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ABSTRACT 
 

 Most eukaryotic genes undergo splicing to remove introns and join exons sequentially to 

produce protein-coding or non-coding transcripts. Post-transcriptional Exon Shuffling (PTES) 

describes a new class of RNA molecules, characterized by exon order different from the 

underlying genomic context. PTES can result in linear and circular RNA (circRNA) molecules 

and enhance the complexity of transcriptomes.  

  Prior to my studies, I developed PTESFinder, a computational tool for PTES 

identification from high-throughput RNAseq data. As various sources of artefacts (including 

pseudogenes, template-switching and others) can confound PTES identification, I first assessed 

the effectiveness of filters within PTESFinder devised to systematically exclude artefacts. 

When compared to 4 published methods, PTESFinder achieves the highest specificity (~0.99) 

and comparable sensitivity (~0.85).  To define sub-cellular distribution of PTES, I performed 

in silico analyses of data from various cellular compartments and revealed diverse populations 

of PTES in nuclei and enrichment in cytosol of various cell lines. Identification of PTES from 

chromatin-associated RNAseq data and an assessment of co-transcriptional splicing, 

established that PTES may occur during transcription. To assess if PTES contribute to the 

proteome, I analyzed sucrose-gradient fractionated data from HEK293, treated with arsenite to 

induce translational arrest and dislodge ribosomes. My results showed no effect of arsenite 

treatment on ribosome occupancy within PTES transcripts, indicating that these transcripts are 

not generally bound by polysomes and do not contribute to the proteome.  

 To investigate the impact of differential degradation on expression levels of linear and 

circRNAs, I analyzed the PTES population within RNAseq data of anucleate cells and 

established that most PTES transcripts are circular and are enriched in platelets 17-to-188-fold 

relative to nucleated tissues. For some genes, only reads from circRNA exons were detectable, 

suggesting that platelets have lost >90% of their progenitor mRNAs, consistent with time-

dependent degradation of platelets transcriptomes. However, some circRNAs exhibit read 

density patterns suggestive of miRNA induced degradation.  

 Finally, a linear PTES from RMST locus has been implicated in pluripotency maintenance 

using limited RNAseq data from human embryonic stem cells (hESC). To identify other PTES 

transcripts with similar expression patterns, I analyzed RNAseq data from H9 ESC 

differentiation series. Statistical analyses of PTES transcripts identified during cellular 

differentiation established that PTES expression changes track with that of cognate linear 

transcripts and accumulate upon differentiation. Contrary to previous reports, the dominant 

transcript from RMST is circular and increases in abundance during differentiation. Functional 
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analyses demonstrating the role of RMST in pluripotency maintenance had targeted exons 

within the predicted circRNA, suggesting previously unreported functional relevance for 

circRNAs. 
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CHAPTER 1. Introduction 

 
 

1.1 Transcriptome Diversity in Humans 
Transcriptome profiling by deep sequencing of Ribonucleic acid (RNA) has aided the 

discovery of various RNA species and improved our understanding of their diverse functions. 

Before the availability of high-throughput sequencing technologies, RNAs were mainly 

considered as intermediates in the information flow between DNA and proteins. In the last 

decade, it has become clear that eukaryotic transcriptomes are more complex and diverse than 

previously thought. We now understand that, although only about 2% of the human genome 

contributes to the proteome, >75% of the genome is transcribed (Birney et al. 2007; Djebali et 

al. 2012). GENCODE, a catalog of mouse and human transcripts, currently (version 19) has a 

total of 198,619 human transcripts, and less than half of these are annotated protein-coding 

transcripts (Table 1, (Harrow et al. 2012)). Since its first release in 2009, new transcripts are 

being discovered and annotated at the rate of >10,000 transcripts annually, the majority of which 

are non-protein coding and have no known functional relevance.  

 
Table 1.1. Summary of GENCODE annotated transcripts. Various RNA species within 
GENCODE v. 19 annotated transcripts (Harrow et al., 2012) 
 

Transcription of both strands of the genome is also more extensive than previously thought 

(Katayama et al. 2005; Sanna et al. 2008). According to the FANTOM consortium, >20% of 

human transcripts have antisense pairs (transcripts from opposite strand) (Katayama et al. 2005; 

Sanna et al. 2008; Chen et al. 2004). From a locus, transcription of both strands can produce 

overlapping transcripts, sometimes resulting in multiple isoforms of both transcripts. Some 

small non-coding RNAs (ncRNAs) are embedded within introns of genes and are cleaved out 

post-transcription (Wilusz et al. 2009; Tran & Hutvagner 2013). For instance, BAALC, a gene 

highly expressed in acute myeloid leukaemia patients (Tanner et al. 2001), has two RefSeq 
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annotated isoforms, is flanked by two antisense transcripts (BAALC-AS1 and BAALC-AS2) and 

has MIR3151, a micro RNA (miRNA) embedded within its first intron (Fig 1.1).  

One direct result of increased transcriptional output of any locus is competition for both 

RNA-binding proteins and RNA-RNA interactions via Watson-Crick base pairing (Sen et al. 

2014). MiRNAs are short (~22 bp) ncRNAs that can regulate protein-coding transcripts by 

inducing degradation and reducing translation of transcripts harbouring their binding sites (Ha 

& Kim 2014; Tran & Hutvagner 2013). Because of sequence identity, ncRNAs transcribed from 

the same genomic space may compete with mRNAs for miRNA binding resulting in increased 

expression of the mRNAs, as in the case of PTENP1 and PTEN (Poliseno et al. 2010). Similarly, 

ncRNAs antisense to mRNAs, can mask binding sites for miRNAs, resulting in increased 

stability, as in the case of BACE1-AS and BACE1 (Faghihi et al. 2008; Faghihi et al. 2010). 

Because each miRNA can target over 200 mRNAs (Kapranov et al. 2007), these ncRNAs can 

also act as competing endogenous RNAs (ceRNAs) in trans, impacting the expression of 

mRNAs not transcribed from the same locus (Kapranov et al., 2007). LincRNA-RoR (Long 

intergenic non-coding RNA, regulator of reprogramming) has been shown to sequester 

miRNAs that act on OCT4, SOX2 and NANOG, known transcription factors that promote 

pluripotency in human embryonic stem cells (HESC)(Wang et al. 2013). 

 

Human Genome (HG19) 

 
 

Figure 1.1: Bi-directional Transcription. RefSeq annotations of two BAALC isoforms, one 
consisting of 2 exons, the other 3 exons. Two antisense transcripts are also produced from the 
same genomic space. MIR3151 is embedded within intron 1 of BAALC (Pruitt et al. 2007). 
Coordinates are based on the human genome (HG19). 
 
 Post-Transcriptional Exon Shuffling (PTES) describes a new class of RNA molecules 

characterized by exon order different from the underlying genomic context (Al-Balool et al. 

2011) and is the subject of this thesis. Transcripts arising from PTES can be linear or circular 

and originate from the same genomic positions as both protein-coding and non-coding 

transcripts, thus, enhancing the complexity of eukaryotic transcriptomes. In subsequent sections 

of this chapter, I first briefly introduce mechanisms driving transcriptome diversity in 
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eukaryotes, including PTES. Existing knowledge about mechanisms such as alternative 

splicing, trans-splicing and other mechanisms resulting in chimeric transcripts are relevant to 

characterizing PTES. After this synopsis, I then introduce current methods for PTES 

identification from RNA extracts and factors affecting in silico PTES identification.  

 

1.2 Major Sources of Transcriptome Diversity 
 
1.2.1 Alternative Splicing 
 Most eukaryotic genes consist of exonic and intronic sequence regions. Introns are 

removed by the spliceosome, a complex of proteins and small nuclear RNAs (U1, U2, U4, U5 

and U6), before translation (Elliott & Ladomery, 2011). Splicing was discovered in the late 

1970s by two research groups - Berget and Sharp (1977) and Chow et al. (1977). They observed 

size variations between pre-mRNA transcripts in the nucleus and their mature counterparts in 

the cytoplasm (Berget et al. 1977; Chow et al. 1977). Using a method called R-looping, which 

allows for the hybridization of RNA and DNA in high concentrations of formamide, mature 

transcripts of an adenovirus gene were observed to hybridize to short segments of its DNA, 

leaving gaps corresponding to intronic sequences. 

 

 For efficient splicing reactions in multi-cellular organisms with large introns, exons are 

first recognized by binding of serine-arginine (SR) proteins to short sequence segments within 

exons and introns: Exonic and Intronic Splicing Enhancers (ESE and ISE respectively) 

(Faustino & Cooper 2003; Wang et al. 2004). Equivalently, splicing repressor proteins can bind 

silencer sequences within exons and introns (ESS and ISS), to inhibit exon recognition and 

splicing (Faustino and Cooper 2003; Wang et al. 2004). Exon-Intron boundaries are also 

recognized by conserved sequence motifs that allow for spliceosome assembly. Together with 

enhancers and repressors, these motifs constitute the splice code necessary for efficient removal 

of introns (Fig. 1.2). Typically, splicing involves two trans-esterification reactions. Firstly, U1 

snRNP binds to the donor splice site (characterized by CAG|GU consensus sequence) and U2 

binds to a conserved branch point sequence within the intron to be excised. The association of 

U2 with the branch point causes a bulge of the conserved adenosine residue, facilitating a 

chemical attack on the donor splice site, resulting in a loop structure called lariat intermediate 

and a 2’-5’ phosphodiester bond. Synchronously, U5 binds to the acceptor splice site, U4 and 

U6 assemble and associate with U5, stabilizing the spliceosome on the transcript. In the second 

stage, the first nucleotide of the intron at the acceptor splice site is chemically attacked by the 

3’-OH of the donor exon resulting in the release of the lariat intermediate and joining of the 
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two exons. Some eukaryotic genes contain introns with different splice site consensus 

sequences (characterized by AT-AC at intron termini), and are processed by a minor 

spliceosome (Elliott & Landomery, 2011). Splicing of these introns involve U11, U12, U5, 

U4atac and U6atac) and are very rare. 

 

 
Figure 1.2: Splice site recognition. Consensus sequence around exon-intron junctions (GU—
AG) are recognized by spliceosomal proteins for splicing to occur. RNA recognition motifs 
within exons called exonic sequence enhancers (ESE) are bound by serine-argenine (SR) 
proteins to aid exon definition. Other sequence motifs within introns (including: Conserved 
branch point adenosine and pyrimidine tract [YYYY]) are also bound by proteins to promote 
splicing. Adapted from (Maniatis & Tasic 2002).  
 
 During splicing, alternative events can occur. Exons can be skipped, alternative 5’ or 3’ 

splice sites can be used, introns can be retained and alternative promoters or termination sites 

can be utilized (for reviews, see (Keren et al. 2010; Xing & Lee 2006)). All of these events can 

result in diverse isoforms of transcripts from the same locus. Importantly, various factors can 

influence the occurrence of these alternative events. One such factor is the rate of transcription 

elongation at the locus. Recent reports suggest that most modifications to pre-mRNAs occur 

co-transcriptionally (Ameur et al. 2011; Bentley 2014; Girard et al. 2012; Merkhofer et al. 

2014). It is estimated that the elongation rate of RNA polymerase II is between 1-4 kb/min and 

splicing can occur over several minutes (Bentley, 2014). As splice sites become available to be 

processed, spliceosomal proteins are assembled on a first come first served basis (de la Mata et 

al. 2010). Splice sites can compete for these proteins. In some cases, exons with weak splice 

signals can be skipped as a result of an increased elongation rate making available other splice 

sites that provide competition for spliceosomal proteins (Bentley, 2014). Conversely, 

transcription of large introns can cause delays in elongation, resulting in inclusion of 

neighboring exons.  
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1.2.2 Transcription of ‘Junk DNA’ 
 Transcriptome diversity is also enhanced by excised introns, transcripts from intergenic 

and non-coding gene regions - genomic regions once thought to be ‘junk DNA’ or ‘genomic 

dark matter’ (Wilusz et al. 2009; Clark et al. 2013; Kapranov et al. 2010) or transcriptionally 

silent (Birney et al., 2007).  

 

Intronic transcripts: Following splicing, lariat intermediates (containing introns) are 

linearised by debranching enzymes and rapidly degraded (Ruskin & Green 1985). Typically, 

introns have low half-lives of between 5 and 7 minutes (Bentley 2014). In some cases, however, 

discarded introns are protected from degradation or are only partially degraded (Qian et al. 

1992; Yin et al. 2012; Zhang et al. 2014). Introns containing templates for miRNAs and 

snoRNAs are protected from exonuclease activity by the proteins involved in their respective 

biogenesis pathways. For miRNAs, two main pathways for biogenesis exist: one involving 

direct transcription of primary miRNA (pri-miRNA), which is capped and polyadenylated; a 

second pathway for miRNAs embedded within introns (mirtrons) of mRNAs involves splicing 

and debranching (Westholm & Lai 2011; Ha & Kim 2014; Tran & Hutvagner 2013). In both 

cases, the pri-miRNA is further processed in the nucleus by a micro-processor complex 

consisting of DGCR8 and DROSHA. Cleaving of the pri-miRNA produces pre-miRNAs of 70 

- 100bp in length, prior to export to the cytoplasm and further processing by another 

endonuclease, DICER, into mature miRNAs (Fig 1.3). Biogenesis of snoRNAs embedded 

within introns is also thought to involve nucleases (Filipowicz & Pogacic 2002; Rearick et al. 

2011). A recent study reported the identification of 19 transcripts consisting of partially 

degraded introns with snoRNAs at both termini (Yin et al., 2012; Zhang et al., 2014).  These 

transcripts, termed sno-lncRNAs, were also found in various cell lines and other primates, 

suggesting conservation across species. One mouse-specific sno-lncRNA consists of Snord33 

and Snord34 (Zhang et al., 2014). The biogenesis of this sno-lncRNA is thought to involve 

alternative splicing, as both snoRNAs are embedded within adjacent introns of RPL13A. 

Notably, the host intron of Snord34 is sometimes retained (Hubbard et al. 2002), further 

enhancing transcript diversity at this locus.  



Chapter 1: Introduction 24 

 
Figure 1.3. Overview of MiRNA biogenesis mechanisms. A) MiRNA host genes are 
transcribed into primary miRNA (pri-miRNA), processed by DROSHA prior to translocation to 
the cytoplasm B) Some miRNAs are embedded in introns of other genes (mirtron) and are 
cleaved out into pri-miRNA, following splicing and debranching C) and exonuclease trimming 
of flanking sequence. Figure from Westholm & Lai, (2011). 
  

Pseudogenes: New genes and gene families can arise through duplications of DNA segments. 

Duplications can occur when chromosomes are mis-aligned during meiosis or as a result of 

dissociation and re-attachment of DNA polymerase to the template strand during replication 

(Zhang 2003). Genes resulting from duplications diverge, acquiring new functions and structure 

through mutations and re-arrangements. A class of pseudogenes can arise from mutations to 

duplicated genes which affects their transcription, splicing or translation into functional 

proteins (Mighell et al. 2000; Pink & Carter 2013). These pseudogenes typically retain the 
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structure of their parental genes, have high sequence identity with their parental genes and can 

contain introns (Mighell et al., 2000). If transcribed, splicing and translation may occur. Within 

this class of pseudogenes are unitary pseudogenes (Zhang et al. 2010), which do not have any 

functional parental genes and do not originate from recent duplication events. Zhang et al., 

(2010) reported the identification of 11 unitary pseudogenes, 2 of which appear to be 

pseudogenes in non-human primates but have functional and non-functional alleles within the 

human population. Another class of pseudogenes arise from retrotransposition. Mature 

transcripts are sometimes reverse transcribed and integrated into the genome (Pei et al. 2012; 

Kalyana-Sundaram et al. 2012; Kaessmann et al. 2009). As a result, these pseudogenes are 

referred to as processed pseudogenes because they lack introns and contain stretches of 

adenosine residues. In rare cases, these processed pseudogenes are integrated near a functional 

promoter that drives their transcription and can result in proteins (Kim et al. 2014; Ji et al. 2015; 

Xu & Zhang 2016). 

 

Natural antisense transcripts: Natural antisense transcripts (NATs) were first discovered over 

35 years ago (Lacatena & Cesareni 1981), in the bacterial plasmid, ColE1 (Hershfield et al. 

1974; Naito & Uchida 1980). The copy number and replication of ColE1 was found to be 

controlled by a sense-antisense pair of transcripts (Lacatena & Cesareni 1981; Wagner & 

Simons 1994). The sense transcript initiates replication by forming an RNA-DNA hybrid with 

the plasmid DNA. This hybrid is cleaved by RNase H, resulting in fragments that prime DNA 

synthesis (Wagner & Simons, 1994). However, the transcription of the antisense transcript 

antagonises replication by forming a duplex with the sense transcript, subsequently impacting 

plasmid copy number (Wagner & Simons, 1994). Since then, thousands of NATs have been 

identified and are typically characterized by low abundance, in some cases, >10 fold lower than 

that of their sense counterparts (Pelechano & Steinmetz 2013). NATs can broadly be classified 

into three groups - Convergent, Divergent and Internal, depending on their orientation relative 

to their sense transcripts (Pelechano & Steinmetz 2013; Wight & Werner 2013). Convergent 

NATs have tail-to-tail orientations to their sense counterpart, with their 3’ termini overlapping 

that of sense counterparts. Conversely, divergent NATs overlap with sense transcripts at 5’ 

termini, whilst some NATs are completely overlapped (internal) by their sense counterparts. 

Antisense transcripts can originate from cryptic promoters, bidirectional promoters or 

promoters independent from those used by their sense counterparts (Pelecheno & Steinmetz, 

2013). Because they can form duplexes with other transcripts as a result of sequence 

complementarity at overlapped regions, NATs can mask binding sites for RNA binding proteins 

and miRNAs (Pelecheno & Steinmetz, 2013, Wight & Werner, 2013). This is exemplified by 
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the sense-antisense transcripts from the BACE1 locus (Faghihi et al., 2008 & 2010), which form 

a duplex that masks miRNA binding sites, resulting in increase in stability of the sense mRNA. 

Additionally, NATs have been shown to induce epigenetic changes, affecting the transcription 

of genes in cis and in trans (Pelecheno & Steinmetz, 2013). A classic example is Tsix, antisense 

to X inactivation specific transcript (Xist), which is expressed in inactive X chromosomes. Xist 

has been shown to recruit the polycomb repressive complex (PRC2) to promote the formation 

of heterochromatin and inactivation of the chromosome (Pontier & Gribnau 2011; Pelechano 

& Steinmetz 2013). However, when expressed, Tsix antagonises the expression of Xist, by 

facilitating epigenetic changes at its promoter region (Pontier & Gribnau, 2011). 

 

1.2.3 Chimeric Transcripts 
Chimeric transcripts refer to transcripts consisting of segments from more than one RNA 

molecule. Various mechanisms can result in chimeric RNAs and are briefly introduced below:  

Fused genes:  Fused genes can arise from chromosome translocations, where fragments from 

two chromosomes emerge from breaks and are reattached incorrectly, with each chromosome 

receiving the others fragment. Although some translocations can result in stable chromosomes, 

such phenomena, in some cases, denote cancers and can result in chimeric transcripts with 

deleterious effects. Genes can be disrupted as a result of chromosome beaks, reattachment to 

another gene on a different chromosome results in fused genes. Gene fusion in some cases 

disrupts the open reading frame resulting in rapid degradation. However, in rare cases, hybrid 

proteins are produced. A classic example is the reciprocal translocation between chromosomes 

9 and 22 that characterizes chronic myelogenous leukaemia. This translocation results in a 

transcribed fused gene, BCR-ABL, subsequently producing at least two variant hybrid proteins 

(Lichty et al. 1998; Ren 2005).  

 Another phenomenon is the ongoing translocation and integration of chloroplasts and 

mitochondrial DNA fragments into nuclear genomes. In humans, over 700 regions of the 

genome consist of nuclear-mitochondria DNA sequences (NUMTs). These are regions where 

fragments of mitochondria DNA have been inserted into the genome, presumably during 

chromosomal breaks (Ricchetti et al. 2004; Lenglez et al. 2010). In an investigation of human 

NUMTs, 23 out of 27 human-specific NUMTs were found within genes, mostly in introns, but 

can result in chimeric RNA transcripts. Some NUMTs are transcribed (D. Wang et al. 2014) 

and can result in protein. The humanin protein for instance, is encoded in the mitochondria, 

however 13 humanin-like loci have been identified on various chromosomes in the nuclear 

genome (Bodzioch et al. 2009), and there is evidence of a protein product 99% identical to 

humanin (Tajima et al. 2002). 
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Trans-Splicing: Trans-splicing - unlike cis-splicing which occurs within single RNA molecules 

- occurs between 2 RNA molecules. In trans-splicing, one RNA molecule provides the donor 

splice site (along with preceding RNA sequence in the template), which is then joined to the 

acceptor splice site of a different RNA molecule and a Y-shaped intermediate is discarded 

(Murphy et al. 1986). This phenomenon is common in unicellular organisms and is well 

characterized in nematodes (Davis et al. 1995; Lei et al. 2016). There are two types of trans-

splicing, homotypic and heterotypic trans-splicing (Takahara et al. 2000; Takahara et al. 2002). 

Homotypic trans-splicing: This is the splicing together of two RNA molecules from the same 

locus to produce a chimeric transcript. A typical example is the lola gene in Drosophila, which 

has been shown to extensively undergo trans-splicing to produce transcripts with complex exon 

arrangements not explainable by alternative splicing or genomic re-arrangements (Horiuchi & 

Aigaki 2006).  

Heterotypic trans-splicing: This is the splicing together of two RNA molecules from different 

loci. Many unicellular organisms undergo polycistronic transcription, where multiple 

overlapping genes on the same strand are produced in one transcriptional unit (Salgado et al. 

2000). Transcripts within these transcriptional units are further processed by the addition of a 

common untranslated exon, known as a splice leader. The splice leader sequence is typically 

transcribed from a highly expressed gene, provides a cap structure to aid translation but does 

not contribute to proteome diversity.  

 

Read-Through Transcripts: Transcription is initiated at the promoter region, upstream from 

the gene to be transcribed and is signalled to terminate downstream from the gene. Two non-

overlapping genes on the same strand are separated by an intergenic non-coding region. 

However, due to weak transcription signals, transcription can proceed beyond a gene into 

another gene before termination, producing a chimeric transcript (Kapranov et al. 2007; Kannan 

et al. 2011). Splicing of this multi-locus transcript can result in exons of both genes within the 

same transcript (Akiva et al. 2006). In fact, reports show that the vast majority of these 

transcripts join the penultimate exon of the first gene to the second exon of the second gene, 

removing the last exon of the first gene and the first exon of the second gene as part of the 

discarded lariat intermediate (Nacu et al. 2011). As reported in Akiva et al., (2006), novel exons 

within the intergenic region are sometimes included in the processed chimeric transcript. As 

both heterotypic trans-splicing events and read-through transcription involve splicing between 

two transcripts, the inclusion of novel exons is a distinguishing feature of read-through 

transcripts. Proximity between parental genes can also be used to distinguish between both 
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mechanisms. Notably, a common feature of 2369 chimeric transcripts identified by Kannan et 

al., (2011), is the small genomic distance (median: ~2KB) between parental genes, suggesting 

read-through transcription. 

 

 Typically, read-through transcripts and heterotypic trans-spliced transcripts in mammals 

are expressed at low levels and appear to be tissue-specific (Frenkel-Morgenstern et al. 2012). 

Parental genes of most of these transcripts have higher than average expression patterns 

suggesting that the production of these chimeric transcripts is potentially unregulated. In some 

cases, however, chimeric transcripts can be highly expressed and characterize disease stage. 

For instance, a chimeric transcript (from SLC45A3 and ELK4 loci) is highly expressed in 

prostate cancer patients (Kannan et al., 2011). Fused genes originating from chromosomal 

rearrangements also denote various cancers. One fate of chimeric transcripts is that they are 

rapidly degraded due to the alteration of an open reading frame (ORF) (Akiva et al., 2006; Nacu 

et al., 2011). Transcripts not subjected to nonsense mediated decay (NMD) can be translated 

into hybrid proteins with more than one protein domain. Notably, a heterotypic trans-spliced 

transcript consisting of 5’ exons of JAZF1 gene and 3’ exons of JJAZI gene has been shown to 

be translated in endometrial stroma cells (Li et al. 2008).  

 

1.3 Post-transcriptional Exon Shuffling (PTES) 

 Many annotated transcripts do not have known functional relevance and many 

transcripts remain unannotated, even undiscovered. Recently, a novel class of transcripts has 

been described; and can be produced from the same genomic location as both protein coding 

and non-coding transcripts, further enhancing the complexity of eukaryotic transcriptomes.  

Post-transcriptional Exon Shuffling (PTES) describes the existence of transcripts with re-

arranged exon order different from the order in the genome (Al-Balool et al. 2011). In the 

absence of exon duplication or genomic re-arrangement, a 5-exon gene, for instance, can be 

spliced to produce an un-rearranged (canonical) transcript: 1-2-3-4-5 (Fig 1.4). In PTES, 

splicing can occur between a downstream donor splice site and an upstream acceptor site, 

resulting in a re-arranged linear transcript with repeated exons or a backsplice joining a subset 

of exons in a circular RNA (circRNA) (Fig 1.4). Importantly, PTES events can result in either 

linear or circular transcripts and are characterized at the sequence level by a non-canonical 

exon-exon junction. For simplicity, throughout this thesis, the rearranged exon-exon junction 

characterising PTES is termed a PTES junction; PTES transcripts are inferred from the junction 

with predicted internal exons for circRNA and repeated exons for linear PTES. For instance, 

the inferred transcript for a back-splice between exons 5 and 2 is assumed to include exons 3 
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and 4 as internal exons. Where a linear PTES is inferred, all exons (including repeated exons) 

are predicted to constitute the transcript, as depicted in Fig 1.4. 

 In PTES, rearrangements are typically intragenic, unlike in heterotypic trans-splicing 

and read-through transcription. Similarly, circRNAs resulting from PTES differ from 

previously observed viroid RNAs and undebranched lariat intermediates covalently joined at 2’ 

- 5’ (Zhang et al. 2013; Jeck & Sharpless 2014). Viroids are plant pathogens, which self-

replicate within hosts to produce rolling circle RNAs that are cleaved at sites flanked by ~ 9bp 

repeat sequences (Sanger et al. 1976). Cleavage and ligation reactions in viroids are not 

mediated by the spliceosome.  

 
Figure 1.4. Post-transcriptional Exon Shuffling (PTES). Schematic diagram of various 
transcripts likely from a hypothetical 5-exon gene. From a gene, canonical splicing occurs to 
produce mRNA transcripts; trans-splicing of two linear molecules from the gene can result in 
linear PTES with repeated exons. Back-splicing of a downstream splice site to an upstream 
splice site can result in circular RNA. In both cases, the distinguishing feature of PTES is the 
rearranged exon-exon junction. 
 
 The earliest observation of PTES was reported in Nigro et al., (1991). The authors 

serendipitously observed ‘scrambled exons’ within a transcript while trying to characterize the 

exon arrangement of the DCC (deleted in colorectal cancer) gene. Without prior knowledge of 

exon arrangement, primer pairs spanning each exon pairing in both directions were used in 

amplification reactions and only the amplicon in the correct orientation expected. To their 

surprise, they observed 2 amplicons for a single exon-exon pairing, indicating the presence of 

both the un-rearranged (canonical) transcript and a rearranged transcript. Comparing expression 

estimates of both transcripts, they estimated that the rearranged transcript was expressed at 

0.1% of that of the canonical transcript (Nigro et al. 1991). Three additional PTES transcripts 
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were identified in both human cells and rat tissues, with the highest expression observed in rat 

brain. Similar observations were made in ETS-1, an oncogene (Cocquerelle et al. 1992; 

Cocquerelle et al. 1993; Bailleul 1996). PTES transcripts identified in these studies lacked 5’ 

cap structures and polyA tails, suggesting circularity. Capel et al., (1993) showed that PTES 

transcripts produced from the Sry locus of adult rats were circular by digesting RNA extracts 

with RNase H (an enzyme that preferentially degrades RNA-DNA hybrids), such that when 

probed by sequence fragment complementary to circularized exon, the number of fragments 

observed was used to deduce circularity (see 1.3.3 for details). 

 

 Although earlier PTES observations were of circRNAs, later observations of linear 

PTES transcripts produced by homotypic trans-splicing were also reported. Takahara et al. 

(2000 & 2002) reported the identification of linear PTES transcripts emanating from Sp1, a 

transcription factor. Upon amplification of the expected canonical transcript, the authors 

observed other amplicons of larger sizes. Follow up RNase H digestion and sequencing 

confirmed these amplicons to be both linear and polyadenylated. Similarly, Al-Balool et al. 

(2011) reported that some PTES transcripts were enriched in polyA+ RNA fractions relative to 

total RNA fractions and could be amplified from PTES defining junction into untranslated 

regions, confirming the presence of exons not expected in analogous circular transcripts. Many 

other studies have made similar observations and concluded that linear PTES transcripts arise 

from splicing between 2 RNA molecules of the same transcript (Caudevilla et al. 1998; Caldas 

et al. 1998; Frantz et al. 1999; Rigatti et al. 2004; Dixon et al. 2007). 

 

 The overriding notion after these discoveries was that PTES transcripts were potentially 

products of aberrant splicing (Cocquerelle et al. 1993; Salzman et al. 2012). This notion was 

supported by their very low expression relative to canonical transcripts. However, thousands of 

these transcripts have now been identified from various mammalian cell lines and tissues. PTES 

events have been observed in plants (Lu et al. 2015; Ye et al. 2015; P. L. Wang et al. 2014), 

archaea (Danan et al. 2012), fungi (Wang et al., 2014), flies (Dixon et al. 2005; Ashwal-Fluss 

et al. 2014; Westholm et al. 2014), worms (Memczak et al. 2013; Ivanov et al. 2014) and rodents 

(Rigatti et al. 2004; Rybak-Wolf et al. 2015; Zaphiropoulos 1997), suggesting that their 

existence may not solely be due to aberrant splicing. These transcripts also differ from other 

chimeric transcripts that are lowly expressed but originate from highly expressed parental 

genes. PTES events can result in highly expressed transcripts, with expression patterns 

comparable to canonical linear transcripts from the same loci (Salzman et al. 2012; Starke et al. 

2014; Al-Balool et al. 2011; Capel et al. 1993). Capel et al., (1993) reported that the circRNA 
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from the Sry locus exists in adult rat in the absence of the canonical transcript, indicating that 

this circRNA is the dominant transcript from that locus.  

 

1.3.1 Mechanisms of PTES Formation  
Progress has been made in elucidating the mechanisms of PTES formation but our 

understanding of how they are regulated remains poor. Two mechanisms of PTES biogenesis 

have been proposed (Fig 1.5), one involving pairing of introns flanking PTES exons and the 

other involving re-splicing of skipped exons within discarded lariat intermediates. 

 

Flanking intron sequence pairing: Mechanistically, production of linear PTES transcripts is 

thought to include intron pairing (Dixon et al., 2007). Inverted complementary sequence repeats 

within flanking introns are thought to pair during transcription, bringing splice sites of two 

RNAs together to be spliced. Trans-splicing mediated by intron pairing has been demonstrated 

in vivo (Takahara et al. 2005) and in vitro (Solnick 1985). In Takahara et al., (2005), long introns 

were shown to promote trans-splicing of Sp1 minigene constructs in the HepG2 cell line. In the 

same study, the authors found that RNA polymerase II pause sites within flanking introns of 

PTES exons promote intron pairing and subsequent trans-splicing. In Solnick (1985), two 

minigene constructs - each consisting of one exon from adenovirus and one exon from human 

beta-globin gene, flanked by introns with inverted repeats - produced trans-spliced transcripts 

containing either exons from adenovirus or beta-globin exons.  

 Intron pairing can also result in circRNAs. Following the identification of circRNA from 

the Sry locus (circSry) by Capel et al., (1993), Dubin et al., (1995) demonstrated that circSry 

could be produced in vitro. The rat Sry locus consists of a single exon flanked by ~15 kb of 

inverted repeat sequence that facilitates pairing of sequence around the splice sites, resulting in 

non-canonical splicing and circularization (Dubin et al. 1995).  Inverted repeats within introns 

can include transposable elements such as Alu repeats (Jeck et al. 2013). A recent report by 

Liang & Wilusz (2014) showed that as little as 30 - 40 bp of flanking sequence complementarity 

is required for circularisation. Restricting their experiments to circRNAs produced from 

ZKSCAN1, HIPK3 and EPHB4, the authors progressively reduced the size of flanking intron 

Alu repeats. They also determined that, in some cases, stronger intron pairing may inhibit 

circularisation (Liang & Wilusz 2014). Similar results were obtained when complementary 

inverted DNAREP1_DM repeats flanking circRNA transcripts from lacasse2 gene in drosophila 

were progressively shortened (Kramer et al. 2015).  
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Re-splicing within lariat intermediates: Re-splicing of processed transcripts is a rare event 

but has been observed in transcripts of two genes within cancer cells (Chen et al. 2015; 

Kameyama et al. 2012). Aberrant spliced transcripts were identified from the tumor 

susceptibility gene 101 (TSG101) where cryptic splice sites within exons 2 and 9 were utilised 

in splicing of the mature mRNA (Kameyama et al., 2012). It has been theorised that further 

splicing may occur within discarded lariat intermediates prior to debranching (Salzman et al., 

2012; Jeck et al., 2013). Splice sites of exons skipped following alternative splicing can be 

brought together in close proximity for backsplicing to occur. This premise is based on the 

observation that some circRNAs constitute skipped exons and that their expression correlates 

with the expression of linear isoforms lacking those exons (Surono et al. 1999). Various studies 

have reported a link between PTES formation and alternative splicing (Wilusz 2015; Kelly et 

al. 2015), but the extent of this link is still being explored. Zaphiropoulos (1997) identified 

circRNAs from the cytochrome P450 locus, consisting of exons absent in various canonically 

spliced isoforms. Similarly, whilst investigating circRNAs predicted from observed canonical 

isoforms of the dystrophin gene, Surono et al. (1999) identified 12 circRNAs consisting of 

skipped exons but failed to identify 3, 2 of which were single exons known to be alternatively 

spliced. Despite these findings, there are reports of circRNAs involving exons not alternatively 

spliced (Surono et al. 1999), suggesting that this mechanism for PTES formation is not 

universal. A classic example is the circRNA from the single exon gene, Sry. Consistent with 

this premise, Jeck et al., 2013 observed that only 45% of circRNAs identified from human 

fibroblasts had a detectable alternatively spliced linear transcript lacking backspliced exons. 
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Figure 1.5. Two models of PTES biogenesis. Left) Re-splicing of skipped exons within lariat 
intermediates can result in backsplice. Right) Intron-pairing mediated by complementary repeat 
sequences can bring distal splice sites in close proximity to be spliced in tandem resulting in 
PTES. Figure taken from Jeck et al., 2013. 
 

1.3.2 PTES Formation is regulated by RNA Binding Proteins (RBP) 
Several lines of evidence have established that the vast majority of PTES events occur at 

precise exon-intron junctions, indicating the role of the spliceosome in PTES biogenesis 

(Ashwal-Fluss et al., 2014; Jeck & Sharpless, 2014; Starke et al., 2015). For instance, inhibiting 

the assembly of U4, U5 and U6 snRNPs by treating cells with isoginkgetin, abolished PTES 

(Starke et al., 2014). In another study, mutating known splice sites from GU to CA, diminished 

circRNA biogenesis in PVT1 and CRKL loci (Ashwal-Fluss et al., 2014). Various RNA binding 
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proteins (RBPs) enhance or repress splicing by 1) aiding recognition and use of splice sites; 2) 

by recruiting other spliceosomal proteins and 3) by promoting RNA secondary structures that 

can affect the choice of splice sites. Recently, two splice factors were shown to facilitate PTES 

biogenesis by promoting secondary structures favorable for circularization. First, Muscleblind 

(MBNL) was shown to aid the production of circRNA from exon 2 of its locus (Ashwal-Fluss 

et al., 2014). The observation that circRNA from MBNL is abundant in Drosophila fly heads 

but low in Drosophila S2 expressing a different isoform of the gene, led Ashwal-Fluss and 

colleagues to theorize the role of MBNL in PTES. They transfected Drosophila S2 cells with 3 

variants of MBNL and found one variant to increase circularization by 13 fold. This was also 

accompanied by a 2-fold reduction in the levels of canonically spliced transcripts from MBNL, 

suggesting a relationship between PTES and mRNA expression in this locus, where the 

expression level of MBNL directly regulates PTES production from its locus (Ashwal-Fluss et 

al., 2014). This observation was followed by the identification of MBNL binding sites within 

introns flanking the circularized exon. It is thought that, even for exons flanked by short introns, 

thus lacking flanking inverted repeats, MBNL binding may facilitate intron pairing resulting in 

PTES. In another study, Conn et al., (2015) demonstrated that Quaking (QKI - a splice factor), 

acts to regulate biogenesis of up to 33% of PTES transcripts. QKI binding sites within introns 

flanking exons involved in PTES were mutated in that study, resulting in reduced PTES 

abundance. Furthermore, modulating expression levels of QKI induced changes in PTES 

abundance, further demonstrating the role of QKI in PTES biogenesis (Conn et al. 2015).   

Splice factors can induce or repress PTES biogenesis by affecting the choice of splice sites. 

To identify trans-acting factors that may regulate circularization, Kramer et al., (2015) knocked 

down various RBPs involved in splicing, including 3 serine-arginine (SR) proteins: SF2, SRp54 

and SRSF6. All 3 SR proteins independently induced >2X increase in abundance of circRNA 

for laccasse2 gene in drosophila, suggesting repressive effects of these splice factors. In 

contrast, knock down of Hrb867F, a heterogenous ribonucleoprotein particle, resulted in 

decrease of circRNA abundance (Kramer et al., 2015). Furthermore, a group of enzymes, called 

adenosine deaminases acting on RNA (ADAR) was recently shown to negatively regulate PTES 

(Ivanov et al., 2014). ADAR proteins have various functions within cells, one of which involves 

preventing the formation of double stranded RNA (dsRNA) (Ota et al. 2013). In the nucleus, 

pre-mRNA transcripts are edited by ADAR1, by replacing the amino group on adenosine with 

an oxygen atom, resulting in inosine. Editing of adenosine residues to inosine weakens dsRNA, 

as inosine weakly bonds with thymine, and occurs at higher frequency in Alu repeats within 

introns (Elliott & Landomery, 2011). Inverted complementary Alu repeats have been shown to 

promote intron pairing and PTES (Jeck et al., 2013; Zhang et al., 2014), and ADAR1 activity 



Chapter 1: Introduction 35 

inhibits PTES events. This was demonstrated in Ivanov et al., (2014), where the authors 

reported an increase in circRNA abundance upon ADAR1 knockdown. 

 

1.3.3 In vitro Methods for PTES identification 

Early observations of viroid circular RNAs were made using electron microscopes (Sanger 

et al., 1976). Since then, various molecular biology protocols have been adapted to identify 

PTES events from RNA extracts or enrich for circRNA transcripts.  The distinguishing feature 

of PTES at the sequence level is the rearranged exon-exon junction. This singular feature is 

crucial to all approaches for in vitro PTES identification. These approaches can broadly be 

grouped into 3: 

1. Amplification approach: RNA extracts are typically reverse transcribed into 

complementary DNA (cDNA) to be used as templates for amplification using polymerase chain 

reaction (PCR). To identify PTES, primers are designed to specifically amplify region spanning 

the PTES junction. For instance, to detect a hypothetical PTES involving exons 3 and 2, the 

forward primer is designed to be homologous to position within exon 3 and the reverse primer 

within exon 2, ensuring that an amplicon of the expected size spans the PTES junction (depicted 

in Figure 1.6). As conventional PCR is not quantitative, probes can also be designed to span 

across the PTES junction in quantitative PCR (qPCR) assays. 

This approach however, can be prone to technical variability in a reverse transcriptase (RT) 

dependent manner (Yu et al. 2014); and can be a major source of artefacts in PTES detection 

(more on this in section 1.3.5). The use of 2 different types of RT (specifically MMLV-derived 

and AMV-derived) in cDNA synthesis has been proposed as a way to confirm the validity of 

PTES and reduce the likelihood of PCR artefacts (Yu et al., 2014).  

Studies have inferred linearity and circularity of specific PTES transcripts based on the 

RNA fraction screened (Al-Balool et al. 2011; Jeck et al. 2013; Wu et al. 2013). For instance, 

as linear PTES transcripts are presumed to be polyadenylated, identifying PTES enriched in 

polyA+ or cap-selected RNA fractions may suggest linearity. Similarly, PTES from non-

polyadenylated RNA may provide initial evidence of circularity (Salzman et al., 2012).  

 

2. Hybridization approach: To avoid RT-PCR based assays and associated artefacts, 

hybridization methods (such as northern blotting) are commonly used to detect PTES from 

RNA extracts. In northern blotting, labeled oligonucleotide probes homologous to the PTES 

junction sequence are first synthesized and then mixed with RNA immobilized on a filter 

membrane. Hybridization occurs by base pairing between probe and target sequence, if the 



Chapter 1: Introduction 36 

sample contains the PTES of interest. For detection, probes not hybridized are washed off and 

the filter typically visualized on X-ray film.  

This approach can be used to define the full transcript size and exon-intron structure of 

PTES of interest, presenting an advantage over RT-PCR. However, unsatisfactory results and 

potential false predictions may result from low specificity of probes used. Additionally, 

although probes can be generated synthetically, PCR amplicons can also be used as probes and 

can result in PCR artefacts. This approach has been used to experimentally validate various 

PTES transcripts (Hansen et al. 2011; Memczak et al. 2013; Salzman et al. 2012; Salzman et 

al. 2013). 

Combining hybridization of DNA probe with RNase H treatment can be used to distinguish 

between circRNA and linear molecules (Capel et al., 1993). RNase H is an endonuclease that 

preferentially cleaves RNA-DNA hybrids. For instance, to establish the structure of a 

hypothetical PTES between exons 3 and 2, DNA probe homologous to either exon can be used 

in hybridization. Following cleavage by RNase H to deplete the exon targeted, 1, 2 or 3 

fragments will be observed upon visualization, to indicate the detection of a circRNA, linear 

canonical transcript or linear PTES respectively. As a result of repeated exons in the 

hypothetical linear PTES, three fragments are expected upon cleavage. Similarly, a probe 

designed to hybridize re-arranged exons, spanning PTES junction, will form a substrate for 

RNase H, producing a large fragment for undigested linear transcripts, a single shorter fragment 

for circRNA or 2 short fragments for linear PTES (depicted in Figure 1.6). 

 

3. Enrichment approach: As some PTES events are rare, it may be desirable to enrich for 

specific RNA molecules. Ribosomal RNAs (rRNAs) are known to be the most abundant RNA 

species in total RNA extracts (Choy et al. 2015). To enrich for other RNA species (including 

PTES transcripts), methods have been devised for depleting levels of rRNAs (Adiconis et al. 

2013). These methods start by binding rRNAs using RNA probes and then removing bound 

rRNAs, enriching other RNA species. To specifically enrich for linear polyadenylated 

transcripts, oligo-dT selection is typically performed. For circular RNAs, RNase R, 3’ -> 5’ 

exonuclease is routinely used to degrade linear molecules in RNA extracts, enriching for 

circRNAs. This approach can be combined with RT-PCR, northern blotting or in silico 

identification methods to specifically identify circRNAs (Jeck et al., 2013).  

In Hansen et al. (2011), another circRNA enrichment method was utilised. Total RNA 

extracts were treated with tobacco acid phosphatase to remove cap-structures of linear 

molecules, before degrading with 5’ -> 3’ exonucleases and enriching circRNAs (Hansen et al., 

2011; Jeck & Sharpless, 2014). Enrichment methods can however, result in variation in 
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expression estimates between replicates, depending on sensitivity and concentration of 

enzymes used in enrichment. 

 
Figure 1.6. Examples of in vitro PTES identification methods. Left) PTES junction can be 
amplified using divergent PCR primers, spanning junction. Middle) Circularity or linearity of 
PTES junction can be inferred by probing with oligonucleotides homologous with PTES 
junction and digesting with RNase H, an endonuclease that preferentially degrades RNA-
DNA hybrids. Linear canonical transcripts will be undigested (U), and appear larger when 
visualized. CircRNAs (C) with the probed PTES junction will show a single smaller 
fragment, due to the removal of region cleaved and the absence of some exons. Two bands 
will be observed for linear PTES (L) with the probed junction. Right) Enrichment of circular 
RNA molecules is typically achieved by treating total RNA with RNase R, an exonuclease 
that degrades linear molecules. 
 
 

1.3.4 Approaches to in silico PTES identification 

Prior to high throughput RNA sequencing, methods employed for transcript identification 

and quantification were either: 1) laborious and low-throughput in vitro protocols, such as 

qPCR; 2) hybridization-based Microarrays or 3) low-throughput sequencing of short tags from 

expressed transcripts. Microarrays utilize probes attached to glass slides or chips. Fluorescently 

labeled RNA extracts are hybridized to these probes to detect the presence of expressed 

transcripts and quantified by estimating fluorescence intensity. Microarray chips specific to 

exons and exon-junctions can be generated to profile the expression of these features (Sanchez-

Pla et al. 2012). Apart from the obvious limitation that experiments utilizing microarrays were 

hypothesis driven and knowledge of transcript sequence was required to generate probes, this 

methodology also suffered from cross-hybridization of probes and limited dynamic range for 

estimating transcript abundance (Zhao et al. 2014). Methods relying on sequencing of short tags 

- such as Cap analysis gene expression (CAGE) and Serial analysis of gene expression (SAGE) 

(Tuteja & Tuteja 2004) - do not require prior knowledge of transcript sequence but only 

generated data from short (9 -13 bp) regions of transcripts (Tuteja and Tuteja 2004). In the case 

of CAGE, short sequence tags around the 5’ cap structures are generated and used to estimate 

gene expression (Kodzius et al. 2006). Discriminating between isoforms of the same gene is a 
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challenge with these methods, as isoforms can share the same sequence from which a tag was 

derived.  

RNA sequencing (RNAseq) addresses many of the limitations of earlier methods. RNAseq 

experiments start by isolating or enriching RNA species of interest, mainly by size separation, 

polyA+ capture, ribosomal RNA depletion or digestion by exonuclease - to name a few. cDNA 

fragmentation follows synthesis to reduce templates to sizes required by respective sequence 

platforms. As RNAseq requires low amounts of starting template, templates may be amplified 

before sequencing, in a platform-dependent manner (Mardis 2008; Margulies et al. 2005; 

Sanchez-Pla et al. 2012).  Post-sequencing, sequence reads can be assembled to re-construct 

transcripts they originate from, negating the need for prior knowledge of the sequences. 

Additionally, RNAseq analysis is facilitated by the availability of numerous sequenced 

genomes and their curated annotations. 

Traditionally, RNAseq analysis involves mapping of short read sequences to a reference 

transcriptome or genome. Exon-intron boundaries are precisely inferred from mapped read 

densities, allowing the identification of canonically spliced transcripts. For read mapping, 

aligners are generally grouped into: spliced aligners and unspliced aligners (see (Garber et al. 

2011) for a review). Spliced aligners can detect reads spanning exon-intron boundaries and split 

these reads to adequately map to the genome. For unspliced aligners, reads not mapping 

contiguously are generally discarded or sub-optimally aligned, introducing mismatches or gaps. 

Until recently, many chimeric transcripts (including PTES) remained undetected, as many 

studies excluded such transcripts or were only interested in characterising the expression of 

protein coding transcripts.  Enrichment methods were also biased towards polyadenylated 

transcripts, in the process, excluding many circRNAs (Jeck & Sharpless 2014; Salzman 2016). 

The clinical importance of chimeric transcripts as possible biomarkers for cancers (and other 

diseases), has prompted the development of tools to identify chimeric RNA molecules. Many 

of these tools focused on identifying fused genes with parental genes on different chromosomes 

(Carrara et al. 2013; Chen et al. 2012; Liu et al. 2013; Hoffmann et al. 2014). However, more 

recently, algorithms for identifying PTES events have been published (Wang et al. 2010; 

Salzman et al. 2012; Salzman et al. 2013; Westholm et al. 2014; Memczak et al. 2013) . These 

tools commonly have a two step process of: 1) identify putative PTES events and 2) apply filters 

to exclude low confidence reads describing PTES events.  

 

Approaches to identifying putative PTES events can be grouped into three: 

1. Sequence Read Fragmentation Approach: This approach relies on the knowledge that 

PTES transcripts are defined by reads that can be mapped to two different regions/exons in 
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inverted (head-to-tail) order. Such reads do not map contiguously to the reference and would 

be unmapped or align sup-optimally. Thus, unmapped reads are routinely collected and 

fragmented into short segments (anchors) before remapping to the reference. Anchor 

alignments are then used to infer putative PTES events. Some tools generate anchor reads from 

termini of sequence reads (Memczak et al., 2013). Alignment of both anchors is expected to 

encompass the PTES junction. Other tools, such as MapSplice (Wang et al., 2010), generate 

multiple fragments from one read, attempt alignments for each fragment and define junctional 

sequence fragments as those without an alignment. These junctional fragments are then aligned 

locally after considering the alignment positions of neighboring fragments. The shortness of 

anchor reads presents a challenge, as short reads can align to multiple positions in the genome, 

posing a problem in discerning bona fide PTES events. This is can be considered a limitation 

of the fragmentation approach. 

 

2. Paired-end Sequence Read Approach: In RNAseq, one end of cDNA templates can be 

sequenced to generate single-end sequence libraries. Paired-end reads are generated when both 

ends of cDNA templates are sequenced. By independently mapping PE reads, PTES events can 

be inferred from sequenced read pairs in inverted order. Akin to the anchor alignments (above), 

these PE reads encompass the PTES junction and to an extent, address the short read problem, 

since full length reads are used instead of short anchor reads. The distance between PE reads 

can also be used as a filter, excluding PTES events defined by PE reads with inner distance 

larger than expected. However, unlike the anchor reads approach, sequence between PE reads 

is undefined. Basically, because anchors originate from a single read, the intervening sequence 

between the anchors is known and can be used to infer the PTES junction. For PE reads, 

intervening sequences between PE reads are unknown and cannot be used to infer the structure 

of PTES transcripts with high confidence. In essence, it is difficult to establish whether PE 

reads originate from the same RNA molecule, thus, a potential limitation (Memczak et al., 

2013). This approach is however used in many recently published methods (Salzman et al., 

2012 & 2013; Zhang et al., 2014). 

 

3. Brute-Force Approach: Another approach to PTES identification involves generating 

pseudo-sequence references for all possible combinations of exon-exon junction in shuffled 

order. For instance, a 3-exon gene would yield 6 putative PTES junctions: 1-1, 2-1, 3-1, 2-2, 3-

2 and 3-3.  Sequence reads are then aligned to these references to identify putative PTES events. 

This approach relies on existing knowledge of the transcriptome under study, thus, negates the 

discovery of PTES from unannotated loci. If not combined with adequate filters, this approach 
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may result in high false discovery rates, as alignments to the pseudo-references can be ‘forced’, 

producing gapped or sub-optimal alignments.  

 

 Pre-RNAseq in silico PTES identification methods utilized the brute-force approach and 

screened public databases of expressed sequence tags (EST).  Dixon et al., (2005), produced 

100bp fragments for all possible exon-exon combinations, mapped all fragments to EST using 

MegaBLAST (Altschul et al. 1990), selecting only fragments with >95% similarity to an EST. 

Fragments meeting that criterion were remapped to the human genome using BLAT (Kent 

2002), only selecting fragments with two reported alignments and suggestive of PTES. This 

approach led to the identification of 263 PTES from 178 human genes, 98 in mouse; 17, 12, 27, 

and 8 in rat, chicken, zebrafish and fruit fly respectively. Similarly, Shao et al., 2006, generated 

28bp sequence fragments with single base pair overlaps, from known human mRNA sequences 

and stored in an associative array. Using a sliding 28bp window, they screened EST sequences, 

comparing sequence fragments to stored mRNA sequences, to determine ESTs with fragments 

in head-to-tail orientation relative to mRNA. Their approach led to the identification of 817 

human PTES transcripts (Shao et al. 2006). Following these efforts, several methods for PTES 

identification have been published. Table 1.2 summarizes methods described prior to the start 

of my study. 
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Table 1.2. Published in silico PTES identifications. List of reported in silico PTES 
identifications prior to my study (mid-2013). Earlier methods identified PTES from expressed 
sequence tags (EST). 
 

1.3.5 Known sources of artefacts that confound in silico PTES identification 
 The primary challenge in in silico PTES identification is to distinguish between bona fide 

PTES events and false positive predictions. Various known sources of artefacts that may 

confound identification are introduced below. 

 

Template-switching: In RNA-Seq experiments, RNA is first reverse transcribed into cDNA 

and amplified. Template Switching (TS) describes the scenario where the reverse transcriptase 

(RT) polymerase jumps to another template during cDNA synthesis (Cocquet et al. 2006; 

Odelberg et al. 1995). Houseley & Tollervey, (2010), demonstrated that homologous sequences 

around hairpin structures may result in RT jumping and exclude sequence within the hairpin 

akin to splicing. TS has also been shown to occur between sense and antisense transcripts of 

the same gene (Houseley & Tollervey 2010). The resulting TS transcript is subsequently 

sequenced; sequence reads from such transcripts may easily be confused as evidence for non-

canonical splicing (Al-Balool et al., 2011; Wu et al., 2013).   
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Self-Priming: An additional source of artefact during cDNA synthesis involves self priming at 

termini of RNA templates. Lu et al., 2014 describes the phenomenon where small RNA 

molecules with hairpin structures at their termini can self-prime, particularly from their 3’ ends 

and ligate to newly synthesized cDNA (Fig 1.7). The close proximity of both termini appears 

to aid this phenomenon, producing chimeric cDNA templates that mimic PTES. When 

sequenced, reads from these chimeric cDNA templates contain both ends of the RNA transcript 

and can confound in silico PTES identification. 

 
Figure 1.7. Self-Priming of small RNAs. During cDNA synthesis of small RNAs with 
hairpin ends can self-prime (blue arrow) from 3’ and ligated to newly synthesized cDNA (red 
arrow). In second strand synthesis, the ligated fragments can be used as templates, resulting in 
chimeric products. Figure adapted from Lu et al., (2014). 
 

Multi-Locus Transcripts: Multi-locus transcripts may result from heterotypic/splice leader 

trans-splicing or gene fusions. As described above, fused genes may arise from chromosomal 

rearrangements or transcription-induced chimera events (Akiva et al., 2006; Nacu et al., 2011). 

In chromosomal translocations, genes around breakpoints are disrupted and (in some cases) 

fused. Additionally, unlike prokaryotes, monocystronic transcription occurs in eukaryotic cells. 

However, weak or disrupted transcription termination signals may lead to transcription read-

through, producing transcripts comprised of more than one gene (Akiva et al., 2006). 

Subsequent splicing removes intergenic regions and join exons from constituent genes; reads 

from such transcripts may confound PTES discovery if there is high sequence identity between 

exons of both genes. For instance, paralogous genes such as TUBA1A and TUBA1B, which have 

exons with high sequence identity and are in close proximity in the genome, can produce 

chimeric transcripts that mimic PTES due to read-through transcription (Hansen et al. 2015). 

Tandem Exon Duplication: At least 10% of human genes have duplicated exons (Letunic et 

al. 2002). In transcriptome-wide screens for PTES, a canonical splice between two exons (exons 

2 and 3 for instance) may be confused for a single exon back-splice of exon 2 or exon 3 if both 

exons have high sequence identity. Furthermore, because only junctional reads are taken as 

evidence of PTES, theoretically, a high sequence identity between terminal sequences of two 

exons (exons 4 and 6 for instance) may result in reads supporting canonical splice between 

exons 5 and 6 to be mis-identified as evidence of PTES structure exon 5 - exon 4.   
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 Certain positions in the genome consist of duplicated sequences that have evolved as a 

result of duplications of chromosomal segments (Samonte & Eichler 2002). There are 51,599 

segmental duplications in the human genome (Bailey et al. 2002). These duplications typically 

have sizes ranging from 1Kb to >200Kb, have multiple copies of repeat sequences with over 

90% sequence identity and are scattered all over the genome  (Bailey et al. 2002). The repetitive 

nature of these duplications can be a source of artefacts and confound PTES discovery. 

 

1.3.6 PTESFinder: a computational tool for PTES identification 

As a result of limited availability of computational tools for PTES identification from high-

throughput RNAseq data in 2012, I developed PTESFinder during my MRes project, building 

on initial scripts provided by Dr. Mauro Santibanez-Koref (Newcastle University). This 

pipeline combines the sequence read fragmentation approach with the brute-force approach, 

and is equipped with filters designed to exclude reads emanating from all known sources of 

artifacts. Briefly, the PTESFinder pipeline is split into three phases (Fig. 1.8A): 1) A discovery 

phase to identify putative PTES events from raw RNAseq data and generate putative PTES 

junction models; 2) an evaluation phase to examine the accuracy of predicted models and 3) a 

filtering phase (Izuogu et al., 2016).  

 

Discovery phase: PTESFinder utilizes the read fragmentation approach to identify reads that 

map to the transcriptome in inverted order. Short sequence fragments (called anchors) are first 

generated from termini of raw sequences reads. These anchors are mapped to the transcriptome 

using Bowtie v. 1, a short read aligner (Langmead et al. 2009), with tolerance for only a single 

mismatch.  To specifically identify intragenic PTES structures and eliminate sense-antisense 

template switching artefacts, alignment files in SAM format (Li et al. 2009) are processed 

further, requiring that both anchors from the same read map to the same gene in the 

transcriptome under study and in the same orientation,  but in inverted order with respect to 

their order in the sequencing read. Anchor alignment positions are also used to determine 

constituting exons and in defining putative PTES transcript models (Fig. 1.8B). 

 

Evaluation Phase: For each putative PTES junction model, new reference sequences 

(constructs) are generated by concatenating the last 65bp of the donor exon and the first 65bp 

of the acceptor exon, with the full exon sequence used if an exon is smaller than 65bp. To 

accommodate various read lengths, the segment sequence length used for model generation is 

adjustable, but should not exceed the read length, to allow for junction spanning read 
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alignments and filtering (introduced below). All reads within the dataset under study are then 

evaluated by re-mapping to these PTES constructs. This serves three purposes: First, anchor 

alignments are extended to ensure that the sequence between anchors is consistent with the 

predicted model; second, as RNAseq read lengths are short, this enables reads containing 

putative PTES junctions within the terminal sequence anchors to be accurately mapped; and 

lastly, it facilitates direct comparison with read mapping scores obtained from genomic and 

transcriptomic alignments during filtering (see below). Optionally, evaluation can also be 

‘guided’ by supplying a database of previously discovered PTES structures, bypassing the 

requirement for model creation from reads under analysis. 

Filtering Phase: To eliminate potential false positives originating from the genome under 

investigation, all the original reads are mapped to both genomic and transcriptomic references.  

The number of edits required for alignment (NM field in SAM format [Li et al., 2009]), and the 

number of perfectly aligned base pairs, are used to remove reads which align as well or better 

to either of these reference sequences than to the PTES constructs. To reduce template switching 

artefacts, which have heterogeneous junction points within short regions of often imperfect 

sequence homology (Houseley & Tollervey, 2010), reads which do not align perfectly to the 

exon junctions which define PTES are also removed using junctional filters. First, a user 

adjustable minimum junction span (JSpan) parameter is applied to ensure that there are no 

mismatches or gaps within 'n' nucleotides either side of the junction position, where n is an even 

integer. Second, to eliminate reads with regions of low quality alignment, a user adjustable 

segment percent identity (PID) parameter (see Izuogu et al., 2016 for details) is also applied 

independently to the segments on either side of the PTES junction, such that for a read to be 

retained both must meet or exceed the specified PID when aligned to the PTES construct. These 

user adjustable filters rely on alignment summaries provided by the NM field, MD field and 

Cigar in the SAM files (Li et al., 2009). The output includes the coordinates of the exon end 

involved in the junctions, a description of the PTES and the number of reads supporting the 

structure. This is presented in BED format (Kent et al. 2002). A second file contains additional 

information, read counts of all canonical exon junctions from transcripts where a PTES 

structure has been identified, to facilitate comparison with PTES counts. 
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Figure 1.8. Overview of PTES Discovery Pipeline. A) The workflow includes three major 
phases: Discovery phase, Evaluation phase and Filtering phase. Putative PTES structures 
discovered using 20 bp anchor reads are evaluated by aligning full FASTQ reads to the models. 
The filtering phase includes stringent criteria designed to systematically exclude all known 
classes of false positive structures B) An illustration of split reads mapping used in the 
discovery phase. Figure and legend taken from Izuogu et al., (2016). 



 

 1.4 Project Aims 46 

1.4 Project aims and outline of results chapters 
 

Many questions pertaining to the precise mechanisms of PTES formation, their functional 

relevance and impact on mammalian transcriptomes remain poorly understood. How accurate 

are the proposed models for circularization? Are PTES transcripts exported via known nuclei-

cytoplasmic pathways? Do these transcripts contribute to the proteome or have other functional 

significance? By what mechanism are they cleared from cells? How do they contribute to 

disease expressivity and development? This project aims to address these questions using both 

computational and experimental approaches. 

Specifically, at the outset of this project, my aims were to first, assess the method for 

identifying PTES events from high-throughput RNAseq data, developed during my MRes. The 

first results chapter presents findings from assessment of various filters within PTESFinder, the 

effect of various aligner-specific parameters on PTES identification and reproducibility of 

predictions. Results of performance tests using both simulated data and RNAseq data, and 

comparisons with 4 published methods are also presented in this chapter. These have been 

published in a peer reviewed journal, BMC Bioinformatics (appendix 9.6). 

Secondly, I use PTESFinder to analyze publicly available ENCODE RNAseq data from 

various cellular compartments, to define the distribution of PTES events in sub-cellular regions 

of 7 human cell lines. Using in silico methods, I also investigate the propensity for co-

transcriptional PTES biogenesis and whether they are bound by polysomes, thus, translated. 

In the third results chapter, I extend my investigation of PTES distribution in various cell 

lines to various human tissues and anucleate cells. Various properties of PTES transcripts in 

both platelets and mature erythrocytes are elucidated in this chapter using both in vitro and in 

silico methods. Work presented in this chapter resulted from extensive collaborations and have 

recently been published in the journal, Blood (appendix 9.6). 

In the last results chapter, I investigate the temporal distribution of PTES transcripts, upon 

differentiation of human embryonic stem cells into retinal cells. Results from statistical analyses 

aimed at identifying PTES transcripts with functional roles in either pluripotency maintenance 

or differentiation are presented. 
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Chapter 2: Materials & Methods 

 
 In this chapter I describe in vitro and in silico methods used in analyses presented in this 

thesis. Any variations to methods and software parameters outlined in this chapter are explained 

within results chapters. 

 

2.1 Cell lines 
 Table 2.1 describes RNAseq data sources (as defined by the ENCODE project) and human 

cell lines cultured. RNAseq data from mouse embryonic cell lines were also obtained and 

analyzed. 

 
Table 2.1. Description of Cell lines. ENCODE project and ATCC (American Type Culture 
Collection) definition of human cell lines used in analyses presented in this thesis. 
 
2.2 Sample Preparation 
 
2.2.1 Tissue culture of HEK293 and DAOY cell lines 

 Cells were cultured in 75cm2 tissue culture flasks at 37oC in DMEM complete medium 

with 100 IU/ml penicillin, 100µg/ml streptomycin and 10% heat activated fetal bovine serum 

(FBS) from Sigma-Aldrich (Dorset, UK). 

 

2.2.2 Differentiation of H9 ESC 

Human embryonic stem cells (H9 line, passage 34-45), were expanded and differentiated 

by Prof. Lako (Newcastle University, UK) and colleagues, using their previously described 
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protocol published in Mellough et al., (2012), with slight modifications published in Mellough 

et al., (2015). Cells were differentiated in triplicate with and without insulin growth factor 1 

(IGF-1) treatment.  

 

2.2.3 Human tissues and blood samples from healthy donors 

 RNA from various human tissues were obtained from Biochain (Amsbio, UK). Red 

blood cells (RBC) were obtained from the Scottish National Blood Transfusion Service in 

accordance with the terms of the standard donor consent form and information and with 

approval of the Scottish National Blood Transfusion Service Sample Governance Committee. 

Cord blood was obtained by Dr. Cedric Ghaveart and colleagues (Cambridge University, UK) 

after informed consent under a protocol approved by the National Research Ethics Service 

(Cambridgeshire 4 Research Ethics Committee ref. no. 07/MRES/44). Whole blood samples 

were collected from healthy volunteers with approval from Newcastle University’s Faculty of 

Medical Sciences Ethics Committee (909/2015). Platelets, platelet-rich plasma (PRP), 

peripheral blood mononuclear cells (PBMCs) and RBCs were isolated by Dr. Alhasan (see 

Alhasan et al., 2016 for details). 

 

2.2.4 RNA Isolation and cDNA synthesis 

 RNA was extracted using Trizol (Life Technologies) and treated with DNase I 

(Promega, Southampton, UK) according to manufacturer’s instructions. Briefly, cells were 

washed with ice cold PBS, before adding 1ml Trizol and left at room temperature (RT) for 5 

mins. Cells were then transferred into a 1.5ml eppendorf tube using a cell scraper and left for 

further 5 mins at RT. Afterwards, 0.2ml of chloroform (in 1:5 ratio to Trizol volume) was 

added, shaking vigorously for 15 secs, before leaving on ice for 3 mins and centrifuging for 

15 mins at 1200g in 4oC. The upper aqueous layer was then transferred to an eppendorf tube 

and mixed with equal volume of isopropanol, left on ice for 10 mins and centrifuged at 1200g 

for 10mins. The supernatant was then discarded and pellets washed with 1ml of 75% ethanol 

(equal volume of Trizol) and further centrifuged for 5 mins at 7500g. Following ethanol 

precipitation, the supernatant was removed, leaving the pellet to air dry, before re-suspending 

in 50µl of Diethylpyrocarbonate (DEPC) treated water.  

 For cellular fractionation and RNA extraction from sub-cellular compartments, 

Cytoplasmic and Nuclear RNA extraction kit from Norgen Biotek (https://norgenbiotek.com) 

was used, instead of the Trizol extraction protocol described above. RNA quantification was 

performed using NanoDrop ND-1000 spectrophotometer (ThermoFisher Scientific - 

http://www.thermofisher.com) and quality was assessed using an Agilent 2100 Bioanalyser 
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(Agilent Technologies, California, US). cDNA was synthesised using high-capacity cDNA 

generation kits (Applied Biosystems - http://www.thermofisher.com), random hexamers and 

Moloney murine leukaemia virus (MMLV). For comparisons with AMV reverse transcriptase 

generated cDNA, an AMV RT kit from Promega were obtained and used in cDNA synthesis. 

 

2.2.5 RNase R digestion 

 One microgram of RNA was added to 1µl of 10X RNase R buffer in DEPC H2O and 

20 units of E. coli RNase R (Epicentre Biotechnologies - www.epibio.com), or zero units (1µl 

of DEPC H2O) for mock treatment in a 10µl reaction volume. Tubes were then incubated at 

37oC for 30 minutes. Ethanol precipitation and cDNA generation were performed as outlined 

above. 

 

2.3 In vitro PTES confirmation, visualization and quantification 
 
2.3.1 Primer design 

 Oligonucleotide primer pairs in inverted orientation and spanning PTES junctions were 

designed using the primer-blast tool from NCBI (Ye et al., 2012). For each PTES transcript, 

exonic sequences around the junction were concatenated and used as input, requiring a 

minimum amplicon size of 150bp in most cases and using default values for optimal melting 

temperature. The specificity of generated primer pairs was checked by in silico PCR (Kent 

2002). No amplicons of the expected size should be observed from the genome or 

transcriptome. Primer pairs meeting this specificity requirement were purchased from Metabion 

International AG, Germany (see appendix 9.1 for all primer sequences). 

 

2.3.2 Polymerase Chain Reaction (PCR) 

Master Mix reagents: For each sample, 19µl master mixes were prepared with reagents from 

Promega (Madison, USA):   

�! 4µl 5X GoTaq Green Buffer 

�! 2µl dNTP mix (0.2mM per dNTP) 

�! 1.5µl 10pM Forward primer 

�! 1.5µl 10pM Reverse primer 

�! 9.7µl sterile H20 

�! 0.3µl Taq Polymerase 

�! 1µl of cDNA template 
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PCR Cycle (using Sensoquest thermal cycler from GeneFlow, Staffordshire, UK):  

�! Initial denaturing at 95oC for 2 minutes 

�! Denaturing at 95oC for 1 minute 

�! Primer annealing at 56oC for 1 minute 

�! DNA synthesis at 72oC for 1 minute; return to denaturing to repeat for 35 cycles 

�! Final DNA synthesis at 72oC for 1 minute 

�! Store at 4oC  

 

2.3.3 Agarose Gel electropherosis 

 2% agarose gels comprising of: 100mL of TBE buffer and 2g of agarose were prepared 

and stained with GelRedTM (Biotium, Hayward, USA) nucleic acid gel stain. Gels were 

prepared in 15 x 10 cm gel trays and ran in sub-cell GT cell gel tanks (BioRad, Hemel 

Hempstead, UK). Run parameters: 95 volts for 50 minutes and visualized under UV light. 

 

2.3.4 Quantitative PCR (qPCR) 

 Quantitative PCR experiments were performed by Dr. Alhasan (Newcastle University, 

UK) using Taqman master mix (Life Technologies). Transcript expression was normalized 

using the ∆CT method relative to the geometric mean of 4 housekeeping genes (GAPDH, 

PPIA, TUBB, GUSB) analyzed using TaqMan gene expression assays (Applied Biosystems -

http://www.thermofisher.com)(see Alhasan et al., 2016 for details of assays). Circular 

transcripts were also normalized against the linear transcript from the same gene where 

appropriate. Reactions were performed in 10 µl volumes in 384 plates using QuantStudio 7 

Flex (Applied Biosystems) with the following cycling parameters: 2 minutes at 50oC, 10 

minutes at 95 oC, followed by 40 cycles of 15 seconds at 95 oC and 60 oC for 1 minute. 

 

2.4 Public RNAseq datasets 

 
2.4.1 Human Fibroblasts and Leukocytes data 
 
 Publicly available RNAseq data generated from Leukocytes (n = 6 [Salzman et al., 

2012]), HEK293 (Memczak et al., 2013) and Fibroblasts (n = 4 [Jeck et al., 2013]) were 

obtained from an NCBI sequence read archive mirror: http://sra.dnanexus.com. Leukocytes 

(CD19+, CD34+ & neutrophils) and HEK293 samples were generated from ribosome depleted 
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total RNA extracts, sequenced on Illumina HiSeq 2000 platform and deposited under the 

following SRA ids: SRR364679-81 and SRR384963-5. Fibroblast samples were either digested 

with RNase R (SRR444974 & SRR4445016) or undigested (SRR444975 & SRR444655). With 

the exception of HEK293 and Fibroblast samples, which had 100bp reads from paired-end 

libraries, all samples had 76bp reads from single-end libraries. 

 

2.4.2 ENCODE sub-cellular RNASeq data 

RNAseq data published by the ENCODE consortium and available through NCBI Gene 

Expression Omnibus (GEO - http://www.ncbi.nlm.nih.gov/geo/), under the data accession: 

GSE30567, were obtained. Twenty-three samples were generated from non-polyadenylated 

(PolyA-) long RNA (>200bp) transcripts extracted from the nuclei (n = 13) and cytosol (n = 

10) of various human cell lines (see appendix 9.1). Four samples from the nucleus and cytosolic 

RNA PolyA+ fractions of GM12878 and K562 cells were also obtained. Additionally, 2 samples 

each from the nucleoplasm, nucleoli and chromatin of K562 were also obtained and analyzed. 

All samples were paired-end libraries with 76 bp reads. 

 

2.4.3 Sucrose-gradient fractionated RNAseq data from HEK293 

RNAseq data from Karginov and Hannon (2013) (GEO accession: GSE44404), generated 

after sucrose gradient fractionation of HEK293 cells, were obtained from an NCBI sequence 

read archive mirror: http://sra.dnanexus.com. In total, 16 single end short read (50bp) samples 

from that study were analyzed, eight were treated with arsenite to induce translational arrest 

(SRA ids: SRR742818 - 25) and 8 were control samples (SRA ids: SRR742810 - 17).  

 

2.4.4 RNAseq data from human tissues and anucleate cells 

Ribosome depleted RNAseq data from anucleate cells, nucleated tissues, human cell lines 

and samples from cell lines treated with RNase R were obtained from http://sra.dnanexus.com. 

Additionally, 2 polyA+ samples from platelets and megakaryocytes were obtained. With the 

exception of the polyA+ samples, all samples were paired-end. Table 2.2 shows sample ids and 

sources. 
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Table 2.2. RNAseq data from anucleate cells and nucleated tissues. SRA ids of publicly 
available RNAseq data from anucleate cells and human nucleated tissues. 
 
2.5 RNAseq data generation 
 
2.5.1 High-throughput RNA sequencing 
 

RNA from mature erythrocytes and three time points (days 0, 45 & 90) following 

differentiation of human embryonic stem cells (hESC) were ribosome depleted and sequenced 

by AROS Applied Biotechnology (Aarhus, Denmark), using the TruSeq RiboZero Stranded 

mRNA LT kit (Illumina - http://www.illumina.com). RNA quantification results for all 

sequenced samples are presented in Table 2.3 below. Sequencing produced paired-end 100bp 

sequence libraries.  
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Table 2.3. RNA extracts from mature erythrocytes and H9 ESC differentiation series. 
Quality metrics of RNA extracts from H9 embryonic stem cells and Red Blood Cells (RBC), 
prior to sequencing. 
 
2.5.2 Generating simulated RNAseq data 

 All published PTES structures within circbase.org (Glažar et al. 2014) and in common 

with structures identified from human fibroblasts (Jeck et al., 2013) using PTESFinder were 

obtained. In 100 simulations, ~5000 PTES structures were randomly selected along with 5000 

canonical junctions and pooled. Synthetic reads were generated from these structures in each 

simulation at different depths of coverage. To generate these reads, constructs were generated 

for each junction, by concatenating the full sequence of both exons, and 100bp reads were then 

generated from each sequence at read depths of 2, 5, 10, 25 and 50. Even coverage was achieved 

by segmenting each construct by read length and randomly choosing read start positions within 

each segment. For instance, for a desired coverage of 5 and a construct of 430bp, 5 random start 

positions are chosen from each of the pre-defined ranges (0 -100bp, 100 -200bp, 200 – 300bp 

& 300 – 430bp) (illustrated in Fig. 2.1). Reads spanning junctions after runs were recorded for 

subsequent comparisons.  
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Figure 2.1. Methodology for simulating reads. 100bp reads were simulated from constructs, 
with random read start positions to ensure even coverage across constructs 
 
2.5.3 Sub-sampling of RNAseq data 

 Sub-sampling of reads, at 25% and 75% of library size, was performed using SEQTK 

(https://github.com/lh3/seqtk), using the following command: seqtk sample -s$RANDOM 

sample.fastq 0.25 > subsample.fastq . 

2.6 Computational Methods 

 
2.6.1 Sequence Quality check 

 Quality of sequenced reads was checked with FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Where necessary, reads were 

trimmed to remove segments with poor sequence quality prior to downstream analysis.  

 

2.6.2 PTES identification 
Paired-end reads were merged after modifying read ids. PTESFinder v.1 was used to screen 

all sequence data for PTES transcripts with the following parameters: JSpan = 8, PID = 0.85, 

segment size = 65 (25 for short reads) and m = 7. In most cases, analyses were guided by 

supplying FASTA sequences of previously identified PTES junctions (n = 40594). Guided 

analysis is necessary when identification with anchor reads is not meaningful, as is the case for 

very short reads. Bowtie (Langmead et al., 2009) indexes for HG19 were used for alignments 

to the genome; RefSeq (catalog 58 & 65) and GENCODE v. 19 transcript models were obtained 

from UCSC genome table browser (Kent et al., 2002) on 20/04/2013 and 14/07/2014 

respectively.  

 To assess PTES predictions unconstrained by curated splice junctions, PTESFinder was 

modified. Two versions were developed to investigate predictions using both spliced and 

unspliced aligners. In both versions, the anchor mapping phase was modified, replacing anchor 

generation and bowtie1 alignment with STAR v. 2.4 (Dobin et al. 2013) soft-clipped alignment. 
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In one version, Bowtie2 (Langmead & Salzberg 2012) was replaced as the choice of aligner for 

alignment of full length reads to the genome.  

 Additionally, scripts published by Memczak et al., 2013 (default parameter values), CIRI 

v. 1.2 (default parameter values [Gao et al., 2015]), circRNA_finder (default parameter values 

[Westholm et al., 2014]), and MapSplice v. 2.1.5 (Wang et al., 2010) used in Jeck et al., (2013) 

(parameters: --fusion --non-canonical -p16), were obtained and used in screening RNAseq data 

for PTES.  

 

2.6.3 RNAseq analysis 

Sequence references: Genome and transcriptome FASTA files for human (HG19) and mouse 

(MM10) were obtained from UCSC genome browser (Kent et al., 2002). Aligner-specific index 

files were built for STAR (command: STAR —runThreadN 8 —runMode genomeGenerate —

genomeFastaFiles $hg19_dir —genomeDir $output_dir), Bowtie1 (command: bowtie-build 

hg19.fa hg19) and Bowtie2 (bowtie2-build hg19.fa hg19) aligners. Sequence references for all 

exon-exon, exon-intron and terminal exons were also generated and indexes built using 

bowtie2. 

Mapping: Sequence reads were first mapped to the genome using Bowtie2 (Langmead & 

Salzberg, 2012) to derive inner distance metrics prior to Tophat (Trapnell et al. 2009) runs. 

Metrics were calculated using CollectInsertSizeMetrics.jar from Picard 

(https://sourceforge.net/projects/picard/).  In addition to derived inner distance metrics, 

parameters for Tophat runs include: —library-type fr-firststrand, —no-coverage-search, —b2-

sensitive, —microexon-search and -x 20.  For alignments to the genome using STAR (Dobin 

et al., 2012), parameters used were: —outFilterMultimapNmax 7 and —

outFilterMismatchNmax 2. 

Expression estimates: HTSeq (Anders et al. 2014) and Cufflinks (Trapnell et al. 2012) were 

used to quantify transcripts. Exon RPKMs were derived by extracting reads mapped within 

genomic coordinates of exons, using CoverageBed from BEDTools (Quinlan & Hall 2010). 

Counts (C) were normalized by size (S) and total mapped reads (M), using this formula: (C / S) 

* (10E9 / M). In one analysis, reads were mapped to ERCC (a standard set of exogenous 

synthetic RNAs used as controls in gene expression analysis (Jiang et al. 2011; ERCC 2005)) 

spike-in sequence references and library size scale factors were estimated using 

estimateSizeFactors from DESeq2 (Love et al. 2014). Scale factors were used to normalize 

PTES raw counts and terminal exon sequences.  

Cluster analysis: Expression estimates of PTES and canonical junctions were used to assess 

similarities between samples. Hierarchical clustering of samples was performed using 
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Euclidean distance between samples, derived using expression estimates. KMeans clustering 

was used to assess expression changes between samples and distinct expression profiles of 

linear and circRNAs. To determine the number of clusters, K, the elbow method was used. For 

this method, initial cluster analyses using a range of K values, from 2 to 15 were performed. 

The final choice of K was determined by the lowest value of K that maximizes the proportion 

of variance explained by clustering, with increasing K having little additional effect.  

Differential expression analysis: Statistical tests of differential expression (based on raw 

counts produced using HTSeq) were performed using DESeq2 (Love et al., 2014) package in 

R (https://www.r-project.org), a free software tool for statistical computing. 

Visualization: BigWig files were generated from alignments to the genome using 

genomeCoverageBed from BEDtools and bedGraphToBigWig from UCSC. BigWigs were then 

archived and served through Galaxy, a web-based tool for sequence analysis (Afgan et al. 2016). 

Distributions of aligned reads were visually examined on the integrative genomics viewer (IGV 

v 2.1.21 (Robinson et al. 2011)) and on the UCSC genome browser. 

Genomic features overlap: All known RNA editing sites within rnaedit.com database (Porath 

et al. 2014; Chen 2013), Bisulphite data (in bedGraph format) from H9 differentiation into 

retinal pigment epithelium (Liu et al. 2014) and miRNA binding sites (miRcode - (Jeggari et al. 

2012)) data were obtained on 5/02/2016, 12/10/2015 and 12/05/2015 respectively. Overlap and 

proximity of genomic features were accessed by comparing their genomic coordinates using 

intersectBed and closestBed from BEDTools respectively. Genomic coordinates specific to 

HG18 build were converted to HG19 coordinates using the liftOver tool from UCSC genome 

browser (Kent 2002), to allow for direct comparisons. 

 

2.6.4 Definition and derivation of metrics 

 

RPKMI and RPKME: For each gene, exons predicted to lie within any circRNAs identified 

from that gene (in any sample) were used to estimate RPKMI; exons external to all circRNAs 

in all samples were used to derive RPKME. In both cases, read counts of exons were summed 

and normalised by total size of exons. RPKMs were derived using this formula: (C / S) * (10E9 

/ M); where C is the total read counts, S is the total size and M is the total mapped reads in 

respective samples. RPKMI is an estimate of expression of both linear and circular RNAs from 

each locus and RPKME is an estimate of expression for linear molecules only. 

Abundance ratios (AR): This is a measure of the abundance of identified PTES junctions 

relative to canonical junctions. This metric is derived in three ways: 1) dividing PTES junction 
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counts by total canonical junction counts observed from host locus; 2) computing the ratio:  

RPKMI / RPKME or 3) RPKME / (RPKME + RPKMI). 

Co-transcriptional splicing rates (CSR): To estimate the rate of co-transcriptional splicing, 

expression estimates of chromatin-associated pre-mRNAs and analogous mRNAs were 

compared. For mature mRNAs, sequence references for all exon-exon junctions between the 

first exon and other exons, and between other exons and last exon of the longest isoforms of 

each gene with at least 3 exons were generated. For pre-mRNAs, sequence references of exon-

intron junctions for first and last exons were also generated. Reads from K562 chromatin 

associated samples were aligned to these junctional references. Reads supporting all splice 

junctions involving first and last exons of genes were extracted, accepting only mapped reads 

with edit distance <= 2. Read counts supporting exon-exon junctions were extracted and 

aggregated. Reads mapped to exon-intron junctions involving the terminal exons were also 

extracted. The co-transcriptional splicing rate (CSR) for each gene was derived using the 

formula: CSR = X / (X + Y); where X = sum of read counts from canonical splice junctions 

involving first and last exons, and Y = reads counts from exon-intron junctions involving first 

and last exons. 

Percentile read coverage: Even distribution of reads across each transcript (linear and circular) 

was examined by first generating 100 sequence segments of sizes relative to transcript length. 

Uniform read coverage across linear transcripts was assessed using RSeQC v. 2.4 (Wang et al. 

2012). For circRNAs, transcript lengths were determined by concatenating all exons predicted 

within each circRNA. The number of nucleotides covered by at least one read within each of 

the 100 segments was used to derive the read coverage for that sequence segment. For instance, 

each sequence segment of an 1000bp transcript will have length of 10bp. The read coverage of 

the first segment of this hypothetical transcript will be 80%, if only 8bp of the 10bp are covered 

by at least one read within the RNAseq data. Comparisons between samples using this metric 

were performed by computing the difference in coverage for each segment per transcript. 

MiRNA binding sites density: Genomic coordinates of exons were compared with genomic 

positions of miRNA binding sites, counting number of binding sites within each exon. For each 

PTES transcript, exons predicted to be within the transcript are used to determine the number 

of miRNA binding sites within the transcript. The spliced size in bp (derived by concatenating 

exons within circRNA) was used to normalize derived counts, resulting in miRNA binding site 

density. 

Software performance: For simulated data, transcripts correctly identified by each PTES 

identification method after each simulation, were determined by comparing genomic 

coordinates of identified transcripts with the genomic coordinates of transcripts expected to be 
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recovered from within each dataset. The numbers of correctly identified PTES transcripts (true 

positives – TP), incorrectly identified PTES transcripts (false positives – FP), PTES transcripts 

incorrectly excluded (false negatives – FN), and canonical junctions correctly excluded (true 

negatives – TN), were used to estimate sensitivity: TP / (TP + FN), specificity: TN / (TN + 

FP), and false discovery rate (FDR): FP / (TP + FP). All analyses were carried out on a high 

performance cluster consisting of 20 nodes, each having 8 CPU cores, running at 2.67 GHz. 

Sixteen of these nodes have 48 GB memory, while the other 4 have 96 GB memory. Run times 

and memory consumption of each method were recorded for comparisons. 

 

 

2.6.5 Statistical analysis of PTES abundance 

 Reads counts for PTES transcripts identified from biological replicates were summed to 

reduce the effect of sampling on downstream analyses. Total canonical junction counts from 

PTES producing genes were also tallied. Two-by-two contingency tables - consisting of PTES 

counts and canonical junctions counts for samples being compared - were derived and used in 

Fisher’s exact tests for each transcript. Fisher’s exact test was chosen because of its tolerance 

for low values in calculating the significance of deviation from the null hypothesis; null 

hypothesis being no difference in PTES distribution is expected between sample groups. 

Multiple testing correction using Benjamini-Hochberg (BH) method was then performed. For 

t-tests, PTES raw counts from each sample were first normalized by dividing with total 

canonical junction counts from their respective host locus or by total junction counts (PTES 

and canonical) from respective samples.  

 Enrichment analysis using RPKMI / RPKME ratios were performed using the Wilcoxon 

signed-rank test after removing genes with less than 4.0 RPKM for PTES exons. False 

discovery rate was controlled at 0.01 using Benjamini-Hochberg method. All statistical 

analyses were performed using R statistical computing software versions 2.15.1 and 3.1.1. 

 

2.6.6 Custom scripts 

 Custom scripts were developed for extracting read counts, genomic features, enrichment 

analyses and derivation of all metrics used in downstream analyses presented in this thesis. 

Scripts were developed using Java 2 standard edition (J2SE), R statistical software and shell 

scripting. A list of all scripts developed, their expected inputs and outputs is presented in 

appendix 9.1. 
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Chapter 3. Assessment of Computational PTES identification Methods  

 

3.1 Introduction 
The first PTES transcripts to be described were identified fortuitously using in vitro 

methods (Nigro et al., 1991; Cocquerelle et al. 1992; Cocquerelle et al. 1993; Bailleul 1996). 

The emergence of high throughput RNA sequencing (RNAseq) allows for the simultaneous 

identification and quantification of various RNA species, presenting the opportunity to 

characterise PTES transcriptome-wide. Many computational tools for PTES identification from 

RNAseq data have now been described (Memczak et al., 2013; Salzman et al., 2012 & 2013; 

Jeck et al., 2013), but most do not directly address the primary challenge of discriminating 

between bona fide PTES predictions and artefacts.  

 

3.1.1 Existing PTES identification tools do not specifically exclude all sources of artefacts 

 A recent report found that up to 50% of previously reported PTES transcripts are 

artefacts (Yu et al., 2014). Sources of false positive reads include: reads emanating from 

pseudogenes, segmental duplications, tandem exon duplications, fused genes; read-through 

transcripts and template-switching during cDNA synthesis (see 1.3.5 for details).  A common 

approach for eliminating false positive reads originating from other genomic regions is an initial 

mapping to the genome and screening only unmapped reads for PTES events, thus reducing the 

likelihood of misidentification. This approach is utilized by many existing tools for PTES 

identification (Memczak et al., 2013; Zhang et al., 2014; Wang et al., 2010; Guo et al., 2014; 

Westholm et al., 2014). However, many classes of false positive structures can elude this filter. 

For instance, Memczak et al., 2013 reported the identification of 1950 PTES transcripts from 

human leukocytes and HEK293 cells. Reads supporting 7 of the 20 most abundant circRNAs 

identified in that study map with high confidence to linear RefSeq (Pruitt et al., 2002) entries. 

Reads supporting canonical splice events can be mischaracterized as PTES supporting reads 

due to high sequence identity between exons, as exemplified by 4 circRNAs reported in that 

study (Fig 3.1, Appendix 9.2).  CircRNAs with high sequence identity with spliced pseudogenes 

have also been reported. These spliced pseudogenes could conceivably arise from 

retrotransposition of chimeric RNAs, transposition from within segmental duplications or 

tandem exon duplication events.  
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Figure 3.1. Examples of Intragenic False Positives. Schematic diagrams showing inferred 
structure and key sequence relationships for 4 of the 20 most abundant circRNAs reported in 
Memczak et al., (2013). In each case, the inferred structure shares 100 % identity to a linear 
transcript spanning the defining exon-exon junction. Within the top 20, hsa_circ_002174, 
002165 and 002164 show similar patterns of identity to multiple genomic locations. Blue – 
Inferred Donor Exon, Red – Inferred Acceptor Exon, Black – upstream or downstream RefSeq 
exon sharing 100 % identity to donor or acceptor exon at junction. Approximate chromosomal 
locations (HG19) are shown. Figure and legend taken from Izuogu et al., (2016). 
 
3.1.2 Choice of aligner and aligner-specific parameters may impact reproducibility of PTES 

predictions 

 Various reports have highlighted apparent low overlap between the PTES transcripts 

identified from the same samples using different methods (Yu et al., 2014; Hansen et al., 2015; 

Chen et al., 2015). Low overlap in predictions is suggestive of low specificity in existing 

methods (Chen et al. 2015). Virtually all published computational methods for PTES 

identification relies on established aligners for initial mapping of reads to the genome or 

transcriptome. Aligners can be splice-aware (e.g. Tophat (Trapnell et al. 2009), STAR (Dobin 

et al., 2013) etc.), recognizing reads that span splice junctions, subsequently splitting such reads 

to produce accurate alignments. Other aligners (like Bowtie (Langmead et al., 2009), BWA (Li 

& Durbin 2009) etc) are not splice-aware, and instead are best suited for mapping short reads 

contiguously, introducing gaps and mismatches for most reads that span splice junctions. It 
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follows that the choice of aligner can directly affect the performance of PTES identification 

tools. 

 Furthermore, within each aligner, certain parameters are used to determine the 

suitability of reported alignments. Typically, a read with alignments to many targets can either 

have no reported alignment, a randomly selected alignment reported or multiple reported 

alignments. Where reported, such alignments may be used to wrongly support a putative PTES 

event, as the true origin is ambiguous. Existing tools arbitrarily assign values to aligner-specific 

parameters that guide whether alignments to multiple targets are reported. For instance, 

Salzman et al., (2012) allowed alignments to multiple targets and up to 3 mismatches in 

alignments. In contrast, Memczak et al., (2013) accepted alignments to fewer than 20 targets 

and a maximum of 2 mismatches in alignments. Both methods differ in the number of PTES 

transcripts identified from the same leukocytes RNAseq data, presumably as a result of these 

aligner-specific parameters and respective filtering criteria. 

 

3.1.3 PTESFinder is equipped with filters that systematically exclude sources of artefacts 

To fully characterize PTES transcripts, define their global properties and functional 

relevance, an accurate identification method is required. To that end, I developed a method, 

PTESFinder during my MRes. This method screens all reads, not just those that fail to map to 

the genome and is equipped with filters designed to systematically exclude all known sources 

of artefacts. First, to identify putative PTES events, only anchor reads aligned in reverse 

orientation to the same locus are accepted as initial evidence for PTES. This stipulation reduces 

the likelihood of mischaracterizing reads from other chimeric transcripts as evidence for PTES. 

Subsequently, 3 main filtering criteria are applied, targeting other known sources of artefacts. 

Alignment qualities of reads mapped to predicted PTES junction models (constructs) are 

compared with alignment qualities of same reads when mapped to the genome - genomic filter 

- and when mapped to the transcriptome - transcriptomic filter (see 1.3.6 for details). Both filters 

were designed to target false positive reads emanating from pseudogenes, segmental 

duplications, tandem-exon duplications and other genomic features. An additional filter, 

junctional filter, is then applied to target false positive reads from template-switching events. 

The qualities of alignments around the non-canonical junctions which define each PTES are 

evaluated using minimum junctions span (JSpan) and segment percent identity (PID). The 

JSpan parameter is a required even integer value that is used to eliminate reads with sub-optimal 

alignments around the PTES junction. For instance, no mismatch or gap is allowed 3bp either 
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side of PTES junctions when a JSpan of 6 is specified. The PID parameter is a required float 

values that is used to eliminate reads with low sequence identity to PTES construct. A PID of 

85% will exclude reads with less than 85% sequence identity to sequence either side of the 

putative PTES junctions.   

 Unlike many existing PTES identification tools that do not require curated annotations 

of the transcriptome under study, PTESFinder is designed to restrict PTES detection to 

backsplices occurring at known splice junctions. This restriction excludes PTES transcripts 

originating from intergenic and intronic regions, and backsplices utilising cryptic splice sites or 

non-canonical splice signals. 
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3.2 Aims 
In addition to potential false positive PTES predictions by existing tools, there is, to varying 

degrees, a lack of concordance in predictions made by various methods, further highlighting 

the need for an accurate computational method and an assessment of diverse approaches. In this 

chapter, my specific aims are: 

•! Assess the effectiveness of filters within PTESFinder. 

•! Compare PTESFinder to published PTES identification tools 

•! Investigate aligner types and aligner-specific parameters as a source of variation 

between different tools 
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3.3 Results 
 As an initial assessment of PTESFinder function, RNAseq data from human fibroblasts 

total RNA which has previously been mined for circRNAs (sample SRR44975A in Jeck et al., 

(2013)), were analyzed both with and without the application of the genomic and transcriptomic 

alignment filters. Reads excluded during analyses, together with alignment edit distances of 

reads identified by each filter applied separately, are shown in Figure 3.2A-B. 

 

Figure 3.2.  Alignment quality of reads excluded by filters. A) Edit distance distribution of 
reads filtered out by genomic, transcriptomic and junctional (JSpan/ PID) filters. Inset: Seven 
structures are supported by 228 reads with 100 % alignment but are excluded by the 
transcriptomic filter. B) 30 % of reads filtered out support a false positive structure from 5.8 s 
rRNA and are excluded in this plot. C) Venn diagram showing number of reads excluded by 
filters. Majority of false positive reads are excluded by all three filters. Each filter also 
excludes a distinct population of false positive reads. Figure and legend taken from Izuogu et 
al., (2016). 
 

3.3.1 Filters Target Overlapping Populations of Reads 

From a total of over 200 million reads (in SRR444975A), approximately 0.17% 

(359,837) have shuffled co-ordinates with respect to exon position, resulting in 46,875 putative 

PTES models. When these models were evaluated by remapping full length reads to sequence 

references built with information from the models, only 44,620 (~12.5%) mapped to PTES 
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constructs (Table 3.1), indicating that most of the reads with rearranged anchor pairs do not 

map to single genes and/or known exon junctions. Approximately 85% (37,854) of reads 

mapping to PTES constructs are removed by the genomic, transcriptomic and junctional (JSpan 

and PID) filters, with the majority being identified by more than one filter.  For instance, over 

98% of reads excluded by the genomic filter are also excluded by the transcriptomic filter, and 

60% (22692) of all filtered reads are identified by all three (Fig 3.2C). Most of these have high 

edit distances (>10), indicative of low quality alignment. Despite this, the genomic, 

transcriptomic and junctional filters (at least stringency: JSpan = 4, PID = 0.60) uniquely 

exclude ~0.25% (110), ~3.2% (1421) and 15.8% (7036) of reads mapping to PTES models 

respectively, (Venn diagram, Fig 3.2C) indicating that none is wholly redundant. The subset of 

reads identified specifically by the junctional and transcriptomic filters are defined by low edit 

distances of between 1 and 10 (Fig 3.2A), and a small number of reads excluded by the 

transcriptome filter (228) map perfectly to putative PTES constructs with NM=0 (inset Fig 

3.2A). Figure 3.2A also shows a bimodal distribution of mapping qualities for reads filtered out 

by all three filters with peaks at NM=16 and NM=24. Most of the excluded reads with NM=16 

support a false positive structure from rRNA 5.8s (NR_003285.1.1). This is a single exon gene 

with more than one RefSeq annotations and without canonical splice signals. Because of its 

high abundance in cells, reads supporting this structure are likely to arise from template 

switching, hence the high number of edits in aligned reads. In Figure 3.2B, these reads are 

removed, altering the distribution of mapping qualities for excluded reads. This false positive 

structure is unlikely to be found within ribosome depleted RNAseq datasets; nevertheless, reads 

supporting this structure were excluded by all three filters. 

 

Table 3.1. Summary of excluded reads. Number of reads excluded after each filter during 
PTESFinder analyses of RNase R digested and undigested samples from human fibroblasts. 
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3.3.2 Reads Excluded By Specific Filters Have Different Origins 
To investigate the activity of specific filters further, the mapping coordinates of reads 

removed by the genomic filter were compared to the coordinates of annotated pseudogenes and 

segmental duplications. This established that ~74% of reads excluded by the genomic filter had 

superior alignments to segmental duplications, and ~12% had superior alignments to 

pseudogenes. The 417 reads identified by the genomic filter but not by the transcriptomic filter 

were also found to be enriched for reads derived from segmental duplications and pseudogenes 

(examples in Figure 3.3A).  

Reads with perfect alignment to the constructs (NM=0) but excluded specifically by the 

transcriptomic filter, were extracted and examined further to investigate their origins. They 

support 7 putative PTES structures from 4 genes (Inset, Fig 3.2A). Manually examination of 

these 228 reads using BLAT (Kent 2002) established that they all also mapped contiguously 

with ~100% identity to the transcriptome due to high sequence identity between neighboring 

exons. For example, 126 reads which support a putative single exon PTES structure (exon 10 

of HNRNPH1 circularized) map with ~100% identity to exons 10 and 11 of the canonical 

HNRNPH1 transcript (Fig 3.3B) due to high sequence identity between these neighboring 

exons. Another example is the putative PTES from CD276 locus, involving exons 5 and 4. In 

that locus, exons 3 and 5 are ~100% identical, so are exons 4 and 6 (Fig. 3.3C-D). Reads 

supporting this structure map with 100% identity to the canonical junction between exons 3 & 

4. As a result, these reads cannot be taken as supporting evidence for PTES. It is noteworthy 

that such structures will pass any qualitative filter criterion requiring only unambiguous 

mapping to PTES constructs, illustrating the value of the transcriptome filter. Manual 

examination of a subset of the 7036 reads identified only by the junctional filters established 

that these support structures with distinct patterns of suboptimal mapping, such as low 

alignment quality specific to only one of the two exons in the structure (e.g. Fig 3.4A-B), and 

low sequence identity specifically at the junction (e.g. Fig. 3.4C-D), the latter being consistent 

with the expected pattern of alignment for template switching artefacts (Houseley & Tollervey 

2010).  
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Figure 3.3. Examples of Reads excluded by genomic and transcriptomic filters. A)Reads 
filtered out by genomic filter for mapping better to pseudogenes & segment duplicated 
regions B) Reads excluded by the transcriptomic filter for having 100% alignment to a 
canonical splice between exons 10 and 11 of HNRNPH1 C) Dot plot alignment of CD276 
exons, showing high sequence identity between adjacent exons. Figures 3.3A -B taken from 
Izuogu et al., (2016). 
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Figure 3.4. Examples of Reads excluded by the junctional filter. A - B) Reads excluded by 
minimum segment PID of 85%, mapped across putative PTES junctions. PTES junctions are 
denoted by line between exons; number of reads mapped across junction is shown, and mapped 
positions shown in grey histograms. Positions of mismatches are shown in green, blue, orange 
and red for A, C, G & T respectively. C - D) Reads excluded by JSpan, gapped and mismatch 
alignment around junction are apparent. Figure taken from Izuogu et al., (2016). 
 

To further investigate the potential impact of these false positives, assessment of filters 

was repeated using RNAseq data derived from human fibroblast RNA which had been pre-

digested with RNase R. This selectively removes linear RNAs, and enriches for circRNAs 

(Danan et al. 2012; Jeck et al. 2013; Jeck & Sharpless 2014), and has been shown to 

significantly increase the recovery of PTES reads. However, it is anticipated that this would 

also selectively remove false positives derived from pseudogenes and segmental duplications 

which mimic PTES structures, without necessarily reducing reverse transcription artefacts such 

as template switching. This is indeed the case, as only ~12% of reads from the RNase R digested 

sample which map to PTES sequence constructs are excluded by the genomic and 

transcriptomic filters (Table 3.1), compared to 69% in the undigested sample. Furthermore, only 

17% of these map to segmental duplications, compared to 74% in the undigested sample. In 

contrast, the proportion of reads excluded by the junctional filters is considerably higher after 

RNase R digestion, consistent with expectation. Additionally, the large peak observed for reads 

excluded in the earlier analysis and consisting of reads from rRNA are not apparent in RNase 

R digested sample (Fig 3.5). This is presumably due to digestion by RNase R, thus, reducing 

abundance of rRNAs and the likelihood of template switching between molecules of this 

transcript.   
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Figure 3.5. Alignment quality of reads excluded from RNase R digested sample. Number 
of reads excluded by each filter after analysis of RNase R digested sample from human 
fibroblasts and alignment quality distributions of reads excluded by each filter. 
 

3.3.3 PID Has Greater Impact than JSpan 

The junctional filters (JSpan and PID) examines reads aligned to constructs and require 

that there is no mismatch within a defined sequence region either side of the PTES junction 

(JSpan), and that reads map to the construct with sufficient identity above a specified threshold 

(PID). Reads not meeting these requirements are likely reverse transcription artefacts or 

originate from other chimeric transcripts not consistent with PTES. To investigate the impact 

of varying the user defined JSpan and PID parameters which comprise the junctional filter, the 

same data was re-analyzed using 54 different combinations of these parameters, both with and 

without the genomic and transcriptome filters applied. This established that varying the PID 

has a greater impact than varying the JSpan, with 5691 reads filtered with maximal PID (100%) 

and lowest JSpan (4) compared to only 1235 reads filtered with the maximal JSpan (14) and 

lowest PID (60%). Furthermore, varying the PID between 60% and 75% has little impact at any 

JSpan value, but above 75% there is a linear relationship with the number of reads filtered.  

As the default junctional filter parameters failed to identify some reads excluded as false 

positives by the other filters (Genomic: 110 and Transcriptomic: 1421, Figure 3.2C above), this 

analysis was repeated using only these reads to establish the JSpan and PID parameters required 

to identify them. Over 99% of these reads are excluded with the most stringent junctional filter 
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parameters (Figure 3.6B). Furthermore, the vast majority are filtered with a PID of 85%, 

suggesting this is a logical setting for this parameter. The JSpan setting only has a major impact 

at low PIDs (60%-75%). 

 
Figure 3.6.  Effect of varying junctional filter parameters. A) Number of reads passing 
filter at different combinations of JSpan and PID. B) Percentage of reads only excluded by 
transcriptome and genomic filters at default settings, which are filtered at different 
combinations of JSpan and PID. Figure and legend taken from Izuogu et al., (2016). 
 

3.3.4 Effect of Aligner Specific Parameter and PTESFinder Performance  

 The effect of varying the Bowtie aligner specific -m / -M toggle, which controls the 

uniqueness of alignments reported, was also assessed. Briefly, if the number of reportable 

alignments is greater than the -m value specified, all alignments for that read are suppressed. If 

an equivalent -M value is used, one alignment is chosen to be reported instead of complete 

suppression. This parameter is expected to affect the performance of PTESFinder in different 

ways. Accepting reads mapping to multiple targets may reduce specificity as the likelihood of 

inaccurate identifications based on such reads is higher. Conversely, lower values of the -m 

parameter can affect sensitivity. Reads mapping to exons shared by multiple linear isoforms of 

a PTES producing gene will be suppressed if the number of isoforms from that gene exceed the 

specified -m value.  

To assess the effect of this parameter on PTESFinder output, I analyzed simulated data, 

varying -m value at 2, 4, 7 & 20, both with and without guiding with previously identified PTES 

transcripts. As the impact of this parameter will be influenced by read depth/coverage, 

simulated datasets with coverage varying from 2 to 50 were analyzed. The results are presented 
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in Figure 3.7 and illustrate that sensitivity varies considerably with both coverage and analysis 

parameters. It remains below 0.6 for all –m/-M values and analysis types at coverage of 2. 

Sensitivity remains below 0.70 at all depths of coverage for the –m2 analysis, due to the large 

number of genes within RefSeq which have multiple isoforms.  However, sensitivity is >90% 

at coverage of 10 or higher when the default (-m7) setting is used, or when -M values were used 

in analyses.  Specificity was observed to be over 0.99 at all depths, using any –m/-M value. 

Lower specificities were however observed when -M values are used instead of -m values, 

confirming that alignments to multiple targets may impact on specificity. 

 

Figure 3.7. Effect of varying aligner-specific parameter. A) Sensitivity and B) Specificity 
of PTESFinder, after analyses of simulated data using various -m/M parameter values.  
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3.3.5 Comparison of PTES identification Methods 

To compare PTESFinder to other methods, simulated reads were generated from 

previously identified PTES and associated canonical transcripts (see 2.5.2), and analyzed at 

various read depths of coverage using default parameters. In addition to assessing PTESFinder 

for de novo PTES discovery, the use of constructs of previously reported structures for guided 

discovery was also assessed, as were four publicly available methods which have previously 

been employed to identify circRNA transcripts: MapSplice v 2.1.5 (Wang et al., 2010) used in 

Jeck et al., (2013), CIRI v. 1.2 (Gao et al. 2015),  circRNA_finder (Westholm et al., 2014) and 

the method  used by Memczak et al. (2013). These methods utilize various established aligners 

in their methodologies and represent state-of-the-art tools for PTES identification. Briefly, 

MapSplice and the method described in Memczak et al., (2013) segment reads and map to the 

genome with Bowtie; CIRI utilizes BWA (Li & Durbin 2009) and circRNA_finder relies on the 

STAR aligner (Dobin et al., 2012). Thus, both spliced and unspliced aligners are represented as 

underlying mapping tools within these methods.  

Results from 100 simulated datasets are presented in Figure 3.8 (A-C), and illustrate 

that sensitivity varies considerably with coverage, and between methods. As previously 

observed (Fig. 3.7), at read coverage of 2, the sensitivity of PTESFinder is below 0.6. This can 

be attributed to PTES junctions occurring within the terminal 20bp of reads, as the low tolerance 

for mismatches during anchor mapping will result in their elimination.  However, sensitivity 

reaches >90% at coverage of 10 or higher for both guided and unguided analyses, with guided 

PTESFinder being equally or more sensitive than all other methods at all read depths. Strikingly, 

the sensitivity of MapSplice is low, remaining below 0.5 at all read depths. In contrast, 

specificity is over 0.97 for all methods at all read depths (Figure 3.8B), although PTESFinder 

achieves the highest specificities averaged across all depths (over 0.999) for both de novo and 

guided PTES discovery, with all canonical junction reads being correctly identified as such 

within the simulated data. Only the Memczak method has similar specificity when averaged 

across all read depths (Figure 3.8C). 
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Figure 3.8. Sensitivity and Specificity in Comparisons to Other Methods. A) Sensitivity 
and B) Specificity of PTESFinder and 4 other publicly available methods (CIRI, 
circRNA_finder, MapSplice and Memczak) analyzed using simulated data (see methods). C) 
Mean false discovery rate (FDR) % of all methods averaged across all read depths analyzed. 
Figure and legend taken from Izuogu et al., (2016). 
 

To compare performance using real data, RNAseq data from Jeck et al. (2013) were analyzed 

using all 5 methods (Table 3.2).  To allow direct comparison to PTESFinder, the number of 

putative circRNA structures identified which utilise 2 RefSeq splice sites was recorded for all 

other methods (bracketed in Table 3.2), as the total numbers include structures from intergenic 

and intronic regions of the genome. For all 4 samples analyzed, CIRI consumed >90Gb of 

memory, resulting in incomplete analyses. It was therefore not analyzed further. Of the 

remaining 4 methods, PTESFinder identified on average 15% more structures than the 

Memczak method and ~70% more than MapSplice. The latter is consistent with earlier 

observation that MapSplice, which was used in Jeck et al., (2013), has low sensitivity at all 

depths of sequence coverage (Figure 3.8A). However, circRNA_finder reported the highest 

number of putative circRNA transcripts from both exonic and non-exonic regions of the 

genome, reporting approximately 31%-42% more structures with RefSeq co-ordinates than 

PTESFinder (Table 3.2).  

 

Table 3.2. Analysis of RNAseq data from human fibroblasts using 4 PTES identification 
tools. Run times in minutes and number of PTES identified by each PTES identification method 
after analysis of RNAseq data from human fibroblasts. Table taken from Izuogu et al., (2016). 
 

To investigate the origins of the RefSeq related structures identified exclusively by 

circRNA_finder, reads defining these structures from one sample (SRR444975) were re-

analyzed using PTESFinder (Figure 3.9A). Of 9287 reads re-analyzed, approximately 20% 

(1840) are defined as mutilocus or sense-antisense fusions, and a further 19% (1775) are 

eliminated by the junctional, genomic, and transcriptomic filters indicating likely false positives 
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(Figure 3.9B). The remaining 61% (5672) are not aligned, indicating that their anchors map 

sub-optimally to RefSeq. Furthermore, plotting the distribution of the number of reads 

supporting each structure identified by circRNA_finder only, by PTESFinder only, and by both 

methods (Figure 3.9C), revealed that the vast majority of structures identified by 

circRNA_finder alone are supported by a single read. This is in sharp contrast to structures 

identified by both methods, or by PTESFinder alone. While these single-read structures may 

include bona fide low frequency circRNAs, they are also likely to contain false positives caused 

by suboptimal mapping, consistent with the lower specificity of circRNA_finder with simulated 

data. Runtimes and memory consumption for each method were also profiled. Runtimes for 

PTESFinder were 25%-35% lower than for the Memczak method, and 50%-82% lower than 

for MapSplice (Table 3.2), but by far the best runtimes were achieved by circRNA_finder which 

utilizes the STAR aligner. These were, however, achieved at higher computing memory cost 

(~30GB). PTESFinder and the Memczak method registered the least memory consumptions 

and are seemingly unaffected by increased library size. 

To compare PTESFinder’s output to previous reports, RNAseq data previously mined in two 

further studies (Salzman et al., 2012; Memczak et al., 2013) were also analyzed. Consistent 

with the above, it identified 13% more distinct structures from leukocyte and HEK293 data than 

were reported by Memczak et al., (2013) (2217 as opposed to 1950 Figure 3.9D), and 41.6% 

more structures than reported by Salzman et al., (2012) from leukocyte data (1875 as opposed 

to 1324). As both structures and supporting reads were reported by Memczak et al., (2013), it 

was possible to re-analyze the 898 structures identified exclusively by their method using 

PTESFinder. This established that none correspond to structures which PTESFinder is designed 

to identify (Figure 3.9E): 503 (56%) are derived from intronic, and intergenic regions, and of 

the 1420 reads supporting the remaining 395 genic structures, 492 were excluded by 

PTESFinder due to low map quality (200) or multiple map locations (292), 89 reads were 

excluded by PTESFinder filters, and the remaining 839 possessed at least 1 exon boundary 

which did not map to known splice junctions (Figure 3.9F). Again, while some of these latter 

reads will undoubtedly correspond to bona fide PTES structures (as a number of genic PTES 

utilizing non-Refseq splice sites have been confirmed experimentally (e.g. Memczak et al., 

(2013)), further BLAT (Kent 2002) analysis established that 13 mapped in a linear fashion to 6 

annotated pseudogenes (see appendix 9.2).   
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Figure 3.9. Comparisons with real RNAseq data & published results. A) Approximately 64 % (4675) of PTES transcripts utilising 2 RefSeq 
(known) splice sites were identified by both circRNA_finder and PTESFinder from SRR444975 B) Read exclusion criteria for PTES transcripts 
identified by circRNA_finder only, when analyzed by PTESFinder C) Distribution of read numbers supporting PTES transcripts identified by 
circRNA_finder only, by PTESFinder only, and by both (raw counts reported by PTESFinder shown) D) PTESFinder identified over 50 % (1052) of 
transcripts reported in Memczak et al., (2013). E) The majority of the 898 structures reported by Memczak et al. (2013) but not identified by 
PTESFinder are intronic or intergenic. F) Exclusion criteria for reads presented as evidence for exonic structures in Memczak et al., (2013) which were 
not reported by PTESFinder. Figure and legend taken from Izuogu et al., (2016).
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3.3.6 Assessment of Annotation-Free PTES identification methods  

 Approaches to PTES discovery involve a compromise between the ability to detect all 

potentially rearranged transcripts, and the ability to identify artefacts generated as a result of 

the sequence and structural complexity of eukaryotic genomes, and of current library 

construction methods. Strikingly, the overlap between predictions is highly variable, suggesting 

that each method has its biases and perhaps many false positive predictions. For instance, <10% 

of transcripts identified from SRR444975 using the circRNA_finder method overlap with 

transcripts identified using MapSplice.  

 To better understand the effect of choice of aligners, I modified PTESFinder to allow 

for annotation-free identification from both exonic and non-exonic genomic regions. I 

developed two versions, one with STAR used in both discovery and evaluation phases (spliced 

method). The second version also utilizes STAR in the discovery phase but alignment of full 

length reads to the genome in the evaluation phase is done using Bowtie2 (unspliced method). 

The difference between both versions is likely to be observed in the quality of excluded reads 

and predicted PTES transcripts. Summarised results of output from each method after 

reanalyses of SRR444975 are presented in Fig. 3.10. First, more transcripts are identified from 

the unspliced method (11,751) than the spliced method (10,401). The unspliced method 

identifies virtually all transcripts also identified by the spliced method (Fig 3.10B). The main 

difference between the two methods is observed in the reads excluded by the filters. Expectedly, 

more reads are excluded by the spliced method; most of these reads were excluded by the 

transcriptomic filter. This is likely due to improved alignments to unannotated splice junctions, 

thus, lower number of edits compared to reads mapped to constructs. Typically, for structures 

identified from non-genic regions, supporting reads are not adequately compared to alignments 

to the genome, if such alignments are sub-optimal using the unspliced method. Reads support 

for the 1354 additional transcripts identified using the unspliced method are significantly lower 

(p-value < 2.2 x 10-16, Wilcoxon rank sum test), compared to the level of support for common 

predictions, suggesting that many are likely to be false positives. 
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Figure 3.10. Annotation-Free PTES identification. A) Summary of reads excluded by both spliced and unspliced annotation-free methods. B) 
Overlap of transcripts identified by both methods C) PTES transcripts filtered out by the spliced method are identified by 3 published methods: 
CircRNA_Finder, Memczak et al., (2013) method and MapSplice. 
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Of the 1354 transcripts, 64 are fully intergnic and 69 transcripts span across more than one 

locus, such as the transcripts shown in Fig 3.1. Figure 3.11 shows an example of an intergenic 

transcript only identified using the unspliced method. The single read supporting this transcript 

has 3 mismatches when mapped to the putative PTES transcript. Interestingly, this read does 

not align to the genome when mapped using Bowtie2; however, an alignment is reported using 

the spliced aligner. STAR maps the read to an unassigned contig of the genome in a split read 

manner, presumably as a result of an unknown splice junction or RT-PCR artefact. As this read 

is not mapped to the genome in the unspliced method, the suboptimal alignment to the PTES 

transcript is accepted; this is not the case using the spliced method. The reported alignment to 

the genome in the spliced method is superior to alignment to the PTES transcripts, resulting in 

the exclusion of that read. It follows that methods that identify PTES from reads not mapped to 

the genome using non-splice aware aligners are likely to wrongly characterize structures such 

as this as bona fide PTES transcripts. 

 

Figure 3.11. Example of structure excluded by spliced-aware PTESFinder. A) Example 
read alignment summary to a putative PTES junction. Alignment summary (in SAM format 
[https://samtools.github.io/hts-specs/SAMv1.pdf]) includes read id (first column), target 
mapped to (third column) and alignment quality summary indicated by NM (number of edits 
necessary for reported alignment) and MD fields – both highlighted in red and indicate 
indicate suboptimal alignment to the putative PTES. Lower panel shows the alignment on the 
UCSC genome browser (Kent 2002); two black boxes represent non-contiguous (head-to-tail) 
alignment of both ends of the read. B)  Alignment summary of same read when mapped with 
Bowtie2, non-splice aware aligner used in the unspliced method. Missing target in third 
column of the alignment summary indicates that the read was unaligned to the genome using 
this method. C) An alignment is howver reported for this read using STAR, a splice-aware 
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aligner used in the spliced method, resulting in the correct exclusion of this read during 
filtering. Cigar field (highlighted in green) shows the size of the gap between both ends of 
aligned fragments. The arrow highlights the same alignment viewed on the UCSC genome 
browser and indicates mapping to an unannotated region of the genome (chrUn_g1000220). 
 
 A total of 756, 225 and 156 structures predicted by CircRNA_finder, Memczak method 

and MapSplice respectively overlap with the 1354 excluded by the spliced method. The lower 

overlap with MapSplice and Memczak methods is likely due to overall lower number of 

identified transcripts using these methods. From the -m/M value analysis, it is clear that there 

is also an aligner-specific behavior in identification of reads with head-to-tail mapping. This is 

likely to be the case for the higher concordance between circRNA_finder predictions and 

transcripts only identified using the unspliced method, as both methods use identical aligner-

specific parameter values. It also further highlights the possibility that a high proportion of 

transcripts identified by circRNA_finder are likely false positive structures. 
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3.4 Discussion 
To fully characterize PTES transcripts transcriptome-wide, an accurate computational 

method for identification is paramount. The major challenge in in silico identification of these 

transcripts is discriminating between bona fide PTES transcripts and all known sources of 

artefacts. In this chapter, I assessed the efficacy of filters within PTESFinder designed to 

minimize false positive predictions. Many existing tools for PTES discovery initially map reads 

to the genome to eliminate reads with known origins. Reads with unknown origins are often 

processed further to identify PTES events. PTESFinder approaches this task differently: All 

reads are used in PTES identification prior to filtering, where alignments to putative PTES 

transcripts are compared to alignments of same reads to the genome and transcriptome. This 

approach enhances discovery, as reads that support PTES may inadvertently be excluded by 

forced alignments to the genome using other methods. 

Filters within PTESFinder target an overlapping population of false positive reads but have 

unique populations of excluded reads. Reads excluded by the genomic filter have better 

alignments to segment duplications and unspliced pseudogenes, than to putative PTES 

transcripts. Similarly, some reads excluded only by the transcriptomic filter originate from 

canonical splices between exons with high sequence identity to adjacent exons. These reads are 

most likely to be wrongly mischaracterized at PTES supporting reads because they map 100% 

to putative PTES transcripts. The importance of this filter provides justification for reliance on 

curated transcript annotations to guide discovery. It is now clear that the majority of transcripts 

with re-arranged exon order utilize known exon junctions (Jeck et al., 2013; Liang & Wilusz, 

2014) which are processed by the spliceosome (Guo et al., 2014; Ashwal-Fluss et al., 2014). As 

a result, methods which utilize existing transcript annotations from the genome under study, 

such as PTESFinder and those employed by (Salzman et al., 2012 & 2013) benefit from the 

reduced noise inherent in this approach and are suited to quantitative analyses of PTES 

structures that can be characterized using existing annotations. The use of 

known/experimentally verified splice sites does reduce the misidentification of template 

switching artefacts or unspliced pseudogenes as bona fide PTES transcripts. However, it does 

mean that not all rearranged transcripts will be identified. All the methods compared with 

PTESFinder attempt to detect PTES events in non-exonic regions. 

The trade-off between sensitivity and specificity in PTES identification is highlighted when 

the choice of aligner in annotation-free methods is considered.  The discordance between PTES 

identified with different methods from the same samples have been reported (Yu et al., 2014; 

Hansen et al., 2015). This discordance is likely due to the underlying aligner used in each 

method and aligner specific parameters. Assessing the effect of aligner choice on PTES 
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identification, approximately 11% of transcripts identified when a non-splice aware aligner is 

used are excluded when the same sample is analyzed with a method utilising a splice-aware 

aligner.  

The transcripts not discovered using a splice-aware aligner are likely false positives, 

excluded because of their similarity to canonically-spliced transcripts. It is however apparent 

that a large number of transcripts identified using annotation-free methods are missed by the 

annotation-dependent method. Many of these transcripts originate from cryptic splice sites 

within (or flanking) annotated genes, as is the case for circSry (Capel et al., 1993); or from 

antisense transcripts (eg. circCDR1 [Hansen et al., 2011; Memczak et al., 2013]); or intergenic 

and unannotated. It follows that the choice of PTES identification tool will depend on 

underlying research objectives. While annotation-dependent tools (like PTESFinder) are best 

suited for identifying exonic circRNAs, linear PTES from known genes and estimating their 

abundance relative to cognate canonical junctions; annotation-free methods will be best suited 

for identification of PTES events from unannotated regions of the genome. Nevertheless, 

comparing PTESFinder to other published methods using both simulated data and publicly 

available RNAseq datasets, PTESFinder achieves the highest specificity and comparable 

sensitivities at all read depths tested. Experimental validation of 40 out of 45 randomly selected 

PTES transcripts performed during my MRes were consistent with results from performance 

tests obtained here; further suggesting that PTESFinder is an adequate computational tool for 

PTES discovery. 

Finally, it is notable that in vitro enrichment protocols may impact computational PTES 

identification. CircRNA enrichment by RNase R digestion apparently yields more identified 

transcripts, regardless of software used. However, some false positive predictions are likely 

from samples not depleted of ribosomal RNA as exemplified by putative PTES from rRNA 5.8s 

(see text). Therefore, it is necessary to account for these potential confounding factors in 

experimental design for PTES analysis. 

 

3.5 Conclusion 
In this chapter, I assessed PTESFinder, a computational tool for PTES identifying, 

developed during my MRes study. By screening for PTES events in RNAseq data from human 

Fibroblasts and characterizing reads excluded by filters within PTESFinder, I established the 

effectiveness of these filters and their usefulness. Using simulated data, I assessed the 

performance of PTESFinder and the effect of aligner-specific parameters. I further compared 

the output of PTESFinder to that of 4 published methods after analyzing simulated data. These 

analyses established that PTESFinder achieves the highest specificity and comparable 
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sensitivity to other methods, indicating that it is an adequate computational tool for PTES 

identification. I also extended PTESFinder to identify non-exonic PTES transcripts, and found 

that some predictions are aligner specific and probably contribute to the variation in reported 

identifications using various methods. With the utility of PTESFinder established, I turned my 

attention to questions pertaining to the distribution, formation and potential function of these 

novel transcripts. 
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Chapter 4.  Sub-Cellular Distribution of PTES transcripts and their 

contribution to the Proteome 

 

4.1 Introduction 
In the last chapter I presented an assessment of PTESFinder, a computational tool for PTES 

discovery. PTESFinder was shown to achieve the highest specificity and comparable sensitivity 

when compared with other published methods. Having established the utility of this tool, I 

aimed to address questions pertaining to the origin and potential functions of these novel 

transcripts. One such question relates to defining the sub-cellular distribution of PTES 

transcripts. RNAs typically localize in their site of functional relevance. For protein coding 

genes, transcripts are transcribed and processed in the nucleus, then exported to the cytosol 

where they are translated by polysomes. Small RNAs, including snoRNAs and snRNAs, are 

generally localized in the nucleus (Elliott & Ladomery, 2011). For instance, snoRNAs are 

transported to the nucleolus (after transcription in the nucleoplasm), where they aid in the 

maturation of ribosomal RNAs. They are typically enriched in the nucleus and not in the cytosol 

(van Heesch et al., 2014). Similarly, studies have concluded that a subset of lncRNAs (including 

NEAT1 & MALAT1) is enriched in the nucleus, where they are functionally relevant (Derrien et 

al. 2012; van Heesch et al. 2014).  

 

 

4.1.1 Spliceosomal proteins aid nucleo-cytoplasmic mRNA export 

There are various pathways for transcripts to exit the nucleus into the cytoplasm. For spliced 

protein-coding transcripts, serine-arginine (SR) proteins associate with nascent transcripts prior 

to splicing and aid in spliceosome assembly (Elliott & Ladomery, 2011).  Along with SR 

proteins, other proteins are added to the transcript including the cap-binding complex (CBC), 

exon-junction complex (EJC) and proteins associated with polyA-tail formation. These proteins 

coat the transcript and interact with export adaptor proteins (TREX complex) (Masuda et al. 

2005). First, RNA export factor (within TREX) associates with CBC. Second, SR proteins, 

which help in spliceosome assembly when phosphorylated, dephosphorylate to allow binding 

to export adaptors (Köhler & Hurt 2007; Elliott & Ladomery, 2011). Interestingly, 

dephosphorylation of SR proteins acts as an indicator for spliced and unspliced transcripts; 

whereby unspliced transcripts are not export competent and remain in the nucleus (Elliott & 

Ladomery, 2011). Export adaptors are required to bind to export receptors - called Tip 
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associated protein (TAP) - on nuclear pores. TAP has both hydrophobic and hydrophilic termini 

that allow it to bind TREX and aid the movement of spliced transcripts through nuclear pores 

(Elliot & Ladomery, 2011). Unlike mRNAs, non-coding transcripts (such as tRNAs, rRNAs 

and miRNAs) utilize different export pathways (Fig. 4.1) (Kohler & Hurt, 2007; Elliott & 

Ladomery, 2011). Generally, these ncRNAs bind to cargo proteins that shuttle between cellular 

compartments, facilitated by a group of nuclear export receptors called karyopherins (Elliott & 

Ladomery, 2011).  

 

 
Figure 4.1. Various RNA export pathways. Protein-coding and non-coding RNAs exit the 
nucleus to the cytoplasm via various export pathways and facilitated by numerous export 
proteins - adapters and receptors. Taken from Kohler & Hurt, (2007). 
 

Linear PTES transcripts can conceivably be exported from the nucleus in the same way as 

processed mRNA transcripts, if they are not subjected to nonsense mediated decay (NMD). 

This is indeed the case for some trans-spliced transcripts with detectable protein products 

(Caudevilla et al. 1998). However, with the absence of cap structures and polyA-tails, it is not 

clear if circRNAs exit the nucleus and by what mechanism. Although earlier studies had shown 

a handful of PTES transcripts to be localized in the cytosol, using low throughput in vitro 

methods (Nigro et al., 1991; Salzman et al., 2012), it remains unclear whether this is a 

transcriptome-wide property of PTES transcripts. It has been speculated that PTES transcripts 

may exit the nucleus during mitosis (Jeck et al., 2013). Identifying PTES transcripts localized 

(or enriched) in the nucleus, relative to the cytosol, would provide evidence for an unknown 

nucleo-cytoplasmic export pathway.   
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4.1.2 Co- or Post-Transcriptional Exon Shuffling? 

It is becoming increasingly clear that most splicing and RNA processing occurs during 

transcription. Recent estimates of the proportion of exons spliced during transcription exceeds 

71% (Tilgner et al. 2012), with some estimating higher co-transcriptional splicing rates of up 

to 80% (Girard et al. 2012). Non-coding RNAs are thought to be inefficiently spliced and have 

lower rates of co-transcriptional splicing (Tilgner et al., 2012). As PTES transcripts originate 

from both protein coding and non-coding genes, it remains unclear whether PTES biogenesis 

occurs during transcription and to what extent it impacts linear transcripts from the same locus. 

Pieces of evidence supporting both co- and post-transcriptional PTES biogenesis have recently 

been presented. The evidence for co-transcriptional splicing involves the identification of PTES 

transcripts within chromatin-associated RNA in Drosophila fly heads and mouse liver (Ashwal-

Fluss et al. 2014). This approach alone does not conclusively indicate co-transcriptional PTES, 

as contamination of RNA extracts can occur during isolation protocols. In support of this 

premise, reduced numbers of circRNAs were reported from chromatin-associated samples and 

these transcripts are supported by lower read counts, possibly indicating contamination 

(Ashwal-Fluss et al. 2014). Additionally, studies have shown that many non-coding RNAs have 

roles in chromatin structure and that RNAs are integral components of chromatin (Mondal et 

al. 2010). A sub-class of circRNAs was also recently reported to associate with RNA 

polymerase and possibly have roles in regulating transcription (Li et al. 2015).  

Evidence for post-transcriptional exon re-arrangement was recently presented by Liang and 

Wilusz (2014). In that study, circularization of mini-gene constructs was found to require the 

formation of 3` ends of the pre-mRNA, presumably to stabilize the transcript or aid formation 

of RNA secondary structures favorable for PTES. Removing signals for polyadenylation 

abolished circularization; replacing these signals by inducing the formation of a tRNA-like 

secondary structure that is cleaved by RNase P rescued circularization, supporting the notion 

that termination of transcription may be critical for PTES biogenesis (Liang and Wilusz 2014). 

However, it is not clear if these observations extend to other transcripts. Indeed, a follow-up 

study by the same group found that, biogenesis of circRNA from the laccase2 gene in 

Drosophila does not require the formation of a 3` end (Kramer et al., 2015). No direct 

assessment of the co-transcriptional splicing profiles of PTES producing genes has been 

reported.  Identifying a propensity for PTES genes to undergo more or less co-transcriptional 

splicing relative to other genes could offer further clues about how their biogenesis relates to 

that of linear transcripts. 
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4.1.3 Profiling transcripts undergoing translation 

Once exported to the cytosol, protein-coding transcripts are bound by ribosomes and 

undergo translation. To identify transcripts undergoing translation, ribosome-associated 

transcripts are isolated and sequenced using two main approaches: 1) transcriptome-wide 

polysome profiling and 2) ribosome foot-print profiling (Ingolia 2014). In polysome profiling, 

transcripts bound by polysomes are isolated by ultracentrifugation, resulting in different 

fractions that indicate the number of ribosomes bound to transcripts (Ingolia 2014). In ribosome 

foot-print profiling, cells are first treated with cycloheximide to stall and stabilize ribosomes on 

mRNAs. Messenger RNAs are then digested by nuclease, but protected at regions occupied by 

bound ribosomes. Protected fragments are then sequenced to obtain a snapshot of specific 

regions undergoing translation (Ingolia 2014; Mcmanus et al. 2014). 

In most organisms, protein-coding genes are characterized by open reading frames (ORFs), 

with translation starting at the first AUG codon and terminating at one of three stop codons 

(Ingolia et al. 2011). However, recent studies now indicate that there may be exceptions. There 

is evidence that there are internal ribosome entry sites, non-AUG translation initiation points 

and existence of short ORFs producing micro-peptides with little known functional relevance 

(Ingolia et al. 2011; Andrews & Rothnagel 2014). Indeed, ribosome profiling transcriptome 

studies revealed that, in some cases long intergenic ncRNAs are bound by polysomes, although 

these interactions may not result in functional proteins (Banfai 2012; Guttman et al. 2013; van 

Heesch et al. 2014).   

There are conflicting reports of the potential of PTES transcripts to contribute to the 

proteome. Caudevilla et al., (1998) reported the identification of a linear PTES transcript from 

Carnitine octanoyltransferase (COT) locus in rat liver that produced detectable protein products. 

Additionally, some PTES transcripts identified in previous studies contain ORFs (Al-Balool et 

al. 2011; Dixon et al. 2007). As these transcripts have been observed in the cytosol, the presence 

of ORFs potentially raises the possibility that they may contribute to the proteome. It has also 

been shown that artificial circular products can be translated (Perriman & Ares 1998; Wang & 

Wang 2014). By attaching inverted repeat sequences and an internal ribosome entry site to green 

fluorescent protein (GFP), Wang & Wang (2014) circularized GFP in vivo and subsequently 

observed the protein product. However, Jeck et al., (2013) investigated the association of 3 

abundant circRNAs with monosomes and found no evidence that those circRNAs are bound by 

monosomes or are translated. 
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In this chapter, I assessed the distribution of PTES transcripts in the nucleus, cytosol, 

nucleoplasm and nucleolus of various cell lines. Identifying transcripts enriched in one nuclear 

compartment (and not in others) may give clues to their functional relevance or point to 

different mechanistic origin. To investigate whether PTES occurs co-transcriptionally, I 

assessed the distribution of PTES transcripts in chromatin-associated RNA and estimated the 

rate of co-transcriptional splicing of transcripts from their host genes (relative to other genes), 

using in silico methods. Furthermore, I investigated the protein coding potential of PTES 

transcripts by assessing their distribution in RNAseq data from sucrose gradient fractions of 

HEK293 cells, with or without arsenite treatment to inhibit translation. 
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4.2 Aims 
In this chapter, my specific aims were: 

•! To assess the distribution of PTES transcripts in cellular compartments and identify 

PTES specific to each cellular compartment. 

•! To assess the extent of co-transcriptional PTES biogenesis. 

•! To investigate the protein coding potential of PTES transcripts. 
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4.3 Results  
As part of the ENCODE project, RNA extracts (comprised of transcripts with size > 200bp) 

from cellular compartments of various cell lines were sequenced to establish the distribution of 

RNA species within each compartment. This, ostensibly, is the first step to inferring functional 

relevance of RNAs with unknown functions. For my study, I repurposed 29 RNAseq samples 

from that project to assess the distribution of PTES transcripts in various cellular compartments 

and explore any possible impact of PTES biogenesis on expression levels of cognate canonical 

transcripts within the cytosol. In total, ~5.1 billion reads were screened for PTES events using 

PTESFinder v. 1 and guided by previously reported PTES transcripts (n = 40594). This resulted 

in the identification of 27712 distinct PTES transcripts from 7067 genes (protein-coding and 

non-coding).  Cumulatively, 200,593 PTES supporting reads were observed from cytosolic and 

nuclear samples. This represents an average of 7 reads per distinct PTES junction. Similarly, 

47,784,631 reads mapped to 223,819 distinct canonical junctions, resulting in a mean of ~213 

reads per distinct canonical junction. PTES transcripts contribute to the number of reads 

mapped to canonical junctions to varying degrees. CircRNAs, for instance, can have n - 1 

canonical junctions; where n is the number of constituting exons. The lowest number of PTES 

transcripts were identified from NHEK cells, with 1117 and 2192 distinct transcripts from both 

nucleus and cytosol samples respectively. The highest number of distinct PTES transcripts 

(6140 and 3660) was observed from K562 nucleus and cytosolic samples respectively. This 

large difference in number of PTES transcripts may be due to multiple factors, including 

sampling bias and tissue specificity.  There is also a noticeable variation in nucleus/cytosol ratio 

of identified transcripts, ranging from 0.31 for H1 embryonic stem cells (ESC) to 1.9 for NHEK. 

Full lists of identified PTES from each sample analyzed are in appendix 9.3. 

In initial exploratory analysis, correlations of PTES and canonical junction counts between 

cell lines were assessed. Hierarchical clustering of samples was performed, based on Euclidean 

distance between samples. First, nuclear samples are noticeably highly correlated between cell 

lines, with correlation coefficient > 0.7 for some pairwise comparisons using PTES junction 

counts (Fig 4.2A). Second, samples seemingly group according to cellular compartments using 

hierarchical clustering of PTES expression. Clustering by canonical junction counts seemingly 

partitions samples according to cell type, regardless of cellular compartment. These results 

suggest that there is a detectable difference in PTES distribution between compartments, 

However, the observed pattern in Fig 4.2A is strongly affected by highly expressed PTES 

transcripts from snoRNA loci (see appendix 9.3). Both PTES and canonical junctions counts 

are more prominent in nuclear fractions than the cytosol (Fig. 4.2B).  
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Figure 4.2. Exploratory analysis of PTES sub-cellular distribution. A) Correlation plots of 
samples using raw PTES counts (left) and canonical junction counts (right). Hierarchical 
clustering is based on Euclidean distance between samples. B) Distribution of log scaled and 
mean centered junction raw counts. 
 

4.3.1 Variety of PTES events observed in the nucleus 
To reduce the effect of potential sampling bias, transcripts identified from nuclear and 

cytosolic samples were post filtered to exclude transcripts observed in only one sample. 

Excluded transcripts were examined to ascertain whether they are over-represented in cell lines 

with abnormal karyotypes (cancers), which may suggest a link between PTES events and 

chromosomal abnormalities. About 59% of these transcripts were from 11 (of 23) samples with 

abnormal karyotypes, irrespective of their cellular compartment. This observation is however 

not statistically significant (p = 0.3808, Chi-square test, 1 degree of freedom). Post-filtering 

reduced the number of transcripts to 11491, 8477 of which were observed in both cellular 
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compartments (Fig. 2.2). However, 2178 transcripts were observed in the nucleus only, ~2.6X 

more than observed exclusively in the cytosol (836). This observation is consistent with all 

transcription (and PTES biogenesis) occurring in the nucleus prior to export to the cytoplasm. 

The median number of reads supporting transcripts exclusively identified in the cytosol is 2, 

lower than observed for nucleus-only transcripts (median: 3; p-value < 2.2 x 10-16, Wilcoxon 

rank sum test) . This observation may suggest that identification of cytosol-only transcripts are 

lowly expressed and not easily be detectable in the nucleus, due to sampling. 

 

4.3.2 snoRNA-PTES transcripts are likely artefacts 

PTES transcripts only identified from the nucleus include 51 transcripts arising from single 

exon genes, 41 of these emanate from snoRNA genes (Table 4.1). Majority of PTES transcripts 

are from multi-exon genes which are spliced. However, two well characterized circRNAs from 

Sry and CDR1 loci have been reported (Capel et al., 1993; Hansen et al., 2011; Memczak et al., 

2013), but biogenesis of these circRNAs depend on cryptic splice sites outside the coding 

sequence of the genes (Dubin et al. 1995). They are also flanked by inverted complementary 

repeats that facilitate circularisation.  

Human snoRNAs have sizes ranging from ~50bp to 200bp (Taft et al., 2009), are processed 

by nucleases and do not undergo splicing. Most are not expected to be within the samples 

analyzed, since only long RNAs with sizes >200bp were captured and sequenced. Strikingly, 

these 41 snoRNA-PTES transcripts are highly expressed and were observed in various nuclear 

RNA samples. Manual examination of reads supporting these transcripts showed that most of 

the reads aligned to the PTES models with no mismatches.  
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Table 4.1. List of excluded PTES transcripts from single exon genes. PTES from single 
exon loci, including snoRNA genes, have high counts, are likely artefacts and not produced 
by backsplice. 
 

Further analysis by Dr. Jackson (IGM, Newcastle University), comparing abundance of 

these snoRNA-PTES transcripts to that of linear snoRNAs in ENCODE small RNA samples 

(SRA ids: SRR446400-01) established that in all cases the PTES read counts were very low 

compared to canonical read counts in the small RNA fraction (see appendix 9.3). This 

investigation revealed five (from SNORD34, SNORD15B, SNORD58B, SNORD47 and 

SNORA52) with the highest abundance ratios. These snoRNA-PTES were then chosen for 

further analyses that fully characterized their structure and origin of reads supporting them. 

Read density analysis of these transcripts suggest that supporting reads are likely lariat derived 

and do not emanate from bona fide PTES events. Figure 4.3A shows read densities of SNORD34 

on the UCSC genome browser, highlighting the difference in read distribution between cellular 

compartments.  

First, there seems to be a lack of consensus in annotations for this gene. GENCODE v. 19 

annotation reports this gene to be 71bp and extends beyond the RefSeq annotation (size: 66bp). 

PTESFinder evaluation of putative PTES transcript from this gene is annotation dependent and 

additional runs of PTESFinder using the GENCODE annotation did not identify this PTES 

transcript. Second, due to sequence identity between sequence at the 5’ terminal and sequence 

flanking the 3’ terminal, supporting reads map linearly (Fig 4.3B) and should have been filtered 

out. However, these reads escape filters for two reasons: 1) the host gene is a single exon gene 

and there is no canonical junction for mapping quality comparison, as the sequence region with 

high identity is intronic 2) the gap between the 3’ terminal and the region of identity negates 

the genomic filter. Furthermore, read density pattern around SNORD34 shows a consistent level 

of reads across the gene and surrounding intronic region (of RPL13AP5 - a non-coding RNA), 

but there is an abrupt decrease towards the 5’ splice site of RPL13AP5 exon 6. The decrease in 

read density appears after the conserved adenosine residue, suggesting that reads within this 

region were derived from lariat intermediates. Additional analysis of sequence flanking 

SNORD34 did not reveal inverted complementary regions that may aid circularization or trans-

splicing.  
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Figure 4.3. Sequence analysis of SNORD34.1.1. A) Read density analysis of SNORD34 shows 
that reads from this genomic region are likely lariat derived and lack of concordance between 
GENCODE v 19 annotation of SNORD34 and RefSeq’s. B) Reads supporting putative PTES 
transcripts map linearly and extends to intronic sequence, due to sequence identity. Portions of 
reads also map to internal regions of the gene, in a pattern explainable by template switching 
or self-priming from 3’ terminal. 
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Circularity of this putative PTES structures was investigated by RT-PCR using outward 

facing primers. RNA extracts from the nucleus and cytosol of HEK293 cells were treated with 

RNase R, an enzyme that degrades linear transcripts, enriching for circRNAs. Variability in 

band intensities for expected amplicons from ANRIL was observed (Fig 4.4). As RNase R 

removes linear molecules and enriches for circRNAs, increased band intensities were 

expectedly observed with higher concentrations (60U) of RNase R in both cellular 

compartments. However, various factors may explain the higher band intensities of ANRIL 

amplicons in the untreated samples, including: 1) amplification of both linear and circular RNA 

molecules with the same primer pairs, as multiple PTES events have been confirmed from this 

gene (Jeck & Sharpless, 2014; Burd et al., 2010); and 2) the reported sensitivity of some 

circRNAs to RNase R following linearization (Jeck et al., 2013). Although uneven gel loading 

during electrophoresis cannot be ruled out, it is clear that the previously confirmed PTES from 

ANRIL is resistant to RNase R. In contrast, the expected amplicon from SNORD34 was not 

observed in samples treated with RNase R or in cytosolic fractions. However, the expected 

fragment size was observed in untreated sample from the nucleus (lane 5, Fig 4.4), suggesting 

that the structure is not circularized. The structure is also not enriched in GM12878 PolyA+ 

sample, as there are only 3 supporting reads, suggesting that it is not polyadenylated and most 

likely a linear reverse transcription artefact. 

 

 
 

Figure 4.4. In vitro confirmation of SNORD34.1.1. Gel electrophoresis image showing 
expected amplicon size (60bp) for SNORD34.1.1 in nuclear RNA fraction, but not observed in 
cytosolic fractions and in samples treated with RNase R to remove linear molecules. Previously 
confirmed circRNA (ANRIL.14.5 [Burd et al., 2010]) is used as control. 
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Another example is the putative PTES transcript from SNORD15B. Reads supporting this 

structure were aligned to the genome (HG19) using BLAT (Kent 2002). Many of the reads map 

in a split manner, resembling bona fide PTES supporting reads. However, these reads perfectly 

map to the 3’ region of SNORD15B and 5’ region of SNORD15A, an upstream snoRNA of 

similar size (148bp), suggesting high sequence identity between both genes. Both snoRNAs are 

embedded within introns of Ribosomal protein S3 (RPS3). A further pairwise alignment 

between both snoRNA sequences confirmed the presence of homologous regions (Fig 4.5). 

Thus, reads reported as evidence for this PTES are most likely lariat derived or resulted from 

template switching artefacts.  

 
Figure 4.5. Homologous regions of SNORD15A and SNORD15B. Dot plot of pairwise 
alignment between SNORD15A and SNORD15B, showing regions of sequence homology 
that confound PTES discovery.  
 

A final example is a PTES transcript from RMRP, a single exon endoribonuclease gene. 

Many of the reads supporting this putative PTES transcript are consistent with alignments 

expected for bona fide PTES events. To investigate the accuracy of this prediction further, a 

strand specific read density analysis of this gene was carried out. Unexpectedly, one peak each 
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was observed at opposite ends of the gene and on different strands (Fig 4.6). This pattern is 

only explainable by a combination of self-priming from one terminal and sense-antisense 

template switching. As these transcripts lack GT-AG splice sites and are mostly intronic, they 

do not conform to structures expected from PTESFinder runs. Additionally, there are no 

associated canonical junction counts for downstream comparative analysis. Because of the 

alternative explanations established for the most abundant structures analyzed, all 51 PTES 

from mono-exonic loci were excluded from enrichment analyses.  

 
Figure 4.6. Read density analysis for RMRP.1.1. Reads supporting this putative PTES map 
in a split head-to-tail manner, akin to bona fide PTES reads. Read density analysis of both 
strands indicates that reads from this locus conceivably emanated from sense-antisense 
template switching artefacts.  
 

4.3.3 PTES transcripts are enriched in the cytosol 

The high overlap of PTES transcripts identified in both cellular compartments suggests that 

a pathway may exist for the export of these transcripts from the nucleus to the cytoplasm. It has 

been theorized that these transcripts may exit the nucleus during cell division (Jeck et al., 2013). 

Identifying transcripts retained (or specifically enriched) in the nucleus may aid our 

understanding of how these transcripts reach the cytoplasm. Enrichment in the cytoplasm may 

point to high stability of enriched transcripts and their functional significance. To assess the 

relative distributions of these transcripts within both compartments, I performed enrichment 

analyses using summed raw counts from all samples of each identified PTES transcript from 

each cellular compartment to reduce the effect of low counts in some samples (see 2.6.5 for 

details). From these tests, 2438 had a p-value less than 0.05. To correct for multiple testing, the 
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Benjamini-Hochberg protocol was used to control the false discovery rate at 0.05. This 

correction resulted in only 1048 reaching significance (Fig 4.7A). 

 
Figure 4.7. Sub-cellular PTES enrichment. A) Abundance ratios, derived by dividing PTES 
raw counts with total canonical junction counts (see methods), are plotted. Transcripts 
reaching significance after Fisher’s exact tests are highlighted; enriched in cytosol (red); 
enriched in nucleus (black). B) Distributions of abundance ratios. 
 

Of the 1048 identified as significant, 1007 (~9% of transcripts tested) were enriched in the 

cytosol, having an odds ratio greater than 1, when compared to abundance in the nucleus. Only 

41 were enriched in the nucleus (Table 4.2), 13 of these appear to be nuclear-specific, with no 

reads observed in any cytosolic sample. Abundance ratios (AR) were derived for each PTES 

transcript by dividing PTES junction counts with total canonical junction counts observed in 

PTES producing gene. Box plots in Fig 4.7B show that PTES transcripts have higher abundance 

ratios in the cytosol (median: 0.04) than in the nucleus (median: 0.009). Interestingly, 114 

transcripts - comprising of single exons - have AR > 1 in the cytosol and only 29 have AR > 1 

in the nucleus. 
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Table 4.2. PTES transcripts significantly enriched in the nucleus. List of nuclear-enriched PTES transcripts, 13 were exclusively observed in 
nuclear fractions, with no detectable reads in cytosolic samples. Odds ratios were derived by dividing the abundance ratios (PTES counts / Canonical 
junction counts) of each transcript the cytosol by the abundance ratios in the nucleus.
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4.3.4 Incompletely processed circRNAs observed in the nucleus 
Many in the list of 41 transcripts significantly enriched in the nucleus are short relative to 

other identified transcripts; with median internal intron size of 884bp, compared to 1997bp for 

transcripts enriched in the cytosol. Within this list is a circRNA from the CAMSAP1 locus (p-

value: 3.21E-19), previously reported to have an intron containing isoform (Salzman et al., 

2013; Zhang et al., 2014). Results obtained from the enrichment analysis suggest that the 

presence of this isoform within the nucleus (and absence in the cytosol) may be responsible for 

the difference in abundance between compartments. Read density analysis confirms the 

presence of this isoform in the nucleus of various cell lines, as intronic reads are observed with 

comparable read counts to reads mapped to the exons. Figure 4.8A-C shows read distributions 

across exons within CAMSAP1, with the highest number of reads observed between exons 2 

and 3, including the intervening intron (Fig 4.8A-B). The read distribution across the 

intervening intron in the polyA- nucleus sample is different from the distribution observed in 

the cytosol and polyA+ samples, suggesting that the intron is only detectable in non-

polyadenylated RNA and likely contained within circRNA. Analysis of flanking canonical 

junctions and a canonical junction between exon 1 and exon 4 suggests that the circularization 

of CAMSAP1.3.2 may occur in the absence of alternative splicing, as read counts for these 

junctions were relatively low or absent in most samples. For instance, in GM12878 nucleus, a 

total of 221 reads map to CAMSAP1.3.2 PTES junction, only 28 reads map to both flanking 

canonical junctions (between exon 1 - exon 2 and exon 3 - exon 4). A single read supports the 

splice between exons 1 & 4 in both biological replicates. Multiple complementary inverted 

repeats were identified within flanking introns, suggesting that the backsplice between exon 3 

& 2 is mediated by intron pairing.  

Another example of this phenomenon may be the PTES transcript - comprising of exons 6, 

7 and 8 of TPCN1 locus (Fig 4.9) - enriched in the nucleus (p-value: 0.01). Similar to the 

structure from CAMSAP1, no reads support expected canonical splice junctions suggestive of 

exon skipping, indicating that this transcript may not be lariat derived or result from alternative 

splicing. From the read density pattern in GM12878 nucleus, two introns are presumably 

retained. Exons 7 and 8 are deplete of reads in the cytosol. This isoform is not observed in the 

cytosol and may contribute to ~3X enrichment of this PTES junction in the nucleus. 
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Figure 4.8. CAMSAP1 intron-retained PTES transcripts are enriched in the nucleus. A) 
Read density of CAMSAP1 locus, show highest read peak around exons 2 & 3. B) Two 
isoforms or circRNA involving exons 2 & 3 are observable in GM12878 nuclear fraction and 
only one isoform -without retained intron - is observed in cytosolic fraction. C) Read 
distribution pattern across exons 2 & 3 of CAMSAP1 in PolyA+ Nucleus and Cytosolic 
fractions of GM12878. 
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Figure 4.9. Read distribution across exons of TPCN1. TPCN1.8.6 is enriched in the 
nucleus, relative to the cytosol and exhibits read distribution patterns suggestive of intron 
retention in the nucleus. 
 

4.3.5 Quantitative analysis of chromatin-associated PTES transcripts 
Manual examination of read densities of CAMSAP1.3.2 and TPCN1.8.6 in other cellular 

compartments within the nucleus revealed that, at least in the case of CAMSAP1.3.2, intron-

containing isoforms are present in the nucleolus (Fig 4.10). Intriguingly, read counts supporting 

CAMSAP1.3.2 are highest in the nucleolus, relative to samples of equivalent library sizes in 

other compartments within the nucleus (Fig 4.10 inset table). These transcripts are likely 

translocated away from the site of transcription in the nucleoplasm and into the nucleolus. This 

observation raises questions about whether PTES biogenesis occurs co-transcriptionally or after 

transcription.  
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Figure 4.10. Intron-retained CAMSAP1.3.2 in nucleolus. Read distribution across exons of 
CAMSAP1.3.2 in 2 K562 nucleolus samples, suggests the presence of intron-retained PTES 
in nucleolus. Inset) Table showing number of supporting read counts for CAMSAP1.3.2 and 
TPCN1.8.6 in various cellular compartments; number of samples analyzed for each 
compartment shown in brackets. 
 

From the analysis of chromatin-associated RNA samples, a total of 1246 distinct PTES 

transcripts were identified, the lowest number of transcripts identified from any cellular 

compartment. When compared with transcripts identified in the nucleoplasm, there is only 

about 35% overlap, highlighting possible sampling bias. Poor sequence quality of reads can 

impact PTES identification. To assess this, I examined the per base sequence quality of both 

biological replicates using FASTQC (Fig. 4.11). Results show that, for one sample, the last 

20bps of reads have poor quality scores and possibly contribute to the number of PTES 

transcripts identified. Trimming the last 20bp of each read in both samples and reanalyzing with 

PTESFinder, identified 771 additional PTES, highlighting the impact of poor sequence quality 

on PTES discovery. 

 
Figure 4.11. Read quality of K562 chromatin RNAseq samples. Results of FASTQC 
analysis of reads in chromatin samples. Nucleotide positions (highlighted - right) with box 
and whiskers extending into the red region have low confidence quality scores. 
 

As some PTES may associate with chromatin, facilitating transcription of linear transcripts 

from their loci (Li et al., 2015) and RNA fractions can be contaminated during fractionation, 

identifying PTES within chromatin samples may not conclusively indicate that PTES occurs 

during transcription. For this reason, I assessed the level of co-transcriptional splicing for both 

PTES producing genes and genes without an identified PTES transcript in all compartments. 

Using in silico methods, I derived the co-transcriptional splicing rates (CSR) for all genes, as 

depicted in Figure 4.12A. My method (see 2.6.4 for details) is similar to the method described 

in Tilgner et al., (2012), where only a subset of internal exons was analyzed. Both methods 

compare expression of pre-mRNAs to that of mature (spliced) mRNAs of the same gene. 
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The CSR profiles for PTES producing genes (excluding those found in chromatin), PTES 

producing genes (chromatin-associated transcripts only) and non-PTES producing genes are 

presented in Fig. 4.12B; medians of 0.563, 0.667 and 0.686 respectively. PTES producing genes 

seemingly undergo more co-transcriptional splicing than non-PTES producing genes. 

Interestingly, host genes of PTES transcripts found in chromatin undergo more co-

transcriptional splicing than other PTES producing genes. As ncRNAs are spliced more 

inefficiently than protein-coding genes (Tilgner et al., 2012), it may be that the CSR patterns 

observed were due to the number of ncRNAs in each gene set. To investigate whether this effect 

is observed, I removed all ncRNAs from each gene set and repeated the analysis. This resulted 

in median CSRs of 0.575, 0.673 and 0.694 respectively, a marginal increase, but the patterns 

remained. 

Comparing the CSR of terminal exons (1 & 17) of CAMSAP1, it is striking that the first 

exon is almost always spliced (CSR = 1), unlike the last exon (CSR ~ 0.33). Reads mapping to 

the exon-intron junction of the last exon are easily detectable suggesting that the backsplice of 

exon 3 and exon 2 may occur co-transcriptionally and released from the ‘fractured’ pre-mRNA. 

With mean CSR of 0.96, TPCN1 appears to be spliced fully co-transcriptionally. It is 

conceivable that the fraction of transcripts not completely processed co-transcriptionally result 

in PTES transcripts. However, the absence of reads mapped to exon-intron junctions of both 

CAMSAP1 & TPCN1, suggests that PTES in these loci (and perhaps many others) occur co-

transcriptionally. Notably, the vast majority of PTES producing genes have their first introns 

removed co-transcriptionally (Fig 4.12C). Consistent with CSRs of PTES producing genes 

derived for the whole gene, their first and last exon CSRs are higher than that of non-PTES 

genes. However, taking the ratios of first and last exon CSRs for both groups, the reduction in 

CSR is highest for PTES genes (median: 1.47), relative to that of non-PTES genes (median: 

1.17). A non-parametric test suggests this difference to be significant (p-value: 2.2e-16, 

Wilcoxon rank sum test).  
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Figure 4.12. Co-transcriptional PTES biogenesis. A) Co-transcriptional splicing rates (CSR) 
were derived by summing the number of reads mapped to splice junctions involving terminal 
exons and dividing by the number of reads mapped to their exon-intron junctions. CAMSAP1 
gene model is used for illustration. B) CSR profiles of all genes without an identified PTES 
transcript (blue), all PTES genes, excluding host genes of transcripts identified in chromatin 
(grey) and PTES producing genes of transcripts identified in chromatin. Median CSRs are 
0.563, 0.667 and 0.686 respectively - highlighted with vertical lines. C) Distribution of CSRs, 
derived using first and last exons separately. 
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4.3.6 Do PTES transcripts contribute to the proteome? 
To assess the protein-coding potential of PTES transcripts, RNAseq data from sucrose 

gradient fractionated HEK293 cells, treated with arsenite to induce translational arrest were 

obtained (see Karginov & Hannon 2013 for details). PTESFinder v. 1 was used to screen for 

PTES events in 16 samples, 8 untreated and 8 arsenite treated. Table 4.3 summarises the number 

of identified structures from each fraction in both conditions. 

 

Table 4.3. PTES identified from HEK293 sucrose gradient fractions. Summary table 
showing number of PTES and PTES supporting reads, identified from sucrose gradient 
fractions of HEK293, with and without arsenite treatment to inhibit translation. 
 
 Most of the structures identified were from the lighter fractions (fractions 1 - 4) and not 

polysome associated. To estimate abundance, reads were mapped to sequence references for 

ERCC spike-ins - a standard set of exogenous synthetic RNAs used as controls in gene 

expression analysis (Jiang et al., 2011; ERCC, 2005) - to estimate library size factors. Figure 

4.13A shows sample size normalized raw counts for identified PTES structures in both arsenite 

treated and untreated samples. Results suggest little or no effect of arsenite treatment on number 

of reads supporting PTES events. Because, arsenite treatment inhibits translation initiation and 

elongation, translational activity is expected to be limited in fractions 4 - 8 upon treatment. In 

response to stress (arsenite treatment) the polysome is dislodged causing the accumulation of 

transcripts in the lighter fractions (Karginov & Hannon 2013). For comparisons, I extracted 

reads mapping to the last 120bp of last exons of all genes. As PTES transcripts contribute to 

canonical junction counts and terminal exons are rarely involved in PTES, raw counts from 

these exons should provide an unbiased estimate of canonical transcripts. Raw reads counts 

were then normalized using the same library size factors derived from ERCC spike-in 

expression levels. The observed pattern (Fig 4.13B) is noticeably different from the observed 

pattern for PTES transcripts. Furthermore, most genes undergoing translation are expected to 
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have abundance pattern similar to that of ACTB (Fig 4.13D). Although some genes are up-

regulated or continue to be expressed upon stress (Karginov & Hannon 2013), most canonical 

transcripts appear to exhibit the same pattern as ACTB.  

 
Figure 4.13. Assessing translational potential of PTES transcripts. Data from sucrose 
gradient fractionated samples (1 - 8), both arsenite treated (blue solid line) and untreated (grey 
dashed line), were analyzed with PTESFinder and are plotted. A) Normalized total read counts 
for discovered PTES structures. B) Normalized abundance pattern for last exons of all genes. 
C) Normalized abundance for PTES transcript from UBAP2 locus D) Abundance of ACTB 
canonical transcript. 
 
 A structure from UBAP2 (consisting of exons 8 and 7) is observed in 15 of the 16 

samples. Previous studies (Jeck et al., 2013; Salzman et al., 2013; Rybak-Wolf et al., 2015) 

have identified this transcript from RNase R enriched samples, suggesting its circularity.  At 

the sequence level, this PTES also has 4 AUG codons, with reads supporting PTES either 

starting at or mapping across 1 of the start codons near the end of exon 8. Further sequence 

analysis revealed 2 stop codons upstream of this start codon, indicating that an ORF is present 

and this transcript may be translated (appendix 9.3). Despite this, the pattern observed from this 

analysis suggests that arsenite treatment has no effect on this transcript (Fig 4.13C), that the 

vast majority of PTES transcripts do not associate with polysomes and are unlikely to contribute 

to the proteome.  
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4.4 Discussion 

A generic RNA is transcribed, processed and translocated to its site of functional relevance. 

Various RNA species are processed differently and exported using different pathways. For 

mRNAs, it is increasingly evident that co-transcriptional processing occurs; mRNAs are made 

export competent by phosphorylation of serine-arginine proteins and other export adapter 

proteins, prior to nucleo-cytoplasmic export and translation. Cap structures, exon junction 

complexes and polyA tails aid in export of mRNAs to the cytosol, but many PTES transcripts 

lack these features. Although PTES transcripts have been identified from cytosolic RNA 

fractions, it remained unclear 1) whether their biogenesis occurs co-transcriptionally, 2) 

whether they are exported via known export pathways, 3) whether they contribute to the 

proteome once in the cytoplasm and 4) their relative distributions in sub-cellular compartments.  

It had been speculated that perhaps, PTES transcripts exit the nucleus during mitosis (Jeck 

et al. 2013). My analysis of samples from sub-cellular compartments of various human cell 

lines revealed that, consistent with all transcription occurring in the nucleus, more PTES 

transcripts are detectable in the nucleus than the cytosol.  Some PTES transcripts (with AR > 

1) were observed to have abundance higher than observed for total canonical junctions from 

host genes.  These transcripts do not contribute to the total canonical junctions of their 

respective loci. Previous estimates of PTES abundance vary. Nigro et al., (1991) estimated the 

abundance of PTES in the DCC gene to ~0.1% of whole gene expression. There are estimates 

of between 5 and 10% for transcripts reported in Salzman et al., (2013). The range of abundance 

ratios (AR) obtained in this analysis is consistent with previous reports, including for transcripts 

with expression values higher or comparable to linear counterparts described in Capel et al, 

(1993) and Al-Balool et al., (2011).  

Enrichment analysis of PTES transcripts in both compartments revealed that ~9% of 

transcripts tested are significantly enriched in the cytosol relative to the nucleus. This 

enrichment bias may be due to accumulation of circRNAs in the cytosol, as a result of their 

resistance to exonuclease activity. In contrast, a smaller proportion of transcripts tested were 

significantly enriched in the nucleus. Majority of these nuclear-enriched transcripts are single-

exon transcripts or have relatively short internal introns (median: 884bp, compared to 1997bp), 

as exemplified by CAMSAP1.3.2, which has a 1021bp intron between exons involved in PTES. 

An isoform of TPCN1.8.6 appears to have two short retained introns of sizes 785 & 884bp. 

Such introns likely elude removal due to weak splice signals and are retained within PTES 

transcripts. Read density analysis of CAMSAP1.3.2 and TPCN1.8.6 confirmed the presence of 

retained introns enveloped by backspliced exons. Two previous reports have confirmed the 

identification of an intron containing isoform of CAMSAP1.3.2 using in vitro methods 
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(Salzman et al., 2013; Zhang et al., 2014). The abundance of this isoform is reported to be 

tissue-specific (Salzman et al., 2013), perhaps dependent on variation in transcription 

elongation rates. It is also thought to be unstable, having a half-life of ~7 mins (Zhang et al., 

2014), suggesting that the retained intron is removed quickly or that linearisation and 

subsequent degradation occurs. The differential expression of some single exon transcripts is 

perhaps explainable by miRNA induced endonucleolytic decay, once in the cytosol. Some of 

these transcripts harbour numerous miRNA binding sites; SAGE1.7.7 for instance, has at least 

7 predicted miRNA binding sites within its 141bp sequence. MiRNAs have been shown to 

antagonise circRNAs, as exemplified by mir-671 activity on circCDR1 (Hansen et al., 2011). 

Moreover, although evidence of circCDR1 circularity has been provided (Hansen et al. 2011; 

Hansen et al. 2013; Memczak et al. 2013), Jeck et al., (2013) found a subset of presumed 

circRNAs (including circCDR1) not to be enriched in RNase R digested fibroblasts sample, 

relative to undigested samples. This is explainable by the presence of miRNA binding sites in 

PTES transcripts, resulting in their linearization. The observation of nuclear-enriched or 

nuclear-retained transcripts, nevertheless, support the presence of an unknown export pathway. 

It is not currently clear if PTES biogenesis occurs co-transcriptionally or after release from 

chromatin. Conflicting pieces of evidence support PTES biogenesis during and after 

transcription, and the two are not necessarily mutually exclusive. Screening for PTES 

transcripts in chromatin-associated RNAseq data, a relatively small number of transcripts were 

identified, compared to transcripts identified from other compartments. This is likely due to 

poor sequence quality of the libraries analyzed or quick release from the chromatin post-

transcription (Ashwal-Fluss et al. 2014). Co-transcriptional splicing analysis was performed by 

comparing the number of reads mapped to pre-mRNA exon-intron junctions to read counts from 

spliced junctions. Results revealed that PTES producing genes likely undergo more co-

transcriptional splicing than non-PTES producing genes, suggesting that PTES biogenesis may 

indeed occur during transcription. This premise is consistent with reports indicating that PTES 

biogenesis does not require the formation of polyA tails (Ashwal-Fluss et al. 2014; Kramer et 

al., 2015). However, there is a significant difference between the rate of first intron removal 

and that of last introns, when PTES producing and non-PTES producing genes are compared. 

There is evidence that some transcripts with processing defects, including failure of snRNP to 

bind nascent transcript (Eberle et al. 2010), are retained at the gene (not released from 

chromatin) and subsequently targeted by the exosome (Bentley, 2014; Eberle et al., 2010). It is 

conceivable that PTES can induce such defects in nascent transcripts, resulting in their retention 

and lower comparable CSRs (depicted in Fig. 4.14). Such phenomena may impact the nuclear-

cytoplasmic levels and subsequent expression of cognate linear transcripts. In the intron-pairing 
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biogenesis model, consider a hypothetical five exon PTES producing gene, the formation of 

secondary structure between intron 1 and intron 3, results in circularization between exons 3 

and 2. As transcription proceeds, a splice between exons 4 and 5 may occur, but it is likely that 

intron 3 is not adequately removed from exon 4, inducing retention and subsequent degradation. 

This hypothetical case is consistent with suggested competition with linear canonical splicing 

(Ashwal-Fluss et al. 2014). In the re-splicing model, skipped exons are involved in PTES and 

the nascent transcript is unlikely to be impacted. The identification of an intron-containing 

PTES transcript from CAMSAP1 in the nucleolus, away from site of transcription in the 

nucleoplasm, suggests that some PTES transcripts are incompletely processed prior to release 

from the chromatin. 

 
Figure 4.14. Schematic illustration of impact of co-transcriptional circRNA biogenesis. 
Co-transcriptional circRNA biogenesis is likely to induce splicing defects caused by failure to 
assemble spliceosomal proteins on the nascent transcript, subsequently resulting in retention 
at unclear speckles and degradation. Such an occurrence will limit the abundance of mRNAs 
exported to the cytosol. 
 

Finally, analysis of sucrose gradient fractionated HEK293 cells, with and without arsenite 

treatment revealed that PTES transcripts do not contribute to the proteome. Arsenite treatment 

induces cellular stress and translational arrest by dislodging polysomes from translating RNA 

templates. These transcripts are subsequently observable in lighter fractions post-fractionation. 

Majority of PTES transcripts were identified from fractions containing transcripts with 

dislodged ribosomes, regardless of treatment group. The expression profiles of PTES transcripts 

identified from both treatment groups indicate that arsenite treatment has little or no effect. 

These transcripts are most likely not bound by polysomes, thus, do not contribute to the 

proteome. As experiments have shown, it is possible to derive protein products from circRNAs, 

particularly in the presence of ribosome entry sites and open reading frames (Wang & Wang 

2014). Nevertheless, my results show that globally, PTES transcripts do not contribute to the 
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proteome. This conclusion is also supported by a recently published report by (Guo et al. 2014), 

where they found no PTES supporting reads within ribosome profiling data from a human bone 

osteosarcoma (U2OS) cell line.  

 

4.5 Conclusion 
In this chapter, I applied in silico methods to assess the distribution of PTES transcripts in 

various cellular compartments of 7 human cell lines. Expectedly, a variety of PTES transcripts 

were identified from nuclear fractions, including transcripts from single exon genes that are 

likely reverse transcriptase artefacts. Enrichment analysis of PTES transcripts found in both 

nucleus and cytosol, established that ~9% of PTES transcripts tested are enriched in the cytosol 

and < 0.5% (41) are enriched in the nucleus. Among the transcripts enriched in the nucleus are 

transcripts with intron-retained isoforms. These isoforms were also found in the nucleolus, 

suggesting incomplete processing prior to release from chromatin. PTES producing genes were 

however estimated to undergo more co-transcriptional splicing than non-PTES producing 

genes, suggesting that PTES biogenesis occurs during transcription for most genes. Enrichment 

of PTES transcripts in the cytosol may suggest possible translation once exported, however, 

results presented in this chapter show that, although some PTES transcripts may be bound by 

polysomes, arsenite treatment had no effect on ribosome occupancy, suggesting that they are 

not translated. In subsequent chapters, I assess the distribution of PTES in various human 

tissues, anucleate cells and during development, in an attempt to further elucidate the global 

properties of these transcripts and their functional significance. 



 

 Chapter 5: PTES transcripts in anucleate cells 113 

Chapter 5. PTES transcripts in anucleate cells 

 

5.1 Introduction 

In the last chapter, a variety of PTES transcripts, including two with apparent retained 

introns, were identified from the nuclei of 7 human cell lines; and ~9% of identified PTES 

transcripts were shown to be significantly more abundant in the cytosol, relative to the nucleus. 

This enrichment in the cytosol is likely due to increased stability of circRNAs, conferred by 

lack of free termini, thus resistant to exonuclease activity. Enrichment in the cytosol does not 

however equate to contribution of PTES to the proteome, as was also shown in the last chapter. 

In this chapter, I extend my investigation of PTES distribution in cellular space to anucleate 

cells. Several reports have identified some circRNAs from cell-free RNA (Bahn et al. 2015; 

Lasda & Parker 2016), indicating that due to their physical properties, PTES transcripts remain 

detectable in the absence of steady transcription and efflux from the nucleus. However, PTES 

has not been reported from anucleate cells and no quantitative comparisons with cognate linear 

transcripts have been performed. 

 

5.1.1 Platelets have complex transcriptomes 

Platelets and mature erythrocytes are anucleate cells and lack genomic DNA. Platelets are 

derived from megakaryocytes following endoreduplication (DNA replication without 

cytokinesis), cytoplasmic expansion and release of cytoplasmic fragments (proplatelets) 

(Deutsch & Tomer 2006). There is evidence that platelet biogenesis results in rupture and 

apoptosis of the megakaryocytes progenitor cells (Nishimura et al. 2015). Typically, platelets 

are short-lived (~10 days), have roles in hemostasis and wound healing, becoming activated 

and aggregating around wounds to slow bleeding. Similar to exosomes, which are thought to 

have roles in cell-to-cell communication by transferring their cargo (proteins, lipids and RNA) 

between cells (Camussi et al. 2010), platelets have been shown to release micro-particles when 

activated (Risitano et al. 2012). These microparticles can contain RNAs that are transferred to 

other cells. Risitano et al., (2012) demonstrated that labelled RNA molecules (including GFP) 

in cultured megakaryocytes, were detectable in isolated platelets and were transferred to 

monocytes and HUVEC cells upon co-incubation with platelets. 

Although platelets are understood to derive their transcriptomes from megakaryocytes 

progenitor cells and contain over 10,000-fold less mRNA than nucleated cells (Geiger et al. 

2013; Landry et al. 2009), some transcripts within platelets uniquely undergo cytoplasmic 

splicing. Denis et al., (2005) observed the presence of spliceosomal proteins in circulating 
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platelets, suggesting the presence of the major spliceosome. The authors also demonstrated that 

resting platelets contain both pre-mRNA transcripts and trace amounts of mature mRNAs of 

interleukin-1B (IL-1B), a cytokine. Upon platelet activation, IL-1B pre-mRNAs are spliced, 

prior to translation in platelets (Denis et al. 2005). Similarly, miRNA biogenesis is thought to 

occur in platelets. Landry et al., (2009) identified pri-miRNAs and seemingly incompletely 

cleaved miRNAs of ~32 - 34bp in platelets. They further identified the complex of Dicer and 

TRBP-2, involved in miRNA maturation, suggesting that miRNA cleaving occurs in platelets 

(Landry et al., 2009). Taken together, it is therefore conceivable that novel PTES events may 

be identified from platelets.  

 

5.1.2 Platelets transcriptomes vary between human donors 

Various studies have identified less than 50% of annotated protein coding transcripts in 

platelets, consistent with reduced mRNA levels in these specialized cells (Bray et al. 2013; Best 

et al. 2015; Londin et al. 2014). Bioinformatics analysis of platelets transcriptomes from 4 

human donors identified variation in number of detectable transcripts, ranging from 5511 to 

10862 protein-coding genes. (Bray et al., 2013). Additionally, novel intronic transcripts, 

pervasive antisense transcripts and a subset of unmapped reads with no defined origins were 

identified from all donors, underscoring the diversity of transcripts within platelets (Bray et al., 

2013). In another study, 10 donors from 2 ethnic origins were analyzed, resulting in the 

identification of only 5592 protein-coding genes with detectable mRNA transcripts common to 

all donors (Londin et al., 2014). From a large RNAseq study of platelets from 228 cancer 

patients and 55 normal donors, only 5003 (protein coding and non-coding) genes were detected. 

These fluctuations are likely due to various unknown factors, presumably including: age 

(Cowman et al. 2015), race (Edelstein, Simon, et al. 2013), RNA decay (Angénieux et al. 2016), 

gender (Cowman et al., 2015) and infection (Osman et al. 2015). Coupled with these 

fluctuations is the reported weak correlation between the transcriptome and proteome of 

platelets (Londin et al., 2014). Although over 85% of the proteome does not appear to vary very 

much between donors (Burkhart et al. 2012), <45% of detectable transcripts in platelets have 

an associated protein product (Londin et al., 2014).  

It may provide insight to establish factors contributing to fluctuations in transcript counts 

and if such fluctuations impact PTES abundance. Three circRNAs from CDR1 (Hansen et al., 

2011; Memczak et al., 2013), Sry (Hansen et al., 2011) and HIPK3 (Zheng et al. 2016) have 

been shown to be miRNA sponges, sequestering specific miRNAs away from their targets. 

However, miR-671 was shown to induce degradation of circCDR1 (Hansen et al., 2011), 

presumably through endonuclease activity, indicating that miRNAs may target PTES 
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transcripts. As miRNAs are abundant in platelets (Edelstein, Mckenzie, et al. 2013; Landry et 

al. 2009), there may be an observable impact upon circRNA abundance. 
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5.2 Aims 
To further elucidate the global properties of PTES transcripts and infer their functional 

relevance, in this chapter, my aims were: 

•! To define the distribution of PTES in anucleate cells and compare their abundance to 

that of PTES in nucleated cells 

•! To identify platelet-specific PTES events 

•! To identify factors that may contribute to fluctuations in PTES biogenesis and 

abundance between platelet preparations 
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5.3 Results 
To further elucidate the global properties of PTES transcripts and characterize their 

distribution in anucleate cells, I hypothesized that PTES transcripts are long lived and abundant 

in platelets, given their relative abundance in cytosolic fractions of nucleated cells. To that end, 

ribosome depleted RNAseq data from platelets preparations of 3 individuals (2 males, 1 female) 

and one platelets polyA+ sample from a single male donor were obtained from NCBI Gene 

Expression Omnibus database. These data were previously mined for non-coding RNA in 

Kissopoulou et al., (2013), thus, meet library size standards for identifying novel transcripts. In 

the absence of an equivalent dataset from red blood cells (RBC) to act as a comparator anucleate 

cell type, ribosome depleted RNA extracts from mature erythrocytes were sequenced, obtaining 

>100 million paired-end 100bp reads (see methods). These datasets were screened for PTES 

using PTESFinder v. 1, with default parameters. From the platelets total RNA samples, 33,829 

distinct PTES transcripts were identified and are produced from 6198 genes (full lists in 

appendix 9.4). The highest number of transcripts was identified from the female platelets 

sample (Platelets_F), with 29,499 PTES transcripts, supported by 769,249 reads. On average, 

~0.9% of reads screened support PTES events, contrasting <0.005% of reads observed per 

sample in the previous analysis (chapter 4), an ~240X increase in detectable PTES reads. A 

high overlap in identified PTES was observed, with ~74% of PTES identified from at least 2 

platelets samples (Fig 5.1A). In the RBC sample, 12,380 transcripts were identified and 

supported by 82,516 reads, representing ~7 reads per PTES junction. Comparatively, ~85% of 

transcripts identified in RBC were also identified in at least one platelets sample (Fig 5.1B). 

Results from pairwise correlation analyses using PTES junction counts showed high correlation 

in PTES abundance between anucleate samples (Fig 5.1C), with the highest correlation 

coefficient (0.96) observed between Platelets_M2 sample and the female platelets sample 

(Platelets_F). Remarkably, this high degree of concordance is greater than observed for any 

pairwise comparison between nucleated cell types (chapter 4). 
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Figure 5.1. Exploratory analysis of PTES in anucleate ribosome-depleted samples. A -B) 
Venn diagrams showing overlap of PTES transcripts identified from 3 ribosome depleted 
platelets samples (Kissopoulou et al. 2013) and one sample from red blood cells. C) Pairwise 
correlational analyses of PTES from all four samples. 
 

5.3.1 Most PTES transcripts identified in platelets are circular 
From the single polyA+ platelets sample analyzed, 841 transcripts originating from 453 

genes were identified, lower than observed from total RNA samples. Previous studies have 

inferred linear PTES transcripts from analysis of PolyA+ fractions (Al-Balool et al., 2011), as 

only linear transcripts are expected in such samples. However, many of the transcripts identified 

from the polyA+ sample are observed with higher read counts in the total RNA samples, 

suggesting enrichment in ribosome-depleted samples. Furthermore, some of these transcripts 

have been reported in previous studies and identified from RNase R treated samples. 
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Comparing identified transcripts to transcripts reported from RNase R digested samples (and 

within circbase.org), there is an overlap of 78.2% (658) with transcripts identified from the 

polyA+ sample, suggesting these transcripts to be circular.  

Without ruling out the possibility of some of these PTES transcripts existing as both linear 

and circular molecules, a nucleotide composition analysis was performed to assess the 

likelihood that they are circRNAs pulled down during polyA+ selection. Comparing the number 

of adenosine residues for these transcripts to that of transcripts identified from total RNA 

samples only, I found that polyA+ PTES transcripts are significantly enriched for adenosine 

residues (X2 = 12317, df = 1; p-value < 2.2 x 10-16). For some transcripts, adenosine residues 

constitute ~60% of total nucleotide composition (examples in Fig 5.2). On the evidence of 

reported resistance to RNase R and their nucleotide composition, these transcripts are likely not 

linear and contaminate polyA+ samples. Furthermore, ~63% of transcripts identified from total 

RNA samples have been observed in previous studies (Fig 5.3) and from RNase R samples, 

suggesting their circularity. 

 

 
Figure 5.2. Examples of A-rich circRNAs. A) Nucleotide composition of two circRNAs, 
derived by sliding a 20bp window across respective circRNA sequences. Pie charts show 
relative proportion of each nucleotide in circRNA sequence. PTES ids are composed of RefSeq 
ID, donor exon order and acceptor exon order; circRNA sequences were generated by 
concatenating nucleotide sequence of each exon, consistent with PTES. 

 



5.3 Results 120 

 
Figure 5.3. Overlap of identified transcripts with published circRNA transcripts. Distinct 
transcripts identified from all 3 platelets samples are compared with circRNA transcripts 
reported in Jeck et al., (2013), Memczak et al., (2013) and Salzman et al., (2013). 
Approximately 63% of PTES in platelets were reported in these studies. Figure taken from 
Alhasan et al., (2016) 
 

5.3.2 CircRNAs are enriched in anucleate cells and expand the growing catalog of PTES 

transcripts 
In addition to the high overlap of identified PTES transcripts with that of previous reports, 

additional unreported transcripts were identified from many known PTES producing genes. In 

platelets, over 600 genes have more than 20 different circRNA transcripts, underscoring PTES 

as a mechanism contributing to transcriptome diversity. One example is XPO1, a gene involved 

in RNA export pathways. Eleven circRNAs from this gene were previously identified from 

RNase R digested H9 ESC (Zhang et al., 2014); however, 38 additional transcripts were 

identified within the platelets samples analyzed (Fig 5.4). 
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Figure 5.4. Previously uncharacterized transcripts from XPO1 locus. Schematic diagram 
showing intron/exon structures of previously identified PTES from XPO1 and PTES 
identified in platelets. Eleven (highlighted in red) were characterized in Zhang et al., (2014), 
additional 38 unreported transcripts were identified from platelets; read counts for each 
transcript is shown. Figure from Alhasan et al., (2016). 
 

To extend comparisons to samples from nucleated cells, 12 ribosome depleted total RNA 

samples from various human cell lines, previously mined for ncRNAs were obtained (Nielsen 

et al., 2014). Additionally, 9 samples from 4 cell lines (H9 [Zhang et al., 2014], Fibroblasts 

[Jeck et al., 2013], K562 and GM12878 [Birney et al., 2007]) were also obtained and analyzed 

using PTESFinder.  

 Collectively, analyzed samples can be grouped into: anucleate cells, nucleated tissues, 

nucleated cell lines and RNase R digested nucleated cell lines. Strikingly, the highest number 

of PTES transcripts and PTES supporting reads were observed in anucleate cells (Fig 5.5). 

Undigested nucleated cell lines had the lowest number of distinct PTES transcripts and lowest 

mean circRNAs per gene (Fig 5.5). In nucleated tissues, the highest number of PTES transcripts 

were identified from brain (n = 4847). However, transcripts identified in platelets are supported 

by more read counts than nucleated tissues (p-value: 2.7 x 10-4, Wilcoxon rank sum test). 

Furthermore, in each platelets sample, over 1000 transcripts are supported by over 100 reads, 

higher than in nucleated samples (Table 5.1).  
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Figure 5.5. Summary of PTES transcripts identified from human tissues and anucleate 
cells. The number of identified circRNAs, supporting read counts, circRNA producing genes, 
mean number of circRNAs per gene and library sizes are shown for all samples analyzed. 
Samples are grouped in 4: normal nucleated human tissues, human cell lines, human cell lines 
digested with RNase R and anucleate cells. The number of circRNA supporting reads is 
significantly higher in anucleate samples than in others (p-value: 2.7 x 10-4, Wilcoxon rank 
sum test). Figure and legend from Alhasan et al., (2016) 
 

 
Table 5.1. Frequency of reads per PTES junction. Number of PTES transcripts identified 
from nucleated tissues and anucleate cells, with >10, >100 and >1000 PTES supporting reads 
 

In an attempt to identify platelets-specific PTES transcripts, I generated a combined list of 

previously reported PTES transcripts in circbase.org, PTES identified in previous analyses and 

PTES from nucleated samples analyzed here. Comparing the genomic coordinates of PTES 

transcripts identified in >1 platelet sample, with my transcripts in the combined list, I identified 

1260 novel transcripts that are seemingly platelet specific. Using read counts from the female 

platelets sample, novel PTES transcripts are supported by fewer reads than observed for 
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previously identified transcripts (p-value: 2.107 x 10-13, Wilcoxon rank sum test), suggesting 

their rarity (or sampling bias) as a plausible reason for non-detection. Of note, however, are 

transcripts from EFCAB13 and BANK1. Both have multiple previously unreported PTES 

transcripts (43 for EFCAB13 and 23 for BANK1 [Fig 5.6A-B]), that are supported by numerous 

reads and flanked by multiple Alu repeat elements that presumably aid their circularization. 

Expression estimates of linear transcripts from these genes are low in nucleated tissues, 

suggesting that they are platelets specific (Table 5.2), and that circRNAs from these loci result 

from increased transcriptional output. A screen for circRNAs from interleukin-1B, previously 

shown to undergo cytoplasmic splicing in platelets, did not identify any transcripts. Although 

platelets can become activated at room temperature (Maurer-Spurej et al. 2001), these samples 

were generated from resting platelets and may not contain cytoplasmic spliced products, as this 

is known to occur upon activation (Denis et al., 2005). 

 
 

Figure 5.6. Multiple PTES transcripts from EFCAB13 and BANK1. Two examples of 
genes with multiple PTES transcripts and highly expressed in Platelets relative to other 
tissues. Multiple PTES transcripts from the same locus underscore the diversity of eukaryotic 
transcripts and are easily detectable in the platelets samples analyzed in this study. 
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Table 5.2. Raw counts of platelets specific genes. Raw counts of EFCAB13 and BANK1 
from all samples, showing the highest number of counts observed in platelets samples 
 

5.3.3 Reads from circRNA producing exons are enriched in Platelets 
Previous studies have relied on flanking canonical junction counts to normalize PTES 

junction abundance for quantitation (Salzman et al., 2012). For instance, raw counts for a 

hypothetical PTES between exons 6 and 3, are often normalized using raw counts of canonical 

junctions 5-6 and 2-3. However, as shown for XPO1, EFCAB13 and BANK1, PTES transcripts 

can overlap and contribute counts to canonical junction counts used for normalization. To 

mitigate against this potential confounding factor, all PTES transcripts identified from all four 

groups of samples were first pooled and used to determine exons internal and external to 

circRNAs. This information was then used in computing expression estimates of circRNA 

exons (RPKMI - representing aa measures of linear and circular transcripts) and external exons 

(RPKME), representing a measure of linear transcripts only (see 2.6.4 for details). Results show 

that reads from circRNA exons are on average ~12X more abundant in platelets than in 

nucleated tissues and ~5X more abundant than RNase R digested samples (Fig. 5.7A). 

To estimate the overall contribution of circRNAs to total transcriptional output of each gene, 

ratios of RPKMI / (RPKMI /RPKME) were derived (appendix 9.4). An enrichment analysis 

using these ratios was performed to identify PTES producing genes enriched for circRNAs in 

platelets. Using the Wilcoxon rank test, ratios derived for all three platelets samples were 

compared to ratios for 12 nucleated tissues. After correcting for multiple testing using the 

Benjamini-Hochberg protocol at FDR of 0.01, 3162 of 8041 genes tested reached significance, 

indicating enrichment in platelets relative to nucleated tissues. Furthermore, using genes with 

RPKM > 1 in platelets showed that for most genes enriched for circRNAs, the contribution of 

circRNA exons to total transcription was >80% in platelets, higher than observed for nucleated 

tissues (>60%). For 457 genes, the contribution of circRNA exons to overall transcriptional 

output exceeded 99% in platelets. I then estimated the magnitude of circRNA enrichment in 

platelets, relative to nucleated tissues (Fig. 5.7B-C; appendix 9.4). When mean RPKM ratios 

derived for both platelets and nucleated tissues were compared, I observed an average 

enrichment in circRNA exons of 12.7X for all genes and 22X for 3162 identified as significantly 

enriched. TMEM181, for instance, has 17 exons, 12 of which are internal to one or more of the 

12 PTES transcripts identified from this gene. In platelets, the vast majority of reads observed 
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for this gene originate from the 12 exons internal to circRNAs, resulting in 3590X enrichment 

(Fig 5.7C).   

 
Figure 5.7. Differential read depth defines genes with significant circRNA enrichment in 
platelets. (A) Box and whisker plots showing the ratio of RPKM from circRNA producing 
exons (RPKMI) to RPKM from exons that do not produce circRNAs (RPKME) for all genes 
in each sample. The median and upper and lower quartiles are shown, with outliers as solid 
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circles. (B) The proportion of reads from circRNA producing exons averaged across all 
nucleated samples (y-axis) and platelets (x-axis). (C) Fold enrichment of reads from circRNA 
producing exons in platelets relative to nucleated tissues. All genes with an average RPKMI 
>1 in platelets and expressed in 8 or more nucleated tissues are shown. Blue, genes 
significantly enriched in platelets; red, genes not significantly enriched in platelets. The data 
points corresponding to the 5 most enriched genes are indicated. The slope x = y is shown as a 
dashed line. Figure and legend from Alhasan et al., (2016). 
 

The observed abundance of circRNAs in platelets was confirmed using qPCR. Eleven 

previously confirmed circRNAs (including 2 each from MAN1A2 and PHC3) (Al-Balool et al., 

2011) were assayed by Dr. Alhasan (Newcastle University, UK), and their expression compared 

to that of associated canonical junctions, sharing the same probes (Fig 5.8A). The qPCR results 

in Fig 5.8B-C shows that these PTES transcripts are highly abundant in platelets and RBC, 

relative to nucleated tissues, registering between 4 & 10 cycles before their linear counterparts 

for 9 of the circRNAs assayed. This suggests an enrichment of ~16X to 1000X relative to their 

linear counterparts, significantly higher than observed in nucleated tissues (p-value: 2.7 x 10-

12, Wilcoxon rank sum test). The circularity of 7 PTES transcripts was experimentally 

confirmed by qPCR (Fig. 5.8D), after treating samples with RNase R to degrade linear 

molecules. Increase in expression estimates is noticeable for all assays, with the largest changes 

observed in nucleated samples, indicating that these samples contained a greater proportion of 

linear molecules than the platelets samples. 
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Figure 5.8. Confirmations of circRNA abundance and resistance to RNase R. A) Schema 
of qPCR assays using E5-E2 circRNA as an example. All assays use a common reported 
probe and use either an exon downstream of the circRNA to assay linear expression (probe in 
donor exon) or an exon upstream (probe in acceptor exon). (B) (Left) Expression levels 
(−∆CT values) of linear (Ex1-2) and circular (Ex5-2 and Ex4-2) MAN1A2 transcripts relative 
to housekeeping pool. (Right) Expression levels of circRNAs relative to linear RNAs from the 
same loci normalized to housekeeping pool (−∆∆CT values). (C) Expression of 9 circRNAs 
relative to linear forms from the same loci, normalized to housekeeping pool (−∆∆CT values). 
(D) Change in CT values of circRNAs relative to linear forms from the same loci in RNase R 
digested RNAs, normalized to mock digested RNAs (−∆∆CT values). Templates, circRNAs, 
and linear forms assayed are indicated. Figure and legend from Alhasan et al., (2016). 
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5.3.4 RNA degradation may be reason for PTES abundance in anucleate cells 
Why are PTES transcripts enriched in anucleate cells? In the absence of steady transcription 

and export from the nucleus, expression levels of mature mRNAs decrease (Angenieux et al., 

2016). Various RNA decay pathways include exonucleases that act to de-cap, de-adenylate and 

degrade mature mRNAs (Houseley & Tollervey 2009; Schoenberg & Maquat 2012). Using in 

silico and in vitro methods, I assessed RNA decay in anucleate cells. First, for each sample, I 

computed the percentile base coverage of every RefSeq annotated transcript observed in that 

sample. For instance, a transcript with internal spliced size of 8000bp will generate 100 

segments of 8bp in sizes. The number of nucleotides within each segment covered by at least 

one read is used to compute the coverage for that segment. For all transcripts the mean 

percentile coverage was derived and compared across samples (Fig 5.9A). Results show that 

anucleate cells have the least mean percentile coverage across transcripts, suggesting RNA 

decay or possible sampling bias. Unlike nucleated samples, there is a noticeable reduction in 

nucleotide coverage towards the 3’ termini of transcripts in each anucleate sample. This is 

consistent with exonuclease activity and likely contributes to the magnitude of circRNA 

enrichment observed using expression estimates of exons external to circRNAs, as terminal 

exons typically are not involved in PTES. Second, as platelets originate from megakaryocytes, 

we reasoned that expression differences between both cell types will be decay rate dependent. 

To assess this, I identified and obtained a polyA+ sample from megakaryocytes. PolyA+ 

samples from both cell types were then analyzed and expression estimates of each gene 

compared across samples. When the ratios of expression estimates obtained from both samples 

are compared to published half-lives of respective genes (Friedel et al. 2009), a significant 

correlation (r = 0.17, p-value: 3.35 x 10-44; Fig 5.9B) between both measures is observed. This 

suggests that the expression of many transcripts decreases in the platelets relative to their 

progenitor cells, in a decay rate dependent manner.  
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Figure 5.9. In silico decay analysis in platelets. A) Mean read coverage across transcripts 
identified in Platelets, RBC and nucleated tissues. Proportion of bases covered by reads in 
sequence segments (n = 100) of each transcript is averaged and shown for all samples. B) 
Correlation of the change in gene expression between megakaryocte polyA+ RNA and 
platelet polyA+ RNA (y-axis), and mRNA half-life estimates (x-axis). Distributions of both 
are shown as histograms on each axis. Figure 5.9B from Alhasan et al., (2016) 
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To confirm these results experimentally, plasma rich platelets from 3 individuals were 

incubated at 37oC for 72 and 96 hours by Dr. Alhasan (Newcastle University, UK), monitoring 

the abundance of 4 housekeeping genes and 7 circRNAs, along with their cognate linear 

transcripts (Fig. 5.10). Results show a reduction in abundance of housekeeping genes, 

registering 4 to 6 cycles later in decay time series, relative to the 0-hour time point. There is an 

equivalent reduction in linear transcripts assayed. However, circRNAs are enriched 2 to 6-fold 

relative to linear RNAs after incubation (p-value: 2 x 10-3 for comparisons of 0 vs 72hrs and 0 

vs 96hrs; Wilcoxon rank sum test).  

 
Figure 5.10. Degradation of platelet RNA. qPCR analysis of differential decay of linear and 
circRNAs in platelets following incubation at 37°C for 0, 72, and 96 hours. Data from 3 
biological replicates are shown. (Top left) Expression levels of housekeeping genes (CT 
values). (Top right) Expression levels of linear structures from 5 circRNA-producing genes 
relative to the housekeeping pool (−∆CT values). (Bottom) Expression levels of 7 circRNAs 
relative to linear transcripts from the same loci, both normalized to the housekeeping pool 
(−∆∆CT values). Figure and legend from Alhasan et al., (2016) 
 

5.3.5 RNA secondary structure, GC content and miRNA binding sites may contribute to 

circRNA stability 
The stark difference in number of PTES transcripts and PTES supporting reads observed in 

the male platelets is noteworthy. In one platelets sample (Platelets_M1), only 10650 transcripts 

were identified, less than half the number observed in Platelets_M2, despite comparable library 

sizes. Abundance ratios computed using RPKM ratios, show the sample with fewer PTES 

transcripts to be significantly enriched for reads within circRNAs and deplete of reads in exons 

external to circRNAs (Fig 5.7A above), suggesting RNA decay of linear transcripts. However, 

many factors including read quality can contribute to the difference in PTES transcripts 
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identified between both male platelets samples. Per base sequence quality analysis of 

Platelets_M1, showed sub-optimal sequence quality in the last ~15bp of most reads, dissimilar 

from the other 2 platelets samples (Fig 5.11). As PTESFinder relies on generating short anchor 

reads from termini of reads, this observation is likely to cause the non-detection of some PTES 

transcripts. To assess this, I trimmed 20bp from all reads in this library and reanalyzed using 

PTESFinder. This correction only resulted in the identification of 33 additional PTES 

transcripts and fewer PTES supporting reads. When the impact of filters within PTESFinder is 

compared for all three samples, Platelets_M1 is the least affected sample, with only 38.07% of 

reads excluded by filters (Table 5.3), suggesting that the observed difference in identified 

transcripts in not due to poor sequence quality. 

Figure 5.11. Sequence quality analysis of Platelets samples. Merged FASTQ reads for each 
Platelet sample were analyzed using FASTQC. Aggregate qualities of base calls across all reads 
are shown for each sample. Highlighted (white arrows) are nucleotide positions with sub-
optimal base calls, differing from other samples. 
 

 
Table 5.3. Re-analysis of Platelets samples. Platelets_M1 sample was re-analyzed using 
PTESFinder after trimming 20bp off right ends of reads, to remove nucleotides with sub-
optimal base call quality. This correction resulted in the identification of additional 33 PTES 
transcripts. 
 

Sampling bias and possible technical errors may contribute to this effect, where some PTES 

transcripts are inadvertently affected. Indeed, when Platelets_M2 was subsampled without 

replacement using SEQTK (https://github.com/lh3/seqtk), generating 10 samples each 

containing 25% or 75% of library size, and screening for PTES; the number of identified PTES 

transcripts fluctuates. Interestingly, at either level of subsampling, a similar number of PTES 

transcripts was consistently identified across samples. It is also notable that even at 25% 

subsampling level, the numbers of identified transcripts are approximately 80% higher than 

observed in Platelets_M1 (Table 5.4), suggesting that reduced number of identified transcripts 
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is not solely due to sampling. Sampling cannot explain the observed enrichment of circRNA 

exons relative to non-circRNA exons (Fig 5.7A). It is however conceivable that some circRNAs 

in Platelets_M1 were undergoing degradation, negating detection. To investigate the intactness 

of circRNAs in both male samples, I pooled transcripts identified from both samples and 

generated their full spliced sequences (constructs) in silico. For instance, sequence for a 

circRNA with junction between exons 4 and 2, comprised of full sequence of exons 2, 3 and 4 

concatenated at splice junctions. Full length reads were then mapped to these constructs; 

computing percentile read coverage as depicted in Figure 5.12.  

 
Table 5.4. Identification of PTES transcripts from sub-sampled Platelets_M2 sample. 
Platelet_M2 sample were sub-sampled at 25% and 75% of total library size and screened for 
PTES transcripts. Sub-sampling affected number of identified transcripts by ~35% and ~7% 
respectively. 
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Figure 5.12. Methodology of percentile coverage comparisons. Reads mapping to 
nucleotide sequence of each circRNA were used to derive percentile coverage. For each of the 
100 segments of the full sequence, the number of nucleotides covered by reads is divided by 
the size of the segment. For instance, the first sequence segment depicted here has 4 of its 5 
nucleotides covered by reads, resulting in coverage of 0.8. Sample-level comparison of 
percentile coverages for each circRNA was performed using Wilcoxon rank sum test. The 
difference in percentile coverage between samples is derived for all circRNAs. 
 

Comparing percentile coverage for each transcript across both male samples, it is striking 

that for virtually all transcripts, there is a noticeable difference in percentile coverage between 

both samples (Fig 5.13A). The same pattern is observed when Platelets_M1 is compared to 

Platelets_F (Fig 5.13B), but differs from comparisons between Platelets_M2 and Platelets_F 

(Fig 5.13C). The distribution of percentile coverage differences shows that, for most transcripts, 

more nucleotides are covered by reads and are detectable in Platelets_M2 than in Platelets_M1 

(Fig 5.13D). It is also striking that, comparisons between Platelets_M1 and subsamples of 

Platelets_M2 (Fig. 5.13E-F), show similar patterns, further indicating that the percentile 

coverage metric is not significantly affected by sampling.  
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Figure 5.13. Comparisons of percentile coverage across circRNA sequences. Mean percentile coverage across circRNA transcripts identified from A) 
Platelets_M1 & Platelets_M2 B) Platelets_M1 & Platelets_F and C) Platelets_F and Platelets_M2. D) Differences in mean percentile coverage between 
both male platelets are shown E - F) Differences in mean percentile coverage between Platelets_M1 and 25% or 75% subsampled Platelets_M2
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  To identify transcripts with significant differences in coverage, I performed Wilcoxon 

rank tests using derived percentile coverage for each transcript. From ~31000 transcripts 

tested (appendix 9.4), 11,400 transcripts significantly differed in percentile coverage and have 

more nucleotides covered by reads in Platelets_M2, after correcting for multiple testing using 

BH method. Only 67 transcripts were found to have more nucleotides covered by reads in 

Platelets_M1. These results suggest that most PTES transcripts are more intact in the second 

platelets sample, in addition to the higher number of transcripts identified from that sample. 

Figure 5.14 shows examples of transcripts, highlighting differences in read coverage across 

transcripts between both male platelets samples. In these examples, the circRNAs shown are 

intact in Platelets_M2, but there are gaps in read coverage in Platelets_M1. 

Figure 5.14. Examples of transcripts with non-uniform read distributions in Platelets_M1 
sample. Difference in percentile read coverage between two male samples is shown for 6 
transcripts. Transcript ids are composites of RefSeq id, donor exon, acceptor exon and size of 
circRNA exon. Each segment in circRNA sequence has a size corresponding to the transcript 
size divided by number of segments (100 in all cases). For all sequence segments, differences 
were derived by subtracting the coverage in Platelets_M2 from that of Platelets_M1, thus, 
differences favour higher coverage in Platelets_M2, for all examples shown. 

 
In an attempt to identify features that may affect circRNA stability and potentially 

contribute to these observations, I compared the coordinates of pooled PTES transcripts to 

published miRNA binding sites (Jeggari et al., 2012), reasoning that miRNAs may act to 

suppress circRNAs. RNA degradation induced by miRNAs depends on full complementarity 

between recognition site on target RNA and the miRNA seed sequence. In some cases, however, 

the target RNA is not degraded, due to partial complementarity, resulting in translational 
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suppression for mRNA targets. Correlational analysis of the number of miRNA binding sites 

and difference in coverage (intactness) of circRNAs in both male platelets resulted in a weak 

but significant correlation (r: 0.06, p-value < 2.2 x 10-16), suggesting that intactness and 

subsequent stability may be affected by miRNA activity. Notably, for some transcripts, the 

highest difference in coverage occur in regions with miRNA binding sites, highlighting the 

possibly role of miRNAs on circRNAs (Fig 5.15).  

I then examined the effect of respective nucleotide composition on intactness. Results show 

that differences in coverage negatively correlate with GC content (r: -0.15, p-value < 2.2 x 10-

16). This is consistent with previous reports of the effect of GC on RNA stability (Wan et al., 

2012). In a nutshell, some PTES transcripts not identified from Platelets_M1 or with variation 

in percentile coverage between samples, are characterized by numerous miRNA binding sites 

and lower GC content. 
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Figure 5.15. Overlay of MiRNA binding sites on mono-exonic circRNAs. A -B) Examples 
of single exon circRNAs with predicted miRNA binding sites overlaid on sequence segments. 
The size of the circRNA is appended to each circRNA ID, 1079bp and 188bp respectively. 
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5.4 Discussion 

Transcripts with rearranged exon order relative to the genomic context have now been 

identified in various nucleated cell lines and tissues, but their identification and distribution 

have not been explored in anucleate cells. In the last chapter, ~9% of identified PTES transcripts 

were shown to be significantly enriched in the cytosol of nucleated cell lines, relative to the 

nuclei. Various reports have also identified circRNAs from cell-free RNA extracts, further 

suggesting that their resistance to exonuclease activity confers stability and their enrichment in 

cellular space. This singular premise highlights platelets as an ideal ‘closed system’, in the 

absence of steady transcription, for characterizing PTES transcripts. Platelets are highly 

specialized cells, devoid of genomic DNA and inherit their transcriptome from their 

megakaryocyte progenitors. In addition to being a snapshot of the megakaryocytic cytosol prior 

to release, platelets can accept exogenous RNAs from other cells, undergo cytoplasmic splicing 

and are enriched for incompletely processed miRNAs, underscoring the complexity of their 

transcriptomes. 

To further characterize the distribution of PTES transcripts in cellular space and time, and 

identify any platelet-specific PTES transcripts, I analyzed 3 ribosome depleted total RNA 

samples from 3 donors and 1 polyA+ sample. From total RNA samples, ~34000 distinct PTES 

transcripts were identified, the highest reported from any cell line or tissue. Comparisons with 

12 human tissues and 4 cell lines showed that the highest number of PTES transcripts, 

supporting reads and PTES producing genes were identified from platelets. Results from my 

analysis identified ~8000 previously unidentified PTES events, expanding the growing 

repertoire of characterized PTES transcripts. Within platelets, over 600 genes produce more 

than 20 distinct PTES transcripts, many of which were previously unreported. As an example, 

11 circRNAs were previously identified from XPO1, in platelets; an additional 38 circRNAs 

were identified, highlighting the high resolution of datasets analyzed. For each locus, 

comparing the abundance of reads from circRNA exons to exons external to any identified 

circRNA, all three platelets samples were found to be ~12X and ~5X more enriched for reads 

within circRNA exons than nucleated samples and RNase R digested samples respectively. 

Further enrichment analysis identified ~3000 genes to be significantly enriched for reads within 

circRNA exons, in some cases, >90% of reads emanate from circRNA exons. A similar 

observation was made in mature erythrocytes, indicating that circRNA enrichment may be a 

common feature in anucleate cells. In vitro analysis of 11 circRNAs confirmed circRNA 

enrichment in anucleate cells, relative to nucleated cells, including megakaryocytes.  

The observed abundance of reads from circRNA exons in platelets is likely due to 

differential decay of linear RNA molecules and circRNA stability. As reads from exons external 
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to circRNAs originate from linear molecules, their depletion in anucleate cells suggests RNA 

degradation. In nucleated cells, mRNAs are replenished by steady-state transcription. There are 

mechanisms that couple transcription and RNA degradation in nucleated cells (Goler-Baron et 

al. 2008). In platelets, expression levels of mRNAs expectedly decline in a time-dependent 

manner (Angenieux et al., 2016), due to RNA degradation. Ex vivo analysis of differential decay 

confirmed the depletion of linear RNA molecules and enrichment of circRNAs after 72 hrs. The 

reported discrepancy in number of transcripts in platelets with detectable associated protein 

products (Londin et al., 2014; Geiger & Burkhart 2013) is likely due to ongoing degradation of 

linear molecules, leaving untranslatable fragments of linear molecules. As circRNAs are 

enriched in platelets, the weak correlation between the transcriptome and the proteome provides 

further evidence that circRNAs do not contribute to the proteome. 

Various studies of platelet transcriptomes showed variation in number of detectable protein-

coding transcripts. These variations likely result from RNA decay and are influenced by various 

factors, including age, race and gender. Research has largely focused on characterizing PTES 

in various cells, but circRNA decay mechanisms remained unexplored. In my analysis, 

fluctuation in number of identified PTES transcripts is observed in one platelets sample, with 

only about 35% of transcripts identified in other platelets samples detectable. This large 

variation is due to ongoing decay of some circRNAs within platelets, as sequence read coverage 

across these circRNAs are not uniformly distributed or fully depleted. Correlational analysis 

suggest that the number of miRNA binding sites within circRNAs without uniform read 

coverage and their GC content may significantly influence their stability. Indeed, for some 

transcripts, sequence regions without read coverage directly overlap with miRcode (Jeggari et 

al., 2012) predicted miRNA binding sites. It is conceivable that some circRNAs without 

uniform read coverage are actively undergoing endonucleolytic cleavage induced by miRNAs. 

Although 3 circRNAs have been shown to be effective miRNA sponges (Hansen et al., 2011; 

Memczak et al., 2013; Zheng et al., 2016), there is evidence of miRNA induced circRNA 

degradation (Hansen et al., 2011). The ~65% reduction in number of identified PTES 

transcripts, coupled with reported high abundance of miRNAs in platelets (Landry et al. 2009; 

Pontes et al. 2015), plausibly suggest that circRNAs are antagonized by miRNAs and any 

potential miRNA sponge effect is negligible, as circRNAs are generally lowly expressed, 

constituting <1% of the transcriptome. Ruling out technical variability in molecular biology 

protocols, the reason for extensive decay within one sample is not readily clear. Without 

additional information about the demographics of the donors, the underlying reason can only 

be speculated. One plausible explanation relates to the age of platelets sampled. As platelets are 
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short-lived, any time difference in sample preparation may be sufficient to impact RNA 

integrity.  

Finally, fewer PTES transcripts were identified from polyA+ platelets sample. Previous 

studies characterized PTES transcripts identified from polyA+ RNA fractions as linear PTES 

arising from trans-splicing. However, on the evidence of extensive RNA decay in platelets, 

reads supporting PTES in polyA+ sample likely originate from circRNAs. These transcripts 

were shown to be enriched for adenosine residues and were probably pulled down during 

isolation. It is currently unclear what impact such contamination have on expression estimates 

of PTES host genes and published reports of differential expression, particularly in degraded 

transcriptomes. It is however clear, that the vast majority of PTES transcripts are circular, at 

least in platelets.  

 

5.5 Conclusion 
Circular RNAs are highly stable due to their lack of free termini and resistance to 

exonuclease activity. In platelets, splicing and translation occur, but in the absence of nuclei, 

linear RNA molecules degrade in a time-dependent manner. In this chapter, I screened 4 

anucleate RNAseq datasets for PTES, found anucleate samples to be enriched for PTES, 

subsequently adding to the growing catalog of characterized PTES transcripts. The reported 

weak correlation between the transcriptome and proteome of platelets is due to RNA decay and 

circRNA enrichment in platelets however adds to increasing evidence that PTES transcripts are 

non-coding. Interestingly, although additional PTES transcripts were identified from platelets, 

the vast majority of PTES transcripts are circular and there is no evidence of PTES transcripts 

arising from cytoplasmic splicing.  
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Chapter 6.  PTES Events in development 

 

6.1 Introduction 
In the last chapter, I presented results showing that PTES transcripts are more abundant in 

anucleate cells, presumably accumulating due to their resistance to exonuclease digestion. 

Abundance of circRNAs in platelets was found to be higher than observed in samples from 

nucleated tissues and samples treated with RNase R to preferentially enrich circRNAs. For 

some genes, only reads emanating from exons involved in circRNAs were detectable. Taken 

together with the reported low correlation between the platelet transcriptome and proteome, 

these data support earlier results showing PTES transcripts as non-coding (see chapter 4). 

Results further raise questions about functional significance of these transcripts. In this chapter, 

I investigate any potential roles for PTES transcripts in either pluripotency maintenance or 

differentiation, by assessing their distributions in human embryonic stem cells differentiation 

series and screening for developmental stage-specific transcripts. 

 

6.1.1 Epigenetic changes influence transcriptome diversity during development 

Embryonic stem cells (ESC) are pluripotent, capable of self-renewing and differentiating 

into any somatic cell. ESC uniquely undergo both symmetrical (to produce two daughter cells 

of the same fate) and asymmetrical (to produce two daughter cells of different fates: pluripotent 

and somatic cells) cell division during differentiation (Morrison & Kimble 2006). It is thought 

that various signaling pathways are required to maintain the balance between both forms of cell 

divisions during differentiation, subsequently resulting in terminally differentiated somatic 

cells and resting adult stem cells (Morrison & Kimble 2006; Boland et al. 2014). Maintaining 

the pluripotent state of ESC involves complex transcriptional and epigenetic regulatory 

controls. Reports have shown that knockdown of DNA methyltransferases in mouse ESC results 

in hypomethylation and subsequent differentiation defects (Tsumura et al. 2006; Okano et al. 

1999).  

The stage-specific processing of one circRNA is already known to play a key role in 

development. The expression of linear canonical and circular transcripts from Sry during 

development is regulated by epigenetic modifications (Nishino et al. 2004; Nishino et al. 2011). 

The linear transcript is specifically expressed and translated within a developmental temporal 

window between days 10.5 and 12.5 in rodent embryos (Nishino et al., 2004 & 2011). 

Transcription of the linear and circular transcripts from Sry is aided by two promoters: a main 

promoter driving the transcription of the linear transcript and a cryptic promoter upstream of 
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the main promoter (Nishino et al., 2004). Both promoters are hypermethylated before the 

temporal window when demethyaltion of the main promoter is observed. Following the 

temporal window, the main promoter once again becomes hypermethylated but the cryptic 

promoter is demethylated, allowing for the expression of circSry in adult rodents (Capel et al., 

1993; Nishino et al., 2004).  

Furthermore, there is mounting evidence that the rate of of transcription elongation may 

affect the choice of splice sites in alternative splicing (Bentley 2014; Yue et al. 2015) and 

presumably PTES. During transcription, splice sites compete for spliceosomal proteins, strong 

splice sites outcompete weak sites and long range intron pairings are modulated by transcription 

elongation rates (Bentley, 2014). Studies have shown that most genes are expressed in ESC, 

albeit at low levels for lineage-specific transcripts, with promoters characterized by distinct 

chromatin signatures of either H3K4me3 for active genes, repressive H3K27me3 or both (Min 

et al., 2011). Modifications to these histone marks modulate expression of genes upon 

differentiation (Min et al. 2011; Boland et al. 2014). Moreover, increased CpG methylation 

within exons has been shown to improve inclusion of alternatively spliced exons (Maunakea et 

al. 2013; Gelfman et al. 2013; Singer et al. 2015), presumably acting as ‘road blocks’ that slow 

transcription (Schwartz et al. 2009; Choi 2010; Sati et al. 2012), long enough for splicing to 

complete. It is unclear whether intragenic CpG methylation plays a role in PTES directly but 

there are reports of correlation between alternative splicing and PTES (Zaphiropoulos 1997; 

Surono et al., 1999). A recent report estimated the average elongation rate of PTES genes at 

~2.90 kb/min, compared to 2.29 kb/min for non-PTES producing genes (Zhang et al., 2016). In 

that study, HEK293 cells were transfected with 3 variants of RNA polymerase II, two of which 

carried mutations that either increased or decreased transcription elongation rates. 

Subsequently, more PTES transcripts were identified from samples transfected with the variant 

with fast elongation rate (Zhang et al. 2016), demonstrating a link between transcription 

elongation rate and PTES. As epigenetic changes evidently influence transcriptome diversity in 

development, assessing PTES populations during cellular differentiation may yield interesting 

results and deepen our understanding of mechanisms of PTES formation. 

 

6.1.2 Non-Coding RNAs (ncRNAs) in pluripotency maintenance and differentiation 

In addition to epigenetic modifications, a core set of transcription factors (including 

NANOG, SOX2 & OCT4) have been shown to be integral to regulatory mechanisms necessary 

for pluripotency maintenance, by directly promoting the expression of ESC-specific genes and 

indirectly suppressing cell lineage commitment genes. Many ncRNAs are now understood to 

aid ESC pluripotency maintenance by recruiting or tethering histone modifiers and 
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methyltransferases to direct chromatin modification of genes required for differentiation (Ng et 

al. 2012; Chen & Dent 2014; Fatica & Bozzoni 2013). Depletion of some ncRNAs in ESC can 

induce cell retardation (Hacisuleyman et al. 2014), suggesting unknown mechanisms of impact 

on pluripotency maintenance. One example is the multifunctional FIRRE, a long ncRNA that 

continues to be expressed from the inactive X chromosome (Hacisuleyman et al., 2014). 

Compared to wild-type mouse ESC (mESC), the growth rate of mESC lacking Firre was 

reported to be markedly reduced (Hacisuleyman et al., 2014). This retarded growth rate is 

accompanied by depletion of genes involved in mRNA processing and export, and inhibition of 

adipogenesis (Hacisuleyman et al., 2014). In mouse fibroblasts, knockdown of Firre resulted 

in loss of histone methylation (H3K27me3) on the inactivated X chromosome (Yang et al. 

2015), suggesting a role in maintaining epigenetic state in that chromosome. 

Post-transcriptionally, ncRNAs play roles in regulating the expression of both ESC-specific 

and development-specific transcripts (Gruber et al. 2014; Hu et al. 2012; Wang et al. 2013). A 

miRNA family, miR-300, has been shown to be highly expressed in ESC and down regulated 

upon differentiation (Hu et al., 2012). These miRNAs are understood to aid the suppression of 

transcripts required for lineage commitment, subsequently helping maintain the pluripotent 

state (Hu et al., 2012). Conversely, some miRNAs (including miR-145) target the core 

transcription factors, thus play roles in development (Wang et al., 2013). Some long non-coding 

RNAs (ncRNAs with size > 200bp) have been shown to act as competing endogenous RNAs, 

competing for miRNA binding and acting as decoys. LincRNA-RoR, for instance, is a long 

intergenic ncRNA with binding sites for miR-145 and acts as a potent decoy, reducing their 

effect on expression levels of ESC-specific transcripts (Cheng & Lin 2013; Wang et al. 2013). 

 

6.1.3 PTES transcripts do not have uniformly ascribed functional significance 
To date circRNAs with ascribed functions act as cytoplasmic miRNA sponges or nuclear 

regulators of transcription. Three circRNAs from CDR1 antisense (CDR1as [Hansen et al., 

2011; Memczak et al., 2013]), Sry (Hansen et al., 2011) and HIPK3 (Zheng et al., 2016) loci 

have recently been shown to be potent miRNA sponges, sequestering miRNAs from target 

linear transcripts. Memczak et al., (2013) reported reduction in mid-brain size of zebrafish upon 

transfection of minigene constructs expressing CDR1as circRNA. This circRNA harbours over 

70 miRNA binding sites and effectively sequesters miR-7, resulting in the observed reduction 

in mid-brain size.  As this investigation involved the use of minigenes expressing circRNA, it 

is not clear whether endogenous levels of circRNAs are equally impactful and to what extent 

other circRNAs harbour miRNA binding sites. Two circRNAs (comprising of exons and introns 
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- EIcircRNAs [Li et al., 2015]) were recently reported to associate with snRNAs and RNA 

Polymerase II, and may facilitate the transcription of their respective parental genes.  

However, there has also been a report of a linear PTES from a lncRNA which acts to 

maintain ESC pluripotency. Wu et al., (2013) reported the identification of 4 linear PTES 

transcripts (CSNK1G3, ARHGAP5, FAT1 and RMST) with expression patterns suggestive of 

roles in pluripotency maintenance and differentiation. One from RMST locus recruits polycomb 

repressive complex 2 - PRC2, affecting the expression of development-specific transcripts and 

promoting pluripotency maintenance (Wu et al. 2013). By RNA immunoprecipitation assays, 

the authors demonstrated that the PTES from RMST interacts with NANOG and SUZ12, a 

component of PRC2. Knockdown of this PTES resulted in decrease in expression levels of core 

transcription factors necessary for pluripotency maintenance (Wu et al., 2013).  The mechanism 

by which this PTES regulates these core transcription factors was not explored by Wu et al., 

(2013), but the decrease in expression levels of these ESC-specific genes was accompanied by 

reduction of H3K27me3 in promoters of GATA4, GATA6 and PAX6, key lineage-specific 

transcription factors, and subsequent up regulation of these genes (Wu et al., 2013).  

Although this finding raises the possibility of identifying other PTES transcripts with 

similar roles, identification of PTES transcripts was from a H9 sample with ~1 Million reads, 

albeit long (~350bp) reads. Identified transcripts were supported by single reads and in the 

absence of biological replicates, no statistical analysis was performed. Additionally, their 

attempt to experimentally verify the structure of this PTES using RT-PCR was inconclusive as 

no positive controls were used. 
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6.2 Aims 
To address some of these limitations and to further identify PTES transcripts with 

expression suggestive of roles in pluripotency maintenance and differentiation, collaboration 

with Prof. Lako (Newcastle University, UK) was established. Prof. Lako and colleagues are 

investigating the effect of insulin growth factor 1 (IGF-1) on differentiation of human ESC 

(HESC) into retinal cells. RNA extracts from H9 ESC at 3 time points (days 0, 45 & 90) were 

sequenced, along with RNA from samples treated with IGF-1 to facilitate differentiation. IGF-

1 treatment has been shown to increase the rate of developing retinal photoreceptors from 

differentiation of H9 by up to 40% (Mellough et al. 2015). It is also reported to facilitate the 

differentiation of mesenchymal cells into nueronal-progenitor cells (Huat et al. 2014), further 

suggesting that any circRNAs with roles in differentiation may be affected by IGF-1 treatment.  

 

In this chapter, my specific aims were to: 

•! Identify PTES transcripts in H9 ESC differentiation series: 

o! Explore properties of PTES transcripts upon differentiation 

o! Identify factors that may affect PTES abundance during differentiation 

•! Investigate changes in expression of PTES and their linear counterparts during cellular 

differentiation. 

•! Identify PTES transcripts with expression patterns similar to that of ESC-specific genes 

and suggestive of roles in pluripotency maintenance. 

•! Assess any transcriptome-wide effect of IGF-1 treatment on PTES biogenesis and 

abundance 
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6.3 Results 
To elucidate potential functional relevance of PTES, H9 ESC were differentiated into retinal 

cells and RNA extracts in triplicates from 3 time points (days 0, 45 and 90) (Mellough et al. 

2012; Mellough et al. 2015) and were sequenced by AROS (Arhus, Sweden, see 2.5.1). In 

parallel, RNA extracts from H9 ESC cells treated with IGF-1 to facilitate differentiation and 

sequenced. From each sample, 100bp pair-end reads were generated, resulting in library sizes 

of over 100 million reads. According to findings reported by the ENCODE consortium 

(https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_

V1.0.pdf), this sequencing depth is required for identification of novel transcripts. For each 

sample, reads were merged, quality controlled and screened for PTES, using methods detailed 

in chapter 2. PTESFinder analyses of these samples subsequently identified 58,794 distinct 

PTES transcripts, from 8729 genes, resulting in ~7 PTES transcripts per gene and ~5 PTES 

supporting reads per PTES transcript (Table 6.1A-D). Notably, PTES producing genes represent 

~20.4% of GENCODE annotated genes (n=42,785). On average, ~5X more PTES supporting 

reads were identified from differentiated time points than in day 0 (Table 6.1B). In contrast, 

~1.5X more canonical junction reads were observed in undifferentiated (day 0) samples than in 

higher time points. However, more canonical junctions are observed in differentiated (days 45 

& 90) time points. The highest number of identified PTES transcripts, PTES supporting reads 

and number of PTES producing genes were observed in day 45 (Table 6.1B & D). When 

treatment groups are compared, there is no apparent difference in the number of PTES 

transcripts identified and abundance between treatment groups (Table 6.1C, Fig. 6.1), 

suggesting that IGF-1 treatment has no global effect on PTES. This observation is consistent 

with a recent study, where another growth factor (epidermal growth factor [EGF]) was found 

to have little or no effect on circRNA abundance in multipotent cells, concluding that PTES 

transcripts may not play roles in signaling cascades that lead to lineage commitment(Enuka et 

al. 2015). 
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Table 6.1. Summary of PTES identified from H9 ESC differentiation series. A) Summarised by sample B) by time point C) by treatment group and 
D) by time point and treatment group.
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 Of the 45,311 distinct PTES transcripts identified from control samples, only 10,437 

transcripts were identified from both differentiated (days 45 & 90) and undifferentiated (day 0) 

samples. Over thirty-two thousand transcripts were uniquely identified from differentiated 

samples and only 2790 transcripts are unique to day 0 (Fig 6.1A). For downstream analysis, 

read counts for both PTES and canonical junctions were summed across biological replicates. 

Clustering by Euclidean distance between samples expectedly shows day 0 clustered away from 

other samples, further highlighting the difference in PTES populations between stages (Fig. 

6.1B). PTES counts separates samples by time point (and not treatment group) (Fig 6.1B-C), 

underscoring the limited effect of IGF-1 treatment on PTES. Pairwise comparisons of PTES 

from each sample shows higher correlation coefficients (min: 0.78) between differentiated 

samples, than with day 0 samples (max: 0.59) (Fig. 6.2).  

 

 
Figure 6.1. Exploratory analysis of PTES in HESC differentiation. A) Number of PTES 
transcripts identified from differentiation series (days 0, 45 & 90), without IGF-1 treatment B) 
dendrogram showing hierarchical clustering of samples using PTES and canonical junction 
counts C) Boxplots of Log10 normalized PTES and canonical junction counts. More PTES 
supporting reads are identified in differentiated samples that in day 0; contrasting with slightly 
higher number of canonical junction reads in day 0, relative to higher time points. 



6.3 Results 149 

 

 
Figure 6.2. Correlational analysis of PTES in HESC differentiation. Pairwise scatterplots 
and correlation of PTES abundance across time points. Correlation coefficients are higher for 
comparisons between days 45 & 90, than comparisons between day 0 and differentiated (days 
45 & 90) samples. 
 

6.3.1 Differences in PTES abundance correlates with expression levels of RNA Binding 

Proteins (RBP) 
To identify factors affecting the number of PTES transcripts identified between 

differentiation stages, I first estimated the expression of all GENCODE annotated transcripts. 

Three RNA binding proteins (RBP) have been shown to have roles in PTES biogenesis. Two 

splice factors, MBNL (Ashwal-Fluss et al., 2014) and QKI (Conn et al. 2015), promote 

secondary structures favourable to PTES biogenesis, while ADAR, an RNA editing enzyme 

inhibits the formation of dsRNA and PTES (Rybak-Wolf et al. 2015). For these reasons, I 

profiled the expression of these RBPs in all 3 time points, reasoning that the striking difference 

in number of identified transcripts may be due to expression levels of these proteins. As 

controls, I also profiled the expression of NANOG, an ESC-specific transcription factor and 

MITF, a transcription factor shown to be differentially expressed during differentiation of 

HESC into retinal cells (Liao et al. 2010).  

MBNL expression is slightly elevated in differentiated samples (p-value: 0.0002), but QKI 

levels are similar across time points (Fig. 6.3A), suggesting that the observed increase in PTES 
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biogenesis may not solely be attributed to these 2 splice factors. However, there is ~3X 

reduction in expression levels of ADAR (p-value: 5.496 x 10-10) between differentiated samples 

and undifferentiated samples (Fig. 6.3B), suggesting a role for ADAR in suppressing PTES 

biogenesis in pluripotent cells. This observation supports a recent report of increase in PTES 

events in mouse P19 embryonic carcinoma cells following ADAR knockdown (Rybak-Wolf et 

al., 2015).  

 

 
Figure 6.3. RNA Binding proteins affect PTES biogenesis & abundance. A) Expression 
estimates of two splice factors, MBNL and QKI, and B, left) RNA editing enzyme, ADAR, 
upon HESC differentiation. Right) Box plots showing number of RNA editing sites within 
1000bp of PTES flanking introns. C) Expression estimates of transcription factors, NANOG & 
MITF, shown here as controls. 
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It is conceivable that PTES transcripts uniquely observed in differentiated samples are 

characterized by high RNA editing sites in flanking introns. To assess this, I extracted the 

genomic positions of the first 1000bp intronic sequence proximal to PTES junctions identified 

from both stages (differentiated and undifferentiated). I then compared the genomic positions 

of these flanking introns to genomic positions of RNA editing sites available from rnaedit.com 

(Chen 2013; Porath et al., 2014). Approximately 52.7% of PTES transcripts identified from 

undifferentiated samples have at least one RNA editing site within 1000bp of flanking introns, 

with a median of 4 editing sites (Fig. 6.3B). Conversely, ~56% of transcripts identified in 

differentiated samples have editing sites and a median of 5 RNA editing sites, higher than 

observed for transcripts in undifferentiated samples (p-value: 0.03, Wilcoxon rank test), 

consistent with some of these transcripts being suppressed in day 0 due to A-to-I editing 

weakening intron pairing and subsequent PTES formation. An example may be a PTES 

transcript from DHDDS locus between exons 5 and 6 (DHDDS.6.5). This structure is only 

observed in differentiated time points (highest in day 90) and flanking introns have 12 and 27 

RNA editing sites respectively (Fig 6.4). This gene is implicated in retinal disorders (Zuchner 

et al. 2011) and expressed at comparable levels in all samples, thus, ruling out transcriptional 

silencing as reason for not detecting this PTES transcript in day 0.  

 
Figure 6.4. RNA editing sites flanking DHDDS.6.5. RNA editing sites (yellow boxes) within 
flanking introns of DHDDS.6.5, a PTES observed only in differentiated samples. Backspaced 
exons (6 & 5) are known cassette exons (red highlight) and are flanked by numerous Alu 
repeats. 
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As some transcripts observed in day 0 have known RNA editing sites and are not 

suppressed, ADAR activity may not be the sole reason for PTES suppression in this time point. 

Further profiling of expression patterns of endoribonucleases shows their expression to be 

higher or comparable in day 0 samples relative to other time points (Fig. 6.5). Increases in 

expression of endoribonucleases have not been shown to affect PTES abundance directly; 

however, as circRNAs are resistant to exonucleases, a decay pathway may conceivably include 

linearisation of circRNAs by endoribonucleases. The high abundance of some profiled 

endoribonucleases in day 0 may contribute to the suppression of PTES abundance in this time 

point. DIS3, a known component of the exosome with reported endoribonucleolytic activity 

(Tomecki & Dziembowski 2010), and ZC3H12A are particularly elevated in undifferentiated 

samples (p-values: 1.2 x 10-05 and 4.4 x 10-05, respectively), relative to other time points. 

 
Figure 6.5. Expression profiles of endoribonucleases. Expression estimates of 
endoribonucleases are higher or comparable in ESC, relative to other time points. Expression 
estimates of these genes were profiled in undifferentiated (blue) and differentiated(grey) 
samples. 
 

6.3.2 Properties of PTES transcripts vary between developmental stages 
To assess the potential link between intragenic DNA methylation and PTES, I first 

compared the unspliced sizes of the longest PTES transcripts identified from each locus, in both 

undifferentiated and pooled differentiated samples. As DNA methylation impacts the rate of 

transcription elongation and subsequent formation of secondary structures favourable for 

PTES, I reasoned that transcript sizes may vary upon differentiation and correlate with 

intragenic methylation levels. Indeed, a noticeable size variation was observed. Transcripts 

identified from higher time points are significantly longer than transcripts in undifferentiated 

time points (p-value < 9.1 x 10-39, Wilcoxon rank test)(Fig 6.6). Similarly, the number of exons 

included within inferred PTES transcripts is significantly higher for transcripts identified in 

differentiated samples than transcripts identified in day 0 (p-value < 9.1 x 10-39, Wilcoxon rank 
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test). The observed size and exon count variation may be due to an increase in transcription 

elongation rates upon differentiation. 

 

 
Figure 6.6. PTES size and Exon count variation across differentiation time points. 
Genomic sizes and number of exons included within circRNAs identified from 
undifferentiated and differentiated samples. Box widths reflect variation in number of data 
points within each group. 
 

Profiling the expression of both PTES exons and non-PTES exons, there is a striking 

difference in profiles when day 0 is compared to day 45, relative to comparisons between day 

45 and day 90. In the comparison between day 0 and day 45 (Fig 6.7, left panel), PTES exons 

appear to be generally expressed at low levels in day 0 relative to day 45. The slopes are 

noticeably different for both groups of exons (PTES and non-PTES), and the derived correlation 

coefficient is lower for PTES exons (than for non-PTES exons) in the first comparison but 

higher in comparisons between days 45 & 90 (Fig 6.7, right panel). These observations indicate 

global changes in regulation of PTES exons during early differentiation.  
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Figure 6.7. Expression profiles of PTES and non-PTES exons Expression estimates of 
PTES and non-PTES exons between time-points. Regression lines show distinct expression 
profiles between PTES exons (red) and non-PTES exons (black). The slopes, correlation 
coefficients and p-values are shown for each comparison. 
 

Patterns of CpG methylation may contribute to these observations and the reduced PTES 

abundance in ESC, either by transcriptional silencing or by regulating transcription elongation 

rates. To assess the level of CpG methylation of promoter regions, I compared the genomic 

coordinates of 1000bp proximal to transcription start sites to CpG methylation data published 

in Liu et al., (2014). Using bisulfite sequencing, CpG methylation sites were identified from 

various time points following H9 ESC differentiation into retinal pigment epithelium (Liu et 

al., 2014). Results show similar medians of CpG methylation between PTES producing genes 

and non-PTES producing genes across time points (Fig. 6.8A), suggesting that promoter CpG 

hypermethylation may not be a significant reason for reduced PTES biogenesis in day 0. 

However, there is progressive reduction in intragenic CpG methylation upon differentiation 

(Fig 6.8B). Median CpG methylation level is higher in PTES exons than in non-PTES exons in 

day 0. This is however, reversed upon differentiation, suggesting that CpG demythylation 

occurs more frequently in PTES exons. 
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Figure 6.8. CpG methylation profiling of PTES and non-PTES producing genes. A) CpG 
methylation levels in 1000bp proximal to promoters and B) exonic regions of PTES and non-
PTES producing genes. 
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6.3.3 PTES transcripts include exons skipped during alternative splicing 
The observed discordance between numbers of canonical junction reads (which are higher 

in undifferentiated samples) and number of distinct canonical junctions (higher in differentiated 

samples) may be due to alternative splicing. Various reports posit that mechanistically PTES 

formation may involve re-splicing of exons within discarded lariat intermediates (Salzman et 

al. 2012; Jeck et al. 2013; Barrett et al. 2015), raising the likelihood that PTES transcripts 

comprise of skipped exons. To assess this, I inferred skipped exons from canonical junctions 

where the splice junction is between non-consecutive exons. For instance, a canonical junction 

between exons 5 & 7, suggest skipping of exon 6. Results show that PTES transcripts 

significantly consist of skipped exons (p-value < 2.2 x 10-16, Fisher’s exact test). Of 374,237 

distinct exons within GENCODE v. 19, 74,198 are PTES exons and 33,315 are identified as 

skipped exons from canonical junctions. PTES exons and skipped exons overlap by 17,099 

exons, 11,469 of which are UCSC knowngene annotated cassette exons. Notably, DHDDS.6.5 

(example used above) consists of two cassette exons that are not detected as skipped in day 0 

samples, further bolstering the link between exon skipping and biogenesis of that transcript in 

differentiated time points. These results, however, suggest that many constitutively spliced 

exons are also subjected to PTES.  

 

6.3.4 Change in PTES abundance correlates with change in canonical junction 

expression 

Of interest is the change in PTES abundance between time points, in order to identify 

transcripts likely to have functional relevance. To that end, I first normalized PTES and 

canonical junction counts with total observed junction counts per sample. I then compared 

ratios of PTES abundance between time points to equivalent ratios derived using total canonical 

junction counts from respective host genes. Results in Fig. 6.9A-B show that, for the majority 

of PTES transcripts, the observed changes between time points tracks with changes in the 

overall transcription output of host genes. Strikingly, regression lines and derived slopes 

suggest that the change in PTES abundance increases upon differentiation. For instance, 

comparing changes in PTES abundance between days 0 & 45 to that of canonical junctions, the 

derived slope is ~0.5, suggesting that a 2X increase in canonical junction expression from day 

0 to day 45 correlate with ~4X increase in PTES abundance. This rate marginally reduces when 

expression changes in higher time points are considered, where the slope is ~0.7, suggesting 

that a 2X increase in canonical junction expression between day 45 and day 90 correlates with 

~3X increase in PTES abundance. A plausible explanation for this relationship may be that 
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expression of PTES transcripts is generally not as tightly regulated as that of linear transcripts 

and their stability results in accumulation.  

 

 
Figure 6.9. Change in Canonical junction and PTES expression across time-points. 
Change in total canonical junction expression compared to change in PTES expression 
between A) Day 0 and Day 45C, and B) Day 45C and Day 90C. Each data point represents 
the ratio of PTES abundance between time points compared and that of canonical junctions 
between the same time points. 
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 To identify underlying trends in expression patterns of transcripts from PTES producing 

genes across time points, I performed cluster analysis of summed total canonical junction 

counts (see methods). Observed trends show that ~27% of all genes (n = 20,064) have 

decreasing expression levels of canonical junctions upon differentiation and may be ESC-

specific (clusters 4 and 5 in top panel of Figure 6.10). Furthermore, <7% of all genes show 

marked down regulation of canonical junction expression in differentiated samples relative to 

undifferentiated samples (cluster 4, top panel, Fig 6.10). It is also striking that, with the 

exception of clusters 4 and 5, the majority of PTES transcripts associated with each cluster, 

have expression patterns similar to the overall canonical junction abundance of host genes 

(bottom panel, Fig 6.10).  

Despite most PTES transcripts appearing to track canonical junction expression, some 

PTES transcripts do exhibit expression patterns that deviate from those of cognate canonical 

transcripts (Fig. 6.10). This population of transcripts likely includes transcripts with low counts 

- perhaps false positives. However, they may also include transcripts with expression patterns 

independent of cognate linear transcripts and of functional relevance. 
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Figure 6.10. KMeans clusters of PTES and canonical junction counts. Six clusters of total canonical junction (top panel) and PTES (bottom panel) 
counts across differentiation series. Clustering was performed by KMeans, using normalized expression estimates of total canonical junctions observed 
for each gene across differentiation series. PTES cluster assignments were based on clusters of canonical junction expression of host genes. Numbers 
of genes and PTES in each cluster are shown. Red lines in each plot show mean expression estimates of each cluster.
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 As many of the PTES transcripts identified in this study seemingly have expression 

profiles that track with their cognate linear transcripts, the challenge in enrichment analysis was 

to identify transcripts bucking this trend. A flow chart of statistical and bioinformatics analyses 

performed is shown in Fig 6.11. It is necessary to eliminate PTES transcripts which may show 

differential expression due, either to global changes in transcription levels between time points, 

or changes in expression levels of linear isoforms from the same locus. Given the very low 

PTES counts for some transcripts, it is also necessary to negate quantitative thresholding and 

mitigate against potential sampling bias. To achieve these, for each transcript, I first summed 

the PTES read counts across replicates from each time point (as above) and performed pairwise 

comparisons of time points using two different analyses: 

1.! Identification of PTES transcripts likely to be differentially expressed (DE) between 

two time points (A & B), controlling for global changes in gene expression between 

time points (sample-level DE). A contingency table for each transcript was constructed 

consisting of PTES junction counts in time points A and B, versus total junction counts 

(PTES & Canonical) observed in both samples, minus PTES counts for transcript being 

tested. 

2.! Identification of PTES transcripts differentially expressed between time points (A & B), 

controlling for locus specific changes in gene expression between time points (Locus-

level DE). A contingency table for each transcript was constructed consisting of PTES 

junction counts in both time points and their associated total canonical junction counts 

from locus. 

 
Figure 6.11: PTES enrichment analysis workflow.  Bioinformatics and statistical analysis of 
H9 ESC differentiation series. 
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Subsequently, contingency tables were analyzed using Fisher’s exact tests. Transcripts 

reaching significance after multiple testing correction with Benjamini-Hochberg method at 

false discovery rate of 0.05 were carried forward for additional analyses. These initial analyses 

identified a total of 8338 and 5514 potentially distinct DE transcripts respectively, across all 

comparisons. Fewer PTES transcripts reached statistical significance in comparisons between 

differentiated samples, than observed for comparisons including day 0 (Fig 6.12). Collectively, 

9122 PTES transcripts reached statistical significance after both analyses and are produced 

from 3836 genes, representing ~44% PTES producing genes for transcripts tested.  

The highest number of transcripts reaching significance after the initial analyses was 

observed in comparisons of day 0 and day 45C samples, with the majority enriched in day 45 

in both tests. Majority of these transcripts appear in clusters 1 and 6 where expression of their 

host genes increases upon differentiation (Fig 6.12). Interestingly, for genes with decreasing 

expression during differentiation (clusters 4 and 5), more PTES transcripts reached statistical 

significance after locus-level analysis (bottom panel, Fig 6.12) than after sample-level analysis 

(top panel, Fig 6.12), a noticeable different pattern to that of other clusters. The expression 

profiles of the bulk of DE PTES transcripts in clusters 4 and 5 appear to increase over time or 

remain constant (Figure 6.12) and are different from the reductions observed for canonical 

junctions of their respective host genes. This observation suggests differing rates of decrease 

between canonical and PTES junctions upon differentiation, possibly due to differential 

stability, resulting in accumulation of PTES transcripts relative to linear. 
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Figure 6.12. Differentially expressed (DE) PTES transcripts before filter. DE transcripts derived after each time point pairwise enrichment analysis, 
Top) after controlling for global changes in transcription and Bottom) after locus-specific changes in canonical junction expression. Transcripts are 
grouped in clusters to indicate expression patterns of both PTES and canonical junctions.
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 Having identified transcripts potentially differentially expressed at the locus specific or 

sample specific level, the replicate data for these transcripts were then utilized to perform more 

stringent two-tailed T-Tests comparing PTES abundance in biological replicates at each time 

point. As before, two analyses were performed, normalizing PTES counts with total canonical 

junction counts from respective host genes (Locus-level) for one, and total junction counts 

observed in each sample, for the other (Sample-level).  

As we are interested in transcripts which are differentially expressed relative to both global 

and locus specific changes in gene expression, the DE gene lists from both analyses were 

compared, with the intersection of the two representing PTES transcripts differentially 

expressed after controlling for these global and locus specific influences. Table 5.2 summarizes 

the number of DE transcripts derived after all pairwise comparisons. In comparisons between 

differentiated samples, regardless of treatment groups, no PTES transcripts reached statistical 

significance. In contrast, many PTES transcripts were identified as differentially expressed in 

comparisons between ESC and differentiated samples. 

 
Table 6.2. Summary of differentially expressed (DE) transcripts. Number of transcripts 
reaching statistical significance after controlling for transcription changes within host locus 
(Locus-level DE) and after controlling for global transcription changes between samples 
(Sample-level DE). DE transcripts in both lists are combined and shown in last column 
(Combined DE). 
 

Strikingly, where observed, all DE transcripts are enriched in the later time point (appendix 

9.5). For instance, 7 transcripts were found differentially expressed in comparison between day 

0 and day 45C (Table 6.2), with all PTES transcripts enriched in day 45. Consistent with IGF-

1 facilitating differentiation, the highest numbers of DE transcripts were observed after 
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comparison between day 0 and IGF-1 samples from higher time points (Table 6.2). But again, 

all PTES transcripts are enriched in the later time point. 

To observe the expression patterns of both canonical and PTES junctions of transcripts 

reaching significance, heat maps were generated and shown in Fig 6.13. The heat maps in Fig 

6.13A show variation in canonical junction (left) and PTES (right) expressions for all DE 

transcripts across time points after comparisons using samples not treated with IGF1. It is 

noticeable that the expression profiles of canonical junctions are seemingly uniform across time 

points, with a small number of genes having higher expression in day 0 samples. This is 

noticeably different from the profiles of DE PTES transcripts from the same genes, as virtually 

all transcripts show increased expression in differentiated samples (days 45 & 90), consistent 

with accumulation. This pattern is even more striking for the larger number of DE transcripts 

observed in comparisons between day 0 and IGF-1 samples from higher time points (Fig 

6.13B). 
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Figure 6.13. Heat map of differentially expressed PTES transcripts. Heat map showing 
expression estimates across differentiation of all transcripts reaching significance after 
enrichment analyses comparing A) day0 with differentiated samples (control) and B) day0 
with IGF-1 treated samples. Canonical expression of genes with DE PTES (left) and PTES 
expressions (right) are shown for each comparison. Each row shows PTES expression across 
time points and total canonical junction expression from PTES host gene. Blue colour scale - 
from light to dark - indicates low expression to high expression, for each transcript tested. 

 

 

Typically, enrichment analyses are followed by gene ontology analyses to infer functional 

relevance of enriched transcripts. This, however, is of limited value to inferring functional 
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significance of PTES transcripts. The handful of PTES transcripts with known functions, play 

roles different from their cognate linear transcripts (Memczak et al., 2013; Hansen et al., 2013). 

Nevertheless, to identify biological pathways consisting of PTES genes with significantly 

enriched PTES transcripts, public gene ontology tools (Enrichr (Chen et al. 2013) & 

WikiPathways (Kutmon et al. 2016)) were interrogated. Expectedly, results (see appendix 9.5) 

show most of these genes (with PTES transcripts enriched in differentiated samples) to be 

involved in signaling pathways, and subsequent differentiation.  

 

6.3.5 PTES transcript from RMST is circular and increases in abundance upon 

differentiation 

The DE transcripts include 266 distinct PTES transcripts from 241 PTES producing genes, 

with 239 of these genes coding for proteins and assumed to be functional. However, 2 DE 

transcripts are produced from 2 non-coding loci: GUSBP2, an unspliced pseudogene with no 

known function and RMST, a long non-coding RNA with functional relevance in neurogenesis 

(Ng et al., 2012 & 2013). Both genes have multiple PTES products, 4 from GUSBP2 and 14 

from RMST. One PTES transcript from the RMST locus, produced by a backsplice between 

exons 12 and 6 (RMST.12.6), has been reported to be a product of homotypic trans-splicing, 

thus, linear (Wu et al., 2013).  

In Wu et al., (2013), RMST.12.6 was found to be the dominant transcript from the RMST 

locus in ESC and its abundance was observed to decrease upon differentiation, suggesting a 

role in pluripotency maintenance. Figure 6.14 (inset table) shows total read counts observed for 

this transcript in each time point. Read counts are the lowest in day 0 samples, relative to other 

time points. This PTES is also found to be significantly enriched upon differentiation (p-value: 

2.48 x 10-16). On the evidence of read counts across exons in this gene (Fig. 6.14), the majority 

of reads emanate from exons predicted to be within a circular product (exons 6 - 12) and there 

are virtually no reads external to the circRNA, inconsistent with a trans-spliced PTES product. 

Alternative linear isoforms may contribute to this difference in read depth, nevertheless, we 

would expect ~2:1 ratio between PTES exons and non-PTES exons for linear PTES transcripts, 

where repeated exons contribute ~2X more reads. On the contrary, there is a ~10X excess of 

reads relative to terminal exons in day 0; and over ~600X more reads in higher time points. 

Furthermore, there is no RefSeq or GENCODE annotated linear isoform comprised only of 

exons 6 - exon 12, that may explain the observed read depth difference.  
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Figure 6.14. Read distribution of RMST across time points. Distribution of reads in RMST 
locus across differentiation series (days 0, 45 and 90 control samples). Inset) PTES and 
canonical junction read counts observed in respective samples. 

 

To confirm these observations, real-time PCR of RMST.12.6 was performed in replicates at 

days 0 and 30 (Fig 6.15). The increase in abundance during differentiation is clear, with 

RMST.12.6 registering over 6 cycles earlier in day 30 samples than in day 0.  To investigate the 

structure of RMST.12.6, RNA extracts from day 0 were treated with RNase R to selectively 

digest linear molecules. Real-time PCR experiments were then performed, comparing the effect 

of RNase R digestion on RMST.12.6 relative to a canonically spliced junction (RMST.12.13) 

and a housekeeping linear transcript, PPIA. Results in Fig. 6.16 shows noticeable variation in 

expression for the control assays, when treated and untreated samples were compared. 

However, this is not the case for RMST.12.6, as any variation is reduced, relative to that of 

control assays (inset, Figure 6.16). As abundance of RMST.12.6 is not altered upon RNase R 

digestion, the transcript is circular and cannot have arisen from trans-splicing as previously 

suggested (Wu et al., 2013).  
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Figure 6.15. Experimental confirmation of RMST.12.6. Quantitative PCR (qPCR) results of 
RMST.12.6 at 2 time points - days 0 and 30. Lower CT values in day 30 indicates higher 
expression of RMST.12.6 at that time point, relative to that observed in day 0. There is little 
of no difference in expression between samples incubated with and without IGF1. 
Unpublished qPCR results obtained from Dr. Alhassan (Newcastle University, UK) presented 
here. 
 

Although Wu et al., (2013) characterized this transcript from PolyA+ RNAseq data, their in 

vitro confirmation using RNase R digested sample failed to produce the expected amplicon 

size. This could be due to the linearisation of the circular product, as have been reported by 

other studies (Jeck et al., 2013). Notably, concentrations of RNase R used in Wu et al., (2013) 

were higher than commonly used in studies characterizing circRNAs (Memczak et al., 2013; 

Salzman et al., 2013), possibly resulting in sensitivity to exonuclease activity. To date, the only 

other ESC time course which includes total RNAseq data, mined for circRNAs comes from 

mouse (Rybak-Wolf et al., 2015). Consistent with my results, the authors both identified PTES 

transcripts corresponding to the human RMST.12.6 in mouse, found them to be enriched in 

RNase R digested mouse samples and reported higher counts in day 12 (123 reads) of a neuronal 

differentiation programme, compared to 0, 5 & 24 reads in days 0, 2 & 4 respectively (see Table 

S4, Rybak-Wolf et al., 2015).   
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Figure 6.16. Experimental confirmation of RMST.12.6 circularity. qPCR results of PTES 
and canonical junction from RMST at day 0, with and without RNase R digestion. PPIA, a 
housekeeping gene is shown as control. Inset) Effect of RNase R treatment is shown by 
normalising CT values of RMST.12.6 to that of linear canonical junction (RMST.12.13) and 
PPIA. Unpublished qPCR results obtained from Dr. Alhassan (Newcastle University, UK) 
presented here. 
 

 Another result critical to conclusions made in Wu et al., (2013) include comparisons 

between expression of the PTES and the canonical transcript. Figure 6.17 below shows the 

positions of primer sequences used in that study. It is apparent that the primer pairs designed to 

amplify the linear transcript are internal to the predicted circular product, thus, their expression 

estimates are unlikely to be independent. This raises further questions about the reported switch 

in isoforms (PTES-to-linear) upon differentiation, as both primer sets amplify the RMST.12.6 

circRNA. As my qPCR results show, RMST.12.6 is indeed more expressed in all time points, 

relative to the linear transcript, but the reported switch is not observed at 30 days or within 90 

days of differentiation, a much longer time interval than the 21 days of differentiation in Wu et 

al., (2013). Taken together, our data indicates that RMST.12.6 is circular, and that it increases 

in abundance upon differentiation. 

These results further suggest that RMST.12.6 is unlikely to contribute to pluripotency 

maintenance as previously reported (Wu et al., 2013). In contrast with functions defined for 
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RMST.12.6 in Wu et al. (2013), Ng et al., (2012 & 2013) found that transcripts from RMST did 

not associate with PRC2, interacted with SOX2, a transcription factor and regulated the 

expression of ~1000 genes via its association with SOX2. Knockdown of RMST resulted in less 

SOX2 occupancy of many genes involved in neurogenesis, suggesting the role of RMST as a 

transcriptional co-regulator of SOX2 and a possible guide RNA. Notably, manual analysis of 

siRNA sequence used in functional studies of RMST (Ng et al. 2013) revealed 100% identity to 

exon 9 (Fig. 6.17), within the predicted circRNA. As RMST.12.6 is the dominant transcript and 

increases upon differentiation, the reported functions of RMST in neurogenesis (Ng et al., 2013) 

may conceivably be ascribed to RMST.12.6, suggesting a previously unknown function for 

circRNAs.  

 
Figure 6.17. Published RMST primers and siRNAs. Primers used in Wu et al., (2013) to 
amplify PTES (red) and linear transcripts (blue). The expected amplicon from the linear 
transcript is within the predicted circRNA. SiRNAs used in functional analysis of transcripts 
from RMST locus and reported in Ng et al., (2013) are also shown. SiRNAs target an exon 
predicted to be included in RMST.12.6 circRNA. Multiple PTES produced from RMST locus 
are also shown (brown), and span from exons 2 to 12. 
 
 
6.3.6 Multiple PTES transcripts originate from FIRRE and likely have previously unreported 

functional significance 

 The enrichment analyses performed above were designed to identify PTES transcripts 

enriched in specific time points during differentiation, independent of global and locus-specific 

changes of linear functional transcripts. While this design is appropriate for PTES transcripts 

originating from protein-coding genes, it may not necessarily be ideal for PTES from non-

coding loci, which will not (by definition) be associated with functional coding transcripts and 

could lack any functional linear molecules. I therefore, re-examined the list of DE PTES 

transcripts from the first statistical analyses (sample and locus-level). Of the 3836 PTES 
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producing genes with transcripts reaching significance, 123 are non-coding and collectively 

produce 922 PTES transcripts. Ranking non-coding PTES producing genes by number of 

identified PTES per locus and total number of reads across time points, revealed that multiple 

transcripts originate from 110 genes (see appendix 9.5). Within this list are 12 long intergenic 

RNAs (Table 6.3), including FIRRE with 2857 PTES supporting reads from 20 distinct PTES 

transcripts (Fig 6.18A). PTES involving exons 10 and 5 (FIRRE.10.5) is observed with the 

highest number of supporting reads across all time points. Interestingly, expression estimates 

of FIRRE.10.5 are highest in undifferentiated samples, relative to differentiated samples.  

 
Table 6.3. List of non-protein coding genes with differentially expressed PTES. Multiple 
PTES transcripts were identified from non-coding loci, including FIRRE, a long intergenic 
ncRNA known to have functional roles in regulating adipogenesis and maintaining DNA 
methylation in mouse fibroblasts. 
 
To experimentally confirm the structure of FIRRE.10.5, Dr. Alhassan (IGM, Newcastle 

University) performed qPCR using RNA extracts from H9 ESC, treated with RNase R, an 

exonuclease that degrades linear molecules. Fig 6.15B shows that FIRRE.10.5 is resistant to 

exonuclease digestion and is circular. 
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Figure 6.18. In silico and in vitro confirmation of PTES from FIRRE. A) Multiple PTES 
transcripts (brown) identified from human FIRRE locus, spanning from exon 3 to exon 12. B) 
Real-time PCR results of FIRRE.10.5 in H9 ESC, with and without RNase R digestion to 
confirm circularity. Unpublished qPCR results obtained from Dr. Alhassan (Newcastle 
University, UK) presented here. 
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 Previous functional studies have shown transcripts from FIRRE to play roles in 

maintaining histone methylation in inactivated X chromosome (Yang et al., 2015) and in 

regulating adipogenesis (Hacisuleyman et al. 2014; Hacisuleyman et al. 2016). Local repeats 

within internal exons of FIRRE have also been shown to be highly conserved in mouse, and 

may aid localisation and interaction of multiple chromosomes (Hacisuleyman et al., 2014). As 

multiple PTES transcripts detected from this locus include exons containing these local repeats, 

I reasoned that multiple PTES from the same locus could conceivably be detected in mouse. To 

that end, I identified and screened 2 mouse embryonic stem cell datasets (Accessions: 

GSE47948 & GSE22959) for PTES. Six distinct PTES junctions: 20-4, 18-17, 17-17, 17-16, 

15-6 and 12-12, were subsequently identified. Exons predicted to be within these circRNAs 

include known local repeats in this locus (Hacisuleyman et al., 2014). In characterising the 

functional role of transcripts from this locus, Yang et al., (2015) performed siRNA knockdown. 

BLAT analysis of siRNA nucleotide sequence used in that study revealed that exons predicted 

within identified PTES transcripts were targeted (Fig 6.19), raising the possibility that observed 

role in maintaining DNA methylation in inactivated X chromosome of mouse fibroblasts may 

be attributed to PTES from this gene. Additionally, the reported role in adipogenesis was 

observed in mouse ESC lacking all transcripts from Firre, including circRNAs (Hacisuleyman 

et al., 2014). 

 

 
Figure 6.19. Published siRNAs targeting transcripts from Firre gene in mouse. SiRNAs 
used in Yang et al., (2015) target exons predicted to be included in circRNAs identified from 
Firre; including the terminal exon of the short RefSeq isoform (exon 20), which is 
alternatively spliced in other isoforms. The longest circRNA identified from mouse ESC 
samples is depicted (red). Figure adapted from Yang et al., 2015. 
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6.4 Discussion 

PTES transcripts are non-coding RNAs, abundant in various human cell lines and tissues 

(Salzman et al., 2013); enriched in neurogenesis (Rybak-Wolf et al. 2015; Zhang et al. 2016; 

You et al. 2015) and epithelial-mesanchymal transition (Conn et al., 2015); and some exhibit 

marked increase in abundance during bone formation (Dou et al. 2016). Despite these reports, 

these transcripts remain without uniformly ascribed functional significance. Pluripotent cells 

are self-renewing and capable of being differentiated into any somatic cell (Morrison & Kimble, 

2006; Boland et al., 2014). A core set of transcription factors are known to maintain the 

pluripotent state, by inducing epigenetic changes that suppress cell lineage commitment 

(Morrison & Kimble, 2006). Therefore, identifying PTES transcripts specifically enriched in 

ESC, may hint at potential roles in pluripotency maintenance, perhaps as miRNA sponges, 

acting to modulate expression of ESC-specific genes.  

 To explore their potential roles in pluripotency maintenance and cellular differentiation, H9 

embryonic stem cells (ESC) were differentiated into retinal cells over a 90-day period, with and 

without incubating with IGF-1, a known facilitator of cellular differentiation (Mellough et al., 

2015; Huat et al., 2014). To address the limitations of a previous attempt to identify ESC-

specific PTES (Wu et al., 2013), RNA extracts of 3 biological replicates from each time point 

and treatment groups were sequenced. Screening for PTES in ribosome-depleted RNAseq 

samples from differentiation series (days 0, 45 & 90), the lowest number of transcripts were 

identified from day 0, representing ~3X less transcripts and supporting reads, relative to other 

samples. As three RNA binding proteins (RBP) (QKI [Conn et al., 2015], MBNL [Ashwal-Fluss 

et al., 2014] and ADAR1 [Ivanov et al., 2015]) have been shown to regulate PTES biogenesis, 

their expression profiles were examined. Although expression of MBNL and QKI, known 

facilitators of PTES formation remained relatively stable upon differentiation, expression of 

ADAR was elevated in ESC. The multifunctional ADAR (Ota et al., 2013) has been shown to 

prevent the formation of secondary structures favourable to PTES biogenesis, by A-to-I editing 

that weakens double stranded RNA (Ivanov et al., 2015). Transcripts identified in differentiated 

samples, were found to be enriched for RNA editing sites within introns flanking backsplice 

junctions. Elevated expression of ADAR in ESC, likely contributes to the suppression of some 

PTES transcripts in pluripotent state, suggesting that most PTES may not be critical to self-

renewal. CircRNA decay pathways may conceivably include endoribonuclease activity (Lasda 

& Parker, 2014). Profiling the expression of endoribonucleases, revealed slight elevation of 

transcripts from 2 genes (DIS3 & ZC3H12A) in ESC, suggesting that endoribonuclease activity 

may contribute to lower PTES abundance observed. 
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Nucleosome position and intragenic CpG methylation have been linked to alternative 

splicing and transcriptional diversity during cellular differentiation (Maunakea et al, 2013, 

Gelfman et al., 2013, Singer et al., 2015). In my data, more canonical junction reads were 

observed in day 0, suggesting that many PTES producing genes are transcribed and non-

detection of PTES from such genes in ESC may not be due to transcriptional silencing. 

Transcripts identified in this time point are characterized by shorter genomic distance between 

backsplice junctions and lower number of constituting exons. These observations are suggestive 

of slower transcription elongation rates of PTES genes in ESC. Bisulfite data from 

differentiation series of H9 ESC into retinal pigment epithelium (Liu et al., 2014), showed 

progressive reduction in levels of CpG methylation in exons. It is plausible that, as elongation 

rates increase due to intragenic epigenetic changes, distal splices sites and introns containing 

inverted repeats become available before sequential forward splicing completes (depicted in 

Fig 6.20). Such phenomenon may explain the reported correlation between alternative splicing 

and PTES (Surono et al., 1999; Kelly et al., 2015).  

 
Figure 6.20. Long range intron pairing is facilitated by transcription elongation rate. 
Difference in unspliced size and number of exons predicted within circRNAs upon 
differentiation is likely due to changes in CpG methylation and subsequent increase in 
transcription elongation rate. In this model, time for transcription to complete (T) is reduced 
upon differentiation, as CpG methylation reduces, resulting in additional PTES events. 
Generally, increase in PTES abundance correlates with decrease in expression of ADAR, an 
RNA editing enzyme and intragenic CpG demethylation. 
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Profiling expression changes of PTES and canonical junctions between time points, a 

striking correlation was observed. My results showed that PTES levels increase 2X faster than 

canonical junction levels in differentiated samples. This higher rate of change in PTES 

expression is presumably as a result of differential stability and subsequent accumulation 

(Westholm et al., 2014; Rybak-Wolf et al., 2015; Enuka et al., 2015). This, however, suggests 

that PTES transcripts may be less regulated than cognate mRNAs and are indeed by-products 

of changes in transcription.  

Enrichment analysis identified no PTES transcripts enriched in ESC, and no apparent short-

term effect of IGF-1 treatment on PTES abundance, consistent with reports in Enuka et al., 

(2015). Taken together with their suppression in ESC, presumably due to combinatory effects 

of 1) elevated ADAR expression 2) elevated expression of endoribonucleases and 3) progressive 

epigenetic changes upon differentiation; results strongly suggest that PTES transcripts are 

inconsequential to pluripotency maintenance. These results are at odds with an earlier report of 

PTES from RMST locus with expression pattern suggestive of role in pluripotency (Wu et al., 

2013). Contrary to that report, my results confirm this transcript to be circular and expectedly 

increasing in expression upon differentiation. Functional analysis of transcripts from RMST by 

Ng et al., (2013) revealed important roles in neuronal differentiation and interaction with SOX2, 

a transcription factor. Manual examination of siRNA used in that study however, revealed exons 

predicted within RMST.12.6 as targets of the knockdown, suggesting that PTES from this locus 

may have functional relevance in neuronal differentiation, guiding SOX2 to promoters of genes 

necessary for brain development.  

Finally, multiple unreported PTES transcripts from FIRRE, another lncRNA, were 

identified (in both hESC and mESC), some differentially expressed upon differentiation. 

Previous knockdowns of transcripts from FIRRE revealed roles in maintaining histone 

methylation (Yang et al., 2015) and regulating adipogenesis in mouse ESC by unknown 

mechanisms (Hacisuleyman et al., 2014). SiRNAs used in Yang et al., (2015) target exons 

predicted within circRNAs from Firre and suggest that circRNAs from this locus may be 

functional. Taken together with potential functional relevance of RMST.12.6, circRNAs from 

non-coding genes may have functional significance in differentiation, different from established 

functions of 3 circRNAs as miRNA sponges.  

 

6.5 Conclusion 

In this chapter, I assessed the distribution of PTES transcripts in differentiation series of H9 

ESC, to identify transcripts with potential roles in pluripotency maintenance and differentiation. 
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PTES biogenesis and abundance were found to be lowest in ESC, and I presented evidence 

suggesting that suppression by RNA editing, endoribonuclease activity and CpG methylation 

may contribute to this. Following differential expression analyses, no PTES transcript was 

found to be significantly enriched in ESC, relative to differentiated samples, suggesting PTES 

from protein-coding genes to be non-essential to pluripotency maintenance. PTES transcripts, 

however, accumulate during differentiation, tracking canonical expression changes and as a 

mechanism, may compete with alternative splicing. Contrary to a previous report (Wu et al., 

2013), my results showed that PTES from RMST (Ex 12-6) is circular, increases in expression 

upon differentiation and potentially functions as a co-transcriptional regulator via its association 

with SOX2. PTES transcripts from another non-coding gene, FIRRE, were found to decrease 

upon differentiation, circular and may be functional. 
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Chapter 7. General discussion and future work 

 

 

7.1 General discussion 
Many eukaryotic genes undergo splicing to join exons sequentially, in an order consistent 

with their order in the genome. Although exons can be alternatively spliced, the exon 

arrangement in mature transcripts is typically consistent with that in the genome, with upstream 

exons spliced to downstream exons. The high efficiency of splicing, coupled with mechanisms 

for degrading mis-spliced transcripts minimise potential deleterious effects of defective 

transcripts. The complexity of eukaryotic transcriptomes is however enhanced by the existence 

of re-arranged transcripts and other chimeric transcripts, without known impact on cellular 

activity. Post-transcriptional exon shuffling (PTES) has now been shown to result in both linear 

and circular RNA molecules, and progress has been made in characterising PTES events in 

various cell lines and tissues. Despite this progress, when I started my research, little was known 

about their mechanisms of formation, how they are regulated, nuclei-cytoplasmic export 

mechanisms, spatio-temporal distributions or their functional significance. This thesis focussed 

on elucidating some of the mysteries surrounding these transcripts, using in silico and in vitro 

approaches. 

Transcripts arising from PTES eluded detection using in silico and in vitro methods that 

were biased towards identifying established or well characterized RNA species, specifically 

mRNAs. Recently described computational methods for PTES detection typically reduce the 

likelihood of false positive identifications by first aligning all reads to the genome and 

restricting detection to reads unaligned to the genome. The rationale for this approach is that: 

reads aligned to other genomic features cannot be used to correctly characterise PTES events 

and reads not aligned to the genome will be enriched with reads in inverted order relative to the 

genome. This approach however, overlooks other sources of artefacts, including reads 

emanating from tandem-exon repeats, unmapped segmental duplications, read through 

transcripts and template-switching artefacts.  

Critical to research of these novel transcripts is an accurate identification method that 

reduces misidentification of artefacts as PTES. My method, PTESFinder, is equipped with 

filters that directly target these sources of artefacts. In the first results chapter, the efficacy of 

these filters was assessed, revealing that all filters excluded an overlapping population of reads, 

likely to be filtered by other published methods. However, distinct populations of false positive 
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reads are excluded by each filter, highlighting their usefulness. Comparisons with other 

published tools using both simulated and real RNAseq data revealed that PTESFinder has the 

highest specificity and comparable sensitivity.  

One limitation of PTESFinder is its reliance on curated linear transcript annotations with 

known splice junctions. This limitation reduces the number of identifiable PTES to only re-

arrangements at known exonic regions, overlooking PTES from intergenic or intronic regions. 

The reliance on known splice sites however, contributes to the high specificity of PTESFinder. 

It is now known that the vast majority of PTES occur at known splice junctions (Jeck et al., 

2013; Liang & Wilusz, 2014), thus limiting the effect on sensitivity of reliance on annotated 

transcripts. Further analysis using annotation-free versions of PTESFinder, revealed that most 

identifications from published annotation-free methods are replete with false positives, 

particularly, methods relying on non-splice aware aligners. This observation conceivably 

contributes to the reported discordance in PTES identified from the same samples using 

different methods (Yu et al., 2014; Hansen et al., 2015). 

An unanswered question pertaining to PTES is that of their export to the cytoplasm from 

the nucleus. Studies have reported the identifications of PTES in the cytosol (Salzman et al., 

2012), and it has been suggested that they exit the nucleus during cell division (Jeck et al., 

2013). Prior to my study, no transcritptome-wide quantitative analysis of PTES populations in 

sub-cellular compartments had been reported. Thus, it remained unclear if a nuclei-cytoplasmic 

pathway existed for PTES transcripts and why they were actively exported to the cytosol if they 

were indeed products of defective splicing. My analysis of RNAseq from various cellular 

compartments of 7 human cell lines revealed PTES distribution patterns inconsistent with efflux 

to the cytosol during mitosis. I identified a variety of PTES events in the nuclei, some of which 

are retained in the nucleus, with no detectable reads supporting their presence in the cytosol of 

all cell lines. More interesting was the identification of incompletely processed PTES 

transcripts with retained introns abundant in the nucleus. One example of a PTES with both 

intron-containing and intronless circular isoforms is CAMSAP1.3.2, previously reported by 

Salzman et al (2013) and Zhang et al., (2014). My results showed that the intron-containing 

isoform is released from chromatin, translocated from the nucleoplasm to the nucleolus, 

suggesting that processing of this PTES is incomplete during transcription and may continue in 

another cellular compartment. This conclusion is supported by findings in Zhang et al., (2014), 

showing that this isoform is unstable with a half-life of 7 mins, presumably as a result of further 

splicing or rapid linearisation and subsequent decay.   

The question about whether PTES formation is indeed post-transcriptional or occurs during 

transcription is a subject of intense debate. In vitro experiments using mini-gene constructs have 
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been performed by others, showing PTES to either require the formation of polyA tails on 

nascent transcript (Liang & Wilusz, 2014) or occur co-transcriptionally (Ashwal-Fluss et al., 

2014; Kramer et al., 2015); the latter is consistent with most splicing (presumably including 

back-splicing) occurring during transcription (Ameur et al., 2011; Tilgner et al., 2012; Girard 

et al., 2012). It is however known that depending on the rate of transcription elongation and 

size of transcript, splicing may be committed but not completed during transcription (Bentley 

2014).  

My analysis of PTES in chromatin-associated RNAs identified ~2000 PTES transcripts, 

providing initial evidence of PTES formation during transcription. Further in silico analysis of 

co-transcriptional splicing by comparing reads from pre-mRNAs to that of mature mRNAs, 

revealed that, as a group, exons from PTES producing genes likely undergo more co-

transcriptional splicing than other genes. Interestingly, the rate of intron removal during 

transcription was observed to reduce significantly in PTES producing genes relative to other 

genes, when the first and last intron removal rates were compared. Reasons for this observation 

are not readily available without in vitro experiments. Nevertheless, it is conceivable that for 

some transcripts, following PTES during transcription and subsequent release from chromatin, 

spliceosomal assembly on remnants of the nascent transcript is impeded, resulting in retention 

at nuclear speckles. This may explain the rapid removal of upstream introns but the observed 

lower rate of last intron removal. As exemplified by CAMSAP1.3.2, no reads supporting the 

first intron were detected; the peak read density observed across this gene was observed 

between exon 2, intron 2 and exon 3, underscoring the contribution of PTES to reads from this 

gene. Release of CAMSAP1.3.2 from chromatin is then followed by reduced rate of last intron 

removal, suggesting its retention. My findings are consistent with reports of competition 

between PTES and forward splicing (Ashwal-Fluss et al., 2014); and imply that PTES can 

impact the expression of cognate linear transcripts. 

Enrichment analysis of PTES populations in the nucleus and the cytoplasm further revealed 

that ~9% of PTES are enriched in the cytosol relative to the nucleus. This enrichment in the 

cytosol is likely due to differential stability of circRNAs, which are resistant to exonuclease 

activity. This however, raises the question of their relevance in the cytosol. Assessing the 

abundance of PTES in RNAseq data from sucrose gradient fractions of HEK293 with and with 

arsenite treatment to inhibit translation, revealed that these transcripts are typically not bound 

by ribosomes and do not contribute to the proteome. However, there may exist, some linear 

PTES transcripts not subject to nonsense mediated decay that can plausibly produce proteins. 

Nevertheless, my results showed that, consistent with other reports (Jeck et al., 2013; Guo et 

al. 2014), PTES do not contribute significantly to the proteome.  
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Like other RNA species, various factors including rate of transcription, export from the 

nucleus and degradation are likely to affect the abundance of PTES transcripts. Having 

observed interesting patterns of spatial PTES distribution in sub-cellular compartments, I 

extended my investigation to anucleate cells to assess PTES distributions in a system not 

affected by steady-rate transcription and export levels. Translation (Weyrich et al. 2009), 

cytoplasmic mRNA splicing (Denis et al., 2005) and miRNA biogenesis (Landry et al., 2009) 

have been reported in platelets, further raising the possibility of identifying novel PTES events 

within these anucleate cells.  

In platelets, I identified many PTES junctions, including a large number that had not been 

identified (or reported) in nucleated cells. Comparisons of PTES abundance in platelets with 

that of PTES in nucleated tissues revealed that platelets are enriched for PTES, 17 to 188-fold 

compared to nucleated samples and 14 to 26-fold relative to nucleated samples treated with 

RNase R to selectively remove linear RNAs. The proportion of reads supporting PTES in 

platelets were found to be ~240X more than observed for sub-cellular compartments of 

nucleated human cell lines. These striking observations raised questions about circRNA 

biogenesis in platelets. However, with the exception of PTES from platelets-specific genes, the 

vast majority of PTES identified in platelets have previously been reported. Although 

splicoesomal proteins are known to be present in platelets (Denis et al., 2005), reads from genes 

reported to undergo splicing in platelets were not easily detectable. Similarly, I established that 

the high abundance of PTES seen in platelets is observed in other anucleate cells, as I identified 

many PTES transcripts from mature erythrocytes, further dispelling the notion that PTES 

enrichment in platelets may be due to cytoplasmic splicing events. 

As platelets are short lived, and their lifespan will be influenced by the availability of full 

length mRNA transcripts inherited from their megakaryocyte progenitors, I investigated the 

possibility that the observed PTES enrichment is due to RNA decay of linear molecules and 

stability of circRNAs. Comparing expression across exons predicted within circRNAs to exons 

external to circRNAs, I found that in platelets, circRNA exons are significantly more enriched 

than in nucleated tissues. For some genes, the contribution of exons within circRNAs is 99%, 

thus, deplete of reads in exons external to circRNAs. Ex vivo and in vitro analysis of RNA decay 

confirmed the same pattern of circRNA enrichment relative to cognate linear transcripts.  

Strikingly, the effect of RNA decay on circRNA enrichment in platelets is significantly 

higher than is obtainable for samples treated with RNase R to enrich circRNAs. This 

observation raises questions about RNase R treatment as a source of technical variation in 

estimating the abundance of PTES. The extent of linear RNA degradation observed in platelets 

also highlighted the possibility of circRNA contamination in polyA+ RNA fractions. PTES 
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identified from polyA+ platelet samples are characterized by high composition of adenosine 

residues, suggesting their pull-down during mRNA isolation. It is currently not clear how 

circRNA contamination impacts expression estimates of cognate mRNAs in differential 

expression studies. 

Three studies have demonstrated that some circRNAs can compete with linear RNAs and 

act as decoys for miRNAs (Hansen et al., 2011 & 2013; Memczak et al., 2013; Zheng et al., 

2016). However, in one report miR-671 was found to induce the degradation of circRNA from 

CDR1, suggesting a degradation pathway for PTES (Hansen et al., 2011). A striking difference 

in number of PTES identified from 2 male platelets samples was observed and was not readily 

explainable by sampling, technical variation or the limited demographics information of blood 

donors available.  

I investigated this fluctuation in identified PTES further, by assessing read distribution 

patterns across inferred circRNA sequence and found patterns suggestive of miRNA-induced 

degradation. For some circRNAs, sequence regions were deplete of read coverage and some of 

these regions correspond to known miRNA binding sites. By implication, circRNAs are 

available substrates for endoribonucelases (facilitated by miRNAs) upon depletion of linear 

molecules. As circRNAs are less abundant than mRNAs, this premise portrays mRNAs as 

decoys for miRNA binding. It follows that for circRNAs, any miRNA sponging effect is 

minimal, considering their relative low expression and their effectiveness as sponges will be 

miRNA-dependent. In the case of circCDR1 for instance, its effectiveness as a miRNA-sponge 

will likely depend on the concentrations of miR-7 and miR-671, with both competing for 

binding sites within circCDR1 and the binding of one (miR-671) inducing degradation. 

Notably, studies showing circRNAs as potential miRNA sponges have characterized this effect 

based on exogenous levels of circRNA expression (Hansen et al., 2011; Memczak et al., 2013; 

Zheng et al., 2016), which are likely to be inflated when compared to endogenous expression 

levels. 

In my final results chapter, I investigated the temporal distribution of PTES upon cellular 

differentiation of H9 embryonic stem cells (ESC). I aimed to identify factors that may influence 

changes in expression and abundance of PTES during differentiation, and infer functional 

relevance of PTES based on differential expression across time points. Previously, expression 

changes between developmental stages have been used to infer functional significance of 

specific PTES (Wu et al., 2013), but without controlling for both global and locus-specific 

changes in transcription changes. My results showed that the expression changes of PTES track 

those of linear canonical transcripts, but that the rate of increase in expression levels is higher 

for PTES than for linear transcripts. This variation in rates is likely due to accumulation over 
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time, as a result of their higher stability relative to linear transcripts. More PTES were identified 

from differentiated samples than from ESC, presumably due to changes in CpG methylation 

across exons and expression of various RNA binding proteins (RBPs) and endoribonucleases. 

Two RBPs have been shown to facilitate PTES (QKI [Conn et al., 2015], MBNL [Ashwal-Fluss 

et al., 2014]), but my results showed that their expression patterns are relatively stable across 

time points, suggesting that they may not be critical to suppression of PTES in ESC. However, 

expression levels of ADAR1 and 2 endoribonucleases (DIS3 & ZC3H12A) were found to be 

highest in ESC, decreasing upon differentiation, thus, inversely proportional to the number of 

PTES identified across time points. ADAR1 has been shown to inhibit the formation of double 

stranded RNA and subsequent PTES formation. Flanking intronic sequences of PTES junctions 

identified in differentiated samples and not in ESC were found to contain significantly higher 

numbers of RNA editing sites, relative to PTES found in ESC. This is consistent with ADAR1 

inhibiting intron pairing by A-to-I editing (Ivanov et al., 2015), thus, suppressing PTES in ESC.  

Characteristics of PTES identified from both stages (differentiated and undifferentiated) 

were observed to differ. PTES identified in differentiated samples were shown to include more 

exons in inferred circular transcripts and their unspliced sizes higher than observed for PTES 

in undifferentiated samples. Coupled with an inverse relationship between intragenic CpG 

methylation and number of PTES identified across time points, these observations are 

suggestive of increased transcription elongation rates, making distal splice sites available for 

PTES. This premise is supported by a recent study that found that more PTES were identified 

with a variant of RNA polymerase 2 with faster elongation rates (Zhang et al., 2016). Although 

progress has been made in elucidating mechanisms of PTES formation, my results show another 

layer of regulation for PTES. Prior to this study (and that of Zhang et al., (2016)), it was unclear 

what signals affect the choice of whether a nascent transcript results in PTES of canonical 

transcript and how multiple PTES originate from same locus. Like alternative splicing, splice 

site competition and intron-pairing patterns are likely dependent on transcription elongation 

rates. This is likely to contribute in the reported tissue-specific PTES expression variations 

(Salzman et al., 2013), as various cells have different transcription elongations rates. 

Enrichment analysis to identify differentially expressed PTES transcripts from protein-

coding genes, collectively resulted in less than 300 PTES across all time points. Expectedly, 

these PTES increased in expression upon differentiation, consistent with accumulation. 

Contrary to a previous report (Wu et al., 2013), no PTES was found enriched in ESC, relative 

to other time points. Such enrichment would be taken as evidence of functional relevance in 

pluripotency maintenance. Furthermore, contrary to the report of Wu et al., (2013), a PTES 

from RMST locus (RMST.12.6) was found to be circular, the dominant transcript from the locus 
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in all time points and to increase in abundance upon differentiation, not decrease as previously 

reported. Previous functional analyses of transcripts from this locus established an association 

with SOX2 (a transcription factor) and possible roles in neuronal differentiation (Ng et al., 

2013). Manual examination of siRNAs used in knockdowns in these studies (Ng et al., 2013; 

Wu et al., 2013), showed that exons included in the circRNA were targeted and any functional 

significance previously ascribed to the linear transcript can conceivably be that of the circRNA.  

Similar results were obtained for circRNAs from FIRRE, a long non-coding gene, with 

transcripts associated with maintaining DNA methylation in mouse fibroblasts (Yang et al., 

2015) and possible roles in regulating adipogenesis in mouse ESC (Hacisuleyman et al., 2014). 

Moreover, knockdown of Firre in mouse ESC was reported to induce the down regulation of 

genes involved RNA processing (Bergmann et al. 2015). As siRNAs used in these functional 

studies target exons within circRNAs from Firre, circRNAs may have previously unreported 

functional significance.  

 

7.2 Conclusions and Future Work 
Various studies have identified features that promote PTES formation using minigene 

constructs, comprising only of backspliced exons and flanking introns (Ashwal-Fluss et al., 

2014; Liang and Wilusz 2014; Kramer et al., 2015; Starke et al., 2015). As this approach 

introduces exogenous RNAs by transfection and full length genes are not used, PTES events 

observed are not produced in the accurate context of the transcriptome under study. This 

approach may not reflect the competition for spliceosomal proteins and overlooks the effect of 

epigenetic regulation on PTES formation. Recent advances in genome editing using the 

CRISPR/CAS9 system (Kim 2016) can be used to overcome some of these limitations. In this 

system, specific genomic features can be targeted by RNA-guided endonuclease cleavage and 

editing (Kim, 2016), allowing for in vivo investigation of PTES formation. Genome editing 

affecting PTES formation may induce phenotypic changes and negate post-transcriptional 

siRNA knockdowns for investigations of functional relevance. 

Second, the identification of a nucleo-cytoplsmic export pathway for PTES is needed and 

may shed light on their relevance. It is currently not clear why some PTES are retained in the 

nucleus. For intron-containing PTES, it is conceivable that they retain signals that confine them 

to the nucleus. However, some mono-exonic PTES transcripts may not retain those signals and 

reason for their abundance in the nucleus or lack of export to the cytosol is a mystery. In vitro 

experiments perturbing well characterized export pathways may provide insight on how such 

perturbations affect PTES.  



Chapter 7: General Discussion 185 

Third, the availability of computational methods for PTES identification from high 

throughput RNAseq data offers opportunities for further studies to characterise these 

transcripts. However, the lack of adopted standards for detection and annotation of these 

transcripts presents challenges in comparing results from various studies. Reported discordance 

in results obtained from same sample using different methods (Yu et al., 2014), and the observed 

differences in specificities and sensitivities of various tools, strengthens the need for specific 

standards. Further studies of PTES may also benefit from a repository of PTES identified from 

various organisms, with a single computational tool and accepted annotation standards. Of note 

is a single repository - circbase.org (Glazer et al., 2014); this database currently catalogs 

published PTES, identified using various methods, thus, contain an unknown number of false 

positive predictions.  I propose a single method or an ensemble of methods to be used to screen 

RNAseq data of a pre-defined standard, quantifying both PTES and canonical junction counts 

and generating other metrics associated with identified PTES. Similar to efforts by GENCODE 

and RefSeq, this will undoubtedly increase the confidence in PTES predictions and allow for 

sophisticated quantitative analyses of archived results. 

The quantitative analysis of PTES and linear transcript in platelets raised additional 

questions about the composition of platelets transcriptomes. Previously reported pre-mRNA 

transcripts that apparently undergo cytoplasmic splicing (Denis et al., 2005) were not detected 

in data analyzed. The non-detection of these transcripts is consistent with the extensive 

degradation of linear RNA molecules observed and raises questions about the extent of 

cytoplasmic splicing in platelets. A comprehensive assessment of all RNA species, including 

capped and polysome-associated transcripts may further our understanding of the platelets 

transcriptomes.  

Finally, studies have shown that degraded samples can yield inaccurate expression estimates 

and subsequent false positive differential expression predictions, prompting the need for in 

silico correction of expression estimates (Romero et al. 2014; Wang et al. 2016). The observed 

contamination of polyA+ fractions by circRNAs may likely impact expression estimates and 

downstream statistical analyses. It may be necessary to first assess the impact of this 

contamination of expression estimates and provide a framework for quantifying circRNA 

contamination and accounting for this effect on RNA expression estimates. However, this may 

only be necessary if samples to be compared vary significantly in quality and RNA integrity. 
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Chapter 9. Appendices 

9.1 Supplementary methods 

This chapter contains supplementary methods, figures and tables. Lists of identified PTES 

transcripts, other large tables and scripts can be found in the disc accompanying this thesis. 

 

9.1.1 Primers and Probes 

 

Table 9.1. List of snoRNA-PTES primers. List of primers synthesised for experimental 
confirmation of mono-exonic PTES from snoRNA genes. 
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Table 9.2. List of qPCR primers and probes. List of primers and probes used in quantitative 
PCR assays. See Alhassan et al., 2016 for details of other assays. 
 

9.1.2 RNA concentrations 

 

Figure 9.1. HEK293 and DAOY RNA concentrations. NanoDrop ND-1000 
spectrophotometer results of concentrations of RNA from cytosolic and nuclear fractions of 
HEK293 (A1, B1, E1 & E2) and DAOY (C1, D1, G1 & H1) cells.
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9.1.3 Custom scripts descriptor 

 See /Appendices/9.1/scripts/ 

 

Table 9.3. Summary of custom scripts. List of scripts and software developed for in silico analysis performed for this project. Scripts can be found in 
/Appendices/9.1/scripts folder within the disc accompanying this thesis. Example commands are contained in a text document within the same folder. 
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9.2 Assessment of PTES identification methods 

9.2.1 False positives reported by Memczak et al., 2013 

 See /Appendices/9.2/List of likely false positive structures in Memczak et al., 2013.xlsx 

9.2.2 List of structures identified from human fibroblasts, leukocytes & HEK293 using 

PTESFinder v.1 

 See /Appendices/9.2/List of structures identified with PFv1.xlsx 

9.2.3 List of structures identified from human fibroblasts using annotation-free 

PTESFinder  

See /Appendices/9.2/Annotation-Free PTESFinder analysis.xlsx 

 

Figure 9.2. Annotation-Free PTESFinder Workflow. Pipeline for identifying PTES from 
RNAseq data, unconstrained by transcriptome annotations. Two versions were developed, one 
with the STAR aligner, a spliced aligner, as the underlying tool for mapping to the genome 
(spliced method) and the other with Bowtie2, an unspliced aligner (unspliced method). 
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9.2.4 Performance test results after varying aligner-specific parameters 

 See /Appendices/9.2/Varying aligner-specific parameter values.xlsx 

9.2.5 Comparison of 5 PTES identification methods 

 See /Appendices/9.2/Comparisons with published methods.xlsx 
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9.3 PTES from various cellular compartments 

9.3.1 Analysis of PTES and Canonical junctions from nucleus and cytosolic RNA 

fractions 

 

Figure 9.3. Cluster analysis of PTES in cellular compartments. Hierarchical clustering and 
correlational analysis of samples from various 2 cellular compartments of various cell lines 
based on PTES expression. Samples seemingly cluster by cell lines (instead of cellular 
compartment), after removing snoRNA-PTES structures. 
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Table 9.4. Analysis of snoRNA-PTES in GM12878. List of snoRNA-PTES structures 
identified from GM12878. Read counts of parental genes were extracted from small and long 
reads libraries, and used to derive abundance ratios. Structures with the highest abundance 
ratios were selected for downstream analyses. Analysis was performed by Dr. Jackson (IGM, 
Newcastle University). 
 

9.3.2 Lists of PTES identified from 4 cellular compartments 

 See /Appendices/9.3/List of PTES transcripts identified from various cellular 

compartments.xlsx 

9.3.3 Genomic alignments (BigWigs) 

 See /Appendices/9.3/BigWigs 

9.3.4 Nucleo-Cytoplasmic enrichment test results 
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 See /Appendices/9.3/List of significantly enriched PTES transcripts.xlsx 

9.3.5 Co-transcriptional Splicing Ratios 

 See /Appendices/9.3/Co-transcriptional Splicing Ratios.xlsx 

9.3.6 Terminal exon and PTES junction expression in sucrose-gradient fractions of 

HEK293 

 See /Appendices/9.3/List of PTES transcripts identified from various cellular 

compartments 

9.3.7 Sequence analysis of UBAP1.8.7 

 

Figure 9.4. Sequence analysis of UBAP1.8.7. A) Reads supporting PTES junction between 
exons 8 and 7 of UBAP2 map across a start codon. B) Six frame translation of full spliced 
sequence of UBAP.8.7, using Expasy translate tool (http://web.expasy.org/translate/), shows 
the presence of stop codons upstream of an open reading frame in 5’3’ Frame 1.  
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9.4 PTES in human tissues and anucleate cells 

9.4.1 List of PTES identified from tissues and anucleate cells 

 See /Appendices/9.4/List of PTES identified from anucleate cells and nucleated tissues 

9.4.2 Nucleotide composition of PTES in platelets PolyA+ sample 

 See /Appendices/9.4/Nucleotide composition analysis of PTES identified in Platelets 

PolyA+ sample.xlsx 

9.4.3 Previously unreported PTES identified from platelets 

 See /Appendices/9.4/Previously unreported PTES identified from Platelets 

samples.xlsx 

9.4.4 Enrichment of PTES exons in Platelets 

 See /Appendices/9.4/Expression estimates and enrichment of PTES exons in anucleate 

cells and nucleated tissues.xlsx 

9.4.5 List of PTES identified from sub-samples of male platelets sample 

 See /Appendices/9.4/circrna_decay_analysis/ptes_from_resampled_data/ 

9.4.6 Percentile coverage of PTES identified in platelets 

 See /Appendices/9.4/circrna_decay_analysis/Percentile coverage differences.xlsx 

9.4.7 Genomic alignments (BigWigs) 

 See Alhassan et al., (2016) 
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9.5 PTES in HESC differentiation 

9.5.1 List of PTES identified from H9 differentiation series 

 See /Appendices/9.5/PTES identified from differentiation series.xlsx 

9.5.2 RNA editing in PTES flanking introns 

 See /Appendices/9.5/RNA editing sites in intronic regions flanking identified 

PTES.xlsx 

9.5.3 Differentially expressed PTES in differentiation series 

 

Table 9.5. Pathway analysis of PTES genes. List of pathways enriched by host genes of 
PTES transcripts reaching statistical significance. 
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9.5.4 LncRNA PTES producing genes 

Chromosome( Start( Stop( Gene( GENCODE(ID( Strand( PTES(Reads( PTES(Transcripts( GENCODE(Biotype(

chr12( 97825430( 97958793( RMST( ENST00000538559.2( +( 23005( 14( processed_transcript(

chr5( 34164802( 34189619( RP11J1023L17.1( ENST00000514048.1( J( 8106( 7( pseudogene(

chr6( 26845699( 26892992( GUSBP2( ENST00000463434.1( J( 7430( 4( pseudogene(

chrX( 130836677( 130964671( FIRRE( ENST00000427391.1( J( 2857( 20( lincRNA(

chr2( 148656969( 148660525( AC009480.3( ENST00000402410.2( J( 1954( 6( antisense(

chr18( 9102733( 9182522( RP11J21J18.1( ENST00000579126.1( +( 1707( 5( processed_transcript(

chr5( 68935285( 68975086( GUSBP3( ENST00000513408.2( J( 1363( 2( pseudogene(

chr1( 243708833( 243711631( RP11J269F20.1( ENST00000439849.1( +( 1117( 13( antisense(

chr14( 102502983( 102519191( RP11J1017G21.4( ENST00000557242.1( J( 994( 12( antisense(

chr16( 68111242( 68156174( RP11J67A1.2( ENST00000548144.1( +( 964( 8( processed_transcript(

chr5( 129098185( 129241354( CTCJ575N7.1( ENST00000515569.1( J( 709( 21( antisense(

chr15( 72264546( 72332606( RP11J390D11.1( ENST00000568391.1( +( 657( 31( antisense(

chr15( 63836445( 63881254( USP3JAS1( ENST00000559357.1( J( 649( 19( antisense(

chr4( 4543930( 4712665( STX18JAS1( ENST00000610009.1( +( 593( 2( antisense(

chr6( 105279003( 105293695( RP11J809N15.2( ENST00000422930.2( J( 496( 15( sense_overlapping(

chr12( 53408412( 53440743( RP11J983P16.4( ENST00000552905.1( J( 475( 15( antisense(

chr17( 45699207( 45726786( RP11J580I16.2( ENST00000584391.1( J( 462( 19( antisense(

chr2( 61698490( 61710061( RP11J355B11.2( ENST00000603028.1( +( 443( 20( antisense(

chr7( 74113789( 74143187( AC083884.8( ENST00000434256.1( J( 438( 13( processed_transcript(

chr15( 63967344( 64005957( RP11J317G6.1( ENST00000559303.2( +( 425( 44( antisense(

chr3( 114070657( 114085891( ZBTB20JAS1( ENST00000496219.1( +( 396( 2( antisense(

chr8( 90729655( 90769939( RP11J37B2.1( ENST00000504145.1( J( 383( 2( lincRNA(

chr13( 76178961( 76210130( RP11J173B14.5( ENST00000568735.1( J( 376( 4( antisense(

chr7( 72040371( 72209725( TYW1B( ENST00000343721.5( J( 316( 15( polymorphic_pseudogene(

chr2( 234263219( 234301045( AC019221.4( ENST00000442524.1( +( 310( 1( processed_transcript(

chr5( 82837295( 82877139( VCANJAS1( ENST00000513899.1( J( 308( 6( antisense(

chr7( 128171751( 128269512( RP11J274B21.1( ENST00000605862.1( +( 302( 24( pseudogene(
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chr10( 128811764( 128824739( RP11J223P11.2( ENST00000420941.2( J( 283( 33( antisense(

chr17( 61271291( 61416414( AC037445.1( ENST00000581421.1( J( 278( 9( antisense(

chr3( 5198589( 5229014( AC026202.3( ENST00000439325.1( J( 270( 5( antisense(

chr20( 39726968( 39766643( RP1J1J6.2( ENST00000454626.1( J( 266( 13( antisense(

chr6( 90539649( 90581122( CASP8AP2( ENST00000551025.1( +( 260( 10( processed_transcript(

chr4( 146754269( 146760732( RP11J181K12.2( ENST00000514334.1( +( 252( 4( antisense(

chr15( 85070426( 85114026( UBE2Q2P1( ENST00000339094.1( J( 249( 6( pseudogene(

chr16( 30296343( 30346695( RP11J347C12.2( ENST00000411546.3( J( 238( 17( pseudogene(

chr7( 75137074( 75157453( PMS2P3( ENST00000418756.1( J( 230( 6( pseudogene(

chr15( 23282280( 23378228( HERC2P2( ENST00000560464.1( J( 219( 13( pseudogene(

chr6( 20756333( 20800925( RP3J348I23.2( ENST00000421167.1( J( 217( 15( antisense(

chr9( 100013110( 100139380( RP11J23J9.4( ENST00000534123.1( +( 210( 7( processed_transcript(

chr5( 111563979( 111593006( RP11J526F3.1( ENST00000504004.1( +( 204( 12( antisense(

chr7( 76610265( 76653078(

DTX2P1JUPK3BP1J

PMS2P11( ENST00000584900.1( +( 201( 6( processed_transcript(

chr15( 52877103( 52879849( RP11J23N2.4( ENST00000566344.1( +( 200( 8( antisense(

chr15( 20588367( 20711414( HERC2P3( ENST00000428453.1( J( 199( 10( pseudogene(

chr19( 17263425( 17278861( CTDJ3032J10.2( ENST00000599360.1( J( 198( 15( antisense(

chr15( 25427531( 25427613( SNHG14( ENST00000365306.1( +( 179( 8( processed_transcript(

chr7( 30601177( 30612716( AC005154.6( ENST00000582145.1( J( 178( 1( processed_transcript(

chr6( 56979708( 57037220( RP11J203B9.4( ENST00000416069.2( J( 164( 16( antisense(

chr15( 51706293( 51791030( RP11J707P17.1( ENST00000561007.1( +( 156( 9( antisense(

chr7( 39773230( 39832691( LINC00265( ENST00000340510.4( +( 154( 8( lincRNA(

chr11( 76666460( 76689663( CTDJ2547H18.1( ENST00000530190.1( J( 148( 4( antisense(

chr2( 243030783( 243082789( AC093642.5( ENST00000456398.1( +( 146( 3( pseudogene(

chr7( 65874129( 65952977( GS1J124K5.2( ENST00000442578.1( J( 145( 12( pseudogene(

chr7( 35791465( 35840216( AC007551.3( ENST00000437235.3( J( 140( 2( lincRNA(

chr5( 54529761( 54591029( RP11J506H20.1( ENST00000506435.1( +( 139( 19( antisense(

chr5( 68408938( 68432221( CTCJ498J12.3( ENST00000504129.1( J( 130( 26( antisense(

chr9( 2503279( 2522019( RP11J125B21.2( ENST00000447278.1( J( 125( 8( antisense(
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chr7( 77976458( 77988775( RPL13AP17( ENST00000450028.1( +( 122( 2( pseudogene(

chr20( 34170040( 34195484( FER1L4( ENST00000430275.2( J( 120( 1( pseudogene(

chr9( 109737113( 109865269( RP11J508N12.2( ENST00000439901.1( J( 118( 3( antisense(

chr2( 89065384( 89106126( ANKRD36BP2( ENST00000393525.3( +( 117( 4( pseudogene(

chr15( 23187727( 23208417( WHAMMP3( ENST00000400153.2( J( 114( 8( pseudogene(

chr9( 123605377( 123614881( PSMD5JAS1( ENST00000442982.1( +( 113( 8( antisense(

chr7( 64498737( 64535091( CCT6P3( ENST00000426828.1( +( 110( 8( pseudogene(

chr2( 55541217( 55567446( AC012358.8( ENST00000599475.1( +( 108( 16( antisense(

chr7( 92119398( 92120893( AC007566.10( ENST00000441539.1( +( 102( 4( antisense(

chr22( 23995355( 24059534( KBJ1572G7.2( ENST00000421064.1( J( 99( 5( processed_transcript(

chr1( 149239867( 149265510( RP11J403I13.4( ENST00000325963.8( +( 98( 1( lincRNA(

chr11( 43350297( 43380846( RP11J484D2.2( ENST00000526220.1( J( 97( 4( antisense(

chr14( 23390249( 23396105( PRMT5JAS1( ENST00000590290.1( +( 93( 3( antisense(

chr18( 9121262( 9136643( RP11J143J12.2( ENST00000582375.1( J( 92( 3( antisense(

chr18( 18960246( 19030978( RP11J296E23.1( ENST00000584611.1( J( 90( 5( antisense(

chr19( 29777917( 30016659( CTCJ525D6.1( ENST00000582581.1( J( 85( 1( processed_transcript(

chr2( 233624855( 233632659( AC064852.4( ENST00000427571.1( J( 82( 4( 3prime_overlapping_ncrna(

chr16( 47333357( 47351725( RP11J474B12.1( ENST00000564739.1( +( 76( 7( antisense(

chr6( 135622705( 135628296( RP3J388E23.2( ENST00000444302.1( +( 75( 4( antisense(

chr2( 38257367( 38263433( RMDN2JAS1( ENST00000598798.1( J( 68( 6( antisense(

chrX( 102024106( 102140334( LINC00630( ENST00000440496.1( +( 67( 5( lincRNA(

chr4( 119512927( 119554884( RP11J384K6.6( ENST00000567913.2( +( 66( 5( lincRNA(

chr1( 28906275( 28906405( SNHG12( ENST00000384581.1( J( 65( 2( antisense(

chr4( 2939321( 2948655( NOP14JAS1( ENST00000507702.1( +( 63( 9( antisense(

chr2( 160242877( 160261143( AC008277.1( ENST00000420020.1( +( 62( 13( antisense(

chr6( 107831006( 107832640( RP1J67A8.3( ENST00000441532.1( J( 58( 2( antisense(

chr16( 11160352( 11164959( RP11J66H6.3( ENST00000572828.1( J( 57( 2( antisense(

chr7( 74299872( 74306687( STAG3L2( ENST00000423186.1( J( 55( 1( pseudogene(

chr5( 175774943( 175780587( RP11J843P14.2( ENST00000508187.1( +( 53( 2( antisense(

chr6( 149276763( 149285820( RP11J162J8.2( ENST00000413845.1( J( 51( 5( antisense(
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chr22( 22657588( 22677203( BMS1P20( ENST00000426066.1( +( 50( 4( processed_transcript(

chr15( 93425936( 93441975( AC013394.2( ENST00000557682.2( +( 49( 2( processed_transcript(

chr7( 76875656( 76887440( AC073635.5( ENST00000476561.2( J( 48( 6( antisense(

chr8( 133850374( 133856543( AF230666.2( ENST00000429151.1( J( 47( 2( antisense(

chr6( 11173684( 11259332( RP3J510L9.1( ENST00000500636.2( +( 46( 2( antisense(

chr3( 197880120( 197925886( FAM157A( ENST00000437428.2( +( 43( 4( lincRNA(

chr22( 43434590( 43448372( AL022476.2( ENST00000443063.1( +( 42( 6( antisense(

chr4( 419223( 467918( ABCA11P( ENST00000451020.2( J( 41( 4( pseudogene(

chr11( 63405148( 63426434( RP11J697H9.2( ENST00000540307.1( +( 40( 4( antisense(

chr18( 13419419( 13427479( LDLRAD4JAS1( ENST00000588672.1( J( 39( 2( antisense(

chr13( 21872277( 21878694( MIPEPP3( ENST00000424756.1( +( 38( 1( pseudogene(

chr21( 29811666( 30047170( AF131217.1( ENST00000433310.2( J( 37( 1( lincRNA(

chr19( 36505409( 36536874( AC002116.7( ENST00000586962.1( +( 35( 3( antisense(

chr16( 27719746( 27730097( CTDJ2049O4.1( ENST00000563052.1( J( 34( 4( antisense(

chr15( 51749482( 51752779( RP11J707P17.2( ENST00000559977.1( +( 33( 1( antisense(

chr2( 178563217( 178588017( AC012499.1( ENST00000450227.1( +( 32( 2( antisense(

chr1( 16793930( 16819196( CROCCP3( ENST00000263511.4( J( 31( 3( pseudogene(

chr8( 64599736( 65281115( RP11J32K4.1( ENST00000523191.1( J( 30( 5( antisense(

chr7( 16735495( 16759523( AC073333.8( ENST00000418907.1( J( 29( 6( antisense(

chr14( 80128008( 80257606( RP11J242P2.1( ENST00000553322.1( J( 27( 4( antisense(

chr5( 94124493( 94129304( CTCJ484P3.3( ENST00000513849.1( +( 26( 3( antisense(

chr10( 73267909( 73271630( CDH23JAS1( ENST00000428918.1( J( 25( 5( antisense(

chr10( 54060562( 54073888( PRKG1JAS1( ENST00000420193.1( J( 24( 3( antisense(

chr9( 71437318( 71458191( RP11J203L2.4( ENST00000442103.1( J( 23( 3( antisense(

chr2( 186600788( 186603752( AC007966.1( ENST00000437717.1( J( 22( 4( antisense(

chr3( 67705181( 67998137( RP11J81N13.1( ENST00000482677.1( +( 21( 3( lincRNA(

chr4( 113567880( 113569859( MIR302B( ENST00000505215.1( J( 20( 4( antisense(

chr19( 21635997( 21646674( CTDJ2561J22.5( ENST00000599993.1( J( 19( 1( processed_transcript(

chr12( 8448581( 8549399( LINC00937( ENST00000544461.1( J( 18( 2( lincRNA(

chr7( 5702062( 5720092( RNF216JIT1( ENST00000443837.1( J( 17( 4( sense_intronic(
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chr6( 160424322( 160428696( AIRN( ENST00000609176.1( J( 16( 2( antisense(

chr10( 29698530( 29747716( PTCHD3P1( ENST00000438202.1( +( 15( 1( antisense(

chr5( 140997980( 141006048( AC008781.7( ENST00000422040.2( +( 13( 2( antisense(

chr15( 84748919( 84782428( EFTUD1P1( ENST00000558187.1( +( 12( 1( pseudogene(

chr2( 47441087( 47572105( AC073283.4( ENST00000419035.1( J( 11( 1( lincRNA(

chr12( 81488153( 81519624( RP11J543H12.1( ENST00000547123.1( J( 10( 1( antisense(
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