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Abstract 

Mutations in maternally inherited mitochondrial DNA (mtDNA) can cause a range of 

complex diseases for which there are currently no curative treatments. Using IVF based 

techniques involving nuclear genome transplantation, it may be possible enable women who 

carry mtDNA mutations to have a genetically related child without the risk of transmitting 

disease. The central aim of this project is to perform preclinical studies testing the safety and 

efficiency of pronuclear transfer (PNT).  

Surprisingly, the PNT technique developed using abnormally fertilised zygotes was 

detrimental to survival of normally fertilised zygotes. We tested the possibility that this might 

be due to the relatively accelerated development of normally fertilised zygotes allowing 

insufficient time for recovery following transplantation of the pronuclei. Switching the timing 

of PNT to shortly after pronuclei appearance (ePNT) rather than shortly before disappearance 

resulted in increased survival. Further modification of the enucleation and embryo culture 

media resulted in improved blastocyst quality. As part of the optimisation process, I tested the 

effect and reversibility of drugs that are used to inhibit the cytoskeleton of oocytes and 

zygotes in preparation for manipulations. Comparison of two compounds, which directly 

inhibit actin polymerisation, revealed marked differences in the reversibility. However, 

latrunculin B, which is rapidly reversed, has a detrimental effect on blastocyst development 

compared with latrunculin A, which is more potent and less readily reversible. Finally, I 

analysed single-cell RNA-sequencing data to determine whether gene expression in human 

blastocysts is altered by ePNT. This work was done in collaboration with Dr Kathy Niakan at 

the Francis Crick Institute. The findings indicate no detectable differences in global or 

lineage-associated gene expression between control and good quality ePNT blastocysts. 

Analysis of mitochondrial gene expression revealed high variability in the level of expression 

both within and between blastocysts. However, this variability was observed in ePNT and 

control blastocysts, and there was no detectable difference between them.  

In conclusion, this study has tested PNT in normally fertilised human zygotes for the first 

time; results indicate no detectable harmful effects of the ePNT procedure. We therefore 

conclude that it is likely to give rise to normal pregnancies. 
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Chapter 1. Introduction 

1.1 Mitochondria 

The fertilised egg contains haploid maternal and paternal genomes, which are separately 

packaged into structures called pronuclei. It also contains many thousands of copies of 

mitochondrial DNA (mtDNA) (Shoubridge and Wai, 2007). The mtDNA copy number of 

oocytes is estimated to be ~100,000 in mouse oocytes (Piko and Taylor, 1987; Wai et al., 

2010), and variable in human oocytes, ranging from 200,000 to 500,000 (Barritt et al., 2002; 

Craven et al., 2010). Unlike nuclear DNA, mtDNA is exclusively maternally inherited. 

Pathogenic mutations in mtDNA can cause a broad range of debilitating and often fatal multi-

system diseases, which can present at any age. There are currently no curative treatments for 

mtDNA disease, therefore this is an essential area of research.  

1.1.1 Origin and evolution of mitochondria 

Mitochondria are unique organelles as they contain their own DNA, which originates from 

their proteobacterium origins. There are two theories regarding the origin of mitochondria. 

Firstly, the endosymbiotic theory proposes that alpha-proteobacteria were engulfed by an 

anaerobic eukaryotic host cell through phagocytosis (Martin, 2010). The second theory 

suggests that the host cell was not a eukaryote but prokaryote, and eukaryotes evolved 

following the fusion of an archaebacterium host with a proteobacterium symbiont (Gray et al., 

1999). Both scenarios involved a symbiotic relationship between the host and 

proteobacterium, which provided a survival advantage. The evolutionary advantage resulted 

in progressive loss of independence and the transformation of mitochondria to intracellular 

organelles.  

The mtDNA of lower eukaryotes encodes many more genes than human mtDNA. In humans, 

the majority of mitochondrial genes were transferred to the nuclear genome during evolution, 

37 genes were retained within mitochondria (Roger, 1999; Embley and Martin, 2006). 

Numerous hypotheses have been proposed as to why 37 genes have not been transferred to the 

nuclear genome and instead are retained within mitochondria. Firstly, it is possible that the 

use of a different genetic code within mitochondria (Barrell et al., 1979) prevents complete 

gene transfer to the nuclear genome, as it could prevent accurate transcription and translation 

of gene products. However, it has been argued that this cannot explain incomplete gene 

transfer in creatures that use the standard genetic code in the mitochondria (Ridley, 2001). It 

has been proposed that the genes retained in the mitochondrial genome encode proteins that 
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are too hydrophobic for import into the mitochondria (von Heijne, 1986; Popot and de Vitry, 

1990). Others have suggested that these gene products may be toxic to the cell if present in 

the cytoplasm (Martin and Schnarrenberger, 1997), although there is limited evidence to 

support this hypothesis.  

1.1.2 Mitochondrial functions and dynamics 

Mitochondria are often described as the 'powerhouses' or 'battery packs' of the cell, as they are 

the organelles responsible for oxidative phosphorylation (OXPHOS) which produces over 

90% of cellular energy in the form of ATP. In addition to their involvement in energy 

production, during evolution mitochondria have acquired a number of other important 

functions, including; execution of apoptosis (Wang and Youle, 2009), calcium handling 

(Babcock et al., 1997) and formation of iron sulphur clusters (Veatch et al., 2009).  

The respiratory chain located on the inner mitochondrial membrane is involved in energy 

production in the form of ATP (Figure 1.1). There are 5 complexes which make up the 

respiratory chain; NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), 

cytochrome C reductase (complex III), cytochrome C oxidase (complex IV) and ATP 

synthase (complex V). The respiratory chain complexes are composed of subunits encoded by 

both the nuclear and mitochondrial genomes, although complex II is entirely encoded by 

nuclear DNA. Electrons are produced during the tricarboxylic acid (TCA) cycle by NADH 

and FADH2, which flow along the electron transport chain and are used to establish a proton 

gradient for ATP production. The electron transport chain is responsible for ~90% of cellular 

oxygen consumption and a small percentage of this is converted to superoxide (Boveris et al., 

1972), however in certain conditions superoxide production can increase and cause oxidative 

stress. To avoid the production of hydroxyl radicals that are damaging to biomolecules 

including DNA, superoxide is converted to H2O2 by superoxide dismutase and subsequently 

broken down to H2O.  

Mitochondria are involved in the intrinsic apoptotic pathway, which is triggered in response 

to apoptotic stimuli such as DNA damage. Following pathway activation, Smac/DIABLO 

(second mitochondria derived activator of caspase) and Omi/HTRA2 are released from 

mitochondria and bind to IAPs (inhibitors of apoptosis), preventing their inhibitory effect on 

caspase activity (Srinivasula et al., 2000; van Loo et al., 2002). Cytochrome C is an essential 

component of the electron transport chain, which has also been identified as an apoptotic 

protease activating factor (Apaf) (Liu et al., 1996). Following IAP inactivation, cytochrome C 

is released from mitochondria and initiates caspase activation (Wang and Youle, 2009). The 
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release of cytotoxic proteins from mitochondria is regulated by Bcl-2 family proteins, which 

consist of both proapoptotic and antiapoptotic proteins (Wang and Youle, 2009). Activation 

of proapoptotic Bax/Bak results in the induction of mitochondrial outer membrane 

permeability (MOMP) and subsequent protein release leading to caspase activation and 

apoptosis (Wang and Youle, 2009). The restriction of proapoptotic proteins to the 

mitochondria and regulated release in response to apoptotic stimuli prevents activation of 

apoptosis in healthy cells (Wang and Youle, 2009). 

 

 

Figure 1.1: The mitochondrial respiratory chain. Schematic representation of complexes I 
to V of the electron transport chain, located on the inner mitochondria membrane. Number of 
subunits encoded by nuclear and mitochondrial genomes is also shown at the bottom of the 
image. Images is adapted from Mandavilli et al. (2002). 

 

Mitochondria also have an important role in the storage and regulation of intracellular calcium 

(Babcock et al., 1997). Uptake of calcium ions is regulated by the electrochemical potential 

gradient and facilitated by the mitochondrial calcium uniporter (MCU) present on the inner 

mitochondrial membrane (Baughman et al., 2011). Conversely, the Na+/Ca2+ exchangers 

(mNCX) and H+/Ca2+ exchangers (mHCX) are involved in the efflux of calcium ions 

(Carafoli et al., 1974; Jiang et al., 2009). The endoplasmic reticulum (ER) is the organelle 

responsible for storage of the majority of Ca2+ within the cell, and is connected to the 

mitochondria by contact sites known as mitochondria-associated ER membranes (MAMs) 

(Rizzuto et al., 1998). The importance of mitochondria in the storage and handling of calcium 

implicates them in the regulation of calcium signalling. The role of mitochondria in calcium 
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signalling regulation has previously been reviewed in detail (Rizzuto et al., 2012); this review 

discusses the role of mitochondria and Ca2+ in; metabolism regulation, autophagy regulation 

and the involvement of calcium signalling in release of proapoptotic proteins from 

mitochondria.  

Mitochondria are dynamic organelles, which can exist as a tubular network or discrete 

organelles. To achieve this, mitochondria undergo fission and fusion, which regulates the 

shape and size of mitochondria in addition to biological functions. Mitochondrial fission is 

regulated by dynamin-related protein (Drp1), which associates with the outer mitochondrial 

membrane to form an oligomer wrapped around the membrane, able to constrict mitochondria 

following hydrolysis of GTP and a conformational change, causing mitochondrial fission 

(Smirnova et al., 2001). The ER also plays a role in mitochondrial fission; it has been found 

that association of ER tubules with mitochondria is a key initial event during mitochondrial 

fission (Friedman et al., 2011). In mammals, the membrane-anchored dynamic family 

members mitofusins 1 and 2 (Mfn1 and Mfn2) regulate outer mitochondrial membrane fusion 

and Opa1 assists fusion of inner membranes (Youle and van der Bliek, 2012). The fission and 

fusion cycle is regulated by metabolism, with a fused, tubular network of mitochondria 

observed when oxidative phosphorylation increases (Rossignol et al., 2004). Fission and 

fusion are important for response to stress and maintenance of mitochondrial health and 

activity; defects can be compensated for during fusion events and fission can result in the 

segregation of damaged mitochondria from an otherwise healthy population of fused 

mitochondria (reviewed in Youle and van der Bliek (2012)).  

Mitophagy is the selective degradation of damaged mitochondria by autophagy. The best 

characterised mitophagy pathway is the PINK1-Parkin mediated pathway, in which initiation 

of mitophagy is triggered by the activation and stabilisation of PINK1 kinase on the outer 

mitochondrial membrane (reviewed in Youle and Narendra (2011)). PINK1 is able to activate 

and recruit Parkin, an E3 ubiquitin ligase, which enables assembly of ubiquitin chains that 

PINK1 can phosphorylate (Youle and Narendra, 2011). Binding of ubiquitin chains by the 

autophagy receptors NDP52 and OPTN is required for successful mitophagy (Lazarou et al., 

2015). Mitophagy ultimately functions as a quality control procedure to remove damaged 

mitochondria, in addition to regulating mitochondrial number in accordance with metabolic 

demand (Youle and Narendra, 2011).  
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1.1.3 Mitochondrial DNA  

Mitochondrial DNA (mtDNA) is circular, double-stranded DNA that is 16.5kb in length and 

encodes only 37 genes (Figure 1.2); 13 genes encode protein subunits of respiratory chain 

complexes, 22 encode tRNAs and 2 encode rRNAs, which allows translation of mtDNA 

encoded subunits within the mitochondrial matrix. Copies of mtDNA are packaged into 

nucleoids by mitochondrial transcription factor A (TFAM) (Kukat et al., 2011). Nucleoids 

support the organisation and expression of the mitochondrial genome and have an average 

diameter of 100nm and usually contain a single copy of mtDNA (Kukat et al., 2011). The 

nuclear genome encodes >1000 other proteins required for mitochondrial function. Therefore, 

it is essential that the nuclear and mitochondrial genomes are co-ordinately regulated.  

Replication of mtDNA involves factors that are encoded by the nucleus. Key components 

include mitochondrial polymerase γ (POLG), which synthesises mtDNA by the action of a 

catalytic subunit (POLGA) and a small processivity subunit (POLGB). Also required are 

Twinkle, a mtDNA helicase, the activity of which is regulated by mtSSB (mitochondrial 

single-stranded binding protein), which also inhibits reannealing (Korhonen et al., 2004).  

Two models for the replication of mtDNA have been proposed; these are the strand-

displacement (asynchronous) model (Clayton, 1982) and strand-coupled (symmetric) model 

(Holt et al., 2000). Both models state that replication is initiated at the origin of replication 

(OH) on the heavy strand of mtDNA. However, the strand-displacement model suggests that 

clockwise replication displaces the light strand, which exposes the light strand origin of 

replication (OL) allowing replication of the entire DNA in an anticlockwise direction 

(Clayton, 1982). Alternatively, the strand-coupled model suggests replication of the light 

strand is initiated soon after the heavy strand, resulting in the formation of Okazaki fragments 

that are converted to DNA (Yasukawa et al., 2006); replication occurs bidirectionally until 

complete (Holt et al., 2000). 

A number of proteins encoded by nuclear DNA are required for mitochondrial transcription 

(reviewed in Falkenberg et al. (2007)). These include mitochondrial RNA polymerase 

(POLRMT) and mitochondrial transcription factors TFAM and TFB2M. Transcription is 

initiated by the binding of TFAM to regulatory elements upstream of promotors of the heavy 

(HSP1 and HSP2) and light (LSP) strand, which causes a conformational change allowing 

binding of POLRMT. This results in the production of long polycistronic transcripts which 

are processed in order to produce mRNA, tRNA and rRNA. Transcription termination is 

modulated by mitochondrial transcription termination factor (mTERF).    
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Figure 1.2: The human mitochondrial genome. Map showing the circular, double-stranded 
16.5kb mitochondrial genome, which encodes 13 proteins (complex I: blue, complex III: 
green, complex IV: red, complex V: yellow), 22 tRNAs (black lines and single letter code) 
and 2 rRNAs (purple). The D-loop contains sequences required for replication and 
transcription initiation. The origins of replication are also shown (heavy strand: OH, light 
strand OL). This image is taken from Taylor and Turnbull (2005). 

 

Mitochondrial translation resulting in protein synthesis involves initiation, elongation and 

termination. These events are not yet fully characterised, but have been extensively reviewed 

(Smits et al., 2010; Mai et al., 2016). Assembly of the initiation complex requires the 

mitochondrial translation factor mtIF3 and mitoribosome dissociation. Binding of mRNA to 

the small subunit of the ribosome is facilitated by mtIF3, ensuring accurate start codon 

positioning. When this is complete, the small and large ribosomal subunits can recombine, 

displacing mtIF3 and allowing progression to the elongation stage. This requires mtEFTU 

which regulates accuracy of translation and the elongation factors mtEGF1 and mtEFG2. 

Finally, termination of translation occurs when a stop codon is encountered and mitochondrial 

release factors (mtRF1, mtRF1a) prompt protein release. Ribosome recycling is facilitated by 

ribosomal recycling factor mtRRF.  
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The mutation rate of mtDNA is up to 10 times higher than nuclear DNA; it is likely that repair 

mechanisms have been sacrificed due to the small size of the mitochondrial genome. 

Furthermore, the close proximity to the OXPHOS system may increase vulnerability of the 

mitochondrial genome to mutation through damage from reactive oxygen species (ROS). The 

high mutation rate of mtDNA has caused high incidence of polymorphic variants within 

mtDNA between individuals. Mutations in mtDNA have also divided the human population 

into haplogroups, representing the occurrence of neutral variants between geographically 

separated populations (reviewed in Wallace et al. (1999)). 

1.1.4 Pathogenic mtDNA mutations 

Although the majority of variants occurring in mtDNA due to mutations are neutral, 

sometimes pathogenic mutations arise, which can cause mitochondrial dysfunction and 

disease if present above a certain threshold. Presentation of disease symptoms is complicated 

by heteroplasmy; each cell contains many mitochondria and each mitochondrion contains 

multiple copies of mtDNA packaged into nucleoids. Therefore, individuals carrying mtDNA 

mutations may be homoplasmic or heteroplasmic for the causative mutation. Homoplasmy is 

the presence of a mutation in all copies of mtDNA, whereas heteroplasmy is the presence of 

both mutated and non-mutated mtDNA molecules. The threshold for disease presentation is 

variable depending on the type of mutation; deletions in mtDNA typically have a threshold of 

around 60% (Moraes et al., 1992; Shoubridge, 1994; Rossignol et al., 2003) whereas a point 

mutation in tRNA may have a high threshold of over 90% (Boulet et al., 1992). The 

variability in symptoms and differences in severity between tissues or cells within a tissue is 

caused by random segregation of mtDNA and clonal expansion. Clonal expansion refers to 

the ability of mutations to accumulate within cells, however this occurs over a long period of 

time, which contributes to the late presentation of some mitochondrial diseases (reviewed in 

Greaves et al. (2012)). 

Mitochondrial disease is not only caused by mutations in mtDNA; as the nuclear genome also 

encodes proteins essential for mitochondrial function, mutation in nuclear encoded 

mitochondrial genes can also result in disease. This in turn complicates disease inheritance, as 

mutations in mtDNA are maternally inherited whereas mutations in nuclear encoded 

mitochondrial genes can be inherited from either the mother or father. It is also possible for 

mutations to occur de novo (Lebon et al., 2003). Mitochondrial disease is most commonly 

caused by mutations in nuclear encoded mitochondrial genes.  
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Due to the variable mutations and the essential function of mitochondria in energy production 

in all tissues, mitochondrial diseases present with a broad range of symptoms that can affect 

multiple organ systems and present at any age. Most commonly affected are tissues that 

require high levels of energy, including the heart, muscle and brain. Treatment of 

mitochondrial disease involves management of symptoms, as there is currently no available 

cure.  

Over 300 disease causing mutations have been identified in mtDNA since the first pathogenic 

mutations were described in 1988 (Holt et al., 1988; Wallace et al., 1988a). Mutations 

causing mitochondrial and OXPHOS dysfunction can result in inability of the cell to produce 

sufficient energy in the form of ATP, causing lactic acidosis and multi-systemic disorders 

generally affecting tissues that require high levels of energy (Greaves et al., 2012). A number 

of clinical syndromes have been defined, which describe the symptoms and affected tissues. 

However, the high phenotypic variability between patients and a general lack of awareness 

presents a challenge for the diagnosis of mitochondrial disease. The incidence of disease 

presentation caused by mutation in mtDNA is estimated to be 1 in 10,000 in the North East of 

England, but it is suggested that this may be a large underestimate as the frequency of 

occurrence of pathogenic mtDNA mutations is much higher (Chinnery et al., 2012; Greaves et 

al., 2012). Thus, it is possible that a number of patients may be incorrectly diagnosed.  

One example of disease caused by mtDNA mutations is Leigh syndrome, a severe and often 

fatal neurological disorder, which usually presents within the first year of life. This syndrome 

is characterised by developmental delay, seizures, progressive loss of movement, and death 

may be caused by respiratory failure. Leigh syndrome can be caused by a range of mutations 

in either nuclear or mtDNA. Mutations affecting over 60 genes have been identified to date 

(Gerards et al., 2016), the first identified mtDNA mutation causing Leigh syndrome was 

identified in 1992 (Tatuch et al., 1992) and occurred in the MT-ATP6 gene (m.8993T>G). 

Other syndromes that can be caused by pathogenic mtDNA mutations include, myoclonic 

epilepsy with ragged-red fibers (MERRF) and mitochondrial encephalomyopathy with lactic 

acidosis and stroke-like episodes (MELAS). MERRF is a progressive disease, which usually 

presents in children or young adults and generally affects the muscles and nervous system 

(Greaves et al., 2012). MELAS patients usually present in early childhood, before 10 years of 

age, with seizures and stroke-like episodes (Greaves et al., 2012). Both syndromes are caused 

by mutations in mtDNA; the most common MELAS causing mutation is m.3243A>G in the 

MT-TL1 (mitochondrial tRNA) gene (Goto et al., 1990). Similarly, MERRF is also commonly 
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caused by pathogenic mutation in a tRNA gene, specifically the MT-TK gene (m.8344A>G) 

(Wallace et al., 1988b). However, both syndromes may be caused by mutations in other 

mtDNA genes, commonly the MT-ND5 gene which encodes a subunit of OXPHOS complex I 

may be affected in MELAS (Dimauro and Davidzon, 2005), and a number of mutated tRNA 

genes have been identified in MERRF patients (Lorenzoni et al., 2014). Interestingly, the 

same mutation does not always cause the same syndrome. For example, m.3243A>G in the 

MT-TL1 gene does not always cause MELAS, but frequently presents as maternally inherited 

diabetes and deafness (MIDD) (van den Ouweland et al., 1992); due to differences in 

heteroplasmy levels. This highlights the variability in mitochondrial disease between patients.  

In summary, the mitochondrial genome encodes only 13 of the ~1,500 proteins required for 

mitochondrial function (Calvo and Mootha, 2010). Thus, normal mitochondrial functioning 

requires interaction between proteins that are encoded by the nuclear and mitochondrial 

genomes. Mitochondrial disease can also be caused by pathogenic mutation in nuclear 

encoded mitochondrial genes, which disrupts mitochondrial function. Generally, the disease 

causing nuclear DNA mutation will disrupt mtDNA maintenance and expression, nucleoside 

transport/synthesis or mitochondrial dynamics (Greaves et al., 2012).  

 

1.2 Inheritance of nuclear and mtDNA  

1.2.1 Oogenesis, meiosis and fertilisation 

During foetal development, oogenesis starts by the proliferation of primordial germ cells 

(PGCs), which migrate to the gonadal ridge and undergo numerous rounds of mitotic cell 

divisions resulting in the production of oogonia. These oogonia enter meiosis to ultimately 

become oocytes. Females are born with a stock of approximately 1 million oocytes, each of 

which is surrounded by a small number of flattened pre-granulosa cells, to form a primordial 

follicle. Primordial follicles are recruited for growth on an ongoing basis throughout life. 

Puberty triggers activation of the ovarian/pituitary axis, enabling follicles to grow to the 

preovulatory stage. From puberty to menopause, mature oocytes capable of undergoing 

fertilisation are released, in a cyclical manner, into the oviduct during ovulation. 

Meiosis is the process by which male and female gametes are able to transmit one copy of 

each chromosome to the fertilised egg. Meiosis is a reductive cell division that results in the 

production of haploid gametes from diploid progenitors, and involves a single period of DNA 

replication followed by two successive rounds of chromosome segregation. The product of 
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each round of male meiosis is four viable sperm, whereas a single oocyte is the only viable 

product of female meiosis.  

Replicated maternal and paternal homologues undergo reciprocal exchange of DNA to form 

crossovers which act as physical linkages (chiasmata) to form bivalent chromosomes (Moore 

and Orr-Weaver, 1998; Petronczki et al., 2003; Kleckner, 2006; Herbert et al., 2015). This 

produces oocytes that remain in a non-growing state, arrested at meiotic prophase until shortly 

before ovulation, which corresponds to decades in the case of humans. The pool of primordial 

follicles established during foetal development becomes depleted throughout life, primarily 

due to cell death (Herbert et al., 2015). Between puberty and menopause, a tiny minority 

(~400) are selected for ovulation. Ovulation is triggered by a surge in Luteinizing hormone 

(LH), which also triggers exit from arrest in prophase of meiosis I. The nucleus of the 

prophase I arrested oocyte is known as the germinal vesicle (GV). Fully-grown oocytes, 

undergo GV breakdown (GVBD), which marks entry into M phase of meiosis I and 

completes the 1st meiotic division, forming the 1st polar body shortly before ovulation.  In 

mouse oocytes, formation of the 1st polar body is preceded by migration of the spindle from 

its central position in the oocyte to the cortex by a microfilament-mediated process, which can 

be disrupted by drugs that disrupt actin dynamics (Longo and Chen, 1985; Verlhac et al., 

2000; Liu et al., 2002; Calarco, 2005). Conversely, treatment with inhibitors to disrupt 

microtubule organisation prevents spindle formation, but chromosomes are able to localise to 

the cortex (Longo and Chen, 1985; Verlhac et al., 2000). Furthermore, live imaging of mouse 

oocytes has revealed that spindle migration requires interaction of a reorganising cytoplasmic 

actin network that is nucleated by Formin-2 with myosin enriched spindle poles (Schuh and 

Ellenberg, 2008). The authors demonstrate that inhibition of myosin activation prevents 

spindle movement (Schuh and Ellenberg, 2008). These studies show that interaction between 

actin and microtubules is essential during meiosis for accurate spindle positioning. Similar 

findings haves also been reported from studies using human oocytes (Kim et al., 1998). 

During anaphase of the first meiotic division bivalents are converted to two dyad 

chromosomes, consisting of sister chromatids linked by cohesion at the centromere (Moore 

and Orr-Weaver, 1998; Petronczki et al., 2003). Because anaphase I occurs at the oocyte 

cortex, a highly asymmetric cell division ensues, and one set of dyads is lost to the first polar 

body, a small structure which is destined for degeneration. The dyads that remain in the 

oocyte align on the metaphase II (MII) spindle, which is formed at the cortex of the oocyte. 

The oocyte then enters a second period of arrest known as MII arrest, where it remains until 

the fertilising sperm triggers the second meiotic division.  
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In mouse oocytes, the cortical layer of actin is produced from free ends of actin filaments (F-

actin) stemming from the oocyte plasma membrane, which intermesh to form a dense cortical 

layer (Sun and Schatten, 2006). During oocyte maturation, a thick cortical layer of actin 

known as the actin cap is formed at the oocyte cortex adjacent to the spindle, which 

contributes to maintenance of spindle position and plays an essential role in polar body 

extrusion, determining the site at which this will occur (Longo and Chen, 1985). The MII 

spindle is maintained at the oocyte cortex by an actin-dependent mechanism involving Rac1 

(Halet and Carroll, 2007) and Arp2/3 (Yi et al., 2011). Arp2/3 is active at the oocyte cortex 

adjacent to the spindle, where it nucleates the actin cap, a thick cortical layer of actin (Deng et 

al., 2007).  

The oocyte is surrounded by a protective glycoprotein layer called the zona pellucida that the 

sperm must penetrate (Wassarman and Litscher, 2008). Fertilisation triggers exit from MII 

arrest (Clift and Schuh, 2013). At fertilisation, phospholipase C zeta (PLCζ) is released into 

the oocyte cytoplasm from the sperm. This triggers calcium release from endoplasmic 

reticulum (ER) stores (Saunders et al., 2002), resulting in the generation of calcium 

oscillations that continue for a number of hours and leading to a series of events termed 

'oocyte activation' (Miyazaki et al., 1986), including anaphase of meiosis II when dyad 

chromosomes are resolved to their constituent chromatids, which either remain in the oocyte 

or are expelled into the second polar body.  

Fertilisation also induces remodelling of the oocyte cytoskeleton, reflecting changes occurring 

within the oocyte when meiosis is completed and the first mitotic cycle begins.  These include 

disassembly of the MII spindle and microtubule-dependent positioning of the pronuclei at the 

centre of the zygote to facilitate symmetric cell division during the 1st mitosis. The 

centrosome present in the zygote originates from the sperm, and is therefore associated with 

the male pronucleus (Reinsch and Gonczy, 1998). A large microtubule aster from the 

centrosome associates with the female pronucleus, allowing it to move towards the male 

pronucleus by a dynein dependent mechanism (Reinsch and Karsenti, 1997; Deng et al., 

2007; Wuhr et al., 2009). The first mitotic spindle forms centrally in the zygote following 

nuclear envelope breakdown. Actin filaments in the zygote are enriched at the cortex, 

providing mechanical strength and prepared for the first mitotic division.   

Oocyte activation also triggers a polyspermy block, for which three mechanisms have been 

discovered in mouse oocytes. The first two mechanisms to block polyspermy are not well 

characterised, but are thought to occur very quickly after fertilisation to prevent more than one 



12 
 

sperm fusing with the oocyte membrane. The receptor for sperm cell surface protein Izumo1 

has been identified as folate receptor 4 (Juno); the interaction between Izumo1 and Juno is 

shown to be conserved in many mammalian species (Bianchi et al., 2014). It has been 

suggested Juno is involved in the polyspermy block, as it is highly expressed on the 

membrane of unfertilised eggs but not detected approximately 30 minutes after fertilisation 

(Bianchi and Wright, 2014). The authors found that Juno was present within vesicles in the 

peri-vitelline space, and suggest that these vesicles act as rapid sperm-blocking agents 

(Bianchi and Wright, 2014). The third mechanism prevents sperm binding the zona pellucida 

surface, and occurs over a number of hours involving cortical granule exocytosis (Barros and 

Yanagimachi, 1971). Ovastacin is released from cortical granules after fertilisation and 

cleaves ZP2, which subsequently prevents sperm binding to the zona pellucida (Burkart et al., 

2012). The incidence of polyspermy is quite high following IVF techniques (Ho et al., 1994). 

Polyspermy is generally defined by the presence of >2 pronuclei and precludes the use of 

embryos from fertility treatments, as there is a high risk of triploidy which may cause severe 

birth defects and miscarriage (Feenan and Herbert, 2006). On the other hand, zygotes with 

only a single pronucleus are also observed following IVF, this could arise due to 

parthenogenetic activation, or due to the maternal and paternal genomes becoming surrounded 

by a single pronuclear membrane. Alternatively, the second pronucleus may have failed to 

form (Feenan and Herbert, 2006).  

1.2.2 Female age-related segregation errors 

Chromosome segregation errors occurring during female meiosis contribute to the majority of 

meiotic errors that are detected in human pregnancies (Hassold and Hunt, 2001). Although 

most of these errors are not compatible with embryonic development and result in failed 

implantation, some can progress to later stages. This includes trisomy 21, the most common 

trisomy, which results in Down's syndrome. It is known that the risk of trisomy 21 increases 

in pregnancies to females over ~35 year of age (Nagaoka et al., 2012). As the number of 

women delaying motherhood is increasing in recent years, incidence of trisomy 21 has also 

increased (Morris and Alberman, 2009; Loane et al., 2013). The increased incidence of 

chromosomal segregation errors in older women contributes to the age-related decline in 

fertility. Oocytes produced during foetal life are arrested at prophase I until they are recruited 

for growth and the hormonal surge triggers meiotic progression and ovulation. Thus, oocytes 

ovulated by perimenopausal females have been arrested for a number of decades, and work in 

mice indicates that the cohesin complexes which stabilise bivalent chromosomes, become 

depleted during this time (Ballesteros-Meija, unpublished). Age-related loss of cohesin is 
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associated with disruption of the bivalent structure and an increased incidence of chromosome 

segregation errors, notably premature separation of chromatids, in mouse oocytes (Chiang et 

al., 2010; Lister et al., 2010). Consistent with this, numerous studies have reported a strong 

positive correlation between female age and premature loss of centromeric cohesion leading 

to single chromatids in MII-arrested human oocytes (Herbert et al., 2015).  

1.2.3 Inheritance of mitochondrial DNA (mtDNA) 

Mitochondria are unique as they contain their own DNA remaining from their bacterial 

origins. However, traditional Mendelian inheritance is not followed. Unlike nuclear DNA, 

which is inherited from both parents, mtDNA is strictly maternally inherited. The occurrence 

and mechanism of paternal mtDNA destruction has been debated, but a recent study 

performed extreme-high depth mtDNA re-sequencing and results excluded the possibility of a 

dilution effect and suggests that an active mechanism at the molecular level ensures the 

elimination of paternal mtDNA (Pyle et al., 2015). Destruction of paternal mitochondria has 

been shown to occur by ubiquitination and autophagy (Al Rawi et al., 2011; Sato and Sato, 

2011). However, further research is required in order to characterise the molecular 

mechanisms underlying elimination of paternal mtDNA.   

During oogenesis, mtDNA is transmitted from PGCs to oogonia during multiple rounds of 

mitotic cell division and subsequently to the primordial-stage oocyte. Oocyte growth and 

maturation is associated with rapid replication of mtDNA to form the founder population for 

the developing embryo and transmission to the next generation (Figure 1.4).  

The mtDNA genetic bottleneck hypothesis explains the occurrence of differing levels of 

heteroplasmy between a mother and her offspring, which makes it impossible to predict the 

risk of disease in children born to women heteroplasmic for a pathogenic mtDNA mutation. 

The hypothesis was proposed following early research that found de novo heteroplasmic 

mutation in Holstein cows could persist and become homoplasmic within three generations 

(Upholt and Dawid, 1977; Olivo et al., 1983). Further research in the mouse has provided 

support for the bottleneck hypothesis, and although it is poorly understood, three models for 

the bottleneck have been proposed. Firstly, it is suggested that mtDNA copy is dramatically 

reduced before PGC expansion, which is followed by unequal segregation of mutated and 

wildtype genotypes causing shifts in oocyte heteroplasmy (Cree et al., 2008). Thus, due to 

sampling effects, some oocytes will have a higher level of mutated mtDNA than others 

(Figure 1.3), which results in variable levels of mutated mtDNA between the mother and 

offspring. Secondly, nucleoids may be homoplasmic therefore reducing the number of 
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segregating units and accelerating genetic drift (Cao et al., 2007; Cao et al., 2009). Finally, 

there may be replication of a subpopulation of mitochondrial genomes during oocyte 

maturation (Wai et al., 2008). In any case, the bottleneck hypothesis suggest that the 

heteroplasmy level within individual oocytes that will transmit the mitochondrial genome to 

the next generation is determined before birth.  

1.2.4 Summary of inheritance 

To summarise, meiosis is a reductive cell division that enables offspring to inherit nuclear 

DNA from both parents. Conversely, mtDNA is strictly maternally inherited as mtDNA from 

the sperm is eliminated. Thus, the mitochondria present in the oocyte represent the founder 

population for mitochondria in the developing embryo. 

 

 

 

Figure 1.3: Heteroplasmy in MII oocytes. The mtDNA genetic bottleneck results in females 
carrying pathogenic mtDNA mutations producing oocytes containing variable levels of 
mtDNA mutations.  
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Figure 1.4: Human preimplantation development and oogenesis. Human preimplantation development is associated with a reduction in mtDNA 
copy number, as the oocyte contains the founder population of mitochondria for the developing embryo, and mtDNA is segregated between 
blastomeres during each embryonic division. Oocyte maturation is associated with rapid replication of mtDNA, producing oocytes containing more 
than 100,000 copies of mtDNA at the time of ovulation. This figure is adapted from an image by Mahdi Lamb. 
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1.3 Preimplantation development 

Following fertilisation, the oocyte transitions from meiosis to mitosis. Paternal chromatin is 

rearranged; the protamines around which sperm DNA is packaged are exchanged for histones, 

and haploid maternal and paternal DNA becomes enclosed in pronuclear membranes (Clift 

and Schuh, 2013). This 1-cell embryo is commonly known as the zygote. It is within the 

separate pronuclei that maternal and paternal DNA is replicated before the pronuclear 

membranes break down and maternal and paternal chromosomes align on the first mitotic 

spindle, primed for the first mitotic division to produce a 2-cell embryo (Clift and Schuh, 

2013).  

The zygote is not transcriptionally active, so relies on maternal mRNA transcripts and 

proteins present in the oocyte cytoplasm for initial development. The transition from maternal 

to embryonic control of gene expression is known as embryonic genome activation (EGA). 

During this transition, maternal transcripts must be degraded; it has been discovered that at 

the time of fertilisation, transcripts required for meiotic processes are quickly degraded while 

those important for embryonic development are not, however regulation of transcript 

degradation is unknown (Alizadeh et al., 2005). EGA occurs at different times in mouse and 

human embryos. In mouse embryos, EGA is thought to occur from the 1- to 2-cell stage (Aoki 

et al., 1997; Hamatani et al., 2004). Whereas in human embryos, EGA occurs at the 4- to 8-

cell stage (Braude et al., 1988). Further characterisation of the EGA in human embryos 

revealed that the EGA is independent of cell number, but always occurs on day 3 of 

development (Dobson et al., 2004). Additionally, although the majority of mRNAs were 

targeted for destruction before day 3, a number of mRNAs appeared to increase in quantity; it 

is suggested that this represents preferentially stable mRNAs within the pool of maternal 

mRNAs targeted for degradation, or minor transcriptional activity (Dobson et al., 2004; 

Niakan et al., 2012). It has been suggested that the different timings of EGA in mouse and 

human embryos may indicate different roles of maternal and zygotic transcripts in the mouse 

and human (Cockburn and Rossant, 2010). 

During early human development, successive cell divisions occur and usually at the 16-cell 

stage, cells begin to compact forming a solid ball of cells known as the morula. Compaction is 

associated with membrane flattening, adherens and tight-junction formation (Hardy and 

Handyside, 1996; Fleming et al., 2001; Bloor et al., 2002), and blastomeres begin to show 

polarity involving intracellular reorganisation (Cockburn and Rossant, 2010). When the 

morula is formed, the embryo is capable of metabolic homeostasis as gap junctions permit 
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passage of ions and small non-electrolytes including glucose and signalling molecules (Brison 

et al., 2014).  

The blastocoel fluid filled cavity begins to form in the 32-cell morula (Cockburn and Rossant, 

2010; Clift and Schuh, 2013), which involves transport of Na+ and subsequent osmotic fluid 

accumulation through the action of Na+/K+ ATPases and aquaporins (Watson and Barcroft, 

2001). Blastulation of human embryos in vitro normally occurs at 5 days post fertilisation 

(Cockburn and Rossant, 2010), blastocyst development is characterised by expansion of the 

blastocoel cavity. Cells are allocated to the trophectoderm (TE) or inner cell mass (ICM) 

depending on their location within the embryo. The outer layer of embryonic cells is allocated 

to the TE, which will become the extra-embryonic tissue whereas ICM cells will become the 

foetus and the yolk sac. Cavity expansion and embryo growth produces the late blastocyst 

approximately 6 days post fertilisation (Cockburn and Rossant, 2010). When the blastocyst is 

ready to implant, it hatches out of the zona pellucida by a process that is not well understood. 

The events of preimplantation development are similar across mammalian species. Therefore, 

animal models are a useful tool in the study of human preimplantation development. 

However, there are differences between species in the expression of lineage specific genes 

(Niakan and Eggan, 2013). Expression of lineage specific genes has been well characterised 

in the mouse. In the mouse, the Hippo signalling pathway results in Cdx2 upregulation in the 

outer morula cells which form the TE of the blastocyst (Nishioka et al., 2009; Sasaki, 2010). 

Tead proteins control Hippo signalling by transcription mediation to regulate cell proliferation 

(Ota and Sasaki, 2008). The inner cells form the ICM, with upregulation of the transcription 

factors OCT4, NANOG and SOX2 (Palmieri et al., 1994; Avilion et al., 2003; Mitsui et al., 

2003). Subsequently the ICM undergoes further specification into the epiblast (EPI) and 

primitive endoderm (PE) lineages. This process is less well understood; it has been shown to 

be driven by differential FGF signalling in the mouse (Guo et al., 2010) although this is not 

required for ICM segregation in human (Roode et al., 2012). It is also known that the 

transcription factors GATA4, GATA6 and SOX17 are involved in the specification of the PE 

lineage (Morrisey et al., 1998; Koutsourakis et al., 1999; Niakan et al., 2010), whereas 

NANOG is expressed in EPI cells (Niakan and Eggan, 2013).   

More recently, single-cell RNA-sequencing (scRNA-seq) technology has been utilised to 

perform detailed studies on gene expression and lineage-specification in mammalian 

blastocysts (Xue et al., 2013; Yan et al., 2013; Piras et al., 2014; Petropoulos et al., 2016). It 

has been shown that developmental stages from the oocyte to morula are characterised by 
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distinct gene expression profiles, suggesting stepwise transcriptional changes in numerous 

pathways including the gene regulation and metabolism, which are largely conserved between 

mouse and human embryos (Xue et al., 2013). Consistent with previous reports (Chazaud et 

al., 2006; Plusa et al., 2008; Roode et al., 2012; Niakan and Eggan, 2013), a recent scRNA-

seq study using 88 human blastocysts identified a period of co-expression of lineage-

associated genes prior to lineage establishment (Petropoulos et al., 2016). The similarities and 

differences between lineage-specification in the mouse and human have been highlighted in a 

recent publication using scRNA-seq (Blakeley et al., 2015). For example, the expression of 

NANOG, FOXA2 and CDX2 was found to be restricted to the EPI, PE and TE lineages 

respectively in both mouse and human blastocysts (Blakeley et al., 2015). 

Mitochondria play an important role in preimplantation development, with mitochondrial 

dysfunction compromising developmental success (reviewed in (Dumollard et al. (2007)). 

The 'quiet embryo hypothesis' (Leese, 2002) and a 'Goldilocks zone' (Leese et al., 2016) of 

optimal metabolic activity compatible with embryo viability have been described. This 

suggests that embryos with an overly 'active' metabolism may have increased metabolic 

processes linked to stress and DNA damage, which could cause increased levels of Reactive 

Oxygen Species (ROS) and have a negative effect on embryonic development (Leese et al., 

2008). Despite a brief period of mtDNA replication that has been suggested to occur 

immediately post-fertilisation (McConnell and Petrie, 2004), it is generally thought that there 

is no replication of mtDNA during preimplantation development. According to current 

knowledge, mtDNA is maternally inherited from the oocyte and subsequently segregated 

between daughter cells during each embryonic division. It has been proposed that an 

increased number of mitochondria are present in the TE compared to the ICM, as the TE is 

responsible for high energy consumption and ATP production and increased MitoTracker 

staining was observed in the TE (Houghton, 2006). A specific aim of my project is to 

investigate gene expression patterns in unmanipulated control and pronuclear transfer (PNT) 

blastocysts, including mitochondrial gene expression, using scRNA-seq.  
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Figure 1.5: Human preimplantation development. Schematic showing human preimplantation development from fertilisation of the MII oocyte to 
blastocyst formation and foetal development. The trophectoderm (TE) forms the placenta, whereas the inner cell mass is composed of the epiblast 
(EPI) and primitive endoderm (PE) lineages, which become the foetus and yolk sac, respectively. This figure is adapted from an image by Mahdi 
Lamb. 
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1.4 Current reproductive options for females carrying mtDNA mutations 

The mtDNA genetic bottleneck results in the production of oocytes with varying levels of 

heteroplasmy (Figure 1.4). This means that it is not possible to predict the level of pathogenic 

mtDNA mutation that may be transmitted from mother to child. Furthermore, even if the 

mutation is transmitted, the threshold effect makes it difficult to predict whether the child 

would develop symptoms of mitochondrial disease. Therefore, genetic counselling for 

patients is essential. There are several reproductive options currently available to women 

carrying mtDNA mutations. However, there are a number of limitations and disadvantages 

associated with these options.  

1.4.1 Oocyte donation 

Females producing oocytes that contain high levels of mutated mtDNA or that are 

homoplasmic for the mtDNA mutation may consider using donated oocytes containing 

healthy mtDNA. This approach would involve fertilising donated oocytes using the partner's 

sperm by IVF; embryos developing following IVF can be selected for transfer to the uterus of 

the affected female. Although this would ensure that the baby would not be affected by 

mtDNA disease, it of course means that the nuclear DNA would come from the donor oocyte 

so the baby would not be genetically related to the mother. Therefore, some potential mothers 

may not consider this as an option.  

1.4.2 Prenatal diagnosis 

Prenatal diagnosis involving chorionic villus sampling or amniocentesis is most commonly 

used for detection of chromosomal abnormalities, though there are also reports of the use of 

this method for mtDNA mutations (Harding et al., 1992; White et al., 1999; Leshinsky-Silver 

et al., 2003; Jacobs et al., 2005). However, there are concerns that mtDNA mutation load of 

the prenatal sample would provide an accurate indication of the mutation load in other foetal 

tissues, as it is known that mtDNA mutations can show tissue-specific differences in 

heteroplasmy levels. Furthermore, mtDNA mutations may segregate unequally between extra-

embryonic and embryonic tissue, thus the mutation load in extra embryonic tissue may not 

correlate to the mutation load of the child (Harding et al., 1992). Moreover, it is difficult to 

relate the sampled mutation load to potential clinical outcome. This can result in extremely 

hard decisions for the parents regarding the pregnancy. Finally, there is a risk of miscarriage 

associated with this procedure and this method is not useful for couples that would not 

consider terminating a pregnancy. 
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1.4.3 Preimplantation genetic diagnosis (PGD) 

Preimplantation genetic diagnosis (PGD) is an established technique used to prevent 

transmission of mutations in nuclear DNA. The procedure involves testing embryos at the 6- 

to 8-cell stage by removing 1 or more cells for genetic analysis. Embryos that are found to not 

be affected by the mutation in nuclear DNA can then be selected for transfer to the uterus. 

PGD has also been applied to reduce the risk of mtDNA disease transmission. However, use 

of PGD for mtDNA disease is complicated by the need to define heteroplasmy thresholds, 

which is difficult due to the variability between mutations (Hellebrekers et al., 2012a). This 

makes clinical decisions regarding which embryos should be transferred difficult. 

Furthermore, the question of whether samples are representative of the whole embryo is also 

important for the success of PGD for reducing the risk of mtDNA disease transmission.  

A number of strategies could be applied in order to predict embryonic mtDNA mutation 

loads. It has been proposed that polar bodies, the by-products of female meiosis, may provide 

an estimation of the mutation load in the oocyte (Dean et al., 2003; Sato et al., 2005). 

However, studies in mouse (Neupane et al., 2014) and human (Gigarel et al., 2011; 

Vandewoestyne et al., 2012) have shown that polar bodies do not provide a reliable 

approximation of mutation load. This may be caused by the highly asymmetric segregation of 

mitochondria during female meiosis (Dalton and Carroll, 2013). The most common approach 

is to remove cells from the 6- to 8-cell stage embryo for mutation load testing and the 

evidence to date indicates low variability in heteroplasmy levels between blastomeres from 

human cleavage-stage embryos (Steffann et al., 2006; Tajima et al., 2007; Treff et al., 2012; 

Sallevelt et al., 2013).  

Sallevelt et al. investigated the use of PGD in mtDNA disorders by analysing mutation load in 

oocytes, zygotes and embryos of 4 patients using PCR (Sallevelt et al., 2013). Of these 

patients, 3 carried m.3243A>G which causes MELAS, and 1 patient carried m.8993T>G 

which is known to cause Leigh's syndrome. The study found that in most cases the mutation 

load measured in blastomeres was representative of the mutation load in the whole embryo 

(Sallevelt et al., 2013), suggesting that PGD is a useful option for mtDNA patients. However, 

the sample size in the study was small; including only 4 patients and 2 different mtDNA 

mutations. Nevertheless, PGD has been successfully used to reduce the risk of MELAS 

transmission following biopsy of trophectoderm cells from the blastocyst (Treff et al., 2012), 

suggesting that trophectoderm biopsy may be representative of the whole blastocyst. However 

there are conflicting reports on the mutation load of a child following the use of this method 
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(Treff et al., 2012; Mitalipov et al., 2014), which could be caused by differences in the assays 

used for mtDNA measurement.  

The segregation of mtDNA during embryonic development is studied experimentally using 

embryos produced by females with heteroplasmic mtDNA mutations or by artificially 

inducing heteroplasmy. Research has indicated that variant mtDNA inherited through the 

germ line segregates more uniformly between blastomeres than variant mtDNA introduced by 

karyoplast or cytoplast fusion with a fertilised oocyte (Meirelles and Smith, 1998), with wide 

variation occurring between blastomeres following cytoplast fusion. Consistent with this, 

recent work in which heteroplasmy was induced by fusing MII oocytes from different 

macaque strains resulted in wide variation between blastomeres of the 8-cell embryo (Lee et 

al., 2012). The authors proposed the occurrence of an mtDNA genetic bottleneck during 

preimplantation development, and suggest that their findings cast doubt on the reliability of 

PGD in preventing inheritance of mtDNA mutations (Lee et al., 2012). However, based on 

the earlier work from Meirelles and Smith, together with the close correlation in mtDNA 

mutation load between biopsied blastomeres and those remaining in the embryo (Steffann et 

al., 2014), experimental systems involving artificial induction of heteroplasmy may be of 

little relevance to our understanding of how inherited mutations in mtDNA segregate during 

early human development (Steffann et al., 2014). A response to the Steffann et al. publication 

by Mitalipov et al. highlights the occurrence of mtDNA disease in 1 of the 4 reported PGD 

cases (Mitalipov et al., 2014). The authors emphasise the unpredictable nature of mtDNA 

segregation and heteroplasmy during development and requirement for further research 

(Mitalipov et al., 2014). 

To conclude, evidence to date suggests that inherited mtDNA mutations segregate relatively 

evenly between blastomeres during embryonic development. Therefore, testing of blastomeres 

from the 6- to 8-cell embryo is likely to provide a reliable estimation of the mutation load in 

the whole embryo, and PGD provides a promising risk reduction strategy for the transmission 

of mtDNA disease (Richardson et al., 2015). However, a major drawback of this technique is 

that it cannot be used in cases where only oocytes homoplasmic for the mtDNA mutation are 

produced (Dean et al., 2003). Moreover, our clinical experience of PGD indicates that women 

who have high levels heteroplasmy may produce few, if any embryos with mutations loads 

below the threshold for disease (unpublished data). 
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1.5 Techniques to prevent the transmission of mtDNA mutations 

There is currently no cure for mitochondrial disease, and some mutations present at high 

mutation loads can result in severe symptoms and possibly cause death soon after birth. Due 

to the unpredictable nature of mtDNA transmission and mitochondrial disease development, 

women carrying pathogenic mtDNA mutations are faced with difficult reproductive decisions 

and the current options are limited. Therefore, this is an important area of research. Using IVF 

based techniques involving nuclear genome transplantation, it may be possible enable women 

who carry mtDNA mutations to have a genetically related child with a greatly reduced chance 

of transmitting disease. This could be achieved by transferring the nuclear genetic material 

from an oocyte/zygote containing mutated mtDNA to an enucleated oocyte/zygote from a 

donor, containing healthy mtDNA. In this section I will discuss techniques that have been 

proposed to achieve this aim. 

1.5.1 History of nuclear genome transplantation 

The origins of nuclear genome transfer technology date back to 1938, when Hans Spemann 

suggested that nuclei could be transferred from advanced developmental stages to an 

enucleated zygote in order to study the role of DNA in differentiation (Spemann, 1938). 

However, it was not until the 1950s that further nuclear genome transfer experiments were 

reported. In 1952, Briggs and King performed the first successful nuclear transfer of a nucleus 

from an early tadpole embryo to an enucleated frog egg (Briggs and King, 1952). This was 

followed by the production of adult Xenopus following transfer of the nucleus from tadpole 

intestinal epithelial cell to an enucleated frog egg (Gurdon et al., 1958). However, the use of 

nuclear transfer technology in mammals was hindered by the small size of mammalian eggs. 

The first mammalian embryo was created by nuclear transfer in 1975 (Bromhall, 1975), in 

which a glass pipette was used to transfer the nucleus of a cell from a rabbit embryo into an 

enucleated rabbit egg, which successfully developed to the morula stage. McGrath and Solter 

first demonstrated the use of microsurgery to transfer pronuclei between mouse zygotes, to 

achieve successful development and the birth of healthy offspring (McGrath and Solter, 

1983). These experiments enabled the development of techniques to prevent the transmission 

of mtDNA disease, described below. 

1.5.2 Ooplasmic donation 

An early suggested possibility for preventing the transmission of mtDNA disease from mother 

to child was the use of ooplasm donation, as it may have a dilution effect or reduce the effect 

of  mtDNA mutations (Kagawa and Hayashi, 1997). This technique has been used as a 
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treatment in cases of infertility in which embryo development following IVF was low (Cohen 

et al., 1998). The concept underpinning this treatment is that a defect within the ooplasm of 

the patient may be preventing onward development of the embryo. Therefore inserting 

ooplasm from a healthy donor may increase the chance of embryo development to the 

blastocyst stage and consequently increase the chance of subsequent successful pregnancy. In 

1998, Cohen et al. reported the first successful pregnancies and births following injection of a 

small amount of donor ooplasm into the patient oocyte (Cohen et al., 1998). Following this 

study, Barritt et al. investigated whether these children inherited mitochondrial genomes from 

both the mother and the ooplasm donor (Barritt et al., 2001); mtDNA fingerprinting of two 

children at 9 and 14 months of age revealed the presence of a small amount of donor mtDNA 

in the blood. Following the use of ooplasm donation, two children were born with Turner’s 

syndrome, which is a chromosomal abnormality (45X0) and one child was diagnosed with 

pervasive development disorder. Ooplasm donation is no longer available as the FDA stopped 

the use of the procedure pending clinical trials. The likely efficacy of ooplasmic donation for 

preventing mtDNA disease transmission is doubted, as it is unlikely to result in a significant 

shift in heteroplasmy to prevent disease, particularly in cases of high mutations loads (Taylor 

and Turnbull, 2005; Brown et al., 2006). 

1.5.3 Germinal vesicle (GV) transfer 

During oocyte growth, the oocyte is arrested at prophase I and the bivalent chromosomes 

formed during meiotic recombination are present within a large nucleus known as the 

germinal vesicle (GV). It is theoretically possible to harvest immature oocytes and transfer the 

GV to an enucleated oocyte. However, in conventional IVF treatment oocytes are harvested at 

the MII stage. Therefore, this technique would require in vitro maturation of oocytes from the 

GV to the MII stage. It would also necessitate removal of cumulus cells, which are thought to 

be required for normal oocyte maturation (Brown et al., 2006; Barrett and Albertini, 2010). In 

order for this technique to be successful, strategies must be put in place that compensate for 

the loss of the cumulus-oocyte complex (Richardson et al., 2015). To date, there are no 

reports of successful GV transfer using human oocytes.  

1.5.4 Metaphase II spindle transfer (MST) 

Currently the most promising strategy for nuclear genome transfer before fertilisation is the 

transfer of chromosomes between oocytes arrested at MII. This is known as metaphase II 

spindle transfer (MST; Figure 1.6). At this stage, chromosomes are aligned on the MII 

spindle, prepared for anaphase II and second polar body extrusion if fertilisation occurs. As 
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the chromosomes are not enclosed within a nuclear membrane at this stage, transfer of the 

nuclear DNA presents a number of technical challenges. The standard practice for this 

technique is to use liquid crystal birefringence to enable visualisation of the spindle, as this 

cannot be achieved using conventional light microscopy (Paull et al., 2013; Tachibana et al., 

2013; Greggains et al., 2014). However, this poses a problem in cases of chromosome 

misalignment or scattering, such as in oocytes from older females (Battaglia et al., 1996). It is 

not possible to use a fluorescent DNA dye such as Hoechst for chromosome visualisation, as 

they intercalate into DNA and also require the use of UV light for excitation, which can cause 

DNA damage. 

Despite the technical challenges associated with MST, this technique has been successfully 

performed using rhesus macaque (Tachibana et al., 2009) and human (Paull et al., 2013; 

Tachibana et al., 2013) oocytes. Proof of concept studies were performed with rhesus 

macaque oocytes (Tachibana et al., 2009), and resulted in the birth of healthy monkeys with 

undetectable levels of mtDNA carryover. Following these positive results, subsequent studies 

were performed using human oocytes. The results indicate that MST allows minimal mtDNA 

carryover (Paull et al., 2013; Tachibana et al., 2013), however the authors observed a high 

incidence of abnormal fertilisation following MST (Tachibana et al., 2013). This was 

surprising as it was not observed following fertilisation of MST monkey oocytes (Tachibana 

et al., 2009). The high incidence of abnormal fertilisation was at least partially caused by 

premature chromatid separation following failed extrusion of the second polar body, which 

causes the retention of both set of chromatids within the oocytes. As this was not observed in 

monkey oocytes, it indicates that human oocytes may be more sensitive to premature 

chromatid separation. Of the oocytes which were fertilised normally, a high proportion were 

able to develop to the blastocyst stage (Tachibana et al., 2013).  

Data were not provided regarding blastocyst morphology, however the expression of 

pluripotency markers (Paull et al., 2013; Tachibana et al., 2013), metabolic profiles (Paull et 

al., 2013) and karyotype (Tachibana et al., 2013) were found to be normal in embryonic stem 

cells (ESCs) derived from normally fertilised MST human blastocysts. Moreover, mtDNA 

heteroplasmy was maintained at low levels (<1%) in ESC lines (Paull et al., 2013; Tachibana 

et al., 2013). The results indicate that MST may provide an effective approach to prevent the 

transmission of mtDNA disease from mother to child. However, further research is required in 

order to minimise the occurrence of abnormal fertilisation following MST and determine that 

the technique does not disrupt preimplantation development. 
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1.5.5 Pronuclear transfer (PNT) 

Pronuclear transfer (PNT) was first reported in 1983 using mouse oocytes (McGrath and 

Solter, 1983). This technique involves nuclear genome transplantation after fertilisation, when 

the maternal and paternal nuclear genomes are present within structures known as pronuclei. 

The pronuclei are removed within a small volume of membrane-enclosed cytoplasm, known 

as a karyoplast, which is then fused with an enucleated recipient zygote (Figure 1.6). The first 

PNT experiments demonstrated that healthy offspring were able to be produced following 

PNT between zygotes from different mouse strains (McGrath and Solter, 1983).  

In subsequent studies, Lawrence Smith’s lab used PNT to investigate segregation of variant 

mtDNA during embryonic development (Meirelles and Smith, 1997; Meirelles and Smith, 

1998). Although initial PNT experiments were performed in 1983 (McGrath and Solter, 

1983), the use of PNT for prevention of mtDNA disease transmission was not proposed until 

the 1990s (Rubenstein et al., 1995). Later experiments using zygotes from a mouse carrying 

an mtDNA rearrangement were used for PNT and it was found that the technique could 

effectively reduce the presence of mutant mtDNA following transfer to an enucleated zygote 

containing wildtype mtDNA (Sato et al., 2005). In 2010, the first proof of concept studies for 

the use of this technique in humans were performed in our laboratory using abnormally 

fertilised human zygotes (Craven et al., 2010). These experiments demonstrated that PNT 

between human zygotes was technically feasible and compatible with subsequent blastocyst 

development (Craven et al., 2010). Moreover, following optimisation, the carryover of 

mtDNA during the procedure was reduced to an average of <2% (Craven et al., 2010), which 

is well below the expected threshold for disease (Hellebrekers et al., 2012b). However, 

because of the limited potential for onward development of abnormally fertilised eggs, 

meaningful tests of safety and efficacy require the technique is tested using normally fertilised 

human zygotes, donated specifically for research. This was a primary aim of my research 

project. 

1.5.6 Polar body transfer 

It may be possible to use polar bodies, the by-products of female meiosis, as a source of 

nuclear DNA. Experiments in mice demonstrated that fusion of the first polar body with 

enucleated, unfertilised oocytes was compatible with efficient fertilisation and blastocyst 

formation, and resulted in the birth of 6 pups (Wang et al., 2014). Furthermore, this technique 

enabled minimal carryover of mtDNA during the procedure (Wang et al., 2014), which may 

be due to the asymmetric segregation of mitochondria during meiosis (Dalton and Carroll, 
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2013). The authors found that heteroplasmy was undetectable in offspring following first 

polar body transfer, whereas the average carryover in offspring following spindle transfer and 

pronuclear transfer was 5.5% and 23.7%, respectively (Wang et al., 2014). If first polar body 

transfer is found to be compatible with efficient embryo development and reduced carryover 

in human oocytes, it has the potential to reduce the number of oocytes requires from females 

carrying pathogenic mtDNA mutations in clinical treatment.  

1.5.7 Technical considerations for efficient nuclear genome transplantation 

In order perform nuclear genome transplantation without the need to penetrate the plasma 

membrane, zygotes are treated with drugs to relax the cytoskeleton facilitating manipulations.  

The cytoskeleton provides mechanical support for essential functions such as cell division, 

and is composed of three components; actin, microtubules and intermediate filaments.  

Microtubules are the largest filament of the cytoskeleton, which are composed of a 

heterodimer of alpha- and beta-tubulin subunits which form hollow protofilaments ~25nm in 

diameter. Microtubules are arranged in an array extending from microtubule organising 

centres (MTOC), the primary MTOC is usually located close to the nucleus and is known as 

the centrosome. During interphase, the slow-growing, minus ends of microtubules are 

associated with the anchoring structure of the MTOCs, whereas the fast-growing plus ends are 

positioned close to the surface of the cell (Alberts et al., 2015). Microtubules are highly 

dynamic structures that are constantly undergoing growth and shortening. This phenomenon 

is known as dynamic instability and contributes to the important roles of microtubules 

(Kirschner and Mitchison, 1986; Desai and Mitchison, 1997; Brouhard, 2015). For example, 

during cell division it allows microtubule reorganisation to form the spindle, which specifies 

the cleavage plane during cytokinesis and segregates chromosomes into daughter cells. 

Furthermore, the dynamic nature of microtubules allows them to quickly reorganise to alter 

cell shape or transport organelles to specific locations in the cell. Microtubule associated 

proteins (MAPs) and molecular motors are important in regulating the function of 

microtubules. MAPs are important for associating microtubules with each other or other 

filaments of the cytoskeleton. The molecular motors (kinesin and dynein) are involved in the 

transport of vesicles and organelles, including mitochondria, around the cell (Alberts et al., 

2015).  

Actin filaments are also known as microfilaments, as at approximately 7nm in diameter they 

are the thinnest component of the cytoskeleton. Actin monomers (G-actin) polymerise to form 

long fibres (F-actin) which are often found below the cell cortex, providing mechanical  
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Figure 1.6: Pronuclear transfer (PNT) and metaphase II spindle transfer (MST). a) 
Schematic showing fertilisation of donor and patient oocytes using sperm from the patient's 
partner or a donor. The PNT procedure results in the production of a reconstituted zygote 
containing patient nuclear DNA and healthy mtDNA from a donor. b) Schematic showing the 
MST procedure resulting in the production of a reconstituted oocyte composed of patient 
nuclear DNA aligned on the MII spindle and healthy mtDNA from a donor. The oocyte can 
be fertilised using sperm from the patient's partner or a donor. 
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strength and playing a role in cytokinesis (Alberts et al., 2015). As with microtubules, actin 

filaments have plus ends and minus ends; with increased growth powered by ATP occurring 

at the plus end. It is common for cells to have an excess of actin monomers which are not 

assembled into filaments, as they are bound by actin binding proteins such as profilin. The 

activity of profilin is controlled by stimuli; certain stimuli can prompt profilin to release G-

actin, enabling F-actin formation (Lodish et al., 2000). This allows regulation of the amount 

of G-actin and F-actin present within the cell.  

Finally, there are several types of intermediate filaments which are composed of a number of 

different proteins. Intermediate filaments differ from actin filaments and microtubules as they 

are less dynamic and not polarised. These filaments have a role in maintaining the structure of 

the cell; including the maintenance of cell shape and anchorage of organelles.  

The use of cytoskeletal inhibitors during nuclear genome transplantation improves survival, as 

less stress is put on the oocyte/zygote during enucleation. Cytoskeletal inhibitors also enable 

the nuclear genetic material to be removed more easily and helps to reduce the size of the 

karyoplast, thereby reducing carryover of mtDNA. Several inhibitors are available which 

target either the actin or microtubule cytoskeleton. Inhibitors can either promote or inhibit 

polymerisation, in turn disrupting cytoskeletal dynamics. For the purposes of PNT and MST, 

inhibitors which depolymerise the cytoskeleton are appropriate. However, inhibitors of 

microtubule depolymerisation cannot be used during MST as this will result in disruption of 

the MII spindle. Research investigating MST commonly uses the actin polymerisation 

inhibitor cytochalasin B (Tachibana et al., 2009; Paull et al., 2013; Tachibana et al., 2013). 

Proof of concept studies for the use of PNT in human zygotes used the actin polymerisation 

inhibitor cytochalasin B alongside nocodazole, an inhibitor of microtubule polymerisation 

(Craven et al., 2010). 

In addition to cytoskeletal inhibitors, during nuclear genome transplantation manipulations 

inactivated hemagglutinating virus of Japan envelope (HVJ-E), also known as the Sendai 

virus, is used to facilitate fusion (Rocheleau and Petersen, 2001). Membrane fusion may also 

be facilitated by applying an electrical pulse, however this has been found to be poorly 

tolerated by human oocytes and zygotes (Craven et al., 2010; Greggains et al., 2014).  

It is essential that the reagents oocyte/zygotes are exposed to during nuclear genome 

transplantation techniques are reversible and do not have a negative effect on subsequent 

preimplantation development. For example, due to the important role of actin in the extrusion 

of the second polar body during meiosis, it is imperative that the effects of actin inhibitors 
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used during MST are reversed before fertilisation. Slow reversibility of the inhibitor effects or 

lack of sufficient time for recovery between manipulations and fertilisation may cause 

abnormal fertilisation, which has been reported in a study of MST using human oocytes 

(Tachibana et al., 2013). An aim of my research project is to investigate the effect and 

reversibility of cytoskeletal inhibitors used during nuclear genome transplantation.  

 

1.6 Legal issues related to mitochondrial replacement 

The introduction of novel nuclear genome transplantation techniques as clinical treatments to 

prevent the transmission of mtDNA disease requires changes to existing regulations 

governing fertility treatments in the UK and in a number of other countries (Richardson et al., 

2015). In the UK, amendments to the Human Fertilisation and Embryology Act in 2008 

included the provision for Parliament to change the law to enable the Human Fertilisation and 

Embryology Authority (HFEA) to licence the use of nuclear genome transplantation 

techniques for prevention of mtDNA disease transmission. Following the publication of a 

study of PNT using abnormally fertilised human zygotes from our group (Craven et al., 

2010), the HFEA convened an expert panel to report on the safety and efficacy of IVF-based 

techniques to prevent transmission of mtDNA disease. This was followed by a number of 

public consultations, which were broadly supportive. In February 2015, following a debate 

the houses of Parliament in the UK voted in favour of approving regulations to permit the use 

of nuclear genome transplantation techniques, MST and PNT, to prevent the transmission of 

mtDNA mutations from mother to child. The regulations state that the techniques can only be 

used in cases to prevent the transmission of mtDNA disease, they cannot be used in general 

fertility treatment.  

The new regulations came into force in October 2015, however the Expert Panel convened by 

the HFEA required further safety and efficacy tests before the HFEA is able to grant licences 

to fertility centres to offer these techniques in clinical treatments. The required tests were 

specified in the third scientific review of methods to avoid mitochondrial disease through 

assisted conception (HFEA, 2014). As a number of these experiments have been performed 

for MST (Paull et al., 2013; Tachibana et al., 2013), I will focus on the requirements for PNT 

studies, which is relevant to this thesis.  

The panel recommend the minimal, critical experiment required to assess the safety of PNT is 

the performance of PNT using normally fertilised human oocytes and subsequent 
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development compared to normal ICSI fertilised human oocytes (HFEA, 2014). Proof of 

concept studies were performed using only abnormally fertilised human zygotes (Craven et 

al., 2010). It was also recommended that karyotype, gene expression analysis and studies on 

oocyte, zygote and karyoplast vitrification be carried out (HFEA, 2014). With regards to 

mtDNA carryover during PNT, the panel requested studies on heteroplasmic mosaicism in 

human morulae and human ESCs derived from blastocysts following PNT using zygotes with 

different variants of mtDNA (HFEA, 2014). This would enable insights into whether 

subsequent amplification of carried over mtDNA occurs.  

In the report, the HFEA also state that complete reassurance cannot be achieved from testing 

MST/PNT using animal models and human oocytes in vitro; therefore it should be accepted 

that there will be risk and unknowns associated with the use of these techniques in humans 

until it is tried in the clinic (HFEA, 2014). This has also been discussed in reviews into the 

ethical issues surrounding mitochondrial gene replacement (Bredenoord et al., 2008; 

Bredenoord and Braude, 2010).   

Currently, nuclear genome transplantation techniques to prevent the transmission of mtDNA 

disease are not licenced for use in the USA. However, in February 2016 a committee of 

experts were convened to report to the US Food and Drug Administration (FDA) regarding 

the use of these techniques, after the FDA received applications from groups hoping to use the 

techniques (Claiborne et al., 2016). The report provided by the committee urges a cautious 

approach, and recommends the techniques should only be used in cases where there is a high 

risk of transmitting serious mtDNA disease from mother to child (Claiborne et al., 2016). 

Furthermore, it was recommended that the techniques only be used in male embryos until 

more is known about possible effects of this technique on future generations (Claiborne et al., 

2016). The recommendations are currently under review by the FDA. 

 

1.7 Testing the safety and efficiency of PNT 

Proof of concept studies have shown that IVF based techniques have the potential to reduce 

the risk of mtDNA disease transmission by separating the inheritance of nuclear and mtDNA, 

allowing females carrying pathogenic mtDNA mutations to have a genetically related child 

unaffected by mitochondrial disease. However, before any of these techniques can be offered 

as a clinical treatment, preclinical studies must be performed to test whether they are safe, 

efficient and compatible with preimplantation development. A number of parameters can be 
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tested to investigate whether PNT disrupts subsequent development. The expert panel 

convened by the HFEA also requested the performance of specific critical experiments to 

investigate the safety of PNT, as discussed above (section 1.6). Of course, it must be 

demonstrated that the techniques can effectively reduce the risk of disease transmission by 

minimising the carryover of mtDNA. This is outside the scope of this thesis, but mtDNA 

carryover experiments following PNT are discussed in detail in our recent publication 

(Hyslop et al., 2016). 

1.7.1 Preimplantation development 

As discussed previously (section 1.3), human preimplantation development involves a number 

of cleavage divisions, compaction and cavitation ultimately resulting in the production of a 

blastocyst at 5-6 days post-fertilisation. It is important to determine that PNT does not disrupt 

preimplantation development. At the 1-cell stage the embryo is in a dynamic state in which 

maternal and paternal genomes are undergoing molecular changes and events associated with 

the transition from gamete to embryo. It is possible that PNT could disrupt events such as 

DNA replication and paternal genome demethylation. Disturbance of DNA replication would 

likely cause developmental arrest, which would reduce PNT efficiency. The blastocyst is an 

important developmental milestone, as it this stage the embryo is capable of implantation and 

the formation of a pregnancy. If this stage is not reached due to poor survival following 

manipulations, developmental arrest or disruption of lineage-specification, the efficiency of 

PNT would be reduced as the chance of achieving a pregnancy per treatment cycle would be 

reduced.  

It is also possible to assess the quality of human blastocysts according to a grading scheme 

that is used in the clinical laboratory at Newcastle Fertility Centre, which assesses quality 

according to blastocyst morphology (Stephenson et al., 2007; Cutting et al., 2008). It is 

known that blastocyst quality correlates closely with implantation potential (Hardarson et al., 

2003; Ahlstrom et al., 2011), therefore this would give a good indication of whether 

blastocysts produced following PNT are compatible with the establishment of a pregnancy.  

Thus, as specified by the expert panel convened by the HFEA (HFEA, 2014), assessing the 

development of normally fertilised human zygotes following PNT is an essential experiment 

in the investigation of the safety and efficiency of PNT. Due to the similarities in 

preimplantation development between mouse and human blastocysts, it may also be possible 

to performed experiments alongside human PNT using the mouse to further assess the effects 

of PNT and associated reagents and procedures.  
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1.7.2 Whole genome analysis 

It will also be important to assess the effect of PNT on chromosome segregation, which can 

be performed using array-based comparative genomic hybridisation (array-CGH) to analyse 

the incidence of aneuploidy in samples from human blastocysts. Although it is known that 

chromosomal mosaicism is common in human preimplantation embryos (van Echten-Arends 

et al., 2011), uniform aneuploidy affecting multiple chromosomes is usually not compatible 

with development and results in failed implantation or miscarriage. Some aneuploidies can 

progress to later stages, such as trisomy 21 that results in Down's syndrome, which is usually 

caused by an error during female meiosis. However, it is important to determine that PNT 

does not disrupt chromosome segregation during embryonic division.  

1.7.3 Gene expression analysis 

As discussed previously (section 1.3), lineage specification in human blastocysts has recently 

been studied in detail using scRNA-seq technologies. Therefore, we are able to use this 

technology to analyse the expression of lineage-associated genes in PNT blastocysts, which 

would give further indication as to whether cells are allocated to the ICM and TE correctly 

during preimplantation development following PNT. It will also be possible to investigate 

global and mitochondrial gene expression patterns in PNT blastocysts compared to 

unmanipulated controls. Disruption of events such as paternal genome demethylation 

occurring in the zygote around the time of PNT may cause gene expression and/or 

developmental abnormalities that may not be identified until after birth. Comparing gene 

expression patterns between unmanipulated controls and PNT blastocysts may give an 

indication on whether PNT has had any effect on gene expression in the embryo. 
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Chapter 2. Aims 

 

The overarching aim of this project is to perform preclinical studies to investigate the safety 

and efficiency of PNT using normally fertilised human zygotes. 

 

The specific aims are: 

1. Investigate the effect of PNT on human preimplantation development, by assessing 

survival, blastocyst development, quality, cell number and incidence of aneuploidy. I 

will also perform additional experiments in parallel to human PNT using mouse 

zygotes.    

 

2. Investigate the effect and reversibility of cytoskeletal inhibitors used during nuclear 

genome transplantation techniques, in order to select inhibitors that are safe for use in 

human PNT.  

 

3. Analyse single-cell RNA-sequencing data from unmanipulated and PNT blastocysts to 

investigate whether global, lineage-associated and mitochondrial gene expression 

patterns in the blastocyst are disrupted following PNT.  
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Chapter 3. Materials and methods 

3.1 Human oocytes and embryos 

This project was approved by the Newcastle and North Tyneside Research Ethics Committee 

(REC reference 10/H0906/13) and licensed by the UK Human Fertilisation and Embryology 

Authority ((HFEA) licence reference R0152-5-B, project reference R0152, centre reference 

0017) and the NHS Trust (R&D project 5245). Informed consent was obtained from all 

donors by research nurses who were not directly involved in the research or patient treatment.  

3.1.1 Donated human oocytes 

Oocytes were donated by females either undergoing fertility treatment as part of an 'egg 

sharing' programme, or non-patient donors. Compensation under the 'egg share' programme 

consisted of a subsidy (£1,500) from research funds towards the cost of treatment for self-

funded patients, or an additional funded treatment cycle for those who did not become 

pregnant after NHS-funded treatment. For non-patient donors, financial compensation of £500 

per donation cycle was given. This is in accordance with current HFEA guidelines on 

payments for donors.  

Oocytes were collected by ultrasound-guided follicle aspiration. Hyaluronidase (HYASE™; 

Vitrolife, Sweden) was used to remove cumulus cells surrounding the oocytes. MII oocytes 

identified by the presence of the first polar body were fertilised using donated sperm by 

intracytoplasmic sperm injection (ICSI). This was performed by doctors and embryologists at 

Newcastle Fertility Centre.  

3.1.2 Human abnormally fertilised zygotes 

Human abnormally fertilised zygotes are not used in fertility treatment, therefore were available 

from patients at Newcastle Fertility Centre if consent was given to be used for research. 

Abnormally fertilised zygotes were identified by the presence of 1 pronucleus or 3 pronuclei 

on day 1 of the IVF/ICSI cycle.  
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3.2 Mouse strains 

Mouse strains used in this project were CD1 and C57BL/6, housed at the Institute of Genetic 

Medicine, Newcastle University. Oocytes and embryos were collected from female mice 

between 2 and 4 months of age. Mouse work was carried out under a license issued by the 

Home Office (project licence number PPL707960) and according to regulations. 

3.2.1 Collection of mouse oocytes 

For the collection of metaphase II mouse oocytes, mice were injected with pregnant mare 

serum gonadotrophin (PMSG) followed 48 hours later by human chorionic gonadotrophin 

(hCG). Oocytes were harvested approximately 12 hours post-hCG injection. Mice were 

sacrificed by cervical dislocation. Ovaries and oviducts were dissected and transported to the 

lab in pre-warmed M2 medium (Sigma Aldrich, UK). In the lab ovaries were transferred to a 

dish containing pre-warmed M2 medium and insulin needles were used to release oocytes 

from the oviduct. Oocytes were incubated in 40µl droplets M2 medium overlaid with mineral 

oil (Sigma-Aldrich, UK) at 37°C until used for experiments.  

In vitro matured metaphase II mouse oocytes were also used; in this case mice were not 

superovulated. Mice were sacrificed by cervical dislocation, ovaries dissected and transported 

to the lab in pre-warmed M2 medium. In the lab oocytes were released from the ovaries by 

puncturing follicles using insulin needles. This was performed in a dish containing M2 

medium supplemented with 0.022µg/ml 3-isobutyl-1-methylxanthine (IBMX; Sigma-Aldrich, 

UK), to maintain oocytes at the germinal vesicle (GV) stage. GV stage oocytes were cultured 

overnight in 40µl droplets of G-IVF™ (Vitrolife, Sweden) overlaid with OVOIL™ (Vitrolife, 

Sweden) and metaphase II stage oocytes, identified by the presence of a polar body, were 

used for experiments the following morning. 

3.2.2 Collection of mouse zygotes 

Mice were mated overnight. The following morning the female mice were checked for the 

presence of a copulatory plug, if present female mice were sacrificed using cervical 

dislocation. Ovaries and oviducts were dissected and transported to the lab in pre-warmed M2 

medium. Pronuclear stage zygotes were harvested from the oviduct by gentle dissection using 

insulin needles. Incubation with HYASE™ (Vitrolife, Sweden) removed cumulus cells from 

zygotes. Zygotes were incubated in 40µl droplets of pre-warmed M2 medium overlaid with 

mineral oil at 37°C until used for experiments. 
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3.3 Cytoskeletal inhibitor treatments 

Oocytes and zygotes were treated with cytoskeletal inhibitors for the purpose of testing the 

effect and reversibility of inhibitors used for nuclear genome transplantation, in addition to 

analysing subsequent blastocyst formation and cell number. Inhibitor stock solutions were 

prepared by dissolving the compound in dimethyl sulfoxide (DMSO; Sigma-Aldrich, UK). 

The final concentration used is stated below. 

3.3.1 Inhibitor treatment of mouse oocytes 

Oocytes were treated with either latrunculin A (Merck Millipore, UK) or cytochalasin B 

(Sigma-Aldrich, UK) which disrupt the actin cytoskeleton. Inhibitors were diluted in G-

PGD™ (Vitolife, Sweden) supplemented with 5% HSA-SOLUTION™ (Vitrolife, Sweden), 

pre-warmed at 37°C. Latrunculin A was used at a final concentration of 1.25µM. 

Cytochalasin B was used at a final concentration of 5µg/ml. Oocytes were incubated in 5µl 

droplets of the inhibitor solution overlaid with mineral oil (Sigma-Aldrich, UK) for ten 

minutes at 37°C. Oocytes were washed in droplets of G-PGD™/HSA-SOLUTION™, then 

either fixed (section 3.7.1) or cultured in 100µl droplets of equilibrated G-IVF™ (Vitrolife, 

Sweden) overlaid with equilibrated OVOIL™ (Vitrolife, Sweden), at 37°C and 5% CO2 until 

they were fixed at a set time point.  

3.3.2 Inhibitor treatment of mouse zygotes and abnormally fertilised human zygotes 

Mouse zygotes and abnormally fertilised human zygotes were treated with nocodazole (Merck 

Millipore, UK), which disrupts microtubules. Actin inhibitors compared were; latrunculin A 

(Merck Millipore, UK), latrunculin B (Merck Millipore, UK) and cytochalasin C (Abcam, 

UK). Inhibitors were diluted in G-PGD™ supplemented with 5% HSA-SOLUTION™ and 

sucrose (0.125µM), pre-warmed at 37°C. The following concentrations were used; 

nocodazole (10µg/ml), latrunculin A (2.5µM), latrunculin B (2µM) and cytochalasin C 

(2.5µg/ml). Zygotes were incubated in 5µl droplets of the inhibitor solution overlaid with 

mineral oil for ten minutes at 37°C. Zygotes were then washed in droplets of G-PGD™/HSA-

SOLUTION™, then either fixed (section 3.7.1) or cultured in 100µl droplets of equilibrated 

G-TL™ (Vitrolife, Sweden) overlaid with equilibrated OVOIL™ (Vitrolife, Sweden), at 37°C 

and 5% CO2. Zygotes were fixed at a set time points.   

For the experiment in which mouse blastocyst cell number was analysed following exposure 

to latrunculin A and nocodazole, the previously described conditions applied but a hole was 

also created in the zona pellucida using a laser (Saturn Active, Research Instruments). 
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Zygotes were cultured and fixed if they developed to the blastocyst stage on day 4.5 (section 

3.7.2).  

 

3.4 MitoTracker® staining 

Mouse zygotes from the CD1 strain were stained with MitoTracker® Red CMXRos 

(Invitrogen, UK) to investigate the effect of cytoskeletal inhibitors on mitochondrial 

distribution. Zygotes were incubated in 50µl droplets of equilibrated G-TL™ culture medium 

containing 100nM MitoTracker® Red CMXRos overlaid with OVOIL™, for 45 minutes at 

37°C and 5% CO2. After incubation, zygotes were washed through droplets of G-TL™ 

culture medium. Before live-cell confocal imaging (section 3.8), zygotes were transferred to 

2µl drops of G-TL™ overlaid with mineral oil in a glass-bottom dish. Glass-bottom dishes 

were also prepared with 2µl drops of G-PGD™/HSA-SOLUTION™/sucrose and G-

PGD™/HSA-SOLUTION™/latrunculin A (2.5µM)/nocodazole (10µg/ml). Zygotes were 

sequentially moved through the dishes and confocal images captured.  

 

3.5 Pronuclear transfer (PNT) 

3.5.1 Human PNT 

Number of oocytes, zygotes and donors 

A total of 523 donated human oocytes from 63 donors were used for human PNT experiments 

(Table 3.1Table). Of these oocytes, 382 were used immediately, 107 were vitrified at the 

metaphase II (MII) stage and 34 were vitrified following MII completion (2PB stage).  

Types of PNT and vitrification 

Human PNT was performed by Dr Louise Hyslop, an experienced embryologist, using 

donated human oocytes (section 3.1.1) ~8-10 hours (ePNT) or 16-20 hours (LtPNT) after 

fertilisation by ICSI. Three types of PNT were performed; autologous PNT involved removal 

and replacement of pronuclei in the same zygote, homologous PNT involved transfer of 

pronuclei between zygotes from the same donor and heterologous PNT involved reciprocal 

transfer of pronuclei between pairs of zygotes originating from fresh and vitrified oocytes 

from different donors. The majority of oocytes were vitrified at MII, a small number were 

vitrified at 2PB stage. The RapidVit™ and RapidWarm™ oocyte kits (Vitrolife, Sweden) 



39 
 

were used for vitrification and warming. Oocytes were stored in liquid nitrogen until used for 

ePNT. 

 

 Oocytes (n) Donors (n) Age range  

Egg share donors 44 6 25-36 years  

Non-patient 

donors 

479 57 21-36 years  

 Zygotes (n) Donors (n) Control (n) PNT (n) 

LtPNT 51 10 12 39 

Series I ePNT 58 13 19 39 

Series II ePNT 131 30 30 101 

Series II ePNT 

(2PB) 

40 13 6 34 

Table 3.1: The number of oocytes, zygotes and donors for PNT.  

 

Equipment 

PNT was performed in an isolator based workstation (Vitrosafe, UK) with control of 

temperature, O2 and CO2, using an inverted microscope (TE2000-U, Nikon, Japan) fitted with 

micromanipulators (Integra Ti, Research Instruments, UK) and a laser objective (Saturn 

Active, Research Instruments, UK). Manipulations took approximately 15 minutes to 

complete.  

Enucleation 

Zygotes with two visible pronuclei were placed in droplets of enucleation medium containing 

the cytoskeletal inhibitors cytochalasin B (2.5µg/ml)/ latrunculin A (2.5µM) (LtPNT) or 

latrunculin A (2.5µM) (ePNT), and nocodazole (10µg/ml). A set of experiments were 

performed alongside series II ePNT using latrunculin B (0.1-2.5 µM) instead of latrunculin A 

in order to compare subsequent survival and embryo development. In LtPNT and the first 
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series of ePNT experiments enucleation was performed in G-1™ PLUS medium (Vitrolife, 

Sweden). For series II ePNT G-1™ PLUS was replaced by Sydney IVF Embryo Biopsy 

Medium (Cook Medical, USA) for enucleation procedures, which does not contain Ca2+ or 

Mg2+. Enucleation was performed in the presence or absence of sucrose (0.125µM). The 

presence of sucrose increased osmolarity of the enucleation medium from 280 mosm l-1 to 449 

mosm l-1, inducing shrinkage of the cytoplasm. The laser objective was used to create a hole 

in the zona pellucida prior to insertion of the enucleation/fusion pipette with an inner diameter 

of 17µM. Pronuclei with a small amount of cytoplasm were aspirated into the pipette as a 

single or two individual karyoplasts. 

Fusion 

The karyoplast(s) were briefly exposed to a suspension of hemagglutinating virus of Japan 

envelope (HVJ-E); GenomONE™ HVJ-E (Cosmo Bio, USA). In LtPNT and the first series of 

ePNT experiments HVJ-E was undiluted, series II ePNT used a 1:10 dilution. Karyoplasts 

were expelled into the perivitelline space and allowed to fuse with the cytoplast.  

Culture 

Finally, ePNT and unmanipulated control zygotes in LtPNT and series I ePNT were cultured 

in a sequential medium; G-1™ PLUS (day 1-3) G-2™ PLUS (day 3-6; Vitrolife, Sweden). 

Series II ePNT zygotes were cultured in G-TL™, a single step culture medium. 

Subsequent experiments on PNT blastocysts 

In addition to monitoring development following PNT to analyse survival, blastocyst 

formation and blastocyst quality (section 3.6), a number of experiments were performed on 

zygotes developing to the blastocyst stage. Cells counts were obtained from LtPNT (n=6), 

series I ePNT (n=8) and series II ePNT (n=5) blastocysts. Multiple analyses were performed 

on individual blastocysts developing following series II ePNT, including aneuploidy 

screening and gene expression analysis (Table 3.2). Stem cell derivation and analysis of 

mtDNA carryover was performed on a number of blastocysts, but data is not included in this 

thesis.  
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Analysis Group Blastocysts (n) Donors (n) 

Aneuploidy 

screening 

Control 11 10 

ePNT 30 20 

Gene expression Control 3 3 

ePNT 11 10 

Table 3.2: Number of blastocysts used for aneuploidy screening and gene expression 
analysis. 

 

3.5.2 Mouse PNT 

I performed mouse PNT in collaboration with Dr Laura Irving. Mouse PNT was performed 

using CD1 mouse zygotes (section 3.2.2). The protocol used was the same as human series II 

autologous ePNT, but using an undiluted HVJ-E suspension to facilitate fusion. After 

manipulation, zygotes were cultured in 100µl drops of G-TL™ overlaid with OVOIL™ at 

37°C and 5% CO2. Blastocyst formation was assessed. A proportion of blastocysts were fixed 

and immunofluorescence labelling performed (section 3.6.1) for cell number analysis.  

 

3.6 Human blastocyst grading 

Embryo development was monitored daily throughout the duration of culture. On days 5 and 

6 of development blastocysts were graded using the UK National External Quality 

Assessment Service (NEQAS) grading schemes for embryos and blastocysts (Cutting et al., 

2008). A three digit grade was assigned representing a score of: 1-6 for blastocoel expansion, 

1-5 for inner cell mass morphology and 1-3 for trophectoderm morphology. This 3-digit grade 

was assigned to the corresponding quality category.   
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3.7 Immunofluorescence labelling  

I performed immunofluorescence labelling of oocytes and zygotes to assess the effect and 

reversibility of cytoskeletal inhibitors (section 3.3), and blastocysts in order to perform cell 

count analysis following cytoskeletal inhibitor treatment (section 3.3) or PNT (section 3.5).  

3.7.1 Whole oocyte and zygote fixation and staining 

Oocytes and zygotes which were treated with cytoskeletal inhibitors (section 3.3) were fixed 

immediately after treatment or following a recovery period at set time points. Untreated 

controls and DMSO controls were also fixed. Fixation was performed using a free-oocyte 

fixation buffer containing 2% formaldehyde at 37°C for 1 hour. Zygotes were briefly exposed 

to acid Tyrode's solution to dissolve the zona pellucida before fixation. Oocytes and zygotes 

were stored in PBS at 4°C until immunofluorescence labelling. 

Samples were permeabilised using PBTT (0.2% Triton-X and Tween in PBS) for 1 hour at 

room temperature on a shaking platform at 100rpm. Then a 1% milk solution was used for 

blocking for 1.5 hours at room temperature on a shaking platform. Samples were incubated 

with primary antibody solution (Table 3.3) overnight at room temperature. Following 

incubation with primary antibody, samples were washed (1x10 minutes, 3x15 minutes) in 

PBTT before incubation with the secondary antibody solution (Table 3.3) for 1.5 hours at 

room temperature on a shaking platform. For actin staining, Alexa Fluor® 488 phalloidin 

(ThermoFisher Scientific, UK) was resolved at 5% in the secondary antibody solution. 

Samples were washed again as before in PBTT. An additional 2 minute wash in PBS was 

performed before transferring samples to a 2µl droplet of VectaShield DAPI Mounting 

Medium (H-1200, Vector Laboratories, USA) diluted 1:5 in PBS in a glass-bottom dish.  

3.7.2 Blastocyst fixation and staining 

Human blastocysts were fixed on day 6 and mouse blastocysts on day 4.5 of development 

with 4% PFA at pH 7.4, either for one hour on ice or overnight at 4°C. Blastocysts were then 

stored in PBS at 4°C until immunofluorescence labelling.  

The staining procedure for blastocysts was as described in section 3.7.1. However, an 

additional step was included after the secondary antibody washes for Click-iT® TUNEL 

Alexa Fluor® 647 Imaging Assay for microscopy (ThermoFisher Scientific, UK), which was 

performed according to manufacturer's instructions. 
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Primary 

antibody 

Source Dilution Secondary 

antibody 

Source Dilution

CDX2 BioGenex 

CDX2-88 

1:500 Goat-anti-mouse  

Alexa Fluor® 488 

Or 

Donkey-anti-

mouse 

Alexa Fluor® 555 

Invitrogen 

A-11001 

Or 

Invitrogen 

A-31570 

1:800 

NANOG R&D 

Systems 

AF1997 

Or 

Abcam 

Ab80892 

1:200 Donkey-anti-goat 

Alexa Fluor® 488 

Or 

Donkey-anti-

rabbit 

Alexa Fluor® 488 

Invitrogen 

A-11001 

Or 

Invitrogen 

A-21206 

1:800 

GATA6 R&D 

Systems 

AF1700 

1:200 Donkey-anti-goat 

Alexa Fluor® 555 

Invitrogen 

A-21432 

1:800 

Alpha-

tubulin 

Abcam 

Ab52866 

1:400 Goat-anti-rabbit 

Alexa Fluor® 555 

Invitrogen 

A-21429 

1:800 

Table 3.3: Antibody source and dilutions for immunofluorescence labelling.  
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3.8 Confocal imaging 

Oocytes/ embryos prepared as described in section 3.7 were imaged using an inverted 

confocal microscope (Nikon A1R, Japan) with NIS-elements image software. Sequential 

excitation at 405nm, 488nm, 561nm and 642nm was provided by the 405nm Cube Laser 

(Coherent Inc., USA), 488nm Argon Laser (Melles Griot, USA), Sapphire 561nm Laser 

(Coherent Inc., USA) and Red Diode 642nm Laser (Melles Griot, USA), respectively. 

Emission filters were as follows: DAPI (BP 425-475nm), Alexa 488 (BP 525-555nm), Alexa 

555 (BP 570-620nm) and Cy5 (BP 662-737nm).  

For imaging of blastocysts (human and mouse) and abnormally fertilised human zygotes, the 

Plan Apo VC 20x DIC N2 objective was used; images were obtained at Z-steps of ~1µm. For 

mouse oocytes the Plan Apo λ 40x objective was used; images were obtained at Z-steps of 

1µm. For mouse zygotes the Plan Apo VC 20x DIC N2 objective was used; images were 

obtained at Z-steps of 0.75µm. Images with a frame size 1024x1024 pixels were captured 

using Nikon Elements AR software package. 

Live-cell imaging of MitoTracker® stained zygotes (section 3.4) used an S Fluor 40x Oil DIC 

H N2 objective. Images were obtained at Z-steps of 2µm. Images with a frame size 512x512 

pixels were captured using Nikon Elements AR software package. The microscope chamber 

was maintained at 37°C and 5% CO2.  

 

3.9 Image processing and analysis 

ImageJ software was used for image processing and analysis. All figures and images in this 

thesis were produced using Adobe Illustrator and Microsoft PowerPoint.  

 

3.10 Aneuploidy screening  

Aneuploidy screening of human ePNT blastocysts was performed by Professor Dagan Wells 

and team at Reprogenetics and the University of Oxford. Cells obtained from the inner cell 

mass and/or trophectoderm of unmanipulated control and ePNT blastocysts underwent lysis 

and whole-genome amplification, performed using the SurePlex kit (Illumina) according to 

manufacturer's instructions and blind to sample origin. Subsequently, microarray-CGH 

analysis was performed using the previously validated 24Sure Cytochip (Illumina). After 
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washing and drying, microarrays were analysed using a laser scanner (InnoScan 710, 

Innopsys). Images were analysed using BlueFuse Multi analysis software (Illumina). 

 

3.11 Gene expression analysis by single cell RNA-Seq 

Single cell RNA-Seq (scRNA-Seq) was performed by Dr Kathy Niakan's lab at the Francis 

Crick Institute, London.  

Blastocyst disaggregation 

Blastocysts were disaggregated using an Olympus IX73 microscope, Saturn 5 laser (Research 

Instruments, UK) and Narishige micromanipulators (Narishige, Japan). During manipulation 

embryos were placed in drops of G-MOPS™ solution (Vitrolife, Sweden) overlaid with 

mineral oil. The ICM and polar TE were washed in calcium and magnesium free PBS 

(Invitrogen, UK) before 5-10 minute incubation in 0.05% trypsin/EDTA (Invitrogen, UK). 

Trypsin was quenched using Global Media supplemented with 5mg/ml LifeGlobal Protein 

Supplement and single cells isolated using a 30µm inner diameter blastomere biopsy pipette 

(Research Instruments, UK).  

cDNA synthesis and amplification 

cDNA was synthesised as previously published (Blakeley et al., 2015), using SMARTer Ultra 

Low Input RNA for Illumina Sequencing-HV kit (Clontech Laboratories, USA), according to 

manufacturer's guidelines. cDNA was sheared using Covaris S2 with the modified settings 

10% duty, intensity 5, burst cycle 200 for 2 minutes. Libraries were prepared using Low Input 

Library Prep Kit (Clontech laboratories, USA) according to manufacturer's instructions. An 

Agilent 2100 BioAnalyser was used to assess library quality and concentration measured with 

a Qubit 2.0 Fluorometer (Invitrogen, UK). Libraries were submitted for 50bp paired-end 

sequencing using standard Illumina adapters on Illumina HiSeq 2500.  

RNA-seq data analysis 

Initial RNA-seq data analysis was performed by Dr Paul Blakeley, Francis Crick Institute. 

The quality of the RNA-seq data was evaluated using the FastQC tool. Samples with primer 

contamination and amplification bias, identified by an unequal proportion of ATGC 

nucleotide percentages, were excluded from subsequent analysis. 
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Figure 3.1: Experimental approach and samples included in scRNA-seq analysis of 
control and ePNT blastocysts. a) Diagram showing the steps involved in RNA-seq of single 
cells microdissected from human blastocysts. b) Summary table of unmanipulated control and 
ePNT blastocysts submitted to scRNA-seq analysis. ePNT blastocysts included those with the 
same nuclear and mitochondrial genomes (autologous/homologous). Homologous ePNT 
involved transfer of pronuclei between a zygote pair donated by two sisters. Blastocysts 
arising from heterologous ePNT represent new combinations of nuclear and mitochondrial 
genomes and are subgrouped according to cytoplast origin. The reference population of 
control blastocysts from previously published data (Blakeley et al., 2015) is not included in 
this table. Blastocyst grade and karyotype is also shown.  
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Reads were aligned to the human genome sequence hg19 using Tophat2 (Kim et al., 2013) 

and the number of reads mapping uniquely to each gene was counted using the program 

htseq-count (Anders et al., 2015). Samples with percentage mapping <50% were excluded 

from subsequent analysis. Individual count files for each sample were normalised using the 

RPKM (Mortazavi et al., 2008) function in the edgeR package (Robinson et al., 2010) and a 

principal component analysis (PCA) of the top 12,000 most variably expressed genes 

performed blind to sample origin on all control and ePNT samples to investigate differences 

in global gene expression. The PCA was generated using the R package prcomp, applying 

both the scaling and centering options. An R script was used to perform unsupervised 

hierarchical clustering and generate a heatmap using the R package pheatmap. The t-SNE 

algorithm (van der Maaten and Hinton, 2008) was used for an alternative approach for data 

dimensionality reduction, and the top 5 principal components of the DESeq2 (Love et al., 

2014) normalised count data used for the R implementation of the t-SNE. DESeq2 was 

applied to read counts for control and ePNT data to identify differentially expression genes 

between the lineages (epiblast, primitive endoderm and trophectoderm).  

I performed the following gene expression analysis using raw read count files from Dr 

Paul Blakeley. 

Global gene expression 

PCA was repeated using DESeq2 normalised counts and RPKM normalised counts grouping 

samples according to experimental origin (control/ePNT) and grade (blastocysts grade A-

C/D-F). To create the PCAs, the R packages ggfortify and ggrepel were used and scaling and 

centering options applied. Outliers were analysed according to experimental origin and 

blastocyst grade and results plotted on a bar graph. To investigate differences in global gene 

expression according to morphological characteristics, differential gene expression analysis 

was performed using DESeq2, comparing samples from blastocysts grades A-C to grades D-

F. Genes from the DESeq2 output with an adjusted P value of <0.05 were used for Gene 

Ontology (GO) analysis using the R package GOstats. Genes with a positive logarithmic fold 

change were considered upregulated and genes with a negative logarithmic fold change were 

considered downregulated according to the assigned group. The GOstats output for 

downregulated and upregulated biological process GOs are presented in tables.  
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Lineage-associated gene expression 

Heatmap was repeated including samples from blastocysts of all grades and samples showing 

mixed expression of lineage associated genes analysed according to experimental origin and 

blastocyst grade. Differential gene expression analysis was performed using DEseq2 grouping 

samples by lineage. Genes from the DESeq2 output with an adjusted P value of <0.05 were 

used for GO analysis using the R package GOstats and results presented as a table and/or 

dendrogram using the hclust function in R.   

Mitochondrial gene expression 

PCA was performed comparing mitochondrial gene expression (nuclear and mtDNA 

encoded) grouping samples according to experimental origin (control/good quality ePNT) and 

grade (blastocysts grade A-C/D-F). The list of genes included in this analysis was 

downloaded from MitoCarta 2.0 (Calvo et al., 2016). To create the PCAs, the R packages 

ggfortify and ggrepel were used and scaling and centering options applied and a t-distribution 

added to the plot. Heatmaps were created using the R package pheatmap. Further analysis 

specifically investigated expression of mtDNA encoded OXPHOS genes, using heatmap, 

PCA and plotting median RPKMs per sample on a graph. Expression of OXPHOS genes, 

both mtDNA and nuclear encoded, was analysed using heatmaps including all samples and 

only samples from good quality blastocysts. To investigate whether a relationship exists 

between lineage and mitochondrial gene expression, median mtDNA encoded OXPHOS gene 

expression (RPKM) was plotted by sample according to lineage. The lineage was determined 

using the lineage heatmap which included samples of all quality and verified using the t-SNE.  

 

3.12 Statistical analysis 

Statistical analysis was performed using Minitab, GraphPad Prism and IBM SPSS software. 

The statistical tests used to analyse data presented in this thesis include: chi-squared test, 

Fisher's exact test, one-way ANOVA with Tukey's HSD test and unpaired t-test. The test used 

is indicated in the corresponding text and/or figure legend.  
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Chapter 4. Results I: The effect of pronuclear transfer on preimplantation 

development 

4.1 Introduction 

4.1.1 Proof of concept 

Proof of concept studies performed using abnormally fertilised human zygotes indicated that 

pronuclear transfer (PNT) may be a feasible option to prevent transmission of mitochondrial 

DNA disease (Craven et al., 2010). These experiments were performed ~16-18 hours post-

fertilisation, when zygotes are expected to be in the G2 phase of the first mitotic cell cycle 

(Balakier et al., 1993; Capmany et al., 1996). However, the limited developmental potential 

of abnormally fertilised zygotes hindered investigation of the therapeutic potential of PNT. 

Therefore it is essential to use normally fertilised zygotes in order to investigate the effect of 

PNT on preimplantation development.  

4.1.2 Outcome measures 

To investigate the effect of PNT on the preimplantation development of normally fertilised 

human zygotes we used several outcome measures. Firstly, I analysed the number of zygotes 

surviving the PNT procedure, enabling us to determine if modifications to the procedure are 

having a positive effect on survival, which would improve PNT efficiency. I also analysed the 

number of PNT zygotes developing to the blastocyst stage compared to unmanipulated 

controls. The blastocyst is composed of an inner cell mass which will form the foetus and 

trophectoderm layer which will become the placenta. This is an important developmental 

milestone which occurs on day 5-6 of development; at this stage the embryo is capable of 

implantation.  

In clinical IVF blastocysts are selected for use in treatment based on their morphological 

characteristics, which are assigned a quality score. The grading scheme used at Newcastle 

Fertility Centre is the UK National External Quality Assessment Service (NEQAS) for 

embryos and blastocysts (Cutting et al., 2008). Figure 4.1 shows blastocyst quality scoring 

criteria and grading scheme (Stephenson et al., 2007), which we adapted by assigning 

alphabetical grades (A-F). Using clinical data I have found a strong correlation between 

blastocyst quality and implantation, with grade A blastocysts having a significantly higher 

implantation rate than blastocysts of grade B or below (P<0.01; Figure 4.1d). Therefore we 

decided that blastocyst quality should be assessed using the clinical grading scheme in order  
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Figure 4.1: Blastocyst morphology and quality scoring criteria. a) Schematic showing cell 
lineages in a mammalian blastocyst: epiblast, primitive endoderm and trophectoderm. b) 
Morphological criteria and scoring system used for grading human blastocysts. This takes into 
account the degree of expansion (score 1: early, unexpanded blastocyst; to score 6: fully 
expanded), inner cell mass (ICM) morphology (score 1: absent ICM; to score 5: large, tightly 
packed cells) and trophectoderm (TE) morphology (score 1: few discontinuous cells; to score 
3; fully formed continuous layer). c) Table used to assign blastocyst grades. Grade A-D is 
top/good quality to poor quality, grade E is early. The table does not include grade F, assigned 
to embryos which developed to the blastocyst stage but subsequently showed signs of 
degeneration. d) Graph showing the relationship between blastocyst grade and implantation 
(P<0.01, chi-squared test). Data was obtained from clinical IVF blastocysts replaced on day 5 
of development. Grades D and F are not included as there were no cases where these were 
replaced. Implantation is defined as the detection of a foetal heartbeat 6 weeks post-IVF 
treatment. e) Images showing examples of blastocysts of different grades. Scale bar = 20µM. 
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to compare quality of unmanipulated control and PNT blastocysts. This will also give an 

indication of whether the blastocysts produced following PNT are compatible with 

implantation and therefore the establishment of a pregnancy if they were to be used in the 

clinic. 

4.1.3 Types of pronuclear transfer experiments 

The three types of PNT experiment performed are shown in Figure 4.2. Autologous PNT is a 

technical control in which pronuclei are removed and replaced back into the same zygote. 

Homologous PNT involves transfer of pronuclei between different zygotes obtained from the 

same oocyte donor. Finally, heterologous transfer involves transfer of pronuclei between 

zygotes from different oocyte donors. This results in different combinations of nuclear and 

mitochondrial genomes, mimicking the situation which would arise in any future clinical 

treatments. Due to the unpredictability in the response to ovarian stimulation, which makes it 

difficult to synchronise egg donors, heterologous PNT is performed between zygotes 

originating from fresh and vitrified oocytes. 

The number of eggs donated to research is limited. In order to minimise loss of material and 

any learning curve effect, human PNT was performed by Dr Louise Hyslop; an experienced 

clinical embryologist. I analysed the human PNT data and performed additional experiments 

in parallel to human PNT using mouse zygotes. I also performed experiments on human 

blastocysts.  
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Figure 4.2: Pronuclear transfer (PNT) experiments performed. Schematic showing three 
types of PNT experiment performed. Autologous (Atlg) PNT involves removal and 
replacement of pronuclei into the same zygote. Homologous (Hom) PNT involves exchanging 
pronuclei between zygotes from the same donor. Heterologous (Het) PNT involves 
exchanging pronuclei between zygotes from different donors, from fresh and vitrified oocytes.  
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4.2 Initial findings with normally fertilised human zygotes 

Surprisingly, techniques developed in proof of concept studies using abnormally fertilised 

eggs (Craven et al., 2010) were not well tolerated when applied to normally fertilised human 

zygotes. We found that survival of reconstituted zygotes was low. Only half of the technical 

controls (autologous) survived PNT (Figure 4.3a). Failure to survive was generally due to 

lysis of the karyoplast, excessive leakage of cytoplasm, or degeneration after fusion, 

indicating a problem with the enucleation and fusion procedures.  

Consistent with reduced survival, blastocyst formation was significantly reduced following 

PNT (autologous and homologous) compared to unmanipulated controls (P<0.05; Figure 

4.3b). Calculating blastocyst formation as a percentage of zygotes that survived PNT resulted 

in loss of statistical significance, but blastocyst formation remains reduced compared to 

unmanipulated controls (Figure 4.3c). As the experimental groups involved transferring 

pronuclei between zygotes from the same donor, this suggests an issue with the PNT 

procedure is causing reduced blastocyst development. The majority of controls which did not 

form blastocysts arrested after the 8-cell stage. However, a high proportion of PNT embryos 

did not develop beyond the 4-cell stage (Figure 4.3d), indicating a detrimental effect on the 

earliest cell divisions.  

Blastocyst formation of unmanipulated controls was 66.67% (8/12); 37.5% of these 

blastocysts were good quality (grades A/B). However, autologous PNT resulted in the 

production of only 1 blastocyst of grade D, which is poor quality (Figure 4.3e). Of the 7 

blastocysts formed following homologous PNT, 1 of these was grade B (14.29%), the 

remainder were grade C or below. Therefore in addition to causing poor blastocyst formation, 

blastocysts produced following PNT are of reduced quality compared to unmanipulated 

controls. 
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Figure 4.3: Effect of PNT on survival, blastocyst development and quality. PNT 
experimental conditions are shown. a) Survival of reconstituted zygotes following autologous 
(Altg) and homologous (Hom) PNT (not significant; chi-squared test). b) Blastocyst 
formation of unmanipulated controls (Ctr), autologous (Altg) and homologous (Hom) PNT as 
a percentage of total number of zygotes (P<0.05, chi-squared test). c) Blastocyst formation as 
a percentage of number of zygotes surviving PNT (not significant; chi-squared test).  d) 
Developmental stage reached of zygotes which did not form blastocysts. e) Blastocyst quality 
according to the scoring criteria in Figure 4. (not significant; Fisher's exact test). Quality 
scores were assigned on day 6 of development. For statistical analysis, grades were grouped 
(A/B versus C-F). 
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One possible explanation for the poor survival and early developmental arrest following PNT 

in normally fertilised zygotes is that there was insufficient recovery time between the 

manipulations and division to the 2-cell stage. In support of this, our lab (Fenwick et al., 

2002) has previously reported that zygotes with the potential to develop to the blastocyst stage 

have a reduced interval from fertilisation to division to the 2-cell stage compared with those 

that do not. Moreover, only 17% of abnormally fertilised eggs develop to the blastocyst stage 

(Craven et al., 2010) compared with over 60% of normally fertilised eggs donated to this 

study (Fig. 4.3b). To test the possibility that poor survival and development was due to 

insufficient time to recover from the manipulations before undergoing the 1st mitotic division, 

we conducted a series of experiments in which the pronuclei were transplanted shortly after 

they first appear (8 hours post-fertilisation) instead of shortly before they disappear (16-20 

hours post-fertilisation). In cell cycle terms this corresponds to performing PNT during early 

G1 phase of the first mitotic cell cycle rather than in G2 phase (Figure 4.4). The modified 

technique is referred to as early pronuclear transfer (ePNT), and previously described 

experiments, performed ~16-18 hours post-fertilisation, are referred to as late PNT (LtPNT). 

 

 

 

Figure 4.4: Timings of late PNT (LtPNT) and early PNT (ePNT). Schematic showing the 
fertilisation and progression to completion of the first mitotic cycle. Timings of PNT are 
shown.  
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4.3 Preimplantation development following ePNT 

4.3.1 Modifications of experimental procedures  

We hypothesised that modification to the timing of PNT may improve survival and blastocyst 

development as zygotes would have more time for recovery between the manipulations and 

the first mitotic division. A further modification, designed to reduce the risk of membrane 

damage, in these experiments was the addition of sucrose to the manipulation medium. Due to 

an osmotic effect, this shrinks the cytoplasm and facilitates enucleation and fusion by 

increasing the size of the peri-vitelline space.  

We also investigated the possibility that the inhibitors used to disable the zygote cytoskeleton 

might have a detrimental effect on blastocyst formation. This topic is covered in detail in 

Chapter 5. For the purpose of these experiments, we used latrunculin A, which reversibly 

inhibits the actin cytoskeleton in human and mouse zygotes, and nocodazole, which reversibly 

inhibits polymerisation of beta-tubulin and thereby disables the microtubule network. 

Cytoskeletal inhibitors are used during PNT as they facilitate enucleation by relaxing the 

cytoskeleton, without inhibitors excess stress placed on the zygotes causes increase lysis and 

makes it difficult to control the size of the karyoplast. 

4.3.2 Survival and blastocyst formation following ePNT 

Analysis of the survival data revealed a significant improvement following modification to 

the timing of PNT; 92% of ePNT zygotes survived the procedures compared to 59% of 

LtPNT zygotes (P<0.01; Figure 4.5a). When the data are broken down to show the different 

experimental groups, there is a non-significant trend towards increased survival in 

heterologous ePNT compared with homologous and autologous ePNT (Figure 4.5b). 

However, this was not reflected in the blastocyst development data. 

Generally blastocyst formation on day 6 of development was improved in ePNT (Figure 4.5c, 

d) compared to LtPNT (section 5.2, Figure 4.3). Although heterologous ePNT zygotes had the 

highest survival, this group had reduced percentage blastocyst formation compared to the 

other experimental groups. Therefore it is possible that ePNT between zygotes from different 

donors has a negative effect on embryo development. There is a non-significant trend towards 

reduced blastocyst formation of autologous ePNT embryos compared to controls on day 5 of 

development. However, on day 6 blastocyst formation of autologous and homologous ePNT 

embryos is comparable to controls (Figure 4.5c, d). 
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As observed in LtPNT, I found that the majority of ePNT zygotes that did not form 

blastocysts arrested at an earlier stage than unmanipulated controls (Figure 4.d); 60% of 

unmanipulated controls reached >8 cells, whereas only a small proportion of ePNT embryos 

from each experimental group reached this stage before arrest (autologous, 25%; homologous, 

16.67%; heterologous, 40%). This suggests that ePNT could have a negative effect on the 

earliest cell divisions. 

Overall, blastocyst formation is improved following ePNT compared to LtPNT, but the 

proportion of good quality blastocysts remains low (Figure 4.5e). Of the small number of 

blastocysts produced following heterologous ePNT, all were of poor quality (grade D). By 

contrast, 55.56% of blastocysts from unmanipulated controls were good quality (grades A/B) 

on day 6. Furthermore, we observe a delay in embryo development; a higher percentage of 

ePNT blastocysts are grade E (early) on days 5 and 6 compared with controls. A blastocyst 

which is grade E on day 5 does have the potential to implant (Figure 4.1; section 5.1.2), but 

implantation is unlikely for blastocysts that have not yet undergone expansion (grade E) by 

day 6.  

To summarise, adjusting the PNT manipulations to be performed sooner after fertilisation 

instead of close to the onset of the first mitotic division promoted an increase in survival and 

blastocyst formation. However, the majority of blastocysts produced following ePNT are of 

poor quality, this indicated that further optimisation of the technique was required. 
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Figure 4.5: Effect of ePNT on survival, blastocyst development and quality. ePNT 
experimental conditions are shown. a) Graph showing an improvement in survival following 
ePNT compared to LtPNT (P<0.01; chi-squared test). b) Graph showing percentage survival 
for each experimental group; autologous (Atlg), homologous (Hom) and heterologous (Het) 
(not significant; chi-squared test). c) Blastocyst formation of unmanipulated controls (Ctr) and 
PNT embryos on days 5 and 6 of development as a percentage of total zygotes and d) 
blastocyst formation as a percentage of number of zygotes surviving PNT (not significant; 
chi-squared test). e) Graph showing the developmental stage reached of those embryos that 
did not form blastocysts. f) Blastocyst quality (not significant; Fisher's exact test). Quality 
scores were assigned on days 5 and 6 of development. For statistical analysis, grades were 
grouped (A/B versus C-F). 
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4.4.3 Effect of ePNT on blastocyst cell number 

To further investigate the reasons for the generally poor blastocyst quality, I asked whether 

cell numbers differed between unmanipulated control and PNT blastocysts. To answer this I 

fixed blastocysts on day 6 of development and stained with DAPI in order to perform nuclear 

counts using ImageJ software.  

Data shown in Figure 4.6 compares cell numbers from unmanipulated controls to LtPNT and 

ePNT blastocysts. Staining of LtPNT and a proportion of the control blastocysts was 

performed by Dr Qi Zhang; in order to control for operator variability I repeated nuclear 

counts on saved 3D images of these blastocysts and found the results to be comparable. I 

discovered a reduction in the total cell number of both LtPNT (P<0.01) and ePNT (P<0.05) 

blastocysts compared to unmanipulated controls (Figure 4.6a). 

 

 

Figure 4.6: Effect of PNT on blastocyst cell number. Blastocyst cell number was assessed 
by nuclear counts. a) Total, b) trophectoderm (TE) and c) inner cell mass (ICM), cell numbers 
of unmanipulated controls (Ctr), LtPNT and ePNT blastocysts. Bars show the mean ± 
standard deviation. Statistical significance is indicated, the test used was one-way analysis of 
variance (ANOVA) with Tukey's HSD. 

 

I next asked whether the reduced cell number affected the trophectoderm (TE), inner cell 

mass (ICM) or both. Both LtPNT and ePNT blastocysts display reduced TE cell number, 

which is statistically significant when compared to controls (P≤0.001; Figure 4.6b). However 

there is no significant reduction in ICM cell number of ePNT or LtPNT blastocysts compared 

to controls (Figure 4.6c). These results indicate that PNT effects TE cell number but has no 
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effect on the ICM. It is important to identify the cause as a reduced TE cell number would 

decrease blastocyst implantation and therefore reduce PNT efficiency.  

To determine whether the decreased cell number observed in PNT blastocysts was a 

consequence of increased cell death, I used Terminal Uridine Nick-End Labelling (TUNEL); 

an in situ cell death detection kit. I found that the percentage of total TUNEL positive cells 

was significantly increased in LtPNT (P=0.01) and ePNT (P<0.05) blastocysts compared to 

controls (Figure 4.7a). I asked if this increase in cell death could be occurring in the TE, 

which could explain the reduced trophectoderm cell number. However, both the TE and ICM 

show increased cell death compared to controls, and there was a slight increase in cell death in 

the ICM compared with the TE (Figure 4.7a).  

 

 

Figure 4.7: Cell death and NANOG expression in control and PNT blastocysts. a) i) The 
percentage of total TUNEL positive cells in control (Ctr) and PNT blastocysts. ii) The 
percentage of TUNEL positive cells in the trophectoderm (TE) and inner cell mass (ICM). b) 
Percentage of NANOG positive cells in the ICM of control and PNT blastocysts. Bars show 
the mean ± standard deviation. Statistical significance is indicated, the test used was one-way 
analysis of variance (ANOVA) with Tukey's HSD. 

 

NANOG is a transcription factor which is upregulated in the ICM and specifies epiblast cells, 

also known as primitive ectoderm cells, which give rise to all foetal tissues. Analysis of the 

percentage of NANOG positive cells in the ICM shows no statistically significant difference 

between controls and LtPNT or ePNT blastocysts (Figure 4.7b). Thus, the modified ePNT 

procedure does not appear to affect allocation of cells to the ICM, or specification to the 

epiblast lineage within the ICM. 
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To summarise, these results indicate that survival and blastocyst formation have been 

improved by transferring pronuclei shortly after they first appear compared with shortly 

before they disappear (in the G1 vs G2 stage of the cell cycle). Moreover, ICM cell number 

and percentage of NANOG positive cells is consistent between control and PNT blastocysts, 

which suggests that the PNT procedure does not disrupt allocation of cells to the ICM. 

However, PNT blastocysts show reduced total cell number which is reflected by an increase 

in total cell death.  The increase in total cell death cannot explain the reduced TE cell number, 

as cell death is increased in both the TE and ICM. Further optimisation of the technique is 

required in order to improve blastocyst quality and cell number. 

 

4.4 Using the mouse to investigate reduced blastocyst cell number 

As the number of eggs donated to research is limited, I decided to use the mouse to 

investigate possible causes of reduced blastocyst cell number. A mouse model would also be 

a useful tool for further fine tuning of the PNT technical procedures. 

4.4.1 Cytoskeletal inhibitors and laser-induced hole in the zona pellucida 

To investigate the possible causes of reduced blastocyst quality and cell number following 

human PNT, I asked whether it could be due to the removal and transfer of pronuclei or the 

use of cytoskeletal inhibitors and creation of a hole in the zona. In relation to cytoskeletal 

inhibitors, it is conceivable that residual effects of latrunculin A and nocodazole could inhibit 

allocation to the TE layer. Furthermore, premature hatching through the laser-induced hole in 

the zona pellucida could limit TE proliferation. 

To test these possibilities, I harvested C57BL/6 mouse zygotes from the oviduct 12 hours 

after mating. To determine the effects of exposure to cytoskeletal inhibitors, I incubated 

zygotes with latrunculin A and nocodazole and created a laser induced hole in the zona 

pellucida. Control zygotes were incubated in culture medium only. In the mouse, the early 

blastocyst forms at day 3.5 (E3.5) of development. I fixed late blastocysts at E4.5 and 

performed immunofluorescence labelling and confocal imaging to obtain cell counts using 

ImageJ software (Figure 4.8a). 

Analysis of total, TE and ICM cell number in control and treated mouse blastocysts indicates 

that cell number is consistent between experimental groups (P>0.05; Figure 4.8b). However, I 

did observe premature hatching caused by the creation of a hole in the zona-pellucida. This 

finding raises the possibility that the reduced cell number observed in PNT blastocysts could 
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be due to effects of the manipulation rather than the cytoskeletal inhibitors and premature 

hatching through the laser-induced hole in the zona pellucida. Alternatively, it is possible that 

the mouse is not a useful model for optimising ePNT conditions for human zygotes. 

 

 

 

Figure 4.8: Immunofluorescence labelling and cell number analysis of mouse blastocysts 
exposed to cytoskeletal inhibitors and a laser-induced hole created in the zona pellucida. 
a) Examples of confocal images of control and treated zygotes which were fixed at the 
blastocyst stage for immunofluorescence labelling and cell number analysis. Premature 
hatching occurred in blastocysts from zygotes exposed to cytoskeletal inhibitors and a hole 
created in the zona (bottom left). Scale bar = 20µM. b) Total, c) trophectoderm (TE) and d) 
inner cell mass (ICM) cell number of control and treated blastocysts. Bars show the mean ± 
standard deviation. No statistical significance was found using unpaired t-test. 
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4.5 Series II ePNT  

4.5.1 Modifications to ePNT  

In order to address the problem of poor blastocyst quality following ePNT, a second series of 

ePNT experiments were performed using human zygotes. As in the first series, PNT was 

performed at ~8 hours post-fertilisation. However the following modifications to the 

enucleation/fusion procedures and culture conditions were introduced.  

Firstly, we switched to a calcium free medium for the manipulations. When the sperm and 

oocyte membranes fuse, phospholipase C zeta (PLCζ) is released from the sperm into the 

oocyte cytoplasm, causing calcium release (Saunders et al., 2002). Downstream events cause 

release of calcium from endoplasmic reticulum (ER) stores and generation of calcium 

oscillations, which continue for a number of hours leading to egg activation (Miyazaki et al., 

1986). Therefore, in the case of spindle transfer, calcium-free medium is used to reduce the 

risk of premature activation of the unfertilised eggs during the manipulations (Paull et al., 

2013). There is also evidence that calcium signals play a role in early embryo development, 

such as embryo compaction (Ducibella and Anderson, 1975; Gumbiner, 2005). Furthermore, 

the amplitude and frequency of the sperm-induced oscillations influences development to the 

blastocyst stage (Ozil et al., 2006). Importantly, sperm-induced calcium oscillations continue 

until formation of pronuclei (Marangos et al., 2003). It is therefore possible that disruption of 

calcium homeostasis due to influx from the external medium shortly after pronuclei formation 

might disrupt the downstream events triggered by sperm-induced calcium oscillations and 

thereby contribute to reduced blastocyst development and quality. We therefore decided to 

use a calcium-free manipulation medium. Based on evidence from a study on spindle transfer 

(Paull et al., 2013), we also reduced the concentration of HVJ-E (1:10). This parameter was 

not tested in the mouse because, for reasons that are unclear, the reduced concentration of 

HVJ-E was not effective in inducing karyoplast/cytoplast fusion in mouse zygotes. 

On the basis of observations that development of ePNT embryos appeared to suffer when they 

were transferred to the second stage of the sequential media (G-1/G-2) used in LtPNT and 

series I ePNT experiments, we switched to a single-step medium (G-TL), in which embryos 

remained undisturbed for the duration of culture. This culture medium is relatively new and 

was initially tested in our laboratory using mouse embryos, giving encouraging results 

showing increased blastocyst formation compared to when sequential medium was used 

(unpublished data). 
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4.5.2 Blastocyst development following ePNT in human zygotes 

I analysed survival and blastocyst development following series II ePNT and found that under 

these conditions the majority of autologous (90.48%) and heterologous (82.5%) ePNT 

zygotes survived the procedure (Figure 4.9a).   

Blastocyst formation on days 5 and 6 was comparable between unmanipulated controls and 

autologous ePNT embryos. However, there was a significant reduction in blastocyst 

formation following heterologous ePNT compared to controls on day 6 (P<0.05; Figure 4.9b). 

When blastocyst formation is calculated as a percentage of reconstituted zygotes surviving the 

manipulations, the statistical significance is lost but a trend towards reduced blastocyst 

formation following heterologous ePNT remains (Figure 4.9c). Heterologous ePNT involved 

transfer of pronuclei between zygotes originating from fresh oocytes and oocytes vitrified at 

the MII stage. Therefore, reduced blastocyst formation could be due to an effect of 

vitrification. Another possibility is asynchrony between zygotes, which could disrupt 

processes occurring in the zygote such as DNA replication and paternal genome 

demethylation, subsequently negatively affecting blastocyst formation. 

Following heterologous ePNT, 60% of zygotes failed to go on to form a blastocyst. Analysis 

of the stage these zygotes reached shows that 14.29% did not develop beyond 4 cells, 53.57% 

developed to the 4-8 cell stage and 32.14% developed past the 8 cell stage (Figure 4.9d). 

Aside from the small proportion arresting before the 4-cell stage, these results are consistent 

with unmanipulated controls, and indicates that modifications to the procedure introduced 

during series II ePNT overcame the negative impact of ePNT on the very early embryonic 

divisions.  
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Figure 4.9: Effect of series II ePNT on survival, blastocyst development and quality. 
Series II ePNT experimental conditions are shown. a) Graph showing percentage survival 
following autologous (Atlg) and heterologous (Het) ePNT (not significant; chi-squared test). 
b) Blastocyst formation of control (Ctr) and ePNT (Atlg/Het) embryos on days 5 and 6 of 
development as a percentage of total zygotes submitted to ePNT (significance is shown; chi-
squared test) and c) blastocyst formation as a percentage of zygotes surviving ePNT (not 
significant; chi-squared test). d) Graph showing the developmental stage reached of the 
embryos which did not form blastocysts. e) Blastocyst quality (not significant; Fisher's exact 
test). Grades were assigned on days 5 and 6 of development. For statistical analysis, grades 
were grouped (A/B versus C-F). 
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Overall blastocyst quality was improved compared to LtPNT (Figure 4.3) and the first series 

of ePNT (Figure 4.5) experiments. The majority of autologous ePNT blastocysts were grades 

A or B, consistent with controls (Figure 4.9e). Also, despite the reduction in blastocyst 

formation following heterologous ePNT, 50% of these blastocysts were of good quality 

(grades A or B) on day 6 (Figure 4.9e). This is a vast improvement compared to the first 

series of ePNT experiments, in which all blastocysts produced following heterologous ePNT 

only achieved grade D on day 6. However, again we observed developmental delay in ePNT 

blastocysts, with a high proportion (not significant) of heterologous ePNT blastocysts grade E 

on day 5 of development. Again, this may be due to an effect of vitrification, or asynchrony 

between zygotes. 

4.5.3 Effect of vitrification on survival and blastocyst development following ePNT in 
human zygotes 

Heterologous ePNT experiments are performed between zygotes originating from fresh 

oocytes and oocytes that were vitrified at the metaphase II (MII) stage. This results in 

reconstituted zygotes containing a vitrified component; zygotes are composed of either a fresh 

cytoplast (FreshCy) and vitrified karyoplast or vitrified cytoplast (VitCy) and fresh 

karyoplast. It is possible that this contributes to the reduced blastocyst development following 

heterologous ePNT. It is important to determine which zygotes result in the best blastocyst 

development of those composed of FreshCy or VitCy. This will inform whether best clinical 

practice would be to vitrify patient or donor oocytes.  

Data indicated that the osmotic effect of sucrose was causing increased carryover of 

mitochondrial DNA within the karyoplast to the recipient cytoplast (Hyslop et al., 2016), 

therefore during series II ePNT sucrose was omitted from the manipulation medium. I have 

analysed survival between FreshCy and VitCy embryos in the presence and absence of 

sucrose and found that removal of sucrose from the manipulation medium did not affect 

survival. I did find that survival was reduced in VitCy zygotes in both conditions, but this was 

not statistically significant (Figure 4.10a).  

I have found that blastocyst formation is significantly reduced following heterologous ePNT 

compared to controls (Figure 4.9). I analysed blastocyst development to determine whether 

there was a difference in blastocyst formation between FreshCy and VitCy heterologous 

ePNT embryos. Analysis revealed reduced blastocyst formation in both FreshCy and VitCy 

heterologous ePNT embryos compared to technical controls (autologous ePNT) on days 5 and 

6 of development (Figure 4.10b). When accounting for survival of reconstituted zygotes in the 
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calculation of blastocyst formation, I found blastocyst formation to be increased in VitCy 

embryos compared to FreshCy (Figure 4.10c; not statistically significant). However, a high 

proportion of VitCy blastocysts were grade E on day 5. By day 6, blastocyst quality is 

comparable between FreshCy and VitCy blastocysts (Figure 4.10d). Although fewer FreshCy 

and VitCy heterologous ePNT blastocysts were of top and good quality (grades A/B) 

compared to technical controls (autologous), the difference is not statistically significant.  

These experiments involved the vitrification of oocytes at the MII stage, before fertilisation 

(Figure 4.11). Therefore, when these oocytes are used for ePNT there are several sequential 

manipulations; MII vitrified oocytes must be warmed and fertilised by ICSI before ePNT. It is 

possible that this could place too much stress on the zygote and have a negative effect on 

subsequent embryo development. It may be possible to improve blastocyst formation by 

altering the timing of vitrification. Another series of experiments were performed to test the 

effect of using oocytes that were vitrified after fertilisation, at the 2PB stage (Figure 4.11). 

This would enable zygotes to be manipulated after warming, as ICSI has already been 

performed. This method may also improve synchrony between zygotes used for heterologous 

ePNT transfer.  
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Figure 4.10: Survival and blastocyst development after heterologous ePNT between 
zygotes from freshly harvested and MII vitrified oocytes. a) Survival of zygotes according 
to whether the cytoplast was derived from a fresh (FreshCy) or vitrified (VitCy) oocyte, in the 
presence and absence of sucrose (not significant; chi-squared test). b) Blastocyst formation as 
a percentage of total for autologous (Atlg) and heterologous (Het) ePNT FreshCy/ VitCy 
zygotes and c) blastocyst formation as a percentage of zygotes surviving ePNT (not 
significant; chi-squared test). d) Quality of autologous (Atlg) and heterologous (Het) ePNT 
blastocysts according to stage of vitrification and cytoplast origin (not significant; Fisher's 
exact test). Grades were assigned on days 5 and 6 of development. For statistical analysis, 
grades were grouped (A/B versus C-F). 
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Figure 4.11: Timing of vitrification for oocytes used in heterologous ePNT experiments. 
Schematic showing development from MII arrest and fertilisation (sperm injection by ICSI) to 
completion and formation of the PN stage zygote. Oocytes were vitrified at the MII stage 
(MII arrest) or 2PB stage (MII completion). 2PB refers to the formation of a second polar 
body.  

 

Analysis of blastocyst formation following heterologous ePNT using 2PB vitrified oocytes 

revealed a significant reduction in FreshCy embryos compared to technical controls (P<0.05) 

on days 5 and 6 (Figure 4.12b, c). Overall, vitrification at the 2PB stage has failed to improve 

blastocyst formation compared to when MII vitrified oocytes are used (Figure 4.10b, c). 

When taking into account survival, blastocyst formation of MII FreshCy (45.9%) and MII 

VitCy (53.6%) is increased compared to 2PB Fresh Cy (21.4%) and VitCy (42.9%) on day 6. 

Blastocyst quality was improved following 2PB vitrification, and the developmental delay 

was reduced; no blastocysts were grade E on day 6 of development. However, the numbers 

are very small. Vitrification at the 2PB stage was not investigated further as the main aim was 

to increase blastocyst formation, but we found it to have the opposite effect, especially when 

the karyoplast component was from a vitrified egg (FreshCy). This raises the possibility that a 

nuclear component may be sensitive to the effects of vitrification at this stage. For example, 

reprogramming and/or duplication of the sperm centriole could be disrupted. In support of 

this, a higher percentage of 2PB FreshCy embryos arrested at an early stage (<4 cells) 

compared to technical controls and 2PB VitCy embryos (Figure 4.12d). 

These results suggest that oocytes should be vitrified at the MII stage, and blastocyst 

formation and quality is comparable between FreshCy and VitCy embryos. However, we 

found a reduction in the carryover of mtDNA in blastocysts originating from FreshCy 

reconstituted zygotes (Hyslop et al., 2016). Therefore, in clinical treatment patient oocytes 

should be vitrified.  
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Figure 4.12: Survival and blastocyst development after heterologous ePNT between 
zygotes from freshly harvested and 2PB vitrified oocytes. a) Survival of zygotes according 
to whether the cytoplast was derived from a fresh (FreshCy) or vitrified (VitCy) oocyte, in the 
presence and absence of sucrose (not significant; chi-squared test). b) blastocyst formation as 
a percentage of total for autologous (Atlg) and heterologous (Het) ePNT FreshCy/ VitCy 
zygotes and c) blastocyst formation as a percentage of zygotes surviving ePNT (significance 
is shown; chi-squared test). d) Graph showing the developmental stages reached of embryos 
that did not form blastocysts. e) Quality of autologous (Atlg) and heterologous (Het) ePNT 
blastocysts according to stage of vitrification and cytoplast origin. Grades were assigned on 
days 5 and 6 of development. Statistical testing was not performed on this data due to low 
numbers and limited clinical significance. 
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4.5.4 Effect of modified ePNT procedures on blastocyst cell number 

A proportion of blastocysts resulting from series II ePNT were fixed in order to obtain cell 

counts and determine whether the modifications to the procedure solved the issue of reduced 

trophectoderm cell number following PNT. The number of blastocysts used for these 

experiments were small as fixation precluded the use of blastocysts for other purposes, such 

as measurement of mtDNA carryover, aneuploidy or gene expression analysis. 

The total cell number of series II ePNT blastocysts was equivalent to unmanipulated controls, 

and significantly increased compared to LtPNT and ePNT blastocysts (P=0.001; Figure 

4.13b). This increase in cell number is also observed in the TE compared to previous 

experimental conditions (P<0.001), with no significant difference between control and series 

II ePNT blastocyst cell number (Figure 4.13c). Furthermore, cell number of the ICM in all 

PNT experiments remain equivalent to unmanipulated controls (Figure 4.13d). These results 

suggest that the modifications to the ePNT procedure have resolved the problem of reduced 

cell number in blastocysts following PNT.  

 

Figure 4.13: Immunofluorescence labelling and cell number analysis of series II ePNT 
blastocysts. a) Confocal image of a series II ePNT blastocyst fixed on day 6. DAPI staining 
was used to obtain nuclear counts for cell count analysis. Scale bar = 50µM. b) Total, c) 
trophectoderm (TE) and d) inner cell mass (ICM) cell number of control (Ctr), LtPNT, series 
I and series II ePNT. Bars show the mean ± standard deviation. Statistical significance is 
indicated, the test used was one-way analysis of variance (ANOVA) with Tukey's HSD. 
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4.5.5 Mouse PNT 

Due to the limited number of human ePNT blastocysts allocated for cell number analysis, in 

parallel with the series II ePNT experiments I performed mouse PNT in collaboration with Dr 

Laura Irving. The experimental conditions of mouse PNT were consistent with series II 

ePNT; using calcium-free manipulation medium and single-step culture medium. However, 

we did not reduce the concentration of HVJ-E as this resulted in unsuccessful fusion of the 

karyoplast and cytoplast. Instead of the C57BL/6 mouse strain we switched to the CD1 strain 

for mouse PNT experiments; pronuclei are easier to see as the cytoplasm is less granular.  

The PNT procedure was well tolerated by mouse zygotes, with a high percentage (86.18%) 

surviving the procedure (Figure 4.14a). However there is a reduction in blastocyst formation 

following PNT compared to unmanipulated controls (P<0.005; Figure 4.14b). Quality of 

mouse blastocysts was not recorded as we found limited variability between blastocysts, 

which made it difficult to assign scores consistent with the grading scheme used for human 

blastocysts.  

 

 

 

Figure 4.14: Survival and blastocyst formation of mouse PNT zygotes. a) Survival of 
mouse zygotes following autologous PNT. b) Formation of blastocysts following autologous 
PNT using mouse zygotes compared to unmanipulated controls (P<0.005; chi-squared test).  
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A proportion of zygotes which developed to the blastocyst stage were fixed and stained with 

DAPI to obtain nuclear counts by confocal imaging. A small number of these counts were 

performed by MRes student Jessica Neilson (control, n=5 and PNT, n=3). A cell count 

validation exercise conducted by Jessica Neilson showed that cell counts were comparable 

between operators. I found a statistically significant reduction in total cell number of PNT 

blastocysts compared to unmanipulated controls (P<0.05). This was apparent also in the TE 

(P<0.01) but ICM cell number was consistent with controls; reflecting observations in LtPNT 

and the first series of ePNT experiments using human zygotes (Figure 4.6). However, the cell 

number of blastocysts which were fixed for nuclear counts during series II human ePNT is 

significantly improved and comparable to unmanipulated controls (Figure 4.13). Taken 

together, this indicates that the higher concentration of HVJ-E could contribute to reduced cell 

number, as conditions used in mouse PNT mimicked that of series II ePNT except the reduced 

HVJ-E concentration. It is conceivable that a high concentration of HVJ-E could have 

residual effects causing reduced cell number, due to its membrane fusion properties. 

4.5.6 Effect of modified ePNT procedures on chromosome segregation 

To determine whether ePNT effects chromosome segregation, in collaboration with Professor 

Dagan Wells (Oxford), the incidence of aneuploidy was analysed by array-based comparative 

genomic hybridisation (array-CGH). Cells for analysis were obtained predominately from the 

TE but in some cases cells from the ICM were also sampled. We analysed samples from both 

unmanipulated controls and series II ePNT blastocysts and were able to compare data to a 

large reference population of blastocysts resulting from normal IVF treatment and tested 

under the same conditions. Data from the reference population was age-matched to the donors 

from the ePNT experiments. 

Following analysis of the array-CGH data, I found that incidence of aneuploidy was highest 

in ePNT blastocysts, with aneuploidy detected in 50% of ePNT blastocysts (Figure 4.16a). 

However this was not statistically significant when compared to unmanipulated controls and a 

reference population of 17,443 samples from IVF blastocysts.  

On further investigation of the origin of the aneuploid blastocysts, I found aneuploidy was 

detected in the majority (83.3%) of poor quality (grade E/F) ePNT blastocysts (Figure 4.16b). 

However, aneuploidy in good quality (grade A/B) ePNT blastocysts was exactly equivalent to 

unmanipulated controls, which were all of good quality. The increased incidence of 

aneuploidy in poor quality blastocysts is consistent with recent findings (Minasi et al., 2016). 
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Figure 4.15: Mouse PNT blastocyst cell number analysis. a) Confocal images showing 
examples of control and mouse PNT blastocysts which were fixed for cell number analysis 
using DAPI staining to obtain nuclear counts. Scale bar = 20µM. b) Total, c) trophectoderm 
(TE) and d) inner cell mass (ICM) cell number of unmanipulated controls and mouse PNT 
blastocysts submitted for analysis. Bars show the mean ± standard deviation. Significance is 
shown and was calculated using unpaired t-test. 
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It should be noted that poor quality blastocysts are not normally analysed for aneuploidy in 

clinical programmes. 

In blastocysts where more than one sample was analysed by array-CGH, aneuploidy was 

categorised to reflect the degree of concordance between different samples. Blastocysts were 

defined as mosaic euploid/aneuploid if they contained a mixture of aneuploid and euploid 

samples. If multiple samples were aneuploid but different chromosomes affected, blastocysts 

were defined as mosaic aneuploid. Finally, if multiple samples were analysed and aneuploidy 

detected affecting the same chromosomes, they are described as uniform aneuploid, which is 

indicative of a meiotic error. The proportion of euploid and aneuploid samples according to 

these definitions is shown in Figure 4.16c. As expected, the highest proportion of uniform 

aneuploidy is observed in poor quality ePNT blastocysts (20% of blastocysts uniform 

aneuploid). In total, 60% of poor quality ePNT blastocysts are uniform or mosaic aneuploid. 

However, the majority of controls and ePNT blastocysts grades A-D are euploid in all or at 

least one sample analysed (Figure 4.16c). The array-CGH results are also shown in Table 4.1. 

In summary, given that eggs were donated by young women with no known fertility 

problems, the incidence of aneuploidy was higher than expected compared with the reference 

population of IVF blastocysts. This may have been due to the fact that we tested multiple 

samples in most cases, whereas in clinical IVF only one sample is tested. Given the 

apparently high incidence of mosaicism in the TE, the findings raise a question mark over the 

reliability of TE analysis for pre-implantation genetic screening. However, the main finding 

of this part of the work is that the incidence of aneuploidy was not increased in those ePNT 

blastocysts whose morphological features are compatible with implantation.  
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Figure 4.16: Incidence of aneuploidy in ePNT blastocysts. a) Graph showing percentage of 
aneuploid samples from a reference population of IVF blastocysts, unmanipulated controls 
and series II ePNT. b) Percentage of aneuploid samples in unmanipulated controls and series 
II ePNT blastocysts according to blastocyst grade. c) Graph showing the type of aneuploidy 
observed in blastocysts for which 2 or more samples were analysed. Results were not 
statistically significant (chi-squared test). 
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Table 4.1: Array-CGH results for ePNT blastocysts. Summary of results obtained from 
samples from unmanipulated control (n=11) and ePNT (n=30) blastocysts. Blastocysts are 
ordered by quality (grade).   
 

 

 

 



78 
 

4.6 Predicting the chance of achieving a pregnancy following ePNT  

Our experiments and numerous analyses performed on ePNT blastocysts indicate that a high 

proportion of blastocysts formed following ePNT are of good quality, and do not exhibit an 

increased incidence of chromosome segregation errors compared with controls. However, 

these are preclinical studies and PNT is not yet available as a treatment. Thus, we have no 

data on the success of PNT based on clinical outcome. It would be helpful to give patients an 

idea of the likelihood of successfully achieving a pregnancy following the PNT procedure 

prior to commencing treatment.  

Data from IVF/ICSI treatment at Newcastle Fertility Centre shows that blastocyst grade 

correlates with implantation (Figure 4.1). Percentage implantation ranges from 17.6% for 

grade E blastocysts, 35.1% for grade B blastocysts to 53.1% for grade A blastocysts, when 

replaced on day 5.  

In the context of clinical treatment, each individual series II ePNT heterologous experiment 

would correspond to one treatment cycle. Our mtDNA carryover data (Hyslop et al., 2016) 

indicates that the best option is to vitrify patient oocytes. Therefore, reconstituted zygotes 

would be composed of fresh cytoplast (FreshCy) and vitrified karyoplast. In Figure 4.17 I 

present the data for each heterologous ePNT experiment, including only data for FreshCy 

embryos and blastocyst development on day 5. I found that 28.6% of experiments resulted in 

the production of at least one blastocyst with an implantation potential of 35.1% to 53.1%. 

Furthermore, 42.9% of experiments produced at least one blastocyst with an implantation 

potential of 17.6%. However, a number of cases (28.6%) resulted in the production of no 

blastocysts. Therefore, it is likely that patients would require more than one treatment cycle to 

produce blastocysts compatible with implantation. 
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Figure 4.17: Predicting the chance of achieving a pregnancy following ePNT. a) Table 
showing the number of blastocysts and grade produced per experiment. Only heterologous 
ePNT (FreshCy) are included, as this mimics what would be performed clinically. 
Implantation potential, calculated from clinical IVF/ICSI data is shown, according to the 
highest quality blastocyst produced. b) Graph showing the percentage of heterologous ePNT 
(FreshCy) experiments which achieved at least one blastocyst of grade A/B, E or no 
blastocysts.   
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4.7 Discussion 

Our initial findings using normally fertilised human zygotes for PNT showed poor survival of 

reconstituted zygotes. Blastocyst formation was also significantly lower than unmanipulated 

controls, and the majority of blastocysts formed were poor quality. The finding that only 50% 

of technical controls (autologous PNT) survived the manipulations indicated a possible issue 

with the enucleation and fusion procedures. We found that switching the timing of PNT from 

the G2 to the G1 phase of the 1st mitotic cell cycle improved survival of zygotes (ePNT). 

However, despite the increase in survival, we found that the quality of ePNT blastocysts was 

not improved, even in the case of autologous transfers. We therefore performed a second 

series of ePNT experiments with further modifications. Modifications to the 

enucleation/fusion procedures in series II ePNT were to reduce the concentration of HVJ-E 

and use of a calcium-free manipulation medium. We also altered the culture conditions, using 

a single-step (G-TL) instead of sequential (G-1/G-2) medium, due to observations indicating 

that sequential medium has a negative effect on development and positive results following 

testing G-TL using mouse embryos. Interestingly, based on results from mouse embryos, G-

TL was introduced into the clinical laboratory at Newcastle Fertility Centre. Analysis of 

clinical data indicates an increase in blastocyst formation and improved blastocyst quality 

following culture in G-TL compared to sequential culture medium (unpublished data). 

Therefore, it is likely that this modification has contributed to the improvement in blastocyst 

formation for unmanipulated controls and technical controls (autologous ePNT). It is possible 

that it also promoted the development of good quality blastocysts. 

Mouse PNT was performed to investigate the causes of reduced blastocyst cell number, which 

was observed in LtPNT and the first series of human ePNT experiments, and specifically 

affected the TE. The conditions of these experiments mimicked those of series II ePNT, with 

the exception of a reduced HVJ-E concentration, as this was not compatible with fusion of 

mouse karyoplast and cytoplast. Human blastocysts which were used for cell number analysis 

in series II ePNT showed a statistically significant increase in cell number compared to ePNT 

(series I) blastocysts and were equivalent to unmanipulated controls. Surprisingly, this was 

not reproduced following analysis of mouse PNT blastocysts. This suggests that the high 

concentration of HVJ-E used in previous PNT procedures could have had a negative effect on 

blastocyst cell number. This is not implausible considering the membrane fusion properties of 

HVJ-E, it is possible that there were residual effects which were alleviated by reducing the 

concentration used. To confirm this, mouse PNT should be repeated using a reduced 

concentration of HVJ-E and blastocyst cell number compared to previous experiments. If it is 
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not possible to reduce the HVJ-E concentration 1:10, as in human ePNT, it could at least be 

partially reduced. 

The modifications introduced in series II promoted the development of good quality 

blastocysts. Notably, blastocyst formation and quality following autologous ePNT was 

exactly equivalent to unmanipulated controls. This gives reassurance that the technical 

procedures and reagents used do not have a negative impact on early human development.  

While blastocyst formation was reduced following heterologous ePNT, this was at least in 

part due to reduced survival following vitrification at the MII stage. However, given that 

48.5% of zygotes that survived the procedure developed to the blastocyst stage and that half 

of these were grade A/B on day 6, with no increase in the incidence of aneuploidy, we are 

optimistic that the procedure would be compatible with a the establishment of pregnancies in 

clinical treatment.  

Identifying which modification (if not all) is promoting improved formation of good quality 

blastocysts would require changing each element individually. However this is not possible 

due to the nature of the experiments and the limited number of donated human oocytes. 

Therefore, taking these results together these are the current optimal conditions for ePNT.  

Further research will focus on bridging the gap in blastocyst formation and quality between 

heterologous and autologous ePNT. In this regard, it would be interesting to test the effect of 

vitrification by performing heterologous ePNT between two lots of freshly harvested oocytes.  

However, it is difficult to synchronise egg donors due to unpredictability in the response to 

ovarian stimulation. This strategy may therefore not provide a long term solution.  

Another possibility is that asynchrony between zygotes used for ePNT contributed to reduced 

blastocyst formation. Asynchrony could disrupt the critical processes of paternal genome 

demethylation, DNA replication and sperm centriole duplication, which occur in the zygote. 

In relation to the effect of DNA replication, it has been reported from studies on mouse 

embryos (Yamauchi et al., 2009) that fusion of pronuclei from parthenogenetically activated 

mouse oocytes at the G1 stage with a cytoplast from an S-phase zygotes did not induce 

premature replication of DNA. However, there may be effects mediated by the sperm 

centriole. Nothing is known of the mechanisms or timing of centriole duplication in human. 

Similarly, the timing of paternal genome demethylation, which in mouse is a highly regulated 

process (Gu et al., 2011; Wossidlo et al., 2011; Nakamura et al., 2012), has not been 

characterised in human. Characterisation of these events in human zygotes will provide 

insight into the possible effects on blastocyst formation. It may be informative in defining 
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morphological correlates and, importantly, the tolerable limits of asynchrony in the likely 

event that there will be a limited number from which to choose in future clinical treatment. 

To conclude, modifications to the PNT procedure have improved survival and blastocyst 

quality which will aid the efficiency of PNT in the clinic. Furthermore, the analysis we have 

performed suggests that blastocysts formed following ePNT are compatible with the 

establishment of a normal pregnancy. However, further investigation is required in order to 

identify the causes of reduced blastocyst formation following heterologous ePNT. 
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Chapter 5. Results II: The effect and reversibility of cytoskeletal inhibitors 

used during nuclear genome transplantation 

5.1 Introduction 

Nuclear genome transplantation techniques, including pronuclear transfer (PNT) and 

metaphase II spindle transfer (MST), require the use of cytoskeletal inhibitors during 

manipulations. Cytoskeletal inhibitors facilitate enucleation and fusion as they relax the 

cytoskeleton, making the cytoplasm more fluid, by preventing polymerisation of actin and 

microtubules. 

5.1.1 The cytoskeleton 

The cytoskeleton is composed of three types of protein filament responsible for maintaining 

the shape and internal organisation of the cell; microtubules, actin and intermediate filaments. 

The cytoskeleton also provides mechanical support for essential functions including cell 

division and trafficking of organelles such as the mitochondria (Alberts et al., 2015).  

Microtubules are the largest filament at approximately 25nm in diameter and arranged in 

arrays extended from microtubule organising centres (MTOCs). Actin filaments are also 

known as microfilaments, as at approximately 7nm in diameter they are the thinnest 

component of the cytoskeleton. Actin monomers (G-actin) polymerise to form long fibres (F-

actin) which are often found below the cell cortex. Visualisation of actin filaments in fixed 

samples can be achieved by staining with phalloidin, a member of a family of toxins from the 

Amanita phalloides 'death cap' mushroom (Wieland and Faulstich, 1978), which selectively 

labels F-actin (Estes et al., 1981). Actin filaments and microtubules have plus and minus 

ends; with faster growth occurring at the plus ends. Microtubules are constantly growing and 

shortening; this is known as dynamic instability and contributes to the important roles of 

microtubules in cell division and organelle transport (Kirschner and Mitchison, 1986; Desai 

and Mitchison, 1997; Brouhard, 2015). 

The structure of the cytoskeleton differs in the oocyte before fertilisation and after 

fertilisation. This reflects changes occurring in the oocyte following fertilisation, when 

meiosis is completed and the first mitotic cycle begins. Before fertilisation the microtubules 

are assembled to form the metaphase II spindle, on which chromosomes align and segregate 

either to the oocyte or to the second polar body following fertilisation. Actin forms a thick 

cortical layer adjacent to the spindle, known as the actin cap. The actin cap is responsible for 

maintaining the position of the spindle and plays an essential role in polar body extrusion 
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(Longo and Chen, 1985). After fertilisation, the spindle is disassembled as maternal and 

paternal nuclear genetic material is packaged into pronuclei. Microtubules are involved in 

positioning pronuclei towards the centre of the zygote (Reinsch and Karsenti, 1997; Deng et 

al., 2007; Wuhr et al., 2009). Actin filaments in the zygote are enriched at the cortex, 

providing mechanical strength and in preparation for the first mitotic division.   

5.1.2 Cytoskeletal inhibitors 

Cytoskeletal inhibitors facilitate enucleation during PNT by inhibiting polymerisation of actin 

filaments and microtubules which provide strength and structural support to the zygote. The 

absence of an intact cytoskeletal network facilitates removal of the pronuclei by increasing the 

fluidity of the cytoplasm. We found that enucleation in the absence of cytoskeletal inhibitors 

frequently results in lysis of the zygote and makes it difficult to minimise the amount of 

cytoplasm surrounding the pronuclei, which has implications for the level of mitochondrial 

DNA carryover. However, it is important that inhibitors are rapidly reversible and do not 

negatively affect subsequent embryo development.  

Cytoskeletal inhibitors which target microtubules cannot be used during MST as they will 

disrupt the spindle. It is possible to use actin inhibitors but it is critically important that the 

inhibitor is rapidly reversible due to the essential role of the actin cap in polar body extrusion. 

The absence of an intact actin cap may result in failed extrusion of the second polar body and 

abnormal fertilisation, which has been reported to be occur at high frequency following MST 

in human oocytes (Tachibana et al., 2013).  

Several inhibitors are available which target either the actin or microtubule cytoskeleton; 

either promoting or inhibiting polymerisation. The structures of a number of inhibitors of 

actin and microtubule polymerisation are shown in Figure 5.1. The inhibitor commonly used 

in nuclear genome transfer to prevent the polymerisation of actin filaments is cytochalasin B. 

However, in initial LtPNT experiments (Chapter 4.2) we found that the potency of 

cytochalasin B varied between batches. Therefore, we decided to test the efficacy and 

reversibility of alternative actin inhibitors.  
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Figure 5.1: Structure of cytoskeletal inhibitors targeting actin and microtubule 
polymerisation.  
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The cytochalasins are cell permeable fungal metabolites. Cytochalasin B prevents actin 

elongation and shortening by binding to the plus ends of actin filaments (Lin et al., 1980). 

Cytochalasin C is closely related to cytochalasin D, which also prevents actin polymerisation 

by binding to actin filaments (Lin et al., 1980). These cytochalasins differ from latrunculins 

as they cannot disrupt polymerisation by binding to actin monomers. Cytochalasin C has been 

found to be ten times less toxic than cytochalasin D when used in mice, but displays a similar 

level of biological effectiveness (Walling et al., 1988). We therefore decided to test the effect 

and reversibility of cytochalasin C in zygotes.  

The latrunculins are purified natural marine toxins from the red sea sponge Latrunculia 

magnifica (Negombata magnifica). Both latrunculin A and latrunculin B disrupt 

polymerisation of actin filaments by 1:1 molecular binding of monomeric actin (G-actin) 

present in the cytoplasm (Spector et al., 1983; Spector et al., 1989; Yarmola et al., 2000). 

Latrunculin A and latrunculin B have similar short term effects; however latrunculin B is less 

potent and gradually inactivated by serum, therefore the effects of the inhibitor are transient 

(Spector et al., 1989). For this reason, latrunculin B may be preferable to latrunculin A for use 

in PNT and spindle transfer, which require inhibitors to be rapidly reversible.  

The lack of specificity of compounds which target actin hinders their use in therapeutic 

applications, such as chemotherapy. However, a phase I clinical trial has been conducted to 

test the use of latrunculin B in the treatment of patients with ocular hypertension or early 

primary open-angle glaucoma (Rasmussen et al., 2014). This trial involved testing different 

concentrations of Lat-B Opthalmic Solution in 4 cohorts of 14 patients over 3 days, results 

indicated that latrunculin B may be a potential therapeutic agent for the treatment of 

glaucoma. The adverse events recorded in this clinical trial were few and those that did occur 

were mild (Rasmussen et al., 2014).   

The microtubule inhibitor selected for use in PNT was nocodazole as we found this inhibitor 

to be reliable in previous experiments (Craven et al., 2010). Nocodazole is a synthetic 

compound which disrupts the polymerisation of microtubules by binding beta-tubulin and 

inhibiting the formation of interchain disulphide linkages. Nocodazole is frequently used in 

cell biology research laboratories to synchronise the cell cycle, as it arrests cells in the G2/M 

phase. There are currently no therapeutic uses of nocodazole, however several drugs which 

act by disrupting the microtubule cytoskeleton are used in chemotherapy. For example, 

Vinblastine prevents microtubule polymerisation by binding tubulin and inducing the 
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formation of spiral tubulin aggregates (Gigant et al., 2005). This compound is used in the 

treatment of several cancers, including: lymphomas, bladder, breast and testicular cancer.  

The aim of experiments in this chapter is to investigate the effect and reversibility of 

cytoskeletal inhibitors, in order to contribute to the selection of optimal inhibitors for use in 

nuclear genome transplantation. 

 

5.2 The effect and reversibility of inhibitors of actin polymerisation in the oocyte 

5.2.1 How effective are inhibitors at rapidly depolymerising the actin cytoskeleton in 
oocytes? 

Inhibitors which target the polymerisation of actin filaments are used during MST to aid 

removal of the spindle. However, it is important that the inhibitor used is fast-acting to 

minimise exposure time of oocytes to the inhibitor. I compared the action of the actin 

inhibitor latrunculin A that we have used for PNT to cytochalasin B, which is commonly used 

in MST.  

Oocytes were incubated with inhibitor for 10 minutes before fixation using 2% PFA. These 

experiments used mouse oocytes at the metaphase II stage, which were either freshly 

harvested following superovulation or in vitro matured. Following fixation, 

immunofluorescence labelling and confocal imaging was performed to view the effect of 

inhibitors on the actin network in mouse oocytes. 

Inhibitor stock solutions were prepared using dimethyl sulfoxide (DMSO). To control for any 

effects of DMSO, a number of oocytes (n=6) were treated with DMSO in the absence of actin 

inhibitors. A Z-projection of a DMSO treated oocyte is included in Figure 5.2b. I found the 

cytoskeleton of DMSO treated oocytes to be comparable to untreated controls. However, in 

the images due to different orientations of the oocytes, the actin cap is more visible in DMSO 

treated oocytes (Figure 5.2b). 

Latrunculin A appears to have a disruptive effect on cortical actin, including the actin cap. 

This is seen in a Z-section showing a slice and a Z-projection of a whole confocal image of 

the same oocyte treated with latrunculin A (Figure 5.2a, b). However, cytochalasin B had 

little effect on the actin cytoskeleton of oocytes (Figure 5.2a, b). These experiments included 

the use of two separate cytochalasin B stock solutions which were used within two months of 

preparation.
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Figure 5.2: The effect of actin inhibitors latrunculin A and cytochalasin B on the cytoskeleton of mouse oocytes. a) Representative confocal 
images showing single z-sections of metaphase II mouse oocytes which were untreated (n=12), treated with latrunculin A (Lat A; n=7) or cytochalasin 
B (Cyto B; n=8) for 10 minutes before fixation. b) Maximum intensity Z-projections showing untreated (n=12), DMSO (n=6), Lat A (n=7) and Cyto B 
(n=8) treated mouse oocytes. Note the enriched area of actin is the actin cap, which is not as visible in the untreated oocyte compared to DMSO and 
Cyto B due to differing orientations.  Oocytes were labelled with phalloidin (actin; green), an antibody against alpha-tubulin (microtubules; red) and 
DAPI (DNA; blue). Scale bar = 10µm.  
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Figure 5.3: Recovery of the mouse oocyte cytoskeleton following exposure to latrunculin A or cytochalasin B. a) Confocal image showing Z-
section of an untreated control (n=12) mouse oocyte. b) Confocal images showing the cytoskeleton of mouse oocytes treated with latrunculin A (Lat A; 
n=7) for 10 minutes and allowed to recover for 60 minutes (n=10), 90 minutes (n=9) and 120 minutes (n=5) post-inhibitor wash-out. c) Confocal 
images showing the cytoskeleton of mouse oocytes treated with cytochalasin B (Cyto B; n=8) for 10 minutes and allowed to recover for 60 minutes 
(n=5), 90 minutes (n=7) and 120 minutes (n=2) post-inhibitor wash-out. Oocytes were labelled with phalloidin (actin; green), an antibody against 
alpha-tubulin (microtubules; red) and DAPI (DNA; blue). Scale bar = 10µm. 
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The concentration of cytochalasin B used is the same as reported in the literature (Paull et al., 

2013; Tachibana et al., 2013). One possibility is that the ten minute exposure time is not long 

enough for cytochalasin B to exert its effects. However, when this inhibitor was used in initial 

PNT experiments, it was found to be unreliable with high batch-to-batch variability.  

5.2.2 How quickly are the effects of actin inhibitors reversed in the oocyte? 

The actin inhibitor must have low toxicity and be rapidly reversible following inhibitor wash-

out. After MST, oocytes must be fertilised by intracytoplasmic sperm injection (ICSI). If the 

effects of the inhibitor are not reversed prior to fertilisation, this could disrupt polar body 

extrusion. I compared the reversibility of latrunculin A and cytochalasin B by fixing mouse 

oocytes at set time points following exposure to the selected actin inhibitor (section 5.2.1; 

Figure 5.2) and inhibitor wash-out. I performed immunofluorescence labelling and confocal 

imaging to determine whether the effect inhibitors on the cytoskeleton are reversible.  

Although latrunculin A had a disruptive effect on cortical actin in the oocyte, including the 

actin cap, oocytes treated with latrunculin A show complete recovery of the actin cytoskeleton 

within 60 minutes (Figure 5.3b). Oocytes incubated with cytochalasin B showed little 

disruption of the actin cytoskeleton. However, I did observe disruption of the metaphase II 

spindle in one oocyte 60 minutes post-inhibitor wash-out. This occurred in only 1 of a total of 

33 oocytes treated with cytochalasin B, so it could be a random event. However, it was not 

observed in any of the 12 untreated oocytes or 31 oocytes treated with latrunculin A.   

5.2.3 Summary 

I have compared the effect and reversibility of cytochalasin B, the actin polymerisation 

inhibitor commonly used for spindle transfer, with latrunculin A. I observed extensive 

disruption of cortical actin following a ten minute incubation of mouse oocytes with 

latrunculin A, which was recovered within 60 minutes post-inhibitor wash out. However, 

incubation of oocytes with cytochalasin B had little effect; it is possible that a ten minute 

incubation period is insufficient. A previous study of MST using human oocytes found high 

levels of abnormal fertilisation (Tachibana et al., 2013). It will be interesting to perform MST 

using either latrunculin A or cytochalasin B to test whether the incidence of abnormal 

fertilisation could be reduced by using latrunculin A.  
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5.3 The effect and reversibility of cytoskeletal inhibitors in the zygote 

5.3.1 How effective and reversible are latrunculin A and nocodazole? 

Proof of concept studies for PNT (Craven et al., 2010) and LtPNT experiments (Chapter 4.2) 

were performed using the actin inhibitors latrunculin A and/or cytochalasin B. We found 

cytochalasin B to be unreliable due to variability between batches, which hindered 

experiments. Therefore, we chose to use latrunculin A alongside nocodazole which targets the 

microtubules for ePNT manipulations (chapter 4.3).  

I tested the effect of latrunculin A and nocodazole using mouse zygotes and abnormally 

fertilised human zygotes. These experiments were performed at a time when sucrose was 

routinely added to the enucleation medium to reduce the risk of damage during the 

manipulations. Zygotes were incubated with sucrose and cytoskeletal inhibitors for 10 

minutes before fixation using 2% PFA. Zygotes that had not been exposed to inhibitor were 

also fixed for comparison. These experiments included controls for exposure to sucrose which 

was present in the inhibitor solution. Immunofluorescence labelling and confocal imaging was 

performed to investigate the effect of inhibitors on the cytoskeleton. 

Untreated control zygotes stained with the F-actin probe phalloidin show consistent 

distribution of actin filaments throughout the cytoplasm, with actin enriched at the cortex 

(Figure 5.4). I found that latrunculin A rapidly depolymerised cytoplasmic actin in both 

human and mouse zygotes; a reduction in fluorescence was visible following only a ten 

minute incubation with inhibitor before fixation (Figure 5.4). However, latrunculin A did not 

seem to have an effect on cortical actin.  

Staining of zygotes with an antibody against alpha-tubulin enables visualisation of 

microtubules, which radiate from MTOCs close to the pronuclei (Figure 5.4). As would be 

expected, exposure to sucrose caused 'compaction' of the microtubule network (Figure 5.4). A 

ten minute incubation with nocodazole appears to cause the microtubule network of mouse 

zygotes to disassemble (Figure 5.4b). The effect of nocodazole on microtubules in abnormally 

fertilised human zygotes is not as severe; I observed partial disassembly of microtubules 

(Figure 5.4a). This may reflect differences in microtubule organisation between mouse and 

human zygotes. A number of zygotes were incubated and fixed at set time points following 

inhibitor wash-out, in order to determine the length of time taken for the cytoskeleton to 

return to control state. Immunofluorescence labelling and confocal imaging allowed me to 

observe recovery of the cytoskeleton (Figure 5.5). 
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Figure 5.4: The effect of cytoskeletal inhibitors latrunculin A and nocodazole on the 
cytoskeleton of mouse and abnormally fertilised human zygotes. a) Representative 
confocal images showing the actin (phalloidin; green) and microtubule (alpha-tubulin; red) 
cytoskeleton of abnormally fertilised human zygotes which were untreated (n=9), sucrose 
treated (n=7) or treated with inhibitors (n=12) for 10 minutes before fixation. Scale bar = 
20µm. b) Representative confocal images showing the actin (phalloidin; green) and 
microtubule (alpha-tubulin; red) cytoskeleton of mouse zygotes which were untreated (n=11), 
sucrose treated (n=10) or treated with inhibitors (n=10) for 10 minutes before fixation. 
Zygotes were also stained with DAPI (DNA; blue). Inhibitor treated zygotes were exposed to 
latrunculin A and nocodazole that target actin polymerisation and microtubule polymerisation, 
respectively. Scale bar = 10µm. All images show only one Z-section, therefore not all 
pronuclei may not be visible. 

 

Firstly, I determined whether the cytoskeleton in abnormally fertilised human zygotes had 

recovered at 30 minutes and 60 minutes post-inhibitor wash-out. Results indicate that 

nocodazole is quickly reversible, as the microtubule network appears comparable to controls 

following a 60 minute recovery period (Figure 5.5). By contrast, recovery of the actin 

cytoskeleton does not occur within the 60 minute period; the presence of cytoplasmic actin 

appears to be reduced compared to untreated controls (Figure 5.5). I therefore decided to 

extend the recovery period to 120 minutes to determine whether the actin cytoskeleton 

recovered within this time period; I found that at 120 minutes post-inhibitor wash-out the 

actin network of zygotes appears comparable to untreated controls (Figure 5.6). The number 

of human zygotes used for extended recovery to 120 minutes is low, this is because 

abnormally fertilised human zygotes are allocated to research from the clinical laboratory 
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quite late (~20-22 hours) after fertilisation and the majority of zygotes underwent pronuclear 

breakdown or spontaneous division during the extended recovery phase. 

I also analysed recovery of mouse zygotes following incubation with inhibitors (Figure 5.7). I 

found that nocodazole did not appear to be as reversible in mouse zygotes as human zygotes, 

as at 60 minutes recovery images were not comparable to controls (Figure 5.7). This is likely 

because the effects of nocodazole were greater on mouse zygotes, for reasons discussed 

previously, thus the recovery period is extended. It is important to note that although 

microtubules appear completely disassembled in mouse zygotes immediately after a 10 

minute incubation, this is effect is fully reversible after 90-120 minutes.  

Based on immunofluorescence images, I estimate that recovery of actin filaments in the 

cytoplasm occurs between 90 minutes and 120 minutes post-inhibitor wash-out. It is 

interesting that mouse oocytes recovered more quickly than zygotes following exposure to 

latrunculin A, although extensive disruption to the cytoskeleton was observed in oocytes 

(Figure 5.2). This may reflect differences in cytoskeleton dynamics in the oocyte before and 

after fertilisation. For example, the oocyte is in M-phase of the cell cycle whereas the zygote 

is in interphase; it is known that the actin cytoskeleton is linked to cell cycle progression 

(reviewed in Heng and Koh (2010)). 
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Figure 5.5: Reversibility of cytoskeletal inhibitors latrunculin A and nocodazole in 
abnormally fertilised human zygotes. Representative confocal images of abnormally 
fertilised human zygotes treated with cytoskeletal inhibitors latrunculin A which inhibits actin 
polymerisation and nocodazole which inhibits microtubule polymerisation, for 10 minutes. 
Zygotes were allowed to recover for 30 minutes (n=7) and 60 minutes (n=6) post-inhibitor 
wash-out. These images are compared to images of untreated, sucrose and inhibitor treated 
zygotes shown in figure 5.4. Zygotes were labelled with phalloidin (actin; green), an antibody 
against alpha-tubulin (microtubules; red) and DAPI (DNA; blue). Scale bar = 20µm. All 
images show only one Z-section, therefore not all pronuclei may not be visible. 
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Figure 5.6: Recovery of the actin cytoskeleton of abnormally fertilised human zygotes 
following treatment with cytoskeletal inhibitors. Representative confocal images showing 
untreated (n=9), sucrose (n=7), inhibitors (n=12) treated zygotes with 60 minute (n=6) and 
120 minute (n=3) recovery periods. Zygotes were incubated with latrunculin A and 
nocodazole for ten minutes. Zygotes were labelled with phalloidin (actin; green), an antibody 
against alpha-tubulin (microtubules; red) and DAPI (DNA; blue). Scale bar = 20µm. All 
images show only one Z-section, therefore not all pronuclei may not be visible. 

 



96 
 

 

Figure 5.7: Reversibility of cytoskeletal inhibitors latrunculin A and nocodazole in mouse zygotes. Representative confocal images of mouse 
zygotes treated with cytoskeletal inhibitors latrunculin A and nocodazole for 10 minutes. Zygotes were allowed to recover for 30 minutes (n=6), 60 
minutes (n=6), 90 minutes (n=8) and 120 minutes (n=8) post-inhibitor wash-out. These images are compared to images of untreated, sucrose and 
inhibitor treated zygotes shown in figure 5.4. Zygotes were labelled with phalloidin (actin; green), an antibody against alpha-tubulin (microtubules; 
red) and DAPI (DNA; blue). Scale bar = 10µm. All images show only one Z-section, therefore not all pronuclei may not be visible.
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5.3.2 Can alternative actin inhibitors speed up recovery in zygotes? 

Latrunculin B 

Experiments described above indicate that nocodazole is fast-acting and rapidly reversible but 

latrunculin A requires a longer recovery period post-inhibitor wash-out. This could negatively 

affect events occurring in the zygote, for example cytoplasmic actin filaments may play a role 

in pronuclear migration and maintenance of a centralised mitotic spindle (Chaigne et al., 

2016). Therefore, we decided to test alternative inhibitors which target actin polymerisation. 

Latrunculin B is less potent than latrunculin A (Spector et al., 1989) and recommended for 

short term studies as its effects are transient.  

I compared the effects of latrunculin A (2.5µM) and latrunculin B (2µM) in abnormally 

fertilised human zygotes. Again, untreated controls and zygotes exposed to sucrose are 

included in Figure 5.8a for comparison. I found that latrunculin B had a disruptive effect on 

cortical actin which was not observed following treatment with latrunculin A (Figure 5.8b, c). 

Latrunculin B also appeared to depolymerise cytoplasmic actin filaments, as phalloidin 

fluorescence in the cytoplasm was reduced compared to untreated controls (Figure 5.8a, c).  

Zygotes were fixed 15 minutes and 30 minutes after wash-out of latrunculin A or latrunculin 

B (Figure 5.8b, c). As discussed previously (section 5.3.1), the actin cytoskeleton of 

abnormally fertilised human zygotes is not fully recovered until approximately 120 minutes 

after treatment with latrunculin A (Figure 5.6). As expected, in this series of experiments the 

fluorescence of cytoplasmic phalloidin was not comparable to untreated controls within the 30 

minute recovery period (Figure 5.8b). On the other hand, despite latrunculin B appearing to 

have a more disruptive effect on cortical actin, the actin cytoskeleton of zygotes treated with 

latrunculin B is quickly reassembled (Figure 5.8c). Zygotes treated with latrunculin B are 

comparable to controls at 30 minutes post-inhibitor wash-out. The faster recovery time 

following latrunculin B treatment may make latrunculin B a better option than latrunculin A 

for PNT.  
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Figure 5.8: The effect and reversibility of actin inhibitors latrunculin A and latrunculin B on abnormally fertilised human zygotes. 
Representative confocal images of a) Untreated (n=13) and sucrose (n=7) controls. b) Latrunculin A (n=11) treated zygotes with 15 minute (n=6) and 
30 minute (n=7) recovery. c) Latrunculin B (n=6) treated zygotes with 15 minute (n=5) and 30 minute (n=6) recovery. Nocodazole was also present in 
the inhibitor solution, in which zygotes were incubated for 10 minutes. Zygotes were labelled with phalloidin (actin; green), an antibody against alpha-
tubulin (microtubules; red) and DAPI (DNA; blue). Scale bar = 20µm. All images show only one Z-section, therefore not all pronuclei may not be 
visible. 
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Cytochalasin C 

Although we excluded cytochalasin  B due to inconsistency between batches, cytochalasin C 

may be a promising options as it displays reduced toxicity in mice compared to other 

cytochalasins (Walling et al., 1988). I first tested the effect and reversibility of cytochalasin C 

using mouse zygotes (Figure 5.9). I found the effect of this inhibitor to be similar to that 

observed following latrunculin B treatment of abnormally fertilised human zygotes, with 

disruption of cortical actin in addition to cytoplasmic actin. However, zygotes were recovered 

approximately 60 minutes following inhibitor wash-out, which is not as prompt as latrunculin 

B but faster than latrunculin A recovery. 

Next, I tested cytochalasin C using abnormally fertilised human zygotes (Figure 5.10). 

Surprisingly, I found that many zygotes were degenerating during the recovery period 

following inhibitor treatment. For this reason, I was not able to fix many zygotes. Of those 

that were fixed after a 60 minute recovery period, zygotes showed signs of degeneration and 

the actin cytoskeleton was highly abnormal. It is unusual that this inhibitor used at the same 

concentration and same exposure time would have such different effects on mouse and human 

zygotes, and may point to differences in the actin cytoskeleton between mouse and human 

zygotes, or abnormally fertilised zygotes. 

Summary 

Due to the slow recovery of zygotes treated with the actin polymerisation inhibitor latrunculin 

A, I decided to test alternative inhibitors which may speed up recovery. The inhibitors 

selected were latrunculin B and cytochalasin C, as previous studies have shown they are less 

toxic than other inhibitors of the same family (Walling et al., 1988; Spector et al., 1989). 

Although mouse zygotes showed relatively quick recovery following incubation with 

cytochalasin C, this inhibitor seemed to cause degeneration of human zygotes. Due to the 

negative effect of this inhibitor on human zygotes, it would not be suitable for use in PNT. 

However, immunofluorescence labelling indicates that actin filaments of human zygotes 

treated with latrunculin B recover within 30 minutes post-inhibitor wash-out. This is an 

improvement on the 120 minute recovery period for latrunculin A treated zygotes. The 

quicker recovery period of zygotes following latrunculin B treatment is likely due to the 

reduced potency of latrunculin B, and its transient effects due to gradual inactivation by serum 

(Spector et al., 1989).  
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Figure 5.9: The effect and reversibility of actin inhibitor cytochalasin C on mouse 
zygotes. Representative confocal images of mouse zygotes which were; untreated (n=4), 
sucrose (n=4), inhibitor (n=3) treated, with 30 minute (n=5) and 60 minute (n=5) recovery 
periods. Nocodazole was also present in the inhibitor solution, in which zygotes were 
incubated for 10 minutes. Zygotes were stained with phalloidin (actin; green) and DAPI 
(DNA; blue). Scale bar = 10µm. All images show only one Z-section, therefore not all 
pronuclei may not be visible. 
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Figure 5.10: The effect and reversibility of actin inhibitor cytochalasin C on abnormally 
fertilised human zygotes. Representative confocal images of zygotes which were; untreated 
(n=6), inhibitor (n=9) treated, with 15 minute (n=2) and 60 minute (n=3) recovery periods. 
Nocodazole was also present in the inhibitor solution, in which zygotes were incubated for 10 
minutes. Zygotes were stained with phalloidin (actin; green) and DAPI (DNA; blue). Scale 
bar = 20µm. All images show only one Z-section, therefore not all pronuclei may not be 
visible. 

 

 

5.4 Embryo development following PNT: comparison of actin inhibitors 

The experiments described above have investigated the effect and short term reversibility of 

cytoskeletal inhibitors. I have found that nocodazole is fast-acting and quickly reversible. 

However, latrunculin B displays faster reversibility than latrunculin A, which is currently 

used in PNT. The next stage is to test whether latrunculin B may improve blastocyst 

formation and quality if used as an alternative to latrunculin A in PNT. 

5.4.1 Human ePNT: latrunculin A versus latrunculin B 

A series of human autologous ePNT experiments using nocodazole and latrunculin B were 

performed alongside autologous ePNT experiments using nocodazole and latrunculin A. All 

ePNT experiments using human zygotes were performed by Dr Louise Hyslop, an 

experienced clinical embryologist. I analysed survival, blastocyst formation and blastocyst 

quality following ePNT using either latrunculin A or latrunculin B (Figure 5.11). 
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Comparison of the survival of latrunculin A and latrunculin B ePNT zygotes shows a trend 

towards reduced survival of latrunculin B treated ePNT zygotes (Figure 5.11a). This reduction 

in survival is reflected in blastocyst formation data (Figure 5.11b, c). On day 5 and 6 of 

development, there is a trend towards reduced blastocyst formation of latrunculin B treated 

ePNT embryos (36.4% day 5; 45.5% day 6) compared to unmanipulated controls (52.4% day 

5; 61.9% day 6). This contrasts to latrunculin A ePNT zygotes, which show increased 

blastocyst formation compared to controls on day 5 (61.9% versus 52.4%) and are comparable 

to controls on day 6 (61.9%). When I take into account the reduced survival and calculate 

blastocyst formation as a percentage of zygotes which survived manipulation rather than a 

percentage of all zygotes submitted to ePNT, the percentage blastocyst formation of 

latrunculin B is improved but the trend of the data remains the same (Figure 5.11c). 

Blastocysts developing following ePNT procedures were given grades reflecting their quality 

scores. The grading scheme for ePNT blastocysts is consistent with that used in the clinical 

laboratory at Newcastle Fertility Centre, which was discussed in more detail in Chapter 4.1. 

The quality scores assigned to ePNT blastocysts treated with latrunculin A are similar to 

controls on days 5 and 6 of development (Figure 5.11d). Statistical analysis revealed the 

quality of latrunculin B treated ePNT blastocysts was significantly reduced compared to 

controls and latrunculin A treated ePNT blastocysts (P<0.05). Of the ePNT zygotes 

developing to the blastocyst stage following treatment with latrunculin B, all were assigned a 

grade E (early) on day 5. By contrast, 36.4% of controls and 23.1% latrunculin A ePNT 

blastocysts were good quality (grade A/B) on day 5 (Figure 5.11d). The percentage of good 

quality blastocysts increased to 76.9% for controls and latrunculin A-treated ePNT 

blastocysts, whereas only 20% of latrunculin B ePNT blastocysts were good quality on day 6, 

with a high proportion remaining grade E (40%). This suggests that in addition to reducing 

blastocyst formation, latrunculin B also has a negative impact on blastocyst quality and rate of 

development.  
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Figure 5.11: Survival and blastocyst development following human ePNT using either 
latrunculin A or latrunculin B to inhibit actin polymerisation. Human autologous ePNT 
experiments were performed using cytoskeletal inhibitors latrunculin B and nocodazole. This 
data was compared to data from unmanipulated controls and autologous ePNT (series II) 
experiments in which latrunculin A and nocodazole were used. a) Survival of zygotes 
following latrunculin A (Lat A) ePNT and latrunculin B (Lat B) ePNT. Difference is not 
significant (chi-squared test). b) Blastocyst formation as a percentage of total zygotes 
submitted to ePNT in unmanipulated controls (Ctr), Lat A and Lat B ePNT embryos. Not 
significant (Fisher's exact test). c) Blastocyst formation as a percentage of zygotes surviving 
manipulations. Not significant (chi-squared test). d) Quality of unmanipulated controls (Ctr) 
and latrunculin A/ latrunculin B (Lat A/ Lat B) ePNT blastocysts. Blastocysts were assigned a 
grade from A-D (good to poor quality), E (early) and F (blastocyst showing signs of 
degeneration). Latrunculin B treated ePNT zygotes are of significantly poorer quality than 
control and latrunculin A treated ePNT zygotes on day 5 and day 6 (P<0.05; Fisher's exact 
test). For this analysis, grades were grouped (grades A/B versus grades C-F).  
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5.4.2 Mouse PNT: latrunculin A versus latrunculin B 

The human ePNT experiments described in section 5.5.1 comparing latrunculin A and 

latrunculin B were repeated using mouse zygotes, as only a small number (n=11) of human 

ePNT zygotes were treated with latrunculin B. Mouse PNT experiments discussed in Chapter 

4.5 were performed using latrunculin A; I therefore compared these data to latrunculin B 

mouse PNT development data.  

I found survival to be comparable between latrunculin A (88.5%) and latrunculin B (87%) 

PNT zygotes (Figure 5.12a). Blastocyst formation was reduced following PNT in the presence 

of latrunculin A or latrunculin B compared to controls (P<0.05; Figure 5.12b). However, 

when accounting for the reduction in survival, blastocyst formation following PNT using 

latrunculin A is comparable to controls, whereas there remains a significant reduction in 

blastocyst formation following PNT in the presence of latrunculin B (P<0.05; Figure 5.12c). 

Taken together with the data from human ePNT, these results raise concerns about the safety 

of latrunculin B for use in PNT. This is surprising, as zygotes treated with latrunculin B 

displayed a faster short term recovery than those treated with latrunculin A (section 5.3.2; 

Figure 5.8). It is possible that the disruptive effect of latrunculin B on cortical actin causes 

excessive leakage of cytoplasm during enucleation, which could affect embryo development. 

We conclude that latrunculin A is the preferable inhibitor of actin polymerisation for use in 

conjunction with the microtubule polymerisation inhibitor nocodazole during ePNT. 
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Figure 5.12: Survival and blastocyst formation following mouse PNT using either 
latrunculin A or latrunculin B to inhibit actin polymerisation. A series of mouse PNT 
experiments were performed using cytoskeletal inhibitors latrunculin B and nocodazole. This 
data was compared to data from unmanipulated controls and mouse PNT experiments that 
used latrunculin A and nocodazole. a) Survival of zygotes following latrunculin A (Lat A) 
PNT and latrunculin B (Lat B) PNT. Difference is not significant (chi-squared test). b) 
Blastocyst formation as a percentage of total zygotes submitted to PNT in unmanipulated 
controls (Ctr), Lat A and Lat B PNT embryos. Significance is indicated on the graph (chi-
squared test). c) Blastocyst formation as a percentage of zygotes surviving manipulations. 
Significance is indicated on the graph (chi-squared test). 
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5.5 The effect of sucrose and cytoskeletal inhibitors on mitochondrial distribution in 
zygotes 

In addition to investigating the effect of actin and microtubule inhibitors on the cytoskeleton, 

I performed MitoTracker® staining and live-cell confocal imaging of zygotes to determine 

the effect of sucrose and cytoskeletal inhibitors on the distribution of mitochondria in the 

cytoplasm. This is important because mitochondria are trafficked by microtubules (Van 

Blerkom, 1991). Any aggregation of mitochondria around the pronuclei as a consequence of 

the reagents would likely result in increased mitochondrial DNA carryover during PNT.   

Sucrose was added to the manipulation medium in the first series of ePNT experiments to 

induce shrinkage of the cytoplasm, increasing the size of the peri-vitelline space thus 

facilitating enucleation and minimising risk of damage to the membrane. However, during a 

second series of ePNT experiments (series II) we found that the osmotic effect of sucrose may 

be contributing to a high level of carryover of karyoplast mtDNA (Hyslop et al., 2016). 

MitoTracker® staining and live-cell imaging may give some insights regarding whether the 

use of sucrose causes aggregation of mitochondria in the vicinity of the pronuclei.  

Analysis of mitochondrial distribution by live cell imaging of zygotes stained with 

MitoTracker® Red CMXRos revealed that mitochondria in mouse zygotes appear to be 

consistently localised to the central area of the zygote, with less mitochondria at the periphery 

of the zygote (Figure 5.13). Interestingly, I found that mitochondria appeared to be 

consistently enriched around the smaller pronucleus, which in mouse zygotes is the female 

pronucleus.  

During incubation with sucrose solution, more mitochondria appear to be distributed centrally 

in the zygote, close to the pronuclei. This would likely contribute to increased carryover of 

mtDNA during PNT. In zygotes exposed to cytoskeletal inhibitors, MitoTracker® staining 

appears to show increased aggregation of mitochondria. It is expected that inhibitors would 

alter mitochondrial distribution, as nocodazole targets microtubules, known to be involved in 

mitochondrial transport (Van Blerkom, 1991). After a 30 minute recovery period, the 

mitochondrial distribution of zygotes is comparable to MitoTracker® staining observed 

before treatment. However, in order to minimise carryover of mtDNA during PNT sucrose 

should be eliminated from the enucleation medium, as aggregation of mitochondria around 

the pronuclei at the time of PNT is likely to increase mtDNA carryover. 
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Figure 5.13: The effect of sucrose and cytoskeletal inhibitors on mitochondrial 
distribution in mouse zygotes. A total of 18 zygotes from 2 mice underwent MitoTracker® 
Red CMXRos staining and live-cell confocal imaging. Images show MitoTracker® staining 
before, during and 30 minutes after treatment with sucrose and the cytoskeletal inhibitors 
nocodazole and latrunculin A. Scale bar = 10µm.  

 

 

5.6 Discussion 

In this chapter I have investigated the effect and reversibility of cytoskeletal inhibitors used 

for MST and PNT. Firstly, I tested the effect of inhibitors of actin polymerisation in mouse 

oocytes. Cytochalasin B is commonly used for MST, however, because we found 

cytochalasin B to be unreliable, we opted to use latrunculin A for the ePNT experiments. 

Comparison of cytochalasin B and latrunculin A using immunofluorescence labelling and 

confocal imaging of mouse oocytes indicates that latrunculin A efficiently disrupts the actin 

cytoskeleton, including the actin cap. Despite this, recovery of oocytes was quick as an intact 

actin cap was visible in oocytes following a 30 minute recovery period. I found that 

cytochalasin B seemed to have little effect on the actin cytoskeleton although two batches 

were tested.  

Previous reports of MST in human oocytes involved the use of cytochalasin B at a 

concentration of 5µg/ml (Paull et al., 2013; Tachibana et al., 2013). At this concentration I 
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found the effect of cytochalasin B to be minimal. Initially, I suspected this could be due to the 

short exposure time of 10 minutes. Tachibana et al. incubated oocytes for 10-15 minutes with 

cytochalasin B before performing manipulations. This supports the idea that cytochalasin B 

may not be effective within 10 minute to facilitate spindle removal. On the other hand, Paull 

et al. state that oocytes were incubated with inhibitor for only 3-5 minutes prior to 

manipulation. However, neither of the above studies directly investigated the effect of the 

cytochalasin B on the actin network.  

Tachibana et al. (2013) reported a high incidence of abnormal fertilisation when human 

oocytes were fertilised by ICSI following MST. Abnormal fertilisation, identified by the 

presence of 1 pronucleus or more than 2 pronuclei, was observed in 52% of spindle transfer 

zygotes in this study (Tachibana et al., 2013). The authors found that this was likely due to 

the retention of genetic material from the second polar body. In an attempt to reduce any 

residual effects of the inhibitor, the authors extended the time between spindle transfer and 

ICSI from 30 minutes to 2 hours. Surprisingly, incidence of abnormal fertilisation was 

consistent between both groups (44% versus 43%). This may suggest that oocytes had not 

fully recovered from inhibitor exposure and/or manipulations after two hours. 

The possibility of cytochalasin B contributing to abnormal fertilisation was also considered in 

this study (Tachibana et al., 2013), as actin inhibitors are commonly used to prevent 

cytokinesis and polar body extrusion in artificial activation procedures. The concentration of 

cytochalasin B was reduced from 5µg/ml to 2.5µg/ml, or completely excluded. However, 

abnormal fertilisation persisted in all conditions and the authors conclude that 'abnormal 

meiotic segregation is not likely to be caused by cytochalasin B exposure' (Tachibana et al., 

2013). However, the 100% abnormal fertilisation reported in spindle transfer oocytes not 

exposed to cytochalasin B refers to only 1/1 oocyte. I expect that removal of the spindle was 

difficult in the absence of an actin polymerisation inhibitor, which could have put excessive 

stress on the oocyte. Due to only one oocyte being included in this experimental group, I do 

not think it can be concluded that exposure to cytochalasin B did not contribute to abnormal 

fertilisation. It will be interesting to further investigate this, and compare the outcomes of 

spindle transfer using latrunculin A or cytochalasin B.  

I have tested the effect and reversibility cytoskeletal inhibitors in order to select optimal 

inhibitors for PNT. Early PNT experiments were performed using latrunculin A to inhibit 

actin polymerisation and nocodazole which targets polymerisation of microtubules. These 

inhibitors were selected based on observations in initial PNT experiments. Treatment of 
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mouse zygotes and abnormally fertilised human zygotes with nocodazole and latrunculin A 

and subsequent fixation and immunofluorescence labelling showed that both inhibitors are 

fast acting. Nocodazole is rapidly reversible, however the effects of latrunculin A take longer 

to reverse. Therefore, I tested latrunculin B, which has reduced potency (Spector et al., 1989), 

and found the recovery period could be reduced to 30 minutes.  

However, immunofluorescence labelling showed latrunculin B also affected cortical actin 

whereas latrunculin A did not. This may have contributed to the adverse effect of latrunculin 

B on onward development; latrunculin B treated ePNT embryos showed reduced blastocyst 

formation in human ePNT and mouse PNT. Surprisingly, during human ePNT the effects of 

latrunculin B were found to be more potent than latrunculin A when used at the same 

concentration (2.5µM). Therefore, a range of concentrations were tested and a slightly 

reduced concentration was used (2µM). In mouse PNT we observed excessive cytoplasmic 

leakage during manipulations using latrunculin B, which may have contributed to the 

detrimental effect on subsequent embryo development.   

An interesting finding was the different effects of cytochalasin C on mouse zygotes and 

abnormally fertilised human zygotes. Cytochalasin C showed effective depolymerisation and 

full recovery of the actin cytoskeleton of mouse zygotes within 60 minutes. Furthermore, on 

one occasion cytochalasin C was used for mouse PNT and resulted in the successful 

formation of two blastocysts (data not presented due to small numbers). However, abnormally 

fertilised human zygotes show signs of degeneration following exposure to cytochalasin C. 

Cytochalasins bind actin filaments to prevent elongation and shortening; they do not bind to 

actin monomers (Lin et al., 1980). A publication by Walling et al. (1988) claims that 

cytochalasin C is less toxic in mice than its relative cytochalasin D but displays the same 

biological effectiveness. Cytochalasin C is a relatively new inhibitor, it does not appear to 

have been commonly used and there is little information in the literature regarding its 

mechanism of action. The difference in the effect of this inhibitor between mouse and human 

zygotes may indicate differences in the actin cytoskeleton between mouse and human zygotes. 

It may be interesting to investigate this further, however these results suggest that 

cytochalasin C is not a safe inhibitor for the purposes of PNT. Furthermore, the finding 

underscores the importance of using human oocytes and zygotes to test the safety and efficacy 

of reagents used for PNT and spindle transfer.  

Differences between the microtubule network in mouse and abnormally fertilised human 

zygotes were also observed when testing nocodazole. There are many factors that may 
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contribute to the different effect of nocodazole on mouse and human zygotes. Firstly, it could 

be attributed to the different size of the zygotes and exposure to the same concentrations of 

inhibitor. Secondly, the zygotes are at different stages; mouse zygotes are at an early stage 

and pronuclei have only just appeared, whereas abnormally fertilised human zygotes are at a 

late stage. Furthermore, polyspermy in abnormally fertilised human zygotes may affect the 

microtubule network; it is possible that the presence of additional microtubule asters from 

sperm in zygotes with >2 pronuclei would increase microtubule polymerisation. Finally, and 

importantly, the sperm aster is absent in mouse zygotes as centrosomes are maternally 

inherited. Therefore, microtubules have different organisations within mouse and human 

zygotes.  

MitoTracker® staining of mouse zygotes revealed the enrichment of mitochondria around the 

female pronucleus. In mouse zygotes, pronuclear apposition is achieved by both microtubules 

and microfilaments, as centrosomes are maternally inherited in the mouse. It is possible that 

mitochondria are also involved in pronuclear apposition, most likely by providing energy for 

transport. 

To conclude, for the purposes of facilitating enucleation and fusion during PNT latrunculin A 

and nocodazole are the optimal cytoskeletal inhibitors. Sucrose should not be used during 

manipulations as the increased osmolarity causes aggregation of mitochondria around the 

pronuclei, which is likely to result in increased mitochondrial DNA carryover.  
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Chapter 6: Results III: Gene expression patterns in blastocysts following 

pronuclear transfer 

6.1 Introduction 

6.1.1 Human blastocyst development and gene expression 

The human blastocyst is formed at 5 to 6 days post-fertilisation, following a series of cleavage 

divisions, compaction and cavitation. This is an important developmental milestone; the 

embryo cannot implant without developing to the blastocyst stage and hatching from its zona 

pellucida. The blastocyst is composed of an inner cell mass (ICM) and outer layer known as 

the trophectoderm (TE). The TE goes on to form the placenta, whereas the ICM is composed 

of the primitive endoderm (PE) and the epiblast (EPI) which form the yolk sac and foetus, 

respectively.  

Developmental stages from the oocyte to morula are characterised by distinct gene expression 

profiles (Xue et al., 2013), suggesting stepwise transcriptional changes in cell cycle, 

metabolism, gene regulation and translation pathways, that are largely conserved between 

mouse and human. Much of what is known about gene expression and lineage specification in 

blastocysts is based on findings from the mouse. For example, during blastocyst development 

in the mouse differential Hippo signalling at compaction triggers the first cell fate decision 

which separates the ICM and TE (Nishioka et al., 2009). Subsequent segregation of the ICM 

into the EPI and PE lineages is driven by differential FGF signalling (Guo et al., 2010).  

A recent publication (Blakeley et al., 2015) using single-cell RNA-sequencing (scRNA-seq) 

highlights the similarities and differences between human and mouse lineage-specification 

during preimplantation development. For example, FOXA2 is restricted to the PE, NANOG 

to the EPI and CDX2 to the TE lineages of both mouse and human blastocysts. This study 

also revealed a number of genes and signalling pathways enriched in the human EPI, such as 

components of the TGF-β signalling pathway. Interestingly, FGF signalling has been shown 

to not be required for ICM segregation in human (Roode et al., 2012). Another publication 

using scRNA-seq analysis studied lineage specification using over 1,500 cells from 88 human 

blastocysts (Petropoulos et al., 2016), and identified a period of co-expression of lineage-

associated genes prior to establishment of the TE, PE and EPI lineages. This is consistent with 

previous reports from immunofluorescence studies indicating mixed expression of lineage-

associated transcription factors before ICM cells finally committed to either the EPI or PE 
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lineage (Chazaud et al., 2006; Plusa et al., 2008; Roode et al., 2012; Niakan and Eggan, 

2013).  

During preimplantation development it is thought that there is no replication of mtDNA, with 

the exception of a suggested brief period of mtDNA synthesis in the oocyte post-fertilisation 

(McConnell and Petrie, 2004). Thus, according to our current understanding, mtDNA is 

inherited maternally from the oocyte and is segregated between daughter cells during each 

embryonic division in a regulated manner. In the blastocyst, the trophectoderm has an 

increased number of mitochondria compared to the inner cell mass, observed following 

MitoTracker staining, and is responsible for higher oxygen consumption and the production 

of the majority of ATP (Houghton, 2006). Mitochondria have an essential function in 

bioenergetics during preimplantation development, with mitochondrial dysfunction 

compromising developmental success (reviewed in Dumollard et al. (2007; Van Blerkom, 

2009; Steffann et al., 2015)). 

6.1.2 Single-cell RNA-sequencing  

As mentioned above, several recent publications investigating gene expression patterns in 

human preimplantation development have used scRNA-seq (Xue et al., 2013; Yan et al., 

2013; Piras et al., 2014; Petropoulos et al., 2016). The ability to obtain gene expression data 

from single cells allows the investigation of specific biological questions which was not 

possible using traditional methods. However, there are also challenges associated with this 

technology.  For example, measurements from RNA-seq may be affected by technical 

variability (Brennecke et al., 2013). Furthermore, as scRNA-seq is a relatively new 

technology, we are faced with computational challenges and there is currently no standard for 

scRNA-seq data analysis (Stegle et al., 2015) and numerous computational methods are 

available for the normalisation and downstream data analysis. Despite these challenges, 

scRNA-seq provides a powerful tool for defining gene expression during human 

preimplantation development. 

In collaboration with Dr Kathy Niakan’s lab at the Francis Crick Institute, London, we have 

performed scRNA-seq using cells from unmanipulated control and ePNT blastocysts.  

Importantly, our samples were processed and analysed in the same way as the published 

dataset consisting of unmanipulated human blastocysts (Blakeley et al., 2015) from Dr Kathy 

Niakan’s lab. This enabled us to use them as a reference population in addressing the question 

of whether ePNT disrupts gene expression in the blastocyst, with a focus on global, lineage-

associated and mitochondrial gene expression.  
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6.2 Global gene expression in unmanipulated controls and ePNT blastocysts 

6.2.1 Global gene expression patterns in ePNT blastocysts compared to unmanipulated 
controls 

To determine whether ePNT has an effect on gene expression in the blastocyst, we first 

performed principal component analysis (PCA) on scRNA-seq data. In addition to our 

unmanipulated experimental controls, we included a previously published series of 

unmanipulated blastocysts as a reference population (Blakeley et al., 2015). Blastocysts 

produced following ePNT and submitted to RNA-seq included those generated by fusion of 

cytoplasts and karyoplasts with the same (autologous/homologous) or different (heterologous) 

mitochondrial genomes.  

Our PCA analysis included controls and all ePNT samples, irrespective of blastocyst quality, 

(Figure 6.1a). By plotting PC1 against PC2, which together account for the highest variation 

in global gene expression, we found that while the majority of samples clustered together, 

there were some outliers. Analysis of the origin of outliers revealed a higher percentage of 

outliers were samples from ePNT blastocysts than unmanipulated controls (Figure 6.1b). 

However, further investigation discovered an increased percentage of outliers were from poor 

quality heterologous ePNT blastocysts compared to controls (grades D-F; P<0.005) and good 

quality heterologous ePNT blastocysts (grades A-C; P<0.01) (Figure 6.1c). This is supported 

by analysis of outliers according to blastocyst grade, which shows that a high proportion 

(47.1%) of samples from poor quality blastocysts (grades E/F) were outliers (Figure 6.1d). 

This was significantly increased compared to samples from good quality blastocysts (grades 

A/B; P<0.0001) and blastocysts grades C/D (P<0.05). These findings indicated that PCA of 

scRNA-seq data is sufficiently sensitive to detect differences in global gene expression 

between good and poor quality blastocysts. 

It is unsurprising that not all ePNT samples clustered together with unmanipulated controls, as 

all the control samples came from blastocysts which were top or good quality (grades A/B), 

whereas ePNT samples analysed included poor quality blastocysts. Furthermore, a high 

percentage of poor quality blastocysts were aneuploid for multiple chromosomes (Chapter 

4.5.6), which would likely affect their gene expression profile compared to normal 

blastocysts.  
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Figure 6.1: Global gene expression patterns in unmanipulated controls and ePNT 
blastocysts according to RPKM normalised counts. a) PCA of scRNA-seq data comparing 
global gene expression profiles in unmanipulated controls and ePNT blastocysts (grades A-F). 
b) Graph showing percentage of outliers from control and ePNT samples (not significant; 
Fisher's exact test). c) Graph showing percentage outliers according to origin (P-values are 
shown; Fisher's exact test). d) Graph shows an increased percentage of outliers in samples 
from poor quality blastocysts (P values are shown; Fisher's exact test). e) PCA of scRNA-seq 
data comparing unmanipulated control samples with samples from good quality ePNT 
blastocysts. The key shows the numbers of samples and blastocysts included in this analysis. 
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While the inclusion of samples from poor quality blastocysts provided a useful means of 

validating our approach, it has little biological relevance. As shown in Chapter 4 (Figure 4.1), 

the implantation potential is strongly correlated with blastocyst grade and poorer quality 

blastocysts, particularly (Grades E/F) are highly unlikely to be capable of implanting to form 

a viable foetus. For this reason, samples from poor quality blastocysts were excluded and 

PCA was repeated to compare ePNT (grades A-C) to unmanipulated controls. This analysis 

showed that ePNT samples clustered closely with controls (Figure 6.1e) and the variation 

accounted for by PC1 and PC2 was reduced, this is shown by the PC1 and PC2 percentages. 

While there was still a small number of outliers (3/94), these samples were derived from 

controls (n=2) as well as ePNT (n=1) blastocysts. 

The data from the PCAs described above were obtained using counts which were normalised 

using the reads per kilobase of exon model per million mapped reads (RPKM) method. This 

approach normalises for transcript length and sequencing depth (Mortazavi et al., 2008). To 

test whether these results are reproducible, I repeated the analyses using DESeq2 normalised 

counts (Love et al., 2014), which uses a negative binomial generalised linear model and 

provides an alternative approach for analysis of scRNA-seq data. PCA performed using 

DESeq2 normalised counts comparing controls and ePNT samples gave similar results to 

PCA using RPKM normalised counts (Figure 6.2a). I found that a higher percentage of 

outliers were samples from ePNT blastocysts compared to unmanipulated controls (P<0.05; 

Figure 6.2b). This was also observed with RPKM normalised counts, however was not 

statistically significant in this case (Figure 6.1b). Further analysis of outlier origin revealed a 

high percentage of outliers were from poor quality heterologous ePNT blastocysts (Figure 

6.2c). This was significantly increased compared to controls (P<0.0001), autologous ePNT 

(P<0.05) and good quality heterologous ePNT blastocysts (P<0.0005). As before, a high 

proportion of samples from poor quality blastocysts (grades E/F) were outliers in the PCA; 

this was significantly higher in poor quality blastocysts compared to blastocysts of grades 

A/B (P<0.0001) and C/D (P<0.05; Figure 6.2d). Removal of poor quality samples from the 

PCA results in the majority of control and ePNT samples clustering together (Figure 6.2c). As 

observed in the PCA using RPKM normalised counts, there are 3 outliers from control (n=2) 

and ePNT (n=1) blastocysts. These samples (hCtr.1, hCtr.2 and 9PNT.12) are identified as 

outliers in both the PCA using RPKM normalised counts and DESeq2 normalised counts.  
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Figure 6.2: Global gene expression patterns in unmanipulated controls and ePNT 
blastocysts according to DESeq2 normalised counts. a) PCA of scRNA-seq data 
comparing global gene expression profiles in unmanipulated controls and ePNT blastocysts 
(grades A-F). b) Graph showing percentage of outliers from control and ePNT samples 
(P<0.05; Fisher's exact test). c) Graph showing percentage outliers according to origin (P-
values are shown; Fisher's exact test). d) Graph shows an increased percentage of outliers in 
samples from poor quality blastocysts (P values are shown; Fisher's exact test). e) PCA of 
scRNA-seq data comparing unmanipulated control samples with samples from good quality 
ePNT blastocysts.  

 



117 
 

These results provide reassurance that the PCA data are reproducible by two independent 

approaches to normalisation of the scRNA-seq data. Moreover, both approaches indicate that 

the analyses are sufficiently sensitive to detect differences in global gene expression between 

samples from good and poor quality blastocysts. Importantly, by confining the analysis to 

blastocysts whose morphological features are compatible with implantation, we found that 

ePNT samples clustered together with samples from controls. We conclude that global gene 

expression is indistinguishable between good quality ePNT and control blastocysts.  

6.2.2 Global gene expression related to morphological characteristics of blastocysts 

While the analysis of poor quality blastocysts has limited relevance from a clinical 

perspective, analysis of the differences in gene expression between good and poor quality 

blastocysts has the potential to provide new biological insights into pathways and processes 

determining embryo viability. To further investigate the gene expression patterns in poor 

quality blastocysts, we combined samples from good quality (grades A-C) ePNT and control 

blastocysts for comparison with poor quality (grades D-F) blastocysts. Figure 6.3 shows PCA 

(RPKM and DESeq2 normalised counts) distinguishing poor quality ePNT samples and 

grouped controls/ good quality ePNT samples. Good quality samples generally cluster closely 

together, whereas poor quality samples appear to have high variability in global gene 

expression. This is demonstrated by the significantly higher number of outlying samples from 

poor quality blastocysts in the PCA using both RPKM (P<0.0005) and DESeq2 (P<0.0001) 

normalised counts (Figure 6.3b, d). 

In order to investigate differences in gene expression related to morphological characteristics, 

I performed differential gene expression analysis comparing blastocysts grades A-C (control 

and ePNT samples) with blastocysts grades D-F (ePNT samples) using DESeq2. For 

identification of differentially expressed genes, DESeq2 applies shrinkage estimators for 

dispersion and logarithmic fold change calculations. I then used the R package GOstats to find 

Gene Ontologies (GOs) associated with the list of differentially expressed genes from 

DESeq2. For this analysis I only included genes with an adjusted P value (which accounts for 

multiple comparisons) of <0.05 and also considered whether the selected genes were 

upregulated or downregulated in poor quality blastocysts. I found that only a small proportion 

of differentially expressed genes were downregulated in grade D-F blastocysts (19.1%; 961 

out of 5037 genes). Enriched GOs for downregulated genes are shown in Table 6.1 and 

include several related to ion transport and cell signalling.  
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Figure 6.3: Global gene expression patterns in good and poor quality blastocysts. a) PCA 
of scRNA-seq data comparing samples from good quality blastocysts (grades A-C; controls 
and ePNT) and poor quality blastocysts (grades D-F; ePNT) using RPKM normalised counts. 
b) Graph showing percentage outliers from blastocysts grades A-C and grades D-F 
(P<0.0005; Fisher's exact test). c) PCA comparing samples from good quality blastocysts 
(grades A-C; controls and ePNT) and poor quality blastocysts (grades D-F; ePNT) using 
DESeq2 normalised counts. d) Graph showing percentage outliers from blastocysts grades A-
C and grades D-F (P<0.0001; Fisher's exact test).   
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The majority of differentially expressed genes identified by DESeq2 were upregulated in 

grade D-F blastocysts (80.9%; 4076 out of 5037 genes). Enriched GOs shown in Table 6.2 are 

mainly related to metabolism and catabolism. This finding supports the 'quiet embryo 

hypothesis' (Leese, 2002), which suggests that viable mammalian embryos have a low 

metabolism, glycolytic rate and amino acid turnover. Interestingly, cellular response to stress 

and DNA damage stimulus is also included in the enriched GO terms for genes upregulated in 

poor quality ePNT blastocysts. However, it is surprising that cell death genes are not 

upregulated in poor quality blastocysts. I also found that upregulated genes included genes 

associated with the cell cycle. As upregulated genes include both metabolic and cell cycle 

genes, this may be linked to metabolic control of cell cycle progression (Fajas, 2013; Lee and 

Finkel, 2013; Kalucka et al., 2015). Alternatively, as discussed in Chapter 4 (Figure 4.16), a 

high proportion of poor quality samples are aneuploid for multiple chromosomes, which is 

likely to disrupt the cell cycle.   
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Table 6.1: Gene ontologies enriched in genes downregulated in poor quality blastocysts. 
Differentially expressed genes were identified using DESeq2 and enriched gene ontologies 
identified using GOstats. Genes identified by DESeq2 included in this analysis had an 
adjusted P value of <0.05 and a negative fold change in samples from blastocysts grades D-F. 
Table shows the gene ontology (GO) ID, term and significance level (P value).  
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Table 6.2: Gene ontologies enriched in genes upregulated in poor quality blastocysts. 
Differentially expressed genes were identified using DESeq2 and enriched gene ontologies 
identified using GOstats. Genes identified by DESeq2 included in this analysis had an 
adjusted P value of <0.05 and a positive fold change in samples from blastocysts grades D-F. 
Table shows the gene ontology (GO) ID, term and significance level (P value).  

 

 

 

 



122 
 

6.3 Expression of lineage-associated genes 

6.3.1 Lineage-associated gene expression in good quality control and ePNT blastocysts  

Having established that global gene expression is similar between good quality ePNT samples 

and unmanipulated controls, we asked whether there are any detectable differences in lineage-

associated genes. As discussed earlier, mammalian blastocysts consist of an outer 

trophectoderm (TE) layer and inner cell mass (ICM), which segregates to form the epiblast 

(EPI) and primitive endoderm (PE). Gene expression profiles for these lineages have been 

described (Blakeley et al., 2015; Petropoulos et al., 2016). Here, we include lineage-

associated genes identified as highly differentially expression according to DESeq2. 

Analysis of samples from good quality blastocysts using t-SNE (t-distributed stochastic 

stochastic neighbour embedding), a non-linear method for dimensionality reduction, for the 

top 6,000 most variable genes from DESeq2 analysis (Figure 6.4), revealed that samples 

cluster according to lineage (Figure 6.4). Within the TE lineage, control samples are 

overrepresented. This is likely due to a learning curve effect during the disaggregation of 

single-cells from blastocysts; analysis of the reference population was performed before our 

unmanipulated controls and ePNT blastocysts, therefore, more TE samples were collected 

than ICM samples. We were unable to detect any differences between ePNT and control 

blastocysts within each of the lineages. Thus, while t-SNE can distinguish samples by lineage, 

it cannot detect differences between ePNT and control samples within each of the three 

lineages. This finding was confirmed by unsupervised hierarchical clustering (Figure 6.5) 

using a subset of 30 differentially expressed well-known lineage-associated genes, in which 

control and ePNT samples clustered together based on lineage. These findings suggest that 

ePNT does not disrupt lineage specification in good quality blastocysts. 
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Figure 6.4: Differential gene expression analysis in good quality ePNT and control 
samples. t-SNE analysis of the top 6,000 most variably expressed genes according to 
DESeq2, where samples were distinguished by lineage. Lineage is indicated by colour code, 
sample and blastocyst numbers are shown.  

 



124 
 

 

Figure 6.5: Expression of lineage specific genes in controls and samples from good 
quality ePNT blastocysts. Heatmap showing log2-transformed RPKM values of a subset of 
differentially expressed genes, according to DESeq2, in trophectoderm (n=10), epiblast 
(n=10) and primitive endoderm (n=10) lineages. Expression level is plotted on a high-to-low 
scale (purple-white-green). The key shows the number of samples (cells), blastocysts and 
grade. Samples are labelled according to origin using a colour code shown in the key.  
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6.3.2. Lineage-associated gene expression in good and poor quality blastocysts  

In order to determine whether unsupervised hierarchical clustering could detect differences in 

lineage specification in samples from poor quality blastocysts, we repeated the above analysis 

including all samples. As before, good quality ePNT samples clustered together with 

unmanipulated controls according to lineage (Figure 6.6a). However, I did see an increase in 

the incidence of samples showing mixed expression of lineage-associated genes, or generally 

low expression of lineage-associated genes (Figure 6.6a). Poor quality ePNT blastocysts had 

the highest proportion of samples displaying mixed/ low expression of lineage-associated 

genes (Figure 6.6b). This was significantly higher than control blastocysts (P<0.0001) and 

good quality ePNT blastocysts (P<0.0001). Good quality ePNT blastocysts did have a higher 

percentage of samples with mixed expression than controls but this was not statistically 

significant (Figure 6.6b). Of samples with mixed expression, I found that most commonly EPI 

and PE genes were co-expressed. This suggests that poor quality ePNT samples may have 

delayed development and that cells of the ICM have not yet finally committed to the epiblast 

or primitive endoderm lineage. On the other hand, mixed expression may reflect a more 

fundamental problem in the regulation of gene expression affecting lineage specification in 

poor quality blastocysts. 
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Figure 6.6: Expression of lineage specific genes in controls and samples from ePNT 
blastocysts. a) Heatmap showing log2-transformed RPKM values of a subset of differentially 
expressed genes in trophectoderm (n=10), epiblast (n=10) and primitive endoderm (n=10) 
lineages. Expression level is plotted on a high-to-low scale (purple-white-green). The key 
shows the number of samples (cells), blastocysts and grade. Samples are labelled using a 
colour code shown in the key. b) Graph shows increased percentage of samples with mixed 
expression of lineage specific genes in poor quality blastocysts (P values are shown; Fisher's 
exact test).  
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6.3.3 Expression of non-lineage-associated genes in the three blastocyst cell lineages 

To further explore whether there are differences in gene expression between lineages aside 

from lineage-associated genes, I performed differential gene expression analysis using 

DESeq2 grouping samples by lineage, followed by GO analysis including differentially 

expressed genes with an adjusted P value of <0.05. Comparison of the TE and ICM gave 

expected results, with genes related to GOs such as gastrulation, embryo development and 

endoderm development upregulated in the inner cell mass. Interestingly, comparison of the 

ICM lineages, EPI and PE, revealed differentially expressed genes related to GOs including 

organelle organisation, cell death and cell cycle, with these upregulated in the primitive 

endoderm. Following unsupervised hierarchical clustering, samples generally cluster together 

when taking into consideration all genes within these ontologies (Figure 6.7). This may reflect 

the behaviours which have been observed leading to the formation of the primitive endoderm, 

such as selective apoptosis for cell sorting within the ICM (Plusa et al., 2008). 

Comparison of samples with mixed/ambiguous lineage to samples which were assigned a 

lineage revealed the upregulation of genes related to ontologies linked to cellular response to 

stress and metabolism (Table 6.3). This is unsurprising as a high proportion of poor quality 

blastocysts provided samples that were not allocated a lineage. As discussed in 6.2.2, samples 

from poor quality blastocysts had upregulation of genes related to metabolism compared to 

good quality blastocysts. This is consistent with the finding that viable embryos have a 'quiet' 

metabolism (Leese, 2002); high amino acid turnover is correlated with DNA damage 

(Sturmey et al., 2009) and embryos with an 'active' metabolism may be responding to stress 

and DNA damage (Leese et al., 2007; Leese et al., 2008). 
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Figure 6.7: Gene ontologies enriched in differentially expressed genes between epiblast 
and primitive endoderm samples. Dendrograms showing samples clustering according to 
inner cell mass (ICM) lineage (primitive endoderm (PE), red; epiblast (EPI), green) for 
expression of genes involved in organelle organisation, cell death and cell cycle.  
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Table 6.3: Gene ontologies enriched in genes upregulated in samples showing mixed 
expression of lineage-associated genes. Differentially expressed genes were identified using 
DESeq2 and enriched gene ontologies identified using GOstats. Genes identified by DESeq2 
included in this analysis had an adjusted P value of <0.05 and a positive fold change in 
samples showing mixed expression of lineage-associated genes. Table shows the gene 
ontology (GO) ID, term and significance level (P value). 
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6.4 Mitochondrial gene expression 

6.4.1 Does mitochondrial gene expression differ between unmanipulated controls and 
ePNT blastocysts? 

The purpose of ePNT is to offer a clinical treatment which will reduce the risk of transmission 

of mtDNA disease from mother to child. This treatment will result in the formation of new 

combinations of nuclear and mitochondrial genomes in the embryo, which could possibly 

disrupt mitochondrial gene expression. To investigate the effect of ePNT on genes required 

for mitochondrial function, I have performed PCA using RPKM and DESeq2 normalised 

counts, comparing control samples and good quality (grades A-C) ePNT samples. For this 

analysis, a list of mitochondrial genes (encoded by nuclear and mtDNA) was downloaded 

from MitoCarta 2.0 (Calvo et al., 2016). I found that there was wide variation between 

samples, but generally control and ePNT samples overlap (Figure 6.8). Although there are 

several outliers, these originate from ePNT and control blastocysts. 

I next performed PCA of good quality ePNT samples grouped with controls and poor quality 

ePNT samples; to determine whether poor quality blastocysts display altered mitochondrial 

gene expression. I found that although there was overlap between good quality and poor 

quality samples, poor quality samples displayed much higher variation in mitochondrial gene 

expression (Figure 6.9). This is also apparent when visualised using a heatmap created 

following unsupervised hierarchical clustering (Figure 6.10). There are clusters visible at the 

'top' of the heatmap with a distinct expression profile, showing generally lower expression of 

mitochondrial genes. The majority of samples in these clusters originate from poor quality 

ePNT blastocysts (60%). This suggests that poor quality blastocysts have altered expression 

of mitochondrial genes compared to good quality blastocysts. However, good quality ePNT 

samples are indistinguishable from controls.  

On the basis that analysis of global and lineage-associated gene expression indicates that 

results are similar when counts are normalised by RPKM or DESeq2, I performed subsequent 

analysis of mitochondrial gene expression using only RPKM normalised counts. In further 

support of this, PCA of genes involved in regulating mitochondrial function revealed similar 

results between RPKM and DESeq2. 
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Figure 6.8: Analysis of expression of nuclear and mtDNA encoded mitochondrial gene 
expression in control and ePNT samples. PCA comparing mitochondrial gene expression in 
control and good quality ePNT samples, a) using RPKM normalised counts and b) using 
DESeq2 normalised counts. A list of mitochondrial genes was downloaded from MitoCarta 
2.0 and included genes encoded by the nuclear and mitochondrial genomes. A t-distribution is 
included to visualise the overlap between control and ePNT samples.  
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Figure 6.9: Analysis of nuclear and mtDNA encoded mitochondrial gene expression in 
samples from good and poor quality blastocysts. PCA comparing mitochondrial gene 
expression in good and poor quality samples, a) using RPKM normalised counts and b) using 
DESeq2 normalised counts. A list of mitochondrial genes was downloaded from MitoCarta 
2.0 and included genes encoded by the nuclear and mitochondrial genomes. A t-distribution is 
included to visualise the overlap between control and ePNT samples.  
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Figure 6.10: Nuclear and mtDNA encoded mitochondrial gene expression. Heatmap 
showing the expression of mitochondrial genes from MitoCarta 2.0 gene list (nuclear and 
mtDNA encoded), using RPKM normalised counts. Expression level is plotted on a high-to-
low scale (red to blue). Key shows blastocyst grade and the number of samples and 
blastocysts. Samples are labelled using a colour code indicated in the key.  
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6.4.2 Expression of OXPHOS genes 

mtDNA encoded OXPHOS genes 

Next, the expression of mitochondrial oxidative phosphorylation (OXPHOS) genes encoded 

by mtDNA was examined more closely. A heatmap created following unsupervised 

hierarchical clustering is shown in Figure 6.11a. The input was RPKM normalised counts 

from unmanipulated controls and all ePNT samples. There is wide variation in the level of 

expression of mtDNA encoded OXPHOS genes, but on the whole control and ePNT samples 

tend to cluster together. A notable exception is four samples with very low expression across 

all mtDNA OXPHOS genes. These four samples are all from ePNT blastocysts; 3 from 

heterologous ePNT blastocysts (1 grade A-C, 2 grades D-F), which therefore have new 

combinations of nuclear and mitochondrial genomes and one sample from a homologous 

ePNT blastocyst. As this cluster includes a technical control (homologous ePNT), it suggests 

that this low expression is not caused by new combinations of nuclear and mitochondrial 

genomes. Furthermore, there are other samples originating from the same blastocysts (28PNT, 

2PNT, 20PNT and 8PNT) that cluster together with controls.   

In Figure 6.11b, PCA of mtDNA encoded OXPHOS gene expression in control and ePNT 

samples (grades A-C and grades D-F) is shown. There is high variation in expression, with 

PC1 accounting for 81.59% of the variation. However, clusters of controls and ePNT samples 

of all grades overlap. The wide variation in mtDNA encoded OXPHOS gene expression, 

regardless of origin or blastocyst quality, is also highlighted in the graph shown in Figure 

6.11c. Interestingly, in addition to wide variation in expression between blastocysts, there is 

also variation between samples from the same blastocyst.  

Nuclear and mtDNA encoded OXPHOS genes 

I next investigated the relationship between nuclear and mitochondrial genes encoding 

subunits of the OXPHOS complexes. Firstly, I created a heatmap including controls and all 

ePNT samples (Figure 6.12). I found the expression of mtDNA encoded OXPHOS genes to 

be higher than that of nuclear encoded OXPHOS genes, which could be due to the increased 

copy number of the mitochondrial genome. However, a number of samples appear to have 

unusual expression of mtDNA and nuclear encoded OXPHOS genes compared to the general 

pattern shown by other samples. This can be seen in the cluster towards the 'top' of the 

heatmap, and includes samples from both control and ePNT blastocysts. The majority  
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Figure 6.11: Expression of mtDNA encoded OXPHOS genes. a) Heatmap showing 
expression of mtDNA encoded OXPHOS genes (RPKM) plotted on a high-to-low scale 
(purple-white-green). b) PCA of mtDNA encoded OXPHOS genes, comparing control, good 
and poor quality ePNT samples. c) Graph showing median mtDNA encoded OXPHOS gene 
expression (RPKM) per sample. Blastocysts are ordered according to grade (A-F) and labelled 
using a colour code indicated in the key. Bars show the mean ± SD. Numbers of samples and 
blastocysts are shown. 
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(64.3%) of samples in this cluster originate from poor quality ePNT blastocysts (grades D-F). 

The expression of mtDNA encoded OXPHOS genes appears to be generally increased, 

whereas the expression of nuclear encoded OXPHOS genes is decreased compared to the 

remaining samples.  

Another cluster, which branches close to the cluster mentioned above, has visibly decreased 

expression across all OXPHOS complex genes includes the samples 8PNT.14 and 2PNT.11, 

which are from poor quality blastocysts and were observed in Figure 6.11 to have very low 

expression of mtDNA encoded OXPHOS genes. Exploring previous analysis revealed that 

these samples were also outliers in the PCA of global gene expression (Figures 6.2 and 6.3) 

and had mixed expression of lineage-associated genes (Figure 6.6).  

It is possible that samples displaying a reduced level of expression of nuclear encoded 

OXPHOS genes may have generally decreased expression of nuclear genes. To test this, I 

created a heatmap using a list of housekeeping genes suggested to be suitable for use as 

reference genes in experiments measuring RNA expression ((Eisenberg and Levanon, 2013), 

Figure 6.13). Although the expression levels of the selected housekeeping genes were not as 

consistent as expected, I identified a cluster of 12 samples with decreased expression across 

the list of 11 housekeeping genes. Of these 12 samples, 11 (91.7%) were present in the 

clusters showing reduced expression of nuclear encoded OXPHOS genes (Figure 6.11). This 

accounts for 78.6% of samples displaying reduced expression of nuclear encoded OXPHOS 

genes, suggesting that these samples may have generally decreased expression of nuclear 

genes that is not specific to those involved in mitochondrial function.  

Removal of samples from poor quality blastocysts from this analysis results in more 

consistent expression of nuclear and mtDNA encoded OXPHOS genes across and within 

samples (Figure 6.14). A number of nuclear encoded OXPHOS genes have low expression 

across all samples; it may be interesting to look at these genes in more detail in the future. 
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Figure 6.12: Expression of OXPHOS genes. Heatmap showing the expression of nuclear 
and mtDNA encoded OXPHOS genes (RPKM) according to complex, plotted on a high-to-
low scale (red to blue). Brackets within those showing each complex indicate mtDNA 
encoded genes. Samples are labelled using a colour code indicated in the key. This analysis 
includes all ePNT samples (blastocysts grade A-F). 
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Figure 6.13: Expression of housekeeping genes. Heatmap showing the expression of 
nuclear encoded housekeeping genes (RPKM) plotted on a high-to-low scale (red to blue). 
Samples are labelled using a colour code indicated in the key. 
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Figure 6.14: Expression of OXPHOS genes. Heatmap showing the expression of nuclear 
and mtDNA encoded OXPHOS genes (RPKM) according to complex, plotted on a high-to-
low scale (red to blue). Brackets within those showing each complex indicate mtDNA 
encoded genes. Samples are labelled using a colour code indicated in the key. This analysis 
excludes poor quality ePNT samples. 
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6.4.3 Mitochondrial gene expression according to lineage 

Finally, it is possible that mitochondrial gene expression could be related to lineage. This 

could be a contributing factor towards the high variation of mtDNA gene expression within 

blastocysts. To investigate this I calculated the median level of expression (RPKM) across all 

mtDNA encoded OXPHOS genes per sample and plotted the values, grouping samples 

according to lineage (Figure 6.15). I found that the average level of expression was similar 

between lineages; there was no statistically significant difference between groups. However, 

there was a trend towards increased expression of mtDNA encoded OXPHOS genes in TE 

and samples of mixed lineage. Upregulation of mitochondrial activity is thought to be a 

characteristic of TE differentiation (Hewitson and Leese, 1993; Houghton, 2006); a number of 

TE samples have increased median mtDNA encoded OXPHOS gene expression and the mean 

of the TE group is increased compared to the ICM lineages. Increased mtDNA encoded 

OXPHOS expression in samples of mixed lineage may be linked to the upregulation of genes 

associated with metabolism in these samples (Table 6.3). Furthermore, there is a trend 

towards reduced mtDNA encoded OPXHOS expression in the EPI lineage; this may be a 

mechanism to reduce the risk of acquired mtDNA mutations in the population destined for 

transmission to the next generation. 

 

 

Figure 6.15: Expression of mtDNA encoded OXPHOS genes according to lineage. Graph 
showing median expression of mtDNA encoded OXPHOS genes (RPKM) in samples 
grouped according to lineage: epiblast (EPI), primitive endoderm (PE), trophectoderm (TE) 
and mixed. Bars show the mean ± SD. The number of samples within each group is shown. 
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6.5 Discussion 

In this chapter I have examined global, lineage-associated and mitochondrial gene expression 

between single-cell samples from unmanipulated control and ePNT blastocysts. Overall, 

global gene expression patterns in the blastocyst do not appear to be disrupted by the ePNT 

procedure, and the techniques we have used for analysis are sensitive enough to detect 

differences in gene expression between samples from good and poor quality blastocysts and to 

distinguish cells by lineage.  

Gene ontology (GO) analysis of differentially expressed genes between good and poor quality 

blastocysts revealed enrichment of GOs related to metabolism in genes upregulated in poor 

quality blastocysts, this provides support to the 'quiet embryo hypothesis' (Leese, 2002). The 

molecular characteristics throughout embryonic development which may contribute to a 

'quiet' metabolism and embryo viability have been discussed (Baumann et al., 2007; Leese et 

al., 2007) and include protein synthesis and recycling. In further support of this hypothesis, a 

relationship has been demonstrated between amino acid consumption and DNA damage in 

porcine and bovine embryos (Sturmey et al., 2009), and amino acid turnover used as a marker 

of blastocyst developmental potential in ICSI (Brison et al., 2004) and cryopreserved human 

embryos (Stokes et al., 2007). The 'quiet embryo hypothesis' has recently been extended and 

describes a 'Goldilocks zone' of metabolic activity within which embryos with maximum 

developmental potential are located (Leese et al., 2016). Embryos with a 'quiet' metabolism 

display reduced DNA damage and increased capability to respond to damage effectively, as 

resources are not used for continuous repair (Leese et al., 2007). Whereas embryos with an 

'active' metabolism may have increased metabolic processes linked to DNA damage and stress 

response, which could cause increased levels of Reactive Oxygen Species (ROS) within the 

blastocyst and subsequent negative consequences for development (Leese et al., 2008). 

Furthermore, it could be argued that increased metabolism can cause increased ROS 

production, which in turn increases the risk of DNA damage.  

Genes linked to the cell cycle were also found to be upregulated in poor quality blastocysts. 

As discussed in Chapter 4.5, a high proportion of poor quality blastocysts were aneuploid for 

multiple chromosomes (Figure 4.16), this includes blastocysts submitted to scRNA-seq 

(7PNT and 8PNT). Progression of the cell cycle is delayed if all chromosomes are not 

correctly attached to the spindle via kinetochores; this is regulated by the spindle assembly 

checkpoint (SAC) and maintains genome stability by preventing cell division when 

chromosomes cannot be segregated accurately. It is surprising that blastocysts with such high 
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incidence of aneuploidy could continue to develop to the blastocyst stage. However, results 

from a study into the origin and impact of embryonic aneuploidy indicate that it is possible for 

aneuploid embryos to develop to the blastocyst stage (Fragouli et al., 2013). The authors 

suggest that aneuploid embryos may be selected against at around the time of implantation or 

shortly after, as they are not detected in clinical pregnancies (Fragouli et al., 2013). The 

upregulation of cell cycle genes in poor quality blastocysts could indicate disruption in the 

regulation of cell cycle progression in samples from embryos which had a high incidence of 

aneuploidy. 

Enrichment of GOs related to cell signalling and ion transport were identified in genes 

downregulated in poor quality blastocysts. Formation of the fluid filled cavity known as the 

blastocoel requires transport of Na+ to cause osmotic fluid accumulation, which contributes to 

the expansion of the blastocyst. The fact that GOs relating to ion transport are downregulated 

in poor quality blastocysts may indicate a problem with blastocyst expansion which could be 

specifically related to blastocyst which were grade E (early) on day 6 of development, at the 

time of disaggregation for RNA-seq analysis. Alternatively, there is possibly a general mis-

regulation of cell signalling within poor quality blastocysts. 

Analysis of lineage-associated gene expression showed that it is possible to assign lineages to 

samples from both control and ePNT blastocysts. The high proportion of samples from poor 

quality blastocysts that had mixed expression of lineage-associated genes, often from the EPI 

and PE, could be due to mis-regulation of gene expression, or a developmental delay meaning 

that cell fate is undecided at the point of analysis. Interestingly, genes that were upregulated in 

PE samples were linked to GOs including organelle organisation, cell death and cell cycle. 

This could be associated with the cell sorting which occurs in the inner cell mass prior to 

lineage specification (Plusa et al., 2008). It is known that apoptosis may play a role in human 

preimplantation development, for example by eliminating abnormal cells and those with 

inappropriate developmental potential (reviewed in (Hardy (1999)). Furthermore, in Chapter 4 

TUNEL staining revealed a trend towards increased cell death in the ICM compared to the TE 

(Figure 4.7).  

Comparison of mitochondrial gene expression between controls and ePNT samples revealed 

high variation in gene expression but overlap of clusters of control and ePNT samples of all 

grades. However, samples from poor quality ePNT blastocysts displayed increased variation 

and a distinct gene expression profile to other samples. This could be due to the increased 
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metabolism of poor quality ePNT blastocysts causing increased levels of ROS and possibly 

prompting apoptosis, which are all processes linked to mitochondria. 

I have shown that there is high variation of mtDNA encoded OXPHOS gene expression 

within and between blastocysts, which is not dependent on grade. I hypothesised that this 

could be related to the lineage of samples; with some lineages having higher mtDNA gene 

expression than others. Although I found no statistically significant difference in expression 

of mtDNA encoded OXPHOS genes between lineages, there was a trend towards increased 

expression in TE and samples with mixed lineage. The number of EPI and PE samples is very 

low compared to TE and mixed samples. It will be particularly interesting to further explore 

the trend towards reduced expression of mitochondrial genes in EPI cells.  This may act to 

minimise the risk of mtDNA mutations in the founder population destined for transmission to 

the next generation.  

The observation of higher expression of mtDNA encoded OXPHOS genes compared to 

nuclear DNA encoded OXPHOS genes could simply be due to the increased copy number of 

mtDNA; there are 2 copies of the nuclear genome per cell compared with approximately 

1,500 copies of mtDNA. Alternatively, a recent publication studied mitochondrial and nuclear 

gene expression in Saccharomyces cerevisiae during mitochondrial biogenesis (Couvillion et 

al., 2016). The authors found that transcript levels of nuclear and mtDNA encoded subunits of 

OXPHOS complexes did not increase/decrease synchronously. However, it should be noted 

that a number of poor quality samples with decreased expression of nuclear encoded 

OXPHOS genes also displayed reduced expression of housekeeping genes, suggesting this 

was not specifically related to mis-regulated mitochondrial gene expression. It is surprising 

that not all these samples were outliers in PCA of global gene expression, as would be 

expected if gene expression was generally reduced.  

Overall, these findings suggest that expression of mitochondrial genes is highly variable 

within and between blastocysts. The ePNT procedure and production of new combinations of 

nuclear and mitochondrial genomes does not appear to disrupt mitochondrial gene expression 

in good quality blastocysts compared to unmanipulated controls.  

As scRNA-seq is a relatively new technology, there are many computational challenges 

relating to the analysis of scRNA-seq data. There is currently no standard pipeline for 

computational analysis. In this chapter I have used two different normalisation methods 

(RPKM and DESeq2) and demonstrated that results are not influenced by the chosen method. 

Furthermore, I have used several techniques for the clustering of the data. However, it would 
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be interesting to reanalyse the data using the updated human genome to align the reads. The 

data presented above are based on reads aligned to hg19 whereas the most recently available 

is hg38, which contains the updated mitochondrial genome.  

It would also be interesting to analyse expression of mitochondrial genes throughout 

preimplantation development, and further investigate the expression of mitochondrial genes 

between lineages. This would be possible by extending our data to analyse more samples 

from blastocysts and embryos at different stages throughout development, including the 

cleavage divisions. There is also publicly available scRNA-seq data from numerous 

publications that have investigated gene expression throughout preimplantation development.  

To conclude, samples from good quality ePNT blastocysts are indistinguishable from 

unmanipulated controls regarding global, lineage-associated and mitochondrial gene 

expression. This analysis indicates that the gene expression profile is not disrupted in ePNT 

blastocysts with the potential for implantation. The analysis of poor quality blastocysts has 

allowed us to gain new biological insights into pathways and processes which may contribute 

to determining embryo viability. Results suggest that blastocysts of poorer quality show an 

increased level of metabolic activity, developmental delay and/or mis-regulation of gene 

expression. Thus, these blastocysts should not be selected for use in treatment if ePNT is to be 

offered clinically.  
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Chapter 7. Discussion 

The central aim of this project was to perform preclinical studies testing the safety and 

efficiency of PNT. Survival and formation of good quality blastocysts has improved by 

making numerous modifications to the PNT procedure, including altering the timing of PNT 

and modifications to the enucleation and embryo culture conditions. While blastocyst 

formation was slightly reduced following heterologous ePNT, the overall proportion of good 

quality blastocysts offers a reasonable chance of a successful treatment outcome. Testing 

several parameters to investigate the safety of ePNT, our findings indicate that good quality 

ePNT blastocysts are similar to unmanipulated controls, suggesting that PNT is compatible 

with the establishment of a normal pregnancy. Therefore, the main aim of this research has 

been successfully addressed. 

Proof of concept studies performed using abnormally fertilised human zygotes revealed that 

PNT has the potential to reduce the risk of transmission of mtDNA disease (Craven et al., 

2010). However, the limited developmental potential of abnormally fertilised zygotes 

hindered further studies of PNT. Therefore, preclinical studies were performed using normally 

fertilised human zygotes. Surprisingly, techniques used in proof of concept studies were not 

well tolerated by normally fertilised zygotes. We hypothesised that this was due to the 

relatively accelerated development of normally fertilised zygotes and modified the timing of 

PNT to be performed ~8 hours post-fertilisation (ePNT) opposed to ~16-20 hours post 

fertilisation (LtPNT). At this stage, the zygote is expected to be in the G1 phase of the cell 

cycle rather than G2. We found that allowing more time for recovery between the 

manipulations and first mitotic division improved survival of reconstituted zygotes.   

Although altering the timing of manipulations increased survival, blastocyst quality remained 

poor with a reduced cell number. We therefore performed a second series of ePNT 

experiments (series II ePNT) to test further modifications in order to promote the 

development of good quality blastocysts. Modifications included using calcium-free 

manipulation medium, reducing the concentration of HVJ-E and switching to a single-step 

embryo culture medium. To determine which modification improved the development of 

good quality blastocysts would require changing each element separately, which is not 

possible due to the limited number of donated human oocytes. Interestingly, mouse PNT 

using the same conditions as series II ePNT apart from the reduced HVJ-E concentration did 

not alleviate the issue of reduced blastocyst cell number in PNT blastocysts, although this 

problem was resolved in human embryos by the modifications introduced in series II ePNT. 
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This raises the possibility that the reduced concentration of HVJ-E resulted in improved 

blastocyst cell number and quality during series II ePNT. It is possible that high 

concentrations of HVJ-E used during manipulations may have residual membrane fusion 

effects that contribute to reduced blastocyst cell number and quality. To further investigate 

this, the concentration of HVJ-E used in mouse PNT should be reduced to the lowest possible 

concentration compatible with fusion and the effect on cell number determined. However, it is 

difficult to assess the effect on mouse blastocyst quality, as there is limited variability 

between embryos.  

Use of calcium-free medium during manipulations could facilitate improved development of 

good quality blastocysts by reducing interference with calcium signalling. For example, it is 

known that sperm-induced calcium oscillations continue until pronuclei formation (Marangos 

et al., 2003) and amplitude and frequency of oscillations can influence blastocyst 

development (Ozil et al., 2006), and membrane damage during the manipulations could have 

resulted in an influx of calcium, which may have disrupted intracellular calcium homeostasis. 

Indeed, this problem may have been exacerbated by increased membrane porosity in the 

higher concentrations of HVJ-E.  

The single-step culture medium G-TL was initially tested using mouse embryos in our 

laboratory and showed increased blastocyst formation compared with sequential medium, 

which required moving the embryos to a different medium on day 3. Following these 

findings, G-TL was introduced into the clinical laboratory at Newcastle Fertility Centre and 

results show increased blastocyst formation and quality (unpublished data). Therefore, it is 

likely that this modification also contributed to improved blastocyst formation and quality of 

unmanipulated and technical controls during series II ePNT. One possible explanation for the 

improved development in single step medium is that it reduced environmental insults due to 

fluctuations in temperature and pH. However, because embryos are handled in 

environmentally controlled isolators in our lab, this is unlikely to be the only explanation. 

Another possibility is that transferring embryos to a different medium deprives the embryos 

of any embryonic factors that may be secreted into the surrounding environment. 

In series II ePNT, blastocyst formation and quality following autologous ePNT was 

equivalent to unmanipulated controls, suggesting that the technical procedures and reagents 

do not disrupt preimplantation development. However, there is a reduction in blastocyst 

formation following heterologous ePNT. As heterologous ePNT involves reciprocal transfers 

between zygotes originating from fresh and vitrified oocytes, it is likely that this reduction in 
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blastocyst formation is at least partially caused by an effect of vitrification. There was a 

reduction in blastocyst formation of MII vitrified heterologous ePNT embryos compared to 

autologous ePNT embryos, which occurred when the embryo was composed of fresh 

cytoplast and vitrified karyoplast (FreshCy) or vitrified cytoplast and fresh karyoplast 

(VitCy).  

To test whether development was compromised by subjecting MII oocytes to multiple 

manipulations (warming, ICSI and ePNT) in quick succession, we performed a series of 

experiments in which oocytes were injected with sperm before being vitrified. Vitrification 

was therefore performed after the second polar body appeared. However, we found that this 

had a negative effect on blastocyst formation, particularly when the karyoplast was vitrified 

(FreshCy). This finding suggests that the nuclear component is sensitive to the effects of 

vitrification immediately post-fertilisation. If possible, the effect of vitrification could be 

investigated by performing transfers between freshly harvested oocytes, but synchronisation 

of egg donors is an obstacle and it is most likely that in clinical treatment vitrification of 

oocytes will be required.  

It has also been suggested that incompatibilities between mitochondrial and nuclear genomes 

may contribute to reduced blastocyst development (Morrow, 2016). While this is plausible in 

the case of inbred laboratory species, it is less likely in humans as new combinations of 

nuclear and mitochondrial genomes are created in each round of meiosis and fertilisation. If 

incompatibility is a problem in humans, one would expect to observe reproductive barriers 

between people with divergent mitochondrial genotypes.   

Future work will aim to investigate possible causes of reduced blastocyst formation following 

heterologous ePNT. A concern is that asynchrony between zygote pairs from different donors 

may be contributing to reduced blastocyst formation. At this early stage in the zygote, several 

events are occurring but are generally not well characterised in the human. Importantly, the 

paternal genome is demethylated and maternal and paternal DNA are replicated. It is possible 

that transferring pronuclei containing DNA undergoing demethylation or replication to 

cytoplasm which had contained pronuclei at a different stage would disrupt these processes, 

as the recipient cytoplast may not be able to support them. However, research in the mouse 

suggests fusion of G1 phase pronuclei with S phase cytoplast does not induce premature DNA 

replication (Yamauchi et al., 2009). Research using mouse zygotes has shed light on the 

mechanistic basis for paternal genome demethylation, which involves oxidative 

demethylation catalysed by Tet3 (Gu et al., 2011; Wossidlo et al., 2011). The maternal 
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genome and imprinted regions of paternal DNA are protected by Stella (PGC7/ Dppa3) 

(Wossidlo et al., 2011). The functional significance of global demethylation of the paternal 

genome is unclear, but research suggests that disruption of oxidative demethylation of the 

paternal genome involving Tet3 has downstream effects that can result in disrupted 

embryonic development (Gu et al., 2011). Thus, it is possible that disruption of this process 

following asynchronous transfers contributed to reduced blastocyst formation following 

heterologous ePNT. The mechanisms and timing of centriole duplication in human zygotes is 

also unknown and it is not possible to study this event using mouse zygotes, as centrosomes 

are maternally inherited in the mouse. Characterisation of these processes in human zygotes 

may enable us to determine morphological correlates and tolerable limits of asynchrony 

compatible with blastocyst formation, which will enable improvement of blastocyst formation 

in future treatment.  

To determine whether ePNT was associated with an increased incidence of chromosome 

segregation errors, we tested samples of cells, mostly taken from the trophectoderm of 

unmanipulated and ePNT blastocysts. This may also give an indication as to whether centriole 

inheritance is disrupted by ePNT, as this may cause chromosomal segregation errors. Analysis 

by array-CGH revealed a slight increase in aneuploidy in our control and ePNT blastocysts 

compared to a reference population of IVF blastocysts. Further investigation resulted in the 

discovery of a relationship between blastocyst quality and incidence of aneuploidy. This is 

also reported in the literature, however it is noted that although poor quality blastocysts, 

graded according to morphological characteristics, have a higher incidence of aneuploidy 

compared to top quality blastocysts, aneuploidy does still occur in top quality blastocysts 

(Fragouli et al., 2014; Minasi et al., 2016). Of unmanipulated control blastocysts for which 2 

or more samples were analysed, all observed cases of aneuploidy were mosaic 

euploid/aneuploid, and the majority of aneuploid good quality ePNT blastocysts were also 

mosaic euploid/aneuploid. The analysis of more than 1 sample in multiple embryos may have 

contributed to our finding of increased aneuploidy compared to the reference population, as 

only 1 sample is tested in clinical IVF. Our findings question the reliability of TE analysis for 

pre-implantation genetic screening. In support of this, it has been reported that chromosome 

mosaicism, specifically mosaic euploid/aneuploid, is common in human preimplantation 

embryos (van Echten-Arends et al., 2011). This type of aneuploidy occurs during the early 

mitotic cleavage divisions of the embryo. Recent research using a mouse model revealed a 

progressive depletion of aneuploid cells at the blastocyst stage and beyond (Bolton et al., 

2016). The mechanism of depletion was found to be dependent on lineage, with cells in the 
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ICM eliminated by apoptosis and cells in the TE encountering proliferative defects (Bolton et 

al., 2016). The authors conclude that mosaic embryos with sufficient numbers of euploid cells 

have full developmental potential (Bolton et al., 2016).     

Nuclear genome transplantation techniques require the use of cytoskeletal inhibitors in order 

to relax the cytoskeleton and facilitate manipulations. I have investigated the effect and 

reversibility of cytoskeletal inhibitors, in order to determine which inhibitors are effective for 

use in PNT and do not have a detrimental effect on subsequent preimplantation development. 

These experiments are important in order to gain regulatory approval to allow the use of these 

drugs in the clinic. It is particularly important to demonstrate that the effect of the inhibitors is 

reversible.  

When testing inhibitors of actin polymerisation for use in PNT, I found that despite 

latrunculin B being less potent than latrunculin A (Spector et al., 1989) and zygotes showing 

a rapid recovery period of 30 minutes, latrunculin B had a negative effect on subsequent 

development. A limitation of these experiments is the use of abnormally fertilised human 

zygotes, which are allocated to research from the clinical lab at approximately 20 hours post-

fertilisation and therefore at a late stage. This may not be comparable to zygotes that are at an 

early stage (~8 hours post-fertilisation) when exposed to cytoskeletal inhibitors during ePNT. 

Moreover, there may be additional differences between abnormal and normally fertilised 

human zygotes. For example, polyspermy may cause differences in cytoskeletal organisation, 

such as additional microtubule asters from the sperm in zygotes with >2 pronuclei, which may 

increase microtubule polymerisation. Although I have repeated experiments using mouse 

zygotes, my results indicate that there may be differences between mouse zygotes and 

abnormally fertilised human zygotes. This was observed during treatment of zygotes with 

nocodazole, which targets microtubule polymerisation and cytochalasin C, an inhibitor of 

actin polymerisation. There are numerous factors that could account for differences, including 

the different sizes, the earlier stage of mouse zygotes and/or additional microtubule asters in 

abnormally fertilised human zygotes. However, the findings using mouse and abnormally 

fertilised human zygotes were supported by comparison of the effect of nocodazole and 

latrunculin A or latrunculin B on survival and preimplantation development following human 

autologous ePNT, and confirming the results by mouse PNT. Results show that blastocyst 

quality was reduced following ePNT using latrunculin B. However, blastocyst formation and 

quality are comparable between autologous ePNT embryos using nocodazole and latrunculin 

A and unmanipulated control embryos. This suggests that reagents used during ePNT, 

including the specified cytoskeletal inhibitors, do not disrupt preimplantation development.  
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Analysis of gene expression patterns revealed that samples from good quality ePNT 

blastocysts are indistinguishable from samples from unmanipulated controls. Furthermore, the 

inclusion of poor quality blastocysts in scRNA-seq analysis enabled us to gain new biological 

insights into pathways and processes which may contribute to the developmental potential of 

embryos. Gene Ontology (GO) analysis of differentially expressed genes in samples from 

good and poor quality blastocysts revealed the upregulation of genes related to metabolic 

processes. This is consistent with the 'quiet embryo hypothesis' (Leese, 2002), which was 

recently modified to describe an optimal range of metabolic activity compatible with onward 

development, referred to as the 'Goldilocks zone'; metabolism that is not too 'quiet' or too 

'active' (Leese et al., 2016).  

While I found a correlation between blastocyst morphology and altered gene expression 

profiles compared to good quality blastocysts, including upregulation of genes involved in 

metabolic processes, this may not be the case for cleavage stage embryos. For example, it has 

been reported that amino acid turnover, but not morphological score, was correlated with 

DNA damage (Sturmey et al., 2009). This is supported by previous research indicating that 

amino acid profiling may offer the ability to predict embryo viability independent of embryo 

grade (Brison et al., 2004), and that metabolic data to predict viability does not correlate with 

blastomere number or fragmentation (Vergouw et al., 2008). These findings gave ground to 

the suggestion that morphological assessment is an unreliable method for the assessment of 

embryo quality (Sturmey et al., 2009). However, my findings suggest that the quality score 

assigned to ePNT blastocysts, which takes into account blastocyst expansion and morphology 

of the ICM and TE (Cutting et al., 2008) correlates with metabolic activity. Moreover, the 

grading scheme used in this thesis showed a strong correlation with implantation potential of 

IVF blastocysts. In addition, poor quality blastocysts showed a considerably higher incidence 

of aneuploidy.  

Samples from blastocysts used for scRNA-seq analysis were also analysed using array-CGH 

to detect aneuploidy. All blastocysts grades A-C included in gene expression analysis were 

either euploid or mosaic euploid/aneuploid. A number of blastocysts grades D-F were also 

euploid and mosaic euploid/aneuploid, but 7PNT and 8PNT (both grade F) were mosaic 

aneuploid and uniform aneuploid, respectively. It is likely that this influenced gene 

expression, and may have contributed to the upregulation of genes involved in the cell cycle 

in poor quality blastocysts, as cell cycle progression would be disrupted in aneuploid cells. It 

is possible that aneuploid cells may be delayed in progression through M phase by the spindle 
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assembly checkpoint. Further gene expression analysis should account for aneuploidy and 

possibly investigate the extent to which this affects gene expression.  

Gene expression analysis showed that lineages can be assigned to samples from control and 

ePNT blastocysts. Interestingly, GO analysis revealed upregulation of genes involved in 

organelle organisation, cell cycle and cell death in the primitive endoderm compared to the 

epiblast. Regarding cell cycle and organelle organisation, it is possible that these are linked. 

For example, it is known that mitochondrial morphology and dynamics change throughout the 

cell cycle. In mitosis, mitochondria are individual organelles able to segregate to daughter 

cells, whereas during other cell cycle phases, mitochondria can be observed as a fused 

network (reviewed in Detmer and Chan (2007)). Increased cell death was also observed in the 

ICM compared to the TE following TUNEL staining of control and ePNT blastocysts. It is 

possible that cell death contributes to cell sorting in the ICM prior to lineage specification 

(Plusa et al., 2008), or eliminates abnormal cells (Hardy, 1999). Moreover, it has been 

reported that apoptosis occurs in the ICM to eliminate aneuploid cells (Bolton et al., 2016).  

Analysis of mitochondrial gene expression revealed variability within and between 

blastocysts, which could be linked to lineage and/or the involvement of mitochondria in many 

cellular processes. With regards to lineage, a trend towards reduced expression of mtDNA 

encoded OXPHOS genes in the epiblast may act to minimise risk of mtDNA mutations 

occurring in cells destined to become the foetus. It will be interesting to investigate this 

further, using an increased sample size. Importantly, these results indicate that ePNT does not 

disrupt mitochondrial gene expression.  

I have performed robust analysis of scRNA-seq data, using two normalisation methods and 

several techniques for clustering of the data. A recent publication presented a model for 

analysis of scRNA-seq data using a beta-Poisson mixture model and suggest this offers the 

opportunity for improved analysis of scRNA-seq data (Vu et al., 2016). However, this has not 

been tested in cases in which multiple confounding factors may drive variation in gene 

expression. It would be interesting to reanalyse the data using the updated human genome 

(hg38) to align the reads, as this contains the updated mitochondrial genome. Also, extending 

the data to include more samples from the ICM lineages and possibly blastomeres from the 

earlier cleavage stage divisions would enable the possibility to gain new biological insights 

into mitochondrial gene expression throughout development and between different lineages of 

the blastocyst.  
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To conclude, here I have presented the first preclinical studies testing the safety of PNT in 

normally fertilised zygotes. The findings indicate that ePNT does not have a detrimental 

effect on preimplantation development by all tested parameters. Modifications to the 

procedure resulted in the production of good quality blastocysts, whose morphological 

features are compatible with the establishment of normal pregnancies. Testing of cytoskeletal 

inhibitors revealed that they are reversible within 2 hours. Of the actin polymerisation 

inhibitors tested, latrunculin A was found to be the most suitable for use in ePNT. Finally, 

analysis of gene expression patterns in good quality blastocysts did not detect any disruption 

to global, lineage-associated or mitochondrial gene expression in ePNT blastocysts. 

Furthermore, analysis of scRNA-seq data revealed that genes involved in the cell cycle and 

metabolism are upregulated in poor quality blastocysts, providing new insights into pathways 

and processes which may contribute to embryo viability.   

Moving towards clinical treatment, the choice of technique for nuclear genome 

transplantation will depend on a balance between the level of mtDNA carryover and 

developmental competence. It has been reported that PNT is associated with increased levels 

of mtDNA carryover compared to polar body transfer and metaphase II spindle transfer 

(Wang et al., 2014). Although I have not presented data on mtDNA carryover as it is beyond 

the scope of this thesis, this data was included in our recent publication (Hyslop et al., 2016). 

We found that mtDNA carryover was <2% in the majority of blastocysts following ePNT. 

However, a progressive increase in heteroplasmy was observed in one stem cell line derived 

from an ePNT blastocyst with a low level of carryover (<4%). Therefore, although ePNT may 

reduce the risk of mtDNA disease transmission, prevention cannot be guaranteed. It will be 

important to test metaphase II spindle transfer and polar body transfer using human oocytes, 

and compare mtDNA carryover and blastocyst development between the techniques.  
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Abbreviations 

ADP  Adenosine diphosphate 

APC  Anaphase promoting complex 

ATP  Adenosine triphosphate 

CO2  Carbon dioxide 

DAPI  4',6-Diamidino-2-Phenylindole 

DIC  Differential interference contrast 

D-loop  Displacement loop 

DMSO  Dimethyl sulphoxide 

DNA  Deoxyribonucleic acid 

EGA   Embryonic genome activation 

EPI  Epiblast 

ER  Endoplasmic reticulum 

ESCs  Embryonic stem cells 

ETC  Electron transport chain 

FGF  Fibroblast growth factor 

FSH  Follicle stimulating hormone 

GFP  Green fluorescent protein 

GV  Germinal vesicle  

GVBD  Germinal vesicle breakdown 

hCG  Human chorionic gonadotrophin 

HFEA  Human Fertilisation and Embryology Authority 

HSP  Heavy stand promoter 

H-strand Heavy stand 

HVJ  Hemagglutinating virus of Japan 

HVJ-E  Hemagglutinating virus of Japan envelope 

ICM  Inner cell mass 

ICSI  Intracytoplasmic sperm injection 
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IVF  In vitro fertilisation 

IVM  In vitro maturation 

kb  Kilobase 

LH  Luteinising hormone 

LSP  Light strand promoter 

L-strand Light strand 

M  Molar 

MELAS Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes 

MERRF Myoclonic epilepsy and ragged red fibres 

MI  Metaphase I 

MII  Metaphase II 

Mfn  Mitofusin 

ml  Millilitre 

mM  Millimolar 

mm  Millimetre 

mRNA  Messenger RNA 

mtDNA Mitochondrial DNA 

mtEF  Mitochondrial elongation factor 

mtIF  Mitochondrial initiation factor 

MST  Metaphase II spindle transfer 

mtSSB  Mitochondrial single-stranded binding protein 

nM  Nanomolar 

OH  Origin of heavy strand replication 

OL  Origin of light strand replication 

OXPHOS Oxidative phosphorylation 

PB  Polar body 

PBS  Phostphate buffered saline 

PE  Primitive endoderm 
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PFA  Paraformaldehyde 

PGC  Primordial germ cell 

PGD  Preimplantation genetic diagnosis 

PMSG  Pregnant mare's serum gonadotrophin 

PNT  Pronuclear transfer 

POLG  Polymerase gamma 

POLRMT Mitochondrial RNA polymerase 

RNA  Ribonucleic acid 

ROS  Reactive oxygen species 

rRNA  Ribosomal RNA 

SD  Standard deviation 

TE  Trophectoderm 

TFAM  Mitochondrial transcription factor A 

TFB  Transcription factor B 

tRNA  Transfer RNA 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labelling 

UV  Ultraviolet 
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