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Abstract 

 

The management of trauma has been transformed by recent conflict and by improvements 

in understanding of the response to injury, particularly coagulopathy.  Clotting abnormalities 

can appear early after trauma and have multiple causes, including tissue injury, shock and 

the effects of treatment.  There is increasing understanding of the contribution of 

coagulation molecules to these abnormalities.  Platelets are recognised as being central to 

the clotting cascade in the current cell-based model of coagulation but have been 

incompletely studied after traumatic injury. 

There has been widespread adoption of the practice of “haemostatic resuscitation” using 

blood products rather than crystalloid fluids with a high ratio of plasma to red blood cells to 

correct the coagulopathy of trauma while restoring the patient’s physiology.  The British 

Armed Forces have pushed this forward of the hospital using physician-led medical teams.  

However, this practice has unquantified benefit and potential for harm, and is a logistical 

challenge. 

The first study in this thesis assesses whether available clinical data support the use of 

prehospital transfusion.  It compared recipients of the treatment with similarly injured 

controls.  Although mortality was halved, confounding changes in hospital transfusion 

practice made it impossible to rely on these data to establish the efficacy of prehospital 

transfusion. 

To allow further study, an animal model of complex military trauma was developed.  The 

author focused on developing a flow cytometry assay for the assessment of platelet 

activation and response to in vitro stimulation.  This was successful.  The performance of the 

assay was assessed in the context of the animal model.  Surgical preparation of the model 

appeared to affect the expression of the relevant activation marker.  While the assay proved 

incompatible with unavoidable constraints of the model, its development acted as the basis 

for the establishment of a human platelet study of combat casualties in Afghanistan. 
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Chapter 1.  Introduction 

 

The period from 2001 to 2014 saw the longest sustained period of medium- and high-

intensity conflict involving UK and US armed forces since the Second World War.  

During this period there has been a revolution in many aspects of the care of trauma 

patients, both in military (Blackbourne et al., 2012) and civilian practice (Howell, 2014).  

For the UK Armed Forces, the deployment to Helmand Province, Afghanistan saw the 

highest rate of casualties and the most intense medical effort.  A combination of the 

type of combat, dominated by the use of improvised explosive devices, the protective 

equipment worn by servicemen and the advances in the speed and quality of 

immediate medical care produced a patient population characterised by a high 

incidence of severe injury comprising blast exposure, extensive soft tissue injury and 

traumatic amputations. 

 

Haemorrhage remains one of the most serious threats to the lives of such patients.  It 

is the leading cause of preventable battlefield death (Hodgetts, Mahoney and Kirkman, 

2007; Kelly et al., 2008).  The use of tourniquets and other prehospital interventions 

has had a large impact on the initial fatality of such injuries, meaning that severely 

injured patients who have had significant bleeding are now more likely to be recovered 

to medical care.  The challenge of managing such patients has been met through new 

practices, including prehospital transfusion (O’Reilly et al., 2014) and changes to the 

way blood products are used (Borgman et al., 2007), which are themselves based on a 

new understanding of the mechanisms underlying traumatic bleeding and 

coagulopathy.  That new understanding began in the civilian sphere (Brohi et al., 2003) 

and the entire process has been characterised by a free exchange of ideas and practice 

between military and civilian clinicians and researchers. 

 

While prehospital transfusion has a long history, its introduction into British military 

practice is seen as one of the key changes in trauma care during this long decade of 

conflict.  However, that change was made on the basis of expert opinion rather than 

evidence.  The first study detailed in this thesis arose from an attempt to correct this 

by examining the available clinical information.  An assessment of the impact of 
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prehospital transfusion on mortality using human data from Afghanistan was 

performed.  This demonstrated that confounding changes in clinical practice meant 

that the independent effect of prehospital transfusion could not be established.  This 

supported the use of an animal model to examine the issue. 

 

The use of an animal model provided the opportunity to study aspects of coagulopathy 

in far more detail than could be achieved in human subjects.  Assessment of several 

aspects of coagulation was an existing part of animal models of trauma in use at Dstl 

Porton Down.  However, the role of platelets, which lie at the heart of the coagulation 

process, had not been addressed.  As a suitable model was set up, the author (under 

guidance and supervision) therefore developed an assay to assess platelet function.  

Implementation of this assay in the animal model demonstrated unexpected effects of 

the surgical preparation of the model on platelet activation. 

 

There are therefore two distinct components to the work described: first, a human 

data study, which demonstrated the need for an animal model and, second, the 

development and validation of a platelet flow cytometry assay which was undertaken 

by the author in the context of that model. 

 

Chapter 2 begins with an exploration of the mechanisms of battlefield injury, including 

blast, followed by an examination of the body’s pathophysiological response, with a 

particular emphasis on coagulation.  The development and evidence base of the 

resuscitation of trauma patients is examined in Chapter 3.  Chapter 4 is a study of the 

available human data on patients who receive prehospital transfusion. 

 

In Chapter 5 there is discussion of important elements of the techniques that are used 

in the remainder thesis: coagulation assays, flow cytometry and animal models.  

Chapter 6 describes the development of a flow cytometry assay of platelet function.  

Chapter 7 describes an assessment of the functioning of this assay in an experimental 

setting.  Chapter 8 concludes with a description of how work in this area should 

progress. 
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Chapter 2.  Mechanisms and Consequences of injury 

 

Mechanisms of injury determine the pathophysiological consequences for the patient.  

This chapter begins with an overview of these mechanisms in order to give context to a 

more detailed examination of blast injury.  Thereafter the chapter turns to the 

physiology of the cardiovascular response to injury, again with emphasis on the 

reaction to blast.  There is then an examination of the linked systems of inflammation 

and coagulation before a description of the disordered coagulation seen after severe 

injury; the role of platelets in these is emphasised. 

 

2.1 Non-Blast Injury 

 

Irrespective of mechanism, tissue injury is caused by the deposition of energy (Hunt, 

Marr and Stuke, 2012).  In thermal and chemical burns, molecular damage is 

generated, often without actually disrupting the tissue.  However, in most cases, 

kinetic energy does work in tissue, disrupting the bonds of cellular and extracellular 

structures.  This is usually due to the interaction between the host and a solid object 

moving relative to it.  Primary blast injuries are the major exception to this.  In any 

case, damage is generated when kinetic energy does work in the tissues to disrupt 

intra- and intermolecular bonds.  The amount of damage done is a function of the 

kinetic energy deposited. 

 

The forces generated in any collision are applied to the materials of the objects 

involved.  The force may be in tension or compression or it may involve shear, where 

forces act in opposing directions on different parts of an object, an example being the 

differential acceleration of tethered and mobile parts of a viscus.  As forces act on a 

material (stress—force per unit area) they deform it (strain—relative size of the 

deformation).  Depending on the material and the type (tensile, compressive or shear) 

and magnitude of the strain, the deformation will either be elastic or plastic.  Elastic 

strain is fully reversed by removal of the stress; plastic is not.  Kinetic energy may still 

be dissipated by elastic deformation due to the generation of heat and noise.  Finally, 

at the point of maximum plastic strain, the material fails and is disrupted.  The tensile, 

compressive or shear strength is the stress at which this occurs.  A special case is fluid 
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filled objects subjected to compression.  Due to Boyle’s law, the reduction in volume 

caused by the compression increases the pressure of the fluid.  This increases the 

tensile stress on the wall of the fluid-filled structure.  If the increase exceeds its tensile 

strength, the wall will rupture. 

 

Penetrating injuries are also caused by collisions.  Sharp objects serve to concentrate 

the force of the collision in a small area, such that the blade or point produces very 

large and very local increases in stress on the material through which it thereby cuts.  

Bullets and other projectiles concentrate the forces less but have more available 

kinetic energy to do work on the material.  Low energy projectiles cause only very local 

damage to material cut and crushed as they pass through.  High energy projectiles, 

such as high velocity military bullets, occasionally pass through tissue with little loss of 

energy.  (The determinants of this are a complex interaction between the nature of the 

materials traversed by the projectile and the material and kinetic properties of the 

latter.)  More commonly, their large available kinetic energy is dissipated by generating 

heat, crushing local tissue, accelerating tissue away from the passage of the projectile 

and deforming the bullet itself.  The consequence is that high velocity projectiles 

generate a larger permanent cavity than low energy ones.  They also generate a much 

larger temporary cavity.  The temporary cavitation does not, in the main, devitalise the 

affected tissue, most of which is only elastically deformed (hence it is temporary).  

However, tissue is a mixed medium and some of the material will have less capacity for 

elastic strain and will either permanently deform or will fail.  In particular, bone is 

weak under tension and temporary cavitation can generate fractures remote from the 

permanent wound track. 

 

The clinical impact of an injury is not just a function of the kinetic energy that was 

dissipated in causing it.  The site of injury is crucial.  Local injury to adipose tissue is of 

far less significance than destruction of central nervous tissue.  Systemically, injuries 

that cause significant bleeding, disrupt the airway or otherwise embarrass the delivery 

of oxygenated blood to the tissues (e.g. cardiac tamponade, pneumothorax, vascular 

occlusion) may be fatal despite relatively minor tissue disruption. 
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2.2 Blast 

 

2.2.1 Physics of Blast 

 

Explosions liberate large amounts of energy in very short spaces of time (Wolf et al., 

2009); e.g. the velocity of detonation (the speed at which the detonation wave 

propagates through the material) of trinitrotoluene is 6,900m/s (Cooper, 1996).  A high 

velocity, high pressure blast wave is produced which moves out quickly through the 

surrounding medium.  Initially, this wave, known as the peak over pressure, is 

contiguous with an expanding cloud of the hot gaseous products of the explosion.  

Since it is moving faster than the speed of sound in the medium, the blast wave soon 

decouples from the slowing expansion of the gases (Figure 2.1) 

 

 

 

Figure 2.1 A large explosion under (broadly) free-field conditions.  The blast wave is clearly visible and 

has moved away from the expanding gases. 

 

The peak overpressure is short-lived since it decays rapidly as it moves away from the 

point of the explosion, particularly where the medium is air rather than water.  The 

passage of the blast waves accelerates the air, producing a blast wind (dynamic 
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overpressure), which carries with it energised fragments of the explosive, its container 

and other nearby objects.  The outward movement of the blast wind eventually 

dissipates, leaving (in air) a volume of rarefied, low pressure gas near the point of 

explosion.  The medium therefore reverses its movement to correct this 

underpressure, oscillating until uniform pressure is restored throughout (Figure 2.2). 

 

 

Figure 2.2  A Frielander curve showing the rapid rise to peak overpressure and subsequent negative 

pressure after an explosion.  In this idealised curve, oscillation is not shown.  (Mediavilla Varas et al., 

2011) 

 

The relative importance of the peak overpressure and the blast wind (and fragments) 

depends upon the environment of the explosion.  In an incompressible liquid medium, 

as with underwater explosions, the blast wave propagates much further than in a gas, 

where the compressibility of the medium allows its energy to accelerate and heat the 

air.  Conversely, dense liquid media reduce the movement of the dynamic 

overpressure and fragments, which consequently have a much reduced radius of 

effect.  Interaction of the blast wave with solid surfaces can cause it to be reflected.  In 

complex environments this can allow reflected and non-reflected blast waves to meet 

at particular points where the peak overpressure will be summed (Wolf et al., 2009).  

Consequently, blast waves can cause damage further from the point of explosion in 

confined spaces and cause more severe injury. 
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2.2.2 Blast Injuries 

 

Injuries from explosions are categorised as primary, secondary, tertiary and quaternary 

(Zuckerman, 1940). 

 Primary blast injuries are those caused by the peak overpressure and are 

unique to explosions.  When the blast wave interacts with the body it causes 

differential acceleration of structures according to their density and other 

characteristics.  Consequently energy is deposited at interfaces between 

materials of different density, as may be found at the internal surface of hollow 

viscera.  The propagation of the blast wave though the different tissues of the 

body generates a high-velocity, low-amplitude stress wave and a low-velocity, 

high-amplitude shear wave.  The stress wave is compressive but when reflected 

at a density interface pulls tissue apart (tension).  This leads to damage at a 

microscopic level (albeit potentially affecting a considerable volume of tissue) 

rather than large lacerations (Figure 2.3).  Shear waves cause gross relative 

movement of tissues, particularly due to the movement of the body wall.  This 

causes tearing of structures from their attachments and disruption of solid 

organs (Horrocks, 2001). 

 Secondary blast injuries are those caused by the impact of fragments 

energised by the blast wind.  Professionally manufactured military munitions 

contain preformed fragments or have casings which are designed to break up 

along lines of weakness producing fragments with predictable ballistic 

properties (Dearden, 2001).  The size, mass and shape of the fragments dictate 

how far and fast they move through the air and how they interact with the 

body.  This allows the manufacturer to control the wounding effects and radius 

of the weapon.  Munitions may be optimised to typically injure rather than kill 

and to produce predictable chances of injury and death at given distances from 

detonation.  Most improvised explosive devices (IEDs) lack this sophistication.  

Their casings fracture randomly and their wounding effects are highly 

unpredictable.  Large fragments may be energised causing severe injuries.  

However, in some cases secondary blast from an IED may be chiefly due to the 

impact of energised soil and sand, in which the device has been disguised, 

which (depending on proximity to the device and the quantity of explosive) 
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may cause a diffuse, shallow destruction of tissue with devitalisation and 

tattooing of tissue beyond. 

 

 Tertiary injuries are caused by the body being moved by the blast wind and 

striking against other objects.   

 

 All other effects, including burns, inhalational injury and psychological sequelae 

are classified as quaternary.  Crush due to building collapse is classified as a 

tertiary or quaternary injury by different authors.  A hyperinflammatory 

response seen in some Israeli victims of improvised explosive devices and 

caused by absorption of pentaerythritol-tetranitrate has been described and 

the term quinary blast injury proposed (Kluger et al., 2007).  The Quaternary 

group is already disparate and the burden of proof to justify the establishment 

of a fifth category of injury must lie on Kluger et al.  No clear reason not to 

include this novel mechanism as part of the quaternary group is given. 

 

 

Figure 2.3 Post mortem image of primary blast injury in a pig.  There is a large area of contusion on the 

side that faced the explosive but no significant laceration. 
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Traumatic amputation after blast injury is an interesting phenomenon.  These injuries 

have been common in Afghanistan: Morrison et al found that 169 of 656 IED casualties 

in a four year period sustained 278 lower extremity amputations (Morrison, Hunt, et 

al., 2012).  Amputations were traditionally thought to be caused by differential 

acceleration of different parts of the limb by the blast wind.  This should cause 

disruption at the joints where those parts interact.  However, Hull et al (1994), 

examining injuries sustained in Northern Ireland, found that the level of bony 

transection was usually in the middle of the shaft of long bones.  Experiments on 

sheep limbs have shown that the bone is in fact fractured by the action of the peak 

overpressure.  The blast wind then accelerates the limb distal to the fracture, tearing it 

off (Hull and Cooper, 1996).  Pure limb flail remains a relevant mechanism: Singleton et 

al (2014) recently found that 17.3% of lower limb amputations were through knee, 

most without a nearby fracture.  They also found no evidence of an association of 

traumatic amputation with primary blast lung injury, a past finding which had 

supported Hull and Cooper’s hypothesis. 

 

2.2.3 Impact and Implications of Primary Blast Injury 

 

Compared with the general population of trauma victims, those injured by explosive 

devices are more severely injured, with worse physiology and more need for surgery 

and critical care.  Mortality is also higher (Frykberg, Tepas and Alexander, 1989; Kluger 

et al., 2004).  The relative contribution of the components of blast injury is the subject 

of some debate.  There is considerable variation by bombing type, but penetrating 

(secondary) injuries undoubtedly predominate (Arnold et al., 2003).  In a large review 

of terrorist incidents in diverse environments, 47% of immediate fatalities were found 

to have evidence of primary lung injury (Frykberg and Tepas, 1988).  Primary blast lung 

injury is unquestionably an important cause of early death.  As may be expected, 

primary blast lung injury is more common after explosions in confined spaces among 

patients admitted to hospital (77.5% confined space v 24.5% open space explosion) 

(Leibovici et al., 1996).  These Israeli experiences compare with the Madrid bombing: 

18.7% of patients who were admitted to the nearest hospital had evidence of blast 

lung injury; these 17 patients made up 63% of the patients admitted to the critical care 

unit (Gutierrez de Ceballos et al., 2005).  On 7 July 2005, 4 suicide bombers killed 52 
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others and injured more than 700 people.  The Royal London Hospital received the 

largest number of casualties.  Seven required intensive care admission, three of whom 

had traumatic amputations.  Despite this, and the enclosed space nature of all the 

incidents, none had primary blast lung injury (Shirley, 2006).  The incidence of primary 

blast lung injury among hospitalised patients varied between 0 and 44% in one review 

of many incidents (Arnold et al., 2003).  This variation may reflect differences in data 

quality and definitions between incidents as well as the realities of the device, 

environment and casualties. 

 

From the civilian clinical perspective, the important lesson is that these injuries occur, 

particularly in the critically ill population.  A different point of view is held by a military 

healthcare system.  It must expect to manage blast-exposed patients, rather than 

simply plan against a low probability, high impact event.  It must design clinical 

facilities and prioritise research efforts on the basis of data about the incidence and 

consequence of primary lung injury.  If this is common and has high immediate 

lethality, there must be a concentration on prevention and protection.  If the 

immediate lethality is lower but the overall morbidity and mortality still high, there 

may be an opportunity for therapeutic intervention.  In that case there must be more 

emphasis on clinical care and research.  The crucial question is: how common is blast 

injury in military patients surviving to reach medical care? 

 

Champion and colleagues have argued that the lethal range of fragments from most 

explosives exceeds that of the primary blast effect (Champion, Holcomb and Young, 

2009).  Many injury models require exposure to large peak overpressures to induce 

primary lung injury.  This is equivalent to close proximity to typical military munitions, 

well within the radius of flight of fragments.  Three factors may allow contemporary 

military casualties to sustain primary blast injury while surviving the effect of 

fragmentation.  First, explosions in complex urban or other environments may involve 

the reflection and summation of blast waves, allowing primary blast effect beyond its 

free-field range, while fragments are impeded by other structures.  Second, the 

lethality of penetrating fragments is related to the structures they traverse.  The 

advent of advanced body armour for servicemen means they are more likely to survive 

explosions, albeit often with multiple amputations (Morrison, Hunt, et al., 2012).  This 
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is due to enhanced protection from secondary injury, which could make it possible to 

be exposed to injurious but sub-lethal primary blast without dying from concomitant 

fragment injury.  Third, improvised explosives do not have the carefully engineered 

preformed fragments seen in military munitions.  Indeed, they may not contain metal 

fragments at all to avoid detection.  Chance variation in fragment behaviour would 

again allow immediate survivors to be blast-exposed. 

 

Data from Iraq and Afghanistan have fuelled this debate.  Ramasamy et al (2009) found 

that 2 (3.7%) of 53 IED injured patients admitted to a British field hospital had 

significant primary blast injury.  Ritenour et al (2010) have since shown that 172 (3.6%) 

of 4765 US patients admitted after becoming victims of explosions in Iraq and 

Afghanistan had evidence of primary blast injury.  Smith (2010) reviewed 1678 British 

cases (immediate deaths and those admitted to hospital) injured by blast and found 

that 113 (6.7%) had evidence of blast injury.  Smith also found that 44% of these 

survived to reach medical care but that 24% of those died of their wounds. 

 

These papers, covering heterogeneous time periods, environments and threats, 

demonstrate that primary blast injury is a significant threat to military patients, 

including a small group of initial survivors (perhaps 1 in 30 of all casualties in recent 

conflict, but a higher proportion of the severely injured).  Preventative research is 

required but blast-injured patients will continue to present.  Since it can be difficult to 

detect initially, military resuscitation practice should be optimised to the needs of 

patients with and without primary blast injury.  Consequently, research must also 

address both patient groups. 

 

2.3 Physiological Response to Injury 

 

The physiological response to injury has several components: the cardiovascular and 

neurohumoral systems, inflammation, coagulation, metabolism and behaviour are all 

affected.  These responses are intimately related to one another, sharing neural and 

molecular pathways, initiators and feedback mechanisms.  The neurohumoral, 

metabolic and behavioural aspects are not relevant to this thesis and will not be 

explored further. 
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2.4 Cardiovascular Response 

 

2.4.1 Cardiovascular Response to Conventional Trauma 

 

The cardiovascular response to isolated haemorrhage involves two phases of 

sympathetically mediated changes (Little et al., 1995). 

 Initially, reduced venous return leads to reduced stroke volume due to 

Starling’s law.  This leads to a reduction in pulse pressure and consequently of 

arterial baroreceptor output.  Through centrally mediated reflex arcs, this 

causes a loss of vagal output to the heart and then sympathetic activation.  The 

former causes tachycardia.  The latter is chronotropic, enhancing the 

tachycardia, and inotropic, increasing cardiac contractility and consequently 

stroke volume.  These serve to ameliorate the fall in cardiac output.  Peripheral 

sympathetic activation increases vascular resistance through arteriolar 

constriction.  Increased total peripheral resistance and the relative preservation 

of cardiac output serve to maintain blood pressure.  Since the arterioles of 

certain vital tissues beds (such as the brain) are not constricted by this process, 

their perfusion is maintained at the expense of others.  Perfusion of local tissue 

beds is also modulated by the production of nitric oxide, its derivatives, carbon 

monoxide and potassium (Atkins, Johnson and Pearce, 2006). 

 In the absence of other stimuli, further haemorrhage will eventually lead to the 

activation of a second, depressor reflex mechanism.  This mechanism 

supersedes the baroreceptor reflex, activating the vagus and inhibiting 

sympathetic flow.  The consequence is profound bradycardia and hypotension.  

This reflex response may be compounded by the production of a large amount 

of the vasodilator nitric oxide by the endothelium.  Slowing the heart increases 

the diastolic interval, which may improve cardiac filling and coronary perfusion.  

Decreased afterload due to the fall in peripheral resistance may reduce cardiac 

work.  The depressor response may therefore be protective.  However, the 

reduced cerebral perfusion leads to depressed consciousness and fluid 

resuscitation is required to restore the blood pressure.  Atropine will correct 

the bradycardia, but may endanger a patient’s life (Little et al., 1995).   
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Tissue injury or ischaemia leads to a quite different response.  Increased sympathetic 

activation leads to increased total peripheral resistance with consequent increased 

blood pressure and redistribution of blood flow towards muscle and away from the gut 

and kidneys (Overman and Wang, 1947).  It also stimulates a tachycardia.  This would 

be opposed by a normal baroreceptor response.  However, within a few hours of injury 

that response is altered, becoming less sensitive to hypotension and recalibrated to 

maintain a higher blood pressure.  One consequence is a persistent tachycardia often 

seen after injury. 

 

When tissue injury coexists with haemorrhage it attenuates the response to the latter.  

The early tachycardia is reduced by 10 to 15% and the late bradycardia abolished 

(Little, Marshall and Kirkman, 1989).  This appears to be due to central inhibition of the 

efferent limb of the response to haemorrhage.  The vasoconstriction caused by injury 

leads to better preservation of blood pressure.  However, this seems to be at the 

expense of cardiac output, and consequently of oxygen delivery (Rady et al., 1993). 

 

Somatic nerve stimulation can simulate much of the modulation of cardiovascular 

response by musculoskeletal injury.  Animals subjected to haemorrhage with nerve 

stimulation have higher mortality than those without stimulation (Overman and Wang, 

1947).  Normally oxygen uptake by the tissues is governed by metabolic demands, the 

supply of oxygen being more than adequate.  In haemorrhage with musculoskeletal 

injury, local blood supply can become inadequate as total body oxygen delivery falls 

(DO2) since blood is diverted away from some vascular beds.  When this occurs, their 

oxygen consumption ceases to be independent of DO2 and this is reflected in a fall in 

total body consumption of O2 (VO2).  The level of DO2 at which VO2 becomes 

dependent on DO2 is called the critical oxygen delivery.  It is higher in haemorrhage 

with brachial nerve stimulation than without (Kirkman et al., 1995). 

 

It is interesting to speculate upon why this modulation is adaptive.  It may be that it 

gives some protection at lesser degrees of blood loss (which were perhaps more 

common than severe haemorrhage in the lives of our ancestors).  The cardiovascular 

effects of musculoskeletal injury mimic the visceral alerting response of the defence 

reaction, which exists to prepare the body for fight or flight and activates in response 
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to fear and other stimuli.  Preparing the body for the muscular work that is required to 

avoid further injury may very well be an adaptive response to musculoskeletal 

damage. 

 

2.4.2 Cardiovascular Response to Blast Injury 

 

Exposure to thoracic blast produces a characteristic cardiovascular response (Kirkman 

and Watts, 2010).  This is characterised by hypotension and bradycardia, which begin 

to develop after 2s and 4s respectively (Ohnishi et al., 2001).  This is consistent with its 

being a reflex response, not due to direct effects on the heart or CNS.  The initial 

bradycardia is profound: in rats, an increase in the mean heart period/beat-to-beat 

interval from 133ms to 489ms.  This recovers after 5 minutes with a more moderate 

bradycardia (heart period around 160ms) persisting for several hours.  Mean blood 

pressure recovers from a nadir of 40mmHg to 70mmHg, also over five minutes, but 

further recovery to 100mmHg takes 1hr and some hypotension persists for 24hrs.  

Blast also causes apnoea, which in this model lasted 28s. 

 

The efferent pathway mediating the bradycardia is the vagus nerve.  Vagotomy 

abolishes the bradycardia but (in the Ohnishi model) only partially corrects the 

hypotension.  Atropine blocks the bradycardia without modulating the hypotension.  

Thus the two are separately mediated: the bradycardia’s afferent and efferent loops 

are vagal; the hypotension has vagal and either non-vagal elements or a non-reflex 

component.  Systemic vascular resistance is reduced for some time after blast (Irwin et 

al., 1999).  The vagally mediated components of these changes are consistent with the 

pulmonary defence reflex mediated by the pulmonary afferent C fibres (Ohnishi et al., 

2001).  The fall in SVR may therefore be due to the sympathoinhibition which is a 

feature of this reflex (Daly and Kirkman, 1988).  In addition, blast is known to induce 

the production of large amounts of NO (Žunić et al., 2000), which causes 

vasodilatation.  Finally, embarrassment of the cardiac musculature by air embolism or 

contusion may be the cause of the hypotension. 

 

Sawdon, Ohnishi et al combined haemorrhage and blast in a rat model (Sawdon et al., 

2002).  Haemorrhage began 10 min after thoracic blast exposure (i.e. after resolution 
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of the initial extreme bradycardia).  Blasted animals had a lower blood pressure at the 

onset of haemorrhage and were unable to maintain it at that level as blood was lost; 

sham blasted animals initially preserved normal MAP.  The bradycardia due to 

haemorrhage appears to have occurred earlier (after less blood loss) in blasted than in 

non-blasted animals.  At the extreme of blood loss, cardiovascular parameters in the 

two groups converged, presumably reflecting a narrower range of possible 

combinations available in the context of marked hypovolaemia.    

 

2.5 Inflammatory Response 

 

Inflammation is fundamental to the pathophysiology of trauma.  While most deaths 

occur early, due to head injury and haemorrhage, (Trunkey, 1983) sepsis causes 3.1-

17% of deaths and organ failure 1.6-9% (Pfeifer et al., 2009).  Perhaps 25% of trauma 

victims develop multiple organ dysfunction syndrome (MODS) (Ciesla et al., 2005).  

Critical illness accounts for 42 to 52% of acute care costs for injured 

patients(Christensen et al., 2008) and has significant long term sequelae (Ulvik et al., 

2007).  Inflammatory processes underlie all of these problems. 

 

The processes described in this section are associated with characteristic clinical 

phenotypes.  Widespread activation of inflammation is recognised in the Systemic 

Inflammatory Response Syndrome (SIRS).  SIRS is not necessarily a pathological state 

and is characterised by (at least two of) pyrexia (or hypothermia), tachycardia, 

tachypnoea and leucocytosis (Bone et al., 1992).  SIRS arises in response to both injury 

and infection, and consequently the manifestation in trauma and sepsis can be 

indistinguishable.  Initial injury, systemic inflammation and subsequent sepsis all 

interact to lead to MODS.  SIRS is accompanied by a simultaneous upregulation of 

immunosuppressive mechanisms which particularly affect the adaptive immune 

system.  The compensatory anti-inflammatory syndrome (CARS) or immunoparalysis, 

leaves the patient vulnerable to subsequent infection (Tschoeke and Ertel, 2007).  

CARS appears to be a misnomer: the immunosuppression was originally thought to be 

a delayed reaction to the initial inflammation but studies that block the latter (Remick 

et al., 1995) or look for genomic correlates of both phenomena (Xiao et al., 2011) 

suggest that this is not the case.  In recent years, the supportive management of MODS 
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and the identification and treatment of sepsis has greatly improved.  However, there 

may be a group of patients in whom this has uncovered a late syndrome of persistent 

inflammation, immunosuppression and catabolism (PICS) (Gentile et al., 2012). 

 

The mechanisms of dysfunction in individual organs, of the failure to terminate 

inflammation and of immune suppression are beyond the scope of this discussion.  

This section will give a “bottom-up” description of the inflammatory response, which 

underlies all of these, describing its initiation and early mediation.  This will allow later 

sections to draw connections between inflammation and coagulation.   

 

The innate immune system is a highly conserved homeostatic mechanism that protects 

the body from injury and infection. Under normal conditions, inflammation is followed 

by resolution and repair.  Components of inflammation are involved in other 

homeostatic mechanisms (e.g. tissue repair, control of metabolism, hormonal 

regulation) which are not discussed.  It is useful to divide the elements of the 

inflammatory response into functional groups (Medzhitov, 2008).  The threat to tissue 

homeostasis, or insult, generates effects at levels ranging from the cell to the whole 

organism.  These in turn generate or reveal molecular signals that are the initiators of 

inflammation.  These are detected by a series of non-cellular and cellular sensors.  The 

sensors then activate the (non-cellular) mediators and (cellular) effectors of 

inflammation (see Figure 2.4).  In order to reach and combat the threat, the principle 

effectors—neutrophils and macrophages—are able to cause local tissue destruction 

through the release of enzymes and reactive oxygen species (ROS) (Nathan, 2002).  

Since many of the mediators and effectors are circulating molecules and cells, the key 

first stage in inflammation is an increase in blood flow (calor, rubor) and an increased, 

selective permeability of the endothelium (tumor).  This allows the mediators and 

effectors to be recruited to the site of the insult.  Swelling and the presence of certain 

initiators and mediators in the tissue leads to activation of nociceptors (dolor).   

 

The inflammatory response uses positive feedback mechanisms to promote quick 

response to threats, and negative feedback to localise and control the response 

(Nathan, 2002; Chen and Nuñez, 2010).  Without microorganisms, damaged tissue 

quickly moves on to repair—the weal from a slapped wrist quickly fades, the 
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inflammation of a surgical wound is mild and resolves if it does not become infected.  

Equally, colonisation by commensal bacteria is not a threat that requires constant 

inflammation of all the skin and gut wall.  These mechanisms of discrimination and 

control can be overstimulated by large insults to which they are not adapted, causing, 

respectively, organ injury and immunosuppression. 

 
2.5.1 Initiators and Sensors in the Activation of Inflammation 

 

Trauma has direct effects at the cellular, tissue, organ and organism levels.  At the 

cellular level, it leads to the disruption of cell membranes, causing necrosis.  Injury to 

tissues can disrupt tissue architecture, expose subendothelial molecules and allow 

toxic substances, such as haem, to enter the interstices.  Injured organs can become 

dysfunctional or disrupted.  This discussion will concentrate on the effect of injury to 

respiratory and circulatory structures.  These lead to hypoxaemia, haemorrhage and 

impaired perfusion which in turn cause local or systemic ischaemia, the latter being 

shock.  Adaptive processes and treatment of local ischaemia or shock leads to 

reperfusion (locally: ischaemia-reperfusion—I/R; systemically: haemorrhagic shock-

resuscitation—HS/R) which can actually worsen the insult.  These in turn lead to 

further cellular stress, which can lead to apoptosis or necrosis.  It is this interplay of 

events that generates the diverse initiators of inflammation seen after severe injury. 
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Figure 2.4  Initiation of inflammation. (Derived from Medzhitov, 2008)  Insults, such as trauma, lead to 

effects at the cellular/extracellular level.  These lead to the production of endogenous initiators.  

(Exogenous initiators [not shown] include molecules produced by microorganisms [PAMPs – see 

Subsection 2.5.3] and others such as allergens.)  Sensors for these initiators may be extracellular 

molecules such as natural antibodies, or cellular receptors, such as TLRs.  Mediators include the 

protease cascades, which are principally initiated by extracellular sensors, and lipid mediators, cytokines 

and chemokines, which are released by effectors stimulated by cellular sensors.  There is then crosstalk 

between mediators and effectors, producing both positive and negative feedback loops depending on 

the situation.  Effectors also communicate directly with one another, e.g. via adhesion molecule 

interactions. 

However, mediators are able to cause damage to cellular and extracellular molecules (i.e. “effects”) by, 

for example, the action of proteases and alterations in oxygen delivery due to coagulation and 

vasoactive mediators (arrow A). This leads to the formation of further initiators, which combines with 

active production by mediators (arrow B, an example would be release of HMGB-1 by macrophages), 

forming positive feedback loops.  Additionally, some effects can imitate mediators, e.g. through the 

peroxidation of lipids to generate PAF-like lipids that can ligate the PAF receptor; arrow C).  (This could 

equally be regarded as an initiator-sensor pathway which is then harnessed to be used by a mediator, 

PAF.) 

The key points are redundancy, which is a reflection of the complexity of the system, and the existence 

of feed-forward and feed-back loops.  The latter include inhibitory mechanisms which regulate 

inflammation and are not shown here. 

PAMP—Pathogen-associated molecular pattern; TLR—Toll-like receptor; HMGB-1—High Mobility 

Growth Box 1; PAF—Platelet-activating factor. 
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2.5.2 Ischaemia/Reperfusion 

 

During ischaemia, low oxygen tension causes dysfunction in the oxygen transport chain 

in mitochondria, leading to the release of highly reactive free radicals: reactive oxygen 

species (ROS) (Fischer, 2006).  As ROS levels rise they overcome cellular defence 

mechanisms to cause damage to functionally vital structures such as membrane 

molecules, which can lead directly to cell dysfunction or lysis.  ATP production falls and 

the existing supply is consumed, producing ADP and then hypoxanthine.  Cell 

membrane ion pumps begin to fail, leading to swelling and membrane dysfunction.  

Mitochondrial contents are released, which can initiate cell death.  While restoration 

of oxygen supply is necessary for cell survival, it also leads to the accumulation of more 

destructive substances: accumulated hypoxanthine reacts with oxygen to produce 

more ROS.  Reactive nitrogen oxygen species (RNOS) derived from nitric oxide (NO) 

also play an important role. 

 

Finally, ischaemic injury causes endothelium to expose a non-muscle myosin heavy 

chain antigen (Zhang, Alicot, et al., 2006).  A natural antibody exists to this antigen, i.e. 

a circulating, specific, monoclonal IgM not produced by prior pathogen exposure 

(Zhang et al., 2004); this activates complement (Zhang, Takahashi, et al., 2006).  Since 

complement deficient animals are protected, this is one of the most important 

mechanisms of I/R injury (Chan et al., 2003). 

 

2.5.3 Products Released by Cellular Disruption and Extracellular Damage 

 

In normal tissue and cells there is extensive compartmentalisation which separates, for 

example, nuclear contents from the cytoplasm and blood from the extracellular matrix 

(Nathan, 2002).  After injury this compartmentalisation is broken down, whether by 

direct trauma, indirectly through I/R or as a result of inflammatory processes.  

Previously separated receptors and their ligands, or enzymes and their activators or 

substrates, can now interact.  This is one of the principle mechanisms which generates 

endogenous initiators and exposes them to their counterpart sensors. 
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Cellular disruption releases many substances including ATP, uric acid, heat shock 

proteins and high-mobility growth box-1 (HMGB-1) (Bianchi, 2007).  These molecules 

are part of a heterogeneous group known as damage-associated molecular patterns 

(DAMPs).  DAMPS are highly conserved cell molecules which are detected by pattern 

recognition receptors (PRRs), such as Toll-like receptors (TLRs).  TLRs are expressed by 

a variety of innate and adaptive immune cells and by epithelial and parenchymal cells 

(Kaczorowski et al., 2008).  Their activation leads to increased production of 

proinflammatory gene products.  (DAMPs have their exogenous counterparts, 

pathogen-associated molecular patterns [PAMPs]; examples include 

lipopolysaccharide [LPS] and formyl-methionyl-leucyl-phenylalanine [fMLP].)   

 

HMGB1 is a nuclear protein that binds DNA, and is one of the most studied DAMPs.  As 

well as being released by necrotic cells (Scaffidi, Misteli and Bianchi, 2002) it is actively 

secreted by a variety of cells including monocyte/macrophages and endothelial cells 

(Mullins et al., 2004; Qin et al., 2006).  Systemic inflammation is induced in mice by 

bilateral femur fracture (Levy et al., 2007).  This can be almost abolished by blockade 

of TLR-4 or by use of HMGB-1 neutralising antibodies, but there is no synergy between 

the two methods of blockade.  This indicates a profound importance for the HMGB-

1/TLR-4 signalling axis in the pathophysiology of systemic inflammation in this model 

(Levy et al., 2007).  Haemorrhagic shock also induces HMGB-1 mediated systemic 

inflammation (Kim et al., 2005). 

 

Serum levels of HMGB-1 are raised within 30 minutes of severe injury complicated by 

hypoperfusion.  The rise in HMGB-1 correlates with the severity of injury, tissue 

hypoperfusion, early posttraumatic coagulopathy and hyperfibrinolysis as well as with 

systemic inflammatory response and activation of complement (Cohen et al., 2009).  

The relative contribution of active and passive release of HMGB-1 in these situations is 

unclear. 

 

2.5.4 Effectors and mediators of inflammation 

 

Inflammation is driven by the action of effectors (cellular components) and mediators 

(molecular components).  The following subsections briefly describe the principle 
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actions of the most important of these in the initiation of inflammation: complement, 

which responds to signals of I/R injury and leads to mast cell activation and neutrophil 

recruitment; mast cells and macrophages, which respond to complement and directly 

to injury and other stimuli and which serve to activate endothelium and recruit 

neutrophils; and endothelium, which forms the barrier between blood and tissue but 

which, once activated, becomes the means by which neutrophils are summoned and 

guided to the site of injury.  In a subsequent subsection, the key role of neutrophils in 

initiating inflammation will be explored.  Before that, there is a brief discussion of the 

largest class of mediators, cytokines, with emphasis on how they signal for the events 

which lead to neutrophil recruitment. 

 

2.5.5 Complement Activation 

 

Complement is a highly conserved protease cascade and the principle early mediator 

of inflammation after I/R (Arumugam et al., 2004).   Activation leads to mast cell 

stimulation (Metz and Maurer, 2007), the release of anaphylatoxins and the formation 

of the membrane attack complex (MAC), which can lyse both bacteria and host cells.  

The anaphylatoxin C5a is chemotactic to neutrophils and can increase vascular 

permeability and upregulate the expression of endothelial adhesion molecules.  

Complement molecules can also be initiated by other mediators of inflammation such 

as proteases (Huber-Lang et al., 2006) and thrombin (Markiewski et al., 2007).  

Deposition of MAC is seen extensively after I/R (Carden, Smith and Korthuis, 1990; 

Hugo et al., 1990; Weiser et al., 1996) and may be a significant pathway of 

complement-mediated injury.   

 

Systemic complement activation is seen after trauma within half an hour and 

correlates with injury severity and tissue hypoperfusion, and with mortality and 

inflammatory complications (Fosse et al., 1998; Ganter et al., 2007).  While the 

classical/lectin pathway is activated, amplification via the alternate pathway is 

correlated with severity and outcome (Ganter et al., 2007). 
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2.5.6 Mast Cells and Macrophages 

 

Mast cells possess large cytosolic granules that contain histamine, other mediators and 

proteases (Metz and Maurer, 2007).  Degranulation follows seconds after stimulation 

and is accompanied by increased synthesis of TNF- α, of other cytokines and 

chemokines and of the fatty acid derivatives platelet-activating factor (PAF) and the 

leukotrienes.  Mast cell-deficient mice develop significantly less muscle fibre death 

(Bortolotto et al., 2004) and lung injury (Goldman et al., 1992) after limb I/R.   

 

Macrophages are also contain granules and able to release cytokines and proteases to 

induce inflammation.  Their reaction to initiators of inflammation is less florid than 

that of mast cells but it is also more sustained.  Macrophages (Medzhitov, 2008) are 

also able to detect the transition of tissue cells between the discreet states of 

normality, stress, apoptosis and necrosis; they also appear to be able to distinguish 

between different causes of apoptosis, though the mechanism is unclear.  

Macrophages can therefore detect, integrate and report the status of many cells in a 

tissue bed, altering the inflammatory (and other) responses accordingly.* 

 

2.5.7 Endothelium 

 

Mast cell tryptase and other proteases cleave the terminal residues of protease 

activated receptors (PARs) on mast cells, neurones, endothelium and neutrophils.  The 

neoterminal residues of the PARs self-engage, i.e. engage the PAR’s own binding site, 

activating their cytosolic G-proteins.  This leads to further activation of mast cells and 

neurones.  It makes endothelium more adhesive to leukocytes and it causes leukocytes 

to release PAF.  Along with mast cell-derived PAF, this in turn reinforces endothelial 

activation and attracts leukocytes into the tissue.   

 

Endothelial cells can be activated by other cells using a variety of mediators and 

express their own TLRs.  They also transduce mechanical information related to blood 

flow via the glycocalyx, altering cell function, particularly NO and prostacyclin 

                                                 
*
 This description excludes the important role that macrophages later play in the resolution of 

inflammation and the initiation and control of healing. 
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production (see subsection 2.7.5) (Tarbell, Weinbaum and Kamm, 2005).  

Catecholamines have an important role in activating endothelium (Johansson et al., 

2011b).  In the first stage of endothelial activation, cells contract, exposing the 

subendothelial membrane, which allows fluid, mediators and effectors to pass into the 

extracellular space (Hunt and Jurd, 1998).  (When intravascular hydrostatic pressure is 

low, e.g. due to haemorrhage, endothelial activation may conversely allow interstitial 

fluid to pass into the circulation, leading to a form of autoresuscitation.)  The Weibel-

Palade bodies undergo exocytosis, releasing von Willebrand factor (vWF) into the 

blood and bringing P-selectin to the surface.  The second stage of activation requires 

de novo synthesis of cytokines, chemokines, tissue factor and adhesion molecules.  

Activation causes endothelium to lose its normal anticoagulant phenotype. 

 

Activated endothelium therefore promotes traffic of molecules and cells between the 

compartments and promotes coagulation.  These are adaptive changes which facilitate 

the inflammatory response (coagulation helps contain infection as well as limiting 

blood loss).   

 

Activation of large areas of endothelium affects systemic circulation and leads to 

massive fluid shifts.  It also releases inflammatory mediators into the circulation.  In 

sufficient concentration these may prime circulating neutrophils and activate 

endothelium at uninjured sites.  This ectopic activation then opens the door for 

neutrophil infiltration and consequent injury to bystander organs.  Endothelial 

activation should be a quickly reversible state.  However, sufficient damage can render 

endothelium unable to step down to the resting state or it may induce apoptosis 

(Hotchkiss et al., 1999; Guan et al., 2002), with desquamation and loss of vascular 

integrity. 

 

2.5.8 Cytokines 

 

There is a prodigious literature on cytokine signalling that cannot be summarised here.  

Some important molecules will be discussed briefly.  IL-1β and TNF-α are produced by 

monocytes/macrophages, mast cells, epithelium and other immune and non-immune 

cells in response to stimuli that include complement, NO, ROS, TLR ligands and 
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themselves.  Their effects include autocrine induction of other cytokines, priming of 

neutrophils and activation of endothelium.  Both can produce anti-apoptotic effects 

that may be important in sustaining inflammatory response but TNF is also able to 

induce apoptosis in target cells under certain circumstances.   

 

The elaboration of chemokines, a subclass of cytokines, is crucial to the recruitment of 

effector cells, which can migrate up a chemokine concentration gradient to reach the 

point of release.  The particular pattern and effect of this varies according to tissue, 

stimulus and other factors.  Chemokine production in animal models of lung contusion 

(Raghavendran et al., 2005) serves as a good example.  This is not least because 

bronchoalveolar lavage fluid provides a window onto tissue chemokine levels without 

the need for biopsy.  Neutrophil attractant chemokines (CXCL-1 and -2) rises early and 

peaks at 24 hours after contusion.  The monocyte attractant CCL-2 rises by 24 hours 

but peaks at 48 hours.  All return to normal by 7 days.  As one would expect, 

neutrophils infiltration precedes the increase in lung monocyte/macrophages.  

Chemokines can be immobilized on endothelium (McDonald et al., 2010), allowing 

effectors to migrate intravascularly along the gradient so formed until very close to the 

site of inflammation.  While cytokine and chemokine signalling has diverse functions, 

their particular role in this account of the induction of inflammation is the activation 

and recruitment of neutrophils. 

 

2.5.9 Neutrophils and the Two-Hit Hypothesis 

 

Neutrophils are the primary early effector cell in innate immunity (Nathan, 2006).  

After injury there is systemic release of steroids, catecholamines and proinflammatory 

cytokines.  These probably lead to bone marrow neutrophil mobilisation, and (in the 

blood) to activation. 

 

Neutrophils carry a deadly arsenal of cytotoxic substances (Borregaard et al., 1995), 

yet circulating neutrophils must pass through capillaries that are narrower than the 

resting cell without releasing them (Nathan, 2006),  Marginated cells must scout for 

signals indicating injury to local tissue.  Weak adherence between the neutrophil’s 

surface molecules (L-selectin and leucocyte adhesion molecule-1 [LAM-1]) and those of 
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the endothelium (E-selectin, P-selectin and endothelial leucocyte adhesion molecule-1 

[ELAM-1]) allow the former to roll along the vessel wall.  Activated neutrophils and 

endothelium express integrins (CD11a/CD18) and intercellular adhesion molecule-1 

(ICAM-1), respectively.  These allow stable adhesion of the neutrophil to the vessel 

wall.  It subsequently spreads and then passes between endothelial cells by diapedesis 

into the extravascular space.   

 

Neutrophil degranulation is stimulated by a complex interaction of signals that 

integrate information about the cell’s location and the presence of tissue injury and 

microorganisms (Nathan, 2006).  While both of the latter must usually be detected, 

activation may occur after trauma alone because some initiating signals (e.g. HMGB-1 

or fMLP from disrupted nuclei and mitochondria, respectively) may signal via the same 

pathways as foreign material.  Degranulation releases, sequentially, adhesion 

molecules, signals to increase vascular permeability and enzymes which can degrade 

the extracellular matrix (matrix metalloproteases).  Neutrophils may then be guided 

from the point they leave the blood to the site of inflammation by chemokines and 

other signals, including mitochondrial DAMPs (McDonald et al., 2010; Zhang et al., 

2010).  This process takes less than an hour (Nathan, 2006; McDonald et al., 2010) at 

which point the neutrophil will attempt to phagocytose bacteria found at the site of 

inflammation.  In their absence, full activation ensues (Nathan, 1987), leading to a 

respiratory burst and degranulation.  In the respiratory burst, iNOS and NADPH oxidase 

cause a massive production of NO and superoxide, which in turn form other highly 

damaging ROS and RNOS.  The remaining granules release proteinases, other enzymes, 

antibiotic molecules and oxidants.  The latter activate MMPs.  In combination these 

acts give rise to destruction of the extracellular matrix and damage to cells.  

Neutrophils may also undergo a specialised form of cell death (NETosis) in which they 

eject their DNA to form neutrophil extracellular traps (NETs) (Kaplan and Radic, 2012).  

These are coated in many of the cell’s antimicrobial effectors. 

 

These changes make the tissue more accessible to immune cells and inhospitable to 

microorganisms, but at some cost to the structure and function of the tissue.  Natural 

wound healing without these actions, as in immune deficiencies, is prevented by 

infection (Lekstrom-Himes and Gallin, 2000).  However, where micro-organisms are 
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absent, neutrophils slow wound healing (Dovi, Szpaderska and DiPietro, 2004; Shaw 

and Martin, 2009).  Through activation in normal tissue, they also cause injury at 

distant sites.   

 

The neutrophil predominates in early systemic inflammation just as it does locally 

(Weiss, 1989; Baue, 1992).  The importance of the neutrophil is not just as the effector 

of tissue defence and tissue damage but, before that, as the decision-maker of the 

innate immune system.  It integrates different signal types through the multiple 

stimulation required for full activation.  After severe injury, multiple initiators generate 

redundant contributions to that stimulation, leading to widespread and inappropriate 

migration and activation. 

 

The following is a summary of likely events.  There is a marked early neutrophilia 

(Botha et al., 1995) (at about 3 hours post injury).  Subsequently there is a drop in the 

neutrophil count (by 6 to 12 hours).  This is significantly greater in patients who go on 

to develop MOF than in those who do not.  This presumably represents the 

sequestration of activated neutrophils in the tissues.  So it appears the activated cells 

are sequestered and are replaced by immature cells from the marrow (Hietbrink et al., 

2006).  The activation of circulating neutrophils is matched by an increase in their 

response to in vitro stimulation by LPS or fMLP, known as “priming” (Moore et al., 

2005; Hietbrink et al., 2006).  This is also reduced later after injury. 

 

Neutrophil priming has been implicated in the “two-hit” hypothesis of the 

development of post-injury MODS (Moore et al., 2005).  This holds that the initial 

trauma with its associated tissue injury and physiological disturbance constitute a “first 

hit”, leading to neutrophil priming.  The period during which primed neutrophils 

circulate, or even enter the tissues without causing damage (Anderson et al., 1991), is 

then a vulnerable window during which a “second hit” will lead to an excessive and 

systemic inflammatory response by the neutrophils.  Second hits include such 

immunologically potent events as surgery (Lasanianos et al., 2011), blood transfusion 

(Bilgin and Brand, 2008) and infection (Moore et al., 2005).  Importantly, this 

hypothesis suggests that the inflammatory reaction after the second hit is more than 
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simply the addition of the responses which would be expected to the two insults 

separately. 

 

While some individual patients are seen to have a florid inflammatory response to a 

particular second hit, a more usual situation may be a series of priming stimuli and a 

series of activating “second hits”.  This makes confirmation of the two-hit hypothesis 

difficult both because of the heterogeneity of patient studies and the difficulty of 

designing models that reflect the complex interaction between trauma 

pathophysiology and therapy.  Genomic studies have shown no correlation between 

potential second hits and changes in leucocyte gene expression (Xiao et al., 2011).  

(This alone is not a sufficient rebuttal of the hypothesis: the profound initial leucocyte 

genome expression changes after injury may give rise to the “primed” phenotype, 

while subsequent activation may not have a genomic signature.) 

 

In addition, studies of the two-hit hypothesis have concentrated on the ex vivo biology 

of neutrophils (Moore et al., 2005).  However, inflammation has redundant pathways.  

Neutrophil activity and the action of terminal complement elements act independently 

after I/R (Kyriakides et al., 1999).  Blockade of either pathway reduces endothelial 

permeability after hind limb ischaemia by nearly 50%.  Permeability is halved again 

when both are blocked.  Equally, neutrophil injury to bystander organs implies 

activation of the latter’s endothelium in order to attract the neutrophils and permit 

them to enter the tissue.  Modern accounts of the gut hypothesis have begun to make 

these linkages (Clark and Coopersmith, 2007). 

 

2.5.10 The Gut Hypothesis 

 

The mucosa associated lymphoid tissue (MALT) of the gut is the largest lymphoid 

“organ” in the body.  The splanchnic circulation is the first to be sacrificed and the last 

to be restored in low flow states (McNeill, Stark and Greenway, 1970).  Poor perfusion 

of the gut is associated with loss of gut barrier function (Fink, 2003).  Although no 

evidence has been found that gut-derived bacteraemia or endotoxaemia is the cause 

of systemic inflammation after injury (Moore et al., 2005), this does allow altered 

interaction between luminal molecules and microorganisms and the MALT (Clark and 
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Coopersmith, 2007).  Studies have demonstrated that the gut lymph of animals 

subjected to HS/R (but not the portal blood) (Magnotti et al., 1998) contains 

substances that can cause endothelial activation and apoptosis in the lung (the first 

organ to be perfused by blood carrying the lymph deposited in the subclavian vein) 

(Davidson et al., 2004; Deitch et al., 2004) and activate circulating PMNs (Gonzalez et 

al., 2001).  Two components have been identified as being of particular importance: a 

modified albumin and various lipid factors (Kaiser et al., 2005).  Division of the gut 

lymphatics can prevent HS/R induced ALI in the models used and administration of 

HS/R gut lymph to healthy animals can induce ALI (Senthil et al., 2007).  Thus in these 

models, HS/R gut lymph is necessary and sufficient to cause ALI after HS/R.  However, 

isolated limb I/R can cause ALI without systemic hypoperfusion (Kyriakides et al., 

2000). Hindlimb (non-gut) lymph after HS/R can also cause endothelial dysfunction and 

neutrophil priming (Diebel et al., 2008, 2009).  Non-gut lymph may therefore 

contribute to both ALI after both systemic and isolated hypoperfusion.  Additionally, 

most HS/R models do not simulate the tissue injury of major trauma, thus the relative 

importance of the hypoperfused gut and the damaged tissues is not known. 

 

It is clear that the gut has an important role in inflammatory initiation after injury.  

However, the systemic release of DAMPs, complement proteins, cytokines and lipid 

mediators, along with the circulation of activated mediators, generate profoundly 

redundant pathways for the systemic activation of inflammation. 

 

2.6 Normal Coagulation 

 

The two principle components of coagulation are platelets and the clotting factor 

cascade.  Vessel injury reveals tissue molecules that activate both elements.  The 

formation of a clot begins with the formation of a platelet plug.  The clot then matures 

and strengthens as fibrin is laid down and cross linked.  Crucially, platelets are the 

principal site of clotting factor activity. This section describes these principal 

components of coagulation according to the cell-based model of coagulation 

developed by Hoffman (Monroe and Hoffman, 2006).  Assays used to measure platelet 

and clotting function are described in section 6.3. 

2.6.1 Platelets 
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Platelets are discoid cell fragments 2-4μm by 0.5μm which tend to circulate at the 

margins of blood vessels, pushed there by large cells which occupy the fast flowing 

centre (Loscalzo and Schafer, 2003).  They normally contact but, unlike leucocytes, do 

not interact with the intact, unactivated endothelium.  They have complex structures 

(see Figure 2.5) with multiple cytosolic granules (Jurk and Kehrel, 2005).  α-granules 

are the most abundant, containing large adhesive proteins such as vWF, growth factors 

(e.g. platelet-derived and vascular endothelial growth factors), clotting factors (V, VII, 

XI, XIII), and regulators of coagulation (protein C, plasminogen activator inhibitor 1 

[PAI-1], tissue factor pathway inhibitor [TFPI]).  Dense granules contain secondary 

agonists of platelets, which when released will signal for further platelet activation in 

an autocrine and paracrine manner.    They are also a store of calcium, vital to platelet 

activation and coagulation, as is the dense canalicular system 

 

Platelets also have an open canalicular system (OCS), a network of conduits lined with 

cell membrane passing through the body of the platelet (Jurk and Kehrel, 2005).  Since 

the outer membrane itself is inaccessible due to the platelet’s actin cytoskeleton, 

exocytosis actually occurs initially into the OCS, with adhesion molecules then 

redistributing to the exterior.  The OCS also provides a store of cell membrane for use 

when the platelet spreads or divides.  A marginal band of microtubules forms a 

cytoskeleton; associated microfilaments act on this to permit shape change.   

 

Figure 2.5.  Schematic (Mbassa, 2015) (left) and scanning electron micrograph (Semple, Italiano and 

Freedman, 2011) (right) of the structure of a platelet. 
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Platelets have multiple roles in clot formation (Monroe and Hoffman, 2006).  

Coagulation factors are bound to the platelet surface (factors V, VIII and IX) and thus 

this is the site of most thrombin formation.  Vessel wall damage exposes platelets to a 

variety of stimuli including collagen, fixed vWF, ADP and thrombin, which lead to 

activation.  Initially, Glycoprotein Ib (GPIb) interacts with vWF, tethering the platelet to 

the area of damage.  GPVI then interacts with collagen.  Activation of these receptors 

leads to intracellular signals that cause a conformational change in the GPIIa/IIIb 

complex (integrin αIIbβ3, CD41/CD61).*  The newly exposed binding site can then bind 

to vWF (fixing the platelet in place) or fibrinogen (allowing crosslinking).  ADP and TXA2 

are also released, leading to autocrine stimulation via P2Y12 and TP receptors 

respectively.  ADP serves mostly to potentiate other elements of platelet activation.  

Thrombin generation (see subsection 4.1.2) strongly activates platelets via PAR-1. 

 

Activation leads to changes in platelet morphology: they sphericise, the surface 

becomes blebbed and then the platelet begins to spread out across a surface.    

Granule content is released, bringing P-selectin (CD62P) and platelet-endothelium cell 

adhesion molecule (PECAM, CD31) to the surface.   

 

Platelets’ activation leads to their adherence to damaged vessel wall and their 

aggregation with each other (and other blood cells).  They thereby form a plug which, 

along with contraction of the blood vessel, begins to block the loss of blood from the 

vessel.  Activation also leads to the expression of negatively charged phospholipids on 

the platelet surface and the release of small fragments of platelets less than 2μm 

across known as platelet-derived microvesicles (MVplt) (Martínez et al., 2005).  These 

provide the surface needed for the generation of large amounts of thrombin, which in 

turn leads to stabilisation of the clot with cross-linked fibrin.  The final important role 

of platelets is contraction, which is mediated by the platelet’s actin cytoskeleton, 

which is linked to the CD41/61 complex at the platelet surface and thereby to the 

fibrin network (Loscalzo and Schafer, 2003).  Clot retraction serves to minimise the size 

of the clot, particularly the obstruction it may cause to the flow of blood in the vessel. 

 

                                                 
*
 Platelets are the only blood component that express this complex which is therefore widely used as a 

platelet specific marker.(Macey et al., 1999; Jacoby et al., 2001) 
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2.6.2 Microvesicles 

 

Microvesicles are small cell fragments released by endothelial, circulating and tissue-

resident cells.  Some are produced constitutively and others in response to stressors or 

apoptosis.  Microvesicles can differ in the nature of their cell wall, the surface markers 

they express and their cytosolic makeup.  The nature of microvesicles is determined 

both by the parent cell and the stimulus.  As such, microvesicles can function as 

specific mediators or messengers of the parent cell.  Microvesicles in the circulation 

may be important in the crosstalk between coagulation and inflammation (Morel et al., 

2011). 

 

Microvesicle production is generated by a variety of mechanisms, whose interaction 

and relative importance is not clear (Morel et al., 2011).  In resting cells, 

phosphatidylserine (PS) is preferentially expressed on the internal layer of the cell 

membrane lipid bilayer.  Cell stimulation leads to increased intracellular calcium which 

induces active transport of PS to the external layer.  As already noted, the resultant 

negatively charged membrane is thrombogenic.  This change, along with mechanical 

effects, loss of cytoskeletal anchoring and release of mitochondrial contents, causes 

instability of the membrane which leads to microvesicle formation. 

 

In normal subjects the largest group of circulating microvesicles are directly derived 

from megakaryocytes (Italiano, Mairuhu and Flaumenhaft, 2010).  Platelets shed MVplt 

during activation and these are estimated to have procoagulant activity 50 to 100-

times greater than the parent platelet.  MVplt express large amounts of PS and have a 

high surface-area-to-volume ratio.  MVplt formation takes about 15s and therefore 

follows initial aggregation and adhesion, serving to promote the clotting cascade 

(Italiano, Mairuhu and Flaumenhaft, 2010).  As clot forms, an early predominance of 

leucocyte microvesicles is overtaken by their platelet-derived counterparts.  The 

former, which express a considerable amount of tissue factor, may have an important 

role in clot initiation.  The latter certainly are important: Scott’s syndrome is a bleeding 

diathesis that occurs in patients with impaired platelet microvesicle formation.  In 

summary, MVplt appear to after formation of the initial platelet plug and appear to 

potentiate the formation of fibrin, even outpacing their parent platelets in this regard. 
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Formation of both procoagulant enzyme complexes and the anticoagulant protein C 

complex requires PS expression but the latter may require a 10-fold higher 

concentration (Morel et al., 2011).  MVplt may therefore be important in protein C-

mediated coagulopathy (see section 2.7).  Brain-derived microvesicles have been 

implicated in coagulopathy after head injury (Zhang et al., 2012). 

 
2.6.3 Fibrin Generation 

 

The understanding of the mechanisms of fibrin formation have been revolutionised by 

the introduction of Hoffman’s cell-based model (Monroe and Hoffman, 2006).  This 

replaced the simplistic notion of the intrinsic and extrinsic clotting cascades, which 

took no account of the spatial relationship between the molecules involved and failed 

to explain several aspects of coagulation physiology and pathology.  Clot formation 

proceeds in three stages: initiation, amplification and propagation (Monroe and 

Hoffman, 2006).  These lead to the production of large quantities of thrombin, which in 

turn leads to the formation and crosslinking of fibrin polymers. 

 

Initiation.  Damage to the wall of blood vessels exposes cells that express tissue factor 

(TF).  Factor VII (fVII) binds to the TF and is activated by a variety of proteases to form 

fVIIa.  TF/fVIIa on cell surfaces then activates fX and fXI.  fVa, released from platelets as 

they start to adhere or activated from circulating fV by fXa and other proteases, forms 

a complex with fXa on the cell surface.  This fXa/Va complex then generates a small 

amount of thrombin.  See Figure 2.6.  A small amount of fIXa is also generated. 
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Figure 2.6.  Initiation.  Modified from Monrow and Hoffman 2006. See text. 

 

Amplification.  The thrombin generated during initiation then works in concert with 

tissue collagen to induce platelets adherent to the site of injury to enter their most 

activated phenotype.  They therefore release their granule contents, adhere and 

aggregate and alter their surfaces to provide the arena for the clotting factor activity 

during propagation.  The thrombin also activates fV, fVIII (releasing it from vWF) and 

fXI on the platelet surface. 

 

Propagation.  fXIa activates fIX, which (along with fIXa from initiation) then complexes 

with fVIIIa.  fVIIIa/IXa then cleaves fX and the resultant fXa associates with fVa to form 

the prothrombinase complex.  See Figure 2.7.  This then produces large amounts of 

thrombin, sufficient both to cleave fibrinogen and to sustain a positive feedback loop 

by further activation of upstream factors.  All of these reactions are localised to the 

platelet (or microvesicle) surface.  Platelet activation moves negatively charged 

phospholipids such as phosphatidylserine (PS) to the outer layer of the cell membrane, 

which allows clotting factors to bind and form complexes.  While other cells, such as 

leucocytes, may express PS and develop a prothrombotic phenotype when activated, 

platelets and MVplt are far more important.   



34 

 

 

Figure 2.7.  Propogation.  Modified from Monrow and Hoffman 2006. See text. 

 

Fibrinogen binds to platelet-surface GP IIb/IIIa from where it is cleaved by thrombin to 

form fibrin, which polymerises.  Thrombin, now present in excess of the amount 

required to clot fibrinogen, is incorporated into the growing clot.  It also activates fXIII, 

leading to cross-linking.  Finally, a further stage of platelet activation is initiated by 

high-concentration thrombin cleavage of PAR-1, which may be the stimulus for platelet 

contraction. 

 

The preceding subsections have described the activation of platelets by damaged 

vessel wall, leading to the formation of a plug within which platelets and their 

microvesicles act as the site for the formation of fibrin.  Fibrin then binds the clot 

together.  Small scale vessel injury is commonplace and even large tissue damage 

usually leads only to local coagulation.  What prevents the clotting process spreading? 

 

2.6.4 Natural Anticoagulants and Fibrinolysis. 

 

There are three inhibitory mechanisms: tissue factor pathway inhibitor (TFPI), 

antithrombin (AT) and protein C.  TFPI inhibits fXa once the latter has been released 

from the cell surface.  It is expressed on endothelial surfaces and released by platelets 

(Lwaleed and Bass, 2006).  AT binds to heparin-like glycosaminoglycans, such as 

endothelial membrane syndecans, and inhibits the action of thrombin and fXa.  Thus 

both TFPI and AT serve to localise clotting activity, particularly at the initiation phase, 



35 

 

to sites of vascular injury and prevent it occurring on normal endothelium (Monroe 

and Hoffman, 2006). 

 

Protein C is cleaved by the complex of thrombomodulin and thrombin on the 

endothelial surface.  The cleavage of protein C is amplified by binding to the 

endothelial protein C receptor (EPCR).  Activated Protein C (aPC) bound to EPCR can 

then cleave endothelial PAR-1, with the cytoprotective effects mentioned previously.  

Most (60% in one mouse model) of aPC is released from EPCR.  aPC forms a complex 

with Protein S and then degrades fVa and fVIIIa.  Since these are vital factors for 

coagulation, thrombomodulin serves to turn thrombin, the lynchpin of coagulation, 

into an anticoagulant; this is the “thrombin switch”.  Bound thrombin is also 

inactivated 20 times faster than free thrombin, stopping both clotting and the 

production of aPC.  Of note, aPC inactivation of thrombin is inhibited at the platelet 

surface (Oliver et al., 2002)  aPC is therefore formed and exerts its effect chiefly on 

intact endothelium; its physiological role is therefore also to localise clotting at sites of 

injury (Weiler, 2010)  This does not preclude its having a pathological role in 

coagulopathy after trauma (see subsection 2.7.2). 

 

The last major component of coagulation is the fibrinolytic system.  Tissue-type 

plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) both 

cleave plasminogen to form plasmin.  tPA is the dominant actor and is released by 

damaged endothelial cells (Maegele, Schöchl and Cohen, 2014).  It has low affinity for 

circulating plasminogen.  However, plasminogen becomes incorporated into clot 

where the fibrin acts as a co-factor for tPA, increasing its activity 100-fold (Rijken and 

Lijnen, 2009).  Plasmin cleaves fibrin, leading to clot dissolution, but also exposing a 

higher affinity plasminogen-binding site, promoting further fibrinolysis. Plasmin can 

also cleave other proteins, including elements of the extracellular matrix such as 

collagen.   

 

The capacity of plasmin to breakdown clot is enormous and has to be kept in check.  

Thrombin-thrombomodulin complexes cleave thrombin activatable fibrinolysis 

inhibitor (TAFI).  TAFI inhibits thrombolysis by modifying fibrin terminals to remove the 

higher affinity plasminogen-binding site.  Thrombin therefore serves to stabilise clots 
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against thrombolysis, although TAFI activation may be significantly impaired by the 

release of platelet factor 4 by activated platelets (Mosnier, 2011).  However, the effect 

of TAFI may be exceeded by thrombin-induced activation of protein C.  Excess aPC 

enhances fibrinolysis by degrading PAI-1.  Since aPC generation is also thrombin-

dependent, it can be seen that the predominant action of thrombin, pro- or anti-

fibrinolytic, will depend on circumstances. 

 

2.6.5 Coagulation-Inflammation Cross-Talk 

 

Having established the normal physiology of inflammation and coagulation (and before 

moving on to the pathophysiology seen in trauma), this subsection examines the ways 

in which the two are related, while the next subsection looks at the role of platelets in 

that interaction. 

 

The mechanism of blood clotting is inextricably bound up with inflammation (Esmon, 

2005; Levi and van der Poll, 2010).  Its components have evolved alongside those of 

inflammation and many of them are shared between the two processes (Levi, 2004).  

Platelets and leucocytes have both evolved from haemocytes found in invertebrate 

haemolymph.  Many of the molecular components, such as the serine proteases of the 

coagulation and complement systems, also have common antecedents.   

 

However, the linkage is adaptive and not merely vestigial.  There is crosstalk between 

the two processes at many levels.  FXa, thrombin and fibrin can stimulate mononuclear 

and endothelial cells to produce IL-6 and IL-8 (Sower et al., 1995; van der Poll, de Jonge 

and Levi, 2001).  Cleavage of PARs is the key mechanism for the action of the 

coagulation proteases on inflammation.  Thrombin and aPC both cleave PAR-1.  

However, the resultant signalling is modulated such that they have antagonistic 

downstream effects on the inflammatory phenotype of endothelial cells: thrombin 

enhances permeability and cell death while aPC opposes these (Weiler, 2010).  In 

animal models of the therapeutic use of aPC in sepsis, this signalling function has been 

demonstrated to contribute more to its efficacy than the antithrombotic function.  

FXa, plasmin and thrombin and can also cleave C3 and C5, thus activating the 

complement system (Amara et al., 2010).  Fibrin also appears to have a direct 
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proinflammatory effect, stimulating release of cytokines (Perez and Roman, 1995) and 

chemokines (Harley and Powell, 1999). 

 

2.6.6 Platelets as Immune Cells 

 

Classically considered only to have a role in clotting, the inflammatory role of platelets 

is now increasingly recognised (Semple, Italiano and Freedman, 2011).  Platelet 

activation leads to the release of a host of substances from its granules and cytoplasm, 

including cytokines.  Platelet production is stimulated by cytokines, especially IL-6.  

Cytokines also increase the expression and stability of very large vWF multimers 

released from endothelium, which in turn activate platelets.  Calcium ionophores 

(released from dying cells) and complement, i.e. products of inflammation, are among 

the most potent stimulators of negative phospholipid expression by platelets (Zwaal 

and Schroit, 1997). 

 

Platelet selectins cause tethering of neutrophils (Semple, Italiano and Freedman, 2011; 

Engelmann and Massberg, 2012).  Platelets express CD154, the ligand of CD40, by 

which they can activate neutrophils (and also dendritic cells, thereby promoting 

activation of the adaptive immune system).  NETs (see subsection 2.5.9) are released 

by neutrophils exposed to TRAP-activated platelets and platelet-induced NETosis has 

been shown to be important in a mouse model of transfusion-related acute lung 

injury, a clinical entity that presents similarly to lung injury seen after trauma 

(Caudrillier et al., 2012).  NETs activate coagulation via tissue factor and fXII and recruit 

platelets by binding vWF.  PAMPs and DAMPs can stimulate leucocytes to express 

tissue factor, thus initiating coagulation.  By these and other pathways there is a 

feedback between coagulation and leucocyte activation that can lead to thrombus 

formation in response to pathogens, which are thereby trapped—this is 

immunothrombosis (Engelmann and Massberg, 2012).  Platelets express TLR-4 and 

signalling via this pathway is important to platelet sequestration and cytokine release 

in sepsis models (Aslam et al., 2006; Cognasse et al., 2006).  These interactions are also 

implicated in thrombotic disease associated with inflammation (e.g. deep vein 

thrombosis) (Engelmann and Massberg, 2012).  There is clearly potential for platelets 
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to be important mediators of inflammatory activation after trauma, but this requires 

further study. 

 

2.7 Coagulopathy and Endotheliopathy of Trauma 

 

Disordered coagulation after trauma is well described.  It is multifactorial (Hess et al., 

2008).  Resuscitative dilution of clotting factors, acidosis and hypothermia all play 

significant roles.  However, up to 34% of severely injured patients have been shown to 

be hypocoagulopathic very early after trauma, before these factors develop (Brohi et 

al., 2003, 2007; MacLeod et al., 2003; Maegele et al., 2007; Rugeri et al., 2007).  This 

section details the mechanisms producing these changes.  Trauma patients also 

develop a later hypercoagulopathy with a predisposition to thromboembolism (Cap 

and Hunt, 2014) but this will not be examined here. 

 
2.7.1 Mechanisms of coagulopathy 

 

Hypothermia is common after serious injury, reflecting not just heat loss due to 

exposure and treatment but, more significantly, reduced heat production due to 

inactivity and shock.  Hypothermia is therefore linked to outcome independent of 

bleeding (Shafi, Elliott and Gentilello, 2005).  Very low temperature (<30C) interferes 

with clotting function, but this is probably of little significance at commonly 

encountered levels of hypothermia (33 to 36C) (Hess et al., 2008).  Acidosis can directly 

affect clotting function (Martini and Holcomb, 2007; Darlington et al., 2011).  Acidosis 

both interferes with clotting protease function and promotes degradation of 

fibrinogen.  Correction does not fully correct the coagulopathy, regardless of whether 

the acidosis was endogenous (due to shock) or exogenous (due to acid administration).  

Large volume fluid therapy was formerly standard in managing trauma patients, as was 

red blood cell transfusion without plasma.  Both are capable of diluting clotting factors 

below their critical concentrations (Faringer et al., 1993; Hiippala, Myllyla and Vahtera, 

1995; Hirshberg et al., 2003). 
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2.7.2 Acute Traumatic Coagulopathy 

 

In 2003, Brohi described Acute Traumatic Coagulopathy (ATC; also called Acute 

Coagulopathy of Trauma Shock [ACoTS]) affecting 24.4% of trauma patients admitted 

to the Royal London Hospital via the Helicopter Emergency Medical Service (Brohi et 

al., 2003).  These patients had received very little prehospital fluid therapy (median 

800mL).  Severely injured patients (ISS ≥ 16) were coagulopathic in 33.1% of cases 

whereas only 10.8% when not severely injured.  Macleod independently presented 

similar data from Florida that year (MacLeod et al., 2003).  Other papers have 

subsequently confirmed the existence of this abnormality. 

 

Brohi and Macleod both suggested that ATC is driven by a combination of shock and 

tissue trauma.  In a subsequent international collaboration they confirmed this 

interaction (Frith et al., 2010).  Patients with a low ISS were unlikely to develop ATC, 

regardless of base deficit (BD) on admission.  Conversely, patients with a low BD were 

unlikely to develop ATC, regardless of ISS.  The extreme groups (ISS<16, BD>12 or 

ISS>35, BD<0.1) were, unsurprisingly, relatively small (each 1% of the total).  However, 

with n=3646, they still represent modest cohorts.  Other studies have confirmed the 

effect of an interaction between injury severity and shock on the incidence of ATC 

(Wafaisade et al., 2010). 

 

The aetiology of this has been hotly debated.  Brohi, collaborating with Cohen’s group 

in San Francisco, has advanced a mechanism based upon aPC.  A fall in circulating 

protein C was shown in patients with ATC, presumed to represent its activation and 

consumption (Brohi et al., 2007).  A subsequent study with measurement of aPC 

showed that increases were correlated with coagulopathy and increased fibrinolysis 

(Cohen et al., 2012).  This mechanism was subsequently supported by a mouse model 

of trauma-shock (Chesebro et al., 2009).  The model developed an apparently aPC-

driven coagulopathy in response to a combination of trauma and shock.  This was 

abolished by antibody-inhibition of the anticoagulant action of aPC.  Of note, blocking 

aPC’s cytoprotective function led to rapid death in all subject, associated with 

pulmonary thrombosis and perivascular haemorrhage.  In contrast to this evidence 

supporting the role of aPC, a recent study has shown that adding aPC to plasma does 
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not interfere with clotting except at concentrations far above those seen in ATC 

(Campbell, Meledeo and Cap, 2014); this may undermine the role of aPC or may mean 

that the action of aPC is dependent on co-factors and spatial relationships not fully 

present in the studied assay.  A large multi-centre US study has demonstrated a five-

fold rise in aPC among trauma patients with evidence of ATC (Cohen et al., 2013). 

 

A paper (Rizoli, Scarpelini, et al., 2011) examining clotting factor deficiency noted that 

a close association existed between ATC and reduced factor V activity.  This would be 

expected in a coagulopathy driven by aPC or by consumption.  Reduced activity of the 

other clotting factors was unusual, making it very unlikely that they had been 

consumed.  More recently Kutcher et al (2014) found reduced clotting factor levels 

when comparing transfused trauma patients with non-transfused ones.  However, 

there was no reduction in fibrinogen on admission.  More recently, an international 

study (Hagemo et al., 2014) has demonstrated that hypofibrinogenaemia at admission 

is more common than previously thought: 8.2% had plasma levels below 1.5g/L.  Low 

fibrinogen was strongly linked to mortality.  This joins other evidence to point towards 

factor consumption as an important component of ATC (Cap and Hunt, 2014). 

 

2.7.3 Disseminated Intravascular Coagulation 

 

These findings are relevant to the major alternative explanation, advanced by the 

Japanese group led by Gando (2009).  They see nothing novel in Brohi and Macleod’s 

findings (despite the crucial early time point) and assert that ATC is simply 

disseminated intravascular coagulation (DIC) with fibrinolysis.  DIC is a consumptive 

coagulopathy, most familiar in sepsis, where a massive dysregulation of coagulation is 

linked to endothelial dysfunction.  ATC cases tend to meet the two international sets of 

diagnostic criteria for DIC (Oshiro et al., 2014).  However, these detect the 

consequences of DIC (evidence of thrombin generation, platelet consumption, 

fibrinolysis and coagulopathy) and the systemic inflammatory response syndrome 

rather than addressing the underlying cause.  Indeed, it is a widespread failure of the 

Protein C system leading to consumption of clotting factors, not its overactivity, that is 

usually advanced as the cause of DIC (Gando, Sawamura and Hayakawa, 2011).  Thus, 

while the DIC criteria may be have some predictive value in trauma (Sawamura et al., 
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2009), the underlying theory of causation is at odds with the evidence presented by 

Brohi and others.  It is therefore no surprise that histopathological examination of 

tissue from trauma patients who fulfil the DIC criteria shows no evidence of 

microthrombi and other markers of DIC (Rizoli, Nascimento, et al., 2011).  Of note, DIC 

implies an uncontrolled consumption of factors due to a specific pathophysiological 

mechanism.  The mere consumption of factors, which in a severely traumatised patient 

may be fulfilling their proper role of stemming haemorrhage, does not itself imply DIC 

 

2.7.4 Fibrinolysis 

 

If DIC is not the mechanism, then low fibrinogen levels after injury may be due to 

consumption in clot formation at sites of injury or be due to fibrinogenolysis, although 

this remains unclear (Davenport, 2013).  The latter may be a side-effect of pathways 

contributing to fibrinolysis, which is another major component of ATC.  Once again, 

Brohi and collaborators are responsible for some of the key papers on this subject 

(Brohi et al., 2008; Raza et al., 2013).  Fibrinolysis is activated in most trauma patients; 

the degree of activation is correlated with the severity of injury and shock; plasmin-

antiplasmin levels on admission, a measure of fibrinolytic activation, are independently 

correlated with clinical outcome.  It may be that the mechanism involves consumption 

of PAI-1 by aPC, although some authors have argued against this (Cap and Hunt, 2014).  

There is controversy as to what level of fibrinolysis is pathological; a question 

complicated by parallel arguments about the use of thromboelastography (TE) in its 

detection.  (TE is discussed in subsection 5.1.2.)  In a very large study (n=1,996), Cotton 

et al (2012) defined hyperfibrinolysis (HF) as a 7.5% reduction in r-TEG amplitude 30 

minutes after maximum amplitude (LY30>7.5%).  HF was present in 2% of patients but 

was associated with 76% mortality (v 10% in those without HF).  The paper by Raxa et 

al (2013) demonstrated that fibrinolysis activation was detectable in patients without 

severe lysis on TE.  Whether all clinically important lysis can be detected by setting a 

very low threshold for TE detection (LY30>3%) has not been established (Hunt, Raza 

and Brohi, 2013; Ramos et al., 2013). 

 

This dispute plays into the clinical debate about the treatment of fibrinolysis.  

Tranexamic acid (TXA) is a lysine derivative which prevents the binding of 
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plasminogen/plasmin to fibrin and thus inhibits fibrinolysis.  The CRASH-2 study 

(CRASH-2 trial collaborators, 2010) was a large (n=20,211), pragmatic study of TXA use 

in trauma patients and its use was associated with a 9% reduction in all-cause 

mortality (relative risk [RR],0.91; 95% confidence interval [CI], 0.85-0.97;p= 0.0035).   

This was due to a reduction in deaths due to bleeding (Roberts et al., 2011) and 

occurred despite no significant reduction in blood transfusion.  Blood products were 

not available at many participating sites in this global trial, which might obscure a 

reduced need.  TXA use has been widely adopted, particularly in military practice, 

(Morrison, Dubose, et al., 2012) but many objections to the trial have been raised, 

leading to poorer uptake in US civilian practice (Napolitano et al., 2013).  An Australian 

trial may resolve this by assessing the drug’s efficacy specifically in the setting of fully 

resourced Western medicine (Mitra et al., 2014).  Of note, TXA also has anti-

inflammatory effects which may contribute to its efficacy (Jimenez et al., 2007). 

 

2.7.5 Endotheliopathy of Trauma 

 

The preceding discussion has concentrated on the changes in blood after injury, which 

are characterised by consumption, fibrinolysis and a possible amplifying and unifying 

action of aPC.  Coagulation is also heavily influenced by the endothelium.  Aspects of 

endothelial dysfunction after trauma were discussed in subsection 2.5.7.  This 

subsection explores recent findings which implicate the endothelium in the 

coagulopathy of trauma.   

 

While activation leads to the endothelium becoming locally procoagulant, substances 

released during activation may promote systemic hypocoagulopathy.  The 

endothelium is coated by the glycocalyx, a glycoprotein/proteoglycan layer which 

sequesters up to a quarter of the plasma volume and modulates the interaction of 

platelets and leucocytes with the vessel wall.  It also contains heparin-like substances.  

Johansson’s group in Copenhagen have produced a series of papers which show the 

importance of the glycoclayx (Johansson et al., 2011a, 2011b; Ostrowski and 

Johansson, 2012) and which can be construed to support Brohi’s proposed mechanism 

of coagulopathy (Holcomb, 2011).  It has already been noted that ATC occurs when 

there is a combination of tissue injury and shock and that it is tissue injury, not shock 
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that leads to sympathetic activation (subsection 2.4.1).  High circulating 

catecholamines after trauma were associated with markers of glycocalyx degradation, 

endothelial activation, tissue injury  and fibrinolysis; they were an independent 

predictor of death (Johansson et al., 2011b).  Syndecan-1 is a major glycocalyx 

component; circulating levels correlated with catecholamines, protein C degradation 

and a similar group of markers and, again, predicted mortality (Johansson et al., 

2011a).  Crucially, patients without a raised Syndecan-1 did not exhibit a correlation 

between injury severity and catecholamines, inflammation and coagulopathy.  Finally, 

autoheparinisation was detectable in a small proportion of trauma patients, and was 

associated with high syndecan-1 (Ostrowski and Johansson, 2012).  These papers 

studied a small cohort (75-77 patients) and require verification.  In addition, 

endothelial activation/injury leads to the degranulation of the Weibel-Palade bodies, 

releasing (inter alia) tPA (Maegele, Schöchl and Cohen, 2014). 

 

The implication of these findings is that tissue injury contributes to ATC in several 

ways: tissue factor exposure activates coagulation, leading to thrombin production; 

catecholamine release (and presumably direct mechanical effects also) damages 

endothelial glycocalycx; this releases heparin-like substances; more significantly, it 

exposes the cell surface molecules that are implicated in ATC (thrombomodulin, EPCR).  

The low flow state of shock also leads to endothelial damage (Kozar et al., 2011) and 

may then facilitate the interactions needed to produce the thrombin switch and the 

activation of protein C.  Finally, aPC, as well as deactivating coagulation proteases, may 

end the inhibition of tPA (which itself has been released as part of endothelial 

changes). 

 
2.7.6 The Role of Platelets in Coagulopathy 

 

The role of platelets in the coagulopathy of trauma has not been clearly delineated.  

This subsection reviews the limited number of human studies that are available.  These 

assess platelets using diverse means, which are explored in more detail in Chapter 5.  

Ogura et al (2001) studied a small mixed population of critically ill patients, half of 

whom had been injured.  They demonstrated platelet activation by flow cytometry, 

reflected in increased CD62P expression, platelet microvesicles and platelet-leucocyte 
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aggregates compared with blood from normal controls.  Jacoby et al (2001) studied 

platelet function in 100 trauma patients.  In blood collected on admission, flow 

cytometry demonstrated increased platelet microvesicles, CD62P expression and 

binding of PAC-1, a measure of the activation-induced change in GPIIb/IIIa.  They also 

used a PFA-100.*  Admission blood showed shorter closing time in trauma patients 

than controls.  Repeat testing at 24, 48 and 72 hours showed the loss of platelet 

microvesicles and persistent activation.  However, there was a marked difference in 

closing times between survivors and the six non-survivors.  The former essentially 

normalised whereas the latter, which showed a trend to being higher on admission, 

became notably extended at the later time points.  On admission there was a weak 

inverse correlation between activation and closing time but in non-survivors the 

activation was associated with prolonged closing time.  This would seem to indicate 

either that platelets have been stimulated to the point of becoming effete or are being 

inhibited. The PFA-100 is sensitive to haematocrit.  While this is an acknowledged 

limitation of the Jacoby paper (2001), preventing isolated assessment of platelet 

function, it may actually be a reflection of the contribution of red cells to coagulation 

in vivo (Spoerke et al., 2010). 

 

Solomon et al (2011) used multiplate electrode aggregometry to demonstrate a 

decreased platelet response to ADP and TRAP in non-survivors when compared to 

survivors along with a reduced platelet contribution to clot strength on ROTEM.  While 

detectable, these deficits were modest.  However, there was considerable variability in 

the results of these tests among survivors, with many exhibiting a phenotype 

responsive to stimulation.  Kutcher et al also used multiplate in a more severely injured 

cohort, finding more hyporesponsiveness at admission than the previous study (below 

normal response to at least one agonist in 45% of patients) (Kutcher et al., 2012).  They 

followed the time course of platelet hyporesponsiveness, which became nearly 

universal after 6 hours, with (generally) a slow increase in response up to 120 hours 

after admission.  Wohlauer et al used platelet mapping to show a significant fall in 

ADP-and arachidonic acid-stimulated platelet function after trauma.  This was found to 

be common in a much less severely injured cohort than the two preceding studies, 

with severely injured patients all exhibiting the deficit (Wohlauer et al., 2012).  Time 

                                                 
*
 The PFA-100 and related nomenclature is discussed in subsection 5.1.3. 
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from injury to admission was not stated in the paper but the trauma centres involved 

served rural populations; delayed admission may partly explain the higher rate of 

platelet dysfunction.  Carroll et al showed that a reduced clot strength after initiation 

with ADP correlates with the need for transfusion; unfortunately they did not report 

the proportion and characteristics of patients with this abnormality (Carroll et al., 

2009).  Windeløv et al (2014) showed no clear relationship between injury severity and 

platelet function.  In a related paper they assessed the contribution of MVplt to 

coagulopathy (Windeløv, Johansson, et al., 2014).  They demonstrated that trauma 

patients with impaired clot formation had low levels of PS-expressing MVplt. 

 

These papers are heterogenous in methodology and results, but some consistent 

messages emerge.  Platelets from traumatised patients show evidence of activation, 

e.g. surface marker or MVplt expression.  There is evidence of a divergence in platelet 

function between non-survivors and survivors; there seems to be reduced function 

and response to stimulation in the non-survivors.  There is mixed evidence as to 

whether such a functional deficit is associated with severity of injury, although most 

relevant papers support this proposition, and its detection may be sensitive to the 

timing of assessment.  

 

A low platelet count (<150x109/L) is uncommon after trauma, occurring in less than 

10% of those with ISS<45 (Hess et al., 2009).  However, low admission platelet count is 

correlated with transfusion requirement and outcome, independent of ISS (Hess et al., 

2009; Brown et al., 2011).  Kutcher et al found that platelet responsiveness correlated 

with platelet count (Kutcher et al., 2012). 

 

A preliminary study using ROTEM in British military casualties showed that 40% of 

seriously injured patients had significant evidence of hypocoagulopathy (Woolley et 

al., 2013).  Comparison of EXTEM (ROTEM stimulated by thromboplastin) and FIBTEM 

(EXTEM with cytochalasin D) traces for these patients revealed relative preservation of 

the FIBTEM trace, indicating that platelet dysfunction plays a significant role.  (See 

sections 5.2 and 5.3 for further explanation of these terms). 
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In summary, studies with varied patient groups and methods of platelet analysis have 

produced divergent findings.  It is difficult to determine the true incidence of platelet 

dysfunction, its severity or its contribution to coagulopathy.  However, dysfunction 

certainly occurs, it is linked to the platelet count, it develops over several hours and 

may persist for days.  
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3 Resuscitation after Trauma 

 

3.1 Damage Control 

 

There has been an extensive debate about the best fluid regime for the resuscitation 

of trauma victims.  The endpoints of resuscitation, the choice of fluids and the timing 

and volume of fluid administered have all been the subject of controversy.  Until 

recently, the practice of high volume crystalloid infusion before the use of blood and 

blood products was an accepted standard of care; the aim was to restore 

normotension.  Studies in animals and humans have led to a re-evaluation of this 

practice.  Small volume, hypotensive resuscitation is now commonplace, as is a greater 

emphasis on the use of blood and blood products, especially the latter.  Resuscitation 

is now aimed at preventing or relieving the lethal triad of coagulopathy, acidosis and 

hypothermia.  As part of this, surgery is now integrated into the practice of what has 

become known as Damage Control Resuscitation (DCR) 

 

Damage Control Surgery (DCS) was a term introduced by Rotondo et al in 1993, based 

on naval practice in the preservation of the fighting capacity of warships (Rotondo et 

al., 1993),  although the concept is in fact much older.  DCS involves abbreviated 

surgery to stop haemorrhage and contamination followed by a period of intensive care 

to restore physiology and later, planned reoperation for definitive management.  

Initially described for abdominal trauma it has now been implemented for other 

injuries (Pape et al., 2002) and is widely practiced and endorsed in guidelines.   

 

The move to DCR came in the last decade (Holcomb et al., 2007; Jansen et al., 2009; 

Duchesne et al., 2010).  It combines DCS techniques with simultaneous medical 

therapy to correct physiology. The principle components are: 

 DCS 

 Hypotensive resuscitation 

 Limited use of crystalloid fluids 

 “Balanced” or “haemostatic” resuscitation, using a high ratio of plasma and 

platelets relative to red blood cells. 
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These are practiced concurrently.  DCS is thus now considered just one part of the DCR 

process and the former, staged concept has been abandoned.  After considering some 

of the basic physiology of resuscitation, this discussion will examine the three non-

surgical elements of DCR.  The process of the development of evidence and practice in 

this area has also influenced the development of the animal model used in this thesis, 

and will be explored in some detail. 

 

3.2 Physiological Considerations 

 

Fundamentally, resuscitation is intended to restore tissue oxygen delivery without 

deleterious effects such as increased bleeding or inflammation.  Global oxygen delivery 

(DO2) is governed by the arterial oxygen content (CaO2) and the cardiac output (CO) 

(Marino, 2013): 

 

DO2 = CaO2 x CO 

 

CaO2 is governed by the haemoglobin concentration ([Hb]) and the oxygen saturation 

SaO2, with a negligible contribution from dissolved oxygen. 

 

CaO2 ≈ [Hb] x SaO2 x 1.34 

 

Fluid therapy will predominantly affect CO and [Hb] (although changes in lung 

perfusion may alter SaO2).  Fluid therapy increases CO by increasing the venous return 

to the heart, and consequently the filling pressure and end diastolic volume of the 

heart, leading to an increase in the stroke volume.  PRBCs can combine this effect with 

an increase in [Hb].  It would seem to follow that PRBCs are the ideal resuscitation 

fluid.  However, blood is a non-Newtonian viscous liquid, i.e. one that reduces its 

viscosity under shear stress, including flow through vessels (Merrill, 1969).  (The 

phenomenon is familiar to anyone who has been the victim of the sudden exit of 

previously unmoving ketchup from its bottle.)  The viscosity is related to the 

haematocrit.  Consequently, dilutional therapy can raise CO by reducing viscosity.  The 

effect is exaggerated by the fact that the blood will become even less viscous at it 

flows, creating a diminishing positive feedback effect.  In consequence, a 38% 
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reduction in haematocrit in a polycythaemic patient can cause a 225% increase in CO 

(LeVeen et al., 1980).  PRBCs have a very poor ability to increase CO when compared 

with whole blood, crystalloids and colloids (Shoemaker, 1987).  More viscous blood 

may also be less able to perfuse the microcirculation, leading to alterations in the 

distribution of flow. 

 

3.3 Evidence for Normotensive and Hypotensive Resuscitation 

 

Evidence in this area is complicated by the fact that some investigators have compared 

early fluid resuscitation with late, some have looked at different volumes and infusion 

rates of fluids (from none to slow infusion to large boluses) and some have compared 

resuscitation to different blood pressure endpoints.  In clinical practice, fluid 

administration will be tailored to an individual patient’s needs which may make the 

practical difference between these concepts small.  However, in human trials this leads 

to protocol violations.  Animal studies are more likely to keep to protocol, but the 

difference between, for example, the blood pressure profile in the large volume 

infusion arm of one study and that in the normotensive arm of another may be small. 

 

3.3.1 Origins of Conventional Resuscitation Practice 

 

The orthodoxy of normotensive resuscitation was established in the American College 

of Surgeons’ Advanced Trauma Life Support (ATLS) guidelines.  These guidelines and 

the didactic course that promoted them were established by an orthopaedic surgeon 

horrified by the poor care received by his family after an aircraft crash.  They quickly 

became the mainstay of trauma care training in the USA and throughout the world.  

Their methodical approach to the care of the injured has unquestionably saved many 

lives. 

 

Until the ninth edition, the ATLS recommendations on fluid resuscitation for patients 

with signs of hypovolaemia called for the rapid infusion of 2l of warmed Ringer’s 

lactate solution, followed by an assessment of cardiovascular response and further 

infusion as indicated to normalise blood pressure (American College of Surgeons, 

2008).  These recommendations derived chiefly for the work of scientists using a 
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model of haemorrhage developed by CJ Wiggers (1950).  The Wiggers model was 

designed to investigate the phenomenon of irreversible shock, a state after 

haemorrhage in which the subject will die regardless of any resuscitation.  In this 

model, blood was withdrawn from experimental animals through an intravascular 

cannula to achieve a desired level of hypotension and this was then maintained for 

many hours by withdrawing or infusing blood to compensate for any change in blood 

pressure.  Other investigators modified this model, with less profound and more short-

lived hypotension, to make the insult potentially survivable.  These investigators then 

found that resuscitation with crystalloid fluid required three times the volume of shed 

blood in order to restore normotension or prevent death (Shires T et al., 1964; Dillon 

et al., 1966). 

 

3:1 resuscitation became widespread, with the explicit intention of filling a depleted 

extracellular space with fluid.  This it did, causing massive pulmonary oedema in 

patients with non-thoracic injury during the Vietnam War, known as “Da Nang lung” 

(Dutton, 2007).  Fluid resuscitation was a lifesaving intervention in Vietnam but the 

idea that there may be reason for caution had been born. 

 

A potentially significant fault can be identified in the Wiggers model.  Since the tap on 

the cannula is closed when not in active use, there is no possibility of the animal 

bleeding.  In contrast, an injured patient depends upon maintaining the integrity of a 

clot to prevent the reactivation of haemorrhage.  An increase in blood pressure could 

disturb a clot, leading to further blood loss. 

 

Despite this, modified Wiggers model experiments continued into the 1980s, 

confirming the status quo.  In parallel with this, a debate began between those who, in 

accordance with this paradigm, detected a benefit from prehospital fluid 

administration and those who found it to be pointless, often because it seemed to take 

longer to gain the necessary intravenous access than it would to take the patient 

directly to hospital.  It is noteworthy that prehospital and in-hospital high volume fluid 

resuscitation were adopted without any clinical trials.  This is despite the existence of 

clinical evidence against them dating back to the First and Second World Wars 

(Cannon, 1918; Beecher, 1949).  There were even early animal experiments using 
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uncontrolled haemorrhage: in 1965 a study by Shaftan and colleagues using femoral 

artery transection showed that elevation of blood pressure by infusion of blood or 

crystalloid or by vasopressors caused haemorrhage to restart.   

 

3.3.2 Uncontrolled Haemorrhage 

 

From the late 1980s, reports have increasingly been published on animal trials 

including an element of uncontrolled haemorrhage.  The first (Gross et al., 1988) was a 

study comparing resuscitation after controlled haemorrhage and after haemorrhage 

from division of three branches of the ileocolic artery.  Animals received no treatment 

or one of two regimes of fluid resuscitation.  As one would expect, aggressive 

resuscitation benefitted the controlled haemorrhage group.  However, it caused 

intraabdominal bleeding and death in the uncontrolled haemorrhage animals.  The 

same group from Haifa found similar results using rat tail transection to model the 

uncontrolled haemorrhage (Gross et al., 1989). 

 

William Bickell and his colleagues made one of the most significant contributions to 

this debate with a series of experiments and, importantly, the major randomised trial 

of delayed resuscitation (see subsection 5.3.3).  Their pig model involved open 

splenectomy (to prevent autotransfusion) followed by placement of a steel wire in the 

aorta such that when pulled it would produce a 5mm longitudinal aortotomy.  The 

abdomen was closed with the wire ends exteriorised.  In an early study, aortotomy did 

not lead to exsanguination in unresuscitated animals.  The nadir of cardiac physiology 

was reached at 5 minutes, after which animals began to recover.  At post mortem the 

aortotomies were sealed with a dense adherent clot (Bickell, Bruttig and Wade, 1989).  

In a subsequent study (Bickell et al., 1991), animals were randomly assigned to receive 

either no fluid or crystalloid at three times the calculated rate of blood loss, beginning 

6 min after aortotomy.  At 2 hours, all the former group were alive and all the latter 

group dead (p<0.05).  The resuscitated group had significantly more intra-abdominal 

haemorrhage.  Initially they exhibited a high blood pressure, but this putative 

advantage had disappeared after 30min, by which time they were significantly more 

acidotic than the unresuscitated animals.  The resuscitated group had soft, gelatinous, 

nonadherent clot at post mortem.  Bickell suggested that as well as increased pressure 
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dislodging the thrombus (what is now widely termed “popping the clot”), dilution of 

clotting factors and altered rheology also add to the degree of haemorrhage. 

 

Stern’s group published two important papers in the early 90s which involved a more 

significant haemorrhage.  Immature swine were bled through a cannula to a mean 

arterial pressure (MAP) of 30mmHg before pulling of the aortotomy wire (Kowalenko 

et al., 1992; Stern et al., 1993).  This was considered to better simulate a potentially 

lethal haemorrhage.  Animals were then resuscitated to a MAP of 40, 60 (in the latter 

study) or 80mmHg (using a limited volume of crystaloid then reinfusion of shed blood).  

Animals in the 80mmHg group died significantly more often and earlier than the others 

in both studies.  Volume of haemorrhage into the abdomen was related to the 

resuscitation endpoint and, congruently, the volume of resuscitation fluid given.  The 

mildly under-resuscitated group (60mmHg) had the best biochemical profile.  Stern 

noted that an effect of the less aggressive resuscitation regimes was a delay before 

reaching maximal pulse pressure (80mmHg—10min, 60mmHg—35min, 40mmHg—

45min).  Allowing the clot to mature before increasing blood pressure may be 

beneficial. 

 

Marshall (1997) modelled uncontrolled haemorrhage by using a cannula to bleed rats 

at a constant rate for 15 min and then transected their tails at 30 min.  Simulated 

prehospital resuscitation was performed until 90min, when the tail bleed was stopped 

surgically and resuscitation then continued to a MAP of 80 mmHg and a Hct of 30% 

using Ringer’s lactate and shed blood.  The animals were allowed to recover from 

anaesthesia and monitored for three days.  Animals were randomised to receive 

different prehospital regimes in the period from 30 to 60 min.  A group resuscitated to 

a MAP of 80 mmHg with Ringer’s lactate all died before 60 min (group I), whereas 75% 

of animals survived when the endpoint was 40 mmHg (group III).  There were two 

other groups where shed blood and Ringer’s lactate were used in a 1:5 ratio as the 

prehopital fluid, with the same two MAP endpoints (groups II—80 mmHg, group IV—

40 mmHg).  These groups had similar survival, base deficit and arterial pH to group III 

throughout the experiment.  Prehospital volume requirements were (means): group I, 

151 mL; group II, 69 mL; group III, 29 mL; group IV 20 mL.  Group I’s needs were 

significantly greater than the other groups and group II’s were significantly greater 



53 

 

than the two groups resuscitated to 40mmHg.  Multivariate analysis suggested that 

MAP, Hct and the interaction between them were significant predictors of mortality.  

As well as confirming the deleterious effect of a high MAP endpoint in uncontrolled 

haemorrhage (in the context of surgical control being exercised soon after), this study 

suggested additional benefit from early blood transfusion and revealed the marked 

reduction in volume required when even a small proportion of blood is used. 

 

David Burris and colleagues from the Uniformed Services University of the Health 

Sciences used a rat model with two puncture wounds to the abdominal aorta to 

investigate the outcome of hypotensive resuscitation in situations where surgery is 

very delayed, as may occur in battle or after a disaster.(Burris et al., 1999)  Animals 

were resuscitated for two hours after injury and monitored up to 72 hours.  At 2 hours, 

3 of 11 unresuscitated animals were alive and all died within 4 hours.  All resuscitated 

groups had better survival at 2 hours, but this advantage only persisted to 72 hours in 

two groups: one given Ringer’s lactate to a MAP of 80mmHg and one given hypertonic 

saline in hetastarch (HH) to a MAP of 40mmHg.  Ringer’s lactate to a MAP of 100 or 

40mmHg and HH to a MAP of 80mmHg had poorer survival.  The authors concluded 

that moderate resuscitation was required in these circumstances. 

 

These models have concentrated on injury to major vascular structures, rather than to 

the viscera, which is more common in patients.  Matsuoka and colleagues addressed 

this with a model involving sharp removal of part of the liver in rats.  (This is a visceral 

injury, but not a blunt injury.)  They concluded that visceral injuries behave differently 

and that massive fluid infusion is safe after injury to the abdominal viscera (Matsuoka, 

Hildreth and Wisner, 1995, 1996).  However, their studies either used low MAP 

endpoints, which would not properly reveal the disadvantage of high volume 

resuscitation, or were confounded by the use of hypertonic solutions, which make it 

difficult to interpret the implications for pressure endpoints alone.  Krausz’s group 

reported studies involving one (“moderate”) or two (“severe”) incisions to the spleen 

of rats (Abu-Hatum, Y. Bashenko, et al., 2002; Abu-Hatum, Yulia Bashenko, et al., 

2002).  In both studies, large volume Ringer’s lactate infusion increased bleeding 

compared to untreated animals; in the severe model, it also worsened survival.  These 

studies used a single bolus fluid infusion.  
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Krausz’s group then investigated fluid infusion at different rates, for the period 15 to 

60min after massive splenic injury.  Even the fastest infusion of Ringer’s lactate used 

had little effect on MAP.  Despite this, increasing rate of infusion was associated with 

increasing blood loss, although not worsening survival (Abu-Hatum, Yulia Bashenko, et 

al., 2002).  However, in a similar study with the addition of splenectomy at 45min, they 

did find a shorter mean survival time after operation in the large volume Ringer’s 

lactate group (Krausz and Hirsh, 2003).  This could imply that this group had already 

bled enough by 45 min that splenectomy could not salvage them, whereas more 

conservative resuscitation delivered the “patient” to the “surgeon” in a better state to 

be able to benefit from control of haemorrhage.  While sharp incision of the spleen 

may not fully reproduce a laceration, Krausz’s group are to be particularly commended 

for investigating these injuries with variations in severity and management. 

 

This is a necessarily incomplete account of animal trials in this area.  In 2003, 

Mapstone and colleagues published a systematic review of these (Mapstone, Roberts 

and Evans, 2003).  They identified 44 trials comparing fluids with no fluid and 9 

comparing hypotensive with normotensive resuscitation.  They found that fluids were 

beneficial in animals with severe haemorrhage but detrimental in those with moderate 

haemorrhage.  Hypotensive resuscitation was beneficial with a pooled relative risk of 

death 0.37 (95% CI, 0.27–0.50).   

 

Animal work has continued in this area with concordant results.  In an interesting 

paper in 2011, Li et al looked to determine the optimum hypotensive resuscitation 

regime (Li et al., 2011).  Using a rat model with a mixed splenic and vascular injury with 

later surgical haemostasis they evaluated the targeting of several MAP endpoints in 

the hour before surgery. The found that 50mmHg gave the best outcome, both for 

mortality at 4 hours post-surgery and for measures of tissue function.  They then 

performed a second evaluation, varying the time for which the 50mmHg MAP was 

maintained.  They found a sharp drop in survival between groups given the 

hypotensive regime for 90 and 120 minutes.  The body’s capacity to tolerate 

hypotensive resuscitation is therefore a function of both its depth and duration. 
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3.3.3 Human Data 

This extensive investigation in animal models has been highly influential on clinical 

practice since there has been only poor quality human data.  The most important 

human trial in this area is that of Bickell and colleagues (1994).  They assigned patients 

with penetrating injury to receive standard care (i.e. prehospital fluid infusion) or no 

fluids until reaching the operating theatre.  Bickell reported a statistically significant 

improvement in survival to hospital discharge in the delayed resuscitation group (70% 

v 62% survival, p=0.04, Chi Square).  The trial had several flaws.  “Randomisation” was 

by day of the week and as such there was no allocation concealment, which can have a 

large effect on trial outcome in either direction.(Higgins et al., 2011)  There was also 

no reported blinding of hospital staff or data collectors.  8% of patients in the delayed 

arm received prehospital fluids, which was a protocol violation.  However, it is unclear 

whether this was inadvertent or a desperate measure in the face of profound 

hypotension—an action that might usefully have been permitted in the protocol.  The 

study took place in an urban environment with short prehospital times and excluded 

patients with blunt injury.  Consequently, its general applicability in a mixed trauma 

population or in the context of prolonged prehospital times (as in rural, military and 

disaster situations) is moot. 

 

The other major trial comparing fluids with no fluids (Turner et al., 2000) showed no 

benefit but had so many protocol violations that the proportion of patients actually 

being given fluids in the two arms of the trial was nearly the same.  Three trials 

comparing large and small volume resuscitation showed no mortality benefit and there 

have been no completed trials comparing hypotensive and normotensive strategies.  A 

trial comparing two different low MAP endpoints during surgery for trauma has 

published preliminary data (Morrison et al., 2011).  In preparing for this trial the 

investigators have established that an intraoperative MAP endpoint of 65mmHg 

represents a consensus of current practice among US trauma surgeons. 

 

A Cochrane Review concluded that there was no reliable evidence to support either a 

liberal or restricted resuscitation strategy (Kwan et al., 2014).  They eschewed meta-

analysis because of the heterogeneity of the trials.  Wang and colleagues did perform 

meta-analysis, both of trials and observational studies, and concluded that there was 
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strong evidence of benefit for a restricted resuscitation strategy (Wang et al., 2014).  

The Cochrane review’s position is more rigorous.  Clinicians should regard the benefit 

of hypotensive resuscitation as supported but not definitively proven by the available 

evidence. 

 

In parallel with these investigations of the amount and timing of fluid resuscitation 

there has been extensive examination of which clear fluid (colloids or crystalloids, 

isotonic or hypertonic) should be used.  These lie beyond the scope of this discussion.  

It should be noted that clinical trials have not realised the promise of these alternative 

fluid types (Bulger et al., 2010, 2011), that the preponderance of evidence favours 

isotonic crystalloids (Perel, Roberts and Ker, 2013), that colloids may induce 

coagulopathy (Kozek-Langenecker, 2015) and that crystalloids predominate in UK 

civilian practise.  While the US military makes extensive use of colloids, the UK Armed 

Forces have largely abandoned them. 

 

3.3.4 Resuscitation Research at Dstl Porton Down 

 

In the context of these findings about hypotensive resuscitation, which was the UK 

military standard of care, Kirkman and colleagues at DSTL, Porton Down have sought 

to examine the effects of different fluid regimes in models of military injury, including 

prolonged resuscitation and blast injury.  In these experiments, blast injury was 

induced using a bare charge with the subject protected by a Kevlar blanket.  

Accordingly, blast exposure caused only primary blast injury, allowing the effect of this 

phenomenon to be studied in detail and preventing wide discrepancies in injury 

pattern between subjects in the same group, as would occur with exposure to 

fragmentation injury.  They first used a controlled haemorrhage model combined with 

blast or sham blast to compare extended periods (up to 8 hours) of hypotensive and 

normotensive resuscitation (Garner et al., 2010).  In blast exposed animals, survival 

times were significantly reduced in the hypotensive groups, with evidence of 

hypoxaemia induced by the primary blast lung injury combining with poor tissue 

perfusion to produce inadequate oxygen delivery.  In the sham blasted groups, 

prolonged hypotensive resuscitation produced considerable physiological 

derangement, including a high base deficit, compared with normotensive 
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resuscitation.  There was a trend towards greater mortality in the hypotensive group 

but this was not significant.  However, given the ethically appropriate constraint on the 

size of the study, this may represent a type II error.  This study clearly demonstrated 

the possible deleterious effects of prolonged hypotensive resuscitation.  However, it 

did not account for the possibility of rebleeding. 

 

Kirkman and colleagues then developed a model that included the possibility of 

rebleeding (Kirkman, Watts and Cooper, 2010).  To do this they added a grade IV liver 

injury, which was induced by a surgically preplaced wire which was pulled after 

controlled haemorrhage and blast or sham blast.  Liver injury followed haemorrhage to 

ensure that the known cardiovascular effects of blast would not have a differential 

effect on the degree of blood loss from the liver—after 30% blood volume 

haemorrhage, cardiovascular physiology should be similar between blast and sham 

blast groups, as already discussed in subsection 2.4.2. 

 

Having demonstrated that hypotensive resuscitation causes problems through poor 

tissue perfusion and oxygenation, they studied strategies to improve these through 

fluid therapy and supplemental oxygen.  For one trial they designed a novel hybrid 

resuscitation regime involving one hour of hypotensive resuscitation followed by 

normotensive resuscitation (Doran et al., 2012).  This was designed to allow any clot to 

gain 80% of its strength during the hour before the increase in perfusion pressure 

(Shaftan et al., 1965).  Thereafter, the improved cardiac output, potentially combined 

with improved microvascular flow due to decreased blood viscosity, would restore 

oxygen delivery to the tissue.  Hypotensive resuscitation, being the UK military practice 

at the time, remained the comparator. 

 

In blast exposed animals, the novel hybrid strategy was associated with a significant 

fall in mortality compared with hypotensive resuscitation (from 5 out of 6 to 2 out of 6, 

p=0.02, Kaplan-Meier analysis, Peto’s log rank test).  No difference in mortality was 

seen in the two sham blasted groups.  In all groups, the oxygen extraction ratio (OER), 

which reflects the adequacy of oxygen delivery, rose from the normal of 25% to the 

physiological maximum of 80%.  All groups also developed a significant acidosis.  

Restoration of perfusion in the novel hybrid groups associated with an improvement in 
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the acidosis and a fall in the OER.  OER remained maximal in the two hypotensive 

groups.  In the blast-hypotensive group acidosis worsened until the animals 

succumbed.  In the sham blast-hypotensive group, oxygen delivery appears to have 

been adequate to sustain life but, despite continued maximal oxygen extraction, not to 

correct the acidosis.  There was no evidence of increased bleeding in the novel hybrid 

groups. 

 

In a separate trial, blast exposed animals were treated with hypotensive resuscitation 

and either oxygen supplementation titrated to maintain SaO2 of 95% or air.  Oxygen 

therapy successfully improved the SaO2, improved delivery of oxygen and markedly 

improved mortality (6/6 v 2/6, p=0.014) (Kirkman, Watts and Cooper, 2010). 

 

Following a review of all available evidence, novel hybrid resuscitation has been 

adopted as standard British military practice.  Logistical and tactical considerations 

make supplemental oxygen therapy impractical in many military settings.  Nonetheless 

oxygen is made available and used wherever practicable. 

 

3.3 Haemostatic Resuscitation 

 

The description by Brohi and then others of a hypocoagulopathy that affects a 

significant proportion of trauma patients (Brohi et al., 2003; MacLeod et al., 2003) and 

predicts adverse outcome coincided with the large-scale military engagements of the 

USA and her allies in Iraq and Afghanistan.  In-hospital resuscitation practice in the US 

Armed Forces developed over the subsequent decade in an attempt to find better 

ways to address the physiological derangements of injured servicemen.  Military 

reports proved highly influential on civilian practice.  Two trends were particularly 

noteworthy: the use of recombinant activated factor VII (rFVIIa) and the use of high 

ratios of fresh frozen plasma and platelets to red blood cells.  rFVIIa was developed for 

the treatment of bleeding in patients who have a genetic deficiency for the clotting 

factor.  Case reports of its use in traumatic bleeding began in Israel (Kenet et al., 1999), 

and the practice became widespread in the US military (Spinella et al., 2008).  Two 

civilian randomised control trials failed to provide convincing evidence of its safety and 

efficacy (Boffard et al., 2005; Hauser et al., 2010).  This potent drug has the potential 
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to cause significant thromboembolic complications (O’Connell et al., 2006).  The drug 

is most effective when given to patients without hypothermia or acidosis (Meng et al., 

2003).  Defining the correct circumstances for its use therefore remains problematic.  

Following initial enthusiasm there has been a decrease in its use in the British military 

(Smith, 2013). 

 

3.3.1 Plasma Therapy in Resuscitation with Blood Components 

 

Blood component therapy replaced whole blood transfusion in the decades after the 

Second World War as it became technically feasible and was perceived to offer more 

efficient use of donated blood and rational, targeted use of components to treat 

specific problems.  In the context of trauma and haemorrhage, the practice developed 

of giving FFP only once a coagulopathy had been documented or a certain amount of 

PRBC had been transfused (Holcomb and Pati, 2013).  Recognising the incidence of 

coagulopathy early after injury clearly undermines this practice.  A series of cohort 

studies of both military and civilian patients has appeared to show decreased mortality 

in trauma patients who receive a high ratio of FFP to PRBC during massive transfusion. 

 

The first was the study by Borgmann et al (2007).  They demonstrated much lower (65 

v 19%) mortality in patients receiving high (mean 1:1.4, p<0.001) ratios of FFP to PRBC 

compared to those receiving low ratios (1:8).  By 2011, a systematic review included 

eleven retrospective studies, nine of which found evidence of benefit for high or 1:1 

FFP:PRBC ratios (Rajasekhar et al., 2011).  More recently, Bhangu et al  (2013) analysed 

six studies where the ISS did not differ between low- and high-ratio groups (OR 0.56, 

95% CI 0.40–0.78, p < 0.001 where high was defined as >1:2) but no additional benefit 

of 1:1 resuscitation. 

 

However, all these studies are potentially confounded by survival bias.  It has been 

typical practice for PRBC to be immediately (in the ED) or quickly (in the laboratory) 

available for transfusion to trauma patients.  PRBC is kept refrigerated and delivered 

through a warming circuit to enter the patient at an appropriate temperature.  FFP has 

not been kept thawed and ready because of its short shelf life when not frozen. The 

current vogue for early, high-dose FFP may mean that some high volume units, 
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including military hospitals, may have changed this policy.  However, in the period 

covered by these studies, it meant that there was a delay before administration of FFP 

could begin.  Accordingly, patients requiring the largest amount/highest rate of PRBC 

transfusion will quickly develop a low FFP:PRBC ratio.  These patients are those with 

active haemorrhage and consequently the highest risk of death.  It follows that 

patients who require the highest PRBC volumes will have the lowest FFP:PRBC ratios 

unless they survive long enough to “catch up”.  Early death, the outcome measure, can 

therefore govern FFP:PRBC ratio, the treatment measure, confounding the analysis 

(Snyder et al., 2009; del Junco, Fox, et al., 2013). 

 

There is other evidence in support of high ratio resuscitation, in the form of studies 

comparing similar patient cohorts before and after the instigation of high ratio policies.  

For example, the group at Vanderbilt (Cotton et al., 2008) demonstrated improved 

mortality after the introduction of such a policy.  However, their study had very 

different cohorts before and after the policy change and such studies are easily 

confounded by other changes in management.  They also claimed to demonstrate a 

reduction in blood product usage. However, the treatment group was defined by 

protocol activation (a clinical judgement) and many appear to have received less than 

10 units, but the latter was an inclusion criterion for the control cohort.  No such 

reduction was seen in a similar study from Copenhagen which did not have this design 

flaw.  This group confirmed the apparent mortality benefit (Johansson and Stensballe, 

2009). 

 

Despite these evidential shortcomings, clinicians have to respond to the reality of early 

coagulopathy in a substantial proportion of the most severely injured patients.  Is high 

ratio FFP the answer?  A careful study by Brohi’s group in London has recently 

demonstrated this (Davenport, Curry, et al., 2011).  They examined coagulation status 

in patients before and after receiving PRBC and FFP, recording the ratio received for 

each 4 units of PRBC transfused.  In coagulopathic patients, FFP transfusion improved 

coagulation parameters.  Interestingly, this effect was maximal at an FFP:PRBC ratio 

between 1:2 and 3:4.  This accords with the maximal mortality benefit seen in some 

studies (Kashuk et al., 2008; Teixeira et al., 2009).  However, this was described as a 

preliminary report of an ongoing study; multivariate and subgroup analysis on a larger 
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cohort should yield more information on whether this is an independent effect of the 

ratio or is confounded by other factors, such as injury severity, physiology, timing and 

other treatments. Thus it is sensible to predict some benefit from giving early FFP, at 

least in this range of ratios.  As a practical matter, some authors have suggested that, 

given the logistic constraints of FFP readiness, aiming for a 1:1 ratio may have the 

effect of achieving a 1:2 ratio (Holcomb et al., 2008). 

 

Others retain an emphasis on achieving 1:1 transfusion.  Is there any reason to believe 

FFP may be harmful?  At a mechanistic level, FFP is about as “dirty” as a drug could be 

(Pandey and Vyas, 2012).  FFP contains a multitude of biologically active molecules 

ranging from pro- and anticoagulant factors to immunoglobulins and cytokines.  Any 

blood transfusion risks infection and other complications, despite donor screening, 

leucodepletion and other measures.  The study of FFP:PRBC ratio in the German 

Trauma Registry indicated that high ratios may be associated with increased septic 

complications and multiple organ failure (Maegele et al., 2008). Johnson and 

colleagues in Denver demonstrated in a retrospective study that volume of FFP 

transfusion is an independent predictor of multiple organ failure and that this effect is 

greater when the patient has required more than 6u of PRBC (Johnson JL et al., 2010).  

However, all such studies suffer from the possibility of selection bias.  This works in the 

opposite direction to survival bias: receiving high doses of FFP may indicate more 

severe pathology, not measured or accounted for in the multivariate analysis; these 

patients may be more likely to develop MOF because of these underlying changes 

rather than the FFP. 

 

Holcomb and colleagues completed a large (n=905) multi-centre prospective study of 

transfusion ratios which was specifically designed to address the problems seen in 

previous observational studies (PROMMTT) (Holcomb JB et al., 2013).  By using 

appropriate inclusion criteria, collecting detailed data on the timing as well as amount 

of blood products given and using time-dependent statistical modelling they sought to 

remove the influence of survival bias.  They concluded that achieving a high ratio of 

FFP to PRBC during the first 6 hours of resuscitation was associated with a much 

reduced mortality during the first 6 hours.  They demonstrated that received ratios 

changed over time with most patients initially receiving a low ratio (i.e. PRBCs first) 
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and then reaching a high ratio over time (as FFP is administered).  Subgroup analysis 

suggested that mortality benefit may have been confined to those patients who were 

given a high ratio initially (del Junco, Holcomb, et al., 2013).  This group then 

conducted a large randomised control trial (Holcomb et al., 2015) comparing 

PRBC:FFP:Plt ratios of 1:1:1* to 2:1:1.  No difference in the primary endpoints 

(mortality at 24 hours and 30 days) was found, but this may have been a type 2 error.  

1:1:1 appeared to be superior in the analysis of secondary endpoints including 

exsanguination and achievement of haemostasis and was not associated with an 

increase in adverse events. 

 

More recently, there has been considerable interest in the role of plasma products in 

addressing the endotheliopathy of trauma.  In vitro studies demonstrate that plasma, 

unlike crystalloid, can reduce the permeability of endothelial cells induced by hypoxia 

and other insults (Pati et al., 2010; Wataha et al., 2013).  Plasma also restored the 

glycocalyx in rat models (Kozar et al., 2011; Torres et al., 2013).  Clinical confirmation 

of these effects has not yet been demonstrated. 

 

3.3.2 Platelet Therapy in Resuscitation with Blood Components 

 

Evidence and practice relating to the administration of platelets has followed a parallel 

course to that for plasma over the last decade.    Initial military reports of benefit of 

high platelet:PRBC ratios (Perkins et al., 2009) were followed by civilian retrospective 

studies (Holcomb et al., 2008).  A systematic review of studies of platelet:PRBC ratio 

found seven studies that used regression or propensity scoring to address confounders 

(Hallet et al., 2013).  Those reporting on massively transfused patients found a survival 

benefit for high ratios, those studying all transfused patients did not.  Two studies used 

a before and after design (either side of the introduction a high ratio policy) to avoid 

survival bias; one found a benefit.  PROMMTT also considered platelet therapy and 

similarly found a survival benefit associated with achieving a high ratio during the first 

6 hours (Holcomb JB et al., 2013). 

 
                                                 
*
 1:1:1 implies one unit PRBC, one unit FFP and a volume of platelets equivalent to a single donor’s 

contribution to a pool of platelets.  In UK practice, this would equate to one pool for every six units of 

PRBC and of FFP.(Lowes, 2014)  This combination is referred to as reconstituted blood. 
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The use of platelets in military resuscitation practice carries considerable difficulties.  

Platelet pools are generated by combining the Buffy coat (the platelet-rich layer 

between cells and plasma in centrifuged blood) from several donated units of blood.  A 

pool must contain >240x109 platelets (UK Blood Transfusion & Tissue Transplantation 

Services, 2013) and this is achieved by combining platelets from six donors.  A pool of 

platelets must be mechanically agitated during storage and maintained at a 

temperature of 22 +/- 2°C, presenting logistical challenges in transporting pools to 

remote parts of the world.  A pool must be used by the end of the fifth (exceptionally 

the seventh) day after collection.  Given the time necessary to collect, pool and 

transport platelets to Afghanistan, their shelf life after arriving at the point of use 

during the recent operation there was very short.  Pools generated in the USA were 

even more severely affected by this constraint. 

 

An alternative source of platelets is apheresis in which platelets are removed from 

donor blood which is return to the bloodstream.  Platelets were in this way harvested 

from pre-screened volunteers at Camp BASTION and other bases with military 

hospitals (Jansen et al., 2014).  Generation of platelets for transfusion in this way may 

take 4 hours, so is not a complete substitute for stored pools (Lowes, 2014).  Apheresis 

platelets were used when stored pools were unavailable in the UK hospital but were 

the mainstay of platelet component therapy in US units (Perkins et al., 2009). 

 

3.3.3 Fresh Whole Blood 

 

The drivers of the adoption of component therapy were touched on in subsection 

5.4.1.  However, operations in Iraq and Afghanistan have seen a return to the use of 

fresh whole blood (FWB), chiefly in US practice.  FWB can also be collected from local 

donors, and is available much quicker than apheresis platelets.  It is therefore a useful 

supply in emergencies and a means of ameliorating the logistical problems alluded to 

above.  However, use of emergency FWB precludes virology testing, leucocyte 

depletion and other safety measures.  Reconstituted blood (see footnote to subsection 

5.4.1) is not equivalent to FWB.  The storage media used in the components mean that 

(using US products) reconstituted blood has a haematocrit of 29%, with low platelet 

and clotting factor concentrations (Kauvar et al., 2006).  FWB may have other potential 
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benefits; e.g. leucocyte microvesicles, which express TF, are preserved and may 

support clot initiation (see subsection 2.6.2).  Use of freshly donated blood prevents 

any storage lesion. 

 

Extensive US military experience of FWB usage has raised few safety issues: viral 

contamination rates may be slightly higher than in domestic component therapy but 

this is considered to be offset by the life-saving indications for which FWB is used.  

There is some retrospective evidence that FWB usage has been associated with 

improved outcome relative to those managed with component therapy alone.  In 

particular, Spinella et al showed that FWB was associated with less total transfusion 

and improved mortality when compared with component therapy in an unmatched 

retrospective study of experience in Iraq and Afghanistan (Spinella et al., 2009).  A 

civilian pilot study with a randomised design showed no reduction in transfusion with 

FWB use but may have been confounded by uneven distribution of head inured 

patients between treatment arms: further studies are planned (Cotton et al., 2013). 

 

3.4 Prehospital Use of Blood Products. 

 

3.4.1 Background to Prehospital Transfusion 

 

Blood transfusion became a safe treatment with the development of storage solutions 

and the understanding of blood groups, work led by Peyton Rous in the US (Hess and 

Thomas, 2003).  Rous’s student Robertson developed a practical method and 

apparatus for collecting, storing and administering blood.  He described 44 successful 

transfusions given in a casualty clearing station on the Western Front (Robertson, 

1918).  Thus, transfusion has been used to sustain patients forward of surgical care 

since the earliest days of the treatment.  During the Spanish Civil War (1936-1939), 

Canadian surgeon Norman Bethune revolutionised the use of blood in prehospital care 

by organising mobile transfusion services and advocating his concept of  'taking the 

blood to the wounded and not the wounded to the blood' (Franco et al., 1996).  

Subsequent military prehospital use of blood transfusion has been highly variable.  

Some civilian experience also exists, including in the context of air ambulances (Dalton, 
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1993; Berns and Zietlow, 1998; Green et al., 2013; Lockey, Weaver and Davies, 2013) 

but these accounts do not include a rigorous examination of efficacy. 

 

The decade of conflict in the Middle East and Central Asia has driven a significant 

number of improvements in the medical care of military casualties (Penn-Barwell et 

al., 2015).  Since exsanguination remains a potentially preventable cause of battlefield 

mortality (Kelly et al., 2008), the treatment of hemorrhage has been a significant focus 

of trauma care innovation. The last decade has seen the rehabilitation of tourniquets 

(Kragh et al., 2009), the development of hemostatic dressings (Lawton, Granville-

Chapman and Parker, 2009), improvements in paramedical training and the 

development of deployed trauma systems (Blackbourne et al., 2012). 

 

There has also been an attempt to move the perceived benefits of damage control 

resuscitation into the prehospital arena.  The UK Defence Medical Services have, for 

some time, projected advanced resuscitation capability forward of the hospital 

(O’Reilly, König and Tai, 2008), with demonstrable improvements in mortality 

(Morrison, Oh, et al., 2013). The UK Medical Emergency Response Team  (MERT) is an 

Advanced Medical Retrieval platform (Morrison, Oh, et al., 2013).  In addition to 

standard en route care, the physician-led team can administer resuscitation fluids 

using the intraosseous and central or peripheral intravenous routes, perform chest 

decompression (thoracotomy, tube or open or needle decompression) and drug-

assisted airway management.  The capability was further enhanced by carrying four 

units of PRBC and thawed FFP, for prehospital transfusion. 

 

Patients who might benefit from prehospital blood transfusion (PHBTx) include those 

who would not reach hospital alive without support to cardiac output and oxygen 

transport.  Other patients may reach hospital alive but with profound shock, which is 

associated with adverse effects on coagulation, inflammation and survival.  Earlier 

transfusion may ameliorate these.  Detrimental effects may occur in patients in whom 

the treatment is given unnecessarily but the current clinical consensus is that these are 

outweighed by the benefits in others. 
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3.4.2 Evidence for prehospital transfusion 

 

Chapter 4 of this thesis includes the first comparative analysis of the benefits of this 

strategy in the context of armed conflict.  Two recent US civilian papers are worth 

noting.  Brown et al (2015) on behalf of the Glue Grant group demonstrated a reduced 

24-hour mortality among patients who received blood transfusion prior to admission 

to a Trauma Centre.  There were 50 of these in a cohort of 1415 trauma patients.  

However, 24 of these received blood after admission to a peripheral hospital.  There 

was no explanation of the circumstances or indications for transfusion among the 

remaining 26 patients so the findings of this study are hard to generalise.  Holcomb et 

al (2014) have published a comparison of outcomes between patients admitted via 

two helicopter services, one of which had deployed PRBC and FFP for prehospital 

admission.  Early outcomes such as admission base deficit and transfusion 

requirements were better in patients for whom PHBTx had been available.  However, 

no mortality benefit was seen at 24 hours or 30 days.  Multivariate analysis suggested 

a trend to lower mortality (e.g. at 6 hours OR 0.23, p=0.088).  However, there was 

considerable risk of error due to multiple testing and the analysis had included 

variables that were confounded by the treatment, such as admission coagulation 

assays.  These two studies have not established an evidence base for the practice of 

PHBTx.  An animal study that should be mentioned is that by Sondeen et al (2011).  

They used a swine model of uncontrolled splenic bleeding to demonstrate increased 

blood loss after resuscitation with Hextend (a colloid) when compared with blood 

products.  However, animals resuscitated with Ringer’s lactate did not develop a 

coagulopathy (as the Hextend subjects did) or the (statistically significant) increased 

blood loss, so the model may have simply demonstrated the deleterious effects of 

colloids on coagulation.(Kozek-Langenecker, 2015) 

 
3.4.3 British Military Indications for and Practice of Prehospital Transfusion 

 

Prehospital transfusion is considered for patients without a palpable radial pulse or 

who have a non-invasive systolic blood pressure of less than 80mmHg. The aim is to 

restore these parameters, rather than to resuscitate to normotension, unless a 

traumatic brain injury is suspected, or time to definitive care is anticipated to exceed 
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one hour (Doran et al., 2012).  If more than one unit of PBRC is required, plasma is co-

administered, to achieve a ratio of 1:1. A loading dose of 1g of tranexamic is given to 

all transfused patients.  Platelets are not normally used in prehospital practice. 

 

Blood products are carried in sealed containers consisting of a fabric outer case and a 

vacuum insulated chamber with an inner, removable thermal isolation compartment. 

These devices are capable of maintaining storage temperatures of 2-8°C for up to 24 

hours, in external temperatures of 45°C. The storage temperature is monitored using a 

temperature indicator tag together with single-use time-temperature indicators 

(WarmMark® and ColdMark®, ShockWatch, Dallas, Tx).  Blood products are only 

administered if the tag indicates a green light. Components are warmed during 

administration, using a portable battery operated fluid warming system (enFLow™, GE 

Healthcare, Waukesha, WI).  The hospital is informed during flight if a transfusion 

occurs so that the blood container may be promptly exchanged for a new one with a 

full supply of products.  This process has the clinical benefit of alerting clinical teams to 

the likely arrival of a hemodynamically compromised casualty. 

 

UK guidelines allow red cells stored in saline, adenine, glucose and mannitol to be used 

for up to 35 days (UK Blood Transfusion & Tissue Transplantation Services, 2013).  

There is evidence that as red cell age increases, a storage lesion develops which is 

associated with adverse outcomes in transfused trauma patients (Weinberg, Barnum 

and Patel, 2011).  Consequently, current UK military trauma transfusion practice is to 

use units less than 14 days old, which has the effect of increasing overall wastage at 

times of low usage.  Plasma is newly thawed for prehospital use following which 

unused units are available for use in the base hospital for up to five days.  The 

approach provides non labile clotting factors and reduces wastage (Evans et al., 2013).  

The logistic challenges of maintaining a blood supply to austere settings, and the 

impact of shortage, necessitates a much greater degree of redundancy than in civilian 

systems.  Despite the challenges, wastage of blood products in the UK system has been 

managed, with 65% of PRBC and 80% of FFP units sent to Afghanistan used, which 

compares favorably with US experience (Rentas et al., 2012). 
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Blood directives mandate haemovigilance and the traceability of all blood 

components. The documentation of prehospital transfusion is as per the UK military 

hospital protocol and consists of a double labelling system. One label remains in the 

patients’ records, the other is returned to the pathology laboratory. The exigencies of 

administering a transfusion in a cramped aircraft, sometimes under attack, can make 

this challenging, especially if there are multiple casualties. Nonetheless, the MERT 

prehospital transfusion program achieved 100% traceability. Furthermore, no serious 

side effects or complications of transfusion attributable to units transfused in the 

prehospital setting have been reported.  
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Chapter 4.  Prehospital Transfusion Outcomes 
 

4.1 Introduction 

 

Section 3.4 outlined the introduction of PHBTx into UK military resuscitation practice.  

As already suggested, the purpose was to sustain the lives of exsanguinating patients 

and to draw the practice of DCR into the prehospital arena (O’Reilly et al., 2014).  It 

was intended principally to reduce mortality among injured servicemen but it was also 

suggested that it might reduce morbidity, blood product usage and length of stay in 

ITU.  However, there were concerns that PHBTx could be deleterious under certain 

conditions (e.g. unnecessary transfusions with immune sequelae or efficient volume 

expansion leading to “popping the clot”) and that it was logistically burdensome. 

 

The Flight Intervention and Resuscitation in the Military (FIRM) project was initiated by 

the author under the authority of the Defence Professor of Surgery to assess whether 

routinely collected clinical data could be used to retrospectively assess the impact of 

PHBTx on mortality and other outcomes.  This chapter sets out the process and main 

findings of the original FIRM project. 

 

The introduction of PHBTx usage by the UK MERT coincided with the increasing 

presence of US troops in Helmand province that began in 2008 and was extended by 

an 11,000 troop surge in 2009.  Consequently, there were three main groups of 

patients treated in Camp Bastion: local nationals, UK servicemen and US servicemen.  

The project was intended to assess mortality, morbidity and ITU length of stay but this 

information was not likely to be always available for local nationals as they are moved 

to local facilities once this is clinically suitable and then lost to follow up.  Since UK and 

US servicemen were routinely evacuated while still intubated and ventilated, it was 

essential to have full follow up data for these patients.  The project therefore required 

a unique US-UK data sharing collaboration if it was to proceed.  This was set up as a 

joint project between the Royal Centre for Defence Medicine, Birmingham and the US 

Army Institute of Surgical Research (USAISR), San Antonio, Tx. 
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Other projects based on this data collaboration were quickly established (Morrison, 

Oh, et al., 2013) but do not form part of this thesis.  The author initiated the FIRM 

project and created the initial study design.  The author collaborated with others in 

obtaining the necessary ethical approvals and data access.  The author is particularly 

indebted to Maj J Morrison for his work with colleagues at USAISR to match records 

from the three source databases to produce the FIRM dataset.  Preliminary analysis 

carried out by the author with statistical staff at USAISR revealed that deficiencies in 

the available data would mandate a novel study design to achieve the desired matched 

cohorts of PHBTx recipients and controls.  The author produced the initial version of 

this which was then modified on advice from the project statistician.  The matched 

cohorts were produced according to this new methodology (for which credit is due to 

Dr A Apodaca-Morrison) and the author then carried out the statistical analysis.  In 

order to properly differentiate the author’s contribution to the work being reported, 

the methods section of this chapter will detail the author’s proposals and the ways 

these were altered. 

 

4.2 Aim and Hypothesis 

 

The purpose of this work was to assess what information about the clinical benefits (or 

risks) of PHBTx could be gleaned from the available human data.  To facilitate this, the 

study was designed to evaluate the hypothesis that the provision of PHBTx to injured 

personnel led to a reduction in mortality when compared with similarly injured 

patients who did not receive PHBTx 

 

4.3 Methodology 

 

4.3.1 Sources of Data 

 

This study was approved by the Royal Centre for Defence Medicine Academic Unit and 

the US Army Medical Research and Materiel Command.  Data was obtained from three 

sources: the UK Joint Theatre Trauma Registry (JTTR), the US Department of Defence 

Trauma Registry (DoDTR) and the UK prehospital MERT database.  The JTTR includes 

demographic, injury, treatment and outcome data on all UK personnel hospitalised 
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due to injury while deployed and on all non-UK personnel treated in UK facilities.  

Injuries are coded using the Abbreviated Injury Score (AIS) system.  (See the Appendix 

for further discussion of injury coding.)  The DoDTR has a similar remit for US 

personnel and facilities.  In both cases, data collection on foreign nationals ceases at 

the point that they leave the national treatment facility or evacuation chain, whereas 

data on own-nation personnel is continually updated (and corrected) until after the 

serviceman has been discharged from medical care.  As such, DoDTR data about US 

servicemen will be more accurate than JTTR data, as it will capture late mortality and 

morbidity, length of stay and corrections to injury data in the light of fuller evaluation.  

JTTR and DoDTR records were completed by dedicated trauma nurse co-ordinators 

(TNCs); at Camp BASTION the UK and US TNCs shared an office but used separate 

systems.  The MERT database covers all patients treated by the MERT, including those 

evacuated to sites other than BASTION.  It was completed by MERT personnel and 

includes mission data (e.g. flight times) and treatment details. 

 

Each database used its own patient identifiers, albeit with some inconsistent cross-

referencing.  To resolve this, an algorithm was used to match patients’ time and date 

of injury, demographics and injuries.  (The author is grateful to Dr J Jones, USAISR for 

this work.)  This produced a single FIRM dataset. 

 

4.3.2 Initial Study Design 

 

The initial proposal was to use a propensity score-based matching process to establish 

matched cohorts of PHBTx recipients and non-recipients.  Propensity scoring is used 

when a study population includes a mixture of persons who were and were not 

exposed to a treatment (or other factor of interest).  The concept is that exposed cases 

are matched with similar non-exposed cases such that known confounders of the 

outcome of interest may be evenly distributed.  This is intended to mimic the benefits 

of using randomisation in prospective studies (albeit the latter can also distribute 

unknown confounders).  A multivariate logistic regression is used to build a model that 

calculates the chance that any given subject would receive the treatment if it were 

available; this is the propensity score.  A propensity score is calculated for each 

treatment recipient and a control case is selected with a similar propensity score.  This 



72 

 

produces pairs of recipients and controls, necessitating the use of appropriate 

statistical tests (Austin, 2008). 

 

The important data fields in the FIRM dataset were: 

 Demographics (age, sex, national status) 

 Mechanism of injury 

 Injury details (AIS codes of all identified injuries) 

 Initial prehospital observations (HR, RR, GCS, SpO2) recorded by 

MERT/PEDRO/DUSTOFF personnel 

 Prehospital treatment (PHBTs, airway, vascular access, chest decompression) 

 Timings (Time and date of incident, helicopter arrival and departure, arrival at 

hospital, start of surgery) 

 Observations on arrival at hospital  (HR, RR, GCS, SpO2, BP) 

 In-hospital treatment (blood products, rFVIIa, TXA and others) 

 Hospital (i.e. BASTION) length of stay 

 Disposal (e.g. local national patients transferred to host nation facilities) 

 Mortality outcome 

 

The patients were divided into three groups:  Those brought in by MERT before PHBTx 

was available (pre-PHB), those brought in by MERT after PHBTx was available (post-

PHB) and those brought in by platforms that were never equipped with PHBTx.  The 

latter group will not be considered further until the discussion.  Only those data fields 

that could not be affected by the intervention could be used in generating the 

propensity score.  This includes demographic and injury data and prehospital 

observations.  It excludes observations on admission to hospital.  Many severely 

injured patients in both groups, including several PHBTx recipients had incomplete or 

non-existent prehospital observations.  Indeed there appeared to be a relationship 

between the severity of injury and the likelihood of prehospital observations being 

absent and a change in the chance of their being recorded over time.  This is 

understandable: the constrained, dark, moving and sometimes dangerous 

environment aboard a helicopter in a combat area makes observations difficult.  The 

more severely injured a patient is, the more important it is to concentrate on 



73 

 

immediately life-saving interventions rather than on accurate data recording.  

Recording may have become more common as familiarity with the environment grew 

and training improved.  However, this potentially created a confounding relationship 

between the recording of these data and outcome.  To use the prehospital 

observations might therefore have introduced bias into the results.  It was concluded 

that prehospital observations could not be used as a basis of the propensity score. 

 

Logistic regression on the dependent variable of PHBTx usage in the Post-PHB group 

was carried out.  ISS was used as a summary statistic for the AIS codes.  The other 

independent variables were the patient demographics, the mechanism of injury and 

the time from injury to arrival at hospital.  Given the lack of direct data about 

transfusion triggers (i.e. prehospital observations), the model generated was heavily 

dominated by the ISS.  Given the limitations of ISS laid out in the Appendix, it was 

thought likely the model would generate pairs that were well matched for ISS but not 

necessarily well matched for the underlying factor of interest, i.e. their injury pattern.  

Ideally, prehospital observations would have compensated for this by matching 

patients according to their physiological response to injury, but these were 

unavailable.  An alternative method of generating matches was therefore required. 

 

4.3.3 Proposed revised methodology 

 

The author proposed a novel matching methodology designed to produce close 

matching of injury profile.  The three most severe AIS codes for each patient were to 

be used, regardless of body region (following a convention derived from the method of 

calculating NISS).  Since age and sex were somewhat consistent among US and UK 

recipients (i.e. mostly young men), the analysis would exclude local nationals and 

ignore these demographic factors.  Each recipient would then be matched with a 

control from the pre-PHB group with the same: 

 Mechanism of injury 

 Three most severe injuries as defined by their severity and body region 

o e.g. matching AIS4 lower limb, AIS3 lower limb and AIS3 abdomen 
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Where such an exact match was not possible, an algorithm would be required to select 

close matches, ranking these and setting a minimum acceptable level of matching.  The 

algorithm would also need to ensure that each potential control was only selected 

once and attempt to maximise the closeness of matching overall.  This outline was 

submitted to the project’s statistical advisors who then worked on generating a usable 

methodology.  Discussions led to agreement that it would be desirable to include local 

nationals and account for demographic factors.  This led to the development of the 

final methodology set out below.* 

 

4.3.4 Final Matching Methodology 

 

Patients who were administered prehospital blood products (recipients) were paired 

with patients transported before 1 July 2008 who would have been expected to 

receive prehospital transfusion if it had been available.  A logistic regression was 

conducted in the Post-PHB cohort with receipt of PHBTx as the dependant variable 

using the variables sex, age, patient category (i.e. national status), mechanism of 

injury, and detailed injury data.  This was used to provide a propensity score for the 

second stage of the matching process laid out below.  The three most severe 

Abbreviated Injury Scale (AIS) codes for each patient, irrespective of body region, were 

included as variables in the regression model.  An algorithm was then created to parse 

the first three digits of the AIS code for each injury to determine the fundamental 

injury descriptors: (1) body region of injury (head, face, neck, thorax, abdomen, spine, 

upper extremity, lower extremity, and other), (2) anatomic region (whole area, vessels, 

nerves, organs/muscles, skeletal/joints, and loss of consciousness), and (3) specific 

forms of injury (abrasions, lacerations, contusions, amputations, burns, etc). 

 

Matching proceeded in two stages.  First, Recipients patients were matched with one 

or more Pre-PHB patients with similar detailed injury data.  Preference was given to 

exact injury code matches for all three injuries.  Where this was not possible an 

algorithm was used to progressively expand the range of acceptable AIS matches.  

Second order matches were based on severity and descriptors 1-3 above, third order 

                                                 
* The author was responsible for the proposed methodology as set out in the preceding paragraph.  The 
changes made to produce the final methodology are largely credited to Dr Apodaca-Morrison. 
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matches were based on severity and descriptors 1 and 2 above, and so on.  The 

algorithm stopped when a selection of potential matches was available with equivalent 

goodness-of-fit, e.g. two potential matches with a single first-order AIS match and two 

second order AIS matches.  Greedy matching20 was then used to select the potential 

control with the most closely matched propensity score (as calculated based on the 

described logistic regression). Once a match was made it was not reconsidered; in the 

event that more than one unmatched control fitted to a case with equal propensity 

score, the control chosen for pairing was selected at random by the algorithm.  This 

process is illustrated in Figure 4.1.*  

 

This process produced groups of patients, matched recipients and matched non-

recipients, consisting of matched pairs (Austin, 2008),  Consequently, categorical data 

were analysed using McNemar’s test, non-parametric data using Wilcoxon’s signed-

rank test.†  The primary outcome was mortality.  Admission observations and total 

PRBC and FFP use were secondary outcomes.  P<0.05 on two-tailed testing was 

determined to be significant. 

 

Mortality for UK and US personnel was defined as death within 30 days of wounding. 

For other patients, follow-up was limited to the in-hospital stay in Afghanistan.  This 

approach is pragmatic, and has been employed previously (Morrison, Oh, et al., 2013), 

as it is impossible to track the progress of casualties from other countries through their 

respective evacuation chains.  The chance of this introducing bias should be small since 

patients were only transferred to local facilities once their clinical progress was such 

that they were thought no longer to need the advanced facilities at BASTION.  

Transfusion volumes pertain to the first 24 hours. 

 

                                                 
*
 This process was conducted by Dr Apodaca-Morrison; all other steps of the analysis were conducted by 

the author. 
† Inspection and graphing of the data showed a great deal of skewed data, so non-parametric tests were 
used throughout. 
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Figure 4.1  Matching process.  Each cartouche represents a patient.  On the left, a PHBTx patient’s injury complex is broken down and the 1st, 2nd and 

3rd most severe AIS codes are used for matching.  Each AIS code is broken down to its four principle components A to D: A—Severity; B—Body 

region, C—Organ, D—Form of injury.  On the right, four patients from the period before PHBTx became available are selected as possible matches.  

In this case, the potential matches have two exactly matching injuries but the third injury is only matched for severity and body region.  Each potential 

match has been labelled with its propensity score, i.e. the probability that the patient would have been administered PHBTx had it been available.  The 

potential match with the closest propensity score match is chosen to become the matched non-recipient. 
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4.4 Results 

 

A total of 1592 patients were included: 439 before 1 July 2008 (Pre-PHB) and 1153 

thereafter (Post-PHB).  Table 4.1 compares the two cohorts.  The rate of severe injury 

(ISS 16 or greater) rose from 28% to 42.5% (p<0.001, Chi-square) between the two 

cohorts.  Mortality was higher in the Post-PHB group.  However, mortality among 

severely injured Post-PHB patients was 134/485 (27.6%) whereas it was 39/122 

(32.0%) in the Pre-PHB cohort (p=0.343, Chi-square). 310 of the later group (26.9%) 

received a prehospital blood transfusion during transfer.  Table 4.2 shows the 

characteristics of the 310 PHBTx recipients.  Prehospital transfusion was given to 48% 

of severely injured patients (ISS of 16 or more).  76.7% of recipients were severely 

injured, mostly as a result of explosions. Almost one-half of patients required intra-

osseous circulatory access and/or advanced airway management. The median 

(interquartile range [IQR]) number of units of PRBC and FFP transfused prehospital was 

2 (1-2).  The median (IQR) total transfusion volume at 24 hours was 8u (range 3-18) 

PRBC and 7u (range 2-16) FFP.  Nearly one-half of patients required a massive 

transfusion (>10 units while at Camp Bastion), although one-fifth required no further 

transfusion after admission. 

 

Ninety seven of the 310 patients who received PHBTx were paired with patients from 

the Pre-PHB cohort (Figure 4.2).  Table 4.3 shows the matched characteristics.  The 

groups had excellent matching of injury profiles with 89 in each group being severely 

injured.  Table 4.4 shows the treatments received and outcomes for both groups.  The 

mortality rate in the pre-hospital transfusion recipients was half that of non-recipients 

(8.2% v 19.6%; p=0.013, McNemar).  There was also a small improvement in admission 

heart rate though not in other observations.  However, matched recipients received 

more prehospital airway interventions and reached hospital more quickly than non-

recipients.  Matched recipients patients received more blood products overall (Figure 

4.3) and in higher FFP:PRBC ratios. 
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Figure 4.2.  Study population flow chart.  Pre-PHB/Post-PHB: Study cohorts before and after, 

respectively, the introduction of prehospital blood transfusion (PHBTx). 

Matched recipients:  PHBTx recipients successfully paired with patients from the Pre-PHB cohort with 

similar injury profiles and high propensity scores for receiving PHBTx, had it been available to them. 

MERT Medical Emergency Response Team; JTTR Joint Theatre Trauma Registry; DoDTR Department of 

Defence Trauma Registry 
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Figure 4.3  Units of PRBC and FFP transfused in the first 24 hours in hospital to matched recipients and 
non-recipients of prehospital transfusion. 
Boxes show interquartile range with median.  Whiskers show range.  Groups compared with Wilcoxon 
signed rank test: PRBC Packed red blood cells, FFP Fresh frozen plasma. 
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  Pre-PHB Post-PHB P values  

N  439 1592  

Age  23 (21-28) 23 (20-27) 0.277† 

Patient 
Category 

UK Military 214 (48.7) 642 (55.7) <0.001* 

Coalition 
Military 

129 (29.4) 288 (25.0)  

Afghan  96 (21.9) 223 (19.3)  

Sex Male 425 (96.8) 1116 (96.8) 1* 

Mechanism of 
Injury 

Blunt 25 (5.7) 43 (3.7) <0.001* 

Burn 4 (0.9) 8 (0.7)  

Explosive 246 (56.0) 809 (70.2)  

GSW 163 (37.1) 286 (24.8)  

Other 1 (0.2) 7 (0.6)  

Military ISS  5 (2-16) [1-75] 9 (4-25) [1-75] <0.001† 
Military NISS  8 (3-20) [1-75] 14(5-34) [1-75] <0.001† 

AIS≥3 Head and Neck 43 (9.8) 119 (10.3) 0.853* 
 Face 1 (0.2) 10 (0.9) 0.308* 
 Chest 50 (11.4) 151 (13.1) 0.399* 
 Abdomen 29 (6.6) 141 (12.2) 0.001* 
 Extremity 95 (21.6) 421 (36.5) <0.001* 
 External 7 (1.6) 15 (1.3) 0.636* 
 
Table 4.1.  Comparison of patients admitted before the introduction of PHBTx (Pre-PHB), those admitted 
afterwards (Post-PHB).  P values are shown for significant results in the comparison of Pre-PHB and Post-
PHB. Categorical data are shown as n (%) and compared using Fisher’s exact test (*).  Ordinal and scale 
data are shown as median (IQR) with [range] added where relevant and compared using the Mann-
Whitney U test (†).  Significant results shown in bold. 
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  PHBTx recipients 

Age  24 (21-27) 

Patient Category UK Military 131 (42.3)  

Coalition Military 94 (30.3) 

Afghan  85 (27.4) 

Sex Male 302 (97.4) 

Mechanism of Injury Blunt 3 (1.0)  

Burn 1 (0.3) 

Explosive 226 (72.9) 

GSW 80 (25.8) 

Other 0 (0) 

Military ISS  20 (16-29) [1-75] 

Military NISS  29 (18-48) [1-75]  

AIS 3 or greater Head and Neck 26 (8.4) 
 Face 3 (1.0) 
 Chest 65 (21.0) 
 Abdomen 68 (22.0) 
 Extremity 215 (69.6) 
 External 4 (1.3) 

Prehospital interventions Intraosseous access 140 (45.2)  
 Advanced airway 130 (41.9)  
 Chest decompression 38 (12.3)  

Prehospital time (min)  61 (47-90) [25-1034]  

Admission observations Prehospital arrest 7 (2.7)* 
Systolic BP 122 (92-142)  

Respiratory rate 18 (12-20) 

Heart rate 105(80-125)  

Prehospital transfusion PRBC 2 (1-2) [0-4]  

FFP 2 (1-2) [0-4]  

In hospital transfusion PRBC 7 (1-15) [0-82]  

FFP 6 (1-14) [0-70]  

Cryoprecipitate 0 (0-1) [0-20]  

Platelets 0 (0-3) [0-18]  

Total PRBC  8 (3-18) [0-85]  
Total FFP  7 (2-16) [0-74]  

Any hospital PRBC transfusion 248 (80)  
Massive transfusion 146 (47.1) 
Tranexamic acid  119 (38.4) 
rFVIIa  33 (10.6)  

Mortality  62 (20)  
 
Table 4.2.  Injury profile of all patients who received prehospital blood transfusion.  Data are displayed 
as n (%) or median (IQR) with [range] in some cases.  Hospital blood product usage shown for the first 24 
hours.  Massive transfusion defined as 10 or more units PRBC in 24 hours.  PHBTx Prehospital Blood 
Transfusion; ISS Injury Severity Score; NISS New Injury Severity Score; AIS Abbreviated Injury Scale; PRBC 
Packed Red Blood Cells; FFP Fresh Frozen Plasma; TXA Tranexamic Acid;  rFVIIA Recombinant Activated 
Factor VII.  *Excludes 16 patients with no recorded admission observations.  
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    Recipients Non-Recipients P value 

N  97 97  

Age   24 (20-28) 23 (21-28) 0.975 

Patient 
Category 

UK Military 45 (46.4) 38 (39.2) 0.248 

Coalition Military 31 (32) 45 (46.4) 
 

Afghan Civilian 21 (21.6) 14 (14.4) 
 

Sex Male 95 (97.9) 97 (100) u/t 

Mechanism 
of Injury 

Blunt 1 (1) 3 (3.1) u/t 

Burn 0 (0) 0 (0) 
 

Explosive 50 (51.5) 48 (49.5) 
 

GSW 46 (47.4) 46 (47.4) 
 

Other 0 (0) 0 (0)   

Military ISS   16 (9-25) 16 (9-24.5) 0.686 

Military NISS  22 (15-33) 21 (14-34) 1 

AIS 3 or 
greater 

Head/Neck 0 1 (1) 1 

Face 0 1 (1) 1 

Chest 24 (24.7) 25 (25.8)  1 

Abdomen 18 (18.6) 18 (18.6) 1 

Extremity 67 (69.1) 65 (67) 0.727 

External 2 (2) 3 (2) 1 

 
Table 4.3.  Matched characteristics of paired groups of patients who did and did not receive PHBTx. 
Categorical data are shown as n (%) and compared using McNemar’s test.  Ordinal and scale data are 
shown as median (IQR) and compared using the Wilcoxon signed-rank test.   
u/t – Untestable due to limitations of McNemar’s test (due to zero value or multiple categories; Patient 
category was dichotomised to coalition/Afghan to allow testing)  
ISS Injury Severity Score; NISS New Injury Severity Score. 

  



83 

 

    Recipients Non-Recipients P value 

N  97 97  

Prehospital 
interventions 

Intraosseous access 14 (14.4) 16 (16.5) 0.824 

Advanced airway 19 (19.6) 9 (9.3) 0.041 

Chest 
decompression 

19 (19.6) 22 (22.6) 0.629 

Prehospital time (min) 68 (50-100) 109.5 (70 – 171) 0.008 

Admission 
observations 

Cardiac arrest 7 (7.2) 9 (9.3) 1 

Systolic BP 132 (111-145) 131 (114-150) 0.145 

Respiratory rate 19 (15-24) 20 (16-26) 0.173 

Heart rate 92 (74-115) 105(82-128) 0.041 

TXA 
 

22 (22.6)  0 (0) u/t 
rFVIIa   2 (2)* 10 (10.3) 0.033 

Prehospital 
transfusion 

PRBC 1 (1-2) [0-4] n/a 
 

FFP 2 (1-2) [0-4] n/a 
 

In hospital 
transfusion 

PRBC 2 (1-8.5) [0-49] 0 (0-3.5) [0-26] <0.001 

FFP 2 (0-7.5) [0-44] 0 (0-1) [0-20] <0.001 

Cryoprecipitate 0 (0-0) [0-4] 0 (0-0) [0-3] 0.068 

Platelets 0 (0-0) [0-7] 0 (0-0) [0-6] <0.007 

Total PRBC 
 

4 (2-10) [0-53] 0 (0-3.5) [0-26] <0.001 
Total FFP   2 (2-9) [1-44] 0 (0-1) [0-20] <0.001 

Any in-hospital PRBC transfusion 75 (77) 38 (39) <0.001 
Massive transfusion 12 (12) 8 (8) 0.388 
FFP:PRBC 
ratio 

  1 (0.83-1.23) 0.46 (0-0.72) <0.001 

Mortality   8 (8.2) 19 (19.6) 0.013 

 
Table 4.4.  Treatment and outcomes of matched groups of patients who did and did not receive PHBTx.  
Categorical data are shown as n (%) and compared using McNemar’s test.  Ordinal and scale data are 
shown as median (IQR) with [range] added where relevant and compared using the Wilcoxon signed-
rank test.   
Significant results shown in bold. 
u/t – Untestable due to limitations of McNemar’s test. (due to zero value) 
PRBC Packed Red Blood Cells; FFP Fresh Frozen Plasma; TXA Tranexamic acid; rFVIIa Recombinant 
Activated Factor VII 
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4.5 Discussion 

 

4.5.1 Methodological Validity 

 

A matched cohort design was employed, using an effective novel matching technique 

that produced similar injury complexes within each pair.  Thus it minimised the effect 

of the confounding variables that are included in the process.  (The substantial effect 

of unmeasured confounders is discussed below.)  The lack of prehospital observations 

was undesirable.  Close matching of injuries was intended to compensate for this.  ISS 

and NISS have been criticised on many grounds (see the appendix for a more in depth 

treatment of injury coding) (Lefering, 2002).  In particular, they conflate injury 

patterns, which both loses information about particular injuries and makes very 

different injuries (e.g. severe head injury and proximal limb amputation) essentially 

interchangeable (Russell et al., 2004).  This method therefore sought to match patients 

much more closely, making fuller use of the information contained in the AIS coding of 

the patient’s injuries by using the approach described.  This is a novel application of 

established techniques which may have wider applicability in the analysis of injury 

data, particularly if combined with physiological data.  The group of potential historical 

controls was considerably smaller than the equivalent group after the introduction of 

PHBTx (439 v 1153).  As such, it was inevitable that only a minority of PHBTx recipients 

would be matched to suitable controls.  It is possible that this could introduce some 

element of selection bias.  However, it is inevitable that matching recipients to 

patients from a cohort with less severe injuries selects for less severely injured 

recipients.  It is conceivable that the recorded effect would have been larger if more 

severely injured recipients and non-recipients had been included in the comparison.  In 

a related analysis looking at the effect of different medical retrieval platforms, a 

benefit of the MERT platform (including PHBTx) over others was only demonstrated in 

the ISS range 16-50, so this may not be the case (Morrison, Oh, et al., 2013). 

 

It is impossible to test in this dataset whether the methodology succeeded in 

compensating for the missing prehospital observations.  Since paired tests were used, 

significant results could have been generated by either between-group difference due 

to treatment effects or by poor matching of physiological response to injury within the 
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pairs.  The latter was not seen in the available data: admission observations were 

similar in the two groups. 

 

A facet of propensity score methodology deserves comment.  The conventional 

practice of selecting the potential control with the propensity score most closely 

matched to that of the recipient was implemented.  This is intended to give controls 

with similar characteristics to the recipients, thereby reducing the effect of measured 

confounders in the outcome analysis.  It is possible for the predictors of exposure 

(receiving PHBTx) and of outcome (mortality) to be orthogonal to one another.  At the 

extreme, if exposure were determined by hair colour and outcome by age then a 

propensity score methodology would match on the former alone, potentially leaving 

differences between the groups and, crucially, within pairs on the latter.  More 

realistically, factors may be very differently weighted in how they contribute to the 

propensity score and to outcome.  Thus, a similar propensity score may be arrived at 

based on many differing combinations of underlying characteristics, and the predicted 

outcome of these may vary wildly.  An example in this context might be severe head 

injury: it would have a profound effect on mortality but may have little correlation 

with whether a patient would receive PHBTx.  The present methodology goes some 

way to ameliorating this problem.  A more usual approach is to use multivariate 

analysis of the matched cohorts, employing generalised estimating equation 

methodology (Austin, 2008).  The number of matched cases was insufficient to allow 

this in the present study. 

 

4.5.2 Implications of the Results 

 

There was a large increase in total blood product usage between the two matched 

groups with median PRBC usage increasing from 0 to 4 (p<0.001, Wilcoxon) and from 2 

to 7 among those with ISS 16 or more (p<0.001).  This was despite the fact there was 

no increase in the proportion requiring massive transfusion (over 90% of pairs were 

concordant as to whether they received 10 or more units PRBC).  It is known that there 

has been a steady increase in blood product usage in recent years (Jansen et al., 2014).  

There was a significant difference in usage between the pre- and post-PHB time 

periods (Table 4.1).  Severely injured pre-PHB patients who were transfused received a 
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median (IQR) of 6 (3-12) units PRBC.  Equivalent post-PHB patients who did not receive 

PHBTx received 10.5 (4.5-22) units, a significant increase (p=0.003, Mann-Whitney), 

see Figure 4.4.  The PRBC usage in severely injured post-PHB patients who did receive 

PHBTx was 12 (4-19) units, which is not significantly higher than the latter group 

(p=0.9, ISS and NISS were also similar).  In addition, the FFP:PRBC ratio differed 

markedly between the matched groups.  The 11 excess survivors in the intervention 

group are inadequate for survivorship bias to fully explain the increased total volumes 

and ratios.  Therefore there was a large secular change in resuscitation practice 

between the two groups beyond the provision of a pre-hospital transfusion capability.   

 

 

 

Figure 4.4  Total units of PRBC transfused in the first 24 hours to severely injured (ISS>15) patients who 
received any PRBC or FFP and: 

 Were admitted before PHBTx was available (Pre-PHBTx), 

 Were admitted after PHBTx was available but did not receive PHBTx (No-PHBTx), 

 Received PHBTx (PHBTx). 
Boxes show interquartile range with median.  Whiskers show range.  Groups compared with Mann-
Whitney U test. 
ISS Injury severity score, PRBC Packed red blood cells, FFP Fresh frozen plasma, PHBTx Prehospital blood 
transfusion. 

 

Other factors which may confound the analysis of mortality were identified.  The fall in 

prehospital times probably reflects changes in the deployment of forces in Helmand 
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Province during the study period, with the arrival of US Marine Corps units 

accompanied by US aeromedical assets.  “Intelligent tasking” of aeromedical assets 

was implemented, whereby a combination of clinical, operational and logistic 

considerations drove the choice of which US (Army DUSTOFF or Air Force PEDRO) or 

UK (MERT) capability was deployed to a given casualty incident.  While quick 

transportation to hospital is no doubt beneficial to the casualty, selection of the larger, 

more clinically capable MERT platform during the post-PHB period may be an indicator 

of enhanced casualty burden.  This could be individual (i.e. the casualty’s injuries and 

condition) or collective (i.e. the number of casualties).  MERT can transport 8 casualties 

as opposed to 2 for DUSTOFF and PEDRO.  Thus the effect of the time from injury to 

admission is very difficult to assess.  The increased rate of prehospital procedures 

could represent increased need but, anecdotally, there seems to have been a lowered 

threshold for intervention in combination with the evolution and routine 

implementation of Standard Operating Procedures.  For example, rapid sequence 

induction is now used more as a definitive form of analgesia or where the requirement 

for general anaesthesia to facilitate surgery is anticipated (“expected clinical course”).  

The routine use of TXA and decreased rFVIIa use represent the effects of opposing 

trends in the evidence base for the two drugs (CRASH-2 trial collaborators, 2010; 

Hauser et al., 2010; Morrison, Dubose, et al., 2012). 

 

Therefore, no clear assessment of the hypothesis, which relates to the isolated benefit 

of PHBTx, can be made.  However, the data provide evidence that DCR in combination 

with intensive prehospital intervention including PHBTx is associated with substantial 

improvements in mortality (although the contributions of the various components 

cannot be determined and the prehospital time remains a confounding factor).   

 

Haemostatic resuscitation was introduced in the Post-PHB period, in that blood 

products were used frequently, early and in high FFP:PRBC ratios (Jansen et al., 2014). 

Rotational thromboelastrometry was deployed to guide coagulopathy management 

(Doran, Woolley and Midwinter, 2010).  Transfusion volumes are often interpreted as 

a proxy for blood loss.  Counter-intuitively, the “haemostatic” regime involved much 

larger total transfusion volumes.  This practice has been demonstrated to be able to 

correct physiological derangement in very severely injured combat casualties 
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(Morrison, Ross, et al., 2013).  These patients often need extensive debridement 

which, in the context of normotension with euvolaemia, may require considerable 

transfusion support.  It contrasts with DCR practice as described by others where 

conservation of blood products has been reported as one of the advantages of 

haemostatic resuscitation (Cotton et al., 2011). 

 

4.5.3 Policy Response 

 

 The data shown here were presented as a preliminary analysis at a meeting chaired by 

the Medical Director of the UK Joint Medical Command, the senior officer responsible 

for clinical research.  Prior to this, exploratory examination of scanned copies of 

patients’ notes and of the hospital laboratory information system and data available 

from the deployed ROTEM consoles indicated that it would not be possible to develop 

adequate coagulation or blood gas data to allow analysis.  Critical care follow up data 

was available for UK patients but would be difficult to obtain for US patients (since it is 

not held in any central database).  In any case, such further outcome analyses would 

suffer the same confounders as the mortality comparison.  The meeting directed that 

these should not be pursued. 

 

There was considerable debate as to whether a further analysis should be conducted 

using patients transported by non-MERT platforms as the potential controls.  The 

advantage of this would be that these patients were contemporary with the PHBTx 

recipients and therefore the analysis would not be confounded by differences in 

hospital management.  However, this analysis would involve differences in prehospital 

care much more significant than those seen in the present analysis.  Given the 

additional sensitivity of comparison of different national prehospital platforms and 

practices, the meeting also directed that this analysis should not proceed. 

 
4.5.4 Implications for Further Research 

 

There is very little evidence to support the use of PHBTx.  Neither the recent papers by 

Brown et al (2015) or Holcomb et a l(2014) nor this analysis establish strong evidence 
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in its favour.  In a separate analysis of UK military data, using a different methodology, 

Smith et al have also found no evidence of benefit (Smith et al., 2014). 

 

Concerns about its safety and logistic implications must therefore remain.  While the 

present analysis may show some support for PHBTx in military practice, it does not 

follow that this can be transferred into civilian usage.  The relative infrequency of 

severe injury in civilian practice could mean that its carriage by civilian prehospital 

services would lead to its use among a very different patient population where the 

risks and benefits may be differently balanced.  Where a patient is apparently 

exsanguinating, there can be little doubt that PHBTx is an appropriate treatment 

(though secondary to stanching the flow).  In all other circumstances, there cannot be 

certainty as to its usefulness.  Accordingly, it should be possible to define a population 

in which a sufficient degree of equipoise exists to support the randomisation of 

patients.  Randomised control trials are already proposed in the civilian setting: 

RePHILL (Prof M Midwinter, personal communication) and PAMPer (Brown, Guyette, 

et al., 2015), and these should be supported. 

 

Randomised research faces additional barriers in military practice, although 

randomised therapeutic trials have been conducted recently (Fries et al., 2014).  

However, the withdrawal of UK and US forces from Afghanistan represents the end of 

the opportunity to carry out such research, which unhappily was not pursued earlier in 

recent conflicts.  Additionally, the perception of the efficacy of PHBTx among military 

prehospital practitioners is so strong as to make randomisation impossible even if it 

was a practical option for several years. 

 

This work established that there was insufficient human data to demonstrate a benefit 

of PHBTx.  Given this, and the lack of information about the physiological and 

coagulation effects, the only option to explore the impact of this treatment in the 

context of military trauma at present is the use of an animal model. 
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5 Methodological Background to Work in the Animal Model 

 

The preceding chapter established the need for an animal model to study prehospital 

transfusion.  The remainder of this thesis concerns work carried out in that animal 

model of severe military trauma, which was designed for the evaluation of 

haemostatic resuscitation regimes.  The model was developed with a view to carrying 

out a randomised control trial comparing simulated prehospital transfusion with 

conventional resuscitation.  As discussed in Chapters 2 and 3 the roles of platelets in 

traumatic coagulopathy and of platelet in trauma resuscitation have not been fully 

elucidated.  Consequently, means of evaluating platelet function were required so 

these could be studied in the proposed RCT and in later work.  Therefore, in parallel 

with the model development, a flow cytometry assay of platelet activation and 

response to agonist was developed.  This became the focus of the author’s work and is 

detailed in the next two chapters. 

 

This chapter begins with a discussion of the coagulation assays, including those that 

address platelets, which were used in the model.  It then focuses on an exploration of 

the technique of flow cytometry, which is fundamental to understanding the 

development and assessment of the platelet assay laid out in the next two chapters.  

Although the development of the animal model is outside the scope of this report, this 

chapter ends with comments about the role of animal models and about the necessary 

modifications to the previously discussed Dstl animal model of combat injury. 

 

5.1 Coagulation Assays 

 

The design and validation of the platelet assay was part of the wider selection of 

assays of the coagulation system.  These included standard laboratory tests and 

thromboelastography (TE). 
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5.1.1 Laboratory Clotting Assays 

 

Standard laboratory assessments of coagulation, prothrombin time (PT) and activated 

partial thromboplastin time (APTT), were used.  PT (or its derivative, INR) and APTT 

have been shown to correlate with outcomes after trauma (MacLeod et al., 2003; Dirks 

et al., 2010; Johansson et al., 2011b).  However, these tests were designed to detect 

deficiencies of procoagulant factors and therefore do not reflect abnormalities of 

natural anticoagulants (Tripodi, Chantarangkul and Mannucci, 2009).  They are also 

unaffected by platelet number and function.  These facts, and the clinical advantages 

of near patient testing, have led to increased interest in assessment by rotational TE. 

 

5.1.2 Thromboelastometry 

 

Two commercial systems are available, each involving the stimulated clotting of blood 

in a cup while assessing the forces applied by the clot on a wire suspended centrally 

within it: 

 ROTEM—the wire (in fact a pin) rotates within the cup. 

 TEG—the cup rotates around the wire. 

The force is recorded as a deflection in the TE trace (see Figure 5.1).  Compared with 

laboratory tests, TE is more clinically convenient, rapid and informative: Table 5.1 

shows how different components of a TEG trace are thought to correlate with 

components of the coagulation system. 
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Figure 5.1  Viscoelastic haemostatic assays terminology and parameters 

α, alpha angle; AUC, area under the curve; CFT, clot formation time; CL (t), clot lysis (at time t); CT, clot 

time; k, rate of clot formation; LY (t), lysis (at time t); MA, maximum amplitude; MAXV, maximum 

velocity; MAXV-t, time to maximum velocity; MCF, maximum clot firmness; MCF-t, time to maximum 

clot firmness; ML, maximum lysis; r, time to clot initiation; ROTEM, Rotational Thromboelastogram; RT, 

reaction time; TEG, Thromboelastograph; TMA, time to maximum amplitude; '-'; no equivalent 

parameter. 

Reproduced by kind permission of Dr Roger Luddington, Addenbrooke's Hospital, UK.  See Table 5.1 for 

explanation of those elements used in this thesis. 
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Table 5.1  Key TEG and ROTEM terms used in this thesis, with attention to the contribution of platelets 

to these. 

 

TEG 

term 

ROTEM 

term 

Physiological correlate Platelet contribution 

R CT Time from activation until the 

formation of thrombin 

adequate to lyse fibrinogen, 

i.e. this represents the action 

of clotting factors upstream of 

thombin and is related to the 

processes of initiation and 

amplification. 

Platelets provide the site on 

which clotting factors come 

together, many of them being 

bound to the platelet surface 

during physiological clotting. 

Α α Predominantly the speed of 

generation of fibrin which, 

except in profound 

hypofibrinogenaemia, is 

usually determined by the 

quantity of thrombin 

generated. 

In viscoelastic tests, clotting 

factor activation precedes 

and causes platelet 

activation, which then 

contributes to clot strength 

through platelet aggregation, 

as the site of fibrin formation 

and polymerisation, and by 

binding (anchoring) fibrin 

polymers.  Since it 

contributes to the overall 

strength, it also effects the 

rate of clot formation. 

MA MCF Maximum strength of the clot 

is determined by the amount 

of fibrin generated (and its 

polymerisation and 

crosslinking) and by platelet 

aggregation.  The FIBTEM 

assay gives an MCF due only 

to the contribution of fibrin 

(although see text for further 

discussion). 

As above.  The difference 

between EXTEM and FIBTEM 

trace MCFs is held to 

represent the platelet 

contribution. 
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The use of TE-guided coagulation therapy has been explored in detail in cardiac and 

liver surgery, including using randomised control trials (Craig et al., 2008; Johansson et 

al., 2009).  The transfusion protocols in these studies typically use TE to detect clot 

abnormalities and respond by giving procoagulants (FFP, platelets) or antifibrinolytics 

(Shore-Lesserson et al., 1999).  The possible contribution of endogenous 

anticoagulants, which may be particularly important after trauma (Brohi et al., 2007), 

is not addressed.   

 

In recent years there has been much attention to TE’s applicability in trauma and 

ROTEM is now in routine clinical use in the British armed forces (Doran, Woolley and 

Midwinter, 2010).  Kauffman et al (1997) demonstrated that TEG detected a 

hypercoagulable state in mildly injured patients on admission but that severely injured 

patients were hypocoagulopathic.  TEG, unlike laboratory tests, was an independent 

predictor of transfusion requirement after blunt injury.  Plotkin et al (2008) found that 

low clot strength was associated with increased transfusion in combat casualties 

sustaining penetrating injury.  Again, TEG was superior to laboratory tests at predicting 

blood product use.  Carroll et al (2009) found that TE parameters on admission 

predicted fatality while Leeman et al demonstrated the use of TE to predict massive 

transfusion (Leemann et al., 2010).  Brohi’s group published a series (Davenport, 

Manson, et al., 2011), confirming the superior predictive value of TE over laboratory 

tests, now confirmed in a large international collaboration (n=808) (Hagemo et al., 

2015).  Johansson and Stensballe (2009) successfully implemented a haemostatic 

resuscitation regime using TEG to guide therapy with FFP and other blood products.  

Schöchl et al (2010, 2011) had similar results using factor concentrates.  TEG was the 

established technique in the Dstl laboratory and was therefore used in this study. 

 

5.1.3 Platelet Assays 

 

Having selected TE as the basis of the assessment of coagulation, it was necessary to 

select a means for assessing platelet function.  The assessment of platelet activity is 

complex because of the variety of functions that can be measured and the multitude 

of devices available to do this.  This variety reflects the fact that none is ideal. 
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Components of platelet function include activation (i.e. the expression of stored 

adhesion molecules), microvesicle formation, adhesion, and aggregation.  The latter 

can be static (how many platelet or platelet-leukocyte aggregates are there in the 

sample with or without in vitro stimulation) or dynamic (real time assessment of 

aggregate formation in response to a stimulus).  In addition, it is possible to determine 

the responsiveness of platelets to a variety of stimulants at different concentrations, 

which may be termed activatability.  No single platform provides for testing all of 

these.  In addition, the focus of many commercially available devices is the monitoring 

of antiplatelet therapy (Harrison et al., 2007). 

 

Platelets contribute to the TE trace in three principal ways (Table 5.1): as the site of 

rapid thrombin formation during propagation, by incorporation in the clot through 

binding to fibrin and by binding to one another (aggregation).  Cytochalasin D inhibits 

the conformational changes of the actin cytoskeleton that are crucial to platelet 

activation.  Use of cytochalasin D abolishes most of the contribution of platelets to clot 

strength.  This assay (FIBTEM in ROTEM nomenclature) isolates the contribution of 

fibrin to the clot, allowing detection of fibrinogen deficiency.  Comparison with the 

uninhibited assays gives a crude measure of the platelet contribution to clot strength.  

A poor EXTEM with a normal or near-normal FIBTEM implies inadequate platelet 

function.  When the FIBTEM is also abnormal, it is difficult to distinguish coexistent 

platelet dysfunction.  The functional fibrinogen TEG (FF TEG) removes the contribution 

of platelets using a GPIIa/IIIb antagonist and can be interpreted in a similar way.  In 

fact, these two methods of platelet inhibition (via the cytoskeleton and GPIIa/IIIb) have 

different and additive effects on the TE trace (Lang et al., 2004).  TE can also be 

modified to examine platelet function by using platelet agonists (ADP, arachidonic 

acid) as initiators alongside an exogenous thrombin mimetic and FXIIIa (to remove the 

influence of all clotting factors upstream of fibrinogen) (Craft et al., 2004).  This is 

known as platelet mapping. 

 

Flow cytometry allows measurement of MVplt, of the expression of activation markers, 

and of platelet and platelet-leukocyte aggregates.  These can be assessed with and 

without stimulation.  The technique can be used to study platelets in enriched 

samples: platelet-rich plasma (PRP) can be produced by a variety of techniques.  
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However, Shattil et al (1987) introduced whole blood flow cytometry, in which the 

platelets remain in the physiological milieu of whole blood and artefacts due to 

agitation during processing are minimised.  Platelet flow cytometry has the facility to 

detect multiple activation markers and to change between them easily (Michelson, 

1996).  Thus flow cytometry is a versatile technique allowing assessment of several 

aspects of platelet function.   

 

 A variety of other methods are available (Harrison et al., 2007).  The bleeding time, 

the time taken for a standardised wound to stop bleeding, has declined in popularity 

(Harker and Slichter, 1972).  However, given its insensitivity and poor reproducibility 

(Lind, 1991), this is a greater loss to comedy (Thomas, 1955) than haematology.  Light 

transmission aggregometry and its more user-friendly successor, impedance whole 

blood aggregometry, measure platelet aggregation under low shear in response to 

various agonists.  While the older systems require time and skill to operate, newer 

models have largely automated the process.  Since they are designed to monitor 

antiplatelet therapy, they do not allow an assessment of aggregation without in vitro 

stimulation, as might be seen in blood taken from patients after injury.  The PFA-100 

(Dade International Inc., Miami, FL) tests platelet aggregation and adhesion in 

conditions of shear intended to simulate blood flow (Kundu et al., 1996).  Platelets are 

activated by either collagen/epinephrine or collagen/ADP and the time taken to 

occlude a micropore in the wall of a simulated capillary is measured (closing time).   

 

Flow cytometry was chosen because of its inherent versatility and the facts that the 

equipment was available and the technique was already being employed to assess 

leukocytes.   

 

5.2 Flow Cytometry 
 

5.2.1 Principles of Flow Cytometry 

 

Having selected flow cytometry for measuring platelet function, a new assay had to be 

designed and validated.  An understanding of the principles of flow cytometry is 

necessary to discuss this process.  Flow cytometry measures characteristics of 
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individual cells by passing them through a laser beam past a set of sensors (Shapiro, 

2003; Macey, 2007).  The cells scatter the light.  The amount of light scattered forward 

(FSC) at low angles (0.5-10°) is a function of the size of the particle.  As light is reflected 

and refracted by structures within the cell it is scattered at larger angles.  The amount 

of side scattered light (SSC) is therefore a measure of the internal complexity of the 

cell.  These basic principles were set out by Coulter (1956) and Kamentsky et al  (1965) 

in the 1950s and 60s and allowed for cell counting and sorting devices to be 

developed.  However, in the 1990s, the availability of monoclonal antibodies (mAb) 

conjugated to fluorophores allowed flow cytometers to detect much more detailed 

information about cells.  mAb bind to cell surface epitopes.  When excited by the laser, 

the fluorophores emit characteristic wavelengths of light.  Alternatively, membrane, 

cytosolic and nuclear dyes may be employed. 

 

The cells must pass through the sensing area one at a time.  To achieve this most 

cytometers use a sheath flow technique.  Sample containing the cells enters the 

chamber through a small aperture.  This is surrounded by sheath fluid which is under 

pressure and flowing.  Sample fluid is drawn out and focused by hydrodynamic effects 

which arise from the shaping of the chamber.  This moves cells to the centre of the 

stream.  Pressure adjustment allows cells to be drawn out singly, which allows 

individual examination and prevents clumping.  Flow cytometers can process many 

thousands of detection events (cells, fragments and artefacts) per second.  The speed 

at which the stream passes the sensing area is fixed.  Consequently, the event rate is 

determined by the concentration of cells in the sample fluid and the width of the 

stream.  The laser beam has an oval cross-section.  Consequently, it is wider at the 

centre of the stream than at the edges.  If the sample stream is wide, small events 

passing through the edge of the stream are exposed to the laser for a shorter period at 

a lower intensity.  In consequence they scatter and fluoresce less light.  Conversely, the 

stream may be wide enough to accommodate more than one event passing 

simultaneously, their total scatter and fluorescence being summed.  When the 

cytometer senses an event it detects all light scattered or fluoresced by the contents of 

the sensing area.  Unbound dyes, for example, can contribute to the light detected. 
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5.2.2 Platelet Flow Cytometry 

 

The preparation of platelet samples for flow cytometry is a multiple-step process 

which requires careful standardisation.  Steps such as preparing platelet-rich plasma 

and fixation can affect the detection of surface antigen and attention must be paid to 

the necessity and ordering of these steps during the design of an assay (Cahill, Macey 

and Newland, 1993; Michelson, 1996; Shapiro, 2003).  The choice of anticoagulant is 

important as this can also cause activation.  Citrate, as used in this case, is 

recommended over alternatives such as lithium/heparin and EDTA for this reason 

(Michelson, 1996).  Markers must be selected for the detection of platelets and of 

platelet activation.  Platelet populations can be detected by light scatter characteristics 

alone but under certain circumstances other particles may fall in the platelet area of 

the scatter plot and not bind platelet-specific mAb (Michelson, 1996).  Such an mAb is 

normally included to allow positive identification.  Several markers are available.  CD61 

was selected because it is a widely used platelet-specific marker (Macey et al., 1999; 

Jacoby et al., 2001) and a porcine mAb was commercially available. 

 

There are multiple ways of detecting platelet activation.  PAC-1 mAb are specific for 

the binding site exposed by the activation-dependant conformational change in 

GPIIa/IIIb.  CD61 is part of GPIIa/IIb, so use of PAC-1 and anti-CD61 in the same assay 

could lead to interference at the binding sites.  While there is considerable species 

cross-reactivity, no PAC-1 mAb had been validated for use in pigs so this conflict was 

avoided.  The surface expression of the GPIb-IX-V complex falls during activation as the 

epitopes relocate within the OCS (Figure 2.5).  While this fall can be used as a marker 

of activation by measuring the fluorescence intensity of the platelets as a whole, it is 

not possible to define activated and unactivated populations.  CD62P and CD31 are 

widely used activation markers and validated mAb for porcine use were available.  

CD62P has been shown (in baboons) to be lost from the surface of activated platelets 

within 2 hours (Michelson et al., 1996).  These platelets continue to circulate and 

function in other respects.  For many applications this has the disadvantage that 

platelets must be drawn soon after any stimulus and processed quickly.  However, in 

this study, serial measurement of CD62P expression allows the detection of ongoing 

activation: one would expect a single activating stimulus to be associated with a rise 
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and fall in CD62P expression, whereas sustained expression (subject to assuming 

constant behaviour between baboon and pig platelets) would imply further 

recruitment of platelets to the CD62P+ population.  Measurement of platelet-

neutrophil aggregates (for which the assay could in future be adapted) would enhance 

this since platelets that have lost their CD62P following initial activation can still form 

aggregates (Michelson et al., 1996) and these circulate only for short periods (less than 

30min) (Michelson et al., 2001).  CD62P and CD31 were examined during the design of 

the assay. 

 

The stimulated activation of platelets in a flow cytometry assay can be used to provide 

a positive control, i.e. platelet activation may be stimulated and detected, allowing the 

experimenter to be confident that a failure to detect activation in platelets which have 

not been exposed to an exogenous agonist reflects a physiological reality.  

Additionally, it can be used to detect platelets that are inhibited or effete.  Several 

substances are used to stimulate the activation of platelets in vitro. 

 Thrombin activates platelets by cleaving the free terminal of a protease-

activated receptor (PAR).  The neoterminal then ligates the receptor’s bonding 

site (Grand, Turnell and Grabham, 1996).  While thrombin cannot be used 

alone in vitro due to clot formation, Thrombin Receptor Activating Peptide 

(TRAP), a short peptide consisting of the same residues as the PAR’s 

neoterminal, is a potent activator. 

 ADP has a more selective effect, causing partial degranulation but not 

aggregation of unstimulated platelets (Janes et al., 1994).  Impaired platelet 

response to ADP after injury is well documented (Kutcher et al., 2012; 

Wohlauer et al., 2012). 

 Collagen is a much weaker agonist unless used in combination. 

 Other agonists including epinephrine have been used. 

However, human studies indicate that, while there is considerable variation between 

individuals in their in vitro response to these substances, any given individual has 

broadly equivalent response to all of them (Panzer, Höcker and Koren, 2005).  TRAP 

and ADP were assessed during assay design (see Section 6.4). 
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5.2.3 Technical issues in flow cytometry 

 

There are a number of further technical issues relating to flow cytometry which 

underlie the work described in this chapter: compensation, Fc blockade and the use of 

isotype controls. 

 

Compensation.  First, excited fluorophores do not emit light at discreet wavelengths 

but rather over a range with a prominent peak at the wavelength used to describe 

them.  Hence flourescein has a peak within the range of the green passband (light 

filter).  However, flourescein also emits a small amount of light in the range of the 

yellow passband.  Consequently, any flourescein-conjugated mAb bound to an event 

will contribute to the phycoeytherin (yellow) signal.  Compensation for this 

phenomenon can be achieved by establishing the contribution of each fluorophore to 

the other channels of interest and using simultaneous equations to remove this from 

the reported fluorescence.  This process is automated in modern cytometers. 

 

Fc blockade.  Second, mAb are used for their ability to bind specifically to the epitope 

of interest.  However, non-specific binding also occurs.  Partly, this is due to the Fc 

domain (a major part of the structure of mAb which is constant and allows interaction 

with leucocytes) binding to Fc receptors.  These are expressed on many cell types but 

on leukocytes particularly and, to a lesser extent, platelets.  To prevent this, samples 

can be incubated with unconjugated, non-specific serum, which will saturate the Fc 

receptors.   

 

Isotype controls.  Some non-specific binding will still occur and this leads to the third 

aspect, the use of controls.  No stain controls (assays using vehicle without antibody) 

are used to detect the small amount of autofluorescence which cells exhibit.  It is then 

necessary to appreciate how much fluorescence will be caused by the binding of 

conjugated mAb to molecules other than the epitope of interest.  This is determined 

by running parallel assays using antibodies specific for irrelevant epitopes (i.e. ones 

that will not be present; this is achieved by raising the antibodies against a different 

species) and the same characteristics as the test Ab, i.e. of the same source species, 

the same isotype (light and heavy chain combination) and same fluorophore.  The 
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highest intensity of fluorescence emitted by isotype-bound events can be used to set a 

threshold.  Events in the test assay which fluoresce above this level are then taken to 

be positive for expression of the epitope.  This is the standard approach for 

discriminating positive from negative events in most applications of flow cytometry 

(O’Gorman and Thomas, 1999). 

 

5.3 Animal Models 

 

Chapter 4 of this thesis outlines the findings of the first comparative study of the 

effectiveness of PHBTx in a military context.  Although associated with a survival 

benefit, confounding changes in other aspects of treatment make it impossible to 

determine how much of this is attributable to PHBTx.  Since PHBTx was not a standard 

part of UK military practice and is associated with a considerable logistic burden 

(O’Reilly et al., 2014), further study was warranted to determine its efficacy.  There 

was no prospect of establishing clinical equipoise to allow a randomised trial of PHBTx 

in the current military environment.  Also, it would be extremely difficult to obtain 

suitably and consistently timed samples and the diversity of injuries would obscure 

much of the effect.  Despite this, understanding how, when and to what extent PHBTx 

is useful is highly important.  An animal model was the only means of achieving this.  

Use of an animal model had the additional benefit of allowing far more detailed 

monitoring and analysis of response to injury and treatment than would be possible in 

a human trial.  A suitable model would mimic the response to trauma seen in patients 

injured in contemporary conflict. 

 

This section will briefly consider some general issues surrounding the use of animal 

models, examine some of the relevant available models of trauma and describe the 

development of the existing large animal model of military trauma at Dstl.  Finally, it 

will introduce the process of developing a new model which took place in parallel with 

the work presented in this thesis. 
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5.3.1 Use of Animals in Research 

 

The use of animal models remains controversial (Rawstorne, 2010).  Animal models are 

useful because they allow subjects to be monitored and treated in ways that are not 

possible in human subjects.  Information about disease at its earliest stages or about 

treatment in the absence of the confounding influence of other therapy is gained.  

Objections range from absolute ethical ones, i.e. that there can be no justification for 

using animals (sometimes in ways that make them suffer) as the means to furthering 

man’s goals, to practical ones, i.e. that the information gathered is flawed and not 

helpful.  Interspecies differences can undermine the applicability of findings to human 

disease as can poor modelling of the disease of interest (Frith, Cohen and Brohi, 2012).  

Animal trials may be poorly designed or reported (Kilkenny et al., 2009).  Animal trials 

suffer from the same potential sources of bias as human studies, both internally (need 

for randomisation, blinding and allocation concealment) (Bebarta, Luyten and Heard, 

2003) and externally (need to assess all available evidence and avoid publication bias) 

(Roberts et al., 2002). 

 

The three principles of “replacement, reduction, and refinement” are intended to 

address these issues (Russell and Burch, 1956):  Replacement means using other 

means where possible; reduction means minimising the number of animals used; 

refinement means ensuring the highest scientific standards so that the use of each 

animal contributes as much as possible.  However, as Roberts has pointed out, these 

principles may conflict.  For example, using inbred, single-sex animals which all have 

disease induced in the same way with the intent of achieving the same severity and 

which then receive the same treatment (save for the item of interest) reduces within- 

and between-group variability, allowing smaller numbers to be used.  However, it also 

reduces the applicability of the results to the varied and dynamic reality of human 

disease (Roberts et al., 2002).  Small group sizes also increase the risk of type 2 errors 

in animal research. 
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5.3.2 Models of ATC 

 

Chapter 3 contains a partial description of some of the models which have been used 

in research about haemorrhagic shock and resuscitation.  Controlled haemorrhage can 

be induced by removal of a set volume of blood or by removing blood so as to reach a 

predetermined blood pressure.  Uncontrolled haemorrhage can be induced by a 

variety of injuries, including tail transection, aortotomy and liver injury.  However, a 

model of military injury to investigate the effectiveness of prehospital use of 

haemostatic resuscitation needs to include other aspects of injury and reproduce the 

pathophysiological response to injury. 

 

Brohi’s group recently reviewed available animal models used to investigate trauma 

induced coagulopathy (Frith, Cohen and Brohi, 2012).  They identified 23 models using 

5 species.  Pigs were the predominant large animal used.  Porcine models are held to 

recapitulate the human cardiovascular responses to injury and haemorrhage 

(Tsukamoto and Pape, 2009), which was the basis of their selection for the research 

programme at Dstl.  However, it should be noted that porcine inflammatory response 

has not been well characterised.  Pigs are hypercoagulable relative to humans and 

have less protein C (Siller-Matula et al., 2008).  Several models therefore use measures 

such as haemodilution to “knock down” the pig coagulation system, but it is unclear 

whether this is a valid manoeuvre.   The lack of protein C has clear implications if 

investigating a coagulopathy that appears dependent on this pathway.  None of the 

large animal models studied developed an endogenous coagulopathy due to combined 

injury and shock alone, as humans do. 

 

5.3.3 The Dstl Model 

 

The original Dstl pig model (i.e. before the developments explained in subsection 

3.3.4) was developed to test the effect of resuscitation on mortality and physiological 

parameters, such as blood gases, rather than to assess coagulation (Garner et al., 

2009; Kirkman, Watts and Cooper, 2010).  It was particularly concerned with two 

aspects of military practice not assessed in other models: blast injury and prolonged 

evacuation times (Place, Rush and Arrington, 2003).  The model therefore contains 
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both blast and sham blast arms and is designed so that there is potential salvageable 

mortality among subjects, which can be sustained for several hours with adequate 

resuscitation. 

 

Terminally anaesthetised large white pigs are surgically prepared, including 

splenectomy to prevent autotransfusion (Hannon, Bossone and Rodkey, 1985).  An 

adrenaline solution is applied to the spleen before removal, causing it to contract; the 

intention is to reduce variation by ensuring that the circulation has been similarly 

bolstered with spleen-sequestered red cells before the organ is removed.  The animals 

are wrapped in a Kevlar blanket before exposure to an explosive charge with no casing; 

again, these measures reduce variability by preventing secondary and tertiary blast 

injury.  Shock was induced by removing a fixed volume of blood through a preplaced 

cannula and this was then converted to an uncontrolled haemorrhage.  A Grade IV 

liver injury (i.e. involving disruption of 25-75% of the liver parenchyma) (Moore et al., 

1995) was later added to allow an element of uncontrolled bleeding with the 

possibility of rebleeding.  This was induced by placing a heavy suture through the 

substance of one lobe of the liver during preparation and looping such that it cut 

through when pulled from outside the closed abdomen.  In both cases the controlled 

haemorrhage was intended to reduce variability in the amount of blood that would be 

lost, especially between the blast and sham blast groups (see subsection 2.4.2). 

 

The success of these models has been touched on in earlier sections.  Several 

modifications to this original model were required for the proposed study of PHBTx.   

 Injury and haemorrhage were to be adjusted to induce a coagulopathy at a 

time point corresponding to hospital admission. 

 The endpoints of the trials were to be based on coagulation parameters rather 

than mortality.  As such, it was necessary for the animals to survive until the 

end of the experiment. 

 The liver injury had face validity as a potentially survivable wound, had a 

mixture of arterial and venous branches involved and was capable of 

rebleeding.  However, since the liver was cut rather than injured bluntly, there 

was relatively little damage to tissue that was not amputated.  Since tissue 

injury can alter the response to haemorrhage (Rady et al., 1993) and is crucial 
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to ATC (Frith et al., 2010), a limb injury (intended to mimic a fragmentation 

injury) was substituted. 

 Changes in the operational scenario in Afghanistan meant that evacuation 

times were now much shorter (Morrison, Oh, et al., 2013), and the timing of 

interventions in the model needed to reflect this. 

 
The next chapter focuses on the development of the flow cytometry assay.  The details 

of animal injury that occurred were largely irrelevant at this stage.  Consequently, a full 

description of the model after the modifications mentioned above is reserved for 

Chapter 7.  
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Chapter 6.  Platelet Flow Cytometry Assay Development 

 

This chapter describes the establishment of a porcine platelet assay designed to detect 

the expression of an activation marker and the response to an agonist.  Development 

of the platelet assay proceeded in four stages:   

1. An initial protocol was designed to allow the detection of platelets using 

specific markers and FSC/SSC characteristics. 

2. This assay was altered to optimise the detection of platelets. 

3. Measurements were made of platelet activation and response to agonist. 

4. Some simplifications were made to facilitate use of the assay in the context of 

the complex trial and animal model detailed in Chapter 7. 

 

6.1 Standard Conditions 

 

Animals mentioned in this discussion have been assigned a sequential code (PA1, PA2 

etc) in order to simplify the description.  Blood used in the development of the assay 

was drawn from terminally anaesthetised animals being used in the preparation of the 

model to be used in trials of haemostatic resuscitation.  The materials and methods 

used in animal preparation, injury and sampling were as set out in section 7.1 except 

that during development variations were made in the degree of blast loading, the 

volume of haemorrhage and the details of musculoskeletal injury.  The combination of 

these factors peculiar to each animal was not germane to the development of the 

FACS assay and will not be detailed in this chapter. 

 

All flow cytometry assays were performed on whole blood collected via the femoral 

arterial line and immediately aliquoted into citrated tubes.  These were placed on a 

roller for 5 minutes.  All antibodies were obtained from AbD Serotec (Oxford, UK), see 

Table 6.1.  The initial antibody mixture contained 10µL CD61 mAb, 10µL CD62P mAb 

and 20µL buffer (or equivalent isotypes, as appropriate).  10µL buffer was later 

replaced with 10µL CD45 mAb, as noted below, and this mixture was used throughout 

the remainder of the experiment unless otherwise noted. 
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Table 6.1—AbD Serotec mAb used during the development of the platelet flow cytometry assay. 

Antibody Target Isotype Flurophore 

MCA1222APC CD45 IgG1 APC 

MCA2263F CD61 IgG1 FITC 

MCA2418PE CD62P IgG1 PE 

MCA1746PE CD31 IgG1 PE 

MCA928F Control IgG1 FITC 

MCA928APC Control IgG1 APC 

MCA928PE Control IgG1 PE 

 

All incubation, lysis and fixation steps described below took place at 25°C, with the 

specimens protected from light.  Where appropriate, for red blood cell lysis whole 

blood was incubated for 15min in BD Pharm Lyse solution (BD bioscience, Oxford, UK).  

Where detailed, samples were washed or resuspended in FACS wash buffer (Delbecos 

Phosphate Buffer Solution pH 7.4, 0.01% sodium azide, 4% newborn calf serum).  

Where stated, samples were blocked in Fc blocking serum prior to staining (6µL mouse 

serum and 4µL FACS wash buffer).  Except where specified, samples were refrigerated 

after preparation and analysed the next day.  A no-stain control was performed for 

each animal (and, where appropriate, each protocol).  Isotype controls were 

performed for every assay. 

 

All samples were analysed on a BD FACS Cantotm II and analysed using BD FACSDivatm 

software.  Positive populations were gated using the relevant isotype control, the gate 

being set with less than 5% positive events in the isotype population. 

 

6.2 Initial Protocol Design 

 

A porcine FACS leucocyte assay had previously been developed at Dstl Porton Down 

(Carter, unpublished).  Development of the platelet assay began with modifications to 

this protocol.  The initial considerations were the ability to identify the platelet 

population using FCS, SCC and a platelet-specific marker and secondly to ensure that 

processing the samples 24hrs after initial fixation would not inadvertently change the 

platelet population.  
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The initial protocol, used for analysing the first samples, is detailed in Figure 6.1.  Note 

that no red cell lysis step was included (one had been used in the earlier leucocyte 

assay) as it was anticipated that this step would lead to artefactual platelet activation 

(Michelson, 1996).  Furthermore it was anticipated that these events (i.e. red cells) 

could be gated out on FSC/SSC criteria more easily than in the leukocyte assay due to 

the physical characteristics of the RBCs relative to the platelets.   

 

 

 

Fig 6.1  Initial (left) and final (right) porcine platelet flow cytometry assay protocols 

 

Samples were single stained for CD61 (Macey et al., 1999; Jacoby et al., 2001) in order 

to locate the platelet population using fluorescence. The forward and side scatter 

Whole blood sample 
collected into citrate 
vacutainer and placed on 
roller for 5 min 

40µl antibody mixture added 
and incubated for 15 min 

50µl blood added to 10µl 
blocking serum mixture and 
incubated for 10 min 

100µl 2% formaldehyde 
added and incubated for 
10min 

500µl buffer to stop fixation 

Whole blood sample 
collected into citrate 
vacutainer and placed on 
roller for 5 min 

50µl blood added to 10µl 
ADP (at various 
concentrations) or buffer 
and incubated for 10 min 

100µl 2% formaldehyde 
added and incubated for 
10min 

500µl buffer to stop fixation 

Sample split 
in two 

Sample analysed without 
further dilution Sample analysed  after 

addition of further 1ml of 
FACS running buffer 

Sample  sent to 
collaborators for analysis 
using Imagestream device 

40µl antibody mixture added 
and incubated for 15 min 
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parameters were adjusted until the putative platelet population, tagged with CD61, 

were fully visible in the FCS and SCC scatter plots. Figure 6.2 shows the first scatter plot 

detecting the CD61+ population.   

 

 

Figure 6.2. PA1. First plt scatterplot 

Initial plt assay set up scatter plot. CD 61+ events are in dark red.  The large population of low FSC and 

low SSC events is referred to as the “platelet area”.  The presumed identities of the other events are 

also shown.  The leukocytes also appear to be CD61+; the likely explanation is that there are platelet-

leucocyte aggregates: the flow cytometry equipment was set up to display red data points over black 

ones in this image. 

Representative of a total of 7 samples from 2 animals at 4 time points. 

 

In addition to success in finding this population, which exists below the FSC detection 

minimum set for previous leucocyte studies, a set of pairwise comparisons of same-

day versus next-day analysis on the FACS machine was performed.  This revealed no 

significant changes in FSC, SSC or fluorescence of the population of interest (Figure 

6.3).  Compensation (see subsection 5.2.3) was also calculated and subsequent 

experiments used dual staining for CD61 and CD62P. 
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Figure 6.3.  PA1.  Representative histograms of CD61 FITC and CD62P PE fluorescence processed on the 

day of preparation (top histograms) and 24 hours later (bottom histograms). 

Representative of paired samples from 4 time points in 1 animal. 

 

The next five trials demonstrated consistent flow cytometry findings:  Figure 6.4 shows 

a representative scatter plot from one of these animals (designated PA2) and a 

diagram labelling the populations seen.  It was observed that two populations were 

present in the scatter plots where the platelets had been identified. The staining of 

these two populations were not consistent with the expected staining patterns of 

platelets.  The smaller cluster of the two putative platelet populations (Population A) is 

shifted up and to the left of the larger cluster (population B). The relative complexity of 

the putative platelets appeared to be greater in population A as compared to 

population B (as shown by the differences in the SCC of the two populations).  CD61+ 

events occurred in population B.  The overall CD61 positivity of the events in the 

platelet area (i.e. A and B together) was usually 30 to 60%, normally at the lower end.  

Hence A appears to be a population of more internally complex and more numerous 
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events than the platelets with a size distribution in the lower part of the CD61+ events.  

It was not immediately clear what such a population would be. 

 

 

Figure 6.4. PA2 Scatterplot 

Only events inside the “platelet area” are coloured. 

CD61-/CD62P- Blue 

CD61+/CD62P- Yellow 

CD61+/CD62P+ Magenta 

Representative of 14 samples at 7 time points in 1 animal. 

 

Compounding this, the ratio of CD61+ to CD61- events increased over the course of 

most experiments.  Figure 6.5 shows histograms of CD61 fluorescence of a typical 

study at two time points.  At first there is a distinct positive group that is small 

compared to the negative one; subsequently, the peaks are more equal.  Note that 

there is not a blending together of the two peaks.  The latter might have indicated a 

lack of saturation of the epitope by antibody, i.e. some events were recorded as 

negative because not all (or enough) of their surface epitopes had been marked by the 

antibody, perhaps due to an insufficient concentration. 
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Figure 6.5  PA2 CD61 histograms.  Histograms showing FITC-A fluorescence of events in the platelet area 

at baseline (left) and R105 (right).  The gate was set using a 0.1% threshold on the isotype control for the 

B2 time point. 

CD61+ as % of parent: B2—23.7% 

   R105—51.6% 

Representative of the pattern of change seen in duplicate samples from 7 time points in this animal and 

in 4 other animals. 

 

Thus the initial assay appeared to detect events with the size and complexity of 

platelets but with poor uptake of the platelet marker, the presence of a second, 

distinct population of events and a dynamic shift between the two over the course of 

the experiments.  It was now necessary to optimise the detection of platelets and to 

identify population A. 

 

6.3 Protocol Optimisation 

 

A series of experiments were then conducted to examine all the alterable aspects of 

the sample preparation process to determine their impact on the results.  The 

following steps were examined: 

 

1. The effect of Fc receptor blockade using mouse serum (which was originally 

included in the leukocyte assay to prevent non-specific binding). 

2. The effect of a red cell lysis step. 

3. Comparison of whole blood platelet staining with platelet-rich plasma (PRP) 

preparation. 

4. Antibody and sample titration. 
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5. The concentration of fixative during the fixation step. 

6. The concentration of fixative during storage overnight. 

7. The degree of dilution of the sample during analysis on the FACS machine. 

 

A series of pairwise or higher-order comparisons of the first three changes mentioned 

was conducted during study PA3, a sham blasted animal.  The remaining aspects are 

examined in the next subsection. 

 

Fc receptor blockade and red cell lysis were elements of the original leucocyte assay.  

Fc receptor blockade with mouse serum interfered with CD61 detection in the platelet 

area (see Figure 6.6).  Use of red cell lysis produced no usable data (Figure 6.7).  These 

steps were removed from the protocol. 

 

 

Figure 6.6. PA3 CD61 FITC histograms at B2. 

Left—with Fc receptor blockade.  Right—without Fc receptor blockade. 

No increase in fluorescence was observed with the isotype controls. This implied that the improvement 

in CD61 positivity was due to improved specific binding to CD61, not non-specific binding to any Fc 

receptors expressed within the population. 

Representative of paired samples at 3 time points in 1 animal. 
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Figure 6.7.  PA3 CD61 Histogram at R150. 

Post red cell lysis.  Note that the gate, set using the isotype control for this protocol, has a much lower 

threshold than the previous examples.  Red cell lysis has had profound effects on both antigenicity and 

non-specific binding of events in the platelet area.  

Representative of 2 samples at one time point in one animal. 

 

Platelet rich plasma was prepared using a low-g centrifugation technique.(Delgado et 

al., 2003; Lindenblatt et al., 2007)  Analysis of these samples (Figure 6.8) showed loss 

of a considerable part of the CD61+ population, so this approach was abandoned.   

 

 

Figure 6.8.  PA4.  Representative scatter plots at R165 demonstrating the loss of CD61+ subpopulations 

when comparing the whole blood assay (left) and an assay using PRP (right).  Large (possibly aggregated) 

and activated platelets have been lost.  Duplicate assays of paired samples (PRP+ and PRP-) at 8 time 

points in 1 animal.    CD45+,CD61- Red; CD45+,CD61+,CD62P- Yellow; CD45+, CD61+,CD62P+ Magenta. 
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Addition of the leucocyte marker CD45 demonstrated that it was strongly expressed by 

population A (as described above), see Figure 6.9.  This population was excluded from 

further analysis. 

 

 

Figure 6.9   PA5 CD45 at B2 

Left—CD45+ in magenta and CD45- in green.  Most CD45+ events are in the area previously designated 

population A.  Given that they express the leucocyte-specific marker CD45 but are of similar size (judged 

by forward scatter) as CD61+ events (platelets), it seems likely that these represent fragments of 

leucocytes). 

Right—Gating only on the densely CD45+area in the left figure, APC fluorescence (for CD45) is shown: 

No stain control in grey, isotype control in red, positive antibody in blue.  The marked gate includes 1% 

of events from the isotype histogram and 48% of those in the positive antibody histogram.  Non-specific 

binding of isotype antibody (possibly due to Fc receptor expression) and wide variation in surface 

marker expression among fragments would account for these data. 

Representative of 50 assays taken from 5 animals at between 3 and 8 time points in each case. 

 

6.3.1 Antibody and Fixative Concentration and Sample Dilution for Analysis 

 

In parallel with analysis using the FACS Canto II, a collaboration was set up with 

another laboratory to examine the samples with an Imagestream (Amnis, Seattle, WA, 

USA) imaging cytometer.*  The other laboratory requested that sample dilution be 

minimised so that samples could be processed quickly.  However, there are several 

considerations in manipulating sample and reagent volumes and concentrations in 

flow cytometry, the effect of which on the assay had to be assessed: 

                                                 
*
 The Imagestream work affected the development of this protocol but does not itself form a part of this 

thesis. 
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 There is a limit to the ability of the cytometer to deal with numerous, small 

events (such as platelets) which can lead to false negative fluorescence plots. 

o This is compounded by the shape of the laser, as mentioned in 

subsection 5.2.1. 

 High concentrations of fixative can, over time, alter the binding of antibodies to 

epitopes and cause an endogenous signal to appear in FL1 (Shapiro, 2003). 

 

A series of experiments were undertaken to optimise the assay for use with 

Imagestream while addressing these issues.  First, dilution at the end of fixation was 

reduced (PA6).  As shown in Figure 6.10, this led to loss of positive events.  It was not 

clear whether this was due to the effect of storage in more concentrated fixative or to 

high events rates during analysis.  Recorded event rates in some cases approached the 

manufacturer’s specified maximum of 10,000 per second, so the latter was a 

possibility. 

 

 

Figure 6.10.  PA6.  Samples taken at S2 and processed according to the standard protocol except when 

terminating fixation.  Histograms show CD61 FITC fluorescence after termination of fixation using (from 

left to right) 250µL, 500µL and 1mL of buffer.  Note the marked increase in the relative number of 

positive events as the dilution is increased. 

Representative of duplicate assays of each dilution from two time points (twelve assays in total) in 1 

animal. 

 

Second, the event rate was increased while holding fixative concentration (during both 

fixation and storages) constant (PA7).  This was achieved by adding two new protocols 

using more blood and less fixative, albeit at higher concentrations.  The protocols are 

in Table 6.2.  This lead to increased fluorescence of unstained controls (Figure 6.11) 

and to loss of positive events in the assay (Figure 6.12).  However, these changes had 

increased both the concentration of blood (and therefore the event rate during 

analysis) and the ratio of blood to antibody mix. 
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Figure 6.11.  PA7.  Isotype control histograms at R30 for Protocols A (Black-the standard protocol in 

earlier assays), B (Red) and C (Blue).  B and C represent increasing volumes of blood used with smaller 

volumes of more concentrated fixative.  See Table 6.2. 

Representative of duplicate assays of each protocol at 4 time points (24 assays in total) in 1 animal. 

 

 

Figure 6.12  PA7  CD61 FITC fluorescence histograms at R30 for Protocols A (Black), B (Red) and C (Blue).  

See Table 6.2 for protocols. 

The gate was set to include 0.7% of events in the protocol B isotype control at R30 (previous figure). 

Note the right shift of the negative peaks as we move from A to C, consistent with the previous figure. 

In addition, there is a very marked shift from the positive to the negative peak as we move from A to C. 

Representative of duplicate assays of each protocol at 4 time points (24 assays in total) in 1 animal. 

 

In the third experiment (PA8), another protocol was added which corrected for this.  It 

did not restore the positive events, indicating that antibody concentration was not the 

critical issue.  To test for the effect of concentration during analysis (i.e. event rate), 

samples from each protocol were run neat, after the addition of a further 500µL of 

buffer and after the addition of 1mL (total) of buffer.  Protocol C was the “poorest 

performer” for CD61 positivity in the previous experiment.  Figure 6.13 shows analysis 

of a protocol C sample at the three dilutions.  Note the massive shift from a negative to 
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a positive peak.  The dilutions were made immediately before analysis, so the 

differences seen are due to the performance of the analyser, not due to a storage 

lesion.  Although the effect was less dramatic the “best performer”, protocol A, was 

also enhanced by the additional dilution.   

 

 

Figure 6.13.  PA8.  CD61 FITC fluorescence histograms at B2.  Protocol C (table n) was used in each case.  

A) sample analyzed neat. B) sample analyzed after addition of 500µL buffer. C) sample analyzed after 

addition of 1mL (total) of buffer.Representative of duplicate assays using 4 protocols on samples from 3 

time points (24 assays in total) in 1 animal.  Each assay analysed with three different dilutions. 

 

It would appear that at high event rates the cytometer is unable to detect many of the 

positive events.  Therefore subsequent experiments used Protocol A (the existing 

standard protocol) combined with dilution with 1mL buffer, yielding a mean event rate 

of 700 per second. 

 

Table 6.2—Protocols used during PA7 (A to C) and PA8 (A to D).  Protocol A represents the standard 

protocol in use hitherto.  In all cases, fixation was stopped by the addition of 1mL of buffer.  PA8 

samples were further diluted immediately before analysis. 

Name Blood Ab Fixative Fix Volume Fixative 
conc 

Storage fixative 
conc 

A 50µL 40µL 100µL of 2% 190µL 1.05% 0.17% 

B 100µL 40µL 50µL of 4% 190µL 1.05% 0.17% 

C 100µL 80µL 40µL of 6% 220µL 1.09% 0.20% 

D 50µL 60µL* 100µL of 2% 210µL 0.95% 0.17% 

*The antibody mixture for protocol D used 20µL of each mAb without any buffer. 
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6.4 The Activatability Assay 

 

Subsequent experiments confirmed that the developed protocol gave dependable 

rates of CD61 positivity.  The next stage in refining the assay was to select an 

appropriate platelet activation marker and validate the assay using platelet activation 

assays.  Hitherto CD62P antibodies had been used but it was now necessary to check 

that these were useful for detecting platelet activation.  This would require a 

stimulation assay.  It was natural to combine this experiment with an assessment of an 

alternative activation marker (CD31). 

 

Experiments were conducted using a dilution series of TRAP-6* with a maximum 

concentration of 64µM, which was expected to maximally stimulate the platelets.  

There was no apparent reaction.  Figure 6.14 shows CD62P positivity of platelets at a 

representative time point after incubation with buffer and with 64µM TRAP-6.  This 

result was repeated in subsequent experiments.  The experiment was repeated using 

TRAP-6 from a different supplier.  The results were repeated.  As a final check, TRAP-6 

from the same batches, prepared in the same way at the same concentrations, was 

used in a stimulation assay for a study of human platelets that was being developed in 

parallel.  TRAP-6 caused high levels of platelet activation, just as would be expected.  A 

fault with the preparation of TRAP-6 had been excluded.  In fact, this confirms the 

findings of two other groups (Kinlough-Rathbone, Rand and Packham, 1993; Connolly 

et al., 1994) which have demonstrated that pig platelets show only a partial response 

to TRAP-6 characterised by shape change and aggregation but not degranulation. 

 

 

                                                 
*
 i.e. a six-amino acid residue version of Thrombin Receptor Activating Peptide 
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Figure 6.14.  PA10.  Representative histograms of CD62P PE fluorescence for samples taken at B2 and 

stimulated with 64µM TRAP-6 (left) and buffer (right) for 10 min.  Representative of duplicate assays 

analysed with 6 concentrations of TRAP-6 (including control) at 4 time points in 3 animals. 

TRAP-6 was therefore also abandoned in favour of ADP.  PA9 was the first animal used 

for this purpose.  A matrix of assays to be performed at each time point was designed, 

Table 6.3.  The range of ADP concentration used was based on an inspection of the 

literature (Panzer, Höcker and Koren, 2005).  Samples were incubated with one of five 

concentrations of ADP, or with buffer, for 10minutes.  Then they were incubated with 

the standard antibody mixture, with CD31 Ab in place of CD62P Ab or with isotype 

controls. 

 

Table 6.3—PA9 ADP concentration series at time points T0, R30, R60, R105.  Each concentration was 

incubated with sample for 10 minutes before staining with Ab mixtures containing mAb for either CD31 

or CD62P or with isotype controls. 

Name Volume of 
concentrate 

Volume of 
PBS 

Concentration 
of solution 

Final 
concentration 
(with sample) 

A 1mL of Stock Nil 60µM 10µM 

B 500μl of A 500μl 30µM 5µM 

C 500μl of B 500μl 15µM 2.5µM 

D 500μl of C 500μl 7.5µM 1.25µM 

E 500μl of D 500μl 3.75µM 0.675µM 

F Nil 1mL - Control 

 

Table 6.4 shows percentage positivity for CD31 and CD62P for each ADP concentration 

of ADP.  There was poor positivity for CD31 even at high concentrations of ADP.  This 

was representative of all experiments run using the CD31 mAb and consequently this 

was abandoned in favour of CD62P.  While increased expression of CD31 after platelet 

stimulation is established in humans (Cramer, Berger and Berndt, 1994) there is no 

literature to confirm this in swine.  Additionally, there is evidence of reduced CD31 

expression after in vivo stimulation (Metzelaar et al., 1993); the studied platelets had 

been subject to in vivo stimulation and this may have affected their response to in vitro 

stimulation.  Finally, ADP may be an unsuitable agonist to use with CD31, given that it 

only partially stimulates degranulation. (See subsection 5.2.2) 
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Table 6.4—PA9 % of Platelets (CD45-, CD61+) positive for CD62P or CD31 after incubation with different 

concentrations of ADP.  Gate set to include <5% of events from the respective isotype controls. 

Representative of a total 5 samples from three time points in three animals.  Assays completed in 

duplicate (i.e. 10 in total). 

Tube Name Final 
concentration 
(with sample) 

CD62P+ % CD31+ % 

R60 A 10µM 32.5 7.8 

R60 B 5µM 30.3 8.6 

R60 C 2.5µM 26.4 9.6 

R60 D 1.25µM 22.9 8.5 

R60 E 0.675µM 23.5 10.2 

R60 F Control 18.7 10.6 

 

 

6.5 Final Optimisation 

 

The ADP stimulation assay worked and achieved CD62P positivity of the order of 40%, 

consistent with the literature.  Of note, this version of the assay consistently 

(completed in full for 3 animals) found more than 95% of events in the platelet area to 

be CD61 positive, with no variation over the course of the experiment, as had been 

seen earlier (Figure 6.5). 

 

The final step in development was a simplification of the protocol to facilitate its use 

alongside both the existing leucocyte FACS assay and multiple other aspects of 

simultaneous sample preparation and analysis required as part of the proposed trial.  

The platelet FACS protocol remained a developmental tool and a secondary endpoint 

in the trial, the process outlined above having finished just as model development 

reached a conclusion.  Consequently the assay was optimised to allow its validity and 

utility to be assessed, as outlined in Chapter 7, while minimising its impact on 

laboratory and human resources.  As such, only unstimulated and maximally 

stimulated assays were used. 
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The CD45 mAb was being used to exclude the CD45+ events in area A (Figure 6.4).  An 

analysis was conducted to see whether simply excluding area A from the platelet 

population would significantly affect the output, i.e. the % CD62P positivity.  Figure 

6.16 shows a Bland-Altman plot comparing the two methods of excluding the 

presumed white cell fragments.  Gating out area A, rather than using the CD45 marker, 

reduced the measured CD62P positivity by a mean (SD) of 0.825% (0.198), which is 

negligible.  There was no evidence that the difference in output was affected by the 

activation state of the platelets (i.e. there is no correlation between the difference and 

the mean).  The CD45 mAb was removed from the assay. 

 

Figure 6.16  Bland-Altman Plot comparing %CD62P positivity among CD61+ platelets identified by (a) 

excluding all CD45+ events in areas A and B of Fig 4 and (b) only including area B, gating out area A. 

X-axis: mean of (a) and (b).  Y-axis: (a) – (b).  See text above for discussion. 

 

The final protocol for the platelet flow cytometry assay was as shown in Figure 6.1.  
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Chapter 7.  Assay Validation 

 

Development of the flow cytometry assay proceeded in parallel with development of 

the animal model, such that the assay design detailed in the last chapter was 

completed just as the model was finalised.  The animal work then continued with the 

start of the randomised control trial.  Before using the assay to compare platelet 

activity between the groups, an assessment of the function of the assay and its 

interaction with the animal model was required.  Since the platelet assay was a 

secondary outcome of the trial, this was achieved by an analysis of data from six 

animals from early in two arms of the trial.  This chapter sets out the findings of that 

analysis.  This lead to the formulation of a new hypothesis about the effect of surgical 

preparation of the animals on platelet function.  Further assays were conducted to 

examine this hypothesis.  Consequently, methodology and data for this “further 

analysis” appear in their own subsections below. 

 

7.1 Methods 

 

The study* was conducted on terminally anesthetized cross-bred female Large White 

pigs and was ethically reviewed and conducted in accordance with the Animals 

(Scientific Procedures) Act, 1986.  The animals were housed indoors and were fed on a 

complete diet comprising coarse ground mixture of wheat, barley, soya protein, 

vitamins and minerals.  The animals fed ad libitum and consumed approximately 5 kg 

per day.  They were allowed water ad libitum. 

 

7.1.1 Blood bank 

 

Blood was collected by exsanguination from terminally anaesthetised female Large 

White pigs.  Briefly, standard units  of blood were collected from a carotid cannula at a 

flow rate of 65-90 mL/min into citrate, phosphate and dextrose (CPD) blood collection 

                                                 
*
 The design of the animal model and the trial were not the author’s responsibility; descriptions of these 

matters are based on information provided by Dr E Kirkman and therefore align with the methodology in 

his team’s recent paper based on this work (Watts et al., 2015).  The author was on compassionate leave 

at the time that the six experiments detailed in this chapter were conducted and is grateful to his 

colleagues for completing these.  However, all the analysis presented here is the author’s own. 
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bag (RCB434CCL, Pall Medical, UK), with pauses between bag collection resulting in an 

overall bleeding rate of 22.5 mL/min.  The blood was processed according to standard 

UK blood transfusion protocols (UK Blood Transfusion & Tissue Transplantation 

Services, 2013) to separate the red blood cells from the plasma, which was 

leucodepleted, while the packed red cells were stored in saline, adenine, glucose and 

mannitol solution (SAG-M).   The platelets were discarded.  Collected units of blood 

were processed within 90 min of collection.  The resulting units of PRBC were stored at 

4°C (LabCold Blood Bank, UK) and used within 14 days of collection.  The plasma (FFP) 

was fast-frozen (MP1100 Plasma Freezer System, Thermogenesis, US), stored at -30°C 

(LabCold Plasma Freezer, LabCold, UK) and used within 6 months of collection.  FFP 

was thawed at 37°C in a dry plasma thawer (Sahara III Maxitherm, Sarstedt, Germany) 

immediately before use.  Prior to use all donor products were forward and reverse 

matched to recipient blood.  In addition, since PRBC and FFP from different donors 

were used for resuscitation, they were also cross-matched with each other. 

 

7.1.2 Surgical Preparation 

 

The animals were fasted for 18 hours before the surgical procedure, but allowed water 

ad libitum.  After premedication with intramuscular midazolam hydrochloride (0.1 

mg/kg) anaesthesia was induced by mask with isoflurane (5%) in a mixture of oxygen 

and nitrous oxide (1:1) and the animals intubated. Surgical anaesthesia was 

subsequently maintained with isoflurane (1%–2%) in a mixture of oxygen and nitrous 

oxide (1:2) and the animals ventilated using positive pressure ventilation (Blease 

Manley MP3 Anaesthesia Ventilator).  Initial monitoring consisted of end-tidal CO2, 

pulse oximetry through a tail probe and skin surface electrocardiogram electrodes 

(Propac 106EL, Protocol Systems Inc, Oregon).  With the animal positioned supine 

surgical preparation took place after skin preparation with povidone-iodine solution 

(10% wt/vol, Betadine Aqueous Antiseptic Solution, Seaton Healthcare Group plc, UK). 

 

The left carotid artery (Swan Ganz, Edwards Life Sciences Ltd, Newbury, UK), both 

internal jugular veins, left femoral artery and vein were cannulated (Portex 8FG, Hythe, 

UK).  A balloon tipped flow-directed cannula (744MF75 Swan Ganz, Edwards Life 

Sciences Ltd, Newbury, UK) was introduced through a right internal jugular vein 
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cannula introducer sheath, (Desivalve Catheter Introducer, Vygon, Cirencester, UK) 

and advanced until its tip was in the pulmonary artery.  Cannula placement was 

determined by monitoring pressure changes at the tip. 

 

After venous access had been established, anaesthesia was continued with 

intravenous alphaxalone to maintain a surgical plane of anaesthesia assessed by 

palpebral reflex and jaw tone (Alfaxan®, Jurox (UK) Ltd, Malvern Link, UK), and the 

isoflurane was discontinued. 

 

A midline laparotomy was performed, the spleen contracted by topical application of 

adrenaline (up to 1.5 mL of a 1 mg/mL solution) before removal and the bladder 

catheterized by open suprapubic cystostomy.  All incisions were closed en masse.  

Animals were allowed to breathe spontaneously for the remainder of the experiment 

unless they displayed marked respiratory depression, at which stage Synchronized 

Intermittent Mandatory Ventilation (Drager Evita 2, Draeger Medical UK Ltd, UK) was 

instituted in an attempt to maintain adequate oxygenation and prevent severe 

hypercapnoea.  The animals recovered from surgery under anaesthesia for 1 hour 

before baseline measurements were made.  Anaesthesia and surgical preparation took 

place at in a surgical facility collocated with the animal house.  After surgery, animals 

were transported (while anaesthetised) to the experimental facility adjacent to the 

blast arena. 

 

7.1.3 Cardiovascular Monitoring 

 

Arterial blood pressure was recorded through the carotid artery cannula and 

pulmonary arterial and central venous pressures were recorded via the flow-directed 

balloon-tipped flotation catheter, which was also used to determine cardiac output as 

a 6 minute rolling average (Vigilance Volumetrics CEDV, Edwards Lifesciences, US).  

Physiological pressure measurements were made using strain gauge manometers 

(Sensonor 840, SensoNor a.s., Norway) and zero pressure for all transducers was set at 

heart level.  Body temperature was maintained at approximately 38°C using external 

heating/cooling and blankets as appropriate.  The bladder was drained at hourly 

intervals. 
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All cardiovascular variables were recorded using a computerized data acquisition 

system (Maclab 8/s, ADInstruments, UK) and associated software (Chart v4.2.3, 

ADInstruments) for subsequent analysis. 

 

7.1.4 Blood Gas and Related Chemistry 

 

Arterial and venous blood samples were taken anaerobically into heparinized syringes 

from the carotid and pulmonary artery catheters respectively for blood gas, base 

excess, and lactate analysis (Gem Premier 3000 Blood Gas Analyzer, Instrumentation 

Laboratories, Warrington, UK). 

 

7.1.5 Experimental Protocol 

 

The animals were randomly allocated to one of two treatment groups at the outset 

(Figure 7.1).  The timeline for the experimental protocol is shown in Figure 7.1.   

 

Blast exposure.  After baseline measurement the animals were moved outdoors, 

wrapped in a Kevlar blanket to protect from secondary and tertiary blast effects and 

positioned on a trolley 2.1 m from a cylindrical charge of EDC1S explosive (2.2 kg) 

which was then detonated remotely.  Animals subjected to sham blast were treated 

identically but not exposed to blast. 
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Figure 7.1  Experimental protocol and timeline. Red bordered boxes represent the clinical correlates of 

experimental events. 

Time points: B1—baseline on initial cannulation.  SURGERY (not shown)—blood taken immediately after 

completion of surgery.  B2—baseline after completion of surgical preparation and transportation.  

BLAST—samples taken 15 min after exposure to blast (immediately before injury).  INJURY—samples 

taken after musculoskeletal injury and controlled haemorrhage.  S1 and S2—samples taken after 15 and 

30 min of shock, respectively.  R30, R60 etc—samples taken 30, 60 etc min after onset of resuscitation.  

R90 coincides with the “decision re surgery” clinical event; this time point was used for the primary 

endpoint of the study.  However, this is not relevant to the discussion in this chapter.  Sal—Normal 

Saline 

 

Tissue injury phase.  Immediately after the blast (or sham blast) the animal was 

returned to the physiological monitoring suite and fifteen minutes later, all animals 

were subjected to a controlled soft tissue injury using a blunt captive bolt pistol (CASH 

Special Knocker, Accles & Shelvoke, Sutton Coldfield, UK) delivering 4 standard impacts 

(using 2 Grain .25 cartridges) to the muscle of the right hindquarter.  This resulted in 

widespread deep contusion in the underlying muscle but no fracture to bone.  Five 

minutes after the tissue injury a haemorrhage of 35% of the estimated total blood 

volume was performed over 9 min 40 sec via the femoral arterial cannula, using a 

computer-controlled pump (Masterflex L/S model 7550 –17, Cole Palmer Instrument 

Company, Chicago, IL).  The rate of bleeding reduced exponentially as the 
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haemorrhage progressed to mimic the rate of haemorrhage from a major arterial 

lesion.  For blood volume and bleeding rate equations see Stern et al., 1993 and 

Garner et al., 2010 

 

Shock phase.  Following haemorrhage, the animals underwent a 30 minute shock 

period during which a capped volume of 0.9% saline (500 mL maximum) was 

administered as necessary to maintain a target systolic arterial blood pressure (SBP) of 

60 mmHg, reflecting an aspect of current clinical practice by Combat Medical 

Technicians.  Resuscitation infusions were warmed to 37°C and administered at a rate 

of 200 mL/min (Belmont Rapid Infuser, Belmont Instrument Corporation, US). 

 

Pre-hospital evacuation phase.  The next phase of the protocol represented a 60 min 

pre-hospital evacuation phase.  Warmed resuscitation fluid was administered 

according to the relevant protocol, with a final target SBP of 80 mmHg in each group.  

Group 1 was given aliquots of 0.9% saline (representing standard of care) to attain and 

maintain the target SBP, while Group 2 received Packed Red Blood Cells (PRBC) and 

Fresh Frozen Plasma (1:1 ratio, PRBC and FFP given simultaneously).  The volume of 

blood products in the pre-hospital phase was capped at 4 Units (4x450 mL 

approximately) per animal (2 units PRBC and 2 Units FFP).  Once the maximum amount 

of blood product had been used resuscitation continued to the same pressure target 

using 0.9% saline for the reminder of the pre-hospital evacuation phase.  All infusion 

volumes were measured accurately. 

 

In-hospital phase.  The in-hospital phase represented more aggressive resuscitation to 

a normotensive target (SBP 110 mmHg) using PRBC:FFP (1:1) in all groups.  

Supplementary oxygen (minimum FiO2 0.3) was given and titrated to attain an arterial 

oxygen saturation (SaO2) of 98%.  Due to the limitations of the blood bank the total 

amount of PRBC:FFP used in any one animal was capped at 6 Units of each product (in 

addition to the PRBC used during the pre-hospital phase in Group 2).  Once the total 

permissible amount of PRBC:FFP had been given resuscitation continued to the same 

pressure target using 0.9% saline in all groups.  In practice few animals received saline 

in the in-hospital phase (3/9 in Group 1; 2/9 in Group 2). 
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7.1.6 Sampling and Measurements 

 

Cardiovascular and paired arterial and mixed venous blood gas measurements were 

made before and after injury/haemorrhage, after 15 and 30 min shock, and at 30 min 

intervals during the pre-hospital resuscitation phase and in-hospital resuscitation 

phases.  Blood samples for assessment of clotting were also taken at these time points.  

This included blood for use in the flow cytometry assay, the protocol for which is given 

in Figure 6.1  

 

Thromboelastography (TEG®).  Thromboelastography using a TEG® 5000 Hemostasis 

Analyzer (Haemonetics Ltd., UK) was performed on fresh, un-citrated whole blood.  

Arterial blood was taken from the femoral cannula and analysed immediately using 

dilute Innovin® (1:50887 dilution Dade® Innovin®, Dade Behring; marketed by System 

UK Ltd, UK) as the initiator (Sørensen et al., 2010).  All TEG® analyses were performed 

in triplicate at 37°C. 

 

Prothrombin and activated partial thromboplastin times (PT and aPTT).  Arterial 

blood samples were taken into citrated vacutainers (9NC 0.105M Vacutainer 367691, 

Beckton Dickinson, UK) and centrifuged at 1500 x g for 10 min.  The plasma was 

separated and stored at -80°C for determination of PT and aPTT by turbidometry and 

fibrinogen concentration (Clauss method) using an ACL Elite analyser (Instrumentation 

Laboratories, Warrington, UK). 

 

Blood Counts.  Full blood counts were conducted using an ADVIA 120 (Bayer, Barmen, 

Germany).  The ADVIA 120 is able to measure a parameter known as mean platelet 

component (MPC), which is related to flow cytometry side scatter and therefore to the 

internal complexity of platelets.  MPC falls when platelets degranulate.  To optimise 

MPC measurement, samples were mixed with ethylenediaminetetraacetic acid and 

then with citrate-theophylline-adenosine-dipyridamole (EDTA-CTAD) (Macey et al., 

2003). 
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7.1.7 Study Endpoints 

 

The primary end point of the study was the clotting status assessed using 

thromboelastography (TEG®) after 30 min of in-hospital resuscitation.  Secondary 

endpoints included clotting status throughout the study, physiological status, in 

particular degree of shock assessed by measuring actual base excess and arterial 

lactate and volumes of fluids used to attain the pressure-driven resuscitation targets.  

These endpoints are beyond the scope of this chapter. 

 

At the end of the study all animals were killed humanely using a lethal overdose of 

sodium pentobarbitone (Euthatal, Merial Animal Health Ltd, Harlow, Essex) given 

intravenously.   

 

7.2 Results 

 

It should be noted that animal HR3 died at R149.  Death was by sudden onset VF with 

cardiac arrest, at a time when the animal appeared to be recovering. 

 

7.2.1 Physiological Data 

 

Figure 7.2 shows the base excess of each animal, reflecting global adequacy of tissue 

oxygen delivery, by time point.  All animals sustained a significant physiological insult.  

Figure 7.3 displays the same data but is colourised according to the resuscitation 

strategy to which the animals were randomised. 
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Figure 7.2: Base excess by animal and time point 

 

Figure 7.3: Base excess by animal and time point.  Blue lines are the animals that received prehospital blood (group 

2), the red lines those which did not (group 1). 

 
7.2.2 Platelet Data 

 

Figure 7.4 shows the percentage of CD61 positive events from the platelet area that 

were positive for CD62P, by animal and time point, in the unstimulated assay. 

 

-20

-15

-10

-5

0

5

10

15

B
1

SU
R

G
ER

Y

B
2

IN
JU

R
Y S1 S2

R
1

5

R
3

0

R
4

5

R
6

0

R
7

5

R
9

0

R
1

2
0

R
1

5
0

R
1

8
0

R
2

1
0

B
E 

(m
Eq

/L
) 

HR1

HR2

HR3

HR4

HR5

HR6

-20

-15

-10

-5

0

5

10

15

B
1

SU
R

G
ER

Y

B
2

IN
JU

R
Y S1 S2

R
1

5

R
3

0

R
4

5

R
6

0

R
7

5

R
9

0

R
1

2
0

R
1

5
0

R
1

8
0

R
2

1
0

B
E 

(m
Eq

/L
) 



132 

 

 

Figure 7.4: % of CD61 positive events (platelets) that were CD62P positive, by animal and time point.  No ADP 

stimulation. 

 

There are two key findings.  First, there is a wide variation in CD62P positivity at the 

initial time point.  Second, most animals exhibited little change in C62P expression 

over the course of the experiment. 

 

Figure 7.5 shows the stimulated and unstimulated CD62P positivity for each animal by 

time point.  These data demonstrate response to ADP stimulation at all time points of 

the study.  Since there is a large variation in the initial unstimulated CD62P positivity 

(Figure 7.4), relative rather than absolute change on stimulation was used to compare 

the effect of ADP between animals.   

 
  

0

5

10

15

20

25

30

35

B2 INJURY S2 R30 R60 R90 R150 R210

HR1

HR2

HR3

HR4

HR5

HR6



133 

 

A-HR1 

 

B-HR2 

 

C-HR3 

D-HR4 

 

E-HR5 

 

F-HR6 

  

 

Figure 7.5: % of CD61 positive events (platelets) that were CD62P positive, by time point.  Each animal’s data are 

displayed in a separate graph.  Data for the unstimulated assay shown in blue.  Results after ADP stimulation shown 

in red. 
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The foldchange (ratio of CD62P positivity between stimulated and unstimulated 

assays) was calculated in each case and these data appear in Figure 7.6a.  Figure 7.6b 

shows the mean foldchange.   

 

Figure 7.6a: Foldchange in % positivity for CD62P of CD61 positive events (platelets) on stimulation with ADP by 

animal and time point. 

 

 

Figure 7.6b: Foldchange in % positivity for CD62P of CD61 positive events (platelets).  Data are displayed as mean 

foldchange; whiskers represent the 95% confidence interval. 
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began with relatively low activatability (that is ability to respond to agonist by 
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level much closer to the other animals after injury and shock.  Activatability was 

restored in these two cases later in the experiment.  HR2 also showed high 

activatability late in the experiment, having initially followed the pattern of the other 

three animals.  There is no apparent relationship between there different phenotypes 

and the baseline expression of CD62P. 

 

Figure 7.7 shows platelet counts by animal and time point. 

 

Figure 7.7: Platelet count by animal and time point  

 

Two animals began with and maintained relatively low platelets counts, in the region 

of 100x109/L.  The remainder showed a gradual fall in platelet numbers over the 

course of the experiment.  Platelet counts immediately post-injury are only available in 

three cases but there was no significant fall at that time point.  There is no apparent 

relationship between platelet number and either CD62P expression or the effect of 

ADP stimulation. 
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Figure 7.8 shows the Mean Platelet Component (MPC) data. 

 

  

Figure 7.8: Mean Platelet Component by animal and time point. 

 

MPC reflects granularity of platelets.  The lack of a fall in MPC over the study period is 

therefore consistent with the finding that there was no increase in (unstimulated) 

CD62P expression.  Animal HR6 has shown an idiosyncratic pattern of MPC change, 

one not consistent with its very flat CD62P positivity curve (Figure 7.5E). 

 

  

15.0

17.0

19.0

21.0

23.0

25.0

27.0

29.0

31.0

33.0

M
P

C
 (

g/
d

L)
 HR1

HR2

HR3

HR4

HR5

HR6



137 

 

In Figures 7.9 and 7.10, the data on platelet activation (CD62P expression and MPC, 

respectively) are plotted against BE at the same time point.  No correlation is 

observed. 

 

 

Figure 7.9.  Scatter plot of BE versus CD62P expression. 

 

 

Figure 7.10.  Scatter plot of BE versus MPC. 
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7.2.3 Coagulation Data 

 

Figure 7.11a shows the changes in PT during the experiments.  In Figure 7.11b these 

same data are displayed after normalising each animal’s data to the internal control of 

the first blood sample taken at Line in 1.  This will be referred to as normalised PT 

(nPT) 

 

 

Figure 7.11a: Prothrombin time by animal and time point. 

 

 

Figure 7.11b: Prothrombin time, normalised to the value at B1, (nPT) by animal and time point. 

 

Immediately after injury there is the suggestion of a slight increase in the inter-animal 

variability of nPT, but no clear general upwards or downwards change.  There is a clear 
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between animals.  However, even by R210, three of the animals have only reached an 

nPT in the region of 1.1.  HR3 displayed an unusual peak in PT early during the 

resuscitation phase, before returning to follow the trend seen in other cases. 

 

In Figure 7.12, the nadir BE achieved by each animal is plotted against the nPT at R150 

(the last time point at which data is available on all animals).  There is a clear 

correlation between the depth of the physiological insult and the degree of 

disturbance of coagulation (Pearson’s -0.962, p=0.002). 

 

 

Figure 7.12: Scatter plot showing nadir BE against nPT at R150. 

 

Figure 7.1 demonstrates that all the animals had reached the nadir of BE by R75, but 

the upwards trend in nPT has only just become established at this point and continues 

to the end of the experiment. 
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Figure 7.13 shows aPTT data.  Most animals show a shortening of aPTT after surgical 

preparation and transport and/or after blast.  Amid great variability, aPTT 

measurements then rise again but do not go on to demonstrate any coagulopathy. 

 

 

Figure 7.13 aPTT by animal and time point 

 

Fibrinogen data are shown in Figure 7.14.  There is an increase in fibrinogen 

concentration between B1 (mean [IQR]: 2.49 [2.29-2.77]) and B2 (2.78 [2.51-3.41]), 

which is consistent with the acute phase response to surgery (Wilcoxon signed rank 

test, p=0.048).  Fibrinogen levels then fall to a new low immediately post-injury (2.26 

[1.88-2.69], p=0.028).  There then appears to be a (non-significant trend) towards 

increased fibrinogen concentrations during the shock phase.  This is followed by 

divergent behaviour, with sharp falls in HR3 and HR6, the animals with the greatest 

physiological insult, to levels below the normal range seen in this strain of pig.*  More 

stable values were seen in the others.  However, all animals have broadly stable 

fibrinogen concentrations from R60 inwards.  Despite this, abnormalities in PT 

continue to evolve (Figure 7.11). 

 

                                                 
*
 The 95% reference range for plasma fibrinogen in this strain of pigs was 1.77-3.36 g/l.   

Data based on samples taken after minimal surgery (induction of anaesthesia and insertion of 
carotid cannula) in Large White pigs of similar age that contributed to this and other studies in 
the laboratory (n=147).  Data distribution was normalized with a 1/square root transformation 
prior to determining the reference range.  (Mrs C Wilson, analysis, and Dr R Gwyther, 
statistics.) 
 

10

11

12

13

14

15

16

17

18

aP
TT

 (
s)

 

HR1

HR2

HR3

HR4

HR5

HR6



141 

 

 

Figure 7.14: Fibrinogen concentration by animal and time point. 

 

Figure 7.15 plots the Fibrinogen concentration at R150 against the nadir BE.  There is a 

correlation between the animals physiological response and the final fibrinogen 

concentration (Pearson’s 0.822, p=0.045). 

 

 

Figure 7.15. Scatter plot of Fibrinogen concentration against nadir BE 
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Figure 7.16 shows the R time data.  At B1, values vary between 6s and 26.6s but by B2 

(after surgery and transport to the range) they are much more closely grouped at 11s 

to 14s.  Four animals then show little change in R time over the course of the 

experiment.  The principle exceptions are HR3 and HR6, the two animals which 

experience the greatest physiological insult.  Of note, HR3’s early peak in PT is 

associated with a peak in R time, although subsequent raised PTs in several animals 

are not reflected in the R time, which normalises. 

 

 

Figure 7.16: R time by animal and time point. 

 

Figure 7.17 shows changes in the alpha angle.  Again, the range of values narrows 

between B1 and B2.  There is then a marked rise after exposure to blast (i.e. at the pre 

injury time point).  Animals HR3 and HR6, and to a lesser extent HR5, then show a fall 

in alpha angle followed by a return to normal values, the nadir approximating the time 

of the lowest BE (see figure 7.2). 
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Figure 7.17: Alpha angle is plotted by animal and time point. 

 

Figure 7.18 shows a marked fall in MA between B1 and B2.  Five animals show an 

increase in MA after blast exposure (the pre-injury time point), followed by a return to 

values broadly in keeping with that seen at B1. HR4 shows a different pattern of MA 

changes with no significant rise immediately after blast exposure. 

 

  

Figure 7.18: MA by animal and time point 

 

Oddly, the highest values of MA at R150 (the last common time point) are seen in 
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stage. Figure 7.19 demonstrates the lack of correlation between Fibrinogen 

concentration and MA. 

 

 

Figure 7.19: Fibrinogen concentration plotted against MA at R150.  There is no positive correlation between 

fibrinogen concentration and MA.  Indeed, if HR4 were excluded, there would be something of a negative 

correlation. 

 

7.3 Discussion 

 

7.3.1 Physiological Response to Injury 

 

Figures 7.2 and 7.3 demonstrate the development of significant shock in all animals.  

Figure 7.20 gives some idea of the amount of tissue injury generated.  There is a 

notable variation in response to the injury, with BE at the end of the shock phase (S2) 

ranging from 1.5 to -13.5 me/L.  In every case, BE began to rise after 30 to 60 min of 

resuscitation.  This allows an assessment of the function of the assay in a range of 

physiological conditions.  It is not intended to compare the two treatment arms in this 

chapter.  With these small numbers, it is not appropriate to make comparisons 

between the animals treated with early blood transfusion and the others. 
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Figure 7.20  Post mortem photograph illustrating the contused and devitalised muscle caused by the 

action of the captive bolt gun. 
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7.3.2 Coagulation 

 

Figures 7.11a and b demonstrate a clear upward trend in PT over the course of the 

experiment.  However, the changes would be considered modest in a human 

polytrauma patient.  Additionally, they are only firmly established quite late in the 

course of the experiment, well after the simulated patient has reached hospital and 

received resuscitation in both treatment groups.  Definitions of acute traumatic 

coagulopathy have varied.  In the initial description by Brohi, coagulopathy was 

defined as PT over 18 seconds, APTT over 60 seconds, or TT over 15 seconds (1.5 times 

normal) (Brohi et al., 2003).  Other studies have tended to use a Prothrombin Time 

Ratio (PTr) of 1.2 as a diagnostic threshold for ATC when using laboratory tests 

(MacLeod et al., 2003; Maegele et al., 2007; Frith et al., 2010; Davenport, Manson, et 

al., 2011).  Caution must be exercised transferring human diagnostic criteria into an 

animal model and PTr is not directly analogous to nPT (the former using an external 

control, the latter an internal control). 

 

It is therefore not possible to define a level of PT or nPT that represents coagulopathy 

in this model.  However, it is reasonable to say that small changes in nPT, e.g. nPT 

remaining near to 1.1 or lower, do not suggest a significant coagulopathy.  Three 

animals achieved nPT>1.2 at any stage.  ATC is defined as an early coagulopathy, 

developing before admission to hospital and in the absence of significant fluid 

resuscitation (Brohi et al., 2003).  The S2 and R30 time points are equivalent to this.  

There was considerable variation in nPT at S2, but none of the animals could be said to 

be coagulopathic by this (crude) measure.  HR3 did show a large rise in nPT at R30 but 

this was unique and part of an aberrant pattern of change in nPT.  aPTT data showed 

no evidence of a coagulopathy.  Consequently, the coagulation changes seen in this 

small group is best characterised as displaying mixed but significant disturbances of 

coagulation.  It cannot be said to accurately recapitulate the human syndrome of ATC. 

 

It may be that the animals should not have been expected to develop ATC.  ATC was 

described in civilian patients.  Admission coagulation abnormalities have been 

reported in military patients (Doran, Woolley and Midwinter, 2010; Morrison, Dubose, 

et al., 2012; Morrison, Ross, et al., 2013).  However, the contribution of primary blast 
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injury to human coagulopathy has not been characterised.  The degree of primary blast 

experienced by patients injured by IEDs is likely to be highly variable.  Animal work at 

Porton Down has previously shown an upregulation of coagulation immediately after 

blast (Harrisson et al., 2008), a finding recently confirmed by French investigators (Prat 

et al., 2015).  Although not reflected in the PT data, this can also be seen in this 

experiment.  There is a clear rise in both alpha angle and MA at the time point 

immediately after blast exposure.  It may be that subsequent changes in coagulation 

are altered by this blast-induced change and that this prevents a more profound, early 

coagulopathy from developing.  In keeping with this suggestion, data from animals 

subjected to this experimental protocol but without blast exposure have subsequently 

been shown to demonstrate a coagulopathy at the end of the prehospital phase 

(Watts et al., 2015).  An intriguing mechanism for this effect can be hypothesised: blast 

exposure leads to a bradycardia mediated by vagal efferents (subsection 3.1.2).  

Recently, a Brazilian group has described attenuation of haemorrhagic shock-induced 

coagulopathy by efferent vagal nerve stimulation (Rezende-Neto et al., 2014).  

However, the bradycardia associated with simple models of blast injury is not seen 

with complex models such as this one, so it is not clear that there is suitable vagal 

signalling in this context. 

 

The R time and alpha angle changes are well correlated to the animals’ physiological 

response.  However, there is a time lag between the nadir of BE and the PT changes.  

Of the standard mechanisms thought to contribute to trauma induced coagulopathy 

(Hess et al., 2008), factor consumption or dilution would seem the most plausible 

causes of these relatively late changes, while acidosis could govern the changes which 

corrected as the animals recovered.  There is also a correlation between the 

physiological response and the final fibrinogen concentration, as shown in Figure 7.15.  

This raises the possibility that the degree of change in nPT is driven by the ability of the 

liver to replenish consumed factors in the face of tissue hypoxia.  (The discordance 

between TEG and laboratory coagulation test results seen in these data is a well-

recognized finding [Ågren et al., 2013; Louis et al., 2014].) 

 

Some other aspects of the coagulation data are notable.  There is a tightening in the 

range of the R time and the alpha angle between B1 and B2.  There is a fall in MA 
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between B1 and B2.  This suggests that surgical preparation and transport has an 

effect on coagulation.  This accords with the concerns about the effect on platelet 

function raised earlier.  Suggestions of a mechanistic link between these findings must 

be very tentative: Effete or non-responsive platelets could contribute to a reduction in 

MA at B2.  They could also explain later falls in MA that appear to be independent of 

fibrinogen (Figure 7.19). 

 

This discussion has been based on data from a very small sample.  The interpretations 

outlined above were constructed post hoc.  Consequently, only trends can be observed 

and the data can only serve to generate hypotheses. 

 

7.3.2 Platelet Activation 

 

Figure 7.4 shows that CD62P expression remained fairly constant throughout the 

experiment in all animals, with some between-animal variation.  This lack of change in 

the face of injury, shock and resuscitation was unexpected (see subsection 2.7.6).  No 

other study has examined platelet activation and response at multiple time points 

early after trauma, either in animals or humans.  However, it is known that there is 

increased CD62 expression after injury (Jacoby et al., 2001; Ogura et al., 2001) and 

reduced response to platelet agonists (Tschuor et al., 2008).  A primate model has 

shown that a proportion of expressed CD62P can be shed from the platelet surface 

within 2 hours, with preservation of platelet function (Michelson et al., 1996).  It might 

be reasonable therefore to expect the following pattern in these data: 

 

 Increased expression of CD62P after injury 

 A fall in CD62P expression over the course of the experiment 

 A fall in activatability (change in CD62P expression on stimulation) after injury 

 

The first two phenomena were not observed.  The last was observed only in those 

animals which had a high degree of activatability at baseline.  Two explanations need 

to be considered: a) there could be a fault with the assay or b) this finding could reflect 

the physiological reality. 
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There are several findings that support the performance of the assay.  First, the assay 

detected changes in CD62P expression in response to ADP.  Second, the assay detected 

changes in the response to ADP over the course of the experiment in some animals 

(HR1 and HR4, Figure 7.5).  Third, Figure 7.8 shows that, with one exception, there was 

little change in MPC over the course of the experiment.  Changes in MPC have been 

shown to be inversely correlated with changes in CD62P expression (Macey et al., 

1999).  This lack of change in MPC therefore corresponds with the flat CD62P 

expression curves in Figure 7.4.  Therefore two assays (CD62P expression and MPC) 

have indicated that there was little variation in the activation of circulating platelets 

during the experiment.  However, it must be emphasised that MPC is not a gold 

standard against which the assay can be assessed.  As noted at the end of Chapter 6, 

the dose-response curve was removed from the flow cytometry protocol.  This has 

proved unfortunate in the context of these unexpected findings.  It is possible that 

differential response to agonist would have been seen at lower ADP concentrations.  

Equally, the ADP concentration that was used was based on statements in the 

literature indicating that it was associated with maximal response in humans (Panzer, 

Höcker and Koren, 2005).  In the light of these data, an assessment of higher 

concentrations would be justified. 

 

Accepting that the assay has functioned properly, a possible physiological explanation 

is that the surgical preparation and transport of the animals meant that there had 

already been substantial CD62P expression before B2.  Further experimental work was 

carried out to address this hypothesis. 

 

7.3.4 Further Analysis – Materials and Methods 

 

15 animals were used, designated X1 to X15.  10 animals being used for blood 

donation.  These animals underwent induction of anaesthesia and cannulation as 

outlined above.  Only their B1 samples were analysed.  5 animals were being prepared 

for experimental use and therefore completed the full protocol of preparation and 

transplant as outlined above.  B1 and B2 samples were available for assay.  All assays 

were carried out as previously.   B1 samples, taken as soon as arterial access is 
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achieved, are as close as possible to being from normal subjects.  The author’s 

colleagues at Dstl kindly carried out these assays on his behalf. 

 

7.3.5 Further Analysis — Results 

 

Figure 7.21 shows CD62P expression with and without stimulation from a) B2 for the 

six HR subject animals and b) B1 for the 15 other animals (designated X).  The HR B2 

unstimulated data are statistically significantly lower than the X B1 data.  The same is 

true of the ADP-stimulated results. 

 

 

 

Figure 7.21: %CD62P positivity in unstimulated and stimulated assays from X B1 (normal subjects at true baseline) 

and HR B2 (experimental subjects after surgical preparation and transport).  *The HR B2 results are lower than the X 

B1 results in both cases (Mann-Whitney U, p=0.003 in both cases). 

 

While 15 is too small a number to allow a normal range to be established, the B1 data 

in Figure 7.21 indicate where that range would lie.  CD62 expression at B2 in the HR 

animals shown appears to be lower, in both the stimulated and unstimulated assay. 

 

Figure 7.22 A shows CD62P expression in sequential samples taken at B1 and B2 in five 

animals.  These were the five animals mentioned above which were being prepared for 
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experimental use.  Figure 7.22 B shows the results after ADP stimulation.  With the 

exception of unstimulated CD62P expression by platelets taken from X6, all the data 

show either no change or more commonly a fall in between the two time points. 

 

 

 

 

Figure 7.22. A) CD62P expression without ADP stimulation at B1 and B2.  B) CD62P expression with ADP stimulation 

at B1 and B2. 
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Figure 7.23 expresses these data as foldchange in CD62P expression on ADP 

stimulation. 

 

 

Figure 7.23  Foldchange in CD62P expression following ADP stimulation of platelets from animals tested at B1 and 

B2. 

Three of the five animals show a considerable fall in their response to ADP stimulation. 

 

7.3.6 Further Analysis – Discussion 

 

These data (Figures 7.21 to 7.23) suggest that there is an effect of surgical preparation 

and transport on the results of the CD62P assay in some animals.  However, the effect 

is not consistent.  In particular, two HR subject animals had a preserved response to 

ADP at B2.  These were among the three animals which exhibited high activatability at 

the end of the experiment.  This could suggest an inter-subject variability in the ability 

to restore responsiveness to ADP stimulation. 

 

In the light of these data, it was concluded that it would not be appropriate to carry 

out a comparison between the arms of the trial of CD62P expression.  Equally, it is not 

possible to comment on what would otherwise be interesting findings in the present 

data, such as the lack of correlation between physiological derangement and platelet 

activation seen in Figure 7.9.  Further work to establish an assay (or assays) of platelet 

function and a compatible model of coagulopathy after military injury would be 

required.  This is discussed further in Chapter 8. 
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Chapter 8. Implications for Further Research 

 

8.1 Animal Experiments 

 

Platelets are fundamental to coagulation.  The practical difficulties of studying 

platelets and the complexity of their actions (relative to clotting factors) has meant 

that their role in trauma induced coagulopathy remains unclear.  They are implicated 

both by their functional centrality and by some human data.  Translational research 

into platelet function after trauma must lead to an understanding of how platelets 

contribute to coagulopathy and to the identification of potential therapeutic targets.  

However, it is not yet clear which aspects of platelet function are involved and 

consequently which assays will be useful.  Further work in this area must begin with 

broadly based assessment of multiple aspects of: 

 platelet number,  

 stimulation (multiple agonists),  

 degranulation and epitope conformational change (use of multiple expression 

markers),  

 aggregation and adhesion  

both in animal models and humans.  This will make it possible to confirm that animal 

models accurately reflect the human disease and allow identification of the important 

pathways.   

 

The present model and platelet assay may have a role in this process.  The data 

suggest several lines for the possible improvement of both.  This assay can be adapted 

and expanded in several ways.  With optimisation of the cytometer settings and of the 

assay preparation and the addition of uniform sized microspheres, platelet 

microparticles could be detected.  By reintroducing the CD45 specific mAb, platelet-

leucocyte aggregates can be detected.  Given the wide variation in detected platelet 

forward scatter (see Figure 6.8), it seems likely that platelet-platelet aggregates are 

included in the platelet population.  An imaging flow cytometer could be used to 

demonstrate these.  As noted during assay development, porcine platelets do not 

respond to TRAP in the same way as humans (Kinlough-Rathbone, Rand and Packham, 
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1993; Connolly et al., 1994).  Since thrombin is a crucial platelet activator, it would be 

desirable to circumvent this problem.  TRAP does induce a change in platelet shape 

and platelet-platelet aggregation; an imaging flow cytometer would be useful to 

observe these also.  Thrombin itself fully activates porcine platelets, possibly through a 

receptor other than PAR-1.  Thrombin could be used as an agonist if a further 

modification were made to prevent it acting on fibrinogen in the sample (Michelson, 

1994). 

 

Only two CD62P assays were conducted at each time point: unstimulated and 

stimulated.  The concentration of ADP used (10µM) has been shown to be sufficient to 

stimulate significant platelet activation, including CD62P expression, in several studies 

(Janes et al., 1994; Daniel et al., 1998; Panzer, Höcker and Koren, 2005).  However, 

these all used human subjects.  Further work to establish whether higher 

concentrations of ADP would have a further effect on porcine platelets, particularly in 

those showing little response at 10µM, is required. 

 

Extending this, dose-response curves for ADP stimulation could be used.  Figure 8.1 

illustrates data from two of the developmental animals.*  It shows the percentage 

CD62P positivity of platelets at each ADP concentration at three time points: B2—

before injury; S1—during the shock phase; R30—30 min into resuscitation.  There was 

a differential response to progressively increasing concentrations of ADP and this 

reversed the relationship.  At maximal ADP concentration, there was a greater CD62P 

positivity in the samples from the uninjured animal than the later samples.  In the first 

animal, there is the suggestion that response to ADP after injury was maximal at a 

lower agonist concentration than before injury (i.e. the lines plateau). 

 

                                                 
*
 Dose response curves were not included after initial assay development (i.e. in Chapter 6) as it would 

not have been physically possible to run these in parallel with other assays using available staff and 

equipment. 
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Figure 8.1.  PA9 (left) and PA10 (right).  % of platelets (CD45-, CD61+) positive for CD62P.  Gates were 

set to include <5% of events from the relevant isotype control.  Samples from 3 time points are shown.  

Each sample was incubated with ADP at the concentration shown for 10min before Ab staining. 

 

No conclusion can be drawn from this finding where n=2, and indeed it is not 

consistent with subsequent findings.  However, it indicates how the use of dose-

response curves could enhance the assay.  Figure 8.2 illustrates how these could 

identify subtle changes in the effect of ADP. 

 

 

Figure 8.2.  Hypothetical dose-response curves for possible post-injury platelet phenotypes. 

 

The assay uses a single marker of platelet activation, CD62P.  The use of additional 

markers of other aspects of activation would be useful.  In particular, it would be 

desirable to establish a marker of GPIIa/IIIb conformational change equivalent to PAC-
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1 (see subsection 5.2.2).  In parallel with the continued use of flow cytometry, it would 

also be desirable to use other means of detecting disparate aspects of platelet 

function, such as platelet-inhibited thromboelastography and functional analysers such 

as aggregometers. 

 

The preparation of the animal subject appears to have an effect on platelet and 

coagulation function.  This should be minimised.  At present, the splenectomy and 

suprapubic catheterisation are conducted via a full length laparotomy.  All could be 

achieved by laparoscopy (Morrison et al., 2014), which is known to cause less 

inflammatory activation (Jacobi et al., 1998; Pascual et al., 2011).  Topical adrenaline, a 

platelet agonist, is applied to the spleen before removal (to make it contract, with the 

intention of reducing variation in haemoglobin concentration between subjects); this 

may promote platelet activation.  An assessment should be made as to whether 

removing this step would adversely affect the model in other ways.  Vascular access, 

particularly in the neck, is achieved by surgical cut down.  Porcine anatomy means that 

this is an extensive procedure.  Minimal access techniques are possible (Fudge, 

Coleman and Parker, 2002), could be enhanced with ultrasound guidance and would 

reduce the amount of tissue trauma.  While possibly desirable, it is not practical to 

house animals at the experimental location on the range at Porton Down, so remote 

preparation and transportation will continue.  Despite these possible improvements, it 

may be that pigs are not a suitable model for studying this aspect of trauma-induced 

coagulopathy and that alternative animal models are required. 

 

8.2 Human Studies 

 

The results of the study in Chapter 5 demonstrate some of the difficulties that attend 

research involving trauma patients and of retrospective studies.  It would have been 

more appropriate for a prospective study of the impact of PHBTx to have been 

conducted.  In particular, this could have improved the ascertainment of pre-hospital 

physiology data, by allowing feedback from data collectors to clinicians in real time.  

This would not have altered the confounding changes in hospital resuscitation practice 

but would have allowed an assessment of the effect of PHBTx on physiology between 

initial medical care and hospitalisation.  The implication for future major innovations in 
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care is clear.  Where possible, high level evidence (i.e. randomised trials) should be 

established to support changes.  Where this is impractical, high quality, prospective 

observational evaluations should be instituted.* 

 

More narrowly, the investigation of the platelet contribution to coagulopathy requires 

human observational and, in due course, interventional studies.  The high throughput 

of severely injured patients at the hospital in BASTION provided the Defence Medical 

Services with an opportunity to contribute to this process.  Studies using ROTEM data 

have already been cited (Doran, Woolley and Midwinter, 2010; Woolley et al., 2013).  

The Platelet Function in Acute Traumatic Coagulopathy study (PATCH)† was initiated to 

supplement the existing ROTEM work with a flow cytometry-based assay of platelet 

function.  This used a PAC-1 mAb to measure platelet activation using admission blood 

samples.  TRAP-6 was used to produce stimulation dose-response curves.  A Cyflow 

flow cytometer (Partec UK Ltd, Canterbury, UK) was acquired and deployed to 

Afghanistan where it was used alongside a Multiplate analyser (Roche International 

Diagnostics, Rotkreuz, Switzerland) by a team of Dstl and military researchers.  Analysis 

is ongoing. 

 

  

                                                 
*
 None of this should be taken as criticism of the enormous hard work of the trauma nurse coordinators in 

Afghanistan, Iraq, the USA and Birmingham who maintain the trauma registries and whose efforts made 

Chapter 5 possible. 
†
 This study will need to be renamed since the previously mentioned Australian study of TXA usage has 

the same acronym (Mitra et al., 2014). 
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Appendix. Injury Scoring 

 

In Afghanistan, the UK Joint Theatre Trauma Register (JTTR) and the US JTTR, now 

known as the Department of Defence Trauma Register (DoDTR) record injury, 

treatment and outcome data on a) all injured military personnel of the respective 

nations, wherever they were treated and b) all injured patients treated in medical 

facilities staffed by the military medical services of the respective nations, regardless of 

the nationality of the casualty.  Since the hospital at Camp BASTION was staffed by 

both countries for much of the period covered by the study in Chapter 4, patients were 

entered into both systems.  Local nationals were soon lost to follow up but UK and US 

casualties were followed throughout their care to, where appropriate, discharge in the 

home nation.  Consequently, the databases contain more accurate injury and follow up 

data about servicemen of their own nationality. 

 

In both cases, injuries are recoded using the abbreviated injury score (AIS) of the 

American Association for the Advancement of Automotive Medicine.  This is a 

codification of all injuries which assigns each a 7 digit code.  For example a femoral 

shaft fracture is coded as 851814.3.  “8” represents the body region (lower limb), 

“518” represents the anatomical structure (“5”-skeletal, “18”-femur), “14” the 

particular injury, in this case its level (shaft) and “3” is a measure of the severity and 

appears after the dot.  There are 9 body regions in AIS. 

 

Severity is coded from 1 to 6, where 6 is unsurvivable.  This is an ordinal not an interval 

scale; i.e. AIS 5 injuries are supposed to be all roughly equivalent and to be worse than 

AIS 4 injuries but the difference between AIS 5 and AIS 4 is not the same as between 

AIS 4 and AIS 3.  Severity in AIS codes is similar to that found in the injury grade system 

of the American Association for the Surgery of Trauma. 

 

The AIS code book has been repeatedly updated since its introduction in 1969.  The 

2005 edition contained a separate military AIS coding to account for difference 

between military and civilian trauma (Champion et al., 2010).  This version was used in 

the work presented in Chapter n. 
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AIS codes are used to calculate the Injury Severity Score (ISS).  AIS codes are regrouped 

into 6 body regions and the highest severity in the three most severely injured regions 

are used.  The three numbers are squared and summed.  Any AIS 6 leads to an ISS of 

75, which is the limit of the scale.  ISS is open to criticism on several counts (Lefering, 

2002).  First, it ignores severe injuries coexisting in the same body region; the New ISS 

(NISS) ignores the body region to use the three most severe codes in order to address 

this.  Second, it takes data from an ordinal scale, transforms them and purports to 

produce an interval scale.  Third, it conflates injury patterns, which both loses 

information about particular injuries and makes very different injuries (e.g. severe 

head injury and proximal limb amputation) essentially interchangeable (Russell et al., 

2004).  Despite these concerns, use of the ISS is almost universal in trauma research 
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