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Abstract 

The human gut microbiota (HGM) represents a diverse community of bacteria with cell numbers in the 

trillions. The HGM is presented with dietary glycans, primarily from plant material consumed in the human 

diet, and host glycans which allow the bacterial community to proliferate in the gut. As such carbohydrate 

active enzymes (CAZymes) and multi-protein glycan utilisation systems are commonly expressed by members 

of the HGM. The human genome encodes few CAZymes rendering the vast majority of carbohydrates 

consumed accessible to the HGM. During bacterial fermentation of glycans short chain fatty acids (SCFAs), 

acetate, butyrate and propionate, are released into the gut lumen and are utilised for energy by colonocytes. 

SCFAs have also been shown to repress genes relating to proliferation in cancerous gut cells and activation of 

Treg cells.  

Bacteroidetes have been shown to possess a unique glycan utilisation strategy involving degradation of the 

target glycan at the cell surface before transport into the periplasm where degradation is completed before 

fermentable substrates are transported into the cytoplasm. Bacteroides ovatus deploys a xylan utilisation 

system expressed from two loci which is capable of targeting the relatively simple glucuronoxylans (GX) and 

arabinoxylans (AXs), but also the highly complex glucuronoarabinoxylans (GAXs) from corn. Work presented in 

this thesis has contributed to our understanding of xylan degradation. The data showed that xylan degradation 

begins at the cell surface with endo-acting xylanases from family GH10, targeting the backbone of simple 

xylans, while a GH98 xylanase targets specific structures in complex GAXs generating oligosaccharides that are 

transported into the periplasm.  Co-culturing B. ovatus alongside Bifidobactertium adolescentis on GX and AX 

demonstrated cross-feeding of xylooligosaccharides, allowing Bi. adolescentis access to previously inaccessible 

substrate. This interaction provides further evidence for use of xylans and xylooligosaccharides as prebiotic 

supplements to the human diet with the potential to enrich for both butyrate-producing Bifidobacterium and 

propionate producing Bacteroides. 

Bacteroides thetaiotaomicron is regarded as a glycan generalist with upwards of 88 polysaccharide utilisation 

loci (PULs), the majority of which target different glycans in the gut. Among these target glycans are pectic 

polysaccharides, homogalacturonan, galactan, arabinan, rhamnogalacturonan I (RGI) and rhamnogalacturonan 

II (RGII). Galactan, which represents a relatively simple polysaccharide, required only two glycoside hydrolases 

for complete degradation, a surface galactanase (GH53) and a periplasmic galactosidase (GH2). Arabinan 

required two surface endo-arabinanases (GH43), a periplasmic α-1,2-arabinofuranosidase (GH43) and α-1,3-

arabinosidase (GH51) for the removal of sidechains and a final periplasmic α-1,5-arabinosidase (GH51) to 

complete degradation of the arabinan backbone. Remaining galactooligosaccharide sidechains appended to 

rhamnose of RGI were degraded by three galactosidases (two GH2s and a GH35), each displaying different 

substrate preferences. During B. thetaiotaomicron pectin utilisation a degree of surface degradation was 

shown to be required prior to import; each of the resulting oligosaccharides can be scavenged by a B. 

thetaiotaomicron mutant lacking the specific surface enzymes required for polysaccharide degradation.  These 

data demonstrate cross-feeding is prevalent during B. thetaiotaomicron utilisation of pectic polysaccharides in 

the HGM. 

Fructans are particularly well described prebiotics found to be a bifidogenic growth substrate. B. ovatus and B. 

thetaiotaomicron are capable of utilising inulin- and levan-type fructans, respectively. Co-culture of B. ovatus 

and Bi. adolescentis on inulin demonstrates that the Bifidobacterium sp out competes the Bacteroides sp, 

despite B. ovatus being capable of utilising long and short inulin chains. Cross-feeding also occurs when Bi. 

longum or Bacteroides vulgatus is the oligosaccharide recipient. B. thetaiotaomicron growth on levan is able to 

support growth of Bi. adolescentis indicating levan oligosaccharides have probiotic potential. Cross-feeding has 

the potential to have a dramatic influence on how probiotics are processed, utilised and distributed in the gut 

and their contribution to the HGM food web must be considered when designing dietary supplements. 
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HGM Human Gut Microbiota 

HPAEC High Pressure Anion Exchange Chomatography 

HTCS Hybrid Two-Component System  

IMAC  Immobilised Metal Affinity Chromatography 

IPTG Isopropyl β-D-thiogalactopyranoside 

ITC Isothermal Titration Calorimetry 

Kan Kanamycin 

MM Minimal Media 

PL Polysaccharide Lyase 

PUL Polysaccharide Utilisation Loci 

RGI Rhamnogalacturonan I 

RGII Rhamnogalacturonan II 

SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

TCS Two-Component System 

Tet Tetracycline 

TLC Thin Layer Chromatography 

TYG Tryptone-Yeast extract-glucose media 

WX Wheat Arabinoxylan 

XOS Xylooligosaccharides 
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Chapter 1: General introduction 

1.1 Introduction  

Carbohydrates are diverse and biologically important molecules that are composed primarily of 

three elements, carbon, hydrogen and oxygen. The simplest sugar, monosaccharides, exist as a chain 

of five or more carbon atoms with differing arrangements of hydrogen or hydroxyls on each carbon, 

along with either an aldehyde or a ketone group. These linear monosaccharides can adopt an open 

chain or a cyclic five or six membered ring structures, termed furanose and pyranose conformations, 

respectively. Monosaccharide type is determined by the stereochemistry at each carbon, the 

presence of additional groups to H and OH, such as N-acetyl, and whether it is a ketone or aldehyde 

(Berg et al., 2002).  

Linked through glycosidic bonds between the anomeric carbon (the aldehyde or ketone group) of 

one sugar and any carbon of the other sugar, monosaccharides can form long polymers referred to 

as polysaccharides. Nomenclature of glyosidic bonds is based on its stereochemistry and which 

carbons in each ring are linked. Lactose, for example is a disaccharide of galactose and glucose with 

a β1,4-linkage, indicating the glycosidic bond is between the anomeric carbon, carbon-1 (C-1), of 

galactose and C-4 of glucose; the linkage is equatorial with the plane of the sugar rings. The β-

linkage of a D-sugar allows for linear polysaccharides, whereas the α-linkage of D-sugars usually 

leads to helical polysaccharides, starch for example. Diversity of polysaccharide structure arises from 

the infinite permutations of monosaccharides from which carbohydrates are constructed, and the 

variety of bonds between each monosaccharide. Polysaccharides can be linear or branched, allowing 

for further diversity in structure (Berg et al., 2002).  

In biological systems, glycans are typically used for energy storage and structural roles. Glycogen is a 

glucose polymer used for energy storage in mammalian and bacterial cells while starch performs a 

similar role in plant cells. The plant cell wall contains many classes of carbohydrate, each working in 

concert to provide the cell with strength, and resistance to environmental insults and pathogens.   
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Glycans are present on mammalian cell surfaces and fulfil roles in signalling and cell recognition. The 

bacterial cell capsule, expressed by some species of bacteria is made up of glycans to protect the 

cells in harsh environments.  

 

Figure 1.1 Overview of the composition of the human microbiota. Composition of the microbial 

populations around the body. Whereas other sites around the body show great diversity in phyla the 

gut bacteria show dominance of Bacteroidetes and Firmicutes. Taken from Lasken and Mclean (2014). 
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Carbohydrates can be fermented to produce energy for cellular functions. Although, due to the 

diversity of glycan structures present specific enzymes are required for breakdown into mono- or di-

saccharides. Bacteria in the human gut, the human gut microbiota (HGM), have developed a 

symbiotic relationship with their host. The human gut provides the HGM with carbohydrates in the 

form of indigestible (to the host) dietary glycans and a relatively safe niche in which to grow, and the 

HGM provide the host with energy rich short chain fatty acids (SCFAs) and various other health 

benefits (Backhed et al., 2005). Other sites around the body carry microbes with health benefits 

(Figure 1.1), but are not as densely populated as the gut. The microbes at these other sites are 

diverse at the phylum level despite the lower microbe density (Figure 1.1). The focus of this thesis is 

the study of the breakdown of several classes of glycan by two Bacteroides species typically present 

in the HGM and any potential cross-feeding which occurs during the glycan utilisation process. 

1.2 Glycans available in the Human Gut 

The glycans available to the HGM are primarily derived from the host and diet, the latter being the 

most significant source of carbohydrate. Host glycans are those expressed on the surface of 

epithelial cells or secreted into the protective mucus layer of the gut. Dietary glycans are 

carbohydrates consumed by the host, and are usually storage or structural (component of the cell 

wall) plant polysaccharides.  

1.2.1 Host Derived Gycans 

Within the thick, protective mucous layer of the large intestine are high molecular weight (>1000 

kDa) glycoproteins, mucins, that contribute to the lubricative and viscoelastic properties of mucus. 

Mucins can be secreted, form an extracellular gel, or are appended to the cell membrane of 

epithelial cells, each contributing to the defensive barrier of the gut. Mucin expression is tissue 

specific with over 21 human mucin genes identified to date (Dharmani et al., 2009). Typically, mucins 

consist of a peptide core decorated with sugar side chains; a simplified structure is shown in Figure 
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1.2 (Bansil and Turner, 2006). Thus, the mucins produced by any one human are diverse with 

different structures found at epithelial sites around the body. The protein core of mucins undergo 

extensive O- with some N- glycosylation, with attached sugar representing 90 % of the mass of the 

glycoprotein (Thornton et al., 2008). The glycosylated core of the peptide is typically flanked by 

cysteine rich domains (C domains) and von Willebrands factor domains (D domains, Figure 1.2). 

Terminal C domains are essential for polymerisation of mucins through disulphide bonds. The 

structure of the glycan decorations of mucins is complex often involving charged and uncharged 

sugars with many unique linkages (Bansil and Turner, 2006; Thornton et al., 2008).  

 

Figure 1.2 Diagram of mucin domain structure. Diagram of the common domain structure of gel 

forming mucins. Central mucin domains include Serine, threonine and proline residues providing many 

O-glycosylation sites, which are interrupted with cysteine rich domains. N- and C- terminal domains 

are cysteine rich allowing intra- and inter- molecular disulphide bonds. Based on figure from Ndeh 

(2013). 

 

1.2.2 Dietary Glycans 

As omnivorous mammals, humans consume nutrients from a wide range of sources including 

substantial amounts of plant material (Backhed et al., 2005). Plant cells possess a thick 

polysaccharide rich cell wall which provides the cell with structural integrity, intracellular 

communication, microbial defence and aids water transport. The plant cell wall is made up of many 

different classes of polysaccharide which perform different roles at different stages of growth, 

matching the requirements of the cell at each stage (Figure 1.3) (Cosgrove, 2005).  
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Figure 1.3 Schematic diagram of plant cell wall structure. Shown are 3 main regions of the plant cell 

wall, the middle lamella, primary cell wall and secondary cell wall, which extends out from the plasma 

membrane. Shown in the primary cell wall are pectin (yellow), hemicellulose (dark green) and cellulose 

microfibrils (light green). Adapted from Agirre et al. (2016). 

 

The plant cell wall consists of multiple distinct layers. The inner most layer, deposited after cell 

division is the middle lamella. The next layer, the primary cell wall, is then deposited under the 

middle lamella which is followed by synthesis of a secondary cell wall, positioned between the 

plasma membrane and the primary cell wall. The secondary cell wall affords the greatest structural 

strength to the cell wall, due to ordered cellulose microfibril structures present in this layer. 

Cellulose is also present in the primary cell wall but is thought to be in a more random arrangement. 

Primary cell wall, along with the middle lamella, contain pectin, a complex group of negatively 

charged polysaccharides (due to the presence of galacturonic acid) that form a gel allowing 

movement of cellulose microfibrils during growth (Figure 1.3) (Cosgrove, 2005).  

1.2.2.1 Cellulose 

Cellulose is the most abundant organic molecule, not only in the plant cell wall, but in the biosphere. 

Cellulose is an unbranched polymer of β-D-1,4 glucose where the repeating unit is a disaccharide 

(Figure 1.4a), cellobiose (Carpita et al., 1997). Synthesised at the plasma membrane, cellulose 
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performs a purely structural role providing the plant cell wall with considerable strength (Figure 

1.4c). Between 30 to 100 cellulose chains associate through extensive hydrogen bonds forming 

microfibrils (Beguin and Aubert, 1994). The dominant form, cellulose I, shows a 

paracrystalline/amorphous structure which is interspersed with highly ordered crystalline regions 

(Figure 1.4b). The ratio of these regions varies depending on plant species, Cellulose in cotton is 70 

% crystalline while the alga Valonia macrophysa cellulose is 100 % crystalline (Wood, 1988; Lehtio et 

al., 2003).   

 

Figure 1.4 Diagram of cellulose 

structure. Chemical structure of the 

cellobiose repeating unit which makes 

up the cellulose chains (a). Diagram 

showing crystalline and non-

crystalline regions of cellulose micro 

fibrils found in the plant cell wall (b). 

Diagram of crystalline packing of 

cellulose to form microfibrils and 

macrofibrils of cellulose crosslinked 

with hemicellulose in the cell wall (c). 

Adapted from Gibson (2012). 

 

a                                                                          b a                                                                 b 

c 



25 
 

1.2.2.2 Hemicellulose 

Hemicellulose polysaccharides are a group of heterogeneous polysaccharides with a β-1,4-liked 

backbone of D-sugars including xylans, xyloglucans, mannans and β-glucans. They crosslink cellulose 

fibrils within the plant cell wall. The Golgi apparatus is the site of hemicellulose synthesis, where it is 

packaged into vesical for transport to the plasma membrane (Scheller and Ulvskov, 2010). 

1.2.2.2.1 Xylan 

Xylan is the predominant hemicellulose in dicot secondary plant cell walls and the majority 

component of commelinid monocot primary cell walls. Simple forms of the polysaccharide comprise 

a linear polymer of β1,4-linked xylose residues with a three-fold screw axis. The backbone xylose 

units are decorated with acetyl, 2-O-glucuronic acid (GlcA) and 4-O-methylglucuronic acid (Me-GlcA) 

substitutions in glucuronoxylans (GX, Figure 1.5). There is plant- and tissue-specific variation in the 

structure of xylans. Arabinoxylan (AX, Figure 1.5) have double or single arabionsyl substitutions to 

the xylan backbone at the O-2 and/or O-3 position. Different patterns of substitutions are observed 

in different taxonomic groups. Grass plant cell walls show mostly AX with O-3 arabinosyl 

substitutions, while double substituted AX is usually found in grass endosperm, and O-2 arabinosyl 

substitutions are favoured in dicot AX (Scheller and Ulvskov, 2010).  
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Figure 1.5 Diagram of xylans Structure. Schematic diagram of generalised glucuronoxylan (GX), 

arabinoxylan (AX) and glucuronoarabinoxylan (GAX) structures. Adapted from Rogowski et al. (2015). 

 

The most complex xylan structure known is that of corn arabinoxylan (CX), a type of 

glucuronoarabinoxylan (GAX, Figure 1.5). Each of the substitutions of AX and GX are represented in 

CX along with 1,2/1,3-linked α- or β- xylopyranose and -L- and -D-galactose units. A feature 

common to dicot and conifer xylans is the tetrasaccharide 4-β-D-Xylp-(1→4)-β-D-Xylp-(1→3)-α-L-

Rhap-(1→2)-α-D-GalpA-(1→4)-D-Xylp at the reducing end of the chain. This oligosaccharide is 

thought to be either an initiator or terminator of xylan backbone synthesis, although there is still 

much debate of the purpose of this structural feature (Scheller and Ulvskov, 2010). Interestingly, this 

oligosaccharide has not been found in grass xylans, despite conservation of genes responsible for its 

synthesis (Scheller and Ulvskov, 2010).   
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Figure 1.6 Diagram of Xyloglucan repeating unit structure. Representative structures of XXXG-type 

(a) and XXGG-type (b) xyloglucans with optional residues shown in bold. Taken from Larsbrink et al., 

(2014). 

 

1.2.2.2.2 Xyloglucan 

Xyloglucan (XyG), found in all terrestrial plant species examined to date, has a β1,4-linked glucose 

backbone with regular α1,6-linked xylose substitutions. These side chains are then further 

substituted with either α-L-arabinofuranose or β-galactose at the O-2 of xylose. The galactose side 

chains can then be capped with an α-L-fucose, giving a highly variable structure to the 

polysaccharide. Despite this, repeating oligosaccharides in XyG have been observed in different 

groups of plant species. Vascular plants show two repeating core oligosaccharides XXGG (Figure 

1.6a) and XXXG (where X and G denote glucose decorated with xylose and undecorated, respectively 

xylose and glucose, respectively, Figure 1.6b), while XXGG is prominent in commelinoid monocots 

and XXXG dominates in solanaceous plants, respectively (York et al., 1996).   

a 

 

 

 

 

 

b 
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XyG are common in the human diet, found in quantities of up to 25% of the dry mass of vegetables 

such as lettuce, tomatoes and onions. Seed derived XyG are used as food thickening agents and in 

drug delivery systems in the intestine (Scheller and Ulvskov, 2010). 

 

Figure 1.7 Schematic diagram of hemicellulose mannan. Mannan structures found in the 

hemicellulosic fraction of plant cell wall include mannan, galactomannan, glucomannan and 

glactoglucomannan. Each mannan structure can be acetylated to greater or lesser degrees. Adapted 

from Pauly et al., (2013). 

 

1.2.2.2.3 Mannan 

The term mannan refers to several polysaccharides each incorporating mannose in their structure. 

Mannan polysaccharides include, mannan, galactomannan, glucomannan, galactoglucomannan and 

glucuronomannan. Undecorated mannan is a β1,4-linked mannose homopolymer (Figure 1.7), which 

can form cellulose-like crystalline microfibrils (Moreira and Filho, 2008). Galactomannan comprises a 

mannan backbone with some α1,6-linked galactose side chains (Figure 1.7), which varies depending 

on plant species. Galactomannan contributes to secondary cell wall thickening and uptake of water 

in seeds (Brett, 1990). The glucomannan backbone comprises β1,4-linked backbone of mannose and 
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glucose residues (Figure 1.7). The addition of α1,6-galactose substitutions to mannose in the 

backbone creates galactoglucomannan (Figure 1.7). Each of these polysaccharides, with the 

exception of mannan, can be acetylated to varying degrees at O-2 and O-3 of the mannose units. 

(Moreira and Filho, 2008).  

1.2.2.2.4 β1,3, β1,4 mixed linked glucans 

Primarily composed of β1,4-linked glucose interspersed with β1,3-linked glucose, mixed linked 

glucan abundance in primary cell wall is dependent on stage of growth of the plant cell. The 

interspersed β1,3-linked glucose in the backbone stops mixed glucans from forming cellulose-like 

crystaline structures, but instead form gel-like structures important during phases of cell growth 

(Scheller and Ulvskov, 2010).  

1.2.2.3 Pectin 

Pectic polysaccharides contribute up to 30% of the dry weight of dicot primary cell walls, although 

they are absent or found in very low abundance in secondary cell walls (Ridley et al., 2001). Pectin 

contains high quantities of galacturonic acid in the linear backbone from which polysaccharide side 

chains extend. The major pectic polysaccharides include, homogalacturonan (HG), 

rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II) (Ridley et al., 2001; Mohnen, 2008). 

1.2.2.3.1 Homogalacturonan (HG) 

HG is an unbranched structure comprising α1,4-linked D-galacturonic acid residues, also known as 

‘smooth regions’ of pectins (Figure 1.9). As the most abundant pectic glycan HG accounts for up to 

60% of potato (Bush et al., 2001), 35% of tomato (Seymour et al., 1990) and 52% of mango pectins 

(Muda et al., 1995). The HG backbone generally forms a two-fold helical structure (Jarvis and 

Apperley, 1995). As a negatively charged polymer, HG is able to form complexes with Ca2+ through 

ionic interactions crosslinking chains of the polysaccharide resulting in stronger, more ridged cell 

wall structures (Wolf et al., 2009). Methyl esterification reduces the negative charge of HG, which in 
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turn reduces its capacity to form Ca2+-complexes. Methyl esterification of HG is, therefore, 

associated with increased cell wall fluidity observed during cell separation (Mohnen, 2008; Wolf et 

al., 2009).  

1.2.2.3.2 Rhamnogalacturonan II (RGII) 

RGII is a highly conserved complex polysaccharide consisting of 20 different glycosidic linkages and 

13 distinct sugars (Figure 1.8), including rare sugars such as, apiose, aceric acid, 3-keto-3-deoxy-

manno-octulosonic acid (Kdo) and 3-deoxy-lyxo-2-heptosaric acid (Dha) (Vidal et al., 2000; Mohnen, 

2008). These diverse monosaccharides are components of four side chains, two disaccharides and 

two highly complex oligosaccharides, covalently linked to the α1,4-galacturonic acid backbone 

(Mohnen, 2008). The structure of RG-II is highly conserved and pectin is ubiquitous in plant cell walls 

indicating a vital role which is not fully understood at present, although the glycan may contribute to 

cell wall strength by forming dimers through inter-chain boron-diester bonds (Ishii and Matsunaga, 

1996). 

 

Figure 1.8 Diagram of RGII pectin. RGII pectin is the most complex polysaccharide in the plant cell wall 

with many unique linkages. The β1,4-galacturonic acid backbone is decorated with four unique side 

chains, Chain A-D, with some forms of the pectic polysaccharide containing an arabinose decoration 

termed chain E. Used with permission of Dr Rogowski. 
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1.2.2.3.3 Rhamnogalacturonan I (RGI) 

The RGI backbone comprises [-α-D-GalpA-1,2-α-L-Rhap-1,4-]n repeating units with approximately 

half of all Rhap residues substituted at C-4 by galactan, arabinan and arabinogalactan side chains 

(Figure 1.9) (Lau et al., 1985; Mohnen, 2008). Unlike RGII, RGI side chains can extend to a 

considerable degree of polymerisation (DP). For example, soy bean galactan is shown to be between 

43 and 47 residues in length (Nakamura et al., 2002). RGI and associated polysaccharides can 

account for around 36% of potato tuber cell wall dry weight (Øbro et al., 2004). The RGI backbone is 

predicted to form a threefold helix in an extended conformation (Engelsen et al., 1996). The galactan 

side chain consists of β1,4-linked galactopyranose (Galp) residues (Figure 1.9), which form a right-

handed helix with 6-9 residues per turn (Mohnen, 2008; Cid et al., 2010). Pectic arabinan is found in 

two configurations, linear arabinan, an α1,5-linked arabinofuranose (Araf) backbone and branched 

arabinan (Figure 1.9), in which the linear Araf glycan is decorated at O-2 and/or O-3 with monomeric 

Araf residues (Oomen et al., 2002). A short glalctooligosaccharide connects pectic arabinan to the 

RGI backbone (Mohnen, 2008). An increased arabinan and galactan content is associated with the 

developmental switch from division to elongation, suggesting galactan biosynthesis is dependent on 

certain developmental cues (Ridley et al., 2001). A decrease in arabinan and galactan is usually 

accompanied by an increase in HG-Ca2+ complexes, associated with cell wall strength and rigidity, 

leading to the hypothesis that proposes arabinan and galactan contribute to cell wall flexibility 

(Mohnen, 2008). Another suggested role for these long side chains is to crosslink RG-I with other cell 

wall components, xylans, xyloglucans, cell wall proteins and lignins (McNeil et al., 1980; Ishii and 

Matsunaga, 1996; Fleischer et al., 1999).  
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Figure 1.9 Diagram of RGI and HG pectin. RGI and HG pectin is a combination of homogalacturonic 

acid backbone and ‘hairy regions’ of RGI. The hairy regions of RGI are heavily decorated with long 

arabinan and galactan side chains. The RGI backbone is formed from a repeating unit of Rhamnose-

galacturonic acid with side chains attached to the rhamnose residue. The galactan side chains are 

homo-galactan polymers while the arabinan side chains, either branched or unbranched are attached 

to rhamnose via a short galactooligosaccharide. Aradopsis mucilage is comprised exclusively of the 

RGI backbone.  

 

1.2.2.4 Fructans 

Fructan polysaccharides are primarily composed of fructose units and synthesised by both plant and 

microbial cells. Unlike the polysaccharides discussed above, fructans are predominantly used as 

storage polymers, and are the second most abundant non-structural polysaccharides (Hendry, 1993). 

1.2.2.4.1 Inulin 

Inulin is a β2,1-linked fructose polymer with an α2,1-linked reducing end glucose cap (Figure 1.10c), 

which fulfils a storage role in pant cells. The fructose chain can range between 20-100 fructose 

residues in length (Roberfroid, 2005). Inulin is synthesised from sucrose (Figure 1.10b), a fructose-

glucose disaccharide, which is elongated by accepting fructose through the action of a 

fructosyltransferase. Inulin oligosaccharides are referred to as kestooligosaccharides, while a 
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mixture of inulin oligosaccharides are referred to as fructooligosaccharides (FOS). Branching of inulin 

polysaccharides occurs rarely in microbes and not at all in plants. Inulin chains DP of 9 or more form 

a six fold helical structure, favouring right-handed helix, although left handed helices have also been 

observed (French, 1988).  

Inulin is mainly produced in dicotyledons, such as chicory roots and is used, along with FOS, to 

supplement certain foods to boost Bifidobacteria and other gut bacteria within the large intestine 

(French, 1988). Inulin and FOS have been shown to increase mineral absorption of calcium and iron 

and increased production of SCFAs in the large intestine (Van de Wiele et al., 2004). As well as these 

positive health effects inulin shows similar properties to fat when added to food with a neutral taste, 

making it an excellent alternative in low calorie dairy products  (Akalın and Erişir, 2008; Buriti and 

Saad, 2014). 
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Figure 1.10 Fructan structures. Fructose (a) forms a disaccharide with glucose to become sucrose (b) 
which is used in plant and bacterial cells to create polysaccharides of β2,1- or β2,6-linked fructose, 
termed inulin (c) and levan (d) respectively. Each polysaccharide terminates in a glucose. Adapted 
from Sonnenburg et al., (2010). 

 

The medical industry has utilised inulin gel solution to protect drugs that have to transit the human 

digestive system to deliver pharmaceuticals to the colon. Inulin remains intact until it reaches the 

large intestine where it is broken down by the HGM and the drug is released (Fuchs, 1987). Inulin is a 

highly flexible polysaccharide, due to the bond type between each monosaccharide, which forces 

the furanose ring outwards, away from the plane of the backbone (Illustrated in Figure 1.10c and 

1.10d). In addition to storage, inulin may play a regulatory role in cellular compartment sucrose 

levels, preventing feedback inhibition of photosynthesis in the plant cell (Vijn and Smeekens, 1999).  
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1.2.2.4.2 Levan 

Predominantly found in microorganisms, although low molecular weight forms are produced by 

some monocotyledon plants, levan is a β2,6-fructose polymer (Figure 1.10d). High molecular weight 

levan found in microbes are highly branched with β2,6-linked chains of fructose attached to the 

backbone via a β2,1-linkage. The degree and extent of branching in levans is dependent on species. 

Levan is less flexible than inulin, adopting a more stable left-handed helix due to more extensive 

hydrogen bonding than seen in inulin (Han, 1990). 

 

Figure 1.11 An overview of gut microbe metabolism from dietary fibre to effects on the host. 

Potential effects on the host of production of SCFA metabolies including signalling in host cells via G-

protein coupled receptors (GPCR) and inhibition of Histone Deacetylases (HDACs) causing 

transcriptional changes in the host. SCFAs can also be metabolised in the liver and muscles. From 

Tremaroli and Backhed (2012). 

 

Lower molecular weight levan in plant cells is used as a storage polymer, primarily found in root 

tissues, while microbial levan is secreted to form the capsule and biofilm layer. Levan producing 

bacteria include Bacillus spp and Streptococcus salivarius, which are found in soil and as oral 

symbionts, respectively. Levan of oral symbionts is often found in dental plaques (Higuchi et al., 

1970). Erwinia herbicola, Zymomonas mobilis and B. subtilis produce levan which assists in biofilm 
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adhesion, likely due to their adhesive and elastic aqueous properties (Blake et al., 1982; Benigar et 

al., 2014). 

1.3 Human Gut Microbiota 

The adult human intestine hosts a microbial population of trillions of organisms dominated by 

bacterial species. This microbial community is generally known as the human gut microbiota (HGM), 

and forms a symbiotic relationship with the host (Figure 1.11) (Backhed et al., 2005). From birth the 

HGM develops in concert with the host. Shaped by the human diet at each stage of growth, the HGM 

varies throughout life.  

1.3.1 Microbiota Composition and Diversity 

Development of high throughput sequencing techniques have allowed probing of the incredibly 

complex HGM to explore the species composition, where previously it was only possible to identify 

species that could be cultured (Metzker, 2010). These advances gave way to the Human Microbiome 

Project (HMP) in 2008 with the aim of characterising the human microbiome, including the gut 

microbiome (genomes or metagenomes of the HGM). Originally those working on the project 

believed a core microbiome could be established for healthy individuals, but healthy individuals 

were found to possess incredibly divergent microbiomes. Three broad enterotypes were established 

during the MetaHIT study that were defined by variations in the prominence of the three dominant 

genera, Bacteroides, Prevotella and Ruminococcus (Arumugam et al., 2011), although this can be 

argued to be an oversimplification of an incredibly complex microbial community (Knights et al., 

2014). The MetaHit and HMP studies generally use stool samples to probe the HGM, as this 

technique is much less invasive than endoscopy. Stool samples, however, may only give an idea of 

which species are present at the distal end of the colon. Animal studies using humanised microbiota 

have shown phylogenic diversity between the early and late gastro-intestinal (GI) tract compared 

with mid GI tract, where diversity was found to drop (Gu et al., 2013). Differences are believed to be 

due to variations in oxygen along the GI tract, where obligate anaerobes were found in locations 
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more likely to provide anaerobic conditions (Gu et al., 2013). Similar data have shown microbe 

diversity at different locations in the GI tract of pigs, where the early GI tract was found to be 

Firmicute rich while the late GI tract showed dominance of Bacteroidetes (Kim and Isaacson, 2015). 

Sequencing of 16S ribosomal DNA was deployed to probe this vast population, results of which 

showed incredible diversity at the species level with 1000s of species present, while at the phylum 

level Bacteroidetes and Firmicutes represent 90% of the HGM (Figure 1.12) (Qin et al., 2010). 

Despite greater diversity at the species level 25% of gut microbial species belong to the Bacteroides 

genera, a significant proportion of this microbial community (Martens et al., 2009). The genus 

Bacteroides belongs to the phyla Bacteroidetes and includes over 20 distinct species. Although most 

species of Bacteroides are considered commensal under some conditions Bacteroides fragilis can 

become pathogenic. Bacteroides spp are anaerobic rod-shaped, bile-resistant, non-sporulating, 

gram-negative bacteria typically found in the gut (Wexler, 2007). Sequenced in 2003 (Xu et al., 2003) 

and 2005 (Cerdeno-Tarraga et al., 2005) respectively, B. thetaiotaomicron and B. fragilis both have a 

relatively low gene content for size of the genome, indicting a large number of high molecular 

weight proteins are expressed (Wexler, 2007).  Bacteroides spp begin to populate the human gut 

approximately 10 days after birth, although Bacteroides spp are more prominent post-weaning or in 

infants which were not breast fed (Simon and Gorbach, 1986; Mackie et al., 1999). Products of 

Bacteroides metabolism, primarily SCFAs, provide a significant contribution to the daily energy 

requirements of the host (Hooper et al., 2002). 

Another genus associated with positive health is Bifidobacterium. Belonging to the diverse phyla 

Actinobacteria, Bifidobacterium spp are gram-positive, non-motile, non-filamentous, Y-shaped 

bacteria without the ability to form a capsule (Barka et al., 2016). Interestingly, the Y-shaped cells 

are only maintained in clinical isolates from the gut, when cultured in vitro however, the cell revert 

to a rod shape (Barka et al., 2016). Bifidobacterium spp have been shown to exert antimicrobial 

activity by competitive exclusion while also adhering to the intestinal wall or mucus layer of the gut 

(Ouwehand et al., 2002).  
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Although each individual host has a unique bacterial population, trends have been identified that are 

associated with particular host diets or phenotypes (Qin et al., 2010; Tremaroli and Bäckhed, 2012). 

Experiments investigating differences in gut microbe composition between genetically obese mice 

(ob/ob) and their lean littermates have revealed an association with increased Firmicute to 

Bacteroidete ratio in the obese phenotype (Ley et al., 2005), an observation which is mirrored in 

human studies (Ley et al., 2006). Further, in murine investigations have revealed genetically obese 

mice possess a greater intestinal SCFA concentration and reduced energy content of faecal matter 

than lean mice on the same diet, implying more efficient gut microbe composition in the obese 

phenotype. Metagenomic studies of the gut microbiota of obese mice demonstrated a greater 

capacity for glycan degradation and utilisation, which again is mirrored in studies on human gut 

microbes. Transplantation of the obese gut microbes into lean mice showed a two-fold increase in 

weight gain than lean mice given microbes from lean donors (Turnbaugh et al., 2006). Interestingly, 

germ-free mice, without any gut microbes, require up to 30% more nutrients than littermates with 

normal gut microbiota to grow at the same rate (Gilmore and Ferretti, 2003). 
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Figure 1.12 Diversity of phyla and genera within the HGM of healthy individuals. The box plot shows 

the thirty most abundant genera, while the inset shows abundance at the phylum level. Genus and 

phylum level abundances were calculated using reference genome based mapping using 85% and 65% 

cutoffs, respectively. Taken from Arumugan et al., (2011).  

 

Host diet plays a major role in shaping the gut microbiota composition (Tremaroli and Bäckhed, 

2012). A recent study contrasted the microbial composition from faecal samples of children from 

Africa and Italy. The African diet included high amounts of plant polysaccharides correlating with an 

increased Bacteroidetes to Firmicutes ratio in faecal samples, with Prevotella species being 

particularly enriched. The Italian children gut microbiota showed higher levels of 

Enterobacteriaceae. The African gut microbiota had adapted to maximise energy yield from the 

polysaccharide rich diet, selecting for species with greater glycan utilisation capacity, in this case 

Prevotella and other Bacteroidetes (Turnbaugh et al., 2009).  

Studies in which participant diets are supplemented with resistant or non-fermentable starch have 

shown significant microbiota change in which Eubacterium rectale, Oscillobacter spp and 



40 
 

Ruminococcus bromii were enriched (Walker et al., 2011). Each of these have been shown to utilise 

resistant starch. Bi. adolescentis also dramatically increased (Martinez et al., 2010), consistent with 

its ability utilise starch (Duranti et al., 2014). Drastic changes in HGM composition only seems 

possible with long-term dietary changes, as a study that monitored microbial composition as a result 

of dietary intervention showed no significant change during the 10 day experiment (Wu et al., 2011). 

The investigators did observe a selective increase for Bifidobacterium spp when daily doses of inulin, 

a prebiotic, were administered (Wu et al., 2011). In genetically obese mice enrichment for 

Bifidobacterium spp correlated with reduced adiposity and a reduction in lipopolysaccharide, a 

known microbial-derived inflammatory molecule, when compared to ob/ob mice on the same diet 

without prebiotics (Cani et al., 2007). Interestingly, only a small number of species in the HGM 

appear to be effected by inulin dietary supplementation, and these organisms are in the genera 

Bifidobacterium and Atopobium (Costabile et al., 2010). A wider range of species were enriched 

when participants were supplemented with FOS rather than inulin. In these studies, Bifidobacterium 

and Bacteroides spp are particularly abundant post intervention, while Faecalibacterium prausnizii 

and Roseburia intestinalis were reduced in abundance (Benus et al., 2010). 

Unlike dietary fibre, fat appears to have an indirect effect on HGM by modulating bile acid secretion 

and composition. Interestingly, the Bacteroides enterotype (defined in the MetaHIT study) positively 

correlates with intake of saturated fat (Wu et al., 2011). Polyunsaturated fats were found to affect 

adherence of gut microbes to the intestinal wall (Kankaanpaa et al., 2001), leading to a reduced 

presence of Bacteroides, E. rectale/Clostridium coccoides group and Bifidobacterium (Cani et al., 

2007). Dietary proteins which reach the intestine are metabolised by microbial proteolysis or gut 

fermentation, generating gasses and SCFAs (Russell et al., 2011). Over a six week dietary 

intervention, participants with high-protein low-carbohydrate diet were found to have reduced 

Bifidobacterium spp specifically and total bacterial abundance in the gut (Duncan et al., 2007; 

Brinkworth et al., 2009), potentially increasing the risk of infection with pathogenic bacteria, due to 

reduced competition from the HGM. 
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1.3.2 Short chain fatty acid production by the HGM 

The microbes of the HGM provide the host with beneficial nutrients and energy in the form of SCFAs 

generated by metabolism of dietary components that are inaccessible to the human host. SCFAs are 

the main metabolite products of microbial glycan fermentation in the human gut and provide many 

of the microbiota associated benefits to the host (Figure 1.13). SCFAs are utilised by colonocytes for 

up to 70% of their energy requirements (Roy et al., 2006). The three core SCFAs, acetate, butyrate 

and propionate are found in the gut in a combined concentration of 50-150 mM (Louis et al., 2014). 

Generally, propionate is produced by Bacteroidetes, while butyrate is generated by Firmicutes such 

as Roseburia species, also by Bifidobacterium from the Actinobacteria phylum (Reichardt et al., 

2014). When dietary fibre is in short supply microbes can utilise less energetically favourable growth 

sources, such as amino acids from dietary or endogeneous proteins (Cummings and Macfarlane, 

1991). These growth substrates result in reduced fermentative activity. SCFAs and some branched-

chain fatty acids are generated from metabolism of branch chain amino acids (Cummings and 

Macfarlane, 1991). These metabolites are implicated in insulin resistance in host cells (Newgard et 

al., 2009). SCFA levels are not constant throughout the length of the gut, with higher concentrations 

being found in the cecum and proximal colon, while levels steadily decline towards the distal end of 

the colon (Cummings et al., 1987), most likely due to increased absorption through monocarboxylate 

transporters in the colon wall (Koh et al., 2016). 
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Figure 1.13 Effects of microbe produced SCFAs on host cells. Fermentation of carbohydrates in the 

anaerobic environment of the gut generates SCFAs, the most abundant are butyrate, acetate and 

propionate. All three SCFAs act as histone deactylase inhibitors although in different cells to bring 

about different outcomes. Butyrate has been shown to inhibit proliferation of cancerous cells. 

Butyrate and propionate can force differentiation of naïve T-cells to Treg cells which go on to produce 

IL-10. Acetate is metabolised by the liver and muscle fibres but is also able to cross the blood brain 

barrier where it induces satiety signals. Butyrate can be utilised by colonocytes for energy. Adapted 

from Hoeppli et al., (2015).  
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Propionate, acts as an anti-obesity factor delaying gastric emptying, promoting satiety in the host 

(Arora et al., 2011). The most abundant SCFA in the human gut is acetate, which is produced either 

by acetogenic bacteria or as an additional fermentation product from Bacteroidetes (Miller and 

Wolin, 1996; Louis et al., 2014). Acetate, is absorbed in the colon and metabolised by the liver and 

the muscles providing 1.5-2 kcal/g of energy for the host (Kien, 1996; Topping and Clifton, 2001), and 

through stimulation of intestinal epithelium plays a role in prevention of enteropathogenic infection 

(Fukuda et al., 2011). Once in circulation acetate is capable of crossing the blood-brain barrier where 

it has been found to reduce appetite via a central homeostatic mechanism (Frost et al., 2014). 

Butyrate has been implicated in colorectal cancer prevention by acting as a histone deacetylase 

inhibitor in cancerous cells to alter expression of genes involved in cell proliferation, apoptosis and 

differentiation. Despite this effect on cancerous cells, butyrate acts as an energy source for non-

cancerous cells, stimulating cell growth This discord is known as the butyrate paradox (Lupton, 

2004). Cancerous cells show preference for glucose over butyrate for an energy source, causing 

higher cellular butyrate concentrations overcoming the threshold required to inhibit histone 

deacetylases and alter gene regulation in the cancerous cell (Donohoe et al., 2012; Kaiko et al., 

2016). Acetate has also been shown to inhibit the action of histone deacetylases, although only in 

activated T-cells of the human immune system (Park et al., 2015). 

1.3.3 Interactions between members of the HGM 

Within the HGM there is a complex network of interactions not just between this microbial 

ecosystem and the host, but also between bacteria within this microcosm.  
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Figure 1.14 Diagram of glycan cross-feeding interactions between members of the HGM. Bacteria 

possessing the extracellular glycan degrading enzymes produce accessible substrate from inaccessible 

polysaccharide which is then utilised by other members of the gut microbiota. Polysaccharide (1) is 

degraded by surface or secreted CAZymes (green) to oligosaccharides (2) and transported by glycan 

transport proteins (orange). It is hypothesised that there is some benefit to the glycan degrading 

bacterium beyond generating oligosaccharides it can utilise, however this has yet to be elucidated. 

 

Recent research has shown widespread cross-feeding within the gut microbiota, where one 

bacterium, through release of oligosaccharides, allows anther species to grow on a previously 

inaccessible substrate (Figure 1.14). Growth of a Bacteroides spp unable to utilise the specific target 

glycan has been shown to grow in the presence of a species able to utilise the target polysaccharide 

(Rakoff-Nahoum et al., 2014). Evidence of glycanase enzymes were found in outer membrane 

vesicles, which were secreted into the growth medium (Elhenawy et al., 2014), where 

oligosaccharides were generated away from the Bacteroides cell surface and available for another 

species to utilise (Rakoff-Nahoum et al., 2016). At first this appears counter intuitive as the HGM is 

densely populated and highly competitive. Another study showed this is not limited to Bacteroides-

Bacteroides interactions, clearly demonstrating cross-feeding is an inter-genera interaction (Van der 
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Meulen et al., 2006). Recently it has been shown that a surface endo-inulinase, expressed by B. 

ovatus in response to inulin, is not required by the bacterium to utilise the polysaccharide. The 

enzyme, however, generates FOS at the cell surface. FOS is known to be enrich for Bifidobacterium 

spp in the gut, hence termed bifidogenic, and has been connected to various health benefits for the 

host. This implies Bacteroides intentionally modulates the HGM by releasing publicly available 

oligosaccharides, although the extent to which this occurs, and the benefit of this action for other 

Bacteroides, remains unclear (Rakoff-Nahoum et al., 2016). Although it should be noted that the B. 

thetaiotaomicron mannan utilisation system adopts a selfish utilisation system in which few if any 

oligosaccharides are released, leading to no cross-feeding during mannan utilisation (Cuskin et al., 

2015). 

Competition for CO2 in the gut may lead to competition and modulation of metabolites. Bacteroides 

and E. rectale both utilise CO2, indicating the potential for competition for this resource. When 

grown alongside one another in the gut of a mouse, propionate is produced in much lower 

quantities than when E. rectale is not present, indicating CO2 is depleted much quicker in the 

presence of E. recale forcing Bacteroides to produce acetate over propionate (Rey et al., 2010). 

1.3.4 Interactions between the HGM and Pathogens 

A significant benefit of colonisation of the human gut with commensal bacteria is resistance to 

colonisation of pathogenic bacteria (Sassone-Corsi and Raffatellu, 2015). Germ-free mice, those 

treated with antibiotics and bred in a sterile environment, are highly susceptible to pathogenic 

bacteria such as Shigella flexneri (Sprinz et al., 1961), Listeria monocytogenes (Zachar and Savage, 

1979) and Salmonella Typhimurium (Ferreira et al., 2011). In a study of Swedish adults, susceptibility 

to infection with Campylobacter jejuni was shown to be dependent on microbiota composition. 

Those with increased diversity appeared to be more resistant to infection compared to individuals 

with lower microbial variation (Kampmann et al., 2016). 
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The most prevalent theory of how the HGM protect against pathogenic bacterial infection in the gut 

is based on commensal bacteria out competing pathogens. Studies in which mice colonised with 

commensal bacteria and Citrobacter rodentium show diet plays an important role on the likelihood 

of the commensals out competing the pathogenic bacterium in the gut. When fed with a diet of 

mixed monosaccharides and polysaccharides C. rodentium is out competed by Escherichia coli but 

not B. thetaiotaomicron. The Bacteroides organism only outcompetes C. rodentium when fed a 

monosaccharide only diet in which both species compete for the same resource, whereas the 

monosaccharide-polysaccharide mixture allows B. thetaiotaomicron to utilise polysaccharides 

leaving the monosaccharides available for C. rodentium (Kamada et al., 2012).  

Clostridium difficile is considered the leading cause of infectious diarrhoea and antibiotic associated 

pseudomembranous colitis (Rodriguez et al., 2015). Antibiotic treatment causes indiscriminate 

bacterial killing within the gut, leading to reduced diversity, and hence increases the likelihood of C. 

difficile infection and the resulting colitis. Reduction in both bacterial diversity and abundance in the 

gut can lead to an increase in metabolite and carbohydrate availability, which are then utilised for 

growth by antibiotic-resistant pathogens, increasing the severity and rate of infection (Rodriguez et 

al., 2015). 

1.3.5 Effect of prebiotics on the HGM 

Prebiotics are described as  non-digestible food supplements that beneficially affect the host by 

specially enriching a limited number of beneficial bacteria (to the host) in the colon (Gibson and 

Roberfroid, 1995). This was later updated to include the requirement that prebiotic material must 

resist gastric acidity and not be absorbed by the host (Gibson et al., 2004). Currently FOS and 

galactooligosaccharides (GOS) are being used as prebiotics, although new evidence suggest 

xylooligosaccharides and isomaltooligosaccharides may give similar positive health benefits by 

stimulating growth of targeted species within the HGM (Chapla et al., 2012; Patel et al., 2012; 
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Christensen et al., 2014). Table 1.1 shows a list of prebiotic glycans shown to have health benefits in 

human studies. 

Glycan Prebiotic effects References 

Wheat dextran Increased Bacteroides and 
decreased Clostridium perfringens 

Lefranc-Millot et al. 2012 

Inulin/FOS Bifidogenic Costabile et al. 2010, 
Ramnani et al. 2010 

GOS Bifidogenic Eli et al. 2008  

Acadia gum Bifidogenic Howarth et al. 2001 

Psyllium Prebiotic potential Lanza et al. 2007 

Polydextrose Bifidogenic Howarth et al. 2001, Ley et al. 
2006 

Gum Arabic Prebiotic potential Calame et al. 2008 

Table 1.1 Reported probiotic effects of various glycans in human studies. Effects observed are not 

limited to the references given. 

 

The importance of prebiotics has increased in recent years as the amount of dietary glycans has 

reduced in the western diet, while refined sugar has increased dramatically (Jew et al., 2009). 

Introduction of prebiotics into foods may help alleviate the negative effects of the western diet, 

increasing species diversity and stability of the HGM. Prebiotic FOS and GOS supplements in infant 

formula has worked to decrease the differences in microbial profiles of infants breast fed and those 

that are formula fed (Bakker-Zierikzee et al., 2005; Knol et al., 2005). There is evidence that 

supplementation of inulin in foods can help to re-establish a healthy microbiota during and 

immediately after antibiotic treatment (Johnson et al., 2015). Bifidobacteria are able to ferment 

colonic glycans to produce butyrate and have been implicated in modulating the immune system of 

the host, explaining why they have been the target of many of the prebiotic treatments devised 

(Gibson and Roberfroid, 1995; Gibson et al., 2004; Kanauchi et al., 2013). 
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1.4 Carbohydrate Active Enzymes 

Utilisation of dietary and host glycans requires a number of carbohydrate active enzymes (defined 

henceforth as CAZymes) and non-catalytic carbohydrate binding modues (CBMs) or proteins. The 

human genome encodes relatively few enzymes involved in the deconstruction of dietary glycans, 

when the omnivorous human diet is taken into account. Energy from plant polysaccharides would 

pass through the digestive tract unutilised if it were not for the action of gut microbial CAZymes, 

which breakdown polysaccharides into mono- or di-saccharides that are subsequently fermented. 

The gut microbiome represents an incredible coding capacity for CAZymes (Figure 1.15a), the 

majority of which are directed against plant glycans (Figure 1.15b), reflecting the importance of 

these carbohydrate polymers in HGM metabolism (El Kaoutari et al., 2013). 

 



49 
 

 

Figure 1.15 Expansion of glycoside hydrolases (GHs) in gut microbiota. Diversity of identified GH 

genes in a representative gut microbiota, predicted or confirmed substrate specificity is denoted by 

colour (a). Venn diagram of substrate specificity of the glycoside hydrolases showing dominance of 

GHs directed against plant glycans (b). Taken from El Kaoutari et al. (2015). 

 

The data presented in this thesis are focused on glycoside hydrolases, although it is worth noting 

there are a considerable number of enzymes, other than those that hydrolyse glycosidic bonds, 

which contribute to the deconstruction of glycans in the gut. 

1.4.1 Classification of Carbohydrate Active Enzymes (CAZymes) 

Classification of CAZymes into sequence based families on the CAZy database (www.cazy.org) has 

been an invaluable tool in the studying these enzymes. The CAZy database aims to catalogue all 

a 

b 
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known CAZymes (Cantarel et al., 2009; Lombard et al., 2014). Enzyme families are annotated 

according to their functional classes, Glycoside Hydrolase Families (GHs), Polysaccharide Lyases 

(PLs), Carbohydrate Esterases (CEs) and Auxiliary Activites (AA). CAZy classification is primarily based 

on amino acid sequence similarity to members of known families, although in borderline cases 

classification is made on a module by module basis. CAZymes are typically modular proteins, often 

including catalytic and non-catalytic modules, and are thus located in multiple families. Unlike 

DNAses and RNases, CAZymes with similar substrate specificities usually show significant sequence 

similarity and hence, classification into a CAZy family can provide insight into substrate specificity 

(Cantarel et al., 2009; Lombard et al., 2014). It should be emphasised, however, that some of the 

larger families, such as GH5, GH2 and GH43, contain enzymes with a range of specificities. The 

delineation of these large families into subfamilies will help in defining the activities of different 

members of these families (Aspeborg et al., 2012; Mewis et al., 2016).   

1.4.2 Catalytic Mechanisms 

Glycoside hydrolases employ two main acid-base assisted mechanisms of action, retaining (double-

displacement) mechanism, which generates a glycosyl enzyme intermediate, or an inverting 

mechanism, which involves a single displacement without the need to generate a covalent 

intermediate.  

1.4.2.1 Retaining Mechanism 

The retaining mechanism involves a two-step reaction, shown in Figure 1.16, in which the enzyme 

becomes glycosylated and then deglycosyated through an activated water molecule. Here, retaining 

refers to retention of the configuration of the anomeric carbon, for example, when a β-bond is 

cleaved and a β-bond is formed. α and β refer to  the configuration of the anomeric carbon, C1, with 

respect to the furthest chiral centre typically C5. If both have the same configuration this is termed 

β-configuration while sugars with differing configuration at C1 and C5 are termed α-configuration 

(Koshland et al., 1954; Sinnott, 1990).  
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Figure 1.16 Retaining enzymes mechanism. Schematic diagram of the glycoside hydrolase retaining 

mechanism. Taken from www.cazypedia.org 

 

The retaining mechanism utilises a general acid/base and a nucleophile as the catalytic machinery 

required for efficient catalysis. During the reaction the general acid/base requires protonation at the 

optimum pH of the enzyme, usually pH 7.0, despite acidic amino acids possessing a pKa of approx. 

4.0. To compensate for this disparity the general acid/base is usually located in an apolar region of  

the enzyme around 5.5 Å away from the catalytic nucleophile, causing protonation of the general 

acid base to become more favourable at a physiological pH (Davies and Henrissat, 1995).  

The first step of the retaining mechanism (for a D-- or L--glycone involves glycosyation of the 

enzyme through an oxocarbenium ion-like transition state. The catalytic nucleophile attacks the 

anomeric carbon, C1, from the α-face of the sugar while the general acid/base, here acting as an 

acid, donates a proton to the leaving group, which is typically a sugar. Catalysis then proceeds 

http://www.cazypedia.org/
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through an oxocarbenium ion-like transition state, promoting development of a positive charge at 

the anomeric carbon. The sugar is distorted from the relaxed 4C1 chair conformation into one of four 

possible conformations (4H3, 3H4, 2,5B or B2,5), any of which place C1, C2, C5 and the endocyclic ring 

oxygen in the same plane, promoting sharing of the positive charge between C1 and the endocyclic 

ring oxygen, stabilising the transition state. The positive charge facilitates attack by the catalytic 

nucleophile leading to the formation of a glycosyl-enzyme covalent intermediate, breaking the 

target glycosidic bond in the process (Davies and Henrissat, 1995). 

The second step involves degycosylation of the glycosyl-enzyme intermediate, releasing product 

from the enzyme active site to make way for a new substrate. In this step the general acid/base acts 

as a base accepting a proton from an incoming water molecule, promoting the formation of a 

hydroxyl ion, which attacks C1 from the β-face of the sugar. This action cleaves the α-glycosyl-

enzyme linkage, releasing the sugar molecule from the enzyme with a β-orientation hydroxyl group 

as the final reaction product. Cleavage of the α-bond occurs via an oxocarbenium ion-like 

intermediate just as in the glycosylation step (Davies and Henrissat, 1995). If another sugar molecule 

is present in place of the incoming water molecule a transglycosylation reaction occurs, generating a 

product with a degree of polymerisation the sum of the both substrate glycans, a phenomenon 

currently exploited to generate GOS (mimic oligosaccharides in breast milk), which are used as 

prebiotics (Rodriguez-Colinas et al., 2014). 

1.4.2.2 Inverting Mechanism 

In contrast to the retaining mechanism, the inverting mechanism makes use of two amino acids as a 

separate general acid and base for proton donation and reception (Figure 1.17), respectively. These 

catalytic amino acids are typically 10 Å apart (Davies and Henrissat, 1995). Some enzymes which 

employ the inverting mechanism, including those in GH43, possess a third catalytic amino acid, a pKa 

modulator which along with the apolar environment surrounding the general acid ensure 

protonation (Nurizzo et al., 2002).  



53 
 

 

Figure 1.17 Inverting enzymes mechanism. Schematic diagram of the glycoside hydrolase inverting 

mechanism. Taken from www.cazypedia.org 

 

The inverting mechanism involves just one step to mediate glycosidic bond cleavage. The general 

base accepts a proton from an incoming water molecule generating a hydroxyl ion in the process. 

The hydroxyl ion attacks the anomeric carbon, C1, from the β-face of the sugar as the general acid 

donates a proton to the glycosidic oxygen to assist departure of the leaving group. Similar to the 

retaining mechanism the reaction must progresses through an oxocarbenium ion-like transition state 

distorting the 4C1 chair conformation to ensure C1 and the endocyclic oxygen are in the same plane 

and thus can share the positive charge at C1. The development of the positive charge promotes 

nucleophilic attack by the nucleophilic water (Davies and Henrissat, 1995).  

 

http://www.cazypedia.org/
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1.4.3 Subsite Nomenclature 

A single subsite of a glycoside hydrolase constitutes all amino acids which interact with a single sugar 

molecule of the substrate. Subsites either side of the scissile glycosidic bond (the bond between 

subsites -1 and +1) are given positive or negative values. The subsites towards the non-reducing end 

of the scissile glycosidic bond are given negative values while those on the reducing end have 

positive values (Figure 1.18). The -1 subsite houses the catalytic machinery of the enzyme, and the 

sugar occupying this subsite becomes distorted during the oxocarbenium ion-like transition state 

(Davies and Henrissat, 1995).   

 

Figure 1.18 Schematic diagram showing subsite nomenclature of glycoside hydrolases. Scissile 

glycosidic oxygen shown in red. Subsite numbers are given under each sugar. Taken from Cartmell 

(2010). 

 

1.5 Glycan Utilisation Systems 

Glycans are the primary growth substrate for gut bacteria, either from the human diet or the host 

epithelium. The glycan systems currently identified share common features, CAZymes, to 

deconstruct polysaccharides, glycan binding proteins to capture polysaccharides and 

oligosaccharides, transport systems, to import oligosaccharides across cell membrane(s), and a 

regulator that binds an intermediate breakdown product to control expression of the utilisation 

system (Cockburn and Koropatkin, 2016). 
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1.5.1 Bacteroides Glycan Utilisation 

Bacteroides species, which are well represented in the HGM, devote considerable genomic coding 

capacity to the degradation and utilisation of glycans. The first identified glycan utilisation system of 

B. thetaiotaomicron targeted starch, the sus locus (D'Elia and Salyers, 1996; Shipman et al., 2000; 

Cho et al., 2001). This archetypal system was used to identify further glycan utilisation systems 

sharing similar features, namely adjacent genes susC and susD homologues encoding the outer 

membrane transport system alongside CAZymes. B. thetaiotaomicron was found to encode 88 

polysaccharide utilisation loci (PULs), with each PUL averaging 10 genes (Martens et al., 2008; 

Martens et al., 2011). A major challenge of glycan utilisation is coupling degradation with transport; 

being a Gram negative bacterium Bacteroides must transport glycans over two membranes and a 

periplasmic compartment (Martens et al., 2009). A simplified diagram of a Bacteroides glycan 

utilisation system based on the sus-paradigm is shown in Figure 1.19. 

1.5.1.1 Extracellular Glycan Degradation 

With the exception of inulin [at least low molecular weight inulin from chicory (Rakoff-Nahoum et 

al., 2016)], in the overwhelming majority of Bacteroides glycan utilisation systems studied to date, a 

degree of substrate degradation is required at the cell surface prior to transportation into the 

periplasm (Sonnenburg et al., 2010; Larsbrink et al., 2014; Cuskin et al., 2015; Rogowski et al., 2015). 

At first surface degradation of glycans appears inefficient with high risk of product loss to 

competitors, however this appears to be an intentional strategy employed to maintain species 

diversity in the HGM (Rakoff-Nahoum et al., 2016). This is further consolidated by secretion of 

CAZymes in outer membrane vesicles (OMVs). Among the enzymes purified from OMVs was 

BT_1760 (Elhenawy et al., 2014), an enzyme shown to degrade levan prior to import of the resulting 

oligosaccharides (Sonnenburg et al., 2010). Contrasting with this, B. thetaiotaomicron employs a 

selfish mechanism for yeast mannan utilisation. Surface endo-α1,6-mannanases generate large 

oligosaccharides, minimising extracellular metabolism and maximising substrate availible to the 
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periplasmic exo-α1,6-mannosidases. This renders B. thetaiotaomicron unable to support mannose-

/mannan-utilising strains of Bacteroides on intact Saccharomyces cerevisiae α-mannan (Cuskin et al., 

2015). 

Initial prediction of surface localisation is performed by signal sequence analysis based on conserved 

features of E. coli proteins. This analysis is not always reliable. A more reliable technique involves 

using fluorescence microscopy to identify labelled antibodies specific for the suspected surface 

protein (Cuskin et al., 2015; karunatilaka 2014 et al., 2014; Larsbrink et al.,2014; Rogowski et al., 

2015.   

1.5.1.2 Surface Glycan Binding Proteins and the SusCD-homologue Complex 

Surface glycan binding proteins (SGBPs) are not always encoded by Bacteroides PULs. As SGBPs show 

little to no sequence conservation they can be difficult to identify, although the gene encoding the 

SGBP is typically found adjacent to the susD-homologue. Functionally, SGBPs bind the target glycan 

at the cell surface increasing local substrate concentration to modulate the activity of surface 

CAZymes. The prototypic sus-system encodes two SGBPs, SusE and SusF, each expressed at the cell 

surface. Both SusE and SusF contribute to surface binding of starch, although they have been found 

to be non-essential in the utilisation of soluble starch (Cho et al., 2001). Although, when grown on 

starch alongside wild type B. thetaiotaomicron, a mutant lacking SusE is at a competitive 

disadvantage (Koropatkin et al., 2008). 

SGBPs operate alongside a SusCD-homologue complex to bind and transport glycans. The SusD-like 

protein is thought to be primarily a binding protein with the capability to channel captured ligand 

into the SusC-like protein. Despite showing lower affinity for starch than SusE or SusF, SusD has been 

shown to be vital to starch utilisation through genetic knockouts (Reeves et al., 1997; Cho et al., 

2001).  
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Currently there is little published data regarding the SusC protein and its homologues, despite being 

essential for glycan utilisation in Bacteroides. The closest characterised homologue of SusC is FepA, a 

TonB-dependent iron transporter expressed by E. coli. The crystal structure of FepA, showed a 22-

stranded β-barrel structure creating a channel that is blocked at the periplasmic end by a plug 

domain, which extends into the channel. The periplasmic end of the protein interacts with TonB, a 

protein that provides the transporter with energy to open the channel (Buchanan et al., 1999; 

Jordan et al., 2013). 

1.5.1.3 Periplasmic glycan degradation 

Once in the periplasm, oligosaccharides are sequestered away from other microbes which occupy 

the same ecological niche. Here degradation can be completed by periplasmic CAZymes, typically 

exo-acting, releasing monosaccharides. These monosaccharides are then transported into the 

cytoplasm entering fermentation pathways resulting in energy for the cell and SCFAs, which are 

secreted into the gut lumen (D'Elia and Salyers, 1996; Martens et al., 2009) and can be metabolised 

by the host or other members of the HGM. 

1.5.1.4 PUL regulation  

Typically, Bacteroides glycan utilisation systems include one of two regulatory systems, hybrid two-

component systems (HTCS) or extracytoplasmic function (ECF) sigma factor/anti-sigma factor 

systems. These systems sense a signal, usually in the form of short oligosaccharides, to upregulate 

the associated enzymes, binding and transport proteins, from the basal expression level employed 

by the bacterium to survey the environment for glycans (Martens et al., 2009).  

Many PULs are regulated by an HTCS. The B. thetaiotaomicron genome encodes 32 HTCSs, 23 of 

which are directly upstream of PULs (Xu et al., 2003).  The prototypic two-component system (TCS) 

consist of two core-modules, a membrane bound sensor histidine kinase (HK) and a cytoplasmic 

response regulator (RR), which operate together to initiate signal transduction upon binding of a 
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chemically defined ligand. The HK domain recognises a defined ligand resulting in 

autophosphorylation of conserved histidine residues. The phosphoryl groups are then transferred to 

conserved aspartate residues in the N-terminal of the corresponding RR domain, resulting in 

activation of the associated output module, which mediates the appropriate cellular response (Stock 

et al., 2000). HTCSs comprise of a single polypeptide which incorporates all the features of a typical 

bacterial TCS signal transducer, possessing sensor histidine kinase, phosphoreceptor and DNA 

binding domains (Stock et al., 2000). The N-terminal sensor kinase domain, which extends into the 

periplasm where it binds activation ligands usually an oligosaccharide, is immediately followed by 

five predicted transmembrane domains. The C-terminal domain protrudes into the cytoplasm, and 

possessing a histidine kinase and phosphoreceptor domains, along with an AraC helix-turn-helix 

domain, responsible for DNA binding (Lowe et al., 2012). The DNA binding domain may be released 

upon activation allowing DNA binding (Miyazaki et al., 2003). The sensor domain of the HTCS of the 

heparin PUL, Bt4663, displays a β-propeller fold followed by a Y_Y_Y domain of unknown function. 

The sensor domain forms a dimer at the periplasmic face of the inner membrane. When the sensor 

domain is bound to its activating ligand the dimerization face is altered bringing the two C-termini 

closer together, reminiscent of a scissor blade closing. The closing motion is most likely transmitted 

via the transmembrane helices to trigger autophosphorylation in the cytoplasmic histidine kinase 

domains of the dimers (Lowe et al., 2012). This mechanism contrasts with that of canonical sensor 

histidine kinases such as the LuxPQ chemoreceptor. Ligand binding in these LuxPQ-like TCS trigger a 

piston-like mechanism for signal transduction (Falke and Erbse, 2009).   
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Figure 1.19 Simplified Bacteroides utilisation system. A generalised Bacteroides utilisation system, 

numbers of each component may vary depending on specific system. The polysaccharide is bound to 

the surface by the action of a surface glycan binding protein (SGBP) where it is degraded to 

oligosaccharides by lipoprotein glycoside hydrolases. The oligosaccharides are bound by a SusCD 

homologue complex and imported through the SusC homologue into the periplasm. In the periplasm 

oligosaccharides are degraded to monosaccharides by periplasmic glycoside hydrolases and imported 

into the cytoplasm to enter fermentation pathways.  

 

The second regulatory strategy employed by Bacteroides PULs, the ECF sigma/anti-sigma factor 

system, is usually found in loci directed against host O-glycans rather than dietary polysaccharides 

(Martens et al. 2008). The inner membrane anti-sigma factor sequesters the ECF sigma factor until a 

signal is received indicating its target ligand is available, at which point the sigma factor is released 

to upregulate the expression of the associated PUL (Martens et al., 2008). 
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Not all PULs are given the same priority by Bacteroides. Some are considered more important, for 

example, in the presence of glucose transcription of almost all PULs are repressed (Rogers et al., 

2013). Among polysaccharides, galactan and homogalacturonan appear to be higher in utilisation 

priority than other more complex fractions of pectin (RGI backbone for example). Bacteroides can 

rapidly respond to multiple glycans in a mixture, altering expression profile in a matter of minutes 

due to changes in the glycans available in the environment (Rogers et al., 2013). 

Recent studies have shown new regulation systems based on antisense small RNA (sRNA) 

responsible for repression of PUL expression in B. fragilis (Cao et al., 2014). A 125 nt sRNA sequence 

has been found in an intergenic region upstream of the susC homologue of the B. fragilis N-glycan 

utilisation locus. This sequence was found in other B. fragilis PULs, the majority of which include 

sigma/anti-sigma regulation systems (Cao et al., 2014). Mutation of the sRNA regions lead to a 

slightly increased expression of the PUL, while over expression of the sRNA lead to a 400-fold 

repression of the locus in the presence of the target glycan (Cao et al., 2014). Similar regions have 

been identified in B. theatiotaomicron, indicating the use of sRNA repressions systems in PULs is not 

just limited to one species (Cao et al., 2014).  

1.5.2 Bifidobacterium Glycan Utilisation 

Bifidobacterium utilisation profiles show a preference for oligosaccharides over polysaccharides (Mei 

et al. 2011). Unlike Bacteroides, Bifidobacteria possess a single membrane with a peptidoglycan cell 

wall. Bi. longum was shown to possess 10 ABC transporter systems responsible for the uptake of 

various carbohydrates, along with glycoside hydrolases (Lorca et al., 2007). A simplified 

Bifidobacterium glycan utilisation system is shown in Figure 1.20 
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1.5.2.1 Extracellular Solute Binding Proteins and ABC-Transporter 

The vast majority of transport proteins thought to be involved in glycan utilisation in Bifidobacterium 

fall into the ATP-Binding Cassette (ABC)-Transporter classification. ABC-transporters are ubiquitous 

membrane protein complexes, using ATP hydrolysis to drive import of a wide range of solutes across 

biological membranes (Saier, 2000). Most ABC transporter complexes demonstrate a modular 

design, with two transmembrane domains and two cytosolic nucleotide-binding domains. Substrate 

specificity of these transporters lies in the transmembrane domains which show no sequence 

homology between transporters. These transmembrane domains can vary in the number of helices, 

between ABC-transporters. The hydrolysis of ATP to ADP, which drives solute translocation occurs in 

the cytoplasm by the action of the nucleotide binding domains. These domains contain a conserved 

LSGG(N)QQ signature motif which is characteristic of ATPases associated with ABC transporters 

(Saier, 2000). Bifidobacteria have been shown to encode a number of extracellular solute binding 

proteins (ESBP) along with the permeases which make up the ABC-transporter complex (Ejby et al., 

2013; Ejby et al., 2016). The glycan-specific ESBPs characterised to date are high affinity 

oligosaccharide binding proteins, which bind considerably tighter to their ligands than any of the 

characterised SGBPs of Bacteroides. A recent study showed in mixed cultures Bi. animalis was 

capable of outcompeting B. ovatus on raffinose, and speculate that the presence of the ESBP-ABC-

transporter system was responsible (Ejby et al., 2016). Previous to this, the ESBP responsible for 

binding xylooligosaccharides (XOS) for delivery to the associated ABC-transporter in Bi. animalis was 

able to bind arabinoxylooligosaccharides (AXOS) with similar affinity to XOS, indicating a high 

tolerance of backbone substitutions in the protein (Ejby et al., 2013). This affinity for AXOS/XOS was 

not shared for xylan polysaccharides (Ejby et al., 2013), demonstrating a strong preference of these 

glycan utilisation systems for oligosaccharides. This could be interpreted as a method of co-existence 

with the polysaccharide utilising gut bacteria, which target longer substrates while Bifidobacterium 

has formed a niche of its own by targeting only oligosaccharides, partially avoiding competition (Ejby 

et al., 2013, Ejby et al., 2016).  
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1.5.2.2 Bifidobacterium Glycoside Hydrolases 

Encoded alongside ABC-transporter components and ESBP glycan capture proteins are CAZymes, 

typically exo-acting glycoside hydrolase enzymes which target the non-reducing end of 

oligosaccharides releasing monosaccharide products. Although exo-acting CAZymes are most 

prevalent in Bifidobacteria some endo-acting enzymes are also present (van den Broek et al., 2008).  

Bi. longum possesses a membrane anchored modular putative glycoside hydrolase with the domain 

organisation, SignP-CBM22-GH43-CBM6-TmD, where SignP is a secretion signal, TmD indicates a 

trans-membrane domain, while CBM22, CBM6 and GH43 are protein modules located in these three 

CAZy families. This is an unusual example of a surface Bifidobacterium protein. Although this enzyme 

has not been characterised, it may possess exo-activity is common among GH43 enzymes (van den 

Broek et al., 2008). This enzyme may act as an arabinofuranosidase removing arabinose side chains 

from AXOS or branched arabinooligosaccharides prior to transport via the associated ABC-

transporter. Bi. adolescentis possesses a locus likely targeting XOS. The bacterium grows well on XOS 

but is unable to utilise xylans. During growth on XOS, xylose accumulation was observed, indicating 

that surface xylosidase(s) plays a role in the utilisation of these oligosaccharides in Bi. adolescentis, 

despite all identified potential xylanases/xylosidases expressed by Bi. adolescentis lacking any known 

secretion signal peptide (Amaretti et al., 2013). This may Indicate Bifidobacteria use secretion signals 

that are not recognised by current secretion prediction programmes. These XOS-utilising 

Bifidobacteria may secrete a number of XOS/AXOS targeting enzymes although current data suggest 

these are deployed to remove side chains, possibly to allow better recognition by the associated 

ESBP and downstream degradation apparatus. 
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Figure 1.20 Simplified Bifidobacterium glycan utilisation system. Generally Bifidobacterium are 

oligosaccharide utilisers, however, some have been shown to possess endo-acting surface attached 

glycoside hydrolases. Exogenous or surface produced oligosaccharides are bound by extracellular 

solute binding proteins (ESBP) and delivered to the associated ABC-transporter complex and imported 

into the cytoplasm.  

 

Bi. breve is able to utilise the polysaccharide galactan by use of an extracellular GH53 β-galactanase 

and a cytoplasmic β-galactosidase. Galactan encountered at the cell surface is degraded in an endo-

fashion, generating galactotriose. Once imported into the cytoplasm, galactotriose is degraded to 

galactose by the exo-action of the cytoplasmic β-galactosidase (O'Connell Motherway et al., 2011). 

Another operon found in Bi. breve was identified and shown to target fructose-containing glycans. 

This operon only included one CAZyme, a GH32 β-fructofuranosidase believed to be located 
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intracellularly. The exo-acting enzyme released glucose from sucrose and cleaved the β2,1-bond 

between fructose of oligosaccharides. The activity of this enzyme along with being the only CAZyme 

in the locus shows the system targets FOS or the shorter fractions of inulin specifically (Ryan et al., 

2005). The ability of Bifidobacterium to utilise polysaccharides appears to correlate with lower 

complexity of the substrate. Short Inulin and galactan each have one unique linkage in the 

polysaccharide backbone, β2,1- and β1,4- bonds, respectively, requiring a minimum of two enzymes 

to degrade these polymers to monosaccharides. Bifidobacterium appears to leave degradation of 

more complex substrates to other members of the HGM but has developed systems for scavenging 

oligosaccharides released during utilisation of these polysaccharides. 

1.5.2.3 Regulation 

Similar to the Bacteroides utilisation systems, the expression of the corresponding Bifidobacterium 

apparatus is substrate dependent, mediated by LacI-type regulators (Rodionov et al., 2001; 

Rodionov, 2007). Bi. breve utilisation of ribose was shown to be under the control of RbsR, a LacI-

type regulator, which causes repression of the ribose utilisation system in the absence of the target 

substrate (Pokusaeva et al., 2010). Another LacI-type regulator, GalR, was shown to regulate the 

galactan utilisation locus of Bi. breve. The repressor GalR binds to two sites in the promoter of galA, 

a GH53 galactanase, and galC, a component of the ABC-transporter. These binding regions of DNA 

were found to be 9 bp inverted repeats overlapping the -10 and -35 promoter recognition 

sequences. Interestingly, GalR remained bound to the promoter regions of galA and galC in the 

presence of lactose and galactose. GalR only disassociated when galactobiose was present, 

indicating this as the activating molecule (O'Connell Motherway et al., 2011). 

Bi. longum possess a pair of ABC-transporters shown to import xylose; both were found to be 

downregulated in the presence of glucose, indicating a hierarchy of glycan utilisation is present in 

Bifidobacteria with glucose being a more valuable substrate than xylose (Lee and O'Sullivan, 2010; 
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Liu et al., 2011; Pokusaeva et al., 2011). Thus classical catabolite repression appears to operate at 

least in Bi. longum. 

1.5.3 Glycan Utilisation by other Members of the HGM 

Although Bifidobacteria and Bacteroides are substantial glycan utilisers in the HGM, other bacteria 

employ glycan utilisation systems to forage for energy rich polysaccharides. As mentioned above R. 

bromii shows exceptional activity against resistant starch and 15 of its 21 glycoside hydrolases 

belong to GH13, a family typified by activity on starch. Four of these proteins are predicted to 

include dockerin modules, which along with cohesin modules mediates formation of a multi-enzyme 

complex, the amylosome (Figure 1.21). The amylosome is a large protein complex consisting of 

scaffold proteins (Sca2, Sca3, Sca4) each bearing cohesin modules and catalytic proteins (Amy4, 

Amy9, Amy10 and Amy12) with dockerin modules. Amy4 contains both cohesin and dockerin 

modules, allowing it to act as both a catalytic and scaffold protein. Similar to cellulosomes of 

cellulolytic Ruminococcus spp (Ben David et al., 2015), the amylosome forms a large extracellular 

complex targeting a specific glycan, which may or may not be membrane anchored. In contrast to 

the substrate inducible glycan utilisation systems discussed above, the amylosome was found to be 

constitutively expressed even when starch is absent (Ze et al., 2012; Ze et al., 2015). Interestingly, 

when in mixed culture with other bacteria that can use soluble starch, R. bromii enabled these 

organisms to utilize the resistant form of this -glucan. R. bromii increases accessibility of resistant 

starch for the large number of starch utilising bacteria in the gut (Ze et al., 2012; Ze et al., 2015). 
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Figure 1.21 Model of the R. bromii multi-enzyme amylosome complex. Potential interactions of the 

amylosome between scaffold protein and catalytic proteins based on observed recombinant cohesin-

dockerin interactions. The scaffold proteins Sca3 and Sca4 are likely to be secreted while Sca2 is most 

likely membrane anchored. Amy4, Amy9, Amy10 and Amy12 each possess GH13 catalytic domains 

and dockerin domains. Amy4 also contains a cohesin domain that, by binding to the dockerin domains 

of other proteins, is integral to the assembly of the multienzyme complex.  Sca3, Amy10 and Amy12 

each have non-catalytic carbohydrate binding modules (CBM or X25) that bind glycans increasing local 

concentration of substrate. Taken from Ze et al. (2016). 

 

Another resistant starch utilising bacterium which employs a different strategy of glycan utilisation is 

E. rectale. This bacterium expresses two GH13 enzymes and three ABC glycan binding proteins in 

response to starch exposure. The first of the GH13 enzymes is a large modular lipoprotein attached 

to the cell surface with several CBMs (Figure 1.22). These CBM domains allow E. rectale to anchor 

itself onto starch granules in the gut and begin degrading the polysaccharide into 

maltooligosaccharides to be captured and imported into the cytoplasm by the associated ABC 

transporter (Figure 1.22). The second GH13 enzyme is membrane attached like the first, however it 

is unclear as to which face of the membrane it localises (Figure 1.22). Other amylases expressed by 

E. rectale are predicted to contribute to maltooligosaccharide breakdown in the cytoplasm 

(Cockburn et al., 2015). 
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Figure 1.22 Model of E. rectale starch utilisation. The multi domain GH13 enzyme (pink) binds starch 

at the cell surface with five CBMs (blue). The polysaccharide is degraded into maltooligosaccharides 

by the action of the GH13 catalytic domain of the same protein. The second GH13 enzyme may be 

present on the surface or inner leaflet of the cell membrane. Three solute binding proteins bind and 

channel resulting maltooligosaccharides to their respective ABC transporters for import into the 

cytoplasm. Taken from Cockburn et al. (2015). 

 

1.6 Objectives of this Study 

The primary focus of the research in this thesis is to characterise the pectin degradation and 

utilisation systems of Bacteroides thetaiotaomicron (Chapter 4) and the xylan utilisation system of 

Bacteroides ovatus (Chapter 3). This involved biochemical characterisation of various glycoside 

hydrolases and glycan binding proteins associated with the utilisation systems. Microbiological 

methods were also used to introduce mutations in components of the glycan utilisation systems to 

assess the importance of individual proteins. During investigation of surface enzymes the potential 

for glycan cross-feeding was discovered and explored through the co-culture of Bacteroides with 
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another bacterium unable to utilise the glycan. Cross-feeding was explored during Bacteroides 

utilisation of xylans (Chapter 3), pectins (Chapter 4) and fructans (Chapter 5). 

Previous work has shown B. thetaiotaomicron and B. ovatus to be capable of utilising a wide range of 

glycans. Transcriptomic data identified loci involved in utilisation of glycans. To date only a few B. 

thetaiotaomicron glycan utilisation systems have been characterised, each system revealing some 

novel enzyme activity, binding protein or strategy for glycan degradation or transport. By 

characterising more of these systems valuable insight can be gained into glycan degradation and 

may reveal new strategies that can be used to selectively enrich for Bacteroides in the HGM. 

Glycan cross-feeding is a recently identified bacterial interaction within the HGM, where a glycan 

utilising bacterium increases substrate accessibility for a second bacterium which cannot use the 

glycan in its original form. This interaction may allow identification of novel glycan-based prebiotics. 

Specific objectives are listed at the beginning of each results chapter. 

 

  



69 
 

Chapter 2: Materials and Methods 

2.1 Bacterial strains and mutants 

The bacterial strains and mutants used are listed in Table 2.1, with mutants generated during the 

course of this study in bold. 

Name Genotype features Description 

BL21 
(DE3) 

F– ompT gal dcm lon hsdSB(rB- 
mB-) λ(DE3 [lacI lacUV5-T7 
gene 1 ind1 sam7 nin5]) 

E. coli strain optimised for 
protein expression using a T7 
promoter. Routinely used to 
over-express recombinant 
proteins. (Studier & Moffatt, 
1986) 

Tuner 
(DE3) 

F- ompT hsdSB(rB
- mB

-) gal dcm 
lacY1(DE3) 

As BL21 with the addition of a 
lac permease mutation to 
allow uniform diffusion of IPTG 
across cells, establishing a 
linear relationship between 
IPTG concentration and 
expression levels. Tuner cells 
also carry a lacZ mutation. 
These cells were used to 
express enzymes suspected to 
have β-galactosidase activity 
to avoid false positive results 
from contamination with 
genomic lacZ (Novagen) 

Top10 F-mcrAΔ(mrr-hsdRMS-mcrBC) 
φ80lacZ ΔM15 
ΔlacX74nupGrecA1 araD139 
Δ(ara-leu)7697 galE15 galK16 
rpsL(StrR) endA1 λ- 

Routinely used for plasmid 
propagation and cloning. 
(Invitrogen) 

CC118   
λ-pir 

Δ(ara-leu) araD  ΔlacX74 galE 
galK phoA20 thi-1 rpsE rpoB 
argE (Am) recA1 λ pir 

Used for plasmid propagation 
and cloning (pExchange tdk 
only) 
(Herrero et al., 1990) 

S17.1  
λ-pir 

hsdR recA pro RP4-2 
(Tc::Mu;KmTn7) 

Conjugation of pExchange tkd 
plasmids from this strain to 
Bacteroides ovatus (Skorupski 
& Taylor, 1996) 

B. ovatus Wild-Type 
ATCC 8483 

DSM-1896, Type strain 

B. ovatus Δtdk Δtdk B. ovatus ATCC 8483 lacking 
thimadine kinase. Used to 
generate genomic mutants or 
gene deletions in Bacteroides 
ovatus through FuDR selection 
(Chapter 2.9.4). Provided by 
Martens Lab, Center for 
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Microbial Systems, University 
of Michigan. 

ΔGH10 Δbacova_04390 B. ovatus Δtdk harbouring an 
inactive copy of bacova_04390 

ΔGH98 Δbacova_03433 B. ovatus Δtdk harbouring an 
inactive copy of bacova_03433 

B. ovatus Tag 1 Tag 1 insertion into ATT site 1 B. ovatus Δtdk harbouring a 
unique sequence termed tag1 

B. ovatus Tag11 Tag 11 insertion into ATT site 
1 

B. ovatus Δtdk harbouring a 
unique sequence termed 
tag11 

ΔGH98tag11 Δbacova_03433 
Tag 11 insertion into ATT site 
1 

Δbacova_03433 harbouring a 
unique sequence termed 
tag11 

ΔGH91 Δbacova_04502 B. ovatus with inactive 
bacova_04502. Provided by 
Sarah Shapiro (Shapiro 2015). 

ΔGH91 tag11 Δbacova_04502, 
Tag11 insertion into att site 2 

B. ovatus with inactive 
bacova_04502. Provided by 
Sarah Shapiro (Shapiro 2015). 
With Tag11 insetion in ATT site 
2. 

B. thetaiotaomicron 8764  Wild-Type Provided by Martens Lab, 
Center for Microbial Systems, 
University of Michigan. 

B. thetaiotaomicron Δtdk Δtdk Used to generate genomic 
mutants or gene deletions in 
Bacteroides ovatus through 
FuDR selection (Chapter 2.9.4). 
Provided by Martens Lab, 
Center for Microbial Systems, 
University of Michigan.  

B. thetaiotaomicron tag1 tag1 insertion into ATT site 2 B. thetaiotaomicron Tag1 
insertion into ATT site 1 

B. thetaiotaomicron tag11 tag11 insertion into ATT site 2 B. thetaiotaomicron Tag11 
insertion into ATT site 1 

ΔBt_4667 Δbt_4667 B. thetaiotaomicron with 
inactivation of bt_4667 

ΔBt_4668 Δbt_4668 B. thetaiotaomicron with 
inactivation of bt_4668 

ΔBt_4668tag11 Δbt_4668 
tag11 insertion into ATT site 2 

B. thetaiotaomicron with 
inactivation of bt_4668. With 
tag11 insertion into ATT site 1 

ΔBt_4669 Δbt_4669 B. thetaiotaomicron with 
deletion of bt_4669 

ΔBt_4670 Δbt_4670 B. thetaiotaomicron with 
deletion of bt_4670 

ΔBt_4667-73 Δbt_4667 Δbt_4668 Δbt_4669 
Δbt_4670 Δbt_4671 Δbt_4672 
Δbt_4673 

B. thetaiotaomicron deletion of 
the entire galactan PUL. 
Provided by Abbott lab, 
Lethbridge Research Centre, 
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Agriculture and Agri-Food 
Canada.  

ΔBt_4669-70 Δbt_4669 Δbt_4670 B. thetaiotaomicron with 
deletion of bt_4669 and 
bt_4670 

ΔBt_0360 Δbt_0360 B. thetaiotaomicron with 
inactivation of bt_0360 

ΔBt_0362 Δbt_0362 B. thetaiotaomicron B. 
thetaiotaomicron with 
deletion of bt_0362 

ΔBt_0364 Δbt_0364 B. thetaiotaomicron B. 
thetaiotaomicron with 
deletion of bt_0364 

ΔBt_0365 Δbt_0365 B. thetaiotaomicron B. 
thetaiotaomicron with 
deletion of bt_0365 

ΔBt_0367 Δbt_0367  B. thetaiotaomicron with 
inactivation of bt_0367 

ΔBt_0360ΔBt_0367  Δbt_0360 Δbt_0367 B. thetaiotaomicron with 
inactivation of bt_0360 and 
bt_0367 

ΔBt_0360ΔBt_0367 tag11 Δbt_0360 Δbt_0367 
tag11 insertion into ATT site 2 

B. thetaiotaomicron with 
inactivation of bt_0360 and 
bt_0367. With tag11 inertion 
into ATT site 1 

ΔBt_4156 Δbt_4156 B. thetaiotaomicron with 
inactivation of bt_4156 

ΔBt_4170 Δbt_4170 B. thetaiotaomicron with 
deletion of bt_4170. Provided 
by Didier Ndeh for this project 
(Ndeh & Gilbert, ICaMB, 
Newcastle University). 

ΔBt_4175 Δbt_4175 B. thetaiotaomicron with 
deletion of bt_4175. Provided 
by Didier Ndeh for this project 
(Ndeh & Gilbert, ICaMB, 
Newcastle University). 

ΔBt_4667-73ΔBt_4156 As ΔBt_4667-73 with 
Δbt_4156 

B. thetaiotaomicron deletion 
of the entire galactan PUL. 
Provided by Abbott lab, 
Lethbridge Research Centre, 
Agriculture and Agri-Food 
Canada.  And inactivation of 
bt_4156 

ΔBt_4667-73ΔBt_4170 As ΔBt_4667-73 with 
Δbt_4170 

B. thetaiotaomicron deletion 
of the entire galactan PUL. 
Provided by Abbott lab, 
Lethbridge Research Centre, 
Agriculture and Agri-Food 
Canada.  And inactivation of 
bt_4170 
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ΔBt_4667-73ΔBt_4170 tag11 As ΔBt_4667-73 with 
Δbt_4170 
tag11 insertion into ATT site 2 

B. thetaiotaomicron deletion 
of the entire galactan PUL. 
Provided by Abbott lab, 
Lethbridge Research Centre, 
Agriculture and Agri-Food 
Canada.  And inactivation of 
bt_4170. With tag11 inertion 
into ATT site 1 

ΔBt_4667-73ΔBt_4175 As ΔBt_4667-73 with 
Δbt_4175 

B. thetaiotaomicron deletion 
of the entire galactan PUL. 
Provided by Abbott lab, 
Lethbridge Research Centre, 
Agriculture and Agri-Food 
Canada.  And inactivation of 
bt_4175 

ΔBt_1023 Δbt_1023 B. thetaiotaomicron with 
deletion of bt_1023. Provided 
by Didier Ndeh (Ndeh & 
Gilbert, ICaMB, Newcastle 
University). 

ΔBt_1023 tag11 Δbt_1023 
tag11 insertion into ATT site 1 

B. thetaiotaomicron with 
deletion of bt_1023. Provided 
by Didier Ndeh (Ndeh & 
Gilbert, ICaMB, Newcastle 
University). With tag11 
insertion into ATT site 1 

ΔRGIIPUL 
 
  

ΔRGII PUL 
 

B. thetaiotaomicron mutation 
of the regulator controlling 
expression of the RGII PUL. 
Provided by Abbott lab, 
Lethbridge Research Centre, 
Agriculture and Agri-Food 
Canada. 

ΔRGIIPUL tag11 ΔRGII PUL 
tag11 insertion into ATT site 1 

B. thetaiotaomicron mutation 
of the regulator controlling 
expression of the RGII PUL. 
Provided by Abbott lab, 
Lethbridge Research Centre, 
Agriculture and Agri-Food 
Canada.  With tag11 insertion 
into ATT site 1 

Bacteroides vulgatus Type strain  

Bacteroides vulgatus tag11 As wild-type, with tag11 
insertion into ATT site 2 

As wild-type, with tag11 
insertion into ATT site 2 

Bifidobacterium adolescentis  Wild-Type 
 

DSM-20083, Type strain 

Bifidobacterium longum  Wild-Type 
ATCC 15707 

DSM-20219, Type strain 

Table 2.1 Bacterial strains and mutants used in this study. Mutants shown in bold were made during 
the course of this study. 
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2.2 Vectors 

Several vectors were used in this study; they are listed in Table 2.2. 

Plasmid Supplier/Reference Features 

pET28a-b Novagen Kanr, T7 promotor, lac, laciq, 
integrated His tag 

pET28-bt4673 Generated during this study As above, with ligand binding domain 
of bt_4673. 

pET22b Novagen Ampr, T7 promotor, lac, laciq, includes 
option to integrate PelB leader 
sequence and His tag. 

pET21a-b Novagen Ampr, T7 promotor, lac, laciq, includes 
option to integrate His tag. 

pExchange-tdk Provided by Nicole 
Koropatkin (Koropatkin et al, 
2008) 

Ampr, ermr, tdk modified suicide 
vector  

pNBU2-tag11 Provided by Nicole 
Koropatkin (Koropatkin et al, 
2008) 

Ampr, tetr, NBU2 transposon, tag11 
sequence, modified suicide vector 

pNBU2-tag1 Provided by Nicole 
Koropatkin (Koropatkin et al, 
2008) 

Ampr, tetr, NBU2-transposon, tag1 
sequence modified suicide vector 

pExchange-tdk-GH98KO Generated during this study As pExchange-tdk, with inactive 
bacova_03433 

pExchange-tdk-04390KO Generated during this study As pExchange-tdk, with inactive 
bacova_04390 

pExchange-tdk-bt4668KO Generated during this study As pExchange-tdk, with inactive 
bt_4668 

pExchange-tdk-bt4669KO Generated during this study As pExchange-tdk, with bt_4669 
flanks 

pExchange-tdk-bt4670KO Generated during this study As pExchange-tdk, with bt_4670 
flanks 

pExchange-tdk-bt0360KO Generated during this study As pExchange-tdk, with inactive 
bt_0360 

pExchange-tdk-bt0362KO Generated during this study As pExchange-tdk, with bt_0362 
flanks 

pExchange-tdk-bt0364KO Generated during this study As pExchange-tdk, with bt_0364 
flanks 

pExchange-tdk-bt0365KO Generated during this study As pExchange-tdk, with bt_0365 
flanks 

pExchange-tdk-0367KO Generated during this study As pExchange-tdk, with inactive 
bt_0367 
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pExchange-tdk-bt4156KO Generated during this study As pExchange-tdk, with inactive 
bt_4156 

pExchange-tdk-bt4170 Provided by Didier Ndeh As pExchange-tdk, with bt_4170 flanks 

pExchange-tdk-bt4175 Provided by Didier Ndeh As pExchange-tdk, with bt_4175 flanks 

Table 2.2 Vectors used in this study. Those in bold were generated during the course of this study. 

 

 

2.3 Bacterial Growth conditions 

2.3.1 Growth Media composition  

The composition of growth media used in this study are listed in Table 2.3 

Medium Composition Quantity 
(per litre) 

Description/Method 

Luria-Bertani  
(LB) 

LBB granules, as 
supplied (sigma-Aldrich) 

25 g Dissolved in MiliQ water and 
autoclaved before use 

Tryptone-Yeast 
Extract-Glucose 
(TYG) 

Tryptone 
Yeast Extract 
Glucose 
Cysteine, free base 
1 M KPO4 pH 7.2 
 0.4 mg/ml FeSO4 

1 mg/ml Vitamin K 
0.8 % CaCl2 

0.25 mg/ml Resazurin 
TYG Salt Solution (MgSO4  

0.5 g/l, NaHCO3 10 g/l, 
NaCl 2 g/l) 

10 g 
5 g 
2 g 
0.5 g 
100 ml 
1 ml 
1 ml 
1 ml 
4 ml 
40 ml 

Dissolved in MiliQ water and 
autoclaved before use 

Minimal Media 
Bacteroides 
(MM+0.5 % target 
Glycan) 

NH4SO4 

Na2CO3 

Cysteine, free base 
1 M KPO4 pH 7.2 
0.4 mg/ml FeSO4 

1 mg/ml Vitamin K 
0.01 mg/ml Vitamin B12 

0.25 mg/ml Resazurin 
MM Salt Solution (NaCl  
18 g/l,CaCl2 0.53 g/l, MgCl2 
0.4 g/l, MnCl2 0.2 g/l, CoCl2 
0.2 g/l) 

1 g 
1 g 
0.5 g 
100 ml 
10 ml 
1 ml 
0.5 ml 
4 ml 
50 ml 

Dissolved in MiliQ water and 
autoclaved before use 

Brain-Heart 
Infusion  
(BHI) 

Used as recommended 
by manufacturer 

 Dissolved in MiliQ water and 
autoclaved before use 

Bifidobacterial 
Minimal Medium  
(BiMM+0.5 % target 
Glycan) 

Peptone 
Tryptone 
KCL 
NaCO3 

NaCl 
MgSO4 
CaCl2 
MnSO4 

FeSO4 

6.5 g 
2.5 g 
2 g 
0.2 g 
4.5 g 
0.5 g 
0.45 g 
0.2 g 
0.005 g 

Dissolved in MiliQ water and 
autoclaved before use. Modified 
from Van der Meulen et al., 
2006. 
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ZnSO4 
Cysteine, free base 
1 mg/ml Vitamin K 
1 mg/ml Vitamin B12 

0.005 g 
0.5 g 
0.005 ml 
0.005 ml 

Clostridial Media 
(CM) 

Used as recommended 
by manufacturer 

 Dissolved in MiliQ water and 
autoclaved before use 

His-Heme Hematin 
0.42 g/l Histidine-HCl pH 
8.0 

1.2 g 
1 l 

Used to supplement TYG, 
bacteroides MM, CM and 
Bifidobacterial BM. Added in a 1 
in 1000 dilution prior to 
inoculation to enhance 
Bacteroides and bifidobacterial 
growth. 

Table 2.3 Composition of bacterial growth media used in this study 

 

2.3.2 E. coli Growth Conditions 

The E. coli strains described in Table 2.1 were grown  at 37°C  in Luria-Bertani broth (LB) medium (1 

% (w/v) Bacto©Tryptone, 1 % (w/v) NaCl and 0.5 % (w/v) yeast extract, pH 7-7.4. Aeration during 

growth was achieved by rotary shaking at 150-180 rpm. Agar plates for growth on solid medium 

were made by addition of 2 % (w/v) Bacteriological agar N°1 (Oxoid) to LB dissolved in water prior to 

sterilisation by autoclave. While the suspension was still molten approximately 25 ml of LB-Agar was 

poured into plastic Petri-dishes (Thermo). Prior to pouring relevant antibiotics (Table 2.2) were 

added for selection of E. coli with desired plasmids. 

2.3.3 Bacteroides Growth Conditions 

Specific growth requirements for Bacteroides spp. were met by Tryptone-Yeast extract-Glucose 

(TYG) media (Table 2.3). Bacteroides spp. were grown at 37°C in anaerobic conditions, achieved 

using an anaerobic cabinet.    

2.3.4 Bifidobacterium Growth Conditions 

Specific growth requirements for Bifidobacerium spp. were met by Clostridial media, CM (Table 2.3). 

Bacteroides spp. were grown at 37°C in anaerobic conditions, achieved using an anaerobic cabinet. 
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2.3.5 Selective Media 

Antibiotic Stock Concentration 
(mg/ml) 

Working Concentration 
(μg/ml) 

Storage 

Ampicillin 50 50 -20°C for 1 month 

Kanamycin 10 10 -20°C for 1 month 

Tetracycline 1 1 -20°C for 1 month 

Gentamycin 0.2 0.2 Made prior to use 

Erythromycin 0.025 0.025 Made prior to use 

Table 2.4 Antibiotic stocks used in this study 

 

For selection of positive transfromants or distinct bacterial species antibiotics were added to media 

using stock solutions listed in Table 2.4 and diluted appropriately to achieve an effective dose to 

eliminate unwanted bacteria.  

Isopropylthio-β-D-galactoside (IPTG) was added to strains containing lacIq either on plasmids or in 

the genome for induction of transcription of recombinant genes controlled by lacO. IPTG stock 

concentration was made at 1 M in MiliQ H2O for use with BL21 E. coli and 0.2 mM for use with 

TUNER E. coli cells. 

2.4 Basic Lab Methods 

2.4.1 Storage of DNA and Bacteria 

Plasmid and linear DNA solutions were stored at -20 °C while genomic DNA was stored at 4 °C in 

elution buffer (EB, 10 mM Tris/HCl buffer, pH 8.5). Bacterial colonies on agar plates are stored for a 

maximum of 2 weeks at 4 °C. For long term storage bacterial culture was mixed 1:1 with 50 % 

glycerol and stored at -80 °C. 

2.4.2 Sterilisation 
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All media and growth substrates were sterilised by autoclaving at 121 °C under 32 lb/inch2 of 

pressure for 20 min using either an Astell Hearson 2000 Series Autoclave or a Prestige© Medical 

Series 2100 Autoclave. Smaller volumes were sterilised by filter sterilisation through a 0.22 μm 

sterile filter disc (Stupor© Acrodisc© 3.2 Gelman Sciences). 

2.4.3 Centrifugation 

Centrifugation of bacterial cultures ranging from 100-1000 ml was performed at 5000 x g, in 500 ml 

Nalgene bottles using a Beckman J2-21 centrifuge and JA-10 rotor. Cultures of 1-5 ml were harvested 

by centrifugation in a MSE Mistral 3000i bench top centrifuge with a fixed angle rotor. A Heraeus 

Instruments Biofuge pico bench top centrifuge was used to centrifuge Eppendorf tubes up to 13000 

x g.  

2.4.4 Plating Bacteria 

In close proximity to a Bunsen burner flame, 100-200 μl of bacterial cell suspension was dispensed 

on to an agar plate. A metal spreader was sterilised by immersion into 100 % ethanol which is 

removed by passing through the Bunsen flame. The spreader was allowed to cool and used to spread 

the bacterial cell suspension across the surface of the plate. 

2.4.5 Chemically Competent E. coli 

E. coli strains listed in Table 2.1 were made chemically competent following a variation on a protocol 

outlined in Cohen et al. (1972) to allow the uptake of plasmid DNA using calcium chloride. A 1 ml 

aliquot of a 5 ml overnight culture of the required E. coli strain was used to inoculate 100 ml LB (no 

antibiotic) in a sterile 1 L non-baffle flask. The flask was incubated at 37°C whilst shaking (180 rpm) 

until log phase was reached (A600nm = 0.4). The cells were incubated on ice for 10 min, and then 

harvested by centrifugation at 5000 x g at 4°C for 5 min. The supernatant medium was removed and 

cells re-suspended gently in 8 ml of ice cold 100 mM CaCl2. This was repeated again using 4 ml ice 

cold 100 mM CaCl2 to re-suspend the cells. After 2 h on ice, the cell cells were chemically competent 
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for transformation with purified plasmid DNA. Aliquots of 100 μl of the competent cell suspension 

were stored at -80 °C with 25 % (v/v) glycerol in Eppendorf tubes. 

 

 

2.4.6 Transformation of Chemically Competent E. coli 

An aliquot of chemically competent E. coli (Table 2.1) was thawed on ice to retain competence. Still 

on ice 1 – 5 μl of purified plasmid DNA or ligation mixture was added to 100 μl competent E. coli 

cells. The mixture was incubated on ice for 20 – 30 min, after which the cells were heat shocked at 

42 °C for 1 – 2 min and returned to the ice box for 5 min. The cells were then plated onto LB agar 

plates containing an appropriate antibiotic for selection of positive transformants. The plates were 

incubated upside-down in a 37 °C incubator for 16 h. 

Transformation of ligation mixtures or products of site directed mutagenesis require incubation for 1 

h at 37 °C with shaking in 500 μl LB prior to plating out. After incubation the cells are harvested by 

centrifugation at 13000 rpm, 500 μl of supernatant was removed and the remaining 100 μl was used 

to re-suspend cells. The 100 μl of cells was then plated onto agar plates containing appropriate 

antibiotic. 

2.4.7 Small scale, rapid purification of plasmid DNA from E. coli 

The desired plasmid is used to transform Top10 competent E. coli cells and grown from single 

colonies for 16 h in 5 ml LB with an appropriate antibiotic. The cultures were centrifuged at 5000 x g 

for 10 min. The supernatant was removed. Plasmid purification was then achieved using a QIAGEN® 

QIAspin Prep kit as per the manufacturer’s instructions.  

2.4.8 Restriction digest of DNA 
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The required DNA, where possible 1000 μg per digest, was dissolved in EB buffer (10 mM Tris-HCl, 

pH 8.5) and mixed with 10 x concentrated reaction buffer in a 1.5 ml Eppendorf tube. The buffer 

selected was optimal for the specific enzymes used in the reaction. The volume was made up to 40 

μl with sigma ultra-pure water or EB buffer and 0.5 – 1 μl enzyme was added. The digest mixture was 

incubated at 37 °C for 1 – 2 h. the enzymes were inactivated by incubation at 60 °C for 10 min.  

 

2.4.9 Measuring DNA concentration 

DNA concentration was determined by spectroscopy using the NanoDrop 2000 benchtop 

spectrophotometer. The NanoDrop was blanked with either sigma ultrapure water or EB buffer 

(depending on which the DNA is in solution with) and a reading was taken to confirm the blank as 

approximately Abs = 0. A 2 μl sample of the DNA solution was measured at A260.  

2.4.10 Agarose gel electrophoresis 

Size of linear DNA molecules was determined by glectrophoresis through submerged horizontal gels. 

The gels used in this work for rapid analysis of DNA samples were mini gels. Gels were prepared by 

dissolving 400 mg of agarose (sigma) in 50 ml of 1 x TBE buffer (89 mM Tris Base, 89 mM Boric acid 

and 2 mM EDTA), giving a 0.8 % (w/v) solution. The suspension was gently mixed and boiled until the 

agarose had completely dissolved. The gel was then cooled, still molten, and 0.5 μg/ml of ethidium 

bromide was added, which allows for visualisation of DNA under UV light. The gel was the poured 

into a mini gel system mould (Applied Biosystems) complete with a comb to create wells for the 

DNA. Once set the gel was submerged in 1 x TBE buffer and ran at 70 volts for 45 – 60 min (LKB 

Bromma 2197 Power Supply). Samples were mixed with 6 x loading dye in a sample: dye ratio of 5: 1 

and loaded into wells in the gel. Hyperladder I (Bioline) of known DNA sizes was run alongside the 

samples to allow size determination by comparison with bands in the Hyperladder I lane. 

All buffer reagent stocks are shown below in Table 2.5 
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Buffer Ingredient Amount 

Electophoresis Buffer-TBE  
(pH 8.3 checked) 

Tris base 108 g l-1 

Boric acid 55 g l-1 

0.5 M EDTA pH 8.0 40 ml 

DNA Sample Buffer Bromophenol Blue 0.25 % 

Glycerol 50 % 

TBE 10 x 

Table 2.5 Buffers for agarose gel electrophoresis (x10 stocks) 

 

 

 

2.4.11 Visualisation and photography of agarose gels 

After electrophoresis a BioRad Gel Doc 1000 using Molecular Analyst™/PC Windows software was 

used to visualise DNA. Photographs were produced using a Mitsubishi Video Copy Processor (Model 

P68B) with Mitsubishi thermal paper. 

2.4.12 Determination of DNA fragment size 

The size of double stranded DNA fragments can be determined by comparison to known standards 

run alongside the sample in the same agarose electrophoresis gel. Migration rate through a gel 

matrix is inversely proportional to the log10 of the size of the oligonucleotide fragment. 

2.5 Purification of DNA fragments and cloning into vectors 

2.5.1 Purification of Vector DNA (Gel extraction) 

Vector DNA linearized by digestion with endonucleases was purified by gel electrophoresis using 0.8 

% high purity Seachem Gold™ Agarose (w/v) dissolved in 1 x TBE buffer. The DNA was excised from 

the gel with a scalpel and purification from the gel carried out using a QIAquick Gel extraction kit 

(Qiagen) as per the manufacturer’s instructions. 

2.5.2 Purification of inserts and PCR products 

Insert DNA digested with endonucleases and PCR products were purified using QIAquick PCR 

purification Kit (Qiagen) as per manufacturer’s instructions. 
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2.5.3 Ligation of insert and vector DNA 

Ligation was carried out by mixing insert and vector digested with compatible restriction 

endonucleases with 5 x ligation buffer (250mM Tis-HCl (pH7.6), 50 mM MgCl2, 5 mM ATP, 5 mM DTT, 

25% (w/v) polyethylene glycol-8000). Insert to vector ratios used were 3:1 or 6:1. The amount of 

vector DNA used in the reactions was 20 ng, the amount of insert DNA used was calculated using the 

below equation: 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡: 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 (
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑏𝑝)

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑏𝑝)
)  𝑥 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑛𝑔)  

Where:  
Amount of vector = 20 ng 
Ratio of insert to vector = 3 or 6 
 

Ligation reactions were made up in 50 μl PCR tubes. 

Amount Component 

Calculated using the above equation Insert DNA 

20 ng Vector DNA 

2 μl 5 x ligation buffer 

Up to 7 μl Sterile water 

1 μl Invitrogen T4 DNA Ligase (4 u/μl) 

20 μl Total volume 

Table 2.6 Ligation mixture 

 

The ligation reaction was the incubated at room temperature for 30 - 60 min before being used to 

chemically transform competent One Shot™ Top10 E. coli cells.   

2.5.4 Ligation independent cloning 

An alternative to using ligation it is possible to use T4 DNA polymerase to integrate the insert into 

the vector. This technique was adapted from (Jeong et al., 2012). Primers were designed with 15 bp 

extensions which are homologous to the region of vector to allow for homologous recombination 

into this site. The desired insert with the 15 bp extensions at both ends was generated using PCR. 

The vector was digested with endo nucleases to linearize the vector. The vector and insert were 
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mixed in a 1:1, 1:2 or 1:3 ratio (amounts of DNA were calculated using the same equation as in 

ligation reactions).  Buffer (x5), T4 DNA polymerase and 1mg/ml BSA was added to the mixture as 

shown in Table 2.7.  

 

 

 

Component Stock concentration Volume added Final Concentration 

Linearized vector 100 ng/µl 1 µl 10 ng/µl 

Insert 40 ng/µl 1 µl 4 ng/µl 

BSA x10 1 µl x1 

NEB Buffer 2 x10 1 µl x1 

T4 DNA polymerase 3 U/µl 0.2 µl 0.06 U/µl 

H2O  5.8 µl  

Table 2.7 Ligation independent cloning mixture 

 

Once mixed, the reaction solution was incubated at room temperature for 2 min 30 s before being 

immediately placed on ice for 10 min. Without removing the mixture from the ice 1-5 µl of the the 

reaction mixture was used to transform chemically competent E. coli. 

2.5.5 Polymerase Chain Reaction 

The polymerase chain reaction was (PCR) developed by Mullis and Faloona (1987) was used to 

amplify target DNA throughout this study. Regions of DNA were targeted by use of primers 10-20 

bases in length with a G/C content of approximately 40 % and a melting temperature (Tm) of > 45 °C 

that anneal to the boundary of the gene/DNA region of interest. Where possible primers were 

designed to contain G or C bases at both ends to aid annealing increasing amplification efficiency. 

Where required restriction sites were included in the 5’ –ends of primers capped with a 6 base 

sequence to allow restriction enzymes to cut the fragment. Primers were manufactured by MWG-

Biotech and lyophilised. Primers were in sterile water to a working concentration of 100 pmol/µl. 
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Primer melting temperature was calculated using the formula: 

𝑇𝑚 = 64.9 + 41 (𝑦𝐺 + 𝑧𝐶 − 16.4)/(𝑤𝐴 + 𝑥𝑇 + 𝑦𝐺 + 𝑧𝐶) 

 

Where w, x, y, z are the number of bases A, T, G, C in the sequence, respectively. 

A thermostable DNA polymerase catalyses the synthesis of the complementary DNA strand in the 

presence of dNTPs. Control reactions lacking DNA template were always carried out. PCR reaction 

mixture was made according to the amounts in Table 2.8 in sterile 0.2/0.5 ml Eppendorf tubes. 

Reagent Amount 

MgCl2 25 mM 

dNTPs 2 mM each 

Oligonucleotide primer 1 50 µM 

Oligonucleotide primer 2 50 µM 

Template DNA 1-5 ng 

Novagen KOD DNA Polymerase 2.5 U/µl 

PCR grade water Volume up to 50 µl 

Table 2.8 PCR reaction mixture 

The standard themocycler program was as follows: 

Step Temperature (°C) Time (min) 

1 95 1 

2 95 1 

3 5 lower than Tm of primer pair 1 

4 68 1 per kb of target DNA region 

5 68 10 

6 4 Until removed from machine 

Table 2.9 PCR program 

 

To improve DNA yield steps 2-4 in Table 2.9 were repeated 30-40 times. After each PCR an aliquot of 

reaction mixture was analysed by electrophoresis.  

2.5.6 Site-directed Mutagenesis 

Mutagenesis of single amino acids was carried using the site directed mutagenesis method. The site-

directed mutagenesis method utilizes an appropriate double-stranded recombinant plasmid DNA 

and two synthetic oligonucleotide primers (MWG-Biotech AG, Germany) containing the desired 

mutation flanked by 10-15 nucleotides that fully complemented the DNA template. The 
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oligonucleotide primers are extended during temperature cycling by using a thermostable KOD 

polymerase. The same reaction mixture as standard PCR is used (Table 2.8) and thermocycler 

program shown in Table 2.10. 

 

 

 

Step Temperature (°C) Time (min) 

1 95 1 

2 95 1 

3 55 1 

4 68 1 per kb of plasmid length 

5 68 10 

6 4 Until removed from machine 

Table 2.10 Site directed mutagenesis themocycler program 

 

After thermocycling the reaction mixture was cooled on ice before the addition of 1µl of DpnI 

(Fermentas 10 U) into each reaction mixture before being vortexed and centrifuged briefly. The 

digestion was then incubated for 1 h at 37 °C. DpnI digests methylated template DNA leaving the 

unmethylated PCR product intact. The DNA was then used to transform E. coli TOP10 competent 

cells. 

2.5.7 PCR Overlap Extension 

A plasmid carrying a region homologous to part of the Bacteroides genome, but lacking the target 

gene, was required for genomic disruption. The CC118 λ pir strain of E.coli was used for cloning of 

these fragments into the pExchange tdk plasmid. Restriction sites BamHI and XbaI were routinely 

used, and SalI or SpeI used if necessary. 

To remove a gene, a fragment was required which possessed homology to a region of at least 1,000 

bases upstream and 1,000 base pairs downstream of the gene, but lacking the gene ORF entirely. 

These regions are referred to as the upstream and downstream flanks. 
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Figure 2.1 Sewing PCR was used to Generate Gene Knockout Fragments. Sewing PCR was used to 
remove a gene from a fragment of DNA. Two 1,000 bp regions flanking the gene of interest were 
amplified during two distinct reactions using an amplification primer (primer 1, primer 4) and a 
sewing primer containing homology to the terminus of the flank to be joined (primer 2, primer 3). 
This step creates two fragments with a region of complementarity (a). The first step of the two-step 
sewing PCR cycle contains only the two gene flanks, which act as both primer and template DNA to 
each other (b). The second step of the two-step sewing PCR cycle is undertaken with the addition of 
the two amplification primers (primer 1, primer 4, c). A hybrid fragment is created which lacks the 
target gene (d). Adapted from Shapiro (2015). 

 

Four sets of primers were required for construction of this fragment, two amplification primers and 

two internal “sewing” primers which allowed the two flanks to be joined (Figure 2.1). The upstream 

primer (Primer 1) and the downstream primer (Primer 4) were designed as for routine amplification 

primers with appropriate restriction sites. Primer 3 and 4 were designed by selecting the 20 bases 

pairs immediately upstream from the start codon and the 20 base pairs directly after the stop codon 

and adding these together to form a 40 base pair sequence. This sequence was used in antisense 

(Primer 3) and sense (Primer 4) to target each DNA strand. 

The first step (Figure 2.1a) is to create the two flanks, with homologous region. This is done by using 

primer set 1 + 2 and primer set 3 + 4 in two distinct routine PCR amplifications. 
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The second step (Figure 2.1b) is to join these flanks together. The first cycle is performed with no 

primers or template DNA, but both flanks in equal concentration around 1 µg. As the flanks contain 

complementarity they will act as both primer and template to each other. After 10 cycles the 

amplification primers were added (Primer set 1 + 4) in order to efficiently amplify the newly 

constructed 2,000 base pair fragment (Figure 2.1c).   

It was essential to begin with both flanks at equal concentration, otherwise the reaction would 

favour the amplification of one flank above the other and result in an undesirable 1,000 base pair 

product. Once obtained, the 2 kb fragment was then purified and ligated into pExchange tdk vector. 

2.5.8 Automated DNA Sequencing 

DNA sequencing was conducted using the Value Read service provided by MWG Viotech AG, 

Ebersberg, Munich, Germany using ABI 3700 sequencers and Big dye technology (applied 

Biosystems). Each clone was sequenced in both the forward and reverse direction. As required by 

the company, 7-15 µl of 50-100 ng plasmid DNA or linear DNA fragment was sent per sample. Where 

possible plasmids were sequenced from the T7 promoter and T7 terminator. When not possible 

specific primers were designed for the desired regions to be sequenced. T7 primer sequences are as 

follows, T7 promoter – TAATACGACTCACTATAGGG, T7 terminator – CTAGTTATTGCTCAGCGGT.  

2.6 Protein expression and purification 

2.6.1 Protein expression 

Expression plasmids carrying the sequence encoding the protein of interest were used to transform 

BL21 or TUNER E. coli cells which were used to inoculate 5 ml LB containing the corresponding 

antibiotic to preserve the vector during bacterial growth. The inoculated media was then grown in a 

shaking incubator set at 37 °C for 16 h. The 5 ml culture was then used to inoculate 1 L LB (in 2 L 

flask) with the same antibiotic as the previous culture. The flask was then placed in a shaking 

incubator for approximately 4 h, or until an OD600nm of 0.6 is achieved. The flask was removed and 
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cooled for 30 min before the addition of 1 ml 1 M IPTG and returned to the incubator, set this time 

to 16 °C, for 16 h.  

The culture was removed and dispensed into 500 ml centrifuge tubes before being centrifuged at 

5000 rpm using a JA10 rotor in a Beckman Avanti centrifuge. The supernatant was removed and cells 

resuspended in TALON buffer (20mM Tris, 300mM NaCl pH 8.0) and sonicated for 2 min using a B. 

Braun Labsonic U sonicator set at low intensity ~42 watts and 0.5 second cycling before being 

transferred to a 50 ml centrifuge tube (Nalgene) and pelleted by centrifugation at 15000 rpm for 30 

min using a JA25.50 rotor.  The supernatant, here after referred to as cell lysate, was collected to 

purify recombinant protein. The pellet was resuspended in 10 ml TALON. Protein was purified from 

the cell lysate by Immobilised Metal Affinity Chromatography (IMAC) with TALON Resin (Clontech). 

2.6.2 Immobilised Metal Affinity Chromatography (IMAC) 

His-tagged proteins can be purified by (IMAC) as the Histidine side-chain interacts with 

electropositive transition metal immobilised in a column; this interaction can be disrupted by 

imidazole. The His-tag protein can be eluted from the column matrix using an imidazole gradient.  

TALON™ (Clontech Laboratories Inc.) columns with 2 ml TALON™ resin containing cobalt ions were 

prepared by washing in 10 volumes water and then TALONTM buffer (20 mM Tris/HCl buffer, pH 8.0, 

containing 300 mM NaCl). Cell lysate was filtered (0.45μm) and poured through the column. The 

column was washed with 4 x 5 ml of TALONTM buffer. The protein was eluted with 2 x 5 ml of 

TALON™ buffer containing 10 mM imidazole followed by 2x 5 ml of TALONTM buffer containing 100 

mM imidazole. Analysis by SDS-PAGE of each stage of the purification indicated which fractions 

contained the purified protein. 

2.6.3 SDS-PAGE  

Protein was visualised by SDS-PAGE as described by Laemmli (1970) to determine the size, relative 

purity and relative quantity of the protein. 12.5 % polyacrylamide gels (Acrylogel 3; BDH Electran®) 

were routinely used for protein visualisation in conjunction with the AE-6450 apparatus from ATTO 
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Corporation (Genetic Research Instruments) which utilises 12 cm x 10 cm glass plates sealed with a 

rubber gasket. The SDS-PAGE running buffer is given in Table 2.11. The resolving gel (Table 2.12) was 

poured into the plates, covered with water and allowed to polymerise. The water was then removed 

and the stacking gel poured on top of the resolving gel. A comb is added and polymerisation of this 

second layer is allowed to take place. Before use, the comb and rubber seal is removed and the gel 

affixed within the gel tank, which is filled with running buffer. Loading dye was added to samples at 

a ratio of 1:2 and samples were boiled for 2 minutes to denature the proteins. Samples were loaded, 

alongside standards for comparison into the gel wells and a current of 35 A (per gel) was applied. 

Gels were run for approximately 30-45 min or until the loading buffer band has reached the end of 

the gel. 

Component Reagent  Volume or Concentration 

Running Buffer 
(For 1 l*) 

32 mM Tris/190mM glycine, pH 8.3 
SDS 

350 ml 
0.1 % (w/v) 

Loading Buffer 
(For 10 ml*) 

SDS 
0.25M Tris/HCl, pH 8.8 
Glycerol 
β-mercaptoethanol 
Bromophenol blue dye 

10 % (w/v) 
5 ml 
25 % (w/v) 
2.5 ml 
0.1 % (v/v) 

Table 2.11 SDS-PAGE Gel Running buffer 

Component Reagent  Volume per gel 

Resolving Gel  0.75 M Tris/HCl, pH 8.8 with 0.2 % SDS 
40 % Acrylamide (BDH Electran acrylamide, 3 % (w/v) 
bisacrylamide) 
d.d. H2O 
10 % (w/v) Ammonium persulphate 
TEMED 

2.35 ml 
1.45 ml 
 
0.875 ml 
22.5 µl 
7.5 µl 

Stacking Gel 0.25 M Tris/HCl, pH 8.8 with 0.2 % SDS 
40 % Acrylamide (BDH Electran acrylamide, 3 % (w/v) 
bisacrylamide) 
d.d. H2O 
10 % (w/v) Ammonium persulphate 
TEMED 

0.938 ml 
0.188 ml 
 
0.75 ml 
15 µl 
5 µl 

Table 2.12 SDS-PAGE Gel preparation 
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After electrophoresis, the gel was soaked in InstantBlueTM stain (Expedeon) for 15 minutes to reveal 

protein bands, after which they were washed in distilled water. Gels were then photographed and 

catalogued (Bio-Rad Gel Doc 1000, Molecular AnalystTM/PC windows Software). 

 

2.6.4 Determination of Protein concentration 

Protein concentration was deduced by use of a NanoDrop 1000 and the protein concentration 

analysis feature of the NanoDrop 1000 software. Purified protein sample was taken and 2 µl loaded 

onto the pedestal for OD280/320nm analysis. The optical desnsity was calculated using the equation:  

𝐴 =  𝜀𝐶𝐼𝐷 

Where A = absorbance at 280 nm – absorbance at  320 nm, ε = molar extinction coefficient, I = 
length of light path (cm), D = dilution factor and C = molar concentration of sample. 

The extinction coefficient for each protein was found by entering the protein amino acid sequence 

into the ProtParam tool (www.expasy.com). 

2.6.5 Protein Concentration 

Protein solutions were concentrated using 20 ml or 2 ml Viaspin TM centrifugal concentrators 

(VivaScience) with 10, 30 or 50 kDa molecular weight cut off filters (as appropriate). Centrifugation 

was performed at 3000-3500 xg using a MSE Mistral 3000i bench centrifuge with a swingout rotor at 

10 °C. 

2.7 Bioinformatics 

2.7.1 Alignments 

Amino acid sequence searches were carried out using the Basic Local Alignment Search Tool (BLAST) 

(Altschul et al., 1997), using the NCBI (National Centre for Biotechnology Information) version hosted 

at the European Bioinformatics Institute (EBI) website (www.ebi.ac.uk). Amino acid sequences were 

aligned using ClustalO at the EBI website. 

http://www.expasy.com/
http://www.ebi.ac.uk/
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2.7.2 Prediction of prokaryotic signal peptides 

The presence or absence of signal peptides, and the signal peptide cleavage position, was predicted 

using the SignalP 3.0 software hosted at www.cbs.dtu.dk/services/SignalP/ (Bendtsen et al., 2004). 

 

2.7.3 Identification of loci in Bacteroides and Bifidobacerium spp 

Currently identified and predicted Bacteroides polysaccharide utilisation loci are archived in the 

PULDB (www.cazy.org/PULDB/). Bifidobacterium potential loci were found by manual search of the 

Kyoto Encyclopedia of Genes and Genomes (KEGG, www.genome.jp/kegg/). 

2.8 Biochemistry 

2.8.1 Enzyme assays 

Unless otherwise stated, all reactions were performed in pre-warmed solutions, prior to addition of 

enzyme, at 37 °C. Assays were repeated at least three times where possible. Graphs were plotted in 

GraphPad Prism 6.0 and used to calculate slopes, gradients and standard errors. Non-linear ‘one-

site’ binding model was used to fit kinetic data to estimate KM and kcat. 

2.8.1.1 3,5-Dinitrosalicylic acid (DNSA) Reducing Sugar Assay  

The rate of hydrolysis was monitored by the increase in reducing sugar formed over time. The free 

anomeric carbon at the end of a polysaccharide can open from its more common cyclic 

conformation and act as a weak reducing agent. Each time a glycosidic bond is hydrolysed a new 

reducing end is formed, the concentration of which can be determined with the DNSA reagent using 

the Miller method (Miller, 1959). A 100 μl aliquot of an enzyme reaction was added to 100 μl DNSA 

reagent (1 % (w/v) DNSA, 0.2 % (v/v) phenol, 1 % (w/v) NaOH, 0.002 % glucose, 0.05 % (w/v) NaSO3) 

to terminate the reaction. The tube was then boiled for 20 min, placed on ice for 10 min, 

equilibrated to room temperature. The samples were then transferred to a 96-well plate (CoStar) 

and inserted into a benchtop plate reader with the absorbance read at 575 nm. A standard curve of 

http://www.cbs.dtu.dk/services/SignalP/
http://www.cazy.org/PULDB/
http://www.genome.jp/kegg/
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0-1000 μg/ml monosaccharide (plus polysaccharide substrate) was used to quantify the released 

reducing sugar. 

 

 

 

2.8.1.2 PNP substrates 

Relevant 4-Nitrophenyl substrates were used to show enzyme activity in initial activity tests. A 10 

mM stock of the relevant substrate was made. A final reaction concentration of 1 mM substrate, 0.1 

mg/ml BSA and 1 µM enzyme in 20 mM sodium phosphate 150 mM sodium chloride pH 7.5. 

Reactions were performed in 1 ml plastic cuvettes with optical density readings at 405nm taken by a 

pharmacia Biotech Ultrospec 4000 spectrophotometer. The enzyme, if active, cleaves the glycosidic 

bond releasing p-Nitrophenol, a chromogenic substrate which is detected at 405 nm. Concentration 

of p-Nitrophenol was calculated using the extinction coefficient, 18,000 M-1 cm-1. 

2.8.1.3 Galactose/arabinose detection kit 

The release of galactose/arabinose was monitored through the use of a linked assay utilising 

galactose dehydrogenase (Megazyme), respectively (galactose dehydrogenase is also able to oxidise 

arabinose). Galactose dehydrogenase catalyse the oxidation of galactose/arabinose and reduces 

NAD+ to generate NADH in a 1:1 molar ratio. NADH absorbs at A340nm and thus its synthesis can be 

directly monitored. An extinction coefficient of 6230 M-1cm-1 was used to calculate the NADH 

concentration. All reactions were carried out at 37 °C in 20 mM sodium phosphate 150 mM NaCl 

buffer pH 7.5. Glass cuvettes were used and NADH release monitored using a Biotech Ultrospec 

4000, UV/vis spectrophotometer. Table 2.13 lists the reaction composition for the linked assay. 

Volume (µl) Component 

50 Appropriately diluted enzyme 

50 0.02 M Sodium phosphate pH 7.5 

50 10 mM NAD+ 
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50-345 Substrate 

5 Galactose dehydrogenase 500 U/ml (1 U = 
oxidisation of 1 µmol galactose min-1) 

50-345 Sterile water 

500 Total volume 

Table 2.13 Composition of typical galactose dehydrogenase linked assay 

 

2.8.1.4 Acetic acid detection kit 

Using a similar spec assay protocol as galactose/arabinose detection acetic acid accumulation 

although with a 3 step reaction: 

(1) Acetic acid + ATP + CoA → acetyl-CoA + AMP + pyrophosphate 

(2) Acetyl-CoA + oxaloacetate + H2O → citrate + CoA 

(3) L-Malate + NAD+ ↔ oxaloacetate + NADH + H+ 

Where reactions are mediated by acetyl-CoA synthetase (1), citrate synthase (2) and L-malate 

dehydrogenase (3).  

Accumulation of NADH is produced at a 1:1 molar ratio as acetic acid and measured at A340nm with a 

Biotech Ultrospec 4000, UV/vis spectrophotometer and reactions were performed in plastic 

disposable 1 ml cuvettes. All reactions were performed at 37 °C in 20 mM sodium phosphate 150 

mM NaCl pH 7.5. 

2.8.2 High Pressure Liquid Chromatography/associated assays 

Enzyme assays were performed at 37 °C in 20 mM sodium phosphate buffer, pH 7.5, and included 

500 μM rhamnose as an internal standard, and 0.1 mg/ml BSA to prevent enzyme absorption to 

surfaces. Each substrate was at a final concentration of 500 μM in the reaction, which was suspected 

to be <<KM from previous work with similar GHs. Scoping experiments were performed to find an 

enzyme concentration that would give ~80% degradation for each substrate in 60 min. Aliquots of 50 

μl were taken at time points which was then heated to inactivate the enzyme, centrifuged at 13000 x 
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g for 10 min, and diluted 10-fold in MiliQ water in HPLC Vials. Samples were analysed using an 

analytical CARBOPACTM PA-100 anion exchange column (Dionex) equipped with a CARBOPACTM PA-

100 guard column, sugars were detected by Pulsed Amperometric Detection. Elution conditions 

were 0-10 min 66 mM NaOH, 10-25 min 66 mM NaOH with a 0-75 mM sodium acetate linear 

gradient, followed by a wash with 500 mM sodium acetate for 10 min then 500 mM NaOH for 10 

min. Data were collected and manipulated using ChromeleonTM Chromatography Management 

System V .6.8 (Dionex) via a ChromeleonTM Server (Dionex). To ensure sensitivity remained constant 

over the entire run all peak areas were normalised to an internal rhamnose standard. Rates were 

determined by substrate depletion, using the following formula: 

K = ln (S0/St) 

K = kcat/KM [enzyme], ln = natural log, S0 = substrate concentration at time 0, St = substrate concentration at time t. 

Peaks corresponding to different oligosaccharides were identified by co-elution with standards of 

known oligosaccharides. The concentration of each oligosaccharide was calculated be comparing the 

peak area with standards of each oligosaccharide at known concentrations.  

2.8.3 Isothermal Titration Calorimitry 

Isothermal Titration Calorimitry (ITC) can determine the thermodynamic parameters driving 

macromolecular interactions, by titration of ligand into protein at 25 °C. Enthalpic and entropic 

changes are measured by the heat released or consumed in the reaction cell compared to a 

reference cell. In this project both protein and ligand were in 50 mM HEPES/NaOH pH 7.5. The 

protein in the cell, at 100 M, was titrated with 20 x 10 l injections of ligand, which, in the syringe, 

was at a concentration of either 5 mM for oligosaccharides and 10 mg/ml for polysaccharide.   

Integrated heat effects were analysed by non-linear regression using a single site-binding model 

(Microcal Origin v7) giving the association constant (Ka) and enthalpy of binding (ΔH),  

Other parameters were calculated using: 
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−𝑅𝑇 ln 𝐾𝑎 = 𝛥𝐺 =  𝛥𝐻 − 𝑇𝛥𝑆 

R = gas constant, ln = natural log, ΔG = change in Gibbs free energy, ΔH = change in enthalpy, T = absolute temperature 
(Kelvin), ΔS = change in entropy 
 

 

 

2.8.4 Thin Layer Chromatography  

Thin Layer Chromatography (TLC) allows visualisation of mixtures of oligosaccharides in solution, as 

migration patterns vary for different oligosaccharides with respect to degree of polymerisation (d.p.) 

and structure. TLC plates (Silica gel 60, Merck) were cut to size and 3-6 μl of samples were spotted 

on plates, dried and placed in a tank containing 1 cm running buffer (1-butanol/acetic acid/water, 

2:1:1 (v/v)). Plates were then left to allow the running buffer to migrate to the top of the plate, dried 

and left to migrate again. Plates were dried and submerged in developer (sulphuric 

acid/ethanol/water, 3:70:20 v/v, 1% orcinol) for 5 seconds to allow visualization of the sugars. Plates 

were dried and developed by heating to 80-100 °C.  

2.8.5 Acid hydrolysis/oligosaccharide purification 

Galactooligosaccharides, Gal3-6, were produced by acid hydrolysis of potato galactan (Megazyme) 

using 100 mM HCl at 100 °C for 1 h. The reaction was neutralised by titration with NaOH until 

neutral pH was achieved, and samples of the reaction were run on TLC to assess the degree of 

hydrolysis (data not shown). The samples were freeze-dried, resuspended in 3 ml MiliQ water and 

applied to a P2 (Bio-Rad) matrix packed in 2 Glass Econo-ColumnTM for purification by size exclusion. 

The oligosaccharides were eluted in distilled water at a flow rate of 0.23 ml/min; 1.8 – 2 ml fractions 

were collected and assessed by TLC. Fractions containing pure oligosaccharides were pooled, freeze 

dried and resuspended in volumes to allow for stock concentrations between 6 – 15 mM.   
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2.9 Microbiology 

2.9.1 Culture Preparation and Monitoring 

Bacterial cultures were set up by inoculation of the desired medium using a rate of 10 µl active 

bacterial culture or 20-50 µl glycerol stock per 1ml of growth medium. All experimental cultures 

were inoculated from actively growing cultures (these were seeded using glycerol stocks). 

Bacterial cultures could be monitored directly throughout growth using a 96 well or 24 well corning® 

costar ® culture plate (Sigma-Aldrich) in conjunction with an Epoch microplate spectrometer (Biotek 

Instruments Ltd.) inside of an anaerobic chamber (Don Whitely Scientific). Data were manipulated in 

Gen5 2.05 software and later plotted using Prism 6.0 (GraphPad). 96 well plates allowed for culture 

volumes of 200 µl, and 24 well plates of 2 ml. The plate reader measured and recorded the optical 

density (at 600 nm) of each well at 15 minute intervals. Each well was prepared in triplicate and the 

data averaged. Media without bacterial inoculum was always run as a control to ensure no 

contamination has occurred throughout the growth period and positive control of media with 

glucose was always used.  

For larger monocultures and all co-cultures glass test tubes were used to hold 5 ml aliquots of 

media. These were plugged with cotton wool to prevent contamination prior to sterilisation. Tubes 

were inoculated and incubated in an anaerobic chamber (Don Whitely Scientific). OD (at 600 nm) 

was measured using a CO 7500 spectrophotometer (Biochrom). 

2.9.2 Bacteroides and Bifidobacterium Co-culture 

Co-cultures were inoculated from overnight (16 h) incubations of approximately the same volume 

and density of overnight culture washed twice in PBS. Cultures were grown in 5 ml volume glass test 

tubes and monitored at 600nm using a CO 7500 spectrophotometer (Biochrom). Each culture was 

performed in triplicate. 
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Samples were taken at time points were serially diluted in PBS and micro-plated onto a clostridial 

media-agar plate divided into 9 equal sections. 10 µl of each dilution was plated onto each section 

and incubated under anaerobic conditions for 2 days. Colonies were counted in each dilution where 

possible and an average CFU/ml was calculated for each time point. In the case of Bacteroides-

Bifidobacterium co-cultures colonies were differentiated based on colony morphology and 

confirmed by replica plating onto clostridial agar media supplemented with gentamycin. 

Bifidobacterium is unable to grow on gentamycin media while Bacteroides is able. In the case of 

Bacteroides-Bacteroides co-cultures 0.5 ml samples were taken and genomic DNA was purified from 

the culture and subjected to quantative real-time PCR to differentiate between mutant and wild 

type Bacteroides by presence of unique sequences inserted in the genome.  

2.9.3 Genomic DNA Extraction 

DNA extraction from 5 ml cultures was undertaken using the GenEluteTM Bacterial Genomic DNA Kit 

(Sigma Aldrich) according to the manufacturer’s instructions.  

2.9.4 Bacteroides mutagenesis and genomic insertions 

The modified suicide plasmid, pExchange tdk, containing a knockout fragment were transformed 

into S17 λ pir E.coli cells, referred to as the “donor” strain. B. ovatus tdk- or B. thetaiotaomicron tdk- 

is the “recipient” strain. The donor and recipient strains were cultured (5 ml) to roughly equivalent 

cell densities in LB broth and TYG media respectively (Figure 2.2a). Cells were harvested by 

centrifugation and washed in TYG medium. Equal sized cell pellets were then re-suspended in 1 mL 

TYG medium and spread evenly on the surface of BHI plates with no antibiotic. These plates were 

incubated agar side down and grown for 16-24 hours until a thick lawn has formed; E.coli should 

grow first, creating an anaerobic environment underneath this growth in which Bacteroides can 

thrive, providing the necessary conditions for plasmid conjugation from the donor to the recipient 

strains (Figure 2.2b). This biomass was scraped from the plate and re-suspended in 5 ml TYG 
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medium. Then 100 µl of this solution, along with three serial dilutions (1:10, 1:100, 1:1000) were 

plated onto BHI + gentamycin (200 µg/ml) + erythromycin (25 µg/ml) plates. These antibiotics select 

for the recipient strain and the pExchange tdk plasmid, thus colonies represent single recombinant 

where the pExchange tdk has recombined with the genomic DNA via one of the flanks. These plates 

were incubated anaerobically for up to 2 days or until colonies formed, then 10 colonies were picked 

and re-streaked onto fresh BHI + gentamycin + erythromycin plates to minimise wild type 

contamination (Figure 2.2c). Then 10 colonies were cultured overnight in TYG medium, 1 ml of each 

culture was taken and a pooled stock created. A glycerol stock can be made at this stage for 

safekeeping (Figure 2.2d).  

The pooled stock alongside three serial dilutions (1:10, 1:100, 1:1000) was plated upon BHI + FUdR 

(200 µg/ml) and allowed to grow anaerobically for 2 days or until colonies appeared. FUdR is toxic to 

strains able to synthesise thymidine. The recipient strain lacks the tdk gene, but this has been 

complemented within the pExchange tdk plasmid, in this manner FUdR selects for the second 

recombination event, whereby the second flank incorporates into the genome and the pExchange 

tdk sequence is eliminated. Following this growth, 10 FUdR resistant colonies were re-streaked onto 

fresh BHI + FUdR plates to minimise wild-type contamination (Figure 2.2e). 10 resistant colonies 

were picked and cultured in 5 ml of TYG so that genomic DNA could be extracted and glycerol stocks 

could be made (Figure 2.2f). 

Isolated DNA was screened for successful knockout mutations using PCR. The downstream and 

upstream primers used to create the plasmid (primer 1 & primer 4, Figure 2.1) were used to amplify 

the clones, using wild-type Bacteroides as a control; the wild-type strain will produce a fragment 

which is the length of the target gene (500-2000 bp), plus the length of both flanks (1,000 bp each). 

Any successful knockouts will lack the target gene, yielding a fragment of 2,000 bp. Clones which 

appeared successful after screening were then sequenced to ensure the correct mutation had taken 

place. 
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Figure 2.2 Generating Knockout Strains of Bacteroides ovatus and Bacteroides thetaiotaomicron. (a) 
The donor and recipient strains were cultured in 5 ml of LB and TYG media respectively. (b) Equal size 
cell pellets were harvested by centrifugation, washed in TYG, combined and re-suspended in 5 ml TYG 
and plated onto BHI plates containing no antibiotics (yellow). These plates were not inverted during 
growth. (c) The plates were scraped and the biomass re-suspended in 5 ml TYG. This was plated onto 
BHI plates containing gentamycin (200 µg/ml) and erthyromycin (25 µg/ml) (green). Resistant colonies 
were re-streaked onto fresh plates to minimise wild-type contamination. (d) 10 colonies (these 
represent the first recombination event) were picked and cultured overnight in TYG. (e) The cultures 
were pooled into one stock, which was plated onto BHI containing FUdR (200 µg/ml) (blue) to select 
for the second recombination event, as before these are re-streaked. (f) 10 resistant colonies are 
cultured overnight in TYG. Glycerol stocks are prepared and DNA extracted for analysis. Inset: A 
visualisation of the donor and recipient DNA, and the first and second recombination events. Figure 
taken from Shapiro (2015). 
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In a similar method, unique sequences of DNA referred to here as Tags can be inserted into one of 

two ATT sites of Bacteroides to allow for differentiation of species or mutants within a co-culture. 

The tags are carried on modified suicide vectors, pNBU2-tag11 and pNBU2-tag1, which were used to 

transform CC118 E. coli competent cells which are plated on LB-ampicillin plate overnight. Overnight 

cultures were then made from the resulting colonies and from glycerol stocks of the Bacteroides in 

LB and TYG, respectively. The overnight cultures were then used to inoculate sterile media for a 4 h 

outgrowth. The 4 h cultures were centrifuged (6000 x g, 15 min) and resuspended in 1 ml TYG 

together. This resulting E. coli-Bacteroides culture was plated onto BHI-agar without antibiotic. There 

plates were then incubated aerobically for 24-30 h and the resulting biomass was removed and 

resuspended in fresh TYG (5 ml). The resulting cell suspension was diluted 10-1, 10-2 and 10-3 and 

plated onto BHI-agar with gentamycin (200 µg/ml) and tetracycline (2 µg/ml). The plates are 

incubated anaerobically for 2 days, then 10 colonies were selected and re streaked onto fresh BHI-

agar with gentamycin ant tetracycline which were incubated anaerobically for a further 3 days. 

Single colonies were selected and grown in TYG overnight. These cultures were subjected to 

genomic DNA extraction and PCR was performed to check for tag insertion. A second PCR was 

performed to show which site has been destroyed by insertion of the tag. PCR controls are used with 

wild type genomic DNA.  

2.9.5 Whole cell assay 

Overnight 5 ml cell cultures were gently harvested by centrifugation (6,000 x g), the supernatant 

removed and the pellet washed with Phosphate Buffered Saline Buffer (PBS). This step was repeated 

twice to ensure thorough washing before the pellet was finally re-suspended using 1 ml PBS. In the 

presence of oxygen, the cells are metabolically inactive but retain structural integrity. Thus, proteins 

which do not require ATP (such as CAZymes) presented at the cell surface remain active and can be 

observed. 
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Whole cells preparations were used as the catalytic agent during assays to detect CAZyme activity. A 

1 ml total reaction volume was used (500 µl whole cell assays, 500 µl 1 % glycan solution in PBS). 

Cells were boiled for 10 minutes and this matter used as a control reaction. To stop this reaction, 

samples were centrifuged (to remove cells) and the supernatant boiled. These samples were 

analysed by TLC. 

2.9.6 Real-time Quantative PCR (qPCR) 

Genomic DNA harvested from co-cultures could be quantified using qPCR (in this thesis, all qPCR was 

real time qPCR) by amplification of unique regions of DNA know as tags. These tags were inserted 

into the genome of wild type and mutant Bacteroides to allow differentiation in co-culture. qPCR 

relies on a dye which releases measurable light during amplification. This project used SYBR Green I 

(Roche), an intercalating dye which absorbs light at 497 nm and emits light at 520 nm when 

intercalated into double stranded DNA. During each amplification step the samples were illuminated 

at 497 nm and emitted light at 520 nm was measured. The more amplification which occurs during 

the PCR reaction, the greater the intensity of light released, as the dye is incorporated into new 

double strands. A CQ (quantification cycle) value is obtained at the cycle where fluorescence from 

the sample exceeds background florescence, this is the point at which it is clear that a fragment is 

being amplified. A low CQ value means fewer cycles were required to detect amplification, whilst a 

higher CQ value shows that more cycles were required. Every experiment included a control with the 

probe set but no template DNA to ensure that background florescence was not classed as 

amplification throughout the experiment. And a melt curve analysis was performed with each run to 

ensure a single PCR product was present in all reactions. 

10 µl Reactions were set up using 5 µl of the SYBR Green I Master Mix (Roche), 1 µl of each probe (5 

µM forward primer, 5 µM reverse primer), 2 µl of template gDNA or cDNA and 1 µl of PCR grade 

water. qPCR was carried out using a LightCycler® 480 (Roche) or using a Roche LightCycler® 96. 

Program used throughout this project is given in Table 2.14. 
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Step Process Temperature (°C) Time (s) 

1 Initial Denaturation 95 600 

2 Denaturation 95 10 

3 Annealing 57 10 

4 Elongation 72 10 

5 Measurement 72 - 

Table 2.14 qPCR program and parameters used throughout this project. Steps 2-5 are repeated 45 
times and the measurement was taken by exciting samples at 497 nm and measuring light emitted at 
520 nm. 
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Chapter 3: Xylan Utilisation and Cross-feeding by Bacteroides ovatus 

3.1 Introduction 

The majority of data presented in this chapter were published previously (Rogowski et al., 2015). 

3.1.1 Background 

Xylan is a major component of plant cell walls, and one of the most variable plant structural 

polysaccharides. It is present in particularly high concentrations in the endosperm and cell walls of 

cereals, an important component of the human diet. Xylan is a hemicellulose consisting of a highly 

conserved β1,4-linked xylopyranose backbone decorated with various sugars, primarily glucuronic 

acid (GlcA) and arabinofuranose, and acetyl groups (Allerdings et al., 2006; Agger et al., 2010). 

Decorations to the linear backbone increase the complexity of the polysaccharide. Glucuronoxylans 

(GX) as found it birchwood xylan (BX), are at the simpler end of the spectrum of possible xylan 

structures, with α-GlcA substitutions at the O2 of the backbone xylose residues (Figure 3.1). 

Arabinoxylans (AX) structures, found in wheat xylan (WX), are slightly more complex with either 

single or double arabinofuranose substitutions at the O2 and/or O3 positions on xylopyranose 

backbone (Figure 3.1)(Allerdings et al., 2006; Agger et al., 2010). The most complex xylan structure 

used in this study was glucuronoarabinoxylan (GAX) found in corn xylans (CX) present in the grain 

wall. CX possesses the methylated GlcA of BX and the arabinofuranosyl substitutions of WX along 

with 1,2 or 1,3 linked α- and β-xylopyranose, and α-L- and β-D-galactose units (Figure 3.1).  

Bacteroides species degrade and utilise glycans either part of the host diet or glycans expressed by 

host cells encountered in the human gut (Martens et al., 2011). These systems are encoded by gene 

clusters known as polysaccharide utilisation loci (PULs). These PULs encode carbohydrate active 

enzymes (CAZymes), which are identified and assigned to sequence based families in the CAZy 

database (Lombard et al., 2014; Terrapon et al., 2015). PULs are identified due to the presence of 

adjacent susC and susD-homologues along with CAZymes and a regulator that controls transcription 
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of the locus. The CAZymes expressed in PULs are localised to the cell surface or periplasm. Surface 

enzymes, typically endo-acting, degrade polysaccharides into oligosaccharides which are transported 

by the SusCD-like proteins into the periplasm where periplasmic CAZymes complete degradation to 

mono- or disaccharides for fermentation (Martens et al., 2009). 

 

Figure 3.1 Schematic structure of the main classes of xylan used in this chapter. The monosaccharide 
and linkages of the glucuronoxylan, arabinoxylan and glucuronoarabinoxylan represented in their 
Consortium for Functional Glyconomics format (Raman et al., 2006). The xylan polysaccharides used 
in this chapter were from Birchwood (Birch glucuronoxylan, BGX), Wheat flour (Wheat arabinoxylan, 
WAX) and Corn bran (Corn glucuronoarabinoxylan, CX). Taken from Rogowski et al. (2015). 

 

The prominent human gut bacterium, Bacteroides ovatus, utilizes a range of xylans (Martens et al., 

2011). The B. ovatus PULs that orchestrate xylan degradation were identified by Martens et al. 

(2011) (Figure 3.2) through transcription data from growth of the bacterium on xylans as a sole 

carbon source. The two PULs encode a number of putative enzymes that are predicted to possess 

xylanase/xylosidase activities. Along with the CAZymes identified were genes sharing significant 

sequence identity with SusC-like and SusD-like protein families, indicating that the loci were indeed 
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PULs (Martens et al., 2011).  The Xylan utilisation system in B. ovatus is organised into two distinct 

loci (a small PUL defined as PUL-XylS, and a large locus termed PUL-XylL) (Figure 3.2), which are 

upregulated independently by different structures found in xylans. Exposure to more complex 

substrates, CX or WX, leads to upreguation of PUL-XylL consistent with the wide range of xylan 

degrading activities encoding by this locus (Figure 3.2a). Exposure to simpler xylans with fewer 

decorations upregulate PUL-XylS, which encodes a limited number of enzymes (Figure 3.2b) 

(Rogowski et al., 2015). 

 

Figure 3.2 Schematic of the B. ovatus PULs. Schematic of the large xylan PUL (a) and the small xylan 
PUL (b) of B. ovatus. Genes are drawn to scale with the arrow head indicating gene orientation. 
Numbers below each gene correspond to their locus tag (bacova_XXXXX). Where possible genes are 
colour coded to known or predicted function and, where appropriate, are also annotated with their 
CAZY family number : glycoside hydrolase (GH, green), carbohydrate esterase (CE, purple), 
carbohydrate-binding module (CBM), surface binding proteins (SGBP, orange), unknown with distant 
similarity to CE6 carbohydrate esterase family (UNK, purple), SusD-homologues (light tan), SusC 
homologues (yellow), hybrid two component system (HTCS, light/dark blue), transporter of the major 
facilitator sub family (MFS, pink) and unknown function (grey). Proteins located at the cell surface are 
marked with an asterisk (*). The defining feature of PULs are the presence of susCD homologue pairs 
which encode specific binding and transport proteins in the Bacteroides outer membrane. Based on a 
figure from Rogowski et al. (2014).   

 

PUL-XylS encodes two enzymes belonging to glycoside hydrolase family (GH) 10. The vast majority of 

characterized GH10 enzymes were shown to be endo-β-1,4-xylanases although the family also 

contains some endo-β-1,3-xylanases (Hernandez et al., 2008). As with all clan GH-A families, GH10 

enzymes exhibit a retaining mechanism that utilise a pair of glutamic acid residues as the catalytic 

nucleophile and general acid/base, respectively. The general acid/base is typically preceded by an 
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asparagine in a NEP motif. Three-dimensional structures of GH10 enzymes show a classical (α/β)8 

TIM barrel fold. GH30 enzymes are also in clan GH-A, and hence have many traits in common with 

GH10, including the same structural fold and catalytic residues and mechanism of action (Naumoff, 

2011). Several activities are attributed to GH30 enzymes including glucronoxylanases. Many GH30 

enzymes were previously characterised as GH5s but were reassigned to GH30 based on sequence 

analysis and tertiary structure analysis (St John et al., 2010).  

The pair of GH10 enzymes present in the PUL-XylS that are likely to be endo-acting xylanases. 

Detailed analysis of these enzymes affords the opportunity to study the adaptations imposed on 

CAZymes expressed by human gut bacteria that maximise glycan degradation and subsequent 

utilisation. For efficient glycan utilisation B. ovatus must degrade polysaccharides at the cell surface 

that minimise the loss of oligosaccharides into the environment. To achieve this the surface GH10 

xylanase, BACOVA_04390, should display relatively low activity. The corresponding periplasmic 

GH10 enzyme, BACOVA_04387, is predicted to rapidly degrade oligosaccharides as the resultant 

sugars would be contained within the bacterial cell. 

The range of different xylan structures utilised for growth by B. ovatus allows study of the different 

strategies employed by the bacterium to effectively utilise related glycans of varying complexity. 

Resource allocation during glycan utilisation is particularly important for gut bacteria which exist 

with in a highly complex community as part of the human gut microbiota (HGM). Release of 

oligosaccharides into the environment can lead to the enrichment of certain bacterial species if the 

bacteria can utilise the oligosaccharides, and hence shape the HGM. 
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3.1.2 Aims 

 To characterise endo-acting glycoside hydrolases of the B. ovatus xylan degrading PULs 

including a pair of GH10 enzymes, one predicted to be located at the cell surface and one in 

the periplasm. 

 To investigate oligosaccharide release at the cell surface during growth of B. ovatus on a 

range of different xylan structures.  

 To evaluate whether xylooligosaccharides, released at the cell surface during B. ovatus xylan 

utilisation, are capable of sustaining growth of a second bacterium, which exclusively uses 

oligosaccharides as growth substrate.  
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3.2 Results 

3.2.1 Expression and purification of BACOVA_04390, BACOVA_04387, BACOVA_03432 and 

BACOVA_03433 

The primary sequence of BACOVA_04390, encoded by B. ovatus PUL-XylS includes a GH10 domain 

bisected by the insertion of two Carbohydrate Binding Module (CBM) distantly related to CBM family 

4 (Figure 3.4). The locus also encodes a second GH10 enzyme, BACOVA_04387, which has a simpler 

structure lacking any accessory modules. PUL-XylS encodes two enzymes that play a role in 

degrading the xylan backbone. These enzymes, BACOVA_03432 and BACOVA_03433, lack any 

accessory domains/modules and are members of GH30 and GH98, respectively. Analysis of the N-

terminal secretion sequence of BACOVA_04390, BACOVA_03432 and BACOVA_03433, using LipoP 

2.0 (http://www.cbs.dtu.dk/services/LipoP/), revealed type II signal peptides (See appendix A.1 for 

full explanation of LipoP data) indicating the proteins were most likely lipoproteins attached to the 

outer membrane of B. ovatus via a covalent bond with cysteine  (Juncker et al., 2003). Signal 

sequence analysis of BACOVA_04387 (LipoP 2.0) shows a likely type I signal sequence, indicating 

localisation to the periplasm (Juncker et al., 2003). Truncated bacova_04390, bacova_04387, 

bacova_03432 and bacova_03433 encoding mature BACOVA_04390, BACOVA_04387, 

BACOVA_03432 and BACOVA_03433, respectively, (lacking the N-terminal 20 residue signal peptide) 

were cloned by Hongjun Zheng into the Escherichia coli expression vector pET21a using appropriate 

restriction sites such that translation and transcription was initiated by vector sequence, which also 

supplied the recombinant protein with a C-terminal His6-tag.  
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Figure 3.3 SDS-PAGE Protein gels of Xylanase expression and TALON purification elution fraction. 
BL21 E. coli were transformed with vectors containing copies of xylanase genes from the large and 
small B. ovatus xylan PULs for inducible overexpression with IPTG. Recombinant proteins were 
purified from cell lysate using fused His-tag and TALON IMAC columns. Proteins are eluted from the 
cobalt columns by washing with TALON buffer with 5 mM or 100 mM imidazole. Elution fractions of 
BACOVA_04387 (a), BACOVA_04390 (b), BACOVA_03432 (c) and BACOVA_03433 (d) are shown. 
Samples are run on 12 % (v/v) agarose gels. Lanes are, 1 and 8) Molecular weight markers, 2) Cell 
pellet, 3) Cell lysate, 4) flow through, 5) TALON buffer wash, 6) 5 mM imidazole elution, 7) 100 mM 
imidazole elution.  

 

BACOVA_04390, BACOVA_04387 and BACOVA_03432 were expressed in appropriate E. coli strains 

BL21, while BACOVA_03433 was expressed in E. coli TUNER cells and purified by Immobilised Metal-

Ion Affinity Chromatography (IMAC) using a TALON-cobalt resin. Proteins with a fused His6-tag are 

bound by immobilised cobalt ions within the TALON resin. When washed with higher concentrations 

of imidazole, imidazole mimics histidine ring structure and competes with the protein for binding 

sites in the TALON resin, hence eluting the bound protein (Lilius et al., 1991). The recombinant 



109 
 

proteins were eluted from the cobalt column by competition with successive increasing 

concentrations of imidazole. Fractions were evaluated by SDS-PAGE using 12 % (w/v) polysaccharide 

gels (Figure 3.3). By comparison to known standards a band was identified at 45 kDa (Figure 3.3a), 64 

kDa (Figure 3.3b), 58 kDa (Figure 3.3c) and 102 kDa (Figure 3.3d), which corresponds to the 

theoretical mass of BACOVA_04387, BACOVA_04390, BACOVA_03432 and BACOVA_03433, 

respectively. The elution with highest degree of purity was selected for each recombinant protein 

and dialysed into 20 mM sodium phosphate buffer, pH 7.5, containing 150 mM NaCl, which was 

used in all subsequent assays.  

 

Figure 3.4 Modular structure of BACOVA_04387 and BACOVA_04390. The contrasting domain 
structure of BACOVA_04387 and BACOVA_04390, green and red represent glycoside hydrolase and 
CBM (carbohydrate binding module) modules, respectively, as determined by pfam v29.0 
(http://pfam.xfam.org/). 

 

3.2.2 BACOVA_04387 and BACOVA_04390 

The PUL-XylS, BACOVA_04387 and BACOVA_04390 encoded proteins both belong to GH10 and most 

likely display endo-xylanase activity. Although such redundancy is not usually observed in glycan, in 

Bacteroides this process occurs in different locations (outer membrane and periplasm), hence the 

cellular context of proteins in the system can dictate activity or function.  

3.2.2.1 GH10 Product Profiles 

Initial activity tests and product profiles of BACOVA_04390 and BACOVA_04387 were evaluated 

using TLC to separate xylooligosaccharides which were identified by their chromatographic migration 

compared to the standards, xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4) and 

xylopentaose (X5). BACOVA_04390 and BACOVA_04387 both showed activity on BX and WX but not 

http://pfam.xfam.org/
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CX (Figure 3.5a,c). BACOVA_04390 initially generated only long oligosaccharides seen as a smear 

from the origin (Figure 3.5a). In contrast, BACOVA_04387 produced smaller products ranging from 

X2-X5 (Figure 3.5c). After 16 h BACOVA_04387 generated mostly X2 some xylose and X3 as limit 

products (i.e the terminal reaction products that were not further degraded). BACOVA_04390 

generated limit products after 16 h, which comprised X3-5 with some X2 present (Figure 3.5a). Both 

BACOVA_04387 and BACOVA_04390 were active on WX although less of the substrate was 

assessable, as seen by intense spots at the origin, indicative of high molecular weight 

oligosaccharides (Figure 3.5a,c).  

 

Figure 3.5 Activity of BACOVA_04387 and BACOVA_04390. TLC of 1 mg/ml BX, WX and CX digestion 
with 1 µM BACOVA_04390 (a) and BACOVA_04387 (c) over a time-course 0-120 min and 16 h (O/N), 
samples were boiled to inactivate the enzymes. Michaelis-Menten plots of BACOVA_04390 (b) and 
BACOVA_04387 (d) activity on BX, as determined by DNSA reducing sugar assay were performed at 
37 °C in 20 mM sodium phosphate 150 mM NaCl pH 7.5. 

 

3.2.2.2 BACOVA_04390 and BACOVA_04387 Activity on BX 

Activity of BACOVA_04390 and BACOVA_04387 was measured using DNSA assays to quantify the 

formation of terminal reducing sugars, indicative of glycosidic bond cleavage. The kinetic data 
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showed significant differences in activity of the two GH10 enzymes on BX (Figure 3.5b,d). 

BACOVA_04390 gave a catalytic efficiency (kcat/KM) of 280 min-1 mg-1 ml, while the corresponding 

kinetic value, 8777 min-1 mg-1 ml, is much higher for BACOVA_04387. The 30-fold difference in 

activity reflects differing functions of the GH10 enzymes in the utilisation of xylan by B. ovatus. 

BACOVA_04390 demonstrates a much higher KM than BACOVA_04387 on BX while only minor 

differences in kcat are observed, indicating the vast difference in catalytic efficiency between the two 

GH10 enzymes stems from the requirement of BACOVA_04390 from much higher substrate 

concentration for activity (Table 3.1).  

Enzyme Vmax 
(µM min-1) 

KM 
(mg ml-1) 

kcat 
(min-1) 

kcat/KM 
(ml mg-1 min-1) 

BACOVA_04390 125.8 ± 6.1 4.5 ± 0.6 1258 ± 61 280 

BACOVA_04387 61.6 ± 2.0 0.7 ± 0.09 6158 ± 203 8777 

Table 3.1 BACOVA_04390 and BACOVA_04387 activity on BX. Reactions were performed in triplicate. 

 

3.2.2.3 HPAEC analysis of GH10 activity on Xylooligosaccharides 

HPAEC was used to determine activity of BACOVA_04390 and BACOVA_04387 on 

xylooligosaccharides X2 to X6. In each reaction 50 μM of the oligosaccharide was used and enzyme 

concentration was varied to give optimal degradation in the time frame of the reaction.  As the 

substrate concentration used in the reactions was most likely below the KM of the enzymes 

(Appendix A.2) the exponential loss of the substrate was used to determine catalytic efficiency 

(kcat/Km). 
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Enzyme Substrate Enzyme 
Concentration (mM) 

kcat/KM 
(min-1 mM-1) 

BACOVA_04390 X2 0.02 ND1 

X3 0.015 NQ2 

X4 0.01 1.0 ± 0.06 

X5 0.001 12.5 ± 1.1 

X6 0.0002 110.1 ± 19.4 

BACOVA_04387 X2 0.02 NQ2 

X3 0.01 2.9 ± 0.29 

X4 0.0003 509.7 ± 32.7  

X5 0.00005 3368 ± 101.2 

X6 0.00001 3247 ± 392 

Table 3.2 BACOVA_04390 and BACOVA_04387 activity on xylooligosaccharides. 1ND, not detectible; 
2NQ, activity too low for reliable quantification, reactions were performed in duplicate due to 
restricted substrate. 

 

Substrate depletion during the reaction was measured by calculating the area of the peaks that 

correspond to the oligosaccharide substrate (Figure 3.6a,b). The rate of depletion was calculated 

using Equation 3.1. Examples of ln([S0]/[St]) versus time plots for BACOVA_04390 and 

BACOVA_04387 on oligosaccharides X3-6 are given in Figure 3.6c and 3.6d. 

𝑘. 𝑡 = 𝑙𝑛 (
[𝑆0]

[𝑆𝑡]
) 

(Equation 3.1) 
 
Where: k = kcat/KM, t = time, and [S0] and [St] represent the substrate concentration at time 0 and t, 
respectively. This relationship is only valid when the concentration of enzyme, [E], is <<than 
substrate concentration, [S], << KM (Matsui et al., 1991).  
 
3.2.2.4 Activity of BACOVA_04390 and BACOVA_04387 on Xylooligosaccharides 

BACOVA_04390 demonstrated preference for longer xylooligosaccharides with no evidence of 

plateauing of activity up to X6, suggesting that the substrate binding cleft has the capacity to bind 

glycans with a DP >6 (Figure 3.6c, Table 3.2). BACOVA_04387 was able to hydrolyse substrates X2-X6 

(Table 3.2), However an exact rate could not be determined on X2 as activity was extremely low. 

Kcat/KM of BACOVA_04387 increased 175-fold from X3 to X4, however activity plateaued at X5, (Table 

3.2 and Figure 3.6d), indicating the presence of five xylose binding subsites. BACOVA_04387 showed 
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activity on smaller oligosaccharides than BACOVA_04390, consistent with its periplasmic location 

and thus its role in the degradative process downstream of the surface xylanase.  

 

Figure 3.6 HPAEC product profiles and rates of activity of BACOVA_04390 and BACOVA_04387 on 
xylooligosaccharides. Product profiles of BACOVA_04390 and BACOVA_04387 degradation of 
xylooligosaccharides X3-6 mid-reaction. Peaks were determined by comparison to known standards 
(light blue dashed line), peaks (left to right) X1, X2, X3, X4 and X5 (a). End products of 
xylooligosaccharide digestion by BACOVA_04390 and BACOVA_04387, samples were incubated 
overnight to give final products of xylanase digestion and run on HPAEC (b). BACOVA_04390 (c) and 
BACOVA_04387 (d) activity on xylooligosaccharides X3-6 as determined by substrate depletion. Rates 
are determined by integration of the rate of change in substrate concentration from 0 min to each 
time point giving a positive rate of substrate depletion. Reactions were performed in 20 mM Sodium 
Phosphate 150 mM NaCl pH 7.5, enzyme in each sample was inactivated by boiling.  
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3.2.2.5 Product profiles of BACOVA_04390 and BACOVA_04387 during Xylooligosaccharide 

hydrolysis 

BACOVA_04387 generated xylose and X2 in equal amounts from X3 (Figure 3.6a). X4 hydrolysis 

resulted in only X2, while cleavage of X5 produced mostly X2 and X3. X2, X3 and X4 were the major 

products of xylohexaose (X6) hydrolysis (Figure 3.6a & b). The dominance of X2 production from X4 

indicates that binding at the +2 subsite is much tighter than at -3, as a dominant role for the distal 

negative subsite would have generated X3 and X1. Thus, the five subsites in BACOVA_04387 could 

be distributed -3 to +2 or -2 to +3 (Figure 3.7). Unfortunately, as the oligosaccharides were not 

labelled at the reducing end it is not possible to determine which of the proposed subsite topologies 

is correct.    

BACOVA_04390 limit products of the oligosaccharide digests were mostly X2 and X3 with some 

xylose (Figure 3.6b). Mid-digestion products of X4 included mainly xylose and X3 with small amounts 

of X2 (Figure 3.6a). These data demonstrate a strong involvement of the -3 subsite in productive 

substrate binding (Figure 3.6a). Intermediate digestion of both X5 and X6 generated significant 

quantities of X4 indicting a functional -4 subsite in the case of the pentaose, while the hexaose 

degradation pattern may indicate a functional -4 and/or +4 subsite. As stated above the lack of 

labelled oligosaccharides prevented the evaluation of these possibilities, although the use of mass 

spectrometry with O18 water could have resolved the binding mode (McGregor et al. 2016). 
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Figure 3.7 Preferential binding modes of oligosaccharides in BACOVA_04387 active site. A schematic 
representation of preferential productive binding of xylooligosaccharides in the active site of 
BACOVA_04387 as deduced by relative abundance of products of defined oligosaccharide catalysis 
using HPAEC to detect products. Pentagons = xylose in oligosaccharides (labelled X3, X4, X5 and X6), 
crescents = subsites (labelled below), lightning bolt = where in the oligosaccharide hydrolysis occurs. 

 

Product profiles can be used along with kcat/KM to calculate the contribution to substrate binding of 

some individual subsites. Here. Comparison of the cleavage of X4 and X3 enables binding energy at 

+2 to be calculated, assuming X3 binds productively from subsites -2 to +1 and X4 from -2 to +2. 

Thus the difference in activity against the two oligosaccharides reflects binding at the +2 subsite in 

the case of X4 (Figure 3.6b). Binding energy is calculated using Equation 3.2.  

𝛥𝐺(𝑘𝑐𝑎𝑙 𝑚𝑜𝑙⁄ ) = 𝑅. 𝑇. ln (
𝐾𝑐𝑎𝑡 𝐾𝑀⁄ (𝑥𝑎). 𝐵𝐶𝐹(𝑥𝑎)𝑏

𝐾𝑐𝑎𝑡 𝐾𝑀⁄ (𝑥𝑎−1). 𝐵𝐶𝐹(𝑥𝑎)𝑏) /𝑐/𝑑 

(Equation 3.2) 

Where: Kcat/KM(xa) = Kcat/KM for a xylooligosaccharide of dp a. BCF(xa)b = the bond cleavage frequency 
for glycosidic bond b of a xylooligosaccharide of dp a. R = the gas constant 8.314. T = temperature 
(Kelvin). c = 4.184, (1 cal = 4.184). d = 1000 (converting cal to kcal). 

 

3.2.3 BACOVA_03432 

bacova_03432 is within PUL-XylL of B. ovatus. BACOVA_03432 showed significant identity to GH30 

glucuronoxylanases exemplified by the glucuronoxylan endo-1, 4-beta-xylanase from Erwinia 

chrsanthemi (Urbanikova et al., 2011).  
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3.2.3.1 BACOVA_03432 Activity 

BACOVA_03432 was incubated with 1 mg/ml BX, WX and CX at 37 °C for 16 h. TLC analysis revealed 

that a series of high molecular weight oligosaccharides were generated from BX but not from WX or 

CX (Figure 3.8a). As only BX contains GlcA side chains, these data are consistent with the proposal 

that BACOVA_03432 is a glucuronoxylanase. The activity of the BACOVA_03432 on BX, a 

glucuronoxylan, was quantified using DNSA reducing sugar assay. Rates from this assay were all at 

the linear phase of the Michaelis-Menten plot, indicating the substrate concentrations used were 

below the KM on this substrate (Figure 3.8b). The data revealed a kcat/KM value of 47.93 min-1 mg-1 ml.  

 

Figure 3.8 Activity of BACOVA_03432. TLCs of BACOVA_03432 product profiles on BX, WX and CX 
using 0.5 μM enzyme and 1 mg/ml substrate, aliquots were taken at 0, 5, 30 120 min and after an 
overnight incubation (O/N) and boiled prior to TLC (a). Rate of BACOVA_03432 activity on BX deduced 
by DNSA reducing sugar assay (b). Assays were performed at 37 °C in 20 mM sodium phosphate 150 
mM NaCl pH 7.5. 

 

3.2.4 BACOVA_03433 

Present in PUL-XylL was a gene showing significant identity to GH98 enzymes, a family associated 

with endo-β-galactosidases targeting mammalian cell antigens (Anderson et al., 2005; Shaikh et al., 

2009).  

3.2.4.1 BACOVA_03433 Activity 

The purified recombinant 102 kDa enzyme was assayed against CX, BX and WX at 37 °C.  A smear of 

high molecular weight oligosaccharides were generated from CX but no activity against BX or WX 
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was detected (Figure 3.9a). The poorly defined CX-derived oligosaccharides reflects the highly 

complex and variable structure of the side chains that decorate the xylan backbone of this 

polysaccharide. These data show that BACOVA_03433 utilizes specific side chain(s) in CX, which are 

absent in BX and WX, as critical specificity determinants.  

 

Figure 3.9 Activity of BACOVA_03433 and BACOVA_03433 inactive mutant on CX. TLC of 
BACOVA_03432 product profiles on CX using 1 μM enzyme and 0.5 mg/ml substrate, aliquots were 
taken at 0, 1, 2, 3 h and after an overnight incubation (O/N) and boiled prior to TLC. The 
BACOVA_03433 inactive mutant is a double substitution mutant of the catalytic residues, E361 and 
D467 to alanine. Assays were performed at 37 °C in 20 mM sodium phosphate 150 mM NaCl pH 7.5 
(a). Identification of BACOVA_03433 catalytic residues by sequence alignment against Sp4GH98 and 
Sp3GH98 from Streptococcus pneumoniae and EabC from Clostridium perfringens ATCC 10543, with 
catalytic residues highlighted in green (b). Agarose gel (0.8%) of the mutagenesis reaction mixture 
before and after DpnI digest (c). 

 

Through sequence alignment of BACOVA_03433 with previously characterised GH98 enzymes 

potential catalytic residues were identified as E361 and D467 (Figure 3.9b) by alignment with 

Sp3GH98 and Sp4GH98 from Streptococcus pneumoniae (Higgins et al., 2009) and EabC from 

Clostridium perfringens (Shaikh et al., 2009). These mutations were introduced into the coding 

sequence of bacova_03433-pet21a by site-directed mutagenesis (Chapter 2.5.6) using PCR with 

primers with the desired mutations and sequences homologous to the region surrounding the 
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targeted bases. The reaction mixture was incubated with DpnI a restriction nuclease that selectively 

degrades methylated DNA which, in this reaction, was the template DNA (Figure 3.9c). The mixture 

was used to transform TOP10 E. coli cells and positive mutations were selected by sequencing the 

resulting mut-bacova_03433-pet21a. The resultant E361A and D467A mutants of the GH98 enzyme 

were unable to hydrolyse 0.5 mg/ml CX at 1 μM enzyme at 37 °C in 16 h reactions (Figure 3.9a). 

These data confirm that E361 and D467 are the catalytic residues of BACOVA_03433. 

3.2.5 B. ovatus xylan Cross-feeding 

B. ovatus xylan utilisation gives an opportunity to study the extent of cross-feeding during utilisation 

of xylan polysaccharides with a range of xylan structures. Cross-feeding has been previously 

reported among different Bacteroides species (Rakoff-Nahoum et al., 2014; Rakoff-Nahoum et al., 

2016) between Bacteroides and other members of the HGM (Van der Meulen et al., 2006) but never 

observed during growth on xylan polysaccharides. Other previously studied utilisation systems either 

demonstrate a selfish strategy, where product utilisation is restricted to the polysaccharide 

degrading organisms, or an altruistic mechanism in which monosaccharides and/or oligosaccharides 

released into the growth supernatant are used by other bacteria in the same culture (Rakoff-

Nahoum et al., 2014; Cuskin et al., 2015).  

3.2.5.1 Supernatant Oligosaccharides 

Expression of both xylan degrading PULs during growth allows B. ovatus to successfully utilise a 

range of xylans including BX, WX and CX (Rogowski et al., 2015). Utilisation, however, may not be 

complete as oligosaccharides generated at the cell surface may diffuse into the culture medium 

rather than being sequestered by B. ovatus. Here, samples of culture were taken to assay for 

presence of oligosaccharides in the cell supernatant. B. ovatus was grown in 5 ml tube cultures with 

0.5 % BX, WX or CX as the sole carbon source. At the different phases of aliquots were taken and the 

culture supernatants were subjected to TLC to evaluate the oligosaccharides released by the 

bacteria into the media (Figure 3.10). During growth of B. ovatus on BX a smear of oligosaccharides 
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was present at early to mid-exponential phase. More defined oligosaccharides with lower DPs also 

began to accumulate; these molecules correspond with X4 and an unidentified oligosaccharide 

(Oligo X) that migrated between X3 and X4 (Figure 3.10a). At late exponential phase the lower 

molecular weight discrete oligosaccharides were more evident, while the quantity of material at the 

origin, corresponding to the polysaccharide growth substrate, was greatly reduced. At stationary 

phase, when growth had ceased, there was no polysaccharide visible at the origin, Oligo X, however, 

was the only oligosaccharide remaining (Figure 3.10a). Indeed Oligo X was present in stationary 

culture supernatants for each of the xylans used, indicating that it is a generic feature of this class of 

hemicellosic polysaccharide.   

There was a similar pattern of oligosaccharides generated by B. ovatus grown on WX (Figure 3.10b), 

with the exception that the oligosaccharide smear appeared during lag phase, and the starting 

material was still present later in growth. Again, OligoX was apparent in the products. 

 

Figure 3.10 TLC showing oligosaccharides released by B. ovatus during growth on xylans. TLC of 
supernatant of B. ovatus grown on birchwood xylan (a), wheat xylan (b) and corn xylan (c). Samples 
were taken during each phase of growth, as determined by OD measurements, cells were removed 
and the remaining supernatant was blotted onto TLC plates. Each lane corresponds to different phases 
of growth, 1) Start/inoculation, 2) Lag phase, 3) Early-mid exponential, 4) Mid-late exponential, 5) 
Stationary and 6) xylooligosaccharide standards. The position of OligoX is indicated by a red box. 
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The pattern of oligosaccharides present in the CX growth medium was entirely different from the 

other xylan cultures; only very faint smears of high molecular weight oligosaccharides were present 

during late exponential phase. At stationary phase OligoX was present, while the starting material 

was almost completely absent (Figure 3.10c).  

Indeed, detectable xylooligosaccharides were released into the growth medium during B. ovatus 

utilisation of xylans, including the highly complex CX, although only at low concentrations. The 

simpler xylans, BX and WX, were utilised in a less stringent manner with higher levels of 

oligosaccharides being released throughout the growth phases. Unfortunately further investigation 

using HPAEC-PAD was not possible as cell debris from cell cultures can cause damage to the 

detection electrode of the HPAEC machine, hence it was decided to just use TLC to visualise 

supernatant oligosaccharides (Figure 3.10) 

3.2.5.2 Bifidobacterium adolescentis (Bi. adolescentis) growth on xylans and xylooligosaccharides 

Released xylooligosaccharides from B. ovatus growth on BX, WX and CX could potentially be used by 

a second bacterium that is able to utilise oligosaccharides derived from the xylans. Bifidobacterium 

adolescentis was identified as a potential xylooligosaccharide user. Here, Bi. adloescentis growth was 

tested on BX WX and CX oligosaccharides, mimicking those released by B. ovatus. 

Bi. adolescentis was grown overnight in Clostridial media (CM) with hematin to stationary phase. 

After centrifugation the bacterial pellet was washed and diluted 1 in 3 in PBS. The Bi. adolescentis 

cells were inoculated into BiMM (Bifidobacterium minimal media)(Van der Meulen et al., 2006) with 

hematin supplemented with 0.5 % BX oligosaccharide, WX oligosaccharide, CX oligosaccharide, and 

the respective polysaccharides, xylose, arabinose or glucose in separate  positions  on a microtitre 

dish. Growth was measured by an automatic plate reader (A600 nm) taking readings every 15 min in an 

anaerobic cabinet at 37 °C. 
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Figure 3.11 TLC of xylan oligosaccharides and resulting Bi. adolescentis growth. The xylan 
oligosaccharides generated were used as a growth substrate for Bi. adolescentis in 200 μl plate reader 
growths along with glucose, xylan derived oligosaccharides and a no sugar control (a), and on 
untreated BX, WX and CX (b). Bi. adolescentis was grown in BiMM with 0.5 % growth substrate. TLC of 
xylan oligosaccharides generated from digestion of 10 mg/ml BX (c) and WX (d) with 5 μM 
recombinant BACOVA_04390 for 3 h. S = xylooligosaccharide standards X1-5, 1 = 10 mg/ml xylan, 2 = 
10 mg/ml xylan with BACOVA_04390. 

 

To test growth on xylooligosaccharides 10 mg/ml BX and WX was digested with 5 µM 

BACOVA_04390 for 3 h to generate oligosaccharides derived from each of the staring xylans (Figure 

3.11a), giving a range of oligosaccharide lengths. CX oligosaccharides were made by digestion of 10 

mg/ml CX with 2 µM BACOVA_03433 for 5 h. Bi. adolescentis grew on glucose, BX and WX 

oligosaccharides (figure 3.11a), however , the bacterium could not be cultured on untreated BX, WX 

and CX (figure 3.11b). Growth on BX oligosaccharides was similar to glucose, but had a 1-2 h longer 

lag phase and only achieved a maximum OD of 0.65 compared to an OD of 0.85 when Bi. 

adolescentis was cultured on the hexose sugar. Growth on WX oligosaccharides showed a similar lag 

phase to the BX oligosaccharide culture and achieved a maximum OD of 0.4 at 24 h. There was no 

growth observed for CX oligosaccharides, arabinose or xylose. Maximal growth rate of Bi. 



122 
 

adolescentis on BX and WX oligosaccharides was calculated as 0.18 and 0.03 OD.h-1,respectively. 

These data confirm that ability of Bi. adolescentis to utilise oligosaccharides derived from BX and WX 

but not those generated from BACOVA_03433 digestion of CX.  

 

Figure 3.12 Co-culture of B. ovatus and Bi. adolescentis on xylose. Growth measured by CFU/ml of B. 
ovatus in co-culture with Bi. adolescentis (a)  and Bi. adolescentis in co-culture and mono-culture on 
BiMM with 0.5 % xylose (b) calculated by colony counts of serial dilution of continuous growths plated 
on to BHI agar with hematin. 

 

3.2.5.3 B. ovatus – Bi. adolescentis Crossfeeding on xylans 

B. ovatus and Bi. adolescentis were grown separately until stationary phase when they were 

centrifuged, washed in PBS to remove the complex growth medium, and then resuspended in PBS. 

The cells suspensions were mixed in a 50:50 ratio and 200 μl was used to inoculate media with 0.5 % 

BX, WX and CX. The mixed cells were grown at 37 °C under anaerobic conditions. Samples of the 

cultures were plated onto CM-agar plates for CFU determination. Optical density (OD) of the 

cultures were measured over the entire growth phases. Mono-cultures were used as controls for B. 

ovatus and Bi. adolescentis on BX, WX and CX. The CFUs for these mono-cultures were also 

determined. In the mixed cultures species were distinguished on colony morphology and confirmed 

by re-streaking colonies on to BHI plates with 200 μg/ml gentamicin (Figure 3.13);  Bi. adolescentis 

but not B. ovatus, is sensitive to the antibiotic (Lim et al., 1993). Bi. adolescentis colonies are 

differentiated from B. ovatus colonies by size, colour and shape of colony margin (Figure 3.13b), 

where Bi. aoldescentis colonies are small and possess a rougher edge than the larger smoother B. 

ovatus colonies (Figure 3.13a-c). 
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Figure 3.13 Selection of Bi. adolescentis and B. ovatus during colony counts. Colonies of only Bi. 
adolescentis (a) and B. ovatus (b) grown on CM-Agar. Mixed inoculum of B. ovatus and Bi. adolescentis 
grown in CM media to late exponential phase and plated onto CM-agar to demonstrate difference in 
colony morphology between the two bacteria (c). To confirm identity, many colonies from each plated 
sample were picked and used to inoculate both CM-agar plates without (d) and with (e) 200 µg/ml 
gentamycin, where B. ovatus was spread as Xs on the left side while Bi. adolescentis was on the right 
of panels d and e, ‘dots’are pen markers to help plate inoculation. 

In mono-culture Bi. adolescentis was unable to utilise xylose as a growth substrate, however B. 

ovatus metabolises the free monosaccharide. To ensure growth of Bi. adolescenits in the 

polysaccharide co-cultures was dependent on oligosaccharides released into the media by B. ovatus, 

not other metabolites or the media itself,  a co-culture was performed using xylose as the growth 

substrate. In the xylose mixed cultures B. ovatus grew to 4.1 x109 CFU (Figure 3.12a), while no 

increase in the number of Bi. adolescentis cells was observed (Figure 3.12b).  

In the BX co-culture the ratio of B. ovatus to Bi. adolescentis began at 60:40 but by the end of log 

phase 98-99% of the cells were B. ovatus. This ratio was maintained throughout log phase and into 

stationary (Figure 3.14a). Despite this ratio of the two bacterial species, the CFU data showed that 

the level of Bi. adolescentis in the co-culture was 50-fold greater than when the bacterium was 

grown in mono-culture on BX (Figure 3.14a). A similar growth pattern was observed in the WX co-

culture, although with a slightly extended lag phase and Bi. adolescentis only achieved a 20-fold 

increase in CFUs compared to the bacterium in the WX mono-culture (figure 3.14b). The CX co-

culture, however, was different. Bi. adolescentis in the CX co-culture was similar to the CX mono-

culture control. This was also reflected in the ratio of B. ovatus to Bi. adolescentis, which was 
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maintained at above 10000:1 throughout exponential phase (Figure 3.14c). B. ovatus growth profile 

in the co-culture was analogous on BX and WX, however, CFU doubled on CX compared to the 

simpler xylans, despite displaying similar OD readings at equivalent time points (Figure 3.14d).  

 

Figure 3.14 Growth curves of Bi. adolescentis and B. ovatus in xylan co-cultures. Growth of Bi. 
adolescentis in BiMM with 0.5 % BX (a), WX (b) and CX (c) at 37 °C in anaerobic conditions in the same 
tube as B. ovatus (Co-Culture) and without B. ovatus (Mono-Culture). Growth of B. ovatus in BiMM 
with 0.5 % BX, WX and CX Co-cultured with Bi. adolescentis (d). CFU was calculated using serial 
dilutions of aliquots of growth culture plated onto BHI agar with heamtin. Colony type was confirmed 
by replica plating onto BHI with gentamycin.   

 

3.2.4.4 B. ovatus – GH98 mutant Cross-feeding 

To explore the possibility that there were utilisable CX oligosaccharides produced during B. ovatus 

growth on the xylan, a B. ovatus mutant was constructed in which the catalytic apparatus of the key 

GH98 surface xylanase, BACOVA_03433, was inactivated. The candidate catalytic residues, Glu361 

and Asp467, identified by alignments against previously characterised enzymes belonging to GH98 

(Figure 3.9b), were mutated to alanine.  Initial activity tests were performed on the E361A/D467A 
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double mutant of BACOVA_03433 (Figure 3.9a). The mutant enzyme was completely inactive on CX, 

indicating the mutations had the desired result. The wild type copy of bacova_03433 was exchanged 

for the mutant of this gene, defined as ΔGH98, encoding an inactive variant of BACOVA_03433.  

Figure 3.15 shows schematic diagrams of key stages of the mutagenesis process to create a genomic 

mutant. Mut-bacova_03433-pet21a was used as template of the inactive BACOVA_03433 to 

generate mut-bacova_03433 DNA to be cloned into pExchange-tdk. Positive transformants of E. coli 

s17 λpir cells harbouring mut-bacova_03433-pexchange-tdk were grown on BHI-agar plates along 

with B. ovatus tdk- (Figure 3.15a). Aerobic E. coli grows first creating an anaerobic environment for 

B. ovatus tdk- to grow, encouraging conjugation and passage of DNA between E. coli and B. ovatus 

tdk- (Figure 3.15b). Selection for B. ovatus tdk- harbouring mut-bacova_04333-pexchange-tdk was 

performed on BHI-agar with 25 µg/ml and 200 µg/ml, gentamycin and erythromycin, respectively. 

Integration of the target gene sequence (Figure 3.15c) into B. ovatus tdk- genome without the vector 

sequence was selected for by growth on BHI-agar with 200 µg/ml 5-Fluro-2’-deoxyuridine (FudR). As 

thymidine kinase (tdk) generates toxic products from FudR, mutants which have lost the vector DNA 

will grow and should also possess the mut-bacova_03433 DNA. The resulting colony genomes were 

then sequenced at the target gene and the flanking regions (Figure 3.15d) to ensure the mutation 

was successful. The introduction of a gene that encodes an inactive form of the enzyme is preferable 

to deletion of the cognate gene mutation, as any protein-protein interactions that may contribute to 

the utilisation apparatus at the cell surface will remain intact. The mutant displayed no growth on 

MM+ 0.5 % CX, however, the strain grew on CX that had been pre-digested with recombinant wild 

type BACOVA_03433 (Figure 3.17a). Indeed, the growth profile of ΔGH98 on CX oligosaccharides was 

analogous to wild type B. ovatus, with a slightly elongated lag phase (Figure 3.17a). This is most likely 

due to the lack of a functioning BACOVA_03433, which was unable to generate oligosaccharides at 

the cell surface; instead the mutant relies on diffusion for the glycans to bind to the SusCD–import 

apparatus. 
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To distinguish between wild type B. ovatus and the ΔGH98 variant in co-cultures, a unique signature-

tag was introduced into the genome of both strains as described in Chapter 2.9.4. The 24 bp DNA 

sequences tag1 and tag11 (See Appendix A.3) were inserted into a mobile transposon, NBU2 (Wang 

et al., 2000), within a modified suicide vector (Martens et al., 2008).  NBU2 displays homology with 

the att1 or att2 sites within the B. ovatus genome, leading to homologous recombination insertion 

of the transposon along with the relevant nucleotide sequence tag. During growth aliquots were 

taken and genomic DNA was extracted for relative quantification of signature-tags present in the 

genomic DNA mixture by qPCR (Koropatkin et al., 2008). Analysis of amplification curves 

demonstrates differential concentrations of each gDNA sample (Figure 3.16a). Melt curve analysis 

shows products of amplification were the same length indicating the fluorescence recorded for each 

sample could be compared directly (Figure 3.16b). Samples diverging from the mean melting 

temperature were excluded from the data. Samples of Known gDNA concentration were used to give 

a standard curve to convert quantitation cycle (Cq) values, the cycle in which fluorescence is 

detected, into relative concentration (Figure 3.16c). The same aliquots were used to determine total 

CFU during the growth, allowing the ratio of mutant to wild type to be used along with the total CFU 

to determine the CFU of each in the growth culture given in Figure 3.17b. 
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Figure 3.15 B. ovatus mutant generation procedure. Diagram of plating technique which allows for 
conjugation between E. coli s17 cells and B. ovatus tdk- on BHI-Agar plates (a). Simplified schematic 
of transmission of pExchange plasmid harbouring mutated bacova_03433 from an E. coli s17 cell to a 
B. ovatus tdk- cell (b). Simplified schematic diagram of crossover events occurring between homologus 
regions of mut-bacova_03433-pExchange and wild type bacova_03433 present in the B. ovatus 
genome (c). Where, red is pExchange plasmid DNA and blue is B. ovatus tdk- genomic DNA. Agarose 
(0.8 %) electrophoresis gel of PCR products of bacova_03433, run alongside known size markers, 
generated to screen for mutation of bacova_03433 in B. ovatus genome by sequencing (d).    

 

Throughout growth the ratio of wild type B. ovatus and ΔGH98 remained around 70:30 (Figure 

3.17c). As stated above ΔGH98 was unable to grow on CX in mono-culture; the CFUs remained 

similar to the inoculation CFU. In the co-culture experiment, however, ΔGH98 grew to 6 x108 

CFUs/ml, a 150-fold increase in the number of cells (Figure 3.17b). These data demonstrate that 

fermentable CX oligosaccharides were generated and released into the growth media by B. ovatus.   
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Figure 3.16 Analysis of qPCR data using Roche lightcycler96 software. Amplification curves of 
fluorescence against cycle number, used to calculate Cq values (a). Melt curve analysis showing 
homologous product in the reaction (b). Standard curve of known genomic DNA concentrations used 
to calculate relative concentration of sample DNA (c). 
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3.3 Discussion 

Xylan degradation and utilisation is increasingly being recognised as an important process in the 

human gut. Current research is amassing evidence of xylan and xylooligosaccharides as prebiotics 

promoting growth of select members of the gut microbiota associated with a healthy gut (Aachary 

and Prapulla, 2011; Chapla et al., 2012; Yu et al., 2015). 

3.3.1 GH10 xylanases from the small xylan PUL 

The data presented in this chapter explore the activity of a pair of GH10 enzymes, BACOVA_04387 

and BACOVA_04390, encoded by PUL-XylS of B. ovatus. Previous studies on Bacteroides spp. glycan 

utilisation systems have shown the importance of protein localisation in relation to the degradative 

apparatus (Cartmell et al., 2011; Cuskin et al., 2015). Data from Dr Rogowski confirmed the LipoP 

prediction of the cellular location of BACOVA_04390 and BACOVA_04387. Rogowski, using 

fluorescent microscopic analysis of cells labelled with specific antibodies and whole cell enzyme 

assays (Rogowski et al., 2015), showed that BACOVA_04387 and BACOVA_04390 were located in the 

periplasm and cell surface, respectively.  

The catalytic efficiency of BACOVA_04390 against BX was 30-fold lower than BACOVA_04387 (Figure 

3.5b). Reduced activity of the surface BACOVA_04390 is most likely caused by the insertion of two 

CBM4 sequences into the GH10 catalytic module (Figure 3.4). The CBM4 insertion in the GH10 

module appears to modify the activity of BACOVA_04390, which may explain not only its lower 

catalytic efficiency but its inability to degrade oligosaccharides with a low DP. Thus, the slow 

generation of large xylooligosaccharides by BACOVA_04390 reduces the possibility of saturation of 

the associated SusCD transport machinery. 

3.3.1.1 Investigating number of subsites and preferred productive binding modes  

HPAEC data (Figure 3.6) was used to measure substrate depletion and thus the activity of each 

enzyme on the xylooligosaccharides X2-6. kcat/KM of both BACOVA_04390 and BACOVA_04387 GH10 
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enzymes acting on each of the xylooligosaccharides was determined using Equation 3.1, with the 

assumption that substrate concentration in each reaction was below the KM of the enzyme, and 

recorded in Table 3.2. 

 

Figure 3.17 Growth of ΔGH98 B. ovatus on CX in mono-culture and in co-culture with wild type B. 
ovatus. Growth measured by optical density of the ΔGH98 mutant B. ovatus in MM with 0.5 % CX and 
CX oligosaccharide generated by digestion with recombinant BACOVA_03433 (a). Co-culture of ΔGH98 
and B. ovatus in MM with 0.5 % CX measured by CFU/ml determined by ratio of wild type to ΔGH98 
and total CFU/ml (b). Ratio of wild type B. ovatus to ΔGH98 in the co-culture. Ratio was deduced by 
purification of genomic DNA at time points in the co-culture and quantification of specific tags inserted 
into the genomic DNA of B. ovatus and ΔGH98 by qPCR (c).  

 

BACOVA_04390 activity on X4-6 was determined, as the length of substrate was increased the rate 

increased in 10-fold increments between X4, X5 and X6 (Table 3.2), indicating a preference for 

longer substrates. This is further supported by lack of quantifiable activity on xylooligosaccharides 

with a dp < 4 (Figure 3.6c). Unfortunately, it is not possible to deduce the precise number of subsites 

in the substrate binding cleft of BACOVA_04390 active site from these data. Insertion of CBM4 

modules most likely extended the length of the binding site potentially compensating for weak 

binding at subsites proximal to the active site, as evidenced by the lack of activity against X3, while 

allowing for increased activity on long oligosaccharides and xylan polysaccharide. (Table 3.2).  Thus, 



131 
 

by relying on subsites distal to the core of the substrate binding cleft (subsites -2 to +1), the xylanase 

specifically targets polysaccharides mediating infrequent cuts to the xylan backbone, reducing the 

amount of oligosaccharides generated at the cell surface during the degradative process.   

BACOVA_04387 showed activity on xylooligosaccharides X2-6, although activity on X2 was not 

quantifiable. From X3 to X4 there was a 175-fold increase in activity (Table 3.2). X5 was hydrolysed 

10-fold more efficiently than X4, while activity on X6 was similar to X5 (Figure 3.6, Table 3.2). These 

data demonstrate that BACOVA_04387 has evolved to digest mid to long oligosaccharides to 

generate products with lower DP. The high activity of BACOVA_04387 on BX is tolerated due to its 

location in the periplasm; here it generates short oligosaccharides which are sequestered in the 

periplasm without loss to the environment. However, as discussed later, this system does allow 

complex oligosaccharides to be released into the environment prior to sequestration into the 

periplasm where they may be used by competing microorganisms.  

BACOVA_04387 xylooligosaccharide product profiles can be used to infer some information on the 

preferred binding mode of selected substrates (Figure 3.7). X3 was converted to X2 and X1, albeit 

very slowly, requiring overnight incubation at high enzyme concentrations (Figure 3.6a,b). X4 was 

converted exclusively to X2 suggesting the importance of the +2 subsite, and indicating the absence 

of a significant -3 subsite, which would have promoted the generation of X3 and X1. Indeed the 

difference in activity against X3 and X4 reflects substrate binding at +2, which was 3.19 kcal mol-1. X5 

was converted to X2 and X3. The limit products generated from X6 were X4, X3 and X2, implying two 

potential binding modes with hydrolysis resulting in two X3 or an X2 and X4. The ratio of products 

suggests both modes are equally likely (Figure 3.6a). 

Both GH10 enzymes described here have acquired adaptations to the function required during xylan 

utilisation. The Surface GH10, BACOVA_04390 has undergone insertion events altering specificity of 

the enzyme to target longer substrates with a longer substrate binding site, generating long 

oligosaccharide products. While the periplasmic BACOVA_04387 remains closer to the more typical 
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GH10 xylanase by quickly degrading the oligosaccharide substrates in the periplasm releasing short 

oligosaccharides which are then degraded to monosaccharides by xylosidases encoded in the xylan 

PULs (Rogowski et al., 2015).  

3.3.2 Two surface endo-xylanases demonstrating different specificities from the large Xylan PUL 

The PUL-XylL was upregulated by arabinose containing xylans, WX and CX (Martens et al., 2011). The 

locus encodes a larger repertoire of enzymes than the PUL-XylS, which are required to fully digest 

and utilise the complex xylans (Rogowski et al., 2015). BACOVA_03432 and BACOVA_03433 were 

both confirmed as cell surface enzymes by Dr Rogowski (Rogowski et al., 2015). The data presented 

here demonstrate that both proteins are endo-acting xylanses (Figure 3.8a and 3.9a). 

BACOVA_03432 is active on BX, a glucuronoxylan, indicating glucuronic acid substitutions are vital to 

substrate recognition and hydrolysis. As a typical GH30 glucuronoxylanase, activity is conferred by 

presence of a GlcA residue appended to the xylose occupying the -2 subsite of the enzyme prior to 

hydrolysis, hence the specificity for glucuronoxylans (St John et al., 2010; Urbanikova et al., 2011). 

Lack of activity on WX and CX, is consistent with the absence of GlcA in WX and the complex context 

of the uronic acid in CX. Assaying BACOVA_03432 activity on BX, within the constraints of substrate 

solubility and an observed high KM revealed that initial rates were in the linear phase of the 

Michaelis-Menten kinetic curve. Thus, only kcat/KM could be deduced and not the individual kinetic 

parameters. The high observed KM reflects the relatively low concentration of glucuronic acid 

substitutions to the xylan backbone. 

BACOVA_03433 is active on CX but not BX or WX (Figure 3.9a), indicating a particular motif unique to 

CX is vital to activity. BACOVA_03433 is a GH98 enzyme, the first known member of this family to 

display xylanase activity. Interestingly, previously characterised GH98 enzymes are endo-

galactosidases active on glycans presented on the surface of  red blood cells, and play a role in 

bacterial pathogenesis (Anderson et al., 2005; Shaikh et al., 2009). Oligosaccharides generated by 

BACOVA_03433 activity on CX appear as an undefined smear continuous with the polysaccharide 
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spot at the origin on the TLC plate (Figure 3.9a). This indicates that the reaction products are high 

molecular weight oligosaccharides suggesting that the specificity determinant(s) for the xylanase 

occur infrequently in CX. The infrequent specificity determinants available to BACOVA_03433 and 

BACOVA_03432, ensures that these xylanases also only generate large products. This is consistent 

with the concept that infrequent cleavage of the xylan backbone ensures that the generation of a 

small number of large products is unlikely to saturate the import apparatus, as discussed above.  

3.3.3 Bi. adolescentis growth on xylans and xylan derived oligosaccharides 

Bi. adolescentis was unable to utilise xylose BX, WX or CX as growth substrates. However, when BX 

and WX were hydrolysed with BACOVA_04390, and CX with BACOVA_03433 (both enzymes are 

xylanases), the resultant xylooligosaccharides (XOS), arabinoxylooligosaccharides (AXOS) and 

glucuronoarabinooligosaccharides (GAXOS) were then used as growth substrates by Bi. adolescentis 

(Figure3.11a & b). These data suggest Bi. adolescentis can only import or utilise xylose in the context 

of short xylooligosaccharides, explaining the relatively low growth on WX and BX oligosaccharides as 

only a fraction of these molecules can be used by Bi. adolescentis. This contradicts findings of Pastell 

et al., (2009), which showed Bi. adolescentis grew on xylose. Both the work described here and that 

of Pastell et al., (2009) used Bi. adolescentis ATCC 15703, however, the growth medium differed. 

Pastell included 1 g/L yeast extract, which was not used here as this would have encouraged 

inappropriate growth of B. ovatus, which is able to grow on fungal glycans (Martens et al. 2011). The 

difference observed in growth may stem from the longer growth period used in the Pastell study 

where absorbance was measured at 60 and 140 h (Pastell et al., 2009), whereas the cultures here 

were only allowed to grow for 30 h (Figure 11a), perhaps growth on xylose requires longer 

incubation time. This does not affect the results of this study, in which xylose was used as a control 

substrate to ensure growth observed for Bi. adolescentis in co-culture is the result of XOS/AXOS 

utilization and not another B. ovatus metabolite. To ensure Bi. adolescentis were indeed utilising 

XOS and AXOS generated by B. ovatus and not any other B. ovatus metabolites which may be 
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released into the media, the two species were co-cultured in media containing xylose, a sugar which 

is inaccessible to Bi. adolescentis but not B. ovatus, as a sole energy source (Figure 3.12a). B. ovatus 

grew while Bi. adolescentis did not (Figure 3.12a), confirming the growth observed in the xylan co-

cultures was a result of oligosaccharide cross-feeding and not a result of Bi. adolescentis utilising 

another Bacteroides metabolite.   

Bi. adolescentis possesses glycoside hydrolases potentially active on XOS or AXOS, including β-

xylosidases  and α-arabinofuranosidases (van den Broek et al., 2005; Lagaert et al., 2010). The 

respective genes are in close proximity to genes encoding a putative extracellular surface binding 

protein (ESBP), ABC transporter and LacI-type regulator, indicating a locus upregulated in response 

to XOS or AXOS that depolymerize these oligosaccharides. The ESBP shows sequence identity to a 

characterised ESBP, BIXBP, expressed by Bi. animalis. BIXBP is a XOS binding protein able to tolerate 

some decorations to the xylose chain. ESBPs bind oligosaccharide with very high affinity outside the 

Bifidobacterium cell and brings the ligand to its corresponding ABC transporter embedded in the cell 

membrane for transport into the cytoplasm for subsequent digestion (Ejby et al., 2013). This high 

affinity oligosaccharide binding protein could be the basis of the highly efficient Bifidobacterium 

oligosaccharide utilisation system, forging a specific niche within the highly competitive human gut 

microbiota.  

3.3.4 B. ovatus generates oligosaccharides at the cell surface during growth on Xylans  

The xylan degradation apparatus expressed by PUL-XylS and PUL-XylL are optimized to maximise the 

intracellular breakdown and uptake of hemicellulose, similar to previously characterised glycan 

utilisation systems of Bacteroides (Martens et al., 2009). The B. thetaiotamicron yeast mannan 

utilisation system adopts a selfish mechanism, where all breakdown products generated by the 

surface mannanases are transported into the periplasm, resulting in an absence of breakdown 

products in the growth supernatant (Cuskin et al., 2015). Here, when grown on BX, WX and CX, B. 

ovatus generates oligosaccharides in the growth supernatant during different phases of growth 
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(Figure 3.10).  The TLC data show products that match the XOS standards and an additional 

oligosaccharide which does not migrate with xylooligosaccharoides used here (Figure 3.10). The 

unknown oligosaccharide remains in the media at stationary phase indicating it is not used by B. 

ovatus for growth. In plant cell walls the xylan backbone in the hemicellulose fraction is built upon 

an oligosaccharide of 4-β-D-Xylp-(1→4)-β-D-Xylp-(1→3)-α-L-Rhap-(1→2)-α-D-GalpA-(1→4)-D-Xylp at 

the reducing end of the chain (Pena et al., 2007). During synthesis of xylan in plant cell walls this 

oligosaccharide acts as a primer from which the backbone is built (Pena et al., 2007). As the 

unknown oligosaccharide is present in the BX, WX and CX culture supernatants, it may be the primer 

oligosaccharide as this is a common feature of xylans. Utilisation of the xylan primer by Bi. 

adolescentis was not tested here it is was found to be not possible to purify in suitable quantities for 

growths. It is unlikely that Bi. adolescentis would be capable of utilising a relatively complex 

oligosaccharide such as this with four unique linkages requiring specific enzymes for breakdown of a 

sparse substrate. Bi. adolescentis was able to use oligosaccharides generated from a digest of BX and 

WX with recombinant BACOVA_04390 (Figure 3.11c&d), confirming Bi. adolescentis is capable of 

utilising xylooligosaccharides derived from these polysaccharides (Figure 3.11a). Bi. adolescentis, 

however, was unable to use CX digested with the GH98 xylanase BACOVA_03433 as a growth 

substrate, suggesting that the resultant oligosaccharides were too complex to be utilised by the 

Bifidobacterium (Figure 3.11a). BACOVA_03433 generates GAXOSs that are extensively decorated, 

and these side chains may block binding by the ESBP, or perhaps the oligosaccharides are simply too 

large to fit into the ABC transporter channel used for oligosaccharide import. Bioinformatic and 

biochemical studies of B. adolescentis xylanases show activity on only a relativity narrow range of 

xylans and/or xylooligosaccharides (van den Broek et al., 2005). Bi. adolescentis encodes two GH43, 

a GH120 β-xylosidase and a GH8 xylanase, which show activity on xylooligosaccharides and are vital 

to utilisation (Lagaert et al., 2007). The presence of GH43 α-L-arabinofuranosidases suggests Bi. 

adolescentis is capable of utilising AXOS in addition to linear XOS (Lagaert et al., 2010).  
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In contrast with the selfish hypothesis proposed for mannan utilisation (Cuskin et al., 2015), B. 

ovatus is able to support the growth of Bi. adolescentis on BX and WX (Figure 3.13a,b). Despite 

differences in WX and BX complexity and the presence of arabinose substitutions in WX, similar 

levels of Bi. adolescentis were observed in the co-cultures on the two xylans. During growth 

Bacteroides spp generate metabolites which include short chain fatty acids (SCFAs) as waste 

products of anaerobic ATP generation (Salt et al., 1985). SCFAs are energy rich molecules that are 

used as an energy source by colonocytes in the gut (Donohoe et al., 2011).  

Interestingly, B. ovatus viable counts are much higher in the CX co-culture than either of the BX or 

WX co-cultures (Figure 3.14d). As B. ovatus generates much larger oligosaccharides at the cell 

surface when cultured on CX, than those produced from WX and BX, each CX oligosaccharide 

transported contains higher potential energy yield than BX or WX oligosaccharides. Due to the 

nature of the SusCD transport system each oligosaccharide, regardless of size is imported at the cost 

of an ATP molecule, giving higher energy to cost ratio for the longer oligosaccharides, which in turn 

allows greater growth, hence the greater cell numbers observed in the CX co-culture. In this regard it 

may also be relevant that all the surface xylanases have evolved to cleave the xylan backbone 

infrequently generating large oligosaccharides.  

CX, as a highly complex substrate, requires a suite of enzymes for full breakdown and utilisation by 

B. ovatus, which are not associated with typical xylan degradation systems (Rogowski et al., 2015). 

The inability of Bi. adolescentis to grow on CX oligosaccharides, and in co-culture with B. ovatus on 

CX,  may simply reflect the lack of the enzymes or transport systems required to degrade the 

complex xylan. This view is supported by the observation that a mutant of B. ovatus, lacking the 

surface GH98 xylanase was unable to grow on CX in monoculture, but could utilise the 

polysaccharide in co-culture with the wild type bacterium (Figure 3.17a). These data demonstrate 

oligosaccharides are released during B. ovatus growth on CX, but these molecules are not utilized by 

Bi. adolescentis. The inability to observe the CX oligosaccharides may be because they are too large 
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to migrate from the origin on TLC (Figure 10c). It is possible that CX and other highly complex 

substrates are only used as a last resort during times of nutritional crisis, requiring a high 

transcriptional/translational investment from the cell to produce the required apparatus for 

utilisation. For Bifidobacteria the initial investment to use such substrates may be too high when 

host glycans, such as mucins, are readily available (Egan et al., 2014). B. thetaiotaomicron glycan 

utilisation preferences can be organised into a hierarchy showing PULs directed against host glycans 

and simpler glycans are preferentially upregulated over more complex gylcans (Rogers et al., 2013), 

which may hold true for B. ovatus as a relative of B. thetaiotaomicron. 

3.4 Conclusion 

B. ovatus expresses the full repertoire of enzymes required to fully degrade simple (BX, WX) or 

complex (CX) xylans in the human gut lumen. PUL-XylS orchestrates the degradation of simpler 

xylans expressing two GH10 xylanases displaying different levels of activity reflecting their 

localisation to the cell surface, BACOVA_04390, or periplasm, BACOVA_04387, to minimise loss of 

breakdown products to the competitors in the gut. Despite this adaptation oligosaccharides are 

released that are used by other members of the gut microbiota. In this chapter, Bifidobacteria were 

shown to use the BX- and WX-derived oligosaccharides generated by B. ovatus. In turn the 

Bifidobacteria promote gut health by helping to alleviate symptoms of inflammatory bowel disease 

(IBD) and modulating inflammation of the gut during immune responses (Kajander et al., 2008; 

Ishikawa et al., 2011). Although variable in size, it would appear that B. ovatus releases 

xylooligosaccharides into the culture supernatant irrespective of the complexity of the xylan. B. 

ovatus appears to aid Bi. adolescentis when co-cultured on xylans, generating accessible substrate 

from inaccessible xylan polysaccharide, despite lack of an apparent benefit of promoting Bi. 

adolescentis growth to the bacterium itself. This apparent altruism may be rewarded in the gut from 

currently unknown pathways due to the complexity of the interactions within the HGM. Data 

presented here demonstrates potential for enrichment of different members of the HGM by 
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including different fractions of glycan in the human diet. Complex GAX, like CX, promote B. ovatus 

growth in the gut, which in turn produce propionate, a molecule implicated in lipogenesis reduction 

in the host (Hosseini et al., 2011).  Utilisation of simple xylans by B. ovatus will promote growth of 

Bifidobacteria to increase butyrate, a molecule known to maintain the health of intestinal epithelium 

(Wachtershauser and Stein, 2000). Indeed such oligosaccharides have been shown to selectively 

promote Bifidobacteria, suggesting simple xylans and xylooligosaccharides can be used as 

bifidogenic prebiotics, due to a relatively low dose required to have a positive effect (Finegold et al., 

2014). Products of complex xylans are, however only used by a small subset of gut microbes due to 

the rarity of enzymes displaying relevant activities. Thus, the xylan-B. ovatus axis could be 

manipulated to encourage the growth of selective organisms in the human distal gut microbiota.   
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Chapter 4: Pectin Utilisation by Bacteroides thetaiotaomicron 

4.1 Introduction 

4.1.1 Background 

Pectic polysaccharides are some of the most complex glycans in the human diet. The backbone of 

pectins, exemplified by homogalacturonan, rhamnogalacturonan I (RGI) and rhamnogalacturonan II 

(RGII) are rich in galacturonic acid (GalA). However, the extensive side chains that decorate some 

pectins can be charged, as occurs in RGII, or contain neutral sugars typified by the galactan and 

arabinan chains that decorate RGI (Figure 4.1). The RGI backbone consists of alternating α1,2-linked 

rhamnose (Rha) and α1,4-linked GalA with occasional acetyl substitutions of the GalA residues 

(Mohnen, 2008). The galactan and arabinan side chains, which extend from rhamnose in the 

backbone. Galactan consists of β1,4-linked galactose units while arabinan consists of α1,5-linked 

arabinose with O2 and/or O3 arabinose side chains (Silva et al., 2016).  Although lacking GalA, 

arabinans and galactans are viewed as pectins.  



140 
 

 

Figure 4.1 Pectin structure. A schematic representation of the Pectic polysaccharides. Schematic 

representation of RGI along with, galactan, arabinan and homogalacturonan (a), and RGII (b). 

 

Regions of RGI give way to the non-decorated Homoglacturonan (Figure 4.1a) which, as the name 

suggests consists of GalA residues. The most complex pectin, probably the most complex glycan in 

the human diet, is RGII. The simpler galactan and arabinan side chains of RGI (Figure 4.1a) form 

helical structures inhibiting tight packing of pectic polysaccharides. Pectin performs a space filling 

role providing elasticity to the plant cell wall. During times of growth the amount of pectin increases 
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to give the cell wall flexibility (Mohnen, 2008), much like cholesterol in mammalian cell membranes. 

Along with the more irregular structure of pectin side chains forming interactions between strands, 

borate bridges exist between RGII side chains, giving a degree of strength to the polysaccharide 

(Pabst et al., 2013).  

 

Figure 4.2 Pectin PUL organisation. A schematic representation of the polysaccharide utilisation loci 

upregulated in response to galactan (a), arabinan (b), rhamnogalacturonan I (c). Gene locus tags are 

prefixed with bt_XXXX, enzyme family is annotated above the gene as GHXX, glycoside hydrolase; 

PLXX, polysaccharide lyase; CEXX, carbohydrate esterase; CBMXX, carbohydrate binding module. 

Genes are coded by colour, blue, hybrid two component system (HTCS), grey, gene of unknown 

function, purple, SusC-homologue, red, surface glycan binding protein or SusD-homologue, green, 

glycoside hydrolase, yellow, carbohydrate esterase, pink, carbohydrate binding module, orange, 

polysaccharide lyase. Proteins predicted to be lipoproteins attached to the cell surface are indicated 

by an asterisk. Abridged version of figure and data from Martens et al. (2011).  

 

Due to the heterogeneity of glycosidic bonds found in pectins the human gut bacterium Bacteroides 

thetaiotaomicron express a wide array of carbohydrate active enzymes (CAZymes) to degrade and 

subsequently utilize these polysaccharides (Martens et al., 2009). These include glycoside hydrolases 

(GH), pectic lyases (PL) and carbohydrate esterases (CE) (Lombard et al., 2014), and reflect the 

relative complexity of the target substrates. The majority of human gut microbiota (HGM) members 

only utilise a subset of pectic polysaccharides. Bifidobacterium breve (Bi. breve) and Bi. longum, for 
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example, express glycan utilisation systems that target galactan while being unable to grown on RGI 

or RGII. B. thetaiotamicron, however, is able to utilise all known pectins (Martens et al., 2011). As 

such, B. thetaiotaomicron is considered a generalist glycan user whose genome encodes many 

complex carbohydrate utilisation systems. The Bacteroides polysaccharide utilisation systems 

mediates glycan degradation at the cell surface and in the periplasm (Martens et al. 2009). The 

polysaccharide utilisation loci (PULs) are identified by the presence of susCD homologues, which 

mediated oligosaccharide import across the outer membrane, along with CAZymes and a regulator. 

B. thetaiotaomicron encodes 208 susC and susD homologues and is predicted to encode 88 PULs, 

devoting 18% of its genome to glycan utilisation (Martens et al., 2009). 

A number of these PULs have been shown experimentally to be upregulated in response to 

detection of the target glycan (Martens et al., 2011). Based on this criterion several B. 

theataiotaomicron PULS are dedicated to the breakdown and utilisation of pectic polysaccharides 

(Figure 4.2). There are discrete PULs dedicated to each pectic polysaccharide, although some co-

regulation/crosstalk has been observed between these related PULs (Martens et al., 2011), although 

this may reflect the purity of these polysaccharides.  

4.1.2 Aims 

The overarching objective of this chapter is to characterise the B. thetaiotaomicron systems that 

degrade selected pectins. The specific aims are as follows: 

 To characterise the galactan and arabinan utilisation systems. 

  To characterise the enzymes involved in the release of the galactooligosaccharides that 

remain appended to the RGI backbone after galactan degradation.  

 To investigate the degree and extent to which cross-feeding occurs during growth of B. 

thetaiotaomicron on pectic polysaccharides. 
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4.2 Results 

4.2.1 Cloning, Expression and Purification of Pectin utilisation proteins 

This chapter describes the characterisation of B. thetaiotaomicron and a B. ovatus proteins 

expressed in response to galactan, arabinan and RGI, leading to the complete degradation and 

utilisation of each polysaccharide (Table 4.1). The genes in the PULs activated by these pectins 

(Figure 4.2) were cloned either ‘in-house’ or externally by NZYTech (Lisbon, Portugal). The regions of 

the genes were cloned without the associated N-terminal signal peptide coding sequence. This 

avoids membrane localisation when expressed in E. coli, increasing the chance of producing soluble 

recombinant protein. The genes were cloned into the expression vectors pET28b or pET21a, which 

results in the fusion of a C-terminal His-tag to the encoded recombinant protein to enable 

purification using immobilized metal ion affinity chromatography. While most of the proteins 

studied retained their His-tag, bacova_05493 (B. ovatus gene) and DNA encoding the ligand binding 

domain (from amino acid 27 to 798 of the HTCS sequence) of the predicted hybrid two component 

system (HTCS) regulator, BT_4673, were cloned into pET28a to take advantage of thrombin 

cleavable of the His-tag from the C-termini of the recombinant proteins. The majority of the GHs, PLs 

and CEs described in this chapter are members of existing CAZy sequence-based families, and are 

defined as GHXX, PLXX and CEXX, respectively.   
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Figure 4.3 Examples of and purification of recombinant proteins involved in pectin degradation. The 
proteins were purified by IMAC and the fractions were subjected to SDS-PAGE using a 12.5% 
polyacrylamide gel. BT_4668 (a, medium expression), BT_4667 (b, high expression), BT_0360 (c, low 
expression), BT_4158 (d, medium expression). HW, high molecular weight marker, P, bacterial cell 
pellet, C, cell lysate, FT, flow through, W, wash fraction with TALON buffer, E1, elution fraction 1 with 
5 mM imidazole in TALON buffer, E2, elution fraction 2 with 100 mM imidazole in TALON buffer and 
LW, low molecular weight marker. The expression and purification of the proteins are described in 
Chapter 2.6.2. Full list of protein expression gels can be found in Appendix A.4. 
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Protein Predicted 
Function/ GH 

Family 

Recombinant 
protein Length 

(aa) 

Recombinant 
Protein Mass 

(kDa) 

Extinction 
Coefficient 

(M-1) 

Dialysis 
Buffer 

RGI PUL 

BT_4151* GH2 949 108 198590 A 

BT_4156* GH2 954 107 197850 A 

BT_4160* GH35 690 78 129650 A 

BT_4181* GH2 980 111 201570 A 

BT_4158* Carbohydrate 
Esterase 

217 25 35870 A 

Galactan PUL 

BT_4667* GH2 816 89 157525 A 

BT_4668* GH53 345 37 73380 A 

BT_4669* Surface Glycan 
Binding Protein 

(SGBP) 

566 60 140385 B 

BT_4670* SusD-like protein 536 58 101690 B 

BT_4673 Hybrid Two 
Component 

System (HTCS) 

747 88 176480 B 

Bacova_ 
05493 

GH 869 99 154940 D 

  Arabinan PUL 

BT_0348* GH51 504 57 110240 A 

BT_0360  GH43 628 70 185530 C 

BT_0361* SusD-like protein 579 66 120100 B 

BT_0363* SusD-like protein 568 63 125140 B 

BT_0365* Surface Glycan 
Binding Protein 

(SGBP) 

746 81 162610 B 

BT_0367  GH43 486 56 137740 C 

BT_0368* GH51 653 74 121700 A 

Table 4.1 Proteins expressed and use in this chapter. * = Cloned by NZYTech, A=20 mM Tris-HCl buffer 

pH 7.5 containing 150mM NaCl pH 7.5, B=50 mM Na-HEPES buffer pH 7.5 containing 150 mM NaCl, 

C=20 mM sodium phosphate 150 mM NaCl pH 7.5, D=20 mM sodium phosphate pH 7.5 300 mM NaCl. 

 

Vectors containing the target genes were used to transform  E. coli strains BL21(DE3) or TUNER (DE3) 

when the target protein was predicted to be a -galactosidase (GH2 or GH35) as this E. coli strain 

lacks a functional lacZ gene and thus does not express an endogenous -galactosidase . The 

expression and purification of these proteins are described in Chapter 2.6. Examples of SDS-PAGE 

analysis of the expression and purification of the recombinant proteins is shown in Figure 4.3. In 
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general the proteins were purified to a high level of purity using IMAC, providing initial expression 

was reasonable.  

4.2.2 Galactan utilisation by B. thetaiotaomicron 

4.2.2.1 Identification of the Galactan PUL 

A genetic locus (bt_4667-73) was identified in the genome of B. thetaiotaomicron that was highly 

upregulated when the bacterium was grown on galactan (Martens et al., 2011). Further 

bioinformatic analysis of the genes in this locus predicted the presence of GH2 and GH53 enzymes, 

bt_4667 and bt_4668, respectively. The locus was identified as a PUL by the presence of the 

characteristic susCD-homologues, bt_4671 and bt_4670 (Figure 4.2a) (Martens et al., 2011).  

4.2.2.2 Purification of Galactooligosaccharides 

Specific galactooligosaccharides were required to characterise the proteins encoded by the PUL-Gal 

of B. thetaioatomicron. These oligosaccharides were generated by acid hydrolysis of galactan with 75 

mM HCl at 100 °C for 4 h. The resulting mixture was neutralised with NaOH and concentrated before 

being loaded onto a P2-Biogel (BioRad) size exclusion column. Elution fractions were collected and 

evaluated by TLC (Figure 4.4a). Different oligosaccharide fractions were identified by relative size 

and comparison to known galactose and galactobiose standards. Each fraction containing pure 

oligosaccharide was pooled and concentrated to a working concentration for use in subsequent 

assays. Oligosaccharide purity was confirmed by high-performance anion-exchange chromatography 

(HPAEC) (Figure 4.4b). Hereafter galactooligosaccharides are referred to as GalX, where X is the 

degree of polymerisation (DP) of the oligosaccharide. DP was confirmed by comparison to known 

standards, galactose and Gal2, and extrapolating for the longer oligosaccharides assuming each band 

corresponds to 1 galactosyl-residue longer than the band which preceded, or peak in the case of 

HPAEC analysis (Figure 4.4b). The galactobiose standard used was supplied by Megazyme Ltd. was 

not pure giving two peaks (Figure 4.4b). 
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Figure 4.4 Galactooligosaccharide purification. Acid hydrolysed galactan was run over two P2 Bio-gel 
size exclusion columns. Collected fractions were run on TLC to assess oligosaccharide content (a). 
HPAEC chromatogram of purified galactooligosaccharide fractions to assess purity (b).  

 

4.2.2.3 Activity of BT_4668 on galactan and galactooligosaccharides 

Bioinformatic analysis of BT_4668 indicates the presence of a GH53 catalytic module, a family that to 

date comprises exclusively endo-β1,4-galactanases that display a “retaining” mechanism (GHs that 

display an acid- base double displacement mechanism leading to retention of anomeric 

configuration) (Braithwaite et al. 1997). Sequence alignment of BT_4668 with well characterised 

GH53 enzymes; GalA from Cellvibrio japonicus (Braithwaite et al., 1997), GanA from Geobacillus 

stearothemophilus (Tabachnikov and Shoham, 2013), GalA from Bi longum (Hinz et al., 2005) and 

GalA from Bi breve (O'Connell Motherway et al., 2011) identified conserved motifs (Figure 4.5a). 
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Motifs of note include the catalytic glutamate residues in the characterised GH53 enzymes, which in 

BT_4668 were Glu-180, the general acid/base, and Glu-292 which aligns with the known nucleophile 

in the other characterised GH53 enzymes (Figure 4.5a).  PCR-based Site-directed Mutagenesis 

(described in Chapter 2.5.6) was used to introduce E180A and E292A substitutions into recombinant 

BT_4668 (Figure 4.6a). The resulting mutant was unable to hydrolyse galactan at 10 µM enzyme 

incubated with 1 mg/ml galactan overnight at 37 °C (Figure 4.6b). These data confirm that Glu180 

and Glu292 are the catalytic residues of BT_4668. 
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Figure 4.5 Characterisation of BT_4668. Amino acid sequence alignment (using clustal omega 

server) of BT_4668 with previously characterised GH53 enzymes, GalA from C. japonicus, GanA from 

G. stearothemophilus, GalA from Bi longum and GalA from Bi breve (a). The catalytic nucleophile is 

predicted to be Glu180 (green) and the general acid/base Glu292 (blue). TLC product profile of 1 

mg/ml galactan digested with 1 μM BT_4668 in 20 mM sodium phosphate 150 mM NaCl pH 7.5 over 

30 min. Samples were run alongside known galactooligosaccharide standards Gal1-Gal6 (b). 

Michaelis-Menten curve of BT_4668 activity on galactan in 20 mM sodium phosphate 150 mM NaCl 

pH 7.5 at 37 °C (c). The inverse rate of substrate depletion of defined galactooligosaccharides when 

incubated with BT_4668 in 20 mM sodium phosphate 150 mM NaCl pH 7.5 at 37 °C to give catalytic 

efficiency (kcat/KM, d). 

 

As BT_4668 belongs to GH53, it most likely displays endo-galactanase activity. To test this hypothesis 

500 nM BT_4668 was incubated with 1 mg/ml galactan with samples taken and boiled at intervals to 

stop the reaction. The samples were then subjected to TLC alongside galactan oligosaccharide 

standards with known DPs as described in Chapter 2.8.4. Long oligosaccharides were present in the 

earlier time points, 30 s to 1 min. After 1 min a wide range of oligosaccharides were present and the 
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origin spot began to grow faint, indicating a reduction in long chain galactan in the reaction (Figure 

4.5b). In the last sample there was an accumulation of Gal2 and Gal3 (Figure 4.5b). This product 

profile is typical of endo-activity, confirming BT_4668 as an endo-β-1,4-galactanase enzyme. 

The DNSA reducing sugar assay (described in Chapter 2.8.1.1) was used to measure kinetics of 

hydrolysis of galactan by BT_4668. The resultant Michaelis-Menten curve (Figure 4.5c, Table 4.2) 

showed that the activity of BT_4668 on galactan was similar to that of GalA, a β1,4-galactanase 

expressed by C. japonicus, while being four-fold more active than the newly described GH53 from 

Bacillus licheniformis CBMAI 1609 (de Lima et al., 2016). BT_4668 activity on galactan appears to be 

similar to other characterised GH53 enzymes, confirming that BT_4668 is a typical GH53 galactanase. 

Substrate Vmax 
(µM min-1) 

KM 
(mg ml-1) 

kcat 
(min-1) 

kcat/KM 
(ml min-1 mg-1) 

Enzyme 
concentration 

(µM) 

Galactan 285.3  
± 29.6 

4.78  
± 0.92 

285300  
± 29609 

59623  
± 5816  

0.001 

Galactooligosaccharides 

Substrate  kcat/KM 

(min-1 mM-1) 
 

Galactobiose ND 1 

Galactotriose 0.28 ± 0.02 0.1 

Galactotetraose 4.2 ± 0.5 0.01 

Galactopentaose 23.4 ± 1.1 0.001 

Galactohexaose 18.5 ± 0.7 0.001 

Table 4.2 BT_4668 activity on galactan and galactooligosaccharides 

 

Known concentrations of galactooligosaccharides with a DP of 3-6, were incubated at 37 °C with an 

appropriate concentration of BT_4668 and the rate of substrate depletion was determined by 

HPAEC. Table 4.2 shows catalytic efficiency (kcat/KM) of oligosaccharide degradation by Bt_4668, 

derived from the exponential loss of substrate over time. Substrate concentration was likely below 

the KM of the enzyme. This was tested by halving the substrate concentration to ensure the rate 

remains constant (Appendix A.5) indicating the reaction is within the linear phase of the reaction 

(Figure 4.5d), allowing catalytic efficiency to be determined. Unfortunately, full kinetic analysis of 
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BT_4668 enzyme activity on the available galactooligosaccharides was not possible due to limited 

supply of these glycans as the nature of stopped-assay requires significant quantities of each 

oligosaccharide. The galactanase displays activity on all of the oligosaccharides tested, although it 

shows preference for oligosaccharides with a DP of ≥5 (Table 4.2). Maximum activity was observed 

using galactopentaose and galactohexaose as substrate. This indicates the enzyme possesses five 

subsites in the substrate binding cleft. Every subsite is occupied during catalysis of galactopentaose 

or galactohexaose (Table 4.2). Due to relative difficulty of generating galactooligosaccharides in 

quantities required for kinetic analysis there are currently no other reports of GH53 activity on 

galactooligosaccharides. As such the relatively low activity of BT_4668 on the 

galactooligosaccharides may be a characteristic of this specific enzyme or a shared property of GH53 

galactanases, which, without further investigation this remains unclear.  
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Figure 4.6 Generation of an inactive catalytic residue mutant of BT_4668 by site directed 
mutagenesis. Nucleotide sequence alignment of wild type and mutated BT_4668. Plasmids containing 
potential mutations in bt_4668 were harvested and sent to MWG for sequencing (a). TLC plate 
showing activity of the wild type BT_4668 and inactive E180A/E292A mutant of BT_4668 alongside 
known galactooligosaccharide standards, S, Gal1-6, E180A/E292A mutant, M, BT_4668 enzyme, E (b). 

 

During catalysis of the defined oligosaccharides product profile data were also collected over the 

course of the reaction, and used to determine preferential binding modes for each substrate (Figure 

4.7). For accurate assessment of product profiles of BT_4668 acting on each defined oligosaccharide 

only the initial reaction products were analysed, as later in the reaction the enzyme is likely to 
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degrade the larger oligosaccharide products generated, making data interpretation difficult. 

Understanding quantities of the oligosaccharides produced by the enzyme during a reaction can, 

along with end point assays, provide insights into possible productive binding modes and enable an 

estimation of binding energy at some of the subsites. Product peaks on the HPAEC chromatogram 

were compared to known concentrations of each oligosaccharide along with an internal standard to 

normalise for variations between HPAEC runs to give product concentration. BT_4668 was unable to 

hydrolyse galactobiose, which is left as an end product along with some Gal3 (Figure 4.5b). Digestion 

of Gal3 yields equal concentration of galactose and Gal2, although activity is very low (Figure 4.7a). It 

is well established that the -2 subsite plays a critical role in the activity of endo-acting enzymes 

employing the retaining mechanism (Davies 1995). For activity on Gal3 there is thus only one 

possible productive binding mode from -2 to +1 subsites (Figure 4.7d). The observed low activity of 

the enzyme on Gal3 could be, in part, due to the substrate occupying the enzyme active site in non-

productive binding modes where the substrate does not occupy the -1 and +1 subsites 

simultaneously. However, the most likely explanation for low activity on Gal3 is that the substrate 

occupies only three of the possible five subsites resulting in reduced binding energy (Figure 4.7d). 

Possible products of Gal4 hydrolysis are two Gal2 or galactose and Gal3. The ratio of (2 x Gal2; 

binding -2 to +2):(Gal3 + Gal1; binding -3 to +1) was 5:3 ratio (Figure 4.7b), indicating a slightly higher 

binding energy at the +2 over the -3 subsite. As galactose, Gal2 and Gal3 are produced from Gal4 a -

3 subsite must exist rather than a +3 subsite as, again, occupation at -2 is critical preventing a -1 to 

+3 binding mode. The product profile of Gal5 digestion is less clear, it shows galactose, Gal2, Gal3 

and Gal4 are produced at similar concentrations (Figure 4.7c). These data indicate three possible 

productive binding modes; +1 to -4, -3 to +2 and -2 to +3 (Figure 4.7g). As the enzyme displays 

comparable activity against Gal6 and Gal5, the galactanase should contain only five subsites. The 

presence of Gal4 in the products generated from Gal5, however, points to a functional -4 subsite, 

while the generation of significant quantities of Gal2 from Gal4 indicates a productive +2 subsite. 

Thus, the product profiles suggest that the enzyme contains six subsites, while the similar activity of 
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the galactanase against Gal5 and Gal6 points to only five subsites. The products observed during 

digestion of Gal6 show a preference for the occupation of all six subsites generating Gal2 and Gal4 in 

higher quantities than any other oligosaccharide in the mixture of products (Figure 4.7d and 4.7h).  

It is difficult to reconcile the binding mode of Gal6 and the biochemical data pointing to only five 

galactose binding subsites. Galactan displays a helical structure with a periodicity of six sugars (Cid 

et. al. 2010), and thus likely adopts a very different conformation to Gal5. It is possible, therefore 

that while both Gal5 and Gal6 bind to subsites -2 to +1, they may occupy different distal subsites 

reflecting their conformational variation. For example Gal5 may bind preferentially from -3 to +2, 

but Gal6, because of its tight helical structure cannot access the -3 subsite but in this conformation it 

can bind to an additional negative subsite (-4 subsite), which is not accessible to Gal5. This proposal 

would explain why Gal6 is preferentially cleaved into Gal2 and Gal4. In Figure 4.7 it is proposed that 

the enzyme contains a preponderance of negative subsites, based primarily on the generation of 

galactose and Gal3 from galactotetraose. The opposite, however, may also be feasible (subsites from 

-2 to +4). To explore this issue further requires labelling the products released from the negative 

subsites after k2 (the glycosylation step) using O18 water and mass spectrometry,  which would 

distinguish, for example, between Gal6 binding -4 to +2 or +2 to -4 (Mcgregor et al., 2016).     
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Figure 4.7 Products of oligosaccharide hydrolysis and potential binding modes of Bt4668. Product 

profiles as determined by HPLC analysis of assay samples at 0, 10 and 20 min of incubation at 37 °C of 

Gal3 (a), Gal4 (b), Gal5 (c) and Gal6 (d) digestion with BT_4668. And possible productive binding modes 

of Gal3 (e), Gal4 (f) Gal5 (g) and Gal6 (h) deduced from product profiles. Subsite number is given as 

+/- #, oligosaccharides represented as blue hexagons and yellow symbol denotes the bond which is 

hydrolysed in the reaction.  
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4.2.2.4 Location of BT_4668 

LipoP analysis of the BT_4668 sequence indicated that the protein possess a type II signal peptide, 

allowing for trafficking to the outer membrane where it can be anchored to the outer face of the 

lipid membrane via a cysteine at position 20. To confirm this experimentally, a B. thetaiotaomicron 

mutant expressing inactive BT_4668 (E180A/E292A mutant lacking both catalytic residues) was 

generated. Inactive BT_4668 was cloned into a suicide vector and conjugated into B. 

thetaiotaomicron tdk- (see Chapter 2.9.4 for detailed methods). Through homologous recombination 

the inactive bt_4668 sequence integrated into the genome replacing the wild type copy of the gene. 

Replacement of enzymes with inactive variants is preferable to entire gene deletions as PUL encoded 

enzymes and glycan binding proteins are thought to interact at the cell surface (Reeves et al., 1997; 

Shipman et al., 2000); an inactive enzyme would allow these interactions to remain intact.  

 

Figure 4.8 Whole cell assays using wild type B. thetaiotaomicron and the Δbt_4668 mutant. 

Galactooligosaccharides used as growth substrate for wild type and Δbt_4668 B. thetaiotaomicron (a). 

Surface enzyme assays of whole cells grown on oligosaccharides. Wild type and Δbt_4668 B. 

thetaiotaomicron were grown to mid log phase before being harvested, concentrated and incubated 

in PBS with 1 mg/ml galactan at 37 °C over 16 h (b). B. theta refers to wild type B. thetaiotaomicron. 
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Whole cell assays were performed using B. thetaiotaomicron cells with galactan in aerobic 

conditions. As strict anaerobes, Bacteroides are unable to generate energy for the active transport 

required to import oligosaccharides generated by surface enzymes (Jordan et al., 2013), leaving all 

oligosaccharides generated in solution. To upregulate PUL-Gal in both wild type and the mutant the 

cells were grown to exponential phase on minimal media (MM) + 0.5 % galactooligosaccharides from 

3 h digestion of 1 % galactan with 1 µM BT_4668 (Figure 4.8a). Products generated from incubation 

of galactan with wild type B. thetaiotaomicron (Figure 4.8b) were similar to that observed for 

recombinant BT_4668 acting on the polysaccharride (Figure 4.5b). No oligosaccharide products were 

generated by Δbt_4668 B. thetaiotaomicron, indicating that BT_4668 is indeed present on the cell 

surface and responsible for extracellular galactan degradation.  
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Figure 4.9 BT_4669 binding to ligands measured by isothermal titration calorimetry (ITC). The 
syringe contains 5 mM Gal2 (a); 5 mM Gal3 (b); 5 mM Gal4 (c); 5 mM Gal5 (d); 5 mM Gal6 (e); 5 mM 
Gal7 (f); 15 mg/ml galactan (g) titrated against 50 µM BT_4669.The top half of each panel shows the 
raw ITC heats; the bottom half, the integrated peak areas fit using a one single binding model by 
MicroCal Origin 7 software. ITC was carried out in 50 mM Na/HEPES, pH 7.5 at 25 °C. Binding kinetic 
data are presented in Table 4.3. 
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4.2.2.5 Galactan PUL SusD-homologue, BT_4670, and Surface Glycan Binding Protein, BT_4669 

Bioinformatic analysis of BT_4670 revealed significant homology to SusD, a known glycan binding 

protein from the sus locus (starch utilization system) of B.thetaiotaomicron. BT_4669 lacked 

homology to any known GH family; this, combined with the location of bt_4669 adjacent to the susD 

homologue, indicates that the protein is most likely a surface glycan binding protein (SGBP). Based 

on these predicted activities, BT_4669 and BT_4670 are likely expressed as lipoproteins on the 

external face of the B. thetaiotaomicron outer membrane. This theory is supported by the presence 

of type II signal sequences present on both proteins, detected by LipoP. Isothermal titration 

calorimetry (ITC), a technique which measures directly the enthalpy and affinity of a protein-ligand 

interaction (enabling the change in entropy and Gibbs free energy of binding to be calculated), was 

used to assess binding to potato galactan and galactan derived oligosaccharides, Gal2 to Gal7 (Table 

4.3). ITC data revealed BT_4669 and BT_4670 bound tightly to galactan (Figure 4.9g & 4.10f) and 

displayed a preference for galactooligosaccharides with a DP of 6/7, with only a small increase in 

affinity moving from Gal7 to the polysaccharide (Table 4.3). BT_4669 bound more tightly to its target 

ligands (Gal7/Galactan) than BT_4670 (Table 4.3 and Figure 4.10). BT_4669 showed relatively low 

affinity for Gal3 and no measurable binding to Gal2 (Figure 4.9a, b), while binding very tightly to 

galactan (Figure 4.9g). This binding profile indicates a binding site capable of accommodating 

oligosaccharides with a DP of 7, possibly slightly longer, due to the relatively small increase from 

Gal7 to Galactan. BT_4670 bound oligosaccharides with a DP >3 (Table 4.3, Figure 4.10). It appears 

both BT_4669 and BT_4670 preferentially bind galactan (Table 4.3).  
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Protein Ligand Kax103 
(M-1) 

GΔx103  
(Kcal mol-1) 

ΔHx103  
(Kcal mol-1) 

tΔSx103  
(Kcal mol-1) 

N 

BT_4669 Gal2      

Gal3 0.38 ± 0.02 -3.12 -21.7 ± 4.6 -18.2 0.995 

Gal4 2.12 ± 0.18 -4.55 -28.1 ± 1.9 -23.6 1.06 

Gal5 10.4 ± 1.5 -5.48 -24.4 ± 0.65 -18.9 1.02 

Gal6 124 ± 42 -6.95 -21.9 ± 0.23 -14.9 0.952 

Gal7 138 ± 40 -7.02 -22.6 ± 0.19 -15.6 1.00 

Galactan 304 ± 14 -7.56 -68.4 ± 0.052 -60.8 1.03 

BT_4670 Gal2      

Gal3      

Gal4 8.12 ± 1.1 -5.33 -8.15 ± 1.1 -2.82 1.05 

Gal5 11.1 ± 1.2 -5.52 -7.62 ± 1.67 -2.11 1.07 

Gal6 16.8 ± 1.4 -5.76 -7.73 ± 0.80 -1.96 1.04 

Gal7 22.0 ± 2.5 -5.92 -7.18 ± 0.79 -1.26 1.09 

Galactan 84.8 ± 2.2 -5.70 -6.21 ± 0.60 -0.51 1.02 

BT_4673 Gal2 38.0 ± 2.4 -6.21 -17.9 ± 0.89 -11.7 1.05 

Gal3 48.5 ± 9.2 -6.39 -16.1 ± 2.3 -9.72 1.01 

Gal4 98.5 ± 9.2 -6.80 -12.9 ± 0.42 -6.17 1.04 

Gal5 86.9 ± 1.4 -6.74 -6.06 ± 0.33 -0.67 1.08 

Table 4.3 Thermodynamic parameters of the binding of BT_4669, BT_4670 and BT_4673 to their 
ligands determined by ITC. 

 



161 
 

 
Figure 4.10 BT_4670 binding to ligands measured by ITC. 5 mM Gal3 (a), 5 mM Gal4 (b), 5 mM Gal5 
(c), 5 mM Gal6 (d), 5 mM Gal7 (e), 15 mg/ml galactan (f) titrated against 50 µM BT_4670.The top half 
of each panel shows the raw ITC heats; the bottom half, the integrated peak areas fit using a one single 
binding model by MicroCal Origin 7 software. ITC was carried out in 50 mM HEPES 150 mM NaCl, pH 
7.5 at 25 °C. 
 

4.2.2.6 Galactooligosaccharide degradation by BT_4667 

Analysis of the amino acid sequence of BT_4667 revealed significant sequence identity to GH2 

enzymes with an N-terminal type I signal peptide and thus is likely located in the periplasm. Activity 

of the recombinant protein was assessed by incubation with a range of different galactosides (Figure 

4.11a). Of the glycans tested BT_4667 demonstrated hydrolytic activity against Gal-β1,4-GlcNAc, Gal-
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β1,4-Gal (Gal2) and Gal-β1,4-Glc (Lactose), while Gal-β1,3-GlcNAc and Gal-β1,3-Gal remained intact 

after 16 h incubation (Figure 4.11a) with 1 μM BT_4667 at 37 °C. This result indicates specificity for 

Gal-β1,4-linked substrates and thus the enzyme is a β1,4-galactosidase.  

 

Figure 4.11 BT_4667 activity on galactosides. TLC of BT_4667 (defined as GH2) activity screened 
against a range of galactosides (a). Michaelis-Menten kinetics of BT_4667 activity against lactose (b) 
and galactooligosaccharides Gal2-5 (c) in 20 mM phosphate buffer 150 mM NaCl pH 7.5 at 37 °C. 

 

The kinetic parameters of BT_4667 activity on a range of galactooligosaccharides and lactose, a 

galactoside commonly found in the human diet, were assayed (Figure 4.11b, c). As an exo-acting 

enzyme BT_4667 hydrolyses linkages in galactosides to release a terminal galactose, the 

accumulation of which was detected by coupling galactose release with conversion of NAD+ to NADH 
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by galactose dehydrogenase activity. NADH accumulation was measured by absorbance at 340nm 

(Chapter 2.8.1.3). Enzyme activity for each substrate was recorded in Table 4.4. Although BT_4667 

demonstrated relatively high and similar activity on the galactooligosaccharides tested compared to 

lactose, which was hydrolysed slowly (Table 4.4, Figure 4.11c). The moderate reduction in activity on 

longer galactooligosaccharides may be a result of steric clashes due to the helical structure of the 

oligosaccharides, which becomes more pronounced as the chain length increases (Cid et al., 2010).  

In any event, the data indicated that BT_4667 contains a -1 and +1 subsite, which both target 

galactose.  

Substrate Vmax 
(µM min-1) 

KM  
(mM) 

kcat 
(min-1) 

kcat/KM  
(min-1 mM-1) 

Lactose 78.2 ± 4.48 5.75 ± 1.28 15.65 ± 0.62 2.72 ± 0.27 

Gal2 72.7 ± 4.33 1.48 ± 0.23 1454 ± 150 980 ± 103 

Gal3 86.8 ± 6.36 1.21 ± 0.26 1735 ± 119 1432 ± 147 

Gal4 63 ± 2.65 0.76 ± 0.11 1260 ± 105 1652 ± 241 

Gal5 51.9 ± 3.37 1.72 ± 0.29 1037 ± 50.9 604 ± 9.36 

 Vmax 
(µM min-1) 

KM 
(mg ml-1) 

kcat 
(min-1) 

kcat/KM 
(min-1 ml mg-1) 

RGI 70.35 ± 0.35 2.9 ± 0.21 70.35 ± 0.28 24.25 ± 0.45 

Table 4.4 BT_4667 activity on galactooligosaccharides, RGI and lactose. Each reaction was performed 
in triplicate. 

 

4.2.2.7 Binding of BT_4673 Sensor domain to activating ligand 

Bioinformatic data indicate BT_4673 as the HTCS that regulated the galactan PUL in response to 

appropriate ligands presented to the periplasm. The full length regulator is predicted to contain a 

histidine kinase A domain (cd00082), HTH_AraC domain (pfam00165), Y_Y_Y domain (pfam07495), 

periplasmic ligand binding domain (COG3292) and a signal transduction histidine kinase domain 

(cd00075), using Pfam 27.0 (http://pfam.sanger.ac.uk/). The native form of BT_4673 is predicted to 

span the inner membrane of B. thetaiotaomicron binding oligosaccharides in the periplasm via a 

http://pfam.sanger.ac.uk/
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sensor domain. DNA encoding the sensor (ligand binding domain) of BT_4673 was cloned into 

pET28b. The ligand specificity of the resultant recombinant protein, purified by IMAC, was assessed 

by ITC (Figure 4.12, Table 4.3). The protein displayed highest affinity for Gal4, although affinity was 

also elevated for Gal5 (Table 4.3). Preference for mid-length oligosaccharides such as Gal4 allows 

regulation specificity as galactose and, to a lesser extent, Gal2 are found as components of other 

polysaccharides. This contrasts with the previously characterised ligand binding domain of the HTCS 

responsible for regulation of the levan PUL, which preferentially binds the monosaccharide fructose 

(Sonnenburg et al., 2010). Previously described HTCS ligand binding domains are highly specific for 

oligosaccharide breakdown products of the target glycan of the PUL (Martens et al., 2011; Lowe et 

al., 2012). The activating ligands typically comprise undecorated oligosaccharides derived from the 

target polysaccharide backbone, even when the glycan possesses side chains. There has been no 

cross specificity found for HTCS binding to gylcans. Recognition of oligosaccharides allows for 

differentiation based, not only on sugar content, but also on linkage, explaining why the activating 

ligands are highly PUL specific (Martens et al., 2011). 
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Figure 4.12 BT_4670 binding to ligands measured by ITC. Syringe loaded with galactose (a), Gal2 (b), 
Gal3 (c), Gal4 (d), Gal5 (e) all at 5 mM, titrated against 50 µM BT_4673.The top half of each panel 
shows the raw ITC heats; the bottom half, the integrated peak areas fitted using a one single binding 
model by MicroCal Origin 7 software. ITC was carried out in 50 mM HEPES 150 mM NaCl, pH 7.5 at 25 
°C. 

 

The crystal structure of BT_4673 ligand binding domain was previously solved in apo form (Zhang et 

al., 2014b), although no structure has been reported for the ligand bound conformation. Screening 

crystallisation conditions with the aim of growing protein crystals of BT_4673 was attempted. 

Crystals formed in a condition (100 mM HEPES pH 7.0, 10 % Polyvynal Pyrridone K15) of the Midas 
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solution set. The crystals harvested were unsuitable for diffraction requiring optimisation of the 

original condition. After optimisation crystals harvested were found to diffract at 3.9 Å. 

Unfortunately resolution was too low to solve the structure. 

Substrate Vmax  
(µM min-1) 

KM  
(mM) 

kcat  
(min-1) 

kcat/KM 
(min-1 mM-1) 

Gal2 No activity 

Gal3 165 ± 8.38 0.75 ± 0.11 165 ± 47.1 231 ± 46.9 

Gal4 208 ± 12.0 0.52 ± 0.09 208 ± 36.1 399 ± 61.5 

Gal5 274 ± 8.75 0.73 ± 0.07 274 ± 25.8 374 ± 21.1 

Gal6 275 ± 18.7 0.18 ± 0.05 275 ± 25.3 1512 ± 5.77 

 Vmax  
(µM min-1) 

KM  
(mg ml-1) 

kcat  
(min-1) 

kcat/KM 
(min-1 ml mg-1) 

Galactan 306 ± 10.2 0.29 ± 0.03 1224 ± 31.7 4154 ± 294 

RGI 150 ± 15.3 8.28 ± 1.78 74.75 ± 6.12 9.03 ± 0.92 

Table 4.5 BACOVA_05493 activity on galactooligosaccharides, galactan and RGI. Reactions 
performed in triplicate. 

 

4.2.2.8 BACOVA_05493, an unassigned glycoside hydrolase in the B. ovatus galactan PUL 

Sequence alignment of galactan PULs from Bacteroides uncovered an open reading frame (ORF) 

annotated as belonging to an unspecified glycoside hydrolase family on the CAZy database. This ORF 

is highly conserved in B. ovatus ATCC 8433, B. cellulosityicus DSM 14838, B. caccae ATCC 43185 and 

B. finefoldii DSM 17565. The ORF is, however, absent from the B. thetaiotaomicron galactan PUL 

(Figure 4.13a). The ORF from B. ovatus encoding BACOVA_05493 was cloned into the E. coli pET28 

expression vector and the encoded protein expressed in TUNER E. coli cells. BACOVA_05493 shares a 

high degree of identity with BACCAC_02093 (82%), BACCELL_05455 (63%) and BACFIN_00640 (80%) 

(Figure 4.13b). Each of the encoding genes are located between the SusC-homologue and the HTCS 

of each Bacteroides galactan PUL.   
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Recombinant BACOVA_05493 was screened for activity against galactosides (Figure 4.14a). The only 

product observed when the enzyme was active on a substrate was galactose and undigested Gal2 

(Figure 4.14a), indicating BACOVA_05493 is an exo-acting β1,4-galactosidase that was unable to 

hydrolyse Gal2. The enzyme was active on RGI side chains and galactan. BACOVA_05493 

demonstrated similar activity on Gal3 to Gal5, with a significant increase against Gal6 (Table 4.5). As 

kcat was similar on all of the oligosaccharides including Gal6; the higher activity against the 

hexasaccharide reflected a decrease in KM (Table 4.5) indicating BACOVA_05493 displays a much 

higher binding affinity for the longer oligosaccharide substrates. 

Lack of activity on Gal2 indicates that substrate must bind at least to three subsites to form a 

productive complex with the enzyme. The preference for Gal6 may suggest a +5 subsite, but this 

seems unlikely as the enzyme lacks functional +3 and +4 subsite as the enzyme displays similar 

activity from Gal3 to Gal5. More likely galactooligosaccharides adopt a six-fold screw axis helical 

structure which is in its most stable conformation when the DP is ≥6 (Cid et al., 2010). Thus, the 

substrate binding site of the enzyme, extending from -1 to +2, is optimized to bind to galactohexaose 

in its six-fold helical conformation.    



168 
 

 

Figure 4.13 Discovery of an ORF present in B. ovatus PUL-Gal. Direct comparison of the PUL-Gal of B. 

thetaiotaomicron and B. ovatus demonstrates the presence of an extra ORF (a). Amino acid sequence 

aligment of BACOVA_05493 of B. ovatus with analogous ORFs BACCAC_02093 and BACCELL_05455 in 

the respective galactan PUL of B. caccae and B. cellulysoliticus with suspected catalytic residues 

highlighted (b). 
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Figure 4.14 BACOVA_05493 activity on galactooligosaccharides. TLC of BACOVA_05493 activity 
screened against galactooligosaccharides, 1 mM Gal2-7, 1 mM lactose and 1 mg/ml galactan over 16 
h in 20 mM sodium phosphate 150 mM NaCl pH 7.5 at 37 °C (a). Minus symbol indicates sample 
without enzyme and plus symbol indicates where enzyme is included. Michaelis-Menten plots of 
BACOVA_05493 activity on galactooligosaccharides, Gal3-6, in 20 mM sodium phosphate 150 mM 
NaCl pH 7.5 at 37 °C (b). 

 

4.2.2.9 Galactan PUL Mutants 

Genomic mutations were introduced into each of the genes that comprise the B. thetaiotaomicron 

and B. ovatus PUL-Gal to either inactivate the encoded proteins, by substitution of catalytic residues, 

or entire gene deletions when critical residues were unclear (Chapter 2.9.4). The mutants generated 

were sequenced to ensure the intended genomic mutation was achieved. Primers used for 

sequencing anneal to the gene in the case of gene inactivation, while the flanking sequence used to 

replace the target gene in gene deletions were sequenced. In both strategies the regions around the 
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mutations were also sequenced to ensure insertion occurred in the right place in the genome. 

Mutants are named using the locus tag of the inactivated/deleted gene, ΔbtXXXX or ΔbacovaXXXXX. 

Figure 4.15 Growth of galactan PUL mutants on galactan. Mutants of the components of the B. 
thetaiotaomicron galactan PUL grown in MM+ 0.5 % galactan (a). Comparison of growth of B. ovatus 
and Δbacova_05493 grown in MM+ 0.5% galactan (b). Growths were performed using 96-well format 
with 200 µl (minimal medium) MM + 0.5 galactan at 37 °C using an automatic plate reader in anaerobic 
conditions. B. theta refers to wild type B. thetaiotaomicron and B. ovatus refers to wild type B. ovatus. 
Each growth was performed in triplicate, errors not shown due to the number of data points. 
 

The growth of each mutant was assessed on galactan minimal medium (MM) as described in Chapter 

2.9.1. Previously published data suggest the SusD-homologue in a glycan utilisation system is vital for 

utilisation and uptake of oligosaccharides generated at the cell surface (Shipman et al., 2000; 

Koropatkin et al., 2008). Here, Δbt_4670 (encodes SGBP) demonstrated only a slight phenotype 

when grown on galactan, while Δbt_4669 (encodes SusD-homologue) shows no growth (Figure 

4.15a). Currently unpublished data regarding glycan utilisation systems that target simpler glycans, 

dextran and inulin, show similar phenotypes when the associated SusD-homologue is deleted, 

suggesting this may be a common trait (Bolam unpublished data). No phenotype observed when 

Δbt_4667 (encodes the GH2 -galactosidase) was grown on galactan (Figure 4.15a). Lack of a 

phenotype may be the result of redundancy of GH2 enzymes in the B. thetaiotaomicron genome, as 

there are 32 genes encoding GH2 enzymes in the B. thetaioataomicron genome (Xu et al., 2003). 

Despite no upregulation of these genes in response to galactan (Martens et al., 2011), basal 

expression may be sufficient to degrade galactooligosaccharides in the periplasm. Inactivation of 

BT_4668 resulted in a complete lack of growth on galactan (Figure 4.15a), indicating that the endo-
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activity of the surface GH53 galactanase is vital for galactan utilisation. This reliance on BT_4668 

suggests undigested galactan is too large for transport through the galactan SusC-homologue 

BT_4671.  

The extra glycoside hydrolase present in the B. ovatus was inactivated in the genome to create the 

Δbacova_05493 mutant. When grown on galactan the mutant was unable to utilise the 

polysaccharide (Figure 4.16b). This result was interesting as the other components of the B. ovatus 

galactan PUL share a very high degree of identity to those of the corresponding B. thetaiotaomicron 

locus. This suggests they provide the same function in the B. ovatus PUL and thus it is unclear why 

BACOVA_05493 should be an essential component of the galactan degrading apparatus.  

4.2.3 RGI Galactosidases 

Once the majority of galactan is liberated from RGI, short oligosaccharides remain attached to the 

RGI backbone. The B. thetaioatomicron RGI PUL, transcribed in response to growth on the 

polysaccharide encodes three GH2 proteins (BT_4151, BT_4156 and BT_4181), while BT_4160 is 

located in GH35. All these proteins are predicted to display β1,4-galacosidase activity. Sequence 

analysis of each protein using LipoP predict all are present in the periplasm of B. thetaioataomicron. 

 TLC was used to screen the activity of BT_4151, BT_4156, BT_4160 and BT_4181 on a range of 

galactooligosaccharides (Figure 4.16a, b), galactan (Figure 4.16c) and RGI (Figure 4.16d). BT_4151 

partially hydrolysed Gal4-7 and galactan, indicating a clear specificity for galactan and 

galactooligosaccharides with a high DP (Figure 4.16).  
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Figure 4.16 
BT_4151, 
BT_4156, BT_4160 
and BT_4181 
activity screening 
TLCs. Enzymes 
were incubated for 
20 h with 1 mM 
Gal2-4 (a), Gal5-7 
(b), 1 mg/ml 
galactan (c) and 1 
mg/ml RGI (d) in 20 
mM sodium 
phosphate 150 
mM NaCl pH 7.5 at 
37 °C. Stopped 
reactions were run 
alongside 
galactooligosaccha
ride standards, 
Gal- Gal7. 
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BT_4156 was the only enzyme active on Gal2 (Figure 4.16a). The galactosidase, however, was active 

on RGI (Figure 4.16d), releasing galactose, suggesting this enzyme is specifically targeting the 

shortest galactooligosaccharides attached to the RGI backbone. The lower activity of BT_4156 than 

BT_4151 on RGI (Table 4.6 and Figure 4.17), reflected by an elevated KM, may result from less 

available substrate for BT_4156 within RGI. Previous work showed BT_4156 removes the last 

galactose in the galactan side chain (Zhang 2014). Deletion of BT_4156 caused a slight growth 

phenotype when the Δbt_4156 was grown in MM+0.5% RGI (Figure 4.18b). Although the Δbt_4156 

did achieve a cell density similar to that of the wild type B. thetaiotaomicron, the mutant 

demonstrated a longer lag phase than the wild type bacterium (Figure 4.18b). 

Figure 4.17 BT_4151 and BT_4160 activity. Michaelis-Menten plots of BT_4151 activity on RGI (a). 

Plots of the inverse rate of substrate depletion of defined galactooligosaccharides when incubated 

with BT_4160 (b) in 20 mM sodium phosphate 150 mM NaCl pH 7.5 at 37 °C to give catalytic efficiency 

(kcat/KM). 

 

BT_4181 was inactive on all substrates tested (Figure 4.16), a faint streak is present but this was 

overspill from the adjacent reaction carried over during staining (Figure 4.16d). On further 

investigation the catalytic nucleophile of BT_4181 was missing in the primary sequence of the 

protein (Figure 4.19a). This enzyme may have lost catalytic function but retained binding to act as a 

glycan binding protein to aid degradation. The protein, however, showed no binding to RGI or 
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galactan as ligand (Figure 4.19c,d), and exhibited no synergistic effects when co-incubated with 

BT_4151, BT_4156 or BT_4161 (Figure 4.19b).  

In the activity screen BT_4161 completely degraded all galactooligosaccharides with the exception of 

Gal2 which remained as a faint band after the digest (Figure 4.16a, b). The enzyme demonstrated 

very low activity on galactan (Figure 4.16c) but generated more galactose from RGI (Figure 4.16d). 

Activity of BT_4160 on galactooligosaccharides was tested using HPAEC and substrate 

concentrations sufficiently below the KM to allow kcat/KM to be determined from the inverse of the 

rate of substrate depletion (Table 4.6, Figure 4.17). BT_4160 displayed maximum activity against 

Gal3, although the decline in catalytic efficiency against longer oligosaccharides was modest. This 

indicated that BT_4160 contains three subsites involved in productive substrate binding. The 

minimal activity against galactan (inferred from TLC, Figure 4.16c and Table 4.6) likely reflects the 

very low concentration of available substrate (galactose at the non-reducing end of the 

polysaccharide). The native substrate for this enzyme would most likely be free 

galactooligosaccharides and those which decorate fragments of RGI in the periplasm, and hence 

would not require an extended binding site.   

Figure 4.18 Characterisation of BT_4156. Michaelis-Menten plot of BT_4156 activity on RGI (a). 

Growths of the B. thetaiotaomicron Δbt_4156 mutant and wild type B. thetaiotaomicron in MM + 0.5% 

RGI (b). Growths were performed in 200 µl media in 96-well format under anaerobic conditions at 37 

°C. Growths were recorded by absorbance (A600nm) using an automatic plate reader. 
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Substrate Vmax 
(µM min-1) 

KM 
(mg ml-1) 

kcat 
(min-1) 

kcat/KM 
(min-1 ml mg-1) 

BT_4151 

RGI 22.5 ± 0.84 0.24 ± 0.24 22.5 ± 0.59 95.7 ± 1.80 

Galactan 3.57 ± 0.33 0.20 ± 0.08 3.57 ± 0.26 17.5 ± 8.54 

BT_4156 

RGI 117 ± 7.50 2.36 ± 0.48 117 ± 9.19 49.68 ± 5.07 

BT_4160 

RGI  2.07 ± 0.28 

 kcat/KM 
(min-1 mM-1) 

Gal3 198 

Gal4 70.4 

Gal5 34.7 

Gal6 19.5 

Table 4.6 BT_4151, BT_4156 and BT_4160 activity. Reactions were performed in triplicate with the 
exception of galactooligosaccharides, where substrate was limited. 
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Figure 4.19 Characterisation of BT_4181. Sequence alignment of BT_4181 with typical GH2 family 
enzymes, LacZ from E. coli, BT_4156 and BT_4151 from B. thetaiotaomicron. Catalytic residues 
identified by, blue General acid/base, green, catalytic nucleophile, red, missing acid/base in BT_4181 
(a). Relative activity of 1 µM BT_4151, BT_4156 and BT_4160 alone and in combination with 1 µM 
BT_4181 on 1 mg/ml RGI (b) in 20 mM sodium phosphate 150 mM NaCl pH 7.5 at 37 °C. Relative 
activity given as a percentage of galactose released of the total galactose available. ITC titration of 10 
mg/ml galactan (c) and RGI (b) against 50 M BT_4181 in 20 mM HEPES 150 mM pH 7.5. 

 

4.2.3.1 BT_4158 

Bioinformatic analysis of BT_4158 showed that the enzyme belongs to a new carbohydrate esterase 

(CE) family. The esterase demonstrates activity on 4-nitrophenyl-acetate, monitored by 

accumulation of the chromogenic product 4-nitrophenolate at A405nm (Figure 4.20a), and acetylated 

birchwood xylan (Figure 4.20b). BT_4158 demonstrated no activity on RGI or RGI pre-treated with 

the β-galactosidases encoded by RGI PUL (removes the galactan side chains; Figure 4.20b). On 

further investigation, the technique used to purify RGI from plant cell walls was found to include an 

alkali treatment step. As acetyl groups are alkali labile they were most likely removed during 

purification of the polysaccharide. Previous work showed BT_4158 activity on RGI (Zhang 2014), 

however, this was an older batch of the polysaccharide purified by a slightly different method to that 

used for the RGI batch used here. The difference is most likely the severity of the alkali treatment 

used by Megazyme in the polysaccharide purification process, explaining the difference in observed 

activity on RGI. 
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Figure 4.20 BT_4158 activity on acetylated substrates. Michaelis-Menten plot of the acetyl esterase 

activity of BT_4158 activity on 4-nitrophenyl-acetate (a), on 1 mg/ml acetylated Birchwood xylan (BxAc 

red), RGI (green) and RGI pre-treated with BT_4151, BT_4156 and BT_4181 (Treated RGI blue) (b).  

BT_4158 was at 1 M when evaluated against the polysaccharides the synthetic substrate. 

 

4.2.4 Arabinan PUL Characterisation 

The arabinan PUL, extending from bt_0360 to bt_0369 and bt_0348, is activated by and is thus likely 

to orchestrate the degradation of the polysaccharide. The PUL encodes the surface GH43 enzymes, 

BT_0360 and BT_0367, which were characterised by Dr Lauren Mackie (Cartmell et al., 2011), while 

the HTCS ligand binding domain derived from this locus was investigated by Dr Lis Lowe (Martens et 

al., 2011). 
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Figure 4.21 BT_0365 binding to ligands measured by ITC. 
Syringe containing 5 mM Ara4 (a), 5 mM Ara5 (b), 5 mM Ara6 
(c), 5 mM Ara7 (d), 5 mM Ara8 (e), 10 mg/ml unbranched 
arabinan (f), 10 mg/ml branched arabinan (g) titrated against 
50 µM BT_4673.The top half of each panel shows the raw ITC 
heats; the bottom half, the integrated peak areas fitted using 
a one single binding model by MicroCal Origin 7 software. ITC 
was carried out in 50 mM HEPES 150 mM NaCl, pH 7.5 at 25 
°C as described in Chapter 2.8.3. 
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4.2.4.1 Surface Binding Proteins 

In addition to encoding enzymes, the arabinan PUL contains three putative surface binding proteins; 

BT_0361 and BT_0363, two SusD-homologues each paired with a specific SusC-homologue, and 

BT_0365, a SGBP. Binding of each recombinant protein to arabinan and arabinooligosaccharide 

ligands were measured by ITC. The SGBP bound to 1,5-linked arabinooligosacchrides with a DP 

between 4 and 8 (defined as AraX where X is the DP of the molecule), both branched and 

unbranched arabinan polysaccharide (Figure 4.21). Affinity for the polysaccharides was similar to 

that of Ara8 (Table 4.7), indicating the ligand binding site is able to accommodate around 8 

arabinose residues. Interestingly BT_0365 was able to bind branched arabinan with affinity only 1.4-

fold lower than the unbranched polysaccharide (Table 4.7). These data suggest the ligand binding 

site of BT_0365 is able to tolerate decorations on the arabinan backbone. BT_0361 and BT_0363 

were unable to bind any arabinan or arabinan oligosaccharide mixture tested (Figure 4.22). The lack 

of binding observed here may be due to the requirement of the associated SusC-homologue for 

binding to occur. Recent structural data suggests the association the SusCD pair is far tighter than 

previously believed (Glenwright unpublished data 2016). The SusC may have a role in stabilising the 

associated SusD or may be directly involved in ligand binding. 
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Figure 4.22 BT_0361 and BT_0363 binding to ligands measured by ITC. Binding titration of branched 
arabinan (a), unbranched arabinan (b), digested branched arabinan (c), digested unbranched arabinan 
(d) against BT_0361 and branched arabinan (e), unbranched arabinan (f), digested branched arabinan 
(g), digested unbranched arabinan (h) against BT_0363. The top half of each panel shows the raw ITC 
heats; the bottom half, the integrated peak areas fitted using a one single binding model by MicroCal 
Origin 7 software. ITC was carried out in 50 mM HEPES 150 mM NaCl, pH 7.5 at 25 °C. 
 



182 
 

Ligand N ΔGx103        
(kcal mol-1) 

TΔSx103           
(kcal mol-1) 

ΔHx103       
(kcal   mol-1) 

Kax103  
(M-1) 

Ara4 0.99 -3.75 -19.6 -23.4 ± 1.2 0.57 ± 0.12 

Ara5 0.98 -5.26 -21.0 -26.2 ± 1.2 7.26 ± 1.2 

Ara6 1.02 -4.32 -20.7 -25.5 ± 7.2 14.4 ± 0.72 

Ara7 1.01 -6.59 -25.5 -32.1 ± 1.7 68.4 ± 8.2 

Ara8 1.08 -6.84 -24.8 -31.6 ± 1.3 112 ± 15 

Branched 
Arabinan 

1.02 -7.15 -26.6 -33.8 ± 0.64 170 ± 15 

Unbranched 
Arabinan 

1.02 -7.32 -23.0 -30.3 ± 0.53 246 ± 25 

Table 4.7 BT_0365 binding to arabinooligosaccharides and arabinan 

4.2.4.2 Periplasmic GH51s 

Expressed in the periplasm are two GH51 enzymes, BT_0348 and BT_0368 (predicted from signal 

sequence), and BT_0369, a GH43 arabinofuranosidase that targets -1,2-linked arabinose units 

appended to the backbone of arabinan (Cartmell et al., 2011). 

The activites of both GH51 enzymes were determined in a reaction coupled with galactose 

dehydrogenase, an enzyme that recognises galactan and arabinan as substrates generating NADH in 

a 1:1 ratio with galactose/arabinose (see Chapter 2.8.1.3 for methods). BT_0348 demonstrated low 

activity on all -1,5-arabinooligosaccharides tested and linear arabinan (Figure 4.23b, Table 4.8). 

Catalytic efficiency against branched arabinan was 18-fold greater than that of unbranched arabinan 

(Table 4.8), indicating the preferred substrate of BT_0348 is present in branched but not linear 

arabinan. These data suggest BT_0348 is an exo-acting arabinofuranosidase that acts on O2 and/or 

O3 substitutions found in branched arabinan.   

BT_0368 can be considered a more typical α1,5-arabinofuranosidase highly active on the 

arabinooligosaccharides tested (Table 4.8, Figure 4.23a), displaying similar activity on each substrate. 

The enzyme shows low activity on both branched and unbranched arabinan (Table 4.8), particularly 

on the decorated polysaccharide (Table 4.8). These data suggest BT_0368 shows specificity for 
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unbranched arabinooligosaccharides, possibly due to a restricted substrate binding site that makes 

steric clashes with arabinan decorations. The poor activity against linear arabinan reflects the low 

concentration of available substrate (non-reducing terminal arabinose) (Figure 4.23c, d). 

Figure 4.23 Activity of GH51 enzymes BT_0348 and BT_0368. Michaelis-Menten plots of, BT_0368 

(a), and BT_0348 (b) activity on arabinooligosaccharides. Activity of BT_0368 (c) and BT_0348 (d) on 

branched and unbranched arabinan. All reactions were performed in 20 mM sodium phosphate 150 

mM NaCl pH 7.5 at 37 °C. Whole cell assays of B. thetaiotaomicron grown on glucose and arabinan 

were concentrated and incubated with branched or unbranched arabinan under aerobic conditions 

for the times indicated. The supernatants were subjected to TLC, numbers under each lane indicate 

minutes incubated (e).  
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Substrate Vmax 
(µM min-1) 

KM 
(mM) 

kcat 
(min-1) 

kcat/KM 
(min-1 mM-1) 

BT_0348 

Ara2 26.6 ± 1.14  5.6 ± 0.53 26.6 ± 1.95 4.79 ± 0.36 

Ara3 36.7 ± 2.45 1.55 ± 0.34 36.7 ± 1.8 23.7 ± 3.33 

Ara4 65.6 ± 2.81 4.26 ± 0.45 65.6 ± 4.11 15.4 ± 0.42 

Ara5 45.1 ± 1.69 2.40 ± 0.26 45.1 ± 3.22 18.8 ± 2.17 

 Vmax 
(µM min-1) 

KM 
(mg ml-1) 

kcat 
(min-1) 

kcat/KM 
(min-1 ml mg-1) 

Branched 
Arabinan 

31.21 ± 0.85 1.689 ± 0.15  312.1 ± 2.5 184.8 ± 15.4 

Unbranched 
Arabinan 

19.79 ± 1.76 1.904 ± 0.38 19.79 ± 0.19 10.39 ± 0.80 

BT_0368 

 Vmax 
(µM min-1) 

KM 
(mM) 

kcat 
(min-1) 

kcat/KM 
(min-1 mM-1) 

Ara2 87.18 ± 4.8 2.83 ± 0.44 17436 ± 1854 6165 ± 573 

Ara3 136.7 ± 4.7 2.63 ± 0.29 27340 ± 571 10415 ± 1147 

Ara4 133.4 ± 5.5 2.95 ± 0.40 26680 ± 3798 9032 ± 993 

Ara5 138.8 ± 6.5 2.96 ± 0.34 27760 ± 1566 9366 ± 2299 

Ara6 140.7 ± 4.9 2.33 ± 0.25 28140 ± 1808 12087 ± 1162 

 kcat/KM 
(min-1 ml mg-1) 

Branched 
Arabinan 

 14.70 ± 0.38 

Debranched 
Arabinan 

53.93 ± 5.6 

Table 4.8 GH51 activity on arabinooligosaccharides and arabinan. Reactions were performed in 
triplicate. 

 

4.2.4.3 Arabinan PUL Mutants 

Genomic mutations were made in components of the arabinan utilisation system through 

inactivation or deletion of genes. Each mutant was grown in both MM + 0.5% branched arabinan and 

MM + 0.5% debranched arabinan in the 96-well format in anaerobic conditions at 37 °C. Mutation in 

the surface GH43 enzymes led to different phenotypes despite each enzyme displaying only modest 
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differences in activity and specificity in vitro (Figure 4.24a, b). The Δbt_0360 B. thetaiotaomicron 

mutant showed only a modest growth defect when cultured on unbranched arabinan (Figure 4.24b), 

while on branched arabinan growth was indistinguishable from wild type B. thetaiotaomicron (Figure 

4.24a). The Δbt_0367 B. thetaiotaomicron mutant, however, demonstrated little to no growth on 

either of the arabinan polysaccharides (Figure 4.24). The double mutant, Δbt_0360Δbt_0367 B. 

thetaiotaomicron was unable to grow on either of the arabinan polysaccharides (Figure 4.24). 

Although initial growth rate was unaffected by loss of the SGBP, the Δbt_0365 B. thetaiotaomicron 

mutant was unable to match the cell density of the wild type bacterium (Figure 4.24). Phenotype of 

the arabinan PUL SusC-homologue deletions were analogous to those observed for the pair of 

surface GH43 enzymes. Deletion of bt_0364 caused a dramatic phenotype with no significant growth 

on either arabinan (Figure 4.24). The bt_0362 deletion strain grew slightly slower than wild type on 

branched arabinan (Figure 4.24a) but the mutation did not influence the capacity of the bacterium 

to grow on linear arabinan (Figure 4.24b).  
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Figure 4.24 Growth of Bacteroides with mutations in the arabinan PUL. Growth of the B. 
thetaiotaomicron arabinan PUL mutants and wild type B. thetaiotaomicron (Bt. theta) on in MM+0.5% 
branched arabinan (a) and MM+0.5% unbranched arabinan (b). Growths were performed in 200 µl 
media in 96-well format under anaerobic conditions at 37 °C as described in Chapter 2.9.1. Growth 
was recorded by absorbance (A600nm) using an automatic plate reader. 
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4.2.5 Pectin Cross-feeding 

Reports of cross-feeding between members of the HGM have shown potential for a currently poorly 

defined interaction in the human gut (Rakoff-Nahoum et al., 2014; 2016) . 

4.2.5.1 Supernatant oligosaccharides 

 

Figure 4.25 TLC of oligosaccharides released by B. thetaiotaomicron during growth on pectins. 
Samples taken over the course of a growth curve were spotted on TLC and run alongside known 
oligosaccharide and monosaccharide standards. B. thetaiotaomicron was grown at 37 °C under 
anaerobic conditions in MM + 0.5 % galactan (a), branched arabinan (b), unbranched arabinan (c) 
mucilage corresponds to undecorated RGI backbone (d) RGII (e). 

 

To assess the potential for nutrient release and cross-feeding during B. thetaiotaomicron utilisation 

of pectic polysaccharides, wild type B. thetaiotaomicron was grown in MM+ 0.5% galacan, arabinan, 

Mucilage (Mucilage is undecorated RGI from Arabidopsis),   and RGII, in separate cultures. At time 

points that represented different phases of growth, as determined by OD of the growing culture, 
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samples of the culture supernatant were taken and evaluated for glycan content by TLC (Figure 

4.25). Common to growth on all glycans tested, only the polysaccharide was present in lag phase 

(Figure 4.25), B. thetaiotaomicron is not at a sufficient density to begin significant degradation of the 

glycans. At early log phase faint smears of long oligosaccharide products were present in the culture 

supernatant of the galactan and branched arabinan growths (Figure 4.25a, b), while the unbranched 

arabinan growth supernatant appeared to be devoid of oligosaccharides (Figure 4.25c). During mid 

log phase discreet oligosaccharide bands were present in galactan and branched arabinan 

supernatant (Figure 4.25a, b), while the smear of long undefined oligosaccharides grew more 

intense in the unbranched arabinan culture (Figure 4.25b). In the galactan growth longer 

oligosaccharides were beginning to disappear at late log/early stationary phase (Figure 4.25a), likely 

being imported by B. thetaiotaomicron or hydrolysed by the surface GH53 endo-galactanase, 

generating shorter oligosaccharides, which continues into early stationary phase where only 

galactose, Gal2 and Gal3 were present (Figure 4.25a). The disappearance of longer oligosaccharides 

was not observed until stationary phase for either arabinan culture (Figure 4.25b, c).  

During growth in MM + 0.5% Mucilage the origin spot of polysaccharide became fainter over the 

course of the growth, however, there were no intense bands to suggest release of oligosaccharides 

during glycan utilisation (Figure 4.25d). There was a very faint band present which could not be 

identified (Figure 4.25d), which migrated slower than GalA on TLC suggesting the oligosaccharide 

present is larger than the monosaccharide. The unidentified oligosaccharide did not grow fainter in 

the later stages of the growth suggesting it was not used by B. thetaiotaomicron. Similar 

observations were made for the growth on MM+ 0.5% RGII in which presumed monosaccharides or 

disaccharides accumulated towards the end of the growth. In this regard the RGII-derived 

monosaccharides apiose, Kdo, 2-O-Me-fucose and aceric acid, and the disaccharide 2-O-Me-xylose-

α1,3-fucose, were not used by B. thetaioataomicron (Ndeh unpublished data), and thus would 

accumulate in the culture supernatant. Cell supernatant was not run on HPAEC-PAD as cell debris 

can cause damage to the highly sensitive detection electrode of the HPAEC machine.  
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4.2.5.2 Mutant growth on oligosaccharides and polysaccharides 

Mutants of surface endo-active enzymes encoded by each of the PULs orchestrating the degradation 

of the pectic polysaccharides galactan, arabinan, RGI and RGII were generated by either the 

introduction of mutations that inactivated the cognate enzyme or deletion of the entire genewere 

made of BT_4668 (β1,4-galactanase) in the galactan PUL (Δbt_4668), BT_0360 and BT_0367 (α1,5-

arabanases, (Cartmell et al., 2011) in the arabinan PUL (Δbt_0360Δbt_0367), BT_4170 (pectic lyase, 

Luis unpublished data) in the RGI PUL (Δbt_4170, generated by Ana Luis), BT_1023 (pectic lyase, 

Didier Ndeh personal communication) in the RGII PUL (Δbt_1023, generated by Didier Ndeh) and 

deletion of the entire RGII PUL (ΔRGIIPUL, generated by Wade Abbott). These mutations were then 

tested for growth during culturing on MM + 0.5% of the relevant polysaccharide and MM+0.5 % of 

oligosaccharides generated from the relevant substrate by digestion with the mutated enzyme(s). 

While Δbt_4668, Δbt_0360/Δbt_0367 and, Δbt_1023 and ΔRGIIPUL demonstrated no growth on 

galactan, arabinan and RGII (Figure 4.26), respectively. The mutant Δbt_4170 showed good growth 

on potato RGI despite lacking BT_4170 activity (Figure 4.26). The potato RGI used here has been 

shown to contain galactan side chains of sufficient length to be cleaved by BT_4668 and 

transcription data showed the galactan PUL is activated by the polysaccharide (Martens et al. 2011). 

A double mutant was made of the entire galactan PUL and BT_4170, ΔBt_4170ΔGALPUL. This double 

mutant was unable to utilise galactan, however still grew on RGI. Complete acid hydrolysis of RGI 

was performed and run on HPLC to determine if there were contaminants in the RGI which may 

explain the growth observed by Δbt_4170ΔGALPUL. As RGI could not be easily purified from the 

contaminants another source of RGI, Mucilage, was tested for growth (Figure 4.26c). As stated above 

Mucilage is the RGI backbone without any decorations. When Δbt_4170 was cultured on mucilage, 

despite high background absorbance from the polysaccharide, the mutant showed no growth (Figure 

4.26c), although the variant was able to utilise Mucilage derived oligosaccharides (Figure 4.26c) 

generated by incubation of the linear RGI (10 mg/ml) with 1 µM BT_4170 for 3 h. 
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Figure 4.26 B. thetaiotaomicron mutants lacking surface endo-acting enzymes encoded by pectin 
PULs grown on oligosaccharides and polysaccharides. Δbt_4668 grown in MM+0.5 % galactan and 
MM+0.5 % galactooligosaccharide (a). Δbt_0360Δbt_0365 grown in MM+ 0.5 % arabinan and 
MM+0.5 % arabinooligosaccharide (b). Δbt_4170 grown in MM+ 0.5 % mucilage and MM+0.5 % 
mucilage-oligosaccharide in 5 ml tube cultures (c). Comparison of Δbt_1023 ΔRGIIPUL and wild type 
B. thetaiotaomicron on MM + 0.5 % RGII (d). ΔRGIIPUL and wild type B. thetaiotaomicron grown in 
MM+ 0.5 % galactose, arabinose, rhamnose and galacturonic acid (e). Growths a, b, d, e were 
monitored by automatic plate reader at A600nm, whereas c was performed in 5 ml tube cultures with 
manual absorbance readings at A600nm, all in anaerobic conditions at 37 °C. Growths were performed 
in triplicate.  

 

In co-culture, to differentiate between wild type B. thetaiotaomicron and the mutant, a unique 

nucleotide sequence was introduced into each variant and the wild type at the att1 site in the 

genome. The two signature-tag sequences, referred to as tag11 and tag1, are on the pNBU2-tetQb 

vector developed by the Martens/Gordon labs (Martens et al., 2008). NBU2 is a 2.5 kbp mobilisation 
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region which integrates into one of two att sites in the B. thetaiotaomicron genome carrying the 

signature-tags. The att integration sites are 13 bp sequences at the 3’ end of two Ser-tRNA genes, 

Ser-tRNAUGA and Ser-tRNAUGA2 (Wang et al., 2000). Wild type B. thetaiotaomicron harboured the tag1 

sequence while each mutant contained a copy of the tag11 sequence. The proportion of wild type to 

mutant B. thetaiotaomicron was determined by performing qPCR using primers specific to each tag 

on gDNA preparations of culture samples taken at intervals during growth on the target glycan. The 

ratio was used, in conjunction with viable counts taken at the same time points, to give an accurate 

cell density of both wild type and mutant B. thetaiotaomicron cells in the co-culture. Each mutant 

was tested for presence of tag1, tag11 and an intact att1 site. The observed lack of tag1 in the 

mutants ensure that any tag1 products detected are from the wild type B. thetaiotaomicron, while 

tag11 products (200 bp) confirm successful insertion of the qPCR tag. Presence of PCR product (2500 

bp) using the ATT-diagnostic primers (Chapter 2.9.4, Appendix A.3) demonstrates the tag inserted in 

att2 site as att1 remains intact (Figure 4.27a). 
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Figure 4.27 Galactan cross-feeding experiment. Agarose gel electrophoresis (0.8% gel) of qPCR tags 
from each of the mutants used in the cross-feeding experiments, PCR products of Tag1, Tag11 and 
att1 integration site with known standards (a). Wild type B. thetaiotaomicron (red) and Δbt_4668 
(blue) co-cultured in MM+0.5% galactan at 37 °C under anaerobic conditions. CFU/ml of wild type B. 
thetaiotaomicron in co-culture, Δbt_4668 in co-culture and in mono-culture (b). Ratio of wild type and 
Δbt_4668 B. thetaiotaomicron in the co-culture on galactan (c). B. theta refers to wild type B. 
thetaiotaomicron. 
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4.2.5.3 Galactan Cross-Feeding 

The B. thetaiotaomicron GH53 mutant, Δbt_4668, was mixed in a 1:1 ratio with wild type B. 

thetaiotaomicron and used to inoculate MM+ 0.5% galactan. Initially the mutant and wild type B. 

thetaiotaomicron maintained the inoculation ratio of 55:45, favouring the mutant (Figure 4.27b). 

The ratio shifted at 7 h when the culture was at the beginning of log phase, here the wild type B. 

thetaiotaomicron cell numbers rose to become the majority of the culture at 10 h, which was 

maintained until the end of the growth (Figure 4.27b). The mutant Δbt_4668 was able to maintain a 

30-40 % share of the culture (Figure 4.27b), most likely due to the high concentration of 

galactooligosaccharides released by wild type B. thetaiotaomicron during galactan utilisation. Final 

cell density of the mutant in co-culture with the wild type was 24-fold greater than that of the 

mutant alone on galactan (Figure 4.27a). 

4.2.5.4 Arabinan Cross-feeding 

A 1:1 ratio of wild type and Δbt_0360Δbt_0367 B. thetaioatomicron was attempted by OD of initial 

starter cultures prior to mixing and inoculation. However, often small variation in OD translate to 

large differences in cell numbers, as demonstrated by the inoculation ratio observed for the 

arabinan co-cultures (Figure 4.28b, d). During co-culture on branched and unbranched arabinan 

Δbt_0360Δbt_0367 remains in the minority, dropping to below 2% and 10%, respectively (Figure 

4.28b, d). Despite this, in co-culture the mutant achieves a cell density 4-fold and 8-fold greater than 

when grown alone on branched and unbranched arabinan, respectively (Figure 4.28a, c). Despite 

high concentrations of oligosaccharides produced by B. thetaiotaomicron during growth 

Δbt_0360Δbt_0367 cannot grow to the same level observed on other glycans during co-culture. This 

may be due to restrictions on size of oligosaccharide the SusCD-pairs are capable of transporting 

causing a build up of long oligosaccharides which require degradation by the slow acting surface 

GH43 enzymes at the surface of the wild type B. thetaiotaomicron. 



194 
 

Figure 4.28 Arabinan cross-feeding experiments. Wildtype B. thetaiotaomicron and 
ΔBT_0360ΔBT_0367 co-cultured in MM + 0.5 % arabinan at 37 °C under anaerobic conditions. 
CFU/ml of wildtype B. thetaiotaomicron in co-culture, Δbt_0360Δbt_0367 in co-culture on branched 
(a) and unbranched (b) arabinan. Ratio of wildtype and Δbt_0360Δbt_0367 B.thetaiotaomicron in 
the co-culture on branched (c) and unbranched (d) arabinan. 

 

4.2.4.5 Mucilage Cross-feeding 

Counterintuitively, growth of wild type B. thetaiotaomicron on mucilage supports good growth of 

Δbt_4170, much more than analysis of the supernatant oligosaccharide content would suggest 

(Figure 4.25d). The mutant, Δbt_4170 achieved a 40% final proportion of the culture, which equates 

to less than 75-fold greater viable count than the Δbt_4170 mono-culture on mucilage (Figure 4.29a, 

b). This may reflect the capacity of the outer membrane RGI porin to transport larger 

oligosaccharides, and such molecules are not visible by TLC.  

4.2.4.6 RGII Cross-feeding 

Two mutants were used as recipients in co-growths on RGII, the Δbt_1023 mutant (encodes the PL1 

pectate lyase) and ΔRGIIPUL, which has the entire RGII PUL deleted from the genome. In co-culture 
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with wild type B. thetaiotaomicron on RGII, ΔRGIIPUL was unable to grow showing no significant 

increase when the mutant was grown in mono-culture on the pectic polysaccharide. The mutant 

lacking only the surface PL1 pectate lyase fared much better on RGII in co-culture with wild type B. 

thetaiotaomicron (Figure 4.29). The Δbt_1023 strain was able to maintain 30-40 % of the co-culture 

despite being unable to generate small oligosaccharides from RGII. This translates to a 55-fold 

greater number of cells of Δbt_1023 in the co-culture over the mono-culture of the same mutant on 

MM+0.5% RGII (Figure 4.29c-f). Cross-feeding occurs between wildtype and mutant B. 

thetaiotaomicron on RGII occurs when the binding and transport apparatus is intact as in the 

Δbt_1023 mutant. 

 

Figure 4.29 Mucilage and RGII cross-feeding experiments. Wild type B. thetaiotaomicron and 
Δbt_4170 co-cultured in MM+0.5%  mucilage (a), Wildtype B. thetaiotaomicron and ΔRGIIPUL (c), 
Wildtype B. thetaiotaomicron and Δbt_1023 (e) in MM+0.5% RGII at 37 °C under anaerobic conditions. 
Panels a, c and e include monoculture and co-culture of the wild type B. thetaiotaomicron and the 
relevant mutant. Ratio of wild type and Δbt_4170 B. thetaiotaomicron in the co-culture on mucilage 
(b). Ratio of wild type and ΔRGIIPUL B. thetaiotaomicron in the co-culture on RGII (d), and ratio of wild 
type and Δbt_1023 B. thetaiotaomicron in the co-culture on mucilage (f). B. theta refers to wild type 
B. thetaiotaomicron. 



196 
 

4.3 Discussion 

4.3.1 Utilisation of galactan 

In the context of the gut, the HGM is flooded with a mixture of polysaccharides from plant cell walls, 

which are major components of the human diet (Backhed et al., 2005). Here, RGI consists of a 

rhamnogalaturonic acid backbone decorated with long chains of galactan, and 

branched/unbranched arabinan (Mohnen, 2008). When B. thetaiotaomicron comes into contact with 

RGI it can liberate the arabinan and galactan side chains by the action of surface endo-acting 

enzymes, BT_4668 (galactan), BT_0360 (arabinan) and BT_0367 (arabinan). The data presented 

above describe each component of the galactan utilisation system in isolation. These data in 

conjunction with other publications can be used to create a model for the degradation and import of 

galactan by B. thetaiotaomicron (summarised in Figure 4.30). As with all PULs, the galactan PUL is 

constitutively expressed to survey the environment for potential polysaccharide nutrients (Martens 

et al., 2011). B. thetaiotaomicron encounters galactan at the external face of the outer membrane 

where it is bound by BT_4669 a lipoprotein SGBP. BT_4669 shows preference for the polysaccharide 

over oligosaccharides (Table 4.3), suggesting the presence of an extended binding site. Binding of 

galactan to the cell surface increases local concentrations of the glycan, enhances the proximity of 

the endo-galactanase (BT_4668) to its substrate leading to increased catalytic efficiency. Deletion of 

BT_4669 demonstrates the importance of the SGBP in galactan utilisation. Binding of galactan may 

open up the structure, uncoiling the helical conformation and allowing BT_4668 to cleave the glycan 

backbone. It should be emphasised, however, that the endo-galactanase (BT_4668) displays typical 

activity for GH53 enzymes and thus appears to be functional in the absence of accessory 

carbohydrate binding proteins. Another possibility is BT_4669 fulfils an as yet unclear structural role 

in stabilising the surface apparatus involved in binding and deconstructing galactan, without which 

surface activity does not occur.  
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Figure 4.30 B. thetaiotaomicron galactan utilisation. Diagram summarising the breakdown and 
utilisation of galactan at the cell surface and in the periplasm of B. thetaiotaomicron. 

 

The surface lipoprotein BT_4668, is an endo-β1,4-galactanase generating long 

galactooligosaccharides from galactan polysaccharide (Figure 4.5b ). The oligosaccharide products 

from BT_4668 digestion of galactan at the cell surface are bound by BT_4670 (Figure 4.10, Table 

4.3), the galactan PUL SusD-homologue and channelled through BT_4671, the galactan PUL SusC-

homologue, into the periplasm. The small difference in affinity for Gal6 and galactan suggests the 

ligand binding site is able to accommodate around six galactosyl residues (Table 4.3). Galactan forms 

a helical structure with each turn approximately six residues long (Cid et al., 2010). Ligand specificity 

of BT_4670 may be based on recognition of the structure and chemical composition, similar to the 

starch utilisation system where SusD binds more tightly to cyclic than linear oligosaccharides of the 

same length (Koropatkin et al., 2008). This process is not efficient, leading to oligosaccharide release 
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at the cell surface (Figure 4.25a). The inefficiency derives from an imbalance between the rate at 

which oligosaccharides are generated by BT_4668 (Table 4.2), and the rate at which the SusCD pair 

transport these saccharides. Saturation of the transport system does not appear to cause any 

detrimental effects on B. thetaiotaomicron growth on galactan in vitro, perhaps transporter 

expression is limited to allow for maximal growth without flooding the periplasm with undigested 

oligosaccharides which may cause unwanted interactions at high concentrations in the 

compartment. The action of BT_4668 is vital to galactan utilisation as very large oligosaccharides 

cannot be transported into the periplasm by the SusCD-homologue pair. Once in the periplasm 

oligosaccharides are sequestered away from any potential competitors, here the oligosaccharides 

are degraded to their monosaccharide constituents by BT_4667 (Figure 4.11), an exo-acting β1,4-

galactosidase. Interestingly BT_4667 is much more active against Gal2 than lactose (Table 4.4), 

indicating a preference for galactose over glucose at the +1 subsite; lactose comprises Gal-β1,4-Glc. 

This preference for homogenous galactooligosaccharide substrates indicates a specialisation 

consistent with its location in the galactan degrading apparatus of B. thetaiotaomicron; the enzyme 

encounters galactooligosaccharides rather than lactose in the periplasm. The intermediate products 

of galactan utilisation can then be bound by the ligand binding domain of the HTCS sensor, BT_4673 

(Figure 4.12, Table 4.3). Binding affinity data of BT_4673 shows a slight preference for Gal4 over Gal5 

(Table 4.3). Thus, mid-range oligosaccharides are the activating ligand for the galactan PUL. This 

specificity protects B. thetaiotaomicron from inappropriate PUL upregulation from ligands which 

may contain galactose but are not derived from the polysaccharide. The galactooligosaccharides are 

completely degraded to mono- or di- saccharides in the periplasm and transported into the 

cytoplasm for entry into fermentation and energy generation pathways. 

4.3.1.1 BACOVA_05493 

BACOVA_05493, the glycoside hydrolase found in the B. ovatus galactan PUL, but not in the 

corresponding B. thetaioataomicron locus, appears to be a β1,4-galactosidase and shows significant 
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homology to GH2 family enzymes (Figure 4.13). BACOVA_05493 most likely belongs to a GH2 

subfamily. BACOVA_05493 displays slight preference for the longer oligosaccharides tested and 

requires a minimum substrate length of 3 DP for activity (Figure 4.14a, Table 4.5). A preference for 

the longer galactooligosaccharides may indicate a divergence in the galactan utilisation systems of B. 

thetaiotaomicron and Bacteroides spp. possessing a BACOVA_05493 homologue. Those with a 

BACOVA_05493 homologue may import longer galactooligosaccharides than B. thetaiotaomicron 

requiring another β1,4-galactosidase to efficiently degrade these extended substrates in the 

periplasm. Interestingly, when BACOVA_05493 is inactivated the Δbacova_05493 B. ovatus mutant is 

unable to utilise galactan (Figure 4.15b), despite possessing the same machinery encoded by the B. 

thetaiotaomicron galactan PUL. A possible explanation is that the HTCS, which activates the galactan 

PUL in B. ovatus, requires products generated by BACOVA_05493 to upregulate the PUL. An 

alternative explanation is that the GH53 and/or GH2 present in the B. ovatus galactan PULs have 

divergent activities from their counterparts in the B. thetaiotaomicron galactan PUL, hence making 

the presence of BACOVA_05493 a requirement for utilisation. However this seems unlikely as the B. 

ovatus homologues to BT_4667 and BT_4668 are practically identical to the corresponding enzymes 

in the B. thetaiotaomicron galactan PUL based on sequence alignment (data not shown). It is 

possible that the GH2 and/or GH53 enzyme is poorly expressed in species containing the additional 

galactosidase, or the outer membrane importer is specific to long galactooligosaccharides.  
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Figure 4.31 RGI galactooligosaccharide sidechain breakdown. Diagram summarising deconstruction 

of galactan sidechains of RGI by BT_4151, BT_4156, BT_4181 and BT_4160 in the periplasm of B. 

thetaiotaomicron.  

 

4.3.2 Degradation of Galactooligosaccharide side chains on RGI 

When galactan and arabinan are removed from the RGI backbone short chains of galactosyl residues 

remain. The surface polysaccharide lyase family 9 (PL9) enzyme, BT4170, cleaves the RGI backbone 

into large oligosaccharides that contain the galactose side chains (Ana Luis personal 

communication). These branched oligosaccharides are then imported into the periplasm to 

complete degradation without further loss of products. In the periplasm four β1,4-galactosidases, 

one belonging to GH35 (BT4160) and three to GH2 (BT4151, BT4156 and BT4181), hydrolyse the 

galactosyl side chains that decorate the RGI oligosaccharides, releasing galactose as the product.  

This model is based on the assumption that removal of the galactan side chains prior to the action of 

BT_4170 is inefficient as this would negate the requirement for these enzymes derived from the RGI 

PUL. It is also possible that a proportion of the RGI backbone imported by B. thetaiotaomicron is 

derived from the pectin degrading systems of other bacteria in the human gut. These molecules 
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contain remnants of the galactan backbone that and are too short to be released by the surface 

endo-galactanase BT_4668, thus the galactan apparatus would not be activated.  BT_4160 

demonstrates good activity on all free galactooligosaccharides tested, galactan and some activity on 

galactooligosaccharide side chains on RGI (Figure 4.16, Table 4.6). The GH35 enzyme does not 

require the galactooligosaccharide to be in the context of RGI for activity. Low activity on RGI 

suggest BT_4160 is unable to trim the shorter oligosaccharides still appended to the RGI backbone 

after removal of the galactan by BT_4668 (Figure 4.17c). The Presence of the backbone may cause 

steric hindrance when the oligosaccharide side chains are relatively short, reducing BT_4160 activity 

on RGI. Of the four β1,4-galactosidases BT_4151 showed greatest activity on RGI targeted  

galactooligosaccharides with a DP of 4 to 7 and galactan (Figure 4.16). BT_4151 shows low activity 

on shorter oligosaccharides leaving a ladder of products similar to that of endo-acting enzymes 

(Figure 4.16). Accumulation of galactose, however, confirms the exo-activity of the enzyme. BT_4156 

is inactive on free galactooligosaccharide with the exception of Gal2, but releases galactose from RGI 

(Figure 4.16), implying activity on only the shortest oligosaccharides and tolerance, if not preference, 

for the RGI backbone bound in the positive subsites of the enzyme. This confirms the preferred 

substrate of BT_4156 to be the Rha-Gal bound at the base of the galactooligosaccharide side chain 

once it is degraded to a single galactosyl decoration by the action of BT_4151 and BT_4160. Of the 

three active β1,4-galatosidases, BT_4156 has the most impact on RGI utilisation, without the ability 

to remove the galactose substitution on the rhamnose residues of the RGI backbone the action of 

the exo-acting GH28 and GH106  enzymes, which successively remove rhamnose and GalA from the 

backbone, are blocked hindering utilisation of large portions of the RGI backbone. The importance of 

BT_4156 is reflected in the mutant Δbt_4156, which has a growth curve with a much longer lag 

phase than wild type B. thetaiotaomicron, although there is no change to the maximum cell density 

in MM + 0.5% RGI (Figure 4.18b). The final GH2 present in the RGI PUL, BT_4181 lacks the 

appropriate catalytic residues for activity (Figure 4.19a) and thus, not surprisingly, was inactive on all 

substrates tested (Figure 4.16). This inactive enzyme, despite harbouring no obvious mutations to 
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the substrate binding site, was unable to bind any RGI derivedglycan, and so its role in RGI utilisation 

is unclear (Figure 4.19b). This data had been compiled to create Figure 4.31, in which the roles of 

each of the four enzymes is described along with its position in the breakdown of RGI 

galactooligosaccharide sidechains. 

 

Figure 4.32 Arabinan utilisation. Diagram summarising the breakdown and utilisation of branched 
and unbranched arabinan at the cell surface and in the periplasm of B. thetaiotaomicron. 

 

4.3.3 Arabinan Utilisation 

Arabinan degradation and utilisation differs from the simple galactan utilisation system. Arabinan is 

present with or without arabinose decorations to the backbone (Mohnen, 2008), unlike linear 

galactan, hence requires a greater number of degradative enzymes to complete hydrolysis of each 

unique linkage present. Once liberated from RGI arabinan, regardless of the presence of arabinose 

decorations, can be bound by the SGBP, BT_0365 (Table 4.7). Bound linear and branched arabinan is 

degraded by the GH43 endo-1,5-arabinanases BT0360 and BT0367 (Cartmell et al., 2011). The 
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activity of these previously characterised enzymes, however, was low (Cartmell et al., 2011). Whole 

cell assays and oligosaccharides present in the growth supernatant is consistent with the activity 

found with recombinant surface enzymes, demonstrating slow oligosaccharide release and low 

activity at the cell surface (Figure 4.23d, 4.25b, c). Double mutation of the genes encoding the two 

arabinanases, Δbt_0360/Δbt_0367, confirmed surface degradation of arabinan is required for 

transport of the target glycan into the periplasm (Figure 4.24). Single mutations of each surface 

GH43 enzyme showed that BT_0367 has a greater contribution to the utilisation of arabinan (Figure 

4.24). These data are surprising as sugar beat arabinan is heavily branched and is thus a better 

substrate for BT_0360 which showd preference for branched arabinan.  

B. thetaiotaomicron expresses two SusCD-homologue pairs for utilisation of arabinan (Figure 4.2b). 

Unfortunately the true ligand of the SusD-homologues, BT_0361 and BT_0363, could not be defined 

(Figure 4.22). Deletion of each SusC-homologue showed BT_0364 had a greater contribution to 

arabinan utilisation than BT_0362. The Δbt_0364 mutation had a similar effect on linear and 

branched arabinan utilisation, suggesting the transporter does not distinguish between the two 

forms of the polysaccharide (Figure 4.24).  It is entirely possible that BT_0361, and by extension 

BT_0362, has a greater contribution to transport when B. thetaiotaomicron encounters different 

arabinan structures that have not been explored here. Once in the periplasm, the oligosaccharides 

enter one of two pathways depending on the presence of decorations. Rare arabinose side chains 

are removed by BT_0369, a α1,2-arabinofuranosidase that targets the O2 arabinosyl linkage in the 

context of single or double substitutions (Cartmell et al., 2011). With the release of all O2 linked 

arabinose, BT_0348, an α1,3-arabinofuranosidease hydrolyses the O3 linkages of the remaining 

arabinose substitutions (Figure 4.23.b, Table 4.8). Activity on linear oligosaccharides suggests 

BT_0348 has side activity on α1,5-arabinofuranosidase. Once the substitutions are removed 

BT_0368, an exo- α1,5-arabinofuranosidease, degrades the linear or unbranched oligosaccharides 

releasing arabinose which (Figure 4.23.a, Table 4.8), like galactose, is transported into the cytoplasm 

where it enters fermentation pathways resulting in energy generation (Turner and Roberton, 1979). 
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BT_0366, the HTCS, binds Ara7 in the periplasm to upregulate the arabinan PUL (Martens et al., 

2011). A long oligosaccharide activating ligand suggests large oligosaccharides must be imported by 

the two SusCD-homologue pairs as the activating ligand of previously characterised PULs tend to be 

an intermediate product of periplasmic glycan degradation. In this respect it is interesting that the 

α1,3-arabinofuranosidase is substantially less active than the α1,5-arabinofuranosidase. It is possible 

that the slow removal of the side chains blocks the action of the α1,5-arabinofuranosidase enabling 

the large arabinooligosaccharides to be present throughout the growth cycle ensuring that the 

arabinan PUL is not prematurely switched off.  

4.3.4 Cross-feeding with pectic polysaccharides 

The cross-feeding experiments performed here involve the use of mutants lacking a surface endo-

acting enzyme, which renders the mutant reliant on exogenously generated oligosaccharides. Using 

these mutants creates an artificial situation. However, these experiments were designed to evaluate 

the capacity for oligosaccharide cross-feeding using a strategy that only evaluates whether 

oligosaccharides are released into the environment and are available to other organisms. It was for 

this reason we deployed a mutant of B. thetaiotaomicron lacking the critical surface enzyme but 

retaining the rest of the degrading apparatus. Thus the mutants retained their oligosaccharide 

import and intracellular (periplasm and cytoplasm) utilization systems.  

4.3.4.1 Galactooligosaccharide Cross-Feeding 

Galactan, the least complex of the polysaccharides studied here, was digested at the cell surface of 

B. thetaiotaomicron releasing high concentrations of oligosaccharides (Figure 4.25a) that, in the 

natural environment of the bacterium, would be highly accessible to competitors within the same 

niche. Galactooligosaccharide utilisation is well represented in the human gut microbiota  (Scott et 

al., 2014). Maybe reflecting the simplicity of the degradative system, only requiring a β1,4-

galactosidase and transporter/binding system. Galactooligosaccharides are given as prebiotic 

treatment to boost Bifidobacterium and other species which have been found to promote good gut 
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health (Weaver et al., 2011; Whisner et al., 2013; Furuse et al., 2014). The concentration of 

galactooligosaccharides released by B. thetaiotaomicron during growth on galactan suggests this is a 

low priority growth substrate for the bacterium, given that galactan can be utilised by many species 

in the gut and B. thetaiotaomicron is able to utilise a wide range of alternative glycans (Martens et 

al., 2011; Larsbrink et al., 2014; Cuskin et al., 2015). The oligosaccharides are produced at the cell 

surface by the β1,4-galactanase, BT_4668 (Figure 4.8). If a more selfish approach to galactan 

utilisation was required B. thetaiotaomicron may have, at some point in its evolutionary history, 

selected for a slower surface enzyme, similar to the B. ovatus xylan surface GH10 (Zhang et al., 

2014a).This has not occurred suggesting there is some benefit to releasing galactooligosaccharides. 

A prebiotic has been previously explored through the digestion of galactan with GH53 enzymes from 

Emericella nidulans to administer pre-digested galactooligosaccharides (Michalak et al., 2012). 

Supplementing infant formula with various length galactooligosaccharides have been explored, 

demonstrating enrichment for gut microbes similar to the natural breast-fed microbiota (Veereman-

Wauters et al., 2011). In adults, galactooligosaccharide supplements have been linked to a reduction 

in travellers’ diarrhoea and alleviation of irritable bowel syndrome (Drakoularakou et al., 2009; Silk 

et al., 2009). Perhaps, similar to administering galactooligosaccharides in the diet, B. 

thetaiotaomicron releases galactooligosaccharides promoting gut health, which benefits B. 

thetaiotaomicron indirectly. This treatment strategy may allow slow release of 

galactooligosaccharides rather than flooding the gut with simple oligosaccharides, hence prolonging 

the positive effects attributed to the treatment. 

4.3.4.2 Arabinan Cross-feeding 

Unlike the galactan cross-feeding experiment, there was only a modest difference between the 

mutant lacking the surface GH43 enzymes, Δbt_0360/Δbt_0367, in mono-culture and in co-culture 

with wild type B. thetaiotaomicron on MM + 0.5% branched and unbranched arabinan (Figure 4.28). 

This may stem from a combination of the low activity of each GH43 enzyme on their preferred 
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substrate (Cartmell et al., 2011) and the presence of two SusCD-homologue pairs in the arabinan 

PUL. Reduced surface activity would cause fewer arabinooligosaccharides to be generated at the cell 

surface reducing the concentration of arabinooligosaccharides released into the growth 

supernatant. This reduced activity at the cell surface is responsible for arabinooligosaccharides being 

present in greater concentrations at mid-late stage of exponential growth phase in the cell 

supernatant (Figure 4.25.b, c).  

Despite the relativity small effect of cross-feeding on the surface arabinanases mutant, the 

arabinooligosaccharides released may have a greater effect on certain Bifidobacterium species which 

have been shown to thrive on a mixture of low molecular weight arabinooligosaccharides (Al-Tamimi 

et al., 2006). Bifidobacterium express oligosaccharide specific utilisations systems which may make 

them much more efficient than Bacteroides at oligosaccharide utilisation (Ejby et al., 2013; Shigehisa 

et al., 2015). If this assumption is correct, B. thetaiotaomicron could function as a probiotic species 

in the human gut, generating oligosaccharides which would act as Bifidobacteria bespoke prebiotics. 

This would avoid the costly alternative of including arabinooligosaccharides in the human diet to 

specifically boost oligosaccharide users in the gut (Al-Tamimi et al., 2006).    

4.3.4.3 RGI backbone (Mucilage) Cross-feeding 

The undecorated Rha-GalA backbone of RGI was used as the growth substrate for the cross-feeding 

experiment as Δbt_4170 was unable utilise the RGI backbone (Figure 4.26). When grown alongside 

wild type B. thetaiotaomicron, the mutant was able to grow (Figure 4.29a). This indicates that, 

despite the lack of detection of mucilage-derived oligosaccharides in the B. thetaiotaomicron growth 

supernatant, cross-feeding was evident (Figure 4.25d). It could be argued that oligosaccharide 

transport is extremely quick and thus these molecules are rapidly imported by the wild type and  

mutant bacteria, and thus do not accumulate in the medium. An alternative explanation for the data 

are that only very high molecular weight oligosaccharides are generated, similar to the GH98 

endoxylanase in the arabinoxylan degrading system of B. ovatus (Rogowski et al., 2015), which are 
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not visible by TLC. However, BT4170 is a very active enzyme that rapidly generates visible low 

molecular weight RGI oligosaccharides, which are evident in whole cell assays (Ana Luis personal 

communication). Thus the lack of visible oligosaccharides is unlikely to be the result of the 

production of high molecular weight molecules.  

4.3.4.4 RGII Cross-feeding 

Despite lack of detectable levels of oligosaccharides in the growth supernatant of B. 

thetaiotaomicron cultured in MM + 0.5% RGII (Figure 4.25e), the wild type bacterium was able to 

support the growth of the Δbt_1023 mutant (Figure 4.29e) lacking the PL1 pectate lyase required to 

cleave the backbone of RGII for oligosaccharide import. Interestingly, the mutant lacking the entire 

RGII PUL, ΔRGIIPUL, was unable to grow in co-culture with wild type B. thetaiotaomicron (Figure 

4.29c), indicating no usable monosaccharides are released during growth on RGII; oligosaccharides 

however, are present. Lack of detection of the oligosaccharides by TLC suggests they are either at a 

very low concentration or large enough not to migrate from the origin point of the TLC. Large 

oligosaccharide production is supported by lack of access to the backbone of RGII due to the 

presence of side chains blocking the activity of the surface PL1 lyase, forcing the enzyme to mediate 

infrequent cleavage of the backbone. This strategy has the added advantage of reducing energy 

output required by B. thetaiotaomicron to utilise a substrate, by importing larger oligosaccharides 

through the TonB-dependent SusC-homologues directed against RGII (Jordan et al., 2013).  Less ATP 

would be required to important a restricted number of large molecules than import multiple smaller 

substrates, offsetting the energy investment required to express the apparatus required to utilise a 

complex substrate.  

4.4 Conclusion 

Utilisation of pectic polysaccharides by B. thetaiotaomicron is a complex and costly process for the 

bacterium, requiring many enzymes, binding proteins and transporters to achieve complete 

utilisation of each fraction of these GalA-containing polysaccharides, including the highly complex 
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RGII.  Pectin is often added as a gelling agent to processed foods, which are a large part of the 

western diet (Munarin et al., 2012). Pectins are naturally occurring in plant material and hence a 

significant part of the human diet, even discounting the use of pectin in processed foods (Mohnen, 

2008). As such, the HGM has evolved with the human diet as a major selective pressure, which has 

led to the development of comprehensive pectin degradation and utilisation systems exemplified by 

the apparatus synthesised by B. thetaiotaomicron (Martens et al., 2011). Indeed, this Bacteroides 

species is capable of utilising every fraction of pectin from simple galactan to RGII, the most complex 

plant glycan known. Galactooligosaccharides are used in food supplements generated from galactan 

digestion or by transglycosylation of lactose (Macfarlane et al., 2008). Use of these oligosaccharides 

have been shown to have positive effects on the gut and are bifidogenic (Macfarlane et al., 2008). B. 

thetaiotaomicron is capable of releasing high concentrations of galactooligosaccharide during 

growth on galactan, which may prolong the positive effects record for diet supplementation with 

oligosaccharides. While similar effects have yet to be observed for other oligosaccharides derived 

from other pectic glycans, data here shows oligosaccharide release from B. thetaiotaomicron growth 

on these glycans are sufficient to support a second bacterium, unable to use the polysaccharide.  

4.5 Future Work 

The potential effects of cross-feeding and growth of B. thetaiotaomicron among other members of 

the gut microbiota on pectin polysaccharides should be monitored along with any potential 

recipients of the oligosaccharides generated at the B. thetaiotaomicron cell surface. This could be 

performed in a humanised murine gut microbiota to demonstrate the effect observed in the cross-

feeding experiments here in a more biologically relevant setting. Galactan cross-feeding is likely to 

reveal recipient bacterial species, however, the oligosaccharides generated from other pectic glycans 

enriching members of the gut microbiota has not currently been shown.  

The interactions between surface enzymes and binding proteins are currently poorly understood. 

Introducing mutations into coding regions most likely to be involved with these predicted protein-
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protein interactions could show which residues are responsible for the interactions and the effect on 

the system from loss of these interactions. 
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Chapter 5: Cross-feeding during Bacteroides utilisation of Fructans 

5.1 Introduction 

5.1.1 Background 

Current prebiotic research has a large focus on  fructooligosaccharides (FOS), inulin-type fructans 

and their positive effects for the human gut and human gut microbiota (HGM) (Riviere et al., 2016). 

Inulin-type fructans and inulin derived FOS (FOS-I) consist of β2,1-linked fructose with each chain 

terminating in an α1,2-linked glucose residue. The length of inulin chains can vary but are usually 2 

to 60 fructose residues long, with FOS-I considered to be under 10 monosaccharides in length. Inulin 

is predominantly purified from chicory root, although can be purified from garlic and onion (Mensink 

et al., 2015). Many studies have shown Inulin and FOS-I enrich Bifidobacterium spp and other 

beneficial bacterial species in the HGM, making these fructans important therapeutic tools in 

treating gut disease like inflammatory disorders and even shown to inhibit gut related cancers by 

promoting butyrate production (Hoeppli et al. 2015). Inulin treatment has also been shown to have 

direct effects on the host by increasing intestinal calcium absorption (Abrams et al., 2005). Studies 

investigating inulin and FOS-I utilisation by Bifidobacterium have shown preference for FOS over 

inulin, with some Bifidobacterium spp being unable to utilise the polysaccharide (Watson et al., 

2013; Selak et al., 2016).  

Levan-type fructan differs from inulin type fructan, it consists of β2,6–linked fructose and lacks the 

glucose cap found in inulin chains. Levan usually exists in much longer chains than inulin. Low 

molecular weight levan is derived from plant material (Vijn and Smeekens, 1999), while high 

molecular weight forms of the glycan are often branched and found in the extra cellular 

polysaccharide matrix surrounding biofilms or the bacterial capsule. Levan produced by Erwinia 

herbicola and Bacillus subtilis is highly branched and assists in biofilm cohesion (Blake et al., 1982; 

Benigar et al., 2014). 
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Figure 5.1 Schematic diagram of fructan structures. Structures of β-D-Fructose (a), Sucrose (b), β2-1 
linked fructan, Inulin (c) and β2-1 linked fructan, Levan (d). Adapted from Sonnenburg et al. 2010. 

 

Evidence shows humans have consumed fructan since the prehistoric era, estimating 135 g were 

consumed per day (Leach and Sobolik, 2010). Current fructan/FOS consumption has dropped to only 

3-11 g per day (van Loo et al., 1995), indicating drastic changes to the human diet which evolution of 

the host may not yet have compensated for, hence and a potential requirement for dietary fructan 

supplementation.  

HGM are flooded with dietary complex carbohydrates and host glycans produced by intestinal 

epithelial cells as part of the protective mucous layer in the gut. As such members of the HGM have 

developed systems to effectively utilise the glycans available in the human gut, the strategies for 
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which are influenced by the presence or absence of a periplasm between the inner and outer 

membrane. The two contrasting strategies discussed here are that of Gram positive Bifidobacterium 

and Gram negative Bacteroides, each presenting specific obstacles to overcome in utilisation of 

glycans (Van der Meulen et al., 2006). Bifidobacterium possesses a thick peptidoglycan cell wall 

attached to a cell membrane. An extracellular solute binding protein (ESBP) is expressed which 

extends though the peptidoglycan cell wall to capture glycans the bacterium encounters. Once 

bound by the ESBP the glycan is delivered to an associated ABC-transporter in the cell membrane 

where it is imported into the cytoplasm. Once sequestered in the cytoplasm glycoside hydrolases 

expressed by Bifidobacterium digest the target glycan into fermentable substrates, mono- or di- 

saccharides (Ejby et al., 2013). 

 

Figure 5.2 Simplified diagram of glycan utilisation. Diagram of Bacteroides glycan utilisation system 
(a) and Bifidobacterium glycan utilisation system (b). Binding proteins are shown in orange, Transport 
proteins in yellow, enzymes in grey and sensor/regulators in blue. Glycan structure is represented by 
green hexagons and the phospholipid bilayer of the inner/outer membranes as yellow circles.  
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Bacteroides possess both an inner and outer membrane, requiring digestion of glycans by surface 

enzymes to generate oligosaccharides which are small enough to be transport into the periplasm 

through the transporter system comprising of complexes of SusC/SusD homologues present in the 

outer membrane. The SusD homologue binds the oligosaccharides produced at the cell surface while 

the SusC homologue is predicted to be a TonB-dependent transporter which allows passage of 

oligosaccharides through the outer-membrane. In the periplasm, primarily exo-acting glycoside 

hydrolases further deconstruct the oligosaccharides into fermentable substrates which are then 

imported into the cytoplasm (for further discussion of Bacteroides glycan utilisation systems, 

including the SusC/SusD complex, see Chapter 4.3). The presence of the periplasm in Bacteroides 

cells allow for deconstruction of glycans and fermentation to take place in separate compartments 

(Martens et al., 2009). Whereas Bifidobacteria tend to utilise oligosaccharides and some short 

polysaccharides thus, glycan utilisation is limited by size of the target polysaccharide as import 

requires shorter substrates (Ejby et al., 2013). Once in the cytoplasm, the exo-acting glycoside 

hydrolases expressed by Bifidobacterium can degrade the glycan into fermentable monosaccharides. 

Cross-feeding between gut microbes grown on polysaccharides is a relatively unexplored interaction 

between members of the gut microbiota. Studies have shown cross-feeding of oligosaccharides 

between Bacteroides species (Rakoff-Nahomen et al., 2014) and between B. thetaiotaomicron and 

Bifidobacterium (Van der Meulen et al., 2006), however the former focused on recipient growth on 

Bacteroides conditioned media over and extended growth period while the latter recorded 

production of metabolites as a measure of growth rather than cell density of each species. This 

chapter aims to demonstrate growth of both glycan donor and recipient in co-culture on fructans. 
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5.1.2 Aims 

 Demonstrate growth of Bifidobacterium adolescentis (Bi. adolescentis) and Bi. longum 

growth on inulin and levan and FOS derived from each fructan. 

 Explore genes/potential loci responsible for fructan utilisation in Bi. adolescentis and Bi. 

longum. 

 Demonstrate effect of crossfeeding of both inulin and levan type fructans. 
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5.2 Results 

5.2.1 Growth on Fructans 

 

Figure 5.3 Growth of B. ovatus, B. vulgatus, Bi. adolescentis and Bi. longum on fructans, FOS-I, FOS-
L and fructose. B. ovatus (a), B. ovatus ΔGH91 mutant (b), B. vulgatus (c), Bi. adolescentis (d) and Bi. 
longum (e) were cultured  on fructose, FOS-I, FOS-L and fructans. Growths were performed in 2 ml 
plater reader cultures measured using an automatic plate reader in an anaerobic chamber at 37 ˚C. 
Bacteroides and Bifidobacterium were grown in minimal media (MM) and Bifidobacterium minimal 
media (BiMM), respectively, the composition of which can be found in Chapter 2.3.1. 

 

5.2.1.1 B. ovatus, B. vulagtus, Bi. adolescentis and Bi. longum growth on fructans 

Growth of Bifidobacterium spp. and Bacteroides spp. on fructans is well described in the literature 

(Kolida and Gibson, 2007; Sonnenburg et al., 2010). To confirm the organisms used here displayed 

this phenotype the growth of the bacteria employed in this study was tested on fructans and FOS. 
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Bacteroides spp. were grown in minimal media (MM) while Bifidobacterium spp. were grown in 

Bifidobacterium minimal media (BiMM) (Van der Meulen et al., 2006), which were supplemented 

with 0.5 % (w/v) sugar and haematin. Growths were performed in an automatic plate reader under 

anaerobic conditions at 37 °C. Bi. adolescentis and Bi. longum produce a thick capsule during growth 

In the 200 µl wells with smaller diameter capsule production caused false growth readings due to 

occlusion of the plate reader light paths, using a larger diameter well led to more reliable data, 

hence 2 ml wells were used for Bifidobacterium in the automatic plate reader. 

The data showed B. ovatus and Bi. adolescentis could utilise both inulin and FOS-I (Figure 5.3a,d), 

while B. vulgatus and Bi. longum grew on FOS-I but not the polysaccharide inulin (Figure 5.3c, e). B. 

ovatus, B. vulgatus Bi. adolescentis and Bi. longum were unable to utilise levan (Figure 5.3a,c,d,e). 

However, B. ovatus, Bi. adolescentis and Bi. longum grew on FOS-L (DP 2-8), generated by partial 

digestion of 10 mg/ml levan with 0.5 µM BT_1760 for 30 min (Figure 5.5b). The three Bacteroides 

species and Bi. longum grew on fructose, while Bi. adolescentis was unable to use the 

monosaccharide. These data are in agreement with previous studies investigating Bacteroides spp. 

and Bifidobacterium spp. growth on fructans (Kolida and Gibson, 2007), indicating the bacterial 

species/strains display the expected growth phenotypes. These Bacteroides and Bifidobacterium spp 

were selected due to their fructan utilisation profiles (Figure 5.3). The Bacteroides spp were selected 

as they are able to utilse inulin or levan with the possibility of oligosaccharide relase. Where as Bi. 

adolescentis ability to utilise both FOS-I and inulin gave an opportunity to investigate competition 

with B. ovatus. Bi. longum and B. vulgatus were able to utilise FOS-I but not inulin allowing 

investigation of crossfeeding with B. ovatus. 

The mutant of B. ovatus lacking the surface GH91 endo-inulinase, designated ΔGH91, was generated 

by Sarah Shapiro (Shapiro 2015). This Mutant was capable of utilising inulin, FOS-I and fructose 

(Figure 5.3b). 

 



217 
 

5.2.1.2 Growth Supernatants 

During growth on inulin- and levan-type fructans samples of culture supernatant were subjected to 

TLC to evaluate oligosaccharide content (Figure 5.4). B. ovatus culture supernatant grown on inulin 

showed a high concentration of a wide range of oligosaccharides over the entire growth (Figure 

5.4a), including early stationary phase. During early growth there was very little fructose present in 

the supernatant, but low concentrations of the monosaccharide were evident in late log and 

stationary phase (Figure 5.4a). Longer oligosaccharides, apparent as a long smear from the origin 

spot, are used quickly and were almost completely absent by mid-late log phase (Figure 5.4a). A 

band present in all supernatant samples from log phase onwards was identified as difructose 

anhydride (dFA) by Sarah Shapiro; this molecule is implicated in increased calcium and iron 

absorption in the gut (Suzuki and Hara, 2004; Hara et al., 2010) but cannot be metabolised by B. 

ovatus (Shapiro 2015). 
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Figure 5.4 TLC images of fructan growth supernatants. Samples were taken from B. ovatus growth on 
inulin (a), ΔGH91 mutant growth on inulin (b), Bi. adolescentis growth on inulin (c) and B. 
thetaiotaomicron growth on levan (d). Growth supernatant taken at each phase of growth and run 
alongside known fructooligosaccharide standards (F). Standards used (lane F) were fructose, F1, 
sucrose, S, and the FOS-Is kestotriose, K3, kestotetraose, K4 and kestopentaose, K5.  

 

A mutant of B. ovatus created by Sarah Shapiro, ΔGH91, was also grown on inulin and supernatant 

samples run on TLC (Figure 5.4b). Analysis of the supernatant of the mutant revealed no 

oligosaccharide release and much slower utilisation of inulin than wild type B. ovatus, as evidenced 

by the presence of a dark spot present at the origin until stationary phase (Figure 5.4b). This reflects 
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inulin degradation in the mutant has shifted to the periplasm where the transient oligosaccharides 

generated during the degradative process are not released into the environment (Figure 5.4b). 

Similar to the B. ovatus GH91 mutant, Bi. adolescentis utilises inulin without surface enzyme 

activity, hence no oligosaccharides were present in the growth supernatant (Figure 5.4c). 

Throughout the growth the long oligosaccharides present, shown as a smear in on the TLC plate, was 

shortened, indicating Bi. adolescentis was utilising the long oligosaccharides. Although Bi. 

adolescentis utilised inulin to provide good growth, the growth supernatant shows very little inulin 

was used (reflecting the retention of the glycan spot at the origin; Figure 5.4c) compared to wild 

type B. ovatus (Figure 5.4a). 

When characterised the surface GH32 of the B. thetaiotaomicron levan PUL showed high activity on 

levan, producing a high concentration of FOS-L in vitro (Sonnenburg et al., 2010). However, the 

culture supernatant of B. thetaiotaomicron grown on levan contained low levels of a single 

oligosaccharide that co-migrated with kestotetraose and fructose. The fructose band increased in 

intensity until late exponential, then was absent in stationary phase (Figure 5.4d).  Low supernatant 

FOS-L concentration could reflect an efficient binding and transport system which stops 

accumulation of FOS-L DP 2-3, or perhaps the surface GH32 is not highly expressed in the utilisation 

system, resulting in lower surface activity. Although this is unlikely as B. thetaiotaomicron 

completely utilised the levan starting material before reaching stationary phase (Figure 5.4d), 

indicating a high activity on levan polysaccharide.  

It should be noted here that TLC is only effective at separating oligosaccharides and 

monosaccharides in a fairly narrow range of DP. There are other techniques which are effective at 

separating longer glycans from a sample solution. HPAEC, for example can be used to separate 

glycans based on charge/size of the glycans in solution. Using different gradients of NaOH 

concentration to elute glycans could allow for separation of long FOS which appears as a smear or 

does not leave the origin spot on the TLC plate. 
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5.2.1.3 Fructooligosaccharide utilisation by Bi. adolescentis and Bi. longum 

Bi. adolescentis and Bi. longum were grown to stationary phase on inulin, levan, FOS-I and FOS-L and 

products released in to the supernatant analysed by TLC. As no growth was observed for either 

bacterium on levan, or Bi. longum on inulin, there was no stationary phase sample. In the case of no 

growth a sample was taken at 20 h to assay for any partial breakdown of the polysaccharide (Figure 

5.5), the same incubation time for Bi. adolescentis to reach late stationary phase on inulin. The 

stationary phase samples of the bacteria grown on inulin were identical to the starting material 

supernatant. Growth on FOS-I showed that Bi. adolescentis and Bi. Longum utilised longer and 

shorter oligosaccharides, respectively (Figure 5.5a). In agreement with growth data in the previous 

section (Figure 5.3), Bi. adolescentis did not utilise fructose (Figure 5.5a). 

 

Figure 5.5 Fructooligosaccharide utilisation by Bi. adolescentis and Bi. longum. Bi. adolescentis (ad) 
and Bi. longum (lo) were grown to stationary phase on inulin, FOS-I (a) and FOS-L (b) and the glycan 
content of the culture supernatant was evaluated by TLC. Stationary phase supernatants (ad for Bi. 
adolescentis and lo for Bi. longum) were compared to the glycan content of media prior to addition of 
bacteria (0h) and run alongside known standards, fructose, F1, sucrose, S, kestotriose, K3, 
kestotetraose, K4 and kestopentaose, K5. 
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Bi. adolescentis completely utilised all oligosaccharides present, with the exception of fructose. A 

similar pattern of utilisation was observed for Bi. longum on FOS-L (Figure 5.5b) as the FOS-I (Figure 

5.5a). Bi. longum was able to utilise fructose and oligosaccharides up to a DP of 5 fructose 

monosaccharides in length (Figure 3.5b). Bands corresponding to higher DP oligosaccharides, 

however, appeared to be less intense than in the starting material, indicating Bi. longum was 

capable of utilising oligosaccharides with a DP >5 but at a slow rate. These data show Bi. adolescentis 

and Bi. longum preferentially utilise different fractions of FOS regardless of linkage type.  
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Figure 5.6 Schematic representation of predicted fructan utilisation loci of Bi. adolescentis and Bi. 
longum. Predicted glycan utilisation loci of B. thetaiotaomicron (a), B. vulgatus (b), Bi. adolescentis (c) 
and Bi. longum (d). The colour code for the predicted proteins are as follows: transporter proteins, 
green; glycoside hydrolases, blue; Surface glycan binding proteins, yellow; Regulator protein, orange; 
unknown function, grey. Symbol size is not representivitve of gene size.  
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5.2.2 Analysis of inulin and levan utilisation loci 

The observed differences in fructan utilisation among the bacterial species tested here (Figure 5.3) 

may be explained by analysis of the loci most likely to be involved in the process. Unlike B. 

thetaiotaomicron which encodes multiple GH32 enzymes (Sonnenburg et al., 2010)(Figure 5.6a), B. 

vulgatus expresses a single GH32 enzyme (BVU_1663, Figure 5.6b). Members of the GH32 family 

typically display activity on fructans or FOS, hence indicate an ability to utilise fructans. According to 

signal peptide analysis using LipoP server (LipoP site/reference), BVU_1663 is most likely expressed 

in the periplasm. BVU_1663 shows 64 % sequence identity to BT_1765, a non-specific exo-acting 

fructosidase (Sonnenburg et al., 2010) and likely performs the same function. The presence of the 

GH32 enzyme in the periplasm suggests B. vulgatus requires digestion of fructans into FOS to be 

completed externally prior to import into the periplasm where BVU_1663 is able to complete 

digestion. 

Bi. longum and Bi. adolescentis utilisation systems typically target oligosaccharides rather than 

polysaccharides, which is supported by growth data collected here (Figure 5.5). Bi. adolescentis 

encodes a pair of GH32 enzymes BAD_1150 and BAD_1325. bad_1150 is flanked by genes predicted 

to encode components of an ABC transporter and an ESBP (Figure 5.6a). This gene organisational 

cluster is suggestive of an oligosaccharide utilisation system. bad_1325, in contrast, is immediately 

preceded by a LacI-type regulator gene, while ABC transporter components and an ESBP are 

encoded by genes upstream. These predicted loci were found by search sequence data for 

homologues of GH32 enzymes in the Bi. adolescentis genome for when they are found adjacent to 

ABC-pemeases and ESBP homologues. 

Bi. longum also encodes two GH32 enzymes, Blon_0787 and Blon_2056. blon_2056 is surrounded by 

genes encoding a predicted transport, ESBP and LacI-type regulator (Figure 5.6b). This gene 

organisation is the same as the locus identified in Bi. adolescentis, bad_1325 to bad_1330, implying 

similar function. The gene second GH32 enzyme of Bi. longum, Blon_0787, is not in any obvious loci, 



224 
 

although may be upregulated along with genes further away on the genome to form a functional 

oligosaccharide utilisation system.  

5.2.3 Cross-feeding with fructans 

Utilisation of inulin and levan by B. ovatus and B. thetaiotaomicron, respectively, leads to release of 

oligosaccharides into the culture supernatant (Figure 5.4). In co-culture with FOS users we can 

explore how species equipped with polysaccharide utilisation systems can create growth substrates 

for oligosaccharide utilising bacteria present in the human gut.  

5.2.3.1 Inulin Cross-feeding 

Fructans and FOS are currently used a dietary supplements to enrich for gut microbes associated 

with good gut health (Ouwehand et al., 2002). Studies have shown supplementation of food with 

FOS-I and inulin enrich the HGM for Bifidobacterium increasing butyrate in the gut (Ouwehand et al., 

2002). Butyrate is utilised for energy by colonocytes, inhibit proliferation of cancerous cells and 

trigger maturation of naive T-cells into Treg cells (Hoeppli et al. 2015). 
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Figure 5.7 Inulin cross-feeding with Bi. adolescentis and Bi. longum. Comparison of Bi. adolescentis 
growth in mono-culture and co-culture with B. ovatus on inulin (a), and B. ovatus in mono-culture 
and co-culture with Bi. adolescentis on inulin (b). Comparison of Bi. adolescentis growth in mono-
culture and co-culture with B. ovatus ΔGH91 mutant on inulin (c), and B. ovatus ΔGH91 mutant in 
mono-culture and co-culture with Bi. adolescentis on inulin (d). Comparison of Bi. longum growth in 
mono-culture and co-culture with B. ovatus on inulin (e), and B. ovatus in mono-culture and co-
culture with Bi. adolescentis on inulin (f). Samples were taken from the growth cultures, and plated 
onto clostridial media for CFU evaluation. As in Chapter 3 bacteria were identified by colony 
morphology and resistance/susceptibility to gentamycin. 

 

5.2.3.1.1 B. ovatus Co-culture with Bi. adolescentis 

Bi. adolescentis and B. ovatus were co-cultured in BiMM+0.5 % inulin. Both B. ovatus and Bi. 

adolescentis can utilise inulin as a growth substrate through different strategies. In co-culture with 
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Bi. adolescentis, B. ovatus fails to grow (Figure 5.7b). B. ovatus growth peaks at 5 h, at which point 

the ratio of B. ovatus to Bi. adolescentis is 50:50 (Figure 5.7a,b). After a further 5 h, B. ovatus cell 

density dropped to inoculation levels while Bi. adolescentis achieved a peak density of 1.3x109 

CFU/ml (Figure 5.7a,b). Both Bi. adolescentis and B. ovatus in co-culture were unable to reach the 

cell density of their respective mono-cultures on inulin (Figure 5.7a,b), although Bi. adolescentis in 

co-culture was still growing at the final time point, and may achieve similar CFU as the mono-culture 

if allowed longer incubation (Figure 5.7a). 

Samples of culture supernatant were taken at intervals during the B. ovatus – Bi. adolescentis co-

culture on inulin and run on TLC (Figure 5.8a). Early time points were similar to that of B. ovatus in 

mono-culture although after 5 h there were no more oligosaccharides produced other than sucrose 

(Figure 5.8a). Unlike the B. ovatus mono-culture there was inulin polysaccharide present at the final 

15 h sample (Figure 5.8a). dFA and low concentrations of fructose were present from 3 h onwards. 

From 5 h onwards the smear of long oligosaccharides became shorter (Figure 5.8a), implying Bi. 

adolescentis was using these glycans as growth substrates.  

 

Figure 5.8 Supernatant glycan content of inulin co-cultures. Samples taken during B. ovatus-Bi. 
adolescentis co-culture on inulin (a) and B. ovatus-Bi. longum co-culture on inulin (b) were taken and 
run on TLC alongside known fructooligosaccharide standards (F), fructose, F1, sucrose, S, kestotriose, 
K3, kestotetraose, K4 and kestopentaose, K5. 
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5.2.3.1.2 ΔGH91 B. ovatus mutant cross-feeding with Bi. adolescentis 

The mutant B. ovatus, ΔGH91, was co-cultured with Bi. adolescentis on inulin. ΔGH91 showed similar 

growth in the co-culture as the mono-culture (Figure 5.7b). The Bi. adolescentis CFU was slightly 

reduced in co-culture when compared to mono-culture (Figure 5.7c).  

5.2.3.1.3 B. ovatus cross-feeding with Bi. longum 

A bacterium, Bi. longum, which is unable to utilise inulin was co-cultured with B. ovatus in BiMM+0.5 

% inulin. Alone Bi. adolescentis cell density remained at inoculation levels, in co-culture Bi. longum 

was able to achieve cell density of 6.5 x 108 CFU/ml (Figure 5.7e), similar to the related bacterium Bi. 

adolescentis, which is able to utilise inulin. B. ovatus did not suffer any growth defect in co-culture 

with Bi. longum, achieving a similar cell density as the mono-culture (Figure 5.7f).  

Samples of the co-growth supernatant were taken and evaluated for oligosaccharide content by TLC. 

The oligosaccharide profile throughout the growth was very similar to that of B. ovatus alone on 

inulin (Figure 5.8b), with the exception of the absence of sucrose from the 12 h and 15 h samples 

(Figure 5.8b).  

Figure 5.9 Inulin Cross-feeding with B. vulgatus. Co-culture of B. vulgatus and B. ovatus in MM with 
0.5 % inulin measured by CFU/ml (a). Ratio of B. ovatus to B. vulgatus in the co-culture. Ratio was 
deduced by purification of genomic DNA at time points in the co-culture and quantification of 
specific tags inserted into the genomic DNA of the two organisms by qPCR (b). 
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5.2.3.1.4 B. ovatus cross-feeding with B. vulgatus 

In mono-culture B. vulgatus was unable to utilise inulin but was able to utilise FOS-I (Figure 5.3c). In 

co-culture with B. ovatus on inulin B. vulgatus grew to 5 x 108 CFU/ml (Figure 5.9a), which equated 

to 10 % of the culture at 15 h (Figure 5.9b). From inoculation B. vulgatus dropped from 40 to 20 % of 

the co-culture, then from 5 h onward to 10 % in the 15 h sample (Figure 5.9b). B. ovatus in the co-

culture reached a similar CFU as in mono-culture (Figure 5.9a). 

5.2.3.2 Levan Cross-feeding 

In co-culture with B. thetaiotaomicron on levan, Bi. adolescentis was able to grow (Figure 5.10a) 

suggesting the relatively low concentration of oligosaccharides present in the B. thetaiotaomicron 

growth supernatant (Figure 5.4d) was sufficient to support Bi. adolescentis growth. There was a 160-

fold increase in final cell concentration from the Bi. adloescentis mono-culture on levan to the co-

culture with B. thetaiotaomicron (Figure 5.10a). Conversely, B. thetaiotomicron cell density was 

reduced in the co-culture compared to the mono-culture (Figure 5.10b).  

Figure 5.10 Crossfeeding of levan with Bi. adolescentis. Co-Culture of Bi. adolescentis and B. ovatus 
in MM with 0.5 % inulin measured by CFU/ml. Comparison of Bi. adolescentis growth in co-culture 
and mono-culture on inulin (a). Comparison of B. ovatus growth in co-culture and mono-culture on 
inulin (b).   

 

5.2.4 Growth on Conditioned Media 

The presence or absence of antimicrobial compounds released by Bi. adolescentis during growth on 

inulin with B. ovatus may explain why growth of the Bacteroides species was limited.  To address this 
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hypothesis growth media were harvested from log phase mono- and co-cultures of Bi. adolescentis 

and Bi. adolescentis with B. ovatus. These media were then split, half boiled and half not boiled 

before being inoculated with B. ovatus. It was argued that boiling the media would inactive any 

proteinaceous antimicrobial present. The Bi. adolescentis mono-culture conditioned media allowed 

growth of B. ovatus, when boiled or not boiled (Figure 5.11a), indicating there was no antimicrobial 

compound present. The co-culture conditioned media also allowed growth of B. ovatus (Figure 

5.11b), again demonstrating no antimicrobial compound is present. Boiling the media caused slower 

growth in both mono-culture and co-culture conditioned media (Figure 5.11). This may be due 

certain components of the media being heat sensitive; cysteine and vitamin K are both known to be 

made unstable due to excessive boiling.   

5.3 Discussion 

5.3.1 Bacteroides and Bifidobacterium Fructan and FOS Utilisation 

Utilisation of fructans and FOS by gut bacteria is a high interest area of research due to the positive 

health benefits described for the host in both in vitro studies and clinical trials (Kolida and Gibson, 

2007). An inulin utilisation locus was identified due to upregulation in response to growth on the 

polysaccharide (Martens et al., 2011). The utilisation system expressed from this locus has been 

characterised, revealing an efficient polysaccharide breakdown pathway (Shapiro 2015). Digestion of 

inulin into FOS-I is completed by a pair of GH91 enzymes, which together make a functional enzyme, 

covalently attached to cell surface. These oligosaccharides are bound and transported through a 

SusC homologue into the periplasm where digestion is completed by GH32 fructosidases. Most likely 

due to the short length of inulin polysaccharide, growth of the ΔGH91 mutant shows that surface 

digestion of inulin is not required (Figure 5.3). This may also be why Bi. adolescentis is capable of 

utilising inulin (Figure 5.3) when Bifidobacterium are typically oligosaccharide users. There are two 

likely inulin/FOS utilisation loci in the Bi. adolescentis genome (Figure 5.6a). These loci were 

identified by the presence of a GH32 enzyme along with the components of an ABC-transporter and 
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an ESBP. The second of the two loci also includes a LacI-type regulator (Figure 5.6a). Bi. longum is 

able to utilise FOS-I but not inulin (Figure 5.3), despite possessing a similar locus to Bi. adolescentis 

(Figure 5.6). The different utilisation patterns observed during growth of Bi. longum and Bi. 

adolescentis on fructans and FOS in Figure 5.3 may be explained by Bi. adolescentis possessing two 

fructan targeting glycan utilisation loci whereas Bi. longum appears to express just one.  

Figure 5.11 I Growth of B. ovatus on conditioned media. Comparison of B. ovatus growth on boiled 
and not boiled BiMM + 0.5 % inulin media conditioned by growth of Bi. adolescentis (a) and co-
culture of B. ovatus and Bi. adolescenis (b). Growths were performed in an anaerobic chamber at 37 
°C using and automatic plate reader. 

 

As B. ovatus, Bi. longum and Bi. adolescentis are all capable of utilising levan oligosaccharides but 

not levan (Figure 5.3), and do not appear to possess specific levan utilisation loci, the GH32 enzymes 

present in the identified inulin/FOS utilisation systems are likely not linkage specific fructosidases. 

Unlike B. ovatus, B. vulgatus requires digestion of inulin into oligosaccharides prior to transport into 

the periplasm where the only GH32 fructosidase expressed by B. vulagtus can complete degradation 

to fructose and sucrose. It is tempting to suggest that the reason B. vulgatus cannot utilise inulin but 

can utilise FOS-I is due to lack of surface inulinase activity, however ΔGH91 also lacks surface activity 

but can utilise inulin and FOS-I. Perhaps it is the combination of no surface activity and a SusD 

homologue which only binds short oligosaccharides, unable to recognise inulin as the B. ovatus 

inulin PUL SusD homologue. 
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5.3.2 B. ovatus shows restricted growth in co-culture with Bi. adolescentis on inulin but not with 

Bi. longum. 

Both bacterial species in the B. ovatus-Bi. adolescentis co-culture were able to utilise inulin 

independently in mono-culture. However, when together in co-culture only Bi. adolescentis is able to 

achieve cell density similar to that of the mono-culture, while B. ovatus displayed little if any growth. 

Supernatant oligosaccharide data suggest each bacterium shows preference for different inulin/FOS-

I fractions, as evidenced by Bi. adolescdntis achieving high cell density while being unable to utilise 

much of the inulin available. B. ovatus on the other hand, utilises all inulin and inulin 

oligosaccharides leaving only the small molecule dFA in the supernatant at stationary phase. Lack of 

B. ovatus growth in co-culture despite plentiful accessible substrate would suggest Bi. adolescentis 

actively inhibits the growth of B. ovatus. Antimicrobial potential of Bifidobacterium has been 

previously explored. Antimicrobial compounds were found to be produced by Bi. animalis and Bi. 

bifidum, as non-proteinatious pH dependent compounds (de Oliveira et al., 2015). Bi. adolescentis 

has been shown to have antiviral effects on herpes simplex virus but there is no evidence of anti-

bacterial activity (An et al., 2012). Inulin supplemented media pre-conditioned with Bi. adolescentis 

alone and in combination with B. ovatus was used to investigate presence of an antimicrobial 

compound. However the inhibitory effects observed in the B. ovatus – Bi. adolescentis inulin co-

culture was not observed, indicating the effect seen is not due to active killing of B. ovatus. This is 

further reinforced by growth of the ΔGH91 mutant in co-culture with Bi. adolescentis similar to that 

of the mono-culture (Figure 5.7c,d), further indicating there is no antimicrobial activity.  

Supernatant collected from the ΔGH91 mutant grown on inulin showed only fructose despite growth 

similar to that of wild type B. ovatus on inulin (Figure 5.4b), while Bi. adolescentis gains a slight 

improvement in growth over the Bi. adolescentis mono-culture (Figure 5.7f). Stationary phase 

supernatants of Bi. adolescentis show the bacterium utilises longer FOS while leaving the shorter 
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FOS (Figure 5.5a), indicating Bi. adolescentis was not using the fructose produced by ΔGH91 mutant 

during growth on inulin. 

Media conditioned by partial growth of B. ovatus, Bi. adolescentis and a co-culture of the two 

bacterial on inulin was used to grow B. ovatus and Bi. adolescentis to investigate presence of 

antimicrobial compounds in the conditioned media (Figure 5.11). There was no obvious growth 

inhibition for either bacterium on the conditioned media, regardless of heat treatment, indicating 

the growth inhibition observed is not due to a direct killing mechanism. 

Another explanation for the lack of B. ovatus growth on inulin is perhaps the simplest, Bi. 

adolescentis out competes B. ovatus on inulin. Bi. adolescentis glycan utilisation systems target 

oligosaccharides with ESBPs specific for the target oligosaccharide (Ejby et al., 2013), whereas B. 

ovatus target polysaccharides (Martens et al., 2011). Inulin is considered a polysaccharides, despite 

being relatively short when compared to other polysaccharides (Mensink et al., 2015), which may be 

how Bi. adolescentis and ΔGH91 are able to utilise inulin without a surface endo-acting inulinase 

(Figure 5.3). During growth on inulin, B. ovatus generates high concentrations of oligosaccharide 

which are utilised by Bi. adolescentis in the co-culture. At the same time, Bi. adolescentis is capable 

of utilising inulin giving it a competitive advantage over B. ovatus which is generating 

oligosaccharides that are being utilised preferentially by Bi. adolescentis due to the high affinity ESBP 

binding the oligosaccharide and trafficking glycan towards the associated ABC transporter. While B. 

ovatus is capable of utilising inulin without degradation at the cell surface, the action of the outer 

membrane GH91 inulinase allows access to the longest fraction of inulin, as evidenced by high 

molecular weight components of the polysaccharide remaining at stationary phase of ΔGH91 

cultures (Figure 5.4b). This suggests B. ovatus targets long chain inulin or even insoluble inulin which 

is usually discarded during inulin purification. If B. ovatus does indeed utilise long/insoluble inulin it 

may also generate oligosaccharides, hence opening up inaccessible material for FOS/short chain 

inulin users. This effect is shown clearly in the B. ovatus cross-feeding with B. vulgatus or Bi. longum, 



233 
 

where the former bacterium provides oligosaccharides for the latter two in the form of inulin 

breakdown products in the growth supernatant (Figure 5.9 & 5.10). Here B. vulgatus and Bi. 

adolescentis are completely reliant on B. ovatus for glycans as both lack the ability to breakdown 

inulin but are able to utilise FOS-I. In the gut the B. ovatus may provide the same function in the 

presence of resistant/insoluble inulin, providing other members of the gut microbiota with 

accessible FOS. This has been previously shown to occur when Ruminococcus bromii utilises resistant 

starch accessible products are released and used by other bacteria in the same culture (Ze et al., 

2012; 2015).  

5.3.3 Levan Cross-feeding 

Despite being composed of fructose, levan has not been labelled as a probiotic compound in the 

same way as inulin, and has not undergone the same level of investigation into the positive effects 

of utilisation by gut bacteria. During utilisation of levan, B. thetaiotaomicron releases relatively few 

oligosaccharides into the medium compared to B. ovatus inulin growth supernatant (Figure 5.4). The 

recipient bacterium used here, Bi. adolescentis, is capable of utilising levan oligosaccharides but is 

unable to use undigested levan (Figure 5.3). Bi. adolescentis grows in the co-growth, only introducing 

a slight drop in B. thetaiotaomicron cell density from the mono-culture (Figure 5.10). These data 

demonstrate the probiotic potential of levan and levan oligosaccharides in the gut. The altruistic 

surface degradation of levan by B. thetaiotaomicron allows for cross-feeding of oligosaccharides 

generated from action of the cell surface levanase, BT_1760 (Sonnenburg et al., 2010). Bacteroides 

spp. have been shown to secret enzymes in outer membrane vesicles (Elhenawy et al., 2014). The 

vesicles are produced through budding of the outer membrane trapping periplasmic enzymes in the 

vesicles along with surface attached enzymes on the outer surface of the vesicles (Elhenawy et al., 

2014). Theses enzymes are able to degrade polysaccharides away from the Bacteroides cell surface, 

releasing oligosaccharide products that are not immediately available to the binding and transport 
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mechanisms required to sequester oligosaccharide products. BT_1760 is present in these vesicles 

(Elhenawy et al., 2014) and could contribute to cross-feeding of levan oligosaccharides. 

5.4 Conclusion 

The probiotic nature of fructans and FOS is well described and their effect on specific bacteria and 

bacteria within a mixture of other gut microbes. Until recently, however, cross-feeding of glycans 

had not been explored. Recent published data has shown release of oligosaccharide during glycan 

utilisation which become available to bacteria occupying the same niche (Rakoff-Nahoum et al., 

2014). Data presented here corroborate these conclusions, and demonstrate cross-feeding between 

Bacteroides and Bifidobacterium on both inulin and levan type fructans. Interestingly, when co-

cultured with a second inulin user B. ovatus is outcompeted, despite being able to assess a wider 

range of substrate than Bi. adolescentis. B. thetaiotaomicron is capable of supporting Bi. adolescentis 

in co-culture on levan, despite producing relatively few oligosaccharides. Use of Levan 

oligosaccharides as probiotic supplements has not been explored to the same extent as FOS-I. Data 

presented here shows the bifidogenic potential of levan through cross-feeding with B. 

thetaiotaomicron and potential for slow release of FOS-I by supplementation of food with inulin 

rather than FOS-I, through the action of B. ovatus. 

5.5 Future work 

Utilisation profiles show Bi. longum but not Bi. adolescentis is able to grow on fructose (Figure 5.3). 

The supernatant of B. thetaiotaomicron cultures grown on levan shows fructose in abundance 

(Figure 5.4). These data indicate Bi. longum may show greater growth during co-culture with B. 

thetaiotaomicron on levan than was found for Bi. adolescentis. If this hypothesis is correct it would 

demonstrate that levan oligosaccharide cross-feeding is not just limited to Bi. adolescentis but would 

include other Bifidobacterium spp, thus showing evidence of wider bifidogenic effects of these 

oligosaccharides. 
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The scope of this study did not include biochemical characterisation of the proteins encoded by the 

Bi. adolescentis and Bi. longum putative fructan utilisation loci. To confirm these loci are indeed 

responsible for fructan/FOS utilisation biochemical characterisation of recombinant enzymes and 

binding proteins would be required. Components of one Bi. adolescentis locus were already 

characterised by Sarah Shapiro (Shapiro 2015) although the second remains uncharacterised.   

Generating genomic mutations in the genes suspected to confer the ability of Bi. adolescentis and Bi. 

longum would give valuable insight into the mechanisms Bifidobacteria uses to breakdown, capture 

and transport fructans. This is a problem however as there is not robust method of generating 

Bifidobacterium mutations. There are methods that have had very limited success. Currently there is 

a library of transposon (Tn5) mutations for Bifidobacterium breve (Ruiz et al. 2013), however this 

method is not targeted mutagenesis and would not allow probing of specific components of a glycan 

utilisation system. A method for site specific genetic insertion mutation method has been 

established, although this method may be species specific (O’Connell Motherway et al., 2009). The 

mutation methodology includes protecting the transformed plasmid carrying the desired mutation 

from DNA modification systems of Bi. breve (O’Connell Motherway et al., 2009). Development of a 

reliable targeted genomic mutation protocol would be an invaluable tool in studying the glycan 

utilisation systems of Bi. adolescentis and Bi. longum.   
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Chapter 6: Final Discussion 

 

Bacteroides species have a general capacity to utilise complex carbohydrates in the human gut by 

employing conserved glycan utilisation systems based around a SusCD homologue complex that 

imports the target polymer into the periplasm (Martens et al., 2009). These systems can possess 

multiple SusCD homologues, as shown in the xylan, arabinan and RGI polysaccharide utilisation 

systems (discussed in Chapter 3 and 4). This may reflect the structural variations within the same 

class of glycan allowing different structures to be degraded and transported using the same 

apperatus. The Large xylan PUL, for example, targets both the relatively simple wheat arabinoxylan 

(WX) and the complex corn arabinoxylan (CX), with CX being broken down into large 

oligosaccharides with complex glucuronoarabinoxylan structures. In contrast, the surface GH10 

xylanase, BACOVA_04390, which is encoded by the Small xylan PUL, is able to make relatively 

frequent cuts in the WX backbone generating shorter oligosaccharides with arabinosyl substitutions. 

Each glycan utilisation system incorporates distinct SusCD homologue pairs with divergent 

sequences at the predicted ligand binding sites and it is reasonable to speculate that these 

complexes are highly specific recognising distinct structures even within the same class of glycan. 

This theory was tested in the arabinan utilisation system (Chapter 4) where the two SusC 

homologues were sequentially deleted from the genome. Surprisingly, branched and unbranched 

arabinan structures were utilised in both mutants, although to differing degrees. Arabinan with 

oligomeric arabinose sidechains have been previously described and purified from Quinoa seeds 

(Wefers et al., 2014). Similar structures may be targeted by one of the two arabinan SusCD 

homologue complexes, which unfortunately was not tested here due to lack of substrate. This 

reflects the structural diversity of glycans within a single class due to sidechains extending from a 

conserved backbone, which impacts upon the complexity of the utilisation apparatus required to 

recognise and import these structures.  
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The xylan utilisation strategies employed by Bacteroides. ovatus (discussed in Chapter 3) are not 

invariant among the Bacteroides species in the human gut that use this hemicellulosic 

polysaccharide as a growth substrate. B. xylanisolvens XB1A, capable of utilising both simple and 

complex xylans (Despres et al., 2016), possesses a similar two PUL xylan utilisation system, however, 

components shown to be key in the degradation of complex glucuronoarabinoxylans (GAXs) by B. 

ovatus are absent from the large PUL. PUL organisation is relatively well conserved between B. 

xylanisolvens and B. ovatus except for the B. ovatus genetic cluster encoding the enzymes belonging 

to families GH30, GH98 and GH115, which is replaced with a single gene for a GH5 subfamily 21 

enzyme in B. xylanisolvens. The GH5 enzyme has been shown to display activity on CX similar to that 

of the GH98 enzyme, BACOVA_03433, while also being able to degrade WX into 

arabinoxylooligosaccharides (Despres et al., 2016). This implies both B. ovatus and B. xylanisolvens 

large xylan PULs confer the ability to utilise complex GAXs without requiring extensive cell surface 

debranching prior to import. Interestingly incorporation of the GH98 xylanase gene into the large 

xylan PUL is rare, present in only five of 260 Bacteroides genomes analysed (Rogowski et al., 2015). 

Unlike the xylan PULs of B. ovatus that act independently of one another to target either simple or 

complex xylans, the corresponding PULs of B. xylanisolvens XB1A are linked at the transcriptional 

level requiring both loci for growth on xylans (Despres et al., 2016). Interestingly, cooperation of 

these PULs appears to extend to the proteomic level in which the large PUL encodes mostly surface 

localised GH enzymes, glycan binding proteins (including SusD homologues) and transporter proteins 

while the small PUL encodes enzymes involved in periplasmic glycan degradation; again this 

organisation greatly contrasts with the independent PUL organisation of B. ovatus (Despres et al., 

2016). This cooperation of xylan PULs of B. xylanisolvens XB1A, to my knowledge is highly unusual, 

and explains why regulation of the PULs are so tightly interlinked.  
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A common theme throughout each of the results chapters of this thesis is the importance of glycan 

cross-feeding among members of the gut microbiota. Chapter 3 presents data showing cross-feeding 

of xylooligosaccharides and arabinoxylooligosaccharides between B. ovatus and Bifidobacterium 

adolescentis.  Bi. adolescentis was unable to utilise the highly complex  CX-derived oligosaccharides, 

and thus fails to benefit from the depolymerisation of the xylan be B. ovatus. In cross-feeding 

experiments a mutant of B. ovatus lacking the essential GH98 surface xylanase was used in co-

culture in place of Bi. adolescentis to represent a potential CX oligosaccharide utilising bacterium. 

The data clearly showed that B. ovatus was able to make CX-derived oligosaccharides available to 

other organisms in the human gut microbiota. This strategy was also used to demonstrate cross-

feeding during growth of B. thetaiotaomicron on pectins described in Chapter 4. Again the potential 

recipient of glycan products was a mutant lacking an oligosaccharide generating surface enzyme 

which was required for growth on the cognate pectin. In Chapter 5 fructan cross-feeding was 

demonstrated with the highly studied prebiotic inulin and, to a lesser extent, levan. The degree to 

which cross-feeding occurs during Bacteroides utilisation of polysaccharides implies this is a common 

feature of the glycan utilisation systems of this genus, with the selfish utilisation of yeast mannan 

(Cuskin et al., 2015) representing a rare event. The ubiquity of oligosaccharide release and the 

occurrence of cross-feeding during growth on the glycans tested implies that this sharing of 

nutrients is a positive selection pressure, which, if correct, suggests that there must be some benefit 

to the donor Bacteroides spp. It is possible cross-feeding is used to promote species diversity within 

the gut microbiota, enriching for bacteria unable to utilise polysaccharides, but which possess 

oligosaccharide utilisation systems.  

Polysaccharides in the diet undergo mechanical mastication in the mouth, solubilisation and 

digestion by amylases in saliva before acid treatment and churning in the stomach. Although these 

processes can work to break apart the plant cell wall some structures enter the gut relatively intact, 

and the cytoplasmic storage glycans are inaccessible to the oligosaccharide utilising bacterium. Thus,  

species like R. bromii (Ze et al., 2012), B. thetaiotaomicron and B. ovatus, that possess surface 
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(Sonnenburg et al., 2010; Rogowski et al., 2015) and secreted enzymes (Elhenawy et al., 2014), are 

required to open up these structures, enabling oligosaccharide release. Presence of glycan utilisation 

systems which specifically target oligosaccharides over polysaccharides in the gut imply co-evolution 

with other species that are the donor organisms in cross-feeding processes. 

Many studies have shown reduction of gut microbe abundance and diversity during antibiotic 

intervention, leading to potential Clostridium difficile infection, among other disorders (Rodriguez et 

al., 2015). C. difficile infection is typified by frequent diarrhoea, which leads to decreased GI-transit 

time for dietary fibre and increased likelihood of the evacuation of gut microbes like Bacteroides 

(Rodriguez et al., 2015). This is an extreme example, but Bacteroides oligosaccharide release may 

play a maintenance role in promoting bacterial diversity in the gut, hence avoiding even minor forms 

of dysbiosis. On the other hand, oligosaccharide release during glycan utilisation may just simply 

reflect an imbalance in oligosaccharide production at the cell surface and import which is 

widespread among Bacteroides spp. 

Each Bacteroides annotated genome shows differences in predicted PUL content and hence different 

potential polysaccharide utilisation profiles. Chapter 3 describes the degradation and utilisation of 

xylans a polysaccharide found within the hemicellulose fraction of the plant cell wall. Similarly, 

Larsbrink et al. (2013) describe utilisation of xyloglucan, another hemicelluloitic polysaccharide, by B. 

ovatus. Interestingly, B. thetaiotaomicron, despite possessing upwards of 88 PULs (Martens et al., 

2009), is unable to utilise any hemicellulose glycan (Martens et al., 2011). In contrast, B. ovatus was 

found to utilise all hemicellulose polysaccharides, with the exception of lichenin and laminarin 

(Martens et al., 2011). In Chapter 5 growth of B. ovatus and B. thetaiotaomicron on fructans were 

tested. Here, and in the Martens et al. (2011) study, B. thetaiotaomicron was able to grow on levan 

but not on inulin, where the opposite was found to hold true for B. ovatus. Such differences in 

polysaccharide utilisation, even between relatively similar substrates, implies B. thetaiotaomicron 

and B. ovatus occupy different niches within the human gut. Lack of glycan utilisation systems 



240 
 

targeting hemicellulose polysaccharides may indicate B. thetaiotaomicron occupies an area of the 

gut in which little of this substrate is available. Inulin is a plant glycan entering the gut as part of the 

host diet (French, 1998). While levan can be also be a derived from plant material it is more 

commonly found in extracellular bacterial capsules of certain symbiotic species (Han, 1990).It should 

also be noted that B. thetaiotaomicron shows better growth on host-derived glycans such as mucin 

and chondroitin sulphate than B. ovatus (Martens et al., 2011), implying a much tighter association 

of the former with the mucus layer of the gut than the latter species. This tighter mucus association 

may allow B. thetaiotaomicron access to capsule producing bacteria trapped within the mucus layer 

of the gut. While the preference for glycans more likely to be in the lumen of the gut suggests B. 

ovatus may have a looser association with the mucus layer or gut wall allowing it to occupy the 

lumen where the preferred substrates are more likely to be present. Interestingly, there is 

considerable overlap in the pectic polysaccharide utilisation loci of both Bacteroides discussed here. 

Each has the potential to utilise all available pectic polysaccharides, indicating pectins are prevalent 

in each species preferred niche. This may be due to the gel like quality of pectin, a thicker viscous 

glycan mixture which fulfils a space filling role dictating plant cell wall flexibility (Mohnen, 2008). 

These physical qualities along with the tight association of pectin with the recalcitrant structural 

polysaccharides (Mohnen, 2008) could allow pectin to be present in multiple niches in the gut, hence 

available to B. ovatus and B. thetaiotaomicron. 
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Final Conclusions 

Dietary glycans offer a great challenge gut bacteria must overcome to access fermentable substrate 

to yield energy for growth. One such strategy for overcoming this challenge is offered by the 

Bacteroides glycan utilisation system, typified by the presence of SusCD-homologue complexes for 

glycan binding and transport and CAZymes to complete degradation of the target glycan. These 

systems, while sufficient for growth, are subject to product loss. These products can then be utilised 

by other members of the gut microbiota, which have developed specific mechanisms of 

oligosaccharide scavenging. In the case of Bifidobacerium spp, an extracellular solute binding protein 

with great affinity for oligosaccharides is employed to harvest short glycans from the gut lumen. In 

this thesis several rationales have been suggested for cross-feeding interactions, however, without 

studies involving cross-feeding in a simplified gut microbiota in vivo, these concepts remain 

speculation. Cross-feeding may be exploited by the food industry to produce slow-acting, longer 

term prebiotic treatments by administering the polysaccharide rather than oligosaccharide (eg. 

Inulin/Levan rather than FOS) enabling, for example, B. ovatus/B. thetaiotaomicron to generate FOS 

during utilisation of Inulin/Levan, causing slower FOS release giving longer acting prebiotics.  

Several Bacteroides glycan utilisation systems have been characterised to date, a list to which this 

work adds, each presenting subtle variations upon the generic glycan utilisation system to overcome 

specific challenges present by the target glycan. Further studies of these systems may still yield 

interesting mechanisms of glycan degradation and utilisation.  
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Appendix A 

A.1 Protein localisation based on LipoP 1.0 analysis 

LipoP analysis of protein sequences expressed as recombinant proteins in this project was used to 

predict the cellular localisation when expressed in Bacteroides. There are 3 possible locations for 

each protein discussed here, surface attached lipoprotein, periplasm facing lipoprotein and soluble 

in the periplasm. LipoP uses analysis of N-terminal signal sequences to predict protein localisation in 

gram negative bacteria (Figure A.1). The analysis output gives 4 predicted classes, SpI, signal peptide 

I, SpII, lipoprotein signal peptide II, TMH, n-terminal transmembrane helix and CYT, cytoplasmic. The 

lipoprotein signal typically included a cysteine at position 20 which is used to covalently link the 

protein to the lipid membrane. Figure A.1 shows an example result of BACOVA_04390 and 

BACOVA_04387 signal sequence analysis with LipoP 1.0. The LipoP results gives potential cleavage 

sites and a prediction of the signal sequence present. When multiple possible sites are found the 

software generates a graph showing the most likely cleavage site (Figure A.1). The results show 

presence of a lipoprotein signal (SpII) at the N-terminal of BACOVA_04390 and signal sequence (SpI) 

at the N-terminal of BACOVA_04387. 
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Figure A.1 LipoP 1.0 results of sequence analysis of BACOVA_04390 and BACOVA_04387. 
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Protein Predicted 
function/Activity 

PUL Predicted Cellular 
location 

BACOVA_04390 GH10/CBM Xylan Surface 

BACOVA_04387 GH10 Periplasm 

BACOVA_03432 GH30 Surface 

BACOVA_03433 GH98 Surface 

BT_4667 GH2 Galactan Periplasm 

BT_4668 GH53 Surface 

BT_4669 SGBP Surface 

BT_4670 SusD Surface 

BT_4673 HTCS Periplasm 

BT_0348 GH51 Arabinan Periplasm 

BT_0360 GH43 Surface 

BT_0361 SusD Surface 

BT_0363 SusD Surface 

BT_0365 SGBP Surface 

BT_0366 HTCS Periplasm 

BT_0367 GH43 Surface 

BT_0368 GH51 Periplasm 

BT_0369 GH43 Periplasm 

BT_4151 GH2 RGI Periplasm 

BT_4156 GH2 Periplasm 

BT_4160 GH35 Periplasm 

BT_4181 GH2 Periplasm 

Table A.1 Prediction of protein localisation discussed in this project 

 

A.2 Validation of GH10 kinetic analysis of XOS hydrolysis 

In chapter 3.2.2.3 characterisation of the pair of GH10 enzymes, BACOVA_04390 and 

BACOVA_04387, by substrate depletion requires the concentration of substrate to be such that it is 

below the KM of the enzymes to ensure reaction rates observed are within the linear phase of the 

reaction curve (Michaelis-Menten).  

𝑘. 𝑡 = 𝑙𝑛 (
[𝑆0]

[𝑆𝑡]
) 

(Equation A.1) 
 
Where: k = kcat/KM, t = time, and [S0] and [St] represent the substrate concentration at time 0 and t, 

respectively. This relationship is only valid when the concentration of enzyme, [E], is <<than 

substrate concentration, [S], << KM (Matsui et al., 1991). 
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To ensure the substrate concentration used was indeed below the KM of the enzymes different 

concentrations of substrate was used with the same concentration of enzyme (0.05 µM). Initial 

scoping experiments suggested the highest activity of each enzyme would be on xylohexaose (X6, 

Data not shown) so this was used as the substrate to investigate which enzyme concentration to use 

in the assays (Table A.2).   

Enzyme Substrate 
concentration (µM) 

Enzyme 
concentration (nM) 

Rate  
(min-1 mM-1) 

BACOVA_04390 75 50 110 

50 50 102 

25 50 120 

BACOVA_04387 75 50 3208 

50 50 3250 

25 50 3256 

Table A.2 I Rate of substrate depletion of different concentrations of X6 by BACOVA_04390 and 

BACOVA_04387. 

 

Although amount of products differs as substrate concentration was changed the rates remained 

consistent (Table A.2), indicating that the reaction was indeed within the linear phase of Michaelis-

Menten kinetics curve.  

A.3 Bacteroides qPCR Tag insertion 

Insertion of unique sequences, referred to as ‘Tags’, into Bacteroides genome were performed as 

described in chapter 2.9.4. PCR from the resulting genomes were run on agarose gels (Figure A.2). 

These PCR products were produced using primers to target either Tag sequence or ATT site 1. The 

presence of 200 bp Tag1 or Tag11 product, indicate these products have successfully been inserted 

into the genome while the ATT site 1 products indicate the tag had inserted into ATT site 2. These 

tags were used as targets for qPCR to identify different Bacteroides strains in a co-culture. 
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Figure A.2 Examples of agarose (0.8 %) DNA gel showing conformation of tag1/11 insertion into 
Bacteroides genome. 

 

A.4 Recombinant pectin PUL Protein Expression 

Chapter 4 gives examples of a few expression gels of recombinant proteins used in that chapter. 

Figure A.3, Figure A.4 and Figure A.5 show a full list of expression gels of all proteins used in chapter 

4. 
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Figure A.3 Galactan PUL protein expression SDS-PAGE. Fractions collected from IMAC were subjected 
to SDS-PAGE to evaluate protein content. Lane 1, High/wide molecular weight marker, 2, cell pellet, 
3, cell lysate, 4, flow through, 5, wash fraction, 6, elution fraction, 7, elution fraction, 8, low/wide 
molecular weight marker. Values of weight marker are given in kDa. 
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Figure A.4 Arabinan PUL protein expression SDS-PAGE. Fractions collected from IMAC were subjected 
to SDS-PAGE to evaluate protein content. Lane 1, High/wide molecular weight marker, 2, cell pellet, 
3, cell lysate, 4, flow through, 5, wash fraction, 6, elution fraction, 7, elution fraction, 8, low/wide 
molecular weight marker. Values of weight marker are given in kDa. 
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Figure A.5 RGI PUL protein expression SDS-PAGE. Fractions collected from IMAC were subjected to 
SDS-PAGE to evaluate protein content. Lane 1, High/wide molecular weight marker, 2, cell pellet, 3, 
cell lysate, 4, flow through, 5, wash fraction, 6, elution fraction, 7, elution fraction, 8, low/wide 
molecular weight marker. Values of weight marker are given in kDa. 
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A.5 Validation of BT_4668 (GH53) kinetic analysis of galactooligosaccharide hydrolysis 

In Chapter 4.2.2.3 kinetic analysis of BT_4668 action was peformed using HPAEC to assay for depletion 

of each oligosaccharide substrate in a reaction mixture. As mentioned in Appendix A.2 this relationship 

of rate of substrate depletion by enzyme concentration is only valid in the linear phase of the reaction 

where the enzyme is at maximal possible activity giving a direct readout of kcat/KM of the reaction. This 

is validated by ensuring the substrate concentration is sufficiently below the KM of the enzyme on 

that specific substrate. Preliminary investigation showed the highest activity, thus likely the lowest KM 

would be when the enzyme is acting on galactohexaose (Gal6). The concentration of substrate was 

altered and rate of substrate depletion was measured for each reaction (Table A.3). Indeed for each 

of the concentrations used the rate of substrate depletion remained the same indicating the reaction 

remained in the linear phase of the reaction, according to Michaelis-Menten reaction kinetics. 

Enzyme Substrate 
concentration (µM) 

Enzyme 
concentration (nM) 

Rate  
(min-1 mM-1) 

BT_4668 75 50 23.3 

50 50 18.6 

25 50 20.2 

Table A.3 Rate of substrate depletion of different concentrations of Gal6 by BT_4668. 
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Appendix B: Primer list 

Primers used in this project are listed in table B.1.  

Primer Name Sequence Use 

BT_4668E180AF GAATGGGTACAGGTAGGTAATGCGACAACTCCCGGCATGATG Mut 

BT_4668E180AR CATCATGCCGGGAGTTGTCGCATTACCTACCTGTACCCATTC Mut 

BT_4668E292AF ACAAACCTGTCATGATTTGCGCGATAGGTATGCCTTATGATCAG Mut 

BT_4668E292AR CTGATCATAAGGCATACCTATCGCGCAAATCATGACAGGTTTGT Mut 

BT_4668pEXF CTCGACTCTAGAAACGGGTGTAGTGAA CpEX 

BT_4668pEXR CTCGACCAGCTGTTATTGGATTTTAAAAG CpEX 

BT_4667EAF Gtggagtatcggtaatgcggtccccacgcaatgc Mut 

BT_4667EAR GCATTGCGTGGGGACCGCATTACCGATACTCCAC Mut 

BT_4667pEXF ATAAGTAGTCGACATGCTACAGGCACAGCGCAGCGAG CpEX 

BT_4667pEXR CGCGGTATCTAGATTATTTCGTCAGAAGACGGATACTTCC CpEX 

BT_4669FF ATAAGTAGTCGACAACTGAAAGAACTGGTTGCCGAA SOE 

BT_4669FR CATAATCCACTCTATTAAAAAGATACGATATCAGTTTCAATG SOE 

BT_4669BF TTAAAAAGATACGATATCAGTTTCAATGAAAATAGCAAGC SOE 

BT_4669BR GTAGGTATCTAGAATTATAGCCATTCGGGGCTTG SOE 

BT_4670FF ATAAGTAGGATCCAGATCTGGCATTCTTAGAAAAC SOE 

BT_4670FR GTATCTTTGCACCATACGATTATTGTTAGTATATTA SOE 

BT_4670BF GTATGGTGCAAAGATACGATATGAAAGTTTTT SOE 

BT_4670BR CTAAATATCTAGATATCGGTTGTTTCCCGGTTGTA SOE 

BT_4673pETF ATAAGTAGTaatatttatctcggtgctga CpET 

BT_4673pETR CGCGGTATCTcggtggaagaatccggatattcagaata CpET 

BACOVA_05493FF AACATTCGAgtcgacAATAAAGATTCGCTGCTG SOE 

BACOVA_05493FR CCGATAAATTTGATAGCTCATTCTTAAAGTTCCCCG SOE 

BACOVA_05493BF CGGGGAACTTTAAGAATGAGCTATCAAATTTATCGG SOE 

BACOVA_05493BR GGCGGCCGCTCTAGA TGTAATCTTCAGTTTATCC SOE 

GalPULFF ATAGCTGGATCCTTGTAAAAGAAGAAGGC SOE 

GalPULFR CTAAAATGCCTTCTCACTTTTTTATTGGATT SOE 

GalPULBF AAAAGTGAGAAGGCATTTTAGGGCTTTTCG SOE 

GalPULBR TTCAATCTAGATGTCGTTCGGGTTTATA SOE 

BT_0365FF AGTAATGTCGACCTTCGTGAACAGTATCATGTAC SOE 

BT_0365FR ACTAAACTTTAAGGTAAGTAGTAACGGCCATTTCCTTGTC SOE 

BT_0365BF GGCCGTTACTACTT ACCTTAAAGTTTAGTATACATGAAAA SOE 

BT_0365BR GATATA TCTAGA CATACGTTTGGTACCGCCCTGTA SOE 

BT_0362FF AGTAATGTCGACGCCGATGCAGCGCAAAG SOE 

BT_0362FR CTGTTTTATTGAATGATCAGTTAATTGTTCCAACCCGGG SOE 

BT_0362BF TGGAACAATTAACTGATCATTCAATAAAACAGCAAAGAA SOE 

BT_0362BR GATATA TCTAGA GCCTACCGGCAGGAATACTTTTTC SOE 

BT_0364FF AGTAAT GGATCC GGTGCATTCATTTATGGTGC SOE 

BT_0364FR CATGTCTTATATCTGGTATACTAAACTTTAAGGTTTAATTC SOE 

BT_0364BF AAAGTTTAGTATACCAGATATAAGACATGAAAAAGACAA SOE 

BT_0364BR GATATA TCTAGA TACATCATTACGCCAGAAGATC SOE 

BT_0360DAF GGCAGCGTGCAGCGACGCGGATGAAAACTCCGCATCAGG  Mut 

BT_0360DAR CCTGATGCGGAGTTTTCATCCGCGTCGCTGCACGCTGCC Mut 

BT_0360pEXF AGTAATGGATCCCAGCGACGACGATGAAAACT CpEX 
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BT_0360pEXR GCAAGATCTAGATTATTGGAGTTTCTTCCCCC CpEX 

BT_0367DAF CTCCTTCTGCTAATTCTTGGGATGCGAATTATTTATCAGTAGCC Mut 

BT_0360DAR GGCTACTGATAAATAATTCGCATCCCAAGAATTAGCAGAAGGAG Mut 

BT_0367pEXF CGTGCTGGATCCAATTCTTGGGATGATAATTATTTATC  CpEX 

BT_0367pEXR GTAATATCTAGAGATTCTTTTTCCCCAGACAGAACG CpEX 

BT_4156EAF GGAGTAACGGAAACGCGGGCGGCTGGAAT Mut 

BT_4156EAF ATTCCAGCCGCCCGCGTTTCCGTTACTCC Mut 

BT_4156pEXF GATAACATTCGAGTCGACatcgaagttccctgtaac CpEX 

BT_4156pEXR TGGCGGCCGCTCTAGAgtcaaacatcagattcag CpEX 

BACOVA_04390AE1F ggcaagttgattaaagtatccGCCttggatattaaggttaacac Mut 

BACOVA_04390AE1R GTGTTAACCTTAATATCCAAGGCGGATACTTTAATCAACTTGCC Mut 

BACOVA_04390AE2F CatgcatgggacgtagtcaatGCGccaatggatgacggaaaaac Mut 

BACOVA_04390AE2R GTTTTTCCGTCATCCATTGGCGCATTGACTACGTCCCATGCATG Mut 

BACOVA_04390pEXF CGCGGATCCATGGAGTGGTATAAAGACCCTAC CpEX 

BACOVA_04390pEXR CCCTCTAGATTCCAAATCTCCGGTAAAGTCTC CpEX 

BACOVA_03433E361AF tcttggtttcaattattgtGCCcagttttgggggtatgatg Mut 

BACOVA_03433E361AR CATCATACCCCCAAAACTGGGCACAATAATTGAAACCAAGA Mut 

BACOVA_03433D467AF tcagtacggcatccgtttcGCG caatgcggctggacagagg Mut 

BACOVA_03433D467AR TCTGTCCAGCCGCATTGCGCGAAACGGATGCCGTACT Mut 

BACOVA_03433pEXF cgcGTCGACTGTATTCTTGGTTCCTGTAAAGATGAC CpEX 

BACOVA_03433pEXR cccTCTAGATTTTCTTTCGATAACAATGTTGTCGAG CpEX 

Tag1Forward ATGTCGCCAATTGTCACTTTCTC qPCR 

Tag11Forward ATGCCGCGGATTTATTGGAAGAA qPCR 

TagReverse CACAATATGAGCAACAAGGAATCC qPCR 

ATT1Forward CCTTTGCACCGCTTTCAACG Diag 

ATT1Reverse TCAACTAAACATGAGATACTAGC Diag 

Table B.1 Primers used in this Project. The primers a classified by use, Mut, site directed mutagenesis, 
CpEX, cloning into pExchange, CpET, cloning into pET, SOE, for overlap extension PCR, qPCR, denotes 
which primers were used to amplify tags in qPCR and, Diag, for primers used indiagnostic PCR. 
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Appendix C: Chemicals, Media, Enzymes and Substrate Suppliers 

 

C.1 Chemicals 

Amersham-Boehringer Mannheim 

2’-Deoxyadenosine 5’-triphosphate (dATP) 

2’-Deoxycytidine 5’-triphosphate (dCTP) 

2’-Deoxyguanosine 5’-triphosphate (dGTP) 

2’-Deoxythymidine 5’-triphosphate (dTTP) 

 

BioGene 

 Electrophoresis grade agarose 

 

British Drug Houses (BDH) 

 Acetic Acid (Glacial) 

 Acrylamide solution (40% w/v; Electran) 

 Boric acid 

 Bromophenol blue 

 Citric Acid 

 Calcium Chloride 

 Chloroform 

 Dimethylformamide 

 Ethanol (industrial grade) 

 Hydrochloric acid 

 Isopropanol 

 Magnesium Chloride 

 Magnesium sulphate 

 Methanol  

 Polyethelene glycol MW 400 (PEG-400) 

Polyethelene glycol MW 550 (PEG-5500) 
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Polyethelene glycol MW 1000 (PEG-1000) 

Polyethelene glycol MW 20000 (PEG-20000) 

Sodium acetate 

Sodium Chloride 

Sulphuric acid 

 

Fisions 

 46/48% w/v NaOH 

 Sodium acetate trihydrate 

 

James Burrough (F.A.D.) Ltd 

 Ethanol 

 

Megazyme 

 Sugar beet arabinan 

 Debranched arabinan 

 Linear Arabinan 

 Arbinooligosaccharides (DP 2-8) 

Arabinose 

RGI 

Galactan from potato 

 Galactan from lupin 

Galactose 

Lactose 

Inulin from chicory 

 Fructan from onion 

 Fructan from wheat 

 Fructan from agave 

 Neosugar (FOS) 
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 Raftilose (FOS) 

 Kestose 

 Kestotetraose 

 Kestopentaose 

 Fructotriose 

 

Melford Laboratories  

 Isopropyl-β-D-thiogalactosidase (IPTG) 

 HEPES 

 

G.E. Healthcare 

 Agarose (ultrapure) 

 

Sigma-Aldrich 

 3,5-Dinitrosalasylic acid (DNSA) 

 Ammonium persulphate 

 Ampicillin 

 Bis tris propane 

 Bovine serum albumin, fraction V (BSA) 

 Chloramphenicol 

 Coomassie brilliant blue G 

 D-Glucose 

 di-Sodium hydrogen phosphate 

 Ethelene diamine tetra-acetic acid, disodium salt (EDTA) 

 Ethidium bromide 

 Ethylene glycol 

 Glycerol 

 Imidazole 

 Kanamycin 
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 Tetracycline 

 Levan from E. herbicola 

 Levan from Z. mobilis 

 N,N,N’,N,-Tetramethylethylene diamine (TEMED) 

 Nicotinamide adenine dinucleotide-reduced 

 Phenol 

 Polyethylene glycol MW 3350 (PEG-3350) 

 Sodium bicarbonate 

Sodium carbonate 

Sodium dihydrogen orthophosphate 

Sodium dodecyl sulphate (SDS) 

Sucrose (nuclease free) 

Trizma base (Tris) 

Β-Mercaptoethanol 

 
 

C.2 Media 

Difco 

Bacto®tryptone/peptone 

Bacto®yeast extract 

 

Oxoid 

 Bacteriological Agar 

 

Sigma-Aldrich 

LB Broth 

Clostridial Media 
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C.3 Enzymes 

MBI Fermentase 

 DNA restriction endonucleases 

 

Invitrogen 

 Bacteriophage T4 DNA ligase 

 

Novagen 

 KOD HotStart DNA polymerase 

 

Stratagene 

 Dpn1 restriction endonuclease 
 

C.4 Kits 

 Plasmid Mini Kit 

 Plasmid Midi Kit 

 Qiaquik Gel Extraction Kit 

 Qiaquik PCR Purification Kit 

 

Sigma-Aldrich 

 GeneEluteTM Bacterial Genomic DNA Kit 

  

Stratagene 

 QuikChangeTM Site-Directed Mutagenesis Kit 

 

Megazyme 

 D-Mannose/D-Fructose/D-Glucose assay Kit  

 Galactose/Arabinose assay kit 

 Acetic acid detection kit 
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Roche 

 LightCycler® 480 SYBR Green I Master 

 
 


