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ABSTRACT

For a gear designer, the meshing gear tooth root bending stresses, and contact
stresses are of major importance. To be able to obtain accurate values of these
stresses, it is essential to determine the actual load distribution along the contact
lines of the meshing gear tooth pairs. The objective of this work is to predict

this load distribution.

In the current gear design standards such as AGMA 20011, BS4362, DIN39903
and ISO-DIS63364 the contact line load distribution is estimated by using a
two—dimensional "thin slice" model of the meshing gear teeth. Clearly, this
cannot account accurately for maldistribution of loading across the tooth face width,
which is essentially a three-dimensional phenomenon. As a result, the effects of

tooth lead, profile and pitch deviations are inadequately modelled.

In this work, the elastic compliance of wide—faced helical gears of standard
tooth form, zero addendum modification, and between 10 and 100 teeth, was
determined using a 3-D finite element elastic model of the whole gear. These
results were incorporated into a micro—computer program which calculates the load

distribution across the meshing tooth pair faces.

The effects of a number of parameters such as U, Z, b, and £#* on the load
distribution and contact stresses of an error—free gear were also investigated using
the micro—computer program and the results were compared with other published
data and those obtained from the standard52’3»4, VedmarS and Simon43. The
load peaks near the start and end of contact, attributed by some®7 to the
resistance of the unloaded portion of the tooth beyond the shorter contact lines in
those regions, is very clearly demonstrated by Vedmar3, others®7 and this work,
but certainly not by the standards (this effect is usually referred to as the
“buttressing” effect). The thin slice model largely over estimates the tooth mesh
stiffness Cy since the convective effects of loading are completely ignored.

The effects of lead deviations such as helix angle error and face crowning

(barrelling), profile deviations such as profile angle error, profile crowning and tip

* See list of Notation
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relief, and pitch deviations such as adjacent base pitch error, were also studied.
Their effect on the load distribution factors KHB’ Ky, and the overall load
distribution factor Kpy, were obtained from the micro-computer program and
compared with the results from the standards2,3.4, As expected, the standards
considerably overestimate these factors due to their overestimation of mesh stiffness.

Nevertheless, the pattern of variation in the load distribution factors was similar.

The theoretical predictions were compared with experimental results measured
on wide-faced test gears (specifications given in Table 5.1) with known (measured)
mounting and tooth form errors. Measurement of tooth root strains to determine
the load distribution along the simultaneous contact lines showed that the
experimental and theoretical results agreed on the average to within 3.5% (end of
tooth results not included). Also the total applied load upon comparison with
theory agreed to within 6%. Experimental absolute values of transmission error
"f," were not available, however, the pattern of variation of "f;" during meshing
showed excellent consistency with the theoretical results (variations were very small
anyway and within the error band). A separate test however, which gave the
approximate absolute transmission error (tooth misalignments and form errors not

included) agreed to within 1% with theory.
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NOTATION

The notation presented below applies to the symbols used in the main text of
this work. Identical symbols may appear in the accompanying Appendices, and in
works quoted from other authors in the main text which may retain the same
meaning, or have a totally different meaning, in which case these symbols are

defined locally with the aid of diagrams when applicable.

AA'Ag,A'g Points

a Centre distance, influence factor

B,B'Bg,B'g Points

b(bg=b/mp) Gear face width (non-dimensional)

b’ - Gear tooth length

Cf,Cg Constants

Cay Tip relief

Cc Face crowning (barrelling)

Ce End relief

Cy Root relief

Coa Addendum profile crowning

Cof Dedendum profile crowning

c Point on tooth central surface

Cn Clearance along load line direction

Ct Clearance along base tangent

c' Single tooth stiffness

c Overall mesh stiffness in the normal plane

c"y Instantaneous mesh stiffness in the normal plane

c'-yt Instantaneous mesh stiffness in the transverse plane

d Reference diameter

d, Tooth tip diameter

dp Base diameter

dg Shaft diameter

dy Arbitrary tooth diameter

e Gear tooth root strain, eccentricity

E Modulus of elasticity, base tangent point

F(Fo=F/E.m2) Normal tooth load (non-dimensional), bending
‘ deflection master curve fitting function

Feal Calibration point load value

Fg Total profile error

Fp Cumulative pitch error

Fpy Mesh misalignment



h(h'=h/L)

Pbt
pPo
Pr

Ta0

Load intensity (experimental)

Loaded point on tooth flank, fillet

Profile form error

Profile angle error

Helix angle error

Adjacent pitch error

Normal base pitch error

Transmission error

Twist

Modulus of rigidity, bending deflection non-master
curve fitting function

Gain factor

Tooth surface to centre-line distance along normal to
tooth surface (non-dimensional)

Tool addendum

Moment of inertia

Number

Polar moment of inertia

Number

Maximum number of simultaneously engaged teeth
Transverse load distribution factor for bending stress
Longitudinal load distribution factor for bending stress
Gain

Overall load distribution factor for contact stress
Transverse load distribution factor for contact stress
Longitudinal load distribution factor for contact stress
Bending deflection influence function

Number, tip diameter modification coefficient

Half Hertzian contact width

Number, shaft length, length

Number of Gauss intervals across gear face width
Normal module

Transverse module

Number

Gear centre of rotation

Arbirtrary point on tooth flank

Transverse base pitch

Point on succeeding adjacent tooth flank

Point on preceding adjacent tooth flank

Tool fillet radius
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23
L

Nj

Mean reference ring radius

Radius at involute-fillet transition

Gauss point spacings

Tooth thickness in the normal plane at a diameter dy
Tooth thickness in the transverse plane at a dyameter dy
Torque, reference point for phase of mesh measurement.
Shim thickness

Gear ratio

Output voltage

Input supply voltage

Load intensity (theoretical)

Peak load intensity at a particular instant for a real gear
Peak load intensity at a particular instant for a perfect gear
Cartesian coordinate

Addendum modification factor

Cartesian coordinate

Number of teeth

Axial Cartesian coordinate

Start of a contact line

End of a contact line

Axial coordinate measured from the loaded point f
Angle contained by base diameter and line of centres of
gears

Normal pressure angle at the reference diameter

Normal pressure angle at an arbitrary diameter dy
Transverse pressure angle at the reference diameter
Transverse pressure angle at an arbitrary diameter dy
Working transverse pressure angle

Helix angle at reference diameter

Helix angle at base diameter

Helix angle at an arbitrary diameter dy

Torsional strain, angle

Gauss interval in axial direction

Gauss interval along tooth direction

Measured run-out reading

Mean of measured run-—out readings

Tooth errors

Shaft horizontal misalignment

Component of shaft horizontal misalignment

along base tangent
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OH
THO
OHmax

THmax0
gear

Py
Yz
¥z0

Vprby

Absolute variation of actual ring radius from

nominal (theoretical) radius

Shaft torsion and bending and shear deflection

Tooth bending (and shear) and contact deflection
Tooth bending (and shear) deflection

Tooth contact deflection

Shaft vertical misalignment

Component of shaft vertical misalignment

along base tangent

Strain

Transverse contact ratio for a rigid perfect gear pair
Transverse contact ratio for an extended plane of mesh
Overlap ratio

Total contact ratio for a rigid perfect gear pair

Total contact ratio for an extended plane of mesh
Horizontal angular misalignment component of shaft
along base tangent

Vertical angular misalignment component of shaft
along base tangent

Sum of horizontal and vertical angular misalignment
components of shaft along base tangent

6y modified to account for reference ring imperfections
Poisson’s ratio

Radius of curvature of tooth profile at a contact point
Effective relative radius of curvature of a pair of
meshing teeth at a contact point

Hertzian contact stress for a real gear

Hertzian contact stress for a perfect gear

Peak contact stress at a particular instant for a real gear

Peak contact stress at a particular instant for a perfect

Torsional shear stress

angle from arbitrary reference to point of peak
eccentricity "e" on reference ring surface

Angle

Phase of mesh at a Gauss point

Reference tooth phase of mesh

Tooth thickness half angle at reference diameter

Tooth thickness half angle at an arbitrary diameter dp,dy
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Indices

0 Perfect gears, non-dimensional, extended plane of mesh

1 Pinion

2 Gear

a Addendum

b Base, bending and shear, blunt end of tooth

c Contact, point on tooth central surface

ccw Counter clockwise

cw Clockwise

e Error

f Loaded point on tooth flank, master curve function coefficient,

tooth root fillet

Gear, non—master curve function coefficient

g

h Horizontal

H Hertzian, Haddad

i Input

i,j.k Numbers, points

2 Succeeding adjacent tooth
m Measured

n Normal

o Output

P Pinion, arbitrary point on tooth flank
r Preceding adjacent tooth

Shaft, sharp end of tooth, shear

w

Transverse, tooth, torsion

-

v Vertical

A\’ Vedmar

w Working

X Cartesian coordinate

y Cartesian coordinate, arbitrary point on tooth flank
z Cartesian coordinate
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KEY TO PHOTOGRAPHIC PLATES

1 Helical pinion

2 Helical wheel

3 Pinion shaft

4 Wheel shaft

5.6,7,8% Main bearings (Fig.5.3)

9 Spur pinion

10 Spur wheel

11 Torsion bar

12 Torque setting assembly

13 Bearing retainer

14 Bearing retainer

15 Bearing retainer and ROD 800 mounting frame
16 Bearing retainer

17,18 Bearing caps

19 Zero datum jig

20 Spring table assembly

21,22 Friction disks

23 Lower gear casing

24 Friction disk bearing housing
25 Heidenhain encoder ROD 270
26 Heidenhain encoder ROD 800
27 Ringfeder housing

28 Fine pitch driving screw

29 Locking base plate and driving screw clamp support
30 Driving screw clamp

31 - 34 Reference bands (rings)

35 UPM 60 multipoint measuring instrument
36 IEEE 488-78 data logger

37 Heidenhain bi-directional VRZ counter
38 Avometer

39 Fylde amplifier

40 Klingelnberg evaluation electronics PEW 02
41 Hewlett-Packard plotter

42 Strain gauge cables and wiring

43 Torque restraining arm

44 Gear driving clamp

45 Ringfeder

* not shown in photographs
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1.1

1.2

CHAPTER 1

GEAR ELASTIC MESH AND STIFFNESS MODELS

Introduction

Proper design of gears of appropriate size, material, finish and reliability
for a specific application requires an accurate estimation of both the contact
stresses between the surfaces of the meshing gear tooth pairs and of the
bending stresses in the tooth root, where fatigue fracture is most likely to
occur, These stresses may easily be calculated, once the load distribution
across the contact lines of the meshing gear tooth pairs has been determined.

Many attempts by a number of authorities on the subject have been
made to determine the load distribution along the contact lines of meshing
helical gear teeth, some of which will be mentioned in this chapter. The
method used in the gear rating standardsl »2,3,4 is discussed first, then the
different elastic models developed by authors are discussed in a separate
section as they are extensively used by many gear designers so that their

validity must be checked particularly thoroughly.

The Gear Rating Standards

1.21 Introduction

Practical gear designers usually make use of one of the modern
gear rating standards such as AGMA!, BS2, DIN3 or 1SO4 to analyse
gear tooth stresses. These all adopt a fundamentally similar approach
to gear stress analysis particularly BS, DIN and ISO which are discussed
here. The factors governing the load distribution are identified, and
the methods of calculating the load distribution factors are presented in
detail to facilitate the comparisons made in Ch.4 with the author's
results.

The standards all adopt a basically 2-D mesh model in which the
gear is considered to be divided into a number of "thin slices” which
are assumed to be free to deflect in the transverse plane independently
of one another, A loaded point on an individual slice is thus
deflected only by that load and is unaffected by loading on any of the
other slices. The "convective" effect of loading is thus ignored, as is
the so-called “buttressing" effect:6,7 of the unloaded adjacent portions
of helical teeth, which gives rise to sharp peak loads. The "thin
slice® model used in the standards also ignores the effects on tooth

deflections of loads applied to adjacent teeth, which Steward30  has

shown to be quite significant.



1.2.2

Contact Stress Analysis

The mechanism of pitting failure is not yet fully understood, so
that a rigorous surface fatigue failure analysis is not yet possible.
However, the maximum value of the Hertzian contact stress oy is
usually assumed to be the main factor affecting surface fatigue strength,
and the value of oy at the pitch point is used as the basis for the
pitting strength calculations in the standards 2,3,4.

The contacting tooth flanks at the pitch point are assumed to be
equivalent to two cylindrical bodies in elastic contact. This problem
was first studied by Hertz8 in 1895. Using the notation shown in
Figure 1.1, the peak (compressive) contact stress at the reference

diameter contact of a pair of geometrically perfect spur gears is given

by:
O'Ho - E > . w f 1.1
21r (l-l' ) pef-f
where
- pP1 - P2
Peff
P1 + P2 1.2

is the effective combined radius of relative curvature of the two
contacting flanks, and w is the local load intensity (N/mm). If wis
expressed in terms of the tangential load F; (assumed distributed
uniformly along the contact lines), and pe¢r is determined from the gear

geometry, we obtain

F 3
t U+ 1

OHO ~ [dl-b . U ] . ZH.ZE.Ze 1.3

where

OHO -~ is the pitch point contact stress for a
"perfect” gear set.

Fy - mean tangential component of the load at the
reference cylinder.

U - gear ratio = Zp/Z;

d - pinion reference diameter

b - gear face width

Zy - zone factor accounting for flank curvatures (peff)
at the pitch point, given by

Zy - 2.cosf . cosopy

2
cos“oy . slnoztw



Fig. 1.1 Notation for Contact Stress Analysis



Zg - elasticity factor accounting for gear material

properties, given by
g = 1
1-»% + 1_,%
Eq Ey

z - contact ratio factor accounting for mean total

length of contact

For spur gears

S
3

For helical gears

- 3
zZ, = _(_4_601) (1 - eB) + 2 for ef<1
3 €o
and
1 3
] for eg > 1

Ze - [ €y

Eqn. 1.3 is valid for spur gears. In the standards 2.3:4, the
calculations for helical gears are based on the geometry of the
“equivalent" spur gears, so that Eqn. 1.3 must be modified to account
for the effects of the helix angle, since even for perfect helical gears,
the load intensity actually varies along each contact line as will be
shown later. To allow for this, an empirical helix angle factor Zg
was introduced into the BS2, ISO3 and DIN4 rating procedures (see
Figure 1.2):

zg = [cosB]? 1.4

so that equation 1.3 finally becomes:

$
Fe . U+l

oHy - [-——- — | zy . zg .z, .25 1.5
d;.b U

In BS4362, an additional allowance for the non-uniformity of
loading along helical gear contact lines is also introduced via the factor
Ky (see below) for which a minimum value of 1.15 is assumed.
The logic of this procedure is not clear, since, as shown below, Ky,

was a factor originally introduced to allow for the effect of tooth errors
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or deviations and in the ISO and DIN standards is thus, by definition,

equal to 1.0 for "perfect” gears.

Real gears cannot be perfect and do not operate under precisely
uniform torque. There will always be combinations of errors and/or
tooth modifications, as well as dynamic effects which will modify the
tooth loads and stresses. To allow for such imperfections, the
standards 2.3,4 include four additional factors, and Eqn. 1.5 thus

becomes:
og = omo - [Ka - Kv . Ky - Kypl? 1.6

where:

OHO ~ is the stress for “perfect" gears operating under the
"nominal” load F,.

Ko - is the load application factor accounting for load fluctuations
caused by sources external to the gear system. It is
obtained either from measurements on similar existing gear
systems, or from empirical data provided by the equipment
manufacturer.

Ky - is the dynamic load factor accounting for dynamic load
fluctuations arising from the gear system itself, due to
contact conditions during the mesh cycle. It is calculated
using semi-empirical expressions suitable for each particular
application.

KHB - is the longitudinal (face) load distribution factor for surface
pressure. It accounts for the local increases in specific
load w, due to maldistribution of the load across the
face-width of the gear arising from shaft torsional, bending
and shear deflections, tooth misalignment due to
manufacturing and mounting errors, or tooth modifications
such as end relief or face-crowning, or any combination of
these.

is the transverse load distribution factor for surface pressure.

It accounts for changes in the pattern of load sharing

between adjacent pairs of teeth in mesh arising from

manufacturing errors, such as profile and pitch error, or
tooth modification such as tip and root relief or profile

crowning, or any combination of these.



KHoz and KHB are the prime concern of the present study, as is also
the factor Zg which allows for the non-uniformity of the load
distribution along the contact lines of "perfect" helical gears. In all
the gears studied, K5 and Ky can be assumed to be unity since only
quasi-static meshing of gears under a known constant torque is
considered. As a result, Eqn. 1.6 reduces to:

:
oH = (THO . [KH(X . KH6] 1.7

Clearly, an overall load distribution factor can be defined, where
Ky = Ky - KHB = (O’H/O'H())2 1.8
and for a perfect gear Ky = 1.0.

In Egn. 1.8, if there are no lead deviations, Ky is unity and
KH = KHa = (O'H/(TH())2 1.9

Likewise, if there are no profile deviations, Ky, is unity and equation

1.8 reduces to:-
Ky = KHB = (0’1.1/0'1_10)2 1.10

As will be seen later, Eqns. 1.8 to 1.10 provide a convenient basis for
comparing the author's results with those predicted by the standards.
However, this is not the only basis for comparison. The standards

2,34 also define Kyg as the ratio of peak to mean specific load.

From Fig. 1.3, this gives

KHﬁ = Wmax/%m 1.11

where

W - is the mean specific load on the contact lines.
Wmax ~ is the peak specific load on the contact lines of a
"real" gear.

In the standards, w is assumed to vary linearly as shown in Fig.1.3,

giving,

for light load and/or large Fﬁ’y
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2.Fm/b
beal/b = [ FByTéy ]* <1 1.12a
and
2'F3 .c
Kyg = 2(b/bca)) = [ --!L—1]5 > 2 1.12b
F,,/b

For heavy load and/or small F By

F
bcal/b - [0.5 + = m/: > 1 1.13a
By. Y
and
b Fgy-cy
Kyg = ——=al— - |1+ >2 1.13b
beal - b/2 2.F,/b

where, for Ky, = Ky = 1.0,

F bl KA'KV'Ft == Ft 1.13C

and Fﬁy is the resultant misalignment and Cy the mesh stiffness (see
1.2.4).

The elastic mesh model developed in Ch.2 yields values of wpay
and opymax at any instant during the mesh cycle, so that, using either
Egns. 1.10 or 1.11, values of Kppg can be calculated for comparison
with those given by Egns. 1.12 or 1.13. These comparisons are
presented in Ch. 4.

Next consider Ky, as calculated by the standards2,3,4, It was
shown earlier that Kpj, may be found from Eqn. 1.9 if the stresses are
known. The standards also define Kpj, as the factor which accounts
for the uneven distribution of the load on several gear tooth pairs
meshing simultaneously, and resulting from pitch and/or profile deviations
and the elasticity of the gears. In that sense, Kpj, is defined as the
ratio of the peak contact load on all the meshing tooth pairs at near
zero rpm of the meshing gear pair, to the corresponding peak contact

load of a perfect gear pair with identical specifications.

Ko = Wmax/%max0 1.14

Again Eqn. 1.14 will later on be very useful for comparison purposes.

Based on this definition of Kpy,, the standards devise the following

empirical expressions,
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For €y < 2:

Ky = % €y - [o.9+o.4 Cy- (fre - ¥q) ] 1.15a
For €y > 2: )
Ko = 0.940.4 [2'(‘7'1)] Sy {fpe = ¥d

With the limiting condition,
if Ky > €JeqZ? then

KHo= ¢ taZe? 1.15¢
and

if KHa < 1.0 then

Kpg = 1.0 1.15d

c - mesh stiffness in accordance with section 1.2.4

(appearing in Eqns. 1.12, 1.13 and 1.15).

fpe - maximum mesh pitch error of pinion or wheel.

Yoo @~ running in allowance, causing a reduction in the original
equivalent mesh deviation. Yo Varies for varying material
types, but for the type of gears used in this work (case

hardened or carburised teeth)

Yo = 0.075. fpe for all velocities with the restriction:
(Yo)max = 3um; (fpe)may = 40 pm

and where pinion and wheel materials differ

Yo = (Y + Ya2)/2

Fguy - equivalent tangential load in the transverse section

Fig = F. KA'KV'KHB
Clearly Ky, does depend on Kyg as can be seen from the definition
of Fyyy-  In other words, if lead deviations of any form are introduced, Ky,

will be affected. This is demonstrated in Chapter 4. The standards

11



assume that fpe accounts for the total effect of all gear deviations which

influence Ky, If however the single pitch deviation (profile form error) f¢

is greater than fpe, then fy should replace fpe in Eqns. 1.15a and 1.15b.

From the above discussion so far, it is evident that multiplying the

values of Ky, and Kﬂﬁ obtained independently will not give the same result

as Eqn. 1.8, and this is demonstrated later on in Chapter 4.

1.2.3

Bending Stress Analysis

In the present work, no attempt has been made to calculate
bending stresses due to space and time limitations. However, the
standards2,3:4 equations for bending stress calculations are presented in
this section for completeness. A procedure whereby "exact" values of
the bending stresses may be determined from the calculated load
distribution is also presented.

The nominal root bending stress is calculated at the outermost
point of single tooth pair engagement of the equivalent spur gears.
The gear tooth is assumed to be a simple cantilever beam in bending
under the corresponding tangential component of the load as shown in
Figure 1.4, with the critical section for bending stress assumed to be at
the 30° tangent points. Application of simple engineering bending

theory then gives the nominal bending stress as

6.hp. Fgqy 6.hg. Fy. cos(agp)

op - - 1.16
b.Sf_N b.Sl'flN .cos (op)
where
Fy - is the tangential component of the load in the

transverse section at the pitch point.

Fet -~ is the tangential component of the load in the
transverse section at the outermost point of single
tooth pair contact.

F - is the total load in the normal section

The form factor is defined as:

6.hg. cos(cep).my

Y -
F Sén. cos (ap)

12



Transverse Section

Fig. 1.4 Notation for Bending Stress Analysis of the
Equivalent Spur Qear (D is the Outermost point of
Single Tooth Pair Contact & C is the Pitch Point)
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From equations 1.16 and 1.17

°F " b YF 1.18

The maximum bending stress in the root fillet at the 30  tangent point

is given as:
Fy
OF - ——, YF . YS 1.19
b.mn
where,
Yg - is a stress concentration factor.

Values of Yg are based on strain gauge measurements carried out
by Hirt9, as well as finite element analysis and "exact" solutions of the
2-D elasticity problem by conformal mapping by Cardou and Tordion10,
Earlier works on the bending stresses in gear teeth were based on a
different approach originally proposed by Lewisll, with the stress
concentration factor based on photoelastic data such as that given by
Dolan and Broghammerlz, and Heywood13. These methods have
however been shown to underestimate considerably the peak tooth root
bending stresses.

Eqn. 1.19 gives relatively accurate estimates of the tooth root
peak bending stress in "perfect” spur gears. In such cases, the contact
lines are assumed parallel to the gears axes, and the tooth loading is
assumed to be uniformly distributed across the face width. For helical
gears, however, contact lines run obliquely across the tooth, giving
reduced bending stresses based on Eqn. 1.19, while the load is generally
not uniformly distributed across either the face width or along the actual
oblique contact lines.

To allow for these differences, a semi—empirical helix angle factor

Yg has been introduced, so that for perfect gears,

- L vl .Y 1.20
b.mp,

oF

Finally, the factors Kp, Ky, KFB and Kg, are introduced.
These are the equivalents of Kp, Ky, KHﬁ and KHa respectively,
discussed earlier in Section 1.2.2 for contact stress. Therefore, Eqn.

1.20 now becomes:

14



F
- I
oF b - Ypr Yoo Yg Kuo Ky Kpge Kpy 1.2

As for contact stress, the conditions of quasi-static loading at uniform
torque set both K5 and Ky to unity,

The longitudinal load distribution factor KFﬁ takes account of the
effect of the load distribution across the gear face width, on the stress
on the gear tooth root. It is somewhat less than Kpyp. This may
be explained by the fact that the contact loads at the most heavily
loaded section of the tooth flank are actually supported by root bending
stresses over some finite width of the tooth flank on either side of the
loaded section. Some averaging of the contact load distribution thus
occurs, producing a flatter root bending stress distribution rendering Krg

less than KHB’

Keg = (Kﬂﬁ)NF 1.22

Np = 1
1 + h/b + (h/b)?

where,
b/h is the face width to tooth height ratio, where the
smaller of byj,h; and by/hy is used in place of b/h.
The transverse load distribution factor Kg, takes account of the
effect of the uneven distribution of load on several gear tooth pairs
meshing simultaneously, on the root stress. In the absence of further

information.

KF = KHO{ 1.23a

Kpg > Y then
€q- Ye
€
Y

Kfa = 1.23b
€y - Y

and if Kpp < 1.0 then
Kpg = 1.0 1.23¢

where

15



where
Ye - is the contact ratio for root
bending stress and is given by
0.75

Ye = 0.25 +
€on

From the above discussion, it is clear that the criteria set out for
KHB and Kp, also apply to KFB and Kg,, and the overall factor Kg
accounts for both effects resulting from the combined effect of lead and

profile deviations,

1.2.4 Stiffness Analysis
1.2.41 Introduction
The tooth stiffness constant is defined as the "normal" tooth load

along the line of action in the transverse section required to deform by
Imm along the line of action, one or more meshing perfect (error—free)
tooth pairs of Tmm face width. This deformation is the arc length
along the base circle corresponding to the angle by which the axis of
one gear would rotate under load due to elastic deflection of the
meshing teeth if the other were rigidly constrained.

Two such stiffness constants are used in the standards: c¢' — the
stiffness of a single tooth pair in contact at the pitch point, and Cy ~

the so-called mean mesh stiffness.

1.2.4.2 Single Stiffness c¢'
For spur gears, c¢' is the maximum tooth stiffness of one tooth

pair and is approximately the stiffness of the pair when they make

contact at the pitch point. According to the DIN standard3 ¢’ is
given, for (F/b)Ka » 100 N/mm, by

c' ¢'th - CMm - Cr - Cp . cosB 1.24

where
¢y is the theoretical single stiffness for "solid" spur gears of

standard basic rack profile. For helical gears, ¢’y is the

theoretical single stiffness of the equivalent spur gear.

16



is a correction factor which accounts for the difference
between the measured results obtained by Winter and
Podlesnikl4, and the results of the calculations in accordance
with Weber and Banaschek!3 for solid disk wheels. The
standard assumes
Cm = 0.8

is a wheel blank factor which accounts for the flexibility of
the tooth rim and the web in accordance with results
obtained by Winter and Podlesnik14.  The Cpr values given
by the standards2:3,4, are average values which should only

be used if the mating pinion is of equal or greater blank

stiffness
Ch = 1.0 for solid disk wheels
Ch = 1 + In(bg/b)
for webbed wheels
SR/(5.mp)
S.e
where for bs < 0.2 use bs = 0.2
b b
and for bs > 1.2 use bs = 1.2
b b
and for S use S
R R o
m m
n n

is the basic rack tooth profile factor which accounts for the
deviations of the basic rack tooth profile from the

"standard" profile. = From Winter and Podlesnik!4 results:

Cg =11 + 0.5(1.25-hfp/mn)].[1—0.02(20—apn)]
where hfp - is the standard basic rack dedendum = 1.25m,

%pn = is the standard basic rack normal pressure

angle=20"

Cp = 1 if hgp = 1.25my, and ap, = 207,

17



DIN 3990 Part 1

105

095

08

~ 07

07

C5% ;

06

d . '
>3 0 0i 02 03 o0& G5 Q¢ CGF 0% 05 ! 1

—bL_-
b

i-‘ig. 1.6 Wheel blank factor CR' mean values in accordance with (9/2)
for countervheels of equal or stiffer wheel blank form



If hfp differs for pinion and wheel then,

Cg =Cpg; *+Cp

The theoretical single pair stiffness ¢’y is calculated from

the relation

1.25

¢'th = 1_'
q
where

q' - is the minimum value for the flexibility of one
spur gear tooth pair.
It is calculated from the semi-empirical relation
q' = 0.04723 + 0.15551/Z41 + 0.25791/Z,,
= 0.00635.x; - 0.11654.x1/Z,; - 0.00193.x5
- 0.24188.xp/Z3 + 0.00529.x1 2 + 0.00182.x5 2

1.26

where
x - is the addendum modification factor

Z, - is the number of teeth of the equivalent spur

gear
Z, = Zicos3fg

Eqns. 1.25 and 1.26 are valid for

Zy > Zyp 1.27a

and
X] > X3 - 0.5 £ X] + X2 < 2.0 1.27b

Finally, the factor cos8 in Eqn. 1.24 is introduced to
convert the theoretical single stiffness of the straight gear pair of
the equivalent spur gearing in the normal plane into the

theoretical single stiffness of the actual helical gear pair in the

normal plane.

For (Fy/b)Kp < 100 N/mm, it is assumed that c' decreases

linearly to zero as F; - 0, so, in this case,
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1.2.5

¢' = c.th'CM'CR'CB'COSB'(Ft'KA/b)/l00 1.28

1.2.4.3 Mesh Stiffness Cy
The mesh stiffness Cy is defined as the mean (time
averaged) value of the total tooth stiffness in the transverse
section, and is needed for the calculation of Kw, KHﬁv KFBv
Ky, and Kg, discussed earlier. For spur gears with ¢, > 1.2,
and for helical gears with 3 ¢ 457, the mesh stiffness is calculated

by the equation

¢y = c'. (0.75.¢, + 0.25) 1.29
where c¢' is given by Eqn. 1.24 (or equation 1.28 for (Fyb).Kp
< 100 N/mm). For ¢, < 1.2, Cy is typically up to 10% less
than the value given by Eqn. 1.29.

Limitation of the Gear Rating Standards
The gear rating standards?,3:4 are inadequate in many ways.
In Stewards's30 discussion of their application to spur gears and in the

present work in both spur and helical gears, the following shortcomings

are noted:

1 - Due to the 2-D "thin slice” model assumed, the standards fail to
model properly the maldistribution of the load across the gear
tooth face width, which is actually an essentially 3-D
phenomenon.

2 - The "thin slice” model does not account for the so-called
"buttressing" effect of the unloaded adjacent portions of the tooth
in helical gearing. This tends to produce a flatter load
distribution than that predicted by the 3-D model. @ The adjacent
tooth effect is also not accounted for (see Sec. 1.2.1).

3 - The linear variation of the load intensity assumed in the standards
to estimate Kﬂﬁ (see Fig. 1.3), makes it impossible to model the
effects of non-linear tooth deviations such as parabolic face
crowning, or any other type of non-linear lead correction.
These can nowadays be readily applied to gear teeth by the CNC
hobbers and grinders at the gear designer's disposal.

4 ~ The standards 2-D model ignores the gear body deformations

altogether, and as a result, the overall gear tooth compliance is

underestimated.
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5 — The actual contact compliance near the tooth tips is greater than
that calculated from the Hertzian theory used by the standards.
(See equation 1.54 and the corresponding discussion).

6 - The load distribution factors KHﬁ and Kp,, and also KFB and
KF,» are assumed in the standards to be multiplicative. (See
Eqn. 1.8 and last paragraph of Sec.1.2.3). However, there is
very little evidence to confirm that nonuniformities in the
longitudinal and transverse load distribution can be superposed in
this way to predict the effects of (e.g.) combined lead and profile
deviations.

7 - The standards analyse a helical gear as an "equivalent" spur gear.
This does not lead to exact results, especially for large helix
angles, so that the semi-empirical factors ZB and YB (see Eqgns.
1.5, 1.21, 1.22 and 1.23) are needed to account for the full
effect of the helix angle. These factors are rather insecurely
based on a very limited amount of experimental data obtained by
Brossmannl® and need further research. '

8 - In estimating Kpj,, the standards assume that any type of profile
deviation may simply be treated as an equivalent profile form
error or base pitch error, and that the effect of combined form
and pitch errors is the same as that of the larger error by itself.
This makes it impossible to model properly the effect of individual
deviations such as profile crowning and tip or root relief, or any

combination of profile deviations and pitch errors.

1.3 Other 2-D Models

1.3.1

1.3.2

Introduction
In Section 1.2, the 2-D "thin slice” model used in the standards

was examined in detail, since it is used later when the stiffness and
load distribution factors obtained in the present work are compared with
those given by the standards. For the sake of completeness, other

published 2-D models are very briefly summarised below.

Existing 2-D Models '

In 1942, Merritl7 used a 2-D model to determine the
deformations of loaded spur gear teeth and used these results to develop
a thin slice model of helical gears. @ He assumed that the helical teeth
behave as if they consisted of a large number of independent thin (spur
gear) slices, at different phases of their mesh cycle. Having made a

rough estimate of the relative flexibility of slices loaded at different
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heights above the tooth root, he then concluded that the peak load
intensity on a major or full line of contact is in the middle, near the
pitch point.

In 1949 Weberl8, and later in 1950 Weber and Banascheck!9,
applied a more rigorous approach to the 2-D compliance model adopted
by Merrit. They derived analytical expressions for the compliance of
spur gear teeth, in which the contact compliance was derived using
Hertzian 2-D theory for cylinders in contact. The tooth bending
radial and shear deformations were obtained by equating the strain
energy resulting from the applied bending moment M, the shear force
Q, and the radial force N, shown in Figure 1.6, to the work of
deformation. An estimate of the gear body deformation was also
obtained by assuming the gear body to be equivalent to part of a
semi-infinite plane loaded by the reactions M, Q and N. The
Hertzian contact deformations were assumed to extend to the tooth
centreline, and the semi-infinite gear body was assumed to extend to a
point "a few modules” beneath the pitch point. The equations
presented in section 1.2.4 for c°', Cy and q are essentially those
developed by Weber and Banascheck, modified to bring the values into
closer agreement with Winter and Podlesnik's experimental results14,

In 1973, Wilcox and Coleman2! also developed a formula for
determining tooth root fillet stresses, and in 1974, Chabert and Dang
and Mathis22 also developed formulae for tooth deformations and
stresses. These workers all used 2-D finite element analysis to obtain
their results which agree well with those reported above.

In 1973, Schmidt23 used equations of the same form as Weber
and Banascheck's!9 to estimate the combined compliance of a pinion
and wheel in mesh. However, the constants in the equations were
slightly altered to allow for additional wheel flexibility. This
acknowledged for the first time the greater gear body deflections of
large diameter wheels. Nevertheless, this additional compliance was
still based on the Weber-Banascheck semi-infinite plane assumption for
the wheel body, which, as shown by Steward30, underestimates the
overall compliance. The compliance values thus obtained were then
incorporated in a 3-D stiffness model of the type developed by
Kagawa24 (see below).

In 1980 and 1981, Terauchi and Nagamura23,26,27 determined the
deflection of various spur gear teeth by using a 2-D elastic theory and
a conformal mapping function (See Fig.1.7).  They derived a simplified

formula for the tooth deflection based on the results from the elastic

22



2b

Fig. 1.6 Weber
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Fig.1.7 Terauchi & Nagamura
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theory. Gear body deformations and Hertzian deformations were also

accounted for, although the gear body component was again essentially

the semi-infinite plane value obtained by Weber and Banaschek.

1.4 3-D Models

1.4.1 Introduction
So far, only 2-D "thin slice” meshing and compliance models
have been discussed. In Chapter 2, a 3-D elastic mesh model is

developed, but this is partly based on earlier models published by

several authors.  These are described below.

To model accurately the meshing behaviour of a gear pair under
load, 3-D elastic mesh models must meet the following criteria:-

1. The load and deflection at any point on one contact line is
affected by the loads and deflections at all the other points along
that contact line, and by those at points along the contact lines of
the adjacent simultaneously meshing tooth pairs. This
"convective" effect of loads, including the “adjacent tooth" effects
must be fully taken into account.

2. The actual gear tooth geometry must be accurately modelled.
This cannot be done by using "plate theory", or approximating
the tooth by a rack. In helical gears, the effect of tooth twist
must also be allowed for.

3. All possible contact conditions must be allowed for, including the
possibility of tip or edge contacts outside the "theoretical" contact
region for perfect, rigid gears.

4, The effect of the axial component of the load in helical gears
should be fully accounted for.  The "thin-slice® approach ignores
the effect of axial force components.

5. Gear body deformations must be included in the overall analysis
of the gear deflections, since it can contribute a significant
proportion of the overall tooth deformation on large diameter
gears.

The various 3-D elastic mesh models, so far published, all fail to
meet one or more of these conditions.
The model developed in Chapter 2 meets all the conditions and is

thus potentially superior to the others which are described in detail

below.

25



1.4.2

Approximate 3-D Models

Models based on tooth compliance values not derived from actual
gear teeth are termed "approximate" 3-D models in this work. This
is because an actual gear tooth has a very complex geometry,
particularly in the case of helical gears. Representing it by a
semi-infinite plate or a straight rack—shaped tooth is inadequate.

The earliest attempts to study the 3-D "convective" effect of
tooth loads were based on the work carried out by Jaramillo28 in 1950,
who used exact solutions for an infinitely wide cantilever plate with
point loads applied along the free edge. This solution was
subsequently extended by Wallauer and Seireg?9 in 1960 to predict the
behaviour of finite width gear teeth by means of the approximate
"moment image" method.

This was (and still is) extensively used as a practical calculation
procedure in the USA, and is described in detail by Steward30 who
shows that while the method correctly models the bending boundary
conditions at the tooth ends on spur gears, it does not satisfy the shear
boundary conditions. Its use for helical gear analysis is even less
justifiable due to the lack of symmetry about mid-face point.
Moreover, the moment image method originally proposed by Wellauer
and Seireg bases the “infinite width” stiffness on Jaramillo's28 thin plate
results, which are unreliable since shear deformations and the effects of
variable thickness (tooth taper) will clearly be significant on real gear
teeth.

In 1961, Kagawa24 assumed that each gear tooth was equivalent to
a beam, with its axis along the tooth trace, and having an elastic
support ki (representing the cantilever bending stiffness of each "thin
slice” section normal to the beam axis) and a torsional stiffness ko as
shown in Fig. 1.8. Semi-theoretical solutions for the load distribution
were also developed to allow for the semi-elastic foundation of the
built-in edge of the plate. This model provided a basis for the
improved 3-D model developed by Schmidt?3 and discussed in Section
1.3.2. This model, like Schmidt's, predicted the occurrence of sharp
load ‘spikes' near the ends of some contact lines, and provided the first
analytical confirmation of this so—called "buttressing effect”, which had
long been a controversial topic. This buttressing effect is shown
clearly in Figs. 3.21 to 3.24 in Chapter 3.

In 1963, Hyashi31 used a constant—thickness cantilever plate with a
built-in edge, to represent an actual loaded gear tooth. He

determined the plate deflections and root strains experimentally, and
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Fig. 1.8 Kagawa
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incorporated these results in a mesh model which led to an integral
equation which he solved numerically to obtain the load distribution on
helical gear contact lines.

In 1963, Hyashi and Sayama33 extended Hyashi's31 model by
incorporating into it experimentally determined deflections for a rack
tooth, 240mm wide and 8mm module. It was concluded that the
cantilever plate adequately represented an actual rack tooth as part of
an encaster block. In 1967, Hyashi and Umezawa and Kajiyama and
Uchibori® carried out further work on the subject. Again, the
buttressing effect was revealed.

In 1967, Seager34 modified the "thin slice® model and developed
semi—empirical tooth bending deflection equations to account for
convective effects. The contact deformations were assumed to be
localized and hence without convective effects. Tests carried out on a
model rack-shaped tooth provided the coefficients for the relevant
differential equations, which were then solved by numerical methods.
The buttressing effect was again evident but on a very small scale.
Gear body deflections were not properly modelled.

In 1972 and 1973, Umezawa35,36,37 developed finite-difference
solutions for the deflections of a rack-shaped cantilever. Experiments
carried out on a rack-shaped cantilever projecting from a large block,
agreed very well with the numerical solutions once the effect of the
deformations of the built-in end of the cantilever had been removed.
This work was, in fact, a refinement of the earlier work carried out by
Hayashi and Sayama33 in 1963. The buttressing effect was again
evident.

In 1981, Inoue and Tobe38 used the finite element method to
include the effect of transverse shear on tooth deformation. The
actual gear tooth was approximated by a number of thin rectangular
plates of varying width up the (rack-shaped) tooth.  These results were
later improved by Inoue and Tobe39, including the effect of the elastic
built-in end of the tooth. This, however, only accounted for part of
the gear body deformation evident in real gears with a large number of
teeth.  Buttressing effects were again revealed.

In all the 3-D models discussed above, and referring to the
conditions necessary for developing a good 3-D model in Section 1.4.1,
condition 1 is only partially satisfied since the convective effects of the
adjacent simultaneously meshing tooth pairs has been ignored. Condition
2 is also not satisfied since all the models discussed apply the analysis

to either a cantilever plate or a built-in rack-shaped tooth. Condition
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1.4.3

4 has certainly not been satisfied as the loading was always applied in
the transverse section of the gear. Step 5 has been either totally
unsatisfied or partially in the cases where the elastic built-in edge
deformations were considered, as these represent only a small portion of
the total gear body deformation of an actual gear. Clearly then, none
of the 3-D models discussed so far adequately or accurately represents

the actual meshing conditions of real gears.

Exact 3-D Models

1.4.3.1 Introduction
In this section, 3-D models which base their stiffness analysis on
actual gear teeth are discussed. Since the true geometry of a gear
tooth is modelled, these 3-D models will be termed "exact" models.
Three recently—published models of this type are discussed here in

detail, to provide the basis for comparison with the model developed in

Chapter 2.

1.4.3.2 VYedmar's Model
Tooth Geometry and Meshing Conditions

In Vedmar'sd work in 1981, actual involute gear teeth were

modelled. The involute profile and trochoidal fillet coordinates were
calculated point by point from exact equations which are given in
Appendix 1A.

Figure 1.9 shows the gear meshing region assumed by Vedmar,
Ap and A'g are the "theoretical" outermost limits of contact on the
pinion and gear (wheel) respectively and were assumed to define the

start and end of contact during mesh. Any contact outside this region

was ignored.

Contact Deformation
Vedmar assumed, as did the present author, that contact lines are

straight, and are always located in the base tangent plane, as would be
the case for perfect rigid gears with no profile or lead modifications.
Like Weber and Banaschek40 and most other workers in this field,
Vedmar assumed that contact deflections were localized
("non-convective"), and that they could be calculated using 2-D
Hertzian contact theory.
His expression for the deflection of the centre of the loaded

contact region relative to that of a point a distance h below the surface

is
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Fig. 1.9 Gear meshing region
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where,
h* = h/L
and L is the semi-width of the contact region (Fig.1.11) given by

1-02 2 H

w
'w'peff] - [7'28"" - Pesr 1.31
x.E

L - [8.
*x.E

Vedmar non-dimensionalized Eqn.1.30 by multiplying by E.m/F,

giving (with » = 0.3 for steel gears):

ugom o ot [Qn[h'+/1+(h')2 ]-0.42857(h')2[/1+(l-)2’1]]
h’

1.32

where F is the applied point load normal to the tooth flank in the

normal plane (see below).
As explained in section 2.4, it proves necessary to "“correct"

Vedmar's deflection values to compare them with the author's. This

requires calculations of the increment in contact deflection Au, between

two different depths hy and hj.
By substituting h = hy and h = hy in Eqn. 1.32, we can

calculate

Aus = U < U2 1.33

However, if h >> L, Eqns. 1.30 and 1.32 reduce to the simpler

expressions

1.82
up = == . w . [en(2h') - 3/14] 1.34a
.82
uco - 11r+8 .mn.w/F.[Qn (2h') - 3/14] 1.34b
whence
1.82
Au, = = - V. 2n [hy/hjp] 1.35
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F.E. Model and Bending Deformation

The "bending" of the tooth was calculated using the F.E. mesh
shown in Fig. 1.10. Tooth deformations were obtained at points along
the contact line with a "point” load applied at various axial positions on
the tooth flank.

The F.E. mesh used was relatively coarse, and thus incapable of
modelling accurately the deformations near the "point" load. This
problem was resolved by extracting the tooth bending (and shear)
deformations at a considerable depth (0.5mn) beneath the surface, to
exclude the inaccurately modelled surface region. The additional
“contact deflections" were then added in, using the analytical expression

given in Eqn. 1.34, so that (c.f. Fig. 1.11)

F.E. bending + Incorrect Approximate Calculated
Shear + contact - F.E. + Analytical = Surface
Deformation Contact Contact Deflection
Deformation Deformation
1.36

The bending and shear deflections 0.5 m, below the tooth surface
extracted by Vedmar from his F.E. results represent the first two terms
of Eqn. 1.36. Since these deflections were only available at a few
nodal points for point loads applied at a few positions on the tooth
flank, Vedmar curve-fitted the F.E. data to allow calculation of
deflections anywhere along any contact line, with loads applied at any

point across the tooth face. The approximating function so derived took

the form

o(Spp.5am) = WEETE). ¥(5.m)]d
. FOE=ft)n.mp, 14nF, n2+qp?) 1.37

where
o - bending (and shear) compliance function
v - "end effect” function
' = "master" function
¢ - axial co-ordinate of point where deformation is

desired
{F - axial co-ordinate of loaded point

n - radial co-ordinate of point where deformation is

measured. (y = 0 at tooth tip)
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Fig.1.10 Helical gear tooth and contact zone divided into finite elements
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Fig. 111 Dividing into bending and contact conditions
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ng — value of 7 at the loaded point
(o, ¥ nd n are non-dimensional)

The master function I' models the gear tooth compliance for an
"infinitely” wide gear or at points far from the ends of the teeth, where
end effects are of no consequence. For finite width gears I' must be
used as shown in conjunction with the end effect function y to account
for the additional tooth end compliance which is significant, particularly

for end loading.  Vedmar gives

O =Sp1mapntnE,n2tzg) =

e—(A1+Ag(N+1E)+Ag. . E+AL. (n 240D+ As.n.np. (N4 E)+Ag.n 2. E2

. (15-tE1)B 1.38

Where Ai and B are independent of 7 and {.

The end effect function y was assembled from two functions, each
depending on the distance from one of the free ends of the gear.
Since the F.E. data was obtained for a face width where these functions

are independent of each other, the function y is given by

Aj,.7 B.,.7m
-'13 -13 -(C,,+C.5.7) . ¢
V(E,m) = A tA e +(B; +By,.© Y.e TT11 712
B Cy+Cyy.my b =¥
=23, =721 722°7).(C°0 )
+(le+822.e ).e 1.39
where by = b/my, and, as for ' the Aij and Bij coefficients are

independent of radial location 7.
Vedmar tabulates values of the coefficients Aij and Bij etc. for G
= 0, 10" and 20" for teeth with standard basic rack profile, zero

addendum modification, and values of Z from 15 to 160.

Compatibility Condition
Fig. 1.12 shows the mesh area near the base tangent plane (c.f.

Fig. 1.9). For contact between the two gears at any axial section

e=cp+eg=gp.4¢-6.mn 1.40
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8) Deformation of a pair of teeth in contact

by

b) Force acting on a contact line

Fig. 1.12 Condition of Deformation
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where

e — combined non-dimensional displacement of pinion and
gear teeth.
8 — combined flank error

Ap — rotation of the pinion from the unloaded position
if the gear is assumed fixed. (All measured in the

transverse plane along the base tangent).

Since Ay (the transmission error) is independent of the axial

position of the point considered, then, for each contact point
e+ d.m, = gp.Ap = constant 1.41

Introducing the displacement u; normal to the tooth flank, Vedmar

obtains

u

— _+&.m = Am 1.42
cos? in n

where A is a non-dimensional constant, and 0 is the base helix angle as

labelled by Vedmar.

Load Distribution Solution

The static load distribution along the contact lines of meshing gear
teeth is determined from the stiffness characteristics of the gears. The
tooth bending/shear and contact deformation at a point i due to loads

Fj applied at points j is given by

n
u, = }1301 .Fj+ucT 1.43

where
n - number of contact points on all simultaneous
contact lines
oy combined bending compliance influence function
for pinion and gear obtained from Eqns. 1.37 -

1.39, with (T’,f) = (npfl)v (ﬂF)g.F) = (ﬂj,fj)-
The contact deflection u; is assumed to be caused entirely by the

load F; at I and is unaffected by loadings FT at f # I. This is a valid

assumption since the contact deformations are highly localised as shown
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in Fig. 1.13, (which also shows the bending deflection distribution for

comparison).
The total force acting on all simultaneous lines of contact K in

the meshing plane is given by

K by d¢ K nk
F=-35 wv0m —— -5 5 FR 14
k-l 0 n cos k-l j-] J

where w({) is along the base tangent direction.

Substituting for uc;+ from Eqgn. 1.34a and non-dimensionalising

using
u, = u F
T 0T " E.m
n
o
o o]
1] E.m
n 1.45
we = woo . —&
i 0T "'m
n
h' = h0 m
Eqn. 1.43 becomes,
n F
_ j 1,82 , -3.14
Yot %_1 aOTj SR Y T - gt .[Qn(2.h0 .mn) ]
1.46

Dividing Eqn. 1.44 through by F

K nk

s s FMF - 1.47
k=1 j=1 4
where
k - is the contact line number
nk - is the number of contact points on line k
K — is the number of simultaneous contact lines

and introducing

n
F. - W 1.48
J §_1¢3Q g

where vie = My - yoje is a weighting function (=0 for 12-j|>2)
which decides what proportion of each of w; to wp must be included in

summing up the force at point j, where for 10-71>2 w is too far from

point j and the multiplier ¢ is zero.
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a) Bending Deflection
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b) Contact Deflection

Fig. 113 Contact & Bending Deflection Distribution
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Substituting for F.T from Eqn. 1.48 into Eqn. 1.46 finally becomes

1.82 , 3
wop- (2 (2hgm ) -17]

o3

Y01~ _oie” ¥oeg-¥o3”

=1

M3

1.49

where ¢ and j are interchangeable as both have the same limits.
Next considering the condition 12-j1>2, then for ¢ not to be zero, the

limit of ¢ may be narrowed down as

nk j+2
(k) (k) (k) _ 1.82 (k)
u, =y W 3 o . P t Wl
017 £, %03 p2;, %ote  Poeg * TF Yo
[2 (2h] m) - 3 ] 1.50
nn"0 " 'n 14 )

where k representing the kth contact line has been introduced.

Substituting Eqn. 1.48 into Eqn. 1.47 and introducing

-

non-dimensionality ~while keeping in mind that ¢ and J are

interchangeable we get

K nk j+2

(k) (k)
sy Wiy oK) -1 1.51
k=1 G=1 L 037 “pagop TOL]

Rearranging Eqn. 1.42 and using the non-dimensional form of u

from Eqn. 1.45, then

;= (A-é(k) ) . cos()/Fo 1.52

Yo T

Substituting for ug; from Eqn. 1.50 into Eqn. 1.52, then

nk j+2
(k) (k) (k) , 1.82 (k) ' 3
2 wo] 2 %010 ° ¢OQj e - Yo .[Qn(2h0.mn)——171 ]
J=1 R=3-2
(A—bgk)) . cosf
- — 1.53a
0

Egns. 1.51 and 1.53a may be solved simultaneously since Eqn. 1.53a
must be satisfied at all contact points giving an equal number of
equations, and Eqn. 1.51 gives a number of equations equal to the

number of unknowns. One method of solution is to divide Eqn. 1.53a

by A to give
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k +2

n J
(k) (k) (k) 1.82 (k) ' 3
%_1 Y03/ %_3_‘;079 “¥Poe3 t = - Yoisa - (9 (2hg.m)d- 137
(1-6§§Z).coso
Fo

1.53b

and knowing Fp and k, and assuming a reasonable value for wq(k)a,
Eqn. 1.53b may be solved by iteration, each time using the newly
calculated value of wo(k)/A until convergence occurs, and equation 1.53b
is satisfied. If separation does take place at any contact position T,
then ug; is zero since as separation “just" begins 6;(K)= A and beyond

that ugy must also be set to zero.

1.4.3.3 Steward's Model

Tooth Geometry and Meshing Conditions

In Steward's30 work in 1988, actual involute gear teeth were again
modelled. The involute profile and trochoidal fillet were developed
from Buckingham's“1 equations for spur gears, which correspond exactly
to the equations in Appendix 1A used by Vedmar3 and in this work.

Fig.1.15 shows the mesh region assumed by Steward (Figure 1.14
represents a perfect and rigid gear). AA' and BB' are the theoretical
limits of mesh for perfect rigid gears (defined, as in Fig. 1.9, by the
intersection of the effective tip circules of the two gears with the base
tangent plane). Steward assumed that, due to the combined effect of
gear errors, corrections and elastic deformation, contact was actually
possible within the region AgA'gB'gB, with contact outside the
theoretical limits taking the form of edge contacts (not in the base
tangent plane). Appendix 2A describes in detail how the location of
contact points in this region is determined for both spur and helical
gears, using a procedure derived from Steward's work on spur gears.

As in Vedmar's work and the author's, Steward assumed that the
contact lines are straight and in the same base tangent plane, regardless
of tooth errors, corrections and elastic distortions. For relatively

accurate gears, this is a reasonable assumption unless Z; and Z; are

both large.
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| - a line of contact
j - a Gauss point

Fig. .14 Plane of Action ABB'A’ of a Perfect Spur Gear
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Contact Deformation

Steward calculated contact deformations using the same basic
equations as Vedmar (Section 1.4.3.2). However, there are two
important differences in his approach which are discussed below.

As previously explained, Vedmar3 extracted his FE "bending"
deformations at a constant depth of 0.5m, beneath the tooth surface.
Steward30 used, instead, the deflections at the tooth centre line derived
from FE modelling of the whole gear. This is an improvement on
Vedmar's work since at this greater depth (at the tooth centre-line), the
effect of inadequately-modelled contact deformation is much reduced.
Only at the tooth tips is Vedmar's depth sometimes comparable to
Steward's.

Steward also investigated the additional compliance of contacts
near the tooth tip by carrying out a 2-D FE study of a rack profile
subjected to Hertzian pressure distributions at various distances from the
tip.

The corner contact compliance was found to be much greater than
that predicted by Hertzian theory (Eqn. 1.34a), as a result of which

Steward introduced a correction factor M given by

M = 1.627 - 0.282 . y, + 0.03338 . y2 1.54
where
(da - dy)/2
yl = ————————————
b.cos (o)

Such that the actual contact compliance is given by

(uchip = M.(ug) 1.55

where u. is the value given by Eqn. 1.34a.

Steward also carried out a very important investigation to check
the validity of "separating” the "contact® and "bending" components of
tooth deflection. This has been the basis of nearly every published
method for predicting tooth compliance in both 2-D and 3-D mesh
models, but does not appear to have been previously checked.

To do this, Steward first established an FE mesh geometry that

would satisfactorily model the compliance of "classical" Hertzian contacts

44



between "semi infinite" solids, then, using this fine mesh at the points
of contact, he modelled a gear tooth in 2-D, with three different
loading positions (Fig. 1.16). In this way the contact region was
modelled with sufficient accuracy to yield reliable values for the actual
deflection of the flanks relative to the tooth centreline.

Steward's results are shown in Table 1.1 in which the FE
deflections at the tooth flank are compared with those obtained by
adding the Hertzian deflection calculated from Eqn. 1.34a to the FE
tooth centreline deflections. The maximum discrepancy of less than 3%

shows that separate treatment of the contact compliance is reasonable.

FE Model and Bending Deformation
Unlike Vedmard who modelled only the loaded tooth and a very
small portion of the gear body (Fig.1.10) Steward30 modelled the loaded

tooth, the two directly adjacent teeth, the whole gear body and a length
of shaft (approximately half a shaft diameter) at each end of the gear
as shown in Fig. 1.17. The shaft was simply supported at both ends,
and torsionally restrained at one end so that tooth loads could be

reacted in a realistic way. For each gear modelled, the shaft diameter

used was given by
dg = 0.8.d = 0.8.m,.Z 1.56

To ensure that this is a "typical" diameter for larger gears,
Steward suggested a cut-off point at d = 25 m, as shown in Fig. 1.18.

Having  established  that it  was reasonable  to add
separately-calculated contact deflections to the tooth centre line
deflections, Steward then investigated the effect on the accuracy of the
predicted deflections of using relatively coarse meshes, (since it was no
longer necessary to attempt to model the contact region accurately).
The coarse tooth meshes shown in Fig.1.19 (cf. the fine meshes of Fig.
1.16) were found to be adequate.

Steward then determined how much of the gear body it was
necessary to model, by analysing the three meshes shown in Fig. 1.19.
Even on the small (14 tooth) gear studied, the gear body deflections
were very significant, as the table shows, and S}eward concluded that
modelling of the whole gear was necessary.

Based on the above, a 3-D model with a relatively coarse mesh
was developed based on 20-noded isoparametric brick elements and to a

much lesser extent 15-noded triangular prism elements for easy fitting.
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dy [mml dell Cuml del2 Cuml error [/4] I
157.9 80.121 78.051 =2.60 I
153.6 69.888 68.562 -1.90
131.94 35.062 34.349 -1.90

dy - loading diameter
dell _ FE tooth flank deflection
dell _ FE tooth centre_line deflection

error _ (del2-dell)%100/delZ2

Table 1.1 Comparison of Analytical % FE Tooth
Contact Deflections
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These elements are shown in Fig. 1.20. "Point” loads normal to the
tooth flank were applied at the reference radius, and at points 0.5m,
and 1.0 m, at each of five axial loactions (0.25m,, 0.75m,, 1.25m,
2.50m,, 6.0m,) from one end of the gear.  Due to symmetry (since b
= 12m,) of spur gears, there was no need to apply any loads on the
For each axial loading position, the axial divisions were

other half.
arranged to give a finer mesh near the points of loading, where stress

gradients are largest (see Fig. 2.6).

To simulate a point load as closely as possible, and to minimize
the effect of “spreading” of the load over adjacent elements, the loads
were applied to mid-side nodes rather than corner nodes as shown in
Fig. 1.21b. This is equivalent to a parabolic distribution in the axial
direction, and due to the characteristics of the FE solution is equivalent

to a sharply peaked distribution over two elements in the radial

direction as shown. The "point" loads were thus distributed over a

rectangular patch 0.5m, x 1.0m, (Fig.1.21b) rather than 1.0m, x 1.0m,
(Fig. 1.21a). From Fig. 1.21b, most of the load is concentrated on
the shaded area 0.5mp x 0.5m.

As mentioned earlier, the FE tooth centreline deflections exclude
the effect of the FE contact deformations under the point loads. The
centre—line deformations were obtained at the points where the load-line
intersects the tooth centre-line (for spur gears this point is in the same

transverse plane as the loaded point). To simplify the analysis, the FE

mesh was designed so that these intersection points fell on mid-side
nodes in the mid-plane of the tooth.

The deflections thus obtained included tooth bending and shear
deformation, gearbody and shaft deformations. Steward used simple
engineering theory to calculate shaft bending, torsional and shear
deformations (which compared very well with FE shaft deformations).
These were then subtracted from the tooth centre-line deflections to
give the combined tooth bending shear and gear body deflection at each
point.

Steward also investigated the deflection of teeth adjacent to the
loaded tooth. There are no contact loads and so no contact
deflections to consider, so the FE deformations on the surfaces of the
flanks could be used. These deformations were shown to be
independent of radial loading position and were identical for the
“preceding” and "succeeding” adjacent teeth (see Fig. 2.9).

The loaded and adjacent tooth deformations so obtained were

approximated by exponential functions. For the loaded tooth, these
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a) lsoparametric Brick Element

b) Triangular Prism Element

Fig. 1.20 Element Types Used in Steward’s 3_D FE Model
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a) Corner Node Loading
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b) Mid_8ide Node Loading

e corner nodvs ymid_side nodes

Fig. 1.21 Advantage of Mid_Side Node Loading
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were similar to those developed by Vedmar3 (Eqn. 1.37) and take the

general form

Ktb[zF’z’rF]_[c[zF’rF]'G[z ,rF]]%. F[E,rF] 1.57
Z -z - ZF 1.58

where

Kip - bending and shear of tooth plus gear body compliance.

F - master function

G - end-effect (non-master) function

z - axial coordinate of point where deformation is desired.
zp - axial coordinate of loaded point

rg = loading radius.

The master function represents the “convective" effect of the
applied load at zp on all points sufficiently far (approximately > 5.mp)
from the tooth ends. For such points, G(z,rg) and G(zp,rg) both
approach unity and Eqn. 1.57 reduces to

Ktb (ZF,ZJ‘F) = F(f.l‘F) 1.59

For the master function, Steward used the following equation, (cf. Eqn.

1.39)

-Crz.lzl

- -25.1z1
F(Z,rp)= Cpp- e -Cpy @ ] +Cpy  1.60

4

The cocfficients Cj were determined for each radial loading
position rp using the curve-fitting routine described in detail in
Steward's work30, The first two terms account for tooth bending and
shear effects, the last for the gear body deformation.

The end-effect function modifies F(Z,rg) whenever either the
loaded point zp or the point of interest z are near the more flexible
ends of a tooth. This function was found to be symmetrical about the

tooth face width for spur gears, although Vedmar3 showed that this

symmetry is destroyed for helical gears.
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Steward30 used the function

z

-C -C
- g3’ g3.(b-2)
G(z,rF) Cgl+ ng.[e + e

1.61
Clearly, away from the ends of wide teeth the last two terms are both

small leaving
Gz, rgp) 2 Cy 1.62
where, in view of Eq. 1.59, Cgl = 1.0

In Vedmar's curve-fitting equations (Eqns.1.37...1.39) the
coefficients A and B are independent of radial loading position.
Variations in ng (and 1) are allowed for by including n and % in the
exponential terms. In Steward's Eqns. 1.60 and 1.61, however, the
coefficients Cg¢ and Cg respectively do depend on radial loading position.
Steward generated coefficient values for each of the five radial loading
positions analysed and used a cubic spline interpolation procedure to
generate values for intermediate positions. He also obtained satisfactory
fits for the deflection of the (unloaded) preceding and succeeding

adjacent teeth, in each case using an equation of the form

-C (z_+z) -C ,(2b-(z_+2))
a3*“F a3 F ]
Ktb(zF'z)adJ-Ca1+CaZ'[e +e

where, as mentioned above, the C,; coefficients were found to be

independent of radial loading position.

Compatibility Equation

Steward developed an equation similar to Vedmar's equation 1.40,

viz.
fl = 6(b + 6tC + 65 - 6e + Ct 1.64

where
fy - is the transmission error, i.e. the angular displacement

measured at the base circle of one gear relative to
the other from the position it would occupy if the

teeth were assumed to be rigid perfect involutes.
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bge  — local contact deformation of loaded tooth (determined
analytically from Eqn. 1.55), see figure 1.22a.

St gear tooth bending and shear deflection including gear
body deflection, figure 1.22b (obtained from the curve
fits of the FE results).

o - shaft bending, torsion and shear deflection.

be -~ deviations of the tooth from its ideal (involute) form
due to manufacturing errors or deliberate
modifications/corrections.

Ct - initial separation between perfect, rigid teeth when

contact is outside the theoretical limits (see Figure
1.15 and Appendix 2A) (¢, = 0 otherwise).

All the parameters in equation 1.64 were, of course, for spur gears,
defined in the "transverse” plane and measured along the base tangent.
For helical gears however, all the parameters should be defined in a
direction normal to the tooth flank at the contact points (cf. Vedmar's
use of u instead of e in Eqn. 1.42).

Steward assumed that the bending and shear deflection &y, in

Eqn.1.64 is given by

5ep(2) = OIbKtb(z,zF).w(zF). dzp 1.65

where

Kip(z,zg) = is an influence function such that, by Maxwell's42

reciprocal theorem

Ktb(zsz) = Ktb (ZF,Z) 1.66
(The function of Eqn.1.59 satisfies this equation).

From Eqn.1.65, 8, is clearly a function of the load distribution
along the whole contact length thus including the "“convective" terms
(see Fig. 1.13a) which are discussed in greater detail in Chapter 2.
The contact deflection &, is however highly localized (see Fig.1.13b)
and is consequently assumed to be only a function of the "local" load

intensity at the point of interest.
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&) Tooth Flank Contact Detf'n

b) Tooth Centre_Line Bending Def'n

Fig. .22 Components of Gear Tooth Deflection in the
Loading Plane
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Thus
81c(8) = K (2)- w(2) 1.67

Substituting for &, and &,. from Eqns. 1.65 and 1.67 into Eqn. 1.64

then gives

ft- !obKtb(z,zF).w(zF).dz + Ktc(z).w(z)+65(z)-6e(z)+ct(z)
1.68

where all the parameters on the RHS are also functions of the radial

position of the point being analysed.

Load Distribution Solution

For equilibrium with the applied torque T the total load normal
to the tooth flank is
T b
F= @D - é\V(zF) . dzp 1.69

Steward solved Eqns. 1.68 and 1.69 for the unknowns w(z) and f,
by replacing the integrals by numerical approximations based on a finite
number of values of the unknown load distribution w(z;), using an
iterative method to allow for the non-linearity of the contact compliance
K. (in both the Hertzian and non-contacting regions). This procedure
was also used in the present work and is described in greater detail in
Chapter 2.

Since no exact analytical expression is possible yet, Eqns. 1.68
and 1.69 are solved using numerical integration methods (2-point Gauss
integration as explained in Chapter 2 in more detail).

By the method described above, the load intensities are
determined at all the Gauss points of integration along the contact
length. The load intensities at the ends of the contact lines however
are of special interest, and Steward determines those by using a
modificd version of Hyashi's3] method, and is expressed by rearranging

Eqn. 1.68 and replacing the first term on the right by &, giving for a

Gauss point at z

f - 6tb(z) - 6s(z) + Be(z) - ct(z)

w(z) = 't
1.70
Kie ()

The improvement over Hyashi's31 method was replacing the first

term on the right of Eqn. 1.68 by &,  Although the compliance
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Fig. 1.23 Load Distribution Along a Spur Gear’s Contact Line
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function of bending and shear K;i, changes sharply at the ends of the
contact lines, the bending deflection itself &, remains smooth. This
ensures that the extrapolated end deflections are reasonably accurate
giving better results than Hyashi's, who extrapolated for the unstable
function K, at the ends. The extrapolated end point load intensities
were determined by using a cubic spline fitting routine. dtp values at
the Gauss points were determined from the curve fitting routines

described earlier in this section.

Contact and Bending Stresses

Once the load intensity w{(z) has been determined as discussed
above, the contact stress opy(z) can be found by using equations 1.1 and
1.2, The appropriate values of p; and py are easily found from the
position of the point of interest on the tooth flank.

The bending stress at any point in the root fillet will, like the
tooth deflection, be a linear function of all the loads on the gear, so
that we can write

b

oF(z) - (J)' KtF(z'zF) . w(zF) . sz 1.71
where Kr is a bending stress influence function of the type first
introduced by Wellaur and Seireg29 and subsequently used by several
other authors for gear stress analysis.

Replacing the integral of Eqn. 1.71 by an equivalent numerical

integral then gives

n
A
GF(zT)- 3 - § KtF (1,3). w(z]) 1.72
j=1
where
i - is the point along the tooth root where the stress is desired.
i = is the point on the tooth flank where the load is applied
A - is the interval of Gauss integration wused and w(zj-) is

determined by the method described earlier in this section.
Therefore, if KtF is known (maybe obtained from FE

bending stress results in some fashion as K, was obtained
from FE bending deflection results) then op can be easily

calculated.

1434 Simon's Model

Geometry and Meshing Conditions
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In 1988, Simon43 developed a 3-D FE gear model to analyse the
load distribution along the contact lines of meshing helical gears. This
model is generally similar to those published by Vedmar3 and
Steward30, An actual involute profile was modelled. The contact
lines of instantaneously engaged teeth were divided into segments as
shown in Fig. 1.24c and the tooth loads acting on a segment were
approximated by a concentrated load AF acting at its mid-point. The
relative separation of the meshing teeth flanks was assumed to consist of
the geometrical separation plus the effect of teeth modifications (Fig.

1.24a), both defined along the normal to the tooth flank (in the normal

plane).
. . "p17 k1 o) . rp2~(Fra~hpg2)
(it'iz) ml hmol m2 hmo2
izl - z
cr0
+ (¢c_,+c_,) . —m————— 1.73
rt "r2 br/z' Z.10
where Iy = is the tooth pair identification number
Tz - is the segment identification number
and the negative terms have to be omitted. Figure 1.24b shows the load

intensity along each of the simultaneously engaged tooth pair contact lines.

Contact_Deformation
The exact expressions for contact deflection used by Vedmard and

Steward30 (Egns. 1.34 and 1.35) were also used by Simon43 to calculate We.
Like Steward30, Simon43 used the tooth centre-line as the reference datum
for dectermining the contact deformation. There is a slight difference
however, since Steward takes the distance from the surface to the centre-line
as that along the load line, whereas Simon takes it to be half the tooth

(arc)thickness at the contact radius. Simon made no correction for tip

contact (factor M of Eqn. 1.54).

FE _Model and Bending Deformation
Simon's43  3-D FE model accounts only for bending and shear

dcformation w; of the tooth, to which the calculated contact deflection w, is
added.  The "gear body" bending and torsion deflections wy (including those
of the supporting shafts) were calculated using the expressions developed by
Tobe and Inouc44, These give only the shaft compliance, so that no gear

body deflections (of the type considered by Steward) are included in wy.
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To calculate wy, Simon43 developed from his FE results an empirical

expression for a tooth bending and shear influence function Kp in the form

1515.37 -1.0622 %0, -0.3879
ko= [ TEn ) - Tty 0y 2 -(20)
g h
0 .0.8219 -0.2165 f 0.5563
(1 + 10 ) . (1+Xp) . (_m )
b 0.6971  FFi1 .0.00043 .Pf _-0.6040 1.74
) (=) C (=)
where
f1 - is a factor of the position of the loaded surface point p

(see Figure 1.25).

fy - is a factor of the relative position of point p to point D
(point where deflection is desired) in the "radial" direction.

f3 - is a factor of the relative position of the point p to point
D in the "axial" direction.

zZ - number of teeth

- transverse plane pressure angle (deg.)

Bo - reference helix angle (deg.)

m - transverse module (m)

h¢ - dedendum height (m)

hy =~ addendum height (m)

L 11 B fillet radius (m)

b - face width (m)

Xp - addendum modification factor.

The relation between Kp and w; is expressed later on in Egn. 1.80. The

factor f3 accounts for the diminished deformation away from the loading

point, and is given by

- —zn1e
1zp-2zp! cy . 1Zp77D!

+ . -——ZW 1.75

f3 = 1 + b3
where b3, ¢3 and z were determined empirically as

by = -1.8874 + 1.004.10-2 . bp; -6.0468.10-5. (bs /)2 1.76a

c3 = 0.8874 - 1.004.10-2 . bp,, +6.0468.105 (bp )2  1.76b
for bym < 20.75, and
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-1.4707 1.76¢

=
W
n

€3 = 0.4707 1.76d

for  bgm > 20.75, and

zyo = [1.2070-4.0256.1074.b;,, + 5.0261.104 .(bg/)2).bf 1.77
2

Clearly by inspection of Egs. 1.75 and 1.76, if 1Zp7Zpl = Zyg f3 » 0 and

Kp » 0. This means that for 1Zp=Zp 1 > Zyg, 2 concentrated load at p
has no effect on point D. Note that Eq. 1.74 is the analogue of Eqns.
1.37 and 1.57 used by Vedmar> and Steward30 respectively.

Compatibility Condition
The analogue to Eqns.1.42 and 1.64 used by Vedmar and Steward

respectively is

wp + W + Wpg = [Ay-e] . cosfp + s 1.78

where

Ay - is the rotational delay of the driven gear relative to the
driving gear, measured along the base tangent line in the
transverse plane (i.e. the transmission error),

e - is the composite error at point D (sum of all manufacturing
and mounting errors plus tooth modifications), along the
base tangent in the transverse plane.

Bp - is the base helix angle (deg.)

and the other parameters are as defined earlier in this section. Note the

presence of the factor cosf, which transforms Ay and e into components

normal to the tooth flank in the normal plane (i.e. parallel to wy, Wer Wi

and s).
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Load Distribution Solution

Applying Eqn. 1.78 to a single segment T, of a particular contact line

iy gives
wy(ig,ig)+we (i, i) ¥wpg (ip,iz)=[Ay(T)-e (Ty.T;)].cosBy+s(iy.iz)

1.79

where (I ¢ iy ¢ Ny) and (1 < iy < Np).

The tooth bending and shear deformation w, is calculated from the

influence function Kp (Eq. 1.74) as

N,

3 ’i -Z AF 1.7 * K i
we (ig,12) T2p-1 (i ‘zp) D('t'izp) 1.80

and the tooth contact deflection w((fy,i;) is calculated from Eqn.1.34,

replacing the term w by

(AF(iy,i,)/Az)

where
Az - is the length of each segment across the face width,

The "gear body" and shaft deformations wy(i;,i,) and the tooth

separation s(i,i;) were calculated as previously described.

The transmitting load F in the normal plane (Fig.1.25) is given by (cf.

Vedmar's Eqn.1.44)

Ne N

P Y g @ NN s
ie=1 i¢ b fe=1 i,=1 b
where

p(z) - is the load intensity at z, measured along the base tangent
line in the transverse plane.

N - number of instantaneously engaged tooth pairs (number of
instantaneous contact lines)

Lig - geometrical length of the line of contact for tooth pair i;.
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1.5

For the segments which are not instantaneously in contact AF(iy,i,) is assumed
to be zero. »

Simon calculated the load distribution by solving the system of
non-linear numerical integral Eqns.1.79 and 1.81, using, like Vedmar, an
iterative procedure to allow for the effects of non-linear contact compliance.

A discussion of results obtained using Simon's formulae is given in

Chapter 3.

Contact and Bending Stresses

As in Steward's work30, Eqns.1.1 and 1.2 were then used to calculate

the contact stress opy(iy,i,) with w again replaced by
AF (iy,i;)/Az

The bending stress calculated from the loads AF(i,i,) using an expression

similar to Eqn.1.71 given by

N,
op(i¢,iz) = % KDO(Tt,TZp) . AF(it'izP) 1.82
zp=~1

where Kp, is an influence factor for bending stress determined like Kp

(Eq.1.74) by an empirical expression of the form

700.51 -1.0960 o -0.7123 g 0.0974
KD(Y- (—_T)'rlo”fZO"Z '(2—8 ) (1+T8 )
~-0.2800 ,h 0.1309 h .2 -
. (1+xp) . (_;E ) ) ("ﬁ )0 276. (Lnﬂlu) 0.0986
-(Eﬁ y~0- 9544 1.83

where, for 1z5-zp1 > be/d, fy; and Kp, are both zero.

Objectives of the Present Work

In each of the models for helical gears described so far, one or more
defects were pointed out.  Shortcomings of the 2-D "thin slice" models were
discussed in Section 1.2.5, and the requirements for an accurate 3-D mesh
model listed in Section 1.4.1. All of the mesh models for helical gears
discussed so far fail to meet one or more of these requirements.

The objective of the present work was to develop and validate
experimentally a mesh model for helical gears, based on Steward's spur gear

model, that did meet all these criteria.
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To this end, the following work was carried out:

1.

A 3-D FE elastic gear model of helical gears was developed using
PAFEC software, running on the University of Newcastle AMDAAL 6000
system. The model included the loaded tooth, the two directly
adjacent teeth, the whole gear body and a section of shaft at each end
of the gear, and was supported and loaded in a realistic manner.

A two-dimensional interpolation scheme was developed to allow
calculation of tooth centre-line deflections at the correct point on the
load line from the FE results obtained from (1) above.

Shaft deformations predicted by the FE analysis were subtracted from
the FE deflections to give net gear deformations relative to the shaft,
which thus comprised tooth bending and shear deflections, as well as
gear body bending, torsion and shear deflections.

Curve fitting equations for the deflections obtained in (3) above were
developed to allow calculation of tooth deflections at any point along an
arbitrary contact line for gears with any helix angle or number of teeth.
Micro-computer based software was developed to calculate the load and
stress distribution on pairs of loaded helical gears at successive points
through the mesh cycle. The program allows for contact outside the
normal phase of mesh caused by gear tooth imperfections, mounting
errors, corrections and elastic behaviour, and allows input of the
common elemental errors and corrections.

Numerous runs were made using this program to analyse a range of
geometrically “perfect” gears. The results obtained were compared
with those predicted by other methods and the causes of any
discrepancies identified. The effects on performance of different
numbers of teeth, face widths and helix angles were also studied
systematically.

A further set of results was obtained for gears of a particular geometry
to study the effects of manufacturing and mounting errors, and design
corrections on load distribution and contact stress. In particular, the
load distribution factors Ky, and Kyyg were studied and compared with
other published data.

An experimental rig was designed, and instrumented to allow
measurement of static transmission error and load distribution in a pair
of loaded helical gears.

Results obtained from this test rig were compared with values predicted

using the software described above.
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2.2

CHAPTER 2

HELICAL GEAR ELASTIC MESH AND STIFFNESS MODEL

Introduction

In chapter 1, the various 2-D and 3-D mesh and stiffness gear models
were discussed with emphasis on the 2-D "thin-slice® model used in the
standards 2,3.4, and the 3-D “exact" models devised by Vedmar® and

Simon43 for spur and helical gears and by Steward30 for spur gears only.

In this chapter, Steward's model is extended for helical gears. The
gear geometry and the F.E. model are first modified to account for the more
complex geometry and loading of helical gears, then, based on the new F.E,
model, the gear tooth deformations are obtained and curve-fitted. Finally, a
micro-computer program incorporating the curve—fitted F.E. data is developed

to allow calculation of the load and stress distribution along the simultaneous

contact lines of the meshing gear pair.

Helical Gear Tooth Geometry

To obtain accurate values for tooth compliance and bending stresses, the
actual involute tooth flanks and trochoidal tooth root fillet must be modelled

exactly. We thus require co-ordinates for the following:
1. points on the loaded and adjacent tooth involute flanks

2. points on the loaded and adjacent tooth trochoidal root fillets.

Involute co-ordinates were calculated wusing the equations given by
Buckingham“1 (see Appendix 1A). The Oxyz axis system used has its origin
at the centre of rotation O of the gear, Oz along the gear axis, and the

y-axis coincident with the loaded tooth centre-line at the datum section of the

gear in the transverse plane.

The trochoidal root fillet co-ordinates were calculated using Vedmar's3
"exact" equations which are also given in Appendix 1A. These equations

avoid the approximations introduced by using the profile of the equivalent spur

gears.
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2.3

In calculating the position of contact lines on the active flanks of the
gears, the effects of the (small) errors, tooth corrections and elastic
deformations have been ignored. The equations used are thus those for rigid
perfect involute flanks, and ‘'normal' contact is therefore assumed to occur in
the base tangent plane as shown in Fig. 2.1, (c.f. Steward's Fig. 1.15 for

spur gears).

Helical Gear Meshing Conditions

The theoretical start of contact for a rigid and perfect gear is the point
A', and the theoretical end of contact is the point B, (the plane of action
shown in Fig.2.1 represents the mating of a right hand helix driver with a

left hand helix driven gear).

At a particular instant of mesh, a contact line 'k' is shown where zgk)
(=0) and zp(k) (=b) represent the end locations of this contact line. The
"phase” of this contact line is defined at the distance ¢,q(k) shown, in base
pitches and describes the position of this contact line in the mesh cycle. It is
only necessary to know the phase of one of the simultaneous lines of contact,
since they are all spaced by the transverse base pitch pp, in the plane of
mesh. To describe the "phase of mesh" it is thus only necessary to specify

the phase of one 'master' contact line (k = K) say. The phase of all other

lines is then
w0 (k) = 0 (K) ¢ (k = K) 2.1
where

1 £ k £ 2K-1

and the positive sign is valid for Fig. 2.1 with start of contact near Ay' or
Al If the opposite end of the tooth flank was loaded, then the negative

sign in Eqn.2.1 is valid as the contact lines will proceed from the opposite

end.

As in Fig. 1.15, the regions AgAA'Apy' and BpBB'Bg' in Fig. 2.1 allow
for possible mesh outside the theoretically defined limits due to gear
imperfections and elastic behaviour. The widths of these regions are made
equal to simplify calculation, and their magnitude depends on the maximum

likely elastic deformation, and the anticipated maximum deviations of the teeth
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Fig. 2.1 Plane of Action

71



from the ideal involute form. In the present work AgA and BB were both
set to 0.35 pp;. No contacts outside this region occurred in any of the gear

sets analysed.

In order to determine whether a particular tooth pair k is potentially in
contact, it is only necessary to check whether the line crosses the "mesh
region” AgAg'Bg'Bp of Fig. 2.1. This condition is satisfied if ,g(k) is such
that

0 < pyok) < €50 + €3
where ¢, is the 'extended' transverse contact ratio defined in Fig. 2.1,

Considering, now, a particular point j at axial positions zj on contact
line k as shown, it is first necessary to find whether it lies in the ‘'normal' or

the ’extended' contact region. The phase of the point j is

Zj.taan
(i) = polk) +
Pbt

and if
TA’pPpt € ¢z (J) < Tp/ppt

it lies in the normal contact region AA'B'B

If this condition is not satisfied, the point lies in the (potential)
extended contact region, and tip contact can be expected (on the wheel in
region AgAg'A'A, on the pinion in region ByBp'B'B). In this case, there
would be an initial clearance ¢, between perfect rigid teeth as shown in Fig.
2.2. The point of nearest approach of the two teeth (where contact under
load may occur) then no-longer lies in the base tangent plane. Contact
occurs on the tip circle of one gear and at a radius dy/2 on the other.
Exact formulae derived by Steward30 for calculating ¢, and dy for spur gears
are modified to apply to helical gears and are given in Appendix 2A. These
agree well with values derived from the approximate expression used by

Seager34 and Munro47. In the 'normal' contact region AA'B'B, ¢ = 0.
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Fig. 2.2 Start of Engagement Outside the Theoretical Limit
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2.4 Contact Deformation
Vedmar's equation (Eqn. 1.33)3 modified by Steward's factor M (Eqn.

1.54)30 to correct for tip and near-tip loading is used in the present work.

The datum depth 'h' used by Steward in Eqn. 1.33 is

S
. 721
h = 2.2
This is (approximately) the depth to the tooth centre plane in the transverse
section. For helical gears, the loading plane is the normal plane as shown in
Fig. 2.3. However, the same expression can be used if Sy and oy are

replaced by s, and o, respectively.
yn yn

As in Steward's30 FE model, the FE mesh consists of radial spacings up
the tooth flank of 0.5my,, which is the radial width of the elements, and as
discussed in section 1.4.3.3, and clearly shown in Fig. 1.21 the load is
distributed radially over two elements. This gives a Hertzian contact width
2L equal to 1.0m,; and L equal to 0.5m. It now becomes easy to verify
that the depth of the tooth centre-line is sufficient, thus Eqn. 1.31 is used to
calculate §.9 (ucp by Vedmar's notation) using both the present work's h'(h/L)
and that of Vedmar's. For simplicity, h is calculated at reference diameter

loading for a standard gear (x=0) and a 20" pressure angle.

n.m_/4
- 0.8358.m, 2.3

cosap

and h'(h/L) becomes 1.6716, and based on Vedmar'sS depth (h=0.5my) then
h' is 1.0. From Eqn. 1.31, the corresponding contact deflections are
0.6305.m,.w/F and 0.4078.m,.w/F and the difference is 0.2227.m,.w/F.
Assuming a mean load w = F/b, the difference becomes 0.2227.m,/b. Using
values of 10mm and 120mm for mj, and b respectively, the non-dimensional
contact deflection difference is 0.01856, which shows that beyond a depth of
0.5my, the difference is insignificant making the tooth centre line a very safe
datum to use.

It was shown in section 1.4.3.2 that Eqns. 1.30 and 1.32 may be
simplified to give Egns. 1.34 when h'>>1, In the example above, h' is
1.6716 based on this work, and 1.0 based on Vedmar's work and so h'>>1
is not satisfied. Yet calculating the difference in the contact deformation
using the approximated equation (Eqn. 1.34) results in a value of 0.0248.
Clearly this is a good approximation when compared with the exact value of

0.01856, verifying the validity of Eqn. 1.34 considering that h' is not much

greater than 1.
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Fig. 2.3 Calculation of Tooth Surface.To_Centre_line Depth
*h" In the Normal Plane

75



2.5 Helical Gear F.E. Model and Resulting Tooth Deformations

A "twisted" version of the F.E. mesh developed by Steward (Fig. 1.17)
was used in the present work, and the actual F.E. meshes of the 18-tooth
and 40-tooth gears respectively are shown in Figs. 2.4a and 2.4b. Fig. 2.4a

shows the external elements only, while Fig. 2.4b shows the internal lines

also.

Simple supports at both ends of the shaft, with torque restraint at one
end were simulated by applying radial constraints only to all nodes at one
end, and constraints in the x and y directions to all nodes at the other end.
In addition, the central node at this end was also restrained axially to react

the axial component of the tooth load.

Steward's equation30 for the recommended shaft diameter was modified

for helical gears to give

d¢ = 08 . m, . z/cos @ 2.4

with Steward's cut-off diameter "d" of 25m, also increased by the factor

1/cosB. Fig. 2.5 (c.f. Fig. 1.18) shows the plot of dg against Z for gears
with g = 30"

As discussed in section 1.4.3.3, Steward verified the accuracy of a
relatively coarse F.E. mesh for determining the loaded tooth centre-line
deformations and the adjacent tooth surface deformations. He also verified
the significance of gear body rotations. The same relatively coarse mesh was
therefore used to model the whole gear with the loaded tooth, and the two
directly adjacent teeth, (Figs 2.4(c), (d)). Based on this, F.E. models for
standard helical gears with b=120mm, m =10mm, B=30", a BS4362 standard
rack profile (hyg = 1.0my,, hgy = 1.25my, rgg = 0.39my) and 18, 40 and 100
teeth were analysed. The model used the same 20-node ‘brick' elememts
used by Steward (Fig. 1.20) with ‘point' loads applied to the mid-side nodes
rather than to corner nodes as explained in section 1.4.3.3, and clarified in
Fig. 1.21. Co-ordinates of both the corner and mid-side surface nodes were
specified using the equations given in Appendix 1A to ensure accurate

modelling of the teeth geometry with the relatively coarse mesh.

The same radial loading positions selected by Steward30 were used: at

the reference radius and at 0.5m, and l.Omrl above and below it. Unlike
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spur gears, however, helical gears exhibit no symmetry about the middle of
the face-width, and it was therefore necessary to apply the ‘point' loads at
axial locations across the whole face width. The 7 axial locations chosen,
measured along the axis of the shaft, from one end of the gear face were
0.25, 0.75, 2.5, 6.0, 9.5, 11.25 and 11.75m, giving, in all, 35 loading cases
to be analysed for each gear. As for spur gears, the axial pitch of the F.E.
mesh was, in each case, reduced near the loading position where the stress
gradients are largest. Not only does this improve modelling accuracy, it also
better simulates a ‘'point' load by reducing the flank area effectively under
load, (see Fig. 1.21). Fig. 2.6 shows the F.E. mesh axial spacings used for

all seven axial loading positions.

As discussed in section 1.4.3.3 for spur gears, the ‘loaded' tooth
deflections are defined at the tooth centre~line to eliminate the incorrectly
modelled F.E. contact deformation. These centre~line deflections, made up of
tooth bending and shear, gear body and shaft deflections, must be those at a
point in the tooth central surface, lying on the line of action of the applied
‘point’ load, normal to the tooth flank (i.e. in the normal plane). For spur
gears (section 1.4.3.3), this point lies at the same axial location as the loading

point (in the same transverse plane). For helical gears however, this is no

longer the case.

Referring to Fig. 2.7, the points 'c' on the central surface,
corresponding to surface points 'p* or 'f', lie on the surface normal at 'p' or
'f'.  Their axial co-ordinates z; differ from z, or zq The point ¢’
corresponding to the point 'f' for each loading position was deliberately made
to fall on the edges of particular mesh elements. This simplified the axial
interpolation required to determine the deflection of 'c' from the nodal
deflections output by the PAFEC software. On the other hand, the position
of points 'c' corresponding to unloaded points ‘p' along the oblique contact
line through ‘f' could not be so arranged, and interpolation of the F.E.

results in two directions was necessary. The procedures used are set out in

Appendix 2B.

To check the accuracy of this process, the tooth surface deflections at
points ‘p' far from the point of load application 'f' were compared with the
tooth centre-line deflections at the corresponding point ‘'c’. The agreement

was excellent, as would be expected, since there is clearly no contact

deflection at these positions.

82



z.* 0.25mn
r—

. 2=+ 0.78mn
r

S |

o z2—= 2.60mn

Z- = 8.00mn

Z-* 9.60mn

z-* 11.28mn

z-+* 11.76mn

b= 12mn ol

Fig. 2.6 FE Mesh Model Axial Spacing of Elements for all
Loading Positions *z;°

83



a ) f —
_ A
| b yA
£
Pt
Zc
L — 2o ) .
Z

b) Tooth Section in the c) Projection of the Contact
Transverse Plane Line in the y.z Plane

!

d) 8.D View of Tooth
¢ _ Is the iIntersection of the Normal at *p° or *1° with the

Tooth Central Surfsce

1 _ Point on Flank Where Load Is Applied
p - Point on Flank Where Def'n ls Desired

Fig. 2.7 Locating Point "c” on Tooth Central Surface

84



So far only the ‘loaded' tooth deformations have been discussed. For
each point of load application °‘f', however, simultaneous contact lines
corresponding to the loaded tooth contact line, occur on adjacent teeth, so
that for each point 'p' along the loaded tooth contact line (and for point ‘f'),
deflections at the corresponding points on the ‘preceding' and ‘'succeeding'
adjacent tooth contact lines must be determined as shown in Fig. 2.8. Since
the adjacent teeth are not directly loaded in the F.E. analyses, they have no
contact deformations, so that their ‘surface' deformations at points along these
contact lines can be extracted directly from the F.E. nodal deformations. The

interpolation procedure required is also detailed in Appendix 2B.

As with spur gears (see section 1.4.3.3), these adjacent tooth
deformations for helical gears show very little dependence on the radial
position at which the load is applied as shown later in this section. For spur
gears, Steward30 also demonstrated nearly identical deformations for the
‘preceding' and ‘succeeding' adjacent teeth (Fig. 2.9), but for helical gears,
the results obtained show that separate treatment of the two teeth is

necessary, as explained below.

The 'loaded' tooth and ‘adjacent' teeth F.E. deformations thus obtained,
include the shaft bending, torsion and shear deflections. As in Steward's work
30, these shaft-specific deflections must be subtracted to yield the net gear
tooth deflections. In this work, the actual F.E. shaft deformations at each
axial section zj were subtracted. As in Steward's work, these were virtually

identical with the deformations obtained from simple Engineering Theory (See

Appendix 2C).

Results
The net ‘'loaded' tooth centre-line F.E. deflections (excluding shaft

deflections) are plotted in Figs. 2.11 to 2.25 for the 18, 40 and 100 tooth
gears at each radial loading position 'rg', and each axial loading position ‘z¢'.
The deflections have been non-dimensionalised by multiplying them by

'E.m,/F* showing larger deformations.

The curves are largely self explanatory with larger deformations for tip
loading (larger rf) and towards the tooth ends which are less well 'supported’
than mid-face sections, particularly at the ‘sharp’' end (Fig. 2.10a) which

shows much larger deformations than the ‘blunt' end.

Fig. 2.10b shows how the point loads were applied at the various axial
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loading (position z¢), for the particular case of near root loading. Loading
positions 1 to 7 on Fig. 2.10b correspond to axial loading positions of 0.25,

0.75, 2.5, 6.0, 9.5, 11.25 and 11.75m,, respectively.

Some interesting points emerge from a comparison of the ‘loaded' tooth
deflections (at corresponding loading diameters), for the 18 and 40 tooth
gears. First, for loading near or below the reference diameter, the 18-tooth
gear generally deforms more than the 40-tooth gear.  Although the larger
gear has greater gear body deformations, these are not significant, for most of
the deflections are thus, for both gears, due to tooth bending/shear, which,

for the ‘weaker® 18-tooth profile is greatest.

However, the results for loading positions at and near the tip, show
that, in this case, the 40-tooth gear generally deforms more than the 18-tooth
gear. A possible reason for this is that at large loading diameters, the gears
body deformations relative to the shaft centre become rather more significant,
so that they more than compensate for the lower tooth compliance of the
40-tooth gear. However, since the contact lines run obliquely across the face,
some of the deflected points are much further from the tip than others, and
experience lower gear body deflections. At such points, the 18-tooth
deflections again prove to be larger. These effects are clearly seen if the

corresponding curves for both gears are superposed.

The ‘loaded’ tooth deflections of the 100-tooth gear are, as expected,
much greater than the deflections of the other two gears. This is due to the

much greater gear body deformations, which more than offset the reduced

compliance of the teeth themselves.

In fact, superposing the graphs for all three gears (for corresponding
loading diameters) shows that the deflections for the 18-tooth and 40-tooth
gears are almost identical, implying that for small gears, gear body
deformations are insignificant. However, the curve for the 100-tooth gear is
consistently shifted vertically relative to the other two curves by about 1.3
units. That this shift is almost entirely due to the extra gear body
deformation on the larger 100-tooth gear is confirmed by a study of the
adjacent tooth deflection curves in Figs 2.32 and 2.33 (see below). These
(which must be mainly due to gear body effects since there is no loading on

the adjacent teeth) are also typically at least 1.3 units.

Considering now the results for the ‘adjacent' teeth deformations, it has
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already been pointed out that for helical gears the adjacent teeth deformations
show very little dependence on radial loading position. This is clearly
demonstrated in Figs. 2.26 and 2.27 for the preceding and succeeding teeth
respectively (only shown for the 40-tooth gear, and one axial loading position
due to space limitations). For spur gears, points of contact 'pp' and ‘p,' on
the adjacent teeth (Fig. 2.8) lie on straight contact lines which run right

across the face-width at constant heights above the tooth root.

On helical gears, however, the contact lines through the points 'py. and
'p;' are oblique, so that all the points are at different heights up the tooth.
The contact lines on the preceding and succeeding teeth thus have different
positions radially and axially so that the deformation curves for these two

teeth are significantly different.

Figs. 2.28 to 2.33 show this quite clearly, although the curves for
preceding and succeeding teeth do seem to be near ‘mirror-images' of one
another for opposite loading positions. For instance, loading at the ‘sharp'
end gives a 'preceding' tooth deflection curve which is nearly a mirror-image

of the deflection curve for the ‘succeeding' tooth resulting from loading at the

'blunt’ end.

The increasing contribution of gear body deflections to the total tooth
deflection on larger gears has already been mentioned. Steward30 found that
for a 100-tooth spur gear, the peak adjacent tooth deflections at reference
diameter loading, varied from 29% to 47% of the corresponding peak
deflection of the loaded tooth. For the 100-tooth helical gear, Figs.
2.32-2.33 show corresponding values between 25% and 72%. The larger
percentages in the case of helical gears, may be attributed to the even greater

gear body deflections due to the greater diameter (by a factor 1/cosf) of the

helical gear.

2.6 Curve Fitting of F.E. Compliance Data

2.6.1 Introduction
The emprical compliance function K, developed by Steward30 for

the ‘loaded' tooth (Eq. 1.57) for standard spur gears, is used in the
same general form and applied to helical gears in the present work.
However, the master function °‘F' and the non-master function '‘G' both

require modification.  Steward's adjacent tooth curve fitting function
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2.6.2

(Ktb)adj (Eq. 1.63) has also been modified to apply to helical gears.

Curve Fitting of Loaded Tooth Deflections

To determine the best form of the function 'F' for helical gears,
attempts were first made to fit the F.E. loaded tooth deflection results
given in Figs 2.38 to 2.40 by exponential functions of the type proposed
by Steward and given in Eq. 1.60. Best fit values of the function
coefficients Cg were determined by minimising the mean squared error
between the actual F.E. data points and the exponential approximation,
for each value of r¢, zf and z, by using the non-linear optimisation
software developed by Steward for this purpose.

However, Steward's function (Eq. 1.60) gave very poor fits for
F(Z,rf), since, as shown in Fig. 2.34, the master function F(Z,rg) for
helical gears is non-symmetric with respect to the point z; and cannot
be approximated well by a symmetric function of the type which fitted
Steward's spur gear results so well.

This assymmetry is caused partly by the axial component of the
tooth load, which not only causes localised axial deflections of the tooth,
but also ‘'tips' it (Fig. 2.34) due to bending of the gear body. This
tipping effect increases as the gear diameter is increased as shown in
Figs. 2.35, 2.36 and 2.37 for the 18, 40 and 100-tooth gears. A
further cause of assymmetry in the F(Z,rg) function is the oblique
position of the contact lines on the tooth flank. Points p(z,r) on one
side of the loaded point p(zsr) are thus higher up the teeth than the
loaded point, and so tend to deflect more, while points on the other
side are lower down the teeth than the loaded point and so deflect
less.

To allow for this effect and the additional gear body deflection

caused by the axial component of the load, equation 1.60 was modified

to give

F(Z,rp) = Cpy- ;Crz'lz'-cm'z- Cs- e~23-12 4Coy#Ceg 2 2.5
where the term Cgs.Z allows for the additional ‘'gear body' deflection at
points far from the loaded point, and the terms in Cg and Cgg allow
for the slight assymmetry of the master curves on each side of zg (i.e.
for positive and negative values of Z = z-zg). It is worth mentioning
at this point that the term Cgg.Z will give unrealistically large values of

F(Z,r) as Z approaches infinity, so that for very wide gears (perhaps >
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15 my), it might be sensible to replace Cg5.Z by a 'slow' negative
exponentail factor (such as Cf5.e"7/1°.f). This option was not pursued,
since no data was available for wider gears.

As in Steward's attempts to curve-fit the function F(Z,rf) using
equation 1.60, the results from equation 2.5 were found to be very
insensitive to the value of the second exponent (-25.1Z(). So this
value was retained as in equation 1.60.

Next, considering the non-master (end-effect) function 'G', the
symmetric form used by Steward (Eq. 1.61) for spur gears was again
modified to apply to helical gears, where symmetry is, in this case,
destroyed by the different flexibility at the ‘sharp' and ‘'blunt' ends of
the tooth (Fig. 2.10a). Different 'end—effect' terms were thus required

for each end of the tooth, so equation 1.61 was modified to give

-C ,.z ;CgS' (b-z)

- C .+ C e 83 4 ¢

8 o1t Cop- 2.6

G(z,r g’
The second and third terms vanish at points sufficiently far from the
tooth ends, and since equation 1.57 must then reduce to the master
function F(Z,rg) it follows that Cq1 = 1.0 is required.

Neverthless, C,q was retained as a ‘free’ coefficient in the curve
fitting optimisation, to improve the quality of fit.  Note that, from
equations 1.61 and 2.5, for spur gears, Cg2 = Cg4 and Cg3 = CgS'

Figs. 2.38 to 2.40 show a comparison between the master curve
fitting function of equation 2.5 and the mid-face values (at zg =
6.0mp) from the F.E. analysis for reference diameter loading for the
18, 40 and 100-tooth gears. The fit achieved using equation 2.6 is
clearly excellent.

Figs. 2.41 to 2.61 show a comparison between the overall fitting
equation (Eq. 1.57), which combines the 'F' and 'G' functions to give
the fitted tooth compliance K;,, and the original F.E. values at
reference diameter loading for the 18, 40 and 100-tooth gears already
given in Figs. 2.13, 2,18 and 2.23. The results for the other radial
loading positions were not shown due to space limitations, but show
equally good agreement with the F.E. data.

To improve the accuracy of the fits obtained, it seemed
worthwhile to separate out the ‘gear body' compliance components
(represented by Cgq + Cys.Z in Eq. 2.5) from the gear tooth master

function F(Z,rs) in equation 1.57. This reduces equation 2.5 to
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the 'gear body' deflection terms could then be added separately, to give
(c.f. Egn. 1.57)

Kip(z,z,1g) = [Glzgrp). Glzrp)]t . F(Z,55)+Cyy+Cys.T
2.8

This seems more reasonable, since the gear body terms are not then
‘modified’ by the tooth ‘end effect' function [G(zg,rf).G(z,rp)]. Note
however, that in this form Ky(zf,2z,rp) would no longer precisely satisfy
equation 1.66.

The whole optimisation procedure described earlier was repeated
using. equations 2.7 and 2.8, and new values for the coefficients C¢ and
Cgi“ and the fit values of Kp(zg,z,rf) were obtained and compared with
the F.E. results represented in Figs. 2.11 to 2.25.

For small numbers of teeth (z = 18,40), the gear body terms are
small, and the fit results differed insignificantly from those given by
equations 1.57 and 2.5. For larger gears (z = 100) however, where the
gear body compliance is greater, the fits obtained from equations 2.7
and 2.8 were marginally better than those shown in Figs. 2.55 to 2.61,
especially at the tooth ends. This suggests that it would, in fact, be
worthwhile to separate—out the gear body deflections as in Egn. 2.8.
This would also allow the inclusion of ‘'modified' gear body deflections
for e.g. gears with a thin rim/web, etc.

In spite of this conclusion, it was nevertheless decided that the
simpler equations 1.57 and 2.5 would be used to generate Ky(zg,z,rf)
since they are fully compatible with Steward's equations for spur gear
compliance, making interpolations between the two sources for the
intermediate values of 3 much easier. It may, nevertheless, be
worthwhile to try reprocessing Steward's data using equations analogues
to equations 2.7 and 2.8 to obtain an even better fit. Unfortunately,
there was insufficient time available to allow this.

It is worthwhile noting at this point that the equations for 'F' and
'G' above were developed based on loading the right side of line 'k' in
Fig. 2.1 with the flexible end at zp(k) and the rigid one at zfk). If
the loading (or helix angle) is reversed, then the term (Z) must be
replaced by (-Z) in the function 'F', and (zf) and (z) should be
replaced by (b-zs) and (b-z) in the function 'K,', effectively reversing
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2.6.3

the role of sharp and blunt ends.

Curve-Fitting of Adjacent Teeth Deflections

For gear teeth adjacent to the loaded tooth, the deformation is
mainly a consequence of gear body rotation caused by the load on the
loaded tooth. Again, Maxwell's reciprocal theorem (Eqn. 1.66) must be
satisfied, so that a compliance fitting function symmetric in ‘'z’ and 'z¢'
is required as in equation 1.57.

For spur gears, Steward used Eqn. 1.63 which is clearly symmetric
about the tooth mid-face. For helical gears, a similar but assymmetric

function was devised in the present work and is given by

-Ca3(zf+z) -Cas.(2b-(zf+z))

Keb.adj 32 = Cu1*Can- @ +Cag

»

+ C (zf+z) 2.9

ab’
where for spur gears Cy9 = Cy4, Cy3 = Cz5 and Cug = 0, so that
Eqn. 2.9 reduces to Eqn. 1.63.

Functions both with and without the last term in equation 2.9
were tried. The results in both cases showed no significant difference,
even for the largest gear (z = 100 teeth). As a result, C,q was set to
zero in the final curve-fitting analysis, with very satisfactory results.
Figs. 2.62 and 2.63 show a comparison between the fitted curves and
original F.E. results, for mid-face loading at reference diameter, for the
18, 40 and 100-tooth gears.

For spur gears of normal proportion the transverse contact ratio
€ is less than 2, so that no more than two pairs of teeth are ever
simultaneously in contact, and it only proves necessary to be able to
calculate the deflection of the two teeth immediately adjacent to any
given loaded tooth. On so-called ‘high contact ratio' (HCR) spur gears,
and on all helical gears with an overall transverse contact ratio ¢, > 2
however, it is possible for three or more tooth pairs to be
simultaneously in mesh, (see Figs. 2.64 and 2.65).

This means that for complete contact analysis, the effect of loads
applied to any particular tooth, on the deflection of adjacent teeth one,
two or even more pitches away, must be considered. In view of the
substantial gear body compliance component Ktb.adj (especially on large
gears), these deflections, which give rise to remote off-diagonal

‘coupling® terms in the compliance matrix (see Eq. 1.70 and Fig. 2.65b)

can not be ignored.
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2.7

2.8

Since for most helical gears ¢, = 1.6 and €y 5 2, these coupling

terms relate to ‘convection® effects across the face—width of the gear,

rather than along the base tangents. On helical gears with high face
contact ratio €8 and overall contact ratios €y of order 5 or higher, the
interacting points z and zy (NB: on different teeth) may easily be 3 or
4 axial pitches apart (possibly 20 or more modules apart), so that the
'local' convective effects represented by the master curve fitting function
F(z,r¢) will have died away altogether.

On the gears modelled by F.E. analysis, no data on the
compliance this far away from a loaded point is available, since the
face~width was only 12 modules. However, it is clearly reasonable to
assume that these remote deflections are wholly due to the gear body
compliance.

To allow for this, the deflection of all non-loaded teeth other
than the two adjacent teeth, has been assumed equal to the least
calculated deflection of the corresponding adjacent tooth section, on the
assumption that these too are mainly due to gear body compliance. For
a more reliable analysis of very wide—faced gears, it will be necessary to
check these assumptions by including more than three teeth in the F.E.
model (c.f. Fig. 2.4) and extending the face-width modelled.

Since adjacent tooth deformations are not identical for helical
gears, it also becomes necessary to modify the fit equation 2.9, when
the loading is reversed, as in the case of the loaded tooth curve fitting
equations. It transpires in this case that the terms (z+zg) in equation

2.70 should be replaced by (b-(z+zg)).

Compatibility Condition

Steward used equation 1.64 to calculate the transmission error f; for
spur gears, using the condition for contact along the base tangent (in the
transverse plane). Exactly the same equation was used for helical gears in
the present work, but all the terms in the equation refer to quantities

measured normal to the tooth flank in the normal plane.

Load Distribution Solution

Steward's solution procedure described in section 1.4.3.3, under the
heading "Load Distribution Solution® was also adopted in the present work on
helical gears, with some important modifications which are explained below.

As shown in Fig. 2.64, helical gear contact lines unlike those on spur
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Fig. 2.64 Load Distribution Along Simultaneous Contact Lines -
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gears do not necessarily extend along the whole face-width, so that equation

1.65 must be modified to give

(k)

N z
- L (k) (k)

5, (2) S I Kep (2:2p) - W' (zp) . dz/cosB, 2.10

k=1 2 (k)

F

where ‘N' is the number of simultaneous contact lines. Recall that &,(z) is
calculated in the normal plane, normal to the tooth flank, and that zy, and
zp are the limits of contact line k as shown in Fig. 2.1, and integration is

along the contact line length (thus including the factor cosfy,.

For helical gears, only the component of the total load (F) in the
transverse plane contributes to the torque, so that equation 1.67 must be

modified to give

N z(k)
U ) IL Kz ) . dz /cosB 2.11
F = - w z . dz./cos .
(db/Z)' cos{i’b ot (k) f f b

The load w(zg).dzp is measured normal to the contact line and not along the

base tangent in the transverse plane as in Vedmar's and Simon's work3,43,

Equation 1.68 for the localised contact deflection remains unchanged,
and substituting for &y, and &, from Eqn. 2.10 and 1.68 into Eqn. 1.64

gives the analogue of Eqn. 1.69 as

N zL(k)
fp=3 I K(K) (2.2¢) wlk)(zg).dzg+Ki o (20)- w(zg)+55(2) 8¢ (2) +ep (2)
k=1 Zp(k) COSﬁb

2.12

Equations 2.11 and 2.12 are a pair of coupled integral equations whose
solution yields the unknown load distribution w(zg) and the transmission error
fy. To solve these equations, the integrals are replaced by numerical
approximations, based on (n-1) values w; (i.e. w(z;)) at points z; along the

simultaneous contact lines.

Following Hyashi31- Steward30 and  Zablonski20, 2-point  Gauss

integration was used over equal intervals A given by
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2.9

A = b/m
and A' = b/(cosfy.m)
where m is the number of Gauss intervals across the whole face width as

shown in Fig. 2.65a for a particular case {(m=2 giving 8 Gauss points).

Eqgn.2.11 thus becomes

T n-1

Al
F = - LY owlh 2.13
(db/z). cost 2

j=1

and for the fth point (z;), equation 2.12 becomes

,n-1
ft - % jletb(i,j).w(j)+Ktc(i).w(i)+6s(i)—ée(i)+cn(i) 2.14

Combining equations 2.13 and 2.14, the matrix equation presented in
Fig. 2.65b is obtained (for the example shown in Fig. 2.65a). The terms in
the 2x2 upper and lower diagonal submatrices are the off-diagonal ‘coupling’
terms caused by deflections of the ‘'next-to-adjacent' tooth referred to in
section 2.6. Steward assumed these were zero, but as explained in section

2.6, calculated non-zero values are necessary for the analysis of helical gears.

The matrix equation (Fig. 2.65b) was solved using a Gauss elimination
procedure given by Atkinson48.  Since Kc(i) depends on w(i), and must be
set to zero if w(i) is negative, the iterative procedure adopted by Steward30
was again used, in which initial values of K. (i) were calculated for an
assumed (uniform) distribution wg(i), and progressively modified as improved

values of w(i) emerged from the Gauss solutions.

Replacement of this rather slow process by a Gauss-Siedel iteration
process, or one similar to that used by Vedmar was originally planned, but

not carried through due to lack of time.

Contact_and Bending Stresses
Referring to section 1.4.3.3 under the heading of 'Contact and Bending

Stresses', the same analysis applies to helical gears and will not be repeated
here. A diagram showing the contact point radius of curvature P} is shown
in Fig. 2.1, since Fig. 1.1 applies only to spur gears as it is in the transverse

plane. The value of Py is given by
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Py = [rjz - rbz]ﬁ / cos By 2.15

2.10 Mesh Stiffness ¢

Y

As explained in section 1.2.4.2, the gearing standards are based on a
2-D elastic meshing model using a ‘single tooth' stiffness c¢' derived from
Winter and Podlesnik's work!4, For helical gears the value of c¢' used in the
model is that of the equivalent spur gears at their pitch point (when there is
single tooth pair contact). The overall mesh stiffness cy used to calculate for
example, system natural frequencies, Ky, Ky, KHﬁ: etc., is the mean
stiffness (averaged over the meshing cycle) and is given empirically by

equation 1.29.

There is, in fact, no period of ‘single tooth pair contact' during -
meshing of real helical gears with €y > 2, and for the 3-D elastic mesh
model developed in this chapter, the concept of ‘equivalent spur gears' is
unnecessary, so that not even an ‘'equivalent' single tooth contact region can
be defined. The notation of a single tooth stiffness ¢’ is thus irrelevant and
it is consequently impossible to relate values of c¢' given by equation 1.28, to
any of the results generated by the 3-D mesh model for helical gears, even
though Steward30 was able to make such a comparison in his work on spur

gears, since for spur gears ¢, < 2 and single tooth pair contact does occur.

It is, however, possible to calculate the overall mean mesh stiffness Cy
using the 3-D model. The 'instantaneous' stiffness c.’,' in the base tangent

plane can be calculated from

e (F/8, 2.16a

where F and ft are both normal to the contact line. However, the standard's
define ¢' and therefore Cy in the transverse plane (section 1.2.4.1) and for

comparison purposes Eqn. 2.16a becomes

F.cosf3
b F/b 2
¢! = ———m = L=, cosf 2.16b
Y f’t/cosBb ft b

By running the load distribution analysis program through a complete

mesh cycle in phase increments of 0.10 base pitches or less, instantaneous
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values of f; are obtained from which the average value ftavg can be

calculated. This yields a mean value c., comparable with that given by the

y
standards:
. = 7 F/b 2.17a
L tavg
or
c - F/b coszﬁb 2.17b
7y tavg
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CHAPTER 3

THE BEHAVIOUR OF PERFECT GEARS IN MESH AND COMPARISON WITH

3.1

3.2

PUBLISHED RESULTS

Introduction

In this chapter, the results obtained in the present work for gear tooth
compliance Ky, overall mesh stiffness c.y, load distribution w, and the
corresponding contact stress op, are all compared with the results obtained by

the gear rating standards2,3.4, Vedmar3 and Simon43.

In addition, the effects of number of teeth Z, gear ratio U, helix angle

B and gear facewidth b on Kib c.),, w and oy are studied.

Gear_Tooth Compliance : Comparison with Published Results

3.21 Introduction _

As explained in Chapter 1, the author, Vedmar® and Simon43 all

used basically similar F.E. models to determine the tooth bending (and

shear) compliance. All three sources fitted their results by algebraic

approximating functions, and the results are compared in this section,
(section 3.2).

To facilitate this comparison, Vedmar'sS and Simon's#3 methods
have been implemented in two micro—computer PRO-PASCAL programs
which calculate the compliance of any helical gear tooth according to
equations 1.37, 1.38 and 1.39 (Vedmar), and equation 1.74 (Simon).
Vedmar's tabulated coefficients in equations 1.38 and 1.39 have been
interpolated (or extrapolated) using cubic spline functions, so that values

for any number of teeth or helix angle can be obtained.

3.2.2 Comparison with Vedmar's Results

Vedmar'sS equations are of very similar form to the author's
equations 1.57, 2.6 and 2.5, except for the differences pointed out in
section 1.4.3.3 (under the heading F.E. Model and Bending
Deformation).
\ Before making any comparisons, it is, in principal, necessary to
correct Vedmar's3 results to allow for the smaller depth (0.5m,, below
the tooth flank), at which his deflections are calculated. @ However,

referring to section 2.4, a detailed analysis shows that the difference in
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contact compliance between the author's (using the tooth centre-line as
reference depth) and Vedmar'sS results is negligible, so no corrections to
Vedmar's results are, in fact, needed. It is worth noting that Steward30
calculated much larger corrections but his values seem to be incorrect.
Comparison of the functions G(z,r5) [Eqn.2.6] and y(!,7)
[Eqn.1.38] is facilitated if only the tooth centre-line deflections, under
the point of load application are considered, by setting z = zp ({=!f).

From equation 1.57 we have
Ktb(zf’zf’rf) = G(z) . F(O,rf) 3.1

and similarly from equation 1.37

o(§F.mp) = ¥EEE) - TO,7.7F) 3.2

Noting that T" in equation 3.2 is equal to 1.0 for all values of 7
and #p, and that F in equation 3.1 is also equal to 1.0 for all rf, then
the influence functions in equations 3.1 and 3.2 reduce to the "end
effect"” or "non-master curve" function G(z;) in the present work or
Vedmar's J({g,ng). These functions should be nearly identical.

G(z5) and Y($gE,mp) are compared in Figs. 3.1, 3.3 and 3.5 for 8
= 0", and in Figs. 3.2, 3.4 and 3.6 for B = 30°, for the 18, 40 and
100-tooth gears respectively. Note that since Vedmar's coefficients were
only tabulated for § = 0, 10 and 20", it was necessary to extrapolate
for B = 30" using the cubic spline fits previously mentioned.

The spur gear results show excellent agreement for 18 and 40
teeth (Figs. 3.1 and 3.3), although the "end effect" predicted in the
present work appears to be slightly less localised than Vedmar's3, For
100 teeth, however, the deflections predicted by the author are nearly
1.6 times those predicted by Vedmar in the central region, although
only about 1.2 times at the tooth ends. The additional deflection at
the ends relative to the central region, is, however, nearly the same on
both curves, as for the smaller gears with 18 and 40 teeth. The
discrepancy for the 100-tooth gear can therefore be completely explained
by the effect of the larger gear body compliance. As shown in Fig.
3.5, this effectively adds a roughly constant deflection of about 0.7 units
to the deflection of each point across the gear. If this were subtracted,
the two curves would be in close agreement. Since as shown in section
1.4.3.2, Vedmar's F.E. model fails to include the proper gear body

deflections, this discrepancy between the two sets of results is
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Fig. 3.2 End Effect Function G(z) at
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Fig. 3.4 End Effect Function G(z) at
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Fig. 3.5 End Effect Function G(z) at
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inevitable.

A very similar pattern of agreement is shown in Figs. 3.2, 3.4
and 3.6 for helical gears. For 18 and 40 teeth (Figs. 3.2 and 3.4)
where gear body deflections are small, agreement between the author's
and Vedmar's results is again excellent, although at the "sharp™ end of
the teeth (Fig. 3.7), where the compliance is greatest, Vedmar's
compliance tends to be smaller than the author's, On the 100-tooth
gear (Fig. 3.6) this difference is again apparent but is combined, as in
the case of the 100-tooth spur gear, with an additional gear body
deflection of about 1.1 units (see also relevant part of section 2.5).
This is clearly larger than the gear body deformation of the 100 tooth
spur gear due to the larger helical gear diameter.

One possible explanation for the greater discrepancy at the sharp
end is shown in Fig. 3.7. Vedmar's deflection for a load applied at
point pgg is that of the point pyg 0.5mn below the tooth surface in the
transverse plane. As explained at the beginning of section 2.5, the
author's deflection is for the point pp in the same normal plane as
Pfs- So at the sharp end of the tooth, point pp, is about 0.165mn
nearer to the end of the tooth (at reference diameter loading) than the
point pys, and will thus show higher deflections.  Shifting Vedmar's
curve about 0.165mn to the right in Figs. 3.2 and 3.4 brings Vedmar's
curve into very good agreement with the Author's.

At the "blunt" end (Fig. 3.7), the situation is reversed since the
author's point ppyy, is further from the tooth end than Vedmar's point
pyp- In this case, however, the end effect is anyway too small for any
discrepancy to be noticeable,

An alternative possibility is that Vedmar appears to have loaded
his F.E. model in the transverse plane (see section 1.4.3.2). This
would reduce his compliance values even more at the sharp end when
compared with the author's.

To compare the author's function F(Z,rg)) with Vedmar's
corresponding function F(1§-Sg1,7,mF), the effect of a load applied at
mid-face (zf = §{g = 6.0m;) is considered. The deflections are then
given by the author's equation 1.57 and Vedmar's3 corresponding
equation 1.37,

Since the functions G and y in these equations (given by
equations 2.6 and 1.3%9respectively) are both constant at points well away
from the tooth ends (refer to equation 1.62), the curves of Ky, and o
will only reflect the form of the functions F and T.

The results of this comparison for loading at the reference
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diameter are shown in Figs. 3.8 - 3.10 for gears with 18, 40 and 100
teeth, with § = 0" and 30". Results have only been plotted for the
range 2m, < z < 10m, to eliminate the end effects caused by the
functions G and y. Spur gear results are symmetric about the centre of
the gear facewidth as expected, whereas, in both cases, those for the
helical gears are tilted as described in section 2.6.2. The "widths" of
the master curves are also substantially the same for the author's and
Vedmar's results, although Vedmar's show evidence in every case of a
slightly sharper peak at the centre (point of load application).
Steward30 attributed this to Vedmar'sd inclusion of more of the highly
localised contact deflection in his compliance values, due to the different
datum depth of 0.5m, wused, but, as shown in section 2.4, the
discrepancy caused by this effect is actually only about 0.02 units and
thus quite negligible.

For both spur and helical gears the effect of the increasing gear
body deflection included in the author's results, is also apparent. This
is negligible (about 0.1) for the 18-tooth pgears, increasing to about 0.20
for the 40-tooth gears, and to about 0.80 and 1.30 units for the
100-tooth spur and helical gears respectively. If these (nearly constant)
deflections were subtracted from the author's results, much better
agreement would be obtained between the author's and Vedmar's curves
(except at the loaded points, as discussed above).

Although Figs. 3.1 - 3.6 and 3.8 ~ 3.10 do reveal indirectly how
the tooth deflections vary with the number of teeth, it is interesting to
plot the deflections as a direct function of the number of teeth Z.
The effect of the helix angle may also be displayed directly by plotting
the results for the spur gears alongside those of the 30" helical gears.

This has been done in Fig. 3.11 for tooth deflections directly under the

load, at reference diameter loading, as an example.
As expected, the author's results are larger for larger gears due to

gear body deformations not modelled by Vedmar, converging to nearly
the same values as the number of teeth decreases. The interesting fact,
however, is the crossing of the author's and Vedmar's curves at around
Z = 40 teeth, beyond which the author's deflections become smaller
than Vedmar's. This can not be explained by residual contact
deflections caused by Vedmar's smaller datum depth, since this effect
has already been shown to be negligible. Another possible explanation
for this phenomenon is that Vedmar seems to have evaluated his
deflections along the base tangent line, (i.e. in the transverse plane).

Converting these values to the equivalent deflections along the load-line
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Fig. 3.9 Tooth Deflection For Loading at
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3.2.3

(in the normal plane) introduces an additional factor cosfBp which could
bring Vedmar's curve for the 30" helix gears slightly below the author's
for smaller values of Z. This theory however, does not explain
Vedmar's larger deflections for the small spur gears, where the
correction would have no effect. This explanation is thus unreliable.
The discrepancy however, may be explained by Vedmar's inadequate FE
coarse mesh, (see Fig. 1.10).

Another observation is that Vedmar's 0° and 30  gears exhibit
nearly identical curves. This is clearly contrary to the explanation
above based on the factor cosfy, since if this theory were true, the
curves for the helical gears should differ significantly (by a factor
1/cosfp). The same observation also confirms that Vedmar did exclude
gear body deformations since his spur and helical gear results are much
closer together than the author's, in which the gear body deformations
of the helical gears are much greater than those of the spur gears.

It is, however, important to remember that Vedmar's 30  helical
gear results were obtained by linear extrapolation of his coefficients for
B =0, 10 and 20, as explained above. Even though the error so
introduced is not expected to be very significant, there is a possibility

that the B = 30" "Vedmar" curves plotted are, in fact, unrepresentative

of his theory.

Comparison with Simon's Results

Comparison of the author's results with compliances obtained from
Simon's equation (1.74) showed wide discrepancies. Simon's deflections
are unreasonably large for small values of Z (4 times as large as
Vedmar's and the author's deflections for Z = 18, and twice as large
for Z = 40), similar to those obtained by Vedmar and the author for
large values of Z (Z = 100), and approaching zero for very large gears
(rack teeth). This variation is physically unreasonable.

Examination of equation 1.74 shows that Simon assumes the
compliance to be inversely proportional to Z, even though there is no
logical reason why it should be. An essential feature of any good
empirical relationship is that it should give physically reasonable results
for limiting values of each parameter. Simon's equations do not satisfy
this requirement, and can thus only be valid for a very limited (and
undefined) range of Z values.

A possible reason for Simon's unlikely results may be the presence
of misprints in the published equations (Eq. 1.74). A different form of

these equations was actually given in an earlier publication, Several
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attempts were accordingly made to contact Simon personally, to check
that his published equations were correct, and to establish the logic
underlying them. These attempts met with no success, however, and as
a consequence, Simon's results have not been plotted against the

author's for comparison.

3.3 Overall Mesh Stiffness : Comparison with Published Results

3.31

3.3.2

Introduction

The definitions of the overall mesh stiffness Cy and single tooth
stiffness ¢' are, for both spur and helical gears, based on the 2-D
"thin-slice” model used in the gear rating standards. (See section
1.2.4). As explained in section 2.10, however, only the overall mesh

stiffness c,, has any meaning in the author's 3-D meshing model for

v
helical gears, so only values of Coy calculated from equations 1.29 and
2.17 have been plotted below for comparison.

Recall, however, that ¢' and c, are both defined by the standards
only (i.e. in the transverse plane), so that Eq. 2.17(b) for spur gears
must be used to obtain comparable values from the 3-D model of
helical gears. However, the term c.y must be defined not in the
transverse plane, but in the normal plane, along the load line direction,
and Eqn.2.17a was used to estimate Cy from the author's 3-D model.
The information presented by Vedmar> is insufficient to allow calculation

of c., but since his contact deformation equation yields nearly identical

‘Y)
results with the author's, and his tooth bending (and shear) deflections
were shown (see section 3.2.2) to be in very good agreement with the

author's, Vedmar's c. values will be nearly identical with the author's

v
for perfect gears, and need not be presented for comparison purposes.
As mentioned in section 3.2,3, Simon's compliance results were highly

illogical, and so, his Cy values will not be used for comparison

purposes. Consequently, only the results for Cy as calculated by the
standards2,3:4 are compared with the author's.
Comparison of c¢., with the ISO Formulae

Y
Values of c.., obtained from the author's equations 2.16a and the

ISO equation 1.29 ‘)tior standard helical gears with my = 10mm, g = 30°,
b = 120mm and zj:zy = 18:18, 18:54 and 18:100, at a specific load
F/b = 100 N/mm are plotted in Figure 3.12 for a number of phases
during a complete cylce of engagement. ISO values are the same at
all phases of mesh since the overall mesh stiffness cy is based on the

maximum single tooth stiffness c¢' at the pitch point (section 1.2.4).
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From Figure 3.12 for the 18:18 mesh, the instantaneous mesh
stiffness Croy (equation 2.16a) varies from about 15 to 18 N/(mm.um).
Equation 1.29 predicts a mean value of about 19.75 N/(mm/pm) which
is in substantial agreement with the author's results. For the 18:54
and 18:100 mesh, the ISO equation predicts higher mean mesh stiffness
values than the 18:18 mesh as shown in Figure 3.12. This is partly
due to the increase in e, from 1.278 for the 18:18 mesh, to 1.353 and
1.377 for the 18:54 mesh and 18:100 mesh respectively, but mainly due
to the higher values of the single tooth stiffness c¢' given by equation
1.24. The author's 3-D model, on the other hand, predicts a reduced
mesh stiffness, for these ratios, due to the increasing influence of gear
body compliance on the 54 and 100 tooth gear wheels. For the 18:54
mesh, the ISO mesh stiffness is, on average, about 1.8 times that given
by the author's mesh model, and about 2.8 times for the 18:100 mesh.
For completeness, the instantaneous transmission error values f; are also
plotted in Figure 3.13.

If, instead, relative stiffnesses are calculated from the author's

model, by subtracting the gear body compliance terms (Steward3°), there
is then much closer agreement between the ISO value of Cyr and those
given by the 3-D model. The 1SO4 prediction that the 18:100 mesh
is stiffest is also confirmed. This has been done in Figure 3.14,
where the curves are in much better agreement than those in Figure
3.12 for the 18:100 mesh.

It is worthwhile mentioning at this point that if equation 2.16b
were used instead of equation 2.16a to calculate Cry (see section 2.10),
then the differences between the ISO and the author's results would be
significantly greater.

The cyclic variations of Cry and f; shown in Figures 3.12 and
3.13 respectively are significantly greater for the 18:18 mesh than for
the other two meshes shown. This can be traced to the associated
variations of €, and hence €y which are as shown in Table 3.1. As
Z, increases, the average number of teeth in contact increases, tending
to produce a smoother stiffness wave form. €0 and €40 are the
ratios for the extended plane of mesh shown in Figure 2.1.

Another interesting effect to examine, is that of the gear ratio
U(Zy/Zy) on the overall mesh stiffness Cyr Figure 3.15 shows this
effect according to the author's equation 2.17a and the ISO equation
1.29. As explained earlier, the author's curves show reduced stiffness
for the larger gears, since the increased tooth "cantilever™ stiffness on

larger gears is offset by the large gear body deformations, which reduce
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Fig. 3.14 Instantaneous Relative Mesh

Stiffness, Beta=30Deg b=120mm mn=10mm
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l 21:22 ECr Edo Eb 58 58;

18:18 1.278 1.978 1.910 3.188 3.888
I 18:54 1.353 2.053 1.910 3.263 3.963
I 18:100 1.377 2.077 1.910 I.287 3,987
l Beta=30 Deg b=120 mm mn=10 mm

Table

]

1

Variation of Transverse Contact Ratio
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Fig. 3.15 Overall Mesh Stiffness & Gear
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the overall mesh stiffness. The curves based on ISO formulae,
however, show increasing stiffnesses for larger size wheels since the
effect of gear body compliance is not accounted for,

It is interesting to consider the "hump" in the author's zp=18
curve, which is not evident in the other two curves. At very low
values of Z; and Z, (U=1), gear body deformations are negligible (0.10
to 0.12 units), but tooth "cantilever" deformations are relatively large
due to the reduced root section. As a result, the mesh stiffness c.), is
relatively small. As U increases to about 1.5, gear body deformations
are still negligible (0.10 to 0.12 units), but the wheel teeth become
slightly stiffer giving a slightly larger Cy as shown. Beyond that point,
gear body deformations become significant, offsetting the increased tooth
cantilever stiffness for larger gears, and so Cy becomes smaller again.

This effect might also have been observed in the other two solid
curves if values of U less than 1 had been used in order to give very
small values of Z,.

The variation of cy with Z1(=Z,) for U=l has also been plotted
in Fig.3.16 for completeness, and exhibits the same trend as the curves
plotted in Figure 3.15. Steward30 shows similar results for spur gears.

Finally, the effect of gear face width b on Cy is studied. For
facewidth ratios by (=b/my) of 2, 4, 4.5, 6, 8, 10 and 12mj,, ten
meshes were analysed at equal phase increments through a complete
mesh cycle, and the average value of Cy calculated from equation 2.17a.
The values obtained are plotted against by in Figure 3.17, which shows

that c., decreases gradually with increasing facewidth ratio bg.

z'he function G(z,rg) of equation 2.6 does not change significantly
with a variation of by between 2m, and 12m,. However, the function
F(z,rf) of equation 2.5 decreases progressively with decreasing values of
by, resulting in smaller tooth compliance values in equation 1.57, for
narrower gears at the same value of Z.  This results in a drop in the
transmission error f; of equation 1.64, and consequently a rise in the
mesh stiffness Cy of equation 2.17a as shown in Figure 3.17. These
results must, however, be viewed with caution, since for by ¢ 5 the two
end-effect functions in G(z,r;)) "overlap®, and there is no FE data

available to support the simple superposition implied by Equation 1.57.
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Contact Loads and Stresses

The main purpose of the program described in section 2.1 is to
calculate the contact load and contact stress distributions across
simultaneous contact lines of engaged helical gear teeth, The results for
the load distribution so obtained are presented in figures 3.18, 3.19 and
3.20, where the non-dimensional load intensity w is plotted against axial
location along the contact line for a standard gear pair with b =
120mm, mn = 10mm, Z; = 18, Z, = 72 and B = 0°, 15" and 30°
respectively. The total normal load used in each case is 12000 N (100
N/mm), which gives typical safety factors for good quality carburised
gears. Figures 3.18a and 3.18b show the load distribution for a spur
gear mesh. Phase 1 represents the start of mesh (line AgAgy' in figure
2.1), and phase 10 represents the end of mesh (line BpBg' in figure
2.1). Phases 5 and 6 give single tooth pair contact. Figure 3.18c
shows Vedmar'sS results for a very similar spur gear (Z1:Z5 = 20:80)
with a rather narrower facewidth,

The close qualitative agreement between the author's and
Vedmar'sS set of results is self evident. Particularly important features

of both are:

1. Peak load intensity is in the single tooth pair contact region as
expected.
2, Load is not uniform across the facewidth, with peak values at

about 2.0m, from the teeth ends, varying from about 1.06 to

1.11 times the loads at mid-facewidth of the teeth (z = 6.0mp),

and minimum values at the teeth ends, varying from about 0.88

to 0.96 times the loads at mid-face (average to 0.92). At the

tooth ends, deformation is plane stress, and at mid-face

deformation is approximately plane strain, and since the total

deformation must be the same at each section, the ratio of the

load at the ends to that at mid-face is expected to be

1-v2 = 1-0.32 = 0.91

which is close to the average ratio of 0.92 obtained from figure

3.18.

The cause of the load peaks at about 2.0m, from the teeth ends
is not clear. However, the differential equations for tooth deflection
proposed by both Kagawa24, using his "beam® model and Seager34 using

his deflection measurements are of the general form (refer to section

1.4.2 and figure 1.8)
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Fig.3.18a Load Intensity Along a Single
Contact Line Going Through Mesh (F=12kN)
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Fig.3.18b Load Intensity Along a Single
Contact Line Going Through Mesh (F=12kN)
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which yield a solution of the form

A, X =\ X
wy=e .(A.cosk2x+B.sin)\2x)+e 1 .(C.cos)\2x+D.sin) xX)+w(x)

where

) - is the beam defelction along the free edge

P(x) - is the load intensity at the free edge (figure 1.8)

K ~ is the flexural rigidity

kg, ko - see figure 1.8

M, N -~ are functions of poisson ratio v, and
dimension b (figure 1.8)

AB,C,D — are arbitrary constants determined from the boundary
conditions

w(x) - is a particular integral

Over a wide faced gear, the solution w(x) dominates behaviour at
mid-face, while the two damped sinusoidal functions produce “end
effects” very similar to those shown in figure 3.18, and similar to those
seen in a beam of finite length resting on an elastic foundation. It
thus seems likely that the load peaks near the tooth ends shown in
figure 3.18, are inherent features of spur gear contact lines, and not the
result of any shortcomings in the 3-D model.

Next, variations of the load distribution along one contact line on
a helical gear as it passes through a complete mesh cycle is plotted.
Figures 3.19 and 3.20 give the results for two helical gears with 8 =
15° and 30°. The module and facewidth chosen are those for which
the actual FE data was obtained as described in section 2.5.

To compare the author's results with Vedmar's> load distributions,
a gear with the same geometry as one of those analysed by Vedmar?
was also analysed. The comparison is presented in figures 3.21 and
3.23.

In this case, the parameters b, m,, Z(20 and 80) and B(=20")
were different from those for which the authors FE data was available.
The module m, has no efect on the stiffness data, and, as shown in
figure 3.17, the factor (b/mj) also has very little effect. As explained
in section 2.6, it was necessary to interpolate the coefficients of

equations 2.5 and 2.6 using a cubic spline fitting routine to obtain
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results for Z = 20 and 80, while only linear interpolation between

values at 8 = 0 and 30" was possible to give values at 20°. (These

procedures for interpolating for Z and § are built into the mesh analysis
software, as outlined in Appendix 2A.)

Because of hardware limitations, the analysis was performed using
only 10 Gauss points per full-length contact line, giving a mean point
spacing of about 1.1 modules. Values of the load intensity and stresses
at the end points of each contact line (not Gauss points) were obtained
from equation 1.70.

In figures 3.21 and 3.23, the author's results are plotted both with
and without the factor M (equation 1.54). With M included, the
increased contact compliance near and at tooth tip contact results in
smaller load intensities there. Results with M are plotted as "solid"
lines, those without (M = 1), as dotted lines which coincide with the
solid lines except near and at the tooth tips. The "dashed" lines show
Vedmar's® load distributions derived from his '3D' plots (figures 3.22,
3.24).

The letters a to j on figures 3.21 and 3.22, and the
corresponding letters on figures 3.22 and 3.24 indicate the different
contact lines (phases) analysed. Line ‘a' is at the start of mesh, near
Ag' in figures 3.22 and 3.24.

The author's and Vedmar's curves in figures 3.21 and 3.23 exhibit
a number of quantitative and qualitative common features as follows:

1. Noticeable load peaks occur on the short contact lines, particularly
on those lines near Ag' and Ap. Such load "spikes" have been
observed by several authors3:6,7 and can be explained by the
"buttressing" effect of the adjacent unloaded positions of one of
the teeth in these regions (section 1.2.1). In spite of the
increased contact compliance near and at the tooth tips, accounted
for by the factor M (equation 1.54) in the author's model,
substantial load peaks are nevertheless still observed (solid curves
in figures 3.21 and 3.23), and with M = 1 (as in Vedmar's
theory), the peaks increase to become nearly identical to Vedmar's
end load peaks.

2. On the full-width contact lines present in gears with small § (see
figure 3.19 for B = 15°), the peak loads are neither at the pitch

line nor at mid-face, as suggested by Merrit'sl7 thin slice

theory.
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Fig. 3.19 Load Intensity Along a Single
Contact Line Going Through Mesh (F=12kN)
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Fig. 3.20 Load Intensity Along a Single
Contact Line Going Through Mesh (F=12kN)
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Flg. 3.21 Load Distribution Along a Single
Contact Line Going Through a Complete» Mesh Cycle

( F-2.08kN Beta=20Deg b=30mm mn-6mm Zp=20 U=-1 )
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Fig. 3.22 Vedmar's Actual Non_Dimensional Load
Distribution Chart (Refer to Fig. 3.21)
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Fig. 3.23 Load Distribution Along a Single
Contact Line Going Through a Complete Mesh Cycle
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Fig. 3.24 Vedmar's Actual Non_Dimensional Load
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As with the spur gears of figure 3.18, the peak load intensity on
these full contact lines tends to occur at about 2.0m, from one
end of the facewidth. In Vedmar'sS work this also occurs for the
20" helix angle gears as shown by figures 3.21 to 3.24 (peaks at
about 1.0m, from one end for b = 30mm, m, = 6mm). The
author's curves for § = 20" (figures 3.21 and 3.23) are seen to
behave in a similar fashion to the curves for 8 = 30" given in
figure 3.20. Realling that the stiffness data for figures 3.21 and
3.23 required linear interpolation for B = 20°, it is clear that a
"high helix angle solution" has been obtained for 20°. Vedmar'sS
stiffness coefficients for 8§ = 0, 10 and 20" do not, however, show
a linear variation with (8, so that the linear interpolation used is
probably not justifiable. In the absence of a third set of FE data
to complement that for 8 = 0' and 30", however, only linear
interpolation was possible.

On the author's 30  helix angle gear, €eg>1, and there are no
full contact lines. Figure 3.20, and the solid curves of figures
3.21 and 3.23 given by the "high helix angle solution" for f§ =
20" show peak load intensities at mid-face, near the pitch circle
as predicted by Merritl7, Sharp load “spikes" are again apparent
at the ends of these contact lines.

The author's results for full (or nearly full) contact lines show
lower load intensities at the tooth ends than Vedmar's. A
possible reason for this is the effect of the adjacent tooth stiffness
functions included in the author's analysis, but not in Vedmar'sd.
This is discussed further below.

Possible reasons for the discrepancies between the author's and

Vedmar's results in figures 3.21 and 3.23 are:

1.

Vedmar's3 results were extracted by measuring his rather small
diagrams (which were enlarged for figures 3.22 and 3.24). It is
estimated that the errors in this process could be of order *5%.
Vedmar did not allow for contact outside the theoretical phase of
mesh as the author did (see sections 2.3 and 1.4.3.3), so that the
limits of contact at corresponding phases of mesh could have been
slightly different.  However, for the cases chosen, the author's
start and end of mesh do occur within the "theoretical” meshing
limits, so that this argument does not apply.

The linear interpolation for § = 20" referred to above probably
tends to over estimate the effect of f, since Vedmar's coefficients

for B = 0°, 10" and 20" show non-linear variations. This will
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tend to produce (for 8 = 20°) a "high helix angle” solution,

giving load intensity maxima on the full contact lines at mid-face

rather than near the ends as in the spur and "low helix angle"

solutions of figures 3.18 and 3.19.

4. Vedmar has effectively ignored the adjacent tooth deflections by
assuming that a tooth deflects only under its own loads. The
author has, however, shown (see section 2.5) that adjacent tooth
deflections are significant, and, further more, not uniform across
the facewidth, particularly for large wvalues of B, where the
deflections increase rapidly near the ends of the teeth. This
increased compliance in the author's model implies lower peak
loads near, and at the ends of contact lines, as the figures show.
By comparing the author's results for 8 = 0°, 15" and 30" shown

in figures 3.18a,b, 3.19 and 3.20 respectively a further insight is

possible.  Clearly, the end-of-contact load "spikes" evident in helical
gears do not occur in spur gears, which have only full-length contact
lines, and lead to a relatively uniform load distribution. Even for

helical gears at corresponding phases of mesh in figures 3.19 and 3.20

the load distribution does not vary significantly except at and near the

ends of contact, where the contact lines become shorter as £ increases.

This gives, in the limit, a near "point" contact (lines 1 and 8 of figure

3.19, for example) with large load intensity "spikes".

Once the contact load at any point has been determined, the
corresponding contact stress can easily be calculated from equation 1.1.
The radius of curvature at any contact point j is given by equation
2.15, and the equivalent relative radius of curvature pesr by equation
1.2, This has minima at the start and end of mesh, where, as
described above, the peak loads also occur. Thus the peak contact
stresses also occur at these points.

The two peak load intensities at the start and end of mesh are
usually of comparable magnitude as shown in figures 3.19 and 3.20, but
Peff is smaller at the start of mesh (on a speed reducing drive), thus
producing larger peak contact stresses at this point. These peak contact
load and stress values thus occur when nominal "point" contact is
achieved on a very short contact line at the start of mesh. To find
these values, a trial and error procedure was used, in which the phase
of mesh was changed in small increments until the load/stress peak was
found. For comparison, a contact line at an intermediate phase has
been chosen. The phase used is the mean of the two phases at the

start and end-of-mesh load spikes. This allows comparison of contact
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loads and stresses on corresponding contact lines for three different
relative facewidths (bg = 2, 6 and 12m). Figures 3.25 and 3.26 show
the resulting contact load and stress distribution respectively, along these
intermediate contact lines.

Clearly, the wider faced gears tend to give smaller contact loads,
and consequently smaller contact stresses. Since the same specific load
was used in each case (F/b = 100 N/mm), the only possible explanation
for this is the reduced overall mesh stiffness on the wider gears as
demonstrated in figure 3.17 (see also section 3.5.2 on the relation

between peak loads/stresses and mesh stiffness).

Peak Contact lLoads and Stresses

3.5.1 Variation of Peak Contact Load and Peak Contact Stress

in a Complete Mesh Cycle

The mesh analysis program calculates the contact load
intensity and contact stress at the Gauss points and at the end
points of each contact line (see section 2.8, and Appendix 4A) for
successive phases of mesh. Plotting of the results as in figures
3.18¢, 3.22 and 3.24 then shows the variation of load intensity (or
stress) both across the facewidth and with varying phase of mesh.
For design, however, the instantaneous peak load intensity (or
contact stress) on a contact line, and the way these quantities vary
through the mesh cycle, are of greatest importance.

Figure 3.27 shows the variation of the instantaneous peak
contact load intensity and contact stress with phase for helical
gear pairs with ratios Zy:Z, = 18:18, 18:54 and 18:72. Contact
of a particular tooth pair is followed from the start of contact
(phase = 0.35py;). Note that the peak contact load and peak
contact stress do not necessarily occur at the same point on the
contact length, since ¢p depends not only on w but also on pegf
(equation 1.2) which also varies across the facewidth (figure 2.1).

As shown in figure 3.18, the peak contact loads (and
contact stresses) on spur gears occur in the region of single tooth
pair contact near the pitch point, but for wide—-faced helical gears
(with ea>2), the peak contact loads (and stresses) are substantially
constant in these central regions of the mesh cycle. The maxima
occur at the load “spikes” at the beginning and end of contact,
where the load transmitted by the particular tooth pair is

concentrated on a very short contact line as shown in figures 3.19
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Fig. 3.25 Variation of Load Intensity

Along a Contact Line Across Face_Width
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Fig. 3.26 Variation of Contact Stress
Along a Contact Line Across Face_Width
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Fig. 3.27 Peak Load & Contact Stress
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3.5.2

to 3.24. This gives virtually "point" contact at the instants when
contact begins and ends.

For all 3 ratios of Z;:Z, shown in figure 3.27, these peak
load intensities at the beginning and end of contact are
approximately equal. The curves of peak contact stress are
however skewed due to variation of the effective relative radius of
curvature pegr through the mesh cycle. Only for the Zy:Z5 =
18:18 mesh, where pqfr varies symmetrically about the pitch point,
are the contact stress peaks at the beginning and end of contact
approximately equal. The curves for this mesh are not exactly
symmetric about the pitch point. This is due to the fact that the
“start” and "end" phase of mesh were found by trial and error
and no attempt was made to make them correspond to one
another geometrically, plus the fact that the phases shown are not
mirror images of one another about the pitch point (not plotted).
For Z1:Z,>1, the peak contact stress always occurs at the

beginning of mesh where peosp is minimum.

Variation of Peak Contact Load and Peak Contact Stress

with U and Zp

Fig. 3.27 only shows indirectly the effect of the gear ratio
U = Z5/Z; on the peak load and stress distributions. Here the
effect of varying U is studied in detail.

As explained in section 2.5 (see figures 2.11 to 2.25) there
are two main ‘components' of tooth compliance: namely the
“cantilever" compliance of the teeth themselves which is greatest
on smaller gears, and the"gear body" compliance which is greatest
on larger gears. The total compliance is the sum of these two
component compliances, so that the mesh stiffness Cy is also a
function of those two factors as clearly explained in the part of
section 3.3.2 which discusses figures 3.15 and 3.16.

Figure 3.28 shows how the non-dimensionalised load peaks
vary with U. The peak loads seem to vary with U, in a fashion
completely opposite to that in which Cy varies with U (figure
3.15), increasing where Cy decreases, and vice vera.

A possible explanation for this correspondence between the
variations of Cy and the peak load with U is as follows: the load
peaks, (or "spikes") occur only at the start of mesh (new tooth
pair coming into contact with near "point” loading) and at the

end of mesh (old tooth pair almost losing contact, also with near
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"point" loading). In the theoretically defined region of mesh
(AA'B'B in figure 2.1), the tooth pairs at the start and end of
mesh must deform by an amount equal to the transmission error
fy (equation 1.64 with 5, = 65 = ¢, = 0). Since these tooth
pairs carry a negligible amount of the total load F (since their
contact lines are very short), f; is hardly affected by them at
these particular instances of mesh (as has been demonstrated from
the numerical results). Thus equation 2.17a remains valid, and

we can write

w
F/b spike
ft 6tb + 6tc 6t c c - wn/cn
v splike

where n refers to any phase of mesh, and Cspike is the single
pair tooth stiffness at the start/end of contact where the spike

occurs. Thus:

w =f .c - F/b c
spike t’ “spike C‘y * “spike

whence, non-dimensionalising, we obtain

m, F/b 1
w -0’ ¢ =Im ,C e
( sPlket]:limensionless F c_y spike [(™n spike/b] C’Y

If the quantity inside the brackets is regarded as a constant, then
clearly the peak load is inversely proportional to Cops which itself
varies with U as in figure 3.15. This would explain the shape of
Fig. 3.28. The factor Cspike is likely to be dominated by the
contact and bending compliance of the pinion, loaded by a
‘corner' point load. Since Zp = constant, in Fig. 3.28, this can
thus be expected to remain approximately constant, as assumed.
For large values of U, the curve for Cy (Fig. 3.15) tends to
level off. This same effect is also apparent in Fig. 3.28,
particularly on the Zp = 30 curve for which the values of Zg are
largest.  Clearly for very large gears, ¢, becomes significantly
larger. Consequently, the total contact length at any instant is
larger, thus allowing for the load to be distributed more evenly
along the simulatneous contact lines. Whence the shortest lines of
contact at the start and end of mesh also will carry a smaller

portion of the total load. The irregularity in the 18:18 mesh
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(zp=l8,U=l) may be due to the fact that e, is very small,
concentrating the load on a very short length of contact, and
consequently giving a relatively large value for Wspike: The other
two curves could exhibit the same irregularity for ratios U<I1.
Figure 3.29 shows how the contact stress peaks vary with
U. The contact stress has been plotted non-dimensionally by

multiplying the actual stress by Vedmar's factor>:

[ .b.2. [1 V2]]

where the symbols are defined in the nomenclature.

Comparison of Peak Contact Stress

Figures 3.30, 3.31 and 3.32 show the variation of peak
contact stress (during a complete mesh cycle) as a function of U,
for a 25-tooth pinion with g8 = 0°, 20" and 30" respectively.
For comparison, values obtained by Vedmar5, and others
calculated using the ISO4 equations, are also plotted.

For the spur gears (figure 3.30), the author's results are
between 1.1% and 3.8% lower than Vedmar'sS, The ISO
analysis assumes a uniform load distribution across the face width
(sections 1.2.2 and 1.2.3) which, as shown in Fig.3.18, does not
occur in practice, even with perfect gears. The ISO analysis
thus inevitably predicts a lower peak stress than the other two
analyses. However, Figs. 3.18a and 3.18b show that the peak
load intensity is actually only about 6% to 11% greater than the
mean, leading to peak stresses about 3% to 5.4% greater than
average, whereas the ISO values in Fig.3.30 are about 16% to
22% lower than those given by the author. Clearly, the
assumption of uniform load across the face width of perfect gears
in the ISO4 standard, does not explain the extra 13% to 16.6%
discrepancy in the peak contact stress.

The discrepancy above can be explained by the fact that
the ISO equations calculate opy at the pitch point, whereas the
author's model shows that the peak contact stress occurs nearer
the innermost point of single tooth contact.  This can be allowed
for in the ISO analysis by means of a correction factor ZB' If

this factor is included in the ISO analysis, the dotted curve in
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Fig.3.30 is obtained. = This shows much improved agreement with
the author's results,

The results for the two helical gears shown in Figs. 3.31
and 3.32 show much greater discrepancies between the author’s
and the other results. The author's peak stresses are roughly
between 1.9 and 2.9 times those calculated wusing the ISO
procedure, and differ from Vedmar's by up to 20%, with the
greatest discrepancies for $=30".

As described in section 1.2.2, ISO4 treats helical gears as
equivalent spur gears, and so again for perfect gears the load is
assumed to be uniformly distributed across the face width, As
shown in Figs. 3.18, 3.19 and 3.20 however, on helical gears the
variations of load intensity during the meshing cycle are much
more significant than those for spur gears, with peak loads up to
3 times greater than those arising on spur gears at the same
nominal loading. With such high peak loads, the peak contact
stresses on helical gears computed by Vedmard and the author are
inevitably much greater than those calculated using the 1S04
‘equivalent spur gear' analysis, as shown.

In practice, the very high load and stress spikes predicted
by both the author and Vedmar3 will not occur. The teeth will
usually be relieved at the tips and ends, or, if they were not, the
tooth edges and corners will soon become rounded by real plastic
deformation or wear, and will thus assume a modified profile with
a small amount of effective tip and/or end relief. As will be
shown in Chapter 4, this can be expected to reduce the peak
contact stresses by a factor of about 2 to 2.5, bringing them
much closer to those predicted by the 1504 procedure, particularly
if the factor Zp is again introduced, to give the stresses at the

innermost point of single tooth contact on_the virtual spur gear.

Further discussion of the effects of tip and root relief, etc. is

given in Chapter 4.
Vedmar's? values for the helical gears in Figs. 3.31 and

3.32 deviate substantially from the author's for the larger gear
ratios, as shown, but not very significantly at low values of U.

Possible reasons for these deviations are:

1. It was necessary to calculate contact stresses for the 30°

helix angle gear by extrapolating Vedmar's published values
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Fig. 3.32 Peak Contact Stress Comparison
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for f=0°, 10" and 20°. In a similar manner, it was
necessary to interpolate the author's FE results for =0 and
30" to obtain stiffness coefficients for the 20° gear. In
both cases, as mentioned in Section 3.4, only linear
extrapolation/interpolation was possible so that significant

interpolation/extrapolation errors could have occurred.

As explained in Sections 3.2.2 and 1.4.3.2 Vedmar's FE
model seems to ignore the possibility of axial deflections of
the gear teeth under the influence of the axial component
of the tooth load. This deflection (mainly gearbody
deflection) will cause additional tipping of the teeth of large
diameter gear wheels, tending to increase the depth of
engagement at the leading end of the teeth, and so
increasing tooth loads and contact stresses in this region
where the peak loads (spikes) occur. Even if Vedmar?
did, in fact, allow for the effect of axial tooth deflections
(his monograph is not very clear on this point), the author's
peak loads and contact stresses will still be generally larger
since the “tipping" effect is mainly due to gear body
deflection. This is negligible in Vedmar'sS model since he
did not model the whole gear. As a result, the "tipping
effect” on the author's gears is more significant, particularly
on large gears. One side ‘tips' relative to the other by
0.34 units according to the author, and by 0.28 units
according to Vedmard in Fig. 3.10, making the author's
"ipping effect" 1.2 times Vedmar's. From Fig.3.32, it is
apparent that the author's peak stress is also about 1.2
times Vedmar's at U=4, even though the gear data in Figs.
3.10 and 3.32 are not exactly the same. This suggests
that the higher stresses predicted by the author in this

region are mainly associated with gear body deflections.

Vedmar has also neglected the adjacent tooth deformations.
This must also cause corresponding discrepancies between the
load distributions and contact stresses predicted by the two
methods, although it is nct possible to predict the precise
effect without carrying out a detailed investigation (e.g. by
running analyses with/without inclusion of the "adjacent

tooth" deflections).
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3.54

Variation of Peak Contact Stress with Helix Angle

To show the effect of the helix angle on the peak contact
stress, the results from which Figs. 3.30, 3.31 and 3.32 were
plotted, were used to plot Figs. 3.33, 3.34 and 3.3S. In each
figure, the values of peak stress for 8=0°, 20" and 30" are plotted
for only one of the three sources being compared.

Both the author's results and Vedmar's in Figs. 3.33 and
3.34 show the peak stresses on helical gears to be much greater
than those found on spur gears. As explained earlier, this is to
be expected since with increased helix angles, the contact lines are
shorter, resulting in load peaks at the start and end of contact
where the lines of contact are shortest (near point contact).  For
the spur gears, the contact lines are all of equal length, allowing
for a much more even load distribution, with a peak near the
pitch point, where single tooth pair contact occurs (Fig.3.18).
Vedmar's results for f=30" seem to be slightly smaller than those
for 8=20°.  This may possibly be due to the linear extrapolation
for 8=30" as discussed in Section 3.5.3.

The ISO results in Fig.3.35, show a completely opposite
trend to the author's and Vedmar's, giving larger contact stress
peaks for gears with smaller helix angles, with the largest peaks
for B=0". The trend of the ISO curves may be derived from
Eqn. 1.5. For $=30", Zyy is smaller than for spur gears by a
factor of 0.89, Zg is the same, Z, is smaller by a factor of
0.971 and Zg is smaller by a factor of /cos30, leading to a total
reduction in the peak contact stress in Eqn. 1.5 of 0.80, which
matches the curves in Fig.3.35, where for B=30', the values are
about 0.80 times those for 8=0".  For (=20, Zp is smaller by
a factor of 0.922, Zg is the same, Z, is smaller by a factor of
0.886 and Zg is smaller by a factor of ,o0s20 leading to a total
reduction in the peak contact stress in Eqn. 1.5 of about (.80
again, which is agreeable with Fig.3.3S.

This explains the trend of the ISO curves, but not the
difference from the author's and Vedmar's curves, which may be
explained by the fact that both the author and Vedmar plotted
stress "spike" values, whereas ISO gives values at the pitch point
(or IPSTC). As already pointed out, the agreement with ISO
for spur gears (IPSTC values) is much better than for helical

210



112

00 =0=030T =0T N 060" ~ld =0P~300 X967

Fig. 3.33 HADDAD’S Peak Contact Stress

Comparison, b=564mm mn=6mm Zp=25

12
11 I
10 |- e I '
9 e
] i
6 '-*( '- /
5___ mmWMtﬁgx' V///)prlff//a
4 ;?‘z - P/””’/Avaﬁlf”d | S
3 /
2
BETA-0 PEG -1 BETA-20 DEG | -¥- BETA-30 DEG
0 :
0.6 1.6 2 2.6 3 . 3.5 4 4,

QGear Ratlo, U

owbh wb wbh
QO a4 N

TNO = N W b VO N O O



[A%4

000 =30—0303 =0T N 800 "~ ~0RF~+300 X907

Fig. 3.34 VEDMAR'S Peak Contact Stress
Comparison, b=54mm mn=6mm Zp=25

12 12
11 11
10 T 10
.....‘:'* 9
9+ S
,.f:':*—‘
8 P P 8
5 P o ,
e |
5 5'3 5
4| T 4
2 - - 2
——IBETA-0 DEG -4+ BETA=20 DEG | -¥- BETA-30 DEG
0 0
0.5 1 1.5 2 2.5 3 3.6 4 4.5

Qear Ratio, U



€1¢

000 =30=~030F =0T ~ 000 = ~00~300 XPeT

-t b b
O = N

Fig. 3.35 ISO’'S Peak Contact Stress
Comparison, b=54mm mn=6mm Zp=25

——|BETA-0 DEG 1 BETA-20 DEG | -¥- BETA~-30 DEG

0O = N W A OO NO®O

Gear Ratio, U

o - v W OO N O O©

- = ek
C = N



gears as can be seen from Figs. 3.33, 3.34 and 3.35, recalling
that spur gears do not exhibit the “spike" effect. |
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CHAPTER 4

EFFECTS OF LEAD AND PROFILE AND PITCH DEVIATIONS ON CONTACT

4.1

LINE LOAD DISTRIBUTION

Introduction

In the previous chapter, ideal gears with no errors or modifications were
analysed, and the results compared with other published data. The effects on
performance of parameters such as gear ratio U, number of teeth Z,
face-width b, and helix angle [, were also discussed. In this chapter, to
complement Chapter 3, the effects of various gear tooth errors and
modifications are studied, for gears in which the parameters U, Z, b and §

are fixed.

The work is reported under three main headings, covering:

1. gear tooth errors and modifications affecting the longitudinal load

distribution factor, KHB'
2. gear tooth errors and modifications affecting the transverse load

distribution factor, Kyy,.

3. the combined effect of errors affecting both KHﬁ and Kpy,.

The gear pair chosen for these studies has the parameters shown in

Table 4.1.

Pinion Gear
Number of teeth Z 18 54
Face-width (mm) b 120 120
Normal module (mm) my, 10
Ref. helix angle (deg) B8 30 RH 30 LH
Normal pressure angle (deg) oy 20
Tool! addendum (my,) hyo 1.25 1.25
Tool tip radius (mp) 0 0.39 0.39
Crest rounding radius (mm) Pan 0 0
Addendum mod. factor () X 0 0
Operating torque (Nm) T 1014.868 3044.604

Table 4.1 : Gear Pair Specifications
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4.2

The torque chosen is based on a nominal load intensity of 100 N/mm
for 'perfect' gears. This gives rise to peak contact stresses of up to 1000
N/mm2 when certain tooth errors are introduced. Assuming case-hardened
steel gears, this gives a factor of safety against pitting of typically 1.3.

Typical printouts from the load distribution program (HELICALDIST)
described in Appendix 2A, are included in Appendix 4A.

Effect of Lead Errors and Lead Modifications on_the Longitudinal Load

Distribution Factor Ky 8

4.2.1 Introduction

The results from this work are compared with those from the
DUISO software package45 which implements the latest revision of the draft
ISO standard4  As explained in section 1.2.2, the effects of lead errors and
modifications are taken into account by the factor KHB given by eqns. 1.11 to
1.13 (Fig. 1.3 is shown here again as Fig. 4.1 for convenience), which can be
thought of as defining either the increase in load intensity w, or the increase
in the peak contact stresses oy due to these effects (Eqns. 1.11 and 1.10
respectively).

In this work, the approach wused is to calculate the Iload
distribution by using the 'exact' three-dimensional mesh model rather than the
approximate thin-slice theory of the standards. It thus becomes necessary to
calculate, from the load/stress distributions, a factor KHB that is equivalent to
that defined in the standards. This presents a number of problems, since
according to the results discussed in Chapter 3, even a perfect gear set will
not produce a constant load intensity across contact lines equivalent to the
mean value wp, assumed in the standards. However, if the load distribution
program is run for a sufficient number of phases to produce a load
distribution chart for the perfect gear like these shown in Figs. 3.22 and 3.24,
the instantaneous peak load intensity deduced from these can be taken as
equivalent to wp,. If the analysis is then repeated for the same set of gears,
but the desired error, or combination of errors is now introduced, the peak
resulting instantaneous load intensity, derived in the same way, can be taken
as equivalent to the quantity wp., defined in the standards. This yields a
ratio (Wpax/Wp) from which KHB could be calculated according to Egn. 1.11.
A further problem arises, however, since the standards model a helical gear as
an equivalent spur gear, and assume that under the worst conditions, the
whole load is carried by only a single pair of meshing teeth. This gives rise

to peak contact stresses near the pitch circle, (or as discussed in Section 3.5.4
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at the innermost point of single tooth contact on the equivalent spur gears).
According to this theory, the peak load intensity wp,., and the peak contact
stress Opymax Will thus occur at the same place, so that equations 1.10 and
1.11 yield identical values of Kyp as can be seen from the contact stress
equation 1.1.

As shown in Section 3.5.1 however, this does not actually occur.
The peak loads occur near the start and end of contact due to the load spike
effect as do also the peak contact stresses (Section 3.5.1). However, the peak
load often occurs at the end of contact (stiffer pinion tip), while the peak
contact stress occurs at the start of contact due to the changing radii of
curvature, so that, in this case, different values of KHB are yielded by Eqns.
1.10 and 1.11. Just to complicate matters further, it should be pointed out
that most gears are usually tip relieved (or run in), to reduce the load
spike—effect, so that the peak contact loads and stresses will occur at some
intermediate phases of mesh (see Figs. 3.21 to 3.24) when several tooth pairs
may be in contact. Which value of Wy OF Opmax Should then be used to
calculate KHB then depends on how much tip correction is assumed and is
even less clearly defined.

Essentially, six different equations for -calculating Ky may be
used. The subscript (0) refers in each case to values calculated on a perfect
gear set, and the parameters without this subscipt refer to nominally identical
"real" gears (with errors and/or modifications).

The six equations are:

wmax
o ]

max0
For complete cycle
ignoring end spikes

. 2
K, . = [——""‘"”‘ ] 4.2

HE “Hmax0
For complete cycle

ignoring end spikes

(UH) At wmaxfor complete cycle

- ignoring end spikes 4.3
HB (ona At wmax60r complete cycle | )

ignoring end spikes

w

K,, = max 4.4
HB ¥max0

For complete cycle

including end spikes
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o 2
K - "m_] 4.5

HB THmax0
For complete cycle

including end spikes

2
(aH) At wmaxfor complete cycle
K including end spikes 4.6

HB (aHa At wmaxofor complete cycle
including end spikes

Considering equations 4.1 and 4.4, it is clear from the previous
discussions that there are no clear—cut definitions of wy, and wp,,, in this
work which exactly conform with the definition of KHB in the standards.

In any case, the ultimate purpose of KHﬁ is to assist in
predicting pitting failures, for which the values of opmpax given by Eqn. 1.6
are needed. It follows that there is no particular merit in using the
expressions 4.1, 4.3, 4.4 or 4.6, all of which are based on values of wp,.4
and wpaxo- Eqn. 1.6 and the two equations 4.2 and 4.5 are thus the most
logical basis for comparison with the standards and are used in the comparison

presented below.

4.2.2 Effect of Mesh Misalignment on KHﬂ

Fig. 4.2 shows how the values of KHg calculated from Eqns. 4.2
and 4.5 vary with mesh misalignment Fﬁy, and compares these curves with
the results obtained from Eqn. 1.6. The misalignment error Fﬁy was
introduced equally on the pinion teeth only in the load distribution program
(HELICALDIST), and Fig. 4.3 shows how it tends to increase the peak
contact loads and stresses at the start of mesh (where the peaks occur), and
decrease them at the other end of the face, where the load spike can be
completely eliminated.

Reversing the sign of FB)’ in the load distribution program will
have the opposite effect (reducing or completely eliminating the spike effect at
start of mesh and increasing it at end of mesh). In the standards, the sign
of Fﬁy is always assumed to be positive.

As to be expected, Fig. 4.2 shows a progressive increase in KH(?
with increasing misalignment error, due to the increased contact resulting from
metal added on the loaded side of the tooth. All three curves follow a
similar trend, however, the standards clearly overestimate KHﬁ when compared

with KHB of equations 4.2 and 4.5. This is to be expected, since as
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demonstrated in Section 3.3, the standards overestimate the mesh stiffness Cy
implying higher peak contact loads and stresses, and in turn higher KHB'

The same effect was observed by Steward30 on spur gears, when
his values of Kyp were compared with those from the standard (Fig. 5.2 in
reference 30). Steward recommended the use of ¢’ in place of Cy in the ISO
formulae (Eqns. 1.12 and 1.13 for KHypg as shown in Fig. 5.2 in Ref. 30). If
this is done for the helical gears of Fig. 4.3, the modified ISO results lie
very close to those given by Eqn. 4.3, indicating that Steward's modification
would also be worthwhile for helical gears as well.

Equation 4.5 (spikes included) gives larger values of KHB than
equation 4.2 (spikes ignored). This is to be expected since introducing errors
causes the spikes at the tooth-ends to sharpen in greater proportion than the
peaks at intermediate phases away from the end spikes. Since a designer
must always base his analysis on the worst tooth loading conditions to be
expected during the mesh cycle, the end load spikes which occur on helical
gears which are not relieved in any way can not be ignored. In such cases,
the values of KHB obtained from Eqn. 4.5 must be used. Where careful
running in or deliberate tip relief can be guaranteed to eliminate the spike
effects, however, the lower values of KHB given by Eqn. 4.2 (or,

approximately, by the "modified" ISO formulae) can be used instead.

4.2.3 Effect of Face Crowning (Barrelling) and End Relief on Kyg

Fig. 4.4 shows the difference between face crowning, or barrelling,
and end relief. Clearly, end relief is a form of localised face crowning,
whose main purpose is to reduce the loads at the weaker end sections of the
teeth, and will not be studied in this section.

Face crowning is a type of non-linear helix modification, used to
compensate for the effect of random manufacturing errors, such as
misalignment or helix angle errors. If introduced on a gear tooth with lead
errors, moderate face crowning tends to reduce the load and contact stress
peaks at the start or end of contact caused by the lead errors. However, it
may either reduce or increase the load intensity at intermediate phases of
mesh, depending on the amount of crowning introduced. This is discussed in
the following section,

If introduced on a perfect gear, (without misalignment of any
form), however, face crowning always increases the peak load intensity for the
intermediate phases of a mesh cycle, and decreases the spikes at the start and
end of the mesh cycle. This is demonstrated clearly in Fig. 4.5 which shows

the effect of variable amounts of face crowning on Kyp for an otherwise
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perfect gear set. Face crowning removes metal from the ends of the gear,
thus reducing contact deformation at the start and end of mesh, so that the
load spikes are reduced. On the other hand, the total load must remain
constant, so loads at intermediate phases must increase.

Clearly, face crowning on a perfectly aligned gear is highly
undesirable, but may be essential for a misaligned gear as shown in the
following section.

The standards consider any form of lead error or lead
modification as equivalent to a pure mesh misalignment FB)" This is
obviously completely untrue since as demonstrated by Figs. 4.2 and 4.5, the
introduction of face crowning affects the load intensity in a completely
different manner to misalignment. In any case, the crowning height may be
positive as in Fig. 4.4 or negative, e.g. due to manufacturing errors or shaft
bending. When this occurs, the effect is apposite to that due to conventional
(positive) crowning. The load spikes tend to worsen, rapidly putting large
loads on the first and last engaged teeth, while relieving the intermediate teeth
from most of the load. This tends to give values of Kyg from Eqn. 4.2
below 1.0, and values from equation 4.5 above 1.0. No plot of these results

is presented due to space limitations.

4.2.4 Combined Effect of Mesh Misalignment and Face Crowning on

Kyg

In the previous two sections, the effects of mesh misalignment and
face crowning on Kyp were studied individually.  The results were both
qualitatively and quantitatively as expected, and demonstrate that to assume
that any type of lead error or modification may simply be treated as mesh
misalignment error is fundamentally wrong. This point will now be taken
further by studying the effect of face crowning, on the load distribution factor
Kﬂﬁ, of gears with various amounts of misalignment.

On each pinion tooth of the gear set studied, a constant mesh
misalignment of 8um was introduced in the form of a helix angle error fug
in such a way as to produce the worst peak loads and stresses, (see section
4.2.2). At the same time, face crowning was progressively introduced on each
pinion tooth to give crowning heights of 0, 4, 8, 12 and 16 um. The values
of Kﬂﬁ obtained are plotted in Fig. 4.6.

The 8um mesh misalignment causes an increase in Ky as shown
earlier in Fig. 4.2, and discussed in section 4.2.2. Referring to Figs. 4.3 and
4.4, it is apparent that introducing face crowning tends to reduce the metal

'added' by the misalignment at the highly loaded end, while increasing the
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4.3

loss of metal at the other end.

Consideration of equation 4.5 shows that when the spike effect is
included, the mesh region of interest is that where metal is added (causing
greater spikes). For small values of C., the elastic deflections in this region
are reduced, giving lower spikes, and lower values of KHB as shown in Fig.
4.6. At values of C. = 0.5 fHB = 4um (see Fig. 4.7), KHB is reduced to
about 1.0, since at the end of the face-width the peak stresses occur, and the
crowning then exactly cancels the error due to fHB' as shown in Fig. 4.7,
giving the same deflection that a perfect gear would have at that point. As
C. increases further, the spike effect at that end completely disappears but
KHB eventually begins to increase again due to the reduced length of
contact.

The values of Kyg calculated using Eqn. 4.2, for points away
from the load spikes at the tooth ends show a similar trend, although the
initial reduction in Kypg caused by the crowning reducing the elastic
deflections at the ends of the teeth is less pronounced than that considered
previously.  An optimum occurs near C, ~ 0.5 fyg, in agreement with
Myer's46 2-D theory, which predicts minimum values of Kyg for C. = 0.426
fHB~ Thereafter KHB again increases slowly with Cer as the effective
face-width is reduced by increasing loss of contact at the ends.

Face crowning of misaligned gears is clearly beneficial in moderate
amounts, and Myo‘:rs'46 and Munro's47 recommendations for the optimum

amount of crowning are confirmed.

Effect of Pitch Errors, Profile Errors and Profile Modifications on_ the

Transverse Load Distribution Factor KHa

4.3.1 Introduction

As explained in Section 1.2.2, the factor Ky, like KHB' is
defined in the standards 2,34 both as a ratio of load intensities (Eqn. 1.14)
and as a ratio of contact stresses (Eqn. 1.9).

The same problems of defining an equivalent ratio from results
obtained using the 3-D mesh model occur with Kp, as occurred with KHB'

so that there are, again, six possible definitions of K}y, analogous to Eqgns.

4.1 - 4.6 for KHB’ viz:
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As with Kﬂﬁ, however, the logical choice is to use values based on a contact
stress ratio, so that equations 4.8 (without spike effects) and 4.11 (with spike

effects) are used in what follows.

4.3.2 Effect of Profile Errors on Ky,

Fig. 4.8a shows the variation of Ky, with the profile angle error
fHq defined as shown in Fig. 4.8b.

The sign of fyy, in Fig. 4.8a was chosen in such a way as to
maximise its effect on oOpjpax. Metal was "added" in the region (near the
pinion's root) where peak stresses occur on an error-free gear pair.
However, a limited number of results were also obtained with the sign of chx
reversed. These gave values of Kpy, differing considerably from those plotted
in Fig. 4.8a, since although the load spikes at the start and end of mesh are

of very similar magnitude, the contact stresses are much larger at the start of
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mesh, resulting in larger values of Ky, based on Eqn. 4.11.

As explained in section 1.2.2, the value of KHa calculated from
Eqn. 1.15 has an upper limit of e.,/(ea.Ze“’). This is shown in Fig. 4.8a by
the horizontal line at Ky, = 3.26. The standards thus predict that for errors
fryy greater than about 20um, there is no further increase in o,y The
results from the 3-D model, however, show progressive increases in Kpj, as
fHo increases, although at a reduced rate.

In the region fpy, < 20um below the cut-off point, the ISO
formula Eqn. 1.15 predicts values of Kpy, that are up to 20% greater than
those given by either of equations 4.8 and 4.11. As with KHB' however, the
agreement between the ISO predictions and those from the 3-D mesh model

is much improved if ¢' is used instead of Cy in Eqn. 1.15.

433 Effect of Tip/Root Relief and Profile Crowning on Ky,

Tip and root relief are "straight-line” forms of profile crowning
which is generally applied as a parabolic curve varying from zero correction at
the reference (or pitch) circle, to peak values at tip and/or root, as shown in
Fig. 4.12, which shows both tip relief and addendum profile crowning. Root
relief and dedendum profile crowning are not shown, since introducintg
tip-relief (or addendum crowning) on both mating gears is equivalent to
introducintg both tip and root relief (or addendum and dedendum crowning)
on only one of the mating gears. The results presented in this section were
obtained by introducing tip relief or addendum crowning to both mating

gears.
The purpose of introducing either of these corrections is to reduce

or completly eliminate the load peaks at the start and end of contact which
lead to premature scuffing or pitting failures. Using the definitions of Ky,
presented in Eqns. 4.8 (ignoring spikes) and 4.11 (including spikes), results in
Fig. 4.9a which shows how Ky, changes with varying amounts of tip relief.
The starting point of the tip relief was based on the ‘short relief'

recommended by Munro47, who recommends for this that the relief should

start at a roll length of

@ i 4.13

This gives a height along the tooth profile for the gear set considered of

about 2.5mm, corresponding to hyy = 7.5mm (Fig. 4.12).
When the end-spikes are ignored, Eqn. 4.8 shows a near linear,

gradual increase in Ky, with increasing tip relief values Cay- This is to be
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expected, as the metal removal caused by the relief reduces the effective
contact length, thus concentrating the load on fewer, shorter contact lines.
Considering the effect of tip relief on the load spikes (Eqn. 4.11), one might
expect that a progressive increase in tip relief would gradually reduce the end
spikes until ‘they were eventually completely eliminated. The results in Fig.
4.9a show, however, that this does not occur since Kpy, starts to rise again
beyond Cay ~ 6um.

There appear to be two mechanisms which combine to cause this
behaviour. One is the ‘expected' effect of Cay in reducing the elastic
deformation and hence the load spike at the tooth tip. This is essentially a
2-dimensional effect and is the only mechanism in operation in spur gears.
However, an opposing, unexpected effect also appears to operate on helical
gears causing an increase in Kpj, for short relief heights as Cay is increased
above about 6um.

For very large values of Cay' there will be no contact in the
relieved region at all (the teeth are then effectively 'topped', with a reduced
value of €,). Not only does this increase the average loading throughout the
mesh (as indicated by the results based on Eqn. 4.8), but it will also give rise
to a new ‘shifted' buttressing effect caused by the sudden start of contact
loading near hay' This buttressing will be even more effective than on the
unrelieved gear, and will give rise to even greater load spikes, since the local
tooth tip stiffness is now enhanced by the adjacent unloaded (relieved) tip
section. It thus appears that on tip relieved helical gears the load peaks tend
to just shift down the tooth to the start of the actual contact line, and, for
large Cay- intensify.

The general principle to be followed if this is to be prevented is
to restrict Cay to a value that still allows contact at the tooth tip, and vary
the height of relief to achieve minimum values of opypnax (OF KHO)- Fig.
4.10 shows the effect of varying hay for Cay = 4um.

The optimum height of relief is about 5 .. 6mm, nearly twice the
'short relief' suggested by Munro47. If the relief height extends below the
reference circle, approaching Munro's ‘long relief' value, Ky, again increases
since tip relief over the full depth of the tooth tends to shift the whole
length of the tooth pair profiles closer together, again allowing for contact
near the tooth tips.

Time limitations precluded a systematic study of all possible
combinations of Cay and hay' but from the results presented, it is clear that
to design tip relief for helical gears using rules (such as Munro's47) derived
from 2-dimensional ‘thin-slice’ models or spur gear testing is quite unreliable.

In Fig. 4.9b, a plot is shown representing all possible ways of
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Fig.4.9a Effect of Tip Relief on
Transverse Load Distribution Factor
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Fig.4.9b Effect of Tip Relief on
Transverse Load Distribution Factor
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Fig.4.10 Effect of height of Relief on
Transverse Load Distribution Factor
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calculating Ky, (Eqns. 4.7 to 4.12). Clearly equations 4.9 and 4.12 give
very close results to those from equations 4.7 and 4.10 respectively. This is
true since the peak loads for the perfect and the relieved gears, occur at the
same, or nearly the same phases of mesh, and therefore at nearly equal radii
of curvature thus resulting in nearly the same values for Ky, regardless of
whether peak loads or the corresponding stresses are used. The same
phenomenon occurred for face crowning effect on Kyg in Section 4.2.3.

A comparison of Figs. 4.12a and 4.12b shows that the effect of
profile crowning should be very similar to that of the same amount of tip
relief at a height hay of about 0.33m, (h, - hay = 0.67m, = 6.7mm on the
gears studied as explained in more detail later on in this section). This
proves to be so. Fig. 4.11 shows the effect of variable profile crowning on
Ky (calculated from Eqns. 4.8 and 4.11). For an amount of crowning of
4um, the values are virtually identical to those given in Fig. 4.10 for h, -
hyy = 6.7mm.

The wide minimum in Fig. 4.11 from a crowning amount of 4 to

10um thus suggests that the amount of tip relief would not be critical in this

region either, provided the optimum height of relief is used.

The general impression gained from Figs. 4.9 - 4.11 is that
profile crowning is generally preferable to tip relief as a method of controlling
peak contact stresses. - However, as pointed out by Munro, other factors such
as the transmission error waveform (which affects noise performance) and the
ease with which the correction can be produced will influence the choice.

In order to make a direct comparison between the effect of C .,
and Cay on Ky, the proper height of relief (h, - hay) must be used. For

tip relief, the volume of metal removed is

172 . Cay . (hy - h,y) (see Fig. 4.12a)
and for profile crowning, the volume of metal removed is
173 . Cha - hy (see Fig. 4.12b)

where equating both values when Cay = C,g Yields

hy - hay =2/3 . hy
and for the gears used, this reduces to

h, - hay =2/3 .10 = 6.7mm
Therefore, a run is made for various amounts of tip relief with a height of
relief of 6.7mm, and the results are plotted alongside those obtained for
profile crowning in Fig. 4.13 using equations 4.8 (ignoring spikes) and 4.11
(including spikes). Clearly, the curves follow a similar trend for tip relief and

crowning, and the actual values are quite close as shown.
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Fig.4.13 Comparison of Effect of Tip
Relief & Profile Crowning on KH-
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434 Combined Effect of Profile Angle Error and Profile Crowning on

KHo

In sections 4.3.2 and 4.3.3, the effects on Ky, of profile angle
error fpy, and profile crowning were studied independently. In this section
the advantages of introducing profile crowning on a gear with a profile angle
error are studied. Fig. 4.14 shows the geometry of the tooth forms studied.

Addendum profile crowning of 2, 4, 6, 8, 12, 16 and 20um was
introduced on both mating gears, and the pinion was also given a profile
angle error fry, of 8um as shown in Fig. 4.14. There was no profile angle
error on the wheel. The effect of these deviations on Kpj, calculated by
equations 4.8 and 4.11, is shown in Fig. 4.15(a). Notice the great similarity
in the trend of these curves when compared to Fig. 4.6 of section 4.2.4 on
the combined effects of lead error and face crowning. The shapes of the
curves can be explained by arguments analogous to those presented in Section
4.2.4, which will not be repeated here.

The optimum amount of crowning appears to be about 12um in
this case, equal to 1.5 times the profile angle error fyy, (c.f. optimum face
crowning of about fHB in Section 4.2.4). However, crowning of about 8um is
desirable without fry, (Fig. 4.11); an additional 4um is thus needed to offset
the effect of fyy,.

Also shown in Fig. 4.15(b) are values of Ky, (derived from Eqn.
4.11) for a separate profile angle error fyj, = 8um, and profile crowning C,
only, taken from Figs. 4.8 and 4.11 respectively. The figure shows clearly
that the two ‘errors' interact, and can not be considered as independent
effects. It is also worth noting that the ISO standard4 treats all deviations
from involute form as profile form errors fs, all of which are assumed to
have the same effect regardless of their 'shape' as discussed in Section 1.2.2.

The results shown in Fig. 4.15 show that this is far from true.

4.3.5 _ Effect of Pitch Errors on Kpjy
Adjacent base pitch error fpb for a particular pitch is defined as
the difference between the actual transverse base pitch and the nominal value
Ppt (= xdy/Z). On a gear with Z teeth, there are Z adjacent base pitch
errors for the Z right hand flanks, and Z base pitch errors for the Z left
hand flanks.
The cumulative pitch error Fppg is the deviation of the actual pitch
span over k individual pitches, from its nominal value k.py, and is the

algebraic sum of the k adjacent base pitch errors in the span:
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Fig.4.15a Combined Effect of Profile
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Fig.4.15b Effect of fH,, Coa, fHx & Coa
Combined on KH.(Results of Eq.4.11)

1.6 \ 1.6
s\fz & —£3 €1

b
(1]
€3/

Q:K MO OBTM DO—ewCOT—"~0-0 apor

0.5 e e () 5
S SRR
0 0
0 4 8 12 16 20

Profile Crowning, Coa [um]

—8— {H_»Cua-0 —— {H,r8 & C,a as shown
—+— {H_s8 & Cua~0 —¥— {H_=0 & C,a as shown

tHols In [um]



prk = prb 4.14
k

Fig. 4.16 shows the corresponding adjacent and cumulative pitch
errors f, and Foy (measured around the reference circle rather than the base

circle), where

f F
f = PP .4 F - __Pbk
p cos o, pk cos o,

The standards BS/ISO/DIN2,3,4 use an equivalent spur gear to
analyse a helical gear, as mentioned in a number of places in this work.
The expression (Eqn. 1.15) for Kﬁa given in the 1SO4 standard is based on a
simple "load sharing" model of the effect of a single base pitch error py; on
the loading of the equivalent spur gears. Since, in such a model, only at
most two tooth pairs are in contact, only a single pitch error need be
considered.

On the helical gears considered here, up to four tooth pairs can
be in contact at once, and, as shown in Fig. 4.16, it is quite possible for all
these four pitches to have consecutive adjacent pitch errors of similar
magnitude fpb and sign, giving a possible cumulative error over these four
teeth of 3fpb' It would thus be quite unrealistic to consider the effect of
only a single pitch error on one tooth (i.e. on one pitch).

In the results presented below, positive cumulative pitch errors of
fpb, 2fpb- 3fpb. etc. were thus applied to successive pinion teeth in the mesh.
Values of fpb of 2, 4, 6, 8, and 10um were considered. The wheel was left
error free. The values of Kpj, obtained are shown in Fig. 4.17 compared
with those calculated from the 1SO4 equation 1.15. To clarify what happens,
values of Ky, calculated from equations 4.8 and 4.11 are studied.

As can be scen, the results are most interesting. To begin with,
the introduction of the pitch errors to the load distribution program, in the
manner discussed earlicr, causes the total load to be dumped on less teeth
than the error-free gear, and furthermore, on less contact points. For the
gear-set used, the general picture reveals that during the initial phases of
mesh of a particular tooth pair (maximum of four tooth pairs in mesh at any
one instant), the first two are totally relieved of the load, the third carries
comparable loads and stresses to those of the error-free gear. The last
engaged tooth pair carries the biggest loads and stresses, taking on its portion
plus that portion which was supposed to be carried by the first two pairs.

As mesh proceeds, the first tooth pair still carries no loads or
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stresses, the second tooth pair however receives a very small portion of the
total load which keeps increasing during the mesh cycle. The third tooth pair
also starts receiving increased loads and stresses. On the fourth tooth pair,
the contact length starts to converge to single point contact, explaining why
the second and third tooth pairs start receiving higher loads dumped onto
them from the reduced contact length on number four. At the same time,
the point contact on four causes a huge load and corresponding stress (spike
effect).

Due to the interesting results obtained using equations 4.7 and
4.10, these curves were plotted alongside the curves from equations 4.8 and
4.11 as shown in Fig. 4.17.

With or “;ithout the spike effect, equations 4.7 and 4.10 give
quite large values of Kpj,, caused by the reduced contact on the last engaged
tooth pair, even before approaching point contact which gives rise to spikes.
These values are much larger than those predicted by the standards. This is
to be expected, as the standards assume the total load is carried by a single
tooth pair, but is still spread out along the whole face-width of the equivalent
spur gear. This tends to give less peak loads even near the pitch point, or
the inner point of single tooth contact.

Equations 4.9 and 4.12 were also plotted (not shown) and give
nearly identical results to those of equations 4.7 and 4.10 respectively. This
is not surprising since the peaks for the gear with pitch errors and for the
perfect gear, generally occur on the same engaged tooth at nearly the same
axial location, and nearly the same phase of mesh. This means that the
relative radii of curvature are nearly fixed. By referring to equation 1.1 for
the contact stress, the near identical results are easily explained.

Considering equations 4.8 and 4.11, the values of Kpy, are quite
small. Recall from the above discussion that peak loads and contact stresses
occur on the last engaged pair of teeth of a gear—set with pitch errors. On
the perfect gear-set however, the peak stresses may be on other engaged teeth
than the last, and this is actually the case. These peak stresses are
comparable to those obtained from the gear-set with errors, thus giving
relatively low Kpy, values. If in equation 4.8 (spikes ignored), the peak stress
on the last engaged tooth were used instead (this will not be the actual
cycle's peak value) comparable results to those obtained from equations 4.7
and 4.9 result. This also applies very well to equation 4.11 (spikes
considered).

The larger than 1.0 values of Kpj, obtained using equation 4.11

reflect the high load concentration on the last tooth pair, even before the
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4.4

As in previous cases, the ISO formula (Eqn. 1.15) overestimates

the effect of the pitch errors on opmay and is again slightly improved if c'

is substituted for Coy- Before making such a change, however, it would be

wise to investigate the effect of positive pitch errors on the gear wheel, (or of

negative pitch errors on the pinion). These would both cause progressive
concentration of tooth loads at the beginning of the mesh cycle, where the
effective flank curvature is greatest, and could thus lead to even higher values

of Ky, than those given in Fig. 4.17 by Eqn. 4.11.

Combined Effect of lead and Profile Errors on Overall Load Distribution

Factor Ky

In sections 4.2 and 4.3, the effects on the load distribution along helical
gear contact lines of lead errors/modifications and profile errors/modifications
were studied independently. In this section, the combined effect of
simultaneous lead and profile errors/modifications on the overall load

distribution factor Kpy is studied.

According to the BS/ISO/DIN standards2:3,4 the factor KHB given by
Eqns. 1.12 and 1.13 is totally unaffected by the introduction of profile errors.
However, Ky, given by Eqn. 1.15, is affected by the presence of lead errors
or modifications, since the load Fypy used in Eqns. 1.15 is already modified by
the factor Kyyg, as shown in Section 1.2.2. Ky, is thus, in this sense a

‘combined’ factor, so that the overall load distribution factor is given by

(Ki)combined = Kyg - (KHa)combined 4.15(a)
which represents 1SO.

For comparison, the values of Ky obtained by multiplying the values of

KHB and Ky, obtained independently in sections 4.2 and 4.3 have also been

calculated, giving

(KH)scparate = KHB . (KHa)separate 4.15(b)

where equation 4.15(b) does not represent 1SO.

The factor Ky has also been determined directly using the 3-D mesh

model by introducing simultaneous lead and profile errors/modifications.
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Referring to equation 1.6, and by setting both K5 and Ky to unity.

og = oHo[KHy - Kupl! 4.16

whence
Ky = Khg - Kyg = (TH/ogp)? 4.17

For comparison with the standards2.3.4, equation 4.17 seems to be most
suitable. ~ However, as with Ky, and Kppg themselves, there are again six

alternative ways to calculate Kyj as follows:

w
max
[KH]combined = ‘ w ] 4.18
max0
For complete cycle
ignoring end spikes
g 2 ‘
Hmax
[KH]combined = [ c ] 4.19
Hmax0

For complete cycle
ignoring end spikes

(GH) At wmaxfor complete cycle

ignoring end spikes
(0,,~) At for mplete cycle 4.20
HO “max0' °F compiete

ignoring end spikes

[KH]combined

w
max
[KH]combined - [ w 4.21
max0
For complete cycle
including end spikes
o 2
Hmax
- 4,22
[KH]combined [ o ]
. Hmax0
For complete cycle
including end spikes
(UH) At wmaxfor complete cycle
K including end spikes 4.23
[ H]combined (GHO) At wmaxofor complete cycle )

including end spikes

Values of Ky derived from equations 4.18 to 4.23 have therefore been
compared with equations 4.15(a) with emphasis on equation 4.19, which is

most nearly equivalent to equation 4.17 derived from the standards.
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The factor

Ky has also been determined using

calculated values of KHB and Kp, using expressions:

the

independently

(KH)separate = (KHﬁ)ean.l - (KHadeqn 4.7 4.24
(KH)separate = (KHﬁ)ean.Z - (KHo)eqn 4.8 4.25
(KH)separate = (KHp)eqn.4.3 - (KHoeqn.4.9 4.26
(KH)separate = (KHB)eqn.4.4 - (KHodeqn.4.10 4.27
(KH)separate = (KHplegn.4.5 - (KHa)egn.4.11 4.28
(KH)separate = (KHB)eqn.4.6 ‘ (KHa)eqn.4.12 4.29
In each of the graphs shown below, Kp; as calculated by equations
4.15(a) and 4.15(b), has been compared with Kyy obtained from equations

4.18, 4.19, 4.21 and 4.22 and equations 4.24, 4.25, 4.27 and 4.28.

In Figs. 4.18 to 4.21, the mesh misalignment is maintained at a fixed
value (Fﬁy = 8um), while the profile angle error fy, is varied from 0 to 15
pm. Figs. 4.22 to 4.25 are analogous to Figs. 4.18 to 4.21 respectively, but
this time the profile angle error is maintained at a fixed value (fyy, = 8um),

while the mesh misalignment FB)’ is varied from 0 to 15 um.

The figures show that whether Fﬁy is fixed and fpy, is varied, or fpy
is fixed and Fﬁy is varied, the results are strikingly similar for the range of
4.21, 4.22, 4.27 and 4.28 which take the

should not really be used as a basis for

studied. Equations

errors
end-spike-effect into account
comparison with the standards in which the spike effect is ignored, although

Eqn. 4.22 does give the best estimate of the effective value of Kpy.

As with the individual factors, the ISO/DIN values of Kpj given by Eqn.
4,17 would be slightly closer to the effective values predicted by Eqn. 4.22 if

c. were replaced by c' in equations 1.12, 1.13 and 1.15.

Y

As previously indicated, equations 4.19 and 4.25 are the best basis for
comparison with the standards, although equations 4.18 and 4.24 also give

similar results. In both cases, the values of Ky are significantly lower than
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Fig.4.19 Effect of Profile & Lead Errors
on KH (Spikes Ignored)
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Fig.4.20 Effect of Profile & Lead Errors
on KH (Spikes Considered)
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Fig.4.21 Effect of Profile & Lead Errors
on KH (Spikes Considered)
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Fig.4.22 Effect of Profile & Lead Errors
on KH (Spikes Ignored)
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Fig.4.23 Effect of Profile & Lead Errors
on KH (Spikes Ignored)
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those given by the standards which, as already explained, overestimate the
effective tooth stiffness, leading to higher peak loads and stresses, and

therefore larger Ky values.

In every case Kyecombined 1S significantly less than KHseparate as
expected. Clearly Ky does depend on the lead deviations as assumed, thus
giving the differences in the results of equations 4.15(a) and 4.15(b).
Obviously, the effect of KHB is to increase Fy so that Ky, is reduced, (see
p.11). Consequently as Ky, is changed, and assuming that the overall factor
Ky is the product of Ky, and Kyg, then clearly Kpcombined Will be
smaller than  Kpjceparate- KHseparate Values were presented only for
comparison purposes, and should not be confused with the proper Kyj.ombined

values.

From the above discussion, the plots of interest presented in Figs. 4.18
to 4.25 are those resulting from Eqn. 4.15(a) representing the European
standards, which are to be compared with Eqns. 4.18 and 4.19 representing
this work. Also of major interest, but not to be compared with the
standards, are Eqns. 4.21 and 4.22. These two equations are the analogues
of Eqns. 4.18 and 4.19, but account for the end spikes which should be the

basis for design, as they represent the worst loading and contact stress.

As expected, the results from the load distribution program show that
when end-spikes are accounted for (Eqns. 4.21 and 4.22), the resulting Ky
values are larger than those when the end-spikes are ignored (Eqns. 4.18 and
4.19). As explained in Sections 4.2.2 and 4.3.2, introducing lead and/or
profile errors sharpens the spikes in proportions greater than the sharpening of
the peak loads away from spikes. This of course leads to higher Ky values

with spikes considered.
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5.1

5.2

APTER

EXPERIMENTAL INVESTIGATION OF THE LOAD DISTRIBUTION IN
MESHING HELICAL GEARS

Objectives
The objectives of the experimental work were:

1. To test helical gears of known geometry under known loads

mounting conditions,

2. To determine the load distribution across the contact lines of the

meshing teeth by measuring tooth root strains, for comparison with

theoretical values.

3. To measure the instantaneous transmission error f;, for comparison with

the theoretical predicted values.

Experimental Test Rig
5.2.1 Introduction

The test rig was based on a modified back-to—back gear tester.
This existing rig was chosen after a rigorous study and preliminary
design of a new test rig using some large naval gears proved to be
economically and practically unfeasible. Figs. 5.1 and 5.2 show the

test rig used, and Fig.5.3 shows a section through it before modification

and installation of the instrumentation.

The most basic components of the original design (see Fig.5.3)
were the helical slave gears (1 and 2) and supporting shafts (3 and 4)
and bearings (5, 6, 7 and 8), the spur test gears (9 and 10), the
* torsion bar (11) by which the spur pinion (9) is driven via a spline,

and finally the mechanical torque—up assembly (12) by which the torsion

bar is wound up.

The back-to-back rig was used for the experimental work with
the role of the slave and test gears reversed so that the helical gears
were treated as the test gears, and slowly rotated through mesh under a
torque 'locked-in' by the torquing device. Additional equipment was
designed and installed in the rig to allow measurement of transmission
error and continuous monitoring of the shaft misalignment in both

planes during the mesh cycle. Since the gears rotated less than one
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Fig.5.1 Gear Rig Assembly (view 1)
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Fig.6.2 Qear Rig Assembly (view 2)
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revolution during each test, elaborate slip rings were not needed and the

strain gauges could be connected via flexible leads.

5.2.2 Basic Components and their Functions
5.2.21 Test Gears and Reference Rings

The test gear specifications are given in Table 5.1 below,

and the detail drawings for the original pinion and wheel are

shown in Figs. 5.4 and 5.5 respectively. These figures do not

show the ground radial reference surfaces on the two circular

rings which were fitted against the pinion and wheel shaft

shoulders on both sides of the gear facewidth. These rings can

be seen in Fig. 5.1. Their function is to allow monitoring of

shaft misalignment, as described in Section 5.5.3.2 below.

The gears were measured for profile, lead and pitch errors
on all teeth, and the results for both wheel and pinion are
presented. First, consider the wheel errors. These were
measured on the Gleason GMS430 at positions given by the tooth
face grid shown in Fig.5.6. Only the results for the teeth which
were engaged during the tests are shown in Tables 5A.1 and 5A.2

of Appendix SA.

Pinion Wheel
Z 21 54
mp, (mm) 5
b (mm) 90 90
Xn(=) 0 0
k(-) 0 0
rao(mp) 0.39 0.39
ha0(mp) 1.40 1.40
on(’ 20
B (") 12 RH 12 LH
a (mm) 191.689
Backlash at Nominal
Centre Distance "a"(um) 200-280
Backlack Allowance (um) 100 100

Table 5.1 Test Gear Specifications

The wheel was mounted between centres during measurement, and
radial runout, measured on the two reference bands (rings), was as
given in Table S5A.3. Peak values of about 10pym and 18ym were
recorded, which must be allowed for in evaluating the involute and lead

errors given in Tables 5A.1 and 5A.2 (See Chapter 6).
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The wheel teeth are marked 1 to 54 in a clockwise fashion on
the face of the wheel adjacent to the short shaft (torque—up end), and
in Table 5A.3, the tooth number for both rings is that adjacent to
where the runout was measured.  This means that the angular position
for a certain tooth number is slightly different for the two rings. The
teeth chosen are 9, 10, 11 and 12,

Next, consider the pinion tooth errors. These were measured on
the manual Hofler 630 at the positions corresponding to the tooth face
grid shown in Fig.5.7. Again, results for only the teeth that were in
mesh with the wheel teeth 9, 10, 11 and 12 are included in the tables
of errors SA.4 and SA.S. The teeth chosen are 4, 5, 6 and 7,
numbered in a clockwise fashion when viewed from the torqued end of
the wheel when both gears are mounted. The meshing pairs were thus
teeth 9 and 7, 10 and 6, 11 and 5, and 12 and 4.

Radial runout readings on the pinion during the profile and lead
error measurements are listed in Table SA.6. As pitch measurements
on the Hofler EFRS630 require a different set—up than that for profile
and lead measurements, a new set of runout readings were taken before
measuring the pitch errors as shown in Table 5A.7. Note that the
pinion runout readings in Table 5A.6 and SA.7 are generally greater
than the wheel runout readings in Table 5A.3. This is expected, since
the pinion shaft is hollow and had to be centred on the Hofler 630 by
trial and error. All runout readings are averages over two or three
revolutions,

Pitch measurements on the wheel were taken at all nine grid
points in Fig.5.6, but on the pinion (using the Maag ES421 pitch
checker on the Hofler machine) pitch was only measured at points 2, S
and 8 of Fig. 5.7. However the readings taken are sufficient since, as
anticipated, and clearly demonstrated in Table 5A.2, the pitch errors at

each axial location do not vary significantly in the radial direction.

5222 Wheel Teeth Strain Gauging
Since the load distribution along a contact line is common to both

meshing teeth, it is sufficient to strain gauge the teeth of one of the
meshing gears only, Thus, only the teeth of the wheel that were
simultanteously engaged were strain—gauged as shown in Figs. 5.1 and
5.2 The maximum number of engaged teeth at any instant was
determined (from the load distribution program ‘HELICALDIST) to be
4, and the teeth chosen for the meshing tests were 9, 10, 11 and 12.
This included the ‘misaligned®’ tooth number 11 (see Table 5A.1).
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It would have been best to also strain-gauge the pinion teeth as
well, to provide a cross—check on the measured load distribution.
However, due to the high cost of the gauges used, the difficulty of
installing the tiny gauges, and the lack of space for the extra wiring
needed, the pinion teeth were not strain—gauged. For the same
reasons, only four wheel teeth were strain-gauged. However, this is
not a major limitation since measurements at any phase of mesh are
sufficient for comparison with the theoretical results.

The gauges were placed as accurately as possible at the 30°
tangent points to produce peak tensile strains (see Section 1.2.3 and
Fig.1.4). Table 5.2 gives details of the strain gauges used.

Manufacturer BLH Electronics
Type FAE-02W-35-S6
Gauge Factor 1.88 *1%
Resistance Q) 350.0 = 0.5
Gauge Length (mm) 0.51

Carrier Material Polyimide

Gauge Thickness (mm) 0.038

Min. safe bending radius (mm) 1.58

Temp. Range ("C) 73 to 204
Temp. Compensation ('C) 196 to 204 (mild steel)
Sensing Element Foil Gauge
Type of Alloy Constanton (400)
Tab or Grid Arrangement Wide Grid

Table 5.2 Wheel Teeth Strain Gauge Specifications

The gauges were positioned at the 12 Gauss points used in
" "HELICALDIST* when obtaining the theoretical results as shown in Fig.
5.8.

The bottom right diagram in Fig.5.9 shows the strain gauge
connection diagram made up of a chain of 10 gauges (0,1,2...9) and a
single compensating gaugeSI. On the wheel, each of the four gauged
teeth has 12 strain gauges giving a total of 48.  Therefore, five chains
were made, four having 10 gauges each and the fifth with only 8
gauges.  Starting with tooth 9, ten gauges form one chain, the second
chain is formed by the remaining two gauges on tooth 9 and eight of

the gauges on tooth 10.  The third chain is the sum of the remaining
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four gauges on tooth 10, and six of the gauges on tooth 11, The
fourth chain is the sum of the remaining six gauges on tooth 11, and
four of the gauges on tooth 12 whose remaining eight gauges form the
fifth and last chain. The compensating gauge is common to all five
chains since it is activated only by the individual activation of each
gauge.

The gauges were connected to a HBM UPM60 data logger which
can process and display the readings from up to 60 measuring points
(Fig.5.10).

For calibration of the gauges refer to section 5.5.2, and for the
determination of the experimental load distribution from measured gauge

strains refer to section 5.5.3.

5.2.23 Torque Measurement
The torsion bar (Fig.5.3 and Fig.5.11a) used to wind up the

helical wheel against the fixed helical pinion to develop the required
loading torque was also used as a torque measuring device.

Near the middle of the bar, two identical strain-gauge bridges
were positioned to measure the torque applied to the bar, One bridge
acts as a back-up for the other, or both may be used simultaneously if
needed. By calibrating the torsion bar, output signals from the bridge
induced by torsional wind-up can be converted into units of torque as
discussed in detail in section 5.4.

These strain gauge bridges were originally intended to measure the
torque applied to the spur gear pinion (Fig.5.3) during back-to—-back
testing, so that small corrections are needed (for bearing/mesh friction,

etc.) to convert the results to obtain the helical pinion torque required

for these tests.

5.2.2.4 Torsion Bar Calibration Accessories

‘ Torsion bar calibration (see Section 5.4) is done before mounting
the wheel and other components inside the rig. Therefore a method
was devised to load the torsion bar at its splined end, while locking it
at its squared end. A 1 meter long arm (Fig.5.15a) was designed to
be fitted at the bar's splined end. @ The arm is loaded at its free end
to induce torsion in the bar. A locking arm (Fig.5.15b) and a base
plate (Fig.5.2 and 5.11b) were designed to restrain the bar's squared

end from rotation.
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5.2.2.5 Modifications to Main Bearing Caps

Figure 5.3 shows the bearing types and arrangements used.
Since the meshing gear teeth had to be accessible at all times during
the experiments, the original upper housing, which makes the gears
inaccessible, was replaced by individual bearing caps designed to suit the
existing bearings as shown in Figs. 5.1 and 5.2. The existing bearing
covers (retainers) shown in Fig.5.3 (parts 13, 14 and 16) were not
altered, however retainer 15 was altered to function as both a bearing
retainer and a support frame for encoder ROD 800 as shown in Figs.

5.1 and 5.2.

5.2.2.6 Transmission_Error Measurement

To measure transmission error, a pair of Heidenhain incremental
angular encoders were coupled to the projecting ends of the pinion and
wheel shafts, Their outputs were monitored by using either the
matching Heidenhain VRZ counters, or a Klingelnberg PEW 02
transmission—error measuring system which automatically processed the
signals to give a direct readout of transmission error.

On the wheel shaft, the ROD 800 encoder was coupled directly to
the shaft end using a Heidenhain type KOl coupling, and a carefully
aligned aluminium mounting frame for the encoder body (Fig.5.1).

Because of the need for access to the end of the pinion shaft for
torque setting, the ROD 270 encoder for pinion rotation could not be
directly coupled in this way, and was driven via a precision friction disc
mounted on the pinion shaft (Fig.5.1).

The ROD 270 was itself mounted on a "spring table" assembly
supported, as shown in Fig. 5.2, on two leaf springs so that it could
only move horizontally, perpendicularly to the shafts. The table was
pre-loaded to act as a tension spring to maintain contact between the
friction disks, which were designed to give a step-up ratio of 2:1 to
increase the effective angular resolution of the encoder.

This arrangement suffers from the disadvantage that it is sensitive
not only to rotation of the pinion (as required) but also to lateral
motion of the pinion shaft (caused, e.g. by bearing deflections or shaft
deflections). It was thus also necessary to monitor the lateral motion
of the driving disk (on the pinion shaft) relative to the spring table
upon which the ROD 270 is mounted.  Coupled with readings of disk

runout, this allowed the appropriate corrections for lateral motion to be

made if necessary (See section 5.7).
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5.2.2.7 Torque Setting
Torque is set into the system by twisting the projecting squared

end of the torsion bar relative to the helical pinion shaft, by locking
the pinion shaft against rotation (Fig.5.2), and rotating the end of the
torsion bar using a splined torque multiplying unit and a lever with
weights. The pinion shaft and torsion bar are then clamped together
by tightening the screws on the ringfeder assembly, when the lever
system and rotation lock can be removed.

After some initial problems, this system worked reasonably well,
although it proved difficult to set particular exact values of torque.
(Torque varied slightly as the gears were turned anyway, see section

5.5.2).

5.2.2.8 Driving Screw Assembly
The driving assembly (see Fig.5.11b) consists of a driving

fine—pitch screw, driving clamp, guiding clamps, and the same base plate
used for calibrating the torsion bar as discussed earlier in section
5.2.24. It is used for driving the gears through a range of phases of
mesh by driving the screw, which drives the driving clamp that is
clamped onto the squared end of the torsion bar. This arrangement is
used during calibration of the strain gauges (section 5.5.2) and during

the actual tests (section 5.5.3).

5.2.2.9 Measurement of Shaft Misalipnment

Two jigs were designed for measuring the positions of the pinion
and wheel shafts relative to one another in the vertical and horizontal
planes, as shown in Fig.5.12. Both relied on the radial reference
bands on the two shafts to determine the position of the shaft centres.

For measurements in the vertical direction, the jig (Fig.5.12(a)) is
placed on the bands (rings) at a particular instant of mesh and
positioned by means of the locating pins which contact the rings on the
inner side as shown. Since the rings are (nominally) all the same
diameter, the four points of contact should lie in a plane, The jig
has 3 flat machined and ground contact faces, and, in place of the
fourth, a vertical probe set (on a reference surface table) to read zero
when all four contacts are co-planar.

Non-zero readings at any instant, coupled with knowledge of the
actual ring diameters and radial runout at the contact points, allow the

shaft misalignment in the vertical plane to be determined.
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53

5.4

For measurements in the horizontal direction, the second jig
(Fig.5.12(b)) is placed at each end of the gearbox in turn, in contact
with only two of the rings (one on each shaft) in each position. It is
located by the stepped end plate which makes contact with the outer
edge of the gearbox.  The triangular bell cranks are spring~loaded into
contact with the inner surfaces of the two rings, and the (vertical)
probes are set to read the sum of the inward displacements of the two
contact points (x the lever ratio of 28/73.5, see Fig.5.25). They thus
measure any change in centre distance (when corrected for runout and

actual ring diameters).  Further details in section 5.5.3.2.

Load Limitations

During testing, the load applied must not exceed the design load
of any of the four gears in mesh. The replaceable spur gears are
considerably weaker than the helical gears, and so the design load of
the spur gears must not be exceeded. The gears were analysed using
the DUISO software43,

Figure 5.13 shows the output for the spur gears giving a factor of
safety of 1.15 and 1.70 for contact and bending stresses respectively for
the pinion (smaller than the wheel's factors) when a torque of 800Nm is
applied for 1000 pinion revolutions. This is taken as the limiting
value that must not be exceeded during the experiments.

Figure 5.14 shows the output for the helical gears. This is
included for comparison and, as expected, the corresponding factors of
safety are much higher than for the spur gears and are 2.21 and 6.24
for pinion contact and bending stress respectively, for the same loading
at 800Nm.

Splines, keys, pins, the torsion bar and other components of the
rig subjected to loading, are all designed to accommodate the gear
design loads. Note that the gears will be loaded statically, and so the
load application and dynamic factors Ko and Ky respectively are 1.0 in
Figs. 5.13 and 5.14. Also an arbitrary low speed of 10 r.p.m. was
chosen for the pinion. The errors input for Fig.5.14 were based on the
pair of teeth in mesh which have the worst combined measured errors

(tooth 11 on the wheel with tooth 5 on the pinion).

Calibration of the Torsion Bar
The torsion bar strain-gauge bridge was calibrated by locking the

bar at the helical pinion end as previously described (locking arm of

Fig.5.15b) and applying a known torque at the other through a 1m long
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Fig.5.13 DUISO Rough Estimate of Spur Gear Load Capacity
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Fig.5.14 DUISO Rough Estimate of Helical Gear Load Capacity
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horizontal lever (Fig.5.15a) bolted in place of the spur pinion and
loaded with weights. The output from the bridge was monitored using
a Fylde amplifier and an Avometer (Figs.5.1).

During calibration, the lever was progressively loaded to 839.5 Nm
(giving a torque slightly greater than the maximum test torque of 800
Nm), and progressively unloaded. During this calibration, only the
pinion shaft was mounted in the rig. Thus no meshing friction or
main bearing friction was involved.

The loading and unloading readings agreed to within 0.17%, and
repeating the experiment gave results which agreed with the original
readings to within 0.25%.

These results were compared with the theoretical output from a

full-bridge circuit (Fig.5.17), given by

VO = Vi.E.GF.Kg 5.1
¢ = 8T
xd~ G

Gg = gauge factor (2.09)

Kg = amplifier gain (200)
with d = 24.0mm, V; = 2.5V, G = 82 x 109 N/m?2
this gives

Vo = 0.002348 . T 5.2

with T in Nm, and V, in V.

The experimental results, and those given by Eq.5.2 are compared
in Fig.5.16. They agree within 2%, well within the tolerance of

factors such as V;, Gp and Kg. This verifies the absence of frictional

effects.
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Fig.5.15a Torsion Bar 1_Meter Loading Arm

Fig.5.16b Torsion Bar Locking Arm
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Fig.5.15a Torsion Bar 1_Meter Loading Arm

Fig.5.16b Torsion Bar Locking Arm
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Fig.5.17 Torsion Bar Strain_Gauge Full Bridge
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5.5

Calibration of Tooth Root Strain _Gauges and Experimental I oad

Distribution
5.51 Introduction

During any phase of mesh of a pair of helical gears, there are
two or more pairs of teeth in mesh.  From section 2.8 and Fig. 2.65a

the number of Gauss points in the theoretical solution is given by

n = b'/(A'2) 5.3
where
b' = b/cosfy 5.4

The strain gauges measure the tooth root strains "e;" at sections
corresponding to each of the "n" Gauss points used in the theoretical
solution, (as well as at the other points which may be out of the mesh
region at that particular phase of mesh).

Since the gear is a linear elastic solid, the contributions of each
Gauss load "Fj*" to each tooth root strain "e;" can be superposed, so

that we can- write

'
(ej) = [aij] X —A— (FJ*} 5.5
2
where i = is the number of rows (lgign)
j = is the number of columns (1gjgn)
{Fj‘} - is a column vector of Gauss loads intensities
{ei} - is a column vector of strain gauge readings
[aij] - is a matrix of the influence factors

(to be determined as discussed in section 5.5.2)

The values of "e;" can be obtained directly from the strain gauge
readings logged by the UPM60 in (um) when the gears are loaded and
meshed at the required phases as discussed in section 5.5.3. However,
to calculate the load intensities "F j"', the influence factors "aij" must
first be determined. This is the objective of the calibration discussed
in detail below. Once the values of "aj;" are obtained, the matrix
equation 5.5 may readily be solved for {Fj*} by inverting the matrix

[a; j] to give

(Fy*)= (ag]" x = (e) 5.6
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5.5.2 Point loading and Calibration Procedure

In order to apply point loads at the individual Gauss—point
locations, along the simultaneous lines of contact at a given phase of
mesh, a method was devised in which thin strips of brass shim were
inserted between the meshing teeth at the required Gauss locations.
The dimensions of the shim strip were chosen such that an approximate
point load was obtained upon meshing, while at the same time making
sure that contact did not take place at any other point other than that
where the shim was inserted.

First consider the choice of shim width at the maximum test load
of 800 Nm (section 5.3), the total normal load is 16216 N, giving a
mean normal, specific load of 180.2 N/mm on the helical gears.

In view of the "width" of the master influence curve of e.g. Figs.
2.38 to 2.40, a "point” load can be reasonably considered as one with a
width of (say) 0.5m or less. For this reason, a shim width of 2mm
(= 0.4m) was chosen, so that the calibrating "point" loads were applied

over a nominally rectangular "Hertzian" contact patch as shown in

Fig.5.18(b).
From Fig.5.14, the effective Hertzian contact pressure at the mean
normal specific load of 180 N/mm is 529 N/mm2. The presence of

the more elastic (brass) shim will reduce this, and it seems likely that
some local yielding of the shim will also occur, so there is clearly no
danger of overloading the tooth flanks, which can withstand Hertzian
stresses of up to 2360 N/mm2 as shown.

As shown in Fig.5.19, the specific load intensity on the helical
gears can be increased by a factor of over 16x before the nominal
Hertzian stresses in these gears approach the failure limit. However,
such loads tend to damage the weaker material shim, particularly at the
tip of the tooth where the shim is sharply curved, and for this reason,
the calibration loads were limited to S5x the nominal value (i.e. § x
180.2 N/mm x 2mm = 1802N giving a specific load of 180.2 N/mm on
the spur pinion and 1802/2 = 901 N/mm on the helical gears).

Next, consider the choice of shim thickness which is affected by
gear tooth errors and the backlash allowance.  The shim must be thick
enough to separate the other contact points, so that contact occurs on
the loaded flank only at the point where the shim is inserted. = On the
other hand, the shim must not be too thick in order to avoid contact

on the ‘'unloaded' tooth flank. A comprehensive analysis was carried
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a) 2_mm shim strip In transverse plane glued to top land

b) Hertzlan load distribution along contact patch

¢c) radll of curvature in normal plane

Fig.5.18
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Transv. module mt g.112 R.F.M r 104050 .7
Gear ratio i 2.87 FPeripneral vel v 0,038 s
Closed centres a 191,689 Slidina vel. vl .017 Gors
Ret. centres A0 191,589 Reduced mass i e -
Facewidth b PO 000 RD.000 Reterence speed i 0,001

Ref. circle dia d 1G7.346 276,022 Singl.stiffness o 17, QLN mm/ m
Base circle dia db 100.607 258,702 Mesh stiffness ogamma 24,77 "
Fiteh circ. dia dw 107.246 274,072 DIN guality g
Tip diameter da 117.746 2B4.0ZZ2 PBRase pitch err. fob 15,600 mum
Root diameter alf FT.346  ZHZ.0TZ Run-in allowce. vpb 1,170 o
Tooth depth H 12,000 12,000 Form error SoF 10, SO0 "
Ref.pr.ang.Norm alphan 20, 0000 Run-1n allowce., v+ D, TBY
Ref.pr.anag.Tran alphat 2004102 Tip relioef CaY Z.083 '
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Whgeprr. ang. Tran alohatw 2004107 Rearinags fbe o 2
Ref. helix ang. besta 2,000 Casing fima "
Base helix ang. betab 11,2665 Manufac. fma N
~Addend.inod. fac. x Qe Cre Total fbetax "
Sum of mod.+acs 12 0.0 Run—-in aliowce. vbetsa “
Base tang.lagth. zzw 23,468 ?29.97 Tool *ip rad/mn roao e 400 GO0
over no. teeth =z at 7 " tooth add.smn : :
Transv.cont.rat apsalpha &18 protubcea.anigle
Face cont.ratio epsbeta 1.191 protuberancass/mn

Total cont.rat., 2psgamma™ 2.810 protubce.ht. /nn
——————————————————————————— TOOTH FL NL~——————~———————m_n—————————
lL.aongt.load dist FHbeta 1.182 ngt.load dist
Trans. load dist kHalpha 10060 Trans. load dist

Zone factor IH 2.450 Form factor YF l.ads L. 765
Flasticity fac. ZIE 1872.812 Notch parameter gs 1.235 Z2.0ZE
Cont.ratio fac. Zepsilen 0.736 Stress corr.+ac ¥S 1.727  1.954
Helix angle fac Zbeta 0.289 Helix angle tac Yheta Q. 200
lLife factor ZN 1.600 1,600 Life factor YNT 2.3500 2,800
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——— CONTACT STRESS(N/mmZ) ~ - -—BENDING STRESS (N/mmZ)
Endurance limit sigHlim1473.0 14735.0 Endurance limit sigFlim 417.5 417.5
Fermiss. stress sigHp 2360.0 2360.0 Permiss. stress sigFp 1845.5 2045.0
Basic contact " sigHO 2120.6 Basic root sigF0 1370.6 1276.4
Contact stress sigH 2306.6 Tooth root " sigF 1586.2 1477.2
SAFETY FACTOR SH 1.02 1.02 SAFETY FACTOR SF 1.14 1,730

Fig.5.19 Effect on Fig.5.14 Result When Load is 16x Larger
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out which accounts for the combined backlash and total meshing
tooth—pair errors. All possible combinations of positive and negative
errors combined with the minimum backlash were studied and the final

conclusion was that the shim must fall in the range
89 ym < t < 145 um

where t is the shim thickness. A nominal thickness of 127 um
(0.005") was chosen.

Simple analysis showed that the elastic compression of the shim
under the expected test loads was negligible (<1.5um).

The shim was made T-shaped in order to enable it to be glued
to the tooth top land with the 2mm “active" strip projecting freely
down the flank in the transverse plane of the gear (Fig.5.18(a)).

The intention was to study the contact loading at three phases of
mesh, so that values for the coefficients "aij" of Eq.5.5 were required
at these three phases. Before describing the calibration tests, it is thus
appropriate to explain how the phase of mesh defined in the theory was
related to the angular position of the test gears.

As discussed earlier, the pairs of teeth to be meshed are
(pinion/wheel) 5/11, 6/10 and 7/9, so the pair 5/11 was arbitrarily
chosen as the "reference pair" for the purpose of inputting phase in
"HELICALDIST",.

To minimize the angular rotation required during a test (to avoid
damaging the wires), pinion tooth 16 was chosen as the "datum" tooth,
to which all angular positions were referred. To set this tooth at its
zero position, the setting jig shown in Figs.5.20 and 5.23 was used.
This places the datum ball at mid-face width (z=45mm) with its centre
on the line of centres of the gears (see Fig.5.1), while the ball is
pushed between tooth 16 and tooth 17 as far as possible. The gears
were very lightly loaded to overcome the backlash and bring the
meshing teeth together during this process.

Fig.5.20 shows the transverse section passing through mid-face of

the gears (z=45mm). Therefore, at z=90mm, the angle "180-23x/Z¢"

becomes

180 - [Hex . tanf . 45 180 ]
Z r ' x
1 1

and with 8 = 12°, Z; = 21 teeth and r; = 53.673mm this angle is

6.9323" measured CCW from reference position 2 in Fig.5.20.
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Fig.5.20 Transverse Section Through Pinion
Mid_Face Showing Zero Datum Position
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Hence this is the “zero" position for the gears and the counter
connected to the wheel-shaft encoder is set to zero at this point, (see
section 5.2.2.6).

Referring to section 2.3 and Fig.2.1, the phase ¢,((5/11) input in
"HELICALDIST" is used to calculate angles "ayﬂ” and "¢y1" shown in
Fig.5.20, where

-1 @ ~P -TE+ €, . p
(o) - tan [ 20 Pbe 8 bt]/(d )
yel z=90mm b/2
5.7
(p,1) - ra - ¥ 4+ inv(a )-inv(e )
yl1 z=90mm [ yt ]z-90mm t tz-90mm]
5.8

The angle through which the pinion must be rotated in the rig to
correlate with the input phase "p,o" in "HELICALDIST" is then given
by (see Fig.5.20).

(Phase)RIG = (py1)z=90mm ~ Cwt 5.9
where if the result is positive, the pinion must be rotated clockwise
from reference position 2 in Fig. 5.20. But recalling from the
previous paragraph that the reference tooth pair (5/11) is 6.9323"
counterclockwise from reference position 2 in Fig.5.20 (-6.9323"), at the
zero datum position of the gears discussed earlier, then Eqn.5.9 must be

corrected to become

(phase)pig = (V’yl )2=90mm ~ Qwt * 6.9323 5.10

where again positive is clockwise from reference position 2 in Fig.5.20.

The three  experimental phases chosen as inputs to
"HELICALDIST" are ¢,5 = 0.5626147, 0.7752294 and 0.9878441 py,.
From Eqns.5.7, 5.8 and 5.10 the corresponding pinion rotations on_the
rig are -8.3743°, -4.7292" and -1.0827" respectively all measured

counterclockwise from the zero datum position. Since the ROD 800
encoder on the wheel shaft is used to measure phase however, the
corresponding wheel rotations from reference position 2 are 3.25667,
1.83913° and 0.42105° respectively (clockwise rotation of wheel from the

"zero datum" position determined by tooth 16 of the pinion).
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The phases as stated above are correct during the actual meshing
of the gears. However, for point loading during the calibration
procedure, the effect of the shim thickness (t=0.127mm) must be
accounted for.  Referring to Fig.5.21 the shim causes earlier contact of
the wheel tooth given by (t/rp) where "t" is the shim thickness along
the base tangent. Since we are interested in the correct positions of
the contact lines on the wheel (which is strain gauged) during
calibration, it means that the wheel angular position is determined by
the contacting surfaces with or without the shim inserted (contact plane
fixed in space). = However, since the pinion is used for the zero datum
position as shown in Fig.5.20, and recalling that angular position is
measured using the counter attached to the wheel shaft, it is obvious
that no correction to this angular measure is required. The correction
for "t" is anyway so small that it makes no difference and is calculated
as

180 0.127 180

t o
f, r 1935w T 0.056

Calibration was carried out at each of the three phases listed
above, with the results shown (including the calculated contact radii) in

Figs. 5.22a, 5.22b and 5.22c.
In each case, every one of the Gauss points was individually and

independently calibrated using the sequence listed below:

1. The gears were meshed at an initial torque of around 22.2 Nm
which corresponds to a total normal load of 450.0N. This was
quite safe to use as it is only a quarter of the maximum
permissible load of 1802N calculated previously. This load
however did not remain constant as the gears rotated due to the

presence of the shim. In some cases it almost doubled.

2, The gauged teeth were then brought totally out of mesh by
rotating the wheel counterclockwise in Fig.5.20, and a piece of
shim was glued onto the top land at the desired Gauss location
along the face width, such that the projecting part of the shim

lay in the transverse plane (Fig.5.18(a)).

3. The area where the point load was to be applied was then lightly

smeared with a graphite based grease. This was done to reduce
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Fig.5.21 Early Contact Induced by Shim
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Gauss ry
pt. Cmm]1
1 126, 9560
2 176.3990
3 136, 0035
4 135. 4805
5 135, 1105
6 134.6220
7 174, 6340
g 142, 6120
9 141.8940
10 141.3795
11 140. 6920
12 140, 2000 __{
13 179, 5440 | |
14 179. 0750 | -
15 138. 4505 , / |
16 178. 0050 L fs Pl
17 137.4135 ! - |
18 136.9925 '<—"L°'5626+ﬁ£’_____, I
L 19 136.43240 0.35;2;__—»—1'@ Cox —-—>—L—O'3Spbl
20 143.0160
21 142. 6585 plane of action
|2 141, 9395

Fig.S.22a Phase 1 Point Loading Data
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Gauss ry

pt. Cmm]
1 125.97285
2 125.4180
3 125.049%
4 134.35635
S 124.7025
b 141.2948
7 140, 6090
8 140.1185
9 129.4645
10 128.997%
11 128.3750
12 127.9318
13 127.3420
14 126,9230
15 126.3665
16 135.9720
17 135. 4509
18 143,.0160
19 142.856%0
20 141.882%9
21 141.32285
| 22 140.6520
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Gauss ry
pt. Cmm]
1 124.9885
2 124.5055
2 134.7720
4 140, 0375
5 139.3855
& 138.9200
7 128. 3000
8 137.8580
9 137.2710
10 126.8575
11 136. 2000
12 135.9070
13 125.32875
14 125. 0200
15 134,555
16 143, 0145
17 142, 4800
18 141, 7455
19 141,25I5
20 140, 5690
2 140, 0795
22 139.4265
Fig.S.
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10.

11.

the effects of friction which were, in any case, quite small.
Tests were made with and without a lubricant and the results

were in agreement to within 5%.

The zero datum jig (see Fig.5.23) was then used to locate the
datum position of the gears as previously described, and the ROD

800 readout set to zero.

The strain gauge bridges were then balanced and the residual

balance values recorded.

Immediately after balancing the bridges, the wheel was rotated
progressively clockwise (as viewed in Fig.5.20) through phases 3, 2
and | in turn, starting with the lowest angle phase 3. At each
phase the gauge readings were logged by the UPMG60, and the
output voltage from the torque bridge circuit was recorded from

the Avometer (see Section 5.5).

The gauged teeth were then brought completely out of mesh on
the other side by rotating the wheel further in the clockwise
direction beyond phase 1, at which point the gauges should again

be balanced.

The residual strain gauge readings were again logged to identify

any zero drift (it was generally less than $2 microstrain).

The strain gauges were then re-balanced as in step 5, and the

balance values again logged.

Step 6 was then repeated but with the wheel this time rotating
counterclockwise (as viewed in Fig.5.20) through phases 1, 2 and
3 in turn, starting this time with the largest angle phase 1.
During these readings relative motion of the two gears, and any

friction effects in the mesh are reversed relative to those in step

6.

As in step 7, the gauged teeth were next brought completely out

of mesh by further rotating the wheel in the counterclockwise

direction beyond phase 3.
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12.  The residual strain gauge readings were again logged to check the
drift, if any, since the readings taken in step 9 above (generally

less than $l microstrain).

Steps 2 to 12 were repeated for each position of the shim (i.e. once

for each of the ‘active' Gauss points).

The results obtained by this process were used to determine the

coefficients "ajj" in Eqn. 5.6 (see section 5.5)

As shown in Fig.5.16, the relationship between torque and output
voltage from the torsion bar bridge circuit is linear, so that the applied

loads Fj will also be proportional to the bridge output voltage.

From the calibration curve of Fig.5.16, a torque of 425Nm gives

an output of 1V, from which it can be shown that at any instant
(Fcal)j = 8620.7 (Vo)j 5.11

where (Vo)j is the instantaneous output from the torque bridge when
(Feal)j is applied. This fluctuates slightly as the gears rotate due to
varying effects of friction and the tooth errors at the different contact

points.

For each load point "j", two values of the calibration strain "‘ij"
were measured at each gauge "i": one during clockwise rotation (step 7
above), and one during counterclockwise rotation (step 11). These
strain values were estimated by subtracting from the logged values the
mean of the zero balance residuals logged immediately before and after
the test (in steps 5 and 8 for clockwise rotation, and steps 8 and 12

for counterclockwise rotation).

Since the calibration load (Fcal)j given by Eqn. 5.11 was, in
general, different for the clockwise and counterclockwise calibrations due

to friction reversal, the mean calibration strain "‘ij" was calculated from

(V)
(e, - [(eij) + Cjeew . ey p) ]/ 2 5.12
J mean cew (V) cw
° Jjew

whence, the corresponding mean calibration coefficients ajj (Eqn.5.6)
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were obtained from

a,. = (€., J(F. ) 5.13
ij ( i‘l]mean cal j
where (Fcal)j is the point load for the ccw case.

The mean coefficient matrices [aij] obtained in this way for the
three test phases of mesh are given in Appendix 5B. Comparison with
Figs. 5.22(a)-(c) shows that each load (Fcal)j causes significant strains

only on the loaded tooth and only at points within a distance of about

S .. 6 modules from the loaded point. (see master influence curve of
Figs. 2.38 ..2.40.) This result is thus generally in accordance with
Jaramillo's28  conclusion (from plate theory) that the distribution of
bending moments (and hence, stresses) along the tooth root is similar to

the axial variation of tooth deflections, (Figs. 2.11 .. 2.25).

55.3 Experimental Load Distribution

5.5.3.1 Measuring Procedure
As shown in section 5.5.1, to find the load distribution solution

from equation 5.6 requires a knowledge of the strains {e;} and the
coefficient matrix [aij]' The matrix [aij] was obtained from the
calibration tests described above: here, the measurement of {e;} during
the meshing tests is described.

Almost the same procedure was used to determine {e;} as was
described for the point loading calibration tests (steps 1 to 12 inclusive),
with the exception that no shim was inserted between the teeth. The
three angular positions of the wheel, for the three different phases of
mesh 1, 2 and 3 were those determined in section 5.6.2: viz. 3.25667",
1.83913° and 0.42105° respectively, and correspond to input phases in
the program "HELICALDIST" of 0.5626147. 0.7752294 and 0.9878441
(ppt)- As for point loading, graphite grease was again used on all
engaged teeth and the strain gauge readings “e;" obtained for both cw

and ccw rotations of the wheel were averaged in a similar way to give

(V)

(e) = [(e + Tvo)ﬂ (e |22 5.14
(o]

mean ccw cw
cw J

The mean values (€;)pean from Eqn. 5.14, and the mean values of the
"aij" given by Egn. 5.13 were then used in Eqn. 5.6 to calculate the

experimental Gauss loads "Fj‘" at each point along the simultaneous
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contact lines and hence the local load intensity.  These results are

discussed in Chapter 6.

5.5.3.2 Shaft Misalienment in the Rip

Since the purpose of the experimental work described in this

chapter was to verify the theoretical load distributions predicted by the
program "HELICALDIST", it is essential to modify the measured gear
tooth errors tabulated in Appendix SA to account for the different
instantaneous positions of the shafts in the rig, relative to those on the
Gleason and Hofler machines when the tooth errors were measured (see
section 5.2.2.1). To go one step further, the eccentricity and roundness
errors of the ground rings (section 5.2.2.1), which are used to measure
the position of the shafts in the rig may also be accounted for, adding
a further modification to the tooth errors of Appendix 5A. Without
these corrections, the errors input to the program would not correctly
represent the actual meshing conditions during the tests,

Although these two effects are expected to be insignificant, the
analysis using "HELICALDIST" will be more comprehensive and accurate
once the tooth errors have been modified before being input to the
program, thus reducing the uncertainty factor. Consequently, additional
measurements must be taken during the actual tests to locate the shafts
in the rig relative to the theoretical position (no shaft misalignments).
Once the true shaft positions have been determined, the tooth errors
tabulated in Appendix SA (measured relative to the Gleason/Hofler axis)

may be corrected for the axes in the rig.

The misalignment measuring devices and their method of use have
already been described in section 5.2.2.9. In this section, the analysis
of the measured misalignment is discussed.

First, consider shaft misalignments in the vertical direction (normal
to the line of centres of the gears). Referring to Fig. 5.24, and
recalling (section 5.2.2.9) that the probe is located over the pinion ring
near the torque-up end (see Fig. 5.12a), then any deflection of the
probe upwards (positive reading) tends to bring the teeth close together
and should be treated as metal addition in program "HELICALDIST".
Downward deflections of the probe (negative reading) tend to separate
the teeth and are treated as negative metal in "HELICALDIST". The
probe deflections "3," must now be transformed into the "transverse"

plane of action along the base tangent to give

oyt = &y . COS Oy 5.15
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Fig.5.24 Transverse Section Through Gears Showing Vertical
& Horizontal Directions & Loaded Side of Tooth -
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The angular misalignment is given by,

byt = dyyo 5.16

where 2 is the distance between the rings at opposite ends of one shaft.
Since the measuring device is in contact with the other three rings, the
value given by equation 5.15 may be considered as the relative
misalignment of the pinion shaft to the wheel shaft. Note that the zero
position of the probe was determined by sitting the square table with
ground surfaces on a parallel surface.

Next, consider shaft misalignments in the horizontal direction
(along the line of centres of the gears). Contrary to the case of
vertical misalignment, the zero position of the probes is not crucial in
the case of horizontal misalignments since we are only interested in the
difference of the difference in the two probe readings at both ends of
the shafts. However, for convenience, the zero position was located by
setting the two triangular bell cranks (Fig. 5.12b) such that the distance
between them is equal to the nominal distance between the shaft centres
(when unloaded) less the sum of the nominal theoretical radii of the
two rings at each end.

The convention used for positive or negative readings is clearly
shown in Fig. 5.25 where the actual horizontal misalignments are given
by muitiplying the probe readings by 2.625 (73.5/28). Again positive
readings bring the shafts together and are thus treated as positive metal
in "HELICALDIST", whereas negative readings tend to separate the
shafts and are thus treated as negative metal in "HELICALDIST".

Considering the torque-up side of the shafts, then

bp1 = 2.625 . (5A119B1) 5.17
whereas at the opposite side of the shafts
6p2 = 2.625 . (5A2t5R2) 5.18

where 64 and §p are the two probe readings (see Fig. 5.12b), and the

resultant is

6h = 6pn1 ~ dn2 5.19

where equations 5.17 to 5.19 are algebric sums based on the convention
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Fig.5.25 Conventiori Used in the Measurement of Horizontal
Misalignments
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described in Fig. 5.25. If the resultant is negative it means the shafts
tend to separate (negative metal in "HELICALDIST"), and if it is
positive it means the shafts tend to move closer together (positive metal
in "HELICALDIST"). To transform the resultant horizontal
misalignment "5;" into the “transverse” plane of action along the base

tangent we have
6pt = Op - sin oy 5.20
and the angular misalignment is given by

Oht = dht/0 5.21
where £ is as defined earlier.
Finally, the overall misalignment in the transverse plane along the

base tangent is the algebric sum of 0,4 and 6,
6p = 0yp + Ot 5.22

which must be determined for each of the three test phases of mesh
and then added algebraically to one of the meshing gear's tooth
alignment errors fHB (conveniently added to the pinion tooth errors),
since the value of "6," is a relative misalignment of one of the shafts
to the other. Before this final step however, "6," must further be
corrected since it was derived by assuming that the shaft rings are
concentric and perfectly round. This however is not the case and the
ring errors must be accounted for (see first two paragraphs of this
section).

In order to account for ring errors, the following equation will be

used (refer to Fig. 5.26) to determine the actual roundness errors "Ar;"

of the rings at any point "i",

Ar; = Aryy, - AF - e . cos(6;-yp) 5.23
where
Arim - actual (measured) runout reading of the rings at point "i"
(tables 5A.3 and 5A.6).
AT - is the (arbitrary) mean of the measured runout readings of

the rings "Arj,," taken on the Gleason/Hotfler (tables 5A.3,
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Fig.5.26 Ground Ring Eccentricity and Radial Run-Out
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SA.6 and 5C.1).

e - is the eccentricity of the mean (best fit) circle in direction
¢ (Fig. 5.25).
(6ij—p) — is the angle between point "i" and the point where

maximum eccentricity "e" occurs on the ring surface (see
Appendix 5C).

By plotting the runout readings listed in Appendix SA, the best fit
circle corresponding to sine wave variations of "Arj,," was easily
deduced "by eye". Almost identical results were obtained from one set
of data with much greater effort by "Fourier analysis®. In any case "e"
and "“8;—p" could be obtained and "Ar;" is calculable from equation
5.23.

The results are tabulated in Appendix SC for points *“i"
corresponding to the four contact points of the alignment jig with the
rings at the three mesh phases tested.

Similar values of Ar; (agreeing to within #2uym, in spite of
additional variations caused by run-out/eccentricity of the rig bearings)
were obtained by analysing the runout readings of Tables 5a.8 and 5a.9.

Finally, the vertical and horizontal misalignments may be corrected

for, and equation 5.22 may now be modified as
(6mod = fvt~[(8vrB1-8vrB2)~(8vrA1~8vrA2)]-cos(cy)/2

+ 0n¢=[(8hrB1~8hrB2)(5hrA1 ~8hrA2)]-sin(oy)/ 2

5.24
where
or =Ty + 4rp - 1y 5.25
and
o - mean measured radius of a ring given by
1 N
[ﬁ ' %[dmeas/z]]
where the comparator of Fig. 5.27 was used to measure the
diameters (see Appendix 5C).
th ~ is the theoretical (intended) radius of a ring (note that this

is constant and cancels out in equation 5.24 and has a

value of 60.5mm for each ring).
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arjy - as given by equation 5.23.
0 - as defined in equations 5.16 and 5.21.
Using equation 5.25, "ér" for each of the four rings is calculated and
may be positive or negative, and the sign obtained is entered unaltered
in equation 5.24 (algebric sum) where subscripts

1 ~ refers to rings at torque-up end

2 - refers to rings at other end

A - refers to wheel rings

B - refers to pinion rings
v - refers to vertical errors
h - refers to horizontal errors.

Appendix 5C calculates the actual values of (8y),oq for each of
the three test phases, which must be added algebraically to the engaged
teeth measured average misalignments (table 6A.2) as determined by the
Gleason/Hofler, and analysed in section 6.2.2, Table 5C.1 is a listing
of "AF", "Arj,", "e" and "16;-p1", and table 5C.2 is a listing of
"Ar;", "ér" and "64". Note that in equation 5.24, "ér" is transformed
into an angular measure in the transverse plane along the base tangent
line and the values "6" are as calculated in Appendix 5C. (68y)mod is
then calculated from the results given in table 5C.2.

Note that all modifications due to misalignments and ring
imperfections were defined in the transverse plane along the base
tangent since the measured tooth errors were also obtained in that
direction on the Gleason/Hofler.  Program "HELICALDIST" transforms
all these errors into the normal plane, normal to the tooth flank as
shown in equation 6.1.

The experimental load distribution results are presented in chapter
6 along with the theoretical results, and will not be plotted here to

avoid repetition.

5.6 Transmission Error Measurements

The transmission error f; was measured experimentally by means of the
"Klingelnberg PEWO02" apparatus shown in Fig. 5.1, which transforms the
relative rotations of the pinion and wheel shafts into a displacement at the
pitch point, by using the output signals from the wheel encoder (sine wave
from ROD 800) and the pinion encoder (square wave from ROD 270).

Upon inputting the proper gear and encoder specifications, the built—in
micro-computer program calculates the transmission errors throughout the

specified test cycle at each angular position of the test gears and plots them
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out. With the gears very lightly loaded (just to bring the teeth in contact),
and taking the datum position shown in Fig. 5.20 as an arbitrary zero
position, the transmission error is plotted as shown in Fig. 5.28(a) with the
three test phases 1, 2 and 3 as shown (the fine curve is the "filtered” signal
showing only the low frequency variations). Since this is at near zero load,
the plot only shows the effect of the gear tooth errors and misalignments, but
not the effect of gear and shaft deformations. The curve plotted, however,
does not represent absolute values of the transmission error since the zero
datum position selected does not necessarily represent zero transmission error.
Therefore the plot is only a measure of the variation (relative to the zero
datum position at the start of the test) in the transmission error during the
test cycle. Unfortunately, a separate "VRZ" counter capable of decoding the
pulses from the "ROD 270" encoder was not available, so absolute rotations
could only be measured on the wheel.

The same test described above was made under full-load (526.5 Nm),
and the results are shown in the plot of Fig. 5.28(b). This test however fails
to show the additional transmission error caused by shaft and gear
deformation, it does on the other hand show the change in the pattern of
"f,", caused by these deformations. More details on this are discussed in
section 6.5. The test phases 1, 2 and 3 in Fig. 5.28 in terms of revolutions
of the "wheel” are 0.00905, 0.00511 and 0.00117 rev. respectively.

One method to determine the transmission error due to loading was to
load-up the gear to maximum load and to record the angular displacement on
the counter attached to encoder ROD 800 on the wheel (no counter was
available for ROD 270). During loading, the locking arm and plate (Fig.
5.11b) restrained the pinion hollow shaft from rotation, however, these are
elastic components and do tend to deform under load. To determine the
amount of this deformation, the loads were slowly removed, after the ringfeder
was tightened to hold in the torque, and so the applied load now acted only
upon the arm and plate. Upon unloading, the counter reading dropped by a
certain amount which was substracted from the first reading, thus giving the
true relative rotation of the shafts, as measured by ROD 800 at the end of
the wheel shaft.

Referring to Fig. 6.1 and realising that wheel shaft rotations are
minimal across the facewidth, this represents the relative rotations of the two
shafts at gear mid-face, which may be converted into displacement at the
pitch radius. The first reading gave 0.1400° and the second reading gave a
drop of 0.1199 and so, the relative shaft rotation is 0.0201. Converting this

into displacement at the pitch radius gives (this rotation does not include the

effects of tooth errors/misalignments),
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5.7

[0.0201' x 1—36] x 138.0mm = 0.0484mm = 48.4um

where the wheel pitch radius is 138.0mm. Further comments on this point
are presented in Chapter 6.

Although a direct comparison of transmission error with theoretical
results is not possible, the pattern of variation in transmission error may be
compared, and this is done in Chapter 6, where the theoretical transmission
error for the three test phases is obtained from programme
"HELICALDIST".

Probable Sources of Error

Experimental errors are unavoidable and may be due to many factors,
which will be discussed in this section.

Gear tooth errors although mesured on highly sophisticated machines
(Gleason/Hofler) are expected to produce results with an error of no more or
less than #2uym. The eccentricity of the axis of rotation and ring roundness
errors were accounted for in detail in section 5.5.3.2.

The jig for measuring vertical misalignment (Fig. 5.12a) accounts for
"relative™ positions of the reference rings in the rig, and since all surfaces
were machined and ground to the same degree of accuracy, errors are
expected to be comparable at each contacting point thus cancelling out one
another in the final reading. Four sets of readings yielded a repeatability to
within 20.9um (£3%).

Similarly, the errors in the readings at the four positions of the rings in
the rig, using the horizontal misalignment measuring jig (Fig. 5.12b), are
comparable and cancel out wupon taking differences in readings. The
repeatability however was not very good amounting to :48uym (212%).
Nevertheless, this has no effect on the final results since complimentary
readings varied by comparable amounts, which cancel out wupon taking
differences (Fig. 5.24).

The comparator used for measuring reference ring diameter (Fig. 5.27)
is a modification of the horizontal misalignment measuring jig (Fig. 5.12b),
and the same analyses on error and repeatablity applies. However, as
indicated by equations 5.24 and 5.25, these errors cancel out since they are
comparable, As shown in Appendix SC, the averaged measured diameters of
the rings were within -0.03mm (-0.025%) of the intended nominal diameter
of 121.0mm. Since on all four rings, the measurements were within ~0.0291,

-0.0288, -0.0275, and -0.0287mm of the nominal diameter, these results show
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good consistancy possibly verifying the validity of the measurements.

As discussed in section 5.5.2, frictional effects play an important role.
This is caused by bearing friction, mesh friction, etc.... To quantify the
effect of mesh friction, readings with a lubricating grease to minimise friction
were taken. Considering a typical case during the point loading procedure,
the strain readings "e" for opposing directions of motion varied from 56.0
pstrain to 58.35 pstrain. Considering a typical case during the actual meshing
tests, the strain readings "e" for opposing direction of motion with the use of
a lubricant were 67 pstrain and 83 pstrain. To reduce these frictional
effects, equations 5.12 and 5.14 were used. This procedure however only
accounts for mesh friction. The output torque as recorded by the Avometer
must be corrected for bearing and other frictional losses. To quantify this
error, a 1m long arm with weights was used to apply the load, and the
Avometer reading was taken. The actual torque applied (weight in N x arm
length in m) was then used to find the voltage output from Fig. 5.16 (which
as discussed in section 5.4 is practically free of frictional effects).  This
voltage exceeded that given by the Avometer reading by mostly 3%, rendering
any torque corrections unnecessary.

The location of the strain gauges at the 30" tangent line at the tooth
root is accomplished with a jig which is made of a sticky tape. This tape
acquires the form of the tooth flank and the gauge positions may easily be
marked on it. The tape may then be rolled down the flank thus locating the
gauge positions axially (Fig. 5.8) and radially. Slip gauges locate gauge
positions very accurately on the tape, but the gauges have to be then glued to
the root, and that is where human error comes in. Some gauges were
observed to be at least *1mm off their proper locations.

A similar problem arises when attempting to locate the shim (during
point load calibration) to coincide with the axial position of a gauge. Again a
jig was devised by locating the axial positions of the gauges on a sticky tape
(using slip gauges) which when fixed to the tooth top land gives a good
indication of where the shim must be. However, the shim was glued into
position by eye, and that was estimated to throw it off position by at least
¢Imm. A further complication arose during point loading the sections near
the tooth ends. This obviously required one of the ends of the T-shaped
shim which sits on the top land of the tooth to be cut—off. As a result, the
shim seemed to be significantly dislocated during point loading.  This may
explain the large discrepancies between experimental and theoretical results at
the tooth ends as explained in section 6.4

The zero datum jig (Fig. 5.23) was designed so as to locate the probe

centre at tooth mid-face and along the line of centres of the gears (Fig.
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5.20). As shown in Fig. 5.1, the guides for the jig are the parallel bearing
cap inside surfaces and the flat casing surface on which the jig rests. All
these surfaces are machined but not ground. The misalignment along the
bearing caps (jig's length) was measured to be about 200um. Also the jig's
width was made 200um smaller than the nominal gap between the guiding
caps. It is also estimated that the surface of the casing on which the jig
rests is misaligned by roughly 200um. From geometric considerations, the
worst possible combination of these misalignments, was found to result in an
angular position error of only a fraction of the angular rotation needed to
produce any significant change in strain readings. It was demonstrated that an
angular rotation of up to 0.1 (larger than any angular error) hardly caused
any change in strain readings. The repeatability of the jig was better than
0.001" also.

Drift on the Fylde amplifier and Avometer was observed only during the
first 20 minutes of turning the power on, after which a "constant" value of
torque reading in volts was maintained for the rest of the testing period.

Drift was also observed on the UPM60, and seemed to progress over
long periods of time, but at a very slow rate. As discussed in section 5.5,
the tests were made within one minute of zero balancing to reduce the
amount of drift, and the balance values were recorded again after the test was
completed. Typically, the amount of drift from start to finish of a test was
about 2 to 3 pstrain. To overcome this effect, the mean of the zero balance
residual before and after a test were subtracted from the actual strain readings
(section 5.5.2). Typical peak strains during meshing tests were up to
800ustrain and during point loading they were up to 90ustrain.

Electrical noise was completely eliminated by using the screen shown in
the circuitry diagram of Fig. 5.9.

For transmission error measurements as well as phase location, encoder
errors should be looked at. First, consider ROD 800 (Figs. 5.1 and 5.2) with
coupling KO1. KO1 is expected to give a kinematic error of transfer of 21
angular second (consisting of a radial runout A = 100ym, and an angular error
a = 0.09° which results in 78.5um over the whole length of coupling, see Fig.
5.29). In the worst case, the resultant error of transfer is a misalignment of
178.5um.

The misalignment of the adaptor fixed on the wheel shaft to which the
KO1 and ROD 800 are coupled is measured to be within 210um (adjusting
screws can further improve this value). Therefore, in the worst case the total
error of transfer is less than 200um (178.5+10), whereas the permissible values
of A and o« are $300um and $0.5° respectively, each in itself being larger
than the combined worst error of 200um. Clearly the additional 10um

320



Axial run-out Angular error Radial run-out

Fig.5.29 Encoder Coupling Error and Run_Out

321



(¢10pum) adaptor misalignment has a negligible effect on the already tiny error
of *1 angular second. The ROD 800 itself is highly accurate with a fine
angular resolution of 0.0001°,

Another source of error affecting the output from ROD 800 is the
relative deformations of shaft to gear casing. This was checked by resting the
measuring probe on the bearing cap (part of the casing) and checking the
readings of the probe (which is made to contact the adaptor vertically/
horizontally) before and after loading. The difference in probe readings
before and after loading was less than 3um, surely an insignificant error.

Considering encoder ROD 270 (Fig. 5.1 and 5.2), it is indirectly driven
by the large friction drive press fitted onto the helical pinion shaft, and
contacting the smaller friction wheel coupled to ROD 270. Coupling type K03
connects ROD 270 to the small friction wheel. It is less accurate than type
K01, giving a kinematic error of transfer $2 angular seconds.

A source of error which might influence output from ROD 270 is the
radial runout on both friction drives. The mean runouts on the small and
large drives were measured to be 2.25 and 2.05um respectively, giving a total
mean runout in the worst case of 4.30um. From geometric considerations,
such runout values have no significant effect on encoder transmission.

Another source of error is as before the relative deformation of shaft to
casing. Again probe readings in the vertical and horizontal direction were less
than 2pum as in the case of encoder ROD 800 (an insignificant misalignment
compared with the total KOl alignment error of 278.5um which gives 22
angular seconds error).

Bearing runout errors may also contribute to errors in encoder output,
However, upon comparison of radial runout readings in Appendix SA measured
on the Gleason/Hofler, with those measured inside the rig, the wheel shaft
bearings show negligible bearing runout. Pinion Shaft bearings show a runout
of up to 15um, which as shown earlier hardly affects encoder readings.

So far, only the possibility of experimental errors has been investigated.
As discussed in section 6.4, the theoretical results may be in error as a result

of filtering out the misalignment and profile errors (the wave form was

ignored by taking the best fit line through the error curve along the tooth
facewidth/tooth height). The magnitudes of the wave forms can be inspected
from the tables in Appendix SA (fgr and f)). It is shown in section 6.4 that
discrepancies in the load intensity of t10N/mm result from using filtered errors

in program "HELICALDIST".

322



Load Inteneity w, {N/mm]

Iww B B S

........................... ; e
|
|
|
t
' |
0 0
80 Tooth Palr 1176 80
80 /\\ o 60
40 : \ 40
20 20
—— 15 Gauss Intervais ---1° 8 Gausgs Intervals /
. 1 .

0 10 20 30 40 &0 60 70 80 90

Axlal Distance z, (mm]

Fig.5.30 Effect of Number of Gauss Intervals on load
Distribution Solution

323



Another possible source of error in the theoretical results is that the
Gauss interval of integration used was too big (see section 6.4). Very
recently, more advanced computing facilities allowed for the use of much
smaller Gauss intervals in "HELICALDIST". Fig. 5.30 compares the results
for two pairs of meshing perfect gears using 6 and 15 Gauss intervals. The
figure however does not show any major discrepancies between the two sets of

results.

E X 22 X 2
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6.1

6.2

CHAPTER 6

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Introduction

Before a direct comparison between the experimental results and those
obtained from program “HELICALDIST" is possible, two further steps are
needed. First, the measured gear tooth errors tabulated in Appendix SA (in
the transverse plane) must be approximated by analytical expressions as in
Eqn.6.1. Secondly, the shaft deflections must be calculated, since, as

explained in section 2.5, they were excluded from the gear compliance

functions "K," of Eqn.2.14.

Analytical Approximation to Measured Gear Tooth Errors

6.2.1 Form of Error Equation
Program "HELICALDIST" incorporates an equation for calculating
the errors "§," appearing in Eqn.2.14. From Figs.4.16, 4.3, 4.8(b),

4.4, 414 and 4.12, the error equation takes the form (see comments

below)
be = COS(ﬂb).[Fp.COS(O(t) - fHB.Z/b + o Y/ (hNathnp)
+ fyz.y.z/(b.(hNa+th)) - cc.z.z/b2 - ca.y.y/hN2
= Ce.(z-be)/(b/2-bg) - cy.(y-hy)/(h-hy)] 6.1a
where
y - is the radial distance from the reference circle to the
contact point.
hy - is the radial distance from the reference circle to the start
of tip/root relief (caylcfy)-
z - is the axial distance from mid-face of the tooth to the
contact point (see Figs.5.6 and 5.7).
be - is the axial distance from mid-face of the tooth to the start
of end relief (ce) as can be seen in Fig.4.4.
fyz - is the "twist" error associated with wvariations of "fﬂﬁ”

radially up the tooth flank, or variations of "fp," axially

across the tooth flank.
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6.2.2

The following must be applied to Egn.6.1a:
1) In the sixth term:

if y > 0 then cy=c,, and hy=hyn, (Fig.4.14)

if y < O then c,=c,s and hy=hys (Fig.4.14)

2) In the seventh term:
if z > 0 then by > 0
if z < 0 then b,<0 and b/2 is replaced by -b/2.

3) In the eighth term:
if y > 0 then Cy=Cay and hyzhay (Fig.4.12) and h=h,
if y < 0 then Cy=Cfy and hy=hfy (not shown in Fig.4.12)
and h=-h;.

The factor cos(ey) in the first term of Egn.6.1a transforms
circular cumulative pitch error (Fp) into the base tangent direction.
All the terms need to be multiplied by cos(Bp) as shown since "5" in
Eqn.2.14 is the error in the normal plane normal to the tooth flank,
whereas the errors fHo fHB' Fp, etc.... are all defined and measured
in the transverse plane.

The error equation in "HELICALDIST" can also actually account
for tooth errors due to pitting or wear craters, but this has not been
shown in Eqn.6.1a.

Since the tooth errors were measured over test ranges a little
smaller than "b" or "hyn, + hpng", and realizing that the Gleason/Hofler
give "fHB" and "fy," based on the test ranges, it becomes necessary to
replace "b" and "hy, + hyng" in Eqn.6.1a by the test ranges "0{" and

"Q," respectively.

Analysis of Measured Gear Tooth Errors

As shown in Figs.5.6 and 5.7 and Appendix SA, the tooth errors

were measured at nine points (Fp), on three radial sections (fHB)' and
on three axial sections (fHa)- The error measurements revealed no tip
or root relief, no profile or face crowning and no end relief so that
only the first four terms of Eqn.6.1a need be considered

(cc=ca=ce=cy=0). Eqn.6.1a thus reduces to

6e=cos(6b).[Fp.cos(at) - fygz/ly + fay/lp + fyz.y.z/(Ql.Qz)]

6.1b
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Considering Figs.5.6 and 5.7, pitch errors were measured at all
nine grid points (y=0, #*y; and z=0, :z;), so it follows from Eqn.6.1b
that the best estimate of "Fp" is obtained by averaging the nine
measured values (see Table 6A.1 for results obtained).

Similar considerations show that the values of "fp," and "fHB"
used in Eqn.6.1b should be the mean, in each case, of the three
measured values on each flank (see Tables 6A.2 and 6A.3).

The twist coefficient "fyz" can be determined from the variations

of either “fyyg" or "ffy,", and is given by (see Figs.5.6 and 5.7)

(fyz)l = [(fHa)aa = (fHcc] 6.2a

or

(fyz)2 = [(fHpla'a* — (FHB)c'c'] 6.2b
The mean of these two values was used in the analysis (see Table
6A.4).

In all cases, the measured errors used in Eqn.6.1 were first
modified, as explained in section 5.5.3.2, to allow for the misalignment
(6¢0)mod ©of the two shafts in the test rig, (also see Appendix 5C).

The misalignment (6)poq4 is added to the already averaged
misalignment errors (fHB)avg/le and the results are listed in Table
6A.5 as (fHB)mod where, as mentioned earlier, the modification was

only made to the pinion tooth misalignments.

6.3 Shaft Deformations
As explained in section 6.1, the stiffness coefficients used in program

"HELICALDIST" do not include the effect of shaft deformations. However
provisions were made in the program to allow for input of shaft deformations.
The main advantage in this is that the FE results from which the stiffness
coefficients were derived are based on a specific shaft support arrangement
(sec.2.5), so that removing the FE shaft deformations enables the entry of
different theoretically-determined values for any type of support arrangement.
Referring to Fig.6.1a, it is evident that both shafts are subjected to the
effect of tooth loads on the slave spur gears. The spur gear wheel is
directly overhung on the wheel shaft, and the spur pinion is supported on
needle bearings inside the hollow pinion shaft and so, effectively also overhung
on the pinion shaft. In both cases, the effect of the additional loads can be
calculated by superposing the bending/shear deflections due to the spur gear
tooth loads, on those already calculated in Appendix 2C caused by the helical

gear loads.
The generalized bending moment and shear force diagrams for the
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overhung spur gear loading (wheel or pinion) are as shown in Fig.6.1b. The
shear force in the section of interest is small, so shear deflections were in this
case ignored. The bending deflection 5'gy at point "z" where 0<z<b is given
by the exact same expression given in Eqn. 2C.24 of Appendix 2C, however,
Fi, Fp and 64 are replaced by Fp', Fy' and 6,'. F{' and F,' are
determined from Fig. 6.1a to be

Fi' = Fp' = F . cosfy 6.3a
. F.cos(ﬁb)
F2 mr, 6.3b
4/0

where £ = £1+0,+024+04 and F is the total normal load acting on the helical

gears. From basic theory, the slope 6'p was derived and is given by

F []

' 1 2 2 2 2 3
o, - - ET ) (2,.0,°/240,.0.% 7240 % 0, /240 % 0, /240, /6)
F 2 2 3

(0,.0,°/240,.0,.0.+0,% .0, /240, /6) 6.3c

E.lz.(Ql+02)

where I and I, are as defined in Appendix 2C with the proper modification
to I in the case of the hollow pinion shaft. The corresponding slope 6'g,
was ignored for the same reasons discussed in Appendix 2C.

8'sp is in the plane of action of the spur gears. To resolve it
normally to the tooth flanks of the helical gears, the relative inclination of

the two base tangent planes of action must be considered.  This gives
(8'sp)n = 8'sp - cos(Bp) . cos(oy + a'y) 6.4

where o and o'y are the transverse pressure angles of the helical and spur

gears respectively.

The equations in Appendix 2C (modified to allow for the hollow helical
pinion shaft), coupled with the additional bending deformations due to the
overhung spur gears as described above, were incorporated in a
micro—computer program and the results are listed in Appendix 6B. These

shaft deformations were input as values of "5;" (Eqn.2.14) in the program

"HELICALDIST".

6.4 Theoretical and Experimental ILoad Distribution Results

Theoretical load distributions were obtained from “HELICALDIST" for
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the test gears specified in Table 5.1 using the error and shaft deflection
results obtained in section 6.3. A mean test torque of 526.5 Nm was used.

Experimental load distributions were derived from the experimental strain
readings "e;" (tabulated in Appendix 5B) using the calibration coefficients “aij"
(also tabulated in Appendix 5B) determined in Chapter 5, by solving the
matrix equation 5.6.

Figures 6.2, 6.3 and 6.4 show a comparison of the theoretical and
experimental load distribution results for test phases 1, 2 and 3 respectively.
The load distributions along each of the three simultaneous contact lines were
plotted separately at each of the test phases as shown.

The figures show that the theoretical and experimental load distributions
are generally in good agreement.

On tooth pair 9/7 for all three test phases, the theoretical and
experimental results are in relatively very good agreement, although the loads
are in all cases low and within the experimental error band (see section 5.7).

On tooth pair 10/6, the agreement is generally good except for the end
points in phases 1 and 2 where theory predicts much smaller load intensities
than those deduced from experiment. As discussed in section 5.7, greater
experimental errors are likely at the tooth ends, and since phase 3 does not
seem to exhibit these discrepancies, it may be that these end of tooth
differences are the result of the experimental errors discussed in section 5.7.

Tooth pair 10/6 also exhibits another discrepancy in all three test cases
(but mostly test cases 1 and 2) where the difference between the theoretical
and experimental results in clearly cyclic, changing sign at alternate Gauss
points.  This again must be an experimental effect, since as shown in section
5.7, Fig.5.30, altering the number and spacing of the Gauss points had a
negligible effect on the theoretical results for the test gears, while the Gauss
points themselves have no physical significance so far as the actual behaviour
of the gears is concerned.

Cyclic variations of the calibration coefficients "aj;" in alternate rows or
columns of the matrix is evident from the results tabulated in Appendix 5B,
but can easily be attributed to the alternately long-short pitch of the Gauss
point axial locations at which the strain gauges were located (see Fig.5.8).
These cyclic errors have not, so far, been explained. It is worth noting,
however, that if alternate experimental points are averaged and the results
plotted at mid positions (to eliminate the unexplained cyclic error) the
resultant curves will be in excellent agreement with the theory, except as
previously noted, at the tooth ends.

On the highly misaligned tooth pair 11/5, the sharply peaked curves also

show excellent agreement except, as for the other tooth pairs, at the tooth
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6.5

ends. Possibly, the unexplained periodic error contributes to the overall
experimental error at this point, but it is here far less evident than on tooth
pair 10/6.

Another possible cause of the discrepancies is that Eqn.6.1 inadequately
models the actual tooth flank errors as mentioned earlier in section 5.7.
However, a comparison of the actual measured errors at a few points across
the face width, with those obtained using Eqn.6.1 showed no obvious
systematic or cyclic component, and peak discrepancies only caused differences
of order *10 N/mm in the load intensity.

Another possibility that remains is that the gear measurements failed to
identify positive tooth flank errors localized (say) at the corners of the teeth.
These could cause higher theoretical values at the ends of the 10/6 and 11/5
contact lines, for example. It would be worthwhile to carry out some

contact line tests along the nine contact lines involved (using the Hofler tester)

to check this when the test rig is next dismantled, but this has not, so far,

been possible.

‘As a final check on the overall accuracy of the results, the total normal
tooth load was estimated by adding all the experimentally-determined Gauss
loads, and comparing the result with the values calculated from the measured
torques. For test phase 1, the experimentally determined load was 3.5%
larger than the calculated one, for test phase 2, it was 5.5% larger and for
test phase 3 it was 6.0% larger, clearly indicating good agreement.

In all, upon obtaining the percentage differences between the theoretical
and experimental values in Figs. 6.2, 6.3 and 6.4 (except at the few odd

points), it was found that for phase 1, the average difference for all three

contact lines of most points plotted showed that the theoretical results were
0.59% greater than the experimental ones, for phase 2, they were 3.34%

smaller and for phase 3 they were 1.53% smaller.

Theoretical and Experimental Transmission Error

As was shown in section 5.6, the experimental transmission error curves
of Fig.5.28 do not represent a true measure of the transmission error "f;",
but the variations of “f" during mesh. Table 6.1 lists the theoretical
transmission errors obtained from program "HELICALDIST" alongside the
experimental transmission errors for the three test phases. The results for
no-load and full-load (526.5 Nm) are tabulated, and in the case of the
theoretical results, values of "f, with zero shaft deflections are also included
in brackets (to show the effect of shaft deflections on "fi").

To facilitate graphical comparison of yvariations of "f,", a constant has
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f+ [uml
FHASE EXF THEORY EXP THEORY (no Oe)
no load no load full load full load
1 T.II3 =22.868 -2.1472 25.460(5.7287)
2 0. 1359 -24., 648 -E. 29 23.867¢2.581)
= -0.476 -2%.78% ~-5.159 22.785(2.182)
Table 4.1 Theoretical and Experimental Tranesmission Errors
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been added to the experimental results to make them coincide with the
theoretical values of "f;" at phase 3. This phase was arbitrarily chosen as

the reference since it exhibits the smallest algebraic value of "fi".  The

constant for the no-load case is thus (-25.783 - (-0.476)) = -25.307um.
Similarly, the constant for the full load case is (22.755 - (-5.159)) =
27.914um.

Fig. 6.5 shows a comparison of the ‘corrected' experimental and
theoretical transmission error obtained in this way for phases 1 to 3. Any
cyclic errors of the encoders which measure “f\" will have almost identical
effects on all three phases (since the three phases are not far apart), and
therefore will not alter appreciably the form of the transmission error curves.

In view of the possible errors in measuring “f;" (see Sec.5.7), the
agreement between the measured and theoretical variations in "f(" shown in
Fig.6.5 (maximum discrepancy #$1um) is as expected very good, despite the
fact that the curves of Fig.5.28 (especially that for no load) exhibit a
substantial amount of high—frequency ‘'noise’ (probably associated with
runout/roundness  errors in  the  bearings, friction  effects, local
(short-wavelength) tooth form errors not effectively modelled by Eqn.6.1).

It would thus have been better to average the values of f; over several
revolutions before making comparisons with the theory. However, with the
experimental rig used, this was not possible.

Finally, refer to the end of section 5.6 where an experimental value for
the transmission error, only due to loading (no tooth errors or misalignments)
was calculated to be 48.40um. Comparing this value with the difference
between columns 2 and 4 in table 6.1 shows excellent agreement, where the
mean difference for cases 1, 2 and 3 in the table is 48.46um (the individual

differences for cases 1, 2 and 3 respectively are 48.328, 48.515 and
48.538 um).
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CHAPTER 7

CONCLUSION

7.1 Main Achievements

7.2

The aim of this work was to determine the load and stress distributions,

and the transmission error in wide—faced helical gear teeth. To achieve this,

the following was done:

1.

A 3-D FE elastic gear model satisfying all the requirements for a good
3-D model (Sec. 1.4) was developed (see Sec. 2.5 ... 2.6).

The FE results in step 1 above were incorporated into a
micro-computer software package, developed by the author for the
analysis of load and stress distributions, and transmission error (see Sec.
2.6 ... 2.10).

The load and stress distributions thus obtained, were then compared with
other published data (see Sec. 3.1 ... 3.4).

The effect of different parameters such as Z, U, b and £, on the load
and stress distribution results was studied (see Sec. 3.5).

The load distribution factors Kpj, and Kyg predicted by the program
were compared with other published data (see Chapter 4).

An experimental rig was developed to determine the actual load
distribution and transmission error in helical gears of known geometry,
mounting and meshing conditions. The results were then compared with
the theoretical results obtained from the 3-D model (see Chapter 5 and
Chapter 6).

Main Conclusions

The objectives listed in Section 1.5 were successfully achieved as shown

in section 7.1 above, and to this end, the following main conclusions were

drawn:

1.

The FE gear—tooth compliance results agreed well with other reliable
published data.

Gear body compliance was shown to be significant in larger gears. This
explains why the mesh stiffness values obtained differed from those given
by 1SO.

The load and stress distributions obtained agreed well with Vedmar'sS
published data, showing peaks (spikes) at and near the ends of contact
lines, attributed to the so called "buttressing” effect.

The load distribution factors Ky, and Kpyg were shown to be
considerably smaller than those obtained by ISO4.  This was mainly
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explained by overestimation of the mesh stiffness in the ISO analysis
used to calculate the load distribution factors.

The experimentally-determined load distribution results agreed well with
those obtained theoretically. The cyclic variations of the former relative
to the latter on the full contact lengths (Figs. 6.2 .. 6.4), could only be
explained by random errors in the experimental results, Discrepancies
between experiment and theory at the ends of contact lines could be
partially attributed to inadequate measurement of gear tooth errors,
which may have resulted in erroneous end-of-contact theoretical load
distributions.

Experimental transmission errors for the three test phases considered
were not absolute values. However, upon adding a constant to them,
they agreed very well with the theoretical results at the corresponding
phases.  Nevertheless, since the test phases were not far apart, this
method may not be very reliable and the small variations observed were

actually within the measurement error.

7.3 Sugpestions for an Improved 3-D Model

In this section, suggestions for future research, to further improve the

3-D gear model used in this work are presented. To this end, the following

improvements are recommended:

1.

FE modelling of the "further" adjacent teeth (i.e. at least the second
tooth from the loaded one on either side) should be carried out. In
this work, these teeth were assumed to have the minimum compliance
of the corresponding “directly” adjacent teeth (see Sec. 2.6.3).

With the advances in computer hardware, increased processing power
could allow a much finer FE mesh to be used around the loading point.
This would permit correct FE modelling of the gear tooth contact
compliance, which could then replace the approximate 2-D Hertzian
contact compliance. Although this does not greatly improve the
accuracy of the results as shown by Steward30, it does greatly reduce
the amount of work invloved in interpreting the FE results.

Another advantage to be gained from increased computing power, is the
ability to use much smaller intervals of integration to solve the
equilibrium and compatability equations (Eqns. 2.13 and 2.14
respectively), thus improving the accuracy of the results.  This has
recently been done (see Fig. 5.30).

The Gauss elimination used to solve equations 2.13 and 2.14, may be
replaced by a faster, more efficient method, such as a Gauss-Seidel or

similar iterative procedure in which the contact non-linearities can be
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more conveniently accomodated.

The shaft deformation &g in equation 2.14 was based on theoretical
calculations, by assuming that a concentrated load acted at gear
mid-face.  Although this was shown to be a reasonable assumption, a
better approach would be to calculate 5; at each integration point in
terms of the unknown loads wj. The term &g could then be included
in the influence coefficient terms K, in equation 2.14.

Errors in transmission error measurements could be reduced by
eliminating the friction wheels (items 21 and 22 in Fig. 5.1), which are
a major source of measuring errors. Instead, the encoder could be
directly coupled to the pinion shaft by means of an offset arm, which
rotates with the pinion shaft. This set-up is possible since rotations
during the tests are restricted to less than 90°. Also, with such a
set—-up, the more accurate encoder ROD 800 (see item 26) may replace
ROD 270 (item 25). This would greatly increase the accuracy of FE
measurement.

The transmission error measurements could also be taken in a totally
different manner, in order to obtain absolute rather than relative values.
This may be done by connecting encoder ROD 270 to a compatible
counter, similar to the VRZ counter connected to ROD 800 (Fig. 5.1).
Differences in the readings from both counters would then give the
absolute transmission error,

The accuracy of the measured load distributions could usefully be
confirmed by instrumenting one of the pinion teeth with strain gauges.
The instrumented tooth could be meshed, in turn, with each of the
instrumented wheel gear teeth to provide a cross—check on the load

intensity along each contact line.
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APPENDIX 1A

F.E. MESH GEAR TEETH CO-ORDINATES

In this Appendix, methods are given for the calculation of:

loaded and adjacent tooth involute profile co-ordinates x, y and z

loaded and adjacent tooth trochoidal fillet co-ordinates x¢, yf and z¢
loaded tooth centre-line co-ordinates x., y. and z.
remaining internal co-ordinates of the F.E. mesh,

The required data for profile generation is:

number of teeth : z
normal module : my
normal pressure angle : o
helix angle : ¢
addendum modification : Xp

coefficient

tool addendum : ha0
tool tip radius : a0
trochoidal fillet angle : A (see Fig. 1A.3)

Loaded and adjacent tooth involute profile co—ordinates

These co-ordinates for the corner and mid-side nodes of the F.E. mesh
are calculated using a micro-~computer program (INVBUCK) developed for
involute gear teeth with no undercutting. The radii (ry) at any two corner
nodes are input, and the following may be calculated for each value of ry
(rpf<ry<ry):
reference radius i r = 2Z.m,/(2.cos(f)) 1A.1

transverse pressure

angle Lo - tan‘l[tan(an)/cos(ﬁ)] 1A.2

base radius i rp = r.cos(oy) 1A.3
mn Z

addendum radius Pr o= [m + 2.x 42 1A.4

tooth thickness in

transverse plane at . - r +2 tanra 1]1A.5

reference radius " mn'[f.cos(ﬁ) “Xn* anf t]]
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b)

pressure angle at ry Doy = cos™1 [rb/ry] 1A.6

tooth thickness S,
half angle at ry : \Ly -7 +inv[at]-—inv[ayt] 1A.7
rectangular co-ordinates tx = ry.sin(wy); y = ry.cos(|/,y)

1A8

Thus the involute profile co—ordinates may be determined for the two corner
nodes on the involute. The F.E. package (PAFEC) requires the mid-side
node co-ordinates as well, otherwise, PAFEC assumes straight lines between
corner nodes, thus producing an inaccurate tooth profile. Therefore, the two
corner node co-ordinates obtained above are used to iterate successively for
the corresponding mid-side node co-ordinate as shown in the flowchart of
program INVBUCK in Fig. 1A.1, (see also Fig. 1A.2).

The co-ordinates of the involute profile for the two directly adjacent
teeth may next be calculated from simple geometric considerations, by making
use of the co-ordinates obtained thus far for the loaded tooth. The
co-ordinates need only be obtained at an arbitrary transverse section, (the
reference section). The co-ordinates for the other F.E. mesh sections are
automatically obtained by PAFEC, once the proper axial positions of the
different sections with respect to the reference section are input to the
PAFEC data files. The reference section was conveniently chosen at one end
of the gear face (see Fig. 2.7, z=0), with the line of centres of the gears
coinciding with the tooth centre-line, and representing the y-axis. Clearly
this axis—system makes the two adjacent teeth symmetrical with respect to the

y-axis at the reference section.

Loaded and Adjacent Tooth Trochoidal Fillet Co-ordinates

The trochoidal fillet co-ordinates were obtained wusing Vedmar's
equations.> Referring to Figs. 1A.2 and 1A.3, values for the angle X\
representing any two corner nodes on the trochoidal fillet are input, and the

following may be calculated for each value of A, where ¢ < N < 90°:

M = tan~1 [tan(}\) . cos(B)] 1A.9
2 rr l-sin(o )
- — ——-—n_ .
©1 v [Z' + hao . tanozn + r.o cos(an) 1A.10

2
2.cos (@) ’
¢ = Ztan(ry Pa0” Xn Tao(l1+sinin).tan®p)] 1A.11
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The rectangular fillet co-ordinates for the two corner nodes

corresponding to the two values of 'A' input may thus be obtained as:

hao- X - rao(l-sinxn)

Xe = % . Co;(ﬁ) - sin(p + ) - YTy -cos(p +p-N)
1A.12
Y = % . co;(ﬁ) - cos(p+ )+ haO ani:iO(l sm)\n).sin(gplﬁp—)\)
1A.13
2 2 %
re - [ Xp + Ye ] 1A.14

From the two sets of values of xg and ys thus obtained for the two
corner nodes, an iteration scheme similar to that used in Fig. 1A.1 above is
devised to solve for the trochoidal fillet mid-side node co-ordinates. Fig.
1A.4 shows the flowchart of the micro—computer program developed (FILVED)

for carrying out the above calculation.

Again, the trochoidal co-ordinates for the adjacent teeth are obtained
from simple geometric considerations, using the trochoidal co-ordinates of the

loaded tooth obtained from program FILVED.

The standards 2,3,4 have established that peak root stresses occur near
the 30" tangent line for a range of equivalent spur gears as shown in Fig.
1.4. For an actual helical gear, the peak stress will also be near the 30°
tangent line in the normal plane, which, if converted into the transverse
plane, will yield a slightly larger angle as demonstrated in Fig. 1A.5. For a
helical gear with 8 = 30°, this angle is 33.7" as shown below,

-1rtan(ang,)1 _ -1rtan30 - .
angt - tan [-—C()-T(ﬁ—)n-] tan m 33.69

Therefore, when constructing the finite element mesh for the gear tooth,
a node is required at the 33.69  tangent line. That way, the stress at that
location may be obtained directly from the F.E. results without the need to
interpolate. The micro—computer program FILTAN2 calculates the 33.69°
tangent line trochoidal fillet point by iteration, as the flowchart in Fig. 1A.6
clearly shows. The iteration progresses from an initial value assumed for A\,

by successively iterating until the angle (\-p—p;1) converges to 33.69°. The
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c)

value of )\ obtained thus is then used in program FILVED to calculate the

co—ordinates at the tangent line.

Loaded Tooth Centre-line Co-ordinates

The adjacent teeth can have a very coarse mesh compared to the
loaded tooth.  This is justified since the adjacent teeth deformations are
mainly due to gear body deformation. As they are not directly loaded,
adjacent teeth will have no contact deflections, and the F.E. surface
deflections may be used to define the tooth compliance instead of the
centre-line deflections (see section 2.5). As mentioned earlier in part (a) of
this Appendix, when using PAFEC the F.E. mesh needs to be developed only
for the reference slice at z = 0 (see Fig. 2.7). PAFEC automatically models
the rest of the gear once the proper axial positions of the remaining F.E.
mesh gear sections in the transverse plane are input. To simplify
interpolation of the F.E. results for tooth centre-line deflections directly under
the normal load (discussed in more detail later on in Appendix 2B), the F.E.

mesh was constructed in such a way as to allow the normal at the loaded

point to intercept the tooth's central surface at an element_boundary. This
was accomplished by calculating the co-ordinates of these interception points
for each radial loading position, and then projecting these points onto the
reference section at z = 0 (see Fig. 2.7) to give

X0 = 0; Y0 =Ter Zp =0 1A.15

where the subcript (0) refers to the reference section. These points for all
radial loading positions (5 in this work) are then taken as the F.E. mesh

tooth centre-line nodes at the reference section. Again, PAFEC automatically

calculates the corresponding points for the other sections.

At any axial loading position zg, with five radial loading positions, five

corner nodes were thus located on the tooth centre-line at the reference

section.
At any point 'p' along a contact line, a ‘hypothetical' load 'F' normal

to the tooth flank at point 'p' is assumed. Referring to Fig. 1A.7, the

components of 'F' in the global x, y and z directions are first obtained.

Y = tan(g)/, 1A.16
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Yzp = YXZp 1A.17
y = IrA-xp o tnly) (e Fig2a8) 1A.18
Gpy = cos™1 [db/dp] 1A.19
Opn = tan~1 [tan(apt) . cos(Bp)] 1A.20
¥p = ¥ * inv(e) - inv(op) 1A.21
Bp = tan"lung . d /4] 1A.22
F,* = -F. cos(apn) . cos(Bp) 1A.23
Fy" = -F . sin(ozpn) 1A.24
F," = -F . cos(apy) - sin(Bp) 1A.25
Fy, = Fy". cos(yzp-¢p) - Fy" . sin('yzp—',',p) 1A.26
Fy = Fy" . Sin(yzp-¢p) + Fy" . cos(yzp—¢p) 1A.27
F, = F," 1A.28

Equations 1A.23 to 1A.28 above apply to a right hand cartesian
co-ordinate system loaded as shown in Fig. 1A.7. Next, by considering the
points 'p' and ‘c¢', since both lie on the normal to the tooth flank, one at
the flank surface and the other at the tooth central surface, the co-ordinates
of point 'c' may be determined easily from the co—ordinates of point 'p'.
The co-ordinates of ‘'p' in turn are obtained from the given co-ordinates of
point 'f' (the actual loaded point). By referring to Figs. 1A.8 and 1A.9 and
considering Fig. 1A.8 first, the contact line is first projected onto a plane
perpenducular to a line passing through the contact line at the pitch radius

(plane A'B'C'D') where

tan 5, = Q. tan(Bb) . cos(y)/ @

tan(By) . cos(cy) 1A.29

tan(B) . cos(oy) . cos(oy)
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Similarly, projecting the contact line onto a plane perpendicular to a line

passing through the contact line at the loaded point ‘f' gives
6t = tan'l[tan(ﬁf) . cos(agy) . cos(og)] 1A.30

Next, by considering the same Fig. 1A.8, the contact line is projected

onto a plane perpendicular to plane A'B'C'D'(plane A'D'DA) to give
tan &5 = € . tan(Bp) . sin(oy)/2

tan(Bp) . sin(ay) 1A.31

I

tan(f) . cos(ey) . sin(cy)

Applying this result to the loaded point 'f' along the contact line as before,

we have

by = tan‘l[tan(Bf) . cos(agy) . sin(ogy)] 1A.32
where

Br = tan~l[tan(B) . 9f/4] 1A.33
and

of = cos~1[db/d(] 1A.34

We now proceed to calculate the co—ordinates of the point 'p’. Referring to

Fig. 1A.9 we have

¥ = ¢ + inv((eq) = inv(egy) 1A.35
Yzf = Y X Zf 1A.36
X" = xp . cos(Yf—yzf) = ¥f - Sin(¥r=yzf) 1A.37
ye" = Xp . sin(¥g=vyg) + ¥f - €OS(Yf~yzf) 1A.38
" =z 1A.39
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xp" = X" = (zp727) . tan($y)

Yp" = ¥" ~ (zp-7p) . tan(§)

"= zp (input parameter)

Xp = xp". cos(¢p-72p) + yp" . sin(¢p—yzp)

“Xp". sin(¢p—'yzp) + ¥Yp". cos(¥p=vzp)

Now, sufficient information is available in order to

co-ordinates of point 'c' with

X = xp + k.Fy
Ye = Yp k.Fy
. = g + k.F,

where the factor k may be obtained by an iterative procedure.

Fig. 1A.10a we have
tan(ang) = X*c/y,

Xp + k.Fy

tan(ang) - m
Referring to Fig. 1A.10b we have

tan(ang) = z, . ¥y

tan(ang) = (zp + k.F,).y

1A.40

1A.41

1A.42

1A.43

1A.44

calculate the

1A.45

1A.46

1A.47

Referring to

1A.48

1A.49

1A.50

1A.51

An iterative procedure included in the micro-computer program HGDEFN4,

iterating for k through a convergence process of equations 1A.49 and 1A.51,

by starting with an initial estimate of k, which in this case is reasonably taken

as the value for a spur gear (where x, = 0). Therefore, from equation

1A.45, the initial estimate of k was taken as
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k - |xp/rx| 1A.52

d) Remaining Internal Co-ordinates of the F.E. Mesh

These were readily calculated from simple geometric considerations, and

depend on the choice of the F.E. mesh element type and size.
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(____ START D

[

| Input of constants mn, xn, ha0, ra0, an, 3 ]
[ INPUT 2 : Calcplate Zmin ]
2 ¢ Imin Y
|  Calculate r, ra, at, rb, st, rif _ AAJ

[Input two consecutive corner acde radii rl, zZJ

ri{r2 or rl>ra

or r2<rif
Z_-_—__________________,

N

[ Calculate aytl, éyl, x1, vl at rl 441

| Calculate ayt2, ¢y2, x2, v2 at r2 ]

[Start lterating for mld-éiae node: h=rl-rl, a=U, o=0, dx=] (initially)

—

b= - n/2" ] [6= 6+ n/2n)
i;, rm = r2 + § }‘* ‘l
calculate aytm, 9oym, xm, y® at rm 47]
(4 = ((yl-ym)® + (xm-x1)?)! ;12 = [(ym-y2)2 +(x2-xm)2)} ]

[ AL =1 - zf‘]

~1,0E-4<AL<1,.0E-

or
h/2® < 1.0E-5

|___PRINT COORDINATES |

C END D,

Fig.lA.1 Involute Corner and Mid-side Node Coordinates
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Fig. 1A.2 Involute & Trocholdal Mid_Side Node Coordinates
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Fig. 1A.3 Gear Tooth Generated by a Rack Tool
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( START )
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| Input of constants mn, xn, ha) ra0, an, &
L INPUT Z:  calculate Zmin 1
Z < Zain Y
2
N
[ Calculate r, at, rb J

I[nput two copsecutive corner node angles Al.xZ]

Xl290-; or X < =t

R

N
(Calculate Jm, oL, 9, xfl, yfl, cfl__at Al |
[Calculate dn, o1, 9, xf2, yf2, rf2 at 12 |
[ Start iterating for mid:-side node: h=Al-AZ, n=0U,3 =U, 4&r =1 (initially) ]
=
[_e=n+1l |
N /Mw\ Y
\?‘/’7
T Y
l [ ]
1 _Am= 22+ |
[Calculate an, 01, ¢, xfam, yf
’ » yfm, rfm  atim |
(a=((ioyem)Z « cfmad) 7] 12 =((yfm-y2)% + (x2-xfm)?]} 1

[ ot =t1.1p ]

-1.0 E-4< 82 <] .0E-4
or
h/2% < 1.0 E-5

|

PRINT COORDINATES

I

Fig.1A.4 Trochoidal Fillet Corner and Mid-side Node Coordinates

__®mp
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Fig.1A.5 Point of Tangency at Tooth Root Peak Bending Stress
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( START )
T

L, Input of c¢onstants: mn, xg, haQ, raQ, 3n0, 3 ]
L, Input Z : Calculate Zmin Aﬁ]
A
Z < Zmin Y
"
N
{ Calculate r, at, Iy l

[Initialize: \t= (3¢ + 7/2)/2: inc=2/20: iterating = false AJ

Calculate: an, »is 9, Xf, yf, It.
angle = lx - ¢ - oll
diff = 33,69 - angle

erating = false

inc= -inc

Lﬁiterating = true

diff x inc < 0?

and
iterating = true?

inc = -inc/J—]

|

C END _ )

Fig. 1A.6 Trochoidal Fillet Corner Node Coordinates
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a) Transverse Section Through Point ‘c*

) Y

s

b) Displacement of Point “0° From the Origin

Fig. 1A.10 Determination of the Factor °k’
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APPENDIX 2A

PROGRAM HELICALDIST FOR THE ELASTIC ANALYSIS OF HELICAL GEARS

Programme HELICALDIST determines the load distribution, the contact
stress, the transmission error, and the load distribution factor in any pair of
meshing helical gears.  The elastic equations used are set out in Chapter 2.

Fig. 2A.1 reveals the menu heirarcy, and Fig.2A.2 briefly explains the main
commands. The maximum possible number of teeth that may be simultaneously
engaged at a given phase of mesh is calculated in PROCEDURE GEOMETRY as
MaxTeeth (Npay). This is defined as the next integer greater than the sum of

€8 and e, shown in Figure 2.1. Thus
MaxTeeth = ROUND [TRUNC(eB + €q0) * 1] 2A1

The reference tooth number is taken as MaxTeeth, and is the tooth that
specifies the phase of mesh. Up to (MaxTeeth-1) teeth on either side of the
reference tooth may be in mesh at any one instant or phase of mesh. In other
words (2 MaxTeeth—1) teeth must be checked for engagement at any one instant.
This process is carried out in PROCEDURES PHASE and CLEARANCE with the
respective flowcharts shown in Figures 2A.4 and 2A.5.

The theoretically defined phase of mesh is within points A and B in Fig.2.1.
However tooth engagement is also checked outside these limits within points Ao
and Bo in order to account for the elastic deflections of mating gear teeth as well
as the various tooth pitch, lead and profile errors, tip/root/end relief, corrections,
etc. (see Chapter 4), which may cause contact outside the theoretically defined
limits applicable to a perfect gear. The new limits Ao and Bo were chosen by
setting AoA and BoB equal to 0.35 times the transverse base pitch pp, (see section
2.3). This value seems more than adequate when considering typical tooth profile
errors and corrections, and other gear imperfections which may expand the
theoretical range of mesh.

Gear error data files are created, manipulated, and assigned to each of the
*2MaxTeeth-1' teeth using PROCEDURES MAKE and SELECT. These files are
permanently stored on disk and may be listed or destroyed using PROCEDURES
LIST and KILL respectively.

The PROCEDURE ETOOTH uses the error data files to calculate the
resulting tooth errors at each of the "Gauss" and "end" points of contact.  Error

data files include pitch errors, lead errors, profile errors, tooth twist, face crowning
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(barrelling), profile crowning and tip/root/end relief. @ The problem of wear craters
can also be tackled by treating them as a profile error.

The PROCEDURE CALCMAT generates the tooth bending compliance matrix
(excluding load dependent contact compliance). The bending compliance values
are calculated in PROCEDURE BENDIC for the loaded tooth using the equations
at Section 2.6.2. The two directly adjacent teeth bending compliance values are
calculated in PROCEDURE ABENDIC using the equations of Section 2.6.3. Fig.
2A.6 accurately describes the process of generating the complete bending
compliance matrix "totk™ (see Figure 2.65b also).

The PROCEDURE LOADDIST adds to the bending compliance matrix
generated in PROCEDURE CALCMAT the estimated tooth contact compliance, thus
forming an estimated complete matrix "totk." including contact effects. The
estimated matrix thus formed 1is then directly solved using PROCEDURE
MATSOLVE, (which solves the matrix equation [totk.]x[Gloads]=[totdefn] for the
vector [Gloads], see Fig.2A.3), for the Gauss point loads along the contact lines of
the engaged teeth, based on the estimated compliance matrix. The process
described is repeated iteratively until the estimated Gauss point loads and the
calculated ones converge. Each time, a new compliance matrix is formed.

Considering the end loads, initial estimates are first made, from which new
values are recalculated using equation 1.70. Again an iterative solution is used
until convergence of the estimated and recalculated end loads occurs.

The contact deflections are calculated using PROCEDURE CONDEFN which
makes use of equations 1.2, 1.31 and 1.34a. PROCEDURE CONSIGMA
calculates the contact or Hertzian stress as calculated in equation 1.1, where w is
the Gauss point (or end point) contact load.

The flowchart of Figure 2A.7 describes in detail the process of obtaining the
load distribution along the contact lines of engaged teeth, the contact deflection
and the contact stress, The analysis for both the Gauss points and the end
points is included in the figure.  The tooth error at each Gauss (or end) point is

also calculated, and the transmission error "f;" at any instant of mesh is

determined.
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To conclude Appendix 2A, the determination of the contact diameters and

clearances outside the theoretically defined phase of mesh (ABB'A' in Figure 2.1)

will be discussed for the start of contact (PROC. STARTCLR).
applies for the end of contact (PROC. ENDCLR).

2A.9, 2A.10 and 2.1:

[» + 4.xnptan(an)]/[2.Zp]
‘l‘p + inv(ey) - inv(aypt)

tan-1[(p,.ppe - TE)/rppl

Oypt - Vyp

Qut = Pyp

wAg - (¢yp‘¢sp)-zP/28

wyg + )\Ag

(dag/2).sin(0yg)

(dag/2).cos(0yg)

Ay

Yg

2.(x2 + yp2]é

tan~1[x/y;)

’

cos‘l[dbp/(dyp)est]

(oyp)est + 0o -

A similar analysis

Referring to Figures 2A.8,

2A.2

2A.3

2A.4

2A.5

2A.6

2A.7

2A.8

2A.9

2A.10

2A.11

2A.12

2A.13

2A.14

2A.15

*The flowchart of Fig. 2A.11 describes how an iterative solution is carried out

to calculate the actual pinion contact diameter (dypc). Clearly the start of contact

gear diameter is equal to the gear tip diameter.

On the other hand, Procedure

ENDCLR calculates the gear contact diameter (dygc) iteratively, where the end of

contact pinion diameter is equal to the pinion tip diameter.

Next the start/end



clearance is calculated. For STARTCLR the clearance along the load-line direction

is:

- 2 42 q172 2 4212
Crom H10dy Do -dpy 1/2 - [d ) -dp 11/2% cos(By) 2A.16

and for ENDCLR:

- 2 23172 _ g2 _4% 2
S Q[dyg) est dbg] / [dygc-dbg] /2% cos(B,) 2A.17

where (dyp)est and (dyg)est are the initial estimates for pinion and gear

(Eqn.2A.12) respectively, and d,,. and dygc are the actual contact diameters

yP

determined interatively as shown for d,,. at the start of mesh in Figure 2A.11.

yp

*kkk k¥
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DISTRIBUTION PROGRAMME

HELICAL GEAR LOAD

¢9¢

"HELICALDIST"
MAIN MENU
.
G(EAR P (HASE I (NCREMENT S (HAFT E(RROR A(NALYSE O(UTPUT F(ILE Q(UIT
M(AKE L(IST K(ILL P(RINT S(ELECT Q(ULT
P(INION W(HEEL Q(UIT

Fig.2A.1

Menu Helrarchy for Program HELICALDIST




G(EAR
P(HASE

I(NCREMENT:

S(HAFT

E(RROR

S(ELECT

Prompts for gear geometry independent of phase of mesh.
Prompts for the phase of mesh and uses PROCEDURE
CLEARANCE to determine which of the (2MaxTeeth-1)
teeth are potentially engaged. It also determines the
number of teeth engaged "numzcon", the matrix order
*mat-ord"”, the number of the first and last engaged teeth
"firs-tooth™ and last-tooth™, the total number 6f Gauss and
end points "numptsT" and "numptTE" respectively.

If more than a single reference tooth phase is to be
analysed, I(NCREMENT is used instead of P(HASE and
allows for any number of reference tooth phases to be input
at one time, Then for each phase input, PROCEDURES
PHASE and ANALYSE are automatically called to analyse
the gear without the need to prompt for either P(HASE or
A(NALYSE in the main menu. In other words, only
P(HASE or I(NCREMENT may be used at one time
depending on the number of phases to be analysed.
I(NCREMENT allows for the analysis to be "clicked"
through any number of desired phases.

Prompts for the shaft total deflections due to bending,
torsion and shear, at the Gauss integration points. The
deflections input must be in the components normal to the
tooth flank.

Prompts for the error data files menu for handling gear

tooth errors and corrections or modifications.

M(AKE : creates a new error data file
L(IST : lists an existing error data file on the
screen
K(ILL : destroys an existing error data file
“P(RINT : outputs a hard copy listing of an existing

error data file,
Assigns any of the existing error data files to any of the
engaged teeth already determined in PROCEDURE PHASE.
P(INION : prompts for pinion tooth numbers 1 to
2MaxTeeth-1 and assigns to each tooth
the desired error data file prepared in
M(ake,

(Fig.2A.2.....)
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Q(UIT

A(NALYSE :

O(UTPUT

F(ILE
Q(UIT

W(HEEL : prompts for wheel tooth numbers 1 to
(2MaxTeeth-1) and assigns to each
engaged tooth the desired error data file
prepared in M(ake.

Q(UIT : returns to the E(RROR menu.

Returns to the main menu.

Each phase of mesh entered is analysed and the load

distribution, contact deflection, contact stress and total error

at each Gauss and end point is calculated. The
transmission error for each phase of mesh is also
determined.

The results are output to the console, and then to the

printer if so desired.

The results are stored to a filename on hard disk.

Exits the program.

Fig.2A.2 Brief Description of the Main Menu Commands of Programme

HELICALDIST
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& DiANG )

|

INITIALIZE BOOLEAN : DONE = FALSE
(PROG. DO7)

|

VARIABLES AUTOMATICALLY INITIALIZED

TRUE ///Dol\}:\_,
?
FALSE

INPUT BASIC GEAR DATA (PROC. GEAR)

|

CALCULATE BASIC GEAR GEOMETRY AND THE MAXIMUM POSSIBLE NO.
OF TEETH SIMULTANEOUSLY IN MESH, MaxTeeth.
(PROC. GEOMETRY)

INPUT THE NO. OF PHASES TO BE ANALYSED, numphiz
(PROC. KEYINVEC)

|

for {: = | to numphiz DO

1. Prompt for phizO0{{)

2. calculate the corresponding clearance €,» contact diameters
dyp and dyg, equivalent radius of curvature KD, et.... (PROC.
PHASE, CLEARANCE, STARTCLR, ENDCLR).

3. Calculate the total No. of Gauss integration points, the total
no. of end points, matrix order, first tooth no., last tooth
no., no. of engaged teeth, and mean specific load

(PROC. PHASE)

1

4. Enter shaft total deflections-along'load-line direction at all

Gauss points, )
d (PROC. SHAFT)

I

5. For each of the engaged teeth create an error data file to
include pitch, profile and lead errors, barrelling and crown-
ing, as well as tip, root and end relief. (PROC. ERROR, MAKE).

6. Assign the proper error data file to the corresponding engaged
tooth. (PROC. SELECT).

NOTE: ERRORS MUST BE INPUTTED ALONG LOAD-LINE DIRECTION

i (continued......
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Y Y

|

Using the curve fitting coefficients of the FE, bending
deflection results for the five radial loading positions
used in the FE analysis, and knowiny that all the Gauss
points on all the contact lines fall somewhere on or within
these radial positions, the curve fitting coefficients for
the Gauss points are interpolated for (PROC. CUBICSPLINE,
TRIDIAG AND FUNC.NATSPLINE).

Solve for the bending influence function "totk" at each GausH
point (FUNC,BENDIC for the loaded tooth, and FUNC.ABENDIC
for the adjacent teeth).

(PROC. CALCMAT)

10.
11.

12.

13.

14.

15.

Initial estimates of the loads at each of the Gauss points
are made.
The corresponding contact deformatioas at the Gauss points
are then calculated.
The contact deformations are then added to the diagonal
terms of "totk" to form the matrix "totkc".
Next the vector totdefn{[i] at each Gauss point "{" is formed
by adding together the total shaft deflectionm, the calculated
tooth error (PROC,ETOOTH), and the calculated clearance Cq
at every Gauss point (all components along load-line
direction)

[totke] x [Gloads] = [totdefn] .
Next the "Gloads" are solved for directly using (PROCEDURE
MATSOLVE).
The "Gloads" obtained in step 13 are used as the new
estimates in step 9 and the process is repeated over and
over until the Gloads in step 14 and the estimates used in
step 9 converge, thus solving for the Gauss points loads.
Using the "Gloads", calculate the corresponding contact
deflections at the Gauss points (PROC. CONDEFN).

(PROC. LOADDIST)

(continued....css)
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16.

17.

18.
19.

20.

21.

22.

The following steps account for the end loads:

Extrapolate for end points' tooth bending deflections,

and shafc total deflections by using the already calculated

values at the Gauss points along the contact lines (1f the

Gauss points are >2 on a contact line use PROC.CUBICSPLINE

TRIDIAG, and FUNC.NATSPLINE; if the Gauss points on a

contact line are =2 use FUNC.LININTP).

Calculate the end points contact diameters dyep and dyeg,

:iz?rance e equivalent radius of curvature KDE(peff).
(PROC. LOADDIST, STARTCLR, ENDCLR)

Calculate errors at contact line ends (PROC. ETOOTH)

An initial estimate of the end Gauss point loads is made

by setting them equal to the Gauss point loads nearest

the corresponding ends, and available from step 14 above.

From the initial estimates of the end loads '"loadsE",

end contact compliances "HcompE" (Ktc) are calculated

(PROC. CONDEFN).

Using equation 1.70:

loadsE = (ft + 6eE -« cnE - 8sE - thE)/Ktc

The end loads are recalculated using the contact
deflection estimates from step 20.

The new estimates of loadsE obtained in step 21 are now
used to calculate new estimates of "HcompE" in step 20,
and the process is repeated over and over until the
estimated and the calculated "loadsE" converge. The
contact stresses are next calculated (PROC.CONSIGMA).

(PROC. LOADDIST)

=)

Fig.2A.3 Generalized Flowchart for Programme HELICALDIST.
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( START )
|

Initialize the variables:

Total length of contact lines: LconT=0

No. of teeth simultaneously engaged: numzcon=0
Total no. of Gauss points: numptsT=0

Total No. of end points: numptTE=0

Matrix order: mat-ord=0

No. of the first engaged tooth: first-tooth=0
. No. of the last engaged tooth: last-tooth=0

NOWVEWN —
. P

IPrompt for the phase of mesh of the reference tooth
phiz0[MaxTeeth]; reference tooth No.is MaxTeeth

[

Using the phase of the reference tooth calculate the
phases of the other teeth that may be engaged:

For 1i:= 1 to 2 .MaxTeeth-1 DO
Phiz0[i]= phiz0[MaxTeeth]+(MaxTeeth-1)
The phase is in base pitches (py,)

l

Determine which of the teeth (i=1 to 2.MaxTeeth-1)
are engaged, and if so find the clearance ct, and the
contact diameters dyp and dyg

(PROC. CLEARANCE)

[
Calculate the following:
1. LconT - Total contact length
2. numzcon - No. of engaged teeth
3. numptsT - Total No. of Gauss points
4. numptTE - Total No. of end points
5. mat-ord - Matrix Order
6. first-tooth - No. of first engaged tooth
7. last-tooth - No. of last engaged tooth
8. wbm and wmby - F/LconT and F/b respectively

= ]

Fig. 2A.4 Flowchart for Procedure Phase in Programme
HELICALDIST
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\
( START J

(see Figure 2.1)
phiz0[i]g0 or phizO[j];£ao + €4

For phizo[i] €g and phizo[j] > ¢g calculate:

1. contact line length, Lcon
2. No. of Gauss points on contact line "i", numpts
3. Start and end of contact line, zfi and zlast

rst
r

Calculate the coordinates of all Gauss points
"Gords[j]" on contact line "i" across the gear face-

i width.
!
i
i
For j : =1 to numpts DO
\ ) ohiz{j) < 'I‘A/Pbt\ L
* 1.PRC.STARTCLR
(calculates dypl[j)
— phiz[j] > EB/Pbt and ct[4])
. 2.dyglj)= dag
N
|
) \
l.dypl[j] = dap Calculate:
2. PROC.ENDCLR !-dyp[jlﬁdzgsj}ﬁm
imple geom
(Calcu}ates dyglJ -OYP[J?.OY8£J (frm
and C ‘j]) \ eqo . 5)
o -Cn = O
T Haep I T TITom «q.22)
o : -
Calculate equivalent radius of
curvature, KD (from eq.1.2)

= )

Fig. 2A.5 Flowchart for Procedure CLEARANCE in Programme HELICALDIST
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L sr,\{u /

r
i Initialize the bending influence function matrix
by nullifying it
(PROC. NULLMAT )

External to "HELICALDIST" a data file for the curve L1t coef-
ficients of tooth bending compliance is created for any number of
teeth for the loaded tooth where the file names for 8=0° and B=30

e COETDAT8 and COEFDAT7 respectively

[ sum = (

[

For k:= first-tooth TO last-tooth DO

d
1

sum:= sum + numpts{k]

[

For k,:* sum-numpts(k}+l TO sum DO
(No. of points on contact line of tooth k)

T

1
For i:= 1 TO numepg DO
(No. of coefficients of loaded tooth) '

.

| —
For j:= 1| TO numcoeff DO

(No. of radial loading positions)

1

—

Obtain the coefficients of pinion and gear pending compliance fo
any "B8" by linearly interpolating between files COEFDAT8 and
COEFDAT7. The coefficients f[j) for all radial loading position

are determined.
l

|

From f[j]S thus obtained interpolate for the Gauss point
coefficients on the contact line of each tooth k giving

"Clk, k, i]"
(PROC. NATSPLINE)

|

t+

For k,:= sum=-numpts[k]+l TO sum DO:
Calcu%ate the bending influence function matrix "totk[kl,kzl"

by using "C[k,kl,i]"
(PROC. BENDIC for loaded tooth)

(continued......)
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|

External to "HELICALDIST" a data file for the curve fit
coefficients of tooth bending compliance Is created for any
number of teeth for the two adjacent teeth where the file names
for 3=0° and :=30° are LCOEFDA8, RCOEFDA8 and LCOEFDA7 and

RCOEFDA7 respectively.

, sum:=0

l

For k:= first-tooth TO last-tooth DO

I

first-tooth <l:~:~;;;::;;;?ﬁ“~» N

Initialise compliance matrix for next to adjacent teeth.
mintotkL:=100; mintotkR:=100;
Initialise sum: sum:= sum + numpts[k]

1
For kl:s (sum-numpts[k]+1) TO sum DO
(No. of poiats on contact line of tooth k)

1
1

For i:= 1 TO Anumcoeff DO
(No. of coefficients of succeeding 2djacent tooth)

!
I

For j:= 1 TO numeps DO
(No. of radial loading positions)

btain the coefficients of piniod and gear bending complIance for)
any "8" by linearly interpolating between files LCOEFDA8 and
LCOEFDA7. The coefficients f[j] for all radial loading positions
of the adjacent tooth are determined.

l
b 4

From f[j] thus obtained interpolate for the Gauss point
A coefficients on the contact line of each adjacent succeeding
tooth k giving "Lc[k.kl,;]" and "Rc(k'kl'iln for pinion and gear

respectively.

(PROC. NATSPLINE)

|

I
For k.:=(sum+l) TO (sum + numpts [(k+l]) DO:
Calcufate the bending influence function matrix of the succeeding
adjacent tooth "totk[kl,kzl" by using "Lc[k,kl.i]" and “Rc(k,kldl .

(PROC. abendIC)

} §
1f totk[k,,k,) < mintotklL then mintotkL:= tof&[k‘ikij; this
resets the vilue of "mintotkL™ to the minimum valueof totk[kl.ké
for the particular kl and all kz values in the respective loops.

1 C
Next the compliance of the next to succeeding LoOth 15 Setr tO
a constant value across the tooth equal to, "mintotkL"

; (continued.....)
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0

{
\
i
For i:= 1 TO Anumcoeff DO :
(No. of coefficients of preceding adjacent tooth |
T |
: |
For j:= 1 TO numeps DO i
(No. of radial loading positions) '
.} i
Obtain the coefficients of pinion and gear bending compliance fog !
any "8" by linearly interpolating between files RCOEFDA8 and
RCOEFDA7. The coefficients £{j] for all radial loading position )
L of the_adjacent tooth are determined, 1
§ |
From f{j]~ thus obtained interpolate for the Gauss point
coefficients on the contact line of each adjacent preceding
tooth k giving "Rc[k,kl,i]", and "Lc[k.kl.i]" for pinion and
gear respectively, (PROC. NATSPLINE)
For k,:= (sum-numpts{kj-numpts(k-1H41)T0 (sum-numpts{k]) DO
Calcu%ate the bending influence function matrix of the pre-
ceding adjacent tooth "totk[kl,kzl" by using "Rc[k,kl.i]'bnd
" "
Lelk,ky, 1] (PROC. abendIC)
If totk[k‘,k }J<mintotkR then minth:-totk[kl,k ], this resets thq
value of miatoth" to the minimum value of togk[k k,] for the
—pasticular k _and all x, values in the respective ltoaps-
[gext the compliance O TN MEXT U preceding tooth rs—set—+
onstant value across the tooth equal to mintotkR I
N z k:= first-tooth
\!/
Y
Sum:= sumtnumptsik]
For k,:= (sum-numpts[k]+1l) TO sum DO ]
— 1
1
For i: =1 TO Anumcoef( DO
L
For j:= 1 TO numeps DO
!
Obtain the coefficients of pinion and gear bending compliance for
any "B8" by linearly 12terpolating between files LCOEFDAS and
LCOEFDA?. Again £[3]° are determined.
4
;o
Interpolate as before for Lc[k,kl.il and Rc[k.kl.il
(PROC. NATSPLINE)
t
" he succeeding tooth from Lc z=¢é Re
As before get "totk[k,,k,]" for t X
As before find mintot{L gy setting it to minimum value ofvziz:lkl- 2)
Compliance of next to succeeding tooth set to a constant
equal to "mintotkL". [continued

p ¢
) 4
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' k:= last-tooth ;]
[

sum:* sumtnumpts{k] ,

|

[ For k,:= (sum-numpts{k]+l) TO sum DO l
|

i

l For i:= 1 TO Anumcoeff DO
L

.

r
| For j:= 1 TO numeps DO
) SN

t
Obtain the ccefficients of pinion and gear bending compliance for
any "3" by linearly interpolating between files RCOEFDA8 and
RCOEFDA7. Again f[j]S are determined.

1

A

Interpolate as before for Rc[k,kl,i] and Lc[k,kl.i].

(PROC. NATSPLINE)
|

d

As before get "totk[kj,kp]" for the preceding tooth from Rc and Lep
As before find mintotkR by setting it to minimum value of
tock[kl,k ]. Compliance of next to preceding tooth set to a
constant value equal to "mintotkR".

For i:= 1 TO (mat-ord-l1) DO

l. totk[mat-ord,i}:=1 (last row of compliance T2trix)

2. totk[i,mat-ord]:=-2/(:nt erval/cosﬁ“(last columr: of complianc
matrix).

= )

Fig.2A.6 Flowchart for Procedure CALCMAT in Programme HELICALDIST
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( START )

L STARTING ANALYSIS AT GAUSS POINTS ::]
For k:=first-tooth TO last-tooth DO
|
1
For j:=1 TO numpts{k] DO
,4

Initializing Gauss point loads Gloads!j]
If ¢n[{n]>0 then Gloads[n] := 0.01x!.0lx wbm
2. If cn[n]=0 then Gloads[n] := wbm

where from Proc. Phase:

wbo0 = Torque/(rbp x cosBb x b)

wbm = Torque/(rbp x cos(8b) x LconT)

—
.

—a

loadsok :=false (BOOLEAN INITIALIZED)

1
|

Initialize tooth compliance matrix to include
only bending as determined in Proc. Calcmat.
For i=] to mat-ord DO; for j=1 to mat-ord DO

totke[1,j):= totk{1i,j]
{

For k: = first-tooth to last -tooth DO

i

—

For j: = ! to numpts(k] DO
1

A

Start out iteration using initialized values
EstGloads[n):= Gloads(n]

Calculate contact DEFN per unit load Hcomp[]]:

1) If EstGloads[n]<0.0l x wbm, contact compliance is
very large (close to no load condition). To ensure
a smooth convergence of estimated loads (Estloads)
and calculated loads (Gloads) to be determined
later, use a dummy value Hcomp[n] equal to the old
value multiplied by say a factor 5.
Hecomp[n]:= 5 x Hcomp[n]

2) If EstGloads[n] > = 0.0] x wbm then use Proc.
CONDEFN to determine Hcomp[n]

-

C

(continued.....)
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Add the contact effect to the old value of the
compliance matrix.
totke[n,n]:= totkc[n,n] + Hcomp[n} x 24&/%05/%)

I

Calculate shaft deflection due to bending, torsion
and shear at the proper Gauss point locations,
along load-line dir.

totdefn(n) = function (Gs

b’sst’éss)

I

Calculate tooth error at the proper Gauss point
locations, along load line dir. if applicable.

(PROC.ETOOTH)

I

Recalculate vector totdefn{n] as:
totdefn(n):=(totdefn[n] + delerr{n] - 2nf{n)) x2/(A/cos®
(cnin] calculated earlier in Proc. clearance) :

J
A

totdefn{mat-ord):= Torque/(rbp x cosgb)

l

Using the form:
totkc[n,n] x Gloads[n) = totdefn[n]

Directly solve for Gloads([n]

(PROC.MATSOLVE)

[

j:= 0
_

1

ji= 3+l

l

IFIEstGloads[j] - Gloads[j]| < 0.01 x wbm AND
\ IF Gloads[j) >-wbm x 0.01 THEN
loadsok:= true ELSE loadsok:= false

loadsok:=false OR j:=mat-ord-1

N

loadsok:=true
’

(continued.....)
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Calculate transaission error ft:=Gloads[mat-ord]

[

For i:= | to mat-ord-l DO
If Gloads[i] < 0.0! x wbm THEN Gloads[i] = 0

I

For k:= first-tooth TO last-tooth DO

|

1

For j:= 1 TO aumpts{k] DO

|

1

l. Calculate the contact DEFN. deltc([n]:
PROC. CONDEFN
2. Calculate the bending DEFN deltb[n]:
deltb{n]:=0
For i:=1 T0 mat-ord-l! DO
deltb[n]):=deltb[n]+totk([n,i]x Gloads[1i];
deltb[n}:=deltb{n] x &/2
3. Calculate the contact stress sigmaH[n]:
PROC. CONSIGMA

Starting Analysis of End Points

l

For k:= first-tooth TO last-tooth DO

]

1

l. Recall the shaft DEFNS calculated earlier, at
the proper Gauss point locations.

2. Recall the tooth centre-line bending DEFNS.
deltb calculated earlier, at the proper Gauss
point location§.

For 1 : = 1 To 2 DO
(Each contact line has two ends !§2)

Extrapolate for end point shaft DEFNS.
delshE[m] and tooth centr line bending
DEFNS, deltbE[m] using the Gauss point
DEFNS, recalled earlier

1. If numpts{k] = 2 (PROC. LININTP)
2. If numpts[k] > 2 (PROC. NATSPLINE)

l (continued.....s)
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phizO[k]+%%%<TA/pbt

1. dyEg{m) :=dag
2. Using PROC.STARICLR find dyep[m],cnE[m]

. TAD
phlZO[k]+;B?> TA/pbt

AND
phizO[k]+%%%<-TB/pbt

End point within theoretical zone of mesh (cnE[m]=0)
dyEp{m}:={(phizo{k].pbt+TAO-TE)%+ (rbp) ]}

wyEp[m] :=sawt-arctan[(phizO(k].pbt+TAO-TE)/rbp]
dyEg(m]:=2.[aw?+(dyEp[m]}/2)?~aw.dyEp[z].cos(wyEp[m])]

phiz0+TAO/pbt<TBO/pbt
?

1. dyEp{m]}:=dap 2. Using PROC.ENDCLR find dyEg{m],cnE(m]

phiz0 + Ta0/pbt > = TbO/pbt
dyEp[m]:=dap: Using-PROC.ENDCLR find dyEg(m],coE[m].
1
Calculate rel. rad. of curvature and error

at the aendg of contact

Initialise end load and contact defn. per unit load at
start of contact with the Gauss point values nearest
that end.

1. loadsE[m]: = Goads[1+Tpts[k]]

2. HcompE{m):= Hcomp[1+Tpts[k]]

{:=2 :Initialise end load and contact defn. per unit
load at end of contact with the Gauss point values
nearest that end.

1. loadsE{m):= Gloads [numpts[k]+Tpts[k]]

2. HBcompE:= Hcomp[numpts[k]+Tpts[k]]

(continued.....)
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cnE{xa]:=0 (initialized)

Calculate contact diameters and clearance:
1. dyEg[a] = dag
2. Using PROC.STARTCLR(TAO/p, ) FIND dyEP{m}, cnE[m]

Calculate contact diameters and clearance:

1. dyEg{m] = dag
2. Using PROC.STARTCLR(phizO[k]) find dyEp[m],cnE[m]

phizo[k]>-m/pbt

phizo[k]<-TB/pbt

End point within theoretical zone o% mesh (cnE[m]=0)
dyEp[m):=2{(dz0{k].obt-TE)?+(rbl)?)
wyEp[m]:=awz-arctan, (phizO(k].pbt~TE)/rbl] )
dyEg[m]:=Z[aw2+(dyEp[m]/2)3éaw.dyEp[m].cos(wap[m])]

phizo[k])TB/pbt

1. dyEp[m):=dap
2. Using PROC.ENDCLR(phizO[k])fid dyEg{m],cnE[m]

(continued......)
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d e ]

; Start iterative solution using the initialised
' values of the end loads:
SET EstloadE:= loadsE[m]

Y
i

As was done for Gauss points earlier:
l. IF Estloadt <0.0lxwbm THEN HcowpE:= SxHcompE
2. IF EstloadE >=0.0lxwbm ° THEN use

PROC.CONDEFN to find HcompE

|

Using HcompE calculated in the previous step

recalculate loadsE{m] using EQUATION (.70

loadsE[m]: = (ft+delerrE{m]-cnE{m]-deishE[m]
~deftb{m])/HcompE

EstloadE-loadsEf{m}<0.0lxwbm N

loadsE{m} >-0.0ixwbm

If loadsE[{m] < 0.0l x wbm THEN set to ZERO

Calculate end contact defn. dettcE{m]
(PROC.CONDEFN)

l

Calculate end contact stress sigmaHE{m]
(PROC.CONSIGMA)

Compare all Gauss loads and end loads
calculated and set the maximum value
to max-wb (peak instantaneous load)

1

Compare all Gauss point and end contact
stresses and set the maximum value to
max-sigmB (peak instantaneous contact stress)

|
C = )

(continued......)
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KEY: Tpts[k]

TptsE[k]

Figure 2A.7

total number of Gauss points on all contact lines
between first-tooth and kth tooth not including the
kth tooth points:

Tpts[k] = numptsT - numpts[k]

total number of end points on all contact lines
between first-tooth and k' tooth not including the
kth tooth points

TptsE[k] = numptsTE - 2

j + Tpts[k]

i + TptsE[K]

interval of Gauss integration chosen arbitrarily
depending on accuracy of integration needed, and on

computer limitations, and is the face width divided by

the number of intervals chosen

Flowchart for Procedure LOADDIST
in Programme HELICALDIST
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Flg. 2A.8 Helical gear: tooth thicknesses, spacewidths
and their half angles
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Fig. 2A.9 Contact at the Start of the Theoretically Defined
Phase of Mesh
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»<

Fig. 2A.10 Contact Geometry Just Outside the Start of the
Theoretically Defined Phase of Mesh
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o)
|

Calculate equations 2A,2 to 2A.l15

[

Initialise pinion contact diameter

dpr: = (dyp)est (see eqn. 2A.12)

(dypc)est: - dypc

. .
ayp, :=cos [dbp/(dypc)est]’ (see Fig.2A.10)

X :-Aap+inv(at)-1nv(aypt); (see Fig.2A.10)

l

Recalculate d now:
ypc

dypc:-dbp/cos(6n+kyp)

THE CLEARANCE ALONG THY LOAD LINE DIRECTION IS:

§ .
![dyp)zest-dgp] -![d;Pc-dgp] x cosBy

=

Figure 2A.11 Flow Chart for Procedure
STARTCLR in Program HELICALDIST
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AFPPENDIX 2B

INTERPRETING LOADED AND ADJACENT TEETH FE DEFLECTIONS

a) Interpretation of FE loaded Tooth Centre-line Deflections

The micro-computer program "HGDEFN4" interpolates for any surface
point "p" or "f" (see Figure 2.7) along any contact line across the face of a
loaded tooth using the FE nodal deflections. It also interpolates for the
tooth centreline points "c", obtained by extending the normals to a contact
line at any point "p" or "f" to intercept the tooth central surface (see Figure
2.7 and the subsequent discussion).

As discussed in part (c) of Appendix 1A, and the part of section 2.5
corresponding to Figure 2.7, the interpolation for the deflections at "c"
corresponding to the loaded points "f" is straightforward since the point “c*
falls in this case on the boundary of the FE mesh elements, see Figure
2B.1a. Therefore, the two corner nodes nq, nj and one mid-side node nj,
are used to quadratically interpolate for point “C" (quadratic extrapolation is
used if “c" falls outside n; or nj).

Considering any other point "p" (other than the loaded point "f") along
a contact line (Figure 2.7), then the corresponding point “c¢" is the
interception of the normal at point "p" with the central plane as shown in
Figure 2B.lb. In this case, the interpolation procedure is much more
complex. Referring to Figures 2B.1c and 2B.1b, where all deflections are

calculated in the direction of the normal to point "p", we have:

7Y linearly interpolated deflection of point "a" using nodes ng,nj.

upy - linearly interpolated deflection of point "b" using nodes ng4,ns.

uqg - linearly interpolated deflection of point “d" using nodes njp,n4.

el ~ linearly interpolated deflection of point “e" using nodes nj,ns.

Uaq ~ quadratically interpolated deflection of point "a" using nodes njp,
ny, n3.

Upq ~ quadratically interpolated deflection of point "b" using nodes ngy,
ng, ng.

Ugq - quadratically interpolated deflection of point "d" using nodes np,
ng, nj.

Ueq ~ quadratically interpolated deflection of point "e" using nodes nj,
ns, ng.

Uelll -~ linearly interpolated deflection of point “c" using uy) and up}.

Uell2 ~ linearly interpolated deflection of point “c¢" using uy; and ugj.
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Uclgl ~ linearly interpolated deflection of point "c" using Uaq and Upg-

Uclq2 ~ linearly interpolated deflection of point "c" using Udq and Ueq

Referring to Figure 2B.lc, we have:

Uelnt = Uel2 = Uell 2B.1
Aucy = Ugql T U 2B.2
Aucy = Uclq2 - Uell2 2B.3

Note that in the example shown in Figure 2B.lc, Uelq is greater than u.p,
however, this situation may be reversed (depending on the values of the deflections
of the mid-side nodes), thus reversing the signs of Au.; and Augp. Therefore
the overall deflection of point "c" is estimated by a quasi-quadratic interpolation

method and is given as
Ue = ucp t o tAugg - Augal 2B.4a

or expressed in another form

U = Uell * Iuciql ~ Yciq2! 2B.4b

For points "p" on a contact line away from the point of loading, the contact
deformation diminishes quickly, thus for these points, the deflection may be
interpolated for at the flank surface and not at the central surface in an identical
fashion to that described above. This was done in order to compare deflections at
the surface away from the loading point, with those at their corresponding locations
at the tooth central surface. Table 2B.1 shows the results for the 40 tooth gear
loaded at z=0.25m, from the gear end, and at the tooth tip. Clearly, as the
distance from the loading point increases, the surface and centre-line deflections
converge. In the present work however, all deflections were taken at the tooth
central surface (points "c") for the loaded tooth, and at the tooth flank for the

adjacent teeth, where there is no contact deformation.
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b) Interpolating for Adjacent Teeth Surface Points p. and pp Corresponding to

Surface Points p on a Contact Line of the Loaded Tooth.

From Figures 1A.7 and 2.8 the following relations may be obtained:

o = ot * Yzp ~ Vp 2B.5
Xpp = Xp = PPg- cos(a) 2B.6
Ypo =  Yp =~ Ppy. sin(a) 2B.7
Xpr = Xp + ppy. cos(a) 2B.8
Ypr = Yp + PPr sin(a) 2B.9
PP =  PPr = Ppt = Py -cos(q)=vm,. cosot 2B.10
cosf
200 = Zp =7 2B.11

Clearly, by looking at equation 2B.11 and Figure 2B.2, the interpolation
for the deflections of points "p " and "pp" by using the FE deflections at the
corner and mid-nodes, could be greatly simplified by choosing "p " and "py"

at the corner sections. Thus as shown in Figure 2B.2a, cubic interpolation

for points pp and p, may be carried out using the two corner and one
mide-side nodes. If more points are needed, zp values at mid-side sections
may be chosen as shown in Figure 2B.2b. The interpolation is more
complex than the previous case and becomes similar to the interpolation
procedure discussed in part (a) of this Appendix for the central surface points
of the loaded tooth (quasi—quadratic interpolation). However, quite a few
steps in this case are no longer needed since points "a" and "b" now coincide
with the mid-side nodes (compare with Figure 2B.lb), and need not be
interpolated for at all in the process. The micro—computer program

*"HGDEFNADJ" does the interpolation for the adjacent teeth.
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. corner nodes » mid_side nodes

Fig. 2B.1 Interpolating for the Deflection of Point ¢’
Using Corner & Mid_Side Nodes
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zZp unp unc unc-unp error

[mnl Cmm/NI#EOSL | Imm/NI*EQS [mm/NI*EOQSL L7413
0.25 ?.031 6.898 -2.162 ~31.50
0.50 5.408 4,991 -0.417 ~-8. 40
0.75 3.000 2.914 -0.086 -2.95
2.50 1.323 . 281 -0.042 -3.2
4,00 0.321 0.498 -0,023 -4.61
6.50 0.276 0.270 -0.006 ~-2.22
?.50 0.234 0.232 -0,002 -0.86

2p _ distance of point "p" from the sharp end of the gear
unp _ deflection of point "p" normally to the tooth flank
unc _ deflection of point "c" along the normal to tooth flank

% error = (unc-unp)*100/unc

Table 2B.1 Comparison of Tooth Surface & Corresponding Tooth
Centre_Line Deflections +{or the 40_Tooth Gear
Loaded at 0.25[mnl From the Sharp End
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. corner nodes x mnid_side node:

a) tace of an element on tooth flank
(choose corner sections)

b) tace of an element on tooth flank
(choose mid_side sections)

Fig. 2B.2 Interpolating for Adjacent Teeth Deflections at
lpll & lprn
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APPENDIX 2C

CALCULATION OF GEAR SHAFT DEFLECTIONS

The shaft is simply supported at one end, and torsionally and axially
restrained at the other, and supports a helical gear (see section 2.5). The
components of shaft deflection are due to torsion, shear and bending. Deflections
are calculated by assuming that the resultant tooth load "F" acts at mid-face and
through the pitch point, however, to generalize the equations, the load is taken at
any point (zg,r;) as shown in Figure 2C.1. This assumption simplifies the
analysis and is justified, since as in Steward's work30, the shaft deflections are

assumed to be independent of the actual load distribution.

a) Shaft Torsional Deflection
Torsional deflection results only from the component of the total load

in the transverse plane (F.cos@). Referrring to Figure 2C.1:
T =F . cos(Bp) - Tp 2C.1

For z<z; the torsional deflection in the transverse plane is

2C.2

;- T.rb [ﬁ Lz
st G J] J2

and for z»z¢, the torsional deflection attains a constant value of

—_ 4+ — 2C.3
SRR

T.rb [QI ze

dy - shaft diameter
gear tooth root diameter (since Steward30 showed

dy -
that the torsional rigidity of the gear can best
be estimated by assuming fts effective diameter
to be the root diameter).

Jp - w(dy)¥32 2C.4

Jy = x(dy)¥32 2C.5
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b)

We are however interested in the torsional deflection component in the

direction of F (normal to the tooth flank)

dstn = dgt - cosPp 2C.6

Thus the torsional deflection along the load line direction at any of the
Gauss integration points (0<z<b), and the end points (z=0,b) may be
obtained theoretically.

An alternative to the assumption of a concentrated mid-face load is that
of a uniformly distributed load across the tooth face-width, giving a linear

torque variation across the tooth face with

T.rb.cosﬂb Ql 2(2.b-z2)

6stn- G Tl- + f.b..l2

Shaft Transverse Shear Deflection

At any transverse section, the cross sectional area is given by
A = zd%/4 2C.7

the shear slope at any section "i" is given by

Ysi = 4Fi/3AiG 2C.8a
vy = (16/31C) . 2 2C.8b
d
i
5 . 2C. 8¢

Yoy~ 2.1119 x 10

e g

where G is taken as the modulus of rigidity for steel, and d is the shaft or

gear root diameter at any section. By referring to Figure 2C.2:
M¢ = F,.rp.sin(ogy) = F.cosoy.sinB.rg.sinog 2C.9

where Mg is a concentrated moment at z = z¢

: F.cos(ﬁb).(Q-zf-Ql)+Mf
1 - [ 2C.10

Fy = F . cos(Bp) - Fy 2C.11

395



Considering sections 01, 09, €3, and 04 separately, the shear slope in

each section is,

Y - F
=1 21110 x 1073 x ! 2¢.12
F 2
(d,)
Y _ F
=2 21119 x 1075 x L 2¢.13
F d )2
2
Y _ F
53 0 21119 x 107 x —2 2C.14
F 2
(dy)
Y _ F
sS4 21119 x 1070 x 2 2C.15
F (d )2
4
where dy = d4 = shaft diameter
and dy = d3 = gear root diameter.
The shear deflection in each section is
6 Y
ssl1 sl
- F X Ql 2C.16
6 Y
ss2 s2
6 Y
ss3 s3
ssé 754

Referring to Figure 2C.2, the total deflection at the right hand end,

with the left hand end kept torsionally and axially restrained is

m-(b + 6

F ssl ssZ+ é

ss3’ 6554)/}‘ 2C.20
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and to obtain zero right hand bearing deflection, the deflected shaft must be
rotated by an angle equal to

6 = -[ﬁgﬂ]/e 2¢.21

We are interested in the shaft deflection across the gear face width b (at the

end points and Gauss points) and so for 0 ¢ z ¢ z; we have

6 Y
] ssl ss2
955 . 23"
3 3 +————F .z + 0(z+Ql) 2C.22

and for zf ¢ z ¢ b we have

& 5 ¥
ss1 ss2 ss3
- F + 3 + F - (z-zf) + 0.(z+91) 2C.23

"'IE»

Finally, to determine the shear deflection along the load line of F,

simply multiply equations 2C.22 and 2C.23 by cos(Bp).

Shaft Bending Deflection
Using simple engineering theory, the bending deflections of the gear

shaft centre were derived for 0 ¢ z ¢ b (see Figures 2C.1 and 2C.2)

For 0 ¢ z ¢ z¢ we have

2
] -FI.Q ! (3z+2,) Fl (z)2 (z+302, )40, . (z+2.)
sb 35.11 - 1 'EETz' y 177%" 1

2C.24

forzf<z<b

2
FI'QI

F
1 2
6Sb - EET(32+QI )+KE—.T2—. [3Q2(Z-22) . (2Q1+Qz)+Q2. (92+301)]

F,

2
* 3515[‘2’92)'(393+3Q4+92'2)] +0,.(z+2,) 2¢.25
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Where

°) = Tk nt " oy 30-20
AT TTETIT g— -(32-22)| -
1 F]"zz Fl.Qg
Q.E.Iz. 2 '(2Q1+92)-(Q3+Q4)4T .(3Ql+22) +
2

F2.Q3.Q4 e

F
2°73
— .(224+Q3)+——3— .(3Q4+223) 2C.26

1, = . d,*/64 2C.27
I, - 4.4 /64 2¢.28
2 T . d, / C.

di = dgp, (shaft diameter) 2C.29
dg = (dgeip + dgroot)/2 2¢.30

with dg¢jp - gear tip diameter

and dgroot - gear root diameter.

Clearly the expressions for the deflections given by equations 2C.24 and
2C.25 are in the direction of F.cos(Bp). To obtain the deflections in the
direction of the tooth normal load F, these equations are simply multiplied by
cos(fBp)-

The torsional and transverse shear shaft deflections are obtained from
the developed micro computer program “S-T*, The developed micro
computer program "BENDDEFN" calculates the shaft bending deflections.

Note that the shaft “centre" bending deflections were used, and not
those in the base tangent plane at the contacting points. This is because in
the FE analysis (Ch.2), the shaft "centre” bending deflections were removed
from the overall gear tooth deformations, Anyway, the corresponding slopes
(accounting for shaft bending deflections at the gear contact surface) are small,

particularly on smaller gears and may be ignored.
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a) transverse section through loaded point *f°

_ |Fcosp,
L
I
£d1 d2=d3 V%

. v
L
| !

e b ——s

b) view in a direction normal to the plane contained by
*z° & the torce “F.cosfy

Fig. 2C.1 Shaft Torsional Deflection
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B = Fi cosccy o sinfi z=Ficozecp SINfi

a) load, shear & moment diagrams

* X

b) a transverse section of the gear through point “t°

| \\j LY

[

c) determination of &

Fig. 2C.2 Shaft Transverse Shear Deflection
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APPENDIX 4A

SAMPLE OUTPUTS FROM LOAD DISTRIBUTION PROGRAM "HELICALDIST"

This Appendix lists some sample outputs from the load distribution program
for the gear set described in Section 4.1. In all the sample cases listed, except
where end-spikes are shown, the same phase of mesh is used in order to show the
effect of introducing tooth deviations on the general load distribution at a particular
phase. In sample outputs null-b, null-c, and 9b, the phases which produce
end-spikes have been chosen for comparison purposes. These phases will not be
exactly at the starting or ending geometric phase due to elastic deformations and
introduced deviations. Due to space limitations, only three sample cases with
spike-effect have been listed. The amount and type of deviation(s) introduced is
described before each listing. The peak contact loads and stresses used to plot the
graphs of Chapter Four were obtained by producing similar outputs but for about
sixty phases for each gear-set. Then the peaks from all sixty phases were taken
and compared. Finally the peak of the sixty or so peaks was chosen for the
calculations of the load distribution factor. As for the end-spikes, it is known that
these occur near the start and end of mesh only, and are thus obtained by trial
and error, until the output gives one of the engaged teeth as a single contact
point. This is the spike generally producing the worst contact load and stress.
Start and end of mesh load spikes are of the same order of magnitude for all
practical purposes. The worst stress however is at the start of mesh for the

particular gear-set used due to the smaller radius of curvature there (see Eqn.

1.7).
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Qutput null-a  This output is that of a perfect (error-free) gear-set at an

arbitrary reference phase of mesh 1.01 pbt.
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*HELTCALDIST:

GEAR GEOMETRY %

Number of teeth
Facewidth

Ref.circle dia
Base circle dia

LOADING

DATA

Driver

18
120,000
207.844
121,611

Driwven

o4
120, 000
AT =
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o74.83%4

(25-04-87)
HADDAD %+
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Normal module o0 10.,000000C
Driver Tool Add. 1. 24995988

Mriver Tool Add. N ans 1.24999923¢
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Output null-b  This output is that of a perfect (error—free) gear-set at a
reference phase of mesh 0.4079 pbt chosen to produce the start

of mesh spike-effect.
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FREFEEEEEREFFEEREEFERRELEEFRE R LRI FEFEEFERAREE XLy i x X RY C.D. HADDAD®**

GEAR GECOMETRY % LOADING DATA
Driver Driven

Numbar of teeth z 18 54
Facewidth b 120,000 120,000
Ref.circle dia d 207 .846 27.538
Base rcircle dia db 191.611 574.8734
Tip dia da 2LI7.8B46  £H4T.TIG
Add. maod. factar r

Normal modnl e 1in} 14
Driwver Teool! adco. haot 1. 249395

Tonl Ade. Fraos 1. 204599955
Tounding Rad  pand . ,
Founding Rad panZ ;

simn mentrecs =T sl

Helix anogls

Bace Helis aninls e R
fef e, anale alphan =
Reof , om . angl & 2lphat Do TenaTITiIo

Trarns .

o ATYT ST
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! Tooth | Distance ! Tooth i Tooth i Tocth i Normsal i Contact

i num. | along ! error ! contact | bending i tooth \ stress !
: { tooth H i defn,. | defn. i load : :
! it [mm] HE 1 1B i [mud CoDmul P IN/mm] t [N/ mm23 '
HE e et I | ————————— ettt L | m———————— HE e e LT !
! 4 ! 2.000 1 0.000 | 0.000 | .75 H O.000 | Q000 |
H 4 ! 77.072 } 0.000 | O.000 | Z2.754 | 0. 000 0.000 |
H 4 i ?0.928 | 0,000 | Q.00C | 3.774 O, 000 | Q.000
H 4 ! 101,072 O.000 | Q. 000 | Z.884 | Q.00 | 0,000 |
: 4 : 114.928 | 0.000 | 0.000 | 4,169 | 0,000 | Q. 000 |
H 4 t 120,000 | 0,000 | 4,492 | 4,282 1+ 202.4647 1 614,387

| S H 24,000 | 0,000 | Q.00 | Z.925 i QL0001 0,000 )
: S ! 29.072 1 0O.000 | Q. 000 | 4.112 0,000 O, Q00 !
: S ' 42.928 | 2 0 1o 10 S Q, 000 | 5.020 4 G QO | Q. 000
H S ; ST.072 0,000 1.742 | &,.567 '

e S ! 66H.728 D.000 1.687 i 7.093 :

: o H 77.072 D000 L. 242 !

! 5] ! QU.eZ28 | OO0 2,175 4 '

' ] ! 101,072 1 ! 2,144 0 !

' ] H 114,928 | ; 1.477 ;

H 5 ! 120,000 ' t.128

H 2 H QL0000 | T, Q00 G.A8T | g, 2%
H & : 5.072 DL 000 O, 955 7.8L7
' & ' 18.928 ! T D00 2,012 00 S, 7AL
! 6 H 2F.072 0 G QOQ | 2L08T &, 6T
! & ! 42,928 T 00 2079 b £97
‘ & H SE.072 0 i, QOO | Za062 ST T
| & ! b&, 928 | i, OO0 | 200768 e
1 & ! T7.072 S o T W 0. 629 =y
! & ! QO FIE £, e O OO 4. 47
; & ! 101,072 G0 Q. 000 4, 14%
! é ! 114,926 ! 000 0, QDG ) . BE
i & H 120,000 D000 O, Q00 | T.7el

e et e e o £ Shom o A e el HE b SR UL Mt e s Soa et e ok £ ke A m FAMe M (e S WO GO ey Brom 41 0N Gole S G4 FAM O Sofen SRS BRI B 1 L T S e e e e
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H 7 ! 42,928 | L 000 0. GO0 T DT
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Output null-c  This output is that of a perfect (error-free) gear-set at a
reference phase of mesh 3.5623 pbt chosen to produce the end of

mesh spike-effect. '
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GEAR GEOMETRY & LOADING DATA
Driver Driven

1B S4
120,000 120,000
207.846 23.93
191.611 §7£,.834
227.8446 64,3528

Number of teeth
Facewidth
Ref.circle dia
Bage circle dia
Tip dia

VD.O.D.U'N
& O

Add.mod. factor H 0. 00000 O, 00000
Normal module mn 10, 00000000
Driver Tool Add. haol 1.2499953%
Driven Toal Add. hanl 1, 24999388
Crest Rounding Rad panl O, 00OD0O0D0
Crest Rounding Rad pand L OOOQCQGe
Wort:ing centres Caw SGlIE.ETZEONLE
Helix angle bheta T0L 00000000
see Helix angle betab ZELOZRTZ207E
Ref.pr.angle alphan S, DOODOO00
Raf.pr.anqle alphat 22.7988771%
Trans.cont.rat erpsalph 1, ZGEB606R
Trans.cont.rat epcal oho 2. 05288060
Overlap ratio epsbeata 1., Q0IBREITS
Driver toraue T1 10i4.88719%5
Tooth @ cad/lcon whin: 4z, 94868287
Tooth 1oad/b whm oo, 9ReRaRG A
Mei tooth load mas _ wiy ZTT.RDS45T08
Ma+ cortact stress may_sigmab 447, BT7904664
Load fFsctor bload 5. 34772548
L.oad fector kloadO Z.TIeoEaTe
Tranms. swror i S.TI&2aTR2T
Max no. teath - MaxTeeth &
Matrix order mat orea 27
Max mo. intervals Mav Ints o
Refegrence phass phiz( T SAET0N00N
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Output 1 This output is that of a gear-set where all pinion engaged teeth each
have an equal mesh misalignment (fﬂﬂ) equal to 8 microns. The wheel

teeth are error-free. The phase of mesh is 1.01 pbt.
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I I P NI WP W I I I KN NI R W HFERRERHEEREREF AR A ERN XXX XBY C.D. HADDAD**

GEAR GEOMETRY & LOADING DATA

Driver Driven

18 sS4

120.000 120,000

207.846 62T.538

b 191.611 574,874
a 227.8446 64T.53E8

Number of teeth
Facewidth -
Ref.circle dia
Base circle dia
Tip dia

Qaaaon

Add.mod.factor b O, 00000 0, QDOOC
Normal module mri 10, 00000000
Driver Tool Add. haol . 24999232
Driven Tool Add. hacl 1.2499398%
Crest Roundinmg Red panl G, DOONOO0D00
Crest Rounding Ragd panZ2 ‘ QL QOCO0000
Working centres v 415 ETFI2004T
Helix angle beta IO 000C0000
Fase Helix angle betab N24TZ0O72
Ref,pr.angle alphan 2, QOOOD000
Rai. pr.angle alphat 2L.TIDETVLY
Trans.cont.rat epsalph L 2EOBA0ED
Trans.cont.rat epsalphO 2. 0I4TPe0sR
Overlap ratioc 2psbete 1, 809853725
Iriver torque T 10314, BL7EI 090
Tooth load/Lcon whm 42, QLARLENDES
Tocott Joad/b whr o GO, 9CeRHS,,
Ma. topoth load mas_wh 4 T1STLEENE
Mav cormtart stra2re  mav_sigmel 27204549677
Load factor e mETOTTS
Lozd factor sloago 1, 20TIGSTR
Trans. error i+ BN RO B =
Max no. teeth Moy Teeth 4

iw order rat_ord g

no. intervels Ma Inte =
Refercncze phase chiz AL T ST TN
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Output 2 This output is that of a gear-set where all pinion engaged teeth each
have an equal and symmetric parabolic face—crowning (barrelling) of 8
microns. The wheel teeth are error-free. The phase of mesh is 1.01
pbt.
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EEEREFREFEEREEEEEEREREFEFEEEFFERFRFAREEEFRERF R * > ¥¥BY C.D. HADDAD*#»

GEAR GEOMETRY % LOADING DATA

Number of teeth
Facewidth
Ref.circle dia
Boagse circle dia
Tip dia

Add. mod.factor

Driver

18
120,000
207.846
191.611
227.844

Driven

54
120.000
627,578
g974.834
643,538

Normal module mn
Driwver Tool Add. haol

1.249%99784

Driver Tool Ado. haol L. 24979928

Crest Rounding Fad panl T, 20000000

Crest Founding FRad pand S, D000
imc centres YN 415, 900004

in anole neta

Herix angla betab 28. I207D
. mogle alphan S0, 00000000
Red o angle alonat 2. T7eTBTTIY
Trans.:cont.-at epsalnh 1. I528604%
Trarz.cont.orat epsalohl T ONRE8L0LE
Overlap ratio epsbata L. 7098597

T1 1014, 84791952

Driver

Rt BT

Toott joad/loon wbm . 948568259
Tooth 3 whbmC G, OReIRRYE
Max teoo max _wh 11940208128
May: oo mav _eiomaH 444, 13770967
Load +: cload S.T7B4T787LT
Leoar - atl bload? 1,1€602024
Trans., error it 1. IERNBRLT
Ve no veeth MayTewtih 4
Maty by owrler mat _ord o
oo interval MawInts - 5
mhage phizC L ER80000
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{ Tooth | Distance | Tooth i Tooth i Tootl { Normal

i num. i along { error { contact | berding i tooth

! ! tooth : i defn. ! defn. { load

! ! CLmm] { [mul t [mul i [mul i [IN/mm]
et i Raalatted ettt HE e et I ata —_——————— | ———— ————
H st H Q& 000 -2.942 | 0.000 | 3.846 Q. 000
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Output 3 This output is that of a gear-set where all pinion engaged teeth each
have an equal mesh misalignment (fHﬁ) of 8 microns, plus an equal
and symmetric parabolic face—crowning (barrclling) of 8 microns. The

wheel teeth are error—free. The phase of mesh is 1.01 pbt.
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*HELICALDIST: Design Unit Newcastle University. Version 07 (25-04-89)
FR PP P I B W I I W I W NI NN IR NN FEEREREREXEEFENRRXRBY C.D. HADDAD**

GEAR GEOMETRY %

Number of teeth
Facewidth
Ref.circle 'dia
Base circle dia
Tinp dia

Add, mod. factor
Normal module

Driver Tonl Add.
Drivan Tool Add.

Crect Rounding Rad
Crest Rmundlng Fad
Workimg centres
Halix anqgle
Baze He)ix
Ref . pr.anglie
Fes,pr.angle
Trans, Lrat
Trarsz.cont.ra
Ovarlap
Deiver
Tooth
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"W
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Ioed/lcon
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LOADING DATA
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i bending i tooth

i defn. i load

v Imul P IN/mml

HE e e et | —————————
: 3,213 1% O DO
‘ S.983 | 0,000
: 4,174 | (s lela]
‘ 4,247 | 0. 000
H 4,109 | O, 000
! 4.72% ' 0. Q00
' Z.56558 | CL. 00
: 7.992 ! 107.108
' 7. &L 8. 464
; &HOFLE RéLTT
: H.520 Ta, 117
! &. 474 ¢ 4,847

by E'... 7
4,487
4,619
5.I7E
& 78
TLO0T
T org
T.oB4A
TLAALW
5.TEO
S.lh4a

QL OO0

O, OO0

IN/mm2] !

O, 00 |
O, 000 !
G, OOC |
O, 000 !

Cr, OO0
]

S, 000




Output 4 This output is that of a gear-set where all pinion engaged teeth each
have an equal profile angle error (fpy,) of 8 microns. The wheel teeth

are error-free. The phase of mesh is 1.01 pbt.
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FEANERFEFRERRERFEFFREEFFEREEEREREERREREEEEEE AR R %FY T, D. HADDAD**

BEAR GEOMETRY & LOADING DATA
Driver Driven

18 54
120,000 120,000
207.846 623,53
191.611 574.874

227.846 447.857€

Number of teeth
Facewidth .
Ref.circle dia
Bacse circle dia
Tip dia

nooon
o O

Add.mod. fector ™ 1, QOOO00 0L OO0O00
Normal modols mn 10, Q0000000
Driwvers Tool Acd. FRaol 1.249999¢8
Trivear Toml Adc. 1502 1.24999908
Crest Founding Rad  panl O, D000 000C
Cres*+ Pounding Rad pans €
boriino ocentres AW A15, LEFTTO0NLD
Helir ancle beta 0, QODO0OCE
Base Hzlix enale bhetab ZEL0RATROTE
Re£;pw,angle alphar 2o GOODOOG
Red. . croangle alnbat 2L.7238771R
z.,.cont.rat 25353100 1. 25E86046%
,omt o rat ppsal ph 2. 05286040
Ovarlan ratio spshata 1. 5090507
Driver: Torque Ti 1014, B&TRI970
Tonts leoad/lcon wbm AT, RLABLEEDTT
Tootr 1oad/t wham I, IIRRTE
May tooth load mz_wh 117.,159786057°
Mau =-rtact strecs mer_sianeH 470, CL2081I0E
w2 Heohor le;d i DLTRTTRTITT
Load fantor bloedo 1.17157877%
Trars., er-or £+ 2.37415840
Ma =, Yeeth Mz Teeth &
Mat el arocer mat_ord 25
Mai: mo, intervals Ma Irmte il
Refgraorce phase pRizC 1 OEFBOOON
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| Tooth | Distance | Tooth ! Tooth { Tooth ! Normal ! Contact H
i num. | along ! error i contact | bending | tooth | stress H
H i tooth H ! defn. ! defn. { load ! 1
H ! [mml i Cmul t [mul t [mul t IN/mm1 t IN/mm23] :
e et e —————— mm—— e | e | e e | e |
! = H 6. 000 | 0.977 Q.000 3.948 ! 0,000 ¢ O, 000 !
g 2 V101,072 -0.169 ! 0.000 | 4,036 | 0. 000 | 0. 000 |
H =z H 114.9228 | 1.086 ! O, 000 | 4.276 1 0.000 |} Q.000 |
: =z V120,000 1.542 | 0.000 | 4,764 | O.000 |} 0. 000 |
: 4 H 48, 000 | 0.977 | L0000 | 4,260 | 0. 000 | 0,000 |
! 4 ! 53.072 | 1.174 | Q. 000 |} 4.525 | 0,000 | O 000 |
J 4 H £65.928 | 2.377 1 L. 000 | .96 | 0. 000 ! 0. 000

! 4 H 77.072 1 2.671 2.774 | 8.432 | 117,154 4 472.0&62 !
] 4 ! 0.928 | 1.962 2.4448 | 8.0346 1 103, 020 88,587
g 4 ' 101,072 1,210 2.539 1 T.07 106, Q78 1 TEF.5TS
! 4 ; 114,928 1 0L 240 1.537 1 F.21S 0 e 0175 20244

! 4 ! 120,000 | —~L 200 1.¢671 7. 0ET 40, 990 | 20T 2L

; & ! O.000 3 .05 0. Q00 &0 L O0CG O, 000

! S ‘ 5.072 1 2.43546 G, 000 6.821 1 L0000 QoG

i bl ; 18.22¢ | Z.457 | Z2.59648 ! 3.427 107,290 | 547

: 3] : 29.072 | 1.907 1 2.003 9 7.9I% | 104,888 ! 8507

: o : 42.92 H 0,971 1 2,462 1 T.044 ) 107,541 T2

! r ! S53.072 G.187 2.111 08 £.580 1 7. =95 ! g1

! = ! 6&.928 | -1.117 | 1.887 | =.875 &G, 136 (=3l B
! 5 : 77.072 | -Z.101 1.011 1 SLEET I5.2E1 00 £ '
: o : Q0228 | -T.727 0,273 0 .57 | 7200 '
: S ! 131,072 1 -5, 227 G,000 | L 20% T DR T T

; ol : 114,928 | -4, 227 QL0000 L 250 | O, QO

! = ' 120, 000 | -4, 207 O, GO0 A, TIOS € '

' i H Q. OO0 -C.72 ! 1.87¢ LODET

: & | S.072 ) -1,2i3 ¢ PLoana .27 0 N

i & ! e.e2e -Z.6T73 0 I T S U e Te

' A : 29.072 -7.847 | O, 210 0 4.4 REINDA

: & ' 2,926 | -5 22T G, QDG T.TET O T, OO0

! & ! STZ.O72 -4.227 0, D0 .4 ! DL 0GE

‘ & ! héH.928 | O, 000 T Coa 00!
: & : 2. 000 O, O
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T B Iy AT TP AP

Qutput S This output is that of a gear-set where all pinion and wheel engaged
teeth each have an equal amount of tip relief (cay) of 8 microns
starting at a height (hay) of 7.5mm. This is equivalent to having one
of the gears with both tip and root relief while the mating gear is

unrelieved. The phase of mesh is 1.01 pbt.
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*HELICALDIST: Design Unit Newcastle Univerzity.

Version 07 (25-04-89)

HIN N IR NN W NI R R H R IR RN LA RERXXEREREREXERHX%%RY C.D. HADDAD**

GEAR GEOMETRY

Number of teeth
Facewidth
Ref.circle dia
Base circle dia
Tip dia

Add.mod. factor
Normal module
Driver Tool Add.
Driven Toal Add.
Crest Rounding Rad
Crest FRounding Rad
Working centres
Heliy angle

Bazse Hzlix anagle
Ref.pr.angle
Ref.pr.angle
Trarns.cont.rat
Trans.cont.rat
Overlar ratio
Driver torque
Tooth load/Lcon
Tocth load/b

taocth load

v ocontact stress
tor

L ]

an

T

oyl
pul

J

1.

v+

m

m

'+

g

AtTrix
Mas: nmo.
Reterznze pha

I ETATC IR
]
o

order
interval &
5

)

% LOADING DATA

oaalfdu
o

bt}

~r
P

mn
haot
haol
par:l
pan?
EZ
beta
betab
alnhan
alphat
2psalph
epsalph
epzbeta

3

Mavfnts
phizQ

Driver

18
120.000 1

207.846 64

191.611 S

227.846 6

.......

1.2499998¢
. 2499998

I, O00CO0O0
2E.OZ4TR2072
20. 00D
20.7958771%
1. 752860469
2052060468

1.9098593%

Driven

sS4

20. 000

Lo TR -4
St u Wl

74.83%4

43.53

1014,846791090

42. 94568259
9%, P99TBETE

110.45187270

- ST A
IR 152074070
I A Bedote
2.ETI71ITE0

1.104510%:

P.O2ITATT
4

~e

praga

o

1., Q99000
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! Tooth | Distance | Tooth i Tooth i Tooth i Normal i Contact ;
{onum, i along I error i contact | bending | tooth i stress ;
H { tooth : i defn. i defn. { load . !
! i Emml i [muld i Cmuwl t Imuld i IN/mml CCOIN/mm23 H
e e e e e i | —————
i = ! Q&L.0Q00 | =7.062 | O, 000 | S.932 10 Q.000 | 0,000 ¢
! = i 101.072 ~7.062 | 0. 000 |} 4,015 1 Q. 000 | 0,000
H =3 ! 114,928 | -7.062 | 0,000 | 241 | Q. 000 | Q.Q00 |
! 53 v 120.000 -7.062 | 0. 000 | 323 0 O. 000 | Q.000 !

s i e o - = S S G e e ST A e S S A S Bl VOB VA W S B Sl S © a0

! 48.000 | -7.062 | O. 000 | .73 | 0,000 | 0,000 |
! 5Z.072 1 -7 062 |} 0,000 | I.890 | 0. 000 | 0,000 !
! 66,928 | ~7.0862 | ' 4, 7L 0,000 ! 0,000

! T7.0732 -4, 292 | ! S.108 Q. 000 | DL 000
H 0,228 i 0,000 ! ! & ! 3. &84 ! 82,155
! 101,075 1 & ! Q.81 1 TE&E. Q41
' 114, ' 4 H 77190 0 :

' Pl T -
: PN 14

F D, 000 o :
: Hle7n ! '
L 1g. 908 2
; 28,072 0 (. S7
: 42,97 { O OO0 YA
i G072 D, 000 ! oL
! b, 0D o 00 oE
’ il b LT SO0 '
L g0, eng |
+ '
)
]

J 10y, OT7L
< . Sy T

'
) )
! ! O, 000
' L0700 0,000
' ) 9l = TP t i
' 1€, 928 R IR
~ =Ty [P ! :
5 ol ﬁ. (R an ' "'""q v onden ' :
] T8 :
! 42,928 1 LA W P AR ;
s o e T
' —t et - . M TR U 9 iy '
d . el * Ll 1 1
! -.‘I_"é) w7 Tf./‘ ! S . UL""'. i .
e - - P ,
! T2 O000 -0 L1T7E C0OT
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Output 6 This output is that of a gear-set where all pinion and wheel engaged
teeth each have an equal amount of addendum parabolic profile
crowning (c,,) of 8 microns. This is equivalent to having one of the
gears with both addendum and dedendum profile crowning while the

mating gear is not crowned at all. The phase of mesh is 1.01 pbt.
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*HELICALDIST:

Design Unit Newcastle University.

Version 07 (25-04-8%)%

KT NI FE NI I NN W IR W R RRFEERFHREEEREXEEFEEER XX FFEHEBY C.D. HADDAD»*

GEAR GEOMETRY &

Number of teeth
Facewidth
Ref.circle dia
Base circle dia
Tip dia

Add.mod. factor
Normal module
Driver Tool Add.
Driven Tool Add.
Crest Rounding Rad
Crezt Rounding Rad
Working centres
Helix angle

Bage Helix angle
Ref.pr,angle
Ref.pr.angle
Tranmns.cont.rat
Trars.cont.rat
Overlap ratio
Driver torque
Tooth load/Lcon
Tooth load/b

Max tooth load

Max contact stress
Load +factor

woarl factor

Trenz. =rror

Mayx rmeo. tecth

hatd o o clar

-

Mz mo. intervels

Fzferonce phase

LOADING DATA

haol
haoZ
pani
pan

awv

hetas
betab
alphan
alphat
gpsailph
epsal phoO
apsbeta
T

wom

whmO

Driver
18
120,000 12

207.846 2
191.411 57
227.846 64
QL. 00000 O

. 24995988
1.24999538

v
G418, 400220080

ey —
R STy

0. 0000000
: ol
2R.789587719

1, TERBE0LT

PO R i |
2. 052B&04E
L. F0IBERTT

“n Tt T
10L4.857921922
42.948468287
g, 03R4
IE0. 01560520

S WA e 4 ool ]
BT 2697800 E
R e i dnint Ratt

4 e el LS -

HOREY ek
ot e b e o
O EQT TSI
TR R S GO I
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Driven

>4

0. 000

2.938
4.834
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Tooth Distance Toath Tooth Tooth Normal Contact
num. along error contact bending tooth stress
tooth defn. defn. load
[Lmm1 [mul Cmul Lmuld (N/mm1 (N/mm2]

9&. 000 ~7.062 0. Q00 3.954 O. 000 Q. 000

G

'
'
1
'
t
3
]
L]
e o v e | e et e e e
'
'
[
4
)
[
[
i

101.072
114.928
120.000

—— e a E® e EmEm e . Lo

~7.073
-7.062
-7.062

(:)'

0.

000

0.000

OO0

4.

049
208

0. OO0
Q. 000
0.000

D, QOO
. QOO0
0.000

b 4 H 48,000 | -7.062 1 QOO J.666 | 0,000 | 0, OO0
L 4 H 53.072 | ~7.0&62 O. 000 3.820 ! GO0 | L OGO
o 4 : b6, 228 | -7.082 1 Ca Q00 | 4,288 ! ..uOu H Q. 00C

' 4 ! 77.072 | -Z.727 ¢ OO0 1 4.978 L Q00 OO0

! 4 ! Q0.%928 | —Ze 275 1.4689 | 65.57& | ‘”_:79 ' S19.24%

- 4 ' 101.072 1 -0, 885 1 2695 7,012 4 114.4782 | SRZ.2TG

: 4 i 114,92 : 024 0 =. 479 13 SL.056 104,979 TIEIS.205

H 4 : 120,000 | 0lée DLCR2A S.55& o7, 8249 0 298,391

! 5 ! L Q00 ! —?.0&2 H 0,000 ! 5,558 ¢ L OO0 o

! g : 3.072 H -7, 0862 ) WL OO0 5,528 | (ngmuJ:

: 5 ' g.92a | ~4.413 .o4a 1 S.878 | 1:.986 |

| S : 29.072 1 -2.19¢ | W O H, 642 1 QL4677

' S : 2.92 1 -2, 450 | 2.792 TL.IEE 119, 2%

i 3 i S3.072 -0,010 | LoD | T.E97 0 12G.016

: S ! L6928 | ~-0.494 | T.-:i T.IRL ) 122.388

H S H 77.072 -1.849 | WA L. 707 24,932

H S : P0.928 | -, 500 U.I- . oL CAG

H 5 : 101,072 1 -7.062 1 Q. H 4,512 0

: 5 V114,928 | -7, 062 : 4,537

: el H 120,000 | =T 06D ; 4. 86448

2,000

: & ! O, OO0 | 206 o248 =LATT
! & ! 5,072 1 b3 o 2,410 T.osln !

b ' 18,9285 1 =R 1.&59 P2 RN
! & ! 20,072 J.84H ! N L T 5,00
H & H 2.928 ! COAHT Coa GO 4,028 |
: & 1 52.072 ,.Jé” ! O, 00 T, 68T
! ¢ ! bA.928 | TL04Z O 000 T.IYe
' ! ! o,ITS 0. 000 o108
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Output 7 This output is for a gear-set where all pinion and wheel engaged teeth
each have an equal amount of addendum parabolic profile crowning
(com) of 8 microns. In addition, the pinion has a profife angle error

(fHo) of 8 microns. The phase of mesh is 1.01 pbt.
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GEAR GEOMETRY % LOADING DATA

Driver Driven

Number of teeth pud 18 =54
Facewidth b 120,000 120,000
Ref.circle dia d 207.846 627.938
Base circle dia db 191.611 q74 224
Tip die da 227 B46 ..4"8
Add. mod. factor 3 L OO0 < OOO00
Normal module mn 1n ﬁﬁﬁ( DOO
Driver Trool Add. haoi 1.249995RR
Driven Tool Add. haol 1.h4?93°€b
Creet Rounding Rad pantl N

ezt Rounding Rad panl <. .
Working centres aw 4.u.&°””ﬁﬁ1”
Hexl iy éngle beta T 0000000
Ease Helix angle betakb 20, 02472072
Ref.pr.sngle alphan 20, OOOOOODO

Ref.pr.engle

alphat

—~ ‘—-,——,.7
u—--t I Wl

Trang.cont.rat epsalph 1.?5?8LUAO
Tramz. zont.rrat opsalph DL0TRBA0LE
Overlap ratio apsbeta 1, 9092593
Driver +<oraue T 1014, B57Q1907
Tooth load/Loon whim 2., 94862299
Tooth lo=d/b wWomo DE.QQOCAHO
Max too+th load ma _sh 177.67018:138
May gortact stress mar _slgmaH L‘*.?U”‘ékrn
Load factor bload DL D0LTZL2E
Loed faztor FloodO TLTETETOLINT
Trans. ©-roar ft 1OVTTITETTRE
My no. teesth Maxy Teeth 4
Materi: Drd@r mat_o-d bl
Mar rno. intervals MaxInts o
Reference phace phiz 2 1.03330000
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! Tooth | Distance | Tooth ! Tooth ! Tooth t Normal ! Contact :
ionum. i along | error i contact | bending | tooth i stress ;
! i tooth H ! defn. | defn. { load ] :
H { Tmml i Cmul i Tmul fImul i IN/mm] i IN/mm21) '
l—————— R o o ] e e e e e | e ——f e ——————— | - |
! = ! 26,000 | -6.085 | 0,000 | Z.978 | Q.000 ! Q. 000
: z 101,072 -7.242 | 0,000 | 4,082 1 0. 000 Q.00 |
L 3 { 114,928 | ~-5.976 | 0.000 | 4,768 | D.000 CL 000
! A : 120,000 1 -5.520 | Q0,000 | 4,472 | 0,000 | 0.000 !

O, 000 )

!
)
t s
0
t

Z.8%99 | 0. 000
4,117 ¢ i, OO0

KRR RS

Cy, OO0

-6.085 | 0.000
~o.888 1 0,000
:
i

' 4 ! 48, 000 H
-4, 6825 Q. 000 4,964

4 1 53.072
4 ! 646,228
A 1
2

[}
]
!
1
1)
L
77.07TE T. 056
]
1
]
]
¥

0. 00D
O, O00 !

&0

2éHEVTIT

—lrel

1

]

1 t

1 ]

: r o/ /o :

H H FO,.928 -, 410 7.598 1 TT7R.266 !
! 4 : 101,072 GL,a2% 7 EHET R S
! 4 ! 114,028 CGLnls ! R.244

' d ! 120, 000 ! SO, 21s ! &850

! = ! 0,000 ! -5, 027 0, 000 ! S.ERT O ! ;

i o ' .07 b s ) Cry 2000 G 170 ! C

' = ! 13,9268 ! -1, < 1.291 | T.091 ; 9o, '
: o ! 2,078 —~-0.32%1 0 Z.445 T &02 Tan. !
! = ! 43,924 | Q.521 3 S.o144 T ePs ) ! A0T. :
: por! ! SIL072 1470 L0091 TaaA77 0 i V7 !
oo ! P S D T.7AR ! b.4BT CoT0g.

' o ' 77.072 1 =4, 010 Q.7Ee ! SLTTO = P14

: b ; ! -QL, 227 ¢ O 000y 4. s00 ! I Yo Vs T oy

: il ! : -5 2. 208% 1 CGLO0o ; S, 00T [ ¢
! = ; S el L 0,000 ¢ : DLonof C’ f
{ i : -1, 285 L TATAREE SN TR Te I ‘
: £ H o H

i £ : =507 )

' A ! ‘

& :
H & ! a4z, 28 -11.285
' £ ! SRTLETD 0 =1nL DR
; & ! ki, GO T di 20T
: £ ! T2.000 | ~2E.E98
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Output 8 This output is for a gear-set where all pinion engaged teeth each have
an equal circular adjacent pitch error (fp) of 6 microns, while the wheel
teeth are error-free. The pitch errors are introduced on each pinion
engaged tooth as cumulative pitch errors (Fp) of 6, 12, 18 and 24
microns starting with the first engaged tooth (#3) and ending with the
last engaged tooth (#6) for a phase of mesh of 1.01 pbt.
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*HELLICALDIST: Design Unit Mewcastle University. Versgion 07 (25-04-8%)#%
FREREEEREEFFERFRFEFEERERRFEXRFRFEREREERERE SRR RS H XX %2 %%%BY C.D. HADDAD»%

GEAR GEOMETRY % LOADING DATA

Driver Driven
Number of teeth z 18 sS4
Facewidth b - 120,000 {20,000
Ref.circle dia d 207.846 62T.978
Base circle dia db 191.611 574.874
Tip dia da 227.846 647.578
Add.mod. factor x 0. 00000 0. 00000
Normal module mn 10, 00Q0O00G
Driver Tool Add. haol 1.2499379828
Driven Toal Add. hacl 1.24999028¢
Crest Rourmding Rad panl
Crezt Rounding Rad pand
Working centres ETN 415, &F2R0GLT
Hz2lix angle bata T CD000000
Base Hzlix angle betab 28, 02432072
Ref.pr.angle alpharn 20, 0203
Fef.pr, angle alphat 22.79387719

Trams.cont.rat
Trams.cont.rat
Overlap ratio

apszloh
ppealohn
posheta

1.3252346049

2. 0G2B6060
1.9098335979

Driver torgue Ti 1014, 84701978
Tonth load/Lecon whm 42.248358257
Tooth load/b whmO ., RReHE% -

Max tooth load

Mayx contact strezs

Load factor kioad i

Load factor Llosdo 1, &50T88T0
Trams. error ft . FRCTTITS
Mau no. testh Mav Teeth 4
Matriy order mat ord 2=

Max mio,. intervals
Reforance phase

Max Ints
pHiz O

165.83I821T70

. -

I78.7

.
TLBE1T24R1

S L I T T T

& .
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i
i
W W :
I
!

Distance
along
tooth
Cmm1]

26.000
101.072
114,928
120,000

Hadaubadph

43, OO0
5%.072
&&, 928
77.072
90, 28
101,072
114,922
120, 000

10.592
10.592
10.592
10,892
10,592
10,592

4 - | ~
TOLVERE

M@ eg;

Pooe
A
Pooe
b6
b
e
e
Pooe

0, 000
5.072
18,928
2P.072
42. 922

Pragon]
SIL072

&b, 928
77.072
20,92
101,072
114,228
120, OO0

Oy OO0
S.072

Sy

18.928

e I=2y Aot
Polly RS R

~ -~
42,928

| —dar g
wtute

b66.928

- o -
-

()

a7

G oA

12.889
15.889
15.88%
15.88%
15.889
15.68%
5.88%
5.889
15. 849
15,8685
15.88%

1Z.88%

21,183
- 1685
PO w2
- o
[POOR A s
Ti.1ec
1,185
2L.185
21,1685

21.18%

Tooth i Tooth ! Normal { Contact !

contact | bending | tooth ! stress !

defn. i defn. { load H

[mul it Cmul ¢ [IN/mm1 i IN/mmZ] :

—————————— e e e e e |
Q.000 1 F.7464 | 0.000 | Q.000 |
0.000 | J.764 | 0. 000 | Q. 000 |
0.000 | 3.764 | O.000 | Q0. 000 |
0,000 | 2.764 |} O, 000 | Q. 000 |
G, Q00 | J.677 | O, 000 Q. 00C !
0,000 | I.649 1 0,000 | 0,000 |
Q.000 | Z.5846 | O, 000 | 0,000
0,0C0 Z.591 | L0000 ! O, 000
Q000 i I.6TE QL G, QO
L 000 T.E54 O, OO0 ! :
O, 000 !
i} . (:)(_7(,) H
O, 000 :
O, 000 b.0454 ) [ T ST N 2
1. 4462 7.A4TT 57,317 0 R L ShE
1. d46461 T4 ! bk, G270 114
1.%941 ) E.QLHT veo1ed enT o
1.9&86 &.9T35 S0.,800 | 243
1,990 | &. 9211 87,088 8T
1.917 ! 6989 | o N B R EXER
D.L00s &, 834 ! agc, 7am D4
Q. 000 50300 | ( Do
G, 00D | 4,740 | O
G Do 4.716 0

D.84E
IR
T.akl
w0

Co, OO0
O, 0D
0. 000

O 000
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Output 9a This output is for a gear-set where all pinion engaged teeth each have
an equal amount of profile angle error (fy,) of 8 microns, and an
equal amount of mesh misalignment (fHB) of 8 microns. The wheel

teeth are error-free. The phase of mesh is 1.01 pbt.
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*HELICALDIST: Desiagn Unit Newrastle University. Version 07 (28-04-8%F)%
EREEKEREAFEFXRESEREEREREEERERELEFREREF R RERTXEEXRREXEXXEY C. D, HADDAD®#*

GEAR GEOMETRY & LOADING DATA
Driver Driven

18 S4
120,000 120,000
207.8456 623,578
191.611 S74.874
207,846 HAT, SIE

Number of teeth
Facewidth
Ref.circle dia
Base circle dia
Tip dia

oo 0On
w O

Add.mod.factor Y 0, OOOO0 0, GOOO0
Normal module mn 10, 0000000
Driver Tool Add. haol 1.24999280
Driven Tocl Add. haal 24970933
Crost Rourding Rad pant 0, DOO00000
Crest Rounding Rad panl L, QOOOOOOC
Warking centres aw ALD ATREO0ED
Helix éngle hats T 00000000
Base Helix ancgle betab 28, 0R4TE0OT2
Ref.pr.angle alphan 20, 00000000
Fef,.pr.ancle alphat 22.79587719

1. 35286069
Z.08ZE60ES
1. 0985579

1014, 8791700

Trans.cont.rat
Trams.cont. . rat
Overlsp ratio
i e toraque

Tooth load/Loen whm 47.,248465805%
Tomth load/t wme G QQARaney

Max tnpoth leoed ma _wh DAL, ARGLT AT
May cortact stress  max Gmak ACD ATDEERITH
Loac factor ! TLASTIAL4T
Load faztor ¢
Trams., errov it
Far neo, teeth MaxTeeth
Matrinx order mat _ord

: o, sntervals Maulnie gl
Reference phase phiiat L0000
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Tooth H
error 1 contact

i Tocth | Distance
! num. { along .

1 | tooth

H i [mml

| ——— - it
! z ! 26,000
: 3 H 101.072
H s H 114,928
: z 1 120,000
! 4q H 48, 000
d 4 ! SI.072
! 4 H &£56.928
: a ! 7.072
! 4 ' 20.928
' a ! 101,072
H 4 : 114.928
' 4 : 120,000

MMM da

! Ci, D00
H 9,072
! 14,928
: 29.072
P 42,928
H 2072
H b6H. 228
L]

! 77072
: Q0,728
i 101,072
: 114,928
1
'

120, OO0

Contact !

e

STIress

Tooth Toath { Normal
bending i tooth
defn. i load

[N/mm32

defn.
Cmuld

O, Q00

IN/mmZ23]

{mul

]
---------- i
Q.000 | O.000
G, OO0 O, 000
0, 000 Q. 000

O, Q00 | 0, 000

Z.095 |

2.248 | 0. 000
4,318 | Q. 000
9.072 | 0,000

2, OO0 . Q00

0.271 :
OO0 O, OO0
'
]

[]
0,766 |
Z.784 | 0. 000

)
1
\
0, GO0 CL 000 !
i
¥

o2T.784 0 492,477

- -
! -

o4 7
-t £

T.788 ! 2.519 ! G.218 n4.797 25,75
T.727 ; Q. 450

{-d =3 3a b

LeE0

1Ry 2

i
43,483 |
+
i
[}
H

2.472 1

e ewre
R NP

L S

-3

- o
rJ\ N
.
~J

&

~1.49% GO0 !
-0, 777 ! 0, 000 ! 3
0L OAD 1,774 ! !
0.087 | 1.891 {
-0, 0T34 ) 2,083 ¢ !
-0, 250 ! 1,985 ¢ !
-0, TOT 1,788 0 |
-1.156 ! 1,405 !

-t 0T 1.017 ¢ : £
—-1.808 : !
i ]

el QA
A S

Ia

s o ey e
L5 ) 3

-1
Tt L LR M)

: é: ' O, Q00 T T H = ! Sth :
: £ ! LB e ! S DDT ! T ! oA '
' & : 12,908 ' T ! . '
: é ; 2RGOTI ! DO

: & H 42,92 ] RIS Tk B

! & : ST.07Z 1 ! IR IR TR

i é ! &6.928 ' U O T T

! & ! T2.000 ' & T T

-
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Output 9b

This output is for the same exact gear—set used

However the phase of mesh chosen this time is tt
rise to the spike—effect (at start of mesh in thi:’
phase is 0.3965 pbt.
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R Rl Rl Ry Y R R CF e A A g SV PR RV O VSRR VRV Vv VIV VIR VRIVERCRICR iy

Design Unit Newcastle Univarsity,.
HERWW KR EEREREESEEERREFERELEEFFEREEEEEFEXEFEFREEXXF XS RRY

*HELICALDIST:

GEAR GEOMETRY %

Number of teeth
Facewidth
Ref.circle dia
Base circle dia
Tip dia

Add.mod. factor
Normal module
Driver Tool Add.
Driven Tool Add.
Crest Rounding R

Crest Rounding Rad

Working centres
Helix angle

Baze Helix angls
Ref.pr.angle
Ref.pr.angle
Trans.cont.rat
Trarms.cont.imat
Overlap ratic
Driver tcocraue
Tooth load/Lcon
Tooth load/b

Man tooth load
Mav contact
Load foctor
Load fzactor
Tranmz. error
Ma mo. teeth
Matrix order

¥ Mo. interval
Reference phase

x4
o

stroc

LOADING DATA

oooaomn

hact
hacZ
pani
pan?

aw

beta
betat
alohan
alphat
epsalph
ensalpho
ensbetes
T!

whm
whmi

=
=N

s mar _sigmah
bl oed
bFloadd
+t
Maw Teeti
mat_zord

= MaxInto

ahizt

Driver

18
120,000
207.846
121.611
227.846

. 24979988
1.24999938

282.0248T2072

ot e

22.7958771°
1.235284604%
2. 002BLOLE
1.F0PBERIS
1014, 85657917
42, 94343055
7. RPFIR2GEL
Z0E, 41711846
1014, 024218
11.82778148
5 e

£y

TFHLO00C
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Driven

sS4
120,000
623.578
574.834

64,53

on

Vi

&2

25-04-89) %
HADDAD*»

Vercsicn 07



Tooth

! ; t
4 [ad t
) ; .
: i
H L. '
i : '
i &

Distance
&l ong
tooth
Lmm1

2,000
77.072
P0.928

101,072
114.928
120,000

-y

24,000

e
DE.07E

- -
42,928

- fadd

- = e
e L4
; =
Sé, C.:g
TT.LOT70
(o T =X o]
?'._, PN &~EJ

- .y
IOl 0T7R
114.928

5
4

g o~ .

oady, (i)

O Oty

-~

£ -
TIPS
16, 928

o~ - -y -
e O Ll

Tooth
error

5. 254

=10 0&0

e
A tan

P

&40
AT

ity L

— Rt R Ean]
s e

S i ]~

Tonth
contact
dafn.
Lmul

Q000
Q. 000
e OO0
Q. Q00

O, OO0
10, &02

e OO0
e OO0
Oy, OG0

1.715

PR
o &
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Tooth
Hending
defn. .
Cmus]

Normal
tooth
load
[N/mm]

0. 000
€. 000
0. 000
e OO0
! O. 000
! S08.417

3.BS0
Z.846
Z.874
4,033
4,432

4,621

T.ETE O 0, D00
S QL OO0
! Crl OO0
S 8. oan

LT L 080

Corntact
ztress

CN/mm2 1]

i
]
]
1
'
H
!
: O 000
H O, 000
H C. OO0
: O 000
! 0. QO
1014088




APPENDIX SA

GEAR TOOTH ERRORS AND REFERENCE RING RADIAL RUNOUT

This Appendix contains tabulated wheel and pinion tooth lead, profile and
pitch errors as measured on the Gleason GMS430, and the Hofler 630 respectively.
Tabulations of the radial runout of the wheel and pinion shaft reference rings,
when the shafts are mounted on the Gleason (wheel shaft) or the Hofler (pinion

shaft) and when mounted inside the rig, are also included.
Only the errors for the teeth that are meshed during the tests have been

tabulated, although results for all the teeth were obtained. The tooth pairs with

the worst combination of errors were selected for the meshing tests.
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TOOTH GRID ERROR (um)

Ne- SECTION £4/4BF FH/ FHB F$/F3
aa/a’'a’ S5.5/5.7 -2.8/-8,3 8.5/10.6
| ? bb/b’b " 4.8/4.0 | -3.8/-11.3 | 7.5/12.5
cc/c’'e’ b.1/76.3 -4,9/-8.5 v 2/11,3

aa‘a’a’ 7.2/4.4 -4,0/-9.1 ?.2/9.8
10 bb/b’'b’ 4,8/7.2 ~4,3/-9.6 S.9/711.7
cc/c’'c’ b.4/7.1 -5,3/~11.8 8.5/711.8

aa/a’‘a’ 8.4/4.32 ~Z.9/-43.0 | 10,5/326.1
H bb/b’'b’ 4,0/3.2 ~Z.6/-44,1 6.4/35.6
cc/c’ce’ 6.2/6.1 -2.3/-4%,0 3.7/25.1

aa/a’a’ 6.4/3.9 -2.9/-2,9 8.0/3.6

1z bb/b’'b’ 4.7/4.8 -5.6/=b6.6 7.9/7.1
cc/ec’e’ 4.8/5.2 ~-4,.5/-6,1 8.2/7.6

Data is for right flank (gear viewed from torgue_up side)

Table %a.l1 Wheel Profile % LLead Errors
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TOOTH NO.
GRID
POINT fp/Fpo  (um)
9 10 11 12
1 =-0.5/-0.3 ~0.3/~0.8 14.8/14.0 | ~17.5/~3.3
2 -0,4/-0,4 =3.2/=-2.6 15.6712.0 | =-18,7/-6.7
3 -0.4/-0.,4 -0.4/-0.8 14.0/13.2 | =-17.9/~4.7
4 -0.4/-0,4 -2.0/-2.4 0.4/-2.0 1.6/-0.4
] -0.4/-0,4 -3.6/=4,0 0.4/-3.6 -0.4/-4.0
b6 -0.6/-0.6 0.4/ 0,0 -1.0/-1.0 0.6/-0.4
7 ~0.6/=-0,6 .07 2.4 -14/-11.6 14.47 2.8
8 -0, 4/=0,4 -0,4/-0.8 ~13.4/-14, 16.0/7 1.6
9 40.4/-0.4 -1.2/-1.6 -10.,4/-12 15.77 3.7
Data is for right flank (gear viewed from torque_up side)

Table Sa.2

Wheel Pitch Errors
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l TOOTH AVG. RUN_OUT (um) TOOTH AVG. RUN_OUT (um)
NO. RING 1 RING 2 NO. RING 1 | RING 2
1 +0. 00 +0. 00 28 -9.45 -17.65
2 -0. 30 -1.25 29 -9,95 -16.80
I -1.00 -2.15 Z0 -8.85 -16.05
i 4 -1.65 -2.90 31 -8.45 -15.30
l s -1.80 -4.20 z2 -7.95 -14.70
| b =1.80 -4.60 Iz -8.10 -1Z.50
7 -2.80 -6.00 4 -7.05 ~-12,60
8 -3.640 -b.60 29 -7.70 -11.70
9 -2.70 -7.75 36 -6.,00 -10.60
10 -3.20 -8.25 | 37 -4,50 ~-B.75
11 -7. 60 -9.20 I8 -4,85 -7.50
12 -3.35 -10.00 39 -2. 40 -4.00
13 -3.35 -10.65 40 -3, 00 -4,60
14 -4.08 -12.30 41 -1.85 -Z.15
15 -5.35 -12.85 42 -1.05 -1.85
16 -5.45 -13.45 43 ~0,10 -0.85
L 17 -6.75 -14.05 a4 1.10 0.3
18 ~5.95 -14.7% 45 0.10 0.85
19 -b.85 -15.35 44 2.20 1.80
20 -7.25% -16.30 47 1.10 2.35
21 -8.00 -17.10 48 1.45 2.70
22 -7.75 ~17.35 49 1.35 2.50
23 -7.%5 -17.40 50 0.95 2.50 |
24 -8.00 -17.50 =1 0.65 2.25 I
2% -8.20 .| =-17.75 52 1.85 1.65 I
26 -9,20 -17.50 53 0.75 0.95
27 -9.10 -17.90 =4 0.05 0.50
[ﬁ RING 1| is at the torque_up side l

Table Sa.3 Wheel Radial Run_Out on the Gleason Measured
Relative to Fosition of Tooth No.l
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TOOTH GRID ERROR (um)
NO- SECTION £/5BF FHot/ FHP Ff/FB
aa/a‘a’ 6.7/5.7 -4,8/71.9 11.0/6.0
4 bb/b‘b’ 4.8/5.5 ~-0.,0/2.4 S.0/6.0
ce/c‘e’ 6.0/6.0 ~6.8/2.0 13.0/6.2
aa/a‘a’ 9.0/5.5 0.44/1.27 5.2/5.8
5 bb/b’‘b’ 5.0/5.0 0.95/1.85 6.0/5.3
cc/ece’ S5.8/76.0 -1,9/2.1% 7.5/6.0
aa/a’'a’ 5.5/7.9 0.5/1.75 6.0/8.1
o bb/b’b’ S5.2/5.9 0.98/71.58 4,6/5.7
ce/cc’ 6.5/8.9 ~0.3/1.7 5.7/6.5
aa/a’a’ S5.2/4.9 0.25/3.74 5.5/6.95
7 bb/b’b’ 4,6/6.9 0.82/2.18 4.8/7.8
cc/e’c’ 7.35/5.4 0.17/72.81 7.97/7.0

Data is for right flank

(gear viewed

from torque_up side)

Table Sa.4 Pinion Profile % Lead Errors
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Data is for right flank

TOOTH NO.
GRID
POINT 'Fp/Fp (um)
7 ) S 4
2 2-2/-7-7 2.9/-9.9 -1-5/-1218 -(:’06/-1103
5 1-1/—9-4 1.0/—1005 -1I7/_11.6 -().2/_1(3-(3
8 1.9/-5.4 3.1/-7.4 -0,2/-10,8 | -1,.8/-10.4
(gear viewed from torque_up side)

Table Ja.5

Pinion Piteh Errors
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! TOOTH AVG. RUN_OUT (um) I
NO. RING 1 RING 2 I
0.10 1.15 l
2
3 1,10 3.55
4 2.75 5.50
5 4.55 7.50
6 5. 00 7.2
7 5.45 7.325
8
9 6.75 6430
10
11 6.85 5.50
12
13 b. 60 T.30
14
15 3.50 -0.25
16
17 2.05 0.40
18
19 2.10 1.50
20
21 1.60 1.4

RING {1 is at the torque_up side

Table Sa.4& FPinion Radial Run_out on the Hofler Measured
Relative to Position of Tooth No.l (lead %
profile error measurement set_up)
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TOOTH AVG. RUN _OUT (um)

NO- RING 1 RING 2
1 0.00 0. 00
2 0.40 ~2.30
4 0.75 -5.00
4 0.75 -2.10
5 1.00 | -3.30
6 2.75 -2.70
7 1.40 -0.15
8 2.50 -0.70
9 Z.30 1.50
10 3.50 2.70
11 5.50 Z.00
12 6.85 5,30
3 8.80 4,00
14 10.00 6.15
15 7.80 6.00
16 8.30 6.00
17 7.70 5. 00
18 6.50 2.70
19 5. 90 1.50
20 Z.50 0.20
21 2.00 -2.70

RING 1 is at the torque_up side

Table Sa.?7 Pinion Radial Run_out on the Hofler Measured
Relative to Position of Tooth No.l (pitch error

- measurement set_up)
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TOOTH AVG. RUN_OUT (um) TOOTH AVG. RUN OUT (um)
NG. RING 1 RING 2 NG. RING 1 RING 2
1 +0.00 =0, 00 28 -6.320 -12.10
2 -1.00 ~0.30 29 -B8.50 -9.20
3 -3.00 ~1,60 0 ~6.50 -10.30
4 ~-35.00 -4.80 I -8, 80 -8.00
S -4.,320 ~-1,30 32 -6,30 -4, 80
b6 ~-3.60 -1.,00 33 -11.70 ~4,70
7 6,60 -2.20 4 -2.90 -2.40
8 -2.90 -2.50 s -b.30 -0, 50
9 ~T.40 ~3.20 36 -4,60 1.00
10 ~7.60 -4,90 3z ~3.40 3.40
11 -6.20 ~b,30 I8 -4.70 3.80
2 -9.00 -8.30 9 -3.30 7.0
13 -3.60 -8, 60 40 0,10 10.90
14 -5.60 =10, 40 41 2.90 12.40
15 -4.90 =11.20 42 -4.80 8. 40
16 -9.60 -132.20 43 .10 16,00
17 -10.10 =14,00 44 3,30 16.70
18 -46.90 -13.80 45 S.10 14.80
19 -5.50 -132,.90 46 6,90 16.90
20 -10.50 ~13.40 47 1.80 18.70
i 21 -10.80 -12.460 48 2.00 15.80
I 22 -10.00 -14.00 49 6.10 14,30
I 22 -12.50 ~14,10 S0 S5.10 14,00
24 -10.,20 -13.40 St 2.3 13.00
| 25 -9.70 ~-12.70 T2 5.40 11.40
26 -7.90 -13.00 53 0,00 10.10
I 27 -8.70 -12,90 54 4,90 7.20
RING {1 is at the torque_up side
Table Sa.8 Wheel Radial Run_Out Inside Rig

Relative to Fosition of Tooth No.l




TOOTH AVG. RUN_OUT (um)

NO- RING 1 RING 2
-0.00 -0.00

2 -0, 60 T.70
3 0.60 6,00
4 3.320 10.70
S 5.80 11.80
b 9.30 12.80
7 13.00 15.40
8 16,70 16,20
9 19.70 17.70
10 22.10 16.40
11 23.40 15.00
12 24,20 12.10
13 23.00 5.80
14 21.20 1.20
15 17.20 -4,80
16 14,50 ~7.00
17 11.20 ~7.10
18 7.50 ~-7.80
19 + S0 -b6.30
20 2.70 -5.00
21 1.20 -2.80

RING 1 is at the torgque_up side

Table Sa.®?

Pinion Radial Run_out in Rig
Relative to Fosition of Tooth No.l
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APPENDIX 5B

POINT LOAD CALIBRATION COEFFICIENTS
AND TOOTH ROOT STRAINS

This Appendix contains a listing of the experimentally obtained coefficients
"aij" (see Eqns. 5.6 and 5.13), as well as a listing of the experimentally obtained
gear tooth strains when the gears are loaded "eij" (see Eqn. 5.6). The results for
all . three phases 1, 2 and 3 are included, and in each case the developed
micro-computer program "CALS" solves for the load intensity "F j*" (see Eqn. 5.5)
at the required locations along the simultaneously engaged teeth. Note that the

numbers 1 ... 22 in the tables refer to those shown in Fig. 5.22.
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(4%

i . 3
1 2 > 4 S 7 8 ° 10 11 12 13 14 15 16 17 18 19 20 21 22
1].17114 | .0a711} .01909]. 00954 o o o o o o o o o o o o o o 0 o o o
2 | .0a77a | .o9a83] .0s051]. 01821 |.00800 n o o o o 0 o o ) o 0 0 o 0 0 o o
= | .017a8 | 05333 .08808|.07166 |.01694 | 00940 a o 0 o o ) 0 o 0 0 0 0 o o o o
a o .02089 | .03217].09562 |.03640 | .01829 | .00a06 0 ) o ) 0 o o o 0 o 0 o o 0 o
s L0092} .01681}.05067 |.10327 | .03am0 | .o171% o o o 0 0 o o o 0 0 o 0 ) o o
3 o o .01780 |. 03721 | .108s9 | Lozoz2 o o 0 o o ) o 0 o ) o o o o o
7 o o 0 L00797 . 01770 {07771 | . 11709 o o o o o 0 o 0 o 0 0 o o o o
9 o o o o o o o .21252 | .o96s1 | L03802 | o092 o o 0 o o o o o o 0 o
9 o o o o .09a14 | .1a757 | (10204 | .na0s2 | 01227 0 o 0 o o o o o o o
10 o o o o 08597 | .09889 | .12720 | .07309 | .02918 | .007%0 o o o 0 o o a 0 o
11 o o o o .01508 | .03877 | .072%6 | .11598 | 07992 | .02929 | .n1230 o 0 0 o o ) o 0
12 o o o o o 0 .01978 | .ozs28 | .oe%78 | . 10372 | 05782 | .02527 | .0n0e71 o 0 o 0 0 o o
M o o o o o o o o o .o01210 | Loz25s | L0576 | L09915 | L0e7e9 | L0ZS74 | L00BTS 0 0 o 0 0 )
14 0 o 0 0 o o o o o .01667 | L0284 | .07261 | .10079 | .0s529 | . 02085 0 0 [ 0 [ 0
15 o o o o o o o o 0 0 o .00831 | .02=54 | .05620 | o970 | Jos283] .01731}.00824 o ) o o
16 0 o o o o o o o o o o o .00977 | 02463 | .08061 | .08906 | .04z89].01948 |.00603 o o a
17 o o o o o o o o o o o o o .00693 | .02z49 | .03176] .08669].05176 |.022%0 o o 0
18 ) ) o o o a o 0 0 o 0 0 o o .01060 | .02437| .0S656]. 10422 |.05867 0 o 0
19 o 0 o o o o o o 0 0 0 o 0 O 0 ) .01809}.06296 |.13761 [ 0, 0
20 o o o o o o o 0 o o ) o o o 0 o 0 o .12933 | .09222 | . 0449
21 o o ) ) 0 o o o o () 0 0 o o 0 0 0 0 .10491 | .14119 ] . 11337
22 o o o o ° ° o o ) o o o o o 0 0 ° 0 .0465% | . 10326 | .21710
Table 3b.1 Coefficients aij at Test Fhase |
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1

[}]

-
-

3

S

6 8 i 10 11 12 17 14 15 146 17 18 19 20 21 2
1 «11743 1 .OT934] .018637].00644 o] Lo 0 0 O O 0 a 2] 0 O 0 o 0 0 O
2 03762 10214 .04096]1.01748 |.01027 O O o 4] [ 0 o ] 0 [ 2] 0 [l 0 0
3 L01TS9 ) .04678] .1009%5].03129 §.01679 0O ] 0O o] O o ) ) 0 0 0 0 0 0 [a]
4 ] .01932] .026868].10383 |.03824 [ 0 [l [A] O 2] 0 3] [a] [a] 0 [a) [2) 0 ]
S 0 .010481) .01477].04877 |.10998 a3 O O 0 24 0 Q 0 ] O 0 O a [} ()
) 0 0 4 0 . 20271 .08083 | .02865 | 00944 O O 0 0 (2] 0 [ O 0 [ad O
7 [) 2] ] [a] L0B&77 ,11965 | .0850B | .03784 ] 01068 N O 0 [a) (o] o] (4] [a] 0 [a] [a)
] ] o) o 0 [a) . 04298 L.080%T | .10519 ] . 06058 ) .0Z604 | .00NBTA O O 0 O 0 0 [a] 2] (] 0 0
9 o] 0 0 [ (2] .01806 L.03297 ] .046188 | .10%701 ) 07052 ] .02%90 ] .01155 ] 0 0 2] 0 ) ] 0 0 [a)
10 ) 0 [s] [ o o 01618 | 02941 § 07620 ] .094TT | .0%0T0 | .022T4 | 00684 0 0 0 2] o] O 0 0 &)
11 O O 0 0 O O (&) LO09ZTT ) L 0290F ) 05179 ] 09080} .054698 | 02207 | . 00686 0 0 O O 0 0 0 0
12 [} o 0 0 3] I3 o 01497} .028%0 | .06405 | .08975{ .0asa1 | .01678] .00527 o o [ ") o [ o
13 [a) 0 [a] o) [s) (8] 0 0 J00761 1 02217 ] 047801 .0B66% | .0O4AEBR2] .01595 ] . 00528 O 0 [a] [a] ] 0
14 o o 0 0 0 [ ) 0 (] 1) .00767 1 .02082 ] .0%N98 | 086241 L0TB79 | 01766 00547 4] (2] O (=] 0
15 0 o) 0 o) [ ) 0 " ] (2] .0069% | L01977 ] .04a7S1] 08737 ] .03806) 01941 0 0 ] 0 [a]
16 3] 0 (] ] ) O 0 0 ) 0 (8] 00876 | JO2MTT] .050TO ] L 10368 05197 0 0 (2] [s] 0
17 o ) o o o o [ n 0 [a] 0 .0144%5 ] 05344 14091 O 5] 0 0 0
10 2] [ad 0 0 ) 0 0 2] [a] [a] [a) [a] o] 0 [o) -12771 1.08745 | .02717 | .01211 0
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Table 35b.2

Coefficients aij at Test Fhase 2
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GAUGE TEST FHASE
No. —i- o =
1 8.0 9.5 11.0
2 13.0 10.3 12.0
3 21.0 11.0 12.5
4 43,0 10.5 10.5
5 §8.0 P.5 12.5
6 53,5 10.0 1Z.0
7 21.5 11.5 15.5
8 8.9 12.95 18.3
9 FeS 19.0 32.0
10 12.5 27.5 S51.5
11 22.5 S2.5 81.5
2 i8.0 73,0 96.0
13 81.5 94.0 92.5
14 129.5 120.5 93.0
15 162.0 150.0 5.5
16 177.5 149.85 69.0
17 218.5 177.5 110.5
18 252.0 183.0 218.5
19 286.5 348. 0 ZTb.S
20 297.0 948.5 526.5
21 854.0 682.0 663.5
22 692.0 724.95 744,0

Table Sb.4 Meshing Test Tooth Root Strains (in microstrain)
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APPENDIX SC

MODIFICATIONS TO MEASURED TOOTH ERRORS

In this Appendix, the gear tooth errors as measured on the Gleason/Hofler
are quoted, and then corrected to account for misalignments of the loaded shafts in
the rig (since the shaft axes will not be aligned with the Gleason/Hofler axis).
Since the ground circular rings (section 5.2.2.1) are used to measure shaft
misalignments in the rig, then any ring irregularities (radial runout and eccentricity)
must also be accounted for.

These corrected tooth errors are crucial to the comparison of the experimental
load distribution results with the theoretical ones, and must be input to the load
distribution program "HELICALDIST" correctly as will be discussed in Chapter 6.

Shaft misalignments will only have an effect on the tooth misalignment errors
“figB" (tooth profile and pitch errors are not affected). Referring to table 5A.1
and Chapter 6 (section 6.2.2), the averaged uncorrected wheel misalignments for
the teeth to be meshed 9, 10 and 11 are respectively -0.13009, -0.14120 and
-0.60231 pm/mm. Similarly, referring to table 5A.4 and Chapter 6 (section
6.2.2.), the averaged uncorrected pinion misalignments for the teeth to be meshed
5, 6 and 7 respectively are 0.02303, 0.02327 and 0.04027 pm/mm where the
meshing pairs of wheel with pinion are 11 with §, 10 with 6 and 9 with 7.

Next, the measured shaft vertical misalignments &, for the three test phases 1,
2 and 3 respectively are -29.9, -30.3 and -31.0 gm and using equations 5.15 and
5.16, these are converted into angular misalignments along the base tangent "04"
and are -0.28023, -0.28397 and -0.29054 pm/mm all measured at the torque-up
end, where £ = 100mm, ¢ = 20.41°,

The horizontal shaft misalignments are somewhat more complicated and are

expressed in stages. First consider phase 1, from equation 5.17

6p1 = 2.625(-430+394) = -94.5 um
and from equation 5.18
Sp2 = 2.625(-438+4372) = -173.25 pm

and finally from equations 5.19, 5.20 and 5.21 the angular misalignment along the

base tangent is
fpy = —0.27463 pym/mm (at the other end).
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Similarly for phase 2,

2.625(~432+394)

-99.75 um

5h1

2.625(-440+374)

-173.25 um

5h2

fpt = —0.25634 ym/mm (at the other end)

and for phase 3, «

2.625(-430+393) = -97.125 um

5h1

2.625(~438+373) = -170.625 um

6h2

6pt = —0.25634 pm/mm (at the other end)

Finally from equation 5.22, the total shaft misalignments along the base tangent
"0," for phases 1, 2 and 3 respectively are -0.00560, -0.02764 and -0.03422
um/mm all at the torque-up end. These misalignments may be added to only the
pinion tooth errors as discussed in section 5.5.3.2, but must first be further
corrected as discussed below.

As mentioned above, the shaft misalignments calculated so far must be
corrected for ring eccentricity and runout, and so "Ar;", in equation 5.23 must first
be calculated. To do that, the points "i" where the alignment measuring devices
contact the reference rings must be located by means of the tooth numbering on
the gears. Thus for each of the phases 1, 2 and 3, these points on all four rings
are determined in the rig. The angle between the tooth at "i" and the tooth at
maximum eccentricity "e" is thus the angle (6;-y) in equation 5.23 (see Fig. 5.26).

For the vertical alignment measurements, "i* is at the top surfaces of the
rings at 90" from the line of centres of the gears and for the horizontal
measurements, "i" is on a line parallel to the line of centres of the gears, as can
be clearly seen in Fig. 5.25. Table 5C.1 shows all the variables of equation 5.23
for phases 1, 2 and 3 for both the horizontal and vertical measurments where:

ring 1A - ring on wheel shaft at torque-up end

ring 2A - ring on wheel shaft at other end

ring 1B - ring on pinion shaft at torque-dp end

ring 2B - ring on pinion shaft at other end.

The value of "Ar;," at "i" for any case is determined from tables 5A.3 and 5A.6
where interpolation was carried out in cases when "i" did not coincide with a tooth

number. The tables list the calculated values of "Ar;" (Eqn. 5.23), "“sr" (Eqn.
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5.25) and "6;" (Eqn. 5.22), where 2r, in equation 5.25 was measured at 10°
intervals along the circumference of each ring and these measured ~“values were
averaged to be 120.9709, 120.9712, 120.9725 and 120.9713 for rings 1A, 2A, 1B
and 2B respectively (recall that 2ry, is 121.0000mm). Finally, from equation 5.24,
(0)moq for phases 1, 2 and 3 respectively is -0.012786, -0.011245 and
-0.020011 pm/mm all at the torque-up end where the results for "ér" in table 5C.2

were used.
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FHASE RING AF Arim e |91~

Luml Cuml Luml |[deareel

1A | -3.85926 | 0.9500 4.975 | 20.000

24 | -8.1268% | 2.5000 5.950 0. 000

! 1B 3.69545 | 6.6938 T.375 | 21.430

2B 3.42727 | 4.1250 3.875 | 124.286

1A | -3.85926 | o0.8862 4.975 18,582

26 | -8.12685 | 2.4468 9. 950 1.418

2 1B 3.69545 | 6.7203 3.375 17.785

2B T.42727 | 4.3589 z.875 | 120.641

1A | -3.85926 | 0.8224 4,975 17.164

26 | -8.12685 | 2.3937 9. 950 2. 876

= 1B 3.69845 | 6.7470 3.375 14,178
2B T.42727 | 4.5929 2.875 | 116.994 I

Table Sc.la
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FPHASE RING A¥ Arim e 101 ~¢f

Luml Lum]l fuml | Ldeqreel

1A ~7.85926 | ~2.9500 4,975 70.000

2A -8. 12685 | -8.0500 9.950 90.000

1 1B 3. 69545 5. 4500 3.375 68,570
' 2B 3.42727 7.3500 2.875 34,286 L

1A -2.85926 | -3.0564 4,975 71.417

2A -8.12685 | -8.1776 9. 950 88.582

= 1B T, 69545 5.3543 T.375 72.215

2E 3. 42727 7.3564 3.875 30.641

1A -3.85926 | -3.1627 4,975 2.836

2A -8.12685 | -8.30%52 9,950 87.164

S 1B 3. 69545 5.2586 3.375 75.862

2B 3.42727 7.3628 3.875 26.994

Table Sc.lb
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PHASE | RING | Ari 6r at
Cuml Luml Cum/mm]

1A 0.13429 | -14.41571
26 0.67685 | -13.72315

1 18 | -0.14332 ] -13.@9332) ~©.00560
7B 2.88060 | -11.4694
1A 0.02981 | -14.52019
2A 0.62670 | -1Z.77330

= 1B | -0.18886 | -13.97886 | ~0.02764
2B 2.90660 | -11.4424
16 | —0.07177 ] -14.62177
2A 0.58274 | -13.81726

= 1B | ~o.22122 | -13,97102 | ~9.094%2
°B 2.92448 | -11.42552

Table Sec.2a

Calculation of Ari. Br
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PHASE | RING Ari Er ot
Cuml Tuml Cum/mm]1

1A | <0.79229 | -15.3422
2A 0.07685 | -14.32715

1 15 | o0.52144| -13.22854 | ~0-00560
2E 0.72107 | -13.62893
14 | —0.78260 | -15.37260
26 | -0.29698 | -14.69698

2 1B 0.62797 | -13.12207 | —9.02764
2B 0.59517 | -13.75483
14 | ~0.77160 | -1s5.32160
24 ~0.67065 | -15.070465

< 1B 0.73883 | -1z.01117 | ~O-0542=
oF 0.48270 | -13.86730

Table Sc.2b Calculation of Ari, Br
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APPENDIX 6A

AVERAGE TOOTH ERRORS

This Appendix contains a listing of the averaged pinion and wheel tooth

errors as discussed in section 6.2.2.
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(Fp)avg

WHEEL TOOTH (Fp)avg PINION TOOTH
(um) {um)
9 -0.4560 1.7333
10 -1,2889 4,0667
11 -0.6000 2.9330

Table éA.1 Average

Measured Comulative Fitch Error
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WHEEL TOOTH (fHQ) avg/11 PINION TOOTH (pr)avg/ll
(um/mm) (um/mm)
| ? -0.13009 7 0.04027
I 10 -0.14120 ) 0.02327
I 11 -0,.60231 9 0.02303
Table 6A.2 Average Measured Helix Angle Error
(11 _ test range across face width)
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7 WHEEL TOOTH

(fHee) avg/l2 PINION TOOTH (fHg) avg/la
(um/mm) (um/mm)
9 -0, 69444 7 0.07417
10 -0.81111 & 0.09729
11 -0,54444 S -0,03000

Table 6A.3

(12
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Average Measured Profile Angle Error
test range along tooth height)




WHEEL. . (fyz)avg/(11+#12) PINION (fyz)avg/(11%12)
TOOTH (um/mm2) TOOTH (um/mm2)
® 0.001850465 7 0.0012920
10 00087870 6 Q.000TTOZ
11 -0, 00183820 S 0.001722%

Table 6A.4

Average Twish
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IPHASE WHEEL (fHg) mod PINION (fHg) mod
TOOTH Lum/mm] TOOTH Cum/mm1l
9 -0.120090 7 0.023726
1 10 -0.141200 & 0.006726
11 -0.602310 S 0.006486
4 =0.130090 7 0,001424
2 10 -0.141200 6 -0.,015574
11 ~-0.602310 S -0.01%814
9 =0.130090 7 -0.005508
x 10 -0.141200 6 -0, 022508
11 -0, 602310 S -0,022748
Table 6a.% Modified Gear_Tooth Misalignments
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APPENDIX 6B

THEORETICAL SHAFT DEFORMATIONS

This Appendix contains a listing of the theoretically determined test shaft

deformations as discussed in Section 6.3.
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2 WHEEL (2) Cuml PINION(1) CLuml TOTAL
t™ | rors | sHEAR| BEND | TORs | SHEAR | BEND Cum
0.00 0.543 0.179( 14.10 1.233 0.820 | 16.055
3.17 0 0.546 0,180} 14,20 1.319 0.870 | 17.215

11.83 0 0.5852 0.185] 14.83 1.556 0.990 | 18,113
18.17 0 0.357 0.189}§ 185.22 1.730 1.070 | 18,766
26.83 0 0.546 0.193] 18.76 1.967 1.15% | 19,4639
33.17 0 0.569 0.196] 16.15 2.140 1.200 | 20.285
41,83 0 0.575 0.199| 14.468 2.377 1.240 | 21,071
48.17 8] 0.570 0.201] 16.88 2.3764 1.247 | 21.274
56.83 0 0.549 0.204] 146.88 2.138 1.232 | 21,003
&3.17 0 0.3543 0.205| 146.88 1.964 1.203 | 20.786
71.83 0 0.514 0.207| 16.88 1,726 1.143 | 20.470
78.17 0 0.498 0.208] 16.88 1,582 1.08%5 | 20.223
B846.83 0.478 0.209) 16.688 1.313 0.989 | 19.869
?0.00 0.470 0.210] 16.88 1.226 | 0.930 | 19.736
Table éb.1 Approximate Theoretical Shaft Deflections
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