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Abstract 

 

Prostate cancer (PC) is the most common oncogenic malignancy in men in the UK, and is 

expected to affect 1 in 4 men throughout their lifetime. Whilst the treatment for organ 

confined PC is initially very effective, no successful therapies exist for patients where the 

disease has progressed to an advanced stage, and is reflected by the poor 5-year survival rate 

of 30%. Resistance to current treatment modalities, aimed at disrupting the androgen 

signalling axis, renders the disease what is termed castrate resistant PC (CRPC). Crucially, the 

primary target in the treatment of PC, the androgen receptor (AR), remains a key driver of 

disease survival and differentiation throughout disease progression.  

Activation of the AR at the post-translational level by aberrant co-activator activity is a well-

established resistance mechanism, however, the role of phosphatase enzymes on AR function 

represents a significant knowledge gap in AR regulation. To address this issue, phosphatase 

enzymes identified from a human phosphatome RNAi screen in the androgen responsive PC 

cell line, LNCaP, were characterised within the context of AR regulation. As such, myosin 

phosphatase (MLCP) was identified as a novel negative regulator of AR activity. Robust 

molecular biology techniques revealed that MLCP repressed AR function via indirect 

mechanisms involving the activation of the clinically relevant tumour suppressors RB1 and 

NF2. With this in mind, it was possible to identify the endogenous MLCP inhibitors, PPP1R14C 

and NUAK 1/2, as novel AR activators and potential therapeutic targets in both PC and CRPC. 

Disruption of either PPP1R14C or NUAK 1/2, via RNAi or small molecule inhibition, respectively, 

repressed AR transcriptional activity, characterised by reduced protein stability and impaired 

ligand induced nuclear translocation, culminating in reduced PC cell cycle progression, 

migration and proliferation, providing significant evidence for a novel, and therapeutically 

exploitable, AR regulatory mechanism. 
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1.1 Prostate Cancer 

1.1.1 Prostate Cancer Incidence 

Prostate cancer (PC) is the most common oncogenic malignancy in men in the UK (excluding 

non-melanoma skin cancer), accounting for approximately 25% of male diagnosed cancers 

(CRUK, 2016). This equates to 47,000 new cases being diagnosed each year, with current 

opinion suggesting that 1 in 8 men will be diagnosed with PC within their lifetime (CRUK, 2016; 

PCUK, 2016b). Diagnosis of PC has more than tripled since 1975, as demonstrated in figure 

1.1A. Amongst others, the advent and wide-spread implementation of the prostate-specific 

antigen (PSA) test, as well as an aging population, are considered major contributors to this 

phenomena (Schroder et al., 2014). Whilst little is known regarding risk factors for PC, 

incidence is significantly coupled with age, with the median age of diagnosis being between 

70 and 74 years. The rate of PC incidence for different age groups within the UK can be 

visualized in figure 1.1B. Indeed, the prevalence of histological PC upon post-mortem is 

significantly higher than the number of diagnosed cases (Klotz and Emberton, 2014), 

suggesting PC may be more prevalent in the elderly than currently thought. Unlike other 

cancer types, currently no highly penetrant inherited genes conferring the PC phenotype have 

been identified. However, men with a family history of PC are 2-3 times more likely to be 

diagnosed with PC. Furthermore, men with a mutation in BRCA2, a major genetic risk factor 

for breast and ovarian cancer, are up to 7 times more likely to be diagnosed with PC (Ostrander 

and Udler, 2008). Globally, rates vary dramatically as depicted in figure 1.2, and indeed, black 

British males are twice as likely to be diagnosed with PC as white British males (Ben-Shlomo 

et al., 2008), whereas British males of Asian descent are half as likely (CRUK, 2016), suggesting 

Figure 1.1 –Rate of Prostate Cancer Incidence A. Rate of PC incidence in the UK 1979-2011 B. Rate of PC 
incidence in the UK across different age groups C. Rate of PC incidence in the UK across different 

ethnicities. Data obtained from Cancer Research UK. 
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a genetic predisposition to PC development exists. The difference in PC incidence between 

British males of different ethnicity is represented in figure 1.1C.  

1.1.2 Prostate Cancer Grading and Staging 

Upon diagnosis of PC, the cancer is staged and graded in order to ascertain the risk of disease 

progression and to implement the appropriate disease management regime. Cancers are 

graded using the Gleason grading system, which is a morphological assessment of the cancer 

cells, performed microscopically by a pathologist, based on the extent of cancer cell 

differentiation from a normal prostate cell (CRUK, 2016; PCUK, 2016a). This is used to 

determine the aggressiveness of the cancer. The pattern is given a grade from 1-5, with scores 

of 1-2 being considered normal tissue, and 5 being the most differentiated cancer. Multiple 

tumour biopsies are taken, and the Gleason score is calculated from adding the most common 

biopsy grade with the highest biopsy grade, therefore PC must be defined by a Gleason score 

of between 6 and 10. The Gleason score is then used in combination with the stage and the 

PSA level of the patient to dictate treatment modality. Staging of the cancer is an assessment 

of how far the cancer has spread. Although different staging methods exist, the Tumour-

Nodes-Metastasis (TNM) system is employed in the UK and is represented in figure 1.3. This 

system determines the size and localization of the primary tumour, and the extent of 

metastasis to lymph nodes and/or distant sites. Taken together, tumour grade and stage 

allows patients to be stratified into 3 main categories; localized disease, locally advanced 

Figure 1.2 - Age standardised rate of PC across the world. Data obtained from GLOBOCAN 2012(Ferlay J, 
2013). Figure generated using publicly available medical art from www.servier.com. 

 

http://www.servier.com/
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disease, and advanced metastatic disease. The five year survival rate for patients classified 

into these cohorts is >90%, 70-80% and 30%, respectively, highlighting the need for early 

detection, appropriate risk stratification and more effective treatment options for advanced 

metastatic patients. 

 

 

 

 

1.1.3 Localized Prostate Cancer 

For localized prostate cancer the primary tumour is confined within the prostate organ. The 

majority of patients present with localized PC upon diagnosis, which are then further stratified 

according to their risk of disease progression (Klotz and Emberton, 2014). As localised PC is 

very often slow growing and has a low metastatic potential, it is crucial to identify which 

patients may benefit from treatment, and which patients may not require treatment at all. 

Low-risk PC is characterized by a PSA value lower than 10ng/ml and a Gleason score of 6 or 

less, whilst high-risk PC is defined by having a PSA level of 20ng/ml or higher, or, a Gleason 

score of 7 and above, or, if the stage is T2C, T3 or T4 (T3 and T4 staging means the tumour has 

broken through the prostate capsule, and as such will be reclassified as locally advanced). 

Radical prostatectomy has been the primary treatment option for all newly diagnosed PC 

cases over the last 30 years, however, following the introduction of the PSA test, a dramatic 

increase in the diagnosis of low-risk PC was observed, and as such, a large proportion of 

patients were over-diagnosed and subsequently over-treated. Recently, the general 

consensus for low-risk patients is to take a more cautious treatment approach termed active 

Figure 1.3 – TNM staging of PC. Data obtained from PCUK and table produced independently. PC 
is staged according to a TNM scoring system based on the extent of tumour spread and 

dissemination. 
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surveillance (Draisma et al., 2009). Active surveillance consists of serial PSA assessments and 

repeat biopsies and has been considered a successful intervention for risk reclassification, as 

the lead time between diagnosis and disease progression is often very long, or of no 

detrimental consequence. However, approximately one third of patients undergoing active 

surveillance will be reclassified as high risk and offered treatment (Klotz and Emberton, 2014). 

Again, avoidance of radical procedures is an emerging theme, and men will typically be offered 

focal therapy where applicable (Giannarini et al., 2014). Focal therapy involves excision of a 

solitary tumour target (>1.3cm3) following MRI guided identification, which may be performed 

in conjunction with repeat biopsies, resulting in minimally invasive surgery, and subsequently 

reduced morbidity. In cases where multiple positive cores have been identified, radical 

prostatectomy and/or radiotherapy will be recommended. Reclassification of low-risk PC to 

high-risk PC may occur following rising levels of PSA, or through increased tumour grading at 

repeat biopsy, or alternatively, up to 15% of patients present with high-risk disease at 

diagnosis (Chang et al., 2014).  

1.1.4 Locally Advanced Prostate Cancer 

Patients that undergo tumour reclassification from low-risk to high-risk PC are managed in the 

same way as patients diagnosed with locally advanced disease, whereby treatment of the 

primary tumour is crucial in delaying disease progression and gaining local control. Currently, 

a multi modal approach is considered the most efficacious including neo-adjuvant androgen 

deprivation therapy (ADT) with radical prostatectomy and/or external beam radiation (Bolla 

et al., 2002).  Radical prostatectomy requires complete removal of the gland itself, 

confirmation intraoperatively that surgical margins are negative for cancer, and more recently 

extended pelvic lymph node dissection. There are very few differences between 

prostatectomy and radiotherapy in relation to study end-points, and current practice is often 

dictated by the overall health and age of the patient. In patients where PSA continues to rise 

following radical treatment, salvage external beam radiation is employed and has shown 

significant survival advantages (Stephenson et al., 2007). Despite a 5-year survival rate of 70-

80% for patients with locally advanced PC, many patients will develop non-castrate metastasis, 

or rising PSA castrate resistant PC (CRPC), which will invariably lead to the development of 

castrate resistant metastatic PC (mCRPC), and ultimately death. 
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1.1.5 Advanced Metastatic Prostate Cancer 

Initially metastatic PC is characterized by a period of responsiveness to more advanced anti-

androgens, however, this period is short lived and the transition in disease progression to 

mCRPC is inevitable. The most frequent site of CRPC metastasis observed in patients is at the 

bone. This often results in what is termed ‘skeletal-related events’, consisting of bone pain, 

fracture and spinal cord compression, often resulting in the need for additional radiotherapy 

and/or orthopaedic surgery (Attard et al., 2016). Two drugs are currently employed to aid in 

the reduction of skeletal-related events, the first being zoledronic acid (Saad et al., 2002). 

Zoledronic acid is a bisphosphonate that inhibits osteoclast mediated bone resorption by 

approximately 10%. The second is the human monoclonal antibody denosumab that targets 

the RANKL protein, impeding osteoclast function (Fizazi et al., 2011). The addition of radium-

223 into treatment regimens has also proven to improve overall survival whilst reducing 

skeletal-related events in patients with mCRPC (Parker et al., 2013). However, currently no 

effective treatment regimens exist that significantly impede disease progression, with current 

therapy resulting in modest increases in survival and symptomatic relief (Gartrell et al., 2015). 

A number of cytotoxic agents have been investigated in the treatment of mCRPC, but only 

Advanced Metastatic Prostate Cancer

Anti-androgens Abiraterone
Docetaxel

Cabazitaxel
Radium 223 Sipuleucel-T

Locally Advanced Prostate Cancer

ADT Prostatectomy Radiotherapy

Localized Prostate Cancer

Active Surveillance

Figure 1.4 – Current Treatment Regimen of Prostate Cancer. Localized PC is initially monitored by active surveillance 
including regular PSA testing. Locally Advanced PC is primarily treated by radical prostatectomy, and/or 

radiotherapy, followed by androgen deprivation therapy. Advanced metastatic PC is treated with advanced anti-
androgens in combination with androgen biosynthesis inhibitor abiraterone. Radium 223 is frequently employed to 

combat associated bone metastasis and pain, whilst the implementation of cytotoxic agents, docetaxel or 
cabazitaxel, are employed as a last line of therapy. More recently, the immunotherapy sipuleucel-T has been in the 

treatment of advanced metastatic PC and shows modest benefit. 
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docetaxel and cabazitaxel have been FDA approved based on modest survival advantages 

(Attard et al., 2016). The implementation of immunotherapy in patient treatment is emerging, 

but remains highly costly, approximately £60,000/month(Simpson et al., 2015). Sipuleucel-T 

is an FDA approved active cellular immunotherapy with a reported 4.1 month survival 

advantage over placebo (Kantoff et al., 2010). The current treatment regimen employed 

within the UK throughout the progression of PC is represented in figure 1.4. 

1.1.6 Treatment Rationale 

The dependency of PC on circulating androgens was first demonstrated by Huggins et al in 

1941, where it was observed that tumour regression could be induced following the reduction 

of serum testosterone either by orchiectomy, or through the administration of exogenous 

estrogens (Huggins et al., 1941). Indeed, it was this discovery that provided the first successful 

treatment for PC, and prompted the emergence of therapeutics aimed at disrupting the 

androgen signalling axis. In 1971 Andrew Schally et al successfully characterised the luteinising 

hormone releasing hormone (LHRH) and his subsequent research focused on the development 

of LHRH agonists (Schally et al., 1971). Administration of LHRH agonists leads to stimulation 

of the hypothalamic signalling axis, resulting in the release of luteinising hormone (LH) and 

follicle stimulating hormone (FSH) and subsequent production of testosterone in the testes. 

However, when administered chronically, LHRH agonists render the pituitary gland refractory 

to further stimulation through down regulation of LHRH receptors, resulting in castrate levels 

of serum testosterone (Sandow et al., 1978). Due to the initial hyper-stimulation of LH release, 

use of LHRH agonists is associated with a surge in serum testosterone termed ‘testosterone 

flare’, which is associated with a number of unwanted side effects in patients such as hot 

flushes, fatigue and loss of libido (Rick et al., 2013). Nevertheless, LHRH agonists are 

associated with less morbidity than orchiectomy or estrogen administration whilst 

maintaining similar survival outcomes, and remain a crucial component of current ADT 

regimens (Byar and Corle, 1988; Ferraldeschi et al., 2015). More recently, LHRH antagonists 

have been developed that display very similar efficacy in relation to LHRH receptor 

downregulation, but do not exhibit the initial testosterone flare, thus providing a more 

favourable toxicity profile, at least in the short term (Wong et al., 2014). As such, it is likely 

LHRH antagonists will continue to be developed and may replace the use of LHRH agonists as 

the predominant agent in ADT (Klotz et al., 2014). In parallel, the discovery and 
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characterisation of the androgen receptor (AR) was being performed throughout the 1960’s 

(Anderson and Liao, 1968; Bruchovsky and Wilson, 1968; Mainwaring, 1969). As the 

understanding of AR regulation increased, the first generation of anti-androgens were 

developed. Cyproterone acetate is considered a ‘pure’ steroidal anti-androgen and acts as an 

AR antagonist, blocking the binding of endogenous AR ligands testosterone or the more 

potent metabolite dihydrotestosterone (DHT) (Isurugi et al., 1980; Pavone-Macaluso et al., 

1986). Cyproterone acetate was successfully used in PC patients resulting in tumour 

regression, reduction in serum testosterone, LH and FSH, and displayed similar survival 

advantages to estrogen administration. However, cyproterone acetate had affinity for other 

steroidal receptors and resulted in systemic progestational side effects including loss of libido 

and impotence, therefore the development of non-steroidal anti-androgens ensued (Wong et 

al., 2014). In the 1970s flutamide was characterised by Shutsung Liao and colleagues as a 

competitive non-steroidal antiandrogen, and received FDA approval for use in advanced PC 

patients in 1989 (Liao et al., 1974; Labrie et al., 1982; FDA, 1989). Subsequent compounds 

were generated with higher affinity for the ligand binding domain of the AR including 

bicalutamide (Casodex) which is still widely used today (Rathkopf and Scher, 2013). However, 

as sequencing techniques advanced, it emerged that as many as 30% of patients present with 

mutations within the AR ligand binding domain following treatment courses, allowing for anti-

androgens to act as agonists, and thus stimulate the AR signalling axis (Taplin et al., 2003). In 

addition, first-generation anti-androgens exhibit significantly lower binding affinity for the AR 

than endogenous androgens, and have recently been outclassed by second-generation anti-

androgens (Simard et al., 1997; Kolvenbag et al., 1998). In 2010, enzalutamide, formerly MDV-

3100, was developed by Jung et al, which through further characterisation demonstrated a 

significantly higher AR binding affinity over bicalutamide of approximately seven-fold and 

resulted in xenograft tumour shrinkage as opposed to retardation (Tran et al., 2009; Jung et 

al., 2010). Enzalutamide showed considerable efficacy in phase I and II trials, including over a 

50% reduction in PSA levels in 43-56% of patients, enabling it to rapidly progress to phase III 

trials (Scher et al., 2010). In the phase III trial AFFIRM, enzalutamide treatment significantly 

increased patient survival (18.4 months vs. 13.6 months, HR 0.63, 95% CI 0.53–0.75; P <0.001) 

as well as displaying superiority in all secondary end-points (Scher et al., 2012), and was 

subsequently FDA approved for the treatment of CRPC in patients with prior administration 

of chemotherapy (FDA, 2012). It has since been included in trials for use prior to 
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chemotherapy, notably the PREVAIL trial (Beer et al., 2014). The rapid progression of 

enzalutamide through clinical trials, combined with the high demand for increased treatment 

efficacy in CRPC, has driven the development of a number of additional AR targeting agents 

currently in preliminary trials. One such compound is ARN-509, an AR antagonist derived from 

the same chemical series as enzalutamide (Bambury and Rathkopf, 2015) that provides 

comparable in-vitro efficacy characterised by AR degradation and impaired nuclear 

localization. Another AR antagonist is ODM-201, but this compound has a distinct structure to 

enzalutamide and ARN-509, and does not cross the blood brain barrier. Both novel AR 

antagonists have demonstrated promising results in phase I/II trials and are currently being 

employed in phase III trials (clinicaltrials.gov, 2016a; Clinicaltrials.gov, 2016b). Similarly other 

regions of the AR protein are crucial for AR transactivation, and may represent a novel 

approach to treating patients where resistance has arisen, or delaying resistance in the first 

instance. EPI-001 targets the N-terminal domain of the AR as opposed to the C-terminal ligand 

binding domain for which all previously mentioned AR antagonists have affinity. Development 

of EPI-001 remains in very early stages, but it is hoped this compound or a sister compound 

will progress to further studies shortly (Brand et al., 2015). Similarly EZN-4176 works by 

targeting the AR via a distinct mechanism, the AR mRNA (Bianchini et al., 2013). EZN-4176 is 

considered a third-generation anti-androgen and is in fact a locked anti-sense oligonucleotide 

that binds the hinge region of AR mRNA leading to degradation and is currently in phase I trials. 

Directly targeting the AR has proven an effective strategy thus far, but similarly to the very 

first effective PC treatments, minimising circulating androgens provides an equally successful 

approach, and as such our greater understanding of testosterone production and conversion 

has led to the development of additional androgen biosynthesis inhibitors. Despite the 

effectiveness of LHRH agonists and antagonists at reducing circulating androgens produced in 

the testes, the adrenal glands are still capable of producing circulating pro-androgens through 

two independently regulated reactions catalysed by the cytochrome P450 enzyme CYP17. 

Firstly, CYP17 is responsible for the 17-α-hydroxylation of progesterone and pregnenolone, 

and secondly the lyase cleavage of 17-α-hydroxyprogesterone and 17-α-

hydroxypregnenolone resulting in the formation of androstenedione and DHEA respectively 

(Attard et al., 2005). These two products can then be converted to testosterone via a reaction 

catalysed by the enzyme 17-keto reductase (Hellerstedt and Pienta, 2002). Understanding this 

route of androgen production led to the development of the highly selective and potent CYP17 
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inhibitor abiraterone, a compound of similar structure to pregnenolone that has a binding 

affinity for CYP17 of <1nM (Attard et al., 2009). Abiraterone was approved for treatment of 

mCRPC patients in 2011(FDA, 2011) following success in a phase III trial where it displayed a 

significant increase in overall survival (14.8 months vs. 10.9 months; HR 0.65; 95% CI 0.54 to 

0.77; P<0.001) (de Bono et al., 2011). Novel compounds targeting the androgen biosynthesis 

pathway include but are not limited to TAK-700, TOK-001 and VT-464 and are under clinical 

development demonstrating that exploitation of the androgen biosynthesis pathway remains 

an approach of continued refinement (Molina and Belldegrun, 2011; Gomez et al., 2015; Bird 

and Abbott, 2016). As such, targeting the androgen signalling axis has proven to be a 

successful intervention in the treatment of PC over the last 60 years, and crucially, through 

the development of more advanced molecular biology techniques, data from clinical and 

experimental model systems not only demonstrate that the AR is still essential for driving 

disease progression under castrate conditions, but remains a viable therapeutic target in the 

future treatment of both PC and CRPC (Buchanan et al., 2001; Feldman and Feldman, 2001), 

and thus there is a great need to enhance our knowledge on AR regulation and function. 

 

1.2 The Androgen Receptor 

1.2.1 The Androgen Receptor Structure and Function 

In order to continue developing more effective AR targeting agents it is crucial we enhance 

our knowledge on the intricate regulation of the AR. The AR gene is located on chromosome 

Xq11-12 in males, existing as a single allele (Gelmann, 2002). Whilst not being 

developmentally lethal, complete loss of the AR gene results in complete androgen 

insensitivity syndrome, whereas missense mutations that result in impaired activity result in 

partial androgen insensitivity syndrome. Phenotypically, retardation or loss of male sexual 

development is observed despite the production of normal physiological levels of androgens 

(Quigley et al., 1995). This is due to the fact that androgens require a biologically active AR in 

order to exert their effects at a cellular level. The AR is therefore defined as a member of the 

steroid hormone receptor family of transcription factors (Heinlein and Chang, 2004). 

Furthermore, it has been shown that the conversion of testosterone to DHT is essential for 

complete prostate morphogenesis, confirming DHT as the more potent AR ligand (Wilson et 

al., 1993). Aside from normal prostate development, the AR is essential for cell differentiation, 
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secretory function, metabolism, morphology, proliferation and survival (Dehm and Tindall, 

2006). The AR is expressed in both the prostate epithelial and stromal cells, with androgen 

depletion resulting in apoptosis of the prostate epithelia (Litvinov et al., 2003). This process 

can be reversed following the reintroduction of androgens, resulting in the rapid proliferation 

and differentiation of basal epithelial stem cells, and subsequently reinstating the secretory 

function of the prostate (Kurita et al., 2001). In turn, transcription of the AR gene is regulated 

by androgens amongst other steroid hormones, as well as being shown to be tissue and age 

specific. Studies of the AR gene promotor have revealed a broad range of transcription factor 

binding sites including palindromic DNA binding sites recognized by the AR, the glucocorticoid 

receptor and the progesterone receptor (Baarends et al., 1990). Interestingly, the androgen 

signalling axis forms an auto-regulatory negative feedback loop whereby androgen 

stimulation results in reduced AR mRNA expression, and castration results in increased AR 

mRNA expression (Quarmby et al., 1990). Like other steroid hormone receptors, the exons of 

the AR gene code for functionally distinct domains of the ~919 amino acid AR protein, with 

exon 1 coding for the N-terminal domain (NTD), exons 2 and 3 coding for the DNA binding 

domain (DBD), exon 4 the hinge region, and exons 5 through 8 coding for the C-terminal 

domain (CTD) which contains the ligand-binding domain (LBD) (Lubahn et al., 1988; Jenster et 

al., 1992; Bain et al., 2007). Additionally, the NTD and CTD harbour co-activator binding 

Figure 1.5 – Schematic representation of the Androgen Receptor gene and protein. The AR gene is located on chromosome 
Xq11-12 and spans 8 exons. The AR protein possesses 4 distinct domains, the N-terminal domain, DNA binding domain, 

hinge region, and the C-terminal domain. The N and C-terminal domains can functionally interact through the ‘FxxLF’ and 
‘WxxLF’ motifs located in the N-terminus. The nuclear localization signal (NLS) spans both the DNA binding domain and the 

hinge region. 
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grooves termed transcriptional activation function 1 (AF-1) and transcriptional activation 

function 2 (AF-2) respectively (Jenster et al., 1995; Dehm and Tindall, 2006). A schematic 

diagram representing the genomic and protein structure of the AR can be found in figure 1.5. 

 Despite being highly conserved throughout evolution, the complexity of the structural and 

functional elements of the AR remain to be fully elucidated (Thornton and Kelley, 1998). 

Whilst it has been possible to solve the crystal structures of the CTD and DBD, the same cannot 

be said for the NTD (Matias et al., 2000; Sack et al., 2001). The AR CTD is organised as three 

antiparallel helical sheets, comprised of 11 rather than 12 α-helices like other hormone 

receptors (Sack et al., 2001). Each of the α-helices contains 18 amino acids that form a central 

LBD cavity, and create direct interactions with the ligand. Upon ligand binding, the ultimate α-

helix of the LBD undergoes a conformational change, causing it to stabilize the ligand within 

the cavity. This conformational change leads to the formation and exposure of the AF-2 

coactivator binding surface (Dehm and Tindall, 2006). Exposure of the hydrophobic AF-2 

groove allows for docking of proteins containing an ‘LxxLL’ motif (Hur et al., 2004). Despite 

extensive crystallography, the consequence of such interactions remains unclear, with AR 

peptide based studies revealing the AR CTD displays minimal intrinsic transcriptional activity 

(Bevan et al., 1999; He et al., 1999; Hur et al., 2004). As such, subsequent studies identified 

that the CTD was capable of binding ‘FxxLF’ and ‘WxxLF’ peptide sequences present in the AR 

NTD (He et al., 2000). Furthermore, the CTD displayed significantly higher binding affinities for 

NTD derived peptides compared with ‘LxxLL’ containing proteins. Additional studies were able 

to demonstrate that the NTD-CTD (N/C) interaction was more commonly associated with 

mobile AR following androgen stimulation, but was also lost upon DNA binding, suggesting the 

N/C interaction may serve as a means of preventing protein binding until the AR is deposited 

at the chromatin (Li et al., 2006; van Royen et al., 2007). The DBD of the AR is highly conserved 

with other nuclear hormone receptors and plays an important role in mediating AR 

dimerization, nuclear localization and DNA binding (Shaffer et al., 2004). This domain 

encompasses 2 zinc fingers and a loosely structured carboxy-terminal extension (CET) (Dehm 

and Tindall, 2006). The first zinc finger is termed the P-box, which forms the recognition helix 

that binds the DNA major groove at androgen response elements (AREs). Interestingly, the P-

box shares perfect homology with that found in the glucocorticoid receptor, progesterone 

receptor and mineralocorticoid receptor, and thus the AR constitutes a member of the Class I 
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of nuclear hormone receptors (Claessens et al., 1996; Schoenmakers et al., 2000; Verrijdt et 

al., 2000). AREs are hexameric half-sites arranged as either direct-repeat or inverted-repeat 

sequences split by a 3bp spacer recognised by AR homodimers arranged in a head to head 

orientation (Claessens et al., 2008). The head to head dimerization is unique to the AR 

amongst the steroid receptor family and is mediated through D-box, the second zinc finger, 

interactions (Shaffer et al., 2004). However, this does raise fundamental issues on the 

specificity of AR DNA binding, which to date is still unclear. There are speculations that the 

CET or an additional interface results in increased AR/ARE stability. In addition to harbouring 

the P-box, D-box and CET, the DBD also encompasses a proportion of the nuclear localization 

sequence (NLS). The NLS also spans into the hinge region and comprises the bipartite 

sequence 617-RKCYEAGMTLGARKLKK-634 that possesses 2 basic motifs at either flank (Jenster 

et al., 1993). The NLS is believed to be exposed upon ligand binding, allowing for the binding 

of α-importin and nuclear translocation (Ni et al., 2013). In addition to containing the NLS, 

mutagenesis studies have revealed that the hinge region also has roles in AR dimerization and 

ultimately the transcriptional output of the AR (Haelens et al., 2007; Clinckemalie et al., 2012). 

The NTD accounts for over 50% of the total AR protein and is encoded entirely by exon 1. 

Within the NTD are two poly-amino acid stretches of significantly variable length throughout 

the human population. These are made up of poly-glutamine (poly-Gln) and poly-glycine (poly-

Gly) sequences respectively (Chang et al., 1988; Hsing et al., 2000; Sasaki et al., 2003). The 

exact function of these repeats is largely unknown, but there is considerable evidence for 

them acting as docking sites for protein-protein interactions (Palazzolo et al., 2008). 

Additionally it has been shown that the length of the poly-Gln repeat inversely correlates with 

AR transcriptional activity and may in fact be a risk factor for the development of PC 

(Chamberlain et al., 1994). Indeed, there is modest evidence for males of African-American 

descent possessing shorter poly-Gln stretches and an increased incidence of PC compared to 

white American males (Platz et al., 2000). As previously mentioned, the NTD is structurally 

disordered and described as possessing a molten-globule like structure and therefore likely to 

be heavily influenced through protein-protein interactions, adding to the complexity of its role 

and function, as well as adding dynamic context specific factors to its regulation (Lavery and 

McEwan, 2006). Independently of this, the NTD has been shown to be a potent transcriptional 

activator in the absence of the CTD (Reid et al., 2002). This transcriptional activity was mapped 

to two distinct regions within the AF-1 binding groove termed transcriptional activation unit 
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1 (TAU1) and transcriptional activation unit 5 (TAU5) (Callewaert et al., 2006). Both TAU 

regions have been shown to be indispensable for AR transcriptional activity through 

mutagenesis studies, whilst TAU1 and TAU5 also possess the ‘FQNLF’ and ‘WHTLF’ motifs 

respectively, required for the ligand dependent N/C interaction (Doesburg et al., 1997; He et 

al., 2000; Wilson, 2011). 

1.2.2 Androgen Receptor Transactivation 

In the absence of ligand the AR is found predominantly in the cytoplasm (Cardozo et al., 2003), 

maintained in complex with a range of heat shock (HSP), chaperone and co-chaperone 

proteins, in a high ligand binding affinity conformation (Cano et al., 2013). Circulating 

androgens can freely diffuse through the cell membrane where testosterone is metabolized 

to the more potent AR binding metabolite, DHT. Ligand binding then triggers a series of 

conformational changes within the AR and partial dissociation from the unbound protein 

complex (Cano et al., 2013). The conformational changes lead to exposure of the NLS and 

subsequent nuclear translocation via a classical import mechanism involving recognition by 

importin α and β, followed by movement through the nuclear pore complex (Black and Paschal, 

2004). The AR homodimer is then capable of engaging its transcriptional program through 

Figure 1.6 - AR Transactivation. 
Testosterone freely enters 

prostate cells by passive diffusion 
where it is metabolised to the 

more potent metabolite, DHT, by 
5α-reductase. DHT then binds to 

the AR causing dissociation of the 
AR from the foldosome and 

leading to homodimerization. AR 
homodimers then translocate to 
the nucleus where they are able 

to bind to AREs, recruit additional 
transcriptional regulators, and 

initiate gene transcription. 
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association with AREs and interaction with co-activators and co-repressors. Figure 1.6 

represents a simplified visualization of AR transactivation. However, post-translational 

modifications (PTMs) of the AR, including phosphorylation, ubiquitination, sumoylation and 

acetylation invariably add extra layers to the structural and functional complexity of the AR 

(van der Steen et al., 2013), and as such represent an invaluable area to expand our knowledge 

on AR regulation.  

1.2.3 Post-Translational Modifications of the Androgen Receptor 

It has been well documented in the literature that AR activity is heavily influenced by the 

activity of co-activators and co-repressors in a dynamic and context specific manner, but 

crucially, many of these co-activators and repressors impact AR function through direct PTM. 

Indeed, PTM of the AR is capable of regulating protein stability, interactions with additional 

proteins, subcellular localization and structure (Coffey and Robson, 2012). Many of these 

modifications have been extensively studied and their functional consequences identified, and 

as such, their respective modulators have been evaluated as novel therapeutic targets in 

diseases where aberrant AR activation plays a significant role in disease initiation and 

progression. This section will introduce the impact of acetylation, methylation, ubiquitination 

and sumoylation (depicted in figure 1.7) on AR function, but will focus primarily on 

phosphorylation of the AR. 

As a transcription factor, the impact of histone acetylation on the AR transcriptional program 

has been extensively studied (Li et al., 2005), but it wasn’t until 2000 when acetylation was 

first described as a direct modification of the AR (Fu et al., 2000). Specifically, three lysines 

within the ‘KLKK’ motif flanking the DBD (K630, K632, K633) were shown to be acetylated by 

histone acetyltransferase P300 and lysine acetyltransferase 2B. Subsequent research also 

identified lysine acetyltransferase 5 and N-acetyltransferase arrest-defect 1 protein as direct 

acetyl transferases of the AR (Gaughan et al., 2002; Wang et al., 2012). Through the 

implementation of mutagenesis studies, it was shown that acetylation of the AR plays a pro-

androgenic role, contributing to the transactivation of the AR through the recruitment of 

additional co-activators (Gaughan et al., 2002). It was shown that the AR can be acetylated in 

response to androgen, but also through additional stimuli such as bombesin and interleukin 4 

(Fu et al., 2000; Gong et al., 2006; Lee et al., 2009). In turn, acetylated AR can be de-acetylated 

by histone deacetylase (HDAC) enzymes, thus providing a context specific means of AR 
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modulation. Indeed, upon inhibition of HDAC1, an increase in acetylation of the AR is observed, 

and this correlates with increases in AR transcriptional activity (Gaughan et al., 2002; Faus and 

Haendler, 2008). Conversely, overexpression of the HDAC sirtuin 1 reduces AR transactivation, 

and it was identified that de-acetylation of the AR within the ‘KLKK’ motif disrupts the AR N/C 

terminal interaction and subsequent nuclear translocation and chromatin binding, providing 

substantial evidence for the impact of AR acetylation on receptor structural rearrangements 

and interactions (Fu et al., 2006). 

 

The ‘KLKK’ motif within the AR known to be acetylated also displays significant sequence 

homology with the consensus sequence for methylation by SET9. Despite strong but 

conflicting evidence for the exact residue of modification, it was shown that lysine N-

methyltransferase 7 (SET9) is capable of methylating the AR by two independent research 

groups (Gaughan et al., 2011; Ko et al., 2011). Similarly to acetylation, methylation of the ‘KLKK’ 

motif was shown to be important for N/C interaction and subsequent transcriptional activity 

of the AR. Expression of SET9 in clinical PC samples demonstrated elevated expression in 

cancerous tissue vs non-cancerous tissue and provides evidence of its activity as an AR co-

activator in the progression of PC (Gaughan et al., 2011). Similarly, methylation is a reversible 

process, and the characterisation of de-methylation enzymes on AR activity has ensued 

(Coffey et al., 2013). 

Ubiquitination is the process of covalently modifying lysine residues with the addition of 

ubiquitin, a small 8.5 kDa protein. Ubiquitination has been linked to signal transduction as well 

as protein recognition and degradation. Ring finger protein 6 (RNF6) and seven in abstentia 

Figure 1.7 – Acetylation, Methylation, Ubiquitination and Sumoylation of the AR. The AR can be acetylated and methylated 
at residues K630, K632 and K633, whilst ubiquitination occurs on resideus K845 and K847 and sumoylation occurs on K386 
and K520. 
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homolog 2 (SIAH2) have been shown to promote the mono-ubiquitination of the AR on 

residues K845 and K847 resulting in increased transcriptional activity, whereas poly-

ubiquitination mediated by double minute 2 protein (MDM2) and STIP1 homology and u-box 

containing protein 1 (CHIP) have been shown to promote AR protein turnover (Lin et al., 2002; 

Xu et al., 2009; Qi et al., 2013; Sarkar et al., 2014). Preventing de-ubiquitination of the AR by 

the ubiquitin specific peptidase (USP) family of proteins has emerged as a promising 

therapeutic approach to destabilize the AR protein. USP7 and USP12 have both been 

described as AR co-activators and are capable of influencing the ability of the AR to bind to 

AREs (Burska et al., 2013; Chen et al., 2015). 

Similarly to ubiquitination, sumoylation is the process of covalently modifying lysine residues 

with the addition of a small protein, in this instance, small ubiquitin-like modifier (SUMO). 

There are 4 SUMO protein members, with SUMO 1 being the most frequently observed AR 

sumoylation conjugate (van der Steen et al., 2013). AR sumoylation was first described in 2000 

after the sumo conjugating enzyme ubiquitin conjugating enzyme E2 I was co-

immunoprecipitated with the AR (Poukka et al., 2000). The AR contains 2 sumolyation motifs, 

(I-L-V)-K-x-D/E, encompassing K386 and K520 residues. Androgen stimulation leads to 

increased sumoylation and was shown to be inhibitory to AR activity by impeding the AR N/C 

interaction (Kaikkonen et al., 2009). It also became apparent that sumoylation of the AR elicits 

a distinct transcriptional program to non-sumoylated AR (Sutinen et al., 2014). Despite the 

induction of sumoylation of the AR by androgens, and the distinct downstream effects of gene 

transcription, sumoylation does not appear to be localization dependent and sumoylated AR 

exists equally between the nucleus and cytoplasm (Nishida and Yasuda, 2002). 

Phosphorylation is the most extensively studied PTM of the AR to date, and many of the 

phosphorylation sites have been functionally annotated and their respective kinase identified 

(Gioeli and Paschal, 2012). Phosphorylation occurs on serine, threonine and tyrosine residues 

across all of the AR’s functional domains, and these have been shown to occur in both the 

presence and absence of androgen, and indeed through the stimulation of alternative 

signalling cascades, demonstrating the complexity of AR regulation. This becomes of 

increasing relevance in relation to the function of the AR throughout the progression of PC to 

CRPC, and through further understanding of the biological consequences of AR 

phosphorylation, it may be possible to identify novel therapeutic targets for the treatment of 
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patients where resistance to antiandrogens has emerged. Figure 1.7 illustrates the 

phosphorylation sites identified thus far and are subsequently described below. 

 

Serine 16 was found to be phosphorylated in response to androgen and lies within a consensus 

sequence for both protein kinase A (PKA) and calcium calmodulin II (Gioeli et al., 2002). 

However, upon stimulation of PKA with forskolin no observable increase in the 

phosphorylation of serine 16 was observed, raising some doubts as to the responsible kinase. 

Interestingly, upon deletion of the LBD, serine 16 was phosphorylated in the absence of 

androgens suggesting it may play a role in the cross-talk between domains and may be of 

functional importance in androgen splice variants that lack the LBD (Gioeli et al., 2002).  

Serine 81 was found to display the highest stoichiometric phosphorylation in response to 

androgen, and also displayed the most prolonged phosphorylation (Gioeli et al., 2002). 

Multiple kinases belonging to the cyclin dependent family of kinases (CDK) have been 

described to phosphorylate this site, each under distinct contexts. CDK1 has been shown to 

phosphorylate the AR in a cell cycle specific manner, whereas CDK9 has been shown to 

phosphorylate the AR in the nucleus during transcription (Chen et al., 2006; Gordon et al., 

2010). In addition it was reported that CDK5 is also responsible for the phosphorylation of the 

AR at this residue (Hsu et al., 2011). Functionally, it was found that CDK1 stabilizes the AR 

protein throughout the G2/M phase of the cell cycle, when CDK1 is most active, and had the 

Figure 1.8 - Phosphorylation sites of the AR. The AR has been described to be phosphorylated on 17 sites thus far spanning 
all four domains of the AR protein. These have been shown to result in distinct regulatory outcomes in relation to AR 

function. Phosphorylation has been attributed to a range of kinases from distinct signalling cascades. 
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most profound impact on AR stabilization in the absence of androgen (Chen et al., 2006). 

Interestingly, CDK1 was also found to be expressed at higher levels in androgen independent 

tumours, suggesting a potential role in AR activation under androgen depleted conditions. 

However, it was also observed that serine 81 is phosphorylated outside of the G2/M phase of 

the cell cycle when CDK1 is inactive, leading to the observations that CDK5 and CDK9 were 

also capable of phosphorylating this site. Upon over-expression of CDK9, a marked increase in 

serine 81 phosphorylation was observed, and this coincided with an increase in AR nuclear 

localization, chromatin deposition and retention, and gene transcription (Chen et al., 2012). 

Similarly, upon over-expression of CDK5, increases in serine 81 phosphorylation were 

identified, correlating with increases in AR transcriptional activity. Conversely, siRNA 

depletion of CDK5 leads to a reduction in the phosphorylation of serine 81, and subsequent 

repression of AR regulated gene transcription (Hsu et al., 2011). Crucially, it has been 

demonstrated through mutagenesis studies that loss of serine 81 phosphorylation limits PC 

cell growth (Gordon et al., 2010).  

 

Figure 1.9 – AR serine 81 phosphorylation. Phosphorylation of AR serine 81 by CDK1 occurs in a cell cycle dependent manner, 
specifically during G2/M phase of the cell cycle when CDK1 is most active. In addition, CDK5 and CDK9 have been shown to 
phosphorylate the AR in the nucleus throughout all phases of the cell cycle. Phosphorylation of serine 81 has been shown to 
induce AR transcriptional activity characterised by increased nuclear localization and chromatin binding. 
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There is evidence for serine 94 being constitutively phosphorylated and does not increase in 

response to androgen (Yang et al., 2007). Currently the kinase responsible for modification of 

this residue and its biological relevance remains unknown. 

The impact of serine 213 phosphorylation on AR function has been extensively studied, and a 

number of kinases have been identified as the conjugating enzymes responsible for this 

modification. It has emerged that phosphorylation of this site by the distinct kinases results in 

different functional outcomes (Koryakina et al., 2014). Indeed, the kinases responsible for the 

phosphorylation of this site belong to independent signalling cascades, both of which have 

been identified as possessing clinical significance in the progression of PC. The first kinase, 

protein kinase B (AKT), was demonstrated to induce serine 213 phosphorylation following 

stimulation of the phosphoinositide 3-kinase (PI3K) pathway, whilst inhibition of this pathway 

diminishes phosphorylation of serine 213 (Lin et al., 2001; Palazzolo et al., 2007). Subsequent 

in-vitro phosphorylation assays went on to prove that AKT was capable of phosphorylating this 

site. Functionally, phosphorylation by AKT results in the recruitment of MDM2, followed by 

subsequent ubiquitination and degradation, and thus is regarded as a repressive 

phosphorylation site (Lin et al., 2002). Indeed, it was demonstrated that the AR forms a 

complex with both AKT and MDM2 upon phosphorylation of serine 213 (Deep et al., 2008). 

The AKT mediated AR degradation can be rescued following addition of the proteasomal 

inhibitor MG132 confirming phosphorylation of serine 213 results in proteasomal degradation. 

Despite the repressive impact of AKT on AR signalling observed throughout these studies, the 

PI3K pathway is frequently dysregulated in advanced PC due to genomic deletion of the PI3K 

repressor phosphatase and tensin homolog (PTEN), and as such the interplay between these 

two signalling cascades may be more complex than initially thought (Lin et al., 2004). Indeed, 

AKT is also capable of phosphorylating serine 791 resulting in the proteasomal degradation of 

the AR via the same mechanisms involving MDM2 (Gioeli et al., 2002). Pim-1 proto-oncogene, 

serine/threonine kinase (PIM1) is also capable of phosphorylating the AR at serine 213, but its 

two transcript variants, PIM1-S and PIM1-L differentially impact on AR function (Ha et al., 

2013). PIM1-S induces similar functional outcomes whereby upon phosphorylation of S213 

MDM2 is recruited and the AR undergoes proteasomal degradation, and as a result AR 

transcriptional activity is reduced. PIM1-L on the other hand does not impact on AR 

proteasomal degradation, and over-expression of this kinase results in increased 
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transcriptional activity despite increased phosphorylation of serine 213. However, PIM1-L is 

also capable of phosphorylating threonine 850 which is associated with increased activity, 

suggesting there may be some degree of cross-talk between the two events. Phosphorylation 

of threonine 850 by PIM1-L leads to AR stabilization and increased transcriptional activity, 

particularly in the presence of low concentrations of androgens. This was found to be due to 

the recruitment of RNF6 as opposed to MDM2, leading to subsequent ubiquitination, but 

favoured enhanced stability as opposed to degradation. In the presence of androgens the 

interaction between PIM1-L and the AR is enhanced (Linn et al., 2012). 

 

 

Another phosphorylation site with unknown functional consequence is serine 256, which is 

phosphorylated in response to androgen stimulation and lies within a calcium calmodulin 

kinase II consensus sequence (Gioeli and Paschal, 2012).  

Aurora A is a kinase that has been implicated with the progression of PC to CRPC and is 

responsible for the phosphorylation of 2 residues in the AR, threonine 280 and serine 291 (Shu 

et al., 2010).  Both sites were demonstrated to be phosphorylated in the presence and absence 

of androgen leading to the potentiation of AR transcriptional activity through enhanced DNA 

binding. Aurora A expression has been shown to increase between localized PC and advanced 

Figure 1.10 – AR serine 213 and serine 791 phosphorylation. Activation of tyrosine kinase receptors by growth factors leads 
to the initiation of the PI3K signalling cascade, culminating in the activation of AKT. AKT is then capable of phosphorylating 
the AR on serine 213 and serine 791. Phosphorylation of these residues leads to the recruitment of MDM2, subsequent AR 
ubiquitination and ultimately proteasomal degradation.  
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PC in clinical samples, and correlates with PSA expression, Gleason score, and survival 

(Buschhorn et al., 2005; Furukawa et al., 2007; Beltran et al., 2011; Mosquera et al., 2013), 

reinforcing its viability as a potential therapeutic target. 

Serine 308 is phosphorylated by CDK11P58 throughout the G2/M phase of the cell cycle (Zong 

et al., 2007; Chi et al., 2011). Modification of this residue results in repression of the AR 

signalling axis and repression of cell growth. Upon siRNA depletion of CDK11P58, increases in 

AR transcriptional activity are observed, whereas overexpression results in repression of AR 

transactivation. Indeed, expression of CDK11P58 inversely correlates with the Gleason score 

and proliferative capacity of PC when quantified by Ki67 staining (Olshavsky et al., 2008). More 

recently, it was shown that CDK1 also phosphorylates serine 308, which raises the possibility 

that CDK1 acts as both a co-activator and co-repressor (Koryakina et al., 2015). The authors 

went on to show that phosphorylation of serine 308 directed the AR to a distinct subset of 

androgen regulated genes which would suggest that the AR is capable of driving distinct 

transcriptional programs throughout different phases of the cell cycle, based on the 

stimulation and activity of co-activators. 

Genomic sequencing of a male with AIS led to the discovery of serine 405 as a phosphorylation 

site (Lagarde et al., 2012). Mutation of this residue to alanine leads to impaired AR activity 

and in the case of this patient, AIS.  

Serine 424 is another residue identified as being androgen dependent, but the functional 

impact of this modification remains to be elucidated. The kinase responsible also remains 

unknown (Gioeli et al., 2002). 

Serine 515 is another residue where multiple kinases have been successfully identified as 

modulators of this residue. CDK7 was proven to phosphorylate serine 515 through in-vitro 

biochemical assays, further compounded through the incorporation of serine-515-alanine 

mutants in to in-vitro phosphorylation assays (Chymkowitch et al., 2011). Functionally, it was 

shown that phosphorylation by CDK7 occurred at the promotor regions of androgen target 

genes, resulting in the recruitment of the ubiquitin ligase MDM2, and promoting AR turnover. 

However, impaired phosphorylation of this residue by CDK7 was shown to reduce the overall 

transactivation potential of the AR, suggesting AR protein turnover is a crucial step in the 

androgen signalling axis. Secondly, significant evidence for the phosphorylation of serine 515 
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by the mitogen-activated protein kinase (MAPK) signalling cascade exists (Gregory et al., 2004; 

Mellinghoff et al., 2004). It was demonstrated that following epidermal growth factor (EGF) 

stimulation, an increase in AR transcriptional activity is observed, and this is recapitulated by 

an increase in PC cell growth. Upon treatment with MAPK inhibitors, a clear reduction in the 

phosphorylation of serine 515 is observed. Indeed, future mutagenesis studies successfully 

identified serine 515 as the site of AR phosphorylation in response to EGF (Ponguta et al., 

2008). In contrast, a more recent study demonstrated that elevated levels of phosphorylated 

serine 515 at diagnosis by immuno-histochemistry correlated with PSA expression and a 

decreased time to biochemical relapse (Willder et al., 2013). However, phosphorylation of 

serine 515 did not correlate with MAPK or phosphorylated MAPK expression, but rather, CDK1 

and phosphorylated CDK1 expression. Additional in-vitro studies using the pan-CDK inhibitor 

roscovitine demonstrated that a reduction in the phosphorylation of CDK1 correlated with a 

reduction in the phosphorylation of serine 515. Furthermore, phosphorylation of serine 515 

appears to be co-regulated with phosphorylation of serine 578 following EGF stimulation. 

Mutagenesis studies revealed that phosphorylation of serine 515 is maximal when serine 578 

is not phosphorylated (Ponguta et al., 2008). This cross-talk becomes increasingly complex 

when it was identified that both protein kinase C (PKC) and p21 protein-activated kinase 6 

(PAK6) can phosphorylate serine 578 (Ponguta et al., 2008; Liu et al., 2013). Phosphorylation 

by PKC drives increased transcriptional activity and mediates cross-talk with serine 515 

phosphorylation, whereas phosphorylation by PAK6 results in the recruitment of MDM2 and 

repression of AR transactivation. As such, the impact of EGF stimulation on AR function 

remains a point of interest for future research as it is also well documented that the MAPK 

signalling cascade is frequently dysregulated in the progression of PC and poses a viable 

therapeutic target (Gioeli et al., 1999; Kinkade et al., 2008).  
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Another signalling cascade capable of impacting on AR phosphorylation is that of the stress-

activated protein kinase pathway, highlighting once again the convergence of multiple 

pathways on the AR (Gioeli et al., 2006). Both C-Jun N-terminal kinase 1 (JNK) and p38 MAPK 

were shown to phosphorylate the AR on serine 650 upon activation with phorbol 12-myristate 

13-acetate. Conversely, inhibition of JNK and p38 MAPK with SP600125 and SB203580 

respectively resulted in a reduction of phosphorylated serine 650. Phosphorylation of serine 

650 was demonstrated to be repressive to AR function when either kinase was over-expressed, 

whereas increases in AR transcriptional activity was observed following siRNA depletion of 

either kinase. Repression of AR activity following phosphorylation of this mark was attributed 

to enhanced nuclear export. 

Similar to threonine and serine, there are a number of tyrosine residues that are able to be 

phosphorylated. Once again, the phosphorylation of these residues is mediated through a 

number of independent signalling cascades. Tyrosine 267 and tyrosine 363 were identified as 

Figure 1.11 – AR serine 515 phosphorylation. Activation of tyrosine kinase receptors by growth factors leads to the induction 
of the MAPK signalling cascade culminating in activation of the ERK kinases. The ERK kinases are then capable of 
phosphorylating the AR on serine 515 resulting in enhanced nuclear localisation and transcriptional activity. In addition, 
CDK1 and CDK7 can also phosphorylate serine 515. 
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being phosphorylated by tyrosine kinase non-receptor 2 (ACK) through mass spectrometry 

and site directed mutagenesis (Mahajan et al., 2007). Mutation of both tyrosine residues 

independently with phenylalanine reduced AR transcription and chromatin binding in both 

the presence and absence of androgen. It was also shown that activated ACK stimulated 

growth of PC xenograft tumours, whilst mutation of tyrosine-267-phenylalanine blocked the 

growth of castrate resistant xenografts. In addition, it was shown that stimulation of ACK with 

EGF, heregulin and Gas6 also resulted in increased tyrosine phosphorylation. More recently, 

it was shown that stimulation of ACK with EGF directed the tyrosine phosphorylated species 

of AR to distinct gene promotors when compared to androgen stimulation, specifically the 

ATM gene promotor (Mahajan et al., 2012). This not only highlights the ability of ACK to 

phosphorylate and stimulate AR activity, but also the ability of ACK to direct a distinct 

transcriptional program, even in the absence of androgen, whilst also implicating a role for 

ACK in driving resistance to radiotherapy in PC. 

Tyrosine 534 has been identified as a SRC proto-oncogene non-receptor tyrosine kinase (SRC) 

phosphorylation site (Guo et al., 2006). This residue is phosphorylated by SRC following 

stimulation by EGF, bombesin and interleukin 6. Site-directed mutagenesis demonstrated that 

phosphorylation of tyrosine 534 enhances AR transcriptional activity and the growth of PC 

xenografts. Immunohistochemical analysis also demonstrated that levels of phosphorylated 

tyrosine 534 correlated with SRC activity as well as disease progression. Interestingly, it was 

observed that tyrosine 534 phosphorylation also correlated with epithelial and endothelial 

tyrosine kinase (ETK) expression in human prostate tumours (Dai et al., 2010). Over-expression 

of either ETK or SRC results in increased Y534 phosphorylation and subsequent AR stabilization 

(DaSilva et al., 2009). Although similar observations can be made between AR tyrosine 

phosphorylation by SRC and ETK, it is likely their impact remains stimulus and context 

dependent.  

Finally, it has also been shown that the tyrosine kinase FER (FER) phosphorylates tyrosine 223 

in the presence of interleukin 6, leading to the formation of AR-FER complexes in the nucleus, 

resulting in enhanced AR gene transcription (Rocha et al., 2013). 

Crucially, phosphorylation of the AR is a highly complex regulatory mechanism, with many of 

the modulators in question regarded as oncogenes both in the context of PC and in additional 
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cancers. As described, phosphorylation events can occur both in the presence and absence of 

androgen, are both enhancing and repressive to AR function, and can be stimulated by 

alternative signalling cascades. With this in mind, elucidating the role of phosphatases on AR 

dephosphorylation poses an unmet need in our understanding of AR regulation.  

The role of phosphatases on AR function represents a significant knowledge gap when 

compared to the role of kinases on AR function, and as such there are only a handful of known 

phosphatases capable of impacting on AR function both directly and indirectly. PTEN is one of 

the most widely studied prognostic markers for PC. Loss of PTEN is known to drive PC 

progression to a more aggressive and castrate resistant phenotype, and genomic loss is 

observed in up to 40% of mCRPC cases (Shen and Abate-Shen, 2007; Dan et al., 2015). Loss of 

PTEN has been shown to be independently associated with increased risk of lethal progression 

and decreased survival (Ahearn et al., 2016). Through de-repression of the PI3K-AKT pathway, 

PTEN loss results in a reduction in AR transcriptional activity, characterised by increased AKT 

mediated phosphorylation and degradation (Carver et al., 2011b). With the prominent role of 

PTEN loss established within the progression of PC, a number of additional phosphatases that 

feed into the PI3K-AKT pathway have also been identified within the context of PC progression. 

These include the AKT phosphatases PH domain and leucine rich repeat protein phosphatase 

(PHLPP) 1 and PHLPP2, capable of antagonising the PI3K pathway by direct dephosphorylation 

of AKT, and inositol polyphosphate-4 phosphatase type II B, a phosphatase capable of 

dephosphorylating the phosphatidylinositol (3,4,5)-trisphosphate that accumulates following 

PTEN loss (Chen et al., 2011; Kofuji et al., 2015). All 3 of these phosphatases have been shown 

to be down-regulated in the progression of PC (Chen et al., 2014; Rynkiewicz et al., 2015). 

Protein tyrosine phosphatase 1B (PTP1B) is a well-established regulator of metabolic signalling, 

and has recently been identified as being an androgen regulated gene (Lessard et al., 2012). 

Although its reciprocal role in AR signalling has not been assessed, PTP1B was shown to be 

required for optimal cell migration of PC cells in an androgen independent manner. 2 

additional phosphatases, protein tyrosine phosphatase of regenerating liver 3 (PRL-3) and 

low-molecular weight protein tyrosine phosphatase (LMWPTP), have also recently been 

shown to positively impact on PC proliferation and migration (Ruela-de-Sousa et al., 2016; 

Vandsemb et al., 2016).  
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However, to date only 3 phosphatases have been described to directly interact with the AR. 

The first, small CTD phosphatase 2 (SCP2), interacts with the AR, but no evidence exists for 

direct modulation of the AR phosphorylation status by SCP2 (Thompson et al., 2006). Rather, 

SCP2 binds to the AR and translocates with the AR upon androgen stimulation to the AREs of 

androgen regulated genes, such as PSA, where it is able to repress AR transcriptional activity. 

It is believed that repression of AR transcriptional activity occurs through dephosphorylation 

of the recruited transcriptional machinery, such as RNA polymerase II. The second 

phosphatase known to interact with the AR is protein phosphatase 2A (PP2A) (Yang et al., 

2005a). PP2A binds to the AR in a ligand-dependent manner, suggesting phosphorylation of 

androgen responsive residues enhances the affinity of PP2A for the AR. Preliminary evidence 

would suggest that PP2A is capable of dephosphorylating serine 81, serine 256, serine 308 and 

serine 424, subsequently reducing AR transcriptional activity. As such, PP2A is considered an 

AR co-repressor. Indeed, ectopic expression of the PP2A catalytic subunit, PPP2CA, prevents 

epithelial to mesenchymal transition, and potently supresses PC tumour growth and 

metastasis in-vivo (Bhardwaj et al., 2014). Furthermore, protein phosphatase 2 regulatory 

subunit B (PPP2R2C), the substrate specifying subunit of PP2A, is frequently lost in PC (Bluemn 

et al., 2013). It was found that down-regulation of PPP2R2C promotes androgen-independent 

growth of PC cells, albeit not by AR mediated mechanisms, and is tightly correlated with the 

increased likelihood of disease recurrence, and ultimately PC-specific mortality.  

Protein phosphatase 1 (PP1) on the other hand, first identified to directly interact with the AR 

in 2009, is considered an AR co-activator (Chen et al., 2009). Initial studies first demonstrated 

that inhibition of PP1 with okadaic acid led to cell type-dependent effects on AR activity and 

expression. Subsequent studies using the more specific PP1 inhibitor tautomycin, or indeed 

RNAi depletion of the catalytic subunit of PP1, PP1α, led to enhanced proteasomal 

degradation of the AR. Conversely, over-expression of PP1α led to increases in AR protein 

expression and transcriptional activity. Using phospho-specific antibodies, depletion of PP1α 

resulted in a marked increase in the phosphorylation status of the AR at serine 650. As 

previously described, phosphorylation of serine 650 by either JNK or p38 MAPK leads to 

reduced AR transcriptional activity characterised by reduced nuclear localisation and 

enhanced degradation. In support of this, PP1α depletion led to significant impairment in the 

nuclear localisation of a wild-type AR construct, but not a serine 650-alanine mutant construct. 
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Subsequent studies have identified that PP1 also mediates AR stabilisation through additional 

mechanisms. PP1 is capable of dephosphorylating and inhibiting the AR ubiquitin ligase MDM2, 

and it was demonstrated that PP1 contributes to enhanced AR stabilisation, particularly in the 

absence of androgen, via this mechanism leading to the prevention of proteasomal 

degradation (Liu et al., 2016a; Liu et al., 2016b). Recently, it was also demonstrated that the 

opposing impact on AR stabilization between PP1 and AKT is also extended to the 

constitutively active AR splice variant, AR-V7 (Li et al., 2015). It was shown that PP1 enhanced 

AR-V7 stabilization via a reduction in the phosphorylation of serine 213, however, no evidence 

was presented for the direct dephosphorylation of serine 213 by PP1, suggesting the impact 

is likely to be mediated through repression of either AKT or MDM2 as previously described 

(Xiao et al., 2010; Liu et al., 2016a).  

The lack of understanding into the role of phosphatases in PC disease progression, and more 

specifically, the contribution of phosphatase enzymes to AR activity, led our research group 

to investigate the role of phosphatase enzymes on AR transcriptional activity. In order to gain 

a greater insight into the role of phosphatase enzymes on the regulation of AR activity, both 

directly and indirectly, our research group performed an RNAi screen targeting 291 

phosphatase enzymes and phosphatase interacting proteins with 3 individual RNAi oligos, in 

the androgen responsive, AR positive cell line, LNCaP-7B7 (Clayton, 2011). The LNCaP-7B7 cell 

line used also contained a chromosomally integrated luciferase reporter under the control of 

the ARE3 element from the PSA promotor. This enabled subsequent luciferase activity 

measurements to be used as a surrogate for AR activity and ranking of the RNAi targets as AR 

co-activators or co-repressors. As the targets were depleted through RNAi transfection, 

increases in luciferase activity were considered to be attributed to the depletion of a 

repressive phosphatase, whereas a reduction in luciferase activity was considered to be 

attributed to the depletion of a pro-androgenic phosphatase, when compared to the 

scrambled control.  

Although potential hits were observed throughout all of the major classes of phosphatases, 

the impact of PP1 regulatory subunit depletion particularly stood out from what is known in 

the literature. PP1 belongs to the serine/threonine protein phosphatase family (Virshup and 

Shenolikar), which collectively have been described to catalyse approximately 90% of all 

eukaryotic dephosphorylation events, reversing the modifications imposed by hundreds of 
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serine/threonine kinases (Heroes et al., 2013). Indeed, PP1 is encoded by 3 independent genes, 

collectively resulting in the formation of 6 alternatively spliced isoforms, all displaying ~90% 

amino acid sequence homology and resulting in very broad yet highly overlapping substrate 

specificity in-vitro (Cohen, 1988; Sasaki et al., 1990; Dombradi et al., 1993; Cohen, 2002). 

However, it is now becoming widely understood that PP1 catalytic subunits rely on the 

hundreds of mutually exclusive PP1 interacting proteins to govern their promiscuous activity 

in a spatio-temporal manner, thus allowing for the independent regulation of protein 

dephosphorylation (Korrodi-Gregorio et al., 2014). As such, PP1 catalytic subunits never exist 

as monomeric subunits in-vivo, but through association with their regulatory subunits, form 

multimeric PP1 holoenzymes with distinct subcellular localizations, substrate specificity and 

catalytic activity (Peti et al., 2013). A graphical representation of this process is depicted in 

figure 1.12. Furthermore, the association of PP1 with its regulatory subunits is a dynamic 

Figure 1.12 – Regulation of the PP1 catalytic subunit. The PP1 catalytic subunit displays very broad substrate 
specificity in-vitro, however, does not exist as a monomeric subunit in-vivo. The PP1 catalytic subunit associates 
with upto 100 mutually exclusive regulatory subunits, all of which have an affinity for the catalytic subunit in 
the nM range. The association of the catalytic subunit with regulatory subunits results in the formation of 
functionally distinct PP1 holoenzymes, all of which possess distinct subcellular localizations, substrate specific, 
and catalytic activity. 
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process, governed by the intracellular concentration of the regulatory subunits, which varies 

significantly between cell type, and their independent affinity for PP1, which in turn can also 

be modulated at the post-translational level, allowing for signalling cues to impact on 

dephosphorylation events, creating the pathway sensitivity required to counteract the action 

of serine/threonine kinases in a biologically relevant manner (Shi, 2009; Virshup and 

Shenolikar, 2009; Bollen et al., 2010; Choy et al., 2012). With this in mind, a highly variable 

response in AR activity following RNAi depletion of specific PP1 regulatory subunits was 

observed upon analysis of the RNAi screen, depicted in figure 1.13. This is in contrast to what 

is currently known in the literature regarding the role of PP1 on AR activity. Crucially, it was 

the identification of protein phosphatase 1 regulatory inhibitor subunit 14C (PPP1R14C) as a 

potent activator of the AR (luciferase activity vs scrambled control, 0.4 fold-change), and that 

of protein phosphatase 1 regulatory subunit 12A (PPP1R12A) as a repressor of the AR 

(luciferase activity vs scrambled control, 1.38 fold-change) that led to the subsequent 

characterisation and validation studies presented in this thesis. The rationale underlying the 

pursuit of PPP1R14C and PPP1R12A characterisation is that both proteins are components of 

the same PP1 holoenzyme, myosin phosphatase (MLCP), providing preliminary evidence for 

cross-talk between the dynamic regulation of MLCP activity and AR transactivation.  

 

Figure 1.13 – The impact of PP1 regulatory subunit 
RNAi depletion on AR transcriptional activity. PP1 
regulatory subunits were depleted by RNAi as part of a 
phosphatase RNAi screen (Clayton, et al.). Luciferase 
activity (Fold-Change vs Scrambled control) was 
measured as a surrogate for AR activity. Analysis 
revealed that depletion of PP1 regulatory subunits 
results in distinct outcomes in relation to AR 
transcriptional activity (Clayton, 2011).   
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2.1 Mammalian cell culture and storage 

2.1.1 Cell Lines 

Cell lines purchased from ATCC (Virginia, US): 

LNCaP (ATCC® CRL-1740™) – First isolated from the lymph node metastasis of a 50 year old 

male in 1980 (Horoszewicz et al., 1980), the LNCaP cell line represents an androgen-responsive 

model of PC. 

CWR22RV1 (ATCC® CRL-2505™) – Is a subclone of the CWR22 cell line serially propagated in 

mice under castrate conditions. This cell line expresses AR splice variants and represents an 

androgen-independent model of PC. 

HEK293T (ATCC® CRL-3216™) – Originally derived from human embryonic kidney cells, this cell 

line is readily transfected and as such will be used for over-expression studies within this thesis. 

LNCaP, CWR-22RV1 and HEK293T cells were maintained in RPMI-1640 (R5886, Sigma Aldrich) 

supplemented with 10% (v/v) foetal bovine serum (HyClone) and 2 mM L-glutamine (Sigma 

Aldrich), and will be referred to as full media throughout this thesis. For steroid-depleted 

media, RPMI-1640 was supplemented with 10% (v/v) dextran-coated charcoal-stripped foetal 

bovine serum (HyClone) and 2 mM L-glutamine and is referred to as DCC media. Cell lines were 

cultured at 37°C in a 5% CO2 humidified incubator (MCO-20AIC, Sanyo). 

Cell line subclones generated in-house: 

LNCaP-Androgen Independent (LNCaP-AI) – Generated from serial passage of the parental 

LNCaP cell line under steroid-depleted conditions. LNCaP-AI cells are maintained in DCC media. 

The LNCaP-AI cell line represents a model of androgen-independence. 

LNCaP-Casodex Resistant (LNCaP-CdxR) – Generated from serial passage of the parental 

LNCaP cell line in full media and escalating doses of casodex until a final concentration of 

10µM is reached. LNCaP-CdxR cells are maintained in full media + 10µM casodex. The LNCaP-

CdxR cell line represents a model of resistance to current anti-androgens.  

LNCaP-Enzalutamide Resistant (LNCaP-EnzR) – Generated from serial passage of the parental 

LNCaP cell line in full media and escalating doses of enzalutamide until a final concentration 
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of 10µM is reached. LNCaP-EnzR cells are maintained in full media + 10µM enzalutamide. The 

LNCaP-EnzR cell line represents a model of resistance to next generation anti-androgens. 

2.1.2 Cell Passaging 

Cell culture was carried out in a BioMat class II microbiological safety cabinet. To passage cells, 

culture media was removed from the culture flask and cells gently washed two times with 

phosphate buffered saline (PBS) (Invitrogen) and incubated with 1 x Trypsin-EDTA (Sigma 

Aldrich) solution and incubated for 5 minutes at 37°C. Following cell detachment, the trypsin 

was neutralised by the addition of culture media to the flask and the cell suspension was 

transferred to a sterile universal tube (Thermo scientific) and centrifuged at 400 x g for 5 

minutes. The cell pellet was resuspended and cells seeded into new flasks at a 1:3 to 1:10 

dilution. Mycoplasma tests were carried out every 2 months in-house. 

2.1.3 Cell Storage 

When required, cells would be stored at -80°C following resuspension in full media spiked with 

10% DMSO in 1ml cryovial aliquots. If cells needed to be thawed, cryovials were warmed to 

37°C in a water bath and added to 10ml of 37°C full media. The cells were then centrifuged at 

400 x g for 5 mins, resuspended in 10ml of 37°C full media and transferred to a T25 cell culture 

flask. 

2.1.4 Cell Counting 

Cells were detached from culture flasks as previously described and resuspended in fresh 37°C 

media. 10µl of the cell suspension was then pipetted onto a haemocytometer (Fisher Scientific) 

and the cells within a 1mm2 area were counted and then multiplied by 10,000 in order to 

obtain cells/ml. Cells would then be diluted as required. 

2.2 Compounds 

2.2.1 5α-Dihydrotestosterone (DHT) 

Dihydrotestosterone (DHT), a potent androgen receptor agonist (Kd=0.25-0.5nM (Ferner, 

2012)), was supplied from Sigma Aldrich in powder form, resuspended in ethanol (Fisher 

Chemicals) at a concentration of 10 mM, and subsequently stored at -80°C.  



54 
 

2.2.2 Casodex  

N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-

methylpropanamide is an AR antagonist (IC50=160nM) that is marketed under the name 

casodex and developed by AstraZeneca. Casodex was supplied by AstraZeneca in powder form 

which was dissolved in endotoxin free anhydrous DMSO (Sigma Aldrich) to a stock 

concentration of 20mM. Stock solutions of casodex were stored at -80oC and dilutions were 

made in DMSO and stored at -20oC. 

2.2.3 Enzalutamide  

Enzalutamide (chemical name: 4-[3-[4-cyano-3-(trifluoromethyl)phenyl]-5,5-dimethyl-4-oxo-

2-thioxo-1-imidazolidinyl]-2-fluoro-N-methyl-benzamide, brand name Xtandi), a potent anti-

androgen (IC50=36nM) was purchased in powder form (Selleckchem), resuspended in 

dimethyl sulfoxide (DMSO) (Sigma Aldrich) at a concentration of 30 mM and stored at -80°C 

for no more than 6 months. 

2.2.4 Cycloheximide 

Cycloheximide (chemical name: 3-[2-(3,5-Dimethyl-2-oxocyclohexyl)-2-

hydroxyethyl]glutarimide), an antibiotic that inhibits translation, was purchased in powder 

form (Sigma Aldrich) and suspended in molecular grade water (Life Technologies) to a final 

concentration of 5 mg/ml. Cycloheximide solution was made fresh when required. 

2.2.5 MG-132 

MG-132 (chemical name: benzyl (S)-4-methyl-1-1((S)-4-methyl-1-((S)-4-methyl-1-oxopentan-

2-ylamino)-1-oxopentan-2-ylamino)-1-oxopentan-2-ylcarbarmate), a membrane permeable 

proteasome inhibitor (IC50=100nM) was purchased as a readymade solution in DMSO at a 

concentration of 10 mM (Sigma Aldrich) and stored at -20°C. 

2.2.6 MK2206 

MK2206 (chemical name: 8-(4-(1-aminocyclobutyl)phenyl)-9-phenyl-[1,2,4]triazolo[3,4-

f][1,6]naphthyridin-3(2H)-one), a potent AKT1/2/3 inhibitor (IC50=8nM, 12nM, 65nM 

respectively, Selleckchem) and suspended in DMSO at a concentration of 5mM and stored at 

-80°C for no more than 6 months. 
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2.2.7 ML-7 

ML-7 (chemical name: Hexahydro-1-[(5-iodo-1-naphthalenyl)sulfonyl]-1H-1,4-diazepine 

hydrochloride) is a potent inhibitor of myosin light chain kinase (MLCK, IC50=300nM) 

purchased in powder form (TOCRIS), resuspended in DMSO at a final concentration of 5mM, 

and stored at -80°C for no more than 6 months. 

2.2.8 Y-27632 

Y-27632 (chemical name: (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-

yl)cyclohexanecarboxamide dihydrochloride) is a selective Rho associated coiled-coil 

containing protein kinase (ROCK) I/II inhibitor (IC50=140nM, 300nM respectively) purchased 

in powder form (Selleckchem), resuspended in DMSO at a final concentration of 5mM, and 

stored at -80°C for no more than 6 months. 

2.2.9 WZ-4003 

WZ-4003 (chemical name: Propanamide, N-[3-[[5-chloro-2-[[2-methoxy-4-(4-methyl-1-

piperazinyl)phenyl]amino]-4-pyrimidinyl]oxy]phenyl]-) is a selective NUAK family kinase 

(NUAK)1/2 inhibitor (IC50=20nM, 100nM respectively) purchased in powder form 

(Selleckchem), resuspended in DMSO at a final concentration of 10mM, and stored at -80°C 

for no more than 6 months. 

2.3 RNAi Transfection 

The RNAi sequences used throughout this thesis have been generated according to Tuschl’s 

rules of design and have been cross checked using the siRNA check software available from 

the National Cancer Institute. RNAi sequences used are presented in Table 2.1. RNAi oligos 

were stored at 20°C in aliquots at a concentration of 50µM. Lipofectamine® RNAiMAX 

transfection reagent (Thermo Fisher) was used for delivery of RNAi into cell lines. Transfection 

mixes were prepared in Eppendorf tubes under sterile conditions by adding the appropriate 

amount of siRNA to give a final concentration of 25nM in the desired cell culture vessel. 

Dilution was performed using basal media (RPMI-1640 + 2mM L-glutamine, no serum). 

Transfection mixtures were incubated for 30 minutes at room temperature and then added 

directly to the cell culture plate in a dropwise fashion over pre-seeded cells. Pre-seeded cells 

were typically grown for 24 hours prior to transfection. Transfections were incubated for 24-

96 hours at 37°C to acquire optimal gene knockdown.  
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Table 2.1 - RNAi Targets and Sequences 

RNAi Target RNAi sense sequence 

PPP1R12A AGUACUCAACCAUAAUUAATT 

PPP1R14C-1 GAUAUCAUGACUCUAGCCATT 

PPP1R14C-2 CAAAGGAGGUGGACACUCATT 

PPP1R14C-3 CAGCCUAACCAAGGAUUAUTT 

AR CCAUCUUUCUGAAUGUCCU 

Scrambled Control (Non-targeting RNAi) UUCUCCGAACGUGUCACGUTT 

 

2.4 Plasmid DNA Transfection 

Mammalian expression plasmids were transfected into cells using TransIT®-LT1 transfection 

reagent (Mirus) according to the manufacturer’s protocol. The required amount of plasmid 

DNA was added to basal media in an Eppendorf tube. 3µl of TransIT®-LT1 transfection reagent 

was added to the tube for every 1µg plasmid DNA to be transfected. The TransIT®-LT1 reagent 

and DNA mixture was incubated at room temperature for 30 minutes. TransIT®-LT1 

reagent:DNA complexes were added in a dropwise fashion over pre-seeded cells. Cells were 

typically grown for 24 hours prior to transfection. The transfection was typically incubated for 

48-96 hours before harvesting for the required assay. 

The AR plasmid DNA was a kind gift from Professor Ralf Janknecht, University of Oklahoma. 

The PPP1R14C cDNA construct was purchased from the Harvard Medical School plasmid 

repository.  

2.5 Bacterial Transformation of Plasmid DNA 

Propagation of the PPP1R12A plasmid DNA was carried out by transforming NEB® 5-alpha E. 

coli chemically competent cells (New England BioLabs). Competent cells were stored at -80°C 

before gently thawing out on ice for 10 minutes when required. Approximately 500 ng of 

plasmid DNA was added to the competent cells, very gently mixed, and incubated on ice for 

30 minutes before a 30 second 42°C heat-shock. Cells were placed back on ice for 2-5 minutes 

followed by the addition of 950 µl SOC medium (2% (w/v) peptone, 0.5% (w/v) yeast extract, 

10 mM NaCl, 20 mM glucose, 10 mM MgCl2, 2.5 mM KCl, 10 mM MgSO4) and incubated at 

37°C, with agitation (200 rpm in a Thermotron incubator shaker (Infors HT)) for 1 hour. Cell 
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cultures were gently mixed and then 50-200µl culture was spread onto pre-warmed LB agar 

plates (1% (w/v) NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1.5% (w/v) agar) containing 

100 µg/ml ampicillin.  

2.6 Culture of Transformed Bacteria 

For DNA mini-prep cultures, single bacterial colonies were picked from LB agar plates using 

sterile pipette tips and incubated in 3 ml LB medium (1% (w/v) NaCl, 1% (w/v) tryptone, 0.5% 

(w/v) yeast extract) containing 100 µg/ml ampicillin for selection overnight at 37°C with 

rotation at 200 rpm. For maxi-prep cultures, a single bacterial colony was incubated in 5 ml LB 

medium containing 100 µg/ml ampicillin for 8 hours at 37°C with rotation at 200 rpm and then 

transferred to a conical flask containing 200 ml of pre-warmed antibiotic-containing LB 

medium and incubated overnight with rotation at 37°C. 

2.7 Plasmid DNA Extraction 

Plasmid DNA extraction from bacteria was performed using commercially available extraction 

and purification kits. For mini-prep cultures, the GenElute™ Plasmid Miniprep Kit (Sigma 

Aldrich) was used according to manufacturer’s instruction. For maxi-prep cultures, the 

PureLink® HiPure Plasmid Filter Maxiprep Kit (Life Sciences, Invitrogen) was used according to 

the manufacturer’s protocol. Extracted and purified DNA was resuspended in a suitable 

volume of TE buffer and DNA concentration measured using a Nanodrop spectrophotometer 

(Thermo Scientific). 

2.8 SDS-PAGE 

Cell lysates were generated by adding SDS sample buffer (125 mM Tris-HCl, pH6.8, 5% SDS, 

10% glycerol, 10% β-mercaptoethanol and 0.01% bromophenol blue) directly to cultured cells 

washed with PBS. Samples were then boiled for 10 minutes at 100°C prior to loading into a 

gel. Various percentage gels were made using the quantities outlined in Table 2.2 using a mini-

PROTEAN® tetra casting system (Bio-Rad) dependent upon the size of the protein of interest. 

Gels were loaded with pre-boiled protein samples alongside a prestained gel ladder mixture 

of recombinant protein of known sizes (Spectra Multicolor Broad Range Protein Ladder, 

Thermo). Protein samples were separated using a Mini-PROTEAN® Tetra Vertical 

Electrophoresis Cell (Bio-Rad) filled with running buffer (25 mM Tris, 190 mM glycine, 0.1% 

SDS) at a voltage between 100-200V. 
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Table 2.2 - SDS-PAGE Gel Recipes 

 

 

 

 

 

 

 

 

 

 

 

2.9 Western blotting 

Following protein separation by gel electrophoresis, proteins were transferred to Hybond ECL 

Nitrocellulose membrane (GE healthcare) using the Mini Trans-Blot Electrophoretic Transfer 

Cell system (Bio-Rad) according to manufacturer’s instruction. The transfer was carried out 

using transfer buffer (25 mM Tris-HCl, pH8.3, 150 mM glycine, 10% methanol) at 100V for 1 

hour or 30V overnight. Following the transfer of proteins from the acrylamide gel to 

nitrocellulose, the membrane was blocked using 5% (w/v) milk (Marvel)/ TBS (500 mM NaCl, 

200 mM Tris-HCl pH7.5) for 1 hour at room temperature or overnight at 4°C with gentle 

rocking. Primary antibodies outline in Table 2.3 were typically made up to a final concentration 

of 200ng/ml. Membranes were then washed 3 times in TTBS (500 mM NaCl, 200 mM Tris-HCl, 

pH7.5, 0.001% Tween-20) for 5 minutes with gentle rocking and then incubated with specific 

primary antibody diluted in a volume of 4 ml 1% (w/v) milk/TTBS for 1 hour at room 

temperature or overnight at 4°C. The following day, membranes were washed 3 times for a 

total of 15 minutes with TTBS followed by incubation with a horse-radish peroxidase-

conjugated secondary antibody, raised against the species of the primary antibody, for an 

hour at room temperature. After incubation, membranes were washed twice with TTBS for 5 

minutes each and once in TBS for 10 minutes and then incubated with prepared ECL western 

blotting detection reagent (GE healthcare) for one minute with gentle agitation prior to X-ray 

 10% Gel 15% Gel 

Running Running Stacking 

Acrylamide (30%) 3.33ml 5ml 1.25ml 

Water (distilled) 1.67ml - 1.25ml 

2X Buffer A (750mM Tris-HCl, pH8.8, 

0.2% SDS) 

5ml 5ml - 

2X Buffer B (250mM Tris-HCl, pH 6.8, 

0.2% SDS) 

- - 2.5ml 

N,N,N’,N’-tetramethylethane-1,2-

diamine (TEMED) 

20µl 20µl 6µl 

Ammonium persulphate (10%) 100µl 100µl 50µl 
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film (FujiFilm, SuperRX) exposure for signal detection. Films were developed using an 

automatic X-ray film processor model JP-33 (JPI Healthcare).  

Table 2.3 - List of Antibodies, species, suppliers and applications 

Antibody Species Supplier Applications 

AR (N-20) (sc-816) Rabbit Santa Cruz WB, IP, IF 

Phosphorylated AR 
S81 (07-1375) 

Rabbit Merck Millipore WB 

Phosphorylated AR 
S213 (ab47562) 

Rabbit Abcam WB 

Phosphorylated AR 
S515 

Rabbit Gift from Dr Joanne 
Edwards 

University of Glasgow 

WB 

PPP1R12A 
(DU34962) 

Sheep University of Dundee - 
commercial 

WB 

Phosphorylated 
PPP1R12A S472 

(S509C) 

Sheep University of Dundee- 
commercial 

WB 

Phosphorylated 
Myosin Light Chain 

S19 (#3675) 

Mouse Cell Signaling WB, IF 

PARP-1 (H-250) (sc-
7150) 

Rabbit Santa Cruz WB 

MAPK1 (D-2) (sc-
1647) 

Mouse Santa Cruz WB 

Phosphorylated 
MAPK1/MAPK3 
T202/Y204 (sc-

101760) 

Rabbit Santa Cruz WB 

α-tubulin (T9026) Mouse Sigma Aldrich WB 

Phosphorylated 
AKT S473 (sc-7985) 

Rabbit Santa Cruz WB 

AKT (H-136) (sc-
8312) 

Rabbit Santa Cruz WB 

NF2 (A-19) (sc-331) Rabbit Santa Cruz WB 

Phosphorylated 
PLK-1 T210 (sc-

135706) 

Rabbit Santa Cruz WB 

PLK-1 (F-8) (sc-
17783) 

Mouse Santa Cruz WB 

Phosphorylated 
RB1 S807/811 

(9308) 

Rabbit Cell Signaling WB 

RB1 (554140) Mouse BD Pharmingen WB 

Anti-Mouse-HRP Rabbit Dako WB 
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Anti-Rabbit-HRP Swine Dako WB 

Anti-Sheep-HRP Rabbit ThermoFisher Scientific WB 

Anti-Rabbit-HRP Swine Dako WB 

Rabbit IgG Rabbit Diagenode IP 

Anti-Rabbit-Alexa 
Fluor 488 

(ab150077) 

Goat Abcam IF 

Anti-Mouse-Alexa 
Fluor 594 

(ab150116) 

Goat Abcam IF 

 

2.10 Live cell imaging 

Cell growth was measured using the IncuCyte® ZOOM system (Essen BioSciences) which 

incorporates live cell imaging and analysis to provide quantification of cell proliferation over 

a given time period. As long as the morphology of the cells following treatment remains 

consistent, nor do the cells reach 100% confluency, this method of quantification provides an 

accurate surrogate for cell proliferation. Briefly, cells were seeded in the appropriate culture 

vessel and allowed to adhere for 24 hours where they would be 5-10% confluent. Following 

seeding, cells would be subjected to DNA/siRNA transfection or compound treatments and 

placed into the IncuCyte® ZOOM system. Images would then be taken from multiple fields per 

well every 4 hours over the desired period of time required for the assay. Proliferation was 

calculated by a measure of cell confluency and provided as a percentage. Raw percentage was 

normalised to the confluency of time point zero for each particular well and then calculated 

as fold changes. 

2.11 Cell cycle analysis 

Cell cycle analysis was carried out using fluorescence activated flow cytometry (FACs) in order 

to assess the percentage of cells in a particular phase of the cell cycle following target 

modulation. Propidium iodide (PI), a DNA intercalating dye, is incorporated into cells and upon 

excitation produces a quantifiable fluorescent signal corresponding to cellular DNA content as 

a result of stoichiometric binding. As such, cells in G2/M phase will have twice as much DNA 

as cells in G0/G1 phase, whilst cells in S-phase will possess an intermediary value. Excitation 

and fluorescent measurement of samples was carried out using the FACSCalibur™ (BD 

biosciences) with subsequent data analysis performed using Cyflogic 1.2.1 (CyFlo Ltd.).  Cells 
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were seeded onto 6-well plates at an appropriate confluency that they would be exponentially 

growing at the time of harvest. 

2.11.1 Cell harvest and staining 

At the time of harvest, culture media was transferred to 5 ml round-bottom tubes (BD 

biosciences), cells washed once in PBS, retaining the PBS and adding to the previously 

removed culture media in tubes. Cells were detached as described in section 2.1.2 and added 

to the aforementioned tubes. Tubes were centrifuged at 400 x g for 5 minutes at 4°C and cell 

pellets washed with PBS before a second round of centrifugation after which the pellet was 

resuspended in 100 µl citrate buffer (250 mM sucrose, 40 mM sodium citrate, pH7.6). 400 µl 

of DNA staining buffer (20 µg/ml PI, 0.5 mM EDTA, 0.5% NP40, 10 µg/µl RNase A) was added 

to the cell suspension mix and incubated for 1 hour at 4°C in the dark. 

2.11.2 Flow cytometry and data analysis 

Samples were briefly mixed and passed through a Microlance hypodermic needle, 21G (BD 

biosciences) and loaded into the FACSCalibur™ machine using BD CellQuest™ to acquire data 

of 10,000 events (cells). Cell aggregates were discriminated and removed from analysis by 

gating only single cell populations. Histogram plots were generated using cell counts Vs FL2-A 

(fluorescent emission from a cell) and % of cells in cell cycle phases analysed from the 

histogram by the Cyflogic software. 

2.12 RNA extraction 

RNA was isolated from cells using TRIzol® Reagent (Life Sciences, Invitrogen) according to the 

manufacturer’s protocol. Briefly, media was removed from the culture vessel (typically a 6-

well plate) and cells washed once in PBS. 1 ml of TRIzol® Reagent was added directly to the 

cells and the homogenized sample was transferred to an Eppendorf tube and incubated at 

room temperature for 5 minutes. 0.2 ml of chloroform (Sigma Aldrich) was then added to each 

sample and shaken vigorously and incubated at room temperature for 3 minutes before 

centrifugation for 15 minutes at 12,000 x g at 4°C. The upper aqueous phase was transferred 

to a fresh tube and 0.5 ml of isopropanol (Fisher Chemicals) was added followed by incubation 

at room temperature for 10 minutes before centrifugation at 12,000 x g for 10 minutes at 4°C. 

The resultant RNA pellet was washed in 75% ethanol in nuclease-free water (Life Sciences, 

Invitrogen) and centrifuged at 7,500 x g for 5 minutes at 4°C. The ethanol wash was removed 
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and the RNA pellet was allowed to air dry. The pellet was resuspended in 20 µl of water and 

incubated at 55°C for 10 minutes to remove any secondary structures. RNA concentration was 

then quantified using the Nanodrop (Thermo Scientific) prior to reverse transcription. RNA 

was stored at -20°C. 

2.13 Reverse transcription 

RNA was reverse transcribed to cDNA using moloney murine leukaemia virus reverse 

transcriptase (M-MLV RT) (Promega) according to the manufacturer’s protocol. Briefly, 1 µg 

RNA was made up to a final volume of 12.7µl with DEPC water. Seperately, a reverse 

transcription master mix was made up for the appropriate number of samples by adding 4 µl 

M-MLV 5X reaction buffer, 2µl 4mM dNTPs, 100µg Oligo(dT) and 0.3µl M-MLV RT enzyme to 

a final volume of 7.3µl. Samples were then incubated with the reverse transcription master 

mix for 1 hour at 37°C, followed by 5 minutes at 95°C to inactivate the RT enzyme. Resultant 

cDNA was further diluted 1:5 with nuclease-free water. Samples were stored at -20°C until 

required. 

2.14 Quantitative real time polymerase chain reaction (qPCR) 

Gene expression was quantified by subjecting cDNA samples to qPCR in 384-well format using 

a 7900HT Fast Real-Time PCR thermocycler (Applied Biosystems). Samples were run in 

triplicate using PCR reaction master mixes prepared for each gene target of interest in a total 

volume of 9 µl per well with the following components: 5µl Fast SYBR Green Master Mix (2X) 

(Thermo Fisher), 0.4µl forward primer (see Table 2.4), 0.4µl reverse primer and 3.2µl DEPC 

water.  

Reaction master mixes were loaded onto a 384-well plate (Applied biosciences), followed by 

1µl of sample cDNA. Using an absolute quantification method, a standard curve was generated 

by loading master mix reaction followed by the addition of serial dilutions of a cDNA sample 

(1, 0.5, 0.05, 0.005, 0.005 and a H2O (no template only control) onto the plate. The prepared 

microplate was covered with an optical adhesive cover, briefly centrifuged (Labnet MPS 1000) 

and ran using the following PCR parameters: 95°C for 10 minutes followed by 40 cycles of 95°C 

for 15 seconds, 60°C for 1 minute. 
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Table 2.4 Primer sequences used for qPCR. Primers were diluted to a concentration of 25ng/µl in nuclease free water prior 
to qPCR reaction setup. 

 

 

Data acquired was analysed using Sequence Detection System (SDS) software version 2.3 

(Applied Biosystems). Relative quantities for each gene of interest was calculated from the 

standard curve generated, these values were subsequently normalised using the relative 

quantity HPRT1 gene expression values for each sample. 

2.15 Luciferase reporter assay 

Luciferase reporter assays were performed in HEK293T cells due to their high transfection 

efficiency. Cells were seeded at a density of 2x104 per well of 24-well plate in DCC media and 

were reverse transfected with 100ng/well p3xARE-luc, 100ng/well pCMV-β-galactosidase 

construct and 50ng/well androgen receptor expressing plasmids. Cells were the incubated 

with the transfection mix for 48 hours with DHT treatments (if required) applied for an 

additional 24 hours prior to harvesting in 100µl 1x reporter lysis buffer (Promega) per well. 

Plates were incubated at 37°C for 15 minutes and then stored at -80°C until required. When 

needed, cells were thawed on ice, scraped, and pipetted up and down. 10µl of lysate was 

transferred to a 96 well white, flat bottom microplate (Greiner bio-one) containing 40µl DEPC 

water, which was then inserted into a FLUOstar Omega plate reader (BMG Labtech). The plate 

reader injected and mixed 50 µl luciferase assay substrate (Promega) into each well and 

measured luminescence before injecting into the next well. Data acquired was presented as 

light counts per second (LCPS). The transfection efficiency between experimental arms was 

measured using a β-galactosidase assay. To measure enzymatic activity, 10 µl of cell lysates 

Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 

PSA GCAGCATTGAACCAGAGGAG AGAACTGGGGAGGCTTGAG 

TMPRSS2 CTGCTGGATTTCCGGGTG TTCTGAGGTCTTCCCTTTCTCCT 

KLK2 AGCATCGAACCAGAGGAGTTCT TGGAGGCTCACACACCTGAAGA 

PPP1R14C GGAAGAAGAAATGCCAGAGGTAGA 
 

GCATCAAGAAGATCATCAATGTCAAT 
 

AR AAGAGAAGTACCTGTGCGCC TTCAGATTACCAAGTTTCTTCAG 

HPRT1 TTGCTTTCCTTGGTCAGGCA AGCTTGCGACCTTGACCATCT 
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were transferred to a clear bottom 96 well plate (Corning) and mixed with 10 µl of β-

galactosidase substrate (2mM MgCl2, 100mM β-mercaptoethanol, 1.33mg/ml o-nitrophenyl- 

β-D- galactopyranoside, 100mM sodium phosphate buffer, pH7.3) at 37°C for 5 minutes until 

the lysate/substrate mix turned from colourless to yellow. 50 µl of 1M Na2CO3 was added to 

terminate the enzymatic reaction and the plate was then read on a microplate reader (Model 

680, Bio-Rad) at Abs480. Results of luciferase assays were presented as normalised LCPS 

(LCPS/β-gal). 

2.16 Immunofluorescence 

LNCaP cells were grown in 6-well plate format (Corning) upon glass coverslips. Following RNAi 

modulation, cells were fixed with 2mls paraformaldehyde (2%v/v) overnight at 4°C. The next 

day cells were washed twice with PBS prior to being permeabilised with 0.1% Trition-X-100 

(PBS) for 15 minutes. Cells were then blocked for 1 hour at room temperature in 0.1% Triton-

X-100, 1% BSA – PBS. Coverslips were then incubated with blocking solution containing 4µg/ml 

primary antibody overnight at 4°C. Coverslips were then washed 3 times with room 

temperature PBS before addition of the secondary antibody, 1µg/ml in blocking solution, for 

1 hour at room temperature. Coverslips were then washed twice with PBS and mounted to 

glass slides with DAPI mounting medium (Vectashield), air-dried, and visualised using a Leica 

DMR fluorescent microscope. 

2.17 Immunoprecipitation 

HEK293T cells were cultured as described in section 2.1.2 and underwent AR plasmid DNA 

transfection as described in section 2.4. Following a 48 hour period, cells were washed with 

4°C PBS and lysed with 1ml immunoprecipitation buffer (0.5ml 1M Tris-HCl pH7.5, 0.375ml 

4M NaCl, 100µl 0.1M phenylmethane sulfonyl fluoride (in methanol), 1X cOmplete mini 

protease inhibitor tablet (Roche), 10µl 1M dithiothreitol, 100µl 10mM sodium orthavanadate, 

100µl nonyl phenoxypolyethoxylethanol, 8.9ml water). Cells were scraped and collected in an 

Eppendorf Tube and gently agitated for 30 minutes by rotation at 4°C. In parallel, protein-G 

sepharose (PGS) beads were prepared by resuspending 20µl of PGS slurry in 500µl 

immunoprecipitation lysis buffer, followed by centrifugation at 12,000 x g for 3 minutes. The 

supernatant was then discarded and the PGS beads resuspended in 500µl 

immunoprecipitation buffer. This wash process was repeated 3 times and the PGS beads were 

then stored at 4°C. 50µl cell lysate was then removed to be used as an input control for 
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western blot analysis. The remaining 950µl was then incubated with 20µl of the prepared PGS 

solution at 4°C for 1 hour. The samples were then centrifuged for 3 minutes at 12,000 x g, with 

the supernatant being split evenly (475µl per tube) between fresh Eppendorf tubes containing 

10µg of either AR (N20) antibody, or Rabbit IgG. Samples were then gently rotated overnight 

at 4°C. The following day samples were centrifuged for 3 minutes at 12,000 x g and the 

supernatant discarded. PGS Samples were washed once with immunoprecipitation wash 

buffer A once, and twice with wish buffer B, centrifuged at 12,000 x g for 3 minutes between 

each wash. Final PGS samples were then boiled for 10 minutes in 100µl SDS sample buffer. 

Immunoprecipitation samples were then ready to be analysed by western blot.  

2.18 Boyden Chamber Assay 

A migration assay employing the Boyden chamber transwell approach was performed as 

previously described (Chen, 2005). Briefly, LNCaP cells were grown as described in section 

2.1.1 and transfected with siPPP1R14C-1 as previously described for 48 hours. Cells were 

collected and resuspended in basal media prior to counting. 10x102 cells in 50µl basal media 

were then placed within the Boyden chamber (8µm pore size polycarbonate membrane, 

Merck Millipore) in 24 well plate format positioned within 250µl full media and incubated for 

24 hours at 37°C. Cells were then fixed with 0.5mls paraformaldehyde (2%v/v) for 30 minutes 

at room temperature prior to washing 3 times with PBS. Migrated cells were then stained with 

crystal violet and visualized using an EVOS XL Core Cell Imaging System (Thermo Scientific). 

The cells within 8 independent fields of view were counted for each experimental repeat.  

2.19 Nuclear-Cytoplasmic Fractionation 

Nuclear-cytoplasmic fractionation was performed using the NE-PER Nuclear and Cytoplasmic 

Extraction Kit (Thermo Scientific) according to the manufacturer’s protocol. Briefly, LNCaP 

cells were cultured as previously described in DCC media and transfected with siPPP1R14C-1 

or the scrambled control RNAi oligo. Cells were incubated for 72 hours prior to a 30 minute 

10nM DHT stimulation. Cells were then harvested according to the manufacturer’s protocol, 

with the isolated nuclear and cytoplasmic lysates stored at -20°C until analysis by western blot.  

2.20 RNA sequencing 

LNCaP cells were cultured as previously described in section 2.1.1 and underwent RNAi 

depletion as described in section 2.3. RNAi knockdown was performed in LNCaP cells grown 
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for at least 5 passages independently of each other. Briefly, RNA extraction was performed by 

column filtration using the commercially available RNeasy Plus Kit (Qiagen) according to 

manufacturer’s protocol. Isolated RNA was then quantified by Nanodrop (Thermo Scientific) 

and validated by qPCR as described in sections 2.13 and 2.14. Once the level of knockdown 

for each sample was established, RNA samples were subject to analysis through use of the 

2100 Bioanalyzer (Agilent Technologies) to ascertain the integrity of the RNA sample. The RNA 

integrity number (RIN) value ranges between 0-10, with 10 representing the maximum 

integrity. Only samples with a RIN value >9 were taken forward for RNA sequencing. RNA 

sequencing was performed by Aros Applied Biotechnology, Denmark on the Illumina HiSeq 

2500 platform. RNA samples were prepared using Stranded Total RNA Sample Prep kit 

(Illumina), depleted of ribosomal RNA using the RiboZero Gold kit (Illumina) and sequenced 

with 100bp paired end reads resulting in an estimated ~80 million reads per sample. Reads 

were mapped to human genome hg19 using the RNA-sequence alignment tool STAR (Dobin 

et al., 2013). Raw read counts were then calculated for each gene using HTSeq (Anders et al., 

2015) prior to differential gene expression analysis using DEseq2 (Love et al., 2014). 

Differential gene expression enrichment analysis was performed using the gene set 

enrichment analysis (GSEA) software (Broad Institute) and publicly available datasets from the 

molecular signatures database (MSigDB, Broad Institute). 

Figure 2.1 – RNA sequencing work-flow. The work-flow for generating the PPP1R14C RNAi depletion dataset was performed 
as shown above. Tasks bordered in blue were performed by myself, whilst tasks bordered in red were performed by the in-
house bioinformatition Dr. S. Nakjang, and the task in green performed by Aros Applied Biotechnology. 



67 
 

 

2.21 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 6.0 (GraphPad Software, California, 

USA) implementing paired and unpaired student t-tests where applicable.  
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Chapter 3. 

Myosin Phosphatase is a Dynamic Regulator of Androgen 

Receptor Transcriptional Activity 
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3.1 Introduction 

Myosin Phosphatase (MLCP) is heterotrimeric protein comprising the PP1δ catalytic subunit 

isoform, PPP1R12A regulatory subunit, and M20, a small 20 kDa protein that binds to the C-

terminus of PPP1R12A (Ito et al., 2004). It has been demonstrated that M20 does not impact 

on the phosphatase activity of MLCP, but as of yet, its exact role remains to be elucidated 

(Hartshorne et al., 1998). For this reason, the implication of M20 will not be discussed in this 

thesis in the context of AR signalling. PPP1R12A is a 110 kDa protein expressed by a single 

gene on chromosome 12q15-q21.2 (Takahashi et al., 1997).  The N-terminus of PPP1R12A 

contains the PP1 binding motif (K/R-I/V-x-F/W) and a 7 ankyrin repeat domain, both of which 

have been shown to be involved in the interaction between PP1δ and PPP1R12A (Hirano et 

al., 1997; Tanaka et al., 1998; Toth et al., 2000). A schematic representation of the PPP1R12A 

protein can be found in figure 3.1. Mutation of the ‘KVKF’ sequence in PPP1R12A 

demonstrated that this motif is essential for PP1δ binding. Using PPP1R12A peptide fragments 

of varying lengths it was demonstrated that MLCP had enhanced affinity for its substrate, 

phosphorylated myosin light chain serine 19 (pMLC-S19), compared to purified PP1δ, and that 

the NTD was sufficient to induce allosteric regulation of the catalytic activity (Johnson et al., 

1997). In addition, inclusion of the ankyrin repeat domain was shown to be required for 

maximal affinity toward pMLC-S19 (Tanaka et al., 1998). Indeed, the ankyrin repeat domain 

has since been reported to act as a docking platform for interacting proteins and additional 

substrates (Ito et al., 2004). PPP1R12A also contains 2 nuclear localization signals in the C-

terminus, and whilst unbound to PP1δ it is predominantly found in the nucleus, however, 

Figure 3.1 – Schematic Representation of the PPP1R12A Protein. The PPP1R12A gene is located on chromosome 
12q15-21.2 and encodes the 110kDa PPP1R12A protein. PPP1R12A contains the PP1 binding motif ‘KVKF’ at its N-

terminus adjacent to the ankyrin repeat domain, whilst the C-terminus possesses a leucine zipper.  
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when in complex as MLCP, it is found equally distributed throughout all cellular compartments 

(Wu et al., 2005). PPP1R12A can be expressed as 2 alternatively spliced isoforms, representing 

the presence or absence of a 123 nucleotide centrally located exon (Shimizu et al., 1994). The 

inclusion or exclusion of this exon dictates the presence or absence of 2 leucine zipper motifs 

in the C-terminus. Presence of this exon leads to a frameshift, leading to the inclusion of a 

premature stop codon and exclusion of the leucine zipper motifs (Khatri et al., 2001). It was 

demonstrated that the presence of the leucine zipper motifs did not mediate an interaction 

between MLCP and protein kinase G (PKG), but did result in repressive modulation of MLCP in 

a cyclic guanosine monophosphate and PKG dependent manner (Huang et al., 2004). 

The catalytic activity of MLCP is heavily influenced through a number of different mechanisms, 

principally PTM and through association with endogenous inhibitory proteins (Eto et al., 2007; 

Matsumura and Hartshorne, 2008). In this section I will introduce the concept of MLCP 

inhibition via interaction with endogenous inhibitory proteins, whilst PTM of MLCP will be 

discussed in section 9.1. 

Protein phosphatase regulatory inhibitor subunit 14A (PPP1R14A) was the first MLCP 

inhibitory protein to be identified, and it was demonstrated to act as a signal transduction 

protein, responding to G-protein coupled receptor (GPCR) stimulation, and resulting in MLCP 

inhibition (Eto et al., 1995). Subsequent studies identified PPP1R14-B, C, D through sequence 

homology and were successfully characterised as MLCP inhibitors (Eto et al., 1999; Liu et al., 

2002; Liu et al., 2004). Indeed, there is a very high degree of sequence homology between all 

MLCP inhibitory proteins, but no sequence homology with any other known PP1 inhibitory 

proteins (e.g. Inhibitor-1) despite similar mechanisms of inhibition (Eto et al., 2007). All the 

members contain a conserved central PP1 holoenzyme inhibitory (PHIN) domain containing a 

pseudo palindromic motif incorporating an inhibitory threonine (Eto et al., 2007). Solution 

NMR studies of PPP1R14A has revealed the 3D structure of the PHIN domain when both 

phosphorylated and dephosphorylated (Eto et al., 2007). The PHIN domain consists of a loop 

structure surrounding the inhibitory threonine termed the ‘P loop’ followed by a 4-helix 

bundle that acts to stabilize the ‘P loop’. Upon phosphorylation of the inhibitory threonine a 

conformational change occurs whereby a hydrophobic core is created, causing the phospho-

threonine to be displayed on the surface of the protein. In addition, a tyrosine residue flanking 

the threonine anchors the phospho-threonine in place. Mutagenesis studies proved that the 
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tyrosine residue is essential in the prevention of hydrolysis of the phosphorylated threonine 

(Hayashi et al., 2001). As such, a stable complex is formed between MLCP and the inhibitory 

protein, resulting in transient inhibition of MLCP catalytic activity (Eto et al., 2004). Indeed, 

the electrostatic surface potentials from MLCP inhibitory proteins appear to complement the 

acidic cluster formed by PP1δ and the PPP1R12A ankyrin repeat domain providing evidence 

for interactions between the inhibitory proteins with both the catalytic and regulatory 

subunits of MLCP (Terrak et al., 2004). Furthermore, the MLCP inhibitory proteins can be 

dephosphorylated by purified PP1δ and indeed PP1δ containing holoenzymes, and as such, 

their specificity towards MLCP is more a question if they behave as inhibitors or substrates 

(Eto, 2009).    

 

More specifically, the PPP1R14C gene is located on chromosome 6q24.3-q25.3 and spans 4 

exons coding for a 165 amino acid protein with a mass of 19kDa as depicted in figure 3.2 (Liu 

et al., 2002). Phosphorylation of threonine 73, located within the PHIN domain, dramatically 

increases the binding affinity of PPP1R14C to MLCP by 600-fold, resulting in an IC50 of 0.1nM 

(Eto and Brautigan, 2012). Multiple kinases have been demonstrated to directly phosphorylate 

PPP1R14C, or have been inferred through sequence homology surrounding the inhibitory 

threonine in the PHIN domain of PPP1R14A. These include PKC, integrin linked kinase (ILK), 

death-associated protein kinase 3 (ZIPK), rho-associated coiled-coil containing protein kinase 

(ROCK) I/II, protein kinase N (PKN) and p21-activated kinase (Hamaguchi et al., 2000; Koyama 

et al., 2000; MacDonald et al., 2001; Deng et al., 2002; Liu et al., 2002; Takizawa et al., 2002; 

Figure 3.2 – Schematic Representation of the PPP1R14C Protein. The PPP1R14C gene is located on chromosome 
6q24.3-25.3 and spans 4 exons. The encoded protein contains an N-terminal PP1 binding motif, ‘KVFF’, and a 

central phosphatase inhibitory (PHIN) domain. Within the PHIN domain resides threonine 73, which upon 
phosphorylation, enhances the affinity of PPP1R14C for myosin phosphatase by 600-fold, where it behaves as a 

pseudosubstrate and inhibits subsequent myosin phosphatase activity. 
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Erdodi et al., 2003; Liu et al., 2013). Crucially, phosphorylation of threonine 73 by any of the 

aforementioned kinases results in the same functional output, i.e. inhibition of MLCP. In 

addition, PPP1R14C also contains the classical ‘KVFF’ PP1 binding motif within its N-terminus, 

and has been shown to bind PP1δ when dephosphorylated, albeit with a highly reduced 

affinity (Eto and Brautigan, 2012). However, this cannot rule out additional mechanisms of 

inhibition or indeed additional signalling roles. PPP1R14C was initially identified as an MLCP 

inhibitory protein regulated by morphine, and the understanding of its role in cancer remains 

limited (Liu et al., 2002). However, ectopic expression of PPP1R14C in the breast cancer cell 

line MCF-7 results in activation of the MAPK signalling cascade, a pathway frequently 

dysregulated in various malignancies (Wenzel et al., 2007). A more recent study successfully 

identified PPP1R14C as the substrate for serine/threonine kinase 24 (MST3) and 

serine/threonine kinase 26 (MST4), resulting in phosphorylation of threonine 73, inhibition of 

MLCP and reduced cancer cell migration (Madsen et al., 2015). The authors also went on to 

show that PPP1R14C was rapidly phosphorylated in response to serum stimulation, promoting 

its inhibitory impact on MLCP. In a separate study, PPP1R14C was shown to translocate to the 

nucleus upon phosphorylation, resulting in impaired dephosphorylation of the tumour 

suppressor retinoblastoma 1 (RB1), a known MLCP substrate (Kiss et al., 2008; Dedinszki et al., 

2015). Although limited, preliminary evidence exists for PPP1R14C to act as a signal 

transduction molecule for a number of signalling cascades that may become of significance 

within the context of this thesis. Besides the role of PPP1R14C in the inhibition of MLCP, no 

other functions have been identified, and as such, the interplay between PPP1R12A and 

PPP1R14C in the regulation of MLCP activity will be assessed in the context of AR activity. In 

this chapter I aim to validate the impact of PPP1R14C and PPP1R12A RNAi depletion on AR 

transcriptional activity identified from the phosphatase RNAi screen. 

3.2 Results 

3.2.1 PPP1R14C depletion reduces androgen receptor transcriptional activity 

Following RNAi transfection of LNCaP cells for 72 hours with 3 independent RNAi oligos 

targetting PPP1R14C (denoted siPPP1R14C-1, 2 and 3), a significant reduction (p-value <0.05) 

of approximately 80% in the mRNA expression of PPP1R14C was observed with all RNAi duplex 

sequences and is depicted in figure 3.3. LNCaP cells were stimulated with 10nM DHT for 24 

hours in order to elicit an androgenic response prior to RNA extraction. Knockdown of 
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PPP1R14C with all 3 oligos resulted in statistically significant repression of the AR target genes 

PSA, TMPRSS2 and KLK2 (p-value < 0.05). siPPP1R14C-1 had the most pronounced effect on 

PSA mRNA expression, reducing its relative quantity normalised to HPRT1 by 90% compared 

to the scrambled control. siPPP1R14C-2 had the most profound impact on TMPRSS2 mRNA 

expression, again, reducing gene expression by approximately 90% when compared to the 

scrambled control. siPPP1R14C-3 was capable of statistically reducing all 3 AR target genes by 

over 50% compared to the scrambled control. Crucially, all 3 RNAi oligos recapitualte the 

impact observed in relation to AR activity within the RNAi screen described in section 3.2 

where PPP1R14C RNAi depletion resulted in a 60% reduction in luciferase activity compared 

to the scrambled control.  Due to the consistency of knockdown and repression of AR target 

genes, particularly PSA, siPPP1R14C-1 was taken forward for future characterisation assays.  

 

In the absence of androgen, depicted in figure 3.4, RNAi knockdown of PPP1R14C resulted in 

statistically significant repression of AR target gene mRNA expression (p-value < 0.05). In 

contrast to the androgen stimulated arm, all 3 target genes were repressed by approximately 

80% when compared to the scrambled control. Unfortunately it was not possible to succesfully 

quantify the extent of PPP1R14C knockdown at the protein level. However, following RNAi 

depletion of PPP1R14C, it was possible to evaluate any alterations in MLCP activity through 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PPP1R14C PSA TMPRSS2 KLK2

m
R

N
A

 E
xp

re
ss

io
n

 N
o

rm
al

is
ed

 t
o

 H
P

R
T1

Scrambled

PPP1R14C siRNA 1

PPP1R14C siRNA 2

PPP1R14C siRNA 3

Figure 3.3 – PPP1R14C Depletion Reduces AR Transcriptional Activity in the Presence of Androgen. PPP1R14C was depleted 
in LNCaP cells using 3 independent RNAi oligos for 48 hours in DCC media prior to 24 hour 10nM DHT stimulation. AR regulated 
gene mRNA expression was quantified by RT-qPCR. Data represents n=3 mean ± sem. Unpaired student t test performed using 
graphpad.. 
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the detection of phosphorylated MLC-S19. As such, in figure 3.5 a modest reduction in the 

detection of pMLC-S19 is observed when quantified by western blot using a phospho-specific 

antibody regardless of the presence or absence of androgen. This would suggest that the 

activity of MLCP has increased in response to the depletion of its endogenous inhibitory 

protein, PPP1R14C. It was also possible to quantify the protein expression of both the AR and 

PPP1R12A following knockdown, and no significant difference was observed compared to the 

scrambled control, albeit with the expected stabilization of the AR following androgen 

stimulation compared to the androgen deprived arm. 
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Figure 3.5 - PPP1R14C Depletion Increases the Activity of Myosin Phosphatase. The impact of PPP1R14C 
depletion on MLCP activity was assessed by western blot analysis of the MLCP substrate pMLC20 in both the 

presence and absence of androgen. 
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Figure 3.4 - PPP1R14C Depletion Reduces AR Transcriptional Activity in the Absence of Androgen. 
PPP1R14C was depleted in LNCaP cells for 72 hours in DCC media. AR regulated gene mRNA expression was 

quantified by RT-qPCR. Data represents n=3 mean ± sem. Unpaired student t test performed using 
graphpad. 
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3.2.2 PPP1R12A depletion enhances androgen receptor transcriptional activity 

Conversely, RNAi knockdown of PPP1R12A was quantifiable at the protein level, and at 72 

hours post-transfection the protein expression of PPP1R12A were greatly reduced as observed 

in figures 3.6B and 3.6D. Indeed, only upon long exposure of the x-ray film were endogenous 

levels detected. Interestingly, AR protein levels increased dramatically following siPPP1R12A 

transfection, particularly in the absence of androgen (figure 3.6D). AR mRNA expression also 

increased significantly following PPP1R12A depletion. In the presence of androgen, AR mRNA 

expression increased by ~2.5-fold (p-value < 0.05, figure 3.6A), however, in the absence of 

androgen, a dramatic ~15-fold (p-value < 0.05, figure 3.6C) increase is observed and as such, 

AR mRNA levels complement AR protein expression. When investigating the impact of 

Figure 3.6 - PPP1R12A Depletion Increases AR mRNA and Protein Expression in the Presence and Absence 
of Androgen. A-B) PPP1R12A was depleted by RNAi knockdown in LNCaP cells stimulated with 10nM DHT for 
24 hours. C-D) PPP1R12A was depleted by RNAi knockdown in LNCaP cells in the absence of androgen. mRNA 
expression was quantified by RT-qPCR. Data represents n=3 mean ± sem. Unpaired student t test performed 

using graphpad. 
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PPP1R12A RNAi knockdown on AR transcriptional activity in the presence of androgen (figure 

3.7A), an increase in PSA, TMPRSS2 and KLK2 mRNA expression was observed, albeit with only 

PSA mRNA expression increasing statistically significantly (p-value < 0.05) by approximately 4-

fold. However, this increase in AR targetted gene transcription falls in line with the 

observations made from the RNAi screen. In contrast, the induction of AR activity in relation 

to the mRNA expression of PSA, TMPRSS2 and KLK2 in the absence of androgen wa 

significantly enhanced (p-value < 0.05). A 2-fold induction of TMPRSS2, 7-fold induction of 

KLK2, and a 15-fold induction of PSA mRNA expression is observed in figure 3.7B. 

Figure 3.7 - PPP1R12A Depletion Increases AR Transcriptional Activity in the Presence and Absence of 
Androgen. A) PPP1R12A was depleted by RNAi knockdown in LNCaP cells stimulated with 10nM DHT for 

24 hours. B) PPP1R12A was depleted by RNAi knockdown in LNCaP cells in the absence of androgen. mRNA 
expression was quantified by RT-qPCR. Data represents n=3 mean ± sem. Unpaired student t test 

performed using graphpad. 
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3.2.3 PPP1R14C increases androgen receptor transcriptional activity 

Over-expression of PPP1R14C was performed in HEK293T cells as described in section 2.4 and 

quantified by luciferase reporter assay as described in section 2.15. In the presence of 

androgen, AR activity increased non significantly in correlation with increasing amounts of 

transfected PPP1R14C (figure 3.8A). In contrast, transfection of both 50ng and 100ng 

PPP1R14C in the absence of androgen (figure 3.8B), significantly increases  the transcriptional 

activity of the AR compared to the 0ng transfected arm, reciprocating the results observed in 

figure 3.7B following PPP1R12A knockdown.  

 

 

Interestingly it was observed that PPP1R14C mRNA expression increased following 10nM DHT 

treatment in LNCaP cells over a 96 hour time period (figure 3.9). Maximal induction of 

PPP1R14C mRNA expression was observed at the 72 hour time point, corresponding to a 4.5 

Figure 3.8 - PPP1R14C Over-Expression Increases AR Transcriptional Activity. A) In a luciferase reporter 
assay, HEK293T cells were transfected with increasing amounts of PPP1R14C plasmid DNA and 

stimulated with 10nM DHT for 24 hours prior to analysis. B) In a luciferase reporter assay, HEK293T cells 
were transfected with increasing amounts of PPP1R14C plasmid DNA in DCC for 72 hours. Data 

represents n=3 mean ± sd. Unpaired student t test performed using graphpad. 
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fold increase (p-value < 0.05). PSA mRNA expression increased rapidly as expected, reaching 

maximal induction of approximately 14-fold 48 hours post 10nM DHT stimulation. Similarly, 

upon RNAi knockdown of the AR, confirmed in figure 3.10B, PPP1R14C mRNA expression was 

significantly reduced at the 72 hour time-point (p-value < 0.05, figure 3.10A). The mRNA 

expression of PSA was also quantified to use as a surrogate for AR activity, and a significant 

reduction (p-value < 0.05) in PSA mRNA expression is observed as early as 24 hours, whilst 

PPP1R14C mRNA expression remained largely unchanged. Together this would suggest 

PPP1R14C is androgen regulated, but may represent a secondary effect of androgen signalling. 

Figure 3.9 - PPP1R14C mRNA Expression Increases Following DHT Stimulation. LNCaP cells were stimulated with 10nM 
DHT and subject to RNA extraction at 0, 0.5, 1, 2, 4, 8, 12, 24, 48, 72 and 96 hour time-points. mRNA expression was 

quantified by RT-qPCR. Data represents n=3 mean ± sem. Unpaired student t test performed using graphpad. 

Figure 3.10 - AR Depletion Reduces PPP1R14C mRNA Expression. A) LNCaP cells were transfected with AR RNAi for 72 
hours in full media and subsequently harvested for RT-qPCR analysis. B) Western blot analysis of AR RNAi depletion. mRNA 

expression was quantified by RT-qPCR. Data represents n=3 mean ± sem. Unpaired student t test performed using 
graphpad. 
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3.3 Discussion 

As discussed in section 1.2.1, the cellular effects of androgens are mediated through 

transactivation of the AR and its subsequent impact on gene transcription. In turn, prostate 

metabolism, survival, growth and differentiation are dependent upon the transcriptional 

activity of the AR. As such, targeting the AR has proven to be an effective strategy in the 

treatment of PC. ADT is initially very effective at preventing the progression of PC by limiting 

the availability of circulating ligands for the AR, however, invariably the disease progresses 

from an initial state of sensitivity to a state termed CRPC. However, it has been proven that 

the AR signalling axis remains active and is capable of driving disease progression, and as such, 

studies have proven that disruption of AR transactivation remains a viable therapeutic option, 

and indeed, 2nd generation antiandrogens display modest efficacy. Despite positive responses 

in a large proportion of patients, this too invariably fails. It is known however, that co-

regulators of the AR are frequently dysregulated in advanced PC and are capable of inducing 

AR activity in both the presence and absence of androgens, and such are likely to contribute 

to treatment resistance, representing potential therapeutic targets. In this section, an AR 

inducing PP1 regulatory subunit, PPP1R14C, identified from an RNAi screen described in 

chapter 1, was validated at the qPCR level with 3 independent RNAi oligos (figure 3.3). 

Similarly, an AR repressing PP1 regulatory subunit, PPP1R12A, was also validated (figure 3.6). 

Crucially, these two subunits are components of the same PP1 holoenzyme, MLCP. PPP1R12A 

is the regulatory subunit that provides substrate specificity to PP1, whilst PPP1R14C is an 

inhibitory subunit that upon phosphorylation by a range of independent signalling effectors, 

behaves as a pseudo-substrate and transiently inhibits MLCP activity. In the context of AR 

signalling, when MLCP activity is retained through the RNAi depletion of PPP1R14C, a dramatic 

reduction in the expression of AR regulated gene expression was observed in both the 

presence and absence of androgens (figure 3.3 and figure 3.4). This provides an initial piece of 

evidence for the ligand independent regulation of the AR by MLCP. Furthermore, it is 

demonstrated that PPP1R14C mRNA expression increases following androgen stimulation, 

albeit at prolonged time-points compared to primary AR target genes such as PSA (figure 3.9). 

This may suggest that PPP1R14C expression increases as the levels of intracellular androgens 

are reduced. With the half-life of DHT being 24 hours, it is plausible that PPP1R14C mRNA 

expression increases under androgen depleted conditions to enhance AR transcriptional 

activity under diminished androgen levels. In addition, ectopic expression of PPP1R14C 
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enhanced the transcriptional activity of the AR, particularly in the absence of androgen (figure 

3.8). Interestingly, the maximum induction of PPP1R14C mRNA expression coincided with the 

negative expression of PSA mRNA (figure 3.9). This would suggest that PPP1R14C may be 

involved in a delayed positive feedback loop, potentiating the AR signalling axis under reduced 

androgen levels. Interrogation of the most recent publicly available PC datasets using 

CBioportal has revealed that PPP1R14C is frequently dysregulated in PC samples. PPP1R14C 

was found to undergo both genomic amplification and deletion, but the most common form 

of dysregulation was increased mRNA expression, suggesting increased expression of 

PPP1R14C may play a role in disease progression. PPP1R14C was found to be dysregulated in 

6-26% of patients from 6 publicly available datasets (Barbieri et al., 2012; Baca et al., 2013; 

'The Molecular Taxonomy of Primary Prostate Cancer,' 2015; Dan et al., 2015; Beltran et al., 

2016; Kumar et al., 2016)  

Conversely, when the formation of MLCP was prevented through RNAi knockdown of 

PPP1R12A, a dramatic increase in AR transcriptional activity was observed (figure 3.6). This 

too was more pronounced in the absence of androgen. It could be possible that AR activity in 

the presence of androgen is already maximal and therefore any induction following PPP1R12A 

depletion may in fact not be physiologically possible, hence explaining in part why the effect 

is less pronounced following androgen stimulation. However, the extent of AR transcriptional 

induction from both arms does appear to correlate with the level of induction of AR mRNA 

and protein expression (figure 3.7). As such, the ratio of AR mRNA and protein expression 

following PPP1R12A RNAi knockdown compared to the scrambled control is much higher in 

the absence of androgen than in the presence of androgen. However, despite the increases in 

AR protein expression, it may be expected that any induction in AR activity in the absence of 

androgens would be minimal, due to LNCaP cells being androgen responsive. This adds 

additional evidence that MLCP plays a role in AR regulation in a ligand independent manner. 

Furthermore, in contrast to the impact on AR expression by PPP1R12A knockdown, no 

observable impact on AR protein expression was witnessed following PPP1R14C knockdown 

(figure 3.5). This would suggest that MLCP is capable of regulating both AR expression, and 

activity at the post-translational level. A schematic diagram representing this chapters findings 

can be found in figure 3.12. 
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Figure 3.12 – Schematic Summary of Section 3 Results. The PP1 holoenzyme MLCP was found to be a negative 
regulator of AR function, whilst the endogenous MLCP inhibitory subunit, PPP1R14C, was found to be a positive 

regulator of AR function. RNAi depletion of PPP1R14C resulted in enhanced MLCP activity, which correlated 
with a reduction in AR transcriptional activity. Conversely, upon RNAi depletion of PPP1R12A, AR 

transcriptional activity increased. 
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4.1 Introduction 

Depletion of PPP1R14C by RNAi transfection has proven to result in significant repression of 

AR transcriptional activity. However, the underlying mechanisms of enhanced MLCP activity 

on independent signalling cascades in the context of this project remain unknown, and as such, 

known substrates of MLCP will be discussed in this section, and their relevance discussed in 

correlation with a global gene signature obtained by RNA sequencing following PPP1R14C 

RNAi depletion in LNCaP cells.  

Classically, MLCP has been investigated within the context of actomyosin contractility. 

Increases in intracellular Ca2+ leads to the activation of calmodulin and subsequent activation 

of myosin light chain kinase (MLCK) (Allen and Walsh, 1994). MLCK specifically phosphorylates 

MLC-S19, resulting in cross bridging between myosin and actin filaments, and ultimately 

contractile force (Allen and Walsh, 1994). Reversible phosphorylation of MLC-S19 is essential 

for cytoskeletal rearrangements (Somlyo and Somlyo, 1994). pMLC-S19 dephosphorylation is 

catalysed by MLCP (Ito et al., 2004). However, it is emerging that MLCP plays a critical role in 

the dephosphorylation of a number of clinically important proteins, particularly in relation to 

oncogenic malignancies.   

Initial studies observed that PP1 was capable of dephosphorylating the tumour suppressor 

RB1 in-vitro, with subsequent research demonstrating that inhibition of PP1 with either 

okadaic acid or tautomycin led to sustained C-terminal hyperphosphorylation of RB1 (Alberts 

et al., 1993; Ludlow et al., 1993). More recent studies were able to confirm that PP1 and 

indeed PPP1R12A co-immunoprecipitate with RB1 and co-localize together in the nucleus 

(Vietri et al., 2006; Kiss et al., 2008). Furthermore, structural analysis of the PP1-RB1 

interaction revealed that the binding of PP1 to RB1 blocked kinase access to the CDK docking 

sites on RB1 whilst retaining RB1 activity (Hirschi et al., 2010). However, the most relevant 

publication to date demonstrated that over-expression of PPP1R14C results in the 

maintenance of hyperphosphorylated RB1, and upon stimulation with the PKC activator, PMA, 

increases in the phosphorylation of the inhibitory threonine of PPP1R14C, threonine 73, 

correlate with increases in the phosphorylation of RB1 (Dedinszki et al., 2015). It should be 

noted that the phospho-specific antibody used to detect the phosphorylation of PPP1R14C is 
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in fact an antibody raised against phosphorylated PPP1R14A and although the peptide 

sequences are highly homologous, specificity should be a concern, particularly as a suitable 

negative control was not presented. Crucially, it is known that dephosphorylation of RB1 leads 

to enhanced activity (Manning and Dyson, 2011), and as such, MLCP is a positive regulator of 

RB1 tumour suppressor function. 

Another tumour suppressor known to be dephosphorylated and subsequently activated by 

MLCP is merlin (NF2) (Jin et al., 2006). The authors went on to show that MLCP specifically 

dephosphorylates the inhibitory phosphorylation residue serine 518, and that over-expression 

of the MLCP inhibitory protein PPP1R14A is sufficient to induce tumorigenic transformation in 

NIH 3T3 mouse embryonic fibroblast cells. NF2 is a well-documented tumour suppressor and 

is known to repress multiple oncogenic signalling cascades including the RAS, MTOR and 

HIPPO pathways (Morrison et al., 2007; James et al., 2009; Yu and Guan, 2013). 

Additional MLCP substrates include polo like kinase 1 (PLK1) and HDAC7 (Parra et al., 2007; 

Yamashiro et al., 2008). During mitosis PPP1R12A binds to PLK1, antagonising its catalytic 

activity at centrosomes. Depletion of PPP1R12A leads to a pronounced increase in the 

phosphorylation of the PLK1 activating phospho-residue threonine 210, resulting in aberrant 

cell cycle progression (Yamashiro et al., 2008). HDAC7 is a known AR transcriptional repressor 

(Karvonen et al., 2006) and it was demonstrated that MLCP is responsible for the 

dephosphorylation of HDAC7 leading to enhanced nuclear localization and transcriptional 

repression (Parra et al., 2007).   
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4.2 Results 

4.2.1 PPP1R14C depletion leads to the differential expression of 826 genes ± 2-fold 

To determine the impact of sustained MLCP activity, through PPP1R14C RNAi depletion, on 

the global LNCaP transcriptional program, RNA sequencing was performed using the Illumina 

HiSeq 2500 platform following 3 independent transfections of LNCaP cells, maintained 

separately for a minimum of 5 passages, with either siPPP1R14C-1 or the non-silencing 

scrambled control. RNA sequencing was employed as it results in low background signal, no 

hybridization issues and ultimately possesses the capacity to quantify absolute transcript 

expression levels as well as relative expression levels (Wang et al., 2009). In order to maintain 

relativity to the RT-qPCR and luciferase data presented in section 3, LNCaP cells were cultured, 

maintained and siRNA transfected in the same manner as previously described in sections 2.1 

and 2.3. Quality control and reads per lane can be found in supplementary figure 1. 

Significant depletion of PPP1R14C was confirmed by RNA sequencing following RNAi 

transfection of LNCaP cells when compared to the scrambled control as presented in figure 

4.1. RNAi knockdown of PPP1R14C resulted in no significant alterations in the mRNA 

expression of PPP1R12A or the AR as also depicted in figure 4.1. In a global context, PPP1R14C 

knockdown resulted in the statistically significant differential expression of 826 genes ± 2-fold 

compared to the scrambled control (figure 4.2). Crucially, the AR regulated genes PSA (KLK3), 

KLK2 and TMPRSS2 were all significantly down-regulated, and indeed, were amongst the top 

20 down-regulated genes depicted in figure 4.3A. This validated the results obtained by RT-

Figure 4.1 - PPP1R14C is significantly down-regulated following RNAi knockdown as 
quantified by RNA Sequencing. PPP1R12A, PPP1R14C and AR mRNA expression in 

LNCaP cells following PPP1R14C depletion and subsequent analysis by RNA sequencing 
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qPCR and presented in section 3. Interestingly, there were more significantly up-regulated 

genes compared to down-regulated genes, with the top 20 up-regulated genes presented in 

figure 4.3B. This would suggest that PPP1R14C depletion does not impact on cellular 

transcription as a whole, but rather, impacts on a subset of transcriptional programs.  

Figure 4.3 - PPP1R14C Depletion leads to the significant induction and repression of 
clinically relevant proteins. A) Top 20 Down-Regulated genes following PPP1R14C depletion 
in LNCaP cells B) Top 20 Up-Regulated genes following PPP1R14C depletion in LNCaP cells. 

Figure 4.2 - PPP1R14C Depletion leads to the Differential Expression of 826 Genes ± 2-Fold. 
Figure generated using Microsoft Excel 

A B 
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Figure 4.4 - Gene Set 
Enrichment Analysis of the 

PPP1R14C Knockdown Gene 
Signature I A) GSEA Hallmark 

Androgen Response B) 
REACTOME Generic 

Transcription C) REACTOME 
Cell Cycle D) REACTOME G1-S 

Transition E) REACTOME M-G1 
Transition. Gene set sizes can 

be found in brackets under the 
gene set name. 

A 
B 

C D E 
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4.2.2 Myosin phosphatase is a negative regulator of the cell cycle 

In order to elucidate the cellular pathways impacted, gene set enrichment analysis (GSEA) was 

performed using annotated gene sets from ‘The Molecular Signatures Database’. Again, 

following GSEA it was possible to confirm the impact of PPP1R14C depletion on androgen 

signalling. The siPPP1R14C-1 data set negatively correlated with the hallmark ‘Androgen 

Response’ gene set, resulting in a normalised enrichment score (NES) of -2.99, and a false 

discover rate (FDR) q-value of <0.001 (figure 4.4A). First, GSEA was performed against 

REACTOME datasets in the attempt to identify the most significantly impacted cellular 

pathways. The top 50 positively and negatively correlating datasets can be found in 

supplementary tables 1 and 2, however, it was clear that the positively correlating datasets 

were much less significant and possessed higher FDRs compared to the negatively correlating 

datasets, suggesting the down-regulated genes were of more biological significance. Indeed, 

the only pathway of note that positively correlated with the siPPP1R14C-1 dataset was the 

‘generic transcription’ pathway (NES=3.04, FDR<0.001, figure 4.4B), confirming that cellular 

transcription was not being impeded at a global level and cells were still capable of driving 

active transcriptional programs. Many pathways negatively correlate with the siPPP1R14C-1 

gene set, particularly those involved in cell cycle progression. The REACTOME cell cycle 

pathway as a whole had a NES of -8.84, p value <0.001 and FDR <0.001 (figure 4.4C). More 

specifically, genes from the REACTOME G1-S transition dataset are repressed, possessing a 

NES of -6.05, p value <0.001 and FDR <0.001 (figure 4.4D). Similarly, genes from the 

REACTOME M-G1 transition dataset are highly repressed, resulting in a NES of -5.51, p value 

<0.001 and FDR <0.001 (figure 4.4E). This strongly suggest that the increase in MLCP activity 

is significantly repressing the expression of genes required for cell cycle progression, or indeed, 

the activity of proteins required for cell cycle progression. Further interrogation of the GSEA 

hallmark datasets (supplementary table 3) revealed that E2F transcription factor target genes 

represent the most significantly repressed genes from the siPPP1R14C-1 data set (figure 4.5A). 

Enrichment plots result in a NES of -9.325, p value <0.001 and FDR <0.001. Other significantly 

enriched hallmark datasets were v-Myc avian myelocytomatosis viral oncogene homolog 

(MYC) and mechanistic target of rapamycin complex 1 (MTORC1) target genes, represented in 

figure 4.5B and 4.5C respectively. The next GSEA collection to be interrogated was ‘oncogenic 

signatures’; data sets defined directly from  
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Figure 4.5 - Gene Set Enrichment Analysis of the PPP1R14C Knockdown Gene Signature II A) Hallmark E2F Targets B) 
Hallmark MYC Targets V1 C) Hallmark MTORC1 Targets D) RB P107 DN.V1 UP E) E2F1 UP.V1 UP F) PTEN DN.V1 UP 

A 
B C 
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microarray gene expression data from cancer gene perturbations. Interestingly, the 

siPPP1R14C-1 dataset positively correlated with genes up-regulated following PTEN RNAi 

depletion in A431, HCC827 and SKBR-3 cell lines (epidermoid carcinoma, lung adenocarcinoma 

and breast carcinoma, respectively, figure 4.5F). As previously mentioned, LNCaP cells are 

PTEN null, and therefore it is of some reassurance that a gene set obtained from LNCaP cells 

positively correlates with gene sets obtained following RNAi knockdown of PTEN. However, it 

is the negatively correlating data sets that represent the most promising insight into MLCP 

function in the context of this thesis. The siPPP1R14C-1 dataset negatively correlates with 

genes up-regulated following RB1 and RB-like 1 knockdown in keratinocytes (NES=-4.24, p 

value <0.001, FDR <0.001, figure 4.5D), whilst also negatively correlating with genes up-

regulated following over-expression of E2F1 in mouse fibroblasts (NES=-4.00, p value <0.001, 

FDR <0.001, figure 4.5E), strongly suggesting PPP1R14C depletion impacts on the negative 

regulation of E2F1 by RB1. Increases in gene expression following over-expression of E2F3, 

enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), MYC, platelet-derived 

growth factor (PDGF), interleukin 15 and MTOR also negatively correlated with the gene set 

obtained following PPP1R14C RNAi depletion and are outlined in supplementary table 4. 

Interrogation of ‘motif based gene sets’, based on the conserved cis-regulatory motifs from a 

comparative analysis of the human, mouse, rat and dog genomes, revealed that 15 of the top 

20 negatively correlating data sets belonged to genes containing E2F binding motifs 

(supplementary table 5), again reinforcing the negative impact of PPP1R14C depletion on the 

activity of the E2F family of transcription factors.  

4.2.3 PPP1R14C depletion restores a non-malignant gene expression profile 

Finally, the siPPP1R14C-1 data set was run against gene sets obtained from studies 

investigating differential gene expression between benign prostate tissue and PC tissue. 

Genes found to be down-regulated in PC samples vs matched benign samples from two 

independent studies positively correlated with the PPP1R14C RNAi knockdown gene set. 

These are represented in figure 4.6. Conversely, 5 independent gene sets representing genes 

over-expressed in PC tissue vs benign prostate tissue all negatively correlated with the gene 

set following PPP1R14C depletion. These too are represented in figure 4.6. 
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4.2.4 PPP1R14C depletion enhances the dephosphorylation of RB1, NF2 and PLK1 by myosin 

phosphatase 

In order to validate the impact of PPP1R14C depletion on the phosphorylation status of MLCP 

substrates, cell lysates were harvested from LNCaP cells transfected as previously described. 

Cells were stimulated with 10nM DHT for 24 hours following 48 hours of exposure to the 

siPPP1R14C transfection mix, as performed for previous assays. Using phospho-specific 

antibodies, the phosphorylation status of RB1 serine 807/811 and PLK1 threonine 210 were 

investigated by western blot. The phosphorylation status of NF2 was also investigated by 

western blot, but was analysed by a shift in protein migration as previously described (Jin et 

al., 2006). In figure 4.7A it is possible to observe a pronounced reduction in the 

phosphorylation of RB1 serine 807/811 following PPP1R14C depletion compared to the 

scrambled control. Figures 4.7A also demonstrates that there is a reduction in the protein 

levels of E2F1, contributing to the repression of E2F1 target genes. Figure 4.8B demonstrates 

that the phosphorylation of PLK1 at its activational residue, threonine 210, was reduced upon 

PPP1R14C RNAi depletion. Using a total NF2 antibody it is possible to demonstrate a shift in 

Figure 4.6 - PPP1R14C Depletion Restores a Non-Malignant Prostate Gene Expression Profile. Following knockdown of 
PPP1R14C by RNAi, genes identified as being up-regulated in PC vs Normal (matched tissue) were down-regulated. 

Conversely, genes identified as being down-regulated in PC vs Normal (matched tissue) were found to be up-regulated 
following PPP1R14C RNAi depletion. Normalised enrichment scores were calculated following gene set enrichment analysis. 
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the signal of NF2 from the phosphorylated band to the dephosphorylated band, depicted in 

figure 4.8A, confirming that NF2 undergoes enhanced dephosphorylation following PPP1R14C 

knockdown.  

 

 

 

 

Figure 4.7 - PPP1R14C Depletion Reduces the Phosphorylation Status of RB1 A) Western Blot analysis 
reveals a reduction in RB1 phosphorylation status at serine 807/811 following PPP1R14C depletion in 
LNCaP cells B) RB1 and E2F1 mRNA expression following PPP1R14C depletion in LNCaP cells quantified 
by RNA sequencing 

Figure 4.8 – PPP1R14C Depletion Reduces the Phosphorylation Status of NF2 and PLK1 A) 
Western Blot analysis reveals reduced  NF2 phosphorylation in LNCaP cells following PPP1R14C 
depletion B) Western Blot analysis reveals reduced PLK1 threonine 210 phosphorylation status 

following PPP1R14C depletion 
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4.2.5 PPP1R14C depletion results in G1 cell cycle arrest 

Finally, the impact of PPP1R14C on cell cycle progression was investigated by FACs analysis as 

previously described and is presented in figure 4.9. A statistically significant increase of cells 

in the G1 phase of the cell cycle was observed following PPP1R14C depletion (mean ± sem, 

69±1.22% vs. 84±0.46%, p-value < 0.05), coinciding with a statistically significant reduction of 

cells in the G2/M phase of the cell cycle (mean ± sem, 21±0.96% vs. 9±0.54%, p-value < 0.05). 

No significant alteration in the number of cells in sub G1 was observed (mean, 4.6% vs. 5.8%). 

This would suggest that depletion of PPP1R14C is cytostatic as opposed to cytotoxic, falling in 

line with the down-regulation of cell cycle associated gene sets observed in figures 4.4 C-E.  

 

 

Figure 4.9 - PPP1R14C Depletion Causes G1 Cell Cycle Arrest. Cells depleted of PPP1R14C were 
subject to FACS analysis as previously described. Figure represents mean n=3. PPP1R14C RNAi 

depletion results in G1 cell cycle arrest. Representative gating examples are also provided. 

Scrambled siPPP1R14C 
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4.3 Discussion 

Crucially, within this section it was possible to confirm RNAi depletion of PPP1R14C by RNA 

sequencing, thus validating the results obtained by RT-qPCR in section 4. In addition, no 

significant impact on the mRNA expression of PPP1R12A and AR was observed, confirming any 

alterations in the activity of MLCP and indeed the AR must be imposed at the post-

translational level. Importantly, down-regulation of PSA, TMPRSS2 and KLK2 mRNA expression 

was also observed, and indeed, they were within the top 20 most significantly repressed genes 

following PPP1R14C depletion. Considering it has been demonstrated that MLCP does not 

directly interact with the AR, to achieve such a dramatic reduction in AR transactivation would 

suggest the increase in MLCP activity is repressing pathways crucial for AR function. Indeed, 

the hallmark androgen response gene set negatively correlated with the PPP1R14C 

knockdown gene set, possessing a highly significant NES of -2.99, confirming MLCP as a 

negative regulator of the global AR transcriptional program.  

Upon taking a more general approach to investigating the role of MLCP in AR signalling, it 

became apparent that the cell cycle associated pathways were significantly down-regulated. 

These include some of the more general cell cycle associated gene sets from REACTOME such 

as ‘Cell Cycle’, ‘Mitotic Cell Cycle’ and ‘Cell Cycle Checkpoints’, as well as more specific gene 

sets from phases of the cell cycle including ‘S-Phase’, ‘G1-S Transition’ and ‘M-G1 Transition’ 

(Supplementary Table 2). Crucially, this can be recapitulated phenotypically following FACs 

analysis of LNCaP cells depleted of PPP1R14C. LNCaP cells are predominantly found in the G1 

phase of the cell cycle, and following PPP1R14C RNAi knockdown, a significant increase in G1 

cell cycle arrest is observed when compared to the scrambled control (69% vs. 84%, p-value < 

0.05). The increase in cells within the G1 phase of the cell cycle appear to be predominantly 

drawn from the G2/M phase of the cell cycle, which is significantly reduced, whilst the 

percentage of cells within the sub G1 gating remains consistent, suggesting knockdown of 

PPP1R14C is cytostatic as opposed to cytotoxic. More specific analysis revealed that E2F target 

genes are significantly down-regulated, coinciding with repression of genes known to be up-

regulated following E2F1 over-expression as well as genes up-regulated following RB1 and 

P107 knockdown. As introduced in this section, RB1 is dephosphorylated and activated by 

MLCP. Indeed, confirmation of a reduction in the phosphorylation of the inhibitory phospho-
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sites RB1 serine 807/811, was observed by western blot following knockdown of PPP1R14C in 

both the presence and absence of androgen. The opposing impact of PPP1R12A knockdown 

on RB1 phosphorylation was not investigated in this thesis, but has been published by another 

research group, where significant induction of RB1 serine 807/811 phosphorylation upon 

depletion of PPP1R12A is observed, further confirming the involvement of PPP1R14C in RB1 

regulation (Cho et al., 2011). In addition, no significant alteration in the mRNA expression of 

RB1 and E2F1 was detected by RNA sequencing. RB1 is a well-studied tumour suppressor and 

is known to be implicated in a number of human malignancies, including PC (Macleod, 2010). 

A recent multi-collaborative study identified loss of RB1 in 21% of metastatic CRPC, whilst 

previous studies have suggested loss of heterozygosity can be observed in up to 60% of PC 

patients (Phillips et al., 1994; Dan et al., 2015). RB1 plays a key role in supressing the 

transcriptional activity of E2F transcription factors, which in turn, are best known for their 

regulation of cell cycle related genes (Macleod, 2010). Phosphorylation of RB1 is mediated by 

CDKs in a cell cycle/cyclin dependent manner. Indeed, over-expression of CDK2 and CDK4 as 

well as cyclin D1 is also frequently observed in PC, suggesting inhibition of RB1 occurs at both 

the genomic and post-translational level (Dan et al., 2015). However, the activity and 

expression of the AR is intrinsically linked to the activity of the E2F transcription factors, and 

as such, RB1.  In 2010, it was reported that depletion of RB1 led to enhanced AR mRNA and 

protein expression, increased AR transactivation and dramatic increases of PC cell and tumour 

growth both in-vitro and in-vivo (Sharma et al., 2010). Crucially, it was demonstrated that the 

increases in AR signalling occurred in the absence of androgen, and was mediated by E2F1, 

strongly suggesting RB1 inhibition is a major contributor to castrate resistant disease. 

Importantly, the increases in AR mRNA, protein and transcriptional activity observed following 

PPP1R12A RNAi depletion correlate with the data presented by Sharma et al following RB1 

depletion, suggesting the impact of MLCP activity on AR signalling is in part mediated by RB1.  

Using an antibody previously described to investigate the phosphorylation status of NF2, it 

was possible to identify increased levels of NF2 dephosphorylation following PPP1R14C 

knockdown by western blot (Jin et al., 2006). The role of NF2 in PC progression is relatively 

understudied but preliminary evidence exists for its genomic loss and/or mutational 

inactivation (Kawana et al., 2002; Malhotra et al., 2013). Indeed, the expression of NF2 is low 

in a number of PC cell lines including LNCaP cells, and is often found in a hyperphosphorylated 
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state (Horiguchi et al., 2008). Activation of the PI3K/AKT/MTOR pathway is frequently 

observed in PC, particularly at advanced stages (approximately 50% metastatic CRPC), and is 

predominantly characterised by PTEN loss (Dan et al., 2015). As such, there is growing interest 

in targeting the PI3K pathway alongside ADT (Bitting and Armstrong, 2013). Following 

PPP1R14C RNAi knockdown, MTOR target gene expression is significantly down-regulated, 

coinciding with the increase in activated NF2. NF2 is a known MTORC1 inhibitor, however, the 

underlying mechanism remains to be elucidated (James et al., 2009). Interestingly, it was 

found that NF2 inhibits MTORC1 downstream from AKT, partially explaining why AKT 

phosphorylation levels were not reduced by increased NF2 activity. Indeed, the increase in 

phosphorylated AKT observed following PPP1R14C knockdown in section 5 cannot be 

explained by any impact on the expression of the AKT phosphatases PHLPP1 and PHLPP2 as 

these were unchanged following PPP1R14C knockdown as quantified by RNA sequencing (data 

not shown). However, it has recently been reported that PHLPP mediated dephosphorylation 

of AKT requires the presence of a scaffolding protein called FK506 binding protein 5 (FKBP5), 

which was shown to be down-regulated following PPP1R14C depletion (Log2FC -0.225, p-

value < 0.05)(Pei et al., 2009). This would suggest that the increase in AKT phosphorylation 

may be mediated through down-regulation of FKBP5 in addition to de-repression of the 

negative feedback loop between the PI3K and MAPK signalling cascades, however, 

destabilization of the PHLPPs at the protein level cannot be ruled out at this stage and may 

require further investigation.  

As mentioned in the introduction to this section, PLK1 is a substrate for MLCP, and 

dephosphorylation of PLK1 threonine 210 by MLCP results in inhibition of PLK1 activity 

(Yamashiro et al., 2008). With this in mind, it was possible to demonstrate that through 

depletion of PPP1R14C, sustained MLCP activity has led to increased dephosphorylation of 

PLK1 observed in figure 6.8B possibly contributing to the repression of AR target genes, as well 

as the inhibition of E2F1 target genes. Therefore a more in depth investigation into the impact 

of PPP1R14C knockdown on PLK1 activity is warranted. 

As such, it has been possible to confirm that PPP1R14C knockdown results in significant 

repression of the AR, E2F1 and MTOR signalling cascades amongst others, highlighting possible 

routes of AR modulation by MLCP. Crucially, genes up-regulated following PPP1R14C 

depletion positively correlated with genes down-regulated in PC vs benign prostate tissue, 
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whilst genes down-regulated following PPP1R14C depletion negatively correlated with genes 

up-regulated in PC vs benign prostate tissue. This would suggest that knockdown of PPP1R14C 

may partially restore a non-malignant genotype in PC cells, further reinforcing its validity as a 

therapeutic target.  

In conclusion, characterising and validating a global LNCaP gene signature following PPP1R14C 

RNAi knockdown has confirmed repression of AR transactivation, has demonstrated increased 

RB1 activity through enhanced dephosphorylation leading to significant repression of the E2F1 

transcriptional program, as well as resulting in significant repression of the MTOR signalling 

pathway characterised by an increase in the dephosphorylation of NF2. Collectively this has 

resulted in significant repression of cell cycle associated genes, in turn, leading to G1 cell cycle 

arrest. The involvement of PLK1 dephosphorylation was confirmed but its role in repression 

of the AR signalling cascade remains to be fully elucidated. Thus the data presented in this 

section convincingly implicates enhanced dephosphorylation of MLCP substrates in the 

regulation of AR function, contributing to the partial restoration of a non-malignant genotype 

associated with benign prostate tissue compared to PC. Figure 4.10 depicts a schematic 

summary of this chapters findings. 

 

Figure 4.10 – Schematic Summary of Section 6 Results. Sustained MLCP activity following PPP1R14C RNAi 
depletion leads to enhanced dephosphorylation of the MLCP substrates RB1, NF2 and PLK1. RNA sequencing 

confirms down-regulation of the AR signalling axis as well as E2F1 and MTORC1 activity. Depletion of PPP1R14C 
leads to G1 cell cycle arrest, partially contributed by the repression of PLK1. 
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5.1 Introduction 

As described in section 1.2.3, the AR is a phosphoprotein heavily influenced by the action of 

kinases, and as such, phosphatases. Phosphorylation of the AR has been described to occur in 

both the absence and presence of androgens. Crucially, a number of phosphorylation sites 

have been shown to be induced by androgen stimulation, and functionally enhance 

transactivation of the AR. Conversely, there are phospho-residues that have been shown to 

be phosphorylated by non-androgenic signalling cascades that are capable of driving increased 

AR activity, and thus are of interest in a castrate-resistant setting. In this section I will discuss 

the impact of MLCP modulation on AR phosphorylation status, and its subsequent functional 

outcome.  

5.2 Results 

5.2.1 Myosin phosphatase does not interact with the androgen receptor 

In order to attempt to dissect the mechanism of regulation between MLCP and the AR, it was 

necessary to identify any potential interactions to elucidate if the means of regulation was 

direct or indirect. Any interaction would suggest that MLCP may act to dephosphorylate the 

AR directly and enhance our knowledge on the interplay between AR modifying kinases and 

phosphatases. As such, exogenous AR cDNA was transfected into the AR-null HEK293T cell line 

so that the non-transfected arm of the experiment could be used as a negative control. The 

AR was then immunoprecipitated as described in section 2.17 with an AR N-terminal targeting 

antibody (N-20) and purified using protein-G sepharose beads. The collected lysate was then 

probed by western blot for both AR and PPP1R12A. Results from this experiment, depicted in 

figure 5.1, demonstrate that indeed the protein levels of AR were enriched following 

immunoprecipitation compared to the input controls. It was also possible to identify the 

presence of endogenous PPP1R12A within the input samples, however, no apparent 

PPP1R12A was co-immunoprecipitated with the AR, regardless of the presence or absence of 

androgens. This suggests that the role MLCP plays within AR regulation is indirect, or 

extremely transient, and as such, no endogenous interactions were pursued.  
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Despite no direct interaction between MLCP and the AR being observed, characterisation of 

the phosphorylation status of the AR was performed to gain a greater insight into the 

functional outcome of MLCP modulation on AR PTM. This in turn would provide valuable 

knowledge on any potential upstream signalling cascades impacted by MLCP modulation, and 

as such, aid in elucidating to some extent the underlying mechanisms involved.  

5.2.2 PPP1R14C depletion alters the phosphorylation status of the androgen receptor 

Following PPP1R14C RNAi transfection, endogenous AR was immunoprecipitated from LNCaP 

cells by protein-G sepharose as described in section 2.17, and the phosphorylation status of 3 

residues, serine 81, serine 213 and serine 515 of the AR, were investigated using two 

commercially available phospho-specific antibodies (serine 81 and serine 213) and one custom 

phospho-specific antibody (serine 515, a kind gift from Dr. Joanne Edwards). Due to difficulties 

in detecting the phosphorylation status of the AR by western blot using whole cell lysates as 

previously described (McEwan et al., 2010). AR protein levels were enriched by 

immunoprecipitation prior to western blot analysis. Again, enrichment of the AR protein was 

observed following immunoprecipitation when compared to the input samples, presented in 

figure 5.2. Secondly, a dramatic reduction was observed in the phosphorylation status of 

serine 81 following PPP1R14C RNAi knockdown compared to the scrambled control, to the 

point where no level of phosphorylation can be detected. Similarly, a reduction in the 

phosphorylation of serine 515 was observed in the siPPP1R14C-1 experimental arm, albeit to 

Figure 5.1 - Myosin Phosphatase does not interact with the AR. HEK293T cells were 
transfected with AR plasmid DNA and immunoprecipitated as previously described. AR-

PPP1R12A interactions were then investigated by western blot. 
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a lesser extent that serine 81. Conversely, enhanced phosphorylation of serine 213 was 

observed following RNAi depletion of PPP1R14C. As described in section 1.2.3, 

phosphorylation of these 3 residues is known to impact dramatically on the transactivation of 

the AR, and as such, enabled subsequent AR functionality assays to be designed.  

 

5.2.3 PPP1R14C depletion impairs ligand induced nuclear translocation of the androgen receptor 

Serine 81 and serine 515 phosphorylation is considered to enhance AR transactivation, 

mediated through enhanced nuclear localization, chromatin binding and ultimately increased 

transcriptional activity (Gioeli et al., 2002; Chen et al., 2012; Willder et al., 2013). As described 

in section 4.2, RNAi depletion of PPP1R14C resulted in a statistically significant repression of 

AR regulated gene transcription. This correlated with the reduction in the phosphorylation 

status of serines 81 and 515 observed in figure 5.2. In complement of this, figure 5.3 

demonstrates AR nuclear/cytoplasmic localization following transfection with siPPP1R14C-1 

compared to the scrambled control in the presence of androgen. Indeed, the AR was found in 

both the cytoplasm and nucleus in the scrambled arm of the assay as expected (Kuiper et al., 

Figure 5.2 - PPP1R14C Depletion Impacts on the Phosphorylation Status of the AR. 
Endogenous AR was immunoprecipitated from LNCaP cells depleted of PPP1R14C 

and analysed by western blot using phospho-specific antibodies. 
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1993), but in the PPP1R14C knockdown arm, the AR was predominantly found in the 

cytoplasm, with minimal levels detected in the nucleus. This correlates with the literature 

surrounding phosphorylation of serine 81 and 515, as well as reinforcing initial findings from 

section 4.2. Similarly, LNCaP cells transfected with siPPP1R14C-1 were subjected to 

immunofluorescent analysis 30 minutes post 10nM DHT stimulation (figure 5.4). Crucially, a 

reduction in nuclear AR was detected following androgen stimulation in the siPPP1R14C-1 

treated cells compared to the scrambled arm, further reinforcing the results obtained 

following nuclear-cytoplasmic fractionation. It was also possible to visually detect pMLC-S19 

by immunofluorescence and a reduction in this mark was detected following depletion of 

PPP1R14C, consistent with enhanced MLCP activity. However, what was not evident by 

western blot in figure 4.5, was that androgen stimulation dramatically increases 

phosphorylation of MLC-S19 at the cellular periphery, an effect that is abolished following 

PPP1R14C knockdown. This would suggest that androgen stimulation leads to rapid 

phosphorylation of MLC-S19 mediated by the inhibition of MLCP by PPP1R14C.  

 

Figure 5.3 - PPP1R14C Depletion Impairs AR Nuclear Translocation. LNCaP cells were 
depleted of PPP1R14C as previously described and subjected to 30 mins 10nM DHT 

stimulation prior to nuclear-cytoplasmic fractionation. Knockdown of PPP1R14C resulted in 
impaired androgen induced AR nuclear translocation vs the scrambled control. 
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Figure 5.4 - PPP1R14C Depletion Prevents Androgen Mediated MLC20 Phosphorylation. LNCaP 
cells were depleted of PPP1R14C as previously described and subjected to 30 mins 10nM DHT 

stimulation prior to immunofluorescent analysis. Cell nuclei were stained with DAPI, AR (Green) 
and pMLC20 (Red) were detected using alexa-fluor conjugated secondary antibodies. PPP1R14C 

depletion prevents androgen induced MLC20 phosphorylation and reduces AR nuclear 
translocation compared to the scrambled control. 
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5.2.4 PPP1R14C depletion reduces MAPK activation 

As it has been previously reported that MAPK signalling is in part responsible for the 

phosphorylation of AR serine 515, the impact of PPP1R14C depletion on MAPK activation was 

investigated. LNCaP cells depleted of PPP1R14C as previously described were subject to 

10ng/ml EGF stimulation for 0, 5, 10 and 15 minutes prior to lysis and western blot analysis. 

Figure 5.5 demonstrates that a marked reduction in the phosphorylation of MAPK1/3 occurs 

in response to EGF stimulation following PPP1R14C knockdown compared to the scrambled 

control arm of the experiment, however, PPP1R14C depletion also leads to a marginal increase 

in the basal phosphorylation status of MAPK1/3.  

5.2.5 PPP1R14C depletion results in enhanced AKT mediated proteasomal degradation of the 

androgen receptor 

The other phosphorylation site investigated was serine 213. This is a repressive phospho-mark 

described to lead to enhanced MDM2 mediated proteasomal degradation, and as such, 

repression of AR target gene expression. Indeed, figure 5.6 demonstrates that the AR 

undergoes enhanced degradation over an 8-hour period in the presence of cycloheximide 

following RNAi depletion of PPP1R14C compared to the scrambled control. AR protein levels 

decreased over time as expected in the scrambled arm of the assay, confirming the 

accelerated AR degradation observed in the siPPP1R14C-1 arm is legitimate. In further support 

of this, LNCaP cells transfected with siPPP1R14C-1 were exposed to 1µM of the proteasomal 

inhibitor MG132 and AR regulated gene expression was quantified by RT-qPCR. Figure 5.7 

Figure 5.5- PPP1R14C Depletion Reduces MAPK Activation Following EGF Stimulation. LNCaP cells 
were depleted of PPP1R14C as previously described and stimulated with 10ng/ml EGF. LNCaP cells 

were harvested at 0, 5, 10 and 15 minutes post stimulation and analysed by western blot. Depletion 
of PPP1R14C reduces EGF induced MAPK phosphorylation compared to the scrambled control. 
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demonstrates that PPP1R14C gene expression is indeed repressed following RNAi depletion 

compared to the scrambled control, and as in section 4.2, significant repression of the AR 

target gene PSA was observed. However, upon addition of MG132, AR transcriptional activity 

can be partially rescued, confirming that in part some degree of the repressive regulation of 

Figure 5.6 - PPP1R14C Depletion Accelerates AR Degradation. LNCaP cells were depleted of 
PPP1R14C and incubated with 20µg/ml cycloheximide (CHX) for increasing time-periods. Cell 

lysates were analysed by western blot. 

Figure 5.7 - AKT and Proteasomal Inhibitors rescue AR Transcriptional Activity following 
PPP1R14C Depletion. A) LNCaP cells depleted of PPP1R14C were exposed to increasing doses 

of MG132 and underwent RT-qPCR analysis. B) LNCaP cells depleted of PPP1R14C were 
exposed to increasing doses of MK2206 and underwent RT-qPCR analysis. Data represents n=3 

mean ± sem. 
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the AR by MLCP is indeed mediated through enhanced proteasomal degradation. Furthermore, 

the increase in serine 213 phosphorylation observed in figure 5.2 would suggest that the 

accelerated proteasomal degradation is mediated by AKT. Indeed, figure 5.7 demonstrates 

that upon exposure to the AKT inhibitor MK2206, partial rescue of PSA mRNA expression was 

observed following RNAi depletion of PPP1R14C.  

 

As an increase in AR serine 213 phosphorylation was observed, the phosphorylation status of 

AKT 1/2/3 serine 473 was investigated by western blot using a phospho-specific antibody 

following PPP1R14C depletion. Figure 5.8 demonstrates that an increase in the 

phosphorylation status of AKT was observed following PPP1R14C knockdown compared to the 

scrambled control, correlating with the increase in AR serine 213 phosphorylation 

5.3 Discussion 

Deciphering the role PP1 regulatory subunits play in the regulation of the AR will be crucial in 

building on the current literature surrounding the impact of PP1 on the AR and ultimately 

generating more targeted approaches to targeting PP1 in the treatment of AR driven diseases 

including PC. Indeed, PP1 has been shown to directly interact with the AR (Chen et al., 2009), 

but as of yet no PP1 regulatory subunits have been described to interact with the AR. As such, 

PPP1R12A is the substrate specifying subunit of MLCP, and no interaction with the AR was 

detectable through co-immunoprecipitation assays, strongly suggesting that MLCP does not 

Figure 5.8 - PPP1R14C Depletion Increases AKT Phosphorylation. LNCaP 
cells depleted of PPP1R14C for 72 hours in full media were subject to 

western blot analysis using an AKT phospho-specific antibody. Depletion 
of PPP1R14C results in increased AKT phosphorylation. 
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interact directly with the AR (figure 5.1). Unfortunately it has not been possible to validate a 

commercially available PPP1R14C antibody, and as such, it cannot be ruled out that PPP1R14C 

interacts with the AR and is capable of imposing some form of regulation via this mechanism. 

However, further characterisation of the phosphorylation status of the AR following PPP1R14C 

RNAi depletion revealed that 2 pro-androgenic phospho-residues are down-regulated, whilst 

1 repressive phospho-residue is induced, suggesting that indeed MLCP regulates the AR 

indirectly via upstream mechanisms, which correlates with the results from the co-

immunoprecipitation assay (figure 5.2).  

As described in section 1.2.3, serine 81 phosphorylation has been shown to be induced by 

androgen (Gioeli et al., 2002) and in the scrambled arm from figure 5.2 it was possible to 

detect this phosphorylation mark. Phosphorylation of serine 81 was described to stabilize the 

AR, contributing to enhanced AR transcriptional activity. Following PPP1R14C RNAi depletion, 

reduced AR stability and transcriptional activity was observed, correlating with a reduction in 

the phosphorylation of serine 81 (figure 5.2). In addition, phosphorylation of serine 81 also 

correlates with enhanced nuclear localization and chromatin binding. Figure 5.3 highlights that 

PPP1R14C RNAi knockdown also leads to a pronounced reduction in the ability of the AR to 

translocate to the nucleus following androgen induction. This in turn provides a rationale for 

the reduced AR transcriptional activity observed in section 4.2. Indeed, chromatin 

immunoprecipitation assays have not been performed to confirm decreased deposition of the 

AR at AREs following MLCP modulation, but figures 5.3 and 5.4 provide sufficiently strong 

enough evidence to suggest that as AR nuclear localization is significantly impaired, this too 

would be the case. The kinases responsible for modification of serine 81 have been identified 

as CDK1, CDK5 and CDK9 (Gioeli et al., 2002; Chen et al., 2006; Gordon et al., 2010; Hsu et al., 

2011). Crucially, it has been demonstrated that phosphorylation of serine 81 predominantly 

occurs in the nucleus (Kesler et al., 2007; Gordon et al., 2010). Due to the 30 minute androgen 

stimulation time-scale used in the nuclear-cytoplasmic extraction and AR 

immunoprecipitation assays, the results obtained in relation to serine 81 phosphorylation and 

impaired nuclear localization following PPP1R14C RNAi knockdown would strongly suggest 

that MLCP modulation prevents androgen induced nuclear translocation prior to 

phosphorylation by the CDKs in the nucleus (figure 5.2 and figure 5.3), which would suggest 

the activity of CDK1 towards the AR is being reduced. Indeed, as described in chapter 4, RNAi 
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depletion of PPP1R14C resulted in G1 cell cycle arrest, characterised by a reduction in the 

phosphorylation status of RB1. As CDK1 is most active in the G2/M phase of the cell cycle, the 

reduction in serine 81 phosphorylation may be attributed to the G1 arrest observed. 

Furthermore, due to the time-scale used, enhanced nuclear export is unlikely to impact on 

serine 81 phosphorylation, but may contribute to the overall reduction in AR transcriptional 

activity following siPPP1R14C-1 transfection and therefore should be interrogated. Similarly 

serine 515 is also phosphorylated in the nucleus, also by CDK1 as well as CDK7 (Chymkowitch 

et al., 2011; Willder et al., 2013). The reduction in phosphorylation of this residue following 

PPP1R14C depletion may also be as a result of increased G1 cell cycle arrest and subsequent 

down-regulation of CDK1 activity. Again, phosphorylation of this residue is reported to 

increase AR transcriptional activity. Therefore it would appear that the reduction in serine 515 

phosphorylation following PPP1R14C knockdown is also likely to be caused by a reduction in 

the nuclear translocation of the AR. However, the reduction in the phosphorylation of serine 

515 following MLCP modulation compared to the scrambled control was less pronounced than 

the reduction in serine 81 phosphorylation, and is still in fact detectable (figure 5.2). This could 

be attributed to the other kinases known to phosphorylate this residue, MAPK1 and MAPK3 

(Gregory et al., 2004; Mellinghoff et al., 2004; Ponguta et al., 2008). Indeed, androgen 

stimulation has been documented to induce the phosphorylation and subsequent activation 

of MAPK1 and MAPK3 within sub-minute time-scales, providing a rationale for serine 515 

phosphorylation observed in figure 5.2 (Foradori et al., 2008). Identification of MAPK 

activation by androgen in the sub-minute time-scale proved difficult to identify, however, 

activation by the canonical EGFR pathway following EGF stimulation was detectable. As such, 

following PPP1R1C RNAi depletion, a pronounced reduction in the phosphorylation of 

MAPK1/3 was observed in figure 5.5, suggesting that MLCP activity also plays a repressive role 

in MAPK signalling. The results would suggest that the MAPK pathway is still capable of being 

activated, albeit to a lesser extent, and such still capable of phosphorylating AR serine 515. 

Indeed, it has been previously reported that ectopic expression of PPP1R14C in the breast 

cancer cell line MCF-7 induces MAPK activation but the authors draw no conclusion on MLCP 

activity, nor any specific role for PPP1R14C (Wenzel et al., 2007). However, as described in 

Chapter 4, PPP1R14C depletion results in the enhanced dephosphorylation of the tumour 

suppressor NF2. NF2 has been reported to repress the MAPK signalling cascade by directly 

inhibiting the activity of Ras (Garcia-Rendueles et al., 2015; Riecken et al., 2016) Most 
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importantly, both serine 81 and serine 515 phosphorylation are tightly associated with PC 

growth, correlate with disease progression and have been shown to hypersensitize PC cells to 

low levels of androgens. In turn, this is reflected by the frequent observation that CDK1 and 

MAPKs are dysregulated in advanced PC and represent viable therapeutic options within their 

own right. Crucially, it was observed following MLCP modulation that the downstream impact 

of CDK and MAPK action on AR phosphorylation is abolished, whilst an overall reduction in 

activation of the MAPK signalling cascade is also reduced, suggesting disruption of the MLCP-

PPP1R14C interaction may pose a viable therapeutic option in both PC and CRPC. It will be of 

great significance to investigate the direct impact of MLCP modulation on CDK activity to gain 

a greater insight into the molecular mechanisms underlying the results obtained in relation to 

serine 81 and 515 phosphorylation. 

Serine 213 was identified as a repressive phosphorylation site of the AR modified by AKT and 

PIM1-S/L (Lin et al., 2001; Linn et al., 2012). Figure 5.2 demonstrates that there was a 

considerable increase in the phosphorylation of serine 213 following PPP1R14C RNAi 

knockdown compared to the scrambled control. As phosphorylation of this site leads to the 

recruitment and ubiquitination of the AR by MDM2 and subsequent proteasomal degradation, 

AR protein stability in the presence of cycloheximide was investigated. Correlating with the 

increase in phosphorylation, accelerated AR protein degradation was observed over an 8 hour 

period (figure 5.6). This in turn will be partly responsible for the reduction in AR transcriptional 

activity observed. Phosphorylation of serine 213 by AKT predominantly occurs in the 

cytoplasm and is known to impede nuclear translocation (Palazzolo et al., 2007). This would 

correlate with the impaired nuclear localization observed in figure 5.3, however, it would be 

difficult to suggest if the increase in phosphorylation is a result of impaired nuclear 

translocation, or the cause of impaired nuclear translocation without interrogating the 

experimental setup with the inclusion of AR serine 213 mutants. Furthermore, LNCaP cells are 

PTEN null, and it would be expected that AKT is constitutively phosphorylated, and as such, 

activated (Li et al., 1997). In the scrambled arm of figure 5.8 it was possible to detect high 

levels of AKT phosphorylation, however, this was increased following PPP1R14C RNAi 

knockdown, correlating with the increase in AR serine 213 observed. The cross-talk between 

independent signalling cascades has emerged as an important area of research, particularly in 

relation to disease resistance mechanisms. As such, there is significant evidence for reciprocal 
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regulation between the PI3K and androgen signalling pathways. It was shown that AR 

repression leads to enhanced AKT phosphorylation through downregulation of the AKT 

phosphatase, PHLPP (Carver et al., 2011a). As pronounced AR inhibition is observed following 

PPP1R14C depletion (figure 4.2), downregulation of PHLPP remains a plausible reason for 

increased AKT phosphorylation, which in turn would lead to enhanced AR degradation via 

serine 213 phosphorylation, potentiating this negative feedback loop. Similarly, inhibition of 

the MAPK signalling cascade has been shown to induce activity of the PI3K pathway 

characterised by increased AKT phosphorylation (Turke et al., 2012). As a reduction in the 

phosphorylation of MAPK1/3 is observed in figure 5.5, this too is likely to contribute to 

increased AKT phosphorylation. Serine 213 phosphorylation is also mediated by both isoforms 

of PIM-1, however, these were not interrogated throughout this project, and hence their 

involvement in the modification of serine 213 in the context of MLCP modulation cannot be 

excluded. Nevertheless, phosphorylation of serine 213 by PIM1-S results in proteasomal 

degradation mediated by MDM2 in very much the same manner as AKT, and therefore would 

support the data presented in figures 5.2 and 5.6. Phosphorylation by PIM1-L on the other 

hand results in increased nuclear localization, stability and nuclear localization, and as such, 

would conflict with the data presented in this section.  

Finally, immunofluorescence analysis of LNCaP cells transfected with PPP1R14C RNAi not only 

confirmed impaired nuclear translocation of the AR, but provided significant evidence for the 

rapid involvement of PPP1R14C mediated MLCP inhibition in response to androgen 

stimulation (figure 5.4). PPP1R14C phosphorylation has previously been reported to be 

enhanced in response to serum (Madsen et al., 2015), and here it is possible to show that this 

induction is extended to androgen stimulation. Indeed, this finding could be further enhanced 

using phospho-specific antibodies raised against PPP1R14C threonine 73, but as of yet a 

specific antibody does not exist, and the use of a phosphorylated PPP1R14A threonine 43 

antibody would raise specificity issues. The MLCP inhibitor protein family display significant 

similarities both in terms of structure and regulation, and it has been previously reported that 

PPP1R14A is phosphorylated in response to androgen, further suggesting that androgen 

mediated phosphorylation of PPP1R14C is plausible (Song et al., 2010). Indeed, this raises the 

possibility that disruption of androgen mediated MLC20 phosphorylation prevents efficient 

AR nuclear translocation. A number of cytoskeletal associated proteins have been associated 
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with co-regulation of AR activity, one of which, filamin, has been associated with a crucial role 

in AR nuclear translocation (Ozanne et al., 2000). As such, the direct involvement of MLCP in 

AR cytoplasmic retention cannot be ruled out.  

In conclusion, MLCP impacts on the phosphorylation status of the AR at a number of different 

biologically important phospho-residues, resulting in impaired ligand induced nuclear 

translocation and accelerated proteasomal degradation. These can be in part explained by the 

repression and induction of the MAPK and PI3K signalling cascades respectively, but crucially, 

suggests that MLCP modulation is having a profound impact on a number of independent 

signalling cascades, and ultimately exerting repressive regulation of the AR via indirect 

mechanisms. Indeed, the impaired nuclear localization and enhanced degradation of the AR 

correlate with the reduction in AR mediated gene transcription described in section 4.2. 

Functionally, it is now possible to understand how MLCP modulation impacts on the cellular 

role of the AR, however, the underlying mechanisms linking MLCP activity to AR repression 

remain unknown. Therefore it is necessary to gain a greater understanding of MLCP function, 

and in particular, a greater understanding of its therapeutic relevance in order to assess MLCP 

modulation as a viable modality in the treatment of PC.  A schematic diagram summarising 

the findings from this chapter can be found in figure 5.9. 

Figure 5.9 – Schematic Summary of Section 5 Results. Enhanced MLCP activity via depletion of PPP1R14C reduces MAPK 
and CDK mediated phosphorylation of AR serine 81 and serine 515 resulting in impaired ligand induced nuclear 

translocation. Conversely, phosphorylation of the AR at serine 213 by AKT is enhanced following PPP1R14C depletion, 
resulting in enhanced proteasomal degradation. 
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6.1 Introduction 

As described in section 1.1.6, preventing transactivation of the AR has remained a crucial 

treatment modality in PC therapy for over 40 years. Although drugs have advanced 

pharmacologically, or indeed, novel approaches of targeting the androgen signalling axis have 

developed in parallel with our improved understanding of AR signalling, ultimately, the aim of 

preventing the biological role of the AR in the treatment of PC has remained the same. Indeed, 

disruption of the AR either by small molecule inhibition, ligand withdrawal or genetic 

modification represses PC cell and tumour growth. As the genotypic impact of PPP1R14C RNAi 

knockdown has been established in relation to the activation of clinically relevant tumour 

suppressors, and its involvement in cell cycle progression assessed, the impact of PPP1R14C 

modulation on LNCaP cell growth and migration was investigated using live cell imaging 

techniques and a Boyden chamber assay respectively. Similarly, the depletion of PPP1R14C 

was assessed in cell line models of treatment resistance. Since the discovery by Huggins et al 

(Huggins et al., 1941) in 1941 that PC is highly dependent upon the action of androgens for 

survival, growth and progression, targeting the AR signalling axis has been the mainstay of 

treatment for localised, advanced, and metastatic PC. As described in section 1.1.6, this form 

of treatment is initially very effective, achieving response rates in up to 90% of patients, 

however, after a median time of 2-3 years, it invariably fails, rendering the cancer what is 

termed castrate resistant. Whether ADT resistant clones exist prior to treatment is currently 

unknown, but undoubtedly, therapy with ADT applies a selection pressure upon the cancer, 

favouring survival and propagation of resistant cells.  

Although novel cytotoxic agents, AR targeting agents, and immunotherapies have been 

developed, demonstrating modest increases in survival outcomes, CRPC invariably progresses 

in the absence of any effective treatments, characterised by rising PSA levels, metastasis, and 

ultimately death after a median period of 16-18 months (Chen et al., 2004). The rising 

expression of PSA, combined with initial responses to novel anti-androgens, suggests CRPC 

tumours still possess an active androgen signalling axis and are sensitive to androgen blockade, 

and therefore the AR remains a viable therapeutic target. Indeed, a number of resistance 

mechanisms that allow continued AR signalling in CRPC have been identified. These include 

incomplete blockade of androgen biosynthesis pathways, AR amplification, AR mutation, 

aberrant AR co-activator activity, and the emergence of AR splice variants. 
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Emerging evidence exists that intratumoral androgen biosynthesis pathways are up-regulated 

in CRPC, enabling PC cells to increase androgen availability both within the primary tumour 

and at distant metastatic sites (Mohler et al., 2004; Locke et al., 2008; Montgomery et al., 

2008). Sensitization of the AR to low levels of androgens also occurs through over-expression 

of the AR. Indeed AR amplification has been observed in up to 50% of mCRPC cases (Dan et 

al., 2015). In addition to gene amplification, DNA hypermethylation has been shown to lead 

to reduced binding of the AR suppressor binding complex, resulting in enhanced AR mRNA 

expression (Perry et al., 2010). Multiple mutations have been detected within the AR LBD. 

Furthermore, these mutations have been demonstrated to convert anti-androgen antagonism 

to AR agonism, enhancing AR transcriptional activity (Zhou et al., 2010). Similarly, mutation of 

the AR LBD has also been documented to allow AR activation following the binding of 

alternative steroidal hormones such as progesterone and corticosteroids (Culig et al., 1993; 

Zhao et al., 2000). Finally, the emergence of AR splice-variants has been heavily linked to the 

progression of CRPC. There are a number of splice variants encoding an AR protein lacking the 

LBD, resulting in a constitutively active and nuclear localized AR molecule (Dehm et al., 2008; 

Hu et al., 2009). 

In this section, an investigation into the impact of PPP1R14C depletion on the AR signalling 

axis from anti-androgen resistant and steroid deprived resistant LNCaP cells is performed. 

Resistant and steroid deprived LNCaP cells were generated in house and have been shown to 

possess an active androgen signalling axis (O’Neill et al.).  
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6.2 Results 

6.2.1 PPP1R14C depletion reduces LNCaP cell growth 

In order to investigate the impact of PPP1R14C RNAi depletion on cell growth, LNCaP cells 

were monitored by live cell imaging for 96 hours following transfection. Images were taken 

every 4 hours, and the percentage confluency calculated using the Incucyte Zoom software. 

Figure 6.2 shows representative images taken at 96 hours of LNCaP cells transfected with 

scrambled and siPPP1R14C-1 RNAi oligos, respectively. It is clear from the images that 

depletion of PPP1R14C resulted in impaired cellular proliferation whilst maintaining a 

physiological phenotype. Figure 6.1 highlights the rate of proliferation for the two 

experimental arms. LNCaP cells transfected with the scrambled control siRNA increased in 

confluency by 2.8-fold over a 96 hour period, whilst cells transfected with the siPPP1R14C-1 

achieved a 2-fold increase in confluency over the same time period. This is the equivalent of 

a 45% reduction in cell proliferation. 

 

Figure 6.1 - PPP1R14C Depletion Reduces LNCaP Cell Growth. LNCaP cells 
depleted of PPP1R14C were cultured in full media for 96 hours. Growth was 
measured by live cell imaging and calculated from percentage confluency. 

Data represents n=3 mean ± sd. 
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6.2.2 PPP1R14C depletion reduces LNCaP cell migration 

To assess the impact of PPP1R14C depletion on cell migration a Boyden chamber assay was 

implemented as described in section 2.18. Figure 6.3 contains representative images from 

each of the experimental repeats for both siPPP1R14C-1 and scrambled RNAi transfection. 

Following cell fixation and staining, cells were counted and plotted in a box-plot chart 

including maximum value, minimum value, median, and 1st and 3rd quartiles. Knockdown of 

PPP1R14C resulted in a dramatic reduction of LNCaP cell migration compared to the 

scrambled control of approximately 80% (median, p-value).  

Figure 6.2 - PPP1R14C Depletion Doesn't Impact on the Morphology of LNCaP Cells. 
LNCaP cells depleted of PPP1R14C and were imaged every 4 hours. This figure is a 

representative image of LNCaP cell growth and morphology at the 96 hour time-point. 

Figure 6.3 - PPP1R14C Depletion Reduces LNCaP Cell Migration. LNCaP cells were depleted of PPP1R14C as 
previously described for 48 hours. Cells were then trypsinised and counted (N=10,000) before being placed in the 

upper chamber of a Boyden chamber in DCC media. The lower chamber contained full media. Migrated cells were 
fixed, stained and counted after a period of 24 hours. Data represents n=3 maximum, minimum, median, 1st and 

3rd quartile values. 
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6.2.3 PPP1R14C depletion reduces androgen receptor transcriptional activity in distinct cell line 

models of treatment resistance 

RNAi depletion of PPP1R14C in LNCaP-AI cells resulted in a statistically significant mean 

reduction in PPP1R14C mRNA expression of approximately 90%, as depicted in figure 6.4. In 

parallel with the parental LNCaP cell line, this resulted in a statistically significant repression 

of the AR target genes PSA and TMPRSS2 at the mRNA level as quantified by RT-qPCR. Indeed 

both genes were repressed by over 70%, reinforcing that the AR is still active in the absence 

of androgen in the LNCaP-AI cell line, and is sensitive to repression by MLCP activity. 

Figure 6.4 - PPP1R14C Depletion Reduces AR Transcriptional Activity in 
Androgen Independent LNCaP Cells. PPP1R14C was depleted in LNCaP-AI cells 
for 72 hours in DCC media. AR regulated gene mRNA expression was quantified 

by RT-qPCR. Data represents n=3 mean ± sem. Unpaired student t test 
performed using graphpad 
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Subsequent RNAi investigations took place in the anti-androgen resistant cell lines LNCaP-

CdxR and LNCaP-EnzR in the presence of the respective anti-androgen. Successful knockdown 

of approximately 80% following siPPP1R14C-1 transfection can be observed in both LNCaP-

CdxR and LNCaP-EnzR in figure 6.5 and figure 6.6 respectively. In the LNCaP-CdxR cell line this 

resulted in inhibition of both PSA and TMPRSS2 mRNA expression of over 60%. In the 

enzalutamide resistant LNCaP cell line, LNCaP-EnzR, PPP1R14C knockdown resulted in a 90% 

reduction in PSA expression, and an approximately 60% reduction in TMPRSS2 expression. 

Again, this reinforces that both resistant cells possess active AR signalling cascades in the 

Figure 6.5 - PPP1R14C Depletion Reduces AR Transcriptional Activity in 
Casodex Resistant LNCaP Cells. PPP1R14C was depleted in LNCaP-CdxR cells 

for 72 hours in FM media + 10µM casodex. AR regulated gene mRNA 
expression was quantified by RT-qPCR. Data represents n=3 mean ± sem. 

Unpaired student t test performed using graphpad 

Figure 6.6 - PPP1R14C Depletion Reduces AR Transcriptional Activity in 
Enzalutamide Resistant LNCaP Cells. PPP1R14C was depleted in LNCaP-EnzR 
cells for 72 hours in FM media + 10µM enzalutamide. AR regulated gene 
mRNA expression was quantified by RT-qPCR. Data represents n=3 mean ± 
sem. Unpaired student t test performed using graphpad 
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presence of their respective anti-androgen, and can be repressed following modulation of 

PPP1R14C expression.  

Figure 6.7 highlights the ability of PPP1R14C to impact on the cell growth of the LNCaP-AI cell 

line. Over a 96 hour period, cells within the scrambled control arm of the assay increased in 

confluency by 4.5-fold. In contrast, LNCaP-AI cells depleted of PPP1R14C increased in 

confluency by less than 3-fold, representing a 50% reduction in cell proliferation.  

 

 

7.3 Discussion 

In this section it was possible to identify the impact of PPP1R14C depletion on LNCaP cell 

proliferation and migration. LNCaP cells are androgen dependent and it has been previously 

shown that inhibition of the AR via multiple mechanisms is capable of reducing LNCaP cell 

growth and migration (Yang et al., 2005b; Zhu and Kyprianou, 2010; Guerrero et al., 2013). In 

previous sections it was demonstrated that PPP1R14C depletion leads to significant inhibition 

of the AR signalling cascade as well as impairing cell cycle progression, this now correlates 

with a 45% reduction in LNCaP cell proliferation over a 96-hour time-period. Indeed, detecting 

down-regulation of PPP1R14C at the protein level has proven difficult throughout this project 

Figure 6.7 - PPP1R14C Depletion Reduces Androgen Independent LNCaP Cell 
Growth. LNCaP-AI cells depleted of PPP1R14C were cultured in DCC media for 96 
hours. Growth was measured by live cell imaging and calculated from percentage 

confluency. Data represents n=3 mean ± sd. 
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and therefore a direct relationship between PPP1R14C protein levels and proliferation cannot 

be concluded. However, it has been possible to quantify depletion of PPP1R14C at the mRNA 

level at both the 72 and 96 hour time points, confirming repression of PPP1R14C mRNA is still 

persistent at these-time points. One negative factor of this assay would be the time-point at 

which PPP1R14C mRNA depletion is first observed is unknown, and indeed, this should be 

incorporated into future assays. If this was known it might be possible to draw a more accurate 

conclusion between PPP1R14C mRNA expression and LNCaP cell growth. In this assay, 

confluency has been used as the measurement for cell growth, which provides a suitable 

surrogate for proliferation as long as cells do not reach such a high density that they begin to 

grow in layers, and indeed that the morphology of the cells does not change following 

modulation. As can be observed in figure 6.2 the morphology of the LNCaP cells following 

PPP1R14C depletion remains consistent with the morphology of the LNCaP cells transfected 

with the non-silencing control, suggesting there is no significant detrimental effect on 

essential cellular pathways. Furthermore, the cells in either arm do not reach a confluency 

forcing overlapping growth. It is also possible to observe that there is no evidence of increased 

cell death, which is consistent with the cell cycle data presented in section 4 where no 

significant difference in the population of LNCaP cells in the sub-G1 phase was detected, 

reinforcing that PPP1R14C does not appear to be cytotoxic, but rather, cytostatic. 

Following implementation of the Boyden chamber assay, a profound reduction in the 

migration of LNCaP cells is observed following depletion of PPP1R14C of approximately 80% 

compared to the scrambled control. Therapeutically this is very advantageous, particularly as 

death from PC is typically associated with metastasis from the primary tumour to distant sites. 

PC is regarded as a slow growing cancer, and more recently the preferred treatment option 

for low-risk patients is active surveillance, therefore by combining a reduction in proliferation 

with a pronounced inhibition of migration would be well suited characteristics of future 

treatment modalities. Whilst the reduction in cell proliferation following PPP1R14C depletion 

may be associated with enhanced cell cycle regulation, the impact on migration is more likely 

to be associated with alternative signalling cascades. Cell motility is dictated via modulation 

of the actin cytoskeleton, and whilst actin polymerization pushes the plasma membrane 

forward, both the trailing membrane and stress fibres are pulled in through actomyosin 

contraction, a process that requires the reversible phosphorylation of MLC20, mediated by 
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both MLCK and MLCP (Watanabe et al., 2007). Whilst neither the phosphorylation nor 

dephosphorylation of MLC20 has been inhibited, it could be possible that enhanced MLCP 

activity following depletion of PPP1R14C prevents hyperphosphorylation of MLC20, and as 

such reduces the rate at which MLC20 phosphorylation is cycled, thus slowing the migratory 

rate of LNCaP cells. Indeed, the implication of PPP1R14C on lamellipodia formation has been 

previously published (Madsen et al., 2015). The lamellipodium is an essential cellular structure 

for cell migration and has been demonstrated to play a key role in PC invasion and metastasis. 

Upon migration, cells produce sheet-like protrusions, the lamellipodium, at the leading edge 

in order to generate cellular-matrix interactions, which upon cycling of the MLC20 

phosphorylation status, leads to cellular contraction and motility (Kato et al., 2014). Upon 

depletion of PPP1R14C, the authors noted a reduction in both the length and the peak angle 

of the lamellipodia in MDA-MDB-231 cells (breast adenocarcinoma), resulting in fewer, more 

broader extensions characterised by a reduction in pMLC20, and conclude that this phenotype 

leads to a reduction in intra-cellular hydrostatic pressure, preventing migration through 

confined spaces (Madsen et al., 2015). This would directly implicate PPP1R14C depletion in 

the repression of cell migration via increased dephosphorylation of pMLC20, but it should also 

be noted that the tumour suppressor NF2 plays a crucial role in cell motility, providing 

secondary, indirect, evidence for the repression of migration by PPP1R14C knockdown. Both 

lamellipodia formation and MLC20 phosphorylation is mediated in a Rho/Rac1 GTPase 

dependent manner (Nobes and Hall; Kimura et al., 1996). NF2 is a potent repressor of both 

Rho and Rac1 through inhibition of guanine nucleotide exchange factors, a crucial step in 

activation of both Rho and Rac1 (Morrison et al., 2007). Thus, increased dephosphorylation 

and activation of NF2 by MLCP following PPP1R14C depletion, will undoubtedly play a 

repressive role in the reduction of LNCaP cell migration observed in figure 6.3. It should also 

be noted that cells are at their most migratory during the G1 phase of the cell cycle, and 

despite the increase in cells found in G1 following PPP1R14C depletion, a dramatic reduction 

in the migration of LNCaP cells is observed, making this finding more significant. In conclusion, 

a significant reduction in the proliferation of PC cells can be attributed to the increase in G1 

cell cycle arrest observed in section 6, whilst a dramatic reduction in PC cell migration can be 

linked to increased dephosphorylation of both MLC20 and NF2 by MLCP, providing novel 

evidence that PPP1R14C depletion represents a novel approach to reduce both LNCaP cell 

proliferation and migration as well as AR transactivation. 
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The ability of the AR to function in the presence of next-generation anti-androgens and under 

castrate resistant conditions has become a hallmark feature of CRPC. Whilst next generation 

AR targeting agents only show modest efficacy in CRPC patients, it has become evident that 

targeting the AR signalling axis remains a viable therapeutic approach. In this section it has 

been possible to demonstrate that depletion of PPP1R14C results in the significant repression 

of AR transactivation as quantified by the mRNA expression of its target genes PSA and 

TMPRSS2 in 3 LNCaP derived cell lines, capable of continued AR signalling in the absence of 

androgen, and in the presence of casodex and enzalutamide, respectively. Furthermore, 

PPP1R14C knockdown reduces LNCaP-AI cell growth by 50%, demonstrating that this cell line 

is still sensitive to disruption of the AR signalling axis. In section 3 it was possible to 

demonstrate that depletion of PPP1R14C was capable of reducing AR transcriptional activity 

in both the presence and absence of androgen. Conversely, depletion of PPP1R12A resulted 

in increased AR transcriptional activity in both the presence and absence of androgen. This 

strongly suggests that MLCP is intrinsically repressive to AR function, but moreover, in a ligand 

independent manner. This is further confirmed in this section, as all 3 resistance models 

represent ligand independent resistance mechanisms, and are sensitive to depletion of 

PPP1R14C. The underlying mechanisms of resistance within each cell line remains unknown, 

and therefore it is not possible to make any direct conclusions regarding the impact of 

PPP1R14C depletion on the particular resistance mechanisms each cell line possess. However, 

as knockdown of PPP1R14C plays a pivotal role in the repression of upstream signalling 

cascades required for AR expression and signalling in both the presence and absence of 

androgen, it is likely these too are involved within the context of this section. Indeed, despite 

a reduction in AR function in both the LNCaP-CdxR and LNCaP-EnzR cell lines following 

PPP1R14C depletion, ultimately the impact on cell growth has not been assessed and as such 

requires future interrogation. Furthermore, it has been demonstrated that mutations within 

the AR LBD, enabling antagonists to act as agonists, induce a distinct transcriptional program 

to wild type AR, and as such, additional AR target gene expression should be investigated, 

particularly in relation to mutant AR target genes (O'Neill et al., 2015). This chapters findings 

are schematically represented in figure 8.5. 



123 
 

 

 

 

 

Figure 6.8 – Schematic Summary of Section 6 Results. RNAi depletion of PPP1R14C reduces 
LNCaP cell proliferation and migration. Furthermore, PPP1R14C RNAi depletion reduces AR 

transcriptional activity in LNCaP-AI, LNCaP-CdxR and LNCaP-EnzR cell lines providing 
significant evidence for viability of PPP1R14C as a therapeutic target. 
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7.1 Introduction 

Throughout this thesis a thorough analysis into the impact of MLCP activity on AR function has 

been performed following RNAi depletion of PPP1R14C, providing significant evidence for its 

viability as a therapeutic target in PC. However, limited availability of commercial reagents 

against PPP1R14C, and indeed insufficient knowledge on the therapeutic disruption of PP1 

holoenzymes, currently render PPP1R14C untargetable. As such, investigation into additional 

endogenous MLCP inhibitors represents an attractive route of further reinforcing previous 

findings within this thesis, whilst identifying potential novel therapeutic targets in the 

treatment of PC. With this in mind, PTMs of MLCP will be introduced in this chapter, with an 

emphasis on MLCP inhibition.  

As described in section 4, PPP1R12A is the substrate specifying subunit for the PP1 

holoenzyme MLCP, and is subject to a number of PTMs capable of influencing its activity. 

These include phosphorylation, ubiquitination and methylation. Phosphorylation of PPP1R12A 

occurs in response to a number of physiological stimuli, many of which result in specific spatio-

temporal regulation of MLCP activity. It has been demonstrated that PPP1R12A is 

phosphorylated specifically during mitosis at 3 serine residues; serine 432, serine 473 and 

serine 601 (Yamashiro et al., 2008). This was shown to be mediated by proline directed kinases, 

including CDK1. The authors went on to show that phosphorylation of serine 473 results in the 

formation of a PLK1 binding motif, and indeed, phosphorylated PPP1R12A at serine 473 co-

immunoprecipitates with PLK1, whilst a PPP1R12A 473A mutant does not. Further 

characterisation revealed that this interaction mediates dephosphorylation of the PLK1 

activation site, threonine 210, by MLCP. A more recent study went on to show that 

phosphorylation of PPP1R12A serine 445 by LATS1 was crucial for PLK1 inactivation by MLCP, 

suggesting there is significant interplay between the different phosphorylation sites on 

PPP1R12A (Chiyoda et al., 2012). Crucially, phosphorylation of serine 445 by large tumour 

suppressor kinase 1 (LATS1) occurred in an ataxia telangiectasia mutated (ATM) dependent 

manner following DNA damage, resulting in repression of PLK1 activity and attenuation of 

mitotic entry. Another site capable of enhancing MLCP activity upon phosphorylation is serine 

695, mediated by PKA and PKG (Wooldridge et al., 2004). It was demonstrated that 

phosphorylation of serine 695 prevents phosphorylation at threonine 696, the most 

characterised inhibitory site of PPP1R12A. Phosphorylation of threonine 696 has been 
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extensively studied in the context of cell motility and actomoyosin contractility, and has been 

demonstrated to account for RhoA mediated Ca2+ sensitization in smooth muscle. More in 

depth studies successfully demonstrated that the RhoA-associated kinases ROCKI/II were 

responsible for phosphorylation and inhibition of PPP1R12A at threonine 696 and serine 854, 

and as such these 2 residues have since been regarded as the PPP1R12A inhibitory 

phosphorylation sites (Kimura et al., 1996; Feng et al., 1999). Subsequent studies have shown 

that many kinases are capable of phosphorylating PPP1R12A at threonine 696, and indeed 

inhibit MLCP activity. These include RAF1, myotonic dystrophy kinase-related CDC42-binding 

kinase, myotonic dystrophy protein kinase, ILK and ZIPK (Muranyi et al., 2001; Broustas et al., 

2002; Kiss et al., 2002; Wilkinson et al., 2005; Takamoto et al., 2006).  

Methylation of PPP1R12A at lysine 442 has been shown to impact on its stability both in-vitro 

and in-vivo (Cho et al., 2011). Methylation was demonstrated to be mediated by SET9, which 

upon RNAi depletion, led to a pronounced destabilization of the PPP1R12A protein. 

Conversely, demethylation has been shown to be mediated by lysine demethylase 1 (LSD1), 

which upon RNAi depletion leads to enhanced PPP1R12A stability, and is characterised by 

increased dephosphorylation of MLCP substrates, specifically RB1 serine 807/811. 

Degradation of PPP1R12A has been reported to occur in an SIAH2 dependent manner 

(Twomey et al., 2010). PPP1R12A contains an SIAH2 consensus sequence, ‘RLAYVAP’, within 

its CTD, and has been shown to interact through this motif with SIAH2. As such, PPP1R12A 

acts as a signalling hub for a number of signalling pathways and plays a crucial role in 

modulating cell motility, and a number of down-stream signalling cascades associated with 

the activity of its substrates.  

However, it is the role of the adenosine monophosphate-activated protein kinase (AMPK)-

related kinases NUAK1 and NUAK2 that were pursued within the context of MLCP inhibition 

within this thesis. NUAK1/2 were identified as AMPK-related kinases through sequence 

homology with the AMPK catalytic domain (Manning et al., 2002). Indeed, NUAK1/2 can be 

activated via phosphorylation by LKB1 like AMPK (Lizcano et al., 2004). However, the known 

AMPK inducers, AICAR, phenformin and metformin, failed to induce NUAK1/2 activity, 

suggesting different regulatory mechanisms exist for NUAK1/2 (Lefebvre and Rosen, 2005). 

Both NUAKs can be activated in response to osmotic stress and nutrient deprivation including 

glucose and glutamine withdrawal, whilst NUAK2 activity can also be induced by DNA damage 
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(Suzuki et al., 2003a; Suzuki et al., 2003b). Crucially, both members have been associated with 

tumorigenesis. NUAK1 has been shown to induce tumour cell survival and suppress cell death 

during nutrient starvation, as well as being identified as an important component of AKT-

dependent cancer cell survival and migration (Suzuki et al., 2003b; Kusakai et al., 2004). 

Furthermore, over-expression of NUAK1 has been demonstrated to induce cellular aneuploidy 

and senescence (Humbert et al., 2010). Similarly, NUAK2 has been implicated with the 

migration and proliferation of melanoma cells, with NUAK2 expression being a significant risk 

factor for patient relapse (Namiki et al., 2011). In fact, NUAK2 gene amplification has recently 

been identified in a number of human cancers (Monteverde et al., 2015). Interestingly, 

PPP1R12A is the only known substrate for NUAK2 (Yamamoto et al., 2008). NUAK1 is also 

capable of phosphorylating PPP1R12A in addition to LATS1, an MLCP enhancer, contributing 

to the cell migratory and detachment roles of the NUAK kinases (Humbert et al., 2010; 

Zagorska et al., 2010).  

Phosphorylation of PPP1R12A by NUAK1/2 occurs on serine 445, serine 472 and serine 910 

(Zagorska et al., 2010). Crucially, phosphorylation at serine 472, triggers the binding of 14-3-3 

and inhibits the catalytic activity of MLCP (Koga and Ikebe, 2008). Over-expression of 14-3-3 

significantly impairs MLCP activity through enhanced binding to PPP1R12A characterised by 

an increase in the phosphorylation status of MLC20. 14-3-3ζ has also been demonstrated to 

induce AR transcriptional activity in the absence of androgens in an AR dependent manner 

(Quayle and Sadar, 2007). A subsequent study demonstrated that 14-3-3ε was involved in a 

positive feed-forward loop with the AR and capable of driving AR nuclear localization in the 

absence of androgens, whilst enhancing MAPK induced AR activity in CRPC (Titus et al., 2009). 

More recently 14-3-3ζ has been confirmed as an AR regulated gene capable of activating AR 

transcriptional activity, enhances PC cell survival and proliferation, and facilitates the 

progression of PC to CRPC, drawing considerable similarities to the impact of PPP1R14C on AR 

transactivation (Murata et al., 2012).  

With this in mind, this section aims to elucidate the impact of endogenous MLCP inhibitors on 

the AR-signalling axis using commercially available small molecule inhibitors. NUAK1/2, 

ROCKI/II and MLCK inhibitors will be employed to elucidate the means by which MLCP 

inhibition enhances AR activity. NUAK1/2 and ROCKI/II phosphorylate different PPP1R12A 

phospho-residues resulting in distinct mechanisms of MLCP inhibition, whilst MLCK directly 
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phosphorylates the MLCP substrate MLC20 serine 19, potentially revealing a novel route of 

AR regulation. Affirmation of the impact of MLCP modulation on the AR signalling cascade will 

reinforce previous findings presented in this thesis, whilst simultaneously providing additional 

therapeutic targets in the treatment of PC. 

7.2 Results 

7.2.1 Myosin light chain kinase inhibition enhances androgen receptor transcriptional activity 

To examine if direct phosphorylation of MLC20 contributes to the regulation of AR function 

by MLCP, LNCaP cells were exposed to 5µM ML-7, a specific inhibitor of MLCK. An initial 

concentration of 5µM was used as previously described in a panel of human cancer cell lines 

(Barkan et al., 2008). Inhibition of MLCK would be expected to result in impaired 

phosphorylation of MLC20, mirroring an increase in MLCP activity following PPP1R14C 

depletion. However, upon inhibition of MLCK with ML-7, a significant induction of both PSA 

and TMPRSS2 mRNA expression quantified by RT-qPCR is observed in LNCaP cells in the 

presence of androgen, contrasting to the repression of AR target gene expression observed 

following PPP1R14C knockdown. Figure 9.1 demonstrates that PSA and TMPRSS2 mRNA 

expression was increased by 1.6 and 2.5-fold, respectively. 

Figure 7.1 - Inhibition of Myosin Light Chain Kinase Increases AR Transcriptional Activity. LNCaP cells 
were subject to inhibition of MLCK with 5µM ML-7 for a period of 24 hours. mRNA expression was 
quantified by RT-qPCR. Data represents n=3 mean ± sd. Unpaired student t test performed using 

graphpad 
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7.2.2 ROCK I/II inhibition enhances androgen receptor transcriptional activity 

ROCK I/II is the known RhoA effector responsible for increased MLC20 phosphorylation. ROCK 

I/II is capable of directly phosphorylating MLC20 serine 19 as well as phosphorylating 

PPP1R12A on threonine 696 and serine 854, inhibiting MLCP activity towards phosphorylated 

MLC20. Similar to the inhibition of MLCK, upon addition of 10µM Y-27632, a specific ROCK I/II 

inhibitor, increases in AR regulated gene expression in the presence of androgen was observed 

as demonstrated in figure 7.2. 10µM Y-27632 was used as previously described for the LNCaP 

cell line (Xiao et al., 2009). Whilst the induction of PSA mRNA expression was not statistically 

significant, TMPRSS2 mRNA expression was significantly increased 2-fold. This supports the 

data presented following MLCK inhibition, and strongly suggests modulation of the 

phosphorylation status of MLC20 does not contribute to the repressive regulation of the AR 

by MLCP, but rather may suggest a positive role in AR function.  

7.2.3 NUAK 1/2 inhibition represses androgen receptor transcriptional activity 

Following on from this, LNCaP cells were exposed to NUAK1/2 inhibition in the presence of 

androgen through the addition of 100nM WZ-4003, a specific NUAK 1 and NUAK2 inhibitor 

(IC50 20nM and 100nM respectively). WZ-4003 IC50 values were calculated for both the 

LNCaP and CWR-22RV1 cell lines (6.5µM and 14µM, respectively), as depicted in 

supplementary figure 2. However, it became apparent that the AR signalling axis was 

significantly repressed at much lower concentrations of WZ-4003. Figure 7.3 demonstrates 

Figure 7.2 - Inhibition of ROCK I/II Increases AR Transcriptional Activity. LNCaP cells were subject 
to inhibition of ROCK I/II with 10µM Y-27632 for a period of 24 hours. mRNA expression was 

quantified by RT-qPCR. Data represents n=3 mean ± sd. Unpaired student t test performed using 
graphpad 
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that 100nM WZ-4003 was capable of significantly reducing AR transcriptional activity in 

relation to the mRNA expression of PSA and TMPRSS2. PSA mRNA expression was reduced by 

60% whilst TMPRSS2 expression was reduced by 40%. Further reinforcing the positive impact 

of NUAK1/2 inhibition on AR activity, a dose-dependent reduction in LNCaP cell growth can 

be observed in figure 7.4. Interestingly, at the 100nM dose shown to significantly repress AR 

transactivation, only a modest reduction in cell proliferation was observed. However, 

statistically significant repression of cell proliferation was observed upon the addition of 

300nM and 1000nM WZ-4003, respectively. Analysis of MLCP activity following NUAK1/2 

inhibition was then investigated by western blot using phospho-specific antibodies against the 

MLCP substrates phosphorylated MLC20 serine 19 and phosphorylated RB1 serine 807/811. 

Similarly the phosphorylation status of PPP1R12A at serine 472 was investigated using a 

phospho-specific antibody. Figure 7.5 demonstrates that a modest reduction in the 

phosphorylation status of PPP1R12A serine 472 occurred in a dose dependent manner, with 

the largest reduction occurring following the addition of 300nM WZ-4003. This correlated with 

a pronounced reduction in the phosphorylation status of both RB1 serine 807/811 and MLC20 

serine 19. No observable reduction in total PPP1R12A was observed, suggesting the increase 

in MLCP activity occurs at the post-translational level.  

 

Figure 7.3 - Inhibition of NUAK 1/2 Reduces AR Transcriptional Activity in LNCaP Cells. 
LNCaP cells were subject to inhibition of NUAK 1/2 with 100nM WZ-4003 for a period of 24 

hours. mRNA expression was quantified by RT-qPCR. Data represents n=3 mean ± sd. 
Unpaired student t test performed using graphpad 
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Figure 7.5- Inhibition of NUAK 1/2 Increases Myosin Phosphatase Activity. LNCaP cells were subject to 
inhibition of NUAK 1/2 with 0, 0.1, 0.3 µM WZ-4003 for a period of 24 hours. Cell lysates were then analysed 
by western blot. A reduction in the phosphorylation status of MLCP substrates RB1 and pMLC20 is observed 
following the incubation of LNCaP cells with WZ-4003 in a dose dependent manner. This correlates with a 

reduction in the phosphorylation status of PPP1R12A serine 472. 

 

Figure 7.4 - Inhibition of NUAK 1/2 Reduces LNCaP Cell Growth. LNCaP cells were subject to 
inhibition of NUAK 1/2 with 0, 100, 300 and 1000nM WZ-4003 for a period of 96 hours. Cell 

growth was measured by live cell imaging. Data represents n=3 mean ± sd. 
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7.2.4 NUAK 1/2 inhibition represses constitutively active androgen receptor variant 

transcriptional activity 

The CWR-22RV1 cell line express constitutively active AR splice variants, particularly the AR-

V7 and AR-1/2/3/2B variants (Tepper et al., 2002). As described in section 8, the emergence 

of AR variants represents a significant prognostic factor in disease progression and treatment 

resistance. Unfortunately, the CWR-22RV1 cell line do not express detectable PPP1R14C and 

therefore it has not been possible to investigate the impact of PPP1R14C depletion on AR 

splice variant activity. However, they do express NUAK1 and NUAK2, therefore using the small 

molecule inhibitor WZ-4003 it has been possible to investigate the impact of MLCP modulation 

on AR variant transcriptional activity. Figure 7.6 represents the impact of 100nM WZ-4003 

exposure on AR transcriptional activity in the CWR-22RV1 cell line cultured in full media. Upon 

inhibition of NUAK1/2 with WZ-4003, a statistically significant reduction in the mRNA 

expression of both PSA and TMPRSS2 was observed of 60% and 50% respectively. This 

correlated with a significant repression in CWR-22RV1 cell growth in the presence of 1µM WZ-

4003 of 40% as depicted in figure 7.7. This was less pronounced than the 75% reduction in 

proliferation observed for the LNCaP cell line. Another treatment resistant cell line employed 

within this section was the LNCaP-EnzR cell line described in section 6. Again, this cell line 

proved to be sensitive to the inhibition of NUAK1/2, resulting in a 60% reduction in cell growth.  

Figure 7.6 - Inhibition of NUAK 1/2 Reduces AR Transcriptional Activity in CWR22RV1 
Cells.CWR22RV1 cells were subject to inhibition of NUAK 1/2 with 100nM WZ-4003 for a 

period of 24 hours. mRNA expression was quantified by RT-qPCR. Data represents n=3 
mean ± sd. Unpaired student t test performed using graphpad 
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7.3 Discussion 

In this section the role of endogenous MLCP modulators was assessed in relation to AR 

regulation. The aim was to identify potential underlying mechanisms supporting the 

repressive role of MLCP on AR regulation previously identified in this thesis, and as such, to 

identify novel AR co-activating targets. As MLCP has been extensively studied in the context 

of MLC20 serine 19 dephosphorlyation, and MLCK directly phosphorylates MLC20 serine 19, 

inhibition of this kinase with the small molecule ML-7 would enable evaluation of this 

modification in the context of AR signalling. As observed in figure 7.1, MLCK inhibition results 

in enhanced AR transcriptional activity, suggesting that dephosphorylation of MLC20 serine 

19 by MLCP is not crucial for the repression of AR activity. In the literature, MLCK inhibition 

with ML-7 has been demonstrated to enhance the cytotoxic activity of etoposide in PC cells, 

and independently reduce the growth of PC tumours in-vivo as a single agent (Gu et al., 2006). 

However, the impact of MLCK inhibition on AR signalling was not evaluated and as such 

requires further interrogation. Similarly, ROCK I/II plays a pivotal role in the phosphorylation 

of MLC20 serine 19 by both direct phosphorylation, and via the inhibitory phosphorylation of 

MLCP. Inhibition of ROCK I/II with Y-27632 has been demonstrated to attenuate PC motility 

Figure 7.7 - Inhibition of NUAK 1/2 Reduces Enzalutamide Resistant LNCaP and CWR22RV1 Cell 
Growth. Cell lines were subject to inhibition of NUAK 1/2 1µM WZ-4003 for a period of 96 hours. 

Cell growth was measured by live cell imaging. Data represents n=3 mean ± sd. 
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and proliferation in the AR-null PC cell line, PC3 (Zhang et al., 2014). As such, both MLCK and 

ROCK I/II inhibition have been independently identified as potential therapeutic targets in the 

treatment of PC, without a thorough investigation into the impact on AR activity. In this 

section it became evident that both inhibition of MLCK and ROCK I/II in fact induce AR 

transcriptional activity, and as such, may not represent suitable targets in the treatment of PC. 

Whilst no studies investigating the impact of MLCK on AR activity have been published, one 

study has identified that MLCK expression is down-regulated in response to androgen in an 

AR dependent manner (Leveille et al., 2009). One hypothesis as to why MLCK inhibition can 

increase AR transcriptional activity would be that both MLCK and the AR form a negative 

feedback loop, and upon MLCK inhibition, AR expression and ultimately activity is increased. 

The relationship between ROCK I/II and AR activity is also understudied. However, one study 

also documents down-regulation of ROCK I/II in an AR mediated manner, again raising the 

possibility of another negative feedback loop (Kroiss et al., 2015). But more compelling is that 

Y-27632, the ROCK I/II inhibitor employed in this section, dramatically enhances signalling of 

the EGFR pathway (Nakashima et al., 2011). This results in significant induction in the activity 

of MAPK1 and MAPK3, kinases capable of inducing AR activity in both the presence and 

absence of androgens (Gioeli et al., 1999). The induction of MAPK activity with Y-27632 may 

be responsible for the increase in AR transactivation observed in figure 7.2. As such, 

preventing phosphorylation of MLC20 serine 19, either directly or indirectly, may contribute 

to the repression of PC cell growth and migration, but it would appear that it does not 

contribute to the repression of AR activity, suggesting additional MLCP substrates are 

responsible for the repression of AR function observed throughout this thesis. 

In contrast to MLCK and ROCK I/II inhibition, exposure of LNCaP cells to the NUAK1/2 inhibitor 

WZ-4003 appears to contribute to MLCP mediated repression of the AR signalling cascade 

through reduced phosphorylation of PPP1R12A. In parallel with PPP1R14C depletion, 

NUAK1/2 inhibition results in enhanced dephosphorylation of phosphorylated MLC20 serine 

19, but crucially, also results in dephosphorylation of the MLCP substrate RB1 at serine 

807/811, suggesting NUAK1/2 phosphorylation of PPP1R12A contributes to RB1 repression. 

Furthermore, NUAK1/2 inhibition prevents transactivation of the androgen independent AR 

variants in the CWR-22RV1 cell line, further reinforcing that MLCP represses AR function in a 

ligand independent manner. As discussed in the introduction to this section, phosphorylation 
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of PPP1R12A at serine 472 mediates the interaction between MLCP and the AR inducer 14-3-

3 resulting in subsequent inhibition of MLCP activity. As a reduction in PPP1R12A serine 472 

phosphorylation is observed following NUAK1/2 inhibition, it is likely the interaction between 

MLCP and 14-3-3 has been diminished, allowing for enhanced activity towards the additional 

substrates including RB1, NF2 and PLK1 outlined in section 4. 

Crucially, inhibition of NUAK1/2, like RNAi depletion of PPP1R14C, results in increased 

dephosphorylation of MLC20 serine 19. However, through the inhibition of MLCK and ROCK 

I/II, this has been shown to not represent a route of AR repression, and therefore, MLCP must 

impose its repressive role on AR function through the dephosphorylation of additional 

substrates. Fundamentally, AR repression by MLCP may be mediated by the distinct spatio-

temporal localization of its endogenous modulators. Both MLCK and ROCK I/II are localized to 

the cell periphery where they are able to respond to extracellular cues and signalling cascades, 

and ultimately modulate the phosphorylation of MLC20 directly and indirectly. Conversely, 

PPP1R14C has been shown to translocate to the nucleus upon phosphorylation following 

serum stimulation (Kiss et al., 2008; Madsen et al., 2015). Indeed, preliminary evidence 

presented in section 5 would suggest that PPP1R14C is capable of mediating a rapid response 

to androgen stimulation in the context of MLCP inhibition. In addition, NUAK1/2 have both 

been shown to predominantly localize to the nucleus and the cytoplasm, whilst PPP1R12A also 

localizes within both the cytoplasm and nucleus, targeting MLCP to its distinct substrates 

throughout varying subcellular localizations. Crucially, the MLCP substrates identified as being 

differentially phosphorylated following PPP1R14C RNAi depletion in section 4 all localize to 

the nucleus as well as the cytoplasm. Therefore, it is likely that PPP1R14C and NUAK1/2 

contribute to the repression of MLCP at subcellular locations where MLCP substrates 

important for AR regulation co-localize. 
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Figure 7.8 - Distinct Subcellular Localizations of Endogenous MLCP Inhibitors and Substrates 
– collated from Human Protein Atlas. Myosin Phosphatase is distributed throughout distinct 
subcellular localizations, whilst its substrates and endogenous inhibitors tend to localize to 
specific subcellular localizations, which in turn may provide spatio-temporal regulation of 

myosin phosphatase activity. 
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Finally, investigation into the expression of NUAK1 and NUAK2 in publicly available datasets 

revealed that both kinases undergo gene amplification in PC. In the most recent publicly 

available dataset (Beltran et al., 2016), NUAK1 was found to undergo gene amplification in 21% 

of cases (16/77), reinforcing its viability as a candidate therapeutic target. NUAK2 was found 

to be genomically amplified in 34% of cases (26/77), also confirming its validity as a target. 

Interestingly, NUAK2 amplification has been associated with PTEN deficiency in melanoma, 

promoting disease progression (Namiki et al., 2015). As described in section 1.2.3, PTEN loss 

is a major prognostic marker for PC and is frequently observed in up to 40% of cases. Therefore 

it will be of interest to see if the association between NUAK2 and PTEN observed in melanoma 

extrapolates to PC. Furthermore, NUAK2 is located on chromosome 1q32, a gene locus found 

to be amplified in 45% of advanced PC samples but unaltered in primary tumours (Holcomb 

et al., 2008). In a subsequent study, 1q32 was found to be amplified in 50% of metastatic PC 

samples (Holcomb et al., 2009). As such, NUAK2 not only represents a valuable biomarker, but 

warrants further interrogation as a potential therapeutic target in the treatment of PC. This 

chapters findings are schematically represented in figure 7.9. 

 

Figure 7.9 – Schematic Summary of Section 9 Results. Inhibition of NUAK 1/2 mediated MLCP phosphorylation 
through the addition of WZ-4003results in repression of AR and AR-V transcriptional activity characterised by 

increased MLCP activity. 
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Disruption of the androgen signalling axis is initially a very effective and essential 

strategy in the treatment of localized and locally advanced PC. Unfortunately, patient 

responses to this form of treatment invariably fail after a median period of 2 years, with the 

disease progressing to castrate resistance. Crucially, it has been demonstrated that the AR is 

still responsible for driving disease progression and maintaining an active androgen signalling 

axis. Furthermore, the addition of next generation anti-androgens, such as enzalutamide, to 

the treatment regimens of CRPC patients, elicit partial responses and convey a modest survival 

advantage over placebo, demonstrating that the AR remains a viable therapeutic target even 

under androgen ablation. Indeed, resistance to next generation anti-androgens has been 

heavily linked to aberrant activation of the AR signalling axis, including AR mutation, 

emergence of AR splice variants and dysregulation of AR co-activators. The activity of AR co-

activators, particularly those that are capable of directly modifying the AR at the post-

translational level, are often found to positively correlate with disease progression, and 

reciprocally, post-translationally modified AR species can be indicative of a poor disease 

prognosis. With this in mind, a significant knowledge gap was identified surrounding the role 

of phosphatase enzymes on AR function in the progression of PC. To address this issue, an 

RNAi screen targeting 291 phosphatase enzymes and phosphatase related proteins was 

performed in the androgen responsive PC cell line, LNCaP, using AR transcriptional activity as 

an experimental end-point. This resulted in the identification of both AR co-activators and co-

repressors, representing potential therapeutic targets and biomarkers, and providing a novel 

insight into the role of phosphatase enzymes on AR transcriptional activity. Of particular 

interest was the impact of PP1 regulatory subunit depletion on AR function, providing 

compelling evidence for the differential regulation of AR activity by distinct PP1 holoenzymes. 

In contrast to the current literature surrounding the positive impact of PP1 on AR function, it 

has been possible to demonstrate for the first time that PP1 is a negative regulator of AR 

activity. Furthermore, both the positive and negative regulation of the AR by PP1 is dictated 

by association with its mutually exclusive regulatory subunits, revealing a novel layer of 

complexity to the underlying mechanisms of regulation previously established. Whilst a 

number of regulatory subunits were depleted in the RNAi screen, to date over 200 PP1 

interacting proteins have been identified, resulting in the formation of hundreds of PP1 

holoenzymes, each with distinct subcellular localizations, substrate specificity and catalytic 

activity, emphasising the current lack of knowledge regarding AR regulation by PP1 
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holoenzymes. Conversely, this thesis highlights the opportunity to further dissect the role of 

PP1 regulatory subunits on AR function, allowing for the identification of specific PP1 

holoenzymes involved in the androgen signalling axis, providing a novel route of 

therapeutically targeting the activity of PP1. As such, it was identified within this thesis that 

MLCP is a multimeric PP1 holoenzyme intrinsically repressive to AR function. Depletion of 

PPP1R12A, the substrate specifying regulatory subunit of MLCP, significantly enhanced AR 

transcriptional activity in both the presence and absence of androgen, characterised by a 

dramatic increase in AR mRNA and protein expression. This provides novel evidence for 2 

things; firstly, the identification of a specific PP1 holoenzyme capable of modulating AR activity, 

and secondly, a repressive role for PP1 in the regulation of AR function. Due to the fact that 

MLCP appears to be intrinsically repressive to AR function in a ligand independent manner, it 

might be expected that PPP1R12A could be subject to genomic loss or mutation throughout 

the progression of PC, particularly in a castrate resistant setting. However, upon interrogation 

of a publicly available dataset containing 150 sequenced mCRPC samples (Dan et al., 2015) 0% 

of samples harboured genomic loss of the PPP1R12A gene, whilst only 0.75% (1/150) of 

samples harboured a mutation (fusion gene) within the PPP1R12A gene. This strongly suggests 

that PPP1R12A is essential for cell viability, despite being identified as a repressive regulator 

of AR function. Upon dissection of the literature, it is apparent that MLCP plays a crucial role 

in cytoskeletal rearrangements, impacting on cell migration, cell cycle progression and 

ultimately cellular proliferation. However, it also becomes increasingly apparent that the 

activity of MLCP is heavily influenced at the post-translational level by a number of different 

signalling cascades in a very sensitive spatio-temporal manner. With this in mind it was 

possible to identify PPP1R14C, an endogenous inhibitory protein for MLCP, as an activator of 

AR transcriptional activity. Characterisation of the role of MLCP on AR functionality using 

robust molecular biology techniques revealed that RNAi depletion of PPP1R14C leads to 

enhanced AR proteasomal degradation and impaired ligand induced nuclear translocation, 

characterised by a repressive phosphorylation status, culminating in significantly reduced AR 

transcriptional activity in both the presence and absence of androgen. Phenotypically, RNAi 

knockdown of PPP1R14C causes G1 cell cycle arrest whilst dramatically reducing cell migration, 

but crucially, represses the proliferation of PC cells within distinct models of castrate 

resistance. However, with the increased availability of enhanced sequencing techniques, it is 

becoming increasingly apparent that the genomic landscape of CRPC is highly heterogeneous 
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and extremely complex. Aberrations within the PI3K signalling cascade and the cell cycle 

machinery are amongst some of the most frequently observed abnormalities in CRPC, 

undoubtedly contributing to disease resistance and driving disease progression. Crucially, it 

was established that MLCP inhibition of AR activity partly occurs via an indirect mechanism, 

incorporating the activation of 2 clinically relevant tumour suppressors, RB1 and NF2. 

Increasing the activity of both RB1 and NF2, via the depletion of endogenous MLCP inhibitory 

proteins, provides a novel route of repressing E2F1 and MTORC1 respectively, both 

independent PC therapeutic targets within their own right. An additional advantage of 

increasing MLCP activity via PPP1R14C depletion is increased dephosphorylation of PLK1, 

another promising therapeutic target in the treatment of PC. Targeting specific PP1 regulatory 

subunits has recently emerged as a viable route of modulating PP1 activity, providing 

significant reassurance that PPP1R14C remains a viable therapeutic target for the future. 

However, currently no tool compounds exist to directly enhance the activity of MLCP via 

disruption of endogenous inhibitory proteins. This provided the project with a rationale to 

investigate additional MLCP inhibitors where small molecule inhibitors may be available. As 

previously mentioned, PPP1R12A is heavily influenced at the post-translational level by a 

number of different signalling cascades in a specific and sensitive manner. Using a candidate 

based approach it was possible to identify NUAK1/2 as novel AR co-regulators and potential 

therapeutic targets in the treatment of PC. Inhibition of NUAK1/2 with the small molecule WZ-

4003 prevented the repressive phosphorylation of PPP1R12A by NUAK1/2, characterised by 

an increase in MLCP activity, leading to repression of AR transcriptional activity, and resulting 

in a reduction in PC cell growth. Furthermore, inhibition of NUAK1/2 was capable of repressing 

AR variant transcriptional activity in the CWR22RV1 cell line, reinforcing the finding that MLCP 

is a ligand independent repressor of the AR. In conclusion, MLCP has been characterised as a 

novel PP1 holoenzyme capable of significantly repressing castrate resistant AR transcriptional 

activity, with modulation of 2 distinct MLCP inhibitory mechanisms providing compelling 

therapeutic potential, ultimately warranting further scientific investigation. 
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Supplementary Table 1 – Top 50 positively enriched REACTOME gene sets following GSEA 

 

Gene Set NES p-Value
FDR q-

Value

REACTOME_GENERIC_TRANSCRIPTION_PATHWAY 3.04 0 0

REACTOME_BIOLOGICAL_OXIDATIONS 2.76 0 0.001

REACTOME_PHASE1_FUNCTIONALIZATION_OF_COMPOUNDS 2.63 0 0.004

REACTOME_CYTOCHROME_P450_ARRANGED_BY_SUBSTRATE_TYPE 2.54 0 0.005

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 2.51 0.002 0.005

REACTOME_INTEGRIN_ALPHAIIB_BETA3_SIGNALING 2.44 0 0.007

REACTOME_AXON_GUIDANCE 2.44 0 0.006

REACTOME_GPCR_DOWNSTREAM_SIGNALING 2.38 0 0.007

REACTOME_EFFECTS_OF_PIP2_HYDROLYSIS 2.31 0 0.01

REACTOME_SIGNALING_BY_RHO_GTPASES 2.27 0 0.012

REACTOME_HS_GAG_BIOSYNTHESIS 2.12 0.002 0.03

REACTOME_PLATELET_AGGREGATION_PLUG_FORMATION 2.01 0 0.054

REACTOME_SIGNALING_BY_ROBO_RECEPTOR 1.95 0.01 0.07

REACTOME_ION_CHANNEL_TRANSPORT 1.94 0.01 0.071

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 1.94 0.002 0.067

REACTOME_ION_TRANSPORT_BY_P_TYPE_ATPASES 1.9 0.01 0.077

REACTOME_NUCLEAR_RECEPTOR_TRANSCRIPTION_PATHWAY 1.82 0.008 0.111

REACTOME_SIGNALING_BY_GPCR 1.8 0.02 0.115

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH 1.8 0.01 0.11

REACTOME_HEPARAN_SULFATE_HEPARIN_HS_GAG_METABOLISM 1.8 0.017 0.107

REACTOME_CGMP_EFFECTS 1.79 0.012 0.105

REACTOME_NCAM1_INTERACTIONS 1.78 0.025 0.109

REACTOME_NITRIC_OXIDE_STIMULATES_GUANYLATE_CYCLASE 1.77 0.023 0.105

REACTOME_DEVELOPMENTAL_BIOLOGY 1.77 0.02 0.101

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS 1.75 0.032 0.108

REACTOME_METABOLISM_OF_STEROID_HORMONES_AND_VITAMINS_A_AND_D 1.73 0.027 0.116

REACTOME_HS_GAG_DEGRADATION 1.72 0.029 0.117

REACTOME_OLFACTORY_SIGNALING_PATHWAY 1.72 0.025 0.115

REACTOME_CELL_JUNCTION_ORGANIZATION 1.66 0.029 0.152

REACTOME_APOPTOTIC_CLEAVAGE_OF_CELLULAR_PROTEINS 1.64 0.051 0.161

REACTOME_NRAGE_SIGNALS_DEATH_THROUGH_JNK 1.62 0.042 0.172

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS 1.59 0.055 0.19

REACTOME_COLLAGEN_FORMATION 1.57 0.059 0.199

REACTOME_NETRIN1_SIGNALING 1.55 0.047 0.212

REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS 1.55 0.056 0.208

REACTOME_STEROID_HORMONES 1.55 0.057 0.207

REACTOME_GPCR_LIGAND_BINDING 1.53 0.059 0.215

REACTOME_L1CAM_INTERACTIONS 1.5 0.072 0.243

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 1.49 0.077 0.243

REACTOME_PHASE_II_CONJUGATION 1.47 0.093 0.268

REACTOME_G_ALPHA_Q_SIGNALLING_EVENTS 1.46 0.072 0.264

REACTOME_FATTY_ACID_TRIACYLGLYCEROL_AND_KETONE_BODY_METABOLISM 1.44 0.097 0.286

REACTOME_LIPID_DIGESTION_MOBILIZATION_AND_TRANSPORT 1.44 0.092 0.281

REACTOME_INTERACTION_BETWEEN_L1_AND_ANKYRINS 1.39 0.128 0.334

REACTOME_GENERATION_OF_SECOND_MESSENGER_MOLECULES 1.38 0.129 0.34

REACTOME_CELL_CELL_COMMUNICATION 1.38 0.114 0.336

REACTOME_REGULATION_OF_SIGNALING_BY_CBL 1.35 0.117 0.368

REACTOME_CELL_CELL_JUNCTION_ORGANIZATION 1.35 0.137 0.362

REACTOME_GLYCOSAMINOGLYCAN_METABOLISM 1.32 0.155 0.402

REACTOME_APOPTOTIC_EXECUTION_PHASE 1.3 0.153 0.42

REACTOME_SEMA4D_IN_SEMAPHORIN_SIGNALING 1.29 0.162 0.424
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Supplementary Table 2 – Top 50 negatively enriched REACTOME gene sets following GSEA 

 

Gene Set NES p-Value
FDR q-

Value

REACTOME_CELL_CYCLE -8.84 0 0

REACTOME_CELL_CYCLE_MITOTIC -7.97 0 0

REACTOME_DNA_REPLICATION -6.96 0 0

REACTOME_MITOTIC_M_M_G1_PHASES -6.72 0 0

REACTOME_METABOLISM_OF_RNA -6.6 0 0

REACTOME_CELL_CYCLE_CHECKPOINTS -6.49 0 0

REACTOME_METABOLISM_OF_MRNA -6.32 0 0

REACTOME_S_PHASE -6.26 0 0

REACTOME_MITOTIC_G1_G1_S_PHASES -6.13 0 0

REACTOME_G1_S_TRANSITION -6.06 0 0

REACTOME_METABOLISM_OF_PROTEINS -6.03 0 0

REACTOME_SYNTHESIS_OF_DNA -5.91 0 0

REACTOME_TRANSLATION -5.63 0 0

REACTOME_M_G1_TRANSITION -5.51 0 0

REACTOME_TELOMERE_MAINTENANCE -5.49 0 0

REACTOME_CHROMOSOME_MAINTENANCE -5.13 0 0

REACTOME_ER_PHAGOSOME_PATHWAY -5.04 0 0

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE -5.02 0 0

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETI

NG_TO_MEMBRANE
-4.97 0 0

REACTOME_G2_M_CHECKPOINTS -4.88 0 0

REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_P

ROTEINS
-4.84 0 0

REACTOME_APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AN

D_OTHER_APC_C_CDH1_TARGETED_PROTEINS_IN_LATE_MITOSIS_EAR

LY_G1

-4.84 0 0

REACTOME_MRNA_PROCESSING -4.82 0 0

REACTOME_MRNA_SPLICING -4.81 0 0

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_M

RNA
-4.79 0 0

REACTOME_ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX -4.78 0 0

REACTOME_INFLUENZA_LIFE_CYCLE -4.74 0 0

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN -4.73 0 0

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION -4.69 0 0

REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE -4.69 0 0

REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_

BIND_AU_RICH_ELEMENTS
-4.69 0 0

REACTOME_DNA_STRAND_ELONGATION -4.56 0 0

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_CO

MPLEX
-4.54 0 0

REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_S

TRESS
-4.5 0 0

REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21 -4.47 0 0

REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC_C -4.43 0 0

REACTOME_EXTENSION_OF_TELOMERES -4.43 0 0

REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITI

ON_
-4.42 0 0

REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF

_CDC6
-4.41 0 0

REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESE

NTATION
-4.39 0 0
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Supplementary Table 3 – Most significant negatively enriched MSigDB ‘Hallmark’ gene sets following GSEA 

 

 

 

 

 

 

 

Gene Set NES p-Value
FDR q-

Value

HALLMARK_E2F_TARGETS -9.33 0 0

HALLMARK_G2M_CHECKPOINT -7.53 0 0

HALLMARK_MYC_TARGETS_V1 -6.75 0 0

HALLMARK_MTORC1_SIGNALING -4.51 0 0

HALLMARK_UNFOLDED_PROTEIN_RESPONSE -4.09 0 0

HALLMARK_DNA_REPAIR -3.58 0 0

HALLMARK_MYC_TARGETS_V2 -3.43 0 0

HALLMARK_OXIDATIVE_PHOSPHORYLATION -3.36 0 0

HALLMARK_ANDROGEN_RESPONSE -2.99 0 0

HALLMARK_UV_RESPONSE_UP -2.58 0 0

HALLMARK_MITOTIC_SPINDLE -2.43 0 0.001

HALLMARK_PI3K_AKT_MTOR_SIGNALING -2.18 0.002 0.004

HALLMARK_NOTCH_SIGNALING -1.78 0.024 0.038

HALLMARK_WNT_BETA_CATENIN_SIGNALING -1.73 0.029 0.045

HALLMARK_GLYCOLYSIS -1.44 0.108 0.164

HALLMARK_TGF_BETA_SIGNALING -1.17 0.257 0.434

HALLMARK_CHOLESTEROL_HOMEOSTASIS -1.11 0.303 0.496

HALLMARK_P53_PATHWAY -1.06 0.347 0.536

HALLMARK_ALLOGRAFT_REJECTION -1.05 0.373 0.525

HALLMARK_PROTEIN_SECRETION -0.99 0.457 0.611

HALLMARK_HEME_METABOLISM -0.98 0.449 0.584

HALLMARK_SPERMATOGENESIS -0.98 0.436 0.559

HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY -0.94 0.503 0.602

HALLMARK_ADIPOGENESIS -0.85 0.645 0.727

HALLMARK_APOPTOSIS -0.84 0.662 0.704

HALLMARK_HEDGEHOG_SIGNALING -0.84 0.658 0.677

HALLMARK_APICAL_SURFACE -0.72 0.809 0.823
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Supplementary Table 4 – Most significant negatively enriched MSigDB ‘Cancer Gene Perturbations’ gene sets following 
GSEA 

 

 

 

Gene Set NES p-Value
FDR q-

Value

CSR_LATE_UP.V1_UP -4.9 0 0

RB_P107_DN.V1_UP -4.24 0 0

E2F1_UP.V1_UP -4 0 0

GCNP_SHH_UP_LATE.V1_UP -3.46 0 0

GCNP_SHH_UP_EARLY.V1_UP -3.33 0 0

CAMP_UP.V1_UP -3.29 0 0

E2F3_UP.V1_UP -2.86 0 0

HOXA9_DN.V1_DN -2.85 0 0

PRC2_EDD_UP.V1_UP -2.77 0 0

RPS14_DN.V1_DN -2.71 0 0

PRC2_EZH2_UP.V1_UP -2.65 0 0

PTEN_DN.V2_DN -2.6 0 0

VEGF_A_UP.V1_DN -2.57 0 0

MYC_UP.V1_UP -2.51 0 0.001

RB_DN.V1_UP -2.43 0 0.001

TBK1.DF_DN -2.38 0 0.002

PDGF_UP.V1_UP -2.34 0 0.003

RB_P130_DN.V1_UP -2.24 0 0.005

EIF4E_UP -2.11 0 0.011

SNF5_DN.V1_UP -1.93 0.008 0.031

CORDENONSI_YAP_CONSERVED_SIGNATURE -1.91 0.008 0.031

ESC_J1_UP_LATE.V1_DN -1.9 0.01 0.031

TBK1.DF_UP -1.88 0.01 0.034

CSR_EARLY_UP.V1_UP -1.87 0.01 0.034

TBK1.DN.48HRS_DN -1.76 0.017 0.062

IL15_UP.V1_UP -1.74 0.025 0.064

PDGF_ERK_DN.V1_DN -1.73 0.022 0.065

LTE2_UP.V1_UP -1.7 0.018 0.074

RB_P107_DN.V1_DN -1.7 0.017 0.072

NRL_DN.V1_UP -1.66 0.049 0.086

TBK1.DN.48HRS_UP -1.6 0.036 0.111

MTOR_UP.N4.V1_UP -1.5 0.085 0.171

ESC_V6.5_UP_LATE.V1_DN -1.47 0.056 0.192

GCNP_SHH_UP_LATE.V1_DN -1.46 0.075 0.193

SIRNA_EIF4GI_DN -1.46 0.092 0.189

SRC_UP.V1_UP -1.39 0.101 0.252

BMI1_DN_MEL18_DN.V1_UP -1.38 0.112 0.255

ESC_J1_UP_EARLY.V1_DN -1.38 0.11 0.251

KRAS.DF.V1_UP -1.37 0.115 0.252

IL2_UP.V1_UP -1.33 0.147 0.29
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Supplementary Table 5 – Most significant negatively enriched MSigDB ‘Motif Based’ gene sets following GSEA 

 

 

 

 

 

Gene Set NES p-Value
FDR q-

Value

GGGCGGR_V$SP1_Q6 -6.96 0 0

SCGGAAGY_V$ELK1_02 -6.31 0 0

V$E2F4DP1_01 -5.69 0 0

V$E2F1_Q6 -5.59 0 0

GCCATNTTG_V$YY1_Q6 -5.53 0 0

V$E2F1DP1RB_01 -5.53 0 0

V$E2F_Q4 -5.45 0 0

V$E2F_Q6 -5.45 0 0

V$E2F_03 -5.39 0 0

V$E2F1DP1_01 -5.34 0 0

RCGCANGCGY_V$NRF1_Q6 -5.32 0 0

V$E2F1DP2_01 -5.31 0 0

V$E2F4DP2_01 -5.31 0 0

V$E2F_02 -5.29 0 0

GATTGGY_V$NFY_Q6_01 -5.2 0 0

V$E2F_Q4_01 -5.08 0 0

V$E2F1_Q6_01 -5.05 0 0

V$E2F_Q3 -4.96 0 0

V$E2F_Q6_01 -4.95 0 0

V$E2F1_Q4_01 -4.91 0 0

V$E2F1_Q3 -4.86 0 0

CACGTG_V$MYC_Q2 -4.79 0 0

SGCGSSAAA_V$E2F1DP2_01 -4.75 0 0

V$E2F_Q3_01 -4.48 0 0

MGGAAGTG_V$GABP_B -4.06 0 0

V$NFMUE1_Q6 -3.94 0 0

GTGACGY_V$E4F1_Q6 -3.9 0 0

V$E2F1_Q3_01 -3.83 0 0

V$E2F1_Q4 -3.82 0 0

TGCGCANK_UNKNOWN -3.76 0 0

V$GABP_B -3.76 0 0

V$YY1_02 -3.75 0 0

V$USF_Q6 -3.58 0 0

V$CREB_01 -3.56 0 0

V$NRF2_01 -3.53 0 0

V$HIF1_Q3 -3.52 0 0

V$YY1_Q6 -3.51 0 0

V$MYCMAX_03 -3.45 0 0

V$CETS1P54_01 -3.42 0 0

GGGAGGRR_V$MAZ_Q6 -3.42 0 0
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Supplementary figure 1 – Results from RNA integrity analysis and reads per sample upon RNA sequencing. Extracted RNA 
was subjected to anaylsis using the bioanalyzer as described in chapter 2. All samples possess a RIN value > 9 and were 
therefore taken forward for RNA sequencing. Upon sequencing, the amount of reads per sample was calculated by Aros 
Biotechnology and can be observed above. 



149 
 

 

Supplementary figure 2 – WZ-4003 IC50 in LNCaP and CWR-22RV1 cell lines. LNCaP and CWR-22RV1 cells were exposed to 
increasing concentrations of WZ-4003 over a 120 hour period. Cell growth was measured using the BioEssen Incucyte live cell 
imager as described in chapter 2. IC50 values were calculated using GraphPad Prism. 
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