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Abstract 

A lack of effective therapies continues to impair attempts to prevent preterm birth 

associated with inflammation. This study aimed to broaden the scope of candidate agents 

available to address this clinical problem. Using live cell confocal microscopy, Western 

immunoblotting, cell toxicity assay, and quantitative polymerase chain reaction techniques 

this study investigated the ability of a novel class of peptide vectors, termed Cell Penetrating 

Peptides (CPPs), to deliver cargo to human uterine and placental cells. It examined the 

ability of a CPP-linked peptide cargo: the Nemo Binding Domain (NBD) peptide, to inhibit 

inflammatory Nuclear Factor Kappa B (NFκB) signalling in uterine cells; comparing this 

response to a group of small molecule inhibitors of inflammatory pathways. 

Three CPP derived vectors were able to deliver fluorescent cargo to uterine myometrial and 

placental amnion cells within one hour over a concentration range of 1-10µM. Similar 

uptake kinetics in uterine cells were observed with the use of a fluorescently-tagged CPP 

conjugated to NBD. The NBD peptide, conjugated to a CPP derived from antennopaedia 

protein (Pen-NBD), was able to inhibit cytokine-stimulated cyclooxygenase-2 (COX2) protein 

induction at four hours; an effect that was not seen with other CPP-NBD conjugations, nor 

with NBD-mutant or unconjugated peptide controls. Data derived from both Western blots 

and gene arrays indicated that the anti-inflammatory effects of Pen-NBD were comparable 

to non-peptidic small molecule inhibitors of NFκB. However, Pen-NBD peptide did not 

prevent the cytokine-induced degradation of Inhibitor of Kappa B Alpha (IκBα) protein; nor 

did it inhibit the cytokine-induced expression of NFκB pathway genes, thus the precise 

targeting of NBD peptide within uterine cells remains uncertain and may be distinct to the 

canonical NFκB pathway. 

This research demonstrates the proof of concept that CPPs can enter human utero-placental 

cells and can deliver bioactive cargo to exert an anti-inflammatory effect. It provides a 

framework by which future research can examine CPP mediated delivery of a broad variety 

of potential cargo into uterine cells and thus offers a novel approach for the development of 

treatments aimed at preventing preterm birth. 
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1.1 Preterm birth – the clinical problem 

Preterm birth is defined by the World Health Organisation (WHO) as birth before 37 weeks 

completed gestation. It is the main cause of neonatal death in developed countries and 

presents an enormous global problem. Worldwide it is estimated that fifteen million babies 

are born preterm each year, a figure which constitutes 11% of all livebirths (Blencowe et al., 

2013).  

Although there are uncertainties regarding the collection of accurate data in many 

countries, the incidence of preterm birth appears to be increasing in both the developing 

world and in parts of the developed world (Blencowe et al., 2013). The reasons behind this 

differ between countries: in the developing world the increased risk of maternal infection 

such as HIV and malaria is a contributory factor, and in the developed world a lack of 

evident reduction in the preterm birth rate is related to a number of complex factors 

including an increase in multiple pregnancy and an increased rate of caregiver-initiated 

delivery secondary to clinical concerns regarding fetal or maternal health (Morisaki et al., 

2014). 

According to the most recent figures released by the Office of National Statistics the 

preterm birth rate in the UK in 2012 was 7.3% of all livebirths (Office of National Statistics, 

(2014)). Comparative data taken from a database search (E3, Euroking) at the Newcastle 

upon Tyne Foundation Hospitals Trust for 2012 and 2013 reveals a marginally higher rate of 

preterm births than the UK figure with the majority of these births occurring between 33-

<37 weeks (Figure 1.1). 
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Figure 1.1 Percentage of  preterm births occurring at the Newcastle upon Tyne Foundation 

Hospitals Trust in 2012 (Total births =7156) and 2013 (Total births =7271). 

Bar chart illustrating the distribution of preterm births over two years in three categories of 

gestation as defined by the WHO: extremely preterm (<28 weeks), very preterm (28-<32 

weeks) and moderate to late preterm (33-<37 weeks). The overall rate of preterm birth for 

these years was 7.9% in 2012 and 8.1% in 2013 (Howey et al., 2012). 
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Being born too soon can confer significant clinical deficits throughout life, leading to neuro-

developmental disorders such as cerebral palsy, learning impairment and visual disorders 

(Rogers and Velten, 2011); problems which are more likely to occur with greater severity at 

earlier gestations of birth (Costeloe et al., 2012).  Preterm birth may also affect long-term 

physical health with a higher risk of cardiovascular disease, and lays a huge emotional and 

economic burden on affected families (Hodek et al., 2011).  

Despite this being a common and potentially devastating condition, clinical efforts to 

prevent its occurrence have not been uniformly successful. The reasons behind this historic 

disappointment are complex and multifactorial, but in part lie in a failure to fully understand 

the mechanisms that lead to normal human birth. The following section briefly describes an 

overview of the mechanisms of human birth (referred to as parturition) as currently 

understood, before going on to examine the pathological processes leading to preterm 

birth. 

1.2 Human parturition 

Successful human parturition broadly requires three processes to occur: the uterus must 

switch from a non-contractile phenotype to achieve regular expulsive contractions, the fetal 

membranes must be degraded sufficiently to allow their potential rupture and the cervix 

must ripen and dilate to allow the passage of the fetus (Smith, 2007). These processes occur 

in a number of phases from uterine quiescence through to involution of the uterus following 

delivery of the fetus and placenta (Challis et al., 2000). Over the course of these phases, and 

secondary to alterations in both local (paracrine) and systemic (endocrine) maternal 

physiology, a number of molecular modifications occur within the uterus and fetal 

membranes that promote readiness for both labour and birth, the key processes of which 

are outlined below. 

During pregnancy the uterus remains relaxed to accommodate the growing fetus; this 

requires high levels of pro-quiescent mediators in the paracrine environment  including 

progesterone, prostacyclin, nitric oxide, relaxin and parathyroid hormone, that have a 

relaxant effect on uterine smooth muscle and act via G-protein coupled receptors linked to 

adenylyl cyclase (Europe-Finner et al., 1994). Prior to labour the uterus upregulates a series 

of genes encoding ‘contraction associated proteins’ including the inducible prostaglandin 
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synthase enzyme cyclooxygenase-2 (COX2), the major myometrial gap junction protein 

connexin-43 as well as the oxytocin receptor (Garfield et al., 1977, Fuchs et al., 1982, Slater 

et al., 1999). This allows the transformation of the uterus from a state of reduced contractile 

excitability to a state of preparedness so that it can respond to increases in both 

prostaglandins and oxytocin: endogenous stimuli that promote the regular sustained 

contractions characteristic of labour (Mitchell et al., 1995, Fuchs et al., 1991).  

Remodelling of the extracellular matrix of the cervix also takes place to allow for dilatation, 

a development mediated through the action of collagenases, matrix metalloproteinases 

(MMPs), and cytokines IL6 and IL8 (Osmers et al., 1995, Sennstrom et al., 2000). Parallel to 

this, the fetal membranes become activated, increasing the production of prostaglandins 

and weakening to allow their potential rupture during labour. Such processes occur via 

upregulation of COX2 and MMP type 9 (Athayde et al., 1998).  

1.3 Aetiology of preterm birth 

Preterm birth is a syndrome and best understood as the final endpoint of a number of 

possible pathological events (Romero et al., 2006b).  It can be initiated by an array of 

disease processes including: uterine over-distension, utero-placental haemorrhage or 

ischaemia, maternal stress, cervical insufficiency, and inflammation with or without clinically 

apparent infection (McLean et al., 1995, Romero et al., 2006a, Terzidou et al., 2005, Elovitz 

et al., 2001, Guzman et al., 1998). Inflammation associated preterm birth is estimated to 

account for 50% of preterm births occurring at less than 28 weeks gestation (Behrman RE, 

2007), babies born at these gestations are the most severely affected by complications of 

prematurity; and the molecular pathways involved offer potential for amelioration by 

therapeutic intervention (Ng et al., 2015). It is worthwhile, therefore, to consider the 

evidence supporting the contribution of inflammation to preterm birth and the intracellular 

molecular pathways that are involved in this process, in particular the Nuclear Factor Kappa 

B (NFκB) pathway.  
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1.4 The role of infection and inflammation in preterm birth 

1.4.1 Infection and preterm birth 

A causal link between infection and preterm birth in animals is well established: in pregnant 

mammals such as rats, mice and sheep, local injection of microbes or microbial products 

including lipopolysaccharide (LPS) will promote early delivery (Pirianov et al., 2009, Schlafer 

et al., 1994, Beloosesky et al., 2006). A non-human primate (NHP) model of chronic uterine 

catheterisation from 118 days pregnancy gestation onwards (the equivalent of 28 weeks 

human gestation) has been developed that allows for serial measurements of amniotic fluid 

substrates (Adams Waldorf et al., 2011). Inoculation of the amniotic fluid in this primate 

model with Group B Streptococcus (GBS) led to a rise in concentration of the amniotic fluid 

cytokines IL1β, TNFα and IL6, with concomitant increases in levels of prostaglandins PGE2 

and PGF2α. Increased uterine activity was subsequently observed and GBS inoculated 

pregnant animals had a mean interval between inoculation and delivery of 2 days, 

compared to 30 days for non-inoculated controls (Gravett et al., 1994).  

Interestingly this model also demonstrated that preterm birth could occur following intra-

amniotic infusion of IL1β or TNFα alone (Sadowsky et al., 2006). This suggests that, in the 

absence of an infectious stimulus, upregulation of pro-inflammatory pathways within the 

utero-placental environment have the potential to promote early delivery.  

Evidence for infectious association with human preterm delivery derives from a number of 

sources: infection within the uterine cavity as demonstrated by either clinical or 

histopathological chorioamnionitis is strongly associated with preterm birth (Guzick and 

Winn, 1985, Hillier et al., 1993), and alterations in the microbial environment of the upper 

vagina, defined as bacterial vaginosis, have been shown to be associated with increased risk 

of preterm delivery (Hillier et al., 1995). Recent research using longitudinal sampling of the 

vaginal microbial environment in pregnant women has identified a greater diversity of 

upper vaginal bacteria and subsequently low numbers of lactobaccillus species bacteria in 

the vagina amongst women who deliver preterm, a finding that may offer the opportunity 

for preterm predictive testing using the vaginal microbiome (DiGiulio et al., 2015). Extra 

genital infections including malaria, pyelonephritis and periodontal disease have also been 
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shown to increase preterm birth risk, although the mechanisms underpinning this are 

unclear (Menendez et al., 2000, Cunningham et al., 1973, Rosa et al., 2012). 

Microbial invasion of the amniotic cavity as identified by amniotic fluid aspiration and 

culture is associated with spontaneous preterm birth, an association that strengthens when 

techniques are employed to detect microbial DNA alongside standard culture (Romero et 

al., 1988, Hitti et al., 1997). Women for whom preterm Caesarean section is indicated during 

spontaneous preterm labour are also significantly more likely to have positive bacterial 

amniotic cultures than non-labouring preterm controls requiring Caesarean section (Cassell 

et al., 1993).  In the absence of cultured infection, elevated concentrations of amniotic fluid 

IL6, MMP9, TNFα and IL1β detected in the second trimester of pregnancy confer an 

increased subsequent risk of preterm birth (Wenstrom et al., 1998, Di Ferdinando et al., 

2010, Thomakos et al., 2010, Romero et al., 1992). 

The microorganisms identified commonly in the amniotic cavity are genital mycoplasma 

species and Ureaplasma urealyticum (Romero et al., 1989). These are commensal bacteria 

that normally reside in the upper vagina. Therefore, in humans the most likely passage of 

infection is via organisms ascending from this site to the uterine cavity and crossing the fetal 

membranes to invade the amniotic fluid (Goldenberg et al., 2000).  

1.4.2 Inflammation in preterm and term birth 

There is growing evidence to associate spontaneous labour whether term or preterm with 

an immune cell infiltration of uterine and placental tissues and local tissue production of 

pro-inflammatory mediators such as cytokines, chemokines, matrix metalloproteinases and 

prostaglandins (Romero et al., 2007).  

The specific immune cell response has yet to be fully delineated and appears to differ 

depending on the type of gestational tissue examined; however, the majority of evidence 

points to involvement of the innate immune system. Macrophage and neutrophil numbers 

in fetal membranes, myometrium and cervix are increased in tissue derived from labouring 

compared to non-labouring patients (Thomson et al., 1999, Gomez-Lopez et al., 2009, 

Osman et al., 2003b). Such invasion leads to increases in local cytokine and chemokine 

production (Osman et al., 2003a, Hamilton et al., 2013); furthermore, invasion of the 

decidua by these cell types occurs in animal models of preterm birth and precedes the onset 
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of labour (Hamilton et al., 2012). Interestingly, it has recently been demonstrated that 

pregnant mice depleted of neutrophils can still undergo LPS-induced preterm birth, 

indicating that complex local immune interactions are involved, and that the system is not 

reliant on just one immune cell type (Rinaldi et al., 2014). 

The part that the adaptive immune system plays in the regulation of term and preterm 

labour remains uncertain but current research has suggested that phenotypically unique T 

regulatory (CD25 bright, FoxP3+) cells and invariant natural killer (iNKT) cells may have 

future key roles to play in this process (Rinaldi et al., 2015, Gomez-Lopez et al., 2014).  

However, the exact extent to which inflammation contributes to both term and preterm 

labour is yet to be fully defined. A very large study involving over 600 myometrial and 

decidual biopsies taken from consecutive Caesarean section operations reported increases 

in the number of inflammatory lesions in tissues from full-term patients who had undergone 

labour prior to Caesarean (Keski-Nisula et al., 2003). The authors also observed that such 

changes were more likely following prolonged or advanced labour, or with increasing 

duration of time from membrane rupture. However, the maximum proportion of tissues 

with inflammatory changes in any circumstance was 29%, indicating that more than 70% of 

myometrial or decidual tissue in this study showed no marked inflammatory change despite 

ongoing progressive labour or membrane rupture. This indicates that inflammatory change 

due to labour can be focal, and may not be present at all in some cases; underlining the 

likelihood of multiple causative modalities of both preterm and term labour. 

1.5 Molecular pathways associated with inflammatory preterm birth 

Within the paradigm of infection / inflammation associated preterm birth, the inflammatory 

milieu provoked within the uterine environment subsequent to bacterial challenge or non-

infectious influx of immunological cells is likely to upregulate a panoply of pro-inflammatory 

pathways in uterine and placental cells.  Although existing data supports the contribution of 

intracellular activation of signalling pathways involving p38 MAP kinase (p38 MAPK) and 

Activator Protein 1 (AP1), a greater body of evidence implicates the transcription factor 

Nuclear Factor κB (NFκB) as playing a central role in the pathophysiology of this syndrome.  
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1.5.1 P38 MAP Kinase pathway and preterm birth 

The mitogen activated protein (MAP) kinases are members of discrete intracellular signalling 

cascades consisting of four families: the extracellular signal related kinases (ERKs), c-jun N 

terminal or stress activated protein kinases (JNK/SAPK), ERK / big MAP kinase 1 (BMK 1) and 

p38 MAP kinase. P38 is a 38 kDa protein that is phosphorylated on tyrosine residues in 

response to extracellular stimuli such as the cytokines IL1β, TNFα and LPS and plays a role in 

the cellular regulation of differentiation, programmed cell death (apoptosis) and cell 

organelle degradation (autophagy) (Zarubin and Han, 2005).  

Evidence suggesting a role for p38 MAPK in preterm birth arises largely from in vitro 

findings: in myometrial cells IL1β application has been shown to activate p38 MAPK leading 

to an induction of COX2 protein. Further application of a specific MAPK inhibitor (SB203580) 

can reverse these changes (Bartlett et al., 1999). In both fetal membrane tissues and 

choriodecidual cell cultures, application of LPS has been shown to lead to activation of all 

MAP kinase families including p38 (Shoji et al., 2007, Lappas et al., 2007).  

1.5.2 AP1 pathway and preterm birth 

The AP1 transcription factor is a key regulator of cellular immune responses. It  is composed 

of homodimeric and heterodimeric complexes consisting of members of the Jun, Fos, 

activating transcription factor and musculoaponeurotic fibrosarcoma protein families 

(Schonthaler et al., 2011). The prototypic AP1 heterodimer is c-Jun / c-Fos with its activation 

involving the phosphorylation of c-Jun via the c-Jun N-terminal kinase (JNK) pathway (Davies 

and Tournier, 2012) 

The involvement of AP1 activation in the pathophysiology of preterm birth can be deduced 

from in vitro studies suggesting that in both fetal amnion and myometrial cells stretch can 

induce the expression of  key labouring genes including COX2 and the gene coding for the 

oxytocin receptor: OXTR, via activation of AP1 (Mohan et al., 2007, Sooranna et al., 2004). 

This association has been strengthened by research demonstrating that the injection of an 

AP1-selective LPS serotype (E. coli; serotype 0111) was capable of inducing preterm labour 

in a pregnant mouse model (MacIntyre et al., 2014).    



25 
 

1.5.3 The Nuclear Factor Kappa B pathway 

The transcription factor Nuclear Factor Kappa B (NFκB) is present in nearly all mammalian 

cells and plays a ubiquitous role in inflammatory and infectious responses. Genes regulated 

by NFκB are manifold but broadly include those responsible for control of innate and 

adaptive immune responses, cell adhesion and proliferation, apoptosis and cellular stress 

responses (Perkins, 2007). 

1.5.3.1 The NFκB protein family 

NFκB proteins are a family of five structurally related transcription factors named p65 (Rel 

A), RelB, c-Rel, p50 (NFκB-1) and p52 (NFκB-2). These proteins share a conserved N-terminal 

region termed the Rel homology domain (RHD) that contains 3 types of motif: a motif for 

binding specific DNA sequences (the κB elements) in the promoter regions of specific target 

genes, a motif for dimerisation and a motif for nuclear localisation (NLS) (Hayden and 

Ghosh, 2004). Proteins p65, Rel B and c-Rel also contain C-terminal transactivation domains 

(TADs) that confer the ability to initiate gene transcription.  

In contrast to the other family members, NFκB-1 and NFκB-2 are synthesised as precursors 

(p100 and p105) which are proteolytically processed to their active forms p50 and p52 

respectively. These p100 and p105 precursors also contain ankyrin repeat domains similar to 

the IκB proteins (see below) and, therefore, once cleaved can act as their own inhibitory 

partners (Hayden and Ghosh, 2004).  

All NFκB proteins exist in the form of either heterodimers or homodimers of different 

subtype combinations which have both gene promotion and repressor actions that function 

by binding to discrete DNA sequences within gene promoters and enhancers. As p50 and 

p52 do not contain TADs, homogenous dimers of these factors act as transcriptional 

repressors (Hayden and Ghosh, 2012). However, when combined with a member containing 

a transactional domain such as p65 or RelB, they function to promote gene expression.  

The heterodimer most commonly described in the reproductive literature is p65/p50 which 

is known to activate the expression of pro-inflammatory genes (Cookson and Chapman, 

2010). The presence of numerous dimeric combinations within the NFκB family that have 

gene repressive capability allows for multiple levels of control and enables this system to 

integrate numerous stimuli in order to direct the most appropriate cellular response (Hoesel 
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and Schmid, 2013).  Allied to this, the p65 subunit undergoes post translational modification 

including phosphorylation and acetylation which may alter NFκB function in a context 

specific manner allowing for a further level of control (Chen et al., 2001).  

1.5.3.2 The IκB proteins 

In resting and non-diseased cells NFκB dimers are retained in the cytoplasm in an inactive 

form through association with the Inhibitor of κB (IκB) proteins. This family of proteins are 

characterised by multiple ankyrin repeat domains that mask the nuclear localisation 

sequence (NLS) of NFκB contained in the RHD and thus sequester inactive NFκB dimers 

within the cytoplasm of cells. There are numerous IκB proteins now described: IκBα, IκBβ, 

IκBε, IκBζ, BCL3 and IκBns and the NFκB precursors P100 and p105, although the prototypic 

and best described protein is IκBα (Hayden and Ghosh, 2012).  Activation of the canonical 

NFκB pathway leads to the phosphorylation of serine residues 32 and 36 on IκBα. This 

targets the inhibitory protein for poly-ubiquitination by E3 ligases and eventual degradation 

by the 26s proteasome (Chen et al., 1995). Such degradation leads to unmasking of the NLS 

of NFκB dimers and subsequent shuttling to the nucleus where gene expression or 

repression can occur (Whiteside and Israel, 1997).  

1.5.3.3 The Inhibitor of κB Kinase (IKK) complex 

The IKK complex is made up of three subunits, the catalytic protein IKKα which is 

predominantly active in the non-canonical pathway of activation, IKKβ which 

phosphorylates IκBα in the canonical activation pathway, and the regulatory subunit NFκB 

Essential Modulator (NEMO or IKKγ). The active subunits interact with NEMO via a 6 amino 

acid sequence (LDWSWL) termed the Nemo Binding Domain (NBD) (May et al., 2002).  

1.5.3.4 The canonical activation pathway   

There are two distinct pathways of NFκB activation: the canonical or classical pathway, and 

the non-canonical pathway. The non-canonical pathway is integral to lymphoid 

organogenesis but not standard inflammatory responses. Atypical forms of NFκB induction 

have also been described whereby cellular stresses such as hypoxia or UV light can 

phosphorylate IκBα independent of IKK complex action (Perkins, 2007). 

The canonical pathway is triggered by cell exposure to bacterial LPS or pro-inflammatory 

cytokines such as IL-1β, TNFα or IL6. These ligands interact with specific receptors on the 
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cell surface including the Toll-like receptor 4 (TLR4), IL1β receptor, or TNFα receptor (TNFR) 

which in turn activate the IKK complex via the phosphorylation of IKKβ. Following this step, 

the IKK complex phosphorylates IkBα, which is degraded as described above. The 

degradation of IkBα unmasks the nuclear localisation sequence of the p50/p65 heterodimer 

allowing it to translocate to the nucleus of the cell and bind to target gene promoters to 

regulate the expression of genes including those that transcribe IL1β, TNFα, CXCL8, MMP 8, 

MMP 9 and COX2, thus leading to increased production of prostaglandins in utero-placental 

cells. Once internal to the nucleus p65/p50 recruits transcriptional co-regulators such as 

CREB Binding Protein p300 (CBP p300), histone deacytylases (HDACs) and histone acetyl 

transferases (HATs) which add further levels of transcriptional control (Hayden and Ghosh, 

2012). During the activation process p65 itself can undergo further post-translational 

modification such as phosphorylation and acetylation, thus altering its specificity of gene 

transcription or repression (Campbell and Perkins, 2004). Due to the presence of κB binding 

sites on the IκBα gene promoter, activation of NFκB leads to the synthesis of new IκBα 

which can dissociate NFκB from DNA complexes and is shuttled out of the nucleus in an 

inactive complex (Scott et al., 1993).  This pathway is displayed schematically in Figure 1.2.  

  



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

IκBα

p50 p65

κB

Cytoplasm

Nucleus

IL1β, TNFα, 

CXCL8,

MMPsIκBα

P P
Phosphorylation COX 2

IκBα

Ubiquitination

Degradation 

by 26s 

proteosome

p p

u u u u u

u
u

u

u

uu

5 1510

p
n

TLR 4 / 

IL1βR/ 

TNFαR

IL1β, TNFα, LPS

p50 p65

Nemo

IKK

β
IKKα

Prostaglandins

p50 p65

 

Figure 1.2: Schematic representation of the canonical NFκB pathway 

Full description of the events leading to pathway activation are found in the main body of 

text (section 1.5.3.4) 
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1.6 The role of NFκB in preterm birth 

The evidence that serves to underline the contribution made by NFκB activation in the 

pathogenesis of preterm birth is largely derived from in vitro studies on human primary cells 

of uterine and placental origin, with additional insights from animal models. 

1.6.1 NFκB and uterine cells 

The myometrium is the middle layer of the uterine wall, consisting mainly of uterine smooth 

muscle or myometrial cells, but also of supporting stromal and vascular tissue. During 

pregnancy it remains in a quiescent state to allow for fetal maturation but at term must be 

activated to allow for a series of powerful and co-ordinated contractions that expel the fetus 

during labour (Challis et al., 2000). Alteration of myometrial cell function has been the main 

target of the majority of treatments aimed at the prevention of preterm birth.  

All the major components of the NFκB pathway have been identified within myometrial cells 

and tissues. The three components of the IKK family (IKKα, IKKβ and NEMO), the NFκB 

proteins Rel A, c-Rel, p105, p100 and p50 plus the inhibitory protein IκBα have been 

detected in human upper and lower myometrium (Chapman et al., 2004).  

A link between NFκB activation, COX-2 expression and prostaglandin synthesis has been 

demonstrated in human myometrial cells in vitro (Belt et al., 1999). In this study, cells were 

exposed to the cytokine IL1β: within 15 minutes of stimulation 90% of IkBα was degraded, a 

concomitant increase in DNA binding of NFκB was observed alongside increases in COX2 

mRNA and COX2 protein; this was followed by increases in prostaglandin production. With 

the addition of a synthetic peptide inhibiting the degradation and ubiquitination of IkBα 

these changes were inhibited, indicating an NFκB specific effect.  

The activation of NFκB has been shown to promote the production of pro-inflammatory 

cytokines such as IL6 and IL8 (Soloff et al., 2004), matrix metalloproteinases (Choi et al., 

2007), and to up-regulate the expression of genes associated with labour including the 

oxytocin receptor and connexin-43 within myometrial cells (Terzidou et al., 2006, Lye et al., 

1993). 
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1.6.2 NFκB and placental cells 

The fetal membranes, or chorioamniotic membranes, are made of two placental-derived 

layers: the amnion and chorion which surround and protect the developing fetus. The fetal 

surface of the amnion consists of an epithelial cell layer with an underlying mixed 

fibroblastic layer containing amnion mesenchymal cells. The chorion is comprised of 

cytotrophoblast cells and by late pregnancy is heavily invested in the decidua: the highly 

vascularised transformed endometrium which represents the innermost layer of the uterus 

during pregnancy.  The role of placental-derived cells within the fetal membranes are broad 

and encompass barrier, paracrine signalling and immunologically protective roles during 

pregnancy (Myatt and Sun, 2010) 

The key molecular components of the NFkB pathway have been identified in primary 

amnion cell cultures and fetal membrane tissue explants (Elliott et al., 2001, Lappas et al., 

2002). IL1β addition to amnion mesenchymal cells activates the main components of the 

NFκB canonical pathway including the phosphorylation of IKK subunits, IκBα and p65. This 

leads to subsequent up regulation of COX2 mRNA and protein and increased production of 

prostaglandins and such changes can be reversed with the application of compounds 

capable of NFκB inhibition (Yan et al., 2002b, Ackerman et al., 2008). Amnion tissue explants 

when exposed to LPS demonstrated increased NFκB binding to DNA. Subsequently, 

increased production of cytokines IL6 and IL8 and matrix metalloproteinases was observed 

in these explants. These changes were reversed by the addition of the putative NFκB 

inhibitors N-acetylcysteine or sulphasalazine (Lappas et al., 2003, De Silva et al., 2010).  

1.6.3 NFκB antagonism with pro-quiescent pathways 

Studies have examined the interaction of NFκB with other pathways thought to promote 

myometrial quiescence and subsequent activation during labour as further evidence of the 

role of this transcription factor in promoting labour.   

For lower order mammals such as mice and rats, labour and parturition are preceded by a 

decrease in circulating progesterone levels, thus highlighting the central role of 

progesterone in promoting myometrial quiescence (Csapo and Wiest, 1969).  This 

phenomenon most likely does not occur in humans, although it remains a source of much 

debate (Smith et al., 2009). Many researchers have suggested that the myometrium may 
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become less sensitive to the effects of progesterone: a phenomenon referred to as 

‘functional progesterone withdrawal’ (Mitchell and Wong, 1993).  Mutual repression of 

NFκB and the progesterone receptor (PR) has been demonstrated using luciferase reporter 

activity in transfected amnion cells (Allport et al., 2001). Pre-treatment with progesterone 

reduced NFκB binding to COX2 promoter sites and subsequent COX2 mRNA expression in 

IL1β treated myometrial cell lines, whilst co-incubation with the anti-progestogen RU486 

effectively blocked this progesterone-mediated inhibition (Hardy et al., 2006).   

The G protein Gαs mediates myometrial quiescence through its action via the cyclic AMP 

pathway and subsequent increased activation of protein kinase A. Gαs protein expression is 

increased in the myometrium during gestation and is subsequently reduced during labour 

(Europe-Finner et al., 1993). In TNFα and LPS-treated primary myometrial cell cultures 

reductions in luciferase GαS reporter activity and reductions in GαS gene expression have 

been seen to correspond with increases in NFkB luciferase reporter activity. Thus, TNFα and 

LPS may repress the expression of the Gαs gene, an effect potentially mediated through the 

Rel-A NFkB subunit (Chapman et al., 2005) 

Another level of uterine regulation during fetal maturation is placental corticotropin-

releasing hormone (CRH) and its receptors CRH R1/2, which are thought to repress 

myometrial contractility via cAMP and nitric oxide synthase up-regulation 

(Grammatopoulos, 2007). In IL1β-stimulated myometrial cell cultures, CRH R1 gene 

expression was increased subsequent to IκBα degradation and p65 nuclear translocation, 

effects that were attenuated with the use of an IKK kinase inhibitor (Markovic et al., 2007). 

The studies discussed above suggest that canonical activation of NFκB can be suppressed by 

pathways that promote myometrial quiescence during pregnancy and that activation of this 

transcription factor with the onset of term or preterm labour could override the inhibitory 

effect of such pro-quiescent pathways.   

1.6.4 NFκB and animal preterm birth 

In an elegant study which details the events that lead to mouse parturition, Condon et al. 

demonstrated that secretion of surfactant protein A (SP-A) from the maturing fetal mouse 

lung into amniotic fluid led to a macrophage invasion of the myometrium and increased IL1β 

secretion prior to delivery (Condon et al., 2004). Amniotic fluid macrophages isolated from 
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this mouse model expressed increased IL1β and p65 when exposed to SP-A, and injection of 

SP-A into amniotic sacs of pregnant mice caused preterm birth when compared to sham 

injection; similar injection of an inhibitor of NFκB nuclear localisation (SN50) produced a 

significant delay in the onset of labour when compared with an SN50 mutant control.  Thus, 

the findings from this paper implicate the activation of NFκB as being central to murine 

labour.  

Preterm birth may be precipitated in TLR4 normal mice by amniotic injection of heat killed 

bacteria.  Toll Like Receptor 4 (TLR4) mutant pregnant mouse models have been developed 

that are resistant to this effect (Wang and Hirsch, 2003). This highlights the importance of 

signalling pathways downstream of TLR4, including the NFκB pathway, in effecting preterm 

birth in this model. 

1.7 Drugs in clinical use for the acute prevention of preterm birth   

Agents aimed at the acute prevention of preterm birth are a class of drugs referred to as 

tocolytics.  Figure 1.3 details tocolytics that have been historically used in clinical practice 

and their respective mechanisms of action. Worldwide the therapies most commonly used 

for this purpose are β-agonists, calcium channel blockers, oxytocin receptor antagonists and 

COX inhibitors (Olson et al., 2008).  

A Cochrane review of data from 20 clinical trials concluded that β agonists can delay birth 

for women in preterm labour by up to 7 days; however, they offer no benefit in terms of 

improving neonatal outcome or reducing neonatal deaths and are associated with 

significant maternal side effects including tachycardia, flushing, chest pain and maternal 

pulmonary oedema (Neilson et al., 2014). 

Trials comparing the calcium channel blocker nifedipine to β-agonist tocolytic therapy have 

shown nifedipine to reduce the number of women giving birth within 7 days with reduced 

frequency of neonatal problems such as respiratory distress. Nifedipine also has a better 

side effect profile than β-agonists (King et al., 2003). This has led to the off license use of 

nifedipine within the UK as a first line tocolytic. This usage is not unproblematic however as 

calcium channel blockers have no specificity for the uterus and exhibit equal ability to relax 

vascular smooth muscle which has led to case reports of profound maternal hypotension 

with ensuing fetal death (van Veen et al., 2005).  
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Compared to placebo or β-agonist therapy a specific blocker of the oxytocin receptor 

(atosiban) has failed to show reduction in preterm birth incidence or improvements in 

neonatal outcome (Papatsonis et al., 2005).  A trial comparing atosiban with nifedipine 

suggested similar ability  to delay onset of preterm birth at 48 hours,  but numbers were too 

small to be definitive, and this comparison is currently being addressed in a much larger 

multicentre study (Salim et al., 2012, van Vliet et al., 2014). Use of atosiban continues to be 

widespread in the UK as it is licensed for tocolysis use, has a minimal side effect profile and 

a potentially more specific mechanism of action than other currently available tocolytic 

therapies. 

An alternative tocolytic strategy is non-selective inhibition of COX enzymes. Initial trial 

outcome data comparing the COX antagonist Indomethacin with placebo or other tocolytic 

showed promise with a reduction in births before 37 weeks and a reduction in maternal side 

effects  compared to other agents (King et al., 2005). However the numbers involved in 

these trials were too small to be conclusive and use of these agents is associated with 

deleterious effects on the foetus including premature closure of the ductus arteriosus, renal 

and cerebral vasoconstriction and impaired renal development (Loudon et al., 2003).  

Despite greater than 3000 clinical trials over 60 years, none of the tocolytic agents listed 

have led to significant improvements in neonatal outcome without an unacceptably high 

frequency of unwanted sequelae (Haas et al., 2012, Varner and Esplin, 2005). UK national 

guidelines, therefore, limit current usage to scenarios requiring patient transfer to another 

hospital unit or to ‘buy time’ to allow for effective administration of corticosteroids (Bennett 

P, 2011). 

A partial explanation for this situation is the historic poor design of clinical trials with lack of 

placebo control, small numbers involved, variable inclusion criteria and use of increase in 

pregnancy length as the primary outcome measure, as opposed to a more clinically 

meaningful composite measure of neonatal wellbeing (Olson et al., 2008). However, the 

paucity of agents available is also a clear barrier to progress. Relatively few substances have 

been tested for their ability to dampen pathways of inflammation in a preterm birth 

scenario. This makes a novel approach to drug selection and an emphasis on pathway 

specificity a prime research consideration.  
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Figure 1.3: Mechanism of action of existing tocolytic therapies.  

Pictorial representation of systemic (1) or local (2-7) action of tocolytics. Inset indicates uterine 
smooth muscle cell.  

1. Ethanol: thought to diminish hypothalamic secretion of oxytocin when given intravenously. 
2. β–adrenergic agonists: including isoxuprine, ritodrine, salbutamol, terbutaline and 

hexaprenaline. They exert action via Gαs-linked β receptors on the surface of myometrial 
cells. Ligand binding to receptor activates the enzyme adenylyl cyclase (AC) which converts 
adenosine triphosphate (ATP) into the secondary messenger cyclic adenosine 
monophosphate (cAMP) (Webb, 2003). 

3. Calcium Channel antagonists: agents such as nifedipine or nicardipine block the intracellular 
entry of calcium via cell membrane channels.  

4. Magnesium Sulphate (MgSO4): The putative mechanism of action for MgSO4 involves 
antagonising the intracellular entry of calcium via cell membrane channels.  

5. Nitric Oxide Donors: The nitric oxide donors glyceryl trinitrate and nitroglycerine increase 
levels of cyclic guanylate monophosphate (cGMP) within myometrial cells which in turn 
inhibit MLCK leading to smooth muscle relaxation (Norman and Cameron, 1996). 

6. Oxytocin receptor antagonists: such as atosiban block oxytocin binding with its Gαq-protein 
linked receptor on the myometrial cell surface. This prevents activated phospholipase C 
(PLC) from producing the secondary messenger inositol 1,4,5 triphosphate (IP3) from an 
inactive precursor (PIP3). IP3 causes intracellular release of calcium from the sarcoplasmic 
reticulum leading to muscle contraction (Webb, 2003). 

7. Cyclooxygenase (COX) Inhibitors: COX proteins are rate limiting enzymes in the production of 
prostaglandins from arachidonic acid. COX1 is a non-inducible housekeeping protein 
whereas COX2 is a highly inducible protein whose expression in gestational tissues is 
promoted by activation of NFĸB (Belt et al., 1999, Yan et al., 2002). 
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1.8 Novel agents for the acute prevention of preterm birth  

A comprehensive network meta-analysis comparing tocolytic therapies concluded that 

prostaglandin inhibitors and calcium channel antagonists were the most likely agents to 

produce delay in labour and that, of these two approaches, prostaglandin inhibitors were 

the least likely to produce side effects (Haas et al., 2012). Therefore, it is unsurprising that 

the majority of novel pharmaceutical approaches to acute preterm birth prevention have 

looked to either directly inhibit prostaglandin production, or to do so indirectly via the 

inhibitory targeting of either COX2 or pro-inflammatory pathways in uterine and placental 

cells.  

A route to tocolysis is offered by blockade of the Prostaglandin F2α receptor. THG113, an 

inhibitor specifically targeting this receptor, has been used successfully in sheep models to 

treat preterm birth initiated by progesterone blockade (Hirst et al., 2005).  Due to limited 

placental transfer THG 113 has the potential to avoid the adverse effects associated with 

fetal prostaglandin blockade and does not interfere with fetal prostaglandin E2 production 

(Olson, 2005).  However, this agent has yet to get beyond a preclinical stage of testing.  

The tocolytic potential of selective COX2 inhibitors has been tested with initial in vitro 

studies showing promising results (Doret et al., 2002).  Unfortunately, the only human trial 

administering rofecoxib, a specific COX2 inhibitor, to mothers at risk of preterm birth did not 

achieve delay in birth compared to the placebo controlled group and demonstrated high 

rates of reversible fetal renal insult in the treatment arm (Groom et al., 2005). 

Inhibition of inflammatory pathway signalling has been demonstrated in vitro in utero-

placental cells via a number of agents including Pattern Recognition Receptor (PRR) 

antagonists such as anti-TLR 4 antibodies; p38 MAP Kinase blockers and a range of NFκB 

inhibitors (Adams Waldorf et al., 2008, Keelan et al., 2009, Lappas et al., 2007). These agents 

putatively offer targeting of specific molecular components of inflammatory pathways. 

Recent research in the preterm birth sphere has examined the effects of a class of drugs 

referred to as the Cytokine Suppressant Anti-Inflammatory Drugs (CSAIDS). Such agents 

operate via a broad range of molecular mechanisms and include: inhibitors of IKKβ (TCPA1), 

TAK 1 (OxZnl), NFκB (N-acetyl cysteine), p38 MAP Kinase (SB239063) and inhibitors of the 

IKK complex (CPP-conjugated NBD peptide – see below) (Ng et al., 2015). Varying anti-
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inflammatory effects have been reported for CSAID compounds used in a pregnant sheep 

model for both in vivo and ex vivo preparations; however these studies were disadvantaged 

by a failure to test any one agent across a full dose range, indicating that optimal inhibition 

effects may not have been elicited (Ireland et al., 2015, Stinson et al., 2014).  

Although many of the approaches described above show promise in inhibiting inflammatory 

responses; they are yet to translate into a clinical setting.  Such methods are also reliant on 

the success of individual therapeutic agents leading to a ‘back to the drawing board’ 

approach should these agents fail at any stage of pre-clinical testing.  A different therapeutic 

development strategy, allowing for a broad range of intracellular inhibitory targets, may 

offer greater success. 

1.9 Cell Penetrating Peptides as drug delivery vectors 

A major barrier to the development of new pharmaceuticals is presented by the cell 

membrane: to overcome this obstacle and therapeutically alter intracellular molecular 

pathways requires the use of vector techniques to deliver biologically effective cargo 

internal to a cell. Cell Penetrating Peptides (CPPs) offer an attractive solution to this drug 

delivery puzzle: they have been shown to deliver cargo efficiently at low doses and with low 

toxicity to a diverse range of cell types (Heitz et al., 2009). 

CPPs can be characterised as short peptides, usually less than 30 amino acids length, that 

have the ability to cross cell membranes without the need for recognition by cell surface 

receptors (Bechara and Sagan, 2013). The majority of CPPs have a net positive charge at 

physiological pH and are usually water soluble and hydrophobic, although some variation 

exists between different CPP classes (Madani et al., 2011). 

Most importantly CPPs have the ability to deliver intracellularly an ever growing variety of 

cargo including proteins, siRNA, liposomes, fluorophores and nanoparticles across cell 

membranes and also facilitate intracellular endosomal escape of these payloads (Jones and 

Sayers, 2012, Endoh and Ohtsuki, 2009). Thus CPPs are often referred to in the literature as 

‘Trojan peptides’ (Derossi et al., 1998) and there exists a large field of research evaluating 

their potential as drug delivery vectors.  
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Amongst the large number of naturally occurring and synthetic CPPs now described in the 

literature; the CPPs included in this study are derived from three well characterised peptide 

vectors.  Firstly, a CPP derived from the homeodomain of the antennopaedia protein of the 

fruit fly Drosophila, Pen(43-56) (Derossi et al., 1994, Christiaens et al., 2004, Fischer et al., 

2000), secondly a CPP derived from the transcription transactivating protein of HIV, TAT(47-57) 

(Vives et al., 1997, Wadia and Dowdy, 2005); and finally a CPP based on synthetically 

derived poly-arginine residues: R8 (Futaki, 2002, Nakase et al., 2004).  

1.9.1 Mechanism of CPP uptake 

There are two major mechanisms of CPP cellular uptake described in the literature: energy 

independent or non-endocytic pathways and endocytic pathways (Madani et al., 2011b). 

The method of uptake is dependent on a number of factors including the CPP used, the cell 

type and the experimental or physiological conditions. The same CPP can display different 

modes of uptake depending on the circumstances described above (Hallbrink et al., 2004). 

Non-endocytic uptake or ‘translocation’ initially involves interaction of the positively 

charged CPP with negatively charged components of membrane such as heparan sulfate as 

well as the phospholipid bilayer (Herce and Garcia, 2007). Following this, a membranous 

pore is formed allowing the CPP and cargo to enter the cytosol (Matsuzaki et al., 1996). 

Alternatively, CPPs can take advantage of different endocytic forms of cellular entry 

including phagocytosis, pinocytosis or clathrin-dependent and independent endocytosis 

(Cleal et al., 2013). 

1.9.2 Therapeutic potential of CPP-cargo conjugations 

The potential offered by CPPs conjugated to cargo in the clinical setting was demonstrated 

with the discovery that murine intra-peritoneal injection of β-galactosidase protein 

(120KDa), linked to a CPP derived from TAT protein, resulted in β-galactosidase uptake in all 

tissues including the brain (Schwarze et al., 1999). A number of studies in diverse clinical 

fields have confirmed the potential of CPP-cargo conjugates as therapeutic agents: TAT 

mediated delivery of a peptide derived from the tumour suppressor protein p53 led to 

regression of tumour load in a mouse model of peritoneal cancer (Snyder et al., 2004), TAT-

Bclxl conjugates have been shown to decrease neuronal damage in mouse models of stroke 

(Cao et al., 2002) and CPP linked inhibitors of protein kinase Cδ prevented reperfusion injury 
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in rat ex vivo models of ischaemic hearts (Inagaki et al., 2003). Indeed, the TAT-protein 

kinase Cδ inhibitor (KAI-9803) has progressed to phase two clinical trial where it was 

administered into coronary arteries as an adjunct to percutaneous coronary intervention in 

patients suffering from myocardial infarction (Johnson et al., 2011).   

1.9.3 Cell Penetrating Peptide inhibitors of NFκB  

Amongst the diverse array of cargoes that can be conjugated to CPPs and delivered 

intracellularly are molecules with the capability to block NFκB dependent signalling (Orange 

and May, 2008). Those described in the literature include either peptide or protein cargo 

directed towards a variety of targets including the IKK complex, the nuclear localisation 

sequence of p50, p65 phosphorylation sites or the inhibitory protein IκBα (Lin et al., 1995, 

Takada et al., 2004, Fujihara et al., 2005, May et al., 2000).   

Such CPP-cargo conjugates have shown success both in vitro and in vivo at inhibiting NFκB 

mediated inflammatory responses, including large animal models (Ankermann et al., 2005), 

and they offer the possibility of translation into the clinical sphere for scenarios whereby 

discrete inhibition of NFκB signalling is desirable (Orange and May, 2008).   

1.9.4 The Nemo Binding Domain (NBD) peptide as a tool for NFκB inhibition 

The NBD peptide is an 11 amino acid residue peptide which was designed to prevent IKK 

activation via the canonical NFκB pathway. It achieves this by spanning the six amino acid 

(LDWSWL) segment Nemo Binding Domain of the IKK complex and, therefore, disrupting the 

interaction between the two active IKKα and IKKβ subunits and the regulatory subunit 

NEMO (May et al., 2000).  Linked to a CPP derived from antennopaedia protein, the NBD 

peptide was able to dose-dependently inhibit TNFα-stimulated NFĸB signalling in HeLa cells, 

a phenomenon that did not occur with the application of a mutant NBD peptide containing 

two amino acid substitutions (May et al., 2000). Both wild type and mutant forms of this 

peptide are displayed in Figure 1.4. 
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The NBD peptide, conjugated to CPP vectors, has been shown to down-regulate unwanted 

NFκB responses and thus improve physiological endpoints of inflammation in a number of in 

vitro and in vivo models (McCorkell and May, 2015). It potentially offers the possibility of 

preserving basal activity of NFκB whilst impairing cytokine stimulated responses: an 

approach that may avoid toxic side effects associated with complete NFκB blockade (May et 

al., 2000). As a result the NBD peptide is currently on the verge of being tested in phase 1 

clinical trials for diverse conditions including Muscular Dystrophy and Parkinson’s Disease 

(Reay et al., 2011, Roy et al., 2015). 

Therefore, given the promise this of peptide cargo in many pre-clinical research settings and 

the significant contribution that NFκB plays in the pathogenesis of preterm birth, NBD 

peptide was selected in this study as the optimal cargo both to test CPP-conjugate delivery 

and the ability of CPPs to deliver cargo that can be biologically effective in uterine cells.  

  

TALDWSWLQTE

TALDASALQTE

WT:

MUT:

NBDCPP

 

Figure 1.4: The Nemo Binding Domain (NBD) Peptide 

Pictorial illustration of the primary amino acid structure of the NBD wild type (WT) and 

mutant (MUT) peptide conjugated to CPP. Larger text indicates the amino acid structure of 

the Nemo Binding Domain. The substituted tryptophan (W) to alanine (A) amino acid 

residues are underlined.  
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1.10 Small molecule, non-peptide inhibitors of NFκB 

To allow for comparison between the biological effectiveness of CPP-conjugated inhibition 

of inflammatory signalling and non-CPP linked methods of inhibition, a series of non-

peptidic small molecule inhibitors with NFκB inhibitory activity were also used in this study.  

Small molecule inhibitors at all levels of the NFκB pathway have been reported including 

those blocking the phosphorylation of IkBα via IKK complex inhibition or preventing 

proteasome degradation of this molecule;  inhibitors that prevent NFκB localisation to the 

nucleus or block post translational modifications of p65 (Gupta et al., 2010). The advantages 

of using small molecule drug inhibition include wide oral bioavailability and a well-

established approach that can provide discrete inhibition of specific pathways; however, 

high concentrations may be required to pass intracellularly thus increasing the potential for 

toxicity, and such agents are often targets for swift removal via drug efflux proteins 

(Mandery et al., 2012).  Some of the most promising non-peptide small molecule inhibitors 

of NFκB are outlined below.  

Sc514 is a thiophene carboxamide capable of inhibiting IKKβ by reversibly competing with its 

ATP binding site. In cell free assay, it has a high degree of selectivity for IKKβ above other IKK 

isoforms or serine-threonine or tyrosine kinases (Kishore et al., 2003), and, therefore, 

putatively offers discrete inhibition of the NFκB pathway via a mechanism similar to the NBD 

peptide. It has demonstrated ability to reduce LPS-stimulated TNFα secretion in placentally-

derived human primary cells (De Silva et al., 2010). 

N-acetylcysteine (NAC) is an antioxidant that increases intracellular glutathione 

concentrations to act as an endogenous reducing agent. There is evidence that NAC may 

also mediate effects on NFκB by suppression of the action of the IKK complex on IκBα (Oka 

et al., 2000). The use of NAC clinically is well established in the acute setting of treatment 

for paracetamol overdose (Ferner et al., 2011). NAC has been shown to abrogate LPS-

stimulated prostaglandin production by fetal membranes in vitro, to attenuate LPS 

provoked IL6 production in the amniotic fluid of pregnant rats and has been suggested to 

reduce the recurrence of preterm birth in women with bacterial vaginosis in clinical trial 

(Lappas et al., 2003, Beloosesky et al., 2006, Shahin et al., 2009). However, its effects on 

myometrial cells have yet to be examined.  
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Curcumin is the active ingredient of the spice turmeric and is a naturally occurring 

polyphenol derived from the Curcuma longa plant with the potential for treatment of 

various diseases acting via NFκB inhibition (Aggarwal et al., 2007). Application of this natural 

product led to inhibition of NFkB dependent inflammatory signalling in uterine decidual cells 

(Devi et al., 2015), and prevented inflammatory cytokine signalling in human fetal 

membrane explants and uterine myometrial cells (Lim et al., 2013).   

Mg132 is a proteasome inhibitor with the capability to prevent NFκB signalling via blocking 

the proteasome-dependent degradation of phosphorylated IκBα. It has been shown to 

prevent the IL1β stimulated activation of NFκB in both human myometrial cells and amnion 

cells (Belt et al., 1999, Mohan et al., 2007). 
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1.11 Study Hypothesis and Aims 

It is hypothesised that CPPs will be able to deliver cargo internal to human uterine and 

placental cells. Moreover, CPPs linked to biologically effective cargo will dampen NFκB 

related intracellular signalling within uterine cells by comparison to a series of small 

molecule inhibitors.  

In testing these hypotheses the aims are: 

(i) To define the efficacy (time- and dose-dependency) of CPPs to deliver 

fluorescent cargo to primary human myometrial and amnion cells. 

(ii) To determine the ability of fluorescent CPPs conjugated to the NBD peptide to 

enter human myometrial cells. 

(iii) To determine the ability of CPP-NBD peptide conjugates to inhibit inflammatory 

signalling in human myometrial cells. 

(iv) To examine the effectiveness of CPP-NBD peptide conjugates in dampening NFκB 

related signalling compared to a series of small molecule inhibitors of NFκB in 

human myometrial cells.  
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Characteristic Mean Range 

Gestation (weeks) 39 37- 41 

Age (years) 32 21-46 

Gravidity 3 1-6 
Parity 1 0-3 

Booking BMI (kg/m2) 25 20-33 

Birthweight (g) 3422 2710-4135 

Birth weight centile (%) 49 10.3-86 
 

Table 2.1 Demographic characteristics of the study population (n=55) 

2.1 Materials  

For ease of reference the materials and supplier used, including catalogue number, have 

been included within the relevant section of text. All suppliers are UK-based unless 

otherwise specified. 

2.2 Subjects and samples 

Ethical approval was obtained from Newcastle and North Tyneside Research Ethics 

Committee (10/H0906/71) to perform research on samples collected as part of the 

Newcastle Utero-placental Tissue Bank. Human myometrial tissue and placentas were 

obtained following written informed consent from non-labouring women with 

uncomplicated, singleton pregnancies undergoing elective Caesarean section at term (≥37 

weeks gestation).  

Myometrial muscle strip biopsies approximately 1cm x 1cm in size were taken from the 

upper portion of the lower segment uterine incision according to longstanding protocol at 

Newcastle upon Tyne Hospitals NHS Foundation Trust.  Biopsies were excluded from women 

with underlying medical or obstetric disease, women on any current medication, those with 

a body mass index out with 20-35 kg/m2, or who gave birth to a baby with weight below the 

10th percentile or above the 90th percentile. Fifty five separate patient samples were 

included in the study of which forty six were myometrial biopsies and nine placentas. 

Demographic data of patients included is reported in Table 2.1.  
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2.3 Cell culture 

The majority of experiments used primary myometrial cells prepared from fresh biopsy 

samples collected as described above. On occasions where such biopsies were not available, 

previously frozen myometrial cells were defrosted and grown in T75 flasks in readiness for 

experimentation.  Amnion mesenchymal cells were prepared from fresh placental tissue.  

2.3.1 Cell culture consumables and reagents  

T25 and T75 cell culture flasks (C6481, C7231), were sourced from Sigma Aldrich. 6, 12 and 

96 well plates (657160, 665180, 655180) plus 70μm cell strainers (542070) were sourced 

from Greiner. Fetal calf serum (FCS) (F9665), penicillin / streptomycin (10,000U /10mg) 

(P0781), 0.5g porcine trypsin / 0.2g EDTA (T3924), Hanks buffered saline solution (H6648), 

phosphate buffered saline (PBS) (P4417) and heparin sodium salt (H3149), collagenases 1a 

(C9891) and XI (C7657) and bovine serum albumin (BSA) (A6003) and dimethyl sulfoxide 

(DMSO) (D2650) were sourced from Sigma Aldrich.  GlutaMAX media (61965) and phenol 

red free Dulbecco modified eagle medium (DMEM) (21063) were sourced from Life 

Technologies. Mr Frosty freezing container (5100-0001) and 1ml cryovials (5000-1012) were 

sourced from Thermo- Scientific. Unless otherwise specified the cell media used for all 

culture and experimentation is GlutaMAX containing 10% FCS and 1% penicillin / 

streptomycin. 

Tissue collection buffer was made up in our laboratory according to the following recipe: 

NaCl 154mM; KCl 5.4mM; MgSO4/7H2O 1.2mM; 3(N-morpholino) propanesulfonic acid 

10mM; glucose 5.5mM; CaCl2/2H2O 1.6mM; pH7.4. 

2.3.2 Preparation of myometrial cells 

Lower uterine segment human myometrial biopsies were immediately transferred from the 

operating theatre to the laboratory in tissue collection buffer. Samples were micro-

dissected under a light microscope to isolate myometrial tissue from any remaining decidua. 

In a microbiological safety cabinet, tissue was cut into small fragments before adding 10mls 

warmed Hanks balanced salt solution containing 10mg each of collagenase 1A and XI plus 

20mg BSA. This tissue digestion mix was placed in an orbital shaker at 110rpm for 

approximately 40 minutes at 37°C. Checking the digestion mix visually allowed for 

confirmation that cells had dissociated sufficiently when small tissue fragments appeared 
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ragged but not fully degraded. At this point, the sample was filtered through a 70µm cell 

strainer into 10ml media and centrifuged at 1000 rpm for 5 minutes. The supernatant was 

discarded and cell pellet re-suspended in cell culture media in a T25 cell culture flask 

(Karolczak-Bayatti et al., 2011). 

2.3.3 Preparation of amnion mesenchymal cells 

Placentas were transferred immediately from delivery suite to the laboratory. Reflected 

amnion was separated from choriodecidual tissue by blunt dissection and washed 

repeatedly in phosphate buffered saline. In a microbiology safety cabinet, amnion tissue 

was then cut into 2x2cm squares and transferred into a sterile tube containing 20 ml of PBS 

with 1 mg/ml of collagenase A and then incubated at 37°C with in an orbital shaker for 2 h. 

After digestion, collagenase was neutralised with a further 20mls of media and the 

remaining cell suspension filtered through a 70μm cell strainer. The cell suspension was 

centrifuged at 1000rpm for 5 minutes, the supernatant was discarded and the cell pellet re-

suspended in cell culture media in a T25 cell culture flask (Yan et al., 2002b).  

2.3.4 Frozen cells 

Frozen primary myometrial cells were defrosted from liquid nitrogen into warmed 10ml cell 

culture media and centrifuged at 1000 rpm for 5mins. The DMSO containing medium was 

discarded and cell pellets were dispersed in fresh media.  

2.3.5 Cell maintenance  

All final cell pellets were re-suspended in fresh media containing 10% FCS, 50µg/ml of 

penicillin and 50µg/ml of streptomycin. This cell suspension was then transferred into a T25 

or T75 cell culture flask dependent on the size of  the cell pellet and cultured at 37°C, 5% 

CO2/95% air with fresh media replacement every 2-3 days until 80-90% confluent 

(Karolczak-Bayatti et al., 2011, Casey and MacDonald, 1996).  

2.3.6 Cell splitting and transfer 

Once confluent, cells were washed with PBS before the addition of trypsin/EDTA solution 

(1ml for T25, 3mls for T75). Once cells were fully lifted off the flask surface, cell media was 

added at a ratio of two parts media: one part trypsin / EDTA to neutralise the trypsin effect. 

This cell suspension was transferred to a sterile tube for centrifugation at 1000 rpm for 

5mins. The trypsin/EDTA containing supernatant was discarded and the cell pellet was re-
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suspended in a varying volume of cell culture media, aiming for cell seeding at 30% density 

in final well destination. For example: if splitting cells from a T75 flask into three further 

T75’s, 9mls cell culture volume was used for re-suspension and 3mls cell suspension added 

to each flask along with 7mls of further media.   

2.3.7 Freezing cells 

Cells frozen for storage underwent splitting as described above and were re-suspended in 

1ml of FCS containing 10% DMSO before transfer to a 1ml cryovial that was placed in a 

specialised freezing container (Mr Frosty) overnight in a -80°C freezer before further 

transfer of the cryovial into liquid nitrogen the following day.   

2.4 Cell Penetrating Peptides 

CPPs were custom synthesised commercially and purchased from either EZ Biolabs (USA) or 

Abingdon Health Laboratory services. 

2.4.1 Peptide labelling 

CPPs were labelled with two types of fluorophore cargo. Alexa 488 peptide labelling was 

performed at the laboratory of our collaborator (Professor Jones, Cardiff University) 

according to previously reported methods (Al-Taei et al., 2006). In these cases, labelling 

occurred at the N-terminus with alexa 488 C5 maleimide (Invitrogen, A-10254). Labelled 

samples were then purified by high performance liquid chromatography and characterised 

by mass spectrometry with example traces given in Figure 2.1. Alexa 488 was used in these 

circumstances due to relative ease of labelling. CPPs that were custom synthesised via EZ 

peptides were rhodamine labelled at the N-terminus by the supplier. 5(6)-

Carboxytetramethylrhodamine was used in these cases due to ease of availability for the 

supplier.   
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Figure 2.1 High performance liquid chromatography (upper panel) and mass spectrometry 

(lower panel) tracings of alexa 488 conjugated TAT peptide as labelled and produced by 

our collaborative group (Professor Jones, Cardiff University) 
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2.4.2 Peptides used in confocal experimentation 

The amino acid structure and excitation / emission spectra of fluorescently labelled peptides 

used in cellular uptake experimentation and analysed by confocal microscopy are shown in 

Table 2.2. CPP vector uptake experiments were undertaken using CPPs derived from the 

proteins antennopedia (Pen: residues 43-56), HIV transcription transactivating domain (TAT: 

residues 47-57) or synthetic polymers of multiple arginine residues (R8) conjugated to either 

the fluorophores alexa 488 or rhodamine (peptide conjugates 1-8 as displayed in Table 2.2). 

Fluorescently labelled peptides with CPP vector conjugated to biological cargo were used in 

subsequent experimentation (peptide conjugates 9-13 as displayed in Table 2.2) to 

determine the effects of peptide cargo on cellular uptake. 
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Peptide 
No. 

Peptide Name Structure Excitation Emission 

1 Alexa 488 labelled Pen Alexa 488 - 
RQIKIWFQNRRMKWKK 

488nm 525nm 

2 Alexa 488 labelled TAT Alexa 488 - 
YGRKKRRQRRR 

488nm 525nm 

3 Alexa 488 labelled R8 Alexa 488 - RRRRRRRR 488nm 525nm 

4 Alexa 488 labelled 
GS4(GC) 

Alexa 488 - 
GSGSGSGSGC 

488nm 525nm 

5 Rhodamine labelled Pen Rhodamine - 
RQIKIWFQNRRMKW 

488nm 525nm 

6 Rhodamine Labelled TAT Rhodamine - 
YGRKKRRQRRR 

561nm 617nm 

7 Rhodamine labelled R8 Rhodamine - RRRRRRRR 561nm 617nm 

8 Rhodamine labelled 
GS4(GC) 

Rhodamine - 
GSGSGSGSGC 

561nm 617nm 

9 Rhodamine labelled Pen 
- Nemo Binding Domain 
(Wild type) 

Rhodamine-
RQIKIWFQNRRMKW-
Aca- TALDWSWLQTE 

561nm 617nm 

10 Rhodamine labelled Pen 
- Nemo Binding Domain 
(Mutant) 

Rhodamine-
RQIKIWFQNRRMKW-
Aca-TALDASALQTE 

561nm 617nm 

11 Rhodamine labelled 
Nemo Binding Domain 

Rhodamine - 
TALDWSWLQTE 

561nm 617nm 

12 Rhodamine labelled TAT 
Nemo Binding Domain 

Rhodamine - 
YGRKKRRQRRR-Aca-
TALDWSWLQTE 

561nm 617nm 

13 Rhodamine labelled R8 
Nemo Binding Domain 

Rhodamine-RRRRRRRR-
Aca-TALDWSWLQTE 

561nm 617nm 

 

Table 2.2 The nomenclature, structure and excitation / emission wavelengths of fluorophore 

conjugated peptides used for live cell confocal microscopy experimentation 
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2.4.3 Peptides used in cell stimulation experiments 

The amino acid structure, batch number and supplier of peptides used in cell stimulation 

experimentation are shown in Table 2.3.  Different CPP vectors conjugated to Nemo Binding 

Domain (NBD) peptide were used to test the ability of NBD cargo to dampen inflammatory 

responses in uterine cells. Either unconjugated CPP (Pen), NBD peptide alone or a CPP 

conjugated NBD mutant peptide (Pen-NBD Mut) were used as comparative controls. 

Peptide Name Structure 

Pen RQIKIWFQNRRMKW 

Nemo Binding Domain TALDWSWLQTE 

Pen Nemo Binding Domain Wild Type 

(Pen-NBD WT) 

Ac-RQIKIWFQNRRMKW-Aca-TALDWSWLQTE-NH2 

Pen Nemo Binding Domain Mutant 

(Pen-NBD Mut) 

Ac-RQIKIWFQNRRMKW-Aca-TALDASALOTE-NH2 

TAT Nemo Binding Domain Wild Type  

(TAT-NBD) 

Ac-YGRKKRRQRRR-Aca-TALDWSWLQTE-NH2 

R8 Nemo Binding Domain Wild Type 

(R8-NBD) 

Ac-RRRRRRRR-Aca-TALDWSWLQTE-NH2 

 

Table 2.3 The nomenclature and structure of peptides used for cell stimulation 

experimentation  
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2.5 Live cell confocal microscopy 

To determine the cellular uptake of fluorescent moieties conjugated to CPPs and thus 

characterise the ability of CPP to deliver cargo internally to myometrial cells, live cell 

spinning disk confocal microscopy was used (Andor Revolution XD coupled to an Olympus 

IX-81 inverted microscope; Andor Belfast UK; http://www.andor.com/microscopy-

systems/revolution). This technique enabled identification of real time changes in 

fluorescence across cell populations and also allowed the use of fine optical image slices 

within the z plane to determine fluorescent cargo uptake across whole cells. 

2.5.1 Dyes and emission / excitation wavelength spectra used in confocal experimentation 

Hoechst nuclear dye (33342 - excitation 345nm/emission 525nm), ER-tracker (E34250 - 

excitation 587nm/emission 615nm), Mito-tracker (M22425 - excitation 587nm/ emission 

615nm) and Dextran Alexa Fluor 488 (D22910 - excitation 495nm/ emission 519nm) were all 

sourced from Life Technologies.  

2.5.2 Preparation of cells for microscopy 

Low passage (P≤4) myometrial or amnion mesenchymal cells were used. Following cell 

culture and splitting, cells were transferred into 4- or 8-well microscope µ-Slides (Ibidi, 

Thistle Scientific, IB-80441, IB-80821) and grown up to 80%-90% confluency. Cells were 

washed in PBS and changed to serum reduced media (0.1% FCS) for 18 to 24 hours to 

minimise cell cycle related artefact and avoid inhibitory effects caused by serum proteins 

(Khammanit et al., 2008). Cells were then loaded with 1μM Hoechst nuclear dye for 1 hour 

and washed with PBS before the microscope μ-slides were transferred to the confocal 

microscope in readiness for CPP addition and imaging. 

2.5.3 Labelling of endoplasmic reticulum or mitochondria 

For experiments whereby further labelling of endoplasmic reticulum or mitochondria was 

desired, ER Tracker dye or Mitotracker dye both at 1μM concentration were added along 

with Hoescht nuclear dye for 1 hour followed by PBS washout as described.  

2.5.4 Labelling of endosomes / lysosomes 

In order to assess the co-localisation of CPP with intracellular transportation pathways, 

dextran conjugated to alexa 488 fluorophore was used. As a large molecule, dextran is taken 

http://www.andor.com/microscopy-systems/revolution
http://www.andor.com/microscopy-systems/revolution
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up into endosomal / lysosomal pathways within the cell, with the conjugated fluorophore 

allowing this pathway to be tracked via confocal imaging (Kuipers et al., 2004). 

Two approaches were taken to achieve this: firstly, to label endosomes, cells were 

incubated with 100µg/ml dextran alexa 488 in media for 1 hour before washing with PBS 

followed by the addition of CPP-rhodamine conjugates. Secondly, to label the lysosomal 

pathways cells were incubated with 200μg/ml dextran alexa 488 in media for 2 hours, 

washed with PBS and then left overnight in complete media before the addition of CPP-

rhodamine conjugates. 

2.5.5 Cell Imaging 

During the time course of experimentation cells were maintained on microscope slide wells 

in serum deprived media within  a temperature-controlled chamber (maintained at 37°C, 

5%CO2, Prior Scientific Ltd., Cambridge, UK) on the stage of the inverted microscope. 

Initial images were collected to assess baseline cellular auto-fluorescence prior to addition 

of CPP. Varying concentrations of fluorophore-CPP / fluorophore-CPP-Cargo / fluorophore-

cargo combinations (see Table 2.2) were ready made up in serum deprived cell media and 

added to the cells. Images were then captured at 15, 60 and 120 minutes following 

application. For the imaging period cells were placed in phenol red free media to reduce 

background glare. To make a thorough assessment of fluorescent uptake throughout whole 

cells, all images were captured as a series of slices in the Z plane (range 3-10 slices per area 

selected, each slice 0.54µm apart) using the 40x objective.  Images were captured using 

separate channels for epifluorescence (Hoechst), fluorophore (rhodamine / alexa-488) and 

bright-field; all images were digitally recorded with IQ2 software (Andor, Belfast, UK).  
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2.6 Picture analyses 

At each data point 3-5 sets of Z-series images were collected and stored as TIFF files. Each Z-

series contained an average of 5 slices (range 3-10). Images were stacked and organised into 

separate channels according to staining (i.e. Hoechst staining channel to identify cell 

nucleus, flourophore staining channel to identify peptide uptake), the organised TIFF files 

were then either fed into Cell Profiler software or further analysed in Image J. Data was 

collected prior to addition of fluorophore-CPP combination (T0) and 15, 60 and 120 minutes 

following addition of fluorophore-CPP. To correct for varying levels of cellular auto-

fluorescence, the mean average background fluorescence of cells at T0 was calculated and 

has been subtracted from the data at all subsequent time points.    

2.6.1 Use of Cell Profiler  

Cell Profiler (http://www.cellprofiler.org/) is free open-source software that allows 

automated quantitative measurement of thousands of images (Carpenter et al., 2006).  

Standard cell analysis processes are referred to as pipelines within Cell Profiler. These 

pipelines take steps to threshold images to remove background noise, identify cells via 

nuclear staining and subsequently identify cytoplasmic areas of staining in order to measure 

the intensity of staining within these regions. Such a pipeline was modified for the images in 

this study to reproducibly recognise areas of staining close to the nucleus of each cell within 

every z-slice; this pipeline was then run for all image series providing a quantitative result of 

the intensity of uptake for cells within each Z-slice image. After discarding cells from the 

edge of the image (for whom whole cell staining could not be measured) staining from all 

cells within a given image (range 3-27) was measured across all z slices (range 3-10). Three 

to five image stacks were analysed per time point and this process was repeated across 3 

biologically separate experiments.  A further explanation of this process is detailed in Figure 

2.2. 
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Raw Image Nuclear Identification

Nuclear plus CPP fluorescence outlines Whole cell fluorescence

 

Figure 2.2 Example pipeline demonstrating Cell Profiler image analysis process 

The raw data (top left image) is fed into the analysis pipeline as a composite consisting of 

two images: a nuclear staining channel (blue) and rhodamine CPP fluorescence channel 

(red). The software identifies cellular location via the nuclear channel (top right image), 

disregarding any cells on the edge of the picture (outlined yellow).  The pipeline 

superimposes nuclear outlines onto the rhodamine-CPP fluorescence channel (bottom left 

image) and identifies areas of intense fluorescence located near to nuclei (purple outlines). 

The software recognises these areas as separate cells and labels them with a different 

colour for each cell (bottom right image). It then measures the pixel intensity from the 

fluorescence-CPP channel for nuclear areas, whole cell areas or cytoplasmic areas (whole 

cell minus nuclear area) for every cell to produce an integrated density (the sum of all pixel 

intensity values within a given area) or mean intensity (the sum of pixel values divided by 

area size) value per cell. The software can perform these functions for a series of Z-slice 

images thus generating whole cell fluorescence data for every cell in a given image series.     
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2.6.2 Use of Image J  

Image J (http://imagej.nih.gov/ij/) is a widely used open source image analysis software 

program. Areas of peptide uptake internal to the cell membrane were selected and the 

integrated density (the sum of pixel intensity within a given area) was recorded from the 

Rhodamine channel alongside a background fluorescence measurement external to the cell 

(demonstrated in Figure 2.3). A value of Corrected Total Cell Fluorescence (CTCF) was 

arrived at using the following formula: Integrated density – (Area of selected measurement 

/ mean background fluorescence) (Burgess et al., 2010). For each image 3 cells were 

selected and analysed at 3 z slices (0.54µM thick). Three to five image stacks were analysed 

per time point and this process was repeated across 3 biologically separate experiments.  

  

 

Figure 2.3 Cell fluorescence analyses via Image J software 

Areas of peptide intensity were selected (left hand image) and measured with a spline 

cursor (white line) alongside areas of background fluorescence (right hand image). 

Fluorescence data from the Rhodamine-CPP (Red) channel was measured within this 

cursor to produce a value of integrated density (sum of pixel intensities within a given 

area). Corrected Total Cell Fluorescence was then calculated using the following 

formula: Integrated density – (Area of selected measurement / mean background 

fluorescence).  
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2.7 Cell stimulation protocol 

In order to characterise the biological efficacy of CPP-conjugated peptide inhibitors or small 

molecule inhibitor treatments, in vitro time course experiments were performed to examine 

the responses of myometrial cells to cytokine stimulation. Initial experiments aimed to 

define the time course of expression of the highly inducible protein enzyme COX2 and the 

degradation of the NFκB inhibitory protein IκBα in response to the cytokine agonists IL1β or 

TNFα. Subsequently, these protein responses were compared to experimental situations 

whereby cells were pre-incubated with either a CPP-linked peptide inhibitor or a small 

molecule inhibitor prior to cytokine addition.   

The optimal length of CPP pre-incubation was determined via the CPP uptake studies 

detailed in Chapter Three and the duration of pre-incubation for small molecule inhibitors 

were determined from study of the literature. Initial experiments defining the time frame of 

changes in COX2 and IκBα protein expression in response to cytokine agonist and defining 

the optimal cytokine concentration are detailed in Chapter Four. 

2.7.1 Materials used in cell stimulation experiments 

IL1β (200-01B) and TNFα (300-01A) were sourced from Peprotech.  Sc514 (3318) was 

purchased from Tocris Bioscience. Curcumin (C7727), N-acetyl-L-cysteine (A7250) and 

Mg132 (C2211) were from Sigma Aldrich. 

Sucrose cell lysis buffer (62.5mM Tris-HCl pH6.8, 2% SDS, 10% saccharose) was made up in 

our laboratory, 20µl/ml protease inhibitor (P1860) and 5µl/ml phosphatase inhibitor 

(P2745) were both sourced from Sigma Aldrich and added to the cell lysis buffer prior to 

experimentation. 

2.7.2 Cell stimulation experiment protocol for protein extraction 

Myometrial cells (≤ P4) were split equally from a T75 flask between 12 well plates and 

grown up to 80-90% confluency. At this point normal cell media was replaced with serum 

deprived (0.1% FCS) media. After 18 to 24 hours the media was discarded from each well 

and 500µl of fresh media (0.1% FCS) with differing concentrations of inhibitors or vehicle 

controls were added to the appropriate wells. After 1 hour pre-incubation the cytokine 

stimulants IL1β or TNFα were added to all wells excepting T0 controls. Eventual agonist 

doses were arrived at via experimentation across a dose range as detailed in Chapter Four. 
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At times of 0/15/60/120/240 minutes from cytokine stimulation, cells were washed with 

PBS before being lysed using sucrose cell lysis buffer. Cell lysates were collected and stored 

at -80°C.  

2.7.3 Cell stimulation experiment protocol for RNA extraction 

Myometrial cells (≤ P4) were split equally from a T75 flask between 6 well plates and grown 

to 80-90% confluency at which point media was changed to serum deprived (0.1% FCS) 

media. After 18 to 24 hours the media was discarded from each well and 500µl of fresh 

media (0.1% FCS) alone, or media (0.1% FCS) containing 100µM Pen-NBD or 50µM Sc514 

was added one hour prior to addition of 10ng/ml IL1β or equivalent volume DMSO vehicle. 

After four hours, cells were washed with PBS before RNA was extracted using the RNEasy 

Mini Kit according to manufacturers’ protocol: 

https://www.qiagen.com/gb/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-

bf9f6fa33e24&lang=en 

2.8 Cell Toxicity Assay 

Cell Titre Blue is an assay based on the ability of living cells to reduce the redox dye 

rezazurin to a fluorescent end product rezarufin and thus enables an assessment of the 

metabolic capacity of cell populations (Gloeckner et al., 2001). Cell Titre Blue reagent was 

sourced from Promega (G8080).  

Myometrial cells (<P4) were split, cells were counted and a volume equivalent to 5000 cells 

per well was added to each well of a 96 well plate (Brant and Caruso, 2005). 24 hours later, 

standard media was changed to media containing unconjugated Pen or NBD peptide, 

conjugated Pen-NBD or vehicle alone. Cytokines IL1β (10ng/ml) or TNFα (1nM) were added 

to the vehicle only wells after 1 hour.  After 4 hours 20μL Cell Titre Blue was added to each 

well; this was left for 2 hours before reading the plate on a Tecan Fluorometer at 560nm 

excitation / 600nm emission. Wells containing media alone were subtracted from final data 

values as background fluorescence and cells in media containing no peptide or cytokine 

were used as controls.  
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2.9 Measurement of protein expression 

Cell lysate samples generated from cell stimulation experiments were sonicated and 

underwent Lowry assay to determine overall protein concentration before addition of 

Laemmli buffer. Proteins within the lysate samples were then separated by electrophoresis 

on a sodium dodecyl sulphate poly-acrylamide gel (SDS-PAGE).  

Following electrophoretic transfer to a polyvinyllidine difluoride (PVDF) membrane, Western 

blotting was used to determine the responses of the inflammatory protein enzyme COX2 

and the NFκB specific inhibitory protein IκBα.   

2.9.1 Western blotting reagents 

For Western blotting gels: 30% acrylamide /Bis-acrylamide (A3699), sodium dodecyl 

sulphate (L4390), ammonium persulphate (A3678) and tetramethylethylenediamine (T9281) 

were sourced from Sigma Aldrich. Stained protein marker was sourced from Fermentas 

(11832124) and the chemiluminescent reagent used was ECL Prime Western blotting 

reagent (12316992) (Fisher Scientific).  

The following reagents were made up in our laboratory: 10x running buffer (30.3g tris base, 

144g glycine, 800ml water, 100ml 10% SDS, pH adjusted to 8.3, diluted 1:10 with water for 

experimentation),  10x Transfer Buffer (30.3g Tris base, 144g glycine, 900ml water, pH 

adjusted to 8.3, diluted 1:10 with water for experimentation),  napthol blue black reagent 

(0.1% napthol blue black, 10% methanol, 2% acetic acid), Laemmli buffer (tris pH6.8 250nM; 

SDS 4% w/v; Glycerol 10% v/v; β-mercaptoethanol; bromophenol blue).  

2.9.2 Antibodies used 

Anti - COX2 was sourced from Cayman laboratories (CAY160112), Anti – IκBα (Full length, sc-

847) and Anti – IκBα (C-21, sc- 371) were sourced from Santa Cruz. Horse radish peroxidase 

conjugated goat anti-rabbit (P0448) and goat anti-mouse (P0447) antibodies were sourced 

from DAKO. 

2.9.3 Protein assay 

Protein concentration in cell lysate samples was measured using the Bio Rad DC kit (500-

0111). On a transparent 96 well plate a standard curve of 80, 60, 40, 20, 10 and 4µg/ml was 

set up using bovine serum albumin against unknown samples diluted in water (3μl/20μl) and 
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measured in triplicate. Plate optical density was measured at 750nm using colorimetric 

plate reader. Following protein assay, samples were diluted in an equal volume of 2x 

Laemmli buffer.    

2.9.4 Preparation of SDS polyacrylamide gels 

For ideal separation of proteins, electrophoresis gels were made up in two parts: a stacking 

gel which was applied on top of a separating gel. Gels were made up to 1.5mm thickness in 

clamped glass plates according to the recipe detailed in Table 2.4. 

1.5mm 15 well plastic gel combs (BioRad) were inserted to the stacking gel prior to gel 

setting, these combs were removed before protein loading.  Gels were made up to a final 

percentage of 10% acrylamide as this concentration gave optimum protein separation at the 

molecular weights of the proteins under investigation: COX2 (MW: 72 kDa) and IκBα (MW: 

42 kDa).  

 

Table 2.4 Recipe for preparing 2x 10% SDS poly-acrylamide gels as used in this study 

  

Material Volume used 

 Stacking (Top gel) Separating (Bottom gel) 

Water 6.6ml 7.9ml 

30% Acrylamide 1.66ml 6.7ml 

Tris 1.5M - 5ml 

Tris 1.0M 2.5ml - 

SDS 100μl 200μl 

APS 50μl 200μl 

TEMED 18μl 18μl 
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2.9.5 SDS-Polyacrylamide gel electrophoresis 

Following protein assay, samples were heated to 95°C for 5 minutes to denature the protein 

structure. 10% SDS-polyacrylamide gels were placed in an electrophoresis tank (Bio Rad 

Mini Protean system) filled with running buffer, and samples in Laemmli buffer were loaded 

at 10µg/lane. Once loading was complete vertical electrophoresis was performed at 

constant current of 0.03A/gel for the stacking portion of gel.  The current was increased to 

0.04A/gel upon proteins reaching the separating portion of gel.  Once stained, protein 

markers had run to the bottom of the gel this indicated that running was complete. 

2.9.6 Protein transfer onto polyvinylidine difluoride membrane  

Stacking gel was discarded and separating gels were immediately transferred into cooled 

transfer buffer. Filter paper and sponges were doused in cooled transfer buffer and PVDF 

membranes were activated by placing in 100% methanol for 30 seconds. A transfer cassette 

was then prepared in the following order: 

Sponge > filter paper > gel > PVDF membrane > filter paper > sponge  

These cassettes were placed in an electrophoresis tank (Bio Rad Mini Protean system) filled 

with cooled transfer buffer. To ensure that the proteins transferred in the right direction 

onto the membrane, the gel was on the cathode (red electrode) side relative to the 

membrane; and the membrane was on the anode (black electrode) side relative to the gel.  

The tank was connected to a power pack and run at 90 Volts for 90 minutes.  

2.9.7 Blocking steps and primary antibody incubation 

Successful protein transfer onto PVDF membranes could be visualised by complete transfer 

of the coloured protein marker onto the PVDF membrane. Blocking of non-specific antibody 

attachment sites was carried out by washing membranes with 5% non-fat dry milk in Tris-

buffered saline with 0.1% Tween-20 (TBS-T) for 1 hour. 

Membranes were then incubated overnight at 4°C with primary anti-COX-2 antibody or anti-

IκB-α antibody, in 1% non-fat dry milk in 20ml TBS-T. This was followed by three washing 

steps with TBS-T. 
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COX2 antibody was tested across a number of different concentrations using both BSA and 

1% milk in TBS-T as antibody diluents. The optimal concentration of this antibody was 1:500 

for human myometrial cells and this was used throughout all subsequent experimentation.  

Initial optimisation using an antibody directed towards the C-terminal end of IκBα (C21, sc-

371) suggested that a concentration of 1:500 was optimal. However further optimisation 

steps were required to delineate the identity of multiple bands seen with subsequent use of 

this antibody. This process is outlined in Chapter Four. 

2.9.8 Secondary antibody incubation 

Polyclonal horseradish peroxidise conjugated goat anti-mouse immunoglobulin (diluted 

1:3000 in 1% non-fat dry milk) was used in conjunction with COX2 antibody and a polyclonal 

horseradish peroxidise conjugated goat anti-rabbit immunoglobulin (diluted 1:5000 in 1% 

non-fat dry milk) was used for IκBα antibody. This was followed by three washing steps with 

TBS-T.  

2.9.9 Development of films 

Following the above steps enhanced chemiluminescent (ECL) reagent was applied to PVDF 

membranes for five minutes. Membranes were then dried, placed in development cassette 

and developed manually onto photographic film in a dark room.  

2.9.10 Assessment of protein loading 

Following development, equal loading of proteins was assessed by staining of the PVDF 

membrane with napthol blue black reagent for a minimum of 30 minutes to detect actin 

protein (44kDa). 

2.9.11 Scanning and quantification of blots 

Developed films were densitometrically scanned using UMAX PowerLook III and 

quantification performed with Bio Image Intelligent Quantifier 2 software. 
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2.10 Measurement of mRNA expression 

Following extraction of RNA, gene expression was assessed via the measurement of mRNA 

transcripts across a panel of selected genes using reverse transcription quantitative 

polymerase chain reaction (RT-qPCR) arrays. 

2.10.1 Materials used for mRNA expression experimentation 

RNA extraction and synthesis of complementary DNA was performed using RNeasy mini kit 

(74101) and RT2 first strand kit (330404). Quantitative polymerase chain reaction (qPCR) 

array was performed with bespoke RT2 profiler PCR array plates and SYBR green master 

mix. These were all sourced from Qiagen. 

2.10.2 Isolation of total RNA 

The RNeasy Mini Kit (Qiagen) was used to extract total RNA from cells prepared as described 

in section 2.6.2. All work was carried out in a ribonuclease free environment with 

ribonuclease free equipment.  

2.10.3 RNA quantification  

Measurement of the RNA content in each sample was undertaken using the nanodrop 

spectrophotometer (ND-1000, Labtech). This spectrophotometer measures sample 

absorbance at 260nm and 280nm. An initial blank reading was taken using 2μL RNA free 

water, followed by sample assessment. RNA content was measured in ng/μl, suitable RNA 

purity was considered to be a 260/280 ratio of greater than 2.1. All RNA results included in 

this study met that standard.  

2.10.4 Synthesis of cDNA 

0.5μg of total RNA from each sample was added to the genomic DNA elimination mix from 

RT2 first strand kit; reverse transcription was then carried out according the manufacturers’ 

instructions, via the RT2 array handbook:  

https://www.qiagen.com/gb/resources/resourcedetail?id=6161ebc1-f60f-4487-8c9e-

9ce0c5bc3070&lang=en 

 

https://www.qiagen.com/gb/resources/resourcedetail?id=6161ebc1-f60f-4487-8c9e-9ce0c5bc3070&lang=en
https://www.qiagen.com/gb/resources/resourcedetail?id=6161ebc1-f60f-4487-8c9e-9ce0c5bc3070&lang=en
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2.10.5 Protocol for loading and running qPCR array plates 

cDNA as synthesised from 0.5μg of total RNA from each original sample was added to SYBR 

Green Master Mix. 25μL of this final mix was then added to each well of a 96 well array 

plate, with each well containing a different primer for a gene of interest or control. The 

array plates were created bespoke by Qiagen and the genes selected for examination are 

described in the next section. The plate was sealed with optical film, centrifuged at 1000rpm 

for 1 minute before inserting the plate into the PCR cycler (Step One Plus, Applied 

Biosciences) using the following protocol: 

Step Number of Cycles Temperature (°C) Duration 

1 1 95 10 minutes 

2 40 95 15 seconds 

  60 1 minute 

 

Fluorogenic data was collected via the FAM channel and the cycle threshold (Ct) values were 

calculated by applying a threshold limit that represented the exponential phase of 

amplification. To ensure comparability of gene expression between different array plates 

the same threshold limit was applied to all experiments (Ct 0.116). This was calculated as a 

mean threshold value from the first 6 arrays that were run and corresponded to the 

exponential phase of the amplification curve for all subsequent experiments.    

To check for specificity of gene product amplification: for each experiment a ‘step and hold’ 

melt curve analysis was carried out according to the following protocol: 

Step Temperature (°C) Duration Incremental Temperature Increase (°C) 

1 95 15 seconds  

2 60 1 minutes  

3 95 15 seconds 0.3 
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2.10.6 Selection of genes of interest and arrangement of gene array plate 

The results detailed in Chapter Five detail expression changes in uterine cells for a series of 

genes involved in labour, inflammatory processes and NFκB specific signalling within a 96 

well plate array in response to cytokine stimulation, and the effects of CPP linked and non-

peptide inhibitors on the cytokine induced response.  

With the aim of reducing the effect of biological variation on final results it was necessary to 

assess 2 conditions across the same plate (e.g. untreated vs IL1β treated); and it was 

recommended by the manufacturer to have 3 housekeeping controls, one reverse 

transcription control (RTC), one positive PCR control (PPC) and one human genomic DNA 

control (HGDC) for each set of genes of interest (GOI). Thus, primers for 42 genes of interest 

(in duplicate) could be selected for use on one array plate. 

The approach taken to gene selection was multifactorial. A number of genes encoding for 

proteins associated with the physiological events of uterine contraction, cervical dilation 

and membrane rupture that occur during human labour, termed contraction associated 

genes, were selected (Challis et al., 2000); also, for comparison, a collection of genes 

encoding for G-proteins involved in maintaining uterine quiescence were included (Webster 

et al., 2013). A number of pro inflammatory genes, genes encoding for proteins in the NFκB 

and AP1 pathways (Hayden and Ghosh, 2004, Davies and Tournier, 2012), and genes 

involved in the production of prostaglandins (Gibb, 1998) were chosen to aid understanding 

of the potential mechanism of action of inhibitors used in this study.  

To examine potentially new targets associated with human labour, a colleague (P. 

Palmowski) assisted in the examination of uterine RNAseq data generated in our laboratory 

and compared this to previously published data (Chan et al., 2014). This enabled the 

inclusion of novel target genes within the array whose expression may be linked to the 

regulation of labour. The genes of interest and controls used on the array plates are listed in 

Table 2.5. 
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Contraction associated genes 

OXTR 1/ MMP 91 / MMP191 / TIMP11 / GJA1 / GJB2 

Inflammatory genes 

IL1A / IL1B / TNFA / IL62 / IL8 / ICAM11 / SOCS31 /IL1R1 / IL1R2 / IL4R1 / CXCL22 / CXCL11 / 

CXCL61 / CCL21  

NFκB pathway genes 

NFKB1 / NFKB22 / RELA / NFKBIA2 /NFKBIZ1  

AP1 pathway genes 

FOSB1 / JUN2
 

Prostaglandin production genes 

PTGER3 2 / PLA2G2A2 / PTGES2 / PTGS22 

G protein receptor genes 

GPR372 / GPR34 / RGS10 

Novel target genes 

S100A91 / S100A81 /STAT12 / FOXO12 / ZEB12/ LILRA52 / SPINK51 / TRIB11 

Housekeeping genes and controls 

GAPDH / ACTB / B2M / RTC (reverse transcription control) / PPC (Positive PCR control) / 

HGDC (Human Genomic DNA control) 

Table 2.5 Gene used in RT2 profiler PCR array plates 

 1Denotes genes whose uterine expression is altered by labour in our laboratory RNA seq 

dataset. 

2Denotes genes whose uterine expression is altered by labour in published literature (Chan 

et al., 2014).  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5970
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2.10.7 Analysis of RNA expression changes 

Mean Ct values for each gene on the RT2 array plate were exported on an Excel file to the 

following data analysis website supported by Qiagen: 

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php 

Quality control was performed on each array plate in the following manner: 

1. PCR Array Reproducibility: 

If the Average PPC Ct is 20±2 and no two arrays have Average PPC Ct are > 2 away from one 

another then the sample and group were accepted. 

2. Reverse Transcription Control (RTC): 

Delta Ct (AVG RTC Ct - AVG PPC Ct) < 5 was acceptable. 

3. Genomic DNA Contamination (GDC): 

A Ct (GDC) > 35 was acceptable. 

All array plates used met the above quality control measures therefore none were discarded 

from analysis. 

Genes of interest (GOI) were normalised to the mean average Ct of the three selected 

housekeeping genes (β2 Macroglobulin, GAPDH, ACTB), to produce a mean average ΔCt 

value. 

Initial experiments compared fold changes between untreated (control group) and IL1β 

treated samples (treated group) by calculating 2^ΔΔCt values. Fold changes between the 

groups for each gene of interest were then arrived at by the following calculation: 

2^ΔΔCt (Treated Group) /2^ΔΔCt (Control Group)  

Fold regulation changes were produced for downregulated genes (i.e. genes with a fold 

change of <1) with the following calculation: 

1/Fold Change 
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Subsequent experiments sought to compare IL1β treated samples with samples pre-

incubated with a small molecule inhibitor or a CPP-linked peptide inhibitor prior to IL1β 

treatment.   

2.11 Statistical analysis 

SPSS 22 (IBM) and Prism 6.0 (GraphPad) software were used to perform statistical analysis. 

Statistical significance was assumed at p<0.05. For all conditions each separate n is a 

myometrial or placental sample taken from a different patient. 

2.11.1 Cellular uptake studies 

Statistical analysis was performed on Corrected Total Cell Fluorescence values. One-way 

ANOVA with Bonferroni Post Hoc corrections was performed to compare between different 

peptides at the same time point. Unpaired T-testing was used to compare changes in 

fluorophore-conjugated CPP uptake across time points.  

2.11.2 Biological effectiveness studies 

Statistical analysis was performed on optical densitometry values.  One-way ANOVA with 

Bonferroni Post Hoc corrections was performed to compare difference between groups.  

2.11.3 Gene array data 

P values were calculated based on a Student’s t-test of the replicate 2^ΔΔCt values for each 

gene in the control and treatment groups. 
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Chapter Three 
 

 

 

 

 

The cellular uptake and distribution of 

Cell Penetrating Peptides in human 

uterine and placental cells  
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3.1 Introduction 

CPP uptake into cells is dependent on many factors including: the CPP itself, the cell type, 

the cargo attached to the CPP, the method of cargo attachment (whether covalent or 

electrostatic); the concentration of CPP used and the density of cells (Hallbrink et al., 2004, 

Madani et al., 2011). The majority of CPP studies are performed on standard immortalised 

cell lines such as HeLa (Jones et al., 2005), with relatively few studies available that have 

reported CPP uptake in primary cells (Manceur and Audet, 2009). This emphasises the 

requirement to characterise CPP uptake in detail in any new experimental situation, such as 

the utilisation of human uterine and placental cell types to which CPPs have not been 

previously applied. 

The most common method to evaluate uptake is by coupling a CPP to a fluorescent moiety 

and measuring the fluorescence of treated cells. Such an approach has the advantages of 

studying both the location and amount (i.e. fluorescence intensity) of the fluorophore-

conjugated CPP within the cell (Madani et al., 2011).   Many early studies examining CPP 

uptake on fixed cells were subject to artefact effects due to cell fixation which 

overestimated uptake (Richard et al., 2003). Therefore, it is widely accepted that the best 

currently available method for evaluating CPP uptake is confocal microscopic imaging of live 

cells (Madani et al., 2011). Such an approach allows the recording of real time changes of 

fluorescent uptake within cells and the analysis of fine image slices within the z-plane to 

allow assessment of fluorescent signal through different cell layers (see Figure 3.1).  

There are now hundreds of CPP sequences described; but only a few have been extensively 

studied (Jones and Sayers, 2012). Of these CPPs;  vectors derived from the antennopedia 

protein of drosophila (AntP / Penetratin /Pen) (Derossi et al., 1994, Christiaens et al., 2004, 

Fischer et al., 2000, Khaja, 2010), the transcription-transactivating protein of HIV1 (TAT) 

(Vives et al., 1997, Wadia and Dowdy, 2005), or synthetically-derived multiple arginine 

residues  (usually R7-10) (Futaki, 2002, Nakase et al., 2004) are amongst the most widely 

used peptides for cellular uptake studies and for the transportation of biological cargo 

across cell membranes. For these reasons the initial part of this chapter determines the 

uptake of three peptide vectors derived from those sources: Pen, TAT and R8, by measuring 

their ability to deliver fluorescent cargo into human uterine and placental cells.  
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CPP vectors may display different uptake characteristics according to the cargo attached 

(Jones et al., 2005). Therefore, this chapter also examines the delivery of fluorophores by 

CPP vector conjugated to a potentially biologically effective peptide cargo: the Nemo 

Binding Domain (NBD) peptide, an 11 amino acid polymer directed at preventing 

inflammatory ligand induced NFκB activation (see introductory chapter, section 1.9.4) (May 

et al., 2000).  

The specific aims of these studies were: 

 To assess the time-dependent and dose-dependent cellular uptake of fluorescent 

cargo attached to three CPPs: Pen, TAT and R8 in comparison to a non-CPP control 

peptide GS4(GC) in primary human myometrial cells. 

 To assess the entry of the same three CPPs in primary human amnion cells.  

 To assess the myometrial cell uptake of a series of fluorophore conjugated CPPs with 

NBD peptide cargo attached.   
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Figure 3.1:  Confocal image Z-series of live myometrial cells demonstrating capture of fluorescent 

uptake throughout the cell. 

Upper panel: cartoon of myometrial cell used to indicate Z-plane slices (Z1-Z4) which are 0.54µm thick 

at 40x magnification.  

Lower panel: Confocal microscope images of live myometrial cells one hour following application of 

3µM Pen CPP conjugated to rhodamine fluorophore (red). Four consecutive z plane slices (Z1-Z4) 

0.54μm apart, are displayed at 40x magnification. Bright field and fluorescent images are overlaid here 

to demonstrate cell shape, outline and intracellular localisation of fluorophore. Nuclei are stained blue 

(Hoechst). Red punctate signal indicating fluorophore uptake can be seen internal to the cell 

membrane at all z-plane images. Scale bars 20µm.   
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3.2 Demonstrating the intracellular uptake and distribution of CPPs in human myometrial 

cells 

3.2.1 Comparison of CPP cellular delivery of fluorescent cargo with control peptide GS4(GC) 

To provide evidence that CPP intracellular fluorophore delivery was not simply occurring 

across a concentration gradient, the cellular entry of a control peptide conjugated to a 

fluorescent moiety (rhodamine) was compared to CPP-fluorescence conjugates at the same 

concentration over an identical time frame.  GS4(GC) is a 10 amino acid residue peptide with 

a neutral overall charge; it is used as a flexible bridging group between CPPs and prospective 

cargo but has no innate cell penetrating activity (Sayers et al., 2014) and, therefore, acts as a 

suitable control to assess CPP-dependent delivery of cargo. 

Figure 3.2 indicates the results of initial experimentation comparing CPP and control peptide 

delivery of the fluorophore rhodamine. The upper panel displays a scatter graph 

demonstrating the results of semi-quantitative analysis performed via Image J software on 

confocal microscope Z-slice image stacks. It compares the fluorescently tagged CPPs Pen, 

TAT or R8 with the fluorescently tagged control peptide GS4(GC) at 1µM concentration 60 

minutes after peptide application to myometrial cells. The lower panel displays 

representative confocal images taken from the analysed stacks. The results show that each 

of the three CPPs achieved intracellular delivery of rhodamine within one hour at 1μM 

concentration.  

Using one-way ANOVA with Bonferroni post hoc testing to compare differences between 

CTCF values of rhodamine-conjugated GS4(GC) and all three rhodamine-conjugated CPPs at 

1µM after 60 minutes application revealed differences for Pen (p=0.02) , TAT (p=0.002) and 

R8 (p=0.0001).  
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Figure 3.2 Comparison of rhodamine-CPP cellular uptake with a non-cell permeable control 

peptide 

Upper Panel: Scatter plot displaying results of semi-quantitative analysis as performed via 

Image J of rhodamine conjugated CPPs Pen, TAT, R8 and GS4(GC) control at 1µM concentration 

60 minutes after application to myometrial cells. Each data point represents the mean average 

Corrected Total Cell Fluorescence (Arbritrary Units) of 3 cells through 3 z-slice images in an 

image series. 3 image sequences were collected per experiment and 3 independent 

experiments performed. Black lines represent mean of data points. 

 *= significant difference compared with GS4(GC); one-way ANOVA with Bonferroni post hoc 

testing. 

Lower Panel: Confocal microscope images illustrating rhodamine conjugated CPP uptake (red) 

vs control peptide also conjugated to rhodamine (red). Images taken from corresponding data 

set as presented in upper panel. Nuclei stained blue with Hoechst nuclear dye. Scale bars 

20µm.   
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3.2.2 Mobility of peptide fluorescence within uterine cells 

Two pieces of evidence demonstrated that the fluorophore was being delivered 

intracellularly.  Firstly, consecutive image Z-slices indicated that fluorescent signal could be 

observed internal to the cell membrane in all slices, this has been previously displayed in 

Figure 3.1; secondly, a portion of fluorescent signal was evidently mobile within the cell for 

hours after application of CPP-fluorophore conjugates.  

As an example used to demonstrate this phenomenon, Figure 3.3 shows still images taken 

from a time lapse experiment. In the figure, live myometrial cells were co-incubated with 

incubated with Hoechst nuclear dye and Mito-Tracker dye (to label Mitochondria) to enable 

a fuller view of the internal components of the cell prior to addition of 10µM rhodamine-

Pen.  After two hours, cells were imaged to create a time lapse film with images captured 

every 20 seconds over a total time course of 5 minutes. The larger left hand image in Figure 

3.3 shows a representative cell from this experiment.  The right hand images demonstrate 

an enlarged portion of the main image at each minute of the time lapse to demonstrate a 

mobile fluorescent spot (red punctum) internal to labelled mitochondria. Similar mobility of 

fluorophore cargo within the cell was also observed with conjugation to TAT (Figure 3.9), R8 

(Figure 3.10) and Pen-NBD (Figure 3.12) peptides. 
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Figure 3.3 Demonstration of peptide mobility within a myometrial cell. 

Larger picture: confocal microscope image of myometrial cell with nuclei labelled blue 

(Hoescht 1µM) and mitochondria labelled green (Mito Tracker 1µM) 120 minutes 

following addition of 10µM rhodamine-Pen (red). Scale bar 20µm.  

Smaller Image series: cropped images sourced from a time-lapse film of the left hand 

image demonstrating peptide movement over 5 minutes. White box indicates moving 

fluorophore (red), white asterisk denotes fluorophore starting position. Scale bars 

2.5µm.  
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3.2.3 Assessment of peptide distribution within uterine cells 

To gain a greater understanding of peptide and fluorophore distribution within uterine cells, 

internal structures including the endoplasmic reticulum, mitochondria, endosomes and 

lysosomes were labelled for visualisation, prior to addition of rhodamine conjugated Pen 

CPP. Figure 3.4 panels A and B demonstrate that peptide (red) did not co-localise with 

endoplasmic reticulum and mitochondria (green).  

Figure 3.4 panels C and D demonstrate some areas of co-localisation between rhodamine 

(red) and endosomes or lysosomes (green) within the cell, represented as yellow signal 

within the Figure. This indicates that a proportion of fluorophore-CPP was distributed within 

these structures in myometrial cells. 

  
A B

C D

 Figure 3.4 Demonstration of peptide distribution throughout myometrial cells 

Cells were co-incubated with Hoechst nuclear dye (blue) and dyes to label: A endoplasmic 

reticulum  (green), B Mitochondria (green), C Endosomes (green) or D Lysosomes (green), prior to 

application of Rhodamine-Pen. Cell images captured one hour after Rho-Pen application. Co-

localisation of peptide and dye-labelled structures appears yellow. Brightfield channel is included 

in images C and D to better illustrate cell shape and outline. Scale bars 20µm. Images are 

representative of 3 image series (minimum of 5 cells captured per image) taken from 2 

independent experiments. 
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3.3 Detailed assessment of uptake of Pen CPP in myometrial cells 

3.3.1 Pattern of uptake displayed by fluorophore conjugated Pen CPP 

Figure 3.5 presents live cell confocal images from three experiments (labelled 1-3) whereby 

cells were exposed to 10µM of rhodamine-Pen over a 120 minute time frame. It 

demonstrates a pattern of CPP uptake within myometrial cells that was characteristically 

observed during experimentation. Within 15 minutes fluorescent signal can be seen 

correspondent to cell membranes (indicated by white arrows), with some punctate 

fluorescent signal also seen internal to the membrane. At 60 minutes the punctate or 

vesicular pattern of uptake predominates with some membranous signal still present, by 

120 minutes the observed fluorescent signal is predominantly vesicular and intracellular 

with a polar distribution around cell nuclei, an uptake pattern indicated by white asterisks in 

the Figure. In one example (Figure 3.5, n=3) this pattern of uptake has occurred within 60 

minutes of application.  
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Figure 3.5: Pattern of 10µM rhodamine-Pen CPP uptake over 120 minutes 

Each panel series displays representative confocal images from an independent experiment (1-3) 

demonstrating an 120 minute time frame from prior to CPP application (T0) to times 15, 60 and 

120 minutes following application of 10µM rhodamine-Pen (red). White arrows indicate 

membranous pattern of fluorescent signal, white asterisks indicate vesicular pattern of uptake. 

Nuclei are stained blue (Hoescht 1µM), T0 pictures include bright field to indicate cell shapes and 

outlines. Scale bars 20µm. 
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3.3.2. Quantitative analysis of 10µM rhodamine-Pen uptake   

Initial analysis of fluorescent uptake within cells was undertaken using Cell Profiler software 

which allows high throughput analysis of every cell imaged throughout every z slice as 

described in Chapter Two (section 2.6) of this thesis.  

Figure 3.6 demonstrates the quantitative analysis of myometrial cells exposed to 10µM 

rhodamine-Pen over a 120 minute timeframe as performed using both Cell Profiler and 

Image J software. The data here is presented as a line graph showing changes in mean 

intracellular fluorescence values over time. In this case all data points collected are also 

displayed in scatter form to allow a better comparison of the two forms of analysis.  

As shown in Figure 3.6A, data generated via Cell Profiler revealed a substantial increase in 

whole cell fluorescent uptake at 15 minutes, the mean data is similar at 60 minutes but 

increases further at 120 minutes. Using students T-test to compare differences in measured 

fluorescence data between time points revealed differences between the 60 and 120 

minute time points (p=0.002) but not between 15 and 60 minutes (p=0.93) . Mean cell 

fluorescence for all time points measured was significantly greater than at T0. 

Comparison of the results elicited using Cell Profiler analysis with the visual examination of 

cells (as seen with the pictorial data presented in Figure 3.5) led to the impression that there 

was a discrepancy, with the quantitative data overestimating intracellular uptake at the 15 

minute time point.  Detailed analysis of the software quantifying process revealed that, in 

many cases, the software pipeline was unable to distinguish between membranous 

fluorescent signal and intracellular vesicular signal in close proximity to the plasmalemma. 

The membranous signal is likely to represent electrostatic interaction between CPPs and cell 

membrane proteoglycans prior to cellular entry and, therefore, does not constitute 

intracellular uptake (Console et al., 2003). For this reason an alternative approach to 

analysis of confocal images was undertaken using Image J software. This allowed user 

selection of intracellular areas of uptake such that membranous areas of signal intensity 

were not included in the analysis. Data produced via the image J analysis is demonstrated in 

Figure 3.6B. It demonstrates an initial increase in mean fluorescence 15 minutes after rho-

Pen application, with a further increase at 60 minutes and minimal change thereafter. 

Students T-test comparison of the measured fluorescence data generated via Image J 
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indicated differences between 15 and 60 minutes time points (p=0.006) but not 60 and 120 

minutes (p=0.40). This better reflected the changes observed microscopically: intracellular 

uptake largely occurred within 60 minutes of application and less additional uptake was 

seen thereafter (Figure 3.5). Therefore, Image J was the method selected to analyse all 

subsequent experiments.     
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 Figure 3.6 Quantitative analysis of rhodamine-Pen 10µM uptake in myometrial 

cells 

A Scatter plot displaying Cell Profiler software analysis of confocal images. Each 

blue data point represents mean fluorescent intensity of all cells within a given z-

series image stack with 3-5 image stacks analysed per experiment and 3 

experiments per timepoint. Black line represents mean average of all data points. 

B Scatter plot displaying Image J software analysis of confocal images. Each blue 

data point represents mean fluorescent intensity of 3 cells within a given z-series 

image stack with 3 image stacks analysed per experiment and 3 experiments per 

timepoint. Black line represents mean average of all data points. 

*indicates significance between fluorescence data at indicated timepoints as  

compared using Student’s t-test.  
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3.3.3 Uptake of fluorophore-CPP across a concentration range 

Figure 3.7 demonstrates myometrial cells following application of 1µM, 3µM and 10μM 

rhodamine-Pen, as compared to identical doses of control peptide GS4(GC) over a 120 

minute time frame. The data shown for 10μM can also be seen in Figure 3.5 (panel labelled 

3) and is displayed again here for ease of comparison.  A similar pattern of uptake was seen 

across concentrations with membranous signal progressing to a vesicular distribution of 

fluorescence over the experimental time frame. However with the use of 1μM 

concentration areas of membranous signal persisted up to 120 minutes.  

The image J analysis of fluorescent cellular uptake for the three tested concentrations is 

displayed in Figure 3.8. The data values shown here for 10μM concentration are identical to 

those seen in Figure 3.6B and are displayed within this figure for ease of comparison. At all 

doses tested there were rapid increases of cellular fluorescence from 0-15 minutes, with 

further increases from 15-60 minutes before slowing of the fluorescent uptake. Statistical 

analysis using Student’s t-test to compare differences in mean CTCF values between time 

points indicated differences between 15 and 60 minutes at all concentrations tested (1µM 

p=0.04, 3µM p=0.04, 10µM p=0.006), but no differences between 60 and 120 minutes at 

any concentration (1µM p=0.22, 3µM p=0.55, 10µM p=0.40).   

The right hand panels of Figure 3.8 demonstrate quantitative evaluation of the GS4 (GC) 

control peptide 120 minutes following cellular application to display a comparison of uptake 

with rhodamine conjugated Pen. 1µM concentration of GS4 (GC) led to no increases in 

cellular fluorescence and application of 3µM and 10μM produced a small amount of 

fluorescence within cells after 120 minutes. Student’s t-test comparison of the fluorescence 

intensity of this signal with identical concentrations of rhodamine-Pen at the same time 

point revealed differences at all concentrations tested (1µM p=0.0002, 3µM p=0.001, 10µM 

p=0.0027).   

This indicates that cellular entry of the fluorophore is markedly enhanced when conjugated 

to a CPP vector as opposed to a non-cell permeant control.    
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Figure 3.7 Cellular uptake across concentration range of rhodamine-Pen compared to 

control peptide 

Confocal microscope images representing the 120 minute time frame of uptake of 1µM, 

3µM and 10μM rhodamine-Pen (red) are displayed. Lowest panels demonstrate 

representative confocal images of myometrial cells 120 minutes following exposure to 

indicated concentrations of control peptide rhodamine-GS4(GC). T0 pictures include bright 

field to indicate cell shapes and outlines, cell nuclei dyed blue with Hoechst. Scale bars 

20µm. 
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Figure 3.8 Quantitative analysis of rhodamine-Pen uptake via Image J 

Line graphs displaying values of 1µM, 3µM and 10μM rhodamine-Pen cellular uptake across a 

120 minute timeframe. Adjacent to this, on right hand side, is data representing equivalent 

concentration of control peptide rhodamine - GS4(GC) at the 120 minute time point only. Data 

points represent mean average ± SEM Corrected Total Cell Fluorescence values expressed in 

arbitrary units.  

* indicates significance between 15 and 60 minute time points as compared using Student’s t-

test. 

**indicates significance between rhodamine-Pen and GS4 (GC) 120 minutes following cellular 

application as compared using Student’s t-test  
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3.4 Uptake of rhodamine-conjugated TAT peptide in myometrial cells 

Once the time and concentration dependence of fluorophore-Pen uptake was established, it 

was necessary to investigate the cellular uptake of other fluorophore-CPP conjugates. 

The upper panel of Figure 3.9 displays representative confocal images of 10µM rhodamine-

TAT peptide demonstrating the uptake of this CPP-fluorophore conjugate over 120 minutes. 

A similar pattern was observed to that described with Pen (Figure 3.2), although some 

nuclear localisation is also observed with the use of this peptide after 120 minutes. 

The lower panel of Figure 3.9 displays the Image-J analysis of rhodamine-TAT at 1µM, 3µM 

and 10µM over the 120 minute time frame with GS4(GC) represented at identical 

concentrations at the 120 minute time point.   

Statistical analysis using Student’s t-test to compare differences in mean CTCF values 

between time points indicated a difference between 15 and 60 minutes at 10µM (p=0.016), 

but no differences between these time points when using lower concentrations (1µM 

p=0.26, 3µM p=0.13). No differences between 60 and 120 minutes where observed at any 

concentration (1µM p=0.89, 3µM p=0.55, 10µM p=0.13).   

Student’s t-test comparison of the fluorescence intensity of the GS4(GC) signal after 120 

minutes with identical concentrations of rhodamine-TAT at the same time point revealed 

differences at all concentrations tested (1µM p=0.046, 3µM p=<0.0001, 10µM p=<0.0001).   
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Figure 3.9 Cellular uptake of rhodamine-TAT peptide 

Upper Panel: Representative confocal microscopy images of 10µM rhodamine-TAT from pre-

application (T0) to 120 minutes following application. Scale bars 20µm. 

Lower Panel: Image J analysis of 1μM, 3μM and 10µM rhodamine-TAT across the 120 minute time 

frame. Data points represent mean average ± SEM Corrected Total Cell Fluorescence values. 

Adjacent to this, are data values representing equivalent concentrations of rhodamine conjugated 

control peptide GS4(GC) at 120 time point only. On right hand is confocal image representative of 

10µM rhodamine-GS4(GC) to illustrate the low level of uptake seen with the control peptide at 

this concentration.  

* indicates significance between 15 and 60 minute time points as compared using Student’s t-

test. 

**indicates significance between rhodamine-TAT and GS4(GC) 120 minutes following cellular 

application as compared using Student’s t-test  
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3.5 Uptake of rhodamine-conjugated R8 peptide in myometrial cells  

The upper panel of Figure 3.10 displays representative confocal images of 10µM rhodamine-

R8 peptide demonstrating the uptake of this CPP-fluorophore conjugate over 120 minutes. . 

It demonstrates a similar pattern of uptake as with rhodamine-Pen conjugated CPP (Figure 

3.2). 

The lower panel of Figure 3.9 displays the Image-J analysis of rhodamine-R8 at 1µM, 3µM 

and 10µM over the 120 minute time frame with GS4(GC) represented at identical 

concentrations at the 120 minute time point.   

Statistical analysis using Student’s t-test to compare differences in mean CTCF values 

between time points indicated a difference between 15 and 60 minutes at all 

concentrations tested (1µM p=0.04, 3µM p=0.04, 10µM p=0.006). No differences were 

observed between 60 and 120 minute time points with the use of 3µM (p=0.50) or 10µM 

(p=0.42) concentrations of rhodamine-R8; however, for 1μM the difference between 60 and 

120 minute time points was statistically significant (p=0.006) indicating that, at this 

concentration, the peptide may be taken up into cells over a longer time course.  

Student’s t-test comparison of the fluorescence intensity of the GS4(GC) signal after 120 

minutes with identical concentrations of rhodamine-R8 at the same time point revealed 

differences at all concentrations tested (1µM p=<0.0001, 3µM p=<0.0001, 10µM p=0.0002).   

3.6 Comparison of intracellular fluorescence of rhodamine-conjugated Pen, TAT and R8  

Changes in intracellular fluorescence following application of the three rhodamine 

conjugated CPPs: Pen, TAT and R8, was not compared via direct experimentation across the 

whole concentration range. However, statistical analysis of the mean CTCF values at the 60 

minute time point (as seen in Figures 3.8-3.10) using one way ANOVA with Bonferroni post-

hoc testing revealed differences between R8 and Pen at 1µM (p=0.0021) and 10µM (p=0.01) 

and R8 and TAT at 1µM (p=0.01) and 10µM (p=0.0002), with R8 producing the greatest 

fluorescence changes. 

No differences were seen between Pen and TAT at any concentration tested and no 

differences were seen between peptides at 3µM concentration.    
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Figure 3.10 Cellular uptake of rhodamine-R8 peptide 

Upper Panel: Representative confocal microscopy images of 10µM Rhodamine-R8 from pre-

application (T0) to 120 minutes following application. Scale bars 20µm. 

Lower Panel: Image J analysis of 1,3 and 10µM Rhodamine-R8 across the 120 minute time frame. 

Data points represent mean average ± SEM Corrected Total Cell Fluorescence values. Adjacent to 

this are data values representing equivalent concentrations control peptide GS4(GC) at 120 time 

point only. On right hand is confocal image representative of 10µM GS4(GC) to illustrate the low 

level of uptake seen with the control peptide at this concentration. 

* indicates significance between 15 and 60 minute time points as compared using Student’s t-test. 

**indicates significance between 60 and 120 minute time points at 1μM concentration only as 

compared using Student’s t-test. 

***indicates significance between rhodamine-R8 and GS4 (GC) 120 minutes following cellular 

application as compared using Student’s t-test.  
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3.7 CPP entry into amnion mesenchymal cells  

It was important to demonstrate whether the CPPs tested in this study could deliver cargo 

to other human primary cell types including cell types of placental origin. For this purpose, 

amnion mesenchymal cells derived from fetal amnion membranes were cultured: these are 

a mixed population of cells including fibroblasts, myofibroblasts and epithelial cells (Soncini 

et al., 2007).  

As demonstrated in Figure 3.11; all three CPPs conjugated to Alexa 488 were able to enter 

and deliver fluorescent cargo to this cell population at 1µM concentration within an hour, 

thus indicating the ability of CPPs to enter other gestational cell types at low concentration 

within a similar timeframe to that seen with myometrial cells.   

LR-8TATPen GS4 (GC)

 

Figure 3.11 Representative confocal images demonstrating CPP entry to amnion mesenchymal 

cells 

Cell nuclei were labelled with Hoescht dye (blue) before application of indicated CPP or 

control peptide at 1µM and images captured after one hour. CPP and control in these 

examples are conjugated to Alexa 488 fluorophore (green). Scale bars 20µm. 
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3.8 Examination of CPP-NBD peptide myometrial cell uptake 

Having identified that fluorescently conjugated Pen, TAT and R8 peptides at a concentration 

range from 1-10μM could enter cells within a one hour time frame, it was necessary to 

determine if fluorescently labelled CPP vectors would behave similarly with peptide cargo 

also attached. Testing the uptake of these fluorophore-CPP-NBD conjugates also aimed to 

provide information on the optimal pre-incubation times for subsequent experimentation. 

3.8.1 The intracellular uptake of rhodamine conjugated Pen-NBD 

In pictorial data, a similar pattern of myometrial intracellular uptake of rhodamine-Pen-NBD 

was observed to that seen with rhodamine-Pen. The pattern of fluorescent signal aligned to 

cell membranes within 15 minutes of application, with fluorescence becoming internalised 

largely within 60 minutes was seen with the use of 3μM and 10μM; however, the process 

appeared to take longer at 1μM with internalisation of peptide occurring between 60 and 

120 minutes with this concentration.  Figure 3.12 demonstrates this uptake over 120 

minutes for all three concentrations tested.  

Figure 3.13 outlines the quantification of intracellular fluorescence arrived at using Image J 

software. The graphs display uptake curves with a similar appearance to those seen for 

rhodamine-Pen (Figure 3.8). Statistical analysis using Student’s t-test to compare differences 

in mean CTCF values between time points indicated a difference between the 15 and 60 

minute time point for 1µM concentration (p=0.0005), but no differences seen between 

these time points for the other concentrations tested (3µM p=0.13, 10µM p=0.06). No 

differences were seen between the 60 and 120 minute time point for any concentration 

used.  Further analysis of differences across the time course demonstrated differences 

between the 15 and 120 minute time points for all concentrations (1µM p=0.001, 3µM 

p=0.02, 10µM p=0.001). 

Comparison of the fluorescence intensity of the GS4(GC) signal after 120 minutes with 

identical concentrations of rhodamine-Pen-NBD at the same time point revealed differences 

at all concentrations tested (1µM p=0.003, 3µM p=<0.0001, 10µM p=0.0002).   
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Figure 3.12 Cellular uptake of concentration range of rhodamine-Pen-NBD 

Confocal microscope images representing the 120 minute time frame of uptake of 1µM, 3µM 

and 10μM rhodamine-Pen-NBD (red) are displayed. T0 pictures include bright field to indicate 

cell shapes and outlines, cell nuclei dyed blue with Hoechst. Scale bars 20µm. 
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Figure 3.13 Quantitative analysis of rhodamine-Pen-NBD uptake via Image J 

Line graphs displaying values of 1µM, 3µM and 10μM rhodamine-Pen-NBD cellular uptake 

across a 120 minute timeframe. Adjacent to this, on right hand side, is data representing 

equivalent concentration of control peptide Rhodamine - GS4(GC) at the 120 minute time point 

only. Data points represent mean average ± SEM Corrected Total Cell Fluorescence values 

expressed in arbitrary units. 

* indicates significance between 15 and 60 minute time points at 1μM concentration only as 

compared using Student’s t-test. 

**indicates significance between 15 and 120 minute time points as compared using Student’s t-

test. 

***indicates significance between rhodamine-Pen-NBD and GS4 (GC) 120 minutes following 

cellular application as compared using Student’s t-test.  
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3.8.2 The uptake of rhodamine conjugated TAT-NBD and R8-NBD 

It was of interest to interrogate whether NBD conjugated to TAT or R8 could be delivered 

into cells over a similar time frame as that observed for Pen-NBD. 

As demonstrated in figure 3.14: within 60 minutes of cell application of rhodamine-TAT-NBD 

and rhodamine-R8-NBD a punctate pattern of fluorescence within the cell could be viewed, 

an effect similar to that seen  with the use of TAT and R8 without the NBD cargo (Figures 3.9 

and 3.10).  

  

Rho-Pen-NBD Rho-R8-NBDRho-TAT-NBD

  

 

Figure 3.14 Comparison of rhodamine conjugated CPP-NBD uptake 

Representative confocal images of myometrial cells 60 minutes following application of 

10μM rhodamine conjugated Pen /TAT/R8 with NBD cargo (red). Nuclei stained blue with 

Hoechst. Scale bars 20μm.  



95 
 

3.8.3 Cell uptake of rhodamine-Pen-NBD mutant  

A mutant NBD peptide with both tryptophan amino acid residues substituted for alanine is 

standardly used in the literature for testing the specificity of biological effects of NBD cargo. 

Experiments identified that rhodamine-Pen-NBD mutant was internalised to myometrial 

cells within 120 minutes of application to cells (Figure 3.15A). 

3.8.4 Cell application of rhodamine-NBD 

To test whether NBD peptide alone had cell penetrating properties, a rhodamine conjugated 

NBD peptide was applied to myometrial cells. Figure 3.15B indicates that this peptide alone 

did not show similar cell penetrating ability when compared with CPP conjugations of NBD 

peptide. 
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Figure 3.15: Application of rhodamine conjugated Pen-NBD (mutant) and NBD peptides to 

myometrial cells. 

Confocal microscope images of myometrial cells 120 minutes following application of either:  

A 10μM rhodamine-Pen-NBD (mutant) or  

B 10μM rhodamine-NBD peptide.  

Nuclei stained blue with Hoechst, scale bars 20μm.  
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3.9 Discussion 

Cellular uptake and effectiveness of CPPs and CPP-cargo combinations are reliant on many 

variables including the cell type, cell confluency and the type of cargo or CPP used (Madani 

et al., 2011b). Human uterine cells constitute the main target for tocolytic treatments aimed 

at the prevention of preterm birth (Olson et al., 2008). Therefore, it was vital to undertake a 

thorough stepwise assessment of the effectiveness of CPPs on this cell type. It was also of 

interest to identify if CPPs could enter cell types derived from human placenta, cells which 

play a role in the inflammatory response seen in many cases of preterm birth (Mogami et 

al., 2014).   

Firstly, it was imperative to identify that CPPs could enter myometrial cells and deliver 

cargo. The three CPPs tested (Pen, TAT, R8) delivered fluorescent cargo internally to human 

primary myometrial cells within one hour of application across a dose range of 1-10µM. All 

three CPPs were also able to enter primary amnion mesenchymal cells at low concentration 

within a similar time frame; however, difficulties in propagating this cell type beyond early 

passages limited the possibility of more detailed assessment of CPP uptake in this cell type.  

Once delivered into myometrial cells, CPPs were largely distributed in a vesicular pattern; 

they remained mobile and achieved a peri-nuclear distribution within 2 hours of application. 

The fluorescent-CPP conjugations did not predominantly co-localise with the endoplasmic 

reticulum or mitochondria. However, there was substantial co-localisation with Alexa488-

Dextran labelled endosomes and lysosomes within the cell, suggesting that some 

fluorescently tagged CPP may be distributed within these structures once internalised into 

uterine cells. This reflects findings from previous studies that have identified endocytosis as 

a likely route of intracellular uptake for many CPPs (Richard et al., 2005, Jiao et al., 2009). A 

degree of non-vesicular cytosolic labelling was also observed with the use of higher 

concentrations (3-10µM) of all three peptides; possibly representing a phenomenon of 

direct penetration or ‘translocation’ of CPPs across the cell membrane which avoids 

endocytic pathways via an energy independent mechanism (Madani et al., 2011b). All three 

CPPs used in this study have been shown previously capable of entering cells via this direct 

route as an alternative to endocytosis, with poly-arginine demonstrating the highest 
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likelihood of favouring such an entry route, and Pen most likely to favour endocytic routes 

of entry (Thorén et al., 2003).  

With all CPPs used across all concentrations tested, changes in intracellular fluorescence as 

measured using Image J software were significantly greater than that observed with the use 

of a rhodamine-conjugated control peptide with neutral charge (Rhodamine-GS4GC) at 

identical concentrations. This indicates that fluorescence delivery is due to the vector 

properties of the CPPs as opposed to simple diffusion across the cell membrane. 

Although limitations of time prevented direct experimental comparison of peptides across 

the full concentration range and time course, statistical analysis of quantitative data 

suggested that addition of rhodamine-R8 led to the largest increases in fluorescence within 

myometrial cells, with the use of rhodamine-TAT and rhodamine-Pen producing a smaller 

change in cellular fluorescence intensity, mirroring the findings of published data using non-

primary cell types (Jones et al., 2005). Such data could indicate that R8 delivers cargo most 

efficiently of the CPPs tested in myometrial cells. However, previous literature suggests that 

conjugation of fluorophore cargo to poly-arginine CPPs contributes to the translocation of 

the CPP across cell membranes (Hirose et al., 2012). The observation that fluorophore 

interaction with individual CPPs may influence delivery efficacy means direct comparisons of 

delivery efficacy between CPPs must be interpreted with caution.  Furthermore, a study 

investigating the effect of cargo attachments on CPP uptake efficiency found that the 

efficacy of poly-arginine delivery was attenuated once peptide cargo was attached (Jones et 

al., 2005). Such considerations; alongside the fact that many studies examining the 

effectiveness of the NBD peptide cargo have used CPP conjugations derived from 

antennopaedia protein (Strickland and Ghosh, 2006), led to the selection of Pen-NBD for 

more detailed examination in both uptake studies and biological effectiveness 

experimentation.  

Research examining how the cellular uptake of CPPs derived from antennopaedia can be 

affected by different peptide cargo attachments has found that there can be either 

attenuation or increase of uptake depending on the cargo tested (Fischer et al., 2002).  

Thus, it was essential to examine whether attaching the NBD peptide cargo to fluorophore-

CPP conjugations would influence the efficiency of intracellular delivery. Rhodamine 
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conjugated Pen-NBD demonstrated similar patterns of uptake to rhodamine-Pen as 

observed from both the pictorial and graphical data presented in Figures 3.14 and 3.15. 

Significant differences in intracellular fluorescence were observed between the 15 and 120 

minute time points at all concentrations; however, between 15 and 60 minute time points, 

the cellular uptake of rho-Pen-NBD  only demonstrated statistical significance at 1µM 

concentration and not for higher concentrations tested.  It was also observed that rho-Pen-

NBD fluorescent signal correspondent to cell membranes persisted beyond the 15 minute 

time point in some, but not all of the cells measured. This produced an increased variety of 

measured responses compared to that seen when using rhodamine-CPPs without NBD cargo 

attachment. Such observations suggests a degree of attenuation of Pen uptake once NBD 

cargo is attached due to the persistence of rho-Pen-NBD to reside on or near the cell 

membrane either prior to, or instead of, cell incorporation.  

The uptake kinetics of rho-Pen-NBD in myometrial cells may have been further clarified with 

the use of Fluorescence-activated cell sorting (FACS) techniques which can allow an 

assessment of fluorescent intensity from individual cells within a whole population 

(Manceur et al., 2007). However, FACS may not optimally distinguish between membrane 

bound fluorescent signal and intracellular fluorescence (Richard et al., 2003). Myometrial 

cells are adherent and require the use of proteases such as trypsin to aid suspension in cell 

media (Gargett et al., 2002), thus it is anticipated that such a methodological step could 

intrinsically alter the barrier properties of cell membranes and influence data regarding CPP 

uptake. Despite these concerns; FACS data may provide a useful adjunct to confocal 

microscopy in further work detailing CPP-cargo uptake in human primary cells.   

Detailed testing of cellular uptake of NBD peptide conjugated to CPPs other than Pen was 

not feasible within the temporal constraints of this study, nevertheless the confocal images 

displayed in Figure 3.16 indicate that the NBD cargo can be delivered into cells within 60 

minutes of application when conjugated to TAT and R8 CPPs. Attaching a mutant version of 

the NBD cargo to Pen CPP did not substantially affect intracellular delivery of cargo to 

myometrial cells, a result indicating that the subsequent lack of biological effect observed 

with the use of this mutant peptide control as seen in Chapter Four is not due to failure of 

this cargo to enter cells. Rhodamine-NBD in the absence of CPP demonstrated similar non 
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cell permeable properties to rhodamine-GS4GC, thus underlining the necessity of CPP vector 

conjugation to achieve efficient cellular entry of cargo.  

The NBD peptide has a putative anti-inflammatory mechanism that is of potential benefit in 

the context of preterm birth; therefore demonstrating the entry of this cargo into uterine 

cells is the first step towards establishing the biological effectiveness of this peptide, a 

process which is detailed further in the following chapter.   
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Chapter Four 

 

 

The biological effectiveness and 

specificity of targeting of CPP-linked 

NBD peptide: a comparison with non-

peptide inhibitors 
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4.1 Introduction 

Chapter Three establishes the ability of three CPPs to enter myometrial cells and deliver 

fluorescent cargo within a one hour time frame at doses of 1µM and above. The data 

presented in that chapter also supports the notion that potentially bioactive cargo, in the 

form of the NBD peptide conjugated to CPP, can be transported to sites internal to the 

myometrial cell membrane.  The overall aim of this chapter was,  therefore, to test if the 

CPP-conjugated cargo could exert a biological effect within these cells. 

To recap, the cargo tested in this study is the Nemo Binding Domain (NBD) peptide, an 11 

amino acid polypeptide directed at preventing the inflammatory ligand-induced activation 

of the IκB kinase complex (IKK complex) via interference at the site of interaction between 

the inhibitory NFκB essential modulator (NEMO or IKKγ) subunit and the two active 

components of IKK (IKKα and IKKβ), and, in doing so, prevent the transcriptional activation 

of NFκB (May et al., 2000).  A broad range of CPP-cargo conjugations are available as 

putative agents to inhibit inflammatory pathways within cells, and the rationale  

underpinning the selection of the NBD peptide as a tool in the experimental context of this 

thesis is dealt with in detail in the introductory chapter of this thesis (section 1.10.4). 

COX2 protein was selected to demonstrate both inflammatory changes in uterine cells, and 

to define the efficacy of CPP-linked and non-peptide inhibitors to block such changes. COX2 

is a highly inducible protein enzyme whose increased expression is a key step in the 

production of prostaglandins from arachidonic acid (Keelan et al., 2003). COX2 protein 

induction occurs secondary to the upregulation of inflammatory pathways in uterine and 

placental cells, a change that is associated with preterm birth (Slater et al., 1999, Bartlett et 

al., 1999b). The human COX2 gene has multiple sites of gene regulation including two NFκB 

binding sites (Appleby et al., 1994), and increases in COX2 mRNA and protein expression 

have been seen to synchronously follow degradation of IκBα and translocation of p65 to the 

nucleus in IL1β stimulated myometrial cells (Soloff et al., 2004). This suggests that, although 

there may be contribution from other inflammatory pathways, increased expression of 

COX2 is driven by NFκB activation in these cells.  

Cellular cytokine exposure leads to activation of the IKK complex within the canonical NFκB 

pathway, this complex subsequently phosphorylates the immediate downstream substrate 
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IκBα, which is then targeted for degradation by the proteasome (Hayden and Ghosh, 2004). 

Careful examination of IκBα degradation in response to cytokine stimulation was selected as 

a marker to test the specificity of Pen-NBD effects towards its expected target, the IKK 

complex, in myometrial cells.   

To allow for comparison between the biological effectiveness of CPP-conjugated inhibition 

of inflammatory signalling and non-CPP linked methods of inhibition, a group of non-peptide 

small molecule inhibitors with putative NFκB inhibitory activity (Curcumin, Sc514, Mg132 

and NAC) were also investigated for their ability to both inhibit cytokine stimulated COX2 

protein induction and prevent the degradation of IκBα secondary to IKK complex activation.  

The detailed aims for this chapter were: 

 To assess the optimal time frame and dose range of the cytokine agonists IL1β and 

TNFα to induce COX2 protein expression and IκBα protein degradation in human 

myometrial cells.  

 To assess any cell toxicity effects via application of cytokine stimulants or CPP-cargo 

conjugations to these cells. 

 To examine the ability of the NBD cargo conjugated to Pen CPP, derived from the 

antennopedia protein, to inhibit myometrial cell COX2 protein expression in 

response to cytokine stimulation. 

 To determine the specificity of this effect by examining cytokine induced COX2 

protein expression in the presence of a number of peptide and vehicle controls. 

 To compare the effectiveness of NBD conjugated to the different CPPs: Pen, TAT and 

R8. 

 To interrogate the discrete targeting of NBD peptide towards the putative IKK 

complex target by examining the phosphorylation dependent degradation of its 

immediate downstream substrate IκBα. 

 To examine the efficacy of Pen-NBD inhibitory effects against a panel of small 

molecules putatively capable of NFκB inhibition. 
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4.2 Assessing the time frame and agonist concentration for IL1β and TNFα stimulated 

COX2 expression in myometrial cells 

It was necessary to establish a time frame of cytokine induced changes in COX2 protein 

expression in order to both assess normal myometrial cell responses to inflammatory stimuli 

and the ability of NBD cargo to inhibit this response. Work was subsequently done to define 

the optimal dose of IL1β and TNFα induction.  

4.2.1 Optimising the time frame of COX2 protein induction 

Initial doses of cytokine agonists IL1β and TNFα were selected from the literature (Taichman 

and Hauschka, 1992, Zaragoza et al., 2006). In preliminary experiments, myometrial cells 

were exposed to 10ng/ml IL1β or 1nM (17ng/ml) TNFα over a 24 hour period and lysed at 

numerous indicated time points.  In Figure 4.1 Western blots representing this time frame 

are displayed. COX2 protein signal displays little change at 0 and 1 hours; increases at 2 and 

4 hours. Although some further increases were also observed over 8 to 24 hours, a time 

frame with cell lysis points at 0 (prior to cytokine addition), 1, 2 and 4 hours was selected for 

further experimentation. This was deemed the time frame within which the greatest 

dynamic changes of the COX2 signal could be elicited, whilst aiming to minimise occurrences 

whereby the chemiluminescent signal may be saturated. 
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Figure 4.1 Time frame of COX2 protein cytokine response in myometrial cells 

Western blots of COX2 protein expression over 24 hours following 10ng/ml IL1β (upper 
panel) or 1nM TNFα (lower panel) addition to myometrial cells in culture.  

PVDF membranes stained with napthol blue black dye are used to demonstrate actin 
expression as a demonstration of protein loading. 
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4.2.2 Optimising the agonist concentration range for COX2 protein induction 

Following the time frame experiment above, it was necessary to define an optimal agonist 

concentration to induce increases in myometrial cell COX2 protein expression within 4 hours 

of application.  To assess cytokine dosage concentration ranges of 0.1 to 100 ng/ml IL1β and 

0.1 to 10nM TNFα were applied to myometrial cells before cell lysis at 4 hours. Figure 4.2 

displays representative Western blots above a bar graph summation of optical densitometry 

data from 3 experiments demonstrating COX2 protein expression subsequent to IL1β or 

TNFα application.  Responses to IL1β increased up to 1ng/ml then levelled out thereafter; 

TNFα induced COX2 expression increases up to 1nM; further dose increase of the cytokine 

beyond this point did not elicit a stronger protein response.  Statistical analysis of the 

differences between groups using one-way ANOVA with Bonferroni post-hoc correction 

revealed no differences between the concentrations used of either IL1β or TNFα.  Figure 4.2 

displays a clear pictorial and graphical demonstration of changes in COX2 signal with 

application and alteration of concentrations of both IL1β and TNFα; therefore, the failure to 

prove statistical significance is likely due to the low number of replicates used (n=3). 

Consequently, due to temporal limitations of the study and following examination of the 

agonist concentration effect on IκBα protein (Figure 4.12), concentrations of 10ng/ml IL1β 

and 1nM TNFα were selected for further experimentation.    
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Figure 4.2 COX 2 protein responses across a cytokine agonist concentration range   

Upper Panels: representative Western blots demonstrating COX2 protein expression at 4 

hours (A IL1β, B TNFα) in myometrial cells in response to increasing doses of cytokine. Actin 

expression demonstrated as loading control.  

Lower Panels: Bar graphs demonstrating mean (SD) optical densitometry values of COX2 

protein expression 4 hours following exposure to indicated concentration of cytokines A IL1β 

or B TNFα (n=3).  
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4.3 Examination of cell toxicity effects 

To ensure that the experimental effects under observation were not mediated through 

peptide or agonist toxicity, a Cell Titre Blue rezazurin reduction assay was undertaken. 

Figure 4.3A displays the fluorometer values from untreated cells compared to cells treated 

with 10ng/ml IL1β or 1nM TNFα demonstrating that substantial cell death did not occur with 

addition of cytokine. Application of neither the unconjugated forms of Pen and NBD 

peptides at 50μM, nor Pen-NBD at 50μM or 100μM had an effect on cell viability (Figure 

4.3B) indicating that subsequent experimental results were not substantially influenced by 

cell death. The experimental time frame and concentrations displayed here were selected to 

mirror experiments presented later in this chapter.   
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Figure 4.3: Myometrial cell viability in presence of cytokine agonist or peptide 

A Comparison of untreated cells with cytokine treated cells after 5 hour incubation period. Bars 

represent mean average (SD) of fluorometer readings (n=3). 

B Comparison of cells treated with indicated peptides at varying concentration over 5 hour 

incubation period. Bars represent mean fluorometer readings (SD) as a percentage of untreated 

cells (n=3). 
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4.4 The effect of Pen-NBD on cytokine stimulated COX2 protein expression  

4.4.1 Pen-NBD inhibition of IL1β stimulated responses 

The Western blots in Figure 4.4A demonstrate COX2 protein expression in a 4 hour time 

course following application of IL1β alone (Control) or following pre-incubation with 

indicated doses of Pen-NBD peptide. The bar chart in Figure 4.4B displays the COX2 protein 

signal at 4 hours derived from Western blot results of 3 independent experiments. Data 

here is expressed as a percentage of mean IL1β (Control) optical density values across 3 

experiments.  

In control experiments a strong IL1β-induced COX2 response was seen at the 4 hour time 

point, but not reproducibly seen at time points previous to this. Application of 1 and 10μM 

of Pen-NBD produced a small increase in the COX2 response at 4 hours. Concentrations of 

50μM Pen-NBD decreased COX2 protein signal in all three experiments, whilst 100μM of 

Pen-NBD ablated the protein response to IL1β.  

Statistical analysis of the 4 hour time point responses using one-way ANOVA with 

Bonferroni post-hoc testing revealed differences between the control group and samples 

pre-incubated with 100µM (p=0.002) of Pen-NBD. No differences were seen with the use of 

1µM, 10µM or 50µM Pen-NBD or control samples. Analysis using one-way ANOVA at the 

other time points tested (0,1 and 2 hours) revealed no differences between any groups.    
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Figure 4.4 Effect of Pen-NBD on IL1β-induced COX2 protein expression 

A Representative Western blots indicating COX2 protein expression in myometrial 

cells over a four hour time frame following IL1B exposure alone (Control) or with 1 

hour pre-incubation of increasing concentrations of Pen-NBD.  

B: Bar graph demonstrating summated mean (SD) optical densitometry values of 

COX2 protein expression 4 hours following application of IL1β from 3 independent 

experiments normalised to a percentage of mean Control value.  

*indicates significant difference compared with control values. Tested using one-way 

ANOVA with Bonferroni post-hoc analysis. 
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4.4.2 Pen-NBD inhibition of TNFα stimulated responses 

The Western blots in Figure 4.5A demonstrate COX2 protein expression in a 4 hour time 

course following application of TNFα alone (Control) or following pre-incubation with 

indicated doses of Pen-NBD peptide. The bar chart in Figure 4.5B displays the COX2 protein 

signal at 4 hours derived from Western blot results of 3 independent experiments. Data 

here is expressed as a percentage of mean TNFα (Control) optical density values across 3 

experiments. 

In control experiments, a small increase in COX2 protein expression was observed at 1 and 2 

hours post cytokine exposure, with a stronger response elicited at the 4 hour time point. It 

is notable that the COX2 response elicited over the time course with the use of TNFα was 

more variable than that seen with the use of IL1β.  

Application of 1 and 10μM of Pen-NBD produced an increase in the COX2 response at 4 

hours. Concentrations of 50μM Pen-NBD did not affect the 4 hour COX2 protein signal, 

whilst 100μM of Pen-NBD decreased the protein response to IL1β. Statistical analysis of the 

4 hour COX2 protein responses from optical densitometry data using one-way ANOVA with 

Bonferroni’s post-hoc testing did not reveal any differences between groups. This may be 

due to small sample size tested (n=3) and a greater variety of COX2 responses in the TNFα 

alone group compared with that produced by IL1β. Analysis using one-way ANOVA at the 

other time points tested (0,1 and 2 hours) revealed no differences between any groups.    
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 Figure 4.5 Effect of Pen-NBD on TNFα-induced COX2 protein expression 

A Representative Western Blots indicating COX2 protein expression in myometrial cells 

over a four hour time frame following TNFα exposure alone (Control) or with 1 hour 

pre-incubation of increasing concentrations of Pen-NBD. 

B Bar graph summating mean (SD) average optical densitometry values of COX2 

protein expression 4 hours following TNFα exposure normalised to a percentage of 

mean Control (TNFα alone) signal (n=3).  

Statistical analysis performed using one-way ANOVA with Bonferroni post-hoc testing.  
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4.5 The effect of peptide and vehicle controls on cytokine stimulated COX2 expression  

As demonstrated above; at higher doses Pen-NBD was capable of inhibiting IL1β-induced 

COX2 responses in myometrial cells. Effects on TNFα-stimulated responses of the protein 

remained less clear, although there was an indication that lower doses may increase COX2 

protein expression with possible non-significant inhibition occurring at 100µM 

concentration.  

It was necessary to test the specificity of these effects by examining cytokine stimulated 

COX2 protein expression in the presence of a number of structurally similar peptide and 

vehicle controls. 

4.5.1 Effect of Pen-NBD mutant peptide on COX2 induction 

The specificity of CPP-NBD cellular effects has characteristically been examined with the use 

of an NBD mutant peptide (Strickland and Ghosh, 2006). This is an 11 amino acid peptide 

with the substitution of two tryptophan residues with alanine to produce the sequence: 

TALDASALQTE, thus rendering the peptide biologically ineffective (Dai et al., 2004).  

Figure 4.6 displays representative Western blots (upper panel) summarising 3 experiments 

whereby the NBD mutant, conjugated to Pen, was applied at a concentration range of 1-

100μM onto cells 1 hour prior to stimulation by IL1β cytokine, with the 100µM 

concentration presented here for ease of comparison.  The Western blot displayed suggests 

that Pen-NBD mutant may alter the cytokine-induced COX2 protein signal at both 2 and 4 

hour time points.  The lower panel of Figure 4.6 presents a bar graph summation of optical 

densitometry data from the same experiments demonstrating the effect of 1-100µM Pen-

NBD mutant on COX2 protein signal at four hours. This summated data suggests that doses 

of 1-50µM Pen-NBD mutant peptide may increase IL1β-induced COX2 protein signalling, an 

effect similar to that seen in with the use of 1-10µM wild type Pen-NBD in Figure 4.4. Pen-

NBD mutant 100µM did not have a reproducible inhibitory effect.  Statistical analysis of the 

4 hour IL1β-induced COX2 protein responses from optical densitometry data using one-way 

ANOVA with Bonferroni’s post-hoc testing did not reveal differences between any of the 

concentrations tested or the control group. Further statistical testing using one-way ANOVA 

at the other time points examined (0,1 and 2 hours) also did not reveal differences between 

groups. Although the small numbers involved in experimentation (n=3) may have influenced 
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the likelihood of demonstrating significance, no reproducible inhibitory effects on cytokine-

induced COX2 protein expression were observed in these experiments.   
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Figure 4.6: Effect of Pen-NBD mutant peptide on IL1β stimulated COX2 protein 

expression  

Upper panel: representative Western Blots of COX2 responses to IL1 β over a 4 

hour time frame in the presence and absence (Control) of 100μM mutant 

peptide. 

Lower panel: bar chart of summated optical densitometry readings of 4 hour 

COX2 signal across a concentration range of 1-100μM (n=3). Data is presented 

as mean (SD) percentage values of Control signal (IL1β alone).  

Statistical analysis performed using one-way ANOVA with Bonferroni post-hoc 

testing.  

 



114 
 

Figure 4.7 displays representative Western blots  (upper panel) and a bar chart (lower panel) 

summating 3 experiments whereby Pen-NBD mutant was applied to cells at 1-100µM 

concentration 1 hour prior to stimulation with TNFα cytokine. Statistical analysis using one-

way ANOVA to interrogate the optical densitometry data at each time point (0,1,2 and 4 

hours) across the concentration range tested (1-100µM) did not reveal any differences 

between groups.   
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Figure 4.7: Effect of Pen-NBD mutant peptide on TNFα stimulated COX2 protein 

expression  

Upper panel: representative Western blots of COX2 responses to TNFα over a 4 

hour time frame in the presence and absence (Control) of 100μM mutant peptide. 

Lower panel: bar chart of summated mean (SD) optical densitometry readings of 4 

hour COX2 signal across a concentration range of 1-100μM (n=3). Data is presented 

as mean (SD) percentage values of Control signal (TNFα alone).  

Statistical analysis performed using one-way ANOVA with Bonferroni post-hoc 

testing.  
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4.5.2 Unconjugated Pen and NBD effect on cellular COX2 responses to IL1β 

It remained possible that effects seen on IL1β-induced COX2 expression could be mediated 

through either the CPP Pen or NBD peptide alone, therefore 50μM of unconjugated Pen or 

NBD peptide were added to myometrial cells for 1 hour prior to addition of 10ng/ml IL1β.  

Application of neither peptide influenced cytokine stimulated COX2 expression over 4 hours 

(Figure 4.8). Statistical analysis using one-way ANOVA to interrogate the optical 

densitometry data at each time point examined (0,1,2 and 4 hours) did not reveal any 

differences between groups.   
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Figure 4.8: Effect of unconjugated Pen CPP or NBD peptide on IL1β stimulated COX2 

protein expression 

Upper panel: representative Western blots of COX2 responses to IL1β over a 4 hour 

time frame in the presence and absence (Control) of 50μM of either peptide.  

Lower panel: bar chart of mean average (SD) optical densitometry readings of 4 hour 

COX2 signal across 3 such experiments. Data is presented as mean (SD) average 

percentage values of Control signal (IL1β alone). 

Statistical analysis performed using one-way ANOVA with Bonferroni post-hoc testing.  
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4.5.3 DMSO vehicle effects 

To ensure peptide solubility in the final solutions of cell media required initial creation of a 

concentrated stock solution in an appropriate solvent. Following the peptide manufacturers’ 

advice, Dimethylsulphoxide (DMSO) was used as a solvent in this study. At high 

concentrations of DMSO there is the potential for cell toxicity or altered gene and protein 

expression effects (Pal et al., 2012). These effects vary between different cell types 

therefore vehicle testing at identical percentages to the final concentration of solvent is 

always recommended, and it is considered desirable to maintain a final concentration of 

DMSO at less than 0.1%. In practise it was not possible to dissolve the peptides in anything 

less than a 20mM stock solution; thus, the final concentration of DMSO applied to cells was 

0.25% for 50μM concentration and 0.5% for 100μM concentration. 

*

 

Figure 4.9: Vehicle (DMSO) effects on cytokine-stimulated COX2 protein expression 

Bar chart summation of three experiments displaying optical densitometry readings of 4 

hour COX2 signal following cytokine exposure alone (Control) or with pre-incubation of 

indicated concentration of DMSO. Data is presented as mean (SD) average percentage 

values of Control signal (IL1β alone). 

*Indicates significant difference performed using one-way ANOVA with Bonferroni post-

hoc testing. 
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Figure 4.9 displays a bar chart demonstrating the effects on cytokine-induced 4 hour COX2 

protein expression in myometrial cells pre-incubated with 0.25% or 0.5% DMSO. In IL1β-

induced cells, pre-incubation with 0.25% DMSO increased COX2 protein expression at 4 

hours whereas 0.5% concentration reduced protein expression. In TNFα-induced cells, pre-

incubation with 0.25% DMSO reduced COX2 protein expression at 4 hours whereas 0.5% 

concentration increased protein expression. Statistical analysis of the optical densitometry 

readings of the 4 hour COX2 signal revealed a difference between 0.25% DMSO and 0.5% 

DMSO treated groups in IL1β-induced cells (p=0.02). There were no other differences 

between groups.  

4.6. The efficacy of NBD conjugated to different CPP vectors  

To ascertain the most effective CPP delivery vector for NBD, a comparison of COX2 

responses to IL1β induction following pre-incubation with R8-NBD or TAT-NBD was 

undertaken. 

4.6.1 Determination of half maximal concentration 

Identification of the appropriate dose of R8-NBD or TAT-NBD conjugate was inferred via 

calculation of the half maximal inhibitory concentration of Pen-NBD required to ablate the 

IL1β induced COX2 response using the concentration range seen above (Figure 4.4).  This is a 

value often referred to as IC50; however, to produce such a value usually requires 

reproduction of experimentation no less than six times and given the relatively low numbers 

involved in this part of the study (n=4), half maximal inhibitory concentration was deemed 

more appropriate terminology. As demonstrated in Figure 4.10 the half maximal inhibitory 

concentration required for Pen-NBD to inhibit IL1β induced COX2 protein expression at 4 

hours was 39.42μM. For simplification: a concentration of 50μM was chosen to compare the 

differing CPP-NBD vectors.  
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4.6.2 Comparison of three CPP vectors conjugated to NBD 

Figure 4.11A displays representative Western Blots comparing Pen-NBD, R8-NBD and TAT-

NBD at 50μM against control (IL1β alone) samples over a 4 hour time course of cytokine 

stimulation. Underneath this is a summary bar graph analysis of three such experiments 

(Figure 4.11B) of which the summary data displayed for Pen-NBD is replicated from Figure 

4.4 and provided here for comparison. Although no statistically significant differences were 

observed between control and treated groups, the data demonstrates a trend towards an 

inhibitory effect seen when using Pen-NBD at 50µM, by contrast R8-NBD and TAT-NBD did 

not diminish IL1β induced COX2 protein response over 4 hours.   

#

Pen-NBD Concentration Response Curve

Log [Pen-NBD Concentration μM]

 
Figure 4.10: Concentration response curve for Pen-NBD 

Y axis displays COX2 optical density at 4 hours displayed as a percentage of uninhibited 

(IL1β alone) response. X axis displays log of concentration values from1 to 100μM. Red 

line is non-linear regression line of best fit using a variable slope. This was generated 

using Prism software: hill slope= -2.08, R2=0.71.  

# represents half maximal inhibitory concentration corresponding to a dose of 39.42μM 
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Figure 4.11 Comparison of effect of different CPP-NBD conjugations on IL1β induced 

COX2 protein expression 

A Representative Western Blots indicating COX2 protein expression in myometrial 

cells over a four hour time frame following IL1β exposure alone (Control) or with 1 

hour pre-incubation of different CPP-NBD conjugations at 50μM concentration.  

B Bar graph demonstrating mean (SD) optical densitometry values of COX2 protein 

expression 4 hours following IL1β exposure as percentage of control (n=3). 

Statistical analysis performed using one-way ANOVA with Bonferroni post-hoc testing.  
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 4.7 Assessing the time frame and agonist concentration for IL1β and TNFα stimulated 

IκBα in myometrial cells 

As with COX2 protein, it was initially necessary to define an appropriate time frame and 

cytokine dose regime by which to examine the degradation of this protein. 

4.7.1 Optimising the time frame for cytokine stimulated IκBα expression  

Protein expression of IκBα subsequent to IL1β or TNFα exposure was examined via Western 

blotting over a 4 hour time frame with initial cytokine doses selected as described above 

(section 4.2.1). In Figure 4.12 IκBα degradation commences at 5 minutes following IL1β 

addition, forms a doublet of both native (lower) and phosphorylated (upper) protein at 10 

minutes before full degradation occurs at 15 minutes; an effect that is consistent with other 

cell types (Chen et al., 1995). De novo NFκB -stimulated production of IκBα can be seen at 

120 minutes; however, in subsequent experiments this phenomenon was observed at 60 

minutes and therefore a time frame with cell lysis points at 0 (prior to cytokine addition), 15 

and 60 minutes was selected for further experimentation. 

Addition of TNFα produced a similar pattern of degradation and re-synthesis of IκBα over 4 

hours (Figure 4.12 lower panel); although subsequent experimentation displayed greater 

variability of TNFα induced degradation of IκBα compared to IL1β. 
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Figure 4.12 The time frame of IκBα protein phosphorylation, degradation and re-synthesis in 

myometrial cells  

Western blots illustrating COX2 protein expression following addition of 10ng/ml IL1β (upper 

panel) or 1nM TNFα (lower panel) to myometrial cell culture.  
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4.7.2 Optimising the agonist concentration range for IκBα protein degradation 

To ascertain the minimum dose of agonist needed to achieve complete cytokine-induced 

IκBα degradation, the expression responses of this protein 15 minutes following cytokine 

addition were examined across a dose range of 0-100ng/ml for IL1β or 0-10nM for TNFα.   

As shown in Figure 4.13A: at 1ng/ml IL1β IκBα is partially phosphorylated such that a 

doublet protein band is observed, consisting of native (lower band) and phosphorylated 

(upper band) IκBα protein (Chen et al., 1995). With the use of 10ng/ml the lower band can 

no longer be identified indicating complete degradation of the native protein.  A further 

increase in dose did not appear to increase this effect leading to the conclusion that 

10ng/ml IL1β was the optimal dose of IL1β to use for experimentation. Statistical analysis of  

the optical densitometry data for IL1β using one-way ANOVA and Bonferroni’s post-hoc 

testing revealed differences between 0 ng/ml and 0.1ng/ml compared to all higher 

concentrations used.  

As demonstrated in Figure 4.13B, TNFα cytokine stimulation at 0.1nM partially degraded 

IκBα; an increase in this effect was observed at 1nM with minimal further effect seen at 

10nM, therefore 1nM concentration was used in subsequent experiments. Statistical 

analysis of the optical densitometry data for TNFα using one-way ANOVA and Bonferroni’s 

post-hoc testing again revealed differences between 0 ng/ml and 0.1ng/ml compared to all 

higher concentrations used.  
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Figure 4.13 IκBα protein responses to varying concentrations of cytokine agonist  

Upper Panels:  representative western blots demonstrating IκBα protein expression at 15 

minutes (A IL1β, B TNFα) in myometrial cells in response to increasing doses of cytokine. Actin 

expression demonstrated as loading control.  

Lower Panels: Bar graphs demonstrating mean (SD) values of IκBα protein expression 15 minutes 

following exposure to indicated concentration of cytokine A IL1β or B TNFα (n=3). 

*significant differences compared to 0ng/ml and 0.1ng/ml IL1β. 

**significant differences compared to 0nM and 0.1nM TNFα. Statistical analysis performed using 

one-way ANOVA with Bonferroni post-hoc testing 
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4.8 Clarifying the identity of IκBα protein band on Western blot 

Initial optimisation of IκBα was performed using an antibody directed towards the C-

terminal end of the 42kDa IκBα protein (C21, sc-371). This suggested that a primary 

antibody concentration of 1:500 would produce a single clear band for this protein (Figure 

4.12). However, subsequent experimentation using this antibody produced Western blots 

with multiple bands. To further clarify which band represented IκBα, a second antibody that 

recognises the full length of the protein (FL, sc-847) was used for comparison.  

The proteasome inhibitor Mg132 has previously been shown to prevent the cytokine 

induced degradation of IκBα in uterine cells (Belt et al., 1999). Therefore, to verify the 

identity of IκBα protein band, cells were pre-incubated for 1 hour with 50μM of Mg132 or 

vehicle prior to cytokine stimulation. Identical samples underwent Western blotting using 

either the full length or C-terminal anti-IκBα antibody.  These processes aided identification 

of the IκBα band as shown in Figure 4.14.  

Use of the full length antibody led to the appearance of multiple bands that may represent 

other IκB subtypes, including IκBε which has close homology to IκBα protein (Mizgerd et al., 

2002). The C-21 anti-IκBα antibody recognises an epitope 15-25 amino acids long at the C-

terminal end of the protein; and, unlike the full length antibody, it does not recognise other 

IκB  subtypes. When using this antibody, a band was observed immediately superior to IκBα 

(Figure 4.14B, red arrow). This band did not show substantial alteration either in the 

presence of cytokine or Mg132 and likely represents basal auto-phosphorylation of IκBα in 

the C-terminal end of the protein (Lin et al., 1996). For consistent ease of identification, data 

from further experimentation presented in this thesis was generated using the C-21 Anti- 

IκBα antibody.  
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Figure 4.14 Identification of the IκBα protein band using full length (FL) and C-terminal (C21) anti -

IκBα antibodies 

Western blots demonstrating myometrial cell samples prior to cytokine addition (T0) and then 15 

and 60 minutes following application of 10ng/ml IL1β in the presence of 50µM Mg132 or vehicle. 

Identical samples were then probed with IκBα full length antibody (A IκBα FL) or IκBα antibody 

directed at the C-terminal of the protein (B IκBα C21).  The IκBα protein band indicated on the 

figure (black arrow) has been identified by the cytokine induced degradation of this band, and the 

failure to undergo cytokine stimulated degradation in the presence of Mg132. Red arrow indicates 

auto-phosphorylated IκBα. 
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4.9 Effect of Pen-NBD on IL1β dependent degradation of IκBα in myometrial cells 

Figure 4.15 displays representative Western blots to demonstrate IκBα protein responses to 

IL1β cytokine over a 60 minute time frame. Complete degradation of IκBα can be observed 

within 15 minutes of exposure to IL1β alone (Control). Application of increasing doses of 

Pen-NBD 1 hour prior to IL1β cell stimulation did not prevent the degradation of IκBα. This 

was consistent across a dose range of 1-100μM, including concentrations shown to be 

capable of significantly inhibiting COX2 protein induction (Figure 4.4). Figure 4.16 displays 

mean optical densitometry values in a bar chart summation demonstrating that the IL1β 

induced degradation effect on IκBα was consistent. Statistical analysis using one-way 

ANOVA with Bonferroni’s post-hoc testing to compare differences in optical densitometry at 

the 15 minute and 60 minute time points demonstrated that application of Pen-NBD did not 

alter this degradation at any concentration used. 
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Figure 4.15 Effect of Pen-NBD on IL1β stimulated IκBα protein degradation 

Representative Western blots indicating IκBα protein expression (black arrows) in myometrial cells 

over a 60 minute time frame following IL1B exposure alone (Control) or with addition of increasing 

concentrations of Pen-NBD 1 hour prior to IL1β application.  
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Figure 4.16 Quantification of effect of Pen-NBD on IL1β stimulated IκBα protein degradation 

Bar graph demonstrating mean (SD) average optical density values (AU) of  IκBα protein expression in 

myometrial cells over 60 minutes following IL1B exposure alone (Control) or with addition of 

increasing concentrations of Pen-NBD one hour prior to IL1β induction (n=3). Times represented are: 

prior to IL1B exposure (T0) and at 15 and 60 minutes following exposure.  

Statistical analysis compared optical densitometry data between the control group and 1-100µM 

Pen-NBD groups at 0, 15 and 60 minute time points using one-way ANOVA with Bonferroni’s post-

hoc testing. No significant differences were found. 
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4.10 Effect of Pen-NBD on TNFα dependent degradation of IκBα in myometrial cells 

Figure 4.17 illustrates IκBα protein responses to TNFα induction in the form of 

representative Western blot (Figure 4.17A) and bar chart summation of optical 

densitometry data across three experiments (Figure 4.17B). In control experiments partial 

degradation of IκBα was observed within 15 minutes with limited return of protein signal by 

60 minutes. Addition of 1-50μM concentration of Pen-NBD had no evident effect on IκBα 

degradation, however pre-incubation with 100μM Pen-NBD led to prevention of IκBα 

degradation at the 15 minute time point in 2 out of 3 experiments. Figure 4.18 displays the 

Western blots from all three experiments for both control samples (TNFα alone) and 

samples pre-incubated with Pen-NBD 100μM to illustrate the variety of responses 

produced.  

Statistical analysis using one-way ANOVA with Bonferroni’s post-hoc testing to compare 

differences in optical densitometry at the 15 minute and 60 minutes time point did not 

demonstrate any differences at any concentration used. 
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Figure 4.17 Effect of Pen-NBD on TNFα stimulated IκBα protein degradation  

A Representative Western blots indicating IκBα protein expression (black arrows) in 

myometrial cells over a sixty minute time frame following TNFα exposure alone (control) 

or with addition of increasing concentrations of Pen-NBD 1 hour prior to TNFα induction.  

B Bar graph demonstrating mean (SD) optical density values (AU) of IκBα protein 

expression at all three time points indicated (n=3). 

Statistical analysis compared optical densitometry data between the control group and 1-

100µM Pen-NBD groups at 0, 15 and 60 minute time points using one-way ANOVA with 

Bonferroni’s post-hoc testing. No significant differences were found. 
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Figure 4.18 Variability of IκBα protein responses to TNFα. 

Display of Western blots demonstrating IκBα protein expression (black arrows) over 60 

minutes following TNFα exposure in the absence and presence of 100μM Pen-NBD 

inhibitor. Blots from all experiments performed (1-3) are shown to indicate the 

variability of protein degradation produced by this cytokine. 
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4.11 Effect of different CPP vector NBD conjugations on IL1β induced IκBα degradation 

Figure 4.19A displays representative Western Blots comparing Pen-NBD, R8-NBD and TAT-

NBD at 50μM against control (IL1β alone) samples over a 60 minute time course of cytokine 

stimulation. Figure 4.19B presents a summary bar graph of three such experiments. There 

were no differences between control groups or groups pre-incubated with any CPP-NBD 

conjugation at any of the time points, thus indicating that none of the CPP-NBD 

combinations inhibited the IL1β induced degradation of IκBα across the experimental time 

frame. 
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Figure 4.19 Effect of different CPP-NBD conjugations on IL1β stimulated IκBα protein 

responses  

A Representative Western blots indicating IκBα protein expression (black arrow) in 

myometrial cells over a sixty minute time frame following IL1β exposure alone 

(Control) or with addition of 50μM of Pen-NBD, R8-NBD or TAT-NBD 1 hour prior to 

IL1β induction.  

B Bar graph demonstrating mean (SD) optical density values (AU) of IκBα protein 

expression following IL1β exposure at all three time points indicated (n=3). 

Statistical analysis compared optical densitometry data between the control group and 

CPP-NBD groups at 0, 15 and 60 minute time points using one-way ANOVA with 

Bonferroni’s post-hoc testing. No significant differences were found. 
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4.12 IκBα cytokine degradation in response to peptide controls 

IκBα protein expression following cytokine exposure was examined in the presence of a 

series of peptide and vehicle controls. These controls were identical to those tested for 

effects on COX2 protein expression and included Pen-NBD mutant peptide (1-100μM), 

unconjugated Pen and NBD peptide at 50μM and 0.25% / 0.5% DMSO. As can be observed 

from Figure 4.20; no alterations in cytokine induced IκBα degradation were seen at 15 or 60 

minutes, this was observed across 3 experiments for both IL1βa and TNFα stimulated 

myometrial cells.   
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Figure 4.20 Effect of peptide and vehicle controls on IL1β stimulated IκBα protein 

responses  

Representative Western blots showing IκBα protein expression (black arrows) at 0, 

15 and 60 minutes following IL1β exposure alone (control) or following 1 hour pre-

incubation with indicated control peptide or vehicle concentration (n=3). Similar 

results were observed using TNFα agonist (data not shown).  
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4.13 Comparison of the effects of Pen-NBD against a panel of non-peptidic putative NFκB 

inhibitors 

The effectiveness of Pen-NBD to inhibit inflammatory responses in myometrial cells was 

matched against an array of non-peptide inhibitors known to inhibit inflammatory 

responses in utero-placental cells: N-acetyl cysteine (NAC), curcumin, Sc514 and Mg132.  

The inhibitors were each tested at two concentrations with previously proven efficacy in 

vitro as suggested from the existing literature.  

The Pen-NBD data displayed in Figures 4.21 to 4.23 is replicated from figures presented in 

earlier sections of this chapter and is shown again here to allow for easy comparison 

between the CPP and non-peptide inhibitory approaches. 

4.13.1 Comparison of non-peptide and Pen-NBD effect on cytokine stimulated COX2 

induction 

Figure 4.21 demonstrates representative Western blots illustrating COX2 responses to IL1β 

over a four hour time frame with pre-incubation of indicated doses of inhibitor. With the 

exception of NAC, all inhibitors at the higher concentration tested had an inhibitory effect 

on COX2 signal with varying efficacy.  

In Figure 4.22 the mean optical densitometry values measured for COX2 protein signal 4 

hours following IL1β addition are displayed for every inhibitor at two concentrations tested.   

One-way ANOVA with Bonferroni’s post-hoc testing was used to analyse optical 

densitometry values. Except for NAC, inhibition of cytokine-induced COX2 responses were 

observed for all inhibitors when used at the higher concentration tested (Curcumin p=0.002, 

Sc514 p=0.008, Mg132 p=0.002, Pen-NBD p=0.001) (Figure 4.22A). However, inhibition was 

only observed using Mg132 (p=0.02) at the lower concentration tested (Figure 4.22 B).  
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Figure 4.21 Effect of non-peptide inhibitors on IL1β stimulated COX2 protein expression.  

Representative Western blots indicating COX2 protein following IL1β exposure over a 4 

hour time frame in the presence or absence (Control) of indicated concentrations of non-

peptide NFκB inhibitors compared to the effect of Pen-NBD peptide inhibitor.  
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Figure 4.22: Comparison of effect of non-peptide inhibitors and Pen-NBD on IL1β 

stimulated COX2 protein signal. 

Bar charts demonstrating summation of optical densitometry results of COX2 

protein expression at 4 hours via Western blot. Cells pre-incubated with either Pen-

NBD or small molecule inhibitor at higher concentration (A) or lower concentration 

(B) over 3-4 experiments. Each bar denotes mean (SD) average values as percentage 

of Control (IL1β alone) for each blot.  

* Denotes statistical significance compared to Control values. One-way ANOVA with 

Bonferroni’s post-hoc testing. 
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4.13.2 Comparison of non-peptide and Pen-NBD effect on IL1β stimulated IκBα degradation 

IκBα responses secondary to IL1β stimulation were examined following pre-incubation with 

the panel of small molecule inhibitors. NAC and curcumin were not able to prevent the 

degradation of IκBα at any of the doses tested.  

 The representative Western blots presented in Figure 4.23A show that 50μM Sc514 was 

capable of preventing the IL1β induced degradation of IκBα at 15 minutes but not at 60 

minutes, and 100μM Mg132 was able to prevent the degradation of this protein at both 15 

and 60 minutes. As previously demonstrated, 100µM Pen-NBD did not exert an effect on 

IκBα degradation.  

The bar chart in Figure 4.23B demonstrates the mean optical densitometry values of IκBα 

protein in the presence of IL1β alone (Control), 100µM Pen-NBD, 50μM Sc514 or 100μM 

Mg132, statistical analysis using one-way ANOVA with Bonferroni’s post-hoc testing to 

compare differences in optical densitometry at the 15 minute and 60 minute time points 

demonstrated differences between Sc514 and Mg132 and control groups at the 15 minute 

time point; but no differences between Pen-NBD and control at 15 minutes and no 

differences between groups at 60 minutes.  This suggests that both Sc514 and Mg132 were 

able to inhibit IκBα protein degradation 15 minutes following IL1β application.  
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Figure 4.23 Effect of non-peptide inhibitors on IL1β stimulated IκBα protein 

degradation: comparison with Pen-NBD  

A: Representative Western blots indicating IκBα protein expression (black arrows) in 

myometrial cells over 60 minutes following IL1β exposure alone (Control) or with 

addition of indicated inhibitor one hour prior to cytokine induction.  

A: Bar graph demonstrating mean average (SD) optical density values (AU) of IκBα 

protein expression at T0, T15.T60 for IL1β alone (Control) or groups pre-treated with 

the indicated inhibitor (n=3). 

*Statistically significant compared to control values. One-way ANOVA with 

Bonferroni’s post-hoc testing. 
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4.14 Discussion 

The results set out in this chapter tested the ability of the Pen-NBD peptide to dampen 

inflammatory responses to the cytokines IL1β and TNFα in myometrial cells. For IL1β 

simulated myometrial cells pre-treatment with 50μM Pen-NBD demonstrated a trend 

toward inhibition of COX2 protein responses, although this was not statistically significant. 

The higher concentration of 100μM inhibited expression of this protein.  

Some inhibition of COX2 protein responses to TNFα were demonstrated via Western blot 

with the use of 100μM Pen-NBD, again these changes were not statistically significant. This 

may suggest that a higher dose of Pen-NBD is required to inhibit TNFα mediated 

inflammatory responses; however an alternative explanation is that the TNFα effect 

observed over 4 hours showed variability between experiments, with occasions where COX2 

protein expression was comparatively low in control experiments. A substantial variability of 

human myometrial cell responses to TNFα stimulation has been reported previously in the 

literature (Lappas, 2013).  Due to temporal constraints, small sample numbers were used in 

this part of the study. Such factors, alongside the variable TNFα effects observed in 

experimentation, may have lessened the likelihood of observing statistically significant 

results. 

A form of ‘naked’ NBD peptide - without conjugation to CPP –used at 50μM concentration, 

failed to inhibit COX2 protein expression secondary to cytokine induction. As previously 

demonstrated in Chapter Three, the NBD peptide alone does not display cell penetrating 

properties when applied to myometrial cells, therefore the lack of effect seen with the use 

of NBD alone is likely due to the failure of unconjugated NBD to enter myometrial cells in 

sufficient concentrations and underlines the necessity of this cargo to be attached to CPP for 

biological use.    

A mutant NBD peptide conjugated to Pen inhibited neither TNFα nor IL1β-induced COX2 

protein expression when tested across an identical concentration range as wild type Pen-

NBD. This failure to inhibit NFκB activation is consistent with previous studies examining the 

NBD mutant peptide as a control to NBD (Shibata et al., 2007). Data presented in Chapter 

Three (Figure 3.17A) indicates that the mutant CPP-peptide combination is capable of 

entering myometrial cells when applied at the same concentration as the non-mutant form. 
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Therefore the lack of biological effect seen with the use of the mutant NBD peptide is not 

due to the failure of this CPP-peptide conjugate to enter cells, a finding that has not 

previously been demonstrated in the existing literature. It is also notable that the CPP Pen 

applied without NBD cargo did not have inhibitory effects on COX2 protein. These data 

emphasise the requirement of the NBD peptide to have inhibitory effect on cytokine-

induced COX2 expression in human myometrial cells. 

The possibility that the inhibitory effects observed on COX2 with the use of Pen-NBD are 

vehicle mediated must be considered: high final concentrations of DMSO were required (up 

to 0.5%) and inhibitory effects on TNFα-induced COX2 protein expression at 4 hours were 

observed with the use 0.25% DMSO and on IL1β-induced COX2 expression with 0.5% DMSO. 

However, there were no significant differences between vehicle treated groups and control 

signal, nor were there any vehicle effects observed on cytokine induced IκBα protein 

degradation (Figure 4.20). It was also notable that both effector wild type peptide and 

mutant controls were dissolved in identical concentrations of DMSO vehicle. This makes the 

extent of vehicle effects uncertain and indicates that any wild type specific effects are less 

likely to be entirely vehicle-mediated. 

Comparison of three CPP-NBD vectors at a selected concentration of 50µM demonstrated 

that neither R8-NBD nor TAT-NBD were able to inhibit IL1β induced COX2 signalling at that 

dose. Examination of the biological activity of all three CPP-NBD conjugations across a full 

concentration range was out-with the scope of this project, however research examining 

the ability of a range of CPPs conjugated to NBD to block IL1β induced NFκB activity in HeLa 

and HEK 293 cell lines found that cargo peptides conjugated to CPPs derived from 

antennopaedia or TAT proteins were the most effective in vitro (Khaja, 2010). Therefore 

further exploration of the effective concentration range of TAT-NBD in uterine cells could 

prove fruitful for future study.  

The NBD peptide was matched against an array of small molecule inhibitors that have 

previously shown ability to block NFκB activation in uterine and placental cells (De Silva et 

al., 2010, Lappas et al., 2003, Belt et al., 1999, Lim et al., 2013). Pen-NBD demonstrated 

greater efficacy in inhibiting cytokine induced COX2 protein expression than N-Acetyl 

Cysteine and showed similar effectiveness to Sc514, Curcumin and Mg132, thus signifying 
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that the use of  CPP-cargo conjugations to block inflammatory responses in gestational cells 

can be a successful approach when compared to non-peptide anti-inflammatory treatments.     

Examination of the mechanism by which Pen-NBD may be targeting action in myometrial 

cells produced a surprising result:  at all concentrations tested, the NBD peptide did not 

prevent the IL1β induced degradation of IκBα. As demonstrated in Figure 4.17, the TNFα 

induced degradation of this protein was inhibited by the peptide at 100μM in two out of 

three experiments demonstrating notable experiment to experiment variability for both 

control and inhibited groups. The possible conclusion remains that Pen-NBD at 100μM is 

capable of preventing TNFα but not IL1β induced IKK activation; however it is also possible 

that variability of TNFα inflammatory induction may have led to suboptimal IKK activation in 

two out of three cases. 

These data indicate that NBD peptide is capable of exerting anti-inflammatory effect in 

myometrial cells when delivered by Pen CPP.  The mechanism of action by which Pen-NBD 

blocks cytokine induced increases in COX2 protein is uncertain but may not be exclusive to 

inhibition of IKK complex activation. The following chapter explores broader inhibitory 

effects of Pen-NBD by examining cytokine induced gene expression changes in myometrial 

cells and aims to offer further clues as to the mechanism of anti-inflammatory action 

exerted by the NBD peptide, using the IKKβ inhibitor Sc514 as a comparative tool.  
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Chapter Five 

 

 

Effects of CPP-peptide and non-

peptide inhibitors on cytokine-induced 

gene expression changes in uterine 
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5.1 Introduction 

Having determined that CPP-conjugated peptide inhibitors and small molecule non-peptide 

inhibitors could prevent the cytokine induced expression of COX2 protein in myometrial 

cells; it was important to investigate whether both inhibitory approaches could have 

broader anti-inflammatory effects and prevent changes in the expression of genes whose 

altered expression patterns have been associated with human labour. 

A bespoke qPCR array of 42 genes, encompassing many genes with previously demonstrated 

expression changes associated with human labour (Khanjani et al., 2011, Chan et al., 2014, 

Kimura et al., 1992, Vadillo-Ortega and Estrada-Gutierrez, 2005, Lappas, 2013, Renthal et al., 

2010, Mittal et al., 2010) were selected to quantitatively examine the effects of cytokine 

exposure on gene expression in myometrial cells and to subsequently test the ability of CPP-

conjugated and non-peptide inhibitors to inhibit this gene expression. The rationale 

underpinning the selection of genes of interest (GOI) is explained in Chapter Two of this 

thesis (section 2.10.6).  

As demonstrated in the previous chapter, Pen-NBD was capable of inhibiting cytokine 

stimulated inflammatory protein expression but did not prevent the IL1β induced 

degradation of IκBα, thus generating uncertainty regarding the mechanism of action of this 

inhibitory peptide in myometrial cells . To interrogate the mechanism of action further, the 

inhibitory effects of Pen-NBD on cytokine induced myometrial cell gene expression were 

compared to the IKKβ inhibitor Sc514. 

The specific aims of this chapter were: 

 To examine the changes in expression of selected myometrial genes subsequent to 

IL1β exposure.  

 To identify the effects of CPP-linked peptide inhibitors and a non-peptide small 

molecule inhibitor on IL1β induced changes in myometrial cell gene expression. 
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5.2 Changes in myometrial cell gene expression following cytokine exposure 

Figures 5.1 and 5.2 display the combined results of eight experiments demonstrating gene 

expression changes in myometrial cells 4 hours following the application of IL1β cytokine.  

The clustergram in Figure 5.1 displays the hierarchical grouping of genes in terms of 

expression changes in response to IL1β application within each sample tested on the array. 

Of the 42 genes of interest (GOI) examined, 25 genes showed increased expression in the 

presence of IL1β, 2 genes showed decreased expression with IL1β and 15 genes 

demonstrated no change. The central portion of the clustergram displays a grouping of 

genes that exhibited a notably similar pattern of upregulated responses following IL1β 

addition to myometrial cells, broadly these genes encode for proteins involved in 

inflammatory responses.   
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Figure 5.1 Clustergram demonstrating the hierarchical clustering of myometrial cell gene 

expression in response to IL1β cytokine stimulation. 

The heat map in the right hand panel displays gene expression changes from an array of 42 

genes of interest (GOI) for IL1β treated and untreated (labelled T0) samples from eight 

biological replicates. Highly expressed genes are displayed as shades of red and minimally 

expressed genes are shown as shades of green. Left hand panel shows a dendrogram to 

highlight groups of genes that demonstrate similar expression profiles across the two 

experimental situations.  
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Figure 5.2 presents a volcano plot; the x axis displays fold regulation changes between 

control (untreated) samples and IL1β treated samples, the y axis displays the inverse of p 

values for each gene of interest; both axis have been transformed logarithmically to allow a 

graphical representation of all genes within the array.  Genes with a greater than two fold 

up-regulation (red circles) or two fold down-regulation (green circles) have been labelled in 

the diagram. The horizontal blue line represents the cut-off for significant changes in gene 

expression (p<0.05).  

The results demonstrate that a series of genes exhibited altered expression in myometrial 

cells following IL1β exposure. Genes that underwent significant upregulation included those 

encoding for pro-inflammatory cytokines (IL8, IL6, IL1B, IL1A, TNF) and chemokines (CCL2, 

CXCL1, CXCL2, CXCL6), plus genes encoding for cytokine-responsive proteins (ICAM1, 

SOCS3). Genes encoding for components of the NFκB (NFKB1, NFKB2, RELA, NFKBIA, NFKBIZ) 

and AP1 (FOSB, JUN) pathways were also upregulated.  

Several gene mediators of prostaglandin production (PTGES, PTGS2) and some of the genes 

encoding for contraction associated proteins (OXTR, GJB2, MMP9) were upregulated in the 

presence of IL1β. However, a number of genes within these two categories did not exhibit 

altered expression in response to cytokine addition (PTGER3, PLA2G2A, TIMP1). 

IL1β stimulation did not significantly alter the expression of a number of genes within the 

array, most notably the genes associated with G-protein receptor pathways (GPR37, GPR34, 

RGS10) involved in promoting myometrial quiescence (Aguan et al., 2000, Mittal et al., 

2010); additionally, genes encoding for cytokine receptor proteins demonstrated no 

alteration (IL1R1, IL1R2, IL4R). 

Of the genes identified as potential novel target genes whose expression is altered in 

myometrial tissue in association with human labour (Chan et al., 2014), only STAT1 and 

TRIB1 demonstrated expression changes in myometrial cells following IL1β exposure, with 

the expression of both these genes significantly upregulated by cytokine induction. 

GJA1 gene, which encodes for connexin 43 protein, and MMP19 gene were the only genes 

within the array to exhibit downregulation of expression in response to cytokine exposure. 

  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=4791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=5970


147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NFKB1

NFKB2

RELA
NFKBIA

CCL2

CXCL6

CXCL1

CXCL2

IL8

ICAM1

PTGES

JUN

GJB2 PTGS2

IL1A

IL6
IL1B

TNF

SOCS3

TRIB1

STAT1

OXTR

FOSB

MMP9

MMP19

GJA1

Fold regulation of IL1β treated vs untreated samples

Log2 (Fold change of IL1β treated / Untreated) 

-L
o

g1
0

 (
p

 v
al

u
e

) 

UpregulationDownregulation

NFKBIZ

 

Figure 5.2 Volcano plot demonstrating gene expression changes in myometrial cells following IL1β 

exposure. 

X axis shows fold regulation changes between IL1β treated and untreated samples four hours 

following cytokine addition. Y axis is the inverse of the p value generated for each gene of interest 

(GOI) via students T-test. All genes with >2 fold difference between IL1β treated and untreated 

samples are labelled on the figure. Upregulated genes are presented as red circles, 

downregulated genes are green circles and genes demonstrating no change are black circles. 

Genes above the blue horizontal line demonstrate significant change in the presence of IL1β. Data 

are summated from experiments from eight biological replicates. 
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5.3 Effects of CPP-linked and small molecule inhibitors on cytokine induced gene 

expression changes in human uterine cells 

5.3.1 Anti- inflammatory effects of Pen-NBD, or Sc514  

To assess the anti-inflammatory efficacy of CPP-linked (Pen-NBD) or non-peptide (Sc-514) 

therapeutic strategies, control samples (IL1β addition alone) were compared with inhibited 

samples (IL1β plus inhibitor). The concentration and pre-incubation time of inhibitors were 

selected on the basis of their ability to significantly inhibit IL1β induced COX2 protein 

expression at four hours, as established in Chapter Four.   

Figure 5.3 displays the inhibitory effect of Pen-NBD (Figure 5.3A) and Sc514 (Figure 5.3B) on 

a panel of inflammatory pathway-related genes which were significantly upregulated in the 

presence of IL1β.  It demonstrates that Pen-NBD inhibited cytokine-mediated increases in 

expression of many of these genes, including the chemokines IL8, CXCL1/2/6 and CCL2, and 

the cytokine IL1A but not IL1B, IL6 or ICAM1 gene expression. As displayed in Figure 5.3B, 

the non-peptide small molecule IKKβ inhibitor Sc514 attenuated the cytokine induced 

expression of all the pro-inflammatory genes demonstrated within the array. Neither 

inhibitory approach altered the increased expression profile of SOCS3 gene. 
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Figure 5.3 Anti-inflammatory effects of Pen-NBD or Sc514 on IL1β stimulated pro-

inflammatory gene expression in uterine cells. 

Bar charts representing mean average plus SD fold regulation changes of inflammatory genes 

compared to untreated samples either in the presence ofIL1β alone (blue bars) or pre-

incubated with a CPP-linked (A Pen-NBD, green bars) or small molecule (B Sc514, red bars) 

inhibitor prior to IL1β addition. 

 *indicates significant difference in gene expression as derived from Student’s t-test of 

replicate 2^ΔΔCt values (n=3). 
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5.3.2 Effects of Pen-NBD, or Sc514 on panel of labour associated genes 

Figure 5.4 demonstrates a panel of genes taken from the array whose altered expression is 

associated with increased myometrial contractility and extracellular matrix remodelling that 

occurs in human labour (Kimura et al., 1992, Xu et al., 2002, Chan et al., 2014, Chow and 

Lye, 1994). Within the reproductive literature, the proteins produced from the activation of 

these genes including the oxytocin receptor (OXTR), connexin 43 (GJA1), COX2 (PTGS2) and 

matrix metalloproteinases are referred to collectively as the contraction associated proteins 

(CAPs) (Challis et al., 2000), as the increased expression of these proteins promotes the 

phenotypic switching of the uterus from quiescence to a pro-contractile state.  

With the exception of TIMP1, all of these genes exhibited fold regulation changes in uterine 

cells in the presence of IL1β compared to untreated cells (Figure 5.1). Additional pre-

incubation with Pen-NBD prior to IL1β induction did not significantly alter the gene 

expression profile in this panel. 

Use of Sc514 led to inhibition of IL1β induced MMP9 increased gene expression, but did not 

alter the cytokine stimulated changes in fold change regulation for any of the other labour 

associated genes in this panel.   
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Figure 5.4 Effects of Pen-NBD and Sc514 on cytokine induced expression changes of labour 

associated genes 

Bar charts represent a panel of genes whose expression has been previously reported to be 

differentially regulated in the presence labour in utero-placental cells. Bars represent mean 

(SD) fold regulation changes of inflammatory genes compared to untreated samples either in 

the presence ofIL1β alone (blue bars) or pre-incubated with a CPP-linked (A Pen-NBD, green 

bars) or small molecule (B Sc514, red bars) inhibitor prior to IL1β addition. 

*indicates significant difference in gene expression as derived from Student’s t-test of replicate 

2^ΔΔCt values (n=3).  

 



152 
 

5.3.3 Effects of Pen-NBD, or Sc514 on NFκB pathway genes   

The series of NFκB pathway genes included in the array are displayed in Figure 5.5. All the 

gene components of this pathway demonstrated significant upregulation in myometrial cells 

with the addition of IL1β (as seen in Figure 5.2).  

As displayed in Figure 5.5A: pre-incubation of uterine cells with 100µM of Pen-NBD did not 

alter the cytokine induced expression profile of any of the genes looked at in this pathway. 

By contrast, use of 50µM Sc514 (Figure 5.5B) inhibited IL1β stimulated increases in fold 

change regulation of all the NFκB pathway genes included in the array. 
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Figure 5.5 Effects of Pen-NBD or Sc514 on cytokine induced expression changes of NFκB pathway 

genes 

Bar charts represent gene components of the NFκB pathway. Bars represent mean average plus SD 

fold regulation changes of inflammatory genes compared to untreated samples either in the 

presence ofIL1β alone (blue bars) or pre-incubated with a CPP-linked (A Pen-NBD, green bars) or 

small molecule (B Sc514, red bars) inhibitor prior to IL1β addition. 

*indicates significant difference in gene expression as derived from Student’s t-test of replicate 

2^ΔΔCt values (n=3).  
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5.3.4 Effects of Pen-NBD, or Sc514 on genes involved in prostaglandin regulation 

The effect of either inhibitor on two genes whose expression is required for the production 

of prostaglandins was examined. PTGS2 is the gene encoding for COX2 protein and PTGES 

encodes for prostaglandin E synthase, an enzyme that catalyses the production of 

prostaglandins E2 and F2α. The expression of both these genes was significantly increased in 

uterine cells following the application of IL1B (Figure 5.2). 

The bar charts in Figure 5.6 demonstrate the fold change regulation of both these genes in 

the presence of IL1β alone; or with the pre-incubation of either Pen-NBD or Sc514 prior to 

IL1β addition.  Pen-NBD did not alter the cytokine induced expression of either gene 

whereas the presence of Sc514 diminished both PTGS2 and PTGES gene expression.  

A Pen-NBD B Sc514

**

IL1β alone

IL1β + Pen-NBD 100µM

IL1β + Sc514 50µM

nsns

 

 

Figure 5.6 Effects of Pen-NBD or Sc514 on cytokine induced expression changes of genes 

involved in prostaglandin regulation 

Bar charts demonstrating the fold change regulation of PTGS2 and PTGES genes. Bars represent 

mean average plus SD fold regulation changes of inflammatory genes compared to untreated 

samples either in the presence ofIL1β alone (blue bars) or pre-incubated with a CPP-linked (A 

Pen-NBD, green bars) or small molecule (B Sc514, red bars) inhibitor prior to IL1β addition. 

*indicates significant difference in gene expression as derived from Student’s t-test of replicate 

2^ΔΔCt values (n=3).  
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5.3.5 Effects of Pen-NBD, or Sc514 on cytokine-stimulated changes in novel target genes 

Amongst the genes selected for investigation within the array were a group of novel target 

genes that have previously displayed altered expression in association with human labour, 

but whose role within the regulation of term or preterm labour is not well characterised.  

The genes selected for this purpose and the rationale behind their selection is outlined in 

Chapter Two of this thesis. Of the group of novel target genes, only STAT1 and TRIB1 

displayed altered expression in response to IL1β exposure, with both genes demonstrating 

increased expression (Figure 5.2).  

The bar charts in Figure 5.7 demonstrate the fold change regulation of both these genes in 

the presence of IL1β alone; or with the pre-incubation of either Pen-NBD or Sc514 prior to 

IL1β addition.  Pen-NBD diminished STAT1 and increased TRIB1 gene expression. Pre-

incubation with Sc514 did not alter the cytokine induced expression of either of these 

genes.  

  A Pen-NBD B Sc514

**

IL1β alone

IL1β + Pen-NBD 100µM

IL1β + Sc514 50µM

ns ns

 

Figure 5.7 Effects of Pen-NBD or Sc514 on cytokine induced expression changes STAT1 and 

TRIB1 genes  

Bar charts demonstrating the fold change regulation of STAT1 and TRIB1 genes. Bars 

represent mean average plus SD fold regulation changes of inflammatory genes compared to 

untreated samples either in the presence ofIL1β alone (blue bars) or pre-incubated with a 

CPP-linked (A Pen-NBD, green bars) or small molecule (B Sc514, red bars) inhibitor prior to 

IL1β addition. 

*indicates significant difference in gene expression as derived from Student’s t-test of 

replicate 2^ΔΔCt values (n=3).  
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5.4 Discussion 

Using a bespoke array of genes selected to demonstrate expression changes in human 

gestational cells that have been associated in the literature with human labour (Khanjani et 

al., 2011, Chan et al., 2014, Kimura et al., 1992, Vadillo-Ortega and Estrada-Gutierrez, 2005, 

Lappas, 2013, Renthal et al., 2010, Mittal et al., 2010); this chapter demonstrates fold 

change regulation changes in human myometrial cells following addition of the cytokine 

IL1β. 

Genes exhibiting upregulated expression included the pro-inflammatory cytokines IL16, IL8, 

TNFα and IL1β.  Inflammatory preterm birth has been associated with increased production 

of these inflammatory mediators in the utero-placental environment (Cappelletti et al., 

2015). IL8 displayed the greatest expression changes of the genes within this array in 

response to IL1β exposure. A study examining the transcriptional profile of human 

myometrial and cervical tissue in response to labour using microarray techniques also found 

IL8 to be the most highly expressed of the genes examined, and found a core inflammatory 

gene response in those tissues subject to labouring processes (Bollopragada et al., 2009).    

Genes encoding for the chemokines CXCL1, CXCL2, CCL2 and CCL6 also showed substantial 

upregulation in the presence of cytokine within this study. This is similar to dramatic 

increases in expression of these genes previously seen in myometrial tissues of a mouse 

model systemically injected with LPS to induce preterm birth (Shynlova et al., 2014).  These 

chemokine genes are also much more highly expressed in labouring human term 

myometrium when compared to non-labouring samples (Chan et al., 2014, Mittal et al., 

2010).  Upregulation in response to IL1β was seen with genes coding for components of the 

AP1 and NFκB pathways. This is consistent with an increased response of these molecular 

pathways within gestational cells following exposure to a pro-inflammatory environment, 

such as has been proposed to occur in inflammatory scenarios of preterm birth (MacIntyre 

et al., 2014, Lindstrom and Bennett, 2005).   

Within the reproductive literature, the proteins produced from the activation of genes 

including the oxytocin receptor (OXTR), connexin 43 (GJA1), COX2 (PTGS2) and matrix 

metalloproteinases are referred to collectively as the contraction associated proteins (CAPs) 

(Challis et al., 2000). The increased expression of these proteins is proposed to promote the 
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phenotypic switching of the uterus from a quiescent to a pro-contractile state. A number of 

these genes within the array were upregulated in the presence of IL1β including genes 

encoding for the oxytocin receptor (OXTR), the gap junction protein connexin 25 (GJA2) and 

matrix metalloproteinase enzyme 9 (MMP9). 

Taken together, the above data indicate that exposure to an inflammatory environment 

upregulates a pro-inflammatory transcription signature within myometrial cells which is 

similar to that seen in labouring uterine tissue at term (Bollopragada et al., 2009, Mittal et 

al., 2010) , and demonstrate that cytokine exposure may contribute to the upregulation of 

key proteins involved in the promotion of uterine contraction (Kimura et al., 1992, Xu et al., 

2002, Chan et al., 2014, Chow and Lye, 1994).   However, there are restrictions to the in 

vitro experimental model used in this study including the selection of a small number of 

genes, the timing of gene expression sampling and the use of only one agonist.  

Examination of the effect of CPP-linked and small molecular inhibitors on cytokine-induced 

gene expression changes in myometrial cells found that both inhibitory approaches had 

important anti-inflammatory effects on myometrial gene expression. Sc514 demonstrated 

ability to inhibit cytokine induced increases in IL6, ICAM1, and TNF gene expression, changes 

which were not observed with the use of Pen-NBD.  Neither inhibitor altered expression of 

AP1 pathway genes, nor exhibited broad ability to inhibit IL1β stimulated expression 

changes in genes within the panel of contraction associated genes. However, Sc-514 was 

able to inhibit MMP9 expression following application of cytokine. MMP9 is a matrix 

metalloproteinase enzyme involved in remodelling the extracellular matrix aiding processes 

such as cervical ripening and fetal membrane rupture (Athayde et al., 1998). It exhibits 

increased expression in fetal membrane tissue and maternal serum following term and 

preterm labour (Tency et al., 2012, Xu et al., 2002). Therefore, blocking the expression of 

this gene could be of therapeutic benefit in the context of preterm birth. Sc-514 inhibited 

cytokine-induced increases in expression of gene components of the NFκB and 

prostaglandin synthesis pathways. By contrast, the failure of Pen-NBD to effect similar 

changes suggests that the actions of Pen-NBD in dampening cytokine signalling in human 

uterine cells may not attributable to a single mechanism of action focussed on interaction 

with the IKK complex, a theme explored in detail in the General Discussion chapter.  
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Amongst the panel of novel target genes selected, only STAT1 and TRIB1 exhibited altered 

expression secondary to IL1β exposure. Sc514 pre-incubation did not inhibit the response of 

either gene to cytokine addition, Pen-NBD showed ability to inhibit expression of STAT1 but, 

increased TRIB1 gene expression above IL1β induced expression levels. STAT1 is a gene 

encoding for a member of the signal transducers and activators of transcription protein 

family which have a key involvement in interferon and inflammatory signalling (Ramana et 

al., 2000).  A systematic review performing pathway analysis on human single nucleotide 

polymorphisms that have a previously described association with preterm birth and preterm 

premature rupture of membranes (PPROM) found that nearly all PPROM specific genes are 

linked upstream to the STAT1 gene (Capece et al., 2014). This suggests a regulatory function 

for STAT1 in the process of early membrane rupture and, therefore, inhibition of this gene 

may confer benefit in avoidance of this pathological process. TRIB1 encodes for a member 

of the Tribbles homolog family of putative protein kinases. Although the role of tribbles 

proteins in human labour is yet to be defined, TRIB1 protein is known to perform a 

regulatory role in the function of the MAPK pathway (Kiss-Toth et al., 2004). Given that 

activation of the MAPK pathway is associated with preterm birth (Bartlett et al., 1999b), it 

remains possible that increases of TRIB1 expression in the presence of Pen-NBD could have 

either pro-labour or tocolytic actions. 

The data presented here and in Chapter Four of this thesis suggest that both Pen-NBD and 

Sc514 exhibit important anti-inflammatory effects on uterine cells and can block the 

cytokine induced expression of many genes whose upregulation is associated with both 

physiological human labour and inflammatory associated preterm birth (Khanjani et al., 

2011, Chan et al., 2014). It was also interesting that both agents demonstrated ability to 

alter the expression of different genes, for example: Pen-NBD but not Sc514 significantly 

inhibited the cytokine-induced gene expression of STAT1, whereas only Sc514 inhibited 

changes in MMP9 gene expression.  With increasing improvements in the characterisation 

of distinct preterm birth phenotypes which arise from differing causative mechanisms but 

result in a common outcome (Villar et al., 2012), the availability of a variety of agents that 

can treat both a broad insult (inflammation) but also aim to inhibit more discrete targets is a 

necessity.  Therefore, both CPP-linked and small molecule inhibitory approaches can be due 

further consideration for development as tocolytic therapies.  



158 
 

Chapter Six 

 

 

 

General Discussion 
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A shortage of candidate agents available for clinical testing has restricted attempts to 

develop new treatments targeted at the prevention of preterm birth. Aiming to address the 

problem, this study has taken an innovative approach to the development of such agents by 

testing the effectiveness of a class of peptide-based delivery vectors, Cell Penetrating 

Peptides which have the potential to deliver bioactive cargo to cells (Orange and May, 

2008). Using the Nemo Binding Domain anti-inflammatory peptide cargo directed against 

the NFκB pathway the study aimed to ameliorate inflammatory signalling in uterine cells 

and compare this CPP-cargo effect against a group of small molecule inhibitors that have 

previously demonstrated anti-inflammatory effects in gestational cells (May et al., 2000, 

Lappas et al., 2003, Lim et al., 2013, Belt et al., 1999, De Silva et al., 2010). 

The data presented in this thesis indicate that three CPPs (Pen, TAT, R8) can enter 

myometrial and placentally-derived cells and deliver cargo at low concentration within a 

short time period. Furthermore, Pen CPP was able to deliver the NBD peptide cargo internal 

to uterine cells whereby it inhibited increases in COX2 protein expression at four hours 

following cytokine exposure.  The inhibitory effect observed was comparable to, or in some 

cases, greater than that seen with the use of non-peptide anti-inflammatory inhibitors. 

The phenomenon of COX2 induction following uterine and placental cell surface exposure to 

cytokines or LPS has been demonstrated to precede increases in prostaglandin production 

(Belt et al., 1999, Yan et al., 2002b, Kniss et al., 2001). Prostaglandins are key mediators of 

labour and the inhibition of COX2 protein is an important target for putative agents 

developed with the aim of preventing preterm birth (Hirst et al., 2005, Olson, 2005). Thus, 

the use of CPPs may offer an attractive strategy for drug development within the preterm 

birth paradigm.  

6.1 The choice of CPP and the potential for CPP-cargo interaction 

The appropriate selection of CPP is a vital concern for the delivery of any designated cargo. 

This study used Pen CPP as the delivery vector for detailed examination of NBD peptide 

cargo cellular uptake and biological effectiveness. The rationale for this selection was 

multifactorial: due to the efficacy of uptake displayed by rhodamine-Pen and comparatively 

poor uptake of rhodamine-TAT when applied to myometrial cells; alongside the 

consideration that previous literature had indicated attenuation of poly-arginine uptake 
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once cargo is attached (Jones et al., 2005). Additionally, the original description of NBD 

peptide was as a peptide cargo attached to a CPP derived from antennopaedia protein (May 

et al., 2000), and many subsequent studies have used this CPP vector combination with 

NBD. Thus the use of Pen-NBD in this study allowed for comparison with previously 

published data (Strickland and Ghosh, 2006).  

The literature also contains numerous in vitro and in vivo experimental examples of NBD 

attached to a variety of CPP vectors including those derived from antennopaedia, TAT and 

poly-arginine (Dai et al., 2004, Shibata et al., 2007, Choi et al., 2003, Habineza Ndikuyeze et 

al., 2014). Alongside this, two studies have aimed to assess the effect that attaching 

different CPP vectors may have on NBD cargo delivery and efficacy and found that cell 

toxicity and biological effectiveness can vary widely according to the vector used (Jones et 

al., 2005, Khaja, 2010). Such variation can be explained in part by differences in the delivery 

efficacy of any CPP with a selected cargo on any particular cell type. However, a further 

complicating factor is the possibility of interaction between the CPP and the cargo which 

may affect overall secondary structure and thus alter the properties of each component or 

the total CPP-cargo unit.   

Although the effects of such interactions are not fully understood, there are notable 

examples in the literature where authors have altered the CPP-cargo combination or 

structure and investigated how these changes influence either intracellular delivery or 

biological effectiveness. A study using a peptide based MAP Kinase 2 (MK2) inhibitor 

designed for use with a CPP vector found that amino acid substitution or deletion within the 

CPP, or variation of the CPP vector itself could increase or decrease both the potency and 

specificity of inhibition. Furthermore, CPP vectors used alone were capable of producing 

significant inhibitory effects (Ward et al., 2009). The authors were unable to explain why 

these CPP changes led to such variation in biological activity; however, they proposed that 

the overall charge and hydrophobicity of CPP and cargo are likely to contribute to this 

phenomenon.    

A recent paper examined a phenomenon of large complex formation between insulin 

protein cargo and CPPs derived from antennopaedia protein using dynamic light scattering 

and electron microscopy techniques (Kristensen et al., 2015).  The authors reported that the 
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size and frequency of CPP-insulin complexes were dependent on environmental pH, with 

fewer and smaller complexes being formed at lower pH. They found that CPP-dependent 

delivery of insulin cargo through an epithelial monolayer was pH sensitive and required the 

presence of arginine residues within the CPP vector, and that alteration of the position of 

tryptophan residues within the CPP structure could also alter delivery efficacy.  These 

findings highlight not only the effect that altering the CPP vector may have on an overall 

CPP-cargo unit; but also underlines that smaller differences in structure within the same 

CPP-cargo combination, for example, altering the position or frequency of key amino acid 

residues such as arginine and tryptophan, may influence the efficacy of both cellular 

delivery and biological effect.   

Peptide Name Peptide Structure Isoelectric 

point 

Net 

Charge 

at pH 7 

No of 

Arginine 

Residues 

No of 

Tryptophan 

Residues 

Pen RQIKIWFQNRRMKW 12.42 4 3 2 

TAT YGRKKRRQRRR 12.41 7 6 0 

R8 RRRRRRRR 12.94 7 8 0 

GS4(GC) GSGSGSGSGC 3.11 -0.1 0 0 

Nemo Binding 

Domain 

TALDWSWLQTE 0.71 -2 0 2 

Pen Nemo Binding 

Domain (Wild type) 

Ac-RQIKIWFQNRRMKW-

Aca- TALDWSWLQTE-

NH2 

11.87 3 3 4 

Pen Nemo Binding 

Domain (Mutant) 

Ac-RQIKIWFQNRRMKW-

Aca-TALDASALQTE-NH2 

11.87 3 3 2 

TAT Nemo Binding 

Domain 

Ac-YGRKKRRQRRR-Aca-

TALDWSWLQTE-NH2 

12.12 6 5 2 

R8 Nemo Binding 

Domain 

Ac-RRRRRRRR-Aca-

TALDWSWLQTE-NH2 

12.58 6 8 2 

Table 6.1 The structure and properties of peptides used in experimentation. 
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Table 6.1 indicates how changes in the CPP and cargo attachments used in this study altered 

the isoelectric point and net charge of the CPP-cargo complexes, thus varying the sensitivity 

of the overall unit to environmental pH changes. Each CPP-cargo combination also shows 

differences in the frequency of amino acid residues such as arginine and tryptophan, and it 

is possible that the three dimensional position of these residues differs within the secondary 

conformation of each CPP-cargo unit. The table highlights that low or negatively charged 

peptides with few to nil arginine residues, such as GS4(GC) or NBD alone, do not possess cell 

penetrating ability (as demonstrated experimentally in Chapter Three of this thesis). This is 

also consistent with literature suggesting that the guanidinium groups contained within 

arginine amino acids are essential for CPP cell entry (Wender et al., 2000).  

The peptide structures listed in Table 6.1 suggest that the biological efficacy demonstrated 

by Pen-NBD in myometrial cells, but not observed with the use of NBD conjugated to TAT or 

R8, may be related to the slightly lower charge of this  CPP-cargo combination or to the 

frequency or position of tryptophan and arginine residues within the overall unit. However, 

the exact significance of such changes is not yet known in the literature and this study was 

not designed to explain how such differences may affect cellular uptake or overall biological 

activity. There are a very large number of CPPs described in the literature, and even 

amongst well characterised CPPs such as AntP or TAT differences exist as to the precise 

amino acid structure used for experimentation (Gautam et al., 2012). Thus, there is a vital 

importance for any future study to clearly describe the CPP used, the exact amino acid 

structure and the method of conjugation with any given cargo to ensure consistency of data 

produced.  

6.2 NBD peptide targeting in human myometrial cells 

In this study the NBD peptide was selected as the CPP-linked cargo to examine due to well 

characterised anti-inflammatory properties both in vitro and in vivo, its putative selectivity 

towards NFκB dependent pathways and the association between NFκB upregulation and 

preterm birth (Strickland and Ghosh, 2006, May et al., 2000, Lindstrom and Bennett, 2005).  

A prime benefit of using this peptide cargo was also the reported specificity of targeting 

towards the IKK complex. It potentially offers inhibition of aberrant NFκB signalling without 

affecting  physiological NFκB activation associated with normal cellular inflammatory 
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responses, thus minimising off-target effects (May et al., 2000). Consequently, the failure of 

Pen-NBD to prevent the IL1β induced degradation of IκBα in myometrial cells even at doses 

capable of COX2 protein inhibition was an unexpected result that required careful 

consideration.  

The experiments involving the non-peptide inhibitor Sc514 were informative in this regard. 

Sc514 is a small molecule inhibitor suggested to exert a high degree of inhibitory selectivity 

for IKKβ above other IKK isoforms or serine-threonine or tyrosine kinases (Kishore et al., 

2003), and, therefore, has an analogous mechanism of action to Pen-NBD via inhibition of 

IKK complex activation. Despite both Pen-NBD and Sc514 producing comparable inhibition 

of COX2 protein, Sc514 was additionally able to inhibit IL1β-induced degradation of IκBα 

protein, whereas Pen-NBD did not prevent such degradation (Chapter Four, section 4.13.2).  

Exposure to IL1β increased the expression of all NFκB pathway genes examined within a 

bespoke array of genes; Sc514 decreased expression changes in all of this gene family, 

whereas Pen-NBD exerted minimal effect (Chapter Five, section 5.3.3).   

There are a number of possible explanations for such results. The specificity of Pen-NBD 

inhibitory effects directed towards the IKK complex may vary according to the type of 

inflammatory agonist used. IL1β has demonstrated the capability to activate the canonical 

NFκB pathway in cells deficient of the IKKβ subunit, suggesting that this agonist can trigger 

an IKKβ-independent mechanism of NFκB activation, a phenomenon not observed with 

TNFα (Solt et al., 2007). Indeed, agonist-specific variation of Pen-NBD effect was observed in 

this study with TNFα-induced IκBα protein degradation inhibited by Pen-NBD in two out of 

three experiments, but not in a third experiment (Chapter Four, section 4.10). This may be 

explained in part by the previously described variation of observed responses in myometrial 

cells to TNFα stimulation (Lappas, 2013), however it may reflect true Pen-NBD inhibition of 

TNFα, but not IL1β-induced IκBα protein degradation. 

Further interrogation of the literature revealed only two studies which have directly 

examined the effect of NBD peptide on IL1β-dependent phosphorylation and degradation of 

IκBα protein with both studies demonstrating successful inhibition of IL1β stimulation. 

Baima et al. used concentrations of NBD ranging from 6.2 to 100μM to inhibit IκBα 

degradation in IL1β-stimulated rheumatoid arthritis synovial fluid (RASF) cells (Baima et al., 
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2010) , and Tas et al. applied 50μM NBD to block IL1β-induced degradation in fibroblast-like 

synoviocyte (FLS) cells (Tas et al., 2006). Results from such studies indicate that Pen-NBD 

inhibitory responses may be cell type dependent; despite this, work completed by our 

collaborative group in Cardiff establishes that the observed inability of CPP-NBD conjugated 

peptides to inhibit cytokine mediated degradation of IκBα is not exclusive to primary 

myometrial cells. Figure 6.1 demonstrates that 100µM NBD conjugated to an 

antennopaedia CPP analogue did not inhibit TNFα-induced IκBα degradation in HeLa cells in 

any of three experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The papers described above used a lower concentration of agonist than the present study (1 

- 2.5 ng/ml).  The consideration arises, therefore, that the concentration of IL1β used in this 

study may have produced a hyper-stimulatory agonist effect which strongly activated the 

IKK complex, leading to robust IκBα protein degradation and de novo gene expression of 

NFκB pathway components (Baima et al., 2010). In such a scenario Pen-NBD would inhibit 

COX2 production but perhaps was unable to override the agonist activation effect on IKK. 

TNFα - + + +

- - + -

- - - +

Pen(43-58)

Pen(43-58)-NBD

IκBα

Tubulin

 

Figure 6.1 IκBα protein responses to TNFα in HeLa cells 

Western blot displaying IκBα protein in the absence (-) or presence (+) of 20ng/ml TNFα. Last 

2 lanes show effects of 1 hour pre-incubation of 100μM of Pen(43-58) or 100μM NBD 

conjugated to Pen(43-58) followed by application of TNFα for 30 minutes. Results are 

representative of 3 independent experiments.  Tubulin used to demonstrate equal protein 

loading. Reproduced with kind permission from N. Eissa (School of Pharmacy and 

Pharmaceutical Sciences, University of Cardiff). 
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This could be remedied experimentally by either reducing the agonist concentration or 

increasing the inhibitory concentration.  Neither of these solutions is unproblematic:   

reducing the agonist dose may not reliably induce IκBα degradation (Chapter Four, section 

4.7.2) thus diminishing the usefulness of using IκBα protein as a measure of IKK activation.  

Pen-NBD dose increases would lead to a further increase in vehicle concentration, may lead 

to toxic effects and would detract from one of the key advantages of the CPP approach: a 

reduced requirement for high concentrations due to ease of cellular entry of cargo.   

Another potential explanation for the failure of Pen-NBD to inhibit IL1β-induced IκBα 

protein degradation and the expression of NFκB pathway genes may be that its inhibitory 

effect is exerted on pathways other than NFκB in myometrial cells. Potential candidate 

pathways would include those that are activated by the cytokines IL1β and TNFα including 

the AP1 and p38MAP kinase signalling pathways (Weber et al., 2010, Wajant et al., 2003).  

Although gene components of the MAPK pathway were not examined in this study and 

would warrant further investigation, the genes FOSB and JUN which encode proteins that 

dimerise to form the transcription factor AP1 (Davies and Tournier, 2012) demonstrated 

upregulated expression following myometrial cell stimulation with IL1β. Expression of these 

genes was not inhibited by Pen-NBD indicating that the NBD peptide cargo is not exerting 

anti-inflammatory action via suppression of these components of the AP1 pathway. 

It is also possible that Pen-NBD may have mediated effect via molecular targets downstream 

of the IKK complex within the NFκB canonical pathway.  Although outside of the temporal 

scope of this study, future work examining the effect of Pen-NBD on p65 NFκB subunit 

phosphorylation; p65 nuclear translocation expression and assessing p65 binding to NFκB 

specific transcription sites would aid clarification. Homodimers of the p50 subunit of NFκB 

can inhibit inflammation and are down-regulated in human myometrial tissue during 

pregnancy and labour (Lawrence, 2009, Chapman et al., 2004), thus examination of the 

effect of the NBD peptide on this subunit would also be a worthwhile endeavour. 

However, this suggestion of IKK-independent cytokine activation of NFκB signalling seems 

not to be supported by data showing that Pen-NBD did not alter cytokine mediated 

increases in the expression of PTGS2, the gene coding for the transcription of COX2 protein 

in uterine cells, whereas Sc514 was capable of diminishing such increases (Chapter Five, 
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section 5.3.4). COX2 protein is known to undergo modification at a post transcriptional level 

and such changes may regulate the effectiveness of prostaglandin synthesis by this enzyme 

(Cok and Morrison, 2001). Although less well understood, post-translational modification in 

the form of nitration of tyrosine residues in the active site of the enzyme has been 

described (Parfenova et al., 1998), and a recent paper has identified two phosphorylation 

sites regulated by the FYN tyrosine kinase family (Alexanian et al., 2014). In these studies 

the post-translational modifications appeared to increase COX2 enzyme activity without 

changes in protein expression levels. Nonetheless, in uterine cells where COX2 expression is 

inducible by biologically-relevant stimuli, there could be the possibility that the NBD peptide 

may regulate a non-IKK kinase intermediary leading to a post-translational modification of 

COX2 that mediates its degradation. A summary of the potential mechanisms of Pen-NBD 

action in myometrial cells is displayed in Figure 6.2 

Amongst the panoply of cargoes available for CPP linkage include other peptides,  enzymes, 

proteins, antibodies, nucleic acid mimics (siRNA, morpholino), chemotherapeutics and 

nanoparticles (Reissmann, 2014). As highlighted in the Introductory chapter of this thesis, 

existing data supports an association between activation of the MAP Kinase and AP1 

pathways and preterm birth (Bartlett et al., 1999b, MacIntyre et al., 2014).  Cargo available 

for CPP-linkage includes peptide based MAP kinase inhibitors (Lopes et al., 2009) and 

inhibitors of the AP1 pathway (Meade et al., 2010), hence future work aimed at testing the 

effectiveness of such agents in preterm birth scenarios may prove fruitful.   
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Figure 6.2 Schematic diagram displaying potential Pen-NBD sites of action in myometrial 

cells 

1. Targeting IKK complex but with inhibitory effect bypassed by robust IL1β-stimulatory 

response 

2. Inhibition of inflammatory pathways external to NFκB 

3. Prevention of NFκB p65 subunit phosphorylation 

4. Interaction with NFκB p50 subunit 

5. Prevention of p50 / p65 heterodimer nuclear localisation 

6. Interaction with NFκB binding sites 

7. Post-translational modification of COX2 protein 
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6.3 Myometrial cell gene expression changes in response to inflammatory stimuli 

The experiments presented in Chapter Five aimed to model a pro-inflammatory uterine 

environment in vitro by exposing myometrial cells to IL1β and examining subsequent 

changes in expression of a bespoke array of genes whose altered expression has been 

previously associated with human term labour (Khanjani et al., 2011, Chan et al., 2014, 

Kimura et al., 1992, Vadillo-Ortega and Estrada-Gutierrez, 2005, Lappas, 2013, Renthal et al., 

2010, Mittal et al., 2010). 

A recent systematic review and meta-analysis of transcriptome changes in all gestational 

tissues including myometrium, placenta, fetal membranes and cervix in human term and 

preterm pregnancies found that few studies had examined spontaneous preterm birth and 

as yet no study has looked at genome wide expression changes in human preterm 

myometrial tissue (Eidem et al., 2015). Therefore, until such a research gap is addressed, 

inferences regarding human myometrial gene expression changes during preterm birth 

must be drawn either from term labour studies or from in vitro studies that attempt to 

simulate changes in cellular environments associated with specific phenotypes of preterm 

birth. Indeed, the alterations of gene expression in cytokine-induced myometrial cells 

observed in this study are consistent with many of the changes seen in term labouring 

samples (Chan et al., 2014, Mittal et al., 2010, Wathes et al., 1999, Roh et al., 2000), thus 

adding further support to the theory that both preterm and term labour are associated with 

an inflammatory signature of molecular changes in gestational cells and tissues 

(Bollopragada et al., 2009).   

The connexins are a family of proteins that oligomerise to form channels which link the 

cytoplasm of adjacent cells and thus can facilitate transmission of electrical signals through 

cells thus helping facilitate organ contraction (Hervé, 2012,  Kidder and Winterhager, 2015). 

Connexin 43 protein has previously shown increased expression in association with labour, 

and is thought to comprise one of the key contraction associated proteins (CAPs) linked with 

phenotypic switching of the uterus from a quiescent to a contractile state (Lye et al., 1993, 

Cook et al., 2000, Chow and Lye, 1994). In this study, expression of GJA1 gene (encoding for 

connexin 43 protein) was significantly diminished in myometrial cells exposed to IL1β 

compared to untreated cells. This observation is worthy of further experimental observation 
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as it suggests that this protein may not play such a central role in mediating increased 

uterine contractility in inflammatory scenarios of labour as previously thought. 

Both Pen-NBD and Sc514 exerted profound inhibitory effects on IL1β-stimulated myometrial 

cells,  diminishing the expression of genes whose increased expression has been associated 

with inflammatory preterm birth including chemokines and the cytokines IL1A and IL8 

(Cappelletti et al., 2015, Shynlova et al., 2014).  Both agents also exhibited the ability to 

inhibit the expression of diverse genes, with Pen-NBD affecting STAT1 expression and Sc514 

downregulating the expression of MMP9; however, neither agent was broadly successful in 

preventing cytokine-provoked alterations in expression for the contraction associated 

genes. This indicates that even if such agents are successful in blocking the upregulation of 

inflammatory pathways in utero-placental cells in an in vivo setting; there may be 

limitations in their ability to prevent or delay the onset of birth if used as monotherapy. It 

necessitates the consideration of such agents being used as adjuncts alongside other 

treatments including antibiotics or traditional tocolytics such as nifedipine or atosiban. A 

multiple therapy approach may prove successful (Olson et al., 2008, Adams Waldorf et al., 

2011), but has yet to be tested in detail in clinical trial due to concerns regarding adverse 

drug reactions (de Heus et al., 2009).  

A promising area of CPP usage is the potential intracellular delivery of small interfering RNA 

(siRNA). This is a naturally occurring endogenous regulatory process where short double-

stranded RNA causes sequence-specific posttranscriptional gene silencing, potentially 

offering gene specific inhibition (Wang et al., 2010).  Although the therapeutic use of siRNA 

has previously been limited by its inability to cross cellular membranes, CPPs have been 

shown to be very effective tools for delivering siRNA into cells (Meade and Dowdy, 2007). 

Therefore, further work could also combine the use of CPPs with siRNA with the aim of 

inhibiting selected gene targets identified within this study.  

6.4 Translation of a CPP-cargo approach to clinical scenarios of preterm birth 

The use of a CPP-cargo conjugate to downregulate inflammatory responses in uterine cells 

shows much promise. However, there are number of considerations that should be 

addressed further in preclinical work prior to translation of this method into tocolytic 

therapy. 
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Exposure to only one inflammatory agonist is unlikely to fully reflect the situation in vivo 

whereby a complex milieu of pro-inflammatory mediators are likely to interact within the 

utero-placental environment (Romero et al., 2007). Additionally, the measurement of gene 

expression five hours following exposure to cytokine will only give a snapshot into the 

dynamic chronology of changes that will be occurring at a transcript level in myometrial cells 

exposed to an inflammatory environment and it would be of interest to know if these 

changes are replicated over longer timeframes. 

The use of only one cell type does not reflect the complex interactions that occur between 

gestational cells and tissue; however, this must be balanced against the previously noted 

difficulties of developing and propagating a primary placental cell type in this study. 

Therefore, myometrial cells were selected as the primary focus for examination as it is 

within these cells that many of the phenotypic changes of labour occur (Challis et al., 2000) 

and the myometrium is the target organ towards which the majority of previous tocolytic 

therapies have been directed, with prevention of myometrial contraction a primary aim 

(Olson et al., 2008). 

The potential for toxicity must be fully explored, this is a particularly sensitive question in 

Obstetrics where one must consider the chances of toxic effects on both mother and fetus.  

A high specificity of any treatment towards its intended target would be likely to reduce 

toxicity caused by offsite effects. Therefore, the discovery that the NBD peptide may have a 

mechanism of action in myometrial cells that is distinct to the inhibition of IKK complex 

activation underline the requirement of further in vitro testing of this particular peptide 

cargo. 

Experiments using a Cell Titre Blue assay demonstrate that CPPs were not toxic to 

myometrial cells over the experimental time frame (Chapter Four, section 4.3). Further 

testing across a full concentration range would also be required in pregnant animal models 

to underline the lack of toxicity observed in vitro.  A special consideration in the pregnant 

patient is whether a therapy is likely to cross the placenta and, therefore, have effects on 

the fetus. Proteins do not tend to cross the placenta due to their large size and charge; 

however peptides and amino acids are readily transported across the placenta via active 



171 
 

transport.  Although speculative, it is likely that CPPs and cargo would both cross the 

placenta and incorporate into placental and fetal cells.   

In many cases of preterm birth the pregnancy may also be complicated by the presence of 

Fetal Inflammatory Response Syndrome (FIRS). This is a condition whereby an external 

inflammatory or infectious stimuli leads to a systemic fetal inflammatory response that can 

be deleterious or even fatal to the fetus (Gotsch et al., 2007). Thus, introducing a therapy 

that may cross the placenta, reach the fetus and exert an anti-inflammatory effect may not 

be harmful, and indeed could be an additional benefit of this therapeutic approach. 

CPPs enter a very broad range of cell types. Although more traditional small molecule 

therapies are not cell type specific and many modern CPPs have demonstrated increased 

cell type selectivity (Reissmann, 2014), this is an issue which would need to be addressed in 

further development.  There are two possible solutions to this problem: firstly, local drug 

delivery to the utero-placental environment could be attempted either using vaginal 

insertion as a drug pessary or via direct injection to the myometrium. This may still be an 

unsatisfactory approach as following introduction of a CPP based drug there would remain 

uncertainty as to the final concentration arriving at target tissues.  

An alternative approach is via cell targeting peptides: short peptide sequences with the 

ability ‘home in’ to specific cell types (Vivès et al., 2008). Placental-specific homing peptides 

have recently been identified with the ability to deliver liposomes selectively to 

trophoblastic explants (Cureton et al., 2013). The future possibility of combining these 

homing peptides with CPP-cargo conjugates to target inflammatory processes in gestational 

cells is a very exciting one. 

Preterm birth is a syndrome with multiple causative modalities, not all of which may involve 

inflammation, and the predominant intracellular molecular pathways driving the labouring 

process in any given case may differ (Romero et al., 2006b). In this context, the versatility of 

a CPP based treatment approach – whereby different cargo may be attached to influence 

selected intracellular molecular targets – is a great asset. The work presented in this study 

provides not only a ‘proof of concept’ of CPP based therapeutic delivery into myometrial 

cells, but also a foundation for future research that may explore a variety of CPP-cargo 

combinations aimed ultimately at the prevention of preterm birth.  



172 
 

Appendix 
Funding awards 

Wellbeing of Women Entry Level Grant Award 2011 

Wellbeing of Women / PwC Research Training Fellowship 2013-2015 

Oral presentations 

June 2014 Physiological society conference 
‘Evaluation of small molecular inhibitors of nuclear factor kappa B (NFκB) in abrogating 
cytokine stimulated signalling in isolated human myometrial cells’ 
 
June 2015 British Maternal and Fetal Medicine Society Conference 
‘Cell penetrating peptides as tools to ameliorate inflammatory signalling in uterine cells’ 
 
Sept 2015 Liverpool Harris Wellbeing Preterm Birth Conference 
‘Use of cell penetrating peptides to treat inflammatory responses in uterine cells’  

Poster presentations 

January 2015 RCOG Annual Academic Meeting 
‘Cell penetrating peptide linked inhibitors: a novel approach to downregulating 
inflammatory responses in primary myometrial cells’ 
Awarded best poster presentation 

June 2015 British Maternal and Fetal Medicine Society Conference 
‘Cell penetrating peptide and small molecule approaches to inhibiting inflammatory 
responses in myometrial cells’ 

 
July 2015 CPP Paris International symposium 
‘Application of CPP-Peptide vectors in human cells: is our cargo treasure or fools’ gold?’ 

Other awards / prizes 

Diploma Clinical Research awarded from Newcastle University November 2015 

Famelab: a national competition in which competitors have three minutes to convey a 
scientific concept of their choice to a live audience. 

Winner North East finals February 2015 with ‘Ode to ergot’ 
https://www.youtube.com/watch?v=2pI2MHQyOT4 

Runner up national finals May 2015 with ‘Role of progesterone in the timing of human birth’ 
https://youtu.be/9ze4aRoLKzg?t=3023   

https://www.youtube.com/watch?v=2pI2MHQyOT4
https://youtu.be/9ze4aRoLKzg?t=3023
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