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Abstract	

Software simulation is vitally important in a number of industries. It allows engineers to 

test new products before they leave the drawing board and enables tests that would 

otherwise be difficult or impossible to perform. Traditional engineering simulations use 

sophisticated numerical methods to produce models that are highly accurate, but 

computationally expensive and time-consuming to use. This accuracy is essential in the 

latter stages of the design process, but can make the early stages - which often involve 

frequent, iterative design changes - a lengthy and frustrating process. Additionally, the 

scope of such simulations is often limited by their complexity. 

An attempt has been made to produce an alternative, real-time simulation tool, 

developed using software and development practices from the video games industry, 

which are designed to simulate and render virtual environments efficiently in real-time.  

In particular, this tool makes use of real-time physics engines; iterative, constraint-based 

solver systems that use rigid body dynamics to approximate the movements and 

interactions of physical entities. This has enabled the near-real-time simulation of multi-

vehicle trains, and is capable of producing reasonably realistic results, within an 

acceptably small error bound, for situations in which a real-time simulation would be 

used as an alternative to existing methods. 

This thesis presents the design, development and evaluation this simulation tool, which is 

based on NVidia’s PhysX Engine. The aim was to determine the suitability of a physics 

engine-based tool for simulating various aspects of rail dynamics. This thesis intends to 

demonstrate that such a tool, if configured and augmented appropriately, can produce 

results that approach those produced by traditional methods and is capable of simulating 

aspects of rail dynamics that are otherwise prohibitively expensive or beyond the 

capabilities of existing solutions, and may therefore be a useful supplement to the 

existing tools used in the rail industry.  
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The following abbreviations are used throughout this thesis: 

� WRI - ‘Wheel/Rail Interface’, referring to the point of contact between the wheel 

and the rails (see Section 2.1) 

� TM - ‘Timing Multiple’, referring to a multiple added to the simulation code to adjust 

simulation timing parameters (see Section 5.8.1) 

� SIC - ‘Solver Iteration Count’, referring to a parameter of rigid bodies in the PhysX 

engine (see Section 3.4.7) 

� SEV - ‘Solver Extrapolation Value’, referring to a parameter of joints in the PhysX 

engine (see Section 3.4.7) 

� MAV - ‘Max Angular Velocity’, referring to a parameter of rigid bodies in the PhysX 

engine (see Section 3.4.7) 

� SB Wheelset - The ‘Single Body’ Wheelset, referring to one of the wheelset design 

variations (see Section 3.2.2) 

� MB Wheelset - The ‘Multi Body’ Wheelset, referring to one of the wheelset design 

variations (see Section 3.2.2)  
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Nomenclature 

The following symbols are used in this thesis to represent various values and properties. 

Formulas and diagrams from external sources have been modified to make them 

consistent with the nomenclature below. 

L - lateral load Ll / Lr - lateral load (left/right) 

V - vertical load Vl / Vr - vertical load (left/right) 

N - normal force Nl / Nr - normal force (left/right) 

λ - effective wheelset conicity λl / λr - wheel conicity (left/right) 

δ - wheel contact angle Lw - total lateral force (gravitational stiffness) 

Ftan - tangential friction force W - total vertical load on a wheelset 

r - track curve radius y - wheelset lateral displacement/offset 

v - forward velocity γl  - lateral creep force 

α - wheelset angle of attack µ - coefficient of friction (wheel/rail) 

Vlat - wheel lateral velocity m - mass 

ẏ - wheelset lateral velocity g - acceleration due to gravity 

ω - wheelset rotational velocity rl / rr - wheel radius (left/right) 

r0 - wheelset rolling radius π - Pi (3.14159...) 

l0 - half the track gauge φ - wheelset roll angle 

 

 

 

 

  



 

 

  Chapter 1

Introduction 

Rail engineers currently employ various methods in the development and testing of rail 

vehicles and safety features, including a range of software simulation tools. Software 

simulation is an important research and development tool, and has some clear 

advantages over real-world testing, but existing simulation tools are complex, slow and 

expensive to use. This thesis presents an alternative, real-time simulation tool based on 

development strategies and software used in the video games industry; in particular real-

time physics engines. These engines prioritise speed over accuracy, but are based on real-

world mathematics and should be capable of producing realistic results.  

This thesis describes the design and implementation of ‘Locomotion’, a rail dynamics 

simulation tool based on NVidia’s PhysX Engine, and the subsequent evaluation of that 

tool for engineering use. The main goal of this research was to determine whether a 

simulation tool based on a physics engine is capable of producing realistic data and 

simulating key aspects of rail dynamics in a way that would be useful to engineers, as well 

as to attempt to evaluate the error bound of the results produced by the tool and 

attempt to constrain the error where possible.  

1.1 NewRail 

The development of the Locomotion simulation tool was conducted in association with 

NewRail, a research centre at Newcastle University. NewRail is dedicated to research and 

development in the fields of rail safety and security, working with various international 

partners on a range of projects [1]. In particular, the tool was developed in consultation 

with members of the Rail Vehicles Group, whose focus is on the design, development and 

testing of new materials and processes for transport applications [2].  

1.2 Rail Dynamics Simulation 

There are a number of simulation tools currently used in the rail industry (examples of 

which are discussed in Section 2.3), which are highly accurate, but computationally and 

temporally expensive. There are times when this level of accuracy is critical, but there are 

also times when true accuracy is less important and when a level of abstraction could 

speed up the process of developing new products. There are also scenarios, such as the 

dynamic behaviour (and derailment behaviour) of multi-vehicle trains, which are currently 

beyond the scope of the traditional tools due to their mathematical complexity.  
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NewRail engineer Dr. Joe Carruthers explained: “One of frustrations with conventional 

numerical-based tools for engineering simulation is the length of time that it can take 

such models to solve. With finite element crash simulations typically taking hours or even 

days to solve, iterative design optimisations can become a slow process. Therefore, as a 

complement to existing analysis software, NewRail is interested in alternative simulation 

technologies that are capable of providing ballpark estimations in real-time (or near real-

time). These would facilitate the rapid evaluation of design concepts, particularly for the 

early stages of the design process, in which the rapid, approximate evaluation of a wide 

range of design options is often more important than absolute precision.” [3] 

The problem is that rail vehicles are complex, dynamic systems made up of multiple 

bodies with many degrees of freedom, which makes simulating them a challenging and 

computationally expensive process.  

1.3 A Real-Time Alternative 

A real-time simulation tool would have a number of potential advantages over the 

existing tools. For example, it would allow engineers to rapidly make changes to a 

vehicle’s design, providing near-instantaneous feedback, which would help to speed up 

the early, more iterative stages of the design process. There have been a number of 

attempts to speed up the existing simulation techniques currently used by engineers 

(discussed in Section 2.3), but none of these have achieved the speed or simplicity 

necessary for real-time simulation. This Thesis presents an alternative approach, which 

should allow for real-time simulation of rail vehicles. There are a number of potential 

applications of a real-time simulation tool, including gauging, route design and 

optimisation, the simulation of the wheel/rail interface and other aspects of rail 

dynamics, some of which are discussed in Sections 2.1, 2.2 and 2.3. 

1.4 Real-Time Physics Engines 

The simulation tool presented in this Thesis was developed using physics simulation 

technology from the video games industry, discussed in Section 2.4, along with other 

software and development practices that are used to simulate and render virtual 

environments efficiently in real-time. Physics simulation is used by game developers to 

add realistic physical behaviours to entities in the game world, and its use has become so 

widespread that a number of third-party middleware Physics Engines have been 

developed. Thanks to evolutions in hardware and software in the last decade, these 

engines have become more sophisticated and may have reached a point where they can 

produce data that is sufficiently realistic as to be useful to engineers.  
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The use of games industry software also allows the simulation to run on a standard 

desktop PC and commodity gaming hardware, making it a relatively low-cost solution that 

does not require expensive, specialist hardware. NVidia’s PhysX engine [4] was chosen 

because it has become the predominant engine used in the games industry and because it 

has been shown to produce accurate results in certain circumstances (as discussed in 

Section 2.3.4). The PhysX Software Development Kit was also freely available for 

educational and non-commercial use at the start of this project.  

1.5 The Locomotion Simulation Tool 

‘Locomotion’, the simulation tool presented in this thesis, represents an attempt to 

create a real-time simulation tool using an alternative approach to the traditional, 

numerical-based engineering tools. Locomotion was designed to provide engineers with a 

testing environment that can be used to rapidly evaluate design changes, as well as the 

ability to simulate multi-vehicle trains and to produce useful data about behaviours such 

as gauging, inter-vehicle stability and derailment that are currently prohibitively 

expensive or are beyond the capabilities of existing tools.  

After initial testing, research and development became focussed on evaluating a range of 

key physics engine parameters that control simulation fidelity, but do not correspond to 

real-world values. These parameters have been adjusted to see which values produce the 

highest straight line speeds and most accurate derailment behaviour on curved track, 

whilst also attempting to find a compromise between performance and accuracy. There 

are also design choices, such as the wheelset design variations described in Section 3.2.2, 

where it is unclear which choice will maximise the flexibility and stability of the 

simulation, and this Thesis presents a comparison between these design choices. Also 

presented is the development of a new real-time simulation technique, based on a real-

world phenomenon and designed to improve the simulation of the wheel/rail interface. 

1.6 Evaluating the Simulation Tool 

A key aim of this research was to evaluate the capabilities of the physics engine and to 

determine whether it is suitable for the simulation of rail dynamics. This was achieved by 

using data collected from the Locomotion tool to evaluate its strengths and weaknesses, 

and to determine the sort of testing for which it may be suitable. This includes attempts 

to determine whether the tool is capable of simulating the wheel rail-interface and the 

dynamic derailment mechanism, as well as other aspects of rail vehicle dynamics, such as 

gauge testing, and its suitability for use as a rapid prototyping tool.  
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Limited validation data was available for use in the evaluation of the simulation, but the 

behaviour of simple objects has been evaluated using traditional mathematics and the 

Nadal Limit for Wheel-Climb Derailment was used to make predictions about derailment 

behaviour. These predictions have been used to evaluate the simulation, producing 

promising results (as discussed in Chapter 5). 

A real-time system will always introduce error and this research was intended to 

determine the error bound of the data produced by the simulation and, in cases where 

error was high, to attempt to constrain it. This thesis intends to show that, by adjusting 

the parameters of the engine (rather than modifying the internal workings of the physics 

engine itself) and by using engineering formulas to augment the system (for example by 

applying additional forces to the wheels) it is possible to produce results that 

approximate those produced by other means. 

1.7 Contribution(s) of Thesis 

This Thesis describes the design and development of a real-time rail dynamics simulation 

tool based on a Physics Engine, and the subsequent evaluation of that simulation tool for 

engineering use. It intends to show that a physics engine can simulate aspects of rail 

vehicle dynamics in real-time and produce meaningful data, if its parameters are adjusted 

appropriately and if it is augmented with additional forces based on published rail 

engineering formulas. The key contributions of this research are described below. 

 Development of a Real-time Rail Dynamics Simulation Tool 1.7.1

This Thesis describes the design and implementation of a real-time rail dynamics 

simulation tool, developed using PhysX and other development tools from the video 

games industry, and includes a description of how the physics engine was configured and 

integrated into the application. This simulation tool represents an alternative approach to 

the simulation methods used in traditional engineering tools and, while less accurate, is 

significantly faster and capable of producing realistic results, with a certain error bound. 

Preliminary investigations suggested that the development of such a simulation tool for 

use in the rail industry has not been attempted before.  

 An Evaluation of a Physics Engine-based Tool for Engineering Use 1.7.2

This Thesis presents an evaluation of the simulation tool. The aim was to determine if the 

physics engine is capable of producing suitably realistic results, as well as determining the 

error bound of the results and constraining the error where possible. This evaluation 

includes tests using simple objects (such as cubes), as well as wheelsets, bogies and full 

vehicles.  
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One facet of the research involved evaluating a range of simulation design choices and 

physics engine parameters, to evaluate their impact on the system and to attempt 

maximise the running speed of the vehicle, in order to make the simulation useful to rail 

engineers. Other testing focusses on the simulation of the wheel/rail interface, and shows 

that the simulation is capable of producing results that approach those predicted using 

traditional methods. Results are evaluated using traditional mathematics and the Nadal 

Limit for wheel-climb derailment, a widely-used benchmark from the rail industry. There 

have been studies into the accuracy of physics engines, and their suitability for other 

applications (some of which are discussed in Section 2.4.4), but not in a rail engineering 

context. 

 Improving the Simulation of the Wheel/Rail Interface  1.7.3

Initial testing showed that the physics engine was unable to model the wheel/rail 

interface correctly using its default parameters, and this thesis describes how the PhysX 

engine was iteratively configured and tested by adjusting a range of engine parameters to 

improve the fidelity of the simulation and produce more realistic results. It was ultimately 

necessary to develop a new technique to improve the results further, and this thesis 

presents the description of that new real-time technique; an additional corrective force 

that uses a spline-based approach and published rail engineering equations, which is 

shown to further improve the results. 

 A Simulation of Multi-Vehicle Train Behaviour 1.7.4

Locomotion is capable of simulating multi-vehicle trains in near-real time, something 

which would be prohibitively expensive using traditional tools. It was intended that this 

behaviour would be studied in more detail, and a number of features were developed to 

enable multi-vehicle tests, but time constraints prevented a full evaluation of these 

features. However, sample data from multi-vehicle tests is included in Chapter 6 as 

examples of the capabilities of the tool.  

 Alternative Applications 1.7.5

This thesis also presents an evaluation of the simulation tool’s suitability for alternative 

applications, in addition to the simulation of the wheel/rail interface. This includes an 

evaluation of its functionality as a rapid prototyping tool and as a gauge testing tool. 

 Discussion of Possible Applications of a Real-time Simulation Tool 1.7.6

Based on the data collected, the potential applications of such a real-time tool are 

discussed (in Chapter 7), including its potential for use in the areas of rapid prototyping, 

flange collision tracking, gauge testing and analysing derailment behaviour.  
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1.8 Thesis Outline 

This thesis consists of seven chapters:  

� Chapter 2 contains background material and related research in the fields of rail 

vehicle dynamics, engineering simulation and real-time physics engines.  

� Chapter 3 presents the design of the ‘Locomotion’ simulation tool, including the 

integration of PhysX, the design of the virtual vehicle and the testing environment, 

and the new real-time wheel/rail interface simulation technique. 

� Chapter 4 describes the implementation of the simulation tool, including a 

description of some of its key features, a discussion of issues that were encountered 

during its development and any changes that were made to the design. 

� Chapter 5 presents an evaluation of the simulation of the wheel/rail interface in the 

Locomotion tool. This includes an evaluation of the effect of altering various Physics 

Engine parameters, as well as a range of design decisions and the new wheel/rail 

interface simulation technique mentioned in Section 1.7.3.  

� Chapter 6 contains sample data from tests conducted in the simulation, which are 

included to show the sort of data that the tool is capable of producing. This includes 

testing of multi-vehicle trains and an evaluation of the suitability of the tool for use 

as a rapid prototyping tool and as a gauge testing tool.  

� Chapter 7 presents the conclusions of this research and a discussion of the results 

presented in Chapters 5 and 6. There is also a discussion of further research that 

might be conducted, how such a simulation tool might be further developed and 

how it might be used in the rail industry. 



 

 

  Chapter 2

Background and Related Work 

This chapter includes background information and related research in the fields of Rail 

Vehicle Dynamics, Rail Simulation and Real-time Physics Engines. It introduces some key 

concepts of rail dynamics, and describes how traditional mathematical modelling is used 

in existing engineering simulations. Real-time physics engines are then discussed, 

including their applications inside and outside of the games industry and how they can be 

used, as part of a different approach to traditional methods, to produce real-time 

engineering simulations. 

2.1 Rail Vehicle Dynamics  

This section introduces some of the basic concepts of Rail Vehicle Dynamics that are 

pertinent to the development of the Locomotion simulation tool, and introduces key 

terminology that is used in the rest of this thesis.  

 Rail Vehicles 2.1.1

A train is a complicated, dynamic system comprising multiple bodies with many degrees 

of freedom. Figure 2.1 (below) illustrates a generic passenger train.  

 

Figure 2.1 - A generic passenger train, consisting of two locomotives and a carriage. 

Trains are used for both freight and passenger conveyance, however this research 

focusses on passenger vehicles. The simulation tool was designed with the ability to 

simulate freight vehicles, but time constraints prevented the full implementation or 

evaluation of such vehicles (for more details, see Future Work (Section 7.4)). 

Passenger trains commonly comprise two types of rail vehicle; Locomotives and 

Carriages. A common configuration for passenger trains includes two locomotives, one at 

each end of the train, with the rest of the train consisting of carriages. Locomotives are 

vehicles with motorised wheels and often do not have their own payload capacity, their 

function being to pull (or push) the train along the tracks.  
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Alternatively, the term ‘locomotive’ may (as it does in this Thesis) describe a vehicle, also 

known as a ‘motor coach’ or ‘multiple unit vehicle’, which provides both drive and 

capacity for passengers - commonly used on smaller passenger trains and metro vehicles. 

Carriages are for passenger conveyance and their wheels aren’t commonly motorised 

(although some trains - such as the ‘Bullet Train’ that operates on Japan’s Shinkansen 

network [5] - do have motors on each carriage to enable the train accelerate to higher 

speeds).  

Couplings and Buffers 

The vehicles that make up the train are joined together by couplings. An example of a rail 

coupling between two vehicles is illustrated in Figure 2.2, below. 

 

Figure 2.2 - A generic automatic coupling between two vehicles (with buffers) 

� Couplings 

The coupling, as well as connecting two vehicles together, acts as a pivot and allows for 

relative moment between the connected vehicles, which is necessary to allow them to 

corner correctly. An example of a coupler commonly used in Europe is the Scharfenberg 

Coupler [6]. 

� Buffers 

Many rail vehicles also have buffers; shock-absorbing pads that limit the slack between 

the vehicles and lessen any shocks, though they are less common on modern passenger 

vehicles. 

 Bogies 2.1.2

Bogies are the assemblies to which a rail vehicle’s wheels, motors and suspension are 

attached. The most common passenger vehicle designs use a pair of two-axle bogies on 

each vehicle [7], as illustrated in Figure 2.1. A simplified diagram of a rail bogie, showing 

the key components, is shown in Figure 2.3 (overleaf) and a photo of a real-world bogie, 

an Italian ETR-5000 Bogie, is shown in Figure 2.4 (overleaf). 
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Figure 2.3 - Labelled diagram of a generic rail bogie Figure 2.4 - An Italian ETR-500 Bogie [7] 

 

The bogie is attached to the chassis of the rail vehicle via a central pivot, allowing it to 

rotate as the vehicle corners and helping to reduce track forces. On straight track the 

bogie joint is designed to resist yawing motion for improved stability [8]. 

Suspension 

For passenger bogies, two wheelsets are generally mounted to a rigid H-shaped frame 

that splits the suspension into two stages. The primary suspension transmits forces from 

the wheelsets to the bogie frame and its main functions are to guide the wheelsets and to 

isolate the bogie frame from dynamic loads produced by any irregularities in the track. 

The secondary suspension transmits forces from the bogie frame to main body of the 

vehicle and provides a reduction in the dynamic accelerations acting on the body, which 

helps to improve passenger comfort [7]. 

 The Wheel/Rail Interface 2.1.3

The interaction between the wheels and the rails is a key area of rail vehicle dynamics.  

It is important in determining the behaviour of the train and, while designed to improve 

vehicle stability and cornering performance, can lead to behaviours that could cause 

derailment or damage to infrastructure. The wheel/rail interface is therefore a major area 

of research and development for rail engineers and modelling it has been a key challenge 

in the development of the real-time simulation tool presented in this thesis. 

The mathematics of the wheel/rail interface are discussed in Section 2.2. 

Wheelsets 

There are many designs of wheelset, but they all have two common features: the wheel 

profile and a rigid connection between the wheels through the axle [8]. An illustration of 

the interface between wheelset and rails, showing the key components, is shown in 

Figure 2.5 (overleaf).  
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Figure 2.5 - The Wheel/rail Interface (front view) 

� Wheel Shape 

According to The Handbook of Rail Vehicle Dynamics [8], the earliest railway wheels were 

cylindrical and ran on flanged rails, but it was later discovered that adding a small amount 

of conicity (exaggerated in Figure 2.5) enhanced the guidance of the wheels around 

curves in the track.  Adding the flange to the wheel instead of the rails also reduces the 

materials and costs involved in constructing the railway.  

Figure 2.6 (below) shows a wheelset with exaggerated conicity, and demonstrates how 

the effective radius of the wheels (blue) changes with lateral displacement. 

    

Figure 2.6 - Illustrating the rolling radius (blue) of a centralised (left) and laterally offset wheelset (right) 

When the wheelset is centred on the track (Figure 2.6, left), the effective radius (known 

as the ‘rolling radius’) of each wheel (blue) is the same. As the wheel drifts away from the 

centre of the track (Figure 2.6, right), the rolling radius of the outer wheel increases and 

the radius of the inner wheel decreases, changing the effective size of the wheels at the 

point of contact with the rails. Since the wheels are rigidly joined by the axle, the outer 

wheel will travel further, causing the wheelset to follow a curve and/or to push the 

wheelset back towards the centre of the rails. This self-centring mechanism allows 

cornering without unnecessary wear-and-tear on the rails or flanges, which can be 

dangerous and expensive. The wheels are therefore deliberately spaced to allow some 

lateral displacement before flange contact occurs, as shown in Figure 2.5.   
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� Wheel Profile 

Some modern wheel profiles are not purely conical but are instead constructed from a 

series of radii that approximate a part-worn shape. This is intended to give a more stable 

shape and to prevent the changes in conicity that may occur as a conical wheel profile 

wears over time [7]. Figure 2.7 (below) illustrates the key elements of the wheel profile: 

 

Figure 2.7 - The main elements of a Wheel Profile [7] 

The tread is the main contact surface between the wheel and the rail. The tape circle is 

the position of the contact point when the wheelset is centred between the rails and is 

the point at which the diameter of the wheel (D) is measured. Some wheels also have a 

chamfer towards the outer edge, which is designed to lift that part of the wheel off the 

rail and ease its motion on switches, level crossings etc. Flanges are added to the inner 

side of the wheel in order to prevent derailment and guide the wheelset when the lateral 

offset is high. This flange contact is not desirable, but is necessary for times when lateral 

forces acting on the wheelset exceed the centring forces. 

The width of the profile is typically 125 - 135mm and the height of the flange is typically 

28 - 30mm. The flange inclination angle is normally between 65 and 70°. Up to 10mm of 

flange clearance (between the flange and the rail) is commonly allowed [8]. 

� ‘Conicity’ vs ‘Effective Conicity’ 

A key term that is used to describe the shape of a wheel is its ‘conicity’.  

� The ‘conicity’ of a wheel is based on the slope of the wheel (i.e. 1:20). The conicity of 

wheels with more complex shapes is often represented as an average of the conicity 

across the wheel profile [7].  

� The ‘effective conicity’ of a wheelset is the difference in conicity between the two 

wheels (i.e. it is zero when the wheel is at rest and increases with lateral movement). 
 

Commonly, the conicity of a wheel in the vicinity of the tape circle is 1:10 or 1:20.  



Chapter 2 - Background and Related Work 

12 

Track  

In addition to the wheel profile, the shape and properties of the rails are key factors that 

affect vehicle behaviour. The track can shift or suffer wear and tear over time, but the 

simulation presented in this thesis is based on the use of rigid body dynamics (described 

in Section 2.4.2) and assumes that the track is fixed and non-deformable. There are a 

number of behaviours that can occur on track that is assumed to be rigid, and that 

engineers would be interested in studying, and it is these scenarios the Locomotion 

simulation tool was designed to simulate. Some of these scenarios, including Hunting 

Oscillation and Wheel Climb Derailment are discussed later in this section. In this section, 

a number of properties of the rail are described that can contribute to these behaviours. 

� Rail Profile 

Modern rails are made of hot-rolled steel and have a cross-sectional profile that typically 

approximates to an I-beam but is often asymmetrical [8]. Figure 2.8, below, illustrates a 

typical rail profile. 

 

Figure 2.8 - A Typical Rail Profile 

The head of the rail is the where wheel/rail contact occurs and is profiled to resist wear 

and to give a good ride. The foot of the rail is the part that is attached to the sleepers and 

the web is the connection between head and foot.  

� Common rail profile heights range from 145mm to 172mm [9] 

� Common rail head widths range from 65mm to 72mm [9] 

� Curve Radius 

Track curves are measured based on the radius (r) at the mid-point between the rails 

(blue), as illustrated in Figure 2.9, below. 

 

Figure 2.9 - Illustrating Curve Radius (r) - showing rails (black) and the midpoint between the rails (blue). 
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In the real world, curves generally range from 500 metres up to 1,000+ metres. Smaller 

radii are less common, but are used in certain locations, such as intracity metro routes 

and subway lines where limited space is available.  

� Track Gauge 

The gauge defines the width of the track and is measured as the distance between the 

inner edges of the load-bearing rails [10], as demonstrated in Figure 2.10 (below). 

 

Figure 2.10 - Illustrating Track Gauge 

The most common gauge in the world is the Standard Gauge, where the distance 

between the rails is 1.435m [11], but this can vary between countries and rail operators. 

� Canting 

Most railway organisations tilt the rails inward during bends, so that the inner rail is lower 

than the outer rail, in order to improve cornering stability. This tilting of the rails is known 

as canting. Canting redirects the forces at the contact point and helps to neutralise the 

effect of lateral forces, which in turn reduces wear and improves passenger comfort.  

The rails are usually canted by a small angle that matches the conicity of the wheel, which 

in the United Kingdom is 1:20, but cants of 1:30 (for example in Sweden) and 1:40 (in 

many countries including Germany) are also common [12]. 

Wheel-Rail Forces 

The mathematics of the forces acting on the wheels are discussed in more detail in 

Section 2.2, but Figure 2.11 (below) shows what are considered to be the main forces 

acting on the wheel at the point of contact with the rail. 

 

Figure 2.11 - Forces at the flange contact location [13] 
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These include the lateral (L) and the vertical (V) load, the tangential friction force (Ftan) 

and the Normal Force (N). The figure also shows δ, which is known as the ‘contact angle’ 

of the wheel. As this figure illustrates, N is directed inwards - towards the track centre - 

and is part of the wheelset’s aforementioned self-centring mechanism. 

Hunting Oscillation 

A potential side effect of conical wheels is a phenomenon known as ‘Hunting Oscillation’, 

which is caused when the wheelset overshoots its equilibrium and can cause the vehicle 

to rock from side-to-side, even on straight track. This behaviour is limited by flange 

contact but can lead to derailment, wear-and-tear or deformation of the track. This 

oscillation of the wheelset is illustrated in Figure 2.12, below.  

 

Figure 2.12 - Illustrating Hunting Oscillation of a Wheelset [8] 

The speed at which hunting occurs is known as the critical speed and vehicle designers 

must ensure that the critical speed of the vehicle is above its maximum running speed 

[12]. The shape of the wheels can be optimised based on the speeds the vehicle is 

expected to reach and the sharpness of the bends that it is expected to negotiate. 

Increasing the conicity lowers the curve radius for which perfect curving will be possible, 

but also lowers the speed at which the wheelset becomes unstable. High-speed rail 

vehicles have a lower conicity of around 1:40 or 1:50 in an attempt to prevent hunting [7]. 

If the wheel/rail interface is being correctly simulated in the Locomotion tool, then there 

may be some evidence of hunting oscillation occurring in the simulation. 

Wheel-Climb Derailment 

Derailment occurs when a train’s wheels run off the rails. Most derailments are relatively 

minor but can cause delays and damage to infrastructure. There is a type of derailment, 

known as Wheel-Climb Derailment, that occurs when high lateral forces cause the wheel 

to climb the rail and, eventually, to derail. This form of derailment can occur even with 

new, undamaged wheels and rails, and is therefore a form of derailment that a real-time 

tool, such as the tool presented in this Thesis, could be used to simulate.  
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Wheel-Climb Derailment is usually the result of high lateral forces, usually caused by a 

vehicle travelling at too high a speed around a curve, or following an event such as an 

impact or explosion, and is believed to have been responsible for 16 derailments in the 

USA alone between 1998 and 2000 [13].  

 Gauging 2.1.4

Another important issue in rail dynamics is gauging. The gauge defines the maximum 

height and width for rail vehicles to ensure safe passage through the network while 

avoiding collisions with other vehicles and infrastructure. Gauging systems vary between 

countries and rail operators and even in rail systems where the track gauge does not vary. 

Figure 2.13 (below) is an illustration of a gauging failure. It shows an incident in which a 

Norwegian locomotive became stuck in a tunnel in Kosovo because it was too large. 

 

Figure 2.13 - A Gauging Failure - an incident in which a locomotive became stuck in a tunnel [14]. 

It is not always simple to estimate the gauge of a bridge or tunnel, however, as the 

infrastructure may by irregular or may shift over time. Being able to model a rail vehicle 

(or multi-vehicle trains) and infrastructure such as tunnels will enable gauge testing to be 

carried out, and this is one possible application for a real-time simulation tool. 

 Summary 2.1.5

This section has introduced some of the concepts and terminology of rail dynamics and 

the wheel/rail interface that are discussed in the rest of this Thesis.  

The next section discusses the mathematics of the wheel/rail interface, in order to 

demonstrate the mathematical complexity of the problem and to introduce some of the 

formulas that are used in the existing tools, and that are (or were intended to be) used in 

the development and evaluation of the Locomotion tool. 
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2.2 The Mathematics of the Wheel/Rail Interface 

The mathematics of the wheel/rail interface are fairly well known. This section presents 

examples of a few of the formulas that are used in the rail industry, and in the 

development of existing rail simulation tools. Some of these formulas are used (or were 

intended to be used) in the development and evaluation of the simulation tool presented 

in this Thesis, or are included to illustrate the mathematical complexity of the problem 

and why the traditional engineering approach is so computationally expensive. 

 Forces 2.2.1

This section presents some of the formulas that describe how some of the forces acting 

on a wheelset are calculated. 

Lateral Velocity and Angle of Attack 

Figure 2.14 (below) shows a plan view of a wheelset. If the track is considered to be rigid, 

then the wheelset has two main degrees of freedom: the lateral displacement (y) and the 

yaw angle (α) relative to the track. This angle, which is sometimes known as the ‘angle of 

attack’, contributes to the lateral movement of the wheelset based on a component of its 

rotational velocity. 

  

Figure 2.14 - A plan view of a wheelset, showing Forward Velocity, Lateral Velocity and Angle of Attack [13] 

The lateral velocity (Vlat) of each wheel is given, in its simplest form, by Formula 2.1: 

���� � �	�		 
��
��			
Formula 2.1 - Lateral Velocity of a Wheel [13] 

Where ‘�’ is the rotational velocity of the wheel, ‘r’ is the rolling radius, and ‘�’ is the 

angle of attack. The lateral velocity of the wheelset (‘ẏ’) can then be calculated as the 

relative lateral velocity between the two wheels. 
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Creepages and Creep Forces 

The wheels experience a number of different creepages and creep forces, caused by the 

relative speeds between the wheel and rail. These include longitudinal creepage, spin 

creepage and lateral creepage [10], all of which can exert a force on the wheelset. One 

example is the lateral creep force, which occurs as the wheel moves towards flange 

contact and a force is produced. The direction of the creep force depends on the lateral 

and spin creepages of the wheel, which are described below.  

� Lateral creepage is the yaw angle common to the two wheels.  

� Spin creepage is calculated as 
�� ( � / 	�), where δ is the contact angle and r0 is 

the rolling radius of the wheel.  

 

Figure 2.15 (below) illustrates the three phases of wheel-climb derailment and how the 

lateral creep force (γl) changes in each phase.  

 

Figure 2.15 - The Three Phases of Wheel-Climb Derailment [13] 

In phase 1 (left), the wheel is moving toward flange contact. Phase 2 (centre) is when 

flange contact occurs and Phase 3 (right) shows the wheel climbing the rail. In phases 1 

and 3 the lateral creep force opposes flange climb, but in phase 2 the creep force reverses 

direction due to the change in the angle of attack and assists the wheel climb process.   

The lateral creep force (γ�) can be calculated based on the wheelset’s lateral and forward 

velocities, as shown in Formula 2.2, below. 

�� �  �� −  ẏ�� 
��(�) 
Formula 2.2 - Wheelset Lateral Creep Force [13] 

where α is the angle of attack, δ is the contact angle, v is forward velocity and ẏ is the 

lateral velocity. 
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The Gravitational Stiffness Force 

Section 2.1.3 described how the conical shape of the wheels produces a self-centring 

effect; the difference in the effective size of each wheel resulting from lateral movement 

causes the wheelset to yaw about the vertical axis and centre itself between the rails.  

This effect can also be described in relation to the forces acting on the wheels: an 

increased lateral offset causes a change in the direction of the Normal force between the 

wheel and rail, and a component of this force is directed towards the track centre. This is 

sometimes known as the Gravitational Stiffness Force (GSF) [12] and depends on the 

lateral displacement and roll angle of the wheelset. Figure 2.16 (below) shows a displaced 

wheelset, along with the angles and forces that contribute to the GSF: 

  

Figure 2.16 - Forces and properties of the wheelset that contribute to the GSF [12] 

Ll/Lr and Vl/Vr are the lateral and vertical loads at the point of contact of each wheel,  

φ is known as the roll angle of the wheelset, λl/λr represent the conicity of each wheel 

and Nl/Nr represent the normal forces acting on each wheel.  

When the lateral displacement is small, the GSF can be calculated by ignoring the 

differences in the conicity of the wheels [12]. The lateral forces on each wheel can be 

calculated using the following formulas: 

�� � �� 
��
�� �  ∅)            � = � 
��(� +  ∅) 

The vertical forces are calculated as follows: 

�� �  �� �"
(�� − ∅)            � =  � �"
(� + ∅)  
And so the total lateral force (Lw) can be calculated as 

�# �  � −  �� = $ �� %&�( �� − ∅) −  � %&�( � + ∅)] 
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For small angles, this can be simplified to:  L) �  −W∅   where W = Vl + Vr   

(the total vertical load acting on the wheelset).  

The roll angle of the wheelset (∅) is calculated using the following equation: 

∅  =    	 −  	�2 /�   =   �0/�  
Where rl and rr are the effective radius of the left and right wheel, λ is the effective 

conicity of the wheelset and l0 is half the track gauge.  

So the GSF (for small offsets) can be calculated using the formula below (Formula 2.3): 

�1  =  − 2�0/�  
Formula 2.3 - Gravitational Stiffness Force [12] 

where Lw = Total Lateral Force, λ = effective wheelset conicity, y = wheelset lateral 

displacement, l0 = half the track gauge. 

Hertz Contact Theory 

Determining the dynamic behaviour of the wheelset involves the calculation of the 

Normal forces between the wheel and rail - and the Hertz contact model is commonly 

used to solve this. Hertz contact theory is concerned with the contact between elastic, 

curved bodies, the local stresses and the deformation that is caused. A discussion of how 

Hertz contact theory can be applied to wheel/rail contact problems is described in 

‘Applicability of the Hertz contact theory to rail-wheel contact problems’ by Yan and 

Fisher [2000] [15]. 

Kalker’s Linear Theory, CONTACT and FASTSIM  

Another step in calculating a wheelset’s dynamic behaviour is calculating tangent 

components and creep forces, which are related to the relative speed between the wheel 

and rail. Kalker proposed several methods to solve the contact problem with models 

based on the surface description, including his Linear Creep Theory and the ‘CONTACT’ 

algorithm (described in Kalker [1982] [16]), before developing the FASTSIM algorithm 

[17], which is commonly used in the rail industry. The total relative force calculated in 

FASTSIM, for example, differed only slightly from other implementations and was as 

much as 15-25% faster. 
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 Thresholds and the Nadal Limit 2.2.2

One way to analyse the behaviour of the wheelset, other than simply measuring forces 

(as in the previous formulas), is through the definition of thresholds and limits. 

Thresholds describe the minimum conditions required for particular behaviours (such as 

wheel-climb derailment) to occur and can lead to the derivation of limits to prevent those 

behaviours from happening (such as limiting the maximum speed of the vehicle on a 

particular curve radius). One example of this is discussed below. 

� The Nadal Limit 

A commonly-used formula that describes wheel-climb derailment behaviour is The Nadal 

Single-Wheel L/V Limit Criterion [18] (herein referred to as ‘The Nadal Limit’). It was 

developed as a limit to the ratio between the lateral and vertical forces acting on a 

wheelset, in order to minimise the risk of derailment, and describes the minimum 

conditions at which wheel-climb derailment is likely to occur. Figure 2.11 (on page 13) 

shows what Nadal considered to be the key forces acting on the wheel at the contact 

point. Nadal describes how the ratio between the lateral (L) and vertical (V) load of the 

wheelset may lead to derailment. The contributing factors are: the flange contact angle 

(δ), the tangential friction force (Ftan) and the normal force (N) [13].  

He assumed that there is initially a two-point contact between the wheel tread, the flange 

and the rail, with the flange contact point located ahead of the tread contact point  in the 

direction of travel, as shown in Figure 2.17 (below). This becomes a single-point contact 

as the flange climbs the rail and contact with the wheel tread ceases. 

 

Figure 2.17 - A wheel in two-point contact with the rail [19] 

Based on this assumption and a simple equilibrium of the forces at the point of contact, 

the following equations can be derived (which include the coefficient of friction between 

the wheels and rails (μ)). 
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From these equations, the L/V ratio can be expressed as: 

�
� �

%&�
�� �  4��5�1 + 4��5�  %&� (�) 
As the wheelset travels forwards, the flange contact point is continuously sliding down 

the rail. Nadal theorised that wheel-climb cannot occur unless the downward motion 

ceases, when the friction force becomes saturated at the contact point. When the friction 

force drops below its saturated value, the wheel starts to climb the rail along the flange in 

a single point contact condition. Therefore, the saturated value can be considered to be 

the minimum value at which wheel-climb can occur.  

If Ftan is saturated (i.e. Ftan/N = μ), and if the maximum flange contact angle is used for δ, 

this produces the Nadal Limit criterion, shown in Formula 2.4 (below). 

�
� �

%&�
�� �  >1 +  > %&� (�) 
Formula 2.4 - The Nadal Single-Wheel L/V Limit Criterion [18] 

Where L/V is equal to the value from the right hand side of the equation, this represents 

the minimum derailment conditions for the wheelset. This formula is used in Chapter 5 to 

evaluate the derailment speed of vehicles in the simulation tool. 

A Conservative Estimate 

The Nadal limit assumes that derailment is instantaneous once the limit has been 

exceeded, whereas it has actually been shown to occur only when this limit has been 

exceeded for a certain time or distance limit [13]. Wheel-climb generally occurs on curves 

and the Nadal criterion applies to the outer, flanging wheel and does not consider the 

effect of the non-flanging wheel. As such, and based on data collected during real-world 

testing, The Nadal Limit is often considered to be a conservative estimate of wheel-climb 

behaviour [19] but is still widely used in the rail industry and should produce a suitable 

benchmark for use in the initial evaluation of the Locomotion tool.   
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 Mathematical Modelling 2.2.3

Engineers can use mathematical modelling to analyse and evaluate scenarios by 

combining formulas, such as those presented in this section, to describe a problem, which 

can then be solved for a range of input parameters. Such models can be used to predict 

the forces acting on an object, or to determine under which conditions certain safety 

thresholds are likely to be exceeded.  

The Nadal Limit is one example of how it is possible to predict derailment behaviour 

mathematically, but in order to make use of this limit it is necessary to calculate all of the 

lateral and vertical forces acting on the wheelset, using the formulas from Section 2.2.1 

(and more). Deriving and solving all of these formulas is a very complex process. 

Additionally, such a combination of formulas would only represent a single wheelset and 

wouldn’t take into account interactions with other vehicle components, the two-phase 

suspension system on the bogie, the weight distribution of the vehicle, the effect of 

vehicle stability on the stability of adjacent vehicles via the couplings, or external factors 

like wind and air resistance. Deriving and solving a model for even a single vehicle, let 

alone a multi-vehicle train, quickly becomes extremely difficult and time-consuming. 

Also, while it is useful to be able to calculate object forces and properties in particular 

circumstances (such as the size of the GSF for a given wheel profile and lateral offset), 

these formulas do not describe the dynamic behaviour of the vehicle, or consider how 

certain aspects of that behaviour can change over time. 

 Summary 2.2.4

This section has presented a few examples of the mathematical formulas that are used in 

the rail industry to describe the behaviour of the wheel/rail interface. Some of these 

formulas are used in the development and evaluation of the simulation tool presented in 

this Thesis. This is a small sample of relatively simple examples, and barely scratches the 

surface of the problem. This section was also intended to show why deriving formulas for 

the wheel/rail interface is so mathematically expensive (and why doing so for whole 

vehicles and multi-vehicle trains is currently prohibitively expensive). 

This section has also discussed how mathematical modelling can be a useful tool for 

evaluating the forces acting on the wheelset and determining whether those forces 

exceed certain thresholds. However, these mathematical models do not describe the 

dynamic behaviour of an object.  

The next section shows how these formulas can be converted and implemented as part of 

a dynamic, computer simulation, as well as looking at examples of the traditional 

engineering simulation tools. 



Chapter 2 - Background and Related Work 

23 

2.3 Rail Dynamics Simulation and Testing 

This section describes some of the testing solutions that are currently used in the rail 

industry, including how the mathematics of the wheel/rail interface are adapted and used 

in the existing software simulation packages, and identifies the niche that could be filled 

by a real-time simulation tool. 

 Real-world Testing  2.3.1

One method used in the development and testing of vehicles and safety features is real-

world testing. This involves testing real vehicles, models or materials under controlled 

conditions, using a range of cameras and sensor equipment to record the results. 

Alternatively, engineers can study the scene of an accident (or any video footage of the 

incident that may have been captured) and attempt to determine the cause. These tests 

can provide engineers with the most realistic and useful data, and most of the 

mathematical formulas described earlier have been derived in this way.  

One example of real-world testing is a blast test performed on the Metro de Madrid 5000 

series vehicle (which the virtual vehicle used in the Locomotion tool is based on -  

as described in Section 4.2), which was conducted by NewRail as part of the SecureMetro 

project [20]. Figure 2.18, below, is taken from a video of this test.  

 

Figure 2.18 - From a video of a recent blast test on a Metro Madrid 5000 Series Vehicle [NewRail] 

The data from these real-world tests is invaluable, but they are extremely expensive, 

often dangerous and cannot be repeated easily (at least not without great expense). They 

require the use of specialist sensors and recording equipment, which are expensive and 

may be damaged during the test. They also require the construction of bespoke testing 

environments and either the use of real life rail vehicles or specially constructed models. 

Additionally, the scope of these tests is often limited by financial, practical or safety 

concerns (which, for example, restrict engineers to testing to a stationary vehicle, as was 

the case in the above blast test, rather than a moving one). 



Chapter 2 - Background and Related Work 

24 

 Virtual Simulation 2.3.2

An alternative to real-world testing is the use of virtual simulation, which has a number of 

advantages over full-scale testing;  

� Simulation is cheaper than track testing. 

� Simulations are repeatable. 

� Simulation can be used to test a design before it leaves the drawing board. 

� Simulation can explore a range of input conditions that are difficult or impossible to 

test in real life. 

� Simulation can yield information about conditions which would be difficult or 

impossible to measure in the real world. 
 

Simulation also has an advantage over purely mathematical solutions in that it can 

produce full 3D, interactive visualisations of the problem. 

A Brief History of Rail Simulation  

Rail Dynamics as a science didn’t really start until the 1960s, when the Research 

Department at British Rail was established. Before this, rail vehicles were designed 

(according to Iwnicki (2003) [12]) by a combination of ‘evolution and educated 

guesswork’. Rail simulations started as research tools, but soon began to find other 

applications, such as troubleshooting, optimising vehicle designs and, more recently, 

virtual testing and acceptance. Later, the use of computers and the development of time-

stepping integration (discussed in more detail later in this section) allowed complex 

equations to be solved more rapidly, leading to a better understanding of many elements 

of rail vehicle dynamics, such as wheel/rail interaction, contact wear and rolling friction. 

Current Applications of Virtual Simulation Tools 

Current applications of rail simulation software are listed below, and include a number of 

potential applications of a real-time simulation tool. They are currently used to 

investigate a range of rail dynamics issues, including [14]: 

� Running Stability, Ride Quality and Curving Behaviour. 

� The behaviour of the Wheel/Rail Interface. 

� Vehicle Acceptance issues, such as low speed flange climbing, high speed stability 

and derailment resistance. 

� Gauging (as described in Section 2.1.4)  
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Challenges in the Simulation of Rail Vehicle Dynamics 

Evans and Berg [2009] discuss the challenges involved in the development of rail 

dynamics simulations. They say that it is very easy to get wrong answers in dynamic 

simulations and that, even if the model is correct, the simulation results still depend on 

selecting the right track input, wheel and rail profiles and friction conditions. Results can 

also be very sensitive to simulation parameters such as the integration algorithm, 

timestep or smoothing effects.  

Challenges include the modelling of suspension, track models and inter-vehicle 

connections. Some of these elements can be modelled in real-time and are included in 

the Locomotion simulation tool, while others, such as suspension are not (more details in 

Section 6.2 - Future Work).   

However, they say that the key issue is validation; there is very little real world data with 

which to validate simulation results. This has certainly been a key challenge in this 

research. They also explain that validating against available real-world data is a process 

prone to error or bias if not done correctly.  

‘Discretisation’ - Adapting the Mathematical Models 

Rail simulations are based on a range of engineering formulas, such as those discussed in 

Section 2.2. Implementing these mathematical descriptions of rail dynamics and 

wheel/rail interface behaviour in a dynamic computer simulation requires a process of 

discretisation. Discretisation is the process of turning a continuous problem into discrete 

sub-problems, which can then be solved more easily. One such technique is the Finite 

Element Method (FEM) which involves subdividing a problem domain into smaller 

subdomains, known as finite elements. The combination of the solutions to the simpler 

element equations of the subdomains results in an approximation of the solution to the 

more complex equation of the larger domain.  

� Discretisation Example 

Consider the following example, illustrated below (Figure 2.19), in which discretisation is 

used to calculate the area under a graph.  

 

Figure 2.19 - Calculating the area under a graph 
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A simpler, less mathematically intense solution that calculating the true area under the 

graph (Figure 2.19 - left) is to create a series of rectangles that are each the same ‘height’ 

as the graph. The sum of the area of these rectangles produces an approximation of the 

area under the graph (Figure 2.19 - middle) and is less complex than the full solution. 

Such a solution will always introduce a certain amount of error, which can be reduced at 

the expense of mathematical complexity. In this example, the more rectangles that are 

used, the closer the approximation will be to the true area (Figure 2.19 - right).  

� Differential Equations of Motion 

In order to simulate the dynamic behaviour of an object, the equations that describe the 

forces acting on the object and how they cause the state of that object to change over 

time need to be considered. This requires the creation of complete (or partial) time-

dependent differential equations, which can then be solved with respect to time using 

integration. 

Consider the equation of linear motion for a particle (Newton’s Second Law): F = ma.  

This states that the force (F) on an object is the product of its mass (m) and acceleration 

(a). Acceleration is the rate of change of velocity over time. The equation can therefore 

be rewritten as: 

4 � ? @�@%  
This formula can be rewritten thus: 

AB
AC � F/m  ∴     dv � IJKL dt 

which allows the difference in the particle’s velocity to be calculated based on the 

timestep (dt), which is an important part of the process of modelling the object’s 

behaviour in a computer simulation.  

� Numerical Integration 

Numerical integration techniques are used to approximately integrate the time 

dependent differential equations of motion, such as the example above. There are two 

approaches to integration; implicit and explicit integration. Implicit methods involve 

calculating a solution based on the current state of the system and a later one. Implicit 

functions can produce more accurate results using larger timesteps than explicit methods.  
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However, they are more difficult to derive and require additional computations to solve, 

making them more expensive than explicit methods. As such, implicit methods are 

prohibitively expensive for use in problems as complex as the dynamics of a rail vehicle, 

especially in a real-time context, and so they tend not to be used.  

Explicit methods calculate the state of a system at the current time from the state of the 

system at a previous time and an additional calculation. Most existing simulation tools 

make use of explicit integration using timesteps that are as small as possible in order to 

maximise accuracy and minimise error. A real-time system would also have to make use 

of explicit methods, to avoid compromising the performance of the simulation. 

In numerical integration, it is necessary to take finite steps in time, thus dt goes from 

being infinitely small to some discrete amount (Δt): 

∆� � �4?�∆% 
This approximates the change in velocity (Δv) based on the time change (Δt). The position 

of the object can then be calculated using its previous position and its velocity. 

� Taylor’s Theorem 

Integration methods are based on the use of Taylor’s theorem, which allows the 

approximation of the value of a function at a particular point to be calculated by knowing 

something about the function and its derivatives at an earlier point. The approximation of 

the function takes the form of an infinite polynomial series, such as the one below.  

0
O +  ∆O) = 0(O) + (∆O)0P(O) + Q(∆O)R2! T 0PP(O) + Q(∆O)U3! T 0PPP(O) + … 
Where y is a function of x, (x +Δx) is the new value of x at which you want to approximate 

y and y’(x) is the first derivative of y(x), y’’(x) is the second derivative of y and so on. [21] 

� Euler’s Method 

A simple example of an explicit integration method is Euler’s method, which involves 

calculating the initial conditions (x0) and then explicitly calculating x1 to xn for each 

timestep (Δt) from t0 to t0 + nΔt. i.e. xn is calculated based on the value of xn-1 and an 

additional computation. Using Euler’s method to integrate the equation of motion above 

produces the following formula: 

�
% +  ∆%) = �(%) + (∆%)�′(%) 
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Euler’s method is known as an order 2 solution, which means that it considers the first 

two derivatives in the polynomial series and ignores, or ‘truncates’, the rest. This reduces 

the computational complexity of the method, but leads to so-called truncation error.  

The main advantage of Euler’s method is its simplicity. The downside is the amount of 

error and its lack of stability and accuracy in many practical examples [22]. The simplicity 

of Euler’s method leads to errors that are proportional to the step size used; i.e. a larger 

timestep results in larger error. 

� Other Integration methods 

Other examples of integration methods include the ‘Improved Euler Method’, which is an 

order higher than the standard method - error order 3 - and produces better results at 

the cost of additional complexity. Improved Euler is calculated using Formula 2.5, below. 

Y1 � 
∆O� y’(x, y) 

Y2 � 
∆O�0′
O + O, 0 + Y1� 
0
O +  ∆O) = 0(O) + 1/2 (Y1 + Y2) 

Formula 2.5 - The ‘Improved Euler’ Integration Method 

Other methods include the family of Runge-Kutta methods, which are higher-order 

methods. One variation of Runge-Kutta is an order 5 solution. The integration formula for 

this method is shown in Formula 2.6, below. 

Y1 � 
∆O�0′
O, 0� 

Y2 � 
∆O�0P �O + ∆O2 , 0 + Y12 � 

Y3 � 
∆O�0P �O + ∆O2 , 0 + Y22 � 

Y4 � 
∆O�0′
O + ∆O, 0 + Y3� 
0
O + ∆O� � 0
O� + 1/6[Y1 + 2
Y2� + 2
Y3� + Y4] 

Formula 2.6 - The Runge-Kutta (Order 5) Integration Method 

This is a more stable solution than Euler’s - meaning that it converges well with the exact 

solution - and avoids the calculation of partial derivatives in order to solve. [21]  
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Another popular example is Verlet, which provides higher numerical stability than Euler’s 

- it is 4
th

 order accurate - and, while less accurate than Runge-Kutta, requires fewer 

calculations per timestep and is reversible, allowing calculations to be performed forward 

and backward in time.  

When building a computer simulation, it is necessary for the developer to select the 

integration method that is best suited to their aims. Because these simulation tools (and 

physics engines) are commercial software, it is not always possible to determine which 

specific method they use. There is a discussion of physics engine methods in Sections 

2.4.2 and 2.4.4. 

 Existing Rail Simulation Solutions 2.3.3

A number of programming languages and simulation tools are currently used in the rail 

industry for simulating various aspects of rail safety and security. A few examples of these 

software packages are discussed in this section. 

MATLAB  

A number of the existing simulation solutions and research projects have used MATLAB in 

their development.  MATLAB [23] is a high-level language and interactive environment for 

numerical computation, visualisation, and programming.  MATLAB can also be used for 

Numeric Computation; Data Analysis and Visualisation; Programming and Algorithm 

Development; Application Development and Deployment; signal processing and 

communications; image and video processing; control systems; test and measurement, 

computational finance; and computational biology. [23]  

Other similar software is available, including GNU Octave [24], an open-source alternative 

to MATLAB used in a number of research fields. Octave is also a high-level programming 

language, used primarily for numerical and scientific computing, and is useful for 

manipulating data and other numerical functions. [24] 

Existing Simulation Tools 

There are a number of rail engineering simulation tools, some based on MATLAB and 

others using bespoke simulation engines. These include:  

� RADIOSS [25] (shown in Figure 2.20, left (overleaf)), LS-DYNA [26] and PAM-CRASH 

[27], which are used to model structural deformation. 

� MADYMO [28], which is used to model passengers in crash conditions.  

� VAMPIRE [29] (shown in Figure 2.20, right (overleaf)), which is used to simulate the 

behaviour of a rail vehicle running on a track (discussed in more detail overleaf). 
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Many of these tools are general-purpose engineering simulation tools that have been 

modified to simulate rail vehicles (and related issues such as passenger safety and the 

deformation of materials). Others are purpose-built rail simulation tools.  

Below are screenshots from the RADIOSS and VAMPIRE simulation tools. These show a 

train crash being simulated in the RADIOSS tool (left) and a train running on uneven track 

in VAMPIRE (right). 

   

Figure 2.20 - Screenshots from ‘RADIOSS’ (left) and VAMPIRE (right)  

� VAMPIRE 

VAMPIRE is a special-purpose rail engineering package that is designed to simulate rail 

vehicles travelling over track, and therefore warrants closer examination. It is probably 

one of the most relevant software packages to this research as it allows for simulations of 

entire vehicles, despite not being a real-time solution. It has also been used for a number 

of similar intended purposes, such as assessing safe operating limits and derailment risk, 

as well as evaluating vehicle and track designs. VAMPIRE ‘allows the user to build a 

dynamic model of any rail vehicle and study the response of the vehicle to real measured 

track geometry or user specified inputs in the form of track displacements and external 

force inputs.’ [29]. Rail vehicles can be modelled with simulated instrumentation, allowing 

almost any aspect of behaviour to be studied, or for results from real-world 

experiments/sensors to be replicated.  

VAMPIRE is also capable of producing 3D visualisations, including the visualisation of 

contacts, stresses and forces, as shown in Figure 2.21 (overleaf). These visualisations can 

be replayed in 3D (including the ability to rewind the visualisation, step through it frame-

by-frame and explore the scene using a dynamic camera), but they are produced by the 

software while the simulation is running and can only played back afterwards.  

The execution of the simulation and the generation of the visualisation data does not take 

place in real-time. 
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Figure 2.21 - Screenshot from a demo of VAMPIRE [29] 

� Derailment Investigation 

According to a case study available from the VAMPIRE Dynamics website [29], VAMPIRE 

has been successfully used to recreate the conditions of a real-world derailment.  

The derailment in question occurred in the Liverpool Central underground station in 2005 

(referenced in a Rail Accident Investigation Branch (RAIB) Report [30]). Their analysis, 

which included a recreation of the incident in VAMPIRE, demonstrated that track forces 

were not sufficient to derail the vehicle, but showed that material deformation of the 

rails over time had caused the gauge to widen by 50mm. Further investigation was 

undertaken to investigate how such incidents could be prevented at similar sites in the 

future. Interestingly, the simulation showed that lowering the speed of the vehicle 

actually increased the chance of derailment in this scenario [30]. 

Limitations of Existing Tools 

While it is possible to build up a dynamic simulation of a wheelset, doing so requires the 

derivation and solving of the time-dependent equations, the application of forces to the 

wheelset and the calculation of the total lateral and vertical forces acting on the 

wheelset. By the time lateral velocity, gravitational stiffness, creep forces and all of the 

other forces acting on each wheel at any given moment are considered, modelling even a 

single wheelset becomes highly complicated and time-consuming. If such a model was 

extended to include the dynamics of an entire rail vehicle, the complexity would be 

immense and it would be prohibitively expensive to solve all of the equations for every 

part of the vehicle at every timestep.  
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This mathematical complexity prevents the existing simulations from modelling multi-

vehicle trains, dynamic loads or other scenarios that engineers may wish to study, at least 

not without taking a prohibitively long time to produce their results. Engineers may be 

willing to wait for several hours (or even days) for safety-critical results in the latter stages 

of the design process, but this level of accuracy is less critical in the earlier stages and can 

slow the more-iterative stages of the process. 

 Related Work 2.3.4

There are a number of techniques for calculating contact geometry, forces and properties 

of the wheel/rail interface that are currently used by rail engineers (many of which are 

used in the existing simulation tools). The following techniques are examples that are 

commonly used in the rail industry, along with a number of projects focussed on the 

development of new, faster techniques (or faster versions of existing techniques).  

Also included is some research into real-time simulation techniques used in other 

engineering disciplines. 

Faster Techniques 

The following are examples of attempts to develop new, faster techniques, or to improve 

the efficiency of existing ones (including the techniques discussed in Section 2.2.1). 

� Polach 

Polach [31] presents a fast algorithm for the computation of wheel rail forces under 

known contact geometry, creep and spin conditions. His technique is used in the 

ADAMS/Rail [32] application as an alternative to FASTSIM and other approaches. It is 

claimed that this technique has a lower computation time than FASTSIM and is, in some 

cases, more realistic.  

� Wang & Li 

Wang & Li [33] present a derailment simulation designed to study vehicles travelling at 

high speed in order to study ‘the dynamic derailment mechanism, analyse derailment 

conditions and influence factors and determine the key cause of the incident’. The models 

that make up their solution were developed in MATLAB. They present an improved 

version of an existing three-dimensional contact trace method for obtaining the contact 

point, along with a fast, accurate method for measuring the contact force, using a 

variation of Polach’s method, with the inclusion of spin creep moment of the wheel and 

an improved version of the Hertz contact method. They claim that their solution can 

obtain the dynamic behaviour of a vehicle on a straight or curved track more quickly and 

more accurately than other existing methods and they used LS-DYNA to verify their 

results [34].  
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� Anyakwo et al. (2012)  

In Anyakwo et al. [35], they present another method for modelling the dynamic behaviour 

of the wheel/rail interface. They devised a model that incorporates the wheel-rail contact 

geometry and other elements using an approach that does not require the solving of 

complex mathematical equations to estimate the model’s critical velocity. They created 

what they describe as a ‘novel, two-dimensional’ model, the first phase of which includes 

the use of the Hertz contact model and Kalker’s linear theory to calculate the contact 

patch and creep forces. Their technique also includes variable timesteps to improve 

computational efficiency. The mathematical model is implemented in MATLAB, using a 

numerical differentiation method, and is validated against results attained using 

traditional techniques (such as Kalker’s linear model) and the simulated results compared 

well to the estimates.  

Monga et al. 

Monga et al. [36] present a new method for designing and implementing real-time 

simulation algorithms, used to create dynamic vehicle models, based on the use of Field-

Programmable Gate Array technology. They produced a high-performance reconfigurable 

platform to run various simulations and to analyse the results. They successfully 

compared results from their simulation environment to the normal software-based 

approach (using MATLAB) and showed that their system was capable of real-time 

execution. In their tests, the hardware accelerated solutions were twice as fast as 

standard software simulation. 

Conclusions from Related Work 

While these solutions may be improved or faster versions of their predecessors, none of 

them approaches the speed or simplicity necessary to implement in a real-time context 

and are included as examples of existing solutions used by engineers. The engineering 

approach is concerned with improving the performance of existing solutions with as little 

compromise in accuracy as possible, and so the performance gains from these new 

techniques are limited. Additionally, while Monga et al.’s solution [36] is capable of real-

time simulation, it also requires specialised and expensive hardware, whereas the use of 

real-time physics engines enables the simulation to run on a desktop PC using commodity 

gaming hardware (as discussed in Section 2.4). 

 Summary 2.3.5

This section has introduced and discussed some of the existing simulation tools used in 

the rail industry, and some of the techniques that are used to create those tools. It has 

discussed the usefulness of virtual simulation over real-world testing and identified the 

limitations of the existing tools; namely the fact that their mathematical complexity 

causes them to be computationally and temporally expensive to use. 
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This section has discussed existing numerical programming languages, such as MATLAB 

and Octave, as well as rail engineering tools like RADIOSS and VAMPIRE. These tools are 

powerful, but incapable of real-time simulation. This section has also presented a number 

of ‘faster’ techniques used in a range of scientific and research software packages; 

however they are not designed for real-time simulation and do not approach the speed or 

simplicity necessary to implement in a real-time context.  

This research does not focus on trying to create a new, faster simulation tool using 

existing techniques, or on making the existing techniques faster, but on a new approach 

using alternative technology; real-time physics engines, which are discussed in the next 

section, along with how they may be used as an alternative to the existing techniques to 

produce a real-time simulation tool. 

2.4 Real-time Physics Engines 

The alternative solution proposed in this thesis is based on the use of real-time physics 

engines, as used in the video games industry. In this section, physics engines are 

discussed, along with academic studies into their performance and suitability for other 

purposes. 

 Introduction 2.4.1

Physics engines are used by games developers to create more realistic virtual 

environments by adding seemingly realistic physical behaviours to entities in the game 

world. They are iterative, constraint-based solver systems that prioritise speed over 

accuracy, in order not to interfere with the gameplay/performance of the game [21]. 

Physics Engines enable features such as realistic explosions and debris, lifelike character 

animation and physics-based puzzles, as well as simulating vehicle dynamics in racing 

games. Physics simulation in games was initially designed to enable certain in-game 

behaviours and to reduce the cost of manual animation, leading to “perceptually correct” 

approximations rather than truly accurate simulations. Additionally, forces and physics 

properties are often exaggerated for effect in video games, but third-party physics 

engines were developed based on realistic principles from mathematics and engineering, 

such as Newtonian dynamics and improvements in hardware and software in the last 

decade have led to improvements in realism and performance of these engines. [22] 

NVidia’s PhysX engine is the most commonly used in the games industry and is being 

constantly developed and updated [4]. Havok [37] is also a popular engine, but is not as 

widely used as PhysX. There is also a range of Open Source Collision Detection and Rigid 

Body Dynamics Libraries such as Bullet [38], Newton [39] and the Open Dynamics Engine 

(ODE) [40], but they are also not as widely used or as well-supported as PhysX. 
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 Physics Engine Simulation 2.4.2

Physics engines are based on Newtonian mechanics, but discretise dynamics and forces 

differently from the classical mathematical modelling techniques used in existing 

engineering simulation tools. Physics engines are designed around the use of Rigid Body 

Dynamics and their main functions are collision detection and collision resolution. These 

key physics engine concepts are discussed in this section. 

Rigid Body Dynamics 

Rigid bodies are non-deformable, polygonal mesh objects that collide and interact with 

each other based on various parameters, including mass, velocity, acceleration due to 

gravity, friction and other material properties.  

Rigid Body motion describes the motion of an object travelling and rotating through 

space. For modelling purposes, the motion can be separated into directional and 

rotational components and the two components can be analysed independently. The 

centre of mass and the linear and rotational velocities of a spherical rigid body are 

illustrated in Figure 2.22, below. 

 

Figure 2.22 - Diagram of a Rigid Body, showing Centre of Mass, Rotational and Linear Velocities 

The mathematics of rigid bodies is based around their centre of mass. According to 

Newton’s second law of motion, the movement of an object is a function of its mass and 

acceleration, and is not affected by its size. The linear and rotational motion of an object, 

including resulting changes in acceleration and velocity, can therefore be applied to the 

centre of mass of the object, which moves linearly as if it were an infinitely small particle. 

Linear and rotational velocity and acceleration values are then applied to the centre of 

mass, based on integration over time. Forces are often applied to rigid bodies using 

impulses; an impulse being something that changes the momentum of an object; 

momentum being the integral of a force with respect to time. The applied forces 

determine the acceleration of an object, and its velocity can then be updated and its 

position obtained by integration. 



Chapter 2 - Background and Related Work 

36 

The centre of mass can be adjusted to simulate different properties and could be outside 

of the object, depending on its composition and geometry.  A rail vehicle, for example, 

where the main body is comparatively light and the main weight is in the chassis and the 

components underneath it, could be represented by a single rigid body with a lowered 

centre of mass. This allows the vehicle to be modelled in an abstract fashion, using a 

single rigid body rather than a series of more complex ones. Similarly, to simulate non-

uniform mass distribution (i.e. a carriage that is heavier at the front or back) the centre of 

mass can be moved forward or backward accordingly. Or to simulate dynamic mass 

distribution (i.e. passengers moving around the train or fluid cargo), the centre of mass 

can be adjusted dynamically.  

Collision Detection and Resolution 

The process of detecting collisions between rigid bodies generally takes place in two 

phases: broad-phase and narrow-phase. Broad-phase collision detection is generally 

performed using simple shapes such as spheres and axis-aligned bounding boxes, as these 

collisions can be solved rapidly and efficiently. Figure 2.23 shows a simplified example of 

how broad-phase and narrow-phase collision detection may be used for a complex rigid 

body using simplified collision volumes (grey cuboids). 

 

Figure 2.23 - Illustrating broad-phase (left) vs. narrow phase (right) collision detection for a complex rigid 

body 

If collision with these simple objects is encountered, then narrow-phase collision 

detection will be performed, which typically involves a number of convex polygons that 

more closely approximate the more complex shape of the object.   

Collision resolution then defines what happens to the colliding bodies after the collision 

has been detected. If a ball were to come into contact with a flat ground plane, for 

example, a force (equivalent to the normal force (N) between the two objects) is applied 

to the ball to prevent it from falling, as illustrated in Figure 2.24 (overleaf). 
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Figure 2.24 - Normal force applied to a ball resting on a ground plane 

If the ball comes to rest for a set period of time, then the physics engine will ‘put the 

object to sleep’; meaning that it is not processed further unless the object is involved in 

another collision, or a force is applied to it, in order to avoid unnecessary computation.  

� Penetration Issues 

The size of the timestep used in the solver can lead to penetration issues. If an object is 

travelling at sufficiently high velocities and/or the timestep between frames is large, then 

the two objects may penetrate each other, as illustrated in Figure 2.25 (below). 

 

Figure 2.25 - Illustrating how interpenetration between rigid bodies is solved using a separating force (F) 

In the event of penetration (‘Frame X’), an additional force (F) is applied along the contact 

normal between the two objects that is sufficiently large as to push the objects apart in 

the next frame (Frame X+1). This interpenetration solution can lead to instability, 

however; the combination of penetration error and separation force can lead to visible 

jittering, if the timestep is too large or the solver is insufficiently accurate. [41] 

Constraints 

The introduction of limits and constraints is often necessary, in order to allow the 

computer to simulate rigid body behaviour efficiently and reduce error in the simulation. 

There are different types of constraint that can be applied in a physics engine, two 

examples of which are discussed below. 
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� Physical Constraints (Joints) 

An unconstrained rigid body has 6 degrees of freedom: 3 positional and 3 rotational. A 

physical constraint is something that enforces a condition between two bodies, limiting 

one or more of these degrees of freedom. An example of a physical constraint is a joint. In 

physics engines, joints are connections between objects. For example, a ‘fixed joint’ holds 

two objects together rigidly (eliminating the relative degrees of freedom between the 

objects), while a ‘rotational joint’ allows relative rotation between the objects in one axis.  

� Error Bound Constraints 

It is also possible to use Error Bound Constraints, which are limits imposed to minimise 

error in the simulation. For example you might know that the real-life force applied to a 

particular object will always be within a certain range (i.e. 1,000 to 10,000N) and so you 

would limit the size of the force acting on that object to within that range. Such a 

constraint would mean that if an erroneously large force (i.e. 12,000N) is generated - as a 

result of solver fidelity, penetration issues or floating point errors, for example - then the 

force that is applied to the object is constrained to be within that range, reducing the 

detrimental effects that the erroneous force would otherwise have had on the system. 

Integration  

Rigid Body dynamics and collision response determine the momentum of an object and 

integration is then used to process the velocity and position of the object over time, using 

explicit integration as described in Section 2.3.2. The position of each object in each 

frame of the simulation is based on the position of the object in the previous frame and 

on the forces acting on it, including any forces applied during collision resolution, 

integrated based on the time that has passed between frames. The difference, or 

‘timestep’, between the previous state and the current state determines the accuracy and 

computational complexity involved - increasing the fidelity by decreasing the timestep 

increases accuracy and reduces error, but also increases computational expense and may 

compromise performance. This timestep is commonly limited 1/60
th

 or 1/30
th

 of a second 

[41], depending on the target framerate of the game/application. 

Because PhysX is a commercial engine, the exact implementation details are unknown. 

However, according to Boeing and Braunl (2007) [42], most of the Physics Engines 

produce similar results to the second-order Euler (‘Improved Euler’) or the Symplectic 

Euler method. Symplectic Euler is a semi-implicit variation of the Euler method (which 

uses vn+1 in the equation for xn+1, while the Euler method uses vn). [21] The results are not 

identical to those produced by the Euler methods however, suggesting that a bespoke 

integration method was used. 
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 PhysX 2.4.3

NVidia’s PhysX Software Development Kit (SDK) is proprietary, multi-platform, real-time 

physics engine middleware. It supports a number of platforms including Linux, Mac and 

Windows, as well as so-called ‘seventh generation’ consoles like the Xbox 360 and the 

PlayStation 3 [4]. PhysX is one of the most advanced and widely used Physics Engines in 

the games industry, and the SDK is available free for academic use [4]. Although not 

open-source, it is a physics engine that is widely used inside and outside the games 

industry and has been professionally developed and maintained, which makes the PhysX 

SDK is a good starting point for developing real-time simulations on a desktop computer.  

SDK Version 

The Locomotion tool uses version 2.8.4 of the PhysX SDK, which was the latest version 

that was available at the start of the project (in 2009) and is the last version to still be 

based on the Novodex engine, which is featured in Boeing and Braunl’s ‘Evaluation of 

Physics Systems’ [42] (which is discussed in Section 2.4.4).  

A Black Box Approach 

The version of the SDK used to create the Locomotion tool is non-open-source, which 

means that it is not possible to access or modify the internal workings of the engine. 

However, using this version of the SDK still allows the evaluation of the ‘off-the-shelf 

system’, as would be used in the games industry. This research therefore treats the 

internal workings of the physics engines as a black box. The development of the 

simulation was achieved without making any adjustments to the internal workings of the 

engine and the evaluation of the tool was conducted by studying the simulation produced 

by the physics engine, rather than analysing the internal mathematics of the physics 

engine itself. The engine is adjusted and evaluated using the methods and parameters 

provided by the SDK (discussed in Section 3.4). 

Applications in Gaming 

PhysX is commonly used in the games industry and is included in popular game engines 

such as Unreal and Unity. It has been used in over 500 games, including Batman: Arkham 

Asylum, Mirror’s Edge and the Assassin’s Creed Series [4]. It has been used for vehicle 

simulation in racing games such as NASCAR 2011, Blur and the Need for Speed series [4], 

and was also used in the Train Simulator games [4] (although these games do not truly 

simulate rail vehicle dynamics in any meaningful way). 

Other Applications 

It is also used in non-game-related software, including 3D graphics development 

environments like DX Studio [43] and 3D Studio Max [44], virtual reality platforms such as 

Active Worlds [45], Microsoft Robotics Developer Studio [46] and other computer 

graphics and animation suites. 
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 Related Work 2.4.4

With the exception of work in the Games Industry, there seems to have been little 

research into using Physics Engines for engineering or vehicle simulation. However, there 

are a number of related projects that have provided useful insight into the development 

of the Locomotion simulation tool, and examples of a few of these projects are discussed 

in this section. 

Evaluation of Physics Systems 

Boeing and Braȕnl [2007] [42] developed The Physics Abstraction Layer (PAL), a system 

that allowed them to evaluate a number of physics engines through a unified interface. 

PAL interfaces with 10 different physics engines, including: Novodex (on which the PhysX 

was initially based [4]), the Newton SDK [39], Bullet [38] and the Open Dynamics Engine 

[40] and allows the user to run the same tests using each of the engines, allowing 

comparisons to be made between them. They investigated the accuracy and 

computational efficiency of each engine, including their handling of collision detection, 

material properties and objects that were stacked, joined or otherwise constrained.  

This included an evaluation of the efficiency of the integrator component of the engines. 

One test involved placing a sphere in the scene and allowing it to drop from gravitational 

forces. The position of the sphere at each frame in each engine is recorded and the 

following graph (Figure 2.26 - below) shows the accumulated position errors relative to a 

mathematically calculated ideal and normalised with respect to the Symplectic Euler 

integration method. 

 

Figure 2.26 - Integrator test data, showing the normalised relative error for each Physics Engine with 

respect to Symplectic Euler [42] 

PhysX/Novodex produced the best results in this test, as it had the lowest normalised 

relative error.  
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The integrator was among six ‘essential factors’ of a physics engine that the authors 

define as determining its performance. These also included the Simulator Paradigm, 

which affects the accuracy in resolving constraints, and Object Representation, which 

contributes to the accuracy and efficiency of collisions. Also tested were Material 

Properties such as friction and restitution. Another example of the data they collected is 

shown below in Figure 2.27. Here they were comparing the behaviours of various objects 

with different ‘static friction’ values.  

 

Figure 2.27 - Results from static friction testing in each Physics Engine against the ‘Ideal’ results [42] 

Static Friction is the friction between two objects that are not moving relative to each 

other, which, for example, prevents an object from sliding down a sloped surface. The 

angle of detected acceleration for a range of friction coefficient values was recorded and 

compared to the mathematical ‘ideal’. The graph shows that the Newton engine was 

closest to the ‘ideal’, but that none of the engines were exactly realistic.  

Their conclusion was that all of the engines were suitable for game development, but that 

no one engine performed best at all tasks. For example, the Newton engine performed 

well in the static friction test, but produced the worst results in the integrator tests. A 

different engine performed best in nearly every test and so they concluded that each of 

the different platforms was better at specific tasks. This makes it difficult for a developer 

to choose the best engine to use for a specific purpose [42]. However, the fact that 

Novodex (PhysX) performed well in the integrator test is a promising sign that it might be 

suitable for use in real-time engineering simulation, as the integrator is the key 

component in determining the position and velocity of rigid bodies in the scene. 

Since PhysX is a commercial engine, the implementation details are unknown; however, 

as mentioned in the previous section, the authors do state that most of the physics 

engines that were tested produced results similar to symplectic Euler or 2
nd

 order Euler. 
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Luo et al  

In Luo et al. [47], they showcased a vehicle simulation and debugging environment, built 

using a commercial physics engine. Their goal was to create a tool to help in the 

development of intelligent vehicles; small robots that use sensors to look for a 

predetermined path in the environment and follow it. Figure 2.28 (below) shows the main 

interface of the simulation environment (left) and one of the intelligent vehicles (right). 

  

Figure 2.28 - The Main Interface of the CCD/CMOS Vehicle Simulation and Debugging Environment (left) 

and a photo of an Intelligent Vehicle with CCD/CMOS Sensor (right) [47] 

Previously, the development of such vehicles involved ‘in-circuit debugging’; downloading 

the software into a vehicle to test its performance and debug its behaviour. However, the 

embedded microcontroller software on the vehicle often lacks suitable debugging tools 

and it is often difficult to analyse the causes of any errors. It is also difficult to develop or 

debug the software before the associated hardware has been developed. 

They created a virtual development environment as an alternative method to develop 

and debug the software for the vehicles, allowing the software to be developed at a 

higher speed and lower cost. They used video game technologies to create the 

development environment, including the OpenGL Graphics Library for 3D rendering and 

the Open Dynamics Engine for physics simulation [47].  

Two robotic vehicles using different types of sensor were successfully constructed using 

software that was developed and tested in the vehicle simulation and debugging 

environment. The software was compiled and successfully installed onto the test vehicles, 

which ran stably on a range of courses at high speeds, showing that (at least on this scale) 

the physics engine was able to produce suitably realistic results to use for vehicle and 

software development. 
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 Summary 2.4.5

This section has shown how physics engines simulate the dynamics of physical entities, 

discussed studies into their accuracy and performance, and discussed how they can be 

used outside the games industry. Game physics may not originally have been designed to 

produce realistic physical simulations, but physics engines are based on real-world 

mathematics and may be capable of producing suitably realistic results in certain 

circumstances. This section has included two papers that evaluated physics engine and 

shown that they are capable of producing promising results.  

2.5 Chapter Summary 

This chapter has shown how virtual simulations can be useful to rail engineers and has 

discussed some of the existing solutions, their limitations and why a real-time simulation 

could be a useful supplement to these tools. It also discussed how physics engines can 

provide an alternative approach to the discretisation and modelling of physical objects 

and how this enables the development of a real-time rail simulation tool. 

 The Problem 2.5.1

Although the mathematics of the wheel/rail interface are fairly well known, the dynamic 

modelling of this aspect of rail engineering is computationally demanding. Current 

engineering simulations prioritise accuracy over speed and must solve a large number of 

complex, bespoke mathematical formulas, which makes the calculations prohibitively 

expensive for studying the dynamic behaviour of multi-vehicle trains. Rail engineers are 

aware of these shortcomings and are interested in a more efficient solution that could 

reduce the time and cost involved in the development of new vehicles and safety 

features, particularly during the early, more iterative phases of the design process.   

Conclusions from Related Research 

Many attempts have been made to develop faster versions of existing mathematical 

techniques used in the rail industry, but none of them approach the simplicity or speed 

required for use in a real-time solution. The solution presented by Monga et al. [36] 

allows for real-time simulation, but involves the use of highly specialised and expensive 

hardware. An alternative solution is therefore needed.  

 The Solution 2.5.2

The solution presented in this thesis, rather than trying to make existing engineering 

techniques faster, approaches the problem in a different way. The simulation tool 

presented in this Thesis is based on real-time physics engines from the games industry.  
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Physics engines are iterative, constraint-based solver systems that are based on 

Newtonian principles, but use rigid body dynamics and simplified, multi-phase collision 

detection and response systems as an alternative method for the discretisation and 

modelling physical objects. The use of real-time physics engines may afford abstracted 

simulations of entire vehicles and multi-vehicle trains that are reasonably accurate, within 

a certain error bound, and execute in real-time, and this research represents the first 

steps in developing and evaluating such a tool for use in the rail industry. 

MATLAB was considered as a possible implementation platform, but physics engines were 

chosen because of their high performance, which should allow the simulation to model 

more than is currently possible to model using the traditional engineering approach. 

PhysX was chosen because it is widely used in the games industry and because has been 

shown to produce reasonably realistic results by studies such as Boeing and Braunl [42]. 

However, a real-time physics engine introduces a degree of error. The use of explicit 

integration in the solver is a compromise between accuracy and speed; Rigid Bodies are 

polygonal, with no true curves, and do not allow for deformation of materials; and 

collision response does not represent a true contact between two bodies. All of these 

factors introduce error and this research represents an attempt to evaluate this error, 

and to constrain it, where possible. 

Conclusions from Related Research 

Boeing and Braunl [2007] [42] showed that, while different engines performed with 

differing degrees of success in different testing scenarios, many Physics engines, including 

a predecessor of PhysX, are capable of producing reasonable approximations of the 

results predicted by traditional mathematical methods in a range of scenarios, including 

material properties and rigid body movement. Also, based on Luo et al.’s work [47], it 

would seem that a physics engine can be used in vehicle development, at least on a small 

scale. Rail vehicles are much larger and much heavier, but this suggests that physics 

engines can produce suitably realistic results in certain situations and this research aims 

to discover if this is also true for rail vehicles. 

 Designing the Simulation tool 2.5.3

The tool will be designed to work in a similar way to most video games, therefore 

allowing the integration of the PhysX engine (and other game technologies). Additionally, 

rail engineering formulas from Section 2.2, such as the Gravitational Stiffness Force (GSF) 

formula, will be used in its development. The research presented in this chapter, and 

discussions with NewRail staff, have suggested four key areas of rail dynamics and/or 

possible applications for a real-time simulation tool. Designing Locomotion to achieve 

these goals and evaluating its ability to perform these functions has therefore been a key 

focus of this research. 
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These four goals/applications are: 

1. Simulation of the Wheel/Rail Interface (WRI) 

2. Simulating Multi Vehicle Trains 

3. A Rapid Prototyping Tool 

4. A Gauging Tool 
 

In order to achieve these goals/be suitable for these applications, the simulation tool will 

require: 

� Features to evaluate the behaviour WRI - i.e. ways to evaluate the stability, 

derailment speed and lateral offset of a wheelset 

� Features to enable multi-vehicle trains - i.e. design abstractions to allow the 

simulation of entire rail vehicles and multi-vehicle trains in real-time. 

� Flexibility - The tool was designed to be flexible in order to allow the testing in 

Chapter 5 and 6 to be conducted, as well as to fulfil the intended application as a 

rapid prototyping tool. 

� Gauge testing features - i.e. features designed to detect collisions with 

bridges/tunnels and other infrastructure l. 
 

The other goal of this research is to maintain the real-time performance of the simulation. 

The tool was therefore designed to use abstracted models to maximise performance, and 

the performance (measured as the framerate (frames-per-second) of the tool will need to 

be measured. 

 Evaluating the Simulation Tool 2.5.4

Limited benchmarking data was available to use in the evaluation of the simulation tool, 

and so the following methods are used.  

Tests were first performed with simple objects that can easily be verified with traditional 

mathematics (i.e. simple scenarios that allow the normal force between contacting 

objects to be calculated, and simplified gauge testing scenarios are also used, so that 

predictions for collisions with infrastructure can be made easily).  

The Nadal Limit for Wheel-Climb Derailment is used to evaluate the wheel/rail interface, 

by predicting the derailment behaviour of a single wheelset or a bogie. Despite the fact 

that the Nadal Limit is considered to be a conservative estimate, it is widely used in the 

rail industry and provides a sufficient approximation of derailment behaviour for use in 

the initial benchmarking of the simulation tool. 
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  Chapter 3

Design  

This chapter describes the design of ‘Locomotion’; a real-time rail vehicle dynamics 

simulation tool developed using NVidia’s PhysX engine. First, the aim and main goals of 

the project reiterated, and then key elements of the simulation’s design are presented, 

including the vehicle, environment and software design.  

3.1 Aim and Goals 

In this section, the aim of this research is reiterated and the key goals are discussed in 

more detail. These goals informed the design of the simulation tool. 

 Aim 3.1.1

The main aim of this research was to design, develop and evaluate a rail dynamics 

simulation tool based on a real-time physics engine. 

 Goals 3.1.2

The aim can be broken down into a series of distinct goals, which are as follows: 

1. To develop a real-time rail dynamics simulation tool based on a physics engine. 

2. To determine the error-bound of the simulation in order to appraise its usefulness to 

engineers. 

3. To constrain the error - by introducing constraints, adjusting physics engine 

parameters or by applying additional forces, where necessary/possible.  

4. To produce a tool that is flexible, to enable it to be evaluated easily and to allow it to 

be used as a rapid prototyping tool. 

5. To evaluate the ability of the tool to simulate the wheel/rail interface. 

6. To attempt to simulate the dynamic behaviour of multi-vehicle trains. 

7. To attempt to simulate other aspects of rail vehicle dynamics, such as gauging 

8. To use results from the simulation to discuss whether such a real-time tool would be 

useful to rail engineers, and for what purpose(s). 

 Intended Applications 3.1.3

In order to properly supplement the existing simulation tools, the simulation design 

should consider the following potential applications. The simulation tool’s suitability for 

these (and other) applications will be determined by the testing presented in Chapters 5 

and 6, and discussed in Chapter 7. 
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Rapid Feedback for Design Changes 

The tool should be flexible, as well as fast, to help to simplify and expedite the process of 

testing design changes. It should have parameters and settings that can be edited easily, 

and allow vehicle components to be adjusted easily, without requiring any code 

recompilation, so that it can provide rapid feedback about the effects of those changes.  

A Rapid Prototyping Tool 

Similarly, the simulation should allow engineers quickly test a range of scenarios and 

identify those that are best suited to further investigation, allowing them to make more 

efficient use of the more sophisticated simulation tools and testing methods. It should 

therefore have batch testing features and allow a range of parameters to be adjusted and 

tested automatically, and produce results that show the effect of those adjustments. 

A Tool to Analyse Vehicle Stability and Derailment Behaviour 

If the tool is to be used to analyse vehicle stability and derailment behaviour, then it 

should be capable of simulating the dynamic behaviour of rail vehicles during normal 

operation, at normal operating speeds and on simple rail layouts, as well as during 

exceptional circumstances.  

This includes the following, more specific applications:  

� Simulation of the Wheel/Rail Interface  

The ability to simulate the wheel/rail interface, hunting oscillation and dynamic 

derailment behaviour would be very useful to rail engineers. This has therefore been a 

key focus of this research. The aim of this aspect of the research was to see if the 

simulation is (or can be made) accurate enough to simulate the wheel/rail interface to 

within an acceptable level of accuracy. The evaluation of the wheel/rail interface will be 

conducted using the Nadal limit for wheel-climb derailment. 

� Recording flange collisions  

Rail engineers aim to avoid contact between the rails and the wheel flanges, as this 

causes unnecessary wear and tear, which is potentially dangerous and expensive. The 

grinding of flange on rail also produces a lot of noise, which is disruptive to people and 

wildlife. Being able to track flange contacts would allow engineers to identify any areas 

where these collisions are most likely to occur and the simulation could then be used to 

find ways to reduce them. 

� Studying the effect of inter-vehicle connections on vehicle stability 

If the simulation is capable of multi-vehicle simulation, then it would allow engineers to 

study how the stability of adjacent vehicles is affected through the couplings. 
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� Determining the maximum safe speed of the vehicle 

Speed limits enforced around the world tend to err on the side of caution and it has been 

shown that real-world derailments tend to occur at speeds much higher than the posted 

limits. A real-time tool could be used to show that the vehicles are capable of safely 

achieving higher speeds, which could lead to limits being increased, improving the 

efficiency of the railway and increasing its profitability. 

A Gauging Tool 

Even if the simulation of the wheel rail interface is not sufficiently accurate to study the 

behaviours described above, the system may be sufficiently accurate to use to study 

other vehicle behaviours. Another potential application of the tool, if it is capable of 

simulating entire vehicles, is gauge testing - i.e. determining if the train will collide with 

other vehicles, bridges, tunnels or other infrastructure.  

 Testing Plan (Overview) 3.1.4

A full testing plan is included in Chapter 4, but an overview of the testing goals of this 

research is included below. Testing begins with simple scenarios and complexity is 

iteratively added. Testing with multi-vehicle trains was the ultimate goal, but the focus 

was on simulating the wheel/rail interface by studying the behaviour of wheelsets and 

bogies. Each phase of testing is designed to evaluate a particular aspect of the physical 

simulation and the data collected from these tests should help identify the suitability of 

the simulation tool for its various intended applications. 

Testing Phases 

Testing was to be conducted in seven phases, as outlined below. 

1. Simple Objects - verify basic object behaviour in PhysX. 

2. The Wheel/Rail Interface - evaluate the simulation of the wheel/rail interface - while 

static and in motion. 

3. A Bogie in Motion - test the behaviour of a rail bogie on straight and curved track to 

evaluate its curving behaviour and operating speed. 

4. Whole Vehicles - attempt testing with full vehicles. 

5. Multi-Vehicle Testing - if full vehicles can be simulated correctly, test with multi-

vehicle trains. 

6. Rapid Prototyping - tests to demonstrate how Locomotion may be utilised as a rapid 

prototyping tool.  

7. Gauge Testing - testing to show how Locomotion could be used as  gauge testing tool 

and to evaluate its suitability for that purpose 
 

Testing phases 1 - 3 are presented in Chapter 5. Phases 4 - 7 are presented in Chapter 6. 
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Additional Objectives 

The following additional objectives were to be considered throughout the testing process. 

� Identify Error - to attempt to evaluate the error bound. An amount of error is 

inevitable with a real-time solution, but if the error is small enough, then it may be 

acceptable.  

� Constrain Error/Improve the Results - If any of the behaviours are not realistic or the 

error is too high, then attempts should be made to improve them, such as by 

adjusting parameters of the Physics Engine or augmenting the simulation with 

additional forces.  

 Sample Case Studies 3.1.5

In order to assist in the design and implementation of the tool, the following case studies 

were considered. 

Case Study 1: Curve Derailment Speed 

The following case study was designed to evaluate the derailment speed of the vehicle on 

a particular curve radius.  

� Test 1:  Start at a Target Speed of 1mph 

[Increment the target speed at the end of each loop until derailment occurs] 

� Test 2: Restart at a Target Speed of 1mph 

[Increment the target speed at the end of each loop until derailment occurs] 

� Test 3: Restart at a Target Speed of 1mph 

... 

� Test 10: Restart at a Target Speed of 1mph 
 

Ten tests are conducted, allowing the average result and range of results to be collected, 

which allows an evaluation of the accuracy and consistency of the results. 

Case Study 2: Bogie Wheelbase 

This case study is designed to test whether Locomotion is suitable for use as a rapid 

prototyping tool. The target speed is set to 100mph, and the average derailment speed is 

measured for each bogie wheelbase value, allowing the effect of altering the wheelbase 

to be evaluated. 

� Batch 1:  Run 10 Tests using a Wheelbase of 1.5m 

� Batch 2: Run 10 Tests using Wheelbase = 1.6m 

� Batch 3: Run 10 Tests using Wheelbase = 1.7m 

... 

� Batch 11: Run 10 Tests using Wheelbase = 2.5m 
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Data Collection and Evaluation 

During each test/batch of tests, properties such as the lateral offset of the wheelset, 

wheelset stability, the number of derailments and the average derailment speed are 

recorded, along with the performance of the tool, allowing the results to be compared 

and any changes to be observed. 

Summary 

These case studies should be indicative of the majority of the tests that will be run during 

the development and evaluation of the Locomotion simulation tool. The tool was 

designed to allow batch testing to be carried out automatically, without user supervision. 

3.2 Design Overview 

This section describes key elements of the design of the Locomotion simulation tool, 

including the test vehicle and testing environment. These elements were researched and 

designed before the software architecture (described in Section 3.3) was designed. 

 The Test Vehicle 3.2.1

In this section, the construction and properties of the virtual test vehicle are discussed. 

The aim when designing the virtual vehicle was to create a vehicle that was as realistic as 

possible, based on real-world data where this was available. The vehicle is based on a 

real-world rail vehicle: the Metro de Madrid 5000 Series, a photo of which is shown in 

Figure 3.1, below).  

 

Figure 3.1 - A photo of the Metro de Madrid 5000 Series Vehicle [provided by NewRail] 

This metro vehicle is used on the Metro de Madrid [48] network in Spain and was 

involved in the bombings in March 2004 [49].  It is being studied by NewRail as part of the 

SecureMetro project [20], as mentioned in Section 2.3.1. 
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NewRail have provided access to some of the technical specifications for the 5000 series 

vehicle, which includes the data in Table 3.1 below: 

Total Mass 32,000 kg 

Body Length 17.4 m 

Body Width 2.8 m 

Body Height 2.98 m 

Vehicle Spacing 0.52 m 

Bogie Spacing 11.1 m 

Wheelbase 2.2 m 
 

Table 3.1 - 5000 Series vehicle statistics [Provided by NewRail] 

These properties of the vehicle are illustrated below in Figure 3.2. 

 

Figure 3.2 - Measurements of the Vehicle  

 The Virtual Vehicle 3.2.2

The virtual vehicle is constructed from a set of components; the body, chassis, bogies and 

wheelsets. These components, when assembled, produce an abstracted model of the rail 

vehicle. Figure 3.3 (below) shows these components and the blue arrows show how they 

are assembled and connected. 

 

Figure 3.3 - Vehicle Construction in the Locomotion Tool 
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This use of separate components simplifies and accelerates the file loading process 

(because each component only has to be loaded into the simulation once) and allows 

greater control over the way in which the components are assembled. The alternative 

would be to produce a single model of the whole train, but then the model file would 

have to be altered (in an external application such as 3D Studio Max) to make any 

changes (such as adjusting the bogie spacing). By loading the individual components into 

the simulation, the vehicle can be adjusted more dynamically, making the simulation 

more flexible. The models are loaded into the application and can then be cloned, 

positioned and joined together based on parameters that are defined in a text file (and 

which, by default, are set to the values in Table 3.1), which can be edited without 

requiring recompilation of the application code. 

The Body 

The main body of the vehicle is a single rigid body, as shown in Figure 3.4 (below). Its 

mass and centre of gravity can be altered to simulate different load distributions.  

  

Figure 3.4 - The Locomotive Body Design in 3D Studio Max (3D View) 

A texture is applied to create the illusion of windows and doors and make the vehicle look 

more realistic, but the rigid body is a single shape comprising 21 polygons and 24 vertices. 

The white lines show the edges of the triangles that make up the polygon. 

The Chassis 

The chassis of the vehicle represents the underside of the main body, where the fuel, 

water tank, air conditioning units etc. are attached. The chassis rigid body comprises a 

number of cuboids, one for the main flatbed shape and four to represent the various 

components, as illustrated in Figure 3.5 (overleaf). The polygons that make up the chassis 

have been coloured blue to make them easier to see in the screenshot. 
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Figure 3.5 - The Chassis Design in 3DS Max (3D View) 

The chassis is attached to the main body via a fixed joint. The use of a separate chassis 

allows for the modelling of different vehicle types by changing only the body. The rigid 

body for the chassis comprises 46 polygons and 56 vertices. 

The Bogie 

This simulation uses a fixed bogie setup. The bogie frame is an h-shaped rigid body as 

illustrated in Figure 3.6, below. The bogie rigid body comprises 96 polygons and 122 

vertices. 

 

Figure 3.6 - The Bogie Design in 3D Studio Max (3D View) 

� Suspension 

It was decided that suspension would not be modelled as part of the initial 

implementation of the simulation tool. It may be possible to produce an approximation of 

the suspension system in real time, but time constraints prevented any implementation 

during this research (this is discussed in more detail in Future Work (Chapter 7). 

The Wheelset 

The wheelset includes the wheels, flanges and axle. The axle is a cylindrical rigid body 

1.7m in length and with 12 segments. The wheels and flanges are also constructed from 

cylinders. The wireframe model of one of the wheels is shown in Figure 3.7 (overleaf). 
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Figure 3.7 - The Wireframe Wheel Profile - Front view (left) and side view (right) 

� Wheel Profile 

For the purposes of this simulation, a simplified wheel profile is used that consists of a 

conical tread and flange (with no chamfer). A simplified profile allows predictions about 

the behaviour of the wheelset to be calculated more easily. Below are the key properties 

of the wheels/flanges: 

� The wheel consists of a cylindrical shape with a conicity of 1:20.   

� The total width of the wheel profile is 135 mm and flange height is 30 mm.  
 

It was intended that more complex profiles would be added to the simulation and tested 

at a later date, but time constraints prevented their implementation during this research. 

� Wheelset Polygon Count 

The most appropriate polygon count for the wheels was not immediately apparent. Three 

variations were therefore constructed for testing, and are described below in terms of the 

number of cylinder sections used to create the wheels/flanges and the number of 

polygons and vertices in the complete wheelset model. 

� 32 Segments per wheel/flange - 214 Polygons and 344 Vertices 

� 48 Segments per wheel/flange - 310 Polygons and 504 Vertices  

� 64 Segments per wheel/flange - 406 Polygons and 664 Vertices  
 

A comparison between the three variations is included in Chapter 5. 

� Contact Angle and Conicity 

The contact angle is the angle between the wheel and the ground at the contact point  

(δ in Figure 2.11 - Forces at the flange contact location Figure 2.11). The contact angle and 

conicity of the wheels are as follows: 

� The wheel has a contact angle of 2.86° (conicity 0.05). 
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� The flange has a contact angle of 65° (conicity 2.86). 

 

Calculating Conicity 

The wheels used in the simulation have simplified conical profiles; the incline does not 

change across the profile of the wheel. The conicity of each wheel at rest is therefore 

1:20. To calculate the effective conicity of the wheelset, consider Figure 3.8 (below). 

 

Figure 3.8 - Difference in wheel radius before (r1) and after (r2) a lateral offset of y  

Assuming that r1 is the radius of the wheel at rest and r2 is the radius when the wheel has 

experienced a lateral displacement of y, then if y = 1 the effective radius of this wheel has 

decreased and r2 is 0.05 (1/20) smaller than r1 

 

Figure 3.9 - Illustrating the incline of the Wheel 

At the same time, the radius of the other wheel will have increased by the same amount; 

0.05, as illustrated in Figure 3.9 (above). The difference in effective size (known as the 

Rolling Radius Difference (RRD)) when y = 1 is therefore: 

RRD
y � 1� � 	0.05 ∗ 2 � 0.1 

In more general terms, the RRD for any lateral offset can be described as: 

eef
0� � 	0.05 ∗ 2	0 
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The Effective Conicity of the wheelset is calculated using Formula 3.1, below.   

�
0� �  eef20  
Formula 3.1 - Calculating effective conicity of a wheel from Rolling Radius Difference [50] 

However, if the RRD is as above, then the multiplication and division by 2y cancel out, as 

illustrated in Formula 3.2, below. 

�
0� �   0.05 ∗ 2020 = 0.05 
Formula 3.2 - Calculating the conicity of the simulated wheelset 

So the effective conicity of the wheelsets in the simulation is 0.05 and this does not 

change with lateral offset. Similarly, the effective conicity of the flanges is 2.2. This value 

can be stored by the simulation during initialisation and need not be calculated when it is 

needed. However, if a more complex shape was used, this value would have to be 

calculated as a function of lateral offset.  

� Wheelset Variations 

Two variations in wheelset design were created for use in the simulation.  

� The ‘Single Body Wheelset’ or ‘SB Wheelset’- which includes the flanges, wheels and 

the axle as part of a single rigid body.  

� The ‘Multi-body Wheelset’ or ‘MB Wheelset’- which comprises separate rigid bodies 

for the wheels and flanges, which are attached to the axle rigid body via fixed joints. 
 

The Multi-body Wheelset allows the wheel spacing to be adjusted, which allows for 

different wheel profiles to be used with minimum effort and allows for flange collisions to 

be detected easily. However, due to the forces acting on the different rigid bodies and the 

way that the solver that processes the joints between the bodies, the joints may become 

unstable, making the MB wheelset less stable than the SB wheelset. The two wheelset 

designs are compared in various tests in Chapter 5. 

Conical Wheelset 

A third type of wheelset was also constructed for initial testing. The Conical Wheelset is a 

simple shape consisting of two cones joined at the base, as illustrated in the Figure 3.10 

(overleaf). This wheelset is designed to test lateral offset and hunting oscillation 

behaviour in the simulation by allowing free lateral movement (without impediment by 

the flanges) in order to evaluate the simulation of the wheel/rail interface.  
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Figure 3.10 - Design for the Conical Wheelset 

The cones are created with 64 segments, resulting in a model with 130 polygons and 192 

vertices. The radius of the base of the cones is 0.25m and their height is 2.5m. This results 

in a conicity of 1:10 or 0.1.  

Wheelset Propulsion 

During tests with a single wheelset, the wheelset is propelled by the application of torque 

to the rigid body along its local y axis, which causes it to roll forwards. 

Bogie Propulsion 

In the simulation, the two bogies of the front locomotive are considered to be 

‘motorised’, and the front locomotive pulls the rest of the train - a choice based on 

common metro vehicle configurations. However, the simulation was designed to enable 

different configurations by allowing the user to specify whether the bogies are 

‘motorised’ on a per-vehicle basis in the simulation configuration files. 

� PhysX Motor 

PhysX SDK includes a ‘Motor’ object [41], which can be attached to a revolute joint.  

A Revolute Joint is created using a Joint Description object, which includes various 

parameters that allow a motor to be defined and enabled. These parameters are shown 

in Table 3.2, below, which is taken from the PhysX SDK Documentation [41]. 

NxReal 
velTarget 

The relative velocity the motor is trying to achieve. 

NxReal 
maxForce 

The maximum force (or torque) the motor can exert. 

NxBool 
freeSpin 

If true, motor will not brake when it spins faster than velTarget. 

 

Table 3.2 - PhysXMotorDesc (PhysX Motor Description) Attributes [41] 

No ‘maxForce’ is set on the motor, and ‘velTarget’ is adjusted to control the speed of the 

vehicle. ‘freeSpin’ is set to false, so the motor will break to slow the vehicle if necessary. 
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� Target Speed 

The user is able to set the ‘target speed’ of the vehicle and the bogies are designed to 

accelerate or decelerate (by adjusting the velTarget of the motor on the joint between 

the bogie and the wheelsets) until the forward velocity of the vehicle reaches the target 

speed. This target speed parameter can be adjusted dynamically or incremented 

automatically during batch testing (for more on Batch Testing, see Section 3.3.16). 

Train Composition 

Trains are created based on a parameter that defines the number of vehicles in the train. 

If the number of vehicles is set to 1, then a single locomotive is used. If the number is 2, 

then two locomotives are placed back to back. For any number of 3 vehicles or more, 

additional carriages are placed between the two locomotives, as illustrated in Figure 3.11, 

below. This choice was based on common vehicle configurations. 

 

 

 

Figure 3.11 - Illustrating Train Compositions (1 Vehicle - top left, 2 Vehicles - top right, 3 Vehicles - bottom) 

 Component Masses 3.2.3

The virtual vehicle is constructed using the dimensions of the 5000 series, and weighs the 

correct total mass of 32 tonnes. However, the schematics provided by NewRail did not 

include the masses of the individual components, and so a number of assumptions have 

been made (these are presented in Tables 3.3. and 3.4, overleaf). These properties are 

defined in an editable text file.  

While these values may not produce a truly accurate representation of the 5000 series 

vehicle, these values are used in the simulation and the mathematical predictions (see 

Section 5.5). Since the same values are used in both the simulation and predictions, the 

results from the simulation should be comparable to the predictions, if the simulation is 

accurate. If more real-world derailment data was available with which to compare, it 

would be necessary to adjust these values to make them more realistic. 
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Locomotive Properties 

Table 3.3 (below) shows the values used to construct the locomotive. It shows the mass 

for each component, as well as the total mass of the vehicle. 

Component Mass (kg) 

Wheelset (x4) 500 

Bogie (x2) 6,000 

Locomotive Chassis 8,000 

Locomotive Body 10,000 

Total Mass 32,000 

 

Table 3.3 - Estimated Mass of Locomotion Vehicle Components 

Carriage Properties 

A ‘carriage’ vehicle was also designed, in order to enable testing of multi-vehicle trains.  

Table 3.4 (below) shows the values used to construct the carriage. It was assumed, since 

carriages are usually unpowered, that the bogie and chassis would have lower mass than 

the equivalent components on a locomotive, but that wheelsets and the vehicle body 

would weigh approximately the same. 

Component Mass (kg) 

Wheelset (x4) 500 

Bogie (x2) 5,000 

Carriage Chassis 7,000 

Carriage Body 10,000 

Total Mass 29,000 

 

Table 3.4 - Estimated Mass of Locomotion Vehicle Components 

 The Testing Environment 3.2.4

The environment in which the vehicle was to be tested was designed as follows. 

The Scene 

The scene in which the track and vehicles exist consists of a few simple elements. There is 

an infinite ground plane in the x/y axis located at the origin of the scene. The z axis points 

upwards and gravity is defined as the vector [0, 0, -9.806].  Rails are placed on the ground 

plane and collisions with this plane are part of the simulation’s derailment detection 

system (described in more detail later in this section). These basic components of the 

scene are shown in Figure 3.12 (overleaf). 
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Figure 3.12 - The PhysX Scene 

According to the PhysX Documentation (which was included with the SDK) [41]: “The SDK 

uses unitless numbers to measure three types of basic quantities: mass, length, and time. 

You can define these quantities to be in any units you want ... The units of derived 

quantities follow from these basic units.”  This simulation uses kilograms (kg) for mass, 

meters (m) for length and seconds (s) for time. This means that, for example, velocity is 

measured in meters per second (and converted to miles per hour (mph) where necessary) 

and forces are measured in Newtons. 

Rail Properties 

Rails in the simulation are generated based on the profile below. In 3DS Max, this profile 

is extruded along a spline to create the track geometry. Figure 3.13, below, shows the 

dimensions of the rail profile.  

      

Figure 3.13 - Locomotion Track Profile Dimensions (left) 

  



 Chapter 3 - Design 

62 

The track profile has a height of 140mm and a width of 60mm (which, in the absence of 

more information on the Metro de Madrid track, is based on specifications for a rail 

profile that is commonly used in the UK) [51].  

� Reversible Rails 

Rather than having a head and a foot, the profile has been designed to be symmetrical 

(i.e. to have two heads - as shown in the figure above (Figure 3.13)). This allows one 

model file to be produced for left-curving track and then inverted to create right-curving 

track. This is a shortcut to optimise the process of constructing the models and loading 

them into the simulation, by avoiding having to create and load separate models for both 

left and right bends at each curve radius.  

Track Sections 

Track is constructed from a set of pre-made ‘track sections’. A track section includes the 

left and right rail, as well as a central spline. Track sections can be assembled in any 

combination to form a ‘track layout’, as illustrated in Figure 3.14 (below), a simple 

straight layout comprised of four straight track sections. 

 

Figure 3.14 - Illustrating Track Sections and Track Layouts 

� Track Gauge 

The gauge of the track used in the simulation is that of the Madrid metro system: which, 

according to numerous sources including UrbanRail.net [52], is 1.445m.  

� Straight Sections 

Straight track sections are 10m in length. A straight rail is constructed by extruding the 

rail profile polygon (Figure 3.13 ) along a straight spline in a single segment. This results in 

a model (including both rails) comprising 48 polygons. 

� Curved Sections 

Curved track is designed so that each section is 1/100
th

 of a circle (i.e. 100 curved sections 

join together to form a circle, 50 form a semi-circle etc.). This makes it easier to create 

continuous layouts, such as the loop layout, which is described on Page 64. 
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Curved track is constructed using splines, as illustrated in Figure 3.15 (below).  

 

Figure 3.15 - Diagram illustrating curved track in the Locomotion Simulation Tool 

To construct a track section, the inner rail uses a radius of r minus the half gauge and the 

outer rail r plus the half gauge. 

As mentioned in Chapter 2, in the real world, the radius of a curved track commonly 

ranges from 500m to 1,000m. For the purposes of the simulation, curved track sections 

with radii of 500m, 600m, 700m, 800m, 900m and 1,000m have been constructed.  

Additionally, in order to enable the derailment testing in Chapter 5, curve sections with 

the following radii have also been constructed: 100m, 125m, 150m, 175m, 200m, 225m, 

250m, 275m, 300m, 325m and 350m. These radii are less common in the real world, but 

can occur at busy intersections or where there is limited space, such as on inner-city 

metro routes, so there is some value in simulating them. If, for example, the simulation 

can be shown to be accurate on these narrower radii, it may be assumed that it will be 

similarly accurate on the wider radii too. 

� Splines 

Each track section has a spline running along its centre. This is defined as a linear Bézier 

for straights and a quadratic Bézier for curves, and is based on the straight line/curve 

shape that was used to generate the track in 3D Studio Max. The spline is used to 

measure the lateral offset of the wheelset and is used in the calculation of additional 

centring forces (described in more detail in Section 3.3.14). 

Track Layouts 

Two track layouts were designed to enable the testing conducted in Chapter 5.  

Each layout is designed to test different elements of vehicle behaviour.  

� Straight 

The straight is a straight track of variable length, designed to test the acceleration and 

straight line speed and stability of the vehicle. The length is varied by adjusting a 

parameter that controls the number of straight track sections created when the scene is 

initialised. (i.e. if num_straights is 100, then the track is 1km in length).  
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� Loop 

The loop is designed to test a vehicle’s stability and behaviour on curves and consists of 

two straights and two bends which form an oval shape (as shown in Figure 3.16, below). 

 
Figure 3.16 - The Loop track layout in Locomotion 

The loop can be constructed with curves of different radii. Because of the way the track 

geometry is created, there is always the same number of track sections (and polygons) in 

the scene, regardless of the radius that has been selected, and so the performance of the 

simulation tool should not be affected by changes in the track radius. 

� Start & End Sections 

The vehicle starts at a predefined location, on an initial straight section of track that 

varies in length depending on the type of vehicle and number of carriages. In the case of 

the looped track, the straight on the opposite side is adjusted to mirror the length of the 

starting section. Additionally, an extra track section is added to the end of the straight. 

These start and end sections of track enable the simulation to detect when the vehicle 

has reached the end of the straight or has completed a loop of the track.  

 Summary 3.2.5

In this section, the design for the vehicle and the testing environment has been 

presented. Two key design choices have been identified, which will require testing: 

� Three wheelset designs with different polygon counts, designed to evaluate the 

stability and performance of the simulation tool. 

� Two wheelset variations (Single Body and Multi Body), designed to test whether it is 

desirable to have a more flexible wheelset model, but which might be less stable. 
 

It is not clear what the effect of these different design options will be on the simulation, 

and so they will be evaluated in the testing presented in Chapter 5. 

The next section presents the design for the simulation tool’s software architecture.  
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3.3 Software Design 

Key elements of the design of the software architecture of the Locomotion tool are 

presented in this section, including the integration of PhysX and other existing software, 

the design of the application flow and new features such as the spline-based centring 

technique described in Section 3.3.14. 

 Software and Libraries 3.3.1

The following software, tools and libraries were used in the development of the 

Locomotion simulation tool. 

3D Studio Max 

Autodesk’s 3D Studio Max (‘3DS Max’) 2012 [44] is 3D design software used for 

modelling, animation and rendering. It was chosen because it is commonly used in the 

video games industry and has a PhysX plugin available, meaning that it is capable of 

exporting the 3D models and rigid bodies in a format that can be imported into the 

simulation tool and used by the PhysX engine (described in more detail below). It is also 

freely available for academic use. 3DS Max is used to construct the 3D models and physics 

meshes used in the simulation. 3D Models are exported as .OBJ files, a commonly used 

format, and a PhysX plug-in enables PhysX rigid bodies to be exported as .XML files. 

C++, the Standard Library and the Standard Template Library 

The simulation was developed using C++, an object-oriented programming language 

commonly used by software and game developers. C++ includes access to a number of 

software libraries, including the Standard Library [53] - a collection of useful classes and 

functions, including data types, mathematical functions, data/time functions and 

methods for handling file input/output (some functions of which are used to import the 

simulation configuration files) - and Standard Template Library (STL) [54] - an expanded 

C++ software library that provides other useful implementations, including mathematical 

algorithms and data structures.  

Microsoft Visual Studio (2010) 

The software was developed in Microsoft’s Visual Studio [55], which is an Integrated 

Developer Environment (IDE) used to write, compile and debug code, and is also 

commonly used in the games industry. The use of an IDE simplifies the code development 

and debugging process. 

PhysX 

The PhysX SDK (version 2.8.4) is used to model the physical behaviours of the vehicles and 

objects in the simulation. The PhysX engine is initialised and updated as part of the 

simulation’s application flow (described in more detail in the next section). 
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� NXUStream 

The PhysX SDK includes the NXUStream utility, which is a C library that imports the 

physics XML files (exported from the PhysX plugin in 3DS Max) and manages the creation 

and initialisation of PhysX objects in the scene from those files. [4] 

OpenGL 

OpenGL [56] is an open-source platform for rendering 2D and 3D scenes. It has been used 

in the development of a number of games, from mobile games like Angry Birds to triple-A 

titles like Portal and the Need for Speed series [56]. OpenGL is used to render 3D models 

and other data visualisations in the simulation (more on visualisations in Section 4.1.5). 

� GLModel (GLM) 

GLM [57] is a C++ library designed to import and process .OBJ model files so that they can 

be rendered in OpenGL. It is used to import the 3D models that are generated by 3DS 

Max and convert them into a format that can be rendered in the simulation. The process 

creates a ‘GLModel’ object with a Render function, which can then be rendered along 

with the rest of the scene (as described later). 

Simple DirectMedia Layer (SDL) 

SDL [58] is a cross-platform library written in the C programming language that manages 

the creation of the application window, keyboard and mouse input, audio functions and 

access to graphics hardware, in this case via OpenGL. SDL is used to simplify the process 

of initialising the Locomotion application, as well as for handling user input.  Version 2.0 

of SDL is used in the Simulation. 

Summary 

These libraries and software packages are used to simplify the process of creating the 

application, allowing this research to focus on the evaluation of the physics engine. 

 Key Classes and Methods of the PhysX SDK 3.3.2

Initial research into the PhysX SDK Documentation [41] identified the following key 

classes and methods that are necessary to use the PhysX SDK, including classes that 

represent rigid bodies. These need to be integrated into the simulation tool. 

� SDK object - it is necessary to create and initialise an ‘SDK object’. This is a factory 

class used for instancing objects in the PhysX SDK. [41] 

� Scene object - Once the SDK is initialised, it is then necessary to create a PhysX scene. 

A scene is a collection of bodies that can interact with each other [41]. A call to the 

scene’s simulate method advances the simulation. The simulate method takes a 

parameter called ‘elapsed time’, which advances the simulation by the specified 

timestep (i.e. 1/60
th

 of a second). 
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� NxActor - Once the scene has been initialised, it is possible to create simple ‘Actors’ -  

the PhysX SDK’s name for rigid bodies - such as spheres and cubes by passing actor 

descriptions to the scene object. Alternatively, actors can be loaded into the scene 

using the NXUStream tools described earlier.  

 Application Flow 3.3.3

In order to integrate PhysX, the simulation has been constructed in a similar way to most 

video games and has five main phases: the Initialisation, Loading, Setup, Update and 

Render phases, as illustrated in Figure 3.17 (below). 

 
Figure 3.17 - The Five Main Phases of the Locomotion Application Flow 

Initialisation Phase 

During this phase, the application is initialised, the window is created and the PhysX SDK 

is initialised. This enables the loading phase to begin. 

Loading Phase 

The models, physics files and other prerequisite data files - including simulation, vehicle 

and test parameters defined in configuration files - are loaded into the application.  

Setup Phase 

The loaded objects are initialised, based on user-defined settings (loaded from the 

simulation setup files), ready for testing to begin. 

Main Application Loop 

The main application loop consists of the update and render phases, described below. 

This loop continues until the user exits the application or until all tests are complete. 

� Update Phase 

The PhysX ‘simulate’ method is called, which advances the physics simulation, and the 

entities in the scene are updated, forces are measured/applied etc. Most custom 

behaviours and measurements are processed in this phase in order to minimise the 

calculations performed during the render phase and maximise simulation performance.  

� Render Phase 

All of the objects are rendered. Other information such as track splines and contact data 

is also rendered in this phase. 

Render  Update  Initialisation  Setup  Loading 

Main Application Loop 
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 Wrapper Classes 3.3.4

While it would have been simpler to develop Locomotion by integrating PhysX directly 

into the application, the simulation has instead been designed so that the physics engine 

can be upgraded or replaced with a minimum amount of effort. It was originally intended 

that this would allow for the PhysX engine to be upgraded if necessary, and to potentially 

allow for comparisons to be made between different Physics Engines/Engine versions (in 

a similar way to the PAL interface from Boeing and Braunl (2007) [42]). Unfortunately, 

time constraints prevented testing with additional engines. This section describes how 

this was achieved.   

Key Physics Wrapper Classes 

The physics engine and rigid bodies needed to be encapsulated, which involves creating 

‘wrapper classes’ around key components of the PhysX engine. A wrapper class is an 

interface that allows interaction with multiple different implementations of an object. 

Below are examples of two key classes where this approach has been used; Wrapper 

Classes designed to allow the Locomotion simulation to interact with the PhysX engine in 

a way that would have allowed the objects to be implemented using an alternative engine 

to PhysX. 

� Physics Actor  

The Physics Actor was designed as a wrapper around the NxActor class, which represents 

a rigid body in the PhysX engine, as illustrated in Figure 3.18 (below). 

 

Figure 3.18 - Illustrating the relationship between the base Physics Actor class and the inheriting PhysX 

Actor class, a wrapper around a PhysX NxActor object. 

The generic class Physics Actor (white) is a pure virtual class, with no engine-specific 

implementation. A PhysX Actor (grey) object is then created, which inherits from Physics 

Actor and implements those pure virtual functions. This PhysX Actor object is a wrapper 

around an NxActor, and most of the methods are proxies for the methods of the inner 

object. For example, when we call the PhysX Actor’s “Get Mass” method, this returns the 

value returned by the NxActor’s “Get Mass” method. 

Physics Actor 

PhysX Actor 

NxActor 
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Key methods of the Physics Actor object include the following methods, most of which 

are proxy methods for the NxActor and which are used to access or set various properties 

and parameters of the object, or to apply forces to the object etc.: 

� GetPosition() / SetPosition(pos) - used to access and set the position of the actor. 

� GetRotation() / SetRotation(rot) - used to access and set the rotation of the actor. 

� GetMass() / SetMass(mass) - used to access and set the mass of the actor. 

� SetMaterialProperties(a, b, c) - used to set the coefficient of restitution (a), static 

friction (b) and dynamic friction (c) properties of the actor. 

� ApplyForce(force) - used to apply a linear force to the actor. 

� ApplyTorque(torque) - used to apply a rotational force to the actor. 
 

This approach allows for alternative objects to be created that inherits from the generic 

Physics Actor class, but has a different implementation (i.e. a ‘Havok Actor’ class). The 

implementation would be different for the different physics engine, but would still work 

within the context of the Locomotion simulation because the objects share a common 

interface, through the base Physics Actor class. The locomotion application classes can 

then interact with PhysicsActor regardless of whether it is implemented as a PhysXActor 

or another type of physics actor (such as a HavokActor, for example). 

� Physics Engine 

Similarly, the Physics Engine class is a wrapper around key components of the PhysX SDK. 

It encapsulates all of the key classes and methods of PhysX (as identified in Section 3.3.2).  

Figure 3.19 (below) illustrates the components of the PhysX2 Engine, and its relationship 

to the base Physics Engine class. 

 

Figure 3.19 - Illustrating the relationship between the base Physics Engine class and the inheriting PhysX2 

Engine class, a wrapper around a PhysX SDK and Scene objects. 

As with the Physics Actor, the Physics Engine class is a pure virtual base class, which 

serves as a common interface with the rest of the simulation. The ‘PhysX2 Engine’ class 

then implements the virtual methods of the base class using the necessary PhysX objects 

and methods, including the NxPhysicsSDK and NxScene objects.  

Physics Engine 

PhysX2 Engine 

NxPhysicsSDK NxScene 
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The physics engine class includes the following key methods: 

� Init() - used to initialise the SDK and create the PhysX Scene 

� LoadFile(string filename) - used to load the specified file into the engine and to 

initialise it. Stores the created actor so that it can be cloned and placed in the scene.  

� CreatePhysicsActor(string actorName) - which clones one of the loaded Physics Actor 

objects and returns a pointer to it. 

� Simulate(float timestep) - used to call the PhysX Scene’s simulate method 
 

Also, as with Physics Actor, this potentially allows for alternative engines (i.e. ‘PhysX3 

Engine’ for a more recent version of the Engine, or ‘Havok Engine’ for a Havok-based 

alternative) to be created through a common interface that will work with the 

Locomotion tool. 

  ‘Entity’ Class 3.3.5

The Entity class is the base class for all entities in the scene, including the track sections, 

wheelset, bogie and other vehicle components. Each entity comprises two key 

components; a ‘Physics Actor’ and a ‘GLModel’ object, as shown in Figure 3.20 (below). 

 

Figure 3.20 - Illustrating the key components of the Entity class 

Physics Actor 

Physics Actor encapsulates the Entity’s physics, as described on the previous page. 

Properties of the entity, like mass and material properties, are accessed from the Physics 

Actor. So, for example, the entity has a GetMass method, which returns the mass of the 

object via the Physics Actor’s GetMass method. 

GLModel 

The GLModel represents the 3D graphical object, which is loaded from the .OBJ file 

exported from 3DSMax and imported by GLM. It has a Render function, which is called 

when the entity’s Render function (described below) is called. 

Key Methods of the Entity Class 

As well as accessor methods for retrieving and setting parameters of the object (such as 

mass and velocity), applying forces to the object and calculating its speed etc. - most of 

which are aliases for methods of the Physics Actor object - there are two key methods 

required to update and render the object. 

 

        Entity Physics Actor GLModel 
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� Update method 

The main function of the update method is to retrieve the current position and 

orientation of the rigid body (from the Physics Actor object) and store it. It also includes 

any custom behaviour for that object, such as the propulsion method of the bogie entity. 

� Render method 

During the Render method, the stored position and orientation data are used to render 

the entity’s GLModel object in the correct position in the scene. 

Example: Wheelset Classes 

An example of how entities in the scene are created by inheritance from the Entity base 

class is the two wheelset designs; the Single Body and Multi Body Wheelset. The SB 

wheelset is derived from entity, with the MB wheelset inheriting from the SB Wheelset. 

Figure 3.21 (below) shows how the wheelsets inherit from each other, and how they are 

represented by their physics actor objects. 

 

Figure 3.21 - Illustrating the Wheelset/Entity Class Hierarchy 
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The SB Wheelset is a single Entity, whose Physics Actor is a single rigid body comprising 

the axle, wheels and flanges. The MB wheelset inherits from the SB Wheelset, with its 

main Physics Actor being the axle; it then has additional member Entities, each with its 

own Physics Actor, representing the wheels and flanges, attached to the main actor via 

fixed joints. Similarly, the Conical Wheelset object inherits from SB Wheelset, but its 

Physics Actor is replaced with the conical mesh. 

Other Entities and their Properties 

There are a range of entities in the simulation, including the wheelsets, bogies, track 

sections and vehicle bodies. As described earlier, many of the physical properties of these 

objects are accessed via the Rigid Body (Physics Actor), but the simulation also needs to 

store additional properties which are not. Examples of these are discussed below.  

� Wheelset Properties 

Properties of the wheelset such as conicity and the contact angle will be added as 

member variables of the wheelset object. These properties will be initialised when the 

object is created and can then be accessed as needed, as they do not change unless the 

user changes them manually. 

� Rail Properties 

Parameters such as the gauge and half-gauge of the track will need to be stored in the 

track section objects, so that they can be used by the code that calculates the centring 

forces. The half-gauge is stored in order to avoid having to calculate this value whenever 

it is needed, which is intended to improve the performance of the simulation tool. 

 ‘Simulation’ Class 3.3.6

The Simulation class is the main object of the Locomotion tool. The class has methods for 

dealing with keyboard and mouse input into the simulation (via SDL methods). Figure 3.22 

(below) shows the key components of the Simulation class. 

 
Figure 3.22 - Illustrating the key components of the Simulation class  

The key components of the simulation are the Physics Engine, which (as described above) 

is implemented using PhysX and is used to simulate the physics of the rail vehicle, 

and the Scene object, which contains all of the 3D models which need to be rendered. 

Other key components are the Graphical User Interface (GUI), which reports data about 

the simulation to the user, and the Data Recorder, which tracks data and outputs it at the 

end of each test. Both of these components are described later in this section. 

 

    Simulation Physics Engine Scene GUI Data Recorder 
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Key methods of the Simulation Class 

The two key methods of the Simulation class are the Update and Render methods, which 

are described below 

� Update Method 

The first key method of the Simulation class is the Update method. The main steps of the 

update method are illustrated in Figure 3.23, below. 

 

Figure 3.23 - Intended flow of the Locomotion ‘Update’ Loop 

1. Physics Simulate - the PhysX Simulate method is called; this triggers the PhysX engine 

to update the position and orientations of the rigid bodies, processes collisions etc. 

2. Update Entities - the system updates all of the entities in the scene, executing any 

custom behaviour and updating the 3D models ready for rendering.  

3. Measure Forces and Record Statistics - the forces and properties of all the objects in 

the scene are measured and stored, ready to be output to data files later 
1
.  

4. Additional Processing - any additional processing or custom behaviours are 

performed, such as corrective forces being applied to the objects 
2
.  

5. Process User Input - any input from the user - such as camera controls or altering the 

target speed of the vehicle - are processed, ready for the next frame. 

                                                      

1
  - writing files to the hard drive is a performance cost and so is not done while the simulation is executing. 

2
  - this includes the wheelset centring force technique described in Section 3.3.14. 

1 - Physics Simulate 

2 - Update Entities 

5 - Process User Input 

3 - Measure Forces and Record Statistics 

4 - Additional Processing 
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� Render Method 

The Render method is then called, which iterates through all of the Entities in the scene 

and calls their render method. A minimum amount of calculations should be performed 

during the render phase, in order to maximise the performance of the simulation tool. 

Graphical User Interface (GUI) 

The GUI was designed to provide the user with information about the simulation on 

screen while it is running. It also allows the user to interact with the simulation. Figure 

3.24 (below) shows the initial design for the interface. The figure shows a side view of a 

wheelset (black) rolling along the track (grey), along with the key areas of the interface 

where data and controls will be added (white). 

 

Figure 3.24 - Initial design for Locomotion Graphical User Interface (GUI) 

� Test Statistics (Top Left) 

This part of the interface will show data about the test, such as the position of the vehicle, 

the elapsed time, the number of tests remaining (if in batch mode) and other statistics 

such as the number of flange collisions.  

� Camera Controls (Top Right) 

These controls will allow the user to choose from a range of cameras, in order to view the 

scene from different angles. For example, it will allow the user to select a target wheelset 

and the direction from which the wheelset is viewed. 

� Simulation Controls (Bottom, Centre) 

These controls will allow the user to adjust key features of the simulation, such as playing 

and pausing the simulation, and adjusting the target speed of the vehicle. 

Test  
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Simulation Controls 
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(Track) 
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Data Recorder 

Another key component of the simulation is the Data Recorder, which stores key 

information about each test, such as the parameters used, as well as key data about the 

vehicle, the testing environment, and the test results, including: 

� The Number of Flange Collisions 

� The Lateral Offset of Each Wheelset 

� The Stability of the Wheelset 

� The Speed of the Vehicle 

� The Position of the Vehicle 

� The average framerate during the test 

� The length of each test 

� The peak speed of the vehicle during each test 

� Whether derailments occurred during the test 

� The derailment speed of the vehicle, if derailment occurred 
 

In the case of data such as the lateral offset of the vehicle, an accumulator is used to 

calculate the average offset. i.e. the accumulator tracks the total recorded lateral offset 

and a counter records the number of samples that are recorded. The minimum and 

maximum values are also stored. This allows the simulation to record the average result 

and range of results, but it avoids storing prohibitively large amounts of data, which can 

lead to memory leaks and other errors in the application. 

� Additional Data 

If configured to do so, the data recorder is also able to store the following real-time data: 

� The lateral offset of the wheelset 

� The normal force acting on the wheelset (single body) or each wheel (multi body) 
 

These features require large amounts of data to be collected over the course of the test, 

and so are not enabled by enabled by default.  

 PhysX Callbacks 3.3.7

The ‘PhysX2 Engine’ object is configured to receive the contact callbacks from PhysX 

when collisions are detected between objects. These contacts are processed and then 

passed to the Simulation object for processing.  This data flow is illustrated in Figure 3.25 

(below). 

 

Figure 3.25 - Illustrating the Callback data flow following PhysX Collision Detection 
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In order to do set up the callback from PhysX, it is necessary to extend a PhysX class called 

NxUserContact report, as shown in this sample from the PhysX Documentation [41]: 

 

    class MyContactReport : public NxUserContactReport 

    { 

        void onContactNotify(NxContactPair& pair, NxU32 events) 

        { 

        //You can read the contact information out of the 

        //contact pair data here. 

        } 

    } myReport; 

 

 

This contact report object can then be registered with the PhysX scene using 

physXScene->setUserContactReport(&myReport); 
 

When PhysX detects contacts between rigid bodies, the onContactNotify method is 

called, which has two parameters. The first is an NxContactPair object, which contains 

pointers to the two rigid bodies, and an ‘events’ flag, which contains information about 

the type of contact event. These events include a range of events, such as: 

� NX_NOTIFY_ON_START_TOUCH - which indicates that two objects have come into 

contact with one another. 

� NX_NOTIFY_ON_END_TOUCH - which indicates that two contacting objects are no 

longer in contact. 

� NX_NOTIFY_ON_TOUCH - which occurs during the duration of the contact between 

two objects. 

 

The callbacks occur during the simulate method of the physics engine and it is 

recommended that the objects are not altered at this stage [41]. Therefore, any objects 

that need to be processed are stored and dealt with later, during the rest of the 

application update loop (described in more detail later, in Section 3.3.6).  

Contact Groups 

The simulation includes two methods for identifying rigid bodies, the first of which is 

contact groups. Each rigid body is assigned a contact group, which is represented as an 

enumerated type. The simulation has collision groups for the ground plane, rails and 

wheelset (as well as for wheels and flanges in the case of the Multi-body Wheelset). 

There are also ‘super’ groups, such as the ‘Entity’ group, which contains all vehicle 

components, wheelsets and all sub groups. Collision groups allow for different behaviours 

to occur following contact between specific component types, such as recording collisions 

between wheels and the rails.  
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These collision groups are represented thus: 

 

  enum Collision Group 

  { 

 CG_IGNORE  = (1<<0), // binary 0001 

 CG_GROUNDPLANE  = (1<<1), // binary 0010  

 CG_ENTITIES  = (1<<2), // binary 0100 

 CG_RAILS  = (1<<3), // binary 1000 

 CG_FLANGES  = (1<<4), 

 CG_WHEELS  = (1<<5), 

 CG_WHEELSET  = (1<<6) 

  } 
 

 

The notation “1<<0” denotes binary encoding. This use of ‘bitflags’ allows bitwise 

operations to be conducted on the collision group of colliding Entities. It is possible for an 

entity to be in multiple collision groups, and the simulation should process collisions 

accordingly. This, for example, allows the collision group for the flanges of the Multi-body 

Wheelset to be defined as: 

actor.setGroup( CG_FLANGES | CG_WHEELSET | CG_ENTITIES ) 

This states that the actor is a member of the collision groups for Flanges, Wheelsets and 

Entities. Then, for example, it is possible to use the code below... 

if (actor1.group & CG_ENTITIES && actor2.group & CG_GROUNDPLANE) 
 

... to check if a member of the Entity collision group has come into contact with the 

ground plane, which would indicate a derailment, and executing the necessary code to 

process this. It is then also possible to check for more specific collision scenarios, such as 

the following example: 

if (actor1.group & CG_FLANGES && actor2.group & CG_RAILS) 

This code checks specifically for collisions between flanges and rails, and would process 

the entities accordingly (i.e. register a flange collision). 

Rigid Body Names 

The second way of identifying rigid bodies is by their names. Rigid Bodies in the 

simulation are identified according to which vehicle they belong to, in a hierarchical 

fashion. This allows data to be collected about which component has become derailed, 

for example, or to track the lateral offset for a specific wheelset. Each vehicle component 

has a unique name. For example, the front wheelset of a multiple vehicle train would be 

named “FrontLoco_BogieF_Wheelset”, whereas the rear wheelset of the train would be 

named “RearLoco_BogieR_WheelsetR”. 
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 Contact Object 3.3.8

The contact object represents the contact between a wheelset and the track. When a 

contact callback from PhysX is registered, the contact data is stored and can then be 

processed later during the application update loop.  

The Contact object consists of: 

� Wheelset - a pointer to the wheelset involved in the contact. 

� Track 1 - the first track section which the wheelset comes into contact with. 

� Track 2 - a second track section pointer, in case two contacts exist. 
 

Two track pointers are necessary for scenarios in which the wheelset moves from one 

track section to another and may be in contact with both, as illustrated in Figure 3.26, 

below. 

 
Figure 3.26 - Illustrating the elements of the contact object 

One Contact object is created and stored by the simulation for each wheelset in the scene 

during the callback from PhysX, and is processed in the next simulation update loop. 

 Testing Modes 3.3.9

The simulation will have a range of different testing modes, designed to evaluate 

different aspects of vehicle behaviour. Each test mode has different testing and data 

analysis features available, depending on the test vehicle. These are as follows: 

� Wheelset Testing Mode - to evaluate the behaviour of a single wheelset. 

� Bogie Testing Mode - For testing with a single bogie 

� Vehicle Testing Mode - For testing with entire vehicles/multi-vehicle trains. 
 

Wheelset Testing Mode, for example, will have additional features for measuring and 

visualising the path of the wheelset, whereas Vehicle Testing Mode may have features for 

describing the stability of each vehicle in the train that are not available in the other 

testing modes. 
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Wheelset testing, for example, also provides the user with three further options:  

� Flange Collision Tests - use the MB Wheelset, track and render flange collisions. 

� Offset tests - using either wheelset type, track and render the full lateral offset path. 

� Normal force tests - track and print normal forces acting on the wheelset in real-time. 

 Data Accuracy and Output Format 3.3.10

Data produced by the simulation is accurate to three decimal places, so distance, for 

example, is measured to a fidelity of 0.001m (1mm). Data from the simulation is output in 

the commonly used Comma-Separated Values (CSV) data format, also known as comma-

delimited data. For example, if the code was tracking the position of the vehicle over time 

- and if the vehicle was travelling along the y axis and the simulation was recording the 

position of the vehicle 10 times per second - the output file might look like this. 

 

 
timestamp,x,y,z 

0.0,0.000,0.000,0.000 

0.1,0.000,2.001,0.000 

0.2,0.000,3.024,0.000 

0.3,0.000,3.019,0.000 

... 
 

 

The first row of data represents the column headings. Each subsequent row of text is a 

row in the data table and commas separate the data columns. By saving the files in the 

format ‘<Filename>.csv’, the data can quickly be loaded into a range of applications, 

including Microsoft Excel, for analysis. 

 Menu Flow Design Overview 3.3.11

The user will be able to specify the parameters of the simulation, including vehicle and 

environment settings, batch testing settings and so on, by editing a number of different 

configuration files. However, in order to make the simulation easier to use, the user will 

also be able to change these parameters via a series of interactive graphical menus in the 

simulation. The full, graphical design for the interface has not been included, but below is 

the description for how the interface will work. 

An initial menu will ask if the user wants to run tests using settings loaded from the setup 

files, or whether they want to customise the test settings. If they choose to load the 

settings from the setup files, the testing will begin immediately.  
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If the user chooses to customise the simulation settings, then the interface should allow 

the user to make the following selections via a series of menus: 

1. Select Testing Mode (Wheelset/Bogie/Vehicle, as described above) 

2. (If Vehicle) Select vehicle properties (i.e. number of carriages) 

3. Wheelset Settings (Cone Wheelset/SB Wheelset/MB Wheelset) 

4. Track Layout (Straight/Loop) 

5. Track Properties (i.e. Number of Straights if Straight, Curve Radius if Loop) 

 

Screenshots of this menu flow in the Locomotion Tool are included in Chapter 4. 

 Inputs 3.3.12

As described earlier, the SDL library handles the creation of the application window, as 

well as handling the user inputs into the application. The simulation was designed to 

allow the following user input: 

� Mouse - mouse input is used for camera control, as well as interacting with the 

graphical user interface (GUI) to adjust the simulation 

� Keyboard - a series of keyboard shortcuts are used for controlling various functions 

of the simulation, including: 

o Space Bar - used to Play/Pause the Simulation. 

o + / - keys - used to increase/decrease the target speed of the vehicle. 

o Arrow Keys - used for camera control. 

 Calculating Lateral Offset 3.3.13

It is necessary for the simulation to be able to measure the lateral offset of a wheelset. As 

described earlier, splines have been added to each Track Section to allow the lateral 

offset to be calculated. The position of the spline of a curved track section relative to the 

wheelset and rails is illustrated in Figure 3.27 (below). 

               

Figure 3.27 - The spline (blue line) between two rails of a curved track section 
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The figure shows a wheelset that has experienced lateral offset. In this case, the position 

of the wheel (green dot) has moved away from the central spline (blue line). The lateral 

offset of the wheelset is measured as the distance from the wheelset’s position to the 

nearest point on the spline (ignoring any vertical difference (in the z axis)).  

Bezier Curves 

The splines are defined as Linear Beziers for straight track sections and Quadratic Beziers 

for curves. Bezier curves are parametric curves that describe a straight line (or curve) 

using a series of control points. A quadratic Bezier curve is illustrated in Figure 3.28 

(below). 

 

Figure 3.28 - How a Bezier curve (blue) is defined by its control points 

It is possible, using the formula below, to interpolate along a Bezier using a value (‘t’) of 

between 0.0 (which returns the start point) and 1.0 (which returns the end point). The 

pseudocode for this calculation is shown below.  

 

Point QuadraticBezier::GetPointAt(float t) 

{ 

    float u = 1.0f - t; 

 

    float x = (start.x*u*u) + (control.x*t*t*u) + (end.x*t*t); 

    float y = (start.y*u*u) + (control.y*t*t*u) + (end.y*t*t);  

    float z = (start.z*u*u) + (control.z*t*t*u) + (end.z*t*t); 

 

    Point result = Point(x,y,z); 

    return result; 

} 
 

 

Figure 3.29 - Pseudocode for calculating a point on a Bezier curve 

Given a value of ‘t’ (between 0 and 1) this pseudocode returns a point on the Bezier spline 

based relative to the three control points; ‘result’, ‘start’ ‘control’ and ‘end’ are ‘Point’ 

objects that represent positions in 3D space. 
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PhysX Callbacks 

First, collisions between wheels and rails are recorded via callbacks from PhysX (as 

described earlier) and the wheel/rail pairs are stored in a Contact object for processing 

later. Then, during the update loop of the simulation, the nearest point on the spline to 

the position of the wheel is calculated, as described below. 

Spline Interpolation 

Initially, the nearest point on the track spline was found by interpolating at intervals of 

1/10,000 (or approximately once per mm - since the simulation is to be accurate to a 

fidelity of 1mm, as described in Section 3.3.10) along the Bezier curve until the nearest 

point was found. The value of ‘t’ and the nearest point are stored and used as a starting 

point for future interpolation, in order to reduce the calculations required. This process is 

repeated at every frame during the duration of the contact, and avoids having to 

interpolate along the entire spline to find the nearest point during every frame. Once the 

nearest point on the spline has been found, the lateral offset of the wheelset can be 

calculated. Figure 3.30 (below) illustrates how this is done. 

 

Figure 3.30 - Calculating lateral offset using the nearest point on the spline (blue) and the position of the 

wheelset (red) 

The lateral offset is calculated by using the distance between the nearest point on the 

spline (blue) and the position of the wheel (red), ignoring any differences in the z-axis. 

This gives a numerical value that describes the distance (in metres) from the track centre. 

Calculating the Direction of Offset 

Determining the direction of the offset, i.e. whether the wheel is to the left or right of the 

central spline, is necessary to detect behaviours such as Hunting Oscillation. It is possible 

to calculate the offset direction by using the tangent to the spline, calculated as the 

derivative or direction of the spline at the nearest point. However, the methods below 

are less computationally expensive and will have a smaller performance impact.  



Chapter 3 - Design 

83 

In the simulation, the offset direction is calculated in one of two ways, depending on the 

track layout, as described below. 

� Straight Track 

As illustrated in Figure 3.31 (below), if the track is straight, then the rails (black) are 

placed either side of the y axis. This enables the offset to be measured as the x 

component of the position of the wheelset. 

 

Figure 3.31 - Straight track in relation to the X Axis 

� Looped Track 

The offset direction for the loop layout can also be easily calculated because the loop has 

been laid out around the origin of the scene (0,0,0), as illustrated in Figure 3.32 (below). 

 

Figure 3.32 - A diagram of the loop layout, showing the origin of the scene 

If the wheelset is nearer to the origin than to the nearest point on the spline, it is to the 

left of the track centre, and if it is further from the origin it is to the right.  

The simulation stores the magnitude of the offset vector as a positive value if the 

wheelset is to the right of the spline and negative if it is to the left. 
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 Improving the Simulation of the Wheel/Rail Interface 3.3.14

It was necessary to implement an additional corrective force in order to produce more 

realistic results from the wheel/rail interface in the simulation.  The vehicle was not 

producing the expected results (as discussed in Section 5.7), and it was assumed that one 

possible reason for this was that the self-centring effect of the wheelset was not 

occurring correctly, and so a new technique was developed improve this behaviour. 

Development of this solution focussed on improving the behaviour of individual 

wheelsets; to see if augmentations to the system could improve the stability of the 

simulation and allow the wheelset/bogie to accelerate to higher speeds and derail at 

speeds closer to the Nadal predictions.  

Spline-Based Centring 

To replicate the wheelset’s self-centring effect, a spline-based approach was used,  

using the track splines and many of the same calculations that are used to measure the 

lateral offset of the wheelset. A force is applied to each wheelset to pull it back towards 

the track centre, based on the distance from the track spline and the properties of the 

wheelset, as described below. 

� Gravitational Stiffness Force 

The Gravitational Stiffness Force (GSF) equation was used to calculate the size of the 

centring force. This is Formula 2.3 on Page 19. 

� Lateral Offset  

Section 3.3.14 describes how the lateral displacement of the wheelset is calculated. A 

Contact object stores the lateral offset distance, along with the nearest point on the track 

spline and the offset vector. This data can also be used by the simulation to calculate and 

apply the centring force to the wheelset. 

� Effective Mass of the Wheelset (W) 

A key element of the GSF formula is the Effective Mass of the Wheelset (W). The effective 

mass of a single wheelset is simply its mass (500kg), but when the wheelset is tested as 

part of a more complex rail vehicle (a bogie, locomotive etc.), additional calculation is 

required. When simulating a bogie, for example, the simulation assumes that the mass of 

the bogie is evenly distributed between the two wheelsets. The effective mass is 

calculated by dividing the mass of the bogie between the wheelsets, as described below: 

ghh��%���	i&

	 � 	27��/
�%	i&

	
500Yj� 	!	k"j��	i&

	
6,000Yj�2 � 	3,500kg	 

Each bogie/vehicle entity in the simulation defines a function that returns the effective 

mass of its wheelsets.  
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This value can be multiplied by gravity to make it equivalent to ‘W’ in the GSF formula. 

This value is calculated and stored when the vehicle is constructed and is updated only if 

the mass of the vehicle changes.  

� Calculating and Applying the Centring Force 

The vector between the position of the wheelset and the nearest point on the spline 

(ignoring the difference in the z axis) defines the direction of the force, and is stored 

when the lateral offset is calculated. This vector is normalised to produce a unit vector 

and the size of the centring force is then calculated using the GSF formula and multiplied 

together with this direction vector to produce a vector force, which is then is applied to 

the wheelset.  This force is only applied while the wheels are in contact with the rails and 

it is still possible for the wheelset to derail, as it would in the real world, when the 

centring forces are unable to counteract vehicle instability or high lateral forces. 

The code implementation of this calculation is included in Section 4.1.3. 

 Debug Rendering and Visualisation Features 3.3.15

In order to assist in the development, debugging and evaluation of the simulation tool, 

some additional debug rendering and visualisation features were implemented. The 

following features have been developed/enabled as part of the simulation’s render loop. 

� PhysX Debug Rendering - The PhysX API provides methods to render physics 

properties. This includes the visualisation of rigid bodies and contact points. [41] 

� Locomotion Visualisation Features - These debug rendering features are mainly to 

visualise the features of the Locomotion tool. This includes the rendering of the track 

splines, the nearest point on the spline to each wheelset, flange contacts and more. 

 

These features are discussed in more detail in Section 4.1.5. 

 Batch Testing Features 3.3.16

In order to achieve the goal of developing a rapid prototyping tool, and to enable the 

testing conducted in Chapter 5, Locomotion was designed to include a batch testing 

system. This system allows for multiple tests to be conducted automatically, without 

requiring user supervision. 

Tests, Batches and Batch Sets 

A ‘Test’ refers to an individual testing scenario, such as sending the vehicle along a 1km 

straight. In this example, the test ends either when the vehicle derails or reaches the end 

of the track. A ‘Batch’ is a collection of Tests and a ‘Batch Set’ is a collection of Batches.  
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This is illustrated in Figure 3.33, below. 

 

Figure 3.33 - Illustrating Batch Testing Object Hierarchy 

Batch Testing 

The tool is capable of performing a batch of tests, which automatically reset and restart at 

the end of each test. Data about each test is output when the test ends. This allows the 

same test to be performed multiple times, unsupervised, and for averages to be 

calculated. Summary data about each batch of tests is output when the batch completes. 

There are a number of testing options available. For example, if testing in batch mode on 

a straight track, the simulation will reset when the vehicle reaches the end of the track, or 

if the vehicle derails. Alternatively, on looped track, the simulation can be configured to 

end or reset when the vehicle reaches the end of a loop, or to continue until the vehicle 

derails, or when a certain number of loops have been completed. These features allow for 

various testing scenarios. For example, it is possible to increase the target speed of the 

vehicle by a small amount after each loop of the track until the vehicle derails, which is 

useful for finding out the average speed at which the vehicle derails on each curve radius. 

Another option allows the user to run a batch of tests, adjust one of the simulation 

parameters and then repeat that batch of tests multiple times (as per Case Study 2 in 

Section 3.1.5), which allows comparisons to be made between the results at each 

parameter value and is one of the simulation’s rapid prototyping features.  

These batch testing features allow a test to be repeated multiple times, in order to 

evaluate the consistency and reliability of the tool. It is also possible to calculate the 

probability of derailment, if the results are not 100% consistent - i.e. if the train derails 6 

times during 10 tests with a particular configuration, then derails in 8/10 tests with a 

different configuration, then it is possible to say that the probability of derailment has 

been reduced by 20%. The number of tests in each batch is a configurable parameter in 

simulation setup files.  

Batch Set Batch 

 Batch 

... 

Test 

Test 

... 

Test 

Test 

... 
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Multi-Batch Testing (Batch Sets) 

The Locomotion tool is also capable of running multiple batches and automatically 

incrementing a range of simulation parameters and configuration options between 

batches. This, for example, allows the user to evaluate the stable speed of the vehicle at 

different parameter values by incrementing the target speed of the vehicle between each 

batch, and then incrementing the value of the parameter currently being tested between 

each batch set. The number of batches in each batch set is a configurable parameter in 

simulation setup files and data about each batch set is output when the tests are 

completed. 

 ‘LocoDataScan’ 3.3.17

A separate application, known as ‘LocoDataScan’ was created to process the data files 

that are produced by simulation after each test has been completed. This application 

loads the data file from each test and produces a CSV-format spreadsheet file 

(“results.csv”) with summary/average values for all the tests conducted in that batch, 

allowing graphs to be drawn and data from each test to be compared more easily. The 

tool then iterates through all of the ‘results.csv’ files from each batch of tests to produce 

a series of spreadsheets that summarise the results from the entire batch set. This 

includes calculating summary data, such as the stable speed of the vehicle, which is 

defined as the highest speed at which no derailments occur (more details in Section 5.7). 

This is done by iterating through the batch set data until it finds a batch of tests where 

the number of derailments is greater than zero. This means that the user does not have 

to manually process the output data to calculate average derailment speeds, stable 

speeds, ranges of results, etc. for each batch or batch set. This data processing stage was 

not included in the main Locomotion application, so that if there is a problem, such as if 

the application crashes, then most of the data will not be lost and the averages etc. can 

be calculated afterwards. It also allows the user to combine results from separate 

batches/batch sets to analyse and compare the results.  

3.4 Parameters 

This section defines all of the key parameters of the simulation. All of the following 

parameters are intended to be defined in text files which are loaded into the simulation 

during initialisation and which the user can modify. These parameters will have to be 

implemented as variables of the simulation in order to allow them to be changed. Some 

parameters, such as mass, gravity and material properties, have real world values, while 

others, such as the physics engine parameters (see Section 3.4.7) do not. Where possible, 

parameters have been set to real-world values in order to make the simulation as realistic 

as possible. Parameters that do not have a defined real-world value have to be tested to 

see which values produce the most realistic results. 
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 Test Scenario Parameters 3.4.1

These parameters control the test vehicle that is used in the test. 

� Vehicle Type:  

o Wheelset - a single wheelset 

o Bogie - a single bogie (+2 wheelsets) 

o Chassis - a chassis (+2 bogies) 

o Train - a whole vehicle or multi-vehicle Train 

� Number of Vehicles (if ‘Train’ is selected
3
): 

o If 1: a locomotive,  

o if 2: two locomotives  

o 3 or more: carriages are added between the front and rear locomotive.  

� Wheelset Type: The type of wheelset to use (as described in Section 3.2.2) 

o Single Body Wheelset 

o Multi Body Wheelset 

o Conical Wheelset  

� Test Environment 

o Track Layout 

o Number of Straights / Curve Radius (depending on selected layout) 

� Target Speed of the Vehicle 

 Vehicle Parameters 3.4.2

These are the variable properties of the vehicle, which were defined in Table 3.1, 

including Wheelbase, Bogie Spacing and Carriage Spacing. 

 Entity Parameters 3.4.3

All of the entities in the scene - vehicle bodies, chassis, bogies and wheelsets - have the 

following properties that can be adjusted.  

� Mass - the mass of the entity. 

� Centre of Gravity (COG) - a vector defining the centre of gravity relative to the centre 

of the entity model (i.e. a value of [0, 0, -1] would lower the COG by 1m). 

  

                                                      

3
 - as illustrated in Figure 3.11 
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 Wheel/Rail Interface Material Parameters 3.4.4

The following material properties can be altered on the wheel, flange and rail rigid 

bodies. These properties are based on the contact values for dry, steel-on-steel contact, 

based on multiple reference sources (including PhysLink.com [59]).  

� Static Friction - 0.74 

� Dynamic (Kinematic) Friction - 0.57 

� Coefficient of Restitution
4
 - 0.55  

 Batch Testing Parameters 3.4.5

The following parameters control how batch testing is conducted in the simulation tool. 

� The Number of Batches 

� The Number of Tests to be conducted in each Batch 

� Reset on Track End - whether to end or continue testing when the vehicle reaches 

the end of the straight or returns to the beginning of the loop 

� Accelerate on Track End - A Boolean flag defining whether the target speed  of the 

vehicle should change at the end of the track/loop  

� Acceleration - how much the vehicle should accelerate (or decelerate) by, if the 

above is true. 

� Test Variable - Which variable to adjust between batches/batch sets (if any). This 

may include the vehicle parameters (described above) and the PhysX engine 

parameters (described below). 

� Test Variable Increment - How much to increment the Test Variable (if selected)  

 PhysX Scene Parameters 3.4.6

The following parameters are properties of the PhysX scene and have therefore been set 

to their real-world values. 

� Gravity - a vector: [0, 0, -9.806]
5
 

  

                                                      

4
  - the coefficient of restitution is the ratio of relative speeds before and after a collision [41] 

5
 - equivalent to the real world acceleration due to gravity (9.806m/s

2
) at sea level 
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 PhysX Engine Parameters 3.4.7

These are parameters of the PhysX engine (or of Rigid Bodies) that were identified from 

the PhysX Documentation [41] that affect its performance and accuracy, but which have 

no direct correlation with real-world parameters. One of the goals of this research will be 

to adjust these parameters in order to find a balance between performance and accuracy. 

These parameters are:  

� Simulation Timing 

� Rigid Body Solver Iteration Count 

� Skin Width 

� Maximum Angular Velocity 

� Hardware Acceleration 
 

By adjusting these parameters, the fidelity of the physics simulation can be adjusted 

without requiring access to the source code or adjusting to the internal workings of the 

PhysX engine. These parameters are discussed in more detail below. 

Simulation Timing 

The PhysX scene has a ‘SetTiming’ method that controls the timestep and maximum 

number of substeps used by the solver when the physics engine’s simulate method is 

called. Below is a description of the SetTiming method from the Documentation [41]: 

 

void NxScene::setTiming ( NxReal  maxTimestep = 1.0f/60.0f,  

  
NxU32  maxIter = 8,  

  
NxTimeStepMethod  

method = NX_TIMESTEP_FIXED  

) 

Sets simulation timing parameters used in simulate (elapsedTime). If method is 

NX_TIMESTEP_FIXED, elapsedTime (simulate() parameter) is internally subdivided 

into up to maxIter substeps no larger than maxTimestep ... The timestep method of 

TIMESTEP_FIXED is strongly preferred for stable, reproducible simulation. 

Parameters:  

[in] maxTimestep   Maximum size of a substep. Range: (0,inf)  

[in] maxIter    Maximum number of iterations to divide a timestep into. 

[in] method    Method to use for timestep (either variable or fixed).  
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Also from the documentation: ‘The recommended time-stepping method is fixed time-

steps where maxTimestep is an exact multiple of elapsedTime
6
 and elapsedTime is a 

constant. This way, the user knows the number of sub steps taken, which do not vary.’ [41] 

The Locomotion simulation tool uses this recommended method, including a fixed 

timestep of (1/60
th

 of a second) in the call to Simulate.  

Rigid Body Solver Iteration Count 

Every rigid body has a ‘solver iteration count’ parameter, which defines the number of 

solver iterations performed when processing joints and contacts relating to that rigid 

body. The following description is taken from the PhysX Documentation [41]: 

 

NxReal NxActor:: solverIterationCount 

The number of iterations the solver should perform for this body. The solver iteration 

count determines how accurately joints and contacts are resolved.  

 

Range: [1.0, 255.0]                Default: 4 

 

 

Increasing this parameter from its default value of 4 should improve the fidelity of the 

joints and contacts between the wheels, bogie and rails. 

Joint Solver Extrapolation Factor  

Revolute Joints, such as the joint between the wheelset/axle and the bogie, have a solver 

extrapolation factor that defines the rigidity of the joint. The following description is 

taken from the PhysX Documentation [41]: 

 

NxReal NxJointDesc::solverExtrapolationFactor 

Extrapolation factor for solving joint constraints. This parameter can be used to build 

stronger joints and increase the solver convergence. Higher values lead to stronger joints. 

 

 

 

                                                      

6
  -  ‘elapsedTime’ is the parameter passed to the PhysX Simulate method 
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Note:   Setting the value too high can decrease the joint stability.  

              This feature is supported for D6, Revolute and Spherical Joints only. 

Range: [0.5, 2.0]                       Default: 1.0 
 

 

Adjusting this parameter could improve the stability of the joint between the 

wheelset/axle and the bogie. However, it does not apply to fixed joints and cannot be 

used to adjust the joint between the separate rigid bodies of the multi body wheelset.  

Skin Width  

The collision response system in PhysX resolves collisions can lead to instability; 

contacting or penetrating objects can repel each other to the point where they separate 

and then fall back down on each other in a subsequent time frame, leading to visible 

jittering [41]. In order to mitigate this problem, PhysX allows objects to slightly inter-

penetrate each other. The amount of permitted inter-penetration is regulated using a 

parameter called Skin Width. Figure 3.34 (below) is taken from the PhysX documentation 

[41] and illustrates the skin width of two contacting cuboid rigid bodies. 

 

Figure 3.34 - Illustrating Skin Width [41] 

The PhysX documentation [41] describes the skin width of a Rigid Body as follows: 

 
NxReal NxShapeDesc::skinWidth 

Specifies by how much shapes can interpenetrate. Two shapes will interpenetrate by 

the sum of their skin widths. This means that their graphical representations should 

be adjusted so that they just touch when the shapes are interpenetrating. 
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The default skin width is the NX_SKIN_WIDTH SDK parameter. This is used if the 

skinWidth member is set to -1(which is the default). 

A skin width sum of zero for two bodies is not permitted because it will lead to an 

unstable simulation. If your simulation jitters because resting bodies occasionally lose 

contact, increasing the size of your collision volumes and the skin width may improve 

things. 

Range: (0.0, inf)       Default: -1.0 (use the default specified with NX_SKIN_WIDTH) 
 

And the global parameter of the engine (NX_SKIN_WIDTH): 

 

NX_SKIN_WIDTH  

Default value for NxReal NxShapeDesc::skinWidth.   Range: [0.0, inf]     Default: 0.025 

 
 

It is possible that adjusting the skin width of the wheels and rails may improve the 

stability of the simulation and/or prevent penetration issues. 

Maximum Angular Velocity 

Initially, the forward velocity of the wheelset seemed to be limited to a very low speed. It 

was discovered that this was due to a parameter called maxAngularVelocity
7
. Angular 

velocity is typically measured in radians per second or degrees per second and is often 

represented by the symbol ω [21]. MaxAngularVelocity as a parameter of a rigid body is 

described as below in the PhysX documentation [41]: 

 

virtual void NxActor::setMaxAngularVelocity  ( NxReal  maxAngVel  ) 

Lets you set the maximum angular velocity permitted for this actor. Because for 

various internal computations, very quickly rotating actors introduce error into the 

simulation, which leads to undesired results.  

                                                      

7
 - this parameter was discovered during testing in Section 5.7 
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With NxPhysicsSDK::setParameter(NX_MAX_ANGULAR_VELOCITY) you can set the default 

maximum velocity for actors created after the call. Bodies' high angular velocities are 

clamped to this value. 

However, because some actors, such as car wheels, should be able to rotate quickly, you can 

override the default setting on a per-actor basis. Note that objects such as wheels which are 

approximated with spherical or other smooth collision primitives can be simulated with 

stability at a much higher angular velocity than, say, a box that has corners. 

 

 

The global angular velocity parameter is described in the documentation [41] as below. 

 

NX_MAX_ANGULAR_VELOCITY          Range: [0, inf]     Default: 7 

 

 

The default value for this parameter is 7. Increasing the angular velocity will increase the 

top speed of the vehicle, but might compromise stability.  

Hardware Acceleration 

PhysX includes hardware acceleration, which can be used in if a compatible NVidia 

Graphics card is present on the deployment platform. In order to enable hardware 

acceleration, the following lines of code have to be executed when the scene is created. 

 

1 

2 

3 

4 

 

 

NxSceneDesc sceneDesc; 

sceneDesc.simType = NX_SIMULATION_HW; 

 

g_scene = g_physicsSDK->createScene(sceneDesc); 

 

First a Scene Description object is created (line 1) and the Simulation Type is set to 

Hardware Mode (line 2). Then, when the PhysX scene is created (line 4), it will initialise 

the scene with hardware acceleration enabled, if support for hardware acceleration is 

available.  

However, as described on the PhysX website: ‘GPU hardware acceleration is used mostly 

for additional physics effects, like particles (fluids, dynamic smoke, debris and chunks from 

explosions) and cloth (clothing and hair simulation on characters, cloth banners and flags)’ 

[4] and not for rigid body movement or collision detection, so it may not make a 

significant difference to the performance of the tool, since the application doesn’t make 

use of any of these features.  
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3.5 Summary 

This chapter has described the design of the Locomotion simulation tool, including the 

design of the virtual vehicle and the environment in which testing will take place.  

The software architecture of the simulation has also been described, including the 

integration of PhysX, as well as the key phases of the application loop. Real-world values, 

properties and dimensions have been used in the construction of the virtual 

world/vehicle, where the correct information was available. 

Design Choices and PhysX Parameters 

Key elements of the design were also identified that will need to be evaluated, including 

variations in design and parameters of the physics engine. These are as follows: 

� Wheel Polygon Count 

The polygon count is number of polygons that make up the wheelset model. It is not 

immediately clear what is the best choice for real-time simulation of the wheel/rail 

interface. Higher polygon counts are expected to produce more realistic results, but 

potentially at the expense of performance. 

� Wheelset Design Variations 

The vehicle components include two variations on wheelset design; the Single Body and 

Multi Body Wheelsets. It is expected that the SB Wheelset will produce more stable 

results, but the MB wheelset would produce a more flexible simulation. If the MB 

wheelset is (or can be made) suitably stable, then it would be useful to use this variant in 

order to make the simulation as flexible as possible. 

� PhysX Engine Parameters 

There are five parameters of the PhysX engine that were discovered during the software 

design that may affect the accuracy and/or performance of the simulation tool, and which 

do not have corresponding real-world values. These are: 

� Simulation Timing 

� Rigid Body Solver Iteration Count 

� Skin Width 

� Maximum Angular Velocity 

� Hardware Acceleration 

 

The next chapter describes the implementation of the simulation tool, and includes 

screenshots of key elements and features, as well as a discussion of implementation 

issues and any changes made to the initial design as a result of those issues. 
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  Chapter 4

Implementation 

This chapter describes the implementation of Locomotion, including screenshots of the 

simulation’s key features, as well as details of any issues that were encountered or 

changes that were made to the design, during the implementation process. 

4.1 The Locomotion Simulation Tool 

This section includes screenshots of Locomotion that show the vehicle, testing 

environment and key features of the simulation tool. 

 The Vehicle 4.1.1

The following screenshots show the vehicle components. 

Wheelset 

One of the wheelsets is shown in the screenshot below (Figure 4.1). The orange lines 

represent the edges of dynamic physics meshes (i.e. the wheelset) and red lines represent 

the edges of static physics meshes (i.e. the rails). This is part of the PhysX debug rendering 

system. The orange dot represents the nearest point on the spline (green line) to the 

wheelset and is rendered as part of the Locomotion visualisation system. Both of these 

systems are discussed in more detail later in this chapter. 

 

Figure 4.1 - A screenshot showing a Single Body Wheelset in the Locomotion tool 

Bogies 

A screenshot of a bogie is shown in Figure 4.2 (overleaf). The wheelbase can be adjusted 

and the wheelset is attached to the bogie via revolute joints. This screenshot shows that 

the physics mesh (orange) of the bogie is simpler than the 3D model. This was done to 

maximise performance, while making the graphical model look more realistic. 
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Figure 4.2 - A screenshot showing a Bogie in Locomotion 

Chassis 

The screenshot below (Figure 4.3) shows the chassis of the vehicle (with two bogies 

attached). The bogies are attached to the chassis via revolute joints and bogie spacing can 

be adjusted. The joints between the chassis and the bogies are freely-rotating and do not 

include any ability to resist yawing motion, as they do in real life (as discussed in Section 

2.1.2).  

This was intended to be added to the simulation at a later date, but time constraints 

prevented its implementation. 

 

Figure 4.3 - A screenshot showing a vehicle Chassis in the Locomotion tool 

� Couplings 

If there are multiple vehicles in the scene, then the chassis of each vehicle is attached to 

the chassis of the adjacent vehicle(s) by a Distance Joint, which “tries to maintain a 

certain minimum and/or maximum distance between two points attached to a pair of 

actors” [41].  Distance joints connect the two bodies, but allow relative rotation (allowing 

the vehicles to corner) and allow the joint to expand and contract, based on a minimum 

and maximum distance variable. This was deemed to be a suitable approximation of the 

workings of the inter-vehicle couplings used on trains for use in this initial evaluation of 

the simulation tool.  
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Vehicle Body 

Locomotives and carriages have different body objects and different mass properties, 

defined in the simulation setup files. Figure 4.4 shows a ‘locomotive’ (top) and a carriage 

(bottom). The carriage is a different shaped polygon, with a different texture applied to it 

and constructed using different material properties, but is otherwise very similar to the 

locomotive. The body is a single rigid body and is joined to the chassis via a fixed joint. 

 

 

Figure 4.4 - A carriage in the Locomotion Tool 

 Track 4.1.2

The screenshot below (Figure 4.5) shows the end of a straight track section. The red lines 

show the edges of the static physics mesh. Also shown in the screenshot are the rail 

sleepers and a texture to represent the gravel ballast beneath the sleepers. 

  

Figure 4.5 - Straight Track in the Locomotion Simulation Tool 
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The sleepers are not physics objects (as indicated by the lack of a red debug mesh), as this 

would have a negative impact on the performance of the simulation. The top of the 

sleepers are level with the ground plane of the scene, so derailments are detected at the 

point where collision with the sleepers would have occurred. 

� Rail Profile 

The screenshot below (Figure 4.6) is a taken in 3DSMax, and shows the profile of the rail. 

  

Figure 4.6 - Track Profile in 3D Studio Max 

The rail polygon is made up of 24 vertices (red dots), which includes four on each curved 

edge. This allows an approximation of the shape of the rails that does not compromise 

the performance of the simulation tool. 

� A straight track, when extruded along a straight spline in one segment, results in 24 

polygons and 44 vertices per rail. 

� A curved track model, extruded along a curved spline in 12 segments, consists of 534 

polygons and 660 vertices (including both rails and regardless of curve radius).  
 

Adjusting the number of segments/polygons would result in a more realistic, higher 

fidelity curve model, but would compromise the performance of the simulation. 

 Corrective Force Implementation 4.1.3

Section 3.3.14 describes how an additional, corrective centring force (based on the 

Gravitational Stiffness Force (GSF)) is calculated and applied to each wheelset. In this 

section, the implementation of that algorithm is described, including the initial 

implementation and an optimised version. 
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� GSF 1.0 

Below (Figure 4.7) is the initial C++ implementation of the code that calculates and 

applies the centring force to each wheelset. The calculation of the size of the force (Line 

9) is based directly on the Gravitational Stiffness Force formula.  
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float  W      = vehicle->GetWheelMass();       // effective weight 

float  lambda = contact->wheelset->Conicity(); // conicity  

float  l0     = contact->track->HalfGauge();   // half the gauge 

 

Vector3 offset = contact->offset; 

float y = offset.magnitude();      // lateral displacement 

offset.normalise();                     // direction of the force 

 

float Lw = (W * lambda * y) / l0 ; 

 

Vector3 force = offset * Lw;                      // force vector 

contact->wheelset->ApplyForce(force); 
 

 

Figure 4.7 - Initial implementation of the calculation and application of centring force to the wheelset 

First, W is retrieved (line 1) via the vehicle’s ‘GetWheelMass’ function, which, as 

described in the Design, returns the effective mass of the wheelset multiplied by gravity. 

The conicity of the wheelset (λ) - stored as a member variable of the wheelset class - is 

then retrieved (line 2). The half-gauge of the track (l0) - stored as a member variable of 

track objects - is retrieved also. The offset vector (between the position of the wheel and 

the nearest point on the spline, ignoring any difference in the z axis) is retrieved from the 

contact object (line 5), having been calculated by the code that records the lateral offset, 

as described in Section 3.3.7. ‘y’ (the lateral offset) is calculated as the magnitude of this 

vector (line 6). The offset vector is then normalised (line 7), resulting in a unit length 

vector representing the direction of the force. Lw (the magnitude of the force) is then 

calculated using the GSF formula (line 9). The normalised direction vector is then 

multiplied by Lw to produce the centring force vector (line 11), which is then applied to 

the wheelset (line 12). 

� Simplifying the GSF Calculation 

The calculation can be simplified. In the version of the code shown overleaf (Figure 4.8), 

the calculation of y and the normalisation of the offset vector are avoided. The offset 

vector (which has a magnitude of y) is multiplied by Lw, which is calculated without 

considering y. This reduces the computational cost of the algorithm, without affecting the 

outcome - the size and direction of the force are identical in each version of the code. 
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Vector3 offset = contact->offset; 

 

float Lw = (W * lambda) / l0; 

 

Vector3 force = offset * Lw; 

contact->wheelset->ApplyForce(force); 

 

Figure 4.8 - Simplified calculation and application of centring force to the wheelset 

 Simulation Features 4.1.4

Screenshots from Locomotion are included below (Figure 4.9 and Figure 4.10 (overleaf)), 

showing the simulation’s interface and other key features. The screenshot below shows a 

single bogie, with debug rendering enabled, including the rendering of recent contact 

positions (blue). 

 

Figure 4.9 - The Locomotion Interface (showing a bogie) 

Features Summary 

Simulation features include: 

� 3D Rendering (using OpenGL) - In addition to the track and vehicles, rendered items 

include a floor grid, basic shader lighting and a skybox (these features are optional 

and can be turned off to improve performance if necessary). 

� PhysX Debug Rendering - implemented using PhysX API methods, enables the 

visualisation of the rigid bodies and contact points (e.g. the red, orange lines and 

blue collision markers in the figure above). These features are not enabled by default 

as they negatively affect performance, but can be turned on for debugging purposes. 
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Figure 4.10 - A Screenshot from the Locomotion Tool (showing a Locomotive)   

� Heads-Up Display (HUD) (top-left) - shows the elapsed time, the current batch 

number/number of batches, the number of tests remaining, vehicle position, 

simulation settings, the framerate, vehicle properties and the number of flange 

collisions, as well as the parameter being studied and its current value, if applicable. 

� Cameras (top-right) - a range of cameras are available, including a freely-controllable 

camera and a number of cameras that are anchored to various parts of the vehicle. 

The user can select a vehicle component as the camera target and the camera will 

track that component as the vehicle moves. The user is also able to select the 

direction from which the camera views the scene.  

� Adjustable Target Speed (bottom-right) - the user can manually adjust the target 

speed of the vehicle - using the plus/minus buttons - in order to adjust the target 

speed of the vehicle and/or simulate a driver accelerating and decelerating.  This 

part of the interface also shows the current speed and target speed of the vehicle. 

� Simulation Controls (bottom-centre) - these controls allow the user to pause, resume 

and reset the simulation, and to step through the simulation one frame at a time. 

Resetting the simulation restarts the current test and is intended for when the 

vehicle becomes stuck (if this is not detected by the derailment detection systems) 

or experiences other erroneous behaviour, of if the user wants to manually reset the 

simulation while not running in batch mode. 

� Direction Widget (bottom-left) - The ‘direction widget’ is a visualisation of the x, y 

and z axes of the scene, which changes as the camera angle changes, to help the user 

orient themselves as the camera moves. 
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Vehicle Tracking 

The simulation tracks the speed and position of the vehicle at regular intervals (based on 

a variable, currently set to record 3 times per second). At the end of each test, this data is 

written to a comma-delimited file, which can be imported into Microsoft Excel or other 

applications for analysis. This data could be used to reconstruct the path of the vehicle 

and could help to show when the vehicle became unstable in the event of a derailment. 

Measuring Simulation Performance and Stability  

In order to evaluate the system, the following data-tracking features were implemented:   

� Flange Collision Detection (multi-body wheelset) - As the flanges on the Multi-body 

Wheelset are attached separately, the simulation can detect collisions between 

these rigid bodies and the rails. The simulation stores the Timestamp, Flange ID, 

Track Section ID, position and current speed of the vehicle for each collision. There is 

also an (optional) feature to render yellow markers in the scene at the flange contact 

locations, allowing problem areas to be identified visually (as shown later in Figure 

4.12), which is not enabled by default as it affects the performance of the simulation. 

� Derailment Detection
 
- When the train derails, the simulation records the speed and 

position of the vehicle, along with the ID of the derailing component. The method of 

derailment detection is discussed below.  

� Measuring Forces - PhysX can be made to report some of the forces that are applied 

to objects in the scene, including the normal force between wheel and rails. These 

values can be analysed to see if they comply with expectations (more details in 

Section 5.6.2). 

� Lateral Offset of the Wheelset - for each wheelset, the distance to the centre of the 

track is calculated by measuring the wheelset’s distance from the track spline (as 

described in Section 3.3.12) 

� Wheelset Height - the height of the wheelset (the z component of its position) is 

used as a measure of its stability (as shown in Section 5.7.6).  
 

This data is also written to a number of CSV output files at the end of each test. 

Derailment Detection 

A derailment in the simulation is defined as: any component coming into contact with the 

ground plane; or any wheel coming out of contact with the rails for longer than a certain 

period of time (a variable currently set to 0.5 seconds). During initial testing it was 

observed that it was possible for the vehicle to get ‘stuck’, while not meeting either of the 

previous derailment conditions. Therefore, if the vehicle was not moving (i.e. its forward 

velocity was 0 mph) for more than a specified period of time (currently set to 5 seconds), 

then it was also deemed to have derailed. 
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� Derailment Speed 

It was necessary to calculate the derailment speed of the vehicle in the simulation, but 

this presented a problem. The speed at which the vehicle was travelling when the 

derailment was detected is unreliable because by the time the derailment is detected the 

vehicle may have decelerated. The ‘target speed’ is the speed at which the vehicle should 

have been travelling when the derailment occurred, however it is possible that the 

vehicle was unable to reach the target speed and so this value is not reliable either.  

Instead, the following approach was devised. At regular intervals, the velocity of the 

vehicle is measured and, if all of wheels of the vehicle are in contact with the rails, then if 

the current velocity is higher than the currently recorded top speed, then the top speed is 

overwritten (unless the speed is greater than the target speed of the vehicle, which could 

suggest that an erroneous behaviour has occurred). This value is assumed to be the most 

accurate representations of the vehicle’s derailment speed that can be determined from 

the available data, and it is this value that is presented as the ‘derailment speed’ in 

Chapter 5. 

� Stable Speed 

An alternative measurement of the vehicle’s top speed that is used in Chapters 5 and 6 is 

the ‘stable speed’. The vehicle is tested at a range of speeds and the ‘stable speed’ is 

defined as the highest speed at which no derailments occurred.  

 Simulation Visualisation Features 4.1.5

The simulation includes a number of features designed to visualise the behaviour of the 

objects in the simulation. 

� Wheelset Contact Visualisation 

As Figure 4.11 (below) shows, the simulation displays a visualisation of the wheelset and 

properties of its contact with the rails. 

 

Figure 4.11 - A screenshot of Wheelset Contact Visualisation in Locomotion 
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The green dotted line represents the track spline. The orange dot on the wheelset 

represents its position and the orange dot on the spline represents the nearest point on 

the spline to the wheelset. This helps to visualise the behaviour of the wheelset to and 

ensure that the nearest point on the spline is being calculated correctly. 

� Flange Collision/Hotspot Detection 

When testing using the Multi Body Wheelset, the simulation records all collisions 

between the flanges and the rails. The offending flange is highlighted in yellow to show 

that a collision has occurred/persists, as illustrated in the screenshot below (Figure 4.12), 

where the two right hand flanges are grinding along the outer rail of a curve in the track. 

 

Figure 4.12 - a screenshot showing flange collision visualisation in Locomotion 

The position of each flange collisions is stored by the simulation and can be used to 

render yellow markers in the scene, as illustrated in the screenshot below (Figure 4.13), 

which shows a number of contacts from the right hand flanges of the wheelset on the 

outer rail of a track curve. 

 

Figure 4.13 - A screenshot showing flange collision visualisation in Locomotion 

This enables the user to visually identify hotspots where such collisions regularly occur. 

This feature is disabled by default as rendering the markers affects the performance of 

the simulation tool, but can be enabled at any time with a key press. 
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� Derailment Visualisation 

In the event of a derailment (if the simulation is not running automatic batch tests),  

the simulation will pause and the component that was detected to have derailed is 

highlighted in red, as illustrated in the figure below (Figure 4.14). 

  

Figure 4.14 - a screenshot showing derailment visualisation in Locomotion 

This visualisation allows the user to identify that, in this case, the left flange of the front 

wheelset derailed first, after the front wheelset climbed the rail and the flange came into 

contact with the ground plane. 

� Wheelset Offset/Hunting Oscillation Visualisation 

When testing with a single wheelset, the simulation is able to visualise the wheelset‘s 

path, in order to show the changes in lateral offset over time. This is illustrated in the 

screenshot below (Figure 4.15); an example of hunting oscillation with the conical 

wheelset. The orange line shows the path of the wheelset. 

 

Figure 4.15 - a screenshot showing the recorded path of the wheelset in Locomotion 

It is necessary to limit the number of measurements stored, in order to prevent the 

application from running out of memory. The visualisation is reset when a test ends and a 

maximum of 1,000 entries are stored.  
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 Interface and Customisation Options 4.1.6

This section shows examples of some of customisation menus that were added to the 

simulation, based on the Menu Flow described in Section 3.3.11. At the start of the 

simulation, the user is presented with a menu that allows them to choose to either load 

simulation settings from the setup files or to configure the simulation manually. This 

initial menu is shown in Figure 4.16 (below).  

 

Figure 4.16 - The Locomotion ‘Simulation Start-up’ Menu 

Clicking “Run Batch Simulation” runs the simulation with batch settings loading from the 

configuration files. Clicking “Customise Simulation Settings” initialises the customisation 

menu flow, the first menu of which is shown in Figure 4.17, below.  

 

Figure 4.17 - The Locomotion ‘Testing Mode’ Menu 

This menu allows the user to select which type of test is to be conducted (Wheelset, 

Bogie or Vehicle testing, as described in Section 3.3.9). The user is then presented with 

additional options, depending on their choices. 
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Most of the other menus are simple, multiple choice button menus, as in Figure 4.17, but 

others allow a wider range of options, such as the menu shown in Figure 4.18 (below). 

 

Figure 4.18 - The Locomotion ‘Straight Track Layout’ Menu 

This is the Straight Track Layout menu, which allows the user to select the number of 

straight track sections that will be used in the scene. The ‘+’ and ‘-‘ buttons allow the user 

to increase or decrease the number of straights, and the menu shows the total track 

length - in this case, 10 straight sections resulting in a test track 100m in length. A similar 

menu is used to select the number of carriages and the curve radius of the Loop layout. 

 Visual Debugger 4.1.7

Throughout development and testing of the simulation, the PhysX Visual Debugger (VDB) 

was used to study the behaviour of the bogie. The VDB records the positions and 

properties of all the objects in the PhysX scene while the simulation is running, and this 

data can then be viewed alongside the simulation or replayed once the simulation has 

terminated. It provides a visualisation of the recorded data and allows the physics 

simulation to be replayed.  

It is possible to move forward and backward through the replay, and to select individual 

rigid bodies and observe their properties. It was used mainly to debug the simulation tool 

during development, but a number of tests were replayed in the VDB to study the 

behaviour of the vehicle.  

A screenshot of one of the bogie tests recorded by the VDB is shown in Figure 4.19 

(overleaf). This screenshot shows the 3D visualisation (centre) as well as various 

configuration options (right) and the inspector (left), which allows the user to inspect the 

properties of rigid bodies. In the VDB, the green objects represent dynamic rigid bodies - 

such as the wheelsets and bogie - and red objects represent static rigid bodies, like the 

rails. The ground plane is also visualised. 
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Figure 4.19 - The PhysX Visual Debugger 

 Adjusting the Parameters 4.1.8

In order to enable batch testing, it was necessary to implement features that enable the 

physics engine parameters to be adjusted between tests while the program is running.  

Joint Solver Extrapolation Factor 

The Solver Extrapolation Factor (SEF) is a property of a joint and the following code 

(shown in Figure 4.20) is used to iterate through all of the joints in the scene until it finds 

the correct joint (with the associated actor names), and then changes the SEF of the joint. 

 

void PhysX2Engine::EditJointSolverValue(cstring actorname, float solverValue) 
{  
    g_scene->resetJointIterator(); 
    NxJoint* joint = g_scene->getNextJoint(); 
  
    while(joint) 
    { 
 NxActor* actor1, *actor2 = NULL; joint->getActors(&actor1, &actor2); 
  
 if (StringIs(actor1->getName(), actorname)  
                                  || StringIs(actor2->getName(), actorname)) 
 { 
     joint->setSolverExtrapolationFactor(solverValue); 
 } 
  
 joint = g_scene->getNextJoint(); 
    } 
} 
 

 

Figure 4.20 - Code for Altering the Joint Solver Extrapolation Factor 
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Per-Rigid Body Parameters 

Skin width and Max Angular Velocity are properties the rigid bodies and can be adjusted 

through the Physics Actor interface.  

Timing Multiple 

The number of substeps and the timestep used by PhysX when ‘simulate’ is called are 

properties of the PhysX scene, and these parameters are set using the scene’s ‘setTiming’ 

method, which is called during the initialisation of the scene (as described in Section 

3.4.7) and can be called between tests during batch testing. 

4.2 Implementation Issues 

The following issues were discovered during the implementation of the simulation tool 

and some additional design decisions had to be made. 

 Hardware Acceleration 4.2.1

An attempt was made to initialise PhysX with hardware acceleration. The following code 

is taken from locomotion and deals with the initialisation of the PhysX scene.  
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NxSceneDesc sceneDesc; 

sceneDesc.simType = NX_SIMULATION_HW; 

 

g_scene = g_physicsSDK->createScene(sceneDesc); 

 

if( !g_scene ) // scene init failed   

{ 

 sceneDesc.simType = NX_SIMULATION_SW; 

 g_scene = g_physicsSDK->createScene(sceneDesc); 

} 

 

 

To enable hardware acceleration, the PhysX scene is initialised with a Scene Description 

object that has the NX_SIMULATION_HW flag set (lines 2 and 4). This initialisation fails if 

hardware acceleration cannot be enabled, and the code detects the failure (line 6) and 

the scene can then be reinitialised using Software Simulation (lines 8 and 9).  

Initialisation with Hardware Acceleration fails on each of the three computers on which 

the Locomotion tool was developed and tested. Further investigation suggests that none 

of these computers has the correct version of graphics card to work with this particular 

version of the PhysX SDK. However, as mentioned in Section 0, hardware acceleration is 

used mainly for additional physics effects, rather than for rigid body movement or 

collision detection [4], so it is unclear whether this would have made a significant 

difference to the performance of the simulation tool. 
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 Framerate 4.2.2

Code was added to the application to track the framerate of the simulation, which allows 

the performance of the simulation to be evaluated. This is done by calculating how much 

time has passed since the last call to the render function and calculating how many 

frames per second the simulation is rendering.  

Initially, the framerate of the simulation was limited to a maximum speed of 60 frames 

per second (FPS). This was discovered to be due to be a setting in OpenGL known as 

Vertical Synchronisation (VSync), which synchronises the framerate of the application 

with the refresh rate of the computer’s monitor. This feature has been disabled, enabling 

the application to run at a higher framerate, which in turn allows the effect of altering the 

various simulation parameters on the performance of the tool to be evaluated. Since the 

timestep used in the simulation is fixed (1/60
th

 of a Second), this means that the 

simulation is capable of running at faster than real-time speeds (if it runs at more than 

60FPS), but this should not affect the results. 

 Stability Issues 4.2.3

A considerable amount of time was spent integrating PhysX into the Simulation’s 

application flow, as well as fixing bugs in the system that caused the simulation to 

become unstable. One such issue caused the vehicle to shake violently and to fly off the 

rails as the simulation struggled to resolve the forces and joints between the vehicle 

components. After much investigation, this was discovered to be an issue with the mass 

and inertia properties of the Rigid Bodies. The ‘setMass’ function of the rigid bodies sets 

the mass of the object, but does not update the inertia properties of the object - inertia 

being the resistances of a physical object to any change in its state of motion - so the 

objects had a large mass, but the inertia properties of a much lighter object. Physics 

Engines pre-calculate the inertia tensor (which describes the body’s mass distribution) of 

a rigid body using the shapes that make up the rigid body when the actor is created. [41] 

This was fixed by using the ‘updateMassFromShapes’ function to update the mass instead 

of ‘setMass’, which forces the engine to update the inertia of the object based on the 

shapes that make up the rigid body and its mass, but discovering the cause of this issue 

and correcting it cost a considerable amount of development time. 

 PhysX Classes 4.2.4

As discussed in Section 3.3.4, wrapper classes were created around key elements of 

PhysX, in order to allow the physics engine to interface with the Locomotion tool. In 

addition to the Physics Engine and Physics Actor classes described earlier, it was also 

necessary to implement: 
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Physics Pose 

The Physics Pose is wrapper around the ‘pose’ of an actor, which in PhysX is a 3 x 4 matrix 

that stores the position and orientation of an object. This enables, for example, the initial 

position and orientation of an object to be saved and then restored when the simulation 

is reset. 

Static and Dynamic Physics Actors 

It was also necessary to create two separate implementations of the Physics Actor class 

for Static Actors (such as the rails) and for Dynamic Actors (such as the wheels, bogies 

etc.), because Dynamic and Static Actors in PhysX have different functionality.  

Both inherit from a base Physics Actor class, which defines all functionality common to 

both actor types, and then each actor type encapsulates the unique functionality of the 

associated PhysX Actor. 

 Rigid Body User Data 4.2.5

In order to enable the correct processing of contact between objects within the system, it 

was necessary to be able to determine the Entity object associated with a PhysX Rigid 

Body. Each rigid body has a parameter called “userData”, a void pointer in which it is 

possible to store a pointer to the Entity object. Then, when a collision is detected by the 

PhysX Engine, the Entities associated with each colliding rigid body can be retrieved and 

passed to the main simulation object, which processes the collision during the next 

update loop.  

This enables the simulation to, for example, retrieve a pointer to the Wheelset entity 

from its rigid body when PhysX detects a collision with the rails, so that the conicity of the 

wheelset can be retrieved and used in the calculation of the centring forces (since conicity 

is a property of the Wheelset entity and not the rigid body). 

 Crashes and Memory Leaks 4.2.6

A considerable amount of time was spent testing the simulation tool before the data 

presented in this thesis was collected, in particular the batch testing features. In order to 

collect data during tests conducted across a range of parameter values and at a range of 

different speeds, it is necessary for the simulation to run for several hours at a time. Over 

time, data is accumulated in memory and if the simulation runs out of memory it can 

crash and simulation test data may be lost. Efforts were therefore made to ensure that 

the data in the simulation was stored efficiently, and was properly deleted once a test 

was completed and that the data was successfully output to text files when it was no 

longer required. Data is only output to text files at the end of each test, as doing so during 

the test would have a significant impact on the performance of the tool. 
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During one test scenario, for example, the simulation would crash after approximately 7 

batch sets when it was asked to complete 10. However, if it was instructed to only 

attempt 5 batch sets per execution, then it did not fail. In this case, it was necessary to 

run two separate batch sets and then combine the output files manually so they could be 

processed by the LocoDataScan utility. 

4.3 Chapter Summary 

This chapter has discussed the implementation of the Locomotion simulation tool, 

including some of the issues that were encountered and some of the changes and 

additions to the simulation’s design that were necessary. Also described are additional 

features that were added to allow the tests conducted in Chapters 5 and 6 to be carried 

out. 

Some of the key simulation features and data tracking functionality are also described, 

including the vehicle, testing environment, visualisation and data tracking features. 

 

The next chapter describes the testing that was conducted using the simulation tool. 



 

 

  Chapter 5

Wheel/Rail Interface Testing 

This chapter presents the evaluation of the simulation of the wheel/rail interface in the 

Locomotion Simulation tool, as this was deemed to be an important potential application 

area for a real-time rail dynamics simulation tool. Testing includes verifying the 

behaviours of basic objects and the wheel/rail interface using traditional mathematical 

techniques, as well as testing conducted on wheelsets and bogies in motion, using the 

Nadal Limit as a benchmark. After initial testing showed the limitations of the tool when 

the default parameters of the PhysX engine were used, tests were conducted to evaluate 

the effect of adjusting the PhysX parameters identified in Chapter 3 on the stability and 

performance of the simulation. An evaluation of the new technique that was designed to 

further improve the real-time simulation of the wheel/rail interface is also presented. 

5.1 Computer Specifications 

The development and testing of the Locomotion tool was conducted on three different 

devices, but all of the testing presented in this chapter was conducted on a single desktop 

PC with the following specifications: 

� Operating System: Microsoft Windows 7 Enterprise Edition (64bit) 

� Processor (CPU): Intel Core i7-2600 @ 3.4 GHz 

� Graphics Card (GPU):  NVidia GeForce GTX 590 

� Memory (RAM): 16.0GB 

Several identical tests were conducted on multiple machines, producing similar if not 

identical results. Sample data from these tests is included in Section 6.3 in Chapter 6. 

5.2 Testing Goals 

As described in Section 3.1.4, the high-level testing plan is to begin by evaluating 

simplified scenarios, before adding more complexity and additional features to the 

simulation, in order to evaluate the ability of the tool to simulate rail vehicle dynamics. 

This high-level plan can be broken down into a series of objectives, which are summarised 

below. 

 Verify the Behaviours of Simple Objects 5.2.1

Boeing and Braunl [42] has shown that Novodex engine (on which version 2.8.4. of the 

PhysX engine is based) can produce realistic behaviours for simple objects and scenarios, 

as discussed in Section 2.4.4.  
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Section 5.6 includes tests intended to verify that the Physics Engine is producing correct 

behaviours for simple objects that can be easily verified mathematically. These tests 

include an analysis of the forces acting between simple shapes, such as spheres and 

cubes, as well as a static wheelset. 

 Evaluate the Dynamic Behaviour of the Wheel/Rail Interface 5.2.2

The next step is to evaluate dynamic wheelset behaviour, by measuring the lateral offset 

and stability of a wheelset in motion, to determine if the simulation of the WRI is realistic, 

whether behaviours such as hunting oscillation can be observed and whether the 

wheelset derails at speeds close to the Nadal Limit predictions. This process will include 

evaluating the effect of adjusting the polygon count of the wheel, as discussed in Section 

3.3.2, and a comparison between the Single Body and Multi Body wheelsets, described in 

Section 3.2.2, to determine which is better suited to the simulation of the wheel/rail 

interface.  

This testing goal includes the following sub-goals: 

Evaluate Straight Line Speed 

One goal of this testing is to determine (and maximise) the top speed of a vehicle in the 

simulation; to enable the simulation to work at the normal operating speeds of most 

trains. The aim is that the vehicle should be able to travel stably at speeds of up to 

100mph. It is possible that solver error or instability will limit the top speed, but this may 

be improved by adjusting physics engine parameters. However, if this target speed is not 

achievable, the top speed and stability of the vehicle should be optimised (i.e. it is better 

to have a bogie vehicle stably at 70mph than unstably at 100mph).  

� Target Straight Line Speed: 100mph 

Evaluate Cornering Behaviour  

Using the Nadal Limit, predictions have been made about the derailment speed of a single 

wheelset and a bogie for a range of curve radii (See Sections 5.5.1 and 5.5.2).  

The intention is to verify that the wheelset/bogie derails at speeds close to those 

predicted by the Nadal Limit. In cases where the predicted derailment speed of the 

vehicle is greater than the target speed of 100mph (or the maximum stable speed of the 

vehicle), tests will be conducted to verify that the vehicle does not derail on curve radii 

and at speeds where it should not. 

� Target derailment speeds: See Nadal Limit Predictions (Section 5.5). 

  



Chapter 5 - Wheel/Rail Interface Testing 

117 

 Attempt to simulate multi vehicle trains 5.2.3

A key goal for this research is to attempt to simulate multi-vehicle trains. If wheelsets and 

bogies can be simulated correctly, the next step will be to attempt to simulate entire 

vehicles, and then multi-vehicle trains. These will initially be abstracted models, with 

additional features (such as suspension) being added later. The goal will be to evaluate 

the effect of adding additional vehicles on the stability of the train and the performance 

of the simulation tool, and to see if it is capable of executing such simulations in real-time 

(or near-real-time). 

 Determine Simulation Suitability for a range of Applications 5.2.4

To use the data produced by the simulation tool to attempt to assess its strengths and 

weaknesses and to suggest which areas of rail vehicle dynamics it may be suitable for 

simulating. Even if the simulation of the WRI is not sufficiently accurate for wheelset 

behaviour or derailment simulation, the simulation tool may be useful for other purposes, 

such as Gauge Testing or as a Rapid Prototyping Tool. 
8
 

 Evaluate Simulation Performance 5.2.5

Another goal of this testing is to evaluate the performance of the simulation tool. The 

target framerate of the simulation is 60 Frames-per-Second (FPS), which is real-time with 

the parameters that are used in the physics engine’s simulate method (described in 

Section 3.3.2), and the aim is that any improvements to accuracy should not compromise 

this framerate. Vertical sync has been disabled to allow the simulation to run at speeds 

higher than 60FPS so that any changes in performance can be evaluated. The 

performance of the simulation tool during each phase of testing is presented at various 

points throughout this chapter. 

 Evaluate System Error and Consistency 5.2.6

Each test conducted in this chapter will be run multiple times, in order to aid in the 

evaluation of the error bound in the tool and allow the consistency of the results 

produced by the simulation to be evaluated. It is important that the simulation is 

consistent, as well as accurate, if it is to be used by rail engineers in any meaningful way. 

This will be achieved by measuring the average, range and standard deviation of the 

results, as well as the difference between the observed results and the predictions. 

                                                      

8
 - This discussion is included with the Sample Test Data in Chapter 6 
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5.3 Parameters and Design Choices 

As discussed in Chapter 3, the following are parameters of the physics engine or design 

choices where it is not a clear which is the best choice for simulating rail dynamics. 

Evaluating these parameters/design choices is another key focus of testing in this chapter. 

 Simulation Parameters 5.3.1

In the event that PhysX, using its default parameters, was unable to simulate the 

wheel/rail interface realistically, the following parameters were identified as having the 

potential to affect the fidelity of the simulation and/or the stability of the wheels. These 

parameters - unlike mass, centre of gravity or material properties - do not correlate to 

real-world physics properties and so there is no obvious ‘correct’ value for them. They 

have therefore been adjusted to study their effects on the simulation; to see if adjusting 

them can improve the results and how doing so affects simulation performance. These 

parameters were described earlier, in Section 3.4.7, and are listed below. 

� Maximum Angular Velocity 

� Skin Width 

� Simulation Timing 

� Rigid Body Solver Iteration Count 

� Joint Solver Extrapolation Factor 
 

The aim is to find an ‘ideal’ value for each parameter; where the wheelset/bogie/vehicle 

is capable of reaching the intended speeds and where the derailment speeds are as close 

as possible to the Nadal Limit predictions.  Increasing the fidelity of the simulation by 

adjusting parameters such as Simulation Timing and Solver Iteration Count is expected to 

reduce the performance of the simulation and lower its framerate, and so the other 

purpose of this testing is to see if the fidelity of the physics simulation can be improved 

without compromising the real-time performance of the simulation tool.   

 Simulation Design Choices 5.3.2

The following are design choices, discussed in Chapter 3, where there was not an obvious, 

correct decision. Tests were conducted to attempt to determine which choices are the 

most suitable for simulating rail dynamics. 

Wheelset Polygon Count 

Three wheelset variations have been constructed, each with a different number of 

segments used to create the wheel cylinder. It is expected that higher polygon counts will 

produce more stable results, but at the cost of simulation performance. It will be 

necessary to collect data on each wheelset variation in order to determine which design 

produces the best compromise between stability and performance. 
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Wheelset Design Variations 

There are also two designs of wheelset, featuring different methods of construction from 

the component parts (axle, wheel, flange). Here is a reminder of the potential strengths 

and weaknesses of the wheelset designs: 

� The Single Body Wheelset comprises a single rigid body  

� The Multi-body Wheelset comprises five separate rigid bodies 

 

The SB wheelset should be the more stable of the two, however it is not as flexible and 

may provide less data about contact forces and flange contacts. The MB wheelset is more 

easily adjusted - making the simulation to be more flexible, allowing it to function better 

as a rapid prototyping tool. It will also enable easier flange collision detection and will 

provide more detailed contact force reporting (as discussed in Section 5.6.3), but it is 

expected to be less stable than the SB Wheelset. However, if the stability difference turns 

out to be minimal, the additional flexibility might make the lower stability acceptable to 

engineers. It is also possible that adjusting the parameters of the physics engine may 

alleviate any stability issues. 

 New Real-time Wheel/Rail Interface Simulation Technique 5.3.3

The Gravitational stiffness force, described in Section 2.2.1, was identified as a key 

component of the behaviour of the wheel/rail interface and a new, spline-based 

technique, described in Section 3.3.14, was designed to simulate this effect if it was not 

found to be present or correct in the physics simulation. The effect of this technique on 

the results produced by the simulation tool, as well as on its performance, is presented at 

various points throughout this chapter (Testing Phases 2 and 3).  

5.4 Testing Plan 

A summary testing plan was presented in Chapter 3. The following is a more detailed plan 

of the phases of testing presented in this chapter and Chapter 6.  

 Phase 1 - Test forces between simple, static objects 5.4.1

As discussed in Section 2.4.4, Boeing and Braunl (2007) [42] showed that physics engines 

generally performed well in tests with simple objects. PhysX version 2.8.4 is still based on 

the Novodex engine which featured in these tests, and so this thesis assumes that the 

observations made in that paper still apply. The tests conducted during this research were 

designed to confirm these results before testing a wider range of scenarios relating to the 

simulation of rail vehicles. First, tests are conducted to verify the behaviour of simple 

objects, to confirm that the Normal force is being correctly applied and to test the objects 

with mass values closer to those of a rail vehicle to ensure that increasing the mass of the 

objects does not cause stability or penetration issues.  
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This phase of testing will also include verifying that the normal forces are being applied 

correctly to a static wheelset resting on the rails. 

� These results are presented in Section 5.6. 

 Phase 2 - Dynamic Wheel/Rail Interface Testing 5.4.2

The next phase of testing will focus on the dynamic simulation of the wheel/rail interface. 

Testing will involve a wheelset in motion on simple track layouts and, if necessary, 

adjusting the parameters of the PhysX engine or augmenting the simulation with 

additional corrective forces, in order to improve the results. These tests include 

comparisons of wheelset polygon counts and comparisons between the SB vs MB 

wheelsets. 

� Straight Track results are presented in Section 5.7. 

� Curved Track results are presented in Section 5.9. 

 Phase 3 - Bogie Testing 5.4.3

The next phase involves testing the dynamic behaviour of a rail bogie. Tests are 

conducted on straight track to evaluate the speed and stability of the bogie; to evaluate 

its top speed and attempt to get it up to the target speed of 100mph. Tests are also 

designed to evaluate the cornering behaviour of a bogie, using a looped track and 

benchmarked against the Nadal Limit. As with Phase 2, the PhysX engine parameters or 

augmentations to the simulation may be adjusted to improve the results, if necessary.  

� Straight Track Data is presented in Section 5.10. 

� Curved Track Data is presented in Section 5.11. 

 Phase 4 - Test with full vehicles and multi-vehicle trains 5.4.4

Phase 4 was to involve testing with whole vehicles and multi-vehicle trains, primarily to 

evaluate the performance of the tool when simulating these more complex scenarios. 

� Time constraints prevented a detailed evaluation of these scenarios, but sample data 

is included in Chapter 6.  

 Phase 5 - Evaluate Suitability for Gauging and Rapid Prototyping 5.4.5

Phase five was to involve testing to evaluate the ability of the tool to perform some of its 

intended functions; as a gauge testing environment and rapid prototyping tool. 

� Time constraints prevented a detailed evaluation of these scenarios, but sample data 

is included in Chapter 6, which has allowed an initial analysis of the suitability of the 

simulation tool for these intended application areas. 
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 Additional Information 5.4.6

Specific details about the design and predicted results for each set of tests are presented 

in the relevant sections, along with the results. Additional observations and extra tests 

are also described, where necessary. There is a full discussion of the significance of the 

results at the end of each testing phase. 

5.5 Predictions 

The following predictions have been made for use in the evaluation of the wheel/rail 

interface.  

 Nadal Derailment Predictions (Wheelset) 5.5.1

In the absence of real-world or simulated derailment data for the vehicle in question, the 

main method for evaluating the behaviour of the wheel/rail interface is the following set 

of predictions made using the Nadal Limit. Predictions are made for a single wheelset and 

for a single bogie, based on the Nadal Limit, and estimate the approximate speed at 

which the vehicle should derail (Sections 5.5.1 and 5.5.2). The expected results of 

adjusting physics engine parameters is also discussed (Section 5.5.3). 

The ‘Nadal Value’ 

The simulation and Nadal Limit predictions use the following values:  

� Flanges have a maximum contact angle (δ) of 65°. 

� The coefficient of (dynamic) friction (µ) is 0.57.
9
  

Using these values in the Nadal equation produces the following result: 

�
� 	� 	

%&�
65� � 	0.57
1 ! 	0.57 ∗ 	%&�	
65� 	� 	o. poq	

  

                                                      

9
  - Assuming that the wheel and rails are made of Steel, as discussed in Section 3.4.4. 
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Calculating L and V 

To make use of the Nadal value it is necessary to calculate the Lateral (L) and Vertical (V) 

force acting on the wheelset.  

� Lateral Force (L) 

The lateral force (L) is approximated using the centrifugal force of the wheelset. 

Centrifugal force (Fc) is calculated using the following formula:  

4r �  ?�  R	  
where m is the mass of the object, v is the forward velocity and r is the curve radius. ‘m’ is 

the mass of the wheelset (500kg). Therefore: 

� � 500 ∗ �  R	  
Using this formula, L can be calculated for a range of velocities (v) and track radii (r). 

� Vertical Force(V) 

The vertical force (V) is calculated using acceleration due to gravity (9.806m/s
2
) and the 

effective mass of the wheelset.  

h � ?&      ∴      � =  500 ∗  9.806 =  u, qovw  
Calculating the Predicted Derailment Speeds 

Using the above value of V results in the following equation:  

�
4,903 �   0.834 

 

So,           L � 0.834 ∗ 4,903 �  4,089.102 

Since L �  KB x
y   the following formula can be used to calculate how changes in velocity 

(v) and curve radius (r) affect the L/V ratio: 

500 ∗  v Rr = 4,089.102 
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So, to calculate the L/V ratio for a combination of v and r, Formula 5.1 (below) is used: 

vR
r 		� 		

4,089.102

500
		� 		8.178 

Formula 5.1 - The formula used to make predictions based on Nadal 

Predictions (100 – 300m) 

Solving this formula for a range of velocities and radii (from 100m to 300m) produces the 

curves in the graph in Figure 5.1, below.  

 

Figure 5.1 - Graph showing L/V ratio for a range of track radii, vs the Nadal Value (100m to 300m) 

Each curve on the graph shows how increasing speed affects the L/V ratio for a particular 

curve radius; the L/V ratio increases as the speed increases and the rate of increase is 

lower on wider curve radii. The blue dotted line represents the Nadal value and the points 

where the Nadal value line crosses the other lines indicates the minimum conditions 

required for wheel-climb derailment to occur, which will serve as a prediction of the 

approximate speed at which the wheelset should derail in the simulation. Calculating the 

point where the graphs cross produces the following predictions of the speeds at which 

the wheelset will derail on each curve radius (shown in Table 5.1, below). 

Curve Radius (m) 100 125 150 175 200 225 250 275 300 

Speed (m/s) 26.36 29.47 32.28 34.87 37.28 39.54 41.68 43.71 45.65 

Speed (mph) 58.96 65.92 72.21 78.00 83.38 88.44 93.23 97.78 102.12 
 

Table 5.1 - Predicted derailment speeds for the test wheelset (100m to 300m) 
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The derailment speeds for each radius are illustrated in the graph below (Figure 5.2). 

 

Figure 5.2 - Graph of derailment speeds for a range of curve radii (100m to 300m) 

The predicted speed increases with each increase in curve radius, but by a smaller 

amount each time (the difference between the predicted derailment speeds for radii of 

100m and 125m is 9.96mph, whereas the difference between 275m and 300m is 

4.34mph). These predictions estimate that the wheelset will derail at just over the 

vehicle’s target speed of 100mph on the 300m radius track, and that the derailment 

speeds will be higher on higher radii. 

Predictions (500 – 1000m) 

Because the aim of this research is to test the vehicle at speeds of up to 100mph, it may 

not be possible to use the Nadal Limit predictions on curve radii wider than 300m.  

However, the predicted derailment speeds for the higher curve radii are included in Table 

5.2, below.  

Curve Radius (m) 500 600 700 800 900 1000 

Speed (m/s) 58.94 64.56 69.74 74.55 79.07 83.35 

Speed (mph) 131.84 144.42 156.00 166.77 176.88 186.45 
 

Table 5.2 - Predicted derailment speeds for the test wheelset (500m to 1,000m) 

If the vehicle is capable of achieving sufficiently high speeds (>100mph), then these 

predictions can be used. Otherwise, tests can still be conducted on these wider curves to 

make sure that the vehicle does not derail at its intended speed/maximum stable speed. 
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Summary 

While not a truly accurate prediction of the derailment behaviour of the test wheelset, 

these formulas provide an estimate of the speeds at which it would derail in the real-

world, using a formula that is commonly used in the rail industry. These predictions will 

be used to show that the behaviour of the virtual vehicle is at least logically correct. i.e. 

Ideally, the wheelset should derail at speeds close to those predicted here, but even if it 

derails at speeds above or below those predicted by the Nadal Limit, the graphs of the 

derailment speeds for each curve radius should produce a similar shape to those in Figure 

5.2, if the simulation is accurate. 

 Nadal Derailment Predictions (Bogie) 5.5.2

It was also necessary to make predictions about the behaviour of a bogie. As with the 

wheelset, the Nadal Limit was used to predict the approximate minimum speed at which 

a bogie would derail on each curve radius.  

Lateral Force 

Base on the assumption that the lateral forces are even distributed between the two 

wheelsets, and taking the mass of the bogie into account, the effective mass of the 

wheelset is calculated using m = the mass of the wheelset (500kg) plus the half the mass 

of the bogie (6,000kg/2 = 3,000kg) which is 3,500KG. Therefore: 

� � 3,500 ∗ � 	R
	 	

Vertical Force 

The vertical force (V) is calculated using acceleration due to gravity (9.806m/s
2
) and the 

effective mass of the wheelset, as above.  

h � ?&						 ∴ 					� � 	3,500	 ∗ 	9.806	 � 	vu, vz{w	

Predictions 

However, since the lateral and vertical forces have increased by the same amount, this 

cancels out, meaning that the L/V ratio (and, therefore, the predicted derailment speeds) 

for the bogie are the same as the derailments speeds for the wheelset. 
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 Parameter Alteration Predictions 5.5.3

This section describes the expected results of altering the various physics engine 

parameters, described in 5.3.1. When the parameters are adjusted, it is estimated that 

there are four possible outcomes for the changes in results, illustrated by the four graphs 

in Figure 5.3, below. 

   

 

   

Figure 5.3 - Graphs showing rough predicted outcomes of parameter adjustment testing 

These outcomes are as follows: 

� Graph A - Altering the parameter has little or no effect. 

� Graph B - Altering the parameter causes the results to improve, and continues to do 

so across the range of parameter values tested. 

� Graph C - Altering the parameter has an effect on the results initially, but this change 

ceases or becomes negligible above a certain value. 

� Graph D - Altering the parameter improves the results, but above a certain point 

increasing the parameter has a negative effect on the results.  

Graph A Graph B 

Graph C Graph D 
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Predictions Discussion 

It is difficult to estimate exactly how adjusting the physics engine parameters will affect 

the results, but the following predictions were made: 

� The simulation is unlikely to achieve the target straight line speed of 100mph, or the 

predicted curve derailment speeds, using its default parameters. It will be necessary 

to adjust these parameters and to study what effect they have on the simulation, 

and whether the simulation can be made to achieve its target speed and produce 

reasonably realistic derailment results. 

� Increasing the value of parameters such as the Simulation Timing parameters and 

Solver Iteration Count is expected to improve the stability of the vehicle. The results 

may improve continuously (Graph B) but it is possible that these parameters will 

reach a value where no further improvement can be made (Graph C) or that above a 

certain value they will have a negative effect on the stability of the simulation (Graph 

D). This is hinted at by the PhysX SDK, which describes the Joint Solver Extrapolation 

Factor with the sentence: “Setting the value too high can decrease the joint stability” 

[41]. 

� Parameters such as Skin Width and Joint Solver Extrapolation factor are not expected 

to have any impact on the performance of the simulation tool (Graph A), since they 

do not alter the fidelity of the solver, just the amount of allowed interpenetration 

and the flexibility of the rotational joints. 

 Summary 5.5.4

This section has contained predictions about the derailment speed for a wheelset and a 

bogie on curved track. These predictions, based on the Nadal Limit, are referred to 

throughout the rest of this thesis. They give a ballpark estimation of the speed at which a 

single wheelset or bogie should derail, and are used to evaluate the results produced by 

the Locomotion Simulation Tool.  

This section also includes a brief discussion of the possible outcomes of the parameter 

testing. It is very difficult to predict the precise outcome of these tests, but this section 

has included a few predictions about the approximate effect of the physics engine 

parameters on the stability and performance of the simulation tool. More specific 

predictions for individual test scenarios are included in the relevant sections. 
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5.6 Testing Phase 1: Static Forces 

In these tests, the PhysX engine was tested using its default parameters. Initial testing 

was conducted on simple objects to evaluate the ability of the physics engine to simulate 

basic rigid body interactions. Tests were also performed on wheelsets and static bogies to 

determine whether the physics engine was correctly distributing the mass of the object 

between the wheelsets, and to evaluate the stability of the simulation and the joints 

between objects. The aim is to verify that the forces acting between objects in PhysX is 

correct for both smaller mass values and mass values equivalent to those of rail vehicles, 

before analysing the simulation tool’s ability to simulate wheelsets and bogies. 

 ‘SumNormalForce’ 5.6.1

During the callbacks from PhysX, along with the rigid bodies and the contact flags, as 

described in Section 3.3.7, a parameter called SumNormalForce is returned. This 

parameter is defined in the PhysX SDK as ‘The total contact normal force that was applied 

for this pair, to maintain non-penetration constraints.’ [41]. If this vector represents the 

total force applied to the pair, then it is expected to be equal to the normal force acting 

on the object(s), which is simple to predict  and can therefore be evaluated. This force is 

reported multiple times while the simulation executes, until the wheelset comes to rest, 

and an average of the reported normal forces measured by the simulation is taken, to see 

if the results concur with the predicted values. 

 Geometric Shape Tests 5.6.2

This first set of tests focusses on the behaviour of simple geometric shapes. The use of 

such shapes enables the results to be easily verified mathematically. The aim of these 

tests is to verify that these simple behaviours are correct, to determine what data is 

reported by PhysX and to confirm that PhysX is correctly handling the forces acting on the 

rigid bodies for a range of mass values.   

Test Design 

A 2m
2
 cubed box is placed in the scene so that it is resting on the ground plane, as 

illustrated in Figure 5.4, below. The mass of the cube was varied from 1KG to 100,000KG 

 

Figure 5.4 - Normal Force between a Box and Ground Plane 
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Predictions 

In these box tests, N should be equal to the gravitational force acting on the box and be 

perpendicular to the ground plane. Newton’s Second Law of motion states that force = 

mass * acceleration (F = ma). a = acceleration due to Gravity (a vector): [0, 0, -9.806]. So, 

if the mass (m) of the box is 1kg, then N should be [0, 0, (+) 9.806] and as the mass 

increases, the normal force should increase accordingly. The predictions for all of the 

mass values tested are included, along with the results, in Table 5.3, below. 

Results 

Table 5.3, below, shows the average sumNormalForce results for each mass value tested. 

Include are the predicted normal force (‘N’), the average (mean) magnitude of the 

recorded normal force, the difference between the prediction and the recorded value and 

the range of magnitudes.  

� In each test, the Normal force was reported 23 times before the box became ‘at rest’ 

 

Mass Prediction (N) Average Magnitude Difference Range 

1KG 9.806 9.80596 0.00004 0.002 

10KG 98.06 98.05952 0.00048 0.018 

100KG 980.6 980.59535 0.00465 0.177 

1,000KG 9806 9805.95287 0.04713 1.77 

10,000KG 98060 98059.53948 0.46052 17.703 

100,000 KG 980600 980595.39696 4.60304 177.063 

 

Table 5.3 - Box/Ground Test Results (1KG to 100,000KG) 

In each test, the results were, on average, just 0.00047% lower than the predicted results. 

The difference between the prediction and the results, as well as the range of results, 

increases relative to the mass of the box (i.e. increasing the mass by a factor of 10 causes 

the range and difference to increase by a factor of 10). The range of results is always 

0.18% of the mass of the object. The standard deviation of the magnitudes is, on average, 

0.007% of the mass of the box across all tests.  

� Consistency Tests 

In order to evaluate the consistency of the physics simulation, each of the previous tests 

was repeated five times and the results from each test were compared. Table 5.4 

(overleaf), for example, shows the five results from the 10,000KG tests. The results were 

identical each time, as were the results for the other mass values. 
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Test Mass Average Magnitude Difference Range 

1 10,000KG 98059.53948 0.46052 17.703 

2 10,000KG 98059.53948 0.46052 17.703 

3 10,000KG 98059.53948 0.46052 17.703 

4 10,000KG 98059.53948 0.46052 17.703 

5 10,000KG 98059.53948 0.46052 17.703 
 

Table 5.4 - Box/Ground Test Results (10,000KG x 5) 

Initial Observations 

A real-time system was always going to introduce error. The error here is less than 

0.001% and, the range of results is, on average, less than 0.2% of the mass of the object 

(and the standard deviation is less than 0.01% of the mass). This is believed to be an error 

bound that is sufficiently small as to be acceptable to engineers in a real-time tool. 

Additionally, data from multiple tests shows that the simulation is capable of producing 

data that is consistent. 

 Wheelset Tests 5.6.3

In this section, the normal force between the wheels and rails in the simulation is studied 

using a static wheelset. Both designs of wheelset (MB and SB Wheelsets) are tested to 

verify that the forces are being applied correctly and to see if either design produces 

more realistic and/or more stable results. 

Test Design 

In these tests, the wheelset is placed onto a single (10m) section of straight track. The 

Normal force acting on the wheelset is then measured. The range and standard deviation 

of the values is also studied as a measure of the stability and consistency of the 

simulation. Figure 5.5, below, shows a screenshot captured during one of these tests. 

 

Figure 5.5 - Screenshot from Static Wheelset Testing 
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� Properties 

All PhysX parameters and properties are set to their defaults, with the exception of the 

dynamic and static friction values of the wheels and rails, which have been set to 0.74 and 

0.57, respectively (the coefficient of friction of steel-on-steel - as described in Section 

3.4.4). The wheelset was constructed using the properties described in Table 3.3, i.e. a 

mass of 500kg.
10

 

Predictions 

If the wheelset is placed exactly between the rails, it is assumed that there will be even 

distribution of mass between the two wheels. The rails are placed at the origin of the 

scene, either side of the y axis. A diagram of the wheels and their normal forces (relative 

to the x axis) is shown in Figure 5.6, below (wheel conicity and the angle of the normal 

forces (red arrows) have been exaggerated). 

 

Figure 5.6 - Wheel Normal Forces (red arrows), relative to the X Axis of the scene 

The equation for the magnitude of a normal force on an inclined plane is  

� � ? j  cos  ( � ),  where m is the mass of the object, g is acceleration due to gravity 

and δ is the angle of the plane.  

� Multi Body Wheelset 

Because the Multi-body Wheelset is made up of separate rigid bodies and the callbacks 

from PhysX that report the normal forces are per rigid body, it was expected that there 

will be one callback per wheel, reporting the normal force acting on that wheel (the red 

arrows in the diagram above).  

                                                      

10
 - Results from tests with other mass values were consistent with those described in this section. 
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So, given that the wheel contact angle at rest (2.86°) is equivalent to the angle of an 

inclined plane, and assuming even mass distribution of the 500kg mass of the wheelset 

between the two wheels, the magnitude of the normal force should be: 

� �  � 5002  �  ∗  9.806 ∗  cos  ( 2.86 ) = z, uu�. u� w 

The (normalised) Normal to the flat ground plane is the vector: [0, 0, 1]. Because the rails 

run in the direction of the y axis, this normal can be rotated about the y axis by +2.86° to 

find the direction of the normal force for the left wheel and -2.86° for the right wheel.  

This produces the ‘Normal (Normalised)’ vectors in the table below. This direction vector 

can then be multiplied by the predicted magnitude of N (above) to produce the 

‘Prediction’ vectors in Table 5.5, below. 

 Normal (Normalized) Prediction 

Wheel x y z x y z 

Left  0.0499 0.0 0.9988 122.167 0.0 2445.4 

Right -0.0499 0.0 0.9988 -122.167 0.0 2445.4 
 

Table 5.5 - Predicted Normal Forces for an MB Wheelset on Rails 

� Single Body Wheelset 

Because the Single Body is constructed from a single rigid body, and the normal force 

reported by PhysX is a per-rigid-body force, it is expected that the magnitude of 

sumNormalForce should be one of two values: 

� ‘Prediction A’ - The first possibility is that PhysX detects the contact points between 

each wheel shape and each rail shape separately, and applies the forces at each 

contact point of the wheelset (in the same way that forces are applied to the 

individual rigid bodies of the Multi-body Wheelset). The reported force would then 

be the sum of those forces, and should be equal to the sum of the two vectors in the 

Multi-body Wheelset prediction above; a vector: [0.00, 0.00, 4890.80]. 

� ‘Prediction B’ - Alternatively, if the wheelset is treated as a single rigid body, then the 

force could be an upward force, with the magnitude calculated based on the mass of 

the wheelset as a whole, multiplied by acceleration due to gravity: 500 ∗ 9.806 � u, qovw and should be pointing directly upwards: [0.00, 0.00, 4,903.00]. 

The results from the simulation should be close to one of these values, and will give some 

insight into how the forces are calculated and applied by the physics engine. 
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Results 

The results from the tests conducted on both wheelset types are shown below. Each test 

was repeated three times to confirm that the results were consistent. 

� Multi Body Wheelset 

Below (in Table 5.6) are the average x, y and z components of the force acting on the 

wheels of the Multi-body Wheelset, as reported by PhysX. Also included are: the average 

magnitude, the difference between the prediction and the results, and the range of 

results.  

� 115 results were collected per wheel during these tests. 

Force 

Wheel X Y Z Magnitude Difference Range 

Left 122.430 -0.018 2451.128 2454.184 -5.74 1.57 

Right -122.268 -0.023 2449.899 2452.948 -4.50 1.75 

 

Table 5.6 - Wheelset forces (Wheelset/Rails) 

These results are very promising. The x, y and z components of the force, as well as its 

magnitude, were close to the predicted values, with the magnitude of the force being, on 

average, 0.2% above the prediction. The range of magnitudes is also very small, only 

1.57/1.75N; less than 1,000
th

 of a percent of the magnitude of the force. There is a small 

difference of 0.02N between the two wheels. One possible reason for this could be that 

the wheelset did not come to rest exactly at the midpoint between the rails, possibly as a 

result of error in the way the solver handles the collisions between the objects in the 

simulation. Or it could be that a floating point error, penetration error or other error 

introduced by the way that the solver handles the joints between the rigid bodies. 

� Single Body Wheelset 

The results in the table below are from the SB Wheelset test. Table 5.7 shows the average 

force vector, its magnitude, the difference between that magnitude and the second 

prediction (which was the nearest) and the range of magnitudes. 

� 59 results were collected in total 

Force 

X Y Z Magnitude Range 

1.076 0.004 4913.424 4913.425 199.66 

 

Table 5.7 - Single Body Wheelset/Rails Results 
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Table 5.8, below, shows the difference between the two predictions and the results: 

Prediction Predicted Value Magnitude Difference 

Prediction A 4890.80 4913.425 -22.625 

Prediction B 4,903.00 4913.425 -10.43 

 

Table 5.8 - Single Body Wheelset/Rails Results 

This data suggests that the forces are being applied to the rigid bodies as a whole, since 

the magnitude of the observed forces is closest to that in Prediction B. 

The average force is 10.43 above the prediction. The reason for this discrepancy could be 

some initial differences in the size of the force, as demonstrated in the graph below 

(Figure 5.7), which shows the magnitude of the normal force during the first 50 samples. 

 

Figure 5.7 - Magnitude of the Normal Force (Single Body Wheelset - First 50 Samples) 

The initial magnitude is much higher than the average value. After the first 10 samples, 

the result oscillated but is closer to the predicted value. The standard deviation of the 

results is 50.61N, meaning that the majority of the results are within 1.03% of the mean 

value. Initial ‘peak’ value is likely to be responsible for the discrepancy between the 

average result and the prediction, as well as the high range of results.  

The magnitude fluctuates over the first 10 samples, which is likely to be the result of 

penetration error or other issues internal to the physics engine as the initial contact is 

resolved. Different amounts of force are applied in order to correct for penetration error 

and/or for the amount of applied force being too large or too small in a previous 

iteration. This suggests some instability, but PhysX does eventually resolve this and 

declares the object to be at rest. These initial values may also explain the range of results. 
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 Bogie Tests 5.6.4

The tests in this section are designed to evaluate whether the mass of the bogie is being 

correctly distributed between the wheelsets.  

Test Design 

A bogie is placed on a section of straight track and allowed to come to rest, as illustrated 

in the screenshot below (Figure 5.8). The forces reported by PhysX until the bogie comes 

to rest are recorded, and an average is taken. 

 

Figure 5.8 - Screenshot from Static Bogie Testing 

Multi Body Wheelset 

The following tests were conducted using a bogie with multi-body wheelsets attached. 

� Predictions 

The effective mass of each wheelset is calculated as follows (based on the assumption 

that the 6 tonne mass of the bogie is evenly distributed between the two wheelsets, and 

then between the two wheels): 

i&

 � 	
I6,0002 ! 500L

2 � 1,750Yj 

The normal force acting on the wheelset can then be calculated as follows: 

� � 	1,750	 ∗ 9.806 ∗ cos 	
	2.86	� �	 {p, {vq. {	w 
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The prediction in Table 5.9 (below) is calculated using the normalised Normal force 

direction vector from earlier (Table 5.5) multiplied by the predicted magnitude above. 

 Normal (x Magnitude) 

Wheel x y z 

Left 855.169 0.0 17,117.791 

Right -855.169 0.0 17,117.791 
 

Table 5.9 - Predicted Normal Forces for a Multi-body Wheelset of a Bogie on Rails 

� Results 

Below (in Table 5.10) is the data each of the four wheels. The table contains the average 

x, y and z components of the force, along with the average magnitude, the difference 

between the prediction and recorded magnitude, and the range of magnitudes.  

� 111 results were recorded per wheel. 

 

Force 

Wheel X Y Z Magnitude Difference Range 

Front-Left 858.224 -2.192 17179.511 17200.935 -60.385 20175.194 

Front-Right -856.044 -2.402 17150.365 17171.716 -28.805 23469.879 

Rear-Left 857.735 -2.207 17172.968 17194.376 -54.011 20313.381 

Rear-Right -856.252 -2.410 17148.318 17169.682 -27.774 23608.398 
 

Table 5.10 - Multi-body Wheelset forces (Bogie/Ground) 

There is a difference of 31.3N between the highest and lowest average magnitude, but on 

average the magnitude of the force was just 0.249% higher than the predictions. The 

standard deviation of the results is 2303.59, which is quite high, 13.46% of the average 

magnitude. The range of magnitudes is high because of ‘spikes’ in the results, as 

illustrated in the graph below (Figure 5.9), which shows the normal force acting on the 

left and right wheels of the front wheelset of the bogie. 

These discrepancies are likely to be the result of penetration errors. A higher than 

necessary force is applied when the penetration error occurs, resulting in a lower than 

average result in the following frame, and then the results stabilise. The results also 

correlate directly with an opposite spike in the opposite wheel’s results, as illustrated in 

Figure 5.9 (overleaf). The impact on stability caused by these discrepancies is minimal 

however, since each of these callbacks represents one iteration of the physics engine and 

there are eight iterations by default for each frame (call to simulate), which happens 60 

times per second (so the data represents 13 frames, a fraction of a second). 



Chapter 5 - Wheel/Rail Interface Testing 

137 

 

 

 

Figure 5.9 - Normal Force acting on the Front, Right Wheel 

Single Body Wheelset 

Next, the tests from the previous section were repeated with a bogie that had a pair of SB 

Wheelsets attached to it. 

� Predictions 

Because the SB Wheelset consists of a single rigid body, and based on the test results in 

Section 5.6.3, the expectation is that the force should be directly upward and not 

distributed between the wheels, with a magnitude of 34,321N. 

� Results 

The table below shows results of the Single Body bogie testing.  

� 43 results were recorded per wheelset. 

 Force    

Wheelset X Y Z Magnitude Diff Range 

Front -33.736 -7.152 31814.876 31819.673 2501.327 1673.361 

Rear 53.453 -11.783 31803.431 31808.262 2512.738 1726.429 
 

Table 5.11 - Single Body Wheelset Forces (Bogie/Ground) 

There were just 43 results instead of the 59 recorded in the previous Single Body 

Wheelset tests. There are also fewer results and a lower range of values than the 

equivalent Multi-body Wheelset results, suggesting improved stability. 
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In these tests, the magnitude of the normal force acting on the SB Wheelset is lower than 

the expected values. However, if the effective mass of the wheelset is calculated 

differently, it is possible to produce these results. If, instead of calculating the mass as 

k"j��	i&


2 !27��/
�%	i&

 

... it is calculated as: 

k"j��	i&

 !27��/
�%	i&


2  

Then the predicted magnitude of the normal force is 31,869.5m and the results are then, 

on average, only 0.174% above the prediction. It is unclear why this behaviour is different 

for the SB Wheelset than it is for the MB one. 

Once again, there is a high range of magnitudes, but a closer inspection reveals the 

following graph (Figure 5.10): 

 

Figure 5.10 - Normal Force acting on the Front and Rear Wheelset (Single Body Bogie) 

There is initial variance in the magnitude of the force, presumably as the solver resolves 

the initial contact/penetration issues and the joints between the wheelsets and the bogie. 

After that, the results are more stable and consistent. The standard deviation of the 

results was 441.42N for the front wheelset and 477.02N for the rear wheelset, so the 

results were, on average, within 1.4% of the average. 

Observations 

In the Multi Body tests, the bogie rolled backward and forward for a few seconds before it 

stopped moving. In the single body tests, the bogie did not appear to move at all. Results 

are identical if the test is repeated.  
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This data suggests that the forces being applied to it are correct, within an error bound of 

approximately 1%, caused by initial instability while the contact is resolved. The data also 

suggests that, as expected, the SB Wheelset is more stable, as it generated fewer results 

and a smaller range/standard deviation of results. 

 Summary 5.6.5

This section has shown that the Physics Engine is capable of producing promising results 

for simple objects and the wheel/rail interface when tested with a static wheelset/bogie. 

Box Tests 

In the box testing, there is a discrepancy of only 0.006% on average between the 

expected normal forces and those reported by PhysX across all mass values, including 

values up to and including 100 tonnes. The range of results is always 0.18% of the mass of 

the box. This consistency is promising for engineering use. 

Wheelset Testing 

The results for a wheelset at rest are also promising. The reported normal forces for the 

Multi-body Wheelset on were off by less than 0.25%. There are some irregularities 

between the wheels, which is believed to be the result of the wheelset not coming to rest 

exactly between the rails, or minor errors in the way that the solver handles collisions and 

joints between the objects. The data from the Single Body Wheelset also suggests that 

the normal forces are being correctly applied. The number of results collected, which was 

lower in SB testing than in MB testing, also suggests that the SB wheelset is more stable. 

Bogie Testing 

During bogie testing there were some minor discrepancies between the wheelsets and 

high range of range of results, which are believed to be caused by the way in which the 

PhysX solver handles the collisions and joints between rigid bodies. However, it is also 

believed that the impact of these discrepancies on the simulation is minimal, as the 

simulation compensates for these erroneous results over the following frames. 

Performance 

SB tests ran at an average of 221.7 frames per second and MB tests at 118.9 FPS, so can 

be said to be running in real-time. The MB wheelset, as expected, has a lower 

performance than the SB Wheelset due to the additional rigid bodies. 

Conclusions 

The results are promising. The consistency and the error bound of the results are good, 

and may improve further with adjustments to the Physics Engine parameters. 
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5.7 Testing Phase 2: Wheelset in Motion (Straight Track) 

The tests in this section were conducted using wheelsets in motion, in order to conduct 

an initial evaluation of the simulation of the wheel/rail interface in the Locomotion tool. 

 Initial Cone Wheelset Testing  5.7.1

The first set of tests involved a conical wheelset in motion on a section of straight track. 

Test Design 

These tests are conducted using the conical wheelset and the default parameters of the 

physics engine. The conical wheelset was tested on a 100m straight section of track at a 

range of speeds. The use of the conical wheelset allows free lateral movement of the 

wheelset (unrestricted by flanges). These tests were intended to evaluate the behaviour 

of the wheelset and to look for indications of the self-centring mechanism or hunting 

oscillation behaviours. A screenshot from one of the conical wheelset tests is shown in 

Figure 5.11, below. 

 

Figure 5.11 - A screenshot of Cone Wheelset Testing in the Locomotion Tool 

The screenshot shows the conical wheelset (blue) travelling along the rails. It also shows 

the path of the wheelset (orange) and the centre spline of the track (green dotted line). 

Predictions 

Since the track is straight, the average lateral offset of the wheelset should be zero. It is 

expected that there will be lateral offset in a sinusoidal motion as the wheelset moves 

from side to side and the effective radius of the wheel at the point of contact with the 

rails changes (as illustrated in Figure 2.12). It is possible for hunting oscillation to occur. 
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Results 

The results in this section represent a sample of the tests performed with the conical 

wheelset. 

� Initial Testing 

Figure 5.12 shows a test that produced clear visual results; the path of the wheelset 

(orange) shows that the wheelset experienced lateral movement in a sinusoidal motion. 

 

Figure 5.12 - A cone wheelset test showing hunting oscillation (orange line) 

The graph in Figure 5.13 (below) shows the path of the wheelset in tests on a 100m 

straight track at 1mph. The lateral offset was recorded multiple times per second 

throughout the test. 

 

Figure 5.13 - Sinusoidal motion of a wheelset along a 100m straight track 

The graph shows that the motion of the wheelset is sinusoidal, as the wheelset moves 

from side-to-side, as was predicted. The graph also shows that the amount of offset in 

each direction appears to increase over time. This would seem to suggest that the 

centring action of the conical wheelset is occurring to some degree in the physics engine, 

and that it may also be capable of simulating the effects of hunting oscillation. 
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� Multiple Tests 

The test was repeated 10 times, under the same conditions, to study any variance in the 

results. The graph below (Figure 5.14) shows the average (blue), maximum (left - green) 

and minimum (right - red) lateral offset in each of the 10 tests (at 1mph).  

 

Figure 5.14 - Average, Min and Max Lateral Offset for the Cone Wheelset (1mph, 100m Straight) 

As the graph demonstrates, the average lateral offset is close to 0.0m and the left and 

right lateral movement is roughly symmetrical, as expected. There is some variance in 

maximum offset between 0.07m and 0.081 meters in each direction. The table below 

(Table 5.12) shows the results, as well as the range of results, for the average, minimum 

and maximum offset across all 10 tests. 

 Average   Maximum (Left)  Minimum (Right) 

Average Offset 0.001 0.076 -0.076 

Range of Results 0.002 0.013 0.010 

 

Table 5.12 - Average and Range of Results for the Cone Wheelset Offset Tests 

The average offset was 1mm to the left, just 1mm away from the predicted result. 

The average offset is also symmetrical for left and right moment of the wheelset.  

The range of results for the max and min offsets was approximately 0.01 meters (1 

centimetre), though the range of results for movement to the left is slightly higher 

(0.003m or 3mm larger than the movement to the right). 
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If the path of the wheelset during all 10 tests is all plotted on the same graph, it produces 

the results shown in Figure 5.15, below. 

 

Figure 5.15 - Graph showing the path of the wheelset over 100m (single body wheelset at 1mph) 

This graph shows just three distinct paths taken by the wheelset across the 10 tests, 

suggesting that, while there is some variance in the results, there is also some 

consistency. 

 Initial Testing at Higher Speeds (Cone Wheelset) 5.7.2

The next set of tests was conducted at a range of speeds from 1mph to 10mph. 

Initial Testing 

During these initial tests at high speeds, the wheel was unable to accelerate above 

approximately 2.5 mph. In all tests where the target speed was set to 3mph or above, the 

peak speed was between 2.50 and 2.64 mph. 

Max Angular Velocity 

After some investigation, this limited top speed was found to be the result of the 

wheelset’s Maximum Angular Velocity (MAV) parameter. This parameter is described in 

Section 3.4.7. In order to try and determine what exactly this value represents and how it 

affects the speed of the wheelset, the following tests were conducted. The MAV value 

was increase and the peak speed of the wheelset during each test was recorded. The 

graph below (Figure 5.16) shows the results. 

 

Figure 5.16 - Graph of Average Speed per Angular Velocity (Conical Wheelset) 
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As the graph shows, the speed of the wheelset increased as the MAV parameter was 

increased. The ratio of angular velocity to speed in these tests was, on average, 2.44. This 

suggests that, in order to allow the conical wheelset to travel at a speed of 100mph, the 

MAV should be 244, assuming that this trend continues. 

The graph below (Fig. 5.17) shows the number of derailments in each test at each speed. 

 

Figure 5.17 - Derailments per Angular Velocity (Conical Wheelset) 

These results show that increasing the angular velocity increases the top speed of the 

wheelset. However, the wheelset derails in all tests above a certain speed (approximately 

8mph), and so further testing of this parameters is not possible at this stage.  

Further MAV Testing is conducted with the SB Wheelset in Section 5.7.4, in order to 

determine a suitable value for use with the actual train wheelsets (which have a larger 

radius at the point of contact with the rails, and so will travel forwards faster if the 

angular velocity is the same). 

 A range of Speeds (Conical Wheelset) 5.7.3

After the maximum angular velocity of the wheelset was increased to 20, the conical 

wheelset was tested again at a range of speeds. 

Test Design 

The conical wheelset was tested at a range of speeds on a 100m straight track. 

Predictions 

The average offset should be zero, the min and max offset should be symmetrical, as with 

the tests in the previous section. It is also expected that the average left and right offsets 

should increase with the forward velocity of the wheelset. 

Results 

The following graph (Figure 5.18 - overleaf) shows the average lateral offset (blue) as well 

as the maximum offset (left of the track - green) and minimum offset (right of the track 

centre - red). 
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Figure 5.18 - Graph showing the change in the offset of the single body wheelset at a range of speeds 

The average offset is close to 0.0m, as expected. The range of results is less than 1mm. 

The minimum and maximum lateral offsets increase with speed (as expected), with the 

exception of the 1mph tests, which are higher than the 2mph tests. This seems to suggest 

that the lateral motion is occurring in a logically correct way, but that the vehicle may be 

less stable at very low speeds. 

The results are less consistent at higher speeds (9/10mph), as indicated by the min offset 

(red line), but this this is likely to be due to the wheelset derailing, which it did in the 

8mph, 9mph and 10mph tests (but not at 7mph). 

Performance 

The average framerate during these tests was 205.8fps at all speeds. 

Summary 

The average lateral offset in all tests was close to zero, with the largest difference being 

just 1mm away. The motion is sinusoidal, as expected, though less regular and possibly 

larger than expected. There is some variance in the results between each individual test, 

but the results in the example in Figure 5.14, for example, are all within a relatively small 

range. When ten identical tests are conducted, the range of average results is 

approximately 2mm and the range for the min and max values is 1cm. the wheelset took 

just three distinct paths along the straight track. It is possible that adjusting the 

parameters of the physics engine will produce more consistent results. It is also possible 

that this is the result of error in the physics engine and that some variance is inevitable. 

This could suggest that the simulation is not suitable for running individual tests, but 

could be used to run multiple tests, produce averages and calculate the range/standard 

deviation of the results. 
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All future tests are conducted using at least 10 tests per batch to evaluate the range and 

standard deviation across the range of tests and so to evaluate the consistency of the 

simulation tool, as well as the derailment speed, lateral offset and other results. These 

results will also show if the average results for each batch of tests are consistent and 

correlate with predictions, even if the range of results is high. 

While the results are logically correct, without being provided with the correct data or 

formulas to use to evaluate the results of these tests it is difficult to discuss whether 

these results are truly accurate. If such data could be obtained, further testing could be 

done using this wheelset.  

Testing in the next section will focus on testing a single wheelset on a straight track and 

on using the Nadal Limit to evaluate the derailment speed of a wheelset during cornering. 

 SB and MB Wheelsets - Initial Results 5.7.4

The next phase of testing involved an initial evaluation of the Single Body and Multi-Body 

Wheelsets, using the default parameters of the physics engine.  

Angular Velocity Testing 

The following tests were conducted to verify the results of the angular velocity testing 

conducted on the Conical Wheelset in the previous section. The aim of these tests is to 

determine a suitable value for Max Angular Velocity (MAV) (until further testing can be 

conducted). These tests need to be re-run because the single and multi-body wheelsets 

have a different radius to the conical wheelset at the point of contact with the rails, and 

the forward velocity of the wheelset will be different as it is related to the angular 

velocity and radius of the wheels. The graph below (Fig. 5.19) shows the results from tests 

conducted on a 100m straight with the SB wheelset, with a range of MAV from 1 to 20. 

 

Figure 5.19 - Average Speed per Max Angular Velocity 

The results for an angular velocity below 14 show a similar trend to those in the previous 

conical wheelset tests. Above 14, however, the results no longer increase. In these tests, 

the wheelset derailed in every test at all speeds.  
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The results for MAV values of 14 and above suggest that the wheelset is not capable of 

travelling above these speeds without derailing. The graph below (Fig. 5.20) shows the 

number of derailments in each batch of tests. 

 

Figure 5.20 - Number of Derailments per Max Angular Velocity value 

The wheelset derailed once with an MAV value of 13, in 9/10 tests at an MAV of 14 and in 

all tests at an MAV of 15 and above, which corresponds with the peak speeds achieved in 

Figure 5.19. 

The SB Wheelset achieved a higher speed at each Angular Velocity value than the conical 

wheelset, because the SB Wheelset has a higher radius at the point of contact with the 

rails. It is rotating at the same speed, but because the radius is larger, it is travelling 

forward faster. The ratio of angular velocity to peak speed is approximately 1.68 

(measured as an average across the results from MAV of 1 to 14). MAV has therefore 

been set to 170 to enable the wheelset to accelerate to over 100mph. 

� Performance 

It was not expected that changing Max Angular Velocity would have any effect on the 

performance of the simulation tool, but to confirm this, the performance during the 

previous tests was measured and is shown in the graph in Figure 5.21, below. 

 

Figure 5.21 - Performance per Max Angular Velocity (Single Body Wheelset) 
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The performance varies between a maximum framerate of 205.1 FPS and a minimum 

framerate of 202.9 FPS but not in any consistent way that correlated with the changes in 

MAV. This data supports the hypothesis that altering MAV does not impact the 

performance of the simulation. 

Target Speed Testing 

With Max Angular Velocity increased, the next step was to evaluate the wheelset’s 

stability at a range of speeds. Table 5.13, below, shows the number of derailments per 

target speed for the Single Body Wheelset on the 100m straight track. 

Speed 1 2 3 4 5 6 7 8 9 10 

Derailments 10 10 10 10 10 10 10 10 10 10 
 

Table 5.13 - Derailments per Target Speed (Initial Single Body Wheelset Testing) 

There were derailments in every test conducted at each target speed value. Further 

investigation revealed that these derailments were being caused either by the inner 

wheel coming into contact with the ground plane or because part of the wheelset was 

penetrating the rails and becoming ‘stuck’, as shown in the screenshots below (Fig. 5.22). 

    

Figure 5.22 - Screenshots illustrating a wheelset stuck in the rails as a result of interpenetration  

These screenshots includes the blue markers, which are part of the PhysX debug 

rendering system and show the contact points between rigid bodies. These contacts only 

seem to occur where edges of the bodies (red and orange lines) meet, suggesting that this 

is how PhysX detects contacts between bodies.  

Given the dimensions of the wheelset and the rails, it should not be possible for the 

wheelset to derail in this way. These issues were thought to be the result of penetration 

error, which was assumed to be the result of the rigid bodies’ Skin Width parameter, 

which by default is set to 0.025m (or 2.5cm). A series of tests were therefore conducted 

to evaluate the effects of altering skin width. 
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 Skin Width Testing 5.7.5

The following tests were designed to determine whether the derailment problems 

described in the previous section could be eliminated by adjusting the skin width 

parameter of the wheelset (wheels and flanges of the MB wheelset) and the rails. Skin 

Width is a parameter of the rigid bodies that controls how much interpenetration 

between entities is allowed, as described in section 3.4.7. 

Test Design 

Skin Width of the wheelset (wheel and flanges in the case of the MB wheelset) and of the 

rails is adjusted in order to evaluate its effect on the lateral offset of the wheelset and the 

number of derailments that were occurring at low speeds in the previous tests.  

Determining the Maximum Skin Width Value 

First, tests were conducted in an attempt to determine the maximum skin width value 

that should be used in the simulation. The skin width was reduced from 0.025m (the 

default) to 0.01 in increments of 0.001 (1mm) and Table 5.14 (below) shows the number 

of recorded derailments for each skin width value from 0.025 to 0.017. These tests were 

conducted at 1mph. 

Skin Width 0.025 0.024 0.023 0.022 0.021 0.02 0.019 0.018 0.017 

Derailments 10 10 10 10 10 0 0 0 0 
 

Table 5.14 - Derailments per Skin Width (0.025 - 0.017m) 

As the table shows, the wheelset derailed in 10/10 tests where the skin width was above 

0.02m, but did not derail in any tests at 0.02m or below.  

The graph below (Fig. 5.23) shows changes in the average lateral offset of the wheelset as 

skin width changes.  

 

Figure 5.23 - A graph showing how the average lateral offset of the wheelset changes with Skin Width 
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As the graph illustrates, the offset of the wheelset is high and/or unstable during the tests 

at 0.025 to 0.021m, where derailments occurred. There is also some instability during 

tests with a Skin Width of between 0.02 and 0.01, but the average offset is then 

consistently 0.0 at tests at 0.01m and below. It was expected that the average value 

should be zero, even if some oscillation occurred, and so data suggests that a Skin Width 

of 0.01 or below may be the optimum choice and that a Skin Width of 0.02 should be 

considered to be the maximum value. 

Skin Width 0.0 

Logically, in order to make the simulation as realistic as possible, a skin width of 0.0 

should be used, since the wheels and rails have been modelled on their real-world 

counterparts as closely as possible. However, the PhysX documentation recommends 

against setting the Skin Width of two contacting objects to 0.0, as ‘it will lead to an 

unstable simulation’ [4]. To confirm that a skin width of 0.0 produces stability issues, the 

normal force tests (using a cube placed on a ground plane as previously shown in 5.6.2) 

were repeated. The skin width of the cube and the ground plane was set to 0.0 and the 

graph shows the magnitude of the normal force between the two objects at each sample. 

The data in the graph below (Figure 5.24) was collected during tests with a 1KG cube. 

 

Figure 5.24 - Normal Force Samples at a skin width of 0.0 

The average size of the force was 9.81, and so is still very close to the correct magnitude 

(9.806). However, there were more results than in the previous test (158 callbacks as 

opposed to the 23 callbacks in the initial test) and the magnitude of the force oscillated 

within a range of nearly 10N throughout the test. PhysX was able to resolve this instability 

and declare the box ‘at rest’ despite this, but such a variance in forces is not desirable for 

an accurate engineering simulation.  
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This variance did not occur at a Skin Width of 0.001, as illustrated in the graph in Figure 

5.25 (below). 

 

Figure 5.25 - Normal Force Samples at a skin width of 0.001 

The graph shows similar results to the wheelset tests (Figure 5.10). There is a large initial 

magnitude as the objects make contact, which falls below the target value at sample at 

sample 3, then there is a very small amount of oscillation between the remaining tests, 

and the results are much closer to the target value of 9.806. The average result is 9.807, 

just above the prediction, probably due to the erroneously high initial force and the 

standard deviation is just 1.04N. This confirms that a skin width of 0.0, while arguably the 

most realistic, produces undesirable behaviours and should not be used. 

Step 3: Determining the Minimum Skin Width Value 

During initial testing with a skin width of 0.001, it was observed that the rails were 

flickering. The rails in the simulation are highlighted to indicate when a track section is in 

contact with one of the wheelsets, and this flickering was the result of wheelsets 

repeatedly entering and exiting contact with each track section. This contact issue was 

also causing the nearest point on the track spline to be updated incorrectly, as this can 

only be calculated when the wheelset and rails are in contact. A number of tests were 

therefore conducted to determine how low Skin Width values affect the generation of 

contact callback events from PhysX, and to determine the minimum value of skin width 

that should be used in further testing.  

� Test Design 

The bogie was tested on the 100m straight track at a range of skin width values between 

0.001 and 0.010. Each test was repeated 10 times and the average number of ‘start 

touch’ events per track section for each wheelset was recorded. If there are no contact 

issues, then there should only be 1 of these events per wheelset/track pair.   
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� Results 

A sample of the data collected during these tests is shown in Table 5.15 (below). The data 

in question is taken from a test at 1mph using the SB Wheelset, and shows the average 

number of contact events per track section for the wheelset. 

Skin Width 0.001 0.002 0.003 0.004 0.005 0.006 … 0.010 

‘Start Touch’ Events 19 23 21 23 1 1 … 1 

 

Table 5.15 - Number of ‘start touch’ events at varying Skin Widths 

This data shows that a Skin Width of below 0.005 causes multiple ‘start touch’ events, but 

that multiple contact events did not occur when Skin Width was greater than or equal to 

0.005. Based on this data, a Skin Width of 0.005 should be considered to be the minimum 

value that should be used during any further testing, with 0.02 being the maximum as this 

is the point above which erroneous derailments begin to occur. 

Performance 

It was not expected that the skin width would affect performance, but Figure 5.26, below, 

shows the average framerate from each of the Skin Width tests between 0.005 and 0.02. 

 

Figure 5.26 - Graph of Performance results from Skin Width Testing 

The performance varies between a maximum framerate of 205.1 FPS and a minimum 

framerate of 201.1 FPS but not in any consistent way that correlated with the changes in 

Skin Width. This makes sense, as it is not adjusting the fidelity of the simulation, but only 

the amount of interpenetration allowed between objects. 

Conclusions 

The data presented in this section suggests that 0.02m should be considered the 

maximum value of Skin Width allowed, to avoid these unrealistic derailment behaviours 

in future. The minimum value of Skin Width can be considered to be 0.005, since the 

results show that the simulation is unstable and multiple contact events are registered if 

the Skin Width parameter is set below this value.  
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The data collected during these tests suggests that a value of 0.01 would seem to be the 

ideal, as this produced the expected lateral offset of zero and there was no further 

improvement to decreasing the skin width below this value. A value of 0.01 is used in the 

following tests and, if any future testing of skin width behaviour is to be attempted, the 

value should be incremented between 0.005 and 0.02. Adjusting the Skin Width had no 

discernible effect on the performance of the tool. 

 Wheelset Polygon Count Testing 5.7.6

Three variations of wheelset were constructed for testing, as described in Section 3.2.2. 

The wheels and flanges of these wheelsets were constructed from cylinders in 32, 48 and 

64 segments, which allows the stability and performance of the tool to be tested with 

different polygon counts. 

Test Design 

In the following tests, the Single Body Wheelset was tested at a target speed of 1mph on 

a 100m straight track, with each variation of wheelset. Here is a reminder of the three 

wheelset variations: 

� 32 Segments per wheel/flange: 214 Polygons and 344 Vertices 

� 48 Segments per wheel/flange: 310 Polygons and 504 Vertices  

� 64 Segments per wheel/flange: 406 Polygons and 664 Vertices  

 

The height of the wheelset was measured during each frame of the simulation, to 

evaluate the stability of the wheelset. Simulation performance is also measured.  

Predictions 

There is expected to be a higher variation in the height of the wheelset when the polygon 

count of the rolling surface of the wheel is lower. To explain, consider Figure 5.27 (below), 

where the wheel is represented as a hexagon. 

 

Figure 5.27 - Illustrating changes in the height of a hexagonal wheel.  
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When the wheel is resting on the track (Figure 5.27 - left) the position of the wheel is at a 

certain height, illustrated by the blue dotted line. As the wheel rolls forwards (Figure 5.27 

- right), the position of the wheel moves higher, as illustrated by the red dotted line. This 

is an exaggerated example of the effect that occurs with the wheelsets. The ‘smoother’ 

the wheel shape, the smaller this difference should be; i.e. increasing the polygon count 

should improve the instability of the wheelset.  

There should be a decrease in performance as a result of the increased number of 

polygons in the scene. Because the number of polygons that make up the wheelset have 

almost doubled, this may have a considerable impact on the framerate of the simulation. 

Results 

Below are the results of testing with the different polygon count wheelsets. 

� 32 Segment Wheelset 

Figure 5.28 (below) shows the height (z component of the position) of the 32 segment 

wheelset (the lowest fidelity model) over the first 150 samples collected during the test. 

 

Figure 5.28 - Graph of wheelset height over time 

From its initial height of 0.57 metres, it drops approximately 1cm (which is likely to be due 

to Skin Width) to 0.56m, until it is resting on the rails. As the wheelset rolls along the 

track, the height varies and the wheel appears to ‘bounce’ along the track, creating a 

pattern consistent with the rolling of a polygonal wheel as illustrated in Figure 5.27. 

� Full Results 

Table 5.16 (below) shows the range and standard deviation of the results for each of the 

three wheelset variations. 

Wheel Sections 32 48 64 

Range (m) 0.01130 0.01060 0.01040 

Standard Deviation (m) 0.00048 0.00038 0.00036 
 

Table 5.16 - Range and Standard Deviation of Wheelset height per Number of Wheel Segments 
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There is a slight decrease in range, which is expected to be similar in each test as a result 

of the initial height change/Skin Width. However, there is a significant decrease the 

standard deviation of the results between the tests, which suggests changes in the 

wheelsets’ stability. Figure 5.29 (below) shows the standard deviation results visually. 

 

Figure 5.29 - Graph showing the Standard Deviation in Wheelset Height per Number of Wheel Segments 

Here, the large decrease between 32 and 48 (0.001m or 1mm) is clearly visible, compared 

to the smaller difference between 48 and 64 (0.0002m or 0.2mm).  

� Performance 

The table below (Table 5.17) shows the average framerate during each test. 

Wheel Sections 32 48 64 

Framerate (FPS) 187.999 187.647 187.012 
 

Table 5.17 - Framerate per Number of Wheel Segments 

There was not a dramatic change in framerate, but the performance does decrease 

slightly as polygon count increases. The performance of the 64 segment wheelset was 

approximately 1 frame per second (0.987 FPS) lower than the 32 segment wheelset, 

despite the 64 segment wheelset having nearly twice as many polygons. 

Conclusions 

There are notable stability benefits from increasing the polygon count of the wheelset, 

but increasing the segments from 48 to 64 produce a smaller improvement in the 

standard deviation of the results than the increase from 32 to 48, so it is reasonable to 

assume that further increases are not likely to have any further significant effect. There 

was also not a significant performance drop; the 34 and 64 section wheelsets only 

changed the framerate by <1FPS. It is possible that this effect will be multiplied as the 

number of wheelsets in the scene increases, but the decrease is not as high as expected.  

The 64 segment wheelset will therefore be used in all future testing. 
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 Initial Multi Body Wheelset Testing 5.7.7

During the initial testing it was noticed that the Multi Body Wheelset was unstable, with 

apparently weak joints between the axle and the flanges/wheels); the wheels and flanges 

appeared to be moving separately from the axle, as illustrated in the screenshot below 

(Figure 5.30 - a rather extreme example of the problem).  

 

Figure 5.30 - A screenshot showing how the wheel and flange move relative to the axle 

Initially the wheelset was constructed by attaching the wheels and the flanges to the axle 

with fixed joints. It was theorised that if each flange rigid body was also attached to the 

corresponding wheel rigid body, then the stability of the wheelset may improve.  

Test Design 

The MB wheelset is tested at 1mph on a 100m straight track, first with the flanges and 

wheels joined only to the axle (‘unattached’) and then with the wheels and flanges also 

joined to each other (‘attached’), as illustrated in Figure 5.31, below. The blue arrows 

represent joints between the rigid bodies. 

 

 

Figure 5.31 - Illustrating the difference between the Unattached (left) and Attached (right)  

multi-body wheelsets 

Axle 

Wheel Flange 

Axle 

Wheel Flange 

‘Unattached’ ‘Attached’ 
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Predictions 

It is possible that introducing additional joints will make the simulation less stable and 

may cause issues for the solver, or that doing so may strengthen the joints and make the 

wheelset more stable. It is hoped that the latter will be true. 

Results 

The following results (Table 5.18) were collected during multiple tests with the MB 

wheelset at 1mph on a 100m length of straight track. The ‘unattached’ wheelset derailed 

in all tests and the ‘attached’ wheelset did not derail in any of its tests. This is the first 

indicator that the ‘attached’ wheelset is more stable. 

Wheelset Unattached Attached 

Derailments 10 0 

 

Table 5.18 - Derailments per Multi Body Wheelset design variation 

The graph in Figure 5.32 (below) shows the lateral offset of the wheelset variations during 

each test. The blue results are for the ‘unattached’ wheelset and the red results are from 

the ‘attached’ wheelset. 

 

Figure 5.32 - Graph comparing lateral offset for the two variants on the multi body wheelset 

This graph shows that the unattached wheelset oscillated wildly before derailing in less 

than 20m, whereas the attached wheelset made it all the way to the end of the track with 

a logically correct sinusoidal motion (albeit with preference of 1mm to the left of the 

track centre). 

A closer look at the data reveals the following graph (Figure 5.33 - overleaf)) (up to the 

point where the unattached wheelset derailed). This graph shows that, not only is the 

lateral movement of the unattached wheelset higher, but that but that it was highly 

unstable and oscillated wildly throughout the test. 
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Figure 5.33 - More detailed view of previous graph showing oscillation more clearly 

Conclusions 

The conclusion from this initial testing of the Multi Body wheelset is that the results are 

more stable if the two bodies are joined together, but that the joints do seem to 

introduce an amount of instability to the wheelset. This is undesirable, but if these effects 

can be mitigated, then the adjustability of the wheelset may outweigh the instability. 

The ‘attached’ version of the Multi Body wheelset is used in all future tests. 

 Initial Stable Speed Tests 5.7.8

The following tests were conducted using the Single Body and Multi Body Wheelsets on a 

straight track at a range of speeds.  

Design 

The SB and MB wheelsets are placed on the straight track layout. The track was extended 

to 1km to ensure that there is plenty of space for the wheelset to accelerate to its target 

speed and maintain it for a longer distance before reaching the end of the track.  

The target speed is initially set to 1mph and each wheelset is tested 10 times. Once that 

first batch of 10 tests has been completed, the target speed is increased to 2mph and 

another batch of 10 tests is conducted. After another 10 tests, the target speed is 

incremented to 3mph and so on. Both wheelsets were tested at speeds of up to 50mph. 
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Predictions 

The target speed for the vehicle is 100mph, so ideally the wheelsets will be able to reach 

that speed, but they are not expected to do so using the default PhysX engine 

parameters. It is expected that, the MB wheelset may be less stable than the SB 

Wheelset, due to the joints between the axle and the wheels/flanges. 

Single Body Wheelset Results 

The following data was collected during testing with the Single Bogy Wheelset. There 

were no derailments below 20mph, but the graph in Figure 5.34 (below) shows the 

number of derailments between 10 and 30mph.  

 

Figure 5.34 - Graph of Derailments per Target Speed (Single Body Wheelset) 

This data suggests that the wheelset became unstable at speeds of approximately 20mph, 

as it derailed in at least some of the tests in all batches above that speed. By the time the 

target speed of the vehicle reaches 24 mph (and above) the vehicle derailed in every test. 

20mph is the highest speed at which no derailments occurred. This is known as the ‘stable 

speed’, as defined earlier (Section 4.1.4) and used in the rest of the thesis.  

The graph below (Figure 5.35) shows the peak speed recorded during each test (blue), as 

well as the range of recorded speeds (red). 

 

Figure 5.35 - Average and range of derailment speeds for a range of target speeds (BB Wheelset) 
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The top speed of the vehicle increases with the target speed, indicating that the vehicle 

achieved its target speed during the tests in which it didn’t derail (20mph and below).  

There are some fluctuations in the peak speeds between 21 and 26 mph, possibly 

indicative of the instability of the wheelset that caused the derailments. At 27mph and 

above the vehicle derails at, on average, 23.993 mph in all tests. The fact that the range of 

results in these tests is 0 (or close to 0) suggests that it is derailing in a consistent manner. 

The derailment speed data for a range of target speed values shown in more detail in 

Table 5.19, below. 

Target Speed (mph) 21 22 23 24 25 26 27 

Average 22.115 22.586 24.197 24.770 25.858 24.946 24.000 

Standard Deviation 0.146 0.729 0.058 0.000 0.713 1.539 0.000 

Range 0.471 1.922 0.110 0.000 2.304 3.560 0.000 

 

Table 5.19 - Results for a range of Target Speeds (21 - 27mph) (Single Body Wheelset) 

Although the derailment speed of the vehicle is low, the small range and standard 

deviation of the results is promising. A real-time system that could estimate the 

derailment speed of a vehicle to within 3.56 mph could be considered sufficiently 

accurate as to be useful to engineers.  

Multi Body Wheelset 

The tests were repeated with the Multi Body Wheelset. The wheelset was noticeably less 

stable than the Single body Wheelset, as previously indicated in Section 5.6.4. The 

screenshot below (Figure 5.36) shows the flange climbing the rail, but the wheel and 

flange have rotated separately from the axle. This is more stable than in the multi body 

tests in the previous section (as illustrated in Figure 5.30), but still perceptible. Here the 

flange is highlighted in yellow to indicate contact with the rails. 

 

Figure 5.36 - Wheel and Flange moving separately to the axle in Multi Body Wheelset Testing 
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The graph in Figure 5.37 (below) shows the number of derailments for the different target 

speeds of the wheelset. 

 

Figure 5.37 - Derailments per target speed - Initial Testing (multi Body wheelset) 

The wheelset did not derail in tests at 1 or 2 mph, but became unstable at 3 mph and 

derailed in all tests above 6mph. 2mph can therefore be considered to be the stable 

speed of the multi body wheelset. This is considerably lower than the 20mph stable speed 

of the single body wheelset. 

The graph below (Fig. 5.38) shows the average derail speed (blue) (or the peak speed in 

tests that it did not derail) and range of derail speeds (red). 

 

Figure 5.38 - Average Derail Speed and Derail Speed Range (Multi Body Wheelset) 

The average derailment speed increases, but so does the range.  The range is higher than 

the equivalent results for the SB Wheelset, suggesting the MB Wheelset is less stable. 
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Conclusions 

The low top speed (approximately 25 mph for the SB Wheelset and 4 mph for the MB 

Wheelset) is a concern, as is the high range of results. This suggests a lack of stability and 

consistency in the simulation, both of which mean that the simulation would not be very 

useful to engineers. The MB wheelset is significantly less stable than the SB Wheelset in 

these tests, derailing at lower speed and with a higher range of results, but it is possible 

that adjusting parameters of the physics engine, identified in Section 3.4.7, might improve 

the fidelity of the simulation and so improve the top speed and consistency of results. If 

this is the case, the flexibility of the MB wheelset is worth pursuing further.  

 Summary 5.7.9

These tests have identified the maximum speed that each wheelset can achieve using the 

simulation’s default parameters, as well as the speed at which the wheelset is able to 

travel along the track without derailing, herein referred to as the ‘Stable Speed’. 

These tests have shown that: 

� Increasing the polygon count of the wheelset improves stability, but further increase 

above 64 segments is unlikely to produce any further significant improvements. 

� Joining the wheels to the flanges of the multi body wheelset produces more stable 

results, but that the multi body wheelset appears to be significantly less stable than 

the single body wheelset, and produces less consistent results. 
 

Table 5.20 (below) shows the highest speed at which the wheelsets did not derail during 

each test, herein referred to as the “stable speed”, along with the top speed: 

Wheelset Stable Speed (mph) Top Speed (mph) 

Single Body 20 26.14 

Multi Body 2 8.41 
 

Table 5.20 - Stable Speeds (Initial Testing) 

As expected, the Multi Body Wheelset is less stable than the Single body Wheelset. The 

derailment speeds of the wheelsets on straight track are disappointingly slow. It is 

possible that these results can be improved with adjustments to the physics engine 

parameters.  

These results, conducted using the Physics engine’s default parameters, will be used as a 

baseline, against which any modifications to the parameters of the physics engine will be 

measured.  
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Max Angular Velocity 

During initial testing at higher speeds, the top speed of the wheelset was found to be 

limited by a parameter called Max Angular Velocity (MAV). 

� The value for MAV in Future Tests is (unless specified otherwise): 170. 

� Increasing/decreasing MAV does not affect the performance of the simulation tool. 

Skin Width 

Tests in this section have shown that Skin Width should be between 0.02 and 0.005, 

otherwise stability issues or unrealistic derailment events occur. 

� The tests in this section suggest an ideal value for skin with of: 0.01. 

� Increasing/decreasing skin with does not affect the performance of the simulation. 

Performance 

The average framerate for the wheelsets (on a 1km track at a speed of 1mph over the 

course of 10 tests) is as follows: 

� The Single Body Wheelset: 253.50 FPS. 

� The Multi Body Wheelset:  237.56 FPS. 
 

This is a very high framerate, approximately 4 times faster than the target speed of 60 FPS 

(and therefore running at a speed of 4 times real-time). This framerate is expected to 

decrease as the fidelity of the simulation (and accuracy of the results) increases. There is 

a difference of 15.94 FPS between the SB wheelset and the MB wheelset, suggesting, as 

expected, that constructing the wheelset from separate rigid bodies comes at a 

performance cost. 

5.8 Increasing Wheelset Speed 

The tests in this section were designed to evaluate the effect of altering various physics 

engine parameters on the speed and stability of the wheelset. In order to be useful, and 

in order to utilise the Nadal formula to evaluate wheelset/bogie derailment, the top 

speed of the vehicle needs to be increased (ideally to the target speed of 100mph).  

The physics engine parameters tested in this section, previously identified as having the 

potential to improve the fidelity of the simulation (as described in Section 3.4.7), are: 

� Simulation Timing 

� Rigid Body Solver Iteration Count 

 

These tests also include an evaluation of the improved centring technique described in 

Section 3.3.13. 
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 Simulation Timing 5.8.1

The first attempt to improve the fidelity of the simulation, and so increase the top speed 

of the wheelset, was to adjust the simulation’s timing parameters. As described in Section 

3.4.7, the simulation has an iteration count and maximum substep size that is used during 

the call to PhysX Simulate. 

� The default substep size is 1/60
th

 of a second 

� The default number of substeps is 8. 

Timing Multiple (TM) 

A multiple, herein referred to as the ‘Timing Multiple’ (or ‘TM’) was added to these values 

to adjust them from their default values. A Timing Multiple of 1 represents the default 

values, a value of 2 doubles the number of substeps and halves the size of the maximum 

time step, and so on. This increase in the substeps and decrease in the size of the 

timesteps is expected to improve the stability of the simulation and so increase the top 

speed/stable speed of the wheelset. 

Test Design 

Tests were initially conducted under identical conditions to the tests in the previous 

section. The tests are repeated, with the TM being incremented by 1 between tests. 

These tests are intended to test two values, to allow the results to be compared with the 

results from the previous section: 

� Top Speed - the top speed of the vehicle achieved before derailing. This is tested by 

setting the target speed of the vehicle to 100mph and measuring the peak speed 

measured while the wheelsets are in contact with the rails. 

� Stable Speed - this is defined as the highest speed at which the wheelset can travel 

without any derailments in any of the 10 tests. This is measured by incrementally 

increasing the target speed of the vehicle between each batch of 10 tests. 

Predictions 

When testing the top speed of the vehicle, it is intended that the vehicle should derail in 

every test and it is expected that the wheelset’s derailment speed will increase as the TM 

is increased. It is also expected that the stable speed with also increase with the TM.  It is 

also expected that there may be a value of TM, after which no further improvements are 

made (or the results will begin to deteriorate).  

The performance of the tool is expected to decrease as the Timing Multiple is increased. 
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Initial Results (Single Body Wheelset - 1Km Straight) 

The graph below (Fig. 5.39) shows the results for the Single Body Wheelset for Timing 

Multiples of 1 to 20. Figure 5.39 shows the change in the peak speed of the vehicle. 

 

Figure 5.39 - Derailment Speed per Timing Multiple (Single Body Wheelset) 

From the original peak speed of approximately 25 mph, the vehicle was able to reach an 

improved peak speed of around 45 mph. 

Figure 5.40, below, shows the number of derailments in each test. 

 

Figure 5.40 - Graphs of Average derailment speed (top) and Number of Derailments (bottom) 

While the results in Figure 5.39 shows that the top speed of the vehicle does increase 

with TM, the results in Figure 5.40 showed that the vehicle was reaching the end of the 

track before it could accelerate any further and not derailing, suggesting that it was 

reaching the top speed that it was capable of achieving on that track length. 

Extending the Track and Increasing Wheelset Acceleration 

In order to allow the vehicle to accelerate to higher speeds and derail before reaching the 

end of the track, the track was extended to 2km and the tests were conducted again. 
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� 2km Straight Tests 

During these tests, the vehicle reached a similar ‘plateau’ to the one in Figure 5.39, at a 

speed of around 68mph, suggesting that stability is increasing, but without derailing, 

implying that there was still not time for the wheelset to accelerate to full speed. 

� Increasing Acceleration 

The torque applied to the wheelset is updated in the Wheelset Entity’s ‘update’ method. 

This method is passed the timestep between frames (1/60) as a parameter. The torque is 

initially set to a magnitude of zero, and increased by the timestep during each frame. In 

order to make the wheelset accelerate more quickly, the timestep was multiplied by two, 

allowing the wheelset to accelerate to a higher speed over a shorter distance. 

Single Body Wheelset (2km Straight) 

With the rate of acceleration increased and the track length extended to 2km, the single 

body wheelset was retested at a range of timing multiples.  

� Peak Speed Tests 

These tests were designed to determine the peak speed of the vehicle at each timing 

multiple. The target speed was set to 100mph and the derailment results are as follows: 

The wheelset derailed in every test, as intended, and the graph below shows the average 

derail speed (blue) and the range of derailment speeds (red) for each timing multiple 

between 1 and 50. The grey dotted line shows the approximate trend in the results 

 

Figure 5.41 - Timing Multiple Test Results (Single Body Wheelset) 

The average derailment speed of the vehicle increases with Timing Multiples of up to 19, 

after which it decreases again. A multiple of 19 produces the best results (the highest 

average derailment speed (77.45mph) and the lowest range of derailment speeds (0).  

� Stable Speed Tests 

These tests were designed to determine the stable speed of the vehicle at each TM. The 

Stable Speed in the previous tests was 20mph. The graph in Figure 5.42, below, shows the 

results from testing at a Timing Multiple of x2. 
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Figure 5.42 - Stability Tests - Single Body Wheelset at a Timing Multiple of x2 

This shows an improvement over the default (x1) tests; the stable speed has increased 

from 20 to 22mph. This trend continues, as illustrated by the following examples from 

tests at TM x4 and x8 (Figure 5.43 - top and Figure 5.43 - bottom, respectively). 

 

 

Figure 5.43 - Stability Tests - Single Body Wheelset at Timing Multiples x4 (top) and x8 (bottom) 

By x8 (bottom) the wheelset is capable of reaching speeds of 30mph before becoming 

unstable. To determine if this trend continues, further testing was conducted with timing 

multiples from x14 to x32, in order to determine which value produced the best results. In 

these tests, there were no derailments below 30 mph, and so the x axis of the graphs 

ranges from 30mph up to 70mph. Data from tests at a TM of x14 are included in Figure 

5.44 (below) and tests from x16 and x18 are included in Figure 5.45 (overleaf). 

 

Figure 5.44 - Stable Speed Tests (x14) 
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Figure 5.45 - Stable Speed Tests - x16 (top) and x18 (bottom) 

These results show a continued increase in the stable speed of the vehicle. Figure 5.46 

(below) shows the results from testing at a TM of x20: 

 

Figure 5.46 - Stability Tests (Single Body Wheelset - Timing Multiple x20) 

In this test, the stable speed of the wheelset reached 62 mph, and shows a continued 

improvement over the previous results. Here, again, despite the fact that there were no 

derailments at 65, 67, 68 and 69mph, the stable speed is defined as the highest speed at 

which no derailments occurred, and so 62 mph is the result. This data offered promise 

that the wheelset may be able to achieve higher stable speeds if the parameters were 

adjusted further. However, this trend does not continue, as illustrated in the graphs 

below (Figure 5.47), showing the results from testing at a TM of x22, x24 and x26. 

 

Figure 5.47 - Stability Tests (Single Body Wheelset x22 (top) x24 (mid) and x26 (bottom). 
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In these tests, the stable speed of the vehicle decreases, to 56 in the x22 tests (top) to 48 

in the x24 tests (mid) and to 41mph in the x26 tests (bottom). This supports previous 

assertions, and the PhysX documentation, which estimated that increasing the 

parameters beyond a certain point can cause the simulation to become less stable. This 

shows the stable speed of the vehicle increases up to a TM of 20, and then decreases 

above 20, with a TM of 20 producing the best results. 

Figure 5.48 (below) shows the stable speed achieved in each test between x14 and x30.  

The grey dotted line shows the approximate trend in the results. 

 

Figure 5.48 - Stable Speeds of the Single Body Wheelset (Timing Multiple x14 to x30) 

These results show that the stable speed of the wheelset increase with the TM until the 

multiple reaches 20, and then the stability of the vehicle begins to decrease again. This 

suggests that 20 is the best result to use for the Single Body Wheelset. 

Multi Body Wheelset (2km Straight) 

The results for the multi body wheelset are as follows. 

� Peak Speeds 

The wheelset derailed in every test and Figure 5.49 (below) shows the average derail 

speed (blue) and the range of derailment speeds (red) for each TM between 1 and 50. 

 

Figure 5.49 - Peak Speed Tests (Multi-body Wheelset - Timing Multiples) 
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As was the case in the Single Body tests, the average derail speed initially increases with 

TM, but above a certain value it decreases again, supporting the hypothesis that 

increasing the value above a certain point has a detrimental effect on the stability of the 

simulation. The highest derailment speed was 16.16mph, recorded with a TM of 8.  

The range of results in that test was 0.725mph. Another promising result occurs at a TM 

of 17, where the average derail speed was 15.17mph and the range of results was 0.  

� Stable Speeds 

The stable speed tests were repeated with incremental increases in Timing Multiple. The 

graphs in Figure 5.50 (below) show the results for tests with a TM of 1 to 8. The x axis 

represents the target speed of the vehicle; the y axis is the number of derailments in each 

batch of tests. 

  

  

  

  
 

Figure 5.50 - Derailments per Target Speed for Timing Multiples 1 - 8 

Changing the TM does have an effect on the results, but the differences are less 

consistent than the Single Body Wheelset tests. For example, between x1 and x2, the 

stable speed increases from 2mph to 8mph, but at TM values of x3 and x4, the results are 

less stable. The results improve in the x5 test, but are not better than the x2 results.  

By the x7 and x8 tests, the wheel doesn’t derail in all tests at 10mph, but does derail in all 

tests at 1mph. 
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The graphs in Figure 5.51 (below) show further testing between a TM of x9 and x16. 

  

  

  

  
 

Figure 5.51 - Derailments per Target Speed for Timing Multiples 9 (top left) - 16 (bottom right) 

There is some variance in the results, and there are derailments in most (or all) of the 

tests conducted at 1mph. There are tests, such as 7mph in the x9 test and 9mph in the 

x11 test, where the vehicle does not derail at higher speeds, but this research is 

interested in the stable speed, as it is necessary to be able to test the vehicle reliably 

across the widest range of speeds possible. In all tests with a TM above 17 (up to 25) the 

wheel derails in all tests at all speeds and TM values. 

Further testing was conducted using TM values between 1 and 10, since the previous data 

suggests that the wheelset may be more stable at higher speeds, even though 

derailments occur in all tests at 1mph. In these tests, the vehicle was tested at a higher 

range of speeds between 1 and 20 mph with Timing Multiples of between 1 and 10. The 

results of these tests are shown in Figure 5.52, below, and Figure 5.53, overleaf. 

  
 

Figure 5.52 - Derailments per Target Speed for Timing Multiples of 3 and 4 (1 - 20mph) 
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Figure 5.53 - Derailments per Target Speed for Timing Multiples 5 - 10 (1 - 20mph) 

There are a few tests in which the wheelset did not derail at higher speeds, for example it 

does not derail at 11 mph in tests at x7, even though it derailed at lower speeds. 

However, the wheelset derails in some or all tests at 12mph and above in all batch tests. 

The graph in Figure 5.54 (below) summarises the results of the TM tests on the MB 

Wheelset, showing the stable speed for each batch of tests at each TM value. 

 

Figure 5.54 - Stable Speed per Timing Multiple (Multi Body Wheelset) 

From the initial stable speed of 2mph at a TM of x1, there is an increase to 8mph at x2, 

then 5mph at x3 and 7mph at x4 and x5, at x6 and above, the stable speed is zero, 

because the vehicle derailed in many (or all) of the tests at 1mph in each batch of tests, 

despite the wheelset not derailing at higher speeds in some of the tests. 

This data suggests that a TM value of x2 produces the best result for the MB Wheelset. 
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Performance 

Figure 5.55 below shows the average framerate recorded in each test with both wheelset 

designs. The lines show the change in framerate over the course of testing for the SB 

Wheelset (red) and MB Wheelset (blue). Both tests were conducted under the same 

conditions as the previous performance tests (a 1km track at 1mph). 

 

Figure 5.55 - Framerate per Timing Multiple (Single Body and Multi Body Wheelset (x20)) 

There is a decrease in framerate as the TM increases, as expected, but it is still higher 

than the target framerate of 60FPS for both wheelsets. The SB Wheelset decreased from 

a maximum of 178.8 to a minimum of 142.2 and the MB Wheelset decreased from a 

maximum of 166.2 to a minimum of 84.4 FPS. The Multi Body Wheelset’s performance is 

lower than the Single Body wheelset in all tests, which is to be expected as the physics 

engine is processing multiple bodies and the joints between them, rather than a single 

rigid body. 

Conclusions 

Both wheelsets showed an improvement in top speed and stable speed as a result of the 

increase in Timing Multiple, as expected, but the Multi Body Wheelset is still derailing at 

speeds significantly below the Single Body Wheelset. 

In some tests, the vehicle was able to travel along the straight without derailing at speeds 

above the identified ‘stable speed’, however the aim of this research is to produce 

reliable results across as wide a range of speeds as possible, in order to enable engineers 

to test the widest possible range of scenarios. 

� The best result for the SB wheelset was achieved with a TM of 20. 

� The best result for the MB wheelset was achieved with a TM of 2. 
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Table 5.21 (below) shows the best results for the stable speed of the wheelsets (using the 

parameters described above), compared to the values attained using the physics engine’s 

default parameters. 

Wheelset 
Default 

Parameters 
TM Best 

Single Body 20 mph 62 mph 

Multi Body 2 mph 8 mph 

 

Table 5.21 - Stable Speeds (Timing Multiple Testing vs Default Parameters) 

There is an improvement in the stable speed of both wheelsets, but the Multi Body 

wheelset is still considerably less stable than the Single Body wheelset; the MB Wheelset 

reaching a stable speed of 8 while the SB wheelset achieved a stable speed of 62. 

 Solver Iteration Count 5.8.2

The next parameter to be tested is the Solver Iteration Count (SIC), which, as described in 

Section 3.4.7, is a per-rigid-body parameter that controls the number of solver iterations 

performed when processing joints and contacts relating to the body.  

Test Design 

Tests are conducted across the range of SIC values. 

� The default value for SIC, used in initial testing, is 4.  

� The range of values for this parameter is from 1 to 255 

 

Tests are conducted in intervals of 5, from the default of 4 up to the maximum value of 

255, allowing the full range of values to be tested in approximately 51 batches (of 10 

tests) - requiring only 510 tests instead of the 2,550 tests it would take to tests the whole 

range of values. If there is a trend in the results, as there was in the previous section, it 

should still be noticeable. 

Predictions 

It was hoped that increasing the value of the SIC parameter would produce some 

improvement to the results for the Single Body Wheelset. It was also hoped that a more 

significant improvement might be achieved with the Multi Body Wheelset, since the SIC 

parameter effects contacts and joints between bodies, and the wheel, flange and axle are 

connected by fixed joints.  

The performance of the simulation is expected to decrease as SIC increases.  
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Single Body Wheelset 

Using a Timing Multiple of 20, the SB wheelset was tested with a range of SIC values.  

� Peak Speeds 

Figure 5.56 (below) shows the peak speed of the vehicle as SIC is incremented. The 

wheelset derailed in every test and the results below represent the average speed 

recorded across each batch of 10 tests. 

 

Figure 5.56 - Graph of Peak Speed per SIC (Single Body Wheelset 

Speeds range from a lowest speed of 46.15 mph to a highest speed of 83.19 mph. There is 

no clear, consistent pattern, however this result has not necessarily been a particularly 

useful indicator in the past, as the average derailment speed maximum has not always 

occurred using the same parameters that achieved the maximum stable speed. The range 

of derailment speeds in all tests was 0, suggesting that the vehicle is always derailing in a 

consistent way (an improvement over initial testing). 

� Stable Speeds 

Figure 5.57 (below) shows the stable speed of the vehicle at each SIC value.   

 

Figure 5.57 - Stable Speed per SIC (Single Body Wheelset) 

There is not a significant increase in the stable speed of the wheelset, which reached a 

speed of 62 mph in the previous Timing Multiple tests. The best results were achieved in 

the SIC 184 tests, which produced a stable speed of 68mph, an increase of 6mph.   
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Multi Body Wheelset Results 

The following tests were conducted with the Multi Body wheelset 

� Top Speeds 

Figure 5.58 (below) shows the top speed achieved, on average, in each batch of tests. 

 

Figure 5.58 - Peak Speeds per SIC Value (Multi Body Wheelset) 

As in the SB Wheelset tests, there is some variation in the results from 10.52mph to 

13.28mph, but not in any consistent way. The best results were achieved at an SIC value 

of 114. 

� Stable Speeds 

In the previous tests, the maximum stable speed of the vehicle was achieved at a Timing 

Multiple of 2 (8mph).Figure 5.59 (below) shows the stable speed for each increment of 

SIC across the range of parameter values tested. 

 

Figure 5.59 - Stable Speed per SIC (Multi Body Wheelset) 

There is some variation in the results, but no improvement in the stable speed of the 

wheelset; the best results (SIC 20, 92, 108, 172, 176, 208, 224, 236 and 225) produced a 

stable speed of 8mph, the same achieved with the default value (SIC 4) in the previous 

tests. 
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Performance 

Figure 5.60 (below) shows how the framerate of the simulation changed across the range 

of testing. Both of these tests were conducted under the same conditions; a Timing 

Multiple of 20 and increasing SIC values 

 

Figure 5.60 - Solver Iteration Count Testing - Performance Results 

These results show a steady decline in framerate over the course of the test, as expected. 

They also show that the Multi Body Wheelset not only produces a lower framerate in the 

first batch of tests (SIC 4) but that the framerate for the MB wheelset also decreases at a 

faster rate than the SB Wheelset as the SIC value increases. The MB wheelset drops below 

the target framerate of 60fps at around SIC 140. 

Summary 

The best results were achieved SIC values of: 

� Single Body Wheelset: 184 

� Multi Body Wheelset: 4 (no improvement) 

Table 5.22 (below) shows the best stable speeds achieved by each wheelset, compared to 

previous results. 

Wheelset Default Parameters Timing Multiple Best  SIC Best 

Single Body 20 mph 62 mph 68 mph 

Multi Body 2 mph 8 mph 8 mph 
 

Table 5.22 - Stable Speeds (Solver Iteration Count Testing) 

The SB wheelset showed an improvement of 6mph, whereas the MB Wheelset showed no 

improvement. In the case of the SB Wheelset, SIC values of 194, 234 and 254 also 

produced a stable speed of 68 mph, but it was decided to use the SIC value that produces 

not only the best results, but also the best performance. 
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 Centring Forces 5.8.3

It was hypothesised that the reason for the wheel derailing at such low speeds (and for 

the high amount of lateral offset and the presence of hunting oscillation in the conical 

wheelset tests in Section 5.7.1) was that the centring forces of the wheelset, while shown 

to exist in the conical wheelset tests, may not be as high as they should be. So, it was 

decided that an artificial centring force would be added to the wheelset, as described in 

Section 3.3.14, in an attempt to improve the results further. 

Test Design 

Due to the lack of stability and performance of the Multi Body Wheelset, it was excluded 

from these tests. The results below are from tests conducted with the Single Body 

Wheelset. The centring force was enabled and the wheelset was tested on the 2km 

straight. 

Results 

Table 5.23 (below) shows the results, which are included along with the initial test results 

for the Single Body Wheelset and the results without the centring force applied. 

Test Stable Speed (mph) Top Speed (mph) 

Initial Results 20 26.14 

Best Results without Centring Force 68 74.10 

Best Results with Centring Force 76 79.65 
 

Table 5.23 - Peak and Stable Speeds of the Single Body Wheelset (initial testing, best results without 

centring force, centring force) 

The application of the centring force has resulted in an increase in the stable speed and 

derailment speed of the vehicle, to 76mph and 79.65mph respectively. 

 Summary 5.8.4

The adjustment of PhysX engine parameters and the implementation of the additional 

centring force have been shown to successfully increase the stable speed of the wheelset, 

as shown in Table 5.24 (below). 

Wheelset Default Parameters TM Best SIC Best Centring Force 

Single Body 20 mph 62 mph 68 mph 76 mph 

Multi Body 2 mph 8 mph 8 mph N/A 
 

Table 5.24 - Stable Speeds (Centring Force Testing) 

The wheelset was unable to reach the target speed of 100mph, instead reaching a 

maximum stable speed of 68mph. Application of the Gravitational Stiffness Force 

improved the results, the SB Wheelset achieving a stable speed of 76mph. 
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PhysX Parameters 

The tests in Section 5.8.1 and Section 5.8.2 show that adjusting the simulating timing 

parameters and SIC can increase the top speed of the wheelset. The following parameters 

have been identified as producing the best results for the SB Wheelset. The single body 

wheelset was able to reach its highest stable speed of 76mph. 

� TM = 20 

� SIC = 184 

Wheelset Polygon Counts 

Increasing the polygon count of the wheelset was shown to increase the stability of the 

rolling motion, as discussed in Section 5.7.6. The increase in stability between 48 and 64 

suggests that increasing the polygon count beyond that of the 64 segment wheelset will 

not significantly improve the stability of the wheelset further. The drop in framerate was 

also negligible, despite the increase in polygon count.  

� The 64 Segment wheelset is therefore used in all future testing. 

Wheelset Designs 

The MB Wheelset is significantly less stable than the SB Wheelset, and its stability cannot 

be significantly improved. It achieved lower peak and stable speeds in initial testing, and 

showed only negligible improvements as the simulation parameters were adjusted. This 

suggests that the SB wheelset is the better choice for engineering simulation because, 

despite not being as flexible as the MB Wheelset, it is significantly more stable. There are 

performance considerations too, as the MB wheelset produced a lower framerate than 

the equivalent SB tests, and in many tests was below the target framerate of 60FPS.  

� The Single Body Wheelset is therefore used in all future tests. 

Performance 

The performance tests from the previous section (1mph on a 1km straight track) were 

repeated for the SB Wheelset using the parameters above, and the results were:  

� Single Body (No Force):  173.61 FPS (78.89FPS lower than initial testing) 

� Single Body (With Force):  166.90 FPS (86.6 FPS lower than initial testing) 

 

There is a difference of 7.71 FPS between the two tests, which suggests that calculating 

and applying the force to the wheelset has a small impact on the performance of the 

simulation. With the centring force applied, this is a reduction in performance of 

approximately 86 FPS over the results achieved using the default parameters of the 

simulation, but 167 FPS is still more than twice the real-time target of 60fps. 
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5.9 Wheelset in Motion (Curved Track) 

The tests in this section were conducted on the loop track layout, using a Single Body 

Wheelset.  

 Test Design 5.9.1

As with the previous tests, the wheelset is tested at a range of speeds, this time using a 

looped track layout. The wheel is tested on both left and right turning track to check for 

consistency. From the tests in the previous section, using the following settings: 

� Timing Multiple: 20 

� SIC: 184 

� Gravitational Stiffness Force applied 

 Predictions 5.9.2

The wheelset has a maximum stable speed of 76mph. At this speed there should be no 

derailments on curves above a radius of 150m. At radii of 150m and below, the wheelset 

should derail at speeds close to those predicted by the Nadal formula, which are 

reiterated in Table 5.25, below. 

Curve Radius (m) 100 125 150 

Speed (mph) 58.96 65.92 72.21 

 

Table 5.25 - Predicted Derailment speeds for a wheelset on 100 to 150m radius curves  

 Results 5.9.3

The wheelset was first tested on the 1,000m radius curve, the widest that has been 

constructed for testing, at speeds ranging from 1mph to 10mph. Table 5.26 (below) 

shows the number of derailments recorded during each batch of 10 tests for each target 

speed value. 

Target Speed 1 2 3 4 5 6 7 8 9 10 

Derailments 10 10 10 10 10 10 10 10 10 10 

 

Table 5.26 - Derailments Per Target Speed (Single Body Wheelset - 1,000m radius curve) 

The wheelset derailed at all speeds in all tests conducted. The results were the same for 

all curve radii tested. It would appear from these results that the wheelset is incapable of 

traversing any track curve at any speed.   
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The screenshot below (Fig. 5.61) shows the wheelset derailing in one of the tests.  

 

Figure 5.61 - a single wheelset becoming ‘stuck’ on a curved track 

In the majority of the observed tests, a derailment was detected because the wheelset 

had rotated away from the track centre, as illustrated in the figure above, and was unable 

to roll forward. The derailment detection code includes a check for the wheelset 

becoming immobile for 5 seconds, and this criterion that was triggered in the majority of 

these tests. In other tests, derailment was detected because the wheel had rotated so far 

as to drop off the rails and come into contact with the ground plane.  

Tests were repeated with and without the centring force applied, but the results were the 

same. 

 Performance 5.9.4

The simulation ran at an average of 98.46 fps on the 1,000m radius track. This is 

significantly lower than the 1km straight track (166.9fps), but this is to be expected due to 

the number of rigid bodies in the scene, and the complexities of those bodies. This is still 

above the target of 60 FPS. 

 Conclusions 5.9.5

A single SB wheelset is unable to traverse the looped track at any speed on any curve 

radius. It could be argued that simulating a single wheelset in this way is of limited use to 

rail engineers, but it would have been useful to be able to apply the Nadal predictions to 

evaluate its cornering behaviour. However, this has not been possible. 

In Section 5.11, testing is conducted with a bogie, which for various reasons that will be 

discussed, may produce more stable results and is closer to the target application of the 

tool; the simulation of complete rail vehicles.  
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5.10 Cone Wheelset Curve Testing 

An additional set of tests was designed at this stage in the testing process, which not part 

of the original plan but was added in response to the results from the previous section. 

The following results were collected using the conical wheelset on the loop track layout, 

in order to determine if the centring behaviour was logically correct or was occurring at 

all on curved track 

 Test Design 5.10.1

The wheelset is tested on left and right curving loops at speeds of 1mph to 10mph. The 

wheelset is first tested without the centring force, and then with the centring force 

applied to determine what effect this has on the results. The lateral offset of the wheelset 

and the number of derailments in each batch of tests is recorded.  

 Predictions 5.10.2

Due to the size and shape of the conical wheelset, the wheelset should not derail in the 

same fashion as the single body wheelset in the previous tests. The wheelset may or may 

not traverse the curves at these speeds, depending if the centring behaviour is correct. 

The behaviour and lateral offset of the wheelset should be the same on left and right 

curving track. The average lateral offset of the wheelset should be higher at higher speeds 

and higher on smaller curve radii, as the centrifugal force acting on the wheelset is higher. 

 Results (No Centring Force) 5.10.3

The following tests were conducted without the application of centring forces to the 

wheelset. Tests were conducted on a bend of 1,000m in radius at a range of target 

speeds. The wheelset derailed in all tests and did not complete any loops of the track, as 

shown in Table 5.27, below. 

Speed (mph) 1 2 3 4 5 6 7 8 9 10 

Derailments (Left) 10 10 10 10 10 10 10 10 10 10 

Derailments (Right) 10 10 10 10 10 10 10 10 10 10 
 

Table 5.27 - Derailments Per Target Speed (Cone Wheelset, 1000m radius, no force) 

 Results (With Centring Force) 5.10.4

The following test results (Table 5.28, below) were collected on a bend of 1000m in radius 

at a range of target speeds, with the centring force applied. 

Speed (mph) 1 2 3 4 5 6 7 8 9 10 

Derailments (Left) 10 10 10 10 5 0 0 0 0 0 

Derailments (Right) 10 10 10 10 6 0 0 0 0 0 
 

Table 5.28 - Derailments per Target Speed (1) (Cone Wheelset, 1000m radius, with centring force) 
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The wheelset derailed at low speeds (below 5mph) but did not derail in tests above 

5mph. Further testing was therefore conducted at speeds of 11 to 20mph, and these 

results are shown in Table 5.29, below. 

Speed (mph) 11 12 13 14 15 16 17 18 19 20 

Derailments (Left) 0 0 0 0 4 10 10 10 10 10 

Derailments (Right) 0 0 0 0 5 10 10 10 10 10 
 

Table 5.29 - Derailments per Target Speed (2) (Cone Wheelset, 1000m radius, with centring force) 

The wheelset did not derail in tests between 11 and 14 mph, derailed in several tests at a 

speed of 15mph and derailed in all tests at 16mph and above. 

The results for left and right hand bends are very similar, though there were more 

derailments on the right hand bend at 5mph and 15mph than there had been on the left 

hand bend. The results are identical if the tests are repeated. Although the difference 

between the curve directions is small, this suggests that the wheelset was somehow less 

stable on right curving track than left.  

A closer look at the lateral offset data (for the tests where no derailments occurred) 

reveals the graph below (Figure 5.62). 

 

Figure 5.62 - Lateral Offset per Target Speed 

The offset values for the left (blue) and right (red) movement for the wheelset are very 

similar. This is logically correct, as the offset increases with speed and is very similar on 

both curve directions. 

The results were repeated across a range of curve radii from 100m to 1,000m. In all tests 

below 500m, the wheelset derailed in all tests at all speeds. Other results for 500 to 900m 

produced similar results to the 1,000m tests, derailing in some of the low speed tests 

(below approximately 5mph) and then at higher speeds (above approximately 15mph).  
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To compare the results across the range of curve radii tested, the results from 9mph and 

10mph on each curve radius have been plotted onto the graphs below. These are the only 

speeds at which no derailments occurred in any tests on these curve radii. The graph 

below (Fig. 5.63) shows the average lateral offset of the wheelset at 9 mph. 

 

Figure 5.63 - Cone Wheelset Lateral Offset (Left and Right) per Curve Radius (9mph) 

The graph below (Fig 5.64) shows the results for a target speed of 10 mph. 

 

Figure 5.64 - Cone Wheelset Lateral Offset (Left and Right) per Curve Radius (10mph) 

This data shows a steady increase in the left (blue) and right (red) offset of the wheelset 

as the curve radius decreases, as expected. In these tests, the right offset of the wheelset 

(red) was higher in some tests, but only by 1mm, which is the sensitivity of the simulation 

(as described in Section 3.3.10).  

In order to compare the two sets of tests, the trend in the leftward movement of the 

wheelset at 9mph and 10mph is shown in the graph below (Figure 5.65 - overleaf).  

As the data shows, the increase in the leftward offset of the wheelset is similar in both 

cases, and is higher for the 10mph test, which was conducted at a higher speed than the 

9mph tests. 
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Figure 5.65 - Changes in Leftward Lateral Movement for the Conical Wheelset 

 Performance 5.10.5

The average framerate during these tests was 71.58 FPS. This decrease is due to the 

increase number of polygons in the scene, as a result of the track sections that make up 

the looped track. There is some variance in performance between the different curve 

radii tested, but never by more than +/- 2.4 FPS and not in any consistent way. 

 Conclusions 5.10.6

Many of these results show logically correct behaviours; an increase in lateral offset on 

narrower curves/at lower speeds. The conical wheelset derails in all tests with the 

centring force disabled, but does not derail at a range of speeds when the centring force 

is enabled. This suggests that the centring force does improve the results.. 

Curiously, the wheelset derails in tests at very low speeds (at 5mph and below on 1,000m 

radius track) but not and higher speeds. This suggests that the simulation is unstable at 

very low speeds, supporting results from previous tests, but that this instability is less of 

an issue when the wheelset is travelling at higher speeds. 

5.11 Conclusions from Phase 2 Testing 

Tests in this phase were designed to evaluate the ability of the simulation to model the 

wheel/rail interface. Tests were conducted with individual wheelsets on straight and 

curved track. The results suggest that the simulation is not capable of simulating the 

behaviour of a single wheelset correctly. It has therefore not been possible to conduct the 

curve behaviour tests using the Nadal limit, as was intended. 

Stable Speed 

A single, SB Wheelset is capable of achieving speeds of 76mph on straight track, if the 

physics engine parameters are adjusted and the centring force is applied to it, but the 

wheelset does not corner correctly, even on the widest radius tested (1,000m).  
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Wheelset Designs 

The Multi Body Wheelset is too unstable and cannot be made stable enough to compete 

with the results for the Single Body Wheelset. The SB Wheelset is used in all future tests. 

Polygon Count 

The 64 segment wheelset was chosen as it produced the most stable results with only a 

small decrease in performance. The 64 Segment Wheelset is used in all future tests. 

PhysX Parameters 

The best results were achieved with the following physics engine parameters: 

� Timing Multiple (TM): 20 

� Solver Iteration Count (SIC): 184 

� Max Angular Velocity (MAV): 170 

� Skin Width: 0.01 

 

These parameters are used in all future tests, unless specified otherwise. 

Conical Wheelset Tests 

Conical wheelset testing on looped track show that the behaviour is logically correct - 

sinusoidal movement, with higher offset at higher speeds and on narrower curve radii, as 

predicted. This shows that the behaviour of the wheelset is logically correct in the 

simulation, but may not be truly realistic. The data from the conical wheelset confirms 

that the cornering behaviour is improved by the addition of the gravitation stiffness force.  

Other Observations 

Data from the conical wheelset tests again suggests that the wheelset is less stable at low 

speeds (below 5mph), but becomes more stable above these speeds, supporting other 

results from previous tests. 

5.12 Testing Phase 3: Bogie in Motion Tests (Straight Track) 

The tests in this section were designed to evaluate the behaviour of a bogie in motion. 

The tests in the previous section managed to achieve a straight line speed of 76, but a 

single wheelset was highly unstable on curved track. It was hoped that the additional 

mass of the bogie, coupled with the way that the two wheelsets are joined together by 

the rigid h-shaped bogie frame, which limits each wheelset’s degrees of freedom, might 

improve the stability of the vehicle.  

The following tests were conducted with a bogie accelerating along a straight track to test 

its stability and top speed. The physics engine parameters were also adjusted to 

determine whether it was possible to further improve the results. 
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 Aim 5.12.1

The aim of these tests is to study the behaviour of a rail bogie in the simulation tool and 

to maximise its top speed and stability. If the bogie not able to achieve a sufficiently high 

speed or is too unstable, then the previously identified physics engine parameters will be 

adjusted in an attempt to improve the results. 

 Test Design 5.12.2

The bogie was tested at a range of speeds on a 2km straight track to determine both its 

derailment speed and stable speed.  

 Initial Testing 5.12.3

First, tests are conducted using the physics engine parameters that produced the best 

results in the previous tests. (TM 20, SIC 184). Tests are conducted with and without the 

application of the centring force. 

Results - Without Centring Force 

The first test is conducted without the centring force, and Figure 5.66 (below) shows the 

derailments per batch for each target speed. Here, the stable speed was 77mph. 

 

Figure 5.66 - Initial Stable Speed Test (Bogie, no centring force) 

Results - With Centring Force 

The test was then repeated with the addition of the centring force. Here the stable speed 

increased to 88mph, as shown in the graph below (Figure 5.67). 

 

Figure 5.67 - Initial Stable Speed Tests (Bogie, with Centring Force). 
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Performance 

Below is a comparison of the average framerate between the two test batches. 

� Without Centring Force:  92.44 FPS 

� With Centring Force:  88.29 FPS 
 

A difference of 4.15 FPS, again suggesting that the calculation and application of the 

centring force does have a negative impact on the performance of the simulation. 

 Additional Physics Engine Parameter Testing 5.12.4

Further testing was conducted to see if the top speed of the bogie or performance of the 

simulation could be further improved by adjusting the parameters of the physics engine. 

Tests were conducted across a range of Timing Multiple and SIC values. Sample results 

from a range of tests are included below (Figures 5.68, 5.69 and 5.70). 

TM: 18 - SIC: 64 

 

Figure 5.68 - Graph of Derailments per Target Speed (TM18 SIC64) 

� Stable speed: 66 mph 

� Performance: 106.20 FPS 

TM: 20 - SIC: 124 

 

Figure 5.69 - Graph of Derailments per Target Speed (TM20 SIC14) 

� Stable speed: 73 mph 

� Performance: 100.75 FPS 
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TM: 22 - SIC: 249 

 

Figure 5.70 - Derailments per Target Speed (TM22 SIC249) 

� Stable Speed: 64 mph 

� Performance: 76.33 

Further Results 

Below (Figure 5.71) are the stable speed graphs for the full range of SIC values at Timing 

Multiple values of 20, which produced the best results in the wheelset tests, as well as TM 

values of 19 and 21 (one above and one below the previous best results). 

 

Figure 5.71 - Stable Speeds per SIC for TM Values of 19 (top) 20 (mid) and 21 (bottom) 

These results are a lot more consistent (less varied) than the wheelset tests, with a much 

smaller range of results. 



Chapter 5 - Wheel/Rail Interface Testing 

190 

Table 5.30, below, shows a summary of the results; the min and max stable speeds 

achieved for each value of timing multiple. 

 Stable Speeds 

TM Min Max Range 

19 68 81 13 

20 71 88 17 

21 75 88 13 
 

Table 5.30 - Min, Max and Range of Stable Speeds for SIC Testing at TM of 19, 20 and 21 

There are two results, at TM21 SIC219 and TM21 SIC229, that produce the same 

maximum stable speed of 88 mph, but no results are higher. The framerate of the TM21 

SIC219 tests was 84.64, which was lower than the 88.29 FPS achieved with TM20 SIC184. 

Other values tested (TM 18 and below, TM 22 and above) do not produce the same peak 

speed of 88mph achieved with the parameters described above. 

Since the other values that achieve the same top speed produce a drop in framerate 

without an actual, noticeable improvement in results, the value of TM 20 and SIC 184 will 

continue to be used in future tests. 

Conclusions 

It is possible that further adjustments to these physics engine parameters might improve 

the results, but the data collected during the tests presented in this section suggests that 

the previously suggested parameters continue to produce the best results. These 

parameters are: 

� Timing Multiple (TM): 20 

� Solver Iteration Count (SIC): 184 
 

These produced a stable speed for a bogie using single body wheelsets of 88mph, and a 

peak speed of 91.03mph. These values are used in all tests in the rest of this Thesis.  

 Joint Solver Extrapolation Factor  5.12.5

Revolute Joints, such as the joint between the wheelset and the bogie, have a Solver 

Extrapolation Factor (SEF) that defines the rigidity of the joint. This parameter is discussed 

in more detail in Section 3.4.7. The following tests are conducted to discover the effect of 

altering this parameter on the stability of the bogie. 

Test Design 

The solver extrapolation factor was incremented from its minimum value (0.5) to its 

maximum value (2.0). The tests are conducted with a bogie on a straight track.  
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Predictions 

It was theorised that adjusting this parameter might affect the stability of the bogie - as it 

affects the joints between the bogie and the wheelsets, possibly improving the results 

and allowing the bogie to reach a higher stable speed. Adjusting the SEF is not expected 

to affect the performance of the simulation. 

Stable Speed Tests 

The following tests were conducted to determine the stable speed of the vehicle at each 

SEF value, in order to determine what effect the rigidity of the joints has on the stability 

of the vehicle. The results are shown in Table 5.31, below. 

Joint SEF Value 0.5 0.6 0.7 0.8 0.9 1.0 ... 

Stable Speed 0 0 0 0 0 88 ... 
 

Table 5.31 - Stable Speed per Joint SEF Value (Bogie - Straight) 

The stable speed during each test at an SEF of 0.9 and below was reported as 0, because 

the wheelset derailed in all tests at 1mph. The graphs below (Fig. 5.72) show the 

derailments per target speed in tests the between a SEF of 0.5 and 1.0,k at speeds 

between 1 and 10 mph.  

 

Figure 5.72 - Graphs of low speed derailments at a range of Joint Solver Extrapolation Factor Values 

Although the bogie derails at lower speeds (below approximately 4mph), it does not 

derail in higher speed tests (5 mph and over). This data would seem to corroborate 

previous test data suggesting that the vehicle is capable of accelerating up to higher 

speeds in a stable fashion, but is unstable when forced to maintain lower speeds.  

This behaviour is undesirable, as the aim is to ensure consistent, stable behaviour across 

as high a range of speeds as possible. In these tests there were derailments at low speeds 

< 5mph, but no derailments at higher speeds.  
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There are more derailments as the Joint Solver Value decreases too, as shown in Table 

5.32, below. 

Solver Value 0.9 0.8 0.7 0.6 0.5 

Total Derailments 20 27 29 29 34 
 

Table 5.32 - Total Derailments per Solver Value 

This data suggests that decreasing the SEF reduces the stability of the vehicle. These low 

speed derailments do not occur with a Solver value of 1.0 or above. Table 5.33 (below) 

shows the stable speeds for an SEF of 1.0 and 2.0. 

Joint Solver Value 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Stable Speed 88 88 88 88 88 88 88 88 88 88 88 
 

Table 5.33 - Stable Speed per Joint Solver Extrapolation Factor Value 

In these tests, the low speed derailments do not occur, but increasing the SEF value does 

not appear have any positive effect on the stable speed of the vehicle. 

Lateral Offset 

The graph below (Fig. 5.73) shows how the lateral offset of the front wheelset of the 

bogie changes as the SEF value is adjusted. 

 

Figure 5.73 - Graph of Lateral Offset per Joint Solver Extrapolation Factor (Bogie 10mph) 

From the default value of 1.0 up to the maximum value of 2.0, the results are fairly 

consistent, with no considerable change in the min, max or average lateral offset of the 

wheelset. Similar results were collected for the rear wheelset also.  

However, with an SEF value of below 1.0, the results become less consistent, and the min 

and max offset become larger. This data suggests that the wheelset is less stable below 

the default value of 1.0, which concurs with the derailment results. 
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This would seem to suggest that there is little value to increasing the value of this 

parameter, but that it should not be decreased below its default value, as this makes the 

bogie less stable. The SEF will therefore be kept at its default value of 1.0. 

Performance 

It was not expected that altering the SEF value would affect simulation performance. The 

graph below (Fig. 5.74) shows the change in framerate over the course of the tests. 

 

Figure 5.74 - Graph of results from performance testing (Bogie, SEF) 

The framerate varied between 107.8 and 110.2 fps, but not in any consistent way, 

suggesting that changing the SEF had little or no effect on the performance of the 

simulation tool. The best results, attained with the parameters above, produced the 

following performance results (with centring force applied). 

� Bogie: 109.47 FPS  
 

This is 57.43 FPS lower than tests with a single wheelset using the same settings, but the 

decrease in performance is expected given that there are more rigid bodies in the scene. 

The performance is still well above the real-time target of 60 FPS. 

 Conclusions 5.12.6

The results presented in this section confirm the hypothesis that a bogie, where two 

wheelsets are joined by a rigid frame, is more stable than a single wheelset. The results 

are more consistent and the stable speed of the bogie is higher than that of a single 

wheelset. Adjusting the Joint Solver Extrapolation Factor parameter had no effect on the 

performance of the tool, nor did it produce any improvement to the stable speed.  

The highest speed achieved by the bogie was 88 mph, using the following parameters. 

� TM: 20  

� SIC: 184 

� SEF: 1.0 
 

Altering these parameters produces no further benefit to the stability of the simulation.  
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5.13 Bogie in Motion Tests (Curved Track) 

The tests in this section were designed to evaluate the cornering behaviour of the bogie.  

 Test Design 5.13.1

The following tests were conducted on a looped track with a range of track radii from 

100m to 1,000m. The tests are conducted using the physics engine parameters identified 

in Section 5.12, with the spline-based centring force applied. 

Curve Radii 

The following curve radii are tested, though the limited top speed of the bogie limits the 

potential testing possibilities. Testing is divided into two parts: 

� Smaller Curve Radii 

Results collected using the following curve radii can be evaluated against the Nadal 

derailment predictions. 

� 100m, 125m, 150m, 175m, 200m 

� Larger Curve Radii 

The other radii that were constructed for use in the simulation were also tested, but it is 

not possible to use the Nadal Limit predictions due to the limited maximum stable speed 

of the bogie. These are as follows. 

� 300m, 400m, 500m, 600m, 700m, 800m, 900m, 1000m 

Derailment Speed Tests 

In these tests, the vehicle starts at a speed of 1mph. When it reaches each straight 

section of the looped track, its target speed is increased by 1mph. If it reaches 88mph and 

completes a loop of the track without derailing, then the test ends with no derailments. 

Otherwise the derailment speed is recorded, as in previous tests. 

Stable Speed Tests 

The stable speed tests work in the same way as the stable speed tests in previous 

sections. The bogie is tested up to (and including) its maximum stable speed on straight 

track; 88mph. The highest speed at which no derailments occur is the ‘stable speed’. 

 Predictions 5.13.2

For smaller radii, the predicted derailment speeds for these curve radii is below the 

maximum stable speed of the bogie (88mph). In these tests, the bogie should derail at 

speeds close to those predicted by the Nadal Limit.  
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These predicted speeds are shown in Table 5.34, below. 

Curve Radius 100 125 150 175 200 

Predicted Derailment Speed (mph) 58.96 65.92 72.21 78.00 83.38 

 

Table 5.34 - Predicted Derailments for Curve Radii 100 - 300m (from Section 5.5) 

The predicted derailment speeds for the larger curve radii (see Section 5.5) are above 

88mph, which is the maximum stable speed achieved by the bogie in the previous tests. 

On these loops, the bogie should be able to accelerate up to its maximum stable speed of 

88mph, without derailing, if the simulation is sufficiently stable and accurate. 

 Initial Testing 5.13.3

This section presents results from initial bogie testing.  

Without Centring Force 

Tests were first conducted with the bogie without the application of additional centring 

forces. In these tests, the bogie derailed in all tests, at all speeds on all curve radii. The 

remaining tests in this section were conducted with the centring force applied. 

Wider Radii 

The following tests were conducted on radii of 300 to 1,000m. It was expected that the 

bogie would be able to accelerate to its previously observed stable speed of 88mph on 

these tracks without any derailments occurring. 

� 1,000m and 900m 

The following results (shown in Table 5.35, below) were taken from 1,00m and 900m 

testing, the widest radii tested: 

Curve Radius 900 1,000 

Number of Derailments 0 0 
 

Table 5.35 - Derailments per Curve Radius (at 88mph) 

The bogie successfully accelerated up to 88mph without derailing on both curve radii. 

This was the expected result. These results show that the application of the centring force 

has a positive effect on the cornering behaviour of the bogie, which derailed in all tests 

when the force was not applied. 

� 300m to 800m 

The graph in Figure 5.75 (overleaf) shows the derailment speeds for curve radii of 300m 

to 800m. The graph shows the predicted derailment speed (blue), the peak/derailment 

speed (red) and the maximum stable speed (green). 
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Figure 5.75 - Derailment Speeds - Prediction vs Results (300m to 800m radius) Bogie Initial Testing 

These results are also shown in Table 5.36, below, along with the predictions and 

difference between prediction and results. 

Curve Radius (m) 300 400 500 600 700 800 

Prediction (mph) 102.12 122.27 131.84 144.42 156.00 166.77 

Derail Speed (mph) 53.80 62.25 68.29 74.16 77.06 84.01 

Difference (%) 47.3% 49.1% 48.2% 48.6% 50.6% 49.6% 

Stable Speed (mph) 50 58 66 72 73 81 

Difference (%) 51.0% 52.6% 49.9% 50.1% 53.2% 51.4% 
 

Table 5.36 - Derailment Speed per Curve Radius (Bogie, 300m to 800m) 

The results were between 49.4% and 52.7% below the prediction for each of these curve 

radii. The stable speed in each test was between 2.16 and 4.25mph below the derailment 

speed. 

If the average is taken across the whole range of results: 

� The derailment speeds were, on average, 48.9% below the predictions. 

� The stable speeds were, on average, 51.4% below the predictions. 

Smaller Radii 

The graph overleaf (Figure 5.76) shows the results of tests conducted on radii of 100 to 

200m. These are the speeds at which it is expected that Nadal limit predictions can be 

applied. The derailment speeds on each curve radius were significantly lower than the 

predictions. The stable speeds were lower still. 
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Figure 5.76 - Derailment Speeds - Prediction vs Results (Bogie, 100 - 200m radius) 

The average derailment speed for each radius is shown in Table 5.37, below, alongside 

the Nadal prediction. 

Radius 100 125 150 175 200 

Prediction (mph) 58.96 65.92 72.21 78 83.38 

Derail Speed (mph) 33.15 38.86 37.26 39.77 40.97 

Difference (%) 43.8% 41.0% 48.4% 49.0% 50.9% 

Stable Speeds (mph) 30.00 35.00 35.00 36.00 38.00 

Difference (%) 49.1% 46.9% 51.5% 53.8% 54.4% 

 

Table 5.37 - Derailment Speeds versus Nadal Predictions 

The results are higher on wider radii, as expected, but are still lower than the Nadal 

Predictions. The best result was 59% of the predicted speed and the worst result was 

49.1% of the predicted speed. 

� The derailment speeds were, on average, 46.6% below the predictions. 

� The stable speeds were, on average, 51.2% below the predictions 

 

Performance 

The following tests were conducted on the 1,000m radius track. The bogie was tested 

with and without the application of the centring force. Without the centring force, the 

bogie derailed in all tests. The average framerate during each batch is as follows:  

� Without Centring Force applied: 70.03 FPS 

� With centring force applied: 65.02 FPS 

There is a difference of approximately 5 FPS, suggesting that the calculation and 

application of the centring force to the wheelsets comes at a performance cost. 
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Summary 

The centring force has improved the cornering ability of the bogie, but the bogie still does 

not approach the derailment speeds predicted by the Nadal Limit.  

 Multiplied Force Results 5.13.4

The GSF significantly improved the cornering behaviour of the bogie, but was not enough 

to produce results close to the Nadal predictions. It was theorised that increasing the size 

of this force would lead to improved results, and so the following tests were conducted to 

investigate this possibility. The implications of this are discussed at the end of this section. 

Force Multiple 

In order to test this hypothesis, a ‘force multiple’ was added to the code at the point 

where the centring force is calculated and applied. The value of Yw (line 7 in Figure 4.8) 

was multiplied by force multiple before it was used to calculated the force vector, as 

illustrated in Figure 5.77, below. 

 

7 

8 

9 

10 

 

float Lw = ((W * lambda) / l0) * forceMultiple; 

 

Vector3 force = offset * Lw;                      

contact->wheelset->ApplyForce(force); 
 

 

Figure 5.77 - Centring code with Force Multiple 

Test Design 

The force multiple will be increased from its initial value of 1 in increments of 1 up to a 

maximum of 30. The stable speed and derailment speeds of the vehicle, as described 

earlier, are recorded and compared to the previous results. 

Predictions 

It is estimated that increasing the size of the force will increase the derailment 

speed/stable speed of the bogie. However, it is possible that increasing it above a certain 

value will make the simulation unstable. 

Initial Force Multiple Testing 

In order to evaluate the effect of increasing the magnitude of the centring force, the 

value of force multiple was incremented between 1 and 30.  

� Force Multiple Testing (1 to 30) 

The bogie was tested with a range of force multiples across the range of track radii (100m 

to 200m). In each test, the percentage difference between the predicted results and the 

average derailment speed of the vehicle was measured, and the average percentage 

difference at each multiple is shown in Figure 5.78 (overleaf). 
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Figure 5.78 - Average difference between predicted and recorded derailment speeds 

The average difference between each set of results and the predictions decreases as the 

test multiple increases, up until a point at which it becomes less stable again. 

� The best result for the derailment speed tests was achieved with a force multiple of 

11, where the average speed was, on average, 1.2% away from the predictions. 

� The best result for the stable speed tests was achieved with a force multiple of 12, 

where the stable speed was, on average, 9.26% away from the predictions. 

 

A force multiple of 11 or 12 would appear to be the best results because the derailment 

speeds are, on average, closest to the predicted derailment speeds. 

� Force Multiple 11 

The derailment and stable speed tests were repeated using a force multiple of 11. The 

results of the derailment and stable speed tests compared to the Nadal predictions are 

shown in Figure 5.79, below. 

 

Figure 5.79 - Predicted Derailment Speeds versus recorded results 
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The graph shows that the derailment speeds (red) are close to the predicted speeds (blue) 

on each curve radius. The stable speed results (green) are lower than the derailment 

speeds across all curve radii. Both the derailment speeds and stable speeds increase with 

curve radius, which is logically correct. 

Table 5.38, below, shows the predicted derailment speed, the recorded derailment speed 

results and the differences for each curve radius. 

 Curve Radius 100m 125m 150m 175m 200m 

Prediction 58.96 65.92 72.21 78 83.38 

Derailment Speed 60.1 64.2 71.22 76.95 81.22 

Difference -1.14 1.72 0.99 1.05 2.16 

% -1.9% 2.6% 1.4% 1.3% 2.6% 

Range 14.35 15.65 19.30 16.91 17.23 

Standard Deviation 2.64 4.18 3.72 3.12 3.27 

 

Table 5.38 - Differences between Prediction and Derailment Speed Results - Force Multiple 11 

All of the derailments were within 2.16mph of the Nadal prediction across this range of 

radii and were, on average, off by 2.2%. The range of results is quite high, but the 

standard deviation of the results is, on average, 3.39mph.  

Table 5.39, below, shows the prediction, along with the stable speed results and 

differences for each curve radius. 

  Curve Radius 100m 125m 150m 175m 200m 

Prediction 58.96 65.92 72.21 78 83.38 

Stable Speed 56.00 57.00 61.00 64.00 69.00 

Difference 2.96 8.92 11.21 14.00 14.38 

% 5.0% 13.5% 15.5% 17.9% 17.2% 

 

Table 5.39 - Differences between Prediction and Stable Speed Results - Force Multiple 11 

The stable speed was, on average, 13.85% below the predicted results, and as much as 

17.2% below the prediction. 

� Force Multiple 12 

The tests were repeated 10 times on each radius using a force multiple of 12. The results 

of the derailment and stable speed tests compared to the Nadal predictions are shown in 

Figure 5.80 (overleaf). 
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Figure 5.80 - Predicted Derailment Speeds versus recorded results 

Table 5.40 (below) shows the prediction, derailment speed results and differences for 

each curve radius. 

  Curve Radius 100m 125m 150m 175m 200m 

Prediction 58.96 65.92 72.21 78 83.38 

Average Results 61.1 65.2 70.22 74.95 79.22 

Difference -2.14 0.72 1.99 3.05 4.16 

% -3.6% 1.1% 2.8% 3.9% 5.0% 

Range 14.35 15.65 19.30 16.91 17.23 

Standard Deviation 2.68 4.28 5.75 3.12 3.46 

 

Table 5.40 - Differences between Prediction and Results 

All of the results are within 4.16mph of the Nadal prediction across this range of radii and 

on average were off by 1.84%. The average standard deviation is 3.86mph. 

Table 5.41 (below) shows the prediction, stable speed results and differences for each 

curve radius. 

  100m 125m 150m 175m 200m 

Prediction 58.96 65.92 72.21 78 83.38 

Stable Speed 57.00 60.00 65.00 69.00 73.00 

Difference 1.96 5.92 7.21 9.00 10.38 

% 3.3% 9.0% 10.0% 11.5% 12.4% 

 

Table 5.41 - Differences between Prediction and Stable Speed Results - Force Multiple 11 

The stable speed was, on average, 9.26% below the predicted results, and as much as 

12.4% below the prediction. 
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� Wider Radii 

The bogie was tested on curve radii from 300m to 1,000m using a Force Multiple of 11. 

The expectation was that the bogie would not derail at speeds up to and including 88mph 

on any of these radii. The results are shown in Table 5.42 (below). 

Curve Radius (m)  300 400 500 600 700 800 900 1,000 

Stable Speed (mph) 88 88 88 88 88 88 88 88 

 

Table 5.42 - Stable Speed for each Curve Radius (300m - 1,000m) 

The results were the same for a Force Multiple of 12. This was the expected result for 

these curve radii; a stable speed equal to the maximum stable speed of the bogie. 

� Straight Track 

The following tests were conducted on the 2km straight track. Figure 5.81 (below) shows 

the average derailment speeds from testing across a range of force multiples. 

 

Figure 5.81 - Average derailment speeds for the bogie across a range of force multiples 

Figure 5.82 (below) shows the stable speed of the bogie. 

 

Figure 5.82 - Stable Speeds for the bogie a range of force multiples 
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The best results from this data compared to the best un-multiplied results are shown 

below: 

� The maximum derailment speed of the vehicle was 95.23mph, achieved with a force 

multiple of 11, an increase of 4.2mph. 

� The maximum stable speed of the vehicle was 91 mph, achieved with a force 

multiple of 11 and 12, an increase of 3mph. 

 

This data suggests that it was not just the lack of a correct centring wheelset centring 

behaviour that was limiting the top speed of the bogie. Another issue (or issues) may be 

causing the instability that prevents the vehicle reaching any higher speeds, perhaps 

vibrations caused by the polygonal shape of the wheels, or errors the way in which 

collisions and joints between rigid bodies are handled by the solver. 

Performance 

There is some variation in performance between tests on different curve radii, but not in 

any way consistent with the radius currently being tested. The average framerate during 

these bogie tests was 66.03 FPS, which is just above the real-time target of 60 FPS. 

 Conclusions 5.13.5

The results in this section show that the spline-based technique can be made to produce 

results that approach the Nadal predictions across this range of curve radii, if a multiplied 

centring force is applied to the wheels. Using the Gravitational Stiffness Formula, but 

multiplying the resultant force by a factor of 11, produced the best results across a range 

of track curves, where the predicted derailment speed is less than the 88mph top stable 

speed of the vehicle.  

These tests also show that it was not just the lack of a realistic self-centring effect of the 

wheelsets that was preventing them from achieving high speeds, and that other factors 

are also contributing by causing instability in the wheelsets.  

The results could be improved by taking the radius of the curve into account, but this is 

unlikely to produce a universal solution. A more sophisticated calculation, perhaps 

considering additional rail industry formulas such as creep forces, lateral velocity of the 

wheelset etc. might produce better results, and allow this arbitrary multiple value to be 

removed from the force calculation. Unfortunately, time constraints prevented further 

evaluation of this hypothesis within the scope of this research project. 
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5.14 Chapter Summary 

In this chapter has shown how the simulation of the wheel/rail interface in the 

Locomotion tool was evaluated, and how the simulation was iteratively adjusted in order 

to improve the results and produce more realistic data.  

Key Results 

Conical wheelset testing showed some logical behaviours; sinusoidal lateral motion, lower 

offset on higher curve radii and higher offset at higher speeds. This shows that the 

simulation is capable of simulating some aspects of wheelset centring behaviour, even if it 

is not producing truly accurate results. The vehicle was unable to reach the target straight 

line speed of 100mph, instead achieving a stable speed of 88mph. During curved track 

testing, designed to evaluate the behaviour of the bogie against the Nadal Limit 

predictions, the results for radii of 100 to 200m were accurate to within 2% of the 

predictions, with an average standard deviation of less than 4mph. These error bounds 

should be considered suitably small by engineers for use in a real-time simulation tool.  

Design Choices 

The Single Body wheelset, with 64 segment cylindrical wheels, was shown to be the best 

design choice, as it was significantly more stable than the Multi Body wheelset. A single 

wheelset cannot traverse a curve successfully, which meant that it was not possible to 

use the Nadal Limit benchmarks to evaluate wheelset cornering behaviour as intended.  

Improving the Simulation of the Wheel/Rail Interface 

It is necessary to multiply the centring force by 11 to produce the most realistic results 

across the range of curve radii tested. This suggests that there is error in the centring 

behaviour of the wheelset in the PhysX engine. It is possible that this Force Multiple can 

be eliminated by fine-tuning the centring force, taking additional properties of the wheels 

and rails, or additional forces into account. This is discussed in more detail in Chapter 7. 

Physics Engine Parameters 

The best results were achieved with the following physics engine parameters: 

� Timing Multiple: 20  

� Solver Iteration Count: 184 

� Joint Solver Extrapolation Factor: 1.0 

� Skin Width: 0.01 

Performance 

During the final set of tests, the performance of the simulation tool was 66.03 FPS, which 

is above the real-time target of 60 FPS.   



 

 

  Chapter 6

Additional Testing and Sample Data 

The data presented in this chapter is intended to illustrate the capabilities of the 

Locomotion simulation tool; the kinds of tests that can be conducted and the data that it 

is capable of producing. This includes sample data from stability and derailment tests on 

full vehicles and multi-vehicle trains, as well as testing designed to evaluate the suitability 

of the tool for use in rapid prototyping and as a gauging tool.  

It has not been possible to fully validate the results presented in this chapter, but it is 

presented based on the assumption that vehicle behaviour is reasonably realistic, based 

on the results from the previous chapter. 

6.1 Overview 

This testing presented in this chapter includes the following. 

� Section 6.3 presents the results of tests conducted on multiple deployment 

platforms, designed to evaluate the consistency of the simulation tool. 

� Section 6.4 presents the results of tests conducted with a full vehicle. 

� Section 6.5 presents the results of tests conducted with multi-vehicle trains. 

� Section 6.6 presents the results of initial testing designed to evaluate the suitability 

of the simulation tool for rapid prototype testing. 

� Section 6.7 presents the results of initial testing designed to evaluate the suitability 

of the tool for gauge testing. 

6.2 Parameters 

The tests were conducted using the same parameters as the previous tests: 

� Timing Multiple: 20  

� Rigid Body Solver Iteration Count: 184  

� Skin Width: 0.01  

� Joint Solver Value: 1.0 

� Force multiple: 11 

The Single Body Wheelset was used in these tests and the vehicles were tested on 

straight track and a range of curve radii.  
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6.3 Consistency Tests 

The following tests were conducted on multiple machines, in order to confirm that the 

simulation produces consistent results on multiple deployment platforms. 

 Computer Specifications 6.3.1

Below are descriptions of the three computers on which the tests were conducted. 

Included are their device name and their hardware specifications. 

‘Zerg09’  

This is the name of the machine on which all of the tests Chapter 5 were conducted (for 

specifications of this machine, see section 5.1.). 

‘Mal’ 

A desktop PC: 

� Operating System: Windows 10  Professional (64-bit) 

� Processor: INTEL Core i7 CPU 920 @ 2.67GHz  

� Ram: 12 GB 

� Graphics Card: NVIDIA GeForce GTX 760 

‘Kaylee’ 

A laptop: 

� Operating System: Windows 10 Home (64-bit) 

� Processor: INTEL Core i3-4000M CPU  @ 2.40GHz 

� RAM: 8.0 GB 

� Graphics Card: NVIDIA GeForce GTX 765M 
 

The three machines are similar, in that they all have Windows operating systems, INTEL 

processors and NVIDIA graphics cards, but there is some variance in the specifications.  

 Test Design 6.3.2

The Locomotion source code was downloaded to and compiled on each of these 

machines, and then identical tests were conducted on each machine using the Visual 

Studio IDE to determine whether the simulation produces the same results on each 

deployment platform, and how the performance of the simulation differed between 

them.  

The stable speed tests were conducted using a rail bogie on a 2km straight track, using 

the ‘ideal’ parameters described at the start of this chapter and with the centring force 

applied to the wheelsets. 
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 Predictions 6.3.3

It is hoped that the simulation results (stable speed, derailment speed, range and 

standard deviation of results) will be very similar across each machine. It is possible that 

there will be some minor variation due to the error introduced by a real-time system, but 

ideally the results will be identical. 

It is expected that Zerg09, the most powerful machine, will produce the highest framerate 

and that Kaylee, the least powerful, will produce the lowest framerate. It is not expected 

that the differences in framerate will correlate with any variance in the results. 

 Results 6.3.4

Table 6.1 (below) shows the stable speed, derailment speed, range of (derailment speed) 

results and the framerate recording during stable speed testing on each machine. 

Computer 
Stable 

Speed 

89mph 

Derailments 

Derailment 

Speed 

Range of 

Results 

Standard 

Deviation 
Framerate 

Zerg09 88 9 92.271 13.74 3.77 66.0 

Mal 88 9 91.033 14.57 4.67 51.6 

Kaylee 88 9 91.033 14.57 4.67 30.8 
 

Table 6.1 - Consistency Test results from the three machines tested 

The stable speeds were the same, and there were the same number of derailments at 

89mph, on each machine. The derailment speeds and range of results for Mal and Kaylee 

were identical, while the derailment speed for Zerg09 was 1.2mph higher and the range 

of results 0.83mph lower. The biggest difference is in framerate, with Zerg09 executing 

14.4 FPS faster than Mal and 35.2 FPS faster than Kaylee, as expected 

 Conclusions 6.3.5

There is a small amount of variance in a few of the results, but the results are mostly 

consistent across all three machines. The stable speed results are identical, and there are 

variations of approximately 1mph between the derailment speed results on Zerg09 and 

the other two machines. The performance of the simulation varies depending on which 

computer it is executing on, but this does not seem to have any affect the physical 

results; the results on Kaylee and Zerg09 were the same, despite the  framerate of the 

tests conducted on Kaylee being less than half that of those conducted on Zerg09. 

The main difference between Mal/Kaylee and Zerg09 are the operating systems and the 

generation of graphics cards. The data collected here suggests that one of these factors 

may be the reason for the minor variation in results, but further testing would be 

necessary to confirm this hypothesis. 
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6.4 Locomotive Tests 

The following data is from tests on a locomotive. The vehicle has been constructed based 

on the Metro de Madrid 5000 series vehicle, using the properties defined in Table 3.3. 

 Static Tests 6.4.1

The following tests were conducted to determine if the mass of the vehicle was being 

correctly distributed, and the normal forces were being correctly applied, to each of the 

wheelsets. 

Test Design 

As with the bogie testing in Chapter 5, Phase 3, the Locomotive is placed on a straight 

track, its target speed is set to 0mph and the forces acting on each wheelset of each bogie 

of the vehicle are measured, until the physics engine puts the objects to rest.  

Predictions 

The effective mass of the locomotive acting on each wheelset is 8,000kg, and so the 

predicted magnitude of the normal force is calculated thus: 

8,000	 ∗ 	9.806 � 	p�, uu�w	
Results 

The following data (Table 6.2) was collected from tests on a vehicle built using Single Body 

Wheelsets. 

�  87 samples were collected per wheelset. 

 

Wheelset Magnitude % Range 

Front Bogie - Front 80,228.07 -2.27% 6068.43 

Front Bogie - Rear 76,652.62 2.29% 7699.871 

Rear Bogie - Front 79,931.23 -1.89% 7268.68 

Rear-Bogie - Rear 77,180.18 1.62% 5437.531 

Average 78,498.03 -0.06% 6,618.63 
 

Table 6.2 - Single Body Wheelset Locomotive Rails Tests 

There is a variance of 3,047.90 between the front and rear wheelset of the front bogie 

and 3,278.61 between the front and rear wheelset of the rear bogie. The average result 

across all four wheels was just 0.06% above the predicted value. The average range of 

results was 8.44% of the magnitude of the force and the average standard deviation of 

the results was just 1.33%. 
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 Locomotive in Motion (Straight Track) 6.4.2

The following tests were conducted with a single Locomotive on straight track. 

Design 

A single locomotive is tested on a 2km straight track layout. Its derailment speed and 

stable speed are measured and compared to the predictions and results for a single 

bogie. 

Predictions 

The additional complexity of the vehicle and the additional weight of the vehicle body 

may cause the vehicle to be less stable than a single bogie and to derail at lower speeds.  

The framerate of the simulation is expected to be lower than the bogie tests, as there are 

more bodies and joints in the scene. 

Results 

The results in Table 6.3 show the derailment speed and stable speed of the vehicle.  

 Derailment Speed Stable Speed 

Locomotive - Straight 77.34 74 
 

Table 6.3 - Derailment Speed and Stable Speed of a Locomotive on Straight Track 

Both the derailment speed and stable speed are lower than the equivalent bogie results. 

 Locomotive in Motion (Curved Track) 6.4.3

The following tests were conducted with a single locomotive on the loop layout. 

Design 

A single locomotive is tested on the loop layout at a range of curve radii. Its derailment 

speed and stable speed are measured and compared to the predictions and results for a 

single bogie.  

Predictions 

Again, because of the additional complexity and weight of the vehicle, and based on the 

results from the previous tests, the vehicle is expected to derail at lower speeds than the 

bogie, and the framerate of the simulation is expected to be lower than the bogie tests. 

Results 

The following results show the derailment speed of the vehicle, compared to the 

predictions made for a single bogie. Figure 6.1 (overleaf) shows that the derailment speed 

of the locomotive is considerably lower than the derailment speed of a single bogie. 
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Figure 6.1 - Derailment Speeds for a single vehicle, compared to predictions are results for a single bogie 

 Performance 6.4.4

The average framerate of the simulation during the stable speed tests was 51.16 FPS.  

 Conclusions 6.4.5

The derailment speeds and stable speeds of the locomotive on straight and curved track 

are significantly lower than the results for a single bogie, as expected. There is a reduction 

in the derailment and stable speeds of approximately 10mph, and a similar trend in the 

curve derailment speed results. The derailment speeds do increase with curve radius, 

which is logically correct. The performance is also significantly lower, reaching values that 

are just below the real-time target of 60 FPS, but can still be described as ‘near-real-time’. 

6.5 Multi-Vehicle Trains 

The following tests were performed under the same conditions as the bogie tests, with 

trains comprising different numbers of vehicles.  

 Results 6.5.1

Figure 6.2 (below) shows the average derailment speed for each train on each curve 

radius, along with the Nadal Prediction and Bogie derailment speeds for comparison 

purposes. 

 

Figure 6.2 - Derailment speeds for a number of different vehicles 

This data shows that adding additional vehicles causes the train to become less stable, 

since the derailment speeds at each curve radius decrease as more vehicles are added.  
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 Vehicle Derailments 6.5.2

When a derailment is detected, the offending component’s name is recorded. The name 

includes which bogie and which vehicle of the train the component belongs to, which 

allows the following results to be ascertained from the data. The following data is from 

the multi-vehicle tests and shows which of the vehicles in the train derailed the most 

across all of the tests on all radii. The charts in Figure 6.3 below represent the results of 

the two vehicle tests (left) and three vehicle tests (right).  

  

Figure 6.3 - Percentage of vehicle derailments (left) 2 Vehicles and (right) 3 Vehicles 

During the two vehicle tests, the rear locomotive derailed in a higher number of tests 

than the front locomotive. In the three vehicle tests of tests, the rear locomotive also 

derailed in the majority of tests, while the carriage derailed in only 10% of the tests. 

 Bogie Derailments 6.5.3

The tool is also capable of producing the following data, which shows whether the front 

or rear bogie of the vehicle derailed the most. 

Two Vehicles 

The following charts (Fig. 6.4) show which bogie derailed in the two vehicle tests.  

  

Figure 6.4 - Bogie derailments per vehicle (2 vehicles) 

This data shows that, in instances where the front locomotive derailed, it was the front 

bogie that derailed in the majority of tests. Whereas when the rear locomotive derailed, 

the front bogie and rear bogie derailed in roughly equal amounts. 
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Three Vehicles 

The data in the charts below (Figure 6.5) is from the three-vehicle tests. 

             

Figure 6.5 - Bogie Derailments per vehicle (3 Vehicles) 

The data for the front and rear locomotive is very similar to the previous tests; the front 

bogie of the front locomotive derails in the majority of tests, while the bogies of the rear 

locomotive derail in roughly equal amounts. It also shows that the carriage’s front bogie 

derails in more tests than its rear bogie. 

 Wheelset Derailments 6.5.4

It is also possible to identify how often individual components of the vehicle become 

derailed, as demonstrated by the wheelset derailment data below. 

Two Vehicles 

Table 6.4 (below) shows the number of derailments per wheelset recorded during the 

two vehicle tests. 

Component Derailments 

FrontLoco_BogieF_WheelsetF 108 

RearLoco_BogieR_WheelsetR 97 

RearLoco_BogieR_WheelsetR 97 

RearLoco_BogieF_WheelsetF 88 

FrontLoco_BogieF_WheelsetR 69 

RearLoco_BogieR_WheelsetF 63 

RearLoco_BogieF_WheelsetR 52 

FrontLoco_BogieR_WheelsetR 49 

FrontLoco_BogieR_WheelsetF 29 

 

Table 6.4 - Number of Derailments per Wheelset (Two Vehicles) 
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The chart in Figure 6.6 shows the derailments per wheelset in the 2 Vehicle tests. 

 

Figure 6.6 - Derailments per Wheelset (2 Vehicles) 

This data shows that the front wheel of the front wheelset of the front locomotive was 

the most common wheelset to become derailed, while the front wheel of the rear bogie 

of the front locomotive was the least common. 

Three Vehicles 

The number of derailments per wheelset in the three vehicle tests is shown in Table 6.5, 

below. 

Component Derailments 

FrontLoco_BogieF_WheelsetF 99 

RearLoco_BogieR_WheelsetR 97 

RearLoco_BogieR_WheelsetR 97 

RearLoco_BogieF_WheelsetF 88 

RearLoco_BogieR_WheelsetF 67 

RearLoco_BogieF_WheelsetR 56 

FrontLoco_BogieF_WheelsetR 41 

FrontLoco_BogieR_WheelsetR 32 

Carriage1_BogieF_WheelsetF 25 

FrontLoco_BogieR_WheelsetF 18 

Carriage1_BogieR_WheelsetF 12 

Carriage1_BogieR_WheelsetR 11 

Carriage1_BogieF_WheelsetR 9 
 

Table 6.5 - Number of Derailments per wheelset (3 Vehicles) 
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The following chart (Fig. 6.7) shows the data from the three vehicle tests visually. 

 

Figure 6.7 Derailments per Wheelset (3 Vehicles) 

Again, the front wheelset of the train derails the most, but in these tests it is the carriage 

wheelsets that derail the least. 

 Performance Data 6.5.5

Table 6.6 (below) shows the average framerate recorded in each test on each curve 

radius during each of tests presented in this section. 

 Average Framerate (FPS) 

Radius 100 125 150 175 200 Average 

Bogie 64.9 66.3 61.6 67.1 64.5 66.0 

1 Vehicle 51.3 48.9 48.7 54.2 52.7 51.16 

2 Vehicles 43.3 44.3 43.9 47.9 46.5 45.18 

3 Vehicles 37.9 40.9 40.8 40.4 41.5 40.3 
 

Table 6.6 - Performance figures for a range of trains and curve radii 

Increasing the number of vehicles leads to a decrease in framerate, which is to be 

expected. Increasing the radius of the curves does not affect performance. A single bogie 

runs at 65.4 FPS and is therefore running in real-time.  

A single vehicle runs at 51.15 FPS and introducing additional vehicles decreases the 

average framerate by approximately 5fps. This level of performance is below the real-

time target of 60 FPS, but can still be described as ‘near-real-time’. 
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6.6 Sample Rapid Prototype Testing 

In this section are samples of the results collected during tests designed to test the ability 

of Locomotion to act as a rapid prototyping tool. The following tests were conducted with 

a single bogie or locomotive on a 2km straight and a 200m radius looped track.  

The tests in Chapter 5 have already demonstrated how the batch testing features can be 

used to evaluate a range of different simulation settings automatically, without requiring 

user input or supervision after the initial setup. However, the tests in Chapter 5 involved 

using the vehicle properties specified in Table 3.1 and varying the parameters of the 

Physics Engine. The tests in this section will use the Physics Engine parameters that 

produced the best results during the testing in Chapter 5, and will adjust the properties of 

the vehicle itself, as an engineer might do during rapid prototype testing.  

In previous tests on the straight: 

� The stable speed of the bogie was: 88mph. 

� The derailment speed of the bogie was: 92.27 mph 

� The stable speed of the locomotive was: 74 mph 

� The derailment speed of the locomotive was: 77.34 mph  
 

In previous tests on the 200m radius loop: 

� The bogie derailed at: 79.22 mph. 

� While it was predicted by the Nadal Formula to derail at: 83.38 mph. 

� The locomotive derailed at: 60.53 mph. 

 Test Design 6.6.1

Three parameters of the vehicle have been selected for testing in this section. These 

parameters, along with their default values, are as follows: 

� Wheelbase: 2.2 m 

� Bogie Spacing: 11.1m 

� Locomotive Centre of Gravity: -1.0 

 

Each of these parameters will be tested using Locomotion’s batch testing features, in 

order to determine the effect of adjust them on the stability, derailment speed and stable 

speed of the bogie/vehicle. 
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The vehicle is tested on two layouts: 

� 2km Straight 

� 200m Loop 
 

This enables an evaluation of its top speed on the straight track and of its derailment 

speed on the curved track (200m was selected as it is one of the layouts on which the 

Nadal Limit predictions can be used).  

 Bogie Spacing Tests 6.6.2

In these tests, the spacing between the bogies is altered to determine if it has an effect 

on the stability and derailment speed of the vehicle.  

Test Design 

The locomotive is tested on straight track, and on the 200m looped track. The bogie 

spacing is adjusted from the default of 11.1m to 15.1m, as shown in the screenshots 

below (Figure 6.8). This range of bogie spacing is the widest range possible which avoids 

contact with the chassis elements, while ensuring that the front/back wheels are do not 

extend in front of/behind the vehicle. 

 

 

Figure 6.8 - Locomotive with Bogie Spacing of 11.4m (top) and 15m (bottom) 

Predictions 

It is expected that a significant reduction to the bogie spacing would reduce the stability 

of the vehicle, but the range of spacing values tested are not expected to make a 

significant difference. 
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Straight Results 

Figure 6.9 (below) shows the results of testing on the 2km straight track. 

 

Figure 6.9 - Derailment Speeds per Bogie Spacing (Straight) 

There is no significant trend in the results. The results vary between a minimum of 75.88 

mph and 79.744 mph, but not in any way consistent with the changes in bogie spacing. 

Loop Results 

Figure 6.10 (below) shows the results of testing on the 150m radius loop track. 

 

Figure 6.10 - Derailment Speeds per Bogie Spacing (Loop) 

As with the straight tests, there is some variance in derailment speed of between 59.96 

mph and 61.49 mph, but it does not change in a way that is consistent with the changes in 

the bogie spacing. 

Stable Speeds 

The stable speed of the locomotive was 74mph in all tests, regardless of bogie spacing, 

which is the same as the results in Section 6.4.  

Conclusions 

Adjusting the bogie spacing appears to have no significant effect on the stability of the 

Locomotive. However, the tests in this section have demonstrated that it is possible to 

iteratively adjust the dimensions of the vehicle using the batch testing feature in the 

Locomotion tool. 
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 Bogie Wheelbase Tests 6.6.3

In these tests, the spacing between the wheelsets of the bogie is altered to see if it has an 

effect on the stable speed of the bogie, or on its derailment speed on the 200m radius 

curve. The default value for the bogie wheelbase, based on Table 3.1, is 2.3m. 

Test Design 

The bogie is tested on straight track, and on the 200m looped track. Its derailment speed 

and stable speed on each layout is recorded. The wheelbase of the bogie is adjusted from 

1.5 to 3.0m. The screenshots below (Fig. 6.11) show the extremes of the values tested. 

    

Figure 6.11 - Bogies, with wheelbase of 1.5m (left) and 3.0m (right) 

Predictions 

It is expected that increasing the spacing between the wheels of the bogie will produce 

more stable results (and that reducing the spacing below the default value will make the 

bogie less stable). 

Straight Track Results 

The graphs below (and overleaf) show the results of testing on the 2km straight track. 

Figure 6.12 shows the derailment speed of the bogie in each test.  

 

Figure 6.12 - Bogie Wheelbase Derailment Speeds (Straight) 
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Figure 6.13 shows the number of derailments in each batch of 10 tests. 

 

 

Figure 6.13 - Derailments per Bogie Wheelbase (Straight) 

The results show an increase in the derailment speed of the vehicle, and a decrease in the 

number of derailments, as the wheelbase of the bogie was increased. This means the 

bogie was successfully reaching the end of the track in at least some of the tests at a 

wheelbase of 2.4m and above. In tests with a Wheelbase of 3m, the bogie only derailed in 

40% of the tests and reached a peak speed of 103.223 mph, an increase of approximately 

10mph over the results achieved with the default wheelbase of 2.3m. 

Stable Speed Tests (Wheelbase = 3.0m) 

Further testing was conducted to determine how increasing the wheelbase affects the 

stable speed of the bogie. The graph in Figure 6.14 (below) shows the derailments per 

target speed for a wheelbase of 3.0m on the 2km straight track. 

 

 

Figure 6.14 - Derailments per Target Speed (Bogie, Wheelbase 3.0m) 

In stable speed tests at a wheelbase of 3.0m, the bogie was able to reach a stable speed 

of 90mph, an increase of 2mph over the previous best results. 
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Loop Results 

Figure 6.15 (below) shows the results of testing on the 200m radius loop track. During 

these tests, the bogie derailed in all tests with all wheelbase values. 

 

Figure 6.15 - Derailment Speeds per Bogie Wheelbase (200m Loop) 

There is, in general, an increase in the derailment speed of the bogie as wheelbase 

increases. It increases from a minimum of 76.70 mph at 1.5m to 79.77mph at 3.0m. 

However, this increase is minimal and it could be argued that the results do not show a 

conclusive improvement. 

Conclusions 

Both tests of tests results show an increase in the derailment speed of the bogie. This 

suggests, as expected, that increasing the wheelbase of the bogie makes it more stable. 

 Centre of Gravity Tests 6.6.4

The following tests show the effect of adjusting the centre of gravity of a single 

locomotive on its cornering behaviour. 

Test Design 

The Locomotive is tested on straight track, and on the 200m looped track. Its derailment 

speed and stable speed on each layout is recorded.  

The centre of gravity (COG) of the vehicle entity is a vector, which defines the 

displacement of the centre of gravity from its default value, which for a rigid body in 

PhysX is defined (in local coordinates) as [0, 0 ,0]. In these tests, the z offset of the centre 

of gravity is adjusted from -1.0m to (+)1.0m.   

This is illustrated in Figure 6.16 (overleaf). The grey box represents the locomotive body, 

the black cross represents the default centre of gravity of the body ([0,0,0]) and the 

arrows show how the COG is adjusted in the z axis. 
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Figure 6.16 - Illustrating the Centre of Gravity of the Locomotive Body and how it is adjusted 

Predictions 

It is expected that raising the centre of gravity of the locomotive will reduce the 

derailment speed of the vehicle, particularly on the curved track. 

Straight Results 

The graph below (Fig 6.17) shows the results of testing on the 2km straight track. 

 

Figure 6.17 - Derailment Speed per Centre of Gravity (Straight Track) 

The graph in Figure 6.18 (below) is a closer look at the upper part of the graph (speeds 

above 70mph), showing the variance of results in more detail. 

 

Figure 6.18 - Derailment Speed per Centre of Gravity (Straight Track - 70mph to 80mph) 

Centre of Gravity 

Locomotive Body 
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There is some variance in the derailment speed between 73.44 mph and 79.14 mph. It 

could be argued that there is a slight downward trend, but the values fluctuate, so it is 

difficult to be certain of the effect of altering the COG from this data. 

Loop Results 

Figure 6.19 (below) shows the results of testing on the 200m radius loop track. 

 

Figure 6.19 - Derailment Speeds per Centre of Gravity (200m loop) 

The graph below (Figure 6.20) is a closer look at the upper part of the graph (speeds 

above 70mph), showing the variance of results in more detail. 

 

Figure 6.20 - Derailment Speeds per Centre of Gravity (200m Loop - 70mph to 75mph) 

There is some variance in the derailment speed between 73.44 mph and 79.14 mph. 

Again, it could be argued that there is a downward trend, but the values fluctuate, so it is 

difficult to be certain. 

Conclusions 

The data collected in this section shows that adjusting the centre of gravity of the body 

shell of the locomotive may have a small effect on the stability of the vehicle, reducing 

the derailment speed on straight and curved track by a small amount as the centre of 

gravity is raised. The results also show that it is possible to vary this vehicle property as 

part of the simulation tool’s batch testing features.  
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 Conclusions 6.6.5

The Testing in Section 6.6.2 showed that adjusting the spacing of the bogies did not 

appear to have any effect on the derailment speeds of the locomotive on straight or 

curved track. Adjusting the wheelbase of the bogie showed that moving the wheelsets 

further apart seemed to increase the stability of the bogie, causing it to derail at higher 

speeds on both straight and curved track. Adjusting the locomotive’s centre of gravity had 

a negligible effect, but raising it could arguably be said to decrease the stability of the 

vehicle and increase its derailment speed, though there is a lot of variation in the data. 

These results have not been verified with any mathematical predictions, simulated results 

or real-world testing, but are included to demonstrate the capabilities of the tool. 

Whatever the results, the testing in this section has shown that the tool is capable of 

being used to quickly evaluate the effect of adjusting the properties and dimensions of 

the vehicle and its components, and shows how Locomotion could be useful as a rapid-

prototyping tool. 

6.7 Sample Gauging Tests 

The following test scenario was designed to test the gauging of the vehicle. This would 

allow engineers to avoid gauging errors (like the one mentioned in Section 2.3.2). 

 Test Design 6.7.1

A set of ‘gauge gates’ have been built, as illustrated in Figure 6.21, below. Each gate is 

made up of two vertical cuboids and a cuboidal ‘cross-piece’. The gate is constructed 

based on two parameters; height and width. The polygons are created using the PhysX 

SDK, which has a method to create a box actor given a vector that defines its dimensions. 

The cuboids are half a metre square, with their height being defined according to the 

height and width properties of the gate. Figure 6.21 (left) shows a train passing through a 

gate, and (right) shows the height and width properties of the gate. 

 

Figure 6.21 - Diagram showing the gates used in the gauging tests 
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The gates have collision detection enabled (and so will notify the application when a 

collision has occurred) but do not have collision resolution enabled, so the physics engine 

will not process the collision beyond reporting it. This means that if the vehicle collides 

with gate 5, the test will not end and it will go on to collide with gates 6+ as well. Gates 

are colour coded green initially and change to red to indicate that a collision has occurred. 

100 gates are placed at 1 metre intervals along a 100m track. First, the height of the gate 

is set to a value above the height of the train, and the height is reduced by 1cm between 

each gate. The tests are then repeated, but with the width value decreasing by 1cm 

between each gate. 

 Predictions 6.7.2

The results should be reasonably accurate, but Skin Width will have to be taken into 

account. Skin Width of the gates and the body of the locomotive is set to its default value 

of 0.025m. 

� The width of the vehicle body rigid body is 2.8 m, so the vehicle should collide with 

gates of that width 

� The height of the body is 2.98 m, and the full height of the assembled vehicle 

(including track, wheels, bogie and chassis) is 4.04m , so the vehicle should collide 

with gates of that height 

 Screenshots 6.7.3

The screenshot below (Figure 6.22) shows the test in action.  

 

Figure 6.22 - Screenshot from Gauge Gate testing, showing gates highlighted in Green (no collision) 

The vehicle starts outside the ‘tunnel’ of gates, and the gates start with their ‘collision 

count’ set to zero, and their colour set to green. The screenshot overleaf (Figure 6.23) 

shows the train at a later stage, where collisions have occurred. 
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Figure 6.23 - Screenshot from Gauge Gate testing, showing gates highlighted in Red (collision) 

The figure shows that the locomotive has collided with a series of gates, and how the 

colour of the gates has changed, making it easy to identify the point where the first 

collision occurred. Each time a collision with a gate is detected, the ‘collision count’ of the 

gate is incremented. 

 Results 6.7.4

The results of the gauge tests with a locomotive and arrange of gate height and width 

parameters were as follows. 

Height Tests 

In these tests, the height of the first gate was set to 4.2m, which is 0.16 metres above the 

height of the vehicle, and each subsequent gate was set to be 1cm lower than the 

previous gate. There were 100 gates with heights ranging from 4.2m to 3.21m. The test 

was repeated 10 times. The graph in Figure 6.24 (below) shows the number of collisions 

for gates with heights of between 4.2m and 3.75m, during tests conducted at 1mph. 

 

Figure 6.24 - Graph of Collisions per Gauge Gate Height 

As the graph shows, there were no collisions for a gate height of above 4m, but there are 

8/10 collisions at a height of 3.99m, and 10 collisions per gate at a height of 3.98m and 

below.  
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The tests were also repeated from 1 to 10mph, and a subset of the results is shown in 

Table 6.7 (below). 

 Collisions 

Gate Height (m) ... 4.03 4.02 4.01 4 3.99 3.98 3.97 ... 

1 mph ... 0 0 0 0 8 10 10 ... 

2 mph ... 0 0 0 0 0 10 10 ... 

3 mph ... 0 0 0 0 0 10 10 ... 

4 mph ... 0 0 0 0 0 10 10 ... 

5 mph ... 0 0 0 0 0 10 10 ... 

6 mph ... 0 0 0 0 0 10 10 ... 

7 mph ... 0 0 0 0 0 10 10 ... 

8 mph ... 0 0 0 0 0 10 10 ... 

9 mph ... 0 0 0 0 0 10 10 ... 

10 mph ... 0 0 0 0 0 10 10 ... 

 

Table 6.7 - Gauging Height Test Results 

The vehicle hit the 3.98 height gate 10 times in each of the 10 batches, and did not hit any 

of the previous gates. It is only in the tests at 1mph that the vehicle hits the gate at 

3.99m. This suggests that the vehicle is somehow less stable when travelling at 1mph. The 

height of the full vehicle model is 4.04, and the results are 6cm out. However, the gates 

and the locomotive body both have a Skin Width of 0.025m, and the wheels and rails 

have a Skin Width of 0.01m each, which is a likely explanation for this discrepancy. 

Width Tests 

In these tests, 100 gates were placed along a 1km track. The width of the first gate was 

set to 3m, which is wider than the width of the vehicle, and each subsequent gate was 

1cm narrower than the previous gate. The test was repeated 10 times and the results are 

shown in Figure 6.25 (below). In these tests, the collision counts are as high as 20 for each 

gate, indicating that collisions occurred with both the left and right post (which are 

separate rigid bodies, so there is one collision callback for each). 

 

Figure 6.25 - Gate Collisions - Target Speed 1mph (Width Tests) 
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At a width of 2.82 and 2.81m, there are 3 collisions, which suggests that there was some 

lateral movement of the vehicle and that it possibly only hit one of the side posts in some 

of the tests. There are 8 collisions at a width of 2.80m and then collisions in all tests at a 

width of 2.79 and below. This is just 1cm below the actual width of the vehicle body, but 

it should be narrower as this does not take Skin Width into account. The collisions should 

not consistently occur until the gate width has decreased to 2.75m. 

The tests were also repeated from 1 to 10mph, and a subsection of the results are shown 

in Table 6.8 (below). 

 Collisions 

Gate 

Width 

(m) 

... 2.83 2.82 2.81 2.8 2.79 2.78 2.77 2.76 2.75 2.74 2.73 ... 

1 mph ... 0 3 3 8 20 20 20 20 20 20 20 ... 

2 mph ... 0 0 0 0 11 20 20 20 20 20 20 ... 

3 mph ... 0 0 0 0 0 5 10 20 20 20 20 ... 

4 mph ... 0 0 0 0 0 0 0 0 20 20 20 ... 

5 mph ... 0 0 0 0 0 0 0 0 20 20 20 ... 

6 mph ... 0 0 0 0 0 0 0 0 20 20 20 ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... 
 

Table 6.8 - Gauging Height Test Results 

The results show that at speeds of 3mph and below, there are collisions at wider gates 

(2.76m and above) but these collisions stop in the tests at 4mph and above, which 

consistently collide at widths of 2.75. This is correct with respect to the predictions, as the 

model is 2.8m wide, but the Skin Width of the gate posts and vehicle body is 0.025m (a 

total difference of 5cm). This concurs with previous data suggesting the vehicle is 

unstable when it is forced to maintain very low speeds. 

 Conclusions 6.7.5

The results in most of the gauge tests were logically correct, once the Skin Width of the 

rigid bodies is taken into account. In some tests at low speeds (1mph in height tests and 

below 4mph in the width tests) there were additional collisions that should not have 

occurred. This may indicate some low speed instability in both scenarios, and possible 

lateral movement of the vehicle in the width tests.  

These are simplified scenarios, but they demonstrate that the Locomotion tool could be 

used as a gauging tool. It may be necessary to adjust the models or the code to account 

for Skin Width, but the results were within, at worst, 4cm of the predicted results.  
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A similar test could be constructed to create a tunnel on curved or sloped track, but time 

constraints prevented the full implementation and evaluation of these scenarios. More 

details on how this feature could be extended are included in Future Work (Section 7.4). 

6.8 Chapter Summary 

The data in this section is presented as an example of the sort of data that the simulation 

tool can produce.  

Whole Vehicles and Multi-Vehicle Trains 

This data includes the derailment speeds for two and three vehicle trains. This data could 

be used to analyse derailment speed for particular trains on particular curve radii, 

something that is currently prohibitively expensive, or is beyond the capabilities of 

existing rail simulation tools. The results also include data about which 

vehicles/components derailed the most, which. could allow engineers to identify the 

components that are causing the problems and target them with design improvements. 

A Rapid Prototyping Tool 

These tests, as well as the testing conducted in Chapter 5, shows how the batch testing 

features and flexibility of the Locomotion tool allows a range of simulation/vehicle 

parameters to be adjusted and for any changes in the results to be analysed. This shows 

that the simulation tool could be suitable for use as a rapid prototyping tool. 

A Gauging Tool 

The gauge testing results were promising. There were some collisions with the gauge 

gates at low speed that should not have occurred, but the worst tests were within 4cm of 

the predicted values, and higher speed values (>3mph) were exactly as predicted. This 

shows that the tool has great potential for use in gauge testing, if a method can be found 

to take the Skin Width of the models into account. 

A (Near) Real-Time Simulation  

In terms of performance, on the looped track a bogie runs at 66 FPS; a single locomotive 

runs at approximately 50 FPS; two locomotives approximately 45 FPS and three 

locomotives at 40 FPS. Framerate varies with the complexity of the layout, as well as the 

number of vehicles in the train. Although not truly real-time, this performance can still be 

described as ‘near real-time’ and is a considerable increase in speed over traditional tools.  

The tests took between 9 and 12 hours, depending on the curve radius, derailment speed 

and framerate of the simulation. These speeds could be reduced if the simulation could 

be optimised and its performance increased. However, the fact that the tests are running 

in near real-time means that hundreds of tests can be conducted and average results 

collected in the same time (or less time) than a single test may potentially take in the 

more sophisticated engineering simulation tools. 



 

 

  Chapter 7

Conclusions and Future Work 

This chapter contains the conclusions of the research presented in this thesis, along with 

suggestions for future research and development that could be conducted using 

Locomotion, or a similar real-time rail dynamics simulation tool. 

7.1 Thesis Overview 

Chapter 2 presented background material and related work in the fields of rail dynamics, 

rail simulation and real-time physics engines. This chapter identified the problem area, 

introduced key terminology and application areas within rail dynamics, and discussed 

how a real-time simulation tool could supplement the existing tools that are currently 

used in the rail industry. It also discussed real-time physics engines, their applications 

inside and outside the games industry and how they might be the solution to creating a 

real-time engineering simulation tool. 

Chapter 3 presented the design of the Locomotion tool, including the design of the virtual 

vehicle and testing environment. A number of design variations were identified that 

would require testing in order to determine which was the most suitable for the 

simulation of rail dynamics. This chapter also included the software design, including the 

integration of the PhysX engine into the simulation and the identification of key physics 

engine parameters that controlled the fidelity of the physical simulation and which did 

not correspond to real-world values and so would needed to be evaluated.  

Chapter 4 presented details of the implementation of the Locomotion tool, including a 

summary of the issues that were encountered (some of which caused significant delays) 

and some of the changes that were made to the design, such as disabling Vertical 

Synchronisation in order to study the effect of any changes to the simulation on its 

performance. 

Chapter 5 presented an evaluation of the Wheel/Rail interface simulation, including tests 

conducted with the default physics engine parameters and how the results were 

iteratively improved by adjusting the parameters defined in Chapter 3. The results show 

that the simulation can be configured and augmented to produce results that are within 

2% of the Nadal Limit predictions, with a standard deviation of less than 4 mph. 

Chapter 6 presented sample data from multi-vehicle testing, as well as an evaluation of 

the gauge testing and rapid prototyping features of the Locomotion tool. 
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7.2 Aim and Goals 

The following discussion is based on the aims, goals and intended applications that were 

described in Section 3.1. 

 Aim 7.2.1

The main aim of this research was to design, develop and evaluate a rail dynamics 

simulation tool based on a real-time physics engine. This thesis has presented details of 

the design, implementation and evaluation of the Locomotion simulation tool, which was 

developed using the PhysX engine and has produced some promising results, which will 

be discussed in more detail later in this chapter. 

 Goals 7.2.2

A discussion of this this research with reference to the goals (presented in Section 3.1.2) 

is included below: 

1. To develop a real-time rail dynamics simulation tool based on a physics engine. 

The Simulation Tool presented in this Thesis is capable of simulating the dynamics of a rail 

bogie in real-time. This is thanks in part to the integration of the PhysX engine into the 

application, as described in the Simulation Design (Chapter 3). 

2. To determine the error-bound of the simulation in order to appraise its usefulness to 

engineers. 

As discussed in Chapter 5, initial testing with simple objects, as well as with more complex 

rigid bodies, revealed very consistent results with margins for error that were within 

hundredths of a percent. Testing on bogie derailment with adjusted parameters and the 

addition of the spline-based centring force produced results that were within 2% of the 

target derailment speed, with a standard deviation of less than 4 mph.  This error bound 

should be sufficiently small as to be useful to engineers, in scenarios where a real-time 

tool would be used instead of, or as a supplement to, the more accurate simulation tools. 

3. To constrain the error - by introducing constraints, adjusting physics engine 

parameters or by applying additional forces, where necessary/possible. 

The initial results were improved by adjusting a range of physics engine parameters and 

by the addition of the spline-based centring code, as described in the testing presented in 

Chapter 5. 
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4. To produce a tool that is flexible, to enable it to be evaluated easily and to allow it to 

be used as a rapid prototyping tool. 

As many parameters of the simulation, vehicle components and testing environment as 

possible are defined in configuration files, which are loaded into the simulation and do 

not require any recompilation of the application code to edit. Many of the parameters are 

also capable of being automatically incremented during batch testing, as shown 

throughout Chapters 5 and 6. 

5. To evaluate the ability of the tool to simulate the wheel/rail interface. 

Evaluation with the conical wheelset has shown sinusoidal lateral motion of the wheelset 

which is logically correct and shows that the centring behaviour of the wheelset is 

occurring to at least some degree in the simulation. This research has also included 

testing of rail bogies, which are shown to derail at speeds close to those predicted by the 

Nadal Limit, if the simulation is adjusted and augmented appropriately. 

6. To attempt to simulate the dynamic behaviour of multi-vehicle trains. 

Multi-vehicle trains have been simulated using abstracted models, and although their 

performance is below the target real-time framerate of 60 FPS, it can still be described as 

‘near-real-time’. Time constraints prevented further evaluation, but sample data was 

presented in Chapter 6. 

7. To attempt to simulate other aspects of rail vehicle dynamics, such as gauging 

Gauge testing does not necessarily require the simulation of the wheel/rail interface to be 

truly accurate, nor does it necessarily require the vehicle to be capable of travelling at 

very high speeds. An evaluation of the tool’s suitability for gauge testing is included in 

Chapter 6 and, though limited time was available to fully evaluate these features, the 

initial testing produce promising results. 

8. To use results from the simulation to discuss whether such a real-time tool would be 

useful to rail engineers, and for what purpose(s). 

A more detailed discussion of the suitability of the simulation tool for its intended 

applications is included in the next section; however the results in many of the tests were 

promising. The simulation of the WRI was reasonably accurate, within a certain error 

bound, but it need not necessarily be so in order to enable other testing applications, 

such as gauge testing. 
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 Intended Applications 7.2.3

Based on the research presented in Chapter 2, a number of potential applications for a 

real-time rail dynamics simulation tool were discussed in Section 3.1.3.  In this section, a 

discussion of the locomotion tool’s suitability for each of these intended applications is 

presented, based on the data collected in Chapters 5 and 6. 

Rapid Feedback for Design Changes 

The tool can be easily customised by adjusting the various parameters, which control 

vehicle properties (such as mass and material properties), test settings (such as track 

layout and vehicle type) and component settings (such as the choice between Single Body 

and Multi Body wheelsets). As many of these parameters as possible are defined in text 

files that are loaded into the simulation and so adjusting them does not require any 

recompilation of the application code, reducing the turnaround between tests. Feedback 

from the simulation is also rapid. The longest tests, which involved multiple batch sets, 

consisting of hundreds of tests across a range of parameters and which were conducted 

on the widest curve radii, were completed in around 12 hours. This is considerably 

shorter than the amount of time that traditional engineering simulation tools could take 

to process certain scenarios; multiple tests have been conducted using Locomotion 

quicker than a single test may take in traditional tools. 

A Rapid Prototyping Tool 

In addition to the features described above, the tool also has batch testing features, 

which allows a range of simulation settings, vehicle parameters and vehicle components 

to be automatically tested without user supervision. The tests conducted in Chapters 5 

and 6 show that the batch testing features (and the additional LocoDataScan utility) mean 

that Locomotion would be very useful as a rapid prototyping tool, as it allows the user to 

quickly see the effect of changing vehicle components and parameters, with averages and 

comparisons between derailments, lateral offset, wheelset stability, etc. calculated 

automatically and data exported in a format that can be loaded into other applications 

such as Microsoft Excel for rapid analysis. 

A Tool to Analyse Vehicle Stability and Derailment Behaviour 

Time constraints prevented the full implementation of features such as suspension, yaw 

resistive motion on the bogie pivots etc., however sample data from successful multi 

vehicle tests was included in Chapter 6. 

� Determining the maximum safe speed of the vehicle 

Locomotion has been shown to produce derailment results for a single bogie close to the 

Nadal derailment predictions. It could conceivably be used to test the derailment speed 

for real-world track layouts, rather than the simplified layouts used in this research. 
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However, further evaluation is required to ensure that the simulation of the wheel/rail 

interface is sufficiently accurate, and further development of the virtual vehicles (with 

features such as suspension), is necessary to make such assertions. Additionally, in its 

current state the simulation is limited to tests at or below 88mph, which limits the speeds 

and layouts that can be tested using the tool. 

� Recording flange collisions  

The Multi Body Wheelset can used to detect flange collisions, as shown in Section 4.1.5 

and Section 5.7. However the MB wheelset was considerably less stable than the single 

body wheelset and was only capable of achieving a stable speed of 8mph. However, if an 

alternative method of detecting flange collisions was developed to enable this behaviour 

to be studied, then the simulation tool would be eminently suitable for such testing. 

� Studying the effect of inter-vehicle connections on vehicle stability 

Time constraints prevented a full implementation and evaluation of these behaviours. 

However, the tool is capable of simulating multi-vehicle trains in near-real-time, and the 

results presented in Chapter 6 show how the addition of extra vehicles to the train affects 

its stability. It is conceivable that the tool could be extended to include extra features to 

study these behaviours, which would likely compromise the simulation’s performance but 

may still be capable of near-real time execution. This is discussed in more detail in Section 

7.4. 

Wheel/Rail Interface Simulation 

Tests presented in Chapter 5 with the Conical Wheelset (Section 5.7.3 and Section 5.10) 

have shown sinusoidal motion of the wheelset, and possible hunting oscillation, and that 

this behaviour is logically correct (i.e. increases with speed, decreases with curve radius). 

Other testing has shown that a bogie can be made to derail at speeds close to the Nadal 

Limit predictions on a range of curve radii, at speeds up to the maximum stable speed of 

88mph, and does not derail on wider curve radii. Despite this, however, it is difficult to 

say with certainty that the simulation of the wheel/rail interface is truly accurate in the 

current version of the simulation tool. Additional data would have to be collected to make 

this assertion with more certainty. It would have been useful, for example, to test 

additional wheelsets - more complex profiles, different conicities etc. - and this was part 

of the original plan for the project, but it took too long to develop, evaluate and refine the 

simulation features presented in this Thesis. It was also not possible to conduct 

derailment tests on looped track with a single wheelset, as described in Section 5.9.  

The data presented in this Thesis suggests that this might not be the best application area 

for such a simulation tool, but that it may be more suitable to simulating bogies and 

whole vehicles. As discussed in Section 5.12, one reason for this is the fact that the bogie 

frame limits the wheelsets’ degrees of freedom, resulting in a more stable simulation.    
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A Gauging Tool 

Although limited time was available for gauge tests to be carried out, the tests presented 

in Chapter 6 (Section 6.7) have shown that the tool may be suitable for use as a gauge 

testing tool. The scenarios presented in this Thesis were simplified, but the results were 

very promising, corresponding well with the predictions, and should go on to work with 

more complex gauge testing scenarios, such as tunnels on sloped and curved track 

layouts. The Skin Width of the rigid bodies has to be taken into account. Perhaps the rigid 

bodies could be constructed so that they are slightly larger, so the shapes are closer to 

their true size when the Skin Width is applied. Alternatively, the tool could easily be 

programmed to take Skin Width into account when producing and outputting its data.  

7.3 Conclusions 

A rail dynamics simulation tool has been implemented using NVidia’s PhysX Engine, and it 

has been shown to be capable of producing results that approach those predicted by 

other means. The following are general comments on the key results of this research. 

 Straight Line Speed 7.3.1

One of the goals of this research was to get the vehicle to travel at speeds of up to 

100mph, but the vehicle was unable to reach this speed. Instead the best stable speed 

result, achieved with a single bogie, with Single Body wheelsets, modified simulation 

parameters and the application of additional centring forces to the wheels, was 88mph. 

 Cornering Behaviour 7.3.2

Although it was not possible to conduct testing on a single wheelset, testing with a single 

bogie on a looped track showed that the vehicle can be made to derail at speeds close to 

the predictions, within a small margin of error and a small standard deviation of results. 

 Simulation Design Decisions 7.3.3

A number design decisions were identified in Chapter 3 and evaluated in Chapter 5. These 

were evaluated, and the collected data was used to suggest the most suitably choices for 

simulating rail vehicle dynamics. 

Single Body vs Multi Body Wheelsets 

The first of these was the difference between the Single Body and Multi-Body wheelsets. 

The MB wheelset was more flexible, allowed for flange collision detection and provided 

more information about the forces acting on each wheel/flange of the wheelset. 

However, testing (in Sections 5.7 and 5.8) has shown that the MB Wheelset is significantly 

less stable than the SB wheelset, achieving a stable speed of 8mph compared to the SB 

Wheelset’s 76mph (when tested under similar conditions). 
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Wheelset Polygon Count 

Three variations of wheelset were designed with different polygon counts. The data 

collected in Section 5.7.6 showed that a higher polygon count produced more stable 

results, with only a minor reduction in the performance/framerate of the simulation. 

However, the data also suggests that increasing polygon count of the wheelset further 

was unlikely to produce significantly more stable results. The optimum results identified 

in these tests was a wheelset whose wheels/flanges were constructed from cylinders in 

64 segments. 

 Physics Engine Parameters 7.3.4

The testing presented in Chapter 5 identified the following combination of physics engine 

parameters that produced the best results (highest straight line speed and most realistic 

cornering behaviour), according to the collected test data. These parameter values are:  

� Simulation Timing Multiple: 20, which produces: 

o Number of Substeps: 160 

o Timestep: 0.000833̇ ̇

� Rigid Body Solver Iteration Count (SIC): 184 

� Joint Solver Extrapolation Factor (SEF): 1.0 

� Skin Width: 0.01 

 

It is possible that different configurations are better suited to different applications. 

Gauge testing, for example, is less dependent on the accuracy of the wheel/rail interface 

simulation and does not necessarily require the vehicle to be able to travel at high 

speeds, and so the performance of the simulation during gauge testing could be improved 

by reducing these parameters. 

 Performance 7.3.5

The target framerate of the simulation was 60fps. By disabling Vertical Synchronisation 

(VSync), the simulation was capable of running at higher framerates (initially in excess of 

220 FPS), and the effect of improving simulation fidelity on its performance could then be 

measured. On a 1,000m radius looped track, a single bogie executes at approximately 66 

FPS, which is faster than real-time. A locomotive executes at 51 FPS (85% of real-time), 

two vehicles at 45 FPS (75% of real-time) and three vehicles at 40 FPS (67%). The tool is 

not capable of simulating whole vehicles in real-time, but their performance may still be 

considered ‘near-real-time’ (and represents a significant performance increase over the 

existing rail simulation tools). 
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 Setbacks and Delays 7.3.6

Due to the issues described in Section 5.9 that prevented testing on curved track with a 

single wheelset, the Nadal limit predictions for a single wheelset were unable to be used. 

These would have produced more realistic predictions and results than the bogie tests. 

The development and debugging of the simulation tool took significantly longer than 

expected, due to issues such as those described in Section 4.2. It also took longer than 

expected to refine the features necessary for the testing conducted in Chapters 5 and 6, 

and to carry out these tests and analyse the results. These delays prevented a detailed 

analysis of the results presented in Chapter 6. This was intended to be a more thorough 

examination of multi-vehicle trains, gauging and rapid prototyping features, but it was 

decided that the focus of the remaining time should be on the simulation of the 

wheel/rail interface. 

7.4 Future Work 

This section describes potential areas of research and development that could be 

conducted based on the simulation tool presented in this thesis. 

 Further Research 7.4.1

Further evaluation of the Locomotion tool may be possible, with only minor additional 

features and modifications. 

Collecting Additional Data 

Additional data could be collected from the current system. The tests from Chapter 5, for 

example, could be repeated on a larger range of curve radii, or using different track 

gauges and wheel profiles to see if the data is consistent with additional, revised 

predictions made using the Nadal Limit. It is also possible that there is additional data to 

be extracted from the PhysX engine, such as more detailed information about the contact 

points and forces, which not discovered during this research.  

Additional Validation Data 

It may also be possible to develop new tests of other behaviours of the 

wheelset/bogie/vehicles using the current version of the tool that can be validated using 

real-world data, data from the more advanced simulation tools or other mathematical 

predictions, if such data can be obtained. One potential example is described below. 

� Conical Wheelset Testing 

For example, if the necessary formulas/data/calculations could be attained, it might be 

possible to use the conical wheelset, as featured in the testing in Section 5.7, to further 

study the simulation of the wheel/rail interface in the Locomotion Tool.  
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The simulation could then be used to fine tune the spline-based centring technique to 

make the results as accurate and realistic as possible. During this research, the relevant 

formulas could not be obtained and there was no access to other simulation tools that 

would have allowed a more detailed evaluation of this behaviour. 

Further Refinement of Parameters 

It may also be possible to fine tune the results with further adjustments to the physics 

engine parameters. For example, another method - other than the timing multiple - could 

be used to adjust the simulation timing parameters. Or the Solver Iteration Count could 

be incremented in smaller steps (i.e. steps of 1 rather than 4 or 5 at a time) between 

batches in order to find the optimum results. Furthermore, the target speed of the 

vehicle could be incremented in smaller steps (i.e. 0.1mph between tests instead of 

1mph), in order to more accurately determine the true stable speed and derailment 

speed of the vehicle. Time constraints prevented more extensive testing such as this 

during this research, as doing so would have required a significant number of additional 

tests to be conducted and for the results to be collected/analysed etc.  

Improving the Spline-based Centring Technique 

It is possible that further refinement of the spline-based centring technique could 

produce more consistent or more stable results. It would be necessary to conduct a more 

detailed study into the forces acting on the wheelset and how these compare to expected 

results, in order to calculate exactly the simulation differs from reality. Then, refinements 

could be made to the centring force, which may be able to produce more realistic results 

in a wider range of scenarios. This could include using the Conical Wheelset, as described 

above. 

 Further Development 7.4.2

After consultation with NewRail, a number of potential applications for a real-time rail 

dynamics simulation tool have been suggested, in addition to those discussed earlier. 

Some of these applications would require the implementation of additional features, and 

those discussed in this section are those that it is believed will be well-suited to the use of 

Physics Engines and game development techniques. 

More Dynamic Vehicle Adjustment 

The tool could be adjusted to allow for additional modifications to be made to the 

simulation/vehicle/testing environment in real-time. This would require further 

parametrisation of the simulation, as well as additional interface features. This would 

allow the user to make changes to more aspects of the simulation without having to exit 

the application, edit the configuration files and restart the application.  
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Extra Features 

As mentioned in Section 2.1, bogie joints are designed to resist yawing motion, but this 

feature has currently not been included in the Locomotion tool. Additionally, some 

passenger trains also often have flexible walkways between the vehicles, which allow 

passengers to move from one carriage to another, while still allowing the necessary 

relative motion to enable proper cornering behaviour. It should be possible to add such 

features to the simulation with negligible impact on its performance. 

� Suspension 

A major feature currently missing from the simulation is suspension, which could be 

modelled in a number of ways, such as the use of more complex joint objects and/or 

springs (a common feature of physics engines [60]). Abstractions would have to be made 

to produce a suitable approximation of the system that will not compromise the real-time 

performance of the simulation, but a reasonable approximation should be possible, if the 

properties of the suspension system can be abstracted appropriately. This would increase 

the realism of whole vehicle simulation, as well as the simulation of the WRI. 

Vehicle Gauging 

It should be possible to extend the gauge testing features from Section 6.7 to add more 

complex models of infrastructure (tunnels, bridges, platforms, points etc.), without a 

significant impact on the performance of the simulation. It may also be possible to 

simulate other vehicles in order to ensure that collisions are avoided, though this is likely 

to impact the performance of the simulation significantly. 

Canting 

Canting has not been included in this simulation, but could be added to improve the 

realism of the simulation and to model real-world rail layouts. Generating the track 

geometry would be a more complex process, but simulating the track once it has been 

generated would not affect the performance of the simulation, if the track geometry does 

not have a significantly increased polygon count over the current track layouts. 

AI Vehicle Control 

It should be possible to write an Artificial Intelligence (‘AI’) system to control the train, in 

order to produce a more realistic approximation of dynamic vehicle behaviour in a 

complex rail network. For example, an AI ‘driver’ could be programmed to accelerate and 

decelerate for corners or stop in stations, just as a real train driver would. There could be 

a series of parameters to control this behaviour that the user could adjust in real time, or 

as part of the simulation’s batch testing features, in order to, for example, determine the 

safest driver behaviour on a section of track that is prone to instability or derailment. 
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Buffers and Couplers 

There is currently no simulation of buffers and a distance joint currently approximates the 

coupling between the vehicles. Additional entities would have to be added, possibly using 

springs, to approximate the buffers, but this could be done with only limited impact on 

simulation performance. Alternatively, for vehicles that do not use buffers, the damping 

effects of inter-carriage coupler systems, such as the walkways mentioned earlier in this 

section, could likely be approximated in an abstract way with only minimal impact on the 

performance of the simulation.  

Decoupling Vehicles 

The couplings between vehicles could conceivably break, for example in the aftermath of 

an explosion, and engineers might be interested in studying the effect of decoupling 

vehicles at speed. This could be done by adding a maximum force to the joints between 

the components, allowing them to break when the threshold is exceeded, or by allowing 

engineers to detach these components manually, or at specific points on a rail layout. 

Articulated Vehicles and other Vehicle Types 

Some vehicles, such as the ‘Metrocar’ vehicles used on the Tyne and Wear Metro system 

[61], use articulated vehicles. It should be relatively simple to simulate such vehicles 

without compromising the real-time performance of the simulation tool, if similar 

abstractions used in the development of the existing Locomotion virtual vehicle are used. 

� Freight and Passenger Vehicles 

The simulation already includes the ability to select from multiple vehicle types. The 

‘freight’ locomotive and wagon have different dimensions, mass and centre of gravity 

properties from the ‘passenger’ locomotive and carriage that were used in earlier testing. 

A screenshot of a three-vehicle freight train, comprised of two freight locomotives and a 

freight wagon, is shown in Figure 7.1 (below). 

 

Figure 7.1 - Screenshot of Freight Vehicles in Locomotion 

This feature could be extended to allow for a wider range of train/vehicle types to be 

simulated in the Locomotion tool. 
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More complex wheel profiles 

A range of different and more complex wheel profiles could be constructed and used in 

the simulation, allowing more data to be collected and for comparisons to be made. 

However, more complex rigid bodies would reduce simulation performance. 

Alternatively, it may be possible to approximate more complex wheel profiles by using 

simplified physical models and adjusting the formulas used to calculate relative conicity 

and centring forces, allowing the effect of changing wheel profiles to be simulated in a 

way that will have less impact on the performance of the simulation. 

Replay System 

It should be possible to store the position of all of the objects in the system, which would 

allow the last few seconds off the simulation to be replayed. In the event of a derailment, 

for example, the simulation could allow engineers to step backward through the last few 

seconds of the simulation to study the instability and attempt to identify the cause of the 

derailment. It may even be possible to store the data in such a way that the entire test 

can be viewed at a later date, similar to the visualisations produced by VAMPIRE (see 

Section 2.3.3) or the PhysX Visual Debugger (Section 4.1.7). 

Soft Body Dynamics 

Some physics engines, including PhysX, include the ability to simulate material 

deformation via the use of ‘Soft Bodies’. Soft Bodies are simplified, deformable mesh 

objects [21] and could be used to model flexible materials and add more realism to the 

simulation. The most useful application of this feature in the context of rail vehicles and 

multi-vehicle trains would be the addition of flexibility to the vehicle bodies in the current 

system, since this flexibility can have an effect on the vehicle’s stability [8], particularly in 

the event of hunting oscillation or explosive blasts. It is likely that this would compromise 

the real-time performance of the simulation, but physics engine methods are designed to 

simulate such material deformation as efficiently as possible. An evaluation of the realism 

and performance of Soft Body material simulation in the physics engine would be 

required before it could be used in an engineering tool.  

Comparing Physics Engines 

It was originally intended that the simulation would be implemented using multiple 

physics engines, in order to make a comparison between them. Time constraints 

prevented this, but it should be possible to use an interface such as the Physics 

Abstraction Layer (as described in Section 2.4.4) to compare different physics engines to 

see which is best suited to modelling rail vehicle dynamics. It has already been shown that 

each engine has advantages and disadvantages in different circumstances [42] and a 

comparison between the different physics engines might be useful to determine which is 

best suited to the task of simulating rail vehicle dynamics and/or the wheel/rail interface.  
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� PhysX Version 3.X 

It is possible that a new version of the PhysX engine might produce better results. PhysX 

version 3 was released in 2011 and is a major reworking of the physics engine which has 

‘undergone architecture and API improvements, code was cleaned and refactored, 

considerable legacy cluster was removed, new features were added’ [4] and so could be 

capable of producing different or more realistic results to version 2.8.4. 

Access to Physics Engine Source Code 

The use of an open-source physics engine, such as Bullet, Newton or the Open Dynamics 

Engine, would enable adjustments to be made to the internal workings of the engine, 

allowing it to be customised to suit the needs of rail engineers, rather than treating the 

internal workings as a black box and dealing only with the parameters, methods and 

callbacks that the physics engine API provides. Also, an open-source engine would provide 

access to more data about wheel/rail contacts and the forces applied to each wheel etc., 

which are not accessible through the ‘off-the-shelf’, closed-source version of PhysX. 

� \ 

In 2015, shortly before the conclusion of this research, NVIDIA released the source code 

for the PhysX engine [62] (version 3). If the source code were to be obtained, then a more 

detailed study of the internal workings of the physics engine could be conducted, as 

described above (including determining the exact integration method used - information 

that is not available at time of writing).  

Use of Specialist Physics Engines 

As well as the general-purpose physics solutions like Havok and PhysX, there are a 

number of other systems such as Digital Molecular Matter (DMM) [63] and the Euphoria 

Engine [64] that are used in game development. DMM is designed to allow realistic 

looking materials, such as glass shattering, wood splintering and metal bending. Euphoria 

animates characters by ‘generating motion on the fly – by simulating the character’s 

motor nervous system, body and muscles’. Game developers at Lucasarts were able to 

combine Havok, DMM and Euphoria in their game Star Wars: The Force Unleashed
11

 

without compromising the real-time performance of the game (though true realism in the 

physical behaviour of characters and objects was not the goal of this development). 

                                                      

11
 - this was based on information on the Lucasarts website in 2011, but an up-to-date reference on this 

game could not be found, since Lucasarts ceased trading in 2013 
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It may be possible to similarly integrate these engines into an engineering simulation. For 

example, if blast tests were added to the simulation then DMM could be used to show 

how the glass in the train’s windows might shatter and be thrown from the vehicle, 

indicating the chance of injury to bystanders if the blast occurred in a station.  

Euphoria could be used to model virtual passengers sitting on seats (or moving about the 

carriage), to study the effect of events - such as derailments - or design changes on their 

safety and comfort. 

Hardware Acceleration 

It should be noted that, although PhysX supports hardware acceleration, the simulation 

currently does not (see discussion in Section 4.2.1). The simulation attempts to initialise 

PhysX with hardware acceleration and falls back on software simulation if that 

initialisation fails. However, this version of PhysX does not support the graphics processor 

that is installed on any of the systems on which it was developed and tested. However, 

also as discussed in Section 4.2.1, it is unclear whether this would improve the 

performance of the rigid body simulation, as, according to the PhysX documentation, 

hardware acceleration is mainly used for additional features of the physics engine. 

 Supplementary Software Tools 7.4.3

The following are suggestions for additional tools that could be developed for use in 

conjunction with a tool such as Locomotion. As with any simulation package, there are a 

number of input files required by the Locomotion tool, and generating these files is a 

time-consuming part of the process. These separate tools are used to generate these 

input files, as supplements to the main simulation.  

Track Builder Tool 

As described in Section3.2.4, track models have been generated by extruding the rail 

profile along splines (in 3DS Max) and it is conceivable that a tool for generating track 

geometry could be developed, allowing a greater range of layouts (which include hills, 

canting etc.) to be designed and optimised. The user would be able to select from a range 

of rail profiles and the geometry could be automatically, based on a number of 

configurable parameters such as curve radius and track gauge, and imported into the 

Locomotion tool. Such a system could, for example, allow the user to edit track layouts by 

adjusting the spline control points using a graphical interface. 

Vehicle Builder Tool 

VAMPIRE includes an Interactive Vehicle Builder, which provides a 3D graphical 

environment in which to construct vehicle models [29]. Such an application would 

provide an alternative to generating or modifying the models in 3D Studio Max or editing 

vehicle properties in a text file. It would provide a more intuitive, bespoke environment 

for rail engineers to quickly make adjustments to the vehicle settings.  
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It should be possible to automatically generate the geometry of the vehicle from various 

properties. The vehicles are comprised of relatively simple rigid bodies and so it should be 

possible to procedurally generate vehicles based on properties such as length, width and 

height, mass and centre of gravity, and wheelsets could be generated based on wheel 

spacing, conicity and material parameters.  

Cloud-based Data Analytics 

Another possible extension to the tool could make use of a cloud-based data analytics 

platform, such as e-Science Central [65]. The simulation tool could be configured to 

upload test data to such a platform, which could automate the process of analysing the 

data and producing many of the summary results that are currently produced by the 

LocoDataScan tool. This data could be stored in a database, or cloud data store, and 

reports or visualisations could be produced from that data. It would also be possible for 

the data visualisations to be displayed on a dynamic, interactive web page, eliminating 

the need for the user to install, or learn to use, specialist software. 

 Other Potential Applications 7.4.4

Based on the experience of developing Locomotion, the results presented in this thesis 

and discussion with NewRail engineers, the following additional potential applications of 

a real-time tool were discussed. These would require extensions to the locomotion tool, 

but are potentially useful application areas within rail dynamics that rail engineers may 

wish to study using a real-time simulation tool. 

Accident Investigation 

The tool could be used to reconstruct an accident in order to determine a possible cause. 

It would be necessary to extend the tool to allow data from the site of the accident to be 

used to reconstruct the environment and vehicles involved in the incident. 

Post Derailment Behaviour 

The simulation tool could be used - in additional to finding the point of derailment and 

study the conditions that led to it - to study what happens to the vehicle after derailment 

has occurred, and, for example, what damage might be caused to surrounding 

infrastructure.  

Route design and optimisation 

A real-time tool could help with the design and the optimisation of track routes. The tool 

would have to be extended with features to construct track layouts from real-world data, 

and to allow changes to be made to the track layout, which would require more 

sophisticated track layout creation and editing tools, such as by the use of the track 

builder tool described in the previous section. 
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Studying the Effects of Load Distribution 

The way in which cargo is loaded onto a freight train can affect its stability. It is currently 

possible to simulate different load distributions in the Locomotion Tool by allowing the 

user to adjust the properties of the vehicle (such as mass and centre of gravity) and to 

show how doing so affects vehicle stability. An alternative system might be to create a 

virtual flatbed vehicle and cargo containers of different sizes and mass properties, and 

allowing the user to load the virtual cargo onto the vehicle in different ways. This would 

allow users to alter the load distribution of a vehicle in the simulation in a more intuitive 

way, possibly via a 3D graphical interface, and would allow the user to optimise the 

loading efficiency of a vehicle while also ensuring safety. 

Studying Dynamic Loads / Fluids 

It may also be possible to implement some basic fluid dynamic simulation to evaluate the 

effect of liquid cargo on the stability of the vehicle. It would also be possible to adjust 

properties such as the centre of gravity to simulate the movement of passengers or other 

dynamic cargo about the vehicle in an abstract way. 

Effects of Gust Loading or Extreme Winds 

It should be possible to add a basic approximation of wind and/or air resistance into the 

simulation, for example by applying forces to the vehicle based on the direction and 

strength of the wind. This would enable engineers to study, for example, how strong 

winds affect vehicle stability while the vehicle is in motion.  

Occupant Simulation 

Ragdoll Physics, a common feature of Physics Engines [21], could be used to simulate 

virtual passengers on to the train. Engineers would then be able to analyse how 

passengers are affected during explosions, derailments or crash events. It may even be 

possible to have animated passengers moving about the cabin (without requiring an 

additional, specialist physics engine like Euphoria - discussed in Section 7.4.2). However, 

doing so is likely to comprise the real-time performance of the simulation. 

Fire & Smoke Modelling 

Fire and smoke in video games are often simulated using particle effects [21]. A particle 

system, if constructed using real-world properties, could conceivably be used to simulate 

the spread of fire and smoke through a carriage in an emergency situation (including 

while the vehicle is in motion and in high winds), conditions that are difficult to evaluate 

in real-world safety tests, such as those described in Section 2.3.1. 
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Explosion Modelling 

Hunting and Wheel-Climb Derailment can occur in the aftermath of an explosive blast or 

other event, if the event introduces a lateral component into the vehicle’s motion. 

Additionally, there is another form of derailment, known as ‘Impact derailment’, which is 

caused by collision or explosion that causes the wheel to jump onto the railhead or derail 

completely [8]. Point load forces could be applied to the vehicle to simulate the effect of a 

blast in different parts of the vehicle. A basic implementation has already been 

attempted. A more-detailed model was constructed with a hollow frame and detachable 

doors and windows, show in Figure 7.2 (below). 

 

Figure 7.2 - Exterior (left) and Interior (right) of more complex carriage model 

The shockwave (represented by the yellow area in Figure 7.3, below) is then simulated as 

an expanding sphere and forces are applied to the vehicle and its components based on 

the position of the objects relative to the epicentre of the blast. 

 

Figure 7.3 - A prototype Explosion in Locomotion 

Such features would allow engineers to study the effect on vehicle stability and 

probability of derailment while the vehicle is in motion, and to adjust the design of the 

vehicle to compensate. 
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7.5 Contributions 

The contributions of this research were outlined in Section 1.7. Below is a discussion of 

these contributions in relation to the results presented in this thesis.  

 Development of a Real-time Rail Dynamics Simulation Tool 7.5.1

This thesis has described the development of Locomotion, a real-time rail dynamics 

simulation tool based on the PhysX Engine. The simulation is based on real world vehicles 

and properties. The simulation is capable of performing 100 tests with a single vehicle on 

a looped track layout in 9 to 12 hours (depending on factors such as the curve radius). 

This is shorter than an individual test could potentially take in the more sophisticated 

simulation tools and represents a significant increase in speed over traditional methods. 

 An Evaluation of a Physics Engine-based Tool for Engineering Use 7.5.2

As discussed in Chapter 5, PhysX, with its default parameters, was not able to produce 

realistic results, but these results were improved, as discussed in the next Section.  

The tool was able to produce logically correct sinusoidal lateral motion with the conical 

wheelset (Section 5.7.3), achieve a peak stable speed of 88mph using adjusted 

parameters (Section 5.12) and derail at speeds close to those predicted by the Nadal Limit 

in bogie testing on curved track with the addition of the spline-based centring forces 

(Section 5.13). The range of results in these final tests was quite high, as much as 19.3 

mph, but the standard deviation was, on average, just less than 6mph (4%).  

The data suggests that the simulation is perhaps not as well suited to interactive, real-

time simulation of the WRI as was originally hoped. In its current state, the simulation is 

not suited to high speed testing, but is capable of reaching speeds of approximately 

88mph. The simulation may be suited to lower speed testing <80mph, but may not be 

suited to extreme low speed testing (<5mph) as this has also been shown to be unstable 

in several tests.  

The range of results that it can produce, and the variance in results between tests, means 

that any individual test run in the simulation may not produce accurate results. However, 

the results show that if an average is taken over a large number of tests, then the average 

is close to the intended results. Running multiple tests and collecting averages helps to 

minimise the negative impact of any individual erroneous results that may be produced 

by the simulation, and the real-time performance of the tool allows large numbers of 

tests to be completed rapidly. 

It is worth noting that the Nadal Limit is often considered to be a conservative estimate 

and so this simulation can be considered to be conservative as well, as most of the results 

were slightly below the Nadal predictions. 
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 Improving the Simulation of the Wheel/Rail Interface  7.5.3

Key parameters of the engine were adjusted in an attempt to improve this behaviour, but 

while there was some improvement, these adjustments were ultimately unable to 

produce derailment speeds close to those predicted using the Nadal Limit.  

It was necessary to develop a new real-time simulation technique; the spline-based 

wheelset centring method (described in Section 3.3.14), which was designed to replicate 

the gravitational stiffness force. Testing has shown that this spline-based method of 

manually applying the GSF to each wheelset improved the results considerably, but was 

still not producing realistic results. The size of the centring force had to be multiplied to 

produce results closer to the predictions, but it is based on a real-world phenomenon and 

published rail engineering formulas. For track curves of between 100 and 200m in radius; 

the averages over 10 tests were within 5% of the predictions, off by approximately 2% on 

average, and no derailments at its maximum stable speed on wider radii curves. 

Further development of the centring technique is recommended. It is possible that the 

solution is capable of producing more realistic results in a wider range of scenarios, if this 

calculation can be refined correctly. It will be necessary to develop a more sophisticated 

method for calculating the size of the centring force, without using the ‘force multiple’. It 

may be that, for example, other forces (such as creepages) or other properties of the 

wheelset and/or rails can be used to eliminate the multiple from the calculation and 

improve the results. It is also possible that the application of additional, non-real-world 

forces is necessary in order to compensate for errors introduced by the physics engine, 

and so a more detailed evaluation of this error would be necessary. 

A wheelset was tested on straight track and allowed the simulation to be fine-tuned to 

increase the top speed of the wheelset/vehicle; however, cornering behaviour was 

unable to be tested, meaning that the Nadal Limit predictions for a single wheelset could 

not be used. Although it may be of limited use for engineers to simulate an individual 

wheelset in this way, it would have been useful for this research to be able to simulate 

the behaviour of a single wheelset in order to confirm that this relatively simple (and easy 

to predict) behaviour was realistic with respect to the Nadal Limit predictions.  

 A Simulation of Multi-Vehicle Train Behaviour 7.5.4

Further data is needed to validate the results of tests on whole vehicles, but although not 

validated, this Thesis demonstrates examples of the sort of useful data that the tool can 

generate (Chapter 6), including data from the simulation of two and three vehicle trains. 

The application has been tested with up to 9 vehicles, though simulating this many 

vehicles has a significant impact on the performance of the application. Time constraints 

prevented a more detailed evaluation of these behaviours during this research.  
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 Alternative Applications 7.5.5

The testing conducted in this Thesis has allowed a discussion of the potential suitability of 

a real-time simulation tool for a number of potential applications within rail vehicle 

dynamics. In addition to the simulation of the wheel/rail interface and multi-vehicle 

trains, which have already been discussed, these application areas include: 

� A Gauging Tool 

� A Rapid Prototyping Tool 
 

As discussed in Section 7.3, the suitability for these application areas has been discussed 

based on the data presented in Chapters 5 and 6. The simulation of the WRI in the 

evaluated circumstances was considered suitably accurate, but even if this was not the 

case, the tools suitability for simulating multi-vehicle trains in certain circumstances, such 

as rapid prototyping and gauge testing, is promising. 

 Discussion of Possible Applications of a Real-time Simulation Tool 7.5.6

Based on the data collected in Chapters 5 and 6 and a discussion with NewRail engineers, 

a number of possible applications of a real-time simulation tool, in addition to those listed 

above, are suggested in Section 7.4, including: explosion modelling, the addition of soft 

body dynamics, passenger simulation and the study of cargo distribution and dynamic 

loads. Many of these applications would be suitable for implementation using the 

features of physics engines, or other techniques used in the games industry, as discussed 

in Section 7.4. 

7.6 Thesis Summary 

This thesis has presented details of the design, implementation and evaluation of a rail 

dynamics simulation tool based on a real-time physics engine. It has shown that the 

simulation can produce accurate results for the wheel/rail interface within what rail 

engineers might consider to be an acceptable margin of error for real-time testing. 

This Thesis has shown how the physics engine can be integrated into the simulation, and 

has shown how a range of physics engine parameters can be configured to produce the 

best results, as well as which design variations are most suitable for use in the simulation 

of the wheel/rail interface. This Thesis has also shown the sort of data that the simulation 

tool/physics engine is capable of producing, including its potential usefulness as a gauging 

tool and a rapid prototyping tool. 

The error introduced by the physics engine means Locomotion may not produce reliable 

results from an individual test, but the real-time performance of the tool allows multiple 

tests to be executed, allowing averages to be calculated quickly.  
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The variations in the results are assumed to be a side effect of the way that the solver 

handles collisions and joints between rigid bodies, and it is possible that further 

adjustments to simulation parameters, physics models or properties of the rigid bodies 

would improve the results further and would make the wheelset more stable, allowing it 

to accelerate to higher speeds and producing more realistic cornering behaviour in a 

wider range of scenarios. 

From the results presented in this Thesis, it is possible to conclude the following. It is 

possible to use Physics Engines to develop real-time rail vehicle simulations that are 

capable of producing reasonably realistic results that approach those predicted using 

traditional mathematical methods for certain application areas within rail dynamics.  

This suggests that there is significant potential for further research and development in 

this area. These results show that physics engines have the potential to produce results 

that are accurate to within a small error bound in certain scenarios and test conditions, if 

properly configured and augmented. It is not currently suited for testing at high speeds, 

or for derailment testing on wide curve radii (larger than 200m), as it cannot exceed 

88mph due to instability, but could be used for testing at lower speeds, or for a number 

of other functions. 

Validation has been one of the biggest challenges in this project and it has been very 

difficult to find or derive appropriate mathematical prediction formulas, or to attain test 

data from existing simulations or real-world tests, to use in the evaluation of the tool. 

However, test scenarios have been benchmarked against mathematical predictions, 

including the Nadal Limit; a widely used benchmark in the rail industry. Suggestions for 

additional development and evaluation of the simulation tool have been put forward, 

that could expand upon the results of this research, if the appropriate benchmarking data 

can be obtained. This includes further evaluation and refinement of the spline-based 

centring technique, which may be capable of producing realistic results in a wider range 

of circumstances. 

Further research, development and validation are necessary if the simulation tool is to 

become a viable engineering product. It will be necessary to see if the simulation can be 

further refined and if the results produced by the simulation can be verified across a 

wider range of testing scenarios, but this initial research shows that this application area 

has considerable potential.   
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Appendix 1 

The following document was provided by NewRail engineer Dr Joe Carruthers at the start 

of the project in 2011. 

(J. Carruthers, “Real-time Simulation of Complex Engineering Scenarios,” 2011.) [3] 
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Appendix 2 

The following document was provided by NewRail engineer Dr Joe Carruthers at the start 

of the project in 2011. 

(J. Carruthers, “” 2011.) [66] 
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