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Abstract

A complex evolving system consists of a large number of sub-systems
which may proceed concurrently and interact with each other or with
the external environment, while its behaviour is subject to modifi-
cation by other systems. Structured occurrence nets (sons) are a
Petri net based formalism for modelling the behaviour of complex
evolving systems. The concept extends that of occurrence nets, a
formalism that can be used to record causality and concurrency infor-
mation concerning a single execution of a system. In sons, multiple
occurrence nets are combined using various types of relationships in
order to represent dependencies between communicating and evolving
sub-systems.

The work presented in this thesis aims to develop a tool and extend ex-
isting methodology for structured representations of the behaviours of
complex evolving system. The theoretical development focuses on the
extension of existing son concepts. It addresses the issue of efficient
son model checking and simulation, representations of alternative be-
haviour and time information, structuring son-based unfolding, and
algorithms for constructing the unfolding. The implementation aims
to develop tools for son-based model visualisation, simulation and
analysis. An open source tool called SONCraft has been developed
to support these functionalities. SONCraft provides a user-friendly
graphical interface that facilitates model entry, supports interactive
visual simulation, and allows the use of a set of analytical tools for
model checking.
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Chapter 1

Introduction

1.1 Background

Over the past decades, the study of complex systems has become ever more
important. Such systems exhibit some common characteristics:

1. The system has intricate structure, which may consist of a large number
of (sub)systems interacting with each other and with the system’s environ-
ment.

2. The system exhibits emergent behaviours: that is, the behaviours that
arise from the interaction of subsystems that on their own do not have such
properties.

3. The system can evolve: a complex system is not created all at once but
instead is subject to modification by other systems and changes over time.

Examples include the economy, biological systems, financial markets, our so-
ciety and information systems. Consider a cloud computing system which is com-
posed of a huge amount of interacting services and clients as subsystems. The
communication between subsystems may be either asynchronous or synchronous.
The cloud infrastructure can suffer from component break-downs, reconfigura-
tions and replacement, and the software is continually updated or patched. Such
very diverse ‘event-based’ systems can have a very high complexity of both de-
sign and behaviour, with extremely large volumes of recordable events or facts
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and the consequential combinatorial state space explosion. They can also exhibit
intricate dependencies in the representation of state information, and dynamic
(planned or unforeseen) system evolution and reconfiguration.

In complex systems, the role of structure is often considered to be essential to
coping with design complexity. For example, in the software engineering domain,
structuring facilities include procedures, threads, classes and types, and in the
VLSI design domain, with its higher order logics, graph-based models, and design
notations, and so on are used. The effective use of such structuring notations can
significantly reduce the cognitive complexity of designs, and the resources, both
storage and computational, involved in their representation and manipulation.

Evolution is another important property which needs to be considered in the
design of complex systems, especially software systems. Any design approach
based on the assumption of complete and correct requirements is detrimental to
the development of reliable and usable software systems. In software engineer-
ing, successful software always evolves. Empirical data shows that maintenance
absorbs 40-60 percent of the life-cycle costs of a complex system and 75 percent
of the total maintenance efforts are enhancements [54]. In light of this, system
evolution should be considered a priori by the designer.

The purpose of system design is to define how a system will behave. To im-
prove the dependability of a system, system behaviour representations are often
used for system visualisation, verification, synthesis and failure analysis. There
are many well-established conventional behavioural models used in industry nowa-
days; for example, Petri nets [57], process algebras [38], and Unified Modelling
Language (UML) [53], but very few of them support modelling evolution in an
efficient way. Moreover, the cognitive complexity of the notation for recording
complex system behaviour is not always the dominant concern compared with
those for system design notation. Until recently there has been very little work
on the structuring of behaviour notation.

In order to manage the cognitive complexity of complex and evolving system
behaviours, it is necessary to choose an appropriate notation. The directed acyclic
graph is a typical notation for recording the behaviour of an asynchronous system.
The most well-developed such notation, in terms of its formal theoretical basis
and tool support, is that of an occurrence net (on) [19, 20]. ons are used for
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representing causality and concurrency information concerning a single execution
of a system. One can derive an on in various ways: as a process underpinning a
run of Petri nets [35], process algebras [49], network diagnostics [5], and system
diagnosis [44]; or even as a direct representation of a system’s execution history.
In ons, only information about concurrency and causality between events and
visited local states is represented, and the underlying mathematical structure is a
partial order, and so they are in widespread use in partial order verification [25].

The formalism of structured occurrence nets (son) [14, 16, 40], which is an
extension of the occurrence net formalism, has been introduced to characterise
the behaviour of complex evolving systems. The underlying idea of a son is to
combine multiple related occurrence nets by using various formal relationships
(in particular, abstractions) in order to express dependencies between interacting
and evolving systems. For example, sons can directly represent the behaviour of
system evolution through their use of a new formal relation termed ‘behavioural
abstraction’. By means of these relations, a son is able to portray an explicit view
of system evolution, involving various types of communication, system upgrades,
reconfigurations and replacements, that allows one to exploit the behavioural
knowledge of a complex evolving system.

The original interest in sons arose out of a wish to improve the understanding
of the concept of basic dependability, and in particular that of ‘fault-error-failure
chains’ [6]. Now, however, the main motivation for defining and exploring the
formal properties of sons is to achieve a significant reduction in the cognitive
difficulties and computational effort required in using ons for the modelling and
analysing of the behaviour of complex evolving systems. For example, the idea of
extended sons that facilitate the structuring and analysis of incomplete, contra-
dictory and uncertain behaviours in complex systems involving software, hard-
ware and people (e.g., cybercrime) has been discussed [41]; and the full system
semantics of sons which can be regarded as specifications for system designs have
been investigated [28].
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1.2 Aims and Contributions

The importance of understanding and analysing the behaviour of complex evolv-
ing systems is well-accepted in many application areas. The concept of structured
occurrence nets can play an important role with regard to the representation of
the behaviours of such systems. However, there is a scarcity of research on the
assessment of the practical usefulness of the new representations. To achieve
such an assessment, effective formal support including automated analysis and
formal verification are required, and appropriate design tools facilitating the ma-
nipulation and analysis of sons are necessary. Our research hypothesis is that
structured occurrence nets supported by an appropriate toolkit can deliver an
effective approach to exploiting and analysing knowledge of the behaviour of a
complex evolving system.

To validate this hypothesis, a generic methodology involving both theory and
practical research is employed. The main aims of the study are as follows:

Aim-1, Theory: To provide a formal foundation for son concepts, involving
the extension of current formalisation and proofs of a number of results
concerning the well-formedness of sons which hence govern the correct use,
manipulation and analysis of various types of abstraction relation.

Aim-2, Toolkit: To develop a platform for constructing and editing son-based
models, and to provide dedicated son-based tools for system verification,
simulation and analysis.

Aim-3, Evaluation: To assess the utility of SON-based models.

With regard to Aim-1, we propose several additional properties of the basic
son structure. We provide new execution semantics for all son variants for a step
by step simulation, and we design algorithms for structural property verification,
reachability checking and the simulation of sons.

We extend the existing basic son model to formally support alternative rep-
resentations of a given behaviour based on the idea in [41]. The new structure
allows one to model multiple alternative scenarios that could have occurred in

4



particular states. We also extend basic son simulation algorithms to support
new representations.

We introduce a time property to basic and alternative sons. We formally
describe how such timing information as is provided in a son can be checked for
consistency, and how the estimated time information of a given node or entire son

can be calculated by using causal relations. We present time-based algorithms
for consistency checking and time estimations.

We investigate the unfolding of cspt-nets, where cspt-nets (communication
structured place transition nets) are one of the generator nets in sons supporting
a representation of synchronous or asynchronous interaction between multiple
sub-systems [28]. Such an unfolding contains a representation of all the possible
running processes of the original net. The prefix of the unfolding has a smaller
size than the reachability graph of a system, so could alleviate the state space
explosion problem in model checking; for example, for reachability analysis. We
provide an algorithm for the construction of cspt unfolding.

In pursuit of Aim-2, we develop SONCraft, which is an open source tool
for son visualisation, verification, and model analysis. The tool is implemented
as a Java plug-in to the Workcraft platform system which provides a flexible
framework for the development and analysis of Interpreted Graph Models [22,
23]. SONCraft provides a user-friendly graphical interface that facilitates son

model entry, supports interactive visual simulation, and integrates a set of analysis
tools.

More specifically, for basic sons we implement the essential functionalities for
their creation, visualisation and manipulation as well as facilities for their simu-
lation, failure analysis, structural property verification and reachability checking.
We implement time based algorithms for visualising time properties, checking
consistency and estimating missing time information.

With regard to Aim-3, we apply SONCraft to a scenario related to train
accident in order to assess the practicality of SON-based modelling.

1.3 Outline of the Thesis

The rest of the thesis is organised as follows.
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Chapter 2 presents the notions and properties concerning structured occurrence
nets and their verification and simulation, and presents a case study of an
accident scenario.

Chapter 3 defines representations of sons with alternatives, their properties
and model checking approaches.

Chapter 4 describes sons with time information, and algorithms for time con-
sistency checking and estimation.

Chapter 5 outlines the SONCraft framework, and describes additional tools
that have been added for son-based models verification, simulation and
analysis.

Chapter 6 discusses the theory of and algorithm for son-based unfolding.

Chapter 7 summarises and concludes the work and proposes directions for fur-
ther work.
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Chapter 2

Structured Occurrence Nets

2.1 Introduction

Structured occurrence nets (sons) are a Petri net-based formalism that can be
used to model the behaviour of complex evolving systems. The concept extends
that of occurrence nets (ons) which are directed acyclic graphs that represent
causality and concurrency information concerning a single execution of a system.
sons are sets of related ons, employing different types of formally-defined rela-
tions and supporting various types of abstraction. By means of different variants
a son can represent, for example, the event of one system modifying another sys-
tem, and the causal antecedents and consequences of this event in each system.

Communication structured occurrence nets (csons) are the fundamental vari-
ant of structured occurrence nets that has the capability of representing asyn-
chronous and synchronous interactions between communicating systems. Intu-
itively, a cson combines two or more occurrence nets into a single structure by
letting them communicate via two special relationships, viz. synchronous and
asynchronous communication. The former implies that a sender waits for an ac-
knowledgement of a message before proceeding, while in the latter the sender
proceeds without waiting.

Behavioural structured occurrence nets (bsons) convey information about
the evolution of individual systems. A system in bson shows a two-level view
of its execution history, where the structure at a lower level provides details of
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its abstract behaviour represented at an upper level. The abstract (behavioural)
relations between two different levels show their consistent dependencies.

Temporal structured occurrence nets (tsons) allow the use of temporal ab-
straction to define atomic actions, that is, actions that appear to be instantaneous
to their environment. Intuitively, a tson shows a system abbreviation as that
part of the behaviour that is hidden by the abstraction.

In this chapter we first introduce the concept of occurrence nets, and then
recall from previous research [40] several notions and properties based on the
structure of occurrence nets. In addition, we propose algorithms used for son

model checking, and present a case study of an accident scenario modelled by a
son.

2.2 Occurrence Nets

Occurrence nets were initially introduced as processes of running Petri nets [19].
Each process unambiguously and explicitly describes the concurrency and causal-
ity relations between executed events; more precisely, causally dependent occur-
rences of events are ordered while their concurrent occurrences are unordered. It
is also possible to derive an on as a direct representation of a system’s execution
history [15]; such a system may involve not only computer components, but also
components and systems involving people and physical processes; for example,
parties involved in a crime and accident investigation. Since ons are acyclic, rep-
etitions of the same condition or event are recorded as new elements. Partially
ordered sets are suitable as the underlying mathematical structure of ons.

An occurrence net is a finite triple on = (C,E, F ), where C and E are disjoint
sets of respectively conditions and events (collectively referred to as the nodes),
and F ⊆ (C×E)∪(E×C) is the flow relation. The inputs and outputs of a node
x are respectively defined as •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}1.
For a set of nodes X ∈ (C ∪E), we respectively denote using •X and X• the sets
of all inputs and outputs of a node in X. It is also assumed that the following
are satisfied:

1In this thesis, sometimes we will, for the purpose of clarity, use the notations pre(x) and
post(x) instead of a ‘dot’ to represent input and output.
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• For all c ∈ C and e ∈ E: |•c| ≤ 1, |c•| ≤ 1, |•e| ≥ 1, and |e•| ≥ 1.

• The causality relation ≺ over E is acyclic, where e ≺ f if there is c ∈ C
with c ∈ e• ∩ •f .

Mon
0 = {c ∈ C | •c = ∅} is the initial marking of an on, and Mon

Fin = {c ∈
C | c• = ∅} is the final marking of an on (in general, a marking is any set of
conditions).

To summarise, an occurrence net is an acyclic directed graph, which consists
of conditions, events, and arcs. Each arc runs from a source condition to a
destination event, or from a source event to a destination condition; the source
node (condition or event) is termed an input of the destination node (event or
condition respectively), and the destination node is termed an output of the
source node. Each condition has at most one input event and at most one output
event; and each event has at least one input condition and at least one output
condition. The set of all conditions with no input events is the initial marking,
and the set of all conditions with no output events is the final marking.

Two nodes, x and y, are causally related if (x, y) ∈ F+ or (y, x) ∈ F+;
otherwise they are concurrent (denoted by x co y). A co-set is a set B ⊆ C

comprising pairwise concurrent conditions. Moreover, a cut is any maximal (w.r.t.
⊆) co-set.

Next we recall notions and properties concerning occurrence nets which are
useful in the rest of the study. In this thesis, if a variant of sons is clear from
the context, we will write the corresponding initial marking as M0, and the final
marking as MFin .

Given an initial marking, the execution of an occurrence net proceeds by
the occurrence (or firing) of sets of events. The firing rule below specifies the
conditions under which a marking enables a set of events (called a step), and how
the firing of the events changes the current marking.

Definition 2.1 (ON firing rule). Let on = (C,E, F ) be an occurrence net, M be
a marking, and U be a step of on.

1. U is on-enabled at M if •e ⊆M , for every e ∈ U .
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2. If U is on-enabled at M , then U can be fired and produce a new marking
M ′ given by M ′ = (M \ •U) ∪ U•,
This is denoted by M [U〉onM

′.

A step sequence of on is a sequence λ = U1 . . . Un (n ≥ 0) of steps such that
there exist markings M1, . . . ,Mn satisfying:

Mon
0 [U1〉onM1, . . . ,Mn−1[Un〉onMn . (2.1)

The reachable markings of on are defined as the smallest (w.r.t. ⊆) set
reach(on) containing Mon

0 and such that if there is a marking M ∈ reach(on)

and M [U〉onM
′, for a step U and a marking M ′, then M ′ ∈ reach(on).

Proposition 2.1. (see [40]) Given a step sequence of on defined by Defini-
tion 2.1, we have that:

1. If i 6= j then Ui ∩ Uj = ∅, i.e. no event occurs more than once.

2. There is a step sequence involving all the events in E.

3. MFin = Mn iff E = U1 ∪ · · · ∪ Un, i.e. each event of E has occurred.

4. If i ≥ j then (Ui × Uj)∩ ≺+= ∅, i.e. the causal predecessors of an event
can never be executed after or together with that event.

Figure 2.1: An occurrence net.

Figure 2.1 shows an occurrence net whose conditions are represented by circles
and events are represented by boxes. The initial marking is {c0} which is indicated
by showing a token inside the starting condition. There are five cuts in the on:
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{c0}, {c1, c2}, {c1, c4}, {c3, c4}, {c2, c3}, and {c5}. Thus, a possible step sequence
is λ = {e0}{e1, e2}{e3}. One can observe that the corresponding sequence of
markings starts with M0 = {c0} and ends with MFin = {c5}.

A phase of on is a non-empty set of conditions π ⊆ C such that the set
Minπ ⊆ π of the minimal conditions of π (w.r.t. F+) is a cut; the set Maxπ ⊆ π

of the maximal conditions of π (w.r.t. F+) is a cut; and π comprises all conditions
c ∈ C for which there are b ∈ Minπ and d ∈ Maxπ satisfying (b, c) ∈ F ∗ and
(c, d) ∈ F ∗. Moreover, a phase decomposition of on is a sequence π1 . . . πm of
phases of the occurrence net such that M0 = Minπ1 , Maxπi = Minπi+1

(for
i ≤ m− 1), and Maxπm = MFin . A block of on is a non-empty set B ∈ (C ∪ E)

such that B ∩ C = •(B ∩ E) ∩ (B ∩ E)• and (•B \B)× (B• \B) ⊆≺.

π1 π2
(a)

(b)

Figure 2.2: The occurrence net shown in Figure 2.1 with (a) phase decomposi-
tions, and (b) a block.

Each phase is a fragment of an on beginning with a cut and ending with a cut
which follows it in the causal sense, including all the conditions occurring between
these cuts. A phase decomposition is a sequence of phases from the initial state to
the final state, and whenever one phase ends, its maximal cut is the starting point
of the successive one (minimal cut). The notion of a block represents a contiguous
fragment of activity within the behaviour represented by an on. Intuitively, a
block is a set of nodes in which all conditions are internal to the block, that is,
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the input and output events of each condition must belong to the block; and all
block ending events are causally linked to all starting events. Note that a single
event can constitute a block. As an example, the on in Figure 2.2 (a) has been
divided into two phases by the three depicted cuts. The corresponding phase
decomposition is π1π2 = {c0, c1, c2, c4}{c1, c3, c4, c5}. Figure 2.2 (b) shows a block
B = {e0, c1, c2, e1, e2} with its nodes shadowed.

2.3 Communication Structured Occurrence Nets

Communication structured occurrence nets (csons) are able to portray different
kinds of communication between separate systems. It will usually be the case that,
if an occurrence net in fact represents the combined activity of several interacting
systems, it will be beneficial to split the model into a set of component occur-
rence nets, and to create specific devices to represent communication between
the component occurrence nets (subsystems). In the model we are interested in
communication can be synchronous or asynchronous.

A cson is composed of a set of component ons representing separate subsys-
tems. When it is determined that there is a potential for an interaction between
subsystems, an asynchronous or synchronous communication link can be made
between events in different ons via a special element called a channel place.
Communication relations were represented by a directed dashed line between two
events in the original definition of csons [40]. The notion of a channel place,
which was introduced later [28], is a more flexible means of representing such
relations.

Two events involved in a synchronous communication link must be executed
simultaneously. On the other hand, events involved in an asynchronous commu-
nication can be either executed simultaneously or one after the other.

Definition 2.2 (CSON). A communication structured occurrence net (cson) is
a tuple

cson = (on1, . . . ,onk, Q,W )

such that oni = (Ci, Ei, Fi) for i = 1, . . . , k are occurrence nets (below we denote
by C =

⋃k
i=1Ci, E =

⋃k
i=1 Ei and F =

⋃k
i=1 Fi their conditions, events and arcs);
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Q is a set of channel places; and W ⊆ (E × Q) ∪ (Q × E) are the arcs between
the channel places and events. It is further assumed that:

1. The onis and Q are mutually disjoint.

2. The sets of input and output events of q ∈ Q,
•q = {e ∈ E | (e, q) ∈ W} and q• = {e ∈ E | (q, e) ∈ W} ,

belong to distinct component oni’s; and moreover, |•q| = 1 and |q•| ≤ 1.

3. The relation
(@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗ (2.2)

over E is irreflexive, where:

• e ≺ f if there is c ∈ C with c ∈ e• ∩ •f ;

• e @ f if there is q ∈ Q with q ∈ e• ∩ •f .

In Definition 2.2(2.2), we use the relation @ (weak causality) to represent
a/synchronous communication between two events (see [33, 48]). Intuitively, the
original causality relation≺ represents the ‘earlier than’ relationship of the events,
and @ represents the ‘not later than’ relationship. The input and output sets of
a node in a cson are also extended to include channel places with the relation
W . In order to ensure that the resulting causal dependencies remain consis-
tent, in Definition 2.2(2.2) we require the acyclicity of not only each component
occurrence net but also any path involving both @ and ≺.

The initial markingMcson
0 of a cson is the union ofMon1

0 , . . . ,Monk
0 (assuming

that there are no channel places in Mcson
0 ). The final marking Mcson

Fin of a cson

is the union of Mon1
Fin , . . . ,M

onk
Fin . In general, a marking in a cson is a set of

conditions and channel places. A step in a cson is a set of events which may
come from one of more component occurrence nets.

Definition 2.3 (CSON firing rule). Let cson be a communication structured
occurrence net as in Definition 2.2, M be a marking, and U be a step of the
cson.

1. U is cson-enabled at M if (•U \ U•) ⊆M .
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2. If U is cson-enabled at M , then U can be fired and produce a new marking
M ′ is given by: M ′ = (M ∪ U•) \ •U . This is denoted by M [U〉csonM

′.

The step sequences and reachable markings of cson are then defined similarly
as for an occurrence net.

The firing rule above means that a step U involving synchronous behaviour
can use not only the tokens that are already available in channel places at marking
M , but also can use the tokens deposited there by events from step U during the
execution of U . In this way, events from step U can ‘help’ each other individually
and synchronously pass resources (tokens) among themselves. Thus, in contrast
to the step sequence of an occurrence net, where a step consists of a number of
enabled events, the execution of a step in a cson (i.e. M [U〉M ′) may involve
synchronous communications, where events execute simultaneously and behave as
a transaction. Such a mode of execution provides possibility to execute multiple
events in a single step, and therefore is strictly more expressive than that used in
ons,

Figure 2.3: A cson with two interacting occurrence nets.

Figure 2.3 shows a cson which consists of two interacting occurrence nets
connected by three channel places (portrayed graphically by bold circles). The
thick dashed lines indicate relation W . The connection between events f0 and e0

is an asynchronous communication, which means that e0 cannot happen before f0.
Events f1 and e1 are connected by a pair of empty channel places, q1 and q2, form-
ing a cycle. Such a cycle does not violate cson acyclicity because it involves only
weak causality, but the two connected events can only be executed synchronously.
The channel places q1 and q2 will be filled and emptied synchronously when both
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f1 and e1 participate in a step being fired. Therefore, a possible step sequence of
this cson is λ = {f0}{e0}{f1, e1}. Note that λ′ = {f0, e0}{f1, e1} is also a valid
step sequence where f0 and e0 execute simultaneously.

Proposition 2.2 ([40]). Let cson be a communication structured occurrence net
as in Definition 2.2, and λ = U1 . . . Un (n ≥ 0) be a step sequence of the cson.

1. If i 6= j then Ui ∩ Uj = ∅, i.e. no event occurs more than once.

2. There is a step sequence involving all the events in E.

3. If i ≥ j then (Ui × Uj) ∩ ((@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗) = ∅, i.e. the causal
predecessors of an event can never be executed after or together with that
event.

2.3.1 Synchronous Cycles

In the following, we introduce the notion of the sync-cycle.

Definition 2.4 (sync-cycle). Let cson be a communication structured occurrence
net as in Definition 2.2.

A sync-cycle of a cson is a maximal nonempty set of events S ⊆ E such that
for all distinct e, f ∈ S, (e, f) ∈ W+. The set of all sync-cycles of a cson will be
denoted by SC cson.

A channel place q is synchronous if there exist a sync-cycle S ∈ SC cson such
that q ∈ S• ∩ •S. Otherwise, q is asynchronous.

The notion of a sync-cycle captures the idea of a synchronous communication
involving a maximal number of sub-systems. Its events graphically form a weak
causal cycle connected by synchronous channel places.

We first show that there is no reachable marking which includes synchronous
channel places.

Proposition 2.3. Let cson be a communication structured occurrence net as in
Definition 2.2, and Qs be its synchronous channel places. Then Qs ∩M = ∅, for
every reachable marking M ∈ reach(cson).
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Proof. By the definition of cson, we have Qs ∩Mcson
0 = ∅. Hence, it suffices to

show that if M ∈ reach(cson) is such that Qs ∩M = ∅, and M ′ and U are such
that M [U〉csonM

′, then Qs ∩M ′ = ∅.
Suppose q ∈ Qs is such that q ∈ M ′. Then there is a sync-cycle S ∈ SC cson

and e, f ∈ S such that q ∈ e• ∩ •f . By Definition 2.4, there is a sequence
e0q0e1 . . . em−1qm−1em such that e0 = f , em = e and qi ∈ e•i ∩ •ei+1, for i < m.
We also recall that |q•i | = |•qi|, for every i < m.

Since q ∈M ′, we have f = e0 /∈ U . Hence, since q0 /∈M , we have e1 /∈ U . By
proceeding m times in this way, we obtain em = e /∈ U . This and q /∈ M means
that q /∈M ′, a contradiction. As a result, Qs ∩M ′ = ∅.

The next result implies that all events in a sync-cycle are always enabled and
fired simultaneously.

Proposition 2.4. Let cson be a communication structured occurrence net as in
Definition 2.2, S ∈ SC cson be a sync-cycle, and U be a step enabled at a reachable
marking M ∈ reach(cson). Then e ∈ U ⇔ f ∈ U , for all e, f ∈ S.

Proof. Follows from Proposition 2.3, Definition 2.4, and the definition of an en-
abled step.

Figure 2.4: Three occurrence nets that are synchronous with each other.

Consider the cson in Figure 2.4. One can observe there are two sync-cycles.
Sync-cycle {e0, f0, g0} in fact is composed of three asynchronous communications.
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The communication in any of two events is asynchronous. However, all three
events can only fire in a single step. The run for the sync-cycle {e1, f1, g1} is also
simultaneous. Although it consists of two ‘component’ synchronous interactions,
it is impossible to fire either of them individually. To simplify the representation,
in the rest of the thesis we will use bold dashed lines without arcs to indicate any
synchronous cycles linked directly between two events.

The following proposition addresses the minimal firing concerning asynchronous
communication.

Proposition 2.5. Let cson be a communication structured occurrence net as in
Definition 2.2, q be an asynchronous channel place, e and f be the input and
output events of q respectively, M be a reachable marking, and U be a cson-
enabled step at M . Then f ∈ U and q /∈M implies e ∈ U .

Proof. Suppose that e /∈ U . From Definition 2.3(1), f ∈ U implies q ∈ M , a
contradiction.

In Figure 2.3, if e0 is in U and q0 is not marked, then the occurrences of e0

and f0 must happen together.

2.3.2 Compute CSON-enabled Steps

A token-player simulation algorithm for cson can be simply described by a finite
process starting from an initial marking and terminating at a final marking,
where at each iteration a set of enabled events are determined and fired in order
to change the marking. The main computational problem of cson simulation is
to identify the enabled step U in each iteration. In this section, we propose an
approach that can be used to efficiently compute the cson-enabled steps at a
given marking.

The procedure is given in Algorithm 1. The idea is to first compute a step U
including all the on-enabled events of cson in order to narrow down the size of
the search, and then to remove the events which do not meet the cson-enabled
requirement from U .

Unlike the execution of a standard occurrence net, where a step sequence can
be composed of a sequence of single event firings, in cson there may exist mini-
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Algorithm 1 (Computing a cson-enabled step)
Inputs:

cson — communication structured occurrence net
M — current marking

Output:
U — a step cson-enabled at M

1: U := ∅
2: Del := ∅ // deleted events
3: for all e ∈ E do
4: if •e ⊆M then // e is on-enabled
5: add e to U
6: for all e ∈ U do
7: if e /∈ Del then
8: min := minParallel(e) // minimal parallel firings of e
9: for all f ∈ min do
10: if f /∈ U then // minimal parallel firings of e is not on-enabled
11: add all events in min to Del
12: break
13: U := U \ Del

14: function minParallel(input: e)
15: Result := ∅
16: mark e visited
17: add e to Result
18: for all g such that g @ e do
19: if g is unvisited and q /∈M , where q ∈ g• ∩ •e then
20: add all events in minParallel(g) to Result
21: return Result

mal parallel firings for an event, where one enabled event implies that all events
in the minimal parallel firings are enabled as well. Both {f1, e1} in Figure 2.3 and
{e0, f0, g0} in Figure 2.4 are such steps because of their synchronised behaviour.
Note that such minimal parallel firing can involve either synchronous (see Propo-
sition 2.4) or asynchronous (see Proposition 2.5) communication. Therefore, in
the algorithm it is not possible to consider only the enabling for a single event.
Instead, all its minimal parallel firings should be considered in the computation.

The pseudocode for computing the minimal parallel firings of a given event is
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presented in the function minParallel. The function uses a working list, Result,
initialized to the given event. Then it recursively visits the weak causal prede-
cessors of the node in the list. The predecessor can be added to the working list
if it is unvisited and the channel place between the two events is unmarked.

2.4 Behavioural Structured Occurrence Nets

Behavioural structured occurrence nets (bsons) allow the activity of an evolv-
ing system to be modelled. They use a two-level view to represent an execution
history, with the lower level providing details of its behaviours during the dif-
ferent evolution stages represented in the upper level view. Thus a bson gives
information about the evolution of an individual system, and the phases of the
overall activity are used to represent each successive stage of the evolution of
this system. Figure 2.5 shows a simple example of a bson in a (off-line) system
update. The upper level represents a version change caused by an update event.
The lower level provides the detailed behaviour of the system before and after
the update. The dashed lines between the two levels are used to capture the rel-
evant relationships between the two types of behaviours. (The update portrayed
is termed “offline", in contrast to an online update, such as would be exemplified
in the figure if the final state of on1 were also the initial state of on2.)

ON↑1

ON1 ON2

Figure 2.5: A bson example portraying a system (off-line) update.

Before formalizing the model, we first recall two relations in cson which ex-
tend the definitions of pre(x) (i.e. •x) and post(x) (i.e. x•). Given a cson as
in Definition 2.2 and e ∈ E as an event, the sets Pre(e) and Post(e) respectively
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comprise all conditions c ∈ C satisfying (c, e) ∈ F◦@∗ and (e, c) ∈ @∗◦F. Intu-
itively, the new relations capture weak causal chains passing through the events
in different occurrence nets. For example, the new relationships in Figure 2.3 are:

Pre(f0) = {b0} Pre(f1) = {b1, c1} Pre(e0) = {b0, c0}
Pre(e1) = {b1, c1} Post(f0) = {c1, b1} Post(f1) = {b2, c2}
Post(e0) = {c1} Post(e1) = {b2, c2} .
We now introduce the concept of a bson by using the notions above, and by

generalising the definition of [40]. Below we assume that an occurrence net on is
line-like if |Mon

0 | = 1 and |•e| = |e•| = 1, for every event e. Such an occurrence net
can be represented in a unique way by a chain ξon = c1e1 . . . el−1cl of alternating
(all) conditions and (all) events satisfying •ei = {ci} and e•i = {ci+1}, for every
i < l.

Definition 2.5 (BSON). Let cson be a communication structured occurrence net
as in Definition 2.2, and cson↑ = (on↑1, . . . ,on↑m, Q

↑,W ↑) be another (disjoint)
communication structured occurrence net such that on↑i = (C↑i , E

↑
i , F

↑
i ) is line-

like, for i ≤ m. Moreover, let C↑ =
⋃m
i=1C

↑
i , E↑ =

⋃m
i=1E

↑
i , and F↑ =

⋃m
i=1 F

↑
i .

A behavioural structured occurrence net (or bson) is a tuple

bson = (cson,cson↑, β)

such that β ⊆ C×C↑.
It is assumed that the following hold:

1. For every oni, there exists exactly one on↑j satisfying β(Ci) ∩ C↑j 6= ∅.

2. For every on↑j represented by a chain ξon↑j
= c1e1 . . . el−1cl, the sequence

π1π2 . . . πl = β−1(c1)β−1(c1) . . . β−1(cl) is a concatenation of phase decom-
positions of different occurrence nets in cson. We also denote, for all cj
and ej occurring in the chain ξon↑j

, π(cj) = πj, and

causal(ej ) = pre(Max β−1(Pre(ej)))× {ej} ∪ {ej} × post(Minβ−1(Post(ej)))

3. The relation
(@ ∪ ≺ ∪C)∗ ◦ (≺ ∪C) ◦ (≺ ∪ @ ∪C)∗

over E ∪ E↑ is irreflexive, where:
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• e ≺ f if there is c ∈ C ∪C↑ with c ∈ e• ∩ •f ;

• e @ f if there is q ∈ Q ∪Q↑ with q ∈ e• ∩ •f ; and

• eC f if (e, f) ∈
⋃

e′∈E↑
causal(e ′).

The initial marking Mbson
0 of bson is the initial marking of the cson↑ together

with the initial markings of all the onis such that β(Moni
0 ) ∩Mcson↑

0 6= ∅. The
final marking Mbson

Fin of the bson is the final marking of the cson↑ together with
the final markings of all the onis such that β(Moni

Fin ) ∩Mcson↑
Fin 6= ∅.

A bson consists of two csons linked by the behavioural relation β. In cson↑,
where all the component occurrence nets are line-like and all the conditions are
the end points of β, the upper level represents the evolution of a system. The
cson is the lower level net representing the detailed behaviour of the system. The
behavioural relation β connecting the two levels is used to provide dependencies
between the evolution and detailed information of the system. In such a struc-
tured view, the upper part provides the necessary information for the desired
sequencing of the occurrence nets (which are called phases) in the lower part.
Definition 2.5(1) implies that each phase points to exactly one condition of the
upper level on, and Definition 2.5(2) means that each upper level condition maps
to a single phase of a lower level on. The ordering of the upper level conditions
must match that of the phase decompositions of the lower level on. The term
causal(e) 1 captures some new causal dependencies between events coming from
both levels of the bson. Intuitively, it represents the ‘happened before’ relation-
ship of the events. In Definition 2.5(3), it is required that the new dependencies,
together with the communication (i.e. @) and ordinary causal relations (i.e. ≺)
which are already present in the model are acyclic.

Note that in a bson, the initial marking of a lower level on may not belong
to the initial marking of the bson. Such a net may be ‘waiting’ for the firing of
some events in other ons. For the bson in Figure 2.5, {c0} is the initial marking
of on2 but it is not the initial marking of the bson. {c0} can be reached only if
the ‘update’ event has happened.

1We write before(e) instead of causal(e) [13], and the change to causal(e) is for greater
clarity.
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ON'1 ON'2

ON1 ON2

Figure 2.6: A bson with two upper level ons and two lower level ons. To
simplify the representation, here we use bold dashed lines without arcs to indicate
synchronous cycles.

Figure 2.6 shows an example of a bson involving synchronous communications
in both levels. The lower level cson consists of two interacting systems, on1 and
on2. Information about their evolution is provided in the upper level by on↑1
and on↑2 respectively. The initial marking is Mbson

0 = {a0, b0, c0, d0}, and the
final marking is Mbson

Fin = {a1, b1, c2, d1} The related phase decompositions are as
follows:

β−1(C1) = β−1(a0) β−1(a1) = π1 π2 = {c0, c1} {c1, c2}
β−1(C2) = β−1(b0) β−1(b1) = π3 π4 = {d0, d1} {d1}

where C1 and C2 are sets of conditions in on↑1 and on↑2 respectively. One can
observe that the succession of the conditions in each upper on corresponds to
a valid phase decomposition in the lower ons. For the phases π1π2 in on↑1, we
have Minπ1 = {c0},Maxπ1 = Minπ2 = {c1} and Maxπ2 = {c2}. Using the phase
information and the relations captured by cson, we obtain the causal(e) relations
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of two upper level events e0 and f0, in the following way:

causal(e0 ) = pre(Max β−1(Pre(e0)))× {e0} ∪ {e0} × post(Minβ−1(Post(e0)))

= (pre(Max β−1(a0)) ∪ pre(Max β−1(b0)))× {e0} ∪

{e0} × (post(Minβ−1(a1)) ∪ post(Minβ−1(b1)))

= pre(Max {c0,c1}) ∪ pre(Max {d0,d1}))× {e0} ∪

{e0} × (post(Min{c1,c2}) ∪ post(Min{d1}))

= (pre(c1) ∪ pre(d1))× {e0} ∪ {e0} × (post(c1) ∪ post(d1))

= {g0, h0} × {e0} ∪ {e0} × {g1}

= {(g0, e0), (h0, e0), (e0, g1)}

causal(f0 ) = {g0, h0} × {f0} ∪ {f0} × {g1}

= {(g0, f0), (h0, f0), (f0, g1)} .
Thus, we have the following causal relationships (over events) for this bson:

causality : ≺ = {(g0, g1)}

weak causality : @ = {(e0, f0), (f0, e0), (g0, h0), (h0, g0)}

causal : C = {(g0, e0), (e0, g1), (h0, e0), (g0, f0), (f0, g1), (h0, f0)} .

Figure 2.7: Three types of relationships over events of Figure 2.6.

Figure 2.7 illustrates the above relationships diagrammatically. The solid lines
represent the causal relations ≺; the bold dashed lines indicate the dependencies
@ captured by a/synchronous communications; and the dashed lines represent

24



C relations. Intuitively, the meaning of C is that, for example, g0 and h0 must
happen before e0, while g1 must happen after e0, since the former two events
belongs to the pre-phase of e0 while the latter one belong to the post-phase of e0.
We can observe from the diagram that this bson satisfies the acyclicity conditions
described in Definition 2.5(3).

(a) (b)

ON'1 ON'2

ON1 ON2

Figure 2.8: (a) An invalid bson which involves a causal cycle; (b)three types of
relationships over events of (a).

Remark 2.1. A causal cycle in a bson in general involves occurrence nets in
both levels. For instance, the model in Figure 2.8(a) is as in Figure 2.6(a) except
for the synchronous communication in the lower level between g1 and h0. Such
a model is not a valid bson structure. The events {e0, g1, h0, f0} form a causal
cycle (see the relationships portrayed in Figure 2.8(b)). It indicates that e0 hap-
pens before g1, and h0 happens before f0, but {e0, f0} and {g0, h0} must execute
simultaneously due to synchronisation. As a result, none of them can ever be
executed.

Next we define the bson firing rule. Below we assume that if e ∈ E is an
event in an upper level on↑ (i.e. on↑ = (C,E, F )), then π(•e) = β−1(•e ∩ C) is
the phase of the input condition of e, and π(e•) = β−1(e•∩C) is the phase of the
output condition of e. The markings and steps of the bson are defined similarly
to those for a cson.
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Definition 2.6 (BSON firing rule). Let bson be as in Definition 2.5. M ⊆ C∪C↑

be a marking, and U ⊆ E ∪ E↑ be a step of bson.

1. U is bson-enabled at M if

• (•U \ U•) ⊆M ;

• Maxπ(•e) ⊆M , for every e ∈ E↑ ∩ U ;

• β(•e′) ∩ β(e′•) ∈M , for every e′ ∈ E ∩ U .

2. If U is bson-enabled at M , then U can be fired and produce a marking M ′

given by:
M ′ = (M \ (•U ∪Maxπ(•U))) ∪ U• ∪Minπ(U•)

where Maxπ(•U) =
⋃
e∈U

Maxπ(•e) and Minπ(U•) =
⋃
e∈U

Minπ(e•). This is de-

noted by M [U〉bsonM
′.

The definitions of step sequences and reachable markings of bson are similar
to those for csons.

The firing rule above takes care of the marking moving across different phases.
Given a marking, there are three requirements to decide whether or not a step
is bson-enabled: (i) it is cson-enabled (Definition 2.3); (ii) for each upper level
event in U , the maximal conditions in the phase of its input condition are in the
current marking; and (iii) for each lower level event in U , its corresponding upper
level condition is in the current marking.

For example, {g0, h0}{e0, f0}{g1} is a possible step sequence of the bson in
Figure 2.6. The only step U1 enabled at the initial marking {a0, b0, c0, d0} is U1 =

{g0, h0} since it is cson-enabled, and the corresponding upper level conditions (a0

and b0) are also marked. The firing of U1 changes the marking to {a0, b0, c1, d1}
which enables the step U2 = {e0, f0} (note that the conditions in Maxπ(•e0) =

{c1} and Maxπ(•f0) = {d1} are marked). The firing of U2 produces {a1, b1, c1, d1}
and also enables U3 = {g1} which produces the final marking {a1, b1, c2, d1}.

Proposition 2.6 ([40]). Given a step sequence of bson λbson = U1 . . . Un (n ≥
0), we have that:

1. If i 6= j then Ui ∩ Uj = ∅, i.e. no event occurs more than once.
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2. There is a step sequence involving all the events in E.

3. If i ≥ j then (Ui × Uj) ∩ ((@ ∪ ≺ ∪C)∗ ◦ (≺ ∪C) ◦ (≺ ∪ @ ∪C)∗) = ∅, i.e.
the causal predecessors of an event can never be executed after or together
with that event.

Note that Proposition 2.6(3) states the consistency between the temporal
ordering of events involved in a step sequence and the relations provided by the
bson.

2.5 Temporal Structured Occurrence Nets

Atomicity has long been recognized as an important concept in concurrent and
distributed system design. The concept has been studied before by various re-
searchers in both theory and practical areas. For example, [18] formally models
the atomicity in asynchronous systems; [50] discusses the use of atomic action
schemes in designing practical applications. The effective use of atomicity can sig-
nificantly reduce the cognitive complexity of structured system behaviours, where
one can define “abbreviated” parts of systems where their detailed behaviours are
collapsed and hidden in a lower level and replaced by simple symbols in an upper
level. Then the analysis of behaviour can be performed efficiently at the upper
level of abstraction and, after identifying a problem, mapping it to a correspond-
ing behaviour at the lower level in order to continue the analysis there.

In this section, we introduce the atomicity concept to the type of sons termed
temporal structured occurrence nets (tson). The idea behind the tson is to
use the notion of the block to define an “abbreviated” parts of an occurrence
net representing atomic actions. Figure 2.9(a) depicts the tson view of system
abbreviation, i.e. of that part of the behaviour in the lower level on that is hidden
by the temporal abstraction in the upper level on. Figure 2.9(b), (c) show this
alternative representation of Figure 2.9(a), where the collapsed behaviour part
can be replaced by simple event symbols.

Definition 2.7 (TSON). Let cson be a communication structured occurrence net
as in Definition 2.2, and cson↓ = (on↓1, . . .

↓ ,on↓m, Q
↓,W ↓) be another (disjoint)
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(a)

(b)

(c)

t t t t t t t t t t t

Figure 2.9: (a) A tson where t-labelled edges indicate a mapping from lower to
upper level, while (b) and (c) are the alternative representation of (a).

communication structured occurrence net, and let C↓ =
⋃m
i=1 C

↓
i , E↓ =

⋃m
i=1 E

↓
i ,

and F↓ =
⋃m
i=1 F

↓
i .

A temporal structured occurrence net (or tson) is a tuple

tson = (cson,cson↓, τ)

such that τ : C↓ ∪ E↓ ∪Q↓ → C ∪ E ∪Q is a mapping from the nodes of cson↓

to the nodes of cson.
It is assumed that the following hold:

1. τ(C↓i ∪E
↓
i ∪Q↓) = Ci∪Ei∪Q, τ−1(Ci) ⊆ C↓i , τ(E↓i ) = Ei, and τ−1(Q) = Q↓i .

2. for all e ∈ E, τ−1(e) are disjoint blocks of the component ons of cson (note
that τ−1(e) cannot be empty).

3. for all c ∈ C, |τ−1(c)| = 1, and for all q ∈ Q, |τ−1(q)| = 1.

4. F = {(x, y) ∈ (C× E) ∪ (E×C)|(τ−1(x)× τ−1(y)) ∩ F↓ 6= ∅}.

5. W = {(u, v) ∈ (E×Q) ∪ (Q× E)|(τ−1(u)× τ−1(v)) ∩W ↓ 6= ∅}.

The above definition slightly modifies Definition 11 in [40] by taking into ac-
count the notion of channel place. More specifically, a tson consists of two csons
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and a mapping from the lower level cson to the upper level cson↑ (to simplify the
representation, the definition does not cope with the behavioural relation β and
the extension to deal with this is left for future research). Definition 2.7(1),(2)
describes that all events and some of the conditions in the lower level belong to
disjoint blocks, and each such block maps to an event in the upper cson repre-
senting its components collapsed into a single event. Definition 2.7(4),(5) implies
that the causal relations between new events and conditions (channel places)
which have survived the collapsing are inherited from the events which have been
collapsed and the corresponding conditions (channel places) in the lower level.
Definition 2.7(3) guarantees the disjoint nature of the two component csons by
implicitly assuming that the conditions and channel places which survived col-
lapsing are renamed.

The following result shows that any step in the upper level execution can
be re-interpreted as a valid step sequence in the lower level net. Therefore, a
practical way of using the tson is to analyse the behaviour at the upper level
and, after finding a problem, mapping it to corresponding behaviours at the lower
level.

Theorem 2.1 ([40]). Let tson be the temporal abstraction structured occurrence
net as in Definition 2.7, and U1 . . . Un−1Un be a step execution of cson. Then
there is a step sequence of cson↓,

U1
1 . . . U

m1
1 . . . U1

n−1 . . . U
mn−1

n−1 U1
n . . . U

mn
n ,

such that U i
i ∪ · · · ∪ U

mi
i = τ−1(Gi) ∩ E↓, for all i ≤ n.

Remark 2.2. The collapsing operation in tson is much trickier with occurrence
nets that represent asynchronous activity, since there is a need to avoid intro-
ducing cycles (see [18]), and the possibility to alter communication types. This
is shown in Figure 2.10. The tson initially has two un-collapsed blocks, and
collapsing one of the blocks results in the introduction of a causal cycle. How-
ever, if one collapses both blocks, then what results is a tson with synchronous
communication, and so it is a valid structure.
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Figure 2.10: A cson with two (un-collapsed) blocks (top-left); The collapse of one
of the blocks results in an invalid cson (top-right); The collapse of both blocks
changes the type of commutation from asynchronous to synchronous (bottom).

2.6 Automated Verification in SONs

Using sons in complex evolving system design involves steps of modelling, anal-
ysis and implementation. The modelling step concerns the use of the appropriate
notation and structure to represent system behaviour. The sons formalism intro-
duced in the previous sections can be directly used for modelling the behaviour of
complex evolving systems. The analysis step includes the analysis of behavioural
and structural properties. The former refer to the properties which depend on
the initial marking, while structural properties are those that depend on the
topological structures of the model [57].

In this section, we discuss the two types of properties in sons and provide
algorithms for the related verifications.

2.6.1 Structural Properties

The structural properties in sons are particularly important due to the various
relationships. It is important to verify the correctness of the structure before
further analysis (e.g. simulation and behavioural property checking), or otherwise
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the results are likely to be incorrect. The verification criteria follow from the
formal definitions and properties introduced in this chapter, including:

1. Conflict-freeness: each condition or channel place has at most one input
event and at most one output event (see Definition 2.2(2) and the definition
of on in Section 2.2).

2. Component ons disjointness: the connections between two component ons
are either a/synchronous communications or behavioural relations (see Def-
initions 2.2(1) and 2.5).

3. Phase decomposition: the maximal and minimal bounds of each phase are
cuts, and the back-to-back structure is of a phase decomposition (see the
definition of phase in Section 2.2 and Definition 2.5(2)).

4. Behavioural dependency: the ordering of the upper level conditions must
match that of the phase decomposition of the lower level on; the upper level
conditions and phases are in a one-to-one relation (see Definitions 2.5(1) and
(2)).

5. Block causality: all ending events of a block are causal successors of all
starting events (see the definition of block in Section 2.2).

6. Acyclicity: sons are causal-cycle-free (see the definition of on in Section 2.2,
and Definitions 2.2(3) and 2.5(3)).

As an example, Algorithm 2 carries out sons acyclicity checking. The verifi-
cation of such a property in practice comes down to searching strongly connected
components (scc) in a son model. The idea is to apply Tarjan’s algorithm [51]
to compute maximal sccs, and then use a filter to obtain the desired results. The
algorithm first converts son to a graph G = (V,R), where V is the set of nodes
including all conditions, events and channel places of the son, and the set R is
the arcs representing all causal relationships and weak causal relationships. The
algorithm then computes causal(e) for every upper level event as additional rela-
tions for the input graph. The filter() function at the end of the algorithm aims
to remove all the cycles which only involve weak causality; that is sync-cycles.

31



Algorithm 2 (son cycle detection)
Inputs:

son — structured occurrence net
Output:

Result — causal cycles

1: convert son to G := (V,R).
2: for all eC f do
3: add (e, f) to R
4: Result := tarjan(G) // compute SCCs of G
5: for all SCC ∈ Result do
6: if |SCC| = 1 then
7: remove SCC from Result
8: else if SCC does not on ≺ then
9: remove SSC from Result

2.6.2 Reachability

Reachability is a fundamental basis for studying the behavioural properties of any
system. Such analysis establishes whether a given marking, i.e. a set of conditions
and/or channel places, can be reached from the initial marking. Various different
approaches have been developed to determine the reachability of a marking in
Petri nets, such as reachability graphs [46], net invariants [62] and unfolding [30].
The complexity of the reachability problem for Petri nets is not only determined
by the different approaches used but also by the structural restrictions of Petri
nets themselves. Since sons are essentially acyclic (no causal cycles), conflict-free
(no alternative behaviour is allowed) and 1-safe (a condition/channel place can
contain at most one token), it has been proved that the reachability problem in
such a subclass of Petri nets turns out to be polynomial [8].

In this section we propose an algorithm for reachability checking in sons.
Given a set of required conditions and channel places, the algorithm proceeds as
follows (see Algorithm 3 for details):

1. compute all the causal predecessors of required nodes (e.g. the relations
presented in Figure 2.5(b));

2. check that none of the required nodes is consumed by (is the input of) their
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causal predecessors;

3. check that none of the corresponding upper level conditions (w.r.t β) of the
required node is consumed by their causal predecessors.

Algorithm 3 (Reachability checking)
Inputs:

son — Structured occurrence nets
M — Marking of son

Output:
Whether M is reachable from the initial marking

1: Pred := ∅ // all predecessors of M
2: Cons := ∅ // input conditions and channel places of events in Pred
3: for all c ∈M do
4: Predecessors(c)
5: for all n ∈ Pred do
6: if n is an event then
7: add all nodes in •n to Cons
8: for all c ∈M do
9: if c ∈ Cons or Cons contains all β(c) then
10: return FALSE
11: return TRUE

12: procedure Predecessors (input: c)
13: mark c visited
14: add c to Pred
15: for all c′ ∈ CausalPreset(c) do
16: if c′ is unvisited then
17: Predecessors(c′)

18: function CausalPreset(input: c)
19: Preset := ∅
20: for all node c′ such that (c′, c) ∈ F ∨ (c′, c) ∈ W do
21: add c′ to Preset
22: for (e, f) ∈ C do
23: if f = c then
24: add e to Preset
25: return Preset
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The computation of causal predecessors in Step 1 takes into account all three
types of causal relation in ons, csons and bsons (note that there is no ad-
ditional causal relation in tsons). The procedure Predecessors is recursively
called to explore the causally related nodes of M in the backward direction. The
function CausalPreset is invoked in each iteration to obtain the causal input
neighbours of a given node c. If a node is visited twice or a condition is in the
initial state, then the procedure reaches the stop conditions. The set Pred is
used to store all causal predecessors during the exploration. Step 2 concerns the
basic reachability criterion in son. That is, M is unreachable if there exist two
conditions/channel places in M such that one causally precedes the other. This
criterion follows from Propositions 2.1(4), 2.2(3) and 2.6(3). Step 3 addresses
the consistency between the markings in different bson levels, i.e. M is unreach-
able if there is an upper level condition c in M and a lower level condition c′ in
M such that c causally precedes β(c′).

ON↑1

ON1 ON2

Figure 2.11: A bson with unreachable marking.

Consider the bson in Figure 2.11. The causal predecessors of the marking
{b1, c1} are {f0} and {e0, f0, g0} respectively. This marking is unreachable from
the initial marking. This is because the upper level condition of b1 (viz. a0) is
consumed by the causal predecessor e0. Intuitively, unreachability follows since
{a0, b1} will change to {a1, c0} after firing e0.

Using the result of Proposition 2.3, (i.e. there is no synchronous cycle in any
reachable marking) the algorithm can potentially be improved by performing a
check as to whether or not the given marking involves synchronous channel places
at the beginning of the algorithm, where the synchronous channel place set can
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be efficiently obtained during the acyclicity check presented in Algorithm 2. Then
the marking is unreachable and the algorithm stops if the check returns true.

2.7 A Case Study

In this section, we apply son to model an accident scenario — the Ladbroke
Grove rail crash. We show how the use of son can provide a comprehensive and
clear structure for the system involving multiple parties.

Ladbroke Grove, London, was the scene of a serious railway accident in Oc-
tober 1999. An outbound three-car diesel train collided with an eight-coach high
speed train at a combined speed of 130 mph, with 31 people killed and more
than 500 injured. The immediate cause of the disaster is due to the diesel train
passing signal SN109 at red for danger (also known as SPAD — Signal Passed
At Danger). After the accident, a public inquiry into the crash was held and
explored many more details. Figure 2.12 illustrates a son model of the crash
which is based on the information provided in [56, 61].

Figure 2.12: The ladbroke grove rail crash model.
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The model consists of five parties which have been divided and represented
by separate ons:

Track and Signals represents the the behaviours of the signals that diesel train
passed in sequence. The first signal SN43 is showing a green aspect (proceed),
the next two signals SN63 and SN87 are both showing yellow aspects indicating a
“preliminary caution”. The last one SN109 is showing a red aspect meaning stop.

Driver shows the behaviour of the driver of the diesel train. The behaviour
includes the movement of the train speed control with seven speed notches 1-7
and the action of emergency brake.

Diesel Train models the speed behaviour of the diesel train which is affected
by the driver.

Control Centre models the behaviour of the signaller who is in charge of
monitoring the situation.

High Speed Train models the behaviour of the high speed train which collides
with the diesel train.

The connections between these ons reveals their communications and rela-
tionships. For example, using the behavioural relations it is possible to show
how the activities of Track and Signals relate to the Driver ’s activity, e.g. these
exhibit the corresponding driver’s responses in accordance with different aspects
of the signals. One can observe that, concurrent with the red signal, the driver
moved the speed controller to seven (maximum). Synchronous communications
between Driver and Diesel Train indicate the immediate reactions of the train
(i.e. accelerate, decelerate, etc.) when the driver manipulated the controller.
Communications between Control Centre and the two trains are asynchronous
since the signaller sent no response messages.

Using the sons to model the accident gives an explicit view of its behaviours.
This has the potential of helping an investigator to understand how the accident
has taken place and to explore the backward chain of events to find the accident’s
“cause”.
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2.8 Conclusion

In this chapter, we discussed structured occurrence nets. The execution semantics
for each variant of sons have been defined. We introduced and investigated the
notion of a channel place in csons which gives a flexible way to represent asyn-
chronous and synchronous communications. In particular, synchronous commu-
nication exists not only between two events, but may also involve multiple events
in different occurrence nets. This led to the notion of a sync-cycle. In bsons, a
refinement of the relation causal(e) has been proposed which captures causality
between upper and lower level csons using causal dependencies between events.
In [40], such a dependency is captured by conditions which cannot guarantee the
acyclicity of sons.

We discussed automated verification in sons. Structural property checking
aims to verify the correctness of the son’s structure and relationships. It is nec-
essary to perform the check before further analysis, otherwise the results may
be incorrect. Reachability analysis establishes whether a given marking can be
reached from the initial marking. The algorithm we proposed is based on back-
ward exploration and can run in linear time.

We applied sons to the modelling of an accident scenario which involves mul-
tiple parties (sub-systems). The effective use of sons can portray an explicit view
of the system in order to reduce the cognitive complexity needed to understand
it.

In the next chapter, we address an extension of basic son model which is used
to represent alternative behaviours of a system.
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Chapter 3

Alternative Structured Occurrence
Nets

3.1 Introduction

The sons concept introduced in Chapter 2 plays an important role in the repre-
sentation of complex evolving system behaviours. However, the concept mainly
concerns the modelling of single executions of a system, and there is lack of a di-
rect way to represent a system involving alternative behaviours. In this chapter,
we generalise the above idea and introduce an extension of sons which supports
the modelling of alternative behaviours, named alternative structured occurrence
nets (asons). The idea of adding alternates to sons initially arose from [41]
for the propose of modelling and analysing more complex evolving systems, e.g.
major (cyber) crimes or accidents, both of which are likely to give rise to a mass
of contradictory or uncertain evidence. In criminal and accident investigations,
the evidence available to the investigation team is often contradictory, unclear
or uncorroborated. Investigators typically hypothesize alternate scenarios in or-
der to explain a crime or an accident, of which at most one scenario actually
occurred. Different scenarios may not be completely independent of each other.
They may represent the same system, so that common behaviours are shared by
several scenarios.

A son model can explicitly portray the behavioural records about a single
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(a) (b)

Figure 3.1: (a) Multiple scenarios modelled by two occurrence nets, and by (b) a
single aon.

scenario. However, there is a lack of way to represent multiple scenarios (with
shared behaviours) efficiently. Consider the example in Figure 3.1(a). Using
the sons idea, the activities of a man travelling to a destination in alternative
ways would have to be represented in separate ons (A and B), where each on

represents a unique scenario. Modelling in this way causes many duplicated states
since these two ons actually describe the same system. Figure 3.1(b) shows an
enhancement of sons for such a situation. Basically, the ons in (a) are merged
into a single structure by ‘gluing’ common states (conditions) together. So a
state shared by more than one scenario can branch to multiple events with each
corresponding to a different scenario; the different branches can subsequently
merge from their respective end events to a state, with the result that different
scenarios share the same state. Therefore, the representation of such structure is
more flexible than branching processes [24] where two branches outgoing from a
condition will never meet again.

There are already-existing on extensions which support alternative behaviours.
[29] introduced a ‘barb’ concept to describe an event that could have occurred,
given the condition that existed, but did not execute due to another relevant
event being selected. The alternative on proposed in [41] is based on the barb
concept, so as to allow the simultaneous modelling of different scenarios. The
idea behind [41] is to tag each scenario (on) with a symbol, and an alternative
on is essentially an overlay of individual scenarios with each element marked with
one or more scenario symbols.

The ason concept introduced in this chapter further extends the son nota-
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tion, by adopting the tagging idea in [41]. In Section 3.2, we define alternative
occurrence nets (aons), and propose Petri net-based execution semantics for
aons. We show several important properties based on the structure and step
sequence of aon. Section 3.3 introduces an extension of csons which allows por-
trayal of different kinds of communication between aons. Section 3.4 discusses
the modelling of evolution information in aon. Section 3.5 concludes the chapter.

3.2 Alternative ON

In this section, we formally define the aon model. The notation we use is based
on the formalisms for occurrence nets and temporal structural occurrence nets
introduced in Chapter 2. The only new concept is that of a set of alternative
scenarios, AS = {A1, . . . , Aϕ}.

Definition 3.1 (Tagged-ON). Let AS = {A1, . . . , Aϕ} be a set of alternative
scenarios. A tagged occurrence net is a tuple tagon = (C,E, F, ϑ) where C and
E are disjoint sets of respectively conditions and events (collectively referred to
as the nodes), F ⊆ (C ×E)∪ (E ×C) is the flow relation, and ϑ : C ∪E ∪F →
2AS \ {∅} is a mapping, such that, for each A ∈ AS ,

tagon(a) = (C(a), E(a), F (a))

is an occurrence net, where for X ∈ {C,E, F}, X(a) is the set of all x ∈ X

such that A ∈ ϑ(x). The initial marking Mtagon
0 , final marking Mtagon

Fin , input
and output of a node x, i.e. •x and x•, in tagon are defined in the same way
as in on. It is further assumed that for all A ∈ AS , Mtagon

0 = M
tagon(a)
0 and

Mtagon
Fin = M

tagon(a)
Fin .

We define two nodes, x and y, as being alternatively related (or conflicting)
if there are distinct events, e and f , such that •e ∩ •f 6= ∅ and (e, x) ∈ F ∗

and (f, y) ∈ F ∗ (denoted by x#y). They are causally related if (x, y) ∈ F+ or
(y, x) ∈ F+. A block of the tagon is a non-empty set B ∈ (C ∪ E) such that
B ∩C = •(B ∩E)∩ (B ∩E)•, (•B \B)× (B• \B) ⊆≺, and for all e, f ∈ (B ∩E),
¬(e#f).

Definition 3.1 incorporates the basic idea of portraying the alternative be-
haviours of a system. Essentially, a tagon can be regarded as an overlay of
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multiple ons, each being tagged by a symbol A in AS representing a unique sce-
nario (or world). This is specified by the mapping ϑ. Thus each element in an
tagon is tagged by one or more tags to indicate to which scenarios it belongs.
The tagging is not completely arbitrary; all the elements with the same tag form
a valid occurrence net (i.e. tagon(a)). This represents the behavioural report
of what has happened from the point of view of one of the possible scenarios
A ∈ AS .

Figure 3.2: A tagged occurrence net with three scenarios.

The last statement of the definition postulates that the initial and final mark-
ings of tagon respectively correspond to the initial and final markings of each oc-
currence net tagon(a). Intuitively, this attempts to express that, although there
may exist alternative scenarios, a tagon is still used to model the behaviours of
a single system which starts and ends at unique states. This property is particu-
larly important when applying the phase concept to alternative occurrence nets,
which will be addressed later. To give an example, Figure 3.2 illustrates a tagon

tagged by three scenarios A,B and C showing inside the elements (we omit tags
for certain elements and flow relations). One can observe that each scenario forms
a valid occurrence net which shares the same initial and final markings with the
tagon.

Having defined the tagged occurrence nets, we are able to introduce alternative
occurrence nets by adding additional restrictions to the tagon. Below we assume
that a tagon is sequential if |Mtagon

0 | = 1; and for all e ∈ E, |•e| = 1 and |e•| = 1.
For example, the tagon in Figure 3.2 is sequential.

Definition 3.2 (AON). Let tagon↓ = (C↓, E↓, F ↓, ϑ↓) be a tagged occurrence net
as in Definition 3.1, and tagon = (C,E, F, ϑ) be a sequential tagged occurrence
nets.
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An alternative occurrence net (aon) is a pair

aon = (tagon↓, τ)

such that τ : C↓ ∪ E↓ → C ∪ E is a mapping from the nodes of tagon↓ to the
nodes of tagon.
It is assumed that the following hold:

1. τ(C↓ ∪ E↓) = C ∪ E, τ−1(C) ⊆ C↓, and τ−1(E) = E↓.

2. for all e ∈ E, τ−1(e) are disjoint blocks of sequential-tagon.

3. for all c ∈ C, |τ(c)| = 1.

4. F = {(x, y) ∈ (C × E) ∪ (E × C)|(τ(x)× τ(y)) ∩ F ↓ 6= ∅}.

5. for all x ∈ (C↓ ∪ E↓ ∪ F ↓), ϑ(x) = ϑ(τ(x)).

AS = {A, B, C}

Figure 3.3: An alternative occurrence net.

We also define that aon(a) = tagon↓(a) is a valid occurrence net. The
intuitive meaning of the above definition is similar to the idea of the temporal
abstraction (tson). An aon is a tagged occurrence nets with a mapping from
tagon↓ to a sequential tagon. Each event in the tagon corresponds to a dis-
joint block in the tagon↓; and each event in tagon↓ belongs to an event in
tagon. Definition 3.2(5) additionally restricts that the scenario tags of each
node in the tagon↓ are inherited from the tags of its corresponding node in the

42



tagon. Thus, a tagon is an aon if and only if there exist a sequential tagon

and a mapping τ between the two nets. Those restrictions make sure the consis-
tency between the scenario tags and the concurrency in aon. That is, any two
concurrently related nodes must hold the same tags. In this way, the complex-
ity of coupling alternation with communication and evolution behaviours can be
greatly reduced. As an example, Figure 3.3 shows an alternative occurrence net.
Its corresponding sequential tagon is the net shown in Figure 3.2.

The following propositions address the relationships between tags and nodes
in alternative relations. Given an aon, we first show that any two output (input)
events of a condition never hold the same scenario tag. Moreover, the scenario
tags of the output (input) events of a condition are inherited from it.

Proposition 3.1. Let aon be an alternative occurrence net as in Definition 3.2,
and c be a condition in aon.

1. For all e, f ∈ •c : e 6= f ⇐⇒ ϑ(e) ∩ ϑ(f) = ∅, and for all e′, f ′ ∈ c• : e′ 6=
f ′ ⇐⇒ ϑ(e′) ∩ ϑ(f ′) = ∅.

2. ϑ(c) =
⋃
e∈•c ϑ(e) =

⋃
f∈c• ϑ(f).

Proof. (1) Suppose that ϑ(e)∩ϑ(f) = {A} and ϑ(e′)∩ϑ(f ′) = {A}. Then aon(a)

is an invalid on, as |•c| > 1, and |c•| > 1 contradicting Definition 3.1.
(2) Suppose that ϑ(c) 6=

⋃
e∈•c ϑ(e), there exist A ∈ AS such that A /∈ ϑ(c)

and A ∈
⋃
e∈•c ϑ(e). Then aon(a) is an invalid on, as |•e| = ∅ contradicting

Definition 3.1. In the case A ∈ ϑ(c) and A /∈
⋃
e∈•c ϑ(e), c is the initial condition

of aon(a) but not the initial condition of aon contradicting Definition 3.1.
Similarly, ϑ(c) 6=

⋃
e∈c• ϑ(e), A /∈ ϑ(c) and A ∈

⋃
e∈c• ϑ(e) imply |e•| = ∅;

A ∈ ϑ(c) and A /∈
⋃
e∈c• ϑ(e) imply c is the final condition of aon(a) but not the

final condition of aon, contradicting Definition 3.1.

The next property shows that, if two nodes are alternatively related, then
they must hold different tags. For example, in Figure 3.3 any uncertain event
tagged by A and any uncertain event tagged by C are alternatively related, so as
to have different tags.
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Proposition 3.2. Let aon be an alternative occurrence net as in Definition 3.2,
and x, y be two nodes in aon. Then x#y implies ϑ(x) ∩ ϑ(y) = ∅.

Proof. x#y and ϑ(x)∩ϑ(y) = {A} indicates that aon(a) is not a valid occurrence
net. A contradiction with Definition 3.1.

A phase of an aon is defined as a non-empty set of conditions π ⊆ C such that
there is a A ∈ AS where π is a valid phase in the aon(a). A phase decomposition
of aon is a sequence of phases such that there is a A ∈ AS where the sequence is
a valid phase decomposition in the aon(a). Thus in aon there may be more than
one phase decompositions in a single aon, each of which belongs to a different
scenario. Consider again the aon in Figure 3.3. One of the possible phases is
composed of the two conditions which are tagged by AB. In fact such a phase is
shared by two scenarios A and B.

The aon firing rule is defined below. It explains how the states change in
a system involving different scenarios. More precisely, if a marked condition
branches to multiple events, there is exactly one of these events that can be
chosen to fire. Note that a step in the aon is a set of events.

Definition 3.3 (AON firing rule). Let aon be an alternative occurrence net, M
be a marking, U be a step of aon, and A ∈ AS be an alternative scenario.

1. U is aon-enabled at M and A if

• M(c) ≥
∑

e∈c• U(e), for every condition c ∈ C; and

• A ∈ ϑ(e), for every event e ∈ U .

2. If U is aon-enabled at M and A, then U can be fired producing a new
marking: M ′ = (M \ •U) ∪ U•;

this is denoted by M [U〉AaonM
′.

A step sequence of aon (w.r.t. scenario A) is a sequence λA = U1 . . . Un

(n ≥ 0) of steps, such that there exist markings M1, . . . ,Mn satisfying:

Maon
0 [U1〉AaonM1, . . . ,Mn−1[Un〉AaonMn .
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Thus a step sequence portrays a valid system execution with respect to a
particular scenario.

The reachable markings of aon (w.r.t. scenario A) are defined as the smallest
(w.r.t. ⊆) set reachA(aon) containing Maon

0 and such that if there is a marking
M ∈ reachA(aon) and M [U〉AaonM

′, for a step U and a marking M ′, then M ′ ∈
reachA(aon).

e0

e1

e2

e3

e4

e5

e6

AS={A, B, C}

Figure 3.4: An alternative occurrence net.

Considering the aon shown in Figure 3.4, λA = {e0}{e3}{e6} and λB =

{e0}{e2}{e4} are two possible step sequences which respectively represent the
executions of scenarios A and B. However, {e1}{e3}{e6} is not a valid step
sequence, since e1 belongs to scenario C while e3 and e6 belong to scenario A.
Intuitively, this can be explained by saying that a single run cannot happen in
different worlds. We can also observe that the two valid step sequences described
above correspond to the maximal executions of the occurrence nets aon(a) and
aon(b). This is not a coincidence; the following results show their relationships.

Proposition 3.3. Let aon be an alternative occurrence net as in Definition 3.2,
and λA = U1 . . . Un (n ≥ 0) be a step sequence of aon, w.r.t. an alternative
scenario A ∈ AS .

1. λA is a step sequence of the occurrence net aon(a).

2. For each A ∈ AS , there is a step sequence involving all events in E(a).

3. If i 6= j then Ui ∩ Uj = ∅, i.e. no event occurs more than once.
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Proof. We prove the proposition for sequential tagons, then the general result
follow from Theorem 2.1.

(1) By Definition 3.2 each occurrence net tagon(a) is a line-like on

c0e0 . . . emcm . . . encn

which starts at the initial marking, ends at the final marking, and tag A is shared
by all its elements. By Definition 3.3 and the fact that there is no concurrent
behaviour in the tagon, the step sequence λA together with the corresponding
reachable markings is a sequence c′0e′0 . . . e′mc′m starting from the initial marking.

By Definition 3.1, c0 = c′0. By Definition 3.3 and Proposition 3.2, e0 =

e′0, . . . em = e′m and cm = c′m.
(2) Suppose that there is no such step sequence, this implies that there exists

an event e ∈ E(a) such that e is aon-unenabled, w.r.t. all reachable markings
of aon. Since each tagon(a) in the aon is a line-like sequence, e is unenabled,
which implies ϑ(e) 6= ϑ(•e). This is a contradiction with Proposition 3.1(1).

(3) The proof follows from Propositions 3.3(1) and 2.1(1).

3.3 Alternative CSONs

The aons introduced in the previous section are based on the occurrence net.
The extension is able to model alternative behaviours in a single system. In
this section, we extend the fundamental concept of csons with the notion of
alternative behaviours.

Definition 3.4 (ACSON). Let aoni = (Ci, Ei, Fi, ϑi) for i = 1, . . . , k be alter-
native occurrence nets (we denote respectively by C, E and F their conditions,
events and arcs); Q be a set of channel places; W ∈ (E × Q) ∪ (Q × E) be the
arcs between the channel places and events; and ϑ0 : Q ∪W → 2AS \ {∅} be a
mapping.

A alternative communication structured occurrence net (acson) is a tuple

acson = (aon1, . . . ,aonk, Q,W, ϑ0)
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such that, for every A ∈ AS ,

acson(a) = (aon1(a), . . . ,aonk(a), Q(a),W (a))

is a communication structured occurrence net, where for X = Q,W,X(a) is the
set of all x ∈ X such that A ∈ ϑ0(x). It is further assumed that:

1. The sets of input and output events of q ∈ Q,
•q = {e ∈ E | (e, q) ∈ W} and q• = {e ∈ E | (q, e) ∈ W} ,

belong to distinct component aonis; and moreover, |•q| = 1 and |q•| ≤ 1.

2. For all q ∈ Q, ϑ(q) = ϑ(•q) and ϑ(q) = ϑ(q•) if |q•| = 1, i.e. q, its input
and output have the same tags.

We also define that the initial marking Macson
0 of the acson is the union of

Maon1
0 , . . . ,Maonk

0 , and the final markingMacson
Fin is the union ofMaon1

Fin , . . . ,Maonk
Fin .

A marking in the acson is a set of conditions in C and channel places in Q.
In contrast to the cson where a set of component ons are used to represent

separate subsystems, the modelling of subsystems in the acson are replaced by
aons, and the channel places representing asynchronous or synchronous commu-
nication are connected with events in different aons. In addition, each element in
the acson is associated with one or more scenario tags. All the elements with the
same tag form a valid cson. Therefore, similarly to the case of aons, an acson

can be regarded as a number of csons which are overlaid into a single struc-
ture, and some of the elements are ‘certain’ if they are shared by all scenarios,
otherwise they are ‘uncertain’.

The latter two conditions in the above definition provide restrictions concern-
ing the structure and tag of channel places. In particular, Definition 3.4(1) defines
the input and output events of channel places. Definition 3.4(2) implies that the
tags held in each channel place are the same as the tags in its input and output
events. This condition intuitively means that if an event in acson is shared by
some scenarios, then any communication linked with the event is also required
to be shared by those scenarios. In this way, we guarantee that the initial and
final markings of each acson(a) are respectively equal to the initial and final
markings of the acson.
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The following definition shows the acson firing rule. A step in an acson is a
set of events. The firing rule is based on the one defined for cson which takes into
account the execution semantics of synchronous behaviours. Additionally, the
new definition is able to cope with alternative behaviours for uncertain elements.

Definition 3.5 (ACSON firing rule). Let cson be an alternative communication
structured occurrence net as in Definition 3.4, M be a marking, U be a step of
acson, and A ∈ AS be an alternative scenario.

1. U is acson-enabled at M and A if

• M(c) ≥
∑

e∈c• U(e), for every condition c ∈ C;

• M(q) +
∑

e∈•q U(e) ≥
∑

e∈q• U(e) for every channel place q ∈ Q; and

• A ∈ ϑ(e), for every event e ∈ U .

2. If U is acson-enabled atM , then U can be fired and produce a new marking
M ′ which is given by: M ′ = (M∪U•)\•U . This is denoted byM [U〉AacsonM

′.

The step sequences and reachable marking of cson are then defined in the
same way as for the aon.

AS={A, B}

Figure 3.5: An alternative communication structured occurrence net (acson).
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Figure 3.5 illustrates an example of an acson which involves two scenarios
A and B. The acson consists of two component aons communicating via two
channel places. However, the two communications can never exist in a single
system execution since they belong to different scenarios. The cson formed by
tag A only contains an asynchronous communication from e1 to f1, while the
other cson formed by tag B has a synchronous communication between e4 and
f4. Using the firing rule defined above, for each scenario we can find at least one
step sequence which is from the initial marking of the acson to the final marking.
For example, in scenario A we have λA = {e0, f0}{e1}{f1}{e3, f3}{e5, f5}, and in
scenario B we have λB = {e0, f0}{e2, f2}{e4, f4}{e5, c5}.

The following proposition shows that each step sequence in acson is also a
valid step sequence of one of the scenarios in acson.

Proposition 3.4. Let acson be an alternative communication structured occur-
rence net as in Definition 3.4, and λA = U1 . . . Un (n ≥ 0) be a step sequence of
acson, w.r.t. an alternative scenario A ∈ AS .

1. λA is a step sequence of the communication structured occurrence net acson(a).

2. For each A ∈ AS , there is a step sequence involving all events in E(a).

3. If i 6= j then Ui ∩ Uj = ∅, i.e. no event occurs more than once.

Proof. (1) Since there are no concurrently related nodes in each component
tagon of the acson, for all e, f ∈ U , e, f belong to disjointed aons. From
Definition 3.5, (e, f) /∈ (@ ∪ ≺)∗ ∧ (f, e) /∈ (@ ∪ ≺)∗.

The proofs of (2) and (3) above follow from 1 and then Propositions 2.2(1)
and (2).

3.4 Alternative BSONs

In the previous section, we discussed communication in aons. The new structure
is an extended cson which allows the modelling of interactions between systems
with alternative behaviours. In this section, we introduce the notion of evolution
to aons.
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Definition 3.6 (ABSON). Let acson be an alternative communication struc-
tured occurrence net as in Definition 3.4; cson↑ = (on↑1, . . . ,on↑m, Q

↑,W ↑) be a
(disjoint) communication structured occurrence net such that on↑i = (C↑i , E

↑
i , F

↑
i )

is line-like, for i ≤ m, and C↑, E↑ and F↑ be their conditions, events and
arcs; β ⊆ C × C↑ be the arcs between conditions in acson and cson↑; and
ϑ0 : β → 2AS \ {∅} be a mapping.

An alternative behavioural structured occurrence net (abson) is a tuple

abson = (acson,cson↑, β, ϑ0)

such that, for every A ∈ AS ,

abson(a) = (acson(a),cson↑, β(a))

is a behavioural structured occurrence net, where β(a) is the set of all x ∈ β such
that A ∈ ϑ0(x). It is further assumed that:

1. For every aoni, there exists exactly one on↑j satisfying β(Ci) ∩ C↑j 6= ∅.
We also denote that for all c ∈ C↑j , π(c) is a set of phases such that for all
π ∈ π(c), β(π) = c.

2. For every c ∈ C, β(c)(a) = β(c)(b), where A,B ∈ ϑ0(c).

The initial marking Mabson
0 of abson is the initial marking of the cson↑

together with the initial markings of all the aonis such that β(Maoni
0 )∩Mcson↑

0 6=
∅.

An abson consists of a cson↑ and an acson which are linked by the be-
havioural relation β. The upper level net of an abson is a (non-alternative)
cson with each component on line-like, while the acson is a lower level net
representing the detailed behaviour of the system which may involve alterna-
tive behaviours indicated by different tags in AS . What is more, each scenario
together with the corresponding upper level cson↑ forms a valid behavioural
structured occurrence net. In fact, every element in cson↑ can be treated as a
certain one which is tagged by all the tags in AS .

Definition 3.6(1) addresses the relationships between the two levels of abson.
The first part of the statement implies that (the phases in) each lower level aon

points to (the conditions in) exactly one upper level on. Unlike the bson where
phases and upper level conditions are in an one-to-one relationship, an upper
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level condition in the abson may map to multiple phases due to the alternative
relations. More precisely, recall Definition 2.5(2) that the conditions in the chain
ξon↑j

= c1e1 . . . el−1cl of the upper level on map to a phase decomposition in the
lower net. However, in abson there may be more than one phase decomposition
in a single aon, and the phases belonging to different scenarios may point to the
same upper condition. Therefore, we refine the notion π(c) to cope with the new
relationship.

AON

ON↑

Figure 3.6: An alternative behavioural structured occurrence net.

Consider the abson shown in Figure 3.6. The lower level aon involves two
scenarios A and B, each of which has its own phase decomposition π1π2π3 pointing
to the conditions of the chain ξon↑ = a0f0a1f1a2 in the upper level on↑. We can
observe that the phases {c1, c2} and {c1, c3} point to a single condition a1 since
they are both the π2 of aon(a) and aon(b).

Next we define the abson firing rule. On the one hand, the rule takes into
account the execution of alternatively related nodes in acson. On the other hand,
it concerns the one-to-many relationships between upper level conditions and
phases. A step U is abson-enabled if: (i) it is acson-enabled (Definition 3.5);
and (ii) for each upper level event in U , the maximal conditions in one of the
phases of its input condition is in the current marking; and (iii) for each lower
level event in U , its corresponding upper level condition is in the current marking.

Below we assume that V ⊆ U ∩ E↑ is a subset of upper level events in U

such that for every e ∈ V there is a phase π ∈ π(•e) such that Maxπ is the final
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marking of a component aon in abson, i.e. V = {e ∈ (U ∩ E↑) | ∃π ∈ π(•e) :

Maxπ ⊆
⋃m
i=1 M

aoni
Fin }. Moreover, Maxπ(•V ) is the union of all maximal phases

of π(•V ), and Minπ(V •) is the union of all minimal phases of π(V •). Note that
Minπ(V •) are also the initial markings of some component aons. Intuitively, these
notions are used to portray the disjoint part of an ‘off-line’ structure in abson.

AS = {A, B}ON↑

AON1

AON2

Figure 3.7: An alternative behavioural structured occurrence net.

Definition 3.7 (ABSON firing rule). Let abson be as in Definition 3.6. M ⊆
C ∪ C↑ be a marking, U ⊆ E ∪ E↑ be a step of abson, and A ∈ AS be an
alternative scenario.

1. U is abson-enabled at M and A if

• M(c) ≥
∑

e∈c• U(e), for every condition c ∈ C ∪C↑;

• M(q) +
∑

e∈•q U(e) ≥
∑

e∈q• U(e) for every channel place q ∈ Q∪Q↑;

• For every e ∈ E↑∩U , there is a phase π ∈ π(•e) such that Maxπ ⊆M ;

• β(•e′) ∩ β(e′•) ∈M , for every e′ ∈ E ∩ U ;

• A ∈ ϑ(e), for every event e ∈ U .

2. If U is abson-enabled at M , then U can be fired and produce a marking
M ′ given by:

M ′ = (M \ (•U ∪Maxπ(•V ))) ∪ U• ∪Minπ(V •)

This is denoted by M [U〉AabsonM
′.
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The step sequences and reachable marking of abson are then defined in the
same way as for aons.

Using the firing rule defined above, one of the possible step sequences of the
abson in Figure 3.7 is λA = {e0}{e1}{f0}{e2}{f1}{g0} which corresponds to the
maximal step sequence of scenario A, i.e. abson(a).

3.5 Conclusion

In this chapter, we discussed ason – an extended son concept aimed at mod-
elling a large body of contradictory records of complex activities. Essentially, any
variant of asons can be regarded as an overlay of multiple basic son variants
(scenarios). In an ason each element can be shared by one or more scenarios,
and each run corresponds to the run of one of its scenarios. To define the ason,
we also adopt the block concept in order to reduce structural complexity.

Once we can model the alternative behaviours in a system, attributes such as
time can be attached to elements, in order to decide what scenarios actually hap-
pened, so that all but one of each set of alternative behaviours can be discarded.
In the next chapter, we will introduce timed-sons and timed-asons which provide
support for the associated time information for son-based concepts.
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Chapter 4

Time in Structured Occurrence
Nets

4.1 Introduction

In this chapter, we introduce time property to the basic and alternative sons
concepts. Representing time is an attractive feature in the modelling of com-
plex evolving systems. In software engineering, the design of many information
systems must deal with temporal information. For example, the time chain of
events in medical records applications is a critical part of the data; and in a crim-
inal investigation, constructing a timeline of a crime for each suspected party is
helpful in organising the evidence into a cohesive presentation for a court of law.
However, in many cases, the time information available about an action or state
is not precise or is incomplete. For instance, it may not be possible to give an
exact time at which a robbery occurred, but it may be possible to give bounds for
the time period in which the robbery occurred. Numerous time extensions have
been proposed in Petri nets [17, 37, 39]. However, most of them only consider
the time information as an abstraction at the level of system specification, and
research on attaching time information to the level of system behaviour is limited.
Therefore, the contribution of this work is a new tool-supported formalism (timed
sons) that is based on collections of related timed occurrence nets and is designed
for modelling and reasoning about causally related events and concurrent events
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with uncertain or missing time information in evolving systems of systems.
The chapter is organized as follows: the notation of timed sons (based on

discrete time intervals) is given in Section 4.2. Conditions for checking the con-
sistency of time intervals are defined in Section 4.3, and algorithms for estimating
and for increasing the precision of time intervals using default duration intervals
and redundant time information are given in Section 4.4; Section 4.6 concludes
the chapter.

4.2 Time Model

In a time-based system, such as a crime or accident scenario, it is important to
establish the order in which events have occurred (i.e. the ‘chain of events’) and
to establish the duration between events, in order to determine causes and their
effects, and thereby eliminate infeasible hypothesized scenarios and suspects from
the investigation and if possible identify the real culprits or causes of an accident.
The notion of a global time enables different investigators to order a given set of
events consistently (i.e. in the same order), which facilitates their cooperation.

Uncertainty is a common and unavoidable feature of temporal information, in
particular, uncertainty about the time of occurrence of an event, or the duration
of the event, or the time at which a condition comes into existence, or how long the
condition lasts. Fortunately, this uncertainty is often bounded. Such uncertainty
should be modelled and taken into consideration when making causal inferences.

4.2.1 Global Time

A global clock is an abstraction (i.e. a logical construct) that provides global time.
It is used for capturing chronological and causal relationships in a distributed
system. The global clock has a fixed origin and a fixed granularity, and therefore
supports empirical verification of event ordering. The fixed origin of the global
clock supports the correct ordering of events using timestamps.

The use of different levels of abstraction (in tsons) requires time abstraction,
that is, coarser granularities of time corresponding to higher levels of abstraction,
which can be implemented using clocks with larger units of time that correspond
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to higher abstraction levels. The time unit of the base level of abstraction of a son

can be chosen such that the duration of each event is zero, which facilitates the
computation of missing time values in an investigation. Therefore, the duration
of a node resulting from an abstraction is the maximal sum of the durations of
its conditions at the base level of abstraction such that no two conditions are
pairwise concurrent.

4.2.2 Modelling Uncertainty

An interval is a simple way of representing a time value or a duration and the
bounds on its uncertainty. Thus, the start time of a condition, the finish time of
the condition, the start time of an event, the finish time of the event, the duration
of the condition, and the duration of the event (and the bounds on their respective
uncertainties) can each be represented using an interval. Certainty about a time
value or a duration can be represented by making the two endpoints of their
respective intervals identical.

For example, the occurrence of an instantaneous event at 9:00 can be repre-
sented by the interval [09:00, 09:00]. A condition known to have started sometime
between 9:00 and 12:30 can be represented using the interval [09:00, 12:30]. An
event known to have occurred at any time before 12:30 can be represented using
the interval [−∞, 12:30]. An event known to have occurred at any time after 12:30
can be represented using the interval [12:30,+∞] treating +∞ as the maximum
possible time. An unknown time can be represented by the interval [−∞,+∞].

Similarly, there are five possibilities for durations of conditions and of events,
and they can be represented in a similar manner.

4.3 Time Information and its Consistency

We assume that each node of a son (i.e. condition, event, or channel place) has a
start time (Ts) and a finish time (Tf ), and that each time value has bounded un-
certainty represented by a specified time interval ([Ts,l, Ts,u] and [Tf,l, Tf,u] respec-
tively). We also assume the node has a duration (D) with bounded uncertainty
represented by a specified duration interval ([Dl, Du]), see Figure 4.1.
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Ts,l
Dl

Ts,u Tf,l Tf,u

D

time

Ts Tf

Du

Figure 4.1: Relationship between the unknown time and duration values of a
node and their known bounds on the global timeline.

4.3.1 Notation

Let n be a node of a son. The time information for n is defined as follows.
The start and finish times of n are denoted by T ns and T nf respectively.
The start time interval of n represents the bounded uncertainty about the

value of T ns , and is denoted by:

Ins , [T ns,l, T
n
s,u]

where T ns,l and T ns,u are the lower and upper bounds respectively on the start time
of n. Ins is well-defined if and only if the following inequality is satisfied:

T ns,l ≤ T ns,u (4.1)

The finish time interval of n represents the bounded uncertainty about the
value of T nf , and is denoted by:

Inf , [T nf,l, T
n
f,u]

where T nf,l and T nf,u are the lower and upper bounds respectively on the finish time
of n. Inf is well-defined if and only if the following inequality is satisfied:

T nf,l ≤ T nf,u (4.2)

We assume that the start time of n is at, or before, the finish time of n, which
is expressed by the restriction: T ns ≤ T nf . In order to ensure consistency with
this restriction, the start and finish time intervals of n must satisfy the following
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inequalities:
T ns,l ≤ T nf,l ∧ T ns,u ≤ T nf,u (4.3)

The duration of n is denoted by Dn. The duration interval of n represents
the bounded uncertainty about the value of Dn, and is denoted by:

Ind , [Dn
l , D

n
u ]

where Dn
l and Dn

u are the lower and upper bounds respectively on the duration
of n. Ind is well-defined if and only if the following inequality is satisfied:

0 ≤ Dn
l ≤ Dn

u (4.4)

In this paper, if the node n is clear from the context, we will omit the super-
script n.

4.3.2 Time Consistency

4.3.2.1 Time consistency in line-like ONs

As defined in Chapter 2, in a line-like on each event has exactly one input con-
dition and one output condition, and each condition has at most one input event
and at most one output event.

We assume that for any two directly connected nodes (i.e. a condition ending
in an event, or an event that starts a condition), the finish time of the source
node is equal to the start time of the destination node. Therefore, we have the
following:

∀n1, n2∈(E ∪ C) ((n1, n2)∈F =⇒ In1
f = In2

s ) (4.5)

Let n be a node in a line-like on. The information with respect to the start
time, finish time, and duration of n is defined to be node consistent if and only
if the following inequalities are satisfied:

[Ts,l +Dl, Ts,u +Du] ∩ [Tf,l, Tf,u] 6= ∅ (4.6)

[Tf,l −Du, Tf,u −Dl] ∩ [Ts,l, Ts,u] 6= ∅ (4.7)

[max({0, Tf,l − Ts,u}), Tf,u − Ts,l] ∩ [Dl, Du] 6= ∅ (4.8)

The specified start time and duration intervals of n in combination bound
uncertainty about the finish time of n, and Condition (4.6) verifies that the
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bounds are consistent (i.e. overlap) with the specified finish time interval of n.
Similarly, the specified finish time and duration intervals of n in combination
bound uncertainty about the start time of n, and Condition (4.7) verifies the
bounds are consistent with the specified start time interval of n. Condition (4.8)
verifies that the bounds on uncertainty about the duration of n determined from
the specified start and finish time intervals of n are consistent with the specified
duration interval of n. Condition (4.8) handles two cases, namely, the case where
the uncertainty is such that the start and finish time intervals overlap and can
be identical, when the condition evaluates to [0 ,Tf ,u − Ts,l ] ∩ [Dl ,Du ] 6= ∅, and
the case where the two intervals are disjoint, when the condition evaluates to
[Tf ,l − Ts,u ,Tf ,u − Ts,l ] ∩ [Dl ,Du ] 6= ∅.

A line-like on is defined to be time consistent if and only if for all nodes n in
the on, n is node consistent and the flow relation F of the on satisfies Condition
(4.5).

For example, consider the line-like ons shown in Figure 4.2. The time interval
shown above each arc (prefixed by ‘T:’) represents the finish time interval of its
source node as well as the start time interval of its destination node, and the
duration interval of a node is prefixed by ‘D:’. The absence of a time or a duration
interval of a node indicates that the information is unspecified, that is, [−∞,+∞].
Using Condition (4.6) above, we can see that the time information of event e1 in
(a) is inconsistent, because its estimated finish time interval is [Ts,l + Dl, Ts,u +

Du] = [0910, 1020], and its specified finish time interval is [1030, 1100], and the
two intervals do not intersect. In contrast, event e1 in (b) is node consistent.

T: 0900-1000 T: 1030-1100

T: 0900-1000 T: 1005-1100

D:10-20

D:10-20

(a)

(b)

Figure 4.2: Two linear ons with time information.

59



4.3.2.2 Time consistency in ONs

In an on, each event has at least one input condition and at least one output
condition, and each condition has at most one input event and at most one output
event.

We assume that, for any two directly connected nodes, the finish time of the
source node is equal to the start time of the destination node (as in line-like
ons). An event starts if and only if all its input conditions are satisfied, and its
output conditions are satisfied if and only if the event finishes. We assume there
is no delay in the occurrence of the event. Therefore, the finish time of the input
conditions must be the same as the event’s start time, and the start time of the
output conditions must be the same as the event’s finish time. Therefore, we
have the following definition.

Let e be an event in an on. The time information of e is defined to be
concurrently consistent if and only if the following conditions are satisfied:

∀c∈ •e (Icf = Ies ) (4.9)

∀c′∈e• (Ic
′

s = Ief ) (4.10)

e is node consistent (4.11)

Thus, for any event e with multiple inputs and outputs, verifying its concur-
rent consistency involves verifying that the finish time intervals of •e are equal
to the start time interval of e, that the start time intervals of e• are equal to
the finish time interval of e, and that the start time, finish time, and duration
intervals of e satisfy Conditions (4.6), (4.7), and (4.8).

An on is defined to be time consistent if and only if for all conditions c in
the on, c is node consistent, and for all events e in the on, e is concurrently
consistent.

4.3.2.3 Time consistency in alternative ONs

In alternative ons, each event has at least one input condition and at least one
output condition, and each condition has zero or more input and output events.

A condition in alternative ons can have multiple input and output events that
are in different scenarios. The verification of consistency of the alternative ons
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consists in ensuring that each condition is in at least one scenario.
Let c be a condition in an alternative on. The time information of c is defined

to be alternatively consistent if and only if the following constraints are satisfied:

∃e∈ •c (Ief = Ics) (4.12)

∃e′∈c• (Icf = Ie
′

s ) (4.13)

c is node consistent (4.14)

Condition (4.12) states that the start time interval of c is the same as the finish
time interval of an input event, and Condition (4.13) states that the finish time
interval of c is the same as the start time interval of an output event. Condition
(4.14) states that the start time, finish time, and duration intervals of c satisfy
Conditions (4.6), (4.7), and (4.8).

An alternative on is defined to be time consistent if and only if for all condi-
tions c in the on, c is alternatively consistent, and for all events e in the on, e is
concurrently consistent.

(b)

(c)

T: 0900-0920 T: 0
940-0950

T: 0950-1000

D:10-20

D:0-30

D:0-10

T: 0900-0920 T: 0
940-0950

T: 0950-1000

T: 0900-0920 T: 0
940-0950

T: 0950-1000

Figure 4.3: Two time consistent aons (a) and (b), and a time inconsistent aon
(c).

During verification of alternative consistency of condition c, we can determine
whether or not c belongs to any scenario. Thus, time verification can help investi-
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gators to eliminate invalid hypothetical scenarios. For example, Figure 4.3 shows
three alternative on fragments with the same structure and time intervals but
different duration intervals. The intervals of c1 in (a) are alternatively consistent
with respect to e0 and e1, but are alternatively inconsistent with respect to e0

and e2. Therefore, there is only one valid scenario to which c1 belongs considering
the time information, since e2 cannot happen after the execution of e0 due to the
time inconsistency. Notice that time verification cannot always identify a unique
scenario for a given condition: in (b) there are two valid scenarios for c1 since it
is node consistent with both its finish time intervals; and in (c) there is no valid
scenario for c1 since it is node inconsistent with both its finish time intervals.

4.3.2.4 Time consistency in CSONs

In csons, communication between events is represented using channel places that
behave identically to conditions. In asynchronous communication, the sending
event e executes either before the receiving event e′, or e and e′ execute simul-
taneously, and the two events are connected through an asynchronous channel
place that records information about the communication using a condition. In
synchronous communication, the two communicating events execute simultane-
ously and are connected through two synchronous channel places that record the
communication information using conditions and have the same timing charac-
teristics as the events.

Formally, let q be a channel place and let e, e′ be the input and output events
of q respectively. The time information of q is defined to be a/synchronously
consistent if and only if the following conditions are satisfied:

Ief = Iqs (4.15)

Ie
′

s = Iqf (4.16)

q is node consistent (4.17)

Intuitively, condition (4.15) states that the start time of q equals the finish
time of its input event. Condition (4.16) states that the finish time of q equals the
start time of its output event. Condition (4.17) states that q must be node consis-
tent with respect to its three time and duration intervals. If q is an asynchronous
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channel place, its consistency checking can be regarded as checking a condition
that can have a non-zero duration. If q is synchronous channel place, the duration
of q is zero due to the cyclic representation of synchronous communication.

(a) (b)

T: 0900-0900

T: 0900-0900

T: 1000-1000

T: 1000-1000

T: 0830-0830

T: 0930-0930

T: 0900-0900

T: 1000-1000

T: 0900-0900

T: 0930-0930

Figure 4.4: Two csons with different runs of f0 and e0.

Figure 4.4 shows how time information in a cson can reveal the behaviour of
events during asynchronous communication. In (a) the events f0 and e0 have the
same start and finish time intervals, which indicate that the two events execute
simultaneously. In (b) the time intervals indicate that f0 executes earlier than
e0.

4.3.2.5 Time consistency in BSONs

The verification of time consistency in bsons involves verifying time consistency
between occurrence nets at different levels of abstraction using the behavioural
(β) and causal relations. For simplicity, we assume the different abstraction levels
have the same time origin and granularity.

Given a bson, let causalU be the binary relation consisting of the causally
related pairs of events of the bson that is defined as follows:

causalU ,
⋃
e∈E

causal(e)

where E is the set of events in the ons of the bson. The time information of
causalU is defined to be time consistent if and only if the following condition is
satisfied:

∀(g, h)∈causalU : (T gs,l ≤ T hs,l ∧ T gs,u ≤ T hs,u) (4.18)
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For all conditions ci, c′i ∈ C (C is the set of conditions in the ons of the bson)
such that (ci, c

′
i)∈β and ci belongs to the initial state of a lower level on of the

bson, the following equation must be satisfied:

Icis = I
c′i
s (4.19)

Moreover, for all conditions ct, c′t such that (ct, c
′
t)∈β and ct belongs to the final

state of a lower level on of the bson, the following equation must be satisfied:

Ictf = I
c′t
f (4.20)

T: 0900-0930

T: 0900-0930 T: 0930-0930

T: 0930-0930

Figure 4.5: Example of a bson portraying system (off-line) update.

Condition (4.18) states that the start time of event g should be the same as or
precede the start time of event h, and extends the causal restriction to the entire
bson. Conditions (4.19) and (4.20) impose restrictions on the initial and final
states of the bson: the start (finish) time of a lower level occurrence net must
be the same as the start (finish) time of its corresponding upper level condition.

For example, Figure 4.5 portrays a system undergoing an ‘offline modification’.
The behaviour of the system is represented by two disjoint occurrence nets, since
the situation portrayed is that of a modified system restarting its activities from
some given initial state, rather than continuing from the state reached before
the system modification started. The behaviour of such offline modification is
reflected in the correspondence between time intervals in the two levels, as shown
in the figure. The finish time interval of the pre-modified system (c3) and the
start time interval of the post-modified system (c4) are identical to those of their
corresponding upper level conditions.
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4.4 Computation of Time Intervals

Investigations of crimes and accidents typically encounter situations where infor-
mation is missing, or is unavailable, or is unknown. In such cases, it is often
required to estimate the information that would have filled the gaps. Further-
more, in cases where complete time information is available (i.e. the start time,
finish time, and duration intervals of all nodes are specified) the precision of the
information can be increased. In the following, the estimated value of a quantity
X is denoted by X̃, and all specified information is assumed to be consistent
using the conditions defined in Section 4.3.

For a given node, the estimations of Is, If , and Id are defined as follows:

Let Ĩs , [T̃s,l, T̃s,u] and Ĩf , [T̃f,l, T̃f,u] and Ĩd , [D̃l, D̃u] (4.21)

In situations where complete time information is available for a node, the
precision of the information can be increased using the following equations:

[T̃s,l, T̃s,u] = [Tf,l −Du, Tf,u −Dl] ∩ [Ts,l, Ts,u] (4.22)

[T̃f,l, T̃f,u] = [Ts,l +Dl, Ts,u +Du] ∩ [Tf,l, Tf,u] (4.23)

[D̃l, D̃u] = [max({0, Tf,l − Ts,u}), Tf,u − Ts,l] ∩ [Dl, Du] (4.24)

The start time, finish time, and duration intervals of a node collectively con-
tain redundant information. Therefore, a missing interval of the node can be
estimated if the other two intervals are specified, as shown below:

[T̃s,l, T̃s,u] = [Tf,l −Du, Tf,u −Dl] (4.25)

[T̃f,l, T̃f,u] = [Ts,l +Dl, Ts,u +Du] (4.26)

[D̃l, D̃u] = [max({0, Tf,l − Ts,u}), Tf,u − Ts,l] (4.27)

In situations where a time interval and the duration interval of a node are
missing, we assume it will be possible to use a default duration interval as an
estimate based on statistics of durations of similar events or conditions that have
occurred in the past, for example, the minimum and maximum duration of a
telephone call, or the minimum and maximum duration of a train journey from
London to York. Hence, the missing time interval of any node can be estimated
using the default duration interval, the specified time interval, and Equation
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(4.25) or (4.26). If a node has a type, then the default duration interval of the
node can be regarded as part of the node’s type information.

In situations where both time intervals of a node are missing, it is necessary
to use a specified time interval of another node. We now describe algorithms for
estimating missing time intervals of nodes in a son using two approaches: the
first approach is to estimate the intervals of an individual node, and the second
approach is to estimate the intervals of all the nodes of the son.

4.4.1 Computation of Time Intervals of a Node

We now describe algorithms for estimating the unspecified time intervals of an
individual node. The basic idea is to traverse a son structure using its causality
relations, including the flow relations of its ons, asynchronous and synchronous
communications in csons, and causal(e) relations in bsons. Since a son is
essentially a directed acyclic graph, any traversal of such a structure can be
performed in two directions. In contrast to the function causalPreset described
in Algorithm 3, Algorithm 4 describes the structure of the function causalPostset,
which obtains the causal output neighbours of a given node n.

Algorithm 4 (Causal postset)
1: function causalPostset(input: n)
2: Postset := ∅
3: for all node n′ such that (n, n′) ∈ F ∨ (n, n′) ∈ W do
4: add n′ to Postset
5: for (e, f) ∈ causalU do
6: if e = n then
7: add f to Postset
8: return Postset

Algorithm 5 describes the structure of the procedure estimateFinish, which
computes the finish time interval of a node n using causal relations, and is outlined
as follows:

1. Given a node n with an unspecified finish time interval, conduct a forward
depth-first-search (DFS) to find all paths such that each path begins at n
and ends at the nearest node with a specified finish time interval.
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2. For each path, apply Equation (4.25) to compute a possible finish time
interval of n, where If is the specified finish time interval of the last node
in the path and Id is the accumulated durations of all the nodes in the path
except n (default duration intervals are used in the accumulation for nodes
with unspecified duration intervals).

3. The estimated finish time interval of n is the intersection of all possible
finish time intervals.

Algorithm 5 (Estimate finish time interval using causal relation)
1: procedure estimateFinish(Node n)
2: PossibleTimes := ∅ // possible finish time intervals from forward search
3: visited :=<>
4: add n to visited
5: forwardDFSDurations(visited)
6: Ĩ n

f := getOverlapping(PossibleTimes) // Ĩ n
f is the intersection of all possible

finish time intervals

7: procedure forwardDFSDurations(List visited)
8: for all m ∈ causalPostset(visited .last) do
9: I := null // possible finish time interval
10: if I m

f is specified then
11: I := I m

f − accumulatedDurationsOf ((visited\{n}) ∪ {m}) // Eqn.(4.25)
12: add I to PossibleTimes
13: else if m /∈ visited then
14: add m to visited
15: forwardDFSDurations(visited)
16: remove visited .last

Notice that the procedures for estimating time intervals are restricted to the
son structure with no alternative behaviour (i.e. a particular scenario). This
is because alternative scenarios can have different and inconsistent time charac-
teristics, which are required in order to eliminate infeasible scenarios from an
investigation. In contrast, the time intervals in an individual scenario must be
consistent, because reality is assumed to be consistent. Hence, if a node is in more
than one scenario, it is necessary to indicate a particular scenario before the time
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estimation can begin so that all determined paths can have the same time char-
acteristics. The estimation can fail to compute a time interval and return a null

value if there is no intersection between the intervals in PossibleTimes (i.e. the
scenario contains inconsistent time information) or when the DFS is unable to
find any path ending with a specified time interval (i.e. the scenario contains
insufficient time information).

Est: 2002-2004

T: 2
001-2005

T: 2004-2008

D: 0 D: 0

D: 1 - 1

D: 2 - 2

Figure 4.6: Estimating the finish time interval of a node.

Figure 4.6 shows the use of estimateFinish to compute the finish time inter-
val of the initial node of an on. The on contains two specified time intervals:
Ic2f = Ie1s = [2001, 2005] and Ie1f = Ic3s = [2004, 2008], and two duration in-
tervals; Ic1d = [0002, 0002] and Ic2d = [0001, 0001]. To estimate the finish time
interval of c0, forward DFS is used to find all paths from c0 to the nearest node
with a specified time interval, that is, {c0, e0, c1, e1} and {c0, e0, c2}. The accu-
mulated duration of the first path is [0002, 0002], which is subtracted from the
specified finish time interval of e1 using Equation (4.25) to calculate a possible
finish time interval for c0 (i.e. [2004, 2008] − [0002, 0002] = [2002, 2006]). Simi-
larly, another possible finish time interval is calculated using the second path (i.e.
[2001, 2005] − [0001, 0001] = [2000, 2004]). The last stage of the procedure is to
find the intersection of the intervals in PossibleTimes (i.e. [2002, 2004]), which is
the estimated finish time interval of c0.

The estimation of the start time interval of a node n is conducted in the
reverse way to estimateFinish. Thus, estimateStart performs backward DFS on
the causal preset of node n to find all paths that begin at n and end at the nearest
node with a specified start time interval. For each path, the durations of its nodes
(except n) are accumulated to compute all possible start time intervals of n using

68



Equation (4.26), and the computed intervals are intersected in order to estimate
the start time interval of n.

4.4.2 Computation of Time Intervals of a SON

In the previous sub-section, we showed how causally related time information can
be used to compute the estimated time values of a given node. The approach
takes any node with unspecified time information as the input, and then traverses
the model in two directions in order to find specific times for the time-related
calculation.

Algorithm 6 (Estimate time intervals for entire SON)
1: procedure estimateSONTimesfwdDFS(son S)
2: input: son S with specified scenario
3: output: son S with estimated time intervals of all nodes in the scenario

with unspecified time intervals
4:
5: add pre-initial node e to S
6: add all causal relations (e, x) to S such that x ∈MS

0 , where MS
0 is the set of

initial conditions of S
7: Ĩ e

f := estimateFinish(e)
8: visited := ∅
9: forwardDFSTimes(e)
10: remove pre-initial node e and its relations from S

11: procedure forwardDFSTimes(Node n)
12: add n to visited
13: for all m ∈ causalPostset(n) do
14: if m /∈ visited then
15: if Ims is unspecified then
16: I m

s := I m
f

17: if Imd is unspecified then
18: I m

d := I
default(typeof (m))
d

19: if Imf is unspecified then
20: I m

f := I m
s + I m

d // Eqn. (4.26)
21: forwardDFSTimes(m)

We now introduce an approach for estimating the time values for all nodes
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with unspecified time information in a son. Algorithm 6 shows the basic idea.
Unlike the algorithms for single node time estimation where the start point of
DFS is a user-specified node, the start point of the entire son estimation uses
a virtual fixed node called pre-initial. The pre-initial node is not a real node of
the son but is a dummy node that is causally related to all the initial conditions
of the son. (This transformation is often used in solving the problems of direct
acyclic graphs, for example, maximum flow problem [43].) Figure 4.7 shows a
son with two initial conditions c0 and c1. The pre-initial node of the son is s
which is connected to both initial conditions; c2 is not connected to s since it is
not an initial condition of the son.

Having created the pre-initial node, we are able to compute an estimated
finish time for the node by applying Algorithm 5. This value is the start time
of all the initial conditions without specified start times. Then the procedure
forwardDFSTimes traverses the son in a forward direction, and each visited
node with incomplete time information can be assigned a start time taken directly
from the finish time of its input node, and a finish time computed using the new
assigned start time and its duration. There is no special stop condition for the
DFS, and the procedure continues to traversing the son until the final state is
reached which is the default stop condition of the DFS on direct acyclic graph.
The pre-initial node we added at the beginning of the algorithm is not necessarily
preserved permanently. The last stage of the algorithm is to remove this dummy
node and its associated relations from the son.

Est: 0900-0900

Est:0900-0900

T: 0900-0900

Figure 4.7: A bson with a pre-initial node.
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4.5 Related Work

Petri net-based research on uncertainty, consistency checking, and computation
of time information is limited. However, there is research on genealogies (e.g. [58]
and [52]) and on temporal logics (e.g. [27]) that addresses these issues. In [58],
a mathematical relaxation method (of exponential complexity in the number of
dates) is used to adjust iteratively the endpoints of intervals containing unknown
dates of birth, marriage, and death until the endpoints finally stabilise. The
restrictions on the dates are encoded in the algorithm, and their parameters are
set manually. In [52], the restrictions on the dates determine intervals, which
are intersected in order to determine the final endpoints. The parameters of
the restrictions are determined by statistical analysis of the input data. In [27],
an algebra of relations between temporal intervals is developed with a method
(of quadratic complexity in the number of intervals) for determining the relation
(one of thirteen) between any two intervals. However, none of the research models
abstraction of events or of states or models communication.

4.6 Conclusion

This chapter has presented the notion of a timed son in order to model and reason
about causally related events and concurrent events with uncertain or missing
time information in evolving systems of systems. Discrete intervals have been
used to capture uncertainty about time values. Conditions have been defined to
verify the consistency of time information. Algorithms have been presented that
are based on the use of default duration intervals and redundant time information
in a son in order to estimate missing time intervals and to increase the precision
of user-specified intervals.

The implementations of sons and timed sons are described in the next chap-
ter.
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Chapter 5

SONCraft: A Tool for
Construction, Simulation and
Verification of Structured
Occurrence Nets

5.1 Introduction

In the previous chapters, we described the concept of sons and time in sons.
Implementations supporting these concepts have been developed. This chapter
reports on these implementations.

The visual editing of son models, their verification, simulation, and anal-
ysis are the functionalities supported by the SONCraft toolkit. The toolkit
is implemented as a plug-in module within Workcraft [23], a system that
provides a flexible framework for the development and analysis of Interpreted
Graph Models (IGM) [22]. The framework is built using a plugin-based archi-
tecture and supports run-time scripting, which makes it easily extensible to new
IGM-based formalisms, and to the provision of support of their analyses and veri-
fication methods. It also provides a GUI environment that facilitates model entry
and supports interactive visual simulation, together with convenient “single-click”
verification. So far, several modules have been implemented and supported by
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the platform, including Structured Occurrence Nets (SONCraft), Petri nets,
and other Petri net-based formalisms, e.g. Signal Transition Graphs (STGs) [11]
and Conditional Partial Order Graphs (CPOGs) [9]. A detailed Workcraft

description and manual can be found in [4].
In this chapter, we give an overview on SONCraft’s functionality and ar-

chitecture. The present version of SONCraft deals with the three types of son

variants that have been discussed in Chapter 2, i.e. csons, bsons, and tsons.
This chapter is organised as follows. In Section 5.2, we present the functionalities
regarding sons concept. Section 5.3 presents the implementation of timed-sons
and its related analysis methods. Section 5.4 describes the tool architecture, and
the way in which SONCraft integrates with the Workcraft framework. Sec-
tion 5.5 provides installation information, and Section 5.6 concludes the chapter.

5.2 SON-based Functionality

This section presents an overview of the major son-based features provided by
SONCraft.

5.2.1 SONCraft Overview

The graphical interface of SONCraft is depicted in Figure 5.1. The Main
menu provides the functions to manage, edit and analyse models. For example,
the Tools menu provides a set of user-friendly analysis tools for checking models;
and there is a vector graphics export function in the File menu (all son mod-
els shown in this thesis were imported directly from SONCraft with minimal
modifications). The Editor tabs line shows the names of all of the opened models
and allows the user to choose which one is to be displayed in the Editor window.
The latter is the place for the user to create, edit and simulate a son model.

SONCraft defines several kinds of graphical nodes and connection types.
These are displayed in the Editor tools panel that allows the user to create and
edit son-based models. The Property editor panel at the top-right hand side of
Figure 5.1 is used to support various visual node editing operations, e.g. to change
the label, colour, or position of a node. The Tool controls panel provides access to
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window

Main menu Editor tabs Property editor

Editor
tools

Tool
controls

Workspace

Utility windows

Figure 5.1: SONCraft interface

the extended functionality of a selected tool. For example, when the connection
tool is activated, the user is able to switch between various connections in order
to construct different types of son abstractions. The Workspace window lists
opened or imported work files. One can also operate on a work file (delete, save,
etc). The Utility window is used for showing additional information concerning
the progress of currently executed tasks, verification results, and information
about any errors that may have occurred during execution.

5.2.2 Editor Tools

SONCraft offers a set of editor tools for constructing and editing son models.
Some generic tools for editing models are directly inherited from the Workcraft

framework, including selection, text note, flip horizontal, flip vertical, rotate
clockwise, and counter-clockwise functions. Others tools for constructing son

models, defined specifically in SONCraft, are:
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• The SON component toolkit contains a group of buttons for creating son-
based components in the editor window. The toolkit contains condition,
event and channel place creators, where the first two creators are used for
constructing on, and the latter is for cson construction.

• The Connection tool is used for creating relations between nodes. The tool
provides several connection types that can be chosen to construct various
different abstractions (i.e. causal relations F , weak causal relations W , and
behavioural relations β). The tool also offers a basic relation validation
facility, based on the son definition. Any invalid user operation, e.g. con-
necting two conditions, will trigger an error message. (However not all user
errors are detected at this stage, and those that cannot be immediately
detected can be checked using the verification tool âĂŞ– see the section
below).

• The Group tool allows the user to combine a set of nodes (in particular,
conditions, events, and causal relations) into a group. In SONCraft, an
on is not recognised until it has been delineated as a group. Thus, a son

model in SONCraft is generally composed of a set of groups represent-
ing component ons, and the relations (abstractions) between the groups’
components.

• The Block tool creates atomic actions in tsons. Similarly to the group
tool, a block in SONCraft is implemented as a container holding a set of
user selected components. It can be collapsed into a single node causing its
components to be hidden.

5.2.3 Structural Analysis Tool

The structural analysis tool provides the user with a set of structural verification
algorithms that can be used to validate a model. It is important to verify the
correctness of structure before further analysis, otherwise the results are likely
to be incorrect. The verification criteria follow from the formal definitions and
properties introduced in Chapter 2. The tool consists of two sub-checkers:
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The relation property checker deals with the relation-based correctness of a
son model. The checking includes conflict-freeness, phase decomposition, com-
ponent ons disjointness, and block causality (see Section 2.6.1). The acyclic
property checker implements Algorithm 2 and focuses on the acyclicity condi-
tion of sons. The verification of such a property comes down in practice to
searching strongly connected components (SCC) in a SON model. The checker
applies Tarjan’s algorithm as a core engine to compute maximal SCCs. A specific
filter will be invoked at the end stage in order to obtain the desired results.

(a) (b)

Figure 5.2: (a) Structural verification setting dialog; and (b) a verification report.

The verification setting dialog (Figure 5.2(a)) allows users to specify the par-
ticular son’s model type as well as which groups (ons) in this son they would
like to verify. Such partial checking works efficiently for a son consisting of a
large set of on fragments and relations [15] (e.g. representing a major accident
or a large scale criminal activity). The results of the verification are detailed in
a verification report (Figure 5.2(b)), and are shown by colouring any offending
parts of the son model.
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5.2.4 Simulator

SONCraft offers a built-in simulator for sons simulation. The underlying se-
mantics of SON-based simulation follows the firing rules presented in Chapter 2.
The simulation function in SONCraft can be activated by clicking on the simu-
lation button in the editor tools panel. The initial marking will be automatically
set, and all enabled events will be highlighted.

The simulation can then be conducted either manually or automatically, by
firing a succession of enabled events, causing tokens to move, event highlighting
to be updated, and the simulation record augmented.

The simulation tool controls provide the means to analyse and navigate a
previously recorded simulation. There are two sources of data for a simulation
record: a ‘branch’ records the firing sequence of events that were executed by
explicitly clicking the enabled nodes of the model, and ‘traces’ are automatically
generated from other tools, e.g. the reachability tool. Thus one is able to generate
simulation records from different executions in order to perform a comparison.
The panel also provides access to several additional simulation functions, most of
which relate to the simulation traces or branches (see Figure 5.3). Some of the
main features are listed below:

Figure 5.3: Simulation control panel

• Playback - to automatically play back an existing trace or branch, at a
selected speed.
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• Step forward/backward - to step forward/backward through an existing
trace or branch, highlighting the record reached.

• Reverse/Forward simulation - to change the simulation directions.

• Automatic simulation - to causes simulation to occur, using maximum par-
allelism through to the end.

• Copy/Paste - to copy a trace or branch to the clipboard, and reload the
stored trace or branch from the clipboard.

The son simulator provides a failure analysis function, called error tracing.
When the failure analysis function is turned on, each event has an associated
fault bit, which is a ‘1’ or a ‘0’. This bit can be used to indicate whether one
wishes to regard the event as a faulty one, with ‘1’ indicating a simulated fault.
An error count is also shown in the editor window below each condition, and is
set initially to ‘0’. This count cannot be changed manually by the user. Rather,
it is automatically calculated during simulation to indicate for each condition the
number of faults that have been passed on the forward route to that condition.

5.2.5 Reachability Tool

Once a son model is complete and its structure is valid, the user can perform
model checking. SONCraft provides a reachability checker which implements
Algorithm 3 for verifying reachability. This is used to analyse whether or not
a given marking can be reached from the initial marking. If the marking is
reachable, a request can be made for the trace that leads to the marking to be
passed to the simulation tool for playback or further analysis.

5.3 Time-based Functionality

We have implemented timed-sons and their analysis algorithms introduced in
Chapter 4 in SONCraft. This section presents the implementation.
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Figure 5.4: Time sons visualisation.

5.3.1 Visualisation

The time mode in SONCraft enables the display of the time information in a
son model, as shown in the screenshot in Figure 5.4. Notice the editor window in
the figure has been maximized for presentation purposes here, thereby minimizing
all other windows (e.g. the editor tool window and the property editor window)
in order to show only a single work file (i.e. the current son model). In this mode,
an initial condition is represented by a circle with a small thick arrow, and a final
condition is represented by a double circle (inspired by the state representation
used in finite state machines). The time representations of different node types
are displayed differently because of the amount of visual space they occupy. Thus,
rather than displaying all three intervals (i.e. start, finish, and duration) for every
node, we simplify the representation by merging and displaying some intervals on
arcs. More precisely, the time interval displayed on each arc indicates the finish
time interval of its source node as well as the start time interval of its destination
node. Thus, each non-initial and non-final node shows only its duration value
(see condition ‘Ver 0.2’). However, there is no input arc for an initial condition
and no output arc for a final condition; so, some of their time information is
displayed directly against the node. For example, in Figure 5.4, the start time
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interval [2000, 2000] of the initial condition ‘Ver 1.0’ is displayed directly next to
the node.

5.3.2 Time Property Setting Tool

Figure 5.5: Time property setter

The time property setting tool shown in Figure 5.5 is an interface for specifying
the time information of a given node in a son model. The time granularity
panel at the top of the interface currently offers two granularities: year/year and
24-hour-clock/mins. Different granularities have their own time and duration
bounds as well as arithmetic. For example, the time and duration bounds of the
24-hour-clock/mins granularity are 0001-2400 and 0000-0060 respectively.

Users can either manually or automatically set time information for a selected
node in the time value panel. For each manually input interval, the tool verifies
whether or not the interval is well-defined. The verification criteria are based on
Conditions (4.1) – (4.4). Moreover, for each input interval, the checking of its time
or duration bounds is performed according to its time granularity. The tool also
provides time estimation for nodes with unspecified time intervals. Depending
on the user selection, different algorithms (e.g. Algorithm 5 or the entire son

estimation) will be called for the computation.
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5.3.3 Consistency Checking Tool

(a)

(b)

Figure 5.6: (a) Time consistency tool setting dialog; and (b) part of the consis-
tency checking result of the son in Figure 5.4.

The time consistency checking tool provides consistency checking for the time
information that is specified. The tool encodes the conditions and equations given
in Section 4.3, and provides a user interface for additional settings. Figure 5.6
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(a) shows the tool interface. The interface is divided into the following four
(sub-)panels.

Two granularities are present in the time granularity panel. The selection
panel allows the user to perform a consistency checking in two ways. The group
selection lists all component occurrence nets of a son. The user can either choose
to verify a partial son (i.e. number of its occurrence nets together with their re-
lated cson and bson relations) or a complete son (i.e,. all occurrence nets
together with the relations). While the node selection supports the verification
of the consistency of any selected node. Causal consistency checking can be acti-
vated using the causal consistency panel. The facility implements Algorithm 13
and aims to verify the nodes with incomplete time information using causal re-
lations. The panel also includes means of specifying the default duration setting
that is used in time estimation. The user settings panel has an option to request
the highlighting of time inconsistent nodes (if any) in the editor window after
verification.

Figure 5.6 shows a consistency verification result of the son displayed in
Figure 5.4. The result shows three time inconsistency errors. For example, the
first error message involves condition c4 and shows that its start time lower bound
(2001) is greater than its finish time lower bound (2000), that is, the condition
can cease to hold before it starts to hold.

5.4 Tool Architecture

SONCraft is written in JAVA, making it accessible on all platforms for which
there exists a JVM. The architecture depicted in Figure 5.7 shows a detailed view
of the integration between the Workcraft framework and SONCraft.

5.4.1 Workcraft Architecture

The Workcraft framework consists of the following three parts:
The Core framework is in charge of the initialisation of Workcraft, man-

aging plug-ins and the provision of common services to the plug-ins. When the
program starts up, services such as the configuration manager and the frame-
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Figure 5.7: Tool architecture.

work GUI are initialised. This is followed by the initialising of the plug-in man-
ager, which provides the facility for loading all existing plug-ins. On shut-down,
Workcraft saves the configuration of the framework; it restores it on the next
start-up.

The Plug-in manager is responsible for scanning and loading all plug-in mod-
ules which have been registered in the manager. A plug-in module is a related
collections of plug-ins that together implement a specific functionality, for in-
stance the SONs module. For each plug-in module, the manager also maintains
a list of its internal facilities. During the initialisation the plug-in manager uses
the list to load the contents of plug-ins instead of scanning the plug-ins directory
every time.

The Services are fully managed by Workcraft and accessible to the plug-
ins. The GUI service provides the facilities for creating editor, tool and infor-
mation windows. A number of advanced GUI capabilities, such as the multiple
document interface and full-screen mode, are also supported. The Visualisation
service facilities provide editing functions for the node types defined by any model,
for instance, drawing, transformation and auxiliary editing operations. The Task
management service is responsible for executing all external process tasks – it
maintains the list of all running tasks and uses a separate thread for the parallel
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execution.

5.4.2 SONCraft Integration

SONCraft is deployed in the Workcraft framework as an individual plug-in
module. There are three main components inside the module:

The Model definition component describes the basic features of a son model.
The component is divided into mathematical and visual levels in order to avoid
mixing unrelated responsibilities. The mathematical model describes all the se-
mantics concerning model integrity — it keeps information such as connection
types and node names. The visual model is a manageable interface between the
user and both the mathematical and the visual models. The visual model defines
how to draw/present son models as well as maintaining visual information, such
as colour, position and label.

The Settings component records the default properties of a son model and
stores them in a configuration XML file. The Workcraft start-up process
loads the stored settings and allows other components to read their configuration
variables.

The Tools component manages all the external and built-in tools in SON-

Craft. The implementation of each component tool uses the services provided
by the Workcraft framework. For example, the editor tools and simulation
facilities rely on the GUI and visualisation services for node placement, trace
table creation, and so on. The structural verification, reachability checking and
time consistency tools invoke external process management for monitoring and
managing the tasks.

5.5 Installation

The latest version of SONCraft is available from [2]. It is necessary to have
a compatible Java Runtime Environment (JRE) version 7 or higher in order to
run SONCraft. The standard JRE can be downloaded from [1]. There is no
automatic installer for SONCraft; to install it, the files from the link archive
need to be extracted manually. A comprehensive user manual can be found in [12].
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In [3], we also provide a tutorial showing how to use SONCraft for modelling
and analysing crime and accident scenes.

5.6 Conclusion

In this chapter, we introduced the SONCraft toolkit for construction, simu-
lation and verification of sons. SONCraft provides a user-friendly graphical
interface and a set of editor tools enabling the user to construct models easily and
quickly. The simulator tool implements the firing rules described in Chapter 2
for son-based model simulation. The structural analysis tool provides a num-
ber of algorithms for validating the structural correctness of a son model. The
reachability tool is used to perform reachability checking for a given marking.

In addition to the son-based functionality, we have also implemented tim-
ing properties and their related analysis algorithms introduced in Chapter 4 to
SONCraft. The time property setting tool can visually set time values for any
selected node. The time consistency checking tool is used to verify the consistency
of the user specified time values.

In the next chapter, we discuss a generator net of sons and its unfolding.
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Chapter 6

Unfolding CSPT-nets

6.1 Introduction

The structured occurrence nets concept introduced in Chapter 2 are directed
acyclic graphs used to record execution histories of complex evolving systems.
Similarly to the occurrence nets, one can in fact derive a son in two different
ways: (i) as a direct representation of an actual or imagined system’s execution
history; or (ii) as a process underpinning a run of some generator nets. The gen-
erator net in the second approach can be regarded as a specification of a system’s
design which describes complete system behaviour and is generally represented as
cyclic structures. In [28], the authors investigate a generator net of csons called
Communication Structured Place Transition nets (cspt-nets). The nets are built
out of the place/transition nets (pt-nets), which are connected by channel places
allowing both synchronous and asynchronous communication. Figure 6.1(a) and
(b) shows two cspt-nets which consist of two interacting component pt-nets.

Once such a generator system model is constructed, suitable verification meth-
ods can be applied to formally check whether or not the model has the desired
behaviour. The leading method is model checking [21], an automatic verification
technique that is able to ascertain the correctness of a computing system. This
technique takes a specification of desired properties as inputs, then operates over
a finite-state model to automatically verify whether the properties are satisfied.
Model checking has had tremendous impact on both academia and industry, and
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its inventors were given the 2007 ACM Turing Award.
The main drawback of model checking is that it suffers from the state space

explosion problem. That is, even a relatively small system model can (and often
does) yield a very large state space. For example, consider a system composed by
n processes, each having m states. Then, the asynchronous composition of these
processes may have mn states.

There are many methods have been proposed to alleviate the state space ex-
plosion problem, such as, symbolic model checking [34], unfoldings [24, 45] and
partial order reductions [10]. Among them, the standard Petri nets unfoldings,
introduced in [35], are a technique supporting effective verification of concurrent
systems modelled by Petri nets (throughout this chapter, Petri net related con-
cepts, such as configuration and unfolding, will be referred to as standard). The
method relies on the concept of net unfolding which can be seen as the partial
order behaviour of a concurrent system. The unfolding of a net is usually infi-
nite, but for bounded Petri nets one can construct a finite complete prefix of the
unfolding containing enough information to analyse important behavioural prop-
erties [26, 35]. More importantly, such prefix is often exponentially smaller than
the corresponding reachability graphs, especially if the system at hand exhibits
a lot of concurrency, as it is the case in our complex evolving system contexts.

In this chapter, we introduce branching processes of cspt-nets (cspt-net
unfoldings). As in the standard net theory, cspt branching processes act as
a ‘bridge’ between cspt-nets and their processes captured by csons (i.e. the
branching processes of a cspt-net contains a representation of all the possible
single runs of the original net). In order to reduce the complexity of branch-
ing processes of cspt-nets, we adapt the notion of occurrence depth which was
originally developed for merged processes [59]. Moreover, we discuss several key
properties of branching processes of cspt-nets, and also present an algorithm for
constructing cspt-net unfoldings. The algorithm takes into account the occur-
rence depth of events, and fuses nodes which have same behaviours during the
unfolding. In this way, the size of the resulting net can be significantly reduced
when compared with the standard unfolding approach.

Consider again the cspt-nets shown in Figure 6.1(a) and (b). In (a), m tran-
sitions are synchronous with n transitions between two pt-nets via two channel
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a0 am b0 bn... ...
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(c)

...a0 am ...b0 bm

b0

(d)

Figure 6.1: Two cspt-nets (a) and (b); together with their respective standard
unfoldings semantics after applying the Petri net encodings (c) and (d).

places. In (b), m transitions asynchronously communicate with b0 via a single
channel place. Their unfolding semantics are isomorphic to the original cspt-
nets (with the sizes of m + n events in (a) and m + 1 events in (c)). If one
was only interested in marking reachability, then one might attempt to encode a
cspt-net by replacing every asynchronous channel place by a standard place and
‘glue’ transitions forming a synchronous event into a single one. One would then
be able to apply the standard unfolding to this Petri net based representation.
However, the efficiency of such an approach would suffer from the introduction of
many new transitions, as well as the loss of the merging on channel places which
is due to the exploitation of occurrence depth. In this case, the ‘glue’ encoding
for (a) yields m×n events in the corresponding unfolding (c). While the ‘replace’
encoding for (b) would yield m+ n events as shown in (d).

The chapter is organised as follows. Section 6.2 provides basic notions con-
cerning Petri nets and their unfoldings. Section 6.3 presents the main concepts of
communication structured net theory, including cson-nets, cspt-nets and cspt

branching processes. In section 6.4, we discuss finite and complete prefixes of
cspt branching processes and related properties. The cspt unfolding algorithm
is provided in Section 6.5. Section 6.6 concludes the chapter.
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6.2 Basic Definitions

In this section, we recall the basic notions concerning Petri nets and their un-
foldings. For the reader not familiar with these concepts, [24, 35, 62] cover the
topics in depth. Throughout the chapter, a multiset over a set X is a function
µ : X → N, where N = {0, 1, 2, . . .}. A multiset may be represented by explicitly
listing its elements with repetitions. For example {a, a, b} denotes the multiset
such that µ(a) = 2, µ(b) = 1 and µ(x) = 0 for x ∈ X\{a, b}.

6.2.1 PT-nets

A net is a triple N = (P, T, F ) such that P and T are disjoint sets of respectively
places and transitions (collectively referred to as nodes), and F ⊆ (P×T )∪(T×P )

is the flow relation. The inputs and outputs of a node x are defined as •x = {y |
(y, x) ∈ F} and x• = {y | (x, y) ∈ F}. Moreover, •x• = •x ∪ x•. It is assumed
that the inputs and outputs of a transition are non-empty sets.

Two nodes, x and x′, are in conflict if there are distinct transitions, t and t′,
such that •t∩ •t′ 6= ∅ and (t, x) ∈ F ∗ and (t′, x′) ∈ F ∗. We denote this by x#x′1.
A node x is in self-conflict if x#x.

A place transition net (pt-net) is a tuple pt = (P, T, F,M0), where (P, T, F )

is a finite net, and M0 : P → N is the initial marking (in general, a marking is a
multiset of places).

A step U is a non-empty multiset of transitions of pt. It is enabled at a
marking M if

M(p) ≥
∑
t∈p•

U(t) ,

for every place p. In such a case, the execution of U leads to a new marking M ′

given by
M ′(p) = M(p) +

∑
t∈•p

U(t)−
∑
t∈p•

U(t) ,

for every p ∈ P . We denote this by M [U〉M ′. A step sequence of pt is a
1The conflict relation and the alternative relation introduced in Chapter 3 are essentially

identical except for that the former one describes a relationship between transitions while the
latter one is for events. Therefore we use the same symbol # to indicate both relations.
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sequence λ = U1 . . . Un (n ≥ 0) of steps such that there exist markingsM1, . . . ,Mn

satisfying:
M0[U1〉M1, . . . ,Mn−1[Un〉Mn

The reachable markings of pt are defined as the smallest (w.r.t. ⊆) set reach(pt)

containing M0 and such that if there is a marking M ∈ reach(pt) and M [U〉M ′,
for a step U and a marking M ′, then M ′ ∈ reach(pt).

pt is k-bounded if, for every reachable marking M and every place p ∈ P ,
M(p) ≤ k, and safe if it is 1-bounded. Markings of a safe pt-net can be treated
as sets of places.

6.2.2 Branching Processes of PT-nets

A net O = (P, T, F ), with places and transitions called respectively conditions
and events, is a branching occurrence net if the following hold:

• F is acyclic and no transition t ∈ T is in self-conflict;

• |•p| ≤ 1, for all p ∈ P ; and

• for every node x, there are finitely many y such that (y, x) ∈ F ∗.

The set of all places p with no inputs (i.e. •p = ∅) is the default initial state of
O, denoted by MO. In general, a state is any set of places.

If |p•| ≤ 1, for all p ∈ P , then O is a non-branching occurrence net. Note
that unlike alternative occurrence nets, in a branching occurrence net, two paths
outgoing from a place will never meet again by coming to the same place (the
inputs of places are at most singleton sets) nor the same transition (transitions
cannot be in self-conflict).

A branching process of a pt-net pt = (P, T, F,M0) is a pair Π = (O, h),
where O = (P ′, T ′, F ′) is a branching occurrence net and h : P ′ ∪ T ′ → P ∪ T is
a mapping, such that the following hold:

• h(P ′) ⊆ P and h(T ′) ⊆ T ;

• for every e ∈ T ′, the restriction of h to •e is a bijection between •e and
•h(e), and similarly for e• and h(e)•;
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• the restriction of h to MO is a bijection between MO and M0; and

• for all e, f ∈ T ′, if •e = •f and h(e) = h(f) then e = f .

Two branching processes Π′ = (O′, h′) and Π = (O, h) of a pt-net are isomor-
phic if there is a bijective homomorphism h from Π′ to Π such that Π′ ◦h = Π. It
is shown in [24] that a pt-net has a unique (up to isomorphism) maximal (w.r.t.
prefix relation) branching process, called the unfolding of pt.

6.2.3 Configurations and Cuts of a Branching Process

Let Π = (O, h) be a branching process of a pt-net pt, and O = (P ′, T ′, F ′).
A configuration of Π is a set of events C ⊆ T ′ such that ¬(e#e′), for all

e, e′ ∈ C, and (e′, e) ∈ F ′+ =⇒ e′ ∈ C, for every e ∈ C. In particular, the local
configuration of an event e, denoted by [e], is the set of all the events e′ such that
(e′, e) ∈ F ′∗. The notion of a configuration captures the idea of a possible history
of a concurrent system, which must be conflict-free, and causally closed, i.e. all
the predecessors of a given event must have occurred.

A co-set of Π is a set of conditions B ⊆ P ′ such that, for all distinct b, b′ ∈ B,
(b, b′) /∈ F ′+. Moreover, a cut of Π is any maximal (w.r.t. ⊆) co-set B.

Finite configurations and cuts of Π are closely related:

• if C is a finite configuration of Π, then Cut(C) = (MO ∪ C•) \ •C is a cut
and Mark(C) = h(Cut(C)) is a reachable marking of pt; and

• if M is a reachable marking of pt, then there is a finite configuration C of
Πpt such that Mark(C) = M .

Hence every marking represented in the unfolding Πpt is reachable in pt, and
every reachable marking of pt is represented in Πpt.

6.3 Structuring PT-nets

In this section we address the formal definitions concerning communication struc-
tured nets theory, including cspt-nets, its branching processes (bcso-nets) and
single runs (csos).
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In general, a cso represents a single run of interacting systems due to its
conflict-freeness and acyclicity. cspt-nets are generator nets of csos that rep-
resent complete systems behaviours, and similarly as in the case of pt-nets, its
branching processes will capture full execution information of the corresponding
cspt-nets.

6.3.1 CSPT-nets

By generalising the definition of [28], we first introduce an extension of pt-nets
which combines several such nets into one model using channel places.

Definition 6.1 (CSPT-net). A communication structured place transition net
(or cspt-net) is a tuple

cspt = (pt1, . . . ,ptk, Q,W,M0) (k ≥ 1)

such that each pti = (Pi, Ti, Fi,Mi) is a safe (component) pt-net; Q is a finite
set of channel places; M0 : Q → N is the initial marking of the channel places;
and W ⊆ (T ×Q)∪ (Q×T ), where T =

⋃
Ti, is the flow relation for the channel

places.

It is assumed that the following are satisfied:

1. The pti’s and Q are pairwise disjoint.

2. For every channel place q ∈ Q,

• the sets of inputs and outputs of q,
•q = {t ∈ T | (t, q) ∈ W} and q• = {t ∈ T | (q, t) ∈ W} ,

are both nonempty and, for some i 6= j, •q ⊆ Ti and q• ⊆ Tj; and

• if •q•∩Ti 6= ∅ then there is no reachable marking of pti which enables
a step comprising two distinct transitions in •q•. �

The initial marking Mcspt of cspt is the multiset sum of the Mi’s (i =

0, 1, . . . , k), and a marking is in general a multiset of places, including the channel
places.

To simplify the presentation, in the rest of this paper we will assume that the
channel places in the initial states of cspt-nets are empty.
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The execution semantics of cspt is defined as for a pt-net except that a step
of transitions U is enabled at a marking M if, for every non-channel place p,

M(p) ≥
∑
t∈p•

U(t) ,

and, for every channel place q,

M(q) +
∑
t∈•q

U(t) ≥
∑
t∈q•

U(t) . (∗)

The step sequence, reachable marking and safeness of cspt-nets are then
defined in the same way with the pt-nets.

PT1

PT2

Figure 6.2: A cspt-net with two component pt-nets.

Definition 6.1(2) means that the occurrences of transitions in •q (as well as
those in q•) are totally ordered in any execution of the corresponding component
net pti. In other words, we assume that both the output access and the input
access to the channel places is sequential. This will allow us to introduce the
notion of depth at which an event which accessed a channel place has occurred.

Figure 6.2 shows a cspt-net which consists of two component pt-nets con-
nected by a set of channel places (represented by circles with thick borders). To
improve readability, the thick dashed lines indicate the flow relation W . Tran-
sitions t2 and n1 are connected by a pair of empty channel places, q1 and q2,
forming a cycle. This indicates that these two transitions can only be executed
synchronously. These places will be filled and emptied synchronously when both
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t2 and n1 participate in an enabled step. On the other hand, the execution of tran-
sitions t0 and n0 can be either asynchronous (t0 occurs before n0), or synchronous
(both of them occur simultaneously). A possible step sequence of Figure 6.2 is
λ = {t0}{n0}{t2, n1}, where t0 and n0 perform an asynchronous communication.
Another step sequence λ′ = {t0, n0}{t2, n1} shows that t0 and n0 can be also
executed synchronously.

Given a branching process derived for a component pt-net of a cspt-net,
consider an event e such that its corresponding transition is an input (or output)
of a channel place q in the cspt-net. Then the occurrence depth of such event
w.r.t. the channel place q is the number of events such that they all causally
precede e and their corresponding transitions are also inputs (or outputs) of the
channel place q. Hence the tokens flowing through channel places are based on
the FIFO (First In, First Out) policy. The occurrence depth intuitively represents
the number of tokens which have entered (or left) the channel place q before the
occurrence of e.

Definition 6.2 (occurrence depth). Let cspt be as in Definition 6.1, and q ∈ Q
and pti be such that •q•∩Ti 6= ∅. Moreover, let Π = (O, h) be a branching process
of pti, and e be an event of O = (P ′, T ′, F ′) such that h(e) ∈ •q•.

The depth of e in Π w.r.t. the channel place q is given by:

depthΠ
q (e) = |{f ∈ T ′ | h(f) ∈ •q• ∧ (f, e) ∈ F ′∗}| .

Moreover, if the process Π is clear from the context, we will write depthq(e) instead
of depthΠ

q (e). �

Proposition 6.1. Let Π and q ∈ Q be as in Definition 6.2. Moreover, let e
and f be two distinct events of Π satisfying ¬(e#f) and h(e), h(f) ∈ •q•. Then
depthq(e) 6= depthq(f).

Proof. By ¬(e#f) and Definition 6.1(2), we have that either eF ′+f or fF ′+e
holds. Hence depthq(e) < depthq(f) or depthq(e) > depthq(f), respectively.

The nets in the dashed line boxes in Figure 6.3(b) are two component branch-
ing processes derived from the component pt-nets of the cspt-net in Figure 6.3(a).
The labels are shown alongside each node, and the occurrence depth of each event
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(depthq0=1) (depthq0=2)

(depthq0=1) (depthq0=1)

Figure 6.3: (a) A cspt-net, and (b) its branching process (event labels are shown
alongside the nodes and the occurrence depths are shown in brackets).

connected to a (unique, in this case) channel place is shown in brackets. Let us
consider event e1. Its corresponding transition t1 is the input of channel place q0.
When searching the directed path starting at the initial state and terminating
at e1, we can find another event (viz. e0) such that its corresponding transi-
tion is also the input of q0. Therefore the occurrence depth of e1, w.r.t. q0, is
depthq0(e1) = 2. It intuitively represents transition t1 passing the second token
to the channel.

6.3.2 Non-branching Processes of CSPT-nets

Similarly to the way in which cspt-nets are extensions of pt-nets, non-branching
processes of cspt-nets are extensions of non-branching occurrence nets.

Definition 6.3 (non-branching process of CSPT-net). Let cspt be as in Defini-
tion 6.1 with M0 being empty.

A non-branching process of cspt is a tuple:

cso = (Π1, . . . ,Πk, Q
′,W ′, h′)

such that each Πi = (Oi, hi) is a non-branching process of pti with Oi = (P ′i , T
′
i , F

′
i );

Q′ is a set of channel places; W ′ ⊆ (T ′ × Q′) ∪ (Q′ × T ′) where T ′ =
⋃
T ′i ; and

h′ : Q′ → Q.

It is assumed that the following hold, where h = h′ ∪
⋃
hi and F ′ =

⋃
F ′i :

95



1. The Oi’s and Q′ are pairwise disjoint.

2. For every r ∈ Q′,

• |•r| = 1 and |r•| ≤ 1; and

• if e, f ∈ •r•, then depthh(r)(e) = depthh(r)(f).

3. For every e ∈ T ′, the restriction of h to •e∩Q′ is a bijection between •e∩Q′

and •h(e) ∩Q, and similarly for e• ∩Q′ and h(e)• ∩Q.

4. The relation
(@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗

over T ′ is irreflexive, where:

• e ≺ f if there is p ∈
⋃
P ′i with p ∈ e• ∩ •f ; and

• e @ f if there is r ∈ Q′ with r ∈ e• ∩ •f .

5. h(Mcso) = Mcspt, where Mcso is the default initial state of cso defined as⋃
MOi

. �

Figure 6.4: A cso-net which is a possible single run of the cspt-net of Figure 6.2.

The above definition extends that cson in Chapter 2 by allowing an infinite
number of nodes, and therefore provides a general meaning of a single run of a
cspt-net. In particular, Definition 6.3(2) implies that each channel place has
exactly one input event and at most one output event. Moreover, the condition
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involving the depth of two events accessing the same channel place means that
the tokens flowing through channel places are based on the FIFO policy, so that
the size of the subsequent full representation of the behaviours of a cspt-net
is kept low. For example, consider again the cspt-net in Figure 6.3(a). Using
the notion of occurrence depth, we know that n0 can only consume the token
generated from t0, and n1 can only consume the token generated from t1. Hence,
there is a unique cso with Mcso = Mcspt and finial state corresponds to the
final marking of cspt. Definition 6.3(3) restricts the mapping h′ to a bijection
between the channel places in cspt-net and in cson. Definition 6.3(4) indicates
the acyclicity in csos, and Definition 6.3(5) address the consistency of the initial
markings in cspt-net and cso.

The cso in Figure 6.4 shows a non-branching processes with the labels (along-
side the nodes) coming from the cspt-net shown in Figure 6.2. It corresponds,
e.g. to the step sequence λ = {t0}{n0}{t2, n1} in the original cspt-net.

6.3.3 Branching Processes of CSPT-nets

We have described two classes of structured nets, i.e. cspt-nets and csos. The
former is a system-level class of nets providing representations of entire systems,
whereas the latter is a behaviour-level class of nets representing single runs of
such systems. In this section, we will introduce a new class of branching nets
which can capture the complete behaviours of cspt-nets.

Definition 6.4 (branching process of CSPT-net). Let cspt be as in Defini-
tion 6.1 with M0 being empty.

A branching process of cspt is a tuple:

bcso = (Π1, . . . ,Πk, Q
′,W ′, h′)

such that each Πi = (Oi, hi) is a branching process of pti with Oi = (P ′i , T
′
i , F

′
i );

Q′ is a set of channel places; W ′ ⊆ (T ′ × Q′) ∪ (Q′ × T ′) where T ′ =
⋃
T ′i ; and

h′ : Q′ → Q.

It is assumed that the following hold, where h = h′ ∪
⋃
hi and F ′ =

⋃
F ′i :

1. The Oi’s and Q′ are pairwise disjoint.
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2. For all r, r′ ∈ Q′ with h(r) = h(r′), as well as for all e ∈ •r• and f ∈ •r′•,

depthh(r)(e) = depthh(r′)(f)⇐⇒ r = r′ .

3. bcso is covered in the graph-theoretic sense by a set of non-branching pro-
cesses cso of cspt satisfying Mcso = Mbcso, where the default initial state
Mbcso of bcso is defined as

⋃
MOi

. �

Two branching processes bcso′ and bcso of a cspt-net are isomorphic if there
is a bijective homomorphism h from bcso′ to bcso such that bcso′ ◦ h = bcso.
Using arguments similar to those used in the case of the standard net unfoldings,
one can show that there is a unique (up to isomorphism) maximal branching
process bcsocspt, called the unfolding of cspt.

A branching process of a cspt-net consists of branching processes obtained
from each component pt-net and a set of channel places. The default initial
state Mbcso consists of the initial states in the component branching processes.
In addition, Definition 6.4(1) means that the component branching processes
are independent, and all the interactions between them must be via the channel
places. In particular, there is no direct flow of tokens between any pair of the
component branching processes. Definition 6.4(2) implies that the occurrence
depths of events inserting tokens to a channel place are the same, and are equal
to the occurrence depths of events removing the tokens. Moreover, channel places
at the same depth correspond to different channel places in the original cspt-net.
Finally, Definition 6.4(3) specifies that the label of every input and output event
of a channel place in bcso matches a corresponding transition in the original
cspt-net. In general, every node and arc in the branching process belongs to
at least one non-branching process of cspt-net (cso). This ensures that every
event in the bcso is executable from the default initial stateMbcso (i.e. it belongs
to a step enabled at some reachable marking), and every condition and channel
place is reachable (i.e. it belongs to the initial state or to the post-set of some
executable events).

Proposition 6.2 (safeness). Let bcso be as in Definition 6.4. Then bcso is
safe when executed from the default initial state Mbcso.
Note: This means that we treat bcso as a cspt-net with the initial marking
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Figure 6.5: A branching process of the cspt-net of Figure 6.2.

obtained by inserting a single token in each condition belonging to Mbcso, and
safety means that no reachable marking contains more than one token in any
condition, including the channel places.

Proof. For the conditions which are not channel places, this follows from the
general properties of the branching processes of pt-nets. For the channel places,
this follows from Proposition 6.1 and the fact that no event in a branching process
of a pt-net can be executed more than once from the default initial marking.

The net in Figure 6.5 is one of the branching processes of the cspt-net showing
in Figure 6.2. We can observe that every input and output event of a channel place
has the same occurrence depth which represents the token flow sequence during
communication between different pt-nets. For instance, the occurrence depths
of e4 and e8, w.r.t. q0 are depthq0(e4) = depthq0(e8) = 2. This means of that
the transitions t0 and n0 were involved in a second asynchronous communication.
For the cspt-net in Figure 6.3(a), its branching process is the nets shown in
Figure 6.3(b) with the merge of the channel place pair r0 and r2, and the pair r1
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and r3. So each of the merged channel places is connected with the events with
the same occurrence depth, and none of them can be marked more than once.

（a） （b）

Figure 6.6: A cspt-net (a), and its branching process (b).

Remark 6.1. A bcso cannot, in general, be obtained by simply unfolding every
component pt-net independently and appending the necessary channel places af-
terwards. Proceeding in such a way can lead to a net violating Definition 6.4(3).
This is so because an executable transition in a component pt-net does not have
to be executable within the context of the cspt-net. For example, Figure 6.6(b)
shows a valid branching process of the cspt-net of Figure 6.6(a). One can ob-
serve that there is no n0-labelled event in the bcso, since transition n0 in pt2

can never be executed since t0 and t1 are in conflict, and the system is acyclic. �

6.4 Completeness of Branching Processes

The unfolding of a cspt-net contains a full reachability information about the
original net. It is in general infinite and therefore of limited use for the verification.
For bounded cspt-nets, however, there always exist a truncated part of possibly
infinite unfolding that contains full reachability information about the original
net.

In this section, we introduce the concept of a complete prefix of the unfolding
of a cspt-net. The idea is to consider global configurations of the unfolding taking
into account single runs across different component pt-nets. Then we show that
the final states of all the finite global configurations correspond to the reachable
markings of original cspt-net. Using this result, it is possible to consider a finite
truncation which is sufficient to represent all reachable markings.
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6.4.1 Global Configurations

A global configuration of a bcso consists of a set of (standard) configurations,
each coming from a different component branching process, joined together by
channel places.

Definition 6.5 (global configuration). Let bcso be as in Definition 6.4.

A global configuration of bcso is a set of events

C = C1 ∪ · · · ∪ Ck

such that each Ci is a finite configuration of the process Πi, and the following
hold:

1. •C ∩Q′ ⊆ C•.

2. The relation
(@ ∪ ≺)∗◦ ≺ ◦(≺ ∪ @)∗

over C is irreflexive, where:

• e ≺ f if there is p ∈
⋃
P ′i with p ∈ e• ∩ •f ; and

• e @ f if there is r ∈ Q′ with r ∈ e• ∩ •f .

Moreover we define that Fin(C) = (Mbcso ∪ C•) \ •C is the final state of C.

The set of all global configurations of bcso will be denoted by Conf bcso. �

Definition 6.5(1) reflects the nature of a/synchronous communication between
component (standard) configurations. Intuitively, if we start with an event of the
global configuration which is an output event of a channel place, then there
exists an input event of the same channel place that also belongs to the global
configuration. Moreover, Definition 6.5(2) states that there are no asynchronous
cycles in a global configuration.

Proposition 6.3 (configuration is non-branching). Let C be a configuration as
in Definition 6.5. Then, for all distinct e, f ∈ C, •e ∩ •f = e• ∩ f • = ∅.

101



Proof. Suppose that •e ∩ •f 6= ∅. Then by Definitions 6.4(1) and 6.5 and the
definition of a configuration of a branching occurrence net, e, f belong to the
same net Πi and there is r ∈ Q′ such that r ∈ •e∩ •f . This, however, contradicts
Proposition 6.1. As a result, •e∩ •f = ∅. The proof of e•∩f • = ∅ is similar.

Proposition 6.4 (configuration is causally closed). Let C be a configuration as
in Definition 6.5. Then, for every e ∈ C, p ∈

⋃
P ′i and p ∈ e• ∩ •f imply f ∈ C.

Moreover, if r ∈ Q′ ∩ •e then there is f ∈ C such that r ∈ f •.

Proof. Follows from the definition of a configuration of a pt-net, Proposition 6.1
and Definition 6.5.

Since in bcso we use the merging technique in the case of channel places
(i.e. different events with same occurrence depth and label will link with same
instance of channel place), it is possible for a channel place to have multiple
inputs or outputs. Propositions 6.3 and 6.4 imply that global configuration are
guaranteed to be non-branching and causally closed w.r.t. the flow relations F ′

and W ′. Indeed, if a channel place has more than one input (or output) events,
these events are in conflict w.r.t. the flow relation F ′. Hence the events belong to
different configurations, and each channel place in global configuration has exactly
one input and no more than one output. As a result, a global configuration retains
key properties of the standard configurations, and it represents a valid execution
of transitions of the original cspt-net.

Consider again the branching process in Figure 6.5. It has a configuration
C = {e0, e2, e6, e7} which consists of two configurations C1 = {e0, e2} and C2 =

{e6, e7} coming from two component branch processes, whereas C′ = {e0, e6, e7}
and C′′ = {e0, e1} are not valid configurations (C′ has no input event for the
channel place r3, while C′′ includes two events in conflict).

Each finite configuration C has a well-defined final state determined by the
outputs of the events in C. Intuitively, such a state comprises the conditions and
channel places on the frontier between the events of C and events outside C. Note
that a final state may contain channel places which were involved in asynchronous
communications. No channel place involved in a synchronous communications can
appear in Fin(C), as such channel place must provide input for another event. For
instance, the final state of the global configuration example above is Fin(C) =
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{c3, c7}, whereas the final state of another global configuration C′′′ = {e0} is
Fin(C′′′) = {r0, c1} which contains an asynchronous channel place.

The next result shows that a global configuration together with their outputs
and the initial state form a cso representing a non-branching process of the
original cspt-nets. And, similarly, the events of a non-branching process included
in a branching one form a global configuration.

Proposition 6.5. Let bcso be as in Definition 6.4.

1. Let C be a global configuration as in Definition 6.5. Then Mbcso ∪ C ∪ C•

are the nodes of a non-branching process of cspt included in bcso.

2. The events of any non-branching process cso included in bcso and satis-
fying Mcso = Mbcso form a global configuration.

Proof. (1) Let C = C1∪· · ·∪Ck be as in Definition 6.5. From the standard theory
we know that, for each i,MOi

∪Ci∪C•i form the nodes of a non-branching process
Π′i of pti included in Πi and satisfying MΠ′i

= MΠi
. Define cso as composed of

Π′1, . . . ,Π
′
k, the channel places in C• and the connecting arrows. We need to show

that cso satisfies Definition 6.3.
We then observe that: Definition 6.3(2) follows from Proposition 6.3 and Def-
initions 6.5(1) and 6.4(2); Definition 6.3(3) follows from Definition 6.4(3); Def-
inition 6.3(4) follows from Definition 6.5(2); and Definition 6.3(5) follows from
Definition 6.5(2) and MΠ′i

= MΠi
.

(2) Follows from Definition 6.3 and an argument reversing that carried out in
part (1).

Proposition 6.6. Let C be a global configuration as in Definition 6.5. Then
h(Fin(C)) is a reachable marking in the original cspt-net.

Proof. Follows from Proposition 6.5(1) and the properties of non-branching pro-
cesses of cspt-nets.

By combining Propositions 6.5 and 6.6, we obtain that global configurations
provide a faithful representation of all the reachable marking of the original cspt-
net.
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Theorem 6.1. Let bcsocspt be the unfolding of cspt. Then M is a reachable
marking of cspt if and only if M = h(Fin(C)), for some global configuration C
of bcsocspt.

6.4.2 Complete Prefixes of CSPT-nets

A complete prefix of the unfolding of a cspt-net contains full reachability infor-
mation about the original net.

The semantical meaning of completeness has been first addressed in McMil-
lan’s seminal work in order to avoid the state explosion problem in the verification
of systems modelled with Petri nets [35]. The completeness criteria ensures which
information is to be preserved in the prefix. Briefly, the unfolding of a net N is
(marking-)complete if any marking reachable in N is in the image of some cut of
the unfolding. The property has been further discussed in [60], which extended
it to more general properties. We can adapt the resulting notion to the current
context as follows.

Definition 6.6 (completeness). Let bcso be as in Definition 6.4, and Ecut be a
set of events of bcso. Then bcso is complete w.r.t. Ecut if the following hold:

• for every reachable marking M of cspt, there is a finite global configuration
C such that C ∩ Ecut = ∅ and Fin(C) = M ; and

• for each global configuration C of bcsocspt such that C∩Ecut = ∅ and, for
each event e /∈ C of bcsocspt such that C ∪ {e} is a global configuration of
bcsocspt, e belongs to bcso.

bcso is marking complete if it satisfies the first condition. �

Figure 6.7 is a complete unfolding prefix of the cspt-net in Figure 6.2. Ecut =

{e1, e2, e4} are graphically marked by using double lines.

6.5 Construction of full CSPT-net unfolding

We will now describe an algorithm for constructing the full unfolding of a cspt-
net. A key notion used by the algorithm is that of an executable event (i.e. an
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Figure 6.7: A complete prefix of the cspt in Figure 6.2.

event which is able to fire during some execution from the default initial state) as
well as that of an reachable condition or channel place (i.e. one produced by an
executable event). Note that whether an event is executable in a cspt-net is not
only determined by the corresponding pt-net, but also by the behaviours of other
pt-nets. This means that a component branching process in cspt unfolding may
lose some nodes in the overall unfolding (see Remark 6.1 and Figure 6.6). In other
words, there may exist events which are valid extensions in the unfolding process
of a component pt-net, but become invalid when considering communication.

In particular, due to synchronous communication, it may be difficult to make
sure that every extension is executable before appending it to the unfolding.
Unlike the standard unfolding methods, an algorithm for cspt-net cannot sim-
ply unfold the component branching processes adding one event at a time, and
connecting it to already existing channel places. This is because a synchronous
communication in cspt unfolding forms a cycle. It is therefore impossible to add
only one of the synchronised events and guarantee its executability at the same
time. Similarly, adding a synchronous event set together with all related channel
places in one step may also be difficult to achieve since the use of merging may
produce infinitely many events which are connected to the same channel place.

Instead, our idea is to design an algorithm which will sometimes generate non-
executable events requiring tokens from channel places which have not yet been
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generated, in the anticipation that later on a suitable (possibly synchronous)
events will provide such tokens. Basically, the algorithm maintains two data
structures Unf and auxUnf . The former is used to keep the resulting unfolding,
whereas the latter keeps an ‘over-approximating unfolding’ which may contains
non-executable events. Each possible extension together with its output condi-
tions are firstly appended to auxUnf . Then the algorithm performs an executabil-
ity check for the new event after constructing its a/synchronous communications.
Only executable events and their related conditions/channel places can be added
to Unf .

Before providing the details of the algorithm, we introduce some auxiliary
notions. In what follows, we assume that cspt is as in Definition 6.1.

Definition 6.7 (local CSPT configuration). Let e ∈ C, where C is a global
configuration of bcso as in Definition 6.5. Then the local CSPT configuration
of e in C, denoted by C[e], is defined as

C[e] = {f ∈ C | (f, e) ∈ (≺ ∪ @)∗} ,

where the relations ≺ and @ are as in Definition 6.5. Moreover,

Conf (e) = {C[e] | C ∈ Conf BCSO ∧ e ∈ C}

is the set of all CSPT local configurations of e. �

The cspt local configuration of an event e in C is the set of events that are
executed before (or together with) e. In general, it consists of a configuration
comprising the standard local configuration of e together with a set of standard
configurations coming from other branching processes. Note that an event may
have different local cspt configurations, e.g. if one of its inputs is a channel
place which has multiple input events. Each such local configuration belongs to
a different non-branching process. For instance, consider a global configuration
C = {e0, e3, e4} in Figure 6.8(b). The cspt local configuration of event e4 in C is
C[e4] = {e4, e3, e0} (which in this case is identical to C). It involves two standard
local configurations, [e3] and [e4]. Moreover, we can observe that C[e4] is not the
unique local configuration of e4, as another one is C′[e4] = {e1, e4}.

An event may even have infinitely many local configurations. If we continue
to unfold the net, we will construct infinitely many n0 and t1 labelled events with
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(a) (b)

Figure 6.8: (a)A cspt-net; and (b) its unfolding.

occurrence depths equal to 1 (w.r.t. q0 and q1). All of them are synchronised
with e4 via the same channel places. As the result, e4 would have infinitely many
local configurations belonging to different runs.

6.5.1 Computing Local Configuration

In order to improve the efficiency of unfolding procedure, checking for the exis-
tence of a local cspt configuration of an event can be reduced to the problem of
exploring the causal dependencies between channel places.

Below we assume that if Ci is a configuration of the unfolding of the i-th
component pt-net, and e ∈ Ci and q ∈ Q are such that (h(e), q) ∈ W (or
(q, h(e)) ∈ W ), then r = (q, depthq(e)) belongs to the set of implicit channel
places QCi

connected to Ci. Moreover, the label of r is q, and (e, r) ∈ WCi
(resp.

(r, e) ∈ WCi
) is the corresponding implicit arc.

Definition 6.8 (a/sync graph). Let Ci be a configuration of the unfolding of the
i-th component pt-net.

Then the a/sync graph of Ci is defined as:

G(Ci) = (QCi
, ≺̂Ci

, @̂Ci
)

where ≺̂Ci
, @̂Ci

are two binary relations over QCi
such that, for every r, r′ ∈ QCi

:

• r ≺̂Ci
r′ if there are two distinct e, f ∈ Ci such that (r, e), (f, r′) ∈ WCi

,
and e precedes f within C; and

• r @̂Ci
r′ if there is e ∈ Ci with (r, e), (e, r′) ∈ WCi

. �
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(a)

(b)

(c)

2 3

C1={e0}

C'1={e1}

C2={e2, e4}

C'2={e3, e5}

C3={e6, e7}

Figure 6.9: (a) a cspt-net, (b) unfoldings of three component pt-nets of (a) (to-
gether with their implicit channel places), and (b) a/sync graphs of configurations
derived from these unfoldings.

G(Ci) captures relationships between the input and output channel places of
a configuration of the unfolding of an individual component system. Its nodes
are the channel places involved in Ci. Moreover, r ≺̂Ci

r′ if there is a path from
r to r′ involving more than one event of Ci, and r @̂Ci

r′ if r is an input and r′
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an output of some event in Ci.
Figure 6.9(b) shows the unfolding of each component pt-net of (a) together

with their input and output channel places. By exploring the relations between
those channel places, we are able to generate a/sync graph for any configuration.
For example, Figure 6.9(c) shows five a/sync graphs of the configurations derived
from (b), where the relations ≺̂Ci

and @̂Ci
are represented by solid arcs and thick

dashed arcs, respectively. For the left-hand side pt-net Π1, we have that:

G(C1) = ({r0},∅,∅) G(C′1) = ({r1},∅,∅)

The a/sync graphs of the configurations in Π2 are:

G(C2) = ({r2, r3, r4, r5}, {(r2, r4), (r3, r4)}, {(r5, r4)})

G(C′2) = ({r6, r7, r8},∅, {(r8, r7)}

and for the right-hand side pt-net Π3, we have that:

G(C3) = ({r9, r10, r11}, {(r9, r11)}, {(r10, r11)})

Given a set of a/sync graphs G(C1), . . . ,G(Ck) extracted for the k component
systems, we call these graphs compatible if all inputs are produced and there is
no cycle involving ≺̂.

Definition 6.9 (compatibility of a/sync graphs). Let Ci (i = 1, . . . , k) be a con-
figuration of the unfolding of the i-th component pt-net, and G(Ci) = (QCi

, ≺̂Ci
, @̂Ci

).
Then C1, . . . ,Ck are compatible configurations if the following hold:

1. if (r, e) ∈ WCi
then that there is j 6= i such that r ∈ QCj

; and

2. the relation
(@̂ ∪ ≺̂)∗ ◦ ≺̂ ◦ (≺̂ ∪ @̂)∗

is irreflexive, where ≺̂ =
⋃
≺̂Ci

and @̂ =
⋃
@̂Ci

. �

In Figure 6.9, configurations C1,C
′
2,C3 are compatible since the q3-labelled

input channel place r8 in G(C′2) is present in G(C3) (i.e. r11), and the input chan-
nel places r9, r10 (labelled by q2 and q4 respectively) in G(C3) are all present in
G(C′2). On the other hand, we can observe that there are no compatible configu-
rations which involve C2, i.e. neither configurations C1,C2,C3 nor C′1,C2,C3 are
compatible. This is because the producers of r2 and r3 are in conflict in Π1.

109



Theorem 6.2. Let C1, . . . ,Ck be configurations of the unfoldings of the compo-
nent pt-nets, and C = C1∪ · · ·∪Ck. Then C is a global configuration if and only
if C1, . . . ,Ck are compatible.

Proof. (=⇒) If C is a global configuration then, Proposition 6.4, every input chan-
nel place of a global configuration C is produced in C, and from Definition 6.1(2),
the producer e and consumer f belong to separate configurations. Hence Defini-
tion 6.9(1) holds. Moreover, Definition 6.9(2) follows from Definition 6.5(2).

(⇐=) We observe that Definition 6.5(1) and Definition 6.5(2) respectively
follow from Definition 6.9(1) and Definition 6.9(2).

Therefore, one can obtain the cspt local configurations of an event e by check-
ing whether there are compatible configurations C1, . . . ,Ck such that e belongs
to one of them. Such a task can be made efficient by working with the graphs
G(C1), . . . ,G(Ck). In fact, one can just check those configurations which have
dependencies on e.

6.5.2 Unfolding Algorithm

The unfolding algorithm we are going to present significantly differs from the
existing net unfolding algorithms. The key difference is that during the unfolding
procedure we will be constructing nodes and connections which will not necessar-
ily be the part of the final unfolding. This is due to the presence of synchronous
communication within our model. More precisely, in the net being constructed
there will be executable and non-executable events and conditions. The former
will definitely be included in the resulting unfolding, whereas the latter cannot be
yet included due to the absence of event(s) which are needed for communication.
If, at some later stage, the missing events are generated, then the previously non-
executable event and the conditions (and channel places) it produced become
executable. In particular, we will call an event e executable if Conf (e) 6= ∅.
This happens if we have generated enough events to find at least one local cspt

configuration of e in the unfolding.
The net generated by the algorithm may not strictly speaking be a branching

process during its creation, therefore we do not put the non-executable events
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into Unf immediately, but keep them in an auxiliary data structure auxUnf , and
transfer them to Unf once they become executable. In this way, we make sure
Unf converges to the unfolding.

Intuitively, an executable event is an event belonging to at least one run of
a bcso. For the example net in Figure 6.9(b), if we combine the channel places
with the same label together, then e6 is an executable event since there exists
a local cspt configuration of e6: C[e6] = {e0, e3, e6}, where C = {e0, e3, e6}.
On the other hand, event e2 is non-executable because it does not have any
local configuration (we have seen the example of Figure 6.9(c) that there are no
compatible configurations which involve e2). Therefore, such a net is not a valid
cspt branching process since according to Definition 6.4(3) every event in bcso

is executable. If we remove e2 together with its successors, then all events in the
new net become executable indicating the net is a valid bcso.

Proposition 6.7. Let e be an executable event in bcso. Then each event ap-
pearing in any configuration in Conf (e) is executable.

Proof. From Definition 6.7 it follows that for each event f in any configuration in
Conf (e) there exist a global configuration C such that e, f ∈ C. Hence Conf (f) 6=
∅, and so the result follows from the definition of executable events.

The procedure for constructing the unfolding of a cspt-net is presented as
Algorithm 7.

The first part of the algorithm adds conditions representing the initial marking
of the cspt-net being unfolded. It also adds possible extensions to the working
set pe. A possible extension of Unf is a pair e = (t, B) with h(e) = t where t is
a transition of cspt, and B is a set of conditions of Unf such that:

• B is a co-set in one of the subnets of Unf

• h(B) are all the input non-channel places of t; and

• (t, B) /∈ pe and Unf contains no t-labelled event with the non-channel place
inputs B.

The pair (t, B) is an event used to extend bcso without considering channel
places. We use the standard condition of a possible extension to choose events
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Algorithm 7 (unfolding of cspt-net)
input: cspt — cspt-net
output: Unf — unfolding of bcso

Unf ← the empty branching process
auxUnf ← the empty branching process // auxiliary data structure to keep
branching process with non-executed events
pe ← ∅
add instances of the places in the initial marking of cspt to Unf and auxUnf
add all possible extensions of Unf to pe

while pe 6= ∅ do
remove e from pe
addConnections(e)
if Conf (e) 6= ∅ then
for all events f in configurations of Conf (e) do
if f is not present in Unf then

add f and its related places and arcs created in addConnections(e)
to Unf

add all possible extensions of Unf to pe

procedure addConnections (input: e = (t, B))
add e to auxUnf
create and add all the standard post-conditions of e to auxUnf
for all channel place q ∈ •t• do

let r := (q, k) where k := depthq(e)
if there is no r := (q, k) in auxUnf then

add q-labelled channel place r to auxUnf
add a corresponding arc between r and e

that can be added to a component branching process (i.e. h(B) = •t ∩ P ′),
while constructing the related a/synchronous communications in a separate step.
In such a way, the complexity of appending groups of synchronous events is
significantly reduced. Note that a possible extension e has precisely determined
channel place connections since the depth values are fully determined.

Procedure addConnections provides the details of appending a possible ex-
tension e to bcso as well as constructing related channel place structure after
removing e from pe. Each new extension and its output conditions are treated
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as non-executable and kept in auxUnf . The conditions in auxUnf also indicate
that they are unable to be used for deciding any further possible extension. In
this way we can avoid any unnecessary extension and make sure the predecessors
of every new event is executable.

The procedure then creates the a/synchronous communications of the input
event if it is required. Given an event e, for every input or output channel place q
of its corresponding transition h(e) in the original cspt-net, we search in auxUnf

for the matching channel place (i.e. its label is q and its depth value equals to
the occurrence depth of e). Then we create a direct connection if such a channel
place exists. Otherwise, we add a new instance of the channel place together with
the corresponding arc.

After adding the implicit channel places connected to e (or creating the con-
nection for those which already existed) together with the corresponding arcs, we
are able to obtain the local configuration of e by looking for compatible config-
urations C1, . . . ,Ck of the component nets (which may contain non-executable
events) such that e belongs to one of the Ci’s. If e is executable (Conf (e) 6= ∅),
we make all non-executable events in Conf (e) together with their post-conditions
executable (see Proposition 6.7) by adding them to Unf which always present a
valid branching process. After that, we generate new potential extensions (each
such extension must use at least one of conditions which have just been made
executable). Then another waiting potential extension (if any) is processed.

We now use the cspt-net in Figure 6.9(a) as an example to illustrate the
algorithm. For simplicity, we only show the net generation in auxUnf , and omit
the step that transfer the nodes from auxUnf to Unf . The unfolding process
is shown in Figure 6.10. It starts by appending instances of the initial marking
s0,m0 and v0 of the cspt-net to auxUnf . Then we go to the first iteration
which adds a possible extension e0 = (t0, {c0}) together with its post-condition
to auxUnf . It is not possible to confirm the executability of e0 at this point due
to the absence of a suitable channel place: to generate related communications,
we search in the auxUnf for a q0-labelled and depthq0(e0) = 1 channel place.
Apparently, there is no such place, and so we need to add a copy of q0 to the net
and connect it with e0. After executing addConnection(e0) procedure, we find
that there is a local configuration of e0 (which is {e0} itself) by building a/sync
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graph and verifying compatibility. This local configuration indicates h(e0) is
executable in one of the single runs of the original cspt-net, and hence is also
an executable event in the corresponding unfolding. Therefore, we are allowed
to add e0 and its output condition c1 to Unf ; c1 then can be used to generate
further extensions after our first complete iteration.

Stage C shows the result after three iterations (i.e. appending e0, e1 and e2).
Notice that in the AddConnection(e2) procedure, it is possible to add only arcs
from existing channel places r0 and r1 to the chosen event e2. This is so because
suitable channel places were already added in the previous iterations. Moreover,
e2 and c4 remain to be non-executable after their own iteration since there is no
local configuration containing e2 (nodes treated as non-executable are shaded).
Such a condition cannot be used for generating new possible extension until it
becomes executable.

Stage D and E illustrate the way to generate synchronous communication
between e4 and e6. After adding e4 to the auxUnf , we first create ‘half’ of the
synchronous communication, i.e. we add channel places r3, r4 and the relations
(r3, e4), (e4, r4). It can be observed that there is no compatible configurations
involving e4 at the moment since the producer of r3 is missing. Therefore, e4

is a non-executable event. However, this non-executable event and its post-
condition can become executable after adding another ‘half’ of the synchronous
communication i.e. event e6 and the related connections. More precisely, after
AddConnection(e6), we have the non-executable nodes {e2, c4, e4, c6, e6, c9}. We
can then find compatible configurations C1 = {e1},C2 = {e3, e4},C3 = {e5, e6}
which contain both non-executable events e4 and e6. These two events and their
output conditions can then be added to Unf .

After adding all possible extensions from pe to auxUnf (in this example, the
unfolding is finite since the original cspt-net is acyclic), in the corresponding
Unf , we obtain the correct unfolding which does not have the nodes e2 and c4

since they are still non-executable.
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6.6 Conclusion

In this chapter, we introduced the concept of a branching process of a cspt-
net — a new class of branching nets which can capture complete behaviours of
cspt-nets. The model extends the standard branching processes by combining
multiple component branching processes with channel places. We then formulated
the property of completeness for bcsos. The concept relies on the notion of a
global configuration which describes a single run of transitions crossing different
pt-nets.

Our investigation has led to an algorithm for constructing the unfolding of
a cspt-net which is its unique maximal bcso. A central part of the unfolding
algorithm is the test of whether a non-executable event can become executable.
This is done by checking whether there are global configurations such that the
event belongs to one of them. Moreover, only conditions marked as executable
can be used for constructing new possible extensions, so that we always generate
further extensions on the basis of executable elements.

The algorithm presented in this paper is based on standard unfolding method,
which essentially works by appending possible extension one by one. A potentially
very efficient approach to the construction of the unfolding could be to use the
parallel unfolding technique [31]. One can, for example, unfold each component
branching process in parallel, by temporarily ignoring any a/synchronous issues.
The procedures of appending channel places as well as executability checking (re-
moving unnecessary events) would proceed in a separate step. In this way, we
might significantly improve the efficiency of the algorithm since different compo-
nent net unfoldings can be constructed on multiple computer processors.
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stage A:

Stage B:

Stage C:

Stage D:

Stage E:

Figure 6.10: Unfolding the cspt-net of Figure 6.9(a): (Stage A) starting point
of the unfolding, (Stage B) after first complete iteration, (Stage C) chosen event
e2 is non-executable, (Stage D) chosen event e4 is non-executable, (Stage E) e4

becomes executable due to the missing event is generated.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

In this thesis, we have presented a framework for modelling and analysing the
behaviour of complex evolving systems. In Chapter 2, the basic concept of struc-
tured occurrence nets was discussed. The concept was built on occurrence nets,
and uses various relationships to provide a means of recording the activities of
interacting and evolving systems. For each variant of sons, we defined firing
rules for step by step simulation, and showed several of the variant’s properties
for model analysis and verification. We discussed automated verification in sons,
and provided the relevant algorithms. In addition, a case study using sons for
modelling an accident scenario was presented.

In Chapter 3, we proposed an extension of sons which supports the modelling
of alternative behaviours of complex evolving systems. We defined the ason firing
rules used for the simulation. The rules take into account the execution semantics
of alternative behaviours.

Chapter 4 introduced time information in son-based models. The basic idea
is to represent time bounds and duration ranges in each node. This given timing
information can be uncertain, using a form of interval. We discussed how time
information as is provided in a son can be checked for consistency, and used in
time estimation.

Chapter 5 reported on the implementation details of sons and time-son visu-
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alisations, simulations and analysis. The toolkit named SONCraft is a plug-in
within the Workcraft framework. SONCraft provides a powerful graphical user
interface that facilitates son-based models visualisation, editing and simulation.
The verification and analysis algorithms introduced in Chapters 2 and 4 have been
implemented as a set of external tools which are integrated with SONCraft.

Chapter 6 addressed the unfolding of cson generator nets (cspt-nets). The
unfolding extends the standard branching processes. The algorithms we proposed
for the construction of cspt-unfolding uses the idea of non-executable event to
cope with the synchronous cyclic structure formed by events and channel places.

7.2 Future Work

The following are some ideas for future research:

• The sons concept has been used as a suitable formal grounding to express
system behaviour in several practical areas, including the accident scenario
introduced in Chapter 2, and the modelling of data provenance [47]. We also
intend to evaluate the potential impact of son-based methods for post-hoc
system analysis, e.g., support for complex crime analysis. In particular, we
will use ideas from [32] to design and implement a prototype for displaying
sons representing facts from a complex investigation’s database together
with means of annotating them with probabilities, as well as facilities for
basic analyses and predictions.

• The asons discussed in Chapter 3 are used to construct sons from in-
complete and/or contradictory information. An interesting and practically
important property of the ason concept and its application is support for
associating probability estimates. Such an idea has been addressed in, for
example, [7, 41]. Briefly, we will annotate particular events, conditions, and
relations with some form of probability estimates, which indicate the cur-
rent degree of accuracy of their representation. This probability information
can guide the analysis of the likelihood of different scenarios. Interfacing
with a probabilistic analyser such as [42] is a possibility.
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• In time sons associating time information with son execution semantics is
left for future research. The enableness of an event is not only determined
by marked conditions, but also by the consistency of the time information
provided by the event and its input conditions. Furthermore, we hope to
use timed sons to model and analyse cyber crime, problems involving ‘big
data’, neurological processes, dynamic reconfiguration of real-time software,
and hardware design,in order to demonstrate its generality and exploit the
full potential of the formalism.

• The ongoing implementation work includes the representation of Alterna-
tive sons and the extension of existing verification and simulation facilities
in SONCraft for such sons. For example, several new algorithms have
been added to the existing structural analysis tool for the verification of
asons.

To date, SONCraft has been assessed and experimented with using a va-
riety of manually-entered artificial trial models, but we have yet to try to
integrate the system with an existing large-scale database management sys-
tem (DBMS)-based investigation support system, or with any automated
activity monitoring systems (e.g. for network or telephone communica-
tions). Such integration will, we expect, provide the most practical means
of assessing the effectiveness of the system’s facilities for structuring and
hence coping with realistic large and complex evolving models.

• We intend to explore the generation of finite complete prefixes of cspt-nets,
and use them for efficient model checking and system synthesis, which are
based on standard Petri nets methods [30, 55]. We also intend to implement
the cspt model and its analysis tools in SONCraft.
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Appendix A

In the appendix we provide algorithms for basic and casual time consistency
checking which encode the equations and conditions presented in Section 4.3. To
make the algorithms easy to read, we will use n.start to indicate the start time
of a node n (Ins ); n.finish to indicate the finish time of n (Inf ); and n.duration to
indicate the duration of n (Ind ).

.1 Algorithms for Basic Consistency Checking

nodeConsistency is the basic function that implements Conditions (4.6), (4.7),
and (4.8) to verify the consistency of a given node with specified start, finish,
and duration intervals. The structure of the function is given by Algorithm 8.
Lines 3, 6, and 9 compute the intersection between a specified interval and its
estimate, and return FALSE if the intersection is empty. Thus, the function
returns FALSE if the provided time information does not satisfy a condition;
otherwise, it returns TRUE .
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Algorithm 8 (Node consistency)
1: function Boolean nodeConsistency(Node n)
2: Ĩnf := n.start + n.duration // Equation (4.26)
3: if Ĩnf ∩ n.finish = ∅ then // Condition (4.6)
4: return FALSE
5: Ĩns := n.finish − n.duration // Equation (4.25)
6: if Ĩns ∩ n.start = ∅ then // Condition (4.7)
7: return FALSE
8: Ĩnd := n.finish − n.start // Equation (4.27)
9: if Ĩnd ∩ n.duration = ∅ then // Condition (4.8)
10: return FALSE
11: return TRUE

The concurConsistency function implements Conditions (4.9), (4.10), and
(4.11), and is invoked whenever the main consistency checking task attempts
to verify the consistency of an event. The structure of the function is given by
Algorithm 9. The function first verifies concurrent consistency with respect to
the finish time intervals of the input states of the given event, then with re-
spect to the start time intervals of the output states of the event, then invokes
nodeConsistency for the basic consistency checking of the event itself.

Algorithm 9 (Concurrent consistency)
1: function Boolean concurConsistency(Event e)
2: for c ∈ •e do
3: if c.finish 6= e.start then // Condition (4.9)
4: return FALSE
5: for c ∈ e• do
6: if c.start 6= e.finish then // Condition (4.10)
7: return FALSE
8: return nodeConsistency(e) // Condition (4.11)

alterConsistency is called when one attempts to verify the consistency of a
state. The algorithm is presented in Algorithm 10. Lines 3-8 and lines 10-15
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implement Equations 4.12 and 4.13 respectively, which aim to find out at least
one scenario the checked node belongs to.

Algorithm 10 (Alternative consistency)
1: function Boolean alterConsistency(State c)
2: b := false

3: for e2 ∈ •c do
4: if e2 .finish = c.start then // Equation 4.12
5: b := true

6: break
7: if ¬b then
8: return FALSE
9: b := false

10: for e1 ∈ c• do
11: if e1 .start = c.finish then // Equation 4.13
12: b := true

13: break
14: if ¬b then
15: return FALSE
16: return nodeConsistency(c) // Equation 4.14

The asynConsistency function is invoked only if a son contains a communi-
cation relation, since only a channel place can be passed as a parameter. The
structure of the function is given by Algorithm 11. The function applies Con-
ditions (4.15) and (4.16) for the asynchronous and synchronous-based checking,
then invokes nodeConsistency for the basic consistency checking of the channel
place itself.

Algorithm 11 (A/Synchronous consistency)
1: function Boolean asynConsistency(Channel place q)
2: if q .input .finish 6= q .start ∨ q .output .start 6= q .finish then

// Cnds. (4.15), (4.16)
3: return FALSE
4: return nodeConsistency(q) // Condition (4.17)
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The bhvConsistency function is used to verify the time consistency of a bson.
The structure of the function is given by Algorithm 12. The function first verifies
the consistency of all binary relations in causalU using Condition (4.18), then
uses Conditions (4.19) and (4.20) to verify the restrictions on the initial and
final states of the bson. The return value of the function is all nodes which are
behaviourally inconsistent in the bson.

Algorithm 12 (Behavioural consistency)
1: function bhvConsistency(Relation causalU )
2: Result := ∅ // behaviourally inconsistent nodes
3: for (e1, e2) ∈ causalU do
4: if e1 .start .lower > e2 .start .lower ∨

e1.start.upper > e2.start.upper then // Condition (4.18)
5: add e1, e2 to Result

6: for c ∈ C do
7: if •c = ∅ ∧ c.start 6= β(c).start then // Condition (4.19)
8: add c to Result

9: else if c• = ∅ ∧ c.finish 6= β(c).finish then // Condition (4.20)
10: add c to Result

11: return Result

Algorithm 13 gives the structure of the sonConsistency function, which verifies
the time consistency of an entire son. The algorithm begins by assigning to
each node of the son with an unspecified duration interval a user-defined default
duration interval that corresponds to the node type and is used later for time
estimation. Then, the algorithm traverses the whole son structure and verifies
the time consistency of the specified time intervals of each node. Any node with
complete time information is passed directly to the consistencyTask function for
consistency checking. For a node with partial time information, the missing time
interval is estimated before invoking consistencyTask .
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Algorithm 13 (Consistency checking task)
1: function sonConsistency(son S)
2: input: son S
3: output: Set INCONSIS – set of nodes with inconsistent time/duration in-

tervals
4:
5: for all node n in son do
6: if ¬n.duration.specified then
7: n.duration := I

default(typeof (n))
d

8: for all node n in son do
9: if n.start .specified ∧ n.finish.specified then
10: consistencyTask(n)
11: else if n.start .specified ∧ ¬n.finish.specified then
12: estimateFinish(n)
13: if n.finish.specified then
14: consistencyTask(n)
15: else if ¬n.start .specified ∧ n.finish.specified then
16: estimateStart(n)
17: if n.start .specified then
18: consistencyTask(n)
19: add all nodes in bhvConsistency(causalU ) to INCONSIS

20: function consistencyTask(Node n)
21: if n is event ∧ ¬concurConsistency(n) then
22: add n to INCONSIS
23: else if n is channel place ∧ ¬asynConsistency(n) then
24: add n to INCONSIS
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