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Abstract 

Mitochondria produce 90% of the adenosine triphosphate (ATP) used by eukaryotic cells as 

a source of energy. ATP synthesis is carried out by the oxidative phosphorylation (OXPHOS) 

system whose components are partially-encoded by mitochondrial DNA and translated by 

mitoribosomes found in the organelle itself. The interaction between mitoribosomes and the 

inner mitochondrial membrane (IMM) has been claimed to be important for efficient protein 

synthesis in these organelles, but how this association occurs is still unclear.  

The aim of this study was to investigate the association between mitoribosomes and IMM in 

human mitochondria. My attention focused on MRPL45, a component of the mitoribosome that 

might be a key player of this interaction due to its proximity to the polypeptide exit tunnel and its 

structural similarity to the IMM-interacting proteins TIM44 and Mba1. During the course of this 

study, in order to further investigate the interaction, interest in the IMM protein OXA1L arose. 

The yeast homologue of this protein has been reported to interact with the mitoribosome, 

offering an interacting point between the IMM and the translation machinery.  

I performed depletion studies that confirmed the importance of MRPL45 for the stability of 

the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. With the development 

of a protocol to investigate membrane-interaction, I demonstrated that MRPL45 is able to 

interact directly with the IMM. The addition of a FLAG-tag at the C-terminal of MRPL45 did not 

affect the ability of the protein to interact with the membrane and did not have effects on the 

homeostasis of the cells. Therefore, immunoprecipitation of MRPL45FLAG was performed in 

the absence of assembled mitoribosomal subunits to identify potential IMM binding partners. No 

obvious candidates, however, were detected from mass spectrometry analysis of the 

immunoprecipitated sample. Modifications of MRPL45 based on structural similarities with 

TIM44 and Mba1 were performed to identify the membrane-associating domain of the protein. 

Mutation of charged amino acids on a protruding α-helix of MRPL45 were performed. The 

resultant protein was completely integrated into the mt-LSU in the absence of the endogenous 

counterpart, partially rescuing the phenotype observed upon depletion of MRPL45. Membrane -

interaction studies showed that the modifications did not affect the ability of this mutant to 

interact directly with the membrane. Another attempt to disrupt the interaction between MRPL45 

and the membrane was performed by expressing a mutant protein lacking 117 amino acids at 

the N-terminal, which is predicted to correspond to the putative membrane-interacting domain 

of TIM44. Only a minor proportion of this protein was integrated in the mt-LSU in absence of the 

endogenous MRPL45, although the mutant protein retained the ability to interact directly with 

the membrane. 

The role of another mitochondrial protein, OXA1L, in mitochondrial translation was also 

investigated in this work. This was motivated by the discovery of a paediatric patient with 

mutations in the gene encoding OXA1L. Since the published studies showing OXA1L to interact 

with the mitoribosome were attempted in vitro, I performed immunoprecipitation studies which 
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confirmed the ability of OXA1L to associate with the mitoribosome in intact human cells. In order 

to characterise the role of OXA1L in mitochondrial translation, depletion studies were performed. 

These suggested that OXA1L was important for the stability of both the large and, unexpectedly, 

the small mitoribosomal subunit. Due to this surprising result, extensive studies were performed 

to confirm its robustness, which confirmed the reduction of the steady-state level of the 

mitoribosomal subunits and of OXPHOS components upon depletion of OXA1L.  

To conclude, my studies showed the importance of the mitoribosomal pro tein MRPL45 for 

the stability and the assembly of the large subunit of the mitochondrial translation machinery, as 

well as its ability to interact directly with the IMM. Although it was not possible to identify the 

domain of MRPL45 involved in membrane interaction, insights on the importance of the N-

terminal domain for its integration in the mt-LSU were identified. The ability of OXA1L to interact 

with the mitoribosome in vivo was determined and a role of this protein in the stability and 

assembly of the mitoribosome was demonstrated. 
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Chapter 1: Introduction 

1.1. Mitochondria 

Mitochondria are a distinctive feature of eukaryotic cells. These double-membraned organelles 

are thought to be derived from the phagocytosis of an α-proteobacteria, retained by the pre-

eukaryotic cell for selective advantage (Gray MW, 1999). Mammalian mitochondria contain their 

own small DNA molecule (mtDNA) of approximately 17,000 bases, derived from the reduction of 

the genome of the prokaryotic ancestor. On contrary, plants contain a wider mitochondrial 

genome, which can be composed of up to 2,500,000 bases (Galtier N, 2011). The mammalian 

mtDNA encodes for 13 polypeptides, 2 rRNA and 22 tRNA (Anderson S et al., 1981). All the 

remaining proteins found in mitochondria are encoded by the nuclear genome and imported into 

the organelle (Mokranjac D et al., 2005). 

One of the key functions of mitochondria is ATP production, which is the main source of energy 

used by eukaryotic cells. This is synthesised by the oxidative phosphorylation (OXPHOS) system 

found in the inner mitochondrial membrane (IMM) and accounts for approximately the 90% of the 

energy required by cells. However, it is important to remember that these organelles perform 

several other important functions. These include regulation of apoptosis (Wang C et al., 2009), 

involvement in calcium homeostasis (Rizzuto R et al., 2012) and formation of iron-sulphur clusters 

(Lill R et al., 2005). The β-oxidation of fatty acids also takes place in the mitochondria (Kunau WH 

et al., 1995) and so do crucial stages of the biosynthesis of heme (Ponka P, 1999) and pyrimidine 

(Jones ME, 1980). 

The involvement of mitochondria in several crucial processes highlights their importance for 

the homeostasis of cells. Mutations that change the sequence of mitochondrial proteins are linked 

to a vast and heterogeneous group of pathologies named mitochondrial diseases (reviewed in 

(Lightowlers RN et al., 2015)). These can arise in early childhood or in adulthood and present a 

variety of symptoms that can affect different tissues, from skeletal muscle and heart, to the 

nervous system. Because of the severity and heterogeneity of these pathologies, a complete 

understanding of the mitochondrial biological processes is essential to provide useful information 

to understand the mechanism involved in diseases and help in the development of therapies.  

1.2. The origin and evolution of mitochondria 

According to the endosymbiotic theory, mitochondria originate from the phagocytosis of α -

proteobacteria by ancestral eukaryotic cells (Falkenberg M et al., 2007; Gray MW, 1999). The 

concept of symbiosis (Latin ‘living together’) was developed by the Swiss botanist Simon 

Schwendener in 1867 after discovering that lichens consisted of a fungus and a photosynthesiser 

(Schwendener S, 1867). In the following years, the German botanist Heinrich Anton de Bary 

defined this coexistence of 2 organisms that can result in the formation of a new organism as 

symbiosis (De Bary A, 1878).  
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The phagocytosis of α-proteobacteria is thought to have occurred approximately 1.5 billion 

years ago (Brocks JJ et al., 1999) and resulted in the formation of different mitochondria-like 

organelles. These can be classified as classical mitochondria, mitosomes and hydrogenosomes 

(Embley TM et al., 2003; van der Giezen M et al., 2005). While mitochondria synthesise ATP 

aerobically, hydrogenosomes are anaerobic, do not have respiratory complexes and synthesise 

ATP through fermentation of pyruvate to acetate, CO2 and H2, carried out by pyruvate:ferredoxin 

oxidoreductase. In addition, mitochondria contain their own genome, which is absent in most of 

the hydrogenosomes. DNA is also absent in mitosomes, which are organelles that are not able 

to synthesise ATP but that are important for the assembly of iron-sulphur clusters used as 

cofactors by several enzymes. 

Because most of the nucleated eukaryotic cells contain mitochondria, it is likely that the  α-

proteobacteria was retained because it offered a selective advantage in the environmental 

conditions present at the time of the phagocytosis. This advantage might be related to the 

presence of a high concentration of oxygen, rather than the need for an additional source of 

energy. The ATP/ADP translocases that shuffle ATP and ADP across the membrane appear to 

be acquired by eukaryotic cells throughout evolution and were, therefore, not present in the α -

proteobacteria. As a consequence, at the time of the phagocytosis, the ATP could not be 

transported from the ‘parasite’ to the host (Karlberg O et al., 2000). Instead, the reduction of the 

oxygen tension due to the retained α-proteobacteria (Kurland CG et al., 2000) could have helped 

cells resist the high oxygen levels present in the atmosphere at the time of the phagocytosis (Des 

Marais DJ, 1998). 

Several mitochondrial proteins are related to bacterial forms, further supporting the hypothesis 

of the prokaryotic origin of these organelles. The human mitochondrial proteome is composed of 

over 1,000 proteins (Lotz C et al., 2014), but the human mtDNA encodes for only 13 of these. 

Therefore, during evolution, many genes have been either lost or have migrated to t he nuclear 

genome. 

The presence of mtDNA in modern mitochondria forces the cells to synthesise the thousand 

proteins necessary for mitochondrial gene expression within the cytosol and then import these 

into the organelles. Although this process appears counter-productive, its potential advantages 

have been explained by 2 theories. The ‘hydrophobic theory’, (von Heijne G, 1986) arose from 

the observation that all the mt-encoded proteins are highly hydrophobic components of the 

OXPHOS system. According to this theory, these proteins will be difficult to import into 

mitochondria, and therefore their genes have been retained to be transcribed and translated 

within the organelles. A second theory, known as the ‘colocalisation for redox regulat ion theory’, 

hypothesised that the genes have been retained to allow their expression to be controlled by the 

redox state of the organelle (Allen JF et al., 1996). 
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1.3. Mitochondrial structure 

Mitochondria are composed of an inner matrix, surrounded by a double layer of membranes, 

named inner and outer mitochondrial membranes (OMM and IMM, respectively).  Due to its 

multiple invaginations (cristae), the IMM presents a large surface area and is the site of the ATP 

production. Between the IMM and the OMM is found a compartment named inter membrane 

space (IMS) (Fig. 1.1). 

 
Figure 1.1 Structure of the mitochondrion. 

A) Schematic representation of mitochondria: outer mitochondrial membrane (orange), inner 

mitochondrial membrane (yellow), matrix (light blue). B) Electron-micrograph of a mitochondria. 

Figure from Mathews and val Holde: Biochemistry 2/e 

The mitochondrial matrix contains a high number of proteins and molecules. Amongst these 

are found the components involved in mitochondrial gene expression, as well as β-oxidation of 

fatty acids and the citric acid cycle. 

The OMM is relatively permeable due to the presence of porins that allow small molecules (up 

to approximately 5,000 Da) to pass through it (Benz R, 1994; Mannella CA, 1992). The 

permeability of the IMM, by contrast, is more selective as this membrane is only freely permeable 

for water, carbon dioxide and oxygen. This characteristic is important to maintain the membrane 

potential, essential to harness the H+ gradient generated by the OXPHOS complexes to 

synthesise ATP. 

In addition to this difference in permeability, the OMM and IMM present a different protein 

content, as well as a different phospholipid composition (Horvath SE et al., 2013). The IMM is 

more protein rich with a protein:lipid ratio of 3:1, compared to the 1:1 of the OMM (Gohil VM et 

al., 2009). Several of the phospholipids present in the mitochondrial membranes are common to 

other cellular membranes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, 

phosphatidylserine, and phosphatidic acid), while phosphatidylglycerol and cardiolipin, are 

exclusively components of mitochondrial membranes (Colbeau A et al., 1971). A greater amount 

B 

A B 
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of cardiolipin is found in the IMM, when compared to the OMM. Studies reported the importance 

of this phospholipid not only for the structure of the membrane, but also for other functions, such 

as fission and fusion (Frohman MA, 2015; Ortiz A et al., 1999), or the assembly and stability of 

several IMM proteins (reviewed in (Paradies G et al., 2014)). These membranes also exhibit a 

low content of sphingolipids and cholesterols, which are widely represented in the plasma 

membrane. 

More recently, the IMM has been suggested to be divided into cristae membranes (CM) and 

inner boundary membranes (IBM), which is found parallel to the OMM. The former contains the 

OXPHOS complexes, while the latter harbours the protein import machinery and the proteins 

required for the processes of fission/ fusion (Vogel F et al., 2006). CM and IBM are connected by 

cristae junctions, pore-like structures whose formation depends on a complex named MICOS 

(‘mitochondrial contact site and cristae organizing system’) (Kozjak-Pavlovic V, 2016). This 

complex associates with the SAM (‘sorting and assembly’) machinery, creating the ‘mitochondrial 

intermembrane space bridging’ (MIB) complex, which creates the cristae junctions by joining the 

IMM with the OMM (Fig. 1.2). This organisation of the IMM defines a new compartment within the 

IMS, named intracristal space. Due to the presence of the cristae junctions, which limit the 

diffusion of molecules, the composition of the intracristal space is different from the one observed 

in the remaining IMS. An example of the importance of these junctions with respect to the 

concentration of cytochrome c (Scorrano L et al., 2002). This protein is involved in the apoptosis 

cascade (Jiang X et al., 2004) and is able to pass through the OMM when its permeability is 

increased (Gogvadze V et al., 2006). The containment of this protein within the intracristal space 

limits its diffusion in the IMS and its permeation through the OMS, controlling apoptosis.  

 

Figure 1.2 Organisation of the mitochondrial inner membrane. 

Representation of the inner mitochondrial membrane (IMM) of mitochondria and its division 

into inner boundary membrane and cristae membrane. The former contains proteins from 

the membrane import machinery (TOM, translocase of the outer mitochondrial membrane; 

TIM, translocase of the inner mitochondrial membrane), while the latter contains the 

OXPHOS system (complexes I, III, IV, V. Complex II was absent in the original figure). The 

MICOS (mitochondrial contact site and cristae organizing system) and SAM (sorting and 

assembly machinery) associate to create the MIB (mitochondrial intermembrane space 

bridging) complex, responsible of the formation of the cristae junctions. OMM= outer 

mitochondrial membrane, IMS= intermembrane space. 

Figure from Kozjak-Pavlovic V (2016), Licence number 3924681399708. 
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Mitochondria are highly dynamic organelles that move in the cytoplasm along microtubule 

tracks (Morris RL et al., 1995). While moving, mitochondria can encounter and undergo fission 

and fusion (Fig. 1.3), creating the dynamic tubular network characteristic of mitochondria 

(reviewed in (Chan DC, 2006)). In mammals, the fusion machinery is composed of mitofusin 1 

and 2 (Mfn1, Mfn2), which mediate the fusion of the OMM, and optic atrophy 1 (Opa1), whose 

role is to fuse the IMM. Fusion can be either transient, if only soluble proteins are exchanged, or 

complete if the membrane proteins can combine and the mtDNA is mixed between the organelles 

(Liu X et al., 2009). When division of the mitochondrial mass is needed, mitochondria undergo 

fission, mediated by dynamin related protein 1 (Drp1) (Labrousse AM et al., 1999; Shin HW et al., 

1997). This cytosolic protein is recruited to the fission site and creates a spiral around the 

mitochondrial mass, dividing it to create 2 organelles (Smirnova E et al., 2001). 

 

Figure 1.3 Mitochondrial fission and fusion. 

Schematic representation of the processes of fission and fusion. Mfn (mitofusin) on the 

outer mitochondrial membrane and Opa1 (optic atrophy 1) on the inner mitochondrial 

membrane mediate the fusion of 2 individual mitochondria. The division of mitochondrial 

mass is, instead, performed by Drp1 (dynamin related protein 1).  

Figure from van der Bliek AM et al. (2013), © Cold Spring Harbor Laboratory Press 

1.3.1. Nucleoids and RNA granules 

The existence of 2 new compartments within the matrix, named nucleoids and RNA granules, 

has been suggested.  

RNA granules are ribonucleoparticles known to exist within the nucleus and cytoplasm of 

somatic cells, neurons and germ cells. These are not delimited by a membrane and are used to 

compartmentalise certain processes, such as RNA splicing and mRNA degradation (Anderson 

P et al., 2006). RNA granules have also been described within organelles including chloroplasts 

(Uniacke J et al., 2008) and mitochondria (Antonicka H et al., 2013; Jourdain AA et al., 2013). 

These compartments are used in mitochondria to organise the processing of the polycistronic 

RNA transcripts derived by mitochondrial transcription (qv 1.6.2. and 1.8.1.). Several factors for 

RNA modification and processing have been localised within the mitochondrial RNA granules 

(reviewed in (Jourdain AA et al., 2016)). The first proteins identified in these granules were 

GRSF1 and mt-RNaseP, involved in mitochondrial RNA processing and translation (Antonicka 

H et al., 2013; Jourdain AA et al., 2013). Other proteins present in the RNA granules are 
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members of the FASTK family (important for RNA processing and mitoribosome assembly), the 

mitochondria poly(A) polymerase (qv 1.8.1.), RNA helicases, methyltransferases. The complex 

hSuv3-PNPase, involved in degradation of RNA (qv 1.8.4.), was also localised in this 

compartment, together with the 12S and 16S mt-rRNA. Because of the presence of the rRNA, 

it was proposed that, together with RNA processing, this compartment was also involved in the 

assembly of the mitoribosome. 

In close proximity to the RNA granules, are other compartments named nucleoids (reviewed 

in (Hensen F et al., 2014)). Their main functions are to protect the mtDNA from damage and to 

provide a compartment for its replication and transcription. The confirmation of the colocalisa tion 

of proteins and mtDNA came in 2001, when Twinkle, a mtDNA helicase, was shown to colocalise 

with the mitochondrial genome (Spelbrink JN et al., 2001). Since then, several proteins have 

been reported to associate with the nucleoids (Bogenhagen DF, 2012). Due to the use of 

different isolation methods, combined with mass spectrometry analysis, debate is still present 

in the field and a unique list of proteins localised in the nucleoids is not available (Hensen F et 

al., 2014; Kukat C et al., 2015). It is also possible that the factors involved in different steps of 

mtDNA metabolism can be either permanently or transiently associated with the nucleoids, 

suggesting that they should be referred to as nucleoid associated proteins (mt-NAPs). Of the 

proteins most frequently found to be associated with the nucleoids is the transcription factor 

TFAM, the DNA binding proteins mt-SSB and RNA polymerase, POLRMT (Kukat C et al., 2015). 

1.4. Functions of mitochondria 

Despite mitochondria being commonly associated with their ability to efficiently synthesise ATP 

(qv 1.4.1.), these organelles perform several other essential functions, which will be briefly 

described in this section. 

Iron-sulphur (Fe/S) clusters are important for the functions of several proteins, which use them 

as cofactors able to accept and donate electrons. In eukaryotic cells these clusters are found in 

mitochondria, cytosol and nucleus but synthesised in mitochondria before being used as cofactors 

by proteins involved in the tricarboxylic acid cycle (aconitase), electron transport in the OXPHOS 

chain (complexes I, II, III), β-oxidation of fatty acids (ETF-ubiquinone oxidoreductase) and for 

lipoate and biotin biosynthesis (lipoate and biotin synthases) (Rawat S et al., 2011) as well as 

DNA polymerases. Due to the central role of these cofactors in several processes within 

mitochondria, numerous diseases have been connected with defects in their biogenesis (Rouault 

TA, 2012). 

Production of NADH and FADH2 in mitochondrial is essential to donate electrons that will 

contribute to ATP synthesis performed by the OXPHOS system (Berg JM et al., 2002). Pyruvate 

in mitochondria is metabolised to acetyl-CoA, which is used in the tricarboxylic acid (TCA) cycle 

to generate NADH and FADH2 (3 and 1 molecules for every acetyl-CoA oxidised, respectively) 

(Berg JM et al., 2002).  
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Mitochondria also play a central role in apoptosis. The Bcl2 family members Bax and Bac 

regulate the release from the IMS towards the OMM of proteins that, once in the cytosol, can 

initiate apoptosis (Cory S et al., 2002; Hockenbery D et al., 1990). One of the proteins released 

is cytochrome c (Xuesong L et al., 1996) usually confined within the intercristal space. This protein 

reaches the cytosol where it activates the caspase cascade that will in itiate apoptosis. Omi/HtrA2 

(Suzuki Y et al., 2001) and Smac/DIABLO (Rehm M et al., 2003) are also released from 

mitochondria to induce apoptosis. Both lead to the activation of caspases by removing their 

inhibition performed by components of the IAPs (inhibition of apoptosis protein) family, although 

by a different mechanism. While Omi/HtrA2 mediates the irreversible degradation of IAPs (Yang 

QH et al., 2003), Smac/DIABLO function as an antagonist of these inhibitors (Srinivasula SM et 

al., 2000). Together with caspases activation, apoptosis can also be promoted by degradation of 

nuclear chromatin DNA. The mitochondrial proteins AIF (apoptosis inducing factor) (Susin SA et 

al., 1996) and endonuclease G (Li LY et al., 2001) can activate apoptosis via this second pathway. 

AIF is an IMM protein that can be truncated and migrate to the nucleus. Endonuclease G is located 

in the IMS, but how its release is mediated is still unclear. 

Mitochondria are also the major source of reactive oxygen species (ROS), which are 

generated in the matrix and play an important role in cell signalling (Ray PD et al., 2012).  

In addition to these functions, mitochondria are also involved in calcium handling (Rizzuto R 

et al., 2012), thermogenesis (Ricquier D et al., 2000), β-oxidation of fatty acids (Kunau WH et al., 

1995), and heme (Ponka P, 1999) and pyrimidine (Jones ME, 1980) biosynthesis.  

1.4.1. Oxidative phosphorylation 

The production of ATP is carried out by respiratory chain and ATP synthase through a 

process called oxidative phosphorylation. The first step involves 4 complexes whose purpose is 

to create a proton gradient that is used by ATP synthase to phosphorylate ADP (Fig. 1.4).  
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Figure 1.4 OXPHOS system. 

Representation of the main components of the oxidative phosphorylation system found in 

the IMM. Complex I (blue), complex II (yellow), complex III (violet), complex IV (dark 

green), complex V (red). The movement of protons (H+) and electrons are indicated by 

white and blue arrows, respectively. The electron acceptors ubiquinone (cyan) and 

cytochrome c (green) are also depicted. Reactions occurring in the matrix side at the 

complexes are also reported. 

The formation of the OXPHOS system is dependent both on mitochondrial and nuclear DNA 

(Table 1.1). Therefore mutation in either of these genomes can lead to an alteration of these 

complexes and cause severe diseases (Smeitink J et al., 2001). 

Table 1.1 Composition of the complex of oxidative phosphorylation.  

Complex n-DNA encoded 

subunits 

mtDNA encoded subunits 

I 38 7 

(ND1, ND2, ND3, ND4, ND5, ND6, ND4L) 

II 4 0 

III 10 1 

(CyB) 

IV 10 3 

(COXI, COXII, COXIII) 

V 14 2 

(ATP6, ATP8) 

The first complex (NADH:ubiquinone oxidoreductase) is composed of 45 subunits, of which 

7 are mtDNA encoded. The subunits associate into an L-shape with the hydrophobic part 

integrated into the membrane and the hydrophilic portion directed into the matrix. In order to 

perform its biological activity, this large complex relies on prosthetic groups (1 flavin 

mononucleotide and 8 Fe-S clusters). These cofactors allow the transfer 2 electrons from NADH 
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(nicotinamide adenine dinucleotide) to ubiquinone, creating ubiquinol that can diffuse in the 

membrane. This process also results in the net transfer of 4 protons from the matrix to the 

intermembrane space (Efremov RG et al., 2010). 

Succinate:ubiquinone oxidoreductase is the second complex of the respiratory chain and it 

is the only one completely encoded by the nuclear genome. It is composed of 4 subunits and 

contains a FAD (flavin adenine dinucleotide) group, 3 Fe-S clusters and a heme group. Two of 

the subunits project into the matrix and the other 2 anchor the complex to the membrane. This 

complex converts succinate to fumarate by transferring 2 electrons from the former to FAD. The 

electrons are then conveyed through the Fe-S clusters to ubiquinone, which is reduced to 

ubiquinol. Unlike the complex I, this complex does not act as a proton pump.  

Complex III (ubiquinol:cytochrome c oxidoreductase) is a dimer composed of two 11 

polypeptides monomer. Each monomer contains 4 prosthetic groups: 2 b-type cytochrome (mt-

encoded), a cytochrome c and a Rieske protein (Fe-S cluster). In this stage, ubiquinol is oxidised 

to ubiquinone and protons are pumped into the interspace space increasing the proton gradient. 

Cytochrome c oxidase (complex IV) is the terminal electron acceptor of the respiratory chain.  

It is composed of 13 subunits, of which 3 encoded by mtDNA, and it contains 2 non-covalently 

bound cytochrome and 2 copper centres (Tsukihara T et al., 1996). It reduces oxygen to 2 

molecules of water, resulting in the pumping of 4 protons into the intermembrane space. The 

reduction of oxygen can lead to the formation of ROS that can cause damage to  protein or DNA.  

The proton gradient that is built by the complexes of the respiratory chain is then used by 

ATP synthase to produce ATP. This integral membrane complex is composed of 2 mitochondrial 

encoded subunits and 14 nuclear encoded subunits and is divided into 2 structural domains: F0, 

a proton channel located in the IMM, and F1, which is found in the matrix and that synthesises 

ATP from ADP and phosphate (Jonckheere AI et al., 2012).  

1.5. Mitochondrial diseases 

Due to the involvement of mitochondria in several cellular functions, a wide range of 

pathologies can be related to dysfunction of these organelles. Patients can be affected from the 

early childhood, or be asymptomatic until adulthood. These diseases are characterised by a 

variety of symptoms, which can have a different grade of severity and invo lve single or multiple 

organs. These usually involve tissue with high energy demands, such as the nervous system, 

skeletal muscle and cardiac muscle. A comprehensive summary of the genes involved in 

mitochondrial diseases has been recently published (Lightowlers RN et al., 2015). 

Because functional mitochondria rely on both nuclear and mitochondrial DNA, these diseases 

can arise from mutations of either of these genomes. Mitochondrial DNA has a higher mutation 

rate (Schneider S et al., 1999) when compared to nuclear DNA, partially due to the presence or 

ROS within mitochondria and to the reduced mechanisms available for DNA repair  (Dianov  GL 

et al., 2001; Souza-Pinto N et al., 2009). Although most of the mutations are neutral, to date over 
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250 mutations of mtDNA have been identified. The majority of the point mutations are located in 

genes encoding for mt-tRNA, while the majority of the deletions are found in areas for the control 

of mtDNA replication and transcription (Tuppen HA et al., 2010). Few factors are involved in 

characterising the onset and the severity of mitochondrial diseases related to mtDNA mutations. 

Since mitochondria contain several molecules of mtDNA, it is possible that a mixture of wild -type 

and mutated mtDNA is present within the organelles (heteroplasmy). Biochemial dysfunction, 

which can lead to the development of clinical symphtomps, can arise when the level of mutated 

mtDNA reaches a threshold (Rossignol R et al., 2003). This scenario is further complicated by 

the random segregation of mitochondria that occurs during mitosis and can lead to a different 

level of dysfunctional mitochondria in the daughter cells (Matthews PM et al., 1995). Pathologies 

due to mtDNA mutations include progressive external ophthalmoplegia (PEO) (Dodson RF et al., 

1976), MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes) (Pavlakis SG 

et al., 1984) or MEERF (myoclonic epilepsy and ragged red fibres).  

Since the majority of the mitochondrial proteome is nuclear encoded, nuclear-DNA mutations 

can also lead to mitochondrial diseases. These mutations will follow the classical Mendelian rules 

and their identification is rapidly increasing thanks to the use of next generation sequencing. 

Several mitochondrial diseases have been related to the mutation of nuclear-encoded genes, for 

example, Alpers syndrome is due to mutation of the mitochondrial DNA polymerase (Davidzon G 

et al., 2005), while Leigh syndrome can arise from mutations of SURF1, a gene important for the 

biogenesis of complex IV (Péquignot MO et al., 2001). Mitochondrial myophaty can also be due 

to mutations of nuclear-encoded genes encoding for the mitochondrial thymidine kinase (Saada 

A et al., 2001). Defects in the assembly of complex III due to mutation of BCS1L gene have been 

reported to lead to GRACILE syndrome (Growth Retardation, Aminoaciduria, Cholestasis, Iron 

overload, Lactacidosis, Early death) (Visapaa I et al., 2002). 

In addition, mitochondrial dysfunction has also been suggested to play a role in other 

pathologies such as Parkinson disease (Schapira AH et al., 1989), Alzheimer disease (Swerdlow 

RH et al., 2010) and cancer (Warburg O, 1956).  

Due to their complexity and variability, few options are currently available to treat mitochondrial 

diseases. It is, therefore, important to fully understand the different functions carried out by 

mitochondria to provide useful information for the diagnosis and development of treatments.  

1.6. Mitochondrial DNA 

The presence of double-stranded circular DNA within mitochondria was discovered in 1963 by 

Nass (Nass MK et al., 1963). The human mitochondrial genome is a 16,569 bases molecule 

encoding 13 polypeptides, 22 tRNAs and 2 rRNAs (Fig. 1.3). The polypeptides encoded by the 

mtDNA are all components of the OXPHOS machinery, the mt-rRNA (12S and 16S) are a part of 

the translation machinery and the mt-tRNAs (1 for each amino acid and 2 each for leucine and 

serine) are involved in translation or in the case of mt-tRNAVal it is also a component of the 
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ribosome (Brown A et al., 2014). All the other proteins found in mitochondria are encoded by the 

nuclear genome and are imported into mitochondria (Mokranjac D & Neupert W, 2005) (qv 1.7.) 

after being synthesised by cytosolic ribosomes. 

The human mitochondrial genome is very different from the nuclear counterpart.  Not only is 

mtDNA is smaller than the nuclear one, but it is also circular, has no introns and contains only 

one non-coding region (displacement-loop or D-loop, Fig. 1.5), which contains important elements 

that regulate replication and transcription. The mitochondrial genome is organised on 2 strands: 

the heavy strand that contains the majority of the coding material (12 open reading frames, both 

the rRNAs and 14 tRNAs), and the light strand that contains just 1 open reading frame (ORF) and 

8 tRNAs. The genes encoded by mtDNA are usually separated by a few bases, but in two cases 

they overlap (ATPase8-ATPase6 and ND4L-ND4). In the D-loop there is one promoter for the 

transcription for the light strand (LSP) and two for the heavy strand (HSP1 and HSP2). The 

presence of two HSPs has been debated in the literature. Replication of mtDNA starts from a site 

named OH, which is located in this fragment too (Gustafsson CM et al., 2016) 

 

Figure 1.5 Structure of human mitochondrial genome.  

The tRNA genes are indicated by red circles and their respective single letter code. The 

rRNA are in violet. The 13 ORF are labelled and colour-coded according to the complex of 

the OXPHOS that they belong to (complex I= blue, complex III= orange, complex IV= 

brown, complex V= green). The non-coding region (D-loop) of the heavy strand is coloured 

with white and red stripes. The origins of replication (OH and OL) as well as the origins of 

transcription (HSP1, HSP2, LSP) are also visualised. 

Figure © 2015, Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM. Originally 
published in ‘Molecular Considerations and Evolving Surgical Management Issues in 

the Treatment of Patients with a Brain Tumor’ under CC BY 3.0 license. Available from: 
DOI: 10.5772/58965 
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The mitochondrial genome is constantly replicated (qv 1.6.1.) and this process is independent 

from the cell cycle (Bogenhagen D et al., 1977). As a consequence, whilst there are only 2 copies 

of the nuclear genome for each cell, there can be thousands of copies of mtDNA. Th e copy 

number has been reported to change dramatically between different cell lines, ranging in human 

from 600 in skin fibroblasts to 1,500,000 in oocytes (Greggains GD et al., 2014). The copies share 

the same sequence (homoplasmy), although the coexistence of molecules with different 

sequence due to polymorphisms or under disease conditions is also possible (heteroplasmy). 

During cell division, the mtDNA molecules are segregated randomly giving rise to mitochondria 

with different mtDNA populations. If the number of pathogenically mutated mtDNA molecules 

passes a threshold level, a respiratory chain deficiency can develop (Smeitink J et al., 2001). 

Another difference between the nuclear and mitochondrial human genomes is found in their 

inheritance pattern. While the nuclear DNA contains information coming from the 2 parents, the 

mitochondrial genome is exclusively maternally inherited. Although documented cases of 

paternally-inherited mitochondria have been reported (Schwartz M et al., 2002), the organelles 

derived from the sperm cell are usually degraded just after fertilisation (Al Rawi S et al., 2011). 

Mitochondrial DNA is not packed into chromosomes, but is instead found in structures called 

nucleoids (qv 1.3.1.) that groups mtDNA together with several proteins required for replication 

and transcription, such as DNA polymerase, DNA binding proteins (mtSSB), DNA helicase 

(twinkle), transcription factors (TFAM), chaperones and proteases (Bogenhagen DF, 2012). 

These structures are also useful to preserve the genome from a high exposure to ROS produced 

by oxidative phosphorylation. 

1.6.1. Replication 

Unlike nuclear DNA, the replication of the mitochondrial genome is independent of the cell 

cycle. Replication can be divided in initiation, elongation and termination (Holt IJ et al., 2012) 

and is performed by a specific machinery encoded in the nucleus. It is composed of DNA 

polymerase γ (POLG), Twinkle (DNA helicase, that unwinds the DNA), topoisomerases (that 

remove supercoils from the DNA molecule) and mtSSB (mitochondria l single strand DNA 

binding protein). While the machinery has been well defined, the process of mtDNA replication 

is still under debate. Although POLG and Twinkle are sufficient to synthesise ssDNA up to 2 kb 

in vitro, mtSSB are necessary to synthesise up to 16 kb (Korhonen JA et al., 2004).  

Initiation begins after the mitochondrial RNA polymerase (POLRMT) synthesises the RNA 

primer necessary for POLG to start the replication. Once the replication machinery is assembled 

then elongation takes place. A number of theories have been proposed for this phase: the 

strand-displacement model (proposed by Clayton (Clayton DA, 1982) and revisited by Holt et 

al. (Holt IJ et al., 2000)), the strand-coupled bidirectional model (Bowmaker M et al., 2003) and 

the RITOLS (RNA Incorporation Through-Out the Lagging Strand) model (Yasukawa T et al., 

2006).  



13 
 

According to the strand-displacement model, the H-strand is replicated from OH found within 

the D-loop, using the L-strand as template. The displaced strand is covered by mtSSB, in order 

to protect it from damage, and it is copied only after OL is reached. The L-strand is then 

synthesised in the opposite direction. The strand-coupled bidirectional model, instead, suggests 

that the replication of both strands happened simultaneously, starting from a common origin and 

proceeding bidirectionally. Evidence has been presented for both the models and it is possible 

that both the processes are adopted in vivo (Holt IJ et al., 2000). 

The most recent and controversial theory is the RITOLS (or bootlace) model. According to 

this model, the replication follows the strand-displacement model, but the displaced strand is 

covered with RNA to protect the DNA from damage until the OL is reached and its synthesis can 

begin.  

Once elongation is completed, mtDNA replication is concluded by ligation of the ends (Ligase 

III) and the introduction of supercoils, which allow DNA to compact. Details regarding this stage 

are very sparse. 

1.6.2. Transcription 

The first step of gene expression is transcription, which is the synthesis of RNA molecules 

reading from the genome as template. In mitochondria, this process leads to the formation of 3 

polycistronic species that are then processed to obtain rRNA, tRNA and open reading frames 

(ORFs). Transcription is performed by POLRMT, a monomeric enzyme whose C-terminal part 

resembles the bacteriophage T7 counterpart. The enzyme catalyses the formation of a 

phosphodiester bond between 2 nucleotides, coordinating their phosphate groups with 2 

magnesium cations. In addition to its role in transcription of RNA required for translation, this 

enzyme is also responsible for the synthesis of the RNA fragment necessary to start the mtDNA 

replication (qv 1.6.1.). POLRMT is unable to bind and interact with the promoter sequence on 

the DNA by itself and it needs the help of mitochondrial transcription factor A (TFAM) that bends 

the promoter region and stimulates the recruitment of RNA polymerase and of TFB2M. The 

latter is the mitochondrial transcription factor B2 and its role is to assist the enzyme during the 

melting of mtDNA (Arnold JJ et al., 2012). The RNA polymerase activity has also been reported 

to be modulated by other components, such as mitochondrial transcription elongation factor 

(TEFM) (Minczuk M et al., 2011), mitochondrial transcription termination factors (mTERFs) and 

mitochondrial ribosomal protein L12 (MRPL12) (Wang Z et al., 2007). 

The light strand is transcribed from its only promoter (LSP) and the derived polycistronic 

species contains the ORF for MTND6 and 8 mt-tRNA species. Transcription of the heavy strand, 

instead, is ‘debatably’ controlled by 2 different promoters and, as a consequence, leads to the 

production of 2 different polycistronic species (Montoya J et al., 1982). The smaller product is 

composed mainly of the 2 rRNAs and it is produced from the promoter HSP1, situated 16 bp 

before tRNAPhe. The larger product corresponds to the entire H-strand and it is created when 
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transcription starts at HSP2, situated slightly before the beginning of the gene encoding for the 

12S rRNA (Fig. 1.6). Transcription of the species containing the 2 rRNA has been reported to 

be performed 50-100 times more than the one of the larger transcript (Gelfand R et al., 1981). 

Among the 3 promoters identified, only one of them (HSP1) has a corresponding termination 

site and factor named mTERF1 (Fernandez-Silva P et al., 1997), which terminate at the tRNALeu 

(Asin-Cayuela J et al., 2005). This factor has also been suggested to be involved in the initiation 

at HSP1 and HSP2, facilitating the recycling of the transcription machinery (Martin M et al., 

2005). The termination site for LSP promoter has still not be identified, while the one for HSP2 

has been located beyond the non-coding region although the binding factors are still unknown 

(Camasamudram V et al., 2003). 

 

 

Figure 1.6 Initiation sites of mitochondrial transcription. 

Representation of the initiation sites of transcription HSP1, HSP2 and LSP. These are 

contained in the D-loop (green). Genes encoding for tRNA are depicted in red and reported 

with the letter corresponding to the amino acid. The rRNA 12S and 16S are in violet. 

Cytochrome b (Cyt b) is in orange, while ND1 is in blue. The content of the transcript 

produced from every initiation site is also reported (ORF= open reading frame).  

The polycistronic RNA species created during transcription need to be processed to lead to 

individual RNA species and then matured to produce functional mRNA, tRNA and rRNA. It is 

important to remember that 2 bicistronic transcript are also present, with overlapping sequences 

(ND4L/ND4 and ATP8/ATP6). The current theory for the cleavage of transcripts is the ‘tRNA 

punctuation model’ (Ojala D et al., 1981). In the human mtDNA, the 22 tRNA genes are 

interspaced between the majority of genes encoding for the 13 polypeptides and the 2 rRNAs 

(Fig. 1.5). This model suggest that the individual RNA fragments are generated by cleavage at 

the 5’ and 3’ ends of tRNA, respectively by RNase P (Doersen CJ et al., 1985) and RNase Z 

(ELAC2) (Brzezniak LK et al., 2011). However, this process does not explain how the transcripts 

corresponding to ATP6 and COXIII are divided because no gene encoding for a tRNA species 

is present between the genes MTATP6 and MTCO3. The transcript cannot be processed via 

the same mechanism, but how this is processed is still unclear. 

1.7. Protein import in mitochondria 

Because over 99% of the mitochondrial proteins are encoded by the nuclear, mitochondria 

developed a system to import several components of its proteome from the cytosol.  
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In order to be targeted to mitochondria, nuclear-encoded proteins need to present either a 

cleavable N-terminal presequence or an internal targeting signal. The cleavable presequence 

usually forms an amphipathic α-helix of 10-30 amino acids and is adopted by proteins destined 

to the matrix as well as by few IMM proteins. The internal signal, instead, is usually used by 

proteins of the OMM, IMS and by some IMM proteins. By interaction with different protein 

complexes, the mitochondrial proteins reach their destination (Fig. 1.7). All the proteins will 

interact with the translocase of the outer mitochondrial membrane (TOM complex). After that, 

OMM proteins will interact with the sorting and assembly machinery (SAM complex), while the 

presequence translocase (TIM23 complex) and its associated import motor (PAM complex)  will 

take care of matrix proteins. Finally, proteins destined to the IMM will be inserted in the membrane 

with the help of the carrier translocase (TIM22 complex). 

 

Figure 1.7 Pathways of protein import in mitochondria. 

The figure (Dudek J et al., 2013) summarised the pathways of import followed by proteins 

of the OMM, IMM, IMS and matrix. Full description is given in the text.  

Licence number: 4003280468275. 

As previously mentioned, the TOM complex (Fig. 1.7, in magenta) is the first gate used by 

nuclear-encoded mitochondrial proteins to enter the OMM. This is composed of 7 subunits, of 

which 4 are receptors (Tom5, Tom20, Tom22, Tom70), 1 forms a channel (Tom40) and the other 

2 are required for the stability of the complex (Tom6, Tom7). After recognition of the targeting 

sequence by Tom20 and Tom22 (Abe Y et al., 2000; Brix J et al., 1997), the preprotein is 

transferred, with the help of Tom5, to the Tom40 translocation channel. The activity and the 

assembly of the TOM complex have been reported to depend on cytosolic protein kinases 

(Schmidt O et al., 2011). In particular phosphorylation of Tom70 by protein kinase A affected its 

http://www.sciencedirect.com/science/article/pii/S0167488912001449#gr1
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role as a receptor. Another kinase (casein kinase 2) phosphorylate Tom22 and the import protein 

Mim1 (necessary for the assembly of TOM20) (Waizenegger T et al., 2005), promoting the 

assembling of the TOM complex. The OMM proteins with simple topology are inserted in the 

membrane directly by the TOM complex, while more complex proteins (such as Porin, Tom40, 

Sam50 and Mdm10) require the help of the SAM complex to be successfully inserted within the 

OMM. Carrier proteins destined to the IMM (such as ADP/ATP or phosphate carriers) are led to 

the receptor of the TOM complex Tom70 (Brix J et al., 1997) by the molecular chaperones Hsp90 

and Hsp70 (Young JC et al., 2003) and then translocated through Tom40 to the complex Tim9-

Tim10 found in the IMS (Vial S et al., 2002). These IMM proteins are then inserted in the inner 

membrane via the TIM22 complex (Fig. 1.7, in orange). This complex present a pore composed 

of Tim22, and other 3 proteins (Tim12, Tim18, Tim54). In order to insert the preprotein in the pore 

and to laterally release it in the IMM, membrane potential is essential. As previously mentioned, 

some IMM proteins also contain N-terminal presequence. These contain a hydrophobic stop 

signal and their translocation is arrested within the IMM, to allow their lateral movement and 

insertion in the lipid layer of the IMM (Glick BS et al., 1992). This fate is also followed by proteins 

destined to the IMS that contain an N-cleavable presequence, which are released in the IMS by 

cleavage of the IMM portion. IMS proteins containing cysteine residues, instead, rely for their 

import and assembly on the MIA machinery, also found in the IMS. The core of this machinery is 

Mia40, a protein which forms a disulfide bridge with the IMS protein, resulting in oxidation of the 

latter which will then undergo folding in the IMS (Banci L et al., 2010; Banci L et al., 2009; Hofmann 

S et al., 2005). 

After interaction with the TOM complex, matrix proteins reach their destination by interacting 

with the TIM23 complex (Fig. 1.7, in light blue), which is composed of 3 integral membrane 

proteins (Tim50, Tim23, Tim17). After translocation through Tom40 of the TOM complex 

preproteins interact with Tim50, which leads them to the TIM23 complex. As with the translocation 

carried out by TIM22 complex, membrane potential is essential for the process and drives the 

positively-charged presequence towards the matrix side (Martin J et al., 1991). This process is 

also aided by the PAM complex (Fig. 1.7, in pink) that is localised in the matrix. The PAM complex 

is composed of the membrane-interacting protein Tim44 (which binds to the chaperone mtHsp70 

and to the TIM23 complex) and 3 proteins that assist the process (Pam18, Pam16, and Mge1). 

The order of the events involved in this final step of the translocation in the matrix is not yet fully 

understood. 

Once the N-terminal cleavable presequence is no longer needed, it is cleaved by mitochondrial 

processing metalloendopeptidases (Taylor AB et al., 2001). The imported mitochondrial matrix 

proteins are finally assisted by mitochondrial chaperones to complete their folding (Bukau B et 

al., 1998; Hartl FU et al., 2002). 
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1.8. Mitochondrial protein synthesis 

1.8.1. Pre-Translation Events 

The assembly of the mitoribosome, as well as the modifications and stabilisation of mRNA 

and tRNA are important aspects of mitochondrial translation, which are necessary prior to the 

beginning of the process and of which several aspects remains uncharacterised. In the following 

paragraphs, an overview on modifications of mRNA and tRNA, as well as on the assembly of 

the mitoribosome to date will be discussed. 

- mt-mRNA processing and stabilisation 

In human mitochondria, oligo/polyadenylation is necessary for the maturation of mt-mRNA 

transcripts, with the exception of MTND6 (Slomovic S et al., 2005; Tomecki R et al., 2004). 

This process is carried out by a mitochondrial poly(A) polymerase (mtPAP), which introduces 

a poly- or oligo-(A) extension needed to complete the UAA stop codon in 7 transcripts (Ojala 

D et al., 1981). While polyadenylation is generally used in bacteria to promote the degradation 

of the transcripts (Xu F et al., 1995) and in the cytosol of mammalian cells to increase their 

stability ,(Bernstein P et al., 1989), its role on the stability of mammalian mitochondrial 

transcripts is still unclear (Bratic A et al., 2016; Nagaike T et al., 2005; Tomecki R et al., 2004; 

Wilson WC et al., 2014). 

The association of mt-mRNA with mRNA-specific proteins has an influence on their stability. 

The degradation of transcripts encoded by the mtDNA heavy strand is prevented by the 

complex LRPPRC/SLIRP (Sasarman F et al., 2010), whereas MTCO1, MTCO2, MTCO3, 

MTATP6/8, MTCYB and MTND3 are stabilised by FASTKD4 (Wolf AR et al., 2014). The only 

protein coding transcript derived from the light strand, MTND6, interacts with the binding 

protein FASTDK (Jourdain AA et al., 2015) and GRSF1, which is reported to affect its stability 

(Antonicka H et al., 2013; Jourdain AA et al., 2013). 

- Maturation of mt-tRNAs 

Several modifications are needed to promote function and stability of mt -tRNA. A 

comprehensive description of these modifications have been described by Suzuki (Suzuki T, 

2014) and Salinas-Giege et al (Salinas-Giege T et al., 2015). After the mt-tRNAs have been 

modified and the CCA is added to the 3’ terminus (Nagaike T et al., 2001), the transcripts are 

ligated to the appropriate amino acid by the relevant mitochondrial aminoacyl-tRNA synthetase 

(Diodato D et al., 2014). The mt-tRNAs are then competent to participate in mitochondrial 

translation. 
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- Assembly of the mitoribosome 

The mitochondrial translation machinery is, like other ribosomes, composed of 2 subunits. 

Several key players are needed to correctly assemble the rRNA and the ribosomal proteins 

into complete and functional subunits but while this process is well understood for the bacterial 

ribosome (Hage AE et al., 2004), the steps of the biogenesis of the mammalian mitoribosome 

are mainly unknown.  

After transcription, the rRNA molecules are cleaved from the polycistronic transcript and 

are likely to be stabilised and modified prior to its assembly in the subunits. The rRNAs are 

subjected to pseudouridylation, base methylation and 2’-O-ribose methylation at conserved 

sites that are important during translation. The extent of the modification was originally 

assessed on mammalian mitochondria from hamster cells, where 9 modifications were 

detected (Dubin DT et al., 1978). Five were base methylations of 12S mt-rRNA, of which 3 are 

performed by TFB1M (adenine) (Metodiev MD et al., 2009; Seidel-Rogol BL et al., 2002) and 

NSUN4 (cytosine) (Metodiev MD et al., 2014). Three 2’-O-ribose methylation were detected 

on 16S mt-rRNA, performed by methyltransferases (MRM1, MRM2, MRM3) (Lee KW et al., 

2014 ; Rorbach J et al., 2014). The 16S mt-rRNA is also supposed to be pseudouridylated 

(Ofengand J et al., 1997), although this modification was not detected in the study performed 

on hamster. Recently, some mitoribosomal protein have been identified in association with 

unprocessed RNA, suggesting that mitoribosomal assembly proceeds co-transcriptionally 

(Rackham O et al., 2016). 

GTPases and ATP-dependent RNA helicases are required for the formation of 

ribonucleoprotein particles. However, few of these enzymes have been identified in 

mammalian mitochondria (De Silva D et al., 2015). To date, 2 mitochondrial GTPases (Mtg1, 

Mtg2) have been reported to interact with the incomplete mt-LSU (Kotani T et al., 2013), and 

1 (C4orf14, or NOA1) appears to play a role in the assembly of the mt-SSU (He J et al., 2012). 

Different hypotheses have been suggested for the role of GTPases in this process. It is 

possible that the hydrolysis of GTP regulates the association or dissociation of proteins, or that 

this promotes conformational changes. It has also been suggested that these proteins might 

act as place holders for other proteins prior their recruitment in the biogenesis process. Finally, 

the GTPases might act as sensors for GTP/GDP ratio, reducing the assembly of new 

mitoribosomal subunits in conditions of starvation (lower GTP/GDP ratio). ERAL1 is an RNA-

binding GTPase that has been reported to stabilise 12S mt-rRNA (Dennerlein S et al., 2010; 

Uchiumi T et al., 2010). 

ATP-dependent RNA helicases are enzymes that bind and remodel RNA and 

ribonucleoprotein particles. Their roles can involve unwinding RNA (important to initiate 

ribonucleoprotein assembly) or protein displacement from RNA (Linder P et al., 2011). At 

present few have been identified in human mitochondria. DDX28 (Tu YT et al., 2015) and 

DHX30 are both involved in mitoribosome assembly (Antonicka H et al., 2015). In addition, 
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another helicase, SUPV3L1, has been reported to play a role in mt-RNA metabolism (Borowski 

LS et al., 2013). 

Together with GTPases and helicases, only a few other factors involved in the assembly of 

mammalian mitoribosomes have been reported. mTERF3, involved in mitochondrial 

transcription, appears to be able to associate to 16S mt-rRNA and play a role in the biogenesis 

of the mt-LSU (Wredenberg A et al., 2013). FASTKD2 (Fas-activated Serine Threonine 

Kinase) and the helicase DDX28 are also shown to be required for mt -LSU (Antonicka H & 

Shoubridge EA, 2015; Popow J et al., 2015; Tu YT & Barrientos A, 2015). In yeast the 

maturation of MRPL32 is required for its insertion in pre-ribosomal particles and is supported 

by the components of the mAAA-protease system (Nolden M et al., 2005). Another protein, 

C7orf30 (MALSU1), has been reported to interact with MRPL14 and might be involved in the 

assembly of the mt-LSU (Fung S et al., 2013; Rorbach J et al., 2012). Depletion of the IMM-

interacting protein MPV17L2, also known to interact with the mt-LSU, showed a reduction of 

both subunits, suggesting a possible role in their assembly (Dalla Rosa I et al., 2014). Finally, 

mt-SSU assembly has been suggested to be aided by GRSF1 as its depletion leads to 

accumulation of incomplete subunit (Antonicka H et al., 2013; Jourdain AA et al., 2013).  

Concerning the localisation of mitoribosomal assembly, 2 submitochondrial compartments 

have been suggested, the RNA granules and the nucleoids (qv 1.3.1.). Briefly, RNA granules 

are the centre of posttranscriptional RNA processing and maturation, while nucleoids are the 

site for mtDNA maintenance, replication and transcription. Proteins involved in mitoribosomal 

biogenesis have been detected in both nuceloids and RNA granules compartments, together 

with several mitoribosomal proteins (Antonicka H & Shoubridge EA, 2015; Bogenhagen DF et 

al., 2014), suggesting that mitoribosome assembly might begin in the nucleoids and continue 

in the RNA granules. More studies are needed to identify the involvement of these 

compartments in this process, as well as all the steps that lead to fully assembled 

mitoribosomal subunits. 

1.8.2. Molecular Mechanisms of Mitochondrial Translation 

Transcription of human mtDNA leads to the formation of 9 monocistronic and 2 dicistronic 

mRNA species that are translated by the mitoribosome in a process that can be divided in 

initiation, elongation and termination (reviewed in (Christian BE et al., 2012; Mai N et al., 2016; 

Ott M et al., 2016)). While the process does not differ significantly from the one described for 

the other ribosomes, it is important to remember that mitochondrial coding system varies in 

different organism. In mammalian mitochondria, the canonical stop codon UGA is recognised 

as tryptophan, while AUA encodes for methionine, and AGA and AGG are codons not 

recognised by any mt-tRNA or protein (Chrzanowska-Lightowlers ZM et al., 2011; Suzuki T et 

al., 2011). 
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The first step in protein synthesis is initiation (Fig. 1.8). At the beginning of this phase, the 

mt-SSU is bound to the initiation factor mtIF3, which inhibits the early formation of the 

monosome. The complex is joined by the initiation factor mtIF2:GTP and, subsequently, the 

mRNA enters the mRNA tunnel. The recruitment of mRNA has been suggested to be helped by 

a mitoribosomal protein found at the entrance of the mt-mRNA channel of the mitoribosome, 

named MRPS39 (Amunts A et al., 2015; Greber BJ et al., 2015). AUG, AUA, AUU are 

recognised as start codons by a formylated methionyl-tRNA (Tucker EJ et al., 2011), which is 

also recruited by mtIF2:GTP to the mitoribosome. In the case of a positive codon:anticodon 

interaction, a stable complex is created and the interaction with the mt-LSU follows. The 

formation of the monosome causes the hydrolysis of the mtIF2-bound GTP to GDP and the 

release of mtIF2 and mtIF3 from the complex. If the start codon is not present in the P-site or f-

Met-tRNAMet is not available, the inspection fails and the mRNA is released.  

A peculiar feature of human mt-mRNAs is the absence of a 5’ untranslated sequence, used 

by prokaryotes to position the start codon in the ribosome. Of the monocistronic transcripts, only 

3 mt-mRNA present a few nucleotides prior the start codon, while the others have the AUG 

immediately at the 5’ end (Christian BE et al., 2010). The 2 bicistronic transcripts, RNA7 

(MTND4/MTND4L) and RNA14 (MTATP8/MTATP6), present an upstream sequence ahead of 

the second ORF, which corresponds to the upstream sequence. How these start codons are 

correctly localised within the mitoribosome is still unclear. 

 

Figure 1.8 Initiation of mitochondrial translation. 

Diagram of the stages and the key players of mitochondrial translation initiation. A 

complete description of the process can be found in the text.  

mt-SSU: small mitoribosomal subunit; mt-LSU: mitoribosomal large subunit; mtIF2, mtIF3: 

mitochondrial initiation factor 2 and 3; Met: methionine; GTP: guanosine triphosphate; 

GDP: guanosine diphosphate. 

Figure from Mai N et al. (2016). 

After the monosome is formed, the elongation of the nascent chain can start (Fig. 1.9). The 

mitochondrial elongation factor mtEF-Tu, GTP and a charged mt-tRNA form a complex, which 

can enter the A-site, where the codon:anticodon interaction takes place. In the case of a positive 

interaction, the mitoribosome stimulates the hydrolysis of GTP and the subsequent release of 

GDP:mtEF-Tu. The interaction of mtEF-Tu with the nucleotide exchange factor mtEF-Ts 
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restores the GTP:mtEF-Tu complex (Cai YC et al., 2000). After the release of mtEF-Tu, the 

peptidyl transferase centre (PTC) in the mt-LSU catalyses the formation of the peptide bond. As 

a result, a polypeptidyl-tRNA is found in the A-site, while the P-site of the mitoribosome is 

occupied by a deacylated mt-tRNA. The release of the mt-tRNA from the P-site and the 

movement of the peptidyl-tRNA to the same site are mediated by the alteration of the structural 

conformation of the mitoribosome triggered by the elongation factor mtEF-G1 with the 

mitoribosome. The recent publication of the porcine and human structures (Amunts A et al., 

2015; Greber BJ et al., 2015) confirmed the presence of an E-site in mammalian mitoribosome 

where the deacylated mt-tRNA moves to before exiting the monosome. This process is then 

repeated until a stop codon is presented in the A-site. 

 

Figure 1.9 Elongation process in mitochondrial translation. 

Schematic representation of the elongation of the nascent polypeptide chain during 

mitochondrial translation. The description of all the stages and components involved can be 

found in the main text. The mt-SSU is depicted in light blue, while the mt-LSU is in dark blue. 

The red dot represents GTP, while the orange one GDP. 

mt-SSU: small mitoribosomal subunit; mt-LSU: mitoribosomal large subunit; mtEF-Tu, 

mtEF-Ts, mtEF-G1: mitochondrial elongation factor Tu, Ts and G1; GTP: guanosine 

triphosphate; GDP: guanosine diphosphate 

Figure from Mai N et al. (2016). 

The termination of protein synthesis takes place once a stop codon enters the A-site (Fig. 

1.10). In human mitochondria, this codon is recognised by mtRF1a (mitochondrial release factor 

1a), which is believed to be sufficient to terminate the synthesis of all the 13 mt-encoded 

polypeptides (Soleimanpour-Lichaei HR et al., 2007). This factor belongs to class I release 

factors that, unlike class II, is able to recognise specific sequences of the mRNA and has two 

functions. The first is the recognition of a stop codon on the A-site and mediated by its sequence 

recognition domains. The second function, which is dependent on the first, is performed by a 
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conserved GGQ domain that promotes the catalysis of the hydrolysis of the ester bond between 

terminal mt-tRNA in the P-site and the nascent polypeptide (Frolova LY et al., 1999). In the 

presence of GTP, mtRF1a promotes the release of the polypeptide from the mt-LSU (Schmeing 

TM et al., 2005).  

UAA and UAG are used as stop codons in human mitochondria to terminate 9 and 2 ORFs 

respectively. The coding sequence for the remaining 2 ORFs, MTCO1 and MTND6, terminates 

in AGA and AGG respectively. Because no corresponding tRNA was present in the 

mitochondrial genome, these triplets were originally suggested as alternative stop codons 

(Anderson S et al., 1981). Recent studies, however, showed that a classical UAG codon was 

also used by these two species to terminate translation (Temperley R et al., 2010). This was 

explained by the occurrence of a -1 frameshift, which might be due to structured RNA found 

downstream of the termination codons. This mechanism, reasonable for humans, does not lead 

to the creation of a stop codon in all other vertebrates. More recently, ICT1 has been proposed 

to act as a mitochondrial translation release factor and may be involved in the termination of the 

synthesis of COXI and ND6. This protein has an indiscriminate peptidyl-tRNA hydrolase activity 

(Richter R et al., 2010) and might enter the A-site to promote the release of the polypeptide 

chain (Akabane S et al., 2014), as performed by its bacterial homologue ArfB (Gagnon MG et 

al., 2012). In contrast with this hypothesis, ICT1 has been identified as a constitutive component 

of mt-LSU where it is not located in proximity of the A-site (Brown A et al., 2014; Greber BJ et 

al., 2014), having therefore limited access to this site. Despite this, it has been proposed that a 

limited free pool of ICT1 might perform the hydrolase activity. Recent studies on isolated ICT1 

confirmed its ability to hydrolyse peptidyl-tRNA on stalled ribosomes but, intriguingly, not when 

the RNA template extended more than 14 nucleotides past the A-site (Feaga HA et al., 2016). 

As MTCO1 and MTND6 mt-mRNA have 3’ extensions longer than 14 nucleotides, it is unlikely 

that ICT1 might act as a natural translation terminator in vivo.  

Finally, the dissociation of the mitoribosomal subunits is promoted by 2  ribosomal recycling 

factors, mtRRF1 and mtEF-G2, leading to the release of mt-mRNA and deacylated mt-tRNA 

(Rorbach J et al., 2008; Tsuboi M et al., 2009). After the release of the 2 recycling factors the 

translation cycle can reinitiate. 
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Figure 1.10 Termination of mitochondrial protein synthesis and recycling of the 
mitoribosomal subunits. 

The last stages of mitochondrial translation are summed up in this figure. A complete 

description is present in the text. The mt-SSU and mt-LSU are depicted in lighter and 

darker blue, respectively. 

mt-SSU: small mitoribosomal subunit; mt-LSU: mitoribosomal large subunit; mtRF1a: 

mitochondrial release factor 1a; mtRRF1: mitochondrial ribosomal recycling factor 1; mtEF-

G2: mitochondrial elongating factor G2. 

Figure from Mai N et al. (2016). 

1.8.3. Regulation of mitochondrial translation 

The efficient assembly of the OXPHOS complexes relies on the coordination of cytosolic and 

mitochondrial translation. In yeast, translation can be activated by several proteins, which 

associate with the untranslated regions (mainly 5’) of all yeast mt-mRNA species (reviewed in 

(Herrmann JM et al., 2013)). Published data suggested the involvement of these proteins in 

feedback loops, regulating mitochondrial translation depending on the availability of nuclear -

encoded components of the OXPHOS that leads to a successful assembly of the complex.  

The absence of untranslated regions in the majority of human mt-mRNA transcripts indicates 

that any translational activators would have to act via a different mechanism. At present, only 1 

translational activator has been identified in human mitochondria. This was named TACO1 and 

its absence in patients presenting mutations in the encoding gene resulted in the  selective loss 

of translation of MTCO1 (COXI of complex IV) (Weraarpachai W et al., 2009). Translational 

activators bind in most cases to the 5’-UTR of transcripts. Since this is absent in MTCO1, it has 

been suggested that TACO1 might have an effect on the translation of this mRNA by stabilising 

the nascent polypeptide or by promoting the recognition of the start codon. Another hypothesis 

suggests a role of TACO1 in the release of the complete COXI, via interaction with the 

translation termination factor (Weraarpachai W et al., 2009). 

Recent studies suggested that the assembly of the OXPHOS complexes can regulate 

mitochondria translation, helping to maintain the balance with nuclear translation. Studies on 

complex IV assembly identified a complex named MITRAC (MItochondrial TRanslation 

Regulation Assembly intermediate of cytochrome c oxidase (Mick DU et al. 2012)). Two of its 

components, C12orf62 and MITRAC12, appeared to regulate COXI synthesis, as their loss 

affected this process (2012; Weraarpachai W et al., 2012). Recent studies showed that the 

translation of COXI was stalled in absence of the nuclear encoded COXIV, futher suggesting an 
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effect of the assembly of complex IV on mitochondrial translation (Richter-Dennerlein R et al., 

2016 ). Similarly, defects in the assembly of complex III were reported to decrease the 

translation of cytochrome b (Tucker EJ et al., 2013). 

As a result of the mitochondrial levels of ATP, acetyl-CoA and NADH, mitoribosomal proteins 

can be phosphorylated (Miller JL et al., 2009) or acetylated, affecting the interaction between 

the 2 subunits of the machinery. For example, a role in the formation of the monosome might 

be played by the mt-specific protein DAP3 (also known as MRPS29). This protein presents 

phosphorylation sites on its intersubunit face (Miller JL et al., 2008), which might have an impact 

on the formation of the monosome (Miller JL et al., 2009). In addition, DAP3 is bound to GDP in 

the mammalian 55S structures (Amunts A et al., 2015; Greber BJ et al., 2015), and it is possible 

that the hydrolysis of GTP to GDP might play a role in ribosome assembly (Amunts A et al., 

2015). Modifications of other mitoribosomal proteins have been identified at the subunits 

interface or in domains crucial for translation (mRNA channel, the PTC or the PES) and are also 

likely to have a role in regulating the assembly of the monosome (Miller JL et al., 2009). This 

process is also promoted by mTERF4-NSUN4, an mt-SSU-interacting complex that supports 

the recruitment of the mt-LSU (Cámara Y et al., 2011; Metodiev MD et al., 2014). Studies on the 

pentatricopeptide repeat (PPR) domain protein MRPS27 suggested a potential role of this 

protein in regulating mitochondrial translation, although the mechanism is still unknown (Davies 

SM et al., 2012). Recently, the protease CLPP was suggested to regulate translation by 

removing ERAL1 from the 12S rRNA (Szczepanowska K et al., 2016). 

Finally, mitochondrial translation was also reported to be affected by the cellular environment. 

In the cytosol, the interaction of microRNAs with the proteins AGO2 and GW182 creates a 

complex capable of reducing translation of cytosolic mRNAs (Czech B et al., 2011). A complex 

between microRNAs and AGO2 was also observed in mitochondria, where it increased the 

translation of certain transcripts during muscle differentiation (Zhang X et al., 2014). However, 

the presence of miRNAs in mitochondria is still unclear (Mercer TR et al., 2011). 

1.8.4. Post-Translation events 

While the mitoribosomal subunits are recycled at the end of mitochondrial protein synthesis, 

the fate of mt-mRNA is still unclear. The mt-mRNAs species might be protected and translated 

again, thanks to the interaction with RNA chaperones (like LRPPRC/SLIRP, FASTKD2, 

FASTKD4), but it is also possible that these species are degraded. The helicase responsible for 

RNA metabolism has been identified as SUPV3L1 (Minczuk M et al., 2002). It was found to 

interact with the human polynucleotide phosphorylase (PNPase) (Borowski LS et al., 2010), 

which was shown to be important for mitochondrial RNA degradation (Chujo T et al., 2012). 

However, the localisation of this protein within the mitochondrial intermembrane space (Wang 

G et al., 2010) makes unlikely its involvement in RNA degradation in the matrix. An exonuclease, 

named REXO2 was identified both in the cytosol and in mitochondria and might play a role in 

the degradation of RNA species in mitochondria (Bruni F et al., 2013). In addition to REXO2, 
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recent studies identified an endoribonuclease, LACTB2, with mitochondrial localisation. The 

physiological role of this protein is still unclear (Levy S et al., 2016). 

1.9. The mitoribosome 

The existence of a mitochondrial machinery for protein synthesis was discovered in 1958 by 

John R. McLean in rat liver (McLean J et al., 1958) and this was then isolated from the same 

organ in 1967 by Thomas W. O’Brien (O'Brien TW et al., 1967). Like the other ribosomes, 

mitochondrial ribosomes are composed by 2 subunits, large and small, that associate together to 

form a fully functional monosome. Because it has been proposed that mitochondria derive from 

the endosymbiosis of an α-proteobacteria, it was originally thought that their ribosome would 

resemble the bacterial counterpart more than the cytosolic one. However, several differences are 

present between bacterial and mitochondrial ribosomes and, further, differences can be 

highlighted between mammalian and yeast mitoribosomes, suggesting a parallel evolution of 

these 2 machineries from the common bacterial ancestor. The most striking difference between 

these 3 regards the amount of RNA and protein. While the bacterial ribosome and yeast 

mitoribosome are mainly composed of RNA (approximately 70% of its total weight), the 

RNA:protein ratio is reversed to 30:70 in the mammalian mitoribosome, as a consequence of the 

shortening of the rRNA molecules and the presence of additional protein mass (Fig. 1.11), already 

identified in proteomics studies carried out in 2001 (Koc EC et al., 2001; Koc EC et al., 2001). 

The different RNA:protein ratio observed for the mammalian mitoribosome also results in a 

different composition of intersubunit bridges. In bacteria, the two ribosomal subunits interact 

mainly via RNA:RNA bridges (Liu Q et al., 2016), whereas in the mammalian 55S particle there 

is a higher proportion of protein-protein and RNA:protein connections (Amunts A et al., 2015; 

Greber BJ et al., 2015). As opposed to mammalian mitoribosomes, the yeast mt-rRNAs acquired 

new domains (Foury F et al., 1998). Despite this, the yeast mitoribosome present several 

mitochondrial-specific (mt-specific) proteins absent in the bacterial counterpart. 
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Figure 1.11 Distribution of conserved and mitochondrial specific proteins in the human 
mitoribosome. 

Representation of the human mitoribosome. Proteins conserved with bacteria are depicted 

in blue, extensions of homologous proteins in yellow, and mitochondria-specific proteins in 

red. rRNA is shown in grey. 

Figure from Amunts A et al. (2015), License number 3930190789240 

The increase of protein content observed for mitochondrial ribosomes is a result of both the 

extension of homologous proteins and the acquisition of mt-specific proteins. In mammalian 

mitoribosomes, a small proportion of the new protein mass is filling the void due to the shortening 

of rRNAs. The majority of this new mass is, instead, found peripherally (Brown A et al., 2014) and 

has been suggested to protect the mt-rRNA from potential damages due to the presence of high 

ROS levels within the organelle (Lightowlers RN et al., 2014). In addition to ROS protection, some 

of the mt-specific proteins also present a second function. For instance, several DAP3 (Kissil JL 

et al., 1999), MRPL37 (Levshenkova EV et al., 2004), MRPL41 (Yoo YA et al., 2005) and MRPL65 

(previously named MRPS30) (Sun L et al., 1998) have been linked to apoptosis. Another protein, 

MRPL12, seems to play a role in POLRMT function and stability (Nouws J et al., 2016; Surovtseva 

YV et al., 2011). The cryo-EM studies performed on human and porcine samples also confirmed 

the presence of, ICT1, a ribosome-dependent peptidyl-tRNA hydrolase (Richter R et al., 2010) 

has been confirmed as a structural component of the mt-LSU but might also play a role in 

translation as mentioned in the previous paragraph (Akabane S et al., 2014; Feaga HA et al., 

2016). 

Despite all of the differences, the functional core of the mitoribosome is mainly conserved, 

suggesting that the mechanism of protein translation does not differ considerably from the 

bacterial counterpart. This is composed of the mt-mRNA recognition site on the mt-SSU and 

peptidyl transferase centre in the mt-LSU.  

In the last few years, a new nomenclature has been adopted for mitoribosomal proteins, 

according to the presence of homologues of these proteins in bacteria (Ban N et al., 2014). 

However, in this study, the old nomenclature will be reported. If needed, a table reporting new 

and old nomenclature can be found at Appendix 1. 
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1.9.1. Structure of the mammalian mitoribosome 

While the first low resolution cryo-EM structure of the bovine monosome was released in 

2003 (Sharma MR et al., 2003), the structure of the human (Amunts A et al., 2015; Brown A et 

al., 2014) became available after the beginning of this study, together with the high-resolution 

structure of the porcine counterpart (Greber BJ et al., 2015; Greber BJ et al

As previously mentioned, the functional core of the mitoribosome has been conserved 

throughout evolution and, as in most ribosomes, the A, P and E sites can be identified (Wettstein 

FO et al., 1965). The residues of the mt-SSU important for the decoding at the A-site are present, 

and the ability of mt-tRNA to interact with the mt-LSU has also been conserved. Due to the 

shortening of the rRNA, no A-site finger was detected on porcine mitoribosomes. This structure 

might not be necessary as mammalian mt-tRNAs do not show the typical cloverleaf structure 

observed in their bacterial counterparts (Suzuki T et al., 2011). The P-site is well preserved, 

although the presence of a P-site finger introduces a stronger interaction with the T-loop of mt-

tRNAs than those seen in bacteria (Schuwirth BS et al., 2005). This structure might be 

necessary to keep mt-tRNAs in position, because their T-loop is smaller than those of bacterial 

tRNA. Finally, despite most of the contact points between the bacterial ribosome and tRNA on 

the E-site seemed absent on the mammalian mitoribosome until the recent cryo-EM studies 

confirmed its modified presence (Greber BJ et al., 2014). 

- Mitoribosomal small subunit 

The mammalian mt-SSU is composed of 30 proteins (14 mt-specific in human) and a 12S 

mt-rRNA (Amunts A et al., 2015; Greber BJ et al., 2015). Due to the presence of the mt-specific 

proteins, the shape of the subunit differs from the bacterial counterpart and appears more 

elongated.  

The mt-mRNA entrance channel is one of the most divergent areas of the mt-SSU. RPS4 

and the C-terminus of RPS3 (uS3) define the entrance of this channel in the bacterial ribosome 

but are absent in the mt-SSU (Fig. 1.12A). The ring-shaped entrance is, instead, defined by a 

mt-specific extension of MRPS5 (Fig. 1.12B). Another mt-specific protein, MRPS39 (PTCD3) 

is found in close proximity to the entrance site for mRNA. Because this protein belongs to the 

pentatricopeptide repeat containing (PPR) protein family that are able to bind RNA (Filipovska 

A et al., 2013; Lightowlers RN et al., 2013), it is possible that this protein could be involved in 

recruiting the mt-mRNA to the mt-SSU. 
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Figure 1.12 mRNA entrance site for the human mitochondrial and bacterial ribosomes.  

Representation of the proteins defining the entrance site of the mRNA tunnel of human 

mitochondria ribosomes (B, PDB 3J9M (Amunts A et al., 2015)) and the bacterial 

counterpart (A, PDB 4YBB (Noeske J et al., 2015)). The small subunit is in green, whereas 

the large is in blue. The entrance of the tunnel is indicated by an asterisk. Homologues 

protein are depicted in the same colours. Magenta corresponds to S3 in the bacterial 

ribosome, which is the homologue of MRPS24 of the human counterpart. 

Figure modified from Mai N et al. (2016). 

Bacterial ribosomes present an anti Shine-Dalgarno sequence on the rRNA, close to the 

exit of the mRNA exit site. This  domain is absent in the 12S mt-rRNA and reflects the absence 

on mt-mRNAs of the corresponding 5’-untranslated region (Montoya J et al., 1981). The space 

generated by the lack of this rRNA domain is now occupied by the mitochondrial -specific 

protein mS37 that takes on the interaction with the 12S mt-rRNA. In contrast to these structural 

modifications, the central portion of the mRNA channel that is directly involved in the translation 

process, is mostly conserved (Greber BJ et al., 2014). 

- Mitoribosomal large subunit 

The mammalian mt-LSU is composed of 16S mt-rRNA and 52 proteins (53 in humans), of 

which 22 are mt-specific (Brown A et al., 2014; Greber BJ et al., 2014). An additional rRNA 

molecule (5S) is found in the central protuberance of bacteria l LSU (Ban N et al., 2000). No 

additional rRNA is encoded by the mitochondrial genome but, in 2014 a  cryo-EM structure of 

the mammalian mitoribosome revealed the presence of an unidentifiable RNA density similar 

to a domain of bacterial 5S rRNA (Greber BJ et al., 2014). The recent higher-resolution cryo-

EM studies on mt-LSU confirmed the presence of an additional RNA species, identifying a mt-

tRNAPhe for the porcine mitoribosome  (Greber BJ et al., 2014) and mt-tRNAVal for the human 

counterpart (Brown A et al., 2014).  

One of the most altered domain of the mitoribosome is the polypeptide exit site (PES) (Fig. 

1.13). In mammals, a second layer of mt-specific proeins (MRPL39, MRPL44 and MRPL45) 

are found on top of a conserved ring of proteins (MRPL22, MRPL23, MRPL24, MRPL29) that 

define the exit site itself. Because the mitoribosome is specialised in the synthesis of highly 

B 

A B 

Bacterial ribosome                                   Mitoribosome 
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hydrophobic proteins, it is possible that the recruitment of these additional proteins might aid 

their synthesis and couple it with their insertion in the IMM. 

 

Figure 1.13 Polypeptide exit site of bacterial and human mitochondrial ribosomes. 

The polypeptide exit site of bacterial (A, PDB 4YBB (Noeske J et al., 2015)) and human 

mitochondrial (B, PDB 3J9M (Amunts A et al., 2015)) ribosomes were visualised in Pymol. 

The SSU are depicted in green, while the LSU in green. The exit site is indicated by an 

asterisk and homologous proteins are reported in the same colour.  

Figure modified from Mai N et al. (2016). 

1.9.2. Interaction of the mitoribosome with the inner mitochondrial 

membrane 

Mitochondrial ribosomes are specialised in the synthesis of highly hydrophobic polypeptides, 

which are all components of the OXPHOS system. In order to avoid their aggregation and 

precipitation in the matrix, their translation is likely to be coupled with their insertion within the 

IMM. This will be aided by the anchoring of the mitoribosome to the membrane so that the 

polypeptide exit site can be aligned with the insertion machinery.   

Studies in yeast identified the IMM-interacting protein Mba1 (Ott M et al., 2006; Pfeffer S et 

al., 2015), the IMM protein Mdm38 (Lupo D et al., 2011) and Oxa1 (Jia L et al., 2003) as able to 

interact with the mitoribosome. Recently, this important interaction was confirmed in yeast by 

cryo-EM tomography (Pfeffer S et al., 2015). This study was able to show mitoribosomes 

anchored to the IMM and to identify Mba1 and rRNA as interacting points.  

These important interactions are still mainly unexplored in mammalian mitoribosomes. 

Studies on the bovine system reported that approximately 50% of mitoribosomes interact with 

the IMM (Liu M et al., 2000). The authors suggested that the interaction might be mediated by 

both electrostatic interactions of the mitoribosome with the membrane, and direct interaction 

between the mitoribosome and IMM proteins. Amongst the IMM proteins, OXA1L (homologue 

of yeast Oxa1) has been cross-linked to components of the mt-LSU, suggesting its involvement 

in the interaction (Haque ME et al., 2010). LetM1, another IMM protein, is the homologue of 

yeast ribosome-interacting protein Mdm38 and has also been reported to interact with the 

mitoribosome (Piao L et al., 2009). Finally, MPV17L2 is a protein that has been recently reported 

A B 
  

Bacterial ribosome                                   Mitoribosome 
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to interact with both the IMM and the mt-LSU, suggesting that it might be involved in anchoring 

the subunit to the IMM (Dalla Rosa I et al., 2014). 

Amongst the mitoribosomal proteins, MRPL45 is a mt-specific protein found in close 

proximity to the polypeptide exit site, an ideal position for membrane-interaction, a hypothesis 

also suggested by Greber et al. shortly after this study began (Greber BJ et al., 2014). The 

potential involvement of MRPL45 in the interaction with the IMM is also supported by its 

homology with the membrane-interacting yeast protein Mba1 (Ott M et al., 2006; Pfeffer S et al., 

2015) and by its structural homology with another IMM-interacting protein, Tim44 (Handa N et 

al., 2007). 

As the role of the proteins involved in the interaction between mitoribosome and IMM is the 

theme of my thesis, these aspects will be more extensively discussed in the introductions of the 

results chapters. 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

1.10. Aims 

Several aspects of mitochondrial translation still need to be explored. In this study, I decided 

to focus my attention on the interaction between the mitoribosome and the IMM. As stated in the 

introduction, this interaction is important for coupling the synthesis of 13 highly hydrophobic 

components of the OXPHOS system with their insertion into the membrane. Defects in this 

process can lead to problems in the assembly of the OXPHOS complexes, which can lead to a 

reduction of available ATP as source of energy to the cell.  

As discussed earlier, MRPL45 might be one of the mediators of this important interaction, 

because of its similarity with other membrane-interacting proteins and its ideal location. The main 

focus of my project was assessing the involvement of MRPL45 in the interaction with the IMM 

and its role in the stability of the mitoribosome. During the project, interest for OXA1L, another 

candidate player in this important interaction, arose. While the yeast homologue of this protein 

has been widely characterised in yeast, more work is needed on the human homologue to 

understand its role in mitochondrial translation and in the interaction with the mitoribosome. 

Therefore, I decided to also investigate this protein in this study. A patient cell lines with mutations 

in the gene encoding for OXA1L was identified during the course of my project and was therefore 

also characterised in this study. In the Appendix 17, a brief discussion and characterisation of 

another IMM protein, named LetM1, suggested to play a role in the interaction with the 

mitoribosome will be discussed. 

 

In detail, the aims of my project were: 

- Understand the importance of MRPL45 for the stability of the mitoribosome by using siRNA 

technology to deplete levels in human cell lines  

- Develop a protocol to investigate the interaction of proteins with the membrane  

- Study the interaction of the mitoribosome with the IMM and the ability of MRPL45 to directly 

interact with the IMM with the developed protocol 

- Assess the involvement of candidate domains for membrane interaction of MRPL45 by 

generation of site directed mutants 

- Identify the putative binding partners of MRPL45 in the IMM via immunoprecipitation 

experiments 

- Investigate the involvement of the IMM protein OXA1L in the interaction with the 

mitoribosome  

- Characterise the role of OXA1L in mitochondrial translation via siRNA depletion studies 

- Characterise the biochemical and molecular phenotype of patients carrying mutation in 

OXA1L. 
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Chapter 2: Material and methods 

2.1. Tissue culture 

2.1.1. Cell maintenance and propagation 

Different human cell lines were used in this study: 

- HEK293 Flp-In™ T-Rex™ (Invitrogen). This cell line derived from human embryonic 

kidney cells (HEK293). The cells are engineered with the Flp-In™ System, which has 

both the integration into a specific cassette and tetracycline-inducible expression of a 

gene of interest. 

- HeLa. Human cervical cancer carcinoma cells from Henrietta Lacks. 

- U2OS. Human osteosarcoma cell line. 

- U2OS Flp-In™ T-Rex™. Human osteosarcoma cell line engineered with the Flp-In™ 

System. 

- 143B. Human osteosarcoma cells. 

- 143B ρ0. Human osteosarcoma cells lacking of mitochondrial DNA. Maintained in 1mM 

sodium pyruvate, 50 µg/mL of uridine and 200 ng/mL of ethidium bromide. 

- Primary fibroblast. Isolated from patient or control. 

Patient: LetM1 (M2129-21, courtesy of Dr. Carrozzo Rosalba, Ospedale Bambino 

Gesù, Rome) 

Control: M0456-11, M0528-12 

- Immortalised fibroblast. Derived from primary fibroblast. 

Patient: OXA1L (M0686-13) 

Control: M1171-13, M0528-12 

- Tetracycline inducible cell lines. 

HEK293-MRPS27FLAG (Prepared by M. Wydro) 

HEK293-LuciferaseFLAG (Prepared by M. Wydro) 

HEK293-MRPL45  

HEK293-MRPL45FLAG 

HEK293-MRPL45FLsil 

HEK293-MRPL45FLala 

HEK293-MRPL45FLΔ 

U2OS-OXA1L 

HEK293 Flp-In, HeLa, U2OS, U2OS Flp-In and 143B cells were grown in Dulbecco's 

Modified Eagle's medium (DMEM) containing 4500 mg/L glucose and 1 mM pyruvate  

Prepared during the project 
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(Sigma, cat no D6429) supplemented with 10% foetal calf serum (FCS, Gibco, cat no 

10270), 1x of non-essential amino acids (Sigma, cat no M7145) and 50 µg/mL of uridine 

(Sigma, cat no U3003). 143B ρ0 cells were cultured in the same medium supplemented 

with 200 ng/mL of filter-sterilised ethidium bromide (Sigma, cat no E1510). Transfected 

HEK293 Flp-In™ and U2OS Flp-In™ were maintained in media with addition of 10 µg/mL 

BlasticidinS (Melford, cat no B1105) every third feed. 

Cells were grown at 37°C with 5% CO2 in a humidified atmosphere. At 70-80% 

confluence, the media was removed and the cells were harvested with PBS (Sigma, cat no 

P4417) containing 1 mM EDTA (Sigma, cat no E5134). Primary and immortalised fibroblast 

were detached after incubation for 2 minutes at 37°C with 1x Trypsin (Sigma, cat no 

59427C) in PBS. The cells were centrifuged for 4 minutes at 280g, resuspended in fresh 

media and seeded at a density of 1 in 3 for fibroblast and 1 in 5 for HEK293, HeLa and 

U2OS cells.  

All the flasks used were manufactured by Greiner bio-one, whereas the plates were 

manufactured by Corning. 

2.1.2. Cell storage 

Cell lines were stored for later use. For every sample, a confluent 75 cm2 flask was 

harvested and the cell pellet was resuspended in FCS supplemented with 10% dimethyl 

sulfoxide (DMSO, Sigma, cat no D5879) in cryostorage vials. After 24 hours at -80°C in a 

cryo-box, the vial was transferred to the liquid nitrogen dewar for long term storage. 

2.1.3. Cell counting 

When needed, cells were counted with a haemocytometer (depth 0.1 mm, surface 1/400 

mm2). To exclude dead cells from the count, an aliquot of cells (10 µL) was diluted 1:1 with 

trypan blue (Sigma, cat no T8154), which dead cells are unable to pump out, turning them 

dark. The number of live cells per mL was obtained multiplying the number of counted cells 

for 2·104. 

2.1.4. Ethidium bromide treatment 

Depletion of mt-DNA was obtained by growing cells in supplemented media (qv 2.1.1) 

in presence of 250 ng/mL of ethidium bromide for 10 days. 

2.1.5. siRNA transfection 

Cells were transfected with siRNA in 6 well plates (Corning) for 3 days (reverse 

transfection) or 6 days (reverse transfection for 3 days, followed by forward transfection for 

other 3 days). 
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- Reverse transfection 

After pre-warming medium and Opti-MEM I + GlutaMAX-I (Gibco, cat no 51985), a 

mixture composed of 250 µL of Optimem, 2.5 µL of 20 µM siRNA and 2 µL of 

Lipofectamine™ RNAiMAX (Invitrogen, cat no 13778030) was prepared for each well from 

a 6-well plate that needs to be treated. The final siRNA concentration was 33 nM, unless 

differently stated. The mixture was incubated for 25 minutes at room temperature, then 

added to the wells and incubated for further 10 minutes. In the meantime, cells were 

harvested, counted and diluted so that 1.25 mL contained the desired amount of cells per 

well. In particular, 200,000 cells were seeded for every single well of a 6-well plate for a 3 

days transfection, whereas the number was lowered for a 6 days transfection to 100,000 

cells. The plate was then placed at 37°C with 5% CO2 for 3 days. After that, the media was 

removed and the cells were collected for further analysis or transfected again.  

- Forward transfection 

This procedure was used on adherent cells to extend the transfection for further 3 days. 

In an Eppendorf, 2 µL of Lipofectamine™ RNAiMAX were mixed with 15 µL of Optimem 

(for each well of a 6-well plate), and in another Eppendorf, 2.5 µL of 20 µM siRNA were 

mixed with 125 µL of Optimem I (for each well of a 6-well plate). Both the solutions were 

left to incubate for 10 minutes and then were mixed and left to incubate for another 25 

minutes. During this time, the old medium present in the wells was removed and 1.353 mL 

of new warm medium was added to each well. The cells were not detached. After the 

incubation, the solution of siRNA and lipofectamine was added to the well  (144.5 µL each). 

The final siRNA concentration was 33 nM. Everything was mixed by rocking the plate and 

then the cells were grown for other 3 days at 37°C with humidified 5% CO2. At the end the 

cells were harvested to perform further analysis. 

2.1.6. Stable transfection 

Genes of interest were inserted into engineered cells via the Flp-In™ system. Cells were 

plated in a 6-wells plate at approximately 30% confluence. On the following day, when the 

confluence of the cells will be approximately 60%, every well was incubated with 500 µL of 

DMEM lacking supplements (FCS, non-essential amino acids and uridine), but containing 0.8 

µg of pcDNA™5/FRT/TO (carrying the gene of interest) and 1.2 µg of pOG44 premixed with 10 

µL of Superfect (Qiagen, cat no 301305), as per manufacturer’s instructions. As a control for the 

following antibiotic selection, one well was left untreated and incubated with media. After 1 hour 

of incubation at 37°C with 5% CO2, the mixture of plasmids and Superfect was replaced with 

supplemented growth media and the cells were then grown for one day. After that 100 µg/mL 

HygromycinB (Sigma, cat no. H9773) and 10 µg/mL BlasticidinS were added to supplemented 

growth media to every well, in order to select the successfully transfected clones. Once no cells 
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were left in the control well, individual clones were picked and expanded in a new well. Protein 

overexpression was induced by adding to the media 1 µg/mL tetracycline (Sigma, cat no T7660) 

and then verified via western blot analysis.   

When Viafect (Promega, cat no E4983) was used instead of Superfect to carry out the 

transfection, the cells were left in the mixture containing the two plasmids and the transfecting 

reagent for 24 hours. After that, the media containing the selective antibiotics was added to carry 

out the selection. 

The clones were cultured in supplemented media with addition of 10 µg/mL BlasticidinS every 

third feed. 

2.2. Bacteria culture 

2.2.1. Propagation and storage 

Chemically competent cells (α-select Bioline, cat no BIO-85025) were used in cloning 

experiments. The cells had the following genotype:  

F- deoR endA1 recA1 relA1 gyrA96 hsdR17(rk-,mk+) supE44 thi-1 phoA Δ(lacZYA-

argF)U169 Φ80lacZΔM15 λ-). 

Cells were grown at 37°C in liquid LB media containing the appropriate antibiotic and 

prepared as follows. The pH of the solution was brought 7.5 and then autoclaved before use. 

For plates 3% agar (BD, cat no 214010) was added to the liquid LB media (LB-agar) prior 

autoclaving.  

Table 2.1 LB media components. 

Reagents Final concentration 

Bacto-tryptone (BD, cat no 211705) 

Yeast extract (BD, cat no 212750) 

NaCl (Sigma, cat no S7653) 

NaOH (Sigma, cat no S5881) 

1% w/v 

0.5% w/v 

1% w/v 

Until pH 7.5 

Transformed strains were stored in glycerol stocks. When needed, a small amount of 

frozen glycerol stock was scraped, plated on LB-agar and let grow overnight at 37°C. 

Glycerol stocks were prepared resuspending the cells in LB media supplemented with 

18% glycerol and then stored at -80°C for future use. 

2.2.2. Transformation 

Heat shock was used to transform chemically competent cells (Bioline, cat no BIO-85025) 

with the desired plasmid. Aliquots of competent cells (40 µL) were thawed on ice and then 
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incubated on ice with 4 µL of ligation mixture (qv 2.3.9.) or 10 ng of plasmid DNA for 30 minutes. 

The suspension was then placed at 42°C for 45 seconds and placed on ice for the following 2 

minutes. After the heat-shock, 900 µL of SOC media (Table 2.2A) were added and the cells 

were incubated at 37°C for 1 hour with shaking. At the end of the incubation, the suspension 

was centrifuged at 15,700 g for 1 minute. The pellet of cells was resuspended in 100 µL of fresh 

SOC media, plated on LB agar with the appropriate antibiotic (Table 2.2B) and incubated 

inverted overnight at 37°C. 

Table 2.2 Composition of SOC media used during transformation (A) and 
concentration of antibiotics used during the selection (B). 

Reagents Final concentration 

Bacto tryptone 

Yeast extract 

NaCl 

KCl (VWR, cat no 26764.260) 

MgCl2 (Sigma, cat no M8266) 

Glucose (BDH, cat no 10117) 

NaOH 

2% w/v 

0.5% w/v 

0.05% w/v 

2.5 mM 

10 mM 

20 mM 

Until pH 7.0 

  

Antibiotic Final concentration 

Ampicillin 

Kanamycin 

100 µg/mL 

50 µg/mL 

2.2.3. Isolation of plasmid DNA   

The cells containing the plasmid were plated on LB agar (Table 2.1) with the appropriate 

antibiotic and grown at 37ºC overnight. The following day, single colonies were picked and 

expanded overnight at 37ºC in 5 mL of LB media (Table 2.1) supplemented with  the 

appropriate antibiotic. Cells were pelleted and the plasmid was extracted following the 

protocol of the GeneJET™ Plasmid Miniprep kit (Thermo Scientific).  

2.3. DNA manipulations 

2.3.1. DNA isolation from human cells 

Cells were harvested and resuspended in 400 µL of 10 mM Tris (Sigma, cat no T1503) pH 

7.4 supplemented with 1 mM EDTA. SDS (Sigma, cat no L3771) and proteinase K (Roche, cat 

no 25530) were added at a final concentration of 1% and 20 mg/mL respectively. The sample 

was then incubated overnight at 37ºC. DNA was extracted via phenol extraction and then 

precipitated with ethanol (qv 2.3.5.). 

A 

 

A

) 

B 

 

B

) 
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2.3.2. DNA electrophoresis 

Gel electrophoresis was used throughout the cloning procedure to analyse the quality of 

samples or the success of reactions. Usually, gels were prepared at 1.2% of agarose (Bioline, 

cat no BIO41025), in 1xTAE buffer (Table 2.3A). The solution was warmed until the agarose 

was completely melted and, after the addition of 0.05 µL/mL of ethidium bromide, the gel was 

poured and left to solidify. 

Table 2.3 Composition of 1xTAE buffer (A) and 6x DNA Loading dye (B). 

Reagents Final concentration 

Tris base 

Glacial acetic acid (VWR, cat no 20104.367) 

EDTA 

40 mM 

0.114% v/v 

0.1 mM 

 

Reagents Final concentration 

Glycerol (Sigma, cat no G5516) 

Bromophenol blue (Sigma, cat no B5525) 

Xylene cyanol (Sigma, cat no X4126) 

50% 

0.125% 

0.125% 

The DNA samples to analyse were mixed with loading dye (Table 2.3B, 1x final 

concentration) and then loaded on the agarose gel, together with 3 µL of 1 kb marker ( Invitrogen, 

cat no 15615). The gel was then electrophoresed at 55-60 V (for a 30 mL gel) or 70-80 V (for a 

50 mL gel) for approximately 1 hour, or until the samples were separated as required. After that, 

the bands were visualized using the Chemi Doc™ MP Imaging System (Bio-Rad®). 

2.3.3. DNA amplification via polymerase chain reaction 

Defined DNA regions were amplified using PCR. The technique was mainly used to prepare 

inserts for cloning of genes of interest within plasmids. A complete list of the primers used is 

reported in Appendix 5. The cDNA obtained for reverse transcription from RNA extracted from 

HEK293 WT cells (qv 2.4.2.) was used as a template for the PCRs. The reactions were carried 

out in the PTC200 PCR Thermal Cycler (MJ Research), using 500 µL thin-wall tubes with the 

proof-reading KOD Hotstart DNA Polymerase (Merk Millipore, cat no 71086) in the mixture 

reported in Table 2.4. 

 

 

 

 

 

A 

 

A
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Table 2.4 PCR reaction mixture. 

Reagents 
Final 

concentration 

Volume for 1 tube 

dH2O 

10x KOD Hotstart Buffer 

25 mM MgSO4 

2 mM dNTPs 

50 µM Sense Primer 

50 µM Anti-sense Primer 

1 U/µL KOD Hotstart DNA polymerase 

cDNA 

/ 

1x 

1 mM 

0.2 mM 

1 µM 

1 µM 

1U 

/ 

 

32 µL 

5 µL 

5 µL 

5 µL 

1 µL 

1 µL 

1 µL 

2 µL 

50 µL total 

The conditions used for the PCR reactions are reported in the following table. The annealing 

temperature used for every reaction took into consideration the melting temperature of the 

primers (reported in Appendix 5). Extension times were dependent upon the length of the 

product. The sequence of denaturation-annealing-extension cycle was repeated 30 times. 

Table 2.5 PCR reaction conditions used for KED Hotstart DNA polymerase 

on PTC200 PCR Thermal Cycler. 

Reaction Temperature Time 

Initial denaturation 

Denaturation 

Annealing 

Extension 

Final extension 

95ºC 

95ºC 

variable * 

70ºC 

72ºC 

3 min 

1 min 

1 min 

1 min 

5 min 

The PCR reaction was resolved on a 1.2% agarose gel (qv 2.3.2.) to confirm the success of 

the reaction. The desired product was isolated by excision of the band and the DNA was 

extracted with the QIAquick® Gel Extraction Kit (Qiagen, cat no 28704) as per manufacturer’s 

instructions. 

2.3.4. Real-time PCR 

The RNA content of cell samples was estimated with real-time PCR. RNA was reverse 

transcribed to cDNA (qv 2.4.2.) and every real-time PCR was prepared as shown in the following 

table. Triplicates for every pair of primers used were prepared. To exclude DNA contaminations, 

a reaction without DNA was also performed. 

 

X 30 

 

X 30 
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Table 2.6 Real time reaction mixture. 

Components 
Volume per 

reaction 

2x FastStart SYBR Green Master (Roche, cat no 04673484001) 

Nuclease-free water 

10 µM Forward primer 

10 µM Reverse primer  

DNA from reverse transcription or from 5 µg/µL stock 

10 µL 

6 µL 

1 µL 

1 µL 

2 µL 

The list of primers used is reported in the Appendix 5. All the primers used were validated 

personally or in the laboratory. The reactions were sun on the LightCycler® Nano (Roche), using 

the following program (set up by Christie Waddington): 

Table 2.7 Conditions of real time reaction. 

Temperature Time Ramp 

95ºC 

95ºC 

60ºC 

72ºC 

65ºC 

95ºC 

10 min 

10 sec 

10 sec 

15 sec 

50 sec 

15 sec 

5 

5 

4 

5 

4 

0.1 

The program will elaborate the data and calculate the Ct (Cycle threshold) value of every 

sample. This number is equivalent to the cycles needed for the fluorescent signal to cross the 

background fluorescence level and correlates to the amount of targeted DNA in the sample. The 

ΔΔCt method was used to analyse the results obtained for RNA species. This method allows 

the upregulation or the downregulation of a species of interest to be evaluated. As a 

consequence, when testing any condition (e.g. overexpression, siRNA knockdown, etc), a 

control condition (e.g. uninduced cells, transfection with NT-siRNA) is needed. For every 

condition, the amount of the ribosomal RNA 18S (‘reference’) was quantified and used to 

normalise the level of the RNA of interest (‘target’). The average of every triplicate was 

calculated and then used in the following calculations: 

ΔCt (Condition) = ΔCt (ConditionTarget) – ΔCt (ConditionReference) 

ΔCt (Control) = ΔCt (ControlTarget) - ΔCt (ControlReference) 

ΔΔCt = ΔCt (Condition) - ΔCt (Control) 

Difference in fold for the target between the condition tested and the control= 2 -ΔΔCt 

The calculations were repeated for every target RNA measured. The values obtained in the 

last calculation were used in a bar graph to represent the data acquired. 

X 45 

 

X 30 
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2.3.5. Phenol extraction and ethanol precipitation of DNA 

PCR products, plasmids and whole cell DNA were purified following this protocol. Each 

sample was diluted up to 50 µL with nuclease-free water and an equal volume (50 µL) of buffer 

equilibrated phenol (Sigma, cat no P4557) was added. The sample was vortexed and then 

centrifuged at 15,700 g for 2 minutes at room temperature. The upper aqueous layer was 

retained and mixed with 25 µL of phenol and 25 µL of chloroform (Sigma, cat no C2432). After 

vortexing and centrifugation as in the previous step, the upper aqueous layer was saved. 

Following the addition of 50 µL of chloroform, the sample was vortexed and centrifuged one 

more time. Finally, the resulting upper aqueous layer was diluted with 2 volumes of cold ethanol 

(Fisher Chemicals, cat no BP2818) and 0.1 volumes 3M CH3COONa (BDH, cat no 102355P) at 

pH 5. The sample was frozen at -80°C for 2 hours, and the DNA precipitated was centrifuged 

for 10 minutes at 15,700g. The pellet was air dried and resuspended in 20  µL of nuclease free 

water. 

2.3.6. DNA purification 

In order to buffer-exchange the DNA sample after the gel or phenol-chloroform extraction, 

this was dialysed against a solidified solution composed of 1% agarose and 100 mM glucose  in 

water for 90 minutes on ice. 

2.3.7. DNA digestion 

The plasmid (≈ 3 µg) and the insert (≈ 1 µg) were digested with the appropriate restriction 

enzyme and reaction buffer (Table 2.8). The reaction was incubated at 37ºC for 90 minutes. 

When the plasmid was digested, 1 µL of the solution was analysed on a 1.2% agarose gel to 

verify the success of the digestion. 

Table 2.8 Restriction enzymes relative buffers used to digest DNA samples.  

Restriction enzyme 10x Buffer 

AflII (NEB, cat no R0520) 

BamHI (Roche, cat no BAMHI-RO) 

BssHII (NEB, cat no R0199) 

HindIII (Roche, HINDIII-RO) 

KpnI (Roche, cat no KPNI-RO) 

NotI (NEB, cat no R0189) 

NEB4 

Roche M 

NEB3 

Roche M 

Roche L 

NEB3 

2.3.8. DNA dephosphorylation 

In order to avoid the self-religation of the plasmid, its 5’-ends were dephosphorylated. A 

volume of digested plasmid (20 µL) was mixed with 1 µL of 10% SDS, 3.5 µL of 1 M Tris pH 9 
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and 1 µL of alkaline phosphatase (Sigma, cat no APMB-RO). The reaction was incubated at 

37°C for 30 minutes and then at 50°C for further 30 minutes. 

2.3.9. Ligation 

The insert was ligated into digested and dephosphorylated vector using the Rapid DNA 

Ligation Kit (Thermo Scientific, cat no K1422). The following equation was used to calculate the 

amount of insert to use in the ligation reaction: 

(ng of vector × kb size of insert)

(kb size of vector)
× 3 = ng of insert 

The ligation mixture was prepared as in Table 2.9 and incubated at room temperature for 30 

minutes. At the end of the reaction, the mixture was transformed into competent cells (qv 2.2.2.) 

or frozen for future use. 

Table 2.9 Ligation mixture (Rapid DNA Ligation Kit, Thermo scientific). 

Ligation mixture 

50 ng vector 

x ng insert 

4 µL 5X ligation buffer 

1 µL DNA ligase 

dH2O up to 20 µL 

2.3.10. Colony screening and DNA sequencing 

It is possible that during the ligation step the plasmid will recircularise on itself, without 

integrating the insert. After transformation of competent cells (qv 2.2.2.) it was, therefore, 

fundamental to identify colonies successfully transformed with the plasmid containing the insert.  

For a quick screening of colonies, the cracking-gel technique was used. Individual colonies 

obtained from the transformation were expanded of fresh LB-agar plates overnight at 37°C. Half 

of each colony was then transferred to an Eppendorf and cells were disrupted in 20 µL of 

cracking buffer (Table 2.10). 

Table 2.10 Cracking buffer composition. 

Reagents Final concentration 

NaOH 

SDS 

EDTA 

50 mM 

0.5% 

5 mM 
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The samples were incubated at 55°C for 30 minutes and then vortexed for 1 minute. The 

samples were then mixed with loading dye and analysed via DNA electrophoresis (qv 2.3.2.). 

The gel was then visualised at the ChemiDoc to assess the migration of the plasmid contained 

in each colony. 

As an alternative, the presence of the insert was verified via PCR. Individual colonies were 

spread on LB agar plates and grown overnight at 37°C. After that, half of each colony was 

harvested, dissociated with 40 µL of 10% Triton X-100 (Sigma, cat no T8787) and frozen at           

-20°C for 30 minutes. The cells were then thawed and centrifuged at 15,700 g for 1 minute. The 

resulting supernatant was used as template for a PCR reaction to assess the presence of the 

insert. The plasmid pcDNA5/FRT/TO was used for all the cloning reactions presented in this 

work. To detect the presence of the insert, the multiple cloning site was amplified using primers 

for CMV and BGH sequences, which flank at either side of this site. The reaction was performed 

with DreamTaq™ Polymerase (Thermo Scientific, cat no EP0701) with the following conditions:  

Table 2.11 Components (A) and conditions (B) for the amplification of the multiple cloning 
site of pcDNA5/FRT/TO, to identify the presence of the insert. 

Reagents 
Final 

concentration 

Volume for each 

reaction 

Nuclease-free water 

10x DreamTaq™ Buffer 

10 mM dNTPs 

50 µM CMV primer 

50 µM BGH primer 

5 U/µL DreamTaq Polymerase 

DNA 

/ 

1x 

0.2 mM 

1 µL 

1 µL 

1U 

/ 

19.575 µL 

2.5 µL 

0.5 µL 

0.5 µL 

0.5 µL 

0.125 µL 

1.3 µL 

25 µL tot. 

 

  

  

Reaction Degrees Time 

Initial denaturation 

Denaturation 

Annealing 

Extension 

Final extension 

95ºC 

95ºC 

52ºC 

72ºC 

72ºC 

3 min 

1 min 

1 min 

1 min 

8 min 

The presence of the insert was verified by loading 5 µL of each reaction on a 1.2% agarose 

gel. In presence of the insert, a higher molecular weight band will be detected.  

If a single restriction enzyme was used to prepare a fragment to insert within the plasmid, 

the orientation of the insert post ligation needed to be checked. For this purpose, a diagnostic 

digestion was performed. This technique consists of the digestion of the construct with a 

X 34 

 

X 34 

A 

B 
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restriction enzyme that cuts both the insert and the plasmid once only. Through the analysis of 

the size of the fragments obtained by this digestion, it was possible to verify the orientation of 

the fragment. As a control, the plasmid was also linearized by digestion with a restriction enzyme 

that performs a single cut in the construct. The products of the digestion were analysed on a 

1.2% agarose gel. Details for the diagnostic digestion performed in this study can be found in 

the results sections. 

Once the orientation of the insert was confirmed, the multiple cloning site of the plasmid was 

sequenced to exclude the presence of undesired mutations and to further confirm the identity of 

the insert. For this purpose, the BigDye Terminator v3.1 Cycle Sequencing Kit (Life 

Technologies, cat no 4337455) was used. Two reactions, each containing 450 ng of plasmid, 

were set up. One reaction contained the CMV forward primer, whereas the other contained the 

BGH reverse primer. The reactions and the condition used are reported in the following tables:  

Table 2.12 DNA sequencing reaction (A) and conditions (B) with BigDye Terminator v3.1 

Cycle Sequencing Kit. 

Sequencing reaction mixture    Reaction Degrees Time 

450 ng plasmid 

3 µL 5X sequencing buffer  

3 µL Big Dyes v3.1 

dH2O to 15 µL 

 Initial denaturation 

Denaturation 

Annealing 

Extension 

95ºC 

95ºC 

50ºC 

60ºC 

5 min 

30 sec 

10 sec 

4 min 

At the end of the reaction, the sample was stored at -20°C or sequenced with 3130xl Genetic 

Analyzer (Applied Biosystems). 

The sequence resulting from the analysis was then aligned with the target sequence using 

the online alignment tool BLAST® (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and translated using 

ExPASy (http://web.expasy.org/translate/). 

2.3.11. Preparation of the insert using PCR-script 

When problems in obtaining positive colonies were present, the PCR-script Amp Cloning Kit 

(Stratagene, cat no 211188) was used to prepare the insert.  

The PCR product (insert) was ligated in the pPCRscript Amp SK(+) plasmid incubating the 

mixture in Table 2.13 at room temperature for 1 hour.  
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Table 2.13 Reaction mixture for insert ligation in pPCR-script cloning vector.  

Reagents 
Final 

concentration 
Volume for 1 tube  

10 ng/µL pPCR-script cloning vector  

10x PCR-script reaction Buffer 

10 mM rATP 

Insert 

5 U/µL Sfr I restriction enzyme 

4 U/µL T4 DNA ligase 

dH20 

10 ng 

1x 

1 mM 

/ 

5 U 

4 U 

/ 

1 µL 

1 µL 

0.5 µL 

2-4 µL 

1 µL 

1 µL 

Up to 10 µL 

The solution was heated for 10 minutes at 65°C and the mixture was then used to transform 

competent cells (qv 2.2.2.). The colonies obtained were spread on new LB plates containing 

100 μg/mL of ampicillin and screened on a cracking gel (qv 2.3.10.). The positive colonies were 

grown O/N at 37°C in 5 mL of LB media (containing 100 μg/mL of ampicillin) . The corresponding 

plasmids were extracted with GeneJET™ Plasmid Miniprep kit and then digested with the 

appropriate restriction enzyme. The product of the digestion was loaded on an agarose gel and 

the bands corresponding to the insert were then excised for DNA extraction. The product 

obtained was purified (qv 2.3.6.) and then ligated into the vector of interest (qv 2.3.9.). 

2.4. RNA manipulations 

To reduce the risk of degradation, all the solution used in RNA manipulation were prepared 

with water treated with 0.1% DEPC (Sigma, cat no D5758) and then autoclaved. 

2.4.1. RNA extraction 

Cells were harvested and washed in 1.5 mL of cold PBS. The pellet obtained after 5 minutes 

of centrifugation at 400 g at 4ºC was resuspended with 200 µL of TRIzol® reagent ( Thermo 

Scientific, cat no 15596) and incubated at room temperature for 5 minutes. Chloroform (40 µL) 

was added to the sample that was then vortexed for 15 seconds and incubated at room 

temperature for 3 minutes. After that, the sample was centrifuged at 12,000 g for 15 minutes at 

4ºC. The clear top layer contained the RNA and was carefully moved to a clean Eppendorf, 

avoiding contamination of TRIzol® and of the white DNA layer. Isopropanol (100 µL) was added 

to the solution and, after 10 minutes of incubation at room temperature, the sample was 

centrifuged at 12,000 g for 10 minutes at 4ºC. The centrifugation pelleted the RNA that was then 

rinsed in 1 mL of cold 75% ethanol. The ethanol was discarded and the pellet was let to air -dry 

for 10 minutes. The RNA was resuspended in DEPC water. The samples were stored at -80ºC. 

When the RNA to be extracted was from a liquid sample, TRIzol® LS reagent (Thermo 

Scientific, cat no 10296) was used, following the same protocol stated above.  
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When the amount of RNA to extract was very small, this was co-precipitated with 1 µL of 

Glycoblue® (Invitrogen, cat no AM9516) or 10% glycogen (Ambion, cat no AM9510). This was 

added to the clear top layer obtained from the first centrifugation step, prior addition of 

isopropanol. 

2.4.2. Reverse transcription 

The cDNA was obtained by reverse transcription from RNA. The reaction was carried out 

with Superscript®III Reverse Transcriptase kit (Life Technologies). Annealing reaction and 

master mix were prepared as follows: 

Table 2.14 Annealing reaction and Master mix reaction for reverse transcription. 

Annealing reaction Master mix 

5 µg RNA 

50 pmol random hexamers  

(Gibco BRL, cat no 51709) 

DEPC H2O up to 12 µL 

2 µL 10x RT buffer 

2 µL 25 mM MgCl2 

2 µL 0.1 mM DTT (Sigma, cat no D0632) 

1 µL 10 mM dNTP mix (Bioline, cat no BIO-39044) 

The annealing reaction was heated at 70ºC for 10 minutes, and then mixed with the master 

mix. After addition of 1 µL of enzyme, the solution obtained was incubated at 42ºC for 50 

minutes. Finally, the temperature was raised to 70ºC for 15 minutes, to denature the enzyme. 

The samples obtained were used to prepare inserts for cloning or analysed via qPCR. 

2.5. Protein manipulations 

2.5.1. Preparation of cell lysate 

Lysis buffer (15 µL, Table 2.15) was added to each sample for every 5-10 mg of wet weight 

cells to resuspend the sample. The suspension was then vortexed for 30 seconds  and 

centrifuged at 4ºC for 4 minutes at 800g. The supernatant was transferred in a clean Eppendorf 

and after determination of protein concentration, was used for western blot analysis. 

Table 2.15 Cell lysis buffer composition 

Reagents 
Final 

concentration 

Tris pH 7.5  

NaCl  

MgCl2  

PMSF (AppliChem, cat no A0999) 

NP-40 (Sigma, cat no N6507) 

EDTA-free protease inhibitor (Pierce, cat no 88666) 

50 mM 

130 mM 

2 mM 

1 mM 

1% (v/v) 

1 tablet for 10 mL 
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In rare cases, the lysate was viscous, because of the presence of genomic DNA. To solve 

this issue, benzonase, a DNase/RNase (Millipore, cat no 70746) was added after protein 

quantification (qv 2.5.2.). The enzyme was diluted 1/10 and 1 µL was added to the sample and 

the reaction was incubated at 37°C for 20 minutes. 

2.5.2. Protein quantification 

The protein content of samples was assessed using the Bradford assay. A standard curve 

obtained with bovine serum albumin (BSA - Sigma, cat no A2153) was used as a reference and 

was prepared as shown in the following table:  

Table 2.16 Standard curve with BSA for Bradford assay. 

BSA (1 µg/µL) Water 
Bradford reagent 

(Biorad, cat no 500-0006) 

0 µL 

2 µL 

5 µL 

10 µL 

15 µL 

20 µL 

800 µL 

798 µL 

795 µL 

790 µL 

785 µL 

780 µL 

200 µL 

200 µL 

200 µL 

200 µL 

200 µL 

200 µL 

A specific volume of sample (usually 1 or 2 µL) was diluted with water up to 800 µL and then 

mixed with 200 µL of Bradford reagent. Every point of the standard curve and every sample 

were prepared in duplicate. Aliquots of 200 µL of each sample were loaded on a 96 -well plate 

that was analysed at 595 nm using SpectraMax M5 (Molecular devices) to determine the 

absorbance of the samples, from which the concentration was inferred.  

2.5.3. TCA protein precipitation 

When more concentrated samples were needed, proteins were precipitated by addition of an 

equal volume of 20% trichloroacetic acid (TCA) (Sigma, cat no T9159). After 30 minutes of 

incubation on ice, the samples were centrifuged for 15 minutes at 15,700 g and the pellets 

obtained were washed 3 times with 200 µL of cold acetone. The final pellets were resuspended 

in the appropriate buffer and the solubilisation of the sample was aided with the addition of 1% 

SDS, and heating up the solution at 50°C for 30 minutes. 

2.5.4. SDS-PAGE 

Proteins were separated according to their molecular weight on denaturing 12% acrylamide 

resolving gel. Resolving and stacking gels were prepared prior to the analyses as reported in 

Table 2.17 B and C. The resolving gel was poured in between the 2 glass plates. Once this was 
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polymerised, the stacking gel was poured on top and the comb was inserted to create the wells 

for loading the samples. Samples were prepared adding Laemmli sample buffer (Table 2.17A) 

and were denaturated at 95°C for 3 minutes. 

Table 2.17 Composition of 5x Laemmli sample buffer (A), Resolving gel (B) and Stacking 
gel (C) for SDS-page analysis. 

Reagent Final concentration 

Tris pH  

6.8  

Glycerol (Sigma, cat no G3516) 

SDS  

Bromophenol blue (Sigma, cat no B5525) 

DTT  

312.5 mM 

50% 

10% 

0.05% 

 

Added fresh, 100 mM final in the sample  

 

Reagent 
Final 

concentration 

Tris pH 8.5  

30% acrylamide-bisacrylamide 29:1 (NBS Bio Logical, cat no NBS2600-05) 

SDS  

APS (Sigma, cat no A3678) 

Temed (Sigma, cat no T22500) 

380 mM 

12% 

0.1% 

0.1% 

0.1% 

 

Reagent Final concentration 

Tris pH 6.8  

30% acrylamide-bisacrylamide 29:1 

SDS  

APS  

Temed  

125 mM 

3.75% 

0.1% 

0.1% 

0.1% 

The system for the SDS-PAGE was built and 1x running buffer (Table 2.18) was added to 

the tank until the correct level was reached. The samples were carefully loaded on the gel and, 

together with them, 4 µL of Spectra™ Multicolour Broad Range Ladder  (Thermo Scientific, cat 

no 26634) or 1.5 µL of BLUE Wide Range recombinant protein marker  (Clever Scientific, cat no 

CSL-BBL) were also loaded and used as size markers. 

The gel was run initially at 100V, until the samples reached the resolving gel. After that, the 

voltage was incremented to 150V for approximately 1 hour in 1x running in the Mini-PROTEAN® 

Tetra Cell (Biorad). 

 

A 

B 

C 
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Table 2.18 Running buffer (1x) composition. 

Reagent Final concentration 

Tris base  

Glycine (Sigma, cat no G7126) 

SDS 

25 mM 

192 mM 

0.1% 

2.5.5. Western blotting 

After the SDS-PAGE analysis, the proteins were transferred from the acrylamide gel to the 

Immobilon®-P PVDF membrane (Millipore, cat no IPVH00010) using the Mini-PROTEAN® 

Tetra Cell system (Biorad). The membrane was activated in methanol, rinsed in water and 1x 

transfer buffer (Table 2.19A). The transfer unit, containing membrane and gel, was assembled, 

immersed in 1x transfer buffer and exposed to 100V for 1 hour. At the end of the process, the 

membrane was incubated with 20 mL of 5% non-fat dried milk in T-TBS (Table 2.19B) for 1 hour 

(blocking) and then incubated overnight at 4°C with the primary antibody (in 5% milk T -TBS). 

The list of the primary antibodies used is reported in the Appendix 2. 

Table 2.19 Composition of 1x transfer buffer (A) and T-TBS (B). 

Reagent Final concentration 

Tris base 

Glycine 

SDS 

Methanol (Fisher Chemicals, cat no A412) 

25 mM 

192 mM 

0.02% 

15% 

 

Reagent Final concentration 

Tris base 

NaCl 

Tween® 20 (Sigma, cat no P2287) 

 

20 mM 

150 mM 

0.1% 

pH 7.4 

Following ~16 hours incubation, the membrane was washed 3 times in T -TBS for 5 minutes 

and then incubated with the appropriate secondary antibody (Appendix 2) for 1 hour at room 

temperature. 

The membrane was washed 3 times in T-TBS for 5 minutes and then detected with Chemi 

Doc™ MP system after 5 minutes of incubation with ECL prime (GE healthcare biosciences, cat 

no RPN2232) or ECL+ (Thermo Scientific, cat no 32106). If necessary, after an extended wash, 

the membrane was probed again with a different primary antibody, following the same protocol 

just described. The data were collected were analysed with the software Imagelab (Biorad). 

A 

 

A) 

B 

Reagent Final 

concentration 

Tris 

base 

NaCl 

Tween 

20 

DW 

 

20 mM 

150 mM 

0.1% 

/ 

 pH 7.4 

 

B) 
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The molecular weight of the signal detected by every antibody was compared to the protein 

ladder to confirm the identity its correspondence to the molecular weight of the targeted protein. 

The protein ladder will be omitted in the figures presented in this thesis.  

When needed, the quantification of the bands was performed. For every protein detected, a 

box was drawn around the band using the rectangle tool from the ‘Volume tools’ menu. Another 

box of the same size was drawn in an empty part of the blot to subtract the background. The 

values (‘volume’) calculated by the program for every box was found in the ‘Analysis table’  

option. The final value of the band was obtained by difference of the protein signal with the 

background. Once these values were calculated for a housekeeping gene (β-Actin, Porin, 

SDH70, TOM20, etc.), the values obtained for other proteins were normalised according to the 

quality of the loading. The results were shown as percentages of the control condition using bar 

graphs. 

2.5.6. Silver staining 

Protein samples can be visualised with a high sensitivity by silver staining. After the samples 

were resolved via SDS-PAGE (qv 2.5.4.), the polyacrylamide gel was washed for 1 hour in 50% 

methanol. Meanwhile, the staining solution was prepared by adding drops of 0.2 g/mL silver 

nitrate solution (Sigma, cat no S6506) to a conical flask containing water, 0.075% NaOH and 

1.4% NH4OH, until the solution lost its transparency. The gel was incubated with the staining 

solution for 15 minutes at room temperature and then washed with water 3 times for 5 minutes. 

The developer solution (Table 2.20A) was added to the gel until the desired intensity was 

achieved. The solution was then discarded and replaced with the stop solution (Table 2.20B). 

The gel was finally rinsed in water and imaged at the ChemiDoc system. 

Table 2.20 Composition of developer solution (A) and stop solution (B) for silver 
staining. 

Reagents Final concentration 

Citric acid (Sigma, cat no C2404) 

Formaldehyde 

0.005% 

0.05% 

 

Reagents Final concentration 

Methanol 

Acetic acid 

45% 

10% 

2.6. Isolation of mitochondria 

Cells were harvested and resuspended in 1.4 mL of homogenisation buffer (Table 2. 21) 

supplemented with 0.1% of BSA and 1 mM PMSF. All the steps were performed on ice, using 

pre-chilled tubes and centrifuging the samples at 4°C. 

A 

 

A

) 
B 

Reagent Final 

concentration 

Tris 

base 

NaCl 

Tween 

20 

DW 

 

20 mM 

150 mM 

0.1% 

/ 

 pH 7.4 
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Table 2.21 Homogenisation buffer composition. 

Reagents Final concentration 

Tris pH 7.4  

Mannitol (Sigma, cat no M4125) 

EGTA (Sigma, cat no E4378) 

10 mM 

0.6 M 

1 mM 

In order to obtain a mitochondria-enriched fraction, the cells were homogenised and then 

centrifuged at 400 g for 10 minutes. This step was performed 3 times on the same pellet, saving 

the supernatant obtained for every homogenisation. The supernatants were then centrifuged at 

400 g for 5 minutes, in order to remove contamination from the previous pellet. The centrifugation 

of the resulting supernatant at 11,000 g for 10 minutes led to a pellet that represented a fraction  

enriched in mitochondria, and a supernatant contained the cytosolic proteins (which was often 

saved for Western blot analysis).  

The mitochondria-enriched fraction was washed twice with homogenization buffer containing 

1 mM PMSF (but without BSA), and then resuspended in the 100 µL of the same buffer. 

2.7. Mitochondrial sub-fractionation 

Mitochondria were extracted (qv 2.6.) and the protein content was quantified (qv 2.5.2.). A 

sample of 600 µg of proteins was diluted up to 300 µL with homogenization buffer (Ta ble 2.21). 

A volume of this solution (12.5 µL) was used to prepare a sample for western blot analysis, while 

the rest was diluted by adding 2.5 mL of 10 mM Tris/1 mM EDTA. The solution obtained was 

centrifuged at 11,000 g for 10 minutes at 4ºC and then the pellet was resuspended in the same 

volume of the previous Tris buffer. The sample was halved and 1.44 µg of proteinase K was 

added to one half of the suspension. Both halves of the sample were left on ice for 30 minutes.  

After the incubation, 1 mM of PMSF was added and the samples were centrifuged at 11,000 

g for 10 minutes at 4ºC. The pellets were washed twice with 1 mL of 10 mM Tris/1 mM EDTA and 

then resuspended with 137.4 µL of homogenization buffer. A volume of 12.5 µL for each sample 

was saved for a western blot analysis. The sample obtained in absence of proteinase K 

represented mitoplasts, while the one incubated with this enzyme represented the shaved 

mitoplasts. 

The sample digested with proteinase K was washed with 1.262 mL of homogenization buffer. 

The pellet obtained after centrifugation at 12,000 g for 10 minutes at 4ºC was resuspended with 

2.6 mL of 100 mM Na2CO3 (Sigma, cat no S7795) and incubated for 30 minutes on ice. 

Subsequently, the sample was centrifuged in the Optima™ TLX Ultracentrifuge (Beckman) (rotor 

TLA120.2) for 15 minutes at 53,000 rpm (122,000 g) and 4ºC. The supernatant was discarded, 

whereas the pellet was resuspended in 80 µL of homogenization buffer. Finally, 12.5 µL of the 

sample were saved for a western blot analysis. 
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2.8. Isokinetic sucrose gradient 

This technique was used to separate cellular components in different layers according to their 

density and dimension. The experiment was carried out in an ultracentrifuge tube ( Beckman 

Coulter, cat no 343778) containing a gradient with an increasing concentration of sucrose from 

the top to the bottom of the tube. The gradient was prepared mixing the sucrose gradient buffer 

(Table 2.22) with sucrose to obtain a 10% and a 30% sucrose solutions. A syringe was used to 

add first 0.5 mL of 10% sucrose solution at the bottom of the ultracentrifuge tube and then to add 

0.5 mL of 30% sucrose solution at the bottom of the first layer. The gradient was created with the 

107 Gradient Master Ip (BioComp) using the built-in setting ‘TLS55, short sucrose 10%-30%, 55 

seconds’ and then placed in the cold room for 45-60 minutes. 

Table 2.22 Sucrose gradient buffer. 

Reagents Final concentration 

Tris pH 7.2  

MgAcetate (Sigma, cat no M5661) 

NH4Cl (Sigma, cat no A9434) 

KCl  

PMSF 

Chloramphenicol (Duchefa Bioch, cat no C0113.0025) 

50 mM 

10 mM 

40 mM 

100 mM 

1 mM 

50 µg/mL 

Cell lysate (100 µL at 7-8 µg/µL) was carefully added at the top of the gradient and the tube 

was centrifuged in the Optima™ TLX Ultracentrifuge (rotor TLS 55) at 39,000 rpm (100,000 g) for 

2 hours and 15 minutes at 4°C. At the end of the process, 100 µL fractions were collected from 

the top of the gradient and stored at -20°C for further analysis. Generally, 10 µL from each fraction 

were used for Western blot analysis. 

2.9. Immunoprecipitation 

Cells were harvested, mitochondria were extracted (qv 2.6.) and lysed in 500 µL of the 

following buffer for 30 minutes at 4°C on a rotating wheel. 

Table 2.23 Immunoprecipitation lysis buffer composition. 

Reagents Final concentration 

Tris pH 7.4 

NaCl 

EDTA 

Triton X-100 

EDTA-free protease inhibitor 

PMSF 

MgCl2 

RiboSafe (Bioline, cat no BIO-65028) 

50 mM 

150 mM 

1 mM 

1% 

1x 

1 mM 

10 mM 

1.5 µL 
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In the case where a FLAG-tagged protein was immunoprecipitated, the FLAG® 

Immunoprecipitation kit (Sigma, cat no FLAGIPT1-1KT) was used. Packed beads (20 µL) were 

washed 3 times with 500 µL of wash buffer (Table 2.24), pelleting the beads by centrifugation at 

6,000 g for 30 seconds at 4°C, and being careful to not discard the beads. 

Table 2.24 Immunoprecipitation wash buffer. 

Reagents Final concentration 

Tris pH 7.4 

NaCl 

Protease inhibitor 

PMSF 

MgCl2 

RiboSafe  

50 mM 

130 mM 

1x 

1 mM 

10 mM 

2.5 µL 

When the lysis was complete, the suspension was centrifuged at 12,000 g for 10 minutes at  

4°C to eliminate unbroken mitochondria. The protein concentration was checked by Bradford 

assay (qv 2.5.2.). A sample of 15 µg of mitochondria lysate was saved for western blot analysis. 

Up to 3 mg of protein were added to the beads in a final volume of 500 µL. The sample was then 

incubated on the rotating wheel for 2 hours at 4°C. At the end of the incubation, the sample was 

centrifuged at 6,000 g for 30 seconds at 4°C. The supernatant represents the unbound proteins 

and was saved for further analysis.  

Finally, the beads were washed 3 times as previously performed. The bound proteins were 

eluted either with incubation with 110 µL of wash buffer with 250 µg/mL of 3x F LAG peptide 

(Sigma, cat no F4799) for 45 minutes at 4°C with shaking, or incubating the sample with 1x sample 

buffer (Table 2.17A) at 95°C for 3 minutes. 

In case the protein to precipitate did not have a FLAG-tag, the magnetic beads Dynabeads® 

Protein G (Thermo Scientific, cat no 10004D) were used. A volume of 20 µL (≈ 0.6 mg) of beads 

were washed 3 times with 200 µL of IP lysis buffer (Table 2.23). As these beads are magnetic, 

instead of centrifugation, a magnetic stand was used to separate them from supe rnatant. After 

being washed, the beads were coated with the antibody of interest (between 0.6 -6 mg of antibody 

for every mg of beads) and incubated at 4°C with shaking for 45 minutes. After that the beads 

were washed again 3 times with 200 µL of IP lysis buffer and then incubated 300 µL of mitolysate 

at 4°C with shaking up to 2 hours. At the end of the incubation, the beads were washed with IP 

lysis buffer and then the proteins were eluted at 95°C for 3 minutes in 25 µL of IP lysis buffer 

containing 1x sample buffer (Table 2.17A). 
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2.10. Bioinformatic analyses tools 

The bioinformatic tools that were used in this study are listed in the following Table: 

Table 2.25 Bioinformatic tools. 

Name Use  

BLAST 

http://blast.ncbi.nlm.nih.gov/Blast.cgi  

Nucleotide or protein alignments 

for 2 sequences 

JalView Sequence alignments within 

different organisms 

NEBcutter 

http://nc2.neb.com/NEBcutter2/  

Restriction enzyme digestion 

sites 

PyMol 

(Open source) 

Visualisation and analysis of 

protein structures from PDB files 

Phyre2 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index  

Secondary and tertiary structure 

predictions from protein 

sequences 

Reverse Complement  

http://www.bioinformatics.org/sms/rev_comp.html  

Transformation of DNA 

sequences into the reverse 

complement 

SeqScanner Analysis of data obtained from 

sequencing 

  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://nc2.neb.com/NEBcutter2/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.bioinformatics.org/sms/rev_comp.html
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Chapter 3: MRPL45 in human mitochondria 

3.1. Introduction 

Amongst the 80 proteins that compose the human mitoribosome, my attention focused on a 

protein named MRPL45. This protein is one of the mitochondria-specific mitoribosomal 

components that lacks a bacterial orthologue. It contains a TIM44-like domain, the importance of 

which is that TIM44, as a component of the translocase inner membrane (IMM) machinery found 

in the matrix, is reported to interact with membranes (Marom M et al., 2009) and so mediate the 

interaction between the core of the translocase machinery and matrix proteins (Voos W et al., 

1996). Due to this similarity of TIM44-like domain, one hypothesis is that MRPL45 is involved in 

the interaction between the mitoribosome and IMM. As discussed in the introduction, this 

interaction is essential for an efficient protein synthesis because all the products of mitochondrial 

translation are highly hydrophobic polypeptides that need to be immediately integrated in the IMM.  

A few months after the beginning of this project, the first high resolution structure of the large 

mitoribosomal subunit was released (Greber BJ et al., 2014). This structural data on the porcine 

subunit, confirmed that MRPL45 is a component of the mitoribosome and that it is localised in 

close proximity to the polypeptide exit site. This location is consistent with an interaction with the 

IMM and supports the hypothesis of MRPL45 playing a role in this interaction, as was postulated 

by the authors. 

Shortly after, the high resolution structure of the human mt-LSU was released (Brown A et al., 

2014) and confirmed the localisation of MRPL45 observed in the porcine counterpart. This 

structure gave further insight into the structure of the protein, which differs from the porcine 

orthologue. The structure of MRPL45 and its similarity to orthologous proteins will be discussed 

in the following chapter. 

Human MRPL45 is encoded by chromosome 17 and is composed of 306 amino acids, giving 

a predicted molecular weight of 36 kDa. Data presented in chapter 6 of this thesis suggested that 

MRPL45 is targeted to mitochondria by a presequence which is cleaved on import into the 

organelle. 

The aim of this chapter was to study the characteristics of MRPL45. SInce at the beginning of 

this project the structure of the human mitoribosome had yet to be published, it was important to 

confirm the localisation of MRPL45 within the mitoribosome. Subsequently, the importance of this 

protein was tested by depleting it from different cell lines using siRNA technology. After initial 

optimisation, the effects of reduced steady-state levels of MRPL45 were assessed. The 

parameters measured included cell growth and morphology, mitochondrial protein synthesis, 

stability of the mitoribosome and stability of the mitochondrial mRNA species. The tools (antibody 

and siRNA) that were to be used throughout these studies were a lso validated in this chapter. 
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3.2. Methods 

3.2.1. Cell cycle analysis using Flow-cytometry 

Cell cycle analysis was performed following propidium iodide staining of nuclear DNA in 

whole cells. This fluorescent dye binds stoichiometrically to the DNA present in the cell.  

Between 200,000 and 500,000 cells were harvested for every sample . In order to retain the 

dye, cells were fixed with 1 mL of ice-cold 70% ethanol that was added dropwise to the cell 

pellet and left to incubate at 4ºC for 30 minutes. After that, the pellet was washed twice in 

phosphate-citrate buffer (Table 3.1 below) and, to ensure that only DNA was stained, it was 

incubated for 20 minutes at 37ºC with 50 µL of 100 µg/mL RNase A. 

Table 3.1 Phosphate-citrate buffer composition.  

Reagents Final concentration 

Na2HPO4 

Citric Acid 

192 mM 

4 mM 

Propidium iodide (200 µL of 50 µg/mL; Sigma, cat no P4170) was added to each sample that 

was then analysed with the FACSCanto II Flow Cytometer (BD Biosciences) with the help of Dr. 

Andrew Filby. FacsDiva8.0 and FlowJo were used to analyse the data collected. The DNA 

histograms obtained were analysed according to the Watson (Pragmatic) model.  

3.3. Results 

3.3.1. Localisation of MRPL45  

At the beginning of this project, the structure of the human mitoribosome was not available. 

Therefore, I aimed to confirm the localisation of MRPL45 within mitochondria and then whether 

it was integrated into the large mitoribosomal subunit. To determine this, mitochondria were 

isolated from HEK293 wild-type cells and subfractionated (qv 2.7.) in order to separate the 

different mitochondrial compartments. The success of the fractionation was assessed via 

western blot with antibodies recognising proteins of the outer membrane (TOM20), inner 

membrane (NDUFB8) and matrix (GDH) (Fig. 3.1).  
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Figure 3.1  Mitochondrial subfractionation to localise MRPL45. 

Western blot analysis of proportional amounts of fractions obtained from mitochondria 

extracted from HEK293 cells. Antibodies targeting TOM20 and NDUFB8 were used as 

markers for, respectively, OMM and IMM. Antibodies targeting GDH was used as a 

marker for the matrix fraction. The subfractionation experiment was performed once. 

MRPL45 was detected in the mitochondrial fraction, as well as in the mitoplast fraction. This 

confirmed that the protein is in mitochondria but not in the intermembrane space since this 

compartment is absent from mitoplasts. The subsequent removal of the OMM, which generated 

the shaved mitoplasts, did not affect the levels of MRPL45 detected in the fraction. However, 

the levels of MRPL45 were lower in the IMM fraction. Taken together these data inferred that 

this protein is mainly found in the mitochondrial matrix. Interestingly, the presence of MRPL45 

in the IMM fraction might suggest its interaction with the inner membrane either directly or as a 

part of a complex. The pattern of MRPL45 was similar to that of GDH, but it is important to 

specify that the weak signal observed for GDH in the IMM fraction is due to the low level of a 

membrane-bound form of GDH as previously reported (Rajas F et al., 1996). The detection of 

MRPL45 showed the presence of an intense signal, corresponding to the predicted size of the 

full length protein (≈36 kDa), and 2 less intense ones corresponding to approximately 30 kDa. 

I aimed to confirm the localisation of MRPL45 within the large mitoribosomal subunit  using 

cell lysate from HEK293 wild-type cells was separated on a linear 10-30% isokinetic sucrose 

gradient (qv 2.8.). During centrifugation, the components of the lysate were separated according 

to their density. Twelve fractions were obtained from the gradient and were analysed via western 

blot (Fig. 3.2).  
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Figure 3.2  Isokinetic sucrose gradient to assess the presence of MRPL45 in the LSU.  

Whole cell lysate (700 µg) from HEK293 cells was loaded on top of a 10-30% isokinetic 

sucrose gradient (qv 2.8.). The 12 fractions obtained after centrifugation were analysed 

via western blot. mt-LSU and mt-SSU were localised using antibodies against, 

respectively, MRPL11 and DAP3. The distribution observed for MRPL45 in the figure is 

representative of 3 biological repeats. 

To determine the relative position of the mitochondrial ribosomal subunits, mt -SSU and mt-

LSU, antibodies were used against DAP3 and MRPL11 respectively. These data indicated that 

the mt-SSU was recovered mainly in fraction 5, whereas the heavier mt-LSU was detected 

mainly in fractions 6 and 7. The lowest sucrose density (fraction 1, lysate with no sucrose) 

represented the protein or small complexes of low molecular weight, whereas fraction 12 

represented the highest sucrose density (30%) and contained heavy complexes or aggregates. 

MRPL45 was detected in fractions 6 and 7, migrating with other mt-LSU proteins and so was 

consistent with the protein being a component of the mt-LSU. The proportion of MRPL45 

recovered in the heaviest fraction of the gradient potentially indicated the presence of 

aggregates or incompletely solubilised extract. Since MRPL45 was also detected in fraction 1, 

it suggested that a proportion is found free or as a part of small complexes. Not all the 

mitoribosomal proteins show a proportion that is found in the least dense fraction of the sucrose 

gradient, as observed for MRPL11, which is absent in fraction 1 (Fig. 3.2).  

A closer inspection of the western blot analysis of the sucrose gradient experiment revealed 

the presence of 2 lower molecular species detected by MRPL45 antibody, also observed in Fig 

3.1. As previously observed, these signals were less intense than the higher molecular weight 

one. Surprisingly, the lower MRPL45 signals were detectable exclusively in fraction 1, even 

though the intensity of the higher molecular weight species was comparable or higher in 

fractions 6 and 7 compared to fraction 1.  

The presence of MRPL45 was also assessed in 143B ρ0 cells. These cells lack mt-DNA and 

are cultured in media containing ethidium bromide, in order to suppress a potential 

subpopulation containing mt-DNA. In the absence of mt-DNA, the mt-ribosomal RNA is not 

available and therefore the mitoribosomal subunits are unable to fully assemble. MRPL45 levels 
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were evaluated in lysate from wild-type parental 143B and 143B ρ0 cells, using the outer 

membrane protein porin as a loading control (Fig 3.3). 

 

  

Figure 3.3  Assessment of the presence of MRPL45 and of other mitoribosomal 
proteins and OXPHOS components in 143B ρ0 cells. 

Western blot analysis was performed on cell lysate (30 µg) from wild-type and ρ0 143B 

cells. Steady state levels of mitoribosomal proteins (MRPL45, MRPL11, MRPL24, 

MRPS27) were assessed. Antibodies against NDUFB8, COXII and ATP5β were also 

visualised. Porin was used to verify the quality of the loading.  The figure is 

representative of 2 biological replicates. 

MRPL45 was still detectable in 143B ρ0 cells, although the steady state level was strongly 

reduced. In contrast, MRPL11 was undetectable in cells lacking mt-DNA. The steady state level 

of MRPL24 was also reduced in 143B ρ0 cells, whereas the level of MRPS27 was unchanged. 

The absence of the mt-encoded COXII and the component of complex I NDUFB8 confirmed that 

143B ρ0 cells lack of mt-DNA. The steady state level of the component of the F1 of complex V 

ATP5β was not affected. The signal obtained from porin confirmed the equality of the loading.  

3.3.2. Optimisation of MRPL45 depletion  

To study the role of MRPL45 in mitochondrial gene expression, the protein was depleted 

from a number of human cell lines and the consequences on cellular and mitochondrial 

metabolism were analysed. Transient transfections of targeted siRNAs (MRPL45 siRNA) were 

used alongside siRNA that was designed not to correspond to any cellular target (NT siRNA).  

Initially, the effects of transfection were tested after 3 days (reverse transfection in solution, 

qv 2.1.5.) with 33 nM siRNA. Reverse transfection was performed in order to increase the 

surface of the cells in contact with the reagents and therefore the efficiency of the transfection. 

Because a stable knockdown was not required, siRNA was preferred as silencing tool as 

opposed to shRNA (short-hairpin RNA). This reagent also avoided the possibly lethal effect due 

to a constitutive knockdown of MRPL45. Delivery of the siRNA was performed using a lipid 

carrier, a technique with less detrimental effects on cells when compared to e lectroporation. 
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Since it is important to eliminate the possibility of off-target effects, individual siRNAs that target 

different regions of the same gene transcript were tested. The depletion was performed using 2 

different siRNA targeting MRPL45 (Appendix 4), to test whether the reagents gave consistent 

data, at least 3 independent repeats of each depletion experiment were performed. To eliminate 

effects due to the use of reagents, cells were also transfected in parallel with 33 nM of NT siRNA, 

as experimental control. 

HEK293 cells were transfected for 3 days by reverse transfection (qv 2.1.5.) with the 2 

MRPL45 siRNA and NT siRNA at the same final concentration of 33 nM. After 3 days, cells were 

harvested and the lysates were analysed via western blot to determine the efficiency of MRPL45 

loss and the effects on other MRPs (Fig. 3.4). 

          

Figure 3.4  Depletion of MRPL45 on HEK293 cells using 2 different siRNA.  

HEK293 cells were transfected with MRPL45, NT siRNA or cultured as an untreated 

control for 3 days. At the end of the incubation, cell lysate (30 µg) was analysed via 

western blotting. The figures shown is representative of the results obtained. Antibodies 

against MRPL45 and COXII were detected on membrane A, while membrane B was 

incubated with components of large (MRPL3) and small (DAP3) mitoribosomal subunits. 

Porin or TOM20 were used to verify the equality of the loading. The figure is 

representative of 2 biological replicates. 

MRPL45 depletion was efficient with both the tested siRNA (Fig. 3.4A, lanes 3 and 4). 

Together with the reduction of steady state level of MRPL45, a reduction in the steady state 

levels of a mitochondrial encoded subunit of complex IV (COXII) was also observed in both the 

siRNA treatments (Fig. 3.4A, lanes 3 and 4). Porin was used to validate loading. With respect 

to the mitoribosomal proteins, a reduction of MRPL3 levels was detected in MRPL45 cells 

depleted using either of the targeted siRNAs, whereas the levels of the mt-SSU protein DAP3 

were unchanged compared to controls (Fig. 3.4B, lanes 3, 4 cf lanes 1, 2). The equality of the 

loading was determined with antibodies targeting TOM20. 

Having established that MRPL45 depletion was successful in HEK293 cells using the 

conditions tested, the depletion studies continued using MRPL45 siRNA02 

(SASI_Hs02_00359740, Appendix 4) at a final concentration of 33 nM. Parallel control 

depletions were performed throughout the study with 33 nM NT-siRNA in order to exclude 

effects related to reagents present in the transfection rather than the targeted depletion. All the 

conditions tested were performed in duplicate for every experimental repeat, unless otherwise 

stated and experimental repeats were performed for all investigations. Although the depletion 
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was efficient after 3 days, the following studies presented in the chapter were performed over 6 

days in order to detect effects due to the depletion of MRPL45 that might not be present after 3 

days. Reverse transfection was performed, after 3 days, the cells were retransfected while 

adherent with the forward transfection method (qv 2.1.5.). 

3.3.3. Effects of MRPL45 depletion on cell growth and morphology 

The effects of 6 day MRPL45 depletion on cell growth and morphology were assessed on 

HEK293, HeLa and U2OS cells. 

The daily visual inspection of HEK293 cells showed the emergence of large clusters of cells 

in the sample depleted of MRPL45, whereas the control sample showed an even distribution of 

cells on the culture surface (Fig. 3.5).  

  

Figure3.5 Effects of MRPL45 depletion on HEK293 cells. 

HEK293 cells were visualised with bright field using the inverted Zeiss Axiovert 200M 

microscope at 10x magnification after 6 days of incubation with NT siRNA (left panel) or 

MRPL45 siRNA (right panel). Scale bar= 100 µm. The figure are representative of 3 

biological replicates. 

Due to the presence of clusters, it was not feasible to estimate cell number using a method 

that depended on calculating the occupied surface area (IncuCyte). Therefore, the growth curve 

for HEK293 cells was obtained by cell counting, which was performed every 48 hours on 

individual wells set up in parallel at the outset of the experiment (Fig. 3.6). Counting was done 

in the presence of Trypan blue to exclude dead cells from the cell counts.  

NT siRNA MRPL45 siRNA 
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Figure 3.6  Effects of MRPL45 on HEK293 cell growth. 

Cell counts were performed in 2 independent experiments on HEK293 cells incubated 

with NT or MRPL45 siRNA, approximately every 48 hours throughout the depletion and 

the data obtained were plotted to monitor cell growth.  

At day 6, the number of living cells that remained after treatment with MRPL45 siRNA was 

approximately half the number of living cells recovered for the control sample.  

In contrast to HEK293 cells, depletion of MRPL45 in U2OS or in HeLa cells did not cause 

the formation of clusters of cells, therefore it was possible to monitor cell growth with the  

IncuCyte® ZOOM System (Fig. 3.7). This instrument can be ‘trained’ to recognise specific cell 

types and so allows the generation of a growth curve based on the occupied space as a 

representation of the confluency of adherent cells but does not count the number of cells present 

in the sample. The number of points that are monitored per well can be selected. For my 

experiments, images at 12 points/well were taken for every well of a 6-well plate every 3 hours 

and the confluency was then calculated by the integrated software. A minimum 2 wells for every 

treatment were prepared and the confluency at every time point was calculated as an average 

of 12 data points obtained in each individual well. The cells from each well were harvested at 

the end of the siRNA treatment so that the efficiency of the depletion could be confirmed by 

western blot analysis (Fig. 3.7; inserts). Depletion in HeLa cells was interrupted at day 5 due to 

acidification of the media and high confluency of the cells. 
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Figure 3.7  U2OS and Hela cell growth was monitored during MRPL45 depletion. 

Cell coverage was evaluated every 3 hours through the IncuCyte system for U2OS (A) 

and HeLa (B) cells during MRPL45 depletion, and NT siRNA control treatment. Data is 

presented as a growth curve of calculated confluency over time. The efficiency of the 

depletion was confirmed via Western blot analysis (inset panels) using antibodies 

against MRPL45. The levels of β-Actin and HSP60 were used as loading controls. The 

figures are representative of 2 biological repeats. 

The western blot analysis confirmed that the depletion of MRPL45 was efficient in both U2OS 

and HeLa cells. At this level of depletion, cell growth did not appear to be strongly impaired in 

U2OS cells, as 100% confluency is reached by the sample depleted of MRPL45 (white circles) 

with minor delay when compared to the control (black circles) (Fig. 3.7A). For HeLa cells, no 

growth defect was detected by IncuCyte monitoring (Fig. 3.7B).  

Cells were also visualised using the IncuCyte system. Images after approximately 6 days are 

shown for U2OS and HeLa cells in Fig. 3.8 A and B. 
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Figure 3.8  U2OS and HeLa cells after 6 days of siRNA treament to deplete MRPL45.  

U2OS (A) and HeLa (B) cells were transfected for 6 days with NT or MRPL45 siRNA 

and visualised 5 days later. Images were obtained from the IncuCyte system. Cells 

containing vacuoles are indicated by black arrows. The figures are representative of 3 

biological repeats. 
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A proportion of U2OS and HeLa cells depleted of MRPL45 looked enlarged, with less defined 

edges and containing vacuoles (Fig. 3.8, indicated by black arrows). These features were less 

common in the control cells. The enlargement of the cells might also  

Interestingly, a major effect on U2OS cell growth could be seen by cell counting when the 

depletion levels of MRPL45 were so low that western blot could not detect any protein. 

Representative results of these experiments are illustrated in Fig. 3.9. The growth curve  was 

obtained by manual cell counting performed approximately every 48 hours throughout the 6 

days of depletion rather than by IncuCyte (Fig. 3.9 A). Cell morphology was evaluated on a daily 

basis using the inverted microscope (Fig. 3.9 B) and the efficiency of the depletion was 

confirmed via Western blotting (Fig. 3.9 C).  

 

  

 

 

Figure 3.9  Effects of MRPL45 knockdown on U2OS cells upon higher efficiency of the 
depletion. 

U2OS were transfected with NT siRNA or MRPL45 siRNA for 6 days. The growth curve was 

obtained by cell counting during 6-days depletion of MRPL45 (A). Cells were visualised using the 

inverted microscope at the end of the treatment (B). Cell lysates (x µg) were analysed via Western 

blotting to confirm the depletion. HSP60 was used as loading control (C). The data are 

representative of 2 biological repeats. 

When the level of MRPL45 was undetectable via western blot (Fig. 3.9 C), a severe growth 

defect (Fig. 3.9 A and B) was observed, whereas a milder growth defect was observed when 

the depletion was less efficient, as shown in Fig. 3.7 A and 3.8 A. Although 2 different methods 

were used to evaluate cell growth (occupied surface in 3.7 A and number of cells in 3.8 A), a 

difference in cell growth can be appreciated in the figures of cells obtained in the two different 

experiments (Fig. 3.8 A and 3.9 B).  These data, combined with those previously observed on 
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U2OS cells depleted of MRPL45, suggest that the effect on cell growth might be finely regulated 

by the efficiency of the depletion.  

As cell growth seemed to be affected, cell cycle analysis was performed on U2OS cells after 

6 days of transfection with MRPL45 and NT siRNA. Cells can be attributed to different phases 

of the cell cycle according to their DNA content. The profile of “healthy” cell growth usually 

results in the majority of the cells in G1 phase, which will contain the normal amount of genomic 

DNA (diploid). A smaller proportion of the cell population will be actively replicating DNA 

(designated S phase) and the remainder will be in late stage of mitosis phase (G2) where the 

chromosomes have been duplicated and so cells contain twice as much DNA as cells in phase 

G1. Some cells stick together and so in the sample they were present as doublets. These could 

be easily identified and excluded from the final analysis. The results (Appendix 7) were analysed 

and the cells were partitioned into the different phases as shown in the following figure (Fig. 

3.10A). The Watson model was preferred to the Dean-Jet-Fox model to analyse the data. The 

former model makes no assumption on the shape of the S phase, which instead is modelled in 

the Dean-Jet-Fox model. A sample for each treatment was retained to confirm the efficiency of 

the knockdown via western blot analysis (Fig. 3.10B). 

 

 

Figure 3.10  Cell cycle analysis of U2OS cells following MRPL45 depletion.  

A) Propidium iodide DNA staining was performed on U2OS cells after incubation for 6 days 

with NT or MRPL45 siRNA. Approximately 100,000 events were collected and the data were 

analysed and the percentage of cells in phases G1 (green), S (yellow) and G2 (blue) was 

calculated (Watson model). B) Western blot analysis to confirm the efficiency of MRPL45 

depletion in the cells used for the cell cycle analysis. SHD70 was used as a loading control.  

The experiment was performed once. 
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The western blot analysis confirmed depletion of MRPL45. The cell cycle analysis indicated 

that when compared to control cells, cells treated with MRPL45 siRNA for 6 days showed an 

increase in proportion of cells in S (+11%) and G2 (+7%) phases, with a relative reduction of 

cells in G1 phase (-16.5%). This result might suggest that the cells are proliferating faster or that 

they are arrested in the middle of duplicating their DNA. In order to discriminate between the 2 

possibilities, it would be possible to analyse the S phase using bromodeoxyuridine (BrdU) 

uptake. This reagent is an analogue of thymidine that is incorporated into DNA during its 

replication. When a BrdU pulse-chase experiment is performed, it is possible to follow the group 

of cells that were actively replicating the DNA during the pulse of BrdU staining as they progress 

through the cell cycle of and understand if the cells were increasing their proliferation or if they 

were arresting in a particular phase. This experiment was not performed as it was considered 

not crucial for the project. 

3.3.4. Effects of MRPL45 depletion on mitochondrial protein synthesis 

and the OXPHOS components 

As MRPL45 was predicted to be a component of the mitochondrial translation machinery, 

the effects of its depletion on mitochondrial translation were assessed. 

The depletion was performed over a 6-days period, combining reverse transfection with 

forward transfection (qv 2.1.5.), to analyse the effects observed due to the prolonged absence 

of the protein. The experiment was performed on different cell lines to determine it this was a 

physiologically relevant effect and to indicate the reproducibility of the findings  in different 

systems. At the end of the transfection period, cells were lysed and the protein content was 

analysed via western blot. Cells transfected with NT-siRNA were used as control (Fig. 3.11). 
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Figure 3.11  Analysis of the steady state level of OXPHOS components following MRPL45 

depletion. 

HEK293 (A;30 µg), U2OS (B;30 µg) and HeLa (C;30 µg) cells depleted of MRPL45 for 6 days 

were analysed by Western blot. The efficiency of the depletion was verified with antibodies against 

the depleted protein. The effects of the depletion on the OXPHOS components were analysed 

using antibodies against the mitochondrial encoded COXII or nuclear encoded components 

(ATPVb, NDUFB8, NDUFA9, SDH70). TOM20, HSP60 and β-Actin were used as loading controls. 

The data shown are representative of 3 biological repeats. 

Data obtained for HEK293 cells showed that, together with the reduction of the steady state 

level of MRPL45, a reduction of the mitochondrial encoded subunit II of complex IV (COXII) was 

observed. Antibody against the OMM protein TOM20 was used to confirm the equality of the 

loading (Fig. 3.11A). The results obtained were recapitulated in U2OS and HeLa cells (Figure 

3.11 B and C). The steady state level of other OXPHOS components were also assessed in 

these 2 cell lines following MRPL45 depletion. Together with the reduction of the mitochondr ial-

encoded protein COXII, a reduction of a nuclear-encoded subunit of complex I (NDUFB8) was 

observed. This protein is also absent in ρ0 cells (Fig. 3.3), probably because the mt-encoded 

components of the complex are needed for its integration within a subcomplex of complex I to 

stabilise it. This indicates that NDUFB8 is a good surrogate marker to interrogate the state of 

mitochondrial translation. Unlike NDUFB8, no reduction was detected in the steady-state level 

of another nuclear encoded component of the same complex, (NDUFA9). No changes were 

detected in the steady-state level of 2 other nuclear encoded components of the OXPHOS 

system, SDH70 (Complex II) and ATPVb (Complex V). This result was also expected as both 

these proteins are present at normal level in ρ0 cells. HSP60 or β-Actin were used as loading 

controls. 

The OXPHOS deficiency highlighted from western blot analysis after MRPL45 down-

regulation was also supported by the acidification of the media observed in the depleted cells 

(Fig. 3.12). 
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Figure 3.12  MRPL45 down-regulation affects the growth media acidity. 

Images of 6-well plates were taken after 6 days of MRPL45 depletion on U2OS cells.  

When compared to the control, the media of cells depleted of MRPL45 was more yellow. 

Phenol red, is a pH indicator that is included as a component of the growth medium. It has a 

range from 6.2 (bright yellow) to 8.4 (pink/purple). This allows for quick visual assessment of the 

metabolic status of the cells in culture. The observed change in colour indicated the acidification 

of the media, probably due to the metabolic switch for ATP production from oxidative 

phosphorylation to glycolysis in MRPL45 depleted cells. In this condition, glucose is transformed 

in pyruvate to generate ATP. Due to the failure of the OXPHOS system, pyruvate cannot be 

further metabolised and is reduced to lactate by the enzyme lactate dehydrogenase, which uses 

the excess of NADH accumulated as a consequence of the malfunction of the OXPHOS. The 

release of lactic acid within the media lowers its pH, which leads to the change in colour of 

phenol red. 

3.3.5. Effects of MRPL45 depletion on the stability of LSU and SSU 

The steady state level of a mitochondrial encoded protein (COXII) was compromised in the 

absence of MRPL45 (Fig. 3.11). This was predicted to be caused by a lack of functional 

mitoribosome, so to investigate if this effect was due to a defect of mitochondrial protein 

synthesis, the stability of the mitoribosome was examined. Cells were, therefore, depleted of 

MRPL45 for 6 days and the steady state level of protein components of the mt-LSU and the mt-

SSU was assessed via western blot analysis (Fig. 3.13). 
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Figure 3.13  Evaluation of the steady state level of proteins of the mt-LSU and mt-SSU in 
MRPL45 depleted cells. 

Western blot analysis was performed after 6 days of MRPL45 depletion in HEK293 (A; 30 µg) 

and U2OS (B; 30 µg) cells. Antibodies against MRPS26 and DAP3 were used as markers for the 

mt-SSU, whereas antibodies against MRPL11 and MRPL3 were used to detect the mt -LSU. 

Quantification of 3 biological repeats is also presented. 

The analysis of the steady state level of components of the LSU following MRPL45 deplet ion 

in HEK293 (Fig. 3.13A, lane 2 and bar graph) and U2OS (Fig. 3.13B, lane 2 and bar graph) cells 

showed a reduction of MRPL11, MRPL3, whereas the SSU proteins tested (MRPS26 and 

DAP3) were not affected. TOM20, porin, HSP60 and β-Actin were used to verify the equality of 

the loading. 

To further confirm the effects on the stability of the 28S and 39S subunits, the steady state 

level of the mitochondrial rRNAs (16S and 12S) were evaluated by qPCR (qv 2.3.4.). Total RNA 

was isolated from U2OS cells after 6 days of MRPL45 depletion or siNT treatment and aliquots 

(500 ng) from each were then reverse transcribed (qv 2.4.1. and 2.4.2.). An equal proportion of 

each cDNA (2 µl) was used to programme the qPCR and the data were analysed as reported in 

2.3.4. The results are reported in Fig. 3.14 and are representative of 3 biological repeats.  
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Figure 3.14 Effects of MRPL45 depletion on mt-rRNA. 

The levels of 12S and 16S rRNA were quantified after 6 days of MRPL45 depletion via q-PCR 

reaction for 3 biological repeats. NT-siRNA was used as a control. The cytosolic 18S rRNA was also 

quantified and used to normalise the data, which were analysed as in 2.3.4.  

The qPCR analysis showed a reduction of 16S rRNA, while 12S rRNA was unaffected. This 

agreed with the western blot data which showed the instability of the mt-LSU, but not of the mt-

SSU after depletion of MRPL45. 

3.4. Discussion 

The results obtained in this chapter have confirmed that MRPL45 is a mitochondrial protein 

mainly if not exclusively found in the matrix and showing a weak association with the IMM. Two  

additional bands were detected for the protein in the figure obtained for the sucrose gradient 

analysis, indicating a possible existence of a cleaved version of this protein. Isokinetic sucrose 

gradient analysis confirmed that MRPL45 is a component of the mt-LSU, as reported in the 

structures of the porcine (Greber BJ et al., 2014) and human (Brown A et al., 2014) mt-LSU 

published after the start of this project. Interestingly, the sucrose gradient analysis also highlighted 

the presence of an important free pool of protein that is not associated with the mitoribosome. Of 

all the mitoribosomal proteins that have been analysed in our laboratory, relatively few are well 

represented in the low density fractions that reflect low molecular weights. Like MRPL45, another 

mitoribosomal protein that shows a biphasic distribution is MRPL12. Published data show the 

existence of a proportion of MRPL12 in the first fraction of the sucrose grad ient (Surovtseva YV 

et al., 2011). The same study also claims that the proportion of MRPL12 that is not bound to the 

mt-LSU is involved in regulation of mitochondrial transcription via interaction with POLRMT. Since 

MRPL45 shows a similar distribution to MRPL12, it is reasonable to speculate a second 

unidentified role of MRPL45 within mitochondria. In addition, the lower molecular weight signals 

detected by MRPL45 antibody were detected only in the first fraction. A recent study by Nouws J 

et al. (2016) identified that the interaction between MRPL12 and POLRMT is mediated by a 

cleaved version of this mitoribosomal protein, that is found in fraction 1 of the sucrose gradient 

analysis of the cited study. It is tempting to speculate the possibility of a second role of cleaved 
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versions of MRPL45 outside the mitoribosome. This hypothesis could be further explored, 

although this aspect is not in the scope or time frame of this project.  

Because of its proximity to the polypeptide exit site and its structural similarities to the IMM 

interacting protein TIM44, the importance of MRPL45 for an efficient translation in mitochondria 

was assessed via siRNA depletion experiments. 

The optimisation of the siRNA transfection was performed using multiple siRNA duplexes 

targeting different regions of the MRPL45 transcript. Since these had similar consequences on 

cell growth, morphology, and mitochondrial homeostasis it suggested specificity and not off -target 

effects. A commercially available antibody was used and validated the depletion. The siRNA was 

therefore selected for further use in my study. 

The use of siRNA allows specific depletion of proteins by selectively targeting the mRNA 

sequence that encodes for the protein of interest. As this approach is not a genetic knockdown, 

the efficiency can be variable and the depletion is usually not complete. In the experiments 

performed in this chapter, it emerged that the amount of MRPL45 remaining after the depletion, 

differently affected the cell growth. Despite there being differences observed in how severe ly cell 

growth was affected, the cell morphology was affected in all the experiments performed. Whereas 

HEK293 cells tended to grow in clusters following loss of MRPL45, U2OS and HeLa cells showed 

a morphology more reminiscent of senescent cells, which could not be clearly confirmed by 

subsequent experiments on U2OS cells. In addition, cell cycle analysis suggested a longer 

doubling time. Altogether, these data highlight the importance of MRPL45 for maintaining cellular 

homeostasis. 

Further evidence of the importance of MRPL45 within mitochondria came from the analysis of 

protein content in the depleted cells. The reduction of the tested mitoribosomal components of 

the mt-LSU observed in the absence of MRPL45 revealed the crucial role of this protein for the  

stability and assembly of the large subunit. This is a striking difference from the yeast homologue 

of MRPL45, Mba1, which is only transiently associated with the mitoribosome and, therefore, not 

required for the stability of the mt-LSU. As a consequence of the absence of the mt-LSU, the fully 

assembled mitoribosome is absent and cannot perform mitochondrial translation. This leads to a 

dramatic reduction of mitochondrial encoded protein as observed in the MRPL45 depletion 

studies here reported. In the absence of mitochondrial-encoded proteins, the OXPHOS 

complexes cannot assemble in functional units, leading to the impossibility to create a proton 

gradient and eventually produce ATP. In these conditions, cells must survive by relying on 

glycolysis for ATP synthesis. 

Unlike the mt-LSU, the mt-SSU did not show instability in the absence of MRPL45, as inferred 

by the unchanged steady state level of the tested components of the subunit, both protein and 

rRNA. This result suggests that the assembly and stability of the mt-SSU does not require the 

presence of the mt-LSU. 



73 
 

Since my data demonstrated the importance of MRPL45 for protein synthesis in mitochondria, 

its potential involvement as mediator of the interaction with the IMM, as hypothesised earlier, will 

be investigated in the following chapter.  
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Chapter 4: Analysis of the interaction of mitoribosome and MRPL45 

with the IMM 

4.1. Introduction 

As described earlier in the general introduction, the 13 products of intramitochondrial 

translation are all hydrophobic OXPHOS proteins that are inserted in the IMM upon synthesis by 

the mitoribosome. Due to high hydrophobicity of their products, it is likely that the translating 

mitoribosomes are found in close proximity to the IMM to avoid the aggregation of the newly 

synthesised polypeptides, their unfolding and refolding, and to promote their direct integration into 

the membrane. Previous studies on mammalian mitochondria have reported that approximately 

50% of the mitoribosomes are tightly bound to the IMM (Liu M & Spremulli LL, 2000), but how this 

interaction is mediated is still unclear. As discussed in the general introduction, at present only 

few mammalian proteins (MPV17L2, OXA1L and LetM1) have been suggested to interact with 

both the IMM and the mitoribosome, but extensive studies to confirm and characterise their role 

in this interaction are missing. While the previous chapter was focused on understanding the 

importance of MRPL45 as a structural component of the mitoribosome, this chapter will study the 

possible role of the protein in the interaction between mitoribosome and IMM. The location of this 

protein in close proximity to the polypeptide exit site (as shown in Fig. 1.13, page 29) and its 

structural similarity with an IMM-interacting protein support the hypothesis of a role of MRPL45 in 

the interaction with the IMM.  

The PFAM (Protein FAMily) database search of MRPL45 suggested that this protein contains 

a Tim44-like domain located between residues 119 and 263 (RefSeq NP_115727.5). The Tim44-

like domain corresponds to a region at the C-terminus of TIM44, a peripheral membrane protein 

that binds to the IMM and to the TIM23 complex, allowing the translocation of polypeptides 

through the IMM into the mitochondrial matrix (D’Silva P et al., 2004). The N-terminus of yeast 

Tim44p was suggested to be involved in the interaction with Tim23p (Schiller D et al., 2008), 

whereas in vitro studies on the C-terminus of both the yeast and the mammalian homologues 

highlighted the ability of this domain to interact with membrane-like structures. The crystal 

structures of the C-terminus of both yeast Tim44p (PDB 2FXT (Josyula R et al., 2006)) and human 

TIM44 (PDB 2CW9 (Handa N et al., 2007)) were previously resolved by Josyula R and Sha B 

(2006) and Handa N et al. (2007) respectively. The publication of the human mt-LSU structure in 

2015 (Brown A et al., 2014) included structural details of MRPL45 (PDB 3J7Y (Brown A et al., 

2014), chain d), allowing it to be compared to the structure of human TIM44, shown in Fig. 4.1. 

Although the cryo-EM studies on the human mt-LSU gave nanometer resolution, it did not fully 

resolve MRPL45 (resolved residues: 119-200, 207-252, 255-287). The structure of MRPL45 

within the mt-LSU obtained from this study is shown in Appendix 15. 
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Figure 4.1 Structural comparison of human TIM44 and human MRPL45. 

A) The structures of the C-terminus of human TIM44 (cyan, PDB 2CW9 (Handa N et al., 

2007)) and the human MRPL45 (red, PDB 3J7Y, chain d (Brown A et al., 2014)) were 

visualised on Pymol as cartoons. The structure of MRPL45 obtained from the PDB file was 

not complete and is reported in Appendix 15.  B) Superimposition of the structures of 

TIM44 and MRPL45 visualised in Fig. 4.1A. 

Figure 4.1 shows the structural similarity between the MRPL45 protein and the C-terminus of 

human TIM44. Both the proteins present a similar organisation composed of cystatin-like folding, 

which is defined as helix packed against coiled antiparallel beta-sheet. The 2 proteins share a 

sequence identity of approximately 11%, with a similarity that reaches approximately 21% 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/).  

The ability of the C-terminus of human and yeast Tim44 to interact with membranes has been 

studied in vitro. With respect to Tim44p, the C-terminus of this protein was shown to interact with 

liposomes containing cardiolipin (Marom M et al., 2009), which is the most highly represented 

acidic phospholipid of the IMM (Comte J et al., 1976). Two hydrophobic regions were detected on 

the C-terminus of Tim44p, of which 1 is found between 2 α-helices and 1 creates a cavity that is 

composed of residues Val306, Gly388, Tyr 398 and Phe422. The specific region of the C-terminus 

of Tim44p involved in the interaction with the membrane was found by studying the interaction of 

truncated versions of the protein with liposomes (Marom M et al., 2009). The interaction with the 

membrane-like structures was lost when helix A1 was absent, despite the presence of the 
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hydrophobic cavity. In the study, the authors claim that the folding of the 2 α-helices A0 and A1 

(Fig. 4.2) is involved in the interaction with the model membrane, and that their relative position 

is important for this interaction. 

 

Figure 4.2  Putative membrane-interacting domain of yeast Tim44p 

PyMol was used to visualise the structure of yeast Tim44p, shown as cartoon (PDB 2FXT 

(Josyula R & Sha B, 2006)). The putative membrane-interacting helices are shown in light 

blue (A0) and blue (A1). The remaining part of the protein is shown in green.  

The crystallisation of the C-terminus of human TIM44 was performed by Handa N et al. (2007) 

using PEG 400 as a precipitant. The resulting structure closely resembles the yeast homologue, 

with the exception of the C-terminal domain, which presents 1 long helix in human, in contrast 

with 2 shorter helices found in yeast (Fig. 4.3, indicated by arrows). These domains also differ in 

the orientation of the helices, with the yeast ones protruding more from the central structure. It 

has been proposed that upon binding with the membrane, these helices undergo a conformational 

change, resembling the long helix (α1) found on the human TIM44 (Josyula R & Sha B, 2006). 

 
Figure 4.3 Structural comparison of human TIM44 and yeast Tim44p. 

Superimposition of human (cyan, PDB 2CW9 (Handa N et al., 2007)) and yeast (green, 

PDB 2FTX (Josyula R & Sha B, 2006)) Tim44 obtained by automatic structure alignment 

on PyMol. 
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In the crystal structure of human TIM44, 2 molecules of PEG were recovered, indicating 

hydrophobic regions that might act as binding sites with the membrane. One of the PEG 

molecules recovered was bound to the highly conserved loop present between helices α1 and α2 

(Fig. 4.4A, shown in orange, indicating one of the potential membrane binding sites that is very 

well conserved amongst species (Fig. 4.4B). The PEG molecules also identified another 

hydrophobic cavity found in the core of the protein, between helices α3, α4, α5 and two β-sheets. 

 

  

 

 

 

Figure 4.4  Putative membrane interacting domain of the C-terminus of human TIM44 
and its conservation amongst different species. 

A) Crystal structure of the C-terminus of human TIM44 obtained in PyMol using the 

published PDB 2CW9  (Handa N et al., 2007). The residues claimed to interact with 

membrane-like structures (Marom, Safonov et al. 2009) are depicted in orange. B) 

Alignment of Tim44 sequences from different species. The intensity of the blue indicates 

the degree of conservation of the amino acid sequence. The putative membrane-

interacting site is indicated in orange. 

Because of its structural similarity to the membrane interacting protein T IM44, MRPL45 might 

be able to interact with the IMM via the domain corresponding to the one suggested for TIM44 

interaction. 

In addition to the presence of a Tim44-like domain, studies on the yeast MRPL45 homologue 

(named Mba1) further support the hypothesis of a role of MRPL45 in the  interaction with the 

membrane. Unlike the mammalian homologue, Mba1 is not a constitutive component of the 

mitoribosome, but has been suggested to interact tightly with the matrix face of the IMM (Preuss 

M et al., 2001) and to bind the mitoribosome (Ott M et al., 2006). Studies in yeast showed that 

Mba1 could be cross-linked with proteins at the polypeptide exit tunnel of the mitoribosome 

(Gruschke S et al., 2010). Recent studies reported that Mba1 creates a complex with Cox20 to 

support cotranslational maturation of Cox2 (Lorenzi I et al., 2016). Additional evidence of the 

Mba1-mediated bridge between the mitoribosome and IMM came in 2015 by cryo-electron 

tomography studies on yeast that identified 2 contact points between the mitoribosome and the 

membrane (Pfeffer S et al., 2015). Of these, one was mediated by rRNA and the other one by 

Mba1. The superposition of the sub-tomogram of yeast mitoribosome and the structure of 

mammalian mitoribosome presented in the study showed the colocalisation of Mba1 and MRPL45 

(Fig 4.5). 
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Figure 4.5  Colocalisation of Mba1 and MRPL45 shown by superimposition of the 
structures of yeast and mammalian mt-LSU. 

The cartoon structure of mammalian mt-LSU (PDB 4CE4 (Greber BJ et al., 2014), in 

purple) was superimposed on the sub-tomogram of yeast 54S mt-LSU ((Pfeffer S et al., 

2015), taken with permission from Rightslink, license number 3831330401788). The 

position of Mba1 within the tomogram is circled. MRPL45 is depicted in red in the mt -LSU 

structure. 

Little is known about how Mba1 interacts with the IMM in yeast. A physical association of this 

protein with the IMM protein Mdm38 has been reported by (Bauerschmitt H et al., 2010). The 

homologue of Mdm38 in human is LetM1, a protein that will be discussed in Appendix 17. Briefly, 

LetM1 is an IMM protein that has been reported to have a role in the maintenance of mitochondrial 

tubular networks and in the assembly of the supercomplexes of the respiratory chain. This protein  

has a matrix domain suggested by PFAM to contain a ribosome-binding domain. It is possible that 

the interaction between Mba1 and Mdm38 described in yeast is conserved between the two 

respective homologues in human.  

In addition to its role as a receptor for the mitoribosome on the membrane, it has been 

suggested that Mba1 also interacts with mitochondrial translation products, including Cox1, Cox2, 

Cox3 and Cytb. This protein has been also reported as necessary for the insertion of both 

mitochondrial and nuclear encoded proteins into the IMM (Preuss M et al., 2001). This observation 

might support the hypothesis of a second role of MRPL45, as speculated in the previous chapter. 

Altogether, the observations presented above support the hypothesis of a role for MRPL45 in 

anchoring the mitochondrial translation machinery to the IMM, probably aligning the nascent chain 

of the mt-encoded OXPHOS components with insertases and chaperones, to facilitate the 

integration into the membrane. MRPL45 might mediate the interaction by binding directly to the 

IMM (as shown for TIM44) or via the binding with IMM proteins, as suggested for its homologue 

Mba1. 

In the previous chapter, I confirmed the importance of MRPL45 for the stability of the mt -LSU 

and, as a consequence, for an efficient protein synthesis. In this chapter, I aimed to confirm the 

interaction of the mitochondrial translation machinery with the IMM in human mitochondria and to 
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study the possible involvement of MRPL45 in this interaction. For this purpose, a protocol to 

analyse the interaction was developed and applied in the studies that are presented in this 

chapter. In order to study the ability of MRPL45 to directly interact with the IMM, cell lines able to 

inducibly express this protein were prepared. After the characterisation of the phenotype of the 

cell line was obtained, the direct interaction of MRPL45 with the membrane was studied in cells 

induced to express the protein in the absence of the assembled mitoribosome. Once the existence 

of a direct interaction between MRPL45 and the IMM was established, modifications to the protein 

were engineered to investigate the involvement of certain domains in the interaction.  

4.2. Methods 

4.2.1. Generation of stable cell lines able to overexpress MRPL45 

The ORF encoding MRPL45 was cloned into pcDNA5/FRT/TO, a plasmid that is compatible 

with the Flp-In TRex system and that allows the inducible overexpression in HEK293 Flp-In 

TRex cells by addition of tetracycline or doxycycline to the growth media. The multiple cloning 

site of the plasmid contains a BamHI restriction site that was used to insert the sequence 

encoding for MRPL45. A complete map of pcDNA5/FRT/TO can be found in Appendix 3.  

The plasmid was obtained from an E. coli strain previously transformed with the plasmid in 

our laboratory, purified and digested with BamHI (qv 2.3.7.) (Fig. 4.6). 

 

Figure 4.6  pcDNA5/FRT/TO was purified and digested with BamHI. 

The extracted plasmid (Pl) was separated on 1.2% agarose gel prior (A) and following (B) 

digestion with BamHI. M=marker, Pl=pcDNA5/FRT/TO. 

The fragment to be used in the ligation was prepared via PCR using random hexamer primed 

cDNA obtained from HEK293 cells as template. The primers were designed to amplify the 

mature MRPL45 mRNA sequence and to insert BamHI restriction sites on either side of the 

sequence. Three inserts were prepared using different combinations of custom designed 

primers (Frw1, Rev3; Frw2, Rev3; Frw2, Rev2; listed in Appendix 5), targeting a different region 

prior or after the ORF of MRPL45. The products obtained were separated on 1.2% agarose gel 

and after visualisation with UV light, the bands correspondent to the insert size were excised 

(Fig. 4.7). 
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Figure 4.7  Preparation of MRPL45 insert via PCR 

DNA electrophoresis on 1.2% agarose gel of purified MRPL45 fragments 

obtained via PCR reactions. The inserts were obtained with different 

combinations of primers (1= Frw1, Rev3; 2= Frw2, Rev3; 3= Frw2, Rev2, 

see Appendix 5). M=size marker. 

 After digestion with BamHI and purification via gel extraction, insert 2 (1,004 bp) was used 

to perform ligation in pcDNA5/FRT/TO. The product of ligation was used to transform competent 

cells (qv 2.3.9.) that were plated on LB-agar containing 100 µg/mL of ampicillin for the selection 

of the transformed cells. After overnight incubation, single colonies were expanded and 

analysed to verify the presence of the insert within the plasmid. Half of each colony was used in 

a PCR performed with CMV and BGH primers (sequences in Appendix 5) that span the multiple 

cloning site of pcDNA5/FRT/TO (qv 2.3.10.). If MRPL45 was not successfully inserted in the 

plasmid, the fragment obtained from the PCR reaction would have been equal to the distance 

between CMV and BGH sites on the empty plasmid (338 bp), whereas if the insert was present 

the length of the amplified DNA would have been of 1342 bp. The products obtained from the 

PCR were visualised on agarose gels to determine the size of the amplicon (Fig. 4.8). 

 

Figure 4.8  PCR amplification of MRPL45 to identify colonies containing successful 
insertion into pcDNA5/FRT/TO. 

The products obtained from the PCR reactions performed using CMV and BGH 

primers were separated on a 1.2% agarose gel. The arrow indicates the size of the 

fragments that confirm the success of the ligation reaction. M=size marker, Numbers = 

colony designation. 
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The DNA electrophoresis analysis showed that the PCR performed on colonies 10 and 11 

produced a fragment of approximately 1,300 bases, indicating that these colonies contained the 

ORF for MRPL45 ligated into the plasmid. 

Due to the use of the same restriction enzyme on both sides of the insert, the orientation of 

MRPL45 within the plasmid needed to be confirmed. For this, diagnostic digestion was 

performed on plasmids from colonies 10 and 11. Each plasmid (500 ng) was digested with AflII, 

a restriction enzyme that cuts both the plasmid and the insert. If the orientation of MRPL45 is 

correct, the enzyme will cut 116 bases prior to the end of the insert itself, leading to the formation 

of a 877 bp fragment. Whilst, if the insert has been ligated in the wrong orientation, the digestion 

will produce a smaller fragment of 137 bp. In both cases, a bigger fragment (5264 bp and 6004 

bp respectively) containing the majority of the vector will be obtained from the digestion (Fig.  

4.9A). In order to have a positive control, the plasmids were also linearised via digestion with 

KpnI, which performed a single cut on the whole MRPL45- pcDNA5/FRT/TO construct. The 

fragments obtained were analysed on a 1.2% agarose gel (Fig.  4.9B). 

 

Figure 4.9 Identification of the colony containing the MRPL45 ORF in the correct orientation. 

Diagnostic digestion was performed using AflII, which cut the plasmid as represented 

in (A). The plasmid was also linearised with KpnI and the products obtained from the 

digestion were on a 1.2% agarose gel (B). The arrow indicates the size of the fragment  

The diagnostic digestion showed that colony 10 contained MRPL45 inserted with the correct 

orientation into pcDNA5/FRT/TO, as a fragment of approximately 900 bp was obtained by the 

digestion of the construct with AflII. Subsequently, the plasmid from colony 10 was sequenced 

to confirm the identity of the sequence. The result obtained also confirmed the absence of 

mutations in MRPL45 nucleotide sequence cloned in pcDNA5/FRT/TO (Appendix 8). Finally, 

MRPL45-pcDNA5/FRT/TO was used, together with pOG44m to generate HEK293 Flp-In TRex 

cells able to overexpress MRPL45 (qv 2.1.6.). Positive transformants were selected through 

antibiotic resistance and individual clones were expanded and testef fot the ability to 

overexpress the protein upon induction with tetracycline. 
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4.2.2. Membrane-Soluble Fraction Protocol Optimization 

A reliable protocol to separate membranes from the soluble fraction in mitochondria was 

required in order to study the interaction of the mitoribosome with the IMM.  

The interaction of Mba1 with the IMM had been previously studied in yeast using the 

“membrane flotation assay” (Ott M et al., 2006). In this assay, intact mitochondrial membranes 

are disrupted by 3 cycles of freezing in liquid nitrogen and thawing at 37°C and then the 

membranes are separated from the soluble fraction by centrifugation at high speed using a step 

gradient containing different concentrations of sucrose. The composition of the IMM of human 

mitochondria differs from the yeast counterpart, the protocol cannot be directly transferred to be 

performed on human mitochondria. I, therefore, decided to optimise a method to perform on 

human mitochondria to separate membranes from the soluble fraction.  

After extraction from cells (qv 2.6.), mitochondria were disrupted using different techniques 

and buffers. The separation of membranes and the soluble fraction was then performed via high-

speed centrifugation, of which the duration and g-force needed to be adjusted. The protocol is 

summarised in Fig. 4.10.  

 

Figure 4.10  Protocol to determine the ability of proteins or complexes to interact with the 
mitochondrial membranes. 

Mitochondria were extracted and their membranes were disrupted by sonication. The 

sample was then divided in half and one half was incubated with 1.6% (v:v) Triton X-100 to 

release membrane- and membrane-interacting proteins. After that, the membrane fraction 

was pelleted by high g-force centrifugation. The matrix sample (S) was retained and the 

pelleted membranes (P) were resuspended. The samples obtained were analysed via 

western blot. The blue dots represent membrane and membrane-interacting proteins. 

Mitochondrial disruption was performed in 2 different buffers using either sonication or 

freeze-thaw cycles. Both the methods led to protein degradation when performed on 

mitochondria resuspended in phosphate-based buffer (potassium phosphate pH 7.4 20 mM, 

DTT 5mM, KCl 10 mM, MgCl2 10 mM). Sonication was preferred over freeze-thaw cycles to 

disrupt mitochondria in sucrose-mannitol buffer (MS buffer, Table 4.1) because the latter, 

performed by freezing the samples in liquid nitrogen and thawing them on ice led to degradation 

of proteins. Samples were sonicated on ice for a total time of 1 minute, composed of 10 seconds 

of activity followed by 50 seconds of rest on ice, to allow the dispersion of the heat generated. 
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After sonication, a clearing spin was performed to eliminate unbroken mitochondria. The 

supernatant obtained was expected to be composed of matrix proteins, fragments of 

mitochondrial membranes and membrane vesicles. The membranes needed to be separated 

from the soluble components via high-g force centrifugation (100,000 g, 30 minutes at 4ºC). 

After that, the pellet was resuspended in MS buffer (Table 4.1) and half of it was incubated with 

high salt concentration (500 mM KCl), which should detach the proteins loosely bound to the 

IMM, without extracting the integral IMM proteins. Western blot analyses performed with the 

samples obtained suggested that the salt treatment was not efficient, therefore, another 

approach was developed. 

I thought it was possible to investigate and estimate the interaction of the monosome and its 

subunit with the membrane by comparing the effects on the composition of the membrane and 

soluble fractions obtained by high g-force centrifugation in presence or absence of detergent.  

The signal detected by western blot analysis of the mitoribosomal subunits in the membrane 

fraction (P) will be composed of membrane-interacting subunits (or monosome) together with a 

proportion of the unbound subunits (or monosome) that are pelleted at that g-force due to their 

weight. The incubation of the sample with a non-ionic detergent (Triton X-100) aimed to release 

the integral and peripheral membrane proteins so that they would then be detected in the soluble 

fraction on western blot analysis. The presence of a signal for a protein in the membrane fraction 

upon treatment with Triton X-100 would suggest that this protein is a part of a heavy complex 

that is pelleted at the condition used for the high g-force centrifugation. The detection of an 

integral IMM protein that is not a component of a heavy complex, for example TOM20, was used 

to confirm the efficiency of the incubation with Triton X-100. If the protein of interest, which is 

suspected to interact with the membrane, has a different distribution between P and S fractions 

in the presence or absence of detergent, it is likely that that protein is interacting with the IMM.  

In order to limit the precipitation of heavy soluble complexes present in the matrix, a lower g-

force needed to be found at which only the membranes are pelleted. For this purpose, the 

protocol was repeated centrifuging the samples for 30 minutes at 4 different g -forces (50,000, 

70,000, 100,000 and 150,000). Mitochondria were extracted and the membranes disrupted by 

sonication as previously described. After a clearing spin at 11,000 g for 10 minutes at 4ºC, the 

supernatant was supplemented with 150 mM NaCl and divided into 2 samples of  equal volume. 

One half of each sample was then supplemented Triton X-100 at the final concentration of 1.6% 

and all the samples were incubated for 30 minutes on ice, with gentle vortexing every 10 

minutes. At the end of the treatment, the samples were centrifuged. The pellets obtained from 

the protocol were resuspended in presence of 0.2% SDS (W/V) at 37ºC in half the volume of 

the soluble fraction. A comparable volume of the two samples (15 µL for S, and 7.5 µL for P) 

were analysed via western blot (Fig. 4.11). 
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Figure 4.11 Separation of soluble and membrane components in presence or absence 

of Triton X-100 at 4 different g-force centrifugations. 

Western blot analysis of membrane (P) and soluble (S) proteins obtained after disruption of 

mitochondria with sonication. The initial sample was incubated on ice in the presence or 

absence of 1.6% of Triton X-100 (Tri). Soluble proteins and membrane proteins were 

obtained after centrifugation at different g-forces (150,000 g, 100,000 g, 70,000 g and 

50,000 g) for 30 minutes at 4°C. GDH was used as marker for the matrix, whereas 

NDUFA9 was used to confirm the membrane fractions. 

The western blot analysis showed that at all the tested g-forces, the matrix protein GDH was 

found mainly in the soluble fractions. A weak signal was expected in the membrane fractions in 

absence of detergent because of the ability of one of its isoform to interact with the IMM (Rajas 

F et al., 1996). Triton X-100 should release the remaining, membrane-interacting, GDH that 

should be then detected in the soluble fractions (Fig. 4.11, lanes 4, 8, 12, 16). The IMM protein 

NDUFA9 (a component of respiratory complex I) was predominantly detectable in the 

membrane fractions in absence of detergent (Fig. 4.11, lanes 1, 5, 9, 13). In presence of 

detergent, NDUFA9 was relased and detected in the soluble fractions (Fig. 4.11, lanes 4, 8, 12, 

16) and should be absent or barely detectable in the membrane fractions (Fig. 4.11, lanes 3, 7, 

11, 15). A significant signal for this IMM protein was detected in the membrane fraction when 

the centrifugation was performed at 150,000 g (Fig. 4.11, lane 3), suggesting that NDUFA9 (and 

probably the whole complex I) was pelleted at that speed due to its mass. In addition, GDH was 

also detectable in the same fraction (Fig. 4.11, lane 3), suggesting again that the g-force applied 

was pelleting a heavy complex containing the hexameric complex of the protein. 

At the lower g-force tested (50,000 g) a signal from NDUFA9 was detectable in the soluble 

fraction in absence of detergent (Fig. 4.11, lane 14), indicating that complex I and likely the 

membranes were not completely pelleted at this g-force. 

Because the 70,000 g centrifugation resulted in an efficient separation of membranes from 

soluble components, this g-force was selected to be used for the membrane-interaction studies. 

The final protocol used throughout the study is reported below. 
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General protocol 

Cells were grown in the desired conditions in 75 cm2 flasks until 80% confluent. Cells were 

then harvested, mitochondria were extracted (qv 2.6) and resuspended in Mannitol-Sucrose 

buffer (MS buffer, Table 4.1).  

Table 4.1  MS buffer composition.  

DTT and PMSF were added immediately prior to use to the buffer, due to their lower 

stability in aqueous solution. 

Reagents Final concentration 

Mannitol  

Sucrose 

HEPES, pH 7.8 (Sigma, cat no H3375) 

EDTA  

DTT  

PMSF  

EDTA-free protease inhibitor (Pierce) 

210 mM 

70 mM 

20 mM 

2 mM 

2 mM 

1mM 

1x 

Once fully resuspended, an aliquot of mitochondria was retained for lysis and protein 

concentration was quantified. The suspension was sonicated on ice in a minimum volume of 

800 µL for 1 minute at amplitude 10 with the Soniprep 150 plus (MSE) doing cycles of 10 

seconds of sonication followed by 50 seconds of rest, to avoid overheating of the sample. After 

the membrane disruption, the sample was centrifuged at 11,000 g for 10 minutes at 4ºC to 

eliminate unbroken mitochondria. The resulting supernatant was d ivided into two samples of 

equal volume. Both the samples were supplemented with 150 mM NaCl. In order to solubilise 

the membranes, Triton X-100 was added to one of the samples at a final concentration of 1.6% 

(v:v). The final volume of the two samples was then equalised by addition of MS buffer and the 

samples were incubated on ice for 30 minutes with occasional gentle vortexing. At the end of 

the incubation time, the volume of the samples was measured and then moved to polycarbonate 

tubes (Beckman Coulter, cat no 343778). The untreated membranes were separated from the 

soluble fraction by centrifugation at 70,000g for 30 minutes at 4ºC in the Beckmann 

ultracentrifuge (rotor TLA120.2). The supernatants were saved for western blot analysis, and 

the pellets were washed in MS buffer and centrifuged again using the same conditions. The 

pellet was then resuspended in MS buffer containing 0.2% SDS, in a final volume that was half 

the volume of the sample measured prior to centrifugation. A volume of 15 µL of every  

supernatant (S) and 7.5 µL of every pellet (P) were resolved by SDS-PAGE and analysed via 

western blot. The results were quantified with ImageLab (as in 4.2.2.) for every condition tested 

(presence or absence of detergent) and presented as percentages using the following 

equations: 

Signal P + Signal S= Total signal (corresponds to 100%) 

%Signal P= Signal P * 100/ Total signal 

%Signal S= 100- %Signal P 
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4.3. Analysis of the interaction of the mitoribosome with the IMM 

The protocol developed in the previous section was used to assess the interaction between 

the mitoribosome and the IMM in human organelles, an interaction that was previously reported 

in bovine tissue (Liu M & Spremulli LL, 2000). 

HEK293 cells were grown in 75 cm2 flasks until 80% confluent. Mitochondria were extracted, 

burst by sonication and then the membranes were separated from the soluble fraction as 

explained in 4.2.2. Membranes (P) and soluble (S) fractions obtained in presence or absence 

of Triton X-100 were analysed via western blot (Fig. 4.12A). 

 

 

 

Figure 4.12 Interaction of large and small subunits of the human mitoribosome with the IMM.  

A) Representative figure of membrane (P) and soluble (S) fractions obtained in presence 

or absence of 1.6% Triton X-100 from mitochondria extracted from HEK293 cells (qv 4.2.2) 

and analysed via western blot. The distribution of the mitoribosome between the two 

fractions for each treatment was visualised using antibodies against mt-LSU (MRPL11) and 

mt-SSU (MRPS26) proteins. GDH and NDUFA9 were used as markers for the soluble and 

the membrane fractions respectively. B) Quantification of the western blot results was 

obtained with ImageLab and calculated as reported in 4.2.2. The results summarise 3 

different biological repeats and are shown as percentages. 

The efficiency of the protocol was confirmed by the distribution of GDH and NDUFA9. The 

matrix protein GDH was mainly present in the S fraction for both the conditions tested (Fig. 4.12A, 

lanes 2 and 4). The component of complex I NDUFA9 was predominantly found in the P fraction 

in absence of Triton X-100 (Fig. 4.12A, lane 1), whereas its presence was mainly in the S fraction 

upon solubilisation of the membranes by the detergent (Fig. 4.12A, lane 4).  

The partitioning of the mitoribosomal subunit between membrane and soluble fraction was  

assessed using antibodies against MRPL11 (mt-LSU) and MRPS26 (mt-SSU). The addition of 

detergent led to release of these 2 proteins, although this was not complete. The presence of 

approximately 30% of both MRPL11 and MRPS26 in the P fraction upon solubil isation of the 

membranes with Triton X-100 (Fig. 4.12A, lane 3) suggested that at the g-force used, at least this 

proportion of mt-LSU and mt-SSU pelleted because of their weight. Subtracting the intensity of 
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this residual signal (lane 3) from the signal obtained in the absence of detergent for the P fraction 

(lane 1), it is possible to infer information with respect to the interaction of the subunits with the 

IMM. My data suggest that al least ≈45% of mt-LSU and at least ≈15% of mt-SSU interacted with 

the membrane. This observation indicated that at steady state there is a greater association of 

the mt-LSU with the IMM than there is of the mt-SSU, and that this interaction might happen when 

the mt-LSU is not associated with the mt-SSU. It is important to notice that a proportion of both 

the subunits was found in the supernatant in the absence of detergent (Fig. 4.12, lane 2). This 

suggested that a proportion was not interacting with the membrane.  

4.4. Analysis of the interaction of MRPL45 with the IMM 

In addition to the analysis of the interaction of the mitoribosome with the IMM, the protocol 

developed in 4.2.2. was also used to investigate the specific involvement of MRPL45 in this 

interaction.  

To test the possibility of a direct interaction of MRPL45 with the IMM, this mitoribosomal protein 

needed to be present in mitochondria in the absence of the rest of the mitoribosome. The steady 

state level of the mitoribosome and of the mitoribosomal proteins can be depleted with incubation 

of the cells with ethidium bromide. This reagent intercalates into mt-DNA, inhibiting its replication 

and transcription. As a consequence, the 16S and 12S rRNA encoded by the mitochondria cannot 

be transcribed and be integrated into the subunits of the mitoribosome. In this condition,  the 

mitoribosome cannot fully assemble and mitoribosomal proteins, including MRPL45, become 

depleted. A cell line that can be induced to overexpress MRPL45 can be used in these conditions 

to independently study the interaction of MRPL45 with the IMM. The cell line was generated as 

reported in 4.2.2. Prior the analysis of the interaction of MRPL45 with the IMM, the effects of the 

overexpression of the protein were evaluated. 

4.4.1. Effects of MRPL45 overexpression 

Prior to the use of the MRPL45-HEK293 cell line to test the interaction of MRPL45 with the 

membrane, the effects of the overexpression on the cellular phenotype were studied.  

MRPL45-HEK293 cells were induced for 10 days and cell growth was monitored with the 

IncuCyte system over the overexpression period (Fig. 4.13A). The morphology of the cells after 

6 days of overexpression is shown in Fig. 4.13B. 
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Figure 4.13 Effects of MRPL45 overexpression on cell growth. 

A) Cell confluence was measured with the IncuCyte system every 3 hours over 10 days 

of overexpression of MRPL45 in HEK293 Flp-In TRex cells. The red arrow indicates when 

the media was replaced. B) Cell morphology was visualised after 6 days of MRPL45 in 

HEK293 Flp-In TRex cells. The data are representative of 3 biological repeats. 

A mild growth delay was observed in the cell line overexpressing MRPL45 (Fig. 4.13A). 

Because the overexpression leads to non-physiological levels of this protein, it is possible that 

this condition causes stress and affects cell homeostasis, causing the mild growth retardation. 

A minor drop in the growth was present for both the samples due to replacement of the media 

(Fig. 4.13A, red arrow) caused a minor drop in the growth. No effects were detected on cell 

shape or morphology (Fig. 4.13B). 

The effects on the steady state level of mitochondrial proteins involved in translation were 

also analysed via western blotting of cell lysate after 10 days of continuous induction of MRPL45 

(Fig. 4.14). 
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Figure 4.14  MRPL45 overexpression effects on steady state level of 
mitochondrial proteins involved in mitochondrial translation.  

Western blot analysis was performed on lysate obtained after 10 days of MRPL45 

overexpression (In) in MRPL45- HEK293 Flp-In TRex. Uninduced cells (Un) were 

cultured as a control. Levels of MRPL45 overexpression were detected using an antibody 

targeting the protein. Steady state level of components of mt-SSU (MRPS22, MRPS27, 

MRPS17) and mt-LSU (MRPL11, MRPL3) were evaluated, as well as the mitochondrial 

encoded protein COXII. SDH70 steady state levels were used as loading control. The 

figure is representative of 3 biolgical repeats. 

As expected, the overexpression of MRPL45 had no effect the steady state level of COXII, 

suggesting that protein synthesis in mitochondria was not affected. However, the levels of the 

mitoribosomal proteins evaluated were mildly affected. 

These results suggest that the overexpression of MRPL45 did not cause any major 

deleterious effect on MRPL45-HEK239 cells. 

4.4.2. Analysis of the direct interaction of MRPL45 with the IMM 

After the confirmation of the interaction between the mitoribosome and the IMM in 4.3, the 

ability of MRPL45 to directly interact with the membrane was studied. 

MRPL45-HEK293 Flp-In TRex cell line was cultured in two 75 cm2 flasks using supplemented 

media containing 250 ng/mL of ethidium bromide for 10 days to deplete mitochondrial DNA. In 

the last 4 days of ethidium bromide treatment, MRPL45 was overexpressed, by adding of 1 

µg/mL of tetracycline to the growth media. The length of the ethidium bromide treatment was 

considered sufficient to lead to depletion of the assembled mitoribosome. This needed to be 

confirmed on western blot analysis using antibodies targeting components of mt -SSU and mt-

LSU. COXII steady state levels could also be used to further verify the efficiency of the ethidium 

bromide treatment. 

The treatment with ethidium bromide made the cells very delicate, therefore extra care was 

needed during their growth. Media was replaced every 2 days (or earlier if a change of its colour 

indicated increased acidity), in order to replace the glucose needed throughout the ethidium 

bromide treatment for the glycolytic synthesis of ATP. Attention was also paid to the cell 
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confluence, which was kept below 70%, to avoid cell detachment, which was observed at higher 

confluency. 

At the end of the ethidium bromide treatment, cells were harvested and mitochondria were 

isolated. Membrane and soluble fractions were separated following the protocol optimised in 

4.4.2, with some modification. In particular, the membranes were pelleted at 150,000 g, and no 

incubation with 1.6% Triton X-100 was performed prior to centrifugation. These modifications 

were legitimate because, after incubation with ethidium bromide, the mitoribosome was absent 

and therefore could not sediment during the high speed centrifugation, used to separate 

membranes from the soluble fraction. The same protocol was also performed in parallel on 

HEK293 cells, cultured in normal growth media. The samples obtained were analysed on 

western blot (Fig. 4.15). 

 

Figure 4.15 Distribution of MRPL45 between membranes and soluble 

fractions in wild-type cells or in cells overexpressing MRPL45 and treated 
with ethidium bromide. 

Western blot analysis was performed on membranes (P) and soluble (S) fractions 

obtained from wild type HEK293 cells and HEK293 Flp-In TRex cells overexpressing 

MRPL45 for the final 4 days of 10 days in ethidium bromide. The efficiency of the 

separation was assessed with antibodies against the matrix protein GDH and against the 

membranes protein OXA1L and porin. The success of the overexpression was verified 

using an antibody against MRPL45 and the efficiency of the ethidium bromide treatment 

was confirmed with antibodies against COXII, MRPS26 and MRPL11. The dashed line 

indicated that some lanes have been omitted. The experiment was not replicated. 

MRPS26, MRPL11 and COXII were all detectable in the samples obtained from the HEK293 

wild type cells (Fig. 4.15, lanes 1 and 2), whereas they were undetectable in either of the 

fractions obtained for cells grown in ethidium bromide (Fig. 4.15, lanes 3 and 4), confirming the 

efficiency of the treatment with the intercalating agent. The presence of GDH mainly in the 

soluble fractions and of OXA1L and porin predominantly in the membrane fractions for both the 

cell lines confirmed the successful precipitation of the membranes at the g-force used. As the 

majority of MRPL45 was detected in the membrane fraction in the absence of the assembled 

mitoribosome, it is likely that MRPL45 is able to interact directly with the IMM. 

The overexpression of MRPL45 could potentially cause aggregation of the protein that might 

be pelleted at the g-force used in the previous experiment. In order to discriminate between the 
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presence of MRPL45 in the membrane fraction only because of its aggregation, or as a result 

of its interaction with the IMM, the separation of membrane and soluble fraction was repeated, 

but this time following the optimised protocol given at 4.2.2. MRPL45- HEK293 Flp-In TRex cells 

were grown in the same conditions used for the previous experiment (10 days in ethidium 

bromide with 4 days of MRPL45 overexpression), mitochondria were extracted and the 

membranes and soluble fraction were separated. If MRPL45 was interacting with the IMM, the 

addition of 1.6% Triton X-100 would release the IMM-interacting pool of MRPL45 and the 

distribution of MRPL45 between membranes (P) and soluble fraction (S) should change, 

showing a difference in the presence or absence of the detergent. The fractions obtained were 

analysed by western blot (Fig. 4.16A). 

 

 

 

   Figure 4.16 Distribution of overexpressed MRPL45 between membrane and soluble 

fractions in the presence or absence of detergent. 

Representative figure of western blot analysis (A) performed on mitolysate (Lys), membranes (P) 

and soluble (S) fractions obtained as in 4.2.2. from HEK293 Flp-In TRex cells overexpressing 

MRPL45 for 4 days during ethidium bromide incubation (10 days). Half of the suspension of 

membranes and matrix proteins obtained was incubated with 1.6% Triton X-100 (Tri) prior 

centrifugation. The success of the overexpression was verified using an antibody against 

MRPL45. The efficiency of the protocol was assessed with antibodies against the matrix protein 

GDH and against the membrane protein TOM20. COXII levels were undetectable. Data obtained 

by western blot for 3 biological repeats were quantified with ImageLab as in 4.2.2. and summed 

up in a bar graph (B).  

The matrix protein GDH was present mainly in the S fraction both in the presence and 

absence of detergent. The presence of the outer membrane protein TOM20 in the S fraction 

upon addition of Triton X-100 confirmed the success of membranes solubilisation. No signal for 

either MRPL11 and MRPL26 was detected. The detection of MRPL45 showed that the 

distribution between P and S fractions changed following the incubation with the detergent. 

While the protein appeared to be equally divided between the 2 fractions in the absence of 

detergent (Fig. 4.16A, lanes 2 and 3), the majority of MRPL45 was present in the S fraction upon 

addition of detergent (Fig. 4.16A, lane 5). The addition of Triton X-100 releases the membrane 

proteins, as well as the membrane-interacting ones. As a consequence, the release observed 

for MRPL45 in absence of the assembled mitoribosome suggested that the protein is able to 
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interact with the membrane directly. The residual signal for MRPL45 found in the P fraction in 

presence of Triton X-100 might indicate the presence of aggregates. Noticeably, at least the 

50% of MRPL45 was found in the supernatant in the absence of detergent. This suggested that 

a large proportion of MRPL45 was not interacting with the membrane. This could be due either 

to the saturation of the interaction points (since the high steady state level of the protein), or to 

the transient nature of the interaction. The quantification of the data obtained from western blot 

analysis suggested that approximately the 25% of MRPL45 was released by the addition of 

detergent, suggesting that at least this portion of the population was interacting with the IMM 

directly or indirectly. 

4.5. Discussion 

Due to the high hydrophobicity of the products of mitochondrial translation, it is likely that their 

synthesis is coupled with their insertion into the IMM. A protocol was developed in order to 

investigate the interaction between the membrane and the mitoribosome or mitoribosomal 

components. The aim of this protocol was to allow the comparison of the distribution between 

membranes and the soluble fraction of a protein/complex in the presence or absence of detergent. 

The optimised protocol showed efficient separation of membranes and membrane-interacting 

proteins from soluble components as evidenced by the relevant markers (TOM20 or NDUFA9 

and GDH, respectively). The addition of Triton X-100 successfully solubilised the membrane and 

membrane-interacting proteins that were then located in the soluble fraction. From the data 

obtained via western blot analysis, it was possible to hypothesise the existence of an interaction 

of a single protein or a group of proteins with the membranes. The main weakness of the process 

is the absence of a control that can be used to ensure that the membranes and the soluble fraction 

are equally represented on western blot analyses. In order to generate good quality data, extra 

care is needed on analysing representative volumes. In particular, the volume of each of the 

samples needs to be measured prior to high g-force centrifugation and the pellets obtained need 

to be resuspended in half the volume measured before the centrifugation. I decided to resuspend 

the pellet in half a volume in case of needing a more concentrated sample for western blot 

analyses. The volume of supernatant obtained at the end of the protocol does not have to be 

measured. With this precaution, it will be possible to compare the changes in the distribution of 

the analysed protein.  

The protocol performed on wild type HEK293 confirmed the ability of the human mitoribosome 

to interact with the IMM, previously described in bovine organelles by Liu M and Spremulli LL 

(2000). Specifically, my data suggested that under exponential growth conditions approximately 

45% of the mt-LSU interacted with the IMM, since this proportion was released by addition of 

detergent. This data is in agreement with the results published by Liu M and Spremulli LL (2000). 

On the other hand, a smaller proportion of the mt-SSU (≈15%) was found to interact with the 

membrane. It is likely that the interaction of the small subunit with the IMM is mediated by the 

large subunit. Because a higher proportion of mt-LSU was found associated with the membrane, 
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it is tempting to speculate that the mt-LSU anchors to the membrane first, waiting for the mt-SSU 

to recruit the mRNA and then join to form the monosome. These experiments also showed that a 

proportion of mt-LSU and mt-SSU (≈30% and ≈60%, respectively) were not interacting with the 

membranes. 

The key players in the association between IMM and mitoribosome are not yet fully identified. 

The mitoribosomal protein MRPL45 was suggested to play a role in the interaction because of its 

structural similarity to the membrane interacting protein TIM44 (Handa N et al., 2007; Marom M 

et al., 2009) and because recent mt-LSU structures localised it in close proximity to the 

polypeptide exit site. This position would be ideal to establish membrane-interaction to promote 

the insertion of mitochondrial translation products, however, it was only identified in 2014 by 

Greber et al, after I began this study. Characterisation of the yeast homologue, Mba1, confirmed 

the interaction of this non-mitoribosomal protein with both the IMM and the mitoribosome 

mitoribosome (Ott M et al., 2006). My protocol, which was designed to investigate membrane 

interaction, was performed on cells overexpressing MRPL45 in the absence of fully assembled 

mitoribosomal subunits after incubation with ethidium bromide. It is important to mention that in 

all the cases when the cells were treated with ethidium bromide (both in this and in the following 

chapters), a complete precipitation of TOM20 in the pellet fraction in absence of detergent could 

not be achieved. This effect might be a consequence of the general effect of ethidium bromide on 

mitochondrial physiology. However, the data obtained showed that a proportion of MRPL45 was 

released by addition of detergent and that therefore approximately the 25% of the protein was 

found associated with the membranes, confirming the ability of MRPL45 to d irectly bind the IMM 

and, therefore, a role of this mitoribosomal protein as a mediator of the IMM-mitoribosome 

interaction. A proportion of MRPL45 was not released by the detergent, suggesting the presence 

of aggregates, which might be due to the heat generated during the sonication used to break the 

mitochondrial membranes. In absence of detergent, MRPL45 was not completely interacting with 

the membrane, but approximately 50% was recovered in the free fraction. This suggests that the 

interaction sites might be saturated due to the high steady-state level of the overexpressed 

protein, or that the interaction is only transient. The percentage of MRPL45 suggested to interact 

with the membrane (≈25%) is lower than the one observed for the mt-LSU (≈45%). Because it is 

likely that more than one interaction is contributing to the association of the mitoribosome with the 

IMM, it is predictable that the interaction of MRPL45 might be weaker compared to the one of the 

assembled mt-LSU. 

In the following chapter, the modality of interaction of MRPL45 with the IMM will be discussed. 
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Chapter 5: Investigation of the mode of interaction of MRPL45 with 

the IMM 

The previous chapter confirmed the ability of MRPL45 to interact directly with the IMM. This 

chapter will investigate the mode of this interaction, which could be mediated by a transmembrane 

domain, by contact with a membrane protein or by interaction with the phospholipid layer. In order 

to identify putative membrane-interacting proteins, immunoprecipitation was performed. This was 

carried out on a cell line that could inducibly overexpress MRPL45FLAG, after proving that the 

addition of the FLAG-tag did not alter the protein’s role. 

5.1. Methods 

5.1.1. Mass spectrometry analysis 

Mass spectrometry was used to identify proteins present in the samples that were obtained 

via immunoprecipitation (qv 2.9.). Extra care was used to prevent contamination of the samples, 

which might impact on the quality of the results obtained in the analysis. Together with attention 

to avoid keratin contamination throughout the protocol, the beads used for the 

immunoprecipitation where washed, prior to elution, 5 times instead of the 3 reported in the 

protocol at 2.9. 

Once eluted, the samples (1/5) were first analysed via western blotting to confirm the success 

of the immunoprecipitation. After that, the remainder of the sample was loaded on a 12% SDS-

PAG and electrophoresed until the samples had migrated 5 mm into the resolving gel. At that 

point the plates containing the SDS-PAGE were wrapped and taken to Dr Achim Treumann for 

proteomic analysis (NUPPA, Newcastle University). 

The samples were digested with the filter-aided sample preparation (FASP) method 

(Winiewski JR et al., 2009). This method allows a wide proteome coverage (including membrane 

proteins) by solubilising the samples in 4% SDS and then replacing the detergent, which is not 

compatible with mass spectrometry analysis, with urea via filtration. This method was also 

demonstrated to be efficient in the detection of membrane proteins via mass spectrometry.  

The data received reported the ID of the protein identified, the sum of raw spectrum identity 

(log(I)), the number of peptides found (rI) and the expectation of finding the protein stochastically 

(log(e)). 

5.1.2. Generation of a cell line able to express MRPL45FLAG 

The addition of a FLAG-tag at the C-terminus of MRPL45 will result in a useful tool to 

investigate the interactome of the protein via immunoprecipitation, as well as to generate 
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mutants that will be easily distinguished from the endogenous MRPL45 via the detect ion with 

an anti-FLAG antibody. 

BamHI was used as restriction site to introduce MRPL45FLAG into pcDNA5/FRT/TO. The 

same plasmid prepared for the previous cloning (Fig. 4.9) was used to introduce the sequence 

encoding for the FLAG-tagged protein. The insert was prepared via PCR starting from cDNA 

from HEK293 cells using the the primers Frw1 and Rev1FLAG (Appendix 5), of which the 

reverse primer contained the nucleotide sequence that encodes the FLAG-sequence (aspartic 

acid - tyrosine - lysine - aspartic acid - aspartic acid - aspartic acid - aspartic acid - lysine). DNA-

electrophoresis of the product obtained PCR showed that the insert was successfully amplified 

(Fig. 5.1). 

 

Figure 5.1  MRPL45FLAG insert was prepared via PCR. 

A purified insert obtained from PCR reaction with Frw1 and Rev1FLAG primers 

was separated in a 1.2% agarose gel to confirm recovery and purity. M=marker, 

Fl=MRPL45FLAG insert. 

After digestion with BamHI, MRPL45FLAG was ligated into pcDNA5/FRT/TO (qv 2.3.9.). Of 

the 36 colonies obtained by transformation, no positive colony was identified using the cracking 

gel technique (qv 2.3.10.). Both ligation and transformation were repeated, but without success.  

One of the possibilities for the failiure in MRPL45FLAG cloning was the incomplete digestion of 

the insert. A successfully digested fragment for insertion was therefore obtained using the PCR-

script Amp Cloning Kit (qv 2.3.11.). This method allows excision of the insert after cloning into a 

pPCR-script vector. After digestion, the insert was gel-purified and used for cloning into the 

plasmid of interest. MRPL45-FLAG obtained from the previous PCR reaction was ligated with 

the pPCRscript Amp SK(+) plasmid and the product was used to transform competent cells. The 

positive colonies were screened using a ‘cracking gel’ and the plasmids extracted from putatively 

positive, which were then digested with BamHI and analysed via DNA electrophoresis (Fig. 5.2).  

M(bp)   FL 

1,018 

1,635 
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Figure 5.2  Digestion of MRPL45FLAG-pPCRscript Amp SK(+) plasmid 

The plasmids obtained from colonies 4 and 5 were digested with BamHI and the products were 

visualised on 1.2% agarose gel. M=size marker, numbers=PCRscript colonies.  

Two products were obtained from BamHI digested, of which the faster migrating one (≈1000 

bp) corresponded to the insert. The insert obtained from colony 4 was gel-purified and used to 

ligate MRPL45FLAG into pcDNA5/FRT/TO (qv 2.3.9.). The colonies obtained after 

transformation of the competent cells (qv 2.2.2.) were screened to confirm the presence of the 

insert by visualisation of the products obtained for the PCR reaction using CMV and BGH 

primers on agarose gel (Fig. 5.3A) (qv 2.3.10.). The colonies containing the insert were further 

analysed using the diagnostic digestion shown in Fig. 4.12 (page 87), and the products were 

visualised on an agarose gel (Fig. 5.3B). 

  

Figure 5.3  Colony screening to identify colonies positive for MRPL45FLAG 
transformation. 

1.2% agarose gels were used to visualise the products of the PCR performed on colonies 

transformed with MRPL45FLAG-pcDNA5/FRT/TO using BGH and CMV primers (A) and the results 

of diagnostic digestion with AflII  [A] (B) on selected positive colonies from panel A. Plasmids were 

also linearised by digestion with KpnI.[K]  M= size marker, numbers= colonies. 

PCRscript colony 4 

M(bp)  3    4     5     6     7     8     9    10    11   13  

1,000 

3,000 

M(bp) 14   15   16    17   18   19   20   21 

1,000 

3,000 

500 

M(bp)    7       7     13    13    19    19   

1
,0

3
,0

0

PCRscript colony 4 

A      K      A     K      A     K 

A 
B 



98 
 

All the colonies tested contained the insert, as the analysis indicated by the presence of a 

≈1300 bp fragment, compatible with the presence of the insert (≈1000 bp) between CMV and 

BGH primer sites (344 bp). Colonies 7, 13 and 19 derived from PCRscript fragment 4 were 

further analysed with diagnostic digestion and all presented the correct orientation of 

MRPL45FLAG, as suggested by the ≈900 bp fragment formed after digestion with AflII. The 

plasmid obtained from colony 7 was sequenced using CMV and BGH primers to confirm the 

absence of mutations. While the sequences obtained from the forward primer (CMV) showed 

100% of identity, the one obtained from the reverse primer (BGH) showed a mutation that led 

to an alteration of the encoded amino acid sequence. The altered amino acids was the last one 

found before the FLAG-tag (p.A306T). Due to its close proximity to the end of the protein 

sequence, I made the assumption that this mutation would not cause improper folding of 

MRPL45FLAG.  

HEK293 Flp-In TRex cells were then transfected with the plasmid as explained in 2.1.6. The 

antibiotic-selected clones were expanded and the overexpression verified. Positively-

expressing clones were further expanded to prepare samples for long-term storage in liquid 

nitrogen. 

5.2. Effects of MRPL45-FLAG overexpression 

If the C-terminus of MRPL45 has an essential role in anchoring the mitoribosome to the IMM, 

the introduction of a FLAG-tag at the C-terminus of MRPL45 might disrupt this interaction and 

have effects on mitochondrial translation and cells homeostasis.  

First, the integration of MRPL45FLAG into the assembled mt-LSU needed to be verified. For 

this purpose, an isokinetic sucrose gradient analysis was performed (qv 2.8) on MRPL45FLAG-

HEK293 Flp-In TRex cell lysate after 4 days of overexpression. The 12 fractions obtained were 

analysed via western blotting (Fig. 5.4).  

 

Figure 5.4 Analysis of the integration of MRPL45FLAG into mt-LSU.  

10-30% isokinetic sucrose gradient was performed on MRPL45FLAG- HEK293 Flp-In TRex 

cells (700µg) after 4 days of induction. Aliquots (10 µL) of each of the 12 fractions were resolved on 

a 12% SDS-PAGE and analysed via western blotting. The distribution of the mt-LSU and mt-SSU 

was assessed for the central fractions using antibodies against MRPL11 and MRPS22 

respectively. The distribution of MRPL45FLAG was verified using an antibody targeting the FLAG-

tag. The experiment was not replicated. 
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The western blot analysis showed that the FLAG-tagged protein was successfully integrated 

in the mt-LSU, as shown by the co-localisation of MRPL11 and FLAG in fractions 7 and 8. A pool 

of MRPL45FLAG was also found in fractions 1 and 2, indicating that it was unassociated (free ), 

this was expected due to the overexpression of the protein. The presence of the protein in the 

bottom fraction of the gradient indicated the presence of high molecular weight particles that are 

likely to be aggregates. The results obtained from this experiment suggested that the FLAG-tag 

on MRPL45 did not prevent either its integration into the mt-LSU or the assembly of the subunit 

itself. Interestingly, a second product was detected with the FLAG antibody, suggesting a possible 

N-cleavage of MRPL45. As observed in the sucrose gradient analysis of wild type HEK293 cells 

(Fig. 3.2, page 58), this second signal was detectable only in the first 2 fractions of the gradient, 

indicating that this form might not be integrated in the mitoribosome. This second signal was also 

detected with MRPL45 antibody in HEK293. The sucrose gradient analysis on wild type HEK293 

showed that the second signal was found in the least dense fraction of the gradient and was not 

detected in the fractions corresponding to the mt-LSU. It is tempting to speculate that this cleaved 

form of MRPL45 might play a second role in mitochondria 

As MRPL45FLAG was shown to be efficiently integrated into the mt-LSU, the effects on cell 

growth and mitochondrial protein content were assessed. MRPL45FLAG- HEK293 Flp-In TRex 

cells were induced for 10 days. Cell confluence was monitored with the IncuCyte system (Fig. 

5.5A) and the correspondent whole cell lysates were analysed via western blotting (Fig. 5.5B). 
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Figure 5.5  Effects of MRPL45FLAG overexpression on HEK293 Flp-In TRex cell growth 
and on components of the mitoribosome. 

MRPL45FLAG- HEK293 Flp-In TRex cells were induced for 10 days and their confluence was 

monitored with the Incucyte system (A). Cell lysates obtained from these uninduced and induced 

cells were resolved on by 12% SDS-PAGE and then analysed via western blotting (B). Antibodies 

against the mt-LSU (MRPL45, MRPL11, MRPL3) and mt-SSU (MRPS22, MRPS27, MRPS17) 

proteins were used. The steady state level of the mitochondrial-encoded protein COXII was also 

evaluated. Nuclear-encoded SDH70 levels were detected to verify the equality of the loading. Cell 

morphology after 6 days of overexpression is also presented (C). The figures are representative of 

3 biological repeats. 

The overexpression of MRPL45FLAG had no effect on cell confluency throughout the 10 days 

of monitoring. A minor drop in the growth was present for both the samples due to replacement 

of the media (Fig. 5.5A, red arrow). The overexpression was successful as shown by the presence 

of an intense signal at a higher molecular weight signal observed after incubation with MRPL45 

antibody. Two lower molecular weight signals were also detected with the FLAG antibody, 

suggesting that the protein was subjected to an N-cleavage. The overexpression had no effects 

of the steady state level of the components of the mt-SSU evaluated, whereas the steady-state 

level of the mt-LSU components seemed mildly upregulated. These results suggested that the 

stability of the subunits was not compromised by the overexpression of MRPL45FLAG. The level 

of COXII was also unaffected, suggesting that the overexpression had no observable effect on 

mitochondrial protein synthesis. 
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These results confirmed that the introduction of a FLAG-tag on MRPL45 has no detectable 

negative effects on the stability of the mt-LSU or mitochondrial translation. 

5.3. Analysis of the direct interaction of MRPL45FLAG with the IMM 

In order to test the ability of MRPL45FLAG to interact directly with the IMM, membranes were 

separated from the soluble fraction following the ethidium bromide treatment optimised in 4.2.2, 

after 10 days of ethidium bromide incubation with overexpression of the tagged protein during the 

last 4 days of the treatment. The mito-lysate and the fractions obtained in the absence and 

presence of 1.6% Triton X-100, were analysed via western blot (Fig. 5.6A). 

 

 

 

 

Figure 5.6 Distribution of MRPL45FLAG between membranes and soluble fraction in 

the absence of assembled mitoribosome. 

A) Representative figure of western blot analysis performed on mito-lysates (Lys), membranes 

(P) and the soluble fractions (S) obtained as in 4.2.2. from HEK293 Flp-In TRex cells overexpressing 

MRPL45FLAG for 4 days during ethidium bromide incubation (10 days). Half of the membranes and 

matrix proteins obtained were incubated with 1.6% Triton X-100 (Tri) prior to centrifugation. The 

success of the overexpression was verified using an antibody against MRPL45. The efficiency of the 

separation protocol was assessed with antibodies against the matrix protein GDH and against the 

membrane protein TOM20. COXII levels were undetectable. B) Quantification of 3 biological repeats 

of the protocol was performed from the western blot analysis using ImageLab as explained in 2.5.5. 

The efficiency of the subfractionation protocol was demonstrated using antibodies against 

GDH and TOM20. The matrix protein GDH was recovered mainly in the supernatant (Fig. 5.6A, 

lanes 3 and 5), whereas the OMM protein TOM20, which is predominantly present in the 

membrane fraction in absence of Triton X-100 (Fig. 5.6A, lane 1), was solubilised after incubation 

with the detergent, ending up in the S fraction (Fig. 5.6A, lane 5). The detection of MRPL45 

showed a change of distribution of MRPL45FLAG upon incubation with Triton X-100, which 

suggested the ability of the protein to maintain its interaction with the IMM despite the presence 

of the FLAG-tag. It is important to notice that a proportion of TOM20 was detected in the S fraction, 

in absence of Triton X-100 (Fig. 5.6A, lane 3). This was observed in every experiment where the 

cells were incubated with ethidium bromide and could indicate that the membrane fraction was 

not completely pelleted. Quantification performed on biological repeats of the experiment (Fig. 
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5.6B) suggested that about 40% of MRPL45FLAG is found in the P fraction in absence of 

detergent and that its addition effected the release from the membrane of at least 20% of the 

protein. A small proportion of MRPL45FLAG was not solubilised by the addition of detergent. This 

could be due to the presence of aggregates. In addition, it is important to notice that approximately 

40% of MRPL45FLAG was present in the soluble fraction in the absence of detergent. As 

previously mentioned for MRPL45 (Fig. 4.16, page 92), it is possible that a proportion of the 

protein in not interacting with the IMM either because of the saturation of the membrane -

interacting points, or because the interaction was transient.  Despite this, the solubilisation of the 

protein after addition of detergent confirmed its ability to interact with the IMM. 

5.4. Characterisation of the interaction of MRPL45 with the IMM 

The interaction between MRPL45 and the IMM might be due to the presence of a 

transmembrane domain, as well as mediated by a direct contact with the phospholipid layer or by 

the interaction with a membrane protein.  

The possibility of the presence of a transmembrane domain was investigated by calculating 

the hydrophobicity of the protein using the Kyte-Doolittle method (Kyte J et al., 1982). Thanks to 

this method it is possible to predict the transmembrane domains in a protein of interest. Every 

amino acid has a hydropathy score that has been experimentally calculated and which depends 

on its characteristics and on the amino acids found in close proximity. The result of the prediction 

is shown in a graph presenting the hydropathy score in function of the window position, which 

correspond to the amino acid sequence. The window size (which is the number of residues 

evaluated at once) needs to be set. When this is set to 19, the presence o f peaks over 1.6 will 

identify putative transmembrane regions and scores above 0 will indicate hydrophobic regions. 

Since the cleavage of the leader sequence of MRPL45 had not been confirmed yet, the prediction 

of the presence of hydrophobic domains was performed on the full -length MRPL45. The 

hydropathy plot is shown in Fig. 5.7. 
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Figure 5.7 Hydrophobicity of MRPL45 calculated with the Kyte -Doolittle method. 

Hydropathy scores were assigned to MRPL45 to highlight the presence of hydrophobic regions and 

transmembrane domains. The window was set at 19. Regions above 0 (blue line) are hydrophobic 

and the ones above the red line (at the score of 1.6) indicate the possible presence of 

transmembrane domains. 

The presence of peaks above 0 (blue line) indicated the presence of only a few hydrophobic 

regions. As no peak reached 1.6 (red line), no transmembrane domains were predicted. 

Because the presence of transmembrane domains of MRPL45 was unlikely, the possibility of 

its interaction with IMM proteins was assessed. For this purpose, the interactome of the protein 

was studied via immunoprecipitation studies on MRPL45FLAG. In order to discriminate between 

IMM proteins interacting with the monosome or directly with MRPL45, cells were incubated with 

ethidium bromide. This reagent made mt-rRNA unavailable, resulting in the lack of assembled 

mitoribosomal subunits. In absence of the ethidium bromide treatment, the whole mitoribosome 

will be co-immunoprecipitated with MRPL45FLAG, together with mitoribosome-interacting (but 

not necessarily MRPL45-interacting) proteins.  

First of all, the efficiency of the immunoprecipitation was verified on HEK293-MRPL45FLAG 

cells cultured in growth media and overexpression of the recombinant protein for 3 days (by 

addition of 1 µg/mL tetracycline). MRPL45FLAG was immunoprecipitated from mitochondria via 

the FLAG-tag following the protocol in 2.9. The removal of the immunoprecipitated proteins from 

the beads was performed at 95°C for 3 minutes in 100 µL of 1x sample buffer (qv 2.5.4). The 

experiment was also performed on HEK293 cells as a negative control. The result of the 

experiment was analysed via silver staining (40 µL of each sample) and western blot analysis (40 

µL of each sample) (Fig. 5.8). 
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Figure 5.8 Immunoprecipitation of MRPL45FLAG 

Silver staining of a 12% SDS-PAGE (A) of samples (40 µL) from FLAG 

immunoprecipitation from HEK293 and HEK293-MRPL45FLAG cells (3 days induction). 

The same samples were also analysed via western blotting (B), using antibodies 

against MRPS26, MRPL11 and OXA1L. Two biological replicates of the experiment 

were performed. 

The samples obtained from FLAG immunoprecipitation from HEK293-MRPL45FLAG 

mitochondria showed the presence of co-immunoprecipitated proteins when compared to the wild 

type cells, suggesting the success of the immunoprecipitation experiment. The signals observed 

at approximately 50 and 25 kDa represent the light and heavy chain of the antibody found on the 

beads and are therefore present in the sample obtained from HEK293 cells. The signal observed 

above 35 kDa for the HEK293-MRPL45FLAG sample might correspond to the FLAG-tagged 

protein. The western blot analysis confirmed the presence of a component of the mt -LSU 

(MRPL11) and a component of the mt-SSU (MRPS26), as well as the presence of OXA1L, an 

IMM protein previously suggested to interact with the mitoribosome (Haque ME et al., 2010). 

Because the immunoprecipitation via the FLAG-tag was successful, the experiment was 

repeated on the same cell line, following ethidium bromide treatment. Wild-type HEK293 cells 

were also incubated with the intercalating agent and used as a control. Each cell line was grown 

in 75 cm2 flasks in presence of 250 ng/mL of ethidium bromide for 10 days. During the last 4 days 

of treatment, 1 µg/mL of tetracycline was added to HEK293-MRPL45FLAG to induce the 

overexpression of the protein. The cells were then harvested, and mitochondria were extracted, 

lysed and used for the immunoprecipitation experiment. A proport ion (15 µg) of mitolysate was 

retained for western blot analysis. The elution of the immunoprecipitated proteins from the beads 

was performed at 95°C for 3 minutes in 50 µL of 1x sample buffer (qv 2.5.5.) as elution with the 

3x FLAG peptide did not efficiently displace the MRPL45FLAG from the beads. The samples (one 

third of the final volume) were analysed via western blot (Fig. 9). HEK293 cell lysate was also 

A 

B 
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loaded as a control for the efficiency of the ethidium bromide treatment.  The sample was also 

analysed via mass spectrometry to identify the proteins that co-immunoprecipitated with 

MRPL45FLAG (Appendix 13). 

 

Figure 5.9 Immunoprecipitation of MRPL45FLAG from ethidium bromide treated cells. 

Western blot analyses performed on mitolysates (15 µg) and FLAG-immunoprecipitated 

samples (25 µL of 50 µL elution volume, IP) from HEK293 (WT) and HEK293-

MRPL45FLAG, both incubated with ethidium bromide for 10 days and with 

overexpression of the FLAG-tagged protein in HEK293-MRPL45FLAG for 4 days. 

Mitolysate from untreated HEK293 cells was also loaded as a control (lane 1). 

Antibodies against FLAG were used to confirm the presence of MRPL45FLAG; 

antibodies against MRPL11 and OXA1L were also used. The dashed line indicates that 

intervening lanes from the same blot have been omitted. Two biological replicates of the 

experiment were performed. 

The FLAG-tagged protein was efficiently expressed (Fig. 5.9, lane 2) and immunoprecipitated 

(Fig. 5.9, lane 4). The steady state level of MRPL11 was reduced in the ethidium bromide treated 

cells (Fig. 5.9, lanes 2 and 3) when compared to the control (Fig. 5.9, lane 1), confirming the 

success of the treatment. MRPL11 was not detectable in the immunoprecipitated sample (Fig. 

5.9, lane 4). No proteins were detected in the sample immunoprecipitated from wild type HEK293 

cells incubated with ethidium bromide (Fig. 5.9, lane 5). A weak signal was detected for OXA1L 

in the sample obtained from immunoprecipitation of MRPL45FLAG (Fig. 5.9, lane 4). 

In order to further identify the proteins that interact with MRPL45FLAG, the sample obtained 

from the immunoprecipitation experiments on HEK293 and HEK293-MRPL45FLAG cells, in 

presence of ethidium bromide, were also analysed via mass spectrometry (qv 5.1.1.) and are 

listed in Appendix 13. For every protein identified, 3 values were reported: the sum of raw spectra 

(log(I)), the number of peptides found (rI) and the expectation of finding the protein stochastically 

(log(e)). The data were sorted according to this last value, setting -2 as cut off point. Protein 

identified with a log(e) major than -2 have a 1 in 100 chance of a stochastic protein assignment. 

The experiment was repeated twice using 2 different controls, either HEK293 cells or induced 

HEK293-MRPS27FLAG cells, each after ethidium bromide treatment. For the biological repeat, 
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the cell line overexpressing MRPS27FLAG was used. This was a better control for the experiment 

since MRPS27 is a mitochondrial protein. 

The proteins identified in the second biological repeat were limited. Several mitochondrial 

proteins were detected the proteomic analysis. Amongst these were chaperones (mt-HSP70, 

HSP60, etc), but these were also identified in the control samples. OXPHOS components were 

present, as well as several matrix proteins. It is likely that several of these proteins were 

interacting non-specifically since several were also detected in the control samples. No IMM 

proteins that might be the membrane partners of MRPL45 were identified. The most interesting 

proteins identified were prohibitin, prohbitin 2 and stomatin-like protein 2. The latter was reported 

to interact with prohibitin and prohibitin 2 (Christie DA et al., 2011), which form a large, multimeric 

ring complex in the IMM (Nijtmans LG et al., 2002). Prohibitin was reported as a component of 

the nucleoids that was able to interact with mtDNA but also with the mitoribosome (He J et al., 

2012). However, prohibitin was also identified in the control sample, with a different ensemble 

identifier. Interestingly, neither LetM1 nor OXA1L were detected.  

The mass spectrometry data obtained from the first biological repeat of the 

immunoprecipitation experiment showed the presence of 2 mitoribosomal proteins in the sample 

obtained from HEK293-MRPL45FLAG. These 2 proteins, MRPL39 and MRPL24, are found in 

close proximity of MRPL45. 

Previously in this chapter, I demonstrated that the addition of a FLAG-tag at the C-terminus of 

MRPL45 did not affect neither protein synthesis nor mitoribosome assembly and that is also did 

not affect the ability of MRPL45 to bind the membrane. In order to confirm that the FLAG-tag was 

not disrupting the interaction of MRPL45 with putative membrane proteins, the 

immunoprecipitation was repeated on cells overexpressing wild type MRPL45.  

First, the ability of MRPL45 antibody to perform the immunoprecipitation was assessed. 

HEK293-MRPL45 cells were induced for 3 days in 75 cm2 flasks. Once 80% confluent, the cells 

were harvested and mitochondria extracted. The immunoprecipitation was performed with 

MRPL45 antibody (5 µg) immobilised on magnetic beads (30 µg) (qv 2.9.) and incubated with the 

lysate after removal of the excess of antibody. Western blot analysis was performed to investigate 

the result of the immunoprecipitation (Fig. 5.10). 
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Figure 5.10 Immunoprecipitation of MRPL45 to identify the presence of 

components of the mitoribosome 

Western blot analyses of cell lysate (≈30 µg) and immunoprecipitated samples (half of 

the final volume) from HEK293-MRPL45 after 3 days of induction. The success of the 

immunoprecipitation was confirmed with antibodies against MRPL45. The blot was 

interrogated with antibodies against MRPL11 and MRPS26 and OXA1L and LetM1.  The 

experiment was performed once. 

The immunoprecipitation of MRPL45 was successful, as shown by the presence of MRPL45 

in the eluted sample. The mitoribosome (represented by MRPL11 and MRPS26) was also 

successfully immunoprecipitated. A major enrichment of the mt-LSU protein MRPL11 was 

detected, when compared to the mt-SSU protein MRPS26, suggesting that a bigger proportion of 

mt-LSU was precipitated when compared to the mt-SSU. The IMM protein OXA1L was well 

represented in the eluted sample, indicating its interaction with the mitoribosome. A weak signal 

was also detected for the IMM protein LetM1.  

Because MRPL45 antibody was efficient in immunoprecipitation of its target, the experiment 

was repeated on HEK293-MRPL45 in the absence of assembled mitoribosome. Cells were grown 

in 75 cm2 flasks for 10 days in ethidium bromide (250 ng/mL), with overexpression of MRPL45 

during the last 4 days. Half of the resulting mitolysate was incubated with magnetic beads coated 

with either antibodies against MRPL45 or MNKI. MNKI is a protein involved in cytosolic translation 

and was used as experimental control. The bound proteins were eluted from the beads in 50 µL 

of 1x sample buffer after incubation at 95°C for 3 minutes. A proportion (1/3) of the eluted volume 

was analysed via western blot, together with 30 µL of whole cell lysate (Fig. 5.11). 

 
Figure 5.11 Immunoprecipitation of MRPL45 in cells incubated with ethidium bromide.  

Western blot analyses performed on HEK293 cell lysate (30 µg, lane 1) and the samples obtained 

from immunoprecipitation of MRPL45 (lane2) or MNK1 (lane 3) from HEK293-MRPL45 cells 

incubated with ethidium bromide for 10 days and with overexpression of MRPL45 for 4 days. 

Antibodies against MRPL45 were used to confirm the success of the immunoprecipitation. 

Antibodies against OXA1L were also used. The figure is representative of 3 biological repeats. 
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The immunoprecipitation of MRPL45 was efficient (Fig. 5.11, lane 2). A weak signal was 

detected for OXA1L in the sample immunoprecipitated with MRPL45 (Fig. 5.11, lane 2), as 

previously observed for MRPL45FLAG immunoprecipitation in presence of ethidium bromide (Fig. 

5.9). No signals for either OXA1L or MRPL45 were detected in the control immunoprecipitation 

(Fig. 5.11, lane 3). Unfortunately, the mass spectrometry analysis that was also performed on the 

samples identified only few proteins for both the biological repeats performed (Appendix 14). 

None of the proteins identified were putative membrane candidates that would be predicted to 

mediate the interaction. 

5.5. Is MRPL45 part of a subcomplex formed during mt-LSU biogenesis? 

The proteomic studies performed on HE293-MRPL45FLAG cells after ethidium bromide 

treatment identified the presence in the immunoprecipitated sample of 2 mitoribosomal proteins 

(Appendix 13). These 2 proteins are MRPL39 and MRPL24, and are found in direct contact of 

MRPL45 (Fig. 5.12). 

 

Figure 5.12 Localisation of MRPL45, MRPL24 and MRPL39 within the mt-LSU. 

The mt-LSU (PDB 3J7Y (Brown A et al., 2014)) is represented on PyMol as surface in 

desaturated blue. MRPL45 (red), MRPL39 (magenta), MRPL24 (yellow) are highlighted. 

The mt-SSU is shown in desaturated green. 

The biological replicate of the experiment failed to identify these proteins. Despite this, since 

the only mitoribosomal proteins identified in the sample are ones that are found on either side on 

MRPL45, it was tempting to speculate that MRPL45, MRPL24 and MRPL39 form a subcomplex 

MRPL45 

MRPL39 MRPL24 
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that might represent one of the steps of mitoribosome biogenesis. To test this hypothesis , the 

level of MRPL24 and MRPL39 were analysed in ethidium bromide treated wild-type HEK293 cells 

and compared to HEK293-MRPL45FLAG cells also treated with ethidium bromide for 10 days, 

with overexpression of the recombinant protein in the last 4 days of e thidium bromide treatment. 

Because MRPL45, MRPL24 and MRPL39 appeared to form a subcomplex, a hypothesis could 

be that the overexpression of MRPL45FLAG in presence of ethidium bromide might lead to 

increased steady state levels of the other 2 mitoribosomal proteins when compared with wild type 

cells also incubated with the intercalating agent. The samples were analysed via western blotting 

(Fig. 5.13). 

 

Figure 5.13 Steady state level of MRPL24 after ethidium bromide 
treatment, in presence or absence of MRPL45FLAG overexpression.  

Western blot analysis was performed on cell lysates (≈30 µg) obtained from uninduced 

HEK293-MRPL45FLAG untreated (lane1) or those incubated with 250 ng/mL of ethidium 

bromide for 10 days with (lane 2) or without (lane 3) induction of MRPL45FLAG during the 

last 3 days of the treatment. The efficiency of the overexpression was confirmed with 

antibodies against FLAG. The quality of the loading was detected with antibodies against 

SDH70. The figure is representative of 2 biological repeats. 

The western blot analysis did not show an increase in the steady state level of MRPL24, 

indicating that the overexpression of MRPL45FLAG does not increase the expression or stability 

of this protein. The success of the overexpression was proved with antibodies against the FLAG-

tag and the equality of the loading was confirmed with antibodies against the IMM protein SDH70 . 

The blot was also interrogated with an antibody for MRPL39, but no signal was detected. 

5.6. Discussion 

The ability of MRPL45 to interact directly with the inner mitochondrial membrane was 

demonstrated in chapter 4. This chapter aimed to clarify the mode of this interaction. For this 

purpose, a cell line able to inducibly overexpress MRPL45FLAG was prepared.  

The FLAG tag was inserted at the C-terminus of the protein. The overexpression of 

MRPL45FLAG did not affect the steady state level of mitochondrial protein, cell morphology or 

growth rate. The sucrose gradient analysis performed after overexpression of the protein showed 

its integration in the mt-LSU, suggesting that the addition of the FLAG did not prevent the protein 

from being assembled in this subunit. Although these results suggest that the homeostasis of the 

cells was not affected, no information of the ability of MRPL45FLAG to interact directly with the 

IMM could be inferred. Because of the importance of a concomitant insertion of the mtDNA 

1        2        3     
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encoded proteins in the IMM with translation, it is likely that more anchoring points cooperate to 

secure the interaction between the IMM and mitoribosome, as previously shown in yeast (Pfeffer 

S et al. 2015). It is therefore possible that the interaction of the whole monosome is maintained 

despite the absence of one (or more) of these anchoring points. The ability of MRPL45FLAG to 

associate directly the IMM was assessed using the protocol developed to study membrane 

interaction, under conditions of overexpression of the tagged protein in absence of the fully 

assembled subunits of the mitoribosome. The data obtained confirmed that the FLAG-tagged 

protein retained the ability to directly bind the IMM.  

The results obtained for MRPL45FLAG suggested that the addition of a FLAG-tag at the C-

terminal of MRPL45 did not affect the role of MRPL45. As a consequence, in the following chapter, 

two MRPL45 constructs presenting a FLAG-tag will be prepared to identify the domain of MRPL45 

involved in the interaction with the IMM. Due to the FLAG-tag, these will be easily discerned from 

the endogenous protein. In chapter 6, immunoprecipitation of MRPL45FLAG (via the FLAG) will 

be used to identify putative membrane proteins that might be interacting directly. 

Concerning the interaction of MRPL45 with the membrane, the prediction of hydrophobic 

domains of MRPL45 did not suggest the presence of transmembrane domains, indicating that the 

interaction was likely to be either with an IMM protein or with the phospholipidic bilayer. The mass 

spectrometry analysis performed on the samples obtained by immunoprecipitation of 

MRPL45FLAG or MRPL45 did not identify any putative interacting membrane proteins, although 

western blot analysis did identify a weak signal for OXA1L in the immunoprecipitated sample . 

This might indicate a non-stoichiometric interaction between MRPL45 and OXA1L. Despite this, 

no convincing evidence was found to substantiate the existence of a IMM protein that could 

mediate the interaction with MRPL45. Therefore, it might be that MRPL45 interacts directly with 

the inner mitochondrial membrane. However, it is important to remember that despite the mass 

spectrometry method used to analyse the immunoprecipitated samples being efficient in detecting 

membrane proteins, it is possible that some proteins were not detectable using this technique.  

Interestingly, of the 80 proteins present in the human mitoribosome, in absence of the 

assembled mt-LSU, only MRPL39 and MRPL24 were co-immunoprecipitated with MRPL45FLAG. 

These 2 proteins are found on either side of MRPL45 and the recent cryo-EM structure of the 

human mt-LSU (Brown A et al., 2014). Unfortunately, it was not possible to replicate this result.  

To date, the steps involved in the assembly process of the mt-LSU are still poorly defined. It 

is possible that MRPL45, MRPL24 and MRPL39 constitute a subcomplex of the large subunit, 

which might be stable in the absence of the 16S rRNA and the other mitoribosomal proteins. If 

this were the case, the overexpression of MRPL45FLAG in the absence of assembled mt-LSU 

would be expected to lead to the increase of the steady state levels of MRPL24 and MRPL39, 

stabilised by complexing with MRPL45FLAG. Because this effect was not observed, it is unlikely 

that these 3 proteins compose a subcomplex of the mt-LSU. The co-immunoprecipitation of 

MRPL39 and MRPL24 with MRPL45 might simply confirm the direct interaction of these proteins. 
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Chapter 6: Investigation of putative membrane-interacting domains 

of MRPL45 

6.1. Identification of the putative membrane-interactive domains and 

their analysis via modification of the protein sequence 

The previous chapter confirmed the ability of MRPL45 to bind directly to the IMM. In order to 

further investigate this interaction, alterations were introduced into the candidate membrane-

binding domains of MRPL45. 

The changes introduced into the first construct were based on the observation that the helix 

α2 (residues 118-129) and the following unstructured sequence (residues 130-136) of MRPL45 

(RefSeq NP_115727.5) were the most protruding domain in the structure of the human 

mitoribosome (Brown A et al., 2014) (Fig. 6.1). 

 

Figure 6.1 Visualisation of the position of MRPL45 within the large subunit of 
the human mitoribosome. 

The figure was obtained using PyMol from the PDB file 3J7Y (Brown A et al., 2014). The 

mt-LSU surface is visualised in grey, whereas MRPL45 is depicted as cartoon in red.  Helix 

α2 is labelled. 

In order to investigate the contribution of this MRPL45 domain in the interaction with the 

membrane, the polar or charged amino acids present were mutated to alanine. This amino acid 

has a methyl group as a side chain, which is not bulky and not reactive, and it is therefore 

commonly used in mutation analyses to evaluate the contribution of specific amino acids. In this 

construct, the mutated residues were Gln 119, Arg 123, Arg 124, Lys 126, Asp 127, Tyr 128 Lys 

133 Lys 135 and Asp136 (Fig. 6.2A, indicated in yellow) and are all found at the beginning of what 

is identified as the ‘Tim44-like’ domain of MRPL45. Asp129 was not mutated into alanine since 

its chain was not protruding towards the outside of the structure and was therefore predicted to 

MRPL45 
mt-LSU 

α2 
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be unlikely to be involved in the membrane interaction. The construct will be identified in this study 

as MRPL45FLala. Although the substitution with alanine should not perturb the formation of the 

helix, the potential effects of these mutations on the secondary structure of the domain were 

predicted using JPred4 (Drozdetskiy A et al., 2015), and the results are shown in Fig 6.2B. 

 

 

 

Figure 6.2 Mutated residues on the most protruding domain of MRPL45 and their effect on 
the secondary structure. 

A) Visualisation of residues mutated (yellow) on MRPL45. The cartoon representation 

was obtained from chain d of the PDB file 3J7Y. B) Prediction of the effects of the 

mutations on the secondary structure with JPred4 (Drozdetskiy A et al., 2015). Jnetpred 

indicates the consensus prediction generated from several methods and its confidence is 

reported at JNETCONF. JNETSOL25, 5 and 0 predict the solvent accessibility, where ‘B’ 

indicates a buried residue. The differences are circled in green. The structure prediction 

was also predicted using the Hidden Markov Model (JNETHMM) and the Position-

Specific Scoring Matrix prediction (JNETPSSM). For the structure prediction models 

used, the red tubes indicate helices. The mutated residues in the MRPL45 sequence are 

indicated by a blue asterisk. 

The mutations performed are not predicted to alter the secondary structure of the domain, but 

might have an effect on the solvent accessibility of some residues, highlighted in green in Fig. 

6.2B. 

To evaluate the importance of the mutated residues, the conservation of the domain subjected 

to mutations was inferred from the alignment of the available sequences of MRPL45 from different 

species (Fig. 6.3). The amino acids mutated in MRPL45FLala are indicated by asterisks. 

 

 

 

α2 
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Figure 6.3 Conservation of the mutated area of MRPL45 throughout different species.  

The sequences of MRPL45 available were aligned using Jalview 

(ClustalWS) and the residues were coloured with a different intensity of 

blue according to their conservation. The residues mutated in 

MRPL45FLala are indicated by asterisks. 

The mutations (Fig. 6.3, indicated by asterisks) resulted to be localised in a relatively 

conserved domain of MRPL45, which suggests an importance for the protein stability or function. 

In order to investigate membrane-interaction of MRPL45, a second construct was also 

generated. This was based on the homology with TIM44, but also on the structure of porcine 

MRPL45 available thanks to the cryo-EM structure recently released (Greber BJ et al., 2014). The 

cryo-EM studies on the porcine mt-LSU were able to obtain a better resolution for MRPL45 than 

the one obtained for the human subunit. Porcine MRPL45 highlighted the presence of another 

helix (named α1) N-terminal proximal to the previously discussed helix α2 (Fig. 6.4). 

 

Figure 6.4 Structure of porcine MRPL45. 

The structure of MRPL45 was obtained from the cryo-EM structure of 

porcine mt-LSU and visualised in Pymol as cartoon, from the PDB file 

4V1A (Greber BJ et al., 2014).  

The helix α1 closely resembles the helix α1 found in human TIM44 (Fig. 4.1, page 76). Human 

and porcine MRPL45 are very conserved, therefore the presence of helix α1 in human MRPL45 

is highly likely. Its presence was assessed analysing the amino acid sequence via Phyre2 to 

predict the secondary structure of the full length MRPL45. The prediction program generated a 

PDB file that was then visualised in PyMol (Fig. 6.5).  

α2 

porcine 

MRPL45 

α1 

*     **  ***       * ** 
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Figure 6.5 Prediction of the structure of the full length human MRPL45.  

Cartoon representation of the full structure of MRPL45, obtained in PyMol 

using the PDB file generated by the structure prediction of Phyre2 (Kelley 

LA et al., 2015). 

The prediction of the full structure of MRPL45 hypothesised the presence of another helix 

ahead of the helix α2, resolved in the cryo-EM structure. This helix will correspond to the helix α1 

present in the porcine homologue and also present in human TIM44 (as helix α1). 

As mentioned in the introduction of chapter 4, studies on yeast Tim44 suggested that the 

folding of helices A0 and A1 (Fig. 4.2, page 77, corresponding to α1 and α2 in human TIM44 and 

MRPL45) is important for membrane interaction of this protein. In addition, crystallographic 

studies on the C-terminus of human TIM44 highlighted the presence of 2 hydrophobic cavities 

within the structure. In particular, a molecule of PEG was recovered in between helices α1 and 

α2 (residues 289-295, Fig. 4.4A highlighted in orange, page 78). These residues are widely 

conserved in the same protein across species (Fig. 4.4B, page 78) and the corresponding region 

of MRPL45 (Fig. 6.6, green box, residues 104-110) appears to be also relatively conserved across 

different species. 

 

Figure 6.6 Conservation of the putative binding domain of TIM44 across its homologue 

MRPL45 in different species. 

The sequences of MRPL45 available for different organisms were aligned 

using Jalview (ClustalWS) and the residues were coloured with a different 

intensity of blue according to their conservation.  The domain of interest 

is indicated by a green box. 

Predicted human 

MRPL45 

α1 

α2 
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A different approach was used to investigate the possible role of this conserved region in the 

interaction with the membrane. Instead of mutations of residues, the domain between 1 and 117 

was deleted. This construct will be referred to as MRPL45FLΔ and will be discussed in 6.4. 

This chapter will focus on the generation of the cell lines expressing MRPL45FLala and 

MRPL45FLΔ, and on the evaluation of the ability of these proteins to be integrated in to the mt-

LSU and to directly interact with the IMM. These experiments aim to identify domains of 

importance for the function of MRPL45. 

6.2. Methods 

6.2.1. Site-directed mutagenesis 

It is possible to quickly generate mutations, insertion or deletions using a technique called 

site-directed mutagenesis. The modifications are inserted by primers that are complementary to 

the template DNA around the region to modify. The mutations were introduced using the 

QuikChange II Site-Directed Mutagenesis Kit (Argilent, cat no 200523). This kit allows to 

introduce the modifications directly on a plasmid, using a PCR-like reaction that will synthesise 

the new mutated plasmid. The reaction was carried out as follows: 

Table 6.1 Composition (A) and conditions (B) of the site directed mutagenesis.  

The reaction was carried out using the QuickChange II Site-Directed Mutagenesis kit 
(Argilent) in ProFlex™ PCR machine (Thermo Scientific). 

Reagents Final concentration/amount 

10x Reaction buffer 

dNTPs mix (from the kit) 

100 µg/µL sense primer 

100 µg/µL anti-sense primer 

Template plasmid 

PfuUltra DNA polymerase (2.5 U/µl) 

DI water 

1x 

2 µL 

125 µg/µL 

125 µg/µL 

50 ng 

1.25 U 

Up to 25 µL 

 

Reaction Temperature Duration 

Initial denaturation 

Denaturation 

Annealing 

Extension 

95ºC 

95ºC 

Dependent on the primers 

68ºC 

30 sec 

1 min 

1 min 

1 min/kb plasmid 

Since the mutated plasmid was generated by the reaction in vitro, newly generated DNA will 

not be methylated, unlike the parental one. This difference in methylation state was used to 

selectively digest the parental plasmid with Dpn1, leaving the newly synthesised plasmid with 

A 

B 

x 20 
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the generated mutations intact. The digestion was performed at 37ºC for 90 minutes by addition 

of 0.5 µL of 10 U/µL DpnI (present in the kit). The product (4 µL) was then used to transform 

supercompetent cells (XL1- Blue cells, Agilent), following the protocol in 2.2.2., and plated on 

LB-agar containing the appropriate antibiotic for selection. The plate was finally grown at 37ºC 

overnight to allow the growth of transformed colonies. 

6.2.2. In vitro transcription 

This protocol was used to prepare mRNA transcripts for in vitro translation. A PCR product 

of the gene of interest was prepared (qv 2.3.3.) using cDNA or previous plasmids as a template 

and the primers listed in Appendix 5. The sense primer used will contain the SP6 promoter (5’-

ATT-TAG-GTG-ACA-CTA-TAG-3’), needed to initiate in vitro transcription. The product obtained 

was purified with the QIAquick PCR Purification Kit (Quiagen, cat no 28104) and then used for 

the in vitro transcription. The reaction was carried out using the AmpliScribe T7 High Yield 

Transcription kit (Epicentre, cat no AS2607), mixing the reagents in the same order shown in 

Table 6.2 with care to avoid RNase contamination. 

Table 6.2 Composition of the in vitro transcription reaction performed with 

AmpliScribe T7 High Yield Transcription kit. 

The reagents were added in the same order as the one listed in this table.  

Reagents Amount 

RNase-free water  

10x SP7 buffer 

100 mM ATP 

100 mM CTP 

100 mM GTP 

100 mM UTP 

100 mM DTT 

RiboSafe 

DNA (from PCR reaction) 

SP6 Enzyme solution 

Up to 20 µL 

2 µL 

1 µL 

1 µL 

1 µL 

1 µL 

2 µL 

0.5 µL 

1 µg 

2 µL 

The mixture was incubated at 37°C for 2 hours. After that, the RNA was precipitated using 

ammonium acetate. After addition of 20 µL of 5 M ammonium acetate, the sample was incubated 

for 15 minutes on ice. The RNA was then pelleted by centrifugation at 10,000 g at 4°C for 15 

minutes. The supernatant was discarded and the pellet was resuspended 200 µL of 75% 

ethanol. The sample was then centrifuged again at 10,000 g at 4°C for 15 minutes. The 

supernatant was discarded again, and the pellet was resuspended in 10 µL of RNase-free water 

with the addition of 1 µL of RNase inhibitor (RiboSafe). The quality of the sample (1/10) was 

checked on 1% denaturing agarose gel (qv 6.2.4.). The sample was stored at -80°C. 
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6.2.3. In vitro translation 

The translation of the RNA transcribed in vitro was performed using the following mixture: 

Table 6.3 Composition of in vitro translation reaction. 

Reagents Amount 

Rabbit reticulocyte lysate 

35S-Met easy tag protein mix 

25 µM Amino acids minus Met 

In vitro transcribed RNA 

RiboSafe 

Nuclease-free water 

10 µL 

3.5 µL (35 µCi) 

0.5 µL 

Up to 5 µL 

0.5 µL 

Up to 20 µL 

 The reaction was incubated at 30°C for 1 hour. Sample buffer was added to every sample, 

which were heated to 95°C for 3 minutes. The samples were resolved on a 12% SDS-PAGE 

gel. The gel was fixed overnight in a solution composed of 30% methanol, 10% acetic acid and 

3% glycerol and then vacuum dried in between filter paper at 65°C for 2 hours. The signals for 

the translated products were detected using the Typhoon FLA 9500 system and ImageQuant 

software (GE Healthcare), after exposition of the gel to a PhosphorImage screen for 1 day. 

6.2.4. Denaturing agarose gel for RNA electrophoresis 

All the equipment to be used for the electrophoresis was soaked in DEPC water and 3% 

H2O2 for 1 hour and then rinsed twice with DEPC water. The samples were prepared as in Table 

6.4A and incubated at 55ºC for 15 minutes. After that, every sample was mixed with 1 µL of 2 

mg/mL ethidium bromide and 2.2 µL of loading dye (Table 6.4B).  

Table 6.4 Preparation of samples for RNA electrophoresis (A) and 10X MOPS 
composition (B). 

Reagents Amount 

10x MOPS  

37% Formaldehyde (Sigma, cat no F1635)  

Formamide (Sigma, cat no F7503)  

RNA  

DEPC H2O  

2 µL 

3 µL 

7 µL 

x µL 

Up to 20 µL 

 

Reagents Final concentration 

MOPS (Sigma, cat no M1254)  

CH3COONa  

EDTA 

400 mM 

100 mM 

10 mM 

A 

B 
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The samples were run on a 1% denaturing agarose gel (Table 6.5) in order to separate RNA 

species of different molecular weight.  

Table 6.5 Denaturing agarose gel (1%) for RNA electrophoresis 

Reagents Final concentration 

Agarose  

DEPC H2O     

1% 

87.5% 

Warmed up until the agarose melts, then added 

10x MOPS  

37% Formaldehyde   

1x 

0.925% 

Once solidified, the samples were loaded and the gel was run at 50-60 V until the needed 

separation of the components was reached. At the end of the electrophoresis, the samples 

quality and migration was checked by imaging the gel with the ChemiDoc system.  

6.3. Investigation of the importance of the α2 helix of MRPL45 

6.3.1. Generation of stable cell lines able to express mutant 

MRPL45FLAG (MRPL45FLala) 

The mutant MRPL45FLAG construct (MRPL45FLala) was personally designed (Appendix 6) 

and then commissioned to the GeneArt service (Thermo Scientific), who synthesised the 

fragment and cloned it into a plasmid carrying kanamycin resistance, named pMK. To allow the 

study of the mutant protein in the absence of the endogenous MRPL45, silent mutations in the 

sequence targeted by siRNA02 (Appendix 4) were introduced so that MRPL45FLala mRNA 

cannot be bound with this siRNA. As MRPL45FLAG was shown to interact with the IMM (Fig. 

5.6, page 101), a FLAG tag at the C-terminus of this construct was also added. This will allow 

to use the anti-FLAG antibody on western blot analysis to easily discriminate the mutant 

MRPL45 from the endogenous counterpart. The sequence of MRPL45FLala designed was 

delimited by 2 BamHI restriction sites, to allow the extraction of the insert from the delivered 

pMK plasmid and it subsequent cloning into pcDNA5/FRT/TO. MRPL45FLala-pcDNA5/FRT/TO 

was used to transfect HEK293 Flp-In cells to express the protein under tetracycline control.  

Because of problems in its production, the construct delivered was not sequence -verified. 

The MRPL45FLala-pMK plasmid (20 ng) was transformed into competent cells (qv 2.2.2.). 

Positive colonies were expanded in LB media containing 50 µg/mL kanamycin and the plasmid 

was extracted. The plasmid obtained (3 mg) was digested with BamHI (qv 2.3.7.) in a final 

volume of 20 µL, and the products of the digestion (1 µL) was resolved on a 1.2% agarose gel 

to assess the efficiency of the reaction (Fig. 6.7). 
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Figure 6.7 Products of MRPL45FLala-pMK digestion with BamHI. 

MRPL45FLala-pMK (3 mg) obtained from GeneArt (Appendix 6) were digested with 

BamHI (20 µL final volume) and 1 µL (Dig) was resolved on a 1.2% agarose gel. The 

undigested plasmid (Pl) was also loaded on the gel. The size of the desired product 

is indicated by the arrow. 

The DNA electrophoresis analysis showed the presence of 3 species after digestion of 

MRPL45FLala-pMK with BamHI. Together with the heaviest species (≈ 2300 bp) that 

corresponded to the pMK empty plasmid, 2 lighter forms were detected. One species at 

approximately 1000 bp matched the size expected for MRPL45FLala insert (984 bp) (Fig. 6.7, 

indicated by the arrow), whereas the smallest band of approximately 500 bp was an unexpected 

product of the digestion. The remaining volume of the reaction was resolved on a new agarose 

gel and the species corresponding to ≈ 1000 bp was excised. After gel extraction, the desired 

insert was ligated into BamHI-digested pcDNA5/FRT/TO and then used to transform competent 

cells as previously described. In order to discriminate colonies successfully transfected with 

MRPL45FLala-pcDNA5/FRT/TO from the ones containing the empty plasmid, half of every 

expanded colony was analysed using the cracking gel technique (qv 2.3.10.) (Fig. 6.8). 

 

Figure 6.8 Identification of colonies positively transformed with MRPL45FLala-
pcDNA5/FRT/TO. 

Cracking gel technique (qv 2.3.10.) was used on expanded colonies obtained from 

the transformation of α-competent cells with MRPL45FLala-pcDNA5/FRT/TO. The 

black arrow identifies the higher products that indicates the colonies containing the 

insert within pcDNA5/FRT/TO. 

MRPL45FLala- pcDNA5/FRT/TO 

MRPL45FLala-pMK 
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The figure showed that colonies 2, 3 and 5 presented a band corresponding to the plasmid 

that was heavier than other colonies (1, 3, 6, 7). This indicates that colonies 2, 3 and 5 are likely 

to contain a copy of the plasmid with MRPL45FLala successfully inserted in the cloning site.  

Because the same restriction site was used at either side of the insert, diagnostic digestion 

was performed to identify the colonies containing the insert with the correct orientation. At this 

purpose, the plasmid was extracted from colonies 2, 3 and 5 and 500 ng of each plasmid were 

digested either with AflII or simply linearized by digestion with KpnI. AflII will cut the plasmid 21 

bases ahead of BamHI site and the correctly-oriented insert at 848 bases from the insertion site. 

As a consequence, the formation of a heavy fragment of ≈5 kb and one of ≈850 bp upon 

digestion with AflII will identify colonies containing the insert in the wanted orientation. In case 

a fragment of ≈100 bp was present instead of the ≈850 bp, the correspondent colony will contain 

a plasmid with the insert in the wrong orientation. The products of every digestion were analysed 

via DNA electrophoresis (Fig. 6.9). 

 

Figure 6.9 Diagnostic digestion of MRPL45FLala-pcDNA5/FRT/TO. 

MRPL45FLala-pcDNA5/FRT/TO from colonies 2, 3 and 5 was digested with either 

KpnI (K) or AflII (A) to, respectively, linearize the plasmid or investigate the 

orientation of the insert. The samples were resolved on a 1.2% agarose gel together 

with a size marker (M). The presence of a band at ≈ 800 bp will indicate the correct 

orientation of the insert and is indicated by an arrow. 

The digestion of the plasmids obtained from colonies 2 and 5 with AflII produced a fragment 

of approximately 800 bp (Fig. 6.9, lanes 2 and 6, indicated by an arrow), indicating the correct 

orientation of the insert within the plasmids of these colonies. The smaller band detected for the 

same digestion performed on MRPL45FLala-pcDNA5/FRT/TO extracted from colony 3 

suggested that this colony contained the insert with the wrong orientation (Fig. 6.9, lane 4). All 

the plasmids were successfully linearized by KpnI. 

Prior generation of a cell line able to express MRPL45FLala, the sequence of the insert within 

pcDNA5/FRT/TO was verified (qv 2.3.10.). The sequence obtained confirmed the identity of the 

construct designed (Apprendix 10), therefore the plasmid was used to transfect HEK293 Flp-In 

cells (qv 2.1.6.). After antibiotic selection, single colonies were expanded and samples were 

prepared for long term storage in liquid nitrogen. 

MRPL45FLala-pcDNA5/FRT/TO 
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6.3.2. Effects of MRPL45FLala expression 

The ability of HEK293-MRPL45FLala to express the protein was tested. Three different 

clones able to express the mutant protein were tested. Since the data obtained were in 

agreement between the different clones, only one will be represented in the followin g figures. 

Cell growth was monitored as cell confluence for 6 days using the IncuCyte system (Fig. 6.10A). 

Cell lysate obtained after induction with tetracycline for 3 days was analysed via western blotting 

(Fig. 6.10B). The cell morphology after 5 days is shown in Fig. 6.10C.  

 

 

 

 

 

Figure 6.10 Effects of the expression of MRPL45FLala in HEK293 cells on steady state 

level of mitochondrial proteins and on cells growth. 

HEK293-MRPL45FLala cells were induced for 6 days with the addition of 1 µg/mL of 

tetracycline. Uninduced cells were also grown in parallel. Cell growth (A) was monitored by 

confluency estimate every 3 hours throughout the experiment (2 biological repeats).  

Representative figure of western blot analysis (B) performed on lysate (≈30 µg) obtained from 

uninduced and induced HEK293-MRPL45FLala cells after 3 days of induction. Antibodies 

against FLAG were used to detect the expression of the mutant protein. Steady state levels of 

the mitoribosomal protein MRPL24 and of the OXPHOS component COXII were also evaluated. 

SDH70 was used as a loading control. Cell morphology after 5 days of induction is also shown 

(C). The results are representative of 3 biological repeats. 
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 The expression of the FLAG-tagged mutant protein did not affect cell growth over a 6 days’ 

period (Fig. 6.10A). Cell morphology also appeared unaltered (Fig. 6.10C). The expression of 

MRPL45FLala was successful (Fig. 6.10B). The FLAG antibody detected the presence of 2 

species, also previously observed for the detection with the same antibody on cell lysate from 

induced HEK293-MRPL45FLAG cells (Fig. 5.5B, page 100). Since its detection was through the 

FLAG peptide at the C-terminal, this lower Mr species was assumed to be an N-terminal 

cleavage of the protein performed upon or after import. It is important to notice that the detection 

of the FLAG-tagged product required a long exposure of the membrane (≈ 16 seconds), which 

indicate a low steady-state level of the protein. This was also observed comparing the steady 

state level of MRPL45FLala and MRPL45FLAG after 3 days of induction (Fig. 6.27). It is 

possible, indeed, that the mutations generated on MRPL45 affected the stability of the protein, 

although they were not predicted to significantly disturb the secondary structure of the protein 

(Fig. 6.2). The western blot analysis also suggested a mild reduction of the steady state level of 

the mt-LSU components MRPL24 and of the mtDNA-encoded COXII. The equality of the loading 

was confirmed with the detection of SDH70.  

In order to exclude that the low steady-state level of MRPL45FLala observed was due to 

problems in the expression of the correspondent mRNA, qPCR was performed on cDNA 

obtained from reverse transcription of total RNA from uninduced and induced (3 days) HEK293-

MRPL45FLala cells. The level of the transcripts was evaluated with primers targeting MRPL45 

that will, therefore, also measure the endogenous expression of MRPL45 in both the samples. 

The levels of COXII mRNA and 16S rRNA were also measured. The data were normalised on 

the level of 18S rRNA and the result are shown in the following figure.  

 
 

Figure 6.11 Levels of 16S rRNA, COXII mRNA and MRPL45 mRNA upon 

MRPL45FLala induction. 

qPCR was performed on cDNA obtained by HEK239-MRPL45FLala uninduced or induced with 

1 µg/mL of tetracycline for 3 days. The level of MRPL45 were evaluated, together with the levels 

of the 16S mt-LSU rRNA and the mt-encoded COXII mRNA. The results shown were 

normalised to the cytosolic 18S rRNA. The values correspond to 2 biological repeats.  
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The expression of MRPL45FLala caused an increase of approximately 6 folds of the total 

level of MRPL45 mRNA (endogenous + mutated) when compared to the uninduced sample 

(endogenous), indicating that the expression of the mRNA of MRPL45FLala was successful. No 

relevant effects were detected on the levels of 16S and COXII mRNA. This result support s the 

hypothesis of a reduced stability of the mutant protein. 

The low steady-state level of MRPL45FLala might be due to a failure of its targeting to 

mitochondria.  It is important to remember that the length of the targeting sequence of MRPL45 

(as well as its cleavage) has not been confirmed to date. The mutations generated are located 

relatively far from the N-terminal, in particular between residues 119 and 136. To confirm the 

localisation of the mutated protein within mitochondria, cell lysate and mitochondrial lysate were 

prepared from HEK293-MRPL45FLala induced for 3 days. The presence of the mutant protein 

within mitochondria would be confirmed by its enrichment (expected of approximately 5 times) 

in the mitochondrial lysate when compared to the cell lysate. After protein estimation with the 

Bradford assay, the same amount of cell lysate and mitochondrial lysate was resolved on a 12% 

SDS-PAGE gel and analysed via western blotting (Fig. 6.12). 

 

Figure 6.12 Enrichment of MRPL45FLala in mitochondrial lysate.  

Western blot analysis was performed on cell lysate and mitochondrial lysate (both ≈15 and ≈30 

µg) obtained from HEK293-MRPL45FLala after induction for 3 days with 1 µg/mL of tetracycline. 

Antibodies against FLAG were used to detect the expression of the mutant protein.  The steady 

state level of the matrix protein GDH were also evaluated. The experiment was not replicated. 

A distinct enrichment of MRPL45FLala was observed in the mitochondrial lysate (Fig. 6.12, 

lanes 2 and 4) when compared to the same amount of cell lysate (Fig. 6.12, lanes 1 and 3). A 

very similar pattern was observed for the matrix protein GDH, indicating that the FLAG-tagged 

mutant protein is efficiently targeted to mitochondria. 

It is possible that the low steady-state level of MRPL45FLala could be due to a fast 

degradation of the protein. One of the roles of mitochondrial proteases is degrading misfolded 

and damaged proteins. Several mitoproteases have been identified to date (Quirós PM et al., 

2015). From these, Lon protease homologue (LONP) and Clp protease proteolytic subunit 

(CLPP) are 2 of the main proteases suggested to be important for quality-control in the 

mitochondrial matrix. In the attempt to increase the steady state level of MRPL45FLala, 

depletion of either of these 2 proteases was performed. Because of the importance of proteases 

in the homeostasis of cells, the depletion was carried out only for 3 days, both on induced cells, 
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and on induced cells also depleted of MRPL45. The cell lysates obtained at the end of the 

treatment were analysed via western blotting (Fig. 6.13). 

 

Figure 6.13 Depletion of proteases LONP or CLPP in cells overexpressing 
MRPL45FLala, in presence or absence of endogenous MRPL45.  

HEK293-MRPL45FLala were induced for 3 days and then depleted for 6 days of either CLPP 

(lanes 2,3) or LONP (lanes 4,5), with or without concomitant depletion of endogenous MRPL45 

(lanes 3,5 and 2,4 respectively). The expression of MRPL45FLala was continued during the 

depletion. Induced cells were also incubated for 6 days with NT-siRNA as a control (lane 1). The 

cell lysates (≈30 µg) obtained were analysed via western blotting. The level of MRPL45FLala 

were detected with an antibody targeting the FLAG-tag. The efficiency of the depletions was 

assessed with antibodies against CLPP, LONP and MRPL45. The level of the nuclear encoded 

SDH70 were used as a loading control. The experiment was not replicated. 

The western blot analysis showed that the depletion of CLPP and LONP were  efficient (Fig. 

6.13, respectively lanes 2,3 and 4,5). When MRPL45 depletion was present, this was also 

efficient (Fig. 6.13, lanes 3,5). No effects on the steady state level of the FLAG-tagged protein 

were detected. Both in presence or absence of endogenous MRPL45, depletion of the proteases 

CLPP and LONP did not affect the steady state level of MRPL45FLala, indicating  that there are 

not involved in its degradation. 

6.3.3. Integration of MRPL45FLala in the mitochondrial large 

mitoribosomal subunit 

The mutations generated on MRPL45 might affect its ability to be integrated into the mt -LSU 

or to interact with the IMM. To test the first possibility, lysate (700 µg) obtained after 3 days of 

expression of MRPL45FLala was analysed on a 10-30% isokinetic sucrose gradient to separate 

the components according to their molecular weight and, therefore, isolate the mitoribosomal 

subunits. Western blot analysis was performed on 1/10 of each of the 11 fractions collected (Fig. 

6.14). 
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Figure 6.14 Sucrose gradient analysis of HEK293-MRPL45FLala after 3 days of induction. 

Cell lysate (≈700 µg) obtained from HEK293-MRPL45FLala after 3 days of induction with 1 

µg/mL of tetracycline was analysed on a 10-30% isokinetic sucrose gradient. A proportion (1/10) 

of the 11 fractions obtained was analysed via western blot, together with ≈40 µg of lysate from 

uninduced and induced cells. Antibodies against FLAG were used to detect the distribution of 

the mutant protein. Antibodies against MRPL11 and MRPS22 were used to investigate the 

distribution in the different fraction of, respectively, mt-LSU and mt-SSU. The figure is 

representative of 2 biological repeats. 

The mt-LSU was identified mainly in fraction 6, while the small subunit was enriched in 

fractions 4 and 5 (Fig. 6.14). No signal from the FLAG antibody was detected in the fractions 

corresponding to the mt-LSU and MRPL45FLala seemed to localise mainly in fraction 1 and 2. 

It is important to remember that, for the overexpression of MRPL45FLAG (Fig. 5.4, page 98), a 

signal from the fractions corresponding to the mt-LSU was clearly observed when a comparable 

amount of sample (1/10 of a fraction, from 700 µg of cell lysate loaded on the gradient) was 

analysed via western blotting. MRPL11 and MRPS22 were used to localise, respectively, mt -

LSU and mt-SSU along the sucrose gradient. 

Routinely, only 1/10 of every fraction obtained in the sucrose gradient analysis is resolved 

on SDS-PAGE. Because the steady-state level of MRPL45FLala appeared to be low, I thought 

possible that the lack of signal in fraction 6 was due an undetectable amount of protein in the 

sample analysed via western blot. At this purpose, the fractions (from 5 to 8) corresponding to 

the mt-SSU and mt-LSU in Fig. 6.14 were TCA-precipitated (qv 2.5.3.) to further confirm the 

absence of the FLAG-tagged protein. The whole resuspended sample was analysed via western 

blot (Fig. 6.15). 

 



126 
 

 

Figure 6.15 Sucrose gradient analysis of fractions 5 to 8 from induced 
HEK293-MRPL45FLala after TCA-precipitation. 

Cell lysate (≈700 µg) was obtained from HEK293-MRPL45FLala after 3 days of induction with 1 

µg/mL of tetracycline and analysed on a 10-30% isokinetic sucrose gradient. Fractions 5 to 8 

were TCA precipitated and analysed via western blot. Antibodies against FLAG were used to 

detect the distribution of the mutant protein. Antibodies against MRPL11 and MRPS26 were 

used to investigate the distribution in the different fraction of, respectively, mt -LSU and mt-SSU. 

While MRPL11 and MRPS26 were localised, respectively, mainly in fractions 6 and 5, no 

signal was detected from the FLAG-antibody in any of these fractions (Fig. 6.15), even at high 

exposure times (up to 1 minute). Antibodies against MRPL45 confirmed the presence of the 

endogenous MRPL45 mainly in fraction 6 and 7. 

Despite the failure of MRPL45FLala to integrate in the mt-LSU upon induction, I decided to 

test the possibility of its integration in absence of the endogenous protein. As shown in chapter 

3, MRPL45 is essential for assembled mt-LSU. In the absence of this protein, therefore, 

mitochondria can only assemble mt-LSU by utilising the mutated MRPL45FLala. HEK293-

MRPL45FLala cells were induced for 3 days with 1 µg/mL of tetracycline. Cells were then 

harvested and 1,000,000 cells were seeded in 75 cm2 flasks. MRPL45 depletion was carried 

out with siRNA02 at 33 nM for 6 days (reverse and forward transfection, qv 2.1.5.). The 

expression of the FLAG-tagged mutant protein was continued during the depletion. Because 

silent mutations have been generated in MRPL45FLala in the site targeted by siRNA02 will not 

be targeted by the siRNA and therefore it will still be expressed. At the end of the treatment, 

cells were harvested and 700 µg of cell lysate were analysed on a 10-30% isokinetic sucrose 

gradient. The 11 fractions obtained were TCA-precipitated (qv 2.5.3.) to concentrate the sample 

and facilitate the visualisation of the FLAG-tagged protein and used for a western blot analysis 

(Fig. 6.16A). In parallel HEK293 cells were depleted of MRPL45 for 6 days, as an experimental 

control (Fig. 6.16B). 
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Figure 6.16 Sucrose gradient analysis of HEK293-MRPL45FLala 

A) HEK293-MRPL45FLala cells were induced for 3 days and then depleted of MRPL45 for 6 

days (siRNA02, 33 nM final concentration), continuing the induction. At the end of the treatment, 

cells were harvested and 800 µg of cell lysate were separated on a 10-30% isokinetic sucrose 

gradient. The 11 fractions obtained from the gradient were TCA precipitated and then loaded on 

a 12% SDS-PAGE gel for western blot analysis. Cell lysate (≈40 µg) from uninduced cells and 

from the treated cells were also loaded on the gel. The steady state level of the FLAG-tagged 

protein was detected first. After that, antibodies against MRPL45 and MRPL11 were used to 

localise the mt-LSU, whereas the mt-SSU was localised with antibodies against MRPS17. The 

figure is representative of 2 biological repeats. B) HEK293 cells were depleted for 6 days of 

MRPL45 (siRNA02, 33 nM final concentration) were used as an experimental control for A). Cell 

lysates from untreated HEK293 (WT) and from depleted cells (kd) were analysed via western 

blotting together with the 11 TCA-precipitated fractions obtained from the 10-30% isokinetic 

sucrose gradient analysis. Antibodies against MRPL45 and MPRL24 were used to visualise the 

m-LSU, while antibodies targeting MRPS22 were used to detect the mt-SSU. 

The expression of the protein was successful, as shown by the presence of a signal for the 

FLAG antibody in the lysate from the treated cells (Fig. 6.16A, ‘Ind+kd’). Unlike the previous 

sucrose gradient (Fig. 6.14), a signal from the FLAG-tagged protein was clearly detected in 

fractions 5 and 6 (Fig. 6.16A) and was co-localised with the signal obtained for the mt-LSU 

(MRPL11). It is important to notice that no signal for the FLAG-tagged protein was detected in 

the first fractions of the gradient, suggesting that all the induced protein was completely 

A 

B 
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integrated in the subunit. The incubation of the western blot in Fig. 6.16A with MRPL45 antibody 

will detect both the signal due to the endogenous protein and to the induced MRPL45FLala 

protein. Its detection showed the presence of 3 species. The slowest migrating species, absent 

in the uninduced lysate, corresponds to the mutant protein, while the intermediate species 

correspond to the endogenous protein. The most rapidly migrating species represents the N-

terminal cleaved MRPL45 (see above). The endogenous MRPL45 was mainly present in the 

uninduced lysate and hardly detectable in the induced and depleted lysate. Because the signal 

of the endogenous MRPL45 was weak in the induced and depleted sample, it is possible to 

conclude that the depletion was efficient. Depletion of MRPL45 reduced the level of this protein 

as well as the steady state level of MRPL11, when compared to the uninduced and non-depleted 

sample (Fig. 6.16A, ‘Un’ and ‘In+kd’, respectively). The mt-SSU protein MRPS22 was mainly 

recovered in fraction 4. The control experiment performed on HEK293 cells depleted of MRPL45 

showed that, despite the reduction of the steady state level of both MRPL24 and MRPL45 upon 

depletion, a proportion of these proteins is still located in the mt-LSU (Fig. 6.16B). In both Fig. 

6.16 A and B, despite the depletion of MPRL45 being successful, the signal detected for 

components of the mt-LSU in the western blot analysis appeared relatively strong. It is, indeed, 

important to remember that every fraction has been concentrated via TCA-precipitation and that 

a large amount of cell lysate (700 µg) was loaded on top of the gradient. 

MRPL45FLala was successfully integrated within the mt-LSU in the absence of the 

endogenous protein, but no information was available from the previous experiment on the 

ability of mt-LSU containing MRPL45FLala to form a translating monosome. This was verified 

on HEK293-MRPL45FLala cells induced for 9 days and depleted of endogenous MRPL45 in the 

last 6 days of induction. Uninduced cells were also incubated with NT-siRNA or MRPL45-siRNA 

for 6 days. At the end of the treatment, cells were visualised at the microscope (Fig. 6.17A) and 

the cell lysate obtained for every sample was analysed via western blot (Fig. 6.17B).   
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HEK293- MRPL45FLala 

     

 

 

Figure 6.17 Effects on MRPL45 depletion on induced HEK293-MRPL45FLala cells. 

MRPL45 depletion was performed using siRNA02 on HEK293-MRPL45FLala uninduced or 

induced with 1 µg/mL of tetracycline. NT-siRNA was used as a control on uninduced cells. Cells 

were visualised at the microscope (A) and cell lysates was analysed via western blot (B). The 

efficiency of the induction was assessed with antibodies targeting the FLAG-tag, while the 

steady-state level of MRPL45 was used to verify the efficiency of the depletion. Antibodies 

against MRPL24 and MRPS17 were also used to assess the effec ts on, respectively, mt-LSU 

and mt-SSU. The steady state level of the mt-encoded COXII was also detected. The IMM 

protein SH70 was used as a loading control. The results are representative of 2 biological 

repeats. 

The depletion of MRPL45 was efficient, as shown in Fig. 6.17B lane 2 by the reduced steady 

state level of MRPL45. Although the expression of MRPL45FLala was efficient (Fig. 6.17B, lanes 

NT-siRNA MRPL45-siRNA Uninduced Induced 

MRPL45-siRNA Uninduced 
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3 and 4), a long exposure was needed to detect the signal, suggesting the low steady state level 

of the protein both in presence and in absence of the endogenous MRPL45. It is important to 

also notice that the steady state level of MRPL45FLala was lower than the level of endogenous 

MRPL45 present in the sample treated with NT-siRNA (Fig. 6.17B, lanes 3, 1 respectively). As 

shown in chapter 3, and confirmed by the results obtained in Fig. 6.17B lane 2, the depletion of 

MRPL45 depletion affects the steady state level of the mt-LSU, leading to an impairment of 

mitochondrial translation. This phenotype was partially rescued by the expression of the mutant 

protein, as shown by the increase of the steady state level of MRPL24 and COXII (Fig. 6.17B 

lane 3), when compared to the sample obtained from the uninduced cell line after depletion of 

the endogenous MRPL45. This result suggests that the mutations generated on MRPL45 are 

not affecting the possibility to generate an actively translating monosomes.  Despite the partial 

rescue observed upon expression of MRPL45FLala, the cells were organised in clumps, as 

observed for MRPL45 depletion on uninduced cells (Fig. 6.17A).  

6.3.4. Rescue of MRPL45 depletion phenotype 

The previous section showed that MRPL45FLala can be integrated in the mt-LSU and that 

its expression is able to partially rescue the phenotype observed upon MRPL45 depletion.  It is 

possible that the full rescue was not obtained because of the low steady state level of this 

protein. To support this hypothesis, a full rescue of the phenotype was attempted by depletion 

of MRPL45 with siRNA02 in cells able to express MRPL45FLAG from mRNA containing silent 

mutations in the region targeted by siRNA02. The silent mutations designed are reported in Fig. 

6.18. This experiment will also further validate the results obtained with the siRNA used in  

chapter 3 of this thesis.  

 

Figure 6.18 Silent mutation generated on MRPL45 at the sequence targeted by siRNA02.  

Silent mutations (red) were introduced in MRPL45 sequence in the region targeted by siRNA02 

(blue). The amino acid sequence correspondent is also reported in bold. 

Silent mutations were generated on MRPL45FLAG-pcDNA5/FRT/TO prepared in chapter 4, 

using site-directed mutagenesis (qv 6.2.1.). The primers used for the reaction were 

MRPL45sisilmutsense and MRPL45sisilmutanti-s (Appendix 5). The annealing temperature 

used was 70ºC, and the extension had a duration of 10 minutes for every cycle. After 

transformation of the product in supercompetent cells, the colonies obtained were expanded on 

a fresh LB-agar plate containing 100 µg/mL of ampicillin and then expanded in liquid LB media 

to perform plasmids extraction. Two of the plasmids obtained were sequenced (qv 2.3.10.) and 

confirmed the presence of the mutations on the sequence targeted by siRNA02 (Appendix 11). 
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MRPL45FLsil-pcDNA5/FRT/TO was used, together with pOG44, to transfect HEK293 Flp-In 

cells and generate a cell line able to overexpress MRPL45FLsil. After antibiotic selection, the 

expanded single colonies obtained were induced for 3 days with 1 µg/mL of tetracycline. The 

results for one of the colonies are shown in the following western blot analysis (Fig. 6.19A). The 

effects of the overexpression on cell growth were monitored over 6 days with the IncuCyte 

system (Fig. 6.19B). The phenotype of the cells after 5 days of expression is showed in Fig. 

6.19C.  

 

 

 

 

 

Figure 6.19 Effects of MRPL45FLsil overexpression on mitochondrial proteins and on cells 
growth. 

Western blot analysis (A) was performed on cell lysates obtained from HEK293-MRPL45FLsil 

cells uninduced or induced for 3 days. Cell growth was monitored (B) during the induction of 

MRPL45FLsil for 6 days (2 biological repeats). The effects on morphology after 5 days of 

overexpression (C) are also reported. The results are representative of 3 biological repeats  

The expression of the protein was very efficient and no effects were observed on the steady 

state level of the mitoribosomal protein MRPL24 or the mt-encoded COXII (Fig. 6.19A). The 

levels of DAP3 appeared slightly reduced in the induced sample. SDH70 confirmed the equality 

of the loading. Cell growth, evaluated as cell confluence, was also unaffected by the 

overexpression of the protein over a period of 6 days (Fig. 6.19B). 
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The levels of overexpression of MRPL45FLsil mRNA were evaluated with qPCR from total 

RNA extracted from HEK293-MRPL45FLsil uninduced and induced for 3 days with 1 µg/mL of 

tetracycline. The levels of 18S rRNA, 16S mt-rRNA, COXII mRNA and MRPL45 mRNA were 

evaluated using the primers in Appendix 5. The data were normalised to 18S rRNA and the 

results are represented in the following bar graph. 

 

Figure 6.20 Levels of 16s mt-rRNA, COXII mRNA and MRPL45 mRNA after 

overexpression of MPL45FLsil. 

qPCR was performed on cDNA obtained from HEK239-MRPL45FLsil uninduced or induced 

for 3 days. The level of MRPL45 were evaluated, together with the levels of the 16S mt -LSU 

rRNA and the mt-encoded COXII mRNA. The results shown were normalised to the cytosolic 

18S rRNA. The values correspond to 2 biological repeats. 

The qPCR showed an overexpression of MRPL45FLsil of more than 5-folds, a value that 

resemble the one observed for MRPL45FLala (Fig. 6.20). 

The ability of MRPL45FLsil to rescue the phenotype observed for MRPL45 depletion was 

tested. HEK293-MRPL45FLsil cells were induced for 3 days and then depleted for 6 days with 

MRPL45 siRNA02, continuing the induction of the FLAG-tagged throughout the depletion. NT-

siRNA was used as an experimental control on uninduced cells. To confirm the efficiency of the 

depletion, uninduced cells were also depleted of MRPL45. At the end of the treatment, cells 

were visualised at the microscope (Fig. 6.21A). Cell lysates were finally analysed via western 

blotting (Fig. 6.21B). 
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HEK293-MRPL45FLsil 

     

 

 

Figure 6.21 Effect of MRPL45 depletion in cells overexpressing MRPL45FLsil. 

MRPL45 depletion was performed using siRNA02 on HEK293-MRPL45FLsil uninduced or 

induced with 1 µg/mL of tetracycline. NT-siRNA was used as a control on uninduced cells. 

Cells were visualised at the microscope (A) and cell lysates was analysed via western blot 

(B). Antibodies against FLAG-tag were used to confirm the overexpression. The level of 

MRPL45, MRPL24 and the mt-encoded COXII were also assessed. SDH70 was used as 

loading control. The data shown are representative of 2 biological repeats. Lane1: NT-siRNA 

on uninduced cells, Lane 2: MRPL45-siRNA on induced cells, Lane3: MRPL45-siRNA on 

induced cells. The dashed line indicates the omission of lanes. 

The western blot analysis showed that the overexpression of MRPL45FLsil was efficient. 

Because the FLAG-tagged protein migrates at a higher molecular weight than the endogenous 

one, it was possible to verify the efficiency of MRPL45 depletion using MRPL45 antibody. The 

depletion was efficient as indicated by the weak signal detected for MRPL45 (Fig. 6.21B, lane 

2, 3). When MRPL45 was depleted in uninduced cells (Fig. 6.21B, lane 2), the level of the tested 
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mitoribosomal protein and the level of the mt-encoded COXII were also reduced (Fig. 6.21B, 

lane 2), as previously reported in chapter 3. Upon overexpression of MRPL45FLsil both 

mitoribosmal protein and COXII were rescued and their steady state level was increased (Fig. 

6.21B, lane 3) when compared to the depletion alone. SDH70 confirmed the equality of the 

loading. On the other hand, the visualisation of cells at the microscope revealed that the 

overexpression of MRPL45FLsil is not able to completely reverse the effects observed on cells 

morphology upon MRPL45 depletion because in the induced and depleted sample the cell s 

were still associated in clusters (Fig. 6.21A). It is therefore possible to conclude that 

MRPL45FLAG containing silent mutations in the region targeted by siRNA02 was able to rescue 

the phenotype observed for MRPL45, with the exception of the effect observed on cells 

morphology. This result further validated the effects of MRPL45 depletion on mitoribosomal 

protein reported in chapter 3. 

6.3.5. Interaction of MRPL45FLala with the mitochondrial IMM 

Since MRPL45FLala was shown to partially rescue the phenotype of MRPL45 depletion, I 

decided to investigate the ability of the mutated protein to interact with the IMM. For  this, the 

protocol developed in chapter 4 to allow the investigation of membrane interaction was used.  

Because the interaction of the mt-LSU with the IMM might be mediated by other proteins 

than MRPL45, the ability of MRPL45FLala to directly interact with the membrane was also 

assessed. For this, HEK293-MRPL45FLala cells were grown in ethidium bromide for 10 days to 

deplete the assembled mitoribosome. During the last 3 days of treatment, the expression of the 

mutant protein was induced in 1 µg/mL of tetracycline. At the end of the treatment, mitochondria 

were extracted and membrane and soluble fractions were separated following the protocol in 

4.2.2. Soluble (S) and membrane (P) fractions obtained in absence or presence of detergent 

were analysed via western blotting (Fig. 6.22). 
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Figure 6.22 Distribution of MRPL45FLala between soluble and membrane fraction in cells 
incubated with ethidium bromide. 

A) Representative figure of western blot analysis performed on samples from membrane-

soluble fraction protocol (qv 4.2.2.) performed on HEK293-MRPL45FLala cells incubated 

with 250 ng/mL of ethidium bromide for 10 days, with induction of the protein during the last 

3 days of the treatment. Mitochondria from the treated cells (lane 2) and from HEK293 cells 

(lane 1) were analysed via western blot together with the membrane (P, lanes 3, 5) and 

soluble (S, lanes 4, 6) fractions obtained from the protocol in presence or absence of 1.6% 

Triton. Antibodies against GDH and SDH70 were used to confirm the success of the 

protocol. Antibodies against COXII were used to confirm the efficiency of the ethidium 

bromide treatment. The success of the induction and the distribution of MRPL45FLala 

between soluble and membrane fraction were detected with antibodies targeting the FLAG-

tag. B) Quantification of 2 biological repeats of membrane-soluble fraction protocol. 

The absence of COXII in the mitochondria extracted from HEK293-MRPL45FLala cells after 

incubation with ethidium bormide confirmed the efficiency of the treatment (Fig. 6.22A, lane 2). 

The expression of MRPL45FLala was also successful, as confirmed by the presence of a signal 

from the FLAG antibody in the treated mitochondria (Fig. 6.22A, lane 2). The matrix pro tein GDH 

was mainly detected in the soluble fractions (Fig. 6.22A, lanes 4, 6). The IMM protein SDH70 

was mainly found in the pellet in absence of detergent and was solubilised in its presence (Fig. 

6.22A, lanes 3 and 6, respectively). A proportion of SDH70 was detected in the soluble fraction 

in absence of detergent (Fig. 6.22A, lane 4). This was observed in every protocol performed on 

cells treated with ethidium bromide, independently on the marker used to localise the membrane 

fraction. The detection of the FLAG-tagged protein showed a partial solubilisation in presence 

of Triton (approximately 30%), suggesting the ability of MRPL45FLala to interact with the IMM. 

Just above the 20% of MRPL45FLala was detected in the pellet after solubilisation with Triton  

X-100 (Fig. 6.22A, lane 5). This might be due to aggregation resulting from the heat generated 

during sonication, used to disrupt the mitochondrial membranes, or to the presence of the 

protein associating with very large complexes. It is also important to observe that MRPL45FLala 

was also detected in the supernatant in absence of detergent (Fig. 6.22A, lane 4), suggesting 

that a proportion of MRPL45FLala is not interacting with the membrane.  

The ability of the mt-LSU containing MRPL45FLala to interact with the membrane was also 

tested. At this purpose, HEK293-MRPL45FLala cells were grown in 75 cm2 flasks under 
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induction with 1 µg/mL tetracycline for 3 days, before performing MRPL45 depletion with 

siRNA02 for 6 days (forward and reverse transfection, qv 2.1.5.). The induction was carried on 

over the depletion period. At the end of the treatment, cells were harvested, mitochondrial 

extracted and the interaction of the mt-LSU containing MRPL45FLala was investigated with the 

membrane-soluble fraction protocol (qv 4.2.2.). The efficiency of the depletion of MRPL45 and 

of the induction were confirmed by western blot analysis (Fig. 6.23A). A comparable amount of 

membrane (P) and soluble (S) fractions obtained in absence and presence of 1.6% Triton were 

analysed via western blotting (Fig. 6.23B). Because the signal expected from the FLAG-tagged 

protein was expected to be low, twice the usual amount of P and S samples were loaded.  The 

results obtained for different biological repeats were quantified and represented in Fig. 6.23C. 

 

 

Figure 6.23 Distribution of MRPL45FLala between membrane and soluble fraction 

in absence of endogenous MRPL45. 

HEK293-MRPL45FLala cells were induced for 3 days and then depleted of MRPL45 for 6 days, 

continuing the induction. Mitochondria were extracted and membrane and soluble fraction were 

prepared in presence or absence of 1.6% Triton X-100 as in 4.2.2. A) Western blot analysis was 

performed on uninduced and treated cell lysates to confirm the efficiency of the depletion and 

the induction. Antibodies against the FLAG-tag were used, together with antibodies targeting 

MRPL24 and COXII. GDH was used as loading control. B) Representative figure of western blot 

analysis was performed for membrane (P, 15 µL) and soluble (S, 30 µL) fractions obtained from 

the protocol. Mito-lysate (15 µg) was also loaded. The success of the protocol was assessed 

with detection of a matrix protein (GDH) and a OMM protein (TOM20). The signal from 

MRPL45FLala was detected with an antibody targeting the FLAG-tag. C) Quantification of 2 

biological repeats of the membrane-soluble protocol. 

The western blot analysis performed on cell lysates (Fig. 6.23A) confirmed the success of 

the induction, as showed by the presence of a signal for MRPL45FLala. In chapter 3, I reported 

that depletion of MRPL45 leads to reduction of mt-LSU components, affecting mitochondrial 
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translation. Because of the reduction in steady state level of MRPL24 and COXII upon depletion 

of MRPL45 (Fig. 6.23A, ‘In+kd’), I deduced that the depletion was efficient. The western blot 

analysis performed on membrane-soluble fraction protocol (Fig. 6.23B) confirmed the success 

of the protocol. The matrix protein GDH was detected in the S fractions both in absence and in 

presence of detergent (Fig. 6.23B, lanes 3,5). The IMM protein TOM20 was only detected in the 

P fraction in absence of detergent (Fig. 6.23B, lane 2) and was completely solubilised by its 

addition (Fig. 6.23B, lane 4). This shows that the membrane (and membrane -interacting) 

proteins were successfully pelleted at the force applied and that the treatment with 1.6% Triton 

X-100 successfully solubilised the membrane proteins. The signal detected for MRPL45FLala 

was equally divided between P and S both in presence and in absence of detergent, as also 

shown quantification of biological repeats (Fig. 6.23C). This result indicates that no significant 

solubilisation occurred after the addition of Triton X-100. This might be the consequence of 

aggregation due to the heat generated in the sonication used to disrupt mitochondria. The 

detection of a signal for MRPL45FLala in the supernatant in absence of detergent (Fig. 6.23B, 

lane 3) indicates that a considerable amount of the protein (approximately 50%) is not interacting 

with the membrane. 

6.4. Investigation of the importance of the α1 helix of MRPL45 

6.4.1. Generation of stable cell lines able to express truncated 

MRPL45FLAG (MRPL45FLΔ) 

As described in paragraph 5.1, it is likely that human MRPL45 presents helix α1 and it is 

possible that this is involved in the interaction of MRPL45 with the IMM. To test this hypothesis, 

the first 117 amino acids of MRPL45 were deleted. This truncation will remove the targeting 

sequence, therefore the Su9 presequence was added to promote mitochondrial localisation. 

The Su9 presequence is a 69 amino acids presequence of subunit 9 of Neurospora crassa F0-

ATPase. It has been widely used to target proteins to mitochondria and is double-cleaved in the 

mitochondrial matrix. Two alanine were added as a spacer between the Su9 presequence and 

the beginning of the truncated MRPL45. A FLAG-tag was added at the C-terminal of MRPL45, 

since its addition did not show any effect on the ability of the protein to be integrated in the mt-

LSU (Fig. 5.4, page 98) and to interact with the IMM (Fig. 5.6, page 101). This will allow an 

easier discrimination between the endogenous and the mutated protein.  

The Su9 presequence was obtained from a pcDNA5/FRT/TO plasmid containing the insert 

Su9-RelE, previously prepared in our laboratory by Dr. Dennerlein. Digestion of this plasmid 

with BssHII and NotI removed the RelE sequence, that can then be replaced by MRPL45FLΔ. 

The Su9-RelE- pcDNA5/FRT/TO plasmid was extracted from transformed competent cells and 

digested at 37ºC for 1 hour with BssHII and NotI (1 µL each) in a final volume of 20 µL of 1x 

NEB3 buffer. The efficiency of the digestion was verified on DNA gel electrophoresis (Fig.  6.24). 

The insert was prepared in a PCR reaction using the primers in Appendix 5 from HEK293 cDNA. 



138 
 

The forward primer (L45trFrw) was used to introduce the restriction site (BssHII) to join the 

truncated MRPL45 to the Su9 presequence and the 2 alanine that  precede the amino acid 118 

of MRPL45. The reverse primer (L45trRev) introduced the FLAG-tag sequence at the end of 

MRPL45 and the second restriction site (NotI), needed for the insertion in the digested Su9-

pcDNA5/FRT/TO. The insert generated was composed of ≈600 bp. The result of the PCR 

reaction was visualised on 1.2% agarose gel electrophoresis (Fig. 6.24). 

 

Figure 6.24 Digestion of Su9-RelE-pcDNA5/FRT/TO and 
preparation of MRPL45FLΔ insert. 

The products obtained from digestion of Su9-RelE-pcDNA5/FRT/TO with NotI and 

BssHI were separated on a 1.2% agarose gel, together with the result of the PCR 

reaction set up to prepare MRPL45FLΔ insert with L45trFrw and L45trRev, using 

MRPL45FLAG-pcDNA5/FRT/TO as template. 

The agarose gel showed the presence of two bands upon digestion of the plasmid. Both the 

bands corresponded to the expected sizes of the RelE insert (lower band, ≈300 bp) and Su9 -

pcDNA5/FRT/TO (higher band, ≈5000 bp). The PCR reaction product showed the presence of 

a band at ≈600 bp, which corresponded to the expected size of the insert. The higher band 

obtained for the digested plasmid and the band derived from the PCR reaction were excised 

and the DNA was extracted. 

The MRPL45FLΔ insert was ligated into Su9-pcDNA5/FRT/TO (qv 2.3.9.), and the product 

was used to transform competent cells, as previously described. Prior generation of a cell line 

able to express MRPL45FLΔ, the insert contained between BGH and CMV was sequenced (qv 

2.3.10.). The sequence obtained confirmed the identity of the construct designed (Apprendix 

12), therefore the plasmid was used together with pOG44 to transfect HEK293 Flp-In cells (qv 

2.1.6.). After antibiotic selection, single colonies were expanded, prepared for long term storage 

in liquid nitrogen and used for the following experiments. 

6.4.2. Effects of the expression of MRPL45FLΔ 

The ability of HEK293-MRPL45FLΔ to express the truncated protein was tested. After 3 days 

of induction, cells were harvested and cell lysate was analysed via western blotting (Fig. 6.25A). 
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Cell growth was also monitored every 3 hours over a 6-days period with the IncuCyte system 

(Fig. 6.25B). Cell morphology after 5 days of induction is also shown in Fig. 6.25C. 

      

 

Figure 6.25 Effects of the expression of MRPL45FLΔ on mitochondrial proteins level and 

cell growth. 

Western blot analysis (A) was performed on HEK293-MRPL45FLΔ cells expressing the 

truncated protein after 3 days. Uninduced cells were used as a control. The efficiency of the 

overexpression was verified using antibody against the FLAG-tag. The steady state level of the 

mt-encoded COXII, as well as of components of the mitoribosome (MRPL45, MRPL24, 

MRPS27) were also evaluated. The nuclear-encoded SDH70 was used as a loading control. 

Cell growth (B) was also monitored as confluency every 3 hours over 6 days of induction of 

MRPL45FLΔ. Cell morphology after 5 days is also shown (C). The results are representative of 

2 biological repeat. 

The expression of the recombinant protein was efficient, although a long exposure needed 

to detect it. This might indicate that, as observed for MRPL45FLala, the steady state level of 

MRPL45FLΔ might be low. The levels of COXII and of the mitoribosomal protein tested 

appeared to be slightly reduced. SDH70 detection showed that the loading was not perfectly 

equal, suggesting that the induced sample was slightly more loaded. Cell growth was unaffected 

upon overexpression of MRPL45FLΔ over a 6-days period (Fig. 6.25B). Cell morphology also 

appeared normal (Fig. 6.25C). 

100 µm 

Induced 

100 µm 

Uninduced 

A 

B 

C 



140 
 

Because the targeting sequence of the endogenous MRPL45 was not present in the 

truncated version, but instead the protein was targeted to mitochondria using the Su9 sequence, 

it was necessary to confirm the localisation of the protein in these organelles. At this purpose, 

cell lysate and mitochondrial lysate were prepared from HEK293-MRPL45FLΔ induced for 3 

days, and then loaded on a western blot (Fig. 6.26). 

 

Figure 6.26 Enrichment of MRPL45FLΔ in mitochondria. 

The same amount (30 µg) of cell lysate and mitochondria obtained from HEK293-MRPL45FLΔ 

cells was analysed via western blotting. Antibodies against the FLAG-tag were used to confirm 

the success of the expression of the recombinant protein. The steady state level of the subunit 

of complex V ATP5β was also evaluated. The experiment was not replicated. 

The mitochondrial fractions clearly showed an increase in the signal detected from the FLAG 

antibody when compared to the cell lysate. The same pattern was observed for the mitochondrial 

protein ATP5β, suggesting that the Su9 presequence successfully targets MRPL45FLΔ to the 

organelle. 

The low steady state level detected for MRPL45FLΔ after induction resembles the one 

observed for MRPL45FLala, as shown in the following western blot analysis of cell lysates 

obtained from HEK293-MRPL45FLala, HEK293-MRPL45FLΔ and HEK293-MRPL45FLsil after 

induction for 3 days. Cell lysate from wild-type HEK293 cells was also loaded (Fig. 6.27). 

 

Figure 6.27 Levels of different MRPL45 mutants after 3 days of induction. 

Western blot analysis performed on cell lysates (≈30 µg) from HEK293 cells and from 

induced HEK293-MRPL45FLala, HEK293-MRPL45FLΔ and HEK293-MRPL45FLsil (3 

days, 1 µg/mL tetracycline). The steady state levels of the induced proteins were 

detected with antibodies targeting their FLAG-tag. SDH70 was used as a loading control. 

The detection of the FLAG-tagged proteins confirmed that the level of expression of 

MRPL45FLΔ were similar to the level observed for MRPL45FLala. Both are considerably lower 

than the one obtained for the FLAG-tagged protein only presenting silent mutations 

(MRPL45FLsil). 
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During the detections of the previous western blots, I noticed that the size observed for 

MRPL45FLΔ was of approximately 30 kDa. This molecular weight matches the size predicted 

for Su9-MRPL45FLΔ (30.5 kDa) and is considerably bigger than the one expected after 

cleavage of the Su9 presequence (≈23 kDa). The observed size for MRPL45FLΔ is reported in 

the following figure. 

   

Figure 6.28 Observed molecular weight for MRPL45FLΔ. 

Representative figure of western blot analysis of cell lysate (≈30 µg) from uninduced 

and induced HEK239- MRPL45FLΔ cells. Antibodies against MRPL45 and MRPL24 

were used. A proportion of the protein ladder (M, lane 1) was carefully aligned to the 

western blot to indicate the migration of the species observed. 

* = Molecular weight of the full-length product (unknown length of transit peptide) 

MRPL45FLΔ was present in the cell lysate obtained from induced cells (Fig. 6.28, lane 1 

indicated by the red arrow) and was detected between the endogenous MRPL45 and MRPL24. 

To date, the length of the transit peptide of MRPL45 is unknown, but the full -length protein is of 

approximately 35 kDa. The cleavage of the transit peptide of MRPL24, composed of only 9 

amino acids, lead to a protein of approximately 24 kDa. These observations suggest that 

MRPL45FLΔ should have a molecular weight between 35 and 24 kDa, which will be higher that 

the molecular weight of 23 kDa predicted upon cleavage of the Su9 presequence.  

Although the Su9 has been widely used to target proteins to the mitochondrial matrix, I 

decided to confirm that this presequence is effectively cleaved after the import of the protein. 

Therefore, MRPL45FLΔ was in vitro translated, in order to compare the migration on 12% SDS-

PAGE gel with the migration of the protein expressed in HEK293-MRPL45FLΔ detected with 

the FLAG antibody. The mRNA needed for the in vitro translation was prepared by in vitro 

transcription. Su9-MRPL45FLΔ- pcDNA5/FRT/TO was used as a template in a PCR reaction to 

generate the DNA fragment that was then transcribed to RNA. The forward primer used for the 

PCR (SP6-Su9-L45Frw) contained the SP6 promoter that is used by RNA polymerase to start 

transcription in vitro, while the reverse primer (SP6-Su9-L45trRev) was complementary to the 

FLAG-tag present at the end of the MRPL45FLΔ construct. The primers used were (Appendix 

5). The PCR reaction was carried out as in 2.3.3., using either 65 ºC or 67 ºC as annealing 

temperature. The products obtained were resolved on a 1.2% agarose gel (Fig. 6.29). 
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Figure 6.29 Product of PCR to synthesise SP6-Su9- MRPL45FLΔ. 

MRPL45FLΔ- pcDNA5/FRT/TO was used as a template in a PCR using the primers 

SP6-Su9-L45trFrw and SP6-Su9-L45trRev (Appendix 5). Either 65 ºC (lane 1) or 67 ºC 

(lane 2) were used as annealing temperature. The products obtained were resolved on 

a 1.2% agarose gel and visualised at the ChemiDoc. The desired product is indicated 

by the arrow. 

Both the annealing temperatures tested efficiently produced a single product of the expected 

size (831 bp). The product obtained at 65 ºC was purified and then in vitro transcribed (qv 6.2.2.). 

To confirm the efficiency of the reaction, the product obtained (1 µL) was resolved on a 1% 

agarose denaturing gel (qv 6.2.4.), together with 1 µg and 2 µg of total RNA. The gel was then 

visualised at the ChemiDoc system (Fig. 6.30). 

 

Figure 6.30 Visualisation of the product of in vitro transcription of 
SP6-Su9-MRPL45FLΔ. 

In vitro transcription was performed as in 6.2.2. to obtain SP6-SU9-MRPL45FLΔ. The 

product (1 µL) was resolved on a 1% agarose denaturing gel (qv 6.2.4.) and visualised 

at the ChemiDoc. Total RNA (1 µg and 2 µg) were also loaded on the gel as a reference 

for size and quantity. The desired product is indicated by the arrow. 

The transcription was successful as demonstrated by the presence of a single band in the 

product of the reaction (indicated by an arrow in Fig. 6.30). The 2 bands detec ted for the total 

RNA represented the cytosolic 28S and 18S rRNA, whose approximate sizes are 5 kB and 1.9 

kB, respectively. The band observed in the in vitro transcription product was lower than the 18S 
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band, in agreement with the expected size of Su9-MRPL45FLΔ (831 bp), The intensity of the 

band for Su9-MRPL45FLΔ was comparable with the ones observed for the 2 µg of total RNA, 

suggesting a high amount of RNA in the sample obtained by in vitro transcription. 

The Su9-MRPL45FLΔ RNA was used to perform in vitro translation (qv 6.2.3.). RNA 

encoding for mouse Su9-DHFR was also translated as a control. Cell lysates from HEK293 cells 

and from cells expressing either MRPL45FLAG or MRPL45FLΔ were resolved on a 12% SDS-

PAGE gel, together with samples obtained from in vitro translation. The gel was divided and the 

proportion containing the lysates samples was transferred on a PVDF membrane for western 

blotting, while the remaining part (containing the in vitro translated products) was fixed, vacuum-

dried and exposed for detection of the radioactive products as described in 5.2.3 (Fig. 6.31). 

The migration of the protein visualised were compared to the protein ladder.  

 

Figure 6.31 Migration of MRPL45FLΔ from cell lysate compared to migration of in vitro 

translated Su9-MRPL45FLΔ. 

Cell lysates (≈30 µg) from HEK293, induced HEK293-MRPL45FLΔ and induced 

HEK293-MRPL45FLAG, as well as the product of in vitro translation of Su9-

MRPL45FLΔ (1 µL, lane 10) and Su9-DHFR (2 µL, used as a control, lane 11), were 

resolved via 12% SDS-PAGE. The proportion of the gel containing the lysates was 

transferred on a PVDF membrane for western blot analysis (A). The efficiency of the 

overexpression was detected with antibodies against the FLAG-tag (lanes 2, 3, 4). 

Subsequently, antibodies against MRPL45 were used (lanes 6, 7, 8). The red asterisk 

represents the induced MRPL45FLΔ in lane 5. The experiment was not replicated. 

The proportion of the gel containing the in vitro translated products (lanes 10, 11) was 

fixed overnight and then vacuum-dried. The gel was finally exposed at the 

PhosphorImage screen to visualise the result (B). The size of Su9- MRPL45FLΔ and 

Su9-DHFR is also reported. The protein ladders for both the western blots and the 

radio-labelled detection are also shown (M, lanes 1, 5, 9). Lane 1 was carefully aligned 

with the detection observed for the FLAG-tag antibody. A red line was drawn just below 

the MRPL45FLΔ product observed in the protein lysate. The experiment was not 

replicated. 

MRPL45FLΔ was detected with the FLAG antibody (Fig. 6.31A, lane 2, above the red line) 

and corresponded to a molecular weight of approximately 30 kDa. A signal for MRPL45FLAG 

was also detected with this antibody just below 35 kDa (Fig. 6.31A, lane 4). The following 

incubation of the membrane with MRPL45 antibody showed the endogenous protein at 
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approximately 33 kDa, detected in all the 3 samples (Fig. 6.31A, lanes 6, 7, 8). Upon detection 

of MRPL45, 2 additional bands were detected in lane 8. Of these, one corresponded to the 

endogenous protein, while the other is likely to be a cleaved MRPL45, also observed in the 

previous chapters. The success of the in vitro translation was confirmed by the presence of a 

band above 25 kDa, which corresponded to the expected size of 28 kDa for Su9-DHFR (Fig. 

6.31B, lane 11). Concerning the translation of Su9-MRPL45FLΔ, a single species was detected 

at approximately 34 kDa (Fig. 6.31B, lane 10), when compared to the protein ladder (Fig. 6.31B, 

lane 9). The molecular weight of Su9-MRPL45FLΔ is of approximately 30.5 kDa, lower than the 

one observed. This might suggest an inaccurate migration of the protein ladder. Despite this, 

the migration observed for Su9-MRPL45FLΔ is evidently different for the one observed for the 

protein induced in HEK293-MRPL45FLΔ cells (Fig. 6.31A, lane 2, also indicate by a red line), 

suggesting that the Su9 presequence is efficiently cleaved upon import of the protein.  

The migration observed for the 30.5 kDa Su9-MRPL45FLΔ (Fig. 6.31B, lane 10) is close to 

the one observed for the endogenous MRPL45 (Fig. 6.31A, lane 7). As previously mentioned, 

the exact size of the targeting sequence of MRPL45 is still unknown. Mitoprot II, an online tool 

that calculates the N-terminal protein region that might correspond to the transit peptide (Claros 

MG et al., 1996), predicted a cleavage site for the presequence 42 amino acids from the N-

terminal. This cleavage will lead to a protein of approximately 30 kDa, which appears to be in 

agreement with the migration observed for the endogenous MRPL45 (Fig. 6.31A, lane 7). 

6.4.3. Integration of MRPL45FLΔ in the mitochondrial large 

mitoribosomal subunit 

The ability of MRPL45FLΔ to be integrated in the mt-LSU was verified via isokinetic sucrose 

gradient analysis, as performed for MRPL45FLala. HEK293-MRPL45FLΔ cells were induced for 

3 days and the cell lysate obtained (700 µg) was loaded on top of a 10-30% isokinetic sucrose 

gradient (qv 2.8.). As for MRPL45FLala, the steady state level of MRPL45FLΔ was very low, 

therefore the 11 fractions obtained from the sucrose gradient analysis were TCA-precipitated 

(qv 2.5.3.) and then loaded on a 12% SDS-PAGE and analysed via western blotting (Fig. 6.32). 
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Figure 6.32 Distribution of MRPL45FLΔ on isokinetic sucrose gradient. 

Representative figure of western blot analysis performed on the 10-30% isokinetic sucrose 

gradient analysis of cell lysate (≈700 µg) from induced HEK293-MRPL45FLΔ. The 11 fraction 

collected were TCA-precipitated, resolved on a 12% SDS-PAGE and analysed via western 

blotting. Cell lysate from the induced cells (50 µg) was also loaded on the gel. The efficiency 

of the overexpression was confirmed with antibodies against the FLAG-tag. The distribution of 

mt-LSU was detected with antibodies against MRPL24 and MRPL11, while antibodies against 

MRPS27 were used to localise the mt-SSU. Representative of 2 biological repeats. 

 The western blot analysis showed that the majority of the mutant protein was localised in 

the first fractions of the gradient. These were not corresponding to the fractions containing the 

mt-LSU, identified by MRPL11 mainly in fractions 6 and 7 (Fig. 6.32). The mt-SSU was instead 

localised in fraction 5 by detection of MRPS27. 

In section 6.3.3., MRPL45FLala showed the ability to integrate within the mt-LSU in absence 

of endogenous MRPL45 and to partially rescue the phenotype observed for MRPL45 depletion. 

The possibility of MRPL45FLΔ to follow the same pattern was tested. The integration of 

MRPL45FLΔ within the mt-LSU in absence of the endogenous protein was tested via isokinetic 

sucrose gradient analysis. After 3 days of induction with 1 µg/mL of tetracycline,  1,000,000 

HEK293-MRPL45FLΔ cells were seeded in 75 cm2 flasks and depleted of MRPL45 with 

siRNA02 at 33 nM for 6 days (reverse and forward transfection, qv 2.1.5.), continuing the 

expression of the FLAG-tagged mutant protein. The sequence targeted by MRPL45-siRNA02 is 

localised within the region deleted in MRPL45FLΔ, therefore the siRNA will not target the mutant 

protein. At the end of the treatment, cells were harvested and 700 µg of cell lysate were analysed 

on a 10-30% isokinetic sucrose gradient. The 11 fractions obtained were TCA-precipitated (qv 

2.5.3.) to concentrate the sample and facilitate the visualisation of the FLAG-tagged protein and 

used for a western blot analysis (Fig. 6.33A). A proportion (50 µg) of the cell lysate loaded on 

the gradient was also analysed, together with 50 µg of cell lysate from uninduced HEK393-

MRPL45FLΔ. The same experiment was performed on HEK293 cells, as a control (Fig. 6.33B)  
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Figure 6.33 Distribution of MRPL45FLΔ on isokinetic sucrose gradient in absence of 
endogenous MRPL45. 

A) HEK293-MRPL45FLΔ cells were induced for 3 days and then depleted of MRPL45 for 6 

days (siRNA02, 33 nM final concentration), continuing the induction. At the end of the 

treatment, cells were harvested and 700 µg of cell lysate were separated on a 10-30% 

isokinetic sucrose gradient. The 11 fractions obtained from the gradient were TCA precipitated 

and then loaded on a 12% SDS-PAGE gel for western blot analysis. Cell lysate (≈30 µg) from 

uninduced cells and from the treated cells were also loaded on the gel. The steady state level 

of the FLAG-tagged protein was detected first. After that, antibodies against MRPL45 and 

MRPL24 were used to localise the mt-LSU, whereas the mt-SSU was localised with antibodies 

against MRPS27. SDH70 was used to confirm the equality of the loading of the cell lysates. 

The signal obtained from SDH70 thought the gradient was omitted. The figure is 

representative of 2 biological repeats. B) HEK293 cells were depleted for 6 days of MRPL45 

(siRNA02, 33 nM final concentration) were used as an experimental control for A). Cell lysates 

from untreated HEK293 (WT) and from depleted cells (kd) were analysed via western blotting 

together with the 11 TCA-precipitated fractions obtained from the 10-30% isokinetic sucrose 

gradient analysis. Antibodies against MRPL45 and MPRL24 were used to visualise the m-

LSU, while antibodies targeting MRPS22 were used to detect the mt-SSU. SDH70 was used 

to confirm the equality of the loading of the cell lysates. The signal obtained from SDH70 

thought the gradient was omitted. 

The efficiency of depletion was confirmed by the reduction of the steady state level observed 

for MRPL45 when compared to uninduced and non-depleted cells (Fig. 6.33A). As reported in 

chapter 3, depletion of MRPL45 led to reduction of assembled mt-LSU. In agreement with this, 

a reduction of the steady state level of MRPL24 was observed upon depletion of MRPL45. 

Despite this, a signal form MRPL24 was detected in the sucrose gradient analysis, with an 
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B 
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enrichment in fraction 6 and 7, signalling that a proportion of the mt-LSU was still present (Fig. 

6.33A). This can be expected as the depletion of MRPL45 was not complete as a small amount 

of the protein was still present. In fact, detection of MRPL45 also confirmed an enrichment of 

this protein in fraction 6 and 7 (Fig. 6.33A). It is important to remember that the fractions of this 

sucrose gradient have been TCA-precipitated and that, therefore, the signal from detected by 

MRPL24 and MRPL45 appeared very strong despite their depletion. The control experiment 

performed on HEK293 cells confirmed the distribution of MRPL24 and MRPL45 observed 

throughout the gradient upon depletion of MRPL45 (Fig. 6.33B). MRPS27 (Fig. 6.33A), not 

reduced by the depletion, was localised mainly in fractions 4 and 5, identifying the distribution 

of the mt-SSU throughout the 10-30% isokinetic sucrose gradient. Detection of MRPL45FLΔ via 

the FLAG-tag showed that the majority of the protein was localised in fractions 2, 3 and 4 of the 

gradient. A minor fraction of MRPL45FLΔ appeared to be integrated with the mt -LSU since a 

weak signal for the FLAG-tagged protein was observed in fractions 6 and 7 (Fig. 6.33A). The 

presence of the mutant protein in lighter fractions (2, 3, 4) but not in free fraction (1) suggested 

the possibility that this protein is present in complexes. 

The ability of MRPL45FLΔ to rescue the MRPL45 depletion phenotype was also tested. 

HEK293-MRPL45FLΔ cells were induced for 3 days and then depleted of MRPL45, continuing 

the expression of the mutant protein. As control, uninduced cells were also treated with either 

NT- or MRPL45- siRNA for 6 days. At the end of the incubation, cells were visualised at the 

microscope (Fig. 6.34A) and then the cell lysates were analysed via western blotting (Fig. 

6.34B). 
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HEK293-MRPL45FLΔ 

     

 

 

Figure 6.34 Effects of the expression of MRPL45FLΔ in cells depleted of endogenous 

MRPL45 on cell growth and mitochondrial translation. 

HEK293-MRPL45FLΔ cells were induced for 3 days and then incubated with 33 nM MRPL45-

siRNA for 6 days, continuing the induction of the mutant protein. In parallel, uninduced cells 

were also incubated with either NT- or MRPL45-siRNA for 6 days, as a control. At the end of 

the treatment the cells were visualised (A) and cell lysates were analysed via western blotting 

(B). The efficiency of the overexpression and of the depletion were confirmed with antibodies 

against the FLAG-tag and MRPL45, respectively. The steady-state level of the mitoribosomal 

protein MRPL24 and of the mt-encoded protein COXII were also detected. SDH70 was used 

to confirm the quality of the loading. The results are representative of 2 biological repeats. The 

dashed line indicates the omission of lanes. 

The expression of the mutant protein was confirmed with the detection of a signal from the 

FLAG-tag (Fig. 6.34B, lane 2). The reduction of MRPL45 steady state level observed confirmed 

the efficiency of the depletion (Fig. 6.34B, lane 2, 3). No rescue of MRPL24 or COXII, which 

steady state level was reduced in MRPL45 depleted cells (Fig. 6.34B, lane 3) was observed 

NT-siRNA MRPL45-siRNA 
Uninduced Induced 

1        2        3 

MRPL45-siRNA Uninduced 

A 

B 



149 
 

upon overexpression of MRPL45FLΔ. The equality of the loading was confirmed by SDH70. 

This result agrees with a marginal integration of MRPL45FLΔ within the mt-LSU observed upon 

depletion of endogenous MRPL45 (Fig. 6.33). 

6.4.4. Interaction of MRPL45FLΔ with the mitochondrial IMM 

To test if the domain of MRPL45 deleted in MRPL45FLΔ was important for the interaction 

with the membrane, the protocol developed in the previous chapter was performed after 

expression of MRPL45FLΔ in absence of assembled mitoribosomal subunit. HEK293-

MRPL45FLΔ cells were incubated with 250 ng/mL of ethidium bromide for 10 days, with 

induction of the mutant protein during the last 3 days of the incubation. Cell were harvested, 

mitochondria were extracted and membrane and soluble fraction were separated following the 

protocol explained in 4.2.2. Because of the low steady state level of MRPL45FLΔ, twice as much 

material as usually analysed was loaded on a 12% SDS-PAGE for subsequent western blot 

analysis (Fig. 6.35).  

 

 

Figure 6.35 Distribution of MRPL45FLΔ between membrane and soluble fractions after 

treatment of the cells with ethidium bromide. 

HEK293-MRPL45FLΔ cells were incubated with 250 ng/mL ethidium bromide for 10 days, with 

induction of the recombinant protein for the last 3 days. Mitochondria were extracted and 

membrane and soluble fraction were prepared in presence or absence of 1.6% Triton X-100 

as in 4.2.2. A) Western blot analysis was performed on uninduced and treated cell lysates to 

confirm the efficiency of the ethidium bromide treatment as well as the induction. Antibodies 

against the FLAG-tag were used, together with antibodies targeting COXII. SDH70 was used 

as loading control. B) Representative figure of western blot analysis performed for membrane 

(P, 15 µL) and soluble (S, 30 µL) fractions obtained from the protocol. The success of the 

protocol was assessed with detection of a matrix protein (GDH) and the OMM protein TOM20. 

The signal from MRPL45FLala was detected with an antibody targeting the FLAG-tag. C) 

Quantification of 2 biological repeats of the membrane-soluble protocol. 

0

20

40

60

80

100

SDH70 GDH FLAGTriton        -     -     +    +            -     -     +    +              -     -    +    + 
    P   S    P   S             P   S    P   S             P   S    P   S 

       TOM20                   GDH               MRPL45FLΔ 

        

A 

C 

B 



150 
 

The western blot analysis of the cell lysates (Fig. 6.35A) confirmed the induction of 

MRPL45FLΔ. The efficiency of the ethidium bromide treatment was confirmed by the absence 

of COXII in the treated cells. The membrane-soluble protocol was successful. The matrix protein 

GDH was mainly detected in the soluble fractions both in absence and in presence of detergent 

(Fig. 6.35B, lanes 2, 4). The OMM protein TOM20 was used as marker for the membrane 

fraction. This protein was mainly detected in the pellet fraction in absence of Triton X-100 (Fig. 

6.35B, lane 1), although a signal was also detected in the supernatant (Fig. 6.35B, lane 2). This 

was observed for every membrane-soluble fraction experiment performed on cells incubated 

with ethidium bromide. Upon treatment with Triton X-100, the OMM protein was completely 

solubilised (Fig. 6.35B, lane 4). Detection of the FLAG-tagged protein showed a partial 

solubilisation upon treatment with the detergent, quantified as approximately 30% from different 

biological repeats (Fig. 6.35C). This result suggests that, despite the absence of 117 residues 

at the N-terminal, MRPL45 can still interact with the IMM. It is important to notice that 

approximately the 50% of MRPL45FLΔ was detected in the pellet fraction after incubation with 

the detergent. Since SDH70 showed that the solubilisation of the membranes was successful, 

the induced protein might aggregate or be a component of a large complex which is pelleted at 

the g-force used.  In addition, a signal for the mutant protein was detected in the soluble fraction 

in absence of Triton X-100 (Fig. 6.35B, lane 2), suggesting that a small pool of protein 

(approximately 20%) did not interact with the membrane. 

6.5. Discussion 

This chapter focused on the investigation of the domain of MRPL45 putatively involved in the 

interaction with the membrane. For this, 2 different mutants of MRPL45 were generated and 

induced in HEK293 cells. The mutations were proposed according to the structural data available 

on human MRPL45 and on the interaction with the membrane of human and yeast TIM44, which 

share structural homology with MRPL45. 

The first construct, MRPL45FLala, contained mutations in the most protruding domain in the 

structure of human MRPL45 resolved to date (α2 helix). After induction, the steady state level of 

the protein appeared very low. The qPCR analysis confirmed that the mRNA level for MRPL45 

were increased 6 fold upon induction, suggesting that the low level observed was probably due 

to instability of the protein. In an attempt to increase the levels of MRPL45FLala, 2 of the main 

proteases important for quality-control in the mitochondrial matrix (CLPP and LONP) were 

individually depleted. In both cases, no increase of the level of the mutant protein was observed. 

Although CLPP and LONP are 2 of the main proteases suggested to be important for quality-

control in the mitochondrial matrix, it is not possible to exclude that another protease might be 

involved in its degradation within mitochondria. It is also possible that  the mutant proteins could 

be degraded in the cytosol after their synthesis, reducing the amount of these proteins targeted 

to mitochondria. 
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In presence of endogenous MRPL45, MTPL45FLala was not integrated in the mt -LSU and 

was found free or in complexes of small molecular weight. When the endogenous protein was 

depleted, instead, the mutant protein was completely integrated in the mt-LSU. In this scenario, 

a higher steady state level than the one observed for induction in wild type cells was expected for 

MRPL45FLala, since the protein was integrated in the mt-LSU and potentially less accessible to 

degradation from proteases. Instead, no increase in the level of the mutant protein was observed. 

This might have been due either to a relatively fast turnover of the mt-LSU, which did not allow 

the accumulation of the subunit containing the mutated protein, or to the lower stability of the mt-

LSU containing MRPL45FLala. The lack of integration of MRPL45FLala in presence of the 

endogenous protein could be due to a less favourable integration of the mutant protein. This will 

lead to free MRPL45FLala that, consequently, might be quickly degraded, explaining the low 

steady state level observed for the protein. It is also possible that the integration of the mutant 

protein was less probable due to its lower abundancy. It will be possible to discriminate between 

these 2 hypothesis performing a less efficient depletion of MRPL45 (for example by lowering the 

final concentration of siRNA used) and detect the steady state level of COXII via western blot . If 

the steady state level of this OXPHOS protein will be lower than in the control sample, the 

experiment will indicate that a higher amount of MRPL45 will be needed to assemble enough mt -

LSU to assure the synthesis of the ‘normal’ amount of COXII. However, despite this uncertainty, 

the experiments showed that the mutation of charged amino acids to alanine performed in the α2 

helix did not prevent the mutated MRPL45 from its integration in the mt-LSU 

When integrated in the mt-LSU, MRPL45FLala was shown to partially rescue the phenotype 

observed upon depletion of the endogenous protein, suggesting that the mutations generated on 

MRPL45 are not affecting the possibility to generate an actively translating monosome. The 

rescue of MRPL45 depletion phenotype was clear, but not complete. The possibility of a complete 

rescue was confirmed by overexpression of a construct containing silent mutations in the 

sequence targeted by the siRNA used (MRPL45FLsil). This result also validated the phenotype 

obtained for MRPL45 depletion in chapter 3. The partial rescue observed by MRPL45FLala might 

be due to a lower abundancy of mt-LSU available in this condition when compared to wild type 

cells. In chapter 3, I demonstrated that MRPL45 is necessary for the assembly of the mt -LSU. As 

a consequence, it is possible that the amount of MRPL45FLala available upon induction is limiting 

the amount of mt-LSU that can be assembled and that, therefore, not enough mitoribosomes are 

offered to restore the normal level of mitochondrial translation. A partial rescue was also observed 

for MRPL24, supporting the idea that a reduced amount of assembled mt-LSU is present. 

The ability of MRPL45FLala to interact with the membrane was tested after depletion of mtDNA 

and, therefore, of assembled mitoribosomal subunits. In this condition, the expressed 

MRPL45FLala was able to interact directly with the membrane. Solubilisation of the membrane 

fraction obtained with the membrane-soluble fraction protocol developed in chapter 4 suggested 

that at least the 30% of the protein is interacting with the membrane. A small proportion of the 

protein was recovered in the soluble fraction in absence of detergent. This could indicate that the 
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interaction is transient and that therefore not the whole pool of MRPL45FLala was interacting with 

the membrane. From this experiment, it was possible to conclude that the mutation of the helix 

α2 of MRPL45 did not affect the ability of the protein to directly bind the IMM, therefore another 

domain of MRPL45 is mediating the interaction with the membrane of MRPL45FLala. 

The ability of the mt-LSU containing MRPL45FLala to interact with the membrane was also 

tested. No significant interaction was detected and, upon solubilisation of the membranes with 

detergent, approximately the 50% of the MRPL45FLala was detected in the pellet fraction. This 

result suggest that MRPL45FLala is likely to be part of heavy complexes. One possibility is that 

these complexes could be aggregates formed by the heat generated by sonication, performed on 

ice and used to disrupt the mitochondrial membranes. It is also possible that MRPL45FLala could 

be recognised by chaperones while integrated in the mt-LSU, which might associate and increase 

the molecular weight of the subunit. In addition, the presence of a signal for the FLAG-tag in the 

soluble fraction in absence of detergent suggested that approximately 50% of the protein did not 

interact with the membrane, suggesting that the interaction of the mitoribosome might have been 

compromised. Despite this experiment was not able to show an interaction of the mt-LSU 

containing MRPL45FLala, the previous experiment performed on induced cells in absence of 

assembled ribosome clearly confirmed the ability of the mutant protein to interact with the IMM.  

Since MRPL45FLala failed in identifying the domain involved in membrane-interaction, I 

designed a second construct lacking the first 117 amino acids (MRPL45FLΔ). This resulted in the 

deletion of an α-helix and of a following loop predicted to be present on human MRPL45 and 

suggested as an interacting point with the membrane for TIM44. The deletion did not included the 

domain modified in MRPL45FLala. The mitochondria-targeting sequence of MRPL45 was lost 

with the deletion, but the protein was successfully targeted to mitochondria using the Su9 

presequence. The steady state level of MRPL45FLΔ was very low and comparable with the one 

observed for MRPL45FLala.  

During the detection of MRPL45FLΔ I noticed that this migrated at approximately 30 kDa when 

the protein ladder was used as a reference, a molecular  weight which corresponded to the full-

lenght Su9-MRPL45FLΔ. I demonstrated that the product containing the presequence migrates 

at a higher molecular weight, confirming, therefore, that the presequence is efficiently cleaved 

upon import of the protein. Noticeably, the endogenous MRPL45 migrates at a molecular weight 

very close to the one observed for Su9-MRPL45FLΔ. A cleavage site for the 35 kDa full-length 

MRPL45 has not been confirmed to date. This observation suggests that MRPL45 presents a 

transit peptide of approximately 5 kDa, which is cleaved within mitochondria.  This will be in 

agreement with the predicted cleaving site at approximately 40 residues from the N-terminal of 

the protein.  

In the presence of endogenous MRPL45, MRPL45FLΔ was not integrated into the mt-LSU 

and was localised in the low-density fractions of the sucrose gradient analysis, suggesting its 

association within small complexes. Depletion of endogenous MRPL45 in cells overexpressing 
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MRPL45FLΔ did not severely affect the distribution of the mutated protein in the sucrose gradient 

analysis, although a small proportion colocalised with the mt-LSU, indicating a possible 

integration. To support the lack of integration, no rescue of the MRPL45 depletion phenotype was 

observed upon MRPL45FLΔ expression, as opposed to the partial rescue observed by 

MRPL45FLala. Despite a signal was present in the free-fraction of the sucrose gradient analysis, 

the majority of MRPL45FLΔ was recovered in the low density fractions, indicating that the mutant 

protein might be present in a complex. It is possible that this complex corresponds to a partially 

assembled mt-LSU. It will be possible to explore this theory with immunoprecipitation studies on 

HEK293-MRPL45FLΔ cells expressing the protein in absence of endogenous MRPL45. 

Despite no rescue was observed upon induction of MRPL45FLΔ in cells depleted of MRPL45, 

the results obtained from the membrane-soluble fraction protocol suggested that the truncated 

protein retains the ability to interact with the membrane. The protocol, performed on cells 

expressing MRPL45FLΔ in absence of assembled mt-LSU, showed that approximately 30% of 

MRPL45FLΔ is able to interact with the membrane. As for MRPL45FLala, and in the previous 

chapter for MRPL45wt and MRPL45FLAG, MRPL45FLΔ (≈20%) was detected in the soluble 

fraction in absence of detergent, suggesting that a proportion of the protein was not interacting 

with the membrane and that, therefore, the interaction might be transient. In presence of 

detergent, approximately 45% of MRPL45FLΔ was still present in the pellet, suggesting the 

presence of aggregates. 

The results obtained for MRPL45FLΔ suggest that the protein is not integrated in the mt-LSU, 

although a small proportion might be integrated in absence of endogenous MRPL45.  This cannot 

be due to a lack of interaction with the IMM, since MRPL45FLΔ retained the ability to interact with 

the IMM. It is possible that the deleted domain is important to establish interactions crucial for the 

assembly of the mt-LSU. 

Unfortunately, it was not possible to identify the domain of MRPL45 involved in membrane 

interaction since both MRPL45FLala and MRPL45FLΔ maintained their ability to interact with the 

IMM. Comparison of the integration of these 2 proteins within the mt-LSU performed by sucrose 

gradient analysis, suggested that the the domain included in the first 117 amino acids (deleted in 

MRPL45FLΔ) is important for the assembly of the mitoribosomal large subunit.  
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Chapter 7: The role of the inner mitochondrial membrane protein 

OXA1L in mitochondrial translation 

7.1. Introduction 

The inner mitochondrial membrane is one of the most protein-rich membranes in eukaryotic 

cells. It is composed of both nuclear and mitochondrial encoded protein, all of which need to be 

integrated into the membrane itself.  

In bacteria, there are inner membrane proteins (IMP) that are inserted co-translationally. The 

nascent IMP is recognised by a signal recognition particle (SRP) (Keenan RJ et al., 2001), which 

targets the ribosome to the membrane. The IMP can then interact with the SecYEG complex 

(Rapoport TA, 2007) that cooperates with YidC membrane insertase to fold, assemble and insert 

the IMP (du Plessis DJF et al., 2006; Kol S et al., 2009; Scotti PA et al., 2000). It addition to its 

cooperation with SecYEG, YidC is also able to insert several IMPs (Samuelson JC et al., 2000; 

van der Laan M et al., 2004) and has been found associated with the ribosome in bacteria (Kedrov 

A et al., 2013; Kohler R et al., 2009), supporting its role in co-translational insertion. 

Mitochondria lack of both SRP and SecYEG complex (Glick BS et al., 1996), but have 

maintained the ability to insert IMPs in the IMM. In mammals, the only protein known to date to 

be involved in the insertion of nascent proteins from the matrix of IMP is OXA1L (OXidase 

Assembly 1-Like). This protein is a member of the YidC/Alb3/Oxa1 membrane protein insertase 

family (Hennon SW et al., 2015) and it was first identified in yeast as important for the assembly 

of complex IV (Bonnefoy N et al., 1994; Keil M et al., 2012). Subsequently, Oxa1 was also 

reported to be important for the assembly of complex V (Altamura N et al., 1996), helping the 

formation of the transmembrane domain (Jia L et al., 2007). It has been reported that both Oxa1 

and YidC are able to dimerise and form pores in the membrane helping the translocation of IMPs 

(Kohler R et al., 2009; Krüger V et al., 2012). Yeast Oxa1 is suggested to play a role in the 

insertion of the mitochondrial-encoded Atp6, Atp9, Cox1, Cox2, Cox3 and Cyb, but also appears 

to have a role in the insertion of nuclear-encoded IMM proteins (Hell K et al., 1998; Hildenbeutel 

M et al., 2012; Stiller SB et al., 2016). Another member of the YidC/Alb3/Oxa1 family, named 

Cox18, was shown to be important in yeast for the insertion of the C-terminal of Cox2 (Saracco 

SA et al., 2002). Its human homologue, (hCox18) shares 25% identity and 45% similarity with the 

yeast counterpart (Sacconi S et al., 2005) but its role remains unclear. 

Because of the role of Oxa1 in the insertion of mt-encoded proteins, it was suggested that this 

protein is in direct contact with the mitochondrial protein synthesis machinery. This hypothesis 

was validated by the following studies that showed the co-localisation of Oxa1 with the yeast mt-

LSU on sucrose gradients and identified the importance of the C-terminus in this interaction (Jia 

L et al., 2003). Crosslinking experiments were able to identify the presence in close proximity to 

Oxa1 of the yeast mitoribosomal proteins Mrp20 (human MRPL23) (Jia L et al., 2003) and Mrp40 

(human MRPL24) (Jia L et al., 2009), which are found at the polypeptide exit site (PES) of yeast 
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mt-LSU. The interaction with the PES would facilitate a seamless integration of the hydrophobic 

products of mitochondrial translation into the IMM. The ability of Oxa1 to bind the ribosome was 

also confirmed in vitro by Cryo-EM studies that determined the 3D structure of Oxa1 (and YidC) 

bound to bacterial ribosomes (Kohler R et al., 2009). This study showed that the insertases 

interact with the ribosome in the proximity of the ribosomal PES and that the positively charged 

C-terminal domain is involved in this interaction. 

The Cryo-EM studies on Oxa1 and YidC suggested a similarity between the structure and 

function of these proteins. The members of the YidC/Alb3/Oxa1 family are composed of a 

conserved core of 5 transmembrane helices (Hennon SW et al., 2015) and the human OXA1L is 

not an exception. This 48 kDa IMM protein also presents a C-terminal domain found in the matrix, 

which has been cross-linked in vitro to the mitoribosomal proteins MRPL13, MRPL20, MRPL29, 

MRPL48, MRPL49 and MRPL51 (Haque ME et al., 2010). Thanks to the recent release of the 

structure of the mitoribosome, it is now possible to identify the position of these proteins within 

the structure (Fig. 7.1). Of these, only MRPL29 is found in close proximity of the PES, a location 

predicted to be ideal for membrane-interaction. Several of the proteins that form crosslinks are 

not localised on the surface. None of the interactions with MRPL23 and MRPL24 that were 

observed for the yeast Oxa1 (Jia L et al., 2003; Jia L et al., 2009), were reported by Haque et al 

with mammalian mitoribosomes. 

 
Figure 7.1 Positions of the mitoribosomal protein that co-immunoprecipitated with 

human OXA1L. 

Localisation within the mitoribosome of mitoribosomal proteins that co-immunoprecipitate 

with OXA1L as reported by Haque et al (PDB 3J9M). The small subunit is depicted in 

desaturated green, while the large subunit is in blue. Theimmunoprecipitated mitoribosomal 

proteins are highlighted in different colours (MRPL13=red, MRPL20=orange, 

MRPL29=yellow, MRPL48=cyan, MRPL49=green, MRPL51=magenta).  
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Depletion studies of OXA1L in human cell lines suggested the importance of this protein for 

the assembly of complexes I and V (Stiburek L et al., 2007). OXA1L depletion did not affect the 

other partially mt-encoded OXPHOS complexes. If this unexpected result will be confirmed, it will 

suggest that other insertases different from OXA1L must be involved in the insertion of mt -

encoded subunits of complex III and IV. 

Due to the possibility of a central role of OXA1L in the insertion of the mt-encoded proteins in 

the IMM and in the interaction with the mitoribosome, I decided to characterise the effects of the 

depletion of this protein in human mitochondria and to investigate its importance for mitochondrial 

translation. 

7.1.1. OXA1L structure 

A better understanding of the structure of OXA1L can be useful to give insight on its function 

or to infer the importance of particular domains and residues. 

Human OXA1L, yeast Oxa1 and bacterial YidC were aligned using Clustal Omega. Oxa1 

and OXA1L share 31.44% identity, whereas Oxa1 or OXA1L and YidC share 17.14% and 

18.48% identity respectively. It is important to mention that several non-identical residues have 

maintained a certain degree of conservation of the physical proprieties. 

OXA1L is composed of 5 transmembrane helices and a C-terminal domain that protrudes in 

the matrix and has been reported to be important for the interaction with the ribosome (Table 

7.1). Because 3 isoforms of OXA1L have been identified due to alternative splicing, the longer 

isoform identified as Q15070-1 (435 aa) will be used as a reference. 

Table 7.1 Topology of OXA1L. 

The analysis was based on the information predicted for the longer isoform of the protein 

(Q15070-1) by Uniprot. 

Residues From – To (aa seq) Structure/Localisation 

1 – 113 MAMG – SFAE Intermembrane space 

114 – 134 LGLG – FMHV Transmembrane helix (α1) 

135 – 139 DLGLP Matrix 

140 – 160 WWGA – PLTV Transmembrane helix (α2) 

161 – 212 TGQR – HGIK Intermembrane space 

213 – 233 LYKP – FFIA Transmembrane helix (α3) 

234 – 260 LREM – TVSD Matrix 

261 – 281 PIYI – ELGA Transmembrane helix (α4) 

282 – 299 ETGV – VIRM Intermembrane space 

300 – 320 MPLI – MYWL Transmembrane helix (α5) 

321 – 435 SSNL – DTLG Matrix 
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At present, no structure is available for either mammalian OXA1L or yeast Oxa1. The 

structure of human OXA1L was predicted Phyre2, and the result is shown in Fig. 7.2. 

 

Figure 7.2 Predicted secondary structure of human OXA1L. 

The structure of OXA1L was predicted using Phyre2 on the full length isoform of OXA1L 

(435 aa) and visualised as cartoon on Pymol. High confidence was obtained in the 

structure between residues 101 and 331 (blue), due to the similarity with the bacterial 

protein YidC. 

 The prediction of the structure of OXA1L between residues 101 and 331 had 100% 

confidence (Fig. 7.2, blue) and was based on several YidC crystal structures available 

(Kumazaki K et al., 2014; Kumazaki K et al., 2014; Wickles S et al., 2014). This domain of 

OXA1L represents ≈25% identity with the YidC sequence. The confidence represents the 

probability that the match between the sequences analysed and the template is a homology, 

and does not represent the accuracy of the model. The high-confidence structure corresponds 

to the transmembrane domain of the protein. Unfortunately, a good prediction could not be 

obtained for the matrix domain of the protein. 

7.2. OXA1L and the interaction with the mitoribosome 

As discussed in the introduction of this chapter, the C-terminus of OXA1L protrudes in the 

matrix and has been crosslinked in vitro to a number of mt-LSU proteins. As previously mentioned, 

all the proteins suggested to interact with OXA1L (Haque ME et al., 2010), with the exception of 

MRPL29, are distributed at a distance from each other throughout the mt-LSU and not always 

easily accessible from the solvent. Since this study was performed in vitro, I decided to confirm 

the interaction with mitoribosomal proteins via immunoprecipitation from HEK293 cells. HEK293-

MRPL45FLAG cells (qv 5.2) and HEK293 cells with a FLAG tagged MRP protein from the mt-
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LSU, ICT1FLAG, were grown in 75 cm2 flasks and induced for 3 days. At the end of the induction, 

mitochondria were extracted and the immunoprecipitation was performed via the FLAG-tag (qv 

2.9). The elution samples (1/3 of the total volume eluted) were analysed via western blotting (Fig. 

7.3). The FLAG-immunoprecipitation was also performed on wild type HEK293 as an 

experimental control. 

 

Figure 7.3  Immunoprecipitation of ICT1FLAG and MRPL45FLAG to investigate 

the potential interaction with OXA1L. 

Western blot analysis of the eluted protein (1/3 of the total sample) from FLAG-

immunoprecipitation from HEK293 (lane 1), HEK293-ICT1FLAG (lane 3) and HEK293-

MRPL45FLAG (lane 2, 4) cells, after 3 days of induction. Wild type HE293 cells were 

used as a control (lane 1). The presence of the mitoribosome was assessed with 

antibodies targeting MRPS26 and MRPL11. The steady state levels of OXA1L was also 

investigated. The figure is representative of 2 biological repeats. 

The mitoribosome was efficiently immunoprecipitated both via ICT1FLAG and MRPL45FLAG, 

as indicated by the presence of MRPL11 and MRPS26. OXA1L was also detected in both 

samples, confirming its interaction with the mitoribosome. The specificity of the IP was confirmed 

since no signal was detected from the sample obtained from wild type HEK293 cells (Fig. 7.3, 

lane 1). 

7.3. Effects of OXA1L depletion 

OXA1L depletion was performed using siRNA using the lipofectamine technology as for 

depletion of MRPL45. The siRNA used was a SmartPool composed of a mixture of 4 siRNA 

(Dharmacon, cat no M-012696-00, Appendix 4), in which each siRNA was designed to reduce off 

target complementarity. To further reduce these effects, the SmartPool mix was used at a final 

total concentration of 33 nM. Because it is composed by 4 siRNA, each individual siRNA is at the 

lower concentration (≈8 nM), further reducing the chances of off target effects. The consequences 

of 6 days OXA1L depletion on U2OS cell growth and morphology was monitored with the IncuCyte 

system (Fig. 7.4). NT-siRNA was used as an experimental control. 
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Figure 7.4 Effect on cells growth of OXA1L depletion.  

Cell growth was monitored over 6 days of OXA1L depletion by SmartPool siRNA. A) 

Growth was measured as a consequence of cell confluency, calculated by the IncuCyte 

system. The time of restransfection is indicated by a red arrow. B) Cells were visualised 

6 days after incubation with NT-siRNA or OXA1L siRNA. The images are representative 

of 3 biological repeats. 

OXA1L depletion severely affected cell growth. After  2 days, the cell confluency was 

decreasing, suggesting cells death (Fig. 7.4A). The severe effect on cells growth was also 

noticeable from visual inspection of cells (Fig. 7.4B). The steady state level of mitochondrial 

proteins was then analysed by western blotting (Fig. 7.5). 
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Figure 7.5 Effects of OXA1L depletion on steady state level of 

mitochondrial protein using SmartPool siRNA. 

Representative figure of western blot analysis performed on cell lysate (≈30 µg) after 6 

days of incubation with either NT-siRNA or OXA1L SmartPool siRNA. The steady state 

level of OXA1L and of components of the mt-LSU (MRPL45, MRPL11) and mt-SSU 

(MRPS26, MRPS22) were evaluated, as well as the steady state level of the mtDNA-

encoded protein COXII. Antibodies against SDH70 were used as loading controls.  Three 

biological repeats of the experiment were performed.  

The western blot analysis showed a very efficient depletion of OXA1L (Fig. 7.5). This depletion 

appeared to reduce the steady state levels of mitoribosomal components of both the mt-LSU and 

mt-SSU, suggesting an instability of the mitoribosome in absence of OXA1L and therefore its 

possible involvement in the biogenesis of both subunits. As a consequence, mitochondrial 

translation was affected, as confirmed by the reduced steady state levels of the mt-encoded 

COXII. The quality of the loading was verified with antibodies targeting the IMM protein SDH70.  

Due to the unexpected reduction of the steady state level of both the mitoribosomal subunits  

observed upon OXA1L depletion, and to disprove the hypothesis of an off target effect, I decided 

to test the effect of the individual siRNAs present in the SmartPool (Appendix 4). Each siRNA was 

tested at a final concentration of 33 nM, which is routinely used in our laboratory. U2OS cells were 

incubated with OXAsi01, OXAsi02, OXAsi03 or OXAsi04 for 6 days (reverse and then forward 

transfection at day 3). NT-siRNA was used as experimental control. The effects of the depletion 

on cell morphology and their confluency was monitored over the time course (Fig. 7.6). 
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Figure 7.6 Effects on cell growth and morphology of individual OXA1L SmartPool-siRNAs. 

Representative figure (2 biological repeats) of U2OS cells depleted of OXA1L for 6 days 

using 4 different siRNA at the final concentration of 33 nM and visualised at the inverted 

microscope on day 6. 

Examination at the microscope of depleted cells showed a reduction of cell growth for all the 

tested siRNA, with the most dramatic effect observed for OXAsi02. Cells incubated with OXAsi02 

were smaller and round when compared to the one incubated with NT-siRNA. 

Since cell growth was affected by OXA1L depletion with all the siRNAs tested, the effects of 

OXA1L depletion on mitochondrial protein content was analysed via western blotting (Fig. 7.7). 

The sample obtained from cells treated with OXAsi02 was not enough to allow its analysis with 

this technique. 
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Figure 7.7 Effects of 6 days OXA1L depletion using 3 different siRNAs. 

Cell lysates (≈30 µg) following incubation with 3 different siRNAs (33 nM) targeting OXA1L 

were analysed via western blotting. A representative image of 2 biological repeats is 

shown. NT-siRNA was used as a control (lane 1). The efficiency of the depletion was 

verified with antibodies against OXA1L. The effect on the steady state level of the 

mitoribosomal proteins MRPS26, MRPL11 and MRPL45 was also determined. On a 

different western blot, the effects of the depletion of OXA1L on ATP5β and COXII levels 

were detected for cells treated with OXAsi03 and 04. β-Actin was used as a loading control 

for both the membranes. The dashed line indicates that some lanes were excised from the 

figure. 

A weak signal for OXA1L was detectable in samples obtained from cells treated with OXAsi03 

and OXAsi04 (Fig. 7.7, lanes 3, 4), while a strong signal, comparable to the one observed for the 

NT siRNA was detected for the sample depleted with OXAsi01 (Fig. 7.7, lane 1 vs 2), suggesting 

the inefficacy of this siRNA. The siRNAs 1, 3 and 4 had a similar effect on the mitoribosomal 

proteins tested, with a reduction of steady-state level of MRPS26, MRPL11 and MRPL45. Due to 

the inefficacy of OXAsi01 in depleting OXA1L, it is likely that the reduction of the steady state 

level observed for mitoribosomal protein with this siRNA (Fig. 7.7, lane 2) was due to an off target 

effect. OXAsi03 and OXAsi04 also reduced the steady state level of ATP5β, a component of the 

F1 of complex V. 

The off target effects are usually when the complementarity between the siRNA and the target 

RNA is lower than 100%. Therefore, the off target effects tend to be reduced at lower siRNA 

concentration. Since the sequence of the siRNAs found in the SmartPool became available after 

their purchase, the sequences of OXAsi01, 02, 03 and 04  were analysed using BLAST to identify 

other possible targets different from OXA1L (http://blast.ncbi.nlm.nih.gov/). 

OXAsi01 was not successfully depleting OXA1L but showed a reduction of mitoribosomal 

proteins. The 73% of its sequence also matched DDX46 and FBXO38, involved in splicing and 

ubiquitination, respectively. In the match obtained, 73% of OXAsi02 showed a 100% identity to 

HLF, which encodes for a protein that regulates a complex involved in upregulation of anti -

apoptotic genes and downregulation of pro-apoptotic ones. It is possible that the effect observed 

on cell growth upon depletion with OXAsi02 was due to the unwanted targeting of the transcript 

encoding for this protein. OXAsi03 targets PANK1 mRNA with 73% of query coverage and 100% 

identity. This protein is involved in the first step of coenzyme A synthesis, important for the 

metabolism of fatty acids and the oxidation of pyruvate in the citric acid cycle. This siRNA also 

http://blast.ncbi.nlm.nih.gov/
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targets with 68% of query coverage and 100% identity 2 transcripts encoding proteins that have 

been suggested to act as transcription activators (ZNF711 and SIX4), although their role is still 

not confirmed. Finally OXAsi04 had 73% query coverage of DMRTA1, which encodes for a protein 

suggested act as a transcription factor. 

To investigate the possibility of off target effects for OXAsi03 and OXAsi04, the depletion of 

OXA1L was performed at different concentration of siRNA (33 nM, 16 nM and 8 nM) on U2OS cells 

for 6 days, to identify the lowest siRNA concentration that successfully depletes OXA1L and detect 

the effects on mitoribosomal protein steady state levels at the different concentrations. Cell growth 

was monitored via the IncuCyte system (Fig. 7.8A) and, at the end of the depletion, cells were 

collected and analysed via western blotting (Fig. 7.8B). 

    

  

Figure 7.8 Effects of OXA1L depletion using different concentrations OXAsi03 or OXAsi04. 

U2OS cells were independently incubated for 6 days with 2 different siRNA targeting 

OXA1L (OXAsi03, OXAsi04), each at 3 different final concentrations (33 nM, 16 nM and 8 

nM). A) Cell growth was monitored by cell confluency using the IncuCyte. The 

retransfection time is indicated by red arrows. B) Western blot analysis was performed on 

cell lysate (≈30 µg). The efficiency of the depletion was assessed with antibodies targeting 

OXA1L. Steady state levels of the mt-encoded protein COXII as well as mitoribosomal 

proteins MRPL45 and MRPS26 were also visualised. The equality of the loading was 

controlled using antibodies targeting β-Actin. The figures are representative of 2 biological 

repeats. The dashed line indicates that some lanes were omitted from the figure.    

Cell growth was mildly delayed by both OXAsi03 and OXAsi04, independent of the siRNA 

concentration used to perform the depletion (Fig. 7.8A). However, western blot analysis 

highlighted a different efficiency of OXA1L depletion for the concentrations of the 2 siRNA tested. 

OXAsi03 was very efficient in depleting OXA1L at 33 nM (Fig. 7.8B, lane 2), but the depletion was 
B 

A 

B 
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lower at 16 nM (Fig. 7.8B, lane 3) and lower still at 8 nM (Fig. 7.8B, lane 4), showing a graded 

effect. The same trend was observed for the steady state level of COXII, MRPL45 and MRPS26. 

A higher steady-state level of COXII, MRPL45 and MRPS26 was observed when at 8 nM OXAsi03 

(Fig. 7.8B, lane 3) when compared to 16 nM (Fig. 7.8B, lane 4), and the steady state level of the 

protein tested in the latter was higher than the same protein detected after depletion with  33 nM 

OXAsi03 (Fig. 7.8B, lane 2). This result suggest that the effect observed on the mitoribosomal 

protein was related to the efficiency of the depletion of OXA1L, implying that an off target effect 

with the use of OXAsi03 was unlikely. Concerning OXAsi04, a similar level of depletion and a 

similar effect on the steady state level of COXII, MRPL45 and MRPS26 was observed at all the 

concentration tested (Fig. 7.8B, lanes 5,6,7). In particular, COXII was severely reduced, and 

MRPL45 and MRPS26 were also reduced. Because the use of lower concentrations of siRNA will 

reduce the chances of off target effects (Caffrey DR et al., 2011), it is unlikely that the effects 

observed on the mitoribosomal proteins are off target. 

Because OXAsi04 was still very efficient at the final concentration of 8 nM, lower 

concentrations (4 and 2 nM) were also tested. U2OS cells were depleted of OXA1L for 6 days 

using OXAsi04 at 16, 8, 4 and 2 nM. The results were analysed via western blot (Fig. 7.9). 

 

Figure 7.9 OXA1L depletion with OXAsi04 at different concentrations. 

Western blot analysis of cell lysate (≈ 30 µg) obtained from U2OS cells incubated for 6 

days with OXAsi04 at 16, 8, 4 or 2 nM (final concentration). NT siRNA was used as control. 

The efficiency of the depletion was assessed with antibodies against OXA1L. The steady 

state level of the mt-encoded COXII and of the mitoribosomal protein MRPL45 and MRPl11 

was also assessed. β-Actin was used as a loading control. The dashed line indicates that 

some lanes were omitted from the figure. The experiment was not replicated. 

The signal detected for β-Actin (Fig. 7.9) suggested that the loading of lane 5 was lower 

compared to the other lanes. The western blot analysis confirmed the efficiency of OXA1L 

depletion obtained with OXAsi04 at 8 nM (Fig. 7.9, lane 3). OXA1L was still depleted at the final 

concentrations of 4 (Fig. 7.9, lane 4) and 2 (Fig. 7.9, lane 5) nM, although the efficiency was lower. 

As observed for OXAsi03 in Fig. 7.8B, at lower efficiency of depletion (4 and 2 nM, Fig. 7.9, lanes 

4,5) a more intense signal for COXII, MRPL45 and MRPL11 was observed, when compared to 

16 or 8 nM of OXAsi04 (Fig. 7.9, lanes 2, 3). This result supported the direct correlation between 

the steady state level of the protein detected and OXA1L, suggesting that the result observed is 

not due to an off target of the siRNA. 

Stiburek et al suggested that OXA1L was important for the assembly of complex I and V 

(Stiburek L et al., 2007), proposing that the impaired biogenesis of the F1-ATP synthase as a 
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result of OXA1L knockdown in HEK293 could derive form the impaired assembly or membrane 

integration of the nuclear-encoded subunit c of F0. In order to investigate this possibility, OXA1L 

depletion was performed in 143B ρ0 cells. If the reduction observed for ATP5β was due to a lack 

of integration of subunit c, a reduction of the steady state level of this component of complex V 

would be detected in 143B ρ0 cells. 

These cells lack mtDNA but have no growth defect or altered morphology. Their mitochondrial 

membrane potential is lower than the parental 143B cells and it is maintained main ly by an 

incomplete F0F1-ATP synthase (Appleby RD et al., 1999; Buchet K et al., 1998), by the adenosine 

carrier (Buchet K & Godinot C, 1998) and by mitochondrial chloride intracellular channel (Arnould 

T et al., 2003). If any of these components is inhibited, the membrane potential drops. The 

complete F0F1-ATP synthase is absent in ρ0 cells as a consequence of the absence of the mt-

encoded subunit ATP6 and ATP8, but the F1 complex is intact in ρ0 and is present at the same 

level observed for 143B cells (qv Fig. 3.3, page 59). In ρ0 cells, about half of the F1 is associated 

with the IMM, probably through the nuclear-encoded subunit c of F0 (Carrozzo R et al., 2006; 

García JJ et al., 2000).  

OXA1L was depleted in 143B ρ0 cells for 6 days using OXAsi03 or 04 at the final concentration 

of 33 nM. Cell growth was monitored during the depletion and the lysate obtained was analysed 

via western blotting (Fig. 7.10). The reduction in the steady state level of the F1 complex was 

detected by western blot analysis, although, since the importance of this component to maintain 

the membrane potential of this cell line, a reduction in its level will affect cell growth.                   

 

 

 

 

 

 

Figure 7.10  Effects of OXA1L depletion in 143B ρ0 cells. 

143B ρ0 cells were transfected for 6 days with NT-siRNA or OXAsi03/04 at the final concentration 

of 33 nM. A) Representative figure of cell growth, monitored during the depletion as cell confluence 

using the IncuCyte system. The retransfection time is indicated by a red arrow. B) Representative 

figure (2 biological repeats) of western blot analysis performed on cell lysates (≈30µg) obtained 

after incubation with targeting and non-targeting siRNAs. The efficiency of the depletion was 

evaluated with antibodies against OXA1L. The steady state level of mitoribosomal proteins 

(MRPS26, MRP27, MRPL11) was also tested. Antibodies against ATP5β were used to assess the 

steady state level of the F1 subunit of complex V. SDH70 was used as a loading control. 
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No effects on cell growth were observed for ρ0 cells depleted of OXA1L (Fig. 7.10A). The 

western blot analysis performed on the samples confirmed that the level of OXA1L were 

dramatically reduced for both the OXA1L siRNA tested (Fig. 7.10B). Depletion of OXA1L did not 

affect the steady-state level of ATP5β, suggesting that the stability and assembly of the F1 of 

complex V is not dependent on the insertion by OXA1L of nuclear -encoded components of the 

F0.  

The steady-state level of several mitochondrial ribosomal proteins in ρ0 cells is lower than the 

one observed in the parental cell line (qv Fig. 3.3, page 59). Despite this, no reduction in the 

steady state level of mitoribosomal proteins was observed upon depletion of OXA1L when 

compared to the NT control. This observation further disproved the possibility that the effect 

observed on mitoribosomal proteins for OXA1L depletion in U2OS cells was due to an off target 

effect. 

7.4. Confirmation of the absence of off targets effects from OXA1L siRNAs 

OXA1L depletion unexpectedly affected both the large and small subunits of the mitoribosome. 

The previous paragraph suggested that the results observed were not likely to be due to off target 

effects. In order to confirm the robustness of the results obtained with OXAsi03 and 04, I decided 

to perform rescue experiments on U2OS cells. If the reduction of the level of mt-LSU and mt-SSU 

was due to OXA1L depletion, the transfection with OXAsi03 or 04 on cells overexpressing OXA1L 

should not affect the steady state level of mitoribosomal proteins. 

To perform this experiment, OXA1L containing silent mutations at the target sites for the 

siRNAs (OXA1Lsilmut) needed to be cloned into pcDNA5/FRT/TO, which was then used to 

perform a stable transfection in U2OS Flp-In cells.  

7.4.1. Cloning and overexpression of OXA1L 

The OXA1Lsilmut construct was designed personally and synthesised by GeneArt (Thermo 

Scientific) (Appendix 6). Silent mutations were performed at the targets for all the 4 siRNAs 

present in the SmartPool and HindIII restriction sites were added at either site of the construct 

to allow its cloning into pcDNA5/FRT/TO. 

OXA1L-pMK-RQ (10 ng) was transformed into bacterial competent cells (qv 2.2.2.) and 

single colonies were expanded in LB media containing 50 µg/mL of kanamycin. The plasmid 

was extracted and 2 µg were digested with HindIII (qv 2.3.7.) to obtain the OXA1L insert (≈ 1.3 

Kb) (Fig. 7.11A). pcDNA5/FRT/TO was also digested with HindIII, and then dephosphorylated. 

The success of the digestion was verified via DNA electrophoresis on 1.2% agarose gel (Fig. 

7.11B). 
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Figure 7.11 Digestion of OXA1L-pMK-RQ and pcDNA5/FRT/TO with HindIII. 

A) OXA1L-pMK-RQ (2 µg) was digested with HindIII at 37°C for 1 hour and then run on 

a 1.2% agarose gel, together with an undigested sample as control. The lower signal (≈ 

1.3 Kb) corresponds to the insert, successfully digested by the restriction enzyme. B) 

pcDNA5/FRT/TO was digested for 1 hour at 37°C. The linearisation of the plasmid was 

verified on 1.2% agarose gel. 

The band corresponded to OXA1L was excised from the gel and the DNA was extracted 

using the Qiagen kit. The insert and the plasmid were then ligated (qv 2.3.9.) and transformed 

into competent cells (qv 2.2.2.). Single colonies were amplified on a new LB-agar plate and 

analysed on a cracking gel (qv 2.3.10.) to distinguish colonies containing the plasmid with 

inserted OXA1L from colonies containing the empty plasmid (Fig. 7.12). 

 
Figure 7.12 Identification of colonies containing OXA1L within pcDNA5/FRT/TO. 

Cracking gel technique was performed (qv 2.3.10.) on colonies obtained after 

transformation of competent cells with OXA1L- pcDNA5/FRT/TO. The gel was 

visualised to identify colonies containing OXA1L- pcDNA5/FRT/TO plasmid (indicated 

by the arrow) from colony containing the empty plasmid. 

The cracking gel analysis showed the presence of a higher molecular weight species for 

colonies 1, 3, 5, 6, 7, indicating a larger plasmid likely to contain OXA1L (Fig. 7.12, indicated by 

an arrow). Since the same restriction enzyme on both sides of the insert a diagnostic digestion 

was performed to identify colonies containing the insert in the correct orientation. Plasmids 

extracted from colonies containing the OXA1L insert were digested with BamHI. In the case of 

correct orientation of the insert, the restriction enzyme would digest the insert 523 bases from 

its beginning, and the plasmid 17 bases from HindIII, generating 2 fragments of 842 bp and 

approximately 5.6 kbp. If the insert was present in the wrong orientation, the digestion would 

result in 2 fragments of 540 bp and approximately 5.9 kbp (Fig. 7.13). 
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Figure 7.13 Diagnostic digestion of OXA1L-pcDNA5/FRT/TO. 

Plasmids (500 ng) extracted from colonies presenting OXA1L insert within 

pcDNA5/FRT/TO were digested with BamHI to identify the colonies containing the insert 

in the right orientation. The products of each digestion (2 µL) were resolved on a 1.2% 

agarose gel. The arrow indicates the expected size of the fragment obtained by the 

digestion of OXA1L-pcDNA5/FRT/TO containing the insert in the correct orientation.  

Because the OXA1L insert, commissioned to Geneart (Thermo Scientific), was sequence 

verified by the company, the plasmid was directly used to transfect U2OS-FlpIn cells, together 

with pOG44 (qv 2.1.6.). After selection in hygromycinB and kanamycin, colonies were isolated 

and tested for the ability to overexpress OXA1L. After 3 days of overexpression, cells were lysed 

and the protein content analysed via western blotting (Fig. 7.14A). Cell growth upon 

overexpression of OXA1L was also monitored for 6 days (Fig. 7.14B) . 
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Figure 7.14 Effects on mitochondrial protein of OXA1L overexpression in U2OS cells.  

A) Western blot analysis performed on U2OS-OXA1L cell lysate after 3 days of 

overexpression of OXA1L. Cell lysate from uninduced cells was also analysed. 

Antibodies against OXA1L were used to confirm the induction. The steady state level of 

the OXPHOS components COXII and NDUFB8 was also detected, as well as the level 

of the mitoribosomal protein MRPL45. Porin and SDH70 were used as a loading control. 

The bar graph shows the quantification obtained from 3 biological repeats. B) Cell 

growth of uninduced or induced U2OS –OXA1L. Cell growth was represented as 

confluence, measured over 6 days every 3 hours by the IncuCyte system. The data 

presented are representative of 3 biological repeats. 

The detection of OXA1L confirmed the efficiency of the overexpression (Fig. 7.14A). The 

induced sample presented a reduction of the levels of COXII and NDUFB8 when compared to 

the uninduced control. The steady-state level of MRPL45 was unaffected by the overexpression. 

Porin and SDH70 were used as loading controls. No effects of OXA1L overexpression were 

observed on cell growth (Fig. 7.14B). 

7.4.2. Rescue experiments on OXA1L siRNA depletion 

The U2OS cell line able to overexpress OXA1L upon tetracycline induction , prepared as in 

the previous paragraph, was used to confirm that the effect observed on the steady state level 
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of mitoribosomal proteins was due to the absence of OXA1L upon transfection with OXAsi03 

and OXAsi04. 

U2OS-OXA1L cells were induced for 3 days and then depleted of OXA1L for 6 days either 

with OXAsi03 (33 nM final concentration) or OXAsi04 (16 nM final concentration). In parallel 

wild-type U2OS were also depleted of OXA1L. These cells were used instead of the uninduced 

U2OS-OXA1L to exclude the possibility of a less efficient depletion due to leaky expression of 

OXA1L. The induction was continued during the depletion. At the end of the experiment, cells 

lysates were analysed via western blotting (Fig. 7.15). 

 

Figure 7.15 Rescue of OXA1L depletion phenotype by overexpression of 
modified OXA1L immune to the siRNA. 

Western blot analysis was performed on cell lysates from U2OS-OXA1L cells induced 

for 3 days and then depleted of OXA1L for 6 days, whilst continuing the induction. In 

parallel U2OS cells were incubated with either non-targeting siRNA, OXAsi03 (33 nM) 

or OXAsi04 (16 nM) for 6 days. The efficiency of the depletion was detected with 

antibodies against OXA1L. The level of the mitoribosomal proteins MRPL24, MRPL45 

and MRPS22 was also measured. The level of the OXPHOS proteins COXII and ATP5β 

was also detected. SDH70 and TOM20 were used as loading controls.  The experiment 

was not replicated. 

The western blot analysis confirmed the efficiency of the depletion of OXA1L (Fig. 7.15, lanes 

2 and 4) as well as its rescue (Fig. 7.15, lanes 3 and 5) with both the siRNA used. As observed 

in the previous experiments, depletion of OXA1L caused reduction of the steady state level of 

mitoribosomal proteins and OXPHOS components. Upon overexpression of OXA1L (Fig. 7.15, 

lanes 3 and 5), a clear rescue of the level of ATP5β was observed. Full rescue was also 

observed for the levels of MRPS22. A partial rescue of MRPL45 and MRPL24, instead, was 

observed, especially using OXAsi04. No significant rescue was observed for COXII. This might 

be due to the partial rescue of the mitoribosomal protein, which might limit the amount of 

assembled mt-LSU and, therefore, not restoring completely mitochondrial translation. The 

quality of the loading was detected with antibodies against SDH70 and TOM20.  
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7.5. A role for OXA1L in human disease? 

7.5.1. Characterisation of mitochondrial defects in OXA1L patient 

During the course of my studies, the laboratory of Professor Rob Taylor identified a patient 

with mitochondrial disease and biallelic variants in the OXA1L gene. 

The patient was a 5-year-old boy born to unrelated parents. He had other 4 unaffected 

siblings as well as a sister who died at 12 months of unknown causes. His main clinical 

symptoms included severe encephalopathy, hypotonia, developmental delay (both motor and 

cognitive) and motor axonal neuropathy. He also presented with iron deficiency anaemia and 

obesity. The patient died in hospital due to complications related to his condition. Sequential 

COX/SDH reactions identified COX-deficient fibres (Fig. 7.16), whilst assessment of respiratory 

chain complex activities in Newcastle showed a decrease in complex IV activity in isolation. 

 

Figure 7.16 COX and COX/SDH reactions in muscle from a patient with 
mutations in OXA1L. 

Transverse sections of muscle tissue (10µm) were reacted to assess the activity 

complex IV (COX) and complex II (SDH). The figures from the individual COX reaction 

(left) and COX/SDH reaction (right) are represented, highlighting decreased activity. 

Courtesy of Professor Rob Taylor 

A complete screen of his mitochondrial genome (studies performed in Newcastle and 

Zaragoza) failed to identify causative mutations, as did a diagnostic screen of several nuclear 

genes known to be implicated in isolated COX-deficiency. Whole exome sequencing identified 

two novel variants in OXA1L (RefSeq Gene NG_051068.1) (c. 500_507dup (p. S170Qfs*18) 

and c. 620G>T (p. C207F) which segregated with disease in the family and were predicted to 

be pathogenic by a range of in silico tools (Sift, http://genetics.bwh.harvard.edu/pph2/) and were 

absent in the exome data set present in ExAC (http://exac.broadinstitute.org/). 

According to the topography of OXA1L presented in Table 7.1, the identified mutations 

affected an intermembrane space domain found between the transmembrane helices α2 and 

α3. This might affect the stability of the protein. The steady state levels of mitochondrial proteins 

in the patient fibroblast were analysed via western blotting (Fig. 7.17). 

http://genetics.bwh.harvard.edu/pph2/
http://exac.broadinstitute.org/
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Figure 7.17 Steady state level of mitochondrial proteins in immortalised 
fibroblast from a patient carrying mutations in OXA1L gene. 

Western blot analysis was performed from control (M0528-12) and OXA1L patient 

immortalised fibroblasts. The steady state level of OXA1L was assessed as were the 

steady state levels of components of the OXPHOS system (NDUFB8, COXII and 

ATP5β). On a separate western blot, the levels of the mitoribosomal proteins MRPL3, 

MRPL45, MRPL11 and MRPS26 were detected. For both the membranes, β-Actin was 

used as loading control. The dashed line indicates that some lanes were omitted from 

the figure. 

The western blot analysis showed a reduced steady-state level of OXA1L, indicating that the 

mutations, occurring in an intermembrane domain, are affecting the stability of the protein. 

Despite that, approximately 40% of OXA1L was detected in the patient fibroblasts. Lower steady 

state levels of NDUFB8, COXII and ATP5β suggested decreased levels of complex I, IV and V, 

respectively. The levels of the mitoribosomal proteins were not affected. These data were 

confirmed by western blots performed by Dr Kyle Thompson on the same cell lines.  

7.6. Discussion 

While several published works investigated the role of yeast Oxa1, few data are available on 

the human homologue. This chapter focused on improving our understanding of the role of this 

protein in mitochondrial translation. 

Yeast Oxa1 is reported to interact with the mitoribosome (Jia L et al., 2003; Jia L et al., 2009). 

The main data reporting an interaction between OXA1L and the mitoribosome comes from in 

vitro studies reported by Haque et al, who crosslinked OXA1L to several components of the mt-

LSU. I confirmed the ability of OXA1L to interact with the mitoribosome in vivo via 

immunoprecipitation of 2 different mt-LSU components. Identifying the mitoribosomal partner of 

the interaction was not possible by immunoprecipitation. In case of a successful 

immunopreciptation of OXA1L, it is likely that the whole mt-LSU, and not only the mitoribosomal 

proteins directly interacting with OXA1L, will co-immunoprecipitate, making it impossible to 

identify direct interactions with this protein. The identification of the binding site of OXA1L on t he 

mitoribosome in vivo might be achievable with the the use of high-resolution microscopy which 
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will allow the visualisation of the interaction and the identification of the mt -LSU proteins is in 

direct contract with OXA1L. 

Oxa1 was named after the discovery of its role in complex IV assembly in yeast (Bonnefoy 

N et al., 1994; Keil M et al., 2012). Since then, Oxa1 has been reported to be involved in the 

insertion of both mitochondrial and nuclear encoded proteins (Hell K et al., 1998; Hildenbeutel 

M et al., 2012; Stiller SB et al., 2016). Depletion of human OXA1L was reported  to affect the 

assembly of complex I and V, while the other OXPHOS complexes appeared unaffected 

(Stiburek L et al., 2007). Due to this unexpected observation and to the the role of OXA1L in 

anchoring the mitoribosome to the IMM, I decided to investigate the effects of its depletion.  

First, a pool of 4 siRNA (SmartPool) targeting different positions in the OXA1L mRNA 

sequence was used to deplete the protein. Every siRNA present in the pool was selected and 

optimised by Dharmacon to increase the specificity and reduce the off target effects (Anderson 

EM et al., 2008; Birmingham A et al., 2006; Jackson AL et al., 2006). The final concentration of 

siRNA routinely used in our laboratory is 33 nM. The use of this final concentration of SmartPool 

allowed to use a lower concentration (8.25 nM) for every individual siRNA found in the mix. 

Since most the off target effects are due a partial complementarily of the siRNA with an 

unintended target, the use of a lower concentration of reagent will further reduce the chances 

of off target effects (Jackson AL et al., 2010). The depletion of OXA1L performed with the 

SmartPool severely affected cell growth. At the protein level, reduction of components of the 

large and, unexpectedly, small subunits of the mitoribosome were detected . COXII was 

undetectable. The depletion of mitoribosomal proteins suggested that OXA1L could play a role 

in the assembly of the large, but also of the small subunit of the mitochondrial translation 

machinery. Further confirmation of this surprising result were needed in order to exclude that 

the phenotype observed was due to off targets. To this purpose the 4 siRNA present in the 

SmartPool were individually tested. While OXAsi01 was not efficiently depleting OXA1L, 

OXAsi02 was lethal. OXAsi01 also led to the reduction of the steady state levels of 

mitoribosomal proteins, despite its inefficiency in depleting OXA1L. This result suggested that 

the depletion of the mitoribosomal proteins observed with the SmartPool might be due to an off 

target effect of OXAsi01. However, depletion with OXAsi03 and 04 led to an efficient depletion 

of OXA1L and showed reduction in the steady state level of both mt-SSU and mt-LSU proteins. 

This result might indicate that OXA1L causes depletion of mitoribosomal proteins, since this  

result was observed for both OXAsi03 and OXAsi04. Interestingly, a depletion of the complex V 

protein ATP5β was also observed, in agreement with the data published by Stiburek et al. Cell 

growth was only marginally delayed by OXAsi03 and 04, suggesting that the negative effect on 

growth observed with the use of the SmartPool siRNA was probably due to OXAsiA02.  

The sequences of OXAsi02, 03 and 04 were analysed with BLAST to identify possible targets 

different from OXA1L. The analysis suggested that OXAsi02 might lead to cell death because 

73% of its sequence aligns to mRNA encoding for HLF, involved in the regulation of apoptosis. 
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OXAsi03 and 04 showed a possible off target on transcriptions factors, which could have an 

impact on cells homeostasis. 

Further confirmation of the results observed with OXAsi03 and OXAsi04 were needed, 

therefore these siRNA were tested at lower concentrations. OXAsi03 was less efficient at 16 

nM. In this condition, the reduction observed for mitoribosomal proteins, and COXII, was a lso 

less pronounced, reflecting the lower efficiency of the depletion. At a final concentration of 8 nM 

of OXAsi03, only a partial depletion of OXA1L was observed, with a steady state level of COXII 

and mitoribosomal proteins tested that was higher than the one observed for depletion at 16 

nM. The efficiency of OXAsi04 was almost unchanged at 33 nM, 16 nM or 8 nM and at all these 

concentrations, a similar depletion of COXII and mitoribosomal proteins was detected. Lower 

concentrations of OXAsi04 (4 and 2 nM) showed a less efficient depletion of OXA1L, with less 

reduction of the levels of mitoribosomal proteins and COXII, as observed for OXAsi03. These 

experiments highlighted a relationship between the efficiency of OXA1L depletion and levels of 

COXII and the mitoribsomal components tested, suggesting a relationship between the two 

effects and the unlikeliness of off target effects. To further validate the data obtained from the 

depletion experiments, a cell line able to overexpress OXA1L upon tetracycline induction was 

prepared, in the attempt to rescue the phenotype observed by the depletion. The protein was 

successfully overexpressed but, unfortunately, the overexpression had an effect on the steady 

state level of OXPHOS components, which appeared reduced. The rescue experiment was 

perfomend, but a full rescue of the levels of mitoribosomal proteins and ATP5β was not obtained. 

This might be due to the negative effects of OXA1L overexpression observed. Interstingly, no 

rescue of COXII depletion was observed. Further considerations on this are found later in this 

discussion. 

As observed by Stiburek et al, the depletion of OXA1L reported in this chapter showed a 

reduction of the steady state level of ATP5β. This protein is a component of the F1 of complex 

V found in the matrix and which associates with F0 of the same complex via subunit c. F1 is 

completely nuclear-encoded and assembled independently from F0 (Tzagoloff A, 1969). A 

downregulation of F1 is rarely observed in cases of impaired mitochondrial translation. Stiburek 

et al suggested that the reduction of ATP5β observed upon OXA1L depletion could be due to 

the lack of insertion of subunit c of the F0, since yeast Oxa1 has been reported to mediate the 

insertion of Atp9 (homologue of human subunit c). If the reduced stability of F1 was due to this, 

a reduction of ATP5β should be observed in OXA1L depletion performed on 143B ρ0 cells. 

These cells lack of mtDNA but maintain the membrane potential also thanks to a partially 

assembled complex V (Appleby RD et al., 1999; Buchet K & Godinot C, 1998). In these cells, 

F1 is intact and approximately half of it is reported to interact with the membrane via subunit c 

(Carrozzo R et al., 2006; García JJ et al., 2000). If the reduction of ATP5β observed upon 

depletion of OXA1L is due to impairment of subunit c insertion into the membrane, the depletion 

of OXA1L in cells should also reduce the level of ATP5β, affecting the membrane potential of 

the mitochondria and therefore the homeostasis of the cell. Upon depletion of OXA1L, no effects 
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on 143B ρ0 cell growth was observed and the steady state level of ATP5β was unchanged. 

Although this result gave no information on the membrane insertion of subunit c, it suggested 

that the instability observed for ATP5β by Stiburek et al (and also in this thesis) cannot be due 

to an improper integration of subunit c into the inner mitochondrial membrane. In support of this, 

published data reported that depletion of subunit c did not affect the steady state level of another 

F1 subunit (ATP5α), confirming that subunit c is not important for the stability of the F1 (Bonora 

M et al., 2013). The mechanism underlying the reduction of ATP5β levels upon depletion in cells 

containing mtDNA is not clear. Interestingly, despite the steady state level of most of the 

mitoribosomal components being lower 143B ρ0 cells, no further reductions were observed upon 

depletion of OXA1L, supporting the idea that their reduction in U2OS is linked to the depletion 

of OXA1L. 

While performing the OXA1L depletion studies, I became aware of a patient with 

mitochondrial disease and biallelic variants in the gene encoding this protein. The patient was 

compound heterozygous for two OXA1L variants, with both the mutations affecting one of the 

intermembrane domains inbetween 2 transmembrane helices. Muscle histochemistry 

highlighted COX-deficiency, supporting the hypothesis derived from the depletion studies 

performed on U2OS cells that OXA1L plays a role of in complex IV assembly. Fibroblasts 

presented a minor OXPHOS defect, which was compensated by an increase of glycolysis. 

Western blot analysis performed on immortalised patient fibroblasts indicated a reduct ion of the 

steady state level of OXA1L to approximately 40% of the control cell line. A reduction of the 

steady state level of components of complex I, IV and V was detected. Reduction of complex I 

and V was in agreement with the observations of Stiburek et al. for OXA1L depletion on HEK293 

cells. Depletion of complex V (ATP5β) was also reported upon depletion of OXA1L in this 

chapter. The effects of the depletion on components of complex I were not tested. In agreement 

with the depletion experiments reported in this chapter, complex IV (COXII) was also reduced 

in the patient cell line, supporting the idea of a role of OXA1L in the assembly of this complex. 

The steady state levels of the mitoribosomal proteins was not reduced in the OXA1L patient 

fibroblasts. It is important to specify that, when the depletion experiments were perfomed with 

siRNA (lower concentrations) that led to a steady state level of OXA1L comparable with the 

levels detected in the patient, there was no significant effect on the steady state levels of 

mitoribosomal proteins. This result is in agreement with the phenotype observed in the patient 

fibroblasts. Work on the OXA1L patient is currently continuing (Dr Kyle Thompson and Professor 

Rob Taylor, unpublished case). 

Interestingly, rescue of the OXA1L patient phenotype was attempted by colleagues, without 

success and is currently being repeated by Dr Kyle Thompson. This, together with the data 

obtained for depletion or overexpression of OXA1L, suggests that there is a narrow range at 

which there is an optimal level of this protein, and it might be important to maintain this for correct 

cellular homeostasis.  
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Although the rescue experiment of the OXA1L depletion phenotype on U2OS cells did not 

successfully increase the level of COXII, the reduction in the steady state level of this protein 

with both the siRNAs tested, and the presence of COX deficiency in the patient fibroblasts and 

muscle, support the role of OXA1L in the assembly of complex IV. 

The reduction of mitoribosomal components observed with OXA1L depletion suggests that 

this protein might be involved in the assembly of both the large and the small mitoribosomal 

subunit. OXA1L might be directly involved in the assembly or might be important for membrane 

insertion of other unknown proteins that might have a key role mitoribosomal assembly. 
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Chapter 8: Concluding  remarks 

The work presented in this thesis focused on the characterisation of the role of 2 mitochondrial 

proteins, MRPL45 and OXA1L, in mitochondrial translation. The main focus was human MRPL45, 

a constituent of the mitochondrial ribosome that was suggested to be involved in the important 

interaction of the mitoribosome with the inner mitochondria membrane. Data generated during my 

project made a connection with and led into work on the IMM protein OXA1L, which in yeast is 

defined as a mitoribosome-interacting protein and as an insertase that contributes to the assembly 

of some OXPHOS components. 

The data obtained for the 2 proteins are summarised in the sections below.  

8.1. MRPL45 

Studies presented here demonstrated the importance of the mitoribosomal protein MRPL45 

for the homeostasis of cells. Depletion of this protein highlighted its central role in the stability and 

the assembly of the mt-LSU. In the absence of MRPL45, the mt-LSU failed to assemble, 

suggesting an involvement of MRPL45 in the first steps of the its assembly process. As a 

consequence of the reduced levels of mt-LSU, mitochondrial translation was impaired and an 

increase in the glycolytic activity, necessary to provide the ATP for the cell to survive, was 

observed.  

Once the importance of MRPL45 was established, I focused my attention on investigating the 

ability of this protein to interact with the membrane. At the beginning of this study, the only 

information available on the possibility of membrane-interaction of this protein was its structural 

homology with the membrane-interacting protein TIM44. However, relatively soon after, the first 

structure of the mammalian mt-LSU was released and localised MRPL45 in close proximity of the 

polypeptide exit site (Greber BJ et al., 2014), further supporting its potential role in the association 

of the mt-LSU with the membrane. In order to study membrane-association, I developed a 

protocol that was used to test membrane-interaction. First, this protocol was used to confirm the 

ability of human mt-LSU to interact with the IMM, as previously suggested by Liu M and Spremulli 

LL (2000). Through the application of the developed protocol on cells overexpressing MRPL45, I 

demonstrated the ability of MRPL45 to interact directly with the membrane in the absence of pre-

assembled mitoribosomal subunits. 

Cell lines able to inducibly overexpress MRPL45FLAG were prepared in order to study the 

interactome of the protein. The addition of the FLAG-tag at the C-terminus of the protein did not 

affect its integration in the mt-LSU and did not inhibit the ability of the protein to directly interact 

with the IMM. The overexpression of another MRPL45FLAG construct, carrying silent mutations 

in the sequences targeted by the siRNA used to deplete the endogenous protein, con firmed the 

ability to obtain a full rescue of the depletion phenotype. This result further confirmed that the 

addition of the FLAG-tag did not affect the function of MRPL45 and validated the phenotype 

observed upon depletion of the endogenous protein. 
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No transmembrane domains were predicted within the MRPL45 protein sequence, and the 

mass spectrometry analysis of the sample obtained from the immunoprecipitation of 

MRPL45FLAG in absence of assembled mt-LSU failed to identify any membrane proteins that 

might interact with MRPL45 to mediate the interaction. A parallel experiment performed on 

untagged overexpressed MRPL45 also did not identify any strong candidate interacting proteins. 

In contrast, samples from both immunoprecipitations analysed by western blot prior to the mass 

spectrometry analysis, detected a weak signal from OXA1L. This might suggest a non -

stoichiometric interaction with MRPL45, but using a sensitive technique the protein would be 

expected to be detected by mass spectrometry, which it was not. The lack of consistent and 

convincing data on the existence of a partner membrane protein for the interaction with MRPL45 

suggests the probability that the interaction of MRPL45 is direct with the phospholipid layer.  

In this study, I also investigated the domain of MRPL45 that is putatively involved in the 

interaction with the membrane. Examining the information available on the structure of human 

MRPL45 I decided to express a version of the protein containing mutations of the charged amino 

acids present in the most protruding domain of the protein (α2-helix) by changing these to alanine 

(MRPL45FLala). Although the steady state level of the protein was very low, it was efficiently 

targeted to mitochondria. Isokinetic sucrose gradient analyses showed that upon expression 

MRPL45FLala was not integrated into the mt-LSU, but that it could be used as a component of 

the subunit only when the endogenous MRPL45 was absent. Consistent with this, the expression 

of the mutant protein in the absence of the endogenous MRPL45, by siRNA depletion, showed a 

partial rescue of the phenotype. This was probably because the relatively low levels of available 

MRPL45FLala was limiting the assembly of the mt-LSU. However, since MRPL45FLala was able 

to interact with the membrane, it suggested that the mutated domain was not involved in the direct 

interaction of the protein with the IMM. 

Since the first MRPL45 mutant examined did not identify the domain involved in membrane 

interaction, I designed a new construct, based on the structural homology with the membrane-

interacting protein TIM44. The new mutant (MRPL45FLΔ) lacked the first 117 amino acids (N-

terminal of the α2-helix) and was efficiently targeted to mitochondria by addition of the Su9 

presequence, which I demonstrated to be efficiently and accurately cleaved upon import. 

Unfortunately, the steady state of this protein was also very low. Unlike the previous mutant 

studies, MRPL45FLΔ was not efficiently integrated within the mt-LSU, even when the 

endogenous protein was absent. Unexpectedly, this protein maintained the ability to interact with 

the mitochondrial membrane. Although the studies that I performed on mutant variants of MRPL45 

did not successfully identify the domain of MRPL45 involved in membrane interaction, 

investigation of MRPL45FLΔ suggested that the deleted domain is important for the assembly of 

the protein within the mt-LSU. 

Since it was not possible to identify the domain of MRPL45 responsible for membrane -

interaction, different MRPL45 mutants could be prepared to analyse their ability to interact with 

the membrane, using the protocol developed during this project.  
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In addition, the improvement of electron microscopy techniques might allow the visualisation 

of the membrane-bound mitoribosomes and the identification of other components that might be 

involved in this important interaction. 

The data presented in this project suggested a central role of MRPL45 in the assembly of the 

mitoribosome, a process is still undefined. Once the components of the assembly machiner y will 

be identified, it will be possible to study the mechanism of the assembly of the mitoribosome by 

replicating it in vitro. 

8.2. OXA1L 

The data presented in this thesis showed for the first time in vivo that the IMM protein OXA1L 

interacts with the mitoribosome, since this was successfully co-immunoprecipitated with 2 

different mitoribosomal proteins. This interaction had been already confirmed in yeast, but it was 

previously reported in human only by in vitro studies (Haque ME et al., 2010). 

Subsequently, depletion of OXA1L was performed to study its involvement in mitochondrial 

translation. This was performed with a pool of 4 siRNA and resulted, unexpectedly, in a reduction 

of the steady state level of components of both the mt-LSU and the mt-SSU. The result was 

confirmed by independently using 2 of the siRNA present in the pool, suggesting tha t the observed 

effect was genuine. In addition, the reduction of the mitoribosomal components observed upon 

depletion of OXA1L could be rescued upon overexpression of the protein, further confirming the 

robustness of these results. From my studies it was not clear if the OXA1L has a direct role in the 

assembly of the subunits or if this effect was due to the failure in the insertion or the import of 

other mitochondrial proteins that play a role in the process of mitoribosome biogenesis. Due to 

the reduction of the steady state levels of mitoribosomal subunits following OXA1L depletion, it 

was not possible to investigate the effects on the interaction of the mitoribosome in absence of 

this IMM protein. 

Depletion of OXA1L also led to a reduction of on the steady state levels of both complex IV 

and V. Depletion of complex IV could be related to an impairment of mitochondrial translation 

following the reduction of mitoribosomal proteins. Reduction of the steady state levels of complex 

V was also observed by Stiburek et al, who, in contrast to my data, did not find any effect on 

complex IV. A reduction in the steady state levels of COXII was shown in my study upon depletion 

with 2 different siRNA, although its levels were not restored by the overexpression of the p rotein. 

In parallel with these studies, the characterisation of the phenotype of a patient carrying a 

compound heterozygous mutation for OXA1L were performed. These also identified a deficiency 

in this complex IV, suggesting the involvement of OXA1L in the assembly and stability of complex 

IV. COX/SDH staining performed on skeletal muscle samples highlighted the presence of COX 

negative fibres, and a reduction of the steady state levels of the COXII component of complex IV 

was detected in immortalised fibroblasts samples by western blot. This analysis also showed that 

the steady state level of OXA1L was reduced to approximately 40% in the patient immortalised 
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fibroblasts, as well as a reduction of the steady state levels of NDUFB8 (Complex I) and ATP5β 

(Complex V). No reduction of mitoribosomal proteins was detected. These results suggest that 

OXA1L plays a role in the assembly of complexes I, IV and V, and that when a proportion of 

OXA1L is present, there are no effects on the assembly of the mitoribosomal subunits. Further 

biochemical characterisation of the patient’s phenotype is currently under investigation.  

In this study, it was not possible to identify the mitoribosomal proteins that are directly 

interacting with OXA1L, since a successful immunoprecipitation of OXA1L will lead to the co -

precipitation of the whole mitoribosome. The proteins in direct contact with OXA1L could be 

identified in the future with the use of advanced electron microscopy techniques that might be 

able to visualise the interaction. Another method that could be used to identify binding partners 

of OXA1L is the proximity labelling combined to affinity purification and mass spectrometry 

analysis. For example, if a fusion protein composed of OXA1L and biotin protein ligase can be 

expressed in human cells without affecting the role of OXA1L, biotinylation of  neighbour proteins 

can be obtained in vivo. These biotinylated proteins can then be collected by affinity purification 

and identified via mass spectrometry. This method could potentially also contribute to the 

identification of the role of OXA1L in the assembly of complexes I, IV and V. In  addition, it will be 

interesting to identify the mechanism by which OXA1L is directly or indirectly involved in the 

assembly of the mitoribosomal subunits. In order to understand OXA1L role in this process, more 

information on this is needed.  

 

 The data presented in this thesis has provided new information on MRPL45 and OXA1L and 

their role in post-transcriptional mitochondrial gene expression. Although this has improved our 

understanding of this process that is crucial for cell viability, a deeper knowledge of mitochondrial 

biology is essential to understand the molecular mechanisms underlying mitochondrial dysfunction. 
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Appendices 

Appendix 1: Nomenclature of mitoribosomal proteins 

The new nomenclature (Greber BJ et al., 2016) contains a letter before the number which identifies 

universal (‘u’), bacterial-homologue (‘b’) and mitochondrial-specific (‘m’) proteins. In case of the 

universal and bacterial-homologue proteins, the number is followed by the letter ‘m’ to refer to the 

mitochondrial protein.  

mt-SSU  mt-LSU 

Old name New name  Old name New name 

MRPS2 uS2m  MRPL1 uL1m 

MRPS5 uS5m  MRPL2 uL2m 

MRPS6 uS6m  MRPL3 uL3m 

MRPS7 uS7m  MRPL4 uL4m 

MRPS10 uS10m  MRPL9 bL9m 

MRPS11 uS11m  MRPL10 uL10m 

MRPS12 uS12m  MRPL11 uL11m 

MRPS14 uS14m  MRPL12 bL12m 

MRPS15 uS15m  MRPL13 uL13m 

MRPS16 bS16m  MRPL14 uL14m 

MRPS17 uS17m  MRPL15 uL15m 

MRPS18b mS40  MRPL16 uL16m 

MRPS18c bS18m  MRPL17 bL17m 

MRPS21 bS21m  MRPL18 uL18m 

MRPS22 mS22  MRPL19 bL19m 

MRPS23 mS23  MRPL20 bL20m 

MRPS24 uS3m  MRPL21 bL2m 

MRPS25 mS25  MRPL22 uL22m 

MRPS26 mS26  MRPL23 uL23m 

MRPS27 mS27  MRPL24 uL24m 

MRPS28 bS1m  MRPL27 bL27m 

MRPS29 (DAP3) mS29  MRPL28 bL28m 

MRPS31 mS31  MRPL30 uL30m 

MRPS33 mS33  MRPL32 bL32m 

MRPS34 mS34  MRPL33 bL33m 
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MRPS35 mS35  MRPL34 bL34m 

MRPS37 (CHCHD1) mS37  MRPL35 bL35m 

MRPS38 (AURKAIP1) mS38  MRPL36 bL36m 

MRPS39 (PTCD3) mS39  MRPL37 mL37 

   MRPL38 mL38 

   MRPL39 mL39 

   MRPL40 mL40 

   MRPL41 mL41 

   MRPL42 mL42 

   MRPL43 mL43 

   MRPL44 mL44 

   MRPL45 mL45 

   MRPL46 mL46 

   MRPL47 uL29m 

   MRPL48 mL48 

   MRPL49 mL49 

   MRPL50 mL50 

   MRPL51 mL51 

   MRPL52 mL52 

   MRPL53 mL53 

   MRPL54 mL54 

   MRPL55 bL31m 

   MRPL57 mL63 

   MRPL58 (ICT1) mL62 

   MRPL59 (CRIF1) mL64 

   MRPS30 (PDCD9) mL65 

   MRPS18a mL66 

   / mL57 

   / mL58 

   / mL59 

   / mL60 

   / mL61 
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Appendix 2: Antibodies 

The primary and secondary antibodies used in this study are listed in the following tables:  

Primary antibodies Dilution Company, Cat. No 

α-FLAG 1:2,000 Sigma, F1804 

ATP5b 1:1,000 Abcam, Ab14730 

β-actin 1:10,000 Sigma, A1978 

CLPP 1:1,000 Abcam, Ab124822 

COXII 1:1,000 Eugene, A6404 

DAP3 1:1,000 Abcam, Ab11328 

GDH 1:500 Custom synthesised 

HSP60 1:5,000 BD biosciences, 611562 

ICT1 1:1,000 Proteintech group, 10403-1-AP 

LetM1 1:2,000 Proteintech group, 16024-1-AP 

LONP 1:1,000 Sigma, HPA002192 

MRPL3 1:1,000 Abcam, Ab39268 

MRPL11 1:1,000 Cell signalling techn., D68F2 

MRPL24 1:1,000 Proteintech group, 16224-1-AP 

MRPL45 1:1,000 Proteintech group, 15682-1-AP 

MRPS17 1:1,000 Proteintech group, 18881-1-AP 

MRPS22 1:1,000 Proteintech group, 10984-1-AP 

MRPS26 1:1,000 Proteintech group, 15989-1-AP 

MRPS27 1:1,000 Proteintech group, 17280-1-AP 

NDUFA9 1:1,000 Abcam, Ab14713 

NDUFB8 1:1,000 

1:1,000 

Invitrogen, A31857 

Abcam, Ab110242 

OXA1L 1:1,000 Proteintech group, 21055-1-AP 

Porin 1:10,000 Abcam, Ab 14734 

TOM20 1:1,000 Santa Cruz, Sc-11415 

SDH70 1:1,000 Abcam, Ab14715 

 

Secondary antibodies Dilution Company, Cat. no 

Rabbit 1:3,000 Dako, P0399 

Goat 1:2,000 Dako, P0260 

Mouse 1:2,000 Dako, P0449 
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Appendix 3: Plasmids 

The following plasmids were used in this study: 

- pcDNA™5/FRT/TO (Invitrogen). Vector designed for use in Flp-In™ systems. It contains a 

multiple cloning site under tetracycline control. It also contains ampicillin and hygromycin B 

resistance genes. used to select clones respectively in bacteria and human cell lines.  

 

- pOG44 (Invitrogen). Flp-recombinase expression vector designed for use in Flp-In™ 

System in co-transfection with pcDNA™5/FRT/TO. It encodes ampicillin resistance for 

selection of positive transformed bacteria. 

 

- pMK-RQ (Thermo Scientific). Vector containing the custom synthesised gene from GeneArt 

(Thermo Scientific). It encodes kanamycin resistance. 
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Appendix 4: Small interfering RNA 

Protein knockdown was obtained using the following small interfering RNA (siRNA):  

Target Company Catalogue no Referred to 

as 

Sequence sense fragment (5’-

3’) 

MRPL45 Sigma-

Aldrich 

SASI_Hs02_00359740 

SASI_Hs01_00089760 

siRNA02 

siRNA01 

GACUGAUAGAGAGAACUGA 

GAGUAUGUUGUAUUCGAAA 

OXA1L Dharmacon M-012696-01 

M-012696-02 

M-012696-03 

M-012696-04 

Smartpool M-012696-00 

OXAsi01 

OXAsi02 

OXAsi03 

OXAsi04 

SmartPool 

UAACGUGGCUUUACAGAUU 

GGAAACCGCUGACCACACG 

CAGGAGACCAUAUUGAGUA 

CAAGUAUCCUGUCUCCGGA 

Mixture of M-012696-01.   

M-012696-02. M-012696-0. 

M-012696-04 

CLPP Qiagen SI00083650 CLPP siRNA CGAUGCAGUACAUCCUCAATT 

LONP Qiagen SI00068488 LONP siRNA CGCGCUUUAUCAAGAUUAUTT 
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Appendix 5: DNA oligonucleotides 

The following DNA-oligonucleotides were used for PCR reactions. They were personally designed 

and then synthesised by Eurogentec. 

Product Use DNA oligonucleotide 5’- 3’ 

MRPL45 

and mutants 

PCR, preparation 

of inserts for 

cloning. 

 

 

 

 

 

Frw1   CTC-TAT-GGA-TCC-ATG-GCA-GCC-CCC-ATA-CC 

Frw2   CTC-TAT-GGA-TCC-CTT-TGC-GGG-AAC-AAG-ATG-G 

Rev1FLAG   CTC-TAT-GGA-TCC-CTA-CTT-ATC-GTC-GTC-ATC-

CTT-GTA-ATC-GGC-TAG-CTG-AGG-CTT-CTG-G 

Rev2   CTC-TAT-GGA-TCC-CTA-GGC-TAG-CTG-AGG-CTT-CTG-G 

Rev3   CTC-TAT-GGA-TCC-GAG-ACT-TCA-AAG-CTT-CCA-GC 

L45trFrw   CAC-ACA-GCG-CGC-CGC-AGC-TGC-ATC-ACA-AGT-

GTC-AAT-CCG-G 

L45trRev   ACA-CAC-GCG-GCC-GCC-AAG-AAG-CCT-CAC-TTG-

TCG-TCA-TCG-TCT-TTG-TAG-TCG-GCT-AGC-TGA-GGC-TTC-TGG 

MRPL45FLsil Site-directed 

mutagenesis 

MRPL45sisilmutsense   CAA-AGG-AGG-GTT-TAA-TCG-AAA-GAA-

CTG-AAC-G 

MRPL45sisilmutanti-s CGT-TCA-GTT-CTT-TCG-ATT-AAA-CCC-

TCC-TTT-G 

MRPL45 qPCR L45qP1Frw   CTC-AGT-CCG-CAG-CTA-TAG-TTC 

L45qP1Rev   GAA-ACA-TAG-GCA-TCA-AAT-ATA-CCA-G 

MRPL45FLΔ In vitro 

transcription 

SP6-Su9-L45Frw   ATT-TAG-GTG-ACA-CTA-TAG-CAC-ACC-TCG-

AGA-CCA-TGG 

SP6-Su9-L45Rev   AAG-CCT-CAC-TTG-TCG-TCA-TCG-TCT-T 

Other DNA oligonucleotides, already in use in our laboratory, were also used in this study: 

Product Use DNA oligonucleotide 5’- 3’ 

18S qPCR Frw    GTA-ACC-CGT-TGA-ACC-CCA-TT 

Rev    CCA-TCC-AAT-CGG-TAG-TAG-CG 

12S qPCR Frw    ACA-CTA-CGA-GCC-ACA-G 

Rev    ACC-TTG-ACC-TAA-CGT-C 

16S qPCR Frw    CCA-ATT-AAG-AAA-GCG-TTC-AAG 

Rev    CAT-GCC-TGT-GTT-GGG-TTG-ACA 

COXII qPCR Frw    CTT-AGA-ACC-AGG-CGA-C 

Rev    GTC-GTG-TAG-CGG-TGA-A 

BGH PCR 

Colony 

screening 

Rev    TGA-AAG-GCA-CAG-TGC-AGG 

CMV PCR 

Colony 

screening  

Frw    CGC-AAA-TGG-GCG-GTA-GGC-GTG  

 



189 
 

Appendix 6: Synthetic genes 

Two construct were synthesised from GeneArt™ (Thermo Scientific) and were used for the cloning 

of mutated OXA1L (A) and MRPL45FLala (B). Both the genes were integrated in pMK-RQ form 

Thermo Scientific. Two restriction site were included at both ends of each gene to allow its isolation 

from pMK-RQ and its cloning into pcDNA™5/FRT/TO. 

 

 

 

 

 

 

 

A 

B 
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 Legend: FLAG tag; siRNA target; Restriction site; Start/Stop codon; Changes to wild type 

 

 

Gene Sequence 

OXA1Lsilmut AAGCTTCCTCTTCCGGGCAAAATGGCGATGGGACTAATGTGCGGACGCCGG

GAGCTTCTGCGCTTGCTACAGTCCGGGCGTCGGGTCCACAGCGTCGCAGGG

CCCTCGCAATGGCTTGGGAAGCCACTTACTACCCGGCTCCTATTCCCAGCAG

CCCCGTGCTGCTGTCGCCCACACTACCTCTTCCTTGCGGCTTCCGGCCCCC

GCAGCCTCAGTACCTCTGCTATCTCTTTTGCAGAAGTCCAGGTTCAGGCCCC

TCCTGTTGTTGCTGCAACTCCCTCACCCACAGCAGTACCTGAGGTGGCTTCT

GGAGAGACTGCAGATGTAGTCCAAACTGCTGCAGAGCAGAGCTTCGCTGAA

CTGGGGCTGGGGTCATACACCCCAGTGGGACTGATCCAGAATTTACTGGAAT

TTATGCATGTTGATCTGGGCCTACCTTGGTGGGGGGCCATTGCTGCATGTAC

AGTCTTTGCCCGCTGCCTGATTTTTCCTCTCATCGTGACGGGCCAGCGAGAG

GCAGCCAGGATCCACAATCACTTGCCAGAGATCCAGAAGTTTTCCAGTCGAA

TCAGAGAGGCCAAGTTAGCAGGGGATCACATCGAATATTACAAGGCTTCCTC

GGAGATGGCACTTTACCAGAAAAAACATGGTATTAAACTCTATAAACCTCTCA

TTCTCCCTGTGACTCAGGCCCCAATCTTCATCTCCTTCTTCATTGCTTTGAGA

GAGATGGCCAACCTTCCTGTGCCCAGCCTGCAGACAGGTGGCCTCTGGTGG

TTCCAGGATCTCACGGTATCCGATCCCATCTACATATTACCACTGGCAGTCAC

TGCTACAATGTGGGCTGTTCTTGAGCTAGGTGCTGAGACAGGTGTGCAAAGT

TCTGACCTTCAGTGGATGAGAAA TGTCATCAGAATGATGCCCCTGATAACCTT

GCCCATAACCATGCATTTCCCCACGGCAGTGTTTATGTACTGGCTCTCCTCC

AATTTGTTTTCCCTGGTCCAGGTGTCTTGCCTTCGGATTCCAGCAGTACGCA

CTGTACTTAAAATCCCCCAGCGTGTTGTACATGACCTGGACAAATTACCTCCA

CGGGAAGGCTTCCTAGAGAGCTTCAAAAAAGGCTGGAAAAATGCTGAAATGA

CGCGTCAGCTGCGAGAGCGTGAACAACGCATGCGGAATCAGTTGGAGCTAG

CAGCCAGGGGTCCTTTACGACAGACCTTTACCCACAACCCTCTCCTACAACC

TGGAAAGGATAACCCTCCCAATATCCCTAGCAGCAGCAGCAAACCAAAGTCA

AAGTATCCCTGGCACGACACACTTGGCTGACTTATATTCAAGCTT 

MRPL45FLala GGATCCTTGCGGGAACAAGATGGCAGCCCCCATACCTCAAGGGTTCTCTTGT

TTATCGAGGTTTTTGGGCTGGTGGTCTCGGCAGCCAGTTCTGGTGACTCAGT

CCGCAGCTATAGTTCCAGTAAGAACTAAAAAACGTTTCACACCTCCTATTTAT

CAACCTAAATTTAAAACAGAAAAGGAGTTTATGCAACATGCCCGGAAAGCAG

GATTGGTTATTCCTCCAGAAAAATCGGACCGTTCCATACATCTGGCCTGTACA

GCTGGTATATTTGATGCCTATGTTCCTCCTGAGGGTGATGCACGCATATCATC

TCTTTCAAAGGAGGGCCTTATTGAAAGGACCGAACGAATGAAGAAGACTATG

GCATCAGCAGTGTCAATCGCCGCUATAGCAGCCGCUGATGCCAACTTTGCU

ATAGCAGCCTTCCCTGAAAAAGCTAAGGATATCTTTATTGAAGCTCACCTTTG

TCTAAATAACTCAGACCATGACCGGCTTCATACCTTGGTAACTGAACACTGTT

TTCCAGACATGACTTGGGACATCAAATATAAGACCGTCCGCTGGAGCTTTGT

GGAATCTTTAGAGCCCTCTCATGTTGTTCAAGTTCGCTGTTCAAGTATGATGA

ACCAGGGCAACGTGTACGGCCAGATCACCGTACGCATGCACACCCGGCAGA

CTCTGGCCATCTATGACCGGTTTGGCCGGTTGATGTATGGACAGGAAGATGT

ACCCAAGGATGTCCTGGAGTATGTTGTATTCGAAAAGCAGTTGACAAACCCC

TATGGAAGCTGGAGAATGCATACCAAGATCGTTCCCCCATGGGCACCCCCTA

AGCAGCCCATCCTTAAGACGGTGATGATCCCTGGCCCTCAGCTGAAACCAGA

AGAAGAATATGAAGAGGCACAAGGAGAGGCCCAGAAGCCTCAGCTAGCCGA

CTACAAAGACGATGACGACAAGTGATGACAAAAATGACTGGATCC 
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Appendix 7: Flow Cytometry analysis of MRPL45 depletion on HEK293 

 

 
Figure a18 Cell cycle analysis with propidium iodide of U2OS cells incubate with NT-siRNA. 

Forward (FSC-A) and side (SSC-A) scatter (A) were used to identify the cells (area P1), while 

pulse shape analysis (B) was used to identify clumps and doublets. Single cells were circled in the 

area P2. The percentage of cells in each phase of the cell cycle were quantified by the program 

(C). 488 585/42 indicates the wavelength and the filter used.  

 

 
Figure a19  Cell cycle analysis with propidium iodide of U2OS cells incubate with MRPL45-

siRNA. 

Forward (FSC-A) and side (SSC-A) scatter (A) were used to identify the cells (area P1), while 

pulse shape analysis (B) was used to identify clumps and doublets. Single cells were circled in 

the area P2. The percentage of cells in each phase of the cell cycle were quantified by the 

program (C). 488 585/42 indicates the wavelength and the filter used. 

A 

A B 

C 

A B 

C 
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Appendix 8: MRPL45WT clone sequencing 

The following figures represent the sequences obtained for the forward (CMV) and reverse (BGH) 

primers used to confirm the identity of the cloned sequence. The output was analysed with 

SeqScanner. 

CMV 
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BGH 
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Appendix 9: MRPL45FLAG clone sequencing 

The following figures represent the sequences obtained for the forward (CMV) and reverse (BGH) 

primers used to confirm the identity of the cloned sequence. The output was analysed with 

SeqScanner. 

CMV 
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BGH 
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Appendix 10: MRPL45FLala clone sequencing 

The following figures represent the sequences obtained for the forward (CMV) and reverse (BGH) 

primers used to confirm the identity of the cloned sequence. The output was analysed with 

SeqScanner. 

CMV 
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BGH 
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Appendix 11: MRPL45FLAGsil clone sequencing 

The following figures represent the sequences obtained for the forward (CMV) and reverse (BGH) 

primers used to confirm the identity of the cloned sequence. The output was analysed with 

SeqScanner. 

CMV 
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BGH 
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Appendix 12: MRPL45FLΔ clone sequencing 

The following figures represent the sequences obtained for the forward (CMV) and reverse (BGH) 

primers used to confirm the identity of the cloned sequence. The output was analysed with 

SeqScanner. 

CMV 
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BGH 

 



206 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



207 
 

Appendix 13: FLAG immunoprecipitation on induced HEK293-

MRPL45FLAG cells in presence of ethidium bromide 

Only the mitochondrial protein identified in the samples are listed. The following data obtained from 

the mass spectrometry analysis are reported: 

- log(I) = Sum of raw spectra 

- rI = Number of peptides found 

- log(e) = Expectation of finding the protein stochastically. A cut-off of −2 was chosen for this 

score, which corresponds to a 1 in 100 chance of a stochastic protein assignment. 

Biological repeat n. 1 

Samples 

MRPL45FLAG: FLAG-immunoprecipitation from mitochondria of ethidium bromide treated and 

induced HEK293-MRPL45FLAG cells 

Control: FLAG-immunoprecipitation from mitochondria of ethidium bromide treated HEK293 cells  

Sample Identifier Protein log(I) rI  log(e) 

MRPL45FLAG ENSP00000308901 MRPL45 8.24 170 -426.0 

MRPL45FLAG ENSP00000297185 mt-HSP70 7.83 106 -360.0 

MRPL45FLAG ENSP00000373620 HSP60 7.38 42 -253.0 

MRPL45FLAG ENSP00000381736 ATP5α 7.35 27 -213.0 

MRPL45FLAG ENSP00000262030 ATP5β 7.28 27 -187.0 

MRPL45FLAG ENSP00000360671 ADP/ATP translocase 2 7.15 19 -130.0 

MRPL45FLAG ENSP00000300408 Prohibitin 7.21 13 -96.0 

MRPL45FLAG ENSP00000441875 Prohibitin2 7.01 14 -87.9 

MRPL45FLAG ENSP00000370808 ADP/ATP translocase 3 6.84 13 -86.8 

MRPL45FLAG ENSP00000265333 VDAC1 6.68 10 -69.5 

MRPL45FLAG ENSP00000322439 mt-EF-Tu 6.72 8 -63.0 

MRPL45FLAG ENSP00000246957 HSP75 6.52 6 -59.7 

MRPL45FLAG ENSP00000265838 Acetyl-CoA acetyltransferase 6.73 9 -56.6 

MRPL45FLAG ENSP00000368031 ATPase family AAA domain-
containing protein 3A 

6.52 7 -51.3 

MRPL45FLAG ENSP00000298468 VDAC2 6.75 8 -49.2 

MRPL45FLAG ENSP00000280346 Pyruvate dehydrogenase 
complex component E2 

6.49 6 -36.9 

MRPL45FLAG ENSP00000307241 Pyruvate dehydrogenase E1 
component subunit β 

6.24 6 -36.6 

MRPL45FLAG ENSP00000298510 Thioredoxin-dependent 

peroxide reductase 

6.50 5 -36.5 

MRPL45FLAG ENSP00000349142 ATP5γ 6.50 5 -35.2 

MRPL45FLAG ENSP00000290299  ATP5O 6.38 5 -34.9 

MRPL45FLAG ENSP00000263774 Complex I-30kD 6.23 4 -34.3 

http://localhost:8082/thegpm-cgi/ptable.pl?ltype=&path=/gpm/archive/GPM30400000356.xml&sort=logi&proex=-1
http://localhost:8082/thegpm-cgi/ptable.pl?ltype=&path=/gpm/archive/GPM30400000356.xml&sort=ri&proex=-1
http://localhost:8082/thegpm-cgi/ptable.pl?ltype=&path=/gpm/archive/GPM30400000356.xml&sort=expect&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000355.xml&uid=171557&homolog=171557&label=ENSP00000290299&proex=-1


208 
 

MRPL45FLAG ENSP00000356290 Formyltetrahydrofolate 

synthetase 

6.39 4 -32.8 

MRPL45FLAG ENSP00000277865 GDH 1 6.21 4 -32.3 

MRPL45FLAG ENSP00000265631 Mitochondrial aspartate 

glutamate carrier 2 

6.16 5 -31.6 

MRPL45FLAG ENSP00000394382 Pyruvate dehydrogenase, 
subunit α 

6.17 3 -28.2 

MRPL45FLAG ENSP00000315122 Apoptosis-inducing factor 1 6.05 3 -27.9 

MRPL45FLAG ENSP00000225665 Mitochondrial 2-
oxoglutarate/malate carrier 

protein 

6.05 3 -27.2 

MRPL45FLAG ENSP00000317159 Cytochrome c1 6.16 3 -24.7 

MRPL45FLAG ENSP00000428845 VDAC3 6.26 4 -23.1 

MRPL45FLAG ENSP00000383898 Phosphate carrier protein 6.37 6 -22.6 

MRPL45FLAG ENSP00000360268 Gamma-glutamyl kinase 6.10 3 -21.7 

MRPL45FLAG ENSP00000261413 MRPS27 6.01 3 -21.0 

MRPL45FLAG ENSP00000420961 Sideroflexin-1 5.98 2 -12.6 

MRPL45FLAG ENSP00000294053 CLPB 5.82 2 -12.4 

MRPL45FLAG ENSP00000359151 Dihydrolipoamide branched 

chain transacylase 

5.97 2 -12.3 

MRPL45FLAG ENSP00000284967 MRPL39 5.80 2 -11.3 

MRPL45FLAG ENSP00000387262 Mitofilin 6.14 3 -11.3 

MRPL45FLAG ENSP00000262570 CHCHD3 5.74 2 -11.0 

MRPL45FLAG ENSP00000370023 Trifunctional enzyme subunit α 5.81 2 -10.7 

MRPL45FLAG ENSP00000216121 NipSnap1 5.84 2 -10.4 

MRPL45FLAG ENSP00000318115 TIM50 6.08 3 -9.9 

MRPL45FLAG ENSP00000357838 Ornithine aminotransferase 5.55 1 -9.6 

MRPL45FLAG ENSP00000358737 ATP5b 5.82 2 -9.2 

MRPL45FLAG ENSP00000378812 CHCHD2 6.02 4 -9.2 

MRPL45FLAG ENSP00000333667 Serine 
hydroxymethyltransferase 

5.62 1 -8.6 

MRPL45FLAG ENSP00000249269 Mitochondrial-processing 
peptidase, subunit β 

5.85 2 -8.5 

MRPL45FLAG ENSP00000354525 MRPL24 5.63 1 -7.0 

MRPL45FLAG ENSP00000457733 Mitochondrial ATP-Mg/Pi carrier 
protein 1 

5.67 1 -6.0 

MRPL45FLAG ENSP00000348886 Stomatin-like protein 2 5.50 1 -4.9 

MRPL45FLAG ENSP00000317379 L-glutamine amidohydrolase 5.30 1 -4.0 

MRPL45FLAG ENSP00000327070 Malate dehydrogenase 5.64 1 -3.9 

MRPL45FLAG ENSP00000437996 ATP5d 5.23 1 -3.9 

MRPL45FLAG ENSP00000321070 Malic enzyme 2 5.34 1 -3.7 

MRPL45FLAG ENSP00000168216 Mitochondrial RNase P protein 
2 

5.80 2 -3.5 

MRPL45FLAG ENSP00000260665 LRPPRC 5.66 1 -3.5 
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MRPL45FLAG ENSP00000245206 Aspartate aminotransferase 5.46 1 -3.1 

MRPL45FLAG ENSP00000400646 PNPase 1 5.54 1 -3.1 

MRPL45FLAG ENSP00000269143 Paraplegin-like protein 5.40 1 -3.0 

MRPL45FLAG ENSP00000446779 Citrate synthase 5.45 1 -2.8 

MRPL45FLAG ENSP00000264954 GrpE protein homolog 1 5.84 1 -2.4 

MRPL45FLAG ENSP00000253577 ATP-binding cassette 
transporter 7 

5.27 1 -2.2 

MRPL45FLAG ENSP00000439565 MRPL12 5.44 1 -1.3 

MRPL45FLAG ENSP00000321971 MIRO-2 5.53 1 -1.2 

MRPL45FLAG ENSP00000215882 Citrate transport protein 5.75 1 -1.1 

MRPL45FLAG ENSP00000270538 TIM44 5.73 1 -1.1 

MRPL45FLAG ENSP00000350191 Succinate-semialdehyde 
dehydrogenase 

5.98 1 -1.1 

      

Control ENSP00000381736 ATP5α 7.10 14 -130.0 

Control ENSP00000262030 ATP5β 6.70 12 -79.4 

Control ENSP00000360671 ADP/ATP translocase 2 6.70 10 -75.0 

Control ENSP00000265838 Acetyl-CoA acetyltransferase 6.68 9 -65.6 

Control ENSP00000297185 mt-HSP70 6.60 9 -56.1 

Control ENSP00000300408 Prohibitin 6.87 7 -54.1 

Control ENSP00000322439 mtEF-Tu 6.38 5 -47.7 

Control ENSP00000370808 ADP/ATP translocase 3 6.48 7 -39.6 

Control ENSP00000298468 VDAC2 6.33 4 -36.0 

Control ENSP00000373620 HSP60 6.32 5 -30.9 

Control ENSP00000298510 Peroxiredoxin-3 6.22 3 -21.7 

Control ENSP00000349142 ATP5γ 6.09 3 -21.7 

Control ENSP00000393496 ATP5O 5.96 3 -21.0 

Control ENSP00000265333 VDAC1 6.19 3 -20.6 

Control ENSP00000317159 Cytochrome C1 5.84 2 -12.4 

Control ENSP00000356290 Formyltetrahydrofolate 
synthetase 

6.11 2 -11.4 

Control ENSP00000261413 MRPS27 5.92 2 -9.4 

Control ENSP00000457733 Mitochondrial ATP-Mg/Pi carrier 
protein 1 

5.29 1 -5.2 

Control ENSP00000348886 Stomatin-like protein 2 5.35 1 -4.5 

Control ENSP00000383898 Phosphate carrier protein 5.64 2 -3.2 

Control ENSP00000388658 Mitochondrial aspartate 

glutamate carrier 1 

5.40 1 -3.1 

Control ENSP00000168216 Mitochondrial RNase P protein 
2 

5.19 1 -2.8 

Control ENSP00000215882 Citrate transport protein 5.70 1 -1.7 
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Biological repeat n. 2 

Samples 

MRPL45FLAG: FLAG-immunoprecipitation from mitochondria of ethidium bromide treated and 

induced HEK293-MRPL45FLAG cells 

Control: FLAG-immunoprecipitation from mitochondria of ethidium bromide treated and induced 

HEK293-MRPS27FLAG cells 

Sample Identifier Protein log(I) rI log(e) 

MRPL45FLAG ENSP00000308901 MRPL45 3.17 23 -89.9 

MRPL45FLAG ENSP00000297185 mt-HSP70 2.6 16 -89.8 

MRPL45FLAG ENSP00000262030 ATP5β 2.36 12 -56.9 

MRPL45FLAG ENSP00000300408 Prohibitin 1.66 6 -28.5 

MRPL45FLAG ENSP00000373620 HSP60 1.86 4 -18.3 

MRPL45FLAG ENSP00000370023 Trifunctional enzyme subunit α 1.24 2 -10.5 

MRPL45FLAG ENSP00000356290 Formyltetrahydrofolate synthetase 0.82 2 -10.2 

MRPL45FLAG ENSP00000419038 mtEF-G1 1.21 2 -9.9 

MRPL45FLAG ENSP00000260665 LRPPRC 1.41 2 -9.3 

MRPL45FLAG ENSP00000360268 Gamma-glutamyl kinase 0.99 2 -8.8 

MRPL45FLAG ENSP00000381736 ATP5α 1.69 2 -7.4 

MRPL45FLAG ENSP00000311766 ATPase family AAA domain-

containing protein 3B 

1.41 2 -4.3 

MRPL45FLAG ENSP00000360671 ADP/ATP translocase 2 1.23 1 -4.2 

MRPL45FLAG ENSP00000392451 tRNA pseudouridine synthase A 0.45 1 -2.5 

MRPL45FLAG ENSP00000431040 MRPL22 0.49 1 -1.9 

MRPL45FLAG ENSP00000265333 VDAC1 1.06 1 -1.9 

MRPL45FLAG ENSP00000287025 mTERF3 0.82 1 -1.4 

MRPL45FLAG ENSP00000451320 Bcl-2-like protein 2 0.53 1 -1.3 

MRPL45FLAG ENSP00000281456 ADP/ATP translocase 1 0.83 1 -1.3 

MRPL45FLAG ENSP00000244571 Alanine-tRNA ligase 0.57 1 -1.1 

MRPL45FLAG ENSP00000402535 Apoptosis-inducing factor 1 0.79 1 -1.1 

      

Control ENSP00000261413 MRPS27 3.75 91 -316 

Control ENSP00000297185 mt-HSP70 2.42 17 -70.6 

Control ENSP00000262030 ATP5β 2.37 14 -60.2 

Control ENSP00000418008 MRPS22 2.04 8 -48.7 

Control ENSP00000373620 mt-HSP60 2 6 -37.7 

Control ENSP00000300408 Prohibitin 1.97 7 -31 

Control ENSP00000260665 LRPPRC 1.53 4 -23.6 

Control ENSP00000322439 mtEF-Tu 1.76 4 -22 

Control ENSP00000356290 Formyltetrahydrofolate synthetase 1.03 3 -17.8 

Control ENSP00000360671 ADP/ATP translocase 2 2.27 5 -16.9 

http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000718.xml&uid=33315&homolog=33315&label=ENSP00000419038&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000717.xml&uid=52491&homolog=52491&label=ENSP00000261413&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000717.xml&uid=53451&homolog=53451&label=ENSP00000297185&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000717.xml&uid=149873&homolog=149873&label=ENSP00000300408&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000717.xml&uid=24223&homolog=24223&label=ENSP00000260665&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000717.xml&uid=142809&homolog=142809&label=ENSP00000322439&proex=-1
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Control ENSP00000369682 MRPS26 1.67 6 -13 

Control ENSP00000259873 MRPS18b 1.7 6 -11.9 

Control ENSP00000370023 Trifunctional enzyme subunit α 1.04 2 -10.1 

Control ENSP00000402535 Apoptosis-inducing factor 1 1.04 2 -8.8 

Control ENSP00000281456 ADP/ATP translocase 1 2.13 2 -8.4 

Control ENSP00000177742 MRPS34 1.85 3 -8.2 

Control ENSP00000225665 Mitochondrial 2-

oxoglutarate/malate carrier protein 

0.74 2 -7.9 

Control ENSP00000311766 ATPase family AAA domain-
containing protein 3B 

1.34 2 -4.3 

Control ENSP00000265838 Acetyl-CoA acetyltransferase 1.25 2 -3.8 

Control ENSP00000452762 Electron transfer flavoprotein 
subunit α 

0.44 1 -2.7 

Control ENSP00000246957 HSP75 1.41 2 -2 

Control ENSP00000244571 Alanine-tRNA ligase 0.48 1 -1.9 

Control ENSP00000254636 Mitofilin 1.05 2 -1.4 

Control ENSP00000249269 Mitochondrial-processing 
peptidase. subunit β 

0.93 1 -1.4 

Control ENSP00000355741 Chaperone-ABC1-like 0.78 1 -1.1 

 

  

http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000717.xml&uid=166931&homolog=166931&label=ENSP00000369682&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000717.xml&uid=45183&homolog=45183&label=ENSP00000281456&proex=-1
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Appendix 14: MRPL45 immunoprecipitation on induced HEK293-MRPL45 

cells in presence of ethidium bromide 

Only the mitochondrial protein identified in the samples are listed. The following data obtained from 

the mass spectrometry analysis are reported: 

- log(I) = Sum of raw spectra 

- rI = Number of peptides found 

- log(e) = Expectation of finding the protein stochastically. A cut-off of −2 was chosen for this 

score, which corresponds to a 1 in 100 chance of a stochastic protein assignment. 

Samples 

MRPL45: MRPL45-immunoprecipitation from mitochondria of ethidium bromide treated and 

induced HEK293-MRPL45FLAG cells. 

Control: MNKI-immunoprecipitation from mitochondria of ethidium bromide treated HEK293 cells. 

Biological repeat n. 1 

Sample Identifier Protein log(I) rI log(e) 

MRPL45 ENSP00000308901 MRPL45 2.79 23 -45.3 

MRPL45 ENSP00000297185 mt-HSP70 2.04 6 -24.3 

MRPL45 ENSP00000373620 HSP60 1.10 1 -1.5 

MRPL45 ENSP00000281456 ADP/ATP translocase 1 1.16 1 -1.5 

      

Control ENSP00000281456 ADP/ATP translocase 1 1,04 1 -1,1 

 

Biological repeat n. 2 

Sample Identifier Protein log(I) rI log(e) 

MRPL45 ENSP00000308901 MRPL45 2,7 17 -55 

MRPL45 ENSP00000297185 mt-HSP70 1,03 4 -22,1 

MRPL45 ENSP00000262030 ATP5β 0,67 1 -2,2 

MRPL45 ENSP00000440846 Monoamine oxidase type A 0,53 1 -1,5 

      

Control ENSP00000262030 ATP5β 1,48 3 -10,6 

Control ENSP00000381736 ATP5α 1,06 1 -1,8 

 

 

 

 

 

http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000459.xml&uid=18593&homolog=18593&label=ENSP00000373620&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000459.xml&uid=45183&homolog=45183&label=ENSP00000281456&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000458.xml&uid=45183&homolog=45183&label=ENSP00000281456&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000720.xml&uid=121869&homolog=121869&label=ENSP00000262030&proex=-1
http://localhost:8082/thegpm-cgi/protein.pl?ltype=&path=/gpm/archive/GPM30400000720.xml&uid=157471&homolog=157471&label=ENSP00000381736&proex=-1
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Appendix 15: Resolved structure of human MRPL45 to date 

The following figure represent the resolved structure of human MRPL45 to date (Brown A et al., 

2014). The DSSP legend is found at the bottom of the figure. 
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Appendix 16: Alignment of human MRPL45, yeast TIM44 and human TIM44 

The alignment was performed using ClustalOmega. 

 

MRPL45          -------------------------MAAPIPQGFSCLSRFLGWWFRQPVLVTQSAAI--- 

TIM44yeast      ----MHRSTFIRTS----GTSSRTL-------TARYRSQYT-GLLVARVLFSTSTTRAQG 

TIM44human      MAAAALRSGWCRCPRRCLGSGIQFLSSHNLPHGSTYQMRRPGGELPL-------SKSYSS 

                                                      :     :         :      

 

MRPL45          ------------------------------------------------------------ 

TIM44yeast      GNPRSPLQIFRDTFKKEWEKSQELQENIKTLQDASGKLGESEAYKKAREAYLKAQRGST- 

TIM44human      GNRKGFLSGLLDNVKQELAKNKEMKESIKKFRDEARRLEESDVLQEARRKYKTIESETVR 

                                                                             

 

MRPL45          ------------------------------------------------------VPVRT- 

TIM44yeast      ---IVGKTLKKTGETMEHIATKAWESELGKNTRKAAAATAKKLDESF-------EPVRQT 

TIM44human      TSEVLRKKLGELTGTVKESLHEVSKSDLGRKIKEGVEEAAKTAKQSAESVSKGGEKLGRT 

                                                                        :    

 

MRPL45          ---------------------KKRFTPPIY--QPKFKTEKEFMQHARKAGLVIPPEKSDR 

TIM44yeast      KIYKEV-------SEVIDDGESSRYGGFITKEQRRLKRERDLASGKR--HRAVKSNEDAG 

TIM44human      AAFRALSQGVESVKKEIDDSVLGQTGPYRR--PQRLRKRTEFAGDKFKEEKVFEPNEEA- 

                                       :          ::: . ::         ..  ::.   

 

MRPL45          SIHLACTA-----------------GIFDAYVP------PEGDARIS----------SLS 

TIM44yeast      TAVVATNIESKESFGKKVEDFKEKTVVGRSIQSLKNKLWDESENPLIVVM----RKITNK 

TIM44human      ---LGVVLHKDSKWYQQWKDFKENNVVFNRFFEMK-MKYDESDNAFIRASRALTDKVTDL 

                   :.                     :             *.:  :           :   

 

MRPL45          KEGLIERTERMKKTMASQVSIRRIKDYDANFKIKDFPEKAKDIFIEAHL-CLNNSDHDRL 

TIM44yeast      VGGFFAETES-------SRVYSQFKLMDPTFSNESFTRHLREYIVPEILEAYVKGDVKVL 

TIM44human      LGGLFSKTEM-------SEVLTEILRVDPAFDKDRFLKQCENDIIPNVLEAMISGELDIL 

                  *:: .**        .    .:   *  *. . * .: .: ::   * .  ..: . * 

 

MRPL45          HTLVTEHCFPDMTWDIK-YKTVRWSFVESLEPSHVVQVRCSSMMNQGNVYGQITVRMHTR 

TIM44yeast      KKWFSEAPFNVYAAQQKIFKEQDVYADGRILDIRGVEIVSAKLLAPQDIPVLVVGCRAQE 

TIM44human      KDWCYEATYSQLAHPIQQAKALGLQFHSRILDIDNVDLAMGKMMEQG--PVLIITFQAQL 

                :    *  :   :   :  *         :     *::  ..::        :        

 

MRPL45          QTLAIYDRFGRLMYGQEDVPKDVLEYVVF----EKQLTNPYGSWRMHTKIVPPWAPPKQP 

TIM44yeast      INLYRKKKTGEIAAGDEANILMSSYAMVFTRDPEQIDDDETEGWKILEFVRGGS----RQ 

TIM44human      VM-VVRNPKGEVVEGDPDKVLRMLYVWALCRDQDEL--NPYAAWRLLDISASST----EQ 

                      .  *.:  *:           .:    ::   :   .*::            .  

 

MRPL45          ILKTVMIPGPQLKPEEEYEEAQGEAQKPQLA 

TIM44yeast      FT----------------------------- 

TIM44human      IL----------------------------- 

                :                               
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Appendix 17: mRNA sequences targeted by OXA1L siRNA 

The sequences of OXAsi02, OXAsi03 and OXAsi04 were analysed to identify targets using BLAST 

(http://blast.ncbi.nlm.nih.gov/). The targets and the percentage of their query cover and identity are 

reported in the following table. 

siRNA Target Query cover Identity 

OXAsi01 OXA1L 100% 100% 

  MIP, Major intrinsic protein of lens fiber  78% 100% 

 DDX46, DEAD-box helicase 46 73% 100% 

 FBXO38, F-box protein 38 73% 100% 

 RHOU, Ras homolog family member U 73% 100% 

OXAsi02 OXA1L 100% 100% 

 HLF, Hepatic leukemia factor 73% 100% 

 MYL12A, Myosin regulatory light chain 12A 68% 100% 

 SPG7, Paraplegin 68% 100% 

 REG3G, Regenerating islet-derived protein 3-

gamma 

68% 100% 

 CELSR3, Epidermal growth factor-like protein 1 68% 100% 

 KRT4, Cytokeratin-4 68% 100% 

 PLEKHF1, Pleckstrin homology domain-
containing family F member 1 

68% 100% 

 SFXN5, Sideroflexin-5 68% 100% 

OXAsi03 OXA1L 100% 100% 

 PANK1, Pantothenate kinase 1 73% 100% 

 DIS3, Exosome complex exonuclease RRP44 68% 100% 

 SIX4, SIX homeobox 4 68% 100% 

 GLANT4, Polypeptide N-
acetylgalactosaminyltransferase 4 

68% 100% 

 GNRH1, Progonadoliberin-1 68% 100% 

 ZNF711, Zinc finger protein 711 68% 100% 

OXAsi04 OXA1L 100% 100% 

 C5orf63, Glutaredoxin-like protein C5orf63 73% 100% 

 MEIG1, Meiosis/spermiogenesis associated 1 73% 100% 

 DMRTA1, Doublesex- and mab-3-related 
transcription factor A1 

73% 100% 

 CDHR4, Cadherin-related family member 4 68% 100% 

 DNAH11, Dynein heavy chain 11, axonemal 68% 100% 

 SLC22A16, Solute carrier family 22 member 16 68% 100% 

 RNF165,  68% 100% 

 

 

http://blast.ncbi.nlm.nih.gov/
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Appendix 18: The role of LetM1 in the interaction between mitoribosome 

and IMM 

Introduction 

As previously stated throughout this work, mitochondrial translation is likely to be localised in 

close proximity to the IMM in order to allow the rapid insertion of the highly hydrophobic OXPHOS 

components synthesised within the organelle itself. In yeast, together with Oxa1, another IMM 

protein has been suggested to mediate this interaction. This protein, named Mdm38, is conserved 

amongst eukaryotes and its homologue in human is named LetM1 (leucine zipper EF -hand-

containing transmembrane protein 1). 

Mdm38 (RefSeq. NP_014615.1) was found to interact with the large mitoribosomal subunit via 

a ribosome binding domain (RBD, between residues 182 and 404) located on the matrix side 

(Frazier AE et al., 2006). This domain has been confirmed to bind the mitoribosome in vitro, and 

structural studies assigned a 14-3-3-like structure to this domain (Lupo D et al., 2011). This 

structure is canonically consists of 9 antiparallel α-helices arranged in a U-like conformation and 

creates a cavity that allows the interaction with other proteins (Aitken A, 2006). The cavity allows 

the interaction with phosphorylated proteins via a conserved triad arginine -arginine-tyrosine 

(Rittinger K et al., 1999), but also with hydrophobic proteins via the side chain of a conserved 

leucine (Ottmann C et al., 2007). A large hydrophobic cavity was observed for the RBD of Mdm38. 

This cavity presented 2 leucine residues (387 and 390, Fig. a3 in red) that correspond to the 

conserved leucine residues found in other 14-3-3-like proteins. These observations suggested 

that this cavity might mediate the interaction of Mdm38 with the mitoribosome.  

           

Figure a3 Structure of Mdm38 C-terminal domain. 

The structure of the C-terminal of Mdm38 was visualised as cartoon (A) and as surface (B) 

using Pymol, from the available PDB file 3SKQ (Lupo D et al., 2011). This domain corresponds 

to the soluble domain of the protein, and the first 5 amino acids resolved were depicted in green 

and docked on the transmembrane domain, represented by a green box. The leucine residues 

present in the hydrophobic cavity are depicted in red. 

A B 
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The role of Mdm38 in yeast was further investigated upon deletion of Mdm38. A growth defect, 

impairment in the transport of proteins from the matrix and an altered morphology of mitochondria 

were observed upon Mdm38 deletion.  

This protein was also suggested to play a role in the assembly of some OXPHOS complexes, 

although its effects on mitochondrial protein synthesis are still under debate. According to Frazier 

et al, deletion of Mdm38 caused an impairment of mitochondrial translation and defects in the 

insertion of Atp6 and cytochrome b (Frazier AE et al., 2006). A different effect on mitochondrial 

translation was observed by Bauerschmitt et al and by Nowikovsky et al, whose deletion 

experiments in yeast showed that this process was not severely affected by the absence of Mdm38 

(Bauerschmitt H et al., 2010; Nowikovsky K et al., 2007). An effect on mitochondrial translation was 

observed by Bauerschmitt et al for Mdm38 and Mba1 double mutants, particularly for COXI and 

CYTB mRNA (Bauerschmitt H et al., 2010). 

The growth defect observed for mdm38-deleted mutants was efficiently recovered by 

overexpression of LetM1, suggesting a similar function to the yeast protein for the mammalian 

homologue (Nowikovsky K et al., 2004). LetM1 is an IMM protein that was found to be present in 

high molecular weight complexes of approximately 300 kDa and 500-600 kDa (Dimmer KS et al., 

2008; Tamai S et al., 2008). This protein is important for mitochondrial morphology, with its 

depletion causing swelling and loss of cristae structure (Tamai S et al., 2008). In the absence of 

LetM1, the assembly of complexes I, III and IV was compromised, although the steady state levels 

of the tested subunits did not seem to be affected. The authors suggested the possibility that the 

effects observed might be related to the loss of cristae and not directly to a role of LetM1 in the 

assembly of the OXPHOS complexes (Tamai S et al., 2008). The importance of this protein was 

further confirmed by the lethality in the early stages of embryogenesis of LetM1 knockout in mice 

(Jiang D et al., 2013). 

In addition to its role in mitochondrial gene expression, Mdm38 has been suggested to play a 

role in H+/K+ exchange (Nowikovsky K et al., 2004; Nowikovsky K et al., 2007). Swelling of 

mitochondria was observed upon deletion of Mdm38, and this effect can be explained by osmosis 

due to the increase of K+ concentration after impairment of ion exchange. The role of LetM1 in 

cation transport is under investigation. The swelling of mitochondria observed for LetM1 depletion 

was reversed by nigericin, which catalyses the electroneutral change of H+ with K+, and was 

phenocopied by addition of valinomycin, a ionophore that catalyses the electrophoretic flux of K+. 

Because of these pieces of data, it was suggested that the increase in the mitochondrial volume 

might be due to K+ accumulation. On the other hand, a genome-wide siRNA screen in Drosophila 

identified a reduction of Ca2+ influx in the absence of LetM1 (Jiang D et al., 2013), suggesting a 

role for this protein as a Ca2+/H+ antiporter. The same effect was observed for LetM1 knockdown 

in HEK293 cells (Jiang D et al., 2013). Whether LetM1 has a role in the transport of K+ or Ca2+ is 

still under debate in the field (Nowikovsky K et al., 2014).  
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As previously mentioned, Mdm38 was shown to interact with the mitoribosomal large subunit. 

In absence of the mitoribosome, it was demonstrated an interaction of this protein with Mba1 

(homologue of MRPL45 in yeast) (Bauerschmitt H et al., 2010). Because of the conservations of 

these 2 proteins in eukaryotes, it is possible that their interaction is still retained in mammals. The 

only study on LetM1 and its interaction with the mitoribosome is based on immunoprecipitation 

experiments on cell line overexpressing either LetM1, MRPL36 or both the proteins. These 

experiments suggested a direct interaction of these 2 proteins (Piao L et al., 2009).  

LetM1 was also demonstrated to directly interact with BCS1L (Tamai S et al., 2008), a 

chaperone necessary for the assemble of complex III (de Lonlay P et al., 2001) and for the 

formation of LetM1 complexes.  

Mutations in LetM1 have also been linked to pathologies. The gene encoding this protein is one 

of the genes deleted in the Wolf-Hirschhorn syndrome (Endele S et al., 1999), where the severity 

of the disease is related to the size of the deletion. The main symptoms are mental retardation, 

seizures, hypertonia and characteristic facial features (Bergemann AD et al., 2005). It is thought 

that LetM1 might play a role in the onset of seizures, due to its possible role in regulating the levels 

of calcium and potassium (Rauch A et al., 2001; South ST et al., 2007). An altered level of LetM1 

has also been found in cancerous tissue, which appear to contain a higher amount of this protein 

(Hwang SK et al., 2010; Li N et al., 2015; Piao L et al., 2009). 

Since only one study attempted to confirm the interaction of LetM1 with the mitoribosome, I 

decided to further confirm it. In addition, the collaboration of Prof Taylor with Dr Carrozzo in Rome, 

allowed me to study the phenotype of a patient carrying mutations on LetM1, which will be 

discussed in this chapter. 

Prediction of the LetM1 structure 

A crystal structure for LetM1 (RefSeq NP_036450.1) was still not available, therefore inferences 

on its structure were made from information available on its domains (Fig. a3) and from a structural 

prediction obtained using Phyre2 (Fig. a4). 

 

Figure a4 Domains predicted for LetM1. 

Summary of the domain information available for LetM1 (RefSeq NP_036450.1). The 

presequence (gray) was predicted by TargetP 1.1 to be between residues 1 and 116 . The 

transmembrane domain (TM, green) was assigned by TM pred to lie between residues 202 

and 229, whereas the ribosome binding domain (RBD, red) was predicted to be between 

residues 252 and 537. After this domain, a leucine-zipper domain (Leu-z, turquois) was 

identified between residues 548 and 590. Finally, the EF-hand domain (EF-h, yellow) was 

assigned between residues 667 and 695. 
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As a nuclear-encoded mitochondrial protein, LetM1 possesses a presequence that targets the 

protein to mitochondria. TargetP 1.1 (Emanuelsson O et al., 2000) predicted this transit peptide to 

target the protein to mitochondria and to be cleaved between the residues 115 and 116. LetM1 is 

an IMM protein and its analysis with TM pred (Hofmann K et al., 1993) identified residues 202 and 

228 as a possible transmembrane domain from the inside (IMS) to the outside (matrix) (Fig. a4, in 

green). The presence of a transmembrane domain in the same part of the sequence was also 

confirmed by the analysis of the hydrophobicity of the protein obtained with the Kyte-Doolittle 

method (Fig. a5). Uniprot suggested that a ribosome binding domain (RBD, Fig. a4, in red) is 

present between residues 252 and 537, followed by a leucine-zipper domain (residues 548-590, 

Fig. a4, in turquoise). Finally, despite 2 EF-hand domains having been identified in LetM1 (Endele 

S et al., 1999), the first, located in the leucine-zipper motif, is likely to have lost its function due to 

alteration of its structure from the canonical EF-hand structure (Kawasaki H et al., 1994). On the 

other hand, the second identified between residues 667 and 695 may still retain the ability to bind 

Ca2+ (Fig. a4, in yellow).  

 

Figure a5 Prediction of a transmembrane domain within LetM1 using the Kyte -Doolittle plot. 

Kyte-Doolittle hydropathy analysis was performed on LetM1. The window was set at 19 and 

the result is shown in a plot with the hydropathy score in function of the window position. A 

score higher than 1.8 (red horizontal line) indicates the presence of possible 

transmembrane (TM) domains. 

The same colour code used for the analysis of the domains present on LetM1 was also used to 

colour the Phyre2 prediction of the protein. The full prediction obtained is shown in Fig. a6. 

TM 
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Figure a6 Prediction of LetM1 structure. 

LetM1 structure was predicted using Phyre2. The result is shown as a cartoon and 

coloured according to different domains reported to be present in LetM1 

(Presequence=gray, Transmembrane domain=green, Ribosome binding domain=red, 

Leucine-zipper=turquoise, EF-hand=yellow). The ribosome binding domain was aligned 

with high confidence (99.9%) and identity (37%) to Mdm38. 

The prediction aligned residues 252-444 with the structure available of Mdm38 (PDB 3SKQ), 

with a confidence of 99.9%, and a sequence identity of 37% and corresponds to the ribosome 

binding domain (Fig. a6, red). This result suggests that LetM1 might have conserved the function 

observed for Mdm38. The remaining structure was not aligned with high confidence or sequence 

identity with any other known structure. 

Interaction of LetM1 with the mitoribosome 

The LetM1 yeast homologue, Mdm38, has been reported to interact with the mitoribosome. 

Because the analysis of LetM1 structure suggested a high homology with the yeast counterpart, 

the possibility of LetM1 to interact with the IMM was explored. 

In case of any interaction with the mt-LSU, LetM1 might co-localise with mt-LSU in an isokinetic 

sucrose gradient analysis. To test this, a cell lysate (800 µg) from HEK293 cells was loaded on a 

10-30% isokinetic sucrose gradient and its components were separated within the gradient upon 

centrifugation (qv 2.8.). The 11 fractions obtained were TCA-precipitated (qv 2.5.3.) and then 

analysed by western blot (Fig. a7). 
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Figure a7 Distribution of LetM1 on isokinetic sucrose gradients. 

HEK293 cells were lysed and ≈800 µg of protein were loaded at the top of a 10-30% 

sucrose gradient (qv 2.8.). After centrifugation, 11 fractions were obtained, TCA-

precipitated (qv 2.5.3.) and analysed via western blotting. An aliquot of the cell lysate ‘load’ 

(Lys; ≈40 µg) was also loaded on the gel. Antibodies against MRPL11 localised the position 

of the mt-LSU, and antibodies targeting LetM1 identified its distribution. The figure is 

representative of 2 biological repeats. 

The sucrose gradient analysis showed that the major ity of LetM1 was present in the first 

fractions, while a weaker signal was obtained in the fractions corresponding to the mt -LSU.  

Since the sucrose gradient analysis could not confirm the ability of LetM1 to interact with the 

mitoribosome, this hypothesis was investigated via immunoprecipitation of LetM1 from 

mitochondria extracted from HEK293 cells. Magnetic beads were coated with 5 µg of LetM1 

antibody and the experiment was carried out as in 2.9. The 8 µL of eluted sample (25 µL total) were 

analysed via western blotting to determine the presence of mitoribosomal proteins (Fig. a8). 

 

Figure a8 Immunoprecipitation of LetM1. 

Western blot analysis was performed on mitolysate (15 µL) and eluted sample (1/3 of the 

volume) from immunoprecipitation of LetM1 in HEK293 cells. The efficiency of the 

immunoprecipitation was detected with antibodies targeting LetM1. The presence of 

mitoribosomal proteins MRPL45 and MRPS26, as well as the IMM protein OXA1L, were 

also detected. The experiment was not repeated. 

The immunoprecipitation was very efficient, as shown by the presence of large amounts of 

LetM1 present in the eluted fraction (Fig. a8). Despite this, cross reacting material was obtained in 

the western blot analysis for the mitoribosomal proteins tested (MRPL45, MRPL26), of which a 

distinct signal could not be detected. LetM1 immunoprecipitation also showed the presence of a 

weak signal for OXA1L. 
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Phenotype of a patient with mutations in LetM1 

As mentioned in the introduction, deletions of LETM1 gene have been widely associated with 

the Wolf-Hirschhorn syndrome. After starting to work on LetM1, I discovered the existence of a 

patient with mutation in this gene. This is the first case of missense mutations in LetM1. Thanks to 

the help of Prof Taylor, I got in touch with Dr Carrozzo who was studying the phenotype of the 

patient, that kindly agreed to send me primary fibroblast to investigate the potential effect of this 

mutation on the ability of LetM1 to bind the mitoribosome. 

Dr Carrozzo reported that the patient presented with encephalopathy, hypertrophic 

cardiomyopathy and cataract. Increased lactate, α-ketoacids and Krebs intermediate products were 

also observed. Muscle hystochemistry showed the reduction or the absence of COX in several 

fibres. Muscle also showed a reduction of the activity of complex I and IV of the 40% each. The 

search for a mutation identified a homozygous mutation for LETM1. The mutation (c.898C>T) 

caused the proline at position 300 to be translated as serine. Due to the presence of a nitrogen-

containing ring, proline is constrained in its folding as compared to the majority of the other 

residues. As a consequence, proline often introduces tight turns in protein structures or kinks into 

α-helices. Serine is also able to fold in a conformation that allows tight turns. The hydroxyl oxygen 

on the side chain of this small amino acid is able to form a hydrogen bond with the protein 

backbone, mimicking proline. As a consequence, it is possible that this mutation will not severely 

damage the stability of the function of the protein. Despite this, PolyPhen (Adzhubei IA et al., 2010) 

scored the mutation as probably damaging, assigning it the highest score of 1. This program 

predicts the effects of the mutation taking into consideration not only the change of the volume of 

the side chain or of the accessibility to the solvent, but also the contacts that the residue might do 

with other amino acids. It is therefore possible that, despite serine can mock proline, this mutation 

within the sequence of LetM1 is causing a deleterious effect on its structure or function. 

The fibroblast of the LetM1 patient were cultured and the steady state level of OXPHOS 

components and mitoribosomal proteins was analysed via western blot (Fig. a9). 
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Figure a9 Steady state levels of mitochondrial proteins in a patient with mutation 
in LetM1 gene. 

Cell lysate (≈50 µg) from primary fibroblasts of 2 controls (C) and a LetM1 patient (P) were 

separated by 12% SDS-PAGE, and analysed via western blot. The steady state level of 

LetM1 was assessed, as well as the level of OXPHOS components (COXII, NDUFB8, 

NDUFA9, ATP5β). A second western blot was used to detect the levels of the 

mitoribosomal proteins MRPL11 and MRPL45. The equality of the loading was verified 

using antibodies against β-Actin. The figure is representative of 3 biological repeats. 

The phenotype observed for LetM1 patient fibroblast was not very strong. The mutations 

affected the steady state level of LetM1, which was reduced by approximately 30% when compa red 

to the control, and might indicate a mild effect of the mutation on the protein’s stability. While the 

level of complex IV did not seem affected, a reduction of the nuclear encoded components of 

complex I NDUFA9 and NDUFB8 was observed. No effect on the F1 component of complex V was 

observed. Regarding the mitoribosomal proteins, a marginal effect on the steady state levels of 

both MRPL45 and MRPL11 was found using western blot analysis.  

The phenotype observed in the fibroblast was very mild when compared to the information 

obtained in muscle by Dr Carrozzo. Therefore, no further analyses were possible on the phenotype 

of the patient using this cell line. 

Conclusions 

Despite several studies on yeast Mdm38 that support its importance for mitochondria and cell 

homeostasis, the mammalian homologue is still not well understood. While its role in ion transport 

is still contradictory, its role in mitochondrial translation has not been widely explored to date.  

LetM1 depletion has been reported to compromise the assembly of complexes I, III and IV, 

without affecting the steady state levels of the tested subunits (Tamai S et al., 2008). It is important 

to notice that all the subunits tested by the authors were nuclear encoded and, therefore, this result 

gave no information on the effects of the depletion on mitochondrial translation. Because of the 

effects on complex assembly, it is however tempting to infer that the effects observed on complex 

assembly might be caused by the lack of availability of mt-encoded subunits due to defects in 
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mitochondrial protein synthesis. The authors also suggested that this effect could be linked to the 

loss of cristae observed in LetM1 depletion. I believe that this hypothesis is unlikely as, in these 

circumstances an effect on complexes II and V (unaffected according to the authors) should be 

detected. 

Ideally I would repeat the depletion experiment and investigate the effects of the depletion on 

mitochondrial translation. However, due to the limited time frame of my project, I decided to focus 

on the possibility of an interaction between LetM1 and the mitoribosome. As stated in the 

introduction of this chapter, yeast Mdm38 has been reported to interact with the mitoribosome and, 

in particular, with Mba1 (MRPL45 homologue in yeast). LetM1 has been reported to interact with 

MRPL36 (Piao L et al., 2009). The authors studied the interaction of these 2 proteins in HeLa cells 

based on the data published by Ott et al on the interaction with Mdm38 with the yeast mitoribosome 

(Bauerschmitt H et al., 2010). This was a misinterpretation of the work by Ott et al, where MRPL36 

antibody was used as a marker to detect the presence of the mitoribosome as a whole and was, 

therefore, not indicating a direct interaction of Mdm38 with this mitoribosomal protein. 

The sucrose gradient analysis performed on HEK293 cells in this chapter failed to demonstrate 

colocalisation of the IMM protein with the mitoribosome. The immunoprecipitation of LetM1 from 

the same cell line did not lead to the co-precipitation of the mitoribosome. Altogether these data 

suggested that LetM1 does not interact with the mitoribosome. 

Deletion of LetM1 has been widely connected to Wolf-Hirschhorn syndrome. For the first time, 

a patient with a mutation in this gene has been identified and studied by Dr. Carrozzo, I was kindly 

given access to the primary fibroblast cell line from this patient to test the effects of the mutation 

on the stability of the mitoribosome. The mutation mildly affected the steady sta te level of LetM1, 

which caused a mild reduction of the levels of component of complexes I and IV. This effect could 

be due to a minor defect of mitochondrial translation, as well as to a defect in membrane insertion. 

The steady state levels of the mitoribosomal proteins detected appeared to be mildly reduced. 

Unfortunately, because the phenotype shown by the fibroblasts was not very pronounced, it was 

not possible to clearly assess the effects of this mutation on the mitoribosome or on mitochondrial 

translation. The muscle sample analysed by Dr. Carrozzo showed a more marked phenotype 

(Carozzo, personal communication). The difference in severity between fibroblasts, a low requiring 

energy tissue, and muscle, a high requiring tissue, is very frequently observed and it is problematic 

for investigating the role of mutated mitochondrial proteins in diseases.  

Due to the lack of more convincing data on the role of LetM1 and to its involvement in diseases, 

I believe it is important to further study this protein to understand its role both in the Wolf-Hirschhorn 

syndrome and in the patient studied by Dr. Carrozzo. 
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