
Elucidation of Chemical Reaction 

Networks through Genetic Algorithm 

Charles J. K. Hii 

 

 

 

School of Chemical Engineering and Advanced Materials 

Newcastle University 

 

 

 

 

 

 

A thesis submitted to the Faculty of Science, Agricultural and Engineering, 

Newcastle University, in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 





i Abstract 
 

Abstract 

Obtaining chemical reaction network experimentally is a time consuming and 

expensive method. It requires a lot of specialised equipment and expertise in order to 

achieve concrete results. Using data mining method on available quantitative 

information such as concentration data of chemical species can help build the chemical 

reaction network faster, cheaper and with less expertise.  

The aim of this work is to design an automated system to determine the chemical 

reaction network (CRN) from the concentration data of participating chemical species 

in an isothermal chemical batch reactor. Evolutionary algorithm ability to evolve 

optimum results for a non-linear problem is chosen as the method to go forward. 

Genetic algorithm’s simplicity is modified such that it can be used to model the CRN 

with just integers.  

The developed automated system has shown it can elucidate the CRN of two fictitious 

CRNs requiring only a few a priori information such as initial chemical species 

concentration and molecular weight of chemical species. Robustness of the automated 

system is tested multiple times with different level of noise in system and introduction 

of unmeasured chemical species and uninvolved chemical species. The automated 

system is also tested against an experimental data from the reaction of trimethyl 

orthoacetate and allyl alcohol which had shown mixed results. This had prompted for 

the inclusion of NSGA-II algorithm in the automated system to increase its ability to 

discover multiple reactions. 

At the end of the work, a final form of the automated system is presented which can 

process datasets from different initial conditions and different operating temperature 

which shows a good performance in elucidating the CRNs. 

It is concluded that automated system is susceptible to ‘overfitting’ where it designs its 

CRN structure to fit the measured chemical species but with enough variation in the 

data, it had shown it is capable of elucidating the true CRN even in the presence of 

unmeasured chemical species, noise and unrelated chemical species. 
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viii Nomenclature 
 

Nomenclature 

Symbols  Description 

𝑖 Index for chemical species 

𝑗 Index for reactions within a chemical reaction network 

𝑘𝑗,𝑡 Reaction rate constant of 𝑗th reaction at time 𝑡 

𝑚𝑥𝑖
 Molecular mass of chemical species 𝑖 

𝑁𝑐  Total number of chemical species 

𝑁𝑟  Total number of chemical species 

𝑁𝑡  Reaction end time 

𝑟𝑗,𝑡 Rate of reaction of 𝑗th reaction at time 𝑡 

𝑟𝑥𝑖
 Rate of consumption or production of chemical species 𝑖 

𝑡 Batch reaction time 

𝑉 Volume of reactor 

𝐹  Volumetric flow rate 

𝜈𝑥𝑖
 Stoichiometric coefficient of chemical species 𝑖 

𝑥𝑖 Chemical species 𝑖 

[𝑥𝑖]𝑡 Input concentration data of chemical species 𝑖 at time 𝑡 

[�̂�𝑖]𝑡 Predicted concentration data of chemical species 𝑖 at time 𝑡 

𝑦𝑖,𝑡 or [𝑥�̇�]𝑡 Experimental rate of concentration change of chemical species 𝑖 

at time 𝑡 

�̂�𝑖,𝑡 Predicted rate of concentration change of chemical species 𝑖 at 

time 𝑡 

𝑍𝑥𝑖
 Number of moles of chemical species 𝑖 

𝜇    Mean 

𝜎   Standard deviation 
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𝐸𝑎   Acitivation energy 

𝑅   Universal gas constant 

𝑇   Absolute temperature 

Ν Stoichiometric coefficient matrix of a single reaction 

Matrix Description 

𝑲 Matrix of all reaction rate constants 

M Matrix of molecular mass of involved chemical species 

𝑽 Stoichiometric matrix of chemical reaction network 

�̃� Transpose of |𝑁| after positive elements are made 0 

R Matrix of all rate of reaction within chemical reaction network 

[𝑿] Matrix of all experimental concentration data of involved chemical 

species  

[�̂�] Matrix of all predicted concentration data of involved chemical 

species 

𝒀 Matrix of all experimental rate of concentration change of involved 

chemical species 

�̂� Matrix of all predicted rate of concentration change of involved 

chemical species 
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1 Introduction 
 

Chapter 1. Introduction 

1.1 Aims and objectives 

The main of this thesis is the development of an automated system that elucidates 

chemical reaction network from the concentration data of participating chemical 

species from an isothermal chemical batch reactor. For the system to be entirely 

automated, evolutionary algorithm can be employed in order to build the chemical 

reaction networks and MATLAB can be used to design it. To develop the automated 

system, the underlying mathematics to solve for the reaction rate constants based on 

available data must be understood. Through a good estimation of the reaction rate 

constants, concentration data be reconstructed from the chemical reaction network 

and used for comparison against simulated data. The evolutionary algorithm can then 

evolve the structure based on the comparison, aiming to achieve the best estimation 

between the simulated/experimental data and predicted data. 

1.2 Motivation 

Information on chemical reaction network and its reaction kinetics are among the most 

important information required in order to scale-up any chemical process for industrial 

scale (Rostrup-Nielsen, 2000). Among the benefits (Maria, 2004) of having an accurate 

chemical reaction network are 

a. Optimal plant and reactor design 

b. Optimised process variables 

c. Higher quality product 

d. More accurate process monitoring and safer 

e. Tighter and more accurate process control 

f. Lower amount of waste and by-products 

g. More adaptable to variation in feed-stocks and measurable disturbances 

h. Improved production planning and scheduling. 

Therefore, it is important that such information to be developed quickly to reduce the 

amount of time required to scale up production from laboratory scale to an industrial 

scale with highly efficient plant (Le Lann, Cabassud, & Casamatta, 1999). This is 

especially true among fine chemicals and pharmaceutical companies where their 

products are complex and depended on development of new products to succeed.  
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1.3 Overview of the thesis structure 

The thesis begins with an introduction to the chemical kinetics principles and the 

different types of chemical reactions in Chapter 2. The terminology used for chemical 

reactions are explained and also includes the basic integral and differential technique 

for estimation of the reaction rate constants which would provide a basic background 

to the topic presented in this thesis. This is followed on by a literature review on work 

done in the field of elucidation of chemical reaction networks which is divided into 

inference, deterministic and automated system. The pros and cons of each methods 

are discussed which leads to the design of an automated system to discover the 

chemical reaction network. 

Chapter 3 gives an introduction to the genetic algorithm and reveals the function of 

each parts of the evolutionary algorithm. Genetic algorithm is the base for the 

automated system developed through this thesis and in this chapter, the first form of 

the automated system is introduced. A method to calculate the reaction rate constants 

through the solution of multiple linear regression is demonstrated. 

Chapter 4 through to Chapter 8 are about the application and development of the 

automated system. In Chapter 4, the basic automated system for chemical reaction 

networks elucidation is tested against two fictitious chemical reaction network. The 

weaknesses of the automated system are revealed to be unable to deal with reversible 

reaction, unmeasured chemical species and suffer from ‘overfitting’ of data.  

In Chapter 5, the weaknesses of the automated system are being addressed, namely 

its inability to work in the presence of unmeasured chemical species. A new upgraded 

automated system, named automated system (version 2) is introduced which uses a 

different approach to reaction rate constants calculation. Automated system (version 

2) approaches the problem by splitting the optimisation problem into two tiers, where 

the first tier optimises the chemical reaction networks and the second tier on the 

reaction rate constants. The modification has the added benefit of the automated 

system able to handle reversible reactions now. Further testing shows that it does work 

on reversible reactions and unmeasured chemical species, but suffer from ‘overfitting’ 

as well. 

A slight overview on multi-objective optimisation is presented in Chapter 6 which leads 

into the enhancement of the automated system to become multi-objective optimisation 

capable. The new enhanced automated system is named automated system (NSGA-
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II). Diversity in the chemical reaction networks became one of the objectives of the 

automated system in the bid to reduce the effect of ‘overfitting’. The implementation of 

automated system (NSGA-II) provides user with a choice of reactions to choose rather 

than a single chemical reaction network. Tests conducted revealed that although 

diversity in the population in the genetic algorithm had increased significantly, success 

rate for the elucidating the entire CRN is still low. 

Chapter 7 takes automated system (version 2) and automated system (NSGA-II) to 

test on a laboratory experimental data which involves the reaction between trimethyl 

orthoacetate and allyl alcohol. The poor state of the experimental data meant that it 

needs to be adjusted before it can be used to further testing both of the automated 

systems. Their behaviour in the presence of chemical species that is totally unrelated 

to the chemical reaction networks that is being elucidated is tested and results show 

that the unrelated chemical species does affect their performance.  

The automated system is modified further in Chapter 8 where it can now evaluates 

data from different batches running with different initial conditions and at different 

temperature. The results had shown that the modified automated system is able to 

cope better with noise, increased ability to determine the all the reactions in the CRN 

and ability to discern from involved and uninvolved chemical species. All in all, a better 

performance as compared to the previous iterations of the automated system. A final 

form of the automated system is proposed which is a combination of both of the 

modifications but the final form was not tested due to the lack of suitable datasets. 

The thesis ends with Chapter 9 which summarised all the findings from this work and 

discussed on the direction on future work that will be more involved in developing the 

system further. 
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Chapter 2. Literature Review 

2.1 Overview 

In this chapter, an introduction to the chemical kinetics, terminology and the calculation 

involved in reaction rate constants are presented. This is followed by a survey on the 

work done in the field of elucidation of chemical species which is divided into inference, 

deterministic and automated systems. Inference modelling refers to modelling the 

chemical reaction network by fitting mathematical models that have no physical 

meaning. Deterministic models are model that are based on the reaction kinetics and 

provides insight on the workings of the reactions. Automated systems are system that 

are based on evolutionary algorithms that determine the chemical reaction network 

automatically. The benefits of automated systems are discussed and the reason it is 

chosen for this thesis. 

2.2 Introduction 

Every industrial chemical reactors is designed to produce one or more intended 

chemical products which can serve as raw materials for another chemical process or 

as the final desired output. The design of the chemical reactors are mainly determined 

by two factors (Davis & Davis, 2003). 

a. Expected changes in the environmental conditions within the reactor 

b. Chemical reactions that are expected to occur 

The chemical reactors are expected to first be able to withstand the change in 

temperature, pressure and volume that is caused by the chemical reactions within it. It 

can then be further enhanced through additional installation such as heating elements 

to deal with endothermic reactions or cooling system for exothermic reactions.  

In order to determine the final design of the chemical reactor, the knowledge of the 

chemical reactions will be crucial. The type of chemical reactions that are expected to 

occur within the reactor will determine the thermodynamics of the process which in turn 

decide the changes in the environmental conditions within the reactor. Kinetic analysis 

of the reactions that will be occurring and the chemical reaction pathways that form the 

chemical reaction network then must be done.  

The first step towards understanding the underlying kinetics of the chemical reactions 

is to understand what a chemical reaction is.  
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2.3 Chemical Reaction Basics 

The process of converting chemical reactants to desired chemical products is 

considered as a chemical reaction. This conversion involves the rearrangement of the 

structures of the chemical reactants at the molecular level to produce new distinct 

chemical structures. For instance given, 

𝑥1 + 𝑥2 → 𝑥3 (Equation 2-1) 

 

In the above example, 𝑥1 reacts with 𝑥2 to produce 𝑥3. 𝑥1 and 𝑥2 serve as the reactants 

in this reaction and are consumed in the process of the creation of 𝑥3. The product of 

the reaction is x3 and is produced through the reaction. Often, more than one chemical 

reaction can take place. Consider the following, 

𝑥1 + 𝑥2 → 𝑥3 → 𝑥4 

 

(Equation 2-2) 

In this example, the role of 𝑥1 and 𝑥2 remain unchanged. However, 𝑥3 now serves as 

the reaction intermediate in the production of the product 𝑥4 from the reactants, 𝑥1 and 

𝑥2. As a reaction intermediate, 𝑥3 may increase in quantity at first from the reaction of 

𝑥1 and 𝑥2 and subsequently decreased as 𝑥3 is consumed to produce the final product, 

𝑥4.  

In both of the examples shown in Equation 2-1 and Equation 2-2, only forward 

reactions are presented. Forward reactions are chemical reaction that only proceeds 

in one direction, from reactants to products. However, it should be noted that all 

chemical reactions are inherently reversible and it is theoretically possible to obtain the 

reactants from the products through the reverse reaction. Revisiting the first example 

shown in Equation 2-1, if the reaction is reversible it can be written as, 

𝑥1 + 𝑥2 ⇌ 𝑥3 (Equation 2-3) 

 

or in two separate forward reactions (the nature of the automated system developed 

in this work will present reversible reactions in this way), 

𝑥1 + 𝑥2 → 𝑥3 

𝑥3 → 𝑥1 + 𝑥2 
(Equation 2-4) 
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All chemical reactions, given time will achieve a state of chemical equilibrium at which 

point the forward reaction and the reverse reaction will be at the same reaction rate. 

The concentration level of the reactants and products at this stage will not change any 

further.  

In practice, a chemical reaction where the chemical equilibrium lies strongly on the side 

of the products and have reactants that will react until only minute amount of them are 

left at the end of the reaction can be considered as an irreversible reaction. On the 

other hand, a reversible reaction is a reaction that will achieve chemical equilibrium 

and both reactants and products will be present in the system when the equilibrium is 

achieved. 

2.4 Chemical Reaction Network (CRN) 

The most basic reaction one can encounter is the elementary reaction where the 

reaction proceed from reactant to product in a single step without any intermediates or 

transition steps involved in between (McNaught & Wilkinson, 1997). Using the 

hydrogenation of dibromine (Davis & Davis, 2003) as an example, 

H2 + Br2 → 2HBr (Equation 2-5) 

 

This reaction may be simple but it does not proceed in a single action. It requires light 

or photon as initiator to first sever Br2 into two Br radicals which will then attack and 

replace the hydrogen atom in the hydrogen molecule. The replaced hydrogen atom will 

then be radicalised and will continue on the reaction. The chain reaction will stop when 

two radicals meet and recombine. In term of chemical equations, the reactions are 

normally presented as  

Br2 → Br ∙ + Br ∙ 

Br ∙ +H2 → HBr + H ∙ 

H ∙ + Br2  → HBr + Br ∙ 

Br ∙ +  H ∙ → HBr 

Br ∙ + Br ∙ → Br2 

H ∙ + H ∙ → H2 

(Equation 2-6) 

Each of these reactions occur in a single step and can be deemed as elementary 

reaction. It is clear that even a simple reaction cannot be assumed to occur in one 

single step but through multiple steps with reaction intermediates and interdependent 
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relationships between each of the reaction steps. This is one of the many examples of 

a CRN which can be defined as a network that connects all the initial reactants, 

reaction intermediates and products through elementary reactions (Crampin, Schnell, 

& McSharry, 2004).  

The reactions within a CRN can occur simultaneously and they can be classified into 

different types. A series reaction is a set of consecutive reactions where the reactants 

will produce reaction intermediates which will then be used to produce the product. It 

is also possible for more than one transition steps before the product is produced. 

𝑥1 + 𝑥2 → 𝑥3 → 𝑥4 → 𝑥5 

 

(Equation 2-7) 

The example above shows a series reaction where 𝑥5 is formed through 𝑥4 which is in 

turn formed from 𝑥3 which again is formed by the reactants  𝑥1 and 𝑥2. The reaction 

intermediates are generally short-lived and highly reactive and their detection can 

sometimes be difficult as they are sometimes consumed as soon as they are produced. 

Another type of reaction that can be found within a CRN is the parallel reaction. In this 

type of reaction, two or more competing reactions will have at least one common 

reactant. 

𝑥1 → 𝑥2 

𝑥1 → 𝑥3 
(Equation 2-8) 

Here, 𝑥1 produces 𝑥2 and 𝑥3 simultaneously albeit possibly at a different rate. The 

reaction kinetics of the reactions will determine which of the reaction is more 

favourable. 

A more complicated scheme which involves both series and parallel reaction is also 

possible. 

𝑥1 + 𝑥2 → 𝑥3 

𝑥3 + 𝑥2 → 𝑥4 

 

(Equation 2-9) 

In this case, 𝑥2 is the target of competition from both of the reactions and 𝑥3 is used as 

reaction intermediate in the series reaction to produce 𝑥4. 

The last type is the independent reaction which are just reactions that are not 

dependent on the reactant or product of other reactions. 
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𝑥1 → 𝑥2 

𝑥3 + 𝑥4 → 𝑥5 
(Equation 2-10) 

 

Both of the reactions may occur at the same time but will not participate in each other’s 

reaction.  

2.5 Molecularity and order of reaction 

Molecularity or the order of reaction of an elementary chemical reaction describes the 

number of molecules involved in the reaction. A chemical reaction that uses only one 

molecule is called unimolecular reaction or first order reaction. If two molecules are 

involved, it is called bimolecular reaction or second order reaction. Termolecular 

reaction or third order reaction is uncommon because the level of difficulty to achieve 

it. It requires three different molecules to collide at the same time, at sufficient kinetic 

energy and at the precise orientation. 

2.6 Stoichiometry 

Stoichiometry is quantitative balancing of number of participating molecules of 

reactants and products in a reaction through conservation of the number of atoms of 

chemical elements in the reaction. The obtained values are generally referred as the 

stoichiometric coefficients. As per convention, reactants’ stoichiometric coefficients are 

affixed with negative sign while the products’ stoichiometric coefficients are positive. 

For example, the chemical reaction, 

𝑥1 + 𝑥2 → 𝑥3 (Equation 2-11) 

 

will have a  stoichiometric coefficient of -1 for the chemical species 𝑥1 and 𝑥2 and 1 for 

chemical species 𝑥3. This can also be written in a matrix form: 

[−1 −1 1] (Equation 2-12) 

 

Where the columns in the matrix refers to the chemical species 𝑥1, 𝑥2 and 𝑥3 from left 

to right. In the case of a CRN, the stoichiometric matrix of each of the reactions can be 

combined. For example, the CRN, 
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𝑥1 → 𝑥2 

𝑥1 → 𝑥3 

𝑥1 + 𝑥2 → 𝑥3 

 

(Equation 2-13) 

will have the stoichiometric matrix: 

[
−1 1 0
−1 0 1
−1 −1 1

] 

 

(Equation 2-14) 

The rows in this stoichiometric matrix refers to the reactions. First row describes the 

first reaction, the second row the second reaction and so on. This in general will gives 

the stoichiometric matrix, 𝑣 the matrix dimensions of 𝑁𝑟 × 𝑁𝑐. 

2.7 Reaction Kinetics 

Reaction kinetics is also known as chemical kinetics is the study of speed of chemical 

reactions and how factors such as concentration, pressure and temperature affects a 

chemical reaction. One of the goals of the study is to derive mathematical model to 

explain the phenomenon that surround the chemical reaction. 

At the heart of the reaction kinetics is the law of mass action (Guldberg & Waage, 

1879). The law states that the rate of reaction of an elementary reaction is proportional 

to the product of the reactants’ concentrations and each of the concentration is raised 

to the power of its stoichiometric coefficient in the reaction. Below is an example to 

better understand the law: 

𝛼 𝑥1 + β 𝑥2

𝑘
→ γ 𝑥3 (Equation 2-15) 

 

For this reaction, based on the law of mass action, the reaction rate of this reaction 

can be written as  

𝑟 ∝ [𝑥1]
𝛼[𝑥2]

β 

𝑟 = 𝑘[𝑥1]
𝛼[𝑥2]

β 
(Equation 2-16) 

 

The kinetic rate constant, 𝑘 will determine the speed of which the reaction will occur. 

𝛼, β and γ are to the stoichiometric coefficients of 𝑥1, 𝑥2 and 𝑥3. 
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The reaction rate of chemical reactions based on law of mass action in a multiple 

reactions environment can be written into a more concise form, 

𝑟𝑗 = 𝑘𝑗 ∏[𝑥𝑖]
−𝑣𝑖,𝑗

𝑁𝑐

𝑖=1

, ∀ 𝑣𝑖,𝑗 < 0 (Equation 2-17) 

Wheres  

𝑟𝑗 is the reaction rate of the 𝑗th reaction 

𝑘𝑗 is the kinetic rate constants of the 𝑗th reaction 

𝑁𝑐 is the total number of chemical species 

[𝑥𝑖] is the molar concentration of the 𝑖th chemical species 

𝑣𝑖,𝑗 is the stoichiometric matrix of the 𝑖th chemical species in the 𝑗th reaction 

 

The change of concentration of each of the participating chemical species based on 

the reaction rate of the chemical reactions in an isothermal homogenous constant 

density batch reactor can then be written as follows: 

𝑑[𝑥𝑖]

𝑑𝑡
= ∑𝑣𝑖,𝑗

𝑁𝑟

𝑗=1

𝑟𝑗 (Equation 2-18) 

Where 

𝑁𝑟 is the total number of reactions in the system 

2.8 Kinetic rate constants 

A parameter that arises from the law of mass action is the kinetic rate constant, 𝑘. The 

constant is the coefficient of proportionality from the law and it quantifies the rate of 

reaction of the chemical reaction. Although it is termed a constant, it is only a constant 

for a reaction occurring in an isothermal condition and is actually dependent on 

temperature. 

Svante Arrhenius proposed the Arrhenius equation that relates the temperature to the 

changes in the reaction rate constant. The Arrhenius equation is as shown below: 

𝑘 = 𝐴𝑒−𝐸𝑎/(𝑅𝑇) (Equation 2-19) 
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Where 𝐴 is the pre-exponential factor, 𝐸𝑎 is the activation energy, 𝑅 is the universal 

gas constant and 𝑇 is the absolute temperature. 

The pre-exponential factor, 𝐴 is determined empirically relating temperature, 𝑇 to the 

reaction rate constant, 𝑘. It is considered to be a measure of the frequency of 

successful collisions (collisions that will generate reaction given enough energy) 

between the reactants.   

Activation energy, 𝐸𝑎 is the minimum energy required for the chemical reaction to 

occur. The presence of the right reaction catalyst can help in reducing the value by 

providing an alternative transition state or formation of reaction intermediate that 

requires a lower energy to form. The figure below will provide a better understanding 

on the effect of catalyst on activation energy, 

 

Figure 2.8-1 Effect of catalysts on activation energy 

 

The activation energy in the presence of catalyst, 𝐸𝑎′ is lower than that of the original 

activation energy, 𝐸𝑎. A lower activation energy means that more reactants can reach 

the transition state in order to progress the reaction towards the production of the 

product. In other short, a lower activation energy will increase the reaction rate and this 

can be easily be seen through the Arrhenius equation shown in Equation 2-18. The 

frequency of collision between reactants is also affected by the temperature, 𝑇. The 
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higher the temperature, the more kinetic energy each molecules possesses which 

leads to more collisions that surpasses the required activation energy, 𝐸𝑎 for chemical 

reaction to occur. The relationship between the molecules speed and temperature can 

be viewed through the Maxwell-Boltzmann distribution.  

 

Figure 2.8-2 Maxwell-Boltzmann distribution plot 

 

With a higher temperature, the Maxwell-Boltzmann distribution skewed more to the 

right, showing more molecules possess higher kinetic energy and thus more of them 

will be able to reach the activation energy, 𝐸𝑎 compared to those at lower temperature. 

Reducing the activation energy using catalyst also shift the required energy for 

reaction, 𝐸𝑎′ to the left. This increases the number of molecules that are able to achieve 

the required energy and this applies to both higher and lower temperature molecules. 

 

2.9 Batch reactor material balance 

The change of concentration of a chemical species involved in the reaction can be 

derived through molar balance of the chemical species. Below is an example of molar 

balance done for chemical species 𝑥𝑖. 
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Accumulation 

of 𝑥𝑖 
= 

𝑥𝑖 

entering 

reactor 

- 
𝑥𝑖 exiting 

reactor 
+ 

Production/    

consumption of 𝑥𝑖 

       

1

𝑑𝑡
∫[𝑥𝑖] 𝑑𝑉 = 𝐹𝑖𝑛[𝑥𝑖,𝑖𝑛] - 𝐹𝑜𝑢𝑡[𝑥𝑖,𝑜𝑢𝑡] + ∫𝑟𝑥𝑖

𝑑𝑉 

 

Where 𝑉 is the volume of the reactor, 𝐹𝑖𝑛 is volumetric inflow into the reactor, 𝐹𝑜𝑢𝑡 is 

the volumetric outflow from the reactor, [𝑥𝑖,𝑖𝑛] is the concentration of 𝑥𝑖 in the inflow 

and [𝑥𝑖,𝑜𝑢𝑡] is the concentration of 𝑥𝑖 in the outflow and 𝑟𝑥𝑖
 is the production or 

consumption rate of 𝑥𝑖 due to chemical reaction within the reactor. 

 

For a batch reactor, there is no inflow or outflow of material. Therefore, 𝐹𝑖𝑛 = 𝐹𝑜𝑢𝑡 = 0. 

The equation is then reduced to  

1

𝑑𝑡
∫[𝑥𝑖] 𝑑𝑉 = ∫𝑟𝑥𝑖

𝑑𝑉 (Equation 2-20) 

 

For a well-mixed constant density batch reactor, ∫𝑑𝑉 = 𝑉. The equation is then 

simplified to  

𝑉
𝑑[𝑥𝑖]

𝑑𝑡
= 𝑉𝑟𝑥𝑖

 

𝑑[𝑥𝑖]

𝑑𝑡
= 𝑟𝑥𝑖

 

(Equation 2-21) 

 

The final form of the equation basically shows that for a well-mixed constant density 

batch reactor any changes in [𝑥𝑖] is entirely due to the reaction that occurs within the 

reactor. 
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2.10 Determination of reaction rate constants 

2.10.1 Integral method 

Consider a first order reaction: 

𝑥1

𝑘1
→ 𝑥2 (Equation 2-22) 

 

Based on the law of mass action, the reaction rate, 𝑟1 can be determined as: 

𝑟1 = 𝑘1[𝑥1] (Equation 2-23) 

 

As a first order reaction where 𝑥1 is the sole reactant, the stoichiometric coefficient for 

𝑥1 will be -1. It then follows that the rate of concentration change in 𝑥1 is: 

𝑑[𝑥1]

𝑑𝑡
= 𝑟𝑥1

= −(1)𝑟1 

𝑑[𝑥1]

𝑑𝑡
= − 𝑘1[𝑥1] 

 

(Equation 2-24) 

Integrating both sides of the equation gives: 

−∫
1

[𝑥1]
𝑑[𝑥1]

[𝑥1]

[𝑥1,0]

= ∫ 𝑘1𝑑𝑡
𝑡

0

 

ln([𝑥1,0]) − ln ([𝑥1]) = 𝑘1𝑡 

 

(Equation 2-25) 

Plotting ln([𝑥1,0]) − ln ([𝑥1]) against 𝑡 will gives a linear graph. The gradient of the graph 

will be the reaction rate constant, 𝑘1. 

This is only a simple demonstration on how integral method can be used to determine 

the reaction rate constant. The difficulty of the method increases when more chemical 

species is involved in the reaction. Consider the following 2nd order reaction: 

𝑥1 + 𝑥2

𝑘2
→ 𝑥3 

 
(Equation 2-26) 

Working through the integral method, one will arrive at: 

−∫
1

[𝑥1][𝑥2]
𝑑[𝑥1]

[𝑥1]

[𝑥1,0]

= ∫ 𝑘2𝑑𝑡
𝑡

0

 (Equation 2-27) 
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The presence of 𝑥2 will complicate the solution. The method of solution (Levenspiel, 

1999) includes introducing an additional variable, 𝑋 𝑥1
 which describes the fraction of 

𝑥1 converted and the use of partial fractions.  

The method becomes highly complex when applied to a CRN. Consider the CRN that 

includes both of the reactions above: 

𝑥1

𝑘1
→ 𝑥2 

𝑥1 + 𝑥2

𝑘2
→ 𝑥3 

 

(Equation 2-28) 

The rate of concentration change for 𝑥1 and 𝑥2 becomes 

𝑑[𝑥1]

𝑑𝑡
= − 𝑘1[𝑥1] − 𝑘2[𝑥1][𝑥2] 

𝑑[𝑥2]

𝑑𝑡
=  𝑘1[𝑥1] − 𝑘2[𝑥1][𝑥2] 

(Equation 2-29) 

 

Additional work will need to decouple 𝑘1 and 𝑘2 from the equations before the integral 

method can proceed. 

 

2.10.2 Differential method 

An alternative method to the integral method is to evaluate the rate of change of 

concentration of chemical species directly. The rate of concentration change can be 

obtained through the tangent of the graph of the chemical species’ concentration 

against time. For example, for the reaction 

𝑥1

𝑘1
→ 𝑥2 

 
(Equation 2-30) 

The graph of concentration of 𝑥1 against time can then be plotted: 
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Figure 2.10-1 Differential method to solve for reaction rate constants 

The tangent at the point [𝑥1,1] and [𝑥1,2] is evaluated and then the obtained values can 

be substituted into the rate of concentration change of 𝑥1 as derived in the integral 

method section. 

𝑑[𝑥1]

𝑑𝑡
= − 𝑘1[𝑥1] 

 

(Equation 2-31) 

The rate constant, 𝑘1 can then be calculated from the equations. Getting more values 

of 𝑘1 and then taking the average is definitely more beneficial in reducing the effect of 

noise in the system. 

In the case where the order of reaction with respect to 𝑥1 is unknown, natural logarithm 

can be applied to the equation: 

𝑑[𝑥1]

𝑑𝑡
= − 𝑘1[𝑥1]

𝛼 

ln (−
𝑑[𝑥1]

𝑑𝑡
) = 𝛼ln[𝑥1] + ln 𝑘1 

 

(Equation 2-32) 

Where 𝛼 is the unknown reaction order. Using the tangent values obtained on the 

previous step, the graph ln (−
𝑑[𝑥1]

𝑑𝑡
) can be plotted against ln[𝑥1]. 
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[𝒙𝟏,𝟏]

[𝒙𝟏,𝟐]

𝑻𝒂𝒏𝒈𝒆𝒏𝒕 =
𝒅[𝒙𝟏,𝟏]

𝒅𝒕

𝑻𝒂𝒏𝒈𝒆𝒏𝒕 =
𝒅[𝒙𝟏,𝟐]

𝒅𝒕
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Figure 2.10-2 Plot of 𝑙𝑛 (−
𝑑[𝑥1]

𝑑𝑡
) against 𝑙𝑛[𝑥1]. 

 With this method, 𝑘1 can be determined at the same time as the order of reaction, 𝛼. 

It has to be noted that this method is limited to reactions that only uses one chemical 

species as reactant and cannot be used for complex CRNs. 

Although the graphical method cannot handle more complex systems, the application 

of natural logarithm to the equation will be further discussed in a later chapter to 

calculate reaction rate constants for more complex CRNs. 

2.11 Chemical Reaction Network Elucidation Introduction 

Traditionally, trial-and-error methods are used to identify the chemical reaction 

networks. This is done by first hypothesising the possible reactions and testing out 

each of the hypothesised reactions one by one. The outcomes are then analysed and 

the chemical reaction network can be built based on the result of the analysis (Lin, 

2004). This can become a very tedious task when the amount of involved chemical 

species is a huge number and the possibilities become numerous.  A high level of 

expertise will also be required and specialised equipment may also be needed in order 

to conduct these reactions test. Needless to say, this will also require a huge amount 

of time and is not desirable. 

Thus, a faster method to elucidate the chemical reaction network is needed in order to 

expedite the scaling-up process. Data driven techniques can be used to analyse the 

time-series concentration data of involved chemical species in batch reactors. If the 
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structures of the chemical reaction network can be reasonably postulated, it becomes 

a matter of solving a set of ordinary differential equations in order to obtain the chemical 

rate constants or kinetics. The accuracy of the chemical reaction network can then be 

tested using the obtained chemical rate constants. 

2.12 Inference Model 

One of the methods to obtain a model of chemical reaction network is to infer it rather 

than trying to model it deterministically. This will usually result in a model that are able 

to fit the experimental data well but will have no meaning in its expressions. S-systems 

is one of the more popular method that is used to infer chemical reaction network and 

it originated from Savageau (1976). The S-systems used in chemical reaction network 

modeling formulate the ordinary differential equations almost similar to the one derived 

in equation 2.18. The difference that S-systems has is that the power term used are 

not restricted to integers like the law of mass action. The terms used can also differ 

widely as it can be a product of concentration of any chemical species (to the power of 

a non-integer value) and not restricted to only the reactants. The parameters in the S-

systems, coefficient of each term (loosely relate to the reation rate constant in equation 

2.17) and the power value of each concentration term are obtained by trying to fit the 

model to the experimental data. The effectiveness of this method in producing a good 

chemical reaction network model has been shown by Kikuchi et al. (2003), Voit and 

Almeida (2004), Searson et al. (2007).  

Another technique that attempt to describe chemical reaction network is the tendency 

model by Filippi et al. (1986). The technique is a set of algorithm that consists of a set 

of rules and procedures to build the model step by step. It starts with assuming the 

model has only one reaction and fit it into equation 2.17. The stoichiometric coefficients 

are then obtained through minimisation of error between the model and the 

experimental rate of concentration change. The obtained coefficients are then rounded 

to the nearest integers or simple fraction and the error is calculated again. If the error 

is not satisfactorily low (depends on the required level of accuracy of the model), the 

steps are repeated again with addition of another reaction and so on. However, this 

method of modeling will only infer the reactions and will not provide the actual 

stoichiometric network (Le Lann et al., 1999). When the aim is not to elucidate the 

actual reaction network, tendency model has been shown to provide a good inference 
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of the reactions as shown by work done by Rastogi et al. (1990 & 1992), Fotopoulou 

et al. (1994a) and Le Lann et al. (1999).  

Both the S-system and the tendency model have the ability to infer the reactions in the 

chemical reaction network in order to provide a good model to predict the concentration 

profile of the chemical species without a priori information. Their common weakness is 

that the model will not have any significant information on the actual chemical reaction 

network and the models will only be accurate within the operating conditions of the 

experimental data that are used to produce them. A deterministic model will be able to 

model the reactions better especially in the scaling up of process when the operating 

conditions may differ from that of the laboratory. It can also help in obtaining an optimal 

operating condition (Maria, 2004). 

2.13 Deterministic Model 

One of the earliest methods to discover the actual chemical reaction network 

deterministically was proposed by Bonvin and Rippin (1990) which employs 

mathematical technique term as target testing or target factor analysis (TFA). The 

technique requires first to decompose the measured experimental data using singular 

value decomposition and from it obtained the number of independent reactions. With 

the number of independent reactions known, a postulated chemical reaction network 

is built and then tested using TFA. TFA will be able to test out the reactions within the 

chemical reaction network to determine whether they can be reasonably accepted or 

rejected. This method was tested on simulated models and had been shown 

successful (Bonvin & Rippin, 1990). It also provides a good starting point for other 

works that deals with tendency model such as works done by Rastogi et al. (1990 & 

1992) and incremental chemical reaction network modelling such as work by Brendal 

et al. (2006).  

However, the TFA technique requires a chemical reaction network to first be postulated 

before it can be used remains a problem. The possibilities can be numerous especially 

dealing with a system with large number of chemical species. A priori information will 

be required in order to lower down the number of these possibilities (Fotopoulos et al., 

1994a). A step by step method in order to reduce the possibility mathematically was 

proposed in the form of structured target factor analysis (Fotopoulos et al., 1994b). The 

method is to systematically test out all possible reactions set by set. Each set of 

reactions consist different number of reactants and products for example Set I consist 
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of 1 reactant 1 product, Set II consist of 2 reactants and 1 product and so on. The sets 

are evaluated and reactions gets eliminated if they did not satisfy the chosen criterion. 

This method however, can get very cumbersome as well when dealing with large 

number of chemical species and may eliminate correct reactions as it evaluate the 

reactions by the set and not globally. 

Burnham (2007) demonstrated an incremental method using systematic mathematical 

and statistical analysis of experimental data. The method starts by listing all possible 

reaction combinations from the list of involved chemical species while ensuring they 

are mass-balanced. The reaction combinations will provide the reaction terms for the 

rate of change for each of the chemical species. Each of the reaction terms will have 

a constant (reaction rate constant) which can be determined through multiple linear 

regression using the experimental data. t-statistics and p-value are then calculated for 

each of the reaction terms and insignificant terms are removed. The process is 

repeated until the number of reaction had reduced to the estimated number of reactions 

obtained from singular value decomposition of the experimental data. The reaction 

network is then deduced from the final form of the reaction terms. The method is shown 

to work in Burnham (2007) work but suffered from becoming too unwieldy when the 

number of involved chemical species increases. Rationalisation will also be required 

as the statistical tests do not give absolute answer and consistency of the model with 

experimental data has to be checked at every step. 

These techniques are generally cumbersome in nature and require a lot of work in 

order to eliminate possibilities. Statistical tests may help in the process but a lot of 

decisions and rationalisation will need to be taken in order to use the techniques. It 

also meant that the chemical reaction network that is built will determine highly on the 

expertise of the person who employ the technique. Using automated system will be 

able to remove the need for human intervention and even if the system is cumbersome, 

it is done automatically by computers. 

2.14 Automated System 

A global search method called differential evolution (Storn & Price, 1997) that is fully 

automated had been proposed by  Searson et al. (2012) to reconstruct chemical 

reaction network from experimental concentration data. Differential evolution (DE) is 

an evolutionary algorithm which attempts to solve the problem iteratively by improving 

on its solutions from one generation to another. The algorithm begins by randomly 
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building a set number of chemical reaction networks using integers to describe the 

stoichiometric matrix. The content of the networks (in this case individual stoichiometric 

coefficient) are then exchanged with each other randomly (mutation) in order to build 

a new chemical reaction network. If the new chemical reaction network is 

deemedbetter than the previous network, it is passed on the next generation else the 

original network will be passed on. After a set amount of generations determined at the 

start of the run, the algorithm will stop and the fittest chemical reaction network will be 

extracted. The method however has not been tested extensively and Searson et al. 

(2012) is only able achieve a considerably good result on simpler chemical reaction 

networks but struggled slightly with a more complex one. The paper by Searson et al. 

(2012) is also used as a comparison to test out the system that is proposed by this 

work. 

Another global search method is by Koza et al. (2007) using genetic programming. 

Genetic programming (GP) is another branch of evolutionary algorithm that originated 

from Koza et al. (1999). The algorithm is similar to that of DE that it started with 

randomly building a set of chemical reaction networks. What is noticeably different here 

is that the GP builds the chemical reaction network as a tree with branches. Each 

branch of the tree will consist of a number of functions. These functions are pre-defined 

such as first order reaction with one product, second order reaction with one product 

and so on. The functions are then connected to chemical species which can serve as 

reactant or product. Every connected function will be considered as reaction and so if 

a tree consists of 3 functions, the tree represents a chemical reaction network with 3 

reactions. The evolution of these ‘trees’ or networks are done through the exchange of 

these functions and chemical species to build new ‘trees’ or network. The network can 

also undergo mutation where any random function or chemical species within it can be 

change into something else randomly. Similar to DE, this process is repeated for a few 

generations and the best result is extracted at the end of the run. It has been shown to 

work for one example shown in Koza et al. (2007) but has not been tested extensively 

as well. 

Both DE and GP are methods that have the benefit of operating without any prior 

information of the chemical reaction and require only the concentration data and 

molecular mass of the involved chemical species. They are also fully automated and 

the parameters needed to set the algorithm running is minimal. These two examples 
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set as precursor of the decision to use evolutionary algorithm namely genetic algorithm 

for the basis of this work to produce a more complete automated system. 

2.15 Summary 

This chapter touches on the building blocks of chemical reaction networks which 

consists of combinations of multiple reactions. Different reaction types are discussed 

and the terminology for the topic is presented. The factors that can affect the reaction 

rate constant of a reaction are presented and methods of calculating reaction rate 

constants from available concentration data is shown.  

The second part of the chapter discusses the advancement made in the field of 

elucidation of chemical reaction networks. Three methods are discussed namely, the 

inference modelling, deterministic modelling and the use of automated system through 

evolutionary algorithm. The next chapter will delve into the design of an automated 

system using genetic algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 Design of Automated System for Chemical Reaction Elucidation 
 

Chapter 3. Design of Automated System for Chemical Reaction 
Elucidation 

3.1 Overview 

This chapter starts with an introduction to genetic algorithm, explaining the different 

terminology used that goes with it. Each functions of the genetic algorithm are 

explained in detail and examples are given for easier understanding. This follows on 

to the design of the automated system for elucidation of chemical reaction network that 

will be used in this thesis which will be based on genetic algorithm. As part of the design 

of the automated system, a solution for reaction rate constants through the use of 

multiple linear regression is shown.  

3.2 Introduction 

A genetic algorithm (GA) is a global optimisation technique that utilises stochastic 

search method in order to find optimised parameters. It is first introduced by Holland 

(1975) as an algorithm that is inspired by nature. The algorithm is based loosely on the 

natural change in genetic material in individuals in a population through the 

generations (De Jong, 1988). De Jong (1988) explained the basic elements of GA as  

a. Follows the Darwinian notion that the “fitness” of individuals of current 

generation will affect future generations. Generally, it means that the tough 

survives and the weak get weeded off. 

b. Requires a “mating” process to create new population in the new generation 

using current individuals. 

c. Each of the individuals is made up of “genes” that are used to describe each 

individual and these are the things that are passed down from one generation 

to another. 

The GA neither requires the problem to be continuous nor differentiable making it very 

versatile and applicable to a lot of different type of problems. The following figure is a 

flowchart describing GA search process. 
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Figure 3.2-1 Flowchart for a basic genetic algorithm 

 

3.3 Basic definition of terms 

As mentioned, GA follows loosely on the selection process that exist in the biological 

world. The terms used in GA are also based on the biological process and their 

interpretation when used for GA are as follows: 

 

a. Gene is the smallest possible unit in GA that when combined within a 

chromosome will define the chromosome. For example, for a binary encoding 

system, this can be 0 or 1. 

b. Individual or chromosome contains a number of genes and the genes 

combinations will define the parameter/parameters the chromosome holds. 

c. Population refers to all the individuals that belong to a single GA generation. 

The next generation of population will be formed through the reproduction 

process between the individuals within the same population. 
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d. Generation is the term used to describe the number of iterations that GA has 

undergone. The first generation refers to the initial population which will be used 

to reproduce the second generation and so on. 

3.3.1 Initialisation 

GA starts with initialisation of an initial population where each individual are encoded 

with. The classical method used by Holland (1975) is to encode using binary code 

strings. Examples of simple binary code string encoded individuals are shown below. 

Individual 1 : 101010101010 

Individual 2 : 010101010101 

Individual 3 : 100100100100 

Individual 4 : 111000111000 

These can then be decoded as required by the variables sought for by the optimisation 

problem (Haupt & Haupt, 2004). For example, if the variable that is sought for contains 

4 possibilities, then only 2 binary values are required to define it (00, 01, 10 and 11). 

Note that each of the binary value here is considered a gene. In the above example, 

there are 12 binary values for each individual and these can be separated as required. 

So if there are 6 variables and each of them has 4 possible results, the 12 binary values 

will be sufficient with every 2 values for each variable. The length of the individual and 

the required number of binary values for each variable can be change according to 

need. 

The encoding of these individuals can affect the outcome of the GA significantly (Yin, 

Wei, & Meng, 2005) and the choice is dependent on the optimisation problem. Several 

examples of other type encoding are non-binary encoding (Gen, Cheng, & Wang, 

1997), floating point number encoding (Budin, Golub, & Budin, 1996), variable string 

length (Goldberg, Korb, & Deb, 1989) and weight-coded GA (Raidl, 1999). The 

possibilities is numerous and it is up to the user to decide what is best to use for the 

particular problem. 

3.3.2 Evaluation 

This is the process where each of the individual genes content is translated into useful 

mathematical parameters and then evaluated against the problem’s “fitness function”. 

The fitness function can be based on the objective function of the optimisation problem. 

For an example, sums of squared error between the predicted values from GA and 

experimental values. The choice of fitness function used is crucial in determining the 
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success of GA because it will determine whether GA will converge to a global solution, 

local solution or failure to achieve any result. This step is also the most computative 

intensive in GA and a fitness function that is simple to evaluate will help tremendously 

in reducing the amount of time required to run the GA. 

  

3.3.3 Selection 

Next, the individuals undergo the selection process which chooses the individuals 

which will participate in the next step, reproduction. In general, the “fitter” the 

individuals are (more desirable fitness function) the better chance they have in being 

selected by the selection process to be used for the reproduction step. A few examples 

of selection process that are the roulette-wheel selection, stochastic universal 

sampling, tournament system, truncation selection and elitism.  

Roulette-wheel selection is done by first sorting the individuals according to their 

fitness functions. Each of sorted individuals’ accumulated fitness function are 

calculated which is done by adding up current individual and all the previous 

individuals’ (based on the order of the sorting) fitness functions. Then, adding up all 

the individuals’ fitness functions and generating a random number between 0 and the 

summed fitness functions value. The selected individual will be one that possess the 

accumulated fitness function right after the generated random number. The process is 

repeated until enough individuals are chosen. 

A variation of the roulette-wheel selection is the stochastic universal sampling. The 

sorting of individuals, calculation of accumulated fitness function and obtaining random 

number are done the same way. The difference is that it divides the sorted population 

into equal intervals (based on number of required individuals that need to be selected) 

with the random number as the starting point. The individuals that lie right after the 

intervals will be selected.  

A tournament system is done by randomly choosing a set number of individuals from 

the population. The individual with the most desired fitness function within the set will 

be selected. Repeat until the required number of individuals have been obtained. 

Truncation system is simply the retention of a determined top percentages of the 

population. For example, if it chosen to have 50% of the population truncated, only the 

top 50% of the population will be selected for the next stage. If more individuals are 

required, duplicates will be made from the selected individuals. 
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Elitism helps to preserve a small percentages of the top performing individuals. This 

selection method helps to reduce the workload for GA because it will remove the need 

to rediscover these individuals in later generations. It can be used in conjunction of the 

other selection methods and the selected individuals bypasses the reproduction step. 

3.3.4 Reproduction 

The step where the next generation of population is created is called the 

reproduction step. The selected individuals from the selection process will participate 

in this step as parent individuals. These parent individuals will be used to produce child 

individuals which will be used to populate the next generation. The reproduction is 

generally done through two processes namely, crossover and mutation (Haupt & 

Haupt, 2004).  

Crossover is done by randomly choosing a point within two parent individuals and 

having them exchange their genes. For example: 

 

Parent Individual 1 : 101010101010 

Parent Individual 2 : 010101010101 

↓ 

Child Individual 1: 101010110101 

Child Individual 2: 010101001010 

 

A point is chosen in between the 7th and 8th binary variables for the parent individuals 

in the above example. The genes are then exchanged or crossover-ed between the 

parent individuals to produce two new child individuals.  

Mutation is done by randomly selecting a point within a single parent individual and 

have it changed randomly or mutated (Haupt & Haupt, 2004). For example, 
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Parent Individual 1 : 101010101010 

↓ 

Child Individual 1 : 11010101010 

In this case, the second binary variable is chosen and gets mutated into a new value. 

For binary variable this is straightforward as it is either 0 or 1 so any mutation will have 

a definite outcome. It is also the choice of the user to have multiple point mutation or 

single point mutation as shown above. In other type of encodings, such floating point 

encoding, the result of the mutation will have to be randomly determined (Haupt & 

Haupt, 2004).  

3.3.5 Termination 

Once all the new child individuals for the new population are created, GA will proceed 

to the next generation. All the child individuals will be evaluated for their fitness just as 

their parents did and will participate in creation of future generations. This iteration will 

continue until the set number of maximum generations is completed or the GA gets 

terminated by other form of criterion such as reaching certain value of fitness (Hedar, 

Ong, & Fukushima, 2007). Other works such as done by Aytug &  Koehler (1996) 

describes a theoretical bound on number of iterations to prevent overkill (Aytug & 

Koehler, 2000), stopping criterion based on the variance of fitness among the 

population (Tsoulos, 2008) and terminating if difference between best individual and 

worst individual reached a certain confidence value (Kaelo & Ali, 2007). Different 

termination criterion have different disadvantages (Hedar, Ong, & Fukushima, 2007) 

and there is no absolute choice in which to use. Once the GA run is terminated, the 

final result can be extracted from the GA’s final generation. 

3.4 Application in Chemical Reaction Mechanisms 

Genetic algorithm use in the area of chemical reaction mechanisms is not new. It has 

been used in obtaining optimised values of kinetic constants of known chemical 

reaction networks such as works done by Harris et al. (2000), Elliott et al. (2004) and 

Maeder et al. (2004). GA has also been used in reduction of highly complex reaction 

mechanisms to aid in reducing the amount of resources require to simulate it 

(Hernandez et al., 2010 and Perini et al., 2012). Keyvanloo et al. (2012) used GA to 

optimise the parameters of a polynomial model thermal cracking of naphtha. Cao et al. 
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(1999) built the model structure using genetic programming while Wang et al. (2007) 

employed fuzzy neural network and both optimised the parameters using GA to infer 

chemical mechanisms  

There is a lack of work done to use GA to model the chemical reaction network itself 

and this is going to be investigated in this work where a novel GA is introduced to show 

its ability to elucidate the chemical reaction network. 

3.5 Automated system design 

GA is primarily a numerical optimisation method but it will be used as a modelling tool 

in this work. This is done mainly through a novel modification on the encoding method 

used on a classical GA and evaluation system that will be able to cope with the 

encoding system for it to be suitable for the elucidation of chemical reaction network. 

For this encoding method, each genes will be used to represent a single chemical 

reaction. A set number of genes can then be grouped together to form a potential 

chemical reaction network or an individual in the custom GA. The population in the 

custom GA will be populated by these potential chemical reaction networks and will be 

used to evolve through the generations in the GA. 

To do this, each of the genes will be represented by a set number of integers unlike 

classical GA where it is only represented by a single integer. These set of integers 

comes as a set and need to be materially balanced and cannot be changed partially 

and therefore becomes the smallest unit in the system, which is a gene. Figure 3.5-1 

shows an example of three individuals (potential chemical reaction networks) in the 

population and each of the individual consists of five genes (reactions).  

 

Figure 3.5-1: Example of individuals or chemical reaction networks in GA 

Individual 1 Individual 2 Individual 3

Genotype 1 1 0 0 0 -1 Genotype 1 0 0 0 0 0 Genotype 1 -1 -1 0 1 0

Genotrype 2 -1 0 1 0 0 Genotrype 2 -2 0 0 1 0 Genotrype 2 0 0 0 1 -1

Genotype 3 2 0 0 -1 0 Genotype 3 -1 0 0 0 1 Genotype 3 1 0 -1 1 0

Genotype 4 0 0 0 0 0 Genotype 4 0 0 0 0 0 Genotype 4 1 0 -2 0 0

Genotype 5 0 -1 0 1 1 Genotype 5 0 -2 1 1 0 Genotype 5 0 1 0 0 -1
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Each gene shown in Figure 3.5-1 consisted of 5 integers and each of these integers 

represent the stoichiometric coefficient of a chemical species in the chemical reaction. 

For example, Gene 1 from Individual 1 is  [1 0 0 0 −1 ] refers to the reaction: 

𝑥5 → 𝑥1 (Equation 3-1) 

 

Combining all the genes in Individual 1 will form the stoichiometric matrix: 

[
 
 
 
 

1 0 0 0 −1
−1 0 1 0 0
2 0 0 −1 0
0 0 0 0 0
0 −1 0 1 1 ]

 
 
 
 

 (Equation 3-2) 

 

which can be translated into the chemical reaction network: 

𝑥5 → 𝑥1 

𝑥1 → 𝑥3 

𝑥4 → 2𝑥1 

𝑥2 → 𝑥4 + 𝑥5  

(Equation 3-3) 

 

Note that, the gene [0 0 0 0 0 ] is used to represent absence of any additional 

reactions in the chemical reaction network. 

With this type of encoding, the crossover and mutation operations during the 

reproduction stage of the custom GA have to be modified from the classical GA’s 

crossover and mutation. For crossover, rather than choosing a point where crossover 

between parent individuals will occur, the GA is programmed to choose a gene from 

each parent individuals to crossover to create two new child individuals. This 

exchanges chemical reactions from two potentially good chemical reaction network in 

the hope that the child individuals produced from the crossover operations will be 

stronger and better than their parents. Figure 3.5-2 gives a better picture of this. 



31 Design of Automated System for Chemical Reaction Elucidation 
 

 

Figure 3.5-2: Example of crossover in GA 

  

For mutation, the custom GA will choose a gene randomly within the parent individual 

to mutate as compared to the classical GA where only a single integer will be mutated. 

The process will eliminate the chosen chemical reaction and randomly create a new 

chemical reaction within the child individual. This is shown in Figure 3. 

 

Figure 3.5-3: Example of mutation in GA 

The encoding is done under a number of rules and these rules are applied not only 

during the initialisation step but also during the reproduction (crossover and mutation). 

The rules are as followed: 

1. No two same reactions will exist within the same reaction network as they serve 

no purpose apart from complicating the estimation of the reaction rate 

constants. 

Parent Individual 1 Parent Individual 2

-1 -1 0 1 0 0 0 0 0 0

0 0 0 1 -1 -2 0 0 1 0

1 0 -1 1 0 -1 0 0 0 1

1 0 -2 0 0 0 0 0 0 0

0 1 0 0 -1 0 -2 1 1 0

Child Individual 1 Child Individual 2

-1 -1 0 1 0 0 0 0 0 0

0 0 0 1 -1 -2 0 0 1 0

1 0 -1 1 0 1 0 -2 0 0

-1 0 0 0 1 0 0 0 0 0

0 1 0 0 -1 0 -2 1 1 0

Parent Individual Child Individual

-1 -1 0 1 0 -1 -1 0 1 0

0 0 0 1 -1 0 0 0 1 -1

1 0 -1 1 0 1 0 -1 1 0

1 0 -2 0 0 -2 0 0 1 0

0 1 0 0 -1 0 1 0 0 -1

Next Generation 

Crossover 

Mutate into 

Next Generation 
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2. All the chemical reactions within the chemical reaction network must be mass 

balanced. 

3. The highest reaction degree is set as two. This is based on assumption that 

elementary reaction generally does not involve more than two molecules 

(Jackson, 2004) of reactants. 

4. The reactions within the reaction network are checked against each other to 

avoid inconsistencies such as two reactions that use the exact same reactants 

producing different products. 

Using these rules, the probability of generating infeasible chemical reaction 

network can be avoided and increases the utilisation of computing power in 

determining the correct chemical reaction network.  

3.5.1 Algorithm 

The automated system follows similar path as the classical GA but on the evaluation 

step, an additional step to estimate the reaction rate constants for each of the chemical 

reactions within the potential chemical reaction networks is required. 

3.5.2 Pre-run Parameters 

Before the algorithm can commence, a few pre-run parameters for the GA will need to 

be set up. Below are the few user defined parameters that need to be entered into the 

system: 

a. Number of individuals per generation 

b. Maximum number of generation 

c. Maximum number of genes per individual 

d. Mutation probability 

e. Crossover probability 

f. Elitism probability 

Having more individuals per generation will enlarge the pool of available genes for use 

in the reproduction step. This typically help reduce the number of generation required 

to converge to a good result. However, too large a number of individuals per generation 

will bogged down the computing power and increases run time.  

Running the GA for more generations may produce better results as the goal of the 

GA is to produce better and better individuals at every generation but at the risk of 
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redundant generations because the results have already converged much earlier or 

faced the possibility of over-fitting to the experimental data.  

Having more genes per individual is also another good way to increase the pool of 

available genes but at the same time also causes more computing power to be 

required.  

Higher crossovers probability will help to recombine good parent individuals to build 

better child individuals but may be limited to the gene pool available in the parent 

individuals. This may lead to convergence to a local solution. 

Mutation helps injecting new gene or re-introduce genes that are eliminated in previous 

generations into the gene pool and increases the diversity. It will lead to a creation of 

more diverse child individuals which can help in reaching a global solution but at the 

same time, it will increase runtime of the GA because a lot of poor individuals may be 

created.  

Elitism will help preserve a small percentage of individuals that have the best 

performance to the next generation but too much elitism will cause convergence to a 

local solution. 

These parameters are user defined and they vary case by case. In general, in a system 

with more chemical species involved will require a larger number of individuals, genes 

and generations. Crossover and mutation are mainly based on the experience of the 

user with the system. Elitism is best kept at a small percentage such as at 5%. 

3.5.3 Initialisation of the custom GA 

At the initialisation step, the initial population (first generation) is created. Each of the 

individuals will have their genes randomly created.  

Each gene is created by first determining the order of reaction which can be first order, 

second order or no reaction. For first order reaction, a single reactant will be assigned 

randomly and for second order two reactants will be assigned. For no reaction, the 

gene will be filled with zeroes. Those assigned as reactants will have stoichiometric 

coefficient, 𝜐𝑥𝑖
< 0. Next, the product of the chemical reaction is randomly determined 

as well but must not be the same chemical species as the reactant. The product will 

be assigned positive stoichiometric coefficient that is limited to not more than two for 

the scope of this work. The integers can easily be increased if need be, to any value.  
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Next, the reaction’s mass balance will be checked to ensure no infeasible reaction is 

created. This is done by the following equality 

𝛎 × 𝑴 = 0 (Equation 3-4) 

Where  

𝛎 = [𝜐𝑥1
… 𝜐𝑥𝑁𝑐] and 𝑴 = [

𝑚𝑥1

⋮
𝑚𝑥𝑁𝑐

] for chemical reaction network that only has 𝑁𝑐 

chemical species. 

𝜐𝑥𝑖
 is the stoichiometric coefficient of the 𝑖th chemical species 

𝑚𝑥𝑖
 is the molecular mass for the 𝑖th chemical species 

 If the gene that is created fails to adhere to the mass balance, the gene will be 

re-created again. The GA currently is set up to repeat this up to 20 tries and a no 

reaction gene will be created instead if it cannot create a feasible reaction by then. 

The process is repeated until all the genes in all the individuals in the population 

are filled.  

3.5.4 Reaction rate constants estimation 

The reaction rate constants for each of the individuals that have been created 

are estimated by solving the ordinary differential equations below: 

𝑑[𝑥𝑖]

𝑑𝑡
= [𝑥𝑖]̇ = ∑𝑣𝑖,𝑗

𝑁𝑟

𝑗=1

𝑟𝑗 (Equation 3-5) 

The differential equations is only for a single data point. Matrix form can be used to 

describe the equation with multiple data points and multiple chemical species: 

[𝑿]̇ = 𝑹𝑽 (Equation 3-6) 

Where 

[𝑿]̇ = [

[𝑥1]̇ 𝑡=0 ⋯ [𝑥𝑁𝑐
]̇
𝑡=0

⋮ ⋱ ⋮
[𝑥1]̇ 𝑡=𝑁𝑡

⋯ [𝑥𝑁𝑐
]̇
𝑡=𝑁𝑡

]  𝑹 = [

𝑟1,𝑡=0 ⋯ 𝑟𝑁𝑟,𝑡=0

⋮ ⋱ ⋮
𝑟1,𝑡=𝑁𝑡

⋯ 𝑟𝑁𝑟,𝑡=𝑁𝑡

]  𝑽 = [

𝑣1,1 ⋯ 𝑣𝑁𝑐,1

⋮ ⋱ ⋮
𝑣1,𝑁𝑟

⋯ 𝑣𝑁𝑐,𝑁𝑟

]    

𝑡 is the data point 

𝑁𝑡 is the last data point 

𝑁𝑟 is the total number of reactions 
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With each of the reaction rate, 𝑟𝑗 defined by: 

𝑟𝑗 = 𝑘𝑗 ∏[𝑥𝑖]
−𝑣𝑖,𝑗

𝑛

𝑖=1

, ∀ 𝑣𝑖,𝑗 < 0 (Equation 3-7) 

Applying natural logarithm on both sides of this equation will yield 

ln(𝑟𝑗) = ln(𝑘𝑗) + ∑𝑣𝑖,𝑗ln ([𝑥𝑖])

𝑛

𝑖=1

, ∀ 𝑣𝑖,𝑗 < 0 

 

(Equation 3-8) 

Substituting 𝑎𝑗 to simplify the summation part: 

ln(𝑎𝑗) = ∑𝑣𝑖,𝑗ln ([𝑥𝑖])

𝑛

𝑖=1

, ∀ 𝑣𝑖,𝑗 < 0 (Equation 3-9) 

The equation becomes: 

ln(𝑟𝑗) = ln(𝑘𝑗) + ln (𝑎𝑗) (Equation 3-10) 

Applying exponential on both sides of the equation gives: 

𝑟𝑗 = 𝑘𝑗𝑎𝑗 (Equation 3-11) 

Expanding it for all the reactions within the chemical reaction network and including 

the data points, it can be written in matrix form as: 

𝑹 = 𝑨𝑲 (Equation 3-12) 

where  

�̃� = − 𝑽𝑇 , ∀ 𝑣𝑖,𝑗 < 0     [𝑨] = [

[𝑎1]𝑡=0 ⋯ [𝑎𝑁𝑅
]𝑡=0

⋮ ⋱ ⋮
[𝑎1]𝑡=𝑁𝑡

⋯ [𝑎𝑁𝑅
]𝑡=𝑁𝑡

]   𝑲 = [

𝑘1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑘𝑁𝑅

] 

𝑲 is a diagonal matrix with the reaction rate constants values on the diagonal position 

of the matrix. 

Substituting 𝑹 into the differential equations will give: 

[𝑿]̇ = 𝑨𝑲𝑽 

[𝑿]̇ 𝑽−𝟏 = 𝑨𝑲 

 

 

(Equation 3-13) 
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At this point, it becomes a multiple linear regression problem and using ordinary least 

squares estimation: 

𝑲 = (𝑨𝑇𝑨)−𝟏𝑨𝑻[𝑿]̇ 𝑽−𝟏 (Equation 3-14) 

3.5.5 Fitness function 

The fitness function chosen for this step is variance weighted sums of squared error 

(VMSSE) which will be used to determine how closely related is the predicted 

concentration data with the experimental concentration data for each of the chemical 

species. The choice is mainly based on experience of using different type of fitness 

function and VMSSE managed to produce a more consistent result. This is because 

VMSSE gives equal priority to all the variables it is evaluating and therefore will not 

favour variables that have a larger value and ignore variables that are relatively small. 

In the context of the elucidation of the CRN which can consist of chemical species of 

large and small concentration, it will not only favour the chemical species with larger 

concentrations.  

Variance weighted sums of squared error (VMSSE) can be described by the equation 

3.15. 

𝑉𝑀𝑆𝑆𝐸 = ∑
∑ ([𝑥𝑖]𝑡 − [�̂�𝑖]𝑡)

2𝑁𝑡
𝑡=0

∑ ([𝑥𝑖]𝑡 − 𝜇𝑥𝑖
)
2𝑁𝑡

𝑡=0

, ∀ 𝑢𝑥i
= 1 

𝑁𝑐

𝑖=1

 

 

(Equation 3-15) 

[𝑥𝑖]𝑡 is the concentration data of chemical species 𝑥𝑖 at time 𝑡 

[�̂�𝑖]𝑡 is the predicted concentration data of chemical species 𝑥𝑖 at time 𝑡 

𝑁𝑐 = total number of participating chemical species 

𝑁𝑡 = the time when the last data point is being evaluated 

𝑢𝑥𝑖
 is the measured/unmeasured identifier for [𝑥𝑖]. Measured chemical species will be 

given the value of 1 and unmeasured will be given the value 0. 

𝜇𝑥𝑖
 is the standard deviation of the all the concentration data of [𝑥𝑖] that is being 

evaluated 

 

The predicted concentration data, [�̂�𝑖] can be calculated by using the reaction rate 

constants, 𝑲 that is obtained in the Equation 3-14 by solving ordinary differential 
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equations for each corresponding data point, 𝑡. VMSSE for each of the chemical 

species is calculated and then their values added. As VMSSE is a measure of errors 

between the predicted values and the input value, the lower it is, the fitter the individual 

is. The fitter the individual is, the higher the chance of getting its genes passed down 

to subsequent generations.  

3.5.6 Reproduction process 

The creation of individuals for the next generation or child individuals is done in the 

next step. The process started off by determining whether the new child individual will 

be created through mutation or crossover of parent individuals. This is done by using 

random number generator and the probability of the choice is set beforehand within 

the GA.  

If mutation is chosen, a single parent individual will be obtained from the selection 

process and a random gene within the individual will be ‘mutated’. ‘The new reaction 

is created the same way reactions are created during the initialisation step. If crossover 

is chosen, two parent individuals will be obtained through the selection process and 

one gene from each of the parent individuals will be exchanged to create two new child 

individuals.  

The tournament selection process is used in this work. A set number of individuals are 

chosen from the present generation and the individual with the best fitness function 

(highest PPMCC) will be chosen as parent individual. This is to create a larger pool of 

genes to be passed on to the next generation and not restricted to only the very best 

individual while at the same time able to reject totally unfit individuals. The step ends 

once all the required number of child individuals has been created.  

3.5.7 Terminate GA 

Once the maximum number of generation has been reached, the GA will terminate 

itself. The extraction and analysis of results is done and if the GA is successful, the 

actual chemical reaction network will be presented as the best individual at the final 

generation. 

3.6 Summary 

In this chapter, the genetic algorithm is introduced and the function of each of the 

components within it are explained. This leads to the design of the automated system 
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for the specific reason for elucidation of chemical reaction network. The system can be 

summarised as the flowchart show in the figure below, 

 

Figure 3.6-1 Flow chart for the automated system for chemical reaction network elucidation 

The next chapter will test out the capability of this automated system and discuss its 

weaknesses. 
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Chapter 4. Application of the Automated System for Chemical 
Reaction Network Elucidation 

4.1 Overview 

This chapter introduces two fictitious Chemical Reaction Networks (CRN) to be used 

to test the automated system for chemical reaction network identification based on 

Genetic Algorithm (GA) as discussed in the previous chapter. Simulated data are 

generated for the CRNs and more datasets are created with added noise to increase 

the challenge of the test. The results of the automated system are presented and 

discussion on the performance of the automated system are made. Weaknesses of 

the system are identified and discussed and this follows on to a summary of the 

chapter. 

4.2 Introduction 

Two chemical reaction networks (CRN) are used to demonstrate the capability of the 

automated system in obtaining the actual CRN from the concentration of involved 

chemical species in an isothermal chemical batch reactor. The CRNs is based on those 

presented by Searson et al. (2012) and they will be referred as Reaction Network 1 

(RN1) and Reaction Network 2 (RN2) accordingly from here onwards. Both of the 

CRNs are basic enough to test and develop the automated system but also sufficiently 

complex with the presence of serial reaction, parallel reaction and in RN2, a reversible 

reaction to test the robustness of the automated system. 

The concentration data is generated through the solution of the ordinary differential 

equations using the Runge-Kutta 4th order method using the stoichiometric matrix, 

reaction rate constants and the initial concentration for each of the chemical species, 

[𝑿]̇ = 𝑹𝑽 (Equation 4-1) 

The details of the RN1 and RN2 is as follows: 

4.2.1 Reaction Network 1 (RN1) 

Reaction 1: 2𝑥1

𝑘1
→ 𝑥2   𝑘1 = 0.10 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

Reaction 2: 𝑥1

𝑘2
→𝑥3   𝑘2 = 0.20 𝑠−1  

Reaction 3: 𝑥3

𝑘3
→ 𝑥4   𝑘3 = 0.13 𝑠−1  

Reaction 4: 𝑥2 + 𝑥4

𝑘4
→𝑥5   𝑘4 = 0.30 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 
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In stoichiometric matrix,  

𝑽𝑹𝑵𝟏 = [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

 

(Equation 4-2) 

This CRN has 5 different chemical species and 4 reactions within it. All the reactions 

are forward reactions and there exists a single parallel reactions based on the reactant, 

𝑥1. 4 different batches of the CRN are simulated and the initial conditions and 

parameters used are shown in the tables below. 

Run time = 0s to 24.0s 

Sampling interval = 1.0s 

Batch 
Initial Concentration, mol/dm3 

[𝒙𝟏]𝒕=𝟎 [𝒙𝟐]𝒕=𝟎 [𝒙𝟑]𝒕=𝟎 [𝒙𝟒]𝒕=𝟎 [𝒙𝟓]𝒕=𝟎 

1 0.33  1.00 0 0 0 

2 1.00 0.33 0 0 0 

3 1.00 1.00 0 0 0 

4 0.75 1.00 0 0 0 

Table 4.2-1: Initial concentration data for Reaction Network 1. 

 

Chemical Species 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 

Molecular Weight 1 2 1 1 3 

Table 4.2-2 Molecular weight of chemical species in Reaction Network 1 

 

Figure 4.2-1 shows the concentration data of chemical species against time for four of 

the batches. 
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Figure 4.2-1 Concentration data against time for the four batches in Reaction Network 1 

 

4.2.2 Reaction Network 2 (RN2) 

Reaction 1: 𝑥1 + 𝑥2

𝑘1
→ 𝑥3 + 𝑥4 𝑘1 = 0.20 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

Reaction 2: 𝑥2 + 𝑥3

𝑘2
→ 𝑥5  𝑘2 = 0.10 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

Reaction 3: 𝑥1 + 𝑥4

𝑘3
→ 𝑥6  𝑘3 = 0.15 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

Reaction 4: 𝑥6

𝑘4
→ 𝑥1 + 𝑥4  𝑘4 = 0.05  𝑠−1  

In stoichiometric matrix,  

𝑽𝑹𝑵𝟐 = [

−1 −1 1
0 −1 −1

−1
1

0
0

0
0

    

1
0

−1
1

    

0
1
0
0

    

0
0
1

−1

] 

 

(Equation 4-3) 

RN2 has 6 chemical species and 4 reactions. This CRN will be used to understand the 

automated system’s behaviour on reversible reactions as can be seen in the 3rd and 



42 Application of the Automated System for Chemical Reaction 
Network Elucidation 

 

4th reaction. A by-product 𝑥5 is also produced in RN2. 4 different batches of the CRN 

are simulated and the initial conditions and parameters used are shown in the tables 

below. 

Run time = 0s to 15.0s 

Sampling interval = 0.5s 

Batch 
Initial Concentration, mol/dm3 

[𝒙𝟏]𝒕=𝟎 [𝒙𝟐]𝒕=𝟎 [𝒙𝟑]𝒕=𝟎 [𝒙𝟒]𝒕=𝟎 [𝒙𝟓]𝒕=𝟎 [𝒙𝟔]𝒕=𝟎 

1 2.50 2.50 0 0 0 0 

2 2.50 7.50 0 0 0 0 

3 7.50 2.50 0 0 0 0 

4 10.00 5.00 0 0 0 0 

Table 4.2-3: Initial concentration for Reaction Network 2 

 

Chemical Species 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 

Molecular Weight 3 2 1 4 3 7 

Table 4.2-4 Molecular weight of the chemical species in Reaction Network 2 

 

Figure 4.2-2 shows the concentration data of chemical species against time for four of 

the batches. 
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Figure 4.2-2 Plots of concentration data against time for the four batches in Reaction Network 2 

4.3 Data processing 

In order to use the automated system, the rate of change in concentration data, [𝑥𝑖]̇  of 

each of the chemical species will need to be obtained. To achieve this, the 

concentration is fitted to a rational polynomial with the suited order in the numerator 

and denominator through minimisation of the error between the modelled 

concentration profile from the rational polynomial and the simulated concentration 

data. An example of a rational polynomial with 2nd order numerator and 2nd order 

denominator: 

[𝑥𝑖]𝑡 =
𝛼1𝑡

2 + 𝛼2𝑡 + 𝛼3

𝑡2 + 𝛼4𝑡 + 𝛼5
 

 

(Equation 4-4) 

Where [𝑥𝑖]𝑡 is the concentration data of chemical species 𝑖 at time 𝑡 

 𝛼1 to 𝛼5 refer to parameters of the rational polynomial. 
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The rational polynomial can then be differentiated to obtain the rate of change of 

concentration data,  [𝑥𝑖]̇ 𝑡 at time 𝑡. 

4.4 Automated system parameters 

The standard parameters used to run the automated system for the elucidation of RN1 

and RN2 for the datasets generated above is shown in Table 4.4-1:  

Number of individuals per 
generation 

100 

Maximum number of 
generations 

50 

Tournament size 10 

Mutation probability  80% 

Crossover probability 20% 

Elitism  
5% of total individual 
per generation 

Table 4.4-1 Run parameters for the automated system for chemical reaction network elucidation 

The selection of the parameters are based on the experience using the automated 

system in elucidating the CRNs. It is discovered that using a high level of crossover 

probability inhibits the performance of the automated system and causes the system 

to converge with higher number of generations and sometimes converge to a local 

minima. This is shown in Table 4.4-2 when the automated system is tested to elucidate 

RN1 with 100 population and 100 maximum generations. This can be hypothesised 

based on the nature of the problem which is highly non-linear. The presence and 

absence of a single reaction has a significant impact to the fitness function of the CRN. 

The effect of the presence of each reaction can be very different as well. Combination 

of certain reactions will also impact the final fitness value of the CRN.  

For example in RN1, if the 3rd reaction is missing, even with the 4th reaction present, 

it will still be impossible to predict the concentration of 𝑥5. This is the calculation of the 

concentration 𝑥5 is highly dependent on the presence of 𝑥4 which is generated in the 

3rd reaction. For reference, the stoichiometric matrix of RN1 is shown below: 

𝑽𝑹𝑵𝟏 = [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] (Equation 4-5) 
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This will caused the hoarding of poorly performing CRNs because a huge amount 

variability is needed such as introduction of two or more new reactions into a CRNs 

before the impact of the reactions can be felt. Crossing over poor performing CRNs 

will undoubtedly cause delay in convergence and may even missed out on crucial 

reaction which will ultimately cause the automated system to converge to a local 

minima. 

Crossover 

probability 

Mutation 

probability 

Converged at 

generation 

90% 10% 
Did not reach global 

minima 

70% 30% 37 

50% 50% 26 

20% 80% 18 

Table 4.4-2 Impact of different crossover and mutation probability on convergence of GA. 

Therefore, to help explore the highly non-linear search space of the problem, a high 

mutation rate is used to help produce reactions that may not be useful as a standalone 

but can help tremendously when in a group of correct reactions, such as the 3rd 

reaction as above. However, high mutation rate comes with an increased number of 

incorrect reactions being generated which may cause the next generation produced to 

perform worse than its predecessors. To control this effect, a small amount of elitism 

of 5% of the population is introduced into the system to retain the top few performing 

CRNs to bring forward to the next generation. This gives the system the freedom to 

choose large number of unique combinations of reactions while retaining the 

combinations that had shown potential to the next generation.  

4.5 Practical implementation of Multiple Linear Regression 

In the previous chapter, in the reaction rate constant calculation step, the final equation 

to obtain the reaction rate constant is as follows, 

𝑲 = (𝑨𝑇𝑨)−𝟏𝑨𝑻[𝑿]̇ 𝑽−𝟏 (Equation 4-6) 

What can be noticed is that, it requires the inverse matrix of the stoichiometric matrix 

of the individual being evaluated, 𝑽. If 𝑽 cannot be inverted, the equation cannot be 

solved. This is likely to occur in RN1 and RN2 given that the number of reactions is 

less than the number of chemical species present in both RN1 and RN2. 
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For example the stoichiometric matrix of RN1, 𝑽𝑹𝑵𝟏, 

 𝑽𝑹𝑵𝟏 = [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

 

(Equation 4-7) 

cannot be inverted because it is not a square matrix. To overcome this, the automated 

system evaluate such matrix as  

𝑽𝑹𝑵𝟏 = 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

 

(Equation 4-8) 

With a redundant reaction as the 5th reaction. With it, 𝑽𝑹𝑵𝟏 becomes a square matrix. 

However, the matrix rank is only 4 as there are only 4 linearly independent matrix which 

subsequently made the matrix singular. Singular matrix cannot be inversed. To 

overcome this, the inversion of the matrix in the reaction rate calculation is changed to 

pseudo-inverse. 

𝑲 = (𝑨𝑇𝑨)−𝟏𝑨𝑻[𝑿]̇ 𝑽# (Equation 4-9) 

Where # refers to the Moore-Penrose pseudo-inverse 

Using Equation 4-9, the reaction rate constants calculation becomes possible for 

stoichiometric matrix that are singular in nature. 

4.6 Results and Discussion 

All in all, the 4 reaction batches of RN1 and 4 reaction batches of RN2 are simulated 

and supplied to the automated system. The system is then run to elucidate the CRN 

of each of the reaction batch and the results of the each of the run is presented in the 

next section. The Table 4.6-1 shows the detail on the datasets used for each of the 

automated system’s runs. 
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Run 
Chemical 

Reaction Network 
Batch 

4-1 RN1 1 

4-2 RN1 2 

4-3 RN1 3 

4-4 RN1 4 

4-5 RN2 1 

4-6 RN2 2 

4-7 RN2 3 

4-8 RN2 4 

Table 4.6-1 Run details for Run 4-1 to Run 4-8 

 

4.6.1 Reaction Network 1 (RN1) 

Table 4.6-2 shows the elucidated CRN from the automated system for each of the 

reaction batch for RN1. The fitness function used is variance weighted sums of squared 

error. 

Run Best Performing 

Individual 

Reaction Rate Constant Fitness 

Function 

4-1 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.0964 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2016 𝑠−1  

𝑘3 = 0.1300 𝑠−1  

𝑘4 = 0.3005 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.0326 

4-2 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.0987 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2016 𝑠−1  

𝑘3 = 0.1297 𝑠−1  

𝑘4 = 0.3002 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.0391 

4-3 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2010 𝑠−1  

𝑘3 = 0.1299 𝑠−1  

𝑘4 = 0.3013 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.0390 

4-4 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.1001 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2003 𝑠−1  

𝑘3 = 0.1296 𝑠−1  

𝑘4 = 0.3009 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.0320 

Table 4.6-2 Results for Run 4-1 to Run 4-4 

From the result, it can easily be seen that the automated system successfully identify 

all of the reactions within RN1 for each of the batch. The reaction rate constants 

calculated are also very close to the actual values in RN1 with the biggest percentage 
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error approximately 3.60% (Batch 1’s 𝑘1 0.0964 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 against RN1’s  

𝑘1 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1).  

Percentage error = 
0.1000−0.0964

0.1000
× 100% = 3.60% 

The fitness function is also low as can be seen in the graph comparing the simulated 

and predicted concentration data for Run 4-2 which is the batch with the worst fitness, 

0.0391. 

 

Figure 4.6-1 Simulated and predicted concentration data against for Run 4-2 (sim = simulated, pred = predicted) 

From the figure, it can be surmised that the predicted concentration data matched the 

simulated concentration with no significant error. 

However, given that the origin data has no error, it should be expected that the 

automated system should produce a CRN that match the origin data exactly with no 

error and the reaction rate constants should be exactly the same. This small error 

stems from the fact that the rate of concentration change of simulated data are 

approximated through differentiation of rational polynomials. The approximations 

introduced a slight error in the calculation for the reaction rate constants and thus 

resulted in the above results. 
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Overall, the method had shown effective for RN1. 

4.6.2 Reaction Network 2 (RN2) 

Table 4.6-3 shows the elucidated CRN from the automated system for each of the 

reaction batch for RN2. The fitness function used is variance weighted sums of squared 

error. 

Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

4-5 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
−1 2 2 0 −1 0
1 0 0 2 1 −2
0 0 1 −2 0 1 ]

 
 
 
 
 

 

𝑘1 = 0.2018 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1043 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1179 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = −0.0035 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0077 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = −0.0005 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

6.1877 

4-6 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
0 0 0 −1 −1 1
1 0 0 0 −1 0
0 1 −2 0 0 0]

 
 
 
 
 

 

𝑘1 = 0.2051 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0990 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1130 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = −0.0002 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = −0.00004 𝑠−1  

𝑘6 = 0.0050 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

18.5476 

4-7 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
0 1 1 1 0 −1
1 −1 2 0 −1 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.1960 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1177 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1268 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = −0.0001 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.1783 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  
𝑘6 = 0 

13.8507 

4-8 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 1 1 0 −2 0
0 2 −1 1 0 −1
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.2018 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1043 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1179 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0004 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = −0.00008 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  
𝑘6 = 0 

25.6179 

Table 4.6-3 Results for Run 4-5 to Run 4-8 

Different from the automated system performance in identification of reactions in RN1, 

it does not seem to be as effective at identification of reactions for RN2. The fitness 

functions are significantly larger when compared against those in RN1 which meant 

they have more errors when comparing simulated and predicted concentration data.  

It can be seen however that the first three reactions of RN2 are identified correctly. The 

4th reaction is not identified in any of them. The reaction rate constants approximated 

for Reaction 1 and Reaction 2 are good with the worst percentage error of 17.7% (Run 

4-7’s 𝑘2). 
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Apart from not identifying the 4th reaction of RN2, the results also shows the automated 

system producing reactions that are not part of RN2. These reactions sometimes come 

with a negative reaction rate constants which has no physical meaning as it will suggest 

reactants are produced in a reaction that is supposed to expend them, for example, 

Run 4-5’s 𝑘4 = −0.0035 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1.  

The prediction accuracy is poorer than RN1 as can be seen in Figure 4.6-2 which 

depicts the performance of the automated system for Run4-8: 

 

Figure 4.6-2 Simulated and predicted concentration data against time for Run 4-8 (sim = simulated, pred = 
predicted) 

From the figure, it can be seen that 𝑥2, 𝑥3 and 𝑥5 simulated values are fitted well to the 

predicted concentration data but the rest of the chemical species have poorer fit.  

Although the system has partial success in the identification of the CRN for RN2, its 

performance is much poorer as compared to when it is used for RN1. The source of 

the automated system’s weakness can be traced to the stoichiometric matrix of RN2. 

𝑽𝑹𝑵𝟐 = [

−1 −1 1
0 −1 −1

−1
1

0
0

0
0

    

1
0

−1
1

    

0
1
0
0

    

0
0
1

−1

] (Equation 4-10) 
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The 3rd reaction and 4th reaction are reverse reactions of each other and this made 

the 3rd and 4th row of 𝑽𝑹𝑵𝟐 not linearly independent to each other. Which in turn made 

the solution for 4 reaction rate constants based on 3 linearly independent equations 

impossible through multiple linear regression as used in the reaction rate constant 

calculation. 

𝑲 = (𝑨𝑇𝑨)−𝟏𝑨𝑻[𝑿]̇ 𝑽# (Equation 4-11) 

 

Negative reaction rate constants are also the result of using this particular reaction rate 

constant calculation method. The formula does not limit itself to positive values only 

and it is possible for it to produce negative values for the reaction rate constants it 

calculates. This occurs more often than not in CRN such as RN2 where the formula is 

unable to obtain accurate reaction rate constants from the actual CRN.  

Even with such inherent weaknesses, the automated system is still able to produce 

predicted concentration data that although not entirely accurate but at least not too far 

off from the simulated concentration data. It also still able to identify 3 of the 4 reactions 

from RN2 and 2 of the reaction has good approximation on the reaction rate constants. 

However, the limitation of the automated system in evaluating reversible reactions 

made it unreliable for RN2 and at such will not be used to evaluate RN2 in the next 

section where the effect of noise is explored on the system’s robustness. 

4.7 Noise 

To test on the robustness of the automated system, the concentration data for the 4 

batches for RN1 are perturbed with Gaussian noise with the mean of 0. Two levels of 

noise with standard deviation equal to the maximum of 4% and 8% of the maximum 

value of the chemical species’ concentration are introduced to the concentration data. 

For example, a chemical species in a batch run has a maximum value of 1.0 will have 

Gaussian noise with mean of 0 and standard deviation of 0.04 and 0.08 added 

accordingly for both of the noise level. RN2 is not used for this section because it has 

been shown the automated system is not effective in elucidating its CRN. 

Table 4.7-1shows the datasets used in this section: 
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Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

4-9 RN1 1 4% of max range 

4-10 RN1 1 8% of max range 

4-11 RN1 2 4% of max range 

4-12 RN1 2 8% of max range 

4-13 RN1 3 4% of max range 

4-14 RN1 3 8% of max range 

4-15 RN1 4 4% of max range 

4-16 RN1 4 8% of max range 

Table 4.7-1 Run details for Run 4-9 to Run 4-16 

Similarly to the previous section, each of chemical species in the runs are 

approximated to rational polynomial using the suitable order for numerator and 

denominator. The rational polynomials are then differentiated to obtain the rate of 

concentration change of the chemical species.  

In this section, the rational polynomials are also used to smoothen the noisy data to 

mitigate the effect of noise in the system. Figure 4.7-1 is an example of smoothen 

concentration data of Run 4-9. 
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Figure 4.7-1 Noisy and smoothened concentration data against time for Run 4-9 

The results from the 8 runs are shown in Table 4.7-2: 

Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

4-9 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1116 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2088 𝑠−1  

𝑘3 = 0.1335 𝑠−1  

𝑘4 = 0.3025 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0 

0.6160 

4-10 

[
 
 
 
 
−1 0 1
0 0 −1
0

−1
−1

−1
0
1

0
2

−1

    

0
1

−1
−1
0

    

0
0
1
0
0]
 
 
 
 

 

𝑘1 = 0.1741 𝑠−1  

𝑘2 = 0.1468 𝑠−1  

𝑘3 = 0.3371 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘4 = 0.0805 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0632 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

6.9803 

4-11 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1330 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2323 𝑠−1  

𝑘3 = 0.1231 𝑠−1  

𝑘4 = 0.2895 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0 

3.1846 

4-12 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1107 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1977 𝑠−1  

𝑘3 = 0.1275 𝑠−1  

𝑘4 = 0.2809 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0 

1.3956 
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Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

4-13 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.0879 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1923 𝑠−1  

𝑘3 = 0.1273 𝑠−1  

𝑘4 = 0.2896 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 
𝑘5 = 0 

2.1179 

4-14 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1053 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2399 𝑠−1  

𝑘3 = 0.1343 𝑠−1  

𝑘4 = 0.2984 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0 

12.8375 

4-15 

[
 
 
 
 
−2 1 0
−1 0 1
0
0

−1

0
−1
0

−1
0
2

    

0
0
1

−1
−1

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.0958 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1832 𝑠−1  

𝑘3 = 0.1391 𝑠−1 

𝑘4 = 0.3126 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.2697 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

1.7917 

4-16 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1085 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1952 𝑠−1  

𝑘3 = 0.1257 𝑠−1  

𝑘4 = 0.2736 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0 

5.4517 

Table 4.7-2 Results from the Run 4-9 to Run 4-16 

As expected the results from the concentration data with noise included have a higher 

level of error when compared against when the automated system is run with 

concentration data without noise included. The automated system managed to obtain 

the accurate CRN in 6 out of the 8 runs. Run 4-15 contains the correct reactions but 

also includes an additional misidentified reaction. Run 4-10 did not managed to 

elucidate all of the RN1 reactions. The impact of noise in the performance of the 

automated system can be felt here as its effectiveness is now diminished by the 

presence of noise in the system. 

For the runs that correctly identified RN1 CRN, Run 4-14 has the worst performance 

in terms of fitness function and will used for further analysis. A plot of the predicted 

concentration data given from the best performing individual in Run 4-14 against the 

noisy concentration data that has been smoothened and against the original noiseless 

concentration data is shown in Table 4.7-2. 
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Figure 4.7-2 Comparison between performance of predicted concentration data on noisy and noiseless 
concentration data 

From the figures, it can be seen that the predicted concentration data has a better fit 

to the original noiseless concentration data than the concentration with noise. This is 

especially true at the beginning of the run for chemical species 𝑥2 and at the end of the 

run for chemical species 𝑥1. Using the same reaction rate constants and CRN structure 

of the best performing individual of Run 4-14, the fitness function is recorded to be 

4.9865 when it is compared against the noiseless concentration data. It shows that it 

performs better against the noiseless concentration data as compared to the noisy data 

where it only achieve the fitness function of 12.8375 even when the automated system 

used the noisy concentration data to elucidate the CRN. 

The poor fitness function of the run can explained by the poor quality of the 

concentration data it was provided with. With noisier data, the errors between the data 

and the actual data is larger and any smoothing process to the data will be affected. 

The smoothing process of the concentration data is not subjected to mass balance 

limitations as it is only fitted onto rational polynomials. The automated system on the 

other hand is based on the law of mass action and the predicted concentration data 

are reconstructed by solving the ordinary differential equations: 

[𝑿]̇ = 𝑹𝑽 (Equation 4-12) 

which made the predicted concentration data mass balanced. It is impossible to fit a 

mass balanced predicted concentration data exactly onto concentration data that do 

not adhered to mass balance.  

However, it can be seen from the Figure that the automated system tried to give the 

best possible fit given its mass balanced limitations to the smoothing noisy 
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concentration data and still managed to elucidate the correct CRN. It is also shown 

that when fitted onto the original noiseless concentration data, the predicted 

concentration data has a better fit and shape to the noiseless concentration data. This 

is mainly because the original noiseless concentration data is also subjected to the 

same mass balance constraint when it was simulated through the solution of the 

ordinary differential Equation 4-12. This is also applicable to the other 5 runs (Run 4-

9, Run 4-11, Run 4-12, Run 4-13 and Run 4-16) that correctly identified the CRN but 

to smaller extent. 

The issue with using noisy concentration data is also extended to Run 4-10 and Run 

4-15 where it has manifested differently. In Run 4-15, additional reaction that is not 

part of RN1 is created by the automated system in order for it supplement the predicted 

concentration data so that it can match the noisy concentration data better. This can 

be considered as a case of ‘overfitting’ of the CRN because it has gone beyond fitting 

predicted data to the underlying concentration data in noisy data and has tried to fit the 

predicted data to the noise. This occurs because when the correct CRN is used, it only 

achieve the fitness function of 4.1098 as compared to the best performing individual in 

Run 4-15 which is 1.7917. The automated system will then choose the better 

performing CRN as its best individual even when it is not the correct one. Figure 4.7-3 

shows the plot between the predicted and simulated concentration data against time 

of the best performing individual in Run 4-15. 



57 Application of the Automated System for Chemical Reaction 
Network Elucidation 

 

 

Figure 4.7-3 Predicted and simulated concentration data against time for Run 4-15. 

The figure shows that how closely fitted the predicted data is to the simulated noisy 

data. As far the automated system is concerned, it has achieved its goal in fitting the 

best possible CRN it can to the simulated data it is provided with but as a user of the 

system, he will need to further analyse the results to see if there are any reaction that 

can be discounted. Running the batch further could provide more insight into the 

performance of the CRN or comparing the results against other reaction batch running 

with different conditions would bring light to which reaction is not the correct one.  

Run 4-10 can be considered as a failure of the automated system. The best performing 

CRN was unable to identify all the reactions within RN1 and this is a more severe case 

of ‘overfitting’. The fitness function of the correct CRN only gives 17.9585 while the 

automated system manage to achieve 6.9803 with the best performing individual. It 

introduced two other reactions that are not found in RN1 in the CRN in order to match 

the noise in the simulated data better while omitting one actual reaction from RN1. 

Figure 4.7-4 shows how effective it is at matching the noisy simulated data even if the 

CRN it predicts is wrong. 
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Figure 4.7-4 Predicted and simulated concentration data against time for Run 4-10 

This case is a case of GIGO (garbage in, garbage out) where if you provide a poor 

input data, the computer program in this case, the automated system can only output 

a poor result.  

In general, concentration data with higher amount noise level (Run 4-10, Run 4-12, 

Run 4-14 and Run 4-14) does gives a poorer fitness function when compared against 

those with the lower amount of noise level, except for Run 4-12. It may be that the 

rational polynomial estimated for it is much better than that was done for Run 4-11. It 

can be concluded that the automated system’s is robust enough to run even in the 

presence of errors or mass imbalance in the concentration data but the results can be 

better, especially in the case of Run 4-10 where the complete CRN was not deduced. 

4.8 Unmeasured chemical species 

RN1 and RN2 that are tested in the previous sections did not address the case where 

there are absence of concentration data in some of the participating chemical species. 
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This version of the automated system for the elucidation of CRN cannot handle such 

case. The limitation is caused by its inability to solve for the reaction rate constants 

through the equation 

𝑲 = (𝑨𝑇𝑨)−𝟏𝑨𝑻[𝑿]̇ 𝑽# (Equation 4-13) 

 

if it does not have all the information in rate of concentration change, [𝑿]̇  and 𝑨 which 

is dependent on the availability concentration, [𝑿]. 

4.9 Summary 

This chapter presents the application of the automated system for the elucidation of 

Chemical Reaction Network (CRN) developed in the previous chapter through the use 

of two fictitious CRN, Reaction Network 1 (RN1) and Reaction Network 2 (RN2). 4 

different reaction batches are simulated with different initial conditions for each of the 

two CRNs. The automated system is tested further for robustness with concentration 

data that have Gaussian noise added. The automated system had shown to be efficient 

in elucidating the CRN in RN1 but failed when used to elucidate RN2. The further tests 

with noise shows that the automated system is able to handle noisy data to a certain 

extent, identifying all the reactions in the CRN in 5 out of the 8 runs for RN1 without 

errors and achieve good fitness for all the runs. 

Discussions on the weaknesses of this version of the automated system are made and 

analysed on poor performing runs. It shows inability to handle reversible reactions due 

to the fact that the system use multiple linear regression which requires the equations 

it is solving to be linearly independent and reversible reactions produce equations that 

linearly dependent to each other.  

The automated system is also susceptible to noisy data and will cause ‘overfitting’ to 

occur where the CRN produced by the automated system will try to fit its predicted 

concentration data to the noise in the simulated concentration data by introducing 

reactions that are not present in RN1. A sufficiently poor data may cause the 

automated system to fail to identify some of the reactions and supplement it with other 

reactions that are not part of RN1 in order to match itself to the simulated concentration 

data.  
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Finally, this version of the automated system is unable to operate in the presence of 

any unmeasured concentration data of participating chemical species because it will 

unable to solve for the reaction rate constants. 

In the next chapter, these weaknesses are addressed through a major upgrade to the 

automated system. 
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Chapter 5. Implementation of Two Tiers Optimisation to the 
Automated System for Chemical Reaction Elucidation 

5.1 Overview 

In Chapter 3, an automated system using Genetic Algorithm (GA) for the elucidation of 

chemical reaction network (CRN) are introduced. Using multiple linear regression in 

line with the artificial intelligence in the form of GA, a suitable CRN can be predicted 

from the given chemical species’ concentration data. In Chapter 4, this automated 

system has been tested against two fictitious CRNs which unearthed a number of 

weaknesses with the system. The weaknesses are 

1. Unable to process reversible reactions. 

2. Susceptible to ‘overfitting’ when poor noisy quality data are used. 

3. Unable to function at all in the presence of any unmeasured concentration 

data of participating chemical species. 

This chapter will address the inability of the automated system in dealing with 

unmeasured chemical species as this is a major concern especially when faced with 

reactions which has difficult to measure chemical species or short lived reaction 

intermediates. The source of the weakness is in the calculation of the reaction rate 

constants, 𝑲 and therefore the modifications of the automated system will focus mainly 

on it. 

5.2 Introduction 

Unmeasured chemical species in the CRN will have a high chance of causing reaction 

rate constants calculation to fail when the method suggested in Chapter 3 is used. A 

simple example of this problem can be seen by observing the following reaction: 

 𝑅1:          𝑥1 + 𝑥2 → 𝑥3 (Equation 5-1) 

 

Based on the law of mass action, this reaction will have the reaction rate of  

𝑟𝑅1
= 𝑘𝑅1

[𝑥1][𝑥2] (Equation 5-2) 

 

And the rate of change of [𝑥1] can be describe as 
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𝑑[𝑥1]

𝑑𝑡
= −𝑟𝑅1

 (Equation 5-3) 

  

The kinetic rate constant, 𝑘𝑅1
 can be calculated if the data for [𝑥1] and [𝑥2] are available 

using the method as discussed in Chapter 3 which reduces it to a multiple linear 

regression calculation. 

𝑲 = (𝑨𝑇𝑨)−𝟏𝑨𝑻[𝑿]̇ 𝑽−𝒑𝒊𝒏𝒗 

 
(Equation 5-4) 

 

However, when one of the chemical species data is unavailable, especially if it is a 

reactant, the formula cannot be used. For example in the above reaction, 𝑅1, if [𝑥1] is 

unavailable, 𝑟𝑅1
 cannot be obtained which is required for calculation of 

𝑑[𝑥1]

𝑑𝑡
. The rate 

of concentration change, 
𝑑[𝑥1]

𝑑𝑡
 also cannot be approximated from [𝑥1] if there is no 

concentration data for it. Without the ability to determine 
𝑑[𝑥1]

𝑑𝑡
 and 𝑟𝑅1

 makes the correct 

determination of the reaction rate constant 𝑘𝑅1
 through the equation highly improbable.  

The automated system will be unable to function without a good reaction rate constant 

that it can use to reconstruct the predicted concentration data that it uses to compare 

against the input concentration data. Therefore, a new method of reaction rate 

constants determination is introduced. 

5.3 Dealing with unmeasured chemical species 

In order to calculate the reaction rate constants in the presence of unmeasured 

chemical species, a second tier recursive method based on nonlinear least squares 

optimiser is introduced into the automated system for elucidation of CRN. This new 

modified automated system will be referred to as automated system (version 2) for 

easier reference. 

The Figure below shows the flowchart of both tiers in automated system (version 2) 

and their relationship: 
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Figure 5.3-1 Flowchart for automated system with two tiers optimisation 

Tier 1 of automated system (version 2) follows the basic Genetic Algorithm (GA) flow 

which also used in the automated system described Chapter 3. In this version of the 

automated system, the reaction rate constant estimation step is replaced with the Tier 

2 optimisation step which is used to estimate the reaction rate constant. The Tier 1 of 

automated system (version 2) is responsible to produce candidate CRNs through 

evolution using the GA in the system. The candidate CRNs information will be passed 

to Tier 2 to estimate each of the candidate CRN’s reaction rate constants. The 

estimation of automated system (version 2) is based on nonlinear least squares 

optimisation algorithm which is employed using the command ‘lsqnonlin’ in MATLAB. 
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The first step in Tier 2 is to have an initial guess for the reaction rate constants, 𝑲. This 

value is user defined and will help with the speed of convergence if the user have 

additional information on the range of expected reaction rate constants. Else, it can be 

set at 0.1 for all the reaction rate constants to kick-start the loop.  

Using the reaction rate constants, 𝑲 determine in the previous step, initial 

concentration data of the chemical species at the beginning of the batch, candidate 

CRN stoichiometric matrix and the time when concentration data points are taken, the 

predicted concentration profiles of chemical species, [�̃�]  can be reconstructed. This 

includes the concentration profiles of the unmeasured chemical species as all the 

required information is present even if the reaction rate constants, 𝑲 is not accurate in 

the beginning of the loop. 

The predicted concentration profiles, [�̃�] is then compared against the input 

concentration data, [𝑿] which can be from a simulated data of a CRN or from 

experimental data. The comparison used is the same as the one used in the Tier 1 

fitness function calculation which is variance weighted sums of squared error, VMSSE.  

𝑉𝑀𝑆𝑆𝐸 = ∑
∑ ([𝑥𝑖]𝑡 − [�̂�𝑖]𝑡)

2𝑁𝑡
𝑡=0

∑ ([𝑥𝑖]𝑡 − 𝜇𝑥𝑖
)
2𝑁𝑡

𝑡=0

, ∀ 𝑢𝑥i
= 1 

𝑁𝑐

𝑖=1

 

 

(Equation 5-5) 

[𝑥𝑖]𝑡 is the concentration data of chemical species 𝑥𝑖 at time 𝑡 

[�̂�𝑖]𝑡 is the predicted concentration data of chemical species 𝑥𝑖 at time 𝑡 

𝑁𝑐 = total number of participating chemical species 

𝑁𝑡 = the time when the last data point is being evaluated 

𝑢𝑥𝑖
 is the measured/unmeasured identifier for [𝑥𝑖]. Measured chemical species will be 

given the value of 1 and unmeasured will be given the value 0. 

𝜇𝑥𝑖
 is the standard deviation of the all the concentration data of [𝑥𝑖] that is being 

evaluated 
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With the use of the measured/unmeasured identifier, 𝑢𝑥𝑖
, the unmeasured chemical 

species’ concentration will be excluded from the calculation of VMSSE. In other words, 

the fitness function of the current guessed/estimated reaction rate constants, 𝑲 will not 

take into account the unmeasured chemical species. It is impossible to grade how good 

is the predicted concentration data if there is no input concentration data for it to 

compare to.  

Based on the VMSSE, the trust-region-reflective algorithm in ‘lsqnonlin’ function will 

determine whether it has met the best possible solution for the reaction rate constants, 

𝑲 by comparing it against estimated 𝑲 values in previous loops. On the first loop, this 

step is skipped as there are no previous estimations to compare. If the algorithm 

determines further optimisation is possible, a new 𝑲 values will be estimated using the 

trust-region-reflective algorithm. The process will be repeated until it has achieved the 

best possible VMSSE and the final set of 𝑲 values can be passed back to Tier 1 to 

continue on the evolution of the CRNs.  

With this method, the reaction rate constants, 𝑲 can be determined even if there is 

unmeasured concentration data. This method also do away with the need to obtain the 

rate of concentration change, [�̇�] which would reduce the amount of errors that is 

introduce into the system from using the approximated values through the 

differentiation of rational polynomials as discussed in the previous chapter. 

5.4 Testing against measured data with no noise 

Automated system (version 2) is first tested against the datasets that are generated in 

the previous chapters with all the chemical species marked as measured chemical 

species. This will show the capability of automated system (version 2) when all the 

concentration data are known and it will be compared against the automated system 

developed in Chapter 3. 

Table 5.4-1 details the datasets used for this test. 
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Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

5-1 RN1 1 0% of max range 

5-2 RN1 2 0% of max range 

5-3 RN1 3 0% of max range 

5-4 RN1 4 0% of max range 

5-5 RN2 1 0% of max range 

5-6 RN2 2 0% of max range 

5-7 RN2 3 0% of max range 

5-8 RN2 4 0% of max range 

Table 5.4-1 Run details for Run 5-1 to 5-8 

 The first 8 runs to test out automated system (version 2) will be tested on concentration 

data without any noise introduced, the same as the one done in Chapter 4 (Run 4-1 to 

Run 4-8). The parameters used in automated system (version 2) is the same as the 

one used in the automated system for the runs in Chapter 4. The results of the runs 

are published in Table 5.4-2 and Table 5.4-3. 

Run Best Performing 

Individual 

Reaction Rate Constant Fitness 

Function 

5-1 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2000 𝑠−1  

𝑘3 = 0.1300 𝑠−1  

𝑘4 = 0.3000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0 

5-2 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2000 𝑠−1  

𝑘3 = 0.1300 𝑠−1  

𝑘4 = 0.3000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0 

5-3 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2000 𝑠−1  

𝑘3 = 0.1300 𝑠−1  

𝑘4 = 0.3000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0 

5-4 [

−2 1 0
−1 0 1
0
0

0
−1

−1
0

    

0
0
1

−1

    

0
0
0
1

] 

𝑘1 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2000 𝑠−1  

𝑘3 = 0.1300 𝑠−1  

𝑘4 = 0.3000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0 

Table 5.4-2 Results for Run 5-1 to Run 5-4 
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Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

5-5 [

−1 −1 1
0 −1 −1

−1
1

0
0

0
0

     

1 0 0
0 1 0

−1
1

0
0

1
−1

] 

𝑘1 = 0.2000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1500 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0500 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0 

5-6 [

−1 −1 1
0 −1 −1

−1
1

0
0

0
0

     

1 0 0
0 1 0

−1
1

0
0

1
−1

] 

𝑘1 = 0.1979 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1453 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0992 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0521 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.2077 

5-7 [

−1 −1 1
0 −1 −1

−1
1

0
0

0
0

     

1 0 0
0 1 0

−1
1

0
0

1
−1

] 

𝑘1 = 0.1979 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1453 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0992 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0521 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.2077 

5-8 [

−1 −1 1
0 −1 −1

−1
1

0
0

0
0

     

1 0 0
0 1 0

−1
1

0
0

1
−1

] 

𝑘1 = 0.2000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1500 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0500 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0 

Table 5.4-3 Results for Run 5-5 to Run 5-8 

 

From the two tables, it is clear that automated system (version 2) was able to deduce 

the CRN perfectly without any additional incorrectly identified reaction or missing any 

reaction from both RN1 and RN2. This is especially true for RN1 where it also 

calculates the reaction rate constants perfectly and its predicted concentration data 

matches the simulated data exactly.  

For RN2, Run 5-5 and Run 5-8 also achieve a perfect match with fitness function of 0 

and exact estimation of the reaction rate constants of RN2. Run 5-6 and Run 5-7 

manages to elucidate the CRN that is the same as RN2 but suffers a slight error in the 

calculation of the reaction rate constants and achieve a slightly weaker fitness of 

0.2077 as compared to Run 5-5 and Run 5-8. The slight error in the reaction rate 

calculation is caused by the non-linear least squares optimisation routine used 

converging before the actual result. The choice of the initial guess for the reaction rate 

constants plays a part in the convergence of the optimisation routine and this could be 

rectified by choosing a different initial guess. Even if the exact values are not obtained, 

it still manages to elucidate the CRN structure and the reaction rate constants are very 

close to the actual values in RN2. 

Comparison of fitness function of Run 4-1 to Run 4-8 against Run 5-1 to Run 5-8 is 

shown in Table 5.4-4: 
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Run 
Fitness Function 

(Run 4-1 to Run 4-8) 
Run 

Fitness Function 

(Run 5-1 to Run 5-8) 

4-1 0.0326 5-1 0 

4-2 0.0391 5-2 0 

4-3 0.0390 5-3 0 

4-4 0.0320 5-4 0 

4-5 6.1877 5-5 0 

4-6 18.5476 5-6 0.2077 

4-7 13.8507 5-7 0.2077 

4-8 25.6179 5-8 0 

Table 5.4-4 Comparison of fitness functions between Run 4-1 to Run 4-8 and Run 5-1 to Run 5-8 

The comparison easily shows that Run 5-1 to Run 5-8 outperforms their counterpart in 

Run 4-1 to Run 4-8. For the datasets created from RN1, automated system (version 2) 

manage to achieve 0 fitness function or perfect fit to the original CRN as shown from 

the results of Run 5-1 to Run 5-4. Run 4-1 to Run 4-4 results are just slightly inferior 

and this as discussed in Chapter 4, affected by inaccuracy when the concentration 

data are modelled to fit rational polynomials. 

For RN2, the significance of automated system (version 2)’s ability can be observed. 

For Run 4-5 to Run 4-8, the fitness function are relatively much higher as compared to 

those in Run 5-5 and Run 5-8 and this stems from the fact that the original automated 

system was unable to elucidate the correct CRN. Automated system (version 2) is able 

to overcome this shortfall and manage to discover the CRN that matches with RN2. 

This is mainly because this version of the automated system does not depend on the 

use of multiple linear regression in order to solve for the reaction rate constants and 

thus is not faced with the complication of having more variables to solve for than 

linearly independent equations.  

It is clear based on the performance comparison between Run 4-1 to Run 4-8 against 

Run 5-1 to Run 5-8, automated system (version 2) is a better elucidation system for 

CRN as compared to the original automated system. Without the need to fit the 

concentration data to rational polynomials reduces the amount of errors that are 

introduced into the concentration data. The new automated system is able to handle 

reversible reactions as shown by the run results from Run 5-5 to Run 5-8 as compared 

the original automated system which was unable to handle such reactions. 
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5.5 Noise 

Automated system (version 2) robustness is also tested against datasets that are 

perturbed with noise and subsequently smoothened. These datasets are the same as 

those used in Run 4-9 to Run 4-16 for RN1. Comparisons between the performance 

of automated system (version 2) and the original automated system are then made. 

The details of the run is displayed in Table 5.5-1: 

Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

5-9 RN1 1 4% of max range 

5-10 RN1 1 8% of max range 

5-11 RN1 2 4% of max range 

5-12 RN1 2 8% of max range 

5-13 RN1 3 4% of max range 

5-14 RN1 3 8% of max range 

5-15 RN1 4 4% of max range 

5-16 RN1 4 8% of max range 

Table 5.5-1 Run results for Run 5-9 to Run 5-16 

The results of the runs are displayed in Table 5.5-2: 

Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

5-9 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
−1

−1
0
2

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1127 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1999 𝑠−1  

𝑘3 = 0.1340 𝑠−1  

𝑘4 = 0.3064 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0003  𝑠−1 

0.2539 

5-10 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
1

0
−1
−1

−1
0
1

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1487 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2083 𝑠−1  

𝑘3 = 0.1370 𝑠−1  

𝑘4 = 0.3081 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0007  𝑠−1 

2.6685 

5-11 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
2

0
−1
1

−1
0
0

    

0
0
1

−1
2

    

0
0
0
1

−2]
 
 
 
 

 

𝑘1 = 0.0998 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2040 𝑠−1  

𝑘3 = 0.1260 𝑠−1  

𝑘4 = 0.3132 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0074 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.8643 
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Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

5-12 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
1

0
−1
1

−1
0

−1

    

0
0
1

−1
1

    

0
0
0
1

−1]
 
 
 
 

 

𝑘1 = 0.1097 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2101 𝑠−1  

𝑘3 = 0.1283 𝑠−1  

𝑘4 = 0.3399 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0989 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.6973 

5-13 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1056 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2043 𝑠−1  

𝑘3 = 0.1291 𝑠−1  

𝑘4 = 0.2953 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0 

0.5840 

5-14 

[
 
 
 
 
−1 0 1
0 0 −1
0

−1
2

−1
1

−1

0
−1
1

    

0
1

−1
0
2

    

0
0
1
0

−1]
 
 
 
 

 

𝑘1 = 0.2124 𝑠−1  

𝑘2 = 0.1224 𝑠−1   

𝑘3 = 0.2866 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘4 = 0.2279  𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘5 = 0.0046 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

6.2602 

5-15 

[
 
 
 
 
−2 1 0
−1 0 1
0
0

−1

0
−1
0

−1
0
2

    

0
0
1

−1
−1

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1133 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2101 𝑠−1  

𝑘3 = 0.1293 𝑠−1 

𝑘4 = 0.2989 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0605 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

1.3177 

5-16 

[
 
 
 
 
−2 1 0
−1 0 1
0
0

−1

0
−1
1

−1
0

−1

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.0460 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0. 2168𝑠−1  

𝑘3 = 0.1317 𝑠−1  

𝑘4 = 0.2894 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.1164 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

4.4113 

Table 5.5-2 Results for Run 5-9 to Run 5-16 

Of the 8 runs that are being tested, 7 of the runs managed to elucidate all the reactions 

in RN1 with Run 5-14 missed one of the four reactions in RN1. The plots below shows 

the result of Run 5-14 when plot against the noisy simulated data that is used for the 

run and against the same data but without the noise. 
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Figure 5.5-1 Concentration data of predicted concentration compared against noiseless and noisy concentration 
against time for 5-14 

The plots are compared against the results that are obtained through the use of the old 

automated system when run with the same concentration data (Run 4-14). For easier 

reference the plots are presented in Figure 5.5-2: 

  

Figure 5.5-2 Predicted concentration data against noisy and noiseless concentration data against time for Run 4-
14 

Graphically, comparing plot of Run 4-14 and Run 5-14 on noisy data, it can be seen 

that both perform just as poorly in order to fit their predicted concentration data to the 

input concentration data. However, when the predicted concentration data are plotted 

against the noiseless concentration data, Run 4-14 was able to fit it better while Run 

5-14 fit is much poorer especially at nearer the end of the batch run. From the results, 

it seems that the original automated system is able to reject some of the noise within 

the concentration data and try to simulate the actual CRN while automated system 

(version 2) is much more aggressive in obtaining a better fit to the input data causing 

‘overfitting’. This is further shown by the fact that Run 4-14 managed to elucidate the 
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entire CRN for RN1 but Run 5-14 missed a single reaction and substituting it with two 

reactions that are not present in RN1. The comparison does highlight the fact that the 

quality of the noisy data is poor and which is the main reason which causes the poor 

fit of the predicted concentration data to input simulation data as discussed in Chapter 

4. 

The 7 runs that managed to detect all the reactions also included reaction that is not 

part of RN1 in their CRNs apart from Run 5-13 which managed to obtain the exact 

RN1’s CRN. These 6 runs that contain unknown reactions in their CRNs exhibit the 

behaviour of ‘overfitting’ as automated system (version 2) try to even include the 

random errors in the system into its model. To discuss this further a table of comparison 

of the fitness function between Run 4-9 to Run 4-16 and between Run 5-9 to Run 5-

16 is presented.  

Run 
Fitness Function 

(Run 4-9 to Run 4-16) 
Run 

Fitness Function 

(Run 5-9 to Run 5-16) 

4-9 0.6160 5-9 0.2539 

4-10 6.9803 5-10 2.6685 

4-11 3.1846 5-11 0.8643 

4-12 1.3956 5-12 0.6973 

4-13 2.1179 5-13 0.5840 

4-14 12.8375 5-14 6.2602 

4-15 1.7917 5-15 1.3177 

4-16 5.4517 5-16 4.4113 

Table 5.5-3 Comparison fitness results between Run 4-9 to Run 4-16 and Run 5-9 to Run 5-16 

Table 5.5-3 shows that automated system (version 2) consistently record a better 

fitness function as compared against the original automated system when comparing 

the runs with their counterpart. This shows that the reaction rate estimation method 

done in automated system (version 2) is better as it helps to reduce the errors between 

the predicted data and simulated data more than that of the original automated system. 

Unfortunately, it also meant that if there is any noise in the system, the automated 

system (version 2) is more sensitive to it and may cause ‘overfitting’ to occur.  
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Noise is also added to the concentration of the 4 batches produced from RN1 in the 

similar fashion as RN1. Gaussian noise with mean of 0 and standard deviation of 4% 

and 8% of the maximum range of the chemical species concentration data are 

introduced to the concentration data. This will be used to evaluate the robustness of 

automated system (version 2) on RN2 since it has been shown that the system can 

handle reversible reactions as opposed to the original automated system. Details of 

the run shown in Table 5.5-4: 

Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

5-17 RN2 1 4% of max range 

5-18 RN2 1 8% of max range 

5-19 RN2 2 4% of max range 

5-20 RN2 2 8% of max range 

5-21 RN2 3 4% of max range 

5-22 RN2 3 8% of max range 

5-23 RN2 4 4% of max range 

5-24 RN2 4 8% of max range 

Table 5.5-4 Run details for Run 5-17 to Run 5-24 

The results of the runs are published in Table 5.5-5: 

Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

5-17 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 0 0 2 1 −2
1 0 0 0 −1 0
0 0 0 −1 −1 1 ]

 
 
 
 
 

 

 

𝑘1 = 0.1990 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1005 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1349 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0415 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0074 𝑠−1  

𝑘6 = 0.0146 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.7452 

5-18 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 0 0 1 0 −1

−1 1 0 2 0 −1
0 0 0 0 0 0 ]

 
 
 
 
 

 

 

𝑘1 = 0.2116 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1003 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1439 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0271 𝑠−1 

𝑘5 = 0.0057 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0  

2.4376 
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Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

5-19 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 0 1 0 1 −1
0 −1 1 2 0 −1
0 0 −1 2 0 −1]

 
 
 
 
 

 

 

𝑘1 = 0.1820 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1070 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1566 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0120 𝑠−1 

𝑘5 = 0.0078 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0394 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

3.1385 

5-20 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
0 2 0 −1 0 0

−1 0 0 0 1 0
2 0 0 1 −1 −1]

 
 
 
 
 

 

 

𝑘1 = 0.1925 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0901 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1516 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0039 𝑠−1 

𝑘5 = 0.0412 𝑠−1  

𝑘6 = 0.0564 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

13.7669 

5-21 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 0 0 1 0 −1
2 −1 0 −1 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

 

𝑘1 = 0.1959 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0986 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1520 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0547 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0034 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

2.1002 

5-22 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 0 0 1 0 −1
1 1 −1 −1 0 0
0 1 1 0 −1 0 ]

 
 
 
 
 

 

 

𝑘1 = 0.2099 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0988 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1229 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0293 𝑠−1 

𝑘5 = 0.0368 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0180 𝑠−1 

13.9896 

5-23 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 0 0 1 0 −1
0 0 0 −1 −1 1
0 2 0 −1 0 0 ]

 
 
 
 
 

 

 

𝑘1 = 0.1938 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1005 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1382 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0436 𝑠−1 

𝑘5 = 0.0322 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0226 𝑠−1 

1.9532 

5-24 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
1 0 0 1 0 −1
2 1 2 0 −1 −1
0 0 −1 2 0 −1]

 
 
 
 
 

 

𝑘1 = 0.1871 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0977 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1545 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0516 𝑠−1 

𝑘5 = 0.0019 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0006 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

12.7394 

Table 5.5-5 Results of Run 5-17 to Run 5-24 
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Of the 8 runs between Run 5-17 to Run 5-24, 6 of them managed to obtain all the 

reactions that are present in RN2. Two of them, namely Run 5-17 and Run 5-20 only 

managed to discover 3 of the 4 reactions in in RN2. Both of them are missing the 4th 

reaction of RN2 and further analysis into the CRN structure that the runs uncovered 

shows that the missing reaction manifested differently in the two runs. The 4th reaction 

of RN2 and the one missing from both Run 5-17 and Run 5-20 is: 

𝑥6 → 𝑥1 + 𝑥4 (Equation 5-6) 

In Run 5-17, there are three reactions that was included in the final CRN that are not 

part of RN2 and two of them are of particular interest, the 4th and 5th reaction of the 

CRN 

2𝑥6 → 𝑥1 + 2𝑥4 + 𝑥5 

𝑥5 → 𝑥1 
(Equation 5-7) 

These two reactions suggest that it is possible for the chemical species, 𝑥5 to serve as 

a reaction intermediate and will react further to produce 𝑥1. Combining both the 

reactions will give: 

2𝑥6 → 2𝑥1 + 2𝑥4 (Equation 5-8) 

which is the RN2’s 4th reaction but at a higher reaction order.  

 

Similarly in Run 5-20, combining two of the additional reactions it suggested that are 

not part of RN2, 

𝑥5 + 𝑥6 → 2𝑥1 + 𝑥4 

𝑥1 → 𝑥5 
(Equation 5-9) 

produces 

𝑥6 → 𝑥1 + 𝑥4 (Equation 5-10) 

which is the 4th reaction of RN2. 

The reaction pathway also consisted of using 𝑥5 as reaction intermediate where it is 

first expended then the reproduce again in the following reaction through the 

dissociation of 𝑥1. 

Although both of the runs did not elucidate the 4th reaction of RN2, the other reactions 

their CRNs consist that are not part RN2 suggest the existence of the RN2’s 4th 
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reaction occurring in more than one reaction step. Thus, the two runs managed to 

discover the reaction indirectly and although it may not be correct or at the right order, 

it gives the user automated system (version 2) information that the reverse reaction of 

RN2’s 3rd reaction is possible within the CRN.  

Run 5-22 shows the worst performance in terms of fitness function among the runs 

from Run 5-17 to Run 5-24. The following Figure shows how its predicted concentration 

data fit the simulated concentration data for Run 5-22.   

 

Figure 5.5-3 Plot of concentration of predicted and simulated concentration data against time for Run 5-22 

It shows graphically in Figure 5.5-3 that the predicted concentration is fitted quite well 

to the simulated noisy data for even the worst performing run. This shows the capability 

of automated system (version 2) ability to elucidate the CRN correctly with an additional 

reaction not found in RN2 while providing a good fit to the concentration data. 

Similar to Run 5-9 to 5-16, Run 5-17 to Run 5-24 are also subjected to the problem of 

‘overfitting’  due to the noise in the data which causes the rise of the additional artificial 

reactions that are not part of RN2. Some of these reactions as discussed for Run 5-17 



77 Implementation of Two Tiers Optimisation to the Automated 
System for Chemical Reaction Elucidation 

 

and Run 5-20 are the results of them modelling a reaction in RN2 as more than a single 

step reaction.  

The runs from Run 5-9 to Run 5-24 shows that automated system (version 2) is able 

to elucidate the CRNs even when noise is introduced into the input concentration data. 

It is shown here again that even with reversible reaction in Run 5-17 to Run 5-24, it 

can still discover the required CRNs in 6 of the 8 runs. The 2 runs that did not elucidate 

all the reactions within RN2 are able to portray the missing reaction in the form of 

combination of two reactions. Automated system (version 2) is also shown to be more 

aggressive than the original automated system when fitting the data onto the provided 

concentration data, to the point the noise within the concentration data are being 

modelled into the final CRN structure. This caused ‘overfitting’ in the final CRN 

structures which led to the structures containing reactions that do not belong to CRN 

that describes the input concentration data. 

5.6 Unmeasured chemical species 

The previous sections had shown that automated system (version 2) had surpassed 

the original automated system in elucidating CRN from concentration data of 

participating chemical species with and without noise perturbation. It has consistently 

shown a better fitness function compared to the previous version of the automated 

system and is shown to be able to handle reversible reaction which is one of the major 

weakness of the original automated system.  

The next part is to prove the capability of automated system (version 2)’s main design 

goal, which is for it to work even in the absence of some of the concentration data of 

the participating chemical species. The datasets used will be the same as the one used 

in the previous sections but with concentration data of some of the chemical species 

removed. Two chemical species from RN1 and two from RN2 will be hidden from 

automated system (version 2) when the run is performed. These chemical species act 

as reaction intermediates in their CRNs and chosen because it will provide a better 

challenge to the system’s capability. If it is unable to elucidate the presence of the 

reaction intermediates correctly, automated system (version 2) will highly likely fail in 

predicting the actual CRN because it will not be able to model the concentration profiles 

of the CRN’s final product. The system will first be tested against datasets that have 
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no noise and only hidden concentration data of certain chemical species. Table 5.6-1 

shows the simulation parameters used. 

Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

Unmeasured 

Chemical Species 

5-25 RN1 1 0% of max range 𝑥3 and 𝑥4 

5-26 RN1 2 0% of max range 𝑥3 and 𝑥4 

5-27 RN1 3 0% of max range 𝑥3 and 𝑥4 

5-28 RN1 4 0% of max range 𝑥3 and 𝑥4 

5-29 RN2 1 0% of max range 𝑥3 and 𝑥4 

5-30 RN2 2 0% of max range 𝑥3 and 𝑥4 

5-31 RN2 3 0% of max range 𝑥3 and 𝑥4 

5-32 RN2 4 0% of max range 𝑥3 and 𝑥4 

Table 5.6-1 Run details for Run 5-25 to Run 5-32 

The run parameters for automated system (version 2) is the same as those of Run 5-

1 to Run 5-24. The fitness function used on runs with unmeasured chemical species 

will exclude the calculation of the fitness of the unmeasured chemical species. 

The results of the run are compiled in Table 5.6-2 and Table 5.6-3: 

Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

5-25 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
1

−1
0
1

−1
1
0

    

0
0
0

−1
0

    

0
0
1
0

−1]
 
 
 
 

 

𝑘1 = 0.1006 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2004 𝑠−1  

𝑘3 = 0.2034 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘4 = 0.1762 𝑠−1 

𝑘5 = 0.0011  𝑠−1 

0.0034 

5-26 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1001 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1994 𝑠−1  

𝑘3 = 0.1481 𝑠−1  

𝑘4 = 0.2701 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 
𝑘5 = 0  

0.0031 

5-27 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
0

−1
0
0

    

0
0
1

−1
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1002 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1998 𝑠−1  

𝑘3 = 0.1414 𝑠−1  

𝑘4 = 0.2638 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 
𝑘5 = 0 

0.0008 



79 Implementation of Two Tiers Optimisation to the Automated 
System for Chemical Reaction Elucidation 

 

Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

5-28 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
0

0
−1
1

−1
0
2

    

0
0
1

−1
−1

    

0
0
0
1

−1]
 
 
 
 

 

𝑘1 = 0.0993 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2004 𝑠−1  

𝑘3 = 0.1904 𝑠−1  

𝑘4 = 0.1875 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0057 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.0016 

Table 5.6-2 Results for Run 5-25 to 5-28 

Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

5-29 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
0 0 0 −1 −1 1
0 −1 2 0 0 0
0 0 0 −1 −1 1

−1 1 1 0 0 0]
 
 
 
 
 

 

 

𝑘1 = 0.1737 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 2033 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0821 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.1508 𝑠−1 

𝑘5 = 0.2319 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0432 𝑚𝑜𝑙−1𝑠−1 

0.2511 

5-30 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
0 0 0 1 1 −1
0 2 0 1 2 −2
1 −1 2 1 0 −1]

 
 
 
 
 

 

 

𝑘1 = 0.1908 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0947 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1460 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0200 𝑠−1 

𝑘5 = 0.0304 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0 .0014 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1   

1.0986 

5-31 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
1 0 2 −2 1 0
0 1 2 0 1 −1
0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

 

𝑘1 = 0.2159 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1739 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1606 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0002 𝑠−1 
𝑘5 = 0  
𝑘6 = 0  

0.8913 

5-32 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
0 −1 2 1 1 −1
1 −1 0 −1 1 0
1 0 1 −1 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

 

𝑘1 = 0.1936 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1925 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0872 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.1044 𝑠−1 

𝑘5 = 0.0175 𝑠−1  
𝑘6 = 0 

0.7571 

Table 5.6-3 Results for Run 5-29 to Run 5-32 

From the first Table, Run 5-25 had been shown not be able to elucidate RN1 and its 

final CRN structure is missing two reactions from RN1. Run 5-26 to Run 5-28 managed 

to elucidate RN1 structure with Run 5-28 including a reaction that is not part of RN1 in 

its CRN structure. 

The lack of information on concentration data 𝑥3 and 𝑥4 caused automated system 

(version 2) to ignore any errors between the predicted and simulated concentration 

data on 𝑥3 and 𝑥4. Without the need to match the concentration data on 𝑥3 and 𝑥4 



80 Implementation of Two Tiers Optimisation to the Automated 
System for Chemical Reaction Elucidation 

 

caused the Tier 2 algorithm to focus mainly on minimising the errors between the 

predicted and simulated concentration data of measured chemical species. Without 

information on 𝑥3 and 𝑥4, also caused the system have no reference on the accuracy 

of its estimation for reaction rate constants of any reactions that consume or produces 

𝑥3 and 𝑥4. It can only refers to concentration data of known measured chemical species 

as its guide which could be in the prior or next reaction step. Doing this increases the 

amount of inaccuracy in its estimation of the reaction rate constants which ultimately 

affects the CRN deduced in the run even when the datasets have no random error. 

Figure 5.6-1 shows the plot of the final CRN model predicted concentration data 

against measured and unmeasured chemical species for Run 5-25 as an example: 

 

Figure 5.6-1 Comparison between predicted concentration data against measured and unmeasured concentration 
data 

Figure 5.6-1 shows clearly how automated system (version 2) fits the measured 

concentration data nearly perfectly but ignored entirely on how bad the fit is for the 

unmeasured concentration data. Automated system (version 2) basically ‘overfits’ the 

model to the measured concentration data given that it is not provided information on 

the unmeasured one. This weakness affects all the other runs, some more than others.  

Run 5-29 to Run 5-32 did not manage to elucidate the true structure of RN2 with the 

worst run missing 2 RN2’s reactions. They are all affected by the weakness where 

automated system (version 2) overly prioritised the fitness of measured chemical 

species. 

The Table below shows the comparison between the runs’ fitness against Run 5-1 to 

Run 5-8 where all the chemical species are measured. For the comparison to be 

meaningful, the fitness function is divided against the number of measured chemical 
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species because for the fitness of unmeasured chemical species is not taken into 

account for the runs with unmeasured chemical species. 

Run 

Fitness Function (Run 5-1 

to Run 5-8) per measured 

chemical species 

Run 

Fitness Function (Run 5-25 

to Run 5-32) per measured 

chemical species 

5-1 0 5-25 0.0011 

5-2 0 5-26 0.0010 

5-3 0 5-27 0.0003 

5-4 0 5-28 0.0005 

5-5 0 5-29 0.0837 

5-6 0.0415 5-30 0.3662 

5-7 0. 0415 5-31 0.2971 

5-8 0 5-32 0.2524 

Table 5.6-4 Comparison between Run 5-1 to Run 5-8 and Run 5-25 to Run 5-32 

It can be concluded that the presence of unmeasured chemical species in the CRN 

affects the discovery of the CRN which caused automated system (version 2) unable 

to perform better estimation on the rate reaction constants. This leads to a poorer 

fitness function from the runs when compared to runs with all the chemical species 

measured. However, these runs prove that automated system (version 2) can be used 

to elucidate the CRN, albeit with a lower accuracy as compared to the original 

automated system. 

5.7 Unmeasured chemical species with noise 

Similar to the previous section, the performance of automated system (version 2) is 

tested against concentration data that is perturbed with noise. The datasets used is 

the same as for Run 5-9 to 5-16 but with the concentration data for 𝑥3 and 𝑥4 missing. 

Table 5.7-1 shows the details of the runs: 
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Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

Unmeasured 

Chemical Species 

5-33 RN1 1 4% of max range 𝑥3 and 𝑥4 

5-34 RN1 1 8% of max range 𝑥3 and 𝑥4 

5-35 RN1 2 4% of max range 𝑥3 and 𝑥4 

5-36 RN1 2 8% of max range 𝑥3 and 𝑥4 

5-37 RN1 3 4% of max range 𝑥3 and 𝑥4 

5-38 RN1 3 8% of max range 𝑥3 and 𝑥4 

5-39 RN1 4 4% of max range 𝑥3 and 𝑥4 

5-40 RN1 4 8% of max range 𝑥3 and 𝑥4 

Table 5.7-1 Run details for Run 5-33 to Run 5-40 

Similarly, the run parameters for automated system (version 2) remains unchanged 

and is the same the previous section. The results from the runs are presented Table 

5.7-2: 

Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

5-33 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
2

0
−1
0

−1
0
0

    

0
0
1

−1
1

    

0
0
0
1

−1]
 
 
 
 

 

𝑘1 = 0.1238 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2023 𝑠−1  

𝑘3 = 0.1852 𝑠−1  

𝑘4 = 0.2201  𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘5 = 0.0040 𝑠−1 

0.1161 

5-34 

[
 
 
 
 
−2 1 0
0 −1 0

−1
0

−1

0
−1
1

0
0
0

    

0
−1
1
2

−1

    

0
1
0
0
0]
 
 
 
 

 

𝑘1 = 0.4581 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1422 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘3 = 0.0561 𝑠−1  

𝑘4 = 0.0072 𝑠−1 

𝑘5 = 0.5303 𝑠−1 

0.5762 

5-35 

[
 
 
 
 
−2 1 0
−1 0 0
0
1
0

−1
0
0

−1
−1
1

    

0
1
0
0

−1

    

0
0
1
0
0]
 
 
 
 

 

𝑘1 = 0.1049 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2378 𝑠−1  

𝑘3 = 0.2860 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘4 = 0.0337 𝑠−1 

𝑘5 = 0.1430 𝑠−1 

0.1698 

5-36 

[
 
 
 
 
−2 1 0
2 0 −1
0

−1
0

−1
0
0

−1
0
1

    

0
−1
0
1

−1

    

0
0
1
0
0]
 
 
 
 

 

𝑘1 = 0.1111 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.0682 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘3 = 0.2333 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘4 = 0.2035 𝑠−1 

𝑘5 = 0.2109 𝑠−1 

0.1794 
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Run 
Best Performing 

Individual 
Reaction Rate Constant 

Fitness 

Function 

5-37 

[
 
 
 
 
−2 1 0
0 −1 −1
0

−1
−1

0
0
1

1
0
0

    

0
0

−1
1

−1

    

0
1
0
0
0]
 
 
 
 

 

𝑘1 = 0.0836 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.2280  𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘3 = 0.1460𝑠−1  

𝑘4 = 0.2017 𝑠−1 

𝑘5 = 0.0298  𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.1991 

5-38 

[
 
 
 
 
−2 1 0
−1 0 1
1
0
1

0
−1
−1

−1
−1
1

    

0
0
0
0
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1766 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1693 𝑠−1  

𝑘3 = 0.0051 𝑠−1  

𝑘4 = 0.1012 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0056 𝑠−1 

0.7206 

5-39 

[
 
 
 
 
−2 1 0
−1 0 1
0
0
1

0
−1
0

−1
0
0

    

0
0
1

−1
2

    

0
0
0
1

−1]
 
 
 
 

 

𝑘1 = 0.1189 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1967 𝑠−1  

𝑘3 = 0.1918 𝑠−1  

𝑘4 = 0.1964 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0107 𝑠−1 

0.2629 

5-40 

[
 
 
 
 

0 −1 2
−1 0 0
0
0
2

−1
1
0

−1
0
2

    

0
1
0

−2
−1

    

0
0
1
0

−1]
 
 
 
 

 

𝑘1 = 0.0120 𝑠−1  

𝑘2 = 0.2798 𝑠−1  

𝑘3 = 0.3420 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.5178 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0777 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

1.2473 

Table 5.7-2 Results for Run 5-33 to Run 5-40 

Only 2 of the runs managed to elucidate the actual CRN structure of RN1 (Run 5-33 

and Run 5-39) with additional reaction that are not part of RN1. The other runs had 

various level of failure in elucidating the reactions in RN1, ranging from missing all four 

of the reactions, Run 5-40 to missing two reactions, Run 5-34 and Run 5-38. The 

performance of the worst run, Run 5-40 by fitness function and missing reactions can 

be seen in Figure 5.7-1: 

 

Figure 5.7-1 Comparison between predicted concentration data against measured and unmeasured concentration 
data 
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Similar to the figures presented for Run 5-25, Run 5-40 also shows automated system 

(version 2) ‘overfitting’ attempt on the measured concentration data. This is 

exacerbated by the noise that is present in the system as can be seen by the poor fit 

of chemical species 𝑥1.  

In Run 5-34, chemical species 𝑥3 is not even used as reactant or product. As the 

existence or accuracy of the concentration profile of 𝑥3 is not even considered by 

automated system (version 2) because it is unmeasured, the system can neglect it 

altogether if it can fit the predicted data of the measured chemical species to the input 

noisy concentration data. This again shows the effect ‘overfitting’ on the system. 

Comparison between the fitness function per measured chemical species for the runs 

using all measured chemical species concentration data (Run 5-9 to Run 5-16) and 

those with the presence of unmeasured chemical species (Run 5-33 to Run 5-40) is 

shown in Table 5.7-3: 

Run 

Fitness Function (Run 5-9 to 

Run 5-16) per measured 

chemical species 

Run 

Fitness Function (Run 5-33 

to Run 5-40) per measured 

chemical species 

5-9 0.0508 5-33 0.0387 

5-10 0.5337 5-34 0.1921 

5-11 0.1729 5-35 0.0566 

5-12 0.1395 5-36 0.0598 

5-13 0.1168 5-37 0.0664 

5-14 1.2520 5-38 0.2402 

5-15 0.2635 5-39 0.0876 

5-16 0.8823 5-40 0.4158 

Table 5.7-3 Comparison between Run 5-9 to Run 5-16 and Run 5-33 to Run 5-40 

From the comparison, it can be seen that when automated system (version 2) is used 

on unmeasured chemical species it can achieved better fitness. This is as expected as 

the number of chemical species that automated system (version 2) has to fit to the 

input concentration data is less for the runs with unmeasured chemical species. 

Although the runs (Run 5-33 to Run 5-40) achieve a better fitness compared to their 

counterpart consistently, they are much worse when comparing the final elucidated 

CRN results with the Run 5-9 to Run 5-16. This again shows how the Run 5-33 to Run 

5-40 ‘overfitting’ their predicted concentration data to the measured chemical species. 
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Run 5-41 to Run 5-48 is run to test automated system (version 2) against noisy 

concentration data from RN2 with two unmeasured chemical species, 𝑥3 and 𝑥4. The 

Table 5.7-4 shows the parameters for the datasets used for the runs. The concentration 

data used the same as those used for Run 5-17 to Run 5-24.  

Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

Unmeasured 

Chemical Species 

5-41 RN2 1 4% of max range 𝑥3 and 𝑥4 

5-42 RN2 1 8% of max range 𝑥3 and 𝑥4 

5-43 RN2 2 4% of max range 𝑥3 and 𝑥4 

5-44 RN2 2 8% of max range 𝑥3 and 𝑥4 

5-45 RN2 3 4% of max range 𝑥3 and 𝑥4 

5-46 RN2 3 8% of max range 𝑥3 and 𝑥4 

5-47 RN2 4 4% of max range 𝑥3 and 𝑥4 

5-48 RN2 4 8% of max range 𝑥3 and 𝑥4 

Table 5.7-4 Run parameters for Run 5-41 to Run 5-48 

Run parameters for automated system (version 2) are the same as the previous 

sections for fair comparison. Table 5.7-5 shows the performance of the runs. 

Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

5-41 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
0 0 2 2 −1 −1
1 0 2 −2 1 0
2 −1 0 −1 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.2038 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0789 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1387 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0504 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0217 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0012 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

0.1192 

5-42 

[
 
 
 
 
 
−2 1 0 1 0 0
0 0 1 −2 0 1
0 −1 2 0 0 0

−1 1 1 0 0 0
0 −2 0 1 0 0
0 0 1 −1 1 0]

 
 
 
 
 

 

𝑘1 = 0.1258 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1784 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1769 𝑠−1 

𝑘4 = 0.1304 𝑠−1 

𝑘5 = 0.1752 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.1174 𝑠−1 

0.5620 
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Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

5-43 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
0 0 −1 2 0 0
0 0 0 1 1 −1
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.1856 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1276 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1614 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0671 𝑠−1 

𝑘5 = 0.0340 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  
𝑘6 = 0  

2.7019 

5-44 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
2 1 2 0 −1 −1

−1 2 −1 0 0 0
1 1 −1 −1 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.1862 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0861 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1427 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0779 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0458 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0348 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

10.9617 

5-45 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
0 0 0 1 1 −1
0 1 2 −1 0 0
1 1 −1 −1 0 0
1 0 2 −2 1 0 ]

 
 
 
 
 

 

𝑘1 = 0.2273 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1710 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0002 𝑠−1 

𝑘4 = 0.0119 𝑠−1 

𝑘5 = 0.0615 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.1662 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

2.0820 

5-46 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
1 −1 0 −1 1 0
2 1 −1 0 0 −1
1 1 0 −2 1 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.2643 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1349 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0835 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0115 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0469 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0 

4.8747 

5-47 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
0 1 −2 0 0 0
1 0 2 −2 1 0
1 0 1 0 1 −1
0 2 0 −1 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.2416 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1955 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0002 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.1798 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0002 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0004 𝑠−1  

2.7871 

5-48 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
1 −1 0 −1 1 0
1 1 −1 −1 0 0
0 1 0 −2 2 0
0 2 0 −1 0 0]

 
 
 
 
 

 

𝑘1 = 0.2176 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1576 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0973 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0596 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0235 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0082 𝑠−1 

4.8446 

Table 5.7-5 Results for Run 5-41 to Run 5-48 

The results of Run 5-41 to Run 5-48 are very similar to those in Run 5-33 to Run 5-40 

where none of the runs’ CRNs match that of RN2. Comparing it against Run 5-17 to 

Run 5-24, these runs perform worse off because among the Run 5-17 to Run 5-24, 6 

out of 8 managed to obtain all the reactions in RN2. No further discussion is required 

as the reason for the failure is the same as it is with Run 5-33 to Run 5-40 which are 

discussed previously, which is mainly ‘overfitting’ to measured concentration data. 
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Comparisons of the fitness function per measured chemical species between Run 5-

17 to Run 5-24 (no unmeasured chemical species) and Run 5-41 to Run 5-48 (two 

unmeasured chemical species) are shown in Table 5.7-6: 

Run 
Fitness Function (Run 5-17 to 

Run 5-24) per measured 
chemical species 

Run 
Fitness Function (Run 5-41 to 

Run 5-48) per measured 
chemical species 

5-17 0.1242 5-41 0.0298 

5-18 0.4063 5-42 0.1405 

5-19 0.5231 5-43 0.6755 

5-20 2.2945 5-44 2.7404 

5-21 0.3500 5-45 0.5205 

5-22 2.3316 5-46 1.2187 

5-23 0.3255 5-47 0.6968 

5-24 2.1232 5-48 1.2112 
Table 5.7-6 Comparison between Run 5-17 to Run 5-24 and Run 5-41 to Run 5-48 

Here it can be seen that the fitness functions between the runs with unmeasured 

chemical species and those without are similar, with some better and some worse off 

than their counterpart. This could mean that automated system (version 2) that the 

missing concentration data can affect the reaction rate approximation to the point it 

suffers even when it does not need to consider how accurate it predicts the 

unmeasured chemical species.  

5.8 Summary 

In his chapter, the weaknesses of the original automated system for discovery of CRN 

from concentration data of chemical species are addressed through the introduction of 

the second tier optimisation routine. The new automated system, referred as 

automated system (version 2) is tested against noiseless and noisy data and has 

shown it can handle reversible reactions that is present in Reaction Network 2 (RN2). 

Further testing on data with unmeasured chemical species had shown the system can 

be used to elucidate the correct CRNs even when it has missing data. As expected, 

automated system (version 2)’s performance with unmeasured chemical species is 

worse off when compared against its performance with measured chemical species in 

terms of elucidating the correct CRNs.  

Automated system (version 2) has repeatedly shown that it tends to fit to data more 

aggressively as compared to the previous version causing more ‘overfitting’ to occur 

which in turn generates false reactions that do not occur in the actual CRN. When 

concentration data of unmeasured chemical species are used, the automated system 
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will only fit its predicted concentration data to the input concentration data for the 

measured chemical species, ignoring the unmeasured chemical species. At the 

extreme case, the automated system can even exclude existence of the unmeasured 

chemical species in its final deduced CRN. 

Although the developed automated system for CRN elucidation can now be used for 

reversible reactions and unmeasured chemical species, it still suffers from ‘overfitting’ 

and the effect is more severe when dealing with unmeasured chemical species. The 

next chapter will modify the system further to take into account the ‘overfitting’ issue. 
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Chapter 6. Automated System with Multi Objective 
Optimisation for Elucidation of Chemical Reaction Network 

6.1 Overview 

This chapter presents another addition to the automated system of chemical reaction 

network (CRN) elucidation. A multi-objective optimisation routine is included into the 

system so it can now push its search directions towards diversity instead of just 

focussing on fitness. The top most occurring reactions from the population are then 

gathered and sorted. The top 10 most occurring reactions will be extracted and 

considered. The system is tested with the same datasets presented in the previous 

chapters and the results are discussed.  

6.2 Introduction 

‘Overfitting’ is a problem that is caused by modeller, in this case the automated system 

for identification of CRN models modelling in the noise from the input concentration 

data when building the CRN. In order to model in the noise, the automated system will 

sometimes need more reactions than the actual CRN or even substitute it with some 

other reactions that can model the noise better. The effect is a high level of fit for the 

predicted concentration data to the input concentration data but at the cost of not 

elucidating the actual CRN or including additional reactions that are not part of the 

actual CRN. When unmeasured chemical species is present in the input concentration 

data, the issue becomes more severe because the automated system will only focus 

on fitting the measured chemical species while ignoring the unmeasured chemical 

species because it has no information on the concentration profiles of the unmeasured 

chemical species. To counter the ‘overfitting’ issue, the version 2 of the automated 

system will be modified further to implement multi-objective algorithm into the genetic 

algorithm (GA) used in the system. 

6.3 Multi-objective optimisation 

Multi-objective optimisation is as the name suggests, optimise a function or problem 

with more than one objective (Deb, 2001). In the case of single objective optimisation, 

there is only one objective to achieve and the optimiser will only focus on achieving the 

optimal solution in relation to that objective. However, when more than one objective 

is desired, the optimal solution becomes more difficult to be determined. These 
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optimisation objectives usually are in competition with each other for example, consider 

the statement below, 

 The more powerful a computer is, the more expensive it is to build it.  

Based on the statement, a person wanting to buy a cheap and powerful computer will 

have the following optimisation problem: 

Optimisation problem : Buy cheap and powerful computer 

First objective  : Low computer price 

Second objective  : High computer power 

There is no one optimal solution for this as it is not possible to have the most powerful 

computer with the lowest cost based on the statement that more powerful computer 

costs more. So it becomes a multi-objective optimisation problem where the optimal 

results is a range of results lying on the Pareto front. Results on the Pareto front are 

results that are not better off or worse off than each other and cannot be improved 

further without sacrificing any of the objectives. Continue on from the computer 

example, a plot of cost against power of the computer can be plotted like the one shown 

in Figure 6.3-1.  

 

Figure 6.3-1 Plot showing Pareto Front and optimisation direction 

The goal of getting high powered computer at a low cost will force the optimisation to 

proceed to the bottom of the plot for better price and to the right for higher power which 

when combined causes the direction of the optimisation towards lower right of the plot. 

Once it can increase the power no further at the same cost or when it can reduce the 
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price no further at the same level of power, the particular computer model can be 

considered to be lying on the Pareto Front. Comparing PC2 and PC3 from the Figure, 

it can be seen none dominates the other in term of the objective. PC3 is cheaper than 

PC2 but PC2 is more powerful than PC3 and choosing between the two will involve 

trade-off between power and price. However, PC1 when compared against PC2 and 

PC3 is inferior and can still be optimised. This is because at the same level of power, 

PC3 is cheaper than PC1 and at the same price, PC2 is more powerful than PC1. 

Those computer models that lies on the Pareto Front can be considered as Pareto 

optimal results. Therefore, the final result of a multi-objective optimisation is not a 

single most optimal result but a group of Pareto optimal results which are not any way 

inferior from one and another.  

In the field of optimisation through evolutionary algorithm which GA is part of, there 

exists a selection of multi-objective evolutionary algorithm (MOEA) to choose from. 

Examples of MOEA are such as Multi Objective Genetic Algorithm (Murata and 

Ishibuchi, 1995), Differential Evolution Multi Objective (Mlakar et. al., 2015), Multi 

Objective Particle Swarm Optimisation (Reyes-Sierra and Coello, 2006) and Elitist 

Non-dominated Sorting Genetic Algorithm (NSGA-II) by Deb et al. (2002). 

6.4 Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) 

NSGA-II, an upgraded version of the NSGA (Srinivas and Deb, 1995) is one of the 

most popular MOEA and its framework is used most from the available MOEA (Zhou 

et. al., 2011). The paper describing the design of NSGA-II (Deb et al., 2002) has been 

cited in more than 40001 publications and patents as of March 2016. It had been used 

in numerous applications such as antenna array design (Pandura et al., 2006), DNA 

sequence design (Shin et al., 2005), robot grippers design (Saravanan et al., 2009), 

dynamic controller design (Wozniak, 2011) and optimisation of petroleum processing 

units (Ivanov and Ray, 2014).  

The NSGA-II algorithm is employed after the reproduction stage of the evolutionary 

algorithm. The first step of NSGA-II is combining both parent and the newly reproduced 

population and assigning Pareto fronts to them. The Pareto optimal individuals are 

                                            
1 Based on the “cited by” data at where the paper is located in the IEEE website address: 
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?tp=&arnumber=996017&url=http%3A%2F%2Fieeex
plore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D996017  

http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?tp=&arnumber=996017&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D996017
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?tp=&arnumber=996017&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D996017
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considered to be on Pareto Front 1 and they are not inferior or dominated by each 

other. Then, the individuals from Pareto Front 1 are removed from considerations and 

the current Pareto optimal of the leftover individuals will be assigned Pareto Front 2. 

Those on Pareto Front 2 are then removed and the process repeats until no individual 

is left. Those on Pareto Front 2 is dominated by those on Pareto Front 1 and so on. 

Figure 6.4-1 shows how the results of the ranking by Pareto Fronts will looked like 

graphically for the minimisation of Objective 1 and maximisation of Objective 2. 

 

Figure 6.4-1 Plot showing multi-level Pareto Front 

Once the individuals’ Pareto Fronts are determined, each of the individuals’ crowding 

distance are calculated. Crowding distance is defined as the distance between 

individuals’ two immediate neighbours of the same Pareto Front on the scatter plot of 

the objective functions. The individuals at the edge will be assigned crowding distance 

of infinity. 
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Figure 6.4-2 Plot showing how crowding distance is determined 

The individuals are then sorted according to their Pareto Front with those with a smaller 

front index are more desirable than those with a larger front index. Individuals on the 

same Pareto Front are then sorted against each other according to the crowding 

distance of the individual with larger crowding distance more desirable. In short, the 

sorted list of individuals will have individual nearer to the first Pareto front and larger 

crowding factor nearer to the top of the list (more desirable). The top half of the list of 

individuals is then passed on to the next generation while the bottom half is discarded. 

With this the best of the parent generation and the newly created population are passed 

on to the next generation. The best here refers to low Pareto Front index and those at 

the same Front, higher crowding factor. Figure 6.4-3 gives a graphical view on how 

child generation is decided through the NSGA-II algorithm. 
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Figure 6.4-3 NSGA-II sorting and elimination of population 

By keeping individuals nearer to the Pareto optimal solutions in the GA ensured that 

subsequent generations will push the Pareto Front further and further providing better 

Pareto optimal solutions. This is because individuals that are nearer to the Pareto 

optimal solutions are fitter than those further away and when reproduction between 

individuals that have good genes, chances are individual with better genes will appear. 

Those with better genes or fitter individuals in subsequent generations may even 

surpassed the performance of their predecessors and may be placed beyond the 

Pareto Front of their predecessors, pushing the Pareto Front further. The large 

crowding factor is used to increase diversity in the population with the idea that 

individuals with larger crowding distance are more isolated and thus more unique 

compared to the rest. Unique individual may contain gene that are not present in the 

other individual and retaining them helps increase diversity in the population. 

The push for diversity through the use of crowding distance is what NSGA-II useful to 

overcome the problem of ‘overfitting’ in the automated system designed in this work. 

6.5 Modification done on the automated system 

Instead of hunting for the best CRN possible based on the fitness function only, the 

goal of the automated system is changed to obtaining a group of CRNs from the results 

that are of equal value (Pareto optimal). To do so, it is to the best interest of the 

automated system to be designed to gain as much diversity in the reaction as possible. 

The objective functions for the automated system thus become 
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 Objective 1 : Minimise fitness function 

 Objective 2 : Maximise diversity in the population 

Increment of diversity in the NSGA-II is done through crowding distance. This particular 

measure is not constant and changes one generation to another depending on the 

individual immediate neighbours and therefore cannot be used as an objective 

function. To describe the uniqueness of the CRNs, average relative reactants’ 

molecular weight (ARRMW) is proposed. Relative reactants’ molecular weight 

(RRMW) is calculated by dividing the molecular weight of two reactants in a reaction. 

ARRMW is the average of all the RRMW of all the reactions in the CRN. RRMW will 

be designated as 0 if there is only one reactant in the reaction. 

𝑖𝑓 𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 1 ≠ 𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 2,        𝑅𝑅𝑀𝑊 =
𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 1

𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 2
    𝑤ℎ𝑒𝑟𝑒 𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 1 > 𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 2 

𝑖𝑓 𝑛𝑜 𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 2,                            𝑅𝑅𝑀𝑊 = 0 

𝐴𝑅𝑅𝑀𝑊 =
∑ 𝑅𝑅𝑀𝑊

𝑁𝑟
1

𝑁𝑟
 

Equation 6-1 

where 

𝑀𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 1 refers to molecular weight of the heavier reactant 

𝑀𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 2 refers to molecular weight of the lighter reactant 

ARRMW does not serve as a conflicting objective function for the fitness function used 

for the automated system as ARRMW relationship to fitness function is not straight 

forward. It is however a good measure on how unique a CRN is as the ARRMW of will 

be different from one CRN to another if the reactions within the CRNs are not the same. 

Having more reactions or less reactions within the CRN will affect the ARRMW as well. 

Therefore, to increase diversity, the goal is populate the GA with as many CRNs with 

different ARRMW as possible. Due to the structure of the goal, Pareto optimal solutions 

for the system is defined as lowest possible fitness functions for any particular 

ARRMW. Note that this is not how normally Pareto optimal solutions is described as 

but the same terminology as original NSGA-II is kept to reduce the need to introduce 

new terms. 

NSGA-II algorithm will need to modify slightly in light of the second objective function 

that does not follow the typical maximisation or minimisation problem. The method to 
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assign the individuals into Pareto Fronts is changed to assigning Pareto Front 1 to any 

individuals who has the lowest fitness function for a particular ARRMW. Once 

determined, these individuals are removed and the Pareto optimal individuals of the 

leftover individuals will be assigned Pareto Front 2 and so on. The only difference in 

the individuals within the same Pareto Front in this case is only that they have different 

set of ARRMW and it does not matter if their fitness function is higher or lower than 

each other. This is different from the original NSGA-II algorithm where each of the 

individuals in a Pareto Front is not inferior to each other when comparing both of the 

objective functions. Apart from the assignment of Pareto Fronts, the other part of the 

algorithm is the same as the original NSGA-II, including calculation of crowding 

distance which would help in further increase the diversification of the results. The 

Figure 6.5-1 gives a better picture on how the shape of the Pareto Front had changed 

and the direction of the optimisation of the automated system. 

 

Figure 6.5-1 Pareto Front for the designed automated system 

In this case, the shape of the Pareto front can be extremely irregular and the 

optimisation direction is in general downwards for lower fitness function and outwards 

for more diversity.  

Figure 6.5-2 shows the automated system flow chart with the NSGA-II implemented.  
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Figure 6.5-2 Flowchart for automated system (NSGA-II) 

This version of the automated system will be referred to as automated system (NSGA-

II) for here on.  

6.6 Test against runs with unmeasured chemical species 

To prove the feasibility of the system, it is tested against the datasets with unmeasured 

chemical species used in the previous chapter. The goal of the test is check on how 

diverse the population of CRN is at the final generation as compared to the runs 

conducted by automated system (version 2). The second goal is to peruse through the 

individuals at the Pareto Front of the final generation and obtain a list of reactions and 

the number of times they appear. 

The datasets used for this run is the same as the one used in the previous chapter for 

unmeasured chemical species with Gaussian noise with mean of 0 and standard 

deviation equal to 8% of the maximum range of the concentration data.  
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Run 
Chemical 

Reaction Network 
Batch 

Gaussian Noise 

Standard Deviation 

Unmeasured 

Chemical Species 

6-1 RN1 1 8% of max range 𝑥3 and 𝑥4 

6-2 RN1 2 8% of max range 𝑥3 and 𝑥4 

6-3 RN1 3 8% of max range 𝑥3 and 𝑥4 

6-4 RN1 4 8% of max range 𝑥3 and 𝑥4 

6-5 RN2 1 8% of max range 𝑥3 and 𝑥4 

6-6 RN2 2 8% of max range 𝑥3 and 𝑥4 

6-7 RN2 3 8% of max range 𝑥3 and 𝑥4 

6-8 RN2 4 8% of max range 𝑥3 and 𝑥4 

Table 6.6-1 Run parameters for Run 6-1 to Run 6-8 

The run parameters is exactly the same as the one used by automated system (version 

2) in the previous chapter but with elitism removed because NSGA-II algorithm 

incorporated it by nature. 

6.7 Results 

The results’ scatter plot is compared against results generated by automated system 

(version 2) through runs using the same datasets (Run 5-34, Run 5-36, Run 5-38, Run 

5-40, Run 5-42, Run 5-44, Run 5-46 and Run 5-48). Figure 6.7-1 shows the scatter 

plot of fitness function against ARRMW. 
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Figure 6.7-1 Comparison between scatter plots of Run 6-1 to Run 6-8 and Run 5-34, Run 5-36, Run 5-38, Run 5-
40, Run 5-42, Run 5-44, Run 5-46 and Run 5-48. Green data points refer to Pareto Optimal CRNs. 

From the scatter plots, a few observations can be made. Automated system (NSGA-

II) produces individuals with larger ARRMW than automated system (version 2). For 

example, in Run 6-7 the individual with the largest ARRMW is 7 while its counterpart, 

Run 5-46 largest individual have less than 4.5 ARRMW. This shows automated system 

(NSGA-II) push outwards to increase diversity in its system.  

Automated system (NSGA-II) also yields more densely at the Pareto Front (green 

colour data point) as compared to those produced by automated system (version 2). It 

also shows more densely packed individuals at the lower end of the fitness function as 

compared to automated system (version 2) runs which are more sparsely populated. 

Run 6-5 against Run 5-42 is a good example of this with significantly large amount of 

individuals in Run 5-42 having the same ARRMW. This shows that automated system 

(NSGA-II) not only push outwards, it also push inwards to the area between individuals 

to increase the diversity. 

There are also more individuals at Pareto Front for runs using RN2 as compared to 

RN1 and this is because there are 6 chemical species in RN2 and only 5 chemical 

species in RN1. More chemical species meant that there are more combinations of 

reactions that automated system (NSGA-II) can create which will gives different 

ARRMW. The difference in ARRMW among the CRNs is what drives NSGA-II in the 

automated system and this therefore caused more points at the Pareto Front to appear. 

The range for the fitness function axis used here is extremely high, for example Run 

6-6 with maximum value of 9000 in order to include all the individuals. Figure 6.7-2 

shows the same scatter plot for Run 6-6 but cap the range for the fitness function to 

150. 



102 Automated System with Multi Objective Optimisation for 
Elucidation of Chemical Reaction Network 

 

 

Figure 6.7-2 Magnified view of the scatter plots for the results for Run 6-6. Green data points refer to Pareto 
Optimal CRNs. 

Figure 6.7-2 shows that the behaviour of the results from automated system (NSGA-

II) remains the same at low fitness values. 

It shows that automated system (NSGA-II) does increase the diversity in the individual 

in its final generation when compared again automated system (version 2). Whether 

this will help with the ‘overfitness’ problem is investigated in the next section. 

6.8 CRN elucidation based on number of occurrences 

Rather than trying to single out one best performing CRN based on fitness function, 

automated system (NSGA-II) will choose a group of CRNs among its final generation. 

This is set as the top 25% of the population when the individuals are sorted according 

to Pareto Front and then fitness function. This meant to be part the final group of CRNs, 

the CRN should have low Pareto Front index and low fitness value. The top 10 most 

occurring reactions for each of the runs are presented in Table 6.8-1: 
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Run 
Top 10 Most Occurring 

Reactions 
No. of 

Occurrence 
Part of Actual 

CRN 

6-1 

[0 −1 −1     0 1] 
[−𝟐 𝟏 𝟎     𝟎 𝟎] 
[−1 0 2     −1 0] 
[0 −1 1     1 0] 
[1 0 0     −1 0] 

[𝟎 −𝟏 𝟎     −𝟏 𝟏] 
[0 −1 2     0 0] 
[−1 0 0     1 0] 

[−1 2 0     0 −1] 
[−1 −1 0     0 1] 

30 
25 
22 
20 
10 
9 
6 
6 
5 
5 

No 
Yes 
No 
No 
No 
Yes 
No 
No 
No 
No 

6-2 

[−𝟐 𝟏 𝟎     𝟎 𝟎] 
[−𝟏 𝟎 𝟏     𝟎 𝟎] 

[𝟎 −𝟏 𝟎     −𝟏 𝟏] 
[0 −1 −1     0 1] 
[𝟎 𝟎 −𝟏     𝟏 𝟎] 
[−1 1 2     0 −1] 
[1 −1 2     2 −1] 
[−1 −1 2     1 0] 
[2 −1 1     2 −1] 
[0 2 0     −1 −1] 

34 
31 
22 
21 
14 
11 
9 
8 
8 
8 

Yes 
Yes 
Yes 
No 
Yes 
No 
No 
No 
No 
No 

6-3 

[−1 0 0     1 0] 
[−𝟐 𝟏 𝟎     𝟎 𝟎] 

[𝟎 −𝟏 𝟎     −𝟏 𝟏] 
[0 −1 −1     0 1] 
[2 −1 1     2 −1] 
[−𝟏 𝟎 𝟏     𝟎 𝟎] 
[1 −1 0     1 0] 
[1 −2 0     0 1] 

[1 −1 2     2 −1] 
[2 0 −1     2 −1] 

32 
27 
24 
15 
12 
9 
8 
7 
7 
7 

No 
Yes 
Yes 
No 
No 
Yes 
No 
No 
No 
No 

6-4 

[−1 0 0     1 0] 
[−1 1 0     −1 0] 
[0 −1 −1     0 1] 
[1 −1 2     2 −1] 
[0 1 2     −1 −1] 
[1 −2 0     0 1] 

[𝟎 −𝟏 𝟎     −𝟏 𝟏] 
[0 0 1     −1 0] 

[2 −1 1     −1 0] 
[−1 −1 1     2 0] 

39 
28 
24 
20 
15 
15 
15 
8 
6 
5 

No 
No 
No 
No 
No 
No 
Yes 
No 
No 
No 
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Run 
Top 10 Most Occurring 

Reactions 
No. of 

Occurrence 
Part of Actual 

CRN 

6-5 

[−𝟏 𝟎 𝟎     −𝟏 𝟎 𝟏] 
[−𝟏 −𝟏 𝟏     𝟏 𝟎 𝟎] 
[1 0 1     0 1 −1] 

[0 1 0     2 −1 −1] 
[0 0 −1     1 −1 0] 
[−1 0 −1     1 0 0] 
[−1 0 0     0 1 0] 

[0 −1 1     1 −1 0] 
[0 −1 2     0 0 0] 

[1 1 −1     −1 0 0] 

45 
38 
19 
14 
11 
11 
9 
9 
8 
7 

Yes 
Yes 
No 
No 
No 
No 
No 
No 
No 
No 

6-6 [−𝟏 −𝟏 𝟏     𝟏 𝟎 𝟎] 
[0 0 1     −2 0 1] 

[−𝟏 𝟎 𝟎     −𝟏 𝟎 𝟏] 
[2 −1 0     0 1 −1] 
[0 1 −1     0 2 −1] 
[−2 0 2     1 0 0] 
[0 −2 1     0 1 0] 

[𝟎 −𝟏 −𝟏     𝟎 𝟏 𝟎] 
[0 0 −1     2 0 −1] 
[1 0 0     0 −1 0] 

42 
27 
23 
13 
12 
11 
11 
10 
9 
9 

Yes 
No 
Yes 
No 
No 
No 
No 
Yes 
No 
No 

6-7 [−𝟏 −𝟏 𝟏     𝟏 𝟎 𝟎] 
[1 −1 0     −1 1 0] 
[0 0 1     −2 0 1] 

[−1 0 −1     1 0 0] 
[0 1 −1     −1 1 0] 
[0 0 −1     2 0 −1] 
[−𝟏 𝟎 𝟎     −𝟏 𝟎 𝟏] 
[1 −1 2     1 0 −1] 
[0 0 0     −1 −1 1] 
[0 1 −2     0 0 0] 

45 
36 
30 
26 
17 
17 
15 
13 
8 
8 

Yes 
No 
No 
No 
No 
No 
Yes 
No 
No 
No 

6-8 [−𝟏 −𝟏 𝟏     𝟏 𝟎 𝟎] 
[−1 0 0     0 1 0] 
[0 0 1     −2 0 1] 

[−𝟏 𝟎 𝟎     −𝟏 𝟎 𝟏] 
[−1 2 2     1 0 −1] 
[0 −1 0     −1 2 0] 
[2 −1 0     −1 0 0] 
[0 1 −2     0 0 0] 
[1 0 0     0 −1 0] 
[𝟏 𝟎 𝟎     𝟏 𝟎 −𝟏] 

32 
27 
24 
15 
12 
9 
8 
7 
7 
7 

Yes 
No 
No 
Yes 
No 
No 
No 
No 
No 
Yes 

Table 6.8-1 Results showing most occurring reactions for Run 6-1 to Run 6-8 

For Run 6-1 to Run 6-4, only Run 6-2 managed to discover all the reactions within RN1 

when using the top 10 most occurring reactions. Of the four reactions in RN1, the 3rd 

reaction is the rarest within the CRNs obtained from the runs. The reaction is  

𝑥3 → 𝑥4 (Equation 6-2) 
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which contains both the unmeasured chemical species making it difficult to be detected 

by automated system (NSGA-II). However from the results, it is noticeable that the 

reaction [−1 0 0     1 0] and [0 −1 −1     0 1] occurs at high frequency within 

the runs. The two reactions translates to  

𝑥1 → 𝑥4 

𝑥2 + 𝑥3 → 𝑥5 

(Equation 6-3) 

The first reaction upon further analysis is a combination of the 2nd and 3rd reaction of 

RN1, 

𝑥1 → 𝑥3 

𝑥3 → 𝑥4 

Equation (6-4) 

with 𝑥3 as the reaction intermediate. Meanwhile, the second reaction is a combination 

of the 3rd and 4th reaction of RN1 

𝑥3 → 𝑥4 

𝑥2 + 𝑥4 → 𝑥5 

(Equation 6-5) 

with 𝑥4 as the reaction intermediate.  

Both of these cases happen because they use an unmeasured chemical species as 

reaction intermediates and automated system having no information about it attempt 

to model it without the additional reaction step. Although the two reactions are not the 

part of RN1, the user of automated system (NSGA-II) will have a better idea on how 

the reaction progressed with the information as compared to having a single CRN 

which the user have no idea how much trust he can give it. 

For Run 6-5 to Run 6-8, none of the runs managed to elucidate all of the RN2’s 

reactions. The results are much poorer compared to that of Run 6-1 to Run 6-4 and it 

may be because there are more chemical species in this CRN and this leads to more 

freedom for automated system (NSGA-II) to design reactions that are not part of the 

RN2 but able to be used to reduce the gap between the predicted and simulated noisy 

concentration data of measured chemical species. 

If the results of the runs are not evaluated separately but together for Run 6-1 to Run 

6-4 and Run 6-5 to Run 6-8, it may be possible to obtain the actual CRN. This is 

especially true for Run 6-5 to Run 6-8 because although not one of the runs managed 
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to discover all the reactions within the RN2, each of the reactions in RN2 does appear 

in one or more of the runs. This shows that some of the datasets may be more suitable 

for unearthing certain reactions, depending on the initial condition of the chemical 

species. The effect of noise will also lessen if all the datasets are evaluated together. 

6.9 Summary 

In summary, this chapter introduced a multi objective evolutionary algorithm (MOEA) 

to be included into the automated system in order to deal with the ‘overfitting’ problem 

in the automated system. Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

is used to upgrade the automated system and the algorithm is modified to use Average 

Relative Reactants’ Molecular Weight (ARRMW) to increase diversity in the population 

so more possible combination of reactions in the CRN can be tested.  

The goal of the runs has been changed from focusing on a single best performing CRN 

in respect to the fitness function to obtaining a group of CRNs and evaluate the 

reactions in them. Reactions with higher frequency of occurrence in high performing 

individuals (low fitness function and low Pareto Front index) can be extracted and 

considered. 

Eight different runs are done with four datasets from RN1 and four from RN2 with 

Gaussian noise with mean of 0 and standard deviation of 8% of the maximum range 

of the concentration data are added. Two of chemical species in RN1 and two from 

RN2 are designated as unmeasured.  

The results show that NSGA-II in the system do increase the diversity of the final result 

when compared against the runs done using automated system (version 2). However, 

of the eight runs, only one manage to elucidate all of the reactions of the actual CRN. 

Reactions that are not part of CRN are constructed in the runs as well but some of 

those reactions are combination of reactions from the actual CRN. The range of 

reactions will give the user more information on the possible reactions within the CRN.  

It is noted that different datasets face different difficulty in discovering the different 

reactions. Running all the datasets in one go may actually help in discovering all the 

reactions in the actual CRN while having more data helps the automated system 

discount any errors or noise in the concentration data. 
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Chapter 7. Application on Experimental Data 

7.1 Overview 

In this chapter, the automated system for elucidation of chemical reaction network 

(CRN) capability is demonstrated on experimental data. The data comes from the 

reaction of trimethyl orthoacetate (TMOA) and allyl alcohol (AA) the expected reaction 

is introduced. Automated system (version 2) and automated system (NSGA-II) will be 

used for the runs. Further test on the robustness of the system is done through addition 

of chemical species that is not part of the reaction. The results of the runs are 

discussed and conclusions are made. 

7.2 Introduction 

For the purpose of demonstrating the capability of the automated system for CRN 

elucidation that has been developed in this work, three sets of experimental data from 

the reaction of TMOA and AA is obtained from experimental work done by the 

Department of Chemistry, Durham University. The experiments are conducted 

isothermally at three different temperature, 80 oC, 90 oC and 100 oC in a 2 litres glass 

lined batch reactor. The initial concentration of the starting reactants of TMOA, 𝑥𝑇𝑀𝑂𝐴 

and AA, 𝑥𝐴𝐴 are the same for the three experiments. Samples are taken at different 

time intervals and each samples is analysed using Gas Chromatography Mass 

Spectrometry to obtain the concentration of the chemical species present in the 

reactor. Each of the experiments are run for different length of time, 1000 minutes for 

80 oC experiment, 1440 minutes for 90 oC experiment and 300 minutes for 100 oC 

experiment. Chemical species allyl dimethyl orthoacetate (ADMOA), 𝑥𝐴𝐷𝑀𝑂𝐴 , diallyl 

methyl orthoacetate (DMOA), 𝑥𝐷𝑀𝑂𝐴 and triallyl orthoacetate (TOA), 𝑥𝑇𝑂𝐴 are detected 

to be present in the experiments and produced through the reaction between TMOA 

and AA. To make reference easier, the 80 oC experiment will be named Exp 1, 90 oC 

named as Exp 2 and 100 oC named as Exp 3 from here onwards. 

7.3 Chemical reaction network details 

The paper presented by Bollyn and Wright (1998) reveals the reaction chemistry of the 

reaction between triethyl orthoacetate (TEOA) and allyl alcohol (AA) which is similar to 

the reaction between TMOA and AA as part of the Claisen condensation reaction. The 

structure of the CRN is taken and used to determine the performance of the automated 
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systems. According to Bollyn and Wright (1998), the TEOA and AA reacts to produce 

allyl diethyl orthoacetate, ADEOA and ethanol, EA. ADEOA then reacts with AA again 

to produce diallyl ethyl orthoacetate (DEOA) and EA. DEOA reacts with AA further to 

produce triallyl orthoaceteate (TOA) and EA. These reactions are all reversible 

reactions.  

ADEOA, DEOA and TOA can then be reacted further to produce pentenoic acid ethyl 

ester and pentenoic acid allyl ester but the two chemical species are not present in the 

Exp 1, Exp 2 and Exp 3, so it will not be discussed further.  

Following the reaction mechanisms of the reaction between TEOA and AA, the 

reaction between TMOA and AA can be summed up as 

TMOA + AA ⇄ ADMOA + MA 

ADMOA + AA ⇄ DMOA + MA 

DMOA + AA ⇄ TOA + MA 

(Equation 7-1) 

where MA is methanol. 

Figure 7.3-1 shows the chemical structures of the chemical species in Equation 7-1. 

 

Figure 7.3-1 Chemical structures of reactants, intermediates and products of the reaction between TMOA and AA. 

In stoichiometric form, 
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𝑽𝑬𝒙𝒑𝟏 =

[
 
 
 
 
 
−1 1 0 0 −1 1
1 −1 0 0 1 −1
0 −1 1 0 −1 1
0 1 −1 0 1 −1
0 0 −1 1 −1 1
0 0 1 −1 1 −1]

 
 
 
 
 

 (Equation 7-2) 

 

where the columns of the matrix refers to the chemical species as per below matrix 

[𝑥𝑇𝑀𝑂𝐴   𝑥𝐴𝐷𝑀𝑂𝐴   𝑥𝐷𝑀𝑂𝐴    𝑥𝑇𝑂𝐴    𝑥𝐴𝐴      𝑥𝑀𝐴] (Equation 7-3) 

The molecular weight of the chemical species is shown in table below: 

Chemical Species TMOA ADMOA DMOA TOA AA MA 

Molecular Weight 120 146 172 198 58 32 

Table 7.3-1 Molecular weight of the chemical species in the experimental data 

Both the alcohols in the experimental data are unmeasured chemical species. AA and 

MA is not measured for any part of the experiment.  

With this details, the automated system can be employed to elucidate the CRN from 

the experimental data.  

7.4 Data preprocessing 

The concentration data from the experimental data is processed by fitting the data to 

a rational polynomial to smoothen the data. This is done because of the existence of 

substantial noise in the data and this can be down to human error when conducting 

the experiments, when taking measurements, variability in the process temperature 

and pressure and sensitivity of the measurement device. 

Figure 7.4-1 that show before and after smoothing are employed: 
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Figure 7.4-1 Plots showing concentration data smoothing 

Smoothened data will help easier convergence of the automated system as the 

automated system reconstructs the concentration profiles based on the assumption of 

no noise. It will also assume that the data provided are mass balanced.  

7.5 Testing the experimental data using automated system (version 2) 

For the first part of the test, automated system (version 2) is used first. The run 

parameters remains the same as they are in the previous chapters.  

Details of the run are as shown in Table 7.5-1: 

Run 
Experimental data 

source 

7-1 Smoothened Exp 1 

7-2 Smoothened Exp 2 

7-3 Smoothened Exp 3 

Table 7.5-1 Run details for Run 7-1, Run 7-2 and Run 7-3 

The results of the run are shown in Table 7.5-2: 
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Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

7-1 

[
 
 
 
 
 
−1 1 0 0 −1 1
1 −1 0 0 1 −1
0 −1 1 0 −1 1
0 1 −1 0 1 −1
0 1 −2 1 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.0046 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0028 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0030 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0039 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0017 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  
𝑘6 = 0 

8.8647 

7-2 

[
 
 
 
 
 
−1 1 0 0 −1 1
0 −1 1 0 −1 1
0 0 −1 1 −1 1

−1 2 −1 0 0 0
1 −2 1 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

 

𝑘1 = 0.0035 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0018 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0009 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0028 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0007 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  
𝑘6 = 0 

26.4821 

7-3 

[
 
 
 
 
 
−1 1 0 0 −1 1
0 1 −1 0 1 −1
1 −1 −1 1 0 0

−1 2 −1 0 0 0
1 −2 1 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.0104 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0150 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0014 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0052 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0119 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  
𝑘6 = 0 

2.3152 

Table 7.5-2 Results for Run 7-1, Run 7-2 and Run 7-3 

 

Run 7-1 managed to elucidate 4 of the 6 expected reactions in the CRN and contain 

an extra reaction that is not part of the CRN. Upon further investigations, the reaction 

is actually a combination of two reactions from the actual CRN. The extra reaction is 

as below: 

2𝑥𝐷𝑀𝑂𝐴 → 𝑥𝐴𝐷𝑀𝑂𝐴 + 𝑥𝑇𝑂𝐴 

 
(Equation 7-7) 

and is actually a combination of two reactions from the expected CRN. 

𝑥𝐷𝑀𝑂𝐴 + 𝑥𝑀𝐴 → 𝑥𝐴𝐷𝑀𝑂𝐴 + 𝑥𝐴𝐴 

𝑥𝐷𝑀𝑂𝐴 + 𝑥𝐴𝐴 → 𝑥𝑇𝑂𝐴 + 𝑥𝑀𝐴 
(Equation 7-8) 

As expected, because MA and AA are not measured, automated system (version 2) 

disregards their role as reaction intermediates and fit the predicted concentration data 

to the experimental data. Even with the deconstruction of the extra reaction, the run is 

still missing the last reaction from the expected CRN. 

The plot for the run between the predicted concentration data and the experimental 

data is shown in Figure 7.5-2 Predicted and experimental concentration data against 

time for Run 7-2: 
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Figure 7.5-1 Concentration of predicted and experimental data against time for Run 7-1 

Although automated system (version 2) managed to obtain 4 of the 6 reactions of the 

expected CRN, the predicted concentration accuracy is poor as can be seen from the 

Figure. Delving further into the experimental data, it is revealed that measurement error 

must had occur during data collection because of the material imbalance that exist in 

the data. Table 7.5-3shows concentration data of the Exp 1 before the smoothing 

process. 

𝒕 
Concentration data (mol/L) 

[𝒙𝑻𝑴𝑶𝑨] [𝒙𝑻𝑴𝑶𝑨] [𝒙𝑫𝑴𝑶𝑨] [𝒙𝑻𝑶𝑨] 
[𝒙𝑻𝑴𝑶𝑨] + [𝒙𝑻𝑴𝑶𝑨]
+ [𝒙𝑫𝑴𝑶𝑨] + [𝒙𝑻𝑶𝑨] 

20 
1.3214 0.2295 0.0108 0 1.5617 

40 
1.2548 0.3425 0.029 0 1.6263 

60 
1.0097 0.3635 0.0417 0 1.4149 

80 
0.9268 0.3958 0.0527 0.0009 1.3762 

120 
0.9278 0.4974 0.0893 0.0028 1.5173 

142 
1.0378 0.5982 0.118 0.0043 1.7583 

180 
0.9416 0.5877 0.1322 0.006 1.6675 

240 
1.0004 0.6843 0.1767 0.0099 1.8713 

270 
0.7127 0.5156 0.1456 0.0092 1.3831 

330 
0.9801 0.7222 0.2129 0.0149 1.9301 
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𝒕 
Concentration data (mol/L) 

[𝒙𝑻𝑴𝑶𝑨] [𝒙𝑻𝑴𝑶𝑨] [𝒙𝑫𝑴𝑶𝑨] [𝒙𝑻𝑶𝑨] 
[𝒙𝑻𝑴𝑶𝑨] + [𝒙𝑻𝑴𝑶𝑨]
+ [𝒙𝑫𝑴𝑶𝑨] + [𝒙𝑻𝑶𝑨] 

360 
0.8189 0.6501 0.208 0.0161 1.6931 

420 
0.7946 0.6211 0.2026 0.0164 1.6347 

480 
0.7761 0.6275 0.2163 0.0196 1.6395 

1000 
0.7818 0.7928 0.3773 0.0576 2.0095 

Table 7.5-3 Concentration data for Exp 1 

Based on expected CRN of   

𝑽𝑬𝒙𝒑𝟏 =

[
 
 
 
 
 
−1 1 0 0 −1 1
1 −1 0 0 1 −1
0 −1 1 0 −1 1
0 1 −1 0 1 −1
0 0 −1 1 −1 1
0 0 1 −1 1 −1]

 
 
 
 
 

 (Equation 7-9) 

The molar balance of  
 

[𝑥𝑇𝑀𝑂𝐴] + [𝑥𝑇𝑀𝑂𝐴] + [𝑥𝐷𝑀𝑂𝐴] + [𝑥𝑇𝑂𝐴] 
 

(Equation 7-10) 

should always remain the same as conversion of the chemical species is all 1:1 ratio. 

No reaction in the CRN is capable in increasing or reducing the amount of mols in the 

reactor.  

Refer back to the Table above, the total summation of the concentration data of the 

four chemical species, ranges from 1.3831 to 2.0095 when it should have remained 

constant. This type of error in the concentration data will definitely cause any predicted 

concentration from automated system (version 2) to go off because the predicted 

concentration data still adhered to mass and material balance. Even then, the system 

still managed to elucidate the CRN with only two missing reactions from the expected 

CRN.  

For Run 7-2, only 3 of the 6 reactions of expected CRN are identified at the final CRN 

structure from automated system (version 2). Similar to Run 7-1, it also consists of 

reactions that are not part of the expected CRN and they are combination of reactions 

of the expected CRN. The reactions are as follows: 

𝑥𝑇𝑀𝑂𝐴 + 𝑥𝐷𝑀𝑂𝐴 → 2𝑥𝐴𝐷𝑀𝑂𝐴 

2𝑥𝐴𝐷𝑀𝑂𝐴 → 𝑥𝑇𝑀𝑂𝐴 + 𝑥𝐷𝑀𝑂𝐴 

(Equation 7-11) 
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which are combinations of  

𝑥𝑇𝑀𝑂𝐴 + 𝑥𝐴𝐴 → 𝑥𝐴𝐷𝑀𝑂𝐴 + 𝑥𝑀𝐴 

𝑥𝐷𝑀𝑂𝐴 + 𝑥𝑀𝐴 → 𝑥𝐴𝐷𝑀𝑂𝐴 + 𝑥𝐴𝐴 

𝑥𝐴𝐷𝑀𝑂𝐴 + 𝑥𝑀𝐴 → 𝑥𝑇𝑀𝑂𝐴 + 𝑥𝐴𝐴 

𝑥𝐴𝐷𝑀𝑂𝐴 + 𝑥𝐴𝐴 → 𝑥𝐷𝑀𝑂𝐴 + 𝑥𝑀𝐴 

 

(Equation 7-12) 

The predicted data from the CRN is plotted against the experimental data and is shown 

in Figure 7.5-2: 

 

Figure 7.5-2 Predicted and experimental concentration data against time for Run 7-2 

The poor fit of the predicted concentration data to the experimental data is apparent 

from the Figure. Similar to Run 7-1, the experimental data is contaminated by noise or 

inaccurate measurements. Table 7.5-4 tabled the concentration data of Exp 2. 

𝒕 
Concentration data (mol/L) 

[𝒙𝑻𝑴𝑶𝑨] [𝒙𝑻𝑴𝑶𝑨] [𝒙𝑫𝑴𝑶𝑨] [𝒙𝑻𝑶𝑨] 
[𝒙𝑻𝑴𝑶𝑨] + [𝒙𝑻𝑴𝑶𝑨]
+ [𝒙𝑫𝑴𝑶𝑨] + [𝒙𝑻𝑶𝑨] 

10 1.4643 0.1743 0.0020 0.0000 1.6406 

20 1.6058 0.3384 0.0130 0.0000 1.9572 

30 1.1700 0.3421 0.0207 0.0000 1.5328 

40 1.2613 0.4506 0.0363 0.0000 1.7482 

50 1.1031 0.4755 0.0486 0.0000 1.6272 

60 1.1253 0.5339 0.0632 0.0000 1.7223 
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𝒕 
Concentration data (mol/L) 

[𝒙𝑻𝑴𝑶𝑨] [𝒙𝑻𝑴𝑶𝑨] [𝒙𝑫𝑴𝑶𝑨] [𝒙𝑻𝑶𝑨] 
[𝒙𝑻𝑴𝑶𝑨] + [𝒙𝑻𝑴𝑶𝑨]
+ [𝒙𝑫𝑴𝑶𝑨] + [𝒙𝑻𝑶𝑨] 

80 1.0522 0.5064 0.0729 0.0000 1.6315 

120 0.9132 0.5881 0.1091 0.0030 1.6134 

140 0.8623 0.5896 0.1198 0.0048 1.5766 

160 0.9123 0.6324 0.1345 0.0063 1.6856 

180 0.7734 0.5768 0.1361 0.0079 1.4942 

210 0.8659 0.6476 0.1591 0.0105 1.6831 

240 1.0046 0.7628 0.1938 0.0147 1.9759 

270 0.8816 0.6944 0.1865 0.0163 1.7788 

300 0.8234 0.6596 0.1858 0.0180 1.6868 

330 0.8604 0.6927 0.1955 0.0202 1.7688 

360 0.8275 0.6923 0.2055 0.0231 1.7484 

390 0.7904 0.6852 0.2137 0.0262 1.7155 

420 0.7910 0.7108 0.2253 0.0288 1.7559 

450 0.7434 0.6666 0.2171 0.0282 1.6553 

480 0.7008 0.6443 0.2156 0.0299 1.5905 

540 
0.7408 0.6857 0.2284 0.0317 1.6865 

1440 
0.6788 0.6989 0.2752 0.0495 1.7024 

Table 7.5-4 Concentration data for Exp 2 

The molar balance ranged from 1.4942 to 1.9759 and such errors will cause any 

predicted concentration data that is bound by material balance to not be able to fit to 

the experimental data. 

Again similar to Run 7-1 and Run 7-2, Run 7-3 does not obtain all the reactions in the 

expected CRN. It only managed to elucidate 3 of the 6 reactions and include 2 

additional unexpected reactions. The two reactions is the same as those in Run 7-3 

and as explained previously, they are combination reactions of the reaction in the 

expected CRN. The plot of the predicted concentration of the best individual from the 

run and experimental data is done in Figure 7.5-3. 
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Figure 7.5-3 Predicted and experimental concentration data against time for Run 7-3 

The fit of the predicted concentration to the experimental data for Run 7-3 is much 

better as compared to those in Run 7-1 and Run 7-2 as can be observed from the 

Figures. The experimental concentration data is shown in Table 7.5-5 Concentration 

data for Exp 3. 

𝒕 
Concentration data (mol/L) 

[𝒙𝑻𝑴𝑶𝑨] [𝒙𝑻𝑴𝑶𝑨] [𝒙𝑫𝑴𝑶𝑨] [𝒙𝑻𝑶𝑨] 
[𝒙𝑻𝑴𝑶𝑨] + [𝒙𝑻𝑴𝑶𝑨]
+ [𝒙𝑫𝑴𝑶𝑨] + [𝒙𝑻𝑶𝑨] 

10 1.2418 0.2079 0.0100 0.0000 1.4596 

15 1.3080 0.2978 0.0202 0.0000 1.6260 

20 1.1162 0.3177 0.0270 0.0000 1.4609 

25 0.9521 0.3291 0.0322 0.0000 1.3134 

30 0.9710 0.3721 0.0425 0.0000 1.3857 

35 0.9187 0.3947 0.0523 0.0006 1.3662 

40 0.8506 0.4008 0.0557 0.0010 1.3081 

45 0.9285 0.4565 0.0692 0.0016 1.4558 

50 0.8449 0.4572 0.0789 0.0022 1.3832 

90 0.8445 0.5085 0.1144 0.0057 1.4731 

150 0.6882 0.5422 0.1532 0.0111 1.3947 

240 0.5998 0.5857 0.1701 0.0233 1.3788 
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𝒕 
Concentration data (mol/L) 

[𝒙𝑻𝑴𝑶𝑨] [𝒙𝑻𝑴𝑶𝑨] [𝒙𝑫𝑴𝑶𝑨] [𝒙𝑻𝑶𝑨] 
[𝒙𝑻𝑴𝑶𝑨] + [𝒙𝑻𝑴𝑶𝑨]
+ [𝒙𝑫𝑴𝑶𝑨] + [𝒙𝑻𝑶𝑨] 

300 0.6600 0.5889 0.2137 0.0312 1.4939 

Table 7.5-5 Concentration data for Exp 3 

The molar balance for Exp 3 is much more balanced than when compared to Exp 1 

and Exp 2. Although it has a spike at one single data point to 1.6260, the data pre-

processing would have smoothened this data point out.  

7.6 Experimental data adjustment 

For further more meaningful investigations into the capability of the automated system, 

the concentration data has to be adjusted as at the current level, the errors in the data 

is too overwhelming to produce a good fit for the predicted concentration data. This 

adjustment is done with the knowledge that it will make the CRN deduced not 

applicable for the original experimental data as the data has essentially been modified. 

However, the adjusted data can still serve as a good test for the automated system. 

The adjustment is done by first classifying the addition of all the concentration data in 

each data point as 

ℎ𝑡 = [𝑥𝑇𝑀𝑂𝐴]𝑡 + [𝑥𝑇𝑀𝑂𝐴]𝑡 + [𝑥𝐷𝑀𝑂𝐴]𝑡 + [𝑥𝑇𝑂𝐴]𝑡 
 

(Equation 7-13) 

Taking the mean of ℎ𝑡 

ℎ̅ =
∑ ℎ𝑡

𝑁𝑡
0

𝑁𝑡
 (Equation 7-14) 

The difference of each data points ℎ𝑡 to ℎ̅ 

𝑑𝑡 = ℎ̅ − ℎ𝑡 (Equation 7-15) 

Taking the weight of each of the concentration data, 𝑊[𝑥𝑖]𝑡
 as compared to the other 

concentration data of the same data point 

𝑊[𝑥𝑖]𝑡
=

[𝑥𝑖]𝑡
ℎ𝑡

 (Equation 7-16) 

The adjusted concentration data, [𝑥�̃�]𝑡 can then be made by the following formula 

[𝑥�̃�]𝑡 = 𝑊[𝑥𝑖]𝑡
𝑑𝑡 + [𝑥𝑖]𝑡 (Equation 7-17) 

This will ensure all the adjusted concentration data point will be balanced materially. 

Each of the adjusted concentration data is adjusted according to how large their value 

is compare to other concentration data of the same data point. The larger their weight, 
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the bigger adjustments they will experienced compared to the other concentration data 

of the same data point. Table 7.6-1 shows the adjusted concentration data of Exp 1.  

𝒕 
Concentration data (mol/L) 

[𝒙𝑻𝑴𝑶𝑨] [𝒙𝑻𝑴𝑶𝑨] [𝒙𝑫𝑴𝑶𝑨] [𝒙𝑻𝑶𝑨] 
[𝒙𝑻𝑴𝑶𝑨] + [𝒙𝑻𝑴𝑶𝑨]
+ [𝒙𝑫𝑴𝑶𝑨] + [𝒙𝑻𝑶𝑨] 

20 1.3892 0.2413 0.0182 0.0000 1.64878 

40 1.2667 0.3469 0.0352 0.0000 1.64878 

60 1.1779 0.4198 0.0511 0.0000 1.64878 

80 1.1106 0.4710 0.0657 0.0015 1.64878 

120 1.0175 0.5363 0.0917 0.0033 1.64878 

142 0.9806 0.5594 0.1046 0.0043 1.64878 

180 0.9312 0.5870 0.1246 0.0059 1.64878 

240 0.8760 0.6122 0.1519 0.0086 1.64878 

270 0.8550 0.6199 0.1640 0.0099 1.64878 

330 0.8211 0.6296 0.1855 0.0126 1.64878 

360 0.8071 0.6325 0.1951 0.0140 1.64878 

420 0.7835 0.6360 0.2124 0.0168 1.64878 

480 0.7641 0.6373 0.2277 0.0197 1.64878 

1000 0.6716 0.6219 0.3070 0.0483 1.64878 

Table 7.6-1 Adjusted concentration data of Exp 1 

The most significant change is that all the datasets now add up to the same molar 

balance. The same is done Exp 2 and Exp 3 and using these datasets, the automated 

system is tested further. 

7.7 Testing the experimental data using automated system (version 2) using 

adjusted data 

The adjusted data obtained in Section 7.6 is then tested using the automated system 

(version 2) again. The details of the run is as Table 7.7-1: 

Run 
Experimental data 

source 

7-4 Adjusted Exp 1 

7-5 Adjusted Exp 2 

7-6 Adjusted Exp 3 

Table 7.7-1 Run details for Run 7-4 to Run 7-6 



119 Application on Experimental Data 
 

The automated system run parameters remain the same as previous. 

The results is presented in Table 7.7-2: 

Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

7-4 

[
 
 
 
 
 
−1 1 0 0 −1 1
1 −1 0 0 1 −1
0 0 1 −1 1 −1

−1 2 −1 0 0 0
1 −1 −1 1 0 0
1 −2 1 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.0040 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0013 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0013 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0079 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0007 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  

𝑘6 = 0.0042 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

2.5927 

7-5 

[
 
 
 
 
 
−1 1 0 0 −1 1
1 −1 0 0 1 −1
0 0 −1 1 −1 1

−1 2 −1 0 0 0
1 −2 1 0 0 0
0 −1 2 −1 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.0047 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0015 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0011 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0082 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0039 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  

𝑘6 = 0.0035 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

4.4383 

7-6 

[
 
 
 
 
 
−1 1 0 0 −1 1
1 −1 0 0 1 −1
0 −1 1 0 −1 1
0 1 −1 0 1 −1
0 0 −1 1 −1 1

−1 2 −1 0 0 0 ]
 
 
 
 
 

 

𝑘1 = 0.0101 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0073 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0055 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0014 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0119 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  

𝑘6 = 0.0056 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

1.0166 

Table 7.7-2 Results for Run 7-4 to Run 7-6 

It can be concluded from the results presented in Table 7.7-2 shows similar behaviour 

to those in Table 7.5-2. Run 7-4, Run 7-5 and Run 7-6 all did not manage to elucidate 

the expected CRN and had as well introduced reactions that are in essence, 

combination of reactions from the expected CRN. This is similar to Run 7-1, Run 7-2 

and Run 7-3 which also have the similar type of results but using data before 

adjustment. It can be observed however that the fitness function for Run 7-4, Run 7-5 

and Run 7-6 is significantly lower than those of Run 7-1, Run 7-2 and Run 7-3 and this 

is down to using data that are actually molar balanced. This can be seen in the 

comparison of the concentration profile of the Run 7-4 of the experimental and 

predicted data. 
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Figure 7.7-1 Predicted and experimental concentration data against time for Run 7-4 

Figure 7.7-1 shows how closely the predicted concentration data follows the 

concentration data of the adjusted experimental data. This shows that the automated 

system (version 2) can produce CRNs that can closely follow the concentration profile 

provided the data used is balanced or does not deviate from the balance significantly. 

The runs in Table 7.7-2 also present the limitation of automated system (version 2) in 

handling this type of data even when it has been molar balanced. However, it has to 

be noted that the method to molar balanced the data may not be accurate as it is based 

on averages and in reality the molar balance could have been skewed from chemical 

species to the other based on the noise that is causing the inaccuracies in the data.  

7.8 Including ‘fake’ chemical species into the concentration data 

Using the adjusted concentration data, the capability of the automated system (version 

2) to operate with wrong information is tested. As it is needed to provide the molecular 

weight of each of the participating chemical species at the start of the run, this test will 

examine what happened when automated system (version 2) is provided with 

information of chemical species that are unrelated to the CRN at all. The ‘fake’ 

chemical species molecular weight is a combination of molecular weights of 

participating chemical species.  
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Two ‘fake’ chemical species is added into the system and will be called as chemical A 

and chemical B. The molecular weight these two are 

Chemical Species A B 

Molecular Weight 178 204 

Table 7.8-1 Molecular weight for 'fake' chemical species 

Naturally, both of these chemical species are designated as unmeasured chemical 

species. Details of the runs is as Table 7.8-2, 

Run 
Experimental data 

source 

‘Fake’ chemical 

species 

7-7 Adjusted Exp 1 A and B 

7-8 Adjusted Exp 2 A and B 

7-9 Adjusted Exp 3 A and B 

Table 7.8-2 Run details for Run 7-7 to Run 7-9 

The automated system run parameters remain the same as previous. 

The results of the run is shown in the table below. The 7th and 8th column in the 

stoichiometric matrix refers to chemical species A and B accordingly. 

Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

7-7 

[
 
 
 
 
 
 
 
−1 1 0 0 −1 1 0 0
0 1 −2 1 0 0 0 0
0 −1 2 −1 0 0 0 0
1 −2 1 0 0 0 0 0
0 −1 0 0 −1 0 0 1

−1 1 1 −1 0 0 0 0
1 0 0 0 0 0 −1 0
0 0 0 0 1 −1 1 −1]

 
 
 
 
 
 
 

  

𝑘1 = 0.0035 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0241 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0456 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0034 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0010 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  

𝑘6 = 0.0464 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘7 = 0.0096 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘8 = 0.0106 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

4.595 

7-8 

[
 
 
 
 
 
 
 
−1 1 0 0 −1 1 0 0
0 1 −2 1 0 0 0 0

−1 1 1 −1 0 0 0 0
1 −1 −1 1 0 0 0 0
0 0 0 0 −1 1 −1 1
0 1 0 0 0 1 −1 0
0 −1 2 −1 0 0 0 0
1 −2 1 0 0 0 0 0]

 
 
 
 
 
 
 

 

𝑘1 = 0.0040 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.1013 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.8758 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0611 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.8706 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  

𝑘6 = 0.0002 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘7 = 0.2136 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘8 = 0.0063 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

14.7809 
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Run Best Performing Individual Reaction Rate Constant 
Fitness 

Function 

7-9 

[
 
 
 
 
 
 
 
−1 1 0 0 −1 1 0 0
−1 2 −1 0 0 0 0 0
−1 1 1 −1 0 0 0 0
0 1 −2 1 0 0 0 0
1 0 0 0 2 −1 0 −1
0 0 1 0 0 1 0 −1
1 −2 1 0 0 0 0 0
0 0 1 −1 1 −1 0 0 ]

 
 
 
 
 
 
 

 

𝑘1 = 0.0085 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘2 = 0.0239 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘3 = 0.0536 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘4 = 0.0571 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘5 = 0.0081 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1  

𝑘6 = 0.9876 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘7 = 0.0143 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

𝑘8 = 0.0514 𝑑𝑚3𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

3.9881 

Table 7.8-3 Results for Run 7-7 to Run 7-9 

From Table 7.8-3, it can be observed that all three of runs did not elucidate all of the 

reactions from expected CRN. The ‘fake’ chemical species is also used by the 

automated system to model the final CRN structure. These results show how 

aggressive the automated system cannot differentiate between involved and 

uninvolved chemical species among those that are provided to them. This is within 

expectation, after without any data to compare to, automated system (version 2) is not 

restricted by anything and will use whatever it can use to get a good fit. The following 

figure shows what happens when the predicted concentration data is plotted onto the 

adjusted experimental concentration data. 
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Figure 7.8-1 Plot of predicted concentration and experimental data against time for Run 7-7 to Run 7-9 

Looking at Figure 7.8-1, the fit is poor even when the concentration data has been 

adjusted especially for Run 7-8 and this can only be attributed to the presence of the 

‘fake’ chemical species. In comparison, Figure 7.7-1 shows that without the effect of 

the ‘fake’ chemical species, automated system (version 2) will be able to elucidate a 

CRN with a good fit to the experimental data. 

When exposed to ‘fake’ chemical species, automated system (version 2) is not able to 

elucidate most of the reactions from the expected CRN. It even included some 

reactions where the ‘fake’ chemical species plays a part in the final CRN of the run. 

The same datasets are used again but automated system (NSGA-II) is used to 

elucidate the CRN. The details of the run as follows: 
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Run 
Experimental data 

source 

‘Fake’ chemical 

species 

7-7 Adjusted Exp 1 A and B 

7-8 Adjusted Exp 2 A and B 

7-9 Adjusted Exp 3 A and B 

Table 7.8-4 Run details for Run 7-7 to Run 7-9 

The run parameters for automated system (NSGA-II) remain the same as the one used 

in the Chapter 6. The results of the run are presented in the Table 7.8-5.  

Run 
Top 10 Most Occurring 

Reactions 
No. of 

Occurrence 
Part of Actual 

CRN 

7-7 

[−𝟏 𝟏 𝟎 𝟎 −𝟏 𝟏 𝟎 𝟎] 
[1 −2 1 0 0 0 0 0] 

[0 −1 0 0 −1 0 0 1] 
[0 1 −2 1 0 0 0 0] 
[1 0 0 0 1 0 −1 0] 

[0 −1 2 −1 0 0 0 0] 
[−1 1 1 −1 0 0 0 0] 
[0 0 0 0 1 −1 1 −1] 
[𝟎 𝟎 −𝟏 𝟏 −𝟏 𝟏 𝟎 𝟎] 
[𝟎 𝟎 𝟏 −𝟏 𝟏 −𝟏 𝟎 𝟎] 

130 
103 
75 
72 
59 
58 
46 
35 
33 
29 

Yes 
No 
No 
No 
No 
No 
No 
No 
Yes 
Yes 

7-8 

[−𝟏 𝟏 𝟎 𝟎 −𝟏 𝟏 𝟎 𝟎] 
[1 −2 1 0 0 0 0 0] 
[0 1 −2 1 0 0 0 0] 
[0 1 0 0 0 1 −1 0] 

[−1 1 1 −1 0 0 0 0] 
[𝟎 𝟎 −𝟏 𝟏 −𝟏 𝟏 𝟎 𝟎] 
[𝟎 𝟎 𝟏 −𝟏 𝟏 −𝟏 𝟎 𝟎] 
[𝟎 𝟏 −𝟏 𝟎 𝟏 −𝟏 𝟎 𝟎] 
[0 0 0 0 −1 1 −1 1] 
[1 1 0 0 2 0 −1 −1] 

133 
120 
103 
91 
72 
60 
59 
29 
29 
25 

Yes 
No 
No 
No 
No 
Yes 
Yes 
Yes 
No 
No 

7-9 

[−1 0 0 0 −1 0 1 0] 
[0 1 0 0 0 1 −1 0] 
[1 −2 1 0 0 0 0 0] 

[0 0 1 0 −1 2 −1 0] 
[−1 2 −1 0 0 0 0 0] 
[1 −1 0 0 0 0 −1 1] 
[1 0 0 1 0 2 −1 −1] 
[0 1 −2 1 0 0 0 0] 

[−𝟏 𝟏 𝟎 𝟎 −𝟏 𝟏 𝟎 𝟎] 
[−1 1 1 −1 0 0 0 0] 

125 
107 
100 
75 
68 
62 
61 
60 
35 
32 

No 
No 
No 
No 
No 
No 
No 
No 
Yes 
No 

Table 7.8-5 Results for the Run 7-7 to Run 7-9 

From Table 7.8-5, it can be seen that Run 7-7, Run 7-8 and Run 7-9, do not obtain all 

the reactions from the expected CRN. There are only 3 of the 6 expected reactions at 

the top 10 most occurring reactions for Run 7-7.  As for Run 7-8, it does manage to 
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obtain 4 out of 6 of the reactions from the expected CRN and finally Run 7-9 only 

manages to have one of the expected reactions in its top 10 most occurring reaction. 

All the three runs also have reactions that the ‘fake’ chemical species play a part in 

which showed that automated system (NSGA-II) cannot distinguish between involved 

or uninvolved chemical species  

7.9 Summary 

The reaction of trimethyl orthoacetate and allyl alcohol is discussed and the expected 

chemical reaction network for the reaction is presented. The experimental data is then 

run using automated system (version 2) and it was discovered that there is material 

imbalance in the concentration data which could be due to contamination or any errors 

that occur during the experimental stage. Adjustments are done on the experimental 

data sets so that further testing on it can be conducted. With the adjustment done, it is 

shown that the automated system (version 2) can elucidate the CRN with a good fit to 

the concentration profile of the experimental data so long it does not deviate too 

significantly from the molar balance. The next test is done with the presence of two 

‘fake’ chemical species. The inclusion of the ‘fake’ chemical species severely affects 

the performance of both automated system (version 2) and automated system (NSGA-

II). The next course of action is to try to run all the batches together and see whether 

with more data, it will improves the performance of the automated systems. 
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Chapter 8. Implement Batch Running into the Automated 
System for Chemical Reaction Elucidation 

8.1 Overview 

This chapter detail the work to mitigate the effect of ‘overfitting’ of the generated CRNs 

to the single dataset used to elucidate the CRN by using multiple datasets with different 

initial conditions and with multiple process temperature. Modifications are done to the 

algorithm in the automated system to accommodate for the changes so that it can 

evaluate datasets with different initial conditions and temperature. The automated 

system is then tested against the datasets for RN1 and RN2 that had different initial 

conditions and against the datasets for the experimental data for TMOA and AA that 

had different process temperatures. The results of the modified automated system are 

then presented at the end of the chapter. 

8.2 Introduction 

In the previous chapters, through the different iterations of the automated system that 

is develop have all suffer from high ‘overfitting’ problems. One of the reasons is the 

lack of the variability in the data that was used to elucidate the CRN which helps to 

propagate the effect of noise in the system. Introducing datasets that incorporate a 

larger range of concentration profiles changes into the system will help reduce the 

effect of the noise on a single dataset. This is because the noise from one dataset will 

not be compatible with another dataset and vice versa, causing their impact to be 

reduced in the final elucidated CRN. To implement these, the automated system’s 

algorithm need to be augmented to include running datasets with different initial 

conditions and different temperatures. The modifications to include different initial 

conditions datasets will be done first and tested on the datasets from RN1 and RN2 as 

discussed in Chapter 5 with 8% Gaussian noise and 2 unmeasured chemical species 

for each of the reaction networks. The final modification will be done on the automated 

system so that it will be able to run on datasets that belonged to different process 

temperatures such as the datasets from the adjusted experimental data for the reaction 

of TMOA and AA as presented in Chapter 7.  
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8.3 Modifications on automated system to include multiple batches with 

different initial conditions 

In order for the evaluation of concentration data from multiple batches with different 

initial batch concentrations, the automated system will need to determine the reaction 

rate constants for the reactions in the elucidated CRN that can be used across all the 

batches with different initial conditions. Figure 7.8-1 shows how the modifications is 

implemented to the automated system algorithm. 

 

Figure 8.3-1 Flowchart for automated system to handle multiple datasets with different initial conditions 

The modifications are done on the Tier 2 optimisation loop introduced in Chapter 5 

(Figure 5.3-1) during the estimation of the reaction rate constants. Every reaction rate 

constants that are to be considered in the Tier 2 optimisation loop will need to be tested 

against all of the concentration data from different batches compared to only one 

before the modifications. In the example in Figure 8.3-1
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, 3 different batches with different initial conditions are considered. If the reaction rate 

constants that are calculated are affected by the noise in Batch 1, it will unsuitable for 

the use for Batch 2 and so on. Based on this reasoning, this may help to reduce the 

impact of the noise in the system. The modifications can be done for automated system 

(version 2) and automated system (NSGA-II) but for the purpose of the testing out the 

modification alone, automated system (version 2) is modified.  

8.4 Results from modification to include multiple batches with different initial 

conditions 

8.4.1 Run set up and results 

RN1 and RN2 are used to test the modification. 

Run CRN Batch Unmeasured  Gaussian noise 

8-1 RN1 1,2,3,4 𝑥3 and 𝑥4 8% of max value 

8-2 RN2 1,2,3,4 𝑥3 and 𝑥4 8% of max value 

Table 8.4-1 Run details for Run 8-1 and 8-2 

The automated system’s parameters remains unchanged. Below is the result for the 

two runs. 
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Run Best Performing Individual Reaction Rate Constant 

8-1 

[
 
 
 
 
−2 1 0 0 0
0 −1 0 −1 1
2 0 0 1 −1
0 0 −1 1 0

−1 0 1 0 0 ]
 
 
 
 

 

𝑘1 = 0.1208 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.2707 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0057 𝑠−1 

𝑘4 = 0.1738 𝑠−1 

𝑘5 = 0.1886 𝑠−1  

8-2 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
1 0 0 1 0 −1
0 −1 −1 0 1 0
1 1 −1 0 1 −1

−1 0 0 1 2 −1]
 
 
 
 
 

 

𝑘1 = 0.2074 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1504 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0485 𝑠−1 

𝑘4 = 0.1000 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0002 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0001 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 
Table 8.4-2 Results for Run 8-1 and Run 8-2 

Fitness function is not useful for comparison against Run 8-1 and Run 8-2 because 

they are of different CRN. It is also not useful to use to compare against previous runs 

using previous versions of the automated system because of the nature of the this 

automated system which run all 3 datasets at the same time. 

8.4.2 Discussion for Run 8-1 

Table 8.4-2 shows that for Run 8-1, all of the reactions from RN1 is elucidated by the 

automated system and it also contains a reaction that is not part of RN1. The unrelated 

reaction, the 3rd reaction has only a reaction rate of 0.0057 𝑠−1 which is relatively small 

as compared to the other reactions.  

Table 8.4-3 shows a reduced view of Table 5.7-2 which are runs that are done on 

single batch basis using automated system (version 2) with the same level of noise for 

comparison purposes.  

Run 
Best Performing 

Individual 
Reaction Rate Constant 

5-34 

[
 
 
 
 
−2 1 0
0 −1 0

−1
0

−1

0
−1
1

0
0
0

    

0
−1
1
2

−1

    

0
1
0
0
0]
 
 
 
 

 

𝑘1 = 0.4581 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1422 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘3 = 0.0561 𝑠−1  

𝑘4 = 0.0072 𝑠−1 

𝑘5 = 0.5303 𝑠−1 

5-36 

[
 
 
 
 
−2 1 0
2 0 −1
0

−1
0

−1
0
0

−1
0
1

    

0
−1
0
1

−1

    

0
0
1
0
0]
 
 
 
 

 

𝑘1 = 0.1111 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.0682 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘3 = 0.2333 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘4 = 0.2035 𝑠−1 

𝑘5 = 0.2109 𝑠−1 



130 Implement Batch Running into the Automated System for Chemical 
Reaction Elucidation 

 

Run 
Best Performing 

Individual 
Reaction Rate Constant 

5-38 

[
 
 
 
 
−2 1 0
−1 0 1
1
0
1

0
−1
−1

−1
−1
1

    

0
0
0
0
0

    

0
0
0
1
0]
 
 
 
 

 

𝑘1 = 0.1766 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘2 = 0.1693 𝑠−1  

𝑘3 = 0.0051 𝑠−1  

𝑘4 = 0.1012 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0056 𝑠−1 

5-40 

[
 
 
 
 

0 −1 2
−1 0 0
0
0
2

−1
1
0

−1
0
2

    

0
1
0

−2
−1

    

0
0
1
0

−1]
 
 
 
 

 

𝑘1 = 0.0120 𝑠−1  

𝑘2 = 0.2798 𝑠−1  

𝑘3 = 0.3420 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.5178 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0777 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 
Table 8.4-3 Summarised results for Run 5-34, 5-36, 5-38 and 5-40 

Previously discussed in Section 5.7, the performance of the automated system 

(version 2) is highly affected by the presence of noise in the system and presence of 

unmeasured chemical species, causing it unable to elucidate the entire CRN 

effectively. From the 4 runs presented in Table 8.4-3, none of them managed to 

elucidate the CRN that successfully identified all the involved reactions in RN1. 

In comparison, Run 8-1 is much more successful in identifying all the reactions with 

just an additional reaction that are not part of the original RN1 which only have a 

marginally small effect on the performance of the entire elucidated CRN. 

8.4.3 Discussions for Run 8-2 

The results for Run 8-2 is also presented in Table 8.4-2 which again managed to 

elucidate all the reactions within RN2. It does however contain 2 additional reactions 

that do not belong to RN2 which similar to Run 8-1 have a very small value and have 

insignificant effect on the overall CRN.  

Table 8.4-4 shows a reduced view of Table 5.7-5 which are runs that are done on 

single batch basis using automated system (version 2) with the same level of noise for 

comparison purposes.  

Run Best Performing Individual Reaction Rate Constant 

5-42 

[
 
 
 
 
 
−2 1 0 1 0 0
0 0 1 −2 0 1
0 −1 2 0 0 0

−1 1 1 0 0 0
0 −2 0 1 0 0
0 0 1 −1 1 0]

 
 
 
 
 

 

𝑘1 = 0.1258 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1784 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1769 𝑠−1 

𝑘4 = 0.1304 𝑠−1 

𝑘5 = 0.1752 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.1174 𝑠−1 
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Run Best Performing Individual Reaction Rate Constant 

5-44 

[
 
 
 
 
 
−1 −1 1 1 0 0
0 −1 −1 0 1 0

−1 0 0 −1 0 1
2 1 2 0 −1 −1

−1 2 −1 0 0 0
1 1 −1 −1 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.1862 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.0861 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.1427 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0779 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0458 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0348 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

5-46 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
1 −1 0 −1 1 0
2 1 −1 0 0 −1
1 1 0 −2 1 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

𝑘1 = 0.2643 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1349 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0835 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0115 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0469 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0 

5-48 

[
 
 
 
 
 
−1 −1 1 1 0 0
−1 0 0 −1 0 1
1 −1 0 −1 1 0
1 1 −1 −1 0 0
0 1 0 −2 2 0
0 2 0 −1 0 0]

 
 
 
 
 

 

𝑘1 = 0.2176 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘2 = 0.1576 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘3 = 0.0973 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘4 = 0.0596 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1 

𝑘5 = 0.0235 𝑑𝑚3𝑚𝑜𝑙−1𝑠−1  

𝑘6 = 0.0082 𝑠−1 
Table 8.4-4 Summarised results for Run5-42, 5-44, 5-46 and 5-48. 

From Table 8.4-4 and as previously discussed in Section 5.7, the previous algorithm 

did not manage to unearth the complete set of reactions for RN2. In comparison, Run 

8-2 shows that the newly modified algorithm for the automated system can elucidate 

all the reactions for RN2. Again, similar to Run 8-1, there are unrelated reactions to 

RN2 but these reactions have relatively small value in reaction rate constants and thus 

have insignificant impact to the overall performance of the RN2.  

8.4.4 Summary of results for Run 8-1 and Run 8-2 

In summary, the adjustment to the automated system that enables it to evaluate 

datasets with different initial conditions improve its ability in elucidating all the reactions 

in RN1 and RN2. This is a much better performance in comparison to automated 

system (version 2) with the results discussed in Section 5.7, which did not manage to 

elucidate the complete CRN of RN1 and RN2. However, there are still unrelated 

reaction to RN1 and RN2 that are misidentified in the Run 8-1 and Run 8-2 but they do 

have a relatively small reaction rate constants which give them very small impact to 

the overall performance of the CRN. The user of the automated system can also make 

further studies to investigate on these unrelated reactions to see the viability of the 

reactions in order to rule them out. 
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8.5 Modifications on automated system to include multiple batches with 

different process temperatures 

Another method to increase variability in the input data to the automated system is to 

use datasets that belonged to batches that are run at different temperatures. The 

increase in variability in the datasets will suppress the effect of noise and increase the 

significance of the underlying reactions.  

Due to the fact that each of the datasets comes from batches operated at different 

temperatures, the reaction rate constants for each of the reactions will be different from 

one batch to another. The reaction rate constants are after all dependent on the 

process temperature as shown in the Arrhenius equation in Equation 2-19.  

Figure 8.5-1 shows the process flow of the modified automated system that 

incorporates the evaluation of datasets from batches operated at different 

temperatures. 

 

Figure 8.5-1 Flowchart for automated system to handle multiple datasets with different operating temperatures 

For this modification, each of the batches with different operating temperature are 

evaluated separately. For the example shown in Figure 8.5-1, there are 3 batches with 

different operating temperature evaluated at the same time. Each CRN that is 
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evaluated will be optimised for its reaction rate constants for each of the batch with 

different operating temperature. So, in the example in Figure 8.5-1, Batch 1 will have 

its own set of reaction rate constants, Batch 2 and Batch 3 likewise. The batches data 

will be reconstructed based on the determined reaction rate constants and their fitness 

will be used to evaluate the performance of the candidate CRN. 

8.6 Results from modification to include multiple batches with different 

operating temperatures 

8.6.1 Run set up and results 

The adjusted TMOA and AA experimental data prepared in Section 7.6 are used to 

test out the modified automated system. All 3 datasets from batches operating at 80oC, 

90oC and 100oC are used to elucidate the CRN for the reactions between TMOA and 

AA. Similar to Section 7.7, 2 additional ‘fake’ chemical species A and B are introduced 

into the system to test its capability. 

 

Run Reaction Batch Unmeasured  ‘Fake’ chemical species 

8-3 TMOA and 

AA 

Exp 1, Exp 2 

and Exp 3 

AA and MA Chemical species A and B 

as introduced in Section 7.7 

Table 8.6-1 Run details for Run 8-3 

The automated system’s parameters remains unchanged. Table 8.6-2 shows the 

results from the run. 

Run Best Performing Individual 

8-3 

[
 
 
 
 
 
 
 
−1 1 0 0 −1 1 0 0
1 −1 0 0 1 −1 0 0
0 −1 1 0 −1 1 0 0

−1 2 −1 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

  

Table 8.6-2 Results for Run 8-3 

Similar to Run 8-1 and Run 8-2, fitness function data is not presented because it does 

not serve as a good comparison for previous runs because it consist of 3 different 

datasets in one. The reaction rate constants are also dissimilar from one batch to 

another and no comparison can be derived from it. 
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8.6.2 Discussion and summary for Run 8-3 

The results presented in Table 8.6-2 shows that the modified algorithm had managed 

to elucidate 3 of the 6 reactions from the expected reaction between TMOA and AA as 

presented in Equation 7-2 which is shown again below for better reference. 

𝑽𝑬𝒙𝒑𝟏 =

[
 
 
 
 
 
−1 1 0 0 −1 1
1 −1 0 0 1 −1
0 −1 1 0 −1 1
0 1 −1 0 1 −1
0 0 −1 1 −1 1
0 0 1 −1 1 −1]

 
 
 
 
 

 (Equation 7-2) 

The elucidated CRN shown in Table 8.6-2 contained 3 reactions that are combination 

of reactions in Equation 7-2. The 4th reaction in the elucidated CRN is combination of 

1st and 4th reaction in Equation 7-2, the 5th reaction in the elucidated CRN is 

combination of the 2nd and 3rd reaction in Equation 7-2 and the 6th reaction in the 

elucidated CRN is combination of 4th and 5th reaction. Through this combination, it can 

be seen that the elucidated CRN still did not manage to capture all the reactions but 

did manage to capture the dynamics of at least 5 reactions of the 6 reactions in 

Equation 7-2.  

For comparison purposes, the elucidated CRN in Table 8.6-2 is compared against the 

CRNs elucidated for Run 7-7, Run 7-8 and Run 7-9 which were presented in Section 

7.7 and the summary of the runs are presented again below in Table 8.6-3. 

Run Best Performing Individual 

7-7 

[
 
 
 
 
 
 
 
−1 1 0 0 −1 1 0 0
0 1 −2 1 0 0 0 0
0 −1 2 −1 0 0 0 0
1 −2 1 0 0 0 0 0
0 −1 0 0 −1 0 0 1

−1 1 1 −1 0 0 0 0
1 0 0 0 0 0 −1 0
0 0 0 0 1 −1 1 −1]

 
 
 
 
 
 
 

  

7-8 

[
 
 
 
 
 
 
 
−1 1 0 0 −1 1 0 0
0 1 −2 1 0 0 0 0

−1 1 1 −1 0 0 0 0
1 −1 −1 1 0 0 0 0
0 0 0 0 −1 1 −1 1
0 1 0 0 0 1 −1 0
0 −1 2 −1 0 0 0 0
1 −2 1 0 0 0 0 0]
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Run Best Performing Individual 

7-9 

[
 
 
 
 
 
 
 
−1 1 0 0 −1 1 0 0
−1 2 −1 0 0 0 0 0
−1 1 1 −1 0 0 0 0
0 1 −2 1 0 0 0 0
1 0 0 0 2 −1 0 −1
0 0 1 0 0 1 0 −1
1 −2 1 0 0 0 0 0
0 0 1 −1 1 −1 0 0 ]

 
 
 
 
 
 
 

 

Table 8.6-3 Summarised results for Run 7-7 to Run 7-9 

The main difference that can be captured is that the ‘fake’ chemical species is not 

present at all in the elucidated CRN with the modified automated system which is a 

vast improvement against the previous runs with automated system (version 2). Run 

7-7, Run 7-8 and Run 7-9 are not able to distinguish between involved chemical 

species and those that are not involved in the system but when given more variable 

datasets, Run 8-3 managed to exclude the ‘fake’ chemical species.  

8.7 Modifications on automated system to include multiple batches with 

different initial conditions and different operating temperatures 

From the results presented in Section 8.4 and Section 8.6, it can be seen the benefits 

of using more datasets with a larger range of variations through having different initial 

conditions and operating temperatures. It is therefore safe to assume that combining 

the both of the methods will have a massive improvement in the performance of the 

automated system in the discovery of the CRN. The flowchart shown in Figure 8.7-1.  
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Figure 8.7-1 Flowchart for automated system that can analyse datasets from batches with different initial conditions 
and operating temperatures 

The flowchart in Figure 8.7-1 represents the final form of the automated system that is 

develop in this work. The NSGA-II algorithm presented in Chapter 6 can still be 

included into this final form by including the algorithm in the reproduction stage in Tier 

1 of the automated system. NSGA-II will help to expand the possible number of 

reactions in the system for the user to determine their viability.  

Due to the lack of suitable datasets to test out the automated system’s final form, no 

investigation is conducted on the effectiveness of the automated system. Based on the 

positive results obtained from Section 8.4 and Section 8.6, it can be assumed that this 

system will perform better than those obtained in Section 8.4 and Section 8.6. 

Unfortunately, the work will be have to be done in future work when there is availability 

of suitable datasets. 

8.8 Summary 

It is clear that the modifications done to the automated system for it to process datasets 

that belonged to batches with different initial conditions simultaneously increases its 

performance in elucidating the CRN accurately. It had been shown to work with RN1 

and RN2 and able to elucidate all the reactions in both of the CRNs. There are some 
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unrelated reactions that are generated but these come with very small reaction rate 

constants and can be investigated further by the user to discount them from the CRNs. 

This is positive result in comparison to the results in Section 5.7 which did not manage 

to obtain all the reactions in the CRN. 

When the automated system is modified to take in process data from batches with 

different operating temperatures, it shows positive result of able to elucidate most of 

the reactions in the expected reaction and not being misdirected to include any ‘fake’ 

chemical species in the elucidated CRN. Similar to the previous modification, this is a 

positive direction as in comparison to the results obtained in Section 7.7 which is not 

able to differentiate between involved and uninvolved chemical species. 

Lastly, with both of the conclusion drawn on the modifications, it leads to the 

combination of both modifications to the automated system to form the final form of the 

automated system. It can be assumed that this automated system will be superior to 

the previous iterations of the automated system. Unfortunately, the system is not tested 

with any datasets due to the lack of a suitable one in this work. The work to prove the 

viability of the automated system final form will be left for future work. 
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Chapter 9. Discussion and Conclusion 

9.1 Discussions 

This thesis proposes and designs an automated system to facilitate in the discovery of 

chemical reaction network from the concentration data of chemical species in an 

isothermal chemical batch reactor. The automated system is designed based on 

genetic algorithm, an approach that has never been done before. It is noticed early on 

that the biggest challenge to the problem is calculating for the reaction rate constants.  

Linearisation of the solution for the reaction rate constants is done and made it possible 

to use multiple linear regression to solve for it. Small successes are achieved from it 

as the automated system is able to elucidate one of the two fictitious chemical reaction 

network tested in this work. It was later on proven not feasible because of multiple 

limitations such as unable to work with reversible reactions and inability to handle 

unmeasured chemical species in its elucidation work.  

Further modifications are done to the system by incorporating a second tier 

optimisation loop to the automated system using a non-linear optimiser to estimate and 

calculate the values of the reaction rate constants. The automated system is shown to 

be successful when dealing with datasets that has no noise present in the input 

concentration data. When noise is introduced, the automated system still managed to 

cope but started to miss reaction in its discovered network and including reaction that 

are not part of the chemical reaction network. This is down to ‘overfitting’ problem 

where the automated system will try to force the predicted concentration to fit the input 

concentration even if it is fitting to pure noise.  

‘Overfitting’ is a major issue when unmeasured chemical species is used. The 

automated system will fit the predicted data to the measured chemical species while 

ignoring the unmeasured chemical species because it lacks the data to do so. This 

results in highly fitted measured chemical species but terrible fit unmeasured chemical 

species. The final CRN structure suffers as a result of such behaviour. 

Multi objective optimisation is included into the automated system in order to curb its 

behaviour where it will only looked to increase fitness to the input concentration data. 

Average relative reactants’ molecular weight is introduced so the system is able to look 

for more diversity in its end result. This is important especially in the case where there 
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are unmeasured chemical species causing reactions from the actual chemical reaction 

network unable to perform well because it lacks the information of the unmeasured 

chemical species. With this, there is still a chance they get included in the final result 

of the runs. Tests run using the automated system with multi objective optimisation 

capability comes to the conclusion it may require more data in order to perform well. 

An experimental result from the reaction of trimethyl orthoacetate and allyl alcohol is 

used to test the automated system. It has been noted that the experimental data is 

poor in quality due to the large material imbalances detected within the data. However, 

the automated system still managed to elucidate most of the reaction from the 

expected chemical reaction network. Further tests were conducted by including ‘fake’ 

chemical species which does not participate in the reaction into the automated system. 

It proves that their presence will reduce the system’s performance and cause the 

automated system to even include reactions that contain those ‘fake’ chemical species 

in the end result.  

In Chapter 8, the automated system is further developed so that it will be able to handle 

datasets that consists of runs from multiple batches with different initial conditions. RN1 

and RN2 are used to test the automated system and the results had shown to be 

superior to the previous iterations of the automated system. All the reactions from the 

actual CRNs are elucidated and although the final CRN structure contains reactions 

that are not part of RN1 and RN2, it is noted that the values are relatively small enough 

that they have insignificant impact on the chemical reaction networks. The automated 

system is then further modified to handle data from multiple batches from different 

operating temperatures and adjusted experimental data for the reaction between 

trimethyl orthoacetate and allyl alcohol is used to test the system. It is discovered that 

the automated system is able to discern between involved and uninvolved chemical 

species as it does not elucidate the ‘fake’ chemical species that are introduced in the 

system. The final CRN structure that the automated system deduced is also 

comparable to the expected reaction between trimethyl orthoacetate and allyl alcohol 

with only one reaction missing. This again is a more positive results from work done in 

previous iterations of the automated system. A final form of the automated system is 

introduced at the end of the chapter which combines both of the modifications which is 

expected to perform better than any of the previous iterations of the automated system. 

However, the test for the performance of the final form is beyond the scope of this work 
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as there is a lack of suitable datasets to test the system on. This work will be left for 

future work.  

9.2  Conclusion 

The conclusions that can be drawn from this thesis are 

 Linear solution to reaction rate constants is possible but is highly sensitive to 

the content of the reactions and will require them to be linearly independent. 

 Automated system with two tier optimisation loop is capable of elucidating CRNs 

but suffers when noise is introduced into the system. 

 Presence of unmeasured chemical species will cause automated system to 

skew its fitting target towards the measured chemical species causing the 

fitness function on unmeasured chemical species to suffer.  

 Multi-objective optimisation is shown to be successful in create more diversity 

in the final result but is still unable to overcome the ‘overfitting’ issue. 

 Providing the automated system with larger variation in data by modifying the 

automated system to run the datasets from batches made with different initial 

conditions or different operating temperature simultaneously.  

Final conclusion of the thesis is that an automated system that can identify the involved 

reactions and elucidate the chemical reaction network through the use of genetic 

algorithm has been developed. The final form of the automated system although 

untested, is expected to be able to perform better than the previous iterations. This 

shows the viability of using evolutionary algorithm in progressing the work for the 

development of automated identification of complex chemical reaction networks and 

further work should be invested into development of a more efficient algorithm that can 

take in larger number of variables than those that had been considered in this thesis. 

9.3 Future work 

This work had shown the viability of genetic algorithm, one of the many possible 

options for evolutionary algorithms to assist in the elucidation of chemical reaction 

networks through data mining of the concentration data of chemical species.  

Two possible trajectories for future work can be considered, the first is to continue 

development of the work that had been presented in this thesis starting from the final 

form of the automated system shown in Chapter 8. The final form of the automated 
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system performance remains untested and should be the initial focus of the future 

work. It should be tested against more complex chemical reaction networks using 

datasets from batches with different initial conditions and different operating 

temperatures. This will undoubtedly unearthed further complications in the system and 

will need to be resolved. Further considerations needs to be made to increase the 

speed of the algorithm and the current system will take up substantial computational 

resource to converge to a result. Options may involve designing the codes to take into 

account parallel processing of several machines to complete the work, introduce 

additional rule sets to discount unviable chemical reaction networks through 

consideration of Gibb’s free energy of the reactions and use linear approximations of 

the reaction rate constants whenever possible. The linear approximations of the 

reaction rate constants can be done by isolating the reactions that consisted of only 

measured chemical species that are not involved in any other reactions. These isolated 

reactions’ reaction rate constants can then be approximated separately by using the 

multiple linear regression as discussed in Chapter 4. The identifiability of the reaction 

rate constants can be considered and those CRNs with non-identifiable reaction rate 

constants will not be considered to reduce the load of the system. Finally, it will be 

imperative to collect more datasets of a single chemical reaction network so that a 

sufficiently large training, validation and testing datasets can be set up to test if it helps 

to increase accuracy of the automated system.  

The second focus for future work will be to involve the use of different applications of 

the evolutionary algorithm such as evolutionary strategies, estimation of distribution 

algorithm and genetic expression programming. The differences in these algorithms to 

genetic algorithm is not major and the automated system developed in this thesis is 

transferable to other algorithms. The main aim of this future work is to compare the 

efficiencies of the algorithms and although genetic algorithm may be considered one 

of the easiest to understand, it may not necessarily the most efficient in terms of 

computational power. Further investigations on the impact of each of the algorithms on 

the final results should be made and if possible, combine the best portion of each 

algorithms to create a superior automated system for elucidation of chemical reaction 

networks. The work can further be extended beyond evolutionary algorithm to include 

swarm intelligence which involved algorithm such as ant colony optimisation and 

particle swarm optimisation. The end goal will be to develop an effective and efficient 

automated system through the investigations of all the available algorithms. 
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Finally, the two trajectories can converge to form a wholesome program that will 

identify the chemical reaction networks effectively and efficiently. The program can 

determine what input data it requires to improve its performance. This will be in line 

with the main goal of this thesis and further it by developing an entity that can not only 

analyse data to elucidate chemical reaction network but self-introspect to determine 

what weaknesses it possessed and request for further input to increase its own 

performance. 
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