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Abstract 

 

The neuronal basis of orienting and attentional behaviours has been widely researched in 

higher animals such as non-human primates (NHPs). However the organisation of these 

behaviours and processes in rodent models has been less well characterised. This thesis is 

motivated to delineate the key neuroanatomical pathways and neuronal mechanisms that 

account for orienting behaviours in the mouse model and compare them, in part, to those 

seen in the macaque. A better understanding of the processes and networks involved with 

attention and orienting is necessary in order to relate findings in the mouse model to those 

seen in humans and NHPs. Further to this, the availability of highly targeted 

manipulations in the mouse, such as optogenetics, requires a more detailed picture of the 

neurophysiology underpinning those behaviours to effectively interpret findings and 

design experiments to exploit these techniques and animal models for maximum benefit.  

In this thesis, study one focuses on the neuroanatomical pathways that terminate in 

subregions of the midbrain superior colliculus (SC) in the mouse (mus musculus) using 

iontophoretic injection of the retrograde tracer fluorogold. This region has been implicated 

in various forms of orienting behaviours in both macaques and mice (Albano et al., 1982, 

Dean et al., 1988b, Felsen and Mainen, 2008). Furthermore study one examines the 

prefrontal connectivity that links to the SC subsections and which may govern approach 

and avoidance behaviours (motor cortex area 2 (M2) and cingulate area (Cg)) in the mouse 

via pressure injection of the anterograde tracer biotinylated dextran amine into these 

regions. It was found that the medial and lateral SC receive differential prefrontal input 

from the Cg and M2 respectively. And that these areas project to brain networks related to 

avoidance or approach. This section furthers our understanding of the partially segregated 

networks which exist in the prefrontal cortex and midbrain of the mouse, which are 

important in mediation of different orienting behaviours 

Study two focuses on the effects of one type of orienting, namely bottom-up attention 

(BU) in visual areas. This exogenous (automatic) form of visual attention has been studied 

extensively in human psychophysics (Posner, 1980, Nakayama and Mackeben, 1989) and 

the areas involved in the human brain have been delineated using brain imaging (Corbetta 

and Shulman, 2002, Liu et al., 2005). To understand the neurophysiology involved, some 

electrophysiological invasive studies have been performed in the macaque monkeys, 

II 
 



(Luck et al., 1997, Buschman and Miller, 2007), but our understanding of the mechanisms 

involved is relatively sparse when compared to top-down (endogenous) attentional 

processing. To understand the similarities in this mechanism between macaques and mice 

it is therefore important to study both model systems using similar approaches. The 

research of this chapter aims to make direct comparisons between these two model species 

via electrophysiological recordings in a bottom-up attentional paradigm. It was found that 

in the macaque BU cues increased responses to visual stimuli in both V1 and V4, but no 

obvious pattern was seen in the mouse V1 and SC. This study goes some way in 

describing the similarities and differences in neural responses in visual areas of different 

species which are utilised for attention based paradigms  

Finally study three focuses on linking the previous two studies. In study two we 

investigated bottom-up attentional processes, which are thought to involve early, fast 

visuomotor pathways. Whereas in study one we found that SC and V1, areas known for 

their involvement in and ability to coordinate rapid visuomotor responses, respectively, 

also receive clear and structured input from higher-level prefrontal areas. Therefore we 

hypothesized that stimulating these prefrontal areas could modulate bottom-up attention. 

This is achieved by using optogenetic stimulation of prefrontal control regions, such as 

Cg, identified in this research whilst preforming electrophysiological recordings in a 

bottom-up attentional paradigm. In V1 is was found that optogenetic stimulation had no 

effect on neuronal activation. However in SC optogenetic activation increased the 

sustained stimulus response, regardless of cuing condition. Taken together, this research 

further investigates some brain regions involved in orienting and attention in both mice 

and macaques and partially bridges the gap in understanding between these two animal 

models.  
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Chapter 1. General Introduction 

 

Neuroscience aims to understand the mechanisms the brain uses to extract information 

from the external world, and the mechanisms that enable subjects to act upon the external 

world. This task is accomplished by processing signals and cues from the environment and 

constructing or generating internal mental states relating to the exogenous enviroment. A 

central objective is the extraction of salient cues and relevant information from the 

overabundance of information which surrounds us. One cognitive process that performs 

this function is generally known as attention. Attention is one of the primary mental 

processes for many forms of sentient life. For example, attentional processes allow 

animals to hunt for prey and aid in the detection of predators in the animal’s natural 

environment. At a higher cognitive level, attentional processes are necessary for humans 

to complete a plethora of everyday tasks, from brushing teeth to avoiding moving vehicles 

when crossing the street.  

One cognitive activity heavily linked to attention is orienting. Orienting can be thought of 

as an externalisation of attentional processes towards stimuli and events which relate to 

current internal states. This thesis focuses on the role and biological basis of the different 

orienting behaviours which have been observed in the mouse and the comparison of 

neurophysiological signatures of a specific type of orienting behaviour (bottom-up 

attention) in mouse and macaque primary visual cortex. This work partially bridges the 

gap in the understanding of attention and orienting behaviours in these widely used animal 

models. Specifically this thesis will cover: 

 

• The neuroanatomical basis of different orienting behaviours which have been 

characterised in the rodent by means of neuronal tracing of both midbrain and 

prefrontal areas in the mouse 

• The similarities and differences in the visual cortex responses in both macaques 

and rodents to bottom-up attentional stimulation  

• The effects of optogenetic activation of these prefrontal areas on visual responses 

in the mouse 
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The introduction covers the fundamental concepts central to this thesis, such as the 

descriptions of analogous orienting and attentional mechanisms in lower organisms and 

the nature of these behaviours in both mice and macaques. The literature regarding some 

of brain areas involved in the generation of orienting and attention will be examined. In 

addition it presents a rationale for usage and an explanation of the mechanisms of the 

methodologies employed, such as neuronal tracers and the use of optogenetics. 

Subsequent chapters will outline the generalised methods and procedures utilised for this 

research, and look at the literature, results and discussion pertaining to each portion of 

research. This is followed by a general discussion of the findings in terms of their relation 

and importance to the existing literature.  

 

1.1  Origins of Attention and Orienting: the progression from simple to complex 

mechanisms 

1.1.1 Tropisms and Taxes in Simple Life Forms 

In order to fully comprehend the importance of the study of attention and orienting in 

higher order animals it must be noted how wide-spread similar phenomena are in lower 

forms of life. Orienting towards or away from positive or negatively valenced stimulus is 

essential for all types of organisms. In botany these responses are referred to as ‘tropisms’, 

and these are responsible for a number of the characteristic reactions observed in the plant 

kingdom. These include the attraction of seedling shoots towards light (phototropism) 

(Whippo and Hangarter, 2006), or guiding root systems towards deeper ground in search 

of water (geotropism) (Kiss et al., 1989).  

In bacterial species such as e.coli a number of ‘taxes’ have been categorised. Such taxes 

are distinct from tropisms due to the ability of these organisms to move in response to the 

stimulus. These taxes have included movement towards food sources or away from 

harmful stimuli (chemotaxis) (Wadhams and Armitage, 2004), movement towards or away 

from light (phototaxis) (Sprenger et al., 1993) and others. Both tropisms and taxes, 

although they seem similar to the orienting behaviours observed in higher order animals, 

are more akin to automatic mechanisms which occur in direct response to the stimulus 

properties without any internal mental representation (Pisula et al., 2013). However, they 

2 
 



do highlight the idea that orienting to the environment around an organism is an extremely 

fundamental function of any living organism.  

 

1.1.2 Orienting Processes 

Orienting behaviours in animals equipped with a cerebrum are significantly more 

complex, and are accompanied by greater behavioural flexibility, compared to those seen 

in lower organisms. But even here, at its simplest level, orientation requires stimulus 

evaluation in terms of its significance and valence to the animal. This requires channelling 

of sensory information to association areas and motor areas, thus mediating goal directed 

behaviours (Felsen and Mainen, 2008, Erlich et al., 2011, Felsen and Mainen, 2012, Guo 

et al., 2014). 

Orienting behaviours were first categorised by Pavlov in his classical conditioning studies. 

In these experiments he noticed that the animals could get distracted by an unexpected or 

novel stimulus, which would elicit an orienting response or a ‘Что такое?’ or ‘What is it?’ 

response (Pavlov, 1927, Zernicki, 1987). Although Pavlov identified these behaviours they 

were not fully examined at that time. These orientation behaviours were first examined in 

greater detail in classical habituation experiments where a stimulus was presented to an 

animal without any behavioural consequences until no further overt response could be 

observed (Groves and Thompson, 1970). Building on this, the conditioning experiments 

by Thorndike examined orienting responses in terms of instrumental conditioning, 

whereby animals learn about the consequences of their behaviour. This technique sought 

to promote a relevant orienting response to a stimulus. In this manner the animal learned 

an association which was based on reinforcement of the correct orienting behaviours and 

actions towards the operant lever. He termed this process the “Law of Effect” (Thorndike, 

1927).  

The works of B.F. Skinner established that an animal would not only associate the primary 

orienting action with reward or punishment but also to any stimulus that could be 

associated with an experimental response. For example an animal would not only orient 

towards a food reward, but also to any stimulus which was associated with, and predictive 

of a reward. If a stimulus or action was associated with a negative effect the animals 

would learn escape and avoidance behaviours. The neural basis of these behaviours was 

then investigated in many neuroscientific studies through physical or chemical 
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perturbations of specific brain areas. These studies revealed midbrain and prefrontal areas 

in rodents to be essential in such orienting processes (Cowey and Bozek, 1974, Midgley 

and Tees, 1981, Sahibzada et al., 1986). These results have been matched with similar 

findings in the macaque (Goldberg and Wurtz, 1972a, Schiller et al., 1987, Moore and 

Armstrong, 2003) 

Orienting responses are often dependent on attentional state and internal motivational state 

(Sul et al., 2011, Manita et al., 2015). Animals in decision making tasks will make an 

association to any stimulus correlated with upcoming reward outcomes and thus can 

develop complex goal directed behaviours. These goal directed actions are subject to a 

variety of internal states such as satiety and reward association. These processes can be 

flexible to shifts in saliency and are constantly evaluated to incorporate the most recent 

information received and behavioural outcomes (Joshua and Michael, 2007).  

 

1.1.3 Approach vs Avoidance 

Approach and avoidance occur in response to both novel/unexpected or learned stimuli 

which have behavioural relevance to the animal. They can be triggered by any sensory 

modality, e.g. the sight, sound, or smell of an approaching predator or prey.  

This thesis will focus primarily on visually based orienting. In rodents this largely falls 

into two categories, namely positively valenced approach related and negatively valenced 

avoidance related behaviours. In the natural environment prey/food related cues prompt 

approach and feeding behaviours, while avoidance responses are elicited by noxious 

stimuli or stimuli signalling threat and danger. Due to the ethological niche most rodents 

occupy, these different behaviours are elicited by stimuli which appear in specific regions 

in the external environment in relation to the animal. Predators usually appear from above, 

and thus the upper visual field represents a region where danger lurks and stimuli there 

might more easily trigger avoidance responses (Wei et al., 2015). Conversely, food cues 

and other positive stimuli (such as pups) are more likely to appear in the lower visual field 

(Furigo et al., 2010, Favaro et al., 2011), and stimuli in those locations would thus more 

easily trigger approach responses. 

Historically, the neurological and biological basis of these orienting behaviours have been 

examined through the use of large scale lesion and stimulation studies which identified the 

importance of both prefrontal areas and midbrain areas in controlling and modulating 
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these behaviours. Stimulation or removal/inhibition of specific prefrontal regions elicit or 

inhibit either approach or avoidance behaviours (Gabriel et al., 1991, Calejesan et al., 

2000, Erlich et al., 2011, Guo et al., 2014). Similar procedures applied to the midbrain 

showed that both approach and avoidance behaviours depend on superior colliculus 

activity (Goodale and Murison, 1975, Sahibzada et al., 1986, Felsen and Mainen, 2012, 

Wei et al., 2015). The exact brain areas and mechanisms responsible for this will be 

covered in greater detail in Chapter 3.  

 

1.1.4 Attention 

Sensory orienting behaviours to external events often involve some form of attention, 

although attention is not always involved. For example an orienting reflex such as the 

nociceptive withdrawal reflex does not require attentional involvement, even if such 

orientation can be modulated by directed attention (Bjerre et al., 2011). Attentional 

processes simultaneously increase neuronal responses to the attended stimulus whilst 

inhibiting responses to other non-salient cues (Moran and Desimone, 1985). Broadly 

speaking there are two forms of attention which can be deployed depending on the 

characteristics of the situation, Exogenous (bottom-up) attention and Endogenous (top-

down) attention (Posner, 1980, Nakayama and Mackeben, 1989, Theeuwes, 1991).  

Bottom-up attention arises from unexpected salient cues in the external environment, i.e. a 

warning call, or for humans, a police siren. These cues have an unexpected onset and 

location, and draw attention to the point of origin in an automated manner and focus 

subsequent mental processing on that external location. Exogenous attention operates in a 

quick, bottom–up signal transmission manner, where the fast processing speed can allow 

an animal to make the appropriate rapid response, e.g. avoid predation (Carretie, 2014). It 

has a transient, short time course which decays to allow control of attention to be 

reasserted in top-down manner. This short time course is, in part, caused by the process of 

inhibition of return, which suppresses the visual response to a stimulus which is repeated 

or constant over a very short latency and promotes the saliency of novel stimuli (Posner 

and Cohen, 1984).  

Conversely, top-down or endogenous attention is a central mechanism activated by goal 

directed behavioural processes, such as searching through a crowd for a particular face. 

The process originates internally, and operates in a top-down manner, whereby the current 
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emotional, physical, or cognitive state influences the features of the sensory field which 

the subject attends to. This mechanism is utilised for complex mental procedures requiring 

responses based on salient or non-salient cues which are differentiated from distracter cues 

by deploying attentional processes (Chica et al., 2013). Top-down attention can be 

sustained for a very long time and allows an organism to focus on the behaviourally 

relevant cues or stimuli in the environment and the changing nature of these cues. 

The neuronal networks involved in the deployment of attention in humans and other 

primates are complex and are believed to arise from the coordinated activity of multiple 

prefrontal brain regions, which interact with more posterior cortical and primary sensory 

regions and sub-cortical output pathways which are routed through the midbrain and brain 

stem. (Schiller, 1977, Schiller et al., 1987, Tu and Keating, 2000). Top-down and bottom-

up attention utilise partially overlapping, but also somewhat segregated brain networks 

(Corbetta and Shulman, 2002) which interact during normal vision (McMains and 

Kastner, 2011). Top-down attention is routed through the dorsal fronto-parietal network. 

As the name suggests this pathway includes prefrontal regions such as the frontal eye field 

(Schall, 2004), the dorsolateral prefrontal cortex (Buschman and Miller, 2007), regions of 

the parietal cortex such as the lateral intraparietal area (Bisley and Goldberg, 2003). A 

general summary of this network can be seen in Figure 1-1. This network works in a 

bilateral manner to analyse visual features and stimuli which are important to the current 

goals of the animal (Corbetta and Shulman, 2002). As such it interacts with sensory areas 

within the fronto-parietal network, where it alters stimulus processing. Top-down 

attentional modulation has, for example, been described in the striate (Roelfsema et al., 

1998) and extrastriate cortex (Moran and Desimone, 1985) as well the as the midbrain 

Superior Colliculus (SC) (Goldberg and Wurtz, 1972a).  
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Figure 1-1. Basic Summary of the Fronto-Parietal Attentional Network in the Macaque  

The frontoparietal network is a very complex arrangement of a variety of cortical and 

subcortical brain regions. Herein, red arrows indicate feedback signalling and black 

indicates feedforward signalling. However in reality this arrangement is for more complex 

with both feedback and feedforward signals arising from and between multiple brain 

regions. It must be noted that the pulvinar and superior colliculus are both subcortical 

areas and the teal circlar demarcation referes to the overall location underneath the cortex. 

Adapted from Neuroscience Exploring the Brain 4th edition. 

 

 

 

Bottom-up attention is achieved through a somewhat different network, which is 

lateralised to the right hemisphere (in humans) and involves the ventral fronto-parietal 

network. Despite its segregation, bottom-up attention is known to interact with areas 

involved in top-down control (Buschman and Miller, 2007). This network includes more 

ventral portions of the frontal cortex such as the middle and inferior frontal gyrus 
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(Corbetta et al., 2008), the more lateral portions of the parietal cortex like the inferior 

parietal lobule and the superior temporal gyrus (Astafiev et al., 2006). This networks also 

interacts with regions of the striate and extrastriate cortex as well the as the SC (Luck et 

al., 1997, Müller et al., 2005). This network responds to unexpected exogenous stimuli 

which have a high likelihood of being behaviourally relevant (Corbetta and Shulman, 

2002).  

These partially segregated brain networks work in cooperation to produce complex 

attentional and sensory orienting behaviours which allow animals to act appropriately in 

everyday environments. This thesis will mainly focus on bottom-up attention, as it may 

trigger the basic orienting behaviours described above.  

 

1.1.4.1 Overt vs Covert Attention 

In addition to the distinction between top-down and bottom-up forms of attention, 

attention can be deployed in terms of overt and covert attention. Overt attention brings an 

object into optimal position for sensory evaluation, in humans and macaques this process 

is known as foveating (Schütz et al., 2009). Foveating is achieved via the use of discrete 

eye movements called visual saccades which bring a visual stimulus onto the foveal visual 

receptive field. The existence of saccades was first discovered in the 1800s by a number of 

scientists (von Helmholtz, 1867, Javal, 1879). They observed that during reading the eye 

did not move in a continuous fashion, but moved in discrete fast movements which were 

termed ‘saccades’ by Javal.  

Visual saccades are defined as rapid purposeful eye movements across the visual field, 

which are related to current goals or behavioural contexts (Yarbus, 1967, Hoffman and 

Subramaniam, 1995). Saccades are a means of moving the object of interest to an area of 

the retina which has the highest photoreceptor density, known as the fovea in primates, 

(Becker, 1989, Melcher and Kowler, 2001). 

However, for animals that do not have a fovea such a rodents, eye movements are not a 

reliable measure of overt attention. This is due to a lack of the high density of 

photoreceptors in their eyes. Instead, they tend to perform overt orienting actions with 

their whole bodies, or specific body parts such as moving their heads and torsos (Dean et 

al., 1986, Sahibzada et al., 1986, Dean et al., 1988a). By doing this they bring the stimulus 

which is the object of their attention into a more optimal position for sensory decoding, for 

8 
 



example more centrally for binocular viewing. The major function of eye movements in 

rodents has been shown to be maintenance of binocular evaluation for monocular 

representations which do not fuse, in the frontal and upper portions of the visual field; 

thereby ensuring stimuli appearing in those regions are better processed for visual 

evaluation and behavioural response (Wallace et al., 2013). 

Brain regions that have been heavily linked to the formation and excitation of saccades 

and other orienting movements are the frontal eye field (FEF) and the superior colliculus 

(SC). In primates the SC has been shown to mediate all saccadic movements. Electrical 

stimulation of this region causes saccadic movements with defined endpoints, relative to a 

retinotopic map in the region (Schiller and Stryker, 1972). These movements can be 

inhibited and disrupted by pharmacological inactivation of the appropriate retinotopic 

locations (Hikosaka and Wurtz, 1985). In rodents similar orienting behaviours can be 

elicited by stimulation of prefrontal regions such as the motor cortex area 2 and the SC. 

These stimulations result in body orienting movements (Sinnamon and Galer, 1984, Dean 

et al., 1986). These regions will be covered in greater detail below.  

In contrast to overt attention, covert attention does not require any specific orienting 

action. The ability to direct attention to areas of the visual field without eye movement 

was first described in the 1800s and it was shown that directing attention to one part of the 

visual field increased accuracy of response in that region but decreased accuracy in other 

regions of the visual field (von Helmholtz, 1867). This covert form of attention was 

examined in detail in the 1980s by Posner. He discovered that attention could be directed 

by both exogenous and endogenous cues when a subject was central fixating. Reaction 

times to detect a visual stimulus were reduced when a valid exogenous cue was given, 

conversely when an invalid cue was given, reaction times increased. Reaction times were 

also reduced when the subject was given a prompt to attend to a particular stimulus type 

(Posner, 1980).  

One prominent theory, the premotor theory of attention, offers an explanatory framework 

for the linkage between covert and overt attention. This theory states that covert 

attentional signals are analogous to uninitiated saccade motor activity. This theory was 

founded on research that described saccade latencies to targets in different parts of the 

visual field. If, during central fixation, an invalid cue preceded visual target appearance in 

the opposite hemifield, the saccade latencies were longer than that of valid or invalid cues 

to the same hemifield. This suggested that attention prepared the motor programme for eye 
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movement before saccadic onset. Therefore if the motor programme was incorrect, 

reprogramming would be necessary, causing a higher latency (Rizzolatti et al., 1987). In 

addition, human subjects display reduced accuracy in saccade tasks when attention is 

directed towards a different part of the visual field than the saccade target (Kowler et al., 

1995). These findings suggest that motor planning underpins the evolution of attentional 

behaviours.  

Electrophysiological evidence also concurs with this theory. If one of the prefrontal 

attention controlling areas, the FEF is microstimulated with very low currents, covert 

attentional shifts will occur to a defined region of the visual field. Consequently, task 

accuracy will be increased in the retinotopic location of the stimulation during a target 

discrimination (Moore and Fallah, 2001). In addition, microstimulation of FEF will cause 

enhancement of visual responses in retinotopically matched V4 neurons (Moore and 

Armstrong, 2003). However, if the stimulation current is increased, then saccades to the 

retinotopic location will occur (Moore and Fallah, 2004). Similar findings have been 

observed in the midbrain area SC of the macaque, where accuracy of visual discrimination 

is increased when the subregion within the SC coding for a target location is electrically 

stimulated with subthreshold currents, too low for saccade initiation (Müller et al., 2005). 

Taken together this evidence suggests that the mechanisms which guide covert attention 

shifts also guide overt orienting behaviours such as saccades.  

 

1.2 Brain Regions Involved with Orienting  

As this thesis is very much concerned with the specific neuroanatomical basis and function 

of a number of cognitive behaviours and processes, below the key areas investigated in 

this work are described in terms of the brain connectivity and functional properties.  

 

1.2.1 The Superior Colliculus 

The Superior Colliculus (SC) is a multimodal sensory-motor midbrain structure, involved 

in visual, auditory and somatosensory triggered orienting (Stein, 1981, Westby et al., 

1990, Meredith et al., 1992, Wallace et al., 1993, Thiele et al., 1996). This area is highly 

conserved across vertebrate species (Stein, 1981, King, 2004). In birds, reptiles, 

amphibians and fish, this region is known as the optic tectum. The optic tectum in these 

animals comprises a large portion of the brain. This is the major visually responsive area 
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which is intrinsically linked with visually guided and sensory orienting behaviours in birds 

(Knudsen et al., 1993), reptiles (Stein and Gaither, 1981), amphibians (Ingle, 1970) and 

fish (Meek, 1983). In these animals, which do not have a cerebral cortex, this area is the 

principal region for sensorimotor integration. It is vital for a range of critical orienting 

behaviours, such as predator evasion and predatory hunting (Ingle, 1975, Newman et al., 

1980, Hoglund et al., 2005, Wylie et al., 2009). 

 

  

Figure 1-2. Gross Anatomy of the Murine Superior Colliculus 
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Stereotactic coronal view of mouse superior colliculus according to Franklin & Paxinos 

2012. Zo-zonal layer of SC or stratum zonale, SuG-superficial layer of SC or stratum 

griseum superficiale, Op-optic nerve layer of SC or stratum opticum, InG-intermediate 

gray layer of the SC or stratum griseum intermediale, InW-intermediate white layer of SC 

or stratum album intermediale, DpG-deep gray layer of SC or stratum griseum profundum, 

DpWh-deep white layer of SC or stratum album profundum. 

 

 

 

In higher animals, such as mammals, the SC is located just under the cortex in the 

midbrain and consists of seven layers. Each of the seven layers of the SC has a well-

defined function and cortical connectivity. Functionally these layers fall into three 

categories; the stratum zonale, the stratum griseum superficiale and the stratum opticum 

form the superficial layers, the stratum griseum intermediale and the stratum album 

intermediale form the intermediate layers, and the stratum griseum profundum and the 

stratum album profundum form the deep layers of the SC which are shown in Figure 1-2. 

The three subdivisions receive information from all senses, barring olfaction. This sensory 

information is mapped onto the SC area in a topographic manner, whereby topographic 

maps of different sensory modalities overlap (in register) to produce a coherent 

representation of the sensory environment (Stein et al., 2014).  

The superficial layers of the SC receive visual information through direct retinal 

connections. In rodents these direct retinal connections comprise 70-80% of the 

projections from the retina and terminate bilaterally onto the SC, with a contralateral bias 

(Chalupa and Thompson, 1980, Vaney et al., 1981, Hofbauer and Dräger, 1985). In 

macaques this percentage is far lower. Approximately 10% of retinal ganglion cells project 

to the SC (Perry and Cowey, 1984). In the intermediate and deep layers the sensory input 

becomes multimodal, with incoming signals arriving from the somatosensory, auditory 

areas, and motor planning areas. In fact, within the deep layers of macaque SC, a 

topographical motor map of movement vectors has been observed, that correlates with the 

visual map within the superficial layers (Goldberg and Wurtz, 1972b, Robinson, 1972, 

Schiller and Stryker, 1972). The motor map is related to eye and head movements in both 

macaques (Freedman et al., 1996) and cats (Paré et al., 1994). Additionally a gaze-related 
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coordinate system for reaching actions in the macaque has been identified (Stuphorn et al., 

2000). No direct olfactory connections to the SC have been reported, however secondary 

odour areas project onto the SC (Neafsey et al., 1986).  

The diverse sensory information converging onto a single area makes the SC an ideal 

sensory integrator. In most animals there is evidence for overlapping sensory maps 

throughout the layers of the SC with spatial receptive fields that are in register between 

sensory modalities (Meredith and Stein, 1990, Wallace et al., 1996). These overlapping 

sensory maps help animals to associate differing modalities of sensory cues with the 

corresponding objects in their environment, e.g. so that the visual picture of another 

animal and any noises it may make are processed as a single entity situated in the external 

world (Meredith et al., 1992, Wallace et al., 1993). However, in certain conditions these 

different sensory maps may not be fully aligned, either by deliberate experimental 

mismatch, or as a result of internal misalignment caused by single sensory orienting (eye 

or pinna movements). If there is a deliberate mismatch in either temporal or spatial field, 

the response to the stimuli in the SC can be reduced, conversely if they are concurrent 

there can be large potentiation of responsiveness (Wallace et al., 1996). However, if 

internal misalignment causes multisensory mismatch then other externally based senses 

can change receptive field conformation and bring the integrated map back into alignment 

(Jay and Sparks, 1987, Peck et al., 1995).  

The role of the SC as a sensory integrator throughout the vertebrate kingdom makes it an 

ideal candidate to be involved in, or mediate, complex behaviours. A number of different 

methodologies have been employed to study this issue.  

Microstimulation of the SC in the rat produces a variety of complex behaviours including 

approach, rearing behaviour and freezing-fear behaviours (Sahibzada et al., 1986). 

Previous research has suggested that these behaviours could be mapped to different parts 

of the SC; with investigative/approach behaviours arising from caudal-lateral stimulation 

whereas aversive/fearful behaviours from rostral-medial stimulation (Dean et al., 1986, 

Dean et al., 1988b). However these responses were not completely segregated within those 

subregions (Sahibzada et al., 1986).  

Lesions of the SC in rodents and NHPs can lead to contralateral hemispatial neglect, 

where sensory cues do not elicit orientation behaviours (Kirvel et al., 1974, Albano et al., 
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1982). Furthermore, such lesions produce deficits in approach behaviours (Goodale and 

Murison, 1975, Midgley and Tees, 1981) while a pharmacological blockade of the SC 

inhibited fear induced startle behaviours (Zhao and Davis, 2004). In addition, other lesion 

and inhibition studies of this brain region have produced analogous effects to those which 

are seen in NHP inactivation of the SC (Stryker and Schiller, 1975, Dean et al., 1986). The 

similarity between lesions of this midbrain region and lesions of prefrontal areas 

associated with goal directed orienting (frontal eye field (Schiller et al., 1987)), (frontal 

orienting field (Felsen and Mainen, 2008)) in both NHPs and rats suggest that certain 

orienting and decision making processes are routed through the SC, and therefore cannot 

occur when it is removed.  

Electrophysiological studies have shown that SC activity can be correlated with upcoming 

behavioural choices in sensory discrimination tasks (Felsen and Mainen, 2012, 

Stubblefield et al., 2013).This indicates the importance of the SC in the recognition and 

response to external stimuli. One study utilising genetic based interventions has also 

supported these findings, confirming the role of the SC in the active perception of sensory 

information in space contralateral to the lesion (Stubblefield et al., 2013). All of this 

information, taken together, supports a strong case for the SC being intrinsically involved 

in the generation of decision outcomes in cognitive tasks and orienting behaviours to 

positively and negatively associated stimuli. 

In the past, most research has focused on the SC as a whole. This approach may have 

obscured some critical distinctions at the subregional level. For example, recent research 

(Comoli et al., 2012) has shown that subregions within the rat SC may be preferentially 

involved with approach or avoidance behaviours. These studies suggest that the medial 

side is more heavily involved in fear related avoidance behaviours while the lateral side is 

more heavily involved in appetitive related approach behaviours. These observations make 

sense when considering the rodents’ specific ethological niche. For most rodents, 

predators are more likely to occur in the upper visual field, and prey are more likely to 

occur in the lower visual field. This is coupled with the well documented retinotopy in the 

rodent SC, where the medial/anterior subregion codes for the upper visual field, and the 

lateral/posterior subregion codes for the lower visual field (Ahmadlou and Heimel, 2015). 

Furthermore there are specific neural connectivity patterns of these subdomains. For 

example, the ventromedial hypothalamic nuclei, involved with fear responses, project 
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exclusively to the medial SC, while the barrel cortex, involved in appetitive whisking 

projects exclusively to the lateral SC (Comoli et al., 2012). The full extent and importance 

of this functional segregation will be discussed later in Chapter 3. 

 

1.2.2 Motor Cortex Area 2 

 

 

 

Figure 1-3. Gross Anatomy of the Murine Motor Cortex Area 2 and Cingulate Area 
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Stereotactic coronal view of mouse superior colliculus according to Franklin & Paxinos 

2012. M2-Motor Cortex Area 2, Cg1-Cingulate Area 1, Cingulate Area 2. 

The Motor Cortex Area 2 (M2) is a medial prefrontal area found in the rodent cortex. It is 

a preparatory motor area involved in motor planning, learning and decision related activity 

(Erlich et al., 2011, Sul et al., 2011, Guo et al., 2014, Manita et al., 2015). The region sits 

in the dorsal portion of the medial cortex and comprises five separate layers, which are 

shown in Figure 1-3. This region of the cortex is agranular, and therefore lacks the 

traditional layer 4 (Brecht et al., 2004). These layers receive and project to a diverse 

number of targets throughout the brain. Layer 2/3, and 5 pyramidal cells project to other 

regions in the cortex, layer 5 sends axons to subcortical structures such as the striatum, 

midbrain and the spinal cord and layer 6 pyramidal cells project to the thalamus (Thomson 

and Bannister, 2003, Brecht et al., 2004, Li et al., 2015, Jeong et al., 2016). 

The function of this area has been under debate for some time due to the varied nature of 

the functional properties proposed by different investigators. These functional properties 

suggest roles in memory based discrimination tasks (Erlich et al., 2011), whisking and 

licking based decision tasks (Guo et al., 2014), and accuracy perception of somatosensory 

stimuli (Manita et al., 2015). The apparent complexity/diversity of properties has been 

further compounded by the wide diversity of taxonomy utilised to describe the same 

anatomical brain region in the literature (see Table 1-1) (Crowne and Pathria, 1982, Reep 

et al., 1987, Erlich et al., 2011, Chen et al., 2013, Guo et al., 2014, Oh et al., 2014).  

This taxonomy has come about, in part, due to the variety of techniques and 

methodologies employed to test the functional and anatomical properties. In order to 

simplify this issue for present purposes the area will hereafter be referred to as Motor 

Cortex Area 2 (M2). This is the terminology utilised by one of the most recent anatomical 

mouse brain atlases (Franklin and Paxinos, 2012).  

The region was first described in studies which employed large-scale lesions. These 

lesions caused significant deficits in fine motor control, learning, memory, and a 

generalised hemispatial neglect in rodents (Midgley and Tees, 1981, Crowne and Pathria, 

1982, Crowne et al., 1986). Interestingly, the unilateral deficits seen from unilateral 

removal or inactivation of M2 have been attributed to a loss of projection neurons to the 

pyramidal tract (Li et al., 2015). Electrical stimulation of M2 in rodents caused 

movements in the fascia and the body; most prominently in the head and neck. These 
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observations led to the idea that M2 functions as a descending motor control area. 

However, further studies of M2 did not fully support this theory. Research which 

employed reversible inactivation such as cooling and muscimol injection discovered that 

inhibition of M2 does not cause major movement deficits. It did produce problems with 

updating motor planning and reversal learning in a variety of operant and associative 

learning tasks (Smith et al., 2010, Sul et al., 2011, Zagha et al., 2013). Additionally the 

neuronal response types which appear intermingled within M2, have been described. 

These include i) cells which show increased firing over time during cognitive task such a 

delayed odour discrimination, regardless of response, ii) cells which ramped up activity 

during a cue or sampling period, and iii) cells which were associated with motor response 

output (Erlich et al., 2011, Guo et al., 2014, Kopec et al., 2015). In addition, more anterior 

parts of M2 have been associated with learning induced improvements in somatosensory 

whisker discrimination tasks which were accompanied by increased encoding of whisker 

kinematics in somatosensory neurons projection to M2 (Chen et al., 2015). This 

enhancement of functional connectivity may allow for a better representation of the 

location of stimuli in space (Chen et al., 2013). Neurons in M2 cluster in both spatial and 

temporal terms in order to form functional ensembles which can represent a variety of 

different motor task including fine active perception of somatosensory stimuli, whisker 

stimuli, and motor response in rodents (Ferezou et al., 2007, Huber et al., 2012, Manita et 

al., 2015). Taken together, this information builds a picture of M2 as being involved in the 

origination and refinement of motor responses and goal directed planning. Furthermore, 

this brain region presents itself as an ideal location for experimental manipulation to 

uncover the neuronal basis of these basic orienting/attentional processes in the mouse.  

 

1.2.3 Cingulate Area 

The cingulate area (Cg) is a medial prefrontal region which is found in mammals. It has 

been linked to a variety of different behavioural processes, including nociception and 

aversion learning, and orienting behaviours (Gabriel et al., 1991, Calejesan et al., 2000, 

Kvitsiani et al., 2013). In rodents the Cg is located in the medial wall of the cortex, ventral 

to M2. It is a long strip of cortex spanning a large portion of the rostro-caudal length of the 

brain. Specifically it runs from approximately 2mm anterior to bregma to 1mm posterior 

to bregma. This brain area can be seen in Figure 1-3. Large scale lesions of Cg in rodents 

cause changes in orienting behaviours, and can lead to increases in anticipatory responses 
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in delayed operant tasks which indicates a role for Cg in inhibitory control (Muir et al., 

1996). Furthermore, Cg has been implicated in foraging decisions in both rodents and 

primates. In macaques, the anterior cingulate cortex (ACC) has been shown to track 

reward probability values and to be involved in task switching (Blanchard and Hayden, 

2014). In mice, the activity of Cg has been very closely linked to stay/go decisions in 

rewarded vs unrewarded environments (Kvitsiani et al., 2013). The interaction between 

effort and reward and risk and reward has been shown to be affected by Cg lesions. 

Lesioned animals are less likely to make high risk/high reward or high effort/high reward 

choices (Rudebeck et al., 2006).  

One of the most well documented functions of Cg is its involvement in pain processing 

and avoidance behaviours. A number of studies have found that pain responsive neurons 

within Cg respond to a variety of pain types directed at both the skin and viscera (Sikes 

and Vogt, 1992, Yamamura et al., 1996, Shyu et al., 2008, Sikes et al., 2008). Removal of 

Cg also impairs avoidance reflexes elicited by noxious heat stimuli (Pastoriza et al., 1996). 

Furthermore, lesions of Cg block responses to inflammatory pain (Donahue et al., 2001, 

Johansen et al., 2001). Cg removal results in a deficit in avoidance learning in rabbits 

without affecting normal motor function, further highlighting the importance of this area 

in aversive orienting behaviours (Gabriel et al., 1991). Interestingly, inhibition of the Cg 

via muscimol during fear conditioning inhibited freezing responses in negatively 

associated locations, and to conditioned aversive stimuli (Tang et al., 2005). 

Neurochemical excitation of the Cg can cause facilitation of the tail-flick reflex in rats 

(Calejesan et al., 2000). This highlights the role of the Cg in the top-down modulation of 

aversive orienting reflexes. In addition, direct electrical and chemical stimulation of Cg 

causes or potentiates freezing and avoidance behaviour as well as conditioned fear 

memory (Johansen and Fields, 2004, Tang et al., 2005). Taken together, these 

experimental findings suggests that the Cg is intrinsically involved in the top-down control 

or modulation of responses to negatively associated events or locations.  

 

1.2.4 Primary Visual Cortex 

The primary visual cortex (V1) sits at the caudal end of the cortex. This region is the 

major neocortical target for visual information coming from the retina, by way of relay 

through the lateral geniculate nucleus of the thalamus (LGN). This region contains a 
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retinotopic representation of the visual world with a partial hemispheric decussation in 

rodents. In other words, the majority signals from the contralateral eye travel to V1 which 

builds a picture of the contralateral visual field, with some crossover in the nasal/central 

part of vision (Coleman et al., 2009). However in macaques and humans there is a 

complete crossover of visual information, meaning that there is a full segregation of ipsi- 

vs. contralateral visual field representation (Petros et al., 2008).  

This region was first identified as being involved in vision by unilateral blinding of 

animals and study of the neural degeneration in the brain. An Italian anatomist, 

Bartolomeo Panizza was responsible for this discovery (Panizza, 1855) but it was not until 

the advent of electrophysiology that the fine structure and function of V1 was resolved. 

Studies conducted in the cat visual cortex uncovered the existence of neurons responsive 

to stimulation in specific parts of the visual field (Hubel and Wiesel, 1959). In addition, 

cells which displayed orientation and movement direction selectivity were described 

(Hubel and Wiesel, 1959, Hubel and Wiesel, 1962). The studies formed the basis for the 

expansion of visual based research into other animals and more complex experimental 

designs and allowed the intricate picture of V1 organisation to unfold.  

At its simplest level, V1 is composed of 6 cortical layers. The LGN, which is the main 

bottom-up input to V1 feeds visual information to layer 4C and layer 6 through 

magnocellular and parvocellular pathways and to layers 1, and 2/3 through the 

koniocellular pathway (Hubel and Wiesel, 1972, Hendrickson et al., 1978, Livingstone 

and Hubel, 1982, Blasdel and Lund, 1983). These different retinal ganglion cell pathways 

originate from different cell types which have specificity for different visual stimulus 

properties. The magnocellular pathway is specialised to detect large, fast moving, low 

contrast stimuli. The parvocellular pathway is adapted for small stimuli and detecting fine 

detail in stimuli (Callaway, 1998). Finally the koniocellular pathway is still relatively 

unclassified but is responsive to short wavelength light, and is involved in modulating V1 

layer 1-3 activity (Klein et al., 2016). Once the LGN information arrives at V1 through 

layers 4C and 6 (which themselves are reciprocally connected). Layer 4C then projects to 

layers 2-4B and layer 5 (which are reciprocally connected). Layers 2-4B then project to 

the other the higher cortical visual areas, while layer 4C then projects back to the LGN 

(Callaway, 1998).  
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1.2.4.1 Macaque 

The organisation of the macaque V1 is widely thought to be one of the closest correlates to 

that which is seen in the human V1. Visual information is processed and organised in 

various overlapping maps which hold different types of representations of the visual field. 

There is a retinotopic map of the external world, which means that a particular location in 

V1 codes the spatial information from a specified region of the retina, whereby 

neighbouring neurons represent neighbouring parts of the external visual world. This 

builds up a picture of the external environment in the contralateral hemifield, even if in a 

distorted manner, as retinal cell densities, and thus resolution in the cortex differ in a 

systematic manner. In the macaque, and human to some extent, this map is organised such 

that the more central or foveal representation is located in the more lateral portion of the 

region; the peripheral spatial locations are found in the more medial portion of the brain 

region and the inside bank of the cortex. Furthermore, the upper and lower visual fields are 

flipped so that the upper part of the area represents the lower visual field (Tootell et al., 

1988).  

Concurrent to that retinotopic map, ocular dominance columns exist within layer 4C, 

which are strips of cortex which lay in parallel over the cortical surface, receive visual 

information from a single eye (LeVay et al., 1975, Callaway, 1998). A further organisation 

in primate V1 is based on the existence of orientation columns, which run vertically 

through the cortex, and have preferences for specific orientations. These build into 

orientation preference regions are selective for the same orientations. These bands are then 

arranged in a pin-wheel like fashion, where transition in a clockwise or anticlockwise 

manner produces changes in preference which cover the orientation space (Bartfeld and 

Grinvald, 1992). Finally, there are cytochrome oxidase positive blob structures which code 

for various stimulus features such as colour or spatial frequency (Livingstone and Hubel, 

1984, Johnson et al., 2001). All of these various maps and preference arrangements are 

constructed in V1 to produce overlapping mosaics of all three visual features (retinotopy, 

orientation, and colour), which allows for complete processing of visual stimulus details 

(Bartfeld and Grinvald, 1992).  
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1.2.4.2 Mouse 

The organisation of rodent V1 differs from that of the macaque and human. The 

retinotopic mapping of this region show that the most anterior part encodes the lower 

visual field and the most medial part codes for lateral portion of the visual field. The 

azimuth and elevation are represented in orthogonal bands (Wagor et al., 1980, Ji et al., 

2015). Classically, beyond the retinotopy, the structure of mouse V1 has been described as 

‘salt and pepper’. In essence this relates to the lack of orientation columns and the 

intermixing of neurons of different orientation preferences throughout V1 (Ohki and Reid, 

2007). However, more recent studies have uncovered a finer scale organisation within this 

area. In addition to terminating in layer 4, the LGN projects to mouse V1 layer 1 in a 

patchy manner, i.e. to patches which contain high concentrations of muscarinic receptor 2 

(M2). These patches have higher spatial acuity, whereas the interpatch regions have higher 

temporal acuity (Ji et al., 2015). Furthermore, spatial clustering of parvalbumin (PV) 

positive neurons has been shown to correlate with similarity of orientation preference 

(Runyan and Sur, 2013). In contrast to the ‘salt and pepper’ theory, a recent study has also 

shown that orientation microcolumns can be seen in mouse V1 (Ringach et al., 2016). This 

results in similar orientation preferences of neurons in regions of 50 µm dimeter. Re-

analysis of previous work by Ohki & Reid demonstrated that this spatial clustering could 

be observed in the original data. Taken together, this research proposes a strong case for 

the organisation of rodent V1 to include some form of orientation preference clustering, 

even if this differs from the organization found in primates.  

 

1.2.5 Visual Area 4 

Visual Area 4 is one of the higher visual areas of the human and macaque brain, which 

interacts with lower visual areas and higher order attentional regions. This region is 

involved in multiple parts of visual stimulus processing, including orientation, colour and 

spatial feature selectivity. This region receives a variety of feedforward and feedback 

connections from different visual and attentional regions. The main feedforward visual 

projections occur from visual area 2 (V2) and visual area 3 (V3) (Shipp and Zeki, 1985, 

Felleman et al., 1997). Although there is also direct thalamic input from the LGN (Hendry 

and Reid, 2000), V4 receives a greater diversity of reciprocal connections from higher 

visual and cognitive brain regions than V1 does. These include the lateral intraparietal area 
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(LIP), the anterior temporal cortex (TEa), the medial temporal area (MT), the superior 

temporal sulcus (STS) and the FEF (Ungerleider et al., 2008).  

The connections with the FEF have been shown to be one of the main pathways for 

attentional modulation. If FEF cells, which project to V4, are microstimulated, both the 

visual selectivity of cells in V4 and an animal’s accuracy in a contrast discrimination task 

are increased (Moore and Armstrong, 2003, Moore and Fallah, 2004).  

 

1.3  Principals of the Methodology Employed in this Work 

1.3.1 Neuroanatomy and Neural Tracing 

A large proportion of the techniques used in modern neuroscience, such as 

neuroanatomical tract tracing, are underpinned by the discoveries of Camillo Golgi and 

Santiago Ramon y Cajal (1909). Their pioneering work of neural tissue staining work first 

revealed the existence of discrete neuronal types which had their own particular 

morphology and organisation. This lead to the formation of the Neuron Doctrine, which 

states that the brain is composed of discrete cells rather than being a synctitium (Jones et 

al 1999). This breakthrough led to the idea that the multitude and variety of behavioural 

processes which occur in the brain are enacted through the coordinated activity and 

properties of single cells (Cajal, 1909, Yuste, 2015). Subsequent work discovered that it 

was not just the morphological properties of these neurons which indicated their function, 

but also their specific connectivity within the brain. Thus the idea developed of specific 

networks which mediate a particular cognitive task or behaviour.  

The stain that was utilised by Golgi and Cajal was based on silver impregnation of the 

neurons using a silver nitrate and potassium dichromate reaction. The mechanism 

underpinning this method is still largely unknown, as the neurons they identified are 

labelled in a random manner (Pannese 1999).  

In more recent years neural tracers have been developed, which not only stain the local 

area of neurons, but trace their connectivity in either a retrograde or anterograde fashion. 

This allows a picture of the connectivity of different brain areas and subregions to be 

constructed. Two such tracers employed in the current experiments are the retrograde 

tracer fluorogold (FG), otherwise known as hydroxystilbamidine, and the anterograde 

tracer biotinylated dextran amine (BDA). This research makes use of these more modern 

tracers to uncover the fine scale connectivity of multiple brain regions in the mouse.  
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1.3.2 Electrophysiology 

Another investigative technique which was established to examine the properties of the 

brain is electrophysiology. This technique was again based on the idea that single neurons 

fulfil specific roles within the brain. This method relies on the idea that neurons use 

electrical signals to integrate and code information, which then is transformed into a 

chemical signal to communicate the coded information to other cells. There is however, 

another form of neuronal communication which is not covered by this thesis, Ephaptic 

Coupling. This uses chemical signalling through gap junctions to send information around 

the brain (Anastassiou et al., 2011). The first occurrence of electrophysiology in the 

literature was conducted by Edgar Adrian. He observed electrical discharges in single 

nerve fibres which were produced by a variety of manipulations. These included tension 

on muscle tissue, and pressure, touch, or movement on skin (Adrian, 1928). These 

recordings were conducted with simple single electrodes, which are very thin pieces of 

insulated metallic wire that are inserted into the tissue. Since that time there have been 

major technological advances in the methods of recording from neurons, in terms of the 

actual electrodes and the amplification of the signal. In this thesis, the recordings 

conducted used laminar multielectrodes. These are compact devices which contain 

multiple electrode contacts along its length. The advantage of laminar electrodes is two-

fold. Firstly, it increases the amount of data that can be collected from a single recording. 

Secondly the laminar spacing of the contacts on a single electrode allows the measurement 

and investigation of the roles of different layers of cortical areas. It is for these reasons that 

laminar electrodes are employed throughout the electrophysiological portions of this work.  

 

1.3.3 Optogenetics 

The final methodology employed in this work is also the most modern, i.e. optogenetics. 

This technique allows for the control of neural circuits and behaviour through optical 

stimulation. This is achieved through the transfection of neural tissue with a virus, or 

genetic encoding, which produces a light sensitive opsin. These opsins are photoreactive 

and can be coupled to a variety of second messenger apparatus such as ion channels and g-

coupled receptors. Depending on the configuration of these, activation of the opsin can 

cause stimulation or inhibition of cells. This technique was first employed in cell culture 
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by the transfection of drosophila rhodopsin (Zemelman et al., 2002). Once the principle 

was established a number of different opsins were adapted for this purpose, such as the 

channelrhodopsin (Nagel et al., 2003) and halorhodopsin (Zhang et al., 2007). These 

opsins have been shown to both modulate the activity of neuronal populations as well as to 

have measureable effects at a behavioural level. For this reason this is a perfect tool to 

investigate the specific function of particular brain regions in the wider context of 

behaviour.  

 

1.4 Outstanding Research Questions 

This chapter outlines the fundamental concepts, background literature, and brain regions 

central to this thesis. More specifically this section concerns visual attention and orienting 

in both mice and macaques. This chapter details the current understanding of these 

cognitive processes and functionality of specific brain areas in these processes. However, 

there remain a number of issues highlighted through the introduction which have not been 

fully examined within the literature. This thesis addresses a variety of these outstanding 

issues in order to positively contribute to the field.  

With regard to the specific neuroanatomical pathways which may underpin orienting in 

rodents, until recently this has been largely focused on the rat model. It has widely been 

assumed that rats and mice have very similar neuroanatomy and cognitive functioning. 

This thesis specifically examines the neuroanatomical pathways which exist in the mouse 

in order to address this deficit.  

Furthermore, another overarching theme of this thesis is the relation between specific 

forms automatic visual attentional processing in the macaque and the mouse. As stated 

previously, there has been an increase in the use of rodent models to investigate 

behaviours and cognitive processes which have been defined in the macaque. However, 

very few studies are able to make direct comparisons between these two animal models. 

This thesis addresses this issue by using directly comparable experimental designs in the 

macaque and mouse to investigate the mechanisms of bottom-up exogenous attention 

processing in a variety of visual areas.  

One of the major reasons for this increase in usage of the mouse model has been the 

creation of highly targeted genetically based techniques such as optogenetics. Until very 

recently these techniques have been utilised to study the effects of optogenetic 
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manipulation at a behavioural level or within the brain regions which have been 

transfected with the optogenetic construct. Very few studies have examined the effects 

manipulation of projections from one brain region to another, especially within awake 

animals. This thesis aims to add to the existing literature by exploiting optogenetics to 

manipulate some of the projections characterises in the previous chapter. Namely the 

prefrontal projections to visual areas in the mouse with an excitatory construct during the 

bottom-up attentional paradigm previously explored. This should produce a more detailed 

understanding of the functional properties of top-down long range projections in mouse 

prefrontal cortex. 

Taken together this thesis aims to add to the existing understanding of a variety of 

different fields related to the anatomy of and mechanisms responsible for attention and 

orienting in both mice and macaques.  
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Table 1-1. Different terminology within the literature for the rodent M2 and methodology employed for the research 

Brain Area Name Species  Authors Stereotactic Coordinates 

(Bregma = (0, 0)) 

Methodology 

 

Agranular Medial Cortex Rat (Hoover and Vertes, 

2007) 

+3.7 mm AP, +1.5mm ML Retrograde neural labelling using 

iontophoretic injections of Fluorogold into the 

mPFC 

Anterior Lateral Motor 

Cortex 

Mouse (Guo et al., 2014) +2.5 mm AP, + 1.5 mm ML Electrophysiological recordings and 

optogenetic inactivation of area 

Anteromedial Cortex Rat (Crowne et al., 

1986) 

 +4- -2mm AP,+ 0-2mm 

ML 

Unilateral lesions of the anteromedial cortex 

and sensory cued behavioural training 

Electrical stimulation of the area produces 

head movements 

Area 6/8 Rat (Miller, 1987) +2.2 mm AP, + 1.5 mm ML Retrograde neural labelling using horseradish 

peroxidase injections into the spinal cord  

Dorsomedial Prefrontal 

Cortex 

Rat (Cowey and Bozek, 

1974) 

+5.2-1mm AP, +1.5 mm 

ML 

Unilateral lesions of the area, followed by 

recording of behavioural choice in Y-maze 

Fr2 Rat (Zilles, 1985) +5.2- -3.3mm AP +1.5mm 

ML 

Anatomical and histological staining and 

systematic sectioning of brain tissue 

26 
 



Frontal Orienting Field Rat (Erlich et al., 2011) +2 mm AP, ± 1.3 ML Electrophysiological activity and 

pharmacological inactivation recorded during 

delay period of auditory cued forced choice 

task 

Medial Agranular Cortex Rat  (Reep et al., 1987) +4-1.7mm AP, + 1mm ML Unilateral lesions of AGm, anterograde neural 

labelling after tracer injection into AGm 

Medial Precentral Cortex Rat (Reep et al., 1984) +2.7mm AP, +1mm ML Anterograde neural tracing of brain after 

injection into area 

Medial Frontal Cortex Rat (Guandalini, 1998) +1.7-0 mm AP, +1mm ML Microelectrode stimulation of the area, 

coupled with anterograde tracer injection  

Motor Cortex 1 Mouse (Chen et al., 2013) +1.2 mm AP, + 0.6 mm ML Electrophysiological recordings in S1 and 

optogenetic activation of the region 

Motor Cortex 2  Rat/Mouse (Paxinos and 

Watson, 1986, 

Franklin and 

Paxinos, 2008) 

+4.2- -3mm AP, +1-1.5mm 

ML (Rat) 

+2.5 mm- -1.3mm AP, 

+0.5-1.5mm ML (Mouse) 

Anatomical and histological staining and 

systematic sectioning of brain tissue  

Vibrissal Primary Motor 

Cortex 

Mouse (Zagha et al., 2013) +1 mm AP, + 1 mm ML Electrophysiological recordings and 

optogenetic activation of the region 
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Whisker Motor Cortex Rat  (Hill et al., 2011) +2.5 mm AP, + 1.5mm ML Electrophysiological recordings of the area 

correlated with whisker movement dynamics 

in free moving and head fixed rats  

Rat Frontal Eye Field Rat (Neafsey et al., 

1986) 

+2 mm AP, + 1mm ML Retrograde neural tracing after injection into 

the SC and PAG 

Secondary Motor Area Mouse (Oh et al., 2014) +2.95-0.26mm AP, 0.2-

1.5mm ML  

Anterograde viral vector tracing  
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Chapter 2. General Methodology 

2.1 Experimental Subjects 

All experiments were carried out in accordance with the European Communities Council 

Directive 1986 (86/609/EEC), the US National Institutes of Health Guidelines for the Care 

and Use of Animals for Experimental Procedures, and the UK Animals Scientific 

Procedures Act. 

 

2.1.1 Mice 

Animals involved in this study were C57BL6 mice obtained from Harlan Laboratories. 

Mice utilised for the tracing studies were housed in standardised cages with ad libitum 

access to food and water.  

 

2.1.2 Macaque 

The animal involved in the study (monkey 1) was obtained from the Medical Research 

Council Centre for Macaques Porton Down.  

 

2.2 Surgical Procedures 

2.2.1 Tracer Injection surgeries 

Animals were anaesthetised using a mixture of 1mg/kg medetomidine and 50mg/kg 

ketamine. The animals’ heads were shaved and cleaned. Animals were placed in a 

motorized stereotax (Stoelting, Germany), which was controlled via a joystick with 

custom written scripts to interact with the StereoDrive software. Body temperature was 

maintained at ~37˚C using a thermostatic heating blanket (Harvard Apparatus). The 

animals’ eyes were protected from drying out using optic drops (Carbomer 0.2%). An 

incision was made with a scalpel along the midline of the scalp to expose the skull. A 

craniotomy was then performed (0.7mm or 0.5mm) over the stereotactically measured 

target location (see Table 2-1). 
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The tracer injection protocol was then conducted (see below). After removal of the probe, 

the incision was sutured and the animal was given postoperative analgesia (non-steroidal 

anti-inflammatory analgesic meloxicam (10mg/kg s.c) and medetomidine anaesthetic was 

reversed by administration of atipamezole (1mg/kg s.c.)). The animals were then allowed 

to recover in a temperature controlled unit to minimise postoperative recovery time.  

 

2.2.2 Viral Vector Injection 

Initially, animals were placed in an induction chamber and anaesthesia was induced by 

isoflurane administration. Isoflurane administration was done with 3l/min oxygen and 5% 

flow rate. Once anaesthetised, the heads of the animals were shaved to remove excess 

hair. Animals were then transferred to the motorised stereotax with a mouse volatile 

anaesthetic attachment for isoflurane to allow for continuous anaesthesia at a 

maintenance level of 1l/m oxygen and 1.5-3% flow rate. The rest of the hair on the 

cranium was removed using hair removal cream (Boots, UK). Animals were kept at 37˚C 

using a thermostatic heating blanket (Harvard Apparatus). Animals were given 

meloxicam (10 mg/kg s.c) for analgesia after initial anaesthesia. The animals’ eyes were 

protected from drying out using optic drops (Carbomer 0.2%). An incision was made 

with a scalpel along the midline of the scalp to expose the skull. A craniotomy was then 

performed (0.7mm or 0.5mm) over the stereotactically measured target location in either 

Motor Cortex Area 2 or Cingulate Area (see Table 2-1). The virus was then placed in a 

pressure injection pipette and once the micropipette was advanced to the chosen location 

(two injection sites within the tract down the cortical column, approximately at 700µm 

and 300µm depth) a volume of 66nl per site was injected over a period of 5 minutes.  

 

2.2.3 Cranial implant Surgeries 

2.2.3.1  Mouse 

In order to perform awake behaving electrophysiological recordings in the mouse brain, a 

head-post and cranial chambers were implanted. Animals were sedated and prepared as 

described above for viral vector injection. A midline incision was made onto the scalp and 

excess tissue was removed from the bone. The tissue margin was then secured around the 

area of the implant with tissue glue (cyanoacrylic, Homebase UK). The exposed bone was 

prepared for the dental acrylic implant via the application of a UV light curable etching 
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solution (iBOND Total Etch, Heraeus Kulzer) to aid adhesion. The location of bregma was 

identified and marked for future reference and chamber implantation. The acrylic head 

implant was constructed first from using a small ball of UV light curable acrylic 

(Charisma, Heraeus Kulzer), rolled out to an extended ‘rod like’ shape (~0.5-

1mm*20mm), which was placed next to the tissue margin, and gently pushed against it to 

obtain a good seal between the tissue glue at the tissue margin and the Charisma. Once in 

place it was cured by application of UV light (Demi Kerr Plus, ~20 sec). This left a central 

part of the cranium visible (covered and sealed by the cured total etch), which could be 

filled as needed with additional (less viscous) UV curable acrylic (Tetric Evoflow, 

Heraeus Kulzer). The latter was also used to secure the custom made implants to the bone. 

Following implant surgery, animals were allowed to fully recover. 

In the days before, or on the day when electrophysiological recordings were started 

animals were anaesthetised with isoflurane again and small (~0.5-1mm diameter) 

craniotomies were performed over areas of interest using stereotactic coordinates. Custom-

made recording chambers were implanted over the craniotomies to keep them clean when 

animals returned to the home cage.  

 

2.2.3.2 Macaque 

The animal (macaca mulatta, male, 9 years old, weight ~10kg) was implanted with a 

headpost under sterile surgical conditions (Thiele et al., 2006). Furthermore two chambers, 

one over V1 and one over V4 were implanted on the right hemisphere of the animal. Both 

the headpost and chambers were composted of PEEK (polyether ether ketone). 

 

2.2.4 Cranial Window Implantation 

To allow repeated optical stimulation of the transfected brain region in the mouse, a 

cranial window was implanted over the injected area. This involved sedation of the animal 

with isoflurane as described above for viral injection procedure. Once the animal was 

sedated and prepared as previously described a 3 or 4mm diameter region was demarked 

on the skull with a biopsy punch. This bone area was then removed using a dental drill. 

These procedures caused small amount of bleeding which can cloud the cranial window 

unless removed extremely gently and carefully. This was achieved by gently wiping the 

dura mater with gel foam soaked in saline. Once adequately cleaned a glass coverslip was 
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placed onto the brain and cemented in with dental acrylic. This window was then utilised 

to allow for light induced excitation of affected cells.  

Animals were then allowed to fully recover. A few days before electrophysiological 

recording animals were anaesthetised again and craniotomies were performed over areas 

of interest using stereotactic coordinates (see Table 2-1). These regions were uncovered 

and then a custom-made recording chambers were implanted over the areas to allow for 

electrode placement.  

 

2.3 Neuroanatomy and Tract Tracing 

2.3.1 Tracers and injection apparatus 

2.3.1.1 Retrograde Tracing 

The tracer utilised for retrograde tracing was fluorogold (FG) (Life Technologies). A 

custom made two barrelled iontophoresis pipette with a tungsten microelectrode (tip 10-

20 microns) (Thiele et al., 2006) was filled with a 3% (in saline) solution of the tracer. 

The pipette was attached to a Harvard Neurphore BH-2. The pipette was advanced to the 

chosen location with a hold current of -500nA. Once at the target location, the tracer was 

iontophoresed at +500nA for 30 minutes (Schmued and Heimer, 1990). After this the 

current was changed to a hold current of -500nA for removal of the probe. The pipette 

was left at its injection location for 20 minutes after injection to allow for best diffusion 

of the tracer into the tissue before removal.  

 

2.3.1.2 Anterograde Tracing 

The tracer utilised for anterograde tracing was Biotinylated Dextran Amine MW-10,000 

(BDA) (Life Technologies) (in saline). A calibrated air pressure micropipette was filled 

with 15% of the tracer. The micropipette was attached to a custom air-pressure system 

and filled. Once the micropipette was advanced to the chosen location a volume of 66nl 

was injected over a period of 5 minutes. The pipette was left in place after injection for 

20 minutes to allow for best diffusion of the tracer into the tissue before removal.  
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2.3.2 Brain recovery 

After a 3-4 day recovery period following tracer injection, animals were given an 

overdose of sodium pentobarbital (0.3ml 200mg/ml ip). Then they were transcardially 

perfused with an initial injection of 1ml heparin sulphate (5,000 I.U./ml), before a 4% 

paraformaldehyde in phosphate buffer solution (PBS) solution with 20% sucrose for 30 

minutes at 1ml/minute. Post perfusion, brains were removed and placed in the 

paraformaldehyde solution to post-fix for 24 hours. After post-fixing the brains were 

cryo-protected in a 30% sucrose solution for another 24 hour period.  

 

2.3.3 Histology 

2.3.3.1 Retrograde FG Tracing 

After cryoprotection, serial coronal free floating sections (40µm) were taken (Microm 

cryostat, HM500 OM) from the start of frontal cortex up to the inferior colliculus and 

placed in 4% phosphate buffer solution (PBS). Every 4th section was taken for further 

analysis. The remaining sections were placed in a cryoprotectant solution (one liter of 

cryoprotectant solution consists of 500 ml 0.1M phosphate buffer, 300g sucrose (30% 

w/v), 10g polyvinylpyrolidone (1% w/v; PVP-40), 300 ml ethylene glycol (30% v/v)) 

(Watson Jr et al., 1986, Hoffman and Le, 2004) and stored at -20C. The sections for 

analysis went through an initial autofluorescence quenching step (20 minute 1% sodium 

borohydride wash, followed by a 20 minute wash with 5 mM Glycine) and PBS washes 

(3x10 min). Sections were then mounted onto microscope slides with a propidium iodide 

(PI) medium (Vectashield H-1300) or a DAPI medium (Vectashield H-1500).  

 

2.3.3.2 Anterograde BDA Tracing 

After cryoprotection, serial coronal free floating sections (40 µm) were taken (Microm 

cryostat, HM500 OM) from the start of frontal cortex up to the inferior colliculus and 

placed in 4% phosphate buffer solution (PBS). Every 4th section was taken for further 

analysis. The remaining sections were placed in a cryoprotectant solution (Hoffman and 

Le, 2004) and stored at -20C. The sections for analysis went through an initial 

autofluorescence quenching step (20 minute 1% sodium borohydride wash, followed by a 

20 minute wash with 5mM Glycine) and PBS washes (3x10 min). Sections were incubated 
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for 2 hours in streptavidin-Alexa 488 (1:500 in 1% normal bovine serum, 0.2% triton X, 

0.1% gelatine in PBS) at room temperature followed by PBS washes (3x10 min). Sections 

were then mounted onto microscope slides with a DAPI medium (Vectashield H-1500). 

 

2.3.4 Fluorescence Microscopy 

For the retrograde experiments with unamplified fluorescence, sections were examined 

under a fluorescence microscope (Leica DM LB 100T), at an excitation wavelength of 350 

nm to illuminate endogenous FG fluorescence. Excitation at 530 nm was utilized to 

highlight nuclei with the propidium iodide (PI) staining and co-locate with the tracer signal. 

Digital images were acquired using ‘MicroFire’ optics. 

Sections from the anterograde tracing, which had undergone immunohistochemical 

amplification were examined under a fluorescence microscope (Zeiss Axioimager II). 

Projection patterns were visualized with excitation at 500 nm; nuclei counterstains were 

visualized with either 530 nm excitation (PI) or 350 nm (DAPI). Photo-merges were taken 

of stained areas for further qualitative and quantitative analysis using AxioVision software. 

For illustrative purposes photomicrographs were processed for brightness and contrast and 

gray-scaled using Adobe Photoshop CS6.  

 

2.3.5 Analysis of tracer 

2.3.5.1 Contour Plots of Injection Sites 

In order to display the extent of our injections, photomicrographs of each injection case 

were taken for each animals. These were then processed using ImageJ to remove 

background luminance and thresholded. This was achieved through custom scripts which 

calculate the thresholding value (𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠) according to the following formula:  

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅𝑅𝑅) + 𝐿𝐿𝜎𝜎2(𝑅𝑅𝑅𝑅𝑅𝑅) 

where 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚corresponds to the mean luminance across the region of interest (ROI), and 

𝐿𝐿𝜎𝜎2 corresponds to the variance of the luminance across the ROI. The ROI chosen for the 

luminance subtraction was taken from the non labelled region of the photomicrograph. This 

produced a binary image, where values of 1 displayed the extent of tracer injection. From 

these images a contour describing the extent of labelling was produced by demarcating the 
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limits of the binary signal. These contours were then imported into a vector graphics 

program and transposed onto representative brain atlas slides (Franklin and Paxinos, 2012).  

 

2.3.5.2 Retrograde 

For quantitative analysis of the retrograde tracing study, images were processed with 

ImageJ 2 (Schindelin et al., 2012). For this we wrote script which performed a Gaussian 

Convoluted Background Subtraction (sigma = 20) to remove biological artefacts, and to 

filter and grayscale the images. ROIs for brain regions were defined and demarcated on 

nuclear counterstained images (DAPI, PI) using the mouse brain atlas as reference 

(Franklin & Paxinos 2012). Images underwent semi-automated cell counting for each 

injection case. Based on these numbers, we calculated the proportion of cells labelled in 

any brain area (from all cells labelled across the brain of a given experimental animal), and 

used these to calculate proportions across our experimental animals. To simplify the 

presentation and classification we decided on 5 categories of connectivity strength, 

whereby areas to have no input to the SC were labelled with a ‘-’, low (<2.5%), input with 

‘+’, medium (<5%), input with a ‘++’, high input (5-7.5%) with a ‘+++’, and very high 

input (>7.5% of cells labelled (from all cells labelled) as ‘++++’ which are displayed in 

Table 1.  

Examples of each of level of labelling are shown below from representative cases for 

retrograde Fluorogold transport (Figure 2-1).  
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Figure 2-1. Example Photomicrographs of Each Level of Retrograde Tracing 

Photomicrographs illustrating each level of retrograde Fluorogold labelling after 

injections in the SC. Scale bar equates to 250µm. PAG-periaquaductal grey, ZIV-zona 

incerta ventral part, SNR-substantia nigra pars compacta.  

 

 

 

2.3.5.3 Anterograde 

For representation of the anterograde tracing data in table 2 the images underwent 

qualitative visual inspection and were classified into one of five signal strengths , none 

‘-’, low ‘+’, medium ‘++’, high ‘+++’, and very high ‘++++’.  Examples of each of level 

of labelling are shown below from representative cases for anterograde BDA transport 

(Figure 2-2).  
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Figure 2-2. Example Photomicrographs of Each Level of Anterograde Tracing 

Photomicrographs illustrating each level of anterograde BDA labelling after injections in 

the Motor Cortex Area 2 and Cingulate Area. Scale bar equates to 250µm. Cl-claustrum, 

RSD- retrosplenial cortex, dysgranular, S1BF-primary somatosensory cortex, barrel field.  

 

 

2.3.5.4 Quantitative Analysis 

For both retrograde and anterograde conditions, images were processed with ImageJ 2 

software (Schindelin et al., 2012). This entailed Gaussian filtering (sigma = 3.5) to 

remove acquisition and biological artefacts. Images were then converted to grayscale and 

background luminance removal and thresholding was conducted. This was achieved 

through custom scripts which calculate the thresholding value (𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠) according to the 

following formula:  

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅𝑅𝑅) + 𝐿𝐿𝜎𝜎2(𝑅𝑅𝑅𝑅𝑅𝑅) 
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were 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 corresponds to the mean luminance across the region of interest (ROI), and 

𝐿𝐿𝜎𝜎2 corresponds to the variance of the luminance across the ROI. ROIs were defined and 

demarcated on nuclear counterstained images (DAPI, PI) using the mouse brain atlas as 

reference (Franklin & Paxinos 2012). The tracer signals within the ROI were then 

quantified by automated cell counts/area (retrograde tracing) or percentage area 

expressing the tracer signal (anterograde tracing). A flow diagram of this process can be 

seen in Figure 2-3. Preferential connectivity of a particular injection site to different ROIs 

was determined by calculating the modulation index (MI) of connectivity which was 

calculated as: 

𝑀𝑀𝑀𝑀 =
𝑄𝑄(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) − 𝑄𝑄(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑄𝑄(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 𝑄𝑄(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) 

where 𝑄𝑄(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) corresponds to the quantified amount of tracer in a particular region of 

interest, and 𝑄𝑄(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) corresponds to the quantified amount of tracer in a complementary 

region. A preference in connectivity for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 would yield a positive number between 0-

1, a preference for 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 would yield a negative number between 0-1. The code for all of 

the analysis is available online (https://github.com/GrimmSnark/Image_analysis_fiji). 

Significant differences between the MIs for the particular injection site were tested by a 

Mann-Whitney U test, alpha value = 0.05. 
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Figure 2-3. Processing Pipeline for Quantitative Measurement of Connection Preference 

This process allowed for the semi-automated quantification and analysis of the tracing 

data in Chapter 3. Images were Gaussian filtered, then converted to grayscale 16bit 

format. Background luminance subtraction was based on manual sampling of background 

luminance through an ROI and then the images were binary thresholded. Automated cell 

counting was conducted on specific ROIs for brain regions or subregions 
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2.4  Electrophysiology 

2.4.1 Electrophysiological Setup 

2.4.1.1 Mice 

The electrophysiological responses in V1 were recorded using 16 contact laminar 

electrodes (Atlas Neuroengineering) with a spacing of 50 (E16-50-S1-L8), 150 (E16-150-

S1-L7), or 250µm (E16-250-S1-L8). Data were acquired with a Neuralynx LynxSX 

recording system and the Cheetah software package (Neuralynx, Bozeman, MT, USA). 

This was interlinked with the presentation software Cortex 5.95 

(http://www.nimh.nih.gov/labs-at-nimh/research-areas/clinics-and-labs/ln/shn/software-

projects.shtml) to collect the experimental data. The sample periods utilised for analysis 

were the spontaneous firing period (256ms before stimulus onset) and the entire period of 

stimulus presentation (from pre-cue onset to post-cue offset 550ms).  

 

2.4.1.2 Macaques 

The electrophysiological responses in V1 were recorded using 16 contact laminar 

electrodes (Plexon U probes) with a spacing of 150 um. Data were acquired with a 

Neuralynx Digital Lynx recording system and the Cheetah software package (Neuralynx, 

Bozeman, MT, USA). This was interlinked with the presentation software Cortex 5.95 

(http://www.nimh.nih.gov/labs-at-nimh/research-areas/clinics-and-labs/ln/shn/software-

projects.shtml) to collect the experimental data. The sample periods utilised for analysis 

were the spontaneous firing period (256ms before stimulus onset) and the entire period of 

stimulus presentation (from pre-cue onset to post-cue offset 550ms). 

The eye position for the experiments was mapped onto the cortex program with a 120Hz 

infa-red camera and the TRec Eye Tracking software (Thomas Recording, Germany).  

 

2.4.2 Receptive Field Mapping Paradigm  

2.4.2.1 Mouse 

Visual receptive field (RF) mapping was achieved through a reverse correlation paradigm 

(Gieselmann and Thiele, 2008). The stimuli were presented on a 24 inch CRT monitor at 
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120Hz refresh rate. 108 black squares, which measured either 11.1 or 8 degree of visual 

angle (DVA), were presented to the animal in a continuous random sequence for 150ms 

each. The 11.1 DVA squares were used to cover the entire presentation screen. The 

smaller 8 DVA squares were used to hone in on the RF, and obtain a finer grained 

representation. 

 

2.4.2.2 Macaque 

The visual receptive field mapping paradigm employed for the macaque was almost 

identical to the mouse. The stimuli were presented on a 24 inch CRT monitor at 110Hz 

refresh rate. However, due to the increased visual acuity and decreased RF sizes in this 

animal the sizes of the stimuli were reduced to 0.25- 2 DVA. Furthermore, there was no 

optogenetic stimulation as the animal had not been transfected. 

 

2.4.3 Visual Stimulation Paradigm 

2.4.3.1 Mouse 

To analyse effects of bottom-up attention in a passive viewing paradigm, the following 

visual experimental protocol was employed. The placement of the stimuli entailed two 

sinusoidal gratings (vertical and horizontal orientation, spatial frequency (sf)-0.2cpd, 80% 

contrast, 30 DVA diameter) at either the RF location or a location at the identical 

elevation, but on the opposite azimuth position relative to the CRT screen midline. The 

animal faced the screen in a manner such that the visual receptive field(s) of the recorded 

neuron(s) would not extend beyond the CRT screen midline ensuring it would not be 

covered by both visual stimuli. The experiment involved a design which yielded eight 

conditions which were determined as follows: 

• The presence of either the vertical ‘target’ grating or the ‘horizontal ‘distractor’ 

grating in the receptive field location (note, that the terminology of target and 

distractor is derived from the macaque experiments, as the macaque was engaged 

in an active task on some recording days where he had to detect and report the 

location the vertical grating). 

• The presence of either a pre-cue or a post-cue above/below the receptive field 

location or above/below the non-RF location 
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This resulted in the following 8 conditions, i.e. pre-cue RF with the vertical grating on the 

RF, pre-cue non-RF with the vertical grating on the RF, post-cue RF with the vertical 

grating on the RF, and post-cue non-RF with the vertical grating on the RF, pre-cue RF 

with the horizontal grating on the RF, pre-cue non-RF with the horizontal grating on the 

RF, post-cue RF with the horizontal grating on the RF, and post-cue non-RF with the 

horizontal grating on the RF. 
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Figure 2-4. Trial Structure Utilised for Bottom-Up Attention Studies in both Macaque and Mouse 

Trials started with a prestimulus/fixation time. Then depending on the condition a pre-cue could be presented followed by a delay period. The two stimuli were then 

presented (Vertical ‘Target’ and Horizontal ‘Distractor’ gratings), so that one grating fell on the RF of the recorded neurons. The other grating was presented in the 

opposite half of the screen (opposite relative to the vertical [azimuth] midline). Following grating presentation a delay period of 50 ms occurred. Thereafter, either a 

further delay period occurred (50ms) or or post-cue was presented (50 ms) depending on the condition. Finally after another delay of 150ms the trial ended. In the 

macaque, we additionally employed an active saccade paradigm, which required the animal to saccade to the location of the previous ‘Target’ grating.
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Furthermore on certain recording days, optogenetic stimulation of prefrontal regions 

(transfected with channel rhodopsin 2) was implemented for the entire pre-cue onset to 

post-cue offset period on 50% of the trials. This then yielded 16 conditions, i.e. the 

original 8 doubled to be with and without optogenetic stimulation. 

A trial started after a variable prestimulus time between 600-1200ms. In 4/8 conditions a 

pre-cue would be presented for 50ms, above (or below) either the RF location or in the 

opposite hemifield/screen location, followed by a 50ms interstimulus time. Thereafter two 

gratings (one with horizontal orientation, the other with vertical orientation sf-0.2cpd, 80% 

contrast (Michelson contrast), 30 DVA diameter) were presented for 150ms, with a 50% 

probability of one or the other being placed in the RF. In the remaining 4/8 conditions, the 

gratings were followed by a 50ms interstimulus time and then a post-cue for 50ms above 

or below either the RF or non-RF side, i.e. the opposite screen half for the mouse 

recordings. Note that only one cue was presented per trial (see Figure 2-4). The pre/post-

cues were horizontal bars (15 degrees length, 2 degrees wide). The pre/post-cue location 

was set to be above or below the visual receptive field of the recording area depending on 

the RF location on the screen. The average distance from the centre of the RF was 19 

degrees. The cue appeared in either of the 4 locations (i.e. pre-cue RF, pre-cue non-RF, 

post cue RF, post cue non-RF) on an even probability basis.  

 

2.4.3.2 Macaque 

The visual stimulation paradigm utilised for the macaque was very similar to that used for 

the mouse. The trial structure was identical, apart from of the following factors. The 

stimuli were of a different size, spatial frequency, and contrast. The spatial frequency was 

5cpd, the contrast was 48% (Michelson contrast), and they were of 3 or 8 DVA diameter. 

Due to the changes in stimulus size the cue size and position was modified (for 3 degree 

gratings, the cue size was 2.62 DVA long and 0.33 DVA wide, for the 8 DVA gratings, 

the cue size was 8 DVA long and 1 DVA wide). Moreover, due to the fact that the monkey 

fixated centrally on the screen, the non-RF stimulus was placed in the opposite hemifield 

with equal eccentricity relative to the fixation spot. Throughout the entire duration of the 

pre-cue to post-cue phase the monkey was centrally fixated by keeping its eye focused in a 

2 DVA window around the fixation spot. There was no optogenetic stimulation in the 
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macaque, which meant that the simpler 2x4 design was employed. Finally, there were two 

versions of the task, a Passive Fixation paradigm (similar to the mouse paradigm, no 

active response was required) and a Saccade based paradigm, where the monkey had to 

detect the location of the vertical grating and report it via a saccadic eye movement at the 

end of the trial. This active version therefore differed insofar that it required the 

presentation of 2 saccade targets at the end of the trial and an active response (saccade to 

one of the targets). The saccade targets were presented with a 200ms delay after the post-

cue offset time. They appeared at exactly the center locations of previously presented 

gratings. The monkey had to saccade to the target where the vertically orientated grating 

had been (see Figure 2-4). 

 

2.5  Optogenetics 

2.5.1 Viral Constructs 

The viral construct used in this research was based on the adenosine associated virus 

serotype 5 with different promotors and expression of optogenetic channels. The construct 

causes excitatory neurons to express channel rhodopsin 2 under a calmodulin-dependent 

kinase II promotor with a yellow florescent protein marker (AAV5-CamKII-ChR2-eYFP, 

Penn Vector Core, USA). This non-specifically transfects excitatory projection neurons 

within the injection site and allows their activity to be driven by blue light excitation of 

490nm.  

 

2.5.2 Optical Stimulation 

The optical stimulation of the transfected regions was achieved using an optical fibre 
placed above the cranial widow. The wavelength used for channelrhodopsin 2 activation 
was 470nm. There were two different light sources and fibres utilised in this study. The 
details for this are summarised in Table 2-2.  

 

2.5.3 Efficacy of Viral Transfection 

The efficacy of the viral transfection in the mouse brain was assessed in a number of ways. 

Firstly, since the construct causes the expression of yellow fluorescent protein, a visual 

inspection of the injection site was conducted after the skull was thinned. A UV light was 

used as optical stimulation (~490nm, Kerr Demi Plus light curer) coupled with protective 
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laser light glasses as a filter (filtered 180 to 532 nm). This allowed for a general estimation 

of expression whilst the animal was still alive. Once this first assessment was conducted, a 

more detailed quantification of the functional expression of the viral constructs was 

attempted.  

Before cranial window implantation, the efficacy of viral transfection in the injection site 

was analysed. To do this the animal was sedated as previously described, and a 

craniotomy (approximately 1-2 mm diameter) was performed over the previous viral 

injection site. A laminar electrode was lowered and an optic fibre was placed above the 

craniotomy. The region was stimulated with light, with either long activation times or 

various pulse trains, depending on the recording day. Rasters and PSTHs were produced 

for individual cells or multi-units per electrode contact. Efficacy of light presentation was 

tested with Wilcoxon Signed Rank test, whereby firing rates (spikes per second) for 

periods of optogenetic stimulation were compared to rates during periods without 

stimulation. For comparison, this test was compared to control condition in which sham 

(no stimulation) was present.  

 

2.5.4 Electrophysiological Setup 

The electrophysiological setup utilised for the optogenetic experiments was the same as 

previously mentioned for the bottom-up attentional paradigm for the mouse.  

 

2.6 Electrophysiological Data Analysis 

2.6.1 Precuing and Optogenetic Stimulation General Analysis 

To examine how the different forms of (pre/post)-cuing, grating (vertical/horizontal), and 

optogenetic stimulation (presence/absence) conditions affected neuronal activity in the 

bottom-up attentional paradigm a repeated measures multi-factorial 2x3x4 ANOVA was 

conducted on both the spiking activity and the MUAe.  

For single contacts in the macaque and mouse bottom-up attentional data the activity for 

each of the 8 experimental conditions in three different trial time periods (pre-cue, grating 

stimulus, and post-cue time windows) was calculated for contacts with a z-score > 3 to the 

grating stimulus presentation. The z-score was calculated as shown below:  
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𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

 

The mean stimulus grating response (X) was taken and the mean (µ) of the whole 

spontaneous trial period. This was then divided by the standard deviation (σ) over all of 

the trials.  

These cohorts were then run through a 2x4x4 way ANOVA, where the factors tested were 

grating type (vertical ‘target’ or horizontal ‘distractor’), time window (4 levels-pre-cue, 

stimulus, post-cue, and whole pre-cue on to post-cue off) and cuing condition (pre-cue RF, 

pre-cue non-RF, post-cue-RF, post-cue non-RF).  

For the optogenetic mouse experiments the ANOVA was adapted to be a 2x2x4x4 way 

ANOVA, which was the same as the previous analysis with an added factor of optogenetic 

stimulation (presence or absence).  

A population average was then obtained separately across all the experiments for these 

contacts. The ANOVA used for the population analysis to test the significance of different 

factors and interactions.  

Any significant factor or interaction was further tested with post hoc Wilcoxon Signed 

Rank tests, which were FDR corrected for account for multiple comparisons (Benjamini 

and Hochberg, 1995).  

 

2.6.2 Spiking Data 

Spiking data was collected from the electrodes in both the macaque and mouse at 32kHz 

and bandpass filtered from 600-9000Hz. The data for each contact was then thresholded 

using the Spike Sort 3D program (http://neuralynx.com/research_software/spike_sort_3d) 

with individualised manual waveform clustering. The data for each contact was then 

aligned to the experimental stimuli events for further analysis.  

 

2.6.2.1 Raster Plots 

Raster plots for individual recording locations for each experiment were produced by 

aligning spike events over time for each trial. Example contacts were then taken for 

illustrative purposes within specific results sections. 
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2.6.2.2 Peri-stimulus Time Histograms (PSTHs) 

For individual recording contacts, the spiking activity for each trial was calculated. This 

was then averaged and normalised to the maximum activity per channel per recording. 

This trace was then Gaussian filtered and plotted for individual recordings. Grand 

averages for each brain area were calculated by including contacts where visual responses 

(to the gratings) compared to baseline activity achieved a z-score of z-score > 3, regardless 

of cuing condition. This population of normalised responses was then averaged and plotted 

for each the conditions.  

 

2.6.3 Multi-Unit Activity Envelope (MUAe) 

Continuously sampled data was processed to obtain the envelope multiunit activity 

(MUAe) utilising a technique adapted from the literature (Super and Roelfsema, 2005). 

This entailed collecting the data at 32kHz and bandpass filtering it between 600-9000Hz, 

followed by rectification of the signal. It was then low-pass filtered at 200Hz and down-

sampled to 1kHz for further analysis. The MUAe activity was then aligned to the 

experiment per trial and averaged. This resultant average was then smoothed with a 

Gaussian filter. A z-score for the visual induced activity was calculated and channels with 

a z-score > 3 were included for further analysis.  

To generate grand average plots for each area, the signals from contacts with a stimulus z-

score > 3 were averaged. This was then plotted along with the standard error of the mean 

(SEMs) across each condition. In addition to this the cumulative normalised activity was 

calculated across the conditions for the trial length and tested for significant differences 

with Wilcoxon Signed Rank tests.  

 

2.6.4 Local Field Potential Analysis 

The LFP for this analysis was recorded at 32kHz and then down-sampled to 1kHz for 

further analysis. It was aligned to trial events for each electrode contact for each 

experiment in all animals. This was then put through a matching pursuit analysis program 

which was adapted from previous literature (Chandran Ks et al., 2016). This entailed an 

initial 50Hz filter to remove any line noise. Then a 1024ms time window was taken 
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around the stimulus onset for processing with the matching pursuit algorithm. The scripts 

for this analysis were supplied by the creator Supratim Ray 

(https://github.com/supratimray/MP). This resulted in a matrix of time frequencies 

modulations for each channel. This was then collated and averaged for all channels with a 

MUAe stimulus induced activity of z-score > 3. Difference plots for conditions were 

calculated by subtracting the time frequency grand average matrixes for each conditions to 

result in plots for pre-cue RF minus pre-cue non-RF, pre-cue RF minus post-cue-RF for 

each of the two grating stimuli. The uncorrected frequency differences were then plotted. 

Additionally, a t-test was then run to test significance changes in frequency over time for 

each condition. The resulting p-values were then FDR corrected to account for multiple 

comparisons. These significance values were then used to threshold the frequency time 

plots to significant differences. 

This matching pursuit design was employed as this algorithm, although being 

computationally intensive has a number of advantages over other ways of analysis. The 

most important of which is that due to the specifics of the time frequency windowing (not 

covered herein, see (Chandran Ks et al., 2016). This allows for good decoding of LFP 

spectral frequency content, while still having good temporal specificity. This is in contrast 

to other methods of analysis such as fast Fourier transform. 
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Table 2-1. Summary of the Injection and Recording Chamber Locations Utilised in Mice 

Brain Area Name Tracing Injection Coordinates 

(Bregma = (0, 0)) 

Virus Injection Coordinates 

(Bregma = (0, 0)) 

Recording Coordinates   

(Bregma = (0, 0)) 

Cingulate Area +1.1 mm AP, +0.3mm ML, DV 

1.3mm 

+1.1 mm AP, +0.3mm ML, DV 

1.3, 0.9mm 

+1.1 mm AP, +0.3mm ML, DV 

1.3mm 

Motor Cortex Area 2 +1.1 mm AP, +0.3mm ML, DV 

0.8mm 

+1.1 mm AP, +0.3mm ML, DV 

0.8, 0.3mm 

+1.1 mm AP, +0.3mm ML, DV 

0.8mm 

Primary Visual Cortex   -2 mm AP, +2mm ML 

-3.5 mm AP, +2mm ML 

Superior Colliculus Medial  -3.7 mm AP, +0.3mm ML, DV 

1.3mm 

 -3.5 mm AP, +0.8mm ML 

Superior Colliculus Lateral  -3.7 mm AP, +1.3mm ML, DV 

2.2mm 

 -3.5 mm AP, +0.8mm ML 
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Table 2-2. Summary of the LED Light Sources and Optical Fibre Powers Utilised 

LED Light Source Source Power Optical Fibre Diameter Power Output from Fibre 

TRec 9mW TRec-125um diamete 0.3mW 

CoolLED- pE100 90mW Thorlabs- Custom 1.5mm 

diameter 

87mW 
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Chapter 3. The Neuroanatomical Connectivity Underlying Orienting in 

the Mouse 

 

3.1 Introduction 

The Superior Colliculus (SC) is a multimodal sensory-motor midbrain structure, involved 

in visual, auditory and somatosensory triggered orienting (Stein, 1981, Westby et al., 

1990, Meredith et al., 1992, Wallace et al., 1993, Thiele et al., 1996). In most species the 

spatial representation of sensory inputs are aligned to the retinotopic organization of the 

superficial layers where the central or frontal field/space is represented in the anterior SC, 

the upper visual hemi-field in the medial SC, and the lower visual hemi-field in the lateral 

SC (Goldberg and Wurtz, 1972b, Drager and Hubel, 1976, Meredith and Stein, 1990, 

Thiele et al., 1991). Multimodal sensory processing occurs in the intermediate and lower 

layers where sensory neurons are intermixed with sensory-motor responses coding for 

eye (Wurtz and Albano, 1980), head (Harris, 1980), pinnae (Stein and Clamann, 1981), 

and whisker movements (Bezdudnaya and Castro-Alamancos, 2014). In primates 

electrical microstimulation in intermediate and deep layers of SC results in defined 

saccadic eye-movements, with endpoints in the visual receptive field locations of the 

stimulation sites (Stryker and Schiller, 1975). This suggests that sensorimotor integration 

in the SC invariably triggers orienting responses towards the object of interest. However, 

in rats, stimulation of the SC can elicit orienting responses towards the visual field 

representation at the stimulation site, and result in defensive behaviours such as freezing, 

or orienting movements away from the visual field region (Dean et al., 1988b, Dean et 

al., 1989). These different types of behaviour are, at least to some extent, mediated by 

two separate output pathways from the intermediate and deep layers of the SC. The 

crossed descending tecto-reticulo-spinal projection, which preferentially arises from the 

lateral SC (Redgrave et al., 1986), is speculated to be involved in approach movements 

towards novel stimuli, whereas the uncrossed ipsilateral pathway, of which certain parts 

arise in the medial SC, is likely involved in avoidance and escape-like behaviour (Westby 

et al., 1990). This view is in accord with the ecological niches which rodents occupy, 

where predators most likely appear in the upper visual field, represented medially in the 

SC, while prey most likely appear in the lower visual field where they can also be 

detected by the whisker system (Westby et al., 1990, Furigo et al., 2010), represented 
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preferentially in the lateral SC (Favaro et al., 2011). In line with this, inputs to the medial 

and the lateral parts of the SC in the rat show an anatomical segregation of inputs from 

subcortical and from cortical sources which may feed into the avoidance and approach 

related pathways (Comoli et al., 2012). It is currently unknown whether this distinction 

holds for the mouse SC, although a recent study has dissected a pathway originating in 

the intermediate layers of the medial SC. This is involved in defensive behaviour, and 

provides a short latency route through the lateral posterior thalamus to the lateral 

amygdala (Wei et al., 2015). Beyond the level of the SC, the larger scale cortical and 

subcortical anatomical networks involved in approach and avoidance behaviour in 

rodents have not been delineated in great detail. In pursuit of this goal, retrograde tracers 

were injected into the medial or lateral parts of the murine SC (SCm, SCl) to determine 

their specific input connections. We found that SCl and SCm receive inputs from shared, 

but also largely distinct sources. The major cortical source of input to SCl originated 

from Motor Cortex Area 2 (M2) (which in rats has been labelled the Frontal Orienting 

Field (FOF) (Erlich et al., 2011)), while a major cortical input to SCm arises in the 

Cingulate Area (Cg). Anterograde injections into M2 and the Cg, reveal output 

selectivity, which is not limited to the SC. M2 has descending control over a network of 

areas involved in somatosensation and appetitive behaviours, while Cg has descending 

control over a network of areas involved in analysis of far sensory processing (vision, 

audition), and avoidance behaviours. 

 

3.2 Methodology 

The methodology utilised for this section has been described previously in detail (see 

Chapter 2.2 & 2.3). In brief, retrograde and anterograde tracing was conducted in a 

number of different brain regions in the mouse brain. For the retrograde tracing the medial 

(n=5) and lateral (n=4) SC were chosen for iontophoretic injection of fluorogold (FG) (3% 

in saline, +500nA for 30 minutes). For the anterograde tracing, the motor cortex area 2 

(M2) (n=5) and cingulate region (n=4) were chosen for pressure injection of biotinylated 

dextran amine MW 10,000 (BDA) (3% in saline, 66nl volume). The exact coordinates of 

injection locations are listed in Table 2-1.  

After a short post-injection survival period, the animal were transcardially perfused with 

paraformaldehyde and the brains were removed, cryoprotected and sectioned at 40µm on a 

53 
 



cryostat. The sections were then analysed for innate fluorescence signal or processed to 

increase the labelling signal. In the retrograde condition the brain slices underwent cell 

counting with ImageJ and were quantified in terms of percentage of total labelled cells per 

animal. These values were then averaged for brain regions which displayed labelled cells 

across the entire experimental cohort. These averages were then placed into graphical and 

tabular forms. Any variance present in the results was examined in terms of confidence 

intervals which were used to inform the histograms which can be seen below.  

The anterograde conditions underwent qualitative visual assessment to produce a table of 

relative labelling densities for each brain region with visible label. These values were then 

placed into graphical and tabular forms for brain regions which displayed labelled cells 

across the entire cohort 

Certain regions of interest in both the retrograde and anterograde labelling underwent a 

further quantification to test for significant differences in labelling preference between the 

injection conditions. A modulation index for was calculated and a Mann-Whitney test was 

used for significance testing. A full description of the methodology employed to achieve 

this is detailed in Chapter 2.3. 

 

3.3 Results 

The retrograde tracer FG was iontophoretically injected into the SCm or SCl, and 

injections of the anterograde tracer BDA were completed into the two main cortical SC 

input structures which are assumed to be key structures involved in top down behavioural 

control, namely the Cg or M2. It was found that the intermediate and deep layers of the 

SCl and SCm showed a segregation with respect to specific cortical and subcortical 

afferents. Moreover, Cg and M2 showed equally substantial segregation regarding their 

projection sites. The specificity of these connections supports the hypothesis that the 

medial SC and the Cg are involved in avoidance (aversive) behaviour, while SCl and M2 

are involved in approach (appetitive) behaviour.  

To begin, the results from the experiments where retrograde tracers were injected into the 

SC will be discussed, followed by the results where anterograde tracers were injected into 

M2 and Cg, respectively. 
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3.3.1 Retrograde Tracing 

 

Figure 3-1. Retrograde Tracer Injections in the Mouse Superior Colliculus 

A. Photomicrograph of fluorogold injection into the medial superior colliculus. B. 

Photomicrograph of fluorogold injection into the lateral superior colliculus. All scale bars 

equate to 250µm. C. Summary of injections. Each shaded area represents the extent of 

the labelled injection site for both medial and lateral SC conditions. The darker shading 

indicates overlap of injection volume. Nomenclature is derived from Franklin, K.B.J. & 

Paxinos, G. 2012. For abbreviations see list. 

 

 

55 
 



5 medial and 4 lateral injections were performed for retrograde tracing in the mouse SC. 

Local spread of tracer in all of these cases was confined to the target sites in the SC, i.e. 

lateral injections did not spread into medial parts and vice versa. The injections also did 

not spread into neighbouring brain areas such as the periaqueductal gray (PAG) or the 

mesencephalic reticular formation (mRt) (Figure 3-1, A-C). There was some variation in 

the anterior-posterior extent of the injection sites, which was caused by slight differences 

in overall bregma localisation, probe placement and brain size. This may have caused 

differences in the brain region and subregional origin of retrogradely labelled cells. 

However any differences were mitigated by the strict inclusion criterion. Namely, that 

any brain region and subregional labelling bias/separation must have been present 

throughout all cohort cases to be included in the results. Retrogradely labelled cells 

usually arose from areas located ipsilateral to the injection site, but occasionally also 

from areas contralateral to the injection site. These two areas will be further delineated by 

the use of the terms ‘ipsilateral’, ‘contralateral’, and ‘bilateral’. First, the cortical areas, 

where retrograde label was found will be described, followed by a description of 

subcortical areas where retrograde label was identified. Descriptions will start with those 

areas that project exclusively to either the SCl or the SCm, followed by a description of 

areas that project to both SC subdivisions, with a focus on areas where retrograde label 

was medium to strong. A complete list of all structures that showed retrograde label after 

SC injections is given in Table 3-1, Figure 3-2, Figure 3-3, and Figure 3-4. Furthermore 

to aid in representation of the data, labelling from both the SCl and SCm is presented 

schematically in serial atlas sections for example cases, see Figure 3-5 and Figure 3-6.  

 

56 
 



 

Figure 3-2. Summary of Average Percentage of Total Labelled Cells in the Cortex for 

Ipsilateral Brain Areas after Injections of Fluorogold into the Medial (Gray) and Lateral 

(Black) Superior Colliculus. 

Histograms represent percentage of total labelled neurons found in each area. Error bar 

represent 95% confidence intervals for the population of injection cases.  
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Figure 3-3. Summary of Average Percentage of Total Labelled Cells in the Subcortex for 

Ipsilateral Brain Areas after Injections of Fluorogold into the Medial (Gray) and Lateral 

(Black) Superior Colliculus. 

Histograms represent percentage of total labelled neurons found in each area. Error bar 

represent 95% confidence intervals for the population of injection cases.  
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Figure 3-4. Summary of Average Percentage of Total Labelled Cells for Contralateral 

Brain Areas after Injections of Fluorogold into the Medial (Gray) and Lateral (Black) 

Superior Colliculus. 

Histograms represent percentage of total labelled neurons found in each area. Error bar 

represent 95% confidence intervals for the population of injection cases.  
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Figure 3-5. Schematic Representation of Retrograde Neuronal Labelling After Injection of 

Fluorogold into the Lateral Superior Colliculus in Single Case 

Each red dot represents a single labelled neuron. Red shaded areas represents injection 

site extent. Atlas sections adapted from Paxinos and Watson 2012. 
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Figure 3-6. Schematic Representation of Retrograde Neuronal Labelling After Injection of 

Fluorogold into the Medial Superior Colliculus in Single Case 

Each red dot represents a single labelled neuron. Red shaded areas represents injection 

site extent. Atlas sections adapted from Paxinos and Watson 2012. 
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Table 3-1. Qualitative Densities of Retrogradely Labelled Brain Areas after Injection of 

Fluorogold in the Medial and Lateral Superior Colliculus 

Relative cell count densities were assigned one of five levels via quantitative assessment 

of percentage of total cells labelled in each injected animal. The percentages were then 

averaged across the entire experimental cohort (none ‘-’ 0%, low ‘+’ < 2.5%, medium 

‘++’ <5%, high ‘+++’ <7.5% and very high ‘++++’>7.5%). See methods for more 

details. Injection sites could not be quantified in this manner due to tracer spread and 

were therefore marked with N/A.  

    SC (m) SC(l) 

    Ipsi Contra Ipsi Contra 

Cortex         

Prefrontal      

Cg  cingulate cortex ++++ - + - 

M1 (An) primary motor cortex - - + - 

M2 (An) secondary motor cortex - - ++++ - 

M2 (Pos) secondary motor cortex ++ - ++++ - 

Sensory      

Au1 primary auditory cortex + - - - 

RSD retrosplenial dysgranular cortex +++ - - - 

RSG retrosplenial granular cortex - - + - 

S1BF 

 

primary somatosensory cortex, 

barrel field 
- - +++ - 

S1FL 

 

primary somatosensory cortex, 

forelimb region 

- 

 

- 

 

+ 

 

- 

 

V2L 

 

secondary visual cortex, lateral 

area 
++ - - - 
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V2ML 

 

secondary visual cortex, 

mediolateral area 
++ - - - 

V2MM 

 

secondary visual cortex, 

mediomedial area 

+++ 

 

- 

 

- 

 

- 

 

Thalamus         

LPMR 

 

lateral posterior thalamic nucleus, 

mediorostral part 

+ 

 

- 

 

- 

 

- 

 

ZID zona incerta, dorsal part + - ++ - 

ZIV zona incerta, ventral part +++ - ++++ - 

Hypothalamus         

LH lateral hypothalamic area + - + - 

VMH ventromedial hypothalamus ++ - - - 

Pretectum         

PCom 

nucelus of the posterior 

commissure 
++ - +++ + 

PT pretectal area ++ + - - 

Midbrain         

DRV dorsal raphe nucleus + + - - 

ECIC 

 

external cortex of the inferior 

colliculus 
+++ + - - 

ll lateral lemniscus ++ - ++ - 

mRt 

 

mesencephalic reticular 

formation 
+ + ++++ ++ 

PAG periaqueductal gray + + + + 

PBG parabigeminal nucleus ++ + - - 

Pn pontine nuclei +++ ++ - - 
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PR prerubral field - - + - 

SC (l) superior colliculus (lateral) + + N/A + 

SC (m) superior colliculus (medial) N/A - +++ - 

SNR substantia nigra, reticular part ++ + ++++ ++ 

STh subthalamic nucleus + - - - 

 

 

 

3.3.1.1 Cortex 

Retrogradely labelled cell populations in the neocortex, after injection into the two 

different subdivision of the SC, were remarkably segregated. As expected, retrogradely 

labelled cells in the cortex were confined to layer 5B.  

The secondary visual cortex (V2MM, V2ML, V2L, ipsilateral) (Figure 3-7A), the 

primary auditory cortex (Au1, ipsilateral) (Figure 3-7B), as well as the dysgranular 

portion of the retrosplenial cortex (RSD, ipsilateral) Figure 3-7C) showed retrograde 

labelling only after SCm injections. 

Conversely, the somatosensory areas, specifically S1, the barrel field (S1BF, ipsilateral) 

(Figure 3-8A), the flank region (S1FL, ipsilateral), the primary motor cortex (M1, 

ipsilateral) Figure 3-8B), as well as the granular portion of the retrosplenial cortex (RSG, 

ipsilateral) (Figure 3-8C) showed retrograde labelling exclusively after SCl injections. 

There was a separation of labelled RSD and RSG cells for the SCm and SCl injection, 

with SCm receiving input mostly from RSD, and SCl receiving input mostly from RSG, 

even if labelled RSG neurons were found in two of the six SCm injection cases. 

Retrogradely labelled cells after SCm and SCl injections were found in the M2 

(ipsilateral), and in the Cg (ipsilateral). While these two areas showed retrogradely 

labelled cells after both, SCl and SCm injections, they did so to different degrees. The 

SCm injections resulted in higher numbers of labelled cells in the Cg (Figure 3-7D). 

Conversely, the SCl injections resulted in higher numbers of retrogradely labelled 

neurons in M2 (Figure 3-8D). This bias in connectivity for Cg and M2 was significant 
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(p=0.016, Mann-Whitney U-Test, Figure 3-11A left). Cells from both these regions are 

shown in higher magnification in Figure 3-9, and Figure 3-10.  

 

 

 

Figure 3-7. Example Photomicrographs of Retrogradely Labelled Brain Areas after 

Injection of Fluorogold into the Medial Superior Colliculus. 
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A. Labelling seen in the secondary visual cortex (V2MM/V2ML), cg- cingulum. B. 

Labelling seen in the primary auditory cortex (Au1). C. Labelling seen in the dysgranular 

retrospenial cortex (RSD), cc- corpus callosum. D. Labelling seen in the cingulate area 

(Cg) and motor cortex area 2 (M2). E. Labelling seen in the ventromedial substantia nigra 

(SNR[vm]). F. Labelling seen in the dorsolateral zona incerta (ZI), cp- cerebral 

peduncule. All scale bars equate to 250µm. Nomenclature is derived from Franklin, 

K.B.J. & Paxinos, G. 2012. For abbreviations see list. 
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Figure 3-8. Example Photomicrographs of Retrogradely Labelled Brain Areas After 

Injection of Fluorogold into the Lateral Superior Colliculus. 

 A. Labelling seen in the primary somatosensory area (S1BF). B. Labelling seen in the 

primary motor cortex (M1). C. Labelling seen in the granular retrospenial cortex (RSG). 

D. Labelling seen in the Cg and M2. E. Labelling seen in the dorsolateral SNR. F. 

Labelling seen in the ventromedial ZI. All scale bars equate to 250µm. Nomenclature is 

derived from Franklin, K.B.J. & Paxinos, G. 2012. For abbreviations see list. 
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Figure 3-9. Example of Retrograde Labelled Neurons in the Cingulate Area After Injection 

of the Retrograde Tracer Fluorogold into the Medial Superior Colliculus 

Scale bar equates to 200µm. Green represents fluorogold labelling, red represents 

propridum iodine nuclei staining.  
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Figure 3-10. Example of Retrograde Labelled Neurons in the Motor Cortex Area 2 After 

Injection of the Retrograde Tracer Fluorogold into the Lateral Superior Colliculus 

Scale bar equates to 200µm. Green represents fluorogold labelling, red represents 

propridum iodine nuclei staining. 

 

 

3.3.1.2 Midbrain  

Regions with retrogradely labelled cells, only after SCm injections, included the 

subthalamic nucleus (STh, ipsilateral), the dorsal raphe (DRV, bilateral), the external 

cortex of the inferior colliculus (ECIC, bilateral), the parabigeminal nucleus (PBG, 

bilateral) and the pontine nucleus (Pn, bilateral).  

The prerubral field (PR, ipsilateral) showed retrogradely labelled cells exclusively after 

SCl injections. 

A number of midbrain regions contained retrogradely labelled neurons after injections of 

tracer into either subdivision of the SC. These included the lateral lemniscus (ll, 
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ipsilateral), the PAG (bilateral), the mRt (bilateral), the substantia nigra (SNR, bilateral), 

and the SC (bilateral). The ll and the PAG showed similar density of retrogradely labelled 

cells, regardless of the injection site. The SC, mRt and SNR had differential numbers of 

retrogradely labelled cells following injection into the two subdivisions of the SC. The 

contralateral SCl was retrogradely labelled following injections into the SCm and the 

SCl. The mRt (ipsilateral) showed a higher number of retrogradely labelled cells after 

SCl than after SCm injections. The SNR equally showed larger numbers of retrogradely 

labelled cells following SCl injection when compared to SCm injections. In addition, 

there was a significant (p = 0.016, Mann-Whitney U-Test) preference for the 

ventromedial SNR to show retrogradely labelled cells following SCm injections and for 

the dorsolateral SNR to show retrogradely labelled cells following SCl injections (Figure 

3-7E, Figure 3-8A, Figure 3-11A right). 

 

3.3.1.3 Thalamic and Hypothalamic Areas  

Retrogradely labelled cells after SCm, but not after SCl injections, were found in the 

lateral posterior thalamic nucleus, mediorostral part (LPMR, ipsilateral) and the 

ventromedial hypothalamic nucleus (VMH, ipsilateral).  

SCl injections did not result in exclusive retrograde label in the thalamus or 

hypothalamus.  

A number of thalamic and hypothalamic regions contained retrogradely labelled neurons 

after both SCm, and SCl injections. The zona incerta ventral part (ZIV, ipsilateral) and 

dorsal part (ZID, ipsilateral) displayed retrograde neuronal labelling after injection into 

SCm and SCl. The ZIV was more strongly connected to the SC (l and m) than the ZID. 

Moreover, the neuronal projections from the ZI were spatially segregated, with the 

population projecting to the SCm being located in the dorsolateral region bordering on 

the dorsal lateral geniculate nucleus (DLG). The population projecting to the SCl was 

found in the ventromedial portion of ZI (Figure 3-7F, Figure 3-8F).  
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Figure 3-11. Modulation Indices (MIs) for Tracing Data. 

A. MIs of retrograde labelling in M2 vs. Cg (left) and SNR(dl) vs. SNR(vm) (right). B. 

MIs of anterograde labelling in SCm vs. SCl (left) and CPu(dm) vs. CPu(dl) (right). 

White bars indicate MIs after SCm injections, black bars indicate MIs after SCl 

injections, gray bars indicate MIs after M2 injections , and dashed bars MIs after Cg 

injections) ‘*’ represents p< 0.02. Nomenclature is derived from Franklin, K.B.J. & 

Paxinos, G. 2012. For abbreviations see list. 

 

 

 

3.3.1.4 Pretectum 

The pretectal area (PT, ipsilateral) was retrogradely labelled only after SCm injections. 

Retrogradely labelled cells were found in the nucleus of the posterior commissure 

(PCom, ipsilateral) after both SCm and SCl injections, while the PCom (contralateral) 

only sends efferents to the SCl. 
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To provide a general overview of input to the SC from the entire brain, a flatmap 

connection diagram of the areas which exhibited retrogradely labelled cells after SCm 

and SCl injections were generated (see Figure 3-12). 

 

3.3.2 Anterograde Tracing  

The anterograde procedure involved 5 M2 and 4 Cg injections with the BDA tracer. The 

tracer in all cases was confined to the target area and did not leak into neighbouring brain 

regions such as the corpus callosum (cc) or the third ventricle (Figure 3-13A-C). There 

was some variation in the anterior-posterior extent of the injection sites, which was 

caused by slight differences in overall bregma localisation, probe placement and brain 

size. This may have caused differences in the brain region and subregional origin of 

anterogradely labelled fibres. However any differences were mitigated by the strict 

inclusion criterion. Namely, that any brain region and subregional labelling 

bias/separation must have been present throughout all cohort cases to be included in the 

results. Based on this method, we will first describe cortical areas, where anterograde 

label was found exclusively after M2 injections, followed by a description of cortical 

areas where anterograde label was found exclusively after Cg injections. Thereafter, 

cortical areas will be described where anterograde label was found after both, M2 and Cg 

injections. This schema of description will be repeated for subcortical areas where 

anterograde label was found, focusing on areas where anterograde label was medium to 

strong. A complete list of all structures that showed anterograde label after M2 and Cg 

injections is given in Table 3-2. Flatfield connectivity maps for both of the anterograde 

tracing conditions were completed to better visualize the extent of labelling throughout 

the brain (Figure 3-14, Figure 3-15). Both regions predominantly projected ipsilateral, 

however a few regions also showed anterograde label contralateral to the injection site.  

Furthermore to aid in representation of the data, labelling from both the M2 and Cg is 

presented schematically in serial atlas sections for example cases, see Figure 3-16, and 

Figure 3-17.  
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Figure 3-12. Flatfield Map Summarising Retrograde Connectivity Patterns after Injection 

of Fluorogold into the Medial and Lateral Superior Colliculus 

Connectivity is displayed in four levels, low, medium, high and very high which is 

represented by the size of the circle. Red indicates medial SC retrograde connectivity, blue 

indicates lateral SC retrograde connectivity. Nomenclature is derived from Franklin, 

K.B.J. & Paxinos, G. 2012. For abbreviations see list. 
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Figure 3-13. Injections sites for Anterograde Tracing. 

A. Photomicrograph of biotinylated dextran anime injection into the M2. B. 

Photomicrograph of biotinylated dextran amine injection into the Cg. All scale bars 

equate to 250µm. C. Summary of injection sites for all cases in the anterograde tracing in 

the Cg and M2. Each shaded area represents the extent of the labelled injection site for 

both the Cg and M2. The darker shading indicates overlap of injection volume. 

Nomenclature is derived from Franklin, K.B.J. & Paxinos, G. 2012. For abbreviations see 

list. 
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Figure 3-14. Flatfield Map Summarising Anterograde Connectivity Patterns after Injection 

of BDA into the Motor Cortex Area 2 

Connectivity is displayed in four levels, low, medium, high and very high indicated by the 

thickness of the lines. Nomenclature is derived from Franklin, K.B.J. & Paxinos, G. 2012. 

75 
 



For abbreviations see list

 

Figure 3-15. Flatfield Map Summarising Anterograde Connectivity Patterns after Injection 

of BDA into the Cingulate Area 

Connectivity is displayed in four levels, low, medium, high and very high indicated by the 

thickness of the lines. Nomenclature is derived from Franklin, K.B.J. & Paxinos, G. 2012. 

For abbreviations see list. 
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Figure 3-16 (see below) 
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Figure 3-16. Schematic Representation of Anterograde Neuronal Labelling After Injection 

of Biotinylated Dextran Amine into the Motor Cortex Area 2 in Single Case 

Green lines represent labelled fibres. Green shaded areas represents injection site extent. 

Atlas sections adapted from Paxinos and Watson 2012. 
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Figure 3-17 (see below) 
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Figure 3-17. Schematic Representation of Anterograde Neuronal Labelling After Injection 

of Biotinylated Dextran Amine into the Cingulate Area in Single Case 

Green lines represent labelled fibres. Green shaded areas represents injection site extent. 

Atlas sections adapted from Paxinos and Watson 2012. 

 

 

3.3.2.1 Cortex 

The prefrontal cortex, the orbital cortex, lateral (LO, bilateral) and ventral (VO, bilateral) 

showed anterograde label exclusively after M2 injections. Anterograde label following 

M2 injections was found in virtually all primary somatosensory areas with stronger label 

in the barrel field (S1BF, ipsilateral) Figure 3-18A), than the limb (S1FL, ipsilateral, 

S1HL, ipsilateral), as well as trunk regions (S1Tr, ipsilateral, Figure 3-18B). A noticeable 

difference was found between the laminar connectivity profiles to S1BF and the rest of 

S1. In the S1BF anterograde labelling was concentrated in layer 1, 4 and 6, whereas for 

the other S1 regions, anterograde labelling was located in layer 5 and 6.  

In addition the ipsilateral primary motor cortex (M1, ipsilateral, layer 1, 5, 6, Figure 

3-13A, Figure 3-18B), visual cortex V2L (ipsilateral across layers 1, 4 and 5), the parietal 

cortex (MPtA, ipsilateral, LPtA, ipsilateral, with preferential labelling in layers 5 and 6), 
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the agranular insular cortex (AI, bilateral), the ectorhinal cortex (Ect, bilateral), 

postsubiculum (Post, ipsilateral), and the perirhinal cortex (PRh, bilateral) were 

anterogradely labelled exclusively after M2 injections. 

Within the prefrontal cortex, the only area with exclusive anterograde labelling after Cg 

injections was the dorsal tenia tecta (DTT, ipsilateral). V2ML was the only sensory area 

with exclusive anterograde label after Cg injections (ipsilateral, Figure 3-19A across 

layers 1-5). In addition the contralateral Cg showed anterograde label after Cg injections. 

Cortical areas anterogradely labelled after injections into M2 and Cg included the dorsal 

peduncular cortex (DP, ipsilateral and biased towards the caudal end), the claustrum (Cl, 

bilateral, with a bias to the contralateral side), the primary visual cortex (V1, ipsilateral), 

the V2MM (ipsilateral), the prelimbic cortex (PrL, ipsilateral), the medial orbital cortex 

(MO, ipsilateral), RSD (ipsilateral, Figure 3-18B, Figure 3-19B) and RSG, (ipsilateral, 

Figure 3-18B, Figure 3-19B ). 
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Figure 3-18. Example Photomicrographs of Anterogradely Labelled Brain Areas after 

Injection of BDA into the M2. 

A. Labelling seen in the primary somatosensory area (S1BF). B. Labelling seen 

throughout the RSD, M2, primary motor cortex (M1) and S1. C. Labelling seen in the 

lateral portion of the superior colliculus (SCl). D. Labelling seen in the dorsolateral 

striatum (CPu[dl]). E. Labelling seen in the thalamus, namely the lateral posterior 
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mediorostral and laterorostral part (LPLR, LPMR), the mediodorsal (MDL), the central 

lateral (CL) and the posterior (Po). All scale bars equate to 250µm. Nomenclature is 

derived from Franklin, K.B.J. & Paxinos, G. 2012. For abbreviations see list. 

 

 

 

Despite the shared input of the above areas from Cg and M2, some biases or subregional 

differences were observed. PrL was more strongly connected to Cg than M2, ipsilaterally. 

M2 projected to more anterior locations in MO than Cg. Following M2 and Cg injections, 

the retrosplenial cortex showed anterograde label mostly in the RSD subdivision. This 

was stronger after M2 injections (compared to Cg injections). Moreover, M2 injections 

resulted in anterograde labelling in the upper layers of RSD (layer 1-3, Figure 3-18B), 

whereas the Cg injections resulted in anterograde label in the lower cortical layers of 

RSD (layer 5-6, Figure 3-19B). V2MM received more input from M2 than Cg.  

 

3.3.2.2 Midbrain  

All of the midbrain areas that received input from M2, also received input from Cg, while 

the opposite was not the case (see below). 

Midbrain areas with anterograde label after Cg, but not M2 injections, were the ECIC, 

(ipsilateral), the STh (ipsilateral), the interpeduncular nucleus (IP, ipsilateral), the 

paramedian raphe nucleus (PMnR, ipsilateral), the median raphe nucleus (MnR, 

bilateral), and the Pn (ipsilateral).  

Anterograde label in the midbrain after both M2 and Cg injections, was found in the 

cerebral peduncle (cp, ipsilateral), the SNR (ipsilateral), the substantia nigra pars 

compacta (SNC, ipsilateral), the dorsolateral and ventrolateral PAG (DLPAG, ipsilateral, 

VLPAG, ipsilateral), mRt (ipsilateral), the SCl (ipsilateral), and SCm (ipsilateral). 

Despite the fact that the above areas showed anterograde label after either injection, some 

areas showed a spatial preference of anterograde labelling within their subdivisions. The 

PAG was more strongly labelled in the dorso-lateral part (DLPAG) after Cg injections, 

while it was more strongly labelled in the ventro-lateral part (VLPAG) following M2 

injections. The substantia nigra, while receiving input from both areas, did so in a 
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topographically biased manner. The SNR received connections from both the Cg and M2 

which terminated onto the ventromedial part of the area. The SNC received sparse 

connections from the Cg and more abundant connections from M2.  

Other midbrain regions received stronger input from one of the two areas. The mRt 

showed more anterograde label after M2 than after Cg injections. The SCl showed more 

anterograde label than SCm after M2 injections, whilst the opposite was the case after Cg 

injections (Figure 3-18C, Figure 3-19C). This preference was significant (p= 0.016, 

Mann-Whitney U-Test) (Figure 3-11B left). Additionally, anterograde label from the Cg 

was found in more anterior parts of the SC than that arising from M2.  

3.3.2.3 Basal Forebrain 

The basal forebrain did not show anterograde label after M2 injections. Anterograde label 

was found in parts of the medial basal forebrain after Cg injections. Specifically, the 

medial septal nuclei (MS, bilateral), the lateral septal nuclei (LS, bilateral), the diagonal 

band, vertical limb (VDB, bilateral), and the diagonal band, horizontal limb (HDB, 

bilateral) showed anterograde label. The HDB connections expressed a bias for ipsilateral 

over contralateral connectivity.  

3.3.2.4 Basal Ganglia 

The globus pallidus (GP, ipsilateral) was anterogradely labelled only after M2, not after 

Cg injections. No parts of the basal ganglia were exclusively labelled after Cg injections. 

Furthermore the core of the nucleus accumbens (AcbC, ipsilateral) received low levels of 

input from Cg. 

The striatum showed anterograde label after either M2 or Cg injections, albeit in a 

topographically segregated manner. The dorsolateral striatum (CPu[dl], ipsilateral) was 

more strongly labelled after M2 injections. Conversely, the dorsomedial striatum 

(CPu[dm], ipsilateral) was more strongly labelled following Cg injections (Figure 3-18D, 

Figure 3-19D). This topographical difference was significant (p = 0.016, Mann-Whitney 

U-Test) (Figure 3-11 right). Contralaterally, the CPu(dl) received few projections from 

M2, while the CPu(dm) received few projections from the Cg.  
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Figure 3-19. Example Photomicrographs of Anterogradely Labelled Brain Areas after 

Injection of BDA into the Cingulate Area. 

A. Labelling seen in the secondary visual cortex (V2MM, V2ML). B. Labelling seen 

throughout the RSG. C. Labelling seen in the medial portion of the superior colliculus 

(SCm). D. Labelling seen in the dorsomedial striatum (CPu[dm]). E. Labelling seen in 

the thalamus, namely the LPMR, the MDL, the CL and the Po and the lateral habenula 
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(LHb). All scale bars equate to 250µm. Nomenclature is derived from Franklin, K.B.J. & 

Paxinos, G. 2012. For abbreviations see list. 

 

 

 

3.3.2.5 Thalamic and Hypothalamic Areas  

Anterograde labelling was observed only after M2 injections in the lateral posterior 

thalamic nucleus, laterorostral part (LPLR, ipsilateral, Figure 3-18E), the dorsal portion 

of the posterior thalamic nuclear group (Po, ipsilateral, Figure 3-18E), the laterodorsal 

thalamic nucleus, dorsomedial part (LDDM, ipsilateral), and the ventrolateral thalamic 

nucleus (VL, ipsilateral, dorsal portion).  

The Cg projects to a larger number of thalamic nuclei, which were not matched by 

projections from M2. Exclusive anterograde label following Cg injections was found in 

the paracentral thalamic nuclei (PC, ipsilateral), the central medial thalamic nuclei (CM, 

bilateral), and the lateral habenular nucleus (LHb, ipsilateral, Figure 3-19E). Projections 

from Cg targeted the interanterodorsal thalamus (IAD, bilateral), with an ipsilateral bias. 

Cg projections to the dorsal lateral geniculate nucleus (DLG, ipsilateral) were found in 

the dorsolateral part of the area. Selective projections to the hypothalamus were restricted 

to the peduncular part of the lateral hypothalamus (PLH, ipsilateral).  

Areas with anterograde label after both, M2 and Cg injections included the anteroventral 

thalamus, dorsomedial (AVDM, ipsilateral) and ventrolateral (AVVL, ipsilateral), the 

submedius thalamic nucleus (Sub, ipsilateral), the reticular nucleus (Rt, ipsilateral), the 

zona incerta, dorsal (ZID, ipsilateral) and ventral (ZIV, ipsilateral) portions, the 

ventromedial thalamic nucleus (VM, ipsilateral), the central lateral nucleus (CL, 

ipsilateral, Figure 3-18E, Figure 3-19E), anteromedial thalamic nucleus (AM, ipsilateral), 

the laterodorsal thalamic nucleus, ventrolateral part (LDVL, ipsilateral), the mediodorsal 

thalamic nucleus, lateral part (MDL, ipsilateral), and the lateral posterior thalamic 

nucleus, mediorostral part (LPMR, ipsilateral, Figure 3-18E, Figure 3-19E), the ventral 

anterior thalamic nucleus (VA, ipsilateral), and the reuniens thalamus (Re, bilateral). 

A few thalamic areas showed partial topographical label segregation after M2 and Cg 

injections. In VM, anterograde label following Cg injections occurred throughout the 

86 
 



area, whereas anterograde label following M2 injections was restricted to the ventral 

region. In CL, anterograde label following Cg injections was restricted to the dorsal 

portion of the area, while input from the M2 was found further down the dorsal-ventral 

axis (Figure 3-18E, Figure 3-19E).  

In addition, anterograde label strength in some areas differed depending on the injection 

site. The AM, LDVL, MDL, and the LPMR showed more anterograde label after M2, 

than after Cg injections (Figure 3-18E, Figure 3-19E). All of these areas displayed a 

topographical preference in their labelling pattern. Label in AM, regardless of injection 

site (M2, Cg), was found in the lateral part. Label in LDVL after M2 injections was 

found more in the ventral part; whereas no preference was found following Cg injections. 

M2 injections resulted in preferential anterograde label in the lateral portion of the MDL, 

while Cg injections resulted in preferential anterograde label in dorsal portion of MDL. 

M2 originating label in LPMR occurred more ventromedially, while Cg originating label 

occurred more dorsomedially (Figure 3-18E, Figure 3-19E). The Cg projected more 

heavily to VA and Re, than M2 did.  

 

3.3.2.6 Amygdala 

Anterograde label was found in the basolateral amygdaloid nucleus, anterior part (BLA, 

ipsilateral) following Cg injections, but not M2 injections.  

 

3.3.2.7 Pretectum 

The anterior pretectal nucleus (APT, ipsilateral) showed anterograde label following Cg 

and M2 injections. 
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Table 3-2. Qualitative Densities of Anterogradely Labelled Brain Areas After Injection of 

BDA in the Cingulate Area of Motor Cortex Area 2 

Relative percentage area coverage measured in five levels (none ‘-’, low ‘+’, medium 

‘++’, high ‘+++’ and very high ‘++++’) for anterogradely traced brain regions averaged 

across the experimental cohort. These measures were assigned via non-quantitative visual 

assessment.  

    M2 Cg 

 
  Ipsi Contra Ipsi Contra 

Cortex           

Association/ 

multimodal  
    

Cl claustrum + ++ + ++ 

Ect ectorhinal cortex + + - - 

M1 (Pos) primary motor cortex ++ - - - 

M2 (An) secondary motor cortex ++ + - - 

M2 (Pos) secondary motor cortex +++ ++ ++ + 

Post postsubiculum + - - - 

PRh perirhinal cortex + + - - 

RSD retrosplenial dysgranular cortex +++ - ++ - 

RSG retrosplenial granular cortex + - + - 

Parietal      

LPtA lateral parietal association cortex ++ - - - 

MPtA medial parietal association cortex ++ - - - 

Prefrontal      

AI agranular insular cortex + - - - 

Cg1 (An) cingulate cortex, area 1 + - ++ - 
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Cg1 (Pos) cingulate cortex, area 1 - - +++ ++ 

Cg2 (An) cingulate cortex, area 2 - - ++ + 

DP dorsal peduncular cortex + - + - 

DTT dorsal tenia tecta - - ++ - 

LO lateral orbital cortex +++ + - - 

MO medial orbital cortex ++ - ++ - 

PrL prelimbic cortex ++ - 

+++

+ - 

VO ventral orbital cortex + + - - 

Sensory      

S1BF 

 

primary somatosensory cortex, 

barrel field 

++++ 

 

- 

 

- 

 - 

S1FL 

 

primary somatosensory cortex, 

forelimb region 

++ 

 

- 

 

- 

 

- 

 

S1HL 

 

primary somatosensory cortex, 

hindlimb region 

++ 

 

- 

 

- 

 

- 

 

S1Tr 

 

primary somatosensory cortex, 

trunk region 

+ 

 

- 

 

- 

 

- 

 

V1 primary visual cortex + - + - 

V2L 

 

secondary visual cortex, lateral 

area ++ - - - 

V2ML 

 

secondary visual cortex, 

mediolateral area 

- 

 

- 

 

+ 

 

- 

 

V2MM 

 

secondary visual cortex, 

mediomedial area 

++ 

 

- 

 

+ 

 

- 

 

Basal Ganglia      
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Cpu (dl) 

 

caudate putamen (striatum), 

dorsolateral  

++ 

 

+ 

 

- 

 

- 

 

Cpu (dm) 

 

caudate putamen (striatum), 

dorsomedial  

++ 

 

- 

 

+++ 

 

+ 

 

GP globus pallidus + - - - 

Basal Forebrain           

AcbC accumbens nucleus, core - - + - 

HBO horizontal limb diagonal band  - - ++ - 

LS lateral septal - - + + 

MS medial septal - - + + 

VBD 

 

nucleus of the vertical limb of the 

diagonal band 

- 

 

- 

 

+ 

 

+ 

 

Thalamus           

AM anteromedial thalamic nucleus ++ - + - 

AVDM 

 

anteroventral thalamic nucleus, 

dorsomedial part 

+ 

 

- 

 

+ 

 

- 

 

AVVL 

 

anteroventral thalamic nucleus, 

ventrolateral part 

+ 

 

- 

 

+ 

 

- 

 

CL centrolateral thalamic nucleus ++ - ++ - 

CM central medial thalamic nucleus - - + - 

DLG dorsal lateral geniculate nucleus - - + - 

IAD interanterodorsal thalamic nucleus - - ++ + 

LDDM 

 

laterodorsal thalamic nucleus, 

dorsomedial part 

++ 

 

- 

 

- 

 

- 

 

LDVL 

 

laterodorsal thalamic nucleus, 

ventrolateral part 

++ 

 

- 

 

+ 

 

- 
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LHb lateral habenular nucleus - - ++ - 

LPMR 

 

lateral posterior thalamic nucleus, 

mediorostral part 

++ 

 

- 

 

+ 

 

- 

 

LPLR 

 

lateral posterior thalamic nucleus, 

laterorostral part 

+ 

 

- 

 

- 

 

- 

 

MDL 

 

mediodorsal thalamic nucleus, 

lateral part 

++ 

 

- 

 

+ 

 

- 

 

PC paracentral thalamic nucleus - - + - 

Po posterior thalamic nuclear group + - - - 

Re reuniens thalamic nucleus + + ++ ++ 

Rt reticular nucleus (prethalamus) ++ - ++ - 

Sub submedius thalamic nucleus + - + - 

VA ventral anterior thalamic nucleus ++ - +++ - 

VM ventromedial thalamic nucleus ++ - ++ - 

VL ventrolateral thalamic nucleus + - - - 

VPM ventral posteromedial nucleus + - - - 

ZID zona incerta, dorsal part ++ - ++ - 

ZIV zona incerta, ventral part ++ - ++ - 

Midbrain           

ECIC 

 

external cortex of the inferior 

colliculus 

- 

 

- 

 

+ 

 

- 

 

IP interpeduncular nucleus - - ++ - 

MnR median raphe nucleus - - + + 

mRt mesencephalic reticular formation +++ - ++ - 

PAG periaqueductal gray + - ++ - 

PMnR paramedian raphe nucleus - - ++ - 
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Pn pontine nuclei - - ++ - 

SC (l) superior colliculus (lateral part) ++++ - ++ - 

SC (m) superior colliculus (medial part) ++ - +++ - 

SNCD 

 

substantia nigra, compact part, 

dorsal tier 

++ 

 

- 

 

+ 

 

- 

 

SNR substantia nigra, reticular part + - + - 

STh subthalamic nucleus - - + - 

Hypothalamus           

PLH 

 

peduncular part of lateral 

hypothalamus 

- 

 

- 

 

+ 

 

- 

 

Pretectum           

APT anterior pretectal nucleus + - + - 

Amygdala           

BLA 

 

basolateral amygdaloid nucleus, 

anterior part - - ++ - 

 

3.4 Discussion 

These experiments delineated the main cortical and subcortical inputs to the medial and 

lateral SC of the mouse, as well as the target areas of two key frontal areas providing 

strong preferential input to these SC subdivisions.  

A limited overlap in the cortical and subcortical afferents to the SCm and SCl was found. 

The majority of regions which project to the SCm have visual, extra-personal (far) space 

and negative affective state related functionality. The majority of regions which project to 

the SCl have somato-motor, peri-personal (near) space related functionality. Areas which 

were labelled after injection into either of the two subdivisions of the SC, often showed 

topographically segregated cell populations with limited spatial overlap.  

The main prefrontal areas providing segregated inputs to middle and lower layers of the 

SC, Cg and M2, equally target functionally segregated networks. Areas which received 
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input solely from the Cg are functionally related to vision, emotional state and avoidance 

behaviours. Areas which received input solely from M2 are functionally related to 

somato-sensation, gustation and approach behaviours. Areas which received projections 

from both Cg and M2 often had a tendency to have topographical segregation, suggesting 

that functional specialization in these areas exists at the level of subpopulations.  

 

3.4.1 Relations to previous literature 

3.4.1.1 SC Retrograde Tracing 

The retrograde tracing data herein are largely consistent with the existing literature 

(Taylor et al., 1986). However, the differential connectivity between the SCm and SCl, 

while largely in agreement with the respective analysis in the rat (Comoli et al., 2012), 

shows some discrepancies. Furthermore, additional discrepancies exist when compared to 

the whole brain imaging project (Oh et al., 2014).  

Comoli et al. (2012) reported retrograde labelling in the ectorhinal, infralimbic, prelimbic 

cortices, the parietal region, the temporal association area (TEa), the postsubiculum, the 

premamillary nucleus, and the LGN after injections into the SCm, which we did not find. 

Following SCl injections, retrograde label was not found in the insular cortex in our 

study, while it was reported by Comoli et al (2012).  

Some of these discrepancies can be resolved, for example the parietal region uncovered 

to project to SCm by Comoli et al (2012), is likely to be equivalent to the region termed 

the secondary visual cortex in our work, a consequence of the sometimes variable use of 

nomenclature in relation to mouse cortical areas (Harvey et al., 2012, Guo et al., 2014). 

Oh et al. (2014) reported retrogradely labelled cells in a variety of regions which were not 

labelled in our data. These included projections to both the SCm and SCl from the 

prefrontal orbital cortex, primary sensory areas the AuD, thalamic and hypothalamic 

areas (LGN, Po, VM, anterior hypothalamic nucleus, dorsomedial nucleus of the 

hypothalamus (DMH), posterior hypothalamic nucleus, parafascicular nucleus), the 

amygdala, and the midbrain (the mammillary nucleus, pedunculopontine nucleus, ventral 

tegemental area (VTA), red nucleus). 

Furthermore their data uncovered areas which connected solely to the SCm which were 

not found in our results, e.g. such as the prefrontal area IL, primary sensory areas (V1, 
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S1), cortical areas (Ect, TEa, postrhinal area, subiculum, postsubiculum), the amygdala 

and the hippocampus.  

Brain regions found to connect only to the SCl in the Oh et al 2014 paper and not our 

data included prefrontal (AI), sensory (V2, S2), thalamus and hypothalamus (MDL, 

VPM, arcuate hypothalamic nucleus, VMH), and the midbrain (anterior pretectal nucleus, 

intermediate reticular nucleus, Pn, DRV) (Oh et al., 2014).  

In addition, retrogradely labelled cells were found in areas, which were not reported by 

Comoli et al (2012). These included the external cortex of the inferior colliculus (ECIC), 

the PBG, the Pn and the prerubral field. The input from the PBG and the ECIC to the rat 

SC, however, has been shown previously (Taylor et al., 1986). The differences observed 

between the results presented here and the Comoli paper may reflect species specific 

connectivity and/or differences in relative injection site.  

 

3.4.1.2 M2/Cg Anterograde Tracing 

In general the projections identified from Cg and M2 mouse cortical and subcortical 

targets are similar to those found previously in the rat (Domesick, 1969, Vogt and Miller, 

1983, Reep et al., 1987, Gabbott et al., 2005). However, in comparison with more recent 

brain mapping studies, some discrepancies were found (Oh et al., 2014, Zingg et al., 

2014).  

For example, a number of target areas were found by Oh et al (2014) as well as Zingg et 

al. (2014) studies after injections of anterograde tracer in Cg and M2 which were not 

uncovered in our results. These included the prefrontal region the frontal pole, the 

sensory related area area AuD, cortical area the areas (piriform cortex,), the basal 

forebrain (substantia innominata), the thalamus and hypothalamus (AD, paraventricular 

thalamic area, DMH, preoptic area), and the midbrain (mammillary nucleus, VTA, 

central raphe nucleus). 

Following injections into Cg Oh et al. (2014) found projections to prefrontal areas (AI, 

IL, orbital), primary sensory areas (M1), cortical areas (entorhinal cortex, ECT, TEa, 

endopiriform cortex, POST), the thalamus and hypothalamus (Po, anterior hypothalamic 

nucleus, paraventricular hypothalamus) the midbrain (pretectal nucleus, PCom), and the 

hippocampus. Our injections did not show label in these areas. 
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Additionally, following injection into M2 they (Oh et al. 2014) reported anterograde 

connections with the gustatory region, the perirhinal cortex, the parafascicular thalamic 

nucleus, the AbC, the midbrain (APT, PBG, tegmental reticular nucleus) and the 

amygdala, which we equally did not find. 

Furthermore following M2 injections we did not find anterograde labelling in the PC, the 

STh, and the dorsal raphe nucleus, unlike previous reports. Moreover, we found 

anterograde label in the SNC and the AV after M2 injections, which were not reported in 

previous studies in the rat. Again these difference may be species specific, or could result 

from differences in injection sites and labelling techniques.  

 

3.4.2 Functional implications 

3.4.2.1 Relation of Anatomical Visual Connectivity to Functionally Defined Visual 

Regions 

This work has identified a number of differing connectivity patterns from secondary 

visual areas onto the SC and from the prefrontal areas (Cg, M2) to those secondary visual 

areas. Due to the increased focus in the literature on functionally defined higher visual 

areas, it is important to relate any anatomical patterns in these functional terms (Wang 

and Burkhalter, 2007, Marshel et al., 2011, Garrett et al., 2014).  

In the SCm cohort, labelling was found in all parts of the secondary visual cortex. From 

the pattern of labelled cells this may equated to connectivity from a number of 

functionally defined visual regions, i.e. the anteromedial area (AM), rostrolateral area 

(RL) and posteromedial (PM) (Wang and Burkhalter, 2007).). AM has a high temporal 

frequency preference which may aid an animal in detecting fast moving stimuli such as 

predators (Marshel et al., 2011). PM has a higher spatial frequency preference which may 

aid in identification of the object in the visual environment. Furthermore, the more 

medial areas AM and PM respond to stimuli in the peripheral visual field (Marshel et al., 

2011, Garrett et al., 2014). Similarly, the visual projections of Cg terminate in V2MM 

and V2ML, which may match the functionally defined areas AM and PM. This suggests 

that AM and PM receive innervation from Cg, which provide the SCm with information 

regarding the location and spatial features of visual stimuli in the upper/peripheral visual 

field. This may be important to the development of upcoming avoidance behaviours to 

predators. 
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The visual projections from M2 terminate in the V2L region, which, as defined in this 

study, may match a number of functionally defined visual areas such as 

laterointermediate area (LI), rostrolateral area (RL) and PM (Wang and Burkhalter, 

2007). LI, similarly to PM, has a higher spatial frequency preference than other higher 

visual areas and may be related to object recognition/classification. The functional region 

RL has been previously localized in the parietal region of the mouse cortex and has been 

implicated in visual and whisker multisensory integration (Olcese et al., 2013). RL has a 

preference for high temporal frequency stimuli and represents the lower central visual 

field (Marshel et al., 2011, Garrett et al., 2014). In conjunction with our data this suggests 

that RL may be linked in guiding the sensory information regarding stimuli in the lower 

visual field to aid orienting behaviours. 

 

3.4.2.2 SCm and avoidance behaviours  

The SCm contains a retinotopic map of the upper visual space, via projections from the 

retina, primary and secondary visual areas (V1, V2MM, V2ML, V2L) (Ahmadlou and 

Heimel, 2015). Looming stimuli in the upper visual field elicits fear responses that are 

mediated from the SC through the LP to the amygdala (Wei et al., 2015). Furthermore, 

optogenetic stimulation of SCm elicits the upper visual field avoidance behaviours which 

are initiated via the PBG and the Pn (Shang et al., 2015). Reciprocal connectivity to the 

SCm from LP, a possible rodent homologue of the pulvinar, may deliver information to 

guide orienting behaviours (Wei et al., 2015). Finally, areas directly involved in fear 

processing such as the VMH and the PAG may conduct fear-state information to the SC 

(Dielenberg et al., 2001). Once the avoidance sensorimotor transduction has been 

processed in the SCm, signals can be sent through the uncrossed tecto-reticulo-spinal 

tract which mediates the avoidance related motor output (Redgrave et al., 1988). 

 

3.4.2.3 SCl and approach behaviours  

The SCl is retinotopically mapped to the lower visual space, where appetitive stimuli, 

such as prey or offspring are likely to occur, both of which require approach-orienting 

responses, (Ahmadlou and Heimel, 2015). In rats, appetitive hunting and whisking 

behaviour results in increased c-FOS expression within the SCl, and lesions of the SCl 

decrease predatory orienting behaviours (Furigo et al., 2010, Favaro et al., 2011). 
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Research groups which investigate auditory or odor cued orienting responses in the SC 

often place probes (electrodes, optrodes) in the lateral portion of the SC (Felsen and 

Mainen, 2012, Stubblefield et al., 2013, Duan et al., 2015), and thus our knowledge 

regarding stimulus processing in the mouse SC might be biased towards appetitive 

stimulus types. Once processed, the SCl sends the information through the crossed tecto-

reticulo-spinal tract to brain stem motor nuclei to initiate approach behaviour (Redgrave 

et al., 1990).  

Although this research has highlighted an existing dichotomy in the separation of 

approach and avoidance behaviours regarding the location of stimuli in the visual field, it 

must be noted that this segregation is not complete. Studies have used visually stimuli in 

the upper visual field which require approach behaviours (Harvey et al., 2009, Scott et 

al., 2015) conversely studies have employed stimuli which occur in the lower visual field 

which require avoidance behaviours (Ho et al., 2015, Manita et al., 2015). However in 

these studies the stimuli have usually been presented a large number of times and have 

been associated with either a positive or negative outcome. This associative learning may 

then override the innate visual field associated orienting biases that are normally present. 

 

3.4.2.4 Cortical control of orienting behaviour 

M2 and Cg innervate different sections of the SC which suggests that they control 

separate types of orienting behaviour. If so, it should be reflected in their cortical and 

subcortical efferent projections. This was investigated by anterograde tract tracing, and 

indeed uncovered a difference in projection patterns. 

M2 mostly sends efferents to SCl and somatosensory cortical areas. M2 in the mouse 

may be the homolog to Frontal Orienting Field (FOF) in rats (Erlich et al., 2011). 

Behaviourally, M2 has been implicated in top-down modulation of somatosensory based 

orienting and appetitive approach behaviours (Erlich et al., 2011, Guo et al., 2014). 

Additionally, M2 projects to parietal regions (MPtA, LPtA), which are involved in 

evidence accumulation and decision formation (Hanks et al., 2015). M2 neurons encode a 

categorical classification of evidence in decision making, while parietal neurons encode a 

more continuous representation of accumulated evidence (Hanks et al., 2015). The 

connection from M2 to MPtA and LPtA suggests that parietal cortex and frontal cortex 

interact in a reciprocal manner, rather than in a simple feed-forward scheme where 
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accumulated evidence in one area is converted into a categorical representation at a 

higher level. Lesions of M2 in rats cause a deficit in orienting, while microstimulation 

elicits orienting type behaviours (Cowey and Bozek, 1974, Sinnamon and Galer, 1984). 

A recent study has indicated that both the M2 and the SCl are involved in the generation 

of short term memory representations which are required for sensory orienting (Kopec et 

al., 2015). Taken together this information lends weight to the role of the M2 area in 

guiding orienting approach related behaviours which are mediated via the SCl.  

The Cg is the major source of prefrontal input into the intermediate and lower layers of 

the SCm. Behaviourally, it has been implicated in top-down modulation of aversion 

related behaviours. Lesions of the Cg in rabbits reduces avoidance behaviours in relation 

to noxious stimuli (Gabriel et al., 1991). Furthermore, Cg activity can precede aversion 

responses to pain (Freeman Jr et al., 1996). Indeed, stimulation of Cg in rodents 

facilitates nociceptive reflexes (Calejesan et al., 2000). The Cg is heavily interconnected 

with regions involved in pain and fear processing (MD, amygdala, and hypothalamus). 

Cg projects to a number of areas in the basal forebrain which are part of the 

arousal/attention network. Activation of the Cg could thus result in heightened states of 

arousal, through activation of those pathways. Taken together this indicates the role of 

the Cg in pain and fear processing, which would result in the planning of avoidance 

behaviours, and which can be mediated via the SCm.  

In conclusion, this study has revealed anatomically segregated circuits in the mouse brain 

that likely orchestrate approach and avoidance behaviour, respectively. Avoidance 

behaviour is likely sub-served by Cg, secondary visual cortices, auditory areas, and the 

dysgranular retrospenial cortex in conjunction with SCm. Conversely, 

approach/appetitive behaviours is likely subserved by M2, somatosensory cortex, and the 

granular retrospenial cortex in conjunction with the SCl.  
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Chapter 4. Comparison of Visual Bottom-up Attention in the Macaque 

and Mouse Primary Visual Cortex 

 

4.1 Introduction 

The central focus of this thesis has been how two different basic orienting responses could 

map onto (partially) segregated neuroanatomical circuits in the mouse. Both of the 

orienting responses considered, namely approach and avoidance, can be triggered by 

unexpected salient stimuli in the external world, activating a form of bottom-up (BU) 

attentional processing. To investigate the neural signatures of this, a comparison of 

bottom-up attentional processing in the primary visual cortex in the mouse and the 

macaque is the topic of the current chapter. BU attention has been previously described in 

Chapter 1. To briefly reiterate, BU attention is triggered by unexpected salient stimuli. 

This could be a brief high contrast visual stimulus which appears in the visual field, 

unexpected salient sounds, somatosensory stimuli, and even odours and tastes. Such a 

stimulus, in turn, elicits an overt orienting action, like a saccade in macaques or a 

head/body movement in rodents; or it can focus attention to the cued location without any 

external movement (Posner, 1980, Nakayama and Mackeben, 1989, Wang et al., 2015). 

The neurophysiological signatures underlying this form of orienting is the topic in this 

chapter.  

The effects of attentional (external) cueing of potentially relevant stimulus locations has 

been reported previously (Posner, 1980, Corbetta and Shulman, 2002). This was first 

examined in human psychophysics through the use of central or peripheral cues which 

preceded a visual stimulus at a peripheral visual location (Posner, 1980). It was found that 

cueing the upcoming stimulus location could increase accuracy in the task, and decrease 

reaction times. Further studies disentangled the effects of central vs peripheral cueing, and 

showed that central cues would elicit top-down attentional modulation, whereas peripheral 

cues could elicit a transient BU modulation (Nakayama and Mackeben, 1989). BU 

attentional modulation has been shown to increase contrast sensitivity, and spatial acuity at 

a behavioural level (Lu and Dosher, 1998, Carrasco et al., 2000, Liu et al., 2005).  

At the neuronal level BU attention has been shown to increase firing rates in the parietal 

cortex, prefrontal cortex and V1 to spatial locations and stimuli where attention is directed 

(Gottlieb et al., 1998, Bisley and Goldberg, 2003, Katsuki and Constantinidis, 2012, Wang 
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et al., 2015). These studies have shed some light on the neuronal basis of BU attention in 

macaques, but very little is known about these processes in rodents. However, orienting 

behaviours which require attention have been studied in rodents (Wallace et al., 1993, 

Erlich et al., 2011, Felsen and Mainen, 2012, Guo et al., 2014). These have usually been 

studied in animals which were freely moving and therefore showed overt orienting action 

(Felsen and Mainen, 2012). Moreover, some of these will have required top-down 

attention, or a combination of bottom-up and top-down attention. Even studies that 

focused on headfixed animals used visual stimuli without pre-cueing, and thus do not 

allow for immediate comparison to data from macaque electrophysiology. To address 

these deficits, and compare processing in two different key animal models used in 

neuroscientific research we decided to perform matched experiments which trigger BU 

attention mechanisms in humans and in non-human primates.  

These experiments used a paradigm similar to that used in human attentional studies to 

investigate the neural responses to BU attention in the macaque and the mouse. The 

paradigm is adapted from a previous human fMRI study (Liu et al., 2005).The use of the 

same experimental paradigm in both model species allows for detailed comparative 

analysis to be made regarding the fundamental processing on attentional signals in such 

animals.  

 

4.2 Methodology 

4.2.1 Data Analysis 

The detailed data analysis has been described previously (see section 2.6). In brief the 

spiking, multiunit envelope and LFP data were all examined in this section. They were 

aligned to the trial events on the recording day and averaged across trials and the entire 

experiment for the different stimulus and cuing conditions. To analyse the data a number 

of techniques were used. Firstly a mixed model repeated measure multi-factor ANOVA 

was conducted on the single electrode contacts for both the spiking and MUAe data. This 

was used to inform the further analysis. The grand averages for the entire recording 

populations in the different visual areas of the animals (V1 and V4 for macaque, and V1 

and SC for the mouse) were compiled for contacts with a z-score of stimulus induced 

activity over spontaneous activity of above 3. This informed further descriptive analysis 

and post-hoc analysis through the use of Wilcoxon Rank Sign Tests. Furthermore the LFP 
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was analysed with a matching pursuit algorithm to complete a time frequency analysis on 

the data to uncover differences in the spectral power in response to different stimulus and 

cuing conditions.  

 

4.3 Results 

4.3.1 Electrophysiology 

4.3.1.1 Macaque 

The procedure involved 41 laminar (16 contact) electrode recordings in one animal. These 

consisted of passive (n=16) and active (n=25) task dataset (recordings from a laminar 

electrode), as detailed above in section 2.4. The passive recordings were conducted prior 

to the active task. This was done to ensure that during the passive task the animal 

experienced no reward associations with the stimuli, and thus would not perform the task 

covertly even though no response was required. The passive task contained 8 V1 and 8 V4 

recordings which were done in separate sessions. For the active task there were a mixture 

of V1 (n=1), V4 (n=4) and simultaneous V1 and V4 recordings (n=10) completed on 

separate sessions. I investigated whether the cuing conditions differently affected neuronal 

activity in the passive vs. the active task. This was done for the pre-cue and the stimulus 

time period, using the MUAe signal. There were no significant differences between the 

active and passive bottom-up paradigm during either the cuing or stimulus time periods. 

This allowed the data from the two tasks to be pooled to increase statistical power for the 

rest of the analysis.  

 

4.3.1.1.1 Spiking Data 

4.3.1.1.1.1  Overall Effects of Precuing 

To test whether different forms of (pre/post)-cuing and grating (vertical/horizontal) 

conditions affected neuronal spiking activity at the single contact (unit) level, a multi-

factor 2x4x4 ANOVA (factors: grating type [2 levels], cue [4 levels], time period analysed 

[4 levels]) was used, as described in section 2.6.1. Activity (sp/sec) in different time 

periods of single trials (pre-cue, stimulus, post-cue and pre-cue on to post-cue off ) were 

the measured variables. Based on the signal to noise ratio criterion employed (z-score > 3 
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for stimulus related time period over spontaneous activity), the analysis was conducted on 

spiking activity from 21 contacts in V1 and 36 contacts from V4.  

 

4.3.1.1.1.2 Cueing Effects at the Level of Single Cells (Contact)  

In V1 significant effects of time window were found on all contacts, (n=21/21, p<0.001, 

RM- mixed model ANOVA). This result was expected and not particularly interesting, as 

stimulus presentation in the RF should increase firing rates. 13/21 of the contacts showed 

a significant effect of grating type (p<0.001), i.e. an orientation preference. 2/21 of the 

contacts exhibited a significant effect of cuing condition (p<0.05). When examining 

interactions, 12/21 contacts had a significant interaction between the grating type and the 

time window (p<0.05). 3/21 contacts showed a significant cue condition and time window 

interaction (p<0.05). Finally, one contact showed a significant interaction of grating type, 

cueing condition, and experimental time period (p<0.05). An illustrative example of a 

single responsive neuron in V1 is shown below (Figure 4-1).  

Important differences were found for the V4 recordings, when compared to the V1 

recordings. Significant effects of the time window were found in all V4 contacts, 

(n=37/37, p<0.001, RM- mixed model ANOVA). However, the cuing conditions induced 

significant changes in firing rate on 16/37 V4 contacts (p<0.001, ANOVA). Different 

firing rates due to grating type occurred on 11/37 V4 contacts (p<0.05, ANOVA). 32/37 

V4 contacts showed a significant interaction (p<0.05) between the cuing conditions and 

the time window. 10/37 V4 contacts showed a significant interaction between the grating 

type and the time window, (p<0.05). 4/37 V4 contacts showed significant interaction 

between the grating type and the cuing condition (p<0.05). Finally, a single V4 contact 

had a significant three way interaction between the grating type, the cuing condition and 

the time window. An illustrative example of a single responsive neuron in V1 is shown 

below (Figure 4-2). 
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Figure 4-1. Raster Plots and Peristimulus Time Histograms for an Example Neuron in 

Macaque V1 

Raster plots (upper panels) and histograms (lower panels) for the two grating types 

(horizontal [left] and vertical [right] grating) for a V1 neuron. Red ticks/trace equate to 

pre-cue RF condition, dark blue ticks/trace equate to pre-cue non-RF condition, orange 

ticks/trace equate to post-cue RF condition, light blue ticks/trace equate to post-cue non-

RF condition. X-axis shows time relative to stimulus onset (time 0). The different cuing, 

and stimulus analysis periods are shown by vertical lines, demarcating precue onset and 

offset (black), stimulus onset and offset (yellow), post-cue onset and offset (green) 

respectively. Solid lines of the histograms show means. 
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Figure 4-2. Raster Plots and Peristimulus Time Histograms for an Example Neuron in 

Macaque V4 

Raster plots (upper panels) and histograms (lower panels) for the two grating types 

(horizontal [left] and vertical [right] grating) for a V4 neuron. Red ticks/trace equate to 

pre-cue RF condition, dark blue ticks/trace equate to pre-cue non-RF condition, orange 

ticks/trace equate to post-cue RF condition, light blue ticks/trace equate to post-cue non-

RF condition. X-axis shows time relative to stimulus onset (time 0). The different cuing, 

and stimulus analysis periods are shown by vertical lines, demarcating precue onset and 

offset (black), stimulus onset and offset (yellow), post-cue onset and offset (green) 

respectively. Solid lines of the histograms show means. 
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4.3.1.1.1.3 Cueing Effects at the Population Level  

 

The population PSTHs are shown in Figure 4-3 and Figure 4-4. Some features of these 

PSTHs are described below descriptively, as these will inform the more quantitative 

analysis that follows thereafter.  

 

Figure 4-3. Average Normalised Population Firing Rates in Macaque V1 and V4 for Pre-

cue RF vs Post-cue RF Conditions. 

Population histograms for the two grating types (vertical [left] and horizontal [right] 

grating) for V1 (upper row) and V4 (lower row). Green histograms show the pre-cue RF 

conditions. Black histograms show the post-cue RF conditions. X-axis shows time relative 

to stimulus onset (time 0). Y-axis shows normalised averaged spiking activity. The 

different cuing, and stimulus analysis periods are shown by vertical lines, demarcating 

onset and offset respectively. Solid lines of the histograms show means, shaded areas 

show S.E.M (if not visible then S.E.M are too small to show).  
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The V1 activity population activity shows very little (if any) differences between the 

different cuing conditions (Figure 4-3). If differences occurred, they would most likely be 

present in the periods where neither cue nor grating stimuli were present (see the small 

differences following the pre-cue period for example). Conversely, substantial differences 

are apparent for the V4 data. The pre-cue RF condition elicited relatively large responses 

during and after the pre-cue period. This, however, also resulted in diminished stimulus 

induced responses, particularly during the initial response transient. Conversely, the post-

cue RF condition resulted in larger responses during and following the post-cue period.  

 

 

Figure 4-4. Average Normalised Population Firing Rates in Macaque V1 and V4 for the 

Pre-cue RF vs Pre-cue non-RF Conditions. 

Population histograms for the two grating types (vertical [left] and horizontal [right] 

grating) for V1 (upper row) and V4 (lower row) data. Green histograms show the pre-cue 

RF conditions. Black histograms show the pre-cue non-RF conditions. X-axis shows time 

relative to stimulus onset (time 0). Y-axis shows normalised activity. The different cuing, 

and stimulus analysis periods are shown by vertical lines, demarcating onset and offset 

respectively. Solid lines of the histograms show means, shaded areas show S.E.M. 

 

106 
 



 

 

A similar result was obtained when comparing pre-cue RF vs. pre-cue non (opposite) RF 

conditions (Figure 4-4). Again, the V1 activity population activity showed very little (if 

any) differences between the two conditions (Figure 4-4). For this comparison, there might 

have been some small differences during the sustained response when the vertical grating 

had been present, but these were not present when the horizontal grating had been 

presented. Substantial differences were apparent for the V4 data. As described before, the 

pre-cue RF condition elicited relatively large responses during and after the pre-cue 

period, which were not present for pre-cue non-RF stimuli. These increased responses 

resulted in the previously described diminished stimulus induced responses, which were 

not present for the pre-cue non-RF condition. No obvious differences occurred during the 

sustained stimulus response, or following response offset.  

To analyse the effects of cuing at the population level quantitatively, a repeated measures 

(RM) mixed model multi-factor 2x4x4 ANOVA (factors: cue [4 level], grating type [2 

level], time period analysed [4 level, pre-cue, stimulus, post cue, time from pre-cue to end 

of post-cue]) was used. Average firing rates (sp/sec) over the relevant time periods from 

single contacts (cells) were the measured variables.  

 

4.3.1.1.1.3.1 V1 Population Spiking Data 

Significant effect of time window on the population activity (Table 4-1 for exact p-values) 

were found. There were no significant interactions between any of the factors, as already 

suggested by the qualitative description of the V1 population histograms.  

 

Table 4-1. Repeated Measures Mixed Model Multi Factor ANOVA for the Population of 

Spiking Activity in Macaque V1 

Term (Factor) FStat DF1 DF2 pValue 

Cuing Condition 1.148 3 640 0.328 

Grating Type 0.476 1 640 0.490 

Time Window 40.868 3 640 <0.001 

Cuing Cnd*Grating Type 1.705 3 640 0.164 
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Cuing Cnd*Time Window 1.262 9 640 0.254 

Grating Type*Time Window 0.773 3 640 0.509 

Grating Type*Cuing Cnd*Time Window 1.202 9 640 0.290 

 

 

 

The significant effects of time window are trivial, as only the second time window 

contains the stimulus being displayed in the RF. The absence of a systematic grating type 

effects indicates that we did not have a bias in the sampling of orientation preferences for 

either horizontal or vertical in our population of cells. The main variable of interest, cuing 

condition, did not yield significant main effects, or interactions. Thus, different cueing 

conditions do not affect firing rates in macaque area V1, when analysed at the 

thresholded/spike sorted spiking level. A more detailed analysis of the pairwise effects (or 

absence thereof) is shown in Figure 4-5 and Figure 4-6.  

 

 

Figure 4-5. Comparison of Firing Rates for the Different Time Periods and the Two 

Grating Orientations in the Macaque V1 
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A. Mean firing rates for the population of V1 cells, during the different time periods (pre-

cue [pre], stimulus [stim], and post-cue [post]). B. Mean firing rates for the population of 

V1 cells for the two different gratings, measured during the stimulus time period. P-values 

indicate pair wise differences (Wilcoxon Signed Rank test). Bars show mean activity, 

associated circles indicate 95% confidence intervals.  

 

 

Figure 4-6. Comparison of Firing Rates for the Cuing Conditions in Different Time 

Periods Averaged Over Grating Orientations for Macaque V1 

A. Mean firing rates for the population of V1 cells, during the stimulus time period for the 

4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite [preOppStim], 

post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. Mean firing rates during 

the cuing time periods for the 4 different cuing conditions (pre-cue [preRF], pre-cue 

opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). C. Mean firing 

rates during the entire time period (from pre-cue on until post-cue off) for the 4 different 

cuing conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-

cue opposite [postOpp]). Tables below each subplot indicate pair wise differences (FDR 

corrected p-values based on Wilcoxon Signed Rank test). Bars show mean spiking 

activity, associated circles indicate 95% confidence intervals.  
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The pairwise analysis of cuing condition for the different analysis windows, only yielded 

on marginally significant effect (pre-cue in the opposite hemifield vs. post-cue RF) during 

the cuing time windows (p-value FDR corrected). No other effects were significant, as 

already suggested by the mixed model ANOVA analysis.  

 

4.3.1.1.1.3.2 V4 Population Spiking Data 

Firing rates of population V4 data significantly depended on cuing conditions, grating 

type, and time window analysed. The main effects and the interactions between different 

factors are summarised in Table 4-2. Significant interactions occurred between cuing 

conditions and time window analysed, as well as between grating type and time window 

analysed. The latter is trivial, as these effects (if any) were only expected during the 

stimulus time period.  

 

Table 4-2. Repeated Measures Mixed Model Multi Factor ANOVA for the Population of 

Multiunits in Macaque V4 

Term FStat DF1 DF2 pValue 

Cuing Cnd 7.536 3 1152 <0.001 

Grating Type 8.992 1 1152 0.003 

Time Window 61.875 3 1152 <0.001 

Cuing Cnd*Grating Type 0.641 3 1152 0.588 

Cuing Cnd*Time Window 49.141 9 1152 <0.001 

Grating Type*Time Window 2.947 3 1152 0.0031 

Grating Type*Cuing Cnd*Time Window 0.371 9 1152 0.949 

 

 

 

Figure 4-7 shows the main effects of time window and of grating type for the V4 data. 

Rates were highest during the stimulus window when compared to the cueing windows 

(Figure 4-7 A). No differences existed for the pre-cue vs. post-cue time window, when 

110 
 



averaged across all conditions. Rates were marginally (but significantly) higher for the 

vertical than for the horizontal grating (Figure 4-7 B).  

 

 

Figure 4-7. Comparison of Firing Rates for the Different Time Periods and the Two 

Grating Orientations for the V4 Spiking Data. 

A. Mean firing rates for the population of V4 cells, during the different time periods (pre-

cue [pre], stimulus [stim], and post-cue [post]). B. Mean firing rates for the population of 

V4 cells for the two different gratings, measured during the stimulus time period. P-values 

indicate pair wise differences (Wilcoxon Signed Rank test). Bars show mean activity, 

associated circles indicate 95% confidence intervals.  

 

 

 

A detailed analysis of the effects of different cueing effects for the V4 spiking data is 

shown in Figure 4-8. The cuing conditions significantly affected the stimulus (grating) 

response, whereby it was significantly reduced when a pre-cue had been presented above 

the receptive field (Figure 4-8A). The pre-cue presented above the RF itself induced a 
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significantly larger response (during the cueing windows), when compared to the other 

cuing conditions (Figure 4-8B). This, was likely due to encroaching upon the classical 

receptive field of the recorded neurons. An increased response was also seen during the 

post-cue RF period, when compared to cuing conditions, where the cue appeared in the 

opposite hemifield, further supporting the idea that the cue above the RF encroached upon 

the classical RF. However, the post-cue RF yielded significantly smaller responses than 

the pre-cue RF. This could be due to response adaptation following stimulus presentation, 

or due to enduring normalisation mechanisms. The reduced stimulus response during pre-

cue RF conditions (Figure 4-8A) could result from similar mechanisms (adaptation or 

normalization). An analysis of the entire response period did not show any significant 

differences (Figure 4-8C).  

 

 

Figure 4-8. Comparison of Firing Rates for the Cuing Conditions in Different Time 

Periods Averaged Over Grating Orientations for Macaque V4. 

A. Mean firing rates for the population of V4 cells, during the stimulus time period for the 

4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite [preOppStim], 

post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. Mean firing rates during 

the cuing time periods for the 4 different cuing conditions (pre-cue [preRF], pre-cue 

opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). C. Mean firing 

rates during the entire time period (from pre-cue on until post-cue off) for the 4 different 

cuing conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-
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cue opposite [postOpp]). Tables below each subplot indicate pair wise differences (FDR 

corrected p-values based on Wilcoxon Signed Rank test). Bars show mean spiking 

activity, associated circles indicate 95% confidence intervals.  

4.3.1.1.2 Multiunit Activity Envelope (MUAe) Data 

For the analysis of MUAe activity the signal from 27 responsive V1 contacts and from 63 

responsive V4 contacts was used. These numbers differed from the spiking data as the 

MUAe activity more often yielded z-score > 3 for stimulus induced activity than the 

spiking data did. Otherwise the analysis was equivalent to that described above, with the 

difference, that MUAe cannot be described in terms of spikes/second (i.e. firing rate), but 

it has to be normalised for every channel relative to baseline activity and relative to peak 

activity. An example of a single trial for a particular recording in macaque V1 and V4 with 

a 16 contact laminar electrode is shown below (Figure 4-9, Figure 4-10). 

As done previously for spiking activity, population histograms will be shown first, with 

some description of the dominant features. This will be followed by quantitative analysis.  

 

 

Figure 4-9. Raw Single Trial Example of MUAe Signal Recorded in Macaque V1 with a 

Laminar Electrode for the Vertical ‘Target’ Stimulus 

Single trial traces for individual contacts along a laminar electrode in macaque V1. 

Contact number goes from most shallow to deepest. For this recording contact spacing 
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was 150µm. Vertical lines represent trial time epochs, black-pre-cue period, blue-grating 

stimulus period, red-post-cue period. Each panel displays a different trail for each cuing 

condition. 

 

Figure 4-10. Raw Single Trial Example of MUAe Signal Recorded in Macaque V4 with a 

Laminar Electrode for the Vertical ‘Target’ Stimulus 

Single trial traces for individual contacts along a laminar electrode in macaque V4. 

Contact number goes from most shallow to deepest. For this recording contact spacing 

was 150µm. Vertical lines represent trial time epochs, black-pre-cue period, blue-grating 

stimulus period, red-post-cue period. Each panel displays a different trail for each cuing 

condition. 

 

 

 

4.3.1.1.2.1 MUAe Population Histograms 

Figure 4-11 shows the MUAe population histogram when vertical stimuli were presented 

in V1 (and V4) receptive fields, along with the cumulative population histograms (right 

column). In V1 the pre-cue RF condition resulted in increased activity during the pre-cue 

period, when compared to pre-cue opposite and when compared to post-cue RF 

conditions. Additionally, the post-cue period showed higher activity when a post-cue was 
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presented above the RF, compared to when a pre-cue was presented above the RF. There 

were no obvious differences during the stimulus periods for the different cuing conditions. 

The increased activity for pre-cue RF conditions over pre-cue non-RF resulted in overall 

increased activity when the entire response period was analysed (cumulative activity, 

p=0.008, Wilcoxon Signed Rank test). The cumulative activity was not different for the 

pre-cue RF and the post-cue RF condition, as the activity differences described for the pre-

cue and the post-cue period cancelled one another.  

 

 

Figure 4-11. Comparison of Average Normalised MUAe Activity for the Vertical Stimuli 

in Macaque V1 and V4 
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Green lines show pre-cues presented above the RF location, blue lines show pre-cues 

presented in the non-receptive field location, orange lines show conditions where the post-

cue was presented above the receptive field location. Vertical lines represent trial time 

epochs, black-pre-cue period, blue-grating stimulus period, red-post-cue period. In the left 

panels, the normalised multi-unit activity envelope (MUAe) for population of neurons in 

different conditions is presented. In the right panels, the cumulative activity across the trial 

is presented for different condition. P-value represents significance testing for the 

cumulative response (Wilcoxon Signed Rank test). 

In V4 the pre-cue RF condition resulted in strongly enhanced activity in the pre-cue 

period, and reduced activity in the stimulus induced responses, as described for the spiking 

activity. However, the reduction in stimulus induced activity appeared smaller than the 

increase in pre-cue activity. No differences were found for the post-cue period when 

compared to pre-cue non-RF. As a consequence the cumulative activity differed 

significantly between pre-cue RF and pre-cue non-RF conditions. The post-cue RF 

condition elicited larger responses in the post-cue period than the pre-cue RF condition. 

Overall the cumulative activity did not differ between these two conditions.  

Similar results were seen for the horizontal grating conditions (see Figure 4-12), which is 

why they are not described in detail here.  
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Figure 4-12. Comparison of Average Normalised MUAe Activity for the Horizontal 

‘Distractor’ Stimuli in Macaque V1 and V4 

Green lines show pre-cues presented in the RF location, blue lines show pre-cues 

presented in the non-receptive field location, orange lines show conditions where the post-

cue was presented in the receptive field location. Vertical lines represent trial time epochs, 

black-pre-cue period, blue-grating stimulus period, red-post-cue period. In the left panels, 

the normalised multi-unit activity envelope (MUAe) for population of neurons in different 

conditions is presented. In the right panels, the cumulative activity across the trial is 

presented for different condition. P-value represents significance testing for the cumulative 

response, tested with Wilcoxon Signed Rank test. 
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4.3.1.1.2.2 Quantitative Analysis of V1 and V4 MUAe Data 

The analysis pipeline for the MUAe data was identical to the spiking data. The first part 

describes how often single channel activity was affected by different cuing conditions. 

This was followed by an analysis of the effects at the population level. 

 

4.3.1.1.2.2.1 Effects at the Level of Single Channels 

To determine whether the different forms of (pre/post)-cuing and grating 

(vertical/horizontal) conditions affected the MUAe activity at the single channel level, a 

multi-factor 2x4x4 ANOVA was performed (described above in section 2.6.1). This 

ANOVA used the average normalised activity occurring in single trials over the time 

windows pre-cue (100ms-50m before stimulus onset), stimulus (0-150ms after stimulus 

onset), and the post-cue (50ms-100ms after stimulus offset) periods as the measured 

variable (note that the analysis windows had an offset of 40ms relative to the above 

described time periods to account for response latencies). 

In general, a larger proportion of the single MUAe contacts were modulated by the 

different experimental conditions, than what had been found at the level of thresholded 

spiking activity). In V1 MUAe activity differed between time windows in all contacts, 

(n=27/27, p<0.001, ANOVA). Moreover, 12/27 of the contacts showed a significant effect 

of grating type (p<0.001). 7/27 of the contacts exhibited a significant effect of cuing 

condition (p<0.05). 22/27 contacts had a significant interaction between the grating type 

and the time window (p<0.05). 8/27 contacts showed a significant cue condition and time 

window interaction (p<0.05). Finally, grating type and cuing condition caused a 

significant interaction in 4/27 contacts.  

In V4, MUAe activity different between time windows for all contacts (n=63/63, p<0.001, 

ANOVA). The cuing conditions caused a significant change in activity for 48/63 contacts 

(p<0.001). The grating type also caused 31/63 contacts to have significantly different 

activity (p<0.05). 53/63 contacts showed a significant interaction (p<0.05) between the 

cuing conditions and the time window. A significant interaction between the grating type 

and time window was found in 25/63 MUAe contacts (p<0.05). A significant difference 

between the grating type and the cuing condition (p<0.05) was found for 10/63 contacts. 

Finally, a single contact had a significant three way interaction between the grating type, 

the cuing condition and the time window.  
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4.3.1.1.2.2.2 Effects at the Level of Population Activity  

A mixed model RM ANOVA was used to investigate whether cuing condition, time 

window analysed, or grating type significantly affected MUAe activity.  

 

V1: The effects for MUAe activity in V1 are summarised in Table 4-3. 

 

Table 4-3. Repeated Measures Mixed Model Multi Factor ANOVA for the MUAe 

Population in Macaque V1 

Term FStat DF1 DF2 pValue 

Cuing Cnd 8.459 3 848 <0.001 

Grating Type 0.297 1 848 0.585 

Time Window 4.850 3 848 0.027 

Cuing Cnd*Grating Type 0.720 3 848 0.539 

Cuing Cnd*Time Window 5.026 9 848 0.001 

Grating Type*Time Window 0.009 3 848 0.920 

Grating Type*Cuing Cnd*Time Window 0.442 9 848 0.723 

 

The V1 MUAe activity was significantly affected by cuing condition, time window, and a 

significant interaction between cuing condition and time window was found (Table 4-3). 

Figure 4-13 and Figure 4-14 show these effects in more detail.  

 

119 
 



 

Figure 4-13. Comparison of MUAe Activity for the Different Time Periods and the Two 

Grating Orientations for V1 

A. Mean normalised MUAe activity for the population of V1 channels, during the 

different time periods (pre-cue [pre], stimulus [stim], and post-cue [post]). B. Mean 

normalised MUAe activity for the population of V1 cells for the two different gratings, 

measured during the stimulus time period. FDR corrected p-values indicate pair wise 

differences (Wilcoxon Signed Rank test). Bars show mean activity, associated circles 

indicate 95% confidence intervals.  

 

 

 

The lowest level of activity in V1 occurred during the pre-cue period, followed by the 

post-cue period (as already suggested by visual inspection of the population histograms 

(Figure 4-11 & Figure 4-12), while the highest activity occurred during the stimulus time 

period. The latter was expected, the differences between pre-cue and post-cue period were 

not necessarily expected given the results from the spiking analysis. Pairwise differences 
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were all significant (p<0.001, FDR corrected). No differences occurred between the 

different grating types.  

 

 

Figure 4-14. Comparison of Normalised MUAe Activity for the Cuing Conditions in 

Different Time Periods Averaged Over Grating Orientations for the V1 Data. 

A. Normalised MUAe activity for the population of V1 contacts, during the stimulus time 

period for the 4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite 

[preOppStim], post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. 

Normalised MUAe activity during the cuing time periods for the 4 different cuing 

conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-cue 

opposite [postOpp]). C. Normalised MUAe activity during the entire time period (from 

pre-cue on until post-cue off) for the 4 different cuing conditions (pre-cue [preRF], pre-

cue opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). Tables below 

each subplot indicate pair wise differences (FDR corrected p-values based on Wilcoxon 

Signed Rank test). Bars show mean spiking activity, associated circles indicate 95% 

confidence intervals.  
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The largest V1 MUAe activity during the different cuing conditions occurred for the pre-

cue RF condition (Figure 4-14B). It was significantly higher than the activity during pre- 

and post-cue opposite conditions. Pre-cue opposite conditions yielded significantly lower 

activity than any other conditions (FDR corrected pairwise comparisons, Figure 4-14B). 

The described results had the overall effect that significantly higher activity occurred for 

the pre-cue RF condition when the entire response period was taken into account than any 

of the other conditions, i.e. pre-cue RF conditions overall increased V1 MUAe activity 

(Figure 4-14C).  

 

V4: The effects for MUAe activity in V4 are summarised in Table 4-4.  

 

Table 4-4. Repeated Measures Mixed Model Multi Factor ANOVA for the MUAe 

Population in Macaque V4 

Term FStat DF1 DF2 pValue 

Cuing Cnd 129.5 3 2001 <0.001 

Grating Type 0.095 1 2001 0.757 

Time Window 9.234 3 2001 0.002 

Cuing Cnd*Grating Type 0.080 3 2001 0.970 

Cuing Cnd*Time Window 75.932 9 2001 <0.001 

Grating Type*Time Window 0.010 3 2001 0.917 

Grating Type*Cuing Cnd*Time Window 0.064 9 2001 0.978 

 

MUAe V4 population activity was significantly affected cuing condition, and the time 

window analysed. Moreover, a significant interaction was found between cuing condition 

and time window. Figure 4-15 shows these effects in more detail. Post-hoc analysis 

revealed that pre-cue RF conditions significantly increased firing rates during the stimulus 

(grating) period (all pair-wise comparisons p<0.05 FDR corrected, Figure 4-16A). 

Moreover, post-cue period activity was larger than pre-cue period activity (p<0.001, 

Figure 4-16B), whereby pre-cue non-RF conditions resulted in the lowest ‘cue’ period 

activity (all pairwise comparisons p<0.001, Figure 4-15B). Analysis of the entire response 

period (pre-cue on until post-cue off), showed that the pre-cue RF condition yielded the 
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largest response (all pair-wise comparisons p<0.001). Additional details can be derived 

from the tables inFigure 4-15.  

The lowest activity occurred during the pre-cue period, followed by the post-cue period 

(as already suggested by visual inspection of the population histograms (Figure 4-11 and 

Figure 4-12), while the highest activity occurred during the stimulus time period. The 

latter was expected. The differences between pre- and post-cue period were not necessarily 

expected given the results from the spiking analysis. Pairwise differences were all 

significant (p<0.001). No differences occurred between the different grating types.  

 

 

Figure 4-15. Comparison of Normalised MUAe Activity for the Cuing Conditions in 

Different Time Periods Averaged Over Grating Orientations for the V4 Data. 

A. Normalised MUAe activity for the population of V4 cells, during the stimulus time 

period for the 4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite 

[preOppStim], post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. 

Normalised MUAe activity during the cuing time periods for the 4 different cuing 

conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-cue 

opposite [postOpp]). C. Normalised MUAe activity during the entire time period (from 

pre-cue on until post-cue off) for the 4 different cuing conditions (pre-cue [preRF], pre-

cue opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). Tables below 

each subplot indicate pair wise differences (p-values based on Wilcoxon Signed Rank 
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test). Bars show mean spiking activity, associated circles indicate 95% confidence 

intervals.  

 

  

Figure 4-16. Comparison of MUAe Activity for the Different Time Periods and the Two 

Grating Orientations for V4. 

A. Mean normalised MUAe activity for the population of V4 channels, during the 

different time periods (pre-cue [pre], stimulus [stim], and post-cue [post]). B. Mean 

normalised MUAe activity for the population of V4 cells for the two different gratings, 

measured during the stimulus time period. FDR corrected p-values indicate pair wise 

differences (Wilcoxon Signed Rank test). Bars show mean activity, associated circles 

indicate 95% confidence intervals.  

 

 

 

Post-hoc analysis of effects of cuing condition on V4 MUAe activity revealed that pre-cue 

RF conditions significantly decreased firing rates during the stimulus (grating) period (all 

pair-wise comparisons p<0.05 FDR corrected, Figure 4-15A). Analysis of the cuing time 

periods, showed that pre-cue RF conditions yielded significantly higher firing rates during 
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the cue time period than any of the other conditions (p<0.001, Figure 4-15B), whereby 

pre-cue non-RF conditions resulted in the lowest ‘cue’ period activity (all pairwise 

comparisons p<0.001 FDR corrected, Figure 4-15B). Analysis of the entire response 

period (pre-cue on until post-cue off), showed that the pre-cue RF condition yielded the 

largest response (all pair-wise comparisons p<0.001 FDR corrected). Additional details 

can be derived from the tables in Figure 4-15.  

 

4.3.1.1.3 LFP Matching Pursuit Analysis 

For the LFP analysis the same electrode contacts were used as described in the MUAe 

section (V1: n=27, V4: n=63). Here we compare the pre-cue RF to the pre-cue non-RF, 

and to the post-cue RF condition, and plot difference spectrograms along with statistics 

(FDR corrected). The results for the conditions when the horizontal grating was presented 

are shown in Figure 4-17. The spectrogram data show difference maps, whereby the 

normalized (z-scored relative to pre-stimulus activity) time resolved spectral power 

differences for the conditions described above are shown. These difference maps were 

then averaged to obtain population data. Figure 4-17 shows population difference maps for 

all entries of the spectrogram, and it separately shows time frequency power differences 

that were significant (FDR corrected) at the population level. The data for the vertical 

grating were virtually identical, and are thus not shown separately.  

 

4.3.1.1.3.1 Cuing Effects on the Horizontal ‘Distractor’ Stimulus  

The presence of a pre-cue above the RF caused an increase in LFP spectral power in the 

10-35Hz range with most of the power concentrated at ~25 Hz. Following stimulus onset, 

this changed, whereby the pre-cue RF condition resulted in higher low frequency (8-15Hz) 

compared to the pre-cue non-RF or post-cue RF conditions, combined with reduced power 

in the beta and gamma frequency range. Post-cue RF conditions also induced beta/gamma 

power during the post-cue period, and thus the difference spectrograms show a significant 

reduction in that frequency range during the post-cue period, when compared to the pre-

cue RF condition.  

The difference spectrograms seen in V4 differed from those seen in V1. The pre-cue above 

the RF resulted in a broad band increase in beta/gamma power, compared to the post-cue 

RF condition or the pre-cue non RF condition. The stimulus onset resulted in reduced 
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spectral power in the beta/gamma frequency band for the pre-cue RF condition, compared 

to the other conditions. The post-cue RF condition resulted in increased beta/gamma 

power during the post-cue period, similar to what was seen for the V1 data (Figure 4-17).  
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Figure 4-17. Spectrograms of Matching Pursuit LFP Analysis of Macaque V1 and V4 

Data for the Horizontal ‘Distractor’ Stimulus.  
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Population pairwise spectrogram difference plots for both V1 and V4 macaque power 

spectrum data (z-scored for each channel). Time from stimulus onset is plotted against 

frequency for the pre-cue RF-pre-cue non-RF, and the pre-cue RF-post-cue RF conditions. 

Z-score differences are color coded. The left column displays the raw difference 

spectrograms. The right column shows spectrogram differences that were significant (t-

test, with FDR correction, p<0.05). White entries of the right column plots were not 

significantly different. 

 

 

 

4.3.1.1.4 Summary of Observable Effects in the Macaque 

In general the macaque electrophysiological data was affected in some part by the 

different experimental conditions in the BU attentional task. Within the V1 data there was 

no observable bias for response to different gratings, however there was one observed in 

V4. Specifically there was an increase in activity for the vertical grating.  

When summarising the effects of pre-cuing there were differential effects in V1. While 

there was no difference seen in the spiking data, the MUAe showed a noticeable increase 

in activity when the grating stimulus was pre-cued. Within the LFP, it was found that pre-

cuing caused an increase beta band activity over the pre-cue period. Then during stimulus 

presentation there was a strong increase in theta band activity coupled with a large 

decrease in gamma band activation.  

The experimental condition effects seen in macaque V4 were on the whole larger than 

those seen in V1. Precuing in both the spiking and MUAe data induced a large visual 

response. This resulted in a reduction of the stimulus induced response in comparison with 

the other conditions. Within the LFP, it was found that pre-cuing caused increase in 

beta/gamma power, whereas the stimulus onset reduced activity in this frequency range.  

Taken together, these results show that pre-cuing causes differential effects in both 

macaque V1 and V4.  
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4.3.1.2 Mouse 

18 recordings were performed in the mouse from 16 contact laminar electrodes in three 

animals (split as n= 4, n=2, and n=12). These used the passive bottom-up attention 

paradigm (see section 2.4.3), some without optogenetic stimulation (n=6) and some with 

optogenetic stimulation (n=12). This chapter separately analysed the basic effects of 

cuing, ignoring effects of optogenetic activation. The effects of optogenetic activation of 

Cg neurons on visual responses in V1 and SC will be described in the next chapter. For the 

analysis of the data, this chapter pooled all the recording data from V1 and from SC, but 

only used trials without the light activation. This yielded V1 (n=16) and SC recordings 

(n=4). The discrepancy of these numbers from the number listed above (n=18) arises 

because in two penetrations simultaneous recordings were performed from a single 

electrode in V1 and SC sites.  

 

4.3.1.2.1 Spiking Data 

Only a limited number of channel yielded adequate stimulus induced responses (z-score > 

3 for stimulus response). Specifically, good multi-unit spiking activity was recorded in 

n=12 contacts in V1, and n=5 contacts in the SC. The multiunit spiking activity was 

analysed in an identical manner to that described in the macaque spiking activity section. 

As done previously, I will first describe some features of the population histograms, as 

these will prepare the way for the more quantitative analysis that follows thereafter. 
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Figure 4-18. Average Normalised Firing Rates in Mouse V1 and SC for Pre-cue RF vs 

Post-cue RF Conditions.  

Population histograms for the two grating types (vertical [left] and horizontal [right] 

grating) for V1 (upper row) and SC (lower row) data. Green histograms show the pre-cue 

RF conditions. Black histograms show the post-cue RF conditions. X-axis shows time 

relative to stimulus onset (time 0). Y-axis shows normalised activity. The different cuing, 

and stimulus periods are shown by vertical lines, demarcating onset and offset 

respectively. Solid lines of the histograms show means, shaded areas show S.E.M.  

 

 

 

Neither the V1 nor the SC spiking population activity shows distinct differences between 

the two cue conditions (Figure 4-18). However, there may be hints that the pre-cue RF 

condition yielded higher horizontal grating responses in the SC data than the post-cue RF 

condition. The same was true when comparing pre-cue RF vs. pre-cue non-RF conditions 

(Figure 4-19). 
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Figure 4-19. Average Normalised Firing Rates for the Visual Stimuli in Mouse V1 and SC 

Pre-cue RF vs Pre-cue non-RF. 

Population histograms for the two stimulus types (vertical [left] and horizontal [right] 

grating) for V1 (upper row) and SC (lower row) data. Green histograms show the pre-cue 

RF conditions. Black histograms show the pre-cue non-RF conditions. X-axis shows time 

relative to stimulus onset (time 0). Y-axis shows normalised activity. The different cuing, 

and stimulus periods are shown by vertical lines, demarcating onset and offset 

respectively. Solid lines of the histograms show means, shaded areas show S.E.M. 

 

 

 

4.3.1.2.1.1 Quantitative Analysis of Mouse Spiking Data 

In V1 a significant main effect of time window was found in all contacts, (n=12/12, 

p<0.001, ANOVA). Moreover, 7/12 of the contacts showed a significant effect of grating 

type (p<0.001). 3/12 of the contacts exhibited a significant effect of cuing condition 

(p<0.05). 8/12 contacts showed a significant interaction between the grating type * the 

time window (p<0.05). A single contact showed a significant cue condition and time 
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window interaction (p<0.05). Finally, grating type and cuing condition caused a 

significant interaction in one contact (p<0.05). An example of a single neuron response in 

mouse V1 in the experiment is shown below (Figure 4-20). 

 

 

Figure 4-20. Raster Plots and Peristimulus Time Histograms for an Example Neuron in 

Mouse V1 

Raster plots (upper panels) and histograms (lower panels) for the two grating types 

(horizontal [left] and vertical [right] grating) for a V1 neuron. Red ticks/trace equate to 

pre-cue RF condition, dark blue ticks/trace equate to pre-cue non-RF condition, orange 

ticks/trace equate to post-cue RF condition, light blue ticks/trace equate to post-cue non-
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RF condition. X-axis shows time relative to stimulus onset (time 0). The different cuing, 

and stimulus analysis periods are shown by vertical lines, demarcating precue onset and 

offset (black), stimulus onset and offset (yellow), post-cue onset and offset (green) 

respectively. Solid lines of the histograms show means. 

 

 

 

4.3.1.2.1.2 Mouse V1 Spiking Data 

Firing rates of mouse population V1 data significantly depended on grating type and time 

window analysed. The main effects and the interactions between different factors are 

summarised in Table 4-5. Significant interactions occurred between grating type and time 

window. The latter is expected, as grating stimulus effects would only expected during the 

stimulus time period (if at all).  

 

Table 4-5. Repeated Measures Mixed Model Multi Factor ANOVA for the Population of 

Multiunit Spiking Activity in Mouse V1 

Term FStat DF1 DF2 pValue 

Cuing Cnd 0.468 3 352 0.704 

Grating Type 23.206 1 352 <0.001 

Time Window 454.9 3 352 <0.001 

Cuing Cnd*Grating Type 0.146 3 352 0.931 

Cuing Cnd*Time Window 0.108 9 352 0.999 

Grating Type*Time Window 15.872 3 352 <0.001 

Grating Type*Cuing Cnd*Time Window 0.0819 9 352 0.999 

 

 

133 
 



 

Figure 4-21. Comparison of Firing Rates for the different time periods and the two grating 

orientations. 

A. Mean firing rates for the population of V1 cells, during the different time periods (pre-

cue [pre], stimulus [stim], and post-cue [post]). B. Mean firing rates for the population of 

V1 cells for the two different gratings, measured during the stimulus time period. P-values 

indicate FDR corrected pair wise differences (Wilcoxon Signed Rank test). Bars show 

mean activity, associated circles indicate 95% confidence intervals.  

 

 

 

Firing rates in mouse V1 were largest during the stimulus period, and smallest during the 

post-cue period (Figure 4-21A). Vertical gratings resulted in significantly higher firing 

rates than horizontal gratings in the mouse V1 data (Figure 4-21B).  
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Figure 4-22. Comparison of Spiking Activity for the Cuing Conditions in Different Time 

Periods Averaged Over Grating Orientations for the Mouse V1 Data. 

A. Spiking activity for the population of mouse V1 cells, during the stimulus time period 

for the 4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite 

[preOppStim], post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. Spiking 

activity during the cuing time periods for the 4 different cuing conditions (pre-cue 

[preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). 

C. Spiking activity during the entire time period (from pre-cue on until post-cue off) for 

the four different cuing conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue 

RF [postRF], post-cue opposite [postOpp]). Tables below each subplot indicate pair wise 

differences (FDR corrected p-values based on Wilcoxon Signed Rank test). Bars show 

mean spiking activity, associated circles indicate 95% confidence intervals.  

 

 

 

The different cuing conditions had no effect on the stimulus (grating) induced activity. 

However, significant differences were found for the different cueing periods, whereby 

post-cue periods showed lower responses than pre-cue RF periods (p<0.05 FDR corrected, 

Figure 4-22B). No other differences were found in the mouse V1 spiking data. There was 
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also a trend for pre-cue RF responses to be larger than pre-cue non-RF responses (p=0.056 

adjusted FDR corrected, Figure 4-22B). 

 

4.3.1.2.1.3 Mouse SC Spiking Data 

Significant effects of time window were found in all contacts, (n=5/5, p<0.001, ANOVA). 

3/5 contacts showed a significant effect of grating type on firing rates (p<0.05). Cuing 

conditions never had a significant main effect on firing rates. Significant interactions for 

grating type * time window were found in 3/5 contacts (p<0.05). One contact showed a 

significant interaction between cuing conditions and time window (p<0.05). One contact 

showed a significant interaction between grating type and cuing condition (p<0.05). An 

example neuronal response for spiking in mouse SC is shown below (Figure 4-23). 
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Figure 4-23. Raster Plots and Peristimulus Time Histograms for an Example Neuron in 

Mouse SC 

Raster plots (upper panels) and histograms (lower panels) for the two grating types 

(horizontal [left] and vertical [right] grating) for a SC neuron. Red ticks/trace equate to 

pre-cue RF condition, dark blue ticks/trace equate to pre-cue non-RF condition, orange 

ticks/trace equate to post-cue RF condition, light blue ticks/trace equate to post-cue non-

RF condition. X-axis shows time relative to stimulus onset (time 0). The different cuing, 

and stimulus analysis periods are shown by vertical lines, demarcating precue onset and 

offset (black), stimulus onset and offset (yellow), post-cue onset and offset (green) 

respectively. Solid lines of the histograms show means. 
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The main effects and interactions at the population level are summarised in Table 4-6. 

Significant interactions occurred between grating type and time window, similar to what 

was found in the mouse V1 spiking data.  

 

Table 4-6. Repeated Measures Mixed Model Multi Factor ANOVA for the Population of 

Multiunit Spiking Data in Mouse SC 

Term(Factor) FStat DF1 DF2 pValue 

Cuing Cnd 0.293 3 129 0.830 

Grating Type 8.129 1 129 0.005 

Time Window 381.01 3 129 <0.001 

Cuing Cnd*Grating Type 0.694 3 129 0.556 

Cuing Cnd*Time Window 0.354 9 129 0.954 

Grating Type*Time Window 4.204 3 129 0.007 

Grating Type*Cuing Cnd*Time Window 0.695 9 129 0.712 

 

Firing rates of mouse population SC data significantly depended on grating type and time 

window analysed. The main effects and the interactions between different factors are 

summarised in Table 4-6. As for the mouse V1, significant interactions occurred between 

grating type and time window.  

Firing rates in mouse SC were largest during the stimulus period, and smallest during the 

pre-cue period (Figure 4-24A). Vertical gratings resulted in significantly higher firing 

rates than horizontal gratings in the mouse SC (Figure 4-24B).  
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Figure 4-24. Comparison of Firing Rates for the different time periods and the two grating 

orientations. 

A. Mean firing rates for the population of SC cells, during the different time periods (pre-

cue [pre], stimulus [stim], and post-cue [post]). B. Mean firing rates for the population of 

SC cells for the two different gratings, measured during the stimulus time period. P-values 

indicate pair wise differences (FDR corrected and adjusted, Wilcoxon Signed Rank test). 

Bars show mean activity, associated circles indicate 95% confidence intervals.  
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Figure 4-25. Comparison of Spiking Activity for the Cuing Conditions in Different Time 

Periods Averaged Over Grating Orientations for the Mouse SC Data. 

A. Spiking activity for the population of mouse SC cells, during the stimulus time period 

for the 4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite 

[preOppStim], post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. Spiking 

activity during the cuing time periods for the 4 different cuing conditions (pre-cue 

[preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). 

C. Spiking activity during the entire time period (from pre-cue on until post-cue off) for 

the 4 different cuing conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF 

[postRF], post-cue opposite [postOpp]). Tables below each subplot indicate pair wise 

differences (FDR corrected and adjusted p-values based on Wilcoxon Signed Rank test). 

Bars show mean spiking activity, associated circles indicate 95% confidence intervals.  

 

 

 

The different cuing conditions had no effect on the stimulus (grating) induced activity. 

Significant differences were found for the different cueing periods, whereby pre-cue RF 

conditions resulted in lower activity than post-cue RF conditions (Figure 4-25B), and a 

trend of pre-cue RF conditions to be smaller than the pre-cue non-RF and the post-cue 
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non-RF condition (for adjusted FDR corrected p-values see Figure 4-25B). No other 

differences were found in the mouse SC spiking data.  

 

4.3.1.2.2 Multiunit Activity Envelope (MUAe) Data 

The multiunit channels used for the MUAe analysis were identical to those used for the 

spiking data (V1: n=12, SC: n=5), and the analysis was done in an identical manner as 

described above in relation to the macaque data.  

 

4.3.1.2.2.1 General Effects at the Single Channel Level 

To test whether different forms of (pre/post)-cuing and grating (vertical/horizontal) 

conditions affected the single channel MUAe activity, a multi-factor 2x4x4 ANOVA was 

used. 

The dependant variable was the averaged normalised activity in single trials over the 

following time windows: pre-cue (100ms-50m before stimulus onset), stimulus (0-150ms 

after stimulus onset), and post-cue (50ms-100ms after stimulus offset) periods. 40ms 

offsets were added to all of these to account for visual response latencies.  

In V1 the response depended on the factor time window in all contacts, (n=12/12, 

p<0.001, ANOVA). Moreover, 6/12 of the contacts showed a significant effect of grating 

type (p<0.001). 4/12 of the contacts exhibited a significant effect of cuing condition 

(p<0.05). 5/12 contacts had a significant interaction between the grating type and the time 

window (p<0.05). 3/12 contacts showed a significant cue condition * time window 

interaction (p<0.05). Finally, grating type and cuing condition caused a significant 

interaction in a single contact.  

In the SC significant effects of time window were found on all contacts, (n=5/5, p<0.001, 

ANOVA). The grating type affected 4/5 contacts (p<0.05). The cuing conditions did not 

have a significant effects on any of the contacts. A significant interaction between time 

window and grating type was found for 2/5 contacts (p<0.05). No other significant 

interactions were found.  

An example of a single trial for a particular recording in mouse V1 and SC with a 16 

contact laminar electrode is shown below (Figure 4-26, Figure 4-27) 
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Figure 4-26. Raw Single Trial Example of MUAe Signal Recorded in Mouse V1 with a 

Laminar Electrode for the Vertical ‘Target’ Stimulus 

Single trial traces for individual contacts along a laminar electrode in mouse V1. Contact 

number goes from most shallow to deepest. For this recording contact spacing was 50µm. 

Vertical lines represent trial time epochs, black-pre-cue period, blue-grating stimulus 

period, red-post-cue period. Each panel displays a different trail for each cuing condition. 
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Figure 4-27. Raw Single Trial Example of MUAe Signal Recorded in Mouse SC with a 

Laminar Electrode for the Vertical ‘Target’ Stimulus 

Single trial traces for individual contacts along a laminar electrode in mouse SC. Contact 

number goes from most shallow to deepest. For this recording contact spacing was 50µm. 

Vertical lines represent trial time epochs, black-pre-cue period, blue-grating stimulus 

period, red-post-cue period. Each panel displays a different trail for each cuing condition. 

 

 

 

4.3.1.2.2.2 MUAe Population Histograms 
Figure 4-28 shows how the different conditions affected MUAe population activity. In 

mouse V1 the presences of a pre-cue above the RF yielded slightly increased firing rates, 

when compared to pre-cue opposite or post-cue RF conditions (compare e.g. green and 

blue lines of the V1 data during the pre-cue window). No other obvious differences 

occurred. It is noteworthy that stimulus offset results in a strong response reduction below 

baseline activity for the V1 data set, which was not seen in any of the monkey data (and 

also did not occur for the SC data, see below). 

Visual inspection of the mouse SC MUAe population histograms suggests that the 

different cueing conditions did not result in differential activity. The strong response 

suppression upon stimulus offset seen for the V1 data, was not present in the SC data. On 
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the contrary, stimulus offset induced a transient response on its own in the SC. Even 

though this appears to fall into the post-cue analysis time window, it cannot have been 

triggered by the post-cue as it was equally present on pre-cue trials.  

 

 

Figure 4-28. Comparison of Average Normalised MUAe Activity for the Bottom-Up 

Paradigm in Mouse V1 and SC. 

Green-pre-cue presented in the RF location, blue-pre-cue presented in the non-RF 

location, orange-post-cue presented in the receptive field location. Vertical lines represent 

trial time epochs, black-pre-cue period, blue-grating stimulus period, red-post-cue period. 

Solid traces show population means, shaded areas show S.E.M.  
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4.3.1.2.2.3 Quantification of Mouse MUAe Response Differences 

As previously, a mixed model multi-factor RM ANOVA was used to determine whether 

any of the conditions affected MUAe activity in the different response periods. The results 

of these analyses are shown in Table 4-7 (V1 data) and in Table 4-8 (SC data).  

 

4.3.1.2.2.4 Mouse V1 MUAe Data 

 

Table 4-7. Repeated Measures Mixed Model Multi Factor ANOVA for the MUAe 

Population of Mouse V1 

Term FStat DF1 DF2 pValue 

Cuing Cnd 3.133 3 369 0.025 

Grating Type 6.197 1 369 0.013 

Time Window 13.667 3 369 <0.001 

Cuing Cnd*Grating Type 0.025 3 369 0.994 

Cuing Cnd*Time Window 1.431 9 369 0.233 

Grating Type*Time Window 2.775 3 369 0.09 

Grating Type*Cuing Cnd*Time Window 0.079 9 369 0.970 

 

 

In mouse V1, significant main effects were found for time window, cuing condition, and 

grating type. No other significant effects were found (Table 4-7).  
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Figure 4-29. Comparison of V1 Normalised MUAe Activity for the Different Time 

Periods and the Two Grating Orientations. 

A. Mean normalised MUAe activity for the population of mouse V1 cells, during the 

different time periods (pre-cue [pre], stimulus [stim], and post-cue [post]). B. Mean 

normalised MUAe activity for the population of mouse V1 cells for the two different 

gratings, measured during the stimulus time period. P-values indicate FDR corrected pair 

wise differences (Wilcoxon Signed Rank test). Bars show mean activity, associated circles 

indicate 95% confidence intervals. Middle p-value in A arises from the comparison 

between pre- and post-cue activity. The other p-values arise from the comparison between 

neighbouring bars. 

 

Figure 4-29A shows that all pairwise comparisons for the different time periods were 

significant, when averaged across cuing conditions and grating types. As already outlined 

when describing the MUAe population histograms, in V1 the activity is reduced below 

baseline during the post-cue period, but this was induced by the temporal proximity of 

stimulus (grating) offset. Moreover, increased activity occurred for vertical grating 

responses, when compared to horizontal grating responses (Figure 4-29B). The differences 

between cuing conditions are shown in Figure 4-29. Even though the mixed model 
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ANOVA revealed a significant main effect of cuing condition, this was only significant in 

the post-hoc analysis when analysing the whole time period (see Figure 4-30C and 

associated table). Pre-cue opposite RF conditions resulted in significantly higher activity 

than post-cue conditions (for additional details see the tables in Figure 4-30). 

 

 

Figure 4-30. Comparison of Normalised MUAe Activity for the Cuing Conditions in 

Different Time Periods Averaged Over Grating Orientations for the Mouse V1 Data. 

A. Normalised MUAe activity for the population of V1 channels, during the stimulus time 

period for the 4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite 

[preOppStim], post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. 

Normalised MUAe activity during the cuing time periods for the 4 different cuing 

conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-cue 

opposite [postOpp]). C. Normalised MUAe activity during the entire time period (from 

pre-cue on until post-cue off) for the 4 different cuing conditions (pre-cue [preRF], pre-

cue opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). Tables below 

each subplot indicate pair wise differences (p-values based on Wilcoxon Signed Rank test, 

FDR corrected and adjusted). Bars show mean spiking activity, associated circles indicate 

95% confidence intervals.  
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4.3.1.2.2.5 Mouse SC MUAe Data 

 

Table 4-8. Repeated Measures Mixed Model Multi Factor ANOVA for the MUAe 

Population Activity of Mouse SC 

Term FStat DF1 DF2 pValue 

Cuing Cnd 0.3454 3 145 0.792 

Grating Type 0.837 1 145 0.361 

Time Window 24.346 3 145 <0.001 

Cuing Cnd*Grating Type 0.108 3 145 0.954 

Cuing Cnd*Time Window 0.274 9 145 0.843 

Grating Type*Time Window 9.594 3 145 0.002 

Grating Type*Cuing Cnd*Time Window 0.1886 9 145 0.903 

 

In the mouse SC significant effects occurred for time window and for grating type, and an 

interaction between the two. No other effects were found. These effects are further 

delineated in Figure 4-31 and Figure 4-32. Figure 4-31A shows that all pairwise 

comparisons for the different time periods were significant, when averaged across cuing 

conditions and grating types. Increased activity occurred for vertical grating responses, 

when compared to horizontal grating responses (Figure 4-31B), similar to what was found 

for V1 mouse data.  
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Figure 4-31. Comparison of SC Normalised MUAe Activity for the Different Time 

Periods and the Two Grating Orientations. 

A. Mean normalised MUAe activity for the population of mouse SC channels, during the 

different time periods (pre-cue [pre], stimulus [stim], and post-cue [post]). B. Mean 

normalised MUAe activity for the population of mouse SC cells for the two different 

gratings, measured during the stimulus time period. P-values (FDR corrected and adjusted) 

indicate pair wise differences (Wilcoxon Signed Rank test). Bars show mean activity, 

associated circles indicate 95% confidence intervals. Middle p-value in A arises from the 

comparison between pre- and post-cue activity. The other p-values arise from the 

comparison between neighbouring bars. 
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Figure 4-32. Comparison of Normalised MUAe Activity for the Cuing Conditions in 

Different Time Periods Averaged Over Grating Orientations for the Mouse SC Data. 

A. Normalised MUAe activity for the population of SC channels, during the stimulus time 

period for the 4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite 

[preOppStim], post-cue RF [postRFStim], post-cue opposite [postOppStim]). B. 

Normalised MUAe activity during the cuing time periods for the 4 different cuing 

conditions (pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-cue 

opposite [postOpp]). C. Normalised MUAe activity during the entire time period (from 

pre-cue on until post-cue off) for the 4 different cuing conditions (pre-cue [preRF], pre-

cue opposite [preOpp], post-cue RF [postRF], post-cue opposite [postOpp]). Tables below 

each subplot indicate pair wise differences (p-values based on Wilcoxon Signed Rank 

test). Bars show mean spiking activity, associated circles indicate 95% confidence 

intervals.  

 

 

 

Figure 4-32 shows that post-cue conditions resulted in higher activity during the post-cue 

period than pre-cue conditions. However, this was likely induced by the stimulus ‘off’ 

response, which occurred during the post-cue analysis period (see e.g. Figure 4-28).  
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4.3.1.2.3 LFP Matching Pursuit Analysis 

To compare mouse LFP data the macaque data, LFPs were also analysed using the 

matching pursuit toolbox. Probably due to the small sample size, no trends or significant 

effect emerged. Therefore this paper does not show or discuss these data any further, as 

additional data would be required to gain meaningful insights.   

 

4.3.1.2.4 Summary of Observable Effects in the Mouse 

In general the mouse electrophysiological data was affected in some part by the different 

experimental conditions in the BU attentional task. However the effects observed were 

less noticeable than those seen in the macaque. Within both V1 the SC there an observable 

bias for response to different gratings. Specifically there was an increased response for the 

vertical grating.  

When summarising the effects of pre-cuing there were differential effects in V1. While 

there was no difference seen in the spiking data, the MUAe showed that there was an 

increase in activity in pre-cue non-RF against post-cue conditions.  

The effects seen in mouse SC were less pronounced than that seen in V1. Precuing in both 

the spiking and MUAe had no noticabe effect. However there was a trend foractivity in 

theafter the stimulus offset to be higher than that before stimulus onset.  

Taken together, these results show that pre-cuing causes differential effects in both mouse 

V1 and SC. However the effects seen are very small compared to those seen in the 

macaque.  

 

4.4  Discussion 

Bottom-up attention is deployed when an unexpected stimulus suddenly appears in an 

animal’s sensory field, which might have behavioural relevance (Posner, 1980, Nakayama 

and Mackeben, 1989). This then can cause an overt orienting response which brings the 

stimulus into a better position for sensory evaluation. In this manner bottom-up attention 

and orienting are intrinsically linked. However these mechanisms do not necessarily need 

to be externalised (Posner, 1980). Here this paper investigates possible neuronal signatures 

of bottom-up attention trough electrophysiological recordings in primary visual cortex in 

both macaque and mouse as well as macaque V4 and mouse SC.   
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4.4.1 Macaque Data 

The macaque V1 thresholded spiking data were not affected by the cuing conditions. This 

result is somewhat in contrast with the existing literature concerning top-down attentional 

processing. Previously, external cuing has been shown to increasing spike firing rates in 

response to a visual stimulus (Wang et al., 2015). This lack of effect may be due to a 

number of reasons. Firstly, the cuing location may have been too far away from the RF 

location to induce spiking activity in the recorded neurons themselves, and may also have 

been too far, to cause other types of direct local network interactions. However, this 

argument is not really supported by our MUAe or LFP data (see below). If attention was 

automatically drawn to the cuing location, its focus might have been outside the receptive 

fields, thus not affecting the stimulus response either. A recent paper (published shortly 

after I acquired my data set for the thesis) showed that the effects of cuing on V1 

responses depended on stimulus novelty and task engagement (Wang et al., 2015). Thus, 

the lack of a behavioural engagement in the passive conditions in our data set, and/or the 

repeated stimulation, could have caused habituation, and thereby resulted in suppression of 

potential effects. While this is a possible explanation, it is countered by the apparent lack 

of significant differences in the data between the active and the passive condition, which 

differs from the results reported by Wang et al.  

A main difference between our data and those reported by Wang et al. is the type of cuing 

used. We used a bar that was presented above the neuron’s RFs, while they used an 

annulus which flashed briefly around the V1 RFs, generally inducing a spiking response 

on its own (see e.g. their figure 2). Thus, the different types of cues used could also have 

contributed to the differences seen. All these arguments are, however, somewhat moot in 

light of the effects seen in the MUAe data (discussed below). 

In contrast to the V1 data, pre-cuing affected macaque V4 thresholded spiking data. The 

pre-cue RF condition triggered a response of its own in our data, but at the same time it 

resulted in decreased stimulus induced responses. Despite this decrease, the activity over 

the entire trial period was increased, even if compared to the post-cue RF conditions. This 

reduction of the stimulus induced response in V4 is reminiscent of the effects seen with 

centre-surround suppression (Sundberg et al., 2009) or attention being drawn to a location 

outside of the RF (Reynolds and Desimone, 2003, Reynolds and Chelazzi, 2004). Finally, 

it could also be related to adaptation (Vogels, 2016). The design of my experiment does 
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not allow to differentiate between these possibilities, and they could all have contributed 

to some extent.  

In contrast to the thresholded spiking V1 data, significant effects of cuing conditions were 

found in the macaque V1 MUAe activity. Pre-cuing RF conditions significantly increased 

the activity for the pre-cue period, as well as over the entire analysis period (from pre-cue 

onset to post-cue offset). The discrepancy between MUAe and thresholded spiking may 

arise from the pool of neurons that contribute to the two signals. The thresholded spiking 

activity data is likely from a relatively modest neuronal pool size (I would estimate about 

3-8 neurons), while the MUAe is derived from ensembles of neurons that reside with 

~100-200um from the electrode contact. Assuming that ~120,000 neurons exist within 

1mm3 of V1 cortex (O'Kusky and Colonnier, 1982), it would mean that 120-960 neurons 

contribute to the MUAe signal, i.e. at least 1-2 orders of magnitude more neurons 

contributing to MUAe than to the thresholded spiking activity. Rather small effects of pre-

cuing might result in measurable differences when averaging over large populations 

(MUAe), but they might not be detectable when smaller populations are analysed. 

Assuming that noise in the data is uncorrelated, the signal-to noise ratio would increase 

with the square root of the sample size, i.e. 2 orders of magnitude more neurons would 

increase SNR by a factor of 10, and would strongly improve the ability to detect even 

small differences. The pre-cue RF induced enhancement in V1 MUAe data is somewhat 

similar to that reported for the above mentioned bottom-up attention V1 study (Wang et 

al., 2015), but it was restricted to the pre-cuing period and did not affect stimulus 

responses. This might be due to the repetition of stimuli, which Wang et al. have reported 

for their spiking data.  

The results we found for the MUAe V4 data were somewhat similar to the MUAe V1 data, 

but the pre-cue RF induced effects in V4 were enhanced, and significant effects were also 

seen when analysing the stimulus induced responses. The enhanced cuing effects were 

most pronounced when analysing the entire response period (pre-cue on until post-cue 

off).  Larger attentional effects in V4 than in V1 have been reported previously when top-

down attention was directed to the receptive field locations in V1 (Roelfsema et al., 1998, 

Roberts et al., 2007) and V4 (Moran and Desimone, 1985, Luck et al., 1997). Here it is 

shown that similar differences arise with bottom up attention induction. 

Despite these similarities in terms of activity increases over the entire response period, 

there were differences in responses, when analysing shorter time epochs. For V1 there was 
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no significant difference in the stimulus induced response for the different cuing 

conditions, while in V4 there was a marked decrease in the peak response to the stimuli, 

after a pre-cue above the RF. Given this, why does the response increase in both areas 

when averaged across the entire period? In V4 the pre-cue above the RF induced a strong 

response on its own, which is stronger than the suppression it causes for the stimulus 

response. In V1 and in V4 the increased activity during the pre-cue period for the pre-cue 

RF condition is larger than the increase in activity during the post-cue RF period, and thus 

the summed activity increases for both over the entire time period.  

These results can be compared to human fMRI data, which used essentially the same cuing 

paradigm used here (Liu et al., 2005). In fact we copied their cuing paradigm, to determine 

how neuronal signatures of bottom-up attention relate to fMRI signals. The authors of the 

fMRI study argued that pre- and post-cue conditions would result in identical fMRI 

signals (which are sluggish and average over long time periods due to the slow response 

time of the blood-oxygen-level dependent (BOLD) signal), unless cuing invoked some 

automatic attentional processing. The authors (Liu et al., 2005) found that in human 

cortex, pre-cueing altered responses in a graded manner across visual cortex, with virtually 

no effects (no increased BOLD signal) in area V1 and increasingly larger effects with 

cortical hierarchy (V1<V2<V3<V4). This mirrors the difference seen here. Despite this, 

the reduction in stimulus induced firing V4 with pre-cue RF, is hardly an expected 

signature of automatic attentional processing, even if the overall V4 activity increased, 

roughly mirroring the results in BOLD signal changes. Given the overall results from our 

V1 and V4 data, I would caution about the use of the word attention. Many of the effects 

seen might as parsimoniously be described in terms of local network effects including 

non-classical receptive field stimulation, normalization, and response habituation. 

The latter is also supported by the LFP power spectra in V1. Pre cuing above the RF 

caused a distinct increase in power in the 20-30Hz band i.e. the beta and low gamma band. 

Increases in this frequency range these have been implicated with heightened top-down 

and bottom up attention (Fries et al., 2001, Buschman and Miller, 2007, Siegel et al., 

2008). Despite this, the stimulus induced spectral power in these frequency bands was 

lower for the pre-cue RF condition, while it was enhanced in the alpha frequency band, a 

frequency band often associated with distractor suppression (Haegens et al., 2012). Thus, 

the stimulus induced spectral power, shows signatures opposite to those expected from 

‘attentional’ processes (but see (Chalk et al., 2010)). 
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In V4 the LFP difference spectrograms showed somewhat different characteristics. The 

pre-cue RF itself triggered a large increase in spectral power across a wide frequency 

range (20-120Hz). This increase could be the forward drive to trigger bottom-up 

recruitment of attentional processing from higher cortical areas (Fries et al., 2001). During 

the stimulus, V4 spectral power was also reduced in the high gamma frequency range, 

compared to the other cuing conditions, and in the frequency bands  below 40 Hz, with a 

notable reduction in the alpha frequency range (i.e. exactly the opposite to what was seen 

in V1). The traditional gamma frequency range (~40-60Hz) showed the least reduction, 

possibly a signature of the bottom-up attention induction.  

Although bottom-up attentional processing is much less studied than top-down attentional 

processing at the electrophysiological level, some experiments have been performed using 

pop-out stimuli in multi stimulus displays. Here one stimulus has a different (more salient) 

colour to which the animal has to orient. Directing attention in this manner enhances 

visual activity in response to the salient stimulus within the receptive field. For the parietal 

cortex (area 7A) this response is highest when the salient stimulus is different from the 

surround stimuli (Constantinidis and Steinmetz, 2005). However in this area, cuing 

attention has also been shown to inhibit stimulus induced firing in the attended location 

(Steinmetz et al., 1994). Similar pop-out attentional studies have examined activity the 

frontal eye field (FEF). Here pop-out attentional priming increased neuronal responses to 

the salient stimulus, while inhibiting responses and increasing saccade latencies to the 

previously attended location through an inhibition of return. (Bichot and Schall, 2002). 

These brain regions are hierarchically higher than the macaque visual areas studied in this 

research. The effects seen in these higher areas might well, influence the activity as seen in 

V1 and V4 in my study through feedback connections.  

 

4.4.2 Mouse Data 

In the mouse visual areas cuing effects were limited. This is possibly a result of the small 

sample size.  

In mouse V1, pre-cue RF conditions resulted in significantly larger responses than post-

cue conditions for the cueing periods for the spiking and the MUAe data, which is 

qualitatively similar to the macaque data. Moreover, a slight trend for an increase in peak 

and sustained visual response occurred in the presence of a pre-cue vs a post-cue, but only 
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for the horizontal stimulus. This preference for stimuli of specific orientation could mean a 

number of things. Firstly, it could be that our sample size was too small to rule out the 

random sampling effects for stimulus orientation preference. Or it could be that within the 

small region of visual cortex sample, which tended to be in the upper lateral portion of the 

visual field, there is a tendency for gratings which are orientated parallel to the animals 

body length are preferentially processed for exogenous cuing. A similar type of 

stimulus/location specific processing has been shown previously to exist in the direct 

projections from the retina for looming stimuli (Yilmaz and Meister, 2013). A noticeable 

difference of the mouse V1 data was the pronounced response suppression after stimulus 

offset in the MUAe data. This response reduction resulted in overall decreased activity for 

post-cue conditions, as the post-cue presentation (even if above the RF) was not able to 

counter the reduction.  

In comparison the trends in SC spiking and MUAe activity were different. Specifically, 

pre-cue RF and pre-cue opposite conditions resulted in lower activity than post-cue 

conditions. No differences were found for stimulus induced activities, which differs from 

work done in the macaque where exogenous peripheral cuing caused an increase in visual 

stimulus induced response (Ignashchenkova et al., 2004).  

No differences were found for the SC activity when averaged across the entire response 

period. The only additional noticeable feature of the SC response, which occurred for all 

cuing conditions, was the marked sustained stimulus response, with a response offset 

enhancement, i.e. the opposite response to that seen in mouse V1. This may aid an animal 

in initiating short latency orienting response like saccades (Munoz et al., 1991), attentional 

deployment (Müller et al., 2005), stimulus orienting (Dean et al., 1986), or 

approach/avoidance mechanism (Sahibzada et al., 1986). 

While pre-cue induced alterations of neuronal activity have been studied to some small 

extent in the macaque, virtually no meaningful comparison is possible to existing rodent 

literature. A few studies have used visually cues to inform behavioural choice responses or 

response locations to increase SC choice preferences and visually induced firing (Duan et 

al., 2015, Ngan et al., 2015). But these served rather different purpose, namely active 

decision making, and results can thus not be compared in a meaningful manner. 
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Chapter 5. Optogenetic Perturbation of Prefrontal Areas in Mouse and 

its Effect on Visual Related Activity and Bottom-up Attention 

 

5.1 Introduction 

So far the focus of this thesis has been on the anatomical segregation of different orienting 

behaviours in the mouse and the effect of bottom-up (BU) attentional signals on early 

visual processing. This final chapter expands on this, aiming to incorporate the role of 

prefrontal areas in this BU modulation. In Chapter 3, the differential connectivity strength 

of two prefrontal regions, the cingulate area (Cg) and motor cortex area 2 (M2), were 

described in terms of connectivity to subregions of the superior colliculus (SC) (medial vs 

lateral) and the rest of the brain. It was found that the Cg projected preferentially to the 

medial SC and regions involved in avoidance behaviours. Conversely, M2 projected 

preferentially to the lateral SC and regions involved in approach behaviours. Both regions 

do project to the primary visual cortex, which can be seen from this research and others 

(Miller and Vogt, 1984, Zhang et al., 2014). It is also known that these prefrontal regions 

produce signals which are able to modulate upcoming behavioural orienting and decisions 

in rodents, as described in Chapter 1. 

The behavioural outputs for orienting behaviours and those seen in BU attention are very 

similar. Both can be elicited by temporally transient focal peripheral stimuli, which may or 

may not be behaviourally relevant. The briefness of such stimuli and their location in the 

visual field requires animals to reorient their sensory apparatus (e.g. eyes, pinnae, head) to 

better evaluate the stimuli for behavioural response. This action, by definition, is an 

orienting response which in higher primates is usually a saccade, but can also include head 

movements (Monteon et al., 2010). In rodents due to the lack of high density 

photoreceptor foci in the eye, this action brings the stimulus into the binocular field in the 

frontal/central visual field (Wallace et al., 2013). These behaviours almost always include 

a head or body movement (Dean et al., 1986, Sahibzada et al., 1986, Dean et al., 1988a). 

Therefore any region that is involved in orienting behaviours in the rodent may be 

involved in the underlying covert BU attentional behaviour that precede it. In fact 

stimulation of Cg neuron axon terminals in mouse V1 has been shown to increase 

neuronal responses and improve visual discrimination (Zhang et al., 2014). 
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The anatomical connectivity delineated in Chapter 3 and the results from Chapter 4 in BU 

modulation in V1, bring about the following question. Are the BU effects seen in V1 

triggered (or modulated) by prefrontal areas? To investigate this, the same BU attentional 

paradigm as in Chapter 4 were used, but with optogenetically transfected animals. These 

mice were injected with channelrhodopsin 2 into the prefrontal control regions of Cg or 

M2. This then allowed for optogenetic activation of the transfected region during the 

presentation of the visual stimuli. Unfortunately, due to the time constraints of this thesis 

only a few animals were tested in this manner, and all of them were from the Cg injection 

cohort. The effects of stimulation on M2 region will have to be conducted at a future date. 

 

5.2 Methodology 

In general the methodologies utilised for viral injection have been described previously 

(see Chapter 2.1). Furthermore the experimental design for this section has also be 

described above in Chapter 4. This methodology section covers the specific procedures 

employed to analyse the effects of optogenetic stimulation of prefrontal regions in the 

mouse and their effect on activity in murine visual areas.  

 

5.2.1 Efficacy of Optogenetic Transfection in Injected Regions 

In order to explore the effects of optogenetic innervation of visual areas in the mouse 

through projections from higher cognitive areas a number of steps were taken. To test the 

efficacy of the optogenetic transfection before the implantation of a cranial window, test 

penetrations were conducted. This entailed sedating and headfixing the animal, and 

preforming a craniotomy as has been described previous in Chapter 2. Then a laminar 

electrode (Atlas Neuroenginering) was advanced into the area of prior transfection. 

The region was stimulated with pulses of blue light from one of the previously stated light 
sources (see  
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Table 2-2). There were two interleaved conditions in this paradigm, one with light 

stimulation and one without any stimulation. The activity for each contact was data was 

collected and analysed as described above in section 2.6.  

 

5.3 Results 

12 laminar electrode recordings were performed in one animal. These were split into V1 

(n=8) and SC recordings (n=4). The animal in question had been transfected with channel 

rhodopsin 2 under a calmodulin-dependent kinase II promotor with a yellow florescent 

protein marker (AAV5-CamKII-ChR2-eYFP). The virus was injected into the cingulate 

area (Cg) of mouse cortex and was left to express for 3 months prior to the start of 

recording. Further details of these procedures can be found in section 2.5.  

5.3.1 Histology of AAV5 CAMKII Channelrhodopsin Animal 

In order to verify the transfection of the experimental animal the brain was collected after 

the experiments were concluded. The brain was sectioned and examined under 

fluorescence microscopy to examine to the pattern of fibres. It was found that the injection 

location was centred over the Cg region, however there was some overlap into the M2 

region (see Figure 5-1). It was interesting that within the viral injection site labelled 

neurons were not easily discernible. However labelled fibres were found in abundance.  

The projection pattern to the recording sites was also investigated. The fibres found in V1 

were concentrated in layer 1 and 6. However, there were fibres found throughout layers 

4/5. This can be seen in the figures below (Figure 5-2, Figure 5-3). In general the labelling 

to V1 was light in comparison to the labelling seen with the SC. 

The SC pattern of neuronal fibres was restricted to the intermediate and deep layers 

(Figure 5-3). Interestingly the medial/lateral bias observed in the previous chapter was not 

as obviously shown here. This may be due to the injection site overlap in the prefrontal 

cortex.  
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Figure 5-1. Example Photomicrograph of the Injection Site for AAV5 CAMKII 

Channelrhodopsin Injected into the Cingulate Region Brain 

Green labelling represents endogenous CAMKII ChR2 neuronal fibres. Cyan colur 

represents DAPI nuclei labelling. Scale bar equate to 500µm. Nomenclature is derived 

from Franklin, K.B.J. & Paxinos, G. 2012. For abbreviations see list. 
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Figure 5-2. Example Photomicrograph of the Labelled Fibres in the Posterior Section of 

Mouse Primary Viusal Cortex 

Green labelling represents endogenous CAMKII ChR2 neuronal fibres. Cyan colur 

represents DAPI nuclei labelling. Scale bar equate to 500µm. Nomenclature is derived 

from Franklin, K.B.J. & Paxinos, G. 2012. For abbreviations see list. 
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Figure 5-3. Example Photomicrograph of the Labelled Fibres in Mouse Primary Viusal 

Cortex and Superior Colliculus 

Green labelling represents endogenous CAMKII ChR2 neuronal fibres. Cyan colour 

represents DAPI nuclei labelling. Scale bar equate to 500µm. Nomenclature is derived 

from Franklin, K.B.J. & Paxinos, G. 2012. For abbreviations see list. 

 

 

 

5.3.2 Spiking Data 

5.3.2.1 Optogenetic Stimulation of the Transfected Brain Areas  

Before electrophysiological recordings began, it was necessary to test the efficacy of the 

optogenetic transfection. To do so, a single laminar multielectrode recording was 

conducted in the anaesthetised animal within the originally transfected region. In this 

manner it was possible to gain an indication of the effect of optogenetic stimulation within 

the transfected area. Two example optogenetic responsive contacts are displayed below 

(Figure 5-4, Figure 5-5).  

162 
 



 

 

Figure 5-4. Example Cell/Contact Which Displayed Optogenetic Stimulation in the Viral 

Vector Transfection Site 

Top panel displays a raster plot for the optogenetic stimulated condition for single contact. 

Middle panel displays a raster plot for the control condition with no optogenetic 

stimulation for single contact. Bottom panel displays peri-stimulus time histograms for 

both the optogenetically stimulation condition (cyan) and the control condition (black).  
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Figure 5-5. Example Cell/Contact Which Displayed Optogenetic Inhibition in the Viral 

Vector Transfection Site 

Top panel displays a raster plot for the optogenetic stimulated condition for single contact. 

Middle panel displays a raster plot for the control condition with no optogenetic 

stimulation for single contact. Bottom panel displays peri-stimulus time histograms for 

both the optogenetically stimulation condition (cyan) and the control condition (black). 
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As has been reported previously, two main effects of light stimulation were observed. This 

included both an excitation in firing rates and a decrease in firing rates. In Figure 5-4, a 

recording location in which stimulation with a 2 second pulse increased firing rates 

significantly between stimulation and non-stimulation times (cyan, p<0.0001, Wilcoxon 

Signed Rank test) is shown. The interleaved no stimulation trials (black) show no 

modulation of firing rate. Conversely, in Figure 5-5, a recording location is shown, which 

showed a marked decrease in firing when stimulation occurred, as well as a large increase 

in firing once the stimulation was removed. This effect was significant (cyan, p<0.0001, 

Wilcoxon Signed Rank test). 

 

5.3.2.2 Cuing Effects in the Bottom-Up Attentional Paradigm with Optogenetic 

Stimulation 

5.3.2.2.1 Stimulation through the Cingulate Area 

n=7 (V1) and n=5 (SC) responsive (z-score>3 for stimulus induced activity) multiunits 

were recorded, in separate session, with and without concurrent optogenetic stimulation of 

area Cg neurons using the bottom-up attention task. Data were analysed as described 

previously, with a focus on potential effects of optogenetic stimulation.  

 

5.3.2.2.1.1 Single Contact Effects of Cuing and Optogenetic Stimulation 

To test whether different forms of (pre/post)-cuing, grating (vertical/horizontal) and 

optogenetic conditions affected neuronal spiking activity, a mixed model multi-factor 

2x2x4x4 ANOVA was used, as is described above in section 2.6.1.  

V1: For the V1 recordings, no contacts showed a significant main effect of optogenetic 

stimulation, but 2/7 contacts showed a significant interaction of optogenetic stimulation 

and experimental time window (p< 0.05). 2/7 contacts showed a significant interaction of 

optogenetic stimulation and cuing condition (p<0.05). One contact showed a significant 

interaction of optogenetic stimulation, grating type, and cuing condition (p<0.05). Finally, 

grating type and cuing condition, experimental time window, and optogenetic stimulation 

condition caused a significant interaction in one contact (p<0.05).  No other effects related 

to optogenetic stimulation were found.  
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SC: 2/5 contacts showed a significant main effect of optogenetic stimulation (p<0.05). A 

single contact showed a significant interaction of optogenetic stimulation and grating type 

(p< 0.05). One contact showed a significant interaction of optogenetic stimulation, grating 

type, and cuing condition (p<0.05). One contact had a significant interaction of 

optogenetic stimulation, grating type and time window (p<0.05). One contact had a 

significant interaction of optogenetic stimulation, cuing condition and time window 

(p<0.05). Finally, grating type and cuing condition, experimental time window, and 

optogenetic stimulation condition caused a significant interaction in one contact (p<0.05).  

 

5.3.2.2.2 Population Spiking Histograms 

Visual inspection of the spiking population data suggests that optogenetic stimulation 

might have affected (reduced) stimulus induced responses in V1 when vertical gratings 

were present (Figure 5-6). However, these hints did not occur when horizontal gratings 

were presented (Figure 5-7). More consistent effects (across conditions seemed to be 

present in the SC activity. Here optogenetic stimulation appeared to increase the late 

(sustained) stimulus induced response and the post-cue response period. 
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Figure 5-6. Comparison of Average Normalised Firing Rates in Mouse V1 and SC, When 

Vertical Gratings Were Presented During the Stimulus Period.  

Pre-cue RF vs post-cue RF with and without optogenetic stimulation. Green-pre-cue 

presented in the receptive field location, black-post-cue presented in the receptive field 

location. Solid lines show trials with optogenetic stimulation, dashed line show trials 

without optogenetic stimulation. Vertical lines represent trial time epochs, black-pre-cue 

period, blue-grating stimulus period, red-post-cue period.  
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Figure 5-7. Comparison of Average Normalised Firing Rates in Mouse V1 and SC, When 

Horizontal Gratings Were Presented During the Stimulus Period. 

Pre-cue RF vs pre-cue non-RF with and without optogenetic stimulation. Green-pre-cue 

presented in the receptive field location, black-post-cue presented in the receptive field 

location. Solid lines show trials with optogenetic stimulation, dashed line show trials 

without optogenetic stimulation. Vertical lines represent trial time epochs, black-pre-cue 

period, blue-grating stimulus period, red-post-cue period. 
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5.3.2.2.3 Quantification of Optogenetic Stimulation Effects at the Population Level 

To quantify these effects (or absence thereof) we performed the previously described 

mixed model RM ANOVA, with the added factor of ‘optogenetic stimulation’. An 

overview of the results for our V1 data is given in Table 5-1. While many factors affected 

the V1 spiking activity (as described in detail in previous chapters), optogenetic 

stimulation had no significant main effect (or interaction effect) on spiking activity in V1. 

Given the absence of an effect of optogenetic stimulation in this dataset, no more detailed 

analysis of the spiking activity for the different stimulus, cue, time period, and optogenetic 

conditions will be shown, as this has been dealt with previously. The FDR corrected pair-

wise comparison for relevant pairs of baseline versus optogenetic conditions did equally 

not show any significance, corroborating the results from the mixed model RM ANOVA.  

 

Table 5-1. Repeated Measures Mixed Model Multi Factor ANOVA for the Population of 

Multiunit Spiking Activity in Mouse V1 for Optogenetic Data 

Term FStat DF1 DF2 pValue 

Cuing Cnd 0.523 3 385 0.666 

Grating Type 115.2 1 385 <0.001 

Time Window 584.1 3 385 <0.001 

Opto Stim 1.246 1 385 0.264 

Grating Type*Cuing Cnd 0.242 3 385 0.866 

Cuing Cnd*Time Window 0.358 9 385 0.954 

Grating Type*Time Window 46.06 3 385 <0.001 

Opto Stim*Cuing Cnd 0.343 3 385 0.793 

Opto Stim*Grating Type 0.043 1 385 0.834 

Opto Stim*Time Window 1.036 3 385 0.376 

Grating Type*Cuing Cnd*Time Window 0.4164 9 385 0.926 

Opto Stim*Grating Type*Cuing Cnd 0.239 3 385 0.868 

Opto Stim*Cuing Cnd*Time Window 0.280 9 385 0.9798 

Opto Stim*Grating Type*Time Window 0.1384 3 385 0.936 

Opto Stim*Grating Type*Cuing Cnd*Time Window 0.267 9 385 0.982 
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An overview of the results for our SC data is given in Table 5-2. Contrary to V1, 

optogenetic stimulation had a significant main effect and a significant interaction with 

time window on spiking activity in SC. 

 

Table 5-2. Repeated Measures Mixed Model Multi Factor ANOVA for the Population of 

Multiunit Spiking Activity in Mouse SC for Optogenetic Data 

Term FStat DF1 DF2 pValue 

Cuing Cnd 0.453 3 257 0.714 

Grating Type 24.914 1 257 <0.001 

Time Window 572.425 3 257 <0.001 

Opto Stim 5.079 1 257 0.025 

Grating Type*Cuing Cnd 1.414 3 257 0.239 

Cuing Cnd*Time Window 0.166 9 257 0.997 

Grating Type*Time Window 7.801 3 257 <0.001 

Opto Stim*Cuing Cnd 0.443 3 257 0.721 

Opto Stim*Grating Type 0.761 1 257 0.383 

Opto Stim*Time Window 4.300 3 257 0.005 

Grating Type*Cuing Cnd*Time Window 0.610 9 257 0.787 

Opto Stim*Grating Type*Cuing Cnd 0.012 3 257 0.998 

Opto Stim*Cuing Cnd*Time Window 0.203 9 257 0.993 

Opto Stim*Grating Type*Time Window 0.328 3 257 0.804 

Opto Stim*Grating Type*Cuing Cnd*Time 

Window 

0.253 9 257 0.985 

 

 

 

The significant effects of optogenetic stimulation above area Cg on SC firing rates, raises 

the question which time periods were affected by the manipulation. This is delineated in 

Figure 5-8, Figure 5-9, and Figure 5-10 
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Figure 5-8. Comparison of SC Spiking Activity for the Different Time Periods, the Two 

Grating Orientations, and the Baseline Condition vs. Optogenetic Stimulation Condition.  

Left. Mean spiking activity for the population of mouse SC cells, during the different time 

periods (pre-cue [pre], stimulus [stim], and post-cue [post]). An added ‘N’ and ‘O’ to 

every label indicates whether optogenetic stimulation was applied: =’O’. Right. Mean 

spiking activity for the population of mouse SC cells for the two different gratings, 

measured during the stimulus time period. P-values in the tables below main plots indicate 

FDR corrected pair wise differences (Wilcoxon Signed Rank test). Bars show mean 

activity, associated circles indicate 95% confidence intervals.  

 

 

 

 

Figure 5-8 shows that the main differences between baseline and optogenetic stimulation 

appear during the post-cue period (when averaged over all stimulus conditions and the two 
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different post-cue conditions). The optogenetic stimulation did not affect the pre-cue or the 

stimulus period (relevant pairwise comparisons in Figure 5-8 e.g. stimN vs. stimO 

p=0.979). The optogenetic stimulation equally did not affect the strength of responses to 

the two grating orientations.   

 

 

Figure 5-9. Comparison of Population Spiking Activity for the Cuing Conditions in the 

Stimulus Time Period for the Mouse SC Data With and Without Optogenetic Stimulation.  

Mean spiking activity for the population of SC cells, during the stimulus time period for 

the 4 different cuing conditions (pre-cue RF [preRFStim], pre-cue opposite [preOppStim], 

post-cue RF [postRFStim], post-cue opposite [postOppStim]), separately for the baseline 

condition (black bars) and the optogenetic stimulation condition (cyan bars, and added 

label ‘O’ ). Activity was averaged across the two grating orientations, but separated 

according to cue condition. Tables below each subplot indicate pair wise differences (FDR 

corrected p-values based on Wilcoxon Signed Rank test). Bars show mean spiking 

activity, associated circles indicate 95% confidence intervals.  
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Figure 5-9 shows that the optogenetic stimulation did not affect the stimulus induced 

responses, irrespective of which cuing condition was analysed.  

 

 

Figure 5-10. Comparison of Population Spiking Activity During the Cue Period for the 

Mouse SC Data With and Without Optogenetic Stimulation.  

Mean spiking activity during the cuing time periods for the 4 different cuing conditions 

(pre-cue [preRF], pre-cue opposite [preOpp], post-cue RF [postRF], post-cue opposite 

[postOpp]) plotted separately for the baseline condition (black bars) and the optogenetic 

stimulation condition (cyan bars, and added label ‘O’). Tables below each subplot indicate 

pair wise differences (FDR corrected p-values based on Wilcoxon Signed Rank test). Bars 

show mean spiking activity, associated circles indicate 95% confidence intervals.  

 

 

 

While Figure 5-10 suggests that SC activity during the post-cue periods was higher with 

optogenetic stimulation, than without optogenetic stimulation, these effects were not 

significant in the FDR corrected direct pairwise comparison. The discrepancy to the 
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findings shown in Figure 5-8 are likely due to the diminished sample size, as data in 

Figure 5-8 (left column) were pooled across the two post-cue conditions. However, the 

data shown in Figure 5-10, show a trend in the FDR corrected p-values, and uncorrected p-

values were 0.064 and 0.049 respectively.  

No effects (or trends) of optogenetic stimulation were found when analysing the entire 

response period, separated for cue conditions. All FDR corrected p-values were >0.7, and 

thus data are not shown.  

 

5.4  Discussion 

In this chapter the effect of optogenetic stimulation on bottom-up attentional processing in 

mouse primary visual cortex and superior colliculus (SC) was examined. This was 

achieved through optogenetic transfection of mouse brain area Cg by injection of a 

projection neuron specific excitatory optogenetic compound. Cg was chosen due to its 

previously documented role in attention and orienting processes in rodents and primates 

(Kvitsiani et al., 2013, Blanchard and Hayden, 2014). Furthermore, from our data (see 

Chapter 3) and others, it is known that this region directly projects to both cortical visual 

areas such as primary visual cortex (V1) (Zhang et al., 2014) and to the main subcortical 

visually responsive region, the SC (Vogt and Miller, 1983).  

Firstly, to test the efficacy of optogenetic transfection we recorded from area Cg in the 

transfection location, with and without blue light exposure. Light stimulation of the region 

caused both excitation and inhibition of neurons within that region. These results are 

equivalent to previous literature reports (Han, 2012). Response inhibition would normally 

not immediately expected with ChR2, but it may be caused by indirect effects of the 

optogenetic stimulation. Light stimulation might have excited neurons which project to 

inhibitory cells. These inhibitory cells could then then inhibit the neuron that are recorded 

from, provided the recorded neurons themselves did not express ChR2.  

Optogenetic stimulation did not affect any of the experimental BU condition responses for 

our V1 data. This may seem surprising, as other have successfully activated V1 following 

area Cg ChR2 injection (Zhang et al., 2014). This group recorded from the Cg and V1 

after transfection CAMKII channelrhodopsin 2 into Cg. However, they directly activated 

the Cg fibres terminating in V1, by shining light onto V1, not onto Cg. Optogenetic 

stimulation of these Cg fibres increased V1 firing rates in general, and caused a 
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potentiation of orientation selectivity of the neurons. Furthermore, optogenetic stimulation 

of the fibres in V1 was able to increase the experimental animals’ performance in a visual 

discrimination task. The differences in experimental approach might be the reason why 

outcomes were different. At the same time, our current data sample is rather small, and 

strong conclusion cannot be drawn just yet. 

Optogenetic stimulation did cause significant changes in SC neuronal activity. Here, light 

activation of Cg neurons resulted in increased SC activity during the post-cue period, but it 

is difficult to exclude an effect on the stimulus induced sustained response, which may 

simply have lasted longer, than when Cg was not activated. The temporal proximity of the 

post-cue period to stimulus offset makes a distinction difficult, but the population 

histograms suggest effects to be present during the late sustained period already. I would 

argue that the optogenetic stimulation prolonged the sustained visual stimulus response 

but additional data will be necessary to prove this.  

The presence of both excited and inhibited neurons within the Cg region raises some 

questions on the effects seen in the SC. The increase in activity during the post-cue period 

may be caused by an increase in activity in excitatory neurons within Cg which excite 

cells within the SC region. Or there may be more complex network interactions, whereby 

excitation of neurons causes indirect inhibition of neurons which in turn disinhibit the SC, 

thereby causing an increase in activity. Under the current experimental setup it may be 

difficult to disentangle these issues. Although it may be possible with the aid of specific 

immunohistochemical labelling to get a finer scale picture of specific neuronal subtype 

interaction. As well the usage of a CAMKII specific promoter for the ChR2 expression 

should limit the optogenetic transfection to pyramidal projection neurons.  

Few studies have investigated how optogenetic transfection affects SC neuronal firing. 

The studies that did, have employed transfection and stimulation of the SC itself, rather 

than remote areas (Stubblefield et al., 2013). One study was able to bias the response in a 

sensory cued decision task to the side contralateral to stimulation. The other was able to 

trigger aversive freezing behaviours in rodents as well as abolish normal freezing 

behaviours. To the best of my knowledge no published work to date has looked at the 

modulation of neuronal firing in the SC with optogenetic stimulation in a visually cued 

paradigm such as we have employed.  
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Chapter 6. General Discussion 

 

6.1 Overview 

The biological basis of attention and orienting behaviours has been a central focus of 

neuroscientific research for many years. The most widely used animal for the more 

complex problem of visual attention is the non-human primate (NHP). The organism’s 

complexity and distinct similarities to the human make it an ideal choice for the study of 

visual based attention.  

However, attention (or at least orienting) is not restricted to these animals. All mammals, 

and indeed most animals, perform orienting which allows the animal to navigate the world 

and extract behaviourally relevant cues from the environment. An animal model, which is 

one of the mostly widely utilised animal in biological research, is the mouse (Bockamp et 

al., 2002). The mouse brain shows similarities, but also differences to the primate brain, 

which asks for the type of comparative work done here.  

In Chapter 3 a neuroanatomical characterisation of the networks involved in rodent 

orienting was conducted. The first target was the superior colliculus (SC). In line with 

previous work done in the rat (Comoli et al., 2012), I found that subregions of the SC 

receive projections from partially segregated networks in the brain. The main prefrontal 

inputs to the medial and lateral SC differed. The medial SC received the majority of its 

projections from the cingulate area (Cg), whereas the lateral SC receives the majority of its 

prefrontal input from the motor area 2 (M2) region. The Cg region has been implicated in 

the control of pain processing, aversion learning and mediation of aversion behaviours 

(Gabriel et al., 1991, Calejesan et al., 2000). Whereas the M2 region has been implicated 

in the control of orienting behaviours and goal based decision making (Reep et al., 1987, 

Duan et al., 2015). The M2 has also been suggested as the rodent homologue of the frontal 

eye field in macaque (Erlich et al., 2011). This result then led to the second part of the 

study were the anterograde connectivity of these prefrontal regions was investigated to 

examine whether the subregions of the SC and the relevant prefrontal regions were parts 

of wider segregated orienting networks. The anterograde data cemented the hypothesis 

that these specific prefrontal regions (Cg/M2) interact with their efferent brain networks 

including the medial and lateral SC, respectively. These partially segregated networks then 

may preferentially process aversive (Cg-medial SC) and approach (M2-lateral SC) related 
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orienting behaviours. In this manner, this chapter adds to the literature in setting out the 

fine scale anatomical networks which may control attentional based orienting in the mouse 

model. 

In Chapter 4 a direct comparison of attentional processing in the macaque and mouse was 

conducted. This was done through laminar multi-electrode recordings in multiple visual 

areas of both the macaque (V1 and V4) and the mouse (V1 and SC). The animals 

completed a passive visual bottom-up attentional paradigm whereby an ambiguous pre-cue 

or post-cue was presented either 100ms before or 100ms after the onset of a sinusoidal 

grating. This was adapted from a human paradigm (Liu et al., 2005). By using such a trial 

structure an investigation of the bottom-up influences of exogenous attention on visual 

stimulus induced activity could be achieved.  

In the macaque and mouse data, there was no effect of cuing condition on stimulus 

induced V1 neuronal firing, but the macaque MUAe data showed an overall increased 

activity, when averaged across the entire response period. This is somewhat at odds with 

the literature which has shown there to be an enhancement of neuronal firing after 

precuing the visual stimulus (Luck et al., 1997, Roberts et al., 2007). In V4 there was a 

significant increase in spiking and MUAe activity over the entire trial period. This 

increase in overall firing rate is similar to that seen in the literature (Moran and Desimone, 

1985, Luck et al., 1997). However, there was a contrasting reduction in stimulus induced 

firing in the pre-cue conditions, likely due to temporally delayed centre surround 

inhibition (Sundberg et al., 2009).  

In mouse SC there were no changes in the firing rates in the response to the visual 

stimulus, but there were changes in the post-cue period. These were unlikely to be due to 

cuing itself. By and large the effects in the mouse were smaller than those seen in the 

monkey, but a final verdict requires a larger sample size.  

Finally in Chapter 5 we investigated the role of the prefrontal areas identified in Chapter 3 

in modulating the bottom-up attentional processing discussed in the Chapter 4 within the 

mouse data. This was achieved by optogenetic stimulation a of CAMKII channelrhodopsin 

2 transfected neurons in area Cg of mouse. The Cg is assumed to process and trigger 

aversive behaviours, pain and orienting responses. As such activation of the Cg might 

modulate visual responses in V1 and the SC, areas that processes the relevance of salient 

stimuli. Light activation of Cg did not alter responses in area V1 but there was an effect of 

optogenetic stimulation within the SC. This stimulation did not depend upon the cuing 
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condition. In fact the modulation was only apparent in the late response phase of visual 

stimulus activation, and during the offset response period. It shows that Cg can directly 

affect responses in SC, but the exact role thereof remains to be determined. It certainly did 

not do it in a manner specific to our cuing conditions.  

 

6.2 Limitations of this Research 

An issue worth consideration when comparing the effects seen in the mouse and the 

macaque is the role that bottom-up attention has in the specific animals’ ethological niche. 

For a mouse, sudden onsets of visual stimuli often signals danger. It is most likely to be a 

cue relating to a predator or at the very least something that will cause the animal to hide 

or avoid the source of the stimulus. Therefore, for the rodent localization of the stimulus 

and its movement would be the highest priority. It would allow any orienting (reflexive 

aversion/shelter seeking) response to occur faster, if the activity to the ensuing stimulus 

was enhanced and preferably processed. In contrast, the onset of a sudden visual stimulus 

for the macaque may not necessarily be as aversive. So the highest priority for this animal 

may be to further evaluate the details of the object itself.  

 In Chapter 3, with hindsight (and more time available) a yet more quantitative approach 

could have been taken, specifically a stereological approach would have been useful. This 

methodology takes accounts for the complete brain region volume by the use of statistical 

inference. This garners a better estimation of the total numbers of labelled cells in the 

brain volumes of interest. However, this methodology is extremely time intensive and it 

would be very difficult to complete the amount of tracing work presented here considering 

the time limits of PhD. Furthermore in a more definite quantification of the anterograde 

labelling conducted in Chapter 3 would have benefited the research. However this would 

have entailed using a method like densitometry or synaptic bouton counting. Both of 

which, again are extremely time consuming and may not have been possible during the 

course of this PhD.  

When critically examining Chapter 4, the inclusion of more data from different animals, 

i.e. a second macaque and additional mouse recordings, would have be beneficial. This 

might have increased the significance of certain experimental effects. In addition, the 

active behavioural task which was conducted in the macaque did not produce enough data 

to be certain of the absence or presence of significant differences in the population 

response, when compared to passive viewing conditions. Furthermore in the macaque, 
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paired recordings in both V1 and V4 were attempted, but they did not yield a large enough 

sample with matching receptive fields to warrant any inter areal analysis of information 

flow. Finally, some form of active perception task in the rodent would fully compliment 

the macaque data and allow a better comparison of the effects of bottom-up attention in a 

goal directed task.  

 

6.3 Future Work 

Due to the time constraints of a 3 year PhD some interesting avenues of research were not 

fully explored. First and foremost, although our hypothesis regarding the optogenetic 

manipulation of bottom-up attentional processing attempted to investigate the mechanisms 

behind cingulate area and motor cortex area 2 innervation; the M2 transfected CAMKII 

cohort was not tested. Conducting these tests would uncover any differences between the 

modulations of both prefrontal areas in visual processing in the mouse. Additionally, 

increasing the sample size of the optogenetic cohort would be a necessity before drawing 

any stronger conclusions from the data.  

Furthermore it might be relevant to investigate whether the optogenetic stimulation from 

prefrontal regions had any effect in changing orientation preferences or receptive field 

properties within V1 and SC. Also, since activation in the prefrontal regions resulted in a 

noticeable effect on visual stimulus induced firing, it might be worthwhile examining what 

optogenetic inhibition of the area might yield. 

 

6.4 Conclusion 

The main goal of this work was to at least partially bridge the gap between our 

understanding of the processes behind the control of sensory orienting behaviours in the 

mouse and the processes involved in bottom-up visual attention in the macaque. 

Comparisons of this sort are difficult to make considering the differences in brain structure 

and fundamental cognitive functioning in these animals. However in this work a detailed 

neuroanatomical some brain regions involved in sensory orienting in the mouse was 

conducted. This furthers our understanding of the networks involved with specific types of 

sensory orienting in the mouse model. A direct investigation of bottom-up attentional 

processing was done in both the macaque and the model using the same paradigm. One, 

which had been created for human subjects. This allowed a clear comparison between the 
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early visual system processing in these two animals. In general, the visual processing of 

sinusoidal gratings between monkeys and mice is similar, with a short term transient peak 

followed by a longer term sustained response. There were some differences in the 

sustained response in V1; for the macaque there was a positive sustained/off response. For 

the mouse the off response was highlighted by a large reduction in overall activity. 

Furthermore the effects of precuing the grating were far larger in the macaque than that 

seen in the mouse. This may reflect the larger visual sensitivity seen in the macaque 

species. Finally by linking together the findings of the previous two chapters, an 

investigation of the neural influences of one of the partial segregated prefrontal inputs to 

the visual system in mouse was conducted. It was found that one of the main prefrontal 

inputs to the superior colliculus increases the sustained response to a visual stimulus. This 

furthered the understanding of the top-down influences in the mouse brain in terms of 

basis visual processing.  
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