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ABSTRACT

In this thesis the underdetermined audio source separation has been considered, that is, estimating
the original audio sources from the observed mixture when the number of audio sources is greater
than the number of channels. The separation has been carried out using two approaches; the blind
audio source separation and the informed audio source separation. The blind audio source
separationapproach depends on the mixture signal only and it assumes that the separation has been
accomplished without any prior information (or as little as possible) about the sources. The
informed audio source separation uses the exemplar in addition to the mixture signal to emulate the
targeted speech signal to be separated. Both approaches are based on the two dimensional
factorization techniques that decompose the signal into two tensors that are convolved in both the
temporal and spectral directions. Both approaches are applied on the convolutive mixture and the

high-reverberant convolutive mixture which are more realistic than the instantaneous mixture.

In this work a novel algorithm based on the nonnegative matrix factor two dimensional
deconvolution (NMF2D) with adaptive sparsity has been proposed to separate the audio sources
that have been mixed in an underdetermined convolutive mixture. Additionally, a novel Gamma
Exponential Process has been proposed for estimating the convolutive parameters and number of
components of the NMF2D/ NTF2D, and to initialize the NMF2D parameters. In addition, the
effects of different window length have been investigated to determine the best fit model that suit
the characteristics of the audio signal. Furthermore, a novelalgorithm, namely the fusion K models
of full-rank weighted nonnegative tensor factor two dimensional deconvolution (K-wNTF2D) has
been proposed. The K-wNTF2D is developed for its ability in modelling both the spectral and
temporal changes, and the spatial covariance matrix that addresses the high reverberation problem.
Variable sparsity that derived from the Gibbs distribution is optimized under the Itakura-Saito
divergence and adapted into the K-wNTF2D model. The tensors of this algorithm have been
initialized by a novel initialization method, namely the SVD two-dimensional deconvolution
(SVD2D). Finally, two novel informed source separation algorithms, namely, the semi-exemplar
based algorithm and the exemplar-based algorithm, have been proposed. These algorithms based
on the NMF2D model and the proposed two dimensional nonnegative matrix partial
co-factorization (2DNMPCF) model. The idea of incorporating the exemplar is to inform the
proposed separation algorithms about the targeted signal to be separated by initializing its

parameters and guide the proposed separation algorithms. The adaptive sparsity is derived for both



of the proposed algorithms. Also, a multistage of the proposed exemplar based algorithm has been
proposed in order to further enhance the separation performance.

Results have shown that the proposed separation algorithms are very promising, more flexible, and
offer an alternative model to the conventional methods.
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CHAPTER 1

INTRODUCTION

In this chapter, the motivation behind considering the more realistic cases of the audio source
separation will be presented. This included the convolutive blind audio source separation and the
high-reverberant convolutive blind audio source separation instead of the instantaneous one. Also,
the motivation behind going fromblind to informed audio source separation will be presented too.
Then, the big picture ofaudio source separation system that has been achieved in this thesis will be
demonstrated inorder to give aclear view of work done. After that the objectives and contributions
will be drawn. Finally, by the end of this chapter, the outline of the thesis is presented chapter by
chapter.

1.1 Motivation

Since more than two decades the researchers working on making the machine to have the same
ability of the human to listen and distinguish between different sound sources. Although, the great
efforts of the researchers, it is still an open problem, even, it is an ill-posed problem if they tried to
solve it without any prior information about the sources. Therefore, to make it soluble many
researchers considered that the sources have been mixed instantaneously, i.e., they neglect the
reverberation from the surrounded environment which is unrealistic as the sounds reflected from
the wall or/and the background noise cannot be avoided. Therefore, in this thesis the convolutive
mixture (that considers the refection of the sound) will be considered instead of the instantaneous
one. In spite that the convolutive blind source separation (BSS) performs well in low reverberation
environment, their performance will drop sharply in high reverberation environment. So, in this
thesis we go further by considering the high-reverberant blind audio source separation that
simulates the real world environment. Even when the blind audio source separation modelled to
consider the high reverberation itdid notachieved the required performances that canchallenge the
human ability in sound sources separation. Therefore, researchers have sought an aid from an
external source in addition to the mixture signal, and they opted to go from blind to informed audio

source separation in order to achieve higher performance that the BSS cannotreach. Consequently,



the informed source separation will be considered as one of the challenges to be tackle in this
thesis.

1.2 Big Picture of Audio Source Separation

In this section the terminology that used in the source separation will be explained and the

source separation system will be demonstrated.

The idea behind the audio source separation is to extract the audio sources (such as the music
and speech signals) from their mixtures (the observer of the sources where mostly assumed the
sources have mixed instantaneously by adding them, or convolutively by considering their
reverberation). This separation needs a system that is able to perform many processes; such as
estimating the number of sources, estimating the required number of frequency basis and
convolutive parameters to be assigned to each source, applying separation algorithms, and
reconstructing the sources. Figure 1.1 shows the Big Picture of the proposed audio sources
separation system. In which all the sources considered to be mixed convolutively, then the number
of frequency basis and convolutive parameters will be estimated by using the proposed
Gamma-Exponential Process (see Chapter 3). After that the parameters of the separation
algorithms will be initialized by the proposed SVD two-dimensional deconvolution (SVD2D)
initialization algorithm (see Chapter 4), and the sparsity (the penalty on the activation matrix that
ensuresonly a few units (out of a large population) will be active at the same time. The sparsity can
be added as a constraint to the cost function [1]) will be estimated by the proposed variable sparsity
algorithm (see Chapter 4). After estimating the required parameters the separation will be carried
out by the proposed convolutive blind source separation algorithm or by the proposed
high-reverberant (Full-Rank) blind source separation algorithm (see Chapter 3 and 4, respectively).

Finally, the sources will be reconstructed by Wiener filter that works as follows

A Pjrn
Sitn =o2—X (1.1)
jfn A fn

2 Bjfn

where §; -, is the estimated source, x,, is the mixture, p; ., is the estimated power of the j*"

source, and j is the source index.

The above scenario gives the general overview of the proposed blind source separation algorithms
in the thesis.



For the proposed informed source separation system in addition to the mixture there will be an
exemplar that emulates the targeted signal to be separated. The idea of adding the exemplar is to
inform the proposed separation algorithms about the targeted signal to be separated by initializing

its parameters and guide the proposed separation algorithms (see Chapter 5).

Source 1 Source 2 Source 3
5 - . . - 10 . . . 20 . . . .
S 2 4 6 3 10, 2 n 6 8 20, 2 4 6 8
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Figure 1.1 Proposed audio separation system




1.3 Aims and Objectives of Thesis

The aims of the thesis are to investigate and develop efficient algorithms for the underdetermined
blind and informed audio source separation that mixed in convolutive mixture with
low-reverberation environment (convolutive mixture) and high-reverberation environment
(high-reverberant (Full-Rank) convolutive mixture). Three novel algorithms have been proposed to

tackle these aims.
The objectives of this study are

1. To develop novel algorithms for the underdetermined audio source separation to tackle real

world mixing scenario.

2. To exercise control over the parameters which affect the separation performance such as the
initialization, number of frequency basis and convolutive parameters, cost functions, and

windows length.

3. Develop background theories that further pave the understanding of the audio source

separation and develop the mathematical derivations that verified the proposed algorithms.

4. Compare and analysis the performance of the proposed algorithms with the existing

algorithms in order to show the efficiency of the proposed algorithms.

1.4 Contributions

The contribution of this thesis for the underdetermined convolutive blind audio source separation,
underdetermined high-reverberant blind audio source separation, and underdetermined informed

audio source separation can be summarised as follows

1. Anovel unsupervised algorithm that based on the nonnegative matrix factor two dimensional
deconvolution (NMF2D) with adaptive sparsity is proposed. This algorithm is proposed to
blindly separate audio sources which have been mixed in underdetermined convolutive

mixture.



2. A novel algorithm, namely the fusion K models of full-rank weighted nonnegative tensor
factor two dimensional deconvolution (K-wNTF2D) is proposed to blindly separate audio

sources which have been mixed in underdetermined high-reverberant mixture.

3. Two novel underdetermined informed audio source separation algorithms, namely,
the semi-exemplar based algorithm and the exemplar-based algorithm, are proposed. The
semi-exemplar based algorithm and the exemplar-based algorithm are based on the
NMF2D model andthe proposed two dimensional nonnegative matrix partial
co-factorization (2DNMPCF) model, respectively. The proposed 2DNMPCF model
factorizes both the mixture and the exemplar at the same time, and it is more powerful than
the nonnegative matrix partial co-factorization (NMPCF) model. Also, a pseudo stereo
channel is adapted in both algorithms in order to enhance the separation performance.
Furthermore, the adaptive sparsity is derived for both of the proposed algorithms in order to
adapt each sparse parameter for every temporal code in the 2DNMPCF and NMF2D. Finally,
a multistage of the proposed exemplar based algorithm is proposed in order to enhance the

separation performance.

4. A novel Gamma Exponential Process is proposed for estimating the convolutive parameters
and number of components of the NMF2D, which is an essential step in audio source
separation that based on the NMF2D or the nonnegative tensor factor double deconvolution

(NTF2D) models. Also the proposed algorithm is used to initialize the NMF2D parameters.

5. A novel initialization method, the SVD2D is proposed to initialize the parameters in the
NMF2D or the NTF2D. Initialization is the keystone of the audio source separation as a

random initialization can lead to converge to local minima or even diverge.

6. A set of variable sparsity parameters derived from Gibbs distribution and optimized under
the Itakura-Saito divergence has been encoded into the K-wNTF2D model. This optimizes
each sub-model in K-wNTF2D with the required sparsity in order to model the time-varying

variances of the sources in the spectrogram.

7. For faster convergence the proposed algorithms adapted under the hybrid framework that
combines the generalized expectation maximization algorithm with the multiplicative update
rule (GEM-MU).



8. Finally, the effects of different windows length have been investigated to best fit the model

and the characteristics of the audio signal.

1.5 Thesis Outline

The prime focus of this thesis is the unsupervised underdetermined algorithms for audio source
separation. Three chapters of this thesis are dedicated for the main contributions of the proposed
works, while the first chapter is an introductory to the thesis followed by an overview chapter.
Finally, the last chapter draws the conclusions and suggests a future works. A more details of the

thesis outlines are given bellow

Chapter 2 provides an overview of the recent audio source separation (blind and informed)
algorithms that based on factorization techniques, such as the nonnegative matrix factorization
(NMF) and its extension the NMF2D, the nonnegative tensor factorization (NTF), and the NTF2D.
Furthermore, it discusses the parameters which affect the separation, such as the cost function, the

initialization, window’s length, and number of components and convolutive parameters.

In Chapter 3 a novel unsupervised machine learning algorithm based on the NMF2D with
adaptive sparsity is proposed. The proposed algorithm adapted under the GEM-MU hybrid
framework. This chapter also proposes a method to optimize the number of components and
convolutive parameters in the NMF2D by using the Gamma-Exponential process as the
observation-latent model. In addition, it is also shown that the proposed Gamma-Exponential
process can be used to initialize the NMF2D parameters. Finally, the chapter investigates the issue
and advantages of using different window length with different number of convolutive parameters.
Simulation results for the synthetic convolutive mixtures and live recordings are carried out in the

end of this chapter.

Chapter 4 proposed the K-wNTF2D model. The derivation of the algorithm and the
development of proposed full-rank K-wNTF2D are shown in this chapter. The algorithm also
encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D
model. In addition, a novel initialization method, the SVD2D is proposed to initialize the
parameters in the K-wNTF2D. Experimental results on the underdetermined reverberant mixing

environment have been accomplished at the end of this chapter.



In Chapter 5 two novel algorithms for the underdetermined informed source separation, namely
the semi-exemplar based algorithm and the exemplar-based algorithm are proposed. Also the
2DNMPCF model that simultaneously factorizes the mixture and the exemplar is proposed too.
The derivation of the adaptive sparsity and the adaptation of the pseudo stereo channel for both of
the proposed algorithms are shown in this chapter. Furthermore, a multistage of the proposed
exemplar based algorithm is proposed. Finally, comparisons with other algorithms are presented at
the end of this chapter.

Finally, Chapter 6 draws the conclusions of this thesis and suggests new avenues for the future

work.



CHAPTER 2

OVERVIEW OF AUDIO SOURCE SEPARATION

In this chapter an overview of audio source separation that is based on factorization techniques,
such as the NMF, the NMF2D, the NTF, and the NTF2D will be provided. Furthermore, the
parameters which effect on the separation, such as the cost function, the initialization, window’s
length, and number of components and convolutive parameters will be discussed. Finally, the

informed source separation will be reviewed.

2.1 What is Audio Source Separation

Source separation (SS) has attracted much research attention in recent years, where great deal of
work has been undertaken to solve this problem [2-18]. SS is an acronym referring to estimating
the sources from their mixtures, and if there is no informationabout the sources, then the separation
will be achieved blindly, and the technique is called blind source separation (BSS) [19], while if
there is additional information about the sources then the technique will called informed source
separation (ISS) [20]. Until now SS is an open problem as it does not have the same ability of

humans to listen and distinguish between different sources.

Audio source separation can be implemented by using supervised methods or unsupervised
methods. The supervised methods have two phases, the training phase and the separation phase. In
the training phase the model parameters are trained on the sources (either all of the sources or part
of them). Then in the separation phase the separation of the sources will be accomplished by using
these trained model parameters. The current trend in supervised methods is the deep neural
network (DNN) [21-24] that model the nonlinear relationship between the trained parameters of

the targeted speech signal and the mixture signal.

Unsupervised separation methods do not require any training [2, 5-11, 13, 14, 16-18] where the
separation of the mixtures accomplished by depending on the mixture signal only. However in this
type of source separation prior information is needed in advance before the separation can be

carried out, such as the number of sources, and how the sources are mixed.



As the unsupervised source separation will be used in this thesis then more details about it will
be given. There are two types of mixtures in source separation; the nonlinear mixture [18] and the
linear mixture [2, 5-14, 16, 17]. In the non-linear mixture the mixture signal is constructed from

nonlinear combination of the source signals, and it can be expressed as follows

J
x;(0) = z fi (S,-(t)) (2.1)

j=1
where x;(t) is the mixture signal, i = 1,2,..,1, I is the total number of channels, t = 1,2, ...,T,t
is the time frame index, s;(t) is the source signal, j = 1,2, ..., ], J is the total number of sources,

and f;(.)is the nonlinear mixing process.

In the case of linear mixture, the mixture signal is constructed from the linear combination of
source signals. The linear source separation can be classified according to the mixing operation to
instantaneous source separation [2, 11, 17] and convolutive source separation [5-10, 13, 14, 16]. In
the instantaneous case the mixture is constructed from the sources by adding them without
considering the reverberation of the sources due to the surrounding environment, i.e., considering
the direct path of the sources and neglecting their echoes, which is unrealistic as it is impossible to

avoid the echo of the signal. The instantaneous mixture can be expressed as follows

J

X () = ) ays,(0 (2.2)

j=1
where a;; is mixing filter associated with the sound propagate from source j to channel i.

While in the convolutive mixture the reverberation of the sources due to the surrounding
environment are considered by modelling the direct path and the echoes of the sources. The

mixture signal of the convolutive can be expressed as follows
J L-1
0= a; @5t~ 2.3)
j=11t=0

where a(t) is the finite-impulse response of some (causal) filter, and L is the filter length.

Figure 2.1 shows the difference between the instantaneous and convolutive mixture.



B

(@) Instantaneous mixture.
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Figure 2.1: Difference between instantaneous and convolutive mixtures.
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Furthermore, by depending on the number of sources J and the number of channels I the following

cases can be hold:
a. If I =1;then it is asingle channel case [2].

b. If 1 <I < J;then it is the underdetermined case [5-11, 13, 14, 16].

o

If I > J; then it is the Over-determined case [17].
d. If I = J;then it is the determined case [17].

In addition to the above classifications, the NMF2D [25-32] can be appended to them. These
methods consider a single channel (except [30] where it consider a stereo channel) with linear
instantaneous mixture. The instantaneous mixture is not realistic as it does not consider the
reverberation of the audio sources, therefore, in this thesis a more realistic case, which is the

convolutive mixture will be considered.

In the following sections source separation that is based on factorization techniques such as the
NMF, the NMF2D, the NTF, and the NTF2D will be explained in details.

2.2 Nonnegative Matrix Factorization (NMF)

NMF [33-36] is dimension reduction technique that is applied to the nonnegative data where it
used as a part representation of the data instead of holistic representationas in principle component
analysis (PCA), independent component analysis (ICA), and singular value decomposition (SVD).
It is part representation instead of holistic representation, because, NMF represent each part of the
data by the basis matrixand its corresponding distribution (encoding) matrix, e.g., [35] showed that
each part of the face can be represented by the NMF while it is not possible to do that if the PCA or
the vector quantization (VQ) is used, because they represent the whole face and not part of it. As
the NMF works on positive data only; then there will be no cancellation in the data if it contains
positive and negative values (i.e., itdoes not result in subtraction of any of the nonnegative data), as
in PCA, ICA, and SVD. This feature attracts many researchers and makes it well known in the
audio source separation community, due to the nature of sound signal (where the sounds from
different sources are combined with each other and not cancel each other) that match the NMF
feature. A great deals of research have been undertaken under the umbrella of the NMF in many

applications, such as bioinformatics [37], digital watermark [38], image processing [39, 40], facial
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recognition [41], audiovisual document structuring [42], speech enhancement [43], audio
inpainting [44, 45], audio declipping [46, 47], direction of arrival (DOA) estimation [48], blind
source separation [5, 6, 8, 13, 14, 25, 49-52], and the informed source separation [15, 53-56]. The
other feature of the NMF which is the dimensionality reduction will be explained after
understanding how the NMF works. A comparison between the NMF and the other factorization
technique can be found in [57]. While, a comprehensive review about the NMF can be found in
[58].

NMF can be summarized as follows, if X is an F x N data matrix with nonnegative entries,

then NMF can decompose it as follows

K
%] = z Wy jchicn (2.40)
k=1

and in matrix form
|X| = WwH (2.4b)

where W = {w;,} € R* is nonnegative matrix of dimension F x K that contains the basis of the
data, and H = {h,, } € R* is nonnegative matrix of dimension K x N that contains the
distribution of the basis in W matrix, K is the number of the basis (latent components) and it

usually selected less than F and N, in order to achieve the decompositions, where F X K + K X

N < F X N, therefore, NMF considered as a dimensionality reduction technique.

From an audio point of view, the columns of W represent the frequency basis and their
corresponding rows in H represent the time representation of these frequency basis, K represents

the number of frequency basis, F is the number of frequency bins, and N is the number of time
frames.

The factorization of egn. (2.4) can be achieved by optimization method, as follows:

o DUXIIWH) (2.5)

W,H=z0
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where D(|X||WH) is the divergence between the mixture signal |X|, and the estimated (or
approximated) signal WH in order to measure error between these two signals, this divergence can

be expressed as follows

D(IXI|WH) —ZZd(|xfn||zkwfkhkn) (2.6)

=1n=1

The cost function in eqn. (2.6) can be solved by using Euclidian distance (EDU) [34],
KullBack-Leibler (KL) [36], Itakura-Saito (I1S) [49], B-divergence [59, 60], a-divergence [61],
y-divergence [62], Csiszar’s @-divergence [63], Bregman divergence [64], and o-(B-divergence
[65].

The most common cost functions are the EUC, KL, and IS which are derived from the

B-divergence which is a family of cost functions that tuned by S parameter as follows

‘ﬁ( 5oy ((F + (B =D ~px»)F) B eRVOD
Dxly)y ™ | xlog—+ (=) =1 27)
. logE -1 p=0
\y y

If g =2 this will leads to the EUC distance, if § =1 this will leads to the KL divergence, and if 5 =0

this will leads to the IS divergence, and can be expressed as follows

2
1
Dpye (XIWH) =2 (Ixfnl - wf,khk,n> (28)
fn k

X
Dy, (IXIIWH) =Z<|an|log | fn| |xfn|+ZWfk kn) (2.9)
n 2 W i ien
D, (IX|IWH) = Z(M—log%—q (2.10)
n Dk Wf,khk,n Dk Wf,khk,n

The multiplicative update (MU) rule for the above cost functions can be derived by using the

gradient descent approach [36, 66], as follows
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[VF(&)]-

where V£ (0) = [Vf(6)], — [Vf(6)]_. By applying eqgn. (2.11) to egn. (2.8), eqn. (2.9) and eqgn.
(2.10) the following update rules can be obtained:

For EUC
|X|HT
wT|x|
For KL
X|./JWH)HT
W« W.(lliT) (2.13a)
X/ WHWT
end I/le) (2.13b)
For IS

(x1./(WH)H)HT

W W (2.14a)
i g, WX/ WD )W (2.14b)
WT.JWH

where ©.” and ./ are the element wise multiplication and division, respectively. A more details
about the NMF and its algorithms can be found in [67].

Figure 2.2 below shows the spectrogram (visual representation of the signal in the short time
Fourier transform (STFT) in which the x-axis represents the time frame and the y-axis represents
the frequency bins) of trumpet signal with its corresponding W and H matrices. Figure 2.2a shows
the whole spectrogram of the signal and how the W matrix represents the four frequency basis (i.e.,

the W matrix has four columns) and how the H matrix (that has four rows, i.e., one row for each

14



column in the W matrix) distributes them. While Figure 2.2b to Figure 2.2e show the spectrogram
of each component and how the W and H matrices construct it. It can be seen that the whole

spectrogram (Figure 2.2a) can be reconstructed by adding the spectrograms of Figure 2.2b - Figure

2.2e.

H matrix

W matrix

(b) Spectrogram of component 1.
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(c) Spectrogram of component 2.
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(d) Spectrogram of component 3.
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(e) Spectrogram of component 4.

Figure 2.2 How the W and H matrices factorize the signal in the NMF.
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2.3 Nonnegative Matrix Factor 2D Deconvolution (NMF2D)

Smaragdis [68] extended the NMF to the nonnegative matrix deconvolution (NMD), where he
considered that each frequency base has a sequence of spectra that convolute with its
corresponding temporal code, i.e., each column in the W matrix has a sequence of different spectra
that convolute with the row of H matrix, and its model can be expressed as follows

->T
Bl = D) Whiha (215)
->T

where the arrow sign in H, , denotes the right shift operator which moves each element in the
matrix by t column to the right, and 7,,,, is the maximum number of the spectra for each
frequency base, thus the W matrix will have t,,,, columns for each frequency base. The
applications of the NMFD can be found in [69-72].

After that paper several developments have been taking place such as the nonnegative matrix
factor 2D deconvolution (NMF2D) [25], where it considered both the temporal structure and pitch
change that occur when a musical instrument plays different notes. NMF2D considered that each
frequency base has a sequence of spectra (represented by 7, see eqn. (2.16)) with its corresponding
sequence of temporal code (represented by ¢, see eqn. (2.16)). T and ¢ called the convolutive

parameters. The NMF2D model can be expressed as follows

] Tmax ¢max

|25 | = Z Z Z Wf,hfn (2.16)

j=1 =0 ¢=0

where w¢ ; represents the spectral basis of the jth source and h;f’n represents the temporal code for

each spectral basis element of the jt" source, for f = 1,..,F,n=1,..,N,and j=1, ..,J. The
terms 7,,,, and ¢,,,, are the maximum number of the convoltuive parameters 7 and ¢,

o
respectively. In eqn. (2.16), the superscript upper arrow sign in Wy denotes downward shift

ax

operator which moves eachelement in the matrix by ¢ row down. At the same time, the arrow sign
=

in h]‘.l’ndenotes the right shift operator which moves each element in the matrix by = column to the

right. The NMF2D considered one frequency basis for each source, ie., K =J.
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The EUC [25], KL [25], and IS [27] cost functions of the NMF2D can be expressed as follows

2

Dgyc (IXI | Teo wr ;2 zz x| — wf]h]‘”n (2.17)
jr.¢
- x l(p iy

Dir (IX1| Zeg b 75) =D Ixfnllog%— el + ) wishl | (218)

m e W s

N X X

Dys (1X1] 2 1t 75 ) =Z %—log%ﬂ (2.19)

fn erqb fjhd) ercb f}h¢

by applying eqn. (2.11) to eqn. (2.17), eqn. (2.18) and eqn. (2.19) the following update rules can be

obtained:

For EUC [25]

W? «W". (2.20)
TN
T
I
go e po 21X (2.20b)
197
Twt A
For KL [25]
¢ —
Z(p (m) T T
WT e We —=2 2.21
< Zd)l —)‘[ T ( a)
1 T
=
H® « H? A (2.21b)
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For IS [27]

where A = ),

¢ wt H® -

2 (A" )b

2o ((7{ )'_1) wo

Z i (07 1)

¢ ¢
H® « H 5 (l‘;vl): (‘X __1)

(2.22a)

(2.22b)

Figure 2.3 below shows how the NMF2D factorizes the trumpet signal for ¢ = {0, 1, 2, 3} and

¢ =1{0,1,2}. The figure shows that the same result of NMF has been obtained with only one

frequency base but with different convolutive parameters. It can be seen from Figure 2.2 and

Figure 2.3 that both the NMF and NMF2D give the same factorization results, as it has been

applied to factorize one source only and not a real mixture, i.e., the idea here is to show how the

NMF and NMF2D work. The comparison between the NMF and NMF2D will be shown in the

following chapters.

0123

W matrix

Figure 2.3: How the W and H matrices factorize the signal in the NMF2D.

H matrix

Spectrogram
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After Schmidt et al. [25], the primary focus for the researchers was to extend the NMF2D by

considering more constraints to be added to the cost functions and following the same procedure in

deriving W and H, by using the multiplicative gradient descent approach [26-29, 31, 32]. The
NMF2D is more powerful than the NMF in representing complex musical instruments due to its

ability in controlling the pitch and temporal change through t and ¢, for the specific mixture of
musical sources, where some sources have a high pitch but low temporal, and vice versa. If the

NMF is considered for these sources, then an equal amount of components will be given for the
mixture, which will lead to overfit, or underfit model. However, if z,,,,,, and ¢,,,, arechosen more
than the actual requirement, then they will break the structure of the audio signal, i.e., wf ; and hfn
will be shifted more than the actual requirement. This will generate undesirable spurious artefacts

to the audio signal and subsequently leads to interference. Therefore, the Gamma-Exponential
process to estimate the convolutive parameters of the NMF2D will be proposed.

2.4 Nonnegative Tensor Factorization (NTF)

Nonnegative tensor factorization (or sometimes called Nonnegative tensor decomposition) has
many applications in signal processing including source separation [73, 74]. The NTF extend the
NMF to model the stereo channel [75, 76] instead of the single channel. Thus it extends the mixture
signal from two dimensional matrix to three dimensional tensor %, »,,, where i is the channel index,
and i = 1,2. This three dimensional tensor signal has been realized by invoking a channel gain g, ;

for the components of each channel. Therefore, %; -, can be expressed as follows
K
|fi,fn| = Z QriWr i hin (2.23)
k=1

This model is equivalent to the parallel factor analysis (PARAFAC) [77] with nonnegative

constrained.
The factorization of egn. (2.23) can be achieved by optimization method, as follows:

min " D(IXI|X) (2.24)

QW,H=0
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The divergence between the mixture signal and the estimated (or approximated) signal can be
expressed by p-divergence as follows

D(|X| |X) = Z Z Z dﬁ(|xi,fn|| 2k qk,in,khk.n) (2.25)

i=1 f=1n=1
By applying eqn. (2.11) to egn. (2.25) the following update rules [73] will be obtained:

(IXI.XB=2,W o H)( 50023

; (2.26a)
(XB-V,W e H)p 33129
(IXI.XP=2,Q o H)y 3311 (2.26b)
(XB-1,Q o H)y 31 53
X .X(ﬁ—z)’ oW
by X Q°Wuanz (2.26.¢)

(X(‘B_l); Qo W){l_}{l,z}

where WoHIis F XN XK tensor, Qo His I X N X K tensor, QoW is I X F X K tensor, and
(A, B)cypy is contract product [67] that determined which slices of the tensor have to be

multip lied.

If B =2 this will leads to the EUC distance, if g =1 this will leads to the KL divergence, and if
B =0 this will leads to the IS divergence.

2.5 Nonnegative Tensor Factor Double Deconvolution (NTF2D)

It is an extension for the NMF2D to deal with multichannel (stereo channel) [30] instead of single
channel, by invoking a channel gain g;; and model it with the 2-D convolutive PARAFAC. The

mixture signal X; -, can be expressed as follows

] Tmax Pmax ST

|xlfn| Z z z q;iW, fT]h](ﬁn (2.27)

j=1 =0 ¢=0
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The NTF2D considered one frequency base (one component) for each source, i.e., K =],
therefore q;; is the gain between the sources and the channels and not the gain between the

components of each source and the channels.

According to [30] two divergences the EUC distance and the KL divergence have been applied
which lead to the following updates

For EUC
1X| 1y-Z + Qdiag (1((QZ72).Q
Q< Q. = lag( ( )) (2.28q)
0777 + Qdiag (1((1X - 2).-0))
T¢ it lt
251Xl (2 <H¢®Q +W'diag | 1}, H‘P@Q wr
W® « W=, (2.28b)
T¢ lt lT
Yo X2 <H¢’®Q + Wleag< |X|(2) H¢>@Q wr
2 IXI(3)< )
H? « H® —— (2.28¢)
Z‘L’ 3) <WT®Q>
For KL
|X|(1) .
gzT + Qdiag (1.((12).9))
Q< 0. (2.29q)

1Z + Qdia (1 <|X|(1) Z Q>>
gl 1 ozT &
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¢

It It
T lxxli <H¢®Q> + W'diag (LZT (1 <H¢®Q>> . WT)

@)
W® e« W". (2.29b)

; Vo
1X1

it lt
Yp1H? + Widiag | 13, | | = ||H?OQ | |.WT
X(Z)

H® « H?. (2.29¢)

o  lt\T
where © is the Khatri-Rao product!, Z € Z(F-M*J = (ZT 2 WTG)H‘P) X1y € XX

o /it T w\T
X EXPXUM Q=3 T, WT <H"’®Q> Xz EXVUF and Xy = X, 3, <H¢>

l¢ T
(i00)’

2.6 Informed Source Separation

In informed source separation [20] an additional information about the sources (or even the sources
themselves) in addition to the mixture are usually provided to the separation algorithm. This
additional information is provided in order to improve the separation performance and to reach the

separation quality that the blind source separation cannot reach.

The informed source separation use the side information to provide the extra information, and

accordingly it can be classified as follows

1 The Khatri-Rao product can be defined as follows: Let A and B be a matrices of dimensions F X K and N X K,
respectively, then A®B = [vec(a,b})...vec(axb%)], .« = [(a; ® by) ... (ax @ b )]sy, Where ® is the
Kronecker product.
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2.6.1 Score Informed Source Separation

In this method the parameters of the separation algorithm are initialized by depending on the side
information that are available from the Musical Instrument Digital Interface (MIDI) files
(sometimes they are called musical scores), such as the onset time, pitch, and duration of the
musical notes [53, 78]. Anoverview of the score informed source separation can be found in [79].
Furthermore, similar to this idea the user can manually set or rest the H matrix in the NMF model
[15, 80].

2.6.2 Exemplar-Based Source Separation
Here the informed source separation targeted a specific source in the mixture by providing another
source that is similar to the one to be separated. Such as the user mimic the targeted source by
singing [54], by humming [81], or by dubs the dialog in films [82]. Furthermore, using an
additional audio references as a side information such as using the multitrack cover version of the
same song [56, 83-85] or using several international versions of the same movie [55]. Additionally

the text can be used as side information to mimic the targeted speech signal [86].

In both the score informed source separation and exemplar-based informed source separation
there is a need for a synthesizer to convert them to music. In the score informed source separation
an MIDI synthesizer or a user is usually used to convert the scores to music in order to use themas
side information with the audio mixture. Similarly, the Exemplar-based informed source
separation (especially the text based one) use a speech synthesizer or a user to convert the texts to

music.

2.6.3 Coding Based Informed Source Separation

It is two stages scenario that contains the encoding stage and the decoding stage. At the encoding
stage all the sources are available in addition to the mixture in order to generate a side information
that can be transmitted with the mixture or be embedded in the mixture [87], and will be used in the
decoder stage to separate the sources [88-91]. Ozerov et al. [91] show that the coding based
informed source separation can outperforms the oracle estimation, if the required bitrate provided.
It is bitrate vs quality of separation in this type of informed source separation, as it takes advantage

from both source coding and source separation.
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Among these types of informed source separation, the exemplar based informed source
separation has been pursued in this thesis as the MIDI files are not always available in the case of
the score informed source separation. Also, the coding based informed source separation did not
progress far as it investigates the quality of separation achieved in terms of the available bitrate,
and therefore it is far from the scope covered of this thesis; however it is very prompting future
work if it can be proven that the NMF2D can achieve better performance and lower bitrate than the
NMF.

2.7 Parameters Effecting The NMF/NMF2D

There are many parameters that effects on the NMF such as the cost function, initialization,
number of components, and window’s size. For the NMF2D the convolutive parameters can be
added to these parameters. These parameters can be explained as follows

2.7.1 Cost function: The cost function with Itakura-Saito divergence will be considered in this
thesis, due its scale invariant properties [49], which is important because it will deals with the low
and high energy components equally, compared with the EUC distance and KL divergence where

both methods consider the high energy components and suppress the low one.

2.7.2 Initialization: The initialization is an essential part for the separation because the NMF2D/
NMF are very sensitive to the initialization, where it can lead to convergence to unwanted local
minima, while good initialization can lead to faster convergence to the desired solution [92]. A

novel initialization method will be proposed to initialize the parameters of the proposed algorithms.

2.7.3 Number of Components and Convolutive Parameters: If number of components
(number of frequency basis) is selected lower than the required value then the model will not fit,
while if it selected larger than the required value then an overfitting will occur. For the convolutive
parameters the wrong selection can destroy the structure of the audio signal. Therefore, selecting
the number of components and convolutive parameter is an important factor in the separation,
which will be addressed by proposing a novel method that enables selection of all parameters

automatically.

2.7.4 Window Length: The spectrograms of the musical instruments act differently under
different windows length, where pitched instruments are smooth and continue in temporal

direction and discrete in spectral direction, and the opposite for the percussive instruments [93].
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Therefore, different windows length will be considered in order to enhance the performance of the

separation.

In this thesis all the parameters those effects on the separationwill be tackled, by considering the
IS divergence as a cost function, proposing a novel initialization method for the proposed
separationalgorithms, suggesting a novel method for estimating the number of components and the

convolutive parameters, and considering the effects of the window’s length.

In the proposed separation methods the GEM-MU algorithm [80] will be considered. The
GEM-MU algorithm is a hybrid-model that combines both the Expectation-Maximization model
and Multiplicative Update rule, it will be explained in the following chapters. Also, the NMF2D
has been applied directly on the statistics (e.g., the spectral covariance matrix) instead of the data
itself (i.e., the mixed signal or its spectrogram). Hence the domain of interest is required to match
with the statistical quantity to be decomposed rather than the data domain. Data domain suchas the
log-frequency spectrogram is intrinsically a nonlinear transform. The GEM-MU algorithm is
developed based on the linear model in the linear spectrogram and as such, the linearity structure
will not be preserved in the log-frequency domain. In particular, the NMF2D is used in the M-step
of the GEM-MU algorithm which normally is based on the statistics from the E-step of the
GEM-MU algorithm. Hence the log-frequency will violate the linearity structure of the statistics
from the E-step of the GEM-MU algorithm, and this will leads to breaking the audio structure
(signature) of the signal. Therefore as the proposed decomposition does not work directly on the
data, it is not necessary to transform the data to the log-frequency domain. Furthermore, the
log-frequency will lose information when resynthesizing the estimated sources as any mapping
back from log-frequency to linear frequency is only an approximate mapping.

2.8 Summary

In this chapter the blind source separation and the informed source separation have been reviewed.
Also, the audio source separation that is based on factorization techniques such as the NMF,
NMF2D, NTF, and NTF2D have been discussed. It has been shown that the NMF2D is more
flexible than the NMF as it has the ability to control the pitch and temporal changes. Furthermore,
parameters that effect on the separation have been highlighted and these will be tackled in Chapters
three, four, and five.
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CHAPTER 3
BLIND SOURCE SEPARATION USING GAMMA EXPONENTIAL
PROCESS AND TWO DIMENSIONAL MATRIX FACTORIZATION

TECHNIQUES

In this chapter a novel underdetermined blind source separationalgorithm based on the NMF2D
with adaptive sparsity? will be proposed. The proposed algorithm is adapted in an unsupervised
manner under the GEM-MU hybrid framework [80]. As the number of parameters in the NMF2D
grows exponentially as the number of frequency basis increases linearly, the issues of model order
fitness, initialization and parameters estimation become ever more critical. Furthermore, a novel
method that uses the Gamma-Exponential process as an observation- latent model will be proposed
to optimize the convolutive parameters and number of components in the NMF2D. Additionally, it
is also shown that the parameters of the NMF2D can be initialized by the proposed
Gamma-Exponential process. In addition, the issue and advantages of using different window
length with different number of convolutive parameters will be investigated in this chapter. Finally,
the effectiveness of the proposed algorithm will be verified through the experimental results on the

synthetic convolutive mixtures and live recordings mixtures.

The chapter is organized as follows: The proposed model will be introduced in Section 3.1.
Section 3.2 is dedicated for the details of the source model. The development of GEM-MU
algorithm to work with the NMF2D and with adaptive sparsity will be presented in Section 3.3. In
Section 3.4 the Gamma-Exponential process will be proposed for estimating the number of
components and convolutive parameters, and initializing the NMF2D. Section 3.5 will discuss the
influence of the windows length on the separation. Experimental results will be shown in Section

3.6. Finally, Section 3.7 draws the conclusions.

2 The sparsity isthe penalty onthe activation matrix that ensures only a few units (out of a large population) will be active at the same time. The
sparsity can be added as a constraint tothe cost function [1]P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Joumal
of Machine Learning Research, vol. 5, pp. 1457-1469, Nov, 2004..
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3.1 Introduction

As most research on NMF2D has been limited to instantaneous mixture [25-29, 31, 32] and as
the number of sources in most cases is greater than the number ofchannels, then, in this chapter the
case of the underdetermined channel with convolutive mixture will be considered. The proposed
NMF2D with adaptive sparsity instead of uniform sparsity will be developed within the framework
of the GEM-MU algorithm [80]. Furthermore, the factors that effect on the NMF2D such as the
cost function, initialization, windows length, and convolutive parameters will be controlled. The
cost function with Itakura-Saito divergence will be considered in this chapter due its advantage of
scale invariance properties [49]. This is important because source separation requires us to deal
with the low and high energy components equally. Compared with the Euclidian distance (EDU)
distance and Kullback-Leibler (KL) divergence, both methods favor the high energy components
but suppress the low energy ones. Furthermore, as each musical instrument has its own
characteristics in terms of the spectral and temporal features e.g., drum instrument has a high pitch
with low temporal note while the opposite is true for the piano; then different windows length will
be considered in the separation. To understand the effects of the convolutive parameters on the
separation performance, the NMF2D will briefly described. Let C(n,m) be a data matrix of size
N x M with nonnegative entries, then C(n,m) is approximated with two nonnegative tensors
Ank,7) and B(k,m,¢) as C(n,m) ~ XK_, Yrmex Yomax A(n— ¢, k,0) B(k,m —1,¢) . The
terms K, 7,,,, and ¢,,,, are the number of components, and the maximum number of the
convolutive parameters = and ¢, respectively. If 7., and ¢,,,, are chosen more than the actual
requirement, then they will break the structure of the audio signal, i.e., A(n, k, ) and B(k,m, ¢)
will be shifted more than the actual requirement. This will generate undesirable spurious artefacts
to the audio signal and subsequently leads to interference. Therefore, in this chapter a novel method
will be proposed to estimate the convolutive parameter. Another dimension for consideration is
initialization which is an essential part for the NMF and NMF2D. Good initialization of the model
parameters will lead to faster convergence to the desired solution. Therefore, the spectral and
temporal tensors of the proposed Gamma-Exponential process will be used to initialize the spectral

and temporal tensors of the proposed NMF2D model.
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3.2 Source Model

Consider the underdetermined channel with convolutive mixture, namely:

=iLZa (D3t —1) + by(1) (3.1)

j=11=0

where %;()(i=1,..,I,t =1,..,T) is the sampled mixture signal and I is the number of
chanrels, 5, (j =1,...,J) is the source signal and J is the number of sources, d;;(7) is the
finite-impulse response of some (causal) filter, L is the filter length, and b,(t) is some additive

noise. By assuming that the mixing channel is time- invariant then the short-time Fourier transform

(STFT) of egn. (3.1) can be expressed as

]
Xifn = Z ijrSjn T Difn (3.2a)
j=1
and in matrix form
Xy = ArSp + By (3.2b)

C™Nand f =1,...,F is the index of a frequency bin. As the NMF2D with multiple frequency
basis will be considered as the spectral variance model in this chapter instead of the NMF spectral
model [49], then each source in the STFT can be expressed by K; complex-valued latent

components, i.e.,

S: =

j.fn Ck,j,fn (33)

M=

k=1

and can be modeled as realization of proper complex zero-mean variables:

Ck,j,anJV;(O’O-Icz,j,fn)

Tmax Pmax

0. ) D Wkt (3:4)

=0 ¢=0
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where IV, (u, ) is the proper complex Gaussian distribution [94], w;,i represents the spectral basis

of the jt source, and hf’;{ represents the temporal code for each spectral basis element of the ji
source, for f =1,..,F,n=1,..,N,j=1,..,J,and k = 1,... K;. The noise b, ;,, is assumed to

be stationary and spatially uncorrelated, i.e.

by~ (0,07 ) (3.5a)
and
5, ;= diag|oX] (3.5b)

The parameters A,%,,A4,C = {c,; }, W ={w/},H = {h{7} will be estimated via the

posterior probability

P(X|C,A,Z,)P(C|W ,H)P(W ,H |A)
P(X|A,Z,)

P(CIW)H |X’Al2b)/1) = (3.6)

and their minus log-posterior is given by

—logP(C,W ,H |X,A,Z,,A ) = —logP(X|C,A,2,) — logP(CIW ,H) —logP(W,H|A)
+const (3.7)

where A:{/l‘,’j:,’;} is a tensor that contains the sparsity terms.

3.3 Proposed Estimation Algorithm

The GEM-MU [80] combines both the expectation maximization (EM) algorithm and the
multiplicative update (MU) algorithm. The source power spectrogram posterior estimates (; ,,)
(see eqgn. (3.12)), the mixing parameter, and the noise covariance will be estimated in the E-step of

the EM algorithm, while W and H will be estimated in the M-step of the EM algorithm by using
the MU algorithm with adaptive sparsity NMF2D.
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3.3.1 E-Step: Conditional Expectations of Natural Statistics

The log-likelihood in the right hand side of egn. (3.7) can be expressed as

H_
—logP(X|C,A, X)) = Z(xfn —Arsen) EpH(Xen — Arspn) + Z logdet £, ;
fn fn

=N z tr{Z;FRyx s} — N z tr{Af 2, 1Ry}

f f

N Y tr{5;2 4, (Rys )"V + N Y tr{A¥ 5524 Re )

bfOof\Bxsr f “bfOf0ss,f
f f

+2 logdet 5, , (3.8)

fn
where the superscript H is the Hermitian transpose. The correlation matrices are given by

1
Rexs =% ). ¥uXin (3.9)

n

R =12 s, st (3.10)
SS,f N fn fn .

n

and the cross-correlation matrix is given by

R =lz xq, s (3.11)
XS, f N fn2fn .

n

The source power spectrogram posterior estimates [80] is as follows

Djpn = Rssn (o) (3.12)
where

Rgsfn = E[an]E[SJIjn] + 5 pn

= gfngjl‘—ln + 2s,fn (3.13)
gfn = Z'S,an}I:IZx_}nxfn (3.14)
Sopn = (I = ZqpnAf 27 1nAr) Es (3.15)
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2y n = A2

s,fn

] Tmax (;bmax

= diag ZZ Z wf ¢khfrjl .

k=1 t=0 ¢=0 .
]

Detailed derivation of egn. (3.14) and eqn. (3.15) can be found in [14].

3.3.2 M-Step: Update of Parameters

Ar and 2, ¢, will be estimated as follows

9
—log P(C,W ,H |X,A,%,) =0
A,

which leads to
Af = Rxs,fRs._sl,f

Similarly,

—logP(C,W ,H |X,A,Z,) =0
X, ¢

which leads to
Ly = diag(RXX,f - RXS,ngsl,fR)IzS,f)

where

RXX,f = RXX,f

1
RXS,f = Nz xan[S;In]

n

1
—— oH
= E XrnSin
n
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(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)



1
n

As p; ¢, Is estimated from the E-step, then the second term in the right hand side of eqn. (3.7) can

be written in term of p; -, and expressed with Itakura-Saito divergence as

—logP(PlW,H) = Z Dls(ﬁj,fn| Dk 2 X W;'_j(l,,khfi_f) (3.25)
ifm

where P = {ﬁj,fn}j fn The third term in the right hand side of eqn. (3.7) is the prior information on
W and H . The priorover W is flat where eachcolumn is assumed to be factor-wise normalized to
unit length ie. p(W) =1I; 6 (||Wf||2 - 1). Each element of H has independent decay parameter

A‘,f,'{; with exponential distribution:

p(W,H|A) = 1_[ s(Iwill,—1)+ l_[p(H,i' |4,
j.k

J

= [o(iwin,-1)+]

L | || p(hieal2%s)
AL 11111
= “5(||Wf||2 - 1) +

T[] [Men(-2m20) - 326)

The negative log-likelihood for prior on W and H is derived such as

—logp(W, H|A) = —log 1_[5(”"”'”2 1) |~ log ﬂﬂﬂﬂﬂi’iew(—l‘ﬁ:ﬁ;h&{
j k n o)

J
== Dogs (W], = 1)+ > > > > (aIndl -log ) (327)
j j ok on ¢
The first term on the right hand side of eqn. (3.27) can be satisfied by explicitly normalizing each

, . N 2
- - - - T,] _ T,] T,] -
spectral dictionary to unity i.e. Weh = We ik (Wf,k) . Thus, only the second term remains

ie. —logp(W,H|A) = X, X, X, Z¢(/1j‘(’:1{hf:7{ —log/l‘,f,',’;). Adding eqn. (3.27) to IS divergence
derived in egn. (3.25), will leads to the following
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—log P(C|W ,H) —log P(W ,H |A)
= ) DBy | T T T Wi D) + Z (ALIRET — logaP)

ifin Jkmn,
z B fn D) fn
= —_ log - 1
¢.j T.J b.J
jkfon 2T.¢>( f ¢>khkn 1') Zmb( f ¢khkn ‘r)
+ ) A= > logal) (3.28)
j.kn,g jkn,g

Let

ZZZ wil, B2 ) (3.29)

then the derivatives of individual component for proposed model with respect to w” and h"b 7 can

be derived as:

0
Tj,logP(C, W,H |X,A,Eb )
Wfl,k/

-1 @.j'
Zp] 1! +¢>n J' f+¢n hk'n T’ +Zvj',f'+¢,nhk’,n_.[l (330)
dn

Similarly,

9

— — A -2
7 10gP(C,W H X, A,Z,) = —ij,,f‘n,ﬂvj,f,n,ﬂ W ¢,k,+z vk ow
k' n' f.r

+ 2%, (331)
For each individual component, the standard gradient descent method is applied with

./
T"] T’ .l aCIS

i (3.32)
Wger 1
flk

and
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T
ond,

I r
hqb/n/(—h;fn —-n

K (3.33)

where 7, and n, are the positive learning rate. Based on [35], the positive learning rate can be set

as
wi,
n, = L (3.34)
Z¢n j f+¢nhk'n T/
and
h&,
_ k'n
n, = yr o7 (3.35)
Zf,r ' fn +TWf ' K +/1k':n'
The MU rules for w, " is given by
t'j 2 o.j -1
.j .j Wy ( Lon Bj' ' +on V7 f s pmliinoe + Lon V' s 19, nhk’n -7’ )
Wf/ 1 Wf’k’ -

qun j f+¢nhk’n -’

A ¢.j
Z¢,npj,,f’+¢),n ] f+¢nhk n— T

w I’J(I «— w II](I (336)

-1
Zgb,n v]",f'+¢ Tlhk' n—t’

and as for hﬁ;f’, the update is given by

~

¢ (_y 5 -2 2 YL ¢
hk’,n’ z:f,‘tpj',f,n'+‘rvj',f,n'+‘r Wf_¢’ k! + Zf,r vj',f,n'+1' f-¢' k' + Ak',n

Zfr an+-[ f¢'k' }{kl !

R -2 ”
o Zf,f Py '+t Vi o’ v Wegr it
A

(3.37)
T’ ¢’
Zf‘r ' fn +tWrlg it +/1k’,n'

For the sparsity term, the update is obtained by solving %log P(C,W ,H |X,A,Z,) = 0 which
ar%,

k' n'

leads to

35



0
TlogP(C,W,HIX,A,Z‘b)

k'n'

p’\'. n ﬁ n J L J
0 (B (B2~ 10g B2 1) 4 2,4 1AL, ~ 3,5 10g20))

_ jfn o
oA,
jon
roa 1
= hf/';]l/ —W (338)
Ak’,?’l,
Therefore, the solution for /1‘,’2:;: is given by
roa 1
. _
W= — (339)
k' n'

3.3.3 Components Reconstruction

The estimated sources (8, ) can be reconstructed by using Wiener filtering (ZS_ n

Afs-1 Yasin
eqn. (3.14), and due to the linearity of the STFT, the inverse-STFT (with dual synthesis window

[95]) can be used to transform it to the time domain.

3.4 Estimating The Number Of Components And Number Of Convolutive Parameters In
NMF2D

3.4.1 Variational Bayesian Formulation

The determination of the number of components in NMF has been previously investigated in [96]
by means of nonparametric statistical fit. However, the method cannot be directly applied to the
NMF2D model as the number of convolutive parameters and number of components will be
lumped together. Thus the method in [96] will estimate anoverfit model. In this work a constrained
Gamma-Exponential process to estimate the convolutive parameters and the number of

components of the NMF2D will be proposed. The proposed Gamma-Exponential process
introduces a hidden tensor of nonnegative values 9,:"’5 that weighteach element of the factor model

ko e w;f¢_kh£i_f) such that the number of components and convolutive parameters are
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inferred automatically based on the mixture power spectrogram pz,, which is estimated from the
observations as |xl-,fn|2. The model order k, T, and ¢ are assigned to a large integer values (ideally
infinity) and the proposed model will retain a finite number of each subset corresponding to the

active elements in 8. To the best of our knowledge, this is the first proposed method on the

NMF2D to estimate the number of convolutive parameters of the NMF2D model.

The generative process of the mixture power spectrogram is assumed to follow the

Gamma-Exponential process as follows:

pf.~Exponential (Z 07 w w;” ¢khf,’l T) (3.40)
j,k,T,¢

wii~Gamma(ay’, a”) (341)

he7 ~Gamma(b?”, b?) (342)
at?

0%? ~Gamma k a?c 3.43

where L is the truncation level, k number of components, a, a, and b are the shape parameters,

and c is the inverse shape parameter ¢ = 31? where x is the empirical mean of pf,. The empirical

mean of pf,, can be expressed as follows
Ep[p})‘cn] = Z [ew [ We_ ¢>k][E hﬁrjl o
JkTd

1 3.44
- (3:44)

The posterior distribution of parameters Q = {{0“”} {wf AR e } is approximated by resorting

to the generalized inverse Gaussian (GIG) distribution, the statistical properties of the GIG can be
found in [97]. The PDF of the GIG distribution is

onl-m-£)()
2%, (2/F)

NIR

GIG(y;v,p, B) = (3.45)
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where K, (+) is the modified Bessel function of the second kind and y > 0,p = 0,and 8 > 0

Py can be shown to be lower bounded by

logp(pfular? i, b2, ) = Eq[logp(pfalwii. he s 62

+E, [logp(w/}|ay” )] — E, [logp(w/)]
+E, [logp(hk‘;ﬂb,f'j)] — E, [logp(hk,'rjl ]
+E, [logp(@,f’qb |a;’¢, )| - E, [logp(@,f’d’)] (3.46)

The likelihood term in eqgn. (3.46) can be solved as follows

1
q[logp(pfnl ;li'hﬁé‘ T'(p)] Zzpfn ((pfnk [ b b.J ]
] kr,¢ 0 h

k fd)kknr

L g, lz: 0P wit RO l (347)
ikT,¢

where
-1
¢ E 1 3.48
Pk q Z-9T¢ Tjhd)] (3.48)
i% Weiken
and
—E [Z“mp 07w P ’l (3.49)

The rest of eqn. (3.46) can be approximate by the generalized inverse Gaussian distribution (GIG)

( ) GIG (Vw fk'pwf kuB;fV]fk (3.50)
q(h ) GIG(Vh kn’ phkn'ﬁhkn (3.51)
q(@,I’q)) = GIG(VQ k' Po, k»ﬁ; (3.52)

where
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wa k= a;] (3.53a)

P = @ +E, [9”"]2 Ey [fi-o] (3.53h)
T,] —
k kn-t
V;?;}J:n = bl(f’j (3.54a)
. . E
ot = b +E,[677] ) Ealve] (3.54b)
fiT Wrn
il ! 3.54
IBh,k,n - -L-¢ an(ankIEq ‘L'] ( . C)
f ¢k
a®?
Vor = : (3.55a)

L + ¢max + Tmax

Ey |2 w2y chi_ ]

o =a e+ o (3.55b)
ﬁ513=pfn<pi,f,nIEq[ - 57 ] (3.55¢)
Z tpkhkn -7
Finally, expectation over q(Q) can be computed by
K1 (2/PB)B
E,[y] = == (3.56)
NN
11 _ %, (2/PB) /P
E, |=| = == (3.57)
1z %, (2/pB /B
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3.4.2 Initialization

The initialization is an essential part for the separation since the NMF2D and its variants are very
sensitive to the initialization. In this work, the Gamma-Exponential process will be proposed to

initialization the spectral and temporal tensors of the NMF2D as follows

e «”8 k/pwfk y” +1< «/ wfkﬁwfk>
7,j (initial)

o ) (3.58a)
K ( m>
hf,’r]l(mmal) _ in .

. b.j
Ky;fji <2,/phkn h,k,n)

for the convolutive parameters and number of components that obtained from the

Gamma-Exponential process.

Table 3.1 summarizes the main steps of the proposed algorithm.

Table 3.1: Proposed algorithm

1. Estimate the number of components and convolutive parameters by using the proposed

Gamma-Exponential process in egns. (3.53)-(3.55) and compute E, [9,:"1’].

2. Initialize WfT ,{ and h"’ 7 with the proposed Gamma-Exponential process spectral and temporal

tensors in eqn. (3.58a) and eqn. (3.58b), and initialize /1"” with positive value.
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3. E-step: compute p;., eqn. (3.12).
4. M-step: compute A, %, ¢, w w" h"” and )L¢’ using egn. (3.19), eqn. (3.21), egn. (3.36), eqn.

fik
(3.37), and eqn. (3.39).

5. Normalize wy o= fk/ ka‘r( )

6. Repeat E- and M-steps, and the normalization until convergence is achieved where rate of cost

change is below a prescribed threshold, .

7. Take inverse STFT with dual synthetic window to §,.

3.5 Window Length

The power spectrogram of the pitched and percussive instruments has different characteristics.
Pitched instruments are smooth and continue in temporal direction and discrete in spectral
direction, and the opposite for the percussive instruments. Therefore, short and long windows will
be used for the percussive and pitched instruments, respectively, in order to match their
spectral-temporal characteristics. The impending challenge is in the singing voice whichacts like a
pitched instrument but with more fluctuations. Therefore it is difficult to separate the singing voice
when it accompanied with pitched instrument since they share similar characteristics. As the
singing voice acts like percussive instrument in long window (and as pitched instrument in short
window), then the advantage of this characteristic will be considered, where a long window will be
used when the singing voice accompanied with pitched instruments, in order to distinguish

between them.
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3.6 Results and Discussions

The proposed algorithm will be compared with the standalone EM and MU based algorithms [8],
GEM-MU based NTF [80] with adaptive sparsity and proposed initialization, and the GEM-MU
based NMF (by setting the convolutive parameters of the proposed algorithm to zero =0

max

and ¢,,,, = 0) with adaptive sparsity and proposed initialization.

3.6.1 Effects of Sparsity

First of all, the effect of the sparsity on the separation performance will be investigated by
comparing between the uniform sparsity and the adaptive sparsity. Anexperiment has been ran for
different values of the uniform sparsity and for the adaptive sparsity, for three sources that
convolutively mixed in stereo mixture that has 1m space between its microphones, 130 ms
reverberation time, and with 16 kHz sampling frequency. The following parameters were set for
the proposed algorithm; K; = 5 components per source, 7= {0,1,2,3,4}, and ¢ ={0,1}.
Furthermore, in order to focus on the sparsity effects only, an oracle initialization (where the input
parameters are known) has been used. Figure 3.1 shows the average signal-to-distortion ratio
(SDR) [98] w.r.t different values of sparsity. The SDR shows a total separation performance that
includes a degree of separation and absence of nonlinear distortion. It is clear from Figure 3.1 that
the adaptive sparsity gives the highest SDR as it has a specific sparsity value foreachelementof H
instead of constant value for the entire elements of H as in the uniform sparsity. Furthermore, the
spectrogram of one of the estimated source for adaptive sparsity, over uniform sparsity, and the
under uniform sparsity is shown in Figure 3.2. It is clear from Figure 3.2 that the over sparsity
eliminates many spectra from the estimated source, as it assigned a lot of zero values in the H
matrix. While the under uniform sparsity has many unwanted spectra, as there are many of
unwanted elements in the H matrix. While, the adaptive sparsity address them correctly, as it
specified a specific value for each element of the H matrix, as in egn. (3.39).
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Figure 3.1: Average SDR w.r.t different sparsity values.
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Figure 3.2: Effects of sparsity on the estimated source.
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3.6.2 Evaluation

To evaluate the proposed algorithm the performance will be measured by using the SDR [98]
which measures an overall sound quality of the source separation where it combines the
signal-to-interference ratio (SIR), source image-to-spatial distortion ratio (ISR), and the
signal-to-artifact ratio (SAR) into one measurement. MATLAB codes for this evaluationprocedure
can be found in [99].

3.6.3 Datasets

As our results will be compared with the MU and EM algorithms of [8], then the same datasets of
this paper which match with the dataset dev2 of SISEC’08 “underdetermined speech and music

mixtures” will be considered, as follows

1. Synthetic Convolutive Dataset: This dataset consist of two groups. The wdrum group which
consists of three percussive instruments and the ndrum group which consists of three

non-percussive instruments.

2. Live Recording (Convolutive) Dataset: This dataset is more complicated than the Synthetic
convolutive case as it contains different musical instruments with vocal signal. It consists of two
groups the wdrum group which consists of vocal and musical instrument with drum, and the

ndrum group which consists of vocal and musical instruments without drum.

All the mixtures were 10s long, and sampled at 16 kHz. Also, they have 130 ms of reverberation
time with 1 m space betweentheir microphones. Different windows length will be used in the STFT
with 50% overlaps. The STFT MATLAB code is available from [99].

3.6.4 Results of the Synthetic Convolutive Dataset:

1. wdrum Case: As all the musical instruments are percussive that have short temporal then the
STFT with window length of 512-sample was selected. Firstly the effect of the proposed
Gamma-Exponential process in estimating the number of components and the convolutive

parameters will be investigated. The bounds of the proposed Gamma-Exponential process setas
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follows: T ={0,1,2,...,10}, ¢ ={0,1,2,...,10}, and K = 20. The results of the proposed
Gamma-Exponential process are shown in Figures 3.3 and 3.4. The number of active

components in the NMF2D as estimated according to the hidden latent variable in eqn. (3.40) is

given by
1 Tmax Pmax
- 5 5o
1 [ek] (Tmax + 1) (d)max + 1) =0 ¢=0 1 [ek ]
where

.9 ; T, T,¢ pT,¢
«/ﬁe,k /pe,kjcy;'k+1 (2\’p9.k'80,k>
¢ pT.P
%y;:f (2\/p6,k'89,k>

In above, a uniformdistribution for both q(7) and q(¢) is assumed. The active component can be

E, [91:4)] =

defined as

E [0
k k=1 ]Eq [ek]
where ¢ is a small constant which can be setas 0.1. E, [6,]1s treated as a histogram and the active

components are selected as those that exceeds 10% ofthe overall sum. Figure 3.3 shows the values
of E, [6,]for k = 1,...,20 which are predominantly zero except for k = 3,8,11and 20 whose

E,[6)] values are 1.46, 0.07, 2.1 and 3.23, respectively. The term P E, [6,] has been
calculated to be 6.86 and thus, the active components are only k, = 3,11 and 20. Let K, = # k,,

that is, the number of active components e.g. in Figure 3.3 this corresponds to K, = 3. Since there

are J = 3 sources, then K; = K, /] = 1 for j = 1,2, 3. In addition, for each k, active component,
the distribution for (7, ¢) has been determined which is given by E, [9;’3{*]- These are shown in

Figure 3.4. The optimum model for (z, ¢) is selected by treating each E, [672.] for various values
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of (1, ¢) as a histogram. Thus the optimum model for (7, ¢) is given by the average of non-zero

components:
A £ £
Tmax k, = () -1
#(F® = 0,v1)
T ()
~ mer K
¢max,k* = Zl(:p(; L -1
#(F? = 0,v1)
where
T,0=1
(1) . ]Eq [0k=k
F*’ = #component in =
l 3. E, [6707]
T Hq |Vk=k,
E Hrfl,qb
Fl(¢) = #component in q[ k=, >¢

=L¢9| —
Zd) IEq [6k=k*
The term FI(T) counts the number of = components in the normalized E, [6797] that exceeds

g, and #(FL(T) + 0, vl) counts the number of entries in FZ(T) that is non-zero. The same

interpretation is applied to Fl("b) and #(Fl("b) * O,vl) for determining the model order ¢,,,, . From

Figure 3.4, it can be calculated that %,,,,, =4 and ¢,,,,., = 10 for all k,, then £, =

Z“%’”‘ =4,and ¢, M%"" = 10. Thus, the optimum model order for the NMF2D model

in eqn. (3.4) is given by K; = 1,%,,,, = 4 and ¢,,,,, = 10.

For the current values of the convolutive parameters (z,,,, = 4 and ¢,,,,,, = 10) the tensors of
proposed Gamma-Exponential process eqn. (3.58a) and egn. (3.58b) will be used to initialize the
proposed GEM-MU based NMF2D algorithm, and its SDRs are tabulated in Table 3.2. It can be

seen from Table 3.2 that the SDRs of the proposed GEM-MU based NMF2D is better thanall other

max

algorithms. Thus by using the proposed Gamma-Exponential process, the number of components

and convolutive parameters can be estimated, and the proposed algorithm can be initialized.

Furthermore, despite it is not straight forward to compare the proposed Gamma-exponential
process with other methods as it is for the best of our knowledge is the first method to estimate the
convolutive parameters in the NMF2D. However we proposed to compare with the mesh method

that compute the SDR for each single selection of the convolutive parameter (for ¢ = {0, 1, ..., 10}
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and ¢ ={0,1,...,20}) and check the convolutive parameters that give the highest SDR. This
method is time consuming and unrealistic as it required the original sources to compute their SDREs.
We applied it on the above case of synthetic convolutive with drum, as shown in Figure 3.5. The
figure shows the results of the mesh method of running the NMF2D algorithm for every possible
case of T and ¢. In total, there are 11 x 21 = 231 possible model order. The highest SDR is
obtained at SDR = 4.08 dB with 7,,,,, =9 and ¢,,,,,, = 10. There is 0.06 dB difference between
the SDR of the Mesh method and the SDR of the Gamma-Exponential process, which is acceptable
difference in comparison with the time required to find the model order using the mesh method.

Finally, the cost function versus iteration number is plotted in Figure 3.6 (a large constant value
has been added to the curve to ensure positivity). Figure 3.6 shows that the cost function has been

converged. Finally the waveforms of the estimated sources are shown in Figure 3.7.

35 T T T T

25+

E[6)]

0.5F

Figure 3.3: Number of components by using Ga-Exp.
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Figure 3.4: Convolutive parameters corresponding to each component by using

Ga-Exp.

Max at =9 and ¢=10

3.5

Ads ow«._oh<

Figure 3.5: Average SDR w.r.t the convolutive parameters.
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Figure 3.6: Convergence of the cost functions.
Table 3.2: Convolutive mixture with drum (wdrurm).
Algorithm Parameters SDRs Avrg
S1 | S S3 SDR
EM NMF Window=512 6.89 |-4.83 | 1.75 | 1.27
MU NMF Window=512 5.10 [-9.87 | 2.46 | -0.77
GEM-MU NTF Window=512 6.18 |-1.32 | 3.00 | 2.62
GEM-MU NMF Window=512 554 |-0.28 | 1.21 | 2.16
K =1
Proposed Window=512 8.42 |-0.46 | 4.27 | 4.08
GEM-MUNMF2D | %, =9
With MeshMethod | ¢~ =10
Ki=1
Proposed Window=512 7.99 |10.22 | 3.86 |4.02
GEM-MUNMF2D | ¢, . =4
With Ga-Exp Brgre = 10
K =1
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Figure 3.7: Waveforms of the estimated sources for drum case.

2. ndrum Case: Since all the musical instruments were pitched (non-percussive) and had long

temporal characteristics then the STFT with window length of 2048-sample was selected. By
following the same procedure of the wdrum case, the number of components and convolutive
parameters are selected from Figure 3.8 and Figure 3.9, respectively. From Figure 3.8, it is
calculated that K, = 5 and since there are 3 sources, one may consider partitioning this into

K; = 2. Also from Figure 3.9, the convolutive model order are determined as follows %,,,, =

5,and ¢,,,,, = 10. For the mesh method the highest SDR (which is equal to 3.41 dB) is

obtained from t,,,, =8and ¢,,,, = 9as shown in Figure 3.10. The cost function and the
waveforms of the estimated sources are shown in Figure 3.6 and Figure 3.11, respectively.
Furthermore, all the results are tabulated in Table 3.3. It can be seen from this table that the
average SDRs of the proposed algorithm with window 2048-sample are better than the rest the
algorithms. Also, it can be seen that there is 0.1 dB difference between the SDR of the Mesh
method and the SDR of the Gamma-Exponential process, again the 0.1 dB is an acceptable

difference.
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Figure 3.8: Number of components by using Ga-Exp.

Table 3.3: Synthetic convolutive without drum (ndrum).

Algorithm Parameters SDRs Avrg
S1 S2 | Ss SDR
EM NMF Window=2048 [4.18 |1.02 |-1.8 | 1.10
MU NMF Window=2048 |2.89 |1.04 [-2.09 | 0.61
GEM-MU NTF Window=2048 |2.93 |3.09 [1.57 | 2.53
GEM-MU NMF Window=2048 |2.98 |2.57 |1.15 |2.23
K =2
Proposed Window=2048 | 1.63 |3.39 | 5.21 | 341
GEM-MUNMF2D | £, =8
With MeshMethod | ¢ =9
Ki=2
Proposed Window=2048 |1.85 |3.33 |4.75 |3.31
GEM-MUNMF2D | £, =5
With Ga-Exp Prnax = 10
K; =2

o1
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Figure 3.9: Convolutive parameters corresponding to each component by using

Ga-Exp.
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Figure 3.10: Average SDR w.r.t the convolutive parameters.
° Source One Source Two Source Three
Original 2 =) 5 5
Sources =
= OW 0 M 0 W
B 5 -5
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Estimated g 19 Estimated Source One 10 Estimated Source Two 5 Estimated Source Three
Sources: Z
e N e
based  E_10 .10 5
NMF 0o 2 4 6 8 10 0 2 4 6 8 100 2 4 6 8 10
Estimated g 10 Estimated Source One 10 Estimated Source Two 5 Estimated Source Three
Sources: 2
MU =0 0 —-Mm-f-v—v— 0
based 5_10 -10 =5
NMF 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
5 ) Estimated Source One Estimated Source Two Estimated Source Three
Estimated S 10 5 5
Sources: =
= 0
Proposed E- 0" ' ' l . O}M “l " I".""‘\
i -10 -5 -5
Algorithme- 106 8 100 2 4 6 8 100 2 4 6 8§ 10
Time (s) Time (s) Time (s)

Figure 3.11: Waveforms of the estimated sources for no drum case.
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3.6.5 Results of the Live Recording (Convolutive) Dataset:

1. wdrum Case: By following the same procedure of the previous sections, window length
of 2048-sample was selected for the STFT, the number of components and convolutive
parameters were selected from Figure 3.12 and Figure 3.13, respectively, where it is clear from
these figures that K; = 3, %,,,,, = 1, and @,,,, = 3. For the mesh method the highest SDR
(which is equal to 7.96 dB) is obtained from t,,,, = 1and ¢,,,, = 1 asshown in Figure 3.14.
Figure 3.15 shows the convergence of the cost function w.r.t the iteration number. Additionally,
all the results are tabulated in Table 3.4. It is clear from Table 3.4, that the SDRs of the proposed
algorithm are the best. Also, it can be seen that there is 0.18 dB difference between the SDR of
the Mesh method and the SDR of the Gamma-Exponential process, which is an acceptable

difference. Finally the waveforms of the estimated sources are shown in Figure 3.16.

12

Figure 3.12: Number of components by using Ga-Exp.



Figure 3.13: Convolutive parameters corresponding to each component by using Ga-EXxp.
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Figure 3.14: Average SDR w.r.t the convolutive parameters.
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Figure 3.15: Convergence of cost functions.
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Table 3.4: Live recording with drum (wdrum).

2 4 6 8 10
Time (s)

Time (s)

Algorithm Parameters SDRs Avrg
S1 S2 Ss3 SDR
EM NMF Window=2048 | 4.96 | 5.55 | 8.03 6.18
MU NMF Window=2048 | 4.19 | 450 | 7.58 5.42
GEM-MU NTF Window=2048 | 5.89 | 7.90 | 7.68 7.16
GEM-MU NMF Window=2048, | 5.99 | 7.74 | 7.58 7.10
k=3
Proposed GEM-MU | Window=2048 | 6.77 | 8.65 | 8.47 7.96
NMF2D to=1
With MeshMethod | ¢, . =1
=3
Proposed GEM-MU |Window=2048, | 6.58 | 8.65 | 8.12 7.78
NMF2D With 2 =1,
Ga-Exp Prnax = 3,
=3
Source One 5 Source Two 10 Source Three
-5 -10
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
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Figure 3.16: Waveforms of the estimated sources for the live recording with drum case.
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2. ndrum Case: Since this dataset contains pitched musical instruments and vocal, and as the
vocal sound acts like percussive instrument in long window, then a long window of
4096-sample is selected for the STFT. The number of components and convolutive parameters

were selected from Figure 3.17 and Figure 3.18, respectively, where it is clear from these

Figuresthat K; = 5, ©

max

= 1land ¢,,,, = 7. For the mesh method the highest SDR (which is
equal to 5.16 dB) is obtained from t,,,, =2 and ¢,,,, = 9 as shown in Figure 3.19. The cost
function with respect to the iteration number is shown in Figure 3.15. All the result has been
tabulated in Table 3.5. Also, it can be seen that there is 0.55 dB difference between the SDR of
the Mesh method and the SDR of the Gamma-Exponential process. Finally, the waveforms of

the estimated sources are shown in Figure 3.20.

It can be seen from Tables 3.2 to 3.5 that the SDR of the proposed algorithm based on
Gamma-Exponential process on average is 0.22 dB less than the SDR of the proposed algorithm
that based on the mesh method. The 0.22 dB is acceptable difference in comparison with the time

required to find the mesh method convolutive parameters.

Figure 3.17: Number of components by using Ga-Exp.
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Figure 3.18: Convolutive parameters corresponding to each component by using Ga-Exp.
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Figure 3.19: Average SDR w.r.t the convolutive parameters.

Table 3.5: Live recording without drum (ndrum).

Algorithm Parameters SDRs Avrg
S1 S2 S3 SDR
EM NMF Window=4096 | 6.02 168 [-091 |226
MU NMF Window=4096 |4.27 0.05 |-3.14 |0.39
GEM-MU NTF Window=4096 |7.71 3.60 [-0.40 |3.64
GEM-MU NMF Window=4096, | 6.80 210 [-0.24 | 2.89
K; =5
Proposed Window=4096 9.28 5.75 | 0.44 5.16
GEM-MUNMF2D | £, =2
With Mesh Method Priax =9
K; =5
GEM-MU NMF2D | Window=4096, 8.93 4.83 |0.08 4.61
with Proposed Cnax = 1,
Ga-Exp Prnax = 7,
K;=5
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Figure 3.20: Waveforms of the estimated sources for the live recording no drum case.

3.7 Summary

In this chapter the NMF2D has been proposed to develop a machine learning solution for
separating the underdetermined convolutive mixture in unsupervised manner and with adaptive
sparsity instead of the constant uniform sparsity. For faster convergence the proposed algorithm
has been adapted in the GEM-MU algorithm. Also in this chapter a new approach to efficiently
initialize the NMF2D has been proposed. Furthermore, the number ofcomponents and convolutive
parameters of the NMF2D have been estimated by the proposed Gamma-Exponential process.
Additionally, this chapter has shownthat the window length used in the STFT canbe used to match
the characteristics of the audio signals. If the mixture contains sources that exhibit pitch-like
characteristics, a long-time processing window will extract these sources more efficiently.
Conversely, a short-time processing window is more suitable for percussive- like sources. Results
have shown that the proposed algorithm is very promising, considerably more flexible and offers
an alternative model to the EM- and MU-based NMF, or NTF.

61



CHAPTER 4
UNDERDETERMINED HIGH-REVERBERANT AUDIO SOURCE
SEPARATION USING TWO DIMENSIONAL TENSOR FACTORIZATION
TECHNIQUES

In this chapter, a novel algorithm that able to separate the audio sources that have been mixed inan
underdetermined reverberant environment will be proposed. Namely, the fusion of K models of
full-rank weighted nonnegative tensor factor 2D deconvolution (K-wNTF2D) will be proposed.
This model will be adapted under the hybrid framework of the generalized expectation
maximization and multiplicative update algorithms in unsupervised manner. In addition, the
development and derivation of the proposed full-rank K-wNTF2D algorithm will be shown. Also,
the variable sparsity parameters that derived from the Gibbs distribution will be encoded into the
K-wNTF2D model in order to optimize each sub-model in K-wNTF2D with the required sparsity
which in turn will model the time-varying variances of the sources in the spectrogram.
Furthermore, the parameters of the K-wNTF2D will be initialized by the proposed initialization
method. Experimental results showed the effectiveness of the proposed algorithm in separating the

sources that have been mixed in underdetermined reverberant environment.

This chapter is organized as follows: The proposed K-wNTF2D model will be introduced in
Section 4.1. The sources model will be presented in Section 4.2. Section 4.3 is dedicated to the
derivation of variable sparsity and the adaptationof GEM-MU algorithm to work with the full-rank
K-wNTF2D. The initialization strategy will be proposed in Section 4.4. Experimental results on the
SiISEC’13 real datasets and comparison with recent methods will be discussed in Section 4.5.

Finally, the conclusions will be drawn in Section 4.6.

4.1 Introduction

A certain set of assumptions are needed to solve the ill-posed problem of the blind source
separation. One of these common assumptions in the BSS is the narrowband approximation, and to
understand it, it should be known how the observed multichannel signal x(t) can be expressed in

Short Time Fourier transform (STFT).The mixture x(t) can be expressed in time domain as
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J
%, () = Zci,j(t) b0, i=12.1 1)
j=1
where x;(t) € R,t = 1,...,T is the received signal from the it" microphone, ci,j(t) € R is the

spatial image of the source signal j and channel i, J is the number of sources, and b;(t) € R is some

additive noise. The spatial image of the source c; ;(t) can be expressed as

L-1
6,0 = a,@s,t =) (42)
=0
where a; ;(t) € Ris the finite-impulse response of some (causal) filter, L is the filter length, and
sj(t) € R is the original source signal.
By substituting eqn. (4.2) into eqn. (4.1), and assuming that the mixing channel is

time-invariant then, the STFT of egn. (4.1) becomes

]
Xifn = Z @i rSipn t biy (43a)
j=1
or in vector form
Xfn = Z @ rSjfnt brn (4.3b)
j=1
Where xf,n = [xl,f,n o xl,f,n]H, a],f = [al,j,f o al,j,f]H, a.nd xl-'f,n, ai,]-,f, Sj,f,n’ bi,f,Tl are

the complex-valued STFT of x;(t), a; ;(¢), s;(t), and b;(t), respectively. Theterm f = 1,2, ..., F
is the frequency bin index, and n = 1,2, ..., N is the time frame index. Thus, the convolutive
mixture in eqn. (4.2) is approximated by the narrowband approximation to an instantaneous
mixture, where it is assumed that L is shorter than the STFT window size [100]. According to this
assumption the covariance matrix of c; ; -, (the complex-valued STFT of c; ;(¢)) defined as

59 = Elc; ncinl (4.4a)

J.fm

and can be expressed as
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(0 _ w(@
ifn = g Vifn (4.4b)
or its scalar form as
© _ (o
Oijfn = %ijfVifn (4.4¢)

where i is the index that represents the column vectorization of a [ X I matrix ie. i=
{(1,1),(2,1), ..., (1,1),(1,2),(2,2),...,(I,D} € R", Zj(;)n € C™ is the covariance matrix of the ji
source image, Z].(;) € C'*'is the time-invariant spatial covariance matrix of the j" source, and

v;rn € R is the source variance. Therefore, in the case of high-reverberant environment where L
is greater than the STFT window size, this assumption will not work. To resolve this issue, Duong
et al. [9] propose a full-rank spatial covariance matrix (which models the spatial position of the

sources as well as their spatial spread) in place of the conventional rank-1 matrix formed from

(@)
s
take advantages of the full-rank spatial covariance matrix to model the mixing process, and used

= j,faff. They showed that their results are better thanthe rank-1 method. Arberetet al. [16]

the NMF to model the source variance. They showed that their results are better than Doung et al.

under the oracle initialization where both v; », and Zj(]‘? are initialized from the original sources.

However, for a more realistic case, it is not always possible to adapt the oracle initialization
approach. In addition, the NMF is practically too simplistic and does not efficiently model more
complex sources such as polyphonic music. Therefore, a more powerful source variance
representation should be used instead of the NMF (based on Arberet et al. [16]). One possible
representation is the NMF2D [25], which has a set of convolutive parameters (t and ¢) that are
convolved in both time and frequency directions by a time-pitch weighted matrix. A set of K
number of frequency basis is used instead of the single frequency basis to model the ji source

variance which results in

K Tmax Pmax

— 7. ®.j
U= . > wily il (45)

k=1 t=0 ¢=0

where K is the number of components or frequency basis assigned to the ji source. The terms

max

. . . T,j
and ¢,,,, are the maximum number of the convolutive parameters = and ¢ respectively. W)
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represents the k™ spectral basis of the j source, and hf_;{ represents the k™ temporal code for each

spectral basis element of the ji source, for f = 1,...,F,n=1,..,N,and j = 1, ...,]. Witheqgn.
(4.5), the covariance matrix in egn. (4.4) can now be expressed as

K Tmax Pmax

(©) (a) o,
50, =) > ) 5Pwd, hb (4.60)

k=1 t=0 ¢=0

and its scalar form as

K Tmax Pmax

(C) (a) o.j
l]fn Z Z Z z]f f ¢khkn -T (46b)

=1 1t=0 ¢=0

The full-rank “mixture covariance matrix” of x; ,, in eqn. (4.3b) is defined as

Z(x) E[x;nxt.]

= Z DA N (4.7a)

Lfn

where Zf(b) is the time invariant noise covariance matrix. Using eqn. (4.6a), Zf(’;) can be expressed

as

K ] Tmax Pmax

- (@ s, (b)
% ZZ Z Z 50wy b + 5 (4.7b)

=1j=11t=0 ¢=0
The scalar form of Zf(’g can be expressed as

K J Tmax Pmax

o @ i b ®)
%ifm ZZ Z Z TijrWr- ¢kh’kTJl T Of (4.7¢)

=1j=1t=0 ¢=0

Of special note is that eqn. (4.7b) represents a non-negative tensor factorization of the mixture
covariance matrix (arranged as a 3-dimensional tensor) into a product of spatial covariance matrix

(arranged as a 3-dimensional tensor), spectral basis and temporal codes (the latter two estimate the
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source image variances). Since eqn. (4.7b) is a combination of K models of weighted NTF2D, it
will be termed as the “K-wNTF2D’3,

The full-rank K-wNTF2D will be optimized using the GEM-MU algorithm [80] which
provides a probabilistic platform for joint estimation of the sources and the parameters as well as
preserving the non-negativity constraints of the model. In addition, the GEM-MU algorithm
accelerates the convergence speed of the parameters update. Concurrently, the variable sparsity
will be encoded into the K-wNTF2D instead of using some heuristics approaches to fix them to a
constant value. The variable sparsity will be developed based on the Gibbs distribution framework

and optimized under the Itakura-Saito divergence. This will be contrasted withthe uniform sparsity

which assigns a fixed sparsity over all the elements of H = {hf,i} Since the acoustic sources such
as speech changes dynamically over time, uniform sparsity will lead to either over-sparseness
(resulting in too many elements of H set to zero), or under-sparseness (a lotof ineffective elements
in H). The proposed variable sparsity relieves this problem by optimizing the sparsity for each

individual elements of H through learning from the data.

The Itakura-Saito (IS) divergence will be considered in this chapter due to its scale invariant
property [49]. Compared with the Least Square (LS) distance and Kullback-Leibler (KL)
divergence cost functions, IS divergence deals with both low and high energy components with
equal emphasis. Since both speech and music signals have large magnitude dynamic ranges, IS
divergence provides a faithful measure between the observed data and the output generated from
the adapted K-wNTF2D model. Also initialization strategy for the NMF2D will be considered.
Since poor initialization can lead to converge to unwanted local minima, a novel initialization
method will be developed to initialize the K-wNTF2D. For ease of understanding, a high-level

presentation of the proposed algorithm is shown in Figure 4.1.

3 By definition, a3-dimensional NT F is given by Viin 2 a; bf/ € This can be extendedto NTF2D hy introducing the convolutive parameters

asV, = Z Z Z a; f 5 f’n .- Wecan futher extendthe NT F2D by |ntroducmg adependenceofa with respect to one of the dimension

say fi.e. a}(f) Inthis case, we replace a, . Wltha]f sothaIV = Z Z 2 a; ].cfn _,- Thiscoupling allows us to weight the NTF2D as

a function of f. We term this as the welghted NTF2D (\M\ITFZD) FlnaIIy we |ntroduce a fusion of K models of weighted NTF2D resulting to
= Zf 12 Z Z auf - ¢]c¢'k which we term it asthe “K-wNTF2D”.

jn—1’
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—»  Initialization
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Figure 4.1: High level presentation of the proposed algorithm.

4.2 Source Model

The spatial image of the sources can be modeled as realization of zero-mean proper complex

distribution

C:

N (0,25 (4.8)

ifn

and its probability density function (pdf) can be expressed as

A S C A PR (4.9)

PIn T et (HZ](;)n)

Substituting eqn. (4.6a) into egn. (4.8) will results in the following

K Tmax Pmax
@
¢~ | 0,57 Z Z wy chin (4.10)

k=1 t=0 ¢=0
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The noise b, in eqn. (4.3) is assumed to be time invariant, stationary and spatially uncorrelated,

Le.
b
by~ (0.27) (4.11)

and its pdf can be expressed as

-1
N(oz®)a_ 1 (offaz o) 412
C( ! ) det(nzf(b))e ( )

4.3 Proposed Estimation Algorithm

The conditional expectation of the natural statistics will be estimated using the GEM algorithm,
and the mixing parameter, W = {w/7}, and H = {h'}} will be estimated in the M step using the
MU algorithm. The model parameters are ® = {W, H,Z®,2®) A}. To facilitate the estimation,

the following posterior probability is formed:

P(X|c,z®)P(c|z@,Ww,H)P(W,H|A)

P(CW,H|X, 2@ xB) A) = 4.1
(CI ) | ) ) ) ) P(ch’ Z(a)’z(b)) ( 3)
and their minus log-posterior is
—log P(C,W,H|X, 2@, 2® A1) = —logP(X|C,Z®) —log P(C|2®,W,H) —
logP(W,H|A) + const (4.14)

where A = {A",ﬁ:{l} is a tensor that contains the sparsity terms. The log- posterior will be computed

by the GEM-MU based full-rank variable sparsity K-wNTF2D in the following sections.

4.3.1 E-Step: Conditional Expectations of Natural Statistics

Maximizing the log-likelihood in eqn. (4.14) is equivalent to minimizing

~log (x|, 2®) = (xt, 5% " x;.,) + log (det(n5Y) (4.15)

68



The conditional expectation of the natural statistics R(f)n,R(b) Z‘J(;)n,f(b) ¢ rn and T)f,n are
shown below:

R =gl + 5,7, (4.16)

20, = (=205 )50, (417)

&n =205 (4.18)

R;” = by, bl + 57 (4.19)

5= (1-505) 5 420

By =25 xy, (4.21)

Appendix A is dedicated for the detailed derivation of egns. (4.16) to (4.21).
4.3.2 M- Step: Update of Parameters

For clarification and simplification, R].(;)n and Zj(;) will be vectorized to 1% x 1 vectors as follows:

PO =70

_]lfln L']'fvn
_[+@ A (0) N G) A(©) G
- [rl' 1,j,f.n rz,l,j,f,n rI,l,j,f,n Tl,Z,j,f,n T'I,I,j,f,n] (422)

a('a) — {O_'(C'l) }

—Jif ij.f
_[.@ (@) (a) (@) @ 1"
=% fmn %21jrn " % %12ifm O-I,I,j,f,n] (4.23)

Therefore, eqgn. (4.6a) can be rewritten as follows:

K Tmax Pmax

(C) (a) o.J
ADIIPIATEN 8 (424)

k=1 T7=0 ¢=0
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The second term in the right hand side of eqn. (4.14) can be expressed with IS divergence as

—logP(C|2@,w,H) = z 5 (B T o (B S wiy k) (425)
Lifmn

The third term in the right hand side of eqn. (4.14) is the prior information on W and H. An

improper prior is assumed for W and factor-wise normalized to unit length ie. p(W) =

[1,6 (||Wf|| — 1) where W/ = {w[7} is the spectral basis that belongs to the j™ source. Each

element of H has independent decay parameter )Lj’("',’l' with exponential distribution:

—logp(W,H|A) = —log 1_[6(||Wj||2 — 1) —log HP(H;”A{{)
jk

J

= —log 1_[6(||Wj||2 - 1) — log nnnnl exp(— /1¢]h¢1
J ik n ¢
nga ||, 1) ZZZZ(AWH” logA?))  (4.26)

The first term on the right hand side of eqn. (4.26) can be satisfied by explicitly normalizing each

spectral dictionary to unity i.e. fk = Wfk fok( ) Thus, only the second term remains

ie. —logpW,H|A) =%, %, %, 24 (A01¢7 —10g227). Adding this to the IS divergence
derived in eqgn. (4.25), will leads to the following

—log P(C|2®,W,H) —log P(W, H|A)

_ NORRCO - RO R
B z (T‘Ljrf,no-ljf Vjfn log( l} an-L]f vf'f'n) N 1)

Lik.fn
.y .J b.j
£ A= > logal) (427
k¢ Jjkn¢

(o)

W ” and h¢” can be given as follows:

Thus the derivatives of eqn. (4.27) with respect to a;
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)
(a) y(b) _ A(C) (@72 (@7*
@ —logP(C,W H|X, 2@, 5™, A) = E P i O V7 o ¥ O o (4:28)

iy n

Similarly,

%logP(C,W, H|X,2®,2® 2)

awf,,k,

__\ 20 c@ -1 ¢.J'
- z Tl} Nid +¢n i’ fl+ ¢ ] f +én hk' n-t’ s Z v]',rf""d’,nhk' n-t’ (4.29)
iom om

Likewise,

]

- (a) »(b)
7 10gP(C, W, H|X, 2@, 5, 4)
k' n'

_ 2(©) @, o "y
= D oy it e W+ Tt A 430
if T

For each component, standard gradient descent method is applied with

dlogP(C, W, H|X, 2@, x®) 1)
(a) ((l) g 4 ) )
O-L'I'j’ ,f’ — O-L"zj,»f, - T]Z'(a) ao—(a) (4’31)
i
dlog P(C, W, H|X,£®, 2P A
whl ewh?, —n og P( |, . ) (4.32)
k fk w ow
f,,k’
' ' dlogP(C,W,H|X, 2@, 2™ 2
e, po, o 208 ( X, ) (4.33)
k'n k'n h ¢ .j
Ohyi’
n
where 7,.w),n,,, and i, are the positive learning rate, which can be set as
O—lg‘?l 5
Nyl = '(a)_l (4.34)
o—-l .l !
iJf
wi,
N, = = (435)

Z(j)n j f+¢nhk’n -1’
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nt, 'f',
7/]h ¢I j' (4‘36)
Zf T ] f Tl +T f ¢I kl /1

K'n'
The MU rules for a(,a), f,,wff’kj and hii respectively gives
- fl('C)'f n
N - (4.37)
A(©) @ .
Zld) nr g, V. ’ ! h
) 7 ' f e L T f+qbn k' n-t'
w "K' “«— W % Z h (4‘38)
onYj f +o.n k’n -t
NG (@7 W
Z' r.o. lJ g, . ! 7o
I . L,fT ] le +T x
B S o L (439)
fo bl fn +‘L'Wf ¢’k’+A

4.3.3 Estimation of Variable Sparsity Using Gibbs Distribution

For the sparsity term, the update is obtained as follows:

A = argmax log P(C, W, H|X, 2®,x®, 1)

A
,W,H) + logP(W,H|A) + const)
= argmax log P( H|A) (4.40)
2

Solving a% log P(H|A) = 0 will lead to

; 1

b _ ; ; —

}Lk'fl =5 (or in matrix form A= 1-/H) (4.41)
kn

where “-/” represents element-wise division. However, as H canbe partitioned into distinct subsets
of positive value and zero value it will yield divergent updates for h(zf,}{ = 0. Therefore, a better

approximation to account for variability of H is required. To consider the variability of H, itwill be
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casted in vector form and t,,,, will be set to zero (z,,,, = 0). For any distribution Q(h) (that

max

represents the lower bound to obtain the hidden variable 1), the log-likelihood function satisfies

the following:

log P( h|/1) logJQ(h) Q(_I|1))dh (442)

where  h =[Vec(H)T Vec(H)T ... Vec(H¢max)T]T, A= [Vec®)T vec(AH)T

T
Vec(APmax )T] , Vec(.) means column vectorization, and h and A are vectors with dimension D x
1where D =K X N X &,,,... The elements of h and A are denoted as h,, and A, respectively, for

p=1,2,...,D. By using Jensen’s inequality eqn. (4.42) becomes

08P(112) > [ o(t) og (520 an (443)

By substituting eqn. (4.43) into eqgn. (4.40)

2= argmax ([ 0()logP (1) ah~ [ o(1) og (k) d)

= arg max f Q(h) (loga, — 2,h,)dh (4.44)
A

Eqn. (4.44) can be solved as follows:

0 [ Q(h) (loga, — 2, h,) dh
oA,

1
%= T ow)dn

1
= Fo ] (4.45)

where EQ(E)[hP] is the expectation of h, under the distribution Q(h). Eqn. (4.45) cannot be solved

analytically therefore Q (k) will be approximated with respect to the mode of distribution h.,. As
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h,, can be partitioned into distinct subsets of positive value (h,,) V,,,€ M such that h,, > 0, and

zero value (h,) V,€ L such that h, = 0, it follows that Q(h) can be partitioned as

F(h) = Z Dis (£ |al0v;7,) + Z()lphp—loglp)

_i'j'f'p b
=Y (79 o v, —10g (7, o i, ) = 1) + Y (A,h, —logi,) (4.46)
o _i;j,f,p l]f ]fp g l]fp l]f jvf’P P p g D .
Lifp D

and by using the reverse Triangle Inequality [101], the following can be obtained

F(h) > z Dis (72, o vsm) +Z()lmhm “log,)
m

ij.fm
+Z IS l(]c}l L(]a} Vifi +Z(Alhl_logll)
Lifil l
F(h) = F(h,) + F(h,) (4.47)

The distribution Q(h) will be expressed by the Gibbs distribution [102], i.e.
1
Q(h) = —-exp[—F(h)] (4.48)
h
= [ exp[—F (h)]dh. Substituting eqgn. (4.47) into eqn. (4.48) will leads to

where Z, =

Q) = 5-expl=F(h) ~ (b))

- ZlL exp[—F(h,)] i exp[—F(hy)]

= Q. () Qy (R (4:49)
where Z, = [ exp|—F(h,)] dh, and Z,, = [ exp[—F(hy,)]|dh,,.
The distribution Q,,(h,,) is within the boundaries of this distribution and it leads to
=h (4.50)

EQM (hm) [hP] — *m
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which is optimized in eqn. (4.39). While the distribution Q,, (QL) is on the boundaries of this

distribution and it leads to
Eq, (n)[hel = u (4.51)

where u, is the variational parameter that model the distribution of h;. Therefore, eqn. (4.45) is

given by
(L v em
— €
h,
=91 (4.52)
Lu—p V,EL

The variational optimization [102] will be applied to derive the variational parameter u; as follows.

The parameter u, is obtained by minimizing the Kullback-Leibler divergence between @, and Q,

u, =arg mlfln fQL(QL) log QLE;Lg (4.53)

The distribution QL(QL) in egn. (4.53) will be approximated by considering the Taylor expansion
about the updated h, = h (given by eqn. (4.39)):

dF(h,) 1 0*F(h;) 2
QL(EL = 0) x exP{_z <( ahll )‘hﬁh )hl _ElEL << ahlzz >‘hz=h >hl}

leL

A(0) (@7t _ i
|{ z (ri'fc.f,lo-i;l.f va le bk vj,fl.lW/{—ak N Al) hy \I
ijkflg
QL(EL = 0) x exp{ 1 < ) 5 ¥ (4.54)
I+E Z (_2( ¢k) ( l(Jci‘l l(jaj‘ Jfl) + ( 4>,k) v}sz,l) hl2 I
U 2 it )

The variational approximation of QL(QL) will be considered by the exponential distribution

Q.(h, =0) = Hilexp( hl) (4.55)

u,
leL

where
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fQL(hL)[logQL(hL)]dh —Zf —exp ——)(— logul—%)dhl

lEL l

—Zlog u, +1 (4.56)

leL

and

f Q, (ﬂL )logQL (EL) dh,

— pe s )7t -1 .
- f QL(EL) Z TiraCijf v]lef ok VifiWrgr ’11) h,
K.fL

+% Z (_Z(W ¢k) (l(JC}l l(]a} Jfl) ( ¢k) )hz dhL

Lik.fLg

(f@ @y 2wl —viiwl - /11) h,

ZEQL(QL LifL L T f-¢k I ¢k

Nlr—\

© (o' 2
Z W) (L]fl Oijf ]fl) (W) ) Uj.;g,z) hi (4.57)
kfL,
where E () 18 the expectation under the posterior @, (h,)

f Q. (QL )ZOQQL (EL) dh,

— a0 _(a) wl —priwd _
- 2 (Tg,j,f,zayf fl i~ VifiWr-gk ’11) EQL(EL) (]
Lik.f,Lg

1 J© (@7
+E Z ( 2( 4”‘) (Ufl Ty ]fl)+( ¢k) Vjf )EQL(hL)[ (]
LiJef Lo
_ (O (@7 j 1
- (ri-j.f.lGLJ',f VifaWr-gie = VifaiWr-gx ~ Al)ul
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1
ROBNC )
E Zf ¢k) (l}fl Oij f Jfl) (W) p) v]fl) (4.58)
Thus
u, < argmin —ZIogul+1+ Z —Al(]c}lal(]} vifwl ¢k+v wl .+ /'ll)ul
“ LEL k.fl,
1 -
A(0) (@) 3 2
+§ Z (2( 4>k) (l}fl l]f Uj,f,l) ( f ¢k) v]fl) (4-59)
LikfLe
Let
— A(0) (@)
b = Z (_ri.j.f,layf Jfl f- ¢k+ Vif f or T Al) (4.60)
Likf,¢
and
— j 20,00 (@' _3 i \2.._2
61 = (Z(Wf—¢.k) (rg,j,f,z”g,j,f ”j.f,l) = (W/_4) Vj,f,l) (4.61)
Likf.¢
Then it will leads to
1
| € arg min <b*L’u+ 2uh’@u Zlogul ) (4.62)
“ lEL

where @ = diag(0,) . By using the nonnegative quadratic programming (NQP) [103]
G(uw @) =biu+= Z Lu? — Zlog u, (4.63)
leL LEL

Taking the derivative of G(u, @) in egn. (4.63) with respect to u, and setting it to zero yields

(6m),

u,

‘Lu? +bu,—1=0 (4.64)

which can be solved as follows
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—b, + ’bz +4——— (@u)
“ (4.65)

2(8u),

U<y,

giventhat only the positive solutionof eqn. (4.65) has been considered as we deal with nonnegative

values only.

4.3.4 Components Reconstruction

The estimated STFT source spatial image ¢, ,, can be reconstructed by using the multichannel

Wiener filter that obtained by the minimum mean square error (MMSE) as in egn. (4.18)

K
~ _ (@ 0 pdi ®*
Gn=) Y > EOw 5 (466)

The multichannel Wiener filter takes all the source spatial image components instead of the
dominant one, as in the binary masking. Due to the linearity of the STFT, the inverse-STFT (with

dual synthesis window [95]) can be used to transfer the source spatial image to time domain.

4.4 Initialization

The initialization is an essential part for the separation since the NMF and its variants are very
sensitive to the initialization. One way to initialize the NMF is by using the SVD [104]. In this
chapter, a new variant of SVD specially cater to initialize each K-wNTF2D sub-model will be
proposed. It will be termed as the SVD two-dimensional deconvolution (SVD2D) and described as
follows: Firstly, decompose the mixture X into K largest singular triplets, X = YX_, q,C,,
where g, is the nonzero singular values of X, C,, = u, v, and u,and v, are the corresponding left
and right singular vectors of X. Secondly, compute the SVD of C;} (after decompose C,, into
positive and negative components C, = C,; — C;,) inorder to find the largest singular triplets. Let

= {w/ .} and H = {h{ "7} represent fixing the i®-slice of W and H, respectively, ie.

setting Tt =i in W!and ¢ =i in H'. The first column and row in W° and H° will be initialized by
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using the largest singular triplet of X, and the rest by using the singular triplets of Cf. After
initializing W° and H°, the rest will be initialized in similar way.

Start i = 1, do the following:

Step 1: Compute yi, = ¥  w,_i hi 7

=i,k e n—i

Step 2: Apply SVD on Y'to obtain ¥X_, q;,C;, where C;, =u; ,vl,

Step 3: Apply SVD on C*, to obtain Zf‘:’i Qix1Cixo Where Cppp =y, 01
Step4: W' =[qi1Ui1 9i29i21%i21  9i39i31%i31 ° DikDix1Uik1]
and H' = [Vi1 Vig1 Vizh 0 Viga]”

Step5:i < i+ 1, repeat Steps 1 —4

Stop when i = max(t,5 — 1, Ppgx — 1)

The full-rank spatial covariance matrix will be initialized by using the hierarchical clustering. One

simple method is to adopt Duong et al. [9].

Table 4.1 summarizes the main step of the proposed K-wNTF2D algorithm.
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Table 4.1
Proposed algorithm K-wNTF2D

1. Initialize W = {w}and H = {n{} with the proposed initialization method, %' with
the hierarchical clustering approach, Zf(b) with random nonnegative diagonal matrix, and 1,

with a positive value.

2. E-step:
© _(1_ y© y@ ™ y©
Sjﬂf'n - (I Zj,f,nzf,n ) ijf’n

© _a aH ©
R =Cnbirnt L

® _ & TH (D) ()™ ¢ (b)
R _bf,nbf,n+(1—2f e )zf

o I ) I
cj!fln - Ej,f,nzf,n xf'n

P () PN C)
b;, =% x

n

]
@ _ © (b)
I = Z 20+

j=1

k T (0]
3. M-step
N (o)
(@) ISP
a.r Ifl «— N
= V.1
n=q JIm
NG @™t 2 ¢.j
I O R S S ke
Worr < Worig = = 7
K k Z U_l h¢'1
oY fl+dpn k' n-1'
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A (€) (@™*
Zirf"'rij'fn'+ % Yi fn'+f f ¢’k’
TJ Ad) J

fo j' fn + W

f—(i),,k,

0 = diag(0))
_ A0 (@' _3 j 2 2
0, = Z (2( ¢k) (z]fl Oijr ”j.f,l)_(wf—¢,k) vj,f.l)
Likf.¢
Wi
4. Normalize w]f,i = Yrk
’ .y 2
f e (Wf,li )

5. Repeat E-step, M-step, and the normalization until convergence is achieved where rate of

cost change is below a prescribed threshold, .

6. Take inverse STFT with dual synthetic window to estimate ci']-(t).
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4.5 Results and Discussions
451 Dataset

The following two datasets will be used in the experiments.

45.1.1 Dataset 1: This dataset is identical to the one used in the full-rank NMF of Arberet et al.
algorithm [16]. This dataset consist of four groups depending on the distance between their
microphones and the reverberation time (RT,,, which is the time taken by late echoes to decay by
60 dB). These are the 5 cm apart with 130 ms reverberation time group, 5 cmand 250 ms group, 1
mand 130 ms group, and 1 m 250 ms group. Each group consists of ten stereo mixtures, and each
mixture has a length of 10 seconds, sampled at 16 kHz, and generated from three convolutive

sources.

4.5.1.2 Dataset 2: This is an underdetermined speech and music mixtures development dataset of
SISEC 2013 [99]. This dataset consist of two groups. The first group is the live recording music
group, which consists of devl and dev2 datasets, where each dataset has the with drum (wdrum)
group; which consists of vocal and musical instrument with drum, and the without drum (nodrum)
group; which consists of vocal and musical instruments without drum. The sources of this group
are mixed in stereo mixture that has 1 m or 5 cm space between its microphones, and 250 ms
reverberation time. The second group of this dataset is a simulated recording speech group, which
consists of dev3 dataset, this dataset contains four females (female4) and four males (males4) that
mixed in stereo mixture, with 5 cm or 50 cm distance between its microphones, and has a
reverberation time of 130 ms or 380 ms. dev3 has three channels (left, right, and mono) and it has
been reduced to two channels (left and right). Additionally, each mixture has duration of 10 s and
sampled at 16 kHz.

4.5.2 Effects of Variable Sparsity versus Uniform Sparsity

In this subsection, the effects of the sparsity on the separation performance will be shown by
considering a fixed uniform sparsity; A‘,’c’:,{ = A = call over the elements of H, and the variable

sparsity A‘,f,'j; for each element of H. The fixed uniform sparsity is commonly used throughout the

literature of matrix factorization. Each experiment will be run for different values of sparsity for the

three sources that convolutively mixed in the stereo mixture that has 1 m space between its
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microphones, 130 ms reverberation time, and with 16 kHz sampling frequency. The following
parameters are set for the proposed algorithm: K =5, t,,,,, = 10,and ¢,,,, = 1. Inorder to focus

on the sparsity effects only, an oracle initialization has been used.

Figure 4.2 shows the average SDR performance with respects to different values of sparsity.
It is clear from Figure 4.2 that the variable sparsity gives the highest SDR performance. This is
attributed to the fact that the proposed algorithm has a specific sparsity value for each element of
H, instead ofconstant value for the entire elements of H as inthe case of uniform sparsity. It is seen
that for variable sparsity, the average SDR is 4.5 dB higher thanthe best uniform sparsity (the value
of constant A that results in the highest SDR) A = 10. Additionally, as the sparsity value increases
(leading to over-sparseness) the SDR begins to decrease since many elements in H become very
small and tends to zero. This resulted in switching off several parts of the spectrum in the estimated
sources, as shown in Figure 4.3. In particular, the figure shows the spectrogram of one of the
estimated sources for the case of variable sparsity, over-sparse, and the best uniform sparsity. It is
visually apparent from the figure that the over-sparse and the best uniform sparsity have not fully
recovered the original source. Many portions of the spectrum have been removed from the
estimated source. While, the result from the variable sparsity has seen almost full recovery the
original source, as it has been optimally tuned by the degree of sparseness over all the elements of
H.

20 T T T T T
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Figure 4.2: Average SDR w.r.t different sparsity values.
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Figure 4.3: The effects of sparsity on the estimated source.

4.5.3 Separation Results

4.5.3.1 Results of Dataset 1: first of all the STFT window length was set to 1024 with 50%
overlaps, 5 components per source were set for the full-rank NMF algorithm [16], 1 and 5
components per source were set for the proposed full-rank variable sparsity K-wNTF2D algorithm,
different convolutive parameters were set for the proposed algorithm as tabulated in Table 4.2, and
50 iterations was set for both algorithms. Finally, for matter of comparison, the same initialization

that used in Arberet et al. algorithm will be considered, where oracle initialization has been used to

initialize v; -, and o

To show the convergence of the proposed algorithm, the average cost functions (eqn. (4.14)) of the
ten mixtures with different conditions (low and high reverberations time, and short and long
distance between the microphones) are shown in Figure 4.4. It is noted that the speed of
convergence (as measured by the gradient of the cost function) is fastest for the short microphone
distance with low reverberation. As the microphone distance becomes larger and the level of
reverberation increases, the speed tends to slow down. Nonetheless, all cost functions have

converged to the steady state in less than 50 iterations.
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Table 4.2

Convolutive parameters for mixtures 1to 10

Mixture
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Figure 4.4: Average cost function for different conditions.

85

50



Furthermore, the SDRs of the full-rank NMF and the proposed algorithm are tabulated in Table
4.3. The table indicates that the proposed algorithm has better performance than the full-rank NMF
since it has more powerful representation (using the K-wNTF2D), as well as the variable sparsity
over all the elements of H. The results for all the conditions can be summarized as follows: An
achievement of 1.2 dB more for the low reverberation group, and at least 1 dB more on average for
the high reverberations group. This is complemented by Figure 4.5. It shows that high SDR
performance has been achieved for the 130ms reverberation for both 100cm and 5cm microphone
separation. This case corresponds to the low reverberation environment. For the case of high
reverberation, the proposed algorithm performs better with shorter microphone distance. As the

distance between the microphones decreases, the signal at each microphone becomes more
correlated with each other and therefore the channel covariance matrix Ej(;f) tends to have some

specific structure and hence reinforces the requirement of full-rank condition. While, as the
separation between the microphones increases, the signal at each microphone becomes less

correlated with each other. The effect is that each channel behaves independently and the channel

Table 4.3
Average SDRs of the 10 mixtures with different conditions for the full-rank NMF and the proposed
algorithm
Reverberation Time (ms) 130 250
Microphone Distance (cm) |5 100 |5 100
SDR of Full-Rank NMF
Kot 9.1 [10.2 |88 |96
SDR of the proposed
algorithm 66 |78 |65|73
K=1
SDR of the proposed
algorithm 103 | 114 |98 | 104
K=5

covariance matrix Zj(;) can be modelled by rank-1 structure. Thus as the separation between

microphones become progressively small, this induces a complex structure to the channel

86



covariance which will benefit from the full-rank estimation procedure in the proposed algorithm.
This is a clear indication that the proposed algorithm has outperformed the NMF for both the low
and high reverberation time. In addition, to show the effects of the number of components on the
proposed algorithm in comparison with the full-rank NMF the SDR of both algorithms for K =
5,10,15 and 20 have been also plotted in Figure 4.5. It shows the box plot for the ten mixtures
with their median, maximum, and minimum SDR values for all the conditions. From the plot, itcan
be seen that the proposed algorithm gives higher median value in comparison with the full-rank
NMF, for all the components under the different conditions, as the proposed algorithm is modeled
to address the change in the time and frequency directions through the convolutive parameters (i.e.

T and ¢) of the K-wNTF2D.

The spectrogram ofone of the original sources, and its estimate by using the full-rank NMF and the
full-rank variable sparsity K-wNTF2D are shown in Figure 4.6(a), (b), and (c), respectively. These
figures show that the full-rank variable sparsity K-wNTF2D has successfully detected the pitch
change of the source (as shown in the high frequency of its spectrogram), due to its
two-dimensional deconvolution while the full-rank NMF failed to detect these changes.
Furthermore, in order to show that W and H of the full-rank variable sparsity K-wNTF2D contain
more information than those of the NMF, one component of the W and H matrices and its
corresponding spectrogram for both the NMF and the full-rank variable sparsity K-wNTF2D are
plotted in Figure 4.6(d) and 4. Figure 4.6(e), respectively. This indicates that both W and H have
modelled the sources quite accurately. It is seen that W has successfully modelled the frequencies
of the source especially in the high frequency regionand H has shown a correct distribution in the
time domain. On the separate hand, W and H of the NMF contain very little or virtually null
information for these frequencies and their corresponding positions. Finally, Figure 4.7 shows
another set of spectrograms which emphasize that the proposed full-rank variable sparsity
K-wNTF2D algorithm has estimated the sources correctly in comparison with the full-rank NMF.
The proposed algorithm has correctly detected the required number of frequency basis as well as
their pitch change since the model has multiple frequency basis that convolve with the time—
pitched weighted matrix in both time and frequency directions. While, the NMF fails to detect the
required number of frequency basis since it contains too many unwanted frequency basis. In

addition, it fails to detect the high frequency pitch change.
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4.5.3.2 Results of Dataset 2: In this section, the proposed algorithm will be compared with
Adiloglu et al. algorithm from the SiSEC’13 evaluation campaign for the tasks of underdetermined
speech and music mixtures [105]; that used fully Bayesian source separation algorithm based on
variational inference method [106], with the multi-level NMF model [52] as a source variance, and
the time difference of arrival (TDO A) as an initialization method [107]. Inthe proposed algorithm,
a different number of components and different convolutive parameters are set for each dataset, as
tabulated in Tables 4.4, 4.5, 4.6, and 4.7. The STFT window length is set to 2048 with, 50%

overlaps. The proposed inttialization has been blindly initialized v; [, and Zj(]‘?, respectively.

The average cost functions are shown in Figure 4.8. The figure indicates that all the cost functions
converged to a low value within 10 iterations while Adiloglu et al. algorithm required about 250
iterations. Furthermore, it can be seen that the SDRs of the proposed algorithm for the music group
(Table 4.4 and 4.5) on average is higher than the Adiloglu et al. algorithm. For clarity of
comparison, the results are summarized as follows: An improvement of 2.65 dB is achieved for the
5 cmdistance and 250 ms reverberation time datasets, and 2.6 dB for the 100 cm, 250 ms datasets.
For the speech group (Table 4.6 and 4.7) on average an improvement of 2.5 dB is achieved for the
5cm, 380 ms datasets, and 1.8 dB for the 50 cm, 380 ms datasets. Finally, an improvement of 0.3
dB is achieved for the 5 cm, 130 ms datasets, and approximately equal for the 50 cm, 130 ms
datasets. From above, it can be concluded that the proposed algorithm outperforms Adiloglu et al.
algorithm, especially for the case of high reverberation time. This is attributed to the proposed
algorithm’s ability to model the full-rank spatial covariance matrix (that modeled the spatial
position and spread of the sources) instead of rank-1. Finally, Figure 4.9 shows the spectrogram of
the estimated sources. It has indicated that the proposed algorithm has successfully estimated the
sources to a high degree ofaccuracy. In particular, it is evident that all the low and high frequency

components as well as the time-frequency patterns have been preserved in the estimated sources.
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Table 4.4

SDRs of Adiloglu et al. and the proposed algorithm for dev. 1

SISEC 2013: Dev.1 ndrums wdrums
Reverberation Time (ms) 250 250
Microphone Distance (cm) 5 100 | 5 100
Adiloglu etal. s, |-55|-06|70 |24
algorithm SDR| s, |-1.2|-0.0(-0.1|3.0
s; |37 [06 [-05]-11.1
Avg |-1.0| 0.0 | 21 |-1.9
GEM-MU based Variable K 20
Sparsity NTF s, |05 |21 |57 |67
Tpgx =0 SDR| s, |08 [1.2 [03 [-1.1
Pinax =0 s; |08 |26 [-08]0.1
Avg [ 07 [20 [17 [19
Proposed algorithm K 20
T = 13 s, |23 [14 7682
Binax = 2 SDR| s, [09 [26 [ 09 |05
s; |07 (4207 |-01
Avg |13 |27 |31 |29
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Table 4.5
SDRs of Adiloglu et al. and the proposed algorithm for dev. 2

SiSEC 2013: Dev. 2 ndrums wdrums
Reverberation Time (ms) 250 250
Microphone Distance (cm) 5 100 (5 | 100
Adiloglu etal. s, |18 |47 |37|48
algorithm SDR | s, |27 |20 [37]20
sy | -11.7(-3.9 3.7 27
Avg | -24 [09 | 37|32

GEM-MU based T 0

max

Variable Sparsity NTF [ ¢ 0

s, |96 |67 |[10[L9

SDR | s, [04 |16 26|16

s; | -20 |00 [14]31

Avg| 27 |28 |2.7] 22

Proposed algorithm Tonax 2 3
¢max 2 9
K 3 3| 7

s, 105 |76 {3529

SDR [ s, |14 |23 [42]22

s; |08 |07 5446

Avg| 42 |35 |44]32
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Table 4.6
SDRs of Adiloglu et al. and the proposed algorithm of dev. 3, for 5 cm, 380 ms case, and 50 cm,

380 ms case
SISEC 2013: Dev.3 male4 female4
Reverberation Time (ms) 380 380
Microphone Distance (cm) 5 50 5 50
Adiloglu etal. s, |04 [-17 |02 |[-0.2
algorithm SDR | s, |-26(-09 |02 |-1.0

s, |-21(08 |-31 |-24
s, |00 |-04 [-28 |01
Avg |-11-06 |-1.4 |-0.9

GEM-MU based s, |07 102 03 |03
Variable Sparsity NTF | SDR s, |08 [0.6 08 |04
Tpgy =0 s; |02 |11 [-09 [02
Pinax =0 s, |11 [-01 [02 |05
K =10 Avg (0.7 |05 |01 (04
Proposed algorithm s; (13 |06 |19 |08
T0p = 10 SDR [ s, [12 [11 |08 |07
P = 20 s; |13 |18 [13 |01
K =10 s, [13 |07 09 |18

Avg |13 (11 |12 |09
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Table 4.7
SDRs of Adiloglu et al. and the proposed algorithm of dev. 3, for 5 cm, 130 ms case, and 50 cm,

130 ms case
SISEC 2013: Dev. 3 male4 female4
Reverberation Time (ms) 130 130
Microphone Distance (cm) 5 50 |5 50
Adiloglu etal. s; |-26(-21]-00]-12
algorithm SDR | s, |-02|26 [-0.9]0.6

s; |15 |08 |04 |14
s, |52 |39 |41 |44
Avg [10 [13 [09 [13

GEM-MU based Trmax 0
Variable Sparsity NTF | ¢ 0
K=10 s; |05 |-05|-03|-28

SDR [ s, [-07]0.7 |13 |01
s; |06 |04 (03 |14
s, |10 [-08[10 |09
Avg | 0.4 [-0.0]06 |-0.1

Proposed algorithm Tmax 10
K=10 Prnax 50 60

s, |12 [05 [15 [0.8
SDR | s, |11 |26 [16 |09
s; |14 (09 |10 [27
s, |12 |12 [11 |08

Avg (12 |13 |12 |13
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Figure 4.9: Spectrogram of one of the mixturesand its original and estimated sources.

4.6 Summary

In this chapter, the K models of the weighted NTF2D have been combined with the variable
sparsity to propose a novel algorithm for the underdetermined multichannel audio source
separation. It has been shown that using the GEM-MU algorithm as a platform for the proposed
algorithm enabled the joint estimation of the parameters and sources, and preserving the
non-negativity constraints of the proposed model. Also, a tractable approach that adapts each
sparse parameter for every temporal code in the NTF2D has been provided through the variable
sparse parameters that derived from the Gibbs distribution. Furthermore, the NTF2D has been
efficiently initialized by the proposed initialization approach. The full-rank NMF and NTF
algorithms, and a recent algorithm based on variational inference multi-level NMF model with
TDOA initialization have been outperformed by the proposed algorithm. Additionally, it has been
shown that using the full-rank spatial covariance matrix instead of rank 1 has enabled the proposed
algorithm to maintain its high level performance in high reverberation environment. Finally, the

proposed algorithm fast converged to the steady state in less than 10 iterations.
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CHAPTER 5
INFORMED SOURCE SEPARATION BASED TWO DIMENSIONAL
MATRIX FACTORIZATION TECHNIQUES

In this chapter two algorithms are proposed for informed source separation, i.e., anexemplar-based
algorithm and a semi-exemplar based algorithm. The semi-exemplar based algorithm takes
advantage of the NMF2D to describe the temporal and spectral changes, and the number of spectral
components of targeted speech signal. The description is carried out indirectly by the exemplar:
Firstly the exemplar is used to emulate the targeted speech signal, then the parameters of the
NMF2D are optimized inline with the exemplar, finally these parameters are used to separate the
targeted speechsignal. Additionally the spectral and temporal tensors generated from the exemplar
will be used to initialize the tensors of the targeted speech signals. In the full exemplar-based
algorithm, the separating algorithm describes the targeted speech signal in the same way as in the
semi-exemplar based algorithm; however the separation is carried out based on the two
dimensional nonnegative matrix partial co-factorization (2DNMPCEF) that jointly factorizes the
exemplar’s and the mixture’s spectrogram. In addition, the chapter proposes an artificial stereo
channel. It introduces diversity to the mixing channel by augmenting the dimensionality of the
mixing matrix, increases its matrix rank and thus reduces the ambiguity associated with estimating
several sources given only a single observation of the mixture signal. The proposed algorithms
with artificial stereo channel have been adapted under the hybrid framework that combines the
generalized EM algorithm with multiplicative update. The algorithms lead to fast and stable
convergence, and ensure the non-negativity constraints are satisfied. Additionally, the adaptive
sparsity is imposed on each sparse parameter in the 2DNMPCF. Experimental results have shown

the effectiveness of the proposed algorithms in comparison with other algorithms.

This chapter is organized as follows: Section 5.1 introduces the proposed model. Section 5.2 is
dedicated for the problem formulation, where the mixture model with pseudo-stereo channel and
the maximum a Posterior probability (MAP) model will be formulated. The proposed
semi-exemplar based algorithm and the proposed exemplar based algorithm will be explained and
derived in Section 5.3. Experimental results and discussions of these results will be shown in
Section 5.4. Section 5.5 proposed a multistage of the exemplar based algorithm. Finally, Section

5.6 draws the conclusions.
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5.1 Introduction

Blind source separation (BSS) [19, 67, 108] is ill-posed problem that cannot be solved totally blind,
l.e., a certain assumptions has to be made to solve them, e.g. the number of sources, how the
sources are mixed, the location of the sources with respect to the microphones, and the channel
type. However, even with these assumptions the BSS did not fully achieve the required
performance. Therefore, researchers moved from blind to informed audio source separation in
order to achieve higher performance that the BSS cannot reach, where, researchers seek an aid
from an external source in addition to the mixture signal as side information to enhance the
separation performance. Such as the user mimic the targeted signal in the mixture by singing [54],
by humming [81], or by dubs the dialog in films [82] in order to separate the targeted signal.
Another examples is by using additional audio references such as using the multitrack cover
versionof the same song [56, 83-85] or using several international versions of the same movie [55].

Additionally using the text to mimic the targeted speech signal [86].

In this chapter, exemplar signal from the text associated with the mixture will be generated by
using a speech synthesizer or human speakers. The approach is essentially belonging to the
category of text informed source separation [86]. The text informed source separation [86] used the
NMPCF [109, 110] based on excitation-filter channel speech model and the structural Gaussian
Scaled Mixture Model (GSMM). In the current chapter, two algorithms will be proposed the
exemplar-based algorithm and the semi-exemplar based algorithm. In the exemplar-based
algorithm the exemplar will be used to optimize the parameters and initialize the tensors of the
proposed 2DNMPCF that will carry out the separation. The proposed 2DNMPCF will be used as it
has the ability to describe the pitch and temporal changes of the signal through ¢ and t, inaddition
to the frequency basis (as in NMPCF) through K. Therefore, the proposed 2DNMPCF is more
powerful than the NMPCF. The idea of using the co-factorization technique is to simultaneously
factorize the mixture and the exemplar signals in order to guide the separation. In the case of the
semi-exemplar based algorithm, the exemplar will be used to optimize the parameters and initialize
the tensors of the NMF2D [25] which alone will be used to carry out the separation. The difference
between the semi-exemplar based algorithm and the exemplar based algorithm is that the former
algorithm will guide the separation for the first iteration only (i.e., to give the correct start) by
initializing its tensors throughthe exemplar signal, while in the latter algorithm the exemplar signal
is used to initialize as well as to guide the separation process for every iteration via the 2DNMPCF

until it converges to the steady state. For faster convergence bothalgorithms are adapted under the
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GEM-MU model [80]. Furthermore, the adaptive sparsity will be optimized in the proposed
algorithms instead of the uniform fixed sparsity. As the speech source changes rapidly over time,
then assigning a uniform fixed sparsity will leads to either too many ineffective temporal codes
(under-sparseness), or too many temporal codes set to zero (over-sparseness), while the adaptive
sparsity will optimize the sparsity for each individual temporal code. Finally for better performance
the pseudo-stereo channel [111] will be adapted using the GEM-MU algorithm. The pseudo-stereo
mixture allows us to extract the temporal feature of the mixed signal to enable the estimation of the
mixing process and relieving the ill-posed problem of single-channel source separation. The
single-channel source separation is a highly underdetermined problem where only a single channel
recording is available to estimate more than one source signals. Hence, given only the mixed
signal, potentially innumerable number of solutions exists for the source signals. Thus the
pseudo-stereo channel creates an artificial mixed signal to increase the dimensionality of the
mixing matrix and reduce the ambiguity in estimating source signals. Figure 5.1 shows the high

level presentation of the proposed algorithms (see Section 5.3 for the details).

i NMF2D Exemplar Signal NMF2D
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wY HY wY HY
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Figure 5.1: High level presentation of (a) the semi-exemplar based algorithm, and (b) the

exemplar based algorithm.

5.2 Problem Formulation

5.2.1 Pseudo-Stereo Channel

Consider the underdetermined single channel mixture, namely:
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%,(6) = g(t) + b(t) +7(t) (5.1a)

L-1 L-1
- Z @, (DGt —1) + Z a, (Db(t— 1) +7(t) (5.1b)

7=0 =0
where %, (t) is the sampled mixture signal, g(t) the sampled speech signal, b(t) is the sampled
background signal (which will take as either a music or effects (fx)), 7i(t) is some additive noise,

for (t=1,..,T), a,(r) and a,(r) are the finite-impulse response of some (causal) filters.

As the separation performance is enhanced when the number of channels is greater than or equal to
the number of sources, and as the single channel is heavily underdetermined which creates
ambiguity when estimating the sources, then a pseudo-stereo channel model [111] will be
formulated in this chapter, i.e., a pseudo microphone (virtual channel) will be formulated by

weighting and time-shifting the single channel mixture %, (t) as follows

X, () +yx,(t—6)
1+ |yl

%,(t) = (5.2)

where y € 97is the weight parameter, and § is the time delay between X, and %¥,. The mixed
signals in eqn. (5.1a) and egn. (5.2) are termed as “pseudo-stereo” since they have an artificial

resemblance of a stereo signal. Substituting eqn. (5.1b) in egn. (5.2) will leads to

L-1

1
x,(t) = ] (ZO a, D @Gt-0+ygt—1-19))
+Z &, @ (Bt =) +yb(t = 1= 8)) + (A®) +yii(t - 8)) | (53)

By assuming that the mixing channel is time-invariant and by considering the narrowband

approximation then the short-time Fourier transform (STFT) of egn. (5.1b) can be expressed as

Xifn = Q1f9rn + azlfbf'n +ne, (5.4)

Similarly, the STFT of eqgn. (5.3)
—iw6)

1 . 1
_ —iws
Xofm = (al,f 1+ 1] (gf,n +vgrne™" )+ o T T (bf'n +vbs e
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1 ,
+—(n,, +ye ™n
1+ |yl ( fn TV f,n)>

1 1 )
( 1f1+| Igfn(1+)/e ‘V"‘5)+azf1 ™ bfn(1+ye wé)

1
—iwé
1+| lnfn(1+ye )>

_(, 1 +ye—iw89 a 1+ye—iw6b i 1+ye—iw8 (5 Sa)
T T A O T I R A R 7 '
Letd,, =a, ¢ 4 —q ™ ada = Hre " th 5.5 b
eldyp =0y, — i oy = Gpp— o ad g, =ngy en eqn. (5.5a) can be

rewritten as follows
Xorn = Ay pGrm + Aypbpp + e (5.5b)
Eqgn. (5.4) and eqgn. (5.5b) can be written in matrix form
X; = A:S; +N; (5.6)
where

Xllf,l Xl,f'z xljf'le

X, = |x; = [ € C?N i =1,2is the channel index, f=1,...,Fis
f [ lrfln]f xz‘f’l x2,f,2 e Xz‘f‘N f

f
the frequency bin index,

Air 4y,
Af:[/f ,f] E(('?XZ’

al'f azrf f
91 Yr2- Yfn IXN s . .
[ fn] bey brsy .. bf,N] € C*,j = 1,2 is the source index, and

f

N1 Npa o ’ff.N] € c2xXN

Nf = [ﬁi,f,n]f = [flf,l ﬁsz nf,N B

The NMF2D has the ability to specify the temporal and spectral changes of the targeted speech

signal through its convolutive parameters (7 and ¢), and the number of frequency basis (K) of the
targeted speech signal. If the NMF used here it will be able to describe the number of frequency
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basis only. Therefore, the NMF2D with multiple components will be considered as the spectral

variance model instead of the NMF spectral model [49]. Thus, each source in the STFT can be

Kg

expressed by K complex-valued latent components, ie., g, =X, %,

g —
Chfm and bf,n =

’,f’;l Cllc),f,n and can be modeled as realization of proper complex zero-mean variables:

Tmax Pmax

2
C}f,f,n~‘7\/;,‘ (O,Ugﬁn) =N.|0, Z Z ng—¢,k,rhi,n—r,¢ (5.7a)

=0 ¢=0

Tmax Pmax

2
Cllc),f,n~‘N; (0’ O-kb,f,n) = ‘N;‘ 0' Z z W]?—qb,k,‘rhg,n—r,qb (57b)
=0 ¢=0

where NV, (u,X) is proper complex Gaussian distribution [94], W};g,k,r and w}"k,r represent the

spectral basis of the speech and background sources, respectively, and h;‘c’,n, é

and hy, , represent
the temporal code for each spectral basis element of the speech and background sources,

respectively, for f =1,..,F,n=1,..,Nk=1,...K.

5.2.2 Maximum A Posterior Probability (MAP) Estimation

The maximum a posteriori (MAP) probability will be used as the criterion for optimization. The

noise 7; ,, is assumed to be stationary and spatially uncorrelated, i.e.
_ 7 2 , 72

Let € = {{c,f,f,n},{c}g,f,n}}kf  bethe latent variables, and 6 = {A,W,H,A X} asthe parameters

of the model where W = (W9, W"}, H = {H9,H"}, A = {49, A"} with W9 ={wf }
RO kT

wh={wp,.} . H9={n! LA =

0 o . HY = (R A9 = {)Li,n’qb

n,e }k,n,qb }k,n,(p

}f,k,‘[ }k,n,qb

{/1‘,’“1 ¢,} . The tensor A contains the sparsity terms for H. The estimation of model parameters
T kn,g

and latent variables will proceed via the posterior probability:

0, = arg max logp(@|X)
0

where
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,0
log p(6|X) ZIQ(C) log l% dC (5.9)

r(C,01X)

for any distribution Q(C). Defining F(Q(C),0) = [ Q(C) log[ 200

]dC, then the E-step

consists of determining Q (€) that maximizes F(Q(C),0) where the optimal Q(C) is given by
Q*(C) = P(C|X, 0") for the current model 8’. The M-step consists of maximizing F(Q*(C),0)
with respect to the model @ when Q(C) is fixed at Q*(C) ie. 6'=
argemax [Q*(C)logp(C,0|X) dC. The posterior probability is given by

p(c,01x) = EEEDPO) i, op(clorr) (510)

p(X)

5.3 Proposed Exemplar and Semi-Exemplar Algorithms

The GEM-MU [80] will be used as the platform for deriving the proposed algorithms. The source
power spectrogram posterior estimates (p; (,,) (see eqn. (5.12)), the mixing parameters, and the

noise covariance will be estimated in the E-step of the EM algorithm, while W and H will be
estimated in the M-step of the EM algorithm by using the MU algorithm with adaptive sparsity
NMF2D.

First ofall, the common part between the two proposed algorithms will be derived, and then each

one will be derived separately.

5.3.1 E-Step: Conditional Expectations of Natural Statistics
In the E-step, the complete data {X, C} and its pdfs p(X, C|@) form an exponential family. The

complete data log-likelihood is given by

—logp(C,0|X) = —log p(X|C,0) —log p(C|6) —log P(B)
z [109 |Zap |+ (rn = Arspa) "2} (0 — Afsfn)]
fn
g

K, Tmax Pmax

fn
Z lO Z Z k
f ¢kt kn 7,¢ Tmax V' Pmax g
~ > >, w? h

k=1 f, =0 ¢=0 =0 ¢=0 "f-¢,k 1T kn-1,¢
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Kp Tmax Pmax

b 2
|Ckfn|
+ZZ log Z Z Wf ¢k1hkn -T,¢ +ZTmaxZ¢maxW hb

k=1 f,n =0 ¢=0 -¢p.k,t "kn—1,0

—logp(4;) —logp(£; ;) — logp(W) —log p(H|A)

Tinax Pmax Ky

|CI€f |2
:Z lOngnfl‘l’Zlog Z Z ¢k‘l’ n T,¢ +szmax Z¢max an hg

fn ¢,kT kn-1,0
Kp Tmax Pmax Kp b 2
B3 S vt ) s
9 f=¢kT " kn-1. ZTmax Z¢max W hb
k=1 =0 ¢=0 k=1“71=0 ¢$=0 f-d, k" "kn-1,¢

+N 2 tr|ZitRexs — EnfArRE - — Z7tRy fAY + X7 1AR AR — log p(4))
f

—logp(Zz;) — logp(W) — log p(H|A) (5.11)

. . . 1 H _ 1 H

where the superscript H is the Hermitian transpose, R, » = ;Zn XenXfn, Regr = ;Zn S¢n Sty and
_1 H HT H — _1 H —

Ryss =~ ZnXmSfn - The conditional expectations R, =Ry ;= —2nXmXfy . Ryp =

%Zn P %Zn 8,8 + 5 - The source power spectrogram posterior estimates [80]

is given by
Bjn = Rsspn (i) (5.12)
where
Stn = Zs nAf 2 fnXpn (5.13)
ZX.fn = Afzsanf + Zﬁ,f (5.14)
sfn (I Zs anfH anf)Zs fn (5.15)
K Tmax ¢max
2 z Wi gk kn -7, 0
=1 =0
o =" " c e (5.16)
0 2 z W}l‘)—tl) krhkn—rtp
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Detailed derivation of eqn. (5.13) and egn. (5.15) can be found in [14].

5.3.2 M Step: Update Of Parameters

To find Ag, we set
0
o4, —(logp(X|C,0) + log p(Af)) (clx, 0’) =0
= —Z7H R )+ Z AR )+ 9(A;) =0 (5.17)

where ¢(A;) = dlog p(A;)/0A;. In the case of P(A,) is a uniform distribution, then eqn. (5.17)
leads to a simple closed form expression:

=R, R}

xs,f'ss,f (518)

Similarly, for np We have

o5, 1 (logp(XIC,0) + logp(Z f)) (c|x,6") =0

= —Znr R —ARE () — (R )AF + Ar(Ryg ) AF + <p(zﬁ,f) =0 (519

where ¢(2,; ;) = 0logp(Z;,)/025}. When P(Z,; ;) assumes a uniform distribution, then egn.
(5.19) leads to

zﬁ,fzdiag(Rxxf ARE - — R, Al + A; sszf) (5.20)

Various models exist to model the prior distribution p(4; ) and p(Z, ;) which can be incorporated
into the above estimation; however, uniform prior distribution results in computational stable and
ease of implementation.

The determination of W and H will follow the multiplicative update rule. At this point it can be
distinguished between the two proposed algorithms, and show how the targeted speech signal will

be described through the exemplar signal.

5.3.3 Exemplar Based Algorithm

In this algorithm the exemplar signal will be used to initialize the targeted speech signal (see eqn.
(5.35) and eqn. (5.36) of Section 5.3.7), and guide separation through matrix co-partial

factorization. The NMPCF simultaneously decompose the targeted signal and the side information
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and drive them to partially share the common frequency basis in order to enable the side
information to guide the separation of the targeted signal [86, 109, 110]. In this chapter, the
2DNMPCF is proposed which is a two-dimensional deconvolution of the NMPCF. The
2DNMPCF shares not only the frequency basis as in the NMPCF but also the convolutive

parameters (t and ¢) in order to describe the temporal and spectral changes of the targeted speech
signal, and therefore renders it more distinguishable and hence more separable than the other

sources in the mixture.

The second term in the right hand side of egn. (5.10) can be expressed using the Itakura-Saito
divergence with power spectrogram estimated from the E-step. The third term involves the

parametrization of {W, H,A }. Specifically, each element of H has independent decay parameter

Myns With exporential distribution given by p(H/|A)) = Hkn¢p(h{<n¢|/1kn¢)
| P exp( VenoMin ¢) The prior over {W’} s flat such that each spectral component is

factor-wise normalized to unit length i.e. p(Wf)=Hk6(||W I, —1) where [|w7 || =

. 2
hIp. (Wf],k,r) . Thus, taking the conditional expectation of the negative logarithm of the second

and third terms of egn. (5.10) leads to

—(log p(C|W ,H) + logp(W) + log p(HIA)>P(C|X’ 0')

z ZDIS p]fn|zk‘t¢ f b,k kn ‘r¢ Zlogs ”W ” _1)

J

z kn-t,¢ kn 7,0 logﬂ'kn T¢) (521)

kn,¢

where j = {g, b} and p, (,, is the j-th source power spectrogram estimated from (5.12). Thanks to
the E-step, that permits direct access to the estimates of the target speech and background signals in
order to estimate {W9, W} and {HY,H"} rather than from the mixture signal which is noisy. Also
the mixing gain will be able to estimate thanks to the pseudo-stereo channel which augments the
dimensionality of the mixing matrix and increases its rank. The separation performance, however,
can be weakened under the adverse conditions of low signal-to-interference ratio and the

background signal shares some characteristics with the target speech. To alleviate these conditions,
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a form of exemplar signal whose spectral and temporal characteristics resemble the target speech
will be used. The exemplar signal can be derived from the text associated with the mixture and
generated by using a speech synthesizer or human speakers. Let $(t) be the sampled exemplar

signal, Yin, € C*Ny be the STFT of §(t), and Pyfm, = |yf,ny|2 is the power spectrogram of the

exemplar signal. It should be emphasized that N can differ from N,, due to the temporal mismatch
between the exemplar signal and the mixture, since it is not practically feasible to emulate the
exemplar to be an exact match to the targeted speech signal. These temporal mismatches between
the exemplar and the targeted speech signals will result in mismatch between the activation tensors
of the exemplar and the targeted speech. A synchronization matrix has been adopted to address this
issue [112]. With the exemplar signal, a joint decomposition using the mixture and exemplar
spectrograms have beendeveloped to obtain improved estimates of the spectral basis tensor W and

the temporal tensor H. This is done allowing the exemplar signal to be factorized using similar

model ie., multiple components NMF2D py_f,nyzZI;ilZ?ggx omerw? e Mnsp aNd

constraining the structures of spectral basis and temporal tensors between the target and exemplar

signals. (5.21) augment witha weighted joint factorization of the exemplar spectrogramas follows:

J = z DIS(ij,fn| Zk,r,(l) Wj!—gb,k,rh{;,n—‘r,qb) + T]DIS (pyvfny | Zk»'f"l) W;}—qb,k,rh?c],ny—r,(b) o

iLfn
J1
z log<6 (Iwi|, - 1)) + z (W Mong — 10820,) (5.22)
Jk Jkng
(72 J3

In above, n is the scalar that weigh the importance of the exemplar signals in the factorization
process. The term (7, represents the matrix factorization of the sources and exemplar spectrograms

into the spectral basis and activation tensors, J, denotes the regularization on the spectral basis,
and J, represents the sparseness of the activation. The regularization involving & (||W{c||2 — 1)

can be satisfied by explicitly normalizing each spectral dictionary to unity ie. W}Z,k,‘r:

. . 2
Wil (25 2 (W}Z,k,‘r) . Using the definition of the Itakura-Saito divergence and by letting v7, =

g g b _ b b y _ y y
Zkﬂ"d’ Wf—(l),k,‘rhk,n—‘r,d)’ vfn _Zk.T.¢Wf—¢,k,‘rhk,n—‘r,¢ and vfn _Zk.‘f.¢wf—¢,k,‘rhk,n—‘r,¢’ the

above cost function reduces up to the constant terms to
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c R -1
d= Z (pl,fn Ufgn - log z Aknq} kng Z log’li,n,qb

fn k,ng

+Z (pzfn vfn lOg vfn ) + Z Aknqb kn, Z loglll)c,n,d)

kn,¢p

-1
+Z 1Py, fn, ;’n —log v, )

f, ny,
The MU approach will be used to estimate WY and HY:

0<0-

where VJ = [V J], — [VJ]_. This leads to

-2
A g g y
qu,n pl.f’+¢.nvf'+¢,nhk',n—‘r',¢ N Z‘;b;ny py:f,+¢rny vf'+¢,n

k,n,¢

kn¢

-2

g g
Zd},n vf’ +¢,n h

given that WY = W9 [86].

-1
y y
k' n-t' ¢ + n2¢:ny Uf’+¢,ny hk’,ny—r’,cp

y y
- k', rpf,n' +va n,+t

(5.23)

(5.24)

(5.25)

)
hk’,n’,d}’
foplfn+f fn+7: ¢kr+nzf'fn
<—hkl ’ 1
n'¢’

Zf‘r e n +1 fcp’k' +/1// /+T](Zf.rn

-1
f ¢’k’r fn +T

d,

T'LTL

,d)

(5.26)

giventhat HY = H9 D" [86], where D is the synchronization matrix [112] of dimension N, X Nto

ameliorate the temporal mismatch between the exemplar and the mixture. For the sparsity term, the

update is obtained by solvmg —(logp(C,0]X)) »(CIX, 9,) = 0 which leads to
kl I¢I
1
/1gl ! = T
k'n ’(I) hi’,n,, I

By following the same procedure as above, W?, H? and A’,’c’n'qbcan be estimated as follows
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b Z¢np2f +¢n Vs +¢nhk n-t ¢

b
W ot € Wit gt ot oy (5.28)
Z(bn f +¢>n K'n-t,¢
Z ﬁ vb_lz Wb ror
Wb, o o« hb Ir Zf"”f'”” ook (5.29)
k' Ko) k'n ¢ Z b +ﬂ.
fr fn e Wr gkl k'n' ¢
b 1
Ak,,n,,(ﬁl = hb— (530)
k,,n,,(l),
Similarly, W7, and H” can be estimate as
y~? y
y Zd),ny py,f’+¢‘nyvf'+¢,n h’k My =T "
Wor o 1 < Worr o — (531)
kT kT Z v, hY
o.n f'+omny, "K' n,~t'¢
) W
pr}lfn +T fn +T f¢kr
y y
hkl’n;"(pl — hk’,n;,,(l)’ Z (532)
frV fn 4T f—¢’,k’.r

5.3.4 Semi-Exemplar Based Algorithm

In this algorithm the exemplar will be used to initialize the targeted speech signal as in eqn. (5.35)
and eqgn. (5.36) of Section 5.3.7, then the MU rule will be used to updates the NMF2D tensors of

both the speech and background signal. The tensors of the speech signal can be obtained by setting

n to zero for egn. (5.25) and eqgn. (5.26) leading to

-2
A g g
g g Z<15.ﬂplf'+¢,nvf'+¢>,nhk',n—'r',¢)
Wer,r 1< Wi, r — (533)
frk T flk T 2 vg hg
N flropn k' n-1,¢
S e Brn sV e Wy
hg - hg T g T°fn+t f-¢ k't (5 34)
' n ¢)I K n' ¢I 1 .
e o vI, w? + 29
fT¥ '+t V-9 k' T K'n',¢'

and the same sparsity in eqn. (5.27) will be used. The tensors of the background signal follow

similarly and they are shown in egn. (5.28) and eqn. (5.29), while the sparsity update in egn. (5.30).
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The semi-exemplar based algorithm use the exemplar signal to initialize the tensors of the NMF2D
and, thus it depends on the exemplar to give the good start only. On the other hand, the exemplar
based algorithm uses the exemplar signal not only to give the correct initialization but also to guide
the whole algorithm through the 2DNMPCF which factorizes bothexemplar and mixture signals at
the same time. Therefore, the exemplar based algorithm recycles the use of signal y(t) more than
the semi-exemplar based algorithm.

5.3.5 Describing The Targeted Speech Signal By Using The Exemplar

The description of the targeted speech signal will be carried out indirectly by the exemplar signal
and with the aid of the NMF2D that optimizes its parameters. The parameters of the NMF2D will
be optimized by depending on the exemplar signal instead of the mixture. The exemplar is
considered instead of the targeted speechsignal as it is unavailable. The NMF2D is proposed due to
its ability in descripting the temporal and spectral changes through the convolutive parameters (t

and ¢), and specifying the required number of frequency basis K.

The determination of the model order for NMF2D will be realized using the exemplar signal y(t):

Step 1: Optimize WY, and H” by using egns. (5.31) and (5.32):

Step 2: Optimizing 7 and ¢:
1) SetK =1
2) Fort =1toT

max

For¢,,.c = 1to @

H y _ y y
> Estimate Vi = ka, w_ ¢,k,rhk,n—r, A

» Estimate the signal-to-distortion ratio (SDR) [113] between the exemplar signal

Py,fn, and its approximate vfyn in order to evaluated the factorization performance

Select the convolutive parameters (t,,,,, Pmay) that give the highest SDR.

Step 3: Optimizing K:
1) ForK =2to K

max

. y y y
» Estimate U, = Zk,r,q[) Wf_¢,k,fhk,n—r,¢

> Estimate the SDR between the exemplar signal p,, fn, and its approximate v}’n
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Select K that give the highest SDR.

5.3.6 Components Reconstruction

The estimated sources (8, ) can be reconstructed by using Wiener fitering (2, ;,Af 2 %,) as in
eqgn. (5.13), and due to the linearity of the STFT, the inverse-STFT (with dual synthesis window

[95]) can be used to transform it to the time domain.

5.3.7 Initialization

The initialization is an essential part for the separation since the NMF2D is very sensitive to the
initialization. Inthis chapter, the spectral and temporal tensors of the proposed algorithms will be

initialized by using the exemplar signal §(t) which itself is decomposed into w ]?’kt and hi’n .

( fk‘r) fk‘r (535)
(hns). =y s m (5.36)

ini

where d,, . is synchronization parameter [112]. For the background, (wp,.) . and (hZ,,).

ini

will be randomly initialized. Thus the mixture can be initialized as follows:

W) = (W), (Wi, ] (537)
(hny). = (ins)o (5.38)
ini kﬂl.d’)ini

Table 5.1 and 5.2 summarize the proposed algorithms.

Table 5.1: Proposed algorithm 1 (Semi-Exemplar)

1. Optimize the convolutive parameters and number of components based on the exemplar.

itia li g g b b
2. Inttialize w;, and hy . based onthe exemplar, w/, . and hy, , randomly.

3. Generate the pseudo channel X,(t) as in egn. (5.2).
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. M-step: compute 4, X,

. Apply the STFT on the mixture signal.

. E-step: compute p;,,, and 3, using eqgns. (5.12) and (5.13), respectively.

Wbl Angs Whier ongs and A%, using eqn. (5.18), eqn.

(5.20), eqn. (5.33), egn. (5.34), eqn. (5.27), eqn. (5.28), eqgn. (5.29), and eqn. (5.30).

. 2
. Normalize wg, . = W}‘,k,f/ \/Zf,k,‘r(wjzc,k,r)

. Repeat E- and M-steps, and the normalization until convergence is achieved i.e. rate of cost

change is below a prescribed threshold, .

. Perform inverse STFT with dual synthetic window to estimate §(t), and b(¢t).

Table 5.2: Proposed algorithm 2 (Full-Exemplar)

1.
2.

3.

. M-step: compute A4, X, hY

Optimize the convolutive parameters and number of components based on the exemplar

) g b
Initialize w,, and b, . based on the exemplar, w?,.and hy . randomly

Generate the pseudo channel X,(t) as in egn. (5.2)

. Apply the STFT on the mixture signal.

. E-step: compute p;,,, and S, using eqns. (5.12) and (5.13), respectively.

f k' Ckny,¢’ f kT’ hfndﬂ Aingb’wfkr' hlen KoY and /12,114) USing eqn'
(5.18), eqn. (5.20), eqgn. (5.31), eqn. (5.32), eqn. (5.25), eqn. (5.26), eqn. (5.27), eqn. (5.28), eqn.

(5.29), and eqn. (5.30).

. 2
. Normalize wf, . =w}“k,r/\/2f,kﬁ(w}3‘_kl)

. Repeat E- and M-steps, and the normalization until convergence is achieved i.e. rate of cost

change is below a prescribed threshold, .

. Perform inverse STFT with dual synthetic window to estimate §(t), and b(t).
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5.4 Results and Discussions

5.4.1 Dataset

The performance of the proposed algorithms was investigated and compared with recent
state-of-art text informed source separation [86]. For fair comparison, the same datasets was used.
These datasets are 10 speech mixtures that mixed with music (Speech + music) and with effect
(Speech + Fx). So it resulted in 20 mixtures in total. For each mixture the speech is emulated by
using 12 exemplars (synth Man, Synth Woman, TMT Man, TMT woman, and other 8 foreign
speakers). Thus there were 240 experiments (generated from the 20 mixtures and the 12 exemplars
for each mixture) for SNR of -5dB.

5.4.2 Evaluation

In order to evaluate the proposed algorithm the SDR [98] that combines both the
source-to-interference ratio (SIR), source image-to-spatial distortion ratio (ISR), and the
source-to-artefacts ratio (SAR) will be used to evaluate the estimated sources with respect to the

original sources. The Matlab codes for this evaluation procedure can be found in [99].

5.4.3 Selections of n, §,and y

The contribution of the exemplar on the separation is weighted by 7, so if n = 0 the exemplar will
have little effect, while if its value increased the exemplar will have more influence. According to
[86] the value of n can be found as follows

= N 5.39
77—770Ny (5.39)

where N and N,, is the temporal length of the mixture and the exemplar, respectively, and for our
case 7, has been set to n, = 0.5.

The other parameter, which is the time-delay & can be computed as follows [111]

.k

max meax

)

(5.40)
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where f; is the sampling frequency and f,,,, is the maximum frequency presented in the mixture.
For the weighting parameter y that determine the attenuation on the delayed mixture yx,(t — &)
(see eqn. (5.2)), it has been found that exists a range of y with high SDR as shown Figure 5.2. The

plot suggests that this range to be 0.1 <y < 0.25. In all our cases, we use y = 0.15.

SDR

2 1 1 1 1 1 1 1 1 1
0 0.1 015 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

¥
Figure 5.2. The SDRs w.r.t. different values of y.

5.4.4 Optimization of 7,¢,and K

By following the procedure described in Section 5.3.5 (setting T = 10, @ = 10, and K,,,,,, = 10),
the results for one exemplar are shown in Figure 5.3. Figure 5.3(a) shows that the best SDR is
attained at t = 9and ¢ = 1. In addition, Figure 5.3(b) reveals that K = 2 results in the optimum
number of components. By following the same procedure the parameters of the exemplars for
mixture 1 to 10 are tabulated in Table 5.3. It can be seen from Table 5.3, that there is 120 different
parameters (t, ¢, and K). These 120 different parameters came from 120 different exemplars
(each speech signal in the mixture is emulated by 12 exemplars, and as there are 10 mixtures, this
results in 120 exemplars)*. Despite 12 exemplars emulate the same speech signal, they have
different parameters because they derived from different speakers (native and on-native English
speaker) and different genders, and as a result of these differences there will be a different

parameters of the NMF2D that describe each exemplar.

* The 120 (Speech+Music) mixture group and the 120 (Speech+Effects) mixture group have the samespeechsignal.
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Figure 5.3: The SDRs w.r.t. (a) T and ¢, (b) Number of components K.
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Table 5.3

Optimizing the parameters of the exemplars for mixtures 1 to 10.

Exemplar 1 2 3 4 5 6

T,k .o,k | .ok | .ok | TPk | TPk
Mix 1 10,2,1 | 10,11 811 1| 1,1,1 | 10,0,1| 9,0,1
Mix 2 1,0,1 1,0,5 1,0,1 | 51,1 | 30,1 | 50,2
Mix 3 3,0,1 1,0,3 2,001 1] 1,03 | 40,1 ]| 60,1
Mix 4 6,0,1 50,1 4,0,1 | 10,1 | 1,0,1 | 1,0,3
Mix 5 1,0,1 4,0,1 1,0,1 | 0,1,2 | 10,0,1| 1,0,1
Mix 6 1,0,1 1,0,1 50,11 10,1 | 60,1 | 401
Mix 7 1,0,1 0,1,1 1,0,1 | 6,0,1 | 90,1 | 51,1
Mix 8 1,0,1 1,0,1 3,001 10,14 | 501 701
Mix 9 1,0,1 1,0,1 1,0,1 | 1,0,1 | 50,1 | 10,0,1
Mix 10 1,0,1 1,1,1 1,0,1 | 10,11 | 1,0,1 | 50,1

Exemplar 7 8 9 10 11 12

T,k .9,k | .ok | .ok | TPk | T,k
Mix 1 90,1 90,1 8,0,11| 401 | 1,01 ]| 1,0,1
Mix 2 4,0,1 6,0, 1 7,0,1]10,0,2| 30,1 | 0,1,1
Mix 3 7,0,1 90,1 |10,0,1]|10,0,2| 6,0,1 | 1,0,1
Mix 4 10,0,1 1,0,1 | 10,0,1|10,0,2| 2,0,1 | 2,0,1
Mix 5 1,0,1 1,0,1 |10,0,2| 7,1,1 | 10,0,1| 1,0,1
Mix 6 8,12 6,0, 1 9,011 91,2 601 1,01
Mix 7 10,0, 1 8,01 7,0,1]10,0,1| 80,1 | 0,1,2
Mix 8 6,0,1 6,0, 1 901 ]10,0,1| 40,1 | 1,0,1
Mix 9 7,0,2 8,01 8,01 ]| 501|101 ]| 1,0,1
Mix 10 4,0,1 501 |10,0,1]100,2| 1,0,1 | 3,0,1
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5.4.5 Results
The STFT windows length was set to 512 with 50% overlaps. To show the convergence of the

proposed algorithms, the convergence of the cost functions egn. (5.10) of both algorithms are
shown in Figure 5.4. This plot is obtained for one mixture with twelve exemplars. It is noted thatall
trajectories have converged to the steady state in less than 50 iterations. The fast and stable
convergence is attributed to the manner of how the GEM-MU algorithm adapts the model

parameters and latent variables.

Cost Function

Cost Function

0
10 10
Iteration Number Iteration Number

(@) (b)
Figure 5.4: Cost function for (a) Semi-Exemplar based algorithm and (b) Exemplar

based algorithm.

The proposed algorithms will be compared with the NMPCF model based on the excitation-filter
channel speech model [86]. In this algorithm the variations between the speech example and the
targeted speech in the mixture such as pitch variation, phonemes pronounced, recording
conditions, and speaker’s vocal tract are modelled by the excitation-filter channel speech model.
The NMPCF jointly factorizes the spectrograms of the mixture and the exemplar that emulate the
speech signal. Also, the proposed algorithms will be compared with the Gaussian Scaled Mixture
Model (GSMM) [86] with constraints applied on the matrices of the excitation-filter channel
speech model under the NMPCF model umbrella, in order to have a physical motivation, such as
allowing one phoneme to be pronounced at a time and one fundamental frequency to be active at a
time.

The SDRs of the NMPCF model based on the excitation-filter channel speech model [86], the
structural GSMM algorithm [86], and the proposed algorithms are tabulated in Table 5.4. The
Table indicates that the proposed algorithms have better performance than the NMPCF, which can
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be summarized as follows: Anachievement of 2.57 dB more for the speech and music group, and
1.89 dB more for the speech and effects group for the Semi-Exemplar based algorithm. For the
Exemplar based algorithm an achievement of 3.12 dB more for the speech and music group, and
3.37 dB more for the speech and effects group. Furthermore, the Exemplar based algorithm
achieved an improvement of 1.86 dB for the speech and effects group and 0.16 dB for the speech
and music group, in comparison with the structural GSMM algorithm. On the other hand, the
Semi- Exemplar based algorithm achieves 0.38 dB more for the speech and effects group, and 0.39
dB less for the speech and music group. Although the proposed semi-exemplar based algorithm is
less dependent on the exemplar signal, its high performance is attributed to the pseudo-stereo

channels.

Table 5.4
Average SDRs of the 10 mixtures with their different 12 exemplars for the NMPCF and the

proposed algorithms.

SPEECH + SPEECH +
SNR=-5dB )

Music Fx
NMPCF -0.74 0.67
Structural GSMM 2.22 2.18

Proposed Semi-Exemplar
1.83 2.56

based algorithm

Proposed Exemplar based

) 2.38 4.04
algorithm

The proposed algorithms have achieved higher results than the NMPCF since they have more
powerful source representation the NMF2D and the 2DNMPCF, which address the change in the
time and frequency directions through the parameters (7 and ¢). To show the effects of these
parameters, one component of the W and H tensors and its corresponding spectrogram for both the
NMPCF and the proposed 2DNMPCF has been plotted in Figure 5.5(a) and Figure 5.5(b),
respectively. Both plots show how W modelled the changes in the frequencies of the source and
how H modelled the distribution in the time domain. On the separate hand, W and H of the
NMPCF detect the frequency bases, however it was not able to address the frequency and the
temporal changes.
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Figure 5.5: One component of W, and H with their corresponding spectrogram for
the (@) NMPCF and (b) 2DNMPCF.
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Additionally, the spectrogram of the original speech, the exemplar, the mixture, and the estimated
speech by using the proposed algorithms and the NMPCF are shown in Figure 5.6. These plots
clearly show that the proposed algorithms have successfully detected the pitch and temporal
change of the source, due to its two-dimensional deconvolution while NMPCF failed to detect

these changes. Furthermore, Figure 5.7 shows the waveforms of these signals.

Finally, from Table 5.4 itcan be seen that the Exemplar based algorithm achieved better separation
results than the Semi- Exemplar based algorithmsince the latter only uses the exemplar to initialize
the tensors of the targeted speechsignal. Thus the initialization will guide the algorithm for the first
iteration and gives the correct start but it may get trapped in local minima or drifted away fromthe
solution as the iterations increases. Although the Exemplar based algorithm has been given the
identical start as the Semi-Exemplar based algorithm, its separation is guided by the 2DNMPCF
which models both the exemplar and the targeted speech signal. To show this, the waveform of the
original voice, exemplar, and the estimated voice by using these two algorithms are shown in
Figure 5.8. The plot indicates that the exemplar based algorithm has successfully estimated the
original source. This shows the importance and contribution of 2DNMPCF on the proposed

algorithm.
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Mixture Estimated Voice Using Semi-Exemplar Based
250
200
150
100

50

o

50 100 150 200

o

50 100 150 200

Estimated Voice Using Exemplar Based Estimated Voice Using NMPC
250
200
150
100

50

0 50

100 150 200 50 100 150 200
Time [s] Time [s]

0

Figure 5.6: Spectrogram of the original speech, exemplar, and the estimated speech by
using the proposed algorithms and the NMPCF algorithm.
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Figure 5.7: Waveform of the original speech, exemplar, and the estimated speech by using

the proposed algorithms and the NMPCF algorithm.
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Figure 5.8: Waveform of the original speech, exemplar, and the estimated speech by using

the proposed algorithms.
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5.5 Multistage of The Exemplar Based Algorithm

This section will take advantage from the characteristics of the spectrograms under different
windows length, where the length of the window has an effect on the separation performance [50,
93]. In the short window the spectrogram of the percussive musical instruments is continue in the
spectral directionand discrete in the temporal direction, whichact differently from the spectrogram
of the speech and pitch musical instrument that continue in temporal direction and discrete in
spectral direction. Therefore, the percussive instruments are distinct from the pitched instruments

and speech signals which make them more separable under short window.

Furthermore, the speech signals act like percussive musical instruments in long window.
Therefore, two stages of the proposed exemplar based algorithm withshort (512-samples) and long
(1024-samples) windows will be proposed, as shown in Figure 5.9. In the short window’s stage the
frequency basis of the percussive instruments will be removed (as it will act differently from the
pitched and speech signals), while in the long window’s stage the frequency basis of pitch musical
instruments and the speech signal will be separated (as the speech signal act differently from

pitched instruments).

S Stage One o Stage Two______

_ | NMF2D | | i

Exemplar Signal |; (512 Window) | ! !

Y : wY HY| ! !
EZNN i i

- : ' | ! NMF2D :
N ) g | ! .

Mbdure XS'gnal > ZDNM";"E"FH"""E oiy| (1024 Window) | !
! | | WYHY|

Pseudo |\ | (512 Window) | ok :

channel i I i v l :

| ! ) ! g g9 |

| W9 HY Wb Hb ! Mixture ang Wini Hini i

Background . signal after ZDNM-PCF

Subtraction  Lremoving the i (1024 Window) | 1

: = X—B | background I T3

: -4 | components !

i e wems

Figure 5.9: High level presentation of the multistage of the exemplar based algorithm.
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The background subtraction is done in the spectral domain as follows

Xin = Xp, — by (5.41)
where Bfn is the estimated background signal as in eqn. (5.13), and x;,, is the mixture signal after
removing the estimated background signal. By following this procedure the results for the “speech
and music™® group is tabulated in Table 5.5. It can be seen that the average SDR has been increased
by 0.72 dB. Furthermore, the spectrogram of the mixture, the original speech and background
sources, and their estimate for both stages are shown in Figure 5.10. It can be seen that the
spectrograms of the percussive instruments has been separated clearly, as shown in the
spectrograms of the estimated background of stage one, while the speech and pitched instruments
still mixed together (they have the same characteristics in the short window) as shown in the
spectrograms of the estimated speech signal of stage one. While, the spectrograms of the second
stage show that the speech signal is clearer than the spectrogram of the first stage where a part
(ideally all) of the spectrograms of the pitched instruments has been removed, as the speech signal
act like percussive instruments in long window. Thus the second stage enhanced the separation

performance by removing the pitched spectrograms that the first stage did not remove.

Table 5.5
Average SDRs of the 10 mixtures with their different 12 exemplars for the Multistage of the
Exemplar based algorithm.

SPEECH + Music | SPEECH + Music
SNR=-5dB First Stage Second Stage
Window=512 Window=1024

Proposed Exemplar based
) 2.38 3.10
algorithm

5This approach cannot be applied on “Speech+Effects” group as the effects have random spectral features which
cannot be modeled with shortor long window.
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5.6 Summary

In this chapter two algorithms for the underdetermined informed source separation, namely the
semi-exemplar based algorithm and the exemplar-based algorithm have been proposed. These
algorithms are based on the two dimensional matrix factorization techniques, the NMF2D and the
proposed 2DNMPCF. These two dimensional factorization techniques have the advantage of
describing the targeted signal by describing the pitch and temporal changes of that signal, which
cannot carry out by the NMF or NMPCF. For faster convergence and better performance both of
the algorithms are modelled by the GEM-MU algorithm with pseudo-stereo channel and with
adaptive sparsity. It has been shown that the proposed algorithm outperformed the NMPCF
algorithm and the structural GSMM algorithm. Furthermore, it has been shown that by using a

multistage of the proposed exemplar based algorithm the overall performance can be enhanced.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this chapter the contributions will be summarized and the future work of the thesis will be

discussed.

The work in this thesis has fulfilled the aims of the research set out in Chapter 1. The advantage of
the two dimensional factorization techniques over the matrix factorization techniques paved the
way for the development of four underdetermined separation algorithms as follows: Firstly, the
NMF2D has been developed for the convolutive underdetermined mixture. The convolutive
NMF2D achieved better performance than the NMF due to its ability in addressing both the
temporal and spectral change of the signal. Secondly, the K-wNTF2D has been developed to
address a more realistic case in blind source separation which is the high-reverberant convolutive
underdetermined mixture. The K-wNTF2D maintains its high level performance in the high
reverberation environment due to its ability in modeling both the spectral and temporal changes,
and the spatial covariance matrix. Thirdly, the semi-exemplar based and the full exemplar based
algorithms have beendeveloped. These two algorithms have been dedicated to the informed source
separation. Both algorithms achieved better performance than the conventional methods due to
their ability in describing the exemplar which cannot be carried out by the conventional methods.
The above algorithms have been modeled with adaptive/ variable sparsity inorder to avoid the over
or under sparseness. Finally, essential algorithms; the Gamma-exponential algorithm and the
SVD2D algorithm have been developed to support the separation algorithms by estimating their
model order to avoid over shifting and initialize them to prevent them from stuck in local minima

or even diverge.

In Chapter 2, the theories which paved the understanding of the work that carried out in the rest of
the chapters have been explained. The overview of the blind source separationand informed source
separation was presented. The motivation behind considering the convolutive mixture instead of
the instantaneous one, and the motivation behind tackling the high-reverberant mixture were
discussed. Furthermore, the potential of going from blind to informed source separation was
shown. Moreover, the factorization techniques such as the NMF, NMFD, NMF2D, NTF, and
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NTF2D have been explained. Additionally, the parameters those effects on the separation

performance have been highlighted and discussed.

In Chapter 3 the NMF2D with adaptive sparsity has been proposed to solve the underdetermined
convolutive mixture. The impetus behind this is that the NMF2D is more powerful than the NMF
due to its ability in addressing both the temporal and spectral change of the signal. Furthermore the
adaptation of the adaptive sparsity in this model gives it the capability to control the degree of
sparseness over the activation matrix of the NMF2D. Also the proposed Gamma-Exponential
process algorithm ensured that a suitable number of frequency basis and convolutive parameters
are assigned to each source in order to avoid over-shifting. Moreover, the proposed
Gamma-Exponential process algorithm has been used to initialize the tensors of the NMF2D in
order to avoid the separation algorithm to stick in local minima or to even diverge. Additionally it
has been shown that using different windows length will match the characteristics of the sources to
be estimated and this will leads to better representation for them. The significant improvements in
the results in term of the SDRs showed that the proposed algorithm is better than the conventional
methods that based on NMF or NTF and it is more flexible.

In Chapter 4 the K-wNTF2D with variable sparsity has been proposed to solve the more realistic
case in blind source separation which is the underdetermined high-reverberant convolutive
mixture. The motivation behind proposing the K-wNTF2D in this chapter is due to its ability in
modeling both the spectral and temporal changes, and the spatial covariance matrix that address the
high reverberation problem. Furthermore, the variable sparsity that derived from the Gibbs
distribution has been integrated with this model in order to provide a tractable approach that adapts
each sparse parameter for every temporal code in the K-wNTF2D model. Moreover, the SDV2D
initialization method has been proposed in this chapter to initialize the tensors of the K-wNTF2D in
order to avoid divergence or sticking in undesired minima. The experiments in this chapter showed
that the proposed algorithm maintains its high level performance in the high reverberation
environment, where it achieved higher performance than the Full-Rank NMF and the multi-level
NMF.

In Chapter 5 two algorithms which based on the NMF2D and the proposed 2DNMPCF models
have been proposed to solve the informed source separation, namely the semi-exemplar based
algorithm and the exemplar-based algorithm. Both algorithms were depending on the provided

exemplar that emulates the speech signal to be separated. The impetus behind using the NMF2D
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and the proposed 2DNMPCF models here is due to their ability in describing the exemplar which
cannot carry out by the NMF or NMPCF. Furthermore, to enhance the performance of the
separation a multistage of the exemplar-based algorithm has been proposed. The first stage of the
proposed multistage algorithm has been modeled with short window to remove the percussive
sources, while the second stage has been modeled with long window in order to separate the speech
signal from the pitched one. Throughout the experiments it has been shown that the proposed
algorithms outperformed the NMPCF algorithm and the structural GSMM algorithm.

All the proposed algorithms in the thesis have been compared in terms of the type ofaudio source
separation, cost function, update of the parameters, and sparsity, as shown in Table 6.1. Interms of
the computational complexity, the K-wNTF2D requires the most computational resources
compared to the Convolutive NMF2D, and the Exemplar-Based algorithm and the Semi- Exemplar
based algorithm, as it avoided the narrowband assumption by considering the full-rank spatial
covariance matrix instead of rank one matrix. The performance of proposed algorithms depends in
some degrees on the prior information provided to them. In the Convolutive NMF2D and the
K-wNTF2D, the prior information takes the form of how the specific source is modelled. In the
Exemplar-Based algorithm and the Semi-Exemplar based algorithm, the prior information takes

the form of how similar the exemplar is to the targeted signal to be separated.
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Table 6.1: Summary of the proposed algorithms.

Type of Audio
Algorithm Source Cost Function Update Sparsity
Separation
Convolutive
Blind IS GEM-MU Adaptive
NMF2D
] Variable
K-wNTF2D Blind
IS GEM-MU Sparsity
Exemplar Based
Informed )
Algorithm IS GEM-MU Adaptive
Semi-Exemplar
) Informed )
Based Algorithm IS GEM-MU Adaptive
2DNMPCF Informed -
Gamma
Exponential Blind -
Process
SvD2D Blind -
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6.1 Future Works

In this section some research areas in both the blind and informed source separation will be presented

for future investigation with the goal of developing novel algorithms.

6.1.1 Harmonic and Percussive Source Separation

Recently many researches have been dedicated to separate the harmonic and percussive sources
[114-121] due to the distinct characteristics of their spectrogram. Harmonic instruments are
smooth and continue in temporal direction and discrete in spectral direction, and the opposite for
the percussive instruments. Inspired by the harmonic and percussive source separation algorithm
[114], an algorithm will be proposed for separating the harmonic and percussive musical
instruments by customizing the two dimensional matrix factorization techniques to match the
characteristics of these signals. Instead of using two stages with different windows to match the
characteristics of these signals one stage only will be proposed but with different convolutive
parameters for each source, such as using high = and low ¢ for the harmonic signaland low t and
high ¢ for percussive signal, as shown in Figure 6.1. The idea is to use the proposed
Gamma-Exponential process to estimate the convolutive parameters, and then use these parameters

to model the mixture as follows

Xpn = @y fDpp + @y phey (6.1)

where a; ¢ (j=1 or 2) is the time invariant mixing matrix, p,, is the percussive signaland h;,, is the

harmonic signal, which can be expressed by K complex-valued latent components, i.e.,

K
Prn = Z c,f,fn (6.2a)
k=1
and
K;j
B = 2 et (6.2b)
k=1

which can be modeled as realization of proper complex zero-mean variables:

Tmin ¢ma x

14 — p 14
Ck,f” - ‘N; 0, Z Z Wf—(l).k,‘rhk,n—r,(p (63)
=0 ¢=0
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Tmax ¢min

=0 ¢=0

where IV, (i, X) is proper complex Gaussian distribution [94], Wj?—d).k,r and W/Ll—(p,k,r represent the
spectral basis of the percussive and harmonic sources, respectively, and h} _ . and
h’,g,n_rj(p represent the temporal code for each spectral basis element of the percussive source and

harmonic sources, respectively, for f =1,...,F,n=1,..,N,and k = 1,... K. It can be seen that
egn. (6.3) has ¢,,,, and t,,;,, inorder to match the characteristics of the percussive instruments,
while eqn. (6.4) has the opposite values of the convolutive parameters in order to match the

characteristics of the harmonic instruments.
The parameters A,C,W ,and H will be estimated via the posterior probability

P(X|C,A)P(C|W ,H)

P(C,W,H|X,A) = 6.5
€W HIX,4) e (65)

and their log-posterior is given by
logP(C,W,H|X,A) =logP(X|C,A) +logP(C|W,H) + const (6.6)

Finally the GEM-MU [80] algorithm can be applied to estimate the percussive and harmonic

sources.

Mixture Signal
X

;

Gamma-Exponential Process

T

min max ¢min ¢max; K
\4 \ 4 \ 4 v A v

GEM-MU based 2D Matrix
Factorizations Techniques

} }

gh sP

Figure 6.1: High level presentation of the harmonic and percussive source separationalgorithm.
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6.1.2 Coding Based Informed Source Separation

Ozerov et al. [91] proposed a coding based informed source separation system that based on the
nonnegative tensor factorization (N TF) that able to reach any quality (in expense of bandwidth as
in source coding) that the conventional methods cannot reach, as it take advantage from both the
informed source separation and source coding. This system consists of two stages; the encoding
stage and the decoding stage. In the encoding stage the side information that contains the sources,
the sources model parameters (that represented by N TF model, i.e., Q, W, and H matrices), and the
perceptual model parameters are encoded and transmitted with the mixture. In the decoding stage

the sources are reconstructed by depending onthe received mixture signal and the side information.

Inspired by this system the K-wNTF2D model can be used instead of the NTF as it is more
powerful. Furthermore, the parameters which describe the sources (as described in Chapter 5) can
be transmitted with the side information, ie., transmitting the number of components and
convolutive parameters. Thus the separation performance will be significantly improved but in the
cost of the bitrate.

6.1.3 Complex Two Dimensional Matrix Factorization Techniques

It has been shown in [3] that incorporating the phase information into the NMF has the potential to
increase the separation performance, therefore, a full rank complex 2D matrix factorization
techniques will be proposed to model the spectral variance of the source, takes into account the
phase information of the source spectral variance, and model the full rank of the spatial covariance
matrix. Thus the issue of high-reverberant mixture will be addressed through the full rank spatial
covariance matrix, and better separation performance will be achieved through the phase

information. This model can be realized as follows

Let x(t) be the observed multichannel signal that can be expressed in time domain as

J

x;(t) = Z Ci,j(t) + b;(t) (6.7)

j=1

where i=12,..1, x;(t) ER,t=1,..,T is the receiving signal from the i-th

microphone, ¢; ;(t) € R is the spatial image of the source signal j and channel i, J is the number of
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sources, and b;(t) € Ris some additive noise. The spatial image of the source ci’j(t) can be

expressed as

L-1
¢, (O = z a, ;(Ds;(t - 7) (6.8)
=0
where a; ;(t) € Ris the finite-impulse response of some (causal) filter, L is the filter length, and
s;(t) € Ris the original source signal.

By substituting eqn. (6.8) into egn. (6.7), and assuming that the mixing channel is time-invariant
then, the STFT of eqn. (6.7) becomes

J

Xifm = Z Cijfm T hif (6.9)
j=1
where x, = [Y1rn X,rn]f, and Xifms Cijrms Dipn are the complex-valued STFT of

x;(t), ci,j(t), and b;(t), respectively. The term f =1, 2, ..., F is the frequency bin index, and n =

1,2,..,N is the time frame index. The spectral covariance matrix of ¢; ; -, defined as
@ _
Zifn = E[cj,f,n C]I-',If.n] (6.10a)
can be expressed as
© _ y(@ —1a; ¢
Zign = Zip Vign eV, (6.10b)

where 3©

i fn € C™ is the spectral covariance matrix of the j-th source image, 2'.'](.‘;) is the

time-invariant spatial covariance matrix of the j-th source, v; - ,, € R is the j-th source variance in
the STFT domain, and «; ¢ ,, € C is the time-varying phase spectrum [122] to explicitly model the

phase inv; ., . The term v —1is adopted to represent the imaginary component. The j-th source

variance can be expressed as

K
_ T.J b,
jfn = Z W g i M nv (6.11)
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where K is the number of components or frequency basis assigned to the j-th source, t and

max

. . . T,j
Py are the maximum number of the convolutive parameters 7 and ¢ respectively. W'

represents the k-th spectral basis of the j-th source, and hﬁi represents the k-th temporal code for

each spectral basis element of the j-thsource, for f =1,..,F,n=1,..,N,andj =1, ...,J.

The full-rank  spectral covariance matrix of x, ,, in egn. (6.9) can be expressed as

Zf(’;) = E[x;,x!, |

J
— ©) (b)
=D 5+ 5
j=1

J

= > 5Py, e 4 5 (6.12)

j=1
where ¥ f( ) is the time invariant noise covariance matrix.

The spatial image of the sources needs to be modeled as realization of complex distribution that
consider the complex signals in order to optimize the model parameters 6 =
{(W,H,2(®,5®), A, a}. Then the separation can be carried out by using the GEM-MU algorithm.

Furthermore, the wvariable sparsity can be proposed to estimate the sparsity,
Gamma-Exponential process algorithm can be proposed to estimate the number of components,

convolutive parameters, and initialize its tensors.

6.1.4 Totally Blind Source Separation System

There is some prior information that needed in the blind source separation methods in order to
carry out the separation. One of the prior information is the number of sources. Therefore, the blind
source separation is not totally blind as prior information is required. The idea of this section is to
develop a system that able to detect the number of sources in order to achieve a totally blind
system, e.g., by using the Direction Estimation of Mixing matrix (DEMIX) algorithm [123]. This
algorithm proposed for both instantaneous and anechoic systems, therefore, it needs to be

developed to deal with convolutive mixture. To be able to deal with convolutive mixture it will
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required from the algorithm to distinguish between the sources and their reverberation or an echo
cancellation is required to be added to this system, which is not forward if the system is suggested
for the high reverberation environment. If this system is developed then the whole picture of the
source separation can be realized blindly, as there will be no need for prior information about the

number of sources. The suggested system can be realized as in Figure 6.2 below.

Mixture Signal
X
: ; !
SVD2D Initialization Gamma-Exponential Estimating Number of
Algorithm Process Sources
. T |¢ |K
Wl‘nl \ 4 \ 4 A\ 4 ]
Hini .
» GEM-MU based 2D Matrix |

Factorizations Techniques

I

~

$: 8, - §

Figure 6.2: Suggested blind source separation system.
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APPENDIX A

Derivation of the conditional expectation of the natural statistics

The posterior P(c; ,|x; ) can be written as

P(xf,n' cj,f,n)

P(cj,f,nle,n) = P(xf )
n

. . -1 H . . -1
(n”ldeth(]{o;l"t)) exp{—["f.n] yUomt) [xf.n]}

Cifnd Tifm Cjfn
- -1 (x)—l
(n’detz;;)) exp {—xjf{nlf’n xf,n}

= (ndEtI}‘,f,n )_1exp{_1/1j,f,n}

where
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where E[b, ,c; | = 0as they are uncorrelated. Thus

- -1 H
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Comparing eqn. (A.6) witheqgn. (4.9), eqns. (4.16)-(4.18) will be obtained. By following the same
procedure for the noise, eqns. (4.19)-(4.21) will be obtained.
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