
1 
 

 

 

 

 

Bioprocessing in Microalgae 

 
A thesis submitted by 

Chelsea Marie Brain 

For the degree of Engineering Doctorate (EngD) in Biopharmaceutical Process Development 

 

 

 

Biopharmaceutical Bioprocessing Technology Centre (BBTC) 

School of Chemical Engineering and Advanced Materials (CEAM) 

Newcastle University 

 

Sponsored by Scottish Bioenergy Ltd. 

 

March 2017 

 





i 
 

Abstract 

 

This thesis is a portfolio of three projects carried out with Scottish Bioenergy Ltd, in the area 

of microalgae biotechnology. 

The first small project saw the development of a rapid, simple and relatively low-cost technique 

based on UV absorbance for measurement of nitrate in two common freshwater and saltwater 

growth media. The test was successfully demonstrated in batches of Chlorella, measuring 

nitrate concentration as low as 40 μM and requiring only a 2 mL sample. 

The second large project investigated the use of a narrow spectrum Light Emitting Diode (LED) 

with a maximum wavelength (λmax) of 680 nm for the production of the high-value pigment 

phycocyanin in Arthrospira (Spirulina). The LEDs produced a substantial over 250 % increase 

in phycocyanin yield with no significant difference in growth rate in comparison to standard 

white LEDs, initially requiring an extended photoacclimation period. Although photobioreactor 

(PBR) systems incorporating the λmax 680 nm would require increased investment in capital and 

operational expenditure, particularly relating to increased LED cooling requirements, increased 

product yield and profitability makes a powerful case for switching to longer wavelength red 

LEDs. 

The third project was a feasibility study for the use of directed microevolution to generate a 

non-genetically modified copper-tolerant Arthrospira strain that may be used in a multi-process 

PBR system fed with distillery wastewater. Resistance 200-fold the typical optimal medium 

concentration was achieved. However, the extent of resistance was 3-fold lower than required 

and the length and unreliability made the process impractical for industrial use in generating 

resistant Arthrospira strains. 

The projects provided a methodology to assist the company in future research and development, 

knowledge on the feasibility of a strain development technique and identified an exciting new 

business opportunity for production of a high-value product in artificially illuminated PBR 

systems.  
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Chapter 1. Introduction 

Prenote 

This thesis is a portfolio of three projects carried out during an Engineering Doctorate 

partnership with Scottish Bioenergy Ltd in the area of microalgae biotechnology. The 

Engineering Doctorate (EngD) programme is distinct from a traditional PhD in that research is 

directed by a sponsor company in response to commercial needs. The EngD programme was 

developed on recommendations in the Parnaby Report (1990) which concluded “PhDs can be 

too narrow and academic for industry’s needs”. An EngD thesis, in-line with the philosophy of 

the EngD, can therefore cover a broader set of projects linked by an overarching topic area, 

where the research typically crosses disciplines.  

The overarching theme of this thesis is microalgae biotechnology, therefore Chapter 1 begins 

by giving a broad introduction to microalgae biotechnology prior to the more specific literature 

reviews of the further chapters. The second part of Chapter 1 introduces the industrial context 

framing microalgae biotechnology as a part of UK Industrial Biotechnology strategy. Following 

on in the rest of Chapter 1 the principles of the EngD programme are described. The research 

journey directed by the commercial twists and turns of Scottish Bioenergy is then explained 

before introducing each chapter of the thesis. 

1.1 Microalgae Biotechnology 

1.1.1 Sourcing natural and renewable products 

Microalgae (microscopic algae) is being increasingly explored and exploited as sustainable 

sources of food, feed, fuels and other biochemicals (Becker, 1994). There is also increasing 

interest in macroalgae (seaweeds) for similar purposes; however, throughout this thesis when 

referring to algae, it is microalgae and cyanobacteria (previously known as blue-green algae) 

alone that are being addressed. Reference to microalgae throughout this thesis will also 

incorporate cyanobacteria including the cyanobacterium Arthrospira. Some examples of 

products obtainable from microalgae are listed in Table 1.1. 
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Table 1.1. Commercial products that may be derived from microalgae. There is cross over as 

some products can fall into many product types (Santoyo, 2009, de Jesus Raposo, 2013). 

Product Type Products 

Biofuels Long-chain hydrocarbons, esterified lipids, 

hydrogen, biogas (methane) 

Antimicrobials Butanoic acid, methyl-lactate  

Polyunsaturated Fatty Acids 

(PUFAs) 

Docosahexaenoic acid (DHA), arachidonic acid 

(ARA), γ-linolenic acid (GLA), eicosapentaenoic 

acid (EPA) 

Pigments Carotenoids (astaxanthin, lutein, canthaxanthin, 

β-carotene, zeaxanthin, fucoxanthin), 

chlorophyll, phycobilins (phycocyanin, 

phycoerythrin, allophycocyanin),  

Nutraceuticals and food/feed 

additives 

Protein, amino acids, vitamins (vitamin C, K, 

B12, A and E, α-tocopherol), enzymes 

(superoxide dismutase (SOD), carbonic 

anhydrase, Coenzyme Q10), sterols 

(brassicasterol; stigmasterol, sitosterol), 

polysaccharides 

Biopolymers  Poly-lactic acid, cellulose, polyhydroxyalkonates 

(s poly-3-hydroxybutyrate) 

Chemotherapeutic agents Fuco, violaxanthin 

Photoprotectants Mycosporin-like amino acids, pyropheophytin a 

Other γ-amino-butyric acid (GABA), okadaic acid, 

microcolin-A, biofertilisers, glycerol, squalene, 

phytoene, phytofluene, echinenone  

 

The biodiversity of microalgae (marine and freshwater) is vast, with over 35,000 species 

described (Lee, 2008); many of which will be suited to the production of certain end-products. 

The importance of algae biodiversity for bioproduct development is far from being fully 

explored. The exploration for, and discovery of new algae strains as sources of products, 

particularly novel pharmaceuticals (or for particular purposes), is known as bioprospecting 

(Ratha and Prasanna, 2012). Some of these end-products are currently produced using land 

crops. Algae are considered to have a production advantage over conventional terrestrial crops 

as they are faster growing, have higher productivity per unit area (Dismukes, 2008), are more 
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efficient at utilising sunlight (Barbosa, 2003), and are tolerable of a wider range of growth 

conditions. Algae production is also not reliant on the use of limited arable land and, if used for 

biofuel production, avoids the food versus fuel argument (Tsoupeis, 2009). 

Green algae and cyanobacteria are phototrophs which have the ability to perform 

photosynthesis. Heterotrophic algae generally lack the ability to photosynthesise and therefore 

rely on an organic carbon source for growth (Morales-Sánchez, 2015). The basic needs of 

phototrophic algae comprises chemical and physical factors: a source of nitrogen, inorganic 

carbon (CO2/HCO3), phosphorus, potassium plus small quantities of specific elements such as 

magnesium and sulphur in the presence of sunlight. The cells of eukaryotic green algae feature 

chlorophyll-containing chloroplasts or other photosynthetic pigments which absorb light and 

use electrons from the oxidation of water (via photosystems I and II in the thylakoid membrane) 

in the reduction of CO2 to produce carbohydrate and other organic molecules (Alberts, 2002). 

Sugars, fatty acids and amino acids produced then contribute to the structure of the cell. It is 

also these ‘renewable’ products, derivable from algae, which can be commercially valuable.  

Algae contain high quantities of protein which can be used as a supplement in animal feeds. 

Some strains also contain high levels of polyunsaturated fatty acids (PUFAs) such as omega-3 

which is associated with decreased risk of heart disease when consumed in humans (Albert, 

1998, Daviglus, 1997). Supplementation can increase the levels of PUFAs in animal products 

such as meat, fish, milk and eggs which could benefit public health (Abughazaleh, 2009, 

Franklin, 1991), as well as increasing farming productivity and quality of produce as has been 

demonstrated in chickens (Grigorova, 2005). Algae also produce pigments which can be used 

as natural colourants with additional anti-oxidant properties beneficial to human health. The 

best example are carotenoids which are typically red, orange or yellow in colour, and are used 

widely in the ceutical (pharma-, cosme- and nutri-) industries (Raja, 2007) and as additives in 

fish and poultry feed to enhance flesh and egg yolk colour (Pisal, 2005). The demand for 

naturally sourced pigments such as carotenoids is rising due to widening consumer health 

awareness and the preference for more natural products. Many of these can be naturally sourced 

from algae to maintain the natural status of some food products (Dominguez, 2013). 

Recognition of the inferior quality of some chemically synthesised carotenoids is also a driving 

force behind the increasing demand for natural pigments. For example, natural β-carotene, one 

of the most abundant carotenoids, contains a significantly higher ratio of 9-cis-β-carotene to 

all-trans isomer than in synthetically produced β-carotene. All-trans-β-carotene has lower anti-

oxidant activity and other medically beneficial activities plus lower liposolubility. The ratio of 

cis to trans isomers is even higher in algae compared with other natural sources, therefore algae-
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derived β-carotene is of a higher quality for health applications (Ben-Amotz, 1996, Levin, 1994, 

Palozza and Krinsky, 1992). The unicellular alga Dunaliella salina is a well-known producer 

of carotenoids, particularly β-carotene (Ben-Amotz, 1982) at yields of up to 14 % dry weight 

(Ben-Amotz, 1983, Aasen, 1969). However, high production occurs only under conditions of 

cellular stress, such as nitrogen starvation and high irradiance where growth slows and pigment 

accumulates. The need for stress conditions is also true for many lipid products (including 

precursors to biofuels) produced in algae, which can be problematic for continuous production 

when attempting to maintain high growth rates and product yields.  

1.1.2 Photobioreactors and control 

Current production methods using algae involve growth outdoors in open-ponds or raceways 

or in sealed photobioreactors (PBRs) of various designs, outdoors, or indoors using artificial 

light (Figure 1.1). It is recognised that PBRs can produce superior amounts of algae biomass as 

they can be more closely controlled and are less susceptible to contamination, so are preferred 

for the quality-assured production of commercially important products (Gupta, 2015). Most 

large scale algaculture currently takes place in the Far East and USA (Benemann, 2013) where 

there is a reliable source of solar energy year round, avoiding the need for artificial light. 

Outdoor cultivation on a large scale is uncommon in Britain, as climatic conditions are seen as 

unfavourable. 

PBRs are designed and operated to meet the majority of the biological needs of algae and offer 

specific control to match the preferred conditions required by the particular strain under 

cultivation. Small volumes of supplemental CO2 are required to reach high biomass 

concentrations. As the CO2 composition of flue gas produced by burning fossil fuels (coal, oil 

and gas) is relatively low (approximately 4-14 %), this typically satisfies the CO2 requirements 

of an algae culture (Kumar, 2011a, Zhang, 2015). Therefore, waste flue gas can be bubbled 

through cultures to supply CO2. The CO2 saturation level in the culture also depends on the 

culture temperature, as CO2 is more soluble in water at lower temperatures (Piorreck, 1984) as 

well as the efficiency of the aeration method. During CO2 supplementation, CO2 dissolution in 

the culture lowers pH by the production of carbonic acid, and the presence of nitrogen (NOx) 

and sulphur oxides (SOx) in flue gas can produce sulphuric (H2SO4) and nitric (HNO3) acids 

(Maeda, 1995); therefore appropriate buffering and pH control should be used, particularly as 

algae are sensitive to changes in pH. Also, low pH lowers the concentration of CO2 dissolved 

in the culture according to Henry’s Law (Doran, 2005) and so may affect the rate of CO2 uptake 

by the algae if uncontrolled (Goldman, 1982, Azov, 1982). Additionally, accumulation of 

evolved oxygen from photosynthesis can be toxic to the culture (Torzillo, 1998). 
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Figure 1.1. Various types of algae cultivation systems. From top left to bottom right: 

polyethylene sleeves, open raceway, tubular photobioreactor and stirred tank photobioreactor. 

Images sourced top left to bottom right from: www.oilseedcrops.org, 

www.algaeindustrymagazine.com, www.personal.psu.edu, www.biooekonomie-bw.de. 

Invading organisms or contamination by other algae species can inhibit culture growth through 

grazing or depletion of available nutrients. As PBRs are closed to the environment, there is a 

lower risk of an invasive species affecting productivity. When considering bacterial 

contamination however, it is not essential that algae cultures are completely bacteria-free, as 

the majority of the time the presence of bacteria is not problematic and can actually be beneficial 

to algae growth. The reason behind this may be the symbiotic relationships between bacteria 

and algae which are known to exist, where bacteria provide vitamins and micro-elements 

required by the algae through bacterial metabolism (Croft, 2005). 

There are limits to light exposure as long periods of high intensity light can cause 

photoinhibition (Rubio, 2003, Torzillo, 2003) which causes problems for outdoor culturing as 

peak daily levels of solar irradiance are sometimes up to ten times higher than is normally 

required by algae (Gordon, 2007). In addition, it is questionable whether 24/7 illumination 

allows maximum productivity as algae have been shown to require light-dark cycles, although 

associated studies have shown mixed results (Zhang, 2001). Short intermittent periods of light 

and dark; appropriately named ‘the flashing light effect’ can increase productivity (Matthijs, 

1996, Phillips Jr and Myers, 1954). Limitations on light penetration and availability can be 

caused by self-shading and therefore is dependent on the culture density, as well as mixing and 

http://www.oilseedcrops.org/algae/
http://www.algaeindustrymagazine.com/algae-101-part-72/
http://www.personal.psu.edu/users/w/a/wag5047/project%202%20team%205/Detailed%20Description%20of%20Competing%20Preliminary%20Options.htm
https://www.biooekonomie-bw.de/en/articles/news/algae-light-up-industry/
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PBR geometry (Zhang, 2001). During algae cultivation mixing must occur at a rate to prevent 

the formation of dark zones and ensure light is received uniformly by the culture (Ogbonna, 

1995), as photosynthetic processes cannot occur in low light levels and algae can be bleached 

if light exposure is too high (Carvalho, 2011). Also agitation ensures uniform distribution of 

heat in the culture and reduces settlement and fouling on the walls of the reactor, which if 

allowed to build up will block light penetration (Posten, 2009). Furthermore, agitation provides 

well distributed nutrients throughout the culture and as a result, well mixed reactors reach 

higher biomass yields (Eriksen, 2008, Wijanarko, 2008). There are numerous parameters to be 

controlled in algae culturing systems, and photobioreactors enable better control in production. 

1.2 The UK Technology Roadmap 

Realisation of the economic contribution of Industrial Biotechnology (IB) in the UK has 

prompted the UK government to invest in the IB sector. Investment has been in the form of 

part-funded Catapult centres and leasable facilities such as the National Biologics 

Manufacturing Centre (NBMC), located at the Centre for Process Innovation (CPI) in 

Darlington, in the North-East of England. Algae is a part of the IB landscape in the UK and 

organisations such as the Natural Environmental Research Council (NERC), Innovate UK 

(formerly Technology Strategy Board (TSB)), Knowledge Transfer Network (KTN), Algal 

Bioenergy Special Interest Group (ABSIG), Phyconet (BBSRC NIBB), NNFCC, and the 

Scottish Association for Marine Science (SAMS) are all organisations involved in developing 

algae biotechnology in the UK (Schlarb-Ridley, 2013) with the realisation of the numerous 

applications of algae biotechnology (Figure 1.2). 
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Figure 1.2. Possibilities for algae technology based on a presentation by Dr Michele Stanley 

(Phyconet, UCL, 2014). Images sourced from: 

http://mikrosvijet.wordpress.com/2013/03/23/haematococcus-pluvialis/, 

http://www.coastalwiki.org/wiki/Marine_Biotechnology_securing_alternative_sources_of_ren

ewable_Energy, http://www.healthyfellow.com/770/best-of-chlorella-and-spirulina/, 

http://www.ongen.ca/ONGEN%20PROJECTS.html, 

http://abalgae.com/en/products/dunaliella/about. 

UK research has played a huge part in the development of techniques and technologies in algae 

biotechnology, now adopted worldwide and combined with the UK’s growing macroalgae 

industry. As an island nation, the UK is well placed to grow its microalgae segment of UK IB 

and fully exploit the commercial potential of algae biotechnology. High value bioactives such 

as pigments and antioxidants, bioremediation, fertiliser and feed production from microalgae 

are all aspects of algae biotechnology identified to be readily developed and now at a stage to 

take out in UK companies. These are therefore the most commercially promising in the short-

term for the UK (Schlarb-Ridley, 2013). To assist in developing microalgae biotechnology, 

organisations are focusing on a number of key areas:  

1. Encouraging academia-industry collaborative projects, the growth of expertise, 

developing multi-disciplinary people with broad knowledge of algae biotechnology as 

well as business skills, effective knowledge transfer through creating networks (Special 

Interest Groups) and opening-up funding pots particularly for micro-SMEs for training 

and research funding. 

http://mikrosvijet.wordpress.com/2013/03/23/haematococcus-pluvialis/
http://www.coastalwiki.org/wiki/Marine_Biotechnology_securing_alternative_sources_of_renewable_Energy
http://www.coastalwiki.org/wiki/Marine_Biotechnology_securing_alternative_sources_of_renewable_Energy
http://www.healthyfellow.com/770/best-of-chlorella-and-spirulina/
http://www.ongen.ca/ONGEN%20PROJECTS.html
http://abalgae.com/en/products/dunaliella/about
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2. Ensuring pilot facilities are available with incubation space to grow algae-based 

businesses, to assist in the creation of producers, and avoid the ‘Valley of Death’ (House 

of Commons Science and Technology Select Committee, 2013), where technologies 

and businesses die out because of the lack of proof-of-concept funding. Pilot facilities 

also provide the necessary (scale-up) data, currently lacking, to near accurately model 

scale-up economics and financial feasibility and observe the effects of intensive and 

continuous cultivation, of which little is currently known about. 

3. Engaging with the market through outreach events to promote the public understanding 

of the benefits of algae, particularly bioactives for health and wellbeing and also 

marketing the country’s expertise to the world.  

 

The algae market is notably under-developed in the West in comparison to the East and it is 

recognised that market uptake is one of the big hurdles to successful home-grown algae product 

businesses in the UK besides the economic/technical hurdles of production. Considerable 

marketing is required to penetrate the markets and for the public to accept paying a premium 

price for algae products.  

There have been a number of reports looking at the challenges, opportunities, strengths and 

gaps in UK algae biotechnology from 2008 (Schlard-Ridley, 2011, Smith, 2010) and in 2011 

the Algal Biotechnology Special Interest Group (AB-SIG) was set-up, funded by NERC and 

Innovate UK, hosted by Biosciences KTN, working with Government to drive UK algae 

biotechnology. They commissioned the 2013 report (Schlarb-Ridley, 2013) with a focus on 

commercialisation and now work assisting algae biotechnology projects connecting academia 

with industry, creating networks and advising and facilitating business – all movements 

identified and required to grow UK algae biotechnology. 

For high-value products such as pigments, technologies in the UK need to become price 

competitive with Asian imports. Relationships between universities and interested enterprises 

are therefore vital for the UK to get into the high-value market, and integrated systems involving 

bioremediation could be a way to reduce production costs to create price-competitive products. 

However, when it comes to natural and organic consumer care products (rather than ingredients) 

western brands dominate the increasing Asian market (Organic Monitor, 2015), and the 

competitive landscape is seen as difficult for Asian companies. 
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1.3 The Engineering Doctorate 

The Engineering Doctorate (EngD) was established by the Engineering and Physical Sciences 

Research Council (EPSRC) in 1992. The scheme aims to address the skills shortage in the UK 

engineering industry, highlighted in the Parnaby Report of 1990 (Parnaby, 1990), required to 

support the UK remaining ahead in advanced science and technical capability. The EngD is 

distinct from, and complementary to the traditional PhD, which has been criticized for a lack 

of industrial relevance in preparing for the challenge of working in industrial environments and 

accused of being too narrow and academic for industry’s needs (Godfrey, 2012). The EngD 

student works with an industrial partner on industrial projects and problems, providing 

experience to the student in industrial interaction and industry-focused research whilst at the 

same time meeting business needs; addressing also the hurdle of UK knowledge (traditionally 

generated in universities) not being transferred effectively into industry to benefit the UK. 

Although EngD programmes can differ between EngD Centres, the EngD programme at the 

Biopharmaceutical Bioprocessing Technology Centre (BBTC), Newcastle University combines 

three and a half years of postgraduate research working with an industrial sponsor company 

with around 15 taught modules including technical Masters-level subjects, complementing the 

research area and also covering broad aspects of business, management and intellectual 

property. Such transferrable skills are now considered essential for careers in industry. 

Additionally, universities have begun to incorporate these subjects into traditional PhD 

programmes in recognition that such exposure can better equip students for careers in the UK 

science and engineering sector as well as enhance academic careers. 

As the majority of STEM doctorate students find careers outside of academia (Figure 1.3), there 

is the responsibility for universities to provide adequate training to equip students for these 

roles. 
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Figure 1.3. Illustration of the transition points in typical academic scientific careers following 

a PhD (The Royal Society, 2010). 

The EngD programme also seeks to cross disciplines (EPSRC, 2011) and projects can sit 

between subjects; for example, microbiology and chemical engineering for bioprocessing, 

where taught technical modules assist in this. The exposure to industry and commercial realities 

gives the student an appreciation and understanding that research direction can change rapidly 

in product-led industry. With this, EngD students usually submit a thesis by portfolio 

demonstrating a breath of related projects. 

The EngD scheme runs alongside and in hand with the changing vision and direction of UK 

universities. Traditional roles of UK universities were limited to research and teaching. 

Recently, a ‘third mission’ has developed associated with engaging knowledge users and 

promoting technology transfer (Gulbrandsen and Slipersæter, 2007) to create maximum impact 

from research (Research Councils UK, 2014). Such interactions, which are best demonstrated 

in Germany’s Fraunhofer Model (Reid, 2010, Wessner, 2013) drive innovation and the 

economy. The aims of the EngD programme and universities ‘third mission’ is aligned with 

UK industry roadmaps covering all areas of science and technology, including the UK industry 

roadmap for algae biotechnology. Here, academia-industry collaborations, knowledge transfer 

and the creation of a workforce with broad knowledge across disciplines, including an 

understanding of the complications of business and academia interaction are sought. 
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1.4 Scottish Bioenergy Ltd 

Scottish Bioenergy is a small enterprise formed in 2007 which operates in the field of 

algaculture. The company is specifically concerned with the design and operation of 

inexpensive microalgae photobioreactors (PBRs) for the production of biochemicals from 

microalgae. Their systems are multi-process using waste carbon dioxide emissions and/or 

various wastewaters from different industrial activities. Microalgae use carbon dioxide (CO2) 

and inorganic nitrogen: nitrate (NO3
-), nitrite (NO2

-), ammonia (NH4
+) and phosphates for 

growth. Some wastewaters contain a high concentration of inorganic nitrate and phosphate and 

these pose a huge environmental risk because of the high biochemical and chemical oxygen 

demand (BOD/COD) and risk of eutrophication if leaked into local water sources; therefore 

they are costly to dispose of. These wastewaters can be used as a nutrient source for the algae 

while simultaneously treating the effluent for discharge (Hammouda, 1995, Fedler, 2006). As 

well as treating wastewater with algae, phosphate is recovered, which is an important finite 

resource (Steen, 1998). Scottish Bioenergy systems therefore simultaneously facilitate carbon 

capture, wastewater treatment and element recovery (Figure 1.4). These systems align with the 

EU Water Framework Directive (WFD) (European Parliament, 2000) which looks to improve 

the quality of surface and ground water. The Nitrates Directive (European Council, 1991) forms 

part of the WFD, specifically addressing nitrates which the EU recognises can be problematic 

for human health and the environment. The Nitrate Directive looks to reduce nitrates in waters 

through monitoring, reporting and proposing best agricultural practices. 

 

Figure 1.4. Schematic of multi-process systems achievable in microalgae photobioreactors. 

The company is now in the late development phase of its systems and is completing testing at 

its scale-up facility at the Roslin Institute, University of Edinburgh. The company has a 

Research and Development strategy of actively seeking partnerships with universities in the 

UK and Ireland to work on joint projects, giving the company access to equipment and expertise 
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which would otherwise be unaffordable to a small company. Here the company recognises the 

great benefit of industry-academia collaboration to the business. This strategy also encourages 

dialogue between similar research groups at the partner universities.  

1.5 Commercially-driven Research and Thesis by Portfolio 

The current Scottish Bioenergy EngD project was carried out at Newcastle University, working 

between the School of Chemical Engineering and Advanced Materials and the School of Marine 

Science and Technology. During the start of the project, at the end of 2010, Scottish Bioenergy 

were a company interested in the production of biofuels from microalgae. The company 

recognised that the economics of a microalgae-based biofuel production process could be 

increased to a business-viable level through the development of a multi-process system, as 

demonstrated in Figure 1.4. The company also had a patent application (Van Alstyne, 2009) 

originally claiming a modular microalgae photobioreactor system for biodiesel production 

operating on multiple-processes. The early vision of the company was to develop algae 

biotechnology specifically in the North of England and Scotland and to demonstrate that this 

technology could create viable businesses in colder places, not just in equatorial regions. Early 

systems were set-up and tested at the Glenturret Whisky Distillery in Crieff, Scotland. Here, 

pot ale, a wastewater from the whisky distilling process, was used as a nutrient source for the 

microalgae. Pot ale contains nutrients such as nitrate and ammonia which can support 

microalgae growth. Large volumes of pot ale are produced, approximately eight litres for every 

litre of whisky (Mohana, 2009), which not only has a high BOD/COD but also contains a high 

amount of copper (up to 6 ppm) from the copper whisky stills (Graham, 2012). The 

characteristics of pot ale make it difficult to dispose of and it sees limited permitted uses as a 

land fertiliser and animal feed, and is mainly treated using anaerobic digestion (AD) (Dionisi, 

2012) at a cost to the distillery. During the earliest feasibility study pot ale was used as a 

feedstock for a modular photobioreactor system which also used the CO2 from waste flue gas 

and heat from the distilling process for microalgae growth. Strains of microalgae (mainly 

Chlorella and Scenedesmus) from a water source local to the distillery were used to inoculate 

the PBR system and the indigenous nature of the strains meant they were particularly hardy to 

the lower temperatures in winter. The feasibility study demonstrated that not only could the 

microalgae reduce the BOD/COD of pot ale but also that uptake of copper by the microalgae 

could remove the hazardous metal (Rai and Gaur, 2001) making the pot ale safe to return to 

rivers and sea or for use in crop watering.  

Even though such systems provided free sources of feedstock for microalgae production, the 

processing costs and amounts of biodiesel obtainable from microalgae biomass, along with the 



13 
 

price that could be achieved for the sale of biodiesel still arrived at an unviable business model. 

Between 2005-2009 the number of algae-to-energy start-ups tripled (Rosenthal, 2011), but the 

surge of both commercial and scientific interest in algal oils and biofuels worldwide around 

2010 began to tail-off (Figure 1.5) as companies realised they had been misinformed by over 

interpretation of the scientific literature on microalgae biofuels. Extrapolated data from lab-

scale studies gave impressive numbers, but on a large-scale this was unrealistic and 

unachievable. The economics of biofuel production using microalgae just did not add up based 

on the current technology, particularly through the high cost of production associated with 

dewatering and extraction of the desired products (Robertson, 2011). Companies realised that 

massive investment was required to develop higher efficiency dewatering and processing 

techniques, as well as faster growing and higher lipid producing strains before microalgae 

biofuel production can become an economic process. With the lowering oil prices it is becoming 

even more difficult to achieve a microalgae-derived biofuel that competes with today’s fossil 

fuels, when microalgae biofuels still can’t compete with first-generation biofuels (those derived 

from starch, sugar, animal and vegetable fats). Scottish Bioenergy recognised this was not an 

environment that microalgae biofuel SMEs can thrive in and so during the early phases of the 

EngD project the company began looking for more promising and potentially profitable 

microalgae-derived products. 

 

Figure 1.5. Patent applications filed between 1990-2015 on biofuel production using 

microalgae. Figure composed using patent data retrieved by PatSnap software searching all 

patent databases on 6th March 2016 produced in Microsoft Excel 2007. Search terms used 

[All: “microalgae AND biofuel”].  
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The company therefore began looking for possible viable multi-process operational models for 

production of higher value products, particularly a model which could support the use of 

artificial illumination, in the form of LEDs, to avoid the high variability in productivity 

experienced at Glenturret caused by seasonal fluctuations in light level and temperature. 

Artificial illumination would offer a better element of control for year round consistent 

production. 

The company observed an opportunity in operating PBRs synergistically with AD facilities 

containing combined heat and power (CHP) units for treatment of AD wastewater (Figure 1.6). 

AD effluent could be used as a nutrient source for microalgae growth along with waste CO2 

from the burning of biogas in the CHP unit to provide a supply of inorganic carbon and reduce 

the plant’s CO2 emissions (Deublein, 2011). At the time, and still, AD facilities with CHP units 

are entitled to generous Government tariffs such as Renewable Obligation Credits (ROCs), 

Feed In Tariffs (FITs) and Renewable Heat Incentives (RHI) (NNFCC, 2011), which were 

guaranteed for 20 years. Here money is paid back to the AD facility depending on the amount 

of power they return to the national grid and heat produced. The AD facility therefore is paid 

for the energy they produce, which could be used to provide artificial light for continuous 

growth and maintenance of an optimal culture temperature for year round maximum 

production. Along with concurrent wastewater treatment in the reduction of BOD/COD in the 

AD effluent, money can be made from the sale of high protein and omega-3-containing 

microalgae biomass for supplementation of animal feeds. The system was an attractive 

proposition to UK dairy farmers who had recently invested in AD systems as the add-on to their 

system had the potential to provide a cheap source of protein supplementation for their cows, 

at a time when high protein price was, and still is, increasing production costs for dairy farmers 

worldwide (Johnson Jr, 1991, Stallings, 2011). 
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Figure 1.6. Schematic of the proposed Scottish Bioenergy AD-PBR synergistic system. 

Graphics sourced from: www.seai.ie, www.pintrest.com and www.canstockphoto.com. 

The system, however, hit upon a regulatory problem. The Food Standards Agency (FSA) would 

not allow the production of algae biomass for supplementation of animal diets when the biomass 

was grown on a nutrient source which came from animal waste. This would therefore rule-out 

employing the system on farms, where the AD unit would be fed by animal slurry. Furthermore, 

the FSA ruled-out synergistic operation with an AD facility fed by household waste, if meats 

were included as a feedstock (which most are). This decision by the FSA vastly limited the 

market for synergistic AD-PBR systems, preventing the development of the proposed system 

moving forward. Additionally, there was always the risk that changing government policy 

relating to subsidies for renewables, in this case FIT and RHI, would affect the viability of the 

business model. 

A year into the project the company was looking for a new direction to focus innovation. They 

needed a product that could support an artificially illuminated system required for process 

stability, from lessons learned at the Glenturret distillery. As a researcher new to the field of 

microalgae, and after a period of reassessment, Arthrospira stood out as an interesting 

organism, not least because of the early and interesting research into the properties of a 

particular pigment, phycocyanin, which Arthrospira is known to contain in high quantities. The 

filamentous nature of this cyanobacteria offered a simpler dewatering process as the large 

filaments of ~5 mm in length mean that Arthrospira cultures can be filtered through a fine mesh 

to obtain a wet biomass, unlike smaller unicellular microalgae like Chlorella or Dunaliella. The 

high value of phycocyanin (at higher purity) and increasing use in common products made 

Arthrospira a good candidate in the company’s quest for a fresh endeavour. The company 

http://www.seai.ie/
http://www.canstockphoto.com/power-lines-and-pylons-1454179.html
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supported the idea to re-focus the EngD project on high value pigment production and got on 

board with Arthrospira. The company turned to artificial illumination and existing interest in 

the School of Marine Science and Technology by Dr Gary Caldwell surrounding the use of long 

wavelength LEDs to identify an opportunity to test the effects of long wavelength LEDs on the 

growth and phycocyanin content of Arthrospira. Knowing the growth (productivity)-enhancing 

effects that long wavelength LEDs can have on microalgae, it was of interest to know if similar 

effects on productivity would be seen in Arthrospira, which may offer benefits in a production 

process using artificial illumination.  

This identification of Arthrospira as a potential new product combined with the company’s 

maintained interest in whisky distillery wastewater as a feedstock for photobioreactors also 

influenced an additional project. The company was interested in developing a strain of 

Arthrospira which could grow in conditions of high copper, such as that experienced in pot ale, 

but wanted to avoid genetic modification because of risks of regulatory barriers which they had 

previously experienced. Microevolution is the evolutionary change within a species or small 

group of organisms over a short period of time and cultures can be ‘microevolved’ through 

directed microevolution and selection, after a short-period of exposure to a certain environment 

or selection pressure, for an advantageous genetic mutation (Gonzalez, 2012, Luria and 

Delbrück, 1943). The suggestion to attempt this through microevolution was accepted and it 

was thought this work would also be an opportunity to test the feasibility of using such a process 

to develop other wastewater-tolerant strains of microalgae and cyanobacteria, and therefore 

may have broader applications. 

There was also a simple side-project earlier in the Scottish Bioenergy project, undertaken during 

the period of reassessment, to develop a simple and quick method of measuring nitrate 

concentration in microalgae cultures. The company lacked in-house ‘there-and-then’ nitrate 

monitoring in their early testing, which could have shed light on problems experienced in 

particular batches and they thought this a valuable additional tool in their development and 

understanding of the photobioreactor systems and processes. A method of determining nitrate 

concentration quickly and easily using simple laboratory equipment already available to the 

company: a spectrophotometer and centrifuge was developed in two standard media and 

demonstrated using the common microalga Chlorella. This technique could then be applied by 

the company to monitor the nitrate levels in their photobioreactors, at no extra cost using the 

simple equipment they had access to. 
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This thesis is therefore a portfolio of three projects carried out in partnership with Scottish 

Bioenergy. Chapter 2 explains the development of a simplified spectrophotometer-based test to 

measure nitrate concentration in algae cultures, developed in standard Jarworski’s and f/2 

Medium and tested with batches of Chlorella vulgaris. Chapter 3 and 4 describe the 

experimentation with long wavelength red LEDs for phycocyanin production in Arthrospira 

platensis where the discovery was made that LEDs of a maximum emission wavelength (λmax) 

of 680 nm increase the content of phycocyanin in Arthrospira biomass by over 250 %. Chapter 

5 extends the results of Chapter 3 and 4 considering industrial application. Chapter 6 explores 

growth of Arthrospira on a high copper wastewater and the development of a copper tolerant 

strain through directed microevolution. The portfolio is concluded in Chapter 7. 
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Chapter 2. Development of a Spectroscopic Technique for Nitrate 

Measurement in Microalgae Cultures 

2.1 Introduction  

Nitrogen is the second most important nutrient for phytoplankton after carbon. Phytoplankton 

are responsible for approximately 70 % of nitrogen assimilation on Earth, mainly in the form 

of nitrite and nitrate (NO2 or NO3), ammonia and ammonium (NH3 or NH4) or other reduced 

sources (Raven, 1993). Additionally, some cyanobacteria have the ability to directly fix 

atmospheric nitrogen (N2) into a usuable form (NH3) (Zehr, 2011). Nitrogenous compounds are 

taken-up into cells by diffusion and/or active transport. Nitrate, as one of the main nitrogen 

sources for microalgae, has been well studied (Sanz-Luque, 2015). In nature, nitrate 

concentrations can range from 50-500 µM N L-1 (Collos and Berges, 2009). Nitrite is also 

present, but at much lower concentrations of up to 2 µM N L-1. Both compounds can be toxic 

above 1000 µM N L-1.  

Inside the cell nitrate is reduced to nitrite and then ammonium by the enzymes nitrate and nitrite 

reductase (Figure 2.1). Two pathways exist for ammonium assimilation – 1. reductive 

amination of α-ketoglutamate, catalysed by glutamate dehydrogenase, to form glutamate and 2. 

glutamate plus ammonium to form glutamine, catalysed by glutamine synthetase. Glutamate 

synthase then catalyses the transfer of glutamine amido group to α-ketoglutarate to produce two 

molecules of glutamate, where one is recycled back. Glutamate forms the basis of amino acids 

– the building blocks of proteins (Collos and Berges, 2009). 

 

Figure 2.1. Nitrate metabolic pathways in microalgae. 
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Nitrates in the medium are depleted as the culture grows due to nitrogen becoming locked 

within the algae biomass. Nitrate limitation can restrict growth and biomass production through 

reduced protein synthesis and photosynthesis. Consequently, nitrate limitation can also see the 

reduction in certain products of interest, sometimes through depletion as products are recycled 

as a protein source in times of starvation; phycobiliprotein pigments are examples (de Loura, 

1987). It is therefore important to monitor nitrate levels in algae cultures to avoid nutrient 

deficiency and consequences on productivity, whether that be biomass or levels of particular 

higher value products of interest. Conversely, nitrate limitation can cause carbohydrates and 

lipids to accumulate in microalgae. Under conditions of nitrate starvation microalgae cell 

division slows and cells divert energy to fatty acids for storage (typically triacylglycerol or 

TAG) (Breuer, 2012), which would normally be used in cell membrane synthesis. This is noted 

in numerous species, including Chlorella, and the process has been well reviewed by Sharma 

et al. (2012). Nutrient starvation is used widely in increasing lipid content in microalgae, 

particularly TAG for biodiesel production or polyunsaturated fatty acids (PUFAs) as 

nutraceuticals. Other biochemical products will accumulate under conditions of nitrate 

starvation including β-carotene in Dunaliella (Pisal, 2005). Production systems for these 

starvation products typically involve a two-phase process of high-nitrate biomass generation 

followed by a product-focused starvation period. This can be done through normal depletion of 

nitrate triggering the starvation phase (progressive limitation) or transfer of cells from a nitrate-

rich to nitrate-poor medium (abrupt limitation) to begin starvation (Millán-Oropeza, 2015). In 

these production systems, nitrate monitoring also enables identification of starvation phases 

required for accumulation of such products. 

Normal laboratory techniques for measuring nitrate concentration in algae cultures use lengthy 

colorimetric titration procedures involving numerous chemicals (Jones, 1984, Wood, 1967, 

Morris, 1963). Widely-used titrations involve use of the Cadmium Column Reduction Method 

(Strickland and Parsons, 1968) and preparation of the column can be time consuming. Samples 

higher than 10 mL are also required, as small volumes are used for washing/rinsing the column; 

therefore titrations are not practical for small batches where there is limited sampling volume. 

Field test kits, working on colour indicators (colorimetric assays) are commercially available. 

Although faster than titration methods, such kits only indicate broad concentration ranges and 

have higher limits of detection; they are therefore not practical for precise measurement of low 

nitrate concentrations (Turner Designs). Nitrate electrodes can be used to determine ionic 

nitrate concentrations, however the equipment is expensive and pH-dependable, therefore 

readings can be inaccurate with varying pH (Spellman, 2009) as occurs in microalgae cultures. 
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Real time continuous flow analysers are available, but again the equipment is expensive and 

unsuitable for small sampling frequencies (Jodo, 1992). The methods as described above could 

not be practically applied for accurate monitoring of low nitrate concentrations (<1 mM) in 

small-scale experiments, involving a number of readings over time, particularly where sample 

volume was restricted. 

Alongside sufficient sensitivity and low sample volume requirements, Scottish Bioenergy was 

looking for a nitrate monitoring technique that was rapid, relatively low cost, and simple to 

perform given the standard laboratory equipment available to it. Such a method would be 

applied in smaller-scale experiments and also likely for monitoring larger-scale pilot systems. 

A challenge was set forming a miniature-project to attempt to develop a simple, rapid and low 

cost method for measurement of nitrate in microalgae cultures for use by the company. From 

initial research, Collos et al. (1999) outlined a method to monitor nitrate in phytoplankton 

cultures without the need for chemical addition, based on UV absorption (range 190-230 nm) 

by nitrate ions. The method first involves screening the medium components to determine UV 

absorbance and identify any potential interference in the selection of a particular wavelength in 

the UV range to be used for measurement. After, a calibration is performed using nitrate 

standards made up in the chosen medium. For measurement, samples are filtered followed by 

absorbance reading of the supernatant by UV spectrophotometry at the selected wavelength. 

Nitrate concentration can be determined using the produced calibration curve. Collos et al. 

(1999) demonstrated the method in Enriched Seawater, Artificial Water (ESAW) Medium 

(Harrison, 1980) for six marine phytoplankton including Synechococcus and Isochrysis for 

nitrate concentrations above 40 µM N L-1. The group also showed the method to be in good 

agreement with standard colorimetric methods. Despite this simplified and rapid method, 

titration still remains the preferred and standard method for nitrate determination for sensitivity 

and discrimination – i.e. no real risk of interference from organic matter, nitrite, iron, chloride 

and iodide. However, the UV method may benefit certain applications where simplicity and 

rapidity may be of higher importance than sensitivity and where any interference risks have 

been limited. After discussing the Collos et al. method with Scottish Bioenergy, it was 

concluded that it could be a valuable R&D tool if it was successfully applied to the specific 

media and cultures of interest. 

For simplicity, economy and speed, a modification to the Collos et al. method could involve 

centrifuging the cultures to remove organic matter as opposed to filtering using Whatman glass-

fiber filters (GF/F). Centrifugation at a low enough speed to not damage the cells but high 

enough to form a pellet would be a satisfactory processing method if it can be demonstrated 
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that few cells or organic matter are retained in the supernatant (Dr Yves Collos, personal 

communication). Here, such a test would involve the use of two pieces of standard laboratory 

equipment which the company had access to: a UV/Vis spectrophotometer and a 

microcentrifuge. Modifications were made to the Collos et al. method and applied for nitrate 

monitoring using Chlorella vulgaris and Dunaliella salina, both species of commercial interest 

to Scottish Bioenergy. 

2.2 Experimental Details and Method 

2.2.1 Screening of medium components 

Jarworski’s and f/2 Media were prepared according to the recipes provided by the Culture 

Collection for Algae and Protazoa (CCAP) (www.ccap.ac.uk). Firstly, solutions of each 

medium component at their requisite concentrations were made and the UV absorbance 

measured to determine the level of interference from each component. The absorbance of both 

autoclaved (121 °C, 15 minutes) and non-autoclaved media with and without NaNO3 were 

measured to determine any differences in absorbance caused by the autoclaving procedure. 

Absorbance was measured at 210 and 220 nm at room temperature against fresh deionised water 

(older deionised water can have a higher UV absorbance) using a Cary 100 UV/Vis 

Spectrophotometer (Varian, UK) and quartz cuvettes, as standard plastic cuvettes absorb in the 

UV range. Cuvettes were washed with deionised water and then a small volume of sample in 

between samples to ensure there was no contamination by the previous sample, or dilution 

caused by any remaining wash water.  

2.2.2 Calibration 

Sodium nitrate (NaNO3) is commonly used as a nitrate source in many microalgae growth 

media, including both Jarworski’s and f/2, so here the UV absorbance of NaNO3 is used to 

indicate the nitrate level for monitoring. A NaNO3 calibration curve was produced (0 M- ~ 

0.001 M) against fresh deionised water. NaNO3 (obtained from Sigma Aldrich) standards were 

produced by serial dilution of NaNO3 stock and added to medium lacking the NaNO3 

component. The standards were autoclaved and absorbance scanned as described in 2.2.1. 

Absorbance spectra were plotted using Microsoft Excel 2007 and calibration curves produced 

through regression analysis. 

2.2.3 Microalgae strain and culturing conditions 

Chlorella vulgaris (CCAP 211/63) was obtained from CCAP and batch cultured in Jaworski’s 

Medium as recommended by CCAP modified with the removal of Ca(NO3)2, and addition of 

CaCl2 as described in 2.3.1 and Appendix 1. Microalgae were cultured in 1 L borosilicate bottles 

http://www.ccap.ac.uk/
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with foam stoppers covered with aluminium foil to prevent evaporation and contamination. 

Eight hundred millilitres of sterile medium was inoculated with 10 % volume/volume (v/v) 

microalgae culture of density ~2x1010 cells/L at logarithmic growth. Cultures were aerated 

using an eight-outlet air pump (Eco Air 8 Variable Control Air Pump), each outlet connected 

by 3 mm diameter silicon tubing (Thermo Fisher Scientific) to a glass pipette (5 mL) running 

to the bottom of the bottle. An in-line-valve/flow meter (Cole-Parmer) and 0.2 μm HEPA filter 

(Thermo Fisher Scientific) were used to control air-flow and ensure a sterile air supply. Air was 

provided at 70 mL per min (~0.875 vvm) and cultures were maintained at 18 °C (± 1°C) 

irradiated with a mixture of cool white and warm white fluorescent light at and an average light 

intensity of 105 µmol m-2 s-1with an 16:8 light:dark cycle. Bottle positions were rotated daily to 

prevent positional bias on light exposure. During the experiment 4 mL samples were extracted 

for analysis daily after mixing from each batch culture. All equipment was sterile and 

inoculation and sampling was performed under aseptic conditions. Four biological repeat 

cultures were grown over 11 days until stationary phase. 

2.2.4 Growth measurement 

Microalgae growth was measured daily at similar times by direct cell counts taken using an 

improved Neubauer haemocytometer with a Leitz Dialux 20 light microscope at x400 

magnification. Cell counts were taken as an average of 10 x 0.004 mm2 (0.4 μl) squares. 

2.2.5 Nitrate measurement 

2 mL volumes of culture were centrifuged at 3000 g for five minutes (Sigma 1-15 

microcentrifuge) to remove cells, particulates and suspended organic matter and the supernatant 

was used for analysis. Absorbance of the samples was measured at 210 nm; if required samples 

were diluted until the absorbance fell into the range of 0.2-1.5 (linear part of the calibration 

curve) for accuracy. Nitrate concentration was calculated from the mean of three technical 

replicates using Equation 2.1, where absorbance x is multiplied by the dilution factor if dilution 

is required. 

Equation 2.1: 𝑦 = 8048.9𝑥 + 0.141 

Where y is the concentration of NaNO3 (M), x is the absorbance at 210 nm. 

All results were recorded in Microsoft Excel 2007 and analysed using Matlab (2010). 
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2.3 Results 

2.3.1 Interference from medium components 

Most medium components had a negligible absorbance at 210 nm (Figure 2.2). Calcium nitrate 

(Ca(NO3)2), a second nitrate source in Jaworski’s Medium, had high absorbance as expected at 

210 nm. The recipe for Jarworski’s Medium was changed to remove the Ca(NO3)2 component 

and supplemented with a higher amount of NaNO3 to account for the nitrate lost through 

Ca(NO3)2 removal. NaNO3 stock concentration (stock 8) was increase to 1.44 g/ 200 mL and 

19 g/ 200mL of calcium chloride (CaCl2) was added as an alternative calcium source (stock 1). 

Details of media and modifications can be found in Appendix 1. NaNO3 would then be solely 

responsible for significant changes in absorbance at 210 nm correlating to nitrate concentration.  

 

Figure 2.2. Absorbance at 210 nm of Jarworski’s Medium and Jarworski’s Modified Medium 

(JMM) components. Numbers 1-9 represent original stock solutions 1: Ca(NO3)2, 2: KH2PO4, 

3: MgSO4, 4: NaHCO3, 5: EDTAFeNa, EDTANa2, 6: H3BO3, MnCl2, (NH4)6Mo7O24, 7: 

cyanocobalamin, thiamine HCl, biotin, 8: NaNO3 , 9: Na2HPO4 (details of medium can be 

found in Appendix 1). CaCl2 is the replacement stock solution 1 in JMM. Absorbance for 

autoclaved and non-autoclaved JMM with and without the addition of NaNO3 is also shown. 

As shown in Figure 2.2 the absorbance of all individual medium components in JMM was 

negligible in comparison to absorbance by NaNO3 at 210 nm. Therefore components would not 

contribute to absorption in samples to an extent which would affect the accurate measurement 
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of NaNO3 concentration through UV absorption. Interestingly, there were slight differences in 

absorbance in autoclaved compared with un-autoclaved medium (Figure 2.2). 

2.3.2 Calibration of Jarworski’s Medium 

The 200-250 nm region of the absorbance spectra for the calibration series of standards with 

increasing nitrate concentration, along with the derived absorbance calibration curve at 210 nm 

can be seen in Figure 2.3. Absorbance spectra (Figure 2.3a) show a clear relationship between 

increasing NaNO3 concentration and increasing absorbance within the region of 200-230 nm. 

At the higher NaNO3 concentrations (0.00025-0.001 M) noise in the absorbance spectra was 

seen between the 200-215 nm wavelengths.  

 

Figure 2.3. Absorbance spectra (200-250 nm) for NaNO3 standards in Jarworski’s Modified 

Medium (JMM) (a). Absorbance (210 nm) versus NaNO3 concentration in JMM (b). 
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Collos et al. (1999) suggested 210 and 220 nm for use in spectroscopic nitrate measurement. 

Here, 210 nm was selected for JMM as absorbance (intensity) was highest at this wavelength, 

which should allow better ‘resolution’. 

The calibration curve (Figure 2.3b) becomes non-linear at an absorbance of around 2 at 0.0002 

M NaNO3. Non-linearity at concentrations above ~0.0002 M NaNO3 also corresponds to the 

concentrations showing noise in the absorbance spectra at wavelengths below 215 nm. 

Absorbance data for these concentrations were therefore excluded and the linear part of the 

curve (0-0.00017 M NaNO3) was used to derive an equation through linear regression, 

explaining the relationship between absorbance (210 nm) and NaNO3 (M), for use in a 

spectroscopic nitrate measurement method for JMM (Figure 2.4). This equation (see Equation 

2.1 in 2.2.5) can be used to accurately determination NaNO3 concentrations in samples whose 

absorbance falls within the range of 0.2-1.5. Samples with absorbance values at 210 nm above 

1.5 must be diluted so that absorbance at 210 nm falls within this range. The calculated 

concentration can then be multiplied by the dilution-factor to derive the NaNO3 concentration.  

 

Figure 2.4. Calibration curve and derived linear equation for use in spectroscopic nitrate 

measurement in Jarworski’s Modified Medium. 

2.3.3 Calibration of f/2 Medium 

The absorbance of all individual medium components tested, as background, was negligible 

and would not contribute to absorption in samples to an extent that would affect accurate 

NaNO3 measurement (Figure 2.5). There was a small amount of absorbance by filtered 

seawater, likely caused by the small concentration of nitrates (~2-5x10-5 M according to Sharp 

et al. (1982)) already present in seawater. Interestingly, autoclaving slightly increased the 
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absorbance in seawater and f/2 Medium (with and without nitrate), likely caused by 

precipitation during the autoclaving procedure. Here, precipitates are formed which can 

interfere and increase absorbance in the medium.  

 

Figure 2.5. Absorbance at 220 nm of f/2 Medium components. Trace metal solution contains: 

EDTANa2, FeCl3, CuSO4, ZnSO4, CoCl2, MnCl2, Na2MoO4. Vitamin solution contains: 

cyanocobalamin, thiamine HCl, biotin (details of medium can be found in Appendix 1). 

Absorbance for autoclaved and non-autoclaved filtered seawater and f/2 with and without the 

addition of NaNO3 is also shown. 

The 200-250 nm region of the absorbance spectra for the calibration series of standards with 

increasing nitrate concentration, along with the derived absorbance calibration curve at 220 nm 

are given in Figure 2.6.  
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Figure 2.6. Absorbance spectra (200-250 nm) for NaNO3 standards in f/2 Medium (a). 

Absorbance (220 nm) versus NaNO3 concentration in f/2 Medium (b). 

The absorbance spectrum shows a clear relationship between increasing NaNO3 concentration 

and increasing absorbance within the region of 210-230 nm (Figure 2.6a). There is considerable 

noise in the majority of spectra above 210 nm. This noise is more extensive than seen with 

JMM, likely caused by the presence of halogen compounds or sodium chloride (Collos, 1999). 

Similar noise is also present in the absorbance spectra of the higher NaNO3 concentrations 

(0.00036-0.00088 M) and for this reason these standards were removed from the calibration. 

Unlike in JMM, where 210 nm was used for nitrate absorption, because of the noise in the 

spectra around 210 nm, 220 nm was used. Absorbance at 220 nm for each NaNO3 concentration 
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was plotted to create a calibration curve (Figure 2.6b) which suggests that 220 nm should give 

a good resolution for NaNO3 concentration determination.  

From Figure 2.6b it can be seen that the calibration curve becomes non-linear at an absorbance 

of around 1.5 at 0.0004 M NaNO3. Absorbance data for these concentrations were therefore 

excluded and the linear part of the curve (0-0.0003 M NaNO3) was used to derive an equation 

through linear regression, explaining the relationship between absorbance (220 nm) and NaNO3 

(M), for use in a spectroscopic nitrate measurement method for f/2 Medium (Figure 2.7 and 

Equation 2.2). 

 

Figure 2.7. Calibration curve and derived linear equation for use in spectroscopic nitrate 

measurement in f/2 Medium. 

 

Equation 2.2: y = 4093.9x + 0.196 

Where y is the concentration of NaNO3 (M), x is the absorbance at 220 nm. Absorbance x 

should be multiplied by the dilution factor if dilution is required. 

Equation 2.2 can be used for accurate determination of NaNO3 concentrations in samples whose 

absorbance falls within the range of 0.2-1.5. Samples with absorbance values at 220 nm above 

1.5 must be diluted so that absorbance at 220 nm falls within this range. The calculated 

concentration can then be multiplied by the dilution-factor to derive the NaNO3 concentration.  
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2.3.4 Demonstration of spectroscopic nitrate measurement in Chlorella 

The method of nitrate measurement in JMM was then used to track the nitrate concentration 

during four (repeat) batch cultures of C. vulgaris. Samples were taken daily over 11 days and 

nitrate was measured in 2 mL samples through centrifugation and absorbance of supernatant at 

210 nm, requiring dilution early on in the batch. Culture density and corresponding nitrate 

concentration over the 11 day batch is shown in Figure 2.8.  

 

 

Figure 2.8. Nitrate concentration in the four batch cultures over a period of 11 days plotted 

against cell density.  

Supernatant samples analysed under the microscope before UV absorbance measurement did 

not show the presence of any Chlorella or debris, demonstrating that the centrifugation 

technique was sufficient to remove suspended organic matter and particulates. Nitrate 

concentrations at the start of the culture (~1 mM) matched the expected concentration given the 

NaNO3 concentration of JMM. Nitrate concentration in the batches decreased rapidly from ~1 

mM to ~0.2-0.3 mM by day five, during the logarithmic growth phase. Upon the cultures 

reaching stationary growth, there was little nitrate remaining in the culture and the detection 

limit (~40 μM) for nitrate was reached at day seven in all of the cultures. 

2.4 Discussion 

At the beginning of this mini-project the company was looking for a nitrate monitoring method 

which was simple, fast, required low sample volumes and where costs were low, given the 

current equipment the company had access to, but which also had the accuracy and sensitivity 

for use with the concentration ranges of nitrate in common microalgae media. 
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Figure 2.9. Value curves for five commonly used nitrate tests. Tests are rated for four critical 

success factors which are features of a nitrate test particularly valued by the company at the 

start of the project. The grey box shows the company’s rating requirement. 

In Figure 2.9 the UV method is compared with four other commonly used nitrate tests. The 

comparison is made based on the four features identified to be most important when developing 

a test for use by the company (critical success factors) at the start of the project. The critical 

success factors are rated using Vernier Nitrate Ion-Selective Electrode and Vernier labquest 

interface system, Palintest photometer 7100 kit with nitrate reagent starter pack, Cadmium-

copper column (titration) method by Strickland and Parsons (1968) and Palintest SK200 field 

kit as examples, where information is based on Standard Operating Procedures in the instruction 

manuals. Equipment is costed based on supplier quotes and only on requirement of any 

additional equipment necessary not already available in the company’s laboratory at the time 

(excluding lab disposables). Filtration of samples is not costed. Figure 2.9 shows that the UV 

method best meets the company’s requirements for a relatively low-cost, simple, fast test where 

low sample volume is required. 

The Vernier Nitrate Electrode must be used with a datalogger (Vernier labquest interface 

system) at an equipment cost of nearly £1000, requiring a 10 mL sample to take a reading to 

nitrate concentration. Apart from setting the interface and calibrating the electrode taking a 
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reading is straight forward and readings can be taken in a few minutes. Cadmium-copper 

column colormetric titrations do not require expensive equipment, only standard laboratory 

equipment, a number of chemicals for preparation of solutions and a column. However large 

sample volumes (100 mL) are needed to wash and run through the column and preparation of 

solutions and column, requiring multiple steps, makes this method complex and lengthy, taking 

a number of hours. Colormetric field kits such as the Palintest SK200 can be purchased for 

around £200 and are simple to use with the addition of colour indicators to 10 mL samples to 

be compared against colour charts within 15 minutes. The problem with colormetric assays 

when used with colour charts is that comparison is done by eye meaning only broad 

concentration ranges of samples can be determined so there is little sensitivity in the tests and 

they are not suitable for monitoring small concentration changes. To solve the sensitivity 

problem these colormetric assays can be used with special photometers (for example Palintest 

photometer 7100) to provide a digital reading of nitrate concentration based on colour 

absorbance. The photometer however increases the equipment cost significantly by 100s of 

pounds. Given the company already had access to standard laboratory equipment including a 

spectrophotometer and quartz cuvettes, no additional equipment would have to be purchased in 

the use of the UV method for measuring nitrate concentration and only 2 mL of sample is 

required for three repeats readings, a much lower volume than is required for other nitrate tests. 

The complexity of the UV method is in the dilution of the sample so that the absorbance falls 

within a particular range which puts the complexity proportionate to colormetric assay tests 

with a five minute time saving from experience using the UV method. 

Although the UV method to monitor nitrate may be inferior in accuracy and sensitivity to other 

tests such as colorimetric titration (Collos, 1999), it is superior overall in its simplicity, speed, 

and low volume sample requirement and suitably accurate and sensitive within the range of the 

nitrate concentrations which are currently used in a number of common microalgae media for 

monitoring nitrate levels. 

The adequacy of the UV technique for other applications is of course dependent on the accuracy 

and sensitivity in the required experiments. Firstly, if measurement of nitrate concentrations 

below 40 μM are required then this technique may not be suitable, dependent on the background 

absorbance of other components of the medium of interest, which in these experiments was ~40 

μM. Secondly, there will also be a limit to the maximum nitrate concentration measureable by 

this method. Absorbances higher than those used to derive the linear equation (0.0003 for f/2 

and 0.00017 for JMM) cannot be used in the equation to calculate nitrate concentration as the 

equation assumes a linear relationship between absorbance and nitrate concentration which is 
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not true at higher absorbances (Burke, 2001).  Typically, dilutions are required to obtain an 

absorbance within the linear range, and here errors can be created by dilution increases with a 

larger dilution factor at higher nitrate concentrations. Therefore at high nitrate concentrations 

measurements can contain large error. 

Use of JMM as a modified version of Jarworski’s Medium should not have any detriment on 

cultures as CaCl2 is a commonly used calcium source in a number of standard medias (Becker, 

1994) including EG:JM, a freshwater medium (CCAP). However, the inability to change 

medium components which interfere with UV absorbance of nitrate, will prevent the use of this 

method for nitrate measurement. Experiments with JMM and f/2 Media in this chapter show 

that the method can be used with both freshwater and saltwater media. Use of the method for 

JMM was also demonstrated in Chlorella. Nitrate levels throughout the batch cultures followed 

the expected depletion trend. Upon the culture reaching the stationary growth phase, there was 

little nitrate (below detection limit) remaining in the culture. Growth uses a fixed amount of 

nitrate available in the medium and nitrate was therefore depleted. At stationary phase, nitrate 

had depleted beyond the detectable limit. Here perhaps nitrate is the limiting factor and a causal 

factor of stationary growth. The measurement technique has shown to be sufficient for 

application. 

Although in the experiments with Chlorella centrifugation at low speed as a method of 

separating cells, suspended organic matter and particulates was sufficient, there may be 

particular cultures for which centrifugation will not suffice. It is important to check, when 

setting up such a method, whether cells remain in the supernatant after centrifugation. From 

experience, particular microalgae can be difficult to pellet. Of particular mention is Arthrospira 

where gas vacuoles can keep some filaments in suspension even after high-speed centrifugation 

(10-15 g). This technique using centrifugation for filtering is therefore not applicable to 

Arthrospira. Care should also be taken that centrifugation is not carried out at speeds high 

enough to damage cells and release cell components into the supernatant which could affect 

absorbance. Dunaliella can be more difficult to pellet than Chlorella, given their high lipid 

content and buoyancy and it is tempting to increase centrifugation speed. However, their lack 

of a cell wall makes them susceptible to damage at high centrifugation speeds (Borowitzka, 

1989). Dissolved Organic Matter (DOM) is the fraction of organic matter that can be sized 

300,000-100 Da or <0.1 µM, much smaller than Particulate Organic Matter (POM) which 

includes microalgae and bacteria (Mostofa, 2013). Microalgae are known to release DOM into 

the culture medium during normal growth (Puddu, 2003). Algae exudates mainly comprises 

carbohydrates and also nitrogen compounds (Aluwihare and Repeta, 1999). As DOM is known 
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to absorb UV (Mostofa, 2013), the presence of DOM in samples could affect the accuracy of 

nitrate concentration determined by this spectroscopic method. In experiments by Mostafa et 

al. (2013) DOM concentration increased over the batch time of Chlorella vulgaris and 

Dunaliella tertiolecta cultures in a PBR reaching a maximum of 37-times the levels contained 

in medium. Given the range (and sensitivity) of this method, a 37-times increase in DOM and 

associated interference may be trivial in comparison. This would depend on the accuracy 

required from the technique. As DOM release by microalgae is also known to increase under 

conditions of stress, particularly restricted supply of nutrients, interference effects may be 

higher for use in nitrate monitoring cultures under stress conditions and so applications should 

be carefully considered (Obernosterer and Herndl, 1995). Filtering would not avoid DOM 

interference given the such small particle size. 

After further experimentation with filtration equipment, Collos et al. recommend using syringe 

filters (Pall-Gelman Acrodisc 25 mm, 0.2 μM HT Tuffryn membrane) (Dr Yves Collos, 

personal communication). Although syringe filtering will increase disposable costs, it is quicker 

than basic filter paper and doesn’t require larger samples for washing of the membrane so 

sample size required remains small if volumes are limiting in experiments.  

Apart from the speed and simplicity of this spectroscopic method, the requirement for small 

volumes is of great value in small-scale batch experiments where sampling volume is limited. 

As no more than 10 % of culture volume can be taken for sampling (Doran, 2005) in 

experiments of 500 mL volumes where daily sampling is required over 11 days, a maximum of 

only 4.5 mL samples can be taken. A maximum sample volume of 2 mL was required in these 

experiments for nitrate concentration determination, which suits such set-ups and sampling 

volume limitations. After centrifugation this volume provided ~0.5 mL for washing of the 

cuvette and 3 x 0.5 mL technical replicates for measurement of UV absorbance. Additionally, 

where dilutions are required, smaller volumes can be used. 

Finally, there has been much interest in this technique for nitrate measurement by fellow 

researchers at Newcastle University. Although the technique is inferior in accuracy and 

sensitivity to colorimetric titration methods, in certain situations the accuracy and sensitivity 

offered is acceptable for the purpose and the merits in ease of use and small sample volume 

requirement are easily recognisable, especially for application to multiple small-scale 

experiments where nitrate concentration data is of value. The knowledge of this method has not 

only been passed onto the company for use in small-scale experimentation, but also a number 
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of PhD and post-doctoral researchers have successfully adapted the technique for simplified 

and rapid nitrate monitoring in their own research. 
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Chapter 3. Enhancing Phycocyanin Production in Arthrospira platensis 

using Long Wavelength Red Light 

3.1 Introduction  

3.1.1 Photosynthesis in microalgae and cyanobacteria 

Approximately 3 billion years ago, cyanobacteria-like organisms were responsible for the ‘Big 

Bang of evolution’ (Barber, 2008). They evolved cellular apparatus that could capture visible 

solar radiation (300-700 nm), allowing the extraction of electrons from water (H2O) and the 

reduction of carbon dioxide (CO2) to energy-rich carbohydrates, releasing oxygen (O2) as a by-

product (Srivastava and Neilan, 2013). This event began the accumulation of oxygen in Earth’s 

atmosphere, creating aerobic conditions suitable for the development of more advanced life 

forms based on aerobic metabolisms.  

Cyanobacteria (formerly classified as blue-green algae) still contribute important amounts of 

O2 to the atmosphere – providing an estimated 50-80 Gigatonne (Gt) of O2 per year and fixing 

20-30 Gt of CO2 into biomass; around 20-30 % of global primary photosynthetic productivity 

(Srivastava, 2013). Many cyanobacteria species are also capable of fixing atmospheric nitrogen 

(N2) using specialised heterocyst cells (Zehr, 2011) and some can grow using anoxygenic 

photosynthesis, using hydrogen sulphide (H2S) as an alternate electron donor to H2O (Cohen, 

1986). 

The mechanism of oxygenic photosynthesis in cyanobacteria resembles that of eukaryotic algae 

and higher plants. The light processes of photosynthesis can be broken-down into four steps as 

shown in Figure 3.1. 

1. Light capture by photosynthetic pigments; 

2. Photosystem energy conversion; 

3. Electron transport and oxidation of H2O coupled with the evolution of O2 

(Photosystem I and Photosystem II and electron carriers plastoquinones, Cyt b6-f and 

plastocyanin); 

4. NADP+ reduction to NADPH and phosphorylation of adenosine diphosphate (ADP) 

to adenosine triphosphate (ATP) (ferredoxin-NADP oxidoreductase ATP synthetase).  

These four steps occur in the thylakoid membrane with metabolic processes involving 

inorganic carbon and nitrogen occurring in the stroma through enzyme activity.  
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Figure 3.1. Simplified schematic of the energy conversion process in photosynthesis. P680 

and P700 represent the reaction centre Chla of photosystem II (PSII) and photosystem I (PSI) 

respectively. Plastoquinol (PQH2) and plastoquinone (PQ) are the respective oxidation and 

reduction site of cytochrome b6-f (Cyt b6-f). Light is captured by photosynthetic pigments 

(1) and photons channeled to PSII where they are converted to electrons (2) for oxidation of 

H2O producing O2 (3) and reduction of NADP+ to NADPH and phosphorylation of ADP to 

ATP (4). Energy flow to PSII is greater than PSI. Production of NADPH and ATP 

contributes to CO2 fixation and carbohydrate production. 

In step 1, photons of light are captured and converted to excitation energy by pigments located 

in (or attached to trans-membrane proteins in, and present on the outside of) the thylakoid 

membrane. The main pigment in this process is chlorophyll a (Chla) (Björn, 2009). Chla 

absorbs light in the regions 200-500 and 650-700 nm, showing two absorbance peaks with 

maximum wavelength (λmax) 465 nm and 665 nm (Figure 3.2). In addition to Chla, most but 

not all cyanobacteria contain carotenoids and phycobilins which function as accessory 

pigments in this step 1 of photosynthesis, absorbing wavelengths of light that are not absorbed 

by Chla. Carotenoids are a group of fat-soluble pigments coloured from pale yellow to deep 

red with an absorption maxima in the region of 400-500 nm (Figure 3.2). Carotenoids are 

present in cyanobacterial cytoplasmic membranes for photoprotection in high irradiance 

conditions (Masamoto, 1999), but also in the thylakoid membranes complexed to proteins as 
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accessory pigments in photosynthesis. The most abundant carotenoids are α-, β-and γ-carotene, 

lycopene, lutein, zeaxanthin, and astaxanthin. Well-known examples of carotenoids found in 

eukaryotic unicellular microalgae are the production of the orange pigment β-carotene by 

Dunaliella salina (Pisal, 2005), and red astaxantin production in Haematococcus pluvialis, 

both under conditions of cellular stress (Solovchenko and Chekanov, 2014).  

 

Figure 3.2. Absorbance spectra of multiple photosynthetic pigments. Chla (in acetone) λmax 

430 and 664 nm, phycocyanin 615-640 nm, allophycocyanin 650-655 nm and phycoerythrin 

495-655 nm. Image sourced from 

http://www.citruscollege.edu/lc/archive/biology/Pages/Chapter06-Rabitoy.aspx. 

Phycobilins are chromophore molecules formed from open chains of four pyrrole rings 

(tetrapyrole) (unlike chlorophyll whose pyrroles are arranged in a ring with a metal atom in the 

centre) (Figure 3.3). Phycobilins attach to water-soluble proteins to create phycobiliproteins, 

the most common being the blue pigments phycocyanin, allophycocyanin, and the red pigment 

phycoerythrin. These phycobiliproteins are found in mixtures and variations in 

photoautotrophs. Phycocyanin, phycoerythrin and allophycocyanin absorb at λmax 620 nm, 565 

nm (with an additional absorption peak at 498 nm) and 655 nm respectively (Figure 3.2). 

http://www.citruscollege.edu/lc/archive/biology/Pages/Chapter06-Rabitoy.aspx
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Figure 3.3. The structures of phycocyanobilin (a) and chlorophyll a (Chla) (b). A Chla 

molecule has 4 pyrroles arranged in a ring around a central manganese (Mg) atom. 

Differently, phycobilins are formed from a chain of four pyrrole rings. Images sourced from 

https://commons.wikimedia.org/wiki/File:Chlorophyll-a-2D-skeletal.png and Zhao et al. 

(2007). 

There are also other types of chlorophyll, with chlorophyll b (Chlb) commonly present in 

photosynthetic eukaryotic algae and higher plants, but not cyanobacteria. Chlb is more water 

soluble that Chla and absorbs in different regions (λmax 450nm and 650 nm) (Figure 3.2). 

In cyanobacteria, both photosynthetic (in the presence of light) and respiratory (in the absence 

of light) reactions take place on the same thylakoid membrane, whereas in eukaryotic 

microalgae, for example, photosynthesis and respiration takes place in separate organelles; the 

chloroplast and mitochondria respectively.  

During exposure to ultra-violet radiation (UVR) in normal daylight and sources of artificial 

light, Reactive Oxygen Species (ROS) are produced in cyanobacteria. ROS (a type of free-

radical) are high energy molecules containing oxygen produced during normal biochemical 

reactions or through exposure to ionising radiation such as UVR. ROS contain an unpaired 

electron making them highly-reactive molecules, meaning they can react with lipids, protein 

and nucleic acids causing high amounts of cellular damage if they accumulate. As well as the 

benefits of absorbing the maximum amount of light for photosynthesis, contributing to cellular 

growth and maintenance of vital processes for life, cyanobacteria must control and optimise 

the amount of light they absorb so that cells do not accumulate ROS to damaging levels. 

https://commons.wikimedia.org/wiki/File:Chlorophyll-a-2D-skeletal.png
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3.1.2 The chemistry of phycocyanin and the phycobilisome  

Phycocyanin is a blue pigmented phycobiliprotein – a chromophore – produced in prokaryotic 

cyanobacteria as well as certain eukaryotes including the rhodophytes, cryptomonads and 

glaucocystophytes. In Arthrospira (Spirulina) platensis, phycocyanin is complexed with 

another phycobiliprotein – allophycocyanin – which together function as a light-harvesting 

apparatus known as the phycobilisome (Figure 3.4).  Phycobilisomes attach to the surface of 

the thylakoid membrane on the cytoplasmic side and are normally much larger than the 

photosystems. The phycobilisome absorbs specific wavelengths of light which cannot be 

utilised by chlorophyll, thereby increasing the efficiency of photosynthesis. 

 

Figure 3.4. Schematic of a typical cyanobacterial thylakoid membrane containing 

photosystems I (700 nm) and II (680 nm) and the phycobilisome consisting of a tricylindrical 

core of allophycocyanin (APC) at the base of the phycobilisome and six phycocyanin (PC) 

rods extending from the core (as described by Nomsawai et al. (1999)). Each core is 

composed of 2-3 stacked discs. Phycocyanin absorbs maximally at 610-620 nm and 

allophycocyanin at 650-655 nm. Note that although the phycobilisome is shown attached 

only to PII, phycobilisomes have mobility and can be redistributed to PI. 

Phycocyanin rods of stacked disks, 6-10 in number comprising of 2-3 discs, covalently attach 

to the allophycocyanin core of the phycobilisome via colourless linker proteins (Figure 3.5). 

Electron micrographs take by Ducret et al. (1996) can be seen in Figure 3.6. In other 

cyanobacteria and eukaryotes (namely Rhodophyta) the phycobilisome also contains 

phycoerythrin which forms the outer disks of the rods. Phycoerythrin is an advantageous 
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accessory pigment at ocean depth where mainly green light is available (Falkowski and Raven, 

2007). 

 

 

 

Figure 3.5. The phycobilisome of Arthrospira (left) and schematic of excitation energy 

transfer steps in the phycobilisome and PSII reaction centre (right). The phycobilisome is 

formed of an allophycocyanin (APC) core and peripheral rods of phycocyanin (PC) (left). 

The absorbed photon (hv) is transferred through the phycobilin pigments phycocyanin and 

allophycocyanin in the phycobilisome and Chla molecules until it reaches the PSII reaction 

centre. 

Phycocyanin and phycoerythrin are composed of a number of α- and β-subunits, each having 

a protein backbone to which bilins are covalently bound. The major chromophore contained 

within phycoerythrin is phycoerythrobilin and the major chromophore within phycocyanin is 

phycocyanobilin; this common form of phycocyanin is known as c-phycocyanin, however the 

chromophores can contain other minor bilins such as phycourobilin and phycobiliviolin 

(Glazer, 1985). 

 



41 
 

 

Figure 3.6. Electron microscope images (Ducret, 1996) of intact hemi-discoidal 

phycobilisome from the cyanobacterium Anabaena sp. PCC 7120 (magnification x228000). 

6-8 rods can be seen originating from the allophycocyanin core. Although detail is difficult to 

see, the rods form a complex pattern around the core. Rods are formed of 2-3 discs of 

measured dimensions 5-6 nm width, 10-12 nm length. 

Early studies believed that phycobilisomes were structurally associated with PSII only, and 

that energy was transferred to PSI through Chla – known as the ‘Spill-over Model’. Later, the 

phycobilisome core was shown to interact directly with PSI, as it does with PSII (Su, 1992, 

Mullineaux, 1992) in what is known as the ‘Mobile Antenna Model’, and although still not 

fully understood, it is widely accepted that although PBSs are primarily associated with PSII, 

they are mobile and can be redistributed to PSI to regulate the efficiency of excitation energy 

transfer between the two photosystems. In A. platensis phycobilisomes mainly interact with 

PSI as there are around 5.7-fold more PSI to PSII (Rakhimberdieva, 2001). Rakhimberdieva et 

al. (2001) showed that around 80 % of phycobilisomes transfer energy to PSI trimers and 

monomers compared with the 20 % of phycobilisomes which are bound to PSII.  

The ultrastructure of the phycobilisome can depend on the conditions to which the 

cyanobacterium is exposed, particularly the quantity and quality of light. In low light the 

phycobilisome can increase in size by increasing the number of disks per rod, or number of 

rods; conversely, in high light the phycobilisome can reduce in size, even losing all of the 

peripheral rods (Nomsawai, 1999). In the case of cyanobacteria which contain both 

phycocyanin and phycoerythrin in the phycobilisome rods, the phycocyanin to phycoerythrin 
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ratio can vary in response to light quality (Glazer, 1982). Additionally, the total number of 

phycobilisomes can change. All of these features demonstrate the adaptability of the 

cyanobacterial phycobilisome to maximise the yield of usable light for photosynthesis, whilst 

minimising damage to the photosynthetic apparatus. 

3.1.3 Commercial landscape for phycocyanin 

Over the past decade the consumer demand for more natural products in food, nutraceuticals 

and cosmeceuticals has driven global interest and research into ‘blue biotechnology’ in these 

industries (Scott, 2014). Phycocyanin is increasingly being exploited as a natural food 

colourant, replacing synthetic dyes such as Brilliant Blue FCF, which has been associated with 

health problems (Weber, 1979). Phycocyanin is particularly suited as a food colourant due to 

its high water solubility and stability over a large pH range (Sarada, 1999, Chaiklahan, 2012). 

At high purity phycocyanin is also used as a biochemical tracer in immunoassays, microscopy 

and cytometry, taking advantage of its fluorescent properties. Additionally, phycocyanin is 

exploited in the ‘ceutical industries for its anti-oxidant, anti-arthritic and anti-inflammatory 

properties together with other associated health benefits (Piñero Estrada, 2001, Gonzalez, 1999, 

Romay, 2003, Romay, 1998, Benedetti, 2004). There is ongoing research into the therapeutic 

properties of phycocyanin for medical use, particularly for immunomodulation, anti-viral and 

anti-cancer therapies (Belay, 2002, Chiu, 2006, Hayashi, 2006, Roy, 2008).  

 

Figure 3.7. Graphic of the main phycocyanin markets and associated properties exploited. 
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There are many uses for phycocyanin and the main markets take advantage of either one or 

more properties of the pigment from colour, anti-oxidant activity or fluorescence (Figure 3.7). 

The demand for natural food colourings in the food processing industry is expanding. This is 

driven by public demand for natural food colourings following increasing concerns of the 

effects on health of artificial colourants, e.g. 80 % of US and UK parents are concerned about 

the use of synthetic food colourings (Crawford, 2015), and this change in opinion and 

preference for natural food colourings is pushing manufacturers to switch to using natural food 

colourings in their products, driving the demand for algae-based pigments such as 

phycocyanin. Many global food manufacturers have made public commitments to and are 

removing artificial colourants from some or all of their products including Mars, Nestlé USA, 

Kraft, Campbell’s, General Mills, Frito-Lay, Kellogg’s and Mondelez International (Wollan, 

2016). The 2014 global natural food colour market represented 54.9 % of the total food colour 

market, expected to grow to 60 % by 2020 (Algae Industry Magazine, 2015), with a particular 

and rapidly growing demand for phycocyanin blue food colouring, where demand is expected 

to rise five times by 2020 (Future Market Insights, 2016). The approval of spirulina-derived 

phycocyanin in 2013 by the US Food and Drug Administration, after years of safety testing 

and petition by Mars, made spirulina-derived phycocyanin the first natural blue colourant to be 

approved for use in the US which has fed the increasing demand for phycocyanin (United States 

Government Publishing Office, 2013). 

 

The sale price of phycocyanin is dependent on purity, where purity is typically graded in three 

bandings based on the pigment:protein ratio measured at an absorbance of A620/A280. Below 

0.7 phycocyanin purity ratio is classified as food grade, up to 3.9 is reactive grade and above 4 

is analytical grade (Rito-Palomares, 2001). The lower end of the reactive grade banding (0.8-

2.4 purity) is usually graded as suitable for cosmetics. Food and cosmetic grade phycocyanin 

is used mainly for its colour, reactive grade phycocyanin is of a quality to be used as biomarkers 

and in gel electrophoreses and analytical grade phycocyanin can be used therapeutically. 

Phycocyanin is often sold as lyophilised, water-soluble powder and the higher the purity of 

phycocyanin, the higher the cost. Figure 3.8 shows the price of phycocyanin sold at different 

purities in various amounts by five manufacturers. At a purity classified as food grade the price 

of phycocyanin ranges from £0.12-0.18 per g. At a reactive grade purity the price of 

phycocyanin ranges from £0.26-5,000 per g. Analytical grade phycocyanin can sell for £0.2-
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113 per mg. The price is also heavily dependent on the amount purchased as buying in bulk 

(kg instead of mg) at higher grades can reduce the unit price, sometimes by nearly 6-times. 

 

Figure 3.8. Scatter plot of the price of phycocyanin of various grades sold by five 

manufacturers: Soley Institute (Turkey), Delhi Nutraceuticals PVT (India), Shaanxi Fuheng 

(FH) Biotechnology Co. (China), Qingdao Haosail Science Co. (China), Sigma Aldrich (UK). 

Conversion from 1.25 USD to 1 GBP as of exchange rate 7th February 2017.  

 

Cyanobacteria are widely used in aquaculture for phycocyanin production, with eukaryote 

sources showing potential for future exploitation. Among the cyanobacteria the genus 

Arthrospira (formerly known as Spirulina and still commercially known as ‘Spirulina’) is the 

most commonly cultured genus; however, phycocyanin has been extracted from other genera 

such as Aphanizomenon and Anabaena (Bekasova, 1979). The main species in culture are 

Arthrospira platensis and A. maxima. 

 

The majority of Arthrospira farms in the supply of phycocyanin are located in China, India and 

the USA (Figure 3.9). Although there exists a large number of companies globally selling 

Arthrospira and/or phycocyanin products, most are formulation and distribution companies 
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who source their Arthrospira/phycocyanin powders from production companies in Asia 

(mainly China), India and the US. However there are a small number of companies within 

Europe who produce their own Arthrospira for formulation, packaging and sale, as a unique 

selling point to promote a natural, home-grown, high quality and trusted product.  

 

 

Figure 3.9. Map of the largest Spirulina and phycocyanin producers worldwide. Matching * 

represents manufacturer-distributer partnerships. Companies listed were active on the date 1st 

April 2014. Map image sourced from: www.mappery.com. 

 

Parry Nutraceuticals (part of the Murugappa Group), India have a 130 acre Arthrospira farm. 

Their products include SpiruBlu and SuperBlu (phycocyanin powders). The company is 

partnered with US-based firm Valensa International which produce Pur-BlueTM, SpiruZan® 

and BlueMaxTM, products which are formulated using material from Parry’s Indian production 

facility. Dainippom Ink Chemicals (part of the DIC Corporation, Japan) have two Arthrospira 

farms (Japan and Thailand) with the capability of reportedly producing 800 tonnes of dried 

Arthrospira per year. The company produce products: LinaBlue® with LinaBlueA and 

LinaBlueHGE (which are improved products with increased blue-colour intensity and 

stability). This company is partnered with Earthrise, a US company with a reported world’s 

largest 108 acre Arthrospira farm based in California. Earthrise also have a number of 

associated European companies including Green Valley, Germany who re-package/brand and 

sell their products. Sapphire Energy have production facilities in California and New Mexico 

and are investigating Arthrospira for oils and fuels using a strain licenced from Earthrise. 

http://www.mappery.com/
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Cyanotec Corporation (Hawaii) have production facilities on the Kona Coast, Hawaii, 

producing the notable Hawaiian strain A. pacifica. Nutrex Hawaii is a subsidery of Cyanotec. 

These companies produce Arthrospira in numerous powder, tablet and capsule formulations.  

 

There are also a large number of Chinese and Indian companies selling phycocyanin (powder) 

on international trade websites (Alibaba at http://www.alibaba.com/), although the company 

websites do not list a phycocyanin product only Arthrospira powders with average reported 

production capabilities of around 1000 kg per month. Australian Spirulina (TAAU) has a 

production facility in Darwin boasting the highest quality Arthrospira formulations with lowest 

bacterial contamination in the world. All production facilities of these large companies listed 

above are open air ponds or race-ways.  

 

There also exists multiple European health companies providing phycocyanin/Arthrospira 

products; however, nearly all of these companies obtain their raw materials from large suppliers 

in China, India and the US or low-tech small farms in Africa or Asia. BlueBio Tech 

International GmbH, as an exception, provide analytical grade phycocyanin from their algae 

production facility in Elmshorn, Germany. There is also a significant number of Arthrospira 

production companies based in France; however, a number of these are social enterprises or 

charities funding small production facilities in Africa with the aim to improve the health and 

life prospects of the local population, for example Spirulina du Burkina. Some of these French 

companies are also low-tech family micro-farms in the south of the country selling Arthrospira 

food products locally, for example In’Spir. Spiralps farm Arthrospira in Valais, Switzerland in 

a controlled greenhouse environment for production of fresh health drinks. 

 

Two interesting companies as members of the European Algae Biomass Association (EABA) 

are Algaenergy (Spain) and Microlife SRL (Italy). Algaenergy are involved in R&D activities 

and production of high quality, contaminant-free Arthrospira for nutritional and cosmetic 

purposes. Microlife srl produce Arthrospira for addition into its range of food and health 

products, suggesting their traditional method of drying in noodles allows fast drying at low 

temperatures, preserving more of the beneficial health properties of its Arthrospira products. 

In the late 1980s, UK-based company Blue Green - Biotech (now dissolved) founded by Steve 

Skills produced Arthrospira biomass from anaerobically digested agricultural waste in a 1000 

L closed and artificially illuminated PBR (Skill, 2013). Biotechna Ltd (Luton) developed a re-

circulating helical photobioreactor known as BIOCOIL PBR for production of Arthrospira 
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using AD liquor, patented in 1987 (Robinson, 1993). Both these early companies had difficulty 

in creating a commercially viable business. All Seasons Health (Hampshire) produce 

Arthrospira tablets and are the only company in the UK to provide Certified Organic 

Arthrospira (Soil Association). Arthrospira are however currently imported from India and 

Taiwan for formulation. 

3.1.4 The physiology of Arthrospira 

Arthrospira is a free-floating filamentous cyanobacterium with spiral-shaped filaments or 

trichomes (Figure 3.10).  

 

Figure 3.10. Microscope images at various magnification taken of Arthrospira platensis 

(Oerst.) Geitler strain CCMP1295 deposited with the Bigalow Laboratory culture collection 

(images taken from https://ncma.bigelow.org/ccmp1295). 

In addition to its high phycocyanin content, which can be up to 20 % dry weight, Arthrospira 

also contains high amounts of other nutraceuticals such as vitamins and polyunsaturated fatty 

acids (PUFAs), and is high in protein (Vonshak, 1997). For this reason Arthrospira biomass is 

a salable product; however, pure phycocyanin - depending on purity - has a considerably higher 

market price. 

https://ncma.bigelow.org/ccmp1295
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Figure 3.11. Diagram of a typical Arthrospira cell. The thylakoid membranes involved in 

photosynthetic and respiratory processes contain photosynthetic pigments including 

chlorophyll a. The cytoplasmic membrane, involved only in respiration, contains carotenoids. 

Protons are brought into the thylakoid lumen, the space between a pair of thylakoid 

membranes, in photosynthetic and respiratory electron transport, creating a proton gradient 

which drives the synthesis of ATP. 

The morphological features of Arthrospira are varied and are linked to environmental factors. 

Typically, Arthrospira forms left-handed helical trichomes of variable length and degree of 

coiling. The cells of the trichome are broader than long with a typical width of 3-12 µm 

(Gershwin and Belay, 2007) and transverse cross-walls are visible under a normal light 

microscope. The cells lack membrane-bound organelles with the DNA, ribosomes, protein 

granules and lipid droplets floating in the cytoplasm. The cells are surrounded by an outer 

membrane which forms a murein-based cell wall, and an inner cytoplasmic membrane 

separating the cytoplasm from the periplasm (Figure 3.11). There are multiple pairs of 

thylakoid membranes, which do not stack to form grana as they do inside the chloroplasts of 

higher plants and algae.  
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Arthrospira require a higher concentration of nitrate (typically 33-fold higher), than other 

typical commercially cultured microalgae, which is normally supplied through the addition of 

sodium nitrate to media. This is because, unlike other filamentous cyanobacteria, Arthrospira 

lack heterocyst cells and are therefore non-diazotrophic (unable to fix nitrogen). Nitrogen-

limited cultures show pigment bleaching, in a process that is referred to as chlorosis (Allen and 

Smith, 1969, Lau, 1977) and phycocyanin can be degraded by protease activity (Carr, 1988). 

 

Figure 3.12. Life-cycle of Arthrospira modified (Ali and Saleh, 2012). Arthrospira, like 

many filamentous cyanobacteria reproduce through trichome fragmentation and formation of 

hormogonia. 

Arthrospira reproduces asexually by binary fission through trichome fragmentation and 

formation of hormogonia (Figure 3.12). Mature trichomes fragment through the formation of 

specialised necridia cells (1.) that undergo lysis providing bioconcave separation discs 

(Gershwin and Belay, 2007). Fragmentation of the trichome produces hormogonia: 2-4-cell 

chains (2.), which then lose attached necridial cells and become rounded at the distal ends (Ali 

and Saleh, 2012). Hormogonial cell enlargement and trichome elongation (3.) through binary 

fission produces new trichomes. 
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3.1.5 The move towards efficient lighting 

The typical approach to the cultivation of Arthrospira is using open ponds or raceways; 

however, this type of cultivation requires large areas of land and limits cultivation in countries 

with low daylight levels. The incorporation of efficient artificial illumination (e.g. light-

emitting diodes (LEDs)) into more intensive cultivation methods using closed 

photobioreactors, could facilitate production industries in non-equatorial countries and where 

land is restricted. As productivity is determined by light intensity in microalgal cultures, the 

use of artificial illumination allows better control over production (avoiding diurnal and 

seasonal fluctuations). However, the use of artificial illumination may only be appropriate for 

high value products, such as phycocyanin, due to the economics of associated energy costs 

(Blanken, 2013). As photoautotrophs are restricted to utilising only those wavelengths of light 

absorbed by their photosynthetic apparatus, the efficiency of artificial light can be increased by 

matching light sources to the organisms’ photosynthetic capability. As LEDs can be 

manufactured to emit light in narrow emission spectrums, they are ideal for producing efficient 

artificial lighting arrays, reducing waste light and further increasing the photosynthetic 

efficiency. This property has made them increasingly popular in horticulture and aquaponics 

artificial illumination systems (Massa, 2008, Morrow, 2008). Lighting arrays for plant growth 

incorporating blue and red LEDs tuned to Chla absorbance are now commonplace. 

3.1.6 Adaptation to light 

As water molecules absorb in the red region of the electromagnetic spectrum, limitations for 

photosynthesis occur naturally in these wavelengths. Light scattering of shorter wavelengths 

also occurs by suspended material resulting in the provision bias of blue-green wavelengths in 

nature (Kirk, 2000). Environmental factors therefore determine light availability forcing 

photoautotrophs to adapt to the quality and quantity of available light. Some phycobilisome-

containing photoautotrophs exhibit a phenomenon called complementary chromatic adaptation 

(CCA) wherein the phycocyanin to phycoerythrin ratio is altered in the rods in response to 

different light quality by modulating pigment synthesis (Bennett and Bogorad, 1973, Bogorad, 

1975, Tandeu de Marsac, 1977). This process is photoreversible. CCA was first observed by 

Engelmann in 1902 (Engelmann, 1902) when cyanophyte cells became increasingly blue-green 

or red-brown under red and green light respectively, with increasing rates of photosynthesis 

after the colour change. The genetic aspects of CCA have been studied in the cyanobacteria 

Calothrix sp. PCC7601, Fremyella diplosiphon and Synechococcus sp. (Kirk, 2000), which are 

closely related to Arthrospira (Figure 3.13). Three gene sets encoding phycocyanin apoprotein 
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(α- and β-) subunits have been identified with the expression regulated chromatically in two 

out of these three gene sets and genes encoding linker proteins have also been identified 

(Grossman, 1993). CCA has since being shown to be widespread in cyanobacteria (Kehoe, 

2010). In addition to changes in pigment ratio, changes in response to a difference in light 

quantity can include modulation of the size and number of rods in the phycobilisome 

(Nomsawai, 1999). Nomsawai et al. (1999) showed in Arthrospira that under low and high 

quantities of light the number of phycocyanin discs per rod can vary from 1.7-2.2, and the 

number of rods per phycobilisome can vary from 4.5-5.8, with the number of discs per 

phycobilisome varying from 7.7-12.9. 

 

Figure 3.13. Neighbour-joining tree showing relationships among Arthrospira strains and 

other cyanobacteria from 16S rRNA gene sequence analysis; taken from (Choi, 2012).  

Although changes in pigment ratio is attributed to CCA in numerous photoautotrophs, Babu et 

al. (Babu, 1991) demonstrated that CCA is not applicable to A. platensis. In phycoerythrin 

containing photoautotrophs, both phycoerythrin and phycocyanin undergo changes in synthesis 

(at the gene expression level) in response to light quality. Phycoerythrin and phycocyanin are 

enhanced under green and red light respectively. Babu et al. (1991) showed that phycocyanin 
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does not undergo major changes in synthesis in response to light quality, as it does for light 

quantity. Instead, it is changes in the phycocyanin chromophore that are attributed to 

adaptation. Under green light the presence of the chromophore phycobiliviolin was enhanced 

in the α-subunit of phycocyanin. Arthrospira is therefore a non-chromatin adapting 

photoautotrouph. There have been a number of studies following on from Babu et al. (1991) 

demonstrating that A. platensis can be manipulated to increase phycocyanin content by the 

application of certain light wavelengths, with additional effects on productivity and these are 

summarized below in Table 3.1. 

Wang et al. (2007) found A. platensis biomass productivity was higher when cultured under 

red light (620-645 nm), compared with white (380-760 nm) and other monochromatic light and 

presented calculations demonstrating that the use of red light would be economically beneficial 

to photoautotrophic production, as energy to biomass conversion is more efficient. Farges et 

al. (2009) also modelled A. platensis productivity under polychromatic blue/red and 

monochromatic red light. There were comparable biomass productivities under the two light 

types, proving an increased energy-to-biomass conversion efficiency under monochromatic red 

light, through lower electrical power consumption. Despite maintaining biomass productivity, 

phycocyanin content decreased by 2-fold under red monochromatic light. Using light filters, 

Walter et al. (2011) achieved a higher phycocyanin content and biomass productivity under 

white light, compared with red, yellow, green and blue monochromatic light. 
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Table 3.1. Summary of light studies on A. platensis. Details of light wavelengths presented 

where available as range or emission maximum (max). White light assumed to be standard 

where details not available. Effects on biomass productivity and phycocyanin content are 

compared with white light and shown as increased (↑), decreased (↓) or same (─). 

Study Light colour Wavelength (nm) 

Biomass 

productivity 

Phycocyanin 

content 

Wang, 2007 red 620-645 ↑ 

n
o

t 
m

ea
su

re
d

   yellow 587-595 ↓ 

  green 515-540 ↓ 

  blue 460-475 ↓ lowest 

  white 380-760 ─ 

Farges, 2009 red 626 max  ─ ↓ 

  red + blue 640 max, 470 max ─ ─ 

Chen, 2010 red 620-645 ↑ highest ↑ * 

  yellow 587-595 ↓ ↓ 

  green 515-540 ↓ ↑ 

  blue 460-475 ↓ lowest ↑ highest 

  white 380-760 ─ ─ 

Walter, 2011 red 475-600 ↓ ↓ 

  yellow 400-475 ↓ ↓ 

  green 400-475, 550-700 ↓ not measured 

  blue 525-700 ↓ lowest ↓ 

  white standard ─ − 

Akimoto, 2012 far-red  700-780 ↓ lowest ↑ 

  red (longer) 620-700  ↑ highest ↓ lowest 

  red  600-650 ↓  ─ 

  yellow  570-600 ↓ ↑ 

  green  500-570 ↓ ↑ 

  blue  400-500 ↓ ↑ highest 

  fluorescent white  

 

↓ * ↑ * 

  white LED standard  ─ ─ 

Markov, 2014 red 620 max ↑ ↓ 
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  yellow 590 max ─ ↓ 

  green 525 max ↓ ↑ 

  blue 475 max ↓ lowest ↑ highest 

  Pink 440 max, 620 max ↑ highest ↓ lowest 

  white  standard ─ ─ 

*Not statistically significant. 

Chen et al (2010a) showed A. platensis cultures have higher biomass yields under red (620-

645 nm) light, compared with white and other monochromatic light. Phycocyanin content was 

highest under blue light, and slightly higher under red compared with white light, although not 

a statistically significant increase. Markou et al. (2014) showed that biomass productivity was 

higher under pink and red light compared with white light and other monochromatic colours. 

Significantly lower phycocyanin content was found under pink and red light, but a high 

phycocyanin content was found under blue light. Both Chen et al. and Markou et al. 

acknowledged an inverse relationship between biomass productivity and phycocyanin yields 

under the different light regimes and suggested the effect may be a result of slower growth 

under blue light, thereby directly limiting the amount of recycling/metabolysis of phycocyanin 

as a nitrogen source (Carr, 1988) - therefore increasing phycocyanin content. Alternatively, 

they suggest that the relationship may be an effect of light limitation (as pigment levels are 

known to increase under light-limiting conditions) to allow capture of the maximum amount 

of light for photosynthesis; therefore, in these examples blue light would equate to a ‘dark 

environment for photoautotrophs’. Either way, both groups put forward the case for the 

preferred, beneficial use of blue light for phycocyanin production in A. platensis. 

The use of longer wavelengths of light for microalgae cultivation has demonstrated the 

achievement of higher biomass productivity and pigment yields under certain narrow bands. In 

studies by Akimoto et al. (2012) three types of red light were tested against other 

monochromatic light and white fluorescent and LED light. A standard red LED was used along 

with longer wavelength red LEDs of 620-700 nm and 700-780 nm. Interestingly, biomass 

productivity was highest under 620-700 nm light, with minimal biomass productivity under 

700-780 nm light. Contrastingly, phycocyanin content (measured as phycobilisome/Chla) was 

highest under blue light (comparing well to similar studies) and 700-780 nm furthest red light. 

Phycocyanin content was lowest under 620-700 nm red light and both sources of white light 

therefore contributing to the support of a biomass productivity-pigment content trade-off in 
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culture, and a relationship that perhaps requires further attention and investigation for 

optimisation of closed high-value pigment systems using photoautotrophs. 

These earlier short-term studies hinted at the potential for manipulating the biomass 

productivity and phycocyanin content of A. platensis, additionally allowing decreased power 

consumption in an artificially illuminated high-value product production system using longer 

wavelengths of light. The current work focused on the longer-term effects of culturing A. 

platensis using longer wavelength red light than the wavelengths emitted by standard red LEDs 

- specifically those wavelengths approaching near-infra red.  

3.2 Experimental Details and Method 

3.2.1 Equipment 

3.2.1.1 Infors photobioreactor system 

Arthrospira platensis was cultured in a modified Labfors 4 benchtop bioreactor (Infors HT, 

UK) (Figure 3.14). Modifications were made by Infors to the basic system following a 

particular specification to create a stirred tank photobioreactor (STPBR) system suitable for 

culturing photoautotrophs. The STPBR consisted of a 3 L volume glass vessel with water jacket 

using heated and chilled water, with temperature probe for temperature control. Cooling water 

was provided by a connected chiller unit (FL601 Recirculating Cooler, Julabo, UK). Water was 

heated by the base unit of the STPBR system (Figure 3.14). A motorised impeller, with 

hydrofoil blades, allowed for controlled mixing of the culture medium. CO2 was delivered 

using sterile air filtered using a 0.45 µm in-line filter and orifice sparger placed under the 

impeller. Air flow was controlled with a mass flow meter (Cole-Palmer, UK). An air outlet 

condenser was fitted and cooled using water from the chiller unit to reduce medium 

evaporation. Dissolve oxygen (DO) was monitored using a DO probe (Finesse, Switzerland). 

pH was monitored using a pH probe (Mettler Toledo, Leicester) and pH correction fluid 

supplied to the vessel through peristaltic pumps. The glass vessel was surrounded by a steel 

jacket of interchangeable LED light strips powered by an external driver transformer. Another 

feature of the STPBR system was a sampling port for aseptic culture sampling. The glass vessel 

and tubing, correction fluid pumps and bottles could be removed when connected together from 

the base unit for sterilisation by autoclave. pH, DO, and temperature were monitored online 

over selectable periods. Light intensity, photoperiod, pH, temperature, aeration and mixing was 

controlled through a connected work station running Iris Parallel Bioprocess Control Software 

version 5.2 (Infors HT, UK). 
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Figure 3.14. The Infors stirred-tank photobioreactor system. The system consisted of a 3 L 

glass vessel with temperature regulating water jacket, impeller, sterile air inlet flow control 

and sparger with air outlet condenser and online pH monitoring (d). The glass vessel was 

surrounded by a jacket of interchangeable LED light strips, shown with red (a) and white (c) 

LED jackets and closed jacket during normal operation (b). 
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3.2.1.2 Light-emitting diodes (LEDs) 

White LEDs (Lumitronix Barre LED High-Power SMD 600 mm, 12 V) were kindly provided 

by Prof. Chris Howe, University of Cambridge. λmax 680 nm red LEDs (Epitex high power top 

LED SMB680-1100-02-I) were purchased from Infors HT, UK. The λmax 680 nm red LEDs 

emit light at a longer wavelength than standard red LEDs (Figure 3.15).  

 

Figure 3.15. Standard white (solid line), standard red (dashed line) and 680 λmax red (dotted 

line) LED emission spectra. Standard white and 680 λmax red LEDs were used for batch 

culturing. The red LEDs had a narrow emission spectra at a longer wavelength than standard 

red LEDs which typically emit at 620 λmax. 

The LEDs strips could be individually added to or removed from the light jacket. Power was 

regulated using a driver transformer as electrical properties change with temperature, and the 

power level (%) was controlled (through pulse width modulation) remotely through the Iris 

software. Power level (%) was calibrated to light intensity (µmol m-2 s-1) for both the white and 

red LEDs (Figure 3.16). A LI-250 light meter (LI-COR Environmental, UK) was positioned in 

the centre of the STPBR glass vessel and the light jacket closed to simulate a running STPBR. 

Background light levels (from natural daylight entering from the open top and bottom of the 

light jacket) at 0 % power was below 0.2 µmol m-2 s-1. Light intensity was recorded in triplicate 

at each increasing power level using the 15 second averaging feature of the LI-250 light meter. 

Light was selected to be provided at 45 µmol m-2 s-1, achieved through operating red and white 

LEDs at 8 % and 3 % respectively. 

 

http://www.lumitronix.fr/LED-barres-modules-oxid/Barres-High-Power-a-LEDs/Barre-LED-High-Power-SMD-600mm-12V.html
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Figure 3.16. Light intensity-power curves for white (solid lines) and red (dashed lines) LEDs 

in the Infors STPBR as read by LI-250 light meter (LI-COR). (a) Light intensity curves for 

power outputs of up to 100 % for red and 30 % for white LEDs. (b) Light intensity curves for 

power outputs up to 10 % for both red and white LEDs. Points are means of triplicate 

readings. Error bars not shown as they were negligible.  

3.2.2 Cyanobacteria strain and culture conditions 

Arthrospira platensis (CCMP 1295) was obtained from the Provasoli-Guillard National Centre 

for Marine Algae and Microbiota (NCMA; https://ncma.bigelow.org/) (formerly the Centre for 

Culture of Marine Phytoplankton) and batch cultured following the guidance on the Culture 

Collection of Algae and Protozoa (CCAP) website (www.ccap.ac.uk) using sterile f/2 Medium 

(Guillard and Ryther, 1962) supplemented with 29.4 mM/ 2.5 g/L NaNO3 (Raoof, 2006) and 

adjusted to pH 8. Media was made with 1 µm filtered, UV sterilised natural seawater and 

autoclaved in the glass vessel of the STPBR. Master and working stock cultures were 

maintained in a constant temperature (CT) room at 18 °C (± 1°C) containing cool white and 

warm white fluorescent lighting tubes (Figure 3.17) at approximately 105 µmol m-2 s-1 and 18:6 

light:dark cycle.  

The sterile media (2.25 L) was inoculated with 0.5 L of A. platensis stock culture at an optical 

density (OD) of 0.11-0.12 at 750 nm under aseptic conditions. Successive red light batches 

were seeded using inoculum from the previous batch (the inoculant of which was, when 

necessary, stored in the CT room). Cultures were grown at 30 °C (± 0.5°C) with a 18L:6D 

photoperiod with a mean illuminance of 45 µmol m-2 s-1, impeller speed 200 revolutions per 

minute and supplemented with compressed sterile-filtered air (~0.03 % CO2) supplied at 0.08 

L per min (0.03 vessel volumes per min) through an orifice sparger.  

https://ncma.bigelow.org/
http://www.ccap.ac.uk/
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pH, temperature and DO were monitored online every 10 minutes. pH was monitored using a 

Mettler Toledo probe that was calibrated before sterilisation ahead of each run using pH 8 and 

pH 10 buffers as recommended by Infors HT, UK. DO was monitored using a Finesse probe 

recording DO in the culture as a percentage of the starting culture conditions. Calibration of 

the DO probe was performed after sterilisation. For calibration, the STPBR was set to the 

culturing conditions as described above and monitored until standard culturing parameters were 

reached, and the DO value at those conditions recorded at 100 %. Eight milliliter samples were 

taken aseptically on days 1 (inoculation), 3, 6, 7, 10, 13 and 14 for analysis.  

 

Figure 3.17. Spectral profile for constant temperature room fluorescent tube lighting that 

comprised a combination of Sylvania-Havells (F58W/865) Daylight Delux (right) and Cool 

White (F85W/840) (left) lights. Images taken from http://webassets.havells-

sylvania.com/Legacy/SylvaniaLamps/spectral/DAYLIGHT_DELUXE_860.gif and 

http://webassets.havells-

sylvania.com/Legacy/SylvaniaLamps/spectral/COOLWHITE_DELUXE_840.gif. 

3.2.3 Growth measurement 

Optical density (OD) was used alongside direct filament counts as a proxy for growth. Culture 

ODs were measured at 750 nm (Griffiths, 2011) from 500 µl triplicate samples using a Cary 

100 UV/Vis Spectrophotometer (Varian, UK) corrected with f/2 Medium. Filament counts 

were performed using a Sedgewick rafter counting cell and Olympus BH-2 brightfield 

microscope at x100 magnification. Filaments present in 10 individual 1 μl squares of triplicate 

samples were counted and an average used for statistical analysis. Because of the difficulty and 

potential inaccuracies in counting such organisms (as noted by Lawton et al. (1999)) filaments 

were only counted if: 1. over half of the filament was located in the square, to avoid double 

counting 2. the filament spiral contained over 2 complete turns, to eliminate fragments. Growth 

rates were calculated as increase in OD 750 nm day-1 according to Equation 3.1: 

 

http://webassets.havells-sylvania.com/Legacy/SylvaniaLamps/spectral/DAYLIGHT_DELUXE_860.gif
http://webassets.havells-sylvania.com/Legacy/SylvaniaLamps/spectral/DAYLIGHT_DELUXE_860.gif
http://webassets.havells-sylvania.com/Legacy/SylvaniaLamps/spectral/COOLWHITE_DELUXE_840.gif
http://webassets.havells-sylvania.com/Legacy/SylvaniaLamps/spectral/COOLWHITE_DELUXE_840.gif
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Equation 3.1: Growth rate = 
N2−N1

t2−t1
 

 

Where N2 is the mean OD (750 nm) on day t2, N1, mean OD on day t1 and t1 to t2 is the 

period for which the gradient of the growth curve was maximal. 

Growth rates were not reported as specific growth rate (Andersen, 2005) as there was an 

absence of logarithmic growth. 

3.2.4 Morphological assessment 

The total lengths of at least 20 filaments were measured to assess any changes in trichome 

morphology. Images were taken using a Leitz Dialux 20 light microscope and EasyGrab 

software with analysis performed using ImageJ software. Image size was calibrated using 

graticules at 630 pixels mm-1. Again, filaments were only measured if the filament spiral 

contained over two complete turns. 

3.2.5 Pigment analysis 

Pigment extraction was based on the method from Zhang and Chen (1999). Samples of 5 mL 

were harvested by centrifugation at 3000 g for 10 minutes (Sigma 3K18C centrifuge) in pre-

weighed glass tubes. Cells were washed once in deionised water and the wet biomass 

determined. The pellet was then resuspended in 3 mL 0.05 M sodium phosphate buffer (pH 7). 

Cells were disrupted by a freeze/thaw cycle (-20 °C) over 1 hour and sonicated for 3 minutes 

at 6 microns amplitude (Soniprep 150, MSE). Samples were then centrifuged at 10,000 g for 

30 minutes (Sigma 1-15 microcentrifuge) and the absorbance of the supernatant scanned over 

200-800 nm by spectrophotometer (Cary 100 UV-Vis spectrophotometer, Varian) using a 

quartz cuvette. In a typical absorbance spectra of pigment extracts from Arthrospira (Figure 

3.18) the phycocyanin absorbance peak is visible at about 620 nm. First and second Chla 

absorbance peaks are visible at about 430 and 662 nm respectively.  
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Figure 3.18. An example absorbance spectra of pigment extracts from Arthrospira, 

demonstrated using spectra from high and low phycocyanin concentration extracts. Spectra 

have been normalised at the second Chla absorbance peak. 

Sodium phosphate buffer (0.05 M) was used as a blank and the phycocyanin concentration and 

purity calculated using the method by Bennett and Bogorad (1973) (Equation 3.2) and Boussiba 

and Richmond (1979) (Equation 3.3), respectively. In calculation of phycocyanin 

concentration using the method by Bennett and Bogorad one must take into account in the 

calculation the presence of allophycocyanin and absorbance by allophycocyanin at 655 nm, 

which is not normally a visible peak in the spectra. 

Phycocyanin concentration was analysed in triplicate at day 14 (or when growth reached OD 

0.33). Extraction yield was calculated as below in Equation 3.4 using dry weight biomass and 

phycocyanin concentration.  

Equation 3.2: PC (mg/mL) = 
A620 - 0.474(A655)

5.34
 

Equation 3.3: PC purity =
A620

A280
         

Equation 3.4: PC extraction yield (mg PC/g biomass) =
PC x V

B
 

Where PC is the phycocyanin concentration (mg/mL), A, absorbance at the wavelength 

denoted by the subscript number, V, volume of solvent (mL) and B, dry biomass (g). 
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Phycocyanin was also expressed as phycocyanin per cumulative filament length in 1 mL of 

culture using Equation 3.5. 

Equation 3.5: Phycocyanin per cumulative length in 1 mL =
PC

(L ×CC)
 

Where PC is the phycocyanin concentration (mg/L), L, average filament length in the sample 

and CC, average filament count per mL 

3.2.6 Statistical analysis 

Data analysis was performed using both Microsoft Excel 2007 and GraphPad Prism version 

6.07 for Windows. In the assessment of the differences in growth rate, filament length, biomass, 

and phycocyanin concentration, purity and yield under red compared with white light, three 

runs under red light (1-3R) and three runs under white light (1-3W) are used for statistical 

comparison. Growth rate was calculated as the steepest part of the curve from a minimum of 3 

data points. Error was calculated as the average of the standard deviations of all OD values 

used in the growth rate calculation. Growth rates were averaged for red (1-3R) and white (1-

3W) light conditions and error calculated as the standard deviation of growth rates. A two-

tailed un-paired T-test not assuming equal standard deviations (Welch’s Correction) was used 

to compare growth rates under red and white light with a p value <0.05 deemed to be a 

significant difference in GraphPad Prism. For filament length data the reduction in filament 

length on inoculation was calculated by the % decrease in average filament length between the 

initial average length taken on day 1 (time 0) to the lowest filament length recorded in the 

period of days 1-6 after inoculation, which happened to be either the second or third reading. 

For % increase over the batch calculation, % increase was calculated from the lowest value 

after inoculation to the end value. For filament length, dry weight, phycocyanin concentration, 

yield and puritya two-tailed un-paired T-test not assuming equal standard deviations (Welch’s 

Correction) was used to calculate the significance of the difference with a p value <0.05 

deemed to be a significant difference. Welch’s correction was used as standard deviations were 

not assumed to be equal under the two light conditions given acclimation under red light. 

Asterisks indicate the level of statistical significance where p<0.05 =*, p<0.005=**, 

p<0.0005=***. The significance of the difference between the growth rate and phycocyanin 

yield in each individual batch 1R-7R compared with the mean under white light was calculated 

using a two-tailed un-paired T-test and significance levels are indicated by asterisks in the 

figures.  
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3.3 Results 

3.3.1 Selection of culturing conditions 

During the first few runs in the STPBR using conditions of lower mixing (60 rpm), higher air 

flow rate (0.4 L per min or 0.146 vvm), lower operating temperature (18 °C), lower nitrate 

concentration (standard f/2 Medium with no nitrate supplementation) and white LED light (45 

µmol m-2 s-1), problems with bleaching and fragmentation (Figure 3.19) of the culture occurred 

along with reduced trichome width and low levels of phycocyanin production (no observable 

phycocyanin absorbance peak in sample extracts). 

 

Figure 3.19. Microscope image showing trichome fragmentation, noticeable between days 

12-14 in the STPBR, indicating damage. Filaments with obvious damage are circled. 

During these early runs the DO levels rose rapidly over the 14 day batch period, through oxygen 

evolution during photosynthesis and accumulation of oxygen in the culture. High DO likely 

leads to the production of reactive oxygen species (ROS), and the damage observed through 

oxidative damage of lipids, proteins and DNA (Nishiyama, 2005, Foyer and Noctor, 2005, 

Halliwell, 2003). Accumulation of DO and associated bleaching and fragmentation were 

reduced by changing the operating temperature and impeller speed to 30 °C and 200 rpm 

respectively (Doran, 2005).  
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3.3.2 Batch details 

A total of 10 batches were successfully completed: seven under red light (labelled 1-7R) and 

three under white light (labelled 1-3W). The complete culturing order (independent of light 

type) was: Batch 1R, 2R, 1W, 2W, 3W, 3R, 4R, 5R, 6R and 7R. Data from each batch is 

presented individually, as the acclimation effects observed could not be visualised by 

combining data. The culture failed to grow in the first 20 days during the first trial batch under 

red light (data not shown); however, growth was observed after day 20, suggesting that 

acclimation had occurred. This culture was subsequently used as the inoculant for batch 1R. 

Although only runs 1-3R and 1-3W were used for statistical comparison in the assessment of 

the differences in culturing under red compared with white light in this chapter, data from 

batches 4-7R is displayed in the figures alongside the data from batches 1-3R and 1-3W to 

most clearly show the acclimation effects of successive culturing. 

3.3.3 Growth 

Batch 2R, as one of this first red light batches, experienced an approximate 13 day lag phase 

(Figure 3.20). The inoculant from 1R was stored in the CT room for approximately one month 

prior to inoculation of 2R. Batch 3R also showed slower growth compared with subsequent red 

light batches. Batch 2W also experienced slow growth after day 10. 

The average maximum growth rate under red light (0.028 ± 0.009 ∆OD d-1) was approximately 

22 % higher than under white light (0.023 ± 0.009 ∆OD d-1) (Figure 3.21) which, when 

compared using a Two-tailed un-paired T-test with Welch’s Correction, is not significantly 

higher (p=0.2857). From the growth curves in Figure 3.20, there is a visible pattern in the 

consecutive batches 4R-7R in that the final OD increased with each consecutive culture.  
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Figure 3.20. Growth curves of replicate batches measured at OD 750 nm cultured under red 

(red line) and white (black line) light. Each point is mean ± standard deviation, n = 3. The 

final OD 750nm of each batch and batch number is labelled. 

 

Figure 3.21. Maximum growth rates represented graphically for the batches. Growth rates 

were calculated from the maximum gradient of the slope of the growth curves from a 

minimum of three data points. Error is ± standard deviation. 
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a. 

 

b. 

 

Figure 3.22. Filament length over time (a) and mean filament length (b) across the 10 

batches. (a) Each point represents the mean of at least 20 measured filaments. (b) Mean ± 

standard deviation for filament length over the entire batch culture period. 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1 3 5 7 9 11 13 15 17 19 21 23 25

M
e
a
n

 f
il
a
m

e
n

t 
le

n
g

th
 (

m
m

)

Time (days)

1R 2R 3R

4R 5R 6R

7R 1W 2W

3W

0.49
0.51

0.58
0.55

0.60 0.60

0.76

0.43

0.34

0.28

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7

M
e
a
n

 f
il
a
m

e
n

t 
le

n
g

th
 (

m
m

)

Run Number

Red White



67 
 

Filament length reduced rapidly after inoculation, on average by 40 % when calculated across 

all batches, before slowly increasing (Figure 3.22a) in the majority of batches. This reduction 

did not occur in batch 5R and in batch 2W reduction was observed between reading 2 and 3 

between days 3 and 6. The reduction in filament length after inoculation was pronounced in 

those batches cultured under white light (average 60 %); and whereas filament length began to 

increase after day 3 in red light batches, the filament length under white light continued to 

decrease until day 6. Arthrospira filaments were on average 51 % longer in those batches 

cultured under red (mean length 0.53 mm) compared with white light (mean length 0.35 mm) 

(Figure 3.22b) which, when compared using a Two-tailed un-paired T-test with Welch’s 

Correction, is significantly higher (p=0.0347*). The lengths of Arthrospira filaments in the 

final batch samples were also on average 119 % longer in those batches cultured under red 

(0.59 mm) compared with white light (0.27 mm). There were no other obvious morphological 

differences observed between Arthrospira cultured under red light compared with white light. 

There was also a general trend that filament length increased slowly over the culture period. 

This filament length increase over the culture period was on average 47 % across all the batches 

(excluding batches 2R, 1W and 3W where this trend wasn’t seen). 

3.3.4 Pigment analysis 

The individual absorbance spectra for the 10 batches are shown in Figure 3.23 with peak 

absorption values at 620 nm given in Table 3.2. Spectra were normalised at the second Chla 

absorbance peak, at 680 nm, which was calculated to be the specific wavelength at which the 

Chla absorbance peak occurred in the majority of batch spectra. 

Figure 3.23 also shows an interesting blue-shift in the second Chla peak for batches cultured 

under white light. Here the Chla peak occurred at a shorter wavelength at around 673 nm, 

instead of 678 nm in the absorbance spectra of those batches cultured under red light, giving a 

blue shift of 5 nm, and can be seen clearly in Figure 3.24(a) and Table 3.3. No additional 

absorbance peaks were observed at wavelengths above the second Chla peak (Figure 3.24(b)). 

Interestingly, the second Chla peaks for the three earliest batches cultured under red light (1R, 

2R and 3R) are skewed towards the shorter wavelengths in comparison to the later red light 

batches (Figure 3.24(a)). However, on closer inspection of the absorbance maxima (Table 3.3) 

there is no obvious trend between maxima shifting and batch number. 
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Figure 3.23. Absorbance spectra of pigment extracts from all batches normalised against the 

second Chla absorbance peak (680 nm). (a) Spectra from individual batches and shown in 

window (b) coloured according to culturing light type (red light = red line, white light = black 

line).  

 

Table 3.2. Absorbance values at 620 nm (phycocyanin) in the batch extracts. Error is 

presented in brackets expressed as mean ± 1 standard deviation. 

  Absorbance 620 nm Mean 

B
a
tc

h
 

1R 0.236 (0.021)  

2R 0.249 (0.007) 0.211 (0.011) 

3R 0.148 (0.005)  

1W 0.117 (0.012) 

0.064 (0.007) 2W 0.057 (0.007) 

3W 0.019 (0.003) 

4R 0.262 (0.021) 

 5R 0.311 (0.037) 

6R 0.388 (0.034) 

7R 0.558 (0.023) 
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Figure 3.24. (a) Second Chla absorbance peak of batch extracts, (b) absorbance of batch 

extracts at longer wavelengths between 650-750 nm.  

Table 3.3. Absorbance maximum of second Chla peak in batch extracts. 

Light Batch number Second Chla absorbance 

maximum (nm) 

White 1 672-673 

2 671-674 

3 672-676 

Red 1 677-678 

2 674-677 

3 677-680 

4 677 

5 678-679 

6 678 

7 677-679 
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The batches cultured under red light were a richer blue in colour compared with batches 

cultured under white light (Figure 3.25). 

 

Figure 3.25. Visual colour differences between the cultures from the end of batch 1W (left) 

and 2R (right). Mean OD reading from the bottled cultures at the time the photo was taken 

were similar at 1W=0.332 (± 0.007), 2R=0.321 (± 0.01).  

 

Figure 3.26. Dry weight (mean ± standard deviation) of biomass in the 5 mL samples. 

Measurements were calculated from three technical replicates.  
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The 7.8 % increase in mean dry weight biomass obtained from batches cultured under red light 

(3.977 ± 0.592) compared with white light (3.688 ± 1.417) was not significant (Figure 3.26) 

(p=0.871 using a Two-tailed un-paired T-test with Welch’s Correction).  

 

Figure 3.27. Mean ± standard deviation phycocyanin concentration (g/L) of the extracts 

measured by spectrophotometer according to the method of Bennet and Bogorad (1973), 

(Equation 3.2). Measurements were taken from three technical replicate samples. 

Phycocyanin concentration was higher on average in batches cultured under red light (0.028 ± 

0.002 g/L), compared with white light (0.007 ± 0.001 g/L) (Figure 3.27), giving a 300 % 

significant concentration increase under red light (p=0.0134* using a Two-tailed un-paired T-

test with Welch’s Correction). Mean phycocyanin yield (Figure 3.28) was higher in red light 

batches (22.496 ± 3.554 mg/g) compared with white light (6.37 ± 1.417 mg/g), a 253 % 

significant increase in yield (p=0.0126* using a Two-tailed un-paired T-test with Welch’s 

Correction). In batches 4R-7R, which were cultured consecutively, there was a clear trend of 

increasing phycocyanin yield. The phycocyanin yield in each individual batch 1R-7R was 

significantly higher when compared with mean phycocyanin yield under white light and the 

significance level is indicated by asterisks in Figure 3.28 and the increase in phycocyanin yield 

observed under red light in batch 7R, compared with white light was a remarkable 864 %. 
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Figure 3.28. Phycocyanin yield (mean ± standard deviation) at the termination of each batch. 

Yield is expressed as mg phycocyanin per g dry biomass as calculated using the phycocyanin 

concentration (g/L) results from the triplicate extracts and a value of dry weight biomass from 

the samples (Equation 3.4). Significance of difference in yield between white and each 

individual red batch indicated by asterisks where *** = p<0.0005. 

 

Figure 3.29. Phycocyanin purity (mean ± standard deviation) of the extracts measured by 

spectrophotometer according to the method of Boussiba and Richmond (1979) (Equation 

3.3). Measurements were taken from 3 technical replicates. 
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Phycocyanin purity was  higher in red light batches (0.569 ± 0.051) than in white light (0.239 

± 0.023), an 138 % increase, but not significantly higher using a p value of <0.05 (p=0.0504 

using a Two-tailed un-paired T-test with Welch’s Correction) (Figure 3.29). In batches 4R-7R, 

which were cultured consecutively, there was a trend of increasing phycocyanin purity. 

According to Pearson’s correlation coefficient R, the square root of the R2 value shown in 

Figure 3.30a, there is a very strong (0.908) positive relationship between phycocyanin yield 

and average filament length (Evans, 1996). There is a strong positive (0.787) relationship 

between phycocyanin yield and final filament length in the batches (Figure 3.30b). 

Using the filament counts per volume (Figure 3.31a) phycocyanin was also expressed in a novel 

way (Figure 3.31b) as mg of phycocyanin per cumulative length of filaments in 1 mL, 

calculated according to Equation 3.5.  This was an attempt at reporting the mass of phycocyanin 

contained in the total length of cells present in 1 mL of culture. Because Arthrospira are 

filamentous the lengths and cell counts alone do not provide quality information on how much 

‘cell’ there is in a sample; however when combined they can. It was of interest to see if this 

new measure could provide interesting information about the phycocyanin content of ‘cell’. 

Unfortunately, this measure suffers from high error as calculations are based on highly variable 

cell length data, so concluding this is not an informative measure.
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a. 

 

b. 

 

Figure 3.30. Phycocyanin yield (mg/g) plotted against mean filament length (whole of batch) 

(a) and final filament length (end of batch) (b). Data is shown as mean ± standard deviation. 

The coefficient of determination (R2 value) and linear equation of the line-of-best-fit are 

labelled. Error is not shown for (b) for figure clarity as the error was large, as expected with 

the variation in filament length in the sample.  
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a. 

 

b. 

 

Figure 3.31. (a) Mean filament count (± standard deviation) per mL of sample at the end of 

the batch and (b) phycocyanin expressed as mg per cumulative length of filament in a mL of 

sample.  
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3.4 Discussion  

3.4.1 Main findings 

Culturing of Arthrospira platensis under λmax 680 red light requires acclimation to enable the 

culture to utilise the light type. This acclimation phase took approximately 14 days under the 

conditions of these experiments. This acclimation was also (quickly) reversible if acclimated 

cultures were removed from red light conditions.  

There was a 22 %, but not significant, increase in growth rate of Arthrospira measured by OD 

under red light compared with standard white light. There was a surprising significant over 250 

% increase in phycocyanin yield under red light compared with white light.  Average and final 

filament length of Arthrospira was 51 % higher under red light compared with white light. 

Furthermore, acclimation seems to be a constantly active process observable through the 

continual batch culturing of Arthrospira cultures under red light resulting in progressive 

increases in phycocyanin yield and increases in final culture OD of Arthrospira batches. 

Although extraction procedure has a large impact on phycocyanin concentration, purity and 

yield, these increases under red light mean that even using a crude extraction method, reactive-

grade purities of phycocyanin were obtainable (Below 0.7 phycocyanin purity ratio is classified 

as food grade, above 0.7 to 3.9 is reactive grade and above 4 is analytical grade (Rito-

Palomares, 2001)). 

Other effects observed during the experiments were that conditions in the STPBR caused 

fragmentation of the filaments upon inoculation, likely through high shear created from the 

impeller; however, filament length increased throughout the batches reaching lengths similar 

to those in the inoculant, thus this was unlikely problematic.  

3.4.2 Chromatic acclimation 

The narrow band wavelengths tested in this thesis have generated surprising results, not 

observed before. Given the lower energy of light at longer red wavelengths compared with 

white light, the use of λmax 680 nm light in artificially illuminated PBR systems would not only 

achieve higher yields of high-value phycocyanin, but would also achieve more efficient energy 

to biomass conversion (Wang, 2007). 

Previous studies have shown that trade-offs are made between biomass productivity and 

pigment yield when using monochromatic light to culture Arthrospira. In this thesis it is 

demonstrated that culturing A. platensis under λmax 680 nm light significantly increases 
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phycocyanin yield without any detriment to productivity (compared with culturing under 

standard white light). 

Although direct comparisons cannot be made with other studies, as red wavelengths of light 

previously used to culture Arthrospira have been of shorter wavelengths, it seems to have been 

assumed that the effects of red light used at longer wavelengths would be similar to previous 

observations reported in the literature, except for those wavelengths of light approaching far-

red which cannot be utilised by photoautotrophs. Although Walter et al. (2011) showed white 

light to be most effective for Arthrospira productivity and phycocyanin yield compared with 

475-600 nm red light, the results presented in this thesis demonstrate that longer wavelength 

red light (660-700 nm) is more effective in achieving a higher phycocyanin yield whilst 

maintaining high biomass productivity. In contrast to Walter et al. a number of other studies 

have reported increased Arthrospira productivity cultured under 620-645 nm red light 

compared with white light (Chen, 2010a, Markou, 2014, Wang, 2007) although with reduced 

phycocyanin yield (Markou, 2014) (or no significant increase in phycocyanin yield, in the case 

of Chen et al.). Moreover, the same studies did in fact report highest phycocyanin yield under 

blue light (Markou, 2014, Chen, 2010a). It was suggested that blue light may increase 

phycocyanin yield by limiting growth and recycling of phycocyanin for a nitrogen source in 

the cultures (Chen, 2010a), or by creating a light-limiting environment, causing natural 

increases in pigments ˗ a well-known response to increase energy-capture for photosynthesis 

(Markou, 2014).  

The closest study to which the findings of this thesis can be compared is that by Akimoto et al. 

(2012). They tested three regions of red light for the culture of Arthrospira: 600-650 nm 

(standard), 620-700 nm (long-wavelength red) and 700-780 nm (near-infra red), against other 

monochromatic and white LEDs. The highest productivity was observed under long-

wavelength red LED (final OD750 0.93), the culture having an OD750 0.17 higher than the OD 

obtained through culturing under standard white LEDs (final OD750 0.76), although there was 

no significance calculation reported. Both the growth rate (calculated as ∆OD day-1) and 

biomass yield was slightly higher under λmax 680 nm light compared with standard white LEDs 

in the present work, but neither were significant increases. 

Furthermore, in contrast to this thesis, Akimoto et al. reported that the phycocyanin content 

was lowest under 620-700 nm red light, but higher under 700-780 nm red light compared with 
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standard white LEDs (being highest under blue light). Trade-offs between biomass productivity 

and pigment yield were again seen by Akimoto et al.  

Long-term culturing (over 700 hours) under monochromatic light, albeit at a shorter 

wavelength (λmax 620 nm standard red LED) than used here, was performed by Farges et al. 

(2009). However, only a handful of long-term monochromatic culturing studies have ever been 

performed on Arthrospira, and none using such long wavelengths as in this study. Long-term 

(3,500 hours, constituting approximately 30 5-day batches) culturing under standard red LEDs 

produced a steady growth rate over the batches, but showed a mean two-fold decrease in 

phycocyanin content, although the trend in phycocyanin content over time was not reported. 

Current work showed that phycocyanin yield increased by 3.4-fold over the 7 batches 

(approximately 2,350 hours) cultured under λmax 680 nm red light demonstrating continual 

chromatic acclimation. This chromatic acclimation was also quickly reversible. At the 

beginning of the experiments, chromatic acclimation was also required to enable Arthrospira 

to utilise the λmax 680 nm red light. 

Chromatic acclimation has remained largely unexplored in Arthrospira. Chromatic acclimation 

to enable Arthrospira to utilise red light was obvious from the large lag phase observed in the 

first trial batch. From experience, acclimation to conditions such as increased mixing or 

increased temperature, for example, normally only takes a maximum of a few days, before the 

lag phase disappears; however, acclimation to a new light type can take much longer. Long lag 

phases also observed in early batch 2R after storage of the inoculant (from batch 1R) in the CT 

room demonstrates that chromatic acclimation in Arthrospira is (quickly) reversible. During 

storage the culture underwent acclimation to the white light conditions of the CT room and 

then re-acclimation to the red light upon inoculation of the STPBR batch 2R. Acclimation 

continued throughout subsequent batches. This thesis has shown that chromatic acclimation 

can increase phycocyanin production while maintaining stable growth. An open question 

remains as to the extent that the phycocyanin content can be increased through continual 

chromatic acclimation over longer-term culturing, and whether the culture will become 

unstable. 

It is possible that continued acclimation to the red light occurring with each generation of 

Arthrospira is accountable for increasing the efficiency of utilisation of red light (productivity), 

seen as a higher final OD achieved in each consecutive batch (excluding 2R and 3R). Maximum 

growth rate based on change in OD 750nm per day was used as a measure of growth. This is 
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because Arthrospira filament count is not an accurate measure of growth, as filaments can vary 

in size. The OD 750 nm therefore gives an accurate calculation of biomass present per volume 

of culture, and enables growth measurements to be taken accurately from small volumes of 

culture, which cannot be achieved through testing wet and dry weight. However, with an OD-

based maximum growth rate calculation there is less information to extract on productivity 

compared with cell-counts typically used in (non-filamentous) microalgae cultures. Although 

a pattern of increasing final OD is observed in consecutive red light batches, this is not reflected 

in OD-based growth rates.  

The phycocyanin increases observed in this study contrasts with earlier suggestions that 

monochromatic light that increases phycocyanin is the result of light limitation (Markou, 

2014). The interesting phenomena of blue-shifting, where the second Chla peak shifted by 

approximately 5 nm, from 678 to 673 nm under white light has been observed before and is an 

associated feature of cellular stress. Sudhir et al. (2005) recorded blue-shifting of the second 

Chla peak by approximately 4 nm, from 680 nm to 676 nm in fluorescence emission spectra of 

salt-stressed A. platensis caused by the loss of chlorophyll protein (47 kDa) and core membrane 

linker-protein (94 kDa) that attach phycobilisomes to thylakoids. As the chlorophyll/linker 

proteins are important in maintaining phycobilisome structure and energy transfer, these stress-

induced structural changes result in the decreased energy transfer from 

chlorophyll/phycobiliproteinto the PII reaction centre. Decoupling of the phycobilisome during 

high irradiance (or short-term stress) is assumed to be a strategy to prevent photo-oxidative 

damage to photosynthetic reaction centres after exhaustion of all other light adaptation 

responses (Tamary, 2012); however, there is currently a gap in understanding the 

phycobilisome decoupling mechanism. 

Whereas the current study measured fluorescence, the relationship between Chla absorbance 

and fluorescence can mean that similar shifts can be seen in both absorbance and fluorescence 

spectra (Chen, 2010b). Chlorophyll f (Chlf), discovered and characterised by Chen et al. had 

an in vitro absorbance and fluorescence peak red-shifted (706 and 722 nm respectively), 

compared with all other chlorophylls from oxygenic phototrophs. Their findings suggested that 

oxygenic photosynthesis can be extended further into the infra-red region. Their observation 

led from culturing stromatolites (Western Australia, Shark Bay), under near-infra red (λmax 720 

nm) light. It is also known that chlorophyll d (Chld) can replace Chla in the photosystem of the 

cyanobacterium Acaryochloris marina (Miyashita, 1996) and related organisms (Itoh, 2015, 

Gan, 2014), extending the range of the light spectrum that can be harvested. Chld and Chlf 
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absorbance peaks are 447-455.5 and 688-697 nm (dependent on extraction solvent) and 439.5-

440 and 698-707 nm (dependent on extraction solvent) respectively (Li and Chen, 2015). In 

Gan et al. (2014) the appearance of an absorbance peak at λmax 706 and 720 nm in the 

cyanobacterium Leptolyngbya sp. cultured under 700-750 nm red light, indicated the 

production of Chld and Chlf during photoacclimation. As additional absorbance peaks were 

not observed at wavelengths above the second Chla peak in this thesis, Arthrospira did not 

produce new forms of chlorophyll (Chld or Chlf) during photoacclimation under λmax 680 nm 

red light. Nevertheless, in the experiments of Gan et al. (2014) it is interesting to see small 

shifts (3-5 nm) in the second Chla absorbance peaks in red light photoacclimated cultures, 

which are likely caused by remodelling of the photosynthetic apparatus during 

photoacclimation.  

Guikema and Sherman (1983) also reported a blue-shift in the second Chla absorbance peak 

from 678 to 673 nm in iron-starved, chlorophyll/phycocyanin depressed cells of the 

cyanobacteria Anacystis nidulans. This was attributed to the loss of longer wavelength 

chlorophylls (also known as red or low-energy chlorophyll), specifically forms Ca670 and 

Ca680 in PSI (ÖQuist, 1971, Karapetyan, 2014). Such longer wavelength chlorophylls of PSI 

can be irreversibly bleached by illumination with high-intensity white light (Cometta, 2000).  

Although there can be no certain conclusion as to the exact cause of the 5 nm shifting of the 

second Chla absorbance peak, it could be the result of loss of longer wavelength chlorophylls 

through conditions under white light or a de-coupling of the phycobilisome from PSII, which 

is unlikely given that the intensity of white light during the experiments, and therefore photo-

stress, was not particularly high compared with similar set-ups reported in the literature. A 

more likely explanation is that the shift indicates a remodelling of the photosynthetic apparatus 

during photoacclimation under the λmax 680 nm light, despite a trend in peak shifting with red 

batch number photoacclimation being absent. 

3.4.3 Filament length and fragmentation 

Fragmentation of Arthrospira trichomes have been noted under conditions of high DO or light 

through ROS production, leading to oxidative damage of lipids, proteins and DNA (Nishiyama, 

2005, Foyer and Noctor, 2005, Halliwell, 2003). Additional culture changes caused by this type 

of damage are narrowing of the trichome, and colour change from green to yellow (chlorosis) 

caused by bleaching of both chlorophyll and phycocyanin (Ma and Gao, 2010, Singh, 1995, 

Marquez, 1995, Tomaselli and Margheri, 1981). These effects were seen during the trial runs 
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for selection of culturing conditions in the STPBR, using low mixing, temperature and nitrate 

concentration. Fragmentation of mature trichomes is also the method by which Arthrospira 

reproduces. Arthrospira has previously been shown to be sensitive to shear stress, caused by 

mechanical mixing, demonstrating breakage of trichomes under such conditions (Mitsuhashi, 

1994, Mitsuhashi, 1995). Moving from a low shear flask environment to a high turbulence and 

shear photobioreactor environment likely caused the reduction in trichome length observed in 

the batches of these experiments. Substantial agitation is required in photobioreactor systems 

for efficient gas exchange and even light exposure to maintain healthy cultures. Trichome 

length of Arthrospira increases with normal growth where the number of cells per filament 

increases, and filaments fragment during asexual reproduction, increasing filament number. 

The increase in trichome length after the initial length decrease upon introduction into the PBR 

suggests that Arthrospira adapted to the conditions of high shear and the impeller speed was 

not problematic long-term, similarly observed by Mitsuhashi et al. (1995). Perhaps the lower 

average and final length of trichomes observed under white light were caused by photodamage. 

Taking this explanation, it may be that red light, specifically longer-wavelength red light as 

such used in these experiments, causes less photodamage. As red light provides lower energy 

photons to the photosynthetic apparatus, reducing the production of free-radicals (specifically 

ROS) which are associated with trichome fragmentation. Further, a decreased level of 

intracellular ROS would preserve the highly reactive phycocyanin pigment. Given the findings 

of these experiments and the scientific knowledge behind light electromagnetic spectrum 

energetics and cellular biochemistry, culturing under higher wavelengths of light (where 

possible) could be extremely beneficial in the production of high-value reactive products, such 

as pigments, as demonstrated here for phycocyanin. 
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Chapter 4. Effects of culturing Arthrospira platensis under Long 

Wavelength Red Light 

4.1 Introduction  

This chapter expands on the analysis of samples obtained from the experiments of Chapter 3. 

In this chapter samples are analysed for Carotenoid and Chlorophyll a (Chla) yield, 

Phycocyanin:Chla ratio in assessing whether light limiting effects contributed to the increased 

phycocyanin yield seen under red light in Chapter 3, and Carotenoid:Chla ratio to determine 

whether nutrient limitation was present. pH throughout the batches in the experiments of 

Chapter 3 is analysed and mass spectral data is presented to look at differences in the protein 

composition of whole cell samples of Arthrospira cultured under red and white light. 

Observations of differences in the leaching properties of biomass produced under red compared 

with white light are investigated along with observations in the autoflocculating properties of 

the culture. Information on the microbial population in the culture over time in the batches of 

Chapter 3 is evaluated. 

4.2 Experimental Details and Method 

4.2.1 Pigment analysis 

Pigment extraction was as described in 3.2.5. Chlorophyll a (Chla) and total carotenoid (TC) 

concentration and yields were calculated as follows according to Equations 4.1, 4.2 and 4.3 

(Markou, 2014, Lichtenthaler, 1987): 

Equation 4.1: Chla (mg/L) = 16.82(A665) – 9.28(A650) 

Equation 4.2: TC (mg/L) = 
1000(A470) – 1.91Chla – 95.1[36.92(A650) – 16.54(A665)] 

225
 

Equation 4.3: Chla / TC yield (mg/g) = 
Chla

1000(TC)
x

V

B
   

Where A is absorbance at the wavelength denoted by the subscript number, V, volume of 

solvent (mL), B, dry biomass (g), Chla, chlorophyll a concentration (mg/L) and TC, total 

carotenoid concentration (mg/L).  

4.2.2 MALDI-TOF MS analysis 

Twenty milligrams of the sample matrix (α-cyano-4-hydroxycinnamic acid; HCCA, Bruker 

Daltonics, Germany) was prepared by mixing 1 ml of 50 % acetonitrile: 2.5 % trifluoro-acetic 
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acid (Sigma-Aldrich, UK). The matrix was vortexed and saturated by a 30 minute incubation 

at 25 °C in an ultrasonic water bath at 100 % power (Grant instruments, UK) with a second 

vortex at 15 minutes. The matrix was then centrifuged at 14,000 g for 1 minute (Sigma 1-15K 

microcentrifuge) and 50 µl aliquots prepared fresh for use.  

1 mL samples of each culture (batches 2R and 1W) were centrifuged at 14,000 g for 5 minutes 

and the pellets washed twice with deionised water and stored at -80 °C. Prior to spotting onto 

the MALDI target plate, samples were thawed on ice and resuspended in 50 µl deionised water. 

Samples were mixed 1:1 with HCCA matrix and four 2 µl technical replicates were spotted 

onto a MTP 384 ground steel MALDI target plate (Bruker Daltonics, Germany) and air dried 

at room temperature.  

Mass spectrometry was done using an UltraFlex II MALDI-TOF TOF mass spectrometer 

(Bruker Daltonics, Germany) with fuzzy control of laser intensity. Ion source 1 was set at 25 

kV and ion source 2 was set at 23.5 kV with a laser frequency of 50.0 Hz, a detector gain of 

1,650 V and a gating maximum of 1,500 Da. Spectra were recorded in the positive linear mode 

for the mass range 2,000 to 20,000 m/z. Each spectrum was obtained by averaging 100 laser 

shots acquired in automatic mode. For data acquisition, validation measurements were 

performed in Auto Execute mode. The spectra were externally calibrated using the Bacterial 

Test Standard (Bruker Daltonics, Germany). The standard consisted of seven ribosomal 

proteins from Escherichia coli with added RNase A and myoglobin to cover a range of ca. 

3637 to 16957 m/z. Four independent samples of each culture were placed on four separate 

spots on the steel target plate. Each sample spot was read twice thereby producing eight spectra 

per culture. The quality and mass accuracy of the peaks were examined using FlexAnalysis 

software (Bruker Daltonics, Germany). The eight spectra were overlain and a consensus 

spectrum generated which was added to the database for each sample. 

4.2.3 Population analysis 

Samples taken throughout the batch for the 10 batches were frozen in 15 % sterile glycerol at 

-80°C for subsequent population analysis, carried out by Andrew Free, Rocky Kindt and 

Jennifer Lawson at the University of Edinburgh. Population analysis was carried out by 

illumina sequencing of the 16S ribosomal RNA (rRNA) gene (Degnan and Ochman, 2012). 

DNA was extracted from the samples using Ultraclean Soil DNA Isolation Kit (MO BIO 

Laboratories, Inc.) with the amount of sample used was proportional to OD. DNA was eluted 

in PCR-grade water and stored at -20 °C and PCR performed first to amplify 16S rRNA gene, 
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followed by a second round for amplification of the V3 region of the gene and addition of 

illumine chip adapters and multiplex barcodes. PCR products were cleaned-up by running 

amplicons via agarose gel electrophoresis followed by excision under UV and purification 

using Promega Wizard Gel and PCR Cleanup System. DNA was quantified using a PicoGreen 

fluorescence-based assay and used to make a mastermix of barcoded amplicons at equimolar 

ratios for Illumina Hiseq and Miseq sequencing (Edinburgh Genomics, UK). Downstream data 

processing was performed in QIIME (http://qiime.org/) with sequences in FASTA format. 

Sequences were firstly separated according to original samples into libraries using barcodes 

added during the PCR step and any sequences of poor quality (Phred quality score<19) 

excluded. V3 amplicons were just over 250 base pairs (bp) long and read pairing was performed 

to join matching reads together (minimum overlap 200 bp) and sequences shorter than 240 bp 

filtered out. Chimeras (multiple templates amplified during PCR) were removed using 

Greengenes (http://greengenes.secondgenome.com/downloads) and then aligned and clustered 

to reference sequences and assigned operational taxonomic units (OTUs). Reads were output 

as a table of OTUs and corresponding number of hits per sample and converted to relative 

abundances.  

4.2.4 Leaching tests 

Samples from runs 1R (where R = red LEDs) and 1W (where W = white LEDs) stored at -80 

°C (mean OD after defrost: white: 0.463, red: 0.467) were defrosted on ice and 1 mL transferred 

to 10 pre-weighed Eppendorf tubes to create 10 repeats for each light condition. Tubes were 

re-weighed and samples then centrifuged (10,000 g for 5 minutes), to obtain a pellet which was 

washed once and resuspended in 1 mL deionised water, vortexed and stored upright in a dark 

part of the CT room (18 °C). Samples were vortexed daily for 5 seconds until day 5 where 

samples were centrifuged before analysis of the supernatant by scanning visible 

spectrophotometry and phycocyanin concentration, yield and purity calculated as described in 

3.2.5. Phycocyanin yield data for extracted: 3 technical replicates of phycocyanin yield from 

batches 1R and 1W and leached: 10 repeat samples from batches 1R and 1W was used for 

analysis. PC yield Red Extracted:PC yield Red Leached and PC yield White Extracted:PC yield 

White Leached ratios were calculated for all combinations giving two sets of 30 values which 

were compared using a Two-tailed un-paired T-test not assuming equal standard deviations 

(Welch’s Correction). 

 

http://qiime.org/
http://greengenes.secondgenome.com/downloads
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4.2.5 pH data filtering 

A moving average filter was used to remove noise in the online pH batch data caused by 

variation in pH during daily illumination/dark periods. Here, a new filtered value is derived 

from adjacent unfiltered data points taking into account the previous filtered data point (Smith, 

1997). The mathematics behind the filter is explained in Equation 4.4. 

 

Equation 4.4: Xnew = (
−1−2T

1+2T
Xold) +

Ynew

1+2T 
+

Yold

1+2T
 

Where, Xnew is the new filtered value, Xold is the previous filtered value, Ynew, the current 

unfiltered value and Yold, the previous unfiltered value. 

The power of the filter can be adjusted, where a higher number of data points in the window 

has a larger smoothing effect on the data. 

4.2.6 Statistical analysis 

Data analysis was performed using both Microsoft Excel 2007 and GraphPad Prism version 

6.07 for Windows. In the assessment of the differences in carotenoid and Chla yield under red 

compared with white light, three runs under red light (1-3R) and three runs under white light 

(1-3W) are used for statistical comparison. For total carotenoid concentration and yield, 

phycocyanin:Chla ratio, total carotenoid:Chla ratio a two-tailed un-paired T-test not assuming 

equal standard deviations (Welch’s Correction) was used to calculate the significance of the 

difference with a p value <0.05 deemed to be a significant difference. Welch’s correction was 

used as standard deviations were not assumed to be equal under the two light conditions given 

acclimation under red light. Asterisks indicate the level of statistical significance where p<0.05 

=*, p<0.005=**, p<0.0005=***.   
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4.3 Results 

4.3.1 Pigment analysis 

Although only runs 1-3R and 1-3W were used for statistical comparison in the assessment of 

the differences in culturing under red compared with white light on carotenoid and Chla yield 

in this chapter, data from batches 4-7R is displayed in the figures alongside the data from 

batches 1-3R and 1-3W to allow a clear comparison. 

Carotenoid yield was higher under red light (151 ± 23.6 mg/100 g) batches than white light 

(137 ± 41.8 mg/100 g) (Figure 4.1), a 10 % increase under red light. The increase was not 

significant (p=0.773 using a Two-tailed un-paired T-test with Welch’s Correction). 

Chla yield was higher in batches cultured under red light (1.02 ± 0.16 mg/g), compared with 

those cultured under white light (0.95 ± 0.3 mg/g) (Figure 4.2), a 7 % increase under red 

light. This increase is not significant (p=0.822 using a Two-tailed un-paired T-test with 

Welch’s Correction).   

There was a positive correlation between phycocyanin and Chla concentration (Figure 4.3a) 

and phycocyanin:Chla ratio (Figure 4.3b) under red light was consistently higher and 

significantly higher on average (p=0.0155* using a Two-tailed un-paired T-test with Welch’s 

Correction) when compared with white light. 

The carotenoid:Chla ratio (although not an exact indicator) is a relative index of nutrient 

limitation where usually higher ratios show nutrient limitation (Schitüter, 1997). The similarity 

of the ratios in all batches (Figure 4.4) demonstrates that there was no significant nutrient 

limitation effects during the experiments (p=0.576 using a Two-tailed un-paired T-test with 

Welch’s Correction). The mean ratios for batches cultured under red and white light were 150 

± 4 and 142 ± 7 respectively. 
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Figure 4.1. Total carotenoid yield (mean ± standard deviation) at the termination of each 

batch.  

 

Figure 4.2. Chla yield (mean ± standard deviation) at the termination of each batch.  
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a. 

 

b. 

 

Figure 4.3. Relationship between Chla and phycocyanin concentration at the termination of 

each batch (a). The plots of the batches cultured under white light can be seen circled closest 

to the Y-axis. Phycocyanin:Chla ratio (b). 
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Figure 4.4. Carotenoid:Chla ratio at the termination of each batch.  

4.3.2 pH 

The pH of the batches varied with the light cycle (Figure 4.5). Typically, pH increased during 

the illuminated period and decreased in darkness, giving an average daily variance in pH of 

around 0.5. This is expected in such cultures during normal diurnal cycles. During exposure 

to light, photosynthetic processes increase pH. Conversely, in the dark, the cells switch to 

respiratory processes, decreasing pH of the culture (Falkowski and Raven, 2007). Batches 

7R, 6R and 3R showed a pattern of continued pH increase and decrease during illumination 

and dark periods respectively. Interestingly, the other batches only exhibited this behaviour at 

the start of the batch before pH began to plateau. As the change in pH is caused directly by 

production of certain metabolites in either photosynthesis or respiration, the fall in pH during 

illumination indicates a slowing or stopping of basic metabolite production and 

photosynthesis, indicating possible photoinhibition (Falkowski and Raven, 2007). This 

photoinhibition-effect was present in batches 1R (after day 11), 2R (after day 21 of 25), 4R 

(after day 8), 5R (after day 8), 1W (after day 4), 2W (after day 5 of 23), and 3W (after day 6), 

as seen in Figure 4.5.
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a. 

 

b. 

 

Figure 4.5. pH throughout the batches under white (a) and red (b) light. 
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Indication of photoinhibition occurs earlier and is more pronounced in the three batches 

cultured under white light (Figure 4.5). Photoinhibtion was not observed in batches 6R and 7R 

– the cultures with the highest phycocyanin yield and observed acclimation to red light.  

Through filtering out the diurnal cycles, the pH trends generally increased throughout the batch 

runs (Figure 4.6). Batches began at approximately pH 8 with the majority increasing to a pH 

of around 9-9.5 at day 6 (excluding 2R which followed the same trend after a 14 day growth 

lag phase).  

 

Figure 4.6. pH throughout the batch cultures. Data has been filtered using a time moving 

average filter to remove pH variation attributed to illumination/dark periods. 

pH levels in white light runs rose sharply between days 3 and 7 and maintained a pH of around 

9.5 until the end of the batch; apart from 2W where pH began to drop slowly after day 14 and 

then dropped sharply after day 19. Overall, the pH in white runs were typically higher than the 

majority of red light runs. Of those runs cultured under red light, 4R and 5R showed the fastest 

rate of pH increase from days 3 to 7, increasing to a pH of 9.4-9.5 at the end of the run (Table 

4.1). The pH in 1R increased rapidly after day 6 to give a final pH of 9.38. The pH in 2R, which 

displayed a growth lag phase of 14 days, increased rapidly from days 16-21 to give a final pH 
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of 9.17. The pH of batches 3R, 6R and 7R did not increase as rapidly nor reach as high a final 

pH as in other batches, although all batches experienced a similar daily variance in pH. 

Table 4.1. Final pH recorded at the end of each batch 

Run Final pH Batch end time (Days) 

1W 9.83 12.19 

2W 8.09 22.19 

3W 8.96 12.97 

1R 9.38 13.17 

2R 9.17 23.87 

3R 8.78 12.13 

4R 9.09 12.07 

5R 9.26 12.08 

6R 8.37 12.90 

7R 7.69 14.35 

 

4.3.3 Mass spectra 

Matrix Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry (MALDI-TOF 

MS) was used to analyse the protein composition of whole cell samples of Arthrospira cultured 

under red (2R) and white (1W) light. The protein-mass spectra obtained are presented in Figure 

4.7 and were highly reproducible (replicate spectra are shown in Appendix 2). 

 

Figure 4.7. MALDI-TOF mass spectra showing protein-mass spectral patterns of Arthrospira 

cultured under red (bottom) and white (top) light. 



93 
 

Mass spectra from the two light conditions were broadly similar with common peaks at 

approximately m/z 7767, 5681, 3282, and 3883. However, the common peak at approximately 

m/z 5681 was higher in Arthrospira cultured under white light, relative to the other common 

peaks, whereas the common peak at approximately m/z 7767 was higher in Arthrospira 

cultured under red light, relative to the other common peaks identified. The peak at 

approximately m/z 4389 was much larger in Arthrospira cultured under white light in 

comparison to other common peaks. A peak was present at approximately m/z 5157 in 

Arthrospira cultured under white light but not under red light. There was also an additional 

peak at m/z 9733 in Arthrospira cultured under red light.  

Although as expected there are numerous common m/z peaks under the two light conditions, 

there are notable differences in peak intensity. There was also a major peak present under white 

light that was absent under red light. This mass spectral data indicates that there are differences 

in abundant proteins when Arthrospira is cultured under red light in comparison to white light.  

4.3.4 Leaching differences 

When discarding the samples prepared for mass spectral analysis, it was observed that the tubes 

containing pellets suspended in distilled water from the red light batch were a stronger blue 

colour compared with those cultured under white light (Figure 4.8). Phycocyanin leaching was 

investigated further to determine whether this was simply a direct reflection of the difference 

in biomass phycocyanin yield.  

 

Figure 4.8. MS samples observed during disposal. A stronger blue colour was present in 

tubes containing Arthrospira pellets from the batch cultured under red light (left) compared 

with white light batch (right).
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a. 

 

b. 

 

Figure 4.9. Individual (a) and mean (b) phycocyanin absorbance peaks for leached samples 

cultured under red and white light.  
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Table 4.2. Mean (± standard deviation) phycocyanin concentration, yield and purity for 

solutions containing leached and extracted phycocyanin (through standard sonication method) 

in samples cultured under red (1R) and white light (1W).  

 

Leached Extracted 

 

White light Red light White light Red light 

Phycocyanin 

concentration 

(mg/mL) 0.005 (+/- 0.002) 0.025 (+/- 0.011) 

0.013 (+/- 

0.001) 0.031 (+/- 0.003) 

Yield (mg/g) 0.167 (+/- 0.079) 0.771 (+/- 0.349) 9.17 (+/- 1.414) 18.04 (+/- 4.986) 

Purity 0.206 (+/- 0.077) 0.627 (+/- 0.259) 0.4 (+/- 0.044) 0.55 (+/- 0.062) 

 

The variance in the leached phycocyanin concentrations in the samples cultured under red light 

was much higher (σ2 = 1.1 x 104) than in the samples cultured under white light (σ2 = 3 x 107), 

which can be seen in Figure 4.9. The leached phycocyanin concentration and yield from the red 

light culture were, respectively, 400 % and 362 % higher than the white light culture (Table 

4.2). In comparison, the extracted phycocyanin concentration and yield showed a respective 

139 % and 97 % increase under red light. The ratios of extracted phycocyanin yield to leached 

phycocyanin yield for biomass produced under red light was 31, significantly lower when 

compared with the ratio of 72 under white light (p=0.0001*** using a Two-tailed un-paired T-

test with Welch’s Correction) This indicates that a higher amount of phycocyanin leached from 

the biomass cultured under red light, compared with white light-cultured biomass, which cannot 

be explained by the difference in actual phycocyanin contained within the biomass. Hence, the 

stronger blue colour observed in the leached red light samples was not a direct result of the 

increased phycocyanin content, but rather caused by increased leaching properties of the red 

light produced biomass.  

4.3.5 Other observations 

During batch 6R, autoflocculating properties of the culture were observed from around day 7 

(Figure 4.10). Microscopical inspection revealed small crystals on the Arthrospira filaments in 

the auto-flocculating culture which were absent in the culture of batch 5R (Figure 4.11). 
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Figure 4.10. Photograph of samples from cultures 5R and 6R.The culture from batch 6R 

showed auto-flocculating properties (right) unlike the culture of batch 5R (left). 

 

 

Figure 4.11. Microscope images of Arthrospira from batches 6R (top) and 5R (bottom). Top 

left image was taken using a lambda plate filter.  

4.3.6 Microbial population 

Investigation into the population in the culture over time in the batches through llumina 

sequencing of the 16S ribosomal RNA gene revealed Arthrospira was the dominant species 

throughout the batches along with a strong presence of Muricauda and Halomonous, both 

halophilic bacteria (Figure 4.12). Halomonas is most noticeably abundant in red runs 1R and 

2R and becomes less abundant in subsequent batches cultured under red light. 
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Figure 4.12. Change in microbial community composition over the batches presenting 

abundance of 11 most abundant species detected. Low concentration of DNA obtained in 

samples 1-3 in batch 5R and samples 1-2 in batch 6R means data could not be obtained for 

these samples.  

In some batches there is noticeably a high amount of low-abundance species on inoculation, 

when the culture is at its lowest density. This can be seen as a high percentage of other bacteria 

(‘others’) in the first sample 1R, 3R, 1W and 2W. Roseovarius (Roseobacter), a bacterium 

found in saltwater was seen in low abundance under red but not under white light. In Run 3R 

Marinobacter quickly becomes abundant in the batch and this abundance of Marinobacter 

persists through subsequent batches 4R and 5R until batch 6R where Marinobacter is again in 

low abundance. In the red batches the presence of contaminant bacteria is at its lowest 

abundance in batches 6R and 7R indicating settling down of the system to a relatively stable 

microbial community. There is an abundance of Rhodobaca in the highest phycocyanin yielding 

batches 6R and 7R at levels not seen in earlier red batches. This Rhodobaca is also present 

abundantly in batch 2W and 3W cultured under white light. There is no obvious difference in 

the microbial communities of batch 5R compared with batch 6R, where autoflocculating 

properties of Arthrospira were observed. There is a higher diversity of species present under 

red light compared with white. The presence of Alteromonas in the majority of red batches, and 

abundantly in the later red batches 4-7R is not seen under white light. 
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4.4 Discussion  

4.4.1 Main findings 

Carotenoid and Chla yield was 10 % and 7 % higher respectively, but not significantly higher, 

under red light compared with white light; however, without any significant differences or 

obvious trends, it is difficult to speculate on such data. In all batches the carotenoid to Chla 

ratio remained constant demonstrating no obvious significant nutrient limitation and associated 

effects. There was a positive correlation between phycocyanin and Chla concentration; 

however, such effects did not contribute significantly to the increase in phycocyanin yield 

observed under red light in Chapter 3. A blueshift in the second Chla peak (~662 nm) in the 

spectra of the extracts from those batches cultured under white light was also observable. Mass 

spectrometry analysis revealed differences in common m/z peaks of biomass cultured under the 

different light conditions. Common peaks m/z 5681, m/z 4389 and m/z 2800 were higher under 

white light, while common peaks m/z 7767, m/z 9733 and m/z 9863 were higher in biomass 

cultured under red light, with a peak m/z 5157 present under white light, but absent under red 

light. These differences in observed mass spectra and common peaks suggests changes in 

protein expression during culturing under the two light sources. 

When suspended in water, phycocyanin leaches more efficiently from Arthrospira biomass 

cultured under red light compared with white, and results indicated a significant difference in 

leaching properties of the cells caused by culturing under red light. 

Autoflocculation properties were also observed in batch 6R, one of the later batches cultured 

under red light, which looked to be caused by a possible build-up of extracellular 

polysaccharides. These properties disappeared in the final batch 7R, suggesting such 

observations were likely not caused by red-light induced stress, through continued culturing 

and acclimation as was initially hypothesised. 

4.4.2 Pigments 

There was a positive correlation between phycocyanin and Chla concentration in the biomass. 

A similar relationship also existed in the size and ratio of the Chla and phycocyanin peaks in 

the extract absorbance spectra in batches 6R and 7R. For example, the spectra for 7R, which 

had the highest phycocyanin absorbance peak, also had the highest first Chla peak as well as 

the most significant trough at around 530 nm. However, this relationship nor a consistant 

pattern is demonstrated in all batch spectra. In batches 4R and 5R (batches showing some of 
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the highest phycocyanin yields), the phycocyanin absorbance peak is relatively low compared 

with the high Chla peak and trough oberved at 530 nm. A relationship between Chla and 

phycocyanin absorbance peaks, where both high phycocyanin and Chla absorbance peaks are 

observed in the spectra, can suggest that light limitation was a factor in increasing levels of 

phycocyanin. It is a known response that in light-limiting conditions, microalgae and 

cyanobacteria increase their levels of chlorophyll, and some other pigments, to enable the 

capture of light for essential photosynthetic processes (Danesi, 2004, Marquez-Rocha, 1999).  

It is also known that Chla can decrease under high light intensities, as a feature of the 

photoprotective mechanisms in photoautotrophs (Richmond, 2004, Kumar, 2011b). It is 

possible that the white light may have been more photodamaging than the red light. This is a 

plausible theory given the physics behind light wavelength and energy. A longer wavelength 

photon carries less energy than a photon at a shorter wavelength according to Planks Law 

(Equation 4.5): 

Equation 4.5: Energy =
hc

λ
  

Where h is Plank’s constant (6.63x10-34 joules per second) and c is constant light velocity 

(3x108 meters per second), demonstrating wavelength is inverse to energy. 

The higher energy of photons in the shorter wavelengths causing photodamage may have 

contributed to lower levels of pigments in those batches cultured under white light, including 

a lower yield of phycocyanin and Chla. However, this would not explain the decrease in 

carotenoids under white light as Arthrospira are known to increase carotenoid production under 

certain conditions of stress such as nitrogen starvation, high salinity (Sujatha and Nagarajan, 

2013) and high light intensity (Olaizola and Duerr, 1990). As previously mentioned, light 

limitation under red light can also contribute to increased phycocyanin levels. Photons in longer 

wavelengths of light (such as in the red region of the electromagnetic spectrum) are of lower 

energy, meaning photon flux is lower under red light compared with white light for 

photosynthesis. This could prompt a physiological reaction of increased pigment production 

(both chlorophyll and phycocyanin) under red light. The positive correlation between 

phycocyanin and Chla concentration in the biomass demonstrates that such effects were 

present, although it is difficult to say whether such affects result from photoinhibition under 

white light or light limitation under red light. Even so, such described effects were shown not 

to contribute significantly to the increase in phycocyanin yield in Arthrospira under red light. 
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If Chla level increase (or decrease) matched the increase (or decrease) in phycocyanin, then 

the phycocyanin:Chla ratios for batches cultured under both red and white light should be 

constant. However, the phycocyanin:Chla ratio under red light is consistently higher, 

demonstrating that although Chla concentration under red light was typically higher, the 

change in Chla was not proportional to phycocyanin level. Therefore, the increases in 

phycocyanin under red light observed during the experiments were not caused by the effects of 

light limitation nor photoinhibition. 

4.4.3 MS analysis 

Whole-cell MALDI-TOF-MS has shown to be a valuable tool for the identification of 

microalgal strains (Emami, 2015, Barbano, 2015), demonstrating stable strain-specific 

fingerprints, even under variable conditions of culture age, growth-stage and microbial 

contamination. This tool was extended into the studies of this thesis for use in the analysis of 

Arthrospira whole-cell spectra and comparison under the two light conditions. Although 

spectra from the same strains are considered largely unaffected by growth conditions, as 

dominant peaks represent ribosomal and house-keeping proteins which generally do not change 

(Pineda, 2003, Teramoto, 2007), it is thought that large condition-induced proteome changes 

can be captured in spectra (Valentine, 2005, Salaun, 2010). 

Differences in the spectral fingerprints of the biomass cultured under the two light conditions 

demonstrated significant variations in the proteome. The main differences were in the intensity 

of dominant peaks, revealing increased and decreased expression levels of regular proteins. 

There was also a single pronounced peak present under white light, but absent under red light, 

suggesting that expression of a particular protein ceased under red light. Although comment 

cannot be made on the identity of specific proteins, substantial changes in the Arthrospira 

proteome under λmax 680 nm light are determined. 

4.4.4 Auto-flocculation characteristics 

The auto-flocculating properties of batch 6R were initially thought to be caused through 

continual environmental ‘stresses’ during acclimation to red light such as an increase in the 

extracellular polysaccharide layer which increased ‘clumping’ of the filaments and the 

stickiness capturing crystalised components of the media. However, auto-flocculation was not 

observed in later batches during red light culture. Auto-flocculation properties of Arthrospira 

have been associated with increased pH, causing salt ions to precipitate together with the 

biomass (Bux, 2013). Specifically noted for these affects are positively charged magnesium, 
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phosphate, calcium and carbonate ions, which are typically present in the culture medium and 

interact with negatively charged cell surfaces at a pH of above 10.5. As the pH of the auto-

flocculating batch (6R) was typically lower than the other batches cultured under red light, high 

pH is unlikely to have been a cause of the auto-flocculation observed. Flocculation has also 

been observed by pH decrease (Liu, 2014), although not in Arthrospira cultures. 

Additionally, there is another type of flocculation observed in Arthrospira cultures: bio-

flocculation, mediated by extracellular biopolymers produced by the cyanobacterial cells when 

under stress. This has been observed under conditions of phosphorus limitation and has been 

related to increased carbohydrate content and decreased Chla levels in Arthrospira (Markou, 

2012). It is feasible that accumulation of extracellular polymeric substances in batch 6R caused 

the flocculation effects, as salt crystals were observed to coat the trichomes which would 

indicate a sticky substance excreted by the cells. However, there is little definitive indication 

of why flocculation only occurred in this particular batch. The only unique feature about batch 

6R was the lower average pH, making it difficult to speculate whether the observation was pH 

induced auto-flocculation or stress induced bio-flocculation, or perhaps a result of bacterial 

infection  

4.4.5 Leaching 

It is known that phycocyanin will leach from Arthrospira biomass (either wet or dry) when 

suspended in distilled water (Siegelman, 1978). This water-extraction process can be used for 

Arthrospira biomass, but is slow and is therefore not applicable to large scale production 

(Sarada, 1999). Although phycocyanin is relatively stable across a pH range of 5-7.5 at room 

temperature (Sarada, 1999), the protein-pigment complexes can destabilise. This 

destabilisation is a consequence of the high chemical reactivity of phycocyanin, which is a free-

radical scavenger, and the therapeutic benefits of this activity have been widely reported 

(Romay, 2003, Bhat and Madyastha, 2000). Free-radical scavenging is a result of the covalently 

linked phycocyanobilin chromophore. Chromophores are also well known producers of ROS 

chain reactions, as a result of their chemical fluorescent properties, which enables them to 

participate in free radical reactions (Jacobson, 2008). Such ROS-producing activity was 

demonstrated in Pardhasaradhi et al. (2003), where phycocyanin was considered as a potential 

chemotherapeutic agent showing apoptosis-inducing activity against tumour cells through ROS 

production. Phycocyanin can switch from ground to excited high energy states during 

photosynthetic processes, which normally occurs in a controlled environment inside intact cells 
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(Halliwell, 2006, Gratão, 2005, Foyer and Noctor, 2005). In the event of a small amount of cell 

death and release of phycocyanin into the culture, phycocyanin in an excited energy state can 

cause uncontrollable damage through ROS generation in the culture. This reaction results in 

the production of singlet oxygen, which can begin a chain reaction producing ROS (various 

free radicals), which can further interact with other biological molecules resulting in cellular 

damage (Das and Roychoudhury, 2014, Gill and Tuteja, 2010, Mittler, 2002). This chemistry 

means phycocyanin is susceptible to photodamage and sensitive to heat and will precipitate or 

bleach as a result of changes in the protein structure and denaturation (Fukui, 2004). Although 

there are many factors that can affect the yield and quality of pigment obtained during 

extraction, water-extraction is known as a consistent method when used on a small laboratory 

scale; therefore, the high variability in phycocyanin concentrations observed during the 

leaching experiments is unexpected, and such variability cannot be explained through pigment 

degradation as treatment of the samples was consistent.  

Despite the variability in the dataset, the ratio of extracted : leached phycocyanin yield from 

biomass under red light was significantly different to that of the ratio of extracted : leached 

phycocyanin yield from biomass under white light. This indicates increased leaching 

characteristics of Arthrospira biomass when cultured under λmax 680 nm red light. Such 

characteristics may come about through physiological changes in the cell structures, such as a 

more porous cell wall. Such changes could be beneficial for downstream processing. 

4.4.7 Changes in microbial community 

The high abundance of contaminating Marinobacter in run 3R relates to the poor growth of 

Arthrospira observed in this batch. This poor growth was originally thought to be the result of 

reversed acclimation after storage of the culture under different light conditions before being 

used as an inoculant. During the longer-than-normal storage period between batches 2R and 

3R, Marinobacter looks to have taken a hold. The poor growth seen in 3R may therefore be 

due to the bacterial infection with Marinobacter, or perhaps a combination of reversed 

acclimation and infection. Marinobacter is typically found with a range of microalgae, and 

would likely have been present in the Arthrospira culture obtained from CCMP. Marinobacter 

has previously been noted in algae-bacteria mutually beneficial interactions including 

increasing iron bioavailability (Amin, 2009). Muricauda and Halomonous, both of which had 

a strong presence in the Arthrospira cultures, are also widely found in microalgae cultures, 

with Muricauda and Halomonous seen in cultures of filamentous cyanobacteria including 

Arthrospira (Choi, 2008, Hube, 2009). Additionally, Halomonous has notable synergistic 
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effects in microalgae cultures in providing vitamin B12 (Croft, 2005). The presence of 

Roseovarius and Rhodobaca have also been observed before in filamentous marine 

cyanobacteria cultures (Hube, 2009). Roseovarius and Rhodobaca are producers of 

bacteriochlorophyll a, a pigment which absorbs light at around 770 nm, meaning they can 

derive energy from light in this region of the spectrum (Buchan, 2005, Takaichi, 2001, Milford, 

2000, Biebl, 2005). Although Rhodobaca abundance was highest under red light in the two 

highest phycocyanin yielding batches, Rhodobaca was also present under white light. The 

curious presence of Roseovarius only in cultures exposed to red light and the presence of 

Alteromonas also predominantly in the later batches cultured under red light raises the 

questions as to the selection effects of culturing under particular wavelengths of light on not 

only the microorganism of interest (in this case Arthrospira), but also any other 

microorganisms present in the microbial community. This is particularly important as cultures 

of microalgae/cyanobacteria are rarely axenic and usually contain a community of other 

microorganisms, which can be known to have mutually beneficial effects on growth. This 

highlights the importance of being aware of potential changes in the rest of the microbial 

community, and the unintended promotion of growth of potentially harmful species under 

particular conditions. This is something to particularly be aware of if microalgae will be used 

in products for human consumption.
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Chapter 5. Application of Long Wavelength Red Light Emitting Diodes to 

Industrial Photobioreactor Systems 

 

5.1 Introduction 

5.1.1 The Light Emitting Diode (LED) 

LEDs have seen increasing use over the past few decades because of their greater power-to-

light efficiency compared with incandescent bulbs; where uptake has been driven by greener 

environmental legislation including new building efficiency regulations (McKinsey and 

Company, 2012). LEDs require at least 75 % less energy than incandescent bulbs to produce 

the same light levels (U.S. Department of Energy, 2013) giving out less waste heat. LEDs also 

have a 25-times longer working life compared with incandescent bulbs (ENERGY.GOV 

Energy Saver), so substantial cost-benefits are delivered in a number of ways; however, the 

initial cost or capital expenditure (CAPEX) of LED systems can offset these financial benefits. 

Even so, these features not only make LEDs attractive in domestic and commercial lighting 

systems, but also for application in artificially illuminated photobioreactors (PBRs). 

 

LEDs are comprised of a light-emitting chip (Figure 5.1a) which is a p-n junction formed from 

two types of semiconductor materials (positive p-type and negative n-type) in contact (Khanna, 

2014). Current flows from the p-type anode to the n-side cathode and in the electron-depleted 

junction, electrons meet electron holes and fall into a lower energy level thereby releasing 

energy as photons in the phenomenon of electroluminescence (Figure 5.1b). 

 

Figure 5.1. Schematic of a typical LED (a) and p-n junction (b).  
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LEDs emitting different wavelengths of light from ultra violet (UV) to infra-red (IR) are 

produced using various semi-conductor materials and compositions. LEDs emitting UV (250-

360 nm) are typically produced using gallium nitrite (GaN) or aluminum gallium nitrite 

(AlGaN) semi-conductor materials (Dahl, 2008). Wavelengths in the visible part of the 

spectrum (395-645 nm) from blue-green to yellow-red are typically produced using indium 

gallium nitride (InGaN) and aluminium gallium indium phosphide (AlGaInP) respectively. 

LEDs emitting deep red – near infra-red (660-900 nm), as used in this thesis, are produced 

using aluminium gallium arsenide (AlGaAs) or gallium arsenide (GaAs) semi-conductor 

materials (Sparavigna, 2014). White LEDs are produced using blue LEDs combined with a 

phosphor which broadens the emission spectrum (Mueller-Mach, 2002).  

 

Pre-dating LEDs, fluorescent lighting has been used as artificial lighting sources for microalgae 

cultivation, as the wavelengths of light emitted closely reflect that of natural sunlight 

(Carvalho, 2011). Fluorescent tubes are manufactured using glass containing mercury vapour 

and an inert gas (typically argon) at low pressure. The mercury vapour ionizes on application 

of an electric current and photons of UV wavelength are emitted when mercury electrons drop 

back down to ground state. UV is converted to visible light with a phosphor coating on the 

inner walls of the tube (Carvalho, 2011). Fluorescent tubes have a lifetime of around 10,000 

hours compared with the 35,000-50,000 hours lifetime of an LED (Carvalho, 2011) and the 

light output from a fluorescent tube would expect to depreciate by 20 % over its lifetime, 

mainly through degradation of the phosphor coating and build up light-absorbing deposits in 

the tubes (Azevedo, 2009). Luminous efficiency is similar to that of LEDs at around 35-100 

lm/W (dependent on operating power) (Carvalho, 2011), as is the whole system efficiency as 

ballasts/drivers and fixtures required in both fluorescence and LED systems have similar 

efficiencies (typically 65-95 % for the ballast/driver and 40-95 % for the fixture) (Azevedo, 

2009). LEDs can achieve a higher light output (W/m2) and an LED lens can be cheaply 

modified and manufactured to direct light into a PBR. Additionally, fluorescent tubes contain 

environmentally-hazardous mercury and are overall a less ‘green’ option than LEDs (Scholand, 

2012). Overall, LED systems can be two to ten times as expensive as fluorescent tubes 

(Carvalho, 2011); however the price of LED lighting systems is falling rapidly. This is as a 

result of the falling cost of LEDs or, more accurately, the per-lumen price of LEDs known as 

Haitz’s Law (Haitz, 1999, Haitz and Tsao, 2011), which falls by around 25 % every decade, 

and also general market trends where new technology price falls as production volume 

increases. 
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Notwithstanding the benefits of LEDs as mentioned above, there are in fact other important 

reasons why LEDs are most attractive for PBR artificial lighting compared with fluorescent 

tubes. LEDs, because of their small size compared with fluorescent tubing, can be produced in 

many lamp configuration geometries to fit with various PBR designs and therefore offer much 

more design flexibility (Glemser, 2015). More importantly, LEDs can produce narrow 

wavelengths (20-30 nm bandwidth) of light. As studies of photosynthetic efficiency and 

microalgae productivity and product yield reveal wavelengths or mixtures of wavelengths that 

can be used to increase process efficiency, this knowledge can be applied to optimise 

commercial systems using LED lighting. This has already been seen with commonly available 

arrays of red and blue LEDs providing specific wavelengths absorbed by microalgae (Darko, 

2014, Sabzalian, 2014, Illumitex, 2015). Such narrow bandwidths are not achievable with 

fluorescent tubes without the use of a filter, where the majority of light emitted would be 

absorbed and wasted. 

 

Although ideally the use of natural illumination for the production of microalgae is preferred, 

the use of artificial illumination offers a higher level of process control in a closed production 

system and opens up industry based on microalgae production in countries which experience 

low-levels of sunlight. Despite numerous small-scale studies, there is a lack of independently 

verifiable information on the application of LED illumination in commercial algae cultivation 

systems. The cost of artificial LED illumination rather than sunlight is calculated to double the 

production cost of biomass in closed PBR systems (Blanken, 2013), which can be viable if 

producing high value products. Expected extra operational expenditure (OPEX) on electricity 

of $19.3 per kg dry weight (kg DW-1) and CAPEX on LEDs of $7.4 kg DW-1 see a total 

CAPEX/OPEX of $26.7 kg DW-1 added to any closed PBR system (Blanken et al., 2013). With 

future developments in LED technology, improving efficiency and reducing manufacturing 

costs, the CAPEX/OPEX for LED PBR illumination could fall by 60 % to $16 kg DW-1 

(Blanken, 2013), improving the economics of artificially illuminated closed PBRs.  

 

The narrow and higher wavelength red LEDs used in the experiments presented in this thesis 

are costly in comparison to standard red or white LEDs as the lack of high-volume applications 

and demand means they are not widely commercially available. However, applications using 

these specific wavelength LEDs are being developed, examples include; anti-aging light 

treatment skin therapy (λmax 680 nm) (Viravaidya-Pasuwat, 2014), and surface wound healing 



107 
 

(for comprehensive review see (Chaves, 2014). With an increasing number of products now on 

the market, the cost of λmax 680 nm LEDs should come down.  

5.1.2 Heating effects of long wavelength LEDs 

All bulbs release heat through inefficiencies in the conversion of power to light. Although the 

heat generated from a bulb is dependent on numerous factors including wavelength spectrum 

emitted and fittings, the heat released from a bulb can be estimated using knowledge of the 

efficiency, where power not converted to light (the inefficiency) is assumed to be lost as heat. 

Table 5.1 shows the heat output of commonly used light sources calculated from comparative 

data generated in a study by Khan and Abas (2011). 

Table 5.1. Heat output of commonly used light sources 

Bulb Power (W) Mean Efficiency (%) Heat output (W) 

Incandescent 100 2.25 97.75 

Fluorescent tube 18 12 15.84 

Compact Fluorescent 23 9.5 20.82 

LED 15 21 11.85 

*Light output for each bulb is 1692-1702 Lumens. Heat output (W) is calculated as Power (W) 

– (Power (W) x Efficiency (%) as a fraction). 

From Table 5.1 incandescent bulbs consume the most energy and are the most inefficient, with 

nearly 98 % of the energy released as heat, therefore producing the most heat in comparison to 

other light sources. The low energy consumption of fluorescent and compact fluorescent 

lighting, even with a relatively low efficiency means heat generated is over 400 % less than 

that of an incandescent bulb. Although halogen lamps were not included in the study by Khan 

and Abas, halogen lamps are known to generate a considerable amount of heat, sometimes 4-

times that of an incandescent bulb (Consumer Energy Centre, 2017). The low energy 

consumption of LEDs combined with their higher efficiency compared with other light sources 

results in LEDs having the lowest heat output of the commonly used light sources. 

The wavelength of light is inversely proportional to energy according to Planks Law, as 

discussed in Chapter 4. Accordingly, longer wavelength LEDs emit light (photons) at lower 
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energy. A consequence of lower energy photons is a heating effect. This is illustrated by 

electrical heaters and toasters utilising infra-red light. The heating effect is produced through 

radiation. Lower energy photons of longer wavelengths cannot penetrate materials as much as 

higher energy photons; they move shorter distances through materials before they are absorbed. 

Therefore, absorption of energy and the vibration of molecules within materials (heating) is 

more efficient with shorter wavelengths of light.  

If long wavelength LEDs were applied at larger-scale in PBRs, heating effects may have to be 

considered. Experiments in this chapter begin to assess the extent of heating problems caused 

by the use of longer wavelength LEDs. 

5.2 Experimental Details and Method 

5.2.1 Heating effect of long wavelength LEDs 

The temperature of 2.75 L of tap water in the STPBR was measured along with the external air 

temperature in 10 minute intervals over stepped increases in the power/ intensity of λmax 680 

nm LEDs (for details of LEDs see Chapter 3). Light intensity was controlled through increasing 

percentage power from the driver transformer to the LED using the Iris Parallel Bioprocess 

Control Software. At 8-80 % power, light intensity to the culture would range linearly from 

44-346 µmol m-2 s-1. Water temperature was measured by the STPBR temperature probe. 

External air temperature was monitored externally using Tinytag Aquatic 2 data loggers 

(Gemini Data Loggers Ltd, West Sussex). The fluid in the STPBR was agitated at 200 rpm, 

and pH control, aeration and temperature control were turned off. LED light intensity was 

increased through increasing LED operating power in daily increments of 8 % from 8 % to 80 

% power over 10 days. The difference between the STPBR water temperature and external air 

temperature was calculated by subtracting the air from water temperature to calculate the 

increase in temperature caused by the heating effect of the LEDs at different power levels. Prior 

to the difference calculation, temperature values for the external air temperature were off-set 

by +100 minutes to account for a slower response in air compared with water. The mean 

difference was calculated from a minimum of 133 temperature readings over 1330 minutes and 

used as the temperature increase at LED power/illumination levels. Error was calculated as 

standard deviation of the mean differences.  
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5.2.2 Dissolved oxygen probes 

Dissolved oxygen (DO) data was collected in the batch experiments of Chapters 3 and 4. DO 

was recorded every 10 minutes by a DO probe (Finesse, Switzerland) as a percentage relative 

to starting DO. PreSens equipment (Precision Sensing GmbH, Germany) was used in Batch 

2W as a secondary method of DO monitoring alongside the standard Finesse DO probe. The 

PreSens detector spot was glued to the inside of the vessel wall 3 cm below the calculated 

medium level, using a small amount of SG-1 silicone glue (Precision Sensing GmbH, 

Germany), and allowed to dry for 12 hours. The glass vessel was then filled with medium and 

sterilised as described in Chapter 3 3.2.1 with the PreSens spot in place. Before inoculation, 

the PreSens optical fibre was aligned with the spot and strapped in place using a Velcro fastener 

(Adaptor for Round Containments or ARC as provided) with tape for extra security (Figure 

5.2a). Data from the PreSens optical fibre was recorded using an OXY-4 mini data logger 

(Precision Sensing GmbH, Germany) and OXY-4 mini Software version 2.30FB (Figure 5.2b). 

The PreSens optical fibre was carefully fed through the gap in the top of the LED jacket. 

PreSens data was filtered using the Moving Average Filter as described in Chapter 4 at Power 

100 (using 100 data points for average calculation) in Microsoft Excel 2007. 

 

Figure 5.2. PreSens DO monitoring set-up of optical fibre (a) and data logger with STPBR 

system (b). 
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5.3 Results 

5.3.1 Heating effect of long wavelength LEDs 

 

Figure 5.3. Temperature of STPBR (internal) and room (external) over increasing LED power 

levels. Noise is representative of normal diurnal temperature fluctuations. One time point 

represents 10 minutes, the interval for which temperature was recorded. 

In Figure 5.3, power levels above 25 % led to an increasing deviation between STPBR and 

room temperature, indicating a heating effect caused by the LEDs. When the temperature 

difference was calculated (Figure 5.4) the heating effect became clear, with an approximate 11 

˚C rise when LEDs were operated at 80 % power (346 µmol m-2 s-1 light intensity). 

 

Figure 5.4. Temperature difference between STPBR and room plotted against LED power 

level. One time point represents 10 minutes, the interval for which temperature was recorded. 
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It is difficult to pick out accurate temperature differences from the noisy temperature data, as 

seen in Figure 5.3 and Figure 5.4. The noise (Figure 5.3), caused by diurnal cycles in 

temperature, interestingly, is still present in the difference calculations (Figure 5.4), when it 

would be expected that a simple subtraction should remove diurnal noise, which should occur 

the same in both STPBR and room temperature traces. Noise is still present when the 

temperature difference is calculated as there is a slight lag in diurnal temperature cycles in the 

STPBR (Figure 5.5) and the room. The lag is a result of a slower temperature change in the 

STPBR as a result of the volume of water with a greater heat capacity than the surrounding air, 

which takes more energy (and time) to heat and cool. 

 

Figure 5.5. STPBR and room temperature readouts over 1000 time points showing 

response lag in STPBR data to normal diurnal temperature fluctuations compared with 

room temperature, indicated by red vertical lines. Solid red line shows peak and troughs 

of room temperature and dotted red line indicates lagged peaks and troughs of STPBR 

data. One time point represents 10 minutes, the interval for which temperature was 

recorded. 

To reduce the lag and noise in the temperature difference calculations the temperature 

difference was calculated from room temperature readings offset by 10 time points (100 

minutes). The offset value was calculated through selecting 5 numerical differences in 

peaks and troughs (as in Figure 5.5), and using these value ranges to test the visual 

difference on the temperature difference curve during different offset values. Offsetting by 

100 minutes gave the smoothest temperature difference curve (Figure 5.6) and these offset 

temperature differences were used to calculate mean temperature difference under the 

different illumination levels (LED power) (Figure 5.7). 
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Figure 5.6. Temperature difference of STPBR and room after offset alteration of 100 minutes 

plotted against LED power. One time point represents 10 minutes, the interval for which 

temperature was recorded. 

 

Figure 5.7. Mean temperature increase at LED power levels calculated from a minimum of 

133 temperature readings over 1330 minutes. Error bars represent ± 1 standard deviation of 

the mean. 

Operating the LEDs at 80 % power (346 µmol m-2 s-1 light intensity) increased the temperature 

of the water in the STPBR by an average 11.11 ˚C. There was a stable 2 ˚C increase in 
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temperature in the STPBR below 40 % power, indicating that there were likely no significant 

heating effects operating below 40 % power.  

5.3.2 Interference with probe measurements 

 

Figure 5.8. Dissolved oxygen (DO) traces of three batches as measured by the Finesse probe 

shown during illumination and dark periods, demonstrating interference of the red light, but 

not the white light with DO measurement. DO data was collected in the experiments of 

Chapter 3 for the 10 Arthrospira batches. Data shown in this figure is from batches 2R and 

7R which were cultured under red (λmax 680 nm) light and 2W cultured under standard white 

light. For batch details see Chapter 3 (3.3.2). 

In Figure 5.8 the DO of the red light cultures 2R and 7R dropped instantly during illumination 

periods. This was not observed in white light culture 2W. The data shows the red light causes 

erroneous readings in the DO probe. Additionally, upon testing a new non-invasive optical DO 

probe by PreSens - Precision Sensing GmbH (Germany) in the STPBR under white light, again 

interference during illumination periods was observed creating a lot of noise in comparison to 

the typical invasive (Finesse) probe used for the experiments (Figure 5.9). No trend could be 

seen even after filtering. 
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Figure 5.9. Dissolved oxygen levels measured by Finesse standard optical probe and the 

PreSens non-invasive optical system after filtering. Top left window shows un-filtered 

PreSens data. 

 

5.4 Discussion  

5.4.1 Heating 

The use of longer wavelength LEDs in PBR systems will cause heating effects, but only if used 

at higher power levels (as seen in these experiments above 40 %). Depending on the higher 

power levels selected, heating effects may only be a few degrees increase in temperature of the 

culture and therefore unproblematic. The 2 ˚C increase seen below 40% power in the 

experiment could be caused by the insulating environment provided to the water by the 

materials of the STPBR (glass vessel plus plastic shell) rather than any heating effects caused 

by the LEDs. In this case the heating effect at 80 % LED power would be around 9 °C. 

Given that the LED powers and intensities used in the Chapters 3 and 4 experiments were 5-

times lower than 40 % (the value at which heating effects occur), it is highly probable that long 

wavelength LEDs may not be used at such intensities/powers and densities industrially to cause 

problematic heating effects and therefore would not contribute to major additional CAPEX or 
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OPEX costs for additional cooling requirements. As day-night daily outside temperature 

variations can be 3-5 °C as seen in these experiments and as UK outside temperatures can vary 

by around 11.3 °C over the year (Perry and Golding, 2011), any artificially illuminated PBR 

system should already be built with the capabilities to manage a 10 °C variation in temperature 

(if the culture is susceptible to temperature changes). Also heating effects of the LEDs may 

even be beneficial to maintain culture temperature. 

Although heating effects on the culture will likely not be an issue, heating is still an issue in 

the LED itself. Red LEDs (and particularly IR LEDs), for the same reasons explained above, 

are susceptible to heating. Heating reduces the efficiency and lifetime of the LED (Yanagisawa, 

1998, Nelson and Bugbee, 2014), with red LEDs being highly susceptible, sometimes requiring 

twice as much power at higher temperatures to produce the required light intensity (Azar, 

2012). Heating can also change the peak wavelength emission of the LED which is emphasised 

in red LEDs in comparison to blue and green LEDs, changing by 1.6-2 nm per 10 °C (Chhajed, 

2005, Shi, 2011). This problem is most commonly noted in solid state lighting systems where 

white light made from mixed red, green, and blue LEDs moves from warm white to cool white 

when red LEDs lose efficiency (Narendran, 2001, Shi, 2011), but should not be problematic in 

PBRs. Control of LED temperature and maintenance of LED efficiency, particularly for longer 

red LEDs, is therefore essential in artificially-illuminated industrial PBR systems. A doubling 

of these energy costs could reduce the profitability of business. Effective LED panel design 

with good thermal management systems to dissipate heat generated would be required even 

more so for PBR systems using long-wavelength LEDs.  

The results, observations and thoughts from the heating study were fed-back to the company 

to inform the design of a scale-up facility at the Roslin Institute, Edinburgh. Interestingly, 

during early equipment trials large arrays of λmax 680 nm LEDs did produce considerable heat, 

however this wasn’t problematic for culture temperature, rather the problem was with the heat 

reducing bulb lifetime. The company therefore trialled a PBR design whereby LED panels in 

waterproof casing were used as submersible, internal illumination in stainless steel vessels. 

Submersion of the LED panels in the culture acted as a cooling system helping to keep LED 

panels below a 40 °C operating temperature as recommended by the manufacturer. This 

avoided the requirements for additional LED cooling systems. Dissipation of heat throughout 

the culture has also helped in maintaining culture temperature, as suggested, reducing electric 

heater usage and associated energy costs. 
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5.4.2 Interference 

DO data has also highlighted how the use of longer wavelengths of light (approaching near-

infrared – outside of the visible spectrum) for microalgae cultivation can cause probe 

interference and malfunction, limiting equipment choice. Probe types used for measurement 

must be carefully selected to ensure they are not affected by light or the particular wavelengths 

of light used for cultivation. 

In the experiments using the Finesse DO probe the red light overlaps with the light wavelengths 

used in the probe’s optical measurement system, therefore readings jump during the 

illumination period and the level of DO indicated does not accurately reflect the DO of the 

culture. In an optical DO probe a gas-permeable, water-impermeable material containing a 

phosphor is excited by blue light (provided by an optical fibre in the probe) (Figure 5.10a). 

When this material is in contact with dissolved oxygen, oxygen quenching of the excited 

phosphor results in the emission of red light through a phase shift. The emission frequency and 

duration of red light detected and measured in the probe indicates dissolved oxygen 

concentration. Interference of the red LED light used for illumination in the STPBR with the 

red LED light used in the DO sensor system demonstrated optical probes cannot be used. 

Additionally, next-generation optical probe systems which work similarly on luminescence 

cannot function in PBRs. New optical probes such as the non-invasive optical oxygen sensor 

by PreSens - Precision Sensing GmbH (Germany) (Information available at: 

http://www.presens.de/), use a small (approximately 1 cm diameter) chemically-reactive 

phosphor-containing stick-on spot placed inside the walls of a transparent vessel (Figure 

5.10b), and an optical sensor strapped directly opposite the spot outside the vessel. The system 

works as described above where oxygen quenches the blue light excited phosphor in the spot 

and red light is emitted. Reduction in red light detected through an optic is proportional to the 

presence of oxygen (Klimant, 2004). The method by which the sensors function means the 

patch is sensitive to photo-decomposition, therefore such systems cannot be applied to PBRs, 

not only because certain wavelengths of light may interfere with the measurement of 

fluorescence by the optic in the system, but also because light at any wavelength causes rapid 

decomposition of the indicators in the patch. It was demonstrated that these advanced systems 

cannot function in PBRs with the wavelengths of red light used in these experiments. Other 

optical probe types such as pH sensors will likely suffer the same interferences under λmax 680 

nm red LED. 

http://www.presens.de/
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Figure 5.10. Schematic of how a typical optical dissolved oxygen sensor works (a) and the 

PreSens non-invasive system (b).  

It is possible to use electrochemical DO probes which do not operate on optical measurement 

systems in PBRs where longer near-IR wavelengths of light are used for cultivation. 

Electrochemical probes are formed from two electrodes: typically a platinum cathode and silver 

anode submerged in a potassium chloride electrolyte solution with an oxygen-permeable 

membrane between the electrodes/electrolyte and sample to be measured (Figure 5.11) 

(Kanwisher, 1959). Oxygen from the sample diffuses through the membrane into the 

electrolyte solution where a chemical redox reaction occurs with reduction of oxygen and 

oxidation of the silver anode generating a small measurable electrical current. DO of the sample 

is proportional to oxygen diffusion into the probe and current generated. The lack of optics in 

these types of DO probes would avoid the interference seen with the optical probe systems. 

However, electrochemical probes tend to require higher maintenance and frequent calibration 

and are therefore less-preferred for long-term monitoring applications (YSI Incorporated, 

2009). Electrochemical probes are also susceptible to interference from gases such as chlorine, 

hydrogen sulphide, sulphur dioxide and nitrous and nitric oxides (YSI Incorporated, 2009). 
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Figure 5.11. Schematic of a polarographic dissolved oxygen sensor. Redox reactions 

occurring at the cathode and anode are shown in dashed boxes. A thermistor is typically built-

in for temperature compensation. Image of dissolved oxygen probe taken from 

http://www.bioprocessonline.com/doc/oxygen-sensor-inpro6800-gas-0003. 

5.4.3 Comparative modelling 

A simple comparative model was built to compare phycocyanin production under λmax 680 nm 

red LEDs with standard white LEDs using data from experiments in Chapter 3 and applied to 

the current Scottish Bioenergy PBRs in the company’s scale-up facility at Roslin Institute, 

Edinburgh. The model incorporates biomass, phycocyanin yield and LED power and light 

specifications from the STPBR and is applied to a 1000 L batch module of the larger-scale 

Scottish Bioenergy production system at a module cost of £1,500.  

This models a PBR operated with a 14-day residence time and dry biomass output of 87.1 g/day 

based on 1.22 g/L maximum average batch end culture density achieved during the 

experiments, and assumed for both red and white LED illuminated cultures as there was no 

significant difference in growth rates during the experiments.  

The growth medium was f/2 with additional nitrate of 2.5 g/L (although notably this would be 

simplified for use on a larger commercial scale). LED energy OPEX were calculated using 150 

bars of 8 LEDs, reflecting the Scottish Bioenergy PBR. The red and white LED driver settings 

http://www.bioprocessonline.com/doc/oxygen-sensor-inpro6800-gas-0003
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of 8 % and 3 % used in the experiments were applied proportionally to the standard 50 % 

operating power used in the Scottish Bioenergy system, which is selected to achieve maximum 

LED lifetime. This is to reflect a commercial system where the lowest number of LEDs would 

be operated at a maximum selected power (50 % in this case) to keep LED CAPEX low. Here 

the 8 % red LED laboratory-scale driver setting represents a 50 % red LED large-scale driver 

setting and associated power consumption. White LED driver setting was adjusted using the 

ratio calculation in Equation 5.1.  

Equation 5.1: (
RSD

RLD
) × WLD = WSD 

Where RSD is the red large-scale driver setting (%), RLD is the red LED lab-scale driver 

setting (%), WLD is the white LED lab-scale driver setting (%) and WSD is the white LED 

large-scale driver setting (%). 

From LED product specification sheets LED maximum power requirements for red (Muevo-

Technik) and white (LUMITRONIX) LEDs were 1.6 and 0.28 Watts (W) respectively. As light 

output was linear with power for red LEDs (Figure 5.12) operating power of the LED array to 

achieve a light intensity of 45 µm-1 m2 s-1 was calculated using Equation 5.2. 

Equation 5.2: TP = P × N × (
LD

100
) 

Where TP is total power consumption of operational LED array (Watts), P is Maximum LED 

power (Watts) assumed when the driver is set to 100 %, N is number of LEDs in the array, LD 

is large-scale driver setting (%). 

However, light output was non-linear when ramping power for white LEDs (Figure 5.12) 

because the driver used was designed for dimming through pulse width modulation (PWM) 

specifically for the red LEDs (Poplawski, 2012). Therefore, upper and lower bounds were 

calculated for total power consumption of the white LED array operating at an equivalent 3 % 

lab-scale driver setting in the model. The bounds were calculated by a) assuming linearity that 

the 3 % lab-scale driver setting corresponded to 3 % of the maximum LED power requirement 

at a 100 % lab-scale driver setting (lower bound) and b) that a 30 % lab-scale driver setting as 

calibrated against light intensity in Figure 5.12 corresponds to a 100 % actual lab-scale driver 

setting (upper bound). These upper and lower bounds were applied to Equation 5.1 to calculate 

an upper and lower bound for white LED power consumption on a large-scale. Calculations 

were based on an electricity unit price of 9 pence per kWh. 
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Figure 5.12. Light intensity-power curves for white (solid lines) and red (dashed lines) LEDs 

in the Infors STPBR as read by LI-250 light meter (LI-COR). (a) Light intensity curves for 

power outputs of up to 100 % for red and 30 % for white LEDs. (b) Light intensity curves for 

power outputs up to 10 % for both red and white LEDs. Points are means of triplicate 

readings. Error bars not shown as they were negligible. Relationship between light intensity 

and driver power was non-linear for white LEDs and light intensity reading jumped to 3000 

µm m-2 s-1 above 30 % driver power and remained stable between 30-40 % power. 

Mixing energy requirement was estimated using knowledge of similar systems (Doran, 2005) 

which would be expected small in a comparative model. Medium component costs were 

calculated based on lowest cost from Sigma Aldrich website (https://www.sigmaaldrich.com/) 

although on a larger commercial scale discount purchase on bulk chemicals would apply. LED 

price was calculated using cheapest current supplier quotes for 400 bars of 8 LEDs inclusive 

of all required equipment, VAT and shipment cost and scaled linearly (red LED £1.50, White 

LED £0.1, LED driver and fittings £1.88 per LED).  

It was assumed that 0.0599 g of phycocyanin is extractable from 1.22 g of red LED produced 

dry biomass (based on average highest biomass and phycocyanin yield achieved in the 

experiments across all of the red batches 1-7R), which is nearly 400 % lower under white LEDs 

(based on the average phycocyanin yield achieved in batches 1-3W). It should be noted 

however, that the biomass and phycocyanin production in a commercial system would be 

expected to be higher as culture density was acceptably low in this experiment to achieve a 

small 14-day batch time in the experimental schedule, and a crude phycocyanin extraction 

method was used. Extraction efficiency for phycocyanin from Arthrospira biomass is estimated 

at 80 % based on contract manufacturing consultation (Biopharma, Winchester 

http://biopharma.co.uk/). Sale price of phycocyanin is based on achieving a freeze-dried 

powder and pigment of reactive grade purity 2˂ (Rito-Palomares, 2001) through purification 

https://www.sigmaaldrich.com/
http://biopharma.co.uk/
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at £2000 per gram based on conversations with potential customers and also larger 

manufacturers in the East. Only upstream costs are considered in the comparative model, 

excluding any downstream processing (DSP) costs as accurate costs do not currently exist for 

basis and these costs are assumed equal for biomass produced under both light conditions. 

 

Figure 5.13. CAPEX (green) and OPEX (blue and black) upstream for 1000 L Scottish 

Bioenergy PBR system illuminated with red and white LEDs. Miniature pie charts display 

breakdown of LED CAPEX. 

Looking at the upstream CAPEX and OPEX in Figure 5.13, although λmax 680nm LEDs are 

10-times more expensive than standard white LEDs, the substantial cost of LED driver and 

fitting equipment similarly required for both LED types means overall the cost of red LED 

arrays are 67 % higher than white LED arrays. Using the upper bounds of energy consumption 

for white LEDs adds £78 a year to white LED OPEX, and at such a small value it is not deemed 

necessary to consider both upper and lower bound white LED energy costs. Lower bounds for 

white LED OPEX are therefore considered only. λmax 680nm LEDs consume over 15-times 

more energy than standard white LEDs, however energy costs make-up only a small percentage 

(1 % for white LEDs, 5 % for red LEDs) of the total combined CAPEX and OPEX and 

therefore the additional costs of energy operating under red LEDs would be insignificant to the 

business model.  
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Figure 5.14. Yearly profit with PBR systems illuminated with red and white LEDs. Profits 

exclude DSP costs. 

With a small increase in CAPEX of £1620 and increased OPEX of £478 per 1000 L PBR 

module per year and producing phycocyanin under red LEDs will make for a near 400 % more 

profitable business (Figure 5.14). The model demonstrates that, even with both the increased 

CAPEX and OPEX for a red LED PBR system, the significant increases in phycocyanin yield 

under red LEDs and associated higher profit margins easily justifies the additional costs of red 

LED illumination.  
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Chapter 6. Directed Microevolution of Arthrospira for Growth on High 

Copper Wastewater - a Feasibility Study 

 

6.1 Introduction  

Prenote 

In this chapter resistance and tolerance are used interchangeably, but here resistance is used to 

describe a tolerance which has a genetic basis. Adaptation incorporates both phenotypic and 

genetic changes for an organism to adapt to survive in an environment. Acclimatisation 

describes an adaptive phenotypic (physiological or behavioural) change within an organism in 

response to its natural environment. Acclimation, a term which is used in Chapter 3, is an 

adaptive phenotypic (physiological or behavioural) change within an organism in response to 

an artificially induced environment. 

6.1.1 Bioremediation and recovery 

Bioremediation is the use of biological agents to remove wastes from the environment. 

Bioremediation by microorganisms for the removal of pollutants is considered an 

environmentally safe, inexpensive and efficient decontamination technology (Alexander, 

1999). The process involves biodegradation, wherein the microorganism metabolises 

compounds in enzyme-driven biochemical reactions into harmless compounds; or 

biotransformation, wherein the molecular structure of the target compound is modified to an 

extent that it is rendered less toxic. Bioremediation has been demonstrated for numerous 

chemical mixtures including petroleum and crude oil (Vinothini and Ravikumar, 2015) and 

pesticides such as organophosphates (Karpouzas, 2005, Singh and Walker, 2006). 

Recently there has been increasing interest in the use of plants for bioremediation – also known 

as phytoremediation. Microalgae can degrade toxic organic compounds such as synthetic dyes 

(El-Kassas and Mohamed, 2014) and certain pesticides (Jin, 2012, Zhang, 2011, Gattullo, 2012, 

Sethunathan, 2004) as well as inorganic compounds such as inorganic nitrate and phosphate for 

reduction of biochemical and chemical oxygen demand (BOD/COD) as described in Chapter 

1. They can also accumulate compounds including polychlorinated biphenyls (PCBs), which 

concentrate in lipid stores (Lynn, 2007, Berglund, 2001). Microalgae are notable for 

accumulating metals (have a high biosorption capacity) through several mechanisms (Rai and 

Gaur, 2001) including chelation using phytochelatins. Combined with their large surface area 

to volume ratio, and the potential to manipulate strains to enhance these current properties – 
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either through genetic modification or artificial selection (Chekroun, 2014), mark microalgae 

as promising phytoremediation tools.  

These properties indicate that microalgae may be efficient metal scavengers for use in the 

removal or recovery of metal contaminants from water sources. Such waters can sometimes 

contain high levels of precious and expensive metals of finite resource; for example, palladium 

is used in the electronics industry and contaminates wastewater from the plating process, and 

gold and platinum can be found within their respective mining wastewaters (Umeda, 2011). 

These industries are seeking ways to clean-up their waste streams and recover particular metals 

for reuse. 

Microalgae and cyanobacteria require metals such as manganese, iron, cobalt, nickel, copper 

and zinc in trace quantities (Rai and Gaur, 2001). These metals are important for metabolic 

processes such as electron transport and the acquisition and assimilation of carbon, nitrogen 

and phosphates. However in high concentration these metals can be toxic. A number of 

microalgae species have been demonstrated to uptake high metal concentrations including zinc, 

cadmium, lead, nickel and copper (Halder, 2014). Biosorption of cadmium, chromium and 

copper by Arthrospira is reported by Chojnacka et al. (2005) and Doshi et al. (2007). 

6.1.2 Adaptation in microalgae 

Algae have the ability to rapidly adapt to a wide range of pollutants (Rai and Gaur, 2001). There 

are two ways in which algae can change to cope with the surrounding environment. 

Physiological acclimatisation (also known as phenotypic plasticity) involves changes in 

phenotype through gene expression at both the transcriptome and proteome levels (Schlichting 

and Smith, 2002). However, in more extreme conditions where physiological acclimatisation 

cannot provide tolerance, survival is dependent on adaptive microevolution, where random 

spontaneous genetic mutations confer resistance (Bradshaw, 1989, Cairns, 1988, Sniegowski, 

2005). Here the mutation is pre-selective (exists before exposure to the ‘selection’ conditions), 

and is not induced by the conditions. Microevolution can therefore change the genotype and 

phenotype of a whole microalgae population on a short time scale, over a small number of 

generations. Although acclimatisation is a beneficial feature of algae cultures, it is reversible 

and only offers limited physiological changes for survival (Alpert and Simms, 2002). 

Microevolution in algae has been shown to produce culture strains resistant to a number of toxic 

compounds including trinitrotoulene (TNT) (García-Villada, 2002), the herbicide lindane 

(Lopez-Rodas, 2001), cadmium (Collard and Matagne, 1990) and some antibiotics (Gillham, 

1965, Wurtz, 1979). Such strains, arising from genetic change, maintain their resistance when 
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conditions are interchangeable. Therefore cultures with stable resistance can be created through 

directed microevolution.  

6.1.3 Mechanisms of metal tolerance 

It can be difficult to determine whether adaptation has arisen by phenotypic or genetic changes, 

however there are a number of common mechanisms through which metal tolerance can arise 

in microalgae (summarised in Figure 6.1). Tolerance may be a result of the deployment of more 

than one of these mechanisms. 

 

 

Figure 6.1. Schematic of common mechanisms of metal tolerance in microalgae adapted from 

Rai and Gaur (2001) including intracellular detoxification, extracellular complexation and 

uptake.  

Intracellular detoxification mechanisms shown in Figure 6.1 (1.) inside the red circle can 

contribute to metal tolerance. Metal tolerance can occur through sequestration of metals 

intracellularly using chelators such as metallothioneins and phytochelatins (Rauser, 1990, 

Steffens, 1990). These chelators bind metals to form large, complex structures. Polyphosphate 

bodies, accumulated in the cell under conditions of surplus phosphates, can also be intracellular 

sites for metal complexation (Rai, 1981). The polyanionic properties of these phosphate 

polymers sequester cations; however, subsequent phosphate deficiency leading to mobilisation 

of intercellular stored phosphate can lead to the release of high concentrations of metal ions 

previously chelated within the cell. Metal ions have also been shown to be sequestered and 
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compartmentalised in the vacuole (Heuillet and Puiseux-Dao, 1986), which is a well-known 

mechanism in higher plants. Additionally, metal ions can also be oxidised/reduced in the cell 

to less soluble (precipitated) and less toxic states. 

Reduced uptake and increased efflux (Figure 6.1 (2.)) from the cell can also enable metal 

tolerance. Reduced influx can be regulated by alterations in the permeability of the cell 

membrane to metal ions and possible modifications within the cell wall such as thickening for 

protection. Active transport of metal ions out of the cell, or secretion of chelated metal 

complexes from the cell can be effective. Such systems have been widely reported in novel 

resistant bacterial strains (Silver, 1996). Extracellular components of algae cell walls can bind 

metal ions, reducing bioavailability, lowering intracellular accumulation and decreasing 

toxicity (Figure 6.1 (3.)). Metal ions can also be chelated by metal-complexing ligands secreted 

from the cell, reducing bioavailability. 

Although only trace quantities of metals such as copper are required for normal metabolic 

functions, Arthrospira has been shown to tolerate up to 4 mg/L of copper (Nalimova, 2005). 

This is done by binding copper to the cell wall in a process known as chemisorption. 

Peptidoglycans and polysaccharides present on the cell wall display negatively charged 

carboxylic, hydroxyl and phosphate functional groups which bind Cu(II) by cation exchange, 

deprotonating copper (Chojnacka, 2005). Deprotonation and therefore the biosorption process 

is strongly dependent on pH. Some copper is also taken into the cell and forms complexes with 

amino acids, peptides and proteins (Cavet, 2003). Cellular copper can be secreted (or 

precipitated) as biologically unreactive complexes after reduction of Cu(II) to Cu(I), and copper 

ions accumulated on the cell wall can be reduced and released. Beyond this copper 

concentration the cell membrane is damaged (Nalimova, 2005) and is generally lethal. Although 

microalgae are known to develop resistance to copper, copper is still used as the basis of many 

algaecides because of its toxicity to microalgae (Hrudey, 1999). Resistance to copper-based 

algaecides is commonly overcome by more frequent use and use of higher quantities of 

algaecides which can lead to accumulation of copper in the environment, causing other effects 

on the ecosystem (Christenson, 2014, Das and Khangarot, 2011, Karan, 1998). 

6.1.4 The use of Genetically Modified Microorganisms 

The genetic modification (GM) of microalgae is where DNA is modified through the use of 

non-natural genetic engineering tools, modifying, removing or adding genes. GM has the 

potential to overcome many current limitations in microalgae biotechnology such as low 

product yields and sensitivity to particular conditions. This realisation has created huge interest 
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in synthetic biology within the research community. Synthetic biology is a promising 

opportunity for the development of the UK algae biotechnology industry, given the current 

synthetic biology knowledgebase. The positives of genetically modified microorganisms 

(GMMs) however are not fully supported by the public. Considerable effort, investment and 

marketing are needed to inform and change public opinion if GMMs are to be accepted, 

although some markets such as personal care will not tolerate GM (Basshir, 2014). GM 

regulations have to be followed if GMMs are used in microalgae systems to lessen any risks of 

GMMs being released and disrupting the ecosystem. The hazards associated with GMMs, 

whether released GMMs could survive in the natural environment, and the chance of genes then 

transferring to other organisms depend on the traits that have been modified or introduced 

(Figure 6.2) (Enzing, 2012). 

 

Figure 6.2. The environmental hazard of GM algae depends on the impacts of the modified 

trait and strain. Adapted from Sweet (2014). Image sourced from www.stocksigns.co.uk. 

Using GM algae strains in the UK involves seeking approval from the Government Department 

for Environmental Food and Rural Affairs (DEFRA) (under Directive 2001/18/EC (European 

Parliament, 2001) and Directive 2009/41/EC (European Parliament, 2009) and scrutiny by the 

Advisory Committee on Releases to the Environment (ACRE) (Sweet, 2014). For commercial 

use of GM algae strains, an application has to be made to the European Commission 

Directorate-General for Health and Consumers (DG SANCO) where detailed science is 

collected on a case-by-case basis for risk assessment by European Food Safety 

Authority (EFSA), sometimes involving The European Medicines Agency (EMEA). Not only 

does gaining approval for use come at a substantial administrative cost, running a GM algae 

http://www.stocksigns.co.uk/signs-Temp-Hazard-1549
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facility can involve higher equipment costs (CAPEX) to improve containment together with 

further costs for continuous monitoring during operation (OPEX).  

6.1.5 Feasibility of directed microevolution in algae biotechnology 

In the Scottish Bioenergy photobioreactor (PBR) system installed at the Glen Turret Distillery, 

microalgae were grown on pot ale, a wastewater from the whisky distilling process. The 

microalgae used the ammonia and nitrate in the wastewater for growth, reducing the 

environmentally hazardous high BOD/COD of the wastewater, which typically makes pot ale 

costly to dispose of. Additionally, microalgae were shown to remove copper from the 

wastewater, present from the copper whisky stills (Graham, 2012). The system was also 

utilising waste CO2 and heat. Not only was the system achieving treatment of pot ale to lower 

the BOD/COD and copper concentrations to allow release into rivers and the sea, but 

microalgae biomass was produced. The high protein biomass could be used as a feed to 

supplement the diet of young pigs which have a high copper dietary requirement (Jacela, 2010). 

Although the biomass was an additional revenue stream in the business model, the feed product 

was still low value. A new focus on higher value extracts in the research programme then, 

developed with the company considering growing Arthrospira on pot ale. Depending on the 

processing method used there was the possibility to purify a higher value phycocyanin product, 

leaving behind a high copper biomass thereupon creating more than one product revenue 

stream. However, the Arthrospira strain being experimented with could not tolerate the high 

copper concentrations present in pot ale. There was a requirement to identify a strain that could 

tolerate higher copper concentrations. It was equally important that the strain should survive 

the typical variability of copper levels in pot ale and be sufficiently stable to retain its tolerance 

under variable conditions. 

Acclimation, as reversible changes (like those observed in the LED experiments of Chapter 3) 

would not produce the stable strain required in bioremediation systems where there is variability 

in the wastewater used as a feedstock. Another way to do this would be GM but it was important 

to the company to avoid GM and the associated environmental safety concerns, regulatory 

complications and costs. This was particularly important in the bioremediation system as treated 

wastewater leaving the PBR would likely contain GM microalgae and would be classified as a 

Category 4 GMM (products containing GMMs) - the highest risk category.  

The process of directed microevolution was of interest as a solution to arrive at a stable non-

GM strain. It wasn’t known whether or how easily this could be done. Although stable resistant 

cultures can be created through microevolution, this cannot be induced; pre-selective mutations 
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must be selected using statistical methods. Working with the example of Arthrospira grown on 

pot ale in this chapter, the feasibility of using Luria–Delbrück experiment-style selection (Luria 

and Delbrück, 1943) or fluctuation analysis to identify a ‘microevolved’ copper-resistant 

Arthrospira strain was tested. Proving the feasibility of such a technique would identify a 

method by which the company could create non-GM strains from different commercially 

interesting microalgae for use in a number of systems using a variety of feedstocks. This could 

open up opportunities for further development of the company’s multi-process PBR systems 

which could expand the business opportunities.  

6.2 Experimental Details and Method 

6.2.1 Experimental design based on theory 

Figure 6.3 is a schematic of the experimental process which will be briefly outlined in the next 

paragraph followed by a fuller description in the subsequent paragraphs of 6.2.1. The 

experimental process was based on the method of (Gonzalez, 2012).   

The culture was cloned through isolation of a single cyanobacterium to avoid the inclusion of 

previous spontaneous mutations, followed by propagation. With the cloned culture, toxicity 

assays were completed to assess the toxicity of copper (Cu(II)) to Arthrospira; these are 

explained in 6.2.2. Toxicity assays combined with the known concentrations of Cu(II) in pot 

ale informed the concentrations used for selection. When the cultures reached a particular 

filament density they were split into two sets. One set (Set 1) was split into tubes and the culture 

continued to propagate in the tubes. The other (Set 2) continued to propagate in a flask, and on 

reaching a particular filament density was then split into tubes. Copper sulphate (CuSO4) 

solution was added to both Set 1 and Set 2, where sub-sets of Set 1 and Set 2 received different 

concentrations of CuSO4 and the tubes were incubated. During this incubation period resistant 

mutant filaments can generate enough progeny to be detected. Afterwards, fluctuation analysis 

was performed to identify those cultures which developed resistance through microevolution, 

which is explained in 6.2.3. Identified Cu(II) resistant strains were propagated in standard 

medium and tested for their toxicity to Cu(II) and compared with the toxicity in the original 

culture to assess the extent of resistance acquired.  
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Figure 6.3. The experimental process from cloning of Arthrospira to selection and fluctuation 

analysis, based on the method by Gonzalez et al. (2012). 

Cloning was performed through microdilution (Andersen, 2005) in a 96-well plate under aseptic 

conditions. Sterile f/2 Medium (Guillard and Ryther, 1962) supplemented with 29.4 mM/ 2.5 

g/L NaNO3 (Raoof, 2006) and adjusted to pH 8 was used for all dilutions. Media was made with 

1 µm filtered, UV sterilised natural seawater and autoclaved. Arthrospira platensis (CCMP 

1295) was obtained from the Provasoli-Guillard National Centre for Marine Algae and 

Microbiota (NCMA; https://ncma.bigelow.org/). During microdilution the Arthrospira culture 

was diluted to a filament density of 1 filament per 200 µL, and 200 µL of diluted culture pipetted 

into each well of the plate; thereby statistically providing a single filament in each well. The 

plates were incubated in a constant temperature room 18°C ± 1°C, with an average light 

intensity of 97 µmol m-2 s-1 with 8:16 dark:light cycle. Growth in the plate wells was monitored 

https://ncma.bigelow.org/
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under a microscope (Olympus BH-2 brightfield) until the presence of filaments could be seen 

by eye, after which a selection of well samples were each transferred to fresh sterile f/2 Medium 

supplemented with 29.4 mM/ 2.5 g/L NaNO3 in 50 mL conical flasks with foam stoppers. 

Propagation of the cloned cultures was performed using sub-culturing in increasing volume 

conical flasks with foam stoppers in a constant temperature room (18°C ± 1°C, 97 µmol m-2 s-

1, 8:16 dark:light cycle) until a culture density of 100 filament per mL was reached. Filament 

counts were performed from triplicate 50 µL samples in a Sedgewick rafter counting cell, 

diluting if necessary for samples with higher numbers of filament. A single flask of clones was 

selected for the experiment. 

The cloned culture was split into two sets representing Set 1 and Set 2, as described above. 

Aliquots of 3.63 mL from Set 1 were split into 200 10 mL tubes (average 363 filaments per 

tube), while Set 2 culture (same density as in Set 1 of 100 filaments per mL) was maintained in 

the flask and densities in the Set 1 tubes and Set 2 flask allowed to propagate to approximately 

25,000 filaments per tube. Upon reaching this density in Set 1, concentrated CuSO4 solutions 

(CuSO4 sourced from Sigma-Aldrich) in sterile f/2 Medium supplemented with 29.4 mM/ 2.5 

g/L NaNO3  (3.63 mL volume) were added to create subset concentrations of 0.3, 0.6, 1, 2 and 

4 mg/L Cu(II), 40 tubes for each concentration.  In Set 2, the culture was split into 100 tubes 

and similarly, as with Set 1, CuSO4 was added to create subset concentrations of Cu(II), 20 

tubes for each concentration, total volume in each tube 7.26 mL. This part of the experiment, 

as with the cloning, was performed under aseptic conditions. Tubes were incubated for 60 days 

under the same propagation conditions as used for cloning, each tube lightly mixed for five 

seconds on a vortex every two days to prevent settlement. After 60 days filament counts were 

taken from each tube using the same counting method as described above. Fluctuation analysis 

was performed to identify those cultures in which resistance had arisen through microevolution.  

6.2.2 Toxicology 

Toxicology assays and EC50 (the half maximal effective concentration) calculations for Cu(II) 

were performed on Arthrospira platensis before and after the micro-evolution process to 

monitor shifts in EC50. Assessments were performed under aseptic conditions. EC50 

calculations, before directed microevolution, were carried out in two stages. First, through an 

initial range-finding assay Arthrospira were grown in NaNO3 supplemented sterile f/2 Medium 

containing different concentrations of CuSO4 (0.003-20 mg/L Cu(II)) to home in on the region 

of Cu(II) concentrations where toxicity becomes apparent by approaching the lethal 

concentration on Cu(II) (data not shown). Filament counts (filaments/mL) were taken at 0, 24, 

48 and 96 hours using a microscope to count filaments in 50 µL samples, diluting if necessary 
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for samples with higher numbers of filament. For the range-finding assay, each well of a 24 

well-plate containing various concentrations of CuSO4 solution were inoculated with 

Arthrospira to a starting concentration of approximately 500 filaments per mL (total volume 

1.7 mL). This range-finding assay showed that after 48 hours a concentration of 2.5 mg/L Cu(II) 

was lethal and that toxic effects could be observed between 0.3-2.5 mg/L Cu(II). The toxicology 

assay was therefore focused on Cu(II) concentrations within this range to generate accurate 

growth and EC50 dose-response curves. Here, similarly, Arthrospira were grown in 24 well 

plates in NaNO3 supplemented f/2 Medium containing CuSO4 concentrations ranging between 

0.03-4.3 mg/L Cu(II), total volume in each well of 1.7 mL, with three repeats for each 

concentration. NaNO3 supplemented f/2 Medium without additional CuSO4 (effectively 0.003 

mg/L Cu(II)) was used as a control. Filament counts were taken at 0, 24, 48, 72 hours following 

British Standard BS EN ISO 10253:2006 (British Standards Institution, 2006) where EC50 is 

calculated as a reduction in growth rate relative to control cultures grown under identical 

conditions (0.003 mg/L Cu(II)). This same range (0.003-4.3 mg/L Cu(II) and method was used 

to re-test the EC50 of Arthrospira after the directed microevolution process. Statistical analysis 

was performed using GraphPad Prism version 6.07 for Windows. Gradient values were 

normalised to activity at 0 inhibition (0.003 mg/L Cu(II)) and analysed by non-linear transform 

log(agonist) vs. response – variable response function (GraphPad Software, San Diego 

California USA, www.graphpad.com). Statistical analysis were performed using a paired two-

tailed t-test with P values <0.05 considered statistically significant. Any morphological changes 

to the cultures during the course of the toxicology assay seen under the microscope were also 

noted.  

6.2.3 Fluctuation analysis 

A modified Luria-Delbrück analysis was performed, described in Lopez-Rodas et al. (2001) 

and shown in Figure 6.4. The importance of the experimental design in Set 1 and Set 2 is to 

generate the statistical test to identify microevolution. Set 2 is a control and sets the benchmark 

for normal distribution of propagation after exposure to Cu(II), which can be thought of as a 

Poisson Model. A Poisson Model is a discrete probability distribution describing the probability 

of a given number of events (in this case a mutation conferring resistance) occurring in a fixed 

time period (in this case during propagation and incubation) where events occur with a known 

average rate and independently of time since the last event. Such a distribution well describes 

mutations (Foster, 2006). Here, in Set 2, variation is caused by random sampling and the 

variance (σ2) should be equal to the mean (µ) and therefore represents fluctuation consistent 

with the Poisson Model.

http://www.graphpad.com/
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Figure 6.4. A schematic of fluctuation analysis, based on the Lopez-Rodas et al. (2001) 

modification of the classic 1943 Luria-Delbrück method. 

Set 1 is discriminated against the normal distribution of Set 2, to identify tubes where pre-

selective mutations occurred before exposure for resistance to Cu(II), indicating 

microevolution. A higher variance (tube-to-tube variation) in Set 1 compared with Set 2 where 

variance>mean, inconsistent with the Poisson Model, indicates resistance arising from a 

random spontaneous mutation in Set 1 before exposure, and therefore microevolution. A similar 

variance:mean ratio in both sets indicates post-selective adaptation. A variance:mean ratio of 

Set 1 significantly higher than that of Set 2 indicates resistance arising from a random 

spontaneous mutation before exposure - microevolution. Further, Set 1 tubes with 

variance:mean ratio > Set 2 with high filament numbers suggests a mutation occurring early in 

the propagation phase. Oppositely, a low filament number suggests mutations in late 

propagation phase conferring resistance to Cu(II). A lack of filaments in any of the tubes 

indicates no adaptation, either pre or post-selective. Statistically significant differences between 

variance: mean ratios of Set 1 and Set 2 are determined using the Pearson’s chi-squared test 

where p=0.92. 
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6.3 Results 

6.3.1 Pre-exposure Arthrospira Cu(II) toxicity 

Mean EC50 of Cu(II) (mg/L) for Arthrospira was calculated at 0.2032 (95 % confidence interval 

0.085-0.483 Cu(II) mg/L with an R squared value of 0.838) (Figure 6.5). Visual observations 

showed trichome fragmentation, bleaching and entanglement on exposure to Cu(II) at the four 

highest concentrations (Figure 6.6 and Figure 6.7). 

 

 

Figure 6.5. Above: Growth curves of Arthrospira exposed to increasing Cu(II) concentrations 

measured over 72 hours, below: EC50 dose-response curve of Arthrospira to Cu(II). Error bars 

represent standard error of the mean. At higher Cu(II) concentrations, represented by dotted 

lines, bleaching, fragmentation and filament shrinkage was observed.
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Figure 6.6. Microscope images showing morphological changes during exposure of 

Arthrospira to higher Cu(II) concentrations. After 24 hours in 0.52 mg/L Cu(II) pigment 

bleaching in the cells of the filaments and the beginning of fragmentation of the trichomes 

was observed (a&b) compared with control (0.003 mg/L Cu(II)) (c&d). At 48 and 72 hours 

the extent of pigment bleaching and fragmentation made the Arthrospira cells difficult to see 

and capture under the microscope. Trichomes also became prone to entanglement. 

 

Figure 6.7. Arthrospira at 48 hours in 0.52 mg/L Cu(II). At 48 and 72 hours the extent of 

pigment bleaching and fragmentation made the Arthrospira difficult to see and capture under 

the microscope. Trichomes also became prone to entanglement (left) and bacterial breakdown 

of cellular material was observed (right). 

Given the results of the toxicology test, five Cu(II) concentrations were selected for exposure 

during the directed microevolution process. These were 0.3, 0.6, 1, 2 and 4 mg/L Cu(II). Cu(II) 

concentration in pot ale varies from around 2-5 mg/L (Graham, 2012). 
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6.3.2 Post-exposure fluctuation analysis 

No resistant filaments were seen in the three higher Cu(II) concentrations 1,2 and 4 mg/L Cu(II) 

tested after the 60 day incubation demonstrating that mutations or adaptations could not confer 

resistance at such high concentrations. Resistance was detected at Cu(II) concentrations of 0.3 

and 0.6 mg/L Cu(II) by Arthrospira propagation (Table 6.1). 

Table 6.1. Summary of resistance to Cu(II) concentrations observed in Arthrospira 

Cu(II) concentration (mg/L) Adaptation 

0.3 Resistance (acclimation) 

0.6 Resistance (RSM) 

1 No resistance detected 

2 No resistance detected 

4 No resistance detected 

 

Although filaments were detected in all the Set 1 and Set 2 tubes at 0.3 mg/L Cu(II), and in 

Set 2 at 0.6 mg/L Cu(II), there were only filaments detected in 25 % of the Set 1 tubes at 0.6 

mg/L Cu(II) (Figure 6.8). 

The higher variance in both Set 1 for 0.3 mg/L Cu(II) and Set 1 for 0.6 mg/L Cu(II) compared 

with the variance in Set 2 can be seen from the distribution in the histograms of Figure 5.8. 

Looking at Figure 6.8, fluctuation analysis for concentration 0.3 mg/L Cu(II) showed a 6-fold 

higher variance in Set 1 compared with the Set 2 control. However, the variance in Set 2 is 

nearly 7-fold lower than the mean, giving a variance:mean ratio of 0.13, much lower than the 

variance: mean ratio of around 1 expected in a Poisson Model. This indicates a more uniform 

than random distribution in the control. Additionally, even though the variance is higher in Set 

1 compared with Set 2, the variance:mean ratio of Set 1 represents the Poisson Model at 1.02, 

indicating microevolution did not occur. The variance:mean ratio is 7-fold higher in Set 1 than 

the Set 2 control which isn’t significantly different (p=0.92 using chi-squared test as a measure 

of goodness of fit) suggesting that resistance in Set 1 could not have arisen through pre-

selective random spontaneous mutation.  
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Figure 6.8. Histograms of the numbers of resistant microorganisms (MOs) in the tubes of 

both Sets 1 and 2 (Control) at 0.3 and 0.6 mg/L Cu(II) concentrations. Frequency represents 

the number of tubes containing a particular range of resistant MO numbers. Variance, mean 

and variance:mean ratio statistics are displayed for each set. 

Fluctuation analysis for concentration 0.6 mg/L Cu(II) showed a high Set 1 variance in 

comparison to the mean giving a high variance:mean ratio of 12.18 compared with the Poisson-

like distribution in Set 2 where variance was similar to the mean giving a variance:mean ratio 

of 1.11. A significantly higher variance:mean ratio in Set 1 compared with the Set 2 control 

(p~0 using chi-squared test as a measure of goodness of fit) indicates that the resistance in the 

tubes of Set 2 arose by rare spontaneous mutation before selection. 

All tubes in Set 2 at 0.6 mg/L Cu(II) contained small densities of Arthrospira. Of the ten Cu 

resistant mutant microevolved strains identified in Set 1 at the 0.6 mg/L Cu(II) concentration, 

there were four tubes containing low numbers of filaments (1-5 filaments per μL) (Figure 6.8) 

demonstrating a spontaneous random mutation which must have occurred late on in the 

propagation phase, giving rise to a small number of MOs with resistance before exposure to 

the high Cu concentration. There were also two tubes with high numbers of filaments (20 and 

21 filaments per μL) demonstrating a spontaneous random mutation which must have occurred 
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early on in the propagation phase, giving rise to a larger number of MOs with resistance 

resulting in a higher number of filaments surviving exposure to the high Cu(II) concentration. 

Three resistant strains were selected (the two high density tubes and a low density tube), 

propagated and re-tested for toxicity to Cu(II). 

6.3.3 Cu(II) toxicity of micro-evolved Arthrospira 

Dose-response curves are shown for the highest EC50-shifting strain in Figure 6.9. Mean EC50 

of Cu(II) (mg/L) for the microevolved Arthrospira strain was calculated at 0.5084 (95 % 

confidence interval of 0.3063-0.8440 Cu(II) mg/L with an R squared value of 0.95). This is a 

significant 150 % increase in EC50 (p=0.0028) through directed microevolution.
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Figure 6.9. Above: Growth curves of microevolved Arthrospira exposed to increasing Cu(II) 

concentrations measured over 72 hours, below: EC50 dose-response curves of post-

microevolution Arthrospira to Cu(II) compared with pre-microevolution Arthrospira. Error 

bars represent standard error of the mean. 
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6.4 Discussion 

6.4.1 Directed microevolution and the extent and stability of resistance 

A lack of any surviving Arthrospira after incubation at the three highest concentrations tested 

demonstrates adaptation (or any pre-selective RSM) could not confer resistance at such high 

concentrations. Fluctuation analysis showed that pre-selective spontaneous random mutations 

were not responsible for the resistance seen at the lowest copper concentration. Here, given that 

a copper concentration of 0.3 mg/L Cu(II) didn’t completely kill Arthrospira in any of the Set 

1 tubes, it is likely that the selection pressure (copper) wasn’t enough to ‘select’. This is 

supported by the pre-exposure toxicity assay which showed that although exposure to a Cu(II) 

concentration of 0.3 mg/L caused an instantaneous reduction in Arthrospira filament number, 

Arthrospira culture density gradually began to recover after 24 hours.  Microevolution however 

was confirmed through fluctuation analysis at a copper concentration of 06 mg/L Cu(II). As 75 

% of the Set 1 tubes tested at this copper concentrations showed no growth, it was obvious that 

this concentration was high enough to completely kill Arthrospira, and that the growth in 25 % 

of the tubes in Set 1, some reaching high density, must have been caused by an rare event – a 

spontaneous random mutation.  

The strain generated in these experiments, arising through microevolution, can tolerate 0.6 

mg/L of copper, a 200-fold increase in the optimal concentration of copper (in f/2 Medium). 

However, the copper concentration of pot ale varies from around 2-5 mg/L (Graham, 2012). 

This concentration (even at its lowest) is over 3-fold higher than the concentration of copper 

tolerated by the resistant strain generated in these experiments. To attempt to achieve this level 

of resistance, the resistant strain can undergo additional rounds of selection using the same 

experimental method. Each time it may be possible to select for a strain with a higher level of 

copper resistance. During each round a strain may be produced with a narrow window (or range) 

of resistance (see Figure 6.10).  
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Figure 6.10. Schematic comparing adaptive microevolution (top) to acclimatisation (bottom). 

Black arrows represent an achievable concentration of copper resistance. Slashes represent a 

boundary to which copper resistance cannot move below or above. Red arrows represent the 

extent to which the strain can revert back to a lower concentration of copper resistance. 

Through microevolution, if conditions change and the strain is then exposed to lower 

concentrations of copper, theoretically the resistance range won’t be lost, preserving the extent 

of acquired resistance. This is indicated by the bounds within Figure 6.10 and is the reasoning 

behind increased strain stability in microevolution compared with acclimatisation. In 

acclimatisation, which can be achieved through gradually increasing and prolonging exposure 

to higher copper concentrations, the range of copper resistance can be increased. However, if a 

resistant strain is then exposed to lower copper concentrations the resistance range will likely 

be lowered (demonstrated by larger red arrow in Figure 6.10). Here, in resistant strains created 

and arisen through acclimatisation, resistance is not bound within a particular range, and 

therefore strains can revert back to lower copper resistances and are not as stable. 

Tolerance to metals through acclimatisation is well known, particularly in polluted 

environments. Many microalgae strains have been isolated with higher than normal tolerances 

to metals. Twiss (1990) reported a strain of Chlamydomonas acidophila isolated from copper-

contaminated soils with tolerances 20-125-times higher than laboratory strains. Strains with 

higher than normal tolerances to copper have also been produced in the lab through increasing 

copper concentrations in media (Bossuyt and Janssen, 2004). But the rapid loss of copper 

tolerance arising through acclimation once the environmental concentration of copper 

decreases, as described in the previous paragraph, has also been widely observed. Stokes and 
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Dreier (1981) reported a copper-tolerant Scenedesmus maintained over seven years on high-

copper medium, lost its tolerance over 10 generations in copper-deficient medium. Therefore, 

to acquire a stable copper-resistant strain for industrial use requires the identification of a strain 

arisen by genetic mutation rather than acclimation, where resistance can quickly be reversed. 

Although theoretically resistance acquired through genetic mutation is more stable than through 

acclimatisation, tolerance to metals in microalgae is quickly achievable through 

acclimatisation. Acclimatisation can occur rapidly to build tolerance to metals. In the 

experiments previously described by Stokes and Dreier copper tolerance (0.5 mg/L Cu(II)) 

through acclimation was seen after three generations in Scenedesmus. And in experiments by 

Sandmann and Boger (1980) acclimation of Scenedesmus to copper was seen in the first 24 

hours of exposure. It would be interesting to test the stability of a copper-acclimatised strain 

compared with a microevolved strain with a similar level of resistance to attempt to evaluate 

the difference in stability. This would provide a better understanding of the extent of benefits 

offered by microevolution for development of strains for use in variable feed-stock 

bioremediation system.   

6.4.2 Reliability of the process 

Despite the limited extent of resistance achieved through directed microevolution in this 

experiment, the opportunity to increase resistance through subsequent rounds suggests the 

feasibility of possibly producing a pot-ale-copper-level resistant strain. However, as the 

directed microevolution process is time-consuming, any additional rounds required will extend 

the time taken to produce a usable strain through microevolution. The recognition of stages in 

the directed microevolution process, where problems can be encountered also opens up the risk 

of multiple stages where the method can fail when numerous rounds are required. Potential fail 

points in the process are highlighted in Figure 6.11 and explained. 
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Figure 6.11. Failure points in the directed microevolution process shown by red triangles. 

The process itself is lengthy and extensive. The theoretical time-scale of this particular 

experiment was five months; however, through experience with no guarantee of success at each 

stage, the process can take much longer. Additionally, because identification relies on the 

statistical technique of fluctuation analysis, many tubes are required in the experiment. 

Throughout there are stages where the process can fail. Firstly, the isolation of a single 

microorganism for the production of a cloned culture at the start of the process can take time. 

A number of microalgae do not grow well on solid medium, so isolation during cloning must 

be performed through microdilution, which can be unreliable; microdilution had to be repeated 

three times here before a cloned culture was successfully obtained. The propagation of a culture 

from one clone in a small volume to a density observable by the human eye can take over one 

month. Propagation of a small population of clones to reach the stage at which two sets can be 

obtained for the experiment can take another month.  
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During the propagation phase achieving the desired cell density can take time. It is important 

here too that equal growth rates are achieved in the unselective medium as unequal growth rates 

can skew final number of filaments at the end of the experiment after exposure. Obtaining 

resistant cultures in the exposure step is also not guaranteed. Complete destruction of the culture 

can occur. Even if resistant cultures are obtained, these may not have arisen by microevolution. 

Moreover, if resistant strains arising from microevolution are identified, the resistance level 

may only be a small increase upon the original strain. In this case multiple rounds of 

microevolution will likely be required to achieve a strain with the desired resistance level. 

This whole process took nine months from cloning to obtaining a microevolved strain with a 

known toxicity/resistance increase. During these nine months a strain with resistance to 200-

fold the normal medium concentration of copper was created. However, a resistance over 700-

fold higher was required for commercial use. Even at the generous estimate of 4 rounds 

(assuming resistance can be increased by 0.597 mg/L Cu(II) in each round) required to achieve 

a commercially useful resistant strain, this would likely take three years. An additional risk, 

during the rounds of directed microevolution, is that limits may be reached where further 

increases in resistance cannot be achieved. Here the selection pressure (high copper 

concentration) would be so enormous that mutations cannot provide the resistance required for 

survival. Not knowing when this limit will be reached contributes to the unreliability of the 

process for selecting strains with particular resistance levels. This infeasibility defeats any 

arguments that this process avoids use of a GM-strain falling under regulatory conditions. 

6.4.3 Fitness-cost 

Experiments involving acclimation and microevolution of organisms to generate resistant 

populations have observed effects on reduced fitness. In similar experiments on microalgae, 

Lopez-Rodas (2001) found lower growth rates and maximum cell densities in resistant cultures 

obtained through microevolution. Other similar observations were also reported by García-

Villada et al. (2002). This is known as the “fitness-cost” (Gonzalez, 2012). Such fitness-costs 

are well known also for bacterial antibiotic resistance (Melnyk, 2015, Schulz zur Wiesch, 2010) 

and in GM plants (Burdon and Thrall, 2003). It has also been proposed that such fitness-costs 

could cause resistant cultures to be susceptible to a non-resistant population outcompeting if 

the selection pressure is reduced, although the reversibility would be slow (Andersson and 

Hughes, 2010). It may be that any effects reducing growth rates (and perhaps even nutritional 

content or production of products of interest) may offset the benefits of a GM-free resistance 

obtained through directed microevolution for use in industrial multi-process bioremediation 

systems. 
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6.4.4 Improvements and alternatives 

Mutation rates in different organisms are extremely low, vary between organisms and even 

from gene to gene (Klug and Cummings, 1997). It might be possible to increase mutation rate 

through the introduction of a mutagen such as UV light exposure, chemicals or atmospheric 

and room temperature plasmas (Fang, 2013). Using mutagens during the directed 

microevolution process could increase the number of RSM leading to higher resistances. This 

may be one way to increase the efficiency of the process. 

Genetic transformation has been achieved in over thirty algae species (Enzing, 2012). 

Chlamydomonas reinhardtii has become the model species in microalgae (eukaryotic) 

molecular biology (Harris, 2009). Although there is a growing understanding of genes involved 

with metal resistance in microalgae, including copper (Giner-Lamia, 2015, Giner-Lamia, 2012), 

current main targets in GM of microalgae are focused on increasing growth, particular products 

or inserting genes for production of new products. There is good knowledge of the Arthrospira 

platensis genome achieved through sequencing (Cheevadhanarak, 2012), but difficulties exist 

with GM of Arthospira. Low stability in transformants and efficiency of foreign gene 

expression have been reported obstacles (Habib and Parvin, 2008). Given the current science it 

would be difficult to produce a copper resistant Arthrospira strain through GM. Consequently, 

the generation of a copper resistant strain for industrial use currently must rely on acclimation 

or the directed microevolution method. 

In summary the directed microevolution process explored in this chapter for the development 

of a copper-resistant Arthrospira did achieve a strain with resistance to 200-fold normal 

medium copper concentration, nevertheless the target resistance of 700-fold was not achieved. 

The low extent of resistance obtained, significant number of potential failure points 

throughout the process, the long length of time required and requirement to perform numerous 

rounds of directed microevolution to get to a target resistance and the unknown fitness of any 

strain developed, I conclude, make this process impractical for industrial use for generation of 

resistant Arthrospira strains. 
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Chapter 7. Conclusions and the Future 

 

This chapter concludes the portfolio of projects in this thesis and suggests additional work to 

explore the findings of this thesis and commercial application. The impact the EngD project has 

had on the company is explained and the future direction and vision of the company is shared.  

Nitrate is an important nutrient for microalgae growth and limitation can cause slowed growth 

and depletion of particular products of interest. Conditions of nitrate starvation can also cause 

accumulation of carbohydrates and commercially valuable lipids. It is therefore necessary in 

aquaculture to monitor nitrate levels in microalgae cultures for purposes of control and 

optimisation of production. Typical nitrate measuring techniques involve lengthy colorimetric 

titration, imprecise colour indicator field test kits or more expensive equipment such as nitrate 

electrodes. Such methods are not applicable for small-scale experimentation involving multiple 

batches and frequent sampling with limited sample volume. UV absorbance by nitrate had 

previously been shown to form the basis of a spectroscopic test for microalgae cultures and the 

first small project validated this approach for two common freshwater and saltwater growth 

media. A rapid, simple and relatively low-cost technique based on UV absorbance for 

measurement of nitrate was demonstrated in batches of Chlorella, measuring nitrate 

concentration as low as 40 μM and requiring only a 2 mL sample for three repeat readings. 

Although inferior in accuracy and sensitivity to colorimetric titration methods, the simplicity 

and speed of the spectroscopic technique, and requirement for small sample volumes makes it 

a useful alternative if it meets the accuracy and sensitivity requirements for certain applications. 

The technique met the company’s requirements for a nitrate test that is simple, fast, requires 

low sample volumes and where costs are low, given the current equipment the company has 

access to, but which also had the accuracy and sensitivity for use with the concentration ranges 

of nitrate in common microalgae media. Further experimentation using various alternative 

filtering techniques to remove organic matter may assist in understanding the extent to which 

organic matter contributes to inaccuracy caused by interference, leading to appropriate filtering 

methods to improve the accuracy of the technique, whilst maintaining speed and simplicity. 

Microalgae and cyanobacteria are increasingly utilised as natural and sustainable sources of 

nutraceuticals (nutritional pharmaceuticals). Due to their beneficial bioactive properties these 

nutraceuticals are used in a wide range of applications ranging from health supplements and 

skin creams, to foods and animal feeds. Phycocyanin, an anti-oxidising phycobiliprotein, is 

increasingly used as a natural blue food colouring. The bulk of commercial phycocyanin 
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production is from the filamentous cyanobacterium Arthrospira (Spirulina) platensis. The 

second large project evaluated the effects of an unconventional, narrow spectrum Light 

Emitting Diode (LED) with a maximum wavelength (λmax ) of 680 nm for culturing  A. platensis 

for phycocyanin production. Compared with standard white LED light, culturing at λmax 680 

nm light produced a substantial mean over 250 % increase in phycocyanin yields with no 

significant difference in growth rate; however, the cultures initially required an extended 

photoacclimation period, absent in subsequent culture cycles. λmax 680 nm light also increased 

the extent of phycocyanin leaching from the biomass, which may prove beneficial for 

downstream processing. The company is now experimenting with different intensities of λmax 

680 nm light company to determine the optimum intensity for phycocyanin production in A. 

platensis. Further work will explore the genetic changes occurring under λmax 680 nm light to 

better understand the mechanisms of acclimation in Arthrospira which are still not well 

understood. Changes in gene expression, indicated by differences in MALDI-TOF mass 

spectra, can be investigated by microarray technology and changes in the energetics of the 

photosynthetic apparatus caused by re-modelling could be explored using techniques such as 

fluorometry. The interesting observations surrounding different leaching properties of biomass 

cultured under red and white light is also being explored to understand why this is and how this 

may benefit down-stream processing. Any preservative effects of culturing under a longer 

wavelength (lower energy) red light on phycocyanin could be investigated through 

measurement of reactive oxygen species. Finally, and importantly the extent to which 

phycocyanin yield can be increased through continuing acclimation is being determined and 

the stability of cultures undergoing continuous acclimation in a commercial system is 

increasingly being understood. 

The use of λmax 680 nm LEDs in photobioreactorsystems was also considered. A simple 

comparative model demonstrated that despite a small increase in capital and operational 

expenditure, the use of these LEDs could increase profitability by 400%, thereby making a 

powerful commercial case for the switch to longer wavelength red LED illumination in 

artificially lit Arthrospira phycocyanin production systems. There are, however, additional 

design implications associated with using longer wavelength red LEDs. Careful choice of 

probes in PBR systems will be needed as longer wavelength red light can interfere with optical 

sensors operating on LED optics. Although heating effects associated with longer wavelength 

red LEDs did not cause temperature control problems, there are limitations and cost-

implications in the design of large long-wavelength LED arrays for large-scale systems due to 

increased LED cooling requirements. However, the problems of heat generation can potentially 
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be solved by using submerged internal illumination, which may have additional benefits in 

maintaining a stable culture temperature. Submerged internal illumination with λmax 680 nm 

LEDs is currently being trialled by the company. 

The third project was a feasibility study. Microalgae are promising microorganisms for 

bioremediation of contaminated wastewaters and recovery of precious metals, given their 

ability to accumulate and tolerate metal burdens. Resistance to metals can occur through 

acclimatisation (reversible phenotypic changes) or microevolution (permanent genetic changes) 

where resistance is more stable. Techniques exist to identify resistance arising through 

microevolution in microalgae. The feasibility of selecting a ‘microevolved’ strain of 

Arthrospira with high resistance to copper was investigated, using a Luria–Delbrück-style 

experiment and fluctuation analysis. Such a strain could be used to bioremediate pot ale, a high 

copper wastewater produced from whisky distilling. Further, microevolution avoids regulations 

concerning the use of genetically modified organisms. Resistant Arthrospira were not obtained 

for Cu(II) concentrations above 1 mg/L. Conversely, for concentrations of 0.3 mg/L fluctuation 

analysis showed that pre-selective spontaneous random mutations were not responsible for the 

observed resistance. Microevolution was confirmed at 0.6 mg/L, 200-fold of the optimal copper 

concentration. This concentration was over 3-fold lower than the resistance required for pot ale 

bioremediation. The low extent of resistance obtained and length and unreliability of the 

process, including possible fitness-costs concluded the process to be impractical for industrial 

use in generating resistant Arthrospira strains. However, it is possible that the technique could 

be better applied in situations where lower-level resistance is required and when microorganism 

numbers can be counted using automated techniques such as flow cytometry. 

The projects of this thesis have provided a nitrate measurement methodology to assist the 

company in future research and development, tested the feasibility of a strain development 

technique and provided valuable knowledge on the effects of culturing Arthrospira under a 

longer wavelength LED. The most important outcome of the whole EngD project has been the 

identification of a new business opportunity for the company for production of a high-value 

product, phycocyanin, in artificially illuminated PBR systems. The exploration early in the 

project through a period of desk-based research achieved a clearer understanding of microalgae 

biotechnology, microalgae-derived products and emerging markets for those products. During 

this time expertise from within the University and wider networks was drawn upon. This 

research identified Arthrospira as an organism of interest and phycocyanin as a product of 

increasing interest with growing markets. The high value of the pigment and available existing 
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information on growth and processing of the organism made it a good prospect for a new 

research focus and business direction at a time when a new business direction was needed.  

The unexpected discovery of long wavelength red light having effects of significantly 

increasing the phycocyanin content of Arthrospira generated new protectable intellectual 

property, which became a valuable asset for the company for which a new business could be 

built upon. Two patent applications were filed as a result of the EngD project 

WO2014102551A1 (Van Alstyne, 2014) and WO15110844A1 (Brain, 2015). Protection is 

being sought at National Phase in a number of territories aligning with key markets for 

phycocyanin including China, Japan, US, Europe, Australia and Korea. 

In May 2015 the company moved into the Roslin BioCentre at the University of Edinburgh and 

set up a pilot-plant facility to begin developing their up-stream and down-stream production 

processes for production of phycocyanin in Arthospira. After successful pilot-scale studies at 

14,000 L and business model validation the company will soon be moving to bigger premises 

in BioCity Scotland to set-up a 98,000 L production facility. This facility will allow the 

commercial production of phycocyanin in a controlled clean laboratory environment. 

As the ever growing demand for phycocyanin has seen production facilities world-wide reach 

capacity and where supply is struggling to keep up with demand, this has created a timely 

opportunity for the company. The company has been working on sourcing and securing their 

equipment supply lines and developing their business plan based on a negotiated market price 

of phycocyanin at the purity achievable. The company is currently in talks with a number of 

major food and drink manufacturers who are looking for a supply of phycocyanin and have 

investment secured for the next stage of scale-up. The company is currently valued at £1.5 

million, has won a number of large grants and has developed further collaborations, including 

with The University of Cambridge to explore the potential of synthetic biology. The current 

focus of Scottish Bioenergy is the supply of phycocyanin for the food and drink industry with 

a future eye on achieving Current Good Manufacturing Practice (cGMP) compliance for higher-

purity, higher-value phycocyanin supply for pharmaceutical applications. Out of the pilot-scale 

studies has also developed a higher phycocyanin producing strain, well adapted to growth under 

long wavelength red light and established to the conditions of the current production system, 

which is another valuable asset to the company. 

David Van Alstyne, the CEO of Scottish Bioenergy, believes the EngD project has been critical 

to the survival and now growing achievements of the company. The EngD project is a 

tremendously positive example of an industry-academia collaboration from which not only has 
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incredibly interesting scientific findings arisen, but also which has provided a lifeline and new 

business opportunities to a UK SME. The company continues to build and maintain 

collaborations with UK universities and has high ambitions to become a leading global supplier 

of traceable nutritional and pharmaceutical ingredients.
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Appendices  

Appendix 1. Medium lists 

Jaworskis Medium (JM)  
Stocks per 200 ml: 
(1) Ca(NO3)2.4H2O 4.0 g 
(2) KH2PO4 2.48 g 
(3) MgSO4.7H2O 10.0 g 
(4) NaHCO3 3.18 g 
(5) EDTAFeNa 0.45 g 
EDTANa2 0.45 g 
(6) H3BO3 0.496 g 
MnCl2.4H2O 0.278 g 
(NH4)6Mo7O24.4H2O 0.20 g 
(7) Cyanocobalamin 0.008 g 
Thiamine HCl 0.008 g 
Biotin 0.008 g 
(8) NaNO3 16.0 g 
(9) Na2HPO4.12H2O 7.2 g 
1 L of Medium: 1 mL of stock solutions 1-9, autoclave at 15 psi for 15 min. 
 
Jaworskis Medium Modified (JMM) 
Stocks per 200 ml: 
(1) CaCl2 18.0 g 
(2) KH2PO4 2.48 g 
(3) MgSO4.7H2O 10.0 g 
(4) NaHCO3 3.18 g 
(5) EDTAFeNa 0.45 g 
EDTANa2 0.45 g 
(6) H3BO3 0.496 g 
MnCl2.4H2O 0.278 g 
(NH4)6Mo7O24.4H2O 0.20 g 
(7) Cyanocobalamin 0.008 g 
Thiamine HCl 0.008 g 
Biotin 0.008 g 
(8) NaNO3 17.44 g 
(9) Na2HPO4.12H2O 7.2 g 
1 L of Medium: 1 mL of stock solutions 1-9, autoclave at 15 psi for 15 min. 
 
F/2 Medium  
Stocks per L: 
(1) Trace metals stock solution (chelated) 
      EDTANa2 - 4.360 g 
      FeCl3.6H2O - 3.150 g 
      CuSO4.5H2O - 0.010 g 
      ZnSO4.7H2O - 0.022 g 
      CoCl2.6H2O - 0.010 g 
      MnCl2.4H2O - 0.180 g 
      Na2MoO4.2H2O - 0.006 g 
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(2) Vitamin mix stock solution 
      Cyanocobalamin - 0.0005 g 
      Thiamine HCl - 0.1 g 
      Biotin - 0.0005 g 
1 L of Medium:  
NaNO3 - 0.075 g 
NaH2PO4.2H2O - 0.00565 g 
Trace metals stock solution (chelated) (1) 1.00 ml 
Vitamin mix stock solution (2) 1.00 ml 
Make up to 1 litre with filtered natural seawater and adjust pH to 8.0 with 1M NaOH or 
HCl.  Autoclave at 15 psi for 15 min.  
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Appendix 2. Replicate MALDI-TOF mass spectra showing protein-mass spectral patterns 

of Arthrospira cultured under red (A) and white (B) light. 
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