10124,7	4	Е
464	YDL085W	NDE2	0,0038	0,0352	-10117,2	4	E
465	YBR151W	APD1	0,0064	0,0480	-10103	4	E
466	YKR016W	MIC60	0,0018	0,0220	-10095,1	4	E
467	YBR122C	MRPL36	0,0004	0,0094	-10088	4	E
468	YEL004W	YEA4	0,0058	0,0457	-10072	4	E
469	YBR033W	EDS1	0,0054	0,0438	-10053,9	4	E
470	YFL003C	MSH4	0,0004	0,0094	-10040,7	4	E
471	YLL019C	KNS1	0,0011	0,0164	-10011,8	28	E
472	YKL007W	CAP1	0,0049	0,0410	-9911,44	4	E
473	YDR474C	YDR474C	0,0008	0,0142	-9887,49	4	E

474	YKR001C	VPS1	0,0049	0,0410	-9878,54	4	Е
475	YMR165C	PAH1	0,0002	0,0068	-9874,8	4	Е
476	YBR158W	AMN1	0,0050	0,0417	-9812,17	4	Е
477	YLR191W	PEX13	0,0003	0,0080	-9787,08	4	Е
478	YLR104W	LCL2	0,0006	0,0119	-9762,65	4	Е
479	YOR325W	YOR325W	0,0020	0,0236	-9710,5	4	Е
480	YLR144C	ACF2	0,0002	0,0068	-9688,99	4	Е
481	YER120W	SCS2	0,0012	0,0171	-9685,18	4	Е
482	YLR233C	EST1	0,0013	0,0183	-9684,65	28	E
483	YLR064W	PER33	0,0025	0,0268	-9658,05	4	Е
484	YAL008W	FUN14	0,0041	0,0363	-9637,18	4	Е
485	YLR050C	YLR050C	0,0063	0,0476	-9606,63	4	E
486	YDR139C	RUB1	0,0060	0,0466	-9599,14	4	E
487	YBL101C	ECM21	0,0004	0,0098	-9574,11	4	E
488	YJR126C	VPS70	0,0031	0,0310	-9398,97	4	E
489	YGL151W	NUT1	0,0063	0,0476	-9357,33	4	Е
490	YBR052C	RFS1	0,0018	0,0218	-9347,17	4	E
491	YLR319C	BUD6	0,0060	0,0467	-9318,47	4	E
492	YKR097W	PCK1	0,0007	0,0126	-9259,88	4	Е
493	YNL094W	APP1	0,0041	0,0369	-9200,8	4	Е
494	YOR173W	DCS2	0,0041	0,0364	-9173,56	4	E
495	YJR050W	ISY1	0,0023	0,0259	-9164,34	4	Е
496	YIR003W	AIM21	0,0008	0,0133	-9141,96	4	Е
497	YER155C	BEM2	0,0056	0,0446	-9124,76	4	Е
498	YOR233W	KIN4	0,0064	0,0479	-8991,63	4	Е
499	YLR390W	ECM19	0,0033	0,0319	-8974,08	4	E
500	YGR264C	MES1	0,0031	0,0309	-8945,8	4	Е
501	YIL017C	VID28	0,0065	0,0485	-8942,37	4	Е
502	YJL196C	ELO1	0,0032	0,0318	-8941,64	4	Е
503	YKR026C	GCN3	0,0013	0,0180	-8887,04	4	Е
504	YIL115C	NUP159	0,0006	0,0123	-8835,01	4	Е
505	YKL094W	YJU3	0,0018	0,0219	-8763,87	4	Е
506	YBR072W	HSP26	0,0052	0,0424	-8745,14	4	E
507	YDL066W	IDP1	0,0061	0,0471	-8732,41	4	E
508	YKR092C	SRP40	0,0005	0,0113	-8709,84	4	E
509	YDR051C	DET1	0,0002	0,0068	-8651,73	4	E
510	YLR385C	SWC7	0,0007	0,0129	-8613,93	4	E
511	YOR155C	ISN1	0,0007	0,0132	-8582,93	4	E
512	YBR181C	RPS6B	0,0045	0,0394	-8575,6	4	E
513	YJL190C	RPS22A	0,0040	0,0362	-8567,24	4	E
514	YDL142C	CRD1	0,0031	0,0310	-8492,56	4	E
515	YJL094C	KHA1	0,0022	0,0254	-8446,74	28	E
516	YER093C-A	AIM11	0,0029	0,0302	-8427,38	4	E
517	YKL184W	SPE1	0,0029	0,0301	-8401,73	4	Е
518	YER101C	AST2	0,0007	0,0130	-8330,73	4	Е
519	YAL068C	PAU8	0,0037	0,0347	-8251,85	4	Е

520	YOR284W	HUA2	0,0061	0,0471	-8250,32	4	Е
521	YBR148W	YSW1	0,0045	0,0398	-8243,94	4	Е
522	YLR137W	RKM5	0,0047	0,0404	-8225,45	4	Е
523	YDL110C	TMA17	0,0038	0,0350	-8167,97	4	E
524	YDL137W	ARF2	0,0032	0,0316	-8080,55	4	Е
525	YER175C	TMT1	0,0054	0,0438	-8077,39	4	E
526	YBR164C	ARL1	0,0006	0,0116	-8066,31	4	Е
527	YKR095W	MLP1	0,0012	0,0171	-8055,56	4	Е
528	YMR275C	BUL1	0,0047	0,0404	-7962,52	4	Е
529	YIL161W	YIL161W	0,0057	0,0451	-7857,74	4	Е
530	YFL036W	RPO41	0,0060	0,0466	-7815,2	4	E
531	YKL115C	YKL115C	0,0005	0,0103	-7781,98	4	E
532	YLL012W	YEH1	0,0010	0,0162	-7673,96	4	E
533	YBR230C	OM14	0,0046	0,0401	-7527,38	4	Е
534	YKL068W	NUP100	0,0016	0,0207	-7508,49	4	E
535	YDR496C	PUF6	0,0009	0,0156	-7431,5	28	E
536	YGR210C	YGR210C	0,0005	0,0111	-7286,42	4	Е
537	YJL153C	INO1	0,0020	0,0235	-7216,46	4	E
538	YKL198C	PTK1	0,0020	0,0235	-7157,79	28	Е
539	YCL062W	YCL062W	0,0034	0,0325	-7123,9	4	E
540	YDR528W	HLR1	0,0016	0,0201	-7052,36	4	Е
541	YDR126W	SWF1	0,0026	0,0280	-7047,88	4	E
542	YKL217W	JEN1	0,0022	0,0254	-7024,08	4	Е
543	YDR515W	SLF1	0,0065	0,0485	-7009,67	4	Е
544	YBR189W	RPS9B	0,0002	0,0072	-6999,74	4	Е
545	YKL221W	MCH2	0,0058	0,0453	-6987,76	4	E
546	YDL018C	ERP3	0,0046	0,0401	-6924,16	4	Е
547	YDR058C	TGL2	0,0066	0,0487	-6849,99	4	Е
548	YDR289C	RTT103	0,0010	0,0162	-6669,64	4	Е
549	YJR110W	YMR1	0,0038	0,0352	-6557,43	4	Е
550	YGL127C	SOH1	0,0058	0,0453	-6459,66	4	Е
551	YDR286C	YDR286C	0,0025	0,0272	-6405,56	4	Е
552	YKL206C	ADD66	0,0009	0,0150	-6376,7	4	E
553	YEL001C	IRC22	0,0061	0,0471	-6274,65	4	E
554	YHR124W	NDT80	0,0065	0,0485	-6127,33	4	Е
555	YNL011C	YNL011C	0,0032	0,0316	-5847,59	28	Е
556	YHR016C	YSC84	0,0026	0,0274	-5791,06	4	E
557	YIR013C	GAT4	0,0037	0,0343	-5746,89	4	E
558	YJR119C	JHD2	0,0010	0,0162	-5745,99	4	E
559	YNL329C	PEX6	0,0051	0,0420	-5662,33	4	E
560	YCL029C	BIK1	0,0068	0,0498	-5654,88	4	E
561	YGR085C	RPL11B	0,0016	0,0207	-5555,76	4	E
562	YJR083C	ACF4	0,0060	0,0466	-5101,03	4	E
563	YNL097C	PHO23	0,0046	0,0399	-4641,69	4	E
564	YDR029W	YDR029W	0,0047	0,0404	-4590,47	4	Е
565	YLL007C	YLL007C	0,0052	0,0425	-4524,7	4	E

566 YK	L129C	MYO3	0,0031	0,0310	-4317,22	4	E
567 YJF	R015W	YJR015W	0,0056	0,0444	-4299,9	4	E
568 YD	R164C	SEC1	0,0002	0,0052	-4059,14	4	E
569 YP	L218W	SAR1	0,0063	0,0477	-2797,04	4	E
570 YP	R133C	SPN1	0,0004	0,0102	-2527,57	4	Е
571 YIL	.011W	TIR3	0,0001	0,0047	-1700,69	4	Е
572 YF	R005C	SAD1	0,0023	0,0259	-895,093	4	Е
573 YD	R415C	YDR415C	0,0012	0,0176	6367,65	4	S
574 YB	R139W	YBR139W	0,0026	0,0274	6630,17	4	S
575 YM	L030W	RCF1	0,0016	0,0201	6849,7	28	S
576 YP	L068C	YPL068C	0,0063	0,0477	7254,92	4	S
577 YJF	R010C-A	SPC1	0,0003	0,0072	7494,05	4	S
578 YB	R221C	PDB1	0,0038	0,0352	7570,24	4	S
579 YK	L109W	HAP4	0,0027	0,0286	7692,03	28	S
580 YK	R005C	YKR005C	0,0033	0,0319	7754,77	4	S
581 YN	L125C	ESBP6	0,0006	0,0115	8214,77	28	S
582 YD	L136W	RPL35B	0,0021	0,0238	8237,35	4	S
583 YLI	R021W	IRC25	0,0019	0,0226	8354,62	4	S
584 YD	L134C-A	YDL134C-A	0,0029	0,0302	8712,18	4	S
585 YD	L091C	UBX3	0,0026	0,0278	8924,26	4	S
586 YG	L152C	YGL152C	0,0024	0,0264	9366,9	4	S
587 YP	L100W	ATG21	0,0011	0,0168	9430,67	4	S
588 YK	L083W	YKL083W	0,0040	0,0360	9604,11	4	S
589 YP	R191W	QCR2	0,0014	0,0191	9613,22	4	S
590 YB	L097W	BRN1	0,0036	0,0339	9892,78	4	S
591 YB	R258C	SHG1	0,0011	0,0165	10290,6	4	S
592 YN	L166C	BNI5	0,0050	0,0417	10858,7	4	S
593 YE	R140W	EMP65	0,0005	0,0102	10879,6	4	S
594 YK	R047W	YKR047W	0,0041	0,0364	10901	4	S
595 YJI	_214W	НХТ8	0,0013	0,0181	10910,1	4	S
596 YB	R103W	SIF2	0,0066	0,0487	11348,4	4	S
597 YLI	R143W	DPH6	0,0046	0,0401	11511,5	4	S
598 YN	L052W	COX5A	0,0067	0,0491	11531,7	4	S
599 YK	R028W	SAP190	0,0063	0,0477	11864	4	S
600 YO	R186W	YOR186W	0,0015	0,0193	12116,2	4	S
601 YIL	.156W	UBP7	0,0013	0,0179	12121	4	S
602 YN	L233W	BNI4	0,0011	0,0165	12368,2	4	S
603 YD	L217C	TIM22	0,0004	0,0095	12391,5	4	S
604 YLI	R316C	TAD3	0,0062	0,0473	12513,5	4	S
605 YG	R178C	PBP1	0,0003	0,0076	12592,9	4	S
606 YP	R074C	TKL1	0,0012	0,0176	12757	4	S
607 YP	L001W	HAT1	0,0001	0,0031	13000,1	28	S
608 YK	L031W	YKL031W	0,0054	0,0435	13121,3	4	S
609 YN	L253W	TEX1	0,0047	0,0401	13284,6	4	S
610 YK	L191W	DPH2	0,0008	0,0141	13721,3	4	S
611 YG	R192C	TDH3	0,0060	0,0463	14770,8	4	S

612	YKR099W	BAS1	0,0001	0,0039	14887,4	4	S
613	YFL022C	FRS2	0,0007	0,0131	15148,4	4	S
614	YIL103W	DPH1	0,0001	0,0034	15413,3	4	S
615	YLR422W	YLR422W	0,0033	0,0320	15561,9	4	S
616	YPL139C	UME1	0,0059	0,0457	15634,4	4	S
617	YAR002W	NUP60	0,0011	0,0168	16492,5	4	S
618	YOR384W	FRE5	0,0063	0,0476	17481,6	4	S
619	YDR378C	LSM6	0,0007	0,0129	17701,8	4	S
620	YHR017W	YSC83	0,0052	0,0424	17794,6	4	S
621	YOR027W	STI1	0,0000	0,0005	17818,2	4	S
622	YOL067C	RTG1	0,0005	0,0103	18261,9	4	S
623	YDR520C	URC2	0,0022	0,0249	18285,3	4	S
624	YLR136C	TIS11	0,0056	0,0446	18575,3	4	S
625	YFL002C	SPB4	0,0001	0,0034	18641,5	4	S
626	YFL006W	YFL006W	0,0037	0,0347	18853	4	S
627	YKL205W	LOS1	0,0015	0,0200	19112,5	4	S
628	YOR249C	APC5	0,0010	0,0163	19134,9	4	S
629	YGL011C	SCL1	0,0049	0,0410	19531,5	4	S
630	YNL140C	YNL140C	0,0003	0,0078	19600,3	4	S
631	YNL016W	PUB1	0,0000	0,0019	19987,3	4	S
632	YJR097W	JJJ3	0,0003	0,0077	20012,5	4	S
633	YGL094C	PAN2	0,0004	0,0095	20042,3	4	S
634	YJR043C	POL32	0,0000	0,0022	20457,1	4	S
635	YIL097W	FYV10	0,0059	0,0457	20530	4	S
636	YDR431W	YDR431W	0,0039	0,0352	20921	4	S
637	YBR273C	UBX7	0,0005	0,0111	22777,8	4	S
638	YML095C	RAD10	0,0039	0,0356	22885,4	4	S
639	YGR027C	RPS25A	0,0001	0,0036	23314,7	4	S
640	YDR315C	IPK1	0,0004	0,0091	25070,4	4	S
641	YJL157C	FAR1	0,0013	0,0184	25202,5	4	S
642	YNL292W	PUS4	0,0007	0,0124	25454,5	4	S
643	YLR055C	SPT8	0,0030	0,0304	25576,4	4	S
644	YOR344C	TYE7	0,0000	0,0026	25628,8	4	S
645	YLR262C-A	TMA7	0,0048	0,0404	26635,5	4	S
646	YDL165W	CDC36	0,0031	0,0311	27476,3	4	S
647	YLR436C	ECM30	0,0016	0,0207	27501,9	4	S
648	YMR316W	DIA1	0,0024	0,0264	28196,9	4	S
649	YLR338W	OPI9	0,0067	0,0495	29466,9	4	S
650	YDR257C	RKM4	0,0023	0,0258	29839,8	4	S
651	YML018C	YML018C	0,0040	0,0359	30046,2	4	S
652	YOR315W	SFG1	0,0052	0,0424	30540,7	4	S
653	YCR062W	YCR062W	0,0017	0,0208	31638	4	S
654	YGL036W	YGL036W	0,0007	0,0129	32628,6	4	S
655	YKL032C	IXR1	0,0006	0,0123	33298,7	4	S
656	YPL194W	DDC1	0,0001	0,0043	33936	4	S
657	YLR289W	GUF1	0,0007	0,0131	34576,7	4	S

658	YPL182C	YPL182C	0,0009	0,0158	34747,6	4	S
659	YMR207C	HFA1	0,0009	0,0159	34829,6	4	S
660	YMR111C	YMR111C	0,0034	0,0327	34858,6	4	S
661	YBR274W	CHK1	0,0000	0,0000	34864,9	28	S
662	YER173W	RAD24	0,0000	0,0000	34980,9	28	S
663	YOR026W	BUB3	0,0000	0,0001	35694,1	4	S
664	YOR368W	RAD17	0,0000	0,0000	37278,2	28	S
665	YBL079W	NUP170	0,0030	0,0304	38597,3	4	S
666	YJR011C	YJR011C	0,0002	0,0052	39025,2	4	S
667	YPL181W	CTI6	0,0009	0,0155	39849,1	4	S
668	YNL064C	YDJ1	0,0002	0,0052	40151,8	4	S
669	YDR376W	ARH1	0,0006	0,0122	40898,8	4	S
670	YDR006C	SOK1	0,0000	0,0003	40980,4	4	S
671	YBR206W	YBR206W	0,0048	0,0404	41217,3	4	S
672	YOR193W	PEX27	0,0024	0,0264	42548,6	4	S
673	YLR381W	CTF3	0,0000	0,0010	43732,4	4	S
674	YDR217C	RAD9	0,0000	0,0000	44615,3	28	S
675	YIR002C	MPH1	0,0000	0,0008	45750,3	4	S
676	YCR079W	PTC6	0,0000	0,0003	48276,8	4	S
677	YCR077C	PAT1	0,0000	0,0010	49618,9	4	S
678	YNL198C	YNL198C	0,0005	0,0109	50443,3	4	S
679	YDR209C	YDR209C	0,0000	0,0015	52231,3	4	S
680	YDR335W	MSN5	0,0000	0,0011	53585,6	4	S
681	YJL124C	LSM1	0,0005	0,0102	60245,1	4	S
682	YNL199C	GCR2	0,0000	0,0003	61902,4	4	S
683	YOR327C	SNC2	0,0000	0,0009	64015,5	4	S
684	YHR151C	MTC6	0,0003	0,0072	65480,3	4	S
685	YML016C	PPZ1	0,0003	0,0089	68308,4	4	S
686	YLL002W	RTT109	0,0015	0,0196	74522,7	4	S
687	YER112W	LSM4	0,0016	0,0205	81127,5	4	S
688	YHR178W	STB5	0,0033	0,0319	82917,4	4	S
689	YBR267W	REI1	0,0006	0,0119	85739,8	4	S
690	YER008C	SEC3	0,0015	0,0193	93128,4	4	S
691	YKR024C	DBP7	0,0020	0,0235	96306,8	4	S
692	YKL121W	DGR2	0,0011	0,0169	97550,9	4	S
693	YAR019C	CDC15	0,0006	0,0123	100082	4	S
694	YLR407W	YLR407W	0,0000	0,0003	105421	4	S
695	YAL033W	POP5	0,0005	0,0103	117003	4	S
696	YKL006W	RPL14A	0,0001	0,0033	123711	4	S
697	YIL040W	APQ12	0,0000	0,0026	129214	4	S
698	YHR005C-A	TIM10	0,0000	0,0011	132653	4	S
699	YKL069W	YKL069W	0,0004	0,0091	152024	4	S
700	YJR145C	RPS4A	0,0001	0,0035	162701	4	S
701	YHL015W	RPS20	0,0000	0,0010	167119	4	S
702	YGR092W	DBF2	0,0000	0,0005	254871	4	S

Appendix G. 308 genes selected for W303 SGA

Light grey cells – genes identified in S288C SGA as "enhancers" of $dna2\Delta$ (E). Dark grey cells – genes identified in S288C SGA as "suppressors" of $dna2\Delta$ (S). No-color cells – not identified as "suppressor" or "enhancer" of $dna2\Delta$ in S288C SGA. In the group of 308 were some DAmP alleles; W303 library did not contain the DAmP collection and these genes could not be tested. Therefore in the end of this table are 28 genes chosen for further testing (no DAmP alleles). 308 genes were chosen based on: i) the fact that gene deletion was a strong enhancer/suppressor in $dna2\Delta$ pCAN1-URA3-DNA2 S288C SGA, ii) the gene belongs to the lab list of interesting genes, so called "Golden List", iii) the gene was studied/mentioned in one of chosen publications. Each gene affiliation to any of indicated groups is marked as "X" in a table below.

No.	ORF	Gene	Tested or to be tested /Interesting	Eva's Golden list	Median normalised	Telomere related genes (gr.1)	Nuclear telomere cap. cplx (gr.4)	Strong. Enhancers of cdc13-1 (gr.15)	Strong. Suppress. of cdc13-1 (gr.16)	DAmP Long telomeres (gr.21)	Long telomeres Kupiec (gr.22)	DAmP short telomeres (gr.26)	Accelerated senescence (gr.5)	Normal senescence (gr.7)	(Budd et al., 2005)	(Poli et al., 2016)	(Hustedt et al., 2015)	(Hoffman et al., 2015)	(Eriksson et al., 2012)	(Saka et al., 2016)
1	YML102W	CAC2																		Х
2	YMR027W	YMR027W																		Х
3	YGL243W	TAD1																		Х
4	YNL021W	HDA1	Х																	Х
5	YNL099C	OCA1															Х			Х
6	YLR446W	YLR446W																		Х
7	YML121W	GTR1		Χ					Χ											
8	YBR088C	POL30	Х								Х									
9	YOR191W	RIS1	Х	Χ																
10	YML007W	YAP1						Х												
11	YFL013C	IES1	Х														Х			
12	YER092W	IES5	Х													Х	Х			Х
13	YMR216C	SKY1		Х																
14	YLR119W	SRN2		Х					Х											
15	YMR073C	IRC21	Х	Х				Х									Х			
16	YLR234W	TOP3	Х												Х					
17	YNL206C	RTT106	Х																Х	Х
18	YDL002C	NHP10	Х	Х												Х	Х			Х
19	YOR039W	CKB2		Х					Х											Х
20	YFR010W	UBP6							Χ											
21	YBR057C	MUM2		Х					Х											
22	YER164W	CHD1	Х														Х			
23	YGL212W	VAM7		Х					Х											Х
24	YDR007W	TRP1																		Х
25	YCL010C	SGF29															Х			Х
26	YJL047C	RTT101	Х										Х				Χ			Χ

27	VDI 242W/	LEA1					1			1	Х		Х					1		
27	YPL213W	YNR005C	-						Х		^		^							
28	YNR005C	CSG2		· ·					^											
29	YBR036C			Х				1			· ·									
30	YLR337C	VRP1		.,							Х									Х
31	YLR384C	IKI3		Х				Х												
32	YJL092W	SRS2		Х				Х							Х	Х				Х
33	YDR260C	SWM1						Х								Х	Х			Х
34	YGL042C	YGL042C						Χ												
35	YER116C	SLX8	Х										Χ		Χ		Χ			Х
36	YLR102C	APC9						Χ												
37	YMR078C	CTF18		Х				Χ					Х		Х					Х
38	YBR082C	UBC4		Х					Х						Х					Х
39	YML028W	TSA1	Х		Х								Χ							Х
40	YOR033C	EXO1	Х	Х	Х	Х			Х					Х	Х		Х			
41	YKL213C	DOA1		Х					Х							Х	Х			Х
42	YNL250W	RAD50	Х	Х	Х	Х						Х			Х					Х
43	YDR510W	SMT3	+							Х										
44	YAL002W	VPS8							Х											
		TEL1	Х	Х		Х			^			Х	Х			Х				Х
45	YBL088C	HTZ1	X	_^	-	<u> </u>		1	-				_^			X	Х		Х	<u> </u>
46	YOL012C	CPA2	 ^		~		 	-		-	-					^	^		^	$\vdash \vdash \vdash$
47	YJR109C			· ·	Х		1	· ·									\ <u>'</u>			$\vdash\vdash\vdash$
48	YDR075W	PPH3	1	Х			 	Х		<u> </u>	L.,						X	<u> </u>		
49	YDR174W	HMO1	_					 			Х		Х				Х			Х
50	YFL023W	BUD27					<u> </u>	<u> </u>	Х							Х	Х			
51	YGL244W	RTF1						Х					Х		Х	Х	Х			Х
52	YMR038C	CCS1		Х				<u> </u>												Х
53	YKL110C	KTI12		Х				Χ									Χ			
54	YDR121W	DPB4						Χ												Х
55	YPL101W	ELP4						Х									Х			
56	YDR244W	PEX5		Х																
57	YDL074C	BRE1			Х										Х	Х	Х			Х
58	YPR108W	RPN7										Х								
59	YLR372W	SUR4		Х					Х								Х			
60	YMR224C	MRE11	X	X	Х	Х						Х	Х		Х		Х			
		NUP188														Х	X			
61	YML103C	YLR317W														^	^			
62	YLR317W	RPL22A							· ·	Х										
63	YLR061W								Х		.,									
64	YKR059W	TIF1						<u> </u>			Х									
65	YBR275C	RIF1	X	Х		Х	Х	Х												Х
66	YGR200C	ELP2		Х				Х												Χ
67	YER095W	RAD51		Х				Х												
68	YKR020W	VPS51							Х											
69	YEL033W	MTC7										Х				Χ	Χ			
70	YPR040W	TIP41		Х				Х												
71	YPL157W	TGS1						L			Х							L		LT
72	YDR173C	ARG82									Х									Х
73	YPL102C	YPL102C						Х												
74	YDL163W	YDL163W								Х										
75	YDR076W	RAD55		Х									Х							
76	YAL013W	DEP1					1	Х												
77	YLL039C	UBI4	Х				1			 	 						Х			Х
78	YDR034C	LYS14	<u> </u>				1													$\stackrel{ o}{\vdash}$
	YML032C	RAD52		Х	Х			 					Х		Х		Х			Х
79		APN1	-	X		-		1	-		_	-	_^			-				-
80	YKL114C	:::MRC1	-	X			-	~		 	Х				~		~	-		X
81	YCL060C		-		-	-		Х	,,			-	-		Х	-	Х			Х
82	YDR128W	MTC5	-	X	-	-	-		Х			-	-			-				$\vdash\vdash$
83	YJL095W	BCK1	-	Х			<u> </u>	Х		<u> </u>	<u> </u>									<u> </u>
84	YLR039C	RIC1	X					 	X											X
85	YPR044C	OPI11					<u> </u>		Х											Х
86	YPR051W	MAK3		Х				Х			Х			Х						Х
87	YOR080W	DIA2		Х													Х			Χ
88	YPL008W	CHL1		Х				Х										L		Х
89	YDR083W	RRP8									Х		Х							
90	YDR269C	YDR269C																		
91	YKR074W	AIM29						Х												
92	YOR382W	FIT2			Х		1													
52		_			<u> </u>		1	<u> </u>												ш

93	YPR050C	YPR050C					Х											
94	YER177W	BMH1		Х				Х					Х		Х			
95	YPR119W	CLB2		Х	Х		Х										Х	
	YFL025C	BST1		X				Х										Х
97	YJL138C	TIF2								Х								
98	YCR020C-A	MAK31					Х			X								
99	YLL019C	KNS1			Х													
		PAH1						Х										
100	YMR165C YER120W	SCS2		Х				X										-
		EST1		X		Х	Х	^			Х							-
102	YLR233C YER155C	BEM2		^		^	X											Х
103		VID28					^	Х										^
104	YIL017C	HSP26					Х	^										
105	YBR072W	RPO41		Х			^	Х										
106	YFL036W	PUF6		^	Х			^								Х		
107	YDR496C	RTT103	Х		^		Х							Х		^		Х
108	YDR289C	RPL11B	^				^	Х						^				X
	YGR085C	PHO23		Х				^						Х				
110	YNL097C	SPN1		^										^				
111	YPR133C								X									
112	YFR005C	SAD1 RCF1			~				Х									
113	YML030W	SPC1	~		Х								 			 		
114	YJR010C-A		Χ		V	-	-	-					-			-	-	
115	YNL125C	ESBP6	V		Х	-	-	-					-			-	-	
116	YDL136W	RPL35B	Χ															
117	YNL166C	BNI5																X
118	YBR103W	SIF2					\ <u>\</u>											Х
119	YLR143W	DPH6	.,				Х											
120	YNL052W	COX5A	Χ															
121	YKR028W	SAP190													Х	Х		
	YNL233W	BNI4																Х
123	YGR178C	PBP1		.,											Х	Х		
124	YPR074C	TKL1		Х				Х										
125	YPL001W	HAT1			Х		Х											
126	YKL191W	DPH2					Χ											Х
127	YKR099W	BAS1		X				Х										
128	YIL103W	DPH1		Χ			Х											
129	YPL139C	UME1					Х											
	YAR002W	NUP60													Х	Х		
131	YDR378C	LSM6	Х												Х	Х		
132	YOR027W	STI1		Х			Х											
133	YOR249C	APC5	Χ															
	YGL011C	SCL1	Х															
	YNL016W	PUB1								Х								
	YJR097W	JJJ3					Х											<u> </u>
	YGL094C	PAN2		Χ		<u> </u>	Х	<u> </u>									<u> </u>	Х
-	YJR043C	POL32	Χ	Χ			Х					Х						<u> </u>
	YIL097W	FYV10						Х										Х
		UBX7						Х										<u> </u>
	YML095C	RAD10	Х															Х
		RPS25A	Х															<u> </u>
-	YDR315C	IPK1						Х								<u> </u>		<u> </u>
	YLR055C	SPT8					 									Х		<u> </u>
	YOR344C	TYE7		Χ														
	YLR262C-A	TMA7	Х			<u> </u>	<u> </u>	<u> </u>									<u> </u>	<u> </u>
	YDL165W	CDC36							Х						Х	Х		<u> </u>
	YMR316W	DIA1	X															<u> </u>
	YDR257C	RKM4	Х															<u> </u>
	YML018C	YML018C	X															<u> </u>
	YKL032C	IXR1	X															
	YPL194W	DDC1	X	Χ		Х		Х					Х			Х		
	YLR289W	GUF1	X															
154	YPL182C	YPL182C	X															
	YMR207C	HFA1	Х															
	YMR111C	YMR111C	X										<u> </u>					
157	YBR274W	CHK1	X	X	X	X		X					X					
158	YER173W	RAD24	Χ	Χ	Χ	Χ		Χ					Χ					Х

150	YOR026W	BUB3	Х		Х		I		1	l		1		Х	Х		Х
159		RAD17	X	Х	X	Х			Х				Х	^	^		^
160	YOR368W	NUP170		^	^	^			^				^	Х	Х		
161	YBL079W	CTI6	Х											^	^		
162	YPL181W	YDJ1	^					Х						Х	Х		Х
163	YNL064C	ARH1	Х					^						^	^		^
164	YDR376W	SOK1	^						Х								
165	YDR006C	YBR206W	Х						^								-
166 167		CTF3	Х														
	YDR217C	RAD9	X	Х	Х	Х			Х				Χ	Х	Х		-
168		MPH1	X	X					X					X	X		-
169 170	YCR079W	PTC6	X														-
171	YCR077C	PAT1	<u> </u>					Х									-
172	YNL198C	YNL198C						^									Х
173	YDR209C	YDR209C	Х														
		MSN5						Х						Х	Х		Х
174		LSM1	Х					X						X	X		X
175	YJL124C	GCR2															X
176	YNL199C	MTC6	Х														X
177	YHR151C	RTT109	X							-		Х			Х	Х	X
178	YLL002W	LSM4	X							-		^			^	^	 ^
179		STB5	X														
180	YHR178W	REI1	X				-		Х								Х
181	YBR267W	SEC3	X														 ^
182	YER008C	DBP7	X							-							Х
183	YKR024C	DGR2	X				-										X
184		CDC15	X				-										<u> </u>
185		YLR407W	X														-
186	YLR407W	POP5															-
187	YAL033W	RPL14A	X														
188	YKL006W													~			
189	YIL040W	APQ12 TIM10	X											Х			
190	YHR005C-A	YKL069W	X														-
191	YKL069W	RPS4A	X														-
192	YJR145C	RPS20	_ ^							Х							
193	YHL015W	DBF2	X														
194	YGR092W	SLA1							Х			Х					
195		HMT1		X				Х	^			^					
196	YBR034C YCR073W-	LIMILI						^									
197	A	SOL2		Х						Х							
198	YCR095C	OCA4		Х													
199	YDL056W	MBP1		Х											Χ	Х	
200	YDL130W	RPP1B		Х													
201	YDL236W	PHO13		Х				Х									
202	YDR004W	RAD57		Х								Χ					Х
203	YDR080W	VPS41		Х					Х								
204	YDR099W	BMH2		Х									Х				
205	YDR143C	SAN1		Х					Х								Х
206	YDR206W	EBS1		Х		Х			Х				Χ				
207	YDR310C	SUM1		Х								Χ					
208	YDR369C	XRS2		Х		Х		Х			Χ	Х		Χ	Χ		Х
209	YGL078C	DBP3		Х					Х								
210	YGL163C	RAD54		Х				Х				Χ					
211	YGL167C	PMR1		Х											Х		
212	YGL173C	XRN1		Х					Χ			Χ					Х
213	YGL213C	SKI8		Х					Χ						Х		
214	YGR072W	UPF3	Х	Х		Χ			Χ			Χ			Х		
215	YGR123C	PPT1		Х				Х							Х		
216	YGR187C	HGH1		Х				Х									
217		NMD2	Х	Х		Х			Χ			Χ			Х		Х
218	YHR111W	UBA4		Х				Х							Х		
219	YHR154W	RTT107		Х								Х			Χ		Х
220	YHR162W	MPC2		Х													Х
221		FKH1		Х				Х									Х
222	YIL149C	MLP2		Х						Х					Х		
223		POT1	Х	Х					Х								

		DDE4		V	ı —		ı .		1	1	ı .		ı .					1		
224	YJL121C	RPE1 UBP12		X														V		
225	YJL197W	NUC1																Х		
226	YJL208C			X																
227	YJR001W	AVT1		Х																
228	YJR014W	TMA22		Х					Х											
229	YJR025C	BNA1		Х																Х
230	YJR074W	MOG1		Х																Х
231	YKL176C	LST4		Х					Х											Х
232	YLL026W	HSP104		Χ				Χ												
233	YLR172C	DPH5		Х				Χ												
234	YLR262C	YPT6		Х					Х											
235	YLR376C	PSY3		Х													Χ			
236	YLR398C	SKI2		Х													Χ			
237	YLR410W	VIP1		Х					Х											Х
238	YLR418C	CDC73	Х	Х				Х					Х			Х	Х			Х
239	YLR453C	RIF2	Х	Х		Х	Х		Х											Х
240	YML061C	PIF1	X	X																
241	YMR039C	SUB1		X					Х											
		CSM3		X				Х						Х						Х
242	YMR048W	BUB2	Х	X				X						^	Х		Х			\vdash
243	YMR055C	NAM7			-	~	-	^	~	 	 	~	~		^			 		
244	YMR080C		X	X	-	X	-	V	Х	-	-	X	Х				Х	-		<u> </u>
245	YMR106C	YKU80	X	X		Х		Х	<u> </u>	<u> </u>	<u> </u>	Х					.,	<u> </u>		<u> </u>
246	YMR190C	SGS1	Х	Х									Х				Х			Х
247	YMR219W	ESC1		Х											Х					<u> </u>
248	YMR263W	SAP30		Х													Х			Х
249	YMR284W	YKU70	Х	Х		Х		Х				Х					Х			
250	YNL068C	FKH2	Х	Χ				Χ												Х
251	YNL106C	INP52		Х				Χ												
252	YNL241C	ZWF1		Χ																
253	YOR123C	LEO1		Х				Х							Χ		Χ			
254	YOR144C	ELG1	Х	Х				Х			Х		Х			Х	Χ			Х
255	YOR202W	HIS3		Х										Χ	Х					
256	YOR279C	RFM1		Х									Х					Х		Х
257	YPL086C	ELP3		Х				Х												
258	YPL127C	HHO1		X															Х	
259	YPL172C	COX10		X																Х
		SPE3		X																X
260	YPR069C	CLB5		X				Х							Х					X
261	YPR120C	CTF4		X				X							^					X
262	YPR135W							^	\ \											├^
263	YDR080W	VPS41		X					X						Χ					L.,
264	YBL047C	EDE1		Х					Х				Х							Х
265	YCL016C	DCC1		Х				Х					Х				Х			Х
266	YDL101C	DUN1	Х	Х																Х
267	YDR372C	VPS74		Х																
268	YER020W	GPA2		Χ					Χ											
269	YGL058W	RAD6		Х											Х					Х
270	YGL086W	MAD1		Х											Х		Х			<u> </u>
271	YIL008W	URM1		Х				Х								Χ	Χ			
272	YIL009C-A	EST3	Х	Х		Х		Х				Х								Х
273	YIL153W	RRD1		Х				Х									Х			
274	YJR040W	GEF1		Х																Х
275	YKL113C	RAD27	Х	Х									Х				Х			Х
276	YKL139W	CTK1		Х											Х		Х			
277	YKR070W	YKR070W		X																
278	YLR085C	ARP6		X														Х		
	YNL153C	GIM3		X	 		 	Х	 	 	 		 					<u> </u>		Х
279	YPL178W	CBC2	 	X					-	-	-	 	-					-		X
280	YPL178W YJL115W	ASF1		^	-		-		-	-	-		Х		~		~	-	~	X
281			_										^		X		Х		Х	
282	YLR113W	HOG1	Х	-	-	V	-		-	-	-		-		X			-		~
283	YHR031C	RRM3		<u> </u>		Х			<u> </u>	<u> </u>	<u> </u>		.,		X			<u> </u>		X
284	YLR320W	MMS22											Х		X					Х
285	YDL013W	SLX5													Χ		Х			Х
286	YNL102W	POL1	Х								Х				Х					
287	YIR008C	PRI1	Х							Х					Χ					
288	YDL102W	POL3	Х								Х				Х					<u> </u>
289	YAR007C	RPA1	Х		L		L								Х					L
				_							_		_			_				

290	YGL175C	SAE2				1				1	1		Х		Χ		
291	YDL164C	CDC9											X				
	YPL153C	RAD53	Х										Х				
293	YBR279W	PAF1											Х				Х
293	YMR075W	RCO1	Х											Х	Х		
295	YNL215W	IES2	X											X	X		Х
295	YLR015W	BRE2	^											X	X		X
	YMR179W	SPT21									Х			X	X		X
297	YPL055C	LGE1									^			X	X		X
298	YOL006C	TOP1												X	X		X
299 300	YLR318W	EST2			Х					Х				X			
	YDL042C	SIR2				Х				^							Х
301	YLR442C	SIR3				X											
302	YDR227W	SIR4				X											
303		TEN1				X			Х								
	YLR010C	RAP1				X			X								
	YNL216W	CDC13				X		Х	_^	-	-		-				
	YDL220C	STN1				X		X									-
307	YDR082W	TEL2				X		^									-
308	YGR099W	HAP4				^											-
1	YKL109W	IRC25															
2	YLR021W	UBX3															
3	YDL091C	ATG21															
4	YPL100W																
5	YPR191W	QCR2 SHG1															
6	YBR258C	HXT8															
7	YJL214W																
8	YIL156W	UBP7															
9	YNL253W	TEX1 TDH3															-
10	YGR192C	FRE5															
11	YOR384W																
12	YOL067C	RTG1															
13	YDR520C	URC2 TIS11				-				-	-						
14	YLR136C	LOS1				-				-	-						
15	YKL205W	FAR1															
16	YJL157C	PUS4															
	YNL292W	TYE7															
18	YOR344C	ECM30															
19	YLR436C								-				-				<u> </u>
20	YLR338W	OPI9															
21	YOR315W	SFG1							-				-				<u> </u>
22	YOR193W	PEX27 SNC2															
23	YOR327C								-				-				-
24	YML016C	PPZ1							-				-				-
25	YOR140W	SFL1															\vdash
26	YNR006W	VPS27															<u> </u>
27	YDR293C	SSD1				<u> </u>			<u> </u>	<u> </u>	<u> </u>		<u> </u>				
28	YLR176C	RFX1	1		l		1		l			l	l	l			

References

- ABBOTT, A. 2015. Researchers pin down risks of low-dose radiation. *Nature*, 523, 17-8.
- ADDINALL, S. G., DOWNEY, M., YU, M., ZUBKO, M. K., DEWAR, J., LEAKE, A., HALLINAN, J., SHAW, O., JAMES, K., WILKINSON, D. J., WIPAT, A., DUROCHER, D. & LYDALL, D. 2008. A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. *Genetics*, 180, 2251-66.
- ADDINALL, S. G., HOLSTEIN, E. M., LAWLESS, C., YU, M., CHAPMAN, K., BANKS, A. P., NGO, H. P., MARINGELE, L., TASCHUK, M., YOUNG, A., CIESIOLKA, A., LISTER, A. L., WIPAT, A., WILKINSON, D. J. & LYDALL, D. 2011. Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. *PLoS Genet*, 7, e1001362.
- AHMAD, M. & BUSSEY, H. 1986. Yeast arginine permease: nucleotide sequence of the CAN1 gene. *Curr Genet,* 10, 587-92.
- ALLSOPP, R. C., CHANG, E., KASHEFI-AAZAM, M., ROGAEV, E. I., PIATYSZEK, M. A., SHAY, J. W. & HARLEY, C. B. 1995. Telomere shortening is associated with cell division in vitro and in vivo. *Exp Cell Res*, 220, 194-200.
- ALVARO, D., LISBY, M. & ROTHSTEIN, R. 2007. Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. *PLoS Genet*, 3, e228.
- ANBALAGAN, S., BONETTI, D., LUCCHINI, G. & LONGHESE, M. P. 2011. Rif1 supports the function of the CST complex in yeast telomere capping. *PLoS Genet*, 7, e1002024.
- ASKREE, S. H., YEHUDA, T., SMOLIKOV, S., GUREVICH, R., HAWK, J., COKER, C., KRAUSKOPF, A., KUPIEC, M. & MCEACHERN, M. J. 2004. A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. *Proc Natl Acad Sci U S A,* 101, 8658-63.
- AYYAGARI, R., GOMES, X. V., GORDENIN, D. A. & BURGERS, P. M. 2003. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. *J Biol Chem*, 278, 1618-25.
- BAE, K. H., KIM, H. S., BAE, S. H., KANG, H. Y., BRILL, S. & SEO, Y. S. 2003. Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. *Nucleic Acids Res*, 31, 3006-15.
- BAE, S. H., BAE, K. H., KIM, J. A. & SEO, Y. S. 2001a. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. *Nature*, 412, 456-61.
- BAE, S. H., KIM, J. A., CHOI, E., LEE, K. H., KANG, H. Y., KIM, H. D., KIM, J. H., BAE, K. H., CHO, Y., PARK, C. & SEO, Y. S. 2001b. Tripartite structure of

- Saccharomyces cerevisiae Dna2 helicase/endonuclease. *Nucleic Acids Res*, 29, 3069-79.
- BAE, S. H. & SEO, Y. S. 2000. Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. *J Biol Chem*, 275, 38022-31.
- BALESTRINI, A., RISTIC, D., DIONNE, I., LIU, X. Z., WYMAN, C., WELLINGER, R. J. & PETRINI, J. H. 2013. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks. *Cell Rep*, 3, 2033-45.
- BAMBARA, R. A., MURANTE, R. S. & HENRICKSEN, L. A. 1997. Enzymes and reactions at the eukaryotic DNA replication fork. *J Biol Chem*, 272, 4647-50.
- BANDARIA, J. N., QIN, P., BERK, V., CHU, S. & YILDIZ, A. 2016. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin. *Cell*, 164, 735-46.
- BARDIN, A. J., BOSELLI, M. G. & AMON, A. 2003. Mitotic exit regulation through distinct domains within the protein kinase Cdc15. *Mol Cell Biol*, 23, 5018-30.
- BELL, S. P. & LABIB, K. 2016. Chromosome Duplication in Saccharomyces cerevisiae. *Genetics*, 203, 1027-67.
- BENNETT, R. J., FORCHE, A. & BERMAN, J. 2014. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. *Cold Spring Harb Perspect Med*, 4.
- BERRY, D. B. & GASCH, A. P. 2008. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. *Mol Biol Cell*, 19, 4580-7.
- BERRY, D. B., GUAN, Q., HOSE, J., HAROON, S., GEBBIA, M., HEISLER, L. E., NISLOW, C., GIAEVER, G. & GASCH, A. P. 2011. Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. *PLoS Genet*, 7, e1002353.
- BHATIA-DEY, N., KANHERKAR, R. R., STAIR, S. E., MAKAREV, E. O. & CSOKA, A. B. 2016. Cellular Senescence as the Causal Nexus of Aging. *Front Genet*, 7, 13.
- BIANCHI, A. & SHORE, D. 2008. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. *Mol Cell*, 31, 153-65.
- BINZ, S. K., SHEEHAN, A. M. & WOLD, M. S. 2004. Replication protein A phosphorylation and the cellular response to DNA damage. *DNA Repair* (Amst), 3, 1015-24.
- BLASCO, M. A. 2007. The epigenetic regulation of mammalian telomeres. *Nat Rev Genet*, 8, 299-309.
- BLASTYAK, A., PINTER, L., UNK, I., PRAKASH, L., PRAKASH, S. & HARACSKA, L. 2007. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. *Mol Cell*, 28, 167-75.

- BLOW, J. J. & LASKEY, R. A. 1988. A role for the nuclear envelope in controlling DNA replication within the cell cycle. *Nature*, 332, 546-8.
- BOITEUX, S. & JINKS-ROBERTSON, S. 2013. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae. *Genetics*, 193, 1025-64.
- BOOS, D., SANCHEZ-PULIDO, L., RAPPAS, M., PEARL, L. H., OLIVER, A. W., PONTING, C. P. & DIFFLEY, J. F. 2011. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. *Curr Biol*, 21, 1152-7.
- BOTSTEIN, D. & FINK, G. R. 2011. Yeast: an experimental organism for 21st Century biology. *Genetics*, 189, 695-704.
- BOULTON, S. J. & JACKSON, S. P. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. *Nucleic Acids Res.* 24, 4639-48.
- BRODERICK, R., NIEMINUSZCZY, J., BLACKFORD, A. N., WINCZURA, A. & NIEDZWIEDZ, W. 2015. TOPBP1 recruits TOP2A to ultra-fine anaphase bridges to aid in their resolution. *Nat Commun*, 6, 6572.
- BROOKS, M. & DUMAS, L. B. 1989. DNA primase isolated from the yeast DNA primase-DNA polymerase complex. Immunoaffinity purification and analysis of RNA primer synthesis. *J Biol Chem*, 264, 3602-10.
- BUDD, M. E., ANTOSHECHKIN, I. A., REIS, C., WOLD, B. J. & CAMPBELL, J. L. 2011. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint. *Cell Cycle*, 10, 1690-8.
- BUDD, M. E. & CAMPBELL, J. L. 2000. The pattern of sensitivity of yeast dna2 mutants to DNA damaging agents suggests a role in DSB and postreplication repair pathways. *Mutat Res*, 459, 173-86.
- BUDD, M. E., CHOE, W. C. & CAMPBELL, J. L. 1995. DNA2 encodes a DNA helicase essential for replication of eukaryotic chromosomes. *J Biol Chem*, 270, 26766-9.
- BUDD, M. E., REIS, C. C., SMITH, S., MYUNG, K. & CAMPBELL, J. L. 2006. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. *Mol Cell Biol*, 26, 2490-500.
- BUDD, M. E., TONG, A. H., POLACZEK, P., PENG, X., BOONE, C. & CAMPBELL, J. L. 2005. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. *PLoS Genet*, 1, e61.
- BUFFENSTEIN, R., EDREY, Y. H., YANG, T. & MELE, J. 2008. The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. *Age (Dordr)*, 30, 99-109.
- BURGERS, P. M. 2009. Polymerase dynamics at the eukaryotic DNA replication fork. *J Biol Chem*, 284, 4041-5.

- CAL-BAKOWSKA, M., LITWIN, I., BOCER, T., WYSOCKI, R. & DZIADKOWIEC, D. 2011. The Swi2-Snf2-like protein Uls1 is involved in replication stress response. *Nucleic Acids Res*, 39, 8765-77.
- CALABRESE, E. 2010. Hormesis: Once Marginalized, Evidence Now Supports Hormesis as the Most Fundamental Dose Response. *In:* MATTSON, M. P., CALABRESE, E. J. (ed.) *Hormesis: A Revolution in Biology, Toxicology and Medicine.* New York: Humana Press.
- CALABRESE, E. J. 2004. Hormesis: a revolution in toxicology, risk assessment and medicine. *EMBO Rep*, 5 Spec No, S37-40.
- CALABRESE, E. J., BACHMANN, K. A., BAILER, A. J., BOLGER, P. M., BORAK, J., CAI, L., CEDERGREEN, N., CHERIAN, M. G., CHIUEH, C. C., CLARKSON, T. W., COOK, R. R., DIAMOND, D. M., DOOLITTLE, D. J., DORATO, M. A., DUKE, S. O., FEINENDEGEN, L., GARDNER, D. E., HART, R. W., HASTINGS, K. L., HAYES, A. W., HOFFMANN, G. R., IVES, J. A., JAWOROWSKI, Z., JOHNSON, T. E., JONAS, W. B., KAMINSKI, N. E., KELLER, J. G., KLAUNIG, J. E., KNUDSEN, T. B., KOZUMBO, W. J., LETTIERI, T., LIU, S. Z., MAISSEU, A., MAYNARD, K. I., MASORO, E. J., MCCLELLAN, R. O., MEHENDALE, H. M., MOTHERSILL, C., NEWLIN, D. B., NIGG, H. N., OEHME, F. W., PHALEN, R. F., PHILBERT, M. A., RATTAN, S. I., RIVIERE, J. E., RODRICKS, J., SAPOLSKY, R. M., SCOTT, B. R., SEYMOUR, C., SINCLAIR, D. A., SMITH-SONNEBORN, J., SNOW, E. T., SPEAR, L., STEVENSON, D. E., THOMAS, Y., TUBIANA, M., WILLIAMS, G. M. & MATTSON, M. P. 2007. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol, 222, 122-8.
- CALABRESE, E. J. & BALDWIN, L. A. 2003. Hormesis: the dose-response revolution. *Annu Rev Pharmacol Toxicol*, 43, 175-97.
- CALABRESE, E. J., SHAMOUN, D. Y. & HANEKAMP, J. C. 2015. Cancer risk assessment: Optimizing human health through linear dose-response models. *Food Chem Toxicol*, 81, 137-40.
- CANNAVO, E. & CEJKA, P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. *Nature*, 514, 122-5.
- CARLILE, C. M., PICKART, C. M., MATUNIS, M. J. & COHEN, R. E. 2009. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. *J Biol Chem*, 284, 29326-34.
- CARNEIRO, M. C., HENRIQUES, C. M., NABAIS, J., FERREIRA, T., CARVALHO, T. & FERREIRA, M. G. 2016. Short Telomeres in Key Tissues Initiate Local and Systemic Aging in Zebrafish. *PLoS Genet*, 12, e1005798.
- CESARE, A. J. & REDDEL, R. R. 2010. Alternative lengthening of telomeres: models, mechanisms and implications. *Nat Rev Genet*, 11, 319-30.
- CHAI, W., ZHENG, L. & SHEN, B. 2013. DNA2, a new player in telomere maintenance and tumor suppression. *Cell Cycle*, 12, 1985-6.

- CHANDRA, A., HUGHES, T. R., NUGENT, C. I. & LUNDBLAD, V. 2001. Cdc13 both positively and negatively regulates telomere replication. *Genes Dev,* 15, 404-14.
- CHANG, D. J. & CIMPRICH, K. A. 2009. DNA damage tolerance: when it's OK to make mistakes. *Nat Chem Biol*, 5, 82-90.
- CHASMAN, D., HO, Y. H., BERRY, D. B., NEMEC, C. M., MACGILVRAY, M. E., HOSE, J., MERRILL, A. E., LEE, M. V., WILL, J. L., COON, J. J., ANSARI, A. Z., CRAVEN, M. & GASCH, A. P. 2014. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. *Mol Syst Biol*, 10, 759.
- CHEN, L. Y. & LINGNER, J. 2013. CST for the grand finale of telomere replication. *Nucleus*, 4, 277-82.
- CHENG, X., DUNAWAY, S. & IVESSA, A. S. 2007. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. *Mitochondrion*, 7, 211-22.
- CHI, P., KWON, Y., VISNAPUU, M. L., LAM, I., SANTA MARIA, S. R., ZHENG, X., EPSHTEIN, A., GREENE, E. C., SUNG, P. & KLEIN, H. L. 2011. Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors. *Nucleic Acids Res*, 39, 6511-22.
- CHOE, W., BUDD, M., IMAMURA, O., HOOPES, L. & CAMPBELL, J. L. 2002. Dynamic localization of an Okazaki fragment processing protein suggests a novel role in telomere replication. *Mol Cell Biol*, 22, 4202-17.
- CHOI, K. M., KWON, Y. Y. & LEE, C. K. 2013. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. *Exp Gerontol*, 48, 1455-68.
- CHRISTMANN, M. & KAINA, B. 2013. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. *Nucleic Acids Res*, 41, 8403-20.
- CHURIKOV, D., CORDA, Y., LUCIANO, P. & GELI, V. 2013. Cdc13 at a crossroads of telomerase action. *Front Oncol*, 3, 39.
- CLERICI, M., MANTIERO, D., GUERINI, I., LUCCHINI, G. & LONGHESE, M. P. 2008. The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. *EMBO Rep,* 9, 810-8.
- CONCONI, A., PAQUETTE, M., FAHY, D., BESPALOV, V. A. & SMERDON, M. J. 2005. Repair-independent chromatin assembly onto active ribosomal genes in yeast after UV irradiation. *Mol Cell Biol*, 25, 9773-83.
- COPE, C. L., GILLEY, R., BALMANNO, K., SALE, M. J., HOWARTH, K. D., HAMPSON, M., SMITH, P. D., GUICHARD, S. M. & COOK, S. J. 2014. Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. *J Cell Sci*, 127, 788-800.

- COPPE, J. P., DESPREZ, P. Y., KRTOLICA, A. & CAMPISI, J. 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. *Annu Rev Pathol*, 5, 99-118.
- COSGROVE, A. J., NIEDUSZYNSKI, C. A. & DONALDSON, A. D. 2002. Ku complex controls the replication time of DNA in telomere regions. *Genes Dev,* 16, 2485-90.
- COSTANTINI, D., METCALFE, N. B. & MONAGHAN, P. 2010. Ecological processes in a hormetic framework. *Ecol Lett*, 13, 1435-47.
- COSTANTINI, D., MONAGHAN, P. & METCALFE, N. B. 2014. Prior hormetic priming is costly under environmental mismatch. *Biol Lett*, 10, 20131010.
- D'ADDA DI FAGAGNA, F., REAPER, P. M., CLAY-FARRACE, L., FIEGLER, H., CARR, P., VON ZGLINICKI, T., SARETZKI, G., CARTER, N. P. & JACKSON, S. P. 2003. A DNA damage checkpoint response in telomere-initiated senescence. *Nature*, 426, 194-8.
- D'AMOURS, D. & JACKSON, S. P. 2002. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. *Nat Rev Mol Cell Biol*, 3, 317-27.
- DALEY, J. M., PALMBOS, P. L., WU, D. & WILSON, T. E. 2005. Nonhomologous end joining in yeast. *Annu Rev Genet*, 39, 431-51.
- DAVIES, A. A., NEISS, A. & ULRICH, H. D. 2010. Ubiquitylation of the 9-1-1 checkpoint clamp is independent of rad6-rad18 and DNA damage. *Cell*, 141, 1080-7.
- DE LANGE, T. 2009. How telomeres solve the end-protection problem. *Science*, 326, 948-52.
- DE MAGALHAES, J. P. 2004. From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing. *Exp Cell Res*, 300, 1-10.
- DE NADAL, E., AMMERER, G. & POSAS, F. 2011. Controlling gene expression in response to stress. *Nat Rev Genet*, 12, 833-45.
- DEWAR, J. M. & LYDALL, D. 2010a. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. *EMBO J*, 29, 4020-34.
- DEWAR, J. M. & LYDALL, D. 2010b. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. *Embo Journal*, 29, 4020-4034.
- DEWAR, J. M. & LYDALL, D. 2012a. Similarities and differences between "uncapped" telomeres and DNA double-strand breaks. *Chromosoma*, 121, 117-30.
- DEWAR, J. M. & LYDALL, D. 2012b. Simple, non-radioactive measurement of single-stranded DNA at telomeric, sub-telomeric, and genomic loci in budding yeast. *Methods Mol Biol*, 920, 341-8.

- DI DOMENICO, E. G., AURICHE, C., VISCARDI, V., LONGHESE, M. P., GILSON, E. & ASCENZIONI, F. 2009. The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions. *DNA Repair (Amst)*, 8, 209-18.
- DOUGLAS, H. 2008. Science, hormesis and regulation. Hum Exp Toxicol, 27, 603-7.
- DUBARRY, M., LAWLESS, C., BANKS, A. P., COCKELL, S. & LYDALL, D. 2015. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases alpha, delta, and epsilon in Saccharomyces cerevisiae. *G3* (*Bethesda*), 5, 2187-97.
- DURAN, A. L., POTTER, P., WELLS, S., KIRKWOOD, T., VON ZGLINICKI, T., MCARDLE, A., SCUDAMORE, C., MENG, Q. J., DE HAAN, G., CORCORAN, A. & BELLANTUONO, I. 2013. Shared Ageing Research Models (ShARM): a new facility to support ageing research. *Biogerontology*, 14, 789-94.
- DUXIN, J. P., DAO, B., MARTINSSON, P., RAJALA, N., GUITTAT, L., CAMPBELL, J. L., SPELBRINK, J. N. & STEWART, S. A. 2009. Human Dna2 is a nuclear and mitochondrial DNA maintenance protein. *Mol Cell Biol*, 29, 4274-82.
- ECKERT-BOULET, N. & LISBY, M. 2010. Regulation of homologous recombination at telomeres in budding yeast. *FEBS Lett*, 584, 3696-702.
- ELFVING, N., CHEREJI, R. V., BHARATULA, V., BJORKLUND, S., MOROZOV, A. V. & BROACH, J. R. 2014. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. *Nucleic Acids Res*, 42, 5468-82.
- ELLISON, V. & STILLMAN, B. 2003. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. *PLoS Biol*, 1, E33.
- ERIKSSON, P. R., GANGULI, D., NAGARAJAVEL, V. & CLARK, D. J. 2012. Regulation of histone gene expression in budding yeast. *Genetics*, 191, 7-20.
- ERMOLAEVA, M. A., SEGREF, A., DAKHOVNIK, A., OU, H. L., SCHNEIDER, J. I., UTERMOHLEN, O., HOPPE, T. & SCHUMACHER, B. 2013. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. *Nature*. 501, 416-20.
- FALCK, J., COATES, J. & JACKSON, S. P. 2005. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. *Nature*, 434, 605-11.
- FELDMANN, H. & WINNACKER, E. L. 1993. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. *J Biol Chem,* 268, 12895-900.
- FELL, V. L. & SCHILD-POULTER, C. 2015. The Ku heterodimer: function in DNA repair and beyond. *Mutat Res Rev Mutat Res*, 763, 15-29.
- FINN, K., LOWNDES, N. F. & GRENON, M. 2012. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. *Cell Mol Life Sci*, 69, 1447-73.

- FOIANI, M., LUCCHINI, G. & PLEVANI, P. 1997. The DNA polymerase alphaprimase complex couples DNA replication, cell-cycle progression and DNAdamage response. *Trends Biochem Sci*, 22, 424-7.
- FOSTER, S. S., ZUBKO, M. K., GUILLARD, S. & LYDALL, D. 2006. MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants. *DNA Repair (Amst)*, 5, 840-51.
- FOURY, F. & LAHAYE, A. 1987. Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. *EMBO J*, 6, 1441-9.
- FUKUNAGA, K., KWON, Y., SUNG, P. & SUGIMOTO, K. 2011. Activation of protein kinase Tel1 through recognition of protein-bound DNA ends. *Mol Cell Biol*, 31, 1959-71.
- FULDA, S., GORMAN, A. M., HORI, O. & SAMALI, A. 2010. Cellular stress responses: cell survival and cell death. *Int J Cell Biol*, 2010, 214074.
- FUMAGALLI, M., ROSSIELLO, F., CLERICI, M., BAROZZI, S., CITTARO, D., KAPLUNOV, J. M., BUCCI, G., DOBREVA, M., MATTI, V., BEAUSEJOUR, C. M., HERBIG, U., LONGHESE, M. P. & D'ADDA DI FAGAGNA, F. 2012. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. *Nat Cell Biol*, 14, 355-65.
- GALANTY, Y., BELOTSERKOVSKAYA, R., COATES, J. & JACKSON, S. P. 2012. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. *Genes Dev*, 26, 1179-95.
- GARDNER, R., PUTNAM, C. W. & WEINERT, T. 1999. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. *EMBO J*, 18, 3173-85.
- GARDNER, R. G., NELSON, Z. W. & GOTTSCHLING, D. E. 2005. Degradation-mediated protein quality control in the nucleus. *Cell*, 120, 803-15.
- GARG, M., GURUNG, R. L., MANSOUBI, S., AHMED, J. O., DAVE, A., WATTS, F. Z. & BIANCHI, A. 2014. Tpz1TPP1 SUMOylation reveals evolutionary conservation of SUMO-dependent Stn1 telomere association. *EMBO Rep,* 15, 871-7.
- GARVIK, B., CARSON, M. & HARTWELL, L. 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. *Mol Cell Biol*, 15, 6128-38.
- GASCH, A. P. 2002. The Environmental Stress Response: a common yeast response to environmental stresses. *In:* HOHMANN, S. & MAGER, P. (eds.) *Yeast Stress Responses.* Topics in Current Genetics, Springer-Verlag Heidelberg.
- GASCH, A. P. 2007. Comparative genomics of the environmental stress response in ascomycete fungi. *Yeast*, 24, 961-76.
- GASCH, A. P., SPELLMAN, P. T., KAO, C. M., CARMEL-HAREL, O., EISEN, M. B., STORZ, G., BOTSTEIN, D. & BROWN, P. O. 2000. Genomic expression

- programs in the response of yeast cells to environmental changes. *Mol Biol Cell*, 11, 4241-57.
- GATBONTON, T., IMBESI, M., NELSON, M., AKEY, J. M., RUDERFER, D. M., KRUGLYAK, L., SIMON, J. A. & BEDALOV, A. 2006. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. *PLoS Genet*, 2, e35.
- GEORGESCU, R. E., LANGSTON, L., YAO, N. Y., YURIEVA, O., ZHANG, D., FINKELSTEIN, J., AGARWAL, T. & O'DONNELL, M. E. 2014. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. *Nat Struct Mol Biol*, 21, 664-70.
- GHOSAL, G. & MUNIYAPPA, K. 2005. Saccharomyces cerevisiae Mre11 is a highaffinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: implications for replication of telomeric DNA. *Nucleic Acids Res*, 33, 4692-703.
- GIBSON, D. G., YOUNG, L., CHUANG, R. Y., VENTER, J. C., HUTCHISON, C. A., 3RD & SMITH, H. O. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods*, 6, 343-5.
- GILBERT, C. S., GREEN, C. M. & LOWNDES, N. F. 2001. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. *Mol Cell*, 8, 129-36.
- GILSON, E., ROBERGE, M., GIRALDO, R., RHODES, D. & GASSER, S. M. 1993. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. *J Mol Biol*, 231, 293-310.
- GOFFEAU, A., BARRELL, B. G., BUSSEY, H., DAVIS, R. W., DUJON, B., FELDMANN, H., GALIBERT, F., HOHEISEL, J. D., JACQ, C., JOHNSTON, M., LOUIS, E. J., MEWES, H. W., MURAKAMI, Y., PHILIPPSEN, P., TETTELIN, H. & OLIVER, S. G. 1996. Life with 6000 genes. *Science*, 274, 546, 563-7.
- GRANDIN, N., DAMON, C. & CHARBONNEAU, M. 2001. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. *EMBO J*, 20, 1173-83.
- GRANDIN, N., REED, S. I. & CHARBONNEAU, M. 1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. *Genes Dev*, 11, 512-27.
- GREEN, C. M., ERDJUMENT-BROMAGE, H., TEMPST, P. & LOWNDES, N. F. 2000. A novel Rad24 checkpoint protein complex closely related to replication factor C. *Curr Biol*, 10, 39-42.
- GREENALL, A., LEI, G., SWAN, D. C., JAMES, K., WANG, L., PETERS, H., WIPAT, A., WILKINSON, D. J. & LYDALL, D. 2008. A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection. *Genome Biol*, 9, R146.
- GREIDER, C. W. 1996. Telomere length regulation. Annu Rev Biochem, 65, 337-65.

- GREIDER, C. W. & BLACKBURN, E. H. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. *Cell*, 43, 405-13.
- GUAN, Q., HAROON, S., BRAVO, D. G., WILL, J. L. & GASCH, A. P. 2012. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. *Genetics*, 192, 495-505.
- GUIROUILH-BARBAT, J., LAMBERT, S., BERTRAND, P. & LOPEZ, B. S. 2014. Is homologous recombination really an error-free process? *Front Genet, 5, 175*.
- HAENDELER, J., TISCHLER, V., HOFFMANN, J., ZEIHER, A. M. & DIMMELER, S. 2004. Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. *FEBS Lett*, 577, 427-33.
- HAHN, A., KILIAN, J., MOHRHOLZ, A., LADWIG, F., PESCHKE, F., DAUTEL, R., HARTER, K., BERENDZEN, K. W. & WANKE, D. 2013. Plant core environmental stress response genes are systemically coordinated during abiotic stresses. *Int J Mol Sci*, 14, 7617-41.
- HAN, J., ZHOU, H., HORAZDOVSKY, B., ZHANG, K., XU, R. M. & ZHANG, Z. 2007. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. *Science*, 315, 653-5.
- HANG, L. E., LIU, X., CHEUNG, I., YANG, Y. & ZHAO, X. 2011. SUMOylation regulates telomere length homeostasis by targeting Cdc13. *Nat Struct Mol Biol*, 18, 920-6.
- HARLEY, C. B., FUTCHER, A. B. & GREIDER, C. W. 1990. Telomeres shorten during ageing of human fibroblasts. *Nature*, 345, 458-60.
- HARPER, J. W. & ELLEDGE, S. J. 2007. The DNA damage response: ten years after. *Mol Cell*, 28, 739-45.
- HARRINGTON, J. J. & LIEBER, M. R. 1995. DNA structural elements required for FEN-1 binding. *J Biol Chem*, 270, 4503-8.
- HARTWELL, L. H. 2002. Nobel Lecture. Yeast and cancer. *Biosci Rep.*, 22, 373-94.
- HARTWELL, L. H., MORTIMER, R. K., CULOTTI, J. & CULOTTI, M. 1973. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. *Genetics*, 74, 267-86.
- HASS, E. P. & ZAPPULLA, D. C. 2015. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. *Elife*, 4.
- HAYFLICK, L. 1998. The clock of ages: Why we age, how we age, winding back the clock. *Gerontologist*, 38, 504-508.
- HIRAGA, S., ALVINO, G. M., CHANG, F., LIAN, H. Y., SRIDHAR, A., KUBOTA, T., BREWER, B. J., WEINREICH, M., RAGHURAMAN, M. K. & DONALDSON, A. D. 2014. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. *Genes Dev*, 28, 372-83.

- HOFFMAN, E. A., MCCULLEY, A., HAARER, B., ARNAK, R. & FENG, W. 2015. Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription. *Genome Res*, 25, 402-12.
- HOLSTEIN, E. M., CLARK, K. R. & LYDALL, D. 2014. Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. *Cell Rep, 7*, 1259-69.
- HONG, E. J. & ROEDER, G. S. 2002. A role for Ddc1 in signaling meiotic double-strand breaks at the pachytene checkpoint. *Genes Dev*, 16, 363-76.
- HU, J., SUN, L., SHEN, F., CHEN, Y., HUA, Y., LIU, Y., ZHANG, M., HU, Y., WANG, Q., XU, W., SUN, F., JI, J., MURRAY, J. M., CARR, A. M. & KONG, D. 2012. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. *Cell*, 149, 1221-32.
- HUGHES, T. R., WEILBAECHER, R. G., WALTERSCHEID, M. & LUNDBLAD, V. 2000. Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. *Proc Natl Acad Sci U S A*, 97, 6457-62.
- HUSTEDT, N., SEEBER, A., SACK, R., TSAI-PFLUGFELDER, M., BHULLAR, B., VLAMING, H., VAN LEEUWEN, F., GUENOLE, A., VAN ATTIKUM, H., SRIVAS, R., IDEKER, T., SHIMADA, K. & GASSER, S. M. 2015. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling. *Mol Cell*, 57, 273-89.
- IDE, S., SAKA, K. & KOBAYASHI, T. 2013. Rtt109 prevents hyper-amplification of ribosomal RNA genes through histone modification in budding yeast. *PLoS Genet*, 9, e1003410.
- ILVES, I., PETOJEVIC, T., PESAVENTO, J. J. & BOTCHAN, M. R. 2010. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. *Mol Cell*, 37, 247-58.
- IVANOV, E. L. & HABER, J. E. 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. *Mol Cell Biol*, 15, 2245-51.
- JASPERSEN, S. L. & MORGAN, D. O. 2000. Cdc14 activates cdc15 to promote mitotic exit in budding yeast. *Curr Biol*, 10, 615-8.
- JENKINS, N. L., MCCOLL, G. & LITHGOW, G. J. 2004. Fitness cost of extended lifespan in Caenorhabditis elegans. *Proc Biol Sci,* 271, 2523-6.
- JIA, X., WEINERT, T. & LYDALL, D. 2004. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. *Genetics*, 166, 753-64.
- JIANG, H., JU, Z. & RUDOLPH, K. L. 2007. Telomere shortening and ageing. *Z Gerontol Geriatr*, 40, 314-24.

- JIN, Y. H., AYYAGARI, R., RESNICK, M. A., GORDENIN, D. A. & BURGERS, P. M. 2003. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3'-5'-exonuclease activities of Pol delta in the creation of a ligatable nick. *J Biol Chem*, 278, 1626-33.
- JOHANSSON, E., GARG, P. & BURGERS, P. M. 2004. The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. *J Biol Chem*, 279, 1907-15.
- KADYK, L. C. & HARTWELL, L. H. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. *Genetics*, 132, 387-402.
- KAEBERLEIN, M., MCVEY, M. & GUARENTE, L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. *Genes Dev*, 13, 2570-80.
- KALIFA, L., QUINTANA, D. F., SCHIRALDI, L. K., PHADNIS, N., COLES, G. L., SIA, R. A. & SIA, E. A. 2012. Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae. *Genetics*, 190, 951-64.
- KANEMAKI, M. & LABIB, K. 2006. Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. *EMBO J*, 25, 1753-63.
- KANG, Y. H., KANG, M. J., KIM, J. H., LEE, C. H., CHO, I. T., HURWITZ, J. & SEO, Y. S. 2009. The MPH1 gene of Saccharomyces cerevisiae functions in Okazaki fragment processing. *J Biol Chem*, 284, 10376-86.
- KELLY, T. & OWUSU-APENTEN, R. K. 2015. Effect of methotrexate and tea polyphenols on the viability and oxidative stress in MDA-MB-231 breast cancer cells. *Journal of Applied Life Sciences International*, 2, 152-159.
- KIPLING, D. 1997. Telomere structure and telomerase expression during mouse development and tumorigenesis. *Eur J Cancer*, 33, 792-800.
- KIRKPATRICK, D. T. & PETES, T. D. 1997. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. *Nature*, 387, 929-31.
- KIRKWOOD, T. B. 2005. Understanding the odd science of aging. *Cell*, 120, 437-47.
- KOBAYASHI, T. 2011. How does genome instability affect lifespan?: roles of rDNA and telomeres. *Genes Cells*, 16, 617-24.
- KOSOY, A., CALONGE, T. M., OUTWIN, E. A. & O'CONNELL, M. J. 2007. Fission yeast Rnf4 homologs are required for DNA repair. *J Biol Chem*, 282, 20388-94.
- KOZAK, M. 1989. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. *Mol Cell Biol*, 9, 5073-80.
- KRAMARZ, K., LITWIN, I., CAL-BAKOWSKA, M., SZAKAL, B., BRANZEI, D., WYSOCKI, R. & DZIADKOWIEC, D. 2014. Swi2/Snf2-like protein Uls1

- functions in the Sgs1-dependent pathway of maintenance of rDNA stability and alleviation of replication stress. *DNA Repair (Amst)*, 21, 24-35.
- KUBOTA, T., NISHIMURA, K., KANEMAKI, M. T. & DONALDSON, A. D. 2013. The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. *Mol Cell*, 50, 273-80.
- KULTZ, D. 2005. Molecular and evolutionary basis of the cellular stress response. *Annu Rev Physiol*, 67, 225-57.
- KUMAR, S. & BURGERS, P. M. 2013. Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. *Genes Dev,* 27, 313-21.
- LADEROUTE, K. R. & WEBSTER, K. A. 1997. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. *Circ Res*, 80, 336-44.
- LANDER, E. S., LINTON, L. M., BIRREN, B., NUSBAUM, C., ZODY, M. C., BALDWIN, J., DEVON, K., DEWAR, K., DOYLE, M., FITZHUGH, W., FUNKE, R., GAGE, D., HARRIS, K., HEAFORD, A., HOWLAND, J., KANN, L., LEHOCZKY, J., LEVINE, R., MCEWAN, P., MCKERNAN, K., MELDRIM, J., MESIROV, J. P., MIRANDA, C., MORRIS, W., NAYLOR, J., RAYMOND, C., ROSETTI, M., SANTOS, R., SHERIDAN, A., SOUGNEZ, C., STANGE-THOMANN, N., STOJANOVIC, N., SUBRAMANIAN, A., WYMAN, D., ROGERS, J., SULSTON, J., AINSCOUGH, R., BECK, S., BENTLEY, D., BURTON, J., CLEE, C., CARTER, N., COULSON, A., DEADMAN, R., DELOUKAS, P., DUNHAM, A., DUNHAM, I., DURBIN, R., FRENCH, L., GRAFHAM, D., GREGORY, S., HUBBARD, T., HUMPHRAY, S., HUNT, A., JONES, M., LLOYD, C., MCMURRAY, A., MATTHEWS, L., MERCER, S., MILNE, S., MULLIKIN, J. C., MUNGALL, A., PLUMB, R., ROSS, M., SHOWNKEEN, R., SIMS, S., WATERSTON, R. H., WILSON, R. K., HILLIER, L. W., MCPHERSON, J. D., MARRA, M. A., MARDIS, E. R., FULTON, L. A., CHINWALLA, A. T., PEPIN, K. H., GISH, W. R., CHISSOE, S. L., WENDL, M. C., DELEHAUNTY, K. D., MINER, T. L., DELEHAUNTY, A., KRAMER, J. B., COOK, L. L., FULTON, R. S., JOHNSON, D. L., MINX, P. J., CLIFTON, S. W., HAWKINS, T., BRANSCOMB, E., PREDKI, P., RICHARDSON, P., WENNING, S., SLEZAK, T., DOGGETT, N., CHENG, J. F., OLSEN, A., LUCAS, S., ELKIN, C., UBERBACHER, E., FRAZIER, M., et al. 2001. Initial sequencing and analysis of the human genome. *Nature*, 409, 860-921.
- LARRIVEE, M. & WELLINGER, R. J. 2006. Telomerase- and capping-independent yeast survivors with alternate telomere states. *Nat Cell Biol*, 8, 741-7.
- LAZZARO, F., SAPOUNTZI, V., GRANATA, M., PELLICIOLI, A., VAZE, M., HABER, J. E., PLEVANI, P., LYDALL, D. & MUZI-FALCONI, M. 2008. Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. *EMBO J*, 27, 1502-12.
- LE BOURG, E. 2015. Fasting and other mild stresses with hormetic effects in Drosophila melanogaster can additively increase resistance to cold. *Biogerontology*, 16, 517-27.

- LEE, B. I. & WILSON, D. M., 3RD 1999. The RAD2 domain of human exonuclease 1 exhibits 5' to 3' exonuclease and flap structure-specific endonuclease activities. *J Biol Chem*, 274, 37763-9.
- LEE, C. H., LEE, M., KANG, H. J., KIM, D. H., KANG, Y. H., BAE, S. H. & SEO, Y. S. 2013. The N-terminal 45-kDa domain of Dna2 endonuclease/helicase targets the enzyme to secondary structure DNA. *J Biol Chem*, 288, 9468-81.
- LENDVAY, T. S., MORRIS, D. K., SAH, J., BALASUBRAMANIAN, B. & LUNDBLAD, V. 1996. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. *Genetics*, 144, 1399-412.
- LEONELLI, S. & ANKENY, R. A. 2013. What makes a model organism? *Endeavour*, 37, 209-12.
- LESCASSE, R., POBIEGA, S., CALLEBAUT, I. & MARCAND, S. 2013. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1. *EMBO J*, 32, 805-15.
- LEURAUD, K., RICHARDSON, D. B., CARDIS, E., DANIELS, R. D., GILLIES, M., O'HAGAN, J. A., HAMRA, G. B., HAYLOCK, R., LAURIER, D., MOISSONNIER, M., SCHUBAUER-BERIGAN, M. K., THIERRY-CHEF, I. & KESMINIENE, A. 2015. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. *Lancet Haematol*, 2, e276-e281.
- LEVIKOVA, M. & CEJKA, P. 2015. The Saccharomyces cerevisiae Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication. *Nucleic Acids Res*, 43, 7888-97.
- LEWIS, J. G., LEARMONTH, R. P. & WATSON, K. 1995. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. *Microbiology*, 141 (Pt 3), 687-94.
- LEWIS, L. K., STORICI, F., VAN KOMEN, S., CALERO, S., SUNG, P. & RESNICK, M. A. 2004. Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. *Genetics*, 166, 1701-13.
- LIN, J. J. & ZAKIAN, V. A. 1996. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. *Proc Natl Acad Sci U S A*, 93, 13760-5.
- LIN, W., SAMPATHI, S., DAI, H., LIU, C., ZHOU, M., HU, J., HUANG, Q., CAMPBELL, J., SHIN-YA, K., ZHENG, L., CHAI, W. & SHEN, B. 2013. Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. *EMBO J*, 32, 1425-39.
- LINGNER, J. & CECH, T. R. 1996. Purification of telomerase from Euplotes aediculatus: requirement of a primer 3' overhang. *Proc Natl Acad Sci U S A*, 93, 10712-7.

- LITI, G. 2015. The fascinating and secret wild life of the budding yeast S. cerevisiae. *Elife*. 4.
- LONG, Y., YAN, J., SONG, G., LI, X., LI, X., LI, Q. & CUI, Z. 2015. Transcriptional events co-regulated by hypoxia and cold stresses in Zebrafish larvae. *BMC Genomics*, 16, 385.
- LONGHESE, M. P., BONETTI, D., MANFRINI, N. & CLERICI, M. 2010. Mechanisms and regulation of DNA end resection. *EMBO J*, 29, 2864-74.
- LONGHESE, M. P., PACIOTTI, V., FRASCHINI, R., ZACCARINI, R., PLEVANI, P. & LUCCHINI, G. 1997. The novel DNA damage checkpoint protein ddc1p is phosphorylated periodically during the cell cycle and in response to DNA damage in budding yeast. *EMBO J*, 16, 5216-26.
- LONGTINE, M. S., MCKENZIE, A., 3RD, DEMARINI, D. J., SHAH, N. G., WACH, A., BRACHAT, A., PHILIPPSEN, P. & PRINGLE, J. R. 1998a. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. *Yeast*, 14, 953-61.
- LONGTINE, M. S., MCKENZIE, A., DEMARINI, D. J., SHAH, N. G., WACH, A., BRACHAT, A., PHILIPPSEN, P. & PRINGLE, J. R. 1998b. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. *Yeast*, 14, 953-961.
- LOPEZ-MAURY, L., MARGUERAT, S. & BAHLER, J. 2008. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. *Nat Rev Genet*, 9, 583-93.
- LOVETT, S. T. 2007. Polymerase switching in DNA replication. *Mol Cell*, 27, 523-6.
- LU, W., ZHANG, Y., LIU, D., SONGYANG, Z. & WAN, M. 2013. Telomeres-structure, function, and regulation. *Exp Cell Res*, 319, 133-41.
- LUNDBLAD, V. & BLACKBURN, E. H. 1993. An alternative pathway for yeast telomere maintenance rescues est1- senescence. *Cell*, 73, 347-60.
- LUNDBLAD, V. & SZOSTAK, J. W. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. *Cell*, 57, 633-43.
- LYDALL, D. 2003. Hiding at the ends of yeast chromosomes: telomeres, nucleases and checkpoint pathways. *J Cell Sci*, 116, 4057-65.
- LYDALL, D. 2009. Taming the tiger by the tail: modulation of DNA damage responses by telomeres. *EMBO J*, 28, 2174-87.
- LYDALL, D., NIKOLSKY, Y., BISHOP, D. K. & WEINERT, T. 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. *Nature*, 383, 840-3.
- LYDALL, D. & WEINERT, T. 1995. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. *Science*, 270, 1488-91.

- MAGA, G., VILLANI, G., TILLEMENT, V., STUCKI, M., LOCATELLI, G. A., FROUIN, I., SPADARI, S. & HUBSCHER, U. 2001. Okazaki fragment processing: modulation of the strand displacement activity of DNA polymerase delta by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1. *Proc Natl Acad Sci U S A*, 98, 14298-303.
- MAI, B. & BREEDEN, L. 1997. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. *Mol Cell Biol*, 17, 6491-501.
- MAILLET, L., GADEN, F., BREVET, V., FOUREL, G., MARTIN, S. G., DUBRANA, K., GASSER, S. M. & GILSON, E. 2001. Ku-deficient yeast strains exhibit alternative states of silencing competence. *EMBO Rep,* 2, 203-10.
- MAJKA, J., BINZ, S. K., WOLD, M. S. & BURGERS, P. M. 2006. Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions. *J Biol Chem*, 281, 27855-61.
- MAJKA, J. & BURGERS, P. M. 2003. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. *Proc Natl Acad Sci U S A*, 100, 2249-54.
- MAOZ, N., GABAY, O., WALDMAN BEN-ASHER, H. & COHEN, H. Y. 2015. The yeast forkhead HCM1 controls life span independent of calorie restriction. *J Gerontol A Biol Sci Med Sci*, 70, 444-53.
- MARINGELE, L. & LYDALL, D. 2002. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. *Genes Dev*, 16, 1919-33.
- MARINGELE, L. & LYDALL, D. 2004. EXO1 plays a role in generating type I and type II survivors in budding yeast. *Genetics*, 166, 1641-9.
- MARKIEWICZ-POTOCZNY, M. & LYDALL, D. 2016. Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast. *Cell Cycle*, 1-10.
- MARTIN, S. G., LAROCHE, T., SUKA, N., GRUNSTEIN, M. & GASSER, S. M. 1999. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. *Cell*, 97, 621-33.
- MARTINA, M., BONETTI, D., VILLA, M., LUCCHINI, G. & LONGHESE, M. P. 2014. Saccharomyces cerevisiae Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection. *EMBO Rep,* 15, 695-704.
- MARTINEZ-PASTOR, M. T., MARCHLER, G., SCHULLER, C., MARCHLER-BAUER, A., RUIS, H. & ESTRUCH, F. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). *EMBO J*, 15, 2227-35.
- MASUDA-SASA, T., IMAMURA, O. & CAMPBELL, J. L. 2006. Biochemical analysis of human Dna2. *Nucleic Acids Res*, 34, 1865-75.
- MATTSON, M. P. 2008. Hormesis defined. Ageing Res Rev. 7, 1-7.
- MCCARROLL, S. A., MURPHY, C. T., ZOU, S., PLETCHER, S. D., CHIN, C. S., JAN, Y. N., KENYON, C., BARGMANN, C. I. & LI, H. 2004. Comparing

- genomic expression patterns across species identifies shared transcriptional profile in aging. *Nat Genet*, 36, 197-204.
- MCISAAC, R. S., LEWIS, K. N., GIBNEY, P. A. & BUFFENSTEIN, R. 2016. From yeast to human: exploring the comparative biology of methionine restriction in extending eukaryotic life span. *Ann N Y Acad Sci*, 1363, 155-70.
- MILES, S., LI, L., DAVISON, J. & BREEDEN, L. L. 2013. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. *PLoS Genet*, 9, e1003854.
- MILISAV, I., POLJSAK, B. & SUPUT, D. 2012. Adaptive response, evidence of cross-resistance and its potential clinical use. *Int J Mol Sci*, 13, 10771-806.
- MIMITOU, E. P. & SYMINGTON, L. S. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. *Nature*, 455, 770-4.
- MIMITOU, E. P. & SYMINGTON, L. S. 2009. Nucleases and helicases take center stage in homologous recombination. *Trends Biochem Sci*, 34, 264-72.
- MIYABE, I., KUNKEL, T. A. & CARR, A. M. 2011. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. *PLoS Genet*, 7, e1002407.
- MIYAGAWA, K., LOW, R. S., SANTOSA, V., TSUJI, H., MOSER, B. A., FUJISAWA, S., HARLAND, J. L., RAGUIMOVA, O. N., GO, A., UENO, M., MATSUYAMA, A., YOSHIDA, M., NAKAMURA, T. M. & TANAKA, K. 2014. SUMOylation regulates telomere length by targeting the shelterin subunit Tpz1(Tpp1) to modulate shelterin-Stn1 interaction in fission yeast. *Proc Natl Acad Sci U S A*, 111, 5950-5.
- MIYAKE, Y., NAKAMURA, M., NABETANI, A., SHIMAMURA, S., TAMURA, M., YONEHARA, S., SAITO, M. & ISHIKAWA, F. 2009. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. *Mol Cell*, 36, 193-206.
- MIYOSHI, T., KANOH, J., SAITO, M. & ISHIKAWA, F. 2008. Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. *Science*, 320, 1341-4.
- MYUNG, K., CHEN, C. & KOLODNER, R. D. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. *Nature*, 411, 1073-6.
- NAUTIYAL, S., DERISI, J. L. & BLACKBURN, E. H. 2002. The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. *Proc Natl Acad Sci U S A*, 99, 9316-21.
- NAVADGI-PATIL, V. M. & BURGERS, P. M. 2009a. A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. *DNA Repair (Amst)*, 8, 996-1003.

- NAVADGI-PATIL, V. M. & BURGERS, P. M. 2009b. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. *Mol Cell*, 36, 743-53.
- NAVADGI-PATIL, V. M. & BURGERS, P. M. 2011. Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. *Biochem Soc Trans*, 39, 600-5.
- NAVADGI-PATIL, V. M., KUMAR, S. & BURGERS, P. M. 2011. The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint. *J Biol Chem*, 286, 40999-1007.
- NEGRINI, S., GORGOULIS, V. G. & HALAZONETIS, T. D. 2010. Genomic instabilityan evolving hallmark of cancer. *Nat Rev Mol Cell Biol*, 11, 220-8.
- NGO, G. H., BALAKRISHNAN, L., DUBARRY, M., CAMPBELL, J. L. & LYDALL, D. 2014. The 9-1-1 checkpoint clamp stimulates DNA resection by Dna2-Sgs1 and Exo1. *Nucleic Acids Res*, 42, 10516-28.
- NGO, G. H. & LYDALL, D. 2015. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. *Nucleic Acids Res*, 43, 5017-32.
- NGO, H. P. & LYDALL, D. 2010. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. *PLoS Genet*, 6, e1001072.
- NUGENT, C. I., HUGHES, T. R., LUE, N. F. & LUNDBLAD, V. 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. *Science*, 274, 249-52.
- OKAZAKI, R., OKAZAKI, T., SAKABE, K., SUGIMOTO, K. & SUGINO, A. 1968. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. *Proc Natl Acad Sci U S A*, 59, 598-605.
- OLOVNIKOV, A. M. 1973. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. *J Theor Biol*, 41, 181-90.
- PACIOTTI, V., CLERICI, M., LUCCHINI, G. & LONGHESE, M. P. 2000. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. *Genes Dev*, 14, 2046-59.
- PALM, W. & DE LANGE, T. 2008. How shelterin protects mammalian telomeres. *Annu Rev Genet*, 42, 301-34.
- PANOWSKI, S. H., WOLFF, S., AGUILANIU, H., DURIEUX, J. & DILLIN, A. 2007. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. *Nature*, 447, 550-5.
- PARDO, B. & MARCAND, S. 2005. Rap1 prevents telomere fusions by nonhomologous end joining. *EMBO J*, 24, 3117-27.

- PARENTEAU, J. & WELLINGER, R. J. 1999. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. *Mol Cell Biol*, 19, 4143-52.
- PASSOS, J. F., SARETZKI, G., AHMED, S., NELSON, G., RICHTER, T., PETERS, H., WAPPLER, I., BIRKET, M. J., HAROLD, G., SCHAEUBLE, K., BIRCHMACHIN, M. A., KIRKWOOD, T. B. & VON ZGLINICKI, T. 2007. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. *PLoS Biol*, 5, e110.
- PEAKE, J. M., MARKWORTH, J. F., NOSAKA, K., RAASTAD, T., WADLEY, G. D. & COFFEY, V. G. 2015. Modulating exercise-induced hormesis: Does less equal more? *J Appl Physiol* (1985), 119, 172-89.
- PENNOCK, E., BUCKLEY, K. & LUNDBLAD, V. 2001. Cdc13 delivers separate complexes to the telomere for end protection and replication. *Cell*, 104, 387-96.
- PERRY, M. C., DUFOUR, C. R., EICHNER, L. J., TSANG, D. W., DEBLOIS, G., MULLER, W. J. & GIGUERE, V. 2014. ERBB2 deficiency alters an E2F-1-dependent adaptive stress response and leads to cardiac dysfunction. *Mol Cell Biol*, 34, 4232-43.
- PETREACA, R. C., CHIU, H. C. & NUGENT, C. I. 2007. The role of Stn1p in Saccharomyces cerevisiae telomere capping can be separated from its interaction with Cdc13p. *Genetics*, 177, 1459-74.
- PFANDER, B. & DIFFLEY, J. F. 2011. Dpb11 coordinates Mec1 kinase activation with cell cycle-regulated Rad9 recruitment. *EMBO J*, 30, 4897-907.
- PFEIFFER, P., GOEDECKE, W. & OBE, G. 2000. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. *Mutagenesis*, 15, 289-302.
- PHILLIPS, J. A., CHAN, A., PAESCHKE, K. & ZAKIAN, V. A. 2015. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres. *PLoS Genet*, 11, e1005186.
- PHIPPS, S. M., BERLETCH, J. B., ANDREWS, L. G. & TOLLEFSBOL, T. O. 2007. Aging cell culture: methods and observations. *Methods Mol Biol*, 371, 9-19.
- PIKE, J. E., BURGERS, P. M., CAMPBELL, J. L. & BAMBARA, R. A. 2009. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. *J Biol Chem*, 284, 25170-80.
- POKHAREL, S. & CAMPBELL, J. L. 2012. Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron-sulfur cluster domain. *Nucleic Acids Res*, 40, 7821-30.
- POLI, J., GERHOLD, C. B., TOSI, A., HUSTEDT, N., SEEBER, A., SACK, R., HERZOG, F., PASERO, P., SHIMADA, K., HOPFNER, K. P. & GASSER, S. M. 2016. Mec1, INO80, and the PAF1 complex cooperate to limit transcription

- replication conflicts through RNAPII removal during replication stress. *Genes Dev*, 30, 337-54.
- POLO, S. E. & JACKSON, S. P. 2011. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. *Genes Dev*, 25, 409-33.
- POLOTNIANKA, R. M., LI, J. & LUSTIG, A. J. 1998. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. *Curr Biol.* 8, 831-4.
- PORTER, S. E., GREENWELL, P. W., RITCHIE, K. B. & PETES, T. D. 1996. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. *Nucleic Acids Res*, 24, 582-5.
- PRAMILA, T., WU, W., MILES, S., NOBLE, W. S. & BREEDEN, L. L. 2006. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. *Genes Dev*, 20, 2266-78.
- PUDDU, F., GRANATA, M., DI NOLA, L., BALESTRINI, A., PIERGIOVANNI, G., LAZZARO, F., GIANNATTASIO, M., PLEVANI, P. & MUZI-FALCONI, M. 2008. Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. *Mol Cell Biol*, 28, 4782-93.
- PUDDU, F., PIERGIOVANNI, G., PLEVANI, P. & MUZI-FALCONI, M. 2011. Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase epsilon. *PLoS Genet*, 7, e1002022.
- PUGLISI, A., BIANCHI, A., LEMMENS, L., DAMAY, P. & SHORE, D. 2008. Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. *EMBO J*, 27, 2328-39.
- PURSELL, Z. F., ISOZ, I., LUNDSTROM, E. B., JOHANSSON, E. & KUNKEL, T. A. 2007. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. *Science*, 317, 127-30.
- RALSER, M., WAMELINK, M. M., STRUYS, E. A., JOPPICH, C., KROBITSCH, S., JAKOBS, C. & LEHRACH, H. 2008. A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. *Proc Natl Acad Sci U S A*, 105, 17807-11.
- RAY, A. & RUNGE, K. W. 1999. The yeast telomere length counting machinery is sensitive to sequences at the telomere-nontelomere junction. *Mol Cell Biol*, 19, 31-45.
- REAGAN, M. S., PITTENGER, C., SIEDE, W. & FRIEDBERG, E. C. 1995. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. *J Bacteriol*, 177, 364-71.

- RITCHIE, K. B., MALLORY, J. C. & PETES, T. D. 1999. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. *Mol Cell Biol*, 19, 6065-75.
- RODRIGUEZ-COLMAN, M. J., SOROLLA, M. A., VALL-LLAURA, N., TAMARIT, J., ROS, J. & CABISCOL, E. 2013. The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/Sch9 kinases. *Biochim Biophys Acta*, 1833, 2004-15.
- RONCHI, D., DI FONZO, A., LIN, W., BORDONI, A., LIU, C., FASSONE, E., PAGLIARANI, S., RIZZUTI, M., ZHENG, L., FILOSTO, M., FERRO, M. T., RANIERI, M., MAGRI, F., PEVERELLI, L., LI, H., YUAN, Y. C., CORTI, S., SCIACCO, M., MOGGIO, M., BRESOLIN, N., SHEN, B. & COMI, G. P. 2013. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. *Am J Hum Genet*, 92, 293-300.
- ROSSI, M. L. & BAMBARA, R. A. 2006. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. *J Biol Chem*, 281, 26051-61.
- ROSSI, M. L., PIKE, J. E., WANG, W., BURGERS, P. M., CAMPBELL, J. L. & BAMBARA, R. A. 2008. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. *J Biol Chem*, 283, 27483-93.
- ROY, R., MEIER, B., MCAINSH, A. D., FELDMANN, H. M. & JACKSON, S. P. 2004. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. *J Biol Chem*, 279, 86-94.
- RUPEC, R. A. & BAEUERLE, P. A. 1995. The genomic response of tumor cells to hypoxia and reoxygenation. Differential activation of transcription factors AP-1 and NF-kappa B. *Eur J Biochem*, 234, 632-40.
- SADEH, A., MOVSHOVICH, N., VOLOKH, M., GHEBER, L. & AHARONI, A. 2011. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. *Mol Biol Cell*, 22, 3127-38.
- SAKA, K., IDE, S., GANLEY, A. R. & KOBAYASHI, T. 2013. Cellular senescence in yeast is regulated by rDNA noncoding transcription. *Curr Biol*, 23, 1794-8.
- SAKA, K., TAKAHASHI, A., SASAKI, M. & KOBAYASHI, T. 2016. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance. *Nucleic Acids Res*, 44, 4211-21.
- SANCHEZ, Y., BACHANT, J., WANG, H., HU, F., LIU, D., TETZLAFF, M. & ELLEDGE, S. J. 1999. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. *Science*, 286, 1166-71.
- SARTO-JACKSON, I. & TOMASKA, L. 2016. How to bake a brain: yeast as a model neuron. *Curr Genet*, 62, 347-70.

- SCHIESTL, R. H. & PRAKASH, S. 1990. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. *Mol Cell Biol*, 10, 2485-91.
- SCHULTE, P. M. 2014. What is environmental stress? Insights from fish living in a variable environment. *J Exp Biol*, 217, 23-34.
- SCHULZ, H. 1888. Ueber Hefegifte. *Pflügers Archiv European Journal of Physiology* 42, 517-541.
- SCHUMACHER, B. 2009. Transcription-blocking DNA damage in aging: a mechanism for hormesis. *Bioessays*, 31, 1347-56.
- SCHWEITZER, B. & PHILIPPSEN, P. 1991. CDC15, an essential cell cycle gene in Saccharomyces cerevisiae, encodes a protein kinase domain. *Yeast*, 7, 265-73.
- SCHWERER, M. J., HEMMER, J., KRAFT, K., MAIER, H., MOLLER, P. & BARTH, T. F. 2003. Endoreduplication in conjunction with tumor progression in an aneuploid laryngeal squamous cell carcinoma. *Virchows Arch*, 443, 98-103.
- SEKO, Y., TAKAHASHI, N., TOBE, K., KADOWAKI, T. & YAZAKI, Y. 1997. Hypoxia and hypoxia/reoxygenation activate p65PAK, p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinase (SAPK) in cultured rat cardiac myocytes. *Biochem Biophys Res Commun*, 239, 840-4.
- SHAH, P. P., ZHENG, X., EPSHTEIN, A., CAREY, J. N., BISHOP, D. K. & KLEIN, H. L. 2010. Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. *Mol Cell*, 39, 862-72.
- SHEAFFER, K. L., UPDIKE, D. L. & MANGO, S. E. 2008. The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. *Curr Biol*, 18, 1355-64.
- SHEN, B., SINGH, P., LIU, R., QIU, J., ZHENG, L., FINGER, L. D. & ALAS, S. 2005. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. *Bioessays*, 27, 717-29.
- SHI, T., BUNKER, R. D., MATTAROCCI, S., RIBEYRE, C., FATY, M., GUT, H., SCRIMA, A., RASS, U., RUBIN, S. M., SHORE, D. & THOMA, N. H. 2013. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. *Cell*, 153, 1340-53.
- SHIRATORI, A., SHIBATA, T., ARISAWA, M., HANAOKA, F., MURAKAMI, Y. & EKI, T. 1999. Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis. *Yeast*, 15, 219-53.
- SIJBERS, A. M., DE LAAT, W. L., ARIZA, R. R., BIGGERSTAFF, M., WEI, Y. F., MOGGS, J. G., CARTER, K. C., SHELL, B. K., EVANS, E., DE JONG, M. C., RADEMAKERS, S., DE ROOIJ, J., JASPERS, N. G., HOEIJMAKERS, J. H. &

- WOOD, R. D. 1996. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. *Cell*, 86, 811-22.
- SINGH, F., CHARLES, A. L., SCHLAGOWSKI, A. I., BOUITBIR, J., BONIFACIO, A., PIQUARD, F., KRAHENBUHL, S., GENY, B. & ZOLL, J. 2015. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. *Biochim Biophys Acta*, 1853, 1574-85.
- SINGH, P., ZHENG, L., CHAVEZ, V., QIU, J. & SHEN, B. 2007. Concerted action of exonuclease and Gap-dependent endonuclease activities of FEN-1 contributes to the resolution of triplet repeat sequences (CTG)n- and (GAA)n-derived secondary structures formed during maturation of Okazaki fragments. *J Biol Chem*, 282, 3465-77.
- SMITH, S., BANERJEE, S., RILO, R. & MYUNG, K. 2008. Dynamic regulation of single-stranded telomeres in Saccharomyces cerevisiae. *Genetics*, 178, 693-701.
- SRIRAMACHANDRAN, A. M. & DOHMEN, R. J. 2014. SUMO-targeted ubiquitin ligases. *Biochim Biophys Acta*, 1843, 75-85.
- STEARNS, T., MA, H. & BOTSTEIN, D. 1990. Manipulating yeast genome using plasmid vectors. *Methods Enzymol*, 185, 280-97.
- STELLWAGEN, A. E., HAIMBERGER, Z. W., VEATCH, J. R. & GOTTSCHLING, D. E. 2003. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. *Genes Dev*, 17, 2384-95.
- STEWART, J. A., MILLER, A. S., CAMPBELL, J. L. & BAMBARA, R. A. 2008. Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in Saccharomyces cerevisiae. *J Biol Chem*, 283, 31356-65.
- STRANAHAN, A. M. & MATTSON, M. P. 2012. Recruiting adaptive cellular stress responses for successful brain ageing. *Nat Rev Neurosci*, 13, 209-16.
- STRAUSS, C., KORNOWSKI, M., BENVENISTY, A., SHAHAR, A., MASURY, H., BEN-PORATH, I., RAVID, T., ARBEL-EDEN, A. & GOLDBERG, M. 2014. The DNA2 nuclease/helicase is an estrogen-dependent gene mutated in breast and ovarian cancers. *Oncotarget*, 5, 9396-409.
- SUN, J., PAN, H., LEI, C., YUAN, B., NAIR, S. J., APRIL, C., PARAMESWARAN, B., KLOTZLE, B., FAN, J. B., RUAN, J. & LI, R. 2011a. Genetic and genomic analyses of RNA polymerase II-pausing factor in regulation of mammalian transcription and cell growth. *J Biol Chem*, 286, 36248-57.
- SUN, J., YANG, Y., WAN, K., MAO, N., YU, T. Y., LIN, Y. C., DEZWAAN, D. C., FREEMAN, B. C., LIN, J. J., LUE, N. F. & LEI, M. 2011b. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha. *Cell Res*, 21, 258-74.
- SUROVTSEVA, Y. V., CHURIKOV, D., BOLTZ, K. A., SONG, X., LAMB, J. C., WARRINGTON, R., LEEHY, K., HEACOCK, M., PRICE, C. M. & SHIPPEN, D.

- E. 2009. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. *Mol Cell*, 36, 207-18.
- SWEENEY, F. D., YANG, F., CHI, A., SHABANOWITZ, J., HUNT, D. F. & DUROCHER, D. 2005. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. *Curr Biol*, 15, 1364-75.
- SYMINGTON, L. S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. *Microbiol Mol Biol Rev*, 66, 630-70, table of contents.
- SYMINGTON, L. S. & GAUTIER, J. 2011. Double-strand break end resection and repair pathway choice. *Annu Rev Genet*, 45, 247-71.
- TAGGART, A. K., TENG, S. C. & ZAKIAN, V. A. 2002. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. *Science*, 297, 1023-6.
- TANAKA, S., KOMEDA, Y., UMEMORI, T., KUBOTA, Y., TAKISAWA, H. & ARAKI, H. 2013. Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. *Mol Cell Biol*, 33, 2614-22.
- TANAKA, S., UMEMORI, T., HIRAI, K., MURAMATSU, S., KAMIMURA, Y. & ARAKI, H. 2007. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. *Nature*, 445, 328-32.
- TAO, R., CHEN, H., GAO, C., XUE, P., YANG, F., HAN, J. D., ZHOU, B. & CHEN, Y. G. 2011. Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast. *Cell Res*, 21, 1619-33.
- TAUFFENBERGER, A. & PARKER, J. A. 2014. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. *PLoS Genet*, 10, e1004346.
- TEIXEIRA, M. T., ARNERIC, M., SPERISEN, P. & LINGNER, J. 2004. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. *Cell*, 117, 323-35.
- TISHKOFF, D. X., FILOSI, N., GAIDA, G. M. & KOLODNER, R. D. 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. *Cell*, 88, 253-63.
- TOMKINSON, A. E., BARDWELL, A. J., BARDWELL, L., TAPPE, N. J. & FRIEDBERG, E. C. 1993. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. *Nature*, 362, 860-2.
- TORRES-RAMOS, C. A., PRAKASH, S. & PRAKASH, L. 2002. Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. *Mol Cell Biol*, 22, 2419-26.
- TSUBOUCHI, H. & OGAWA, H. 2000. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. *Mol Biol Cell*, 11, 2221-33.

- USUI, T., OGAWA, H. & PETRINI, J. H. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. *Mol Cell*, 7, 1255-66.
- UZUNOVA, K., GOTTSCHE, K., MITEVA, M., WEISSHAAR, S. R., GLANEMANN, C., SCHNELLHARDT, M., NIESSEN, M., SCHEEL, H., HOFMANN, K., JOHNSON, E. S., PRAEFCKE, G. J. & DOHMEN, R. J. 2007. Ubiquitin-dependent proteolytic control of SUMO conjugates. *J Biol Chem*, 282, 34167-75.
- VAISERMAN, A. M. 2010. Hormesis, adaptive epigenetic reorganization, and implications for human health and longevity. *Dose Response*, 8, 16-21.
- VAN ATTIKUM, H. & GASSER, S. M. 2005. The histone code at DNA breaks: a guide to repair? *Nat Rev Mol Cell Biol*, 6, 757-65.
- VAN DYCK, E., FOURY, F., STILLMAN, B. & BRILL, S. J. 1992. A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. *EMBO J*, 11, 3421-30.
- VEGA, L. R., MATEYAK, M. K. & ZAKIAN, V. A. 2003. Getting to the end: telomerase access in yeast and humans. *Nat Rev Mol Cell Biol*, 4, 948-59.
- VEGA, L. R., PHILLIPS, J. A., THORNTON, B. R., BENANTI, J. A., ONIGBANJO, M. T., TOCZYSKI, D. P. & ZAKIAN, V. A. 2007. Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. *PLoS Genet*, 3, e105.
- VENCLOVAS, C. & THELEN, M. P. 2000. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. *Nucleic Acids Res*, 28, 2481-93.
- VON EYSS, B., MAASKOLA, J., MEMCZAK, S., MOLLMANN, K., SCHUETZ, A., LODDENKEMPER, C., TANH, M. D., OTTO, A., MUEGGE, K., HEINEMANN, U., RAJEWSKY, N. & ZIEBOLD, U. 2012. The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. *EMBO J*, 31, 972-85.
- WALKER, D. W., MCCOLL, G., JENKINS, N. L., HARRIS, J. & LITHGOW, G. J. 2000. Evolution of lifespan in C. elegans. *Nature*, 405, 296-7.
- WALKER, J. R., CORPINA, R. A. & GOLDBERG, J. 2001. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. *Nature*, 412, 607-14.
- WANG, F., STEWART, J. A., KASBEK, C., ZHAO, Y., WRIGHT, W. E. & PRICE, C. M. 2012. Human CST has independent functions during telomere duplex replication and C-strand fill-in. *Cell Rep*, 2, 1096-103.
- WANG, H. & BLACKBURN, E. H. 1997. De novo telomere addition by Tetrahymena telomerase in vitro. *EMBO J*, 16, 866-79.
- WANROOIJ, P. H. & BURGERS, P. M. 2015. Yet another job for Dna2: Checkpoint activation. *DNA Repair (Amst)*, 32, 17-23.

- WATSON, A., MATA, J., BAHLER, J., CARR, A. & HUMPHREY, T. 2004. Global gene expression responses of fission yeast to ionizing radiation. *Mol Biol Cell*, 15, 851-60.
- WATSON, J. D. 1972. Origin of concatemeric T7 DNA. Nat New Biol, 239, 197-201.
- WEAVER, B. A. & CLEVELAND, D. W. 2006. Does aneuploidy cause cancer? *Curr Opin Cell Biol*, 18, 658-67.
- WEINERT, T. A. 1992. Dual cell cycle checkpoints sensitive to chromosome replication and DNA damage in the budding yeast Saccharomyces cerevisiae. *Radiat Res*, 132, 141-3.
- WEINERT, T. A. & HARTWELL, L. H. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. *Science*, 241, 317-22.
- WEINERT, T. A. & HARTWELL, L. H. 1993. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. *Genetics*, 134, 63-80.
- WEINERT, T. A., KISER, G. L. & HARTWELL, L. H. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. *Genes Dev*, 8, 652-65.
- WELLINGER, R. J., WOLF, A. J. & ZAKIAN, V. A. 1993. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. *Cell*, 72, 51-60.
- WHELAN, W. L., GOCKE, E. & MANNEY, T. R. 1979. The CAN1 locus of Saccharomyces cerevisiae: fine-structure analysis and forward mutation rates. *Genetics*, 91, 35-51.
- WIEGANT, F. A., DE POOT, S. A., BOERS-TRILLES, V. E. & SCHREIJ, A. M. 2012. Hormesis and Cellular Quality Control: A Possible Explanation for the Molecular Mechanisms that Underlie the Benefits of Mild Stress. *Dose Response*, 11, 413-30.
- WOLD, M. S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. *Annu Rev Biochem*, 66, 61-92.
- WOTTON, D. & SHORE, D. 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. *Genes Dev*, 11, 748-60.
- XIE, Y., LIU, Y., ARGUESO, J. L., HENRICKSEN, L. A., KAO, H. I., BAMBARA, R. A. & ALANI, E. 2001. Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage. *Mol Cell Biol*, 21, 4889-99.
- XU, L., PETREACA, R. C., GASPARYAN, H. J., VU, S. & NUGENT, C. I. 2009. TEN1 is essential for CDC13-mediated telomere capping. *Genetics*, 183, 793-810.

- YAN, Z., DELANNOY, M., LING, C., DAEE, D., OSMAN, F., MUNIANDY, P. A., SHEN, X., OOSTRA, A. B., DU, H., STELTENPOOL, J., LIN, T., SCHUSTER, B., DECAILLET, C., STASIAK, A., STASIAK, A. Z., STONE, S., HOATLIN, M. E., SCHINDLER, D., WOODCOCK, C. L., JOENJE, H., SEN, R., DE WINTER, J. P., LI, L., SEIDMAN, M. M., WHITBY, M. C., MYUNG, K., CONSTANTINOU, A. & WANG, W. 2010. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. *Mol Cell*, 37, 865-78.
- YEELES, J. T., DEEGAN, T. D., JANSKA, A., EARLY, A. & DIFFLEY, J. F. 2015. Regulated eukaryotic DNA replication origin firing with purified proteins. *Nature*, 519, 431-5.
- YEOMAN, M., SCUTT, G. & FARAGHER, R. 2012. Insights into CNS ageing from animal models of senescence. *Nat Rev Neurosci*, 13, 435-45.
- YOUNG, J. W., LOCKE, J. C. & ELOWITZ, M. B. 2013. Rate of environmental change determines stress response specificity. *Proc Natl Acad Sci U S A*, 110, 4140-5.
- YUZHAKOV, A., KELMAN, Z., HURWITZ, J. & O'DONNELL, M. 1999. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. *EMBO J*, 18, 6189-99.
- ZEGERMAN, P. & DIFFLEY, J. F. 2007. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. *Nature*, 445, 281-5.
- ZEMAN, M. K. & CIMPRICH, K. A. 2013. Causes and consequences of replication stress. *Nat Cell Biol*, 16, 2-9.
- ZHANG, Z., MOO-YOUNG, M. & CHISTI, Y. 1996. Plasmid stability in recombinant Saccharomyces cerevisiae. *Biotechnol Adv,* 14, 401-35.
- ZHAO, X., MULLER, E. G. & ROTHSTEIN, R. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. *Mol Cell*, 2, 329-40.
- ZHENG, L., DAI, H., QIU, J., HUANG, Q. & SHEN, B. 2007. Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. *Mol Cell Biol*, 27, 3176-86.
- ZHONG, M., NIU, W., LU, Z. J., SAROV, M., MURRAY, J. I., JANETTE, J., RAHA, D., SHEAFFER, K. L., LAM, H. Y., PRESTON, E., SLIGHTHAM, C., HILLIER, L. W., BROCK, T., AGARWAL, A., AUERBACH, R., HYMAN, A. A., GERSTEIN, M., MANGO, S. E., KIM, S. K., WATERSTON, R. H., REINKE, V. & SNYDER, M. 2010. Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response. *PLoS Genet*, 6, e1000848.
- ZHOU, J., MONSON, E. K., TENG, S. C., SCHULZ, V. P. & ZAKIAN, V. A. 2000. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. *Science*, 289, 771-4.

- ZHOU, W., ZHU, P., WANG, J., PASCUAL, G., OHGI, K. A., LOZACH, J., GLASS, C. K. & ROSENFELD, M. G. 2008. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. *Mol Cell*, 29, 69-80.
- ZHOU, Y., CARON, P., LEGUBE, G. & PAULL, T. T. 2014. Quantitation of DNA double-strand break resection intermediates in human cells. *Nucleic Acids Res*, 42, e19.
- ZHOU, Z. W., LIU, C., LI, T. L., BRUHN, C., KRUEGER, A., MIN, W., WANG, Z. Q. & CARR, A. M. 2013. An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence. *PLoS Genet,* 9, e1003702.
- ZHU, X. D., NIEDERNHOFER, L., KUSTER, B., MANN, M., HOEIJMAKERS, J. H. & DE LANGE, T. 2003. ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. *Mol Cell*, 12, 1489-98.
- ZHU, Z., CHUNG, W. H., SHIM, E. Y., LEE, S. E. & IRA, G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. *Cell*, 134, 981-94.
- ZOU, L. & ELLEDGE, S. J. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. *Science*, 300, 1542-8.
- ZUBKO, M. K., GUILLARD, S. & LYDALL, D. 2004. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. *Genetics*, 168, 103-15.
- ZUBKO, M. K. & LYDALL, D. 2006. Linear chromosome maintenance in the absence of essential telomere-capping proteins. *Nat Cell Biol*, 8, 734-40.