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Abstract 

 

Haematopoietic stem cell transplantation (HSCT) has become a central treatment 

modality in the management of various hematologic malignancies, but it is not without 

treatment sequelae. The major complication of HSCT is acute or chronic graft-versus 

host disease (GvHD). GvHD is an immunologically mediated disease that contributes 

substantially to transplant-related morbidity and mortality. One reason for the lack of 

progress in the treatment of acute GvHD (aGvHD) is the lack of reliable biomarkers. 

There is a need to develop diagnostic tools that can identify patients who are at higher 

risk of aGvHD progression following allogeneic HSCT and predict GvHD occurrence 

before clinical symptoms manifest. During the past decade, many reports have 

identified genetic variants such as single nucleotide polymorphisms (SNPs) that 

influence the risk of aGvHD after allogeneic HCT. In addition, since miRNAs are key 

regulators of gene expression, miRNA-related SNPs including SNPs in miRNA genes 

and target sites may function as regulatory SNPs through modifying miRNA regulation 

to affect the phenotypes and disease susceptibility.  

Firstly, this study investigated the impact of rs2910164 and rs2431697 in miR-146a, 

rs3027898 in IRAK1 and rs10511792 in MICA for their association with HSCT outcome 

and showed that there was a significant association between carrying the C variant in 

rs2910164 in miR-146a and an increased non relapse mortality (NRM) post-HSCT. For 

rs2431697 in miR-146a, the presence of the T allele was associated with a trend 

towards an increased NRM in patients post-HSCT. In the case of rs3027898 in IRAK1, 

the C allele was associated with a decreased risk of relapse in patients which was 

more apparent when patients were homozygous for the C allele. For rs1051792 in 

MICA, this study showed that the MICA-129 Met variant was significantly associated 

with low overall survival (OVS) post-HSCT, which was more apparent in the group of 

patients receiving non-TCD treatment. This study also revealed that the presence of 

the MICA-129 Met allele in patients was significantly associated with an increased risk 

of relapse and the presence of the MICA-129 Val variant in patients was significantly 

associated with an increased risk of developing aGVHD post-HSCT. Investigation of 

gene expression and the protein levels of MICA in the GI tract showed that there was 

a significant association between decreased expression of MICA and aGvHD which 

was observed again in the case of MICA protein levels, where high levels of MICA 

protein were observed in patients with no active GIGvHD. Assessment of the levels of 
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soluble MICA in sera of patients post HSCT showed a significant association between 

high levels of soluble MICA and aGvHD post-HSCT. Alongside MICA, this study 

investigated the mRNA and protein levels of a panel of genes (C1QTNF7, LGALS7, 

ANP32A, HTRA1, PIK3AP1, PSTPIPI, MSR1 and CXCL9) in RNA from blood samples 

and patient sera at different time points pre and post-HSCT. This study showed that 

there was a significant downregulation in the expression levels of MSR1 and ANP32A 

in aGvHD patients post-HSCT while a significant upregulation in the expression levels 

of CXCL9 was observed in aGvHD patients. Investigation of the association between 

the levels of proteins and the incidence of aGvHD showed that there was a significant 

association between upregulated protein levels of LGALS7 and aGvHD. Finally, a 

microRNA profiling in GI samples taken from aGvHD patients was performed aiming 

for the identification of miRNAs associated with the incidence of aGvHD in the GI tract 

after HSCT. This study identified 4 miRs that were dysregulated in patients in 

association with aGvHD, and a validation study was carried out for hsa-miR-34a-5p 

which expression was shown to be significantly decreased in patients with aGvHD (1-

4) compared those patients with no aGvHD.  
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1.1 Haematopoietic stem cells and generation of blood and 

immune cells 

 

The bone marrow (BM) represents the most regenerative tissue, with relatively one 

trillion (1012) cells being produced on a daily basis (Doulatov et al., 2012). 

Establishment and maintenance of the blood system depends on self-renewing 

haematopoietic stem cells (HSCs) residing as rare cells in specific niches (Taganov et 

al., 2007; Ferrara et al., 2009; Doulatov et al., 2012). In humans, haematopoiesis  ̶ the 

process by which blood cells are formed ̶  begins in the yolk sac and transitions into 

the liver temporarily before finally establishing definitive haematopoiesis in the bone 

marrow and thymus (Ferrara et al., 2009; Tavian et al., 2010; Rusca and Monticelli, 

2011a; Shaw and Madrigal, 2012).  

The hierarchy model of haematopoiesis, shown in Figure 1.1, depicts that 

haematopoietic stem cells are at the top of a hierarchy of progenitors that become 

progressively restricted to several or single lineages including red blood cells, 

megakaryocytes, myeloid cells (monocyte/macrophage and neutrophil) and 

lymphocytes (Orkin and Zon, 2008). Macrophages and neutrophils play a major role in 

the innate immune system and provide a first line of defence against many common 

pathogens. These cells also play a crucial part in the initiation and subsequent direction 

of adaptive immune responses, as well as participating in the removal of pathogens 

that have been targeted by adaptive immune responses (Sant'Angelo and Janeway, 

2002).  
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Figure 1.1 Model of the haematopoietic hierarchy (adopted from Manz and 

Boettcher, 2014). HSCs are at the top of the hierarchy and are characterized by their 

self-renewal capacity and the potential to give rise to all haematopoietic cell types 

(multi-potency). HSCs generate multiple types of haematopoietic progenitor cells 

(HPC), which are characterized by an extensive proliferative potential but only very 

limited (if any) self-renewal capability and thus, these cells need to be continuously 

replenished from the HSC pool. Throughout differentiation, an HSC first loses self-

renewal capacity, then loses lineage potential step-by-step as it commits to become a 

mature functional cell of a specific lineage. Multipotent progenitors give rise to oligo-

potent progenitors including the common lymphoid progenitors (CLP), which gives rise 

to mature B lymphocytes, T lymphocytes, and natural killer (NK) cells. The common 

myeloid progenitor (CMP) gives rise to granulocyte-macrophage progenitors, which 

differentiate into monocytes/macrophages and granulocytes, and megakaryocyte/ 

erythrocyte progenitors, which differentiate into megakaryocytes/platelets and 

erythrocytes. Both CMPs and CLPs have been proposed to give rise to dendritic cells 

(Bryder et al., 2006; Manz and Boettcher, 2014). 
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1.1.1 Innate and adaptive immune cell specificities and pathogen recognition 

 

Penetration of the epithelial surface by microorganisms such as bacteria, immediately 

activates cells and molecules that can mount an innate immune response (Elphick and 

Mahida, 2005). By means of surface receptors, phagocytic macrophages become 

activated and engulf the pathogen, followed by secretion of chemokines and cytokines 

which attract neutrophils and monocytes from the blood stream (Albert et al, 2002). 

Local inflammation and phagocytosis of the bacteria may also be initiated as a result 

of activation of the complement cascade on the bacterial cell surface. The main cell 

types contributing to the inflammatory response in its initial phases are neutrophils. 

This influx of neutrophils is followed by monocytes, which differentiate into 

macrophages. Macrophages and neutrophils are thus also known as inflammatory 

cells (Janeway et al, 2001).   

This innate immune response increases the flow of lymph containing antigen and 

antigen-bearing cells in the lymphoid tissue and induces an adaptive immune response, 

beginning with the ingestion of the pathogen by immature dendritic cells (DCs) in the 

infected tissue (Forster et al., 2008). Eventually, all tissue-resident DCs migrate 

through the lymph node to the regional lymph node where they interact and recruit 

naïve lymphocytes (Janeway et al, 2001).  

The recognition mechanism used by lymphocytes of the adaptive immune system is 

more sophisticated than the innate immune system, in order to enable recognition of 

an almost infinite diversity of antigens so that each different pathogen can be targeted 

specifically.  
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1.2 Haematopoietic stem cell transplantation  

 

The field of HSCT has undergone several advancements since it was introduced as a 

therapy for otherwise incurable haematological disorders. 

The marrow transplantation story began in 1949 with Jacobson et al. (Jacobson et al., 

1949). During their studies, they demonstrated that shielding the spleen of a mouse 

during irradiation allowed the survival of this mouse. Further studies by Lorenz et al. 

(Lorenz et al., 1951) showed that the infusion of spleen or marrow cells could protect 

the mice during irradiation. The “protection against irradiation” phenomenon was 

thought to be due to humoral factors, however in 1954, Barnes and Loutit reviewed 

their work along with other studies and stated, “the chemical hypothesis has not been 

proved by the complete exclusion of the cellular hypothesis” (Barnes and Loutit, 1954). 

A subsequent study performed by Main and Prehn in 1955 showed great support for 

the cellular hypothesis, when they demonstrated that the infusion of allogeneic marrow 

protected the mice from irradiation and resulted in tolerance to a donor skin graft (Main 

and Prehn, 1955). 

Later, Ford et al. showed that the protection of the mice was due to the infusion of 

cytogenetic characteristics of the donor along with the marrow infusion (Ford and 

Hamerton, 1956). The principles of HSCT came from the first experiment performed 

by Nowell and Ford (Ford and Hamerton, 1956; Nowell et al., 1956), where they 

transfused bone marrow cells from one mouse into a lethally irradiated mouse and 

observed restoration of the entire repertoire of haematopoietic cells. 

In 1957, Thomas performed the first unsuccessful allogeneic transplant, followed by a 

successful syngeneic transplant in 1959, using the bone marrow of an identical twin 

(Thomas et al., 1957). In 1968, Dr Robert Good and his team performed the first 

matched sibling donor transplant in an infant with immunodeficiency (Gatti and Good, 

1971) and in 1969, it was repeated for a patient with leukaemia (Thomas and Storb, 

1970). In 1969, the marrow transplant team in Seattle began a series of marrow 

transplantations using HLA matched sibling donors for patients in the end stages of 

leukaemia or aplastic anaemia (Main and Prehn, 1955; Thomas et al., 1972).  

In the 1970s it was difficult to evaluate the role of stem cell transplantation (SCT) in the 

treatment of leukaemia, due to the fact that almost all patients had been transplanted 

for advanced diseases after failure of normal therapy. However, in 1972, a review 
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article presented the current state of BMT knowledge at that time. This study included 

73 patients with leukaemia and 37 with aplastic anaemia. All underwent transplantation 

after failure of conventional therapy and it was observed that the engraftment was 

successful in some patients with aplastic anaemia and survival with grafts in remission 

was observed in few patients with leukaemia (Thomas et al., 1972). In 1977, an 

American study reported on 100 patients with advanced acute leukaemia who were 

conditioned with cyclophosphamide (Cy) and total body irradiation (TBI) and given 

marrow from HLA matching siblings (Thomas et al., 1977). At the time of the report, 17 

out of 100 survived 1 to 3 years later and 8 of those 17 remain alive and well (Thomas 

et al., 1972). The analyses of disease-free survival demonstrated that some patients 

with advance leukaemia might be cured (Thomas et al., 1972).  Since then the HSCT 

field has come a long way from this pioneering research. Current estimates of annual 

numbers of HSCT are between 55,000 and 60,000 worldwide (Lad et al., 2012). 

Different types of HSCT are best suited for different diseases (Figure 1.2). Indeed, 

autologous HSCT (auto-HCST) (Figure 1.3), a process by which removal, storage and 

reinfusion of patient’s own HSC is performed to re-establish the patient’s depleted bone 

marrow after a high dose of myeloablative therapy, can be indicated for conditions such 

as: multiple myeloma, non-Hodgkin’s lymphoma, Hodgkin’s disease, acute myeloid 

leukaemia, neuroblastoma, germ cell tumours, autoimmune disorders (systemic lupus 

erythematosus (SLE), systemic sclerosis) and Amyloidosis (Daelken et al., 2008). 

Allogeneic HSCT (allo-HSCT), consists of infusing the mature and immature blood 

cells from the bone marrow, umbilical cord or peripheral blood of a sibling, relative or 

unrelated donor (Figure 1.3) as a possible procedure to restore the patient’s bone 

marrow with a new immune system after a conditioning regimen (myeloablative or non 

myeloablative chemotherapy). Allo-HSCT can be indicated for: acute leukaemia, 

chronic leukaemia, myeloproliferative disorders, myelodysplastic syndromes, multiple 

myeloma, lymphoma, aplastic anaemia, Fanconi anaemia, thalassemia major, severe 

combined immunodeficiency (SCID), and many other conditions (Hołowiecki, 2008). 
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Figure 1.2 Examples of indication for HSCT according to the underlying condition 

(adapted from Hołowieck et al., 2008). Autologous HSCT is indicated for conditions such 

as multiple myeloma, non-Hodgkin’s lymphoma, Hodgkin’s disease, acute myeloid 

leukaemia, neuroblastoma, germ cell tumours, autoimmune disorders (systemic lupus 

erythematosus (SLE), systemic sclerosis) and Amyloidosis. Allogeneic HSCT can be 

indicated for: acute leukaemia, chronic leukaemia, myeloproliferative disorders, 

myelodysplastic syndromes, multiple myeloma, lymphoma, aplastic anaemia, Fanconi 

anaemia, thalassemia major, severe combined immunodeficiency (SCID), and many other 

conditions (Hołowiecki, 2008).  
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Figure 1.3. Haematopoietic Stem Cell Transplantation procedure (adapted from 
Hołowieck et al., 2008). (A) Autologous HSCT procedure. (B) Allogeneic HSCT 
procedure (Hołowiecki, 2008). 
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1.3 Donor selection 

 

The donor selection is a critical element contributing to the success HSCT. Certain 

aspects should be taken into consideration when selecting a donor for allo-HSCT. The 

donor should have satisfactory cardiac, pulmonary, hepatic and renal functions in order 

to tolerate general or local anaesthesia. Donors with active cancer or history of cancer 

are generally excluded (Lee et al., 2003). The state of positivity for hepatitis B, hepatitis 

C, CMV and HIV should be assessed in allogeneic donors (Choi et al., 2005; Parody 

et al., 2006; Schmidt-Hieber et al., 2013). In addition, it is of primary importance in 

HSCT to have a sufficient donor-recipient human leucocyte antigen (HLA) match to 

ensure engraftment and acceptable rates of complications such as graft versus host 

disease (GvHD) (Park and Seo, 2012). Therefore, the selection of HSCT donors 

includes a rigorous assessment of the availability and human leukocyte antigens (HLA) 

match status. HLA plays critical roles in HSCT, and its involvement is constantly 

evolving due to the change of technologies and variation in clinical transplantation 

results (Park and Seo, 2012). The increased availability of donors through the use of 

HLA-mismatched related and unrelated donors is feasible, with a more complete 

understanding of permissible HLA mismatches in HSCT (Lee et al., 2007a). 

 

1.3.1 The major histocompatibility complex and HLA matching 

 

Tissue compatibility is determined by genes of the major histocompatibility complex 

(MHC), known as the HLA system in humans (Hedrick, 1994). These genes are 

clustered on the short arm of chromosome 6. The HLA region of the genome is a 

multigenic system that encodes structurally homologous cell surface glycoproteins 

characterized by a high degree of allelic polymorphism in the human population (Le 

Bouteiller, 1994). The function of HLA molecules is to present peptide antigens to T 

cells, where they play a major role in T cell mediated adaptive immune responses. A 

major barrier in HSCT is caused by immune responses directed against incompatible 

HLA antigens and thus, the accuracy of histocompatibility testing and matching criteria 

have important consequences on HSCT outcome (Hedrick, 1994). 

The homologous HLA Class I (HLA-A,-B,-C) and Class II (HLA-DR,-DQ,-DP) antigens 

are co-dominantly expressed and have different structures, tissue distribution and 

characteristics in peptide presentation to T cell (Weyand et al., 1992).  
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HLA class I molecules are expressed on most nucleated cells and are composed of an 

α chain (encoded in the MHC), non-covalently associated with β2-microglobulin 

(encoded on chromosome 15) and two outermost α1 and α2 domains of the heavy 

chain which form the peptide binding site (Figure 1.4). Peptides presented by class I 

HLA molecules are usually 8-10 amino acids and are commonly recognized by CD8+ 

cytotoxic T cells (CTL) (Koziel et al., 1995). HLA class II antigens are expressed on a 

subset of T cells referred to as antigen presenting cells (APCs) such as B cells, 

activated T cells, macrophages and dendritic cells (Brown et al., 1993). HLA class II 

molecules are comprised of two membrane bound alpha and beta chains encoded by 

two genes co-localized in the MHC, and the peptide pocket is formed by the most distal 

domains of the two chains (Figure 1.4) (Leddon and Sant, 2010). Peptides presented 

by HLA Class II molecules are recognized by CD4+ T helper cells (Koziel et al., 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Structural composition of the MHC molecules (adapted 
from Milford and Carpenter, 2004). (A) MHC class I molecules consist 
of heavy chains made up of three polypeptide domains (α1, α 2, α 3) and 
a non-covalently associated light chain, β2-microglobulin. (B) MHC class 
II molecules are heterodimers of α and β chains with a very similar overall 
structure and peptide-binding surface (Milford and Carpenter, 2004). 
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These peptide-HLA complexes are the ligands of clonally distributed TCRs, which are 

capable of recognizing HLA molecules. 1 to 10% of the peripheral blood lymphocytes 

of a donor can respond to a given allo-MHC (Benichou et al., 2011). Immune responses 

against incompatible HLA antigens may be extreme such as the case of GvHD and 

thus, represent a major barrier in HSCT (Benichou et al., 2011). 

During the process of HLA matching, the optimum donor is a HLA genotypically 

matched sibling as determined by family typing. Family typing is also used to verify the 

patient’s genotype (Choo, 2007). Low resolution typing for HLA-A, -B, -DR (serology 

or 2-digit DNA typing (ABDR typing) is sufficient, in most cases, to determine the 

maternal and paternal haplotypes present in the patient and their potential donor. Thus, 

ABDR typing can confirm genotypic identity for the whole set of HLA genes (example 

12/12 match) (Figure 1.5) (Petersdorf et al., 2015). 

Due to the weak linkage disequilibrium between DP and the DR/DQ loci, a low level of 

a DP mismatch sibling donors (1-2%) can be identified because of the recombination 

(Huang et al., 2006). An HLA-A/B or B/DRB1 recombination event is detected by 

routine HLA-A/B/DR typing in about 2% of families. The chance of a sibling match 

(genotypically identical sibling) is 25% and thus, approximately 70% of patients do not 

have a sibling match (Huang et al., 2006). In contrast, the possibility of identifying a 

haploidentical donor is 50% (Huang et al., 2006).   

In cases of mismatched related HSCT, the risk of GvHD and graft failure increase with 

the number of HLA disparities. In some cases a differential effect of Class I and Class 

II has been described, in which GvHD risk was associated with Class II disparities 

(Petersdorf, 2007). 
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1.3.2 The minor histocompatibility antigens  

 

HLA matching remains the major factor influencing donor selection and the outcome 

following transplantation. However, extensive research of the human genome has 

shown that certain polymorphisms of nucleotides in genes that are non-HLA related 

also play a major role in generating alloimmune responses (Hansen et al., 2010). Minor 

histocompatibility antigens (miHAs) are considered as immunogenetic non-HLA 

related factors encoded by polymorphic genes, which may differ between the recipient 

and the donor and thus, may influence transplant outcomes.  

 

 

Figure 1.5. Matching criteria for related and unrelated HSCT (adapted 

from Shaw and Madrigal, 2012). An HLA-genotypically identical sibling donor 

is compatible at the allele level at all the loci on both chromosomes (12/12 

match). In unrelated HSCT, matching for A/B/C/DRB1/DQB1 loci is usually 

searched for (10/10 match). In addition to DRB1 compatibility, some centres 

also consider DRB3/DRB5 polymorphism. DRB3 mismatches occur frequently 

in DR13 haplotypes. Because of strong linkage disequilibrium with DRB1, the 

DRB5 locus is usually not tested. In DR15/16 haplotypes, DRB5 mismatches 

usually co-occur with DRB1 disparities. Searching for a 12/12 match implies 

DPB1 typing. Donors with an 8/8 match (not shown) or a 6/6 match apply, 

respectively, when HLAC/DP, or HLA-C/DQ/DP are not tested (Marsh et al., 

2010; Shaw and Madrigal, 2012). 

 

Related donors 

Unrelated donors 



 
 

12 

MiHAs are polymorphic peptides comprising 9 to 12 amino acids (Granados et al., 

2014). After binding to the antigen recognition site of either Class I or Class II HLA 

molecules present on the cell surface, miHAs can be recognized by T cells. Thus, the 

occurrence of miHAs depends on the presence of specific HLA antigens, which is 

referred to as MHC restriction (Simpson et al., 1993). MiHAs can either be encoded by 

autosomal chromosomes or by the Y-chromosome (Simpson et al., 1993). There are 

two patterns of miHAs tissue distribution: restricted and broad. Autosomal HA-3, HA-8 

and the majority of miHAs encoded by the Y chromosome are predominant in various 

tissues including GvHD target tissue: skin, intestine, and liver (Falkenburg et al., 2003). 

Most autosomal and 2 miHAs encoded by the Y chromosome (B8/HY and B53/HY) 

are only present in HSC, including leukaemic cells DCs, NK and multiple myeloma 

cells (Dzierzak-Mietla et al., 2012). MiHAs are key molecules driving allo-immune 

responses in both GvHD and graft versus leukaemia (GvL) reactivity in HLA-matched 

HSCT. The genetic basis of miHA immunogenic T-cell epitopes is caused by 

polymorphic genes. The most common form of genetic polymorphisms leading to 

miHAs are non-synonymous SNPs, but disparities of miHAs may also result from gene 

deletion (Dzierzak-Mietla et al., 2012). Although the characterization of miHAs has 

contributed to our basic knowledge of genetic polymorphism, immunobiology, and 

immungenetics, their key role is related to their clinical applicability. The role of miHAs 

in HSCT has been extensively explored and miHAs mismatching has been clinically 

associated with an increased risk of GvHD (Goulmy et al., 1996; Tseng et al., 1999; 

Falkenburg et al., 2003; Marijt et al., 2003; Cavanagh et al., 2005). 

Despite the improved matching of donor-recipient pairs via the implementation of high 

resolution technology for molecular HLA typing, improved outcomes following 

transplantation are still limited by a high number of complications: GvHD, engraftment 

problems (lack or loss of engraftment) and relapse (Vogelsang et al., 2003). The long-

term survival after allo-HSCT is currently estimated in the range of 40-70% (Dzierzak-

Mietla et al., 2012). Failures are mainly due to infectious complications and GvHD (30-

40% each), organ toxicity following chemotherapy (20%) and relapse (20-30%) 

(Dzierzak-Mietla et al., 2012). 
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1.4 Complications after haematopoietic stem cell transplantation 

1.4.1 Graft versus host disease  

 

Graft versus host disease may occur after allogeneic BMT. GvHD occurs when the 

donated bone marrow or stem cells (graft) view the recipient’s body as non-self, which 

causes these cells to attack the body of the recipient (Welniak et al., 2007). The risk of 

GvHD is very low when a patient receives bone marrow or cells from an identical twin, 

but increases to 30-40% when the donor and recipient are related and it rises further 

to 60-80% when the donor and recipient are not related (Sykes et al 2011). GvHD may 

be lethal and thus, limits the effect of many measures that have been developed to 

improve HSCT outcome, such as infection prophylaxis, immunosuppressive 

medications, supportive care and DNA-based tissue typing. As allo-HSCT is 

increasingly becoming an attractive therapeutic option, the need for novel approaches 

to predict GvHD has accelerated. This is particularly true as the number of patients 

receiving transplants from unrelated donors is expected to double, significantly 

increasing the population of patients with GvHD (Ferrara et al., 2009). 

 

1.4.2 Pathophysiology of graft versus host disease 

 

GvHD has a complex pathophysiology and should therefore be studied as a pathway 

that has its own triggers, sensors, mediators and effectors (Figure 1.6). 
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Figure 1.6 GvHD pathophysiology (adapted from Ferrara et al., 2009). In phase I, the 

recipient conditioning regimen damages host tissues and causes release of inflammatory 

cytokines such as TNFα IL-1 and IL-6. Increased levels of these cytokines leads to 

activation of host antigen presenting cells (APCs). In phase II, host APCs activate mature 

donor cells. The subsequent proliferation and differentiation of the activated T cells 

produces additional effectors that mediate the tissue damage, including cytotoxic T 

lymphocytes, NK cells, TNFα and IL-1. Lipopolysaccharide (LPS) that has leaked through 

the damaged intestinal mucosa triggers additional TNFα production. TNFα can damage 

tissue directly by inducing necrosis and apoptosis in the skin and GI tract through either 

TNFα receptors or Fas pathway. TNFα plays direct role in intestinal GvHD damage, which 

further amplifies damage in the skin, liver and lung in “cytokine storm”. Phase III, is a 

complex cascade of cellular mediators (such as cytotoxic T cell and NK cells) and soluble 

inflammatory agents (eg, TNFα, interferon γ, interleukin 1 and nitric oxide). These 

molecules work synergetically to amplify local tissue injury and further promote 

inflammation and target issue destruction (Welniak et al., 2007; Shaw and Madrigal, 2012) 

(Ferrara et al., 2009). 

IL 1=interleukin 1. IFN γ=interferon γ. LPS=lipopolysaccharide. Treg=regulatory T cell. Th1=T-helper 1 cell. CTL=cytotoxic T 
lymphocyte 
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1.4.2.1 Triggers for induction of GvHD 

 

As with all immune responses, specific factors are important in initiating a graft versus 

host reaction. Disparities between histocompatibility antigens is the first trigger for 

GvHD, this can be at the level of MHC, referred to as MHC mismatch, or it can be at 

the level of miHA complex known as MHC matched but miHA mismatched. The 

severity of aGvHD may be directly related to the degree of MHC mismatch (Tang et 

al., 2004). In the case of bone marrow transplant where the MHC is matched but the 

miHA is disparate, the donor T cells will still be able to recognize MHC peptides 

expressed with the polymorphic miHAs of the recipient (Den Haan et al., 1995; Murata 

et al., 2003).  

The damage caused by different conditioning regimens and the underlying disease 

(Ishida et al., 2012) is the second trigger of GvHD, by initiating an innate immune 

response. The innate immune system can be triggered by different exogenous and 

endogenous stimuli. These include specific receptors of innate immunity, such as Toll 

like receptor (TLRs) or nucleotide-binding oligomerization domains containing 2 

(NOD2) present on APCs. APCs recognize conserved damage associated molecular 

patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) and initiate a 

“cytokine storm”. DAMPs and PAMPs are usually released during the 

chemotherapeutic and radio-therapeutic-conditioning regimens performed before 

HSCT donor cell infusion, and play a critical role in GvHD (Hill and Ferrara, 2000; Holler 

et al., 2004; Holler et al., 2006). 

 

1.4.2.2 Sensors of GvHD  

 

Antigen presenting cells might be considered as the sensors for aGvHD. As previously 

mentioned, the APCs have pattern recognition receptors for DAMPs and initiate 

aGvHD by presenting protein ligated to MHC or miHA and thus, avoid critical 

secondary and tertiary signals for activation of alloreactive T cells (Reddy, 2013). 

Allodisparity between peptide complexes and MHC is usually sensed by APCs. One of 

the most important APCs are DCs, as they are the primary sensors of allodisparity 

(Banchereau and Steinman, 1998). 
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At the time of transplant, recipient DCs process and present MHC and peptide 

complexes to donor T cells (Shlomchik et al., 1999). Donor DCs take over this role at 

a later point (Matte et al., 2004). Initially the recipient DCs present endogenous 

antigens to the donor CD4+ T cells and the exogenous antigens to the donor CD8+ T 

cells. This indicates that the DCs represent one of the most important mediators for 

GvHD, as they contribute to its initiation. In addition to DCs and APCs, the DAMPs 

along with the inflammatory cytokines represent the third signal to enhance interactions 

between APCs of the recipient and T cells of the donor. Different modulations of the 

APCs also have an effect on GvHD. Recent studies have shown that exposure to 

granulocyte colony-stimulating factor (GCSF) shortly after HSCT, combined with a total 

body irradiation (TBI)-conditioning regimen, significantly enhanced GvHD in mice 

(Morris et al., 2009). In contrast, modulating the host DCs function via inhibiting histone 

deacetylase using suberonylanilide hydroxamic acid (SAHA) can reduce GvHD in 

murine models (Reddy et al., 2004; Reddy and Beal, 2008). 

 

1.4.2.3 Mediators of GvHD 

 

Mediators of GvHD include donor T-cell subsets and donor NK cells. It has been shown 

that alloreactive donor T cells have several subsets with different characteristics, 

including stimuli responsiveness, activation thresholds and effector functions (Wu and 

Ritz, 2006). The alloantigen composition of the donor determines which subset of the 

T cells will differentiate and proliferate. Either CD4+ or CD8+ subsets, or both, can 

induce aGvHD in HLA-matched HCT in response to miHAs (Wu and Ritz, 2006).  

Moreover, the repertoire and immunodominance of the GvHD associated peptides 

presented by MHC class I or II has not been defined until now (Spierings et al., 2006).  

Some studies have shown that it is possible to modulate the alloreactivity of the naïve 

donor T cells by mixed chimerism, deletion of cytokine modulation or co-stimulation 

blockage (Anderson, et al. 2003). Donor T cells that are not alloreactive cannot induce 

GvHD, but can mediate GvL (Zheng et al., 2008). Another type of T cell that plays a 

key role in GvHD are regulatory T cells (Tregs), these cells have a negative effect on 

GvHD. Tregs also have different subsets, such as the naturally occurring CD4+CD25+ 

that express the Forkhead Box Protein P3 (FOXP3), CD4+CD25- IL10+ Treg cells, 

gamma delta T cells, double negative (DN) T cells and NKT cells (Zeng et al., 1999; 

Roncarolo et al., 2001; Young et al., 2003; Maeda et al., 2005; Cohen and Boyer, 2006).  
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Studies performed in murine BMT models showed that these naturally occurring donor-

derived Tregs have the ability to prevent GvHD and preserve GvL, depending on the 

ratio of effector T cells to Tregs (Cohen et al., 2002; Edinger et al., 2003; Coghill et al., 

2008). Thus, finding ways to increase the number of Tregs and enhance their function 

is of high importance in allo-HSCT.  

T cells are usually divided into subsets based on the dominant cytokines produced 

after their activation. Based on this, subsets such as Th1, Th2 and Th17 cells can be 

defined. Cytokines produced by Th1 cells (INF-γ, IL-2 and TNFα) are implicated in the 

pathophysiology of aGvHD (Reddy, et al 2009). IL-2 and its receptor have been the 

target for many therapeutic and prophylactic procedures, in an attempt to control 

aGvHD (Ratanatharathorn et al., 1998; Liu et al., 2004). On the other hand, emerging 

data shows that another important role of IL-2 is the generation and the maintenance 

of CD4+CD25+Foxp3+ Tregs, so inhibiting IL-2 may have a negative effect on the 

development of long-term tolerance after allogeneic HCT (Zeiser et al., 2006; Liston 

and Rudensky, 2007).  

Recently, donor NK cells have been identified as emerging key effectors in the GvH 

process. It has been shown that they specifically down regulate the activation of 

alloreactive donor T cells and this could be by directly killing the host APCs that activate 

donor T cells (Asai et al., 1998; Baker et al., 2001). 

 

1.4.2.4 Effectors of GvHD 

 

This final phase leads to the damage of the target organ after a cascade that involves 

cytolytic cellular effectors such as CD8 CTLs, CD4 T cells, NK cells and inflammatory 

molecules such as IL-1b, INF-γ, TNFα as well as reactive oxygen species (Ferrara and 

Deeg, 1991). Cell-to-cell contact is required to cause damage to the target tissue and 

this is mediated via the activation of perforin granzyme, Fas-FasL (CD95-CD95L), or 

TNFR-TRAIL pathways (Brown et al., 2005). Other damage pathways including the 

TNF related weak inducer of apoptosis (TWAEK), which is a small pleiotropic cytokine 

of the TNF super family involved the stimulation of cell growth and angiogenesis, have 

also been reported to be implicated in GvHD (Kägi et al., 1994; Schmaltz et al., 2002; 

van den Brink and Burakoff, 2002; Zimmerman et al., 2005). The cell-mediated 
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pathways require cell-to-cell contact and are implicated in both GvHD and GvL (Matte-

Martone et al., 2008). 

The inflammatory pathways, however, do not require cell-to-cell contact to kill target 

cells and are thought not to be critical for GvL (Paczesny et al., 2010). Both the cellular 

pathways and the inflammatory pathways can cause GvHD damage (Figure 1.10). 

The pathophysiology of GvHD may be summarized in the ‘cyclical three step model: 

(step 1) damage related to the conditioning regimen leads to the release of DAMPs 

such as LPS, (step 2) proliferation of donor T cells and (step 3) target organ damage 

by effectors (Sung, et al 2011). However, it is important to consider that the biology of 

GvHD is a very complicated systemic process with many unknowns and it is therefore 

not a simple linear or cyclical process. Nonetheless, based on the current research 

and knowledge, some agents that reduce inflammatory cytokines such as TNF and IL-

1, but at the same time spare T cell CTL functions and enhance donor NK cell and 

Treg functions, may be of high importance to reduce GvHD without compromising GvL. 

 

1.4.3 Acute graft versus host disease  

1.4.3.1  Classification  

 

Acute GvHD can occur when the donor’s bone marrow or stem cells engraft in the 

transplant recipient. According to the Seattle classification of 1991, aGvHD occurs in 

the first 100 days after bone marrow or stem cell transfusion (Ferrara and Deeg, 1991). 

However, more recently due to changes in conditioning regimens, the National Institute 

of Health (NIH) have updated the classification to include late-onset aGvHD (after 100 

days) and an overlap syndrome, which shows symptoms of both acute and chronic 

GvHD and might develop in the skin, liver or gastrointestinal tract (Kreisel et al., 1994). 

The NIH consensus conference held in 2005, proposed the term “overlap” GvHD to 

describe the situation when both acute and chronic GvHD are present. According to 

the proposed NIH criteria, aGvHD manifestations occurring more than 100 days after 

HSCT are classified as “persistent”, “recurring” or “late onset” aGvHD depending on 

the antecedent history of aGvHD and absence of other cGvHD manifestations (Vigorito 

et al., 2009).  

Classic chronic GvHD is defined by diagnostic manifestations of chronic GvHD without 

characteristic features of acute GvHD, and an “overlap” subtype of chronic GvHD is 
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defined by simultaneous features of both chronic and acute GvHD (Jagasia et al., 

2007; Arora et al., 2009; Cho et al., 2009; Pidala et al., 2011). 

 

1.4.3.2 Target organs, grades and symptoms 

 
 

Onset of aGvHD symptoms typically occurs 2-3 weeks after transplant (Gilleece, 2011). 

The primary organs affected by aGvHD are the skin, liver, and gastrointestinal (GI) 

tract (Gilleece, 2011).  

In the skin, symptoms classically manifest as an erythematous, macropopular rash with 

or without pruritus involving the pinnae, palms and soles. This rash often spreads to 

involve the neck and trunk with later involvement of the extremities. Severity in 

determined by the percentage of body surface area involved and may range from a 

mild, nonpuritic rash to bullous formation and desquamation reminiscent of toxic 

epidermal necrolysis (Gilleece, 2011).  

In the liver, symptoms include an elevated serum bilirubin as a typical manifestation, 

although elevated alkaline phosphate may also be an indicator of impending disease. 

A variant of liver aGvHD has also been described that manifests as hepatitis with 

transaminitis and elevated alkaline phosphatase. However, these are not classic 

findings and are not specific (Gilleece, 2011). Liver biopsy post transplantation is a rare 

and dangerous procedure because thrombocytopenia early after transplant can greatly 

increase its risk and thus, the diagnosis of liver involvement in aGvHD is one of 

exclusion. The liver is a difficult organ to study as hepatic disease caused by GvHD 

may be difficult to distinguish from other causes of liver dysfunction following BMT such 

as drug toxicity or viral infection. However, if related to GvHD, the histological features 

of hepatic malfunctions are endothelialitis, lymphocytic infiltration of the portal areas, 

pericholangitis and bile duct destruction (Snover et al., 1984). 

The GI tract presents symptoms such as diarrhea, vomiting, anorexia and abdominal 

pain in severe cases (Ferrara and Deeg, 1991). Histological features include patchy 

ulcerations, apoptotic bodies in the base of the crypts, crypt abscesses, and loss as 

well as flattening of the surface epithelium (Snover et al., 1985). Depending on the 

involvement of these three organs, the degree of severity of GvHD can be determined 

(Wiesner et al., 2003). 
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The overall grades of GvHD are classified as I (mild), II (moderate), III (Severe) and IV 

(very severe). Severe GvHD has a poor prognosis, with 25% long-term survival for 

grade III and 5% for grade IV (Cahn, 2005). In the skin, the clinical grading system is 

based on the percentage of skin affected by rash and the severity of the rash, in the 

liver it is based on elevations of bilirubin level and finally in the GI tract the grade 

depends on the volume of diarrhea (Kreisel et al., 1994). For a patient, the overall 

aGVHD score takes into account the grading for each organ. Overall grades are from 

0 to IV (0: None, I: Mild, II: Moderate, III: Severe, IV: Life threatening (Spitzer T. 

Children’s National Medical Center, USA) (Table 1.1). 

 

 

 

 

 

 

 

 

 

 

State Skin Liver (bilirubin) Gut (stool output/day) 

0 No GvHD rash < 2 mg/dl < 500 ml/day or persistent 
nausea. 

1 Maculopapular rash< 25% BSA 2–3 mg/dl 500–999 ml/day 

2 Maculopapular rash 25 – 50% BSA 3.1–6 mg/dl 1000–1500 ml/day 

3 Maculopapular rash > 50% BSA 6.1–15 mg/dl Adult: >1500 ml/day 

4 Generalized erythroderma plus bullous 
formation 

>15 mg/dl Severe abdominal pain with 
or without ileus 

Grade 
   

I Stage 1–2 None None 

II Stage 3 or Stage 1 or Stage 1 

III - Stage 2–3 or Stage 2–4 

IV Stage 4 or Stage 4 - 

Table 1.1: Grading and staging of aGvHD based on organ involvement 

(Przepiorka et al.1995). 

Abbreviations: BSA=body surface area; GI=gastrointestinal; GVHD=graft-versus-host disease. 
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1.4.4 Chronic graft versus host disease 

 

Chronic GvHD is the major cause of late non-relapse mortality after HSCT. It may 

present in a progressive way (aGvHD merging into cGvHD), quiescent (aGvHD that 

resolves completely but is later followed by cGvHD) or it may occur de novo. The 

advanced age of a recipient and a history of aGvHD are the greatest risk factors for 

cGvHD (Carlens et al., 2002) and thus, the same strategies to prevent aGvHD may 

help prevent the chronic form. Usually, the manifestations of cGvHD are of an 

autoimmune nature with resemblance to scleroderma, wasting syndrome and chronic 

immunodeficiency (Shulman et al. 2004). Symptoms usually appear within 3 years 

after allogeneic HCT and they may be restricted to a single organ or tissue or may be 

widespread. cGvHD can lead to severe complications such as contractures, loss of 

sight, end-stage lung disease and may even cause death due to profound chronic 

immune suppression leading to recurrent or life threatening infections (Shulman et al. 

2004). The incidence rates of cGvHD range from 6% to 80% according to recipient age, 

donor type, HCT source, graft manipulation (T-cell depletion) and use of post 

transplantation donor lymphocyte infusion (DLI) (Sullivan et al., 1991; Rocha et al., 

2002). 

 

1.5 Graft versus host disease prophylaxis and treatment 

1.5.1 Treatment of acute GvHD  

 

 

Acute GvHD generally develops during the phase of continued treatment (MacMillan 

et al., 2002a; Ferrara et al., 2009). Steroids are the standard of treatment for aGvHD 

with efficient anti-lymphocyte and anti-inflammatory activity. In many centres, mild 

GvHD of the skin (grade I) is treated with topical steroid only, but in the case of a more 

severe disease and any degree of visceral GvHD involvement, high-dose systemic 

steroids are usually employed (Ferrara and Deeg, 1991). 

For less than half of patients, administration of steroids results in complete remission 

however more severe GvHD is less likely to respond to treatment (Cragg et al., 2000). 

In a prospective study, the addition of anti-lymphocyte globulin to steroids as primary 

treatment was not beneficial (Cragg et al., 2000), although in a retrospective study, the  
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use of anti-thymocyte globulin in patients who showed early signs of steroid resistance 

increased the response rates and was beneficial (MacMillan et al., 2002b). However, 

not all studies have confirmed such a benefit and for this reason, this antibody 

preparation is not used as standard because of raised infection risks (Cutler et al., 

2005).  

A promising approach for the treatment of aGvHD is the infusion of mesenchymal 

stromal cells (MSCs), after being expanded in culture either from the original donor or 

from a third party. This approach produced 55% complete response in a phase II study 

of patients with steroid-resistant GvHD (Le Blanc et al., 2008).   

Another strategy for the treatment of aGvHD is extracorporeal photopheresis. During 

this procedure, the patient’s white blood cells are gathered by apheresis, incubated 

with the DNA-intercalating agent 8-methoroxypsolen, exposed to ultraviolet light, and 

returned to the patient. This procedure is known to induce cellular apoptosis, which 

has anti-inflammatory effects in several systems, including prevention of rejection of 

solid organ grafts (Sanchez-Jimenez et al., 2013). However, randomized multicentre 

studies of this approach are needed to establish its place in the clinical management 

of aGvHD (Sanchez-Jimenez et al., 2013).  

A different strategy to treat GvHD is blockade of the inflammatory cytokine TNFα. Two 

anti-TNFα monoclonal antibodies have been used: infliximab, a chimeric monoclonal 

antibody that binds to TNFα and that lyses cells producing TNFα; and etanercept, a 

recombinant DNA protein composed of TNF receptor II linked to the Fc portion of 

human IgG1. Infliximab resulted in a 19% complete response rate in patients treated 

for grade II-IV steroid-refractory acute GvHD in a multicentre, retrospective analysis 

(Patriarca et al., 2004). 

 

1.5.2 Treatment of chronic GvHD 

 

In contrast to aGvHD, the pathophysiology of cGvHD remains poorly understood and 

the disease is treated with a wide range of immunosuppressive agents. The response 

to cGvHD treatment is unpredictable, and mixed responses in different organs can 

occur in the same patient. Variables such as infection and comorbidities also make 

responses hard to measure.  
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The use of corticosteroids with or without calcineurin inhibitor is the standard of care, 

but findings of a randomized trial of over 300 patients with cGvHD noted differences 

between cyclosporine plus prednisone versus prednisone alone (Koc et al., 2002).  

Chronic immunosuppressants, especially those containing steroids, are highly toxic 

and can result in infectious deaths. Many second line therapies have been studied, but 

none have achieved widespread acceptance. ECP showed promise with significant 

response rates in high-risk patients. The best responses were observed in skin, liver, 

oral mucusa, eye and lung (Couriel et al., 2006). This observation is particularly 

relevant because lung GVHD has the potential to be a particularly devastating 

complication necessitating lung transplant as the only therapeutic option (Rabitsch et 

al., 2001; Sano et al., 2005). 

 

1.5.3 Prevention of GvHD 

 

Recently, tissue-typing laboratories have developed and are using more precise and 

sophisticated DNA tests to select the best HLA matched donor for transplant patients.  

In order to lower the risk of developing GvHD, prophylactic immunosuppressive 

medicines and intravenous immunoglobulins (Anti-thymocyte globulin (ATG) and 

Campath, alemtuzumab) can be given to patients after HSCT, to prevent the donor T 

cells from initiating an immune response against the recipient tissue 

(http://www.cancer.org). However, using this prophylactic regimen comes with the risk 

of developing fungal, bacterial and viral infections due to the immune system being 

suppressed with a decreased ability to fight infection (http://www.cancer.org). New 

technologies as well as new and improved methods to prevent GvHD are being studied 

in clinical trials. These include novel immunosuppressive drugs and new monoclonal 

antibodies administrated to patients after transplantation, removing donor T cells 

before transplant and the use of photopheresis (Martin et al., 1990; Chao et al., 1993; 

Zic et al., 1999; Greinix et al., 2000). 

 

1.5.4 Novel therapeutic approaches 

 

Traditional therapies have targeted T cells, yet immune stimulatory DCs also are critical 

in the pathogenesis of GvHD. Other cellular therapies, notably Tregs and MSCs 

mediate important effects through DC and show promise for the prevention and 

treatment of GvHD in early human studies (Stenger, et al. 2012). Therapies are likely 



 
 

24 

to be more effective if they have synergistic effects or target both DC and T cells in 

vivo, such as tol DC or Treg (Stenger, et al. 2012). 

 

1.6 Other allogeneic allo-HSCT outcomes 

 

As early as 1956, it was found that transplanted allogeneic immunocompetent cells 

could eliminate leukaemic cells in mice independent of chemoradiotherapy (Barnes et 

al., 1956). This was then termed a graft versus tumour (GVT) effect (Weiden et al., 

1979; Weiden et al., 1981). Initial evidence for GVT effects in humans came from 

studies reporting reduced leukaemic relapse rates in allo-grafted patients who 

developed acute and/or chronic GvHD compared to patients who did not (Weiden et 

al., 1979; Weiden et al., 1981). The GVT effect was confirmed by other investigators 

who observed increased risks of relapse in patients receiving T-cell-depleted 

(Maraninchi et al., 1987) and syngeneic transplantation (Horowitz et al., 1990). Direct 

support for antitumor effects of allogeneic cells came from observations that DLI could 

induce complete remission in some patients with haematological malignancies who 

had relapsed after allo-HSCT (Kolb et al., 1995; Collins et al., 1997; Kolb et al., 2004). 

The use of reduced intensity conditioning (RIC) and non-myeloablative conditioning 

regimens has shifted some or all of the burden of tumour-cell kill from the conditioning 

regimen to the GVT effect (Slavin et al., 1998; pitzer TR et al., 2000; Sorror et al., 2004). 

Every patient undergoing transplantation has some degree of GVT reaction, otherwise 

the underlying disease for which the patient had been transplanted for would not be 

eliminated. Thus, it is crucial in the clinic to maintain the balance between GvH and 

GVT as this can ensure patient recovery from cancer without disease relapse.  

Alongside GvHD and GVT, several additional outcomes are assessed post allo-HSCT 

such as disease relapse, overall survival (OVS) and non-relapse mortality (NRM).               

All HSCT outcomes are affected by three main types of clinical risk factors that affect 

transplantation: pre-transplantation, peri-transplantation and post-post transplantation  

(Gratwohl, 2012a). These risk factors were introduced as part of the European Group 

for Blood and Marrow Transplantation (EBMT) risk score (Gratwohl, 2012a).  

Pre-transplant factors including patient’s age, disease stage, time interval, diagnosis, 

donor HLA type and gender combination, are assessed to calculate risk scores for 

patients to predict transplantation outcome. This can help to adapt specific allo-HST  
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procedure such as patient care, conditioning regimen, GvHD prophylaxis and also the 

source of stem cells (Gratwohl, 2012a). Peri-transplant factors are those involved 

during the HSCT procedure and include transplantation technique, conditioning 

regimen, GvHD prophylaxis and source of stem cells.  

Post- transplant risk factors are usually the most complex factors, as they are relatively 

unpredictable at the time of allo-HSCT such as GvHD incidence and severity, relapse 

and infections which are a major post-HSCT complication as the patient’s immune 

system is compromised to receive the donor cells (Gratwohl, 2012b).  

 

1.7 Non-HLA immunogenetics in graft versus host disease  

 

A considerable proportion of the risk of adverse outcome after HSCT is genetic and 

can be attributed to various factors including HLA matching, KIR matching, miHAg and 

non-HLA gene polymorphisms (Harkensee et al., 2012). 

Outcomes such as aGvHD and cGvHD, relapse and survival have been shown to be 

modified by functionally relevant polymorphisms in non-HLA genes that are involved 

in immune responses (Porter et al., 2010). Such regulatory polymorphisms are 

complicated to pinpoint among other polymorphisms localized near these genes which 

have no direct effects on gene function. Reliable identification of polymorphisms that 

result in differences in gene expression or protein function and affect the outcome of 

HSCT is challenging. However, these polymorphisms are expected to have a critical 

role in the molecular characterization of complex traits manifesting post HSCT 

(Sachidanandam et al., 2001). 

 

1.7.1 Genes involved in the immune response 

 

The MHC complex is the most important genomic region that could contribute to the 

risk of GvHD after HSCT. Matching of MHC class I and class II genes is essential for 

the success of transplantation. However, the MHC contains additional genes that could 

also contribute to the risk of developing acute GvHD (Novota et al., 2011a). 
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The HLA complex, is organized into segments of closely linked genetic variants that 

are inherited as haplotypes on the same DNA strand. HLA haplotypes can be defined 

by HLA class I and II alleles and they are in strong linkage disequilibrium with defined 

genetic variants of non-class I/non-class II genes within the haplotype blocks within 

this region. 

Interestingly, HLA haplotype mismatching in 10/10 fully matched unrelated donors 

transplants was associated with an increased risk of severe acute GvHD (Petersdorf, 

2007). This finding demonstrates that the HLA complex encodes, in addition to HLA-

A, B, C, DRB1, and DQB1, further unidentified genes that contribute significantly to the 

risk of developing acute GvHD. HLA gene expression profiling may be an alternative 

strategy to identify HLA genes that are involved in the pathophysiology of GvHD.  

There is still a need to identify genes that contribute significantly to the risk of 

developing acute GvHD. These genes or gene markers may be used to assess the 

risk of developing GvHD, for the diagnosis of GvHD, for monitoring treatment of GvHD, 

and for screening for immunomodulating substances which may be useful in the 

treatment of GvHD. 

The novel use of gene markers as a method of predicting the risk for a patient 

developing GvHD was developed under a patent (application number 

PCT/EP2011/072804) by Prof Ralf Dressel, Prof Anne Dickinson, Prof Bent Rolstadt 

and Lutz Walter (Dressel et al., 2011). The invention relates to methods of monitoring 

the efficacy of GvHD treatment, and could also be used to screen new candidate 

drug/antibodies for therapies. The inventors identified rat and human MHC and NKC 

genes and non-MHC and non-NKC genes that are regulated during GvHR in skin 

explant assays and could therefore serve as biomarkers for GVHD. The method 

involves determining the prognostic transcript of one or more genes selected from the 

following genes consisting of UBD, C2, LST1, AIF1, C1QTNF7, CEACAM4, MME, 

IGFBP5, TAP1, CTGF, ANP32A, HCLS1, HTRA1, LGALS7, PTGER2, PTPN7, TGM2, 

TREM2 and CARD11, PIK3AP1, PSTPIPI, MSR1; or their corresponding cDNAs, or 

their expression products. 
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1.7.2 Single nucleotide polymorphisms and risk associated genotypes 

 

SNPs are the most studied and evaluated variants of the human genome. Mullally et 

al, combined knowledge from different studies and accumulated understanding of 

different structural variants (such as CNVs), and summarized that the dissimilarities 

between all individuals are much greater than previously thought (Mullally and Ritz, 

2007). This insight into the diverse complexity of the genome was of great benefit to 

the field of HSCT on two levels: the generation of the transplant antigens and the 

individual susceptibility to transplant related toxicities. Advances in studies and 

techniques used for DNA sequencing made it easier to perform genome-wide analysis 

using high throughput standard procedures to test for genetic characteristics and 

details associated with patients and donors before performing the transplantation. 

Applying and incorporating these finding into clinically meaningful results will be the 

next challenge for transplant clinicians. 

The extent of the human genome is apparent when studying SNPs. Indeed, the 

International Hapmap Project reported more than one million SNPs in the human 

genome in October 2005 (Altshuler et al., 2005). Different types of genome variations 

were described in the Hapmap project, including whole gene deletions, multiple copy 

gene duplication, inverted gene sequences, large-scale copy number variants and 

segmental duplications (hapmap.ncbi.nlm.nih.gov). Regarding SNPs, 11,500 were 

catalogued as non-synonymous coding SNPs. According to studies on copy number 

variations (CNVs) carried out in the following years, the normal human genome 

contains at least 600 structural variants, comprising at least 100 million bases of DNA 

sequence. These numbers continue to increase with new structural variants being 

discovered (Fredman et al., 2004; Sharp et al., 2005; Feuk et al., 2006) 

Numerous studies on SNPs have shown that genes which bear genetic variation are 

to be enriched significantly during immune responses (Tuzun et al., 2005). This means 

that genes stimulated in, or responsible for, the immune response (e.g. cytokines) 

contain more structural rearrangements that other genes. Some genes were reported 

to be implicated in the adaptability and fitness of an organism in response to an 

external stimulus. Thus, the structural variations that occur in the genome represent 

the process of adoptive evolution. An example of these observations is the selection 

of gene copy number that has been reported for CCL3L1, an immune response gene, 
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where lower than average copy number is associated with HIV/AIDS (Gonzalez et al., 

2005). 

Understanding the human genetic diversity will help dissect the susceptibility and 

response to different diseases and specifically, these studies are of great significance 

to the field of HSCT. Indeed, along with deletions, non-synonymous SNPs can 

generate potentially immunogenic transplant antigens (Mullally et al., 2006). Non-HLA 

SNPs can influence the immune response. A study by Cho et al. suggested that 

significant variability in cytokine and chemokine expression after Toll-like receptor 

stimulation has been observed between individuals. This suggests that particular 

aspects of immune response, such as TLR stimulation in the case of this study, are 

closely associated with genetic variation (Cho et al., 2013).  

To analyse the SNPs in relation to cGvHD, Clark et al suggested that SNPs in target 

genes can lead to better understanding of the biological basis of the different subtypes 

of cGvHD (Clark et al. 2010). Genes that could be subject to copy number variation 

include KIR, MHC, and the gene encoding Fc and immunoglobulin receptor. Genes 

involved in drug detoxification, which are also subject to structural variation leading to 

CNV, are of potential relevance to HSCT. These include genes relevant to the 

glutathione s-transferase gene family, the cyclophosphamide (cytochrome p450, GST 

family) and calcineurin inhibitor (cytochrome p450, UGT2B family metabolism). This 

suggests that normal gene structural variations could have an impact on individual 

outcomes during HSCT (Sebat et al., 2004). 

The majority of the SNPs arise in non-coding regions including intronic, intergenic 

regions and untranslated regions (UTRs) (Engle et al., 2006). Those which are within 

genes, including genes affecting the immune response, can alter the expression of the 

gene or the structure of the encoded proteins (Dickinson and Norden, 2015a). Indeed, 

many of the genes which were associated with HSCT outcome, were also associated 

with autoimmune disease, however only few remained significant following genome 

wide association studies (GWAS) (Dickinson and Norden, 2015a).  

Since the original work regarding candidate gene associations published by Middleton 

et al, multiple studies investigating lager cohort gene associations have been reported 

on SNPs located in more than 20 genes that either code for cytokines or other 

molecules playing a significant role in the biology of HSCT (Dickinson and Norden, 
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2015a; Cavet et al., 1999; Socie et al., 2001; Mullighan et al., 2007; Espinoza et al., 

2011). The relationship between SNPs in the NOD2 gene with GvHD and HSCT 

outcome has been extensively studied several groups. SNPs which were originally 

identified in the NOD2 gene for their association with Crohn’s disease have been 

associated with HSCT outcome (Holler et al., 2006; Grube et al., 2015). Patients 

carrying one variant of rs206684 (SNP8), rs2066845 (SNP12) or rs41450053 (SNP 13) 

have a 2 to 4-fold increase of developing Chron’s disease and this risk increases to 

20-fold in patients who are homozygotes or compound heterozygotes (Economou et 

al., 2008; Chien et al., 2012). NOD2 plays a major role in defense against infection as 

it recognises pathogen-associated patters and thus induces cytokine cytokine 

response and it is also regulated by pro-inflammatory cytokines (Rosenstiel et al., 

2003).  

Another example is the FOXP3 gene region, within which more than 90 SNPs have 

been identified and several among these SNPs have been identified as risk factors for 

a number of malignant and autoimmune diseases (Eastell et al., 2007). Tregs, defined 

as CD4+CD25+FOXP3+ T cells are involved in the maintenance of immunological 

tolerance (Beres et al., 2013) and have been the focus of several HSCT studies due 

to their ability to supress alloreactivity during GVHD (Hoffmann et al., 2002). A SNP, 

rs3761548, in the promotor region of FOXP3, resulting in A->C base exchange was 

shown to cause loss of binding to E47 and c-Myb factors and thus, leading to defective 

transcription of the FOXP3 gene (Shen et al., 2010). In HSCT setting, this 

polymorphism was shown to be associated with the development of auto or alloimmune 

conditions, including type I diabetes, and graft rejection in renal transplantation 

(Noriega et al., 2015). In patients transplanted from donors carrying short alleles 

(≤(GT)15), this polymorphism was shown to be associated with a lower incidence of 

severe GvHD (grade 3-4) (Noriega et al., 2015). This polymorphism however had no 

effect on relapse, event free survival or overall survival in patients with aGvHD and 

cGvHD (Noriega et al., 2015). 

Specific polymorphisms in genes for IL-10, IL-6, TNF- α and IFN-γ in a pediatric cohort 

of 57 HLA-identical sibling myeloablative transplants were reported by Goussetis and 

colleagues who retrospectively studied these polymorphisms and found a significant 

association between the IL10 promoter haplotype polymorphism at -1082, -819 and -

592 with the incidence of severe aGVHD (Goussetis et al., 2011). The authors reported 

that patients with the haplotype GCC showed a decreased risk of sever aGvHD in 
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comparison with other IL10 haplotypes (Goussetis et al., 2011). Chien et al, reported 

that 2 SNPs in the same gene IL10, rs1800872 and rs1800872, were associated with 

a 30% decrease of the risk of severe aGvHD (Chien et al., 2011). In the case of IL6, 

the donor genotype for rs1800795 in IL6, was associated with a 20% to 50% increase 

in the risk for aGvHD (II-IV) and the IL2 polymorphism rs2069762 in the donor 

genotype was showed to be associated with a 1.3-fold increase in the risk of grade III-

IV aGvHD (Chien et al., 2011). The Ogawa group identified three new loci that were 

shown to be significantly associated with severe aGvHD (II to IV) including the SNP 

rs17473423 within the KRAS locus (Stao et al., 2015). In a study by Bair et al, two 

GvHD susceptibility loci (rs17114803 and rs17114808) in the suppressor of fused 

homolog (SUFU) gene have been found (Bari et al., 2015). The Incidence of aGvHD 

was shown to be higher in patients who were homozygous for CC at SUFU rs17114808 

(Bari et al., 2015).  

In microRNAs (miRNAs), SNPs can alter regulatory properties but elucidation of the 

functions of these SNPs is not straight forward (Hudson, 2003). Moreover, SNPs 

located in miRNAs can affect the miRNAs maturation, function, and target selection. 

To date, a number of studies have demonstrated that SNPs in target sites or miRNA 

genes are associated with diseases such as chronic lymphocytic leukaemia, non-

small-cell lung cancer, papillary thyroid carcinoma and breast cancer (Chin et al., 2008; 

Jazdzewski et al., 2008; Sethupathy and Collins, 2008; Mencía et al., 2009). 

 

1.7.3 Implication of microRNAs in the pathophysiology of graft versus host 

disease 

 

MicroRNAs (miRNAs) represent a promising source of biomarkers for GvHD because 

they play critical roles in the development and function of the immune system (Banerjee 

et al. 2010; Rodriguez et al. 2007). MicroRNAs are a family of 19-24 nucleotide 

noncoding RNAs, which affect the regulation of gene expression in eukaryotic cells by 

binding to the 3´-untranslated region of target messenger RNAs (mRNAs). They play 

an important role in many cellular processes such as development, stem cell division, 

apoptosis and cancer (Ajit, 2012).  

MiRNAs regulate gene expression by binding to the mRNA and the seed sequence is 

essential for this binding. The seed sequence (or seed region) is a conserved 
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heptametrical sequence which is mostly situated at positions 2-7 from the miRNA 5´-

end. Even though perfect base pairing of miRNA and its target mRNA is required, the 

“seed sequence” has to be perfectly complementary (Felekkis et al., 2010). Human 

miRNA biogenesis is a two-step process including both nuclear and cytoplasmic 

cleavage events, performed by two ribonuclease III endonucleases, Drosha and Dicer 

(Figure 1.11) (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004). The miRNA-

processing pathway includes the production of the primary miRNA transcript (pri-

miRNA) by RNA polymerase II or III and cleavage of the pri-miRNA by the 

microprocessor complex Drosha–DGCR8 (Pasha) in the nucleus. The resulting 

precursor hairpin, the pre-miRNA, is exported from the nucleus by Exportin-5–Ran-

GTP (Du and Zamore, 2005). In the cytoplasm, the RNase Dicer in complex with the 

double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin to its 

mature form (Lee et al., 2007b). The functional strand of the mature miRNA is loaded 

together with Argonaute (Ago2) proteins into the RNA-induced silencing complex 

(RISC), where it guides RISC to silence target mRNAs. This may be via cleavage, 

translational repression or deadenylation, and the passenger strand is usually 

degraded (Winter et al., 2009) (Figure 1.7). 
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According to Bentwich et al, around 50% of all genes are regulated by miRNAs, which 

makes the investigation of their roles in different diseases very important (Bentwich et 

al., 2005). In this context, Atarod et al, have reviewed the possible interaction between 

some miRNA pathways and GvHD using in silico approaches and eight microRNAs 

(miR-146a, miR-155, miR-515, miR-346, miR-143, miR-373, miR-31a and miR-29)  

Figure 1.7 MicroRNA biogenesis (Esquela-Kerscher and Slack, 2006).  Pri-

miRNA is transcribed from the miRNA gene and to pre-miRNA by Drosha in the 

nucleus. This pre-miRNA is then exported into the cytoplasm by Exportin 5 and 

cleaved into mature miRNA by Dicer. Mature miRNA is loaded onto RISC/miRISC 

and delivered to the mRNA where it represses translation and/or results in mRNA 

cleavage. Pol II: Polymerase II; Pri-miRNA: Primary MicroRNA; Pre-miRNA: 

Precursor MicroRNA; miRISC: MicroRNA Induced Silencing Complex; ORF: Open 

Reading Frame; UTR: Untranslated Region; mRNA: Messenger RNA. 
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were predicted to impact on different molecules in the GvHD signalling pathway 

(Atarod and Dickinson, 2013). MiR-155 was one of the first miRNAs to be associated 

with the regulation of aGvHD. This miRNA is required for the normal function of B and 

T lymphocytes (Rodriguez et al., 2007). Ranganathan et al showed that miR-155 was 

up-regulated in patients with intestinal aGvHD, making this miRNA a novel target for 

therapeutic intervention (Ranganathan et al., 2012). 

 

1.7.3.1 MicroRNA-146a involvement in GvHD 

 

At present, there is extensive knowledge on the cellular mechanisms of GvHD but less 

is known about the molecular biology of the disease.  Molecular studies carried out to 

date have focused on identifying SNPs (Dickinson and Holler, 2008) and specific 

genes involved in the development of GvHD (Baron et al., 2007). However, there have 

been fewer studies focusing on the molecular regulation of GvHD. Recently, the 

potential role of microRNAs as biomarkers for GvHD has been highlighted (Paczesny 

et al., 2013).  

MicroRNA-146 is increasingly being recognized as a ‘fine-tuner’ of cell function and 

differentiation in both innate and adaptive immunity. MiR-146a controls innate immune 

cell and T-cell responses, and its deficiency was shown to be responsible of 

autoimmunity (Boldin et al., 2011). MiR-146a is expressed within a family that shares 

the same seed sequence, but is coded by different loci in the human genome. The 

miR-146a gene is located on human chromosome 5, corresponding to chromosome 

11 in mouse (Garcia et al, 2011) (Garcia et al., 2011). 

Mechanistically, miR-146a has been shown to directly target two adapter proteins in 

the nuclear factor (NF) κB activation pathway, tumour necrosis factor (TNF) receptor-

associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK1), both in 

innate immune cells and T cells (Taganov et al., 2006b; Boldin et al., 2011; Yang et al., 

2012). In addition, the survival and maturation of human plasmacytoid dendritic cells 

that are involved in GvHD were shown to be regulated by miR-146a (Koyama et al., 

2009; Karrich et al., 2013). 

MiR-146a gene expression analysis has demonstrated induction in response to 

microbial components such as LPS which triggers GvHD pathology (Cooke et al., 

2001; Taganov et al., 2006b). Upon stimulation with LPS or monocyte activation via 
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cell surface receptors such as TLR4, miR-146a has been shown, both in vivo and in 

vitro, to target IRAK1 and TRAF6 that become associated with the IL-1 receptor upon 

stimulation and are partially responsible for IL-1-induced upregulation of NF-kB (Figure 

1.8) (Boldin et al., 2011).  

Such binding results in the suppression of the expression of NF-κB target genes such 

as the interleukins IL-6, IL-8, IL-1β, and TNF-α (Pauley et al., 2008; Tang et al., 2009; 

Boldin et al., 2011). Taganov et al, established that IRAK1 is regulated by miR-146a 

(Taganov et al., 2006). IRAK1 is considered as a linker of the TLR with the TRAF6 

intracytoplasmic activator of transcription factor of NF-κB and is subject to a negative 

feedback by miR-146a (Figure 1.12) (Chatzikyriakidou et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 MicroRNA-146a and IRAK1 interaction and their association 

with NF-κB signalling (adapted from Rusca and Monticelli, 2011). MiR-

146a negatively regulates signal transduction pathways leading to NF-κB 

activation. Upon activation of cell surface receptor such as TLR4, a 

molecular cascade including TRAF6 and IRAK1 leads to IκBα 

phosphorylation and degradation and to activation and nuclear translocation. 

NF-κB activation induces transcription of many genes, including pri-miR-

146a. Once translocated to the cytoplasm and loaded onto the RISC 

complex, mature miR-146a contributes to attenuate receptor signalling 

through the down-modulation of IRAK1 and TRAF6 (Taganov et al., 2006b; 

Taganov et al., 2007; Rusca and Monticelli, 2011b). 
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In addition to being studied as potential biomarkers for GvHD, microRNAs also have 

promising potential to be used in the therapy of different diseases including GvHD 

(Paczesny, 2013a). As miRNAs are being increasingly studied as key regulators of 

gene expression, several SNPs in miRNA genes (miRNA-related SNPs) have also 

been shown to be associated with human diseases by affecting the miRNA mediated 

regulatory function (Gong et al., 2012). 

 

1.8 Non-invasive biomarkers for HSCT outcome  
 

Unlike the genome, the proteome varies with time and is defined as the proteins 

present in a single sample at a certain time point. Ideal clinical tests are based on non-

invasive collection, which allows for repetitive sample collection from the same patient 

in short amount of time. Thus, proteins represent ideal biomarkers in the post-

transplantation setting and have been widely studied, as detailed in the following 

sections. 

GvHD biomarkers may be produced by several sources such as donor cells, the local 

or systemic cytokine milieu, or recipient target tissues during disease development. 

These biomarkers may then be released into a variety of body fluids. For non-invasive 

tests used in diagnostics, bio-fluids such as plasma, sera (Paczesny et al., 2009; 

McDonald et al., 2015), or urine, are the preferred samples. Enormous effort has been 

placed into developing standardized methods for clinical sample collection (Rai et al., 

2005; Court et al., 2011). Plasma and sera are the most frequently analysed bio-fluids. 

The levels of individual blood proteins represent a summation of multiple, disparate 

events that occur in every organ system. Plasma and sera contain proteins shed by 

the affected tissue as well as proteins that reflect secondary systemic changes.  

Urine samples represent an alternative to plasma/sera samples for biomarker 

discovery. Urine has 3 main advantages compared with plasma/sera: (1) it can be 

obtained in large quantities; (2) the protein mixture is far less complex and the variation 

in protein abundance is low (Thongboonkerd, 2007) ; and (3) it is more stable (Schaub 

et al., 2004). However, urine yields better information about diseases in organs that 

are directly involved in its production and excretion, such as the kidneys (Paczesny, 

2013a). 
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Although blood biomarkers are ideal for use in a clinical setting, one goal of research 

into the fundamental biology of GvHD is to identify markers that are target-tissue 

specific. Thus, the ideal sample for discovery of biologically relevant GvHD proteins 

may be the target tissue itself. However, finding tissue-specific markers has thus far 

proven difficult because of the cellular heterogeneity of tissues, and the limited material 

available in biopsies for tissue proteomics. To date, there is no method capable of 

amplifying the amount of proteins requiring, at best, pooling of several biopsies 

(Tangrea et al., 2004; Hwang et al., 2007). 

 

1.9 Involvement of the MHC class I chain-related gene A (MICA) in 

HSCT 

 

Acute GVHD is a serious complication of allo-HSCT and involves tissue damage by 

the conditioning regimen which induces secretion of proinflammatory cytokines, a 

critical step for the maturation and activation of host dendritic cells, and for initiation 

and amplification of donor-derived T-cell-mediated responses (Rocha et al., 2002). 

Tissue specific expression of stress signals from aGvHD target organs (liver, gut and 

skin) might contribute to the pattern of clinical pathology (Serrano et al., 2013). In this 

setting, the human MHC class I chain-related sequence A (MICA) is induced upon 

cellular distress conditions such as DNA damage, malignant transformation, or 

intracellular infection (Koreth and Ritz, 2013).  

MICA is a non-classical class I gene, located on the short strand of chromosome 6, 

and encodes a polypeptide of 383 amino acids (Atlas of Genetics and Cytogenetics in 

Oncology and Haematology). MICA is a member of the MIC gene family containing 2 

functional genes, MICA and MICB, and several pseudogenes, MICC to MICG (Bahram 

and Spies, 1996; Bahram, 2000b; Muro et al., 2014) (Figure 1.9). MICA gene is 

organized into 7 exons of which exon 5 encodes the transmembrane (TM) region of 

the MICA molecule (Zou et al., 2007).  MICA is by far the most divergent non classical 

MHC-I gene known sharing only 18, 25 and 30% homology in the α1, α2 and α3 

extracellular domains with other MHC-I genes (Bahram and Spies, 1996). 

MICA is expressed on the surface of epithelial cells, fibroblasts, keratinocytes and 

monocytes but not on the surface of CD4+, CD8+ or CD19+ lymphocytes (Hill et al., 

2000). MICA engages NKG2D, a C-type lectin-like receptor expressed on effector cells, 

including natural killer (NK) and T cells. Such engagement triggers NK cells and co-
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stimulates T lymphocytes to mount adequate immune responses (Mistry and 

O'Callaghan, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MICA is the most polymorphic non-classical MHC class I gene in humans, sharing only 

18%, 25% and 30% homology in the α1, α2 and α3 extracellular domains with other 

MHC-I genes (other MHC-I whether human, mouse, classical or non-classical have at 

least 70% homology with each other) (Groh et al., 1999a). The crystal structure of 

MICA has revealed some unusual characteristics for a MHC class I-encoded molecule 

(Li et al., 1999). It was confirmed that MICA does not associate with β2-microglobulin 

and it was observed that the putative peptide-binding groove is too narrow to 

accommodate a ligand, suggesting that MICA is not an antigen presenting molecule 

(Li et al., 1999; Li et al., 2001a). 

Normally, most cell types do not express MICA but it becomes induced by cellular 

stress, including virus-infection and malignant transformation. Therefore, it renders 

stressed cells susceptible to killing by NK cells and allows them, despite being non-

Figure 1.9 Map of the human MHC class I region depicting the location of the 

MICA gene (adapted from Muro et al, 2014). Precisely, the MICA gene is located from 

base pair 31,399,783 to base pair 31,415,314 (383 AA) on chromosome 6. The MICA 

gene spans a 11,720-bp stretch of DNA was located 46,445 bp centromeric of the HLA-

B locus on the short arm of human chromosome 6  [UniProt] (Muro et al., 2014) 
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professional antigen presenting cells, to directly activate cytotoxic T cells specific for 

antigens presented by these cells (Stephens, 2001). Notably, MICA expression was 

found to be increased in GvHD-affected tissue samples from patients (Gannage et al. 

2008). 

MICA expression can vary for certain MICA alleles (Shafi et al., 2011). The SNP at -

1878 (rs2596542) in the promoter region of the MICA gene was described to affect the 

transcriptional activity (Lo et al., 2013). A polymorphic microsatellite in exon 5 encoding 

the transmembrane region of MICA modifies its plasma membrane expression (Ashiru 

et al., 2013). Another SNP within the MICA gene, rs1051792 (further explained in 

Chapter 3), which leads to an amino acid exchange from valine to methionine at 

position 129, was investigated for its association with the outcome of HSCT. It was 

recently shown that the MICA-129 Met variant was associated with an increased 

overall survival and a reduced risk of death from aGvHD, despite homozygous carriers 

of the MICA-129 Val allele having an increased risk of developing aGvHD (Isernhagen 

et al., 2015a).  

On the functional level, it has been found that the MICA-129 Met isoform triggered 

more cytotoxicity and IFN- release by NK cells and it activated allo-reactive cytotoxic 

T cells faster. This variant also induced more rapid and severe down-regulation of 

NKG2D on NK and cytotoxic T cells (Isernhagen et al., 2015a). The MICA-129 Met 

variant can therefore initially confer a higher risk of aGvHD, due to a faster activation 

of allo-reactive cytotoxic T cells (Isernhagen et al., 2015a). However, in the longer 

perspective, the strong-counter regulation of NKG2D by this variant appears to be 

associated with a decreased risk of cGvHD and an increased risk of relapse due to 

lesser GvL effects by cytotoxic T cells and NK cells (Boukouaci et al., 2009). 

Interestingly, the biological effects of the MICA-129 variants were strongly influenced 

by MICA expression intensity (Isernhagen et al., 2015a). The MICA-129 Met variant 

triggered increased NKG2D signals but at low expression intensities, whereas the 

MICA-129 Val variant elicited more NKG2D-mediated effects at high expression 

intensities, at which the MICA-129 Met variant already down-regulated NKG2D, 

leading to an impaired function of this signalling pathway (Isernhagen et al. 2015). 

Thus, the MICA expression intensity could change the biological effect of this SNP, 

giving an interesting example of the complex functional interactions between SNPs 

and gene expression. 

http://www.snpedia.com/index.php/Rs1051792
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In a recent study by Isernhagen et al., it has been shown that the MICA-129 Met/Val 

dimorphism also affects plasma membrane expression. Increased levels of the MICA-

129 Met variant were retained intracellularly and if expressed at the cell surface, the 

MICA-129Met variant was more prone to shedding than the MICA-129 Val isoform 

(Isernhagen et al., 2015a). 

Stern-Ginossar et al., described increased shedding of the NKG2D ligand MICA post 

infection with several strains of human CMV, due to enhanced activity of ADAM17  

(TNF-a converting enzyme) and matrix metalloprotease 14, caused by a reduction in 

the expression of the endogenous inhibitor of metalloproteases tissue inhibitors of 

metalloproteinase 3 (TIM3P). In this study, a miRNA encoded by human CMV, 

miRUS25-2-3p, was shown to bind to a conserved site in the 3’ untranslated region of 

both MICA and MICB and downregulate MICB expression (Stern-Ginossar et al., 2008). 

This study also showed also that the expression of MICA was decreased by miR-20a, 

miR-93, miR106b, miR-373 and miR-520d (Stern-Ginossar et al., 2008).  

Cellular miRNAs have been implicated in controlling MICA expression via post-

transcriptional mechanisms (Yadav et al., 2009), although several stress pathways 

regulate the transcription of the MICA gene (Raulet, 2003). One of these miRNAs is 

miRNA-520b that once induced by interferon gamma, leads to a reduction in MICA 

plasma membrane expression intensity (Yadav et al., 2009). Interestingly, miR-520b 

acted on both the MICA 3’-untranslated region and the promoter region to decrease 

MICA transcript levels. Yadav et al., transiently transfected MelJuSo and HeLa cells 

with a luciferase reporter gene construct containing 1 kb of the MICA promoter region 

in combination with control miRNA, miR-520b, control anti-miR, or anti-miR-520b, and 

showed a reduction (2- to 3-fold) in luciferase activity in cells transfected with miR-

520b as compared with cells transfected with the scrambled control miRNA. 

Interestingly, the team showed that there was a slight but reproducible increase in 

MICA promoter activity in MelJuSo, but not HeLa cells transfected with anti-520b 

compared with control anti-miR (Yadav et al., 2009). Taken together, these data 

indicate that miR-520b inhibits MICA gene expression not only via target sequences in 

the 3′-UTR, but also by acting on the promoter region. 
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1.10 Study Aims 
 

 
The overall aim of this PhD project was to identify and assess genetic finger prints for 

putative novel molecular biomarkers for acute graft versus host disease (aGvHD). The 

investigated biomarkers included SNPs in genes and in microRNAs, gene expression 

patterns and variations of their corresponding protein levels in blood and serum and 

microRNAs signatures in the gastrointestinal tract of GvHD patients post allogeneic 

haematopoietic stem cell transplantation (all-HSCT). 

In this study, SNP genotyping was performed to investigate 4 SNPs that were 

demonstrated to be implicated in various disease settings and were reported to be 

associated with HSCT outcome as well. Two of these SNPs, rs2910164 and rs2431697, 

are related to miR-146a itself, and a third SNP, rs3027898 which is located in the 

3’UTR of Interleukin-1 Receptor Associated Kinase-1 (IRAK-1) a potential target of 

miR-146a. In addition, a non-synonymous SNP, rs10511792, in the MHC class I 

polypeptide-related gene A (MICA) was investigated for its association with HSCT 

outcome.  

As the SNP genotyping study for rs10511792 showed that the MICA-129 dimorphism 

(MICA-129 Met/Val) was significantly associated with HSCT outcomes, the impact of 

MICA gene expression on HSCT outcome was first investigated and then the possible 

correlations between MICA-129 dimorphism and MICA gene expression levels were 

assessed. A comparison between the levels of soluble MICA (sMICA) in patients’ sera 

pre and post transplantation as well as at different time points post HSCT (pre, day -7, 

day +14, day +28 and day +100) were investigated. The outcome of this part of the 

study was then correlated with the MICA-129 dimorphism, to better understand how 

MICA variants (MICA-129 Met and MICA-129 Val) influence the levels of sMICA and 

thus the incidence of GvHD. 

Alongside MICA, gene expression patterns and protein level variations of 8 other non-

HLA related genes that were shown to play an important role in generating major 

immune responses and thus could influence HSCT outcome were investigated. The 

aim was to determine the expression levels the RNA transcripts and the protein levels 

of the 8 genes of interest, including C1QTNF7, LGALS7, ANP32A, HTRA1, PIK3AP1, 

PSTPIPI, MSR1 and CXCL9 in blood samples (PAXgeneTM Blood RNA System) 

obtained from transplantation patients pre and post-HSCT in order to determine their 

impact on the outcome of HSCT.  
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As almost 60% of the human genome is target by microRNAs, these said ones can 

affect the patterns of expression of various genes playing major roles in the immune 

system and thus, influence HSCT outcome. For the purpose of discovery of new 

miRNAs associated with GvHD after HSCT, the nCounter miRNA Expression Assay 

from Nanostring Technologies was performed to screen for ~800 miRNAs in total RNA 

samples extracted from GI biopsies of aGvHD patient as intestinal GvHD is particularly 

important due to its severity and its effect of the general condition of patients. 

Significantly dysregulated miRNAs discovered from the profiling study were then 

validated in a separate cohort of samples using Taqman qRT-PCR. Target inspection 

was also carried for the identified miRNAs thus, investigating their effect on genes 

related to the pathophysiology of GvHD. 
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2.1. Patient and donor cohorts 

2.1.1. Project ethics 

Patients and healthy volunteers were consented for whole blood, sera, 

gastrointestinal biopsies and gastrointestinal clinical slide collection and molecular 

testing. The project was approved by the Newcastle and North Tyneside I Research 

Ethics committee (Trust R&D Project: 6980, Title of the project: Improving 

haematopoietic stem cell outcome through studies of alloreactivity, immune 

reconstitution, biomarkers and novel therapies, Project Code: 129780/ 

'STEMDIAGNOSTICS' REC REF: 07/H0906/131. Ethical approvals were also 

acquired from the local ethic committees of the various other centres, including 

Regensburg, Munich, Paris, Vienna and Prague for the acquisition of DNA samples. 

Scientific work after 30/09/15 is covered under 'IMPROVING HSCT' REC REF: 

14/NE/1136) (Ethics Approval attached). 

 

2.1.2. Clinical information 

The different study populations included in this work comprised of allo-HSCT patients 

collected prospectively with clinical and genotyping data from six European transplant 

centres (France, Munich, Prague, Regensburg, Vienna and Newcastle). These 

patients received transplants from a mixture of sibling (SIBs) and matched unrelated 

donors (MUDs) and had different underlying diseases including mainly, acute myeloid 

leukaemia (AML), acute lymphoblastic leukaemia (ALL), myelodysplastic syndrome 

(MSD), Non-Hodgkin's lymphoma (N-HL), Hodgkin's disease (HD), chronic myeloid 

leukaemia (CML). Cohorts comprised of patients and donors with age range 10-80 

years. Monitoring of the patients was performed post-HSCT for assessment of 

transplantation outcome including: relapse, overall survival (OVS), non-relapse 

mortality (NRM), aGvHD incidence and severity.  

The overall clinical aGvHD grades were diagnosed in accordance with the NIH 

consensus (Filipovich et al., 2005) . All clinical data were collected from the EuroBank 

database (www.eurotransplantbank.org). Overall clinical and histopathological 

gastrointestinal aGvHD grades were assessed using standard criteria (Glucksberg et 

al., 1974).  
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2.2. DNA preparation  

2.2.1. DNA extraction from peripheral blood and mononuclear cells 

For cell concentrations of 5x106 ̶ 1x107 (PBMCs or viable cells), cell pellets were 

suspended in 2 mL of nuclear lysis buffer (400 mM (31.51 g) Tris-HCL, 60 mM (11.17 

g) EDTA, 150 mM (4.88 g) NaCL and 1% SDS, all dissolved in 400 mL water, pH 8.0). 

0.5 ml of 5 M sodium perchlorate (5 M (70.23 g) sodium perchlorate) was then added 

to each tube. Samples were mixed by rotation (Blood Tube Rotator SB1, Stuart 

Equipment, UK) at room temperature for 15 minutes to fully dissolve the pellet, 

followed by a 30-minute incubation at 65°C. 2 ml of chloroform was added and the 

subsequent aqueous and organic phases were thoroughly mixed for 10 minutes 

(Blood Tube Rotator SB1, Stuart Equipment, UK). Once a homogeneous emulsion 

was formed, samples were centrifuged at 1500 RPM (MSE Muistral 3000i, DJB 

labcare, UK) for 10 minutes to break the emulsion and a two layered solution was 

produced (aqueous and organic phases). The DNA containing phase (top layer) was 

then removed and 2 volumes of absolute ethanol (Fisher Chemicals, UK) were added. 

Gentle inversion of the tube precipitated the DNA which was spooled onto an 

inoculating loop (Copan innovation) and let to air-dry for 10 minutes before 

suspending in 0.2 mL of TE buffer (10 mM Tris (10 mL of 1 M Tris stock, pH 7.5, in 1 

L DI water), 0.5 mM EDTA (1 ml of 0.5 M EDTA, pH 8.0, in 1 L DI water)). The DNA 

samples were then incubated at 65°C for 12-18 hours. 

 

2.2.2. DNA purification 

In cases of DNA with suspected contamination during TCR library preparation 

(investigated by the A260/A280 and the A260/A230 Nanodrop ratios), the genomic 

DNA samples in question were purified using QIAamp DNA Micro kit (Qiagen, Seattle, 

WA, USA) following the Manufacture’s protocol. Briefly, 100 μl of genomic DNA 

(containing up to 10 μg DNA) was added to a 1.5 ml microcentrifuge tube (deionized 

water was added in cases where the volume of the DNA was less than 100 μl) 

followed by the addition of 10 μl buffer AW1. 250 μl of buffer AW2 was added to the 

sample and mixed for 10 seconds by gentle agitation. The sample was then 

transferred to a QIAamp MinElute column and centrifuged at 8000 RPM for 1 minute. 

After discarding the flow-through, 500 μl Buffer AW2 was added to the QIAamp 
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MinElute, which was then centrifuged at 6000 x g for 1 minute and the collection tube 

containing the flow-through was discarded.  

Centrifugation at full speed (14,000 RPM) for 3 minutes was then performed to dry 

the membrane and prevent contamination with carried over ethanol. 100 μl of AE 

buffer was applied to the QIAamp MinElute column which was then incubated at room 

temperature for 1 minute before centrifugation at full speed to increase the DNA yield.   

 

2.3. Total RNA extraction  

RNA extraction from whole blood (2.5 ml) was collected in PAXgene Blood RNA 

Tubes (PreAnalytiX GmbH, UK), which contain a reagent that leads to cell lyses and 

preserves the RNA. Two tubes were collected from each allo-HSCT patient at the 

following time-points, 7 days pre-transplant and post-transplant at 28 days, 3 months, 

6 months, 9 months and 12 months and frozen at -20°C. For healthy volunteers only 

2.5 ml of peripheral blood was collected pre-transplantation. Total RNA was extracted 

using the PAXgene Blood miRNA kit (PreAnalytiX GmbH, UK) (Figure 2.1). PAXgene 

Blood RNA Tubes were stored at -20°C prior to extraction. PAXgene Blood RNA 

Tubes were incubated for 12-18 hours at room temperature to increase the RNA yield. 

The tubes were centrifuged (MSE Muistral 3000i, DJB labcare, UK) at 3500 x g for 

10 minutes to obtain a pellet. This pellet was then washed with 4 ml of RNAase-free 

(PreAnalytiX GmbH, UK) water and centrifuged again at the same conditions. The 

washing step was repeated twice and the pellet was then re-suspended in 350 μl 

buffer BM1. 300 μl of the binding buffer BM2 was then added with 40 μl proteinase K 

(1 mg/mL) to degrade any proteins. The sample was incubated for 10 min at 55°C on 

a shaker-incubator set at 400-1400 RPM. The lysates were shredded using a needle-

syringe (1 ml) to remove any lysate clumps that may contain RNAses that can 

degrade the RNA and decrease its integrity. The lysate was then transferred into the 

PAXgene Shredder spin column for further homogenisation and centrifuged for 3 min 

at 14,000 RPM. The entire supernatant was carefully transferred from the flow-

through to a fresh eppendorf and 700 µl of Isopropanol was added to increase binding 

of the total RNA to the silica membrane. This mix was loaded onto the spin column 

and then it was centrifuged at 14,000 RPM for 1min. After every spin, the processing 

tube was discarded and a new one was used. 350 µl of wash buffer BM3 was then 

added to the spin column and centrifuged for 1 min at 14,000 RPM. DNase 1 mix was 

made by adding 10 µl of the stock DNAse 1 (1500 Kunitz) to 70 µl DNA 
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digestion buffer (RDD) per sample. DNase 1 mix was loaded to the spin column 

and incubated at room temperature for 15 minutes. This treatment ensured that all 

DNA was digested in order to obtain purified RNA. The reaction was stopped by 

adding 350 µl of BM3 to the spin column and centrifuged for 1 minute at 14,000 RPM. 

Then 500 µl of wash Buffer 4 (BM4) (500 µl) was loaded onto the spin column and it 

was centrifuged for 15 seconds at 14,000 RPM. This step was carried out twice to 

completely remove any chemicals from the RNA. The spin column was then 

centrifuged empty for 1 minute at 14,000 RPM to dry the silica membrane. The spin 

column was transferred to a fresh Eppendorf (1.5 ml) and eluted using 80 µl of elution 

buffer BR5 and then centrifuged for 1 minute at 14,000 RPM. Total RNA was stored 

at -80 ºC until further use. 
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Figure 2.1 Total RNA extraction process from whole blood using the PAXgene 
Blood miRNA kit (adapted from PAXgene Blood RNA Kit Handbook). The cells were 
pelleted initially and then resuspended using BM1. Proteins were degraded by 
incubating samples at 55 ºC with buffer BR2 and proteinase K, respectively. Samples 
were then homogenized using a 1 ml syringe and loaded onto the shredder column for 
additional homogenisation. Supernatant was collected into a new eppendorf, 
isopropanol was added onto the spin column and then centrifuged. BM3 was added in 
the wash step and centrifuged again. DNAse 1 treatment was performed for 15 minutes. 
Two wash steps were performed, one with BM3 and twice with BM4, respectively. 
Purified total RNA was then eluted using buffer BR5. 
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2.3.1. RNA extraction from clinical gastrointestinal biopsies  

Total RNA was extracted from clinical GI biopsies using the mirVana miRNA Isolation 

kit (Life Technologies, USA) (Figure 2.2). The GI biopsies were initially homogenized 

on a sterile petri-dish, in 50 µl of Lysis Buffer using a sterile scalpel to cut the tissue 

to small pieces. The lysate was transferred into an eppendorf tube and Lysis Buffer 

was added to make the final volume 300 µl. To enhance homogenization, 30 µl of 

Homogenate Additive was added to each sample, which was incubated on ice for 10 

minutes. The organic extraction was performed by adding 300 µl phenol chloroform 

(Life Technologies, USA) to the samples, vortexing for 60 seconds and centrifuging 

at 10,000 xg for 5 minutes. The upper phase was carefully transferred to a fresh 

eppendorf and 375 µl of pure ethanol (Fisher Chemicals) was added to it. The mix 

was then loaded onto a filter cartridge and centrifuged at 10,000 g for 15 seconds. 

The flow through was discarded and 700 µl Wash Buffer 1 was added to the filter and 

the column centrifuged at 10,000 xg for 5 minutes. The flow through was again 

decanted and total RNA was washed twice with 500 µl of Wash Buffer 2/3 and 

centrifuged at 10,000 x g for 1 minute. The filter cartridge was air-dried by 

centrifugation at 14,000 x g for 1 minute to remove any residual chemicals. The filter 

was transferred to a new eppendorf and 100 µl pre-heated nuclease-free water (95ºC) 

was used to elute the total RNA with centrifugation at 14,009 x g for 20-30 seconds. 

The extracted RNA was stored at -80 ºC until further use (Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Total RNA extraction procedure from clinical gastrointestinal 
biopsies (adapted from the mirVana miRNA Isolation kit handbook). There 
are three main steps used in the extraction of total RNA from clinical skin 
biopsies; (1) Lysis and cell disruption, (2) Organic extraction and (3) Total RNA 
isolation and elution. 
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2.4. Evaluation of nucleic acid yield and purity 

2.4.1. 2.4.1 Evaluation of the RNA and DNA quality using the NanoDrop. 

NanoDrop Spectrometry (NanoDrop 1000, Thermofisher) was utilized for quality 

control check of previously extracted DNA/RNA samples (Figure 2.3). Pure DNA/RNA 

preparations were assessed by both the A260/A280 and the A260/230 ratios.  

To assess for protein, phenol or other contaminants that absorb strongly at or near 

280 nm, the A260/A280 ratios were assessed. Pure DNA/RNA preparations have an 

A260/280 ratio ≥ to 1.8. As a secondary measure of the nucleic acid purity, the 

A260/230 ratio was recorded to help evaluate the level of salt carry-over in the purified 

DNA.  As a guideline, the A260/A230 ratio should be greater than 1.5, ideally close 

to 1.8 (Thermo Scientific) (Figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Example of NanoDrop traces (obtained from the NanoDrop output). 
(A) NanoDrop trace for a DNA sample showing a concentration of 39.1 ng/μl, This 
sample is considered to be a pure preparation with an A260/280=1.88 and 
A260/230=1.94. (B) NanoDrop trace for an RNA sample with a concentration of 91.6 
ng/μl and an A260/280=2.05 and A260/230=1.97.  

A 

B 
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2.4.2. Agilent 2100 BioAnalyzer for RNA quality control  

For miRNA profiling studies, RNA integrity numbers (RIN) were determined using the 

BioAnalyzer (Agilent 2100 BioAnalyzer) and the Agilent RNA 6000 Nano Kit (Agilent 

Technologies). Briefly, the chip priming station was first prepared by adjusting the 

base plate to position C and the syringe clip was adjusted to the top position. On the 

chip priming station was set, the RNA ladder was denatured for 2 minutes at 70 ºC. 

The gel was then prepared by adding 550 µl of RNA 6000 Nano gel matrix into a spin 

filter and centrifuging at 1500 xg for 10 minutes at room temperature. 65 µl of the gel 

was then filtered using a filter column for further use. RNA 6000 Nano dye 

concentrate was pulse centrifuged for 10 seconds and 1 µl was added to the filtered 

gel. The solution was then vortexed and centrifuged at 13,000 xg for 10 minutes. 9 µl 

of the gel-dye mix was pipetted onto the well marked ‘dark G’ on the RNA 6000 chip. 

The plunger was set at 1 ml and then the chip priming station was closed and the 

plunger was pressed until held by the clip. After 30 seconds, the clip was released 

and slowly pulled back to 1 ml position. The chip priming station was then opened 

and 9 µl of gel-dye mix was pipetted in the well marked ‘clear G’. 5 µl of the Agilent 

RNA 6000 Nano Marker was added in to the ‘ladder’ well and 1 µl of each RNA 

sample were added to all the 12 wells of the RNA Nano chip, which was then vortexed 

for 1 minute at 2400 RPM using the IKA vortexer (Agilent Technologies). The RNA 

6000 Nano chip was then analysed on the Agilent bioanalyzer. 

When utilizing the RIN software, sample integrity is no longer determined by the ratio 

of the ribosomal bands, but by the entire electrophoretic trace of the RNA sample 

('The RIN-project., http://www.quantiom.com/RIN,' ; Imbeaud et al., 2005; Schroeder 

et al., 2006).  

The assigned RIN is independent of sample concentration, instrument and analyst 

therefore is considered as a standard for RNA integrity (Mueller et al., 2004). The RIN 

software allows the classification of total RNA, based on a numbering system from 1 

to 10, with 1 being the most degraded and 10 being the most intact (Mueller et al., 

2004) (Figure 2.4). All samples were assessed using their corresponding RIN number 

and only samples with high integrity (RIN ≥ 7) were considered for further studies. 
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2.5. Single nucleotide polymorphism genotyping  

2.5.1. Identification of SNPs of interest by gene and SNP databases 

Four candidate SNPs novel to GvHD and survival were assessed in DNA samples 

from HSCT patients and donors. These were rs2910164 = miR-146a (1), rs2431697 

= miR-146a (2), rs3027898 = IRAK1 and rs10511792 = MICA (Table 2.1). Information 

about ancestral and minor alleles in the target SNPs were obtained from the dbSNP 

Short Genetic Variations database of NCBI (http://www.ncbi.nlm.nih.gov/ 

projects/SNP). 

 

 

 

 

 

Figure 2.4. Example of BioAnalyzer output for 12 RNA samples. RIN numbers 
for the 12 samples are highlighted in green. Sample 232-2 showed a very low 
RIN=2.5 indicating degraded RNA and there was no RIN available for samples 235-
2 and 241-2. 
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2.5.2. SNP genotyping method 

Genotyping was performed by the LGC genomics company applying a competitive 

allele specific PCR (KASP) assay (LGC Genomics, UK).  As shown in Figure 2.5, 

during thermal cycling the relevant allele-specific primer binds to the template and 

elongates, thus attaching the tail sequence to the newly synthesized strand (He et al., 

2014). The complement of the allele specific tail sequence is then generated during 

subsequent rounds of PCR, enabling the FRET cassette to bind to the DNA. The 

FRET cassette is no longer quenched and emits fluorescence. If the genotype at a 

given SNP is homozygous, only one of the two possible fluorescent signals will be 

generated. If the genotype is heterozygous, a mixed fluorescent signal will be 

generated (He et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene SNP RefSNP Alleles 
Ancestral 
allele 

Minor 
allele 

MIR146A rs2910164 C/G G C 

MIR146A rs2431697 C/T C C 

IRAK1 rs3027898 A/C C A 

MICA rs10511792 A/T A T 

Table 2.1 Details of the targeted SNPs for the genotyping study 

Figure 2.5 Schematic diagram of the KASP method (adapted from Kurnik and 
Thurnherr, 2012; Semagn et al., 2014). In the first round of PCR, specific forward primers 
bind solely at the SNP of interest allowing DNA polymerase to synthesise the rest of the 
complementary nucleotide. In the second round of PCR, a compliment to the allele-specific 
forward primer is generated when the common reverse primer binds to the amplicon formed 
in the first round of PCR (Kurnik and Thurnherr, 2012; Semagn et al., 2014).  
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2.5.3. SNPViewer™ for data visualisation  

Genotyping outcome included results for the presence or absence of the specific 

SNPs along with genotypes of both patients and donors. SNPviewer software allowed 

for data to be viewed as cluster plots (Figure 2.6), but was not used for data analysis 

or for reporting functionality.  

A Cartesian plot was generated using the FAM and HEX fluorescent values; FAM is 

plotted on the X-axis and HEX is plotted on the Y axis (http://www.lgcgroup.com/). 

On the SNPviewer software, and for a specific SNP (named assay ID), all genotyped 

96-well plates, called master plates, can be viewed at the same time. The list of 

assays corresponding to the SNPs of interest allow visualisation of how each SNP 

clusters in relation to each sample, and to the master plates simultaneously (Figure 

2.6). Frequencies of each SNP in a specific 96-well pate or in the study cohort were 

also reported by the SNPviewer software.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 SNPviewer window for SNP genotyping outcome visualisation 
(adapted from www.lgcgroup.com). In the tree on the right hand side, each assay 
ID (highlighted in the yellow box), list of assays (highlighted in the blue box) and DNA 
master plate (highlighted in the red box) is listed. Cluster plots, shown in the genotyping 
cluster plot, are displayed by clicking on the relevant plate in the menu tree. Blue data 
points are homozygous for the allele reported by FAM, green data points are 
heterozygous and red data points are homozygous for the allele reported by HEX. The 
black data points represent the no template controls (NTC). The DNA sample plate 
layout is shown below the cluster plot. 
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2.6. Real-time polymerase chain reaction  

2.6.1. Taqman qPCR for gene expression analysis 

2.6.1.1.  cDNA synthesis 

For Taqman mRNA specific cDNA synthesis, 1-10 ng of total RNA was reverse 

transcribed in a 15 µl reaction using Taqman specific RT primers. Briefly, a dNTP 

stock was made consisting of 50 of µl each dNTP (Thermo Fisher Scientific) and 300 

µl of RNAase free water (Thermo Fisher Scientific) (Table 2.2 A).  

cDNA master mix (Table 2.2 B) was then made by adding 166.25 µl of the dNTP 

stock to 332.5 µl of RT-Buffer (Thermo Fisher Scientific), 210 µl  of random primers 

pdN6 (Thermo Fisher Scientific) and 166.25 µl of DTT (Thermo Fisher Scientific). 

cDNA mix (Table 2.2 C) consisted of an aliquot of 100 µl of cDNA master mix, 7 µl of 

MMV reverse transcriptase (Thermo Fisher Scientific) and 3.5 µl of Rnasin (Promega) 

(Table 2.2 C). The final reaction mix (Table 2.2 D) was made by adding an equal 

volume of the cDNA mix to the pre-heat inactivated RNA (ratio1:1). All steps were 

performed on ice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. dNTP stock Volume (µl) 

RNAase-free-water 300 

dATP 50 

dTTP 50 

dGTP 50 

dCTP 50 

B. cDNA master mix  Volume (µl) 

Buffer (5x) 332.5 

dNTP stock 166.25 

pdN6 210 

DTT  166.25 

C. cDNA mix Volume (µl) 

cDNA master mix 100 

MMV reverse transcriptase 7 

Rnasin 3.5 

D. Final reaction mix Volume (µl) 

cDNA mix 10 

Total RNA (50ng/µl) 10 

Table 2.2 Reverse transcriptase reaction 
composition. Reagents and volumes for dNTP 
stock, cDNA master mix, cDNA mix and the final 
reaction mix are shown. 
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The following settings were set on the thermal cycler (Applied Biosystems, 2720 

Thermal Cycler) for cDNA synthesis: total RNA denature was performed at 65°C for 

5 minutes. Then cDNA was synthesised by incubating on 37°C for 2 hours and 65°C 

for 10 minutes in thermal cycler (Applied Biosystems, 2720 Thermal Cycler). The 

cDNA was stored at -4°C till use. 

 

2.6.1.2. Taqman qPCR gene expression assay 

The RT-qPCR mix comprised of 15 µl of nuclease free water, 20 µl of 2X Taqman 

gene expression Master Mix and 2 µl target specific primer-probes (Life 

Technologies) (Table 2.3).  

The MicroAmp Optical 96-well plates without barcodes were used for all the qRT-

PCR steps. The qRT-PCR was performed on 7900HT Fast-Real Time PCR system 

(Life Technologies). A summery list of all the assays used in the investigations is 

shown in Table 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

qRT-PCR Master Mix Volume per triplicate 
(µl) 

Taqman gene 
expression Master Mix 

20   

Specific Primer Probe 2 

Nuclease-free-H2O 15 

cDNA 3 

Total Volume  40 

Table 2.3. Quantitative PCR master mix for gene 
expression assays Reagents and volumes for both the 

master mix and for each reaction. 
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2.6.2. Taqman qPCR for miRNA expression analysis 

2.6.2.1. miRNA specific cDNA synthesis 

For Taqman miRNA specific cDNA synthesis, 10 ng of total RNA was reverse 

transcribed in a 15 µl reaction using Taqman specific RT primers and the Taqman 

miRNA Reverse Transcription Kit (Life Technologies). Briefly, the RT-PCR master 

mix (Table 2.5 A) consisted of 6.66 µl nuclease free water, 1.5 µl Buffer, 1 µl reverse 

transcriptase (Rtase), 0.19 µl RNAse inhibitor and 0.15 µl dNTPs. RT-PCR reaction 

mix (Table 2.5 B) was made by adding 9.5 µl of the RT-PCR master mix to 3 µl of 

miRNA specific primer and 2.5 µl of total RNA. 

 

 

 

 

 

 

 

 

Taqman primer-
probe 

Gene name Assay IDs 

C1QTNF7 
C1q and tumor necrosis factor 
related protein 7 

Hs00230467_m1 

LGALS7 
Lectin, galactoside-binding, 
soluble, 7 

Hs00170104_m1 

ANP32A 
Acidic (leucine-rich) nuclear 
phosphoprotein 32 family, 
member A 

Hs00829953_g1 

HTRA1 HtrA serine peptidase 1 Hs01016151_m1 

PIK3AP1 
Phosphoinositide-3-kinase 
adaptor protein 1 

Hs00381030_m1 

PSTPIP1 
Proline-serine-threonine 
phosphatase interacting protein 
1 

Hs00182777_m1 

MSR1 
Macrophage scavenger 
receptor 1 

Hs00234007_m1 

CXCL9 
Chemokine (C-X-C motif) ligand 
9 

Hs00171065_m1 

Table 2.4 Taqman gene expression primer-probes for qPCR. Gene IDs, names 
and their corresponding assay ID were provided by ThermoFisher Scientific. 
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cDNA synthesis was performed on the thermal cycler (Applied Biosystems, 2720 

Thermal Cycler) with the following program: 16°C for 30 minutes, 42°C for 30 minutes 

and then 85°C for 5 minutes. cDNA was stored at -20°C until further use. 

 

2.6.2.2. Taqman qPCR for miRNA expression assay 

 

MiRNA specific cDNAs were used for the RT-qPCR step using the miRNA specific 

Taqman probes. Briefly, the master mix comprised of 2.5 µl microRNA specific cDNA, 

13.8 µl nuclease-free water, 1.8 µl Taqman primer-probe sets and 18 µl Taqman 

Universal Master mix (Table 2.6).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. RT-PCR Master Mix Volume (µl)  

Nuclease-free-H2O 6.66 

Buffer (x10) 1.5  

RTase (50U/µl) 1  

Inhibitor (20U/µl) 0.19  

dNTP (100 mM) 0.15  

Total Volume 9.5 

B. RT-PCR Reaction 
Mix 

Volume (µl)  

RT-PCR Master Mix 9.5 

Primer 3 

Total RNA (10 ng) 2.5  

qRT-PCR Master Mix Volume (µl) 

Taqman Primer-Probe 2   

Taqman Universal Master Mix 18 

Nuclease-free-H2O 13.8 

cDNA 2.5 

Total Volume to equal 40 µl 36.1 

Table 2.5 RT-PCR reaction for miRNA 
specific cDNA. Reagents and volumes for 

both the master mix and for each reaction. 

Table 2.6 qRT-PCR reaction for miRNA expression. 
Reagents and volumes for both the master mix and for each 
reaction. 
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2.6.2.3. Identification of a suitable endogenous control for Taqman qRT-

PCR gene expression assay  

For studying the gene expression of C1QTNF7, LGALS7, ANP32A, HTRA1, 

PIK3AP1, PSTPIP1, MSR1 and CXCL9 in peripheral blood by Taqman qRT-PCR, 6 

potential reference genes (Table 2.7) were investigated using the Primerdesign 

geNorm Reference Gene Selection Kit (Primer Design, UK). This work was realised 

by an undergraduate student, Matthew Mankarious, under my supervision. 

Complementary DNA was produced using the Primerdesign Precision NanoScript 2 

Reverse Transcription Kit (Southampton, UK). Using a mix of random nonamer and 

oligo-dT primers, cDNA was produced in a 10 µl reaction volume following a two-step 

process; (1) Annealing (Table 2.8 A): 1 µl of 20 ng/µl isolated RNA was incubated at 

65˚C for 5 minutes to anneal to 2µl of the primers for extension, followed by immediate 

cooling on ice. (2) Extension (Table 2.8 B): a mixture of 5 µl of nanoScript2 buffer, 1 

µl  of dNTP mix, 1 µl of nanoScript2 enzyme and 3 µl RNAse/DNAse free water was 

added to the samples, mixed by vortexing, centrifuged briefly, and incubated first at 

room temperature for 5 minutes, followed by 42˚C for 20 minutes. The reaction was 

incubated at 75˚C for 10 minutes to inactivate the reaction. All the incubations were 

performed using the Applied Biosystems 2700 Thermal Cycler. 

 

 

 

 

 
 
 

Taqman 
primer-probe 

Gene name Assay IDs 

C1QTNF7 
C1q and tumor necrosis factor related 
protein 7 

Hs00230467_m1 

LGALS7 Lectin, galactoside-binding, soluble, 7 Hs00170104_m1 

ANP32A 
Acidic (leucine-rich) nuclear 
phosphoprotein 32 family, member A 

Hs00829953_g1 

HTRA1 HtrA serine peptidase 1 Hs01016151_m1 

PIK3AP1 
Phosphoinositide-3-kinase adaptor 
protein 1 

Hs00381030_m1 

PSTPIP1 
Proline-serine-threonine phosphatase 
interacting protein 1 

Hs00182777_m1 

MSR1 Macrophage scavenger receptor 1 Hs00234007_m1 

CXCL9 Chemokine (C-X-C motif) ligand 9 Hs00171065_m1 

Table 2.7 Reference genes included in the Primerdesign Precision 
nanoScript 2 reverse Transcription Kit. IDs and functions for the potential 
reference genes investigated for the Taqman qRT-PCR gene expression assay.  
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Quantitave RT-PCR used the Primerdesign geNorm Reference Gene Selection Kit 

with Double-Dye (Hydrolysis) probe. Specific primer and probe sets for the 6 

reference genes were provided (Table 2.7). For each gene a mix was made 

comprising of the following per reaction; 1 µl primer/probe, 10 µl PrecisionPLUS/ 

Mastermix and 4 µl of RNAse/DNase free water (Table 2.9). 

 

 

 

 

 

 

 

 

 

 

 

MicroAmp Optical 96-well plates were used for the qPCR steps. The qPCR was 

performed on the 7900HT Fast-Real Time PCR system (Life Technologies). 

 

 

 

 

A. Annealing step components Volume (µl) 

RNA template (2μg) 1.8   

RT primer 18 

Nuclease-free-H2O 13.8 

B. Extension step components  Volume (µl) 

nanoScript2 4X Buffer 5 

dNTP mix 10mM 1 

Nuclease-free-H2O 3 

nanoScript2 enzyme 1 

qRT-PCR Master Mix Volume 
(µl) 

Primer/probe mix 1 

Primerdesign 2x PrecisionPLUSTM 
/PrecisionFASTTM Mastermix 

10 

Nuclease-free-H2O 4 

cDNA 5 

Table 2.8 cDNA synthesis. Steps and composition for the 
investigation of potential reference genes for Taqman qRT-PCR gene 
expression assay.  
 

Table 2.9 qRT-PCR reaction for the potential reference 
gene expression. Reagents and volumes for the reaction are 
shown. 
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2.6.2.4. Taqman qPCR data analysis 

Efficiency of the commercial Taqman assays was considered to be 90-100%. Thus, 

efficiency (E) was set at 2 (RQ= 1/ ECt, when E=2, then RQ= 2-Ct). In relative 

quantification the Ct value for a gene/miRNA of interest is normalized to the Ct of a 

reference gene/ miRNA (ΔCt= Ct gene of interest - Ct reference gene). This results 

in the ΔCt derivative of Ct. The RQ is calculated using the formulae RQ=2-ΔCt. Since 

ΔCt, and RQ values were all linear values and qPCR data is non-linear (exponential), 

the values were log transformed (Log transformation= Log2RQ) using logarithms. 

Biological data is not usually normally distributed and thus, presents a heterogeneity 

of variance (McDonald, 2009). In order to use parametric statistical tests on qPCR 

data, the RQ values must therefore be transformed logarithmically to create a normal 

distribution of these values. Log transformation also helps when there are outliers 

present in the data. The higher values are concentrated together while the smaller 

values are spread (Rieu and Powers, 2009). Statistical analysis and plotting of qPCR 

data were all performed on Log transformed data. 

 

 

2.6.3. SYBR Green qPCR for MICA gene expression level investigation in 

gastrointestinal tissue 

2.6.3.1. MICA cDNA synthesis  

For the analysis of MICA gene expression level in gastrointestinal tissues, cDNA was 

synthesised as follows. Total RNA was denatured for 5 minutes at 65 °C and reverse 

transcribed using an equal volume of master mix (ratio1:1) consisting of: 1 µl random 

decamers (Ambion), 1 µl of dNTPs (Amersham), 13 µl nuclease free water 

(Amersham), 1 µl of Moloney Murine Leukemia Virus Reverse Transcriptase RNase 

H Minus. Point Mutant (M-MLV RT (H–)) (Promega).  

The reaction mix was incubated at 42°C for 52 minutes and then at 70°C for 15 

minutes using the PTC-100 Peltier Thermal Cycler (Table 2.10). 
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2.6.3.2. Optimal reference for the study of MICA with SYBR GREEN qRT-

PCR 

 

In order to set a standard (positive control) for MICA, expression patterns of this gene 

were investigated using the Expression Atlas. This is an integrated database that 

provides information about gene and protein expression in animal and plant samples 

of different cell types, organism parts, developmental stages, diseases and other 

conditions (http://www.ebi.ac.uk/gxa). The Expression Atlas showed that the highest 

levels of MICA expression were observed in lung tissue, with a value of 17 Fragments 

Per Kilobase of transcript per Million mapped reads (FPKM) (Figure 2.7). 

 

 

MICA expression patterns were also investigated using The Gene Atlas of The mouse 

and Human Protein-Encoding Transcriptomes which is a high-density oligonucleotide 

array that was made to examine patterns of gene expression on the human genome 

RT-PCR Master Mix for MICA Volume 
(µl) 

Random Decamers 1 

dNTPs (10 pmol/dNTP) 1 

Nuclease-free-H2O 13 

Total RNA (1 µg/500 ng) 1 

Figure 2.7 MICA expression intensity in different tissue according to the Expression 
Atlas (adapted from http://www.ebi.ac.uk/gxa). MICA expression pattern showed that 
the highest expression level of this gene was in the lung (17 FPKM), while the lowest 
expression was noted in the cerebral cortex (3 FPKM). 

Table 2.10 RT-PCR reaction for the synthesis of cDNA for 
MICA gene expression investigation. Reagents and 
volumes for the reaction of cDNA making for MICA gene. 

http://www.ebi.ac.uk/gxa
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scale (http://symatlas.gnf.org). This allowed for an observation of a quantified version 

of MICA expression patterns compared against its median expression in the different 

tissues (Figure 2.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these investigations, 8 different tissues were considered as potential standards 

based on (1) MICA expression within these tissue was ≥ median (10 FPKM), and (2) 

their availability within the laboratory. These tissues were: monocytes cDNA, tongue 

cDNA, skin cDNA, lung cDNA, thyroid cDNA, colorectal adenocarcinoma cDNA, testis 

cDNA and uterus cDNA (Figure 2.8). 

 

 

 

 

 

Figure 2.8 MICA expression patterns in different tissues (adapted from 
http://symatlas.gnf.org). 8 different tissue were considered as potential optimal 
standards for MICA expression levels analysis: (1) monocytes, (2) tongue, (3) skin, (4) 
lung, (5) thyroid, (6) colorectal carcinoma, (7) testis and (8) uterus. 
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2.6.3.3. SYBR green qRT-PCR for MICA expression analysis 

SYBR Green qRT-PCR was used to test cDNA preparations from the 8 different 

tissues as potential standards. A standard curve was obtained by creating a serial 

dilution (undiluted, 1:10, 1:50, 1:100, 1:500, 1:1000 and 1:5000) consisting of known 

concentration of each tested reference sample.  

The QuantiFast SYBR Green PCR Kit (Qiagen, Hilden) was utilised for analysis of 

MICA expression levels in gastrointestinal tissue. The reaction mix, per sample, was 

prepared by adding 5 µl of SYBR Green mix, 0.5 µl of MICA specific forward primer 

(MICA_FACTTGACAGGGAACGGAAAGGA, Eurofins MWG Operon, Ebersberg, 

Germany). 0.5 µl of MICA specific reverse primer (MICA_R 

CCATCGTAGTAGAAATGCTGGGA, Eurofins MWG Operon, Ebersberg, Germany), 

3 µl of nuclease free water to which 1 µl of the template cDNA was added (Table 

2.11). All SYBR Green qPCR reactions were ran in triplicate on the Mastercycler® 

Ep Realplex (Eppendorf), using the following cycling conditions: 95°C for 5 minutes, 

(95°C for 8 seconds followed by 52°C for 20 seconds) x 45 times, 95°C for 15 seconds, 

60°C for 15 seconds and finally 95 °C for 20 minutes (Table 2.11).  

 

 

 

 

 

 

 

 

 

 

Verification of the amplification efficiency was performed via analysis of the melting 

and standard curves. For all the tested standards, the following parameters were 

analysed: (1) The Ct value for standard (only Ct values below 37 were considered, 

(2) No contamination of the negative control, which is nuclease free water, (3) The 

efficiency (E) of the qPCR reaction, which ideally should be 100% meaning that for 

each cycle the amount of PCR product doubles. This efficiency is calculated from the 

slope of the standard curve according to the following formula E = 10(-1/slope)-1 

SYBR Green qRT-PCR reaction mix Volume per 
sample (µl) 

SYBR Green mix (2x) 1 

MICA forward primer (100 pM) 1 

MICA reverse primer (100 pM) 13 

Nuclease free water  1 

Template cDNA (100ng) 1  

Table 2.11 SYBR Green qRT-PCR reaction components. 

Reagents and volumes for qPCR analysis of MICA expression. 
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(Bustin et al., 2009). A suitable reaction should have an efficiency between 90% and 

100%, which corresponds to a slope between -3.58 and -3.10 

(www.thermofisher.com). (4) The standard curve, created by the Mastercycler® EP 

realplex Software (Eppendorf), based on a serial dilution of the potential standard. 

Analysis of the standard curve gives important information regarding the performance 

of a primer set. (5) The performance of a primer set (R^2). R2 is the coefficient of 

correlation obtained for the standard curve and should be >0.99. (6) The melting 

curve analysis, for verification of specific amplification of the gene of interest with no 

contamination. 

A comparison of all the qPCR parameters for the 8 standards showed that the optimal 

results were obtained when using lung cDNA as a standard. Lung cDNA results were 

as follows: there was no contamination of the negative control, the Ct value was 24.69, 

the slope Slope= -3.047, the efficiency E = 1.16, the correlation R^2 =0.971, and the 

melting curve showed no contamination with a mean Tm= 82.79 °C (Figure 2.9).  
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Along with lung cDNA as a reference standard, 18s was used as an endogenous 

control gene for normalisation. A set of 7 dilutions were also used to produce a 

standard curve for 18s (1:5, 1:10, 1:50, 1:100, 1:500, 1:1000 and 1:2000) (Figure 2.16 

B). The qPCR parameters for 18s were as follows: there was no contamination of the 

negative control, the slope= -3.134, the R^2 =0.970, the Efficiency = 1.08, the melting 

curve showed no contamination and the mean Tm= 88.7 °C (Figure 2.10 A). 

 

 

 

Figure 2.9 Melting curve and standard curve for lung cDNA as a reference 
standard. (A) Melting curve obtained when 7 concentrations of lung cDNA were tested 
(undiluted, 1:10, 1:50, 1:100, 1:500, 1:1000 and 1:5000). The melting curve shows a 
mean Tm of 82.79 °C with no other unspecific amplifications. (B) Standard curve 
obtained from the Mastercycler® EP realplex Software, corresponding to the lung cDNA 
with the different dilutions. From this curve, the primer set had a performance of R^2 
=0.971 (optimal R^2 =0.99). The efficiency E= 1.16 (optimal E=1) and Slope =-2.993 
(optimal is between -3.58 and -3.10).  

A 
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For all SYBR Green qRT-PCR reactions, lung cDNA was used as a standard 

reference and 18s was used as endogenous control against which MICA expression 

levels were normalised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.3.4. SYBR green qRT-PCR data analysis 

MICA gene expression levels were directly obtained from the Mastercycler® EP 

realplex Software (Eppendorf). These expression levels were automatically 

normalised against the levels of expression of 18s using the ΔCt method (ΔCt= Ct 

gene of interest - Ct reference gene). The obtained MICA expression values were 

then utilised for further statistical analysis. 

 

Figure 2.10 Melting curve and standard curve for 18s. (A) Melting curve obtained 
when 6 concentration of lung cDNA were tested (undiluted, 1:5, 1:10, 1:50 1:100 and 
1:500). The mean Tm was 82.79°C. No unspecific amplifications were observed. (B) 
Standard curve obtained from the Mastercycler® ep realplex Software, corresponding 
to 18s showing that the slope= -3.134 (optimal is between -3.58 and -3.10), the 
correlation R^2 =0.970 (optimal R^2 =0.99) and the Efficiency E= 1.08 (optimal E=1). 
 

A 

B 



 
 

66 

2.7. Investigation of protein levels  

2.7.1. Randox protein biochip array  

A protein Biochip Array (Evidence Investigator®, RANDOX) was utilized for 

measuring soluble MICA, CXCL9 and LGALS7 levels in HSCT patient serum samples. 

The Evidence Investigator analyzer (Randox) is based upon Biochip Array 

Technology. This technology allows a multi-protein testing platform for the 

simultaneous quantitative and qualitative detection of target proteins in a single 

sample and from 48 samples simultaneously. 

For the investigation of target protein levels, serum samples were added to the 

biochip assay reagents according to the manufacturer’s protocol. Briefly, on a 

handling tray, 200 µl of the Randox assay diluent was pipetted per well, to which 100 

µl of the Randox calibrator, 100 µl of the Randox control and 100 µl of the serum 

sample were added. The mixture was then incubated on a thermoshaker (Randox) 

for 1 hour at 37°C and 370 RPM. The handling tray was incubated at 2°C for 16-20 

hours with no shaking. 2 wash cycles were carried out by adding 350 µl of the wash 

buffer to each well. A further 4 wash cycles, each for 15 seconds, were performed by 

adding 350 µl of the wash buffer to each well. Then 300 µl of the conjugate was 

immediately pipetted to each well, followed by an incubation for 1 hour at 37°C and 

370 RPM. The reagents were discarded using a sharp, flicking action of the handling 

tray. Washing was then performed as previously described (2 quick wash cycles, 

followed by 4 wash cycle each for 15 seconds, using 350 µl of the wash buffer) (Table 

2.12).  

 

 

 

 

 

 

 

 

 

 

Randox protein biochip array 
reagents 

Volume per 
sample (µl) 

Assay diluent  200 

Calibrator 100 

Randox control  13 

Washing buffer   4550 

Serum sample 100 

Table 2.12 Randox protein biochip array components. 
Reagents and volumes used for investigation of protein levels in 
serum samples using the Evidence investigator from Randox. 
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Samples were then left to soak for 30 minutes before being taken to imaging using 

the Evidence Investigator (Randox). Chemiluminescence signals were automatically 

quantified and reported by the Evidence Investigator as levels of expression in pg/ml. 

These values were then used for further statistical analysis.  

 

2.7.2. CusabioTm ELISA 

The protein biochip array from Randox did not include: C1QTNF7, HTRA1, PSTPIP1, 

PIK3AP1, MSR1 or ANP32A and therefore, their serum levels were investigated with 

a different approach using the CusabioTM enzyme-linked immunosorbent assay 

(ELISA) kit (CUSABIO Life science, China).  

This assay employs the quantitative sandwich enzyme immunoassay technique. The 

antibodies specific for the proteins of interest were pre-coated on the microplate 

provided by the CusabioTM ELISA kit.  

A standard curve was used to estimation the concentration of proteins of interest. In 

The standard curve is prepared by making serial dilutions of a known concentration 

of the standard across a range of concentrations near the expected unknown 

concentration. The concentration of unknown samples is then determined by 

interpolation of the standard curve. 

For the CusabioTM ELISA, the standard (5000 pg/ml) was reconstituted with 1 ml of 

sample diluent and a 2-fold dilution series (7 dilutions: 5000 pg/ml, 2500 pg/ml, 1250 

pg/ml, 625 pg/ml, 312 pg/ml, 156 pg/ml, 78 pg/ml and undiluted) was created by 

adding 250 µl of sample diluent each time. The reconstituted standard served as 

undiluted and the sample diluent served as the zero standard.  

The assay was carried out in a 96-well plate (12 x 8 coated microwells). Briefly, 100 

µl of standard and samples were added to each well and the plate was incubated for 

2 hours at 37°C. The liquid in the well was removed and 100 µl of biotin-antibody was 

added. The plate was incubated for 1 hour at 37°C. All wells were then aspirated and 

2 washing steps of 2 minutes were carried out by adding 200 µl of the wash buffer. 

This was followed by adding 100 µl of the HRP-avidin to each well, the microplate 

was covered with an adhesive strip and incubated for 1 hour at 37°C and washed 

twice as previously described. 90 µl of TMB Substrate was added to each well and 
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the plate was then left to incubate for 30 minutes at 37°C. The reaction was stopped 

by adding 50 µl of Stop solution (Table 2.13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7.2.1. Cusabio ELISA data analysis  

The optical density of each well was determined within 5 minutes of stopping the 

reaction using a microplate reader (Thermo Labsystems, Multiskan Ascent). 

Wavelenth was set to 450 nm for samples and 570 nm for the background. Readings 

at 570 nm were subtracted from the readings at 450 nm. This subtraction corrected 

for optical imperfections in the plate. Readings made directly at 450 nm without 

correction were higher and less accurate. Protein expression levels were obtained by 

averaging the wavelength reads of each sample duplicate obtained from the 

microplate reader. 

A representative standard curve was plotted for each protein of interest. The standard 

curves corresponding to C1QTNF7 and HTRA1 are shown in Figure 2.11. Each point 

on the graph represents the mean of the duplicates. The standards for each protein 

of interest were within the linear area of the line of best fit. 

 

 

 

 

 

Cusabio ELISA reaction components Volume per 
sample (µl) 

Standard 100 

Biotin-antibody (x100) 100 

HRP-avidin (x100) 100 

TMB Substrate 90 

Wash buffer (x25) 800 

Serum sample  100 

Sample diluent  100 

Table 2.13 Cusabio ELISA components. Reagents and 
volumes used for investigation of protein levels in serum samples 
using the Cusabio ELISA Kit. 
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2.8. MicroRNA profiling in clinical gastrointestinal biopsies 

2.8.1. nCounter chemistry for miRNA expression assays  

MicroRNA profiling in clinical gastrointestinal total RNA samples was performed using 

the nCounter® miRNA Expression Assay (Nanostring Technologies). This assay is a 

highly multiplexed method for detecting miRNAs in total RNA across all biological 

levels of expression, without the use of reverse transcription or amplification, using 

molecular barcodes called nCounter Reporter Probes (Nanostring Technologies). 

The assay allows for the detection of more than 800 miRNAs within an RNA sample.  

NanoString technology is based on the direct molecular barcoding and digital 

detection of target molecules through the use of a color-coded probe pair. The probe 

pair consists of a Reporter Probe (Figure 2.12), which carries the signal on its 5’ end, 

and a Capture Probe (Figure 2.12) which carries a biotin on its 3’ end. The complexity 

of the colour codes, comprised of four colours in six positions, allows a large diversity 

of targets present in the same sample to be individually resolved and identified during 

data collection (Nanostring Technologies).  

 

 

 

 

Figure 2.11 Representative standard curve for C1QTNF7 and HTRA1. A 2-fold dilution 
series for the standard (made of 7 dilution for the following concentration: 5000 pg/ml, 
2500 pg/ml, 1250 pg/ml, 625 pg/ml, 312 pg/ml, 156 pg/ml, 78 pg/ml and undiluted) was 
utilised to create the standard curve for both C1QTNF7 and HTRA1. The correlation 
values for C1QTNF7 was R2=0.968 and for HTRA1 R2=0.989. The standards for each 
protein of interest were within the linear area of the line of best fit. 
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The process of miRNA profiling using the nCounter® miRNA Expression Assay is 

based on two main steps: (1) RNA sample preparation and (2) CodeSet hybridization 

and downstream processing.  

The sample preparation involves a multiplexed annealing of specific tags to their 

target miRNA, a ligation reaction, and an enzymatic purification to remove the 

unligated tags (Figure 2.13). Briefly, total RNA samples were diluted to 33 ng/µl using 

RNAase free water (Ambion, Thermo Fisher Scientific) and 3 µl (100ng) of each RNA 

sample was added to a 12x 0.2 ml strip tube. A dilution (1:500) of the miRNA assay 

controls was prepared by adding 499 µl of RNAase free water to 1 µl of the miRNA 

assay controls. Preparation of the annealing master mix was performed by combining 

13 µl of annealing buffer and 26 µl of nCounter miRNA tag reagent. 3.5 µl of this 

annealing master mix was added to each tube of the 12x 0.2 ml strip tube.  

The strip was placed in a thermocycler (Applied Biosystems, 2720 Thermal Cycler) 

and the annealing protocol was initiated (94°C for 1 minute, 65°C for 2 minutes, 45°C 

Figure 2.12 nCounter probe pairs for miRNA expression assay 
(Adapted from the nCounter® miRNA Expression Assay User 
Manual). The nCounter® miRNA Expression Assay delivers multiplexed 
measurement of miRNA expression, providing digital readouts of the 
relative abundance of hundreds of miRNA simultaneously. The nCounter 
Analysis System is based on miRNA-specific probe pairs that are 
hybridized to the sample in solution. Capture and Reporter Probes (top) 
and, Probe pair bound to an RNA target (bottom). The Reporter Probe 
carries the fluorescent signal; the Capture Probe allows the complex to 
be immobilized for data collection. 
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for 1 minutes and finally, the reaction was held at 48°C). For the ligation step, a 

ligation master mix was produced by combining 24 µl of polyethylene glycerol (PEG) 

and 16 µl ligase buffer. Following completion of the annealing protocol when the 

thermocycler had reached 48°C, 2.5 µl of the ligation master mix was added to each 

tube and these were then incubated at 48°C for 5 minutes. Leaving the strip in place 

on the heat block at 48°C, 1 µl of the ligase was added directly to each tube. 

Immediately after addition of the ligase to the final tube, the thermocycler was closed 

and the ligation protocol was launched (48°C for 3 minutes, 47°C for 3 minutes, 46°C 

for 3 minutes, 45°C for 5 minutes, 65°C for 10 minutes and then the reaction was held 

at 4°C). After completion of the ligation protocol, 1 µl of ligation clean up enzyme was 

added to each reaction. Tubes were then returned to the thermocycler and the 

purification protocol was initiated (37°C for 2 hours, 70°C for 10 minutes and then 

reaction held at 4°C). After completion of the purification protocol, 40 µl of RNAase 

free water was pipetted to each sample (Figure 2.13).  

Immediately after completion of sample preparation, the CodeSet hybridization step 

was performed. During this step, probe pairs were present in large excess to target 

RNAs to ensure that each target finds a probe pair. Briefly, a master mix was created 

containing 130 µl of the reporter CodeSet and 130 µl of hybridisation buffer. 20 µl of 

this master mix was added to each of the samples. The final hybridatio n reaction 

contained the following components: 10 µl reporter CodeSet, 10 µl hybridisation 

buffer, a 5 µl aliquot from the miRNA sample preparation protocol and 5 µl capture 

probe set. This hybridisation assay was incubated at 65°C for 12 hours. After 

hybridization, excess probes were washed away using a twostep magnetic bead-

based purification on the nCounter Prep Station (automated processing). Magnetic 

beads derivatized with short nucleic acid sequences that are complementary to the 

Capture Probe and the Reporter Probes were used sequentially. First, the 

hybridization mixture containing target/probe complexes was allowed to bind to 

magnetic beads complementary to sequences on the Capture Probe. Wash steps 

were performed to remove excess Reporter Probes and non-target cellular transcripts. 

After washing, the Capture Probes and target/probe complexes were eluted off the 

beads and were hybridized to magnetic beads complementary to sequences on the 

Reporter Probe. An additional wash was performed to remove excess Capture 

Probes (automated processing).  
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Finally, the purified target/probe complexes were eluted off the beads and 

immobilized on the cartridge for data collection. 

Data Collection was carried out in the nCounter Digital Analyzer. Digital images were 

processed and the barcode counts were tabulated in a comma separated value (CSV) 

format. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8.2. nSolver ™ Analysis Software and R for miRNA profiling data analysis 

The data produced by the nCounter Digital Analyzer is exported as a Reporter Code 

Count (RCC) file. RCC files are comma-separated text (.csv) files that contain the 

counts for each gene in a sample. The data for each sample hybridization is contained 

in a separate RCC file. Prior to comparing data between hybridizations, slight 

Figure 2.13 The nCounter® miRNA Expression Assay steps (Nanostring 
Technologies). (A) miRNA-specific probe pairs are hybridized to the sample in solution. 
The protocol eliminates any enzymatic reactions that might introduce bias in the results. 
Barcoded probes hybridize directly to a target molecule in solution. (B) After hybridization 
of the CodeSet with target nucleic acids, samples are transferred to the Prep Station, 
which contains a fluidic processing system that removes excess probes, unbound 
targets, and other extraneous material. (C) Purified probe:target complexes are 
deposited onto a streptavidin-coated imaging surface and immobilized via the 
biotinylated capture probe. (D) Immobilized reporters are then aligned, stretched, and 
immobilized again at the other end of each complex in order to create parallel fluorescent 
barcodes that can be imaged. An automated fluorescence microscope in the Digital 
Analyzer scans the cartridge, and the ordered fluorescent segments on the attached 
reporter probe identify each target molecule of interest. The Reporter Probe carries the 
signal and the Capture Probe allows the complex to be immobilized for data collection. 
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differences in hybridization, purification, binding efficiency and other experimental 

variables must be normalized. To accomplish this, a reference (housekeeping gene) 

normalisation was performed in order to adjust counts of all probes relative to a probe 

(or set of probes) that are not expected to vary between samples or replicates. 

Reference gene normalization assumes that some of the target sequences 

recognized by the CodeSet are consistent in their expression levels (Nanostring 

Technologies).  

Because reference genes are often expressed at different levels, the geometric mean 

of the reference genes for each lane was utilised to calculate scaling factors. The 

average of these geometric means across all lanes was used as the reference against 

which each lane, was normalized. A normalization factor was then calculated for each 

of the lanes based on the geometric mean of counts for the reference genes in each 

lane relative to the average geometric mean of counts for the reference genes across 

all lanes. This normalization factor was then used to adjust the counts for each gene 

target and controls in the associated lane, calculate the fold change and estimate the 

significantly dysregulated miRNAs. 

Normalised data along with the fold change data were imported into R (The R Project 

for Statistical Computing, v3.3.0), where data was visualized as volcano plots, 

dendograms and heat-maps (all scripts and analysis pipelines were developed by 

Kile Green, Human DC lab, Haematological Sciences Department, Institute of 

Cellular Medicine, Faculty of Medical Silences, Newcastle University, UK). 
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2.9. Immunofluorescence staining for MICA in gastrointestinal 

tissue 

2.9.1. Clinical gastrointestinal biopsy slides 

 

As GI GvHD biopsies are very challenging to obtain and rarely available, a set of 4 

gastrointestinal biopsy slides obtained from non-transplanted patients suffering from 

Crohn's disease (long-term condition that causes inflammation of the lining of the 

digestive system which gives symptoms similar to GvHD in the gut (Galati et al., 1993) 

were used for testing the antibodies and optimizing an appropriate protocol to stain 

MICA protein in gut biopsies.  

 

2.9.2. Cell preparation for anti-MICA antibody test 

Before using the biopsy slides, normal human dermal microvascular endothelial cells 

(HDMEC) from PeloBiotech were used to test the performance of 2 antibodies; 

Human MICA Biotinylated Antibody (R&D Systems) and Anti-MICA antibody 

produced in rabbit (Sigma-Aldrich).  

In sterile conditions, HDME cells were added to a 4 chamber culture slide (IBIDI) to 

which 100ng/ml of lipopolysaccharides (LPS) (from E.Coli) were added to stimulate 

the expression of MICA. The slide was incubated at 37°C for 24 hours. After 24 hours, 

all media was removed and cells were washed with 1X PBS (0.137 M NaCl, 0.05 M 

NaH2PO4, pH 7.4) and 400μL of Formaldehyde Fixative Solution (85 mM Na2HPO4, 

75 mM KH2P04, 4% paraformaldehyde and 14% (v/v) saturated picric acid, pH 6.9) 

was added to each chamber of the culture slide for 15 minutes. Cells were then 

washed again with PBS, and then 200μl of 0.3% Triton X-100 was added to each 

chamber.  

This was followed by an incubation at room temperature for 15 minutes. A final step 

of washing with PBS was performed for 5 minutes and cells were blocked with 

blocking buffer (1% horse serum in PBS) for an hour and stored at 4°C. 

 

2.9.3. Immunostaining of HDME cells 

HDMECs were stained with both antibodies (MICA Biotinylated Antibody (50 µg/ml), 

and Anti-MICA antibody (1mg/ml)  
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Both of the antibodies concentrations were optimised by testing 6 different dilutions 

(1:10, 1:15, 1:20, 1:25, 1:30 and 1:35). An optimal dilution of 1:30 was chosen for 

MICA Biotinylated Antibody (R&D) and 1:50 was considered for Anti-MICA antibody 

(Sigma-Aldrich). 

For both antibodies, a volume of 200μ/L of the diluted antibody was added to each 

culture chamber. After one hour, the cells were washed with PBS 3 times for 2 

minutes and then the secondary antibody (Alexa Fluor® 488 Goat Anti-Rabbit IgG 

(H+L) Antibody, Life Technologies) was added. Slides were then observed under the 

Zeiss Axiovert 200 inverted florescence microscope. 

 

2.9.4. Double immunofluorescence staining of gastrointestinal slides 

Duplicates of individual gastrointestinal sections were tested. One of each 

gastrointestinal section and control was stained with the diluted MICA antibody and 

the remaining gastrointestinal section and control acted as a verification, incubated 

with only the secondary antibody. 

The slides were bathed in xylene (Thermo Fisher Scientific) for 7 minutes to dissolve 

the paraffin from the tissue section. This was followed by consecutive soaking in 

absolute ethanol, 96% ethanol and 70% ethanol each for 5 minutes to dehydrate the 

tissue section. Antigen retrieval was then performed by soaking the slide into a citrate 

buffer (2.94 g of sodium citrate (10 mM), 0.5 ml of 0.05% Tween 20,1L distilled, water, 

pH 6.0) and heating in the microwave at 300 watt for 30 minutes. Slides were then 

washed with distilled water and PBS and blocked with 20% bovine serum albumin 

(BSA) for 60 minutes. 

The diluted primary antibody (Human MICA Biotinylated Antibody (R&D Systems)), 

was then added and slides were incubated for 60 minutes at room temperature. The 

slides were then washed with PBS for 5 minutes and the secondary diluted in 6% 

BSA was added and slides were incubated for 1 hour. 

After the slides were washed again with PBS for 5 minutes and distilled water for 5 

minutes, post detection conditioner (Reagent B: DIANOVA) was added and slides 

were incubated for 5 minutes in the dark at room temperature. Then VECTASHIELD 

Mounting Medium with DAPI (H1200, Vector Laboratories) was added and slides 
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were left to air dry and then sealed under a coverslip. An Isotype control was carried 

out for the confirmation of the antibody specificity. 

Slides were observed under the Zeiss Axiovert 200 inverted florescence microscope. 

Exposure time for both DAPI and Alexa Fluor 488 was set and then kept constant 

during the imaging process for all the slides in this study. 

Quantification of the immunofluorescence intensity for MICA was performed on 

ImageJ (NIH, v1.49), where MICA expression was translated into relative 

fluorescence units (RFU) for further statistical analysis and comparison between 

GvHD grades and MICA expression.  

 

2.9.5. Anti-MICA Antibody specificity analysis in Human Dermal 

Microvascular Endothelial Cells 

MICA is a highly glycosylated cell surface protein which is stably expressed without 

conventional class I peptide ligands in stress conditions (Groh et al., 1996b). Human 

dermal microvascular endothelial cells (HDMEC) were cultured and stimulated with 

LPS to test for the antibodies. Staining with the monoclonal MICA antibody (SIGMA-

ALDRICH) did not show any florescence. However, the anti-MICA antibody from R&D 

was conjugated with the secondary antibody, Alexa 488 (Life Technologies) gave a 

florescent signal (Figure 2.14). 

 

 

 

 

 

 

 

 

 

 

 

 

However, the positive signal obtained with the anti-MICA antibody from R&D did not 

correspond to a MICA positive cell signal, nor did it correspond to background. 

Figure 2.14 Human Dermal Microvascular Endothelial cells staining with the 

polyclonal Anti-MICA antibody (R&D). (A) HDMECs without the specific anti-MICA 

antibody. (B) HDMECS with the specific anti-MICA antibody: the cells nuclei coloured 

in blue and MICA is shown in green. 

 

Carl Zeiss  x20 Carl Zeiss  x100 (A) (B) 
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Further optimization of the standard protocol and further investigation of the primary 

and secondary antibody was required before the staining could be performed (Figure 

2.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a third attempt, an anti-MICA antibody from Thermo Scientific ® was tested as a 

primary antibody for MICA. The same secondary antibody was used (Alexa 488® 

(Life Technologies). After verification of MICA expression patterns via the EMBL-EBI 

Expression Atlas (https://www.ebi.ac.uk/gxa/) thyroid tissue was used as a control for 

proving the antibody and optimising the protocol. Confocal microscopy images 

showed a positive and specific staining for MICA (Figure 2.16). 

 

 

 

 

 

(A) (B) 

(C) (D) 

Figure 2.15. Immunofluorescence staining of GI biopsy slides with the secondary 

antibody only. (A) Florescence observation of the gut slide showing a signal on the 

supposedly positive cells (B) DAPI filter captured image of the cells shown in A. (C) 

Background filter showing that all signals are derived from cells and no background 

staining is present. (D) Triple filter image of a magnified cell showing cells with the green 

signal. 
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MICA expression was lower than expected in the thyroid tissue, but positive staining 

was observed in the cytoplasm of cuboidal follicular cells (Figure 2.17). Thus, the 

protocol was optimised and both primary and secondary antibodies along with the 

isotype control were determined.  
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Figure 2.16 Immunofluorescence staining of thyroid slides for MICA detection. (A) 

A clean background was observed after IF. MICA is shown as green colour in the 

cytoplasm of cells. DAPI filter captured images of the cells show the nucleus in blue. (B) 

A clear cytoplasmic expression of MICA is shown as a fading green colour. Images were 

captured from the same slide in different areas to show the cytoplasmic expression. 

 

 

Figure 2.17 Magnification of MICA positive cuboidal follicular cells (shown 
in yellow boxes) MICA has a cytoplasmic expression. MICA shows low 
expression in the thyroid, thus the very low intensity of the green colour.  
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2.10. Statistical analysis 

2.10.1. Statistical analysis for the SNP genotyping 

After HSCT, both recipient and donor genetic profiles may have a potential effect on 

treatment response and clinical outcome. Therefore, for the SNP association studies 

comparisons of genotypes with clinical outcomes were carried out in order to identify 

the strongest effect. 

Genotypes were coded based on the possession of the minor allele alone (recipient 

and donor separately). For example, if the minor allele is A and the major (ancestral) 

allele is B, possession of two copies of the minor allele (AA) would be coded 1 while 

AB and BB would be coded 0 (recessive coding). In the case of the possession of at 

least one copy of the minor allele (AA, AB) would assign 1 to AA and 1 AB while 

assigning 0 to BB (dominant coding). Additionally, to assess the additive effect of the 

minor allele, BB genotypes were coded as 0, AB genotype genotypes were coded as 

1 and the AA genotypes were coded as 2 (additive coding) (Chien et al, 2012). Data 

analysis for the SNP genotyping outcome was performed while was taking into 

consideration various factors including the age, the underlying disease, the 

relationship between patients and donors and the TCD treatment into the statistical 

models. 

 

2.10.2. General statistics  

In general, statistical analyses were performed with SPSS v.21 software (IBM 

Analytics), MiniTab (Stata Corporation), R (R Project) packages “cmprsk” (competing 

risks) (Bob Gray (2014), Subdistribution Analysis of Competing Risks, R package 

version 2.15.0) and “coxph” (Cox regression to maximize a penalized partial 

likelihood) (Andersen and Gill 1982) and GraphPad Prism 6 software (GraphPad, San 

Diego, CA) was used for statistical analysis and generating graphs. 

The Mann-Whitney tests were used to determine the statistical significance when 

there were two groups only, whereas Kruskall-Wallis test was used to determine the 

statistical significance when there were more than two groups and normality in the 

groups could not be assumed; p ≤ 0.05 was considered as statistically significant. 
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Analysis of Variance (ANOVA) test was used to determine the statistical significance 

when there were more than two groups compared and normality in the groups could 

be assumed and p ≤ 0.05 was considered as statistically significant. 

Univariate relationships between potential risk factors for death were assessed via 

Kaplan-Meier statistics and the Log-Rank tests.  

Multivariate associations were determined via Cox (proportional hazard) regression 

model. 

The cumulative incidence of relapse and NRM was assessed via the method of 

competing risks (Fine and Gray, 1999) with death and relapse taken as competing 

events. Gray's test was employed to determine the level of statistical associations 

between potential prognostic factors and outcome (relapse and NRM). All tests were 

2-sided, with type I error rate fixed at 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3. Impact of single nucleotide 

polymorphisms in miR-146a, IRAK1 and MICA 

on HSCT outcome 
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3.1 Introduction 
 

Several studies have established the involvement of polymorphisms in non-HLA genes 

in determining clinical outcome after transplantation (Welniak et al., 2007). SNPs in 

genes essential for allogeneic immune responses and inflammatory reactions have 

been described as potential biomarkers for the severity of GvHD (Elmaagacli et al., 

2008; Gruhn et al., 2009; Espinoza et al., 2011; Elbahlawan et al., 2012).  

SNPs are an important variation to create diversity among individuals, as well as 

leading to different phenotypes, traits, and diseases (Shastry, 2009). Since miRNAs 

are key regulators of gene expression, miRNA-related SNPs including SNPs in miRNA 

genes and their target sites may function as regulatory SNPs, through modifying 

miRNA regulation to affect phenotypes and disease susceptibility (Dignam et al., 1983). 

Moreover, SNPs located in miRs are likely to have a complex influence by affecting 

miR maturation, functional strand selection and target selection (Dignam et al., 1983).  

Since 2005, several studies have systematically identified and analysed human 

polymorphisms in miRNAs and/or miRNA target sites (Iwai and Naraba, 2005; 

Saunders et al., 2007; Landi et al., 2008; Shastry, 2009; Ryan et al., 2010; Bhartiya et 

al., 2011). 

MiR-146a is an immediate early-response gene induced by various microbial 

components and proinflammatory mediators. The human genome contains two miR-

146 genes (miR-146a and miR-146b) on chromosomes 5 and 10, respectively, and 

their mature products differ only by 2 nucleotides in the 3′ region (Figure3.1) (Bentwich 

et al., 2005; Cai et al., 2005). 

 

 

 

 

 

 

 

Figure 3.1 Sequence alignment of the miR-146 family of miRNAs 

(adapted from Griffiths-Jones, 2004). All sequences are taken from the 

MicroRNA Registry (release 7.1). Variable nucleotides are shown in red 

(Griffiths‐Jones, 2004). 
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MiR-146a is highly expressed in Treg cells and is induced upon activation of effector 

T cells and myeloid cells (Lu et al., 2010). In the latter, miR-146a acts as a negative 

feedback regulator to limit TRAF6 and IRAK1-mediated signaling in inflammatory 

settings (further explained in Chapter 1, section 1.7.3.1) (Taganov et al., 2006a; Hou 

et al., 2009), whereas in activated human T cells, miR-146a has been suggested to 

oppose apoptosis and IL-2 production (Curtale et al., 2010). 

miR-146a has been validated to target the expression of at least two genes, IRAK1 

and TRAF6, and acts as a negative regulator in TLR and pro-inflammatory cytokine 

(IL-1) signaling pathway (further explained in Chapter 1, section 1.7.3.1) (Taganov et 

al., 2006b). IRAK1 encodes for a key intracellular signaling protein that is activated by 

ligands of Toll-like receptors. IRAK1 activation by interleukin-6 results in 

phosphorylation and activation of the transcription factor STAT3 and consequent 

transcriptional activation of the gene for C-reactive protein (Zhang et al., 1996). 

Specifically, IRAK1 plays significant role in TLR/IL-1 receptor (TIR) activation of NF-κB 

(Chatzikyriakidou et al., 2010). IRAK1 is considered as a linker of the TLR with the 

TRAF6 intracytoplasmic activator of transcription factor NF-κB, which subsequently 

increases the expression of many genes related to immunological reactions such as 

TNF-α and IL-8 (Dunne and O'Neill, 2003; Janssens and Beyaert, 2003). Subsequently, 

IRAK1 is subjected to negative feedback control by miR-146a, expression of which is 

also NF-κB dependent, leading to a concerted immunological response 

(Chatzikyriakidou et al., 2010). 

Activation and nuclear translocation of NF-κB transcription factors is medicated by the 

TCR and Natural Killer Group 2D (NKG2D) receptor stimulation (Rajasekaran et al., 

2011). Such stimulation is mediated by one of the most polymorphic NKG2D-ligands, 

MICA (Spear et al., 2013) (further explained in Chapter 1, section 1.9).  

Thus, miR-146a, IRAK1 and MICA all participate in a network controlling diverse 

biological process. This complex network is further complicated by the presence pf 

SNPs in the miR-146a, IRAK1 and MICA encoding loci. A common polymorphism in 

pre-miR-146a, designated rs2910164, causes a G to C change at position +60 relative 

to the fist nucleotide of pre-miR-146a (Jazdzewski et al., 2008). This SNP leads to a 

miss-paired hairpin sequence within the precursor of miR-146a, which affects 

processing of the miRNA and consequently, lowers expression of the mature sequence 

(Onnis et al., 2012).  
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MiR-146a rs2910164 has been previously investigated for its association with the 

severity of GvHD in allo-HSCT patients, where it was shown that the CC genotype is 

associated with severe aGvHD (Stickel et al., 2014). A study by Shen et al, showed 

that among 42 patients with familial breast cancer and 82 patients with ovarian cancer, 

those with at least one rs2910164(C) SNP tended to be diagnosed at an earlier age 

than those with only (G) alleles (Shen et al. 2008). Xu et al., also suggested that a 

functional polymorphism in the pre-miR-146a gene is associated with prostate cancer 

risk and mature miR-146a expression in vivo. The author reported that patients with 

the CC genotype of this SNP were at decreased risk for prostate cancer compared 

with those carrying the GG/GC genotype. In addition, the team also reported that the 

G-to-C change in the precursor of miR-146a resulted in reduced expression of mature 

miR-146a in prostate cancer tissue (Xu et al. 2010).  

Another SNP in miR-146a is rs2431697. This occurs at position 5q35.1 of the miR-

146a gene and causes a T to C transition, resulting in the miR-146a (2) variant 

(SNPedia). Investigation of 20 patients with non-HLA psoriasis showed that miR-146a 

(2) is associated with susceptibility to psoriatic arthritis and psoriasis vulgaris in the 

Chinese population (Yang et al. 2013). There is currently no published information 

about the association of miR-146a (2) and HSCT outcome. However, a pilot study 

within our laboratory showed that presence of the T allele is associated with the 

incidence of relapse in a RIC cohort of HSCT patients with aGvHD grades II-IV 

(unpublished data). 

Rs3027898 is a SNP in the 3'-UTR of the IRAK1 gene, which occurs at position Xq28. 

This SNP encodes an A->C tansversion. Because the gene is located on the X 

chromosome, men are more likely than woman to show an association between this 

SNP and diseases. Several studies have shown an association between both the A 

and C alleles with numerous diseases, such as atherothrombotic cerebral infarction 

(Yamada et al. 2008), rheumatoid arthritis (Chatzikyriakidou et al. 2010) and lupus 

erythematosus (Zhai et al. 2013). 

There are currently more than 100 alleles known which encode for 79 protein variants 

for MICA (http://www.ebi.ac.uk/ipd/imgt/hla/). Interestingly, a SNP at position 454 

(A→G, rs1051792) leads to an amino acid substitution of methionine by valine 

(Met→Val) at position 129 in the α2 domain of the MICA protein, that categorizes the 
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MICA alleles into strong (MICA-129 Met) and weak binders (MICA-129 Val) binders of 

NKG2D (Raache et al,. 2012) (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, it is important to pinpoint SNP-mRNA-miRNA regulatory network alterations and 

their contribution to the risks associated with HSCT. Such investigation will help 

elucidate the consequences of the interaction between these three genetic elements, 

deciphering the genetic risks of HSCT. 

 

 

 

 

 

Figure 3.2 Ribbon diagram showing crystal structures of 

NKG2D bound to MICA (adapted from Li et al., 2001). The 

NKG2D homodimer is colored in blue and magenta, MICA is 

green with domains labeled. NKG2D recognizes the alpha1 

and alpha2 domains of MICA. rs1051792 occurs in the the 

α2 domain  which is a binding site for NKG2D  (Li et al., 

2001b).  
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3.2 Study aims  
 

This study aimed to investigate rs2910164 and rs2431697 in miR-146a, rs3027898 in 

IRAK1, a potential target of miR-146a and rs1051792 in MICA for their association with 

HSCT outcome in a study cohort of n=817 patient and donor pairs. All results were 

subsequently considered for validation in a cohort of n= 576 patient and donor pairs. 

 

3.3 Results  
 

3.3.1 Study cohort results 

 

3.3.1.1 Clinical characteristics of the study cohort  

 

The study cohort comprised of n=817 donor and patient pairs who underwent allo-

HSCT between 1984 and 2014 and for whom SNP genotyping data was available for 

the 4 SNPs of interest. The genotyping was performed using genomic DNA samples 

collected pre- and post-transplantation. The study cohort was recruited from two 

different transplantation centres including the Newcastle Upon Tyne NHS Foundation 

Trust, Newcastle upon Tyne, United Kingdom and the Transplantation Centre, 

University Clinic of Regensburg, Germany (Sample collection and usage is elaborated 

in Chapter 2, section 2.1.1) (copy of ethics in Appendix). 

Various clinical variables were investigated: patient and donor ages, patient and donor 

genders, underlying disease, patient survival, the frequency of patients developing 

aGvHD and/or cGvHD, the conditioning regimen, the T cell depletion treatment and 

the relationship between the patients and donors. All the clinical characteristics for the 

study cohort are shown in Table 3.1.  
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Characteristics N (%) 

Patients  

Age range (years) 10-67 

Female 309 (37.8) 

Male 508 (62.2) 

Donors  

Age range (years) 10-74 

Female 251 (30.7) 

Male 509 (62.3) 

Missing  57 (7) 

Underlying disease 

Acute Myeloid Leukaemia 139 (17.0) 

Acute Lymphoblastic Leukaemia 52 (6.4) 

Chronic Myeloid Leukaemia 44 (5.4) 

Non-Hodgkin’s lymphoma 43 (5.3) 

Hodgkin’s Disease 17 (2.10 

Other diagnoses 69 (8.44) 

Missing 456 (55.8) 

Adult 408 (50.1) 

Relationship 

Haploidentical 1 (0.1) 

Matched unrelated donors 200 (24.5) 

Siblings 215 (26.3) 

Missing 401 (44.5) 

T cell depletion 164 (20.1) 

Reduced Intensity conditioning 251 (30.70) 

Female to Male ratio 
Valid  136 (16.60 

Missing  43 (5.3) 

Source of transplant   

Bone Marrow 167 (20.4) 

Cord blood  3 (0.4) 

PBMCs 249 (30.5) 

Missing 398 (48.71) 

Acute GvHD  

Grade 0 145 (17.7) 

Grade 1 102 (12.50 

Grade 2 91 (11.1) 

Grade 3 35 (4.3) 

Grade 4 16 (2.0) 

Missing 428 (52.4) 

Chronic GvHD  
Valid (all grades) 148 (18.11) 

Missing  548 (67.1) 

Relapse 

Yes  123 (15.1) 

No  299 (36.6) 

Missing  395 (48.3) 

Deceased 

Yes  231 (28.3) 

No  202 (24.7) 

Missing  384 (47.0) 

Table 3.1 Clinical characteristics of the study cohort (n=817) 
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The genotype frequencies of rs2910164 and rs2431697 in miR146a, rs3027898 in 

IRAK1 and rs1051792 in MICA for the patients and the donors within the study cohort 

are described in Table 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The genotype frequencies of rs2910164 and rs2431697 in miR146a, rs3027898 in 

IRAK1 and rs1051792 in MICA described above are in coherence with the standard 

Caucasian genotype frequencies and obey the Hardy–Weinberg principle (HWP) 

(p<0.6) (The HapMap project, http://hapmap.ncbi.nlm.nih.gov/; the 1000genome, 

www.1000genomes.org/). 

SNP of interest Genotype N (%) 

Patient genotypes for rs2910164 in miR-146a  

GG 358 (43.8) 

GC 239 (29.3) 

CC 40 (4.9) 
Missing 180 (22.1) 

Donor genotypes for rs2910164 in miR-146a 

GG 387 (47.4) 

GC 204 (25) 

CC 33 (4) 

Missing 193 (13.6) 

Patient genotypes for rs2431697 miR-146a 

TT 205 (25.1) 

TC 300 (36.7) 

CC 121 (14.8) 
Missing 191 (24.4) 

Donor genotypes for rs2431697 miR-146a 

TT 195 (23.9) 

CA 298 (36.5) 

CC 116 (14.2) 
Missing 208 (25.4) 

Patient genotypes for rs3027898 in IRAK1 

AA 358 (43.8) 

CA 57 (7) 

CC 61 (7.5) 
Missing 341 (40.8) 

Donor genotypes for rs3027898 in IRAK1 

AA 357 (43.7) 

CA 56 (6.9) 

CC 57 (7) 
Missing 347 (42.5) 

Patient genotypes for rs1051792 in MICA 

AA 49 (6) 

GA 234 (28.6) 

GG 351 (43) 
Missing 183 (22.4) 

Donor genotypes for rs1051792 in MICA 

AA 43 (5.3) 

GA 221 (27.1) 

GG 351 (43) 
Missing 202 (24.7) 

Table 3.2 Genotype frequencies for the SNPs on interest for the patients 

and donors within the study cohort  
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The previously described frequencies correspond to the complete study cohort 

comprising both patients and donors.  

 
Various HSCT outcomes were investigated for their association with rs2910164 and 

rs2431697 in miR146a, rs3027898 in IRAK1 and rs1051792 in MICA. These included 

relapse, NRM, OVS, aGvHD and cGvHD. Statistical analysis was carried out for each 

SNP separately correcting for various variables including disease, relationship, the 

female to male ration and the TCD treatment. 

 

3.3.1.2 Association between rs2910164 and rs2431697 in miR146a and HSCT 

outcome 

 

Statistical analysis was performed using Grey’s test. In patients, there was no 

significant association between rs2431697 in miR-146a (2) and HSCT outcome 

including relapse, NRM, OVS, aGvHD and cGvHD. However, the presence of the ‘C’ 

allele in rs2910164 in patients showed a borderline significance for its relation with the 

NRM. Patients carrying the ‘C’ allele, thus the CC or CG genotype, had a tendency 

toward an increased NRM (p=0.054) (Figure 3.4). There was no significant association 

between rs2910164 in miR-146a and relapse, OVS, aGvHD and cGvHD. Based on 

donor genotypes, no significant association was observed between rs2431697 in miR-

146a (2) and any HSCT outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1.3  Association between rs3027898 in IRAK1 and HSCT outcome 

   
Statistical analysis for investigation of the impact of rs3027898 in IRAK1 on relapse 

and NRM were performed on the complete study cohort. This revealed that in patients 

who suffered relapse, presence of at least one copy of the C allele in rs3027898 was 

significantly associated with a decreased risk of relapse (p=0.035) (Figure 3.5 A). 

When carrying two copies of this allele, heterozygous patients showed an even 

improved outcome with even lower level of relapse (p=0.001) (Figure 3.5 B). 

 

 

 

 

 

Figure 3.3 Association between the C allele in rs2910194 of miR-146a 

and non-relapse mortality. In patients, statistical analysis using Grey’s 

Test showed that the presence of the C allele (GC or CC genotypes) had a 

border line significance for its association with NRM. Patients who carried 

at least one copy of the C allele showed an increased NRM over time post-

HSCT. 

Time Post Transplant (months) 



 
 

90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversely, in patients, the CC genotype of IRAK1 was significantly associated with 

an increased NRM (p=0.020) (Figure 3.6). This outcome strengthens the previous 

results as it shows that in patients, there was an increased risk of mortality which was 

not due to relapse, and indeed, Figure 3.5 shows the CC genotype was associated 

with less relapse.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Association between rs3027898 of IRAK1 and relapse. In patients, statistical 

analysis for the association between rs3027898 and relapse, using Grey’s Test, revealed 

that: (A) the presence of the C allele (GC or CC genotypes) in IRAK1 was significantly 

associated with lower incidence of relapse in patients (p=0.035). (B) Patients who carried the 

CC genotype had no relapse (p=0.001) 

Time Post Transplant (months) 
Time Post Transplant (months) 
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There was no significant association between rs3027898 in IRAK1 and OVS, aGvHD 

or cGvHD post-HSCT in patients. No significant association between rs3027898 in 

IRAK1 and any HSCT outcome was observed for donor genotypes. 

Since IRAK1 is located on chromosome X, analysis was also performed based on the 

gender of the patients (females in comparison to males). Statistical analysis showed 

that in female patients, no significant association was observed between carrying the 

C allele in rs3027898 in IRAK1and HSCT outcome. In male patients however, Grey’s 

test showed that there was a significant association between carrying the C allele in 

rs3027898 and a reduced risk of relapse post HSCT (p=0.005) (Figure 3.6). 

 

 

 

 

 

Figure 3.5 Association between the CC genotype of IRAK1 and NRM. 

In patients, Grey’s Test analysis showed that the presence of CC genotype 

of IRAK1 was significantly associated with an increased NRM (p=0.020). 

Time Post Transplant (months) 
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Analysis performed using Grey’s test showed that in the same sub-cohort of male 

patients, carrying the C allele in rs3027898 in IRAK1 was significantly associated with 

an increased risk of NRM after HSCT (p=0.017) (Figure 3.7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Association between carrying the C allele is rs3027898 in 

IRAK1 within male patients and the risk of relapse after HSCT. In male 

patients, Grey’s Test analysis showed that the presence of C allele in 

rs3027898 was significantly associated with a lower incidence of relapse 

after HCST (p=0.005). 
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3.3.1.4 Association between rs1051792 in MICA and HSCT outcome 

 

For rs1051795 in MICA, Grey’s test analysis showed in patients, the presence of the 

MICA-129 Met allele was significantly associated with an increased risk of relapse 

(p=0.028) (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Association between carrying the C allele is rs3027898 in 

IRAK1 within male patients and the risk of NRM after HSCT. In male 

patients, Grey’s Test analysis showed that the presence of C allele in 

rs3027898 was significantly associated with an increased risk of NRM after 

HCST (p=0.017). 



 
 

94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There was, no significant association between rs1051795 in MICA and NRM of 

patients post HSCT. 

For the association with OVS, survival analyses were performed using the Kaplan-

Meier estimator. Results showed that the strong NKG2D binder, MICA-129Met allele, 

was significantly associated with a decreased OVS post-HSCT (p=0.041) (Figure 3.9 

A). Carriage of the MICA-129 Met allele in the donors was also associated with reduced 

OVS (p=0.019) (Figure 3.9 B). 

 

 

 

 

 

 

 

 

 

Figure 3.8 Association between the MICA-129 Met allele and relapse 

of patients port HSCT. In patients, Grey’s test analysis showed that the 

presence of MICA-129 Met allele was significantly associated with an 

increased risk relapse (p=0.028). 
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The impact of MICA-129 Met allele on OVS in patient was significantly affected by the 

TCD treatment. Stratification of the data based on T cell depletion treatment showed 

that in the group of patients who received a T cell depleted allo-graft, no significance 

was observed between MICA-129 Met and OVS (Figure 3.10 A). When taking into 

consideration the group of patients who received non-TCD treatment, it was revealed 

that there was significant decrease in the OVS post-HSCT for patients carrying the 

MICA-129 Met allele (Figure 3.10 B).  

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Association between MICA-129 Met allele and OVS post HSCT. Survival 

analysis were performed using the Kaplan-Meier test. (A) Analysis showed that patient 

carrying the MICA-129 Met allele had a lower OVS (p=0.041). (B) Presence of the MICA-129 

Met allele is donors was significantly associated with a decreased OVS post-HSCT (p=0.019). 
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The presence of the MICA-129 Met allele, was shown to be responsible for the 

decrease of the overall survival in patients (p=0.004) (Figure 3.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Comparison between the effects of MICA-129 Met allele on the OVS in 

patients who received a TCD treatment vs. patients who did not. (A) Survival analysis 

showed that patient in the case of the patient who received TCD, no significant association 

between carrying the MICA-129 Met allele and OVS was observed. (B) In the case of patients 

who received a non-TCD treatment, carriage of the MICA-129 Met was significantly associated 

with an increased OVS (p=0.001). 
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Cox regression analysis for the association of MICA-129 Val with aGvHD showed that 

patients receiving non-TCD treatment and carrying the Val allele had a higher risk of 

developing aGvHD (grade 2-4) (p=0.044). No significant association was observed 

between rs1051795 in MICA and aGvHD or cGvHD in patients receiving TCD 

treatment. No association between the MICA-129 Val and HSCT outcome in donors. 

 

3.3.2 Validation cohort results 

 

In order to confirm results of the SNP genotyping analysis, all results were considered 

for a validation study. A validation cohort of n=576 patient and donor pairs were 

recruited for this purpose. DNA samples were collected from 5 Transplantation centres 

including France, Prague, Vienna, Munich and Regensburg. Sample collection and 

usage was all covered by the CellEurope Project ethics (See Chapter 2, section 2.1.1) 

(ethic approval is attached as Appendix).  

All the frequencies for the various genotypes of patients and donors along with all the 

clinical characteristics for the validation cohort are stated in Table 3.3.  

 

Figure 3.11 Comparison of the effect of different genotypes on 

the OVS for patients treated with a non-T cell depleted 

transplant. The major decrease of the OVS in patients was mainly 

caused by the carriage of the Met/Met genotype (p=0.004). 
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The described frequencies are in coherence with the standard Caucasian genotype 

frequencies and obey the Hardy–Weinberg principle (HWP) (The HapMap project, 

http://hapmap.ncbi.nlm.nih.gov/; the 1000genome, www.1000genomes.org/) (Table 

3.3) 
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Characteristics N (%) 

Patients  

Age range (years) 10-67 

Female 226 (39.2) 

Male 350 (60.8) 

Donors  

Age range (years) 11-74 

Female 200 (34.7) 

Male 352 (61.1) 

Missing  20 (4.1) 

Underlying disease 

Acute Myeloid Leukaemia 82 (14.2) 

Acute Lymphoblastic Leukaemia 41 (7.1) 

Chronic Myeloid Leukaemia 28 (4.9) 

Non-Hodgkin’s lymphoma 11 (1.9) 

Hodgkin’s Disease 2 (0.3) 

Other diagnoses 48 (8.33) 

Missing 344 (59.7) 

Adult 205 (35.6) 

Relationship 

Haploidentical 17 (3) 

Matched unrelated donors 115 (20) 

Siblings 91 (15.8) 

Missing 342 (61.28) 

T cell depletion 45 (7.8) 

Reduced Intensity conditioning 93 (16.1) 

Female to Male ratio 
Valid  104 (18.1) 

Missing  17 (3) 

Source of transplant   

Bone Marrow 93 (16.14) 

Cord blood  5 (0.9) 

PBMCs 126 (21.9) 

Missing 352 (61.11) 

Acute GvHD  

Grade 0 69 (12) 

Grade 1 51 (8.9) 

Grade 2 62 (10.8) 

Grade 3 19 (3.3) 

Grade 4 18 (3.1) 

Missing 357 (62) 

Chronic GvHD  
Valid (all grades) 71 (12.32) 

Missing  440 (76.4) 

Relapse 

Yes  67 (11.6) 

No  161 (28) 

Missing  348 (60.4) 

Deceased 

Yes  135 (23.4) 

No  98 (17) 

Missing  343 (59.5) 

Table 3.3 Clinical characteristics of the validation cohort (n=576) 
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The genotype frequencies of rs2910164 and rs2431697 in miR146a, rs3027898 in 

IRAK1 and rs1051792 in MICA for the patients and the donors within the validation 

cohort are described in Table 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP of interest Genotype N (%) 

Patient genotypes for rs2910164 in miR-146a  

GG 299 (51.9) 

GC 171 (29.7) 

CC 30 (5.2) 
Missing 76 (13.19) 

Donor genotypes for rs2910164 in miR-146a 

GG 301 (52.3) 

GC 191 (33.2) 

CC 30 (5.2) 
Missing 54 (9.4) 

Patient genotypes for rs2431697 miR-146a 

TT 152 (26.4) 

TC 243 (42.2) 

CC 90 (15.6) 
Missing 91 (15.8) 

Donor genotypes for rs2431697 miR-146a 

TT 159 (27.6) 

TC 255 (44.3) 

CC 90 (15.6) 
Missing 72 (12.5) 

Patient genotypes for rs3027898 in IRAK1 

AA 357 (62) 

CA 61 (10.6) 

CC 77 (13.4) 
Missing 81 (14.06) 

Donor genotypes for rs3027898 in IRAK1 

AA 371 (64.4) 

CA 66 (11.5) 

CC 82 (14.2) 
Missing 57 (9.89) 

Patient genotypes for rs1051792 in MICA 

AA 57 (9.9) 

GA 195 (33.9) 

GG 228 (39.6) 
Missing 96 (16.66) 

Donor genotypes for rs1051792 in MICA 

AA 43 (5.9) 

GA 221 (30.6) 

GG 351 (48.5) 
Missing 108 (14.93) 

Table 3.4 Genotype frequencies for the SNPs on interest for the patients 

and donors within the validation cohort  
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Statistical analysis for investigation of the association between rs2910164 and 

rs2431697 in miR146a, rs3027898 in IRAK1 and rs1051792 in MICA with HSCT 

outcome was performed in the same manner as per the study cohort. Association 

analysis were performed for relapse, NRM, OVS, aGvHD and cGvHD.  

Comparison between the study cohort (n=817), containing samples collected from 

patients recruited at Newcastle and Regensburg, and the validation cohort (n=576), 

containing samples collected from patients recruited at Vienna, Paris, Prague, Munich 

and Regensburg, is shown in Table 3.5. There was no significant difference between 

the two cohorts except for the T cell depletion treatment, where data showed that there 

were more patients who underwent a T cell depletion treatment in the study cohort 

compared to the validation cohort (Table 3.5). 
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Table 3.5 Comparison between the study and the validation cohort  

Study cohort (n=817) Validation cohort (n=576) 

n (%) n (%)

Female Patients 309 (37.8) 226 (39.2)

Male patients 508 (62.2) 350 (60.8)

Female donors 251 (30.7) 200 (34.7)

Male donors 509 (62.3) 352 (61.1)

Patients 10-67 10-67 0.133

Donors 10-74 11-74 0.305

Acute Myeloid Leukemia 139 (17.0) 82 (14.2)

Acute Lymphoblastic 

Leukimea
52 (6.4) 41 (7.1)

Chronic Myeloid 

Leukemia
44 (5.4) 28 (4.9)

Non-Hodgkin's Disease 43 (5.3) 11 (1.9)

Hodgkin's Disease 17 (2.10 2 (0.3)

Other diagnosis 69 (8.44) 48 (8.33)

408 (50.1) 205 (35.6) 0.104

Haploidentical 1 (0.1) 17 (3)

Matched Unrelated 

donors 
200 (24.5) 115 (20)

Siblings 215 (26.3) 91 (15.8)

164 (20.1) 45 (7.8) 0.001

251 (30.70 93 (16.1) 0.102

389 (47.61) 219 (38.80) 0.660

148 (18.11) 71 (12.32) 0.051

123 (15.1) 67 (11.63) 0.157

p val*

Gender 

Age (years)

0.544

0.898

Adult

Relationship 0.091

Underlying 

disease 
0.356

T cell depletion

Reduced intensity conditionning

Acute GvHD

Chronic GvHD

Relapse 

* For contious data an indenpendent samples t-test was perfomred while a Chi-squared test was perfomed in the 

case of categorical data
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3.3.2.1 Association between rs2910164 and rs2431697 in miR-146a and HSCT 

outcome in the validation cohort.  

 

Statistical analysis was performed using Grey’s test. In the validation cohort, a trend 

was observed between the presence of the C allele in rs2910164 in patients and an 

increased NRM (p=0.06) (Figure 3.12 A). A trend was also observed between carrying 

the T allele in rs2431697 and an increased NRM (p=0.08) (Figure 3.12 B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No significant association was observed between rs2910164 and rs2341697 in miR-

146a and the incidence of relapse, OVS, aGvHD or cGvHD in patients post HSCT. In 

donors, no significant association was observed between rs2910164 and rs2341697 

in miR-146a and HSCT outcome. 

 

 

 

 

Figure 3.12 Association between rs2910164 and rs2341697 in miR-146a and HSCT 

outcome. Statistical analysis was performed using the competing risk on R (v2.15.0). (A) a 

trend (p=0.06) was observed between carrying the C allele in rs2910164 and an increased 

NRM in patients post HSCT. (B) A trend was also observed between carrying the T allele in 

rs2341697 and an increased NRM in patients post HSCT. 

A B 

Time Post Transplant (months) Time Post Transplant (months) 
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3.3.2.2 Association between rs3027898 in IRAK1 and HSCT outcome in the 

validation cohort.  

 

Statistical analysis for investigation of the association between rs3027898 in IRAK1, 

relapse and NRM in the complete cohort were performed using Grey’s test. 

Results revealed that, in patients, the presence of the C allele in rs3027898 was 

significantly associated with a decreased risk of relapse (p=0.007) (Figure 3.13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike the discovery cohort, there was no significant association between rs3027898 

in IRAK1 and NRM in the validation cohort. No significant association was also 

observed between rs3027898 in IRAK1 and aGvHD or cGvHD. No significance was 

observed between rs3027898 in IRAK1 and HSCT outcome in donors. 

Statistical analysis was also performed after stratification of the validation cohort based 

on the gender of the patients. Within female patients, no significant association was 

Figure 3.13 Association between rs3027898 in IRAK1 and the 

incidence of relapse post HSCT. Statistical analysis using Grey’s test 

(R v 2.15.0, cmprsk package) showed that patients carrying the C allele 

had lower risk of relapse post HSCT (p=0.007). 

Time Post Transplant (months) 
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observed between carrying the C allele in rs3027898 and HSCT outcome and thus 

confirming the finding of the study cohort. 

Within male patients, statistical analysis using Grey’s test showed that was trend 

towards a lower incidence of relapse when patients carried the C allele in rs3027898 

(p=0.092) (Figure 3.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

No significant association was observed between carrying the C allele in rs3027898 

in IRAK1 within male patients and NRM post HSCT. 

 

3.3.2.3 Association between rs1051792 in MICA and HSCT outcome in the 

validation cohort.  

 

Investigation for the association between rs1051792 in MICA and relapse and NRM 

were performed using R (v 2.15.0).  For the association between rs1051792 in MICA 

and OVS, aGvHD and cGvHD SPSS (v21, IBM Analytics) was utilized.  

Figure 3.14 Association between carrying the C allele in rs3027898 

within male patients and the incidence of relapse post HSCT. 

Statistical analysis using Grey’s test showed that patients carrying the 

C allele showed a trend towards a lower risk of relapse post HSCT 

(p=0.092). 
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Grey’s test analysis revealed that the presence of the MICA-129 allele in patients was 

associated with an increased risk of relapse (p=0.046) (Figure 3.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There was no significant association between NRM and MICA-129 Met allele in the 

complete validation cohort. 

Stratification of the data based on TCD treatment showed that patients receiving a 

non T cell depleted allo-graft and carrying the MICA-129 Met allele had significantly 

increased NRM (p=0.018) (Figure 3.16).  

 

 

 

 

 

 

 

 

Figure 3.15 Association between the presence of MICA-129 Met 

and the incidence of relapse. Statistical analysis showed that 

patients carrying the MICA-129 allele was associated with an 

increased risk of relapse post HSCT (p=0.046). 

Time Post Transplant (months) 
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Survival analysis using the Kaplan-Meier estimator (SPSS v 21, IBM Analytics) showed 

that there was a significant association with carriage of the MICA-129 Met allele and 

decreased OVS in the group of patients receiving a non-TCD transplant (p=0.027) 

(Figure 3.17 A). No significance was observed when the complete cohort was 

considered for the analysis.  

In the same validation sub-group (patients receiving non-T cell depleted allo-grafts), 

there was a trend towards a decreased OVS when donors carried the MICA-129 Met 

allele (p=0.058) (Figure 3.17 B).  

 

 

 

 

 

 

 

Figure 3.16 Association between presence of MICA-129 Met and 

NRM in patients post HSCT. Grey’s test analysis showed that 

patients carrying the MICA-129 allele in patients who received non-

TCD treatment had an increased risk of NRM post-HSCT (p=0.018). 
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There was no significant association between rs1051792 in MICA and the incidence 

of aGvHD or cGvHD in patients post-HSCT.  

Summary of results from both the study and the validation cohort is showed in Table 

3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

Figure 3.17 Association between MICA-129 Met allele and HSCT outcome in the group 

of patients receiving a non-TCD allo-grafts. Survival analysis were performed using the 

Kaplan-Meier estimator (SPSS v 21, IBM Analytics). (A) There was significant association 

between the presence of the MICA-129 Met allele and a decreased OVS post HSCT. (2) 

When donors carried the MICA-129 Met allele, a trend towards a decreased OVS was 

observed in patients post-HSCT. 
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Table 3.5. Summary of results for patients from both the study and the validation 

cohort. Only allele that were significant associated with HSCT outcome are shown in this 

table. 

aGvHD relpase OVS NRM aGvHD relpase OVS NRM

Study cohort (n=817) Study cohort (n= 576)

miR-146a 

rs2431697 

×

×

MICA 

rs1051795  

Met allele

× × × ×

IRAK1 

rs3027898  

C allele

↑×××
miR-146a 

rs2910164 

C allele 

× × ↑

× × ×

×

↑ ↑

×

×

↓ × ↑

↑ ↑ ×

×

×

↓

↑

×

× No significant association was observed between the specific HSCT outcome and the allele

× × ×

↑  The specific HSCT outcome was singnificantly uprefulated in the presence of the allele

↓  The specific HSCT outcome was singnificantly downregulated in the presence of the allele

MICA 

rs1051795  

Val allele 

↑ × × × ×
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3.4  Discussion  

 

Acute GVHD occurs in 30% to 75% of allo-HSCT recipients and is associated with 

significant morbidity and mortality, representing a major barrier toward the wider and 

safer application of this potentially curative approach to hematologic malignancies 

(Ferrara et al., 2009). aGVHD develops when allogeneic donor T cells destroy HLA-

mismatched host tissues by secreting inflammatory cytokines (IL-1, TNF-α, and IFN-

γ) and/or inducing a direct cytotoxic cellular response (Ferrara et al., 2009; Socié and 

Blazar, 2009). Recent studies indicate that miRNAs play critical roles in the 

development and function of the immune system (Haasch et al., 2002; Rodriguez et 

al., 2007; Thai et al., 2007; Xiao et al., 2008; Banerjee et al., 2010). In particular, miR-

146a is essential for Treg function (Lu et al., 2010). TRAF6 and IRAK1 are validated 

miR-146a targets and their expression is regulated by a negative feedback-loop via 

the TLR-4 signaling pathway and NFκB activation (Taganov et al., 2006a; Taganov et 

al., 2007). IFN regulatory factor 5 (IRF5) and signal transducer and activator of 

transcription 1 (STAT1) are also known targets of miR-146a (Tang et al., 2009). MiR-

146a negatively regulates signal transduction pathways leading to NF-κB activation. 

Upon activation of a cell surface receptor such as TLR4, a molecular cascade including 

TRAF6 and IRAK1 leads to IκBα phosphorylation and degradation and to NF-κB 

activation and nuclear translocation (Taganov et al., 2006a; Taganov et al., 2007). NF-

κB activation induces transcription of many genes, including pri-miR-146a. Once 

translocated to the cytoplasm and loaded onto the RISC complex, mature miR-146a 

contributes to attenuate receptor signaling through the down modulation of IRAK1 and 

TRAF6.  

IRAK1, one of the established miR-146a targets, is a member of the serine-threonine 

kinase family consisting of IRAK1, IRAK2, IRAKM and IRAK4 (Singh et al., 2014). 

IRAK1 plays a pivotal role in the Toll/IL-1 receptor (TIR) family signaling cascade 

(Kanakaraj et al., 1998). IRAK1 plays an important role in IL-1R/TLR signaling, 

although there is a small amount of NF-κB activation in its absence (Kanakaraj et al., 

1998; Thomas and Blume, 1999; Swantek et al., 2000). Upon ligand activation of TIR 

family members, IRAK1 is recruited to the receptor complex (Akira and Takeda, 2004). 

At the receptor, IRAK1 associates with Tollip, MyD88 and TRAF6, and phosphorylation 

by IRAK4 triggers IRAK1 autophosphorylation (Jiang et al., 2002; Li et al., 2002; Lye 

et al., 2004). IRAK1 hyperphosphorylation results in disassociation from Tollip and 
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release from the receptorMyD88 complex (Jiang et al., 2002; Burns et al., 2003). This 

leads to the formation of a new protein complex consisting of hyperphosphorylated 

IRAK1 and TRAF6, a prerequisite for TRAF6-mediated NF-B activation and induction 

of an inflammatory response (Kollewe C 2004). 

MICA molecules interact with the NKG2D-activating receptor on human NKT cells, 

CD8+ cytotoxic T cells, γδ T cells, and under certain conditions CD4+ T cells and elicits 

a very powerful immune response (Champsaur and Lanier, 2010). MICA encodes for 

a polypeptide of 383 amino acids that is expressed on the cell surface and resembles 

the domain organization of the α chain of MHC class I molecules, however, MICA does 

not associate with β2-microglobulin (Groh et al., 1996b; Zwirner et al., 1997). MICA is 

not expressed by resting T or B lymphocytes but phytohemagglutinin (PHA)-activated 

CD4+ and CD8+ T cell blasts express MICA (Zwirner et al., 1997). This expression 

can also be triggered by stimulation with allogeneic PBMCs, and involves TCR/CD3 

engagement and co-stimulation through CD28 (Molinero et al., 2002a), involving 

different cytoplasmic mediators  and NF-κB (Molinero et al., 2003). 

The main focus of this study was to investigate the association between rs2910164 

and rs2431697 in miR-146a, rs3027898 in IRAK1, rs10511792 in MICA with HSCT 

outcome. rs2910164 in miR-146a concerns a G>C nucleotide substitution which 

results in a change from a G:U pair to a C:U mismatch in the stem region of miR-146a 

precursor (Jazdzewski et al., 2008). rs2431697 is a C>T located on 5q33.3 (SNPedia). 

rs3027898 in IRAK1 and concerns an A > C transition in the 3’-UTR. rs1051792 is an 

SNP at position 454 (A→G, rs1051792) of MICA leading to an amino acid substitution 

of methionine by valine (Met→Val) at position 129 in the α2 domain of the MICA protein, 

categorizing the MICA alleles into strong (MICA-129 Met) and weak binders (MICA-

129 Val) binders of NKG2D (Groh et al., 1999a). 

Investigation of the association between rs2910164 in miR-146a and HSCT outcome 

in n=817 patient donor pairs showed that there was a borderline significant association 

between carriage of the ‘C’ allele and increased NRM in patients post-HSCT (p=0.054). 

The finding was observed again in the validation cohort (n=576 patient and donor pairs), 

where a trend towards an increased NRM was observed for patients carrying the C 

allele (p=0.06). Such outcome was expected for the C allele of rs2910164. Indeed, in 

a study by Stickel et al., it was demonstrated that the CC genotype within rs2910164, 

was linked with a higher risk for severe GvHD (grade III-IV) in allo-HSCT recipients 
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(Stickel et al., 2014). The same study also revealed a trend toward overall higher GvHD 

severity in patients when the HSCT donor carried the CC genotype (Stickel et al., 2014). 

It is well known that development of aGvHD after HSCT is associated with relevant 

morbidity and mortality and represents the most common cause of long-term NRM 

(Socié et al., 1999). However, the presence of GvHD also decreases disease relapse 

and it could improve post-transplant outcome, depending on its severity and the 

success of a graft-vs-malignancy effect (Weiden et al., 1981; Sullivan et al., 1989; 

Horowitz et al., 1990; Baron et al., 2005). Since 63.37% of the patients recruited for 

the study cohort experienced aGvHD and since aGvHD has been previously reported 

to be responsible for higher NRM and therefore not always associated with improved 

progression-free survival (Kanda et al., 2004; Baron et al., 2005; Valcárcel et al., 2008; 

Ringden et al., 2012) along with the observation reported by Stickel et al., in relation 

to the C allele of rs2910164, are all in agreement with the outcome reported in this 

study, whereby patients carrying the C allele had an increased NRM. Consistent with 

this findings, an anti-inflammatory role for miR-146a was shown by several SNP 

studies in which SNPs that lower miR-146a expression were associated with disease 

activity in the case of Crohn's disease (Gazouli et al., 2013), gastric cancer (Wei et al., 

2015; He et al., 2016; Xia et al., 2016), breast cancer (Bansal et al., 2014; Upadhyaya 

et al., 2016), rheumatoid arthritis (Amal et al., 2013; Zhou et al., 2015) and prostate 

cancer (Nikolić et al., 2014).  

For rs2431697 in miR-146a, no significant association with the outcome of HSCT was 

observed in the study cohort. In the validation cohort (n=576), the presence of the T 

allele was associated with an increased NRM post-HSCT. This is the first study to 

relate rs2431697 to HSCT outcome. The different outcome between the study and the 

validation cohort may be due to the fact that different approaches of conditioning 

regimens and GvHD prophylaxis are practiced at different transplantation centres. 

There was a significant difference between the study and the validation cohort when 

regarding the TCD treatment (p=0.001). This shows that there is a different approach 

to treat GvHD patients between both cohorts along with different HSCT outcome. 

rs2431697 in miR-146a was reported in many studies as related to the susceptibility 

to conditions such as psoriasis (Yang et al., 2013), systemic lupus erythematosus 

(Löfgren et al., 2012; Park et al., 2016) and ankylosing spondylitis, (Park et al., 2016).   

Polymorphisms affecting miRNA expression, maturation, or mRNA recognition may 

represent an important risk determinant of disease susceptibility (Li et al., 2015). Thus, 
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it is important to test whether miR-146a gene polymorphisms, rs2910164 and 

rs2431697, act as modifiers of GvHD course or affect other HSCT outcome. In fact, 

the C allele of the rs2910164 polymorphism of miR-146a was shown to cause miss-

pairing within the miR-146a hairpin, decreased expression of its mature form, and 

declined expression of its target genes, TRAF6 and IRAK1 (Su et al., 2011). It was 

previously demonstrated that the C allele in rs2910164 was significantly associated 

with increased expression of miR-146a in patients with multiple sclerosis (Li et al., 

2015). Several studies have examined the association between the miR-146a 

rs2910164 polymorphism and autoimmune diseases, including RA (Jiménez‐Morales 

et al., 2012), systemic lupus erythematosus (Jiménez‐Morales et al., 2012; Lofgren et 

al., 2012) and multiple sclerosis (Fenoglio et al., 2011). Although previous studies have 

suggested that many autoimmune diseases share common predisposing factors, the 

results are inconsistent (Chen et al., 2013). 

For rs3027898 in IRAK1, this study showed in n=817 patients and donor pairs, that the 

C allele was associated with a decreased risk of relapse in patients (p=0.035) which 

was more apparent when patients were homozygous for the C allele or carried the CC 

genotype (p=0.001). This outcome was validated in n=576 patient and donor pairs 

where the C allele was shown to be associated with a reduced risk of relapse post-

HSCT (p=0.007). An increased risk of NRM was also observed when patients carried 

the C allele (p=0.020). However, this outcome was not replicated in the validation 

cohort. This could be due to the difference between the study and the validation cohort. 

Since rs3027898 in IRAK1 in located on chromosome X, analysis based on the gender 

of the patients showed that significance observed when taking in to consideration the 

full cohort was driven by the males carrying the C allele in rs3027898 in both the study 

and the validation cohort when in the case of NRM and relapse. 

The present study is also the first to relate the C allele of rs3027898 in IRAK1 to HSCT 

outcome. There is an increasing body of data to suggest that IRAK1 signaling may be 

important to the development and progression of cancer (Kutikhin and Yuzhalin, 2015), 

IRAK1 activation may also be important for cross talk between cancer cells and other 

cell populations present in the tumour microenvironment (Jain et al., 2015). IL-1β 

release by lingual squamous cell carcinomas causes upregulation of the IL-1R and 

increased levels of p-IRAK1 in cancer associated fibroblasts. This results in nuclear 
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translocation of NF-κB and induction of genes important for tumour progression 

including IL-6, Cox-2, BDNF, and IRF-1 (Dudás et al., 2011; Jain et al., 2015).  

IRAK1 plays an important role during inflammation and thus may play an important role 

in the pathophysiology of GvHD. It has been shown to promote Th17 development by 

mediating IL-1β-induced upregulation of IL-23R and subsequent STAT3 

phosphorylation, thus enabling sustained IL-17 production (Heiseke et al., 2015). 

Moreover, it was shown that IRAK1 signaling fosters Th1 differentiation by mediating 

T-bet induction and counteracts regulatory T cell generation. Furthermore, in mice, 

IRAK1 expression in T cells was shown to be essential for T cell accumulation in the 

inflamed intestine and mesenteric lymph nodes (Heiseke et al., 2015). Decades of 

basic and clinical research have demonstrated that T cells are the principal 

orchestrators of both GvHD and GvL, as IRAK1 was revealed to promote T cell 

development and cytokine production, this later may play a critical role during HSCT. 

IRAK1 represents one of miR-146a targets (Chatzikyriakidou et al., 2010). Indeed, 

miR-146a is involved in innate immunity by regulating the acute inflammatory response 

after pathogen (bacteria l rather than viral components) recognition by TLRs on 

monocytes or macrophages (Taganov et al., 2006a). Pro-inflammatory cytokines such 

as TNF-α and IL-1β were reported to target miR-146a expression (Nakasa et al., 2008). 

Then, miRNA-146a targets the expression of IRAK1 and TRAF6, and therefore acts 

as a negative regulator in the TLR and pro-inflammatory cytokine (IL-1) signaling 

pathway. Specifically, IRAK1 plays significant role in TLR ⁄ TIR activation of NF-κB. 

IRAK1 is considered as a linker of the TLR with the TRAF6 intracytoplasmic activator 

of transcription factor NF-κB, which subsequently increases the expression of many 

genes such as TNF- α and IL-8 related to immunological reactions (Dunne and O'Neill, 

2003; Janssens and Beyaert, 2003). Subsequently, IRAK1 is subjected to a negative 

feedback by miR-146a, the expression of which is also NF-κB dependent.  

This leads eventually to a concerted immunological response. This is consistent with 

the findings of this study, where it was revealed that rs2910164 in miR-146a was 

associated with an increased risk of NRM, while rs3027898 in IRAK1 was associated 

with a decreased risk of NRM and relapse. Although the previously mentioned studies 

reported the association of miR-146a and IRAK1’s genotypes with the susceptibility to 

several diseases, little is known about the cellular and molecular mechanisms that 

underlie the transition from the SNP to the molecular mechanism that occurs during 
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the course of HSCT. Further gene expression pattern analysis of the effect of having 

these variants in GvHD target tissues is necessary to explain the interaction between 

the possession of these genotypes and HSCT outcome. 

In the case of rs1051792 in MICA, this study showed that the MICA-129 Met variant 

was significantly associated with low OVS post-HSCT (p=0.018), which was more 

apparent in the group of patients receiving non-TCD treatment (p=0.001). This result 

was then confirmed in the validation cohort n=576 (p=0.027). This study also revealed 

that the presence of the MICA-129 Met allele in patients was significantly associated 

with an increased risk of relapse (p=0.028), which was again validated in n=576 patient 

and donor pairs (p=0.046). In fact, Kitcharoen K et al, demonstrated that patients who 

were matched for the HLA-D, HLA-Cw and for MICA had a significantly improved 

survival post transplantation (Kitcharoen et al., 2006). MICA is only active when bound 

to the activating NKG2D receptor, it has been reported that the MICA-129 Met isoform 

is characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity, 

IFN-γ release and faster co-stimulation of CD8+ T cells (Nausch and Cerwenka, 2008). 

The MICA-NKG2D system acts as an initial defence against infections and malignant 

transformation (Groh et al., 1996a; Groh et al., 2003). It was previously reported that 

carriers of the MICA-129 Met/variant had an increased risk relapse (Isernhagen et al., 

2015a). As the presence of GvHD decreases disease relapse increases (Weiden et al., 

1981; Sullivan et al., 1989; Horowitz et al., 1990; Baron et al., 2005), the previous is 

consistent with the observation here that the presence of MICA-129 Met variant in 

GvHD patients increased the risk of relapse post-HSCT. For this study, patients 

carrying the MICA-129 Met allele, and not receiving a T cell depleted graft had better 

OVS. In general, TCD techniques can be classified as in vitro, if the stem cell 

manipulation is performed exclusively ex vivo, normally by column adsorption. In 

contrast, in vivo techniques are based on a partial or complete depletion of donor 

lymphocytes in the patient after transplanting the stem cell product using ATG or the 

monoclonal antibody alemtuzumab (Chakrabarti et al., 2004; Maeda et al., 2005; 

Rizzieri et al., 2007). In was reported by Marek et al., that in vivo TCD caused more 

profound lymphocyte suppression early after HSCT (Marek et al., 2014). Thus, the 

cohort of patients not receiving TCD treatment and carrying the MICA-129 Met variant 

had better NKG2D binding and thus better NK cells and cytotoxic T cell activation and 

proliferation and leading to improved survival post HSCT. It was also revealed in this 

study that the presence of the MICA-129 Val variant in patients is significantly 
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associated with an increased risk of developing of aGVHD post-HSCT (p=0.044). This 

agrees with previous findings, where it has been shown that induction of MICA 

contributed to tissue damage and increased the risk of aGvHD (Gannage et al., 2008). 

Interaction between the weak binder MICA-129 Val variants and the NKG2D receptor 

may alter NK cell and cytotoxic T lymphocyte activation and/or co-stimulation (Kim et 

al., 2005). The inability of MICA-129 Val allele to induce the activation of NK cells 

substantiates the study that showed that transplantation with higher numbers of NK-

cells is inversely correlated with the occurrence of aGvHD (Kim et al., 2005). Indeed, 

it has been previously reported that the MICA-129 Val variant was associated with a 

failure to activate NK cells and considered as a risk factor for early onset of 

nasopharyngeal carcinoma in patients predisposed to viral/environmental factors 

(Douik et al., 2009). Since both variants of MICA are able to mediate different effects 

on NK cells and T cells after engaging with NKG2D, and since MICA is a stress induced 

molecule mostly abundant in the gastrointestinal tract (GI), further investigation of the 

gene expression patterns of MICA in this tissue may help elucidate the molecular 

mechanism through which MICA is affecting HSCT outcomes.  

In conclusion, this study has considered the combination of both rs2910164 and 

rs2431697 in miR-146a, rs3027989 in IRAK1 and rs1051792 in MICA and identified 

associations with NRM, OVS, relapse and aGvHD post HSCT. This study has explored 

a cohort of n=817 patient and donor pairs and then validated findings in an independent 

cohort of n=576 patient and donor pairs. The outcome of this study supports the 

statement that there is increasing evidence indicating that non-HLA polymorphisms 

influence HSCT outcome (Paczesny et al., 2013). The data reported demonstrates that 

SNP genotyping can be translated easily into donor selection. With over 18 million 

unrelated donors registered worldwide (Foeken et al., 2010), the potential to benefit 

future patients in need of a life-saving transplant is anticipated to be significant. In 1998, 

the first International meeting on SNPs and complex genome analysis was held in 

Sweden (Syvaanen et al., 1999). Since then, SNP technology has become more widely 

adopted. Clinical expectations remain high for diagnostic and pharmacogenomic uses 

of SNPs. However, clinicians are confronted with the same issue as mHA disparities; 

donor selection according to SNP genotyping is still not performed clinically, although 

it may be available in the near future as recently reported by Petersdorf et al. The 

transplant barrier is comprised of classical HLA loci as well as non-HLA variation within 

the gene-dense MHC region. Two new genetic markers are informative for disease-
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free survival and acute GvHD after HLA-matched unrelated donor transplantation. The 

identification of MHC resident transplantation determinants provides clinicians with 

tools to lower post-transplant risks through comprehensive donor matching, and 

identify patients at highest risk for complications who might benefit from directed 

preventive measures that include optimization of GvHD prophylaxis. This study 

provides the foundation for future fine-mapping approaches to identify the specific 

nature of the genes and their mechanisms in health and disease (Petersdorf et al., 

2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 Chapter 4. Assessment of MICA mRNA levels, 

protein expression in clinical gastrointestinal tissue 

post-HSCT and soluble MICA levels in patients sera 

pre and post-HSCT 
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4.1 Introduction  

 

The MHC complex comprises of a cluster of genes mapping to the short arm of 

chromosome 6. Most of them encode polypeptides mainly involved in antigen 

presentation to T lymphocytes. In 1994, the MHC class I chain related (MIC) gene 

family was first described and was noted to map within the MHC class I region was 

described (Bahram et al., 1994). This family comprises 2 functional genes, MICA and 

MICB, and several pseudogenes, MICC to MICG (Figure 4.1) (Bahram and Spies, 

1996; Bahram, 2000a; Muro et al., 2014). MICA has an overall homology of 83% with 

MICB, but their homology with the classical MHC class I genes is quite low, being 

between 15 and 35% (Bahram et al., 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typically, MICA encodes for a polypeptide of 383 amino acids that is expressed on the 

cell surface of different cells and resembles the domain organization of the α chain of 

MHC class I molecules (one leader peptide encoded by exon 1, three extracellular 

globular domains encoded by exons 2 to 4, one transmembrane domain encoded by 

exon 5 and a cytoplasmic tail encoded by exon 6). However, MICA does not associate 

with β2-microglobulin (Groh et al., 1996a; Zwirner et al., 1997) (further elaborated in 

Chapter 1, section 1.9).  

Figure 4.1 Map of the human MHC class I region 

showing the location of the MIC genes (adapted 

from Muro et al, 2014). In red circles are the MIC genes 

located with the MHC class I region.  Within the MIC 

gene family, there are 7 member including 2 functional 

genes, MICA and MICB and 5 pseudogenes, MICC, 

MICD, MICE, MICF and MICG (Muro et al., 2014) 
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MICA equivalent genes are present in different species but not in the mouse genome 

(Bahram et al., 1994; Steinle et al., 1998). However, two putative orthologous genes 

to MICA and MICB have been described in the mouse genome (Kasahara et al., 2002). 

Like the other MHC class I genes, MICA is co-dominantly expressed (Molinero et al., 

2002b). 

MICA transcripts were first detected in human epithelial and fibroblast cell lines 

(Bahram et al., 1994). When antibodies (Ab) against MICA became available, it was 

demonstrated that MICA was further expressed by freshly isolated human endothelial 

cells and fibroblasts (Zwirner et al., 1999), tumours of different histotypes (Groh et al., 

1999a), some melanomas and T cell leukaemia cell lines (Pende et al., 2001), in thymic 

medulla (Hüe et al., 2003), and in gastrointestinal epithelium (Groh et al., 1996b). 

Expression of MICA was also observed in human keratinocytes (5), which showed no 

expression of this molecule on the cell surface (Zwirner et al., 1999; Tay et al., 2000). 

The detection of MICA in tumours suggested that its expression might be related to the 

process of neotransformation (Zwirner et al., 2006). 

MICA is not expressed by resting T or B lymphocytes, but PHA-activated CD4+ and 

CD8+ T cell blasts express MICA (Zwirner et al., 1997). This expression may also be 

triggered by stimulation with allogeneic PBMCs, and involves TCR/CD3 engagement 

and co-stimulation through CD28 (Molinero et al., 2002a; Molinero et al., 2003), 

involving different cytoplasmic mediators (18) and NF-κB (Molinero et al., 2004). These 

results suggest that MICA can be induced not only upon neotransformation, but also 

during cell activation, two cellular processes coincidentally regulated by NF-κB (Kuo 

and Leiden, 1999; Karin and Greten, 2005). However, low surface expression of MICA 

was observed on activated T lymphocytes (Molinero et al., 2002a). 

The functional implications of MICA have been investigated in many clinical settings, 

including transplantation in cases both of kidney and heart transplant, where the 

presence of MICA antibodies was shown to be associated with decreased survival 

(Kato et al., 2006). In a study by Zou et al., MICA antibodies generated by mismatched 

amino acids in transplant recipients have been found against MICA in organ 

transplants that are rejected  (Zou et al., 2007). In solid organ transplant, immune 
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responses in recipients were shown to be mounted against different protein forms of 

MICA alleles (Luo et al., 2014).   

MICA has also been investigated for its implication in a HSCT setting and MICA 

mismatching has been associated with increased risk of GvHD (Askar et al., 2014), 

and with allogeneic transplanted T-cells or NK cells targeting mismatched MICA 

proteins in the GI tract of the transplant recipient (Askar et al., 2014). 

MICA is up-regulated by different stress conditions such as heat-shook oxidative stress, 

neoplasic transformation and viral infection (Allegretti et al., 2013). In fact, MICA 

molecules function as stress sentinels which interact with the NKG2D-activating 

receptor on human NK and CD8+ αβ T cells and γδ T cells, triggering the cytolysis of 

virally infected cells or transformed cells (Hue et al., 2004). Particularly, MICA is 

expressed in enterocytes where it can mediate enterocyte apoptosis when recognised 

by the activating NKG2D present on intraepithelial lymphocytes (Allegretti et al., 2013). 

MICA-NKG2D ligand-receptor plays a significant role in induction of innate and 

adaptive responses against epithelial pathological conditions, especially those 

occurring in the gastrointestinal tract (Wagsater et al., 2003). This mechanism was 

suggested to play a major pathogenic role in active GIGvHD (Boukouaci et al., 2013; 

Isernhagen et al., 2015a). 

Various non-MICA-related features can also influence its expression, e.g. CMV state, 

GvHD prophylaxis, underlying disease and treatment procedures (Isernhagen et al., 

2015b). Steroids are considered the treatment of choice for aGVHD (Kobbe et al., 

2001). In this regard it was previously reported that steroids can affect several functions 

in different systems, by altering expression of genes that are relevant for cell-to-cell 

communication, cell structure and differentiation including the MICA-NKG2D system 

(Kawata et al., 1994). Steroids can also regulate gene expression post-transcriptionally, 

by altering the stability of mRNA (Ing, 2005).  

In this study, the effect of steroid dose treatment on MICA expression was investigated 

and associated with the outcome of gastro intestinal GvHD (GIGvHD). The main focus 

was to investigate steroid dose-dependent effects on MICA gene expression.  

In the previous Chapter (Impact of SNPs on HSCT outcome), MICA genetic 

polymorphisms were shown to have an impact on HSCT outcome, however, additional 

MICA-related features, including MICA protein expression and soluble MICA levels 
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may also influence the cycle of MICA expression and thus, may influence the incidence 

of GvHD after allo-HSCT. 

A soluble isoform of MICA (sMICA) is generated by the proteolytic shedding of 

membrane-bound MICA (Groh et al., 2002b). This can result in a tumour immune 

escape, mediated by immunosuppressive sMICA (Groh et al., 2002a; Salih et al., 2002; 

Chitadze et al., 2013). sMICA can induce NKG2D downregulation by rapid endocytosis 

and partial lysosomal degradation, resulting in the impairment of NK cell cytotoxicity 

(Roda-Navarro and Reyburn, 2009) and the co-stimulation of CD8+ αβ T cells via 

NKG2D (Groh et al., 2001). MICA is cleaved at the cell surface by members of the 

family of matrix metalloproteases (MMPs) and the “a disintering and metalloproteinase” 

(ADAM) family, including ADAM10 and ADAM17 (Groh et al., 2002a; Salih et al., 2002; 

Kaiser et al., 2007; Waldhauer et al., 2008). The α3 domain of MICA forms a complex 

with the disulphide isomerase/chaperon endoplasmic reticulum protein 5 (ERp5) on 

the surface of tumour cells, which induces a conformational change enabling the 

proteolytic cleavage of MICA (Chitadze et al., 2013). Shedding of NKG2D ligands has 

been reported for many types of cancers and some haematopoietic malignancies 

(Chitadze et al., 2013). In addition, tumour-derived exosomes contain MICA (Clayton 

et al., 2008) and may also contribute to a downregulation of NKG2D (Isernhagen et al., 

2015a).  

 

4.2 Specific study aims  

 

The main focus of this study was to establish the effect of MICA mRNA levels in GI 

tract on the HSCT outcome. The association between MICA expression by intestinal 

epithelial cells and the different grades of GIGvHD was also investigated. This was 

performed using SYBR GREEN qPCR and immunofluorescence confocal microscopy. 

Another aim of this study was to investigate the impact of MICA serum levels on HSCT 

outcome. For this purpose, a comparison between the levels of sMICA in patients pre 

and post transplantation as well as at different time points post HSCT (pre, day -7, day 

+14, day +28 and day +100) were investigated for their association with HSCT outcome.  
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4.3 MICA mRNA levels and protein expression assessment in 

clinical gastrointestinal tissue 

 

4.3.1 Clinical information for the study cohort  

 

A cohort of n=180 GI biopsies collected from n=96 patients who underwent 

transplantation at the Transplantation Centre, University Clinic of Regensburg, 

Germany, were utilised in this study. Clinical characteristics of the study cohort are 

described in Table 4.1. A 
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Clinical characteristics  N (%) 

Patient Gender Female  64 (66.66) 

Male 32 (33.33) 

Patients age range (y) 17-70 

Donor Gender Female  67 (69.79) 

Male 28 (29.16) 

Donors age range  (y) 15-66 

Female to male ratio 
 

11.66 

Patient CMV positivity 
 

46 (47.91) 

Donor CMV  positivity 
 

36 (37.5) 

Disease  Acute Myeloid Leukaemia 37 (38.54) 

Myelodysplastic syndrome 7 (7.29) 

Non-Hodgkin's Lymphoma 7 (7.29) 

Chronic Lymphocytic Leukaemia 9 (9.37) 

Hodgkin's Disease 2 (2.08) 

Acute Lymphoblastic Leukaemia 3 (3.12) 

Chronic Myeloid Leukaemia 2 (2.08) 

Missing 29 (30.2) 

Alive (at the time of study) 
 

43 (44.79) 

aGvHD Grade 0 34 (35.41) 

Grade 1 16 (16.66) 

Grade 2 22 (22.91) 

Grade 3 19 (19.79) 

Grade 4 5 (2.77) 

cGvHD 66 (68.75) 

Relapse  24 (25) 

TCD  66 (68.75) 

RIC 72 (75) 

MUD 66 (68.75) 

SIB 26 (27.08) 

Apoptotic score  Yes Apoptosis (Score=1) 54 (56.25) 

Active GIGvHD 57 (59.37) 

Steroid treatment ≤ 20mg/kg 89 (92.70) 

Table 4.1 Clinical characteristics of patient and donor recruited for MICA 

expression investigation in the GI tract (n=96) 

Abbreviations: CMV: Cytomegalovirus, aGvHD: acute GvHD, cGvHD: chronic GvHD, TCD: T cell depletion 

treatment, RIC: reduced intensity conditioning, MUD: Matched unrelated donor, SIB: Sibling donor, GIGvHD: 

gastrointestinal GvHD, MICA: MHC class I chain-related gene A 
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Within the study cohort, data regarding the MICA-129 genotype was only available for 

n=89 patients at the MICA gene expression investigation was performed independently 

after the MOCA-129 genotyping study. Available MICA-129 genotypes for patients and 

donors are shown in Table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Association between MICA mRNA levels and HSCT outcome 

 

MICA mRNA levels were investigated using SYBR Green qRT-PCR (SYBR Green 

qRT-PCR chemistry and protocol are described in Chapter 2, section 2.6.5). Various 

clinical variables were investigated for their association with the expression of MICA 

mRNA in the GI tract including the incidence of aGvHD, cGvHD, histologically active 

GIGvHD, relapse, NRM and OVS.  

Statistical interpretation of the data was performed using Cox regression analysis for 

investigation of the association between MICA mRNA levels with the incidence of acute 

and chronic GvHD, Kaplan–Meier survival analysis was utilised to inspect the impact 

of MICA mRNA pattern on the OVS of patients post-HSCT and Grey’s test served to 

examine the impact of MICA gene expression on relapse and NRM. 

Statistical analysis considering the complete cohort showed that there was no 

significant association between MICA mRNA levels in the GI tract and aGvHD. No 

association was observed also between relapse, OVS, NRM or cGvHD and HSCT 

outcome. In order to investigate the effect of steroid dose treatment on MICA 

expression in the GI tract, patients were stratified based on a cut-off value of 20mg/kg 

MICA-129 genotype N (%) 

Patient's MICA-129 Genotype Val/ Met [GA] 40 (41.66) 

Val/ Val [GG] 39 (40.62) 

Met/ Met [AA] 11 (11.45) 

Missing 7 (7.29) 

Donor's MICA-129 Genotype Val/ Met [GA] 40 (41.66) 

Val/ Val [GG] 39 (40.62) 

Met/Met [AA] 7 (7.29) 

Missing 10 (10.41) 

Table 4.2 Available MICA-129 genotypes for the patient and donors within this 

study 
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of steroid treatment as previously defined by Holler et al. This refined cohort was 

assessed for association between MICA mRNA expression and HSCT outcome. 

 

4.3.3 MICA expression in relation to active GIGvHD and the apoptotic score 

 

aGvHD manifests primarily as skin, gut and liver disease with the GI tract being the 

most commonly affected visceral organ (Martin et al., 2004). A clinical diagnosis of 

GIGvHD is frequently confirmed by finding apoptosis on a mucosal biopsy (Ross and 

Alousi, 2012). Histologically active GIGvHD (grade 1) is marked by the presence of 

apoptosis (apoptotic score=1). Histologic grade 1 GIGvHD (apoptosis) is the most 

common finding for patients with GIGvHD, being present in 90% of patients with 

aGvHD of the lower GI tract as compared with only 11–14% of negative controls 

(Epstein et al., 1980). 

The apoptotic scores for the clinical GI biopsies along with the active GIGvHD were 

assigned by the pathology department (Transplantation Centre, Regensburg Clinic, 

Regensburg, Germany). Apoptotic score of 0 = absence of apoptosis, apoptotic score 

of 1= presence of apoptosis, active GIGvHD was coded as 1 and non-active GIGvHD 

was defined as 0.  

Taking into consideration only patients treated with low doses of steroid treatment 

(≤20mg/kg), statistical analysis using One-way ANOVA (SPSS v21.0, IBM Analytics), 

revealed that high levels of MICA mRNA were significantly associated with absence of 

apoptosis in GI tract of patients post-HSCT (p=0.044) (Figure 4.2 A) and no active 

GIGvHD (p=0.046) (Figure 4.2 B).  
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Figure 4.2 Association between MICA mRNA levels, the apoptotic 
score and the active GIGvHD. Statistical analysis using One-way ANOVA  
for the investigation of  the impact of MICA gene expression on apoptosis 
and active GIGvHD in patients treated with low dose steroid treatment 
(≤20mg/kg) showed that (A) high level of MICA expression were significantly 
associated with the absence of apoptosis in the GI tract of patients post-
HSCT (p=0.044). (B) High levels of MICA expression was also associated 
with less active GIGvHD (p=0.046). 

A 
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4.3.4 MICA expression in relation to OVS post-HSCT 

 

In order to investigate the association between MICA expression levels and OVS of 

patients post-HSCT, MICA gene expression was dichotomised as high or low using a 

cut-off value of 1.06E+01 Log2 RQ. This value was chosen as it was noted as the start 

point for the exponential increase of MICA gene expression in patient (Figure 4.3) 

(Boukouaci et al., 2009).  

Based on the defined cut-off point, 63.5 % of the patients had a MICA expression level 

<1.06E+01 Log2 RQ, while 36.5% had a MICA expression level >1.06E+01 (Log2 RQ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Survival analysis using the Kaplan-Meier test for patients showed that there was a 

tendency towards an improved overall survival for patients who had MICA expression 

levels >1.06E+01 Log2 RQ (p=0.058) (Figure 4.5). 

 

 

 

 

Figure 4.3 Distribution profile for MICA expression levels in patients post 
HSCT. A cut-off value at 1.06E+01, marked by the red dotted line, was defined 
as the first level at which MICA gene expression levels started to augment 
exponentially (Boukouaci et al., 2013). Based on this cut-off point, 63.5 % of 
the patients had MICA expression levels higher than 1.06E+01 Log2 RQ and 
36.5% had MICA levels lower than 1.06E+01 Log2 RQ.  
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4.3.5 MICA-129 dimorphism (rs10511792) and association with MICA gene 

expression and functions 

 

Within the study cohort of this study, 43.80% of the patients were carriers of the Val/Val 

genotype. Interestingly, relating MICA mRNA expression in the GI tract back to the 

MICA-129 dimorphism, it was found that the highest levels of MICA mRNA expression 

observed were in patients with the Met/Met genotype (p=0.022) (Figure 4.6).  

 

 

 

 

 

 

Figure 4.5 Overall survival in patients in relation to MICA 

expression levels. Kaplan-Meier analysis showed that patients who 

had a MICA mRNA level > 1.06E+01 Log2 RQ had a tendency towards 

an improved OVS (p=0.058) compared to patients who had low MICA 

mRNA levels. 

P=0.058 

63.5% 

36.5% 

Time in months  

Association between MICA expression levels and OVS  
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Comparison between the mean expression of MICA mRNA within different genetic 

groups showed a clear link between high MICA mRNA levels and the Met/Met (AA) 

genotype (Figure 4.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MICA expression levels in patients in relation to MICA-129 genotype  
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Figure 4.6. Variation of mean of MICA mRNA expression levels in 

relation to patients MICA-129 genotype. MICA mRNA expression levels in 

patients (blue dots) in comparison to the MICA-129 dimorphism showed that 

the mean level of MICA expression (followed by the red line) was higher in 

patients carrying the MICA-129 Met allele and was the highest in patients 

homozygous for this allele who carried the Met/Met genotype.  
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4.3.6 Immunofluorescence investigation of MICA protein expression in 

gastrointestinal tissue post HSCT  

 

A series of optimisation experiments were conducted to select the optimal antibodies 

and concentrations for staining of MICA protein in gastrointestinal sections 

(optimisation process is described in Chapter 2, section 2.9.5).  

A cohort of n=23 gastrointestinal tissue sections collected from the patients recruited 

at the Transplantation centre of Regensburg, were stained for MICA. These clinical GI 

sections were obtained from patients who underwent transplantation at 

Transplantation Centre, University Clinic of Regensburg, Germany and for whom the 

Variable Mean  St Dev SE Mean 95% CI 

AA 17.12 16.33 5.16 (5.44, 28.80) 

GA 11.51 10.79 1.71 (8.06, 14.96) 

GG 10.28 12.75 2.04 (6.14, 14.41) 

Figure 4.7 Comparison between the mean levels of MICA mRNA levels 

and MICA-129 genotype. Variation of the levels of MICA mRNA in the GI 

tract of patients post-HSCT showed that for patients carrying the Met/Met 

genotype (AA) the mean value of MICA mRNA level was the highest with 

17.12 Log2 RQ. The mean of MICA mRNA level in patients carrying the 

Val/Met genotype (GA) was intermediate with 11.51 Log2 RQ. This mean 

was the lowest in the case of patients carrying the Val/Val genotype (GG). 

ANOVA analysis showed that the additive effect of the MICA-129Met was 

significantly associated with the increase in the levels of expression of MICA 

(p=0.022). 
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Table 4.3 Clinical characteristics of patient 
gastrointestinal tract sections considered for MICA 

immunofluorescence analysis. 

MICA-129 genotype is known (data obtained from the genotyping study described in 

Chapter 3). Both clinical and histological grades of GvHD corresponding to the GI 

sections are illustrated in Table 4.3. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

For the purpose of statistical analysis, the histological grades of GvHD were 

considered, as these grades are specific to the gut and thus more reflective of the 

investigation of MICA protein levels in the GI tract.  

MICA expression was observed within the intestinal epithelial cells of the crypts. 

Confocal microscopy images revealed that MICA staining intensity, corresponding to 

its expression, was significantly higher in gastrointestinal sections graded 0-1, and 

MICA intensity gradually decreased in sections with high aGvHD grades (grade 3-4) 

(p=0.002) (Figure 4.8).  

 

 

 

 

 

 

 

 

 

Characteristics of GI sections N (%) 

Clinical GvHD grade*  Grade 0 12 (52.17%) 

Grade 1 3 (13.04%) 

Grade 2 4 (17.39%) 

Grade 3 2 (8.69%) 

Histological GvHD 

grade  

Grade 0 8 (34.78%) 

Grade 1 5 (21.73%) 

Grade 2 4 (17.39%) 

Grade 3 6 (26.08%) 

*Clinical GvHD grades were not available for 2 GI biopsies  
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DAPI Alexa Fluor 488 for MICA Merged Channels 
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Figure 4.8 Differential expression of MICA in the GI tract in relation to GIGvHD 

grades. (A) MICA expression by intestinal endothelial cells in a grade 0 GIGvHD section 

showing the strongest intensity of Alexa Fluor 488 corresponding to MICA. (B) Grade 1 

GIGvHD section with MICA expression less intense than grade 0, but relatively higher 

expression than grade 2 and grade 3 GIGvHD. (C) MICA expression in a grade 2 GIGvHD 

GI section. (D) Grade 3 GIGvHD GI section showing low expression of MICA. 
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During the imaging process (ZEN Lite Software, ZEISS Microscopy) a uniform 

exposure time was maintained for both DAPI and Alexa Fluor 488 (79.5 ms) for the 

purpose of statistical analysis via the quantification of MICA intensities.   

ZEN images of MICA were exported into ImageJ, an image processing program, for 

the quantification of MICA intensity. Alexa Fluor 488 corresponding to MICA was 

measured against a uniform intensity of DAPI and against the background.  

Statistical analysis using one way-ANOVA showed a significant decrease in MICA 

levels when comparing grade 0 GIGvHD to grade 3 GIGvHD (p=0.002) (Figure 4.9). 

This significance was maintained when comparing grade 0 to grade 1 GIGvHD 

(p=0.033) (Figure 4.9). The differential levels of MICA expression in gastrointestinal 

tissue are illustrated in Figure 4.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 MICA immunofluorescence intensity in relation 
to GIGvHD grades. Statistical analysis using One-way ANOVA 
(GraphPad Prism v6.0) test showed that there was significant 
decrease in MICA protein level between GIGvHD grade 0 and 
grade 3 (p=0.002). Comparison between MICA protein levels in 
patients with grade 0 and grade 2 GIGvHD, showed that MICA 
protein levels were significantly higher in patients who had 
GIGvHD grade 0 (p=0.033). MICA protein levels were 
significantly higher in patients with grade 1 GIGHD in 
comparison with patients with grade 3 GIGvHD (p=0.051). 

Differential expression of MICA according to GIGvHD grade 
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4.4 Assessment of soluble MICA levels in sera of patients pre and 

post-HSCT 

4.4.1 Clinical characteristics of the study cohort 

 

The study cohort comprised of n=129 serum samples collected from n= 55 patients 

recruited from the Newcastle Upon Tyne Transplantation Centre, The Newcastle Upon 

Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom. These samples 

were collected from patients pre-transplantation, and at day 14, day 28 and 3 months 

post-transplantation. All clinical characteristics of the patients are detailed in Table 4.4. 
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5.1.1 Serum MICA levels in patients pre and post-HSCT  

 

Statistical analysis for the association between MICA serums levels and the incidence 

of aGvHD was performed using two samples independent t-test (GraphPad prism v6.0). 

For the association of sMICA levels with the OVS, NRM and relapse, a cut-off point of 

Clinical Characteristics  N (%) 

Patients gender Female  18 (32.72) 

Male  29 (52.72) 

Missing  8 (14.54) 

Donors gender Female  8 (14.54) 

Male  30 (54.54) 

Missing 17 (30.90) 

Adult 55 (100) 

Patients age range (years) 
 

20-68 

Donors age range (years) 
 

19-55 

Relationship SIB 12 (21.81) 

MUD 26 (47.27) 

Missing 17 (30.9) 

Disease  Acute Myeloid Leukaemia 9 (16.36) 

Myelodysplastic syndrome 5 (9.09) 

Non-Hodgkin's Lymphoma 5 (9.09) 

Acute Lymphoblastic Leukaemia 1 (1.18) 

Other 3 (5.45) 

Missing  32 (58.1) 

Deceased 8 (14.54) 

Relapse  7 (12.72) 

aGvHD  Grade 0 13 (23.63) 

Grade 1 11 (20) 

Grade 2 10 (18.18) 

Grade 3 1 (1.18) 

 Missing  20 (36.36) 

TCD 
 

16 (29.09) 

RIC 
 

26 (47.27) 

Table 4.4 Clinical characteristics for the patients recruited for sMICA level 

association with HSCT-outcome (n=55) 

Abbreviations: SIB: siblings, MUD: matched unrelated donors, GvHD: graft versus host disease, 
TCD: T cell depletion treatment, RIC: reduced intensity conditioning, HSCT: Haematopoietic stem 
cell transplantation, MICA: MHC class 1 chain related polypeptide A, Met: Methionine, Val: Valine  
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sMICA level was defined and ranges above and below the cut-off value allowed for the 

transformation of continuous data (sMICA levels) into binary data. 

Analysis of the variation of sMICA levels in patient serum pre and post HSCT showed 

a mean value of 19.60pg /mL of sMICA pre-HSCT and mean value of 26.40pg/mL post-

HSCT (Figure 5.1). 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on sMICA distribution profile post-transplant in patients (Figure 5.1), data was 

stratified according to a cut-off point of 12.3 pg/ml (Boukouaci et al., 2009). This cut-

off point was used to dichotomise expression to perform survival analysis statistical.  

Survival analysis based on the cut-off value of 12.3 pg/ml of sMICA serum showed no 

significant association between the sMICA levels and OVS. There was no significant 

association between the levels of sMICA and relapse, NRM and cGvHD. 

5.1.2 Association between sMICA levels and aGvHD  

 

Levels of sMICA at pre-HSCT, day +14, day +28 and 3 months post HSCT were 

investigated for their association with the incidence of aGVHD. sMICA levels were 

significantly upregulated in the serum of patients with aGvHD at 3 months post-

transplantation (p=0.012) (Figure 5.2). There was no significant association between 

Figure 4.10 Variation of sMICA levels in serum pre and post-HSCT. sMICA 

expression showed a mean value of 19.60pg /mL of sMICA pre-HSCT and mean 

value of 26.40pg/mL post-HSCT. The highest levels of sMICA were of 156.00 

pg/ml in patients post-HSCT and 126.13pg/ml in patients pre-HSCT. 
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sMICA levels and the incidence of aGvHD pre-HSCT or post-HSCT at day 14 and day 

28. No significance was also observed between sMICA levels and the severity of GvHD 

post-HSCT (grade 0 vs 1-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.3 Association between MICA-129 dimorphism (rs10511792), MICA mRNA 

expression, sMICA levels and the outcomes of HSCT 

 

In order to investigate associations between sMICA levels and MICA-129 genotype 

with the incidence of GvHD, patients data acquired from the MICA SNP genotyping 

study was correlated with the sMICA levels, this information was only available for n=23 

patients (Table 4.5).  

 

Figure 4.11 sMICA levels association with the aGvHD 

incidence at 3 months post-HSCT. Box plot presentation of 

sMICA levels in relation to the incidence of aGVHD. A t-test for 

unpaired samples showed that are sMICA levels were significantly 

upregulated in the serum of aGvHD patients at 3 months post-

HSCT (p=0.012). 
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Plotting the levels of soluble MICA against the patients genotypes showed that high 

sMICA levels were attributed to the MICA-129 Val/Val genotype (p=0.406) (Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MICA-129 genotype N (%) 

Patient's MICA-129 Genotype Val/ Met [GA] 1 (4.34) 

Val/ Val [GG] 8 (34.78) 

Met/ Met [AA] 14 (60.86) 

Table 4.5 Available MICA-129 genotypes for the patient within this study 

Figure 4.12 MICA-129 genotype in association with sMICA levels 

in serum of patients post HSCT. Variation of sMICA levels in 

association with the MICA-129 genotype in patients. Analysis were 

based on the additive genotype risk, (Met/Met, Val/Met and Val/Val), 

whereby additive effect of the minor allele, Met allele, increased the 

risk of aGvHD. No significant association was observed between the 

different MICA-129 genotypes and an increased level of sMICA.. 
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4.5 Discussion 

 

HSCT is the most potent curative therapy for many malignant and non-malignant 

disorders. A major complication of HSCT is GvHD, which is mediated by tissue damage 

resulting from the conditioning regimens before transplantation and the alloreaction of 

dual immune components (activated donor T-cells and recipient’s APCs) (Ramadan 

and Paczesny, 2015). This tissue damage leads to the release of alarmins (which are 

of endogenous origin), together with the exogenous PAMPs, elicit similar responses of 

danger signals and represent the group of DAMPs. These DAMPs trigger the 

pathogen-recognition receptors that activate the innate immune system and 

subsequently the adaptive immune system. The immunopathology of aGVHD, 

triggered by tissue damage, induces secretion of proinflammatory cytokines, which is 

a critical step for the maturation and activation of host dendritic cells, and for initiation 

and amplification of donor-derived T-cell– mediated responses (Hill and Ferrara, 2000; 

Ferrara et al., 2003). Tissue-specific expression of danger signals from injured host 

tissues might contribute to the pattern of clinical pathology. In this setting, MICA is 

induced upon cellular distress conditions such as DNA damage, malignant 

transformation, or intracellular infection (Groh et al., 1999b; Groh et al., 2001; Tieng et 

al., 2002; Gasser et al., 2005). MICA is recognized by the NKG2D activating receptor, 

which activates NK cells and costimulates effector T-cell subsets leading to cytotoxic 

lysis of the stressed target cells (Groh et al., 1996b; Bauer et al., 1999). Expression of 

the NKG2D ligands (NKG2D-L), such as MICA, is rare or absent on the cell surface of 

unstimulated normal human cells, although transcripts and intracellular proteins can 

be present in fibroblasts and epithelial or endothelial cells. Moreover, induction of MICA 

expression upon cellular distress has been mostly observed in epithelial cells of the GI 

tract, a pattern that fits with the tissue targets of aGVHD (Groh et al., 1996a; Das et al., 

2001; Hue et al., 2004).  

The MICA-NKG2D system acts as an initial defence against infections and malignant 

transformation (Vivier et al., 2008). Once there is MICA-NKG2D binding on specific 

cells, DNAX-activating protein of 10kDa (DAP10) becomes phosphorylated, 

accompanied by the recruitment of phosphatidylinositol 3-Kinase (PI3K) or a growth 

factor-receptor-bound protein 2 (GRB2)-Vab1 complex for full activation of the NKG2D- 

expressing immune cells (Nausch and Cerwenka, 2008). The human NKG2D ligand 

MICA was initially described as a stress response molecule, as it could be induced on 
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cells by heat shock (Nausch and Cerwenka, 2008). It was subsequently discovered 

that expression of both human and murine NKG2D ligands can be induced upon 

infection of cells with a wide range of different viruses, including human 

cytomegalovirus, influenza A, hepatitis B, Epstein-Barr virus, and adenovirus (Groh et 

al., 2001; Pappworth et al., 2007; Vilarinho et al., 2007; McSharry et al., 2008). 

Constitutive expression of MICA in intestinal epithelial cells was first reported over ten 

years ago (Groh et al., 1996b). The mammalian gastrointestinal tract harbours a dense 

and diverse microbial community which is composed primarily of bacteria but also 

includes fungi, archaea, and viruses; collectively, these are referred to as the intestinal 

microbiota (Lozupone et al., 2012). Under such conditions, infection of epithelial cells 

with pathogenic Escherichia coli was described (Zhou et al., 2007; Nausch and 

Cerwenka, 2008). Therefore, it is likely that NKG2D ligand expression levels in 

gastrointestinal epithelial cells are responsive to changes in the gut flora (Eagle et al., 

2009). 

MICA gene expression was previously investigated in several diseases including celiac 

disease (Hue et al., 2004) and laryngeal carcinoma (Wang et al., 2016). Due to its 

polymorphic nature, it was assumed that MICA could be a novel transplantation 

antigen or alloantigen. Anti-MICA specific Ab were detected in sera of transplant 

recipients with different types of rejection episodes (Zwirner et al., 2000b), these Ab 

were absent before the transplant, and they were effectors of complement mediated 

cytotoxicity (Zou et al., 2002). In addition, renal and pancreatic allografts with acute or 

chronic rejection were shown to express MICA (Hankey et al., 2002). Since ischemia-

reperfusion injury induced to a solid organ induces a stress response in the graft that 

is associated with the hypoxia and activation of immune response genes (Strehlau et 

al., 1997; Rauen and Groot, 2004), some cytokines and other proinflammatory 

mediators induced by the ischemia-reperfusion may also up-regulate the expression 

of MICA on the cell surface of endothelial and stromal cells of the grafted organ. 

Although this circuit of ischemia-reperfusion injury - proinflammatory cytokines – MICA 

expression may trigger graft rejection, studies to establish the relationship and timing 

of MICA expression, cellular infiltration and rejection are necessary to establish the 

specific role of MICA during graft rejection. 

In the present study, it was revealed that high levels of MICA mRNA in the GI tract are 

observed in patients with no apoptosis and no active GIGvHD. Such outcomes may be 

attributed to the fact that within the gastrointestinal tract, NKG2D is chronically exposed 
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to its ligand, MICA (Danier et al., 2011). Under chronic exposure, infected cells react 

by shedding MICA from the cell surface and this leads to downregulation of NKG2D 

and thus, less cytotoxic immune responses (Danier et al., 2011). Expression of MICA 

in intestinal epithelium is thought to be stress-induced rather than constitutive (Groh et 

al., 1998). Stress-induced expression of MICA and its recognition by specific T cells 

was previously shown to serve as an immune surveillance mechanism for the detection 

of damaged, infected, or transformed intestinal epithelial cells or to stimulate T cell 

secretion of growth factors for the maintenance of epithelial homeostasis, as originally 

proposed for murine intraepithelial T cells (Witherden et al., 2014). Thus, elevated 

MICA mRNA levels in the case of low GIGvHD grades could be the first response of 

the GI tract to the development of GIGvHD. When GIGvHD grades become higher, 

MICA molecules becomes more abundant and thus, the NKG2D receptor becomes 

chronically exposed to its ligand which leads to its downregulation.  

Since there is considerable genetic variation in the MICA gene, allelic variants of MICA 

substantially differ in their binding affinity for NKG2D, which could have significant 

effects on the modulation of T cell responses. Association analysis between the levels 

of MICA protein expression and the MICA-129 genotype within the cohort of the 

present study linked the high levels of MICA protein expression to the MICA-129 Met 

allele. However, the majority of patients were carrier of the MICA-129 Val allele. This 

finding is consistent with previous investigations reporting that the weak binder, MICA-

129 Val, binds to NKG2D with low affinity and thus, leads to a weak immune response 

(Isernhagen et al., 2015b). This might explain the observation of less apoptosis and 

less active GIGvHD in the patient cohort. In a study by Iserngagen et al investigating 

the effects of MICA expression on target cell killing by apoptosis, it was demonstrated 

that MICA intensity had a negative influence on killing of target cells expressing the 

MICA-129Met variant (Isernhagen et al., 2015b). In contrast, killing increased with the 

expression intensity of the MICA-129 Val allele (Isernhagen et al., 2015a). This 

supports the finding of no apoptosis and less active GIGvHD at high MICA expression 

levels.  

In order to statistically correlate the levels of MICA expression with GIGvHD grades, 

MICA gene expression investigation in the GI tract, was followed by 

immunofluorescence investigation of its protein levels in GI sections collected from 

patients post HSCT. Staining of GI sections from GvHD patients who had undergone 

biopsies for diagnostic purposes showed that MICA was expressed in intestinal 
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epithelial cells as originally described (Groh et al., 1996b). The finding of the present 

study has confirmed previous investigations and showed that, indeed, high MICA 

protein levels in GI sections correspond to tissue diagnosed with low grades of 

GIGvHD. These high intensities of MICA protein in the GI tract are the product of the 

translation of the MICA-129 Met/Met genotype. Previous studies have shown that the 

MICA-129 Met variant is a stronger trigger of NK cell cytotoxicity but the MICA-129 Val 

isoform out performs at high MICA expression intensities on infected cells. Binding of 

the MICA-129 Met isoform to the NKG2D receptor at high levels causes down 

regulation of the MICA-NKGD system and thus, less target cell killing and less 

cytotoxicity (Isernhagen et al., 2015a). Investigation of MICA protein levels in the GI 

tract was previously performed by Groh et al., who’s aim was to generate specific 

monoclonal antibodies for MICA to be used in immunochemical experiments with 

normal and transfected mutant cell lines, as well as for immunohistology (Groh et al., 

1996b). Their investigation showed that there was almost exclusive expression of 

MICA in gastrointestinal epithelium combined with transcriptional regulation of the 

MICA gene by a promoter heat shock element, implying that this MHC class I molecule 

functioned as a ligand for a subset of T cells in the intestinal intraepithelial lymphocyte 

compartment (Groh et al., 1996b). Further studies investigated the MICA protein levels 

in the GI tract during celiac disease (Hue et al., 2004) and showed that MICA is strongly 

expressed at the epithelial cell surface in these patients (Hüe et al., 2003).   

In the SNP study conducted in the study cohort of PBMC samples collected from 

patients and donors who underwent allo-HSCT (Chapter 3. Impact of SNPs on HSCT 

outcome), it was demonstrated that in blood, patients carrying the MICA-129 Met allele 

were characterised with low OVS post-HSCT and also with an increased risk of relapse, 

while the MICA-129 Val allele was significantly associated with an increased risk of 

aGvHD. Although MICA expression is thought to be limited to enterocytes (Groh et al., 

1996b; Janeway et al., 2005), the reality is that MICA expression is yet to be 

investigated and assessed in different tissue. Hence, there is still a remaining question 

about which tissues or organs express MICA and how does that influences its 

consequent surface expression and shedding.  

It has been almost 15 years since the identification of MICA as a member of the MIC 

gene family (Bahram and Spies, 1996), but there is rare transcriptional analysis of the 

MICA gene published to date (Schrambach et al., 2007).  



 
 

143 

Scharmabach et al., showed that MICA transcripts were found in virtually every organ 

examined, with the notable exception of the central nervous system (Schrambach et 

al., 2007). NKG2D behaves as a guard used by CD8 T cells and NK lymphocytes to 

detect cells that have upregulated ligands such as MICA as a result of cellular insults 

(Diefenbach and Raulet, 2003). Thus, MICA-NKG2D binding results in T cell activation 

and proliferation and the presence of the strong binder was associated with incidence 

of the disease. MICA was previously reported to be associated with squamous 

carcinoma (Chen et al., 2015a), BK polyomavirus reactivation and associated 

nephropathy after kidney transplantation (Tonnerre et al., 2016), breast cancer 

(Bargostavan et al., 2016), lung cancer (Okita et al., 2016), abscess formation 

(Martinez‐Chamorro et al., 2016), acute and recurrent pericarditis (Markel et al., 2016) 

and hepatocellular Carcinoma (Li et al., 2016). 

The association of the MICA-129 dimorphism with NKG2D binding, NK cell and T cell 

activation and proliferation, aGvHD, relapse and OVS, implies that the abundance of 

this isoform comes with more GvL effect. Differential mechanisms of regulation of 

MICA may allow for the segregation of GVHD and GVL and provide the foundation to 

specifically modify different responses by targeting distinct pathways of T cell-mediated 

pathways. Differences in the findings between MICA gene expression in blood and the 

GI tract can, in some way, be associated with the differences amongst the study 

cohorts as samples were collected from 6 transplantation centres including Newcastle, 

Paris, Prague, Vienna, Regensburg and Munich. Different approaches of disease 

diagnosis, HSCT protocols, conditioning regimens and GvHD prophylaxis can majorly 

affect the analysis and outcomes. 

MICA is reported to produce sMICA through alternative splicing, proteolytic shedding 

or exosome secretion (Salih et al., 2002). Shedding of MICA has been well investigated, 

and raised levels of sMICA have been associated with various malignancies, such as 

Crohn’s disease and ulcerative colitis (Glas et al., 2001), type I diabetes (Sanjeevi et 

al., 2002), rheumatoid arthritis (Martinez et al., 2001), primary sclerosis cholangitis 

(Norris et al., 2001), systemic lupus erythematosus (Gambelunghe et al., 2005), 

psoriasis (Gonzalez et al., 2001), psoriatic arthritis (Gonzalez et al., 2002), Addison’s 

disease (Gambelunghe et al., 1999), Behcet disease (Mizuki et al., 1999), and familial 

Mediterranean fever (Touitou et al., 2001). In the transplantation setting, the presence 

of sMICA in sera taken from patients post cardiac transplantation was shown to be 
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associated with a lower incidence of rejection (Fernández-Sánchez et al., 2013). 

Through functional studies, the authors also reported that sMICA molecules 

downregulated NKG2D surface expression which led to a functional impairment of cell-

mediated cytolysis (Fernández-Sánchez et al., 2013). In renal transplant patients, 

specific antibodies against MICA were detected in the serum of patients collected at 

different time points after organ rejection (Zwirner et al., 2000a). This outcome was 

later confirmed by Mizutani et al., where they showed that MICA-antibodies were 

produced more frequently in rejected renal transplant patients (Mizutani et al., 2006). 

The present investigation of sMICA level variation in sera of HSCT patients pre and 

post-transplantation showed that sMICA levels were higher post-HSCT than pre-HSCT 

in these patients. Such an outcome may be expected as MICA is a stress-induced 

molecule and the transplantation procedure, treatments, prophylaxis and development 

of GvHD are conditions under which patients are prone to cellular stress and 

inflammation. This increase in the levels of sMICA post HSCT was also observed by 

Boukouaci et al., who demonstrated that high levels of MICA post-HSCT were 

associated with the incidence of cGvHD (Boukouaci et al., 2009). 

The present study showed that high levels of MICA at 3 months post-transplantation 

were significantly associated with the incidence aGvHD. This was expected, as the 

previous finding in Chapter 3 (Impact of SNPs on HSCT outcome) showed that high 

levels of MICA-129 Met were associated with the incidence of relapse and a low overall 

survival. Shedding of MICA was shown to decrease the amount of cell surface MICA 

(Tomuleasa et al., 2015) and sMICA has been demonstrated previously to 

downregulate NKG2D on NK and T cells, thus subverting the NKG2D-mediated 

immune surveillance (Groh et al., 2002b). 

Correlation between sMICA levels and the MICA-129 genotype showed that majority 

of the patients were homozygous for the Val variant which is the weak binder for 

NKG2D. At higher intensities, the MICA-126 Val variant was previously shown to 

induce the cytotoxic activity of T lymphocytes and killing by the NK cells (Isernhagen 

et al., 2015a). Thus, the observation made in this study associating high levels of 

sMICA in serum, and the MICA-129 Val/Val genotype, with the incidence of aGvHD 

are in agreement with Isernhagen et al. This finding is also in coherence with the 

balance of action previously described between both the MICA-129 Met and the MICA-

129 Val allele whereby the MICA-129 Val variant, if expressed at high intensities, 
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triggered increased degranulation whereas at very high intensities, the MICA-129 Met 

even decreased target cell killing (Isernhagen et al., 2015a).  

In conclusion, this study is novel as it explored MICA gene expression and MICA 

protein levels in the GI tract and correlated both with the MICA-129 dimorphism. This 

study showed that in the GI tract of GvHD patients, high levels of MICA mRNA were 

associated with less apoptosis and thus, less GIGvHD and showed that high MICA 

protein levels in GI tissue were correlated with low GIGvHD grades. This study has 

also highlighted the importance of sMICA levels as an indicator of the incidence of 

aGvHD post HSCT and results are in concordance with previous findings in relation to 

MICA-129 dimorphism. Thus, serum levels of MICA showed potential to be considered 

as non-invasive biomarker for aGvHD.  

MICA has been shown to play a role in very different aspects of immune response, 

such as transplant rejection, immune response against viruses and intracellular 

bacteria, inflammation, homeostasis of epithelia, mother-foetus tolerance and immune 

response against tumours. It is likely that clinical testing for the presence of anti-MICA 

alloantibodies might be implemented to avoid early rejections. Simultaneously, 

molecular typing strategies to genotype MICA (Leelayuwat et al., 1994; Fodil et al., 

1996; Petersdorf et al., 1999; Stephens, 2001; Stephens, 2002; Collins, 2004) may 

avoid the transplantation of MICA-mismatched grafts and lead to an improved graft 

survival (Zwirner et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5. Investigation of the impact of 

significant immune response-related genes and 

their corresponding proteins on HSCT outcome 
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5.1. Introduction 

 

Despite HSCT being the only potentially curative treatment for many malignant and 

non-malignant haematological diseases, the overall survival rate after transplantation 

is still only 40% to 60% (Dickinson et al., 2004). This is due to severe post 

transplantation complications, including GvHD, relapse and infection (Robin et al., 

2007; Mohty and Mohty, 2011). 

Matching for HLA genes is essential to reduce the risk of graft rejection and GvHD 

(Flomenberg et al., 2004). However, non-HLA genes also impact on transplant 

outcome and aGvHD can be lethal even in patients receiving transplants from HLA-

identical matched siblings donors (MSD) (Dickinson and Norden, 2015b). As MSD are 

currently available for only one third of patients, transplantation using HLA-MUD is 

more common than the use of cord blood or mismatched related donors. Several 

studies comparing MUD to MSD transplants showed that  there was a 2.44 times higher 

risk of grade II to IV aGVHD in 8/8 matched MUD compared to MSD transplants (Arora 

et al., 2009) and the incidence of grade II to IV aGVHD was still higher in 10/10 

matched MUD compared to MSD transplants (Yakoub-Agha et al., 2006). 

The higher risk of GvHD after MUD compared to MSD transplants could be due to a 

higher degree of similarity in non-HLA genes for siblings, who share 50% of their 

genome with respective recipients (Novota et al., 2011a). Accordingly, there is still a 

need for the identification of genes that contribute significantly to the risk of developing 

acute GvHD. These genes, or gene markers, may be used to assess the risk of 

developing GvHD, for the diagnosis of GvHD, for monitoring treatment of GvHD and 

for screening for immunomodulating substances which may be useful in the treatment 

of GvHD. 

The use of novel gene markers as a method of predicting GvHD risk was developed 

under a patent (application number PCT/EP2011/072804) by Prof Ralf Dressel, Prof 

Anne Dickinsona Prof Bent Rolstadt (partners in the CellEurope Training Network) and 

Lutz (Dressel et al., 2011). The inventors identified rat and human MHC and NKC 

genes but also non-MHC and non-NKC genes that are regulated during GvHR in skin 

explant assays and could therefore serve as biomarkers for GvHD (Zinöcker et al., 

2012).  
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The method comprises determining the prognostic transcript of one or more genes 

selected from the group of genes consisting of UBD, C2, LST1, AIF1l, C1QTNF7, 

CEACAM4, MME, IGFBP5, TAP1, CTGF, ANP32A, HCLSl, HTRA1, LGALS7, 

PTGER2, PTPN7, TGM2, TREM2 and CARD11, PIK3AP1, PSTPIP1, MSR1; or their 

corresponding cDNAs, or their expression products. In an exploratory experiment, the 

inventors analysed the expression of 169 genes with human homologues, including 

the respective MHC and NKC region genes, identified in the rat in human skin explant 

samples (Dressel et al., 2011). 

From this investigation, a selected list of genes, which were identified as significantly 

associated with GvHD (C1QTNF7, LGALS7, ANP32A, HTRA1, PIK3AP1, PSTPIPI, 

MSR1 and CXCL9) were considered in this study for further validation by qPCR, as the 

rest of the genes were investigated elsewhere in a separate study. Gene expression  

levels of this list was compared to their protein levels in samples taken from patients 

and donors post-HSCT.  

For the purpose of investigation of the listed genes, a parallel investigation to identify 

a suitable endogenous control for normalisation of qRT-PCR data was conducted (for 

further explanation, Chapter 2, section 2.6.4.3). Whilst there are several studies that 

have used RT-qPCR to analyse levels of immune response-related gene expression 

in GvHD, there remains a lack of data when it comes to evaluating the use of suitable 

reference genes specific to tissues of interest mostly affected by GvHD, pre and post-

HSCT. The MIQE Guidelines (Minimum Information for Publication of Quantitative 

Real-Time PCR Experiments) describe that qPCR studies should include the use of an 

endogenous and stably expressed reference gene, selected appropriately for the 

tissues or cell types used in the study (Bustin et al., 2009). 

 

5.2.  Study aims 

 

The aim of this study was to determine the expression levels of candidate RNA 

transcripts in blood samples (PAXgeneTM Blood RNA System) obtained from 

transplant patients, comparing expression of these genes with a corresponding 

baseline value of uniformly expressed endogenous genes (GAPDH, B2M, ACTB, 

EIF4A2, ATP5B and 18s, genes annotation and functions are explained in Chapter 2, 

section 2.6.4.3) in patient and donor samples obtained from the Transplantation Centre 

of Newcastle, United Kingdom. 
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Six candidate housekeeping genes were tested in this study in order to identify a 

suitable reference gene stably expressed in aGvHD patients. These were chosen due 

to their existing use as common reference genes in RT-qPCR; GAPDH, B2M, ACTB, 

EIF4A2, ATP5B and 18S (Chapter 2, section 2.6.4.3). Their expression was analysed 

in a carefully selected cohort of GvHD patients, with samples collected from different 

tissues across different GvHD grades, and varying time points before and after allo-

HSCT. 

 

5.3. Results 

 

Clinical information for the study cohort 

 

Gene expression analysis of the target genes (C1QTNF7, LGALS7, ANP32A, HTRA1, 

PIK3AP1, PSTPIP1, MSR1 and CXCL9) was conducted in n=400 samples collected 

from n=186 patients (peripheral blood collected in PAXgene Blood Tubes) of patients 

collected at different time points pre and post-HSCT (including pre-HSCT, day -7, day 

+14, day +28 and day +100). For some of the patients, not all time points were available 

All clinical characteristics for the patients are shown in Table 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1. Identification of a suitable reference gene for qRT-PCR (This work was 

performed by an undergraduate student, Matthew Mankarious, under my 

supervision) 

 

To obtain optimal expression data for the list of genes of interest, geNormPLUS Kit 

and software (PrimerDesign, UK) was utilised to determine the most suitable reference 

gene to be used during qPCR and quantification. GAPDH, B2M, ACTB, EIF4A2, 

Clinical Characteristics  N (%) 

Patient gender  Female  71 (38.2) 

Male  115 (61.8) 

Patient age range (years) 20-72 

F to M ratio 15.6 

Adult  186 (100) 

Relationship MUD 123 (66.1) 

SIB 73 (39.2) 

Alive  109 (58.6) 

Disease Acute lymphoblastic leukaemia 22 (11.82) 

Acute myeloid leukaemia 60 (32.25) 

Hodgkin lymphoma 12 (6.45) 

Non-Hodgkin lymphoma  36 (19.35) 

Myelodysplastic syndrome 23 (10.21) 

Others  33 (17.4) 

Relapse  48 (25.80) 

aGvHD grade Grade 0 74 (42.04) 

Grade 1 51 (28.97) 

Grade 2 49 (27.84) 

Grade 3 4(2.27) 

TCD 96 (51.61) 

RIC 135 (72.6) 

Table 5.1 Clinical characteristics for the patient cohort (n=186) 

Abbreviations: F to M; Female to male, MUD: Matched unrelated donors, SIB: siblings, matched related 
donors, TCD: T cell depletion treatment, RIC: Reduced intensity conditioning 
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ATP5B and 18s (for further information regarding gene annotations and functions see 

Chapter 2, section 2.6.4.3) were tested for their suitability in this study. 

A total of 11 peripheral blood samples were used for this study. Samples were collected 

from patients at different time points including pre-HSCT, day 14, day 28, 3 months, 9 

months and 12 months post-HSCT.  

Ct values for each qPCR reaction were recorded. Samples returning a Ct value over 

40 were not considered as standardised by the MIQE guidelines (Bustin et al., 2009) 

and thus, excluded from the analysis. A mean Ct value was recorded for each 

candidate reference gene along with standard error of the mean (SEM) and coefficient 

of variance (CV) (Table 6.5). 

 

 

 

 

 
 
 
 
 
 
 
 
 
An ideal reference gene should have ΔCt values close to zero with low SEM (Nguewa 

et al., 2008). To identify the most suitable gene for normalization in whole blood, mean 

Ct values for each candidate gene were assessed in relation to SEM (Figure 6.3) and 

Ct values representative of the expression of candidate genes in the different samples 

were also examined (Figure 6.4). 

 

 

 

 

 

 

 

 

 

 

Gene Name  Ct Mean SEM CV 

GAPDH 29.87 0.45 4.77 
B2M 27.46 0.69 7.94 
ACTB 28.02 0.56 6.29 
EIF4A2 32.50 0.55 5.36 
ATP5B 33.07 0.67 6.39 
18S 18.34 0.46 8.00 

Table 5.2 Endogenous control expression. For each of the 
genes considered, the standard error mean, the Ct mean, the 
coefficient of variation and the standard deviation are shown. 

Ct: Threshold cycle, SEM: Standard error mean, CV: Coefficient of 
variance  
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Mean Ct values ranged from 33.07 in ATP5B, to 18.34 in 18S, representing the lowest 

and the highest levels of expression in patients’ blood samples, respectively. Using 

SEM as a representation of variability of each gene, GAPDH was indicated as the most 

stably expressed candidate gene across all samples with SEM=0.45, closely followed 

by 18s with SEM=0.46, and the least stable genes was B2M with SEM=0.69 (Table 

6.5). 

Expression stability of the six candidate genes was assessed in respect to the time 

point of the sample collection (Figure 6.5 A) and the occurrence of GvHD (Figure 6.5 

B). GAPDH had stable expression across the time points studied and during both 

states of no GvHD and GvHD (any grade). Ranking genes based on their SEM showed 

that the most suitable gene for the study of gene expression in blood samples was 

GAPDH (SEM=0.45).  

 

 
 
 
 
 
 
 
 
 
 

Figure 5.1 Average expression stability 
for the reference genes. Mean Ct values 
for the amplification of each gene plotted 
against the standard error of mean (SEM). 

Figure 5.2 Raw Ct values shown in all 
peripheral blood samples. Each PBMC 
sample has 3 individual points for each of 
the 3 repeats. 
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Figure 5.3 Mean Ct values of candidate gene amplification in blood samples in 

respect to time point and the incidence of GvHD. (A) Ct values were compared 

between time points relative to allo-HSCT. Error bars indicate SEM for Ct average for 

time point, and SEM values are indicated for the mean of the gene across all time points. 

(B) All blood samples with GvHD are grade 1. Error bars indicate SEM for Ct average for 

GvHD group, and SEM values are indicated for the mean of the gene between the GvHD 

groups. 

B 

A 
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5.3.2. Gene expression studies  

 

For the quantification of candidate gene expression by Taqman RT-qPCR, GAPDH, 

was utilised for the normalization process. 

An example of the raw data representing the mean Ct values obtained from the 

Taqman RT-qPCR for the genes of interest is represented in Table 6.6. 

 

 

 

 

 

RT-qPCR outcome analysis showed that in peripheral blood samples collected from 

patients pre and post-HSCT from patients recruited from the Transplantation centre of 

Newcastle, no significant association was observed between the expression of HTRA1, 

PIK3AP1 or PSTPIPI and the incidence of aGvHD at the different time points in this 

study. C1QTNF7 and LGALS7 were not expressed in any of the samples. 

Expression of ANP32A was significantly downregulated in patients who developed 

aGvHD compared to patients who did not develop aGvHD at day 14 post-HSCT 

(p=0.01654) (Figure 6.6 A). MSR1 and CXCL9 was not associated with aGvHD when 

the analysis was performed for each time point separately. Overall levels of MSR1 

were significantly down regulated in the case of patients who developed aGvHD 

(p=0.04293) (Figure 6.6 B). In contrast, CXCL9 overall levels were significantly 

upregulated in the presence of aGvHD (p=0.009) (Figure 6.6 C).  

 
 
 
 
 
 
 
 
 

Time point GAPDH PIK3AP1 PSTPIP1 HTRA1 ANP32A MSR1 CXCL9

Pre-HSCT 28.251 32.773 31.311 34.857 29.603 33.507 32.467

Day -7 28.462 32.783 33.098 33.039 30.638 33.490 32.467

Day +14 28.461 32.568 32.969 34.435 29.660 34.133 33.161

Day +28 28.351 31.924 31.070 33.063 29.280 35.512 32.478

Day +100 28.763 29.602 29.080 34.108 32.446 35.572 32.835

Mean Ct values 

Table 5.3 Raw data representing the Ct values obtained for the genes of 
interest after Taqman qPCR 
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Figure 5.4 Significantly dysregulated gene expression levels in association with the 
occurrence of aGvHD.  (A) Boxplot presentation of ANP32A gene expression levels were 
significantly downregulated in patients developing aGvHD at day 14 post-HSCT, p=0.016. (B) 
Boxplot presentation of overall expression levels of MSR1 were significantly down-regulated 
in patients developing aGvHD, p=0.042. (C) Boxplot presentation of CXCL9 overall levels of 
expression were significantly upregulated in patients without aGvHD, p=0.009.  

A 

B 

C 
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5.3.3. Protein level investigation of significantly dysregulated genes pre and 

post-HSCT 

 

A protein Biochip Array (Evidence Investigator®, RANDOX) was utilised for measuring 

soluble LGALS7, MSR1 and CXCL9 levels in n=129 serum samples from allo-HSCT 

patients collected at pre-transplantation. Day-7, day+14, day+28 and 3 months post 

transplantation samples were included in this study.  

Since the technology provided by Randox did not include C1QTNF7, HTRA1, PSTPIP1, 

PIK3AP1 or ANP32A on the protein Biochip, serum levels of these proteins were 

investigated with a different approach using the CusabioTM ELISA kit n=80 (as two kits 

only were available for this investigation.  

Statistical analysis showed that there was no significant association between the levels 

of expression of C1QTNF7, HTRA1, PSTPIP1, PIK3AP1, ANP32A, MSR1 or CXCL9 

protein in sera of patients at all time points and the incidence of aGvHD post-HSCT. 

However, LGALS7 protein levels were shown to be upregulated in patients developing 

aGVHD at day 28 post transplantation (p=0.021) (Figure 6.7). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.5. Soluble LGALS7 levels in relation to the occurrence of GvHD. 

Boxplot presentation of LGALS7 protein levels showing upregulation of in 

patients developing aGvHD at day 28 post HSCT, p=0.021. The p value was 

calculated using the independent samples t-test. 
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5.3.4. Messenger RNA expression and protein level correlation and their 

impact on the outcomes of HSCT 

 

Summarised in Table 6.6 are the results of both the gene expression study in PBMCs 

and the corresponding protein level analysis in serum. Statistical analysis showed that 

there was no significant association between the levels of LGALS7 gene expression in 

blood and the occurrence of GvHD. In serum, however, the levels of LGALS7 protein 

was significantly upregulated in patients with GvHD (Grade 2-4) at day 28 post-HSCT 

(p=0.0211) (Table 6.6).  

For MSR1 in peripheral blood samples, gene expression was significantly down-

regulated in aGVHD patients (p=0.042), while there was no significant association 

between the levels of soluble MSR1 protein and the occurrence of GvHD (Table 6.6). 

The gene expression of CXCL9 was up-regulated in the peripheral blood of aGvHD 

patients (p=0.009) but there was no significant association between the protein levels 

of CXCL9 and the occurrence of aGvHD post-HSCT. 

Similar results were obtained for ANP32A. Gene expression was downregulated in 

aGvHD patients at day 14 post-HSCT (p=0.016), but no significant association was 

observed between the protein levels of ANP32A and the occurrence of aGvHD (Table 

6.6).  
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6.6. Discussion  

Diverse cell populations, such as T cells, APCs, NK and T cells have been reported to 

play immunoregulatory roles in aGvHD (Morris and Hill, 2007). However, the molecular 

mechanism underlying the behaviour of these inflammatory cell populations in aGvHD 

is not yet fully determined. Recently, several analyses of gene expression profiling of 

GvHD target tissues including liver (Ichiba et al., 2003), skin (Sugerman et al., 2004), 

gastrointestinal tract (Snover, 1990) and peripheral blood (Alam et al., 2012), in both 

murine and human GvHD have been reported. These studies provided comprehensive 

information supporting the molecular mechanism of acute GVHD. In order to gain a 

better understanding of acute GvHD, a comparison of the gene expression profiles of 

non-HLA genes: C1QTNF7, LGALS7, ANP32A, HTRA1, PIK3AP1, PSTPIP1, MSR1 

and CXCL9, in peripheral blood was conducted in the present study and the levels of 

their corresponding proteins in the serum of patients pre and post-HSCT was 

investigated. These genes were identified as part of a patent developed by Prof Anne 

Dickinson, Prof Ralf Dressel, Prof Bent Rolstadt and Lutz Walter (MHC genes and risk 

Gene ID 
Gene Expression in 

PBMCs 
p value 

Protein 
Expression in 

Serum 
p value 

LGALS7 X  ↑ p=0.021 

MSR1 ↓ p=0.042 X  

PSTPIP1 X  X  

CXCL9 ↑ p=0.009 X  

HTRA1 X  X  

C1QTNF7 X  X  

ANP32A ↓ p=0.016 X  

PIK3AP1 X  X  

X: no significant association between the gene expression levels/protein expression levels and the incidence 
of aGvhD 
↑: Expression of the gene/protein was upregulated in patients developing aGVHD post-HSCT 
↓: Expression of the gene/protein was downregulated in patients developing aGVHD post-HSCT 

Table 5.4 Comparison between the outcome for the gene expression studies 

in PBMCs and protein level analysis in serum.  
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of graft versus host disease: https://patentscope.wipo.int/search/en/ WO2012080359), 

where the inventors identified not only rat and human MHC and NKC genes, but also 

non-MHC and non-NKC genes that are dysregulated during GvHD.  

In order to perform optimal normalization of gene expression patterns by RT-PCR in 

blood samples collected pre and post HSCT, a set of 6 candidate reference genes, 

GAPDH, B2M, ACTB, EIF4A2, ATP5B and 18S, were tested for their stable expression 

in peripheral blood in relation to the different time points considered in this study (day 

7 pre-HSCT and day 14, day 28, 3 months and 9 months post-HSCT) and in relation 

to the incidence of GvHD. GAPDH was chosen as the reference gene of choice for 

normalization and determination of gene expression levels of the target genes, as this 

gave the lowest variation across samples. 

In this study cohort, log transformed expression levels of the target genes showed that 

there was no significant association between gene expression and protein levels of 

HTRA1, PIK3AP1 or PSTPIP1 and the incidence of aGvHD. In blood, C1QTNF7 was 

not expressed. However, LGALS7 showed significant association between its soluble 

levels and the incidence of aGvHD, whereby protein levels were upregulated at day 28 

in patients who developed aGvHD. 

LGALS7 is implicated in modulating cell-cell and cell-matrix interactions and has 

previously been reported to be specifically expressed in keratinocytes and found 

mainly in stratified squamous epithelium, so it’s surprising that there a very low 

expression of this gene in PAXgene blood (Uhlen et al., 2005; Ponten et al., 2008; 

Uhlen et al., 2010; Uhlen et al., 2015). Soluble LGALS7 levels however, were found to 

be significantly upregulated in aGvHD patients at an early day-post transplantation 

(day 28). Soluble LGALS7 are pro-apoptotic proteins that function intracellularly, and 

were reported to be responsive to stress stimuli, such as cytokines 

(http://www.genecards.org/). As cytokine production is a major step during the 

pathophysiology of GvHD, induction of the shedding of the stress-induced LGALS7 

proteins caused an increase of the protein levels of LGALS7 in the serum of aGvHD 

patients, thus justifying the observation made in this study where protein levels of 

LGALS7 were upregulated in the serum of patient post-HSCT. LGALS7 could also be 

shed in the blood as a result of GvHD in the skin, thus giving rise to elevated levels of 

soluble LGALS7 in serum of GvHD patients. 
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For HTRA1, gene expression was reported in the lymph nodes, liver, colon, ovaries 

and kidneys as well as the cytoplasm of cells of different tissues 

(http://www.proteinatlas.org/). However, there is no information available for HTRA1 

gene expression in the blood (Uhlen et al., 2005; Ponten et al., 2008; Uhlen et al., 

2010; Uhlen et al., 2015) and thus, the observation made in this study showing no 

significant association between the gene and protein levels of HTRA1 and the 

incidence of aGvHD is in agreement with the current data. 

PIK3AP1 was previously reported to be a B-cell specific protein adapter, which is 

known to activate the PI3K-AKT signalling pathway (Pimienta et al., 2015). PIK3AP1 

contributs to B cell development by linking B cell receptor (BCR), and alternatively, 

linking TLR signalling, a process preventing excessive inflammatory cytokine 

production (Uhlen et al., 2005; Ponten et al., 2008; Uhlen et al., 2010; Uhlen et al., 

2015). Recent data revealed an important role for B cells in the pathogenesis of GvHD, 

whereby increased B cell activation and survival were reported by Allen et al., to be 

triggered in patients with GvHD (Allen et al., 2012). Despite PIK3AP1 paying a major 

role in B cell activation and inflammatory cytokine production, its gene expression 

pattern and protein levels shown in this study were not associated with the incidence 

of aGvHD. This outcome could be due to the timing of samples, as only early times 

point (day14, day 28 and day 100 post-HSCT) were considered in this study. 

PSTPIP1 was reported to be involved in the regulation of endocytosis and cell 

migration in neutrophils (www.genecards.org). Schwab L et al., have previously 

illustrated the role of neutrophils in GvHD, showing that recipient neutrophil 

granulocytes impact the severity of GvHD through their activation and production of 

reactive oxygen species (ROS) in the GI tract. This ,in turn, enhanced the pro-

inflammatory environment and accelerated the pathogenesis of GvHD (Schwab et al., 

2014). In this study, no association between the gene expression levels of PSTPIP1 

and the occurrence of GvHD was noted. This observation could be due to the low 

number of aGvHD patients with high grade GvHD (grade 3, n=5) recruited for this study. 

There was no expression of C1QTNF7 mRNA in PBMCs and its serum protein levels 

showed no significant association with the incidence of aGvHD. Information collected 

from Genecards and the Human Protein Atlas regarding C1QTNF7 was scarce; no 

expression was reported in PBMCs and low levels of C1QTNF7 were reported in the 

extracellular compartment (www.genecards.org; www.prtoeinatlas.org). These levels 



 
 

160 

maybe have been too low at the time points investigated to show any association with 

GvHD incidence. 

Statistical analysis showed a decrease of MSR1 and ANP32A gene expression levels 

in blood samples from aGvHD patients. Chen Y et al, suggested in a recent study 

investigating tumour suppressor function of MSR1 in leukaemia stem cells of chronic 

myeloid leukaemia (CML), that MSR1 supresses the proliferation of leukaemia stem 

cells (LSCs), and that MSR1 deletion causes acceleration of CML development (Chen 

et al., 2011). MSR1 was reported to be interacting with ANP32A (Warde-Farley et al., 

2010). ANP32A plays many roles in cells including apoptosis, necroptosis, 

transcriptional regulation, mRNA export and cell cycle control (Rainer et al., 2013). 

Rainer B et al. highlighted that a there was a restricted expression of ANP32A to poorly 

differentiated tumours and haematopoietic stem cells (Rainer et al., 2013). Such 

specific characteristics of ANP32A in HSCs are reflected in the finding of the current 

study where in aGvHD patients, expression levels of ANP32A were downregulated. 

Studies have previously shown that ANP32A expression is regulated by miR-21, which 

is responsible for tumour growth (Schramedei et al., 2011). In aGvHD rat skin explant 

model however, high levels of ANP32A gene expression were associated with aGvHD 

(Novota et al., 2011b). 

Both MSR1 and ANP32A interact with CXCL9, and in the present analysis there was 

an upregulation of CXCL9 levels in patients developing aGvHD. Several have studies 

investigated the role of chemokines in aGvHD. Ji LH. et al, reported that CXCL9 levels 

increased one week before aGvHD was diagnosed and significantly correlated with the 

severity of aGvHD (Ji et al., 2006). Expression of IFN-γ has been associated with a 

GvHD, even though the pathogenetic importance is controversial (Yang et al., 2005). 

Interferon-γ is a potent inducer for the expression of the CXCR3 ligands CXCL9, 

CXCL10 and CXCL11 (I-TAC) (Farber et al., 1997; Cole et al., 1998). Recent studies 

have shown by gene expression profiling that pro-inflammatory chemokines are 

upregulated in different target organs of GvHD (Ichiba et al., 2003; New et al., 2002). 

In addition, the influence of chemokines on the recruitment of activated CD4+ T cells 

into the skin of GvHD patients has been elucidated (Piper et al., 2007). CXCL9 

promoted aGvHD at high expression levels while interacting with ANP32A to promote 

proliferation and differentiation of HSCs and MSR1 to decrease the proliferation of 

leukemic cells (Piper KP et al., 2007). Soluble levels of CXCL9 were also investigated 

by Kitko et al, and they showed that plasma levels of CXCL9 were elevated at the onset 
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of cGvHD, but they did not observe this in patients with cGvHD for more than 3 months 

(Kitko et al., 2014).  

In summary, this study demonstrates differential expression of a panel of non-HLA, 

immune response-related genes (C1QTNF7 with MSR1, CXCL9 with CXCL11 and 

CXCL10, and LGALS7) and their respective proteins in acute GvHD. Further validation 

of these finding in a larger cohort is needed to confirm the results of this study.  
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Chapter 6. MicroRNA profiling in GI biopsies of 

patients with aGvHD 
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6.1 Introduction 

 

Since their discovery, miRNAs have become established as crucial regulators of gene 

expression in plants and animals (Lee et al., 1993; Wightman et al., 1993; Reinhart et 

al., 2000; Alvarez-Garcia and Miska, 2005; Wienholds et al., 2005). In most organisms 

there is a limited number of miRNAs compared to the number of mRNAs and proteins. 

As an example, the human genome is believed to encode ~1000 miRNAs (Friedlander 

et al., 2014), whereas the number of mRNAs is typically estimated at 30,000 (Strachan 

and Read, 1999). However, one miRNA may regulate hundreds of mRNAs and, as a 

result, may have a substantial effect on gene expression networks. MicroRNAs are 

believed to target more that 60% of mammalian and human transcripts (Friedman et 

al., 2009) and thus, their expression patterns can be rich in biological information. 

MiRNA expression profiling studies have helped identify miRNAs that are involved in 

the regulation of various processes, including organism development and the 

establishment and maintenance of tissue differentiation (Alvarez-Garcia and Miska, 

2005; Wienholds et al., 2005). MiRNAs have also been investigated as molecules for 

the reprogramming of cell fate in stem cell applications, as well as being applied as 

biomarkers for identifying the tissue differentiation state of cancers of unknown tissue 

origin (Lu et al., 2005; Rosenfeld et al., 2008).  MiRNAs have been shown to be well 

preserved in a range of specimen types including blood plasma or serum, urine and 

formalin fixed tissue, and are also measurable with a much greater sensitivity than 

proteins (Ma et al., 2009; Blondal et al., 2013). Accordingly, miRNA profiling has 

become of interest to investigators working in diverse research areas of biology and 

medicine and there is considerable interest in the development of miRNAs as 

biomarkers for diverse molecular diagnostics applications, including cancer (Lu et al., 

2005; Rosenfeld et al., 2008; Boeri et al., 2011), cardiovascular and autoimmune 

diseases (Tili et al., 2008) and forensics (Courts and Madea, 2011).  

MiRNA profiling applications are growing. Comparing miRNA profiles between the 

different stages of disease development can facilitate identification of miRNAs involved 

in developmental transitions or cell differentiation (Alvarez-Garcia and Miska, 2005; 

Wienholds et al., 2005). MiRNA expression patterns can be cell-type-specific and 

specific miRNAs can function to buffer developmental transitions and/or to maintain 

differentiation states. Many studies investigating gene expression patterns (Yao et al., 
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2007; Bizuayehu et al., 2012) are not well characterised at the genomic or 

transcriptomic levels and therefore, miRNA profiling is a powerful approach to identify 

novel miRNAs in this setting. Consequently, this could lead to the investigation of 

miRNA–mRNA and miRNA–protein interactions using techniques such as crosslinking 

immunoprecipitation (CLIP) (Ule et al., 2003; Ule et al., 2005). In the case of RNA 

sequences that are bound by protein of interest (for example the argonaut protein), 

they can be detected by high-throughput sequencing (HITS) in a combined approach 

known as HITS-CLIP or photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP), 

in which photoreactive analogues are also incorporated (Hafner et al., 2010). Along 

with interaction identification, miRNA profiling can be analysed with other large scale 

genomic data sets to identify specific miRNAs in the context of gene regulatory 

networks. This can be performed using in silico tools such as MAGIA (Sales et al., 

2010) and mirConnX (Huang et al., 2011), as well as with databases of miRNA 

expression pattern in human disease, such as miR2disease (Jiang et al., 2009), 

miConnXaldo interface with the miR-Ontology Database (Laganà et al., 2009) , which 

is a compendium of miRNA-phenotype associations in humans.  

Although miRNA singatures have been investigated in the setting of HSCT (Serody, 

2015), there is currently no detailed information in the litterature about miRNA profiling 

in the GI tract of GvHD patients. Althought GvHD may affect any organ, intestinal GvHD 

is particularly important because of its frequency, severity and impact on the general 

condition of the patient (Takatsuka et al., 2003). It has been shown that the 

gastrointestinal tract plays a major role in the amplification of systemic disease 

because gastrointestinal damage increases the translocation of endotoxins, which 

promotes further inflammation and additional gastrointestinal damage (Takatsuka et 

al., 2003).   

 

6.2 Study aim 

 

This study performed miRNA profiling in GI biopsies of GvHD patients, recruited at the 

Transplantation Centre of Regensburg post HSCT, in order to identify significantly 

dysregulated miRs in the GI tract of patients with aGvHD. This was achieved using the 

nCounter miRNA Expression Assay (Nanostring technologies) which screened for 

~800 miRNAs in total RNA samples extracted from GI biopsies. In order to validate the 

finding of the profiling investigation, significantly dysregulated miRNAs were then 
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assessed in a separate cohort of samples using qRT-PCR. As miRs target more than 

60% of the human genome (Friedman et al., 2009), target prediction was carried out 

for the identified miRNAs using publically available databases including 

TargetScanHuman, Tarbase, miRPath, miRBase, miRWalk, TargetMiner, PicTar, 

miRBaseTracker and the IPA web-delivered application. 

 

6.3 Results 

6.3.1 Clinical characteristics of the study cohort  

 

For this study, n=13 GI biopsies collected from patients post-HSCT were initially 

considered. There were 2 samples flagged for poor quality control by the nSolver 

Analysis software (Nanostring Technologies), as the positive controls detected in these 

samples did not return any results. Thus, only n=11 samples were taken into 

consideration for bioinformatics analysis. Clinical characteristics for the study cohort 

are shown in Table 6.1. 

The nCounter® miRNA Assay was utilised for the screening (Nanostring Technologies) 

(chemistry of the technology is further explained in further in Chapter 2, section 2.8.1).  
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6.3.2 Bioinformatic analysis for investigation of miRs profiles associated with 

aGvHD 

 

Raw microRNA profiling data was exported as RCC files and loaded on the nSolver 

Analysis software (Nanostring Technologies) (details about the software and the 

analysis process is further explained in Chapter 2, section 2.8.2).  

Data analysis was set to compare miRs signatures in relation to the incidence and to 

the severity of GvHD. Normalised data along with the fold change data were imported 

into R (The R Project for Statistical Computing, v3.3.0), where p values were calculated 

using the independent samples t-test, data was visualized as volcano plots, 

dendograms and heat-maps (all scripts and analysis pipelines were developed by Kile 

Green, Human DC lab, Haematological Sciences, Institute of Cellular Medicine, 

Faculty of Medical Silences, Newcastle University, UK). Stratification of the data was 

Clinical Characteristics  N (%) 

Patients gender  Female  3 (27.3) 

Male  8 (72.7) 

Donors gender  Female  2 (18.2) 

Male  9 (81.8) 

Adult 11 (100) 

F to M 18.18 

Patients age range (years) 24 - 63 

Donors age range (years) 29-59 

Relationship SIB 3 (27.27) 

MUD 8 (72.72) 

Deceased 4 (36.4) 

Relapse  
 

3 (27.3) 

aGvHD Grade 0 3 (27.3) 

Grade 1 3 (27.3) 

Grade 2 1 (9.1) 

Grade 3 3 (27.3) 

Grade 4 1 (9.1) 

TCD 8 (72.7) 

RIC 10 (90.9) 

Table 6.1. Clinical characteristics of the study cohort (n=11) 

Abbreviations: F to M; Female to male, MUD: Matched unrelated donors, SIB: siblings, 
matched related donors, TCD: T cell depletion treatment, RIC: Reduced intensity 
conditioning 
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first based on the incidence of aGvHD, comparing no aGvHD (grade 0) to presence of 

aGvHD (grade 1-4). 

Based on the incidence of aGvHD (grade 0 vs 1-4), data analysis showed that there 

was a significant variation in the levels of 4 miRs (Table 6.2).  

 

 

  

 

 

 

 

 

 

 

 

 

Data visualisation was performed using volcano plots on R to show miRs with a 

significant variation in their expression levels in patients with no aGvHD and those with 

GvHD (Figure 6.1). 

Volcano plots were constructed by plotting the negative log of the p-value on the y-

axis, which results in miRs with low p-values (highly significant) appearing toward the 

top of the plot (Li, 2012; Li et al., 2014). The x-axis is the the fold change between the 

two categories of data, based on the grades of GvHD considered for the analysis. The 

fold-change is used so that changes in both directions appear equidistant from the 

centre (Li, 2012; Li et al., 2014). Plotting miRs in this way resulted in two regions of 

interest in the plot: those miRs that were found towards the top of the plot that were far 

to either the left- or the right-hand side. These represented values that displayed large 

fold changes (hence being left- or right- of centre) as well as high statistical significance 

(hence being toward the top). 

Visualisation of the data showed a significant increase in the levels of expression of 

miR-1247-5p (p=0.029), miR-297 (p=0.041) and decrease of miR-34a (p=0.023) and 

miR-455-3p (p=0.024) in patients with aGvHD (grade 1-4) compared to no aGvhD 

(grade 0) (Figure 6.1). 

 

 aGvHD (grade 1-4) vs no aGvHD (grade 0) 

MicroRNA ID Fold change p value 

hsa-miR-1247-5p 2.05 0.029 

hsa-miR-297 1.88 0.041 

hsa-miR-34a-5p -1.54 0.023 

hsa-miR-455-3p -1.26 0.024 

   

   

Table 6.2 Significant miRs based on the incidence of 

aGvHD (grade 0 vs 1-4). MiRs in red had an increased 

expression in aGvHD (1-4), while those in green had a 

decreased expression in aGvHD compared to no aGvHD (0). 
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Figure 6.1 Volcano plot comparing miRs signature between no aGvHD (0) and the 

presence of aGvHD (1-4). A limit of significant variation in the levels of expression of 

miRs is marked by the red dotted line, while a fold change of 1 in the miR expression 

levels are marked by the dotted orange line (representing a fold change of 1 and -1 on 

each side).miRs with a significant variation in their expression levels are showed in light 

blue in the red box. MiR-1247-5p (p=0.029) and miR-297 (p=0.041) had increased 

expression and miR-34a (p=0.023) and miR-455-3p (p=0.024) were had decreased 

expression in aGvHD (1-4) compared to no aGvHD (0). 
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6.3.3 Validation form hsa-miR-34a-5p 

6.3.3.1 Clinical characteristics of the validation cohort 

 

The validation study was carried out for miR-34a, as the litterateur showed a strong 

link between this miR and HSCT outcome and it was shown there that this miR was 

associated with severe GvHD however, interestingly, in our cohort this miR’s 

expression increased in patients with no GvHD. Validation was performed in a cohort 

of n=20 GI cDNA samples. All clinical characteristics of the patients from whom 

gastrointestinal biopsies were obtained are shown in Table 6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison between the study cohort (n=11) and the validation cohort (n=20) 

comprised of GI samples collected form patients recruited at the transplantation centre 

of Regensburg, Germany is shown in Table 7.9. Data showed that both cohorts were 

comparable and no significant difference was observed (Table 6.4). 

Clinical Characteristics  N (%) 

Patients gender  Female  11 (55) 

Male  9 (45) 

Donors gender  Female  8 (40) 

Male  12 (60) 

Adult 20 (100) 

F to M9 (10) 

Patients age range (years) 17 - 71 

Donors age range (years) 15 - 56 

Relationship SIB 4 (20) 

MUD 16 (80) 

Deceased  5 (25) 

Relapse  
 

4 (20) 

aGvHD Grade 0 6 (25) 

Grade 1 3 (20) 

Grade 2 8 (40) 

Grade 3 2 (10) 

Grade 4 1 (5) 

TCD 13 (65) 

RIC 11 (55) 

Abbreviations: F to M; Female to male, MUD: Matched unrelated donors, SIB: siblings, 
matched related donors, TCD: T cell depletion treatment, RIC: Reduced intensity 
conditioning 

 

 

Table 6.3 Clinical characteristics for the miRNA validation cohort (n=20) 
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Investigation of the expression levels of the hsa-miR-34a-5p was performed using 

Taqman qRT-PCR and data analysis was carried out using GraphPad Prism v6.0 (see 

Chapter 2 section 2.6.2 and section 2.11).  

Two endogenous controls including U6 and HY3 were used alongside the miRs during 

Taqman qRT-PCR for normalisation. An example of row data data showing the mean 

Ct values obtained from the Taqman qRT-PCR is depicted in Table 6.5. 

 

 

 

 

 

 

 

 

 

 

Table 6.4. Comparison between the study and the validation cohort 

Study cohort (n=11) Validation cohort (n=20) 

n (%) n (%)

Female Patients 3 (27.3) 11 (55)

Male patients 8 (72.7) 9 (45)

Female donors 2 (18.2) 8 (40)

Male donors 9 (81.8) 12 (60)

Patients 24 - 63 17 - 71 0.060

Donors 29 - 59 15 - 56 0.762

Matched Unrelated 

donors 
3 (27.3) 4 (20)

Siblings 8 (72.7) 16 (80)

8 (72.7) 11 (55) 0.601

3 (27.3) 4 (20) 0.973

10 (90.9) 11 (55) 0.350

Grade 0 3 (27.3) 6 (25)

Grade 1 3 (27.3) 3 (20)

Grade 2 1 (9.1) 8 (40)

Grade 3 3 (27.3) 2 (10)

Grade 4 1 (9.1) 1 (5)

p val*

Gender 

0.180

0.714

T cell depletion

0.865

0.518

Age (years)

Relationship

Acute GvHD

Reduced intensity conditionning

Relapse 

*For continuous data an independent samples t-test was performed while a Chi-squared test was 
performed in the case of categorical data.  
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6.3.4 Variation of the expression levels of miR-34a-5p  

 

Data analysis for the investigation of expression levels of miR-34a-5p in relation to the 

incidence of aGvHD in the validation cohort showed that miR-34a-5p expression was 

significantly increased in patients with no aGvHD (p=0.007) (Figure 6.3). This outcome 

is in agreement with the findings observed in the study cohort, where miR-34a-5p 

expression was shown to be decreased in patients with aGvHD compared to patients 

with no aGvHD (p=0.014). 

 

Sample ID 

Ct Values for 
endogenous controls 

Mean Ct values 
for hsa-miR3-4a 

 U6 HY3 

1 19.458 19.325 16.005 

2 16.911 19.501 17.074 

3 21.287 19.102 16.008 

4 22.096 21.747 17.116 

5 20.208 19.360 20.489 

6 15.318 18.896 17.828 

7 19.101 20.420 20.279 

8 18.650 18.642 24.343 

9 20.332 19.526 22.821 

10 18.170 19.346 18.840 

Table 6.5 Example of Row Ct values obtained for the Taqman 

qPCR for miR-34a 
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6.4 Discussion  

 

Diagnosis of GvHD is usually performed clinically but despite this, an 

anatomopathological confirmation is often performed (Tomuleasa et al., 2015). Several 

targets have been identified recently as promising GvHD biomarkers, however, no 

internationally recognised consensus has yet been established (Schultz et al., 2006; 

Ye et al., 2012). These targets include trappin-2, peptidase inhibitor-3 (PI3) and skin-

derived anti-leukoproteinase, which were reported as elevated in dermatological GvHD 

(Paczesny et al., 2013; Vander Lugt et al., 2013). Patients with GI GvHD have shown 

increased levels of regenerating islet-derived 3alpha protein (REG3α) (Ferrara et al., 

2011; Levine et al., 2012; Harris et al., 2013) and serum markers have also been used 

as promising biomarkers including IL-2 receptor α (IL2Rα), hepatocyte growth factor 

(HGF) and IL-8 (Harris et al., 2012; Goldberg and Giralt, 2013; Paczesny, 2013b; 

Sjoqvist and Snarski, 2013; Sung and Chao, 2013).  

Figure 6.2 Variation of the expression levels of miR-34a-5p 

according to GvHD incidence. (A) Boxplot presentation of the 

variation of miR-34a-5p expression in relation to the incidence of 

aGvHD. MiR-34a-5p levels were significantly upregulated in the case 

of no aGvHD (p=0.007).  
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Recent advances in research identified miRs as potential biomarkers and it might be 

hypothesised that these short non-coding RNAs can also be used for the differential 

diagnosis of aGvHD. MiRs have been reported as important regulators of immune cells, 

including T cells (Ranganathan et al., 2012) and recent studies have implicated miRs 

in the pathogenesis of aGvHD (Xiao et al., 2013; Xie et al., 2014). MiRs are also 

dysregulated in a variety of autoimmune diseases including systemic lupus 

erythematosus, rheumatoid arthritis and multiple sclerosis (Stanczyk et al., 2008; Xiao 

et al., 2014; Yan et al., 2014; Zan et al., 2014; Zhu et al., 2014).  

A better understanding of the regulation of human genes by miRs has an enormous 

potential. The identification of miR expression patterns in diseases and the 

understanding of their accurate involvement in pathogenesis process allows not only 

for the development of new potential molecular diagnostic markers but also for the 

development of new gene therapy strategies.  

In this study, miR profiling was conducted in total RNA samples collected from the GI 

tract of GvHD patients. Damage in the GI tract is one of the main characterization of 

aGvHD in HSCT, during which donor T cells that are transferred along with the allo-

graft execute an immunological attack on target recipient organs and tissues including 

the GI tract (Chen et al., 2015b). It has been previously proposed that at the initial 

stages of aGvHD both TBI and high-intensive chemotherapy, as part of the 

conditioning regimen can reduce or eliminate the tumour load and thus cause sufficient 

immunosuppression to prevent graft rejection (Chen et al., 2015b). However this 

treatment can also stimulate host tissues to secrete inflammatory cytokines which 

directly affect the epithelial cells of the GI tract allowing for the translocation of intestinal 

microbes and their products such as LPS into the systemic circulation (Chen et al., 

2015b). 

The results of this microRNA profiling study identified miRs that were significantly 

altered in patients according to the incidence. MiRs that were shown to be significantly 

downregulated in patients with aGvHD (grade 1-4) compared to no aGvHD were miR-

34a-5p and miR-455-3p. miR-34a was considered for further validation using qPCR. 

This miRs was chosen based on their association in the literature with various diseases 

and molecular mechanisms related to aGvHD. 
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It was revealed in this study that miR-34a-5p levels were significantly downregulated 

post-HSCT in patients with aGvHD (grade -14) (p=0.014) compared to patients with no 

aGvHD (0) which was confirmed in a separate validation study (p=0.0075). Depending 

on the cellular conditions and context (He et al., 2007), over expression of miR-34a 

has been shown to induce cell cycle arrest (Sun et al., 2008), senescence (Tazawa et 

al., 2007) or apoptosis (Yamakuchi et al., 2008). MiR-34a is upregulated by p53 in the 

case of DNA damage (Chang et al., 2007; He et al., 2007; Raver-Shapira et al., 2007), 

but miR-34a can also be transcriptionally activated independently of p53 (Chang et al., 

2007; Christoffersen et al., 2010). The miR-34a locus was reported to be deleted in 

neuroblastoma, breast, thyroid and cervical cancer (Welch et al., 2007; Bagchi and 

Mills, 2008). In the case of colorectal, pancreatic, mammary, ovarian and renal cell 

carcinomas cancers, miR-34a expression was reported to be epigenetically reduced 

by hypermethylation (Vogt et al., 2011). In mice, miR-34a administration inhibited 

tumour outgrowth (Tazawa et al., 2007). In the present study, miR-34a expression 

levels were downregulated in the case of aGvHD (1-4) compared to no aGvHD (0) in 

GI samples taken from patients post-HSCT. This finding is not consistent with the 

observation made by Wang et al, where upregulated levels of miR-34a were shown to 

be associated with the incidence of aGvHD (Wang et al., 2013). However, other 

investigations revealed consistent outcomes with the present study; In a recent study 

by Yanfei Ma et al, in papillary thyroid carcinoma patients, miR-34a overexpression 

promoted cell proliferation, stimulated colony formation, and inhibited apoptosis (Ma et 

al., 2013). In the same study, the author reported that miR-34a overexpression led to 

activation of receptor tyrosine kinase class RET and downstream PI3K/Akt/Bad 

pathway (Ma et al., 2013). Silencing of Akt in papillary thyroid carcinoma cells inhibited 

cell proliferation, reduced colony formation, and induced apoptosis, in accordance with 

the fundamental role of Akt in papillary thyroid carcinoma tumorigenesis  (Ma et al., 

2013). Importantly, silencing of Akt reversed miR-34a overexpression-induced cell 

growth and inhibition of apoptosis (Ma et al., 2013). This is in agreement with the 

observation made in this study where over expression of miR- miR-34a is capable of 

regulating hundreds of genes (Lal et al., 2011) and its functions in GvHD development 

may depend on the type prophylaxis, the clinical and histological stage of GvHD in the 

GI tract and the sample size and type considered for this study. 

In conclusion, both the miRNA profiling and the validation studies conducted here have 

found several miRs, specifically miR-34a, to be dysregulated in GI tract of aGvHD 
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patients. Further functional studies assessing the molecular mechanisms within which 

this miRs is involved may help identify novel biomarkers for the diagnosis of aGvHD 

and also present potential therapeutic targets.  

The regulation of miRNAs may be the next innovation in pharmaceutical research. 

Although studies exploring the impact of miRs on HSCT outcome remain limited in 

number, recent investigations have demonstrated a tremendous potential for these 

molecules as diagnostic, prognostic and therapeutic markers. The clinical application 

of these findings is critical for better management and treatment of aGvHD. Although 

several basic questions regarding the biological principles of human miRs remain to 

be answered, the flux of data and research about these small non coding molecules 

have triggered the biotechnology community to start exploring the possibilities of miRs 

as therapeutic entities. From a scientific point of view, multiple miRs appear to be 

important potential therapeutic targets and chemistries exist that can inhibit miRs in a 

safe manner. The explosion of scientific research on miR biology is not surprising and 

has resulted in a considerable amount of innovation in this area as reflected by 

significant increase in the number of patent application increasing over the last 10 

years (Van et al., 2012). 

To advance miRs in the clinic, a definite process of research and development 

involving optimization of suitable drug candidates and performing pharmacokinetics 

(PK), pharmacodynamics, and absorption, distribution, metabolism, and excretion 

studies are required. There is currently great excitement surrounding miRs as potent 

therapeutic entities. 

 

 

 

 



 

Chapter 7. Concluding remarks and future 

directions 
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7.1 Novel findings and future avenues 

This study investigated rs2910164 and rs2431697 in miR-146a, rs3027989 in IRAK1 

and rs1051792 in MICA for their association with HSCT outcome. Results showed that 

the C variant in rs2910164 miR-146a was associated with increased NRM in patients 

post-HSCT in a discovery cohort, which was then validated in an independent 

validation cohort. For rs2431697 miR-146a, the presence of the T allele was 

associated with a trend towards an increased NRM in patients post HSCT. In the case 

of rs3027898 in IRAK1, which is a validated target of miR-146a (Chatzikyriakidou et 

al., 2010), this study revealed that the C allele was associated with a decreased risk 

of relapse in patients which was more apparent when patients were homozygous for 

the C allele. This was also confirmed in the validation cohort. An increased risk of NRM 

was also observed when patients carried the C allele of rs3027989 in IRAK1 in the 

study cohort only. For rs1051792 in MICA, this study showed that the MICA-129 Met 

variant was significantly associated with low OVS post-HSCT, which was more 

apparent in the group of patients receiving non-TCD treatment. This result was also 

confirmed in a separate validation cohort. This study also revealed that the presence 

of the MICA-129 Met allele in patients was significantly associated with an increased 

risk of relapse, which was again confirmed in the validation cohort.  It was also revealed 

that the presence of the MICA-129 Val variant in patients was significantly associated 

with an increased risk of developing aGVHD post-HSCT.  It is therefore clear the 

impact of the SNPs in miR-146a, IRAK1 and MICA on HSCT outcome. The data 

reported demonstrates that there is increasing evidence to indicate that non-HLA 

polymorphisms have a major influence on HSCT outcome (Paczesny et al., 2013). 

Genotyping patients prior to HSCT for rs2910164, rs2431697 in miR-146a, rs3027989 

in IRAK1 and rs1051792 in MICA may help to avoid high risk genotypes and thus can 

be translated into donor selection, therefore benefiting patients in need of a lifesaving 

transplant.  

Future work will aim at investigating the involvement of rs2910164 and rs2431697 in 

miR-146a, rs3027989 in IRAK1 and rs1051792 in MICA mechanistically in HSCT. In 

vitro functional analysis through culture work, further analysis of the precise 

mechanism through which these SNPs intervene in HSCT is necessary in order to build 

evidence to support or refute the findings of this study. 
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This study also investigated the gene expression patterns of various immune 

response-related genes for their possible association with the incidence of GvHD post 

HSCT. The MHC class I chain related gene A (MICA) expression pattern was the main 

focus of this study and was first investigated in the GI tract of patients. It was 

demonstrated by the initial analysis that high doses of steroids supressed the 

expression of this gene. Stratification of the data based on the steroid doses showed 

that high MICA expression levels were associated with no apoptosis in the GI tract of 

patients post-HSCT and thus no active GIGvHD. A comparison between the mean 

expression levels of MICA mRNA within different genetic groups (dominant (GG), 

additive (GA) and recessive (AA)) showed a clear association between high MICA 

mRNA levels and the Met/Met genotype. Immunofluorescence investigation of MICA 

protein expression in the GI tract of patients post-HSCT showed that MICA was 

expressed within the intestinal epithelial cells of the crypts. There was a significant 

decrease in MICA protein levels when comparing grade 0 GIGvHD to grade 3 GIGvHD. 

This significance was maintained when comparing grade 0 to grade 1 GIGvHD. Levels 

of soluble MICA in sera collected from patients at pre-HSCT, day +14, day +28 and 3 

months post HSCT were investigated for their association with the incidence of aGVHD 

and it was demonstrated that sMICA levels were significantly upregulated in the serum 

of patients with aGvHD at 3 months post-transplantation. Observations made in this 

work regarding the involvement of MICA genotype, MICA gene expression and MICA 

protein levels in the GI tract on aGvHD have strengthened the observation that MICA 

plays a prominent role in the immune response. Molecular typing strategies for MICA 

genotype simultaneously with the clinical testing for the presence of MICA antibodies 

can be implemented in the clinic to aid in the donor selection process and thus help 

avoid the transplantation of MICA-mismatched grafts and lead to an improved survival. 

It may also be used to monitor GvHD and adapt treatments based on each patients 

conditions.  

Future work will aim to validate the finding of this study concerning MICA gene 

expression in an independent validation cohort and will explore which specific cells and 

by which specific means soluble MICA molecules are acting in the GI tract and at which 

time point post-HSCT they start having an influence on the development of GIGvHD. 

 

This study investigated the gene expression patterns of immune response-related 

genes including C1QTNF7, LGALS7, ANP32A, HTRA1, PIK3AP1, PSTPIP1, MSR1 

and CXCL9, in order to gain a better understanding of aGvHD pathophysiology. A 
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comparison of the gene expression profiles of these genes in peripheral blood with the 

levels of their corresponding proteins in serum of patients pre and post-HSCT was 

conducted.  

The study showed that there was a significant downregulation in the gene expression 

levels of MSR1 and ANP32A in aGvHD patients post-HSCT while a significant 

upregulation in the levels of CXCL9 was observed in aGvHD patients. Investigation of 

the association between the levels of proteins and the incidence of aGvHD showed 

that there was a significant association between upregulated of LGALS7 protein levels 

and aGvHD (p=0.021).  

Findings of this study prove that despite advances in HLA matching, GvHD remains 

the main significant complication of HSCT and that investigation of the non-HLA 

genetic background of this complication is crucial for a better understanding of the 

pathophysiology of aGvHD. Various other studies are investigating the expression 

pattern of gene encoding cytokines, chemokines, costimulatory molecules, DNA 

replication, protein folding and drug metabolism and this is key for the development of 

personalised medicine. 

Future work will aim to validate the impact of these genes and proteins on the incidence 

of aGvHD is a separate validation cohort. Potential interactions between the variation 

of the gene expression and the protein levels will also be investigated. Further 

functional in vitro analysis are required to understand the molecular mechanism 

through which these genes act in HSCT settings. 

The final aim of this study was to perform miRNA profiling in GI samples taken from 

GvHD patients for the discovery of miRNAs associated with aGvHD in the GI tract of 

patient after HSCT. Scanning for potential targets of the identified miRs was also 

performed using publically available databases. This study identified a set of 

microRNAs that were differentially expressed according to aGvHD incidence. MiR-34a 

was validated later on in a separate validation cohort. 

Although several studies have investigated the impact of miRs in the setting of HSCT, 

the present study is the first to perform miR profiling in the GI tract of aGvHD patients. 

The GI tract is of a particular importance because of the major role it plays in the 

amplification of systemic disease as GI damage amplifies the translocation of 

endotoxins and thus, promotes further inflammation and additional GI damage.  

The identified miR was reported to play crucial roles in the process of apoptosis, T cell 

activation and cytokine production, which are all key features of the pathophysiology 
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of aGvHD. The finding made here can be the first step toward the transition of these 

identified miRs from the profiling study, into the clinic as diagnostic and therapeutic 

markers.  

Further validation of the outcomes of this study is required in a larger cohort. This study 

had investigated the basic level of the involvement of these miRs in the development 

of GvHD, future work will also take a step closer to the cellular level and take a closer 

look at the expression of these miRs in specific subsets of cells within the GI tract of 

aGvHD patients. This study will be necessary, as localisation of the expression of these 

miR is important in order to develop and discover new therapeutics.  

 

7.2 Limitations 

One of the limitations of this study was the occasionally missing clinical data for some 

of the patient cohorts included in the investigations. This is due to the fact that samples 

were collected from different centres and thus, the data retrieval processes were 

different in each country and different levels of authorisation were required to be 

obtained prior to clinical data management. Missing clinical data was also, in some 

cases, due to the inconsistencies in completion of data collection from complex 

datasets.  

Clinical data and patient selection processes are of crucial importance for all research 

due to the rarity of some types of samples such as GI biopsies from GvHD patients. 

This, at times, limited the number of samples included in parts of this study and made 

the selection process complicated. 

Multicentre studies require a standardised HSCT procedures and GvHD prophylaxis 

but most importantly standardised clinical data storage standards. One of the 

limitations of this study was the availability of standardized clinical data from patients 

and their entry onto local and international databases. More than 6 months were 

needed for clinical data clarification, standardisation and entry onto the database for 

patients from Germany for example. Thus, for optimum accuracy of research in the 

HSCT field, more adequate methods of clinical data management are required. In 

Multicentre studies, a larger sample size does not necessarily result in larger study 

sizes, but rather in increasing the number of variants conferring small effects and thus, 

possibly affecting the outcome of statistical analysis. 
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As data was collected from different transplantation centres, the heterogeneity of 

disease types, along with the protocol variations can affect the therapeutic outcome of 

HSCT thus the need for more sophisticated statistical models and algorithms that take 

into consideration all these variables during data analysis. 

For biomarkers in the field of HSCT, the main barrier that must be overcome is the 

validation of biomarkers in different types of allo-HSCT settings including conditioning 

intensity, donor source, TCD treatment and while taking into consideration various 

clinical factors. This can be achieved via the creation of statistical models incorporating 

various clinical factors. This can then be used for the calculation of risk factors for 

GvHD post-HSCT for use in the clinic. 
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Improving HSCT – Version 4 – 14/11/2014 

 

 
 

 
 

Haematological Sciences,  

Institute of Cellular Medicine 

The Medical School, William Leech Building 

Newcastle upon Tyne  NE2 4HH 

 

CONSENT FORM - PATIENT 
 

Title of Project: 

 

Improving haematopoietic stem cell transplantation outcome 
 

 

 

       Please agree/disagree 

 

1. I confirm that I have read and understand the information sheets for the above studies YES/NO 

 and have had the opportunity to ask questions. 

 

2. I give permission for DNA samples and tissue obtained during the study to be stored YES/NO 

 and used for future research subject to approval by a research ethics committee and 

 we do not intend to come back to you for further consent but ethical opinion will be  

 sought from the Local Ethics Committee for any future research. 

 
3. I give permission for my samples and anonymised data to be used in other related        YES/NO 
      studies (given ethical approval) and shared between researchers within the EU. I  
      have read the information sheets concerned with these other related projects. 

 

4. I understand that my participation is voluntary and that I am free to withdraw at any time YES/NO

 and have my samples discarded, without giving any reason, without my medical  

 care or legal rights being affected. 

 

5. I understand that sections of any of my medical notes may be looked at by responsible YES/NO 

 individuals conducting the research or from regulatory authorities where it is relevant to  

 my taking part in research.  I give permission for these individuals to have access to my  

 records. 

 

6. I agree with any potential commercialisation of this research and I agree that my samples  YES/NO 

can be used in collaboration with a commercial company to further the research.             

 

7. I understand that my cells may be “immortalised”/or replicated in culture by specific           YES/NO

  

 viruses or molecules. 

 

8. I understand that my cells may be used in the development of “humanised mouse’            YES/NO 

 models. 

 

9. I give my permission for photographs to be taken of skin rashes.                                        YES/NO          

 

10. I agree to take part in the above study.   YES/NO 
 

 

PLEASE TURN OVER   
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________________________ ________________ ____________________ 
Name of Patient   Date Signature 
 
 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date  Signature 
(if different from researcher) 
 
 
 
_________________________ ________________ ____________________ 
Researcher   Date 
 Signature 
 
 

 1 for patient;  1 for researcher;  1 to be kept with hospital notes 
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Haematological Sciences,  

Institute of Cellular Medicine 

The Medical School, William Leech Building 

Newcastle upon Tyne  NE2 4HH 

 

 

CONSENT FORM - DONOR 
 

Title of Project: 

 

Improving haematopoietic stem cell transplantation outcome 

 
  

       Please agree/disagree 

 
1. I confirm that I have read and understand the information sheets for the above studies YES/NO
 and have had the opportunity to ask questions. 
 
2. I give permission for DNA samples and tissue obtained during the study to be stored YES/NO 

 and used for future research subject to approval by a research ethics committee and 

 we do not intend to come back to you for further consent but ethical opinion will be  

 sought from the Local Ethics Committee for any future research. 

 
3. I give permission for my serum samples to be screened for antiviral activity so that my  YES/NO 
  cells can be used for antiviral therapy for patient use.  
 
4. I give permission for my samples and anonymised data to be used in other related        YES/NO 
      studies (given ethical approval) and shared between researchers within the EU.  
 I have read the information sheets concerned with these other related projects. 
 
5. I understand that my participation is voluntary and that I am free to withdraw at any time   YES/NO  
 and have my samples discarded, without giving any reason, without my medical  
 care or legal rights being affected. 
 
6. I understand that sections of any of my medical notes may be looked at by responsible YES/NO 
 individuals conducting the research or from regulatory authorities where it is relevant to  
 my taking part in research.  I give permission for these individuals to have access to my  
 records. 
 
7. I agree with any potential commercialisation of this research and I agree that my samples YES/NO 
 can be used in collaboration with a commercial company to further the research                     

 

8. I understand that my cells may be “immortalised”/or replicated in culture by specific          YES/NO  

 viruses or molecules. 

 

9. I understand that my cells may be used in the development of “humanised mouse’            YES/NO 

 models. 
 .        
10. I agree to take part in the above study.   YES/NO 
 
 
 
 

PLEASE TURN OVER 
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________________________ ________________ ____________________ 
Name of Patient  Date Signature 
 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date  Signature 
(if different from researcher) 
 
 
_________________________ ________________ ____________________ 
Researcher   Date 
 Signature 
 
 
 

 1 for patient;  1 for researcher;  1 to be kept with hospital notes 
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