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Abstract: 

The amount of biopesticides currently used in pest control is still below 1% of the 

global pesticide market, with environmentally damaging products constituting the 

majority of all commercial insecticides. There is thus an increased need for 

biopesticides, including those from invertebrate venoms, which are often highly 

specific. One example of this is to use a fusion protein approach where a peptide-toxin 

is fused to a carrier protein, in this instance GNA, which has the capability of crossing 

the insect gut epithelium allowing inhibitory molecules of the neuromuscular system to 

be delivered to these remote sites of action via oral ingestion. 

In this study, five variants of spider Segestria florentina toxin (SFI) fused to snowdrop 

lectin (Galanthus nivalis agglutinin; GNA) were successfully expressed in Pichia 

pastoris X33 and subsequently purified. To improve the level of expression of the intact 

recombinant protein SFI1/GNA, an expression vector construct containing two gene 

copies was assembled. Insecticidal activities of all these novel fusion proteins were 

demonstrated by oral feeding to Myzus persicae. SFI1, SFI3, SFI5, SFI6, and SFI8 

GNA-based fusion proteins (0.1 mg/ml), which target voltage-gated ion channels in the 

insect CNS, caused significant mortality to M. persicae compared to GNA alone. LC50 

values for the variants 2XSFI1/GNA, SFI5/GNA and SFI8/GNA were 0.006 mg/ml, 

0.038 mg/ml, and 0.08 mg/ml respectively. The GNA-based fusion proteins expressing 

-conotoxin E1 from cone snails, which target nicotinic acetylcholine receptors, was 

also successfully expressed in P. pastoris; in these, GNA was at the N-terminus and the 

toxin at the C-terminus. The LC 50 values for the GNA/-conotoxin E1 was 8 μg/μl. 

The results demonstrate that these candidate molecules show promise for future 

development as bio-pesticides. 
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1 Chapter 1 Introduction 

1.1 The global insect pest problem 

1.1.1 Agricultural pests 

Insects are the most diverse species in the animal kingdom, there are more than 900,000 

species of insect worldwide. Most insects are directly important to both human life and 

the environment. Several insect species are pollinators, decomposers of organic matter, 

garbage collectors, soil conditioners and natural fertilizer producers. Interestingly, some 

insect species are predators or parasitoids, which involves other harmful pests. In 

general, insect pest contribute to the destruction of nearly 14 % of global crop product, 

by either direct feeding on stored product or on the non-harvested crop in the field. It is 

estimated that more than USD 100 billion is lost annually to the activity of insect pest 

(Santos et al., 1990). Some of the most destructive insect pests of food products are 

Coleoptera (beetles) and Lepidoptera (moths and butterflies). Indeed, 40% of chemical 

insecticides are directed against larval forms of lepidopterans (Brooks, 1999). However, 

it is worthy of note that other insect species like aphids are undoubtedly widespread, 

with approximately 4400 species worldwide.  Though, 250 species of aphids are 

classified as serious crop pests, they still present major losses to production of important 

crops (Remaudiére  and Remaudiére, 1997; Blackman and Eastop, 2006).  

Aphid species like the Myzus persicae (the peach potato aphid), is considered an 

important agricultural pest worldwide. They cause direct damage through the extraction 

of phloem sap that results in reduced crop yield. They also cause indirect damage by 

transmitting plant viruses to economic crops. Nault (1997) demonstrated that over 50% 

of insect borne plant viruses are transferred by aphids. Similarly, aphid’s excreta are 

high in sucrose, which can cause indirect damage through increased insect population.  

The excreta of aphids also help in growth of sooty mould that reduces the rate of 

photosynthesis by covering plant leaves (Vickers, 2012). It has been shown that aphids 

use both visual and chemical signals to select and locate a host plant (Vickers, 2012). 

Over the past 5 decades, aphids and other phytophagous (plant- eating) insects have 

been recognised as a major threat to food production for human consumption. In 2001, 

the estimated combined cost of all protective approaches against crop damage in the US 

alone is about USD 7.56 billion (Beckmann and Haack, 2003). Soybean aphids alone 

are responsible for more than USD I billion in crop loss. A study conducted by (Pan-

UK, 2003), found that over 3 billion kilograms of pesticides is applied worldwide per 

year at a cost of nearly USD 40 billion. Additionally, 500 million kilograms of more 
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than 600 different pesticide types are used in the United States only, with estimated cost 

of USD 10 billion (Pimentel and Greiner, 1997). 

 

European Union (EU) directives calling for legislation against the use of persistent 

pesticides in crop protection and more recently the ban on neonicotinoids due to 

potential negative effects on beneficial insects, in particular bees, have been the driving 

factor for the renewed call for safe pest control methods. However, improvement in pest 

control strategies should be based on the precautionary principle in existing EU 

legislation. The EU regulation is targeted at reducing the negative impact of p9esticide 

on both human and animal health, and the environment. Therefore, the need for safer 

pest control should take precedent over the push to improve agricultural yield (EU 

communication to the Council, 2006). To address the problem posed by toxic pesticides, 

alternative approaches to chemical control are needed, which will help to develop high 

quality and larger quantities of agricultural products.   

 

1.2  Factors limiting the efficacy of conventional agrochemical pesticides 

Since the introduction of the first DDT based product in 1940s, arthropod pests have 

been successfully controlled using chemical agents.  The successful application of DDT 

in agriculture has been replicated in the fight against malaria (Attaran et al., 2000). Up 

until the 1950s, it was thought that chemical pesticides could successfully lead 

widespread control of insect pests. However, the development of resistance to such 

chemical pesticides had occurred in many insect pest species, with over 400 arthropod 

species gaining resistance to a wide range of chemical pesticides (Pospischil and Hanke, 

1994). Additionally, part of the reason suggested for the development of alternatives to 

chemical pest control is that chemical control has a limited number of nervous system 

targets and lacks selectivity, which often targets both pests and non-target species 

(Feyereisen, 1995). There is an increasing concern over the effects of chemical control 

strategies on both humans and animals.  Indeed, a study conducted by Metcalf (1994)  

found that only 0.1 % of agrochemical control agents applied each year actually target 

the intended pests, the study suggested that a large proportion of such chemical agents 

remain in the environment to affect other organisms (Weisser  and Siemann, 2004).  

Moreover imbalance in the ecosystems gradually develops over time, which causes 

more complications to the ecosystem (Weisser and Siemann, 2004).  
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1.2.1 Insecticide resistance  

Insecticidal resistance is a recognised threat to human welfare because it negatively 

affects crops and increases the cost of agricultural production. Over the years, many 

mechanisms and non-exclusive mechanisms that enable a species to develop resistance 

to insecticides have been identified, including changes in metabolic pathways and point 

mutations at a site which renders an insect resistant to a particular insecticide.  M. 

persicae has been the most successful in exploiting the agricultural environment and it 

is considered as one of the most important pests. Various insecticides have been used on 

the peach aphid but the pressure from such control measures has facilitated the 

development of resistance to most of them. In peach aphids, four mechanisms have been 

described by various researchers. These mechanisms include target or metabolic site 

mutations, this is important because these compounds modify the acetylcholine 

receptors or cause mutations in Na+2 channels (Martinez-Torres et al., 1999). Anthony 

et al. (1998) also described a mechanism based on a mutation in the GABA-Rdl 

receptors. Also, Bass et al. (2011b) recently reported that they created a mutation in 

nAChR b1 subunit that conferred resistance against insecticides. Another important 

mechanism is the overproduction of E4 or EF4 esterases and cytochrome P450.  Finally, 

the plant allelochemical detoxification system, which is present in insects, has been 

implicated in insecticidal resistance (Silva et al., 2012). Due to these molecular 

mechanisms, most insect pests are immune to organophosphates, dimethyl carbamates 

and pyrethroids. Currently, for the purpose of controlling insect pest populations, 

neonicotinoids such as imidacloprid, thiamethoxam, clothianidin and acetamiprid have 

been used. However, the use of neonicotinoids have been met with a few cases of 

resistance in developed countries like USA. Moreover, biochemical and genomic 

analysis of M. persicae samples collected from Greece was reported to have 40-fold 

resistance to neonicotinoids. Resistant aphids have been shown to contain 

approximately 18 copies of P450 genes compared to two copies in normal aphids, which 

was linked to pesticide resistance (Bass et al., 2011b).  

Health consequences and environmental impacts 

In addition to issues associated with insecticidal resistance, a variety of chronic health 

effects associated with insecticides in food production have been documented. For 

instance, exposure to pesticides have been linked to the development of cancers. 

Similarly, a study conducted by (Garabrant et al., 1992) found high mortalities among 
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pancreatic cancer patients often exposed to pesticides. Additionally, Beard  (2006) 

reported a link between exposure to pesticides and long-term neurological effects, and 

McCarthy (1993) suggested that a number of potential hormone related diseases can be 

induced by pesticides, including adverse reproductive outcomes in humans.   

As a result of pesticides in both natural and agriculture ecosystems, many beneficial 

species especially predators and parasites, are adversely affected (Pimentel  et al., 

1993). On the one hand increased pesticide use reduces the population of beneficial 

predators and parasites, on the other, pesticide can cause reduction in the number of 

beneficial species. This can negatively impact on food security and agricultural 

productivity. A number of pesticides are known to have lethal effect on bees, while 

others have sub-lethal effect that decreases the ability of bees to thrive (Decourtye et al., 

2004). Subsequently, affecting pollination and crop yield, this is in line with the fact 

that one third of all plants consumed by humans are pollinated by bees. About 90% of 

flowering plants are pollinated by animals and insects. Increasing food productivity is 

essential in meeting the requirements of the growing global population.  Improvement 

of pest management is the best approach to increasing crop protection, which can be 

done by developing alternatives to chemical pesticides and new pest control strategies 

that work through different modes of action.  

1.3  Development of bio- pesticides 

Several studies have highlighted the importance of exploiting a variety of natural 

substances in the production of novel biopesticides. These natural substances can be 

derived from several sources including animals (e.g. nematodes) (Fuxa , 1991; Beard  et 

al., 2001), microorganisms e.g. Bacillus thuringiensis, venoms of predator/ parasitoid 

arthropods such as spiders (Tedford et al., 2004; Nicholson , 2006), and cone snails 

(Olivera, 2002). Hence, biopesticides can provide a plethora of pest control methods 

that are non- toxic to the environment and human health. Biological agents are highly 

effective against pest species, often highly specific, and degrade rapidly in the 

environment. Due to these unique features such compounds are considered as potential 

stand-alone bioinsecticides. Moreover, transgenes of predator toxins can be expressed in 

transgenic plants to enhance resistance to insect pests.  
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1.3.1 Arthropod venoms as natural insect pest control agents  

Venom peptides isolated from predator/parasite arthropods such as spiders, scorpions, 

snakes, wasps, predacious mites and aquatic cone snails provide a rich source of natural 

insecticides. These peptides have evolved to target a wide range of receptors and ion 

channels in the insect nervous system (Froy  et al.,2000; Gould  and Jeanne, 1984; 

Tomalsk i et al., 1988; Olivera , 2002).   These arthropod venoms are a heterogeneous 

mixture of salts, low molecular weight, and polypeptides. Whilst some are specific to 

invertebrates, others target vertebrates and yet others affect both (Escoubas et al., 2000; 

Loret  and Hammock, 1993). A subset of arthropod venom is often a mixture of 

polypeptide toxins generally targeting specific subtypes of voltage ligand ion channels 

(Lewis  and Garcia, 2003; Sollod et al., 2005).  Some of these peptides have unusual 

targets such as the intracellular calcium – activated ryanodine channel (Fajloun et al., 

2000). The activity of such peptides make them useful therapeutic agents that can be 

used to modify the activity of ion channels implicated in human disease. For instance, 

one ω-conotoxin, has been shown to target different species of fish. Source of ω-

conotoxin include MVIIA from conus magus, which was the first ω-conotoxin to be 

approved by the food and drug administration for the management of several human 

chronic pains (Jain, 2000).  

The venom of arachnids contains approximately 0.5 to 1.5 million insect active peptide 

toxins, providing a rich source for novel biopesticides (Quistad and Skinner , 1989; 

Wang  et al., 2000; Tedford  et al., 2004). For example, spiders can express 1000 

different polypeptides (Escoubas et al., 2006). Interestingly, just four groups of spider 

out of 10,000 are potentially fatal to humans (Isbister and White, 2004). Marine cone 

snails of the Genus Conus use a potent cocktail of venomous peptides to catch their 

prey. These venomous peptides are small in size (<50kDa) and are synthesised from a 

few genes.  As per an estimation by Becker and Terlau (2008) there are over 100,000 

bioactive compounds present in the venomous cocktail synthesized by cone snails, each 

with a distinct neurological target. Unfortunately, the use of these toxins as a successful 

crop protection method is limited by an inability to reach target sites in the insect central 

nervous system following oral consumption (Quistad et al., 1991a). However, many 

purified toxins have been proven to be lethal to insect prey following injection of the 

toxins directly to the nervous system, but lack insecticidal effect when delivered orally. 

Fitches et al. (2002) fused peptides from spider venom to the carrier molecule snowdrop 
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lectin; (GNA), which directs transport across the insect gut epithelium following oral 

delivery, where they have been shown to be effective and active insecticides.  

 Spider venoms: sources of novel bio-insecticides 

Spiders are classified as the order Araneae. They have eight legs and chelicerae with 

fangs that is used to inject venom. Spiders are found on every continent except 

Antarctica. These are the largest order within the arachnids. Within all orders of 

organisms, spiders rank seventh in total species diversity (Sebastian and Peter, 2009). 

As per the world Spider Catalogue (Ver. 16.5), taxonomists have reported at least 

45,752 spider species, and 114 families. Spiders differ anatomically from other 

arthropods, where the usual body segments in spiders are fused into two tagmata (the 

cephalothorax and abdomen), which are joined by a small cylindrical pedicel. Spiders 

do not have antennae, unlike insects. Compared to all arthropods, spiders have the most 

centralised nervous system except Mesothelae, the most primitive group of arachnids. 

Also, exterior muscles are absent in limbs, where hydraulic pressure is used to extend 

limbs, unlike arthropods. The spider abdomen bears appendages that are modified into 

spinnerets and extrude silk.  

Apart from Bagheera kiplingi, which is a herbivorous spider species as described in 

2009 by Meehan  et al, all other known spider species are predators. These mostly feed 

on insects and on other spiders. Also, a few large species feed on birds and lizards. A 

wide range of strategies are used by spiders to capture prey, including the trapping of 

prey in sticky webs, mimicking the prey to avoid detection, or lassoing it with sticky 

bolas. Most of the spiders detect prey mainly by sensing vibrations, but some of the 

active hunters have acute vision. Spiders have very narrow guts and cannot take solids, 

therefore they flood digestive enzymes on food to liquidise it and use the base of 

pedipalps to grind it as true jaws are also absent. The lifespan of most spiders is 

approximately two years, but tarantulas and other mygalomorph spiders can live up to 

25 years.  

Spiders have the ability to produce various complex venoms, which is one of the major 

contributing factors to the evolutionary success of spiders. These venoms are used for 

predation and predator deterrence (King, 2004). Unfortunately, the venom of spiders is 

not well studied compared to other venomous taxa including scorpions (few species), 

snakes, centipedes, and a few marine animals. Spider venoms contain a large number of 

chemicals with a variety of biologically active components and toxins. These chemicals 
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fall into various chemical groups such as polyamine-like toxins that interfere with 

glutamic acid receptors and block neuromuscular transmission (Grishin et al., 1986; 

Kawai  et al., 1991), low molecular weight proteins or peptides that affect neuronal or 

membrane ion channels and receptors through pre- or post-synaptic actions, and high 

molecular weight neurotoxins that interact with specific pre-synaptic receptors (Lipkin 

et al., 2002). Insecticidal toxins synthesised by spiders typically cause paralysis due to 

disruption of the activity of neuromuscular junctions. These toxins are usually cysteine 

rich polypeptides with 55 to 60 amino acid residues or less. Some of the venomous 

species that have been studied extensively include Segestria florentina, Agelenopsis 

aperta, Hololena curta, Phoneutria nigriventer, Atrax robustus and Plectreurys tristis 

(Pallaghy et al., 1997; Diniz  et al., 1993; Reily  et al., 1995; Quistad and Skinner , 

1994; Newcomb  et al., 1995; Stapleton  et al., 1990).    

 Toxins purified from segestria florentina venom glands 

The venom purified from S. florentina glands is known to contain around 25 

polypeptide components (Sagdiev et al., 1987). The crude venom extract have been 

demonstrated to inhibit action potential of neurons, which causes paralysis in 

cockroaches after intra-peritoneal injection (Lipkin et al., 2002). In contrast to reported 

actions of other invertebrate toxins, this crude extract has no haemolytic or proteolytic 

activity on the neuromuscular system of insects. The crude venom of S. florentina 

contains one insecticidal toxin and two vertebrate specific neurotoxins (Sf-1 and Sf-2) 

(Sagdiev et al., 1987a). Moreover, a calcium channel antagonist, SNX325 has been 

isolated from the venom (Newcomb et al., 1995). Recently, Lipkin et al. (2002) 

performed extensive purification, structural and cloning analysis of the insecticidal 

toxins obtained from S. florentina. The study showed that crude venom of this spider 

contains various components with molecular weights ranging from <20 kDa to 200 kDa 

(Figure 1-1). Fractionation of the crude venom by gel filtration showed that low 

molecular weight polypeptides <12 kDa are in the F5 fraction, which are responsible for 

the insecticidal activity of the venom. 
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Figure 1-1: Size exclusion chromatography results of crude S. florentina (Lipkin et al., 2002) 

 

Fraction F5 was further fractioned using RP-HPLC and obtained fractions were tested 

on H. virescens larvae for toxic effects. Flaccid paralysis was caused by fractions F5.5, 

F5.6 and F5.7. Also, reports of mass spectroscopic analysis of crude S. florentina 

venom showed that many polypeptides are in the range of 4900 to 5100 Da (Lipkin et al., 

2002). Partial sequences were obtained when purified toxin was analysed by gas phase 

N-terminal amino acid sequence: 

F5.5 - AECMVDETVCYIHNXNNC 

F5.6 - KECMTDGTVCYIHNXNDE 

F5.7 - KECMADETVCYIHNXNNC 

This data indicate that the purified toxins of S. florentina are related to each other, 

although discrete from previously reported SIT S. florentina toxins (Sagdiev et al., 1987). 
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 Structure of spider venom peptides precursors and post-translational processing  

Spider venom peptide toxins are initially expressed as precursors (Sollod et al., 2005), 

which are made up of an N-terminal signal peptide, a propeptide region of highly 

variable length rich in the mature toxin sequence and acidic residues. The mature 

peptide venom toxins are produced upon post-translational modification of the 

precursors. The mature spider venom peptide sequence has evolved through time and 

within different toxin super families, however the cysteine framework still remains 

strictly unchanged. The majority of peptide toxins targeting ion channels, along with 

those obtained from spiders (Kozlov and Grishin, 2005), have modified C- and N- 

termini that promote in vivo stability. In addition to this, these peptide toxins also 

possess several disulphide bonds that adopt a structural motif that is designated as 

‘inhibitor cysteine-knot’ (ICK) motif.  ICK provides a constrained globular 

conformation to the molecule. The common configuration of this structural motif 

consists of an ‘anti-parallel, triple-stranded β-sheet, which is stabilized by a cysteine 

knot’(Pallaghy et al., 1994) . It has the following amino acid sequence: CX3-7CX3-6CX0-

5CX1-4CX4-13C, where X can be any amino acid (Norton and Pallaghy, 1998). Cysteine 

knot is usually containing three disulphide bridges, but in some cases a fourth one can 

also exist which stabilizes the fifth loop, as in the case of ω-agatoxin IVB. 

 

 Structure and functional characteristics of Segestria. Florentina  

Lipkin et al. (2002) found that toxins F5.5, F5.6 and F5.7 are members of a family of 

closely related toxins that has similar biological activities and N-terminal amino acid 

sequences. F5.6 toxin was found to be representative of crude venom of S. florentina.  

Studies that compared the primary structures of SFI toxins with other predator toxins, 

suggested that they share some structural and functional characteristics with other spider 

toxins (Lipkin et al., 2002). However, the eight variants including SFI1-SFI8 has been 

demonstrated to possess 10 variable positions, whilst sharing the same number of amino 

acid and cysteine residues (Lipkin et al., 2002). The amino acid sequences in some of 

these variable positions are not conserved. For instance, the position 17 can contain 

either Glu or Gly, while the position 17 can contain Asp or Asn (Lipkin et al., 2002). 

Such non-conserved changes can modulate relative charge of the toxins, causing 

differences in charges between the toxin variants, as well as potential differences in 

charge distribution in the polypeptide (Lipkin et al., 2002). The occurrence of these 
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charge differences was evident on the range of isoelectric points (6.27 – 7.89) that has 

been recorded for SFI1-SFI8 (Lipkin et al., 2002). As a result, SFI1 and SFI4 are basic 

and SFI2 and SFI6 are weakly acidic, while, the SFI3, SFI5, SFI7, and SFI8 are neutral 

(Lipkin et al., 2002). Lipkin et al. (2002) suggested that such variation might 

significantly impact specificity or/and level of lethality. The high content of Aspargine 

and Proline residues is a very distinct feature of the SFI1 to SFI8 sub-family. However, 

this was not found to be characteristic of similar spider toxins with identical size as 

described previously by (Stapleton  et al., 1990; Skinner  et al., 1992; Branton  et al., 

1993; Newcomb  et al., 1995). A particularly interesting tract was found in the 

H13NHN16 region. This was thought to have considerable structural impact and may be 

vital for defining the functional activity of these spider toxins.  

 

 

Figure 1-2 A family of seven related protein structures (SFI2-SFI8) revealed after translation of cDNA sequences. 

Boxes show sequence similarity between SFI toxins and cysteine residues. Shading highlights non-identical residues 

(Lipkin et al., 2002). 

 

 

Lipkin et al. (2002) have also performed detailed comparative studies on F5.6 (SFI1) 

and other insecticidal spider toxins. SFI1 was considered as the archetypal 

representative of the newly found family of insect selective toxins S. florentina spider 

toxins. Furthermore, its comparison with the basic features of other toxins suggest that 

the family of toxins might share evolutionary, structural and possibly functional 

relationships with other highly structurally confined, small, spider neurotoxins like 

PLTX II, PLT XI from P. Tritstis (Branton  et al., 1993; Quistad and Skinner , 1994), 

the neurotoxin curtatoxins CT1, CT2 and CT3 from H. curta (Stapleton et al., 1990), A. 

Schlingeri insecticidal toxins APS I, APS III and APS IV (Skinner et al., 1992) and the 

neurotoxin SNX325 from S. florentina (Newcomb et al., 1995). 
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Most of these spider toxins are known to be highly selective agonists or antagonists of 

various voltage dependent Ca2+ channels (Stapleton et al., 1990; Branton et al., 1993; 

Pallaghy  et al., 1997), which could be potentially valuable reagents in the 

neuromuscular function. Lipkin et al. (2002) suggest that if this SFI1 family possess a 

similar mode of action, they have the potential to be used as selective reagents to target 

Ca2+ channels. This possibility was studied by examining the alignment of sequences as 

shown in Figure 1-3 that revealed that SFI1 bears a basic structure identical to other 

neurotoxins, mainly associated to the distribution of cysteine residue. Also, more typical 

characteristics of such structural motif may be the size of the amino acid tract between 

successive cysteine residues. Compared to other toxins, SNX325 and SFI1 have a large 

gap between the 6th and 7th cysteine residues. Lipkin et al. (2002) postulated that 

variations observed in the folded configuration, due to various disulfide pairings, may 

be important for the different receptor identification, specificity and biological modes of 

activity among these spider neurotoxins.        

 

 

Figure 1-3: The amino acid sequence comparison between SFI1 (F5.6) S. florentina insecticidal toxin and other 

arthropod toxins. All sequences were arranged with respect to cysteine residue as shown in boxes. For better 

arrangement, gaps (-) were introduces. Shading show negatively charged amino acid residues and those highlighted 

in bold are positively charged amino acid residues.  

 

 Insecticidal targets of spider neurotoxins 

The pore-forming α1 subunit of the calcium voltage (CaV) channels and α subunit of 

the sodium voltage (NaV) channels together form a superfamily of structurally related 

voltage-gated ion channels.  
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Figure 1-4 Schematic representation for the membrane topology and molecular structure of CaV and NaV channels. 

The pore-forming - subunit (centre) in each case made up of 4 homologous domains I–IV. Cylinders represent the 

trans-membrane - helical segments (S1–S6) within each domain and the S4 voltage- sensor is shown in red. The walls 

of the ion- conducting pathway as shown in blue are formed by the pore- lining segments S5 - S6 and the intervening 

P loop. (A) The inactivation gate (magenta) of NaV channel is represented by the inactivation particle with magenta 

arrows which indicate the sites expected to form the inactivation gate receptor. (B) High voltage activated CaV 

channels usually comprises a single copy each of the α1, α2-δ, β, and γ subunits, however low voltage activated CaV 

channels contains only the pore- forming 1 subunit. The intracellular subunit comprises of a C- terminal guanylate 

kinase domain (cyan) and an N- terminal SH3 domain (blue). The guanylate kinase domain binds the interaction 

domain (AID; purple) which is located in the cytoplasmic loop and link domains I and II of 1, this interaction 

modulates the rate of channel inactivation. Calmodulin (CaM) interacts with CaV1 and CaV2 channels through a 

conserved sequence motif know as the ‘‘IQ motif’’ which is located in the cytoplasmic C- terminal region of 1. The C 

and N - terminal lobes of CaM (green) bind the IQ domain (red) at various sites and with varying affinities, making 

the interaction sensitive to both global Ca levels and the concentration of Ca in the area of the CaV channel pore. Ca 

ions bound to CaM in the CaM- IQ complex are shown by orange spheres (Adapted from King  2007; Nicholson  

2007). 

 

Spider venom peptides targeting insect CaV Channels 

A broad group of polypeptide neurotoxins identified in different spider venoms, inhibit 

the function of voltage-dependent calcium (Ca) channels, initially these were referred to 
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as v-toxins (Grishin, 1999). Though pharmacological and physiological properties of 

voltage-gated Ca channels can vary between different types of voltage-gated Ca 

channels, they still share a common assembly of structural motifs. Different types of 

CaV channels have an identical general structure. These Ca channels are heteromeric 

proteins made up of a pore-forming α1 subunit, a δ transmembrane subunit with a 

disulfide-link to the α2 protein, an intracellular subunit β, and also another 

transmembrane subunit γ. These subunits form a fully functional calcium channel, as 

shown in Figure 1-5 (Catterall  and Few, 2008; Pringos  et al., 2011).  

The largest protein is the α1 subunit, which forms the channels, which also contains the 

conduction pore, the voltage sensor and the gating mechanism. In addition, some of the 

channel regulation sites (by second messengers, drugs or toxins) are also known to be 

located on the α1 subunit. A trans-membrane protein is formed by the α1 subunit, as 

predicted by amino acid sequencing, and organized into 4 repeated domains. Each of the 

domains comprises 6 segments of α helical structures, as shown in figure1-5(b). The 

green cylinders shown represent the pore-forming segments and yellow cylinders 

represent the sensor segments and a loop (Catterall and Few, 2008). The intracellular 

side of the membrane contains N- and C-termini of the protein. 
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Figure 1-5 Voltage-gated Ca channels (CaV) topological structure(Catterall and Few, 2008; Pringos  et al., 2011) 

 

SNX-325, a Ca channel antagonist peptide was purified from the venom of S. florentina. 

SNX-325 toxin consists of 49 amino acid residues and contains 4 intramolecular disulfide 

bridges. It was found to be a selective N-type channel blocker at nanomolar 

concentrations, but not a blocker of other calcium channels such as class C, A, and E 

(Newcomb et al., 1995). 

 

Spider venom peptides targeting insect NaV channels 

NaV channels are trans-membrane proteins that provide the pathway for the fast 

depolarization of excitable cells, this a process that is necessary for the initiation of 

action potentials (Hodgkin and Huxley, 1952). They are principally made up of a 220–

260 kDa single pore-forming glycoprotein, the α-subunit, as observed from neurotoxin 

labelling, purification and successive functional expression studies (Catterall, 2001). 

This α- subunit is made up of 4 internally homologous, non- identical domains (I–IV), 

which are connected by intracellular linkers as shown in figure 1-4A  (Yu and Catterall, 

b 

a 
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2003). Each domain is assumed to contain 6 trans-membrane segments (S1 – S6) that 

are joined by intracellular or extracellular loops. Out of these, 4 domains fold jointly in 

a clockwise orientation in an orientation where the outer pore vestibule is formed by 

domains I and IV. Membrane re-entrant loops (P- loops) between trans-membrane 

segments S5 and S6 from each domain dip into the trans-membrane region of the 

protein and also form the narrow ion- selectivity filter at the extracellular end of the 

pore. The most highly conserved S4 segments contain a positively charged Arg or Lys 

amino acid at every third position. This section serves as a ‘voltage sensor’ which 

initiates voltage- dependent activation through outward movement caused by changes in 

electric field (Chanda and Bezanilla , 2002; Cestèle  et al., 2006). Selective influx of 

Na+ ions through the pore occurs as a response to membrane depolarization, causing the 

channel to undergo a conformational change.  

In mammals, one or two smaller auxiliary subunits of approximately 33–36 kDa are 

also associated with the α- subunit (NaVβ1–NaVβ4). These subunits are required for 

normal kinetics, as well as voltage- dependent gating of the channel, but not for ion 

flux, ionic selectivity and ultimately pharmacological modulation (Yu et al., 2003). 

Inactivation of the NaV channel is mediated through a short intracellular loop 

connecting III and IV domains, containing inactivation gate IFM motif, which is the key 

hydrophobic amino acid sequence isoleucine, phenylalanine, and methionine. The NaV 

channel is the primary molecular target for numerous therapeutic drugs like local 

anaesthetics, antiarrhythmics and anticonvulsants and also insecticides like pyrethroids, 

dihydropyrazoles, DDT, N-alkylamides and oxadiazines. Most of the structural and 

functional properties of NaV has been identified using guanidinium, small alkaloid 

toxins and peptide of various plant and animal origins.  

There are 4 binding sites for neurotoxin on the Nav channels, including the site 1 

located on the extracellular surface of the pore. This site 1 is where the Tx1 peptide 

toxins from the Phoneutria nigriventer spider and the µ - conotoxins from Conus 

species, as well as the guanidinium alkaloids (saxitoxin (STX) and tetrodotoxin (TTX) 

bind. The Type 1 and Type 2 sea anemone toxins, the scorpion a-toxins, and selected 

spider toxins bind to the site S3 – S4 on the extracellular loop in domain IV and may 

also bind to unidentified residues in the S5 – S6 linkers in domains I and IV. This site 

has also been shown to possess complex allosteric interactions with site - 2, which binds 

several alkaloid toxins like veratridine and batrachotoxin, and site - 5 which binds the 
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cyclic polyether toxins ciguatoxin and brevetoxin. Some site - 4 toxins include the 

scorpion polypeptide b-toxins which bind to the S1 – S2 and S3 – S4 linkers in domain 

II and help channel activation via trapping the S4 segment in its outward position and 

shift the voltage-dependent activation to more hyperpolarized potentials. Site-3 and site-

4 toxins primarily increase the open status of NaV channels and hamper gating 

transitions into the closed states. These are therefore classified as ‘gating-modifiers’. 

Finally, site - 6 neurotoxins binds to the d-conotoxin TxVIA slowing channel 

inactivation, this is contrary to the allosteric modulation observed in the binding of 

neurotoxins targeting site-3 (Nicholson, 2007).  

NaV channels have been preserved across evolution and therefore identical types of 

neurotoxin receptor sites are found on both mammalian and insect neuronal NaV 

channels. However, mammalian and insect NaV channels are pharmacologically 

distinct. To date, 9 mammalian NaV channels (NaV1.1–1.9) have been cloned, 

expressed functionally and characterised (Goldin et al., 2000). Evidence from these 

studies suggests that the diversity of mammalian NaV channels is achieved mainly 

through expression of distinct NaV channel genes. Certainly, a variety of non-

insecticidal spider toxins can be utilised in the study of the molecular differences in 

NaV channel subtypes. Phrixotoxin 3 from Phrixotrichus auratus and ceratotoxins 1, 2, 

and 3 from Ceratogyrus cornuatus have been shown to block ion conductance, which 

results in a shift from the voltage-dependent activation to more positive values, not 

affecting inactivation (Bosmans et al., 2006). Studies in certain toxins have shown that 

slight differences in surface receptors can alter the specificity to NaV channel subtypes 

(Nicholson, 2007). The structural differences between arthropod and mammalian NaV 

channels is reflected on the allosteric modulation of neurotoxin receptor sites. The NaV 

channels in insects are often more sensitive to the activity of neurotoxins. Indeed, m-

agatoxins (m-Aga-I to m-Aga-VI) that affect the functions of NaV channels has been 

found in the venom of Agelenopsis aperta spider  (Skinner et al., 1989). Currently, there 

are 6 toxins of about 36 - 38 amino acids containing 8 cysteine residues which form 4 

disulfide bridges. At least 4 toxins from this family possess an amidated C-terminal 

residue. Furthermore, m-Agatoxins share similar activity characteristics with the 

scorpion excitatory insectotoxins, including shift of the insect Na+ channel activation 

curve to more negative potentials. Scorpion insectotoxins have be 
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en shown to exhibit similar action to the curtatoxins (Ct-I and Ct-II) isolated from the 

venom of Hololena curta spider, which is attributed to structural similarities (Stapleton 

et al., 1990b). They also resemble toxic polypeptides (Tx1 and Tx2-9) derived from the 

venom of the Phoneutria nigriventer spider  (Cordeiro Mdo et al., 1992) and also 

several other polypeptide toxins from diverse spider venoms.  

1.3.2  Marine cone snail from the Genus Conus: peptide nomenclature  

The genus Conus is the most diverse genus of marine invertebrates (Kohn, 1998).The 

speciation and rich endemism are evident from the morphology and toxicology of the 

genus Conus (Rockel et al., 1995).This genus is broadly distributed throughout all 

tropical oceans, which encompass 25% of the earth’s ocean area. Recent studies suggest 

that the Indo-Pacific region accounts for around 60% of Conus habitation (Kumar et al., 

2015). It is thought that each Conus member has a range of 100–200 different venom 

components, which are majorly disulfide-rich conopeptides. Moreover, the venom from 

each species has its own distinct complement of peptides that lacks molecular overlap 

with each other  (Olivera, 1997). Therefore, the number of identified Conus species 

(around 500–700) could potentially translate to a source for more than 140,000 diverse 

conopeptides (Olivera, 2006).  The diversity of conopeptides is interesting as it is 

generated by a relatively small number of gene superfamilies expressed in the venom 

duct of conus species (Terlau and Olivera, 2004). A single open reading frame is present 

in conopeptide encoding mRNAs, which is translated into a canonical prepropeptide 

(Beleboni et al., 2004). Generally, the mature peptides have a characteristic 

arrangement of Cys residues in each gene superfamily (Table 1-1).  

A strikingly conserved N-terminal signal sequence is shared by the peptide precursors 

from a given gene superfamily. In contrast to this, the mature peptide sequence is hyper-

mutable, with the exception of the Cys residues. Thus, conotoxin precursors exhibit 

striking juxtaposition of very conserved and hyper-variable sequences, similar to 

antibodies. The hyper-mutable molecular diversity of Conus peptide superfamilies 

constantly result to the generation of conotoxins with novel functions. For example, as 

shown in Table 1-1, the C–C–CC–C–C Cys pattern is observed in all peptides in the O-

conotoxin superfamily and are translated with conserved signal sequences. While the ω-

conotoxins are calcium channel blockers, the δ-conotoxins inhibit the inactivation of 

sodium channels as such enhancing the conductance of Na+ channel (Terlau and 

Olivera, 2004). Though different members of a same Conus peptide family have 
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generally identical targets, they usually differ in molecular selectivity in the targeted 

family (Table 1-2). 

 

Table 1-1 Examples of Gene Superfamilies  (Olivera and Teichert, 2007) 

Gene superfamily (Major 

framework) 

Conotoxin 

 

A (CC-C-C) α Nicotinic receptors (competitive antagonist) 

M  

(CC-C-C-CC) 

µ Na+ channels (channel blocker) 

κM K+ channels (channel blocker) 

O 

(C-C-CC-C-C) 

ω Ca2+ channels (channel blocker) 

Ω Na+ channels (inhibitor of inactivation) 

I (C-C-CC-CC-C-C) ι Na+ channels (activation enhancers) 

 

Table 1-2 Families of Conopeptides and Families of Targets (Olivera and Teichert, 2007) 

Conus species Ligand family: 

 

Target family: 

Subtype targeted 

 α- conotoxins Nicotinic receptors 

C. magus α- MI α1δ-containing 

C. aulicus α- AuIB α3β4 

C. regius α- RgIA α9α10 

C. purpurascens α- PIA α6β3β2 

C. imperialis α- ImI α7 

 ω-conotoxins Voltage-gatedCa2+ channels 

C. magus ω-MVIIA Cav 2.2 

C. magus ω-MVIIC Cav 2.1 
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Marine cone snails from the genus conus have received much interest in recent years as 

rich sources of neurotoxins as they possess a potent cocktail of venomous peptides to 

catch their prey. These venomous peptides are small in size (<50kDa) and a number of 

genes are required for their synthesis. As per an estimation done by Terlau et al. (1996) 

there are over 100,000 bioactive compounds present in t 

he venomous cocktail synthesized by cone snails, each with a distinct neurological 

target.  

Venom peptides, called conopeptides, have evolved very recently and produced from 

propeptides using specialized venom endoproteases. The toxicity of a venom peptide is 

further increased by several forms of post-translational modification, which also renders 

stability to the 3 D structure of the protein (Figure 1-6). Conotoxins are thought to be 

good pharmacological probes due to the small size, stable structure and specificity for 

their targets 

. Conotoxins have been studied in detail by various researchers and have been 

implicated as antagonists of nicotinic acetylcholine receptors (nAChR). These venoms 

act as nAChR blockers at the neuromuscular synapse in the prey resulting in paralysis. 

The action of conotoxins on nAChR is mediated through a competition between the 

antagonist of acetylcholine receptors for the binding site on the receptor. The 

antagonists of acetylcholine receptors are α-tubocurarine and α-bungarotoxins, which 

bind in a reversible manner. A study conducted by Groebe et al in 1995  showed that 

affinity for the acetylcholine binding site for the α- conotoxins MI, GI and SIA is 15000 

fold higher compared to tubocurarine or bungarotoxins (Bass  et al., 2011; Lewis  et al., 

2012; Safavi - Hemami et al., 2011). 
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Table 1-3 Sequences of different cone snail toxins, the cysteine residues and mode of action 

Toxin Sequences Source Specific target 

α - 

conotoxin 

EI 

RDPCCYHPTCNMSNPQIC Conus ermineus 

fish-hunting cone 

Neuromuscular 

nicotinic ACh 

receptor. 

α - 

conotoxin 

Sm1.1 

GRGRCCHPACGPNYSC Conus 

stercusmuscarum 

Neuromuscular 

nicotinic ACh 

receptor. 

 

 

Figure 1-6 Schematic diagram representing the four possible disulfide bond isomers of α - conotoxins E1. 

 

 

Structural motifs of cone snail venom peptides: ancestral variations  

Conotoxins have been utilised in the study of voltage-gated and ligand-gated ion 

channels and receptors. The conotoxins consist of the α-class that target acetylcholine 
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receptors (Sandall et al., 2003), the µ-class, which target skeletal muscle Na channels 

(Olivera et al., 1985) and the ω–class that target presynaptic neuronal Ca channels  

(Olivera et al., 1987). The α- conotoxins are homologous peptides with target selectivity 

possessing 13 to 15 amino acids. It contains a highly basic region in the sequence with 

two disulfide bridges in the 3:5 loop configurations. ω– conotoxins are composed of 24 

to 30 amino acids with three disulphide bonds.  µ-conotoxins are basic peptides rich in 

hydroxyproline and are composed of 22 amino acids. These peptides contain 6 cysteines 

and 3 hydroxyprolines. The presence of several basic Arg and Lys residues results in a 

high positive charge of the µ-conotoxins. The δ–conotoxins are one of the most 

interesting families of conotoxins. The structure is distinct, with an internal disulphide 

core that restricts the hydrophobic amino acids from the interior and outer region of the 

surrounding solvent. 

 

 Potential insecticides targeting neurotransmitter receptors  

 Insecticides targeting nACh receptors  

Most Conus venom peptides are encoded by a large number of gene families, and 

selectively bind to various voltage-gated ion channels (like Na+, K+ and Ca2+ 

channels) or other membrane receptors (like nAChR, 5-HT3R, NMDAR). Liu et al. 

(2012b) constructed cDNA libraries derived from the venom ducts of Conus virgo, 

Conus imperialis, Conus eburneus, and Conus marmoreus from the South China Sea, in 

order to identify novel conotoxin genes and examine the evolution and diversity of 

characteristic conotoxin superfamily genes from various conus species. Neves  et al. 

(2013) identified disulfide-rich conotoxins in crotchii using MALDI-TOF mass 

spectrometry. All the identified conopeptides have been demonstrated to be A-, O1-, 

O2-, O3-, T- and D-superfamilies. Members of these superfamilies can block Ca2+ 

channels, act on nicotinic acetylcholine receptors (nAChRs) and inhibit K+ channels. 

The identification of alpha-5 and alpha-6 subunits, which contribute to the nAChRs 

expressed on striatal dopaminergic terminals, opened the possibility of developing 

nAChR selective ligands active on dopaminergic systems and also associated diseases, 

like Parkinson’s disease (Olivera  et al 2008). 

nAChR are heteropentameric complexes that have four different isoforms, including the 

functional receptor in the vertebrate neuromuscular subtype (Figure 1-7). In order to 
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open the ion channel two molecules of acetylcholine must bind to the nAChR, with each 

agonist molecule binding at different subunit interfaces. This has resulted in 

opportunities as well as challenges, for conopeptide-mediated modulation. Interestingly, 

the distinct characteristics of the isoforms of nAChR offers opportunities for 

conopeptide antagonist selectivity. However, it is important to note that conopeptide 

antagonist activity may be relatively non-selective because of binding to the α1 subunit, 

which is common to all the receptor subtypes (Olivera and Teichert, 2007). 

 

 

Figure 1-7 Alternative target sites of nAChRs. All panels (A to F) shows two muscle nAChRs; the top receptor is the 

“fetal” subtype having a γ subunit, and the bottom one is the “adult” subtype having an ε subunit. Receptors are 

closed in the absence of acetylcholine (blue triangles). A transition from a closed to an open state occurs (A to B) 

when 2 two molecules of acetylcholine bind (as shown in B). Effects of different conotoxins are shown in panels C, D, 

E, and F. One possible mechanism of non-competitive block is demonstrated in panel C. Orange globular geometry 

show the toxin occlude ion conductance through the channel pore. Competitive antagonists targeted to different 

pharmacological sites are shown in panels D, E, and F. A conotoxin highly specific for α1δ is shown in panel D 

(purple) which inhibits both fetal and adult subtypes. A conotoxin (red) which is specific for the α1γ interface, binds 

the fetal receptor but not to the adult as shown in E. On the contrary in F, the conotoxin (green) is specific for α1ε 

which does not inhibit the fetal subtype, however prevents acetylcholine from binding one of the two sites in the adult 

subtype  (Olivera and Teichert, 2007). 
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1.3.3 The venom peptide Acrorhagin-2a from the sea anemone Anthopleura 

maculate 

The venom peptide Acrorhagin-2a from the sea anemone Anthopleura maculate targets 

sodium channels by binding at site 3 of the sodium channels receptor in the excitable 

membrane (Honma and Shiomi, 2006). Because of this unique biological effect, sea 

anemone sodium channel toxins appear to be a valuable source of novel peptide toxins 

for managing crop pests. However, efforts towards this direction have remained largely 

unsuccessful due to non-target activity since the peptide has been shown to target 

sodium channels in a wide range of animals following injection. For example, 

preliminary studies have shown that injecting crabs with these toxins caused non-

specific lethal effects (Honma et al., 2005). Oral delivery of the toxin, on the other 

hand, has been shown to have no toxic effects. It has thus been proposed that to 

effectively use such molecules they should be fused to a carrier molecule to ensure that 

the toxin reaches its site of action, in this case the sodium ion channels. However, such 

a delivery strategy may also affect non-targets insects and vertebrates (Honma et al., 

2005).  Therefore, understanding the structure of different sea anemone polypeptides is 

necessary to enhance their development for control of insect pests that are both effective 

and specific 

 

 Structural motifs of the sea anemone venom peptides 

Sea anemone polypeptide toxins have different structures that are dependent on the 

presence and arrangement of cysteine residues. Among these toxins, highly toxic, linear, 

cysteine-free polypeptides make up a considerable part of known venom peptides. On 

the basis of the specific arrangement of cysteine residues, cysteine-rich polypeptides 

may be classified into several structural classes. The number of the cysteine residues 

can be a crucial feature of polypeptide toxins because it determines the exact order of 

the disulfide bonds and subsequent folding. Motif development was performed using 

Single Residue Distribution Analysis (SRDA). In the mature venom toxin, the number 

of cysteine residues varies from 2 to 10. Though toxins with 6 cysteines are most 

common, there are differences in the cysteine motifs (Kozlov and Grishin, 2012). 
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 Sodium ion channel as targets for neuropeptides as potential bioinsecticidal 

NaV channel toxins are the most thoroughly studied of all the sea anemone toxins, as 

these constitute a major fraction of the venom (Moran et al., 2009). Four types of sea 

anemone toxic polypeptides (ranging from 3.5 to 6.5 kDa) bind to site three of the NaV 

channel receptor during the depolarization process. The Type I and II toxin families 

have 46–51 amino acids, anti-parallel β-sheet with 4 β-strands and a highly flexible 

“Arg-14 loop” (lacking any –helix) (Smith and Blumenthal, 2007). Members of the 

Type I and II toxin families have similar locations for the six half-cysteine residues 

(forming three disulfide bonds). Similarly several other residues were thought to play a 

role in biological activity and maintenance of the tertiary structure (Norton, 2009). They 

also have a basic C-terminal sequences (Messerli and Greenberg, 2006). The type III 

toxin family have 27–32 amino acids with rigid β and γ turns, like in ATX-III and 

PaTX, which are cross-linked by three and four disulphide bonds respectively, 

suggesting they do not share the structural scaffold (Honma and Shiomi, 2006). Reports 

suggest that the bioactive surface of toxin ATX-III consist mainly of aromatic residues 

that is distinct from other site-3 targeting toxins. However, ATX-III binds to NaV 

channels at the site three of the receptor (Moran et al., 2007). Unlike Type I and Type 

II, the Type III family toxins have only been reported to target NaV channels in a few 

species, which are mainly common in various cnidarian venoms (Messerli and 

Greenberg, 2006). In addition to these types of toxin, other group like Calitoxin I and 

Calitoxin II (with 79 amino acid residues) resemble the Type I and II toxin family in the 

number of disulfide bridges and the sequence length, but the amino acid sequence is 

different. They also act on NaV channels in a similar manner to the Type I–III toxin 

family (Honma and Shiomi, 2006).  

 

1.3.4 Marine cone snail from the Genus Conus: isolation 

Spence  et al. (1977) attempted to purify the bioactive peptide components from cone 

snail venom toxin and validated a peptide composition based on its amino acid 

composition (µ-conotoxin). Chemical synthesis began with the α - conotoxin GI, (from 

C. geographus venom), which confirmed its native amino acid sequence of 13-amino 

acids with two disulfide bonds (Gray et al., 1981). Following the identification of the 

venom peptide composition, the µ-conotoxins were isolated and characterised from C. 

Geographus milk venom (Olivera et al., 1985). The presence of α - conotoxin and µ-
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conotoxin functional peptides in C. geographus venom suggested that the cone snail 

venom could be both a potent nicotinic receptor antagonist (α -conotoxin) and a sodium 

channel blocker (µ-conotoxin) (Moczydlowski et al., 1986).  These cone snail venom 

molecules act synergistically to bind and inhibit different receptors of multiple 

molecular pathways involved in the prey’s normal evasion behaviours. Ultimately, the 

requirement for categorizing the paralytic peptides based on pharmacological targets 

was expressed due to work that established the activity of various toxins on different 

receptors  (Janes, 2005).  

 

Structure and function of the Genus Conus α -conotoxin E1  

The α - conotoxins are a family of cone snail venom toxins, with 12 and 19 amino acid 

residues and use key disulphide bonds to maintain the structure. These polypeptide 

toxins are highly selective at blocking the nicotinic acetylcholine receptors (nAChRs), 

ligand-gated K+, Na+ or Ca2+ ion channels across the synaptic membrane. nAChRs 

exist in two classes including the neuronal and neuromuscular, with five subunits in 

each homopentameric or heteropentameric membrane-bound channel structures. Two 

molecules of the acetylcholine neurotransmitter are required to open the channel and 

stabilise the receptor in the open active state for the conductance of ions. Most of the α - 

conotoxins are competitive antagonists for the nAChRs, which bind at one or both of 

these ACh binding sites with high affinity. Neuronal nAChRs (n-nAChRs) receptors are 

highly diverse in structure with a variety of different α and β subunits. The α - 

conotoxins are selective towards both specific subclasses of receptor and ACh binding 

pockets between deferent subunit pairs. This makes them ideal tools to probe both the 

central as well as peripheral nervous systems for receptor distribution. In addition to 

this, a growing number of α - conotoxin structures create the potential for its use as 

templates for deriving pharmaceutical agents.  

The α - conotoxin EI was first identified in 1995 by (Martinez et al.)., from the Atlantic 

fish hunting marine snail Conus ermineus. The α - conotoxin EI is a somewhat atypical 

member of the neuromuscular conotoxins, which has an α4/7 loop motif that is more 

associated with neuronal conotoxins (Martinez et al., 1995). Comparison of α - 

conotoxin EI with α4/7 neuronal conotoxins shows that only Tyr6 and a Gln16 residues 

in its sequence are unique and not found in any other neuronal conotoxins. There is 

limited data on the binding of α - conotoxin EI to neuronal nAChRs. Similarly, the 
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determined structural conformation of α - conotoxin EI is nearly the same in its 

backbone to the α4/7 neuronal α - conotoxins (Park et al., 2001). This suggests that 

some of the main differences in the mechanisms of binding to specific receptor 

subclasses are the surface charge, side-chain conformations and subtle differences in the 

overall topologies of these α - conotoxin peptides. 

1.4  Neurotoxins and their use in fusion proteins  

Protein based biopesticides represent more environmentally friendly approaches to pest 

control, as they are biodegradable and combine efficacy with specificity. In addition to 

naturally occurring protein biopesticides like Bacillus thuringiensis toxins, recombinant 

proteins with insecticidal activity can be produced using biotechnological methods. Use 

of insecticidal fusion proteins containing a toxic peptide or protein fused to a “carrier” is 

an example of such a fusion protein. The carrier molecule confers oral activity on the 

toxin which would normally be toxic when injected into the insect since it directs the 

transports of the fusion molecule across the insect gut, as so allow the toxin to reach its 

site of action (Fitches  et al., 2002, 2004). When fused to a carrier molecule the 

neuropeptide remains active and is transported across the gut epithelium to the central 

nerves system (Fitches et al., 2002). The δ-amaurobitoxin-PI1a spider venom peptide 

that targets the NaV channels have been fused to the snowdrop lectin (GNA) “carrier” 

to study its oral toxicity (Yang et al., 2014). The fusion was found to be approximately 

6 times as effective as recombinant spider venom peptide on a molar basis. Originally, 

the spider venom peptide lacked oral activity against cabbage moth larvae. However a 

single 30 mg dose of the fusion protein presented 100% larval mortality in 6 days. Also, 

fusion protein transports from the gut contents to the haemolymph of cabbage moth 

larvae. Additionally, further binding to the nerve chord, was revealed by Western 

blotting (Yang et al., 2014). Therefore, fusion protein found to be a promising candidate 

for the development of biopesticide.  

 

1.4.1  Spider venom toxins as insecticides 

Some of the spider toxins have high phyletic specificity, and high potency mediated 

through novel mode of action, which makes them an important compound for 

bioinsecticide development. In fact, transgenes encoding insect-specific arachnid toxins 

(including spider neurotoxins) have been successfully expressed in various crops and 
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entomopathogens. Another similar approach expressed a transgene encoding a spider 

toxin in the entomopathogenic fungus Metarhizium anisopliae. The pathogenicity of 

this fungus was found to be significantly increased against the tobacco hornworm 

Manduca sexta and the dengue mosquito Aedes aegypti, without compromising host 

specificity (Wang and St Leger, 2007). For the purposes of this research, only three 

spider toxins have been evaluated to date. 

 

1.5 Expression of fusion proteins: Pichia pastoris as an expression host 

Pichia pastoris is amethylotrophic yeast, which is the eukaryotic expression system of 

choice for large-scale production of active recombinant fusion proteins since 

prokaryotes do not fold these proteins correctly. This system shows a major advantage 

over Saccharomyces spp. as it contains an efficient secretion system, which helps to 

direct larger amounts of recombinant protein secreted into the culture medium. This 

makes purification of the desired product straightforward (Pyati et al., 2014). P. 

pastoris is an ideal host for producing small proteins with high content of disulphide 

bridges, since it is able to fold the protein into biological active forms (Daly and Hearn, 

2005). This is essential for the production of Galanthus nivalis agglutinin 

(GNA/snowdrop lectin), which is secreted as a fully active folded protein (Baumgartner 

et al., 2003; Raemaekers et al., 1999). However, expression in E. coli produces an 

insoluble inclusion body, where the process of denaturation and renaturation is required 

to recover functionally active GNA (Luo et al., 2005). 

Constructs driven by the alcohol oxidase (AOX1) promoter are usually used to 

maximise expression of recombinant proteins in P. pastoris. Here, the expression can be 

induced by addition of methanol to the growing culture. Fusion protein production 

studies have shown that constitutively expressed GAP promoter gives better expression. 

It is advantageous for industrial production as a methanol feed is not required. Studies 

have shown that, during production by fermentation, insecticidal fusion proteins are 

subjected to degradation due to yeast extracellular proteases (Trung  et  al., 2006; 

Fitches et al., 2004; Fitches  et al., 2012). The proteolysis occurs mainly at or near the 

linker region between the carrier protein and the insecticidal peptide, resulting in a 

decrease in yield of the intact fusion protein. This type of proteolysis is predominantly 

evident when wild-type X33 P. pastoris strain is used for expression of fusion proteins. 

However, using the P. pastoris strain SMD1168H has been found to reduce proteolysis, 
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as it is deficient in the extracellular vacuole peptidase A (pep4), which is responsible for 

activating protease B1 and carboxypeptidase Y. The absence of extracellular vacuoles 

increases the yield of intact fusion protein. However, for large-scale production, X33 

strain is the preferred strain, as it is a protease deficient strain. It is important to note 

that the X33 strain tends to be less robust compared to the wild-type strain, resulting in 

poor survival and lower growth on storage (Gleeson et al., 1998).  

 

1.5.1  pGAPZα as a plasmid vector for recombinant protein expression 

Vectors pGAPZα A, B, and C (3.1 kb) (see Appendix A) use the GAP promoter for 

constitutive expressing recombinant proteins in P. pastoris. pGAPZα produces a protein 

that is fused to an N-terminal peptide and encoded with the Saccharomyces cerevisiae 

α-factor secretion signal. Pyati et al. (2014) used pGAPZαB vector, a shuttle vector 

propagated in E. coli, to facilitate the insertion of multiple fusion protein cassettes into 

the yeast genome. The pGAPZαB vector was modified so as to contain a Hind III site in 

the GAP promoter region using site-directed mutagenesis. Figure 1-8 shows a summary 

of the strategy used to obtain a single-copy expression vector. The vector backbone was 

modified by insertion of a Hind III site near the Bln I site in the GAP gene 5′ UTR to 

obtain the multi-copy plasmid. This results in alteration in two adjacent bases, but does 

not affect promoter function. The obtained expression vector (pGAPZαBH-

MODHv1a/GNA (FP)) was transformed into P. pastoris by Pyati et al. (2014) to check 

for expression. The authors reported no differences in to the original pGAPZαB 

expression construct, which gave the 1-copy baseline for subsequent manipulation. 

1.6 Plant lectins 

Many plant species have been shown to contain carbohydrate binding proteins (lectins). 

Lectins are large class of proteins that are known to contain at least one noncatalytic 

domain that binds reversibly to specific mono- or oligo-saccharides (Powell et al., 

1995). Since the first discovery of a plant lectin at the end of the nineteenth century by 

Peter Hermann Stillmark, more than one hundred lectins have been purified and 

characterized detailing their molecular structure, carbohydrate binding specificity, and 

biochemical properties reported over the years. Plant lectins can be classified into four 

main lectin families, based on protein structure and evolution (Legume, chitin binding, 

type 2 RIPs and monocot mannose binding proteins) and 3 minor families.  Currently, 
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researchers focused on the mannose-specific lectins such as Galanthus nivalis (GNA), 

Narcissus pseudonarcissus (NPA) and Allium sativum (ASA) and found that they may 

qualify as potential carrier molecule. These lectins have the ability to cross the midgut 

epithelial through receptor binding, which suggests their roles in pest control. 

 

1.6.1 Roles in plant defence  

Since the initial discovery of plant lectins, important progress has been made in the 

study of the physiological role of plant lectins. Many studies have investigated the 

function of the different structures and sugar binding specificity between all families of 

plant lectin. Sugar binding activity and specificity are responsible for the normal 

function of lectins, which is mediated by sugar binding specificity to a glycoconjugate 

receptor (Van Damme et al., 1998). Identification of their recptors is an essential step 

for understanding their physiological role. However, as many storage tissues (e.g. seeds, 

bulbs) are rich source in lectins they have been implicated to play a role in plant defence 

against pathogens and pests (Van Damme et al., 1998; Powell  et al., 1993).  

 

There are a wide verity of plant lectins known to be involved in pest control such as 

Canavalia ensiformis (con A). A standard bioassay conducted by Sauvion  et al in 2004 

to evaluate the toxicity of Con A against Pea aphids, Acyrthosiphon pisum showed a 

significant negative effect toward Pea aphids. Furthermore it also showed a remarkable 

change in the structure of the epithelial cells of this insect. This study confirmed the 

important role of plants lectins such as Con A in plant defence against pests.  

 

Biological activity of other plant lectins that are specific for mannose-binding sites such 

as Galanthus nivalis (GNA), Narcissus pseudonarcissus (NPA) and Allium sativum 

(ASA) have been assessed by bioassay against peach potato aphid, Myzus persicae. A 

comparison of the differences in biological effect between GNA, NPA, and ASA 

indicates a non-significant effect of NPA and ASA on survival, whereas GNA caused 

45% mortality at 1500 µg/ml. However, GNA showed no significant effects on adult 

aphids, their adverse effects being observed during aphid development (Sauvion et al., 

1996). 
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1.6.2 Rols of snowdrop lectin as a carrier molecule 

Snowdrop lectin (Galanthus nivalis agglutinin, GNA) is a plant-derived insecticidal 

protein, which has previously been shown to be toxic when included into artificial diets 

of homopteran pest species, or when expressed in transgenic plants. However, the 

effects observed are inconsistent between species (Down et al., 2006). The three-

dimensional structure GNA has been elucidated. It has 12 binding sites, but only the 

subdomain I of each of the four subunits and subdomain III of one of its subunits have 

been studied in detail (Hester et al., 1995a); these are specific for mannose.  

Immunohistochemical studies carried out in the rice brown plant-hopper by Powell  et 

al. in 1998 showed that GNA binding was mainly concentrated on the luminal surface 

of the midgut epithelial cells. The result suggested that GNA binds to the cell surface of 

carbohydrate moieties in the gut. Furthermore, Fitches and Gatehouse (1998) showed 

that GNA can also bind to glycoproteins (94 kDa) on the Lacanobia oleracea brush 

border membrane. The presence of GNA was shown in the ovarioles, fat bodies, and 

throughout the hemolymph using immunolocalisation, which suggest the ability of 

GNA to cross the midgut epithelial barrier and further pass into the circulatory system 

of the test insect (Fitches et al., 2001). 

 

1.7 Synthetic fusion proteins  

Synthetic fusion proteins are obtained by incorporating multiple proteins into one 

complex and can be designed to accomplish improved properties or new functionality, 

synergistically. The fusion of two or more protein domains improves bioactivities; it 

may also be used to generate novel functional combinations that can show various 

biotechnological and (bio) pharmaceutical applications (Yu et al., 2015). Various 

studies on synthetic fusion proteins have been immunohistochemical studies carried out 

in the rice brown plant-hopper, most of which caused improved insecticidal activity 

(Down et al., 2006).  

Down et al. (2006) studied the toxicity of the SFI1/GNA fusion protein against peach 

potato aphids M. persicae. The effects of this fusion protein on survival, development, 

feeding activity and nymph production of M. persicae were investigated when the 

protein was added to artificial diets. The study revealed that SFI1/GNA fusion protein 

was toxic with a faster mode of activity to this aphid species compared to GNA, when 
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developed via artificial diet, causing a significant delay in the onset of nymph 

production.   

 

1.8  Using the peach potato aphid Myzus persicae both as a target and for other 

homopterans  

Myzus persicae, found throughout the world (Peccoud et al., 2010), is an important pest 

of vegetable crops (Heathcote, 1962), having originated in Asia (Zhang et al., 2008). It 

is a primary pest of peach potato (Kuroli and Lantos, 2006), as secondary host plants. 

However, it infests over 100 other crop and ornamental plants (Baker , 1994; Van  

Emden and Harrington, 2007). The control of aphid is mainly dependent on chemical 

insecticides (Robert, 1992), however, exposure to many insecticides has resulted in 

aphids evolving resistance, making their control particularly challenging (Foster et al., 

2007). This has resulted in the search for new molecules with novel modes of action to 

control this species and other homopteran pests.  

  

1.8.1  Life cycle of Myzus persicae 

The life cycle of M. persicae varies considerably, which is dependent on the presence of 

cold winters (Van Emden et al., 1969). The development of this aphid can be rapid and 

often takes 10 to 12 days for a complete generation. Over 20 annual generations have 

been reported in mild climates. Aphids usually reproduce parthenogenetically, however, 

if suitable host plants are not available, the aphid will produce eggs. When the plant 

breaks dormancy in the spring and begins to grow, the eggs hatch and the nymphs start 

feeding on young foliage, flowers, and stems. In cold climates, the adults M. persicae 

return to Prunes spp. in the autumn and mating occurs, followed by disposition. All 

generations culminating in egg production are parthenogenetic (non-sexual) except the 

autumn generation (Capinera, 2001). 
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Figure 1-8 Life cycle of Myzus persicae (Anjum, 2014). 

 

1.8.2 Control of Myzus persicae and need for alternative methods 

M. persicae has developed resistance to insecticides and in the UK, females generally 

reproduce parthenogenetically with rapid population build up. Currently, three different 

resistance mechanisms have been observed in this aphid species. First, the esterase 

resistant aphids produce large amounts of esterase enzymes, which help to break down 

insecticides before they can reach their target sites. The esterase resistant activity is 

highest for organophosphorus insecticides.  Organophosphorus and carbamate 

insecticides target acetylcholinesterase, however in the modified a cetyle-cholinesterase 

(MACE) aphids, this enzyme becomes very insensitive to the blocking effect, making it 

immune. A third mechanism is known as knockdown resistance, where aphids have a 

modified sodium channel protein, insensitive to insecticides specifically to pyrethroids 

(Insecticide Resistance Active Group, UK, 2008). This creates a need for development 

of alternative past control methods such as the use of fusion proteins and development 

of transgenic crops.  
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1.9  Project aim  

The overall aim of this project is to explore the use of fusion proteins composed of 

naturally occurring neurotoxic polypeptides fused to a carrier molecule, in this instance 

the snowdrop lectin (GNA), as a biopesticide for the protection of plants against insect 

pests: specifically Myzus persicae. The methylotrophic yeast Pichia pastoris was used 

to produce these recombinant fusion proteins. 

The objectives are: 

1- Clone and express fusion proteins based on snowdrop lectin (GNA) and toxins 

from the spider Segestria-florentina SFIx.  

2-  Assemble a construct containing two gene copies encoding SFI1/GNA  

3- Determine a difference in protein expression levels between a one-copy and a 

two-copy gene cassette insert using the pGAPZa plasmid.  

4- Establish oral toxicity of the different variants of recombinant fusion proteins 

SFIx/GNA against the aphid M. persica species using artificial diet 

formulations. 

5- Clone and express fusion proteins based on the snowdrop lectin (GNA) and 

toxins from the cone snail (alpha-Conotoxin EI, Sm1.1 and Acrorhagin-2a).  

6- Establish oral toxicity of recombinant fusion protein (GNA/ alpha-Conotoxin 

EI) against the model aphid species M. persicae. 
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2 Chapter 2 Materials and Methods 

 

2.1 Microbial Expression systems and Insects 

Escherichia coli and Pichia pastoris were used for expression of recombinant protein. 

Escherichia coli Dh5α was maintained on low salt LB broth, which was later replaced 

by 2X YT broth to increase the cell density during growth. TOP10 Electrocomp™ E. 

coli were provided for efficient transformation supplied by Invitrogen; catalogue 

number C4040-52.  

 Pichia pastoris X33, was grown in 200 ml of starter cultures in a 1L baffled flask for 2-

3 days at 30 OC with shaking. We used YPD media was used which contains 1% yeast 

extract, 2% peptone, 1% glucose supplemented with 100–1000 μg/ml Zeocin 

(Invitrogen). For a negative control, non-selective YPD medium was also used for P. 

pastoris. In many cases yeast was maintained in an orbital shaker at 30 °C and 200 rpm 

for 96 h. 

The aphid Myzus. persicae was maintained on Chinese cabbage plants (Brassica rapa) 

under controlled environmental conditions of 25°C and a 16 hour light/ 8 hour dark 

regime. 

 

2.2 Materials and Recombinant Techniques 

Basic protocols used in this work were as described by Fitches and colleagues (Fitches 

et al., 2002) and Handbook of Molecular Biology (Sambrook and Russell., 2001). The 

reagents and chemicals used were purchased from Sigma, VWR or Invitrogen. General 

molecular cloning was performed using competent cells from Agilent Technologies 

(StrataClone™). For yeast work, transformation of one strain of P. pastoris, the X33 

wild type strains was attempted using the EasyComp kit (Invitrogen). GNA and anti-

GNA antibodies were bought from Vector Laboratories and Genosys Biotechnologies, 

respectively. A TOPO Cloning kit from Invitrogen was used for subcloning. 

Additionally, P. pastoris X33 wild-type strains and the expression vector pGAPZα 

(originally purchased from Invitrogen), were constructed by Dr Martin Edwards with 

the F1/GNA fusion protein gene cassette incorporated. A cDNA library was used for 

amplifying S. florentina (SF) sequences (Lipkin et al., 2002) using PCR amplification. 

PCR reactions were carried out using Pfu DNA polymerase Fermentas and plasmid 

DNA was prepared using Fermentas miniprep kit.  
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2.3  Standard molecular biology techniques 

2.3.1  Oligonuclueotide synthesis 

Oligonucleotides needed to synthesize all fusion protein constructs were designed and 

purchased from Sigma Genosys. These were diluted in nuclease free water to a final 

concentration of 100 μM following the manufacturer’s quality control instructions.  

 

2.3.2  Polymerase Chain Reaction (PCR) 

The primers listed in Table 2-1 were used to amplify SFI2, SFI3/4/5, SFI6, SFI8, and 

GNA sequences. In brief, colonies were picked from a cDNA library and used as DNA 

template and were mixed with primers, nucleotides, and Pfu DNA polymerase according 

to Table 2-2. The colony PCR reaction was set up as given in Table 2-3. 

 

Table 2-1 Primers used for the amplification of the SFI2, SFI3/4/5, SFI6, SFI8, and GNA sequences.  

Primers Sequences 

5’ SFI 2 CTCGAGAAAAGAGAGGCTGAAGCTAAAGAGTGCATGGCGGATGAG 

3’ SFI 2 GGCGGCCGCTTCTTTTGGTCCACACTTGCA 

5’ SFI3/4/5 5’ CTCGAGAAAAGAGAGGCTGAAGCTAAAGAGTGTATGGTGGATGGG 3’ 

5’ SFI6 5’ CTCGAGAAAAGAGAGGCTGAAGCTAAAGAGTGTATGACGGATGAG 3’ 

3’ SFI3-8 5’ GGCGGCCGCTGCTTTTGGTCCACACTTGCA 3’ 

5’GNA GGCGGCCGCTGCTTTTGGTCCA-CACATGCA 

3’GNA TTCTA- GAAATCCAGTAGCCCAACGATCAGT 

 

Table 2-2 Reaction component volumes used for PCR. The total reaction volume is 50 μl. 

Content Sample Negative control 

5 X Reaction buffer 10 μl 10 μl 

 primer forward (10 μM) 1 μl 1 μl 

 primer reverse (10 μM) 1 μl 1 μl 

DNA polymerase 1 U 1 μl 1 μl 

Template (E.coli/X33) 4/5 μl - 

Sterile water 32 μl 37 μl 
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Table 2-3 PCR cycles for bacterial colony screening, including temperatures, time and cycles for each PCR step. 

Steps Temperature Time Cycle 

Initial denaturation 95 ºC 2 min 1x 

Denaturation 95 ºC 30 s 30x 

Annealing 53 ºC 30 s  

Extension 72 ºC 40 s  

Final extension 72 ºC 7 min 1x 

 

 

PCR reaction products were separated and analysed using 1% Agarose gel 

electrophoresis. Briefly, 1% Agarose gels were used (1 g agarose, 100 ml 1X TBE 

buffer) with 3 μl ethidium bromide added at a concentration of 0.5 μg/ml. 1 Kb and 100 

bp ladders were used as standard markers (Fermentas) and gels were run at 100-120 V. 

Subsequently, amplified fragments were visualised under UV and the bands of interest 

were excised using a single edged blade. Taq-amplifiied PCR products were efficiently 

ligated using a Quick Ligation Kit (New England Biolabs, NEB) at room temperature 

(25C) for 5 minutes before storing the ligation reaction at -20°C. The restriction 

reaction mixtures were carried out following the information sheet supplied by the 

manufacturer. For cloning PCR products <3 kb, 1 l of ligation reaction was mixed with 

25 l StrataClone SoloPack competent cells, incubated on ice for 30 min and then 

heated for 45  sec in a water bath according to the manufacturer’s instructions. The 

competent cells supplied by Invitrogen; Catalog number 15544-034 (pre-heated at 

42C) were then mixed in 250 ul SOC medium, and incubated at 37C for 1hr with 

shaking at 250 rpm before being spread onto ampicillin or Kanamycin–X-gal LB agar 

plates and incubated at the same temperature overnight. Antibiotics were used at the 

following concentrations: 

Ampicillin  100 g/ml 

Kanamycin  30 g/ml 

  

Based on PCR analysis, positive clones with DNA of interest, i.e.  SFI2, SFI3/4/5, SFI6, 

SFI8 etc, were picked from agar plates into (5-20 ml) LB containing the appropriate 
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antibiotic(s). Plasmids were extracted using a QIAprep Spin Miniprep Kit (QIAGEN; 

catalogue number 27104). Briefly, overnight cultures (5-20 ml) were grown and 

minipreps were prepared as described in the kit. The isolated DNA plasmids were 

linearized with EcoRI (Fermentas catalogue number 15202-013).  The restriction 

enzyme digestion were set up for optimal reaction conditions following the information 

sheet supplied by the manufacturer.  The restriction reaction mixtures were: 20 μl in 

volume using 15 μl of SFIx-Pbsk Vector, 1X enzyme buffer, 1 to 10 units of the 

restriction enzyme with the addition of sterile distilled water up to the required volume. 

Reaction mixtures were left for 3 hours at 37°C to ensure complete digestion. The 

restriction products were separated using 1% agarose gel electrophoresis and then the 

QIAquick gel extraction kit (QIAGEN; catalogue number 28704) was used for 

purification of DNA excised from the gel. Purified DNA was eluted in 30µl of elution 

buffer or distilled. water. Purity, quality and quantity of DNA were measured using a 

Thermo Scientific NanoDropTM 1000 Spectrophotometer with UV/Vis analyses of 1 μl 

samples. The plasmid concentration for positive clones was measured using a 

biophotometer and sent for sequencing. 

 

2.3.3 Ligation and transformation of expression constructs into E. coli 

The amplified and purified sequences, SFI2, SFI3, SFI5, SFI6 and SFI8 were digested 

with XhoI at NotI sites as the presence of these sites allows insertion of the amplified 

toxins into the pGAPZα vector. The amplified coding sequences were then mixed with 

cut plasmid pGAPZα containing GNA (in 3:1 ratio), 0.5μl T4 DNA ligase and 1 μl 10 X 

ligase buffer in a 10 μl reaction in separate tubes. Reactions were left overnight at 4°C 

to ensure complete ligation. Ligated fragments were further used to transform the TOP 

10 electro-competent E. coli bacterial cells from Agilent Technologies (StrataClone™ 

SoloPack® Competent cells). Briefly, cells were removed from -80°C storage and 

thawed on ice. Upon mixing with the required ligated plasmid, electroporation allowed 

plasmid uptake. Electroporation was carried out using a Biorad Gene Pulser system 

following recommendations by both Invitrogen (the cell provider) and Biorad (E. coli 

electroporation protocol). Transformed E. coli cells were plated on LB agar plates 

containing Zeocin™ (25 μg/ml) for selection of transformants containing the pGAPZα 

plasmid. Plasmids from E. coli were extracted using the miniprep Kit and positive 

transformants were confirmed by DNA sequencing and/or colony PCR. This will result 

into the toxin sequences being inserted within the LacZ gene of the psc-A vector and 
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give rise to SFIx/GNA pGAPZα. Subsequently, the Acrorhagin-2a, alpha-Conotoxin EI 

and sm1.1 constructs were also amplified by PCR and ligated to the C-terminus of a 

sequence encoding GNA already present within the expression vector pGAPZα 

followed by transformation and selection in E. coli.  

 

2.3.4 Modification of plasmids for two copy insertion constructs  

The PCR product of SFI1/GNApGAPZα was restricted and ligation carried out two 

copy construct of SFI1/GNA pGAPZα. Two copy expression constructs were assembled 

by releasing the gene cassette from the original plasmid using BgIII and BamHI 

supplied by Fermentas (Catalogue number FD0054). Another restriction reaction with 

BamHI was performed to digest an original SFI1/GNApGAPZα for linearization. The 

restriction enzymes were mixed following the manufacturer’s instructions. The 

restriction products were separated using 1% agarose gel electrophoresis and then 

isolated using QIAquick gel extraction kit. To allowed multi ligations of the plasmid, 

the BamHI cut plasmid was modified to remove phosphate groups. Alkaline 

phosphatase treatment was set up following the information sheet supplied by the 

manufacturer (Fermentas; catalogue number EF0651). Each 1 μg of BamHI cut plasmid 

was mixed with 1μl of alkaline phosphatase. 

2.3.5  Transformation of expression constructs in Pichia Pastoris 

Prepared constructs SFI1/GNA, SFI2/GNA, SFI3/GNA, SFI5/GNA, SFI6/GNA and 

SFI8/GNA were transformed into yeast, Pichia pastoris, for over expression of 

recombinant proteins (Fitches et al., 2002). Briefly, 50 ml of overnight bacterial culture 

was grown and plasmids were isolated using MinPrep kit. Isolated and purified 

plasmids were concentrated by ethanol precipitation by adding 0.1 volumes of 3 M 

NaAc and 2 volumes of 100% ethanol. Plasmids were then placed on ice or at -20 

degrees C for 20 minutes and then were centrifuged at 12,000 x g at 4 °C for 30 minutes. 

The supernatant was carefully decanted before adding 1 ml of 70% ethanol. The 

plasmids were vortexed at maximum speed for 15 min. The supernatants were again 

removed and the pellets were briefly dried.  Precipitated DNA was re suspended in 5μl 

nuclease free water and used to transform in competent P. pastoris using Easycomp 

Pichia pastoris Kit (Invitrogen) according to the manufacturer’s instructions. The 

transformed X-33 cells were then plated on Yeast Peptone Dextrose (YPD) agar plates 

(1% yeast extract, 2% peptone, 2% dextrose and 20 g/L of agar) containing zeocin (100 
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μg/ml), and plates were incubated at 30°C for 3–4 days until colonies appeared on the 

plate. About 6 conspicuous colonies were picked randomly from the YPD agar plate 

and cultured in YPD media (containing 1% yeast extract, 2% peptone, 2% dextrose and 

100 μg/mL zeocin) for 24–36 h. Glycerol stocks were made from these cultures and 

stored at –80°C until later use for protein production. To ensure no errors had occurred, 

colony screening of P. pastoris X33 wild-type was performed. Briefly, microcentrifuge 

tubes containing 75 μl TE buffer were inoculated with the positive colonies. 

Microcentrifuge tubes were heated using a microwave for 3.5, 2, 1.5, 1 and 0.5 minutes 

and vortexed briefly in between. The tubes were then placed in a -80ºC freezer for 10 

minutes, boiled at 95ºC for 2 minutes and then centrifuged at 1000 x g at room 

temperature for 15 minutes. 5 μl of the supernatant was then analysed by PCR using 

GNA primers (Table 2-1). PCR conditions are given in Table 2-3.  

 

  

Table 2-4 PCR cycles for yeast colony screening, including temperatures, time and cycles for each PCR step. 

Step Temperature Time  Cycle 

Initial denaturation  95 ºC  2 min  1x  

Denaturation  95 ºC  1 min  30x  

Annealing  54 ºC  1 min   

Extension  72 ºC  1 min   

Final extension  72 ºC  7 min  1x  

 

2.3.6  Cloning and Expression of Cone Snail Toxins 

Apart from spider toxins, another objective was to clone and express fusion proteins 

based on snowdrop lectin (GNA) and toxins from the cone snail (alpha-Conotoxin EI, 

Sm1.1 and Acrorhagin-2a). Obtained constructs, GNA/Acrorhagin-2a, GNA/ alpha-

Conotoxin EI and GNA/sm1.1 were amplified by PCR and ligated into the P. pastoris 

expression vector pGAPZαB by restriction/ligation. The resulting plasmids with inserts 

were sequenced and confirmed. Transformation of the x33 strain of P. pastoris was 

performed by isolating the resulting transformed plasmids pGAPzaB, containing the 

correct GNA/ alpha-Conotoxin EI and GNA/sm1.1 construct, from 50 ml of overnight 

bacterial culture. Prior to transformation, the plasmids were then digested with either 

0.1 μl BglII restriction, (supplied by Fermentas; catalogue number ER0081) or 1 μl 
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(FastDigest BglII enzyme purchased from Fermentas; catalogue number FD0083) per 

μg plasmid DNA and the 10X Fast Digest™ Buffer made up 10% of the reaction. 

Digests were incubated three hours or 30 min at 37°C, depending on which enzyme was 

used (conventional or fast digest respectively). The fully digested DNA was then 

inactivated by incubation at 80ºC for 5 minutes. Restriction fragments were isolated 

from the agarose gel by QIAquick Gel extraction Kit (QIAGEN; catalogue number 

28704) following manufacturer’s instructions.  

 

For yeast expression of GNA/ alpha-Conotoxin EI and GNA/sm1.1 constructs, an 

Easycomp Pichia pastoris Kit (Invitrogen) was used. The transformation was done 

according to the manufacturer’s instructions. Transformants were analysed either by 

colony PCR or western blot to confirm if the insert had been successfully integrated. To 

ensure no errors had occurred when GNA/ alpha-Conotoxin EI , GNA/sm1.1 and the 

GNA/Acrorhagin-2a constructs were inserted into the x33 strain of P. pastoris, a colony 

screening of X33 was performed.  

 

2.3.7 Small-scale screening for fusion protein expression  

P. pastoris glycerol stocks were plated and single colonies from various strains were 

inoculated in 50ml of YPD media 1% yeast extract, 2% peptone, 1% glucose) 

supplemented with 100–1000 μg/ml Zeocin (Invitrogen) and incubated at 30°C for 1–2 

days on shaker till the optical density at 600 nm (OD600) reached to 6 days. For negative 

control, non-selective YPD medium was also inoculated with the x33 strain of P. 

pastoris; glycerol was added to a final concentration of 0.5% every 24 h. Before the 

overexpression of all recombinant fusion proteins, cell densities were measured. 1 ml of 

the culture at time points 0, 48, 96 hours were withdrawn and measured by OD at 

600nm. During this period, 1 mL of culture media was also collected every 48 h which 

was centrifuged at 8000 xg for 5 min, and the supernatant was collected and protein 

expression examined by SDS-PAGE and western blot.  

 

2.3.8  Protein Expression and Purification from P. pastoris 

Selected positive colonies were cultured in YPG growth media and grown in 200 ml of 

starter cultures in a 1L baffled flask for 2-3 days at 30 OC with shaking, as discussed in 

Fitches et al. (2004). The starter culture was used to inoculate 900 ml of basal media 

(Higgins and Cregg, 1998) in a bench top fermenter (New Brunswick Scientific Bioflo 



  

 

41 

 

110). The bench fermenter with basal media was calibrated with a pH probe and 

dissolved oxygen and sterilised in an autoclave at 121 OC, 15 lbs pressure for 20 

minutes. The sterilised fermenter vessel was then set up for measuring pH and 

temperature using a digital pH controller and digital temperature sensor. Cooling of the 

water supply was used to maintain a 30 OC temperature. Two 500 ml bottles were 

connected to the fermenter for the addition of acid and base and one 1000 ml bottle for 

the addition of sterile 50% glycerol solution (v/v with distilled water) containing 9.6 ml 

PTM1. After 24 hours of incubation, fermentation was initiated. Sterile media 

supplemented with (3.92 ml/l) PTM1 salts was inoculated with 100ml starter cultures. 

Cultivation was set up with input of the following parameters: 30% dissolved oxygen, 

pH 4.5, 30 OC. A glycerol feed (4-9ml/h) was maintained during the fermentation 

process. A decrease in glycerol feed and increase in the level of dissolved oxygen 

makes the termination of the process. Selected proteins were separated from the culture 

by centrifugation (30 min at 8000 g at 4 OC). A quick and alternative protocol was used 

to extract maximum protein for quantitative and qualitative analysis. Briefly, 1.5 ml of 

yeast culture (OD600) was harvested by centrifugation and re-suspended in 500 μl 

YeastBuster™ Dill et al. (2004) reagent plus 5μl 100 X THP solution and the pelleted 

cells were processed according to the YeastBuster™ Protein Extraction Reagent 

manufacturer instructions.  

 

Downstream processing of supernatant 

The recombinant protein was separated from the medium by centrifugation (30 min at 

8000 g at 4 OC). The supernatant was separated from the mycelium by filtering through 

a 2.7 μm, 1.2 μm followed by 0.45 μm filter. 100 μl fractions were collected to use for 

further analysis. The filtered supernatant was then diluted with 2 X binding buffer 

(20Mm Sodium phosphate with 1 M NaCl, PH 7.2). Fast protein liquid chromatography 

(FPLC) was used for the purification of the recombinant protein.  

 

 Ni-NTA Affinity Purification 

In this project constructs were designed with a fused N-terminal His-6 tag motif. His-6 

tag binds to nickel and can be used to purify tagged proteins using Ni-NTA (nickel- 

nitrile-tri-acetic acid) affinity column. As a first step, the Ni-NTA column is charged by 

washing NTA resin with 50 mM EDTA (containing 0.1% SDS, pH 8) followed by 

distilled water to remove EDTA. This was followed by recharging the column with 100 
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mM nickel sulfate (5 column volume) turning the beads to green).  Yeast supernatant 

collected above diluted with 2X binding buffer (20Mm Sodium phosphate with 1 M 

NaCl, 20-40 mM imidazole, PH 7.2) was equilibrated with 1x binding buffer (20 mM 

sodium phosphate, 0.5 M Nacl, 20-40 mM imidazole, pH 7.4), and then loaded onto the 

Ni-NTA column. The loaded column was washed with 50 ml of washing buffer (20 mM 

sodium phosphate, 0.5 M Nacl, 50 mM imidazole, pH 8.00) and bound proteins were 

eluted with 15 mL of elution buffer (20 mM Tris, 150 mM sodium chloride and 300 

mM imidazole, pH 8.0). Eluted protein was dialysed overnight and the dialysed protein 

was frozen in liquid nitrogen or lyophilised. About 2 mL of sample was collected during 

all the purification steps for SDS-PAGE or western blot detection. Alternatively, the 

supernatant along with 2x binding buffer was run through a nickel column on an 

agarose support at 2 ml/min. Before loading the supernatant, the column was recharged 

with NiSO4 (2 ml/l) and washed with distilled water. It was then equilibrated with 1x 

binding buffer and the supernatant loaded on the nickel columns and washed overnight 

at a flow rate of 2 ml/min. The nickel column was washed with 100 ml binding buffer 

until the UV absorbance, measured at 280 nm, reached a steady baseline. After a 

washing step, protein was eluted in 200 mM imidazole. Each single fraction generated 

from the load, wash and elution stages was collected and analysed using SDS-PAGE. 

After the termination of protein purification, the column was stripped and rinsed 

following the manufacturer’s recommendations. The soluble fractions of the protein 

were dialysed against distilled water at 4 OC using dialysis tubing with a molecular 

weight cut off 12-14 kDa. Following dialysis, dialysed protein was transferred to a 

round bottom flask and then it was frozen in liquid nitrogen and freeze dried.  

 

2.4 Bioassays 

2.4.1 Insects and Artificial Diet  

Myzus persicae (peach potato aphid) was chosen as representing a major UK pest. 

Insects were maintained on Chinese cabbage plants (Brassica rapa) under controlled 

environmental conditions of 25°C and a 16 hour light/ 8 hour dark regime. Prior to 

bioassays, the aphid artificial diet was prepared based that described by  Febvay et al. 

(1988). Adult aphids were collected from the base of a Chinese cabbage plant and 

transferred to 90mm diameter Petri dishes and fed with artificial diet as described by 

Down et al. (1996), and incubated overnight to reproduce nymph aphids (0-24 h old).  
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2.4.2 Insect Bioassays 

Initial insect bioassays were conducted to check the toxicity of different versions of the 

recombinant fusion proteins. 100 adult aphids were collected from the base of a Chinese 

cabbage plant grown under controlled environmental condition  and fed with artificial 

diet and incubated overnight to produce nymph aphids (0-24 h old). Different droplet-

feeding assays were conducted to check the oral activity of the selected fusion proteins 

and GNA towards the nymphs of M. persicae. The replicates were set for each single 

treatment containing 10 neonate aphids in each petri-dish. Neonate aphids were fed on 

artificial diet alone (control) for each assay. To ensure the oral toxicity of fusion 

proteins was not due to the presence of GNA in the fusion proteins, Myzus persicae 

nymphs (<24 h) were fed with GNA fusion protein only incorporated artificial diet. 

Four representative assays are described herein.  

 

Initial screening of recombinant fusion proteins from venom of the spider Segestria-

florentina 

 Bioassays were carried out with Myzus persicae nymphs (<24h). The following treatment 

were:  

1) Nymphs were fed with an artificial diet only (control) 

2) Nymphs were fed with water only (control) 

3)  Nymphs were fed with diet containing 2 X SFI1/GNS (0.1 µg/µl)  

4)  Nymphs were fed with diet containing SFI2/GNA (0.1 µg/µl)  

5) Nymphs were fed with diet containing SFI3/GNA (0.1 µg/µl)  

6) Nymphs were fed with diet containing SFI5/GNA (0.1 µg/µl)  

7)  Nymphs were fed with diet containing SFI6/GNA (0.1 µg/µl)  

8)  Nymphs were fed with diet containing SFI8/GNA (0.1 µg/µl)  

9) Nymphs were fed with diet containing GNA alone (0.1 µg/µl) 

For each treatment, 3 replicates were carried out, each using 10 nymphs.  

Diets (150 µl) were placed between the two layers of Para film stretched over the 

top of the petri dishes. Bioassays were carried out for 12 days under optimal 

conditions. Survival was monitored daily and diets were changed after every 72 

hours avoiding contamination. 



  

 

44 

 

 Dose response effect of recombinant fusion proteins 2 X SFI1/GNA, SFI5/GNA, 

SFI8/GNA, and GNA alone 

 Feeding assays were set up to check the oral activity of the selected fusion proteins (2 

X SFI1/GNA, SFI5/GNA and SFI8/GNA) and GNA towards the nymphs of M. 

persicae. Three replicates of 10 nymphs per concentration (0.1 mg/ml, 0.05 mg/ml, and 

0.001 mg/ml) for different proteins were assayed.  Nymphs were fed with artificial diet 

for the control. Nymphs were starved for 2 h prior to feeding in order to encourage the 

consumption of the droplet. Survival was recorded daily over the bioassay period (7 

days) and analysed by Sigmaplot 11(2008). 

 

 

 Initial screening of recombinant fusion protein from cone snails 

Nymph aphids were collected and exposed to one of the four treatments in artificial diet:  

i) Water alone (negative control) 

ii)  An artificial diet as positive control 

iii)  0.1 mg/ml GNA 

iv)  0.1 mg/ml GNA/ alpha-Conotoxin EI 

Survival was monitored daily for seven days and diets were changed every 48 hours, 

avoiding contamination. Thirty nymphs per treatment were used, 10 nymphs in each petri 

dish. Survival analysis was carried out using Sigmaplot 11 (2008).   

 

Dose response effect of recombinant fusion proteins GNA/ alpha-Conotoxin EI  

 To compare the effects of feeding recombinant GNA/ α-conotoxins EI against M. 

persicae, 24 hour old M. persicae were raised on different treatments of GNA/ α-

conotoxins EI and GNA containing artificial diet. Concentrations of 0.1 mg/ml, 0.01 

mg/ml and 0.001 mg/ml recombinant GNA/ α-conotoxins EI and 0.1 mg/ml GNA were 

tested.  Neonates were also fed on artificial diet alone (control). Survival was monitored 

daily for seven days and diets were changed every 48 hours avoiding contamination. 

Thirty nymphs per treatment were used, 10 nymphs in each petri dish. Survival analysis 

was carried out using Sigmaplot 11. 
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2.5 Basic Analytical Techniques  

2.5.1 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) is routinely 

used to separate macro-molecules based on ionic charge and molecular mass. The gels 

were prepared using the recipe given in Appendix A.  

 

Samples collected at various stages of purification (10 μL) were mixed with 10 μL 

loading dye (2% SDS, 0.1% bromophenol blue, 10% glycine) and boiled at 95°C for 5 

min. The denatured samples were loaded on SDS-PAGE gel and were electophoresed in 

BIO-RAD Mini-PROTEAN® Tetra cell gel electrophoresis apparatus with 

electrophoresis buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3). Gels were 

electrophoresed at 80 V for 15-20 min, and then the voltage was increased to 120 V for 

another 45 min. Gel were then either stained with Coomassie brilliant blue staining 

solution (40% methanol, 10% acetic acid, 0.1% coomassie brilliant blue) overnight at a 

room temperature or used immediately for western blot analysis. Stained gels were then 

immersed in de-staining solution (20% methanol, 10% acetic acid, 70% double distilled 

water) for 2-3 days at room temperature with shaking until a clear background was 

obtained. Gel images were recorded using a BIO-RAD Gel-Doc® system. Routinely, 

for separation of protein in the range of 10-40 kDa, 15% acrylamide gels were used. 

 

2.5.2  Immune assays by Western Blotting 

Following SDS-PAGE, the SEMI DRY method was used to transfer protein from the 

gel to nitrocellulose membranes. A 0.2 µm pore size membrane is suitable for use with a 

low molecular weight of proteins. Blotting of the gel was done by soaking nitrocellulose 

membranes and pieces of blotting paper in Towbin transfer buffer (Towbin et al. (1979) 

and then assembling in the following order: Cathode Plate, 3 sheets of blotting paper, 

Acrylamide Gel, Nitrocellulose membrane, 3 sheets of blotting paper, and Anode Plate; 

these were then placed in an electro blotter. The process of electro-blotting was done at 

0.1 A for 45 mins. The transfer process followed by blocking the membrane with 50 ml 

of blocking solution (5% non-fat milk powder, 1X PBS, 0.1% Tween-20) for 1 hour 

with gentle agitation at room temperature. After blocking it is necessary to rinse the 

membrane with (50 ml) antisera buffer (5% Non-fat milk powder, 1X PBS, 0.1% 

Tween-20) in order to remove residues of block solution.  
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The rinse step was followed by placing the membrane in the primary antibody, anti His, 

at a dilution 1:5000 in antisera buffer and allowed to incubate overnight at 4 C. 

Removing residual unbound primary antibody was then done by washing the membrane 

with antisera buffer 3 times, about 5 minutes each time, with agitation. The membrane 

was then left in diluted secondary antibody, goat anti-rabbit antibody in antisera buffer 

at ratio 1:5000 (25 ml), for 2 hours at room temperature. The membrane was then 

briefly rinsed with two changes of wash buffer (1% PBS/0.1% tween 20) for 10 minutes 

and then washed for 1x15 minutes shaking. Then, it was rinsed thoroughly in distilled 

water. The specifically bound secondary antibody of the target protein was detected 

using Enhanced Chemi-luminescence reagents (ECL). Detection solution was mixed in 

a ratio of 1:1 and poured over the membrane and incubated for 2 minutes. The 

membrane was then exposed to photosensitive film (Fuji-RX). Automatic X-ograph 

Imaging systems Compact X4 developer was used to develop the film. 

 

2.5.3 Estimation of Protein concentration 

The concentration of protein in the eluted fractions was estimated using the Bradford 

Assay (supplied by Thermos Scientific), with BSA (Bovine serum albumin; 2mg/ ml) as 

a standard protein. The dye reagent was freshly prepared before use by mixing the dye 

with distal water (in 1:3 ratio). For each well in microtitre plates, 10 μL of protein 

sample or standard protein was added (in 3 replicate) and then mixed with 190 μL of 

dye Reagent mixture.  

As a result of combining a protein solution with the dye reagent the colour was changed 

from brown to blue in proportion to the amount of protein present. The measurement was 

then recorded at 562 nm using a VERA max microplate reader (Molecular Devices). A 

standard curve was generated for determining the concentrations of unknown protein. 

Stoscheck (1990) described the method used in detail. 

 

Protein concentration was also estimated by comparing band intensities with known 

amounts of GNA, 2 mg/ml, 1mg/ml, respectively on 15% SDS-PAGE. After Staining 

and de-staining, the concentration of protein in the samples was then determined from 

the intensity of GNA standard protein bands. 
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2.6 DNA Sequencing 

The sequencing of samples was done by Geneius (Genevision) at Newcastle University. 

GNA Primers and alpha factor were used to carry out the sequencing. Samples were 

completed by use of 10 ng of DNA for every 100 bp of template DNA and 3.2 pmol of 

the primer. Post-sequencing reactions were purified from unincorporated dye 

terminators using ExoSAP IT, GE Healthcare. The ABI 3730 Sequencer was used for 

the determination of the sequences using vector specific primers. BLAST was 

performed on the sequences obtained by using the tool at the ENAserver. Translation of 

the sequences was done using tools at ExPaSy. 

 

2.7 Statistical Analysis  

Kaplan-Meier survival curves were constructed using R software (Pinheiro et al., 2013) 

or Sigmaplot 12.0 and further data were analysed using one-way ANOVA Excel to 

estimate the lethal concentration needed to kill 50%. A P value less than 0.05 were 

considered statistically significant. The toxicity index of the tested fusion proteins were 

also calculated according to SUN (1950).  
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3 Chapter 3 Expression, purification and biological activity of fusion 

proteins incorporating the toxins from the venom of the spider 

Segestria florentina (SFIx) and snowdrop lectin (Galanthus nivalis 

agglutinin; GNA) 

 
3.1 Introduction  

Neurotoxic polypeptides were isolated from the venom of the spider Segestria 

florentina by Newcomb et al. (1995). These neurotoxic polypeptides are encoded by a 

family of eight genes (SFI1-SFI8); all the deduced polypeptides contain 46 amino acid 

residues and eight cysteine residues. These toxins are known to block neuromuscular 

junctions via direct action on the voltage calcium channels (Lipkin et al., 2002).  Fitches 

et al. (2004) have shown that small venom peptides from spiders are degraded by the 

gut epithelium enzymes when delivery orally, as the biological activity of the purified S. 

florentina SFI1 was only observed when injected into a pest insect. 

 

GNA is a plant lectin which was isolated from the bulbs of snowdrops. The ability of 

GNA to cross the gut epithelium gives this protein the potential to be used as a carrier 

protein in fusion protein technology. Turner (1996) reported that there is specificity 

between GNA and mannose binding. This gives the technology an added advantage, as 

mammals do not have mannose receptors in their gut so the fusion protein will not cross 

their gut barrier. Fusing the coding sequence of a carrier protein such as snowdrop lectin 

GNA with the spider toxin peptides helps the toxic protein to be transported to the 

haemolymph through the insect’s gut epithelium.  This would therefore allow delivery 

of the toxin to its target site in the central nervous system. 
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3.2  Results 

3.2.1  Production and purification of fusion proteins incorporating SFI toxins 

and GNA 

 Assembly of the SFIx/GNA fusion protein construct 

The sequence encoding the 46-amino acid insecticidal neurotoxins SFI2, SFI3, SFI5, 

SFI6, and SFI8 was successfully assembled using a series of overlapping 

oligonucleotides. Primers used are listed in Table 2-1 (see Chapter 2) and are known to 

contain 5’ Xho I and 3’ Not I sites to facilitate ligation of the PCR fragment into vector 

pGAPZα.  PCR products were electrophoretically separated on a 1% agarose gel and 

amplification was obtained, as seen in Figure 3-1. Bands of the correct size of about 200 

bp were seen on the agarose gel for all amplified samples.  

 

 

Figure 3-1: Agarose gel electrophoresis of amplified SFI2, SFI3, SFI5, and SFI6 toxins using SFIX forward and 

SFIX reverse primers. Lane 1 represents the standard DNA ladder, 0.1Kb to 3Kb. Lanes 2, 3, 4, and 5 represent the 

successfully amplified SFI2, SFI3, SFI5, and SFI6 toxins of 200bp size. 

 

Following assembly, the coding sequences, all positive clones with DNA of interest, 

were subjected to digestion using the Fermenter EcoRI enzyme as described in 2.3.2 

(see Chapter 2). The digested products were run on a 1% agarose gel to analyse the 

reaction. EcoRI digestion of SFI2, SFI3, SFI5, SFI6, and SFI8 toxin clones revealed 

two fragments. The fragments were found to be of about 3000 bp and 200 bp, 

corresponding to vector pGAPZα and the amplified insert respectively, as seen in Figure 

3-2.  
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Figure 3-2: Agarose gel electrophoresis of digested SFI2, SFI3, SFI5, SFI6, and SFI8 toxins using EcoRI gives two 

fragments. Lane 1 represents the standard DNA Ladder 0.1 Kb to 3 Kb. Each line represents two fragments, and the 

3000 bp and 200 bp fragments correspond to vector pGAPZα and the amplified insert, respectively.    

 

Clones of the correct sequence of 200 bp were prepared for expression into the yeast 

vector pGAPZα of 3100 bp. SFI2, SFI3, SFI5, SFI6, and SFI8 were prepared by 

digestion with double restriction enzymes to release the insert from the vector 

backbone. However, the 3' end of the toxin sequence contained a single NotI restriction 

site, allowing ligation of the amplified toxins into the N-terminus of residues 1-105 of 

the snowdrop lectin GNA-mys epitope and the 6× His tag-encoding sequences present 

already in the pGAPZα vector. The basic constructs encoding SFIx linked via three 

alanine regions to the coding sequence for GNA polypeptide were created and 

propagated into a shuttle vector E-coli (Figure 3-3). The final constructs SFIx/GNA 

pGAPZα are predicted to have a signal alpha-factor at the N-terminus of SFIx, giving a 

predicted molecular weight of 17 kDa. To ensure no errors had occurred when the 

restriction/ligation of the fusion protein construct was carried out, positive clones were 

identified either by colony PCR using the primers 5’ SFIx and 3’ GNA (Table 2-1) or 

by checking the DNA sequencing. Sequencing of selected colonies confirmed the 

maintenance of correct construct integrity and positioning at each stage.  

   L1              L2           L3            L4             L5            L6   
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The sequence was translated using the translate tool at open reading frame finder 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html). A schematic diagram of the expression 

constructs, the determined nucleotides, and the predicted protein sequences for the 

SFI2/GNA, SFI3/GNA, SFI5/GNA, SFI6/GNA, and SFI8/GNA are shown in Figure 3-

4. DNA from a verified clone of the complete expression constructs SFIx/GNA 

pGAPZα was linearized and transformed into competent cells of the Pichia pastoris X 

33 strain, and selected on zeocin-containing plates. An attempt to transform the 

SFIx/GNA pGAPZα constructs into the P. pastoris X 33 strain resulted in few clones 

(result not shown). The selected clones were further analysed for expression to select for 

the highest-yield expressing clone. The expression constructs were assessed by Western 

blot using anti GNA-antibodies derived from the small-scale cultures’ supernatants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
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879 atgagatttccttcaatttttactgctgttttattcgcagcatcc 

M  R  F  P  S  I  F  T  A  V  L  F  A  A  S 

834 tccgcattagctgctccagtcaacactacaacagaagatgaaacg 

S  A  L  A  A  P  V  N  T  T  T  E  D  E  T 

789 gcacaaattccggctgaagctgtcatcggttactcagatttagaa 

A  Q  I  P  A  E  A  V  I  G  Y  S  D  L  E 

744 ggggatttcgatgttgctgttttgccattttccaacagcacaaat 

G  D  F  D  V  A  V  L  P  F  S  N  S  T  N 

699 aacgggttattgtttataaatactactattgccagcattgctgct 

N  G  L  L  F  I  N  T  T  I  A  S  I  A  A 

654 aaagaagaaggggtatctctcgagaaaagagaggctgaagctaaa 

K  E  E  G  V  S  L  E  K  R  E  A  E  A  K 

609 gagtgtatgacggatgggacagtgtgttatatacataatcataat 

E  C  M  T  D  G  T  V  C  Y  I  H  N  H  N 

564 gattgctgtggcagttgcctgtgctctaacggcccaatagcaaga 

D  C  C  G  S  C  L  C  S  N  G  P  I  A  R 

519 ccttgggaaatgatggttggcaattgcatgtgtggaccaaaagca 

P  W  E  M  M  V  G  N  C  M  C  G  P  K  A 

474 gcggccgccgacaatattttgtactccggtgagactctctctaca 

A  A  A  D  N  I  L  Y  S  G  E  T  L  S  T 

429 ggggaatttctcaactacggaagtttcgtttttatcatgcaagag 

G  E  F  L  N  Y  G  S  F  V  F  I  M  Q  E 

384 gactgcaatctggtcttgtacgacgtggacaagccaatctgggca 

D  C  N  L  V  L  Y  D  V  D  K  P  I  W  A 

339 acaaacacaggtggtctctcccgtagctgcttcctcagcatgcag 

T  N  T  G  G  L  S  R  S  C  F  L  S  M  Q 

294 actgatgggaacctcgtggtgtacaacccatcgaacaaaccgatt 

T  D  G  N  L  V  V  Y  N  P  S  N  K  P  I 

249 tgggcaagcaacactggaggccaaaatgggaattacgtgtgcatc 

W  A  S  N  T  G  G  Q  N  G  N  Y  V  C  I 

204 ctacagaaggataggaatgttgtgatctacggaactgatcgttgg 

L  Q  K  D  R  N  V  V  I  Y  G  T  D  R  W 

159 gctactggatttctagaacaaaaactcatctcagaagaggatctg 

A  T  G  F  L  E  Q  K  L  I  S  E  E  D  L 

114 aatagcgccgtcgaccatcatcatcatcatcattga 79 

N  S  A  V  D  H  H  H  H  H  H  * 

 

 

     

  

 

Figure 3-3: Full SFI1/GNA fusion protein construct in the yeast pGAPZAP: full determined nucleotide sequences, 

presumed amino acid sequences, and schematic representation of fusion protein construct. The yeast alpha factor 

signal sequences are shown with not highlighted, the SFI1 toxin sequences are highlighted in red, and the GNA 

sequences are highlighted in green. The basic constructs of SFI1/GNA were designed by Fitches et al. (2004).  
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A- α-factor/SFI2/GNA/6xHis 

 
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIA 

SIAAKEEGVSLEKREAEA  α-factor  K E C M A D E T V C Y I H N H N N C C G S C L C L N G P Y A R P W E M L V G N C 

K C G P K E  A A A     D  N  I  L  Y  S  G  E  T  L  S  T G  E  F  L  N  Y  G  S  F  V  F  I  M  Q  E D  C  N  L  V  L  Y  D  V  D  K  

P  I  W  A T  N  T  G  G  L  S  R  S  C  F  L  S  M  Q T  D  G  N  L  V  V  Y  N  P  S  N  K  P  I W  A  S  N  T  G  G  Q  N  G  N  Y  

V  C  I L  Q  K  D  R  N  V  V  I  Y  G  T  D  R  W A  T  G   tags L  E  Q  K  L  I  S  E  E  D  L   N  S  A  V  D  H  H  H  H  H  H   

 

B- α-factor/SFI3/GNA/6xhis 
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIA 

SIAAKEEGVSLEKREAEA  α-factor  K E C M V D G T V C Y I H N H N D C C G S C L C L N G P I A R P W E M M V G N C 

K C G P K A  A A A     D  N  I  L  Y  S  G  E  T  L  S  T G  E  F  L  N  Y  G  S  F  V  F  I  M  Q  E D  C  N  L  V  L  Y  D  V  D  K  

P  I  W  A T  N  T  G  G  L  S  R  S  C  F  L  S  M  Q T  D  G  N  L  V  V  Y  N  P  S  N  K  P  I W  A  S  N  T  G  G  Q  N  G  N  Y  

V  C  I L  Q  K  D  R  N  V  V  I  Y  G  T  D  R  W A  T  G   tags L  E  Q  K  L  I  S  E  E  D  L   N  S  A  V  D  H  H  H  H  H  H 

 

C- α-factor/SFI5/GNA/6xhis 
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIA 

SIAAKEEGVSLEKREAEA  α-factor  K E C M V D G T V C Y I H N H N D C C G S C L C P N G P L A R P W E M L V G N C 

K C G P K A  A A A     D  N  I  L  Y  S  G  E  T  L  S  T G  E  F  L  N  Y  G  S  F  V  F  I  M  Q  E D  C  N  L  V  L  Y  D  V  D  K  

P  I  W  A T  N  T  G  G  L  S  R  S  C  F  L  S  M  Q T  D  G  N  L  V  V  Y  N  P  S  N  K  P  I W  A  S  N  T  G  G  Q  N  G  N  Y  

V  C  I L  Q  K  D  R  N  V  V  I  Y  G  T  D  R  W A  T  G   tags L  E  Q  K  L  I  S  E  E  D  L   N  S  A  V  D  H  H  H  H  H  H 

 

D- α-factor /SFI6/GNA/6xhis 
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIA 

SIAAKEEGVSLEKREAEA  α-factor  K E C M T D E T V C Y I H N H N D C C G S C L C L N G P I A R P W E M M V G N C 

K C G P K A  A A A     D  N  I  L  Y  S  G  E  T  L  S  T G  E  F  L  N  Y  G  S  F  V  F  I  M  Q  E D  C  N  L  V  L  Y  D  V  D  K  

P  I  W  A T  N  T  G  G  L  S  R  S  C  F  L  S  M  Q T  D  G  N  L  V  V  Y  N  P  S  N  K  P  I W  A  S  N  T  G  G  Q  N  G  N  Y  

V  C  I L  Q  K  D  R  N  V  V  I  Y  G  T  D  R  W A  T  G   tags L  E  Q  K  L  I  S  E  E  D  L   N  S  A  V  D  H  H  H  H  H  H 

 

E- α-factor/SFI8/GNA/6xhis 
MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIA 

SIAAKEEGVSLEKREAEA  α-factor  K E C M A D G T V C Y I H N H N D C C G S C L C P N G P L A R P W E M L V G N C 

K C G P K A  A A A     D  N  I  L  Y  S  G  E  T  L  S  T G  E  F  L  N  Y  G  S  F  V  F  I  M  Q  E D  C  N  L  V  L  Y  D  V  D  K  

P  I  W  A T  N  T  G  G  L  S  R  S  C  F  L  S  M  Q T  D  G  N  L  V  V  Y  N  P  S  N  K  P  I W  A  S  N  T  G  G  Q  N  G  N  Y  

V  C  I L  Q  K  D  R  N  V  V  I  Y  G  T  D  R  W A  T  G   tags L  E  Q  K  L  I  S  E  E  D  L   N  S  A  V  D  H  H  H  H  H  H 

 

Figure 3-4: Sequence of predicted products from the expression constructs for the SFI2/GNA fusion protein (A), 

SFI3/GNA fusion protein (B), SFI5/GNA fusion protein (C), SFI6/GNA fusion protein (D), and SFI8/GNA fusion 

protein (E).Unshaded regions indicate the sequence of the yeast α-factor signal.  Shaded regions in light grey and 

grey indicate the nucleotide sequences for SFIx and GNA, respectively. Underlined regions indicate the linker 

sequence contributed by the nucleotides, used to join the SFIx toxin and GNA coding sequences together.  The 

highlighted region in red indicates sequences of the His tag to facilitate the purification of the expressed protein.  
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 Assembly of the expression vector constructs containing two gene copies 

The basic construct for recombinant expression of the single copy SFI1/GNA fusion 

protein was designed to link the 3' end of the toxins’ SFI1 sequence, containing a single 

NotI restriction site and the amplified toxins, into the N-terminus of residues 1-105 of the 

snowdrop lectin GNA-mys epitope via the three-alanine region. The construct also 

includes signal peptide-encoding sequences to ensure proper translational processing, and 

3’ 6× His tag-encoding sequences to facilitate purification of the expressed protein. The 

single copy of SFI1/GNA was then cloned into the expression vector pGAPZαB before 

integrating the expression cassettes into the genome of the P. pastoris host x33 strain. 

Increasing the yield of P. pastoris protein expression is required for field testing, but has 

been hindered by problems associated with proteolytic cleavage during expression, as the 

observed protease deficient strains carry a single copy expression castles. Increasing the 

amount of secreted recombinant fusion protein can be carried out through modifying the 

SFI1/GNA and subsequently incorporating multiple expression cassettes into the 

modified expression vector. Each expression cassette is composed of an alpha factor 

secretion signal, SFI1/GNA, followed by a 6× His tag.  

The double digestion reaction revealed the presence of a gene cassette of 1.8 kb and a 

“waste” vector of 1.9 kb, which were separated from each other by gel electrophoresis 

(Figure 3-5 A, lane 3). 1x SFI1/GNA pGAPZα was linearized at site 5’ G G A T C C 3’ 

with BamHI, resulting in a fragment of 3.6 kb on the band (Figure 3-5 B, lane 2). This 

could also serve as a control to ensure that the BamHI enzyme is working, especially in 

double digestion reactions. To allow multiple ligations of the plasmid, the BamHI cut 

plasmid was modified to remove phosphate groups on the two ends of the plasmid before 

inserting the gene cassettes. The approach to obtain two gene copy expression vectors is 

summarised in Figure 3-6. To ensure no errors had occurred when the restriction/ligation 

of fusion protein construct was carried out, positive clones were identified either by 

colony PCR, using the primers 5’ GNA and 3’ GNA (Table 1), or by checking by DNA 

sequencing. 14 clones of 2 X SFI1/GNA pGAPZα were selected and analysed for 

insertion using the colony PCR method. A PCR colony screening on all different colonies 

confirmed the maintenance of correct construct integrity (result not shown). DNA 

sequencing was used to confirm maintenance of correct construct integrity and 

positioning at each stage.  
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A  

B  

Figure 3-5: (A) Agarose gel electrophoresis of digested products using BamHI and  BglII.Lane 1 represents the 

standard DNA ladder 0.1 Kb to 3 Kb. Lane 2 represents the control BamHI digest to linear plasmid. Lane 3 

represents double digestion using BamHI and BglII, representing the vector and insert band. (B) Lane 2 represents 

the separation of the gene cassette from the 1x pGAPZα vector. Intact band in Lane 3 represents the pGAPZα vector.  
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pGAP α-factor       SFI1/GNA 6XHis 

 

 

 

 

 

pGAP α-factor   SFI1/GNA 6XHis 

 

Figure 3-6: Diagrammatic representation of the cloning strategy adopted to enable insertion of multiple copies of the 

fusion protein cassette into the Pichia yeast genome.   
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            SFI1/GNA expression cassette1               SFI1/GNA expression cassette2 

pGAP α-factor   SFI1/GNA 6XHis 

ZeocinR PUC ori 

PUC ori 

ZeocinR 
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 Expression of the recombinant protein SFIx/GNA 

Positive and verified plasmids of the expression constructs SFIx /GNA pGAPZα were 

linearized and transformed into competent cells of the P. pastoris X 33 strain. Due to 

the presence of a constitutive yeast promoter on the expression vector, they were 

selected on zeocin-containing plates. After preparation of the SFIx/GNA constructs, the 

expression of recombinant proteins were run on a small-scale culture, allowing isolation 

high level expression clones. Culture supernatants (grown for four days) were analysed 

by Western blotting using antiGNA antibodies (1:3000 dilution). As the fusion protein 

SFIx/GNA constructs have been confirmed to have a GNA linked to the C-terminal of 

the toxins (Figure 3-7), a GNA fusion protein was used as a positive control. 

SFI2/GNA, SFI3/GNA, SFI5/GNA, SFI6/GNA, and SFI8/GNA should show reactivity 

at around 17 kDa at time points 48 and 96 hours. The presence of GNA at the correct 

size in the positive standard lanes shows the blots have worked successfully. However, 

the fusion proteins were not detected through a sensitive technique Western blot at time 

point 48 (result not shown). The fusion proteins SFI2/GNA, SFI3/GNA, SFI5/GNA, 

SFI6/GNA, and SFI8/GNA were detected at high levels of expression, with a number of 

bands seen on the gel between 17 kDa and 14 kDa at time point 96 hours.  

 

 

Figure 3-7: The presence of GNA of the correct size in the positive standard lanes shows the blots have 

worked successfully. However, the fusion proteins SFI2/GNA, SFI3/GNA, SFI5/GNA, SFI6/GNA, and 

SFI8/GNA were subjected to high levels of expression, with a number of bands seen on the gel between 

17 kDa and 14 kDa.  
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Yeast transformation and gene copy analysis 

The original SFI1/GNA (FP2.1) and the two gene copies of construct 2 X SFI1/GNA (2 

X FP2.1) were retransformed into P. pastoris using the pGAPZα expression vector. 

Small-scale expression and immune blot assays similar to those used previously for 

SFIx/GNA pGAPZaB were carried out (Figure 3-8). The three colonies of expressed 

proteins for the original SFI1/GNA with a molecular size of 17 kDa, and the three 

colonies of the 2 X SFI1/GNA constructs, were examined by Western blotting analysis.  

A single band that indicated mol. wt. reactivity and the correct size for both constructs 

was present. The original SFI1/GNA fusion protein resulted in lower expression in the 

levels of intact fusion proteins in X33 cells compared to the modified construct, as 

assessed by Western blotting using an anti-GNA antibody (Figure 3-8). The modified 

construct was found to produce a 1:2 ratio of fusion protein (mol. wt. of approximately 

17 kDa) as measured by a Western blot.  

 

 

Figure 3-8: Western blot analysis of the protein expression of SFI1/GNA pGAPZα and 2 x SFI1/GNA pGAPZα using 

anti-GNA antibodies derived from the small-scale cultures’ supernatants.  

 

Positive and verified plasmids of the expression constructs SFIx /GNA pGAPZα were 

linearized and transformed into competent cells of the P.pastoris X33 strain. Due to the 

presence of a constitutive yeast promoter on the expression vector, they were selected 

on zeocin-containing plates. The expression of recombinant proteins was run on a 

small-scale culture which allowed us to select of the best expressing clone for fusion 

protein production by bench-top fermentation. Culture supernatants were analysed by 

Western blotting using GNA antibodies. One clone of expressing recombinant proteins 

were used for fusion protein production by bench-top fermentation. 
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The selected yeast clones expressing the SFIx/GNA fusion protein were grown in a 

bench-top fermenter after growing the cells in a start culture for 2-3 days. During the 

fermentation, parameters for dO2 and pH were closely monitored and regulated. The 

dissolved oxygen and agitation trend graphs represented in Figure 3-9 reveal the 

successful run of fermentation. 

Increasing the dissolved oxygen prompted a decline in agitation, indicating a reduced 

oxygen demand. Defining the rates of the density growth of the culture, the lanner 

dissolved the oxygen levels (DO). 

The media was centrifuged at 8000 g for 30 minutes at 4 OC. The supernatants were then 

collected and stored at 4O C, and the pellet was discarded. The total amount of each 

supernatant was clarified by filtration through a filter flask before mixing with a 2 X 

binding buffer, for loading through a liquid chromatograph.   
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A.                                                                                 

 

B 

 

C.                                                                     D. 

 

E. 

 

 
Figure 3-9. A. shows the 72-hour fermentation run of SFI1/GNA, and the green curve in the graph shows the 

dissolved oxygen level and its consistency. B. shows the successful run of the fermenter for SFI2/GNA. C. represents 

the fermentation run of SFI3/GNA, the DO tend for the cell density. The 72-hour fermentation run of the SFI5/GNA 

fusion protein is represented in Figure 9.D, and the variation in the graph shows the dissolved oxygen level and its 

consistency. E. illustrates the successful run for fermenter for SFI6/GNA. 
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 Purification of recombinant protein SFIx/GNA 

Purification of the recombinant protein was done by liquid chromatography, on a 

column of an agarose support at 2 ml/min. All eluted proteins were monitored at 280 

nm. Purification Figures shows each single fraction generated from the load, wash, and 

elution stages. For all constructs, the recombinant protein was eluted with 200 mM 

imidazole.  Eluted protein fractions were dialysed against dist. water at 4O C using 

tubing with a molecular weight cut off of 12-14 kDa, to remove all the imidazole, free 

toxins, and salt from the samples. Following dialysis, the dialysed protein was 

transferred to a round bottom flask, and then it was flash frozen in liquid nitrogen and 

freeze dried. 

 

Figure 3-10 (A) shows the chromatogram produced at the time of elution of the 2 X 

SFI1/GNA fusion. The elution protein, shown in Figure 3-10 (A), has a very large peak, 

which shows a high quantity of protein. Its wash peak is much smaller compared to the 

eluted peak. The proteins in this case are detected by monitoring their UV absorbance at 

280 nm. The molecular weight of recombinant protein, and the purity of the single 

elution peak was confirmed by SDS-PAGE. Electrophoresis of the recombinant proteins 

from the different constructs demonstrated that they were being correctly produced and 

expressed, with a molecular weight of 14-17 kDa.  

The stained gel in Figure 3-10 (B) shows analysis of the peak fractions collected from 

the recombinant protein purification. The samples loaded in L1-L3 have slightly visible 

bands around 17 kDa, detecting some proteins present in the supernatant; the eluted 

protein was also loaded but there is no visible band. GNA bands with 1mg and 2mg 

concentrations are slightly visible, as seen in lanes 8 and 9, respectively.  

A western blot gel (Figure 3-11) was probed with anti-GNA antibodies (1:5000 

dilutions) and subjected to a reaction of recombinant 2 X SFI1/GNA against GNA, with 

a number of bands seen in the lane of eluted protein between 16 kDa and 14 kDa. GNA 

was also loaded at a 1mg concentration; a strong band is observed in lane 6.  The eluted 

protein fractions free from high molecular weight yeast proteins were pooled, and 

separately dialysed against distilled water at 4O C using 12-15 kDa MWCO tubing.   
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A. 

 
 

 

B. 

 
 
Figure 3-10: purification of His-tagged 2X SFI1/GNA proteins expressed in Pichia pastoris using a Liquid 

Chromatography SystemFiltered P. pastoris culture. The supernatant was diluted in a binding buffer (0.02 Sodium 

phosphate, 0.4 M NaCl, pH 7.4) and loaded onto a HisTrap™ (GE Healthcare) column.  The protein was eluted with 

a binding buffer containing 0.2 M imidazole, and a NaCl gradient was held while the protein was eluted. (A) Typical 

purification trace. The absorbance trace is shown as a blue line. (B) 15 % SDS-PAGE analysis of the peak fractions 

collected from the recombinant protein purification.  Fractions were not free from high molecular weight yeast 

proteins. Lane 7 of the eluted proteins have slightly visible bands around 17 kDa.   
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Figure 3-11: Western blot (probed with anti-GNA ab) of recombinant 2 X SFI1/GNA expressed in Pichia 

pastoris.GNA was loaded in a known amount, 1mg/ml concentration. L1, L2, and L3 show the filtered supernatant, 

cultured supernatant diluted in binding buffer, and the supernatant after loading, respectively. Lane 4 of the wash 

stages shows multiple bands, indicating some protein was lost during was step. Lane 5 of the eluted protein shows an 

intact band at approximately the correct size for 17 kDa. GNA loaded in a known amount, 1 mg/ml, shows a single 

band at the correct size of 12.5 kDa.  

 

Elution of SFI3/GNA fusion was recorded for the protein at 200 Mm imidazole. Figure 

3-12 (A) shows that at 200 mM imidazole, elution generated two peaks, for which the 

reason was unknown.  The proteins in this case are detected by monitoring their UV 

absorbance, at 280 nm. SFI3/GNA has a molecular mass of 17 kDa and the purity of the 

single elution peak was confirmed by SDS-PAGE Figure 3-12 (B). Analysis of the 

SDS-PAGE post purification steps shows a weak quantity of SFI3/GNA fusion protein 

at the eluted stages.  

 

The results of the blot gel, as seen in Figure 3-13, show multiple bands in the lane of the 

eluted protein between 17 kDa and 14 kDa, and GNA was also loaded in a 1 mg/ml 

concentration.  The presence of GNA of the correct size in the positive standard (lane 7) 

demonstrates the blots have worked successfully.  
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A. 

 
 

B. 

 
 
Figure 3-12:  (A) Nickel column purification of His-tagged SFI3/GNA proteins expressed in Pichia pastoris using a 

Liquid Chromatography System Filtered P. pastoris culture.  Binding to the column was carried out in 0.02 Sodium 

phosphate, 0.4 M NaCl, pH 7.4 and loaded onto a HisTrap™ (GE Healthcare) column.  The protein was eluted with 

a binding buffer containing 0.2 M imidazole, and a NaCl gradient was held while the protein was eluted. (A) Typical 

purification trace. The absorbance trace is shown as a blue line. (B) 15% SDS-PAGE analysis of the peak fractions 

collected from the recombinant protein purification. Th lane 6 of the eluted protein shows the correct size for 

SFI3/GNA. 
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Figure 3-13: Western blot (probed with anti-GNA ab) of recombinant SFI3/GNA expressed in Pichia pastoris. 

Recombinant GNA was used as a positive standard; GNA was loaded in a 1 mg/ml concentration. Fractions were 

free from high molecular weight yeast proteins. L1, L2, L3, and L4 show the unfiltered supernatant, filtered 

supernatant, cultured supernatant diluted in a binding buffer, and the supernatant after loading, respectively. Lane 5 

of the wash stage shows few bands, indicating the loss of some protein during the wash step. The expected size of 

SFI3/GNA is 17 kDa. The blot shows a distinct band of approximately the correct size, as seen in lane 6. GNA loaded 

in a known amount, 1 mg/ml, shows a very light single band at the correct size of 12.5 kDa, as seen in Lane 7.  

 

 

After producing a (his)-6 SFI5/GNA recombinant protein expressed in Pichia pastoris 

(strain X 33) by bench-top fermentation, purification by liquid chromatograph His-Trap 

Nickel on a column was carried out. Figure 3-14 (A) shows the chromatogram created 

at the time of elution of SFI5/GNA fusion, at 200 mM and a wash buffer. The elution 

peak shown in Figure 3-14 (A) has a large peak compared with the wash buffer peak, 

demonstrating a high quantity of protein at the eluted stage. The proteins in this case are 

detected by monitoring their UV absorbance, at 280 nm. Three peak fractions of 

recombinant SFI5/GNA protein, subjected to electrophoresis on an SDS-PAGE, can be 

visualized by staining with Coomassie blue. The stained gel, as seen in Figure 3-14 (B), 

shows the samples loaded in L1-L4 have visible bands, indicating some proteins are 

present in the unfiltered supernatant, filtered supernatant, cultured supernatant diluted in 

binding buffer, and loaded sample. The result of the stained gel in Figure 3-14 (B) 

shows that monomer bands were seen in lane 6 of the eluted protein, corresponding to 

17 kDa, and demonstrates the recombinant proteins were being correctly produced and 

purified. GNA was also loaded in a 1mg/ml concentration; a single band was seen at 

about 12.5 kDa. A Western blot using a GNA antibody did not show the required result. 

However, the presence of GNA in the positive standard lanes confirmed the Western 

blot worked successfully (result not shown).  
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A. 

 
B.  

 
 

 
Figure 3-14: (A) Nickel column purification of His-tagged SFI5/GNA Proteins, expressed in Pichia pastoris using a 

Liquid Chromatography System Filtered P. pastoris culture.  Binding to the column was carried out in 0.02 Sodium 

phosphate, 0.4 M NaCl, and pH 7.4 and was loaded onto a HisTrap™ (GE Healthcare) column.  The protein was 

eluted with a binding buffer containing 0.2 M imidazole, and a NaCl gradient was held while the protein was eluted. 

(A) Typical purification trace. The absorbance trace is shown as a blue line. (B) 25 μl samples of different peak 

fractions collected from the recombinant protein purification were analysed on15% SDS-PAGE.  L1, L2, L3, L4 show 

the unfiltered supernatant, the filtered supernatant, cultured supernatant diluted in binding buffer, the supernatant 

after loading. The single band in the eluted protein lanes is the correct size for SFI5/GNA.  
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The recombinant SFI6/GNA fusion protein contained a His-tag (Figure 3-4 D), so the 

protein was therefore purified by nickel affinity chromatography using a HisTrap nickel 

column. Figure 3-15 (A) illustrates the chromatogram created at the time of elution of 

the SFI5/GNA fusion, at 200 mM and a wash buffer. The elution peak seen in Figure 3-

15 (A) has a high peak compared to the wash buffer peak. The proteins in this case are 

detected by monitoring their UV absorbance, at 280 nm. Three peak fractions of 

recombinant SFI6/GNA proteins were analysed by SDS-PAGE and a Western blotting 

gel. The stained gel in Figure 3-15 (B) shows that the samples loaded in L1-L2 have 

visible bands, detecting some proteins present in the filtered supernatant and cultured 

supernatant diluted in the binding buffer. The result of the stained gel in Figure 3-15 (B) 

shows that monomer bands were seen in lane 7 of the eluted protein, equivalent to 17 

kDa, which demonstrates the recombinant proteins were being correctly produced and 

purified. GNA was also loaded in a 1 mg/ml concentration, but no band was seen. A 

Western blot using GNA antibody, as shown in Figure 3-16, did not show the required 

result, as there are no single bands in the lane of the eluted protein.  
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A. 

                                                                           

 
 

 

 

 

B.  

 
Figure 3-15: Purification of (His) 6 SFI6/GNA expressed in Pichia pastoris (strain X33) by a Liquid Chromatograph 

Nickel on a column. A filtered P. pastoris culture supernatant was diluted with a binding buffer and then loaded; the 

column was recharged with a Niso4 (2.0ml/l) HisTrap™ (GE Healthcare) column. It was then washed with a 1x 

binding buffer to elute any non-specific, unbound proteins. Washing of the nickel columns with 100ml binding buffer 

is required until the UV absorbance is measured at 280 nm and reaches a steady baseline.  (A) A typical purification 

trace. (B) 25 μl samples of wash (W) and elution (E) fractions were then analysed on 15% SDS-PAGE gels. Lane 7 of 

eluted protein shows a single band at approximately the correct size for 17kDa.  Elution fractions were dialyzed 

using 12 kDa MWCO tubing and lyophilized. 
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Figure 3-16: Western blots (probed with an anti-GNA antibody) of recombinant SFI6/GNA, expressed in Pichia 

pastoris (strain X33).Recombinant GNA of 1 mg/ml was used as a positive control, but no band was seen. Fractions 

were free from high molecular weight yeast proteins. L1, L2, L3, and L4 show the unfiltered supernatant, filtered 

supernatant, cultured supernatant diluted in a binding buffer, and the supernatant after loading, respectively. Line 5 

of the wash stage shows few bands, indicating the loss of some protein during the wash step. The expected size of 

SFI6/GNA is 17 kDa. The blot did not show the required result, as there are no correct bands in lane 6 of the eluted 

protein. 

 

Purification of the recombinant protein SFI8/GNA expressed in Pichia pastoris (strain X 

33) was done by Liquid chromatograph His-Trap Nickel on a column.  Figure 3-17 

shows the chromatogram produced at the time of elution of the SFI8/GNA fusion, at 

200 mM and with a wash buffer. Three peaks were generated at the elution stage; the 

eluted protein of SFI8/GNA was detected from the last fraction. The elution peak, as 

seen in Figure 3-17 (A), has a small peak, demonstrating a small quantity of protein at 

the eluted stage.  

 

The peak fractions of recombinant protein SFI8/GNA subjected to electrophoresis on an  

SDS-PAGE can be visualized by staining with Coomassie blue. The stained gel, as seen 

in Figure 3-17 (B), shows the sample loaded in right side has no visible bands in the 

correct size of 17 kDa. However, GNA was loaded in two different concentrations, 1 

mg/ml and 2 mg/ml, and the presence of GNA at the correct size in the positive standard 

lanes demonstrates the SDS-PAGE worked successfully. 

  

In order to confirm the purity of the purification SFI8/GNA protein, a Western blot for 

the eluted protein was done by using GNA antibodies Figure 3-18. In all samples there 

is an intact band of immunoreactivity seen at the bottom of the gel of approx. 17 kDa. 
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This is due to the loss of proteins during the purification process. However, a Western 

blot probed with anti-GNA antibodies (1:5000 dilution) illustrates a reaction against the 

intact band, as seen in the lane of the eluted stages, confirming it was recombinant 

SFI8/GNA protein.  

 

A. 

 

 
B. 

 

 
Figure 3-17:  (A) Nickel column purification of His-tagged SFI8/GNA proteins, expressed in Pichia pastoris using a 

Liquid Chromatography System Filtered P. pastoris culture. The protein was eluted with a binding buffer containing 

0.2 M imidazole, and a NaCl gradient was held while the protein was eluted. (A) Typical purification trace. The 

absorbance trace is shown as a blue line. (A) Shows three peaks, and the eluted protein of SFI8/GNA was collected 

from the last fraction (green circle). (B) Shows 15% SDS-PAGE analysis of the peak fractions collected from the 

recombinant protein purification. The result of SDS-PAGE does not show the required result, but the presence of 

GNA bands at the correct size confirmed the gel was done correctly. 
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Figure 3-18: A Western blot (probed with anti-GNA ab) of recombinant SFI8/GNA expressed in Pichia pastoris. 

GNA was loaded in known amounts, with 1mg/ml and 2mg/ml concentrations. Lanes 1-5 show the expression of 

bands with immunoreactivity to anti-GNA antibodies. The lane of the eluted stages shows an intact band at 

approximately the correct size for 17 kDa.  

 

To this end, all eluted protein fractions for the SFIx/GNA constructs were dialysed 

against dist. water at 4 OC using tubing with a molecular weight cut off of 12-14 kDa, 

before analysing the purity of the recombinant protein by SDS Discontinuous Gel 

Electrophoresis or Western blot. This was done to remove all high molecular weight 

substances, i.e. imidazole. Following dialysis, the dialysed protein was transferred to a 

round bottom flask, frozen in liquid nitrogen, and freeze dried. A peak amount of 35 mg 

was obtained from the expressed 2 X SFI1/GNA fusion protein, whereas only 9 mg, 3 

mg, 1 mg, and 7 mg were produced from the expressed fusion proteins SFI5/GNA, 

SFI3/GNA, SFI6/GNA, and SFI8/GNA, respectively. The final dried proteins were re-

suspended in 100 µL dist. water.  

 

The total concentration of protein in the samples was examined by a Bradford assay. 

Some proteins may be degraded through the purification process; for this a standard 

Bradford assay only cannot establish the levels of intact fusion protein. However, a high 

concentration yield was detected in the 2XSFI1/GNA fusion protein, approximately 

12.381 µg/ µL, whereas only 2.85 µg/µl were performed from the fusion of protein 

SFI5/GNA. A yield of 2.99 µg/ µl was produced from the expressed fusion protein 

SFI8/GNA. The lowest yield was observed from expressed fusion protein SFI3/GNA 

and SFI6/GNA, approximately 1.981 µg/ µl and 1.078 µg/ µl, respectively. The protein 

concentrations were also estimated by comparing the band intensities with known 
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amounts of GNA, 2 mg/ml and 1mg/ml, respectively, on a 15% SDS-PAGE. After the 

staining and de-staining procedure, unknown protein concentrations were then 

determined from the GNA standard protein bands.               

 

3.2.2  Biological Activity of fusion proteins incorporating the toxins from the 

venom of the spider segestria (SFIx) and snowdrop lectin (Galanthus nivalis 

agglutinin; GNA) 

2 X SFI1/GNA, SFI3/GNA, SFI5/GNA, SFI6, and SFI8/GNA were produced in P. 

pastoris using a fermenter. The supernatants of all the samples were then purified by a 

liquid chromatograph nickel column on an agarose support at 2 ml/min, as described 

earlier.  The amount of proteins estimated by a standard Bradford assay was 

incorporated into an M. persicae artificial diet at 0.1 mg/ml, with diet only used as a 

control. GNA was also incorporated into an M. persicae artificial diet at the same 

concentration as a positive control.  The toxicity of all the protein constructs were 

assayed using nymphs (<24 h) M. persicae.  

 

 Oral activity of fusion proteins incorporating SFI and GNA against survival trials 

set-up over a period of 12 days  

To compare the effects of the toxicity among all the recombinant SFI proteins, the 

standard bioassays of toxicity for Purified 2 x SFI1/GNA, SFI3/GNA, SFI5/GNA, 

SFI6/GNA, and SFI8/GNA were fed to 30 M. persicae (3 repetitions for 10 nymphs). 

The whole bioassay process was set up for 12 days under optimal conditions. At 0.1 

mg/ml, survival of M. persicae fed either 2 x SFI1/GNA, SFI3/GNA, SFI5/GNA, 

SFI6/GNA, or SFI8/GNA was significantly reduced when compared to the control fed 

with an artificial diet only (Kaplan–Meier survival curves; log-rank statistics; p<0.001; 

data obtained from 30 individuals).  
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Figure 3-19: Survival of Myzus persicae on artificial diet bioassays. 2x SFI1/GNA is more toxic when fed at 0.1 

mg/ml in artificial diet bioassays (n=30 aphids per treatment), as shown by Kaplan-Meier survival analysis 

 

 

As shown in Figure 3-19, there was fifteen percent mortality from the second day of 

exposure to the 2 x SFI1/GNA and SFI5/GNA recombinant fusion proteins after the 

start of the experiment.  

Both SFI6/GNA and SFI3/GNA fed at 0.1 mg/ml showed a decrease in survival of 60% 

after 5 days. 100% mortality was observed within 5 days of exposure to 0.1 mg/ml 2 X 

SFI1/GNA, in contrast to those exposures to controls, where 85% survival was observed 

over the assay period (12 days). Although GNA was included as a control in this 

experiment, the survival curves between the diet and GNA show no significant 

differences (p=0.817), demonstrating the non-toxicity to aphids. Despite SFI8/GNA 
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showing higher mortality when compared to GNA alone, statistical analysis 

demonstrates no significant difference on day 12 (P =0.795). 

The surviving M. persicae fed on the SFI3/GNA fusion protein compared with those fed 

on the SFI5/GNA fusion protein showed no significance difference at day 12 (p=0.859).  

Even though high mortality occurred when M. persicae were fed on the SFI6/GNA 

fusion protein at 0.1 mg/ml, the survival curves between SFI6/GNA and SFI5/GNA 

show no significant differences (p=0.176). Comparing the toxicity differences between 

2 X SFI1/GNA and SFI5/GNA over 12 days indicates no significant difference in 

survival curves (p=0.859). However, the results demonstrate that 2 x SFI1/GNA had a 

significant effect on the survival and growth of M. persicae.  
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C. 

 

Figure 3-20: Survival curve of surviving Myzus persicae fed recombinant GNA at 0.1, 0.05, and 0.001 mg g-1 and 

(His) 6-2 X SFI2-GNA, (His) SFI5/GNA, (His) SFI8/GNA 0.1, 0.05, and 0.001 mg g-1. (A) Kaplan–Meier survival 

curves at 0.1 mg g-1. (B) Kaplan–Meier survival curves at 0.055 mg g-1. (C) Kaplan–Meier survival curves at 0.001 

mg g-1. Diet-only fed Myzus persicae are used as controls (n=30 aphids per treatment), as shown by Kaplan-Meier 

survival analysis. Treatments are depicted in the figure as follows: 

 

 

 

 

 

 

 

To ensure the oral toxicity of SFI x/GNA was not due to the presence of GNA in the 

fusion protein, (<24 h) M. persicae nymphs were fed with a GNA fusion protein-only 

incorporated arterial diet at 0.1 mg/ml, 0.05 mg/ml, and 0.001 mg/ml.  Survival data 

were taken every 24 h over a period of 7 days. Both control and GNA treatments 

showed 80% survival over the assay period of 7 days, as seen in Figure 3-20.  Insects 

fed GNA at 0.1 mg/ml indicated no significant difference from control survival when 

the curves were analysed (P = 0.496, 95% C.I, Log – rank (Mantel-Cox) test, n=30 per 
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treatment). Pairwise multiple comparisons testing the difference between all treatments 

indicated significant differences (overall significance level = 0.05). 

 

The toxicity of all 2 X SFI1/GNA, SFI5/GNA, and SFI8/GNA proteins using (<24 h) 

M. persicae nymphs was tested out at different concentrations of 0.1 mg/ml, 0.055 

mg/ml, and 0.001 mg/ml. The results demonstrate that the oral delivery of the diet 

containing recombinant fusion protein 2 x SFI1/GNA caused a significant reduction in 

the survival rates when compared to control or GNA-fed.  30% mortality was observed 

from the second day of exposure to fusion protein 2 X SFI1/GNA at 0.1 mg/ml and 

0.055 mg/ml, after the start of the experiment.   

 

There is a significant difference in the survival curves between 2 X SFI1/GNA and 

GNA alone (x2= 123.773, 5 df., P <0.001). Effects on mortality caused by SFI5/GNA 

fed at 0.1 mg/ml and at 0.055 mg/ml were observed over the first 4 days of the assay. 

80% mortality was seen within 6 days of exposure to 0.1 mg/ml SFI5/GNA, in contrast 

to the exposures to the controls, where 80% survival was observed over the assay period 

(7 days). Although SFI8/GNA was examined in this experiment, the survival curve 

between the diet and SFI8/GNA showed no significant differences (p=0.107) when fed 

at 0.1 mg/ml, demonstrating the non-toxicity of SFI8/GNA to aphids. Modification of 

the toxin 1 (SFI1) fusion to the N terminal of GNA shows biological activity when fed 

to nymphs (<24 h), based on Kaplan-Meier survival curves at 0.1 mg/ml, 0.055 mg/ml, 

and 0.001 mg/ml.  However, despite the 50% mortality observed within 7 days when M. 

persicae were fed 0.001 mg/ml, the survival curve between the diet and 2 X SFI1/GNA 

indicated no significant difference, p=0.00575.  Feeding nymphs (<24 h) with 

SFI5/GNA at 0.001 mg/ml caused only a 30% reduction in survival, while SFI8/GNA 

caused 40% mortality at the same dose. However, there was no significant difference in 

survival between the 2 X SFI1/GNA, SFI5/GNA, and SFI8/GNA constructs at 0.001 

mg/ml concentrations. All recombinant protein 2 X SFI1/GNA, SFI5/GNA and 

SFI8/GNA treatments caused reduced survival at 0.1 mg.ml and 0.055 mg/ml, but the 

SFI8/GNA toxin effect was not significant, causing only 40% mortality.  
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Figure 3-21: Dose-response curves for 2 X SFI1/GNA in artificial diet bioassays show the relationship between 

percent of response and concentration. 

 

 

 

Figure 3-22: Dose-response curves for SFI5/GNA in artificial diet bioassays show the relationship between percent 

of response and concentration 
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Figure 3-23: Dose-response curves for SFI8/GNA in artificial diet bioassays show the relationship between percent 

of response and concentration. 

 

 

 

Figure 3-24: Dose-response curves for GNA in artificial diet bioassays show the relationship between percent of 

response and concentration. 

 

Consequently, a dose response curve was carried out for three different protein 

concentrations of 2 x SFI1/GNA, SFI8/GNA, and SFI5/GNA using Excel.  Obtained 

data were corrected as mortality in the control was more than 10%, as described by 

Schneider-Orelli (1947). Fusion protein 2 X SFI1/GNA fed at 0.1 mg/ml, 0.055 mg/ml, 

and 0.001 mg/ml showed a simple dose response. At the lowest concentration (0.001 

mg/ml) the fusion protein reduced survival to 55%, at 0.055 mg/ml survival was 20%, 
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and at the highest concentration (0.1 mg/ml) 100% mortality was detected, as seen in 

Figure 3-20 (A), demonstrating its magnified toxicity to this species. The dose response 

curve was also carried out when the SFI5/GNA fusion protein was fed to Myzus 

persicae at the same concentrations. SFI5/GNA also showed a simple dose response: at 

0.055 mg/ml concentration the fusion protein reduced the survival to 30%, at 0.001 

mg/ml survival was 70%, and at the highest concentration (0.1 mg/ml) 90% mortality 

was obtained.  2 X SFI1/GNA, SFI5/GNA, and SFI8/GNA show a dose response, in 

that increasing the concentration causes a reduction of survival rates, as seen in Figures 

3-21, 3-22, and 3-23. In these dose responses, survival for fusion proteins is 

significantly reduced compared to controls (P < 0.001).  

 

 

Figure 3-25: the toxicity index (T.I); the 2xSFI1/GNA was the most effective construct, followed by SFI5/GNA and 

SFI8/GNA, respectively. 

 

 

In order to predict the lethal concentration to kill 50% of the insect population, the LC 

50 was calculated from the obtained data. The data obtained from acute exposure of M. 

persicae to 2 X SFI1/GNA in three concentrations (0.1 mg/ml, 0.055 mg/ml, and 0.001 

mg/ml) illustrates that the lethal concentration to kill 50% of M. persicae population, 

LC 50, is 0.006 mg/ml. Exposing nymphs (<24 h) to SFI5/GNA in three different 

concentrations (0.1 mg/ml, 0.05 mg/ml, and 0.001 mg/ml) for a duration of 7 days 

measures the lethal concentration required to kill 50% of the population. This data 

shows that 50% of the M.persicae were killed at 0.038 mg/ml.  The data obtained from 

exposing nymphs (<24 h) to SFI8/GNA indicates the highest lethal concentration 

100

15.78

7.5
0.06

0

20

40

60

80

100

120

FP2.1 FP2.5 FP2.8 GNA

%

Toxicity index



  

 

81 

 

required to kill 50% of the population, as compared to other fusion proteins, is 

approximately 0.08 mg/ml. This data demonstrates the lowest toxicity of exposing M. 

persicae to SFI8/GNA. Table 1 shows a summary of toxicological data obtained from 

acute exposure to 2 X SFI1/GNA, SFI5/GNA, and SFI8/GNA.  

 

3.3 Discussion  

3.3.1 Design of expression vectors for SFI peptides 

In the present study the SFI/GNA recombinant expression construct was successfully 

designed for all the variants by linking a NotI restriction site on the 3’ end of the 

individual SFI sequence to the N-terminus of the residue 1-105 of GNA-mys epitope 

(Siebert et al., 1995). By linking the SFI to the three-alanine region of the GNA, the 

purified toxin contains a single NotI restriction site. The construct was also designed 

with a 3’ His tag- coding sequence to improve purification, through increased recovery 

of expressed proteins (Woestenenk et al., 2004), as well as a single peptide-encoding 

sequence that facilitates the yeast’s translational processing of the construct. It is 

important to note that using His-tagging to improve recovery of protein secreted by 

yeast cells can affect solubility in a manner that reduces purity (Woestenenk et al., 

2004). 

 

3.3.2  Expression of recombinant protein SFIs and GNA 

Since the major aim of the current research was to clone, express and test the biological 

activity of all the SFI peptides, positive plasmids of individual SFI/GNA constructs 

were linearized and transformed into the P. pastoris (X33) strain. The results from 

expression analysis of the different SFI/GNA fusion proteins showed that SFI4 and 

SFI7 were not expressed correctly. Though the reason was largely unknown the 

variations in the amino acid sequence of the SFI peptides suggests that the expression 

vector pGAPZαB might not be suitable for the expression of the SFI4/GNA SFI7/GNA 

constructs. Additionally, the lack of stable expression could be caused by cleavage of 

linker regions. Indeed, studies on similar fusion proteins demonstrated that linker 

regions of protein constructs are susceptible to cleavage (Trung et al., 2006a). Some 

studies have also demonstrated that stability of fused proteins is dependent on size of 

the linker region, where longer regions are more stable than short ones (Gustavsson et 

al., 2001), which suggests that this could be a potential cause of the lack of expression. 

Moreover, Gustavasson et al. (2001) showed that 13 amino acid linker regions of 



  

 

82 

 

bacterial origin are more stable than the linker regions of yeast origin. Another 

promising candidate for stable peptide fusions is the IgG hinge, which has been shown 

to increase stability. However, as the results presented in this chapter reveal SFI4 and 

SFI7 produced from P. pastoris might not be stable, the full activity and stability of the 

other SFI peptides would still need further investigation. The selection of the P. pastoris 

was made based on previous studies that demonstrated that small proteins with 

disulphide bonds can be expressed and isolated in this yeast strain (Cereghino and 

Cregg, 2000). The yeast has the capability to secret expressed proteins into the culture 

due to the yeast alpha-factor sequence incorporated in the expression vector used. This 

process reduces any contamination and difficulties associated with isolating the proteins 

from the cell lysate. In addition to the benefits of using this yeast strain, proteolysis of 

fusion proteins is one of the major drawbacks of directing secretion of the fusion protein 

into the medium (Gellissen, 2000; Fitches et al., 2004a). The resultant products after 

isolation have been shown to contain some GNA without attached toxin, which could 

reduce gut activity (Fitches et al., 2004a). However, the six SFI toxin peptides that were 

used in the present study are relatively resistant to proteolysis, suggesting that the 

samples used contained small amounts of free GNA. The yeast’s ability to N-

glycosylate proteins is efficient and achieved by passing the proteins through 

endoplasmic reticulum, but extra mannose residues can be added during core 

glycosylation (Bretthauer and Castellino, 1999; Christou et al., 2006). The addition of 

mannose residues could increase gut digestion, but this was not a problem during 

bioactivity studies with the purified fusion proteins. 

 

 A further experiment to optimize the expression of the SFI peptides using different 

expression vectors is important. Although, SFI2/GNA, SFI3/GNA, SFI5/GNA, 

SFI6/GNA, and SFI8/GNA were correctly expressed, some were only expressed at very 

low concentration. This suggests that the expression vector used in the current study 

might not be suitable for all the individual sequences of the SFI peptides. Moreover, 

experimental conditions may need to be optimised in future experiments and potential 

large-scale production. Additionally, initial efforts to optimise the experimental 

conditions by assembling double gene copies of SFI1/GNA into gene cassettes inserted 

in the pGAPZa plasmid showed promising results. Preliminary results suggest that high 

yields can be achieved by introducing double gene copies of the peptides into the 

plasmid.  
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3.3.3 Expression and oral delivery of SF1/GNA, SFI2/GNA, SFI3/GNA, 

SFI5/GNA, SFI6/GNA, and SFI8/GNA 

Insect resistance to pesticides remains one of the major obstacles to effective pest 

control (Chrispeels and Sadava, 2003). The implementation of SFI polypeptides in 

pesticide development requires the establishment of a standard production strategy, as 

well as an effective oral delivery method. The toxicity of peptides on the insect’s 

neurons is dependent on functional access to the central nervous system, through the 

haemolymph. Interestingly, GNA has been shown to access the haemolymph through 

oral delivery (Powell  et al., 1998; Fitches  and Gatehouse, 1998; Fitches   et al., 2001, 

2002), which makes it suitable for this study. Furthermore, experiments on the ability of 

GNA to transport fused polypeptides to the central nervous system of insects through 

the haemolymph has been established with other potential insecticidal peptides (Fitches 

et al., 2004a; Fitches et al., 2004d; Trung et al., 2006a; Fitches et al., 2010). Though the 

mechanisms involved in this transport remains poorly described, the ability of GNA to 

bind to epithelial surface glycoproteins suggest that endocytosis might be an important 

mechanism in this process (Fitches et al., 2004b). In addition to the activity of 

membrane receptors, alternative models of GNA transport that involves leaky cell 

junctions have been proposed  (Fitches et al., 2004b). Therefore, the current study 

utilised SFI fused to GNA as a method of delivering SFI to the haemolymph of the 

model insect. The expression of 2xSFI1/GNA, SFI2/GNA, SFI3/GNA, SFI5/GNA, 

SFI6/GNA, and SFI8/GNA with the GNA fused to the N-terminus of the toxin is 

reported in this chapter. Fusion of the GNA to the N-terminus of the toxin can promote 

stability and protein folding during production and purification. Indeed, research has 

demonstrated that the actual location of the fusion could affect overall stability of a 

peptide/GNA fusion production (Fitches  et al., 2010). 

 

Five fusion variants of SFI were successfully expressed in P. pastoris X33 and 

subsequently purified; the results showed that the expression levels were within the 

same range as for other studies that used the same strain of P. pastoris (X33) (Fitches et 

al., 2010). It is noteworthy that using this stain to produce a fusion protein specific to 

insects can affect purification of the protein, because P. pastoris can incorporate 

mannose oligosaccharides to the fusion proteins that can significantly reduce purity. 

GNA can bind to mannose, which in turn can introduce high molecular weight yeast 
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proteins and carbohydrates to the fusion proteins. However, all of the purification 

results for the fusion proteins showed no presence of high molecular weight proteins 

suggesting the absence of yeast proteins or oligosaccharides chains; this finding give 

confidence that subsequent experiments were conducted with pure samples. In this light, 

the effects of such yeast-derived molecules on peptide function were not investigated 

further.  

 

3.3.4 Biological activity of fusion proteins SF1/GNA, SFI2/GNA, SFI3/GNA, 

SFI5/GNA, SFI6/GNA, and SFI8/GNA 

SFI1, SFI3, SFI5, SFI6, and SFI8 incorporated into GNA (0.1 mg/ml) caused significant 

mortality to M. persicae compared to only GNA, which is below the potent 

concentration range reported by other studies (6 - 12.5mg/ml) (Fitches et al., 2004a, 

2010, Trung et al., 2006). One of the important functional characteristics of fusion 

proteins is correct folding, which is dependent on post-translational modification of the 

fusion protein (Cregg et al., 2000). Results from the expression of SFI fusion with GNA 

suggest that the protein folds with high efficiency, which is essential biological activity. 

Furthermore, the results showed that some of the fusion proteins are more active, which 

could be explained by their differing stability to proteolytic digestion in the insect gut. 

Some of the SFI might be more resistant to gut digestion, thereby increase the amount 

of toxins needed to induce mortality. Indeed experiments to determine the highest 

concentration needed to induce 50% mortality suggests that partial gut digestion might 

occur. The lowest LC 50 value was observed when SFI8/GNA was orally delivered, 

suggesting that the SFI8 peptide is the most potent of the toxins, and potentially most 

stable. SFI1/GNA caused the most effect at the lowest concentration compared to the 

other variants. However, for all the SFI fusion proteins, less than 0.1mg/ml is required 

to induce 50% mortality, which suggests that fusion of multiple toxins with different 

modes of action may achieve even greater effects.  

 

The data suggests that upon oral delivery some of the SFI variants might be degraded, 

which will increase the amount of peptide needed to achieve the LC 50. This hypothesis 

is in line with the findings of other research on fusion protein (Fitches et al., 2004), 

which demonstrated that fusing toxin to GNA did not eliminate the action of Lacanobia 

oleracea’s gut proteases. Future studies should seek to investigate in-vivo gut stability 

of the SFI/GNA fusion proteins used in this study; as the eventual success of this 
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strategy is based on both on stability in the insect gut and delivery to the target site. 

However, any potential cleavage of some of the toxic peptide failed to completely 

remove the SFI peptides, which might be the reason for decrease the toxicity of some 

SFI variants. Another potential reason that may cause the variations in toxicity between 

the SFI variants is using the Bradford assay to estimate the total concentration of 

protein. Some protein may degraded through the purification process; for this a standard 

Bradford assay is not suitable mothed as theses assay cannot distinguish between intact 

protein and degradation products. In future, a densitometric the fusion protein 

quantification based on image analysis of the gel can avoid any potential difference that 

may occur.  

 

3.3.5  Increasing stability in gut environments 

Small variations in toxicity between the SFI/GNA fusion protein variants may result 

from differences stability to proteolytic digestion in the insect gut. Some of the SFI 

might be more resistant to gut digestion, thereby increase the amount of toxins needed 

to induce mortality. The stability of the SFI fusion protein with GNA was not 

investigated in this study. However, further work on gut stability and approaches to 

promote effective transport into the haemolymph could increase the potency of the 

fusion proteins. Incorporating protease inhibitors into the fusion protein could reduce 

the LC 50 even further and fast track commercial application of these fusion proteins. 

This may help reduce the cost of producing sufficient amount of peptides to be applied 

on a large scale. However, several insect species have been shown to up-regulate 

alternative proteases when one is inhibited, which might need to be investigated with 

the current fusion protein if it proves useful for a broader range of insect pests (Bolter 

and Jongsma, 1995; Oppert et al., 2005). 

 

3.3.6 Functional characteristics of SFI toxins 

Segestria florentia venom contains about 25 individual polypeptides (Sagdiev et al., 

1987a).  The SFI1 toxin is the most studied of the SFI toxins from S. florentia. It has be 

shown to share some evolutionary, functional and structural relationship with other 

neurotoxins like PLTX, curtatoxins, APS and SNX325, a toxin from the same species 

(Stapleton et al., 1990a; Branton et al., 1993a; Quistad and Skinner, 1994b; Garcíaa et 

al., 2015). Interestingly, these neurotoxins primarily act by selective binding to voltage-

dependent calcium channels (Stapleton et al., 1990a; Branton et al., 1993a), which point 
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to similar mode of actions for SFI1 and the other variants. Furthermore, a more recent 

study has shown that SFI1 contain a large β-hairpin loop of approximately a third of the 

peptide length (Bende et al., 2015). The study showed that this hairpin loop is critical 

for SFI1 toxic activity, which facilitates selective inhibition of voltage-gated sodium 

channels by pore blocking (Bende et al., 2015). This finding is contrary to the gating 

modification mechanisms utilised by other spider purified sodium channels toxins. This 

potential of SFI toxins is in line with the finding that they share similar distribution of 

cysteine residue (Bende et al., 2015). Unfortunately, the potential mechanisms used by 

the other variants evaluated in the present study still need to be investigated. It is 

equally plausible that the folding pattern and net charge could target these toxins to the 

ion channels of interest. 

 

In summary, results from this Chapter demonstrated that functional SFI/GNA based 

fusion proteins can be effectively expressed and purified using p. pastoris (X33). Based 

on oral delivery studies the results suggest that the variants tested in the present study 

(SFI2, SFI3, SFI5, SFI6, SFI8) were not as toxic to M.persicae compared to previous 

reported toxicity studies to SFI1 Down et al. (2006).  Given that, SFI1 appears to be the 

most toxic of the variants against this aphid species. In the present study double 

constructs were prepared for SFI1. As expected this double SFI1/GNA construct was 

significantly more toxic compared to the single constructs.  Further work to determine 

LC50 values for the fusion proteins showed promising results.  However, oral activity 

against other insects was not investigated, but the potential for proteolytic cleavage 

within the insect gut makes this an important field of further study. The presence of 

linker regions that might be targeted by insect proteases needs to be established.  
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4 Chapter 4 Expression, purification and biological activity of fusion 

proteins based on snowdrop lectin (Galanthus nivalis agglutinin; 

GNA) and toxins from the cone snail (alpha-Conotoxin EI, alpha-

Conotoxin Sm1.1 and Acrorhagin-2a). 

4.1  Introduction 

Marine cone snail of Genus Conus uses a potent cocktail of venomous peptides to trap 

their prey. These small venomous peptides are less than 50kDa in size, which are 

encoded and synthesised by genes.  Estimation by Becker and Terlau (2008) suggest 

that there are over 100,000 bioactive compounds present in the cone snail’s venomous 

cocktail, which has distinct neurological targets. One of such peptide is the Acrorhagin-

2a from the sea anemone Anthopleura maculate that target sodium channel. The 

Acrorhagin-2a binds to the receptor at site 3 of sodium channels in the excitable 

membrane (Honma and Shiomi, 2006). This unique biological effect makes sea 

anemone toxins targeting sodium channels a valuable source of novel peptide toxins for 

managing crop pests. However, there are major drawbacks to the use of these peptides, 

particularly as pharmacological probes. Moreover, these peptide toxins have been 

shown to be lethal to crabs following injection (Honma et al., 2005).   

The venom peptides (conopeptides) are thought to have evolved recently. The cone 

snail uses specialized venom endoproteases to produce conotoxins from propeptides.  

The toxicity of venom is further enhanced by several post-translational modifications, 

which increases the stability of the 3 D structure of the protein. These venom peptides 

are viewed as good pharmacological probes due to their small size, stability in structure 

and specificity for the target. The α-conotoxins have been studied in detail by various 

researchers and is an antagonist of nicotinic acetylcholine receptors. These venoms act 

as a nAChR blooker at the neuromuscular synapse in their prey resulting in paralysis. 

There is a competition between the antagonist of acetylcholine receptors and α-

conotoxins caused by its high affinity for the binding site present on the receptor. 

Indeed, a study conducted by Groebe et al. (1995), showed that the affinity for 

acetylcholine binding site for α-conotoxins MI, GI and SIA is 15000 folds higher  (Bass 

et al., 2011; Lewis  et al., 2012; Safavi -Hemami et al., 2011). 

However, the peptides have not been shown to cause any lethal effect on insect prey 

following oral delivery.  Fitches  et al (2002) reported the fusion of peptides from spider 

venom to the carrier molecule (GNA), which directs transport across the insect gut 

epithelium. Similar to peptides from spider-venom, marine cone snails and sea 
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anemones peptides can be fused with GNA to help these toxins to reach their site of 

action.   

Previously, it has been reported that lectin from snowdrop causes damage to pests like 

peach potato aphids Myzus persicae , brown plant hopper and other homopteran 

insects (Down  et al., 1996, Sauvion et al., 1996, Rao et al., 1998).  The bioassays 

conducted showed a detrimental effect of GNA including growth reduction, 

reproductive delays in nymphs and reduced progeny per aphid. When lectin from 

snowdrop is fed to a peach aphid, it binds to the epithelium of the insect’s gut resulting 

in local lesion formation. This can be detected in the circulatory system of the aphids, 

which makes GNA a suitable transport molecule for fusion proteins following oral 

delivery. Fitches et al (2002) reported reduced survival rate, and reduction in growth 

and feeding when lepidopteran larvae were fed with a fusion protein consisting of GNA 

and C-terminal neuropeptide from spider venom S. florentina. Therefore, the current 

study is aimed at investigating the use of cone snail and anemone venoms as GNA-

based fusion proteins for the protection of plants against M. persicae. A yeast 

expression system was used to produce fusion proteins that can be incorporated in a 

liquid artificial diet. 
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4.2  Results: 

4.2.1  Production and purification of fusion proteins 

Design of expression constructs GNA/Acrorhagin-2a, GNA/alpha-Conotoxin EI and 

GNA/ alpha-Conotoxin sm1.1 

A synthetic gene encoding the mature alpha-Conotoxin EI, alpha-Conotoxin sm1.1and 

Acrorhagin-2a amino acid sequence was successfully assembled with a codon optimised 

for expression in P. pastoris using a series of overlapping oligonucleotides. Thereafter 

and using a similar cloning strategy to the generation of the SFI/GNA fusion proteins, 

the coding sequences of the individual toxins were amplified and ligated to the GNA 

moiety previously cloned into the pGAPZα yeast expression vector. Alpha-Conotoxin 

EI, sm1.1and Acrorhagin-2a sequences were prepared for cloning by digesting at the 

unique XbaI and XhoI enzyme sites. A small fragment was excised and the 5' end of the 

toxins sequence containing a single Xho1 restriction site were fused to the c-terminus of 

the residues 1-105 of snowdrop lectin GNA-mys epitope via its three-alanine regions. 

The GNA/ alpha-Conotoxin EI, GNA/ alpha-Conotoxin sm1.1 and GNA/ Acrorhagin-

2a constructs were predicted to have alpha factor secretary single, 6× His tag and an 

additional two amino acid peptides at the N-terminus of GNA, which gave a predicted 

molecular weight of 15 kDa. To ensure no errors had occurred when restriction/ligation 

of fusion protein construct was carried out, the plasmid was then sent for sequencing. 

Sequencing results for selected colonies confirmed the maintenance of correct construct 

integrity and positioning at each stage. Sequences were further analysed by in silico 

translation to ensure the open reading frames were maintained throughout. A schematic 

diagram of the expression constructs, determined nucleotide and predicted protein 

sequences for the GNA/Acrorhagin-2a, GNA/ alpha-Conotoxin EI and GNA/ alpha-

Conotoxin sm1.1 are shown in Figures 4-1, 4-2, 4-3. Verified expression constructs for 

GNA/ alpha-Conotoxin EI pGAZαB, GNA/ alpha-Conotoxin sm1.1 pGAZαB and 

GNA/ Acrorhagin-2a pGAZαB were transformed into competent cells of P. pastoris 

and selected on zeocin-containing plates. The initial attempts on transforming the GNA/ 

alpha-Conotoxin EI pGAPZα, GNA/ alpha-Conotoxin sm1.1 pGAPZα and GNA/ 

Acrorhagin-2a pGAPZα fusion protein into wild type P. pastoris X33 using the 

EasyComp kit resulted in a few colonies after 3 days growth as seen in Appendix E. 
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864 atgagatttccttcaatttttactgctgttttattcgcagcatcc 

M  R  F  P  S  I  F  T  A  V  L  F  A  A  S 

819 tccgcattagctgctccagtcaacactacaacagaagatgaaacg 

S  A  L  A  A  P  V  N  T  T  T  E  D  E  T 

774 gcacaaattccggctgaagctgtcatcggttactcagatttagaa 

A  Q  I  P  A  E  A  V  I  G  Y  S  D  L  E 

729 ggggatttcgatgttgctgttttgccattttccaacagcacaaat 

G  D  F  D  V  A  V  L  P  F  S  N  S  T  N 

684 aacgggttattgtttataaatactactattgccagcattgctgct 

N  G  L  L  F  I  N  T  T  I  A  S  I  A  A 

639 aaagaagaaggggtatctctcgagaaaagagaggctgaagctgca 

K  E  E  G  V  S  L  E  K  R  E  A  E  A  A 

594 gcagacaacattttgtattctggggagaccttaagtacaggggaa 

A  D  N  I  L  Y  S  G  E  T  L  S  T  G  E 

549 tttttgaattacggtagcttcgtattcatcatgcaggaagactgt 

F  L  N  Y  G  S  F  V  F  I  M  Q  E  D  C 

504 aatctagtgctatacgatgttgacaagccaatctgggcaacgaat 

N  L  V  L  Y  D  V  D  K  P  I  W  A  T  N 

459 actggcggactgagcagatcgtgctttctttcaatgcaaaccgat 

T  G  G  L  S  R  S  C  F  L  S  M  Q  T  D 

414 ggtaacctcgttgtatataatcctagtaataaaccgatatgggcg 

G  N  L  V  V  Y  N  P  S  N  K  P  I  W  A 

369 tccaacactggcggacaaaacggaaactatgtctgtatattacag 

S  N  T  G  G  Q  N  G  N  Y  V  C  I  L  Q 

324 aaagatcgaaatgtcgtgatttacgggacggataggtgggctaca 

K  D  R  N  V  V  I  Y  G  T  D  R  W  A  T 

279 ggtgcagcagcagactgcagatttgtcggtgctaaatgtacaaaa 

G  A  A  A  D  C  R  F  V  G  A  K  C  T  K 

234 gcaaataacccgtgtgtagggaaagtgtgtaatggatatcaattg 

A  N  N  P  C  V  G  K  V  C  N  G  Y  Q  L 

189 tactgtcctgttgacgatgatcattgcattatgaagttaactttc 

Y  C  P  V  D  D  D  H  C  I  M  K  L  T  F 

144 atacctctagaacaaaaactcatctcagaggatctgaatagcgcc 

I  P  L  E  Q  K  L  I  S  E  D  L  N  S  A 

99 gtcgaccatcatcatcatcaccgtccattgtag 67 

V  D H  H  H  H  H  R  P  L  * 

 

 

 

 
    

 

 

Figure 4-1: Full GNA/Acrorhagin-2a fusion protein fusion protein construct in yeast pGAPZAP. Full 

determined nucleotide sequences, presumed amino acid sequences and schematic representation of fusion 

protein construct. Yeast alpha factor signal sequences are highlighted in blue, GNA sequences is 

highlighted in red and Acrorhagin toxin sequences are highlighted in green. 
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818 ttgaacaactatttcgaaacgatgagatttccttcaatttttact 

L  N  N  Y  F  E  T  M  R  F  P  S  I  F  T 

773 gctgttttattcgcagcatcctccgcattagctgctccagtcaac 

A  V  L  F  A  A  S  S  A  L  A  A  P  V  N 

728 actacaacagaagatgaaacggcacaaattccggctgaagctgtc 

T  T  T  E  D  E  T  A  Q  I  P  A  E  A  V 

683 atcggttactcagatttagaaggggatttcgatgttgctgttttg 

I  G  Y  S  D  L  E  G  D  F  D  V  A  V  L 

638 ccattttccaacagcacaaataacgggttattgtttataaatact 

P  F  S  N  S  T  N  N  G  L  L  F  I  N  T 

593 actattgccagcattgctgctaaagaagaaggggtatctctcgag 

T  I  A  S  I  A  A  K  E  E  G  V  S  L  E 

548 aaaagagaggctgaagctgcagcagacaacattttgtattctggg 

K  R  E  A  E  A  A  A  D  N  I  L  Y  S  G 

503 gagaccttaagtacaggggaatttttgaattacggtagcttcgta 

E  T  L  S  T  G  E  F  L  N  Y  G  S  F  V 

458 ttcatcatgcaggaagactgtaatctagtgctatacgatgttgac 

F  I  M  Q  E  D  C  N  L  V  L  Y  D  V  D 

413 aagccaatctgggcaacgaatactggcggactgagcagatcgtgc 

K  P  I  W  A  T  N  T  G  G  L  S  R  S  C 

368 tttctttcaatgcaaaccgatggtaacctcgttgtatataatcct 

F  L  S  M  Q  T  D  G  N  L  V  V  Y  N  P 

323 agtaataaaccgatatgggcgtccaacactggcggacaaaacgga 

S  N  K  P  I  W  A  S  N  T  G  G  Q  N  G 

278 aactatgtctgtatattacagaaagatcgaaatgtcgtgatttac 

N  Y  V  C  I  L  Q  K  D  R  N  V  V  I  Y 

233 gggacggataggtgggctacaggtgcagcagcaagagatccgtgt 

G  T  D  R  W  A  T  G  A  A  A  R  D  P  C 

188 tgctatcatcctacatgtaacatgagtaatccacaaatatgtcta 

C  Y  H  P  T  C  N  M  S  N  P  Q  I  C  L 

143 gaacaaaaactcatctcagaagaggatctgaatagcgccgtcgac 

E  Q  K  L  I  S  E  E  D  L  N  S  A  V  D 

98 catcatcatcatcacccttttttttgtagccttagacatgactgt 

H  H  H  H  H  P  F  F  C  S  L  R  H  D  C 

53 tcctcagttctaagttgggcactacgagaagaccggtcttgctgg 

S  S  V  L  S  W  A  L  R  E  D  R  S  C  W 

8 ataagc 3 

I  S 

 

 
Figure 4-2: Full GNA/ alpha-Conotoxin EI fusion protein construct in yeast pGAPZAP. Full determined 

nucleotide sequences, presumed amino acid sequences, and schematic representation of fusion protein 

construct. The sequence for the yeast alpha-factor signal is highlighted with blue, GNA sequence is 

highlighted with red, and alpha-Conotoxin EI toxin sequence is highlighted with green.    
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788 atgagatttccttcaatttttactgctgttttattcgcagcatcc 

M  R  F  P  S  I  F  T  A  V  L  F  A  A  S 

743 tccgcattagctgctccagtcaacactacaacagaagatgaaacg 

S  A  L  A  A  P  V  N  T  T  T  E  D  E  T 

698 gcacaaattccggctgaagctgtcatcggttactcagatttagaa 

A  Q  I  P  A  E  A  V  I  G  Y  S  D  L  E 

653 ggggatttcgatgttgctgttttgccattttccaacagcacaaat 

G  D  F  D  V  A  V  L  P  F  S  N  S  T  N 

608 aacgggttattgtttataaatactactattgccagcattgctgct 

N  G  L  L  F  I  N  T  T  I  A  S  I  A  A 

563 aaagaagaaggggtatctctcgagaaaagagaggctgaagctgca 

K  E  E  G  V  S  L  E  K  R  E  A  E  A  A 

518 gcagacaacattttgtattctggggagaccttaagtacaggggaa 

A  D  N  I  L  Y  S  G  E  T  L  S  T  G  E 

473 tttttgaattacggtagcttcgtattcatcatgcaggaagactgt 

F  L  N  Y  G  S  F  V  F  I  M  Q  E  D  C 

428 aatctagtgctatacgatgttgacaagccaatctgggcaacgaat 

N  L  V  L  Y  D  V  D  K  P  I  W  A  T  N 

383 actggcggactgagcagatcgtgctttctttcaatgcaaaccgat 

T  G  G  L  S  R  S  C  F  L  S  M  Q  T  D 

338 ggtaacctcgttgtatataatcctagtaataaaccgatatgggcg 

G  N  L  V  V  Y  N  P  S  N  K  P  I  W  A 

293 tccaacactggcggacaaaacggaaactatgtctgtatattacag 

S  N  T  G  G  Q  N  G  N  Y  V  C  I  L  Q 

248 aaagatcgaaatgtcgtgatttacgggacggataggtgggctaca 

K  D  R  N  V  V  I  Y  G  T  D  R  W  A  T 

203 ggtgcagcagcagggagaggaaggtgttgccatccagcatgtggt 

G  A  A  A  G  R  G  R  C  C  H  P  A  C  G 

158 cctaattatagttgtctagaacaaaaactcatctcagaagaggat 

P  N  Y  S  C  L  E  Q  K  L  I  S  E  E  D 

113 ctgaatagcgccgtcgaccatcatcatcatcatctttga 75 

L  N  S  A  V  D  H  H  H  H  H  L  * 

 

Figure 4-3: Full GNA/sm1.1 fusion protein construct in yeast pGAPZAP. Full determined nucleotide 

sequences, presumed amino acid sequences and schematic representation of fusion protein construct. 

Yeast alpha-factor signal sequence is highlighted with blue, GNA sequence is highlighted with red, and a 

sm1.1 toxin sequence is highlighted with green.  
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 Expression of recombinant protein GNA/ alpha-Conotoxin EI, GNA/ alpha-Conotoxin 

sm1.1 and GNA/ Acrorhagin-2a 

Transformed yeast cells containing the expression constructs were selected on plates 

containing the antibiotic zeocin. The obtained clones were screened for the best expression 

clone to be used in fusion protein production by bench- top fermentation. Small-scale 

culture supernatants (grown for four days) were analysed by Western blotting using anti 

GNA antibodies (1:3000 dilution). GNA was used as positive control because the fusion 

proteins of GNA/ alpha-Conotoxin EI, GNA/ sm1.1 and GNA/ Acrorhagin-2a were 

confirmed to have GNA linked to the N-terminus of the toxins. The expected result for 

fusion proteins of GNA/ alpha-Conotoxin EI, GNA/ sm1.1 and GNA/ Acrorhagin-2a 

should have reactivity at 15 kDa. The Western blots for the supernatant were performed 

over a time course. The result showed that GNA/ alpha-Conotoxin EI were detected after 

48 hours and 96 hours (Figure 4-4) of growth. The greatest amount of intact fusion protein 

was observed at 96 hour. However, the fusion protein of GNA/ sm1.1 and GNA/ 

Acrorhagin-2a were not detected through Western blot at both time point (result not 

shown). Additionally, the presence of GNA fusion protein at the correct size in the positive 

standard lanes indicated that the blotting process was successful.  
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Figure 4-4: Western blot (probed with anti-GNA ab): of recombinant GNA/ alpha-Conotoxin EI expressed in 

Pichia pastoris. GNA was loaded in known amount, 1 mg/ml. The presence of GNA at 12.5-kDa in the 

positive standard lanes shows the blots have worked successfully. However, the fusion proteins GNA/ alpha-

Conotoxin EI were subjected to express correctly with the single band seen on the gel at 15 kDa.  

 

The best expression clones for fusion protein GNA/ alpha-Conotoxin EI were selected for 

use in a bench-top fermenter. Following, 72 hours the media was centrifuged at 8000 g for 

30 minutes at 4 °C. The supernatant was then collected and stored at 4 °C, whilst the pellet 

was discarded. The filter supernatant was mixing with 2x Binding buffer for loading 

through a liquid chromatograph.   

 Purification of GNA/ alpha-Conotoxin EI construct and Quantification 

Purification of the supernatant was done by liquid chromatography on a His-trap column at 

2 ml/min and eluted proteins were monitored at 280nm. A representative of each single 

fraction generated from load, wash, and elution stages are shown in Figure 4-5(A). For the 

GNA/ alpha-Conotoxin EI construct the recombinant protein was eluted with 200Mm 

imidazole. Figure 4-5(A) shows the chromatogram produced at the time of elution of GNA/ 

alpha-Conotoxin EI A Fusion. Elution protein, shown in figure 4-5 (A), has a very small 

peak, which shows small yield of protein. Electrophoresis of the recombinant proteins from 

the GNA/ alpha-Conotoxin EI demonstrated that the fusion was being correctly synthesized 

and expressed. The stain gel in Figure 4-5 (B) shows that un-purified samples loaded in L1 

have visible bands detecting some proteins present in the lane of loaded protein. However 
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the proteins in the eluted lanes show a high degree of purification. Anti-GNA antibodies 

recognized a single 15-kDa band from the GNA/ alpha-Conotoxin EI fusion protein (Figure 

4-6). However by comparing the amount of GNA/ alpha-Conotoxin EI in the load fraction 

(L4) to the eluted proteins (L3) it also shows that a majority of the recombinant proteins 

were lost during the purification process. 
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A) 

 

B)  

Figure 4-5: Purification of His-tagged GNA/ alpha-Conotoxin EI proteins expressed in Pichia pastoris using a 

Liquid chromatography system. Filtered P. pastoris culture supernatant was diluted in binding buffer (0.02 

Sodium phosphate, 0.4M NaCl, pH 7.4) and loaded onto HisTrap™ (GE Healthcare) column.  Protein was 

eluted with 0.2M imidazole, whilst NaCl gradient was held. (A) Typical purification trace showing 

absorbance trace in blue line. (B) 15% SDS-PAGE analyses of the peak fractions collected from the 

recombinant protein purification. Fractions free from high molecular weight yeast proteins were pooled 

separately dialysed against distilled water at 4 OC using 12-15kDa MWCO tubing. The very light band 

represents the correct molecular weight of GNA/ alpha-Conotoxin EI. 
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Figure 4-6: Western blot (probed with anti-GNA antibodies): of recombinant GNA/ alpha-Conotoxin EI 

expressed in Pichia pastoris. . 1mg/ml and 2mg/ml of GNA was loaded in L1 and L2 respectively. Line 3 and 

4 shows expression of bands with immunoreactivity to anti-GNA antibodies. Line 4 of the load stage shows 

intact band at approximately 15kDa, while line 3 from the eluted stage shows weak band at 15kDa.  

 

Samples containing GNA/ alpha-Conotoxin EI were pooled separately from high molecular 

yeast proteins and then dialysed against distilled water using a 12kDa molecular weight cut 

off (MWCO) dialysis tubing to remove all free toxin and high molecular weight imidazole. 

This sample was subsequently transferred to a round bottom flask and snap frozen in liquid 

nitrogen. A standard Bradford assay would show total protein concentration in the samples. 

However, as some protein may degrade through the purification process; Bradford assay 

cannot establish the level of intact fusion protein in the samples. GNA protein was 

therefore suspended in distilled water at 1mg/ml and 2mg/ml and loaded respectively onto 

15% SDS-PAGE to compare band intensities with fusion protein GNA/ alpha-Conotoxin EI 

samples.  After the staining and de-staining procedure, the fusion protein GNA/ alpha-

Conotoxin EI was quantified from the GNA standard protein bands. Yield of 0.4788 µg/µl 

were produced from the expressed GNA/ alpha-Conotoxin EI fusion protein.  
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4.2.2 Biological Activity of of fusion proteins incorporating the toxins from the cone 

snail alpha-Conotoxin EI and snowdrop lectin (Galanthus nivalis agglutinin; 

GNA) 

GNA/ alpha-Conotoxin EI were produced in P. pastoris using minimal media in a bench-

top fermenter (New Brunswick Scientific Bioflo 110). The supernatant of the sample were 

then purified by a liquid chromatograph Nickel column on an agarose support at 2 ml/min, 

as described earlier.  The amount of proteins were estimated by a standard Bradford assay 

that allowed incorporation of 0.1 mg/ml into the artificial diet fed to M. persicae, while diet 

only was used as a control and GNA also was incorporated into M. persicae artificial diet at 

same concentration was used as positive control.  The toxicity of fusion protein construct 

were assayed using M. persicae nymphs (<24h). 

 

 Demonstration of insecticidal activity of GNA/ alpha-Conotoxin EI against Myzus 

persicae 

The biological activity of GNA/ alpha-Conotoxin EI was verified by feeding artificial diet 

containing 0.1 mg/ml of purified fusion protein. The bioassay was set up for 7 days using 

nymphs (<24h) M. persicae under optimal conditions (21.0°C constant temperature, light). 

Exposure of GNA/ alpha-Conotoxin EI fusion protein caused gradual mortality to M. 

persicae, shown in Figure 4-7. M. persicae mortality occurred over a period of 6 days 

(figure 4-7) but was detected mainly within the first 24 h following exposure. M. persicae 

fed with 0.1mg/ml of purified fusion protein GNA/ alpha-Conotoxin EI showed symptoms 

of paralysis, whilst survival was significantly reduced to 10% when compared to the control 

treatment (95% C.L., Kaplan-Meier Survival curves: Log-Rank test; p<0.0000007 data 

obtained from n=30).  The GNA/ alpha-Conotoxin EI fusion protein caused paralysis and 

mortality when fed to M. persicae, and was significantly more effective than GNA protein 

alone, 50% mortality was observed after four days exposure to fusion protein GNA/ alpha-

Conotoxin EI, but only 30% mortality was observed after 7 days exposure to GNA.  There 

is a significant difference in survival curves between the two treatments (x2= 88.910, 4 d.f., 

P <0.001). Pairwise multiple comparisons to test the differences between all the treatment 

groups showed significant differences with p <0.05. Overall, the data demonstrated 

enhanced toxicity of this fusion protein over GNA alone against this species. The survival 
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curves between the diet and GNA is showed no significant difference (p=0.402), suggesting 

the non-toxicity of GNA against aphids. 

 

 

Figure 4-7: Biological activity of GNA/ alpha-Conotoxin EI agnaist Myzus persicae on artificial diet bioassay. 

GNA/ alpha-Conotoxin EI was most toxic compared to GNA alone in aritifical diet bioassay (n=30 aphids per 

treatment), as shown by Kaplan Meier survival analysis.  

 

Considering all of the results, this work provides further evidence that GNA/ alpha-

Conotoxin EI fusion protein is a potent insecticidal protein, which is active against M. 

pericae at a concentration of 0.1mg/ml. More assays will be required to elucidate the 

biological activity of different concentrations of either GNA or GNA/ alpha-Conotoxin EI. 

The low expression of recombinant proteins GNA/ alpha-Conotoxin EI, GNA/Acrorhagin-

2a, and GNA/sm1.1 that may be due to changes in the structure of the recombinant gene or 
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disappearance of the gene from yeast, would further investigation. Such investigations 

would provide possible methods to improve yield during expression and purification. 

Expression of foreign proteins at high levels depends on many factors. This study was 

carried out with the yeast secretory expression vector PGAPZalph containing the zeocin 

resistance cassette for selection and secretion signals alpha-factor. Thus, allows secretion of 

heterologous protein into the culture medium, but not every protein produced is secreted in 

soluble fractions. Particularly, studies have shown that some proteins are produced 

intracellular, which often a cell lysis need process to release the cellular contents and 

extraction to remove cell debris.  

 

4.2.3  Transformed P.pastoris on Zeocin plates 

The second aim of the study was to demonstrate differential expression of protein 

intracellular and extracellular. The GNA/ alpha-Conotoxin EI and GNA/sm1.1 constructs 

were subsequently transformed into X33 P. pastoris yeast using the pGAPZα constitutive 

vector for expression as described previously. Few colonies were observed after 3 days 

growth and 5 colonies were picked for expression screening. A PCR colony screening for 

the presence of the toxin sequences was performed on all the unique colonies to confirm 

maintenance of correct construct integrity. The presence of a 500 bp amplicon following 

PCR in lanes 1-6 shows that all GNA/ alpha-Conotoxin EI clones contained the fusion 

cassette. Conversely the lack of amplification in lane 7 demonstrated that the Sm1.1 version 

was not successfully transformed into P. pastoris. (Figure 4-8). Single colonies from 

various strains were inoculated in 10 mL YPD medium at 30°C for 5 days on shaker until 

OD600 reached to 6. Culture supernatant collected during this period was then analysed by 

SDS-PAGE gel electrophoresis and Western blotting (probed with anti-GNA antibodies) to 

establish levels of expression.  
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Figure 4-8: PCR results from a colony screening of GNA/Sm1.1 pGAPZα and GNA/α-conotoxins EI pGAPZα 

transformants. Lane M: 1 kb ladder. Lane 1-6: PCR reaction of the GNA/α-conotoxins EI transformed single 

band of about 500 bp. Lane 7 contains PCR reaction of GNA/Sm1.1 showing no expression.. GNA as seen in 

lane 8 produced intake band is about 500bp. Negative control was ran in the lane 9 and, has no band. 

                                                                     

Expression of the fusion protein 

Low value for cell density and dry weight was noted for the GNA/Sm1.1 pGAPZα and 

GNA/ alpha-Conotoxin EI pGAPZα transformed yeast compared to GNA transformed 

(Figure 4-9). A graph of the difference between all fusion proteins (Figure 4-9) shows 

increased the optical density measured at 600 nm (OD600) readings of the yeast culture 

growth at the initial 48 h, whilst recording low cell growth rate after 48h.   
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Figure 4-9: Graph of OD600 vs time for protein expression 

 

 

Both dried cell pellet (insoluble) and supernatant (soluble) were examined by SDS-PAGE 

and western blotting. The SDS-PAGE and Western blot for the supernatant (soluble) were 

ran for the 48h and 96 h culture period.  The fusion proteins were not detected at 48 h 

(Figure 4-10). However, low levels of the GNA/ alpha-Conotoxin EI fusion proteins were 

detected at 96 h compared to high GNA fusion protein at the same time (Figure 4-11). The 

results suggest that the harmful effect of the toxin on yeast cell could be to the problem. 
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A) 

 

B) 

 

 

 

Figure 4-10: A) SDS- PAGE and Western blot (probed with anti-GNA ab): at 48h for expression screening of 

GNA/ alpha-Conotoxin EI fusion protein. 25-μl samples from different colony culture Supernatant was loaded 

onto SDS- PAGE gel, recombinant GNA was used as a positive standard. No bands were observed of all 

Colonies. The Presence of the GNA at approximately the correct size (12 kDa) was visualised by SDS-PAGE, 

followed by western blotting using anti-GNA antibodies (B). 

 

 

 

 



  

 

104 

 

 

 

 

 

 

                                                                 

Figure 4-11: SDS- PAGE and Western blot (probed with anti-GNA ab): at 96h, for expression screening of GNA/ alpha-

Conotoxin EI fusion protein. 25-μl samples from different colony culture Supernatant was loaded onto SDS- PAGE gel, 

recombinant GNA was used as a positive standard. Colonies 1 and 6 show very low expression of fusion proteins, colony 

8 shows intact band at approximately the correct size (12 kDa) for GNA, while line 9 represents the strain x33 as negative 

control with no band. 

 

 

In the Western blot image (figure 4-12), the single band on the left represents GNA/ alpha-

Conotoxin EI fusion protein from transformed yeast after cell lysis using the YeastBuster™ 

protein extraction.  A high density band is also seen in the same gel for the GNA fusion 

portion after lysis cell. However, Western blot image for the GNA/Sm1.1 fusion protein 

transformed yeast after cell lysis using the YeastBuster™ protein extraction showed no 

protein. Results not shown demonstrated poor yeast transformation.  

Before examining the oral activity of these crude (GNA/ alpha-Conotoxin EI) recombinant 

protein extracts the protein concentration was estimated by Bradfoard assay. High 

concentration yield was detected from the expressed GNA/ alpha-Conotoxin EI fusion 

protein after lysis cell using the YeastBuster™ Protein, approximately 5.874- µg/ µl. A 

yield of 6.060 µg/ µl were also produced from the expressed GNA fusion protein after lysis 

cell using the YeastBuster™ Protein. 
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Figure 4-12:Western blot (probed with anti-GNA antibodies) detecting the fusion protein GNA/ alpha-Conotoxin EI 

transformed yeast after cell lysis using the YeastBuster™ Protein Extraction.  GNA were loaded as controls, 1 mg/ml, and 

2 mg/ml concentration. The recombinant protein GNA/ alpha-Conotoxin EI was detected and estimated from the intensity 

of the GNA band.  

 

 

4.2.4  Oral activity of fusion proteins incorporating GNA and alpha-Conotoxin EI 

against Myzus persicae 

The biology activity of crude GNA/ alpha-Conotoxin EI extracts towards Myzus persicae 

nymphs was confirmed. To ensure that the oral toxicity of GNA/ alpha-Conotoxin EI was 

not due to the presence of GNA in the fusion protein, (<24h) M. persicae nymphs were 

exposed to GNA fusion protein only incorporated artificial diet at 0.1 mg/ml as a control 

treatment. Survival reading was taken every 24h over a period of 7 days. Both control and 

GNA treatments showed 80% survival over the assay period (Figure 4-13).  Insects fed 

with GNA at 0.1 mg/ml showed no significant difference between the control survival 

curves (P = 0.496, 95% C.I, Log – rank (Mantel-Cox) test, n=30 per treatment).  
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Figure 4-13:A graph Myzus persicae survival feeding on artificial diet alone (control) and GNA incorporated 

arterial diet at 0.1mg/ml over 7 days. 

 

 

The toxicity of GNA/ alpha-Conotoxin EI was also assayed using nymphs (<24h) M. 

persicae were fed with artificial diet containing recombinant fusion protein GNA/ alpha-

Conotoxin EI at 0.1mg/ml, 0.01 mg/ml and 0.001 mg/ml (Figure 4-14). The results 

demonstrated that the oral delivery of diet containing recombinant fusion protein GNA/ 

alpha-Conotoxin EI caused a significant reduction in survival when compared to control or 

GNA.  The results showed 10% mortality on the first day of exposure to all the 

concentrations of fusion protein GNA/ alpha-Conotoxin EI.  There is a significant 

difference in the survival curves between each concentration (x2= 85.738, 4d.f., P <0.001). 

Pairwise multiple comparisons to test the difference between all treatments showed 

significant differences (Overall significance level = 0.05).  
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Figure 4-14: Survival of Myzus persicae on artificial diet bioassays.GNA/ alpha-Conotoxin EI  is more toxic when fed 

at 0.1 mg/ml in artificial diet bioassays (n=30 aphids per treatment), as shown by Kaplan-Meier survival analysis 

 

 

 Consequently, a dose response curve was plotted for the three protein concentrations of 

GNA/ alpha-Conotoxin EI using one way ANOVA (Figure 4-15).  Obtained data were 

corrected as the mortality in the control as described by Schneider-Orelli’s (1947). Fusion 

protein GNA/ alpha-Conotoxin EI fed at 0.1mg/ml, 0.01 mg/ml and 0.001 mg/ml showed a 

simple dose response, the lowest concentration (0.001 mg/ml) reduced survival to 70%, at 

0.01mg/ml survival was 40%, and the highest concentration (0.1mg/ml) caused 100% 

mortality . With LC 50 values for the GNA/ alpha-Conotoxin EI, the lethal concentration 

needed to kill 50% is 8 μg/μl concentration (Figure 4-15). The results demonstrated toxicity 

against this species (P < 0.001). 
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Figure 4-15: Dose-response curves for GNA/ alpha-Conotoxin EI in artificial diet bioassays shows the relationship 

between percent of response and concentration.  
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4.3 Discussion  

4.3.1 Design of expression vectors for synthetic genes 

Three synthetic genes encoding GNA/alpha-conotoxin EI, GNA/sm1.1, or 

GNA/Acrorhagin-2a were successfully designed by overlapping oligonucleotides with 

modification of codon usage optimised for P pastoris expression. Expressed vectors 

(pGAZαB) incorporating the above gene sequences were analysed by restriction digestion 

using Xbai that nicks the sequence at the 5’ T C T A G A 3’ and Xhoi that nicks at 5’ T C T 

G A G 3’ (Bendezú and de Boer, 2008). The combination of these two enzymes resulted in 

a sequence with a single Xho1 restriction site fused to the three-alanine region of the C-

terminus of residues 1-105 of snowdrop lectin GNA-mys epitope. Each construct contained 

a 6x His tag-coding sequence to aid subsequent purification of the recombinant protein by 

nickel-affinity chromatography (Woestenenk et al., 2004). Constructs also expressed an 

alpha factor secretary signal at the C-terminus of the GNA sequence, to direct expression of 

the synthesised recombinant proteins (Brake and Van den Berg, 1991).  

 

4.3.2 Expression of recombinant proteins: GNA/alpha-conotoxin EI, GNA/sm1.1, 

GNA/Acrorhagin-2a 

Since the aim of Chapter 4 was to clone, express and test the biological activity of α-

conotoxins (alpha-conotoxin EI; Sm1.1) and the acrorhagin-2a peptide, positive plasmids 

containing GNA/alpha-conotoxin EI, GNA/sm1.1 and GNA/Acrorhagin-2a constructs from 

E. coli were linearized and transformed into P. pastoris (X33) strain. Although previous 

studies have demonstrated increased stability of fusion proteins when the toxins were fused 

to the C-terminus of GNA due to reduced cleavage of the linker regions (Trung et al., 

2006a; Fitches et al., 2010), in the present study Western blot analyses showed that only 

GNA/alpha-conotoxin EI was expressed, while GNA/sm1.1 and GNA/Acrorhagin-2a could 

not be detected. The absorbance reading at 280nm for the expressed GNA/sm1.1 and 

GNA/Acrorhagin-2a showed the presence of small amounts of protein, suggesting that 

potential cleavage or degradation of these particular recombinant proteins in P pastoris 

might have occurred. Even in the case of GNA/alpha-conotoxin EI, expression levels of the 

recombinant protein were very low, which points to potential issues associated with the C-
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terminus linking of the toxins to GNA. Other studies have shown that linker regions of 

fusion proteins are susceptible to cleavage; in particular shorter linker regions are less 

stable than longer regions (Gustavsson et al., 2001; Trung et al., 2006a), which could also 

be a problem in the current study. Therefore, alternative linking of the toxins to GNA 

through the N-terminus, as reported for the SFI toxins, or utilisation of IgG hinge, may 

increase stability and hence improve expression; however this would need further 

investigation. Another potential cause for the low expression seen in the present study 

could be due to the strain of P. pastoris used for the expression of these fusion proteins. 

Although all strains of P. pastoris have been shown to be suitable for expression of small 

proteins with disulphide bonds (Cereghino and Cregg, 2000), proteolysis of resulting fusion 

proteins is one of the major limitations of using this expression system for secretion of 

expressed proteins (Gellissen, 2000; Fitches et al., 2004a). As a result, experiments to 

optimise the expression of conotoxins using either different expression vectors or different 

strains of P. pastoris might be needed. Furthermore, although the construct expressed a 

functional signal peptide (alpha-factor) to direct extracellular secretion of the recombinant 

protein, not all proteins are properly secreted and may be partially expressed intracellularly; 

cell lysis would then be required in an attempt to recover the expressed protein. Initial 

attempts to investigate the low protein yield showed that cell lysis did in fact increase the 

concentration of GNA/alpha-conotoxin EI protein to 5.874 ug/ul, thus supporting the 

hypothesis that the recombinant protein was not being secreted effectively. Additionally, 

there could be potential toxic effects of the fusion protein on the yeast cells themselves, 

resulting in cell death. Further work would need to be carried out to investigate possible 

methods to improve yield during expression and purification. 

 

4.3.3 Insecticidal activity of the recombinant fusion protein GNA/alpha-conotoxin 

EI 

The potential of using isolated components from marine cone snail venom as insecticidal 

agents have received little attention to date since it was not previously possible to target 

them to their sites of action within the pest insect. Thus the ability to express such proteins 

(for example alpha-conotoxin EI, and sm1.1 from cone snails; Acrorhagin-2a from sea 

anemone), as fusion proteins linked to GNA as a carrier molecule provides an opportunity 
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for developing these molecules as bio-insecticides since the GNA will deliver them to their 

sites of action. This study demonstrated that oral delivery of GNA/alpha-conotoxin EI 

fusion protein to neonate M. pericae induced toxic effects. The alpha-conotoxin EI toxin 

fused to the C-terminus of GNA (GNA/alpha-conotoxin EI) presented significant levels of 

toxicity when compared to GNA alone in artificial diet. Sub-lethal effects of GNA towards 

this aphid species have also been reported by other authors (Nakasu et al., 2014). When fed 

to M. pericae at 0.1 mg/ml, GNA caused only 30% mortality, while GNA/alpha-conotoxin 

EI caused 90% mortality at the same concentration. Unfortunately, studies to test the effect 

of alpha-conotoxin EI on aphids in the absence of GNA have not been carried out to date so 

direct comparisons are not possible. However, previous studies have demonstrated that 

GNA has a stabilizing effect on the toxin hairpin when fused to the C-terminus, in addition 

to transporting the toxin across the midgut epithelium (Nakasu et al., 2014). The fact that 

GNA/alpha-conotoxin EI was toxic to the aphids would suggest that the recombinant fusion 

protein is being correctly folded, which is dependent on post-translational modification of 

the fusion protein (Cregg et al., 2000). Furthermore, the results suggest that the orally 

delivered GNA/alpha-conotoxin EI is resistant to gut digestion. Indeed, experiments to 

determine the lethal concentration needed to induce 50% mortality suggests that this 

molecule can be used to control aphids. The LC50 value for the GNA/ alpha-Conotoxin EI 

was less than 0.01mg/ml concentration. However, the findings reported here provide 

evidence that the GNA/alpha-conotoxin EI fusion protein is a potent insecticidal protein, 

which is active against M. pericae. 

 

4.3.4 Insecticides targeting nicotinic acetylcholine receptors  

Most of the conotoxins peptides isolated from the venom of cone snails are encoded by a 

large gene familly, which specifically targets voltage-gated sodium, potassium and calcium 

ion channels, as well as other membrane receptors like nicotinic acetylcholine receptors, 

NMDAR or 5-HT3R (Liu et al., 2012a). By constructing cDNA libaries from the venom 

ducts of C. virgo, Conus imperialis, C. eburneus, and C. marmoreus collected from the 

South China Sea, Liu et al. (2012) identified several novel conotoxin genes and 

characterised the diversity of conotoxin superfamily genes from various Conus species, 
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(reviewed extensively in (Liu et al., 2012a). Neves  et al. (2013) have identified disulfide-

rich conopeptides in C. crotchii that belongs to the A-, O1-, O2-, O3-, T- and D- gene 

superfamilies. These conopeptides can block Ca2+ channels, act on nicotinic acetylcholine 

receptors (nicotinic acetylcholine receptorss) and inhibit K+ channels. Identification of 

alpha-5 and alpha-6 subunits which contribute to the nicotinic acetylcholine receptors 

expressed on striatal dopaminergic terminals opened the possibility of developing nicotinic 

acetylcholine receptor  selective ligands active on dopaminergic (Olivera et al., 2008b). 

The α - conotoxins contain 12 and 19 amino acids residues and use several disulphide 

bonds to maintain the structure integrity. They are highly selective at blocking the nicotinic 

acetylcholine receptors. However, inhibition of ligand-gated potassium, sodium, or calcium 

ion channels across the synaptic membrane has also been reported. Most of the α-

conotoxins are competitive antagonists for nicotinic acetylcholine receptors, which bind 

with high affinity to one or two binding sites of the receptors.  

 

In summary, results from this chapter demonstrated that functional GNA/alpha-conotoxin 

EI based fusion proteins can be effectively expressed in P. pastoris, albeit at low levels of 

expression. Feeding studies suggested that the toxic effects of this neurotoxin within fusion 

proteins were comparable to the correctly folded native conotoxin. However, the expression 

of the other toxin peptides reported in this study needs to be investigated and potential 

optimisation approaches utilised. Further work on oral activity against other insects was not 

investigated, but the potential effect of proteolytic cleavage and digestion within the insect 

midgut makes this an important field for further study. The presence of linker regions that 

might be targeted by insect proteases needs to be established.  
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5 Chapter 5 General Discussion 

5.1 Mechanisms of insecticide resistance in Myzus persicae 

As the overall aim of the study was to develop biopesticides for the control of aphids that 

are both sustainable and effective, it is important to understand problems encountered with 

current synthetic pesticides, particularly the ability of aphids to evolve resistance to such 

molecules. Below are the different mechanisms by which aphids are able to overcome the 

toxic effects of these synthetic pesticides: 

 

5.1.1 Overproduction of carboxylesterases  

One of the major mechanisms of resistance in insect populations to insecticides is the 

increased production of carboxylesterases, which has been associated to resistance to 

organophosphate-, carbamate- and pyrethroid-based insecticides. It has been demonstrated 

that esterases involved in organophosphate resistance in M. persicae can hydrolyse 1-

naphthyl acetates, substrates of the enzyme (Needham and Sawicki, 1971b; Voudouris et al., 

2015b), through the activity of carboxylesterases E4 and/or FE4. Carboxylesterases produced 

by M. persicae act by sequestering organophosphate and carbamate insecticides before it is 

transported to the insect nervous system (Devonshire and Field, 1991b; Feyereisen et al., 

2015b). Further studies also showed that amplification of the structural carboxylesterases 

genes results in the enhanced production of the enzyme (Devonshire and Field, 1991b). 

Amplification of the carboxylesterases genes correlates with the resistance phenotype 

observed in some M. persicae (Field, 2000). Using fluorescence in-suithybridisation, Field 

and Devonshire, demonstrated that autosomal chromosomal translocation 1,3 is linked to 

amplification of carboxylesterase genes (Devonshire and Field, 1991b), which plays 

important role in carboxylesterase related resistance. 

5.1.2 Mutation of the acetylcholinesterase enzyme  

Some classes of carbamate insecticides like dimethyl carbamate are resistant to esterase 

activity and retain high insecticidal activity against M. persicae (Foster et al., 2002). 

However, several populations of M. persicae that exhibit resistance against this insecticide 

have been detected around the globe (Moores et al., 1994). Biochemical assay results showed 
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that reduced or lack of sensitivity of the target site of carbamate is the major contributing 

factor in this resistance. Carbamate based insecticides target acetylcholinesterase enzyme, 

which is the hydrolase regulating impulse transmission by targeting acetylcholine at the 

synapses (Moores et al., 1994). Unfortunately, modification of the acetylcholinesterase 

enzyme induced by mutation has been shown to cause more than 100 fold insensitivity to 

dimethyl carbamate (Moores et al., 1994).  Sequencing of the acetylcholinesterase gene 

isolated from resistant M. persicae showed the presence of a point mutation that causes the 

substitution of a single amino acid at S431F of the enzyme protein sequence (Andrews et al., 

2002; Nabeshima et al., 2003b). Subsequent expression of the modified enzyme in yeast 

provided additional evidence that this has functional consequences, caused by reduced 

binding of carbamate insecticides to the acetylcholinesterase enzyme (Benting  and Nauen, 

2004). The point mutation affecting S431F is located in the region of the enzyme sequence 

that controls the orientation of ligands bound to the active site. Particularly, the substitution 

of a serine with phenylalanine would inhibit the interaction of carbamate insecticides with 

the catalytic region of the active site that is caused by change in the space and hydrophobicity 

of the enzyme (Andrews et al., 2004, Nabeshima et al., 2003). An interesting aspect of this 

substitution is the fact that non-aphid insects naturally have phenylalanine at the same site, 

as this mutation reverts the aphid sequence back in line with other insects (Andrews et al., 

2004). 

5.1.3 Mutation of the voltage-gated sodium channel 

Although the enhanced production of carboxylesterases confers some resistance in aphids 

against pyrethroid insecticides, it has been demonstrated that the initial mechanism of 

resistance is by a “knockdown resistance” in the target site of the insecticide (Martinez‐

Torres et al., 1999). This knockdown effect is caused by mutations in voltage-dependent 

sodium channels (Williamson et al., 1996). The voltage-dependent sodium channel is 

important in the initiation and maintenance of membrane action potential in neurons. The 

first report of mutation induced knockdown resistance to pyrethroids was the replacement of 

leucine with phenylalanine (L1014F) in the trans-membrane segment of the sodium channel 

(Martinez‐Torres et al., 1997; Martinez‐Torres et al., 1999). Moreover, M918T has been 
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identified in the intracellular linker of voltage-dependent sodium channel of M. persicae 

(Eleftherianos et al., 2008). Computational modelling suggests that this mutation might cause 

loss of polar interaction between pyrethroids (O'Reilly et al., 2006; Fontaine et al., 2011). 

However, the resistance that might be caused by the two mutations remains to be 

characterised. 

5.1.4 Enhanced expression of the cytochrome P450, CYP6CY3 and Mutation of the 

nicotinic acetylcholine receptor 

The increased resistance to organophosphates, carbamates, and pyrethroids by M. persicae 

has resulted in increased use of neonicotinoids, which are highly active against most of the 

adaptive resistant mechanisms developed to the older insecticides (Nauen and Denholm, 

2005). However, low level resistance in the form of natural tolerance subsequently appeared 

in some populations of M. persicae, most importantly the tobacco adapted race of the aphid 

(Nauen, 1995; Devine et al., 1996). Indeed, a clone of the M. persicae collected from Greece 

has more than 60 fold resistance against topical application of different neonicotinoids 

compared to wild type strain of the aphid (Philippou et al., 2010; Puinean et al., 2010). 

Further investigations identified a P450-mediated detoxification as one of the major 

mechanisms of resistance, but other potential mechanisms might exist (Philippou et al., 2009, 

Puinean et al., 2010). Microarray and PCR analysis revealed the constitutive expression of 

multiple CYP6CY3 genes because of gene amplification (Puinean et l., 2010).  

Enhanced CYP6CY3 expression in M. persicae results in a low level of resistance against 

neonicotinoids following topical application (Puinean et al., 2010), but the practical 

significance of this resistance mechanism is limited because independently the penetration-

associated resistance cannot impair effectiveness of such insecticides when applied at the 

correct concentration. Unfortunately, a clone of M. persicae collected from France was 

shown to exhibit complete resistance to neonicotinoids (Bass et al., 2011, Slater et al., 2011). 

Biochemical assays suggested that this particular clone utilises two major resistance 

mechanisms, including cytochrome P450 detoxification, discussed above, and insensitivity 

to piperonyl butoxide (Bass et al., 2011a; Slater et al., 2012). Microarray and quantitative 

PCR analysis by the same researchers demonstrated CY6CY3 overexpression is significantly 
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similar to levels expressed by clones with low-level resistance to neonicotinoids (Bass et al., 

2011). This suggested that other mechanisms might underlie the complete resistance by the 

clone from France. In particular modifications in the neonicotinoid target-site, were thought 

to be an obvious mechanism. The nicotinic acetylcholine receptor targeted by neonicotinoids 

is a neurotransmitter-gated ion channel that regulates nerve signalling via the post-synaptic 

membrane (Bass et al., 2011a), but mutations and modifications to the neurotransmitter-gate 

channel remains to be demonstrated.  

5.2 Mechanisms of peptide targeting to ion channels  

Several toxins derived from invertebrate predators have been shown to specifically target 

voltage dependent sodium, potassium or calcium ion channels. Moreover, toxins with unique 

targets like ryanodine channels and calcium activated potassium channels have been 

identified (Fajloun et al., 2000). These toxins have been shown to interact with ion channels 

through neurotoxin binding sites, which results in blocking of conductance or modulation of 

gating. These binding sites are the determinants of phyla specificity, a critical aspect of 

developing biopesticides. For instance, Hainantoxin, curtatoxins and Tx4 toxins have been 

shown to target binding site-1 on sodium channels, binding site-3 on potassium channels and 

binding site-4 on sodium channels, respectively (Stapleton et al., 1990a; De Lima et al., 2002; 

Liu et al., 2013).  In addition, biological activity of several other invertebrate neurotoxins, 

(like δ-atracotoxins) on insect and vertebrate ion channels has been demonstrated. The 

presence of conserved structural motifs in the domains of these voltage-gated ion channels 

might explain this activity observed across phyla (Catterall, 1995). Research efforts are 

currently directed towards the identification of molecular determinants of neurotoxin 

selectivity and biological activity. However, accurate mapping of binding sites and 

characterisation of the mechanisms of action of invertebrate derived toxins is needed before 

their effective implementation in pest control. The mechanism and targets of a neurotoxin is 

important, because most chemical compounds used for pest control, including those that have 

been withdrawn due to environmental damage, are known to target the central nervous 

system of crop pests. Chemical compounds like DTT block or inhibit the conductance of ion 

channels such as voltage-gated sodium channel and glutamate gated chloride channels, whilst 

others, such as pyrethroids act through high affinity binding to receptors like nicotinic 
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acetylcholine receptors and aminobutyric acid receptor (Tedford et al., 2004; Raymond-

Delpech et al., 2005). The use of predator derived toxins that target important and yet under-

utilised ion channels like the voltage gated calcium channels, a known target of the SFI 

peptides investigated in this study could improve pest control. On one hand, the utilisation 

of voltage dependent calcium channel could reduce insect resistance to pesticides due to 

multiple targets (Eberl et al., 1998). While on the other, the essential role of this unique 

channel in cell function could independently provide a potent target for pest control 

(Kawasaki et al., 2002). Furthermore, the nicotinic acetylcholine receptors also investigated 

in this study are known targets for some chemical insecticides such as imidacloprid (IMI).  

Thus the ability to replace these synthetic chemical insecticides with equally potent 

biopesticides could reduce the impact of pest control on the environment. 

 

5.3 Mechanisms for delivering venom derived neuropeptides  

One of the major challenges facing the technology of incorporating toxin peptides in 

insecticides is the delivery of the peptides to the specific site of action. In the case of 

neurotoxins, accessing the central nervous system of insects has faced many drawbacks, 

attributed to the fact that ion channels targeted by such toxins are not accessible through the 

conventional methods of applying insecticides.  In a natural scenario, the predators producing 

these toxins directly deliver their venoms to the central nervous system through injecting 

them directly into the haemolymph; the active toxin is then transported systemically to the 

ion channels where they cause paralysis and other forms of biological incapacitation. 

However, a typical crop protection application relies on topical or oral application. Topically 

applied venom peptides lack the ability to interact and move across the insect cuticle, because 

the cuticle lacks surface receptors (Quistad et al., 1991b). Oral delivery exposes the toxin 

peptides to proteases secreted by gut epithelial cells, whereby they are hydrolysed in the 

midgut (Quistad et al., 1991b); furthermore, they also require to be actively transported 

across the gut epithelium to the haemolymph.  Interestingly, advances in biotechnology over 

the past few decades have provided a number of tools to exploit these peptides in pest control. 

Vector delivery using naturally occurring viruses and fusion to carrier proteins such as the 

lectin GNA, reported in this study, are some of the actively studied mechanisms for toxin 
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delivery to the target sites.  

5.4 Fusion with snowdrop lectin (GNA) 

Several researchers have successfully incorporated predator venom-derived peptides into a 

carrier protein like snowdrop lectin (GNA), and demonstrated comparable biological activity 

to the ‘natural’ delivery of such venoms i.e. when injected into the haemolymph (Fitches and 

Gatehouse, 1998; Fitches et al., 2004a; Fitches et al., 2004d; Trung et al., 2006a; Fitches et 

al., 2010). However, irrespective of the promising biological activity on insects that are 

reported by these studies following oral delivery of the toxin as a GNA-based fusion protein, 

many research questions relating to mechanisms of action and specificity to targets or phyla 

remains unanswered. For instance, the transport of GNA across gut epithelium through 

receptor binding and subsequent endocytosis has been reported (Fitches et al., 2001), but the 

biochemical mechanisms leading to transport to the haemolymph and subsequent cleavage 

of the fused toxins remains poorly described.  Moreover, a wide range of other proteins has 

been reported to cross the gut epithelium of insects. Bovine serum albumin was reported to 

cross the gut epithelium of lepidopteran into the haemolymph (Casartelli et al., 2005; Jeffers 

et al., 2005), through a megalin-like receptor activated active transport (Casartelli et al., 

2008). Additionally, peptides of the storage protein, vicilin, have been reported to cross the 

gut epithelium of bruchid seed weevils after feeding on seeds containing the peptides (Souza 

et al., 2010), which suggests that similar mechanisms in GNA transport is possible.     

The effectiveness of GNA/neurotoxin recombinant fusion protein is dependent on the 

interaction between gut surface receptors and the carbohydrate-binding motif of GNA. GNA 

denatured by boiling is no longer able to bind to these carbohydrate (Fitches and Gatehouse, 

1998).  Moreover, increased stability to gut digestion might be a critical aspect of GNA 

delivery. Another important factor in using GNA as an efficient carrier protein for toxic 

peptides is the stability of the recombinant fusion protein during translation and correct post-

translational modifications in expression vectors. In contrast to GNA, garlic lectins, which 

are also mannose specific, are not effective carrier molecules since toxin/garlic lectin-based 

fusion proteins have been shown not to be biologically active when fed orally to insects 

(Fitches et al., 2008). Further, structural investigations have revealed that toxins fused to 
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garlic lectin failed to fold correctly and possess scrambled disulphide bonds (Fitches et al., 

2008). Interestingly, predator derived toxins contain many disulphide bonds, whilst GNA has 

cysteine residues at position 29, 52 and 86, and a single intra disulphide brigde between the 

cysteine at position 29 and 52 (Hester et al., 1995b; Tedford et al., 2004). It has therefore 

been hypothesised that the activity of disulphide isomerases and other protein processing 

machineries promotes folding of GNA in the endoplasmic reticulum in plant and yeast 

expression vectors, which also enhances proper folding of fused toxin peptides. However, 

the evidence to support this hypothesis needs to be established fully and represents a field for 

further research. The toxic effects of the GNA based fusions proteins delivered to M. persicae 

reduced survival and increased mortality at comparable levels reported for synthetic 

insecticides currently utilised for control of this insect pest. These levels of toxicity provide 

evidence that the peptides were correctly folded.  

It is important to investigate the suitability of other carrier proteins in delivering neurotoxins 

orally, which could increase the potential use of these peptides in pest control. The current 

study used a GNA based fusion protein to deliver spider toxins, SFI1, SFI3, SFI5, SFI6, and 

SFI8 and cone snail toxin, antagonists of nicotinic acetylcholine receptors to the gut of M. 

persicae in order to investigate biological activity and toxicity. The results demonstrated that 

recombinant proteins SFI/GNA investigated are likely to have insecticidal activity towards 

this aphid species. The fusion protein SFI1/GNA caused the highest toxicity to M. persicae 

when fed in a diet at 0.1mg/ml. The other four fusion proteins also caused reasonable toxicity, 

observed as increased mortality. In general, all the fusion proteins tested in the present study 

were able to cause at least 50% mortality at low concentrations (< 0.1mg/ml), making their 

use as bioinsectides potentially viable. The nicotinic acetylcholine receptors antagonists 

(alpha-conotoxin E1) also caused toxicity, resulting in increased mortality at 0.1mg/ml.  

The biological activity of the tested toxins is dependent on stability within the gut 

environment. GNA based fusion proteins reported in Chapter 3, and Chapter 4 were stable in 

the gut environment and caused oral toxicity to aphids. It will be worthy of further 

investigation to determine gut stability of the toxins in other potential pests. The recombinant 

protein is only toxic if it is sufficiently resistant to gut proteolysis and is able to be transported 
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intact to the haemolymph. However, some investigators have suggested that once in the 

haemolymph the active peptide has to be released for subsequent toxicity, but provided no 

evidence to support their hypothesis (REF) In such cases they further speculate that if the 

transported fusion proteins are too stable, this will prevent the release of free toxins to the 

central nervous system; this possibility needs to be investigated.  

5.5  Alternative delivery methods of toxins to insects 

Another potential method of delivery is vector-based infection of pest using viruses like 

Baculoviruses. Baculoviruses are specific arthropod viruses, which have been shown to 

infect insects but not vertebrates or plants (Groner, 1986; Herniou et al., 2003; Zhu et al., 

2015). The virus can be transferred to mammalian cells, but the virus lacks replication 

abilities in mammalian cells (Kost and Condreay, 2002). Unfortunately, the integration of 

the SFI and other neuropeptides used in the present study (such as those derived from cone 

snails or anemones) to any insect virus has not been investigated to date. Other spider toxins 

such as ACTX have been demonstrated to cause mortality in insects following viral 

expression. Given that these viral vectors have a pathogenic effect on their host insect, the 

potency of any incorporated toxins could be enhanced. In addition, multiple expressions of 

the SFI toxins could further increase mortality (Tedford et al., 2004). For instance, synergistic 

expression of two types of scorpion derived neurotoxins in Baculoviruses caused significant 

reduction in survival compared to individual expression of the toxins in the virus (Regev et 

al., 2006). However, the results from this study is only limited to some species of insects, 

including Diptera, Hymenoptera, and Lepidoptera (Moscardi, 1999; Erlandson et al., 2008). 

It would be interesting to evaluate if such as approach would increase the toxicity of the 

neuropeptides investigate in the present study to aphids.  

 

5.6 Integrated pest control approaches  

Other pest control strategies that may be applied with fusion proteins to reduce the 

development of resistance to pesticides or that have been used in the control of M. persicae 

are RNA interference, plant expression of toxic peptides and pyramiding toxins (Ferry et 
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al., 2006; Pitino et al., 2011). As with Bt expressing crop plants developed for the control 

of Coleoptera and Lepidoptera pests, stacking several toxin-coding genes into a pyramid 

for the control of aphid could reduce resistance by increasing the activity of individual 

components. For instance, a transgenic corn has been developed expressing six insect 

resistance genes, which provides protection against rootworm and herbicides 

(AgroSciences, 2007). Additionally, protease inhibitors that might be less effective on their 

own could prove invaluable when combined with SFI or other neurotoxic peptides such as 

Sm1.1 or alpha-conontoxin E1, in a fusion protein, resulting in increased delivery of intact 

molecules to the target site in the neuromuscular system. For example, transgenic cotton 

expressing Bt fused to cowpea trypsin inhibitor has been commercially released in China 

(He et al., 2008). The expression of semiochemicals in plants to repel or attract insects has 

been established (Guerrero et al., 1997). However, application in bait traps to plants 

carrying fusion proteins has not been explored, which could be an interesting aspect of 

integrated pest control. This could ensure that target aphids feed on the insecticidal fusion 

protein incorporating SFI and nicotinic acetylcholine receptors.  Finally, RNA interference 

is a proven effective strategy for the control of several species of insect pests (Baum et al., 

2007; Scharf, 2015). The double stranded RNA can either be expressed in the target crop 

itself, or delivered as a biopesticide. The double stranded RNA interferes with the 

expression of the insect target gene when ingested, often resulting in complete knock out of 

important gene and causing mortality.  This approach increases specificity of pest control 

and reduces the risk of any potential non-target activity (Price and Gatehouse, 2008; Zhang 

et al., 2015). Unfortunately there is little evidence demonstrating the efficacy of RNAi in 

aphids. However, identification of potential genetic targets could be utilized in selecting 

toxins for fusion proteins and RNA interference approaches for other insect pest species. 

 

 

5.7 Conclusions  

The amount of biopesticides currently used in pest control is still below 1% of the global 

pesticide market, with environmentally damaging products constituting the majority of all 

the insecticides (Whalon and Wingerd, 2003). There is increased need for biopesticides, 
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including those from invertebrate venoms. SFI toxins targeting the voltage-gated ion 

channels and one of the neuropeptides targeting nicotinic acetylcholine receptors ( - 

conotoxin E1) were functionally expressed in yeast cells as GNA-based fusion proteins, 

which was significantly toxic to the aphid Myzus persicae following oral delivery. The 

results of the current study suggest that these fusion proteins provide attractive and 

environmentally friendly candidates for control of insect pests. Conducting further studies 

could allow the use of these toxins independently or in combination with other pest control 

methods. Biopesticides such as the fusion protein investigated in this study offers many 

advantages over synthetic pesticides; they are usually sustainable and more 

environmentally friendly than conventional pesticides, many of which are highly damaging 

to the environment. Moreover, biopesticides are designed with high specificity, which only 

affects particular pests. This is in contrast to chemical compounds that affect a very broad 

spectrum of organisms, including beneficial insects, mammals and birds. Biopesticides will 

also degrade in the environment with time and thus are less likely to contaminate soils and 

waterways. In the past decade the use of biopesticides has increased significantly because 

of extensive research efforts to enhance effectiveness and discover new candidates. As 

biotechnological techniques for commercial production and storage has been developed, the 

application of this category of pest control agents has improved. Although synthetic 

products dominate the pesticide market, the use of biopesticides began during the 

introduction of Bacillus thuringiensis spores in 1950. Interestingly, the use of biopesticides 

as part of integrated pest management strategies has brought about an increase in the 

demand for biopesticides. Currently, the drive for organic food and integrated pest control 

are the major factors driving the growth of biopesticides. Moreover, the constant pressure 

from synthetic compounds has caused an increase in resistance to such molecules within 

insect pest populations. Since the protection of commercial crops is very important, 

biopesticides represents a sustainable alternative.  

In spite of the increasing research on predator venoms, more is yet to be done to 

characterize the structure and functional activities of these compounds in a wide range of 

insect pests. Combined, the venoms from different spider, snail and sea anemone species 

has been estimated to exceed several thousands of compounds, but less than 1% have been 

fully characterised. Indeed, many recent studies have described more than 500 peptide 
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venom compounds from these species. As a result, the SFI toxins and nicotinic 

acetylcholine receptor antagonists could be particularly valuable in pest control. However, 

they are yet to be fully characterized and second, they are a wide group of peptides that 

share structural motifs with toxins encountered in other predators, such as snake toxins. 

However, research effort is also needed to understand insect ion channels, which will allow 

a better understanding of the diversity of the venom derived peptides and functions of the 

insect ion channels. Another field of biotechnological importance is toxin gene detection. 

The availability of innovations for genome sequencing of venomous animals or spiders in 

general, including deep sequencing technologies could facilitate fast and easy discovery of 

genes encoding these neurotoxins. Such genomic approaches will shed light on both 

evolutionary mechanisms of venom development and genetic processes involved in the 

development of novel functionalities. For all such reasons, research on spider, cone snail 

and sea anemone venoms in any field is very important. From genetic studies to more 

applied toxicological assessment like the current study, these predators should be targets for 

future research on bio-insecticide discovery.  
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Appendix: 

 
Appendix A: Summary of the strategy to obtain single-copy expression vectors (Invitrogen manufacturer, Catalog nos. 

V200-20 and V205-20). 
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Appendix B: map for the strataclone pcr cloning vector psc-a-amp/kan (Instruction Manual, Catalog number: 240218) 

 
 

Appendix C: Recipe for separating and stacking gels for 16.5% Sodium Dodecyl Sulfate Polyacrylamide Gel   

15% Separating Gel         15% Stacking Gel 

7.5 mL of 30% acrylamide 0.65 ml of 30% acrylamide 

 

3.75 mL of 1.5 M Tris pH 8.8 1.25 mL 1.5 M 

Tris pH 8.8 

1.25 ml 4x Tris-HCI/SDS Ph6.8    

 

3.05 ml distilled water  3.05 ml distilled water 

50 μL 10% ammonium persulfate (APS) 25 μL 10% ammonium persulfate (APS) 

10 μL tetramethylethylenediamine (TEMED) 5μL tetramethylethylenediamine (TEMED) 
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Appendix D: Summary of toxicological data obtained from the aphids’ bioassay after 7 days of exposure to 2 X 

SFI1/GNA, SFI5/GNA, SFI8/GNA, and GNA fusion proteins 
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Appendix E: Wild type P. pastoris X33 were grown on solid YPD medium at 30°C, for at least 72 h.  

Transformation of FP2.1/GNA pGAPZα, GNA/Sm1.1 pGAPZα and GNA/α-conotoxins EI pGAPZα into 

wild type P. pastoris X33 resulted in a few colonies after 3 days growth 

 

 

 


