
Underdetermined Convolutive Source Separation 

Using Two Dimensional Non-Negative 

Factorization Techniques 

 
Ahmed Sattar Hadi Al Tmeme 

BSc 

MSc 

 

A thesis submitted to the Newcastle University for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

School of Electrical and Electronic Engineering 

Faculty of Science, Agriculture and Engineering 

March 2017 

 

 



 

 

i 
 

ABSTRACT 

In this thesis the underdetermined audio source separation has been considered, that is, estimating 

the original audio sources from the observed mixture when the number of audio sources is greater 

than the number of channels. The separation has been carried out using two approaches; the blind 

audio source separation and the informed audio source separation. The blind audio source 

separation approach depends on the mixture signal only and it assumes that the separation has been 

accomplished without any prior information (or as little as possible) about the sources. The 

informed audio source separation uses the exemplar in addition to the mixture signal to emulate the 

targeted speech signal to be separated. Both approaches are based on the two dimensional 

factorization techniques that decompose the signal into two tensors that are convolved in both the 

temporal and spectral directions. Both approaches are applied on the convolutive mixture and the 

high-reverberant convolutive mixture which are more realistic than the instantaneous mixture. 

In this work a novel algorithm based on the nonnegative matrix factor two dimensional 

deconvolution (NMF2D) with adaptive sparsity has been proposed to separate the audio sources 

that have been mixed in an underdetermined convolutive mixture. Additionally, a novel Gamma 

Exponential Process has been proposed for estimating the convolutive parameters and number of 

components of the NMF2D/ NTF2D, and to initialize the NMF2D parameters. In addition, the 

effects of different window length have been investigated to determine the best fit model that suit 

the characteristics of the audio signal. Furthermore, a novel algorithm, namely the fusion K models 

of full- rank weighted nonnegative tensor factor two dimensional deconvolution (K-wNTF2D) has 

been proposed. The K-wNTF2D is developed for its ability in modelling both the spectral and 

temporal changes, and the spatial covariance matrix that addresses the high reverberation problem. 

Variable sparsity that derived from the Gibbs distribution is optimized under the Itakura-Saito 

divergence and adapted into the K-wNTF2D model. The tensors of this algorithm have been 

initialized by a novel initialization method, namely the SVD two-dimensional deconvolution 

(SVD2D). Finally, two novel informed source separation algorithms, namely, the semi-exemplar 

based algorithm and the exemplar-based algorithm, have been proposed. These algorithms based 

on the NMF2D model and the proposed two dimensional nonnegative matrix partial 

co-factorization (2DNMPCF) model. The idea of incorporating the exemplar is to inform the 

proposed separation algorithms about the targeted signal to be separated by initializing its 

parameters and guide the proposed separation algorithms. The adaptive sparsity is derived for both 
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of the proposed algorithms. Also, a multistage of the proposed exemplar based algorithm has been 

proposed in order to further enhance the separation performance.  

Results have shown that the proposed separation algorithms are very promising, more flexible, and 

offer an alternative model to the conventional methods. 
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CHAPTER 1 

INTRODUCTION 
 

 

In this chapter, the motivation behind considering the more realistic cases of the audio source 

separation will be presented. This included the convolutive blind audio source separation and the 

high-reverberant convolutive blind audio source separation instead of the instantaneous one. Also, 

the motivation behind going from blind to informed audio source separation will be presented too. 

Then, the big picture of audio source separation system that has been achieved in this thesis will be 

demonstrated in order to give a clear view of work done. After that the objectives and contributions 

will be drawn. Finally, by the end of this chapter, the outline of the thesis is presented chapter by 

chapter. 

  

1.1 Motivation 

Since more than two decades the researchers working on making the machine to have the same 

ability of the human to listen and distinguish between different sound sources. Although, the great 

efforts of the researchers, it is still an open problem, even, it is an ill-posed problem if they tried to 

solve it without any prior information about the sources. Therefore, to make it soluble many 

researchers considered that the sources have been mixed instantaneously, i.e., they neglect the 

reverberation from the surrounded environment which is unrealistic as the sounds reflected from 

the wall or/and the background noise cannot be avoided. Therefore, in this thesis the convolutive 

mixture (that considers the refection of the sound) will be considered instead of the instantaneous 

one. In spite that the convolutive blind source separation (BSS) performs well in low reverberation 

environment, their performance will drop sharply in high reverberation environment. So, in this 

thesis we go further by considering the high-reverberant blind audio source separation that 

simulates the real world environment. Even when the blind audio source separation modelled to 

consider the high reverberation it did not achieved the required performances that can challenge the 

human ability in sound sources separation. Therefore, researchers have sought an aid from an 

external source in addition to the mixture signal, and they opted to go from blind to informed audio 

source separation in order to achieve higher performance that the BSS cannot reach. Consequently, 
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the informed source separation will be considered as one of the challenges to be tackle in this 

thesis.  

1.2 Big Picture of Audio Source Separation 

In this section the terminology that used in the source separation will be explained and the 

source separation system will be demonstrated. 

The idea behind the audio source separation is to extract the audio sources (such as the music 

and speech signals) from their mixtures (the observer of the sources where mostly assumed the 

sources have mixed instantaneously by adding them, or convolutively by considering their 

reverberation). This separation needs a system that is able to perform many processes; such as 

estimating the number of sources, estimating the required number of frequency basis and 

convolutive parameters to be assigned to each source, applying separation algorithms, and 

reconstructing the sources. Figure 1.1 shows the Big Picture of the proposed audio sources 

separation system. In which all the sources considered to be mixed convolutively, then the number 

of frequency basis and convolutive parameters will be estimated by using the proposed 

Gamma-Exponential Process (see Chapter 3). After that the parameters of the separation 

algorithms will be initialized by the proposed SVD two-dimensional deconvolution (SVD2D) 

initialization algorithm (see Chapter 4), and the sparsity (the penalty on the activation matrix that 

ensures only a few units (out of a large population) will be active at the same time. The sparsity can 

be added as a constraint to the cost function [1]) will be estimated by the proposed variable sparsity 

algorithm (see Chapter 4). After estimating the required parameters the separation will be carried 

out by the proposed convolutive blind source separation algorithm or by the proposed 

high-reverberant (Full-Rank) blind source separation algorithm (see Chapter 3 and 4, respectively). 

Finally, the sources will be reconstructed by Wiener filter that works as follows 

𝑠̂𝑗,𝑓𝑛 =
𝑝̂𝑗,𝑓𝑛

∑ 𝑝̂𝑗,𝑓𝑛𝑗

𝑥𝑓𝑛                                                              (1.1) 

where 𝑠̂𝑗,𝑓𝑛 is the estimated source, 𝑥𝑓𝑛 is the mixture,  𝑝̂𝑗,𝑓𝑛 is the estimated power of the 𝑗𝑡ℎ 

source, and 𝑗 is the source index.  

The above scenario gives the general overview of the proposed blind source separation algorithms 

in the thesis.    
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For the proposed informed source separation system in addition to the mixture there will be an 

exemplar that emulates the targeted signal to be separated. The idea of adding the exemplar is to 

inform the proposed separation algorithms about the targeted signal to be separated by initializing 

its parameters and guide the proposed separation algorithms (see Chapter 5).  
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1.3 Aims and Objectives of Thesis 

The aims of the thesis are to investigate and develop efficient algorithms for the underdetermined 

blind and informed audio source separation that mixed in convolutive mixture with 

low-reverberation environment (convolutive mixture) and high-reverberation environment 

(high-reverberant (Full-Rank) convolutive mixture). Three novel algorithms have been proposed to 

tackle these aims.   

The objectives of this study are 

1. To develop novel algorithms for the underdetermined audio source separation to tackle real 

world mixing scenario.  

2. To exercise control over the parameters which affect the separation performance such as the 

initialization, number of frequency basis and convolutive parameters, cost functions, and 

windows length.   

3. Develop background theories that further pave the understanding of the audio source 

separation and develop the mathematical derivations that verified the proposed algorithms. 

4. Compare and analysis the performance of the proposed algorithms with the existing 

algorithms in order to show the efficiency of the proposed algorithms. 

 

1.4 Contributions 

The contribution of this thesis for the underdetermined convolutive blind audio source separation, 

underdetermined high-reverberant blind audio source separation, and underdetermined informed 

audio source separation can be summarised as follows 

1. A novel unsupervised algorithm that based on the nonnegative matrix factor two dimensional 

deconvolution (NMF2D) with adaptive sparsity is proposed. This algorithm is proposed to 

blindly separate audio sources which have been mixed in underdetermined convolutive 

mixture.   
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2. A novel algorithm, namely the fusion K models of full-rank weighted nonnegative tensor 

factor two dimensional deconvolution (K-wNTF2D) is proposed to blindly separate audio 

sources which have been mixed in underdetermined high-reverberant mixture.  

3. Two novel underdetermined informed audio source separation algorithms, namely, 

the semi-exemplar based algorithm and the exemplar-based algorithm, are proposed. The 

semi-exemplar based algorithm and the exemplar-based algorithm are based on the 

NMF2D model and the proposed two dimensional nonnegative matrix partial 

co-factorization (2DNMPCF) model, respectively. The proposed 2DNMPCF model 

factorizes both the mixture and the exemplar at the same time, and it is more powerful than 

the nonnegative matrix partial co-factorization (NMPCF) model. Also, a pseudo stereo 

channel is adapted in both algorithms in order to enhance the separation performance. 

Furthermore, the adaptive sparsity is derived for both of the proposed algorithms in order to 

adapt each sparse parameter for every temporal code in the 2DNMPCF and NMF2D. Finally, 

a multistage of the proposed exemplar based algorithm is proposed in order to enhance the 

separation performance.  

4. A novel Gamma Exponential Process is proposed for estimating the convolutive parameters 

and number of components of the NMF2D, which is an essential step in audio source 

separation that based on the NMF2D or the nonnegative tensor factor double deconvolution 

(NTF2D) models. Also the proposed algorithm is used to initialize the NMF2D parameters. 

5. A novel initialization method, the SVD2D is proposed to initialize the parameters in the 

NMF2D or the NTF2D. Initialization is the keystone of the audio source separation as a 

random initialization can lead to converge to local minima or even diverge. 

6. A set of variable sparsity parameters derived from Gibbs distribution and optimized under 

the Itakura-Saito divergence has been encoded into the K-wNTF2D model. This optimizes 

each sub-model in K-wNTF2D with the required sparsity in order to model the time-varying 

variances of the sources in the spectrogram.  

7. For faster convergence the proposed algorithms adapted under the hybrid framework that 

combines the generalized expectation maximization algorithm with the multiplicative update 

rule (GEM-MU).  
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8. Finally, the effects of different windows length have been investigated to best fit the model 

and the characteristics of the audio signal.  

 

1.5 Thesis Outline  

The prime focus of this thesis is the unsupervised underdetermined algorithms for audio source 

separation. Three chapters of this thesis are dedicated for the main contributions of the proposed 

works, while the first chapter is an introductory to the thesis followed by an overview chapter. 

Finally, the last chapter draws the conclusions and suggests a future works. A more details of the 

thesis outlines are given bellow 

Chapter 2 provides an overview of the recent audio source separation (blind and informed) 

algorithms that based on factorization techniques, such as the nonnegative matrix factorization 

(NMF) and its extension the NMF2D, the nonnegative tensor factorization (NTF), and the NTF2D. 

Furthermore, it discusses the parameters which affect the separation, such as the cost function, the 

initialization, window’s length, and number of components and convolutive parameters.  

In Chapter 3 a novel unsupervised machine learning algorithm based on the NMF2D with 

adaptive sparsity is proposed. The proposed algorithm adapted under the GEM-MU hybrid 

framework. This chapter also proposes a method to optimize the number of components and 

convolutive parameters in the NMF2D by using the Gamma-Exponential process as the 

observation-latent model. In addition, it is also shown that the proposed Gamma-Exponential 

process can be used to initialize the NMF2D parameters. Finally, the chapter investigates the issue 

and advantages of using different window length with different number of convolutive parameters. 

Simulation results for the synthetic convolutive mixtures and live recordings are carried out in the 

end of this chapter.  

Chapter 4 proposed the K-wNTF2D model. The derivation of the algorithm and the 

development of proposed full-rank K-wNTF2D are shown in this chapter. The algorithm also 

encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D 

model. In addition, a novel initialization method, the SVD2D is proposed to initialize the 

parameters in the K-wNTF2D. Experimental results on the underdetermined reverberant mixing 

environment have been accomplished at the end of this chapter. 
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In Chapter 5 two novel algorithms for the underdetermined informed source separation, namely 

the semi-exemplar based algorithm and the exemplar-based algorithm are proposed. Also the 

2DNMPCF model that simultaneously factorizes the mixture and the exemplar is proposed too. 

The derivation of the adaptive sparsity and the adaptation of the pseudo stereo channel for both of 

the proposed algorithms are shown in this chapter. Furthermore, a multistage of the proposed 

exemplar based algorithm is proposed. Finally, comparisons with other algorithms are presented at 

the end of this chapter. 

Finally, Chapter 6 draws the conclusions of this thesis and suggests new avenues for the future 

work. 
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CHAPTER 2 

OVERVIEW OF AUDIO SOURCE SEPARATION 

 

In this chapter an overview of audio source separation that is based on factorization techniques, 

such as the NMF, the NMF2D, the NTF, and the NTF2D will be provided. Furthermore, the 

parameters which effect on the separation, such as the cost function, the initialization, window’s 

length, and number of components and convolutive parameters will be discussed. Finally, the 

informed source separation will be reviewed. 

 

2.1 What is Audio Source Separation 

Source separation (SS) has attracted much research attention in recent years, where great deal of 

work has been undertaken to solve this problem [2-18]. SS is an acronym referring to estimating 

the sources from their mixtures, and if there is no information about the sources, then the separation 

will be achieved blindly, and the technique is called blind source separation (BSS) [19], while if 

there is additional information about the sources then the technique will called informed source 

separation (ISS) [20]. Until now SS is an open problem as it does not have the same ability of 

humans to listen and distinguish between different sources. 

Audio source separation can be implemented by using supervised methods or unsupervised 

methods. The supervised methods have two phases, the training phase and the separation phase. In 

the training phase the model parameters are trained on the sources (either all of the sources or part 

of them). Then in the separation phase the separation of the sources will be accomplished by using 

these trained model parameters. The current trend in supervised methods is the deep neural 

network (DNN) [21-24] that model the nonlinear relationship between the trained parameters of 

the targeted speech signal and the mixture signal.    

Unsupervised separation methods do not require any training [2, 5-11, 13, 14, 16-18] where the 

separation of the mixtures accomplished by depending on the mixture signal only. However in this 

type of source separation prior information is needed in advance before the separation can be 

carried out, such as the number of sources, and how the sources are mixed.   
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As the unsupervised source separation will be used in this thesis then more details about it will 

be given. There are two types of mixtures in source separation; the nonlinear mixture [18] and the 

linear mixture [2, 5-14, 16, 17]. In the non- linear mixture the mixture signal is constructed from 

nonlinear combination of the source signals, and it can be expressed as follows  

𝑥𝑖(𝑡) = ∑ 𝑓𝑖 (𝑠𝑗(𝑡))

𝐽

𝑗=1

                                                           (2.1) 

where 𝑥𝑖(𝑡) is the mixture signal, 𝑖 = 1, 2, . . , 𝐼, 𝐼 is the total number of channels, 𝑡 = 1, 2, … , 𝑇, 𝑡 

is the time frame index, 𝑠𝑗(𝑡) is the source signal, 𝑗 = 1, 2, … , 𝐽, 𝐽 is the total number of sources, 

and 𝑓𝑖(. ) is the nonlinear mixing process. 

In the case of linear mixture, the mixture signal is constructed from the linear combination of 

source signals. The linear source separation can be classified according to the mixing operation to 

instantaneous source separation [2, 11, 17] and convolutive source separation [5-10, 13, 14, 16]. In 

the instantaneous case the mixture is constructed from the sources by adding them without 

considering the reverberation of the sources due to the surrounding environment, i.e., considering 

the direct path of the sources and neglecting their echoes, which is unrealistic as it is impossible to 

avoid the echo of the signal. The instantaneous mixture can be expressed as follows 

𝑥𝑖(𝑡) = ∑ 𝑎𝑖𝑗 𝑠𝑗(𝑡)

𝐽

𝑗=1

                                                            (2.2) 

where 𝑎𝑖𝑗 is mixing filter associated with the sound propagate from source 𝑗 to channel 𝑖.  

While in the convolutive mixture the reverberation of the sources due to the surrounding 

environment are considered by modelling the direct path and the echoes of the sources. The 

mixture signal of the convolutive can be expressed as follows 

𝑥𝑖(𝑡) = ∑ ∑ 𝑎𝑖𝑗

𝐿−1

𝜏 =0

𝐽

𝑗=1

(𝜏)𝑠𝑗(𝑡 − 𝜏)                                                   (2.3) 

where 𝑎(𝜏) is the finite- impulse response of some (causal) filter, and 𝐿 is the filter length.  

Figure 2.1 shows the difference between the instantaneous and convolutive mixture.  
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Figure 2.1: Difference between instantaneous and convolutive mixtures. 
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Furthermore, by depending on the number of sources 𝐽 and the number of channels 𝐼 the following 

cases can be hold: 

a. If 𝐼 = 1; then it is a single channel case [2]. 

b. If 1 < 𝐼 < 𝐽; then it is the underdetermined case [5-11, 13, 14, 16]. 

c. If 𝐼 > 𝐽; then it is the Over-determined case [17]. 

d. If 𝐼 = 𝐽; then it is the determined case [17]. 

In addition to the above classifications, the NMF2D [25-32] can be appended to them. These 

methods consider a single channel (except [30] where it consider a stereo channel) with linear 

instantaneous mixture. The instantaneous mixture is not realistic as it does not consider the 

reverberation of the audio sources, therefore, in this thesis a more realistic case, which is the 

convolutive mixture will be considered.   

In the following sections source separation that is based on factorization techniques such as the 

NMF, the NMF2D, the NTF, and the NTF2D will be explained in details.  

 

2.2 Nonnegative Matrix Factorization (NMF)  

NMF [33-36] is dimension reduction technique that is applied to the nonnegative data where it 

used as a part representation of the data instead of holistic representation as in principle component 

analysis (PCA), independent component analysis (ICA), and singular value decomposition (SVD). 

It is part representation instead of holistic representation, because, NMF represent each part of the 

data by the basis matrix and its corresponding distribution (encoding) matrix, e.g., [35] showed that 

each part of the face can be represented by the NMF while it is not possible to do that if the PCA or 

the vector quantization (VQ) is used, because they represent the whole face and not part of it. As 

the NMF works on positive data only; then there will be no cancellation in the data if it contains 

positive and negative values (i.e., it does not result in subtraction of any of the nonnegative data), as 

in PCA, ICA, and SVD. This feature attracts many researchers and makes it well known in the 

audio source separation community, due to the nature of sound signal (where the sounds from 

different sources are combined with each other and not cancel each other) that match the NMF 

feature. A great deals of research have been undertaken under the umbrella of the NMF in many 

applications, such as bioinformatics [37], digital watermark [38], image processing [39, 40], facial 
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recognition [41], audiovisual document structuring [42], speech enhancement [43], audio 

inpainting [44, 45], audio declipping [46, 47], direction of arrival (DOA) estimation [48], blind 

source separation [5, 6, 8, 13, 14, 25, 49-52], and the informed source separation [15, 53-56]. The 

other feature of the NMF which is the dimensionality reduction will be explained after 

understanding how the NMF works. A comparison between the NMF and the other factorization 

technique can be found in [57]. While, a comprehensive review about the NMF can be found in 

[58].  

NMF can be summarized as follows, if X is an 𝐹 × 𝑁 data matrix with nonnegative entries, 

then NMF can decompose it as follows 

|𝑥̂𝑓𝑛| ≈ ∑ 𝑤𝑓,𝑘ℎ𝑘,𝑛

   
𝐾

𝑘=1

                                                         (2.4𝑎) 

and in matrix form  

|𝑋| ≈ 𝑊𝐻                                                                   (2.4𝑏) 

where 𝑊 = {𝑤𝑓,𝑘} ∈ ℝ+ is nonnegative matrix of  dimension 𝐹 × 𝐾 that contains the basis of the 

data, and 𝐻 = {ℎ𝑘,𝑛 } ∈ ℝ+  is nonnegative matrix of dimension 𝐾 × 𝑁  that contains the 

distribution of the basis in 𝑊 matrix, 𝐾 is the number of the basis (latent components) and it 

usually selected less than 𝐹 and 𝑁, in order to achieve the decompositions, where 𝐹 × 𝐾 + 𝐾 ×

𝑁 ≪ 𝐹 × 𝑁, therefore, NMF considered as a dimensionality reduction technique.  

From an audio point of view, the columns of 𝑊  represent the frequency basis and their 

corresponding rows in 𝐻 represent the time representation of these frequency basis, 𝐾 represents 

the number of frequency basis, 𝐹 is the number of frequency bins, and 𝑁 is the number of time 

frames.   

The factorization of eqn. (2.4) can be achieved by optimization method, as follows: 

  𝐷(|𝑋||𝑊𝐻)
𝑊,𝐻≥0

  min                                                                  (2.5) 
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where 𝐷(|𝑋||𝑊𝐻)  is the divergence between the mixture signal |𝑋| , and the estimated (or 

approximated) signal 𝑊𝐻 in order to measure error between these two signals, this divergence can 

be expressed as follows  

𝐷(|𝑋||𝑊𝐻) = ∑ ∑ 𝑑(|𝑥𝑓𝑛|| ∑ 𝑤𝑓,𝑘ℎ𝑘,𝑛

   

𝑘 )

𝑁

𝑛=1

𝐹

𝑓=1

                                   (2.6) 

 The cost function in eqn. (2.6) can be solved by using Euclidian distance (EDU) [34], 

KullBack-Leibler (KL) [36], Itakura-Saito (IS) [49], β-divergence [59, 60], α-divergence [61], 

γ-divergence [62], Csiszàr’s φ-divergence [63], Bregman divergence [64], and α-β-divergence 

[65]. 

The most common cost functions are the EUC, KL, and IS which are derived from the 

β-divergence which is a family of cost functions that tuned by β parameter as follows 

𝐷(𝑥|𝑦)𝛽 =
𝑑𝑒𝑓

{
 
 

 
 

1

𝛽(𝛽 − 1)
((𝑥)𝛽 + (𝛽 − 1)(𝑦)𝛽 − 𝛽𝑥(𝑦)𝛽−1) 𝛽 ∈ ℝ\{0,1}

𝑥𝑙𝑜𝑔
 𝑥

𝑦
+ (𝑦 − 𝑥)                                                𝛽 = 1           

𝑥

𝑦
− 𝑙𝑜𝑔

𝑥

𝑦
− 1                                                        𝛽 = 0           

        (2.7)  

If 𝛽 =2 this will leads to the EUC distance, if 𝛽 =1 this will leads to the KL divergence, and if 𝛽 =0 

this will leads to the IS divergence, and can be expressed as follows 

𝐷𝐸𝑈𝐶 (|𝑋||𝑊𝐻) =
1

2
∑ (|𝑥𝑓𝑛| − ∑ 𝑤𝑓,𝑘ℎ𝑘,𝑛

   

𝑘

)

2

𝑓𝑛

                                  (2.8) 

𝐷𝐾𝐿(|𝑋||𝑊𝐻) = ∑ (|𝑥𝑓𝑛|𝑙𝑜𝑔
|𝑥𝑓𝑛|

∑ 𝑤𝑓,𝑘ℎ𝑘,𝑛

   

𝑘

− |𝑥𝑓𝑛| + ∑ 𝑤𝑓,𝑘ℎ𝑘,𝑛

   

𝑘

)

𝑓𝑛

                (2.9) 

𝐷𝐼𝑆(|𝑋||𝑊𝐻) = ∑ (
|𝑥𝑓𝑛|

∑ 𝑤𝑓,𝑘ℎ𝑘,𝑛

   

𝑘

− 𝑙𝑜𝑔
|𝑥𝑓𝑛|

∑ 𝑤𝑓,𝑘ℎ𝑘,𝑛

   

𝑘

− 1)

𝑓𝑛

                       (2.10) 

The multiplicative update (MU) rule for the above cost functions can be derived by using the 

gradient descent approach [36, 66], as follows 
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𝜃 ← 𝜃.
[∇𝑓(𝜃)]−

[∇𝑓(𝜃)]+

                                                            (2.11) 

where ∇𝑓(𝜃) = [∇𝑓(𝜃)]+ − [∇𝑓(𝜃)]−. By applying eqn. (2.11) to eqn. (2.8), eqn. (2.9) and eqn. 

(2.10) the following update rules can be obtained: 

For EUC 

𝑊 ← 𝑊.
|𝑋|𝐻𝑇

𝑊𝐻𝐻𝑇
                                                          (2.12𝑎) 

𝐻 ← 𝐻.
𝑊𝑇|𝑋|

𝑊𝑇 𝑊𝐻
                                                          (2.12𝑏) 

For KL  

𝑊 ← 𝑊.
(|𝑋|./𝑊𝐻)𝐻𝑇

𝟏𝐻𝑇
                                                    (2.13𝑎) 

𝐻 ← 𝐻.
(|𝑋|./𝑊𝐻)𝑊𝑇

𝟏𝑊𝑇
                                                    (2.13𝑏) 

For IS 

𝑊 ← 𝑊.
(|𝑋|./(𝑊𝐻).2)𝐻𝑇

𝐻𝑇 ./𝑊𝐻
                                                 (2.14𝑎) 

𝐻 ← 𝐻.
(|𝑋|./(𝑊𝐻).2 )𝑊𝑇

𝑊𝑇 ./𝑊𝐻
                                                (2.14𝑏) 

where ‘.’ and ‘./’ are the element wise multiplication and division, respectively. A more details 

about the NMF and its algorithms can be found in [67].  

Figure 2.2 below shows the spectrogram (visual representation of the signal in the short time 

Fourier transform (STFT) in which the x-axis represents the time frame and the y-axis represents 

the frequency bins) of trumpet signal with its corresponding 𝑊 and 𝐻 matrices. Figure 2.2a shows 

the whole spectrogram of the signal and how the 𝑊 matrix represents the four frequency basis (i.e., 

the 𝑊 matrix has four columns) and how the 𝐻 matrix (that has four rows, i.e., one row for each 
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column in the 𝑊 matrix) distributes them. While Figure 2.2b to Figure 2.2e show the spectrogram 

of each component and how the 𝑊 and 𝐻 matrices construct it. It can be seen that the whole 

spectrogram (Figure 2.2a) can be reconstructed by adding the spectrograms of Figure 2.2b - Figure 

2.2e. 
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(d) Spectrogram of component 3. 
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(b) Spectrogram of component 1. 

(a) Spectrogram of all components (whole signal). 
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(e) Spectrogram of component 4. 
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(e) Spectrogram of component 4. 
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(d) Spectrogram of component 3. 

Figure 2.2 How the W and H matrices factorize the signal in the NMF.  
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(c) Spectrogram of component 2. 
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2.3 Nonnegative Matrix Factor 2D Deconvolution (NMF2D)  

Smaragdis [68] extended the NMF to the nonnegative matrix deconvolution (NMD), where he 

considered that each frequency base has a sequence of spectra that convolute with its 

corresponding temporal code, i.e., each column in the 𝑊 matrix has a sequence of different spectra 

that convolute with the row of 𝐻 matrix, and its model can be expressed as follows 

|𝑥𝑓𝑛| ≈ ∑ ∑ 𝑤𝑓,𝑘
𝜏 ℎ𝑛,𝑘

→𝜏 
𝜏𝑚𝑎𝑥

𝜏=0

𝐾

𝑘=1

                                                 (2.15) 

where the arrow sign in 𝐻𝑛,𝑘

→𝜏 

 denotes the right shift operator which moves each element in the 

matrix by 𝜏  column to the right, and 𝜏𝑚𝑎𝑥  is the maximum number of the spectra for each 

frequency base, thus the 𝑊  matrix will have 𝜏𝑚𝑎𝑥  columns for each frequency base. The 

applications of the NMFD can be found in [69-72]. 

After that paper several developments have been taking place  such as the nonnegative matrix 

factor 2D deconvolution (NMF2D)  [25], where it considered both the temporal structure and pitch 

change that occur when a musical instrument plays different notes. NMF2D considered that each 

frequency base has a sequence of spectra (represented by 𝜏, see eqn. (2.16)) with its corresponding 

sequence of temporal code (represented by 𝜙, see eqn. (2.16)). 𝜏 and 𝜙 called the convolutive 

parameters. The NMF2D model can be expressed as follows 

|𝑥̂𝑓𝑛| ≈ ∑ ∑ ∑ 𝑤𝑓,𝑗
𝜏

↓𝜙   

ℎ
𝑗,𝑛

𝜙
→𝜏   

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐽

𝑗=1

                                             (2.16) 

where 𝑤𝑓,𝑗
𝜏  represents the spectral basis of the jth source and ℎ𝑗,𝑛

𝜙
 represents the temporal code for 

each spectral basis element of the jth source, for 𝑓 = 1, … , 𝐹, 𝑛 = 1, … , 𝑁, 𝑎𝑛𝑑 𝑗 = 1, … , 𝐽. The 

terms 𝜏𝑚𝑎𝑥  and 𝜙𝑚𝑎𝑥  are the maximum number of the convoltuive parameters 𝜏  and 𝜙 , 

respectively. In eqn. (2.16), the superscript upper arrow sign in 𝑤𝑓,𝑗
𝜏

↓𝜙   

 denotes downward shift 

operator which moves each element in the matrix by 𝜙 row down. At the same time, the arrow sign 

in ℎ
𝑗,𝑛

𝜙
→𝜏   

denotes the right shift operator which moves each element in the matrix by 𝜏 column to the 

right. The NMF2D considered one frequency basis for each source, i.e., 𝐾 = 𝐽.  
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The EUC [25], KL [25], and IS [27] cost functions of the NMF2D can be expressed as follows  

𝐷EUC (|𝑋|| ∑  
𝑊𝜏
↓𝜙 

 
𝐻𝜙
→𝜏 

𝜏,𝜙 ) =
1

2
∑ (|𝑥𝑓𝑛| − ∑ 𝑤𝑓 ,𝑗

𝜏
↓𝜙   

ℎ
𝑗,𝑛

𝜙
→𝜏   

𝑗,𝜏,𝜙

)

2

𝑓𝑛

                       (2.17) 

𝐷𝐾𝐿 (|𝑋|| ∑  
𝑊𝜏
↓𝜙  

𝐻𝜙
→𝜏 

𝜏,𝜙 ) = ∑ (|𝑥𝑓𝑛|𝑙𝑜𝑔
|𝑥𝑓𝑛|

∑ 𝑤𝑓,𝑗
𝜏

↓𝜙   

ℎ
𝑗,𝑛

𝜙
→𝜏   

𝑗,𝜏,𝜙

− |𝑥𝑓𝑛| + ∑ 𝑤𝑓 ,𝑗
𝜏

↓𝜙   

ℎ
𝑗,𝑛

𝜙
→𝜏   

𝑗,𝜏,𝜙

)

𝑓𝑛

    (2.18) 

𝐷𝐼𝑆 (|𝑋|| ∑  
𝑊𝜏
↓𝜙  

𝐻𝜙
→𝜏 

𝜏,𝜙 ) = ∑ (
|𝑥𝑓𝑛|

∑ 𝑤𝑓,𝑗
𝜏

↓𝜙   

ℎ
𝑗,𝑛

𝜙
→𝜏   

𝑗,𝜏,𝜙

− 𝑙𝑜𝑔
|𝑥𝑓𝑛|

∑ 𝑤𝑓 ,𝑗
𝜏

↓𝜙   

ℎ
𝑗,𝑛

𝜙
→𝜏   

𝑗,𝜏,𝜙

− 1)

𝑓𝑛

          (2.19) 

by applying eqn. (2.11) to eqn. (2.17), eqn. (2.18) and eqn. (2.19) the following update rules can be 

obtained: 

For EUC [25] 

𝑊𝜏 ← 𝑊𝜏 .
∑  |𝑋|

↑𝜙     
 

𝐻𝜙
→𝜏 𝑇

𝜙

∑  Λ
↑𝜙

𝜙  
𝐻𝜙
→𝜏 𝑇

                                                   (2.20𝑎) 

𝐻𝜙 ← 𝐻𝜙.
∑  

𝑊𝜏  
↓𝜙 𝑇  |𝑋|

←𝜏     
𝜏

∑  
𝑊𝜏  

↓𝜙 𝑇

 Λ
←𝜏

𝜏

                                                    (2.20𝑏) 

For KL [25] 

𝑊𝜏 ← 𝑊𝜏 .

∑   
𝐻𝜙
→𝜏 𝑇

(
|𝑋|

Λ
)

↑𝜙       

𝜙

∑ 𝟏.𝜙  
𝐻𝜙
→𝜏 𝑇

                                                  (2.21𝑎) 

𝐻𝜙 ← 𝐻𝜙.

∑  
𝑊𝜏  

↓𝜙 𝑇  
(

|𝑋|

Λ
)

←𝜏     
𝜏

∑  
𝑊𝜏  

↓𝜙 𝑇

. 𝟏𝜏

                                                    (2.21𝑏) 
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For IS [27] 

𝑊𝜏 ← 𝑊𝜏 .
∑ ((  Λ

↑𝜙 )
.−2

.  |𝑋|
↑𝜙       )  

𝐻𝜙
→𝜏 𝑇

𝜙

∑ ((  Λ
↑𝜙 )

.−1

)  
𝐻𝜙
→𝜏 𝑇

𝜙

                                         (2.22𝑎) 

𝐻𝜙 ← 𝐻𝜙.
∑  

𝑊𝜏  
↓𝜙 𝑇

((  Λ
←𝜏 )

.−2
.  |𝑋|

←𝜏      )𝜏

∑ (  
𝑊𝜏  
↓𝜙 𝑇

(  Λ
←𝜏 )

.−1
)𝜏

                                          (2.22𝑏) 

where Λ = ∑  
𝑊𝜏
↓𝜙  

𝐻𝜙
→𝜏 

𝜏,𝜙 . 

Figure 2.3 below shows how the NMF2D factorizes the trumpet signal for 𝜏 = {0, 1, 2, 3} and 

𝜙 = {0, 1, 2}. The figure shows that the same result of NMF has been obtained with only one 

frequency base but with different convolutive parameters. It can be seen from Figure 2.2 and 

Figure 2.3 that both the NMF and NMF2D give the same factorization results, as it has been 

applied to factorize one source only and not a real mixture, i.e., the idea here is to show how the 

NMF and NMF2D work. The comparison between the NMF and NMF2D will be shown in the  

following chapters. 

 

 

 

 

 

 

 

 

 

𝐻 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑊
 𝑚

𝑎
𝑡𝑟

𝑖𝑥
 

Figure 2.3: How the W and H matrices factorize the signal in the NMF2D.  
 

Spectrogram 
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After Schmidt et al. [25], the primary focus for the researchers was to extend the NMF2D by 

considering more constraints to be added to the cost functions and following the same procedure in 

deriving 𝑊 and 𝐻, by using the multiplicative gradient descent approach [26-29, 31, 32]. The 

NMF2D is more powerful than the NMF in representing complex musical instruments due to its 

ability in controlling the pitch and temporal change through 𝜏 and 𝜙, for the specific mixture of 

musical sources, where some sources have a high pitch but low temporal, and vice versa. If the 

NMF is considered for these sources, then an equal amount of components will be given for the 

mixture, which will lead to overfit, or underfit model. However, if 𝜏𝑚𝑎𝑥  and 𝜙𝑚𝑎𝑥  are chosen more 

than the actual requirement, then they will break the structure of the audio signal, i.e., 𝑤𝑓,𝑗
𝜏  and ℎ𝑗,𝑛

𝜙
 

will be shifted more than the actual requirement. This will generate undesirable spurious artefacts 

to the audio signal and subsequently leads to interference.  Therefore, the Gamma-Exponential 

process to estimate the convolutive parameters of the NMF2D will be proposed. 

 

2.4 Nonnegative Tensor Factorization (NTF) 

Nonnegative tensor factorization (or sometimes called Nonnegative tensor decomposition) has 

many applications in signal processing including source separation [73, 74]. The NTF extend the 

NMF to model the stereo channel [75, 76] instead of the single channel. Thus it extends the mixture 

signal from two dimensional matrix to three dimensional tensor 𝑥̂𝑖,𝑓𝑛, where 𝑖 is the channel index, 

and 𝑖 = 1,2. This three dimensional tensor signal has been realized by invoking a channel gain 𝑞𝑘,𝑖 

for the components of each channel. Therefore, 𝑥̂𝑖,𝑓𝑛 can be expressed as follows 

|𝑥̂𝑖,𝑓𝑛| = ∑ 𝑞𝑘,𝑖𝑤𝑓,𝑘ℎ𝑘,𝑛

   
𝐾

𝑘=1

                                                     (2.23) 

This model is equivalent to the parallel factor analysis (PARAFAC) [77] with nonnegative 

constrained.  

The factorization of eqn. (2.23) can be achieved by optimization method, as follows: 

  𝐷(|𝑿||𝑿̂)𝑄,𝑊,𝐻≥0
  min                                                                  (2.24) 
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The divergence between the mixture signal and the estimated (or approximated) signal can be 

expressed by β-divergence as follows  

𝐷(|𝑿||𝑿̂) = ∑ ∑ ∑ 𝑑𝛽 (|𝑥𝑖,𝑓𝑛|| ∑ 𝑞𝑘,𝑖𝑤𝑓,𝑘ℎ𝑘,𝑛

   

𝑘 )

𝑁

𝑛=1

𝐹

𝑓=1

𝐼

𝑖=1

                           (2.25) 

By applying eqn. (2.11) to eqn. (2.25) the following update rules [73] will be obtained: 

𝑄 ← 𝑄.
〈|𝑿|. 𝑿̂(𝛽−2) , 𝑊 ∘ 𝐻〉{2,3}{1,2}

〈𝑿̂(𝛽−1) , 𝑊 ∘ 𝐻〉{2,3}{1,2}

                                         (2.26𝑎) 

𝑊 ← 𝑊.
〈|𝑿|. 𝑿̂(𝛽−2) , 𝑄 ∘ 𝐻〉{1,3}{1,2}

〈𝑿̂(𝛽−1) , 𝑄 ∘ 𝐻〉{1,3}{1,2}

                                        (2.26𝑏) 

𝐻 ← 𝐻.
〈|𝑿|. 𝑿̂(𝛽−2) , 𝑄 ∘ 𝑊〉{1,2}{1,2}

〈𝑿̂(𝛽−1) , 𝑄 ∘ 𝑊〉{1,}{1,2}

                                       (2.26. 𝑐) 

where  𝑊 ∘ 𝐻  is 𝐹 × 𝑁 × 𝐾  tensor, 𝑄 ∘ 𝐻  is 𝐼 × 𝑁 × 𝐾  tensor, 𝑄 ∘ 𝑊 is 𝐼 × 𝐹 × 𝐾  tensor, and 

〈𝐴, 𝐵〉{𝐶 }{𝐷}  is contract product [67] that determined which slices of the tensor have to be 

multiplied. 

If 𝛽 =2 this will leads to the EUC distance, if 𝛽 =1 this will leads to the KL divergence, and if 

𝛽 =0 this will leads to the IS divergence. 

 

2.5 Nonnegative Tensor Factor Double Deconvolution (NTF2D) 

It is an extension for the NMF2D to deal with multichannel (s tereo channel) [30] instead of single 

channel, by invoking  a channel gain 𝑞𝑗,𝑖 and model it with the 2-D convolutive PARAFAC. The 

mixture signal 𝑥̂𝑖,𝑓𝑛 can be expressed as follows 

|𝑥̂𝑖,𝑓𝑛| = ∑ ∑ ∑ 𝑞𝑗,𝑖𝑤𝑓 ,𝑗
𝜏

↓𝜙   

ℎ
𝑗,𝑛

𝜙
→𝜏   

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

𝐽

𝑗=1

                                            (2.27) 
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The NTF2D considered one frequency base (one component) for each source, i.e., 𝐾 = 𝐽 , 

therefore 𝑞𝑗,𝑖  is the gain between the sources and the channels and not the gain between the 

components of each source and the channels. 

According to [30] two divergences the EUC distance and the KL divergence have been applied 

which lead to the following updates  

For EUC  

𝑄 ← 𝑄.
|𝑋|(1) . 𝑍 + 𝑄𝑑𝑖𝑎𝑔 (𝟏((𝑄𝑍𝑇𝑍). 𝑄))

𝑄𝑍𝑇𝑍 + 𝑄𝑑𝑖𝑎𝑔 (𝟏 ((|𝑋|(1) . 𝑍). 𝑄))
                                 (2.28𝑎) 

𝑊𝜏 ← 𝑊𝜏 .

∑ |𝑋|
↑𝜙

(2) (𝐻𝜙
↓𝜏

⨀𝑄)𝜙 + 𝑊𝜏 𝑑𝑖𝑎𝑔 (𝟏 ∑ ( 𝑋
↑𝜙

(2) (𝐻𝜙
↓𝜏

⨀𝑄))𝜏 . 𝑊𝜏)

∑ 𝑋
↑𝜙

(2) (𝐻𝜙
↓𝜏

⨀𝑄)𝜙 + 𝑊𝜏 𝑑𝑖𝑎𝑔 (𝟏 ∑ (|𝑋|
↑𝜙

(2) (𝐻𝜙
↓𝜏

⨀𝑄))𝜏 . 𝑊𝜏)

     (2.28𝑏) 

𝐻𝜙 ← 𝐻𝜙.

∑ |𝑋|
↑𝜏

(3) (𝑊𝜏
↓𝜙

⨀𝑄)𝜏

∑ 𝑋
↑𝜏

(3) (𝑊𝜏
↓𝜙

⨀𝑄)𝜏

                                              (2.28𝑐) 

For KL 

𝑄 ← 𝑄.

|𝑋|(1)

𝑄𝑍𝑇 + 𝑄𝑑𝑖𝑎𝑔 (𝟏. ((𝟏𝑍).𝑄))

𝟏𝑍 + 𝑄𝑑𝑖𝑎𝑔 (𝟏. (
|𝑋|(1)

𝑄𝑍𝑇 . 𝑍. 𝑄))

                                    (2.29𝑎) 
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𝑊𝜏 ← 𝑊𝜏 .

∑ (
|𝑋|
↑𝜙

(2)

𝑋(2)

) (𝐻𝜙
↓𝜏

⨀𝑄)𝜙 + 𝑊𝜏𝑑𝑖𝑎𝑔 (𝟏.∑ (𝟏 (𝐻𝜙
↓𝜏

⨀𝑄))𝜏 . 𝑊𝜏 )

∑ 𝟏𝐻𝜙
↓𝜏

𝜙 + 𝑊𝜏𝑑𝑖𝑎𝑔

(

 
 

𝟏 ∑

(

 
 

(
|𝑋|
↑𝜙

(2)

𝑋(2)

) (𝐻𝜙
↓𝜏

⨀𝑄)

)

 
 

𝜏 . 𝑊𝜏

)

 
 

    (2.29𝑏) 

𝐻𝜙 ← 𝐻𝜙.

∑ (
|𝑋|

↑𝜏

(3)

𝑋(3)

) (𝑊𝜏
↓𝜙

⨀𝑄)𝜏

∑ 𝟏 (𝑊𝜏
↓𝜙

⨀𝑄)𝜏

                                          (2.29𝑐) 

where ⨀ is the Khatri-Rao product1, 𝑍 ∈ 𝒁(𝐹.𝑁)×𝐽 = (∑ ∑ 𝑊𝜏
↓𝜙

⨀𝐻𝜙
↓𝜏

𝜙𝜏 )

𝑇

, 𝑋(1) ∈ 𝑿𝐼×(𝐹.𝑁) , 

𝑋(2) ∈ 𝑿𝐹×(𝐼.𝑁) , 𝑋(2) = ∑ ∑ 𝑊𝜏
↓𝜙

(𝐻𝜙
↓𝜏

⨀𝑄)

𝑇

𝜙𝜏 , 𝑋(3) ∈ 𝑿𝑁×(𝐼.𝐹) , and 𝑋(3) = ∑ ∑ (𝐻𝜙
↓𝜏

)

𝑇

𝜙𝜏  

(𝑊𝜏
↓𝜙

⨀𝑄)

𝑇

.  

 

2.6 Informed Source Separation 

In informed source separation [20] an additional information about the sources (or even the sources 

themselves) in addition to the mixture are usually provided to the separation algorithm. This 

additional information is provided in order to improve the separation performance and to reach the 

separation quality that the blind source separation cannot reach.  

The informed source separation use the side information to provide the extra information, and 

accordingly it can be classified as follows  

 

 

1 The Khatri-Rao product can be defined as follows: Let 𝐴 and 𝐵 be a matrices of dimensions 𝐹 × 𝐾 and 𝑁 × 𝐾, 

respectively, then A⨀B = [𝑣𝑒𝑐(𝒂𝟏𝒃𝟏
𝑻 ). . . 𝑣𝑒𝑐(𝒂𝑲𝒃𝑲

𝑻 )]
𝐹𝑁×𝐾

= [(𝒂𝟏 ⊗ 𝒃𝟏
) . . . (𝒂𝑲 ⊗ 𝒃𝑲

)]
𝐹𝑁×𝐾 , where ⊗  is the 

Kronecker product. 
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2.6.1 Score Informed Source Separation  

In this method the parameters of the separation algorithm are initialized by depending on the side 

information that are available from the Musical Instrument Digital Interface (MIDI) files 

(sometimes they are called musical scores), such as the onset time, pitch, and duration of the 

musical notes [53, 78]. An overview of the score informed source separation can be found in [79]. 

Furthermore, similar to this idea the user can manually set or rest the 𝑯 matrix in the NMF model 

[15, 80].  

2.6.2 Exemplar-Based Source Separation  

Here the informed source separation targeted a specific source in the mixture by providing another 

source that is similar to the one to be separated. Such as the user mimic the targeted source by 

singing [54], by humming  [81], or by dubs the dialog in films [82]. Furthermore, using an 

additional audio references as a side information such as using the multitrack cover version of the 

same song [56, 83-85] or using several international versions of the same movie [55]. Additionally 

the text can be used as side information to mimic the targeted speech signal [86]. 

In both the score informed source separation and exemplar-based informed source separation 

there is a need for a synthesizer to convert them to music. In the score informed source separation 

an MIDI synthesizer or a user is usually used to convert the scores to music in order to use them as 

side information with the audio mixture. Similarly, the Exemplar-based informed source 

separation (especially the text based one) use a speech synthesizer or a user to convert the texts to 

music.  

2.6.3 Coding Based Informed Source Separation  

It is two stages scenario that contains the encoding stage and the decoding stage. At the encoding 

stage all the sources are available in addition to the mixture in order to generate a side information 

that can be transmitted with the mixture or be embedded in the mixture [87], and will be used in the 

decoder stage to separate the sources [88-91]. Ozerov et al. [91] show that the coding based 

informed source separation can outperforms the oracle estimation, if the required bitrate provided. 

It is bitrate vs quality of separation in this type of informed source separation, as it takes advantage 

from both source coding and source separation. 

 

 

https://en.wikipedia.org/wiki/MIDI


 

 

25 
 

Among these types of informed source separation, the exemplar based informed source  

separation has been pursued in this thesis as the MIDI files are not always available in the case of 

the score informed source separation. Also, the coding based informed source separation did not 

progress far as it investigates the quality of separation achieved in terms of the available bitrate, 

and therefore it is far from the scope covered of this thesis; however it is very prompting future 

work if it can be proven that the NMF2D can achieve better performance and lower bitrate than the 

NMF.  

2.7 Parameters Effecting The NMF/NMF2D 

There are many parameters that effects on the NMF such as the cost function, initialization, 

number of components, and window’s size. For the NMF2D the convolutive parameters can be 

added to these parameters. These parameters can be explained as follows 

2.7.1 Cost function: The cost function with Itakura-Saito divergence will be considered in this 

thesis, due its scale invariant properties [49], which is important because it will deals with the low 

and high energy components equally, compared with the EUC distance and KL divergence where 

both methods consider the high energy components and suppress the low one. 

2.7.2 Initialization: The initialization is an essential part for the separation because the NMF2D/ 

NMF are very sensitive to the initialization, where it can lead to convergence to unwanted local 

minima, while good initialization can lead to faster convergence to the desired solution [92]. A 

novel initialization method will be proposed to initialize the parameters of the proposed algorithms.  

2.7.3 Number of Components and Convolutive Parameters: If number of components 

(number of frequency basis) is selected lower than the required value then the model will not fit, 

while if it selected larger than the required value then an overfitting will occur. For the convolutive 

parameters the wrong selection can destroy the structure of the audio signal. Therefore, selecting 

the number of components and convolutive parameter is an important factor in the separation, 

which will be addressed by proposing a novel method that enables selection of all parameters 

automatically.  

2.7.4 Window Length: The spectrograms of the musical instruments act differently under 

different windows length, where pitched instruments are smooth and continue in temporal 

direction and discrete in spectral direction, and the opposite for the percussive instruments [93]. 
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Therefore, different windows length will be considered in order to enhance the performance of the 

separation. 

In this thesis all the parameters those effects on the separation will be tackled, by considering the 

IS divergence as a cost function, proposing a novel initialization method for the proposed 

separation algorithms, suggesting a novel method for estimating the number of components and the 

convolutive parameters, and considering the effects of the window’s length. 

In the proposed separation methods the GEM-MU algorithm [80] will be considered. The 

GEM-MU algorithm is a hybrid-model that combines both the Expectation-Maximization model 

and Multiplicative Update rule, it will be explained in the following chapters. Also, the NMF2D 

has been applied directly on the statistics (e.g., the spectral covariance matrix) instead of the data 

itself (i.e., the mixed signal or its spectrogram). Hence the domain of interest is required to match 

with the statistical quantity to be decomposed rather than the data domain. Data domain such as the 

log-frequency spectrogram is intrinsically a nonlinear transform. The GEM-MU algorithm is 

developed based on the linear model in the linear spectrogram and as such, the linearity structure 

will not be preserved in the log-frequency domain. In particular, the NMF2D is used in the M-step 

of the GEM-MU algorithm which normally is based on the statistics from the E-step of the 

GEM-MU algorithm. Hence the log-frequency will violate the linearity structure of the statistics 

from the E-step of the GEM-MU algorithm, and this will leads to breaking the audio structure 

(signature) of the signal. Therefore as the proposed decomposition does not work directly on the 

data, it is not necessary to transform the data to the log-frequency domain. Furthermore, the 

log-frequency will lose information when resynthesizing the estimated sources as any mapping 

back from log-frequency to linear frequency is only an approximate mapping. 

 

2.8 Summary  

In this chapter the blind source separation and the informed source separation have been reviewed. 

Also, the audio source separation that is based on factorization techniques such as the NMF, 

NMF2D, NTF, and NTF2D have been discussed. It has been shown that the NMF2D is more 

flexible than the NMF as it has the ability to control the pitch and temporal changes. Furthermore, 

parameters that effect on the separation have been highlighted and these will be tackled in Chapters 

three, four, and five. 
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CHAPTER 3 

BLIND SOURCE SEPARATION USING GAMMA EXPONENTIAL 

PROCESS AND TWO DIMENSIONAL MATRIX FACTORIZATION 

TECHNIQUES 

 

 

 

In this chapter a novel underdetermined blind source separation algorithm based on the NMF2D 

with adaptive sparsity2 will be proposed. The proposed algorithm is adapted in an unsupervised 

manner under the GEM-MU hybrid framework [80]. As the number of parameters in the NMF2D 

grows exponentially as the number of frequency basis increases linearly, the issues of model order 

fitness, initialization and parameters estimation become ever more critical. Furthermore, a novel 

method that uses the Gamma-Exponential process as an observation- latent model will be proposed 

to optimize the convolutive parameters and number of components in the NMF2D. Additionally, it 

is also shown that the parameters of the NMF2D can be initialized by the proposed 

Gamma-Exponential process. In addition, the issue and advantages of using different window 

length with different number of convolutive parameters will be investigated in this chapter. Finally, 

the effectiveness of the proposed algorithm will be verified through the experimental results on the 

synthetic convolutive mixtures and live recordings mixtures.  

The chapter is organized as follows: The proposed model will be introduced in Section 3.1. 

Section 3.2 is dedicated for the details of the source model. The development of GEM-MU 

algorithm to work with the NMF2D and with adaptive sparsity will be presented in Section 3.3. In 

Section 3.4 the Gamma-Exponential process will be proposed for estimating the number of 

components and convolutive parameters, and initializing the NMF2D. Section 3.5 will discuss the 

influence of the windows length on the separation. Experimental results will be shown in Section 

3.6. Finally, Section 3.7 draws the conclusions. 

 

 
2
 The sparsity is the penalty on the activation matrix that ensures only a few units (out of a large population) will be active at the same time. The 

sparsity can be added as a constraint to the cost function [1]P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Journal 
of Machine Learning Research, vol. 5, pp. 1457-1469, Nov, 2004.. 
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3.1 Introduction 

As most research on NMF2D has been limited to instantaneous mixture [25-29, 31, 32] and as 

the number of sources in most cases is greater than the number of channels, then, in this chapter the 

case of the underdetermined channel with convolutive mixture will be considered. The proposed 

NMF2D with adaptive sparsity instead of uniform sparsity will be developed within the framework 

of the GEM-MU algorithm [80]. Furthermore, the factors that effect on the NMF2D such as the 

cost function, initialization, windows length, and convolutive parameters will be controlled. The 

cost function with Itakura-Saito divergence will be considered in this chapter due its advantage of 

scale invariance properties [49]. This is important because source separation requires us to deal 

with the low and high energy components equally. Compared with the Euclidian distance (EDU) 

distance and Kullback-Leibler (KL) divergence, both methods favor the high energy components 

but suppress the low energy ones. Furthermore, as each musical instrument has its own 

characteristics in terms of the spectral and temporal features e.g., drum instrument has a high pitch 

with low temporal note while the opposite is true for the piano; then different windows length will 

be considered in the separation. To understand the effects of the convolutive parameters on the 

separation performance, the NMF2D will briefly described. Let 𝐶(𝑛, 𝑚)  be a data matrix of size 

𝑁 × 𝑀  with nonnegative entries, then 𝐶(𝑛, 𝑚)  is approximated with two nonnegative tensors 

𝐴(𝑛, 𝑘, 𝜏)  and 𝐵(𝑘, 𝑚, 𝜙) as 𝐶(𝑛, 𝑚) ≈ ∑ ∑ ∑ 𝐴(𝑛 − 𝜙, 𝑘, 𝜏)𝐵(𝑘, 𝑚 − 𝜏, 𝜙)
𝜙𝑚𝑎𝑥
𝜙=0

𝜏𝑚𝑎𝑥
𝜏=0

𝐾
𝑘=0 . The 

terms K, 𝜏𝑚𝑎𝑥  and 𝜙𝑚𝑎𝑥  are the number of components, and the maximum number of the 

convolutive parameters 𝜏 and 𝜙, respectively. If 𝜏𝑚𝑎𝑥  and 𝜙𝑚𝑎𝑥  are chosen more than the actual 

requirement, then they will break the structure of the audio signal, i.e., 𝐴(𝑛, 𝑘, 𝜏) and 𝐵(𝑘, 𝑚, 𝜙) 

will be shifted more than the actual requirement. This will generate undesirable spurious artefacts 

to the audio signal and subsequently leads to interference. Therefore, in this chapter a novel method 

will be proposed to estimate the convolutive parameter. Another dimension for consideration is 

initialization which is an essential part for the NMF and NMF2D. Good initialization of the model 

parameters will lead to faster convergence to the desired solution. Therefore, the spectral and 

temporal tensors of the proposed Gamma-Exponential process will be used to initialize the spectral 

and temporal tensors of the proposed NMF2D model. 
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3.2 Source Model 

Consider the underdetermined channel with convolutive mixture, namely:  

𝑥̃𝑖(𝑡) = ∑ ∑ 𝑎𝑖𝑗

𝐿−1

𝜏=0

𝐽

𝑗=1

(𝜏)𝑠̃𝑗(𝑡 − 𝜏) + 𝑏̃𝑖(𝑡)                                          (3.1) 

where 𝑥̃𝑖(𝑡)(𝑖 = 1,… , 𝐼, 𝑡 = 1, … , 𝑇)  is the sampled mixture signal and 𝐼  is the number of 

channels, 𝑠̃𝑗 (𝑗 = 1, … , 𝐽)  is the source signal and 𝐽  is the number of sources, 𝑎𝑖𝑗(𝜏)  is the 

finite- impulse response of some (causal) filter, 𝐿 is the filter length, and 𝑏̃𝑖(𝑡) is some additive 

noise. By assuming that the mixing channel is time- invariant then the short-time Fourier transform 

(STFT) of eqn. (3.1) can be expressed as  

𝑥𝑖,𝑓𝑛 = ∑ 𝑎𝑖𝑗,𝑓𝑠𝑗,𝑓𝑛 + 𝑏𝑖,𝑓𝑛

𝐽

𝑗 =1

                                                  (3.2𝑎) 

and in matrix form 

𝑋𝑓 = 𝐴𝑓𝑆𝑓 + 𝐵𝑓                                                               (3.2𝑏) 

where 𝑋𝑓 = [𝑥𝑖,𝑓𝑛]
𝑓

∈ ℂ𝐼×𝑁 , 𝐴𝑓 = [𝑎𝑖𝑗,𝑓]
𝑓

∈ ℂ𝐼×𝐽 , 𝑆𝑓 = [𝑠𝑗,𝑓𝑛]
𝑓

∈ ℂ𝐽×𝑁 , and 𝐵𝑓 = [𝑏𝑖,𝑓𝑛]
𝑓

∈

ℂ𝐼×𝑁 and 𝑓 = 1, … , 𝐹 is the index of a frequency bin. As the NMF2D with multiple frequency 

basis will be considered as the spectral variance model in this chapter instead of the NMF spectral 

model [49], then each source in the STFT can be expressed by  𝐾𝑗  complex-valued latent 

components, i.e., 

𝑠𝑗,𝑓𝑛 = ∑ 𝑐𝑘,𝑗,𝑓𝑛

𝐾𝑗

𝑘=1

                                                               (3.3) 

and can be modeled as realization of proper complex zero-mean variables: 

𝑐𝑘 ,𝑗,𝑓𝑛~𝒩𝑐 (0, 𝜎𝑘 ,𝑗,𝑓𝑛
2 ) 

= 𝒩𝑐 (0, ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗 ℎ𝑘,𝑛−𝜏

𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

)                     (3.4) 



 

 

30 
 

where 𝒩𝑐 (𝜇, Σ) is the proper complex Gaussian distribution [94], 𝑤𝑓,𝑘
𝜏,𝑗

 represents the spectral basis 

of the jth source, and ℎ𝑘 ,𝑛
𝜙 ,𝑗

 represents the temporal code for each spectral basis element of the jth 

source, for 𝑓 = 1, … , 𝐹, 𝑛 = 1, … , 𝑁, 𝑗 = 1, … , 𝐽, and 𝑘 = 1, . . .  𝐾𝑗. The noise 𝑏𝑖,𝑓𝑛  is assumed to 

be stationary and spatially uncorrelated, i.e. 

𝑏𝑖,𝑓𝑛~𝒩𝑐 (0, 𝜎𝑖 ,𝑓
2 

 
)                                                           (3.5𝑎) 

and 

 𝛴𝑏,𝑓 = 𝑑𝑖𝑎𝑔[𝜎𝑖,𝑓
2 ]                                                             (3.5𝑏) 

The parameters  𝑨,𝜮𝑏 , 𝜦 , 𝑪 = {𝑐𝑘,𝑗,𝑓𝑛}, 𝑾 = {𝑤𝑓,𝑘
𝜏,𝑗}, 𝑯 = {ℎ𝑘,𝑛

𝜙,𝑗 }  will be estimated via the 

posterior probability 

𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏 , 𝜦 ) =  
𝑃(𝑿|𝑪, 𝑨, 𝜮𝑏)𝑃(𝑪|𝑾 , 𝑯 )𝑃(𝑾 , 𝑯 |𝜦)

𝑃(𝑿|𝑨, 𝜮𝑏)
                 (3.6) 

and their minus log-posterior is given by 

−log 𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏 , 𝜦  ) = −log 𝑃(𝑿|𝑪, 𝑨, 𝜮𝑏) − log 𝑃(𝑪|𝑾 , 𝑯 ) − log 𝑃(𝑾 , 𝑯 |𝜦) 

+𝑐𝑜𝑛𝑠𝑡                                                                                      (3.7) 

where 𝛬={𝜆𝑘,𝑛
𝜙,𝑗

} is a tensor that contains the sparsity terms.   

 

 

3.3 Proposed Estimation Algorithm  

The GEM-MU [80] combines both the expectation maximization (EM) algorithm and the 

multiplicative update (MU) algorithm. The source power spectrogram posterior estimates ( 𝑝̂𝑗,𝑓𝑛) 

(see eqn. (3.12)), the mixing parameter, and the noise covariance will be estimated in the E-step of 

the EM algorithm, while 𝑾 and 𝑯  will be estimated in the M-step of the EM algorithm by using 

the MU algorithm with adaptive sparsity NMF2D.  
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3.3.1 E-Step: Conditional Expectations of Natural Statistics  

The log-likelihood in the right hand side of eqn. (3.7) can be expressed as 

−log 𝑃(𝑿|𝑪, 𝑨, 𝜮𝑏) = ∑(𝒙𝑓𝑛 − 𝐴𝑓𝒔𝑓𝑛)
𝐻

𝛴𝑏,𝑓
−1(𝒙𝑓𝑛 − 𝐴𝑓𝒔𝑓𝑛) + ∑ 𝑙𝑜𝑔 𝑑𝑒𝑡 𝛴𝑏,𝑓

𝑓𝑛𝑓𝑛

 

        = 𝑁 ∑ 𝑡𝑟{𝛴𝑏,𝑓
−1𝑅𝑋𝑋,𝑓}

𝑓

− 𝑁 ∑ 𝑡𝑟{𝐴𝑓
𝐻 𝛴𝑏,𝑓

−1𝑅𝑋𝑆,𝑓}

𝑓

                                       

        −𝑁 ∑ 𝑡𝑟 {𝛴𝑏,𝑓
−1𝐴𝑓(𝑅𝑋𝑆,𝑓)

𝐻
}

𝑓

+ 𝑁 ∑ 𝑡𝑟{𝐴𝑓
𝐻 𝛴𝑏,𝑓

−1𝐴𝑓𝑅𝑆𝑆,𝑓}

𝑓

                   

        +∑ 𝑙𝑜𝑔 𝑑𝑒𝑡 𝛴𝑏,𝑓

𝑓𝑛

                                                                            (3.8) 

where the superscript H is the Hermitian transpose. The correlation matrices are given by  

𝑅𝑋𝑋,𝑓 =
1

𝑁
∑  

𝑛

𝒙𝑓𝑛𝒙𝑓𝑛
𝐻                                                           (3.9) 

𝑅𝑆𝑆,𝑓 =
1

𝑁
∑  

𝑛

𝒔𝑓𝑛𝒔𝑓𝑛
𝐻                                                         (3.10) 

and the cross-correlation matrix is given by  

𝑅𝑋𝑆,𝑓 =
1

𝑁
∑  

𝑛

𝒙𝑓𝑛𝒔𝑓𝑛
𝐻                                                         (3.11) 

The source power spectrogram posterior estimates [80] is as follows 

𝑝̂𝑗,𝑓𝑛 = 𝑅̂𝑆𝑆,𝑓𝑛(𝑗, 𝑗)                                                           (3.12) 

where 

𝑅̂𝑆𝑆,𝑓𝑛 = 𝐸[𝒔𝑓𝑛
 ]𝐸[𝒔𝑓𝑛

𝐻 ] + 𝛴̂𝑠,𝑓𝑛  

= 𝒔̂𝑓𝑛
 𝒔̂𝑓𝑛

𝐻 + 𝛴̂𝑠,𝑓𝑛                                                             (3.13) 

𝒔̂𝑓𝑛 = 𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻 𝛴𝑥,𝑓𝑛

−1 𝒙𝑓𝑛                                                         (3.14) 

𝛴̂𝑠,𝑓𝑛 = (𝐼𝐽 − 𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻𝛴𝑥,𝑓𝑛

−1 𝐴𝑓)𝛴𝑠,𝑓𝑛                                            (3.15) 
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𝛴𝑋,𝑓𝑛 = 𝐴𝑓𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻 + 𝛴𝑏,𝑓                                                      (3.16) 

𝛴𝑠,𝑓𝑛 = 𝑑𝑖𝑎𝑔 ([∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐾𝑗

𝑘=1

]

𝑗

)                                (3.17) 

Detailed derivation of eqn. (3.14) and eqn. (3.15) can be found in [14]. 

 

3.3.2 M- Step: Update of Parameters 

𝐴𝑓  and 𝛴𝑏,𝑓 , will be estimated as follows  

𝜕

𝜕𝐴𝑓

log 𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏  ) = 0                                             (3.18) 

which leads to   

𝐴𝑓 = 𝑅̂𝑋𝑆,𝑓𝑅̂𝑆𝑆,𝑓
−1                                                               (3.19) 

Similarly, 

𝜕

𝜕𝛴𝑏,𝑓
−1 log 𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏  ) = 0                                           (3.20) 

which leads to 

𝛴𝑏,𝑓 = 𝑑𝑖𝑎𝑔(𝑅̂𝑋𝑋,𝑓 − 𝑅̂𝑋𝑆,𝑓𝑅̂𝑆𝑆,𝑓
−1 𝑅̂𝑋𝑆,𝑓

𝐻 )                                          (3.21) 

where  

𝑅̂𝑋𝑋,𝑓 = 𝑅𝑋𝑋,𝑓                                                                 (3.22) 

𝑅̂𝑋𝑆,𝑓 =
1

𝑁
∑  

𝑛

𝒙𝑓𝑛𝐸[𝒔𝑓𝑛
𝐻 ] 

=
1

𝑁
∑  

𝑛

𝒙𝑓𝑛𝒔̂𝑓𝑛
𝐻                                                            (3.23) 
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𝑅̂𝑆𝑆,𝑓 =
1

𝑁
∑  

𝑛

𝑅̂𝑆𝑆,𝑓𝑛                                                         (3.24) 

As 𝑝̂𝑗,𝑓𝑛 is estimated from the E-step, then the second term in the right hand side of eqn. (3.7) can 

be written in term of 𝑝̂𝑗,𝑓𝑛  and expressed with Itakura-Saito divergence as 

−log 𝑃(𝑷̂|𝑾 , 𝑯 ) = ∑ 𝐷𝐼𝑆(𝑝̂𝑗,𝑓𝑛| ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗 ℎ𝑘,𝑛−𝜏

𝜙,𝑗 
𝜙

 
𝜏

 
𝑘 )

𝑗,𝑓,𝑛

                  (3.25) 

where 𝑷̂ = {𝑝̂𝑗,𝑓𝑛}
𝑗,𝑓𝑛

. The third term in the right hand side of eqn. (3.7) is the prior information on 

𝑾  and 𝑯 . The prior over 𝑾  is flat where each column is assumed to be factor-wise normalized to 

unit length i.e. 𝑝(𝑊) = ∏ 𝛿 (‖𝑊𝑗‖
2

− 1)𝑗 . Each element of 𝑯  has independent decay parameter 

𝜆𝑘,𝑛
𝜙,𝑗

 with exponential distribution: 

𝑝(𝑾, 𝑯|𝜦) = ∏ 𝛿 (‖𝑊𝑗‖
2

− 1)

𝑗

+ ∏ 𝑝(𝐻𝑘
𝑗|𝛬𝑘

𝑗 )

𝑗,𝑘

                                       

= ∏ 𝛿 (‖𝑊𝑗‖
2

− 1)

𝑗

+ ∏ ∏ ∏ ∏ 𝑝(ℎ𝑘,𝑛
𝜙,𝑗|𝜆𝑘,𝑛

𝜙,𝑗 )

𝜙𝑛𝑘𝑗

                                  

= ∏ 𝛿 (‖𝑊𝑗‖
2

− 1)

𝑗

+ ∏ ∏ ∏ ∏ 𝜆𝑘,𝑛
𝜙,𝑗

𝑒𝑥𝑝(−𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

)

𝜙𝑛𝑘𝑗

      (3.26) 

The negative log-likelihood for prior on 𝑾 and 𝑯  is derived such as 

− log 𝑝(𝑾, 𝑯|𝜦) = −log (∏ 𝛿 (‖𝑾𝑗 ‖
2

− 1)

𝑗

) − log (∏ ∏ ∏ ∏ 𝜆𝑘,𝑛
𝜙,𝑗 exp(−𝜆𝑘,𝑛

𝜙,𝑗 ℎ𝑘,𝑛
𝜙,𝑗 )

𝜙𝑛𝑘𝑗

) 

= − ∑ log 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗

+ ∑ ∑ ∑ ∑(𝜆𝑘,𝑛
𝜙,𝑗 ℎ𝑘,𝑛

𝜙,𝑗 − log 𝜆𝑘,𝑛
𝜙,𝑗 )

𝜙𝑛𝑘𝑗

          (3.27) 

The first term on the right hand side of eqn. (3.27) can be satisfied by explicitly normalizing each 

spectral dictionary to unity i.e. 𝑤𝑓,𝑘
𝜏,𝑗

= 𝑤𝑓,𝑘
𝜏,𝑗 √∑ (𝑤

𝑓,𝑘

𝜏,𝑗
)

2

𝑓 ,𝜏,𝑘⁄ . Thus, only the second term remains 

i.e. − log 𝑝(𝑾, 𝑯|𝜦) = ∑ ∑ ∑ ∑ (𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘 ,𝑛
𝜙,𝑗

− log 𝜆𝑘,𝑛
𝜙,𝑗

)𝜙𝑛𝑘𝑗 . Adding eqn. (3.27) to IS divergence 

derived in eqn. (3.25), will leads to the following 
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−log 𝑃(𝑪|𝑾 , 𝑯 ) − log 𝑃(𝑾 , 𝑯 |𝜦)                                                                                                        

= ∑ 𝐷𝐼𝑆(𝑝̂𝑗,𝑓𝑛| ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗 

𝜙
 
𝜏

 
𝑘 )

𝑗,𝑓,𝑛

+ ∑ (𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

− 𝑙𝑜𝑔𝜆𝑘,𝑛
𝜙,𝑗

)

𝑗,𝑘,𝑛,𝜙

 

= ∑ (
𝑝̂𝑗,𝑓𝑛

∑ (𝑤
𝑓−𝜙,𝑘

𝜏,𝑗 ℎ
𝑘,𝑛−𝜏

𝜙,𝑗 )𝜏,𝜙

− log
𝑝̂𝑗,𝑓𝑛

∑ (𝑤
𝑓−𝜙,𝑘

𝜏,𝑗 ℎ
𝑘,𝑛−𝜏

𝜙,𝑗 )𝜏 ,𝜙

− 1)

𝑗,𝑘,𝑓,𝑛

                                         

+ ∑ 𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

−

𝑗,𝑘,𝑛,𝜙

∑ 𝑙𝑜𝑔𝜆𝑘,𝑛
𝜙,𝑗

𝑗,𝑘,𝑛,𝜙

                                                                            (3.28) 

Let 

𝑣𝑗,𝑓𝑛  = ∑ ∑ ∑ (𝑤
𝑓−𝜙,𝑘

𝜏,𝑗
  

ℎ
𝑘,𝑛−𝜏

𝜙,𝑗
   

)

∅𝜏𝑘

                                            (3.29) 

then the derivatives of individual component for proposed model with respect to  𝑤𝑓,𝑘
𝜏,𝑗

 and ℎ𝑘,𝑛
𝜙,𝑗

 can 

be derived as: 

  
𝜕

𝜕𝑤
𝑓′,𝑘′
𝜏′,𝑗′ log 𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏  )                                                                                                         

= − ∑ 𝑝̂𝑗′ ,𝑓′+𝜙,𝑛𝑣𝑗′ ,𝑓′+𝜙,𝑛
−2  ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

+ ∑ 𝑣𝑗′,𝑓′ +𝜙,𝑛
−1 ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

                        (3.30) 

Similarly, 

  
𝜕

𝜕ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′ log 𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏  ) = − ∑ 𝑝̂𝑗′ ,𝑓,𝑛′ +𝜏𝑣𝑗′,𝑓 ,𝑛′ +𝜏

−2  
𝑤

𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

+ ∑ 𝑣𝑗′,𝑓 ,𝑛′ +𝜏
−1 𝑤

𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

 

 

       + 𝜆
𝑘′,𝑛′
𝜙′,𝑗′

                                                                            (3.31) 

For each individual component, the standard gradient descent method is applied with 

𝑤𝑓′,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′,𝑘′
𝜏′,𝑗′

− 𝜂𝑤

𝜕𝐶𝐼𝑆

𝜕𝑤𝑓′,𝑘′
𝜏′,𝑗′                                                   (3.32) 

and  
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ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

− 𝜂ℎ

𝜕𝐶𝐼𝑆

𝜕ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′                                                    (3.33) 

 where  𝜂𝑤 and 𝜂ℎ are the positive learning rate. Based on [35], the positive learning rate can be set 

as 

 𝜂𝑤 =
𝑤

𝑓′,𝑘′
𝜏′,𝑗′

∑ 𝑣𝑗′ ,𝑓′ +𝜙,𝑛
−1 ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

                                                   (3.34) 

and 

𝜂ℎ =
ℎ

𝑘′ ,𝑛′
𝜙′ ,𝑗′

∑ 𝑣𝑗′,𝑓,𝑛′ +𝜏
−1 𝑤

𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

 

𝑓 ,𝜏

 

+ 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

                                            (3.35) 

The MU rules for 𝑤
𝑓,𝑘

𝜏,𝑗
 is given by 

𝑤
𝑓′,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′,𝑘′
𝜏′,𝑗′

−
𝑤

𝑓′,𝑘′
𝜏′,𝑗′

(− ∑ 𝑝̂𝑗′ ,𝑓′+𝜙,𝑛𝑣𝑗′,𝑓′+𝜙,𝑛
−2 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛 + ∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

 

)

∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

 

𝑤
𝑓′,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′,𝑘′
𝜏′,𝑗′

(
∑ 𝑝̂𝑗′ ,𝑓′+𝜙,𝑛𝑣𝑗′ ,𝑓′+𝜙,𝑛

−2 ℎ
𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

)                               (3.36) 

and as for ℎ
𝑘,𝑛

𝜙,𝑗′

, the update is given by 

ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

−
ℎ

𝑘′ ,𝑛′
𝜙′ ,𝑗′

(− ∑ 𝑝̂𝑗′ ,𝑓,𝑛′ +𝜏 𝑣𝑗′,𝑓 ,𝑛′ +𝜏
−2  

𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

 

𝑓,𝜏 + ∑ 𝑣𝑗′ ,𝑓,𝑛′ +𝜏
−1 𝑤

𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

 

+ 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

)

∑ 𝑣𝑗′ ,𝑓,𝑛′ +𝜏
−1 𝑤

𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏 + 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

 

ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

(
∑ 𝑝̂𝑗′ ,𝑓,𝑛′ +𝜏𝑣𝑗′,𝑓,𝑛′ +𝜏

−2  
𝑤

𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

∑ 𝑣𝑗′ ,𝑓,𝑛′ +𝜏
−1 𝑤

𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏 + 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

)                                (3.37) 

For the sparsity term, the update is obtained by solving 
𝜕

𝜕𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′ log 𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏  ) = 0 which 

leads to 
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𝜕

𝜕𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′ log 𝑃(𝑪, 𝑾 , 𝑯 |𝑿, 𝑨, 𝜮𝑏  )                                                                                                          

=

𝜕 (∑ (
𝑝̂𝑗,𝑓𝑛

𝑣𝑗,𝑓,𝑛

− 𝑙𝑜𝑔
𝑝̂𝑗,𝑓𝑛

𝑣𝑗,𝑓,𝑛

− 1)𝑓𝑛 + ∑ ℎ
𝑘,𝑛

𝜙,𝑗𝜆𝑘,𝑛
𝜙

𝑛,𝜙 − ∑ 𝑙𝑜𝑔𝜆𝑘,𝑛
𝜙,𝑗

𝑛,𝜙 )

𝜕𝜆
𝑗′ ,𝑛′
𝜙′   

= ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

−
1

𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′                                                                                                            (3.38) 

Therefore, the solution for 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

is given by 

𝜆
𝑘′ ,𝑛′
𝜙′ ,𝑗′

=
1

ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′                                                                (3.39) 

 

3.3.3 Components Reconstruction 

The estimated sources (𝒔̂𝑓𝑛 ) can be reconstructed by using Wiener filtering (𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻𝛴𝑥,𝑓𝑛

−1 ) as in 

eqn. (3.14),  and due to the linearity of the STFT, the inverse-STFT (with dual synthesis window 

[95]) can be used to transform it to the time domain.  

 

 

 

3.4 Estimating The Number Of Components And Number Of Convolutive Parameters In 

NMF2D 

3.4.1 Variational Bayesian Formulation 

The determination of the number of components in NMF has been previously investigated in [96] 

by means of nonparametric statistical fit. However, the method cannot be directly applied to the 

NMF2D model as the number of convolutive parameters and number of components will be 

lumped together. Thus the method in [96] will estimate an overfit model. In this work a constrained 

Gamma-Exponential process to estimate the convolutive parameters and the number of 

components of the NMF2D will be proposed. The proposed Gamma-Exponential process 

introduces a hidden tensor of nonnegative values 𝜃𝑘
𝜏,𝜙

 that weight each element of the factor model 

(∑ 𝜃𝑘
𝜏,𝜙

𝑗,𝑘,𝜏,𝜙 𝑤𝑓−𝜙,𝑘
𝜏,𝑗 ℎ𝑘,𝑛−𝜏

𝜙,𝑗
) such that the number of components and convolutive parameters are 
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inferred automatically based on the mixture power spectrogram 𝑝𝑓𝑛
𝑥  which is estimated from the 

observations as |𝑥𝑖,𝑓𝑛|2. The model order 𝑘, 𝜏, and 𝜙 are assigned to a large integer values (ideally 

infinity) and the proposed model will retain a finite number of each subset corresponding to the 

active elements in 𝜃.  To the best of our knowledge, this is the first proposed method on the 

NMF2D to estimate the number of convolutive parameters of the NMF2D model.  

The generative process of the mixture power spectrogram is assumed to follow the 

Gamma-Exponential process as follows: 

𝑝𝑓𝑛
𝑥 ~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (∑ 𝜃𝑘

𝜏,𝜙

𝑗,𝑘,𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

)                               (3.40) 

𝑤𝑓,𝑘
𝜏,𝑗

~𝐺𝑎𝑚𝑚𝑎(𝑎𝑘
𝜏 ,𝑗

, 𝑎𝑘
𝜏 ,𝑗

)                                                      (3.41) 

ℎ𝑘,𝑛
𝜙,𝑗

~𝐺𝑎𝑚𝑚𝑎(𝑏𝑘
𝜙,𝑗

, 𝑏𝑘
𝜙,𝑗

)                                                     (3.42) 

𝜃𝑘
𝜏,𝜙~𝐺𝑎𝑚𝑚𝑎 (

𝛼𝑘
𝜏,𝜙

𝐿 + 𝜙𝑚𝑎𝑥 + 𝜏𝑚𝑎𝑥

, 𝛼𝑘
𝜏,𝜙𝑐)                                     (3.43) 

where 𝐿 is the truncation level, 𝑘 number of components, 𝛼, 𝑎, and 𝑏 are the shape parameters, 

and 𝑐 is the inverse shape parameter 𝑐 =
1

𝑥̅
, where 𝑥̅ is the empirical mean of 𝑝𝑓𝑛

𝑥 . The empirical 

mean of 𝑝𝑓𝑛
𝑥  can be expressed as follows 

𝔼𝑝[𝑝𝑓𝑛
𝑥 ] = ∑ 𝔼𝑝 [𝜃𝑘

𝜏,𝜙
]

𝑗,𝑘,𝜏,𝜙

𝔼𝑝[𝑤𝑓−𝜙,𝑘
𝜏,𝑗

]𝔼𝑝[ℎ𝑘,𝑛−𝜏
𝜙,𝑗

] 

=
1

𝑐
                                                                                                    (3.44) 

The posterior distribution of parameters Ω =  {{𝜃𝑘
𝜏,𝜙 }, {𝑤𝑓,𝑘

𝜏,𝑗 }, {ℎ𝑘,𝑛
𝜙,𝑗 }} is approximated by resorting 

to the generalized inverse Gaussian (GIG) distribution, the statistical properties of the GIG can be 

found in [97]. The PDF of the GIG distribution is 

𝐺𝐼𝐺(𝑦; 𝛾, 𝜌, 𝛽) =
𝑦𝛾 −1 exp (−𝜌𝑦 −

𝛽
𝑦

) (
𝜌
𝛽

)

𝛾
2

2𝒦𝛾 (2√𝜌𝛽)
                                 (3.45) 
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where 𝒦𝛾 (∙) is the modified Bessel function of the second kind and 𝑦 ≥  0, 𝜌 ≥  0, and 𝛽 ≥  0.  

𝑝𝑓𝑛
𝑥  can be shown to be lower bounded by 

log 𝑝(𝑝𝑓𝑛
𝑥 |𝛼𝑘

𝜏,𝜙, 𝑎𝑘
𝜏 ,𝑗, 𝑏𝑘

𝜙,𝑗, 𝑐)  ≥ 𝔼𝑞 [log𝑝(𝑝𝑓𝑛
𝑥 |𝑤𝑓,𝑘

𝜏,𝑗 , ℎ𝑘 ,𝑛
𝜙 ,𝑗, 𝜃𝑘

𝜏,𝜙 )]                 

 +𝔼𝑞 [log 𝑝(𝑤𝑓,𝑘
𝜏,𝑗 |𝑎𝑘

𝜏,𝑗 )] − 𝔼𝑞 [log 𝑝(𝑤𝑓,𝑘
𝜏,𝑗 )]                       

+𝔼𝑞 [log𝑝(ℎ𝑘 ,𝑛
𝜙 ,𝑗|𝑏𝑘

𝜙,𝑗)] − 𝔼𝑞 [log𝑝(ℎ𝑘,𝑛
𝜙,𝑗)]                      

+𝔼𝑞 [log 𝑝(𝜃𝑘
𝜏,𝜙 |𝛼𝑘

𝜏,𝜙 , 𝑐)] − 𝔼𝑞 [log 𝑝(𝜃𝑘
𝜏,𝜙 )]    (3.46) 

The likelihood term in eqn. (3.46) can be solved as follows  

𝔼𝑞 [log𝑝(𝑝𝑓𝑛
𝑥 |𝑤𝑓,𝑘

𝜏,𝑗
, ℎ𝑘,𝑛

𝜙,𝑗
, 𝜃𝑘

𝜏,𝜙
)]   ≥ − ∑ ∑ 𝑝𝑓𝑛

𝑥  (𝜑𝑓 ,𝑛,𝑘
𝜏,𝜙

)
2

𝑘

𝔼𝑞 [
1

∑ 𝜃
𝑘

𝜏,𝜙
𝑗,𝑘,𝜏,𝜙 𝑤

𝑓−𝜙,𝑘

𝜏,𝑗
ℎ

𝑘,𝑛−𝜏

𝜙,𝑗
]

𝑓,𝑛

 

− log(𝜔𝑓,𝑛 ) + 1 −
1

𝜔𝑓,𝑛

𝔼𝑞 [∑ 𝜃𝑘
𝜏,𝜙

𝑗,𝑘,𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗 ℎ𝑘,𝑛−𝜏

𝜙,𝑗 ]  (3.47) 

where   

𝜑𝑓 ,𝑛,𝑘
𝜏,𝜙 ∝ 𝔼𝑞 [

1

∑ 𝜃
𝑘

𝜏,𝜙 𝑤
𝑓,𝑘

𝜏,𝑗 ℎ
𝑘,𝑛

𝜙,𝑗
𝑗

]

−1

                                              (3.48) 

and 

𝜔𝑓,𝑛 = 𝔼𝑞 [∑ 𝜃𝑘
𝜏,𝜙

𝑗,𝑘,𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

]                                         (3.49) 

The rest of eqn. (3.46) can be approximate by the generalized inverse Gaussian distribution (GIG)  

𝑞(𝑤𝑓,𝑘
𝜏,𝑗

) = 𝐺𝐼𝐺(𝛾𝑤,𝑓,𝑘
𝜏,𝑗

, 𝜌𝑤,𝑓,𝑘
𝜏,𝑗

, 𝛽𝑤,𝑓,𝑘
𝜏,𝑗

)                                           (3.50) 

𝑞(ℎ𝑘,𝑛
𝜙,𝑗) = 𝐺𝐼𝐺(𝛾ℎ,𝑘,𝑛

𝜙,𝑗 , 𝜌ℎ ,𝑘 ,𝑛
𝜙,𝑗 , 𝛽ℎ,𝑘 ,𝑛

𝜙,𝑗 )                                           (3.51) 

𝑞(𝜃𝑘
τ,ϕ

) = 𝐺𝐼𝐺(𝛾𝜃,𝑘
τ,ϕ

, 𝜌𝜃,𝑘
τ,ϕ

, 𝛽𝜃,𝑘
τ,ϕ

)                                              (3.52) 

where  



 

 

39 
 

𝛾𝑤,𝑓 ,𝑘
𝜏,𝑗 = 𝑎𝑘

𝜏,𝑗                                                                (3.53𝑎) 

𝜌𝑤,𝑓,𝑘
𝜏,𝑗

= 𝑎𝑘
𝜏 ,𝑗

+ 𝔼𝑞 [𝜃𝑘
𝜏,𝜙

] ∑
𝔼𝑞 [ℎ𝑘,𝑛−𝜏

𝜙,𝑗 ]

𝜔𝑓,𝑛𝑛,𝜙

                                 (3.53𝑏) 

𝛽𝑤,𝑓,𝑘
𝜏,𝑗

= 𝔼𝑞 [
1

𝜃
𝑘

𝜏,𝜙
]∑ 𝑝𝑓𝑛

𝑥 𝜑𝑓 ,𝑛,𝑘
𝜏 ,𝜙2

𝔼𝑞 [
1

ℎ
𝑘,𝑛−𝜏

𝜙,𝑗
]

𝑛,𝜙

                               (3.53𝑐) 

𝛾ℎ,𝑘,𝑛
𝜙 ,𝑗 = 𝑏𝑘

𝜙,𝑗                                                              (3.54𝑎) 

𝜌ℎ,𝑘,𝑛
𝜙,𝑗 = 𝑏𝑘

𝜙,𝑗 + 𝔼𝑞 [𝜃𝑘
𝜏,𝜙] ∑

𝔼𝑞 [𝑤𝑓−𝜙,𝑘
𝜏,𝑗 ]

𝜔𝑓,𝑛𝑓,𝜏

                                  (3.54𝑏) 

𝛽ℎ,𝑘,𝑛
𝜙,𝑗 = 𝔼𝑞 [

1

𝜃
𝑘

𝜏,𝜙
] ∑ 𝑝𝑓𝑛

𝑥 𝜑𝑓 ,𝑛,𝑘
𝜏 ,𝜙2

𝔼𝑞 [
1

𝑤
𝑓−𝜙,𝑘

𝜏,𝑗
]

𝑓,𝜏

                                (3.54𝑐) 

𝛾𝜃,𝑘
τ,ϕ

=
𝛼𝑘

τ ,ϕ

𝐿 + 𝜙𝑚𝑎𝑥 + 𝜏𝑚𝑎𝑥

                                                  (3.55𝑎) 

𝜌𝜃,𝑘
τ,ϕ

= 𝛼𝑘
𝜏 ,𝜙

𝑐 +
𝔼𝑞 [∑ 𝑤𝑓−𝜙,𝑘

𝜏,𝑗 ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝑗 ]

𝜔𝑓,𝑛

                             (3.55𝑏) 

𝛽𝜃,𝑘
τ ,ϕ = 𝑝𝑓𝑛𝜑𝑘,𝑓,𝑛

2 𝔼𝑞 [
1

∑ 𝑤
𝑓−𝜙,𝑘

𝜏,𝑗
ℎ

𝑘,𝑛−𝜏

𝜙,𝑗
𝑗

]                                       (3.55𝑐) 

Finally, expectation over q(Ω) can be computed by 

𝔼𝑞 [𝑦] =
𝒦𝛾+1(2√𝜌𝛽)√𝛽

𝒦𝛾 (2√𝜌𝛽)√𝜌
                                                   (3.56) 

𝔼𝑞 [
1

𝑦
] =

𝒦𝛾−1(2√𝜌𝛽)√𝜌

𝒦𝛾 (2√𝜌𝛽)√𝛽
                                                   (3.57) 
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3.4.2 Initialization 

The initialization is an essential part for the separation since the NMF2D and its variants are very 

sensitive to the initialization. In this work, the Gamma-Exponential process will be proposed to 

initialization the spectral and temporal tensors of the NMF2D as follows 

 

𝑤𝑓,𝑘
𝜏,𝑗(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

=

√𝛽
𝑤,𝑓,𝑘

𝜏,𝑗 /𝜌
𝑤,𝑓,𝑘

𝜏,𝑗 𝒦
𝛾

𝑤,𝑓,𝑘
𝜏,𝑗

+1
(2√𝜌

𝑤,𝑓,𝑘

𝜏,𝑗 𝛽
𝑤,𝑓,𝑘

𝜏,𝑗 )

𝒦
𝛾

𝑤,𝑓,𝑘
𝜏,𝑗 (2√𝜌

𝑤,𝑓,𝑘

𝜏,𝑗 𝛽
𝑤,𝑓,𝑘

𝜏,𝑗 )

                     (3.58a) 

ℎ𝑘,𝑛
𝜙,𝑗(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

=

√𝛽
ℎ,𝑘,𝑛

𝜙,𝑗 /𝜌
ℎ,𝑘,𝑛

𝜙,𝑗 𝒦
𝛾

ℎ,𝑘,𝑛
𝜙,𝑗

+1
(2√𝜌

ℎ,𝑘 ,𝑛

𝜙,𝑗 𝛽
ℎ,𝑘 ,𝑛

𝜙,𝑗 )

𝒦
𝛾

ℎ,𝑘,𝑛
𝜙,𝑗 (2√𝜌

ℎ,𝑘,𝑛

𝜙,𝑗
𝛽

ℎ,𝑘,𝑛

𝜙,𝑗
)

                       (3.58b) 

 

for the convolutive parameters and number of components that obtained from the 

Gamma-Exponential process. 

 

Table 3.1 summarizes the main steps of the proposed algorithm. 

 

 

Table 3.1: Proposed algorithm 

1. Estimate the number of components and convolutive parameters by using the proposed 

Gamma-Exponential process in eqns. (3.53)-(3.55) and compute 𝔼𝑞 [𝜃𝑘
𝜏,𝜙]. 

2. Initialize 𝑤𝑓,𝑘
𝜏,𝑗

 and ℎ𝑘,𝑛
𝜙,𝑗

 with the proposed Gamma-Exponential process spectral and temporal 

tensors in eqn. (3.58a) and eqn. (3.58b), and initialize 𝜆𝑘,𝑛
𝜙,𝑗

 with positive value. 
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3. E-step: compute 𝑝̂𝑗𝑓𝑛  eqn. (3.12). 

4. M-step: compute 𝐴𝑓 , 𝛴𝑏,𝑓 , 𝑤𝑓,𝑘
𝜏,𝑗 , ℎ𝑘,𝑛

𝜙,𝑗
 and  𝜆𝑘,𝑛

𝜙,𝑗
 using eqn. (3.19), eqn. (3.21), eqn. (3.36), eqn. 

(3.37), and eqn. (3.39). 

5. Normalize 𝑤𝑓,𝑘
𝜏,𝑗 = 𝑤𝑓,𝑘

𝜏,𝑗 √∑ (𝑤
𝑓,𝑘

𝜏,𝑗)
2

𝑓 ,𝑘,𝜏⁄  

6. Repeat E- and M-steps, and the normalization until convergence is achieved where rate of cost 

change is below a prescribed threshold, ψ. 

7. Take inverse STFT with dual synthetic window to 𝒔̂𝑓𝑛. 

 

 

 

3.5 Window Length 

The power spectrogram of the pitched and percussive instruments has different characteristics. 

Pitched instruments are smooth and continue in temporal direction and discrete in spectral 

direction, and the opposite for the percussive instruments. Therefore, short and long windows will 

be used for the percussive and pitched instruments, respectively, in order to match their 

spectral- temporal characteristics. The impending challenge is in the singing voice which acts like a 

pitched instrument but with more fluctuations. Therefore it is difficult to separate the singing voice 

when it accompanied with pitched instrument since they share similar characteristics. As the 

singing voice acts like percussive instrument in long window (and as pitched instrument in short  

window), then the advantage of this characteristic will be considered, where a long window will be 

used when the singing voice accompanied with pitched instruments, in order to distinguish 

between them. 
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3.6 Results and Discussions 

The proposed algorithm will be compared with the standalone EM and MU based algorithms [8], 

GEM–MU based NTF [80] with adaptive sparsity and proposed initialization, and the GEM-MU 

based NMF (by setting the convolutive parameters of the proposed algorithm to zero  𝜏𝑚𝑎𝑥 = 0 

and 𝜙𝑚𝑎𝑥 = 0) with adaptive sparsity and proposed initialization.  

 

 

 

3.6.1 Effects of Sparsity 

First of all, the effect of the sparsity on the separation performance will be investigated by 

comparing between the uniform sparsity and the adaptive sparsity. An experiment has been ran for 

different values of the uniform sparsity and for the adaptive sparsity, for three sources that 

convolutively mixed in stereo mixture that has 1m space between its microphones, 130 ms 

reverberation time, and with 16 kHz sampling frequency. The following parameters were set for 

the proposed algorithm; 𝐾𝑗 = 5  components per source, 𝜏 = {0, 1, 2, 3, 4} , and 𝜙 = {0, 1} . 

Furthermore, in order to focus on the sparsity effects only, an oracle initialization (where the input 

parameters are known) has been used.  Figure 3.1 shows the average signal-to-distortion ratio 

(SDR) [98] w.r.t different values of sparsity. The SDR shows a total separation performance that 

includes a degree of separation and absence of nonlinear distortion. It is clear from Figure 3.1 that 

the adaptive sparsity gives the highest SDR as it has a specific sparsity value for each element of 𝑯 

instead of constant value for the entire elements of 𝑯 as in the uniform sparsity. Furthermore, the 

spectrogram of one of the estimated source for adaptive sparsity, over uniform sparsity, and the 

under uniform sparsity is shown in Figure 3.2. It is clear from Figure 3.2 that the over sparsity 

eliminates many spectra from the estimated source, as it assigned a lot of zero values in the 𝑯 

matrix. While the under uniform sparsity has many unwanted spectra, as there are many of 

unwanted elements in the 𝑯 matrix. While, the adaptive sparsity address them correctly, as it 

specified a specific value for each element of the H matrix, as in eqn. (3.39). 
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Figure 3.2: Effects of sparsity on the estimated source.  

Figure 3.1: Average SDR w.r.t different sparsity values. 
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3.6.2 Evaluation 

To evaluate the proposed algorithm the performance will be measured by using the SDR [98] 

which measures an overall sound quality of the source separation where it combines the 

signal-to- interference ratio (SIR), source image-to-spatial distortion ratio (ISR), and the 

signal-to-artifact ratio (SAR) into one measurement. MATLAB codes for this evaluation procedure 

can be found in [99].  

 

3.6.3 Datasets 

As our results will be compared with the MU and EM algorithms of [8], then the same datasets of 

this paper which match with the dataset dev2 of SiSEC’08 “underdetermined speech and music 

mixtures” will be considered, as follows 

1. Synthetic Convolutive Dataset: This dataset consist of two groups. The wdrum group which 

consists of three percussive instruments and the ndrum group which consists of three 

non-percussive instruments.  

2. Live Recording (Convolutive) Dataset: This dataset is more complicated than the Synthetic 

convolutive case as it contains different musical instruments with vocal signal. It consists of two 

groups the wdrum group which consists of vocal and musical instrument with drum, and the 

ndrum group which consists of vocal and musical instruments without drum.  

All the mixtures were 10s long, and sampled at 16 kHz. Also, they have 130 ms of reverberation 

time with 1m space between their microphones. Different windows length will be used in the STFT 

with 50% overlaps. The STFT MATLAB code is available from [99]. 

 

3.6.4 Results of the Synthetic Convolutive Dataset:  

1. wdrum Case: As all the musical instruments are percussive that have short temporal then the 

STFT with window length of 512-sample was selected. Firstly the effect of the proposed 

Gamma-Exponential process in estimating the number of components and the convolutive 

parameters will be investigated. The bounds of the proposed Gamma-Exponential process set as 
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follows: 𝜏 = {0, 1, 2, . . . , 10}, 𝜙 = {0,1,2, . . . ,10}, and 𝐾 = 20. The results of the proposed 

Gamma-Exponential process are shown in Figures 3.3 and 3.4. The number of active 

components in the NMF2D as estimated according to the hidden latent variable in eqn. (3.40) is 

given by 

 

𝔼𝑞 [𝜃𝑘] =
1

(𝜏𝑚𝑎𝑥 + 1)(𝜙𝑚𝑎𝑥 + 1)
∑ ∑ 𝔼𝑞 [𝜃𝑘

𝜏,𝜙
]

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

              

 

where 

𝔼𝑞 [𝜃𝑘
𝜏,𝜙] =

√𝛽
𝜃,𝑘

𝜏,𝜙 /𝜌
𝜃,𝑘

𝜏,𝜙𝒦
𝛾

𝜃,𝑘
𝜏,𝜙

+1
(2√𝜌

𝜃,𝑘

𝜏,𝜙𝛽
𝜃,𝑘

𝜏 ,𝜙)

𝒦
𝛾

𝜃,𝑘
𝜏,𝜙 (2√𝜌

𝜃,𝑘

𝜏,𝜙𝛽
𝜃,𝑘

𝜏 ,𝜙)

  

 

In above, a uniform distribution for both 𝑞(𝜏) and 𝑞(𝜙) is assumed. The active component can be 

defined as  

𝑘∗ = 𝑎𝑟𝑔
𝑘

{
𝔼𝑞 [𝜃𝑘]

∑ 𝔼𝑞 [𝜃𝑘]𝐾
𝑘 =1

  ≥ 𝜀} 

where 𝜀 is a small constant which can be set as 0.1. 𝔼𝑞 [𝜃𝑘] is treated as a histogram and the active 

components are selected as those that exceeds 10% of the overall sum. Figure 3.3 shows the values 

of 𝔼𝑞 [𝜃𝑘] for 𝑘 = 1, … ,20 which are predominantly zero except for 𝑘 = 3, 8, 11 and 20 whose 

𝔼𝑞 [𝜃𝑘]  values are 1.46, 0.07, 2.1  and 3.23 , respectively. The term ∑ 𝔼𝑞 [𝜃𝑘]𝐾
𝑘=1  has been 

calculated to be 6.86 and thus, the active components are only 𝑘∗ = 3, 11 and 20. Let 𝐾∗ = # 𝑘∗, 

that is, the number of active components e.g. in Figure 3.3 this corresponds to 𝐾∗ = 3. Since there 

are 𝐽 = 3 sources, then 𝐾𝑗 = 𝐾∗ 𝐽⁄ = 1 for 𝑗 = 1, 2, 3. In addition, for each 𝑘∗ active component, 

the distribution for (𝜏, 𝜙) has been determined which is given by 𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏,𝜙
]. These are shown in 

Figure 3.4. The optimum model for (𝜏, 𝜙) is selected by treating each 𝔼𝑞 [𝜃𝑘=𝐾
𝜏,𝜙 ] for various values 
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of (𝜏, 𝜙) as a histogram. Thus the optimum model for (𝜏, 𝜙) is given by the average of non-zero 

components: 

 

𝜏̂𝑚𝑎𝑥 ,𝑘∗
=

∑ 𝐹
𝑙

(𝜏)𝜙𝑚𝑎𝑥
𝑙=0

#(𝐹
𝑙

(𝜏)
≠ 0, ∀𝑙)

− 1 

𝜙̂𝑚𝑎𝑥 ,𝑘∗
=

∑ 𝐹
𝑙

(𝜙)𝜏𝑚𝑎𝑥
𝑙=0

# (𝐹
𝑙

(𝜙)
≠ 0, ∀𝑙)

− 1 

where 

𝐹
𝑙

(𝜏)
= #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 

𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏,𝜙=𝑙
]

∑ 𝔼𝑞 [𝜃
𝑘=𝑘∗

𝜏,𝜙=𝑙]𝜏

≥ 𝜀 

𝐹
𝑙

(𝜙)
= #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 

𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏=𝑙,𝜙 ]

∑ 𝔼𝑞 [𝜃
𝑘 =𝑘∗

𝜏=𝑙,𝜙 ]𝜙

≥ 𝜀 

The term 𝐹
𝑙

(𝜏)
 counts the number of 𝜏  components in the normalized 𝔼𝑞 [𝜃𝑘

𝜏,𝜙=𝑙
]  that exceeds 

𝜀, and #(𝐹
𝑙

(𝜏)
≠ 0, ∀𝑙)  counts the number of entries in 𝐹

𝑙

(𝜏)
 that is non-zero. The same 

interpretation is applied to 𝐹
𝑙

(𝜙)
 and #(𝐹

𝑙

(𝜙)
≠ 0, ∀𝑙) for determining the model order 𝜙𝑚𝑎𝑥 . From 

Figure 3.4, it can be calculated that 𝜏̂𝑚𝑎𝑥 ,𝑘∗
= 4  and 𝜙̂𝑚𝑎𝑥,𝑘∗

= 10 for all 𝑘∗ , then 𝜏̂𝑚𝑎𝑥 =

∑ 𝜏̂𝑚𝑎𝑥,𝑘∗𝑘∗

𝐾∗
= 4, and 𝜙̂𝑚𝑎𝑥

∑ 𝜙̂𝑚𝑎𝑥 ,𝑘∗𝑘∗

𝐾∗
= 10. Thus, the optimum model order for the NMF2D model 

in eqn. (3.4) is given by 𝐾𝑗 = 1, 𝜏̂𝑚𝑎𝑥 = 4 and 𝜙̂𝑚𝑎𝑥 = 10. 

For the current values of the convolutive parameters (𝜏𝑚𝑎𝑥 = 4 and 𝜙𝑚𝑎𝑥 = 10)  the tensors of 

proposed Gamma-Exponential process eqn. (3.58a) and eqn. (3.58b) will be used to initialize the 

proposed GEM-MU based NMF2D algorithm, and its SDRs are tabulated in Table 3.2. It can be 

seen from Table 3.2 that the SDRs of the proposed GEM-MU based NMF2D is better than all other 

algorithms. Thus by using the proposed Gamma-Exponential process, the number of components 

and convolutive parameters can be estimated, and the proposed algorithm can be initialized.  

Furthermore, despite it is not straight forward to compare the proposed Gamma-exponential 

process with other methods as it is for the best of our knowledge is the first method to estimate the 

convolutive parameters in the NMF2D. However we proposed to compare with the mesh method 

that compute the SDR for each single selection of the convolutive parameter (for 𝜏 = {0, 1, … , 10} 
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and 𝜙 = {0,1, … ,20}) and check the convolutive parameters that give the highest SDR. This 

method is time consuming and unrealistic as it required the original sources to compute their SDRs. 

We applied it on the above case of synthetic convolutive with drum, as shown in Figure 3.5. The 

figure shows the results of the mesh method of running the NMF2D algorithm for every possible 

case of 𝜏 and 𝜙. In total, there are 11 × 21 = 231 possible model order. The highest SDR is 

obtained at SDR = 4.08 dB with 𝜏𝑚𝑎𝑥 = 9 and 𝜙𝑚𝑎𝑥 = 10. There is 0.06 dB difference between 

the SDR of the Mesh method and the SDR of the Gamma-Exponential process, which is acceptable 

difference in comparison with the time required to find the model order using the mesh method.  

Finally, the cost function versus iteration number is plotted in Figure 3.6 (a large constant value 

has been added to the curve to ensure positivity). Figure 3.6 shows that the cost function has been 

converged. Finally the waveforms of the estimated sources are shown in Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Number of components by using Ga-Exp. 

𝑘 
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 Figure 3.5: Average SDR w.r.t the convolutive parameters. 

Figure 3.4: Convolutive parameters corresponding to each component by using 

Ga-Exp. 
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Algorithm Parameters SDRs Avrg 

SDR S1 S2 S3 

EM NMF Window=512 6.89  -4.83 1.75 1.27 

MU NMF Window=512 5.10  -9.87 2.46 -0.77 

GEM-MU NTF Window=512 6.18  -1.32 3.00 2.62 

GEM-MU NMF Window=512 

𝐾𝑗 = 1 

5.54  -0.28 1.21 2.16 

Proposed 

GEM-MU NMF2D  

With Mesh Method  

Window=512 

𝜏̂𝑚𝑎𝑥  = 9  

𝜙̂𝑚𝑎𝑥 = 10 

𝐾𝑗 = 1 

8.42  -0.46 4.27 4.08 

Proposed 

GEM-MU NMF2D 

With Ga-Exp  

Window=512 

𝜏̂𝑚𝑎𝑥  = 4  

𝜙̂𝑚𝑎𝑥 = 10 

𝐾𝑗 = 1 

7.99  0.22 3.86 4.02 

Table 3.2: Convolutive mixture with drum (wdrurm). 

Figure 3.6: Convergence of the cost functions. 
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2. ndrum Case: Since all the musical instruments were pitched (non-percussive) and had long 

temporal characteristics then the STFT with window length of 2048-sample was selected. By 

following the same procedure of the wdrum case, the number of components and convolutive 

parameters are selected from Figure 3.8 and Figure 3.9, respectively. From Figure 3.8, it is 

calculated that 𝐾∗ = 5 and since there are 3 sources, one may consider partitioning this into 

𝐾j = 2. Also from Figure 3.9, the convolutive model order are determined as follows 𝜏̂𝑚𝑎𝑥 =

5, and 𝜙̂𝑚𝑎𝑥 = 10. For the mesh method the highest SDR (which is equal to 3.41 dB) is 

obtained from  𝜏𝑚𝑎𝑥 = 8 and 𝜙𝑚𝑎𝑥 = 9 as shown in Figure 3.10. The cost function and the 

waveforms of the estimated sources are shown in Figure 3.6 and Figure 3.11, respectively. 

Furthermore, all the results are tabulated in Table 3.3. It can be seen from this table that the 

average SDRs of the proposed algorithm with window 2048-sample are better than the rest the 

algorithms. Also, it can be seen that there is 0.1 dB difference between the SDR of the Mesh 

method and the SDR of the Gamma-Exponential process, again the 0.1 dB is an acceptable 

difference. 

 

 

 

Figure 3.7: Waveforms of the estimated sources for drum case. 
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  Algorithm   Parameters SDRs Avrg 

SDR S1 S2 S3 

EM NMF Window=2048  4.18  1.02  -1.8 1.10 

MU NMF Window=2048  2.89  1.04  -2.09 0.61 

GEM-MU NTF Window=2048  2.93  3.09  1.57 2.53 

GEM-MU NMF Window=2048 

  𝐾𝑗 = 2 

 2.98  2.57  1.15 2.23 

Proposed 

GEM-MU NMF2D  

With Mesh Method  

Window=2048 

𝜏̂𝑚𝑎𝑥  = 8  

𝜙̂𝑚𝑎𝑥 = 9 

𝐾𝑗 = 2 

1.63  3.39 5.21 3.41 

Proposed 

GEM-MU NMF2D 

With Ga-Exp  

Window=2048 

𝜏̂𝑚𝑎𝑥 = 5    

𝜙̂𝑚𝑎𝑥 = 10 

𝐾𝑗 = 2 

 1.85  3.33  4.75 3.31 

 Table 3.3: Synthetic convolutive without drum (ndrum). 

Figure 3.8: Number of components by using Ga-Exp. 
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Figure 3.9: Convolutive parameters corresponding to each component by using 

Ga-Exp. 
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Figure 3.11: Waveforms of the estimated sources for no drum case. 

Figure 3.10: Average SDR w.r.t the convolutive parameters. 
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3.6.5 Results of the Live Recording (Convolutive) Dataset:  

1. wdrum Case: By following the same procedure of the previous sections, window length 

of 2048-sample was selected for the STFT, the number of components and convolutive 

parameters were selected from Figure 3.12 and Figure 3.13, respectively, where it is clear from 

these figures that 𝐾𝑗 = 3, 𝜏̂𝑚𝑎𝑥 = 1,  and 𝜙̂𝑚𝑎𝑥 = 3.  For the mesh method the highest SDR 

(which is equal to 7.96 dB) is obtained from  𝜏𝑚𝑎𝑥 = 1 and 𝜙𝑚𝑎𝑥 = 1 as shown in Figure 3.14. 

Figure 3.15 shows the convergence of the cost function w.r.t the iteration number. Additionally, 

all the results are tabulated in Table 3.4. It is clear from Table 3.4, that the SDRs of the proposed 

algorithm are the best. Also, it can be seen that there is 0.18 dB difference between the SDR of 

the Mesh method and the SDR of the Gamma-Exponential process, which is an acceptable 

difference. Finally the waveforms of the estimated sources are shown in Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Number of components by using Ga-Exp. 
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Figure 3.13: Convolutive parameters corresponding to each component by using Ga-Exp. 
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Figure 3.15: Convergence of cost functions. 

Iteration Number 
  

Figure 3.14: Average SDR w.r.t the convolutive parameters. 
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Figure 3.16: Waveforms of the estimated sources for the live recording with drum case. 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 Algorithm Parameters SDRs  Avrg 

 SDR S1 S2 S3 

EM NMF Window=2048 4.96 5.55 8.03 6.18 

MU NMF Window=2048 4.19 4.50 7.58 5.42 

GEM-MU NTF Window=2048 5.89 7.90 7.68 7.16 

GEM-MU NMF Window=2048,

  𝐾𝑗 = 3 

5.99 7.74 7.58 7.10 

Proposed GEM-MU 

NMF2D  

With Mesh Method  

Window=2048 

𝜏̂𝑚𝑎𝑥  = 1  

𝜙̂𝑚𝑎𝑥 = 1 

𝐾𝑗 = 3 

6.77 8.65 8.47 7.96 

Proposed GEM-MU 

NMF2D With 

Ga-Exp  

Window=2048,

 𝜏̂𝑚𝑎𝑥 = 1, 

𝜙̂𝑚𝑎𝑥 = 3, 

 𝐾𝑗 = 3 

6.58 8.65 8.12 7.78 

Table 3.4: Live recording with drum (wdrum).  
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2. ndrum Case: Since this dataset contains pitched musical instruments and vocal, and as the 

vocal sound acts like percussive instrument in long window, then a long window of 

4096-sample is selected for the STFT. The number of components and convolutive parameters 

were selected from Figure 3.17 and Figure 3.18, respectively, where it is clear from these 

Figures that 𝐾𝑗 = 5,  𝜏̂𝑚𝑎𝑥 = 1 and 𝜙̂𝑚𝑎𝑥 = 7. For the mesh method the highest SDR (which is 

equal to 5.16 dB) is obtained from  𝜏𝑚𝑎𝑥 = 2 and 𝜙𝑚𝑎𝑥 = 9 as shown in Figure 3.19. The cost 

function with respect to the iteration number is shown in Figure 3.15. All the result has been 

tabulated in Table 3.5. Also, it can be seen that there is 0.55 dB difference between the SDR of 

the Mesh method and the SDR of the Gamma-Exponential process. Finally, the waveforms of 

the estimated sources are shown in Figure 3.20. 

It can be seen from Tables 3.2 to 3.5 that the SDR of the proposed algorithm based on 

Gamma-Exponential process on average is 0.22 dB less than the SDR of the proposed algorithm 

that based on the mesh method. The 0.22 dB is acceptable difference in comparison with the time 

required to find the mesh method convolutive parameters. 

 

 

 

 

 

  

 

 

 

Figure 3.17: Number of components by using Ga-Exp. 
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Figure 3.18: Convolutive parameters corresponding to each component by using Ga-Exp. 
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Algorithm Parameters SDRs Avrg 

SDR S1 S2 S3 

EM NMF  Window=4096 6.02 1.68 -0.91 2.26 

MU NMF  Window=4096 4.27 0.05 -3.14 0.39 

GEM-MU NTF  Window=4096 7.71 3.60 -0.40 3.64 

GEM-MU NMF  Window=4096, 

 𝐾𝑗 = 5 

6.80 2.10 -0.24 2.89 

Proposed 

GEM-MU NMF2D  

With Mesh Method  

Window=4096 

𝜏̂𝑚𝑎𝑥  = 2  

𝜙̂𝑚𝑎𝑥 = 9 

𝐾𝑗 = 5 

9.28 5.75 0.44 5.16 

GEM-MU NMF2D 

with Proposed  

Ga-Exp 

 Window=4096, 

 𝜏̂𝑚𝑎𝑥 = 1,  

 𝜙̂𝑚𝑎𝑥 = 7,  

 𝐾𝑗 = 5 

8.93 4.83 0.08 4.61 

Table 3.5: Live recording without drum (ndrum).  

Figure 3.19: Average SDR w.r.t the convolutive parameters. 
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3.7 Summary 

In this chapter the NMF2D has been proposed to develop a machine learning solution for 

separating the underdetermined convolutive mixture in unsupervised manner and with adaptive 

sparsity instead of the constant uniform sparsity. For faster convergence the proposed algorithm 

has been adapted in the GEM-MU algorithm. Also in this chapter a new approach to efficiently 

initialize the NMF2D has been proposed. Furthermore, the number of components and convolutive 

parameters of the NMF2D have been estimated by the proposed Gamma-Exponential process. 

Additionally, this chapter has shown that the window length used in the STFT can be used to match 

the characteristics of the audio signals. If the mixture contains sources that exhibit pitch- like 

characteristics, a long-time processing window will extract these sources more efficiently. 

Conversely, a short-time processing window is more suitable for percussive- like sources. Results 

have shown that the proposed algorithm is very promising, considerably more flexible and offers 

an alternative model to the EM- and MU-based NMF, or NTF. 

 

 

 

Figure 3.20: Waveforms of the estimated sources for the live recording no drum case.  
 



 

 

62 
 

CHAPTER 4 

UNDERDETERMINED HIGH-REVERBERANT AUDIO SOURCE 

SEPARATION USING TWO DIMENSIONAL TENSOR FACTORIZATION 

TECHNIQUES 

 

 

 

In this chapter, a novel algorithm that able to separate the audio sources that have been mixed in an 

underdetermined reverberant environment will be proposed. Namely, the fusion of K models of 

full-rank weighted nonnegative tensor factor 2D deconvolution (K-wNTF2D) will be proposed. 

This model will be adapted under the hybrid framework of the generalized expectation 

maximization and multiplicative update algorithms in unsupervised manner. In addition, the 

development and derivation of the proposed full-rank K-wNTF2D algorithm will be shown. Also, 

the variable sparsity parameters that derived from the Gibbs distribution will be encoded into the 

K-wNTF2D model in order to optimize each sub-model in K-wNTF2D with the required sparsity 

which in turn will model the time-varying variances of the sources in the spectrogram. 

Furthermore, the parameters of the K-wNTF2D will be initialized by the proposed initialization 

method. Experimental results showed the effectiveness of the proposed algorithm in separating the 

sources that have been mixed in underdetermined reverberant environment. 

This chapter is organized as follows: The proposed K-wNTF2D model will be introduced in 

Section 4.1. The sources model will be presented in Section 4.2. Section 4.3 is dedicated to the 

derivation of variable sparsity and the adaptation of GEM-MU algorithm to work with the full-rank 

K-wNTF2D. The initialization strategy will be proposed in Section 4.4. Experimental results on the 

SiSEC’13 real datasets and comparison with recent methods will be discussed in Section 4.5. 

Finally, the conclusions will be drawn in Section 4.6. 

 

4.1 Introduction 

A certain set of assumptions are needed to solve the ill-posed problem of the blind source 

separation. One of these common assumptions in the BSS is the narrowband approximation, and to 

understand it, it should be known how the observed multichannel signal 𝒙(𝑡) can be expressed in 

Short Time Fourier transform (STFT).The mixture 𝒙(𝑡) can be expressed in time domain as 
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𝑥𝑖(𝑡) = ∑ 𝑐𝑖 ,𝑗(𝑡)

𝐽

𝑗=1

+ 𝑏𝑖(𝑡),            𝑖 = 1,2, … 𝐼                                      (4.1) 

where 𝑥𝑖(𝑡) ∈ ℝ, 𝑡 = 1, … , 𝑇 is the received signal from the ith microphone,  𝑐𝑖,𝑗(𝑡) ∈ ℝ  is the 

spatial image of the source signal j and channel i, J is the number of sources, and 𝑏𝑖(𝑡) ∈ ℝ is some 

additive noise. The spatial image of the source 𝑐𝑖,𝑗 (𝑡) can be expressed as  

𝑐𝑖 ,𝑗(𝑡) = ∑ 𝑎𝑖,𝑗(𝜏)𝑠𝑗(𝑡 − 𝜏)

𝐿−1

𝜏=0

                                                    (4.2) 

where 𝑎𝑖,𝑗(𝑡) ∈ ℝ is the finite- impulse response of some (causal) filter, 𝐿 is the filter length, and 

𝑠𝑗(𝑡) ∈ ℝ is the original source signal.  

By substituting eqn. (4.2) into eqn. (4.1), and assuming that the mixing channel is 

time-invariant then, the STFT of eqn. (4.1) becomes 

𝑥𝑖,𝑓,𝑛 = ∑ 𝑎𝑖,𝑗,𝑓𝑠𝑗,𝑓,𝑛 + 𝑏𝑖 ,𝑓

𝐽

𝑗=1

                                                   (4.3𝑎) 

or in vector form 

𝒙𝑓,𝑛 = ∑ 𝒂𝑗,𝑓𝑠𝑗,𝑓,𝑛 + 𝒃𝑓,𝑛

𝐽

𝑗=1

                                                   (4.3𝑏) 

where 𝒙𝑓,𝑛 = [𝑥1,𝑓,𝑛 ⋯ 𝑥𝐼,𝑓,𝑛]𝐻, 𝒂𝑗,𝑓 = [𝑎1,𝑗,𝑓 ⋯ 𝑎𝐼,𝑗,𝑓]𝐻 , and 𝑥𝑖,𝑓,𝑛 , 𝑎𝑖 ,𝑗,𝑓 , 𝑠𝑗,𝑓,𝑛, 𝑏𝑖 ,𝑓,𝑛  are 

the complex-valued STFT of 𝑥𝑖(𝑡), 𝑎𝑖,𝑗(𝑡),  𝑠𝑗(𝑡), and 𝑏𝑖(𝑡), respectively. The term 𝑓 = 1, 2, … , 𝐹 

is the frequency bin index, and 𝑛 = 1, 2, … , 𝑁 is the time frame index. Thus, the convolutive 

mixture in eqn. (4.2) is approximated by the narrowband approximation to an instantaneous 

mixture, where it is assumed that L is shorter than the STFT window size [100]. According to this 

assumption the covariance matrix of 𝑐𝑖,𝑗,𝑓 ,𝑛 (the complex-valued STFT of 𝑐𝑖,𝑗 (𝑡)) defined as  

𝛴
𝑗,𝑓,𝑛

(𝒄)
= 𝐸[𝒄𝑗,𝑓,𝑛𝒄𝑗,𝑓,𝑛

𝐻 ]                                                        (4.4𝑎) 

and can be expressed as  
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𝛴
𝑗,𝑓,𝑛

(𝒄)
= 𝛴

𝑗,𝑓

(𝒂)
𝑣𝑗,𝑓,𝑛                                                             (4.4𝑏) 

or its scalar form as 

𝜎
𝒊 𝑗,𝑓,𝑛

(𝑐)
= 𝜎

𝒊 𝑗,𝑓

(𝑎)
𝑣𝑗,𝑓,𝑛                                                          (4.4𝑐) 

where 𝑖  is the index that represents the column vectorization of a 𝐼 × 𝐼  matrix i.e. 𝑖 =

{(1,1), (2,1), … , (𝐼, 1), (1,2), (2,2),… , (𝐼, 𝐼)} ∈ ℝ𝐼2
, 𝛴

𝑗,𝑓𝑛

(𝒄)
∈ ℂ𝐼×𝐼  is the covariance matrix of the jth 

source image, 𝛴
𝑗,𝑓

(𝒂)
∈ ℂ𝐼×𝐼 is the time- invariant spatial covariance matrix of the jth source, and 

𝑣𝑗,𝑓,𝑛 ∈ ℝ+ is the source variance. Therefore, in the case of high-reverberant environment where L 

is greater than the STFT window size, this assumption will not work. To resolve this issue, Duong 

et al. [9] propose a full-rank spatial covariance matrix (which models the spatial position of the 

sources as well as their spatial spread) in place of the conventional rank-1 matrix formed from 

𝛴
𝑗,𝑓

(𝒂)
= 𝒂𝑗,𝑓𝒂𝑗,𝑓

𝐻 . They showed that their results are better than the rank-1 method. Arberet et al. [16] 

take advantages of the full-rank spatial covariance matrix to model the mixing process, and used 

the NMF to model the source variance. They showed that their results are better than Doung et al. 

under the oracle initialization where both 𝑣𝑗,𝑓,𝑛 and 𝛴
𝑗,𝑓

(𝒂)
 are initialized from the original sources.  

However, for a more realistic case, it is not always possible to adapt the oracle initialization 

approach. In addition, the NMF is practically too simplistic and does not efficiently model more 

complex sources such as polyphonic music. Therefore, a more powerful source variance 

representation should be used instead of the NMF (based on Arberet et al. [16]). One possible 

representation is the NMF2D [25], which has a set of convolutive parameters (𝜏 and 𝜙) that are 

convolved in both time and frequency directions by a time-pitch weighted matrix. A set of K 

number of frequency basis is used instead of the single frequency basis to model the jth source 

variance which results in 

𝑣𝑗,𝑓,𝑛 = ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐾

𝑘=1

                                              (4.5) 

where 𝐾 is the number of components or frequency basis assigned to the jth source. The terms 𝜏𝑚𝑎𝑥  

and 𝜙𝑚𝑎𝑥  are the maximum number of the convolutive parameters 𝜏  and 𝜙 respectively. 𝑤𝑓,𝑘
𝜏,𝑗
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represents the kth spectral basis of the jth source, and ℎ𝑘,𝑛
𝜙,𝑗

 represents the k th temporal code for each 

spectral basis element of the jth source, for 𝑓 = 1, … , 𝐹, 𝑛 = 1, … , 𝑁, and 𝑗 = 1, … , 𝐽. With eqn. 

(4.5), the covariance matrix in eqn. (4.4) can now be expressed as 

𝛴
𝑗,𝑓,𝑛

(𝒄)
= ∑ ∑ ∑ 𝛴

𝑗,𝑓

(𝒂)
𝑤𝑓−𝜙,𝑘

𝜏,𝑗 ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐾

𝑘=1

                                       (4.6𝑎) 

and its scalar form as 

𝜎
𝒊 𝑗,𝑓,𝑛

(𝑐)
= ∑ ∑ ∑ 𝜎

𝒊 𝑗,𝑓

(𝑎)
𝑤𝑓−𝜙,𝑘

𝜏,𝑗 ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐾

𝑘=1

                                       (4.6𝑏) 

The full-rank “mixture covariance matrix” of 𝒙𝑓 ,𝑛 in eqn. (4.3b) is defined as 

𝛴𝑓,𝑛

(𝒙)
= 𝐸[𝒙𝑓,𝑛 𝒙𝑓,𝑛

𝐻 ] 

= ∑ 𝛴
𝑗,𝑓,𝑛

(𝒄)

𝐽

𝑗=1

+ 𝛴
𝑓

(𝒃)
                                                   (4.7𝑎) 

where  𝛴
𝑓

(𝒃)
 is the time invariant noise covariance matrix. Using eqn. (4.6a), 𝛴

𝑓,𝑛

(𝒙)
 can be expressed 

as 

𝛴
𝑓,𝑛

(𝒙)
= ∑ ∑ ∑ ∑ 𝛴

𝑗,𝑓

(𝒂)
𝑤𝑓−𝜙,𝑘

𝜏,𝑗
ℎ𝑘,𝑛−𝜏

𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

𝐽

𝑗 =1

𝐾

𝑘=1

+ 𝛴
𝑓

(𝒃)
                                (4.7𝑏) 

The scalar form of 𝛴
𝑓,𝑛

(𝒙)
 can be expressed as 

𝜎
𝑖,𝑓,𝑛

(𝑥)
= ∑ ∑ ∑ ∑ 𝜎

𝑖,𝑗,𝑓

(𝑎)
𝑤𝑓−𝜙,𝑘

𝜏,𝑗 ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

𝐽

𝑗 =1

𝐾

𝑘=1

+ 𝜎
𝑖 ,𝑓

(𝑏)
                             (4.7𝑐) 

Of special note is that eqn. (4.7b) represents a non-negative tensor factorization of the mixture 

covariance matrix (arranged as a 3-dimensional tensor) into a product of spatial covariance matrix 

(arranged as a 3-dimensional tensor), spectral basis and temporal codes (the latter two estimate the 
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source image variances).  Since eqn. (4.7b) is a combination of K models of weighted NTF2D, it 

will be termed as the “K-wNTF2D”3.  

The full-rank K-wNTF2D will be optimized using the GEM-MU algorithm [80] which 

provides a probabilistic platform for joint estimation of the sources and the parameters as well as 

preserving the non-negativity constraints of the model. In addition, the GEM-MU algorithm 

accelerates the convergence speed of the parameters update. Concurrently, the variable sparsity 

will be encoded into the K-wNTF2D instead of using some heuristics approaches to fix them to a 

constant value. The variable sparsity will be developed based on the Gibbs distribution framework 

and optimized under the Itakura-Saito divergence. This will be contrasted with the uniform sparsity 

which assigns a fixed sparsity over all the elements of 𝑯 = {ℎ𝑘,𝑛
𝜙,𝑗 }. Since the acoustic sources such 

as speech changes dynamically over time, uniform sparsity will lead to either over-sparseness 

(resulting in too many elements of 𝑯 set to zero), or under-sparseness (a lot of ineffective elements 

in 𝑯). The proposed variable sparsity relieves this problem by optimizing the sparsity for each 

individual elements of 𝑯 through learning from the data. 

The Itakura-Saito (IS) divergence will be considered in this chapter due to its scale invariant 

property [49]. Compared with the Least Square (LS) distance and Kullback-Leibler (KL) 

divergence cost functions, IS divergence deals with both low and high energy components with 

equal emphasis. Since both speech and music signals have large magnitude dynamic ranges, IS 

divergence provides a faithful measure between the observed data and the output generated from 

the adapted K-wNTF2D model. Also initialization strategy for the NMF2D will be considered. 

Since poor initialization can lead to converge to unwanted local minima, a novel initialization 

method will be developed to initialize the K-wNTF2D. For ease of understanding, a high- level 

presentation of the proposed algorithm is shown in Figure 4.1. 

 

 

 

 

 
3
 By definition, a 3-dimensional NTF is given by 𝑉

𝑖,𝑓,𝑛
= ∑ 𝑎

𝑖,𝑗
𝑏

𝑓,𝑗
𝑐

𝑗,𝑛𝑗
. This can be extended to NTF2D by introducing the convolutive parameters 

as 𝑉
𝑖,𝑓,𝑛

= ∑ ∑ ∑ 𝑎
𝑖 ,𝑗

𝑏
𝑓−𝜙,𝑗

𝜏
𝑐

𝑗,𝑛−𝜏

𝜙

𝜙𝜏𝑗
. We can further extend the NTF2D by introducing a dependence of  𝑎

𝑖,𝑗
 with respect to one of the dimension 

say f i.e. 𝑎
𝑖 ,𝑗

(𝑓). In this case, we replace 𝑎
𝑖 ,𝑗

 with 𝑎
𝑖,𝑗,𝑓

 so that 𝑉
𝑖,𝑓,𝑛

= ∑ ∑ ∑ 𝑎
𝑖,𝑗,𝑓

𝑏
𝑓−𝜙,𝑗

𝜏
𝑐

𝑗,𝑛−𝜏

𝜙

𝜙𝜏𝑗
. This coupling allows us to weight the NTF2D as 

a function of 𝑓. We term this as the weighted NTF2D (wNTF2D). Finally, we introduce a fusion of K models of weighted NTF2D resulting to 

𝑉
𝑖,𝑓 ,𝑛

= ∑ ∑ ∑ ∑ 𝑎
𝑖 ,𝑗,𝑓

𝑏
𝑓−𝜙,𝑗

𝜏,𝑘
𝑐

𝑗,𝑛−𝜏

𝜙,𝑘

𝜙𝜏𝑗

𝐾

𝑘= 1
, which we term it  as the “K-wNTF2D”. 
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4.2 Source Model 

The spatial image of the sources can be modeled as realization of zero-mean proper complex 

distribution 

𝒄𝑗,𝑓,𝑛~𝒩𝑐 (0, 𝛴
𝑗,𝑓,𝑛

(𝒄)
)                                                            (4.8) 

and its probability density function (pdf) can be expressed as 

𝒩𝑐(0, 𝛴
𝑗,𝑓,𝑛

(𝒄)
) ≜

1

𝑑𝑒𝑡 (𝜋𝛴
𝑗,𝑓,𝑛

(𝒄)
)

𝑒
−(𝒄𝑗,𝑓,𝑛

𝐻 𝛴
𝑗,𝑓,𝑛
(𝒄)−1

𝒄𝑗,𝑓,𝑛)
                                  (4.9) 

Substituting eqn. (4.6a) into eqn. (4.8) will results in the following  

𝒄𝑗,𝑓,𝑛~𝒩𝑐 (0,𝛴
𝑗,𝑓

(𝒂)
(∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘

𝜏,𝑗
ℎ𝑘,𝑛−𝜏

𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐾

𝑘=1  

))                            (4.10) 

         Figure 4.1: High level presentation of the proposed algorithm. 
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The noise 𝒃𝑓,𝑛 in eqn. (4.3) is assumed to be time invariant, stationary and spatially uncorrelated, 

i.e. 

𝒃𝑓,𝑛~𝒩𝑐 (0, 𝛴
𝑓

(𝒃)

 
)                                                           (4.11) 

and its pdf can be expressed as 

𝒩𝑐 (0, 𝛴
𝑓

(𝒃)

 
) ≜

1

𝑑𝑒𝑡 (𝜋𝛴
𝑓

(𝒃)

 
)

𝑒
−(𝒃𝑓,𝑛

𝐻 𝛴
𝑓
(𝒃)−1

𝒃𝑓,𝑛)
                                 (4.12) 

 

4.3 Proposed Estimation Algorithm  

The conditional expectation of the natural statistics  will be estimated using the GEM algorithm, 

and the mixing parameter, 𝑾 = {𝑤𝑓,𝑘
𝜏,𝑗

}, and 𝑯 = {ℎ𝑘,𝑛
𝜙,𝑗

} will be estimated in the M step using the 

MU algorithm. The model parameters are 𝚯 = {𝑾, 𝑯, 𝜮(𝒂) , 𝜮(𝒃) , 𝚲}. To facilitate the estimation, 

the following posterior probability is formed: 

𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝒂) , 𝜮(𝒃) , 𝜦 )    =
𝑃(𝑿|𝑪, 𝜮(𝒃))𝑃(𝑪|𝜮(𝒂) , 𝑾,𝑯)𝑃( 𝑾,𝑯|𝜦)

𝑃(𝑿|𝑪, 𝜮(𝑎) , 𝜮(𝑏) )
        (4.13) 

and their minus log-posterior is 

−log 𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝒂) , 𝜮(𝒃) , 𝜦 ) = −log 𝑃(𝑿|𝑪, 𝜮(𝒃)) − log 𝑃(𝑪|𝜮(𝒂) , 𝑾, 𝑯) − 

log 𝑃( 𝑾, 𝑯|𝜦) + 𝑐𝑜𝑛𝑠𝑡                                      (4.14) 

where 𝜦 = {𝜆𝑘,𝑛
𝜙,𝑗 } is a tensor that contains the sparsity terms. The log- posterior will be computed 

by the GEM-MU based full-rank variable sparsity K-wNTF2D in the following sections.  

 

4.3.1 E-Step: Conditional Expectations of Natural Statistics  

Maximizing the log-likelihood in eqn. (4.14) is equivalent to minimizing 

−log 𝑃(𝑿|𝑪, 𝜮(𝒃)) = (𝒙𝑓,𝑛
𝐻 𝛴

𝑓,𝑛

(𝒙)−1

𝒙𝑓,𝑛) + log (𝑑𝑒𝑡(𝜋𝛴𝑓,𝑛

(𝒙)
))                      (4.15) 
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The conditional expectation of the natural statistics  𝑅̂
𝑗,𝑓,𝑛

(𝑐)
, 𝑅̂

𝑓

(𝑏)
, 𝛴̂

𝑗,𝑓,𝑛

(𝑐)
, 𝛴̂

𝑓

(𝑏)
, 𝒄̂𝑗,𝑓,𝑛   and 𝒃𝑓,𝑛  are 

shown below: 

𝑅̂
𝑗,𝑓,𝑛

(𝒄)
= 𝒄̂𝑗,𝑓,𝑛𝒄̂𝑗,𝑓,𝑛

𝐻 + 𝛴̂
𝑗,𝑓,𝑛

(𝑐)
                                                    (4.16) 

𝛴̂
𝑗,𝑓,𝑛

(𝑐)
= (I − 𝛴

𝑗,𝑓 ,𝑛

(𝑐)
𝛴

𝑓,𝑛

(𝑥)−1

) 𝛴
𝑗,𝑓,𝑛

(𝑐)
                                               (4.17) 

𝒄̂𝑗,𝑓,𝑛 = 𝛴
𝑗,𝑓,𝑛

(𝑐)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓 ,𝑛                                                       (4.18) 

𝑅̂
𝑓

(𝑏)
= 𝒃𝑓,𝑛 𝒃𝑓,𝑛

𝐻 + 𝛴̂
𝑓

(𝑏)
                                                        (4.19) 

𝛴̂
𝑓

(𝑏)
= (I − 𝛴

𝑓

(𝑏)
𝛴

𝑓,𝑛

(𝑥)−1

) 𝛴
𝑓

(𝑏)
                                                   (4.20) 

𝒃𝑓,𝑛 = 𝛴
𝑓

(𝑏)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛                                                         (4.21) 

 

Appendix A is dedicated for the detailed derivation of eqns. (4.16) to (4.21). 

4.3.2 M- Step: Update of Parameters 

For clarification and simplification, 𝑅̂
𝑗,𝑓,𝑛

(𝑐)
 and 𝛴

𝑗,𝑓

(𝑎)
 will be vectorized to 𝐼2 × 1 vectors as follows: 

𝒓̂𝑗,𝑓,𝑛

(𝒄)
= {𝑟̂𝑖,𝑗,𝑓,𝑛

(𝑐)
}                                                                                                                               

= [𝑟̂
1,1,𝑗,𝑓,𝑛

(𝑐)
𝑟̂

2,1,𝑗,𝑓,𝑛

(𝑐)
⋯ 𝑟̂

𝐼,1,𝑗,𝑓,𝑛

(𝑐)
𝑟̂

1,2,𝑗,𝑓,𝑛

(𝑐)
⋯ 𝑟̂

𝐼,𝐼,𝑗,𝑓,𝑛

(𝑐)
]

𝑇

                    (4.22) 

𝝈𝑗,𝑓

(𝒂)
= {𝜎𝑖 𝑗,𝑓

(𝑎)
}                                                                                                                                 

= [𝜎
1,1,𝑗,𝑓 ,𝑛

(𝑎)
𝜎

2,1,𝑗,𝑓,𝑛

(𝑎)
⋯ 𝜎

𝐼,1,𝑗,𝑓,𝑛

(𝑎)
𝜎

1,2,𝑗,𝑓,𝑛

(𝑎)
⋯ 𝜎

𝐼,𝐼,𝑗,𝑓,𝑛

(𝑎)
]

𝑇

                (4.23) 

Therefore, eqn. (4.6a) can be rewritten as follows: 

𝝈
𝑗,𝑓,𝑛

(𝒄)
= ∑ ∑ ∑ 𝝈

𝑗,𝑓

(𝑎)
𝑤𝑓−𝜙,𝑘

𝜏,𝑗 ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

𝐾

𝑘=1

                                       (4.24) 
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The second term in the right hand side of eqn. (4.14) can be expressed with IS divergence as 

−log 𝑃(𝑪|𝜮(𝑎) , 𝑾, 𝑯)  = ∑ 𝐷𝐼𝑆 (𝑟̂
𝑖,𝑗,𝑓,𝑛

(𝒄)
| ∑ 𝜎

𝑖,𝑗,𝑓

(𝒂)
(∑ ∑ 𝑤𝑓−𝜙,𝑘

𝜏,𝑗 ℎ𝑘,𝑛−𝜏
𝜙,𝑗 

𝜙
 
𝜏 ) 

𝑘 )     (4.25)

𝑖 ,𝑗,𝑓,𝑛

 

The third term in the right hand side of eqn. (4.14) is the prior information on 𝑾 and 𝑯. An 

improper prior is assumed for 𝑾  and factor-wise normalized to unit length i.e. 𝑝(𝑾) =

∏ 𝛿 (‖𝑾𝑗‖
2

− 1)𝑗  where 𝑾𝑗 = {𝑤𝑓,𝑘
𝜏,𝑗

} is the spectral basis that belongs to the 𝑗th source. Each 

element of 𝑯 has independent decay parameter 𝜆𝑘,𝑛
𝜙,𝑗

 with exponential distribution: 

− log 𝑝(𝑾, 𝑯|𝜦) = −log (∏ 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗

) − log (∏ 𝑝(𝐻𝑘
𝑗
|𝛬𝑘

𝑗
)

𝑗,𝑘

)                                           

= −log (∏ 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗

) − log (∏ ∏ ∏ ∏ 𝜆𝑘,𝑛
𝜙,𝑗𝑒𝑥𝑝(−𝜆𝑘,𝑛

𝜙,𝑗 ℎ𝑘,𝑛
𝜙,𝑗)

𝜙𝑛𝑘𝑗

) 

= − ∑ log 𝛿 (‖𝑾𝑗 ‖
2

− 1)

𝑗

+ ∑ ∑ ∑ ∑(𝜆𝑘,𝑛
𝜙,𝑗 ℎ𝑘,𝑛

𝜙,𝑗 − log 𝜆𝑘,𝑛
𝜙,𝑗)

𝜙𝑛𝑘𝑗

         (4.26) 

The first term on the right hand side of eqn. (4.26) can be satisfied by explicitly normalizing each 

spectral dictionary to unity i.e. 𝑤𝑓,𝑘
𝜏,𝑗 = 𝑤𝑓,𝑘

𝜏,𝑗 √∑ (𝑤
𝑓,𝑘

𝜏,𝑗)
2

𝑓 ,𝜏,𝑘⁄ . Thus, only the second term remains 

i.e. − log 𝑝(𝑾, 𝑯|𝜦) = ∑ ∑ ∑ ∑ (𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘 ,𝑛
𝜙,𝑗

− log 𝜆𝑘,𝑛
𝜙,𝑗

)𝜙𝑛𝑘𝑗 . Adding this to the IS divergence 

derived in eqn. (4.25), will leads to the following 

         −log 𝑃(𝑪|𝜮(𝒂) ,𝑾, 𝑯) − log 𝑃(𝑾, 𝑯|𝜦) 

                                                    = ∑ (𝑟̂𝑖 ,𝑗,𝑓,𝑛

(𝑐)
𝜎

𝑖,𝑗,𝑓

(𝒂) −𝟏
𝑣𝑗,𝑓,𝑛

−1 − log (𝑟̂𝑖,𝑗,𝑓,𝑛

(𝑐)
𝜎

𝑖 ,𝑗,𝑓

(𝒂) −𝟏
𝑣𝑗,𝑓 ,𝑛

−1 ) − 1)

𝑖,𝑗,𝑘 ,𝑓,𝑛

 

+ ∑ 𝜆𝑘,𝑛
𝜙,𝑗ℎ𝑘,𝑛

𝜙,𝑗 −

𝑗,𝑘,𝑛,𝜙

∑ log 𝜆𝑘,𝑛
𝜙,𝑗

𝑗,𝑘,𝑛,𝜙

                                              (4.27)  

Thus the derivatives of eqn. (4.27) with respect to 𝜎
𝑖 ,𝑗,𝑓

(𝒂)
, 𝑤𝑓,𝑘

𝜏,𝑗
 and ℎ𝑘,𝑛

𝜙,𝑗
 can be given as follows: 
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𝜕

𝜕𝜎
𝑖 ′,𝑗′ ,𝑓′
(𝒂) log 𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝑎) , 𝜮(𝑏) , 𝜦)  = − ∑ 𝑟̂

𝑖′ ,𝑗′ ,𝑓′,𝑛

(𝑐)
𝜎

𝑖′ ,𝑗′ ,𝑓′
(𝑎)−2

𝑣𝑗′ ,𝑓′ ,𝑛
−1

𝑛

+ 𝜎
𝑖 ′ ,𝑗′ ,𝑓′
(𝑎)−1

    (4.28) 

Similarly, 

𝜕

𝜕𝑤
𝑓′ ,𝑘′
𝜏′ ,𝑗′ log 𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝑎) , 𝜮(𝑏) , 𝜦)                                                                                                

= − ∑ 𝑟̂
𝑖,𝑗′ ,𝑓′ +𝜙,𝑛

(𝑐)
𝜎

𝑖,𝑗′ ,𝑓′+𝜙

(𝑎)−1

𝑣𝑗′ ,𝑓′ +𝜙,𝑛
−2  ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

 

𝑖,𝜙,𝑛

+ ∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

              (4.29) 

Likewise,  

𝜕

𝜕ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′ log 𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝑎) , 𝜮(𝑏) , 𝜦)                                                                                                     

= − ∑ 𝑟̂
𝑖 ,𝑗′ ,𝑓,𝑛′ +𝜏

(𝑐)
𝜎

𝑖 ,𝑗′ ,𝑓

(𝑎)−1

𝑣𝑗′,𝑓,𝑛′ +𝜏
−2

𝑖,𝑓,𝜏

𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

 + ∑ 𝑣𝑗′ ,𝑓,𝑛′ +𝜏
−1

𝑓,𝜏

𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′  

 + 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

        (4.30) 

For each component, standard gradient descent method is applied with 

𝜎
𝑖′ ,𝑗′ ,𝑓′
(𝒂)

← 𝜎
𝑖′ ,𝑗′ ,𝑓′
(𝒂)

− 𝜂𝛴
(𝑎)

𝜕 log 𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝑎) , 𝜮(𝑏) , 𝜦)

𝜕𝜎
𝑖 ′,𝑗′ ,𝑓′
(𝒂)                         (4.31) 

𝑤
𝑓′,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′,𝑘′
𝜏′,𝑗′

− 𝜂𝑤

𝜕 log 𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝑎) , 𝜮(𝑏) , 𝜦)

𝜕𝑤
𝑓′,𝑘′
𝜏′,𝑗′                            (4.32) 

ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

− 𝜂ℎ

𝜕 log 𝑃(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝑎) , 𝜮(𝑏) ,𝜦)

𝜕ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′                             (4.33) 

where 𝜂𝛴 (𝑎) , 𝜂𝑤, and 𝜂ℎ are the positive learning rate, which can be set as  

𝜂𝛴
(𝑎) =

𝜎
𝑖′ ,𝑗′ ,𝑓′
(𝒂)

𝜎
𝑖′ ,𝑗′ ,𝑓′
(𝑎)−1                                                                (4.34) 

𝜂𝑤 =
𝑤

𝑓′,𝑘′
𝜏′,𝑗′

∑ 𝑣𝑗′ ,𝑓′ +𝜙,𝑛
−1 ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

𝜙,𝑛

                                                   (4.35) 
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𝜂ℎ =
ℎ

𝑘′,𝑛′
𝜙′ ,𝑗′

∑ 𝑣𝑗′ ,𝑓,𝑛′ +𝜏
−1

𝑓,𝜏 𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

+ 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′                                             (4.36) 

The MU rules for 𝜎
𝑖′ ,𝑗′ ,𝑓′
(𝒂)

, 𝑤𝑓,𝑘
𝜏,𝑗

 and ℎ
𝑘,𝑛

𝜙 ,𝑗
 respectively gives 

𝜎
𝑖′ ,𝑗′ ,𝑓′
(𝒂)

←
1

𝑁
∑

𝑟̂
𝑖 ′,𝑗′ ,𝑓′ ,𝑛

(𝑐)

𝑣𝑗′ ,𝑓′ ,𝑛

𝑁

𝑛=1

                                                     (4.37) 

𝑤
𝑓′,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′,𝑘′
𝜏′,𝑗′

(
∑ 𝑟̂

𝑖,𝑗′ ,𝑓′ +𝜙,𝑛

(𝑐)
𝜎

𝑖 ,𝑗′ ,𝑓′+𝜙

(𝑎)−1

𝑣𝑗′ ,𝑓′ +𝜙,𝑛
−2 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

𝑖,𝜙,𝑛

∑ 𝑣𝑗′ ,𝑓′ +𝜙,𝑛
−1 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

𝜙 ,𝑛

)                     (4.38) 

ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

(
∑ 𝑟̂

𝑖 ,𝑗′ ,𝑓,𝑛′ +𝜏

(𝑐)
𝜎

𝑖 ,𝑗′ ,𝑓

(𝑎)−1

𝑣𝑗′,𝑓,𝑛′ +𝜏
−2

𝑖,𝑓𝜏 𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

∑ 𝑣𝑗′ ,𝑓,𝑛′ +𝜏
−1

𝑓𝜏 𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

+ 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′ )                        (4.39) 

 

4.3.3 Estimation of Variable Sparsity Using Gibbs Distribution  

For the sparsity term, the update is obtained as follows: 

𝜆 = arg max   
𝜆

log P(𝑪, 𝑾, 𝑯|𝑿, 𝜮(𝑎) , 𝜮(𝑏) , 𝜦)                                                                          

= arg max   
𝜆

(log 𝑃(𝑿|𝑪, 𝜮(𝑏)) + log 𝑃(𝑪|𝜮(𝑎) ,𝑾, 𝑯) + log 𝑃( 𝑾, 𝑯|𝜦)  + 𝑐𝑜𝑛𝑠𝑡) 

= arg max   
𝜆

log 𝑃( 𝑯|𝜦)                                                                                            (4.40) 

Solving 
𝜕

𝜕λ
log 𝑃( 𝑯|𝜦) = 0 will lead to 

𝜆𝑘,𝑛
𝜙,𝑗 =

1

ℎ
𝑘,𝑛

𝜙,𝑗
    (or in matrix form  𝜦 = 1 ∙ 𝑯⁄ )                                  (4.41) 

where “∙/” represents element-wise division. However, as 𝑯 can be partitioned into distinct subsets 

of positive value and zero value it will yield divergent updates for ℎ𝑘,𝑛
𝜙,𝑗 = 0. Therefore, a better 

approximation to account for variability of 𝑯 is required. To consider the variability of 𝑯, it will be 
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casted in vector form and 𝜏𝑚𝑎𝑥  will be set to zero (𝜏𝑚𝑎𝑥 = 0). For any distribution 𝑄(𝒉) (that 

represents the lower bound to obtain the hidden variable 𝝀), the log- likelihood function satisfies 

the following: 

log 𝑃( 𝒉|𝝀) = log ∫ 𝑄(𝒉)
𝑃( 𝒉|𝝀)

𝑄 (𝒉)
𝑑𝒉                                         (4.42) 

where 𝒉 = [Vec(H0)T Vec(H1)T
⋯ Vec(Hϕmax )

T
]

T
,  𝛌 = [Vec(λ0)T Vec(λ1)T ⋯ 

Vec(λϕmax )
T

]
T

, Vec(. ) means column vectorization, and ℎ and λ are vectors with dimension D ×

1 where D = 𝐾 × 𝑁 × 𝛷𝑚𝑎𝑥 . The elements of 𝒉 and 𝛌 are denoted as ℎ𝑝 and λp , respectively, for 

p = 1, 2, … . , D. By using Jensen’s inequality eqn. (4.42) becomes 

log 𝑃( 𝒉|𝝀) ≥ ∫ 𝑄(𝒉) log (
𝑃( 𝒉|𝝀)

𝑄(𝒉)
) 𝑑𝒉                                     (4.43) 

By substituting eqn. (4.43) into eqn. (4.40)  

𝝀 = arg max   
𝝀

(∫ 𝑄(𝒉) log 𝑃( 𝒉|𝝀) 𝑑𝒉 − ∫ 𝑄(𝒉) log 𝑄(𝒉) 𝑑𝒉) 

 = arg max   
𝝀

∫ 𝑄(𝒉) (log 𝜆𝑝 − 𝜆𝑝ℎ𝑝)𝑑𝒉                                                          (4.44) 

Eqn. (4.44) can be solved as follows: 

𝜕 ∫ 𝑄(𝒉) (log 𝜆𝑝 − 𝜆𝑝  ℎ𝑝) 𝑑𝒉

𝜕𝜆𝑝

= 0 

𝜆𝑝 =
1

∫ ℎ𝑝𝑄(𝒉)𝑑𝒉
 

=
1

𝐸𝑄(𝒉)[ℎ𝑃]
                                                                 (4.45) 

where 𝐸𝑄(𝒉)[ℎ𝑃] is the expectation of ℎ𝑃 under the distribution 𝑄(𝒉). Eqn. (4.45) cannot be solved 

analytically therefore 𝑄(𝒉) will be approximated with respect to the mode of distribution ℎ𝑝. As 
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ℎ𝑝 can be partitioned into distinct subsets of positive value (𝒉𝑀) ∀𝑚∈ 𝑀 such that ℎ𝑚 > 0, and 

zero value (𝒉𝐿) ∀𝑙∈ 𝐿 such that ℎ𝑙 = 0, it follows that 𝑄(𝒉) can be partitioned as 

𝐹(ℎ) = ∑ 𝐷𝐼𝑆 (𝑟̂
𝑖 ,𝑗,𝑓,𝑝

(𝒄)
|𝜎

𝑖,𝑗,𝑓

(𝒂)
𝑣𝑗,𝑓 ,𝑝)

𝑖,𝑗,𝑓,𝑝

+ ∑(𝜆𝑝ℎ𝑝 − log 𝜆𝑝)

𝑝

                                                                  

= ∑ (𝑟̂
𝑖,𝑗,𝑓,𝑝

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑝
−1 − 𝑙𝑜𝑔 (𝑟̂

𝑖,𝑗,𝑓 ,𝑝

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑝
−1 ) − 1)

𝑖,𝑗,𝑓 ,𝑝

+ ∑(𝜆𝑝ℎ𝑝 − log 𝜆𝑝)

𝑝

 (4.46) 

and by using the reverse Triangle Inequality [101], the following can be obtained 

𝐹(𝒉) ≥ ∑ 𝐷𝐼𝑆 (𝑟̂
𝑖,𝑗,𝑓,𝑚

(𝒄)
|𝜎

𝑖,𝑗,𝑓

(𝒂)
𝑣𝑗,𝑓,𝑚)

𝑖,𝑗,𝑓,𝑚

+ ∑(𝜆𝑚ℎ𝑚 − log 𝜆𝑚)

𝑚

                                     

+ ∑ 𝐷𝐼𝑆 (𝑟̂
𝑖 ,𝑗,𝑓,𝑙

(𝒄)
|𝜎

𝑖,𝑗,𝑓

(𝒂)
𝑣𝑗,𝑓,𝑙)

𝑖,𝑗,𝑓,𝑙

+ ∑(𝜆𝑙ℎ𝑙 − log 𝜆𝑙)

𝑙

 

𝐹(𝒉) ≥ 𝐹(𝒉𝐿
 ) + 𝐹(𝒉𝑀

 )                                                     (4.47) 

The distribution Q(𝒉) will be expressed by the Gibbs distribution [102], i.e.  

𝑄(𝒉) =
1

𝑍ℎ

𝑒𝑥𝑝[−𝐹(𝒉)]                                                     (4.48) 

where  𝑍ℎ = ∫ 𝑒𝑥𝑝 [−𝐹 (𝒉)]𝑑𝒉. Substituting eqn. (4.47) into eqn. (4.48) will leads to  

𝑄(𝒉) =
1

𝑍ℎ

𝑒𝑥𝑝[−𝐹(𝒉𝐿
 ) − 𝐹(𝒉𝑀

 )] 

            =
1

𝑍𝐿

𝑒𝑥𝑝[−𝐹(𝒉𝐿
 )]

1

𝑍𝑀

𝑒𝑥𝑝[−𝐹(𝒉𝑀
 )]                                          

= 𝑄𝐿 (𝒉𝐿
 )𝑄𝑀(𝒉𝑀

 )                                                               (4.49) 

where 𝑍𝐿 = ∫ 𝑒𝑥𝑝 [−𝐹(𝒉𝐿
 )] 𝑑𝒉𝐿

  and 𝑍𝑀 = ∫ 𝑒𝑥𝑝 [−𝐹(𝒉𝑀
 )]𝑑𝒉𝑀

 . 

The distribution 𝑄𝑀(𝒉𝑀
 ) is within the boundaries of this distribution and it leads to 

𝐸𝑄𝑀 (𝒉𝑀 )[ℎ𝑃] = ℎ𝑚                                                           (4.50) 
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which is optimized in eqn. (4.39). While the distribution 𝑄𝑀 (𝒉𝐿
 ) is on the boundaries of this 

distribution and it leads to 

𝐸𝑄𝐿 (𝒉𝐿)[ℎ𝑃] = 𝑢𝑙                                                              (4.51) 

where 𝑢𝑙 is the variational parameter that model the distribution of 𝒉𝐿
 . Therefore, eqn. (4.45) is 

given by 

𝜆𝑝 =

{
 
 

 
 1

ℎ𝑝

∀𝑝∈ 𝑀 

1

𝑢𝑝

∀𝑝∈ 𝐿

                                                         (4.52) 

The variational optimization [102] will be applied to derive the variational parameter 𝑢𝑙 as follows.  

The parameter 𝑢𝑙 is obtained by minimizing the Kullback-Leibler divergence between 𝑄𝐿 and 𝑄̂𝐿 

𝑢𝑙 = 𝑎𝑟𝑔 𝑚𝑖𝑛 
𝑢𝑙

∫ 𝑄̂𝐿(𝒉𝐿
 ) log

𝑄̂𝐿(𝒉𝐿
 )

𝑄𝐿(𝒉𝐿
 )

 𝑑𝒉𝐿
                                       (4.53) 

The distribution 𝑄𝐿(𝒉𝐿
 ) in eqn. (4.53) will be approximated by considering the Taylor expansion 

about the updated ℎ𝑙 = ℎ (given by eqn. (4.39)): 

𝑄𝐿 (𝒉𝐿
 ≥ 0) ∝ 𝑒𝑥𝑝 {− ∑ ((

𝜕𝐹(ℎ𝑙)

𝜕ℎ𝑙

)|
ℎ𝑙=ℎ  

)

 

𝑙∈𝐿

ℎ𝑙 −
1

2
∑ ((

𝜕2 𝐹(ℎ𝑙)

𝜕ℎ𝑙
2 )|

ℎ𝑙=ℎ   

)

 

𝑙∈𝐿

ℎ𝑙
2}                           

𝑄𝐿(𝒉𝐿
 ≥ 0) ∝ 𝑒𝑥𝑝

{
 
 

 
 ∑ (𝑟̂

𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−2 𝑤

𝑓−𝜙,𝑘

𝑗 − 𝑣𝑗,𝑓,𝑙
−1 𝑤

𝑓−𝜙,𝑘

𝑗  
− 𝜆𝑙)

𝑖𝑗𝑘𝑓𝑙𝜙

ℎ𝑙

+
1

2
∑ (−2(𝑤

𝑓−𝜙,𝑘

𝑗 )
2

(𝑟̂
𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−3 ) + (𝑤

𝑓−𝜙,𝑘

𝑗 )
2

𝑣𝑗,𝑓,𝑙
−2 )

𝑖𝑗𝑘𝑓𝑙𝜙

ℎ𝑙
2

}
 
 

 
 

 (4.54) 

The variational approximation of 𝑄̂𝐿(𝒉𝐿) will be considered by the exponential distribution 

𝑄̂𝐿(𝒉𝐿 ≥ 0) = ∏
1

𝑢𝑙

𝑒𝑥𝑝 (−
ℎ𝑙

𝑢𝑙

)

𝑙∈𝐿

                                             (4.55) 

where 
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∫ 𝑄̂𝐿(𝒉𝐿
 )[𝑙𝑜𝑔 𝑄̂𝐿(𝒉𝐿

 )]𝑑𝒉𝐿
 = ∑ ∫

1

𝑢𝑙

𝑒𝑥𝑝 (−
ℎ𝑙

 

𝑢𝑙

)
∞

0𝑙∈𝐿

(− 𝑙𝑜𝑔 𝑢𝑙 −
ℎ𝑙

 

𝑢𝑙

) 𝑑ℎ𝑙
  

                                           = − ∑ 𝑙𝑜𝑔 𝑢𝑙 + 1

𝑙∈𝐿

                                                        (4.56) 

and 

      ∫ 𝑄̂𝐿(𝒉𝐿
 )𝑙𝑜𝑔𝑄𝐿(𝒉𝐿

 )  𝑑𝒉𝐿
  

= ∫ 𝑄̂𝐿(𝒉𝐿
 ) ( ∑ (𝑟̂

𝑖 ,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−2 𝑤

𝑓−𝜙,𝑘

𝑗
− 𝑣𝑗,𝑓,𝑙

−1 𝑤
𝑓−𝜙,𝑘

𝑗  
−  𝜆𝑙)

𝑖,𝑗,𝑘,𝑓,𝑙 ,𝜙

ℎ𝑙   

+
1

2
∑ (−2(𝑤

𝑓−𝜙,𝑘

𝑗
)

2
(𝑟̂

𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓 ,𝑙
−3 ) + (𝑤

𝑓−𝜙,𝑘

𝑗
)

2
𝑣𝑗,𝑓,𝑙

−2 )

𝑖,𝑗,𝑘 ,𝑓,𝑙 ,𝜙

ℎ𝑙
2) 𝑑𝒉𝐿

                  

= 𝐸𝑄̂𝐿 (𝒉𝑳
 ) [ ∑ (𝑟̂

𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖 ,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−2 𝑤

𝑓−𝜙,𝑘

𝑗 − 𝑣𝑗,𝑓,𝑙
−1 𝑤

𝑓−𝜙,𝑘

𝑗  
−  𝜆𝑙)

𝑖,𝑗,𝑘,𝑓 ,𝑙,𝜙

ℎ𝑙                                 

+
1

2
∑ (−2(𝑤

𝑓−𝜙,𝑘

𝑗
)

2
(𝑟̂

𝑖 ,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−3 ) + (𝑤

𝑓−𝜙,𝑘

𝑗
)

2
𝑣𝑗,𝑓,𝑙

−2 )

𝑖,𝑗,𝑘 ,𝑓,𝑙 ,𝜙

ℎ𝑙
2]           (4.57) 

where 𝐸𝑄̂𝐿 (𝒉𝐿
 ) is the expectation under the posterior 𝑄̂𝐿 (𝒉𝐿

 ) 

    ∫ 𝑄̂𝐿(𝒉𝐿
 )𝑙𝑜𝑔𝑄𝐿(𝒉𝐿

 )  𝑑𝒉𝐿
  

= ( ∑ (𝑟̂
𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−2 𝑤

𝑓−𝜙,𝑘

𝑗 − 𝑣𝑗,𝑓 ,𝑙
−1 𝑤

𝑓−𝜙,𝑘

𝑗  
− 𝜆𝑙)

𝑖,𝑗,𝑘,𝑓,𝑙,𝜙

)𝐸𝑄̂𝐿(𝒉𝑳
 ) [ℎ𝑙] 

+
1

2
∑ (−2(𝑤

𝑓−𝜙,𝑘

𝑗
)

2
(𝑟̂

𝑖,𝑗,𝑓 ,𝑙

(𝒄)
𝜎

𝑖 ,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−3 ) + (𝑤

𝑓−𝜙,𝑘

𝑗
)

2
𝑣𝑗,𝑓,𝑙

−2 )

𝑖,𝑗,𝑘,𝑓,𝑙,𝜙

𝐸𝑄̂𝐿 (𝒉𝐿
 ) [ℎ𝑙

2]           

= ∑ (𝑟̂
𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓 ,𝑙
−2 𝑤

𝑓−𝜙,𝑘

𝑗
− 𝑣𝑗,𝑓,𝑙

−1 𝑤
𝑓−𝜙,𝑘

𝑗  
−  𝜆𝑙)

𝑖,𝑗,𝑘,𝑓,𝑙 ,𝜙

𝑢𝑙                                                 
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                            +
1

2
∑ (−2(𝑤

𝑓−𝜙,𝑘

𝑗 )
2

(𝑟̂
𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓 ,𝑙
−3 ) + (𝑤

𝑓−𝜙,𝑘

𝑗 )
2

𝑣𝑗,𝑓,𝑙
−2 )

𝑖,𝑗,𝑘 ,𝑓,𝑙 ,𝜙

𝑢𝑙
2             (4.58) 

Thus  

𝑢𝑙 ← 𝑎𝑟𝑔 𝑚𝑖𝑛   
𝑢𝑙

 (− ∑ 𝑙𝑜𝑔𝑢𝑙

𝑙∈𝐿

+1 + ∑ (−𝑟̂𝑖 ,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−2 𝑤

𝑓−𝜙,𝑘

𝑗
+ 𝑣𝑗,𝑓,𝑙

−1 𝑤
𝑓−𝜙,𝑘

𝑗  
+  𝜆𝑙)

𝑖,𝑗,𝑘,𝑓,𝑙 ,𝜙

𝑢𝑙         

+
1

2
∑ (2(𝑤

𝑓−𝜙,𝑘

𝑗
)

2
(𝑟̂

𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖 ,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−3 ) − (𝑤

𝑓−𝜙,𝑘

𝑗
)

2
𝑣𝑗,𝑓,𝑙

−2 )

𝑖 ,𝑗,𝑘,𝑓,𝑙,𝜙

𝑢𝑙
2)   (4.59) 

Let 

𝑏𝑙 = ∑ (−𝑟̂
𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖 ,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−2 𝑤

𝑓−𝜙,𝑘

𝑗 + 𝑣𝑗,𝑓,𝑙
−1 𝑤

𝑓−𝜙,𝑘

𝑗  
+  𝜆𝑙)

𝑖,𝑗,𝑘,𝑓,𝜙

                     (4.60) 

and 

𝛩𝑙 = ∑ (2(𝑤
𝑓−𝜙,𝑘

𝑗 )
2

(𝑟̂
𝑖 ,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−3 ) − (𝑤

𝑓−𝜙,𝑘

𝑗 )
2

𝑣𝑗,𝑓 ,𝑙
−2 )

𝑖 ,𝑗,𝑘,𝑓,𝜙

                    (4.61) 

Then it will leads to  

𝑢𝑙 ← 𝑎𝑟𝑔 𝑚𝑖𝑛   
𝑢𝑙

 (𝒃 𝐿
𝐻𝒖 +

1

2
𝒖𝐻𝜣̃𝒖 − ∑ 𝑙𝑜𝑔𝑢𝑙

𝑙∈𝐿

 )                               (4.62) 

where 𝜣̃ = 𝑑𝑖𝑎𝑔(𝛩𝑙) . By using the nonnegative quadratic programming (NQP) [103]  

𝐺(𝒖, 𝒖̃) = 𝒃 𝐿
𝐻 𝒖 +

1

2
∑

(𝜣̃𝒖̃)
𝑙

𝑢̃𝑙
𝑙∈𝐿

𝑢𝑙
2 − ∑ 𝑙𝑜𝑔 𝑢𝑙

𝑙∈𝐿

                                 (4.63) 

Taking the derivative of G(𝐮,𝐮) in eqn. (4.63) with respect to 𝑢𝑙 and setting it to zero yields 

(𝜣̃𝒖̃)
𝑙

𝑢̃𝑙

𝑢𝑙
2 + 𝑏 𝑙𝑢𝑙 − 1 = 0                                                     (4.64) 

which can be solved as follows 
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𝑢𝑙 ← 𝑢𝑙

−𝑏𝑙 + √𝑏𝑙
2 + 4

(𝜣̃𝒖)
𝑙

𝑢𝑙

2(𝜣̃𝒖)
𝑙

                                                (4.65) 

given that only the positive solution of eqn. (4.65) has been considered as we deal with nonnegative 

values only. 

 

4.3.4 Components Reconstruction 

The estimated STFT source spatial image 𝒄̂𝑗,𝑓,𝑛  can be reconstructed by using the multichannel 

Wiener filter that obtained by the minimum mean square error (MMSE) as in eqn. (4.18) 

𝒄̂𝑗,𝑓,𝑛 = ∑ ∑ ∑ 𝛴
𝑗,𝑓

(𝒂)
𝑤𝑓−𝜙,𝑘

𝜏,𝑗 ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐾

𝑘=1

𝛴
𝑓,𝑛

(𝒙)−1

𝒙𝑓,𝑛                                (4.66) 

The multichannel Wiener filter takes all the source spatial image components instead of the 

dominant one, as in the binary masking. Due to the linearity of the STFT, the inverse-STFT (with 

dual synthesis window [95]) can be used to transfer the source spatial image to time domain.  

 

4.4 Initialization  

The initialization is an essential part for the separation since the NMF and its variants are very 

sensitive to the initialization. One way to initialize the NMF is by using the SVD [104]. In this 

chapter, a new variant of SVD specially cater to initialize each K-wNTF2D sub-model will be 

proposed. It will be termed as the SVD two-dimensional deconvolution (SVD2D) and described as 

follows: Firstly, decompose the mixture 𝑋  into 𝐾  largest singular triplets, 𝑋 = ∑ 𝑞𝑘𝐶𝑘
𝐾
𝑘=1 , 

where 𝑞𝑘 is the nonzero singular values of 𝑋, 𝐶𝑘 = 𝒖𝑘𝒗𝑘
𝑇 , and 𝒖𝑘and 𝒗𝑘 are the corresponding left 

and right singular vectors of 𝑋. Secondly, compute the SVD of 𝐶𝑘
+ (after decompose 𝐶𝑘  into 

positive and negative components  𝐶𝑘 = 𝐶𝑘
+ − 𝐶𝑘

−) in order to find the largest singular triplets. Let 

𝑊𝑖 = {𝑤𝑓,𝑘
𝜏=𝑖 ,𝑗}  and 𝐻 𝑖 = {ℎ𝑘,𝑛

𝜙=𝑖,𝑗}  represent fixing the 𝑖 th-slice of 𝑾  and 𝑯 , respectively, i.e. 

setting 𝜏 = 𝑖 in 𝑊𝒊 and 𝜙 = 𝑖 in 𝐻 𝑖. The first column and row in 𝑊0 and 𝐻0 will be initialized by 
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using the largest singular triplet of 𝑋, and the rest by using the singular triplets of 𝐶𝑘
+.  After 

initializing 𝑊0 and 𝐻0, the rest will be initialized in similar way.  

Start 𝑖 = 1, do the following: 

Step 1: Compute 𝑦𝑓,𝑛
𝑖 = ∑ 𝑤𝑓−𝑖,𝑘

𝑖−1,𝑗ℎ𝑘 ,𝑛−𝑖
𝑖−1,𝑗

𝑗,𝑘  

Step 2: Apply SVD on  𝑌 𝑖 to obtain ∑ 𝑞𝑖,𝑘𝐶𝑖,𝑘
𝐾
𝑘 =1  where 𝐶𝑖,𝑘 = 𝒖𝑖 ,𝑘𝒗𝑖,𝑘

𝑇  

Step 3: Apply SVD on  𝐶𝑖,𝑘
+  to obtain ∑ 𝑞𝑖,𝑘,𝑙𝐶𝑖,𝑘,𝑙

𝐿𝑖,𝑘

𝑙=1
 where 𝐶𝑖,𝑘,𝑙 = 𝒖𝑖 ,𝑘 ,𝑙𝒗𝑖,𝑘,𝑙

𝑇  

Step 4: 𝑊𝑖 = [𝑞𝑖,1𝒖𝑖,1 𝑞𝑖,2𝑞𝑖,2,1𝒖𝑖 ,2,1 𝑞𝑖,3 𝑞𝑖,3,1𝒖𝑖,3,1 ⋯ 𝑞𝑖,K𝑞𝑖,𝐾,1𝒖𝑖 ,𝐾,1]  

and 𝐻 𝑖 = [𝒗𝑖,1 𝒗𝑖,2,1 𝒗𝑖,3,1 ⋯ 𝒗𝑖,𝐾,1]𝑻 

Step 5: 𝑖 ← 𝑖 + 1, repeat Steps 1 – 4 

Stop when 𝑖 = 𝑚𝑎𝑥(𝜏𝑚𝑎𝑥 − 1, 𝜙𝑚𝑎𝑥 − 1) 

The full- rank spatial covariance matrix will be initialized by using the hierarchical clustering. One 

simple method is to adopt Duong et al. [9]. 

 

Table 4.1 summarizes the main step of the proposed K-wNTF2D algorithm. 
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Table 4.1 

Proposed algorithm K-wNTF2D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Initialize 𝑾 = {𝑤𝑓,𝑘
𝜏,𝑗 } and 𝑯 = {ℎ𝑘,𝑛

𝜙,𝑗} with the proposed initialization method, 𝛴
𝑗,𝑓

(𝑎)
 with 

the hierarchical clustering approach, 𝛴
𝑓

(𝑏)
 with random nonnegative diagonal matrix, and 𝜆𝑝 

with a positive value. 

2. E-step: 

𝛴̂
𝑗,𝑓,𝑛

(𝑐)
= (I − 𝛴

𝑗,𝑓,𝑛

(𝑐)
𝛴

𝑓,𝑛

(𝑥)−1

) 𝛴
𝑗,𝑓,𝑛

(𝑐)
 

𝑅̂
𝑗,𝑓,𝑛

(𝑐)
= 𝒄̂𝑗,𝑓,𝑛𝒄̂𝑗,𝑓,𝑛

𝐻 + 𝛴̂
𝑗,𝑓,𝑛

(𝑐)
 

𝑅̂𝑓

(𝑏)
= 𝒃𝑓,𝑛𝒃𝑓,𝑛

𝐻 + (I − 𝛴𝑓

(𝑏)
𝛴

𝑓,𝑛

(𝑥)−1

) 𝛴𝑓

(𝑏)
 

𝒄̂𝑗,𝑓,𝑛 = 𝛴
𝑗,𝑓,𝑛

(𝑐)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛 

𝒃𝑓,𝑛 = 𝛴
𝑓

(𝑏)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛 

𝛴
𝑓,𝑛

(𝑥)
= ∑  𝛴

𝑗,𝑓,𝑛

(𝑐)
+  𝛴

𝑓

(𝑏)

𝐽

𝑗=1

 

𝛴
𝑗,𝑓,𝑛

(𝑐)
= 𝑣𝑗,𝑓𝑛𝛴

𝑗,𝑓

(𝑎)
 

𝑣𝑗,𝑓𝑛 = ∑ ∑ ∑ (𝑤
𝑓−𝜙,𝑘

𝜏,𝑗
  

ℎ
𝑘,𝑛−𝜏

𝜙,𝑗
   

)

∅𝜏𝑘

 

3. M-step: 

𝜎
𝑖 ′,𝑗′ ,𝑓′
(𝒂)

←
1

𝑁
∑

𝑟̂
𝑖′ ,𝑗′ ,𝑓′,𝑛

(𝑐)

𝑣𝑗′,𝑓′,𝑛

𝑁

𝑛=1

 

 𝑤
𝑓′,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′,𝑘′
𝜏′,𝑗′

(
∑ 𝑟̂

𝑖 ,𝑗′ ,𝑓′+𝜙,𝑛

(𝑐)
𝜎

𝑖,𝑗′ ,𝑓′ +𝜙

(𝑎)−1

𝑣𝑗′,𝑓′+𝜙,𝑛
−2 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

𝑖 ,𝜙,𝑛

∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′ ,𝑛−𝜏′
𝜙,𝑗′

𝜙,𝑛

)  
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ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′ ,𝑛′
𝜙′ ,𝑗′

(
∑ 𝑟̂

𝑖,𝑗′ ,𝑓,𝑛′ +𝜏

(𝑐)
𝜎

𝑖,𝑗′ ,𝑓

(𝑎)−1

𝑣𝑗′,𝑓,𝑛′ +𝜏
−2

𝑖,𝑓𝜏 𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

∑ 𝑣𝑗′ ,𝑓,𝑛′ +𝜏
−1

𝑓𝜏 𝑤
𝑓−𝜙′ ,𝑘′
𝜏,𝑗′

+ 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′ ) 

𝜆𝑝 =

{
 
 

 
 

1

ℎ𝑝

∀𝑝∈ 𝑀 

1

𝑢𝑝

∀𝑝∈ 𝐿 

  

𝑢𝑝 ← 𝑢𝑝

−𝑏𝑝 + √𝑏𝑝
2 + 4

(𝜣̃𝒖)
𝑝

𝑢𝑝

2(𝜣̃𝒖)
𝑝

 

𝑏𝑝 = ∑ (−𝑟̂
𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖 ,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑝
−2 𝑤

𝑓−𝜙,𝑘

𝑗 + 𝑣𝑗,𝑓,𝑝
−1 𝑤

𝑓−𝜙,𝑘

𝑗  
+ 𝜆𝑝)

𝑖,𝑗,𝑘,𝑓,𝜙

 

𝜣̃ = 𝑑𝑖𝑎𝑔(𝛩𝑙) 

𝛩𝑙 = ∑ (2(𝑤
𝑓−𝜙,𝑘

𝑗 )
2

(𝑟̂
𝑖,𝑗,𝑓,𝑙

(𝒄)
𝜎

𝑖,𝑗,𝑓

(𝑎)−1

𝑣𝑗,𝑓,𝑙
−3 ) − (𝑤

𝑓−𝜙,𝑘

𝑗 )
2

𝑣𝑗,𝑓,𝑙
−2 )

𝑖,𝑗,𝑘,𝑓,𝜙

 

4.  𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞 𝑤𝑓,𝑘
𝜏,𝑗

=
𝑤𝑓,𝑘

𝜏,𝑗

√∑ (𝑤
𝑓,𝑘

𝜏,𝑗
)

2

𝑓 ,𝑘,𝜏

   

5. Repeat E-step, M-step, and the normalization until convergence is achieved where rate of 

cost change is below a prescribed threshold, 𝜓. 

6. Take inverse STFT with dual synthetic window to estimate 𝑐𝑖 ,𝑗(𝑡). 
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4.5 Results and Discussions 

4.5.1 Dataset 

The following two datasets will be used in the experiments. 

4.5.1.1 Dataset 1: This dataset is identical to the one used in the full- rank NMF of Arberet et al. 

algorithm [16]. This dataset consist of four groups depending on the distance between their 

microphones and the reverberation time (RT60 , which is the time taken by late echoes to decay by 

60 dB). These are the 5 cm apart with 130 ms reverberation time group, 5 cm and 250 ms group,  1 

m and 130 ms group, and 1 m 250 ms group. Each group consists of ten stereo mixtures, and each 

mixture has a length of 10 seconds, sampled at 16 kHz, and generated from three convolutive 

sources.  

4.5.1.2 Dataset 2: This is an underdetermined speech and music mixtures development dataset of 

SiSEC 2013 [99]. This dataset consist of two groups. The first group is the live recording music 

group, which consists of dev1 and dev2 datasets, where each dataset has the with drum (wdrum) 

group; which consists of vocal and musical instrument with drum, and the without drum (nodrum) 

group; which consists of vocal and musical instruments without drum. The sources of this group 

are mixed in stereo mixture that has 1 m or 5 cm space between its microphones, and 250 ms 

reverberation time. The second group of this dataset is a simulated recording speech group, which 

consists of dev3 dataset, this dataset contains four females (female4) and four males (males4) that 

mixed in stereo mixture, with 5 cm or 50 cm distance between its microphones, and has a 

reverberation time of 130 ms or 380 ms. dev3 has three channels (left, right, and mono) and it has 

been reduced to two channels (left and right). Additionally, each mixture has duration of 10 s and 

sampled at 16 kHz.  

 

4.5.2 Effects of Variable Sparsity versus Uniform Sparsity 

In this subsection, the effects of the sparsity on the separation performance  will be shown by 

considering a fixed uniform sparsity; 𝜆𝑘,𝑛
𝜙,𝑗 = 𝜆 = 𝑐 all over the elements of 𝑯, and the variable 

sparsity 𝜆𝑘,𝑛
𝜙,𝑗

 for each element of 𝑯. The fixed uniform sparsity is commonly used throughout the 

literature of matrix factorization. Each experiment will be run for different values of spars ity for the 

three sources that convolutively mixed in the stereo mixture that has 1 m space between its 
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microphones, 130 ms reverberation time, and with 16 kHz sampling frequency. The following 

parameters are set for the proposed algorithm: 𝐾 = 5, 𝜏𝑚𝑎𝑥 = 10, and 𝜙𝑚𝑎𝑥 = 1. In order to focus 

on the sparsity effects only, an oracle initialization has been used.   

Figure 4.2 shows the average SDR performance with respects to different values of sparsity. 

It is clear from Figure 4.2 that the variable sparsity gives the highest SDR performance. This is 

attributed to the fact that the proposed algorithm has a specific sparsity value for each element of 

𝑯, instead of constant value for the entire elements of 𝑯 as in the case of uniform sparsity. It is seen 

that for variable sparsity, the average SDR is 4.5 dB higher than the best uniform sparsity (the value 

of constant λ that results in the highest SDR) λ = 10. Additionally, as the sparsity value increases 

(leading to over-sparseness) the SDR begins to decrease since many elements in 𝑯 become very 

small and tends to zero. This resulted in switching off several parts of the spectrum in the estimated 

sources, as shown in Figure 4.3. In particular, the figure shows the spectrogram of one o f the 

estimated sources for the case of variable sparsity, over-sparse, and the best uniform sparsity. It is 

visually apparent from the figure that the over-sparse and the best uniform sparsity have not fully 

recovered the original source. Many portions of the spectrum have been removed from the 

estimated source. While, the result from the variable sparsity has seen almost full recovery the 

original source, as it has been optimally tuned by the degree of sparseness over all the elements of 

𝑯.  

 

 

 

 

 

 

 

 

 
        Figure 4.2: Average SDR w.r.t different sparsity values. 
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4.5.3 Separation Results  

4.5.3.1 Results of Dataset 1: first of all the STFT window length was set to 1024 with 50% 

overlaps, 5 components per source were set for the full- rank NMF algorithm [16], 1 and 5 

components per source were set for the proposed full- rank variable sparsity K-wNTF2D algorithm, 

different convolutive parameters were set for the proposed algorithm as tabulated in Table 4.2, and 

50 iterations was set for both algorithms. Finally, for matter of comparison, the same initialization 

that used in Arberet et al. algorithm will be considered, where oracle initialization has been used to 

initialize 𝑣𝑗,𝑓,𝑛 and 𝛴
𝑗,𝑓

(𝒂)
. 

To show the convergence of the proposed algorithm, the average cost functions (eqn. (4.14)) of the 

ten mixtures with different conditions (low and high reverberations time, and short and long 

distance between the microphones) are shown in Figure 4.4. It is noted that the speed of 

convergence (as measured by the gradient of the cost function) is fastest for the short microphone 

distance with low reverberation. As the microphone distance becomes larger and the level of 

reverberation increases, the speed tends to slow down. Nonetheless, all cost functions have 

converged to the steady state in less than 50 iterations.  

 

       Figure 4.3: The effects of sparsity on the estimated source. 
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Table 4.2 

Convolutive parameters for mixtures 1 to 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mixture 𝜏𝑚𝑎𝑥  𝜙𝑚𝑎𝑥  

1 1 1 

2 2 1 

3 2 1 

4 3 1 

5 3 1 

6 4 1 

7 4 1 

8 8 1 

9 10 1 

10 10 1 

Iteration Number 

 

Figure 4.4: Average cost function for different conditions. 
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Furthermore, the SDRs of the full- rank NMF and the proposed algorithm are tabulated in Table 

4.3. The table indicates that the proposed algorithm has better performance than the full-rank NMF 

since it has more powerful representation (using the K-wNTF2D), as well as the variable sparsity 

over all the elements of 𝑯. The results for all the conditions can be summarized as follows: An 

achievement of 1.2 dB more for the low reverberation group, and at least 1 dB more on average for 

the high reverberations group. This is complemented by Figure 4.5. It shows that high SDR 

performance has been achieved for the 130ms reverberation for both 100cm and 5cm microphone 

separation. This case corresponds to the low reverberation environment. For the case of high 

reverberation, the proposed algorithm performs better with shorter microphone distance. As the 

distance between the microphones decreases, the signal at each microphone becomes more 

correlated with each other and therefore the channel covariance matrix 𝛴
𝑗,𝑓

(𝒂)
 tends to have some 

specific structure and hence reinforces the requirement of full- rank condition. While, as the 

separation between the microphones increases, the signal at each microphone becomes less 

correlated with each other. The effect is that each channel behaves independently and the channel  

 

Table 4.3 

Average SDRs of the 10 mixtures with different conditions for the full- rank NMF and the proposed 

algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

covariance matrix 𝛴
𝑗,𝑓

(𝒂)
 can be modelled by rank-1 structure. Thus as the separation between 

microphones become progressively small, this induces a complex structure to the channel 

Reverberation Time (ms) 130 250 

Microphone Distance (cm) 5 100 5 100 

SDR of Full-Rank NMF 

K=5 
9.1 10.2 8.8 9.6 

SDR of the proposed 

algorithm 

K=1 

6.6 7.8 6.5 7.3 

SDR of the proposed 

algorithm 

K=5 

10.3 11.4 9.8 10.4 
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covariance which will benefit from the full-rank estimation procedure in the proposed algorithm. 

This is a clear indication that the proposed algorithm has outperformed the NMF fo r both the low 

and high reverberation time. In addition, to show the effects of the number of components on the 

proposed algorithm in comparison with the full- rank NMF the SDR of both algorithms for 𝐾 =

5, 10, 15 and 20 have been also plotted in Figure 4.5. It shows the box plot for the ten mixtures 

with their median, maximum, and minimum SDR values for all the conditions. From the plot, it can 

be seen that the proposed algorithm gives higher median value in comparison with the full-rank 

NMF, for all the components under the different conditions, as the proposed algorithm is modeled 

to address the change in the time and frequency directions through the convolutive parameters (i.e. 

𝜏 and 𝜙) of the K-wNTF2D. 

The spectrogram of one of the original sources, and its estimate by using the full- rank NMF and the 

full-rank variable sparsity K-wNTF2D are shown in Figure 4.6(a), (b), and (c), respectively. These 

figures show that the full- rank variable sparsity K-wNTF2D has successfully detected the pitch 

change of the source (as shown in the high frequency of its spectrogram), due to its 

two-dimensional deconvolution while the full-rank NMF failed to detect these changes. 

Furthermore, in order to show that 𝑾 and 𝑯 of the full- rank variable sparsity K-wNTF2D contain 

more information than those of the NMF, one component of the 𝑾  and 𝑯  matrices and its 

corresponding spectrogram for both the NMF and the full-rank variable sparsity K-wNTF2D are 

plotted in Figure 4.6(d) and 4. Figure 4.6(e), respectively. This indicates that both 𝑾 and 𝑯 have 

modelled the sources quite accurately. It is seen that 𝑾 has successfully modelled the frequencies 

of the source especially in the high frequency region and 𝑯 has shown a correct distribution in the 

time domain. On the separate hand, 𝑾 and 𝑯  of the NMF contain very little or virtually null 

information for these frequencies and their corresponding positions. Finally, Figure 4.7 shows 

another set of spectrograms which emphasize that the proposed full-rank variable sparsity 

K-wNTF2D algorithm has estimated the sources correctly in comparison with the full-rank NMF. 

The proposed algorithm has correctly detected the required number of frequency basis as well as 

their pitch change since the model has multiple frequency basis that convolve with the time–

pitched weighted matrix in both time and frequency directions. While, the NMF fails to detect the 

required number of frequency basis since it contains too many unwanted frequency basis. In 

addition, it fails to detect the high frequency pitch change. 
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 Figure 4.5: Box plot of the proposed algorithm (1) and the full rank NMF 

(2) with different components and different conditions. 
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Figure 4.6: Comparison between the spectrogram of the Full Rank NMF and the proposed 

Full Rank K-wNTF2D. 
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Figure 4.7: Spectrogram of the original and estimated sources by using the proposed Full 

Rank K-wNTF2D algorithm and the Full Rank NMF algorithm.  
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4.5.3.2 Results of Dataset 2:  In this section, the proposed algorithm will be compared with 

Adiloglu et al. algorithm from the SiSEC’13 evaluation campaign for the tasks of underdetermined 

speech and music mixtures [105]; that used fully Bayesian source separation algorithm based on 

variational inference method [106], with the multi- level NMF model [52] as a source variance, and 

the time difference of arrival (TDOA) as an initialization method [107].  In the proposed algorithm, 

a different number of components and different convolutive parameters are set for each dataset, as 

tabulated in Tables 4.4, 4.5, 4.6, and 4.7. The STFT window length is set to 2048 with, 50% 

overlaps. The proposed initialization has been blindly initialized 𝑣𝑗,𝑓,𝑛 and 𝛴
𝑗,𝑓

(𝒂)
, respectively.  

The average cost functions are shown in Figure 4.8. The figure indicates that all the cost functions 

converged to a low value within 10 iterations while Adiloglu et al. algorithm required about 250 

iterations. Furthermore, it can be seen that the SDRs of the proposed algorithm for the music group 

(Table 4.4 and 4.5) on average is higher than the Adiloglu et al. algorithm. For clarity of 

comparison, the results are summarized as follows: An improvement of 2.65 dB is achieved for the 

5 cm distance and 250 ms reverberation time datasets, and 2.6 dB for the 100 cm, 250 ms datasets.  

For the speech group (Table 4.6 and 4.7) on average an improvement of 2.5 dB is achieved for the 

5 cm, 380 ms datasets, and 1.8 dB for the 50 cm, 380 ms datasets. Finally, an improvement of 0.3 

dB is achieved for the 5 cm, 130 ms datasets, and approximately equal for the 50 cm, 130 ms 

datasets. From above, it can be concluded that the proposed algorithm outperforms Adiloglu et al. 

algorithm, especially for the case of high reverberation time. This is attributed to the proposed 

algorithm’s ability to model the full-rank spatial covariance matrix (that modeled the spatial 

position and spread of the sources) instead of rank-1.  Finally, Figure 4.9 shows the spectrogram of 

the estimated sources. It has indicated that the proposed algorithm has successfully estimated the 

sources to a high degree of accuracy. In particular, it is evident that all the low and high frequency 

components as well as the time-frequency patterns have been preserved in the estimated sources. 
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                         Figure 4.8: Average cost function for different conditions.  
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Table 4.4 

SDRs of Adiloglu et al. and the proposed algorithm for dev. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiSEC 2013: Dev. 1 ndrums wdrums 

Reverberation Time (ms) 250 250 

Microphone Distance (cm) 5 100 5 100 

Adiloglu et al. 

algorithm 

 

SDR 

𝒔𝟏 -5.5 -0.6 7.0 2.4 

𝒔𝟐 -1.2 -0.0 -0.1 3.0 

𝒔𝟑 3.7 0.6 -0.5 -11.1 

Avg -1.0 0.0 2.1 -1.9 

GEM–MU based Variable 

Sparsity NTF 

𝜏𝑚𝑎𝑥  = 0 

𝜙𝑚𝑎𝑥 = 0 

𝐾  3 20 

 

SDR 

𝒔𝟏 0.5 2.1 5.7 6.7 

𝒔𝟐 0.8 1.2 0.3 -1.1 

𝒔𝟑 0.8 2.6 -0.8 0.1 

Avg 0.7 2.0 1.7 1.9 

Proposed algorithm 

𝜏𝑚𝑎𝑥 = 13 

𝜙𝑚𝑎𝑥 = 2 

𝐾  3 20 

 

SDR 

𝒔𝟏 2.3 1.4 7.6 8.2 

𝒔𝟐 0.9 2.6 0.9 0.5 

𝒔𝟑 0.7 4.2 0.7 -0.1 

Avg 1.3 2.7 3.1 2.9 
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Table 4.5 

SDRs of Adiloglu et al. and the proposed algorithm for dev. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiSEC 2013: Dev. 2 ndrums wdrums 

Reverberation Time (ms) 250 250 

Microphone Distance (cm) 5 100 5 100 

Adiloglu et al. 

algorithm 

 

SDR 

𝒔𝟏 1.8 4.7 3.7 4.8 

𝒔𝟐 2.7 2.0 3.7 2.0 

𝒔𝟑 -11.7 -3.9 3.7 2.7 

Avg -2.4 0.9 3.7 3.2 

GEM–MU based 

Variable Sparsity NTF 

  

𝜏𝑚𝑎𝑥   0 

𝜙𝑚𝑎𝑥   0 

𝐾  3 3 7 

 

SDR 

𝒔𝟏 9.6 6.7 1.0 1.9 

𝒔𝟐 0.4 1.6 2.6 1.6 

𝒔𝟑 -2.0 0.0 1.4 3.1 

Avg 2.7 2.8 2.7 2.2 

Proposed algorithm 

 

𝜏𝑚𝑎𝑥   2 3 

𝜙𝑚𝑎𝑥   2 9 

𝐾  3 3 7 

 

SDR 

𝒔𝟏 10.5 7.6 3.5 2.9 

𝒔𝟐 1.4 2.3 4.2 2.2 

𝒔𝟑 0.8 0.7 5.4 4.6 

Avg 4.2 3.5 4.4 3.2 
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Table 4.6 

SDRs of Adiloglu et al. and the proposed algorithm of dev. 3, for 5 cm, 380 ms case, and 50 cm, 

380 ms case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiSEC 2013: Dev. 3 male4 female4 

Reverberation Time (ms) 380 380 

Microphone Distance (cm) 5 50 5 50 

Adiloglu et al. 

algorithm 

 

SDR 

𝒔𝟏 0.4 -1.7 0.2 -0.2 

𝒔𝟐 -2.6 -0.9 0.2 -1.0 

𝒔𝟑 -2.1 0.8 -3.1 -2.4 

𝒔𝟒 0.0 -0.4 -2.8 0.1 

Avg -1.1 -0.6 -1.4 -0.9 

GEM–MU based 

Variable Sparsity NTF 

𝜏𝑚𝑎𝑥 = 0 

𝜙𝑚𝑎𝑥 = 0 

𝐾 = 10 

 

SDR 

𝒔𝟏 0.7 0.2 0.3 0.3 

𝒔𝟐 0.8 0.6 0.8 0.4 

𝒔𝟑 0.2 1.1 -0.9 0.2 

𝒔𝟒 1.1 -0.1 0.2 0.5 

Avg 0.7 0.5 0.1 0.4 

Proposed algorithm 

𝜏𝑚𝑎𝑥 = 10 

𝜙𝑚𝑎𝑥 = 20 

𝐾 = 10 

 

SDR 

𝒔𝟏 1.3 0.6 1.9 0.8 

𝒔𝟐 1.2 1.1 0.8 0.7 

𝒔𝟑 1.3 1.8 1.3 0.1 

𝒔𝟒 1.3 0.7 0.9 1.8 

Avg 1.3 1.1 1.2 0.9 
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Table 4.7 

SDRs of Adiloglu et al. and the proposed algorithm of dev. 3, for 5 cm, 130 ms case, and 50 cm, 

130 ms case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiSEC 2013: Dev. 3 male4 female4 

Reverberation Time (ms) 130 130 

Microphone Distance (cm) 5 50 5 50 

Adiloglu et al. 

algorithm 

 

SDR 

𝒔𝟏 -2.6 -2.1 -0.0 -1.2 

𝒔𝟐 -0.2 2.6 -0.9 0.6 

𝒔𝟑 1.5 0.8 0.4 1.4 

𝒔𝟒 5.2 3.9 4.1 4.4 

Avg 1.0 1.3 0.9 1.3 

GEM–MU based  

Variable Sparsity NTF 

𝐾=10 

𝜏𝑚𝑎𝑥   0 

𝜙𝑚𝑎𝑥   0 

 

SDR 

𝒔𝟏 0.5 -0.5 -0.3 -2.8 

𝒔𝟐 -0.7 0.7 1.3 0.1 

𝒔𝟑 0.6 0.4 0.3 1.4 

𝒔𝟒 1.0 -0.8 1.0 0.9 

Avg 0.4 -0.0 0.6 -0.1 

Proposed algorithm 

𝐾=10 

𝜏𝑚𝑎𝑥   10 

𝜙𝑚𝑎𝑥   50 60 

 

SDR 

𝒔𝟏 1.2 0.5 1.5 0.8 

𝒔𝟐 1.1 2.6 1.6 0.9 

𝒔𝟑 1.4 0.9 1.0 2.7 

𝒔𝟒 1.2 1.2 1.1 0.8 

Avg 1.2 1.3 1.2 1.3 
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4.6 Summary 

In this chapter, the K models of the weighted NTF2D have been combined with the variable 

sparsity to propose a novel algorithm for the underdetermined multichannel audio source 

separation. It has been shown that using the GEM-MU algorithm as a platform for the proposed 

algorithm enabled the joint estimation of the parameters and sources, and preserving the 

non-negativity constraints of the proposed model. Also, a tractable approach that adapts each 

sparse parameter for every temporal code in the NTF2D has been provided through the variable 

sparse parameters that derived from the Gibbs distribution. Furthermore, the NTF2D has been 

efficiently initialized by the proposed initialization approach. The full-rank NMF and NTF 

algorithms, and a recent algorithm based on variational inference multi- level NMF model with 

TDOA initialization have been outperformed by the proposed algorithm. Additionally, it has been 

shown that using the full-rank spatial covariance matrix instead of rank 1 has enabled the proposed 

algorithm to maintain its high level performance in high reverberation environment. Finally, the 

proposed algorithm fast converged to the steady state in less than 10 iterations. 

 

 

Figure 4.9: Spectrogram of one of the mixtures and its original and estimated sources.  
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CHAPTER 5 

INFORMED SOURCE SEPARATION BASED TWO DIMENSIONAL 

MATRIX FACTORIZATION TECHNIQUES 

 

 

In this chapter two algorithms are proposed for informed source separation, i.e., an exemplar-based 

algorithm and a semi-exemplar based algorithm. The semi-exemplar based algorithm takes 

advantage of the NMF2D to describe the temporal and spectral changes, and the number of spectral 

components of targeted speech signal. The description is carried out indirectly by the exemplar: 

Firstly the exemplar is used to emulate the targeted speech signal, then the parameters of the 

NMF2D are optimized inline with the exemplar, finally these parameters are used to separate the 

targeted speech signal.  Additionally the spectral and temporal tensors generated from the exemplar 

will be used to initialize the tensors of the targeted speech signals. In the full exemplar-based 

algorithm, the separating algorithm describes the targeted speech signal in the same way as in the 

semi-exemplar based algorithm; however the separation is carried out based on the two 

dimensional nonnegative matrix partial co-factorization (2DNMPCF) that jointly factorizes the 

exemplar’s and the mixture’s spectrogram. In addition, the chapter proposes an artificial stereo 

channel. It introduces diversity to the mixing channel by augmenting the dimensionality of the 

mixing matrix, increases its matrix rank and thus reduces the ambiguity associated with estimating 

several sources given only a single observation of the mixture signal. The proposed algorithms 

with artificial stereo channel have been adapted under the hybrid framework that combines the 

generalized EM algorithm with multiplicative update. The algorithms lead to fast and stable 

convergence, and ensure the non-negativity constraints are satisfied. Additionally, the adaptive 

sparsity is imposed on each sparse parameter in the 2DNMPCF. Experimental results have shown 

the effectiveness of the proposed algorithms in comparison with other algorithms. 

This chapter is organized as follows: Section 5.1 introduces the proposed model. Section 5.2 is 

dedicated for the problem formulation, where the mixture model with pseudo-stereo channel and 

the maximum a Posterior probability (MAP) model will be formulated. The proposed 

semi-exemplar based algorithm and the proposed exemplar based algorithm will be explained and 

derived in Section 5.3. Experimental results and discussions of these results will be shown in 

Section 5.4. Section 5.5 proposed a multistage of the exemplar based algorithm. Finally, Section 

5.6 draws the conclusions. 
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5.1 Introduction 

Blind source separation (BSS) [19, 67, 108] is ill-posed problem that cannot be solved totally blind, 

i.e., a certain assumptions has to be made to solve them, e.g. the number of sources, how the 

sources are mixed, the location of the sources with respect to the microphones, and the channel 

type. However, even with these assumptions the BSS did not fully achieve the required 

performance. Therefore, researchers moved from blind to informed audio source separation in 

order to achieve higher performance that the BSS cannot reach, where, researchers seek an aid 

from an external source in addition to the mixture signal as side information to enhance the 

separation performance. Such as the user mimic the targeted signal in the mixture by singing [54], 

by humming  [81], or by dubs the dialog in films [82] in order to separate the targeted signal. 

Another examples is by using additional audio references such as using the multitrack cover 

version of the same song [56, 83-85] or using several international versions of the same movie [55].  

Additionally using the text to mimic the targeted speech signal [86].  

In this chapter, exemplar signal from the text associated with the mixture will be generated by 

using a speech synthesizer or human speakers. The approach is essentially belonging to the 

category of text informed source separation [86]. The text informed source separation [86] used the 

NMPCF [109, 110] based on excitation-filter channel speech model and the structural Gaussian 

Scaled Mixture Model (GSMM). In the current chapter, two algorithms will be proposed the 

exemplar-based algorithm and the semi-exemplar based algorithm. In the exemplar-based 

algorithm the exemplar will be used to optimize the parameters and initialize the tensors of the 

proposed 2DNMPCF that will carry out the separation. The proposed 2DNMPCF will be used as it 

has the ability to describe the pitch and temporal changes of the signal through 𝜙 and 𝜏, in addition 

to the frequency basis (as in NMPCF) through 𝐾. Therefore, the proposed 2DNMPCF is more 

powerful than the NMPCF. The idea of using the co-factorization technique is to simultaneously 

factorize the mixture and the exemplar signals in order to guide the separation. In the case of the 

semi-exemplar based algorithm, the exemplar will be used to optimize the parameters and initialize 

the tensors of the NMF2D [25] which alone will be used to carry out the separation. The difference 

between the semi-exemplar based algorithm and the exemplar based algorithm is that the former 

algorithm will guide the separation for the first iteration only (i.e., to give the correct start) by 

initializing its tensors through the exemplar signal, while in the latter algorithm the exemplar signal 

is used to initialize as well as to guide the separation process for every iteration via the 2DNMPCF 

until it converges to the steady state.   For faster convergence both algorithms are adapted under the 
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GEM-MU model [80]. Furthermore, the adaptive sparsity will be optimized in the proposed 

algorithms instead of the uniform fixed sparsity. As the speech source changes rapidly over time, 

then assigning a uniform fixed sparsity will leads to either too many ineffective temporal codes 

(under-sparseness), or too many temporal codes set to zero (over-sparseness), while the adaptive 

sparsity will optimize the sparsity for each individual temporal code. Finally for better performance 

the pseudo-stereo channel [111] will be adapted using the GEM-MU algorithm. The pseudo-stereo 

mixture allows us to extract the temporal feature of the mixed signal to enable the estimation of the 

mixing process and relieving the ill-posed problem of single-channel source separation. The 

single-channel source separation is a highly underdetermined problem where only a single channel 

recording is available to estimate more than one source signals. Hence, given only the mixed 

signal, potentially innumerable number of solutions exists for the source signals. Thus the 

pseudo-stereo channel creates an artificial mixed signal to increase the dimensionality of the 

mixing matrix and reduce the ambiguity in estimating source signals.  Figure 5.1 shows the high 

level presentation of the proposed algorithms (see Section 5.3 for the details).  

 

 

 

 

 

 

 

 

 

5.2 Problem Formulation 

5.2.1 Pseudo-Stereo Channel 

Consider the underdetermined single channel mixture, namely:  
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Figure 5.1:  High level presentation of (a) the semi-exemplar based algorithm, and (b) the 

exemplar based algorithm. 
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𝑥̃1(𝑡) = 𝑔̃(𝑡) + 𝑏̃(𝑡) + 𝑛̃(𝑡)                                                                               (5.1a) 

= ∑ 𝑎1

𝐿−1

𝜏=0

(𝜏)𝑔̃(𝑡 − 𝜏) + ∑ 𝑎2

𝐿−1

𝜏=0

(𝜏)𝑏̃(𝑡 − 𝜏) + 𝑛̃(𝑡)                           (5.1b) 

where 𝑥̃1(𝑡) is the sampled mixture signal, 𝑔̃(𝑡) the sampled speech signal, 𝑏̃(𝑡) is the sampled 

background signal (which will take as either a music or effects (fx)), 𝑛̃(𝑡) is some additive noise, 

for (𝑡 = 1, … , 𝑇), 𝑎1(𝜏) and 𝑎2(𝜏) are the finite-impulse response of some (causal) filters.   

As the separation performance is enhanced when the number of channels is greater than or equal to 

the number of sources, and as the single channel is heavily underdetermined whic h creates 

ambiguity when estimating the sources, then a pseudo-stereo channel model [111] will be 

formulated in this chapter, i.e., a pseudo microphone (virtual channel) will be formulated by 

weighting and time-shifting the single channel mixture 𝑥̃1(t) as follows 

𝑥̃2(𝑡) =
𝑥̃1(𝑡) + 𝛾𝑥̃1(𝑡 − 𝛿)

1 + |𝛾|
                                                     (5.2) 

where 𝛾 ∈  is the weight parameter, and 𝛿  is the time delay between 𝑥̃2  and 𝑥̃1. The mixed 

signals in eqn. (5.1a) and eqn. (5.2) are termed as “pseudo-stereo” since they have an artificial 

resemblance of a stereo signal. Substituting eqn. (5.1b) in eqn. (5.2) will leads to 

             𝑥̃2(𝑡) =
1

1 + |𝛾|
(∑ 𝑎1

𝐿−1

𝜏=0

(𝜏)(𝑔̃(𝑡 − 𝜏) + 𝛾𝑔̃(𝑡 − 𝜏 − 𝛿))    

                                       +∑ 𝑎2

𝐿−1

𝜏 =0

(𝜏) (𝑏̃(𝑡 − 𝜏) + 𝛾𝑏̃(𝑡 − 𝜏 − 𝛿)) + (𝑛̃(𝑡) + 𝛾𝑛̃(𝑡 − 𝛿)))   (5.3) 

By assuming that the mixing channel is time- invariant and by considering the narrowband 

approximation then the short-time Fourier transform (STFT) of eqn. (5.1b) can be expressed as  

𝑥1,𝑓,𝑛 = 𝑎1,𝑓𝑔𝑓,𝑛 + 𝑎2,𝑓𝑏𝑓,𝑛 + 𝑛𝑓 ,𝑛                                               (5.4) 

Similarly, the STFT of eqn. (5.3) 

𝑥2,𝑓 ,𝑛 = (𝑎1,𝑓

1

1 + |𝛾|
(𝑔𝑓,𝑛 + 𝛾𝑔𝑓,𝑛𝑒−𝑖𝑤𝛿 ) + 𝑎2,𝑓

1

1 + |𝛾|
(𝑏𝑓,𝑛 + 𝛾𝑏𝑓,𝑛𝑒−𝑖𝑤𝛿 )  
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+
1

1 + |𝛾|
(𝑛𝑓,𝑛 + 𝛾𝑒−𝑖𝑤𝛿 𝑛𝑓 ,𝑛))                                                                                      

           = (𝑎1,𝑓

1

1 + |𝛾|
𝑔𝑓,𝑛 (1 + 𝛾𝑒−𝑖𝑤𝛿 ) + 𝑎2,𝑓

1

1 + |𝛾|
𝑏𝑓,𝑛 (1 + 𝛾𝑒−𝑖𝑤𝛿)                           

+
1

1 + |𝛾|
𝑛𝑓,𝑛(1 + 𝛾𝑒 −𝑖𝑤𝛿 ))                                                                                          

           = (𝑎1,𝑓

1 + 𝛾𝑒−𝑖𝑤𝛿

1 + |𝛾|
𝑔𝑓,𝑛 + 𝑎2,𝑓

1 + 𝛾𝑒−𝑖𝑤𝛿

1 + |𝛾|
𝑏𝑓 ,𝑛 + 𝑛𝑓 ,𝑛

1 + 𝛾𝑒−𝑖𝑤𝛿

1 + |𝛾|
)            (5.5a) 

Let 𝑎́1,𝑓 = 𝑎1,𝑓
1+𝛾𝑒−𝑖𝑤𝛿

1+|𝛾|
, 𝑎́2,𝑓 = 𝑎2,𝑓

1+𝛾𝑒−𝑖𝑤𝛿

1+|𝛾|
, and 𝑛́𝑓,𝑛 = 𝑛𝑓 ,𝑛

1+𝛾𝑒−𝑖𝑤𝛿

1+|𝛾|
, then eqn. (5.5a) can be 

rewritten as follows 

𝑥2,𝑓,𝑛 = 𝑎́1,𝑓𝑔𝑓,𝑛 + 𝑎́2,𝑓𝑏𝑓,𝑛 + 𝑛́𝑓,𝑛                                              (5.5b) 

Eqn. (5.4) and eqn. (5.5b) can be written in matrix form 

𝑋𝑓 = 𝐴𝑓𝑆𝑓 + 𝑁𝑓                                                               (5.6) 

where 

 𝑋𝑓 = [𝑥𝑖,𝑓,𝑛 ]
𝑓

= [
𝑥1,𝑓,1 𝑥1,𝑓,2 … 𝑥1,𝑓,𝑁

𝑥2,𝑓,1 𝑥2,𝑓,2 … 𝑥2,𝑓,𝑁
]

𝑓

∈ ℂ2×𝑁 , 𝑖 = 1,2 is the channel index, 𝑓 = 1, … , 𝐹  is 

the frequency bin index, 

 𝐴𝑓 = [
𝑎1,𝑓 𝑎2,𝑓

𝑎́1,𝑓 𝑎́2,𝑓
]

𝑓

∈ ℂ2×2, 

 𝑆𝑓 = [𝑠𝑗,𝑓,𝑛]
𝑓

= [
𝑔𝑓 ,1 𝑔𝑓 ,2 … 𝑔𝑓,𝑁

𝑏𝑓 ,1 𝑏𝑓 ,2 … 𝑏𝑓,𝑁
]

𝑓

∈ ℂ2×𝑁, 𝑗 = 1,2 is the source index, and 

 𝑁𝑓 = [𝑛̅𝑖,𝑓,𝑛]
𝑓

= [
𝑛𝑓,1 𝑛𝑓,2 … 𝑛𝑓,𝑁 
𝑛́𝑓,1 𝑛́𝑓,2 … 𝑛́𝑓,𝑁

]
𝑓

∈ ℂ2×𝑁 

The NMF2D has the ability to specify the temporal and spectral changes of the targeted speech 

signal through its convolutive parameters (𝜏 and 𝜙), and the number of frequency basis (𝐾) of the 

targeted speech signal. If the NMF used here it will be able to describe the number of frequency 
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basis only. Therefore, the NMF2D with multiple components will be considered as the spectral 

variance model instead of the NMF spectral model [49]. Thus, each source in the STFT can be 

expressed by  𝐾  complex-valued latent components, i.e., 𝑔𝑓,𝑛 = ∑ 𝑐𝑘 ,𝑓,𝑛
𝑔𝐾𝑔

𝑘 =1
, and 𝑏𝑓,𝑛 =

∑ 𝑐𝑘,𝑓 ,𝑛
𝑏𝐾𝑏

𝑘 =1  and can be modeled as realization of proper complex zero-mean variables: 

𝑐𝑘,𝑓,𝑛
𝑔 ~𝒩𝑐 (0, 𝜎𝑘 ,𝑓,𝑛

𝑔2

) = 𝒩𝑐 (0, ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑔 ℎ𝑘,𝑛−𝜏,𝜙

𝑔

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

)                        (5.7a) 

𝑐𝑘,𝑓,𝑛
𝑏 ~𝒩𝑐 (0, 𝜎𝑘 ,𝑓,𝑛

𝑏2
) = 𝒩𝑐 (0, ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏

𝑏 ℎ𝑘,𝑛−𝜏,𝜙
𝑏

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

)                        (5.7b) 

where 𝒩𝑐 (𝜇, Σ)  is proper complex Gaussian distribution [94], 𝑤𝑓,𝑘,𝜏
𝑔

 and 𝑤𝑓,𝑘,𝜏
𝑏  represent the 

spectral basis of the speech and background sources, respectively, and ℎ𝑘,𝑛,𝜙
𝑔

 and  ℎ𝑘,𝑛,𝜙
𝑏  represent 

the temporal code for each spectral basis element of the speech and background sources, 

respectively, for 𝑓 = 1, … , 𝐹, 𝑛 = 1, … , 𝑁, 𝑘 = 1, . . . 𝐾.  

 

5.2.2 Maximum A Posterior Probability (MAP) Estimation 

The maximum a posteriori (MAP) probability will be used as the criterion for optimization. The 

noise 𝑛̅𝑖,𝑓𝑛 is assumed to be stationary and spatially uncorrelated, i.e. 

𝑛̅𝑖,𝑓𝑛~𝒩𝑐 (0, 𝜎𝑖 ,𝑓
𝑛 2

 
) ,    and    𝛴𝑛̅,𝑓 = 𝑑𝑖𝑎𝑔 [𝜎𝑖,𝑓

𝑛̅ 2
]                                     (5.8) 

Let 𝑪 = {{𝑐𝑘,𝑓,𝑛
𝑔 }, {𝑐𝑘,𝑓,𝑛

𝑏 }}
𝑘,𝑓,𝑛

 be the latent variables, and 𝜽 =  {𝑨, 𝑾, 𝑯, 𝜦 , 𝜮𝒏̅ } as the parameters 

of the model where 𝑾 = {𝑾𝑔, 𝑾𝑏} , 𝑯 = {𝑯𝑔, 𝑯𝑏} , 𝜦 = {𝜦𝑔 , 𝜦𝑏}  with  𝑾𝑔 = {𝑤𝑓,𝑘,𝜏
𝑔 }

𝑓 ,𝑘,𝜏
, 

 𝑾𝑏 = {𝑤𝑓,𝑘,𝜏
𝑏 }

𝑓 ,𝑘,𝜏
, 𝑯𝑔 = {ℎ𝑘,𝑛,𝜙

𝑔 }
𝑘,𝑛,𝜙

, 𝑯𝑏 = {ℎ𝑘,𝑛,𝜙
𝑏 }

𝑘,𝑛,𝜙
, 𝜦𝑔 = {𝜆𝑘,𝑛,𝜙

𝑔 }
𝑘,𝑛,𝜙

, 𝜦𝑏 =

{𝜆𝑘,𝑛,𝜙
𝑏 }

𝑘,𝑛,𝜙
. The tensor 𝜦 contains the sparsity terms for 𝑯. The estimation of model parameters 

and latent variables will proceed via the posterior probability:  

𝜽̂𝑀𝐴𝑃 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

 𝑙𝑜𝑔 𝑝(𝜽|𝑿 ) 

where 



 

 

104 
 

𝑙𝑜𝑔 𝑝(𝜽|𝑿) ≥ ∫ 𝑄(𝑪) 𝑙𝑜𝑔 [
𝑝(𝑪, 𝜽|𝑿 )

𝑄(𝑪)
] 𝑑𝐂                                        (5.9) 

for any distribution 𝑄(𝑪) . Defining 𝐹(𝑄(𝑪), 𝜽) = ∫ 𝑄(𝑪) 𝑙𝑜𝑔 [
𝑝(𝑪, 𝜽|𝑿 )

𝑄(𝑪)
] 𝑑𝑪, then the E-step 

consists of determining 𝑄(𝑪) that maximizes 𝐹(𝑄(𝑪), 𝜽) where the optimal 𝑄(𝑪)  is given by 

𝑄∗ (𝑪) = 𝑃(𝑪|𝑿, 𝜽′) for the current model 𝜽′. The M-step consists of maximizing 𝐹(𝑄∗ (𝑪), 𝜽) 

with respect to the model 𝜽  when 𝑄(𝑪)  is fixed at 𝑄∗ (𝑪)  i.e. 𝜽∗ =

𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

 ∫ 𝑄∗(𝑪) 𝑙𝑜𝑔 𝑝(𝑪, 𝜽|𝑿) 𝑑𝑪. The posterior probability is given by  

𝑝(𝑪, 𝜽|𝑿) =  
𝑝(𝑿, 𝑪|𝜽)𝑝(𝜽)

𝑝(𝑿)
∝ 𝑝(𝑿|𝑪, 𝜽)𝑝(𝑪|𝜽)𝑃(𝜽)                           (5.10) 

 

5.3 Proposed Exemplar and Semi-Exemplar Algorithms 

The GEM-MU [80] will be used as the platform for deriving the proposed algorithms. The source 

power spectrogram posterior estimates (𝑝̂𝑗,𝑓𝑛) (see eqn. (5.12)), the mixing parameters, and the 

noise covariance will be estimated in the E-step of the EM algorithm, while 𝑾 and 𝑯  will be 

estimated in the M-step of the EM algorithm by using the MU algorithm with adaptive sparsity 

NMF2D.  

First of all, the common part between the two proposed algorithms will be derived, and then each 

one will be derived separately.  

5.3.1 E-Step: Conditional Expectations of Natural Statistics 

In the E-step, the complete data {𝑿, 𝑪} and its pdfs 𝑝(𝑿, 𝑪|𝜽) form an exponential family. The 

complete data log-likelihood is given by 

−𝑙𝑜𝑔 𝑝(𝑪, 𝜽|𝑿) = −𝑙𝑜𝑔 𝑝(𝑿|𝑪, 𝜽) − 𝑙𝑜𝑔 𝑝(𝑪|𝜽) − 𝑙𝑜𝑔 𝑃(𝜽)                                                                

=
𝑐

∑ [𝑙𝑜𝑔|𝛴𝑛,𝑓| + (𝒙𝑓𝑛 − 𝐴𝑓𝒔𝑓𝑛)
𝐻

𝛴𝑛,𝑓
−1 (𝒙𝑓𝑛 − 𝐴𝑓𝒔𝑓𝑛)]

𝑓,𝑛

                                            

+ ∑ ∑ [𝑙𝑜𝑔 ( ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑔 ℎ𝑘,𝑛−𝜏,𝜙

𝑔

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

) +
|𝑐𝑘,𝑓,𝑛

𝑔 |
2

∑ ∑ 𝑤
𝑓−𝜙,𝑘,𝜏

𝑔 ℎ
𝑘,𝑛−𝜏,𝜙

𝑔𝜙𝑚𝑎𝑥
𝜙=0

𝜏𝑚𝑎𝑥
𝜏 =0

]

𝑓,𝑛

𝐾𝑔

𝑘 =1
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+ ∑ ∑ [𝑙𝑜𝑔 ( ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑏 ℎ𝑘,𝑛−𝜏,𝜙

𝑏

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

) +
|𝑐𝑘,𝑓 ,𝑛

𝑏 |
2

∑ ∑ 𝑤𝑓 −𝜙,𝑘,𝜏
𝑏 ℎ𝑘,𝑛−𝜏,𝜙

𝑏𝜙𝑚𝑎𝑥
𝜙=0

𝜏𝑚𝑎𝑥
𝜏=0

]

𝑓,𝑛

𝐾𝑏

𝑘 =1

 

− 𝑙𝑜𝑔 𝑝(𝐴𝑓) − 𝑙𝑜𝑔 𝑝(𝛴𝑛,𝑓) − 𝑙𝑜𝑔 𝑝(𝑾) − 𝑙𝑜𝑔 𝑝(𝑯|𝜦)                                         

= ∑ [𝑙𝑜𝑔|𝛴𝑛,𝑓| + ∑ 𝑙𝑜𝑔 ( ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑔

ℎ𝑘,𝑛−𝜏,𝜙
𝑔

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

)

𝐾𝑔

𝑘=1

+ ∑
|𝑐𝑘,𝑓,𝑛

𝑔 |
2

∑ ∑ 𝑤
𝑓−𝜙,𝑘,𝜏

𝑔 ℎ
𝑘,𝑛−𝜏,𝜙

𝑔𝜙𝑚𝑎𝑥
𝜙=0

𝜏𝑚𝑎𝑥
𝜏=0

𝐾𝑔

𝑘=1𝑓,𝑛

+ ∑ 𝑙𝑜𝑔 ( ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑏 ℎ𝑘,𝑛−𝜏,𝜙

𝑏

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

)

𝐾𝑏

𝑘=1

+ ∑
|𝑐𝑘,𝑓,𝑛

𝑏 |
2

∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑏 ℎ𝑘,𝑛−𝜏,𝜙

𝑏𝜙𝑚𝑎𝑥
𝜙=0

𝜏𝑚𝑎𝑥
𝜏=0

𝐾𝑏

𝑘 =1

] 

+𝑁 ∑ 𝑡𝑟[𝛴𝑛,𝑓
−1 𝑅𝒙𝒙,𝑓 − 𝛴𝑛,𝑓

−1𝐴𝑓𝑅𝒙𝒔,𝑓
𝐻 − 𝛴𝑛,𝑓

−1 𝑅𝒙𝒔,𝑓𝐴𝑓
𝐻 + 𝛴𝑛,𝑓

−1 𝐴𝑓𝑅𝒔𝒔,𝑓𝐴𝑓
𝐻]

𝑓

− 𝑙𝑜𝑔 𝑝(𝐴𝑓) 

− 𝑙𝑜𝑔 𝑝(𝛴𝑛,𝑓) − 𝑙𝑜𝑔 𝑝(𝑾) − 𝑙𝑜𝑔 𝑝(𝑯|𝜦)                                                               (5.11) 

where the superscript H is the Hermitian transpose, 𝑅𝒙𝒙,𝑓 =
1

𝑁
∑ 𝒙𝑓𝑛𝒙𝑓𝑛

𝐻
𝑛 , 𝑅𝒔𝒔,𝑓 =

1

𝑁
∑ 𝒔𝑓𝑛𝒔𝑓𝑛

𝐻
𝑛  and 

𝑅𝒙𝒔,𝑓 =
1

𝑁
∑ 𝒙𝑓𝑛𝒔𝑓𝑛

𝐻
𝑛 . The conditional expectations 𝑅̂𝒙𝒙,𝑓 = 𝑅𝒙𝒙,𝑓 =

1

𝑁
∑ 𝒙𝑓𝑛 𝒙𝑓𝑛

𝐻
𝑛 ,  𝑅̂𝒙𝒔,𝑓 =

1

𝑁
∑ 𝒙𝑓𝑛𝒔̂𝑓𝑛

𝐻
𝑛 ,  𝑅̂𝒔𝒔,𝑓 =

1

𝑁
∑ 𝒔̂𝑓𝑛

 𝒔̂𝑓𝑛
𝐻 + 𝛴̂𝒔,𝑓𝑛𝑛 . The source power spectrogram posterior estimates [80] 

is given by 

𝑝̂𝑗,𝑓𝑛 = 𝑅̂𝑆𝑆,𝑓𝑛(𝑗, 𝑗)                                                           (5.12) 

where 

𝒔̂𝑓𝑛 = 𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻𝛴𝑥,𝑓𝑛

−1 𝒙𝑓𝑛                                                       (5.13) 

𝛴𝑋,𝑓𝑛 = 𝐴𝑓𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻 + 𝛴𝑛,𝑓                                                      (5.14) 

𝛴̂𝑠,𝑓𝑛 = (𝐼2 − 𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻𝛴𝑥,𝑓𝑛

−1 𝐴𝑓)𝛴𝑠,𝑓𝑛                                            (5.15) 

𝛴𝑠,𝑓𝑛 =

[
 
 
 
 
 
 
∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏

𝑔 ℎ𝑘,𝑛−𝜏,𝜙
𝑔

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

𝐾

𝑘=1

0

0 ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑏 ℎ𝑘,𝑛−𝜏,𝜙

𝑏

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

𝐾

𝑘=1 ]
 
 
 
 
 
 

𝑓 ,𝑛

      (5.16) 
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Detailed derivation of eqn. (5.13) and eqn. (5.15) can be found in [14]. 

 

5.3.2 M Step: Update Of Parameters  

To find 𝐴𝑓 , we set  

𝜕

𝜕𝐴𝑓

〈𝑙𝑜𝑔 𝑝(𝑿|𝑪, 𝜽) + 𝑙𝑜𝑔 𝑝(𝐴𝑓)〉
𝑃(𝑪|𝑿, 𝜽′)

= 0 

⇒ −𝛴𝑛,𝑓
−1 〈𝑅𝑥𝑠,𝑓〉 + 𝛴𝑛,𝑓

−1 𝐴𝑓〈𝑅𝑠𝑠,𝑓〉 + 𝜑(𝐴𝑓) = 0                                (5.17) 

where 𝜑(𝐴𝑓) = 𝜕 𝑙𝑜𝑔 𝑝(𝐴𝑓) 𝜕𝐴𝑓⁄ . In the case of 𝑃(𝐴𝑓) is a uniform distribution, then eqn. (5.17) 

leads to  a simple closed form expression: 

𝐴𝑓 = 𝑅̂𝑥𝑠,𝑓𝑅̂𝑠𝑠,𝑓
−1                                                              (5.18) 

Similarly, for 𝛴𝑛,𝑓  we have 

𝜕

𝜕𝛴𝑛,𝑓
−1

〈𝑙𝑜𝑔 𝑝(𝑿|𝑪, 𝜽) + 𝑙𝑜𝑔 𝑝(𝛴𝑛,𝑓)〉
𝑃(𝑪|𝑿, 𝜽′)

= 0 

⇒ −𝛴𝑛,𝑓 + 𝑅𝑥𝑥,𝑓 − 𝐴𝑓〈𝑅𝑥𝑠,𝑓
𝐻 〉 − 〈𝑅𝑥𝑠,𝑓〉𝐴𝑓

𝐻 + 𝐴𝑓〈𝑅𝑠𝑠,𝑓〉𝐴𝑓
𝐻 + 𝜑(𝛴𝑛,𝑓) = 0        (5.19) 

where 𝜑(𝛴𝑛,𝑓) = 𝜕 log 𝑝(𝛴𝑛,𝑓) 𝜕𝛴𝑛,𝑓
−1⁄ . When 𝑃(𝛴𝑛,𝑓) assumes a uniform distribution, then eqn. 

(5.19) leads to  

𝛴𝑛,𝑓 = 𝑑𝑖𝑎𝑔(𝑅𝒙𝒙,𝑓 − 𝐴𝑓𝑅̂𝒙𝒔,𝑓
𝐻 − 𝑅̂𝒙𝒔,𝑓𝐴𝑓

𝐻 + 𝐴𝑓𝑅̂𝒔𝒔,𝑓𝐴𝑓
𝐻)                        (5.20) 

Various models exist to model the prior distribution 𝑝(𝐴𝑓) and 𝑝(𝛴𝑛,𝑓) which can be incorporated 

into the above estimation; however, uniform prior distribution results in computational stable and 

ease of implementation.  

The determination of 𝑾 and 𝑯 will follow the multiplicative update rule. At this point it can be 

distinguished between the two proposed algorithms, and show how the targeted speech signal will 

be described through the exemplar signal.  

5.3.3 Exemplar Based Algorithm 

In this algorithm the exemplar signal will be used to initialize the targeted speech signal (see eqn. 

(5.35) and eqn. (5.36) of Section 5.3.7), and guide separation through matrix co-partial 

factorization.  The NMPCF simultaneously decompose the targeted signal and the side information 
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and drive them to partially share the common frequency basis in order to enable the side 

information to guide the separation of the targeted signal [86, 109, 110]. In this chapter, the 

2DNMPCF is proposed which is a two-dimensional deconvolution of the NMPCF. The 

2DNMPCF shares not only the frequency basis as in the NMPCF but also the convolutive 

parameters (𝜏 and 𝜙) in order to describe the temporal and spectral changes of the targeted speech 

signal, and therefore renders it more distinguishable and hence more separable than the other 

sources in the mixture. 

The second term in the right hand side of eqn. (5.10) can be expressed using the Itakura-Saito 

divergence with power spectrogram estimated from the E-step. The third term involves the 

parametrization of {𝑾, 𝑯, 𝜦 }. Specifically, each element of 𝐻  has independent decay parameter 

𝜆𝑘,𝑛,𝜙
𝑗

 with exponential distribution given by 𝑝(𝑯𝑗|𝜦𝑗 ) = ∏ 𝑝(ℎ𝑘,𝑛,𝜙
𝑗

|𝜆𝑘,𝑛,𝜙
𝑗

) =𝑘,𝑛,𝜙

∏ 𝜆𝑘,𝑛,𝜙
𝑗 exp(−𝜆𝑘,𝑛,𝜙

𝑗 ℎ𝑘,𝑛,𝜙
𝑗 )𝑘,𝑛,𝜙 . The prior over {𝑾𝑗}

 
 is flat such that each spectral component is 

factor-wise normalized to unit length i.e. 𝑝(𝑾𝑗 ) = ∏ 𝛿 (‖𝑾𝑘
𝑗 ‖

2
− 1)𝑘  where ‖𝑾𝑘

𝑗 ‖
2

=

√∑ (𝑤
𝑓,𝑘,𝜏

𝑗 )
2

𝑓,𝜏 . Thus, taking the conditional expectation of the negative logarithm of the second 

and third terms of eqn. (5.10) leads to 

−〈log 𝑝(𝑪|𝑾 , 𝑯) + log 𝑝(𝑾) + log 𝑝(𝑯|𝜦)〉
𝑃(𝑪|𝑿, 𝜽′)

                                                             

= ∑ (∑ 𝐷𝐼𝑆(𝑝̂𝑗,𝑓𝑛| ∑ 𝑤𝑓−𝜙,𝑘,𝜏
𝑗

ℎ𝑘,𝑛−𝜏,𝜙
𝑗 

𝑘 ,𝜏,𝜙 ) − ∑ log δ (‖𝑾𝑘
𝑗

‖
2

− 1)

𝑘𝑓,𝑛𝑗

+ ∑ (𝜆𝑘,𝑛−𝜏,𝜙
𝑗

ℎ𝑘,𝑛−𝜏,𝜙
𝑗

− log 𝜆𝑘,𝑛−𝜏,𝜙
𝑗

)

𝑘,𝑛,𝜙

)                                                             (5.21) 

where 𝑗 = {𝑔, 𝑏} and 𝑝̂𝑗,𝑓𝑛 is the j-th source power spectrogram estimated from (5.12). Thanks to 

the E-step, that permits direct access to the estimates of the target speech and background signals in 

order to estimate {𝑾𝑔, 𝑾𝑏} and {𝑯𝑔 , 𝑯𝑏} rather than from the mixture signal which is noisy. Also 

the mixing gain will be able to estimate thanks to the pseudo-stereo channel which augments the 

dimensionality of the mixing matrix and increases its rank. The separation performance, however, 

can be weakened under the adverse conditions of low signal-to- interference ratio and the 

background signal shares some characteristics with the target speech. To alleviate these conditions, 
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a form of exemplar signal whose spectral and temporal characteristics resemble the target speech 

will be used. The exemplar signal can be derived from the text associated with the mixture and 

generated by using a speech synthesizer or human speakers. Let 𝑦̃(𝑡) be the sampled exemplar 

signal, 𝑦𝑓,𝑛𝑦
∈ ℂ1×𝑁𝑦  be the STFT of 𝑦̃(𝑡), and 𝑝𝑦,𝑓,𝑛𝑦

= |𝑦𝑓,𝑛𝑦
|2 is the power spectrogram of the 

exemplar signal. It should be emphasized that 𝑁 can differ from 𝑁𝑦 due to the temporal mismatch 

between the exemplar signal and the mixture, since it is not practically feasible to emulate the 

exemplar to be an exact match to the targeted speech signal. These temporal mismatches between 

the exemplar and the targeted speech signals will result in mismatch between the activation tensors 

of the exemplar and the targeted speech. A synchronization matrix has been adopted to address this 

issue [112]. With the exemplar signal, a joint decomposition using the mixture and exemplar 

spectrograms have been developed to obtain improved estimates of the spectral basis tensor 𝑾 and 

the temporal tensor 𝑯. This is done allowing the exemplar signal to be factorized using similar 

model i.e., multiple components NMF2D 𝑝𝑦,𝑓,𝑛𝑦
≈ ∑ ∑ ∑ 𝑤𝑓−𝜙,k,𝜏

𝑦 ℎ𝑘,𝑛−𝜏,𝜙
𝑦𝜙𝑚𝑎𝑥

𝜙 =0
𝜏𝑚𝑎𝑥
𝜏=0

𝐾𝑔

𝑘=1
 and 

constraining the structures of spectral basis and temporal tensors between the target and exemplar 

signals. (5.21) augment with a weighted joint factorization of the exemplar spectrogram as follows: 

𝒥 = ∑ 𝐷𝐼𝑆(𝑝̂𝑗,𝑓𝑛| ∑ 𝑤𝑓−𝜙,𝑘 ,𝜏
𝑗

ℎ𝑘,𝑛−𝜏,𝜙
𝑗 

𝑘 ,𝜏,𝜙 )

𝑗,𝑓,𝑛

+ 𝜂𝐷𝐼𝑆 (𝑝𝑦,𝑓𝑛𝑦
| ∑ 𝑤𝑓−𝜙,k,𝜏

𝑦
ℎ𝑘,𝑛𝑦−𝜏,𝜙

𝑦 
𝑘,𝜏,𝜙 )

⏟                                                  
𝒥1

− 

∑ log (𝛿 (‖𝑾𝑘
𝑗 ‖

2
− 1))

𝑗,𝑘⏟                
𝒥2

+ ∑ (𝜆𝑘,𝑛,𝜙
𝑗 ℎ𝑘,𝑛,𝜙

𝑗 − log 𝜆𝑘,𝑛,𝜙
𝑗 )

𝑗,𝑘,𝑛,𝜙⏟                    
𝒥3

                                  (5.22) 

 

In above, 𝜂 is the scalar that weigh the importance of the exemplar signals in the factorization 

process. The term 𝒥1 represents the matrix factorization of the sources and exemplar spectrograms  

into the spectral basis and activation tensors, 𝒥2 denotes the regularization on the spectral basis, 

and 𝒥3 represents the sparseness of the activation. The regularization involving 𝛿 (‖𝑾𝑘
𝑗

‖
2

− 1) 

can be satisfied by explicitly normalizing each spectral dictionary to unity i.e. 𝑤𝑓,𝑘 ,𝜏
𝑗 =

𝑤𝑓,𝑘,𝜏
𝑗 √∑ (𝑤

𝑓,𝑘,𝜏

𝑗
)

2

𝑓 ,𝜏⁄ . Using the definition of the Itakura-Saito divergence and by letting 𝑣𝑓𝑛
𝑔

 =

∑ 𝑤
𝑓−𝜙,𝑘,𝜏

𝑔
  

ℎ
𝑘,𝑛−𝜏,𝜙

𝑔
   

𝑘 ,𝜏,𝜙 , 𝑣𝑓𝑛
𝑏  = ∑ 𝑤𝑓 −𝜙,𝑘,𝜏

𝑏
  

ℎ𝑘,𝑛−𝜏,𝜙
𝑏

   

𝑘 ,𝜏,𝜙  and 𝑣𝑓𝑛
𝑦  = ∑ 𝑤

𝑓−𝜙,𝑘,𝜏

𝑦
  

ℎ
𝑘,𝑛−𝜏,𝜙

𝑦
   

𝑘 ,𝜏,𝜙 , the 

above cost function reduces up to the constant terms to  
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𝒥 =
𝑐

∑ (𝑝̂1,𝑓𝑛 𝑣𝑓𝑛
𝑔−1

− log  𝑣𝑓𝑛
𝑔−1

)

𝑓,𝑛

+ ∑ 𝜆𝑘,𝑛,𝜙
𝑔 ℎ𝑘,𝑛,𝜙

𝑔 −

𝑘,𝑛,𝜙

∑ log𝜆𝑘,𝑛,𝜙
𝑔

𝑘,𝑛,𝜙

 

+ ∑ (𝑝̂2,𝑓𝑛 𝑣𝑓𝑛
𝑏−1

− log  𝑣𝑓𝑛
𝑏−1

)

𝑓 ,𝑛

 + ∑ 𝜆𝑘,𝑛,𝜙
𝑏 ℎ𝑘,𝑛,𝜙

𝑏 −

𝑘,𝑛,𝜙

∑ log𝜆𝑘,𝑛,𝜙
𝑏

𝑘,𝑛,𝜙

                      

+ ∑ 𝜂 (𝑝𝑦,𝑓𝑛𝑦
 𝑣𝑓𝑛𝑦

𝑦−1

− log  𝑣𝑓𝑛𝑦

𝑦−1

)       

𝑓,𝑛𝑦

                                                             (5.23) 

The MU approach will be used to estimate 𝑾𝑔  and 𝑯𝑔: 

𝜽 ← 𝜽 ∙
[𝛻𝒥]−

[𝛻𝒥]+

                                                                (5.24) 

where 𝛻𝒥 = [𝛻𝒥]+ − [𝛻𝒥]−. This leads to 

𝑤
𝑓′,𝑘′ ,𝜏′
𝑔

 

← 𝑤
𝑓′,𝑘′ ,𝜏′
𝑔

∑ 𝑝̂1,𝑓′ +𝜙,𝑛𝑣
𝑓′ +𝜙,𝑛

𝑔−2

ℎ
𝑘′ ,𝑛−𝜏′ ,𝜙

𝑔

𝜙,𝑛 + 𝜂 ∑ 𝑝𝑦,𝑓′ +𝜙,𝑛𝑦
𝑣

𝑓′+𝜙,𝑛𝑦

𝑦−2

ℎ
𝑘′,𝑛𝑦−𝜏′ ,𝜙

𝑦

𝜙,𝑛𝑦

∑ 𝑣
𝑓′ +𝜙,𝑛

𝑔−1

ℎ
𝑘′,𝑛−𝜏′ ,𝜙

𝑔

𝜙,𝑛 +  𝜂 ∑ 𝑣
𝑓′ +𝜙,𝑛𝑦

𝑦−1

ℎ
𝑘′ ,𝑛𝑦−𝜏′ ,𝜙

𝑦

𝜙,𝑛𝑦

   (5.25) 

given that 𝑾𝑦 = 𝑾𝑔  [86]. 

ℎ
𝑘′ ,𝑛′ ,𝜙′
𝑔

← ℎ
𝑘′ ,𝑛′ ,𝜙′
𝑔 (

∑ 𝑝̂1,𝑓,𝑛′ +𝜏𝑣
𝑓,𝑛′+𝜏

𝑔−2

𝑓,𝜏 𝑤
𝑓−𝜙′ ,𝑘′,𝜏

𝑔
+ 𝜂 ∑ 𝑤

𝑓−𝜙′ ,𝑘′,𝜏

𝑦
𝑝𝑓,𝑛𝑦

′ +𝜏𝑣
𝑓,𝑛𝑦

′ +𝜏

𝑦−2

𝑓,𝜏,𝑛𝑦
′ 𝑑𝑛𝑦

′ ,𝑛′  

∑ 𝑣
𝑓 ,𝑛′ +𝜏

𝑔−1

𝑓,𝜏 𝑤
𝑓−𝜙′ ,𝑘′,𝜏

𝑔 + 𝜆
𝑘′,𝑛′ ,𝜙′
𝑔 + 𝜂 (∑ 𝑤

𝑓−𝜙′ ,𝑘′,𝜏

𝑦 𝑣
𝑓,𝑛𝑦

′ +𝜏

𝑦−1

𝑑𝑛𝑦
′ ,𝑛′𝑓,𝜏,𝑛𝑦

′ + 𝜆
𝑘′,𝑛𝑦

′ ,𝜙′
𝑦 𝑑𝑛𝑦

′ ,𝑛′ )
) 

(5.26) 

given that 𝑯𝑦 = 𝑯𝑔 𝐷𝑇[86], where 𝐷 is the synchronization matrix [112] of dimension 𝑁𝑦 × 𝑁 to 

ameliorate the temporal mismatch between the exemplar and the mixture. For the sparsity term, the 

update is obtained by solving 
𝜕

𝜕𝜆
𝑘′ ,𝑛′ ,𝜙′
𝑔 〈𝑙𝑜𝑔 𝑝(𝑪, 𝜽|𝑿 )〉

𝑃(𝑪|𝑿, 𝜽′)
= 0 which leads to 

𝜆
𝑘′,𝑛′ ,𝜙′
𝑔

=
1

ℎ
𝑘′ ,𝑛′ ,𝜙′
𝑔                                                            (5.27) 

By following the same procedure as above, 𝑾𝒃, 𝑯𝒃 and 𝜆𝑘,𝑛,𝜙
𝑏 can be estimated as follows 
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𝑤𝑓′,𝑘′ ,𝜏′
𝑏 ← 𝑤𝑓′,𝑘′ ,𝜏′

𝑏
∑ 𝑝̂2,𝑓′ +𝜙,𝑛𝑣𝑓′ +𝜙,𝑛

𝑏−2

ℎ𝑘′ ,𝑛−𝜏′ ,𝜙
𝑏

𝜙,𝑛

∑ 𝑣𝑓′+𝜙,𝑛
𝑏−1

ℎ𝑘′ ,𝑛−𝜏′,𝜙
𝑏

𝜙 ,𝑛

                                (5.28) 

ℎ𝑘′,𝑛′ ,𝜙′
𝑏 ← ℎ𝑘′ ,𝑛′ ,𝜙′

𝑏 (
∑ 𝑝̂2,𝑓,𝑛′ +𝜏𝑣𝑓,𝑛′ +𝜏

𝑏−2

𝑓 ,𝜏 𝑤
𝑓−𝜙′ ,𝑘′,𝜏
𝑏  

∑ 𝑣𝑓,𝑛′ +𝜏
𝑏−1

𝑓 ,𝜏 𝑤
𝑓−𝜙′ ,𝑘′ ,𝜏
𝑏 + 𝜆𝑘′ ,𝑛′ ,𝜙′

𝑏
)                             (5.29) 

𝜆𝑘′,𝑛′ ,𝜙′
𝑏 =

1

ℎ𝑘′ ,𝑛′ ,𝜙′
𝑏

                                                           (5.30) 

Similarly, 𝑾𝑦, and 𝑯𝑦 can be estimate as  

𝑤
𝑓′,𝑘′ ,𝜏′
𝑦

← 𝑤
𝑓′,𝑘′ ,𝜏′
𝑦

∑ 𝑝𝑦,𝑓′+𝜙,𝑛𝑦
𝑣

𝑓′+𝜙,𝑛𝑦

𝑦−2

ℎ
𝑘′ ,𝑛𝑦−𝜏′,𝜙

𝑦

𝜙,𝑛𝑦

∑ 𝑣
𝑓′+𝜙,𝑛𝑦

𝑦−1

ℎ
𝑘′,𝑛𝑦−𝜏′ ,𝜙

𝑦

𝜙 ,𝑛

                             (5.31) 

ℎ
𝑘′ ,𝑛𝑦

′ ,𝜙′
𝑦

← ℎ
𝑘′ ,𝑛𝑦

′ ,𝜙′
𝑦

(
∑ 𝑝𝑦,𝑓 ,𝑛𝑦

′ +𝜏 𝑣
𝑓,𝑛𝑦

′ +𝜏

𝑦−2

𝑓 ,𝜏 𝑤
𝑓−𝜙′ ,𝑘′,𝜏

𝑦
 

∑ 𝑣
𝑓 ,𝑛𝑦

′ +𝜏

𝑦−1

𝑓,𝜏 𝑤
𝑓−𝜙′ ,𝑘′,𝜏

𝑦
)                            (5.32) 

 

5.3.4 Semi-Exemplar Based Algorithm 

In this algorithm the exemplar will be used to initialize the targeted speech signal as in eqn. (5.35) 

and eqn. (5.36) of Section 5.3.7, then the MU rule will be used to updates the NMF2D tensors of 

both the speech and background signal. The tensors of the speech signal can be obtained by setting  

𝜂 to zero for eqn. (5.25) and eqn. (5.26) leading to 

𝑤
𝑓′,𝑘′ ,𝜏′
𝑔 ← 𝑤

𝑓′,𝑘′ ,𝜏′
𝑔

∑ 𝑝̂1,𝑓′ +𝜙,𝑛𝑣
𝑓′ +𝜙,𝑛

𝑔−2

ℎ
𝑘′ ,𝑛−𝜏′ ,𝜙

𝑔

𝜙,𝑛

∑ 𝑣
𝑓′+𝜙,𝑛

𝑔−1

ℎ
𝑘′ ,𝑛−𝜏′,𝜙

𝑔

𝜙 ,𝑛

                                (5.33) 

ℎ
𝑘′ ,𝑛′ ,𝜙′
𝑔 ← ℎ

𝑘′ ,𝑛′ ,𝜙′
𝑔 (

∑ 𝑝̂1,𝑓,𝑛′ +𝜏 𝑣
𝑓,𝑛′+𝜏

𝑔−2

𝑓 ,𝜏 𝑤
𝑓−𝜙′ ,𝑘′,𝜏

𝑔  

∑ 𝑣
𝑓 ,𝑛′ +𝜏

𝑔−1

𝑓,𝜏 𝑤
𝑓−𝜙′ ,𝑘′,𝜏

𝑔
+ 𝜆

𝑘′,𝑛′ ,𝜙′
𝑔

)                            (5.34) 

and the same sparsity in eqn. (5.27) will be used. The tensors of the background signal follow 

similarly and they are shown in eqn. (5.28) and eqn. (5.29), while the sparsity update in eqn. (5.30).  
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The semi-exemplar based algorithm use the exemplar signal to initialize the tensors of the NMF2D 

and, thus it depends on the exemplar to give the good start only. On the other hand, the exemplar 

based algorithm uses the exemplar signal not only to give the correct initialization but also to guide 

the whole algorithm through the 2DNMPCF which factorizes both exemplar and mixture signals at 

the same time. Therefore, the exemplar based algorithm recycles the use of signal 𝑦̃(𝑡) more than 

the semi-exemplar based algorithm.  

 

5.3.5 Describing The Targeted Speech Signal By Using The Exemplar 

The description of the targeted speech signal will be carried out indirectly by the exemplar signal 

and with the aid of the NMF2D that optimizes its parameters. The parameters of the NMF2D will 

be optimized by depending on the exemplar signal instead of the mixture. The exemplar is 

considered instead of the targeted speech signal as it is unavailable. The NMF2D is proposed due to 

its ability in descripting the temporal and spectral changes through the convolutive parameters (𝜏 

and 𝜙), and specifying the required number of frequency basis 𝐾.  

The determination of the model order for NMF2D will be realized using the exemplar signal y(t): 

Step 1: Optimize 𝑾𝒚, and 𝑯𝒚 by using eqns. (5.31) and (5.32):  

Step 2: Optimizing 𝜏 and 𝜙:  

1) Set 𝐾 = 1 

2) For 𝜏𝑚𝑎𝑥 = 1 to 𝑇 

            For 𝜙𝑚𝑎𝑥 = 1 to 𝛷 

 Estimate 𝑣𝑓𝑛
𝑦 = ∑ 𝑤

𝑓−𝜙,𝑘,𝜏

𝑦
  

ℎ
𝑘,𝑛−𝜏,𝜙

𝑦
   

𝑘,𝜏,𝜙  

 Estimate the signal-to-distortion ratio (SDR) [113] between the exemplar signal 

𝑝𝑦,𝑓𝑛𝑦
 and its approximate 𝑣𝑓𝑛

𝑦
 in order to evaluated the factorization performance 

Select the convolutive parameters (𝜏𝑚𝑎𝑥 , 𝜙𝑚𝑎𝑥 ) that give the highest SDR. 

 

Step 3: Optimizing K:  

1) For 𝐾 = 2 to 𝐾𝑚𝑎𝑥  

 Estimate 𝑣𝑓𝑛
𝑦

= ∑ 𝑤
𝑓−𝜙,𝑘,𝜏

𝑦
  

ℎ
𝑘,𝑛−𝜏,𝜙

𝑦
   

𝑘,𝜏,𝜙  

 Estimate the SDR between the exemplar signal 𝑝𝑦,𝑓𝑛𝑦
 and its approximate 𝑣𝑓𝑛

𝑦
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Select 𝐾 that give the highest SDR. 

 

5.3.6 Components Reconstruction 

The estimated sources (𝒔̂𝑓𝑛 ) can be reconstructed by using Wiener filtering (𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻𝛴𝑥,𝑓𝑛

−1 ) as in 

eqn. (5.13),  and due to the linearity of the STFT, the inverse-STFT (with dual synthesis window 

[95]) can be used to transform it to the time domain. 

 

5.3.7 Initialization 

The initialization is an essential part for the separation since the NMF2D is very sensitive to the 

initialization. In this chapter, the spectral and temporal tensors of the proposed algorithms will be 

initialized by using the exemplar signal ỹ(t) which itself is decomposed into 𝑤
𝑓,𝑘,𝜏

𝑦
 and ℎ

𝑘,𝑛,𝜙

𝑦
: 

(𝑤
𝑓,𝑘,𝜏

𝑔 )
𝑖𝑛𝑖

= 𝑤
𝑓,𝑘,𝜏

𝑦                                                              (5.35) 

(ℎ
𝑘,𝑛,𝜙

𝑔 )
𝑖𝑛𝑖

= ℎ
𝑘,𝑛𝑌,𝜙

𝑦 𝑑𝑛𝑦 ,𝑛                                                       (5.36) 

where 𝑑𝑛𝑦 ,𝑛 is synchronization parameter [112]. For the background, (𝑤𝑓,𝑘,𝜏
𝑏 )

𝑖𝑛𝑖
 and (ℎ𝑘,𝑛,𝜙

𝑏 )
𝑖𝑛𝑖

 

will be randomly initialized. Thus the mixture can be initialized as follows: 

(𝑤𝑓,𝑘,𝜏
𝑥 )

𝑖𝑛𝑖
= [(𝑤

𝑓,𝑘,𝜏

𝑔 )
𝑖𝑛𝑖

(𝑤𝑓,𝑘,𝜏
𝑏 )

𝑖𝑛𝑖
]                                            (5.37) 

(ℎ𝑘,𝑛,𝜙
𝑥 )

𝑖𝑛𝑖
= [

(ℎ
𝑘,𝑛,𝜙

𝑔
)

𝑖𝑛𝑖

(ℎ𝑘,𝑛,𝜙
𝑏 )

𝑖𝑛𝑖

]                                                    (5.38) 

 

Table 5.1 and 5.2 summarize the proposed algorithms.  

 

 

Table 5.1: Proposed algorithm 1 (Semi-Exemplar) 

1. Optimize the convolutive parameters and number of components based on the exemplar. 

2. Initialize 𝑤
𝑓,𝑘,𝜏

𝑔
and ℎ

𝑘,𝑛,𝜙

𝑔
 based on the exemplar, 𝑤𝑓 ,𝑘,𝜏

𝑏  and ℎ𝑘,𝑛,𝜙
𝑏  randomly. 

3. Generate the pseudo channel 𝑥̃2(𝑡) as in eqn. (5.2). 
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4. Apply the STFT on the mixture signal. 

5. E-step: compute 𝑝̂𝑗𝑓𝑛  and 𝑠̂𝑓𝑛 using eqns. (5.12) and (5.13), respectively.  

6. M-step: compute 𝐴𝑓 , 𝛴𝑛, 𝑤𝑓,𝑘,𝜏
𝑔 , ℎ

𝑘,𝑛,𝜙

𝑔 , 𝜆𝑘,𝑛,𝜙
𝑔 , 𝑤𝑓,𝑘,𝜏

𝑏 , ℎ𝑘,𝑛,𝜙
𝑏 , and  𝜆𝑘,𝑛,𝜙

𝑏  using eqn. (5.18), eqn. 

(5.20), eqn. (5.33), eqn. (5.34), eqn. (5.27), eqn. (5.28), eqn. (5.29), and eqn. (5.30).  

7. Normalize 𝑤𝑓,𝑘,𝜏
𝑥 = 𝑤𝑓,𝑘,𝜏

𝑥 √∑ (𝑤𝑓 ,𝑘,𝜏
𝑥 )

2

𝑓,𝑘,𝜏⁄    

8. Repeat E- and M-steps, and the normalization until convergence is achieved i.e. rate of cost 

change is below a prescribed threshold, 𝜓. 

9. Perform inverse STFT with dual synthetic window to estimate 𝑔̃(𝑡), and 𝑏̃(𝑡). 

 

 

Table 5.2: Proposed algorithm 2 (Full-Exemplar) 

1. Optimize the convolutive parameters and number of components based on the exemplar 

2. Initialize 𝑤
𝑓,𝑘,𝜏

𝑔
and ℎ

𝑘,𝑛,𝜙

𝑔
 based on the exemplar, 𝑤𝑓 ,𝑘,𝜏

𝑏  and ℎ𝑘,𝑛,𝜙
𝑏  randomly 

3. Generate the pseudo channel 𝑥̃2(𝑡) as in eqn. (5.2)  

4. Apply the STFT on the mixture signal. 

5. E-step: compute 𝑝̂𝑗𝑓𝑛  and ŝfn using eqns. (5.12) and (5.13), respectively. 

6. M-step: compute 𝐴𝑓 , 𝛴𝑛, 𝑤𝑓,𝑘,𝜏
𝑦

, ℎ
𝑘,𝑛𝑦,𝜙

𝑦
, 𝑤𝑓,𝑘,𝜏

𝑔
, ℎ

𝑘,𝑛,𝜙

𝑔
, 𝜆𝑘,𝑛,𝜙

𝑔
, 𝑤𝑓,𝑘,𝜏

𝑏 , ℎ𝑘,𝑛,𝜙
𝑏 , and  𝜆𝑘,𝑛,𝜙

𝑏  using eqn. 

(5.18), eqn. (5.20), eqn. (5.31), eqn. (5.32), eqn. (5.25), eqn. (5.26), eqn. (5.27), eqn. (5.28), eqn. 

(5.29), and eqn. (5.30).  

7. Normalize 𝑤𝑓,𝑘,𝜏
𝑥 = 𝑤𝑓,𝑘,𝜏

𝑥 √∑ (𝑤𝑓 ,𝑘,𝜏
𝑥 )

2

𝑓,𝑘,𝜏⁄    

8. Repeat E- and M-steps, and the normalization until convergence is achieved i.e. rate of cost 

change is below a prescribed threshold, 𝜓. 

9. Perform inverse STFT with dual synthetic window to estimate 𝑔̃(𝑡), and 𝑏̃(𝑡). 
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5.4 Results and Discussions 

5.4.1 Dataset 

The performance of the proposed algorithms was investigated and compared with recent 

state-of-art text informed source separation [86]. For fair comparison, the same datasets was used. 

These datasets are 10 speech mixtures that mixed with music (Speech + music) and with effect 

(Speech + Fx). So it resulted in 20 mixtures in total. For each mixture the speech is emulated by 

using 12 exemplars (synth Man, Synth Woman, TMT Man, TMT woman, and other 8 foreign 

speakers). Thus there were 240 experiments (generated from the 20 mixtures and the 12 exemplars 

for each mixture) for SNR of -5dB.   

 

5.4.2 Evaluation  

In order to evaluate the proposed algorithm the SDR [98] that combines both the 

source-to-interference ratio (SIR), source image-to-spatial distortion ratio (ISR), and the 

source-to-artefacts ratio (SAR) will be used to evaluate the estimated sources with respect to the 

original sources. The Matlab codes for this evaluation procedure can be found in [99].  

 

5.4.3 Selections of  𝜂, 𝛿, and 𝛾 

The contribution of the exemplar on the separation is weighted by 𝜂, so if 𝜂 = 0 the exemplar will 

have little effect, while if its value increased the exemplar will have more influence.  According to 

[86] the value of 𝜂 can be found as follows 

𝜂 = 𝜂0

𝑁

𝑁𝑦

                                                                  (5.39) 

where 𝑁 and 𝑁𝑦 is the temporal length of the mixture and the exemplar, respectively, and for our 

case 𝜂0  has been set to 𝜂0 = 0.5.  

The other parameter, which is the time-delay δ can be computed as follows [111] 

𝛿𝑚𝑎𝑥 <
𝑓𝑠

2𝑓𝑚𝑎𝑥

                                                                (5.40) 



 

 

115 
 

where 𝑓𝑠 is the sampling frequency and 𝑓𝑚𝑎𝑥  is the maximum frequency presented in the mixture. 

For the weighting parameter 𝛾 that determine the attenuation on the delayed mixture 𝛾𝑥̃1(𝑡 − 𝛿) 

(see eqn. (5.2)), it has been found that exists a range of γ with high SDR as shown Figure 5.2. The 

plot suggests that this range to be 0.1 ≤ γ ≤ 0.25. In all our cases, we use γ = 0.15. 

. 

 

 

 

 

 

 

 

 

 

 

 

5.4.4 Optimization of 𝜏, 𝜙, 𝒂𝒏𝒅 𝛫 

By following the procedure described in Section 5.3.5 (setting 𝛵 = 10, 𝛷 = 10, and 𝐾𝑚𝑎𝑥 = 10), 

the results for one exemplar are shown in Figure 5.3. Figure 5.3(a) shows that the best SDR is 

attained at 𝜏 = 9 and 𝜙 = 1. In addition, Figure 5.3(b) reveals that 𝐾 = 2 results in the optimum 

number of components. By following the same procedure the parameters of the exemplars for 

mixture 1 to 10 are tabulated in Table 5.3. It can be seen from Table 5.3, that there is 120 different 

parameters (𝜏, 𝜙, 𝑎𝑛𝑑 𝛫) . These 120 different parameters came from 120 different exemplars 

(each speech signal in the mixture is emulated by 12 exemplars, and as there are 10 mixtures, this 

results in 120 exemplars)4.  Despite 12 exemplars emulate the same speech signal, they have 

different parameters because they derived from different speakers (native and on-native English 

speaker) and different genders, and as a result of these differences there will be a different 

parameters of the NMF2D that describe each exemplar. 

 

 
4
 The 120 (Speech+Music) mixture group and the 120 (Speech+Effects) mixture group have the same speech signal. 

Figure 5.2.  The SDRs w.r.t. different values of 𝛾. 
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(a) 

Figure 5.3:  The SDRs w.r.t. (a) 𝜏 and 𝜙, (b) Number of components 𝐾. 

(b) 
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Exemplar 1 2 3 4 5 6 

 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 

Mix 1 10, 2, 1 10, 1,1 8, 1, 1 1, 1, 1 10, 0, 1 9, 0, 1 

Mix 2 1, 0, 1 1, 0, 5 1, 0, 1 5, 1, 1 3, 0, 1 5, 0, 2 

Mix 3 3, 0, 1 1, 0, 3 2, 0, 1 1, 0, 3 4, 0, 1 6, 0, 1 

Mix 4 6, 0, 1 5, 0, 1 4, 0, 1 1, 0, 1 1, 0, 1 1, 0, 3 

Mix 5 1, 0, 1 4, 0, 1 1, 0, 1 0, 1, 2 10, 0, 1 1, 0, 1 

Mix 6 1, 0, 1 1, 0, 1 5, 0, 1 1, 0, 1 6, 0, 1 4, 0, 1 

Mix 7 1, 0, 1 0, 1, 1 1, 0, 1 6, 0, 1 9, 0, 1 5, 1, 1 

Mix 8 1, 0, 1 1, 0, 1 3, 0, 1 0, 1, 4 5, 0, 1 7, 0, 1 

Mix 9 1, 0, 1 1, 0, 1 1, 0, 1 1, 0, 1 5, 0, 1 10, 0, 1 

    Mix 10 1, 0, 1 1, 1, 1 1, 0, 1 10, 1,1 1, 0, 1 5, 0, 1 

Exemplar 7 8 9 10 11 12 

 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 𝝉, 𝝓, 𝒌 

Mix 1 9, 0, 1 9, 0, 1 8, 0, 1 4, 0, 1 1, 0, 1 1, 0, 1 

Mix 2 4, 0, 1 6, 0, 1 7, 0, 1 10, 0, 2 3, 0, 1 0, 1, 1 

Mix 3 7, 0, 1 9, 0, 1 10, 0, 1 10, 0, 2 6, 0, 1 1, 0, 1 

Mix 4 10, 0, 1 1, 0, 1 10, 0, 1 10, 0, 2 2, 0, 1 2, 0, 1 

Mix 5 1, 0, 1 1, 0, 1 10, 0, 1 7, 1, 1 10, 0, 1 1, 0, 1 

Mix 6 8, 1, 2 6, 0, 1 9, 0, 1 9, 1, 2 6, 0, 1 1, 0, 1 

Mix 7 10, 0, 1 8, 0, 1 7, 0, 1 10, 0, 1 8, 0, 1 0, 1, 2 

Mix 8 6, 0, 1 6, 0, 1 9, 0, 1 10, 0, 1 4, 0, 1 1, 0, 1 

Mix 9 7, 0, 2 8, 0, 1 8, 0, 1 5, 0, 1 1, 0, 1 1, 0, 1 

    Mix 10 4, 0, 1 5, 0, 1 10, 0, 1 10, 0, 2 1, 0, 1 3, 0, 1 

Table 5.3 

Optimizing the parameters of the exemplars for mixtures 1 to 10. 

. 
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5.4.5 Results  

The STFT windows length was set to 512 with 50% overlaps. To show the convergence of the 

proposed algorithms, the convergence of the cost functions eqn. (5.10) of both algorithms are 

shown in Figure 5.4. This plot is obtained for one mixture with twelve exemplars. It is noted that all 

trajectories have converged to the steady state in less than 50 iterations. The fast and stable 

convergence is attributed to the manner of how the GEM-MU algorithm adapts the model 

parameters and latent variables. 

The proposed algorithms will be compared with the NMPCF model based on the excitation-filter 

channel speech model [86]. In this algorithm the variations between the speech example and the 

targeted speech in the mixture such as pitch variation, phonemes pronounced, recording 

conditions, and speaker’s vocal tract are modelled by the excitation-filter channel speech model. 

The NMPCF jointly factorizes the spectrograms of the mixture and the exemplar that emulate the 

speech signal. Also, the proposed algorithms will be compared with the Gaussian Scaled Mixture 

Model (GSMM) [86] with constraints applied on the matrices of the excitation-filter channel 

speech model under the NMPCF model umbrella, in order to have a physical motivation, such as 

allowing one phoneme to be pronounced at a time and one fundamental frequency to be active at a 

time.  

The SDRs of the NMPCF model based on the excitation-filter channel speech model [86], the 

structural GSMM algorithm [86], and the proposed algorithms are tabulated in Table 5.4. The 

Table indicates that the proposed algorithms have better performance than the NMPCF, which can 

(a) (b) 

Figure 5.4:  Cost function for (a) Semi-Exemplar based algorithm and (b) Exemplar 

based algorithm. 
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be summarized as follows: An achievement of 2.57 dB more for the speech and music group, and 

1.89 dB more for the speech and effects group for the Semi-Exemplar based algorithm.  For the 

Exemplar based algorithm an achievement of 3.12 dB more for the speech and music group, and 

3.37 dB more for the speech and effects group. Furthermore, the Exemplar based algorithm 

achieved an improvement of 1.86 dB for the speech and effects group and 0.16 dB for the speech 

and music group, in comparison with the structural GSMM algorithm. On the other hand, the 

Semi-Exemplar based algorithm achieves 0.38 dB more for the speech and effects group, and 0.39 

dB less for the speech and music group. Although the proposed semi-exemplar based algorithm is 

less dependent on the exemplar signal, its high performance is attributed to the pseudo-stereo 

channels. 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed algorithms have achieved higher results than the NMPCF since they have more 

powerful source representation the NMF2D and the 2DNMPCF, which address the change in the 

time and frequency directions through the parameters (𝜏 and 𝜙). To show the effects of these 

parameters, one component of the 𝑾 and 𝑯 tensors and its corresponding spectrogram for both the 

NMPCF and the proposed 2DNMPCF has been plotted in Figure 5.5(a) and Figure 5.5(b), 

respectively. Both plots show how 𝑾 modelled the changes in the frequencies of the source and 

how 𝑯  modelled the distribution in the time domain. On the separate hand, 𝑾  and 𝑯  of the 

NMPCF detect the frequency bases, however it was not able to address the frequency and the 

temporal changes.  

SNR= -5dB 
SPEECH + 

Music 

SPEECH + 

Fx 

NMPCF -0.74 0.67 

Structural GSMM 2.22 2.18 

Proposed Semi-Exemplar 

based algorithm 
1.83 2.56 

Proposed Exemplar based 

algorithm 
2.38 4.04 

Table 5.4 

Average SDRs of the 10 mixtures with their different 12 exemplars for the NMPCF and the 

proposed algorithms. 
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Figure 5.5:  One component of W, and H with their corresponding spectrogram for 

the (a) NMPCF and (b) 2DNMPCF. 
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Additionally, the spectrogram of the original speech, the exemplar, the mixture, and the estimated 

speech by using the proposed algorithms and the NMPCF are shown in Figure 5.6. These plots 

clearly show that the proposed algorithms have successfully detected the pitch and temporal 

change of the source, due to its two-dimensional deconvolution while NMPCF failed to detect 

these changes. Furthermore, Figure 5.7 shows the waveforms of these signals.  

Finally, from Table 5.4 it can be seen that the Exemplar based algorithm achieved better separation 

results than the Semi-Exemplar based algorithm since the latter only uses the exemplar to initialize 

the tensors of the targeted speech signal. Thus the initialization will guide the algorithm for the first 

iteration and gives the correct start but it may get trapped in local minima or drifted away from the 

solution as the iterations increases. Although the Exemplar based algorithm has been given the 

identical start as the Semi-Exemplar based algorithm, its separation is guided by the 2DNMPCF 

which models both the exemplar and the targeted speech signal. To show this, the waveform of the 

original voice, exemplar, and the estimated voice by using these two algorithms are shown in 

Figure 5.8. The   plot   indicates   that the exemplar based algorithm has successfully estimated the 

original source. This shows the importance and contribution of 2DNMPCF on the proposed 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.6: Spectrogram of the original speech, exemplar, and the estimated speech by 

using the proposed algorithms and the NMPCF algorithm. 

n
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Figure 5.7: Waveform of the original speech, exemplar, and the estimated speech by using 

the proposed algorithms and the NMPCF algorithm. 

 

Figure 5.8: Waveform of the original speech, exemplar, and the estimated speech by using 

the proposed algorithms. 
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5.5 Multistage of The Exemplar Based Algorithm 

This section will take advantage from the characteristics of the spectrograms under different 

windows length, where the length of the window has an effect on the separation performance [50, 

93]. In the short window the spectrogram of the percussive musical instruments is continue in the 

spectral direction and discrete in the temporal direction, which act differently from the spectrogram 

of the speech and pitch musical instrument that continue in temporal direction and discrete in 

spectral direction. Therefore, the percussive instruments are distinct from the pitched instruments 

and speech signals which make them more separable under short window.  

Furthermore, the speech signals act like percussive musical instruments in long window. 

Therefore, two stages of the proposed exemplar based algorithm with short (512-samples) and long 

(1024-samples) windows will be proposed, as shown in Figure 5.9. In the short window’s stage the 

frequency basis of the percussive instruments will be removed (as it will act differently from the 

pitched and speech signals), while in the long window’s stage the frequency basis of pitch musical 

instruments and the speech signal will be separated (as the speech signal act differently from 

pitched instruments).  
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Figure 5.9:  High level presentation of the multistage of the exemplar based algorithm. 
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The background subtraction is done in the spectral domain as follows 

𝒙𝑓𝑛́ = 𝒙𝑓𝑛 − 𝒃𝑓𝑛                                                              (5.41) 

where 𝑏̂𝑓𝑛 is the estimated background signal as in eqn. (5.13), and 𝒙𝑓𝑛́  is the mixture signal after 

removing the estimated background signal. By following this procedure the results for the “speech 

and music”5 group is tabulated in Table 5.5. It can be seen that the average SDR has been increased 

by 0.72 dB.  Furthermore, the spectrogram of the mixture, the original speech and background 

sources, and their estimate for both stages are shown in Figure 5.10. It can be seen that the 

spectrograms of the percussive instruments has been separated clearly, as shown in the 

spectrograms of the estimated background of stage one, while the speech and pitched instruments 

still mixed together (they have the same characteristics in the short window) as shown in the 

spectrograms of the estimated speech signal of stage one. While, the spectrograms of the second 

stage show that the speech signal is clearer than the spectrogram of the first stage where a part 

(ideally all) of the spectrograms of the pitched instruments has been removed, as the speech signal 

act like percussive instruments in long window. Thus the second stage enhanced the separation 

performance by removing the pitched spectrograms that the first stage did not remove.     

 

 

 

 

 

 

 

SNR= -5dB 

SPEECH + Music 

First Stage 

Window=512  

SPEECH + Music 

Second Stage 

Window=1024 

Proposed Exemplar based 

algorithm 
2.38 3.10 

 

 

 

 

 
 

5 This approach cannot be applied on “Speech+Effects” group as the effects have random spectral features which 

cannot be modeled with short or long window. 

Table 5.5 

Average SDRs of the 10 mixtures with their different 12 exemplars for the Multistage of the 

Exemplar based algorithm. 
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Figure 5.10: Spectrograms of the original speech and original background, and their estimate 

 for the first and the second stage of the proposed multistage algorithm. 
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5.6 Summary 

In this chapter two algorithms for the underdetermined informed source separation, namely the 

semi-exemplar based algorithm and the exemplar-based algorithm have been proposed. These 

algorithms are based on the two dimensional matrix factorization techniques, the NMF2D and the 

proposed 2DNMPCF. These two dimensional factorization techniques have the advantage of 

describing the targeted signal by describing the pitch and temporal changes of that signal, which 

cannot carry out by the NMF or NMPCF. For faster convergence and better performance both of 

the algorithms are modelled by the GEM-MU algorithm with pseudo-stereo channel and with 

adaptive sparsity. It has been shown that the proposed algorithm outperformed the NMPCF 

algorithm and the structural GSMM algorithm. Furthermore, it has been shown that by using a 

multistage of the proposed exemplar based algorithm the overall performance can be enhanced. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 
 

 

In this chapter the contributions will be summarized and the future work of the thesis will be 

discussed. 

The work in this thesis has fulfilled the aims of the research set out in Chapter 1. The advantage of 

the two dimensional factorization techniques over the matrix factorization techniques paved the 

way for the development of four underdetermined separation algorithms as follows: Firstly, the 

NMF2D has been developed for the convolutive underdetermined mixture. The convolutive 

NMF2D achieved better performance than the NMF due to its ability in addressing both the 

temporal and spectral change of the signal. Secondly, the K-wNTF2D has been developed to 

address a more realistic case in blind source separation which is the high-reverberant convolutive 

underdetermined mixture. The K-wNTF2D maintains its high level performance in the high 

reverberation environment due to its ability in modeling both the spectral and temporal changes, 

and the spatial covariance matrix. Thirdly, the semi-exemplar based and the full exemplar based 

algorithms have been developed. These two algorithms have been dedicated to the informed source 

separation. Both algorithms achieved better performance than the conventional methods due to 

their ability in describing the exemplar which cannot be carried out by the conventional methods. 

The above algorithms have been modeled with adaptive/ variable sparsity in order to avoid the over 

or under sparseness. Finally, essential algorithms; the Gamma-exponential algorithm and the 

SVD2D algorithm have been developed to support the separation algorithms by estimating their 

model order to avoid over shifting and initialize them to prevent them from stuck in local minima 

or even diverge. 

In Chapter 2, the theories which paved the understanding of the work that carried out in the rest of 

the chapters have been explained. The overview of the blind source separation and informed source 

separation was presented. The motivation behind considering the convolutive mixture instead of 

the instantaneous one, and the motivation behind tackling the high-reverberant mixture were 

discussed. Furthermore, the potential of going from blind to informed source separation was 

shown. Moreover, the factorization techniques such as the NMF, NMFD, NMF2D, NTF, and 
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NTF2D have been explained. Additionally, the parameters those effects on the separation 

performance have been highlighted and discussed.  

In Chapter 3 the NMF2D with adaptive sparsity has been proposed to solve the underdetermined 

convolutive mixture. The impetus behind this is that the NMF2D is more powerful than the NMF 

due to its ability in addressing both the temporal and spectral change of the signal. Furthermore the 

adaptation of the adaptive sparsity in this model gives it the capability to control the degree of 

sparseness over the activation matrix of the NMF2D. Also the proposed Gamma-Exponential 

process algorithm ensured that a suitable number of frequency basis and convolutive parameters 

are assigned to each source in order to avoid over-shifting. Moreover, the proposed 

Gamma-Exponential process algorithm has been used to initialize the tensors of the NMF2D in 

order to avoid the separation algorithm to stick in local minima or to even diverge. Additionally it 

has been shown that using different windows length will match the characteristics of the sources to 

be estimated and this will leads to better representation for them. The significant improvements in 

the results in term of the SDRs showed that the proposed algorithm is better than the conventional 

methods that based on NMF or NTF and it is more flexible.  

In Chapter 4 the K-wNTF2D with variable sparsity has been proposed to solve the more realistic 

case in blind source separation which is the underdetermined high-reverberant convolutive 

mixture. The motivation behind proposing the K-wNTF2D in this chapter is due to its ability in 

modeling both the spectral and temporal changes, and the spatial covariance matrix that address the 

high reverberation problem. Furthermore, the variable sparsity that derived from the Gibbs 

distribution has been integrated with this model in order to provide a tractable approach that adapts 

each sparse parameter for every temporal code in the K-wNTF2D model. Moreover, the SDV2D 

initialization method has been proposed in this chapter to initialize the tensors of the K-wNTF2D in 

order to avoid divergence or sticking in undesired minima. The experiments in this chapter showed 

that the proposed algorithm maintains its high level performance in the high reverberation 

environment, where it achieved higher performance than the Full-Rank NMF and the multi- level 

NMF.  

In Chapter 5 two algorithms which based on the NMF2D and the proposed 2DNMPCF models 

have been proposed to solve the informed source separation, namely the semi-exemplar based 

algorithm and the exemplar-based algorithm. Both algorithms were depending on the provided 

exemplar that emulates the speech signal to be separated. The impetus behind using the NMF2D 
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and the proposed 2DNMPCF models here is due to their ability in describing the exemplar which 

cannot carry out by the NMF or NMPCF. Furthermore, to enhance the performance of the 

separation a multistage of the exemplar-based algorithm has been proposed. The first stage of the 

proposed multistage algorithm has been modeled with short window to remove the percussive 

sources, while the second stage has been modeled with long window in order to separate the speech 

signal from the pitched one. Throughout the experiments it has been shown that the proposed 

algorithms outperformed the NMPCF algorithm and the structural GSMM algorithm. 

All the proposed algorithms in the thesis have been compared in terms of the type of audio source 

separation, cost function, update of the parameters, and sparsity, as shown in Table 6.1. In terms of 

the computational complexity, the K-wNTF2D requires the most computational resources 

compared to the Convolutive NMF2D, and the Exemplar-Based algorithm and the Semi-Exemplar 

based algorithm, as it avoided the narrowband assumption by considering the full-rank spatial 

covariance matrix instead of rank one matrix. The performance of proposed algorithms depends in 

some degrees on the prior information provided to them. In the Convolutive NMF2D and the 

K-wNTF2D, the prior information takes the form of how the specific source is modelled. In the 

Exemplar-Based algorithm and the Semi-Exemplar based algorithm, the prior information takes 

the form of how similar the exemplar is to the targeted signal to be separated.  
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Algorithm 

Type of Audio 

Source 

Separation 

Cost Function Update Sparsity 

Convolutive 

NMF2D 
Blind IS GEM-MU Adaptive 

K-wNTF2D Blind 
IS GEM-MU 

Variable 

Sparsity 

Exemplar Based 

Algorithm 
Informed 

IS GEM-MU Adaptive 

Semi-Exemplar 

Based Algorithm 
Informed 

IS GEM-MU Adaptive 

2DNMPCF Informed - 
- - 

Gamma 

Exponential 

Process 

Blind - 
- - 

SVD2D Blind - 
- - 

Table 6.1: Summary of the proposed algorithms. 
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6.1 Future Works 

In this section some research areas in both the blind and informed source separation will be presented 

for future investigation with the goal of developing novel algorithms. 

 

6.1.1 Harmonic and Percussive Source Separation  

Recently many researches have been dedicated to separate the harmonic and percussive sources 

[114-121] due to the distinct characteristics of their spectrogram. Harmonic instruments are 

smooth and continue in temporal direction and discrete in spectral direction, and the opposite for 

the percussive instruments. Inspired by the harmonic and percussive source separation algorithm 

[114], an algorithm will be proposed for separating the harmonic and percussive musical 

instruments by customizing the two dimensional matrix factorization techniques to match the 

characteristics of these signals. Instead of using two stages with different windows to match the 

characteristics of these signals one stage only will be proposed but with different convolutive 

parameters for each source, such as using high 𝜏 and low 𝜙 for the harmonic signal and low 𝜏 and 

high 𝜙  for percussive signal, as shown in Figure 6.1. The idea is to use the proposed 

Gamma-Exponential process to estimate the convolutive parameters, and then use these parameters 

to model the mixture as follows 

𝑥𝑓𝑛 = 𝒂1,𝑓𝑝𝑓𝑛 + 𝒂2,𝑓ℎ𝑓𝑛                                                        (6.1) 

where 𝑎𝑗,𝑓 (j=1 or 2) is the time invariant mixing matrix,  𝑝𝑓𝑛 is the percussive signal and ℎ𝑓𝑛 is the 

harmonic signal, which can be expressed by  𝐾 complex-valued latent components, i.e., 

𝑝𝑓𝑛 = ∑ 𝑐𝑘,𝑓𝑛
𝑝

𝐾

𝑘=1

                                                             (6.2𝑎) 

and 

ℎ𝑓𝑛 = ∑ 𝑐𝑘,𝑓𝑛
ℎ

𝐾𝑗

𝑘 =1

                                                              (6.2𝑏) 

which can be modeled as realization of proper complex zero-mean variables: 

𝑐𝑘,𝑓𝑛
𝑝 = 𝒩𝑐 (0, ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏

𝑝 ℎ𝑘,𝑛−𝜏,𝜙
𝑝

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑖𝑛

𝜏=0

)                                      (6.3) 
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𝑐𝑘 ,𝑓𝑛
ℎ = 𝒩𝑐 (0, ∑ ∑ 𝑤𝑓−𝜙,𝑘,𝜏

ℎ ℎ𝑘,𝑛−𝜏,𝜙
ℎ

𝜙𝑚𝑖𝑛

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

)                                        (6.4) 

where 𝒩c (μ, Σ) is proper complex Gaussian distribution [94], 𝑤𝑓−𝜙,𝑘,𝜏
𝑝

 and 𝑤𝑓−𝜙,𝑘,𝜏
ℎ  represent the 

spectral basis of the percussive and harmonic sources, respectively, and ℎ𝑘,𝑛−𝜏,𝜙
𝑝

 and 

ℎ𝑘,𝑛−𝜏,𝜙
ℎ  represent the temporal code for each spectral basis element of the percussive source and 

harmonic sources, respectively, for 𝑓 = 1, … , 𝐹, 𝑛 = 1,… , 𝑁, and 𝑘 = 1, . . .  𝐾. It can be seen that 

eqn. (6.3) has 𝜙𝑚𝑎𝑥  and 𝜏𝑚𝑖𝑛  in order to match the characteristics of the percussive instruments, 

while eqn. (6.4) has the opposite values of the convolutive parameters in order to match the 

characteristics of the harmonic instruments.      

The parameters 𝐴, 𝐶, 𝑾 , and 𝑯  will be estimated via the posterior probability 

𝑃(𝐶, 𝑾 , 𝑯 |𝑋, 𝐴 ) =  
𝑃(𝑋|𝐶, 𝐴)𝑃(𝐶|𝑾 , 𝑯 )

𝑃(𝑋|𝐴)
                                      (6.5) 

and their log-posterior is given by 

log 𝑃(𝐶, 𝑾 , 𝑯 |𝑋, 𝐴) = log 𝑃(𝑋|𝐶, 𝐴) + log 𝑃(𝐶|𝑾 , 𝑯 )  + 𝑐𝑜𝑛𝑠𝑡                   (6.6) 

Finally the GEM-MU [80] algorithm can be applied to estimate the percussive and harmonic 

sources.  

 

 

 

 

 

 

 

 

 

 

 

 

Mixture Signal 
𝑋 

 

Gamma-Exponential Process 

 

GEM-MU based 2D Matrix 

Factorizations Techniques 

𝒔̂𝒉 

𝜏𝑚𝑖𝑛  𝜏𝑚𝑎𝑥  𝜙𝑚𝑎𝑥  𝜙𝑚𝑖𝑛  

𝒔̂𝒑  

𝐾 

Figure 6.1: High level presentation of the harmonic and percussive source separation algorithm. 
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6.1.2 Coding Based Informed Source Separation 

Ozerov et al. [91] proposed a coding based informed source separation system that based on the 

nonnegative tensor factorization (NTF) that able to reach any quality (in expense of bandwidth as 

in source coding) that the conventional methods cannot reach, as it take advantage from both the 

informed source separation and source coding. This system consists of two stages; the encoding 

stage and the decoding stage. In the encoding stage the side information that contains the sources, 

the sources model parameters (that represented by NTF model, i.e., 𝑄, 𝑊, and 𝐻 matrices), and the 

perceptual model parameters are encoded and transmitted with the mixture. In the decoding stage 

the sources are reconstructed by depending on the received mixture signal and the side information.  

Inspired by this system the K-wNTF2D model can be used instead of the NTF as it is more 

powerful. Furthermore, the parameters which describe the sources (as described in Chapter 5) can 

be transmitted with the side information, i.e., transmitting the number of components and 

convolutive parameters. Thus the separation performance will be significantly improved but in the 

cost of the bitrate.  

 

6.1.3 Complex Two Dimensional Matrix Factorization Techniques 

It has been shown in [3] that incorporating the phase information into the NMF has the potential to 

increase the separation performance, therefore, a full rank complex 2D matrix factorization 

techniques will be proposed to model the spectral variance of the source, takes into account the 

phase information of the source spectral variance, and model the full rank of the spatia l covariance 

matrix. Thus the issue of high-reverberant mixture will be addressed through the full rank spatial 

covariance matrix, and better separation performance will be achieved through the phase 

information. This model can be realized as follows  

Let 𝒙(𝑡) be the observed multichannel signal that can be expressed in time domain as 

𝑥𝑖(𝑡) = ∑ 𝑐𝑖,𝑗 (𝑡)

𝐽

𝑗=1

+ 𝑏𝑖(𝑡)                                                       (6.7) 

where 𝑖 = 1,2, … 𝐼,  𝑥𝑖(𝑡)  ∈ ℝ, t = 1, … , T  is the receiving signal from the i-th 

microphone,  𝑐𝑖,𝑗(𝑡) ∈ ℝ  is the spatial image of the source signal j and channel i, J is the number of 
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sources, and 𝑏𝑖(𝑡) ∈ ℝ is some additive noise. The spatial image of the source 𝑐𝑖,𝑗(𝑡)  can be 

expressed as  

𝑐𝑖 ,𝑗(𝑡) = ∑ 𝑎𝑖,𝑗(𝜏)𝑠𝑗(𝑡 − 𝜏)

𝐿−1

𝜏=0

                                                   (6.8)  

where 𝑎𝑖,𝑗(𝑡) ∈ ℝ is the finite- impulse response of some (causal) filter, 𝐿 is the filter length, and 

𝑠𝑗(𝑡) ∈ ℝ is the original source signal.  

By substituting eqn. (6.8) into eqn. (6.7), and assuming that the mixing channel is time- invariant 

then, the STFT of eqn. (6.7) becomes 

𝑥𝑖,𝑓 ,𝑛 = ∑ 𝑐𝑖,𝑗,𝑓 ,𝑛 + 𝑏𝑖 ,𝑓

𝐽

𝑗=1

                                                        (6.9) 

where 𝒙𝑓,𝑛 = [𝑥1,𝑓,𝑛 ⋯ 𝑥𝐼,𝑓,𝑛]𝐻 , and 𝑥𝑖,𝑓,𝑛 , 𝑐𝑖,𝑗,𝑓,𝑛 , 𝑏𝑖 ,𝑓,𝑛  are the complex-valued STFT of 

𝑥𝑖(𝑡), 𝑐𝑖,𝑗 (𝑡), and 𝑏𝑖(𝑡), respectively. The term 𝑓 = 1, 2, … , 𝐹 is the frequency bin index, and 𝑛 =

1, 2, … , 𝑁 is the time frame index. The spectral covariance matrix of 𝑐𝑖,𝑗,𝑓,𝑛 defined as 

𝛴
𝑗,𝑓 ,𝑛

(𝑐)
= 𝐸[𝒄𝑗,𝑓,𝑛 𝒄𝑗,𝑓,𝑛

𝐻 ]                                                         (6.10𝑎) 

can be expressed as  

𝛴
𝑗,𝑓,𝑛

(𝑐)
= 𝛴

𝑗,𝑓

(𝑎)
 𝑣𝑗,𝑓,𝑛 𝑒√−1𝛼𝑗,𝑓,𝑛                                                   (6.10b) 

where  𝛴
𝑗,𝑓𝑛

(𝑐)
∈ ℂ𝐼×𝐼  is the spectral covariance matrix of the j-th source image, 𝜮

𝑗,𝑓

(𝑎)
 is the 

time- invariant spatial covariance matrix of the j-th source, 𝑣𝑗,𝑓 ,𝑛 ∈ ℝ is the j-th source variance in 

the STFT domain, and 𝛼𝑗,𝑓,𝑛 ∈ ℂ is the time-varying phase spectrum [122] to explicitly model the 

phase in 𝑣𝑗,𝑓,𝑛 . The term √−1 is adopted to represent the imaginary component. The j-th source 

variance can be expressed as 

𝑣𝑗,𝑓,𝑛 = ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗 ℎ𝑘,𝑛−𝜏

𝜙,𝑗

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏 =0

𝐾

𝑘 =1

                                            (6.11) 
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where 𝐾 is the number of components or frequency basis assigned to the j-th source, 𝜏𝑚𝑎𝑥  and 

𝜙𝑚𝑎𝑥  are the maximum number of the convolutive parameters 𝜏  and 𝜙  respectively. 𝑤𝑓,𝑘
𝜏,𝑗

 

represents the k-th spectral basis of the j-th source, and ℎ𝑘,𝑛
𝜙,𝑗

 represents the k-th temporal code for 

each spectral basis element of the j-th source, for 𝑓 = 1, … , 𝐹, 𝑛 = 1, … , 𝑁, and 𝑗 = 1, … , 𝐽.  

The full-rank spectral covariance matrix of 𝒙𝑓,𝑛 in eqn. (6.9) can be expressed as  

𝛴𝑓 ,𝑛

(𝑥)
= 𝐸[𝒙𝑓,𝑛 𝒙𝑓,𝑛

𝐻 ]                                                                                              

= ∑ 𝛴
𝑗,𝑓,𝑛

(𝑐)

𝐽

𝑗=1

+ 𝛴
𝑓

(𝑏)
                                                                                     

= ∑ 𝛴
𝑗,𝑓

(𝑎)
𝑣𝑗,𝑓,𝑛𝑒√−1𝛼𝑗,𝑓,𝑛

𝐽

𝑗=1

+ 𝛴
𝑓

(𝑏)
                                              (6.12)  

where 𝛴
𝑓

(𝑏)
 is the time invariant noise covariance matrix. 

The spatial image of the sources needs to be modeled as realization of complex distribution that 

consider the complex signals in order to optimize the model parameters 𝛩 =

{𝑾, 𝑯, 𝛴(𝑎) , 𝛴(𝑏), 𝜦, 𝛼}. Then the separation can be carried out by using the GEM-MU algorithm.  

Furthermore, the variable sparsity can be proposed to estimate the sparsity, 

Gamma-Exponential process algorithm can be proposed to estimate the number of components, 

convolutive parameters, and initialize its tensors.  

 

6.1.4 Totally Blind Source Separation System 

There is some prior information that needed in the blind source separation methods in order to 

carry out the separation. One of the prior information is the number of sources. Therefore, the blind 

source separation is not totally blind as prior information is required. The idea of this section is to 

develop a system that able to detect the number of sources in order to achieve a totally blind 

system, e.g., by using the Direction Estimation of Mixing matrix (DEMIX) algorithm [123]. This 

algorithm proposed for both instantaneous and anechoic systems, therefore, it needs to be 

developed to deal with convolutive mixture. To be able to deal with convolutive mixture it will 
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required from the algorithm to distinguish between the sources and their reverberation or an echo 

cancellation is required to be added to this system, which is not forward if the system is suggested 

for the high reverberation environment. If this system is developed then the whole picture of the 

source separation can be realized blindly, as there will be no need for prior information about the 

number of sources. The suggested system can be realized as in Figure 6.2 below.  
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. .. 

Figure 6.2: Suggested blind source separation system. 
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APPENDIX A 

Derivation of the conditional expectation of the natural statistics 

The posterior 𝑃(𝒄𝑗,𝑓,𝑛|𝒙𝑓 ,𝑛) can be written as 

𝑃(𝒄𝑗,𝑓,𝑛|𝒙𝑓,𝑛) =
𝑃(𝒙𝑓 ,𝑛, 𝒄𝑗,𝑓,𝑛 )

𝑃(𝒙𝑓,𝑛 )
                                                                                                                

 =
(𝜋 𝐼+1𝑑𝑒𝑡𝛴

𝑗,𝑓,𝑛

(𝑗𝑜𝑖𝑛𝑡)

 
)

−1

(𝜋 𝐼𝑑𝑒𝑡𝛴
𝑓,𝑛

(𝑥)
)

−1

𝑒𝑥𝑝 {− [ 𝒙𝑓,𝑛
𝒄𝑗,𝑓,𝑛

]
𝐻

𝛴
𝑗,𝑓 ,𝑛

(𝑗𝑜𝑖𝑛𝑡)−1

[ 𝒙𝑓,𝑛
𝒄𝑗,𝑓,𝑛

]}

𝑒𝑥𝑝 {−𝒙𝑓,𝑛
𝐻 𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛}
 

   = (𝜋𝑑𝑒𝑡𝛤𝑗,𝑓,𝑛
 )

−1
𝑒𝑥𝑝{−𝜓𝑗,𝑓,𝑛}                                                                         (𝐴. 1) 

where  

𝛤𝑗,𝑓 ,𝑛
 = 𝛴

𝑗,𝑓,𝑛

(𝑐)
− 𝛴𝑗,𝑓,𝑛

(𝑥𝑐)
𝛴

𝑓,𝑛

(𝑥)−1

𝛴𝑗,𝑓,𝑛

(𝑐𝑥)
                                                (𝐴. 2) 

𝛴
𝑗,𝑓 ,𝑛

(𝑗𝑜𝑖𝑛𝑡 )−1

=  [
(𝛴

𝑓,𝑛

(𝑥)
− 𝛴

𝑗,𝑓,𝑛

(𝑥𝑐)
𝛴

𝑗,𝑓,𝑛

(𝑐)−1

𝛴
𝑗,𝑓,𝑛

(𝑐𝑥)
)

−1

    −𝛴
𝑓,𝑛

(𝑥)−1

𝛴
𝑗,𝑓,𝑛

(𝑥𝑐)
𝛤𝑗,𝑓,𝑛

−1

       −𝛴
𝑓,𝑛

(𝑥)−1

𝛴
𝑗,𝑓,𝑛

(𝑐𝑥)
𝛤𝑗,𝑓,𝑛

−1                  𝛤𝑗,𝑓 ,𝑛
−1

]

 

                  (𝐴. 3) 

𝜓𝑗 ,𝑓,𝑛 = [
𝒙𝑓,𝑛

𝒄𝑗,𝑓,𝑛

]

𝐻

𝛴
𝑗,𝑓,𝑛

(𝑗𝑜𝑖𝑛𝑡 )−1

[
𝒙𝑓 ,𝑛

𝒄𝑗,𝑓,𝑛

] − 𝒙𝑓,𝑛
𝐻 𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛                                                                

= (𝒄𝑗,𝑓,𝑛 − 𝛴
𝑗,𝑓,𝑛

(𝑐𝑥)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛)
𝐻

𝛤𝑗,𝑓 ,𝑛
−1 (𝒄𝑗,𝑓,𝑛 − 𝛴

𝑗,𝑓,𝑛

(𝑐𝑥)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛 )                      (𝐴. 4) 

𝛴
𝑗,𝑓,𝑛

(𝑥𝑐)
= 𝐸[𝒙𝑓,𝑛𝒄𝑗,𝑓,𝑛

𝐻 ] = 𝐸[(𝒄𝑗,𝑓,𝑛 + 𝒃𝑓,𝑛)𝒄𝑗,𝑓,𝑛
𝐻 ] 

                                  = 𝐸[𝒄𝑗,𝑓 ,𝑛𝒄𝑗,𝑓,𝑛
𝐻 ] + 𝐸[𝒃𝑓,𝑛𝒄𝑗,𝑓,𝑛

𝐻 ] = 𝛴
𝑗,𝑓,𝑛

(𝑐)
                                     (𝐴. 5) 

where 𝐸[𝒃𝑓,𝑛𝒄𝑗,𝑓,𝑛
𝐻 ] = 𝟎 as they are uncorrelated. Thus  

𝑃(𝒄𝑗,𝑓,𝑛|𝒙𝑓,𝑛) = (𝜋𝑑𝑒𝑡𝛤𝑗,𝑓,𝑛)
−1

𝑒𝑥𝑝 ((𝒄𝑗,𝑓,𝑛 − 𝛴
𝑗,𝑓,𝑛

(𝑐)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓 ,𝑛)
𝐻

𝛤𝑗,𝑓,𝑛
−1 (𝒄𝑗,𝑓,𝑛

 
 

−𝛴
𝑗,𝑓,𝑛

(𝑐)
𝛴

𝑓,𝑛

(𝑥)−1

𝒙𝑓,𝑛))                                       (𝐴. 6) 
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Comparing eqn. (A.6) with eqn. (4.9), eqns. (4.16)-(4.18) will be obtained. By following the same 

procedure for the noise, eqns. (4.19)-(4.21) will be obtained. 
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