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Abstract 

The efficacy of antibiotics is being challenged by the emergence of bacteria resistant to 

antibiotics (AR), both in natural and clinical settings. Antibiotics and associated AR can be 

transmitted and dispersed via environmental bacteria, however AR might also be conferred in 

situ, without antibiotic pressure. For example, release of metal-bearing wastes to natural 

environments can proliferate AR. An important case is the influence of zinc (Zn) 

contamination on environmental AR, which increased tetracycline and quinolone resistance in 

wastewater isolates. However, how Zn might influence AR to therapeutically critical 

carbapenem antibiotics, including meropenem is unknown, which fuelled this study. Here the 

percentage of total isolates resistant to Zn, meropenem and-or both, were compared and 

assessed in varied microbial communities from natural environments and bioreactors. Overall, 

Zn levels, and Zn and meropenem resistant isolates correlated in all settings. For example, the 

abundance of combined meropenem plus Zn resistant isolates was significantly higher in high 

Zn (South Tyne) versus low Zn (North Tyne) sediments, and correlated with soluble and total 

Zn levels (p-value < 0.010 and p-value < 0.050, respectively), implying that acquired Zn 

resistance might confer meropenem resistance to isolates. In parallel, batch reactors seeded 

with North and South Tyne sediments, and amended with 2.00 mg/L (low) and 100 mg/L 

(high) Zn (2 x 2 design), showed increased relative percent meropenem resistant isolates in 

reactors with high (South Tyne: 21.0%; North Tyne: 31.0%) versus low Zn (South Tyne: 

17.0%; North Tyne: 14.0%), whereas, sediment source (South vs North Tyne) was not 

important. Further, sediment soluble Zn levels significantly correlated with meropenem 

resistant isolates in all reactors, suggesting that the observed meropenem resistance was a 

possible “side effect” of cellular defence against Zn toxicity. Similar results were seen in Zn 

and meropenem-amended rotating tubular reactors treating domestic wastewater. Reactors 

dosed with 2.00 mg/L meropenem plus 100 mg/L Zn showed combined resistance in 51.0% 

of reactor effluent isolates, whereas only 24.0% displayed combined resistance with 

amendments of 2.00 mg/L meropenem and 20.0 mg/L Zn. Overall, elevated Zn levels 

significantly increased Zn, meropenem and combined resistance in isolates from sediments, 

batch reactors and tubular reactors. Therefore, one can conclude Zn levels impact meropenem 

resistance, although evidence suggest meropenem resistance is most apparent when Zn is 

present and resistance can be lost when Zn is removed, suggesting cross resistance 

mechanisms. 
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Chapter 1 Introduction 

Since the discovery of the first antibiotics, over 60 years ago, human mortality and morbidity 

has been substantially reduced (Davies and Davies, 2010). However, the efficacy of 

antibiotics is now being challenged by the emergence of bacteria resistant to antibiotics, both 

in natural and clinical settings due to antimicrobial resistance (AMR) (Baker-Austin et al., 

2006; Knapp et al., 2011). The most relevant definition is that of the World Health 

Organisation, where “Antimicrobial resistance is resistance of a microorganism to an 

antimicrobial drug that was originally effective for treatment of infections caused by it” 

(Walsh, 2013). Microorganisms, including bacteria, fungi, viruses and parasites can gain 

resistance, allowing them to withstand any attack by antimicrobial drugs, antifungals, 

antivirals and antimalarials. The emergence of multi-resistance in bacteria, especially in 

strains of Enterobacteriaceae and Pseudomonas aeruginosa gram-negative bacilli means 

successful treatment of infections caused by such bacteria are becoming ineffective, causing 

infections to persist (Wellington et al., 2013; WHO, 2015). 

Bacteria exhibit resistance to antimicrobials (in this case antibiotics) by chromosomal or 

mobile genetic elements (plasmids) using four main strategies: (i) the reduction of the 

membrane permeability to antibiotics, (ii) drug inactivation due to porin loss and alterations in 

the penicillin binding proteins (PBPs), (iii) expression of efflux pumps causing rapid efflux of 

the antibiotic and (iv) mutation of cellular targets (Baker-Austin et al., 2006) (Section 2.4). 

After the introduction of semi-synthetic penicillins and the use of β-lactamase inhibitors to 

combat the first instance of resistance, the development of resistance to these combinations by 

plasmid encoded β-lactamases, meant that aminoglycosides and third generation 

cephalosporins and quinolones were increasingly used for treatment (Wellington et al., 2013). 

However this led to the emergence of plasmid mediated aminoglycoside resistance which 

meant that third generation cephalosporins, such as cefotaxime and ceftazidime and 

quinolones, such as ciprofloxacin were substantially used to treat most infections (Wellington 

et al., 2013). Since the 2000s, there has been a large increase in the presence of extended 

spectrum β-lactamases (ESBLs), which hydrolyse cephalosporins making third generation 

cephalosporins and quinolones less effective (Wellington et al., 2013). This had led to a shift 

towards the use of carbapenems, currently described as ‘last resort drugs’ (Bradley et al., 

1999; Papp-Wallace et al., 2011) such as imipenem and meropenem. 

Carbapenems are broad antimicrobial spectrum antibiotics that are used to treat serious 

infections and are active against gram-negative bacteria with ESBLs and AmpC enzymes 

(Livermore, 1995). They belong to the class of β-lactams, like penicillins and cephalosporins 
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but they differ from these in their exact chemical structure (Kahan et al., 1979; Papp-Wallace 

et al., 2011) (Section 2.5). Antibiotics such as imipenem and doripenem are used to target 

gram-positive bacteria while meropenem and ertapenem target gram-negative bacteria 

(Bedenic et al., 2014) (Section 2.6). However the now increasing use of carbapenems means 

that carbapenem resistance is being selected and resistance is accumulating via the spread of 

carbapenem destroying β-lactamases (Abenavoli and Almasio, 2011). For example, in 

England, United Kingdom (UK), the total use of carbapenem antibiotics statistically increased 

by 31.3% between 2010 and 2013 (Public Health England, 2014). Carbapenemases belong to 

several classes, A, B C and D (Papp-Wallace et al., 2011). Class B, known as metallo-β-

lactamases (MBLs) contain zinc (Zn) ions in their active site (Livermore, 1995). Many 

acquired MBLs encoding genes are located in gene cassettes within integrons, as part of a 

plasmid or chromosome (Section 2.5). As a lot of β-lactams and carbapenem like compounds 

are naturally produced from some environmental bacteria and fungi, many other bacteria 

therefore synthesise β-lactamases in order to gain a selective advantage for survival 

(Waksman and Woodruff, 1940; Alonso et al., 2001; Martinez, 2009b). However the presence 

of mobile genetic elements (the mobilome), such as plasmids allow for the conjugative 

transfer of resistant genes, through horizontal gene transfer (HGT), further increasing the 

mobility of these genes to other bacteria (Martinez, 2009b). 

The use of antibiotics in veterinary process, human medicinal uses and agriculture means that 

any metabolites that have not been broken down or degraded, as well as compounds that have 

not been chemically altered, will eventually be released into rivers or will remain in sludge 

after sewage treatment. Antibiotics could then reach agricultural soils through the use of 

sludge as a fertiliser and the irrigation of soils with treated wastewaters (Kinney et al., 2006). 

Once present in the soil, they can be transported to surface and groundwater and therefore be 

cycled within the environment (Wellington et al., 2013) (Section 2.1). As carbapenem like 

compounds and other antibiotic producing bacteria can be found naturally in the environment 

(Martinez, 2009b), the presence of these environmental bacteria and other bacteria containing 

resistant genes from other sources can provide conditions ideal for the selection of new 

resistant strains (van Elsas and Bailey, 2002). This means that soils, sediments and water can 

act as reservoirs for antibiotic resistance genes (ARGs) and HGT (van Elsas and Bailey, 

2002).  

As mentioned above, there are four main mechanisms by which bacteria can gain resistance to 

antibiotics. These mechanisms are very similar in structure and function to mechanisms by 

which bacteria gain resistance to metals, such as Zn (Baker-Austin et al., 2006) (Section 2.7). 
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In addition studies done by Summers et al. (1993) Summers (2002) and Alonso (2001) have 

suggested that metal contamination in natural environments may be associated with the 

maintenance and proliferation of AR (Section 2.9). Furthermore, many studies have reported 

that elevated resistance to antibiotics is often found in environments heavily contaminated 

with metals (Stepanauskas et al., 2005; Baker-Austin et al., 2006; Stepanauskas et al., 2006; 

Berg et al., 2010; Berg et al., 2012). Although bacteria have always been exposed to metals, 

the high concentrations of metals now present in some environments due to industrial and 

anthropogenic derived sources could cause a long term selection pressure, as they are not able 

to be degraded (Alonso et al., 2001). Hence it is possible that the presence of metal 

contamination can co- select for ARGs through the process of co-resistance, cross resistance 

(Chapman, 2003) or co-regulation (Nakajima et al., 1995; Baranova and Nikaido, 2002; Lee 

et al., 2005) (Section 2.7). Therefore the presence of chemical stressors such as antibiotics, 

metals and other organic compounds can all influence resistance in microbial communities to 

antibiotics (Baker-Austin et al., 2006; Stepanauskas et al., 2006; Berg et al., 2010; Berg et al., 

2012). Despite this there has been a lot less work on the intrinsic capacity of these microbial 

communities in natural environments to retain and promote resistance (Alonso et al., 2001). 

This thesis aims to determine whether metal contamination promoted carbapenem resistance 

in microbial communities with and without the presence of metals and-or antibiotics. This 

was done by conducting a variety of studies using sediments and water column samples from 

rivers and, experimental reactors with sediments, wastewater and biofilm communities. The 

first study described in Chapter 3, aims to looks at the relationship between carbapenem 

resistance, using the antibiotic meropenem and heavy metal resistance, focusing 

predominantly on the metal Zn, in natural river systems. Here we used two comparative areas 

of the River Tyne basins, the South Tyne, which is contaminated with high levels of heavy 

metal pollutants and the North Tyne, which is metal free to assess whether areas with high Zn 

levels promoted Zn, meropenem and combined meropenem and Zn resistance (combined 

resistance) in sediment and water column samples. This study led on to setting up a series of 

batch reactors, described in Chapter 4 which were seeded with sediment from the North and 

South Tyne and amended with high and low levels of Zn. Here we assessed whether 

meropenem resistance in microbial communities varied over time with the extended Zn 

pressure. In the next study, described in Chapter 5, we focused on the changes in Zn, 

meropenem and a combined resistance in microbial biofilm communities and effluents of 

rotating tubular reactors. These were treated with domestic sewage that was dosed with 

different levels of Zn and meropenem. 
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Therefore the overall aim of this thesis was to assess and determine whether Zn 

concentrations increased and promoted relative percent meropenem and combined resistance 

in microbial communities within rivers and wastewaters. 

The following hypothesis were made: 

a) Ambient Zn conditions influence levels of meropenem and combined resistance in 

aquatic systems 

b) Zn availability influences meropenem and combined resistance 

c) The observed resistance relationships translate from reactor to sediment conditions 
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Chapter 2 Review of literature 

2.1 Antibiotics and their sources and distribution in natural environments 

Antibiotics are one of the most relevant medical inventions and have been a remarkable 

success since their introduction in the 20th century. However the intensive misuse and overuse 

of antibiotics has resulted in the development and emergence of antibiotic resistance (AR) in 

human pathogens (WHO, 2000), making the treatment of bacterial infections increasingly 

complicated. In addition resistance to antibiotics is emerging faster than the discovery of new 

antibiotics (Lewis, 2013). There have been no new drugs discovered since 1987, as shown in 

Figure 2-1, which illustrates the discovery dates of a range of antibiotics (Silver, 2011). 

 

Figure 2-1 Timeline of the discovery of a range of antibiotics (Silver, 2011). 

Governments are also now beginning to take AR more seriously, such as the warning given in 

2013 by Chief Medical Officer in the UK, Professor Dame Sally Davies, that the rise of AR 

could cause a national emergency (Sample, 2013). Antibiotics have not only been used for 

human medicine, but also for veterinary medicine as well as disease prevention and growth 

promotion in agriculture, aquaculture and horticulture (Laxminarayan et al., 2013). 

Antibiotics used in livestock will be present in manure that may subsequently be applied to 
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fields. Therefore, antibiotics could reach the agricultural soils though the use of sludge and 

irrigation with treated wastewaters (Kinney et al., 2006) (Figure 2-2). 

 

Figure 2-2 Diagram showing the sources and distributions of antibiotics in the environments 

(STP: sewage treatment plant) (Kümmerer, 2003). 

Antibiotics in aquaculture, added directly to waters, may persist in the water compartment and 

sediments. As most of the compounds used in medicine do not completely degrade, the 

remaining metabolites will eventually be discharged into wastewater treatment plants 

(WWTPs) where they could be released into the environment, such as in coastal or river 

waters (Figure 2-2). As antibiotics are currently not listed as part of the ‘Dangerous 

Substances Directive 76/464/EEC’ (EC, 1976), they are not regarded as toxic, persistent or 

bio-accumulative and so their release into the environment is not controlled (Kümmerer, 

2009). However some antibiotics can persist at higher concentrations for long periods and 

many are not biodegradable, hence the detection of antibiotics in soils, surface water, 

groundwater and sediments, such as fluoroquinolones and tetracyclines (Hirsch et al., 1999; 

Kolpin et al., 2002; Kümmerer, 2004). Antibiotics can also enter the environment during their 

manufacturing process, such as in India, where manufacturing takes places at a large scale and 

a study found that 2-5 mg/L ciprofloxacin were reported in rivers downstream of a WWTP 

that received waste from 90 bulk drug manufacturers (Fick et al., 2009). Therefore these 
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sources, containing concentrations of pharmaceuticals could be one of the main driving force 

for the selection of resistant bacterial populations (Andersson and Hughes, 2011). 

Furthermore humans can be exposed to AR bacteria or ARG in the environment through; (i) 

crops that have been fertilised with contaminated sludge, manure or slurry, (ii) the 

consumption of livestock which have accumulated veterinary drugs and resistant bacteria, (iii) 

fish that have been exposed to antibiotics that were released into waters, (iv) abstracted 

groundwater and surface water that may contain pharmaceuticals, which could contaminate 

water drinking supplies and (v) the consumption of shellfish that may have been exposed to 

antibiotics (Wellington et al., 2013). Therefore the environment is an important factor when 

addressing the spread of resistance (Davey et al., 2005) and surveillance systems monitoring 

antibiotic use and resistance need to include both clinical and environmental isolates 

(Laxminarayan et al., 2013). 

2.2 Selection of antibiotic resistance (AR) in natural environments 

As antibiotics used in clinical and agricultural settings can persist in soil and aquatic 

environments, they can act as hotspots for HGT (van Elsas and Bailey, 2002) and can exert a 

selective pressure, which can promote the evolution spread of resistant genes (Segura et al., 

2009). However these antibiotic concentrations in the environment are not the only selective 

pressure causing AR in natural communities. Studies analysing pre-antibiotic plasmids, 

showed that resistance genes were present before antibiotics were used (Smith, 1967; Datta 

and Hughes, 1983; Hughes and Datta, 1983; Houndt and Ochman, 2000), which means that 

the genes must have been from environmental origin, more precisely from antibiotic 

producing organisms (Benveniste and Davies, 1973; Webb and Davies, 1993). Therefore their 

environmental role was to fight off competition and give protection, giving bacteria which 

naturally produce antibiotics, an ecological advantage against others (Waksman and 

Woodruff, 1940). These antibiotic producing bacteria therefore carry genes, conferring 

resistance to their own antibiotics which can be found in the same gene clusters as the 

antibiotic biosynthesis pathway genes (Benveniste and Davies, 1973; Webb and Davies, 

1993). Therefore it is possible that this natural intrinsic resistance, could be exerting selective 

pressure on other environmental organisms around them, transferring naturally produced 

ARGs through acquired resistance mechanisms, such as HGT (Alonso et al., 2001; Martínez, 

2008).  
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The selection of ARGs can also occur without antibiotic selective pressure (Alonso et al., 

2001). The release of industrial and other waste releases into natural environments can 

increase AR levels (Kümmerer, 2003; Kümmerer, 2004; Baquero et al., 2008; Martínez, 

2008; Knapp et al., 2010). For example, the presence of toxic compounds, including 

quaternary ammonium compounds, xenobiotic compounds, heavy metals and organic solvents 

in environments can allow bacteria to select for AR determinants in natural environments 

(Foster, 1983; Alonso et al., 2001; Stepanauskas et al., 2006). This can take place due to the 

presence of certain classes of efflux pumps in some bacteria, which can encode for resistance 

because they use the same mechanism to pump out toxins, i.e., heavy metals, from their cells 

(Nies, 2003; Poole, 2005). Heavy metal contaminated environments can maintain selective 

pressure on environmental organisms for long periods of time and many reports suggest that 

heavy metal polluted environments also contain a higher percentage of AR strains, as well as 

more plasmids (Rasmussen and Sorensen, 1998; Alonso et al., 2001). This means that 

antibiotic and metal resistant genes can both exist in the same genetic element or plasmid and 

this can allow for the selection of AR upon heavy metal selective pressure (Davison, 1999; 

Alonso et al., 2001). Therefore the increased movement of genes in metal selective conditions 

could also increase the movement of ARGs among environmental bacteria (Alonso et al., 

2001). 

2.3 Antibiotic resistance (AR) in rivers, streams and waste treatment systems 

The persistence and further exposure of AR bacteria and their resistant genes into natural 

aquatic environments may firstly, contribute to the resistance seen in clinical settings and 

secondly, increase the pool of ARGs in environmental bacteria, increasing the probability of 

resistance transferring into emerging pathogen, through HGT (van Elsas and Bailey, 2002; 

Segura et al., 2009). Receiving waters, which include rivers, streams and lakes can influence 

the exposure and transmission of AR bacteria and ARGs and may also function as natural 

resistance reservoirs (Jones et al., 1986; Auerbach et al., 2007). As described earlier (Section 

2.1) antibiotic residues can enter natural aquatic environments, through many pathways 

(Figure 2-2). An important source is sewage and waste treatment effluents. Before treatment, 

untreated raw sewage from households, hospitals, industries and many other sources, which 

contain diverse bacterial species including genes conferring resistance against 

aminoglycosides (Zhang et al., 2011), β-lactams (Antunes et al., 2006; Yang et al., 2012) and 

antibiotics including, tetracyclines (Zhang et al., 2009a) and vancomycin (Caplin et al., 

2008), enter WWTPs. The interaction of these bacteria with other bacteria already present in 

the WWTPs, may facilitate and promote the transfer of AR genes, as well the selection of 
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ARGs within the treatment plant through HGT (Kümmerer, 2004; Schluter et al., 2007; 

Caplin et al., 2008; Gullberg et al., 2011; Zhang et al., 2011). Therefore WWTPs can act as 

reservoirs for AR bacteria, ARGs and antibiotic residues and the release of their treated 

effluents can then influence the dissemination of them into natural aquatic environments. 

Antibiotic residues can also be released directly into natural environments (Fick et al., 2009; 

Li et al., 2009; Li et al., 2010), however in most cases antibiotic levels are normally below 

known human therapeutic minimum inhibitory concentrations (MICs). Despite these low and 

sub-inhibitory levels in aquatic systems, such as rivers, there is evidence that they can still 

select for resistance (Davies et al., 2006; Knapp et al., 2008; Gullberg et al., 2011; Tello et 

al., 2012). Furthermore, the dispersion rate, sorption to sediments, photolysis and 

biodegradation can reduce and influence the fate of antibiotics and the dissemination of AR 

bacteria and ARGs in natural aquatic environments. Despite this AR has been observed in 

many lakes and rivers, for example a study by Czekalski et al. (2012), detected increased 

levels of ARGs in Lake Geneva, Switzerland. Further Picao et al. (2008) also detected 

plasmid-mediated quinolone resistance genes in Aeromonas species isolated from Lake 

Lugano, Switzerland. Many studies have also reported and conducted studies on AR in rivers 

(Pei et al., 2006; Li et al., 2009; Li et al., 2010; Ahammad et al., 2014), for example Pei et al. 

(2006), demonstrated that there was a relationship between elevated levels of ARG in Poudre 

River in northern Colorado and associated human and agricultural activity, which gave further 

evidence that AR and ARGs are more frequently being detected in receiving waters. 

In addition other compartments within these water systems, such as sediments, algae and 

biofilms may also have an impact on the harbouring and transfer of antibiotic residues and AR 

bacteria and-or pathogens. Studies have shown that sediments within receiving waters in 

environments impacted by human activity can harbour high levels of resistance markers, such 

as AR traits (Pruden et al., 2006; Munoz-Aguayo et al., 2007; Storteboom et al., 2010; 

Czekalski et al., 2012). Furthermore, ARGs can also be maintained in sediments, algae and 

biofilms if these environments are being continuously supplied with ARGs (Zhang et al., 

2009b). For example ESBLs isolates, including strains with bla-TEM, bla-SHV and bla-CTX-M 

genes have been detected in urban river sediments (Lu et al., 2010) and water column samples 

(Machado et al., 2009). Evidence also suggests that ARGs are more likely to be harboured in 

sediments rather than the water column (Auerbach et al., 2007). Studies have also shown that 

seasonal factors could also influence the transmission of ARGs through natural systems 

(Pruden et al., 2012). For example, it has been reported that there were differences in gene 

abundances present in sediments and lakes, based on seasonal variations (Knapp et al., 2012). 
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In addition, the selection of ARGs can also occur without antibiotic selective pressure, for 

example, heavy metals or other chemicals can select for AR determinants and traits in natural 

environments (Foster, 1983; Alonso et al., 2001; Stepanauskas et al., 2006). This has been 

shown in waste treatment systems, where high Zn concentrations also resulted in observed 

high AR (Peltier et al., 2010). 

2.4 Mechanisms of antibiotic resistance (AR) 

Bacteria can confer resistance to antibiotics due to intrinsic or acquired resistance. Intrinsic 

resistance is when a bacterial species is able to resist the action of antibiotics due to inherent 

structural or functional characteristics (Blair et al., 2015) and does not depend on antibiotic 

selective pressure and HGT. Intrinsic resistance is normally due to the gram-negative outer 

membranes (OMs), the expression of multi drug resistance (MDR) efflux pumps (Nikaido, 

1994) and more recently revealed additional chromosomally encoded elements (Fajardo et al., 

2008; Girgis et al., 2009; Blake and O'Neill, 2013; Cox and Wright, 2013). As well as 

bacterial pathogens, environmental organisms also show intrinsic resistance traits to many 

classes of antibiotics. For example soil bacteria, naturally produce antibiotics independent of 

the selective pressure caused from the use of clinical antibiotics (D'Costa et al., 2006; Bhullar 

et al., 2012). These intrinsic resistant traits could be a threat to human health as these traits 

could be transferred to pathogenic bacteria, through the exchange of genetic information 

encoding ARGs (Forsberg et al., 2012). 

As mentioned above one mechanism of intrinsic resistance in gram-negative bacteria is the 

OM. The external environment and the cytoplasm of the bacteria is separated by a 

cytoplasmic membrane (CM). However bacteria also have other additional structures which 

serve as a permeability barrier to protect them from toxic substances. In gram-positive 

bacteria this peptidoglycan layer has a larger permeability threshold and can allow smaller 

molecules to penetrate through, allowing them to be intrinsically susceptible to various 

antibiotics (Randall et al., 2013) . In contrast though gram-negative bacteria have a much 

finer molecular sieve, the OM, which surrounds the peptidoglycan layer and makes them 

intrinsically insusceptible to many antibiotics (Vaara, 1992) (Figure 2-3).  
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Figure 2-3 Mechanisms in gram-negative bacteria involved in AR (Allen et al., 2010). 

Another contribution of intrinsic resistance is the presence of porins, which are present on the 

OM to allow the uptake of essential nutrients due to the membrane’s impermeability (Ochs et 

al., 1999; Ruiz et al., 2003; Olesky et al., 2006). However the OM, will slow down 

permeability but will not completely cause resistance to the antibiotic. Therefore the presence 

of additional resistance mechanisms, such as active efflux pumps as well as OM, means that 

they synergistically work together to produce intrinsic resistance (Cox and Wright, 2013). 

Efflux pumps can be described as transport proteins that extrude toxic substances from 

bacterial cells into the external environment (Webber and Piddock, 2003). They are present in 

the chromosome of many environmental organisms (Van Bambeke et al., 2000; Fajardo et al., 

2008) and may have originated from natural bacteria that export toxic molecules that have 

been produced by the host as a mechanism of survival for bacteria in natural environments 

(Piddock, 2006). Efflux pumps can export one particular molecular or, a broad range of 

molecules (Piddock, 2006). There are five different types of efflux proteins in the bacteria 

membrane that are associated with MDR (Saier, 1998; Webber and Piddock, 2003; Piddock, 

2006) (Table 2-1). These are the Adenosine triphosphate (ATP) binding cassette (ABC) 

superfamily (Higgins et al., 1982; Fath and Kolter, 1993), the major facilitator superfamily 

(MFS) (Henderson and Maiden, 1990; Griffith et al., 1992; Marger and Saier, 1993; Goswitz 

and Brooker, 1995), the multi drug and toxic- compound extrusion (MATE) family (Morita et 

al., 1998), the small multidrug resistance (SMR) family (Paulsen et al., 1996) and the 

resistance-nodulation division family (RND) (Dinh et al., 1994) (Table 2-1). 
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Table 2-1 Families of efflux pump proteins associated with MDR (Webber and Piddock, 2003; Piddock, 2006). 

Efflux proteins Energy source Antibiotic and other substrates effluxed 

ATP binding cassette (ABC) superfamily (Higgins et al., 

1982; Fath and Kolter, 1993) 
ATP 

Gram-positive : Numerous antibiotics 

Gram-negative : Macrolides 

Major facilitator superfamily (MFS) (Henderson and 

Maiden, 1990; Griffith et al., 1992; Marger and Saier, 

1993; Goswitz and Brooker, 1995) 

Proton motive 

forces* 

Gram-positive: Acriflavine, benzalkonium, betrimide, 

centrimide, chlorohexidine, pentamidine 

Gram-negative: Nalidixic acid, novobiocin 

Multi drug and toxic- compound extrusion (MATE) 

family (Morita et al., 1998) 

Proton motive 

forces* 

Gram-positive: Aminoglycosides, fluroquinolones, cationic 

drugs 

Small multidrug resistance (SMR) family (Paulsen et al., 

1996) 

Proton motive 

forces* 
Gram-positive: Acriflavine, benzalkonium, betrimide, 

Resistance-nodulation division family (RND) (Dinh et al., 

1994; Saier Jr et al., 1994) 

Proton motive 

forces* 
Gram-negative: Numerous antibiotics 

*Proton motive force: an electrochemical gradient where the movement of hydrogen ions drives the substrate transport 
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In gram-negative bacteria it is the RND family of efflux pumps (Figure 2-3) that confers 

intrinsic AR (Dinh et al., 1994) and some examples of clinically relevant bacteria that use the 

pumps are P. aeruginosa and E. coli (Table 2-1). The clinically relevant efflux pumps for 

gram-positive bacteria are MFS pumps, which are expressed in bacteria such as 

Staphylococcus aureus and Streptococcus pneumonia (Piddock, 2006) (Table 2-1). Acquired 

resistance occurs when bacteria have acquired genes, thorough HGT (Davies, 1997) or 

through the occurrence of mutations within genes located on the chromosomes of bacteria 

which can then be transmitted vertically when the bacteria replicates (Martinez and Baquero, 

2000). 

There are three ways in which bacteria can acquire resistance; the first is by minimising the 

concentrations of antibiotics in the cell due to poor penetration into the cell or antibiotic 

efflux. As discussed above the membranes of gram-negative bacteria are intrinsically less 

permeable to many antibiotics due to the OM porin proteins that form an extra permeability 

barrier (Vaara, 1992). Therefore antibiotic entry is reduced by down regulating porin 

expression or replacing the porins with more selective channels (Ochs et al., 1999; Ruiz et al., 

2003; Olesky et al., 2006). However selective pressure exerted by antibiotics could favour the 

emergence of mutations in porin genes, and also in genes that regulate the production of 

porins (Lavigne et al., 2013; Tangden et al., 2013). This has been seen in carbapenems and 

cephalosporins, where resistance is normally due to the presence of degrading enzymes 

(Tamber and Hancock, 2003; Baroud et al., 2013; Lavigne et al., 2013). In addition the 

overexpression of efflux pumps can increase resistance levels to certain antibiotics. This 

overexpression is often due to the mutation of regulatory genes that express efflux pumps 

(Blair et al., 2015). 

The second mechanism consists of modifying the antibiotic target by genetic mutation or post 

translational modification of the target (Figure 2-3). Normally an antibiotic binds tightly to its 

target protein or site, preventing the normal activity of the target. However a single point 

mutation in the gene that encodes an antibiotic target, can confer resistance, where the 

antibiotic is not efficiently bound to the target, allowing the target to still carry out its normal 

activity (Blair et al., 2015). Further, transformation, which is the uptake of deoxyribonucleic 

acid (DNA) from the environment can confer AR, when the target protein is modified through 

the formation of ‘mosaic genes’ that have formed by the uptake of DNA from closely related 

environmental species. An example of this is penicillin resistance in S. pneumonia, where 

resistance is conferred due to PBPs which have arisen from closely related species known as 

Streptococcus mitis (Blair et al., 2015). In addition the modification of a target, by the 
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addition of a chemical group can also confer resistance. The addition of a chemical group 

prevents antibiotic binding but does not change the protein sequence of the target (Blair et al., 

2015). 

The third mechanism is the inactivation or destruction of the antibiotic by hydrolysis or 

modification, therefore causing bacteria to resist the action (Figure 2-3). This use of 

enzymatic activity to destroy antibiotics was first seen with the discovery of penicillinases 

(which are β-lactamases), that conferred resistance to penicillin through hydrolysis (Abraham 

and Chain, 1988). Since then many more enzymes have been identified, which can degrade 

and modify antibiotics from a range of classes. There are also sub-classes of these enzymes 

which act on different antibiotics within the same class, for example, different β-lactamases 

can degrade β-lactam antibiotics such as penicillins and cephalosporins. The large increase in 

ESBLs, which hydrolyse cephalosporins, since the 2000s has meant that more carbapenem 

antibiotics are now being used. However this has also led to the emergence of 

carbapenemases, β-lactamases which specifically hydrolyse carbapenems and these are 

mostly plasmid mediated (Queenan and Bush, 2007; Queenan et al., 2010; Abenavoli and 

Almasio, 2011).  

2.5 Carbapenems and resistance 

The increase in the presence of ESBLs, making third generation cephalosporins and 

quinolones less effective, has led to more carbapenem antibiotics, such as meropenem being 

used (Bradley et al., 1999; Papp-Wallace et al., 2011). Carbapenems are broad spectrum β-

lactam antibiotics, active against both gram-positive and gram-negative bacteria. More 

importantly they are still active against gram-negative bacteria with ESBLs and AmpC 

enzymes (Livermore, 1995). Carbapenems act by binding to PBPs, inhibiting the growth of 

the cell wall and eventually causing the cell wall to lyse, resulting in the bacterium death 

(Papp-Wallace et al., 2011). Antibiotics such as imipenem and doripenem are more effective 

against gram-positive bacteria (Rodloff et al., 2006; Bassetti et al., 2009; Queenan et al., 

2010), while meropenem and ertapenem are slightly more potent against gram-negative 

organisms (Nix et al., 2004; Bassetti et al., 2009). However some of these antibiotics are 

more effective than others depending on the specific bacteria, for example meropenem is not 

as effective as imipenem or doripenem against Acinetobacter baumannii (Oliver et al., 2004). 

In addition some of these carbapenems can be combined with other antibiotic classes to treat 

serious infections that are becoming harder to treat due to the emergence of MDR pathogens 

(Sheikh et al., 1993; Balke et al., 2006; Drusano et al., 2009). 
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Resistance to carbapenems can either be chromosomal or acquired. In gram-negative bacteria, 

carbapenem resistance is conferred by the production of carbapenemases or a combination of 

structural mutations and other β-lactamase enzymes (Logan, 2012). Carbapenemases which 

hydrolyse carbapenems are also able to break down other β-lactam antibiotics, such as 

penicillins and cephalosporins. In addition other enzymes such as ESBLs and AmpC 

cephalosporins are able to resist carbapenems due to the alteration or loss of porins that are 

present on the OM of gram-negative bacteria (Charrel et al., 1996). As mentioned earlier 

carbapenemases belong to several classes, A, B and D (Papp-Wallace et al., 2011). Class B 

carbapenemases, known as MBLs have a Zn ion in their active site. They are also the only 

carbapenem class where carbapenemases are prevalent (Papp-Wallace et al., 2011). These 

carbapenemases are dependent on the Zn ion for catalytic activity (Bush et al., 1995). 

Acquired carbapenemases can also be found in classes A and D, where serine is required at 

the active site. An example of a class A carbapenemases are K. pneumonia carbapenemases 

(KPC), which can be carried with other β-lactams on mobile plasmids or transposons (Yigit et 

al., 2001). An example of a class D enzyme, is OXA, which are commonly seen in P. 

aeruginosa and Actinobacter species and have oxacillin-hydrolysing abilities (Queenan and 

Bush, 2007; Patel and Bonomo, 2011). The first described acquired class B MBLs, which 

were plasmid mediated IMP-type carbapenemases were found in 1991 in Japan and are still 

present (Walsh, 2010). At present in Europe, Verona integron encoded metallo-β-lactamase 

(VIM) enzymes are increasing and now spreading globally causing resistance to primarily P. 

aeruginosa and now also Enterobacteriaceae (Psichogiou et al., 2008; Walsh, 2010; Canton et 

al., 2012). Another MBL, the New Delhi metallo-β-lactamase (bla-NDM-1) arose in India in 

2008 and is emerging over the India sub-continent (Kumarasamy et al., 2010; Poirel et al., 

2010; Walsh et al., 2011; Ahammad et al., 2014). Since the first appearance of bla-NDM-1 in 

the Indian subcontinent, NDM-producing bacteria have been reported worldwide (Dortet et 

al., 2014). NDM-producing Acinetobacter have also been recovered from environmental 

samples in China (Zhang et al., 2013) and eight other NDM variants have since been 

described and published (NDM-1 to -8) (Dortet et al., 2014). 

2.6 Meropenem 

Meropenem is a broad spectrum, β-lactam injectable carbapenem antibiotic, active against 

both gram-positive and gram-negative bacteria and has been in clinical use since 1994 (Turner 

et al., 1999). It exerts its action by interfering with bacterial cell wall synthesis and causing 

bacterial cell lysis by binding to PBPs (Zhanel et al., 1998). It is active against a broad 

spectrum of bacteria due to its high level stability to serine β-lactamases, its similarity to 
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PBPs and its ease in penetrating bacteria cell walls (MHRA, 2010). In addition meropenem 

produces time-dependent bactericidal activity, therefore concentrations must be kept above 

the minimum inhibitory concentration (MIC) for a suitable percentage of time (Kollef, 2008; 

Nicolau, 2008). Its main excretion route after treatment is via urine. The total use of 

carbapenem antibiotics in England, UK statistically increased by 31.3% between 2010 and 

2013, with meropenem accounting for 89.0% of use (Public Health England, 2014). Figure 

2-4 shows the consumption of different carbapenems in England from 2010 to 2013. 

 

Figure 2-4 The consumption of different carbapenems in England from 2010 to 2014, 

expressed as defined daily dose (DDD) per 1000 inhabitants per day (Public Health England, 

2014). 

In the UK meropenem is found under the trademark Merrem/Meronem IV, and  is developed 

jointly by AstraZeneca and Sumitomo Pharmaceuticals Co. and marketed by AstraZeneca 

(AstraZenenca, 2000). It is available as 500 mg or 1.00 g powder for solution, and 

administered by injection or infusion (Table 2-2). 
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Table 2-2 Chemical and molecular properties and structure of Merrem® I.V. (MHRA, 2014) 

Name of product Active 

substance 

Chemical name Molecular formula Molecular 

Mass 

Chemical structure 

Merrem® I.V. 500 mg/ 

1 g Powder for 

Solution for Injection 

or Infusion 

Meropenem 

trihydrate 

(4R,5S,6S)-3- 

[[(3S,5S)-5-

(Dimethylcarbamoyl)-

3-pyrrolidinyl](Smith 

et al., 1998)thio]-6- 

[(1R)-1hydroxyethyl]-

4-methyl-7-oxo-1-

azabicyclo[3.2.0]hept-

2-ene-2-carboxylic 

acid trihydrate 

C17H25N3O5S•3H2O 437.52 

(trihydrate) 

 

 



 

18 

 

Meropenem has a similar spectrum of activity to imipenem and cilastatin, with meropenem 

having more of an effect on P. aeruginosa and Enterobacteriaceae. Meropenem is also active 

against  Pseudomonas and Acinetobacter, methicillin susceptible staphylococci, Enterococcus 

faecalis, streptococci and anaerobes including Bacteroides species (Hawkey and Livermore, 

2012). It is generally used to treat nosocomial pneumonia, broncho-pulmonary infections in 

cystic fibrosis, complicated skin and soft tissue infection, complicated intra-abdominal 

infections, complicated urinary tract infections and acute bacterial meningitis (Hawkey and 

Livermore, 2012; MHRA, 2014). Eco-toxicity tests revealed that the predicted environmental 

concentration (PEC) of meropenem was 8.8 x 10-2 µg/L and the predicted no effect 

concentration (PNEC) was 1.5 µg/L, giving a PEC/PNEC of 5.9 x 10-2 (AstraZenenca, 2010). 

Therefore meropenem does not present a significant risk to the environment, is not readily 

biodegradable and is not predicted to bio-accumulate in aquatic organisms. 

2.7 Heavy metal accumulation and resistance mechanisms 

Not all heavy metals are biologically important to living organisms, and those that are, can be 

differentiated by how soluble they are in seawater, a measurement which can be assumed to 

be similar to the average environment (Weast, 1984). Most divalent cations, that are known as 

trace metals include metals which are found at a seawater concentration of 100nM and 1µm, 

such as iron (Fe) and Zn, metals such as nickel (Ni), copper (Cu) and arsenic (As) which are 

present with concentrations between 10nM and 100 nM, rare elements including metals such 

as cobalt (Co) and silver (Ag) and elements with concentrations just below 1nM such as 

cadmium (Cd), chromium (Cr) and lead (Pb) (Weast, 1984). Of these Zn, Ni, Cu, Co are toxic 

at high concentrations however they are all essential to living organisms at low 

concentrations, while metals such as Cd and As are not as important at a functional level but 

are still considered as toxins (Mergeay et al., 1985). Bacteria, like all living organisms can 

adapt to metal concentrations by using avoidance and sequestration strategies to protect 

themselves. 

There are a variety of efflux pumps which are involved with heavy metal transport and 

resistance (Table 2-3). Heavy metal ions enter bacterial cells though two main uptake 

systems. The first one, the metal inorganic transport (MIT) pump, is a fast and unspecific 

system, which is driven by a chemiosmotic gradient across the cell’s cytoplasmic membrane, 

and brings metal ions into the cell even when they are already in excess (Table 2-3).  
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Table 2-3 Families of efflux pump proteins associated with heavy metal transport and resistance (Nies, 1999). 

Efflux proteins 
Type of 

transport 
Energy source Metal ions 

ATP binding cassette (ABC) superfamily (Higgins et al., 1982; 

Fath and Kolter, 1993) 

Uptake 

Efflux 

ATP 

ATP 

Mn2+, Zn2+, Ni2+, Fe2+ 

? 

P-type ATPpases (Fagan and Saier, 1994) Both ATP Mg2+, Mn2+, Ca2+, K+, Cu2+, Zn2+, Cd2+, Pb2+, Ag+ 

A-type (Saier, 1994) Efflux ATP Arsenite 

Resistance-nodulation division family (RND) (Dinh et al., 1994; 

Saier Jr et al., 1994; Saier, 1994) 
Efflux 

Proton motive 

forces 
Co2+, Zn2+, Cd2+, Ni2+, Cu2+, Ag+ 

HoxN (Eitinger and Friedrich, 1991) Uptake Chemiosmotic Co2+, Ni2+ 

Chromate (CHR) transport (Nies et al., 1998) Antiport Chemiosmotic Chromate 

Metal inorganic transport (MIT) (Paulsen et al., 1998) Uptake Chemiosmotic Most cations 

Cation- diffusion facilitators (CDF) (Nies and Silver, 1995; 

Paulsen and Saier, 1997) 
Efflux Chemiosmotic Zn2+, Cd2+, Co2+, Fe2+ 

*Proton motive force: an electrochemical gradient where the movement of hydrogen ions drives the substrate transport 
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The second uptake system is slower, substrate specific and uses ATP hydrolysis as the energy 

source (Table 2-3). This system is only used in times of need or starvation by the cell and so 

is inducible (Nies and Silver, 1995). When a cell is present in an environment with a high 

concentration of heavy metals, ions such as Zn2+, as well as Ni2+, Co2+ and manganese 

(Mn2+), are accumulated in gram-negative bacteria firstly by fast and unspecific CorA uptake 

systems. CorA, a chemiosmotic membrane-integral protein, belongs to the family of efflux 

pumps involved in metal inorganic transport (MIT) (Paulsen et al., 1998) (Table 2-3). 

The more specific and slower uptake system uses inducible ATP-binding cassette (ABC) 

transporters for transporting Zn2+, Ni2+ and Mn2+ (Fath and Kolter, 1993) and slow and 

specific chemiosmotic HoxN transporters for Ni2+ and Co2+ (Eitinger and Friedrich, 1991) 

(Table 2-3). Once the metals are in the cells, they can bind to sulphide groups or interact with 

other metal ions, for example Cd2+ with Zn2+, which could inhibit the function of the 

respective cations. Therefore this potential for heavy metal toxicity, means that bacteria use a 

variety of mechanisms including metal ion homeostasis factors and MR determinants to 

protect themselves from toxicity (Nies, 1999). As heavy metal ions cannot be degraded or 

modified like other toxic compounds the following mechanisms are used in bacteria, as well 

as other microorganisms to gain resistance: (i) a permeability barrier to exclude metals (Gowri 

and Srivastava, 1996), (ii) active export of metals from the cell (Nies, 1992a; Choudhury and 

Srivastava, 2001a) (Nies and Silver, 1995), (iii) binding proteins or other ligands by 

intracellular sequestration to prevent damage to the metal sensitive cellular targets (Gilotra 

and Srivastava, 1997), (iv) extracellular sequestration (Diels et al., 1995; Saxena and 

Srivastava, 1998; Nies, 2000) and, (v) transformation and detoxification (Ji and Silver, 1995; 

Srivastava et al., 1998; Srivastava et al., 1999). 

2.8 Zn resistance mechanisms 

Zn is a trace metal essential to all living organisms at low concentrations (Ji and Silver, 1995; 

Srivastava et al., 1998; Srivastava et al., 1999) and it is important for development and 

growth of cells (MacDonald, 2000). In addition Zn is also needed for basic cellular functions 

such as DNA replication, transcription, cell division and cell activation and is also a 

constituent of DNA binding proteins (Chou et al., 1998). High concentrations of Zn are toxic 

to living organisms and so survival is only possible due to cooperation between resistant 

mechanisms and the cell metabolism, to maintain the required amount of Zn in cells and also 

manage the excess not needed. 
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Zn is accumulated in cells by unspecific magnesium transport systems, including the CorA 

MIT transporter present in many bacteria and archaea (Smith and Maguire, 1995) or the MgtE 

system (Smith et al., 1995) (Figure 2-5). 

 

Figure 2-5. Protein families that are involved in Zn uptake and efflux by bacteria (Nies, 

1999). 

Slow and specific ABC transporters which are inducible also supply Zn when the cell requires 

it (Dintilhac et al., 1997; Lu et al., 1997) (Figure 2-5). Bacteria can become Zn resistant due 

to efflux pumps such as p-type ATPase or proton antiporters (Nies, 1992a; Fagan and Saier, 

1994; Srivastava et al., 1999; Choudhury and Srivastava, 2001a), sequestration by Zn binding 

proteins, such as metallothioneins (MTs) (Bhagat and Srivastava, 1993; Morby et al., 1993; 

Robinson et al., 1998) or extracellular accumulation (Bhagat and Srivastava, 1993) (Figure 

2-5). 

Zn is effluxed out of cells by two systems, P-type efflux ATPases and RND driven 

transporters (Saier Jr et al., 1994; Saier, 1994) (Figure 2-5). For example according to Beard 

et al. (1997) and Rensing et al. (1997a) the zntA p-type ATPases are responsible for efflux of 

Zn out of E. coli and the ziaA p-type ATPases are responsible for efflux of Zn out of 

cyanobacterium, Synechocystis (Thelwell et al., 1998). These transport systems efflux Zn 

across the cytoplasmic membrane of bacteria, while RND transport, such as the 

cobalt/zinc/cadmium (czc) system can transport Zn across the cell wall of gram-negative 

bacteria, including the OM (Paulsen and Saier, 1997; Nies, 1999). The czc transport system 

has been identified as one of the best studied Zn resistant mechanisms in Ralstonia eutropha, 

a gram-negative soil bacterium (Mergeay et al., 1985; Nies et al., 1987) and confers 
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resistance to Cd, Zn and Co. It work as a cation/proton antiporter and consists of three 

structural genes including czcC, czcB and czcA (czcABC) (Nies and Silver, 1989; Nies, 1992a; 

Nies, 1995). All together these genes can transport Co, Zn and Cd across cytoplasmic 

membrane, periplasm and OM (Rensing et al., 1997b) using proton motive force (Nies and 

Silver, 1995). Another gene cluster called czr, which confers resistance to Cd and Zn was also 

identified in P. aeruginosa, encoded by czcCBA genes which were very similar to those 

proteins in R. eutrophus, giving further evidence that the cation antiporter efflux system is 

involved in Zn and Cd resistance (Hassan et al., 1999). 

Bacteria continuously regulate the expression of Zn resistant genes so that they control the 

amount of Zn present in their cells, in order to have sufficient amounts for growth but to also 

avoid accumulating toxic levels. They do this by increasing the expression of resistant genes 

that export metals present in excess as well as down-regulating these genes when the 

concentration of metals is low, to prevent the starvation of Zn from cells (Jones et al., 1997). 

Examples of some Zn specific proteins are smtB, zntR, ziaR, zur. In addition the czc gene 

cluster, consists of regulatory genes which are located in regions upstream and downstream of 

the czcCBA structural genes. These regulator regions contain the genes czcD, czcR and czcS 

with the latter two forming the two component regulatory system (van der Lelie et al., 1997; 

Robinson et al., 1998). CzcR and czcD may also form two component regulatory systems 

(Nies, 1992b; Nies and Silver, 1995) where czcD, part of the cation diffusion facilitator 

(CDF) family contains Zn transporters (Nies and Silver, 1995; Paulsen and Saier, 1997; 

Anton et al., 1999). 

Bacteria also use specific Zn binding proteins, such as MTs (Lazo et al., 1998) and znu 

proteins (Patzer and Hantke, 1998) to regulate the passage of metal ions into and out of their 

cells. MT is a homeostatic stress induced protein that aims to protect bacterial cells from 

harmful components (Lazo et al., 1998) and they can bind to a variety of metals including Cd, 

Zn, Cu and Ag (Brady, 1982). Znu proteins belong to the ABC protein family and are 

involved in the periplasmic transport of Zn in E. coli (Patzer and Hantke, 1998). Lastly cells 

also gain resistance to Zn due to extracellular accumulation, where studies showed that P. 

stutzeri RS34, which was isolated from industrially polluted soils, resisted Zn by 

accumulating it on its OM (Bhagat and Srivastava, 1993). 
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2.9 The link: antibiotic and metal resistance 

Many studies have suggested that metal contamination in natural environments may be 

associated with the maintenance and proliferation of AR (Summers et al., 1993; Alonso et al., 

2001). Mechanisms of AR can be similar in structure and function to mechanisms by which 

bacteria gain resistance to metals, such as Zn (Baker-Austin et al., 2006). For example 

bacteria can gain resistance to both β-lactams and Zn by reducing the permeability of their 

membranes (Silver and Phung, 1996; Ruiz et al., 2003), using efflux mechanisms (Levy, 

2002; Nies, 2003) and modifying cellular targets (Barkay et al., 2003; Roberts, 2005). Metal 

contamination can co-select for AR using a variety of mechanisms, including, co-resistance, 

cross resistance (Chapman, 2003), and co-regulation (Nakajima et al., 1995; Baranova and 

Nikaido, 2002; Lee et al., 2005). 

Co-resistance occurs when metal resistance genes (MRGs) and ARGs are located on the same 

genetic elements such as on plasmids, transposons or integrons (Chapman, 2003). Multiple 

ARG cassettes are assembled within integrons (Davis et al., 2005), which can exist within 

transposons, which means that the transfer of transposons will lead to the transfer of ARG 

cassettes within integrons (Wireman et al., 1997; Bass et al., 1999; Liebert et al., 1999). 

Studies using transformation, plasmid curing and plasmid sequencing have reported this 

known physical linkage between ARGs and MRGs (Foster, 1983). Further, studies done by 

Summers et al. (1993) demonstrated a genetic link between mercury (Hg) and AR. Another 

study by Parkhill et al. (2001) revealed the presence of a plasmid (pHCM1) in salmonella 

enterica serovar Typhi CT18 that is resistant to the antibiotics, trimethoprim, sulphonamide, 

chloramphenicol, ampicillin and streptomycin and the metal, Hg (Figure 2-6). 

Cross resistance occurs when the same target, pathway or common route of access into the 

cell, such as efflux pumps, are used by different compounds (Chapman, 2003). Therefore 

resistance to an antibiotic is accompanied by resistance to another compound, such as a metal 

(Chapman, 2003). Examples include MDR pumps in Listeria monocytogenes which can 

export both metal and antibiotics (Mata et al., 2000), as well tetL proteins which can transfer 

tetracycline and Co (Cheng et al., 1996) (Figure 2-6). 
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Figure 2-6 Molecular mechanisms that are involved in metal and antibiotic co-selection in 

bacteria (Cheng et al., 1996; Perron et al., 2004; Lee et al., 2005; Baker-Austin et al., 2006)  

Co-regulation occurs, when exposure to one toxic compound, can result in resistance to 

another compound, due to transcriptionally linked regulatory systems (Nakajima et al., 1995; 

Baranova and Nikaido, 2002; Lee et al., 2005). For example studies done by Lee et al. (2005) 

observed that excess Zn caused a mdtABC operon, which is a RND type efflux system to 

upregulate, conferring resistance to certain antibiotics. Another study done by Perron et al. 

(2004) also revealed that strains exposed to Zn were also resistant to other heavy metals and 

imipenem, a carbapenem antibiotic, due to the co-regulation of imipenem influx by Mex 

proteins and heavy metal efflux by czc proteins (Figure 2-6). 

2.10 Zn and meropenem resistance: The Tyne basin and experimental bioreactors 

Many studies have shown that the presence of heavy metals with and without the presence of 

antibiotic concentrations can exert a selective pressure on bacteria within natural 

environments, such as rivers, lakes, as well as in wastewater treatment systems and their 

effluents, which could contribute to the spread of AR (Summers et al., 1993; Alonso et al., 

2001; Baker-Austin et al., 2006; Jain et al., 2009). Further, environments contaminated with 

high levels of metals such as Zn, Cr and Pb, can also contain high numbers of strains resistant 

to antibiotics (Rasmussen and Sorensen, 1998). Historic mining areas, such as the South Tyne 

catchment of the River Tyne basin, have high concentrations of heavy metals, especially Zn 

and Pb in their waters and underlying sediments (Macklin et al., 1994; Macklin et al., 1997). 

These high concentrations of heavy metals, can therefore maintain a selective pressure on 

bacterial communities for long periods of time, as they are not easily degraded, which can 
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also promote the co-selection of AR determinants due to a variety of mechanisms (Nakajima 

et al., 1995; Baranova and Nikaido, 2002; Chapman, 2003; Lee et al., 2005) described in 

section 2.9. Further, previous research has shown that there are relationships between heavy 

metals and AR bacteria and ARG abundances in natural environments, such as rivers and soils 

(Jain et al., 2009; Berg et al., 2010; Knapp et al., 2011). 

The study of highly metal contaminated natural aquatic environments, such as the Tyne basin 

can provide information on how the levels of contamination affect AR. This thesis, focuses 

predominately on the relationship between Zn levels and culturable Zn, meropenem and 

combined resistance. This relationship was firstly assessed in river water and sediments of 

sites, within two comparative catchments of the Tyne basin, the North and South Tyne, 

chosen due to their different baseline Zn concentrations, which to date has not been conducted 

and assessed (Chapter 3). Batch reactors were also used to further determine the effect of Zn 

on bacterial communities from sediments within the two basins, by assessing whether 

increased Zn amendments induced culturable meropenem resistance over time (Chapter 4). 

Previous experimental studies where co-selection was induced showed that there were 

relationships between increased metal amendments and increased AR (Berg et al., 2010), 

however this has not been assessed using communities from sediments within the Tyne basin. 

The interaction of bacteria from raw untreated sewage with bacteria in WWTPs could select 

for ARGs, as well as promote the transfer of these genes to other environmental bacteria 

(Kümmerer, 2004; Schluter et al., 2007; Caplin et al., 2008; Gullberg et al., 2011; Zhang et 

al., 2011), as described in section 2.3. Therefore wastewater systems and also their effluents 

could harbour potential dangerous and life threatening AR bacteria and ARGs. Zn levels may 

also be apparent in WWTPs, due to their use in industrial and manufacturing processes 

(Charif et al., 2012). As concentrations of antibiotics and metals can both exert a selective 

pressure on bacteria within an ecosystem, the movement of ARGs among environmental 

bacteria could be promoted with such compounds (Alonso et al., 2001; Stepanauskas et al., 

2005; Stepanauskas et al., 2006; Wright et al., 2006; Segura et al., 2009). Therefore by using 

experimental bioreactors to treat wastewater, mimicking trickling filter beds, and amended 

with varying concentrations of Zn and meropenem (Chapter 5), the impact of these 

compounds on culturable organisms can be assessed and important information can be gained 

on whether meropenem resistance in cultured environmental strains can be selected for when 

organisms are under metal and-or antibiotic stress. 
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Chapter 3 Relationships between meropenem and metal resistance in the 

North and South basins of the River Tyne 

3.1 Introduction 

The emergence of AR bacteria is threatening and challenging the effectiveness of antibiotics, 

with ARGs present now in both natural and clinical settings (Baker-Austin et al., 2006; 

Knapp et al., 2011). There are many reasons why ARGs may be present in the environment. 

Antibiotics are believed to be prudently used for the treatment of infections in humans, 

however they are also extensively used in agricultural and veterinary applications, including 

for growth promotion, treatment of disease and improving feed efficiency (Sarmah et al., 

2006). Therefore, the use or misuse of antibiotics is widespread, and can select for and modify 

in situ AR in soil and aquatic environments.  

Due to selective pressure in microbial communities from the presence of antibiotic 

concentrations, ARGs acquired by HGT or from mutations in pre-existing genes are being 

disseminated to other bacteria, sometimes pathogens (Alonso et al., 2001; Boerlin and Reid-

Smith, 2008), promoting the evolution and spread of resistance genes across nature (Thiele-

Bruhn, 2003; Segura et al., 2009). However, some ARGs originated from antibiotic producing 

organisms that are found in the environment and these are sometimes found in the same gene 

clusters as antibiotic biosynthesis pathway genes (Benveniste and Davies, 1973; Webb and 

Davies, 1993). In addition, the selection of ARGs can also occur without antibiotic selective 

pressure, for example, heavy metals or other chemicals can select for AR determinants and 

traits in natural environments (Foster, 1983; Alonso et al., 2001; Stepanauskas et al., 2006). 

Furthermore, such determinants may provide an ecological advantage to the bacteria for 

colonisation and survival (Alonso et al., 2001). Therefore, it is clear that the environment is 

an important reservoir for ARGs and that it plays an important role in the selection of the 

ARGs, with or without the presence of antibiotics. 

Metal contamination can provide a widespread and unmanageable selection pressure to both 

environmental and clinical bacteria that could potentially contribute to the spread of AR 

(Baker-Austin et al., 2006). As heavy metals cannot be degraded and remain in the 

environment, they can maintain a selective pressure on bacterial communities for long 

periods, often due to co-presence of heavy MRGs (Stepanauskas et al., 2006). Research has 

shown that heavy metal contaminated environments, such as those contaminated with Zn, Cr 

and Pb, can contain high numbers of AR strains and also higher plasmid abundances 

(Rasmussen and Sorenson, 1998). As MR and AR are often liked to similar plasmids, 
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increased mobilisation of genes under metal stress could also increase the mobilisation of 

ARGs among bacteria populations (Alonso et al., 2001). Many reports have indicated that 

heavy metal contamination in natural environments can promote the development and 

proliferation of AR (Alonso et al., 2001; Summers, 2002; Jain et al., 2009). For example 

evidence from waste treatment systems show strong links between Zn and ambient AR levels 

where AR was higher when Zn levels were also high (Peltier et al., 2010). Furthermore 

studies have been conducted where metal levels significantly correlated with specific ARGs 

in soils, including Zn (Knapp et al., 2011). 

This study aimed to assess the extent of meropenem and Zn resistance in sediments and water 

of two watersheds with very different baseline metal conditions; the North Tyne, which has 

very low metals and is comparatively pristine, and the South Tyne, which has very high heavy 

levels due to historic mining. The objectives were as follows: 

a) To quantify total, soluble and colloidal heavy metal levels in the North and South 

Tyne. 

b) Determine whether there is a difference in metal levels between the pore water within 

sediments and associated river water. 

c) To determine whether there are differences in meropenem, Zn, and combined 

meropenem and Zn resistance (combined resistance) in microbial communities from 

the North and South Tyne. 

d) To assess whether and how local Zn levels influence meropenem, Zn, and combined 

resistance in microbial communities within associated river sediments. 

3.1.1 The Tyne basin 

The Tyne catchment, located in the North East (NE) of the UK, covers an area of 2,933 

kilometres square (km2) that includes two geologically distinct sub-catchments, the North and 

South River Tyne catchments (Macklin et al., 1994; EA, 2008). The Tyne basin is 

predominately carboniferous sandstone, limestone and shale (Klingeman et al., 1998), some 

areas of which are rich in heavy metals. The North arm includes the Kielder Reservoir, which 

is a man-made lake built in the 1960s to support industrial growth of NE England (Archer, 

2008; Water, 2010). In contrast, the South Tyne and its headwater tributaries rise from 

Cumbria, which lies in the North Pennines (Water, 2010). This area, now an ‘Area of 

Outstanding Natural Beauty’ due to its extensive elevated moorlands, once consisted of 

massive ore fields and was a highly productive Pb and Zn mining area in the 19th and early 

20th centuries (Macklin et al., 1994; Water, 2010). The South Tyne has a number of tributaries 

including the River Allen and River Nent (Water, 2010). The confluence of the North and 
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South Tyne river is just upstream of Hexham, to form the River Tyne, which continues 

towards Tynemouth and the North Sea (Water, 2010). 

3.1.2 The North Tyne basin 

The North Tyne catchment’s flow is regulated from regular releases from Kielder Water 

reservoir, which is the largest artificial lake in Britain, covering an area of more than 10 km2 

with a catchment area of 240 km2  and a capacity of nearly 200 million cubic meters (m3) 

(Archer, 2008; Water, 2010). The North Tyne catchment has no history of mining or industry, 

and has very low or nearly absent Zn and Pb levels (Macklin et al., 1994). The geology of the 

catchment consist of lower limestone and scremerston Group (EA, 2008). The operational 

catchment extends from just south of Bellingham, where the River Rede joins the North Tyne. 

Tributaries include Warks Burn, Crook Burn, Gunnerton Burn, Erring Burn and Swin Burn. 

3.1.3 The South Tyne basin 

Throughout the 19th century, areas of the South Tyne basin, more precisely Sellingstones, East 

Allen, West Allen and River Nent, were the most productive Zn and Pb mining areas of 

Britain (Macklin et al., 1994; Macklin et al., 1997). The area also produced substantial 

quantities of non-metallic minerals, such as fluorspar, witherite and barytes (Macklin et al., 

1997). Smelting, the dumping of mining residuals on land, and the release of fine-grained 

mining wastes into local streams was prominent, until legislation came into force in the latter 

part of the 19th century (Macklin et al., 1994; Macklin et al., 1997). These activities resulted 

in the South Tyne valleys becoming heavily polluted.  

The Northern Pennine Orefield valleys were rich in mineral resources, which was as a result 

of mineralisation and other physical and chemical properties that are thought to have taken 

place at around 270 million years ago (Nuttall and Younger, 2002). Moreover, the 

development of sewage collection systems throughout the early years of the ‘Industrial 

Revolution’, also added to the pollution, locally discharging into the river, resulting in the 

river becoming comparatively toxic to aquatic organisms (Trust, 2012). Sedimentology 

profiles researched by Macklin (1994), showed that sediments laid down in the West Allen 

and River Nent had 100 times higher metal concentrations than, sediments, which had been 

deposited from the late Roman period, before any large-scale metal extraction began (Macklin 

et al., 1994). Furthermore, metal concentrations in overbank sediments deposited in the late 

19th century, during the mining period increased up-profile compared to concentrations that 

were taken in sediments after the 1900s, where they declined up-profile, which gives further 

evidence of the intensity of mining operations in the Tyne catchment (Macklin et al., 1994). 
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The geology of the South Tyne catchment consists of Millstone Grit, Upper Limestone and 

Middle Limestone (EA, 2008). 

3.1.4 Contrasting in situ AR between the North and South Tyne Basins 

The Tyne basin includes two geologically distinct sub-catchments, the North Tyne, which is 

relatively pristine and contains very low concentrations of heavy metals and the South Tyne, 

which has very high levels of metals, due to its historic industrial and mining activities in the 

19th and early 20th centuries (Macklin et al., 1994; Water, 2010). Therefore high concentration 

of metals, especially Zn and Pb are present in the sediments of the South Tyne as well as its 

water. The North and South Tyne basins are ideal for examining how metals influence natural 

MR and AR in the environment due to the nearly absent metal concentrations and, high 

concentrations of heavy metals, such as Zn and Pb, incorporated into the sediments as well as 

the associated river water.  

3.2 Materials and Methods 

3.2.1 Sampling sites 

Monthly samples were collected from five sites in the Tyne basin (Figure 3-1) to contrast 

metal levels and AR traits across the catchment. Two of the sites, Reaverhill (RH; 

NY90527323; Figure 3-2a) and Warks Burn (WB; NY86117651; Figure 3-2b), were located 

in the North Tyne catchment (Section 3.1.2), whereas the other sites were in the South Tyne 

catchment (Section 3.1.3). The two South Tyne sites within the historically mined areas, 

included the River Nent (RN) at Wellgill (NY77724421; Figure 3-3c) and the River West 

Allen (WA) in Ninebanks (NY78045400; Figure 3-3b). The third South Tyne site was at 

Featherstones (FS) (NY67186106; Figure 3-3a), which is 25 km downstream of the RN site. 
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Figure 3-1 Map of the Tyne basin, UK outlining the North and South catchments and the 

sampling locations adapted from Archer (2008). 
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Figure 3-2 Photographs of sampling sites in the North Tyne basin; a) Reaverhill (RH); b) 

Warks Burn (WB). 

a) 

b) 
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Figure 3-3 Photographs of sampling sites in the South Tyne basin; a) Featherstones (FS); b) 

River West Allen (WA); c) River Nent (RN). 

 

a) 

c) 

b) 
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3.2.2 Sample collection 

Duplicate sediment samples were collected from each of the five sampling sites (Section 

3.2.1) every four weeks for six months (June – October, 2014). The samples were collected 

about 0.5-1.0 metres (m) from the river bank by using a plastic circular coring mould of 3-

centimetres (cm) in depth with lids. The mould was used to also trap pore water around the 

sediment, such that water could be available for the analysis of colloidal metals. At each site, 

the moulds were pressed into the river bed and sterile plastic scoops were used below the 

mould to remove the collected sediment. Plastic scoops were then used to scoop the sediment 

from the mould into sterile 50-ml tubes (VWR, Leicestershire, UK) for microbiological 

analysis and also to sterile 250-ml Nalgene plastic bottles (VWR, Leicestershire, UK) for 

total, soluble and colloidal metal analysis. A single water sample also was collected in sterile 

15-ml tubes (VWR, Leicestershire, UK) at each site for microbiological and metal analysis. 

Samples were kept in a cool box for transportation after which they were kept at 4°C until 

processing and analysis, either on the same or next day. In addition the pH, dissolved oxygen 

(mg/L DO), and temperature (°C) of river water at each site was measured using a digital two 

channel multi-metre (Hach- Lange, Salford, UK). 

3.2.3 Preparation of sediment and water samples 

Sediment samples for microbiological analysis were prepared the same day by filling sterile 

15-ml tubes (VWR, Leicestershire, UK) to the 5-ml level with sediment from each site and 

adding the equivalent amount (5.00 ml) of prepared sodium pyrophosphate decahydrate 

(Na4P2O7 · 10H2O; Sigma- Aldrich, St. Louis, MO, USA). Solutions of 2.00 g/L sodium 

pyrophosphate decahydrate were prepared in de-ionised water (Veolia Water Technologies, 

High Wycombe, UK) and sterilised by autoclaving for 15 minutes at 121°C (Rodwell 

Scientific Instruments, Essex, UK). These solutions were shaken overnight in an incubator 

(Infors HT, Basel, Switzerland), set at 112 revolutions per minute (rpm) and at a temperature 

of 20°C in order to release cells from the sediments into solution. Water samples were 

refrigerated at 4°C until needed the subsequent day for culturing. 

3.2.4 Quantifying meropenem and Zn resistance 

Samples were analysed for meropenem and Zn resistance using classical spread-plating 

techniques according to the spread plate (9215C) standard method (APHA, 2005). All 

preparation and culturing were done in a class II microbiological safety cabinet (Labcaire 

Systems Ltd., North Somerset, UK), where for each set of samples, agar plates were prepared 

using R2A agar (Sigma- Aldrich, St. Louis, MO, USA) amended with 40.0 mg/L 
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cycloheximide (to suppress mould growth; Sigma- Aldrich, St. Louis, MO, USA). The 

following agar amendments were then added as follows: no amendment (control), 2.00 mg/l 

meropenem, 65.0 mg/L Zn, and a combination of 2.00 mg/L meropenem and 65.0 mg/L Zn 

(preparations described in section 3.2.5). All amendments were added when the agar was at 

55°C and mixed before the agar was poured into sterile 90-mm petri dishes (VWR, 

Leicestershire, UK). 

3.2.5 Selection and preparation of agar and amendments 

R2A (Sigma- Aldrich, St. Louis, MO, USA) agar was used as it is a lower nutrient media 

(often used for environmental isolations), which in combination with a lower incubation 

temperature and extended incubation times, enhances recovery and selection of environmental 

organisms (Reasoner and Geldreich, 1985). R2A was weighed out and autoclaved according 

to the manufacturer’s instructions. 

Concentrated stock solutions of 1.00 g/L meropenem (Flurochem Ltd., Hadfield, UK) were 

prepared by weighing out the appropriate amounts (Mettler-Toledo Ltd., Leicester, UK) and 

diluting in de-ionised water. In order to identify an appropriate meropenem concentration for 

isolation of presumptive “resistant” strains, trial experiments were conducted. Initially, plates 

were made with 0.25 mg/L meropenem based on levels typically used for clinical studies 

(Turner et al., 1999). However, when this concentration was used for sediment samples, over 

60.0% of culturable isolates were tolerant to meropenem at this level. Therefore, further trials 

ultimately led to the selection of 2.00 mg/L meropenem for subsequent work (Table 2-1), 

which was still not highly selective relative to clinical strains, but provided a range of 

differing responses among various sediment sites. 

Table 3-1 Percentage (%) of bacteria in sediments from Warks Burn (WB) and River West 

Allen (WA) resistant to 0.25 mg/L and 2.00 mg/L meropenem. Standard errors (S.E.) 

indicated in brackets. 

Sampling sites Percentage of resistant colonies (%) 

0.25 mg/L meropenem 2.00 mg/L meropenem 

Warks Burn (WB) 85.0 (S.E. ± 1.02) 47.0 (S.E. ± 2.75) 

River West Allen (WA) 64.0 (S.E. ± 0.24) 33.0 (S.E. ± 1.01) 
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Zn in the form of Zn sulfate heptahydrate (ZnSO4 · 7H2O) (Sigma- Aldrich, St. Louis, MO, 

USA) was used for preparing Zn-amended plates. Previous studies done by Nuttall and 

Younger (2002) on Zn levels in River Nent (RN) showed that in situ Zn concentrations in the 

river water were typically as ZnSO4. Due to the potential for Zn tolerance in river 

microorganisms, especially in the South Tyne, ZnSO4 was chosen as the Zn amendment. 

Stock solutions of 1.00 g-Zn/L were prepared by weighing out the appropriate amounts of 

ZnSO4 (Mettler-Toledo Ltd., Leicester, UK) and diluting in de-ionised water. The 

concentration of ZnSO4 needed to produce a known Zn concentration was calculated using 

Equation 3-1, given that the molecular weight of ZnSO4 (Molecular weight) and atomic 

weight of Zn (Atomic weight) were known, as was the required Zn concentration 

(Concentration2). 

Equation 3-1 The equation used to determine the concentration of ZnSO4 needed, when the 

molecular weight of ZnSO4, the atomic weight of Zn and the required Zn concentration were 

known. 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛1 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛2(𝑚𝑔/𝐿) × 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔/𝐿)

𝐴𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔/𝐿)
 

Agar plates were amended with 65.0 mg/L Zn for selecting “Zn resistant” isolates (i.e., 1 

mMol of Zn), which has been used previously for testing Zn resistance in environmental 

strains (Peltier et al., 2010). A stock solution of 4.00 g/L cycloheximide (Sigma- Aldrich, St. 

Louis, MO, USA), a glutarimide eubacterial inhibitor, was also prepared and filter-sterilised 

(0.2-µm membrane filters; Pall Cooperation, MI, USA), and 40.0 mg/L was added to the 

plates to inhibit fungal growth. Cycloheximide specifically inhibits protein synthesis in 

eukaryotic cells, but not prokaryotic cells, therefore this amendment reduces fungi and mould 

growth and allows plates to last longer during incubation (Sigma-Aldrich, 2013). The 

volumes of meropenem, Zn and cycloheximide required for the agar preparation were 

calculated using Equation 3-2, as the initial and final concentrations, as well as the final 

volume required were known. All amendments were filter-sterilised before addition as noted 

above.   

Equation 3-2 The equation used to determine the amounts of meropenem, Zn and 

cycloheximide required for the agar amendment, when the initial and final concentrations as 

well as the required volumes were known. 

𝑉𝑜𝑙𝑢𝑚𝑒1  ×  𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛1  =  𝑉𝑜𝑙𝑢𝑚𝑒2  ×  𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛2 
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3.2.6 Inoculation of samples and colony analysis 

Sediment and water samples were serially diluted (100-102) in sterile phosphate buffered 

saline (PBS; Oxoid, Hampshire, UK; Figure 3-4) prior to plating. PBS was prepared 

according to manufacturer’s instructions and autoclaved for 10 minutes at 110°C. 

 

 

Figure 3-4 Diagram showing the process of serial dilution (APHA, 2005). 

Each prepared plate was inoculated with 50-µl of each serially diluted sediment sample or 

100-µl of water sample, and spread with a glass spreader, which was dipped in ethanol and 

flamed between plates. Each serial dilution was plated in triplicate, and were inverted and 

incubated for three days at 24 to 27°C (room temperature; section 3.2.5). After incubation, the 

plates were quickly examined prior to colony counting. Only plates with roughly 30-300 

colony forming units (CFU) per plate were counted ( in accordance with APHA (2005) 

Standard Method 9215A), using a colony counter (Weiss Technik, Gwent, UK). The number 

of CFU/ml were calculated using Equation 3-3, which depends on the dilution used and the 

volume inoculated. The percentage ratio of CFU/ml in amended petri dishes relative to un-

amended control petri dishes was then calculated (Equation 3-4) to estimate the proportion 

culturable colonies that were resistant to the associated media. 
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Equation 3-3 The equation used to transform the number of colonies counted per petri dish to 

Colony Forming Units per ml (CFU/ml). 

𝐶𝐹𝑈/𝑚𝑙 =
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛

(𝑉𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (𝑚𝑙)  ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠)
 

Equation 3-4 The equation used to calculate percentage ratio of CFU/ml in amended petri 

dishes relative to un-amended control petri dishes. 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 (%) =
𝐶𝐹𝑈/𝑚𝑙 𝑜𝑓 𝑎𝑚𝑒𝑛𝑑𝑒𝑑 𝑝𝑒𝑡𝑟𝑖 𝑑𝑖𝑠ℎ

𝐶𝐹𝑈/𝑚𝑙  𝑜𝑓 𝑢𝑛𝑎𝑚𝑒𝑛𝑑𝑒𝑑 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙)𝑝𝑒𝑡𝑟𝑖 𝑑𝑖𝑠ℎ
 × 100 

3.2.7 Preparation of samples for metal analysis 

Prior to metals analysis, all glass vials (VWR, Leicestershire, UK) were washed in 0.20% 

Nitric acid (HNO3) (68.0%, VWR, Leicestershire, UK), rinsed in de-ionised water and 

allowed to dry. They were then further dried for two minutes in a 550°C muffle furnace (S H 

Scientific, Blyth, UK) and, once cooled, the vials were pre-weighed. The sediment collected 

in the 250-ml Nalgene bottles was transferred to the “clean” glass vials and dried overnight in 

an oven (Weiss Technik, Gwent, UK) at 104°C. They were then re-weighed to determine the 

dry weight of the sediment present in each vial. 

Samples for soluble metal analysis were prepared by filtering the river water collected with 

the sediment through 0.2-µm cellulose acetate membrane filters (VWR, Leicestershire, UK). 

Samples for colloidal metal analysis were prepared by further filtering the above through 

mixed cellulose hydrophilic 0.025-µm filters (Merck, NJ, United States). The river water 

collected from each site in 15-ml falcon tubes was also prepared for soluble and colloidal 

metal analysis. 

3.2.8 Metal analysis 

Sample acid digestion was performed on all dried sediments, according to the APHA (2005) 

Standard Method 3030 E.2 using 1N HNO3 (65.0%, Suprapur®, Merck, NJ, United States), 

for 40 minutes at a temperature of 105°C. Acid digested samples were then filtered prior to 

analysis using 0.2-µm cellulose acetate membrane filters and diluted by at least a factor of 10. 

Soluble and colloidal metal analysis was measured by adding 0.50 ml 1N HNO3 to 1-ml of 

the filtered samples and filling to a volume of 5-ml with de-ionised water. All prepared 

samples were analysed using an Inductively Coupled Plasma Optical Emission Spectrometer 

(ICP-OES) (Vista MPX CCD Simultaneous ICP-OES, Varian, Australia), for metals 

including Cd, Co, Cu, Ni, Pb and Zn. Blanks with de-ionised water were prepared in the same 
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way as samples and standards were prepared using 1000 mg/L stock solutions (VWR, 

Leicestershire, UK). 

3.2.9 Data analysis 

All data was statistically analysed using Minitab (Version 17, Coventry, UK). Normality 

checks where performed to see if the data was normally distributed. Typically, the CFU and 

metal data were not normal, therefore Mann-Whitney non-parametric test were used to 

compare isolate and metal abundances between sites. This was conducted by assessing 

whether sample-pairs were significantly different to each other using 95.0% significance tests, 

where two samples were significantly different when p-values were < 0.050.  Bi-variate 

correlation analysis also was performed to assess linear correlations and general trends among 

measured parameters. The Pearson’s coefficient (value of r) signified the strength of the test, 

where the closer the coefficient to 1, the stronger the correlation, whereas p-values < 0.050 

were significantly different. 

3.3 Results and Discussion 

3.3.1 North and South Tyne river water characteristics 

Both biotic and abiotic stress can affect the growth and activity of microbes in the river water 

as well as in the sediment beds. Abiotic factors can include, the availability of light, 

temperature and pH, so the measurement of some of these factors were measured during each 

sampling month at each of the five sites within the North and South Tyne basins. Mean water 

temperatures ranged from 13.3 to 14.0°C across the six-month sampling campaign, with RN 

having the lowest and the two sites in the North Tyne (RH and WB) having the highest (Table 

3-2). 
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Table 3-2 The water characteristics, including pH, temperature (°C) and oxygen saturation (% saturation) for each sampling site averaged over the six 

months of sampling. Ranges and standards errors (S.E.) are indicated below in brackets. 

Sampling sites pH Temperature (°C) Oxygen saturation (% saturation) 

Reaverhill (RH) 
7.16 

(ranges: 6.21-7.82; S.E. ± 0.22) 

14.0 

(ranges: 11.8-16.3; S.E. ± 0.79) 

91.01 

(ranges: 84.0-94.0; S.E. ± 2.13) 

Warks Burn (WB) 
7.18 

(ranges: 6.58-7.90; S.E. ± 0.17) 

14.0 

(ranges: 11.7-16.7; S.E. ± 0.82) 

90.32 

(ranges: 71.0-100; S.E. ± 5.84) 

Featherstone (FS) 
7.42 

(ranges: 6.56-8.26; S.E. ± 0.28) 

13.9 

(ranges: 11.7-15.5; S.E. ± 0.70) 

91.33 

(ranges: 75.0-100; S.E. ± 4.96) 

River West Allen (WA) 
7.86 

(ranges: 6.93-8.45; S.E. ± 0.22) 

14.4 

(ranges: 11.5-16.3; S.E. ± 0.83) 

95.34 

(ranges: 83.0-100; S.E. ± 3.68) 

River Nent (RN) 
7.62 

(ranges: 7.03-8.18; S.E. ± 0.19) 

13.3 

(ranges: 10.4-15.6; S.E. ± 0.87) 

92.35 

(ranges: 85.0-95.0; S.E. ± 2.17) 

1RH: 9.52 mg/L DO (± 0.13); 2WB: 9.38 mg/L DO (.± 0.40); 3FS: 9.80 mg/L DO (± 0.35); 4WA: 9.99 mg/L DO (± 0.23); 5RN: 9.64 mg/L DO (± 0.05)
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Mean water pH values ranged from 7.16 to 7.86, with the highest pH recorded at WA and the 

lowest at the two North Tyne sites. Mean oxygen saturation rates (% saturation) varied from 

90.3 to 92.3, with the highest saturation observed at WA and the lowest in WB (Table 3-2). 

The small error values for each value, showed that the pH did not vastly change over the six 

month period, thus it was mostly between the optimum pH of 6.00 to 8.00. Optimum DO in 

freshwater is usually between 8.00 and 15.0 mg/L DO (Pepper et al., 1996), and as all the 

sites fall within this (9.38 to 9.99 mg/L DO), the quality of the water can be said to be quite 

high. Overall WA had the highest pH, temperature and saturation of oxygen, which is the 

highest sampled site in the River Tyne catchment. 

3.3.2 Total, soluble and colloidal metal levels in sediment and water samples 

Previous studies have shown the South Tyne has considerably elevated levels of heavy metals 

due to its past mining activity during the 19th century (Macklin et al., 1994; Macklin et al., 

1997). Consistent with historic information, analyses here found mean total Zn levels were 

significantly higher (Mann-Whitney; p-values = 0.005) in WA and RN (3540 (S.E. ± 54.9) 

and 3560 (S.E. ± 226) mg-Zn/kg-dry sediment, respectively), both located in the South Tyne 

basin than in North Tyne basin sites, RH and WB (53.6 (S.E. ± 3.15) and 18.4 (S.E. ± 0.10) 

Zn/kg-dry sediment, respectively; Table 3-3). The intermediate site in the watershed, FS, had 

about half the total sediment Zn levels of WB and RH; i.e., 1550 (S.E. ± 210) mg-Zn/kg-dry 

sediment, which was significantly higher than total Zn levels in RH and WB (Mann-Whitney; 

p-value = 0.005). 

The contrast in sediment metal levels between the North and South Tyne is profound, 

especially given their close proximity. Data show total Zn levels vary by over 200 times 

among the five sites, which provides a broad contrast of Zn conditions for comparison with in 

situ meropenem resistance. It should be noted that elevated metals levels in the South Tyne 

are suspected to be creating significant environmental (and maybe health) stress (Abel, 1996), 

which is consistent with anthropogenic processes often creating greater stress than parallel 

natural processes in metal cycling (Mitchell and Gu, 2010). For example previous studies on 

the WA catchment reported that the benthic fauna was severely impoverished due to the high 

levels of Zn (Abel, 1996). More recently the catchment was given a ‘moderate’ ecological 

status in 2009, due to the impacts of Zn levels on fish (EA, 2009).
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Table 3-3 Measured total (mg/kg), soluble (mg/L) and colloidal (mg/L) levels of Zn in sediment and water samples from each of the sites; 

Reaverhill (RH), Warks Burn (WB), Featherstone (FS), River West Allen (WA) and River Nent (RN). Values indicated are averages over six 

months and standard errors (S.E.) are indicated in brackets (all values shown in Table A-1, Table A-2 and Table A-3). 

Sampling sites Zn levels in sediment  Zn levels in river water 

Total 

(mg/kg dry sediment) 

Soluble 

(<0.20 mg/L) 

Colloidal 

(<0.02 mg/L) 

 Soluble 

(<0.20 mg/L) 

Colloidal 

(<0.02 mg/L) 

Reaverhill (RH) 
53.6 

(S.E. ± 3.15) 
<0.01 <0.01  <0.01 <0.01 

Warks Burn (WB) 
18.4 

(S.E. ± 0.10) 
<0.01 <0.01  <0.01 <0.01 

Featherstone (FS) 
1550 

(S.E. ± 210) 

0.13 

(S.E. ± 0.03) 

0.10 

(S.E. ± 0.03) 
 

0.10 

(S.E. ± 0.01) 

0.07 

(S.E. ± 0.01) 

River West Allen (WA) 
3540 

(S.E. ± 54.9) 

1.05 

(S.E. ± 0.01) 

0.77 

(S.E. ± 0.02) 
 

0.88 

(S.E. ± 0.07) 

0.63 

(S.E. ± 0.08) 

River Nent (RN) 
3560 

(S.E. ± 226) 

3.89 

(S.E. ± 0.85) 

2.10 

(S.E. ± 0.78) 
 

1.22 

(S.E. ± 0.22) 

0.67 

(S.E. ± 0.14) 
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The analysis of the pore water within the collected sediment samples showed that soluble and 

colloidal Zn levels were significantly lower than total Zn levels (Mann- Whitney; all p-values 

= 0.005), meaning that the majority of Zn was present in the sediment itself than in the 

aqueous phase (Table 3-3). 

Heavy metals, such as Zn tend to bind with particles and can become incorporated into 

sediments as they pass through the water column (Manahan, 2010). However a certain amount 

remains in the water surrounding the sediment, which is often associated with inorganic 

anions or organic compounds, as metal complexes (Manahan, 2010). The presence of 

complexing agents, such as chelating agents, which can be found in many polluted waters, or 

natural forming humic substances often result in the solubilisation of metals from the 

sediment solid phase (Manahan, 2010). Therefore, sites with high total Zn levels often have 

high soluble Zn levels, and this was the case, where soluble Zn levels were significantly 

higher in FS, WA and RN (0.13; S.E. ± 0.03), 1.05; S.E. ± 0.01) and 3.89; S.E. ± 0.85) mg/L 

soluble Zn respectively) relative to levels in RH and WB (both below 0.01 mg/L Zn; Mann-

Whitney; all p-values = 0.005; Table 3-3). 

Colloidal Zn levels in the sediment pore water were significantly higher in FS, WA and RN 

(0.10; S.E. ± 0.03, 0.77; S.E. ± 0.02 and 2.10; S.E. ± 0.78 mg/L colloidal Zn respectively) 

relative to levels in RH and WB (both below 0.01 mg/L colloidal Zn; Mann-Whitney; all p-

values = 0.005) which showed similar patterns as soluble Zn levels across the sites (Table 

3-3). Furthermore colloidal levels were all significantly lower than total metal levels (Mann-

Whitney; all p-values = 0.005; Table 3-3). 

Soluble Zn levels in the river water were lower than soluble Zn levels in the sediment pore 

water; however, only Zn levels at RH and RN were significantly different between river and 

pore water levels (Mann-Whitney; both p-values = 0.005). This implies there are differences 

in Zn levels and possibly available Zn in the river water and the water around the sediments. 

Differences are likely due to elevated local solubilisation of Zn into the poorly mixed 

sediment pore water, which differs to the continual flushing of local sites by upstream water 

in the open river (Table 3-3). For both soluble and colloidal analysis of the river water, for 

sites in the North Tyne the levels were not detectable. However in WA and RN soluble Zn 

levels were detected with the highest being in RN, which were significantly higher than levels 

in RH, WB and FS (Mann- Whitney; all p-values = 0.005; Table 3-3). In addition in WA and 

RN colloidal Zn levels were also significantly higher than levels in RH (Mann-Whitney; WA: 

p-value = 0.005, RN: p-value = 0.013) and WB (Mann-Whitney; WA: p-values = 0.005, RN: 
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p-value = 0.013), while only WA colloidal Zn levels were significantly higher than those at 

FS (Mann-Whitney; p-values = 0.005; Table 3-3). 

Cd, Co, Cu, Ni and Pb levels were also measured in sediment and water samples. The 

detected levels of these metals in the soluble and colloidal phases were always below 

detection limits. However, the concentrations of total metals from the digested sediment 

showed that there were high levels of Pb in FS, WA and RN (Table 3-4). This makes sense as 

previous mining activities in the South Tyne released other heavy metals, including Pb, as 

well as Zn. Combining data from all sites, strong positive significant correlations were found 

between total Zn levels and total Cd (Pearson’s correlation = 0.973; p-value = 0.000; Table 

A-4) and Pb levels (Pearson’s correlation = 0.951; p-value = 0.000;Table A-4). This suggests 

that these metals are present together at all sites and so sites with increased Zn also had 

increased Cd and Pb. In addition there were also correlations between total Zn and total Cu, 

however these were weaker than the latter (Pearson’s correlation = 0.754; p-value = 0.012; 

Table A-4). Further there were positive significant correlations between total Pb levels and 

total Cd levels (Pearson’s correlation = 0.864; p-value = 0.001; Table A-4). There were also 

correlations between total Pb and total Co (Pearson’s correlation = 0.663; p-value = 0.037; 

Table A-4) and Cu levels (Pearson’s correlation = 0.716; p-value = 0.020; Table A-4), 

however these were weaker than and not as strong as the latter. 
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Table 3-4 Measured total levels of Cd, (Co, Cu, Ni, Pb and Zn in mg/kg in sediment from each of the sites; Reaverhill (RH), Warks Burn (WB), 

Featherstone (FS), River West Allen (WA) and River Nent (RN). Values indicated are averages over six months and standard errors (S.E.) are 

indicated in brackets. 

 Cadmium 

(Cd) 

Cobalt 

(Co) 

Copper 

(Cu) 

Nickel 

(Ni) 

Lead 

(Pb) 

Zinc 

(Zn) 

Reaverhill (RH) 
0.67 

(S.E. ± 0.29) 

7.96 

(S.E. ± 3.05) 

3.22 

(S.E. ± 0.72) 

12.3 

(S.E. ± 4.60) 

9.95 

(S.E. ± 2.16) 

53.6 

(S.E. ± 3.15) 

Warks Burn (WB) 
0.15 

(S.E. ± 0.001) 

1.93 

(S.E. ± 0.001) 

1.63 

(S.E. ± 0.24) 

3.60 

(S.E. ± 0.49) 

3.78 

(S.E. ± 0.44) 

18.4 

(S.E. ± 0.10) 

Featherstone (FS) 
4.32 

(S.E. ± 0.49) 

9.08 

(S.E. ± 0.17) 

14.7 

(S.E. ± 1.67) 

15.4 

(S.E. ± 0.10) 

891 

(S.E. ± 115) 

1550 

(S.E. ± 210) 

River West Allen 

(WA) 

13.6 

(S.E. ± 0.06) 

7.03 

(S.E. ± 0.09) 

14.4 

(S.E. ± 0.29) 

8.73 

(S.E. ± 0.53) 

1340 

(S.E. ± 243) 

3540 

(S.E. ± 54.9) 

River Nent (RN) 
10.1 

(S.E. ± 0.43) 

11.5 

(S.E. ± 1.53) 

10.3 

(S.E. ± 0.59) 

11.9 

(S.E. ± 0.95) 

1880 

(S.E. ± 345) 

3560 

(S.E. ± 226) 
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3.3.3 Observed resistance in sediment samples among sampling sites using different 

selective media 

Microbial culturing of sediment samples on agar plates amended with Zn, meropenem and a 

combination of meropenem and Zn showed that there were significantly higher numbers of Zn 

resistant isolates in sediments from sites in the South Tyne (FS, WA and RN) compared to 

sites in the North Tyne (RH and WB) (Figure 3-5).  

 

Figure 3-5 Percentage (%) of colonies in sediment resistant to 65.0 mg/L Zn, 2.00 mg/L 

meropenem and 2.00 mg/L meropenem and 65.0 mg/L Zn from each of the sites; Reaverhill 

(RH), Warks Burn (WB), Featherstone (FS), River West Allen (WA) and River Nent (RN). 

Values indicated are averages over six months and standard error (S.E.) bars are shown (all 

values shown in Table A-5). 

Levels of Zn resistance at FS, WA and RN were significantly higher relative to levels in RH 

(Mann-Whitney; FS: p-value = 0.013; WA: p-value = 0.008; RN: p-value = 0.005) and WB 

(Mann-Whitney; FS: p-value = 0.008; WA: p-value = 0.008; RN: p-value = 0.005). However, 

meropenem resistance did not significantly vary among the five sites (even between sites with 

low and high total Zn levels; Mann-Whitney; p > 0.050). 

In contrast, when samples were cultured on medium containing both meropenem and Zn, it 

was found that “combined” resistance was statistically higher at RN relative to RH (Mann-

Whitney; p-value = 0.008), WB (Mann-Whitney; p-value = 0.031) and FS (Mann-Whitney; p-

value = 0.020), respectively (Figure 3-5). Combined resistance was also statistically higher at 

WA relative to RH (Mann-Whitney; p-value = 0.013), however levels were only weakly 

significant in WA relative to WB and FS (Mann-Whitney; p-values = 0.066 and 0.093, 
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respectively). Therefore, it is apparent that combined resistance is significantly higher in the 

higher Zn sediments in the South Tyne, which is most apparent in the sediments from WA 

and RN (Section 3.3.2; Table 3-3). 

When characterising each site individually, no significant differences in culturable isolate 

abundances were observed between media amendments at the two North Tyne sites (RH and 

WB). Within the South Tyne catchment, Zn resistance was statistically higher than 

meropenem and combined resistance at FS (Mann-Whitney; p-values of 0.013 and 0.005, 

respectively). In addition, meropenem resistance was also significantly higher than combined 

resistance at FS (Mann-Whitney; p-value = 0.031; Figure 3-5). 

Both WA and RN, which had considerably high levels of total and soluble Zn present in the 

sediment (>3540 mg/kg and >1.05 mg/L), had very high abundances of Zn resistant culturable 

organisms (Table 3-3). In WA, 31.8% of the CFU’s were resistant to Zn, which were 

significantly higher than the meropenem and combined resistant colonies (Mann-Whitney; 

both p-values < 0.05). In RN, 34.5 % of isolates were Zn resistant, which was significantly 

higher than both meropenem resistance levels (Mann-Whitney; p-values = 0.008) and 

combined levels (Mann-Whitney; p-values = 0.005; Figure 3-5). 

3.3.4 Observed resistance in water samples among sampling sites using different selective 

media 

When assessing resistant culturable organisms among water samples, the highest levels of Zn 

resistance were apparent at the two South Tyne sites, WA and RN, which was similar to 

sediment observations (Section 3.3.3; Figure 3-5; Figure 3-6). Zn resistance was significantly 

higher in WA and RN in comparison to RH (Mann-Whitney; WA: p-value = 0.020, RN: p-

value = 0.013) and WB (Mann-Whitney; WA: p-value = 0.045; RN: p-value = 0.045; Figure 

3-6).  
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Figure 3-6 Percentage (%) of colonies in river water resistant to 65.0 mg/L Zn, 2.00 mg/L 

meropenem and 2.00 mg/L meropenem and 65.0 mg/L Zn from each of the sites; Reaverhill 

(RH), Warks Burn (WB), Featherstone (FS), River West Allen (WA) and River Nent (RN). 

Values indicated are averages over six months and standard error (S.E.) bars are shown (all 

values shown in Table A-6). 

Like the sediment samples, apparent meropenem resistance did not significantly vary among 

sites (Mann-Whitney; p > 0.05), whereas combined was significantly lower at RH relative to 

the FS, WA and RN sites (Mann-Whitney; p-values < 0.05; Figure 3-6). 

When assessing different resistance types at RH, the percentage abundance of strains with 

combined Zn and meropenem resistance was broadly significantly lower, than strains with 

observed Zn resistance (Mann- Whitney; p-value = 0.020). The same was observed at WB, 

the other site along the North Tyne (Mann-Whitney; p-value = 0.045). All three sites on the 

South Tyne had significantly higher levels of Zn resistant organisms than meropenem 

resistant (Mann-Whitney; FS: p-value = 0.013; WA: p-value = 0.045; RN: p-value = 0.005) 

and combined resistant isolates (Mann-Whitney; FS: p-value = 0.005; WA: p-value = 0.031; 

RN: p-value = 0.008) Figure 3-6). FS, WA and RN also had the highest river water Zn levels, 

ranging from 0.09 to 1.22 mg-Zn/L, respectively (Table 3-3). 

3.3.5 Relationships between different resistance and Zn levels 

It is clear that the percentage of Zn and combined resistant strains were higher when Zn levels 

in sediment and water samples were higher. Combining data from all sites, positive 

significant correlation were found between relative percent Zn and combined resistant 

isolates, and total sediment Zn levels (p-value = 0.000 and 0.002, respectively), which was 

also seen when compared against soluble (p-value = 0.008 and 0.000, respectively) and 
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colloidal Zn levels (Pearson’s correlation; p-value = 0.010 and 0.000, respectively; Figure 3-7 

and Figure 3-8). However, no significant correlation was observed between the percent 

abundance of meropenem resistant isolates and total Zn levels, suggesting that meropenem 

resistance was not directly driven by local Zn levels.  

The fact that a significant correlation was observed between relative combined resistance and 

total Zn levels implies Zn does conditionally influence apparent meropenem resistance, 

although this is only seen with plate media that contains extra Zn with meropenem. Similar 

correlations were seen between relative combined resistance and soluble and colloidal Zn 

levels, although correlations were stronger than for total Zn (Figure 3-8b and Figure 3-8c). 

This suggests that it was the soluble/colloidal fractions of Zn probably driving resistance (not 

total Zn level), which is with previous work that showed Zn is more bioavailable to 

microorganisms when present in soluble or colloidal particles (Manahan, 2010). Such colloids 

are suspended in water, either sediment pore water or the river water itself, usually as 

minerals, organic pollutants, algae and bacteria in the range from 0.001-1.00 µm (Manahan, 

2010). A further study described in Chapter 4 confirms the relationship between soluble Zn 

levels and meropenem resistance using long-term laboratory incubations. 

When looking at percent Zn resistance and Zn levels, correlations were actually better against 

total Zn, rather than soluble and colloidal Zn (Figure 3-7). A possible reason for this could be 

due to the non-linear trend between soluble and colloidal Zn and Zn resistance. Figure 3-7b 

and Figure 3-7c showed that Zn resistance became more constant as soluble and colloidal Zn 

increased. Therefore it is possible that the optimum concentration of Zn conferring resistance 

was reached, giving further evidence that soluble and colloidal Zn, is more bioavailable to 

organisms than total Zn. 
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Figure 3-7 Pearson’s correlations (r) between Zn resistance (%) and a) total (mg/kg), b) 

soluble (mg/L) and c) colloidal (mg/L) Zn. 

Pearson's correlation = 0.972
P-value = 0.000

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000

Zn
 r

es
is

ta
n

ce
 (

%
)

Total Zn (mg/kg)

a)

Pearson's correlation = 0.777
P-value = 0.008

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5

Zn
 r

es
is

ta
n

ce
 (

%
)

Soluble Zn (mg/L)

b)

Pearson's correlation = 0.765
P-value = 0.010

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5 3 3.5

Zn
 r

es
is

ta
n

ce
 (

%
)

Colloidal Zn (mg/L)

c)



 

51 

 

 

 

Figure 3-8 Pearson’s correlations (r) between meropenem and Zn resistance (%) and a) total 

(mg/kg), b) soluble (mg/L) and c) colloidal (mg/L) Zn. 

Pearson's correlation = 0.838
P-value = 0.002
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As Pb levels were also very high at the South Tyne sites, correlation analyses was also 

performed with total, soluble and colloidal Pb. This showed that relatively elevated total, 

soluble and colloidal Pb levels also correlated significantly with Zn resistance (p-values = 

0.000, 0.001 and 0.026; Table A-7), and combined meropenem and Zn resistance (p-values = 

0.002, 0.004 and 0.037; Table A-7). Further, there was also a significant correlation between 

total, soluble and colloidal Cd levels and, relative percent Zn (p- values = 0.000, 0.001 and 

0.001; Table A-7), and combined resistant isolates (p-values = 0.011, 0.000 and 0.000; Table 

A-7). Therefore this suggests that the presence of Pb and Cd, as well as Zn in the sediments 

may also have an effect on the selection of combined meropenem resistant isolates. This 

observation could be explained due to strong positive correlations between total Zn and, Cd 

and Pb levels, as well as between total Pb and Cd levels (Section 3.3.2). Therefore these 

metals exist together and follow the same patterns and therefore could also contribute to the 

selection of combined Zn and meropenem resistant isolates. However further analysis, 

including the culturing of isolates on Pb and Cd amended agar plates is required to be certain. 

3.3.6 The effect of Zn levels on Zn resistance in river sediments and water 

Numerous Zn resistant colonies grew on R2A media containing 65.0 mg/L Zn, which were 

from sediment and water samples along the North and South Tyne (Section 3.3.3 and 3.3.4; 

Figure 3-5 and Figure 3-6). However, percent Zn resistant colonies were much greater at sites 

on the South Tyne (FS, WA and RN) where levels of Zn and other heavy metals were 

significantly higher. Furthermore, apparent Zn resistance in sediments, and total, soluble and 

colloidal Zn levels all positively correlated with each other (Figure 3-7; section 3.3.5), 

suggesting in situ Zn levels are important to Zn resistance.  

As background, Zn is an essential nutrient for all living systems and plays many important 

roles in development, growth and differentiation of cells (Choudhury and Srivastava, 2001b) 

(Section 2.8). However, exposure to elevated Zn, such as that present in the South Tyne, can 

potentially have adverse and toxic effects on microorganisms, depending upon Zn speciation 

and other factors. Therefore, resident organisms have almost certainly adapted to such 

conditions through specific and non-specific mechanisms, ranging from simple 

physiochemical adaptations (e.g., bio-sorption) to the development of stringent efflux systems 

(Choudhury and Srivastava, 2001a).  

When a cell is present in an environment with high heavy metal concentrations (especially 

ions; e.g., Zn2+, Ni2+, Co2+ or Mn2+), metals initially accumulate in cells via transport by rapid, 

non-specific chemiosmotic membrane-integral proteins, such as CorA (Nies, 1999). For 

example the CorA transporter was responsible for the transfer of Zn in Saccharomyces 
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cerevisiae, a species of yeast and has since been reported present in archaea and many 

bacteria (Smith and Maguire, 1995; Smith et al., 1998). As heavy metals cannot be degraded, 

many cells have evolved metal ion homoeostasis factors and MR determinants to reduce toxic 

intracellular metal accumulation (Nies, 1999). For example Zn specifically is effluxed from 

cells through, chemiosmotic systems, such as the CDF efflux protein and-or by inducible 

RND transporters, such as the czc (cobalt, zinc and cadmium) and czr (cadmium and zinc) 

defence systems (Mergeay et al., 1985; Nies et al., 1987; Hassan et al., 1999; Nies, 1999). 

Such defence systems were seen in bacteria found in industrial polluted areas, with the first 

ever strain, Ralstonia metallidurans CH34, discovered in the 1970s in sediments around a Zn 

factory in Belgium (Mergeay et al., 1978). In this case the highest resistance to Zn was seen 

in bacteria from South Tyne sediments, which had the highest Zn concentrations. Therefore, it 

is very likely that organisms in the South Tyne (FS, WA and RN) continually monitor metal 

stress and vary the expression of MR defence genes acquired through the czc and czr systems 

allowing them to survive in high Zn environments by exporting metals present in excess, as 

well as down-regulating the expression of these genes when metal levels are low to, prevent 

starvation of Zn within cells (Choudhury and Srivastava, 2001b).  

3.3.7 The relationship between high Zn levels and combined meropenem and Zn 

resistance 

Many studies have suggested that there is link between metal presence and AR (Alonso et al., 

2001; Peltier et al., 2010; Knapp et al., 2011). In this case the presence of Zn increased 

combined meropenem and Zn resistance across samples. Despite there not being an apparent 

significant increase in meropenem resistance in areas of high Zn, the fact that combined 

meropenem and Zn resistance was higher than meropenem alone in plated colonies suggests 

that the Zn must indirectly influence meropenem resistance. 

Similar findings have been reported in other studies; for example, sediments analysed along 

the Almendares River near Havana, Cuba, which also had high metal contamination, showed 

that elevated Cu, Pb, Co and Zn correlated with certain ARGs (Graham et al., 2011). Another 

study, such as that reported by Stepanauskas et al. (2006) showed that AR resistant bacteria 

were higher in metal-amended microcosms, which reflected the indirect selection for AR 

taking place in natural environments contaminated with heavy metals. Other river studies also 

found that bacterial tolerances to metals and antibiotics were highest at river sites with the 

highest metal contamination (Wright et al., 2006). Wright et al. (2006) also revealed that 

antibiotic tolerances were highest in bacteria from sediment, where metal levels were also 

higher. This is consistent with the findings from this study, where resistance to meropenem 
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and Zn were higher in bacteria from sediments compared to water (Sections 3.3.3 and 3.3.4). 

Further Zn levels were also higher at all sites in sediment, suggesting that bacteria in 

sediments may have more bacteria with both metal and meropenem resistant traits.  

One option for this pattern observed may be the co-presence of explicit AR and MR resistant 

determinants within the cells (Alonso et al., 2001; Martinez, 2009a), but there are other 

options. For example, data here suggest that a subtype of Zn resistant bacteria may confer 

defence to meropenem. Such a phenomena has been reported in studies using P. aeruginosa, 

as these organisms thrive in environments polluted with organic matter and are often highly 

resistant to xenobiotics, including heavy metals, antimicrobial agents and solvents (Wang et 

al., 1997). In this case, conferred resistance resulted from a combination of altered OM 

permeability and multiple RND efflux pumps, which are upregulated in many gram-negative 

bacteria under metal stress (Nikaido, 1994; Saier Jr et al., 1994). RND efflux systems can 

control the removal of metal ions from the cell, but also of antibiotics, and other biochemical 

systems such as Mex pumps, can allow isolates to display simultaneous metal and antibiotic 

resistance in the presence of elevated metals (Ramos- Aires et al., 1999; Ziha-Zarifi et al., 

1999). Furthermore, the czc and the czrCBA systems (mentioned earlier), which are both RND 

type efflux pumps, confer Zn resistance in R. metallidurans (Mergeay et al., 1985; Nies et al., 

1987) and P. aeruginosa (Hassan et al., 1999), respectively. Therefore, the organisms selected 

on the combined meropenem and Zn media could be using similar types of efflux systems that 

provide cross resistance.  

The field data reported here can be compared to a study done by Perron et al. (2004), where a 

clinically isolated P. aeruginosa was exposed to Zn, which led to the selection of strains that 

were simultaneously resistant to both Zn and the carbapenem antibiotic, imipenem, used to 

treat gram-positive bacteria (Bedenic et al., 2014). The organisms showing combined 

meropenem and Zn resistance could be using the same mechanisms as those identified in 

Perron et al. (2004), but this cross resistance is only apparent in isolates from plates with both 

Zn and meropenem. The mechanism behind this cross resistance (Perron et al., 2004) revealed 

that a single amino acid in the two-component sensor protein czcS (a structural gene from the 

czcCBA efflux pump) that regulated heavy metal efflux pump expression, had changed 

resulting in a co-regulation between carbapenem influx and heavy metal efflux. Further 

analysis showed that Zn induced both the czcCBA efflux pump operon and the transcription of 

the two component regulator genes czcR and czcS, creating a positive auto regulation loop. 

Therefore, the presence of Zn, could allow cells to overexpress heavy metal RND pumps, 

which include Mex pumps. The OprD porin, which facilitates in the diffusion of basic amino 
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acids and carbapenem antibiotics, was also expressed in Zn induced strains in heavy MR 

mutants. 

Therefore, due to the co-regulation between the simultaneous overexpression of an efflux 

pump and down regulation of a porin pathway, intracellular accumulation of toxins is 

reduced. Thus, the environmental exposure of cells to Zn and other heavy metals, such as 

those organisms present in the sediment of sites in the South Tyne, could cause an external 

stress signal, resulting in a decrease in the expression of the OprD expression and increased 

expression of the multidrug efflux pumps. This confers resistance to carbapenem antibiotics, 

such as imipenem and meropenem, but it only would be apparent when Zn was also present, 

which is evident in Figure 3-5. Although this may not be the only mechanism contributing to 

combined meropenem and Zn resistance, it is highly possible that increased combined 

resistance in sites in the South Tyne was due to the expression of multidrug efflux pumps due 

to the presence of Zn, which implies the observed resistance to meropenem may disappear in 

cells after they are removed from the environment with elevated metals. This differs 

significantly from carbapenem resistance apparent in organisms that carry specific resistance 

genes like bla-NDM-1 that directly target the carbapenem and are not metal dependent (Yong et 

al., 2009). 

3.4 Conclusions 

This study assessed Zn, meropenem, and combined meropenem and Zn resistance in sediment 

and water in the North and South basins of the River Tyne. Six months sampling in the 

watershed showed significantly higher abundances of Zn resistant organisms in sediments at 

sites FS, WA and RN in the South Tyne. Furthermore, WA and RN had greater numbers of 

culturable Zn resistant isolates relative to meropenem alone and combined meropenem and Zn 

resistant organisms, showing that baseline Zn resistance was dominant in these sites than the 

other types of resistance investigated. Significantly higher total, soluble and colloidal Zn 

levels were apparent at sites FS, WA, RN in the South Tyne, suggesting elevated Zn 

resistance and Zn levels are related at these sites.  

Meropenem resistance did not differ among sites, including the low Zn sites in the North 

Tyne. However, higher combined meropenem and Zn resistance was evident in sediments 

from RN, a high Zn site in the South Tyne. Further, combined meropenem and Zn resistance 

correlated with total and soluble Zn concentrations across all sites, the latter displaying 

stronger correlations. This implies soluble Zn is more bioavailable and stress-inducing than 

total Zn, which appears to increase Zn resistance and, in turn, confers higher meropenem 

resistance due to Zn facilitated cross resistance. When looking at resistance in the river water 



 

56 

 

Zn resistance was also higher in the South Tyne, precisely WA and RN, and combined 

meropenem and Zn resistance was higher in FS, WA and RN. Meropenem resistance followed 

the same pattern as the sediment samples. 
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Chapter 4 Evolution of meropenem resistance in batch reactors seeded 

with different river sediments and levels of soluble zinc 

4.1 Introduction 

Many reports have suggested heavy metal contamination in natural environments can promote 

the development and dissemination of AR (Alonso et al., 2001; Summers, 2002; Jain et al., 

2009), often being associated with high numbers of AR strains and high plasmid abundances 

relative to background conditions (Rasmussen and Sorenson, 1998). Pressure by elevated 

metal levels can promote increased levels of MR genes on gene vectors (i.e., plasmids), which 

allows MR to spread across bacterial communities (Alonso et al., 2001; Martinez, 2009a). 

Given MR and AR genes are often found on similar plasmids, increased MR mobilisation also 

increases the mobilisation of ARGs in environmental bacterial communities as well as in 

human and other animal pathogens (Alonso et al., 2001; Martinez, 2009a; Martinez, 2009b). 

Heavy metals can, therefore, promote the selection of AR determinants in the environment 

and co-resistance of ARGs, which can be accelerated through HGT. This can allow the 

development and maintenance of AR without direct exposure to antibiotics (Alonso et al., 

2001; Jain et al., 2009; Martinez, 2009a). 

Evidence from previous work suggest there is a link between Zn contamination and AR. For 

example, Peltier et al. (2010) showed in waste treatment systems that systems with elevated 

Zn levels also display higher AR, while other work showed positive significant correlations 

between Zn levels and ARGs in soils (Knapp et al., 2011). Furthermore, a link between Zn 

levels and meropenem was shown and assessed in the previous chapter (Chapter 3), where Zn, 

meropenem and combined Zn and meropenem resistance (combined resistance) was 

significantly higher in river sediments that contained high levels of Zn. Experimental studies 

where co-selection was induced, demonstrated that soil microbes from Cu amended-fields 

were more resistant to Cu and clinically important antibiotics, than those not exposed (Berg et 

al., 2010).  

This chapter focuses on the co-selection of AR and MR in bacterial communities in batch 

reactors that were seeded with different River Tyne sediments and amended with different 

levels of extraneous Zn. Therefore, this work aimed to assess whether sediment source (i.e., 

the North versus the South Tyne) or amended Zn was most responsible for observed levels of 

meropenem resistance over time. The specific objectives were as follows: 

a) Assess the link between Zn amendment, sediment source, and observed 

meropenem resistance over time in mixed, bench-scale batch reactors differentially 
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seeded with sediments from the North and South Tyne and amended with 2.00 

mg/l and 100 mg/l of Zn, respectively (2 x 2 test matrix; in triplicate) 

b) Test whether increased Zn levels, both soluble and total, correlate with observed 

meropenem resistance in sediment slurries 

c) Contrast meropenem and Zn resistance in different reactors by using molecular 

biological and classical microbiological methods. 

4.1.1 The North and South Tyne basins 

The North and South Tyne river systems (described in detail in sections 3.1.1-3.1.4) in NE 

England are two geologically distinct sub-catchments, which are part of the larger Tyne 

catchment that spans an area of 2,933 km2 (Macklin et al., 1994; EA, 2008). The North Tyne 

catchment has no history of mining or industry and has broadly low heavy metal levels in its 

water and sediments, whereas the South Tyne catchment has much higher levels of Zn and Pb 

(especially) due to extensive historic mining over hundreds of years (Macklin et al., 1994; 

Macklin et al., 1997). Contrasting these two sites is ideal for examining how metals from 

mining, which have accumulated in sediments, might influence in situ MR and AR and also 

resistance development in seeded batch reactors.  

4.1.2 Combining molecular and classical microbiological methods 

In the previous chapter, resistance to Zn, meropenem and a combination of both was assessed 

using classical microbiological methods, which included culturing isolates from sediment and 

water samples. In this chapter, both microbiological and molecular methods were used to 

assess how microbial communities varied within seeded reactors based on extended exposure 

to different levels of Zn (2.00 mg/L and 100 mg/L) and seeded from different original 

sediments (North and South Tyne). Relative abundances of isolates resistant to 2.00 mg/L 

meropenem were quantified over time, which was contrasted with specific presumptive ARGs 

associated with meropenem resistance in other settings.  

The first step to any molecular biological work is the extraction of DNA from environmental 

samples. Since the first published protocol 1980 (Torsvik, 1980), there have been many new 

methods developed that use a combination of chemical lysis, physical lysis and heat to extract 

DNA; methods being chosen depending on sample characteristics and the quality of DNA 

required. Nowadays, extraction kits, which consist of all reagents, tubes and protocols, 

combining physical and chemical lysis and DNA purification are typically used. However, 

DNA detection and interpretation require further methods. 
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The next step is to amplify specific nucleic acids, using a rapid and simple method known as 

polymerase chain reaction (PCR) (Mullis et al., 1986). PCR is performed in three stages, 

including denaturation, annealing and extension. Denaturing of the extracted DNA takes place 

between temperatures of 93 and 95°C for several minutes, where the double-stranded DNA is 

denatured and two strands of complementary sequence are yielded. The annealing step then 

takes place, where temperatures are lowered to between 40 and 60°C and specific primers are 

allowed to bind to target sites on each complementary strand. Strand extension occurs using 

the enzyme DNA polymerase and is performed at 72oC, and is where the DNA fragments 

annealed to primers, are elongated and new complimentary strands are synthesised. The three-

step cycle is then sequentially repeated, which results in many replicate copies of the original 

template DNA being created. 

A fluorescent DNA binding dye is typically used in constructing the amplified product, which 

can then be detected by using gel electrophoresis and can be used in other culture independent 

techniques, such as community fingerprinting (Muyzer, 1999). One genetic fingerprinting 

technique is denaturing gradient gel electrophoresis (DGGE), where the overall microbial 

community structure can be assessed at a genetic level (Muyzer, 1999). DGGE works by 

separating double stranded DNA fragments of the same length, and using difference in bond 

strengths between Adenine and Thymine (AT) (contains two hydrogen bonds) and Guanine 

and Cytosine (GC) (contains three hydrogen bonds), to give distinct banding patterns that 

characterise genetic differences within the environmental sample community. These can then 

be interpreted using similarity statistical methods, such as Bray-Curtis (Muyzer et al., 1993; 

Muyzer, 1999). 

Furthermore, quantitative PCR (qPCR) can be used to quantity the abundance of specific 

genes present in environmental samples. This process is similar to PCR, however the 

amplified product can be detected and measured during the reaction progress, without the use 

of gel electrophoresis. In a qPCR reaction, a fluorescent DNA binding dye, such as SYBR 

Green is included, where the measured fluorescence reflects the amount of amplified DNA. 

The copy number of DNA is determined by using serial dilutions of a known template (a 

target with known DNA concentration) to generate a standard curve. In this chapter, DGGE 

was used to examine microbial community differences at a genetic level in different batch 

sediment-slurry reactors over time, whereas qPCR was used to assess the abundance of 

selected genes associated with ESBL resistance, bla-CTX-M, and carbapenem resistance, bla-

NDM-1, which might be influenced by Zn and sediment source.  
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4.2 Materials and methods 

4.2.1 Sampling sites and collection 

Samples were collected from two contrasting sites in the Tyne basin, Warks Burn (WB; 

NY86117651; Figure 3-2b) in the North Tyne and River West Allen (WA; NY78045400; 

Figure 3-3b) in the historically mined area of the South Tyne basin (Figure 3-1). Duplicate 

sediment samples were collected in sterile 500-ml Nalgene plastic bottles (VWR, 

Leicestershire, UK) from each sampling site about 0.5–1 m from the river bank using plastic 

scoops. Nalgene plastic bottles were sterilised by autoclaving at 121°C for 15 minutes 

(Rodwell Scientific Instruments, Essex, UK), while the scoop was sterilised with 70.0% 

ethanol before each use. Samples were kept in a cool box for transportation after which they 

were kept at 4°C until needed the next day.  

4.2.2 Batch reactor set-up 

Four bench-scale reactors in replicates of three (n = 12) were established using 1-L 

Erlenmeyer flasks with cotton-stopper lids. R2A broth (Lab M Limited, Lancashire, UK) 

diluted to 20.0% with de-ionised water was the liquid growth medium. Typically, 500-ml of 

the medium was prepared in each flask, according to the manual’s instructions, and pre-

sterilised in the autoclave for 15 minutes at 121°C before sediment addition. The sediment 

collected from WB and WA was weighed out (Mettler-Toledo Ltd., Leicester, UK) and 400 g 

of sediment from each site was passed through a 2-mm sieve (Endecotts Ltd, London, UK) to 

remove any large stones and collected on a clean tray. Both the sieve and tray had been 

sterilised by spraying and wiping down with 70.0% ethanol. The sieved sediment from each 

site was then transferred into six labelled, sterile pre-weighed 50-ml falcon tubes (VWR, 

Leicestershire, UK).  

All 12 tubes (two sites times six fractions) were then re-weighed to determine the wet weight 

of sediment in each tube and, 50.0 mg of wet sediment was then added to the appropriate 

reactor followed by 2.00 mg/L (low Zn) or 100 mg/L (high Zn) of Zn, prepared as described 

in section 3.2.5 (Table 4-1). 
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Table 4-1 Amendments of Zn added to each batch reactor. 

Batch reactor Zn amendments (mg/L) 

Low Zn Warks Burn (WB) 2.00 

High Zn Warks Burn (WB) 100 

Low Zn West Allen (WA) 2.00 

High Zn West Allen (WA) 100 

 

A low Zn amendment of 2.00 mg/L was chosen, based on a study by Peltier et al. (2010), 

where 5.00 mg/L of Zn was used to assess the influence of Zn in activated sludge bioreactors. 

Another study also found that Zn had toxic effects on organisms in bench-scale activated 

sludge reactors at 10.0 mg/L (Cabrero et al., 1998). Therefore a low value of Zn was 

necessary, to assess the influence of Zn on typical values rather than toxic levels and to ensure 

organisms did not select for resistance. The high Zn amendment for batch reactors was 

calculated by using the ratio of typical Zn concentrations in WA (12000 mg/kg) and WB (233 

mg/kg) relative to the low Zn amendment (Equation 4-1) (Macklin et al., 1994; Gozzard et 

al., 2011). 

Equation 4-1 The equation used to determine the concentration of Zn (mg/L) required for 

high Zn amended batch reactors using the Zn concentration required for the low amended 

batch reactors and typical total Zn (mg/kg dry sediment) levels for WA and WB. 

𝐻𝑖𝑔ℎ 𝑍𝑛 𝑎𝑚𝑒𝑛𝑑𝑚𝑒𝑛𝑡 (𝑚𝑔/𝐿)

𝐿𝑜𝑤 𝑍𝑛 𝑎𝑚𝑒𝑛𝑑𝑚𝑒𝑛𝑡 (𝑚𝑔/𝐿)
 =  

𝑇𝑜𝑡𝑎𝑙 𝑊𝐴 𝑍𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑔/𝑘𝑔 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑊𝐵 𝑍𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑔/𝑘𝑔 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡)
 

 

After all amendments were added, the level of liquid was marked on each batch reactor and 

noted for subsequent work and they were continuously mixed on a shaking incubator (Infors 

HT, Basel, Switzerland), set up to a speed of 121 rpm and a temperature of 20°C (Figure 4-1). 
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Figure 4-1 Photograph showing some of the batch reactors. 

4.2.3 Sampling procedure and regime 

Samples were taken from each reactor every 28 days for a total duration of 309 days, on a fill-

and-draw basis, using a 10-ml Gilson pipette and sterilised cut tips. All reactors were removed 

from the shaking incubator and allowed to settle for 10 minutes before samples were taken for 

immediate cultural analysis, where 2.00 ml was added to the equivalent amount (2.00 ml) of 

prepared sodium pyrophosphate decahydrate (Na4P2O7 · 10H2O; Sigma- Aldrich, St. Louis, 

MO, USA) in sterile 15-ml tubes (VWR, Leicestershire, UK). Samples of 4.00 ml were also 

taken for molecular and metal analysis and stored at -20°C until processed and analysed. Each 

reactor was amended with the equivalent amount of de-ionised water to replace the sample 

taken. 

4.2.4 Quantifying relative meropenem resistance 

Samples were analysed for meropenem resistance using classical spread-plating techniques 

(Section 3.2.4) according to the spread plate (9215C) standard method (APHA, 2005). All 

preparation and culturing were done in a class II microbiological safety cabinet (Labcaire 

Systems Ltd., North Somerset, UK), where for each set of samples, agar plates were prepared 

using R2A agar and amended with 40.0 mg/L cycloheximide (to suppress mould growth; 

Sigma- Aldrich, St. Louis, MO, USA) (Section 3.2.5) and the following agar amendments: no 

amendment (control) and 2.00 mg/L meropenem. Each agar plate was inoculated with 50-µl 

of each, serially diluted sample and incubated for three days at 24-27°C, chosen according to 

Reasoner and Geldreich (1985), where lower incubation temperatures and extended 
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incubation times, enhanced recovery and selection of environmental organisms (Section 

3.2.5). Agar plates with roughly 30-300 colony forming units (CFU) per plate were counted 

(in accordance with APHA (2005) standard method 9215A) and the number of CFU/ml were 

calculated using Equation 3-3, followed by the calculation of the percentage ratio of CFU/ml 

in amended petri dishes relative to un-amended control petri dishes (Equation 3-4; section 

3.2.6). 

4.2.5 Preparation and analyses of samples for metal analysis 

Prior to metal analysis, all glass vials (VWR, Leicestershire, UK) were prepared as described 

in section 3.2.7. The samples stored for metal analysis from each reactor were thawed and 

centrifuged at a speed of 13,000 rpm (Sartorius, Surrey, UK). The pellet was then re-

suspended in 1-ml of de-ionised water and transferred to the “clean” glass vials, dried 

overnight at 104°C and re-weighed to determine the dry weight of solids present in each vial 

(Section 3.2.7).  

The method of acid digestion using 1N HNO3 (65.0%, Suprapur®, Merck, NJ, United States), 

according to the APHA (2005) standard method (3030 E.2) was performed on the dried 

sediment samples (Section 3.2.8). All acid digested samples were then filtered prior to 

analysis using 0.2-µm cellulose acetate membrane filters (VWR, Leicestershire, UK) and 

diluted by at least factor of ten for quantification. Soluble metal analysis was performed by 

filtering the remaining supernatant through 0.2-µm cellulose acetate filters and 0.50 ml of 1N 

HNO3 was added to 1-ml of the filtered samples and filled to a volume of 5-ml with de-

ionised water (Section 3.2.8). All prepared samples were analysed using an ICP-OES (Vista 

MPX CCD Simultaneous ICP-OES, Varian, Australia), for Cd, Co, Cu, Ni, Pb and Zn levels 

(Section 3.2.8). 

4.2.6 Extraction of DNA from samples 

Samples from each of the 12 batch reactors for days 0, 112, 204 and 309 were thawed and 

mixed using a vortex to allow for the samples to become homogenised. The DNA from each 

of these samples was extracted by using BIO 101 FastDNA Spin Kits (for soil; Q-Biogene, 

MP Biomedicals, Cambridge, UK). All tubes were labelled appropriately and 250 µl of each 

sample was added to separate Lysing Matrix E Tubes (provided in the DNA extraction kit), 

followed by 978 µl of  sodium phosphate buffer and 122 µl MT buffer. The tubes were then 

secured in a Ribolyser (Fastprep ® Instrument or Hybaid Ribolyser) and processed for 30 

seconds at a speed of 6.5. The rest of the process followed was according to the 

manufacturer’s instructions. All solutions used, except the ethanol were provided in the kit, as 
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well as spin column tubes and collection tubes. Once completed the extracted DNA was kept 

at -20°C. 

4.2.7 Polymerase Chain Reaction (PCR) protocol 

PCR was used to amplify target DNA from all extracted DNA samples, in order to assess the 

prevalence of eubacterial (as 16S rDNA) genes present in each sample using DGGE. 

Megamix Blue (Microzone Ltd, UK) was used for the PCR reaction, which contains 

recombinant Taq polymerase that is required for the extension step in PCR, 220 μM 

deoxyribonucleoside triphosphates (dNTPs: where N is A, T, C, and G); and blue agarose 

loading dye in a 2.75 mM MgCl2 buffer (required for the subsequent analysis of PCR 

products by agarose gel electrophoresis). Reaction volumes totalled 50.0 μl and, were made 

up of 47.0 μl of MegaMix Blue, 1.00 μl of DNA extracted from the sample and a primer mix 

of 1.00 μl forward primer and 1.00 μl of reverse primer, both diluted 10 times (Table 4-2). All 

preparations were done in a class II microbiological safety cabinet (Envair, Lancashire, UK), 

and positive and negative controls were included, where positive controls contained 1.00 μl of 

DNA extract, that contained the correct PCR fragment and negative controls contained 1.00 μl 

of nuclease free water, in place of the sample DNA. The PCR reactions were run with the 

appropriate primers (required to examine the products by DGGE) and thermo-cycler 

programme (Table 4-2) using a CFX96 Real-time System (Bio-Rad, Hertfordshire, UK).
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Table 4-2 Primer sets used for PCR analysis of all samples, followed by their sequences and appropriate reaction conditions. 

1Number of cycles for denaturation, annealing and extension steps.

Primer Batch Sequence 
Initial 

denaturation 
Denaturation Annealing Extension 

Number of 

cycles1 

2/3-GC 

clamped 

(Muyzer 

et al., 

1993)  

VR 5' - ATTACCGCGGCTGCTGG - 3' 

95°C for 1 

minute 

95°C for 30 

seconds 

65°C for 1 

minute and 

reduce by 1°C 

every 2nd cycle 

72°C for 1 

minute 

24 cycles 

followed by a 

further 15 at 

annealing 

temperature of 

53°C 

VF-GC 

 

5' – CGCCCGCCGCGCGCGGCGGG 

CGGGGCGGGGGCACGGGGGGCC 

TACGGGAGGCAGCAG - 3' 
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4.2.8 Agarose Gel Electrophoresis 

Products of the PCR reaction on the samples were examined firstly by agarose gel 

electrophoresis, in order to assess whether the correct sized gene had been amplified and for 

any reaction contamination. A 1.50% agarose gel was used, which was prepared by adding 

1.50 g of agarose (pre-weighed) to 100 ml of  1x TAE buffer (2 M Tris-Acetate, 0.05 M 

EDTA, pH 8.3, Eppendorf Scientific Inc., New York, USA), and then heating the solution to 

melt the agarose. 20.0 µl of Nancy 520 DNA strain (Sigma- Aldrich, St. Louis, MO, USA) 

was added and the mixture was poured into a casting tray, containing combs for well 

formation and allowed to set for 30 minutes. Once set, the combs were removed and the tray 

was placed into the electrophoresis tank. The tank was then filled up to the level with 1x TAE 

solution and 7.00 μl of PCR product was added to each well. A reference PCR marker (PCR 

marker solution in loading buffer, P9577, Sigma- Aldrich, St. Louis, MO, USA; 8 fragment 

sizes, 50–2,000 base pairs) was used at either end of the gel, where 5.00 μl was added. 

Electrophoresis was run for 45 minutes at 100 volts (v) and the stained DNA was visualised 

by UV illumination (Bio-Rad Fluor-S ® MultiImager, Bio-Rad, Hertfordshire, UK). 

4.2.9 Denaturing Gradient Gel Electrophoresis (DGGE) 

PCR amplified products were first visualised with agarose gel electrophoresis (Sections 4.2.8) 

and then were examined using DGGE to assess the overarching diversity of bacterial 

communities and also assess dominant DNA bands from the samples. A 10.0% 

polyacrylamide gel (w/v) was prepared with a denaturing gradient of 30.0-60.0% (Table 4-3), 

which suited the primers and allowed for maximum band separation. 
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Table 4-3 Solutions used to prepare a 10.0% polyacrylamide gel denaturing gradient of 30.0- 

60.0%. 

Solutions 

Upper denaturing gradient 

solution 

Lower denaturing gradient 

solution 

30.0% 60.0% 

40.0% Bis/Acrylamide 25.0 ml 25.0 ml 

50x TAE buffer 2.00 ml 2.00 ml 

Formamide (de-ionised) 12.0 ml 24.0 ml 

Urea (molecular grade) 12.6 g 25.2 g 

dH2O (made up to) 100 ml 100 ml 

The PCR amplified products containing 2/3 GC clamped primers (230 base pairs; section 

4.2.7) were prepared in a 96-well plate by adding 11.0 µl of each PCR product to 11.0 µl of 

loading buffer (Thermo Scientific, Leicestershire, UK), followed by carefully loading the 

prepared gel with each 22.0 µl. A reference bacterial marker, designed by Fiona Read (School 

of Civil Engineering and Geosciences, Newcastle University) from cloned organisms, that 

contained 11 strong bands and maintained the same DNA concentrations, was run three or 

four times on each gel, at either end of the gel and in the centre. By running this marker and 

using the appropriate software (Section 4.2.12), gels can be corrected in case of any 

unevenness and lanes from more than one gel can be compared. The gel was run using a 

BioRad system and a Power Pac 3000 at 60°C using electrophoresis for 900v hours (200v 

per). Once complete the gel was removed from the gradient gel sandwich, and it was stained 

with a solution containing 200 ml of 1x TAE buffer and 20.0 µl of SYBR Green I (Sigma- 

Aldrich, St. Louis, MO, USA; diluted 1/10000 in 1 × TAE) in a staining tray covered with 

aluminium foil for 30 minutes. The stained gel was then viewed using a UV transilluminator, 

with the program ‘Quantity One’ (Bio-Rad Fluor-S MultiImager, Bio-Rad, Hertfordshire, 

UK) and photos of the gel were taken and stored.   
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4.2.10 Quantitative polymerase chain reaction (qPCR) 

The abundance of eubacteria (as 16S rDNA), bla-CTX-M and bla-NDM-1 genes were analysed 

using qPCR for DNA samples from all reactors from days 0, 112, 204 and 309. All 

preparations were done in a class II microbiological safety cabinet (Envair, Lancashire, UK), 

and the Qiagility pipetting robot (Qiagen, Manchester, UK) was used to prepare 96-well 

plates (Bio-Rad, Hertfordshire, UK), all with triplicate samples, standards and non-template 

controls (NTCs). Total reaction volumes of 8.00 µl, were made up of 5.00 µl of SsoFast 

EvaGreen (which contained SYBR Green I, which binds non-specifically to double-stranded 

DNA; Bio-Rad, Hertfordshire, UK), 2.00 µl of nuclease free water and 0.50 µl of forward 

primer and 0.50 µl of reverse primer, both diluted 10 times. The appropriate volumes of 

SsoFast, primers and nuclease free water were calculated (depending on the number of 

samples) and were placed in the robot. In addition, the DNA extracts, diluted appropriately 

(x10, x50 or x100) were placed in the robot, where 2.00 µl of DNA was added to each well of 

the plate. For negative controls, 2.00 µl of nuclease free water was added instead of DNA. 

Standards of seven different dilutions were used per plate (10+8-10+2) and per primer set to 

produce a standard curve, in order to quantify the relative abundance of target genes. 

Standards for 16S and bla-NDM-1 gene qPCR reactions were prepared from growing clones 

containing the necessary fragments and extracting and quantifying the concentrations of the 

plasmids (Section 4.2.11). Standards for bla-CTX-M qPCR reactions were prepared from DNA 

extracts containing the relevant gene (Section 4.2.11). Once prepared the reactions were run 

using a CFX96 Real time System (Bio-Rad, Hertfordshire, UK) with appropriate programs, 

determined for each set of primers (Table 4-4). 
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Table 4-4 Primer sets used for qPCR analysis of all samples followed by their sequences and appropriate reaction conditions. 

Primer Batch Sequence 
Initial 

denaturation 
Denaturation Annealing Extension 

No. of 

cycles1 

16S (Yu et al., 

2005; Huber et 

al., 2007) 

BAC338F 

BAC1046R 

ACTCCTACGGGAGGCAGC 

CGACARCCATGCANCACCT 

98°C for 3 

minutes 

98°C for 5 

seconds 

60°C for 10 

seconds 
 40 

bla-CTX-M 

(Birkett et al., 

2007) 

CTX-M-F 

CTX-M-R 

 

ATGTGCAGYACCAGTAARGTKATGGC 

ATCACKCGGRTCGCCNGGRAT 

 

95°C for 1.3 

minutes 

95°C for 5 

seconds 

58°C for 10 

seconds 

72°C for 10 

seconds 
40 

bla-NDM-1 (Naas 

et al., 2011) 

NDM-1-F 

NDM-1-R 

ATTAGCCGCTGCATTGAT 

CATGTCGAGATAGGAAGTG 

95°C for 5 

minutes 

95°C for 15 

seconds 

60°C for 1 

minute 
 50 

1No.of cycles for denaturation, annealing and extension steps 



 

70 

 

The results from each qPCR reaction were then analysed using absolute quantification, where 

CT values of test samples were compared to the standard curve (produced from using relevant 

standards) and the gene abundance of the test samples (Starting Quantity; SQ) were 

determined. The gene abundances (copy number) per DNA extract were determined using 

Equation 4-2, and the value from this was used to calculate the gene abundance (copy 

number) per ml of sample (Equation 4-3). Further to this, the average and log gene copy-

numbers per sample were determined. 

Equation 4-2 Calculation used to determine the gene abundance per DNA extract, using the 

Starting Quantity (SQ), the dilution factor by which all samples were diluted by (10) and the 

final volume of extracted DNA (50 µl). 

𝐺𝑒𝑛𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓𝑒𝑥𝑡𝑟𝑎𝑐𝑡 = (𝑆𝑄 × 𝐴) × 𝐵 

Where:  

SQ = Starting quantity 

A = Dilution factor 

B = Volume of DNA (µl) 

Equation 4-3 Calculation used to determine the gene abundance per ml of sample, using the 

gene abundance per DNA extracted (calculated using Equation 4-2) and the volume of 

sample used for the DNA extraction procedure (250 µl). 

𝐺𝑒𝑛𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 (𝑚𝑙) =
𝑔𝑒𝑛𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝐴
 × 1000 

Where: 

A = Volume of sample used for DNA extraction procedure (µl) 

4.2.11 Preparation of qPCR standards 

In order to determine the abundance of genes for any set of primers using qPCR, standards of 

a known concentration were prepared. For 16S and bla-NDM-1 analysis E .coli plasmids with 

the appropriate gene fragments, were used. These were obtained from cloning DNA with the 

gene fragments into a 3956 base pair plasmid (pCR 4-TOPO), using the TOPO TA Cloning 

Kit for Sequencing (Invitrogen, Life Technologies Ltd, Paisley, UK) according to the 

manufacturer’s instructions. The plasmids were cultured in 50.0 ml of Luria-Bertani (LB) 

Broth (Oxoid Limited, Basingstoke, UK) amended with 50.0 mg/L ampicillin (Sigma- 

Aldrich, St. Louis, MO, USA) at 150 rpm and 37°C for 24 hours. To ensure the cultures were 

pure, they were streaked on LB agar plates with 50.0 mg/L ampicillin and incubated at 37°C 

for 24 hours. Both the LB broth and agar were prepared according to the manufacturer’s 
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instructions, and a stock solution of 50.0 g/L ampicillin was prepared with de-ionised water 

and filter-sterilised (0.2-µm membrane filters; Pall Cooperation, MI, USA). All culturing and 

streaking were done in a class II microbiological safety cabinet. 

After growth, the plasmids were extracted using the Roche High Pure Plasmid Isolation kit 

(Roche Diagnostics Limited, West Sussex, UK) and PCRs were carried out as described in 

section 4.2.7, but using different reaction conditions. The reaction conditions used for the 

plasmids containing 16S fragments were 95°C for 4 minutes, followed by 36 cycles of 95°C 

for 1 minute, 60°C for 45 seconds and a final 1 minute at 72°C for extension. The reaction 

conditions used for the plasmids with bla-NDM-1 fragments were 95°C for 3 minutes, followed 

by 31 cycles of 95°C for 30 seconds, 60°C for 1 minute and a final 1 minute at 72°C for 

extension. 

For bla-CTX-M quantification, a PCR product was used, due to problems faced when cloning 

DNA using the TOPO TA Cloning Kit for Sequencing, as above. To produce standards of a 

known concentration using PCR, E. coli with the appropriate insert was cultured in 50.0 ml of 

LB broth at 150 rpm and 37°C for 24 hours and also streaked on LB agar plates and incubated 

at 37°C for 24 hours, to ensure purity. After growth, the DNA was extracted using a BIO 101 

FastDNA Spin Kit and a PCR was also carried out (Section 4.2.7) with the appropriate 

primers (Table 4-4) and reaction conditions of 95°C for 3 minutes, followed by 31 cycles of 

95°C for 1 minute, 58°C for 1 minute and a final 1 minute at 72°C for extension. All PCR 

products were examined by agarose gel electrophoresis, using a 1.50% agarose gel, reference 

PCR markers and negative and positive controls that were run for 45 minutes at 100v and 

visualised by UV illumination (Section 4.2.8). The bla-CTX-M PCR products were then 

cleaned-up using a QIAquick PCR Purification Kit (Qiagen, Manchester, UK) according to 

the manufacturer’s instructions. 

The DNA concentration of the bla-CTX-M PCR product, as well as the original plasmids 

extracted for 16S and bla-NDM-1 were quantified using a Nano Drop ND-1000 

Spectrophotometer (Thermo Scientific, Leicestershire, UK). The copy number per µl of 

sample was determined using Equation 4-3 and the volume of DNA needed to produce a 10+9 

standard was determined using Equation 4-4. 
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Equation 4-4 Calculation of copy number per µl of sample DNA, using 6.023 × 1023  

(molecules/mol), the concentration of DNA quantified (ng/µl) and the molecular weight (MW) 

of the fragment (g/mol) using Daltons (DA), the average weight of base pairs in DNA (660 Da 

× number of base pairs). 

𝐶𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 µ𝑙 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝐷𝑁𝐴

=
6.023 × 1023 (𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑚𝑜𝑙) × 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑁𝐴 (𝑛𝑔/µ𝑙)

𝑀𝑊 𝑜𝑓 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 (𝑔/𝑚𝑜𝑙)
 

4.2.12 Data analysis 

The CFU, metal and qPCR data were statistically analysed using Minitab (Version 17, 

Coventry, UK). Normality checks where performed to see if the data was normally 

distributed. Where data was normal, including the CFU and qPCR data, analysis of variance 

(ANOVA) sample tests were used, using Tukey’s pairwise comparisons to assess differences 

between batch reactors and time-points. Where data was not normal, which included the Zn 

data, Mann-Whitney non-parametric test were used to compare metal abundances between 

batch reactors. All tests were conducted by assessing whether sample-pairs were significantly 

different to each other using 95.0% significance tests, where two samples were significantly 

different when p-values were < 0.050.  Bi-variate correlation analysis also was performed to 

assess linear correlations and general trends among measured parameters. The Pearson’s 

coefficient (value of r) signified the strength of the test, where the closer the coefficient to 1, 

the stronger the correlation, whereas p-values < 0.050 were significantly different. 

DGGE images produced from the illumination of the gels (Section 4.2.9), were analysed 

using BioNumerics software (Applied Maths, Austin, USA). The software aligns sample lanes 

from a number of DGGE gels based on the marker lanes, producing a normalised image with 

band height quantification values. The values were then exported into Primer v6 software 

(Plymouth Routines In Multivariate Ecological Research version 6: PRIMER-E Ltd., 

Ivybridge, UK) to allow for diversity statistics, non-metric multi-dimensional scaling (MDS) 

analysis and analysis of similarity (ANOSIM) statistical tests (Clarke and Gorley, 2006). For 

non-metric MDS analysis, the band height quantification values were used to generate 

presence-absence data, which was used to produce Bray-Curtis similarities (Equation 4-5) and 

cluster analysis to produce MDS ordination plots. 
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Equation 4-5 Calculation of Bray-Curtis similarity values using presence-absence data 

generated from the band-height quantification values calculated from the BioNumerics 

software. 

𝐵𝑟𝑎𝑦 − 𝐶𝑢𝑟𝑡𝑖𝑠 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

=  
2 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑑 𝑡𝑎𝑥𝑎 (𝑏𝑎𝑛𝑑𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑥𝑎 (𝑏𝑎𝑛𝑑𝑠) 𝑖𝑛 𝐴 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑥𝑎 (𝑏𝑎𝑛𝑑𝑠) 𝑖𝑛 𝐵
 

Ordination plots showed a visual representation of the similarities between reactors, time-

points and Zn amendments. One-way ANOSIM were used to assess the differences between 

all samples taken from each reactor and, two-way crossed ANOSIMS, to assess the 

differences between samples taken on specific days versus sediment source and Zn 

amendments (Clarke, 1993).  

4.3 Results and Discussion 

4.3.1 Total and soluble metal levels in batch reactors 

The total and soluble levels were measured in the batch reactors before Zn was added and 

throughout the study, from day 14 to 309 (all data shown in Table B-1 and Table B-2). 

Reactors with high Zn amendments and seeded with WB sediment had significantly higher 

total Zn levels of 1580 mg-Zn/kg dry sediment (S.E. ± 35.9) than reactors dosed with low Zn, 

where total Zn levels were 319 mg-Zn/kg dry sediment (S.E. ± 55.3; Mann-Whitney; p-value 

= 0.000; Figure 4-2). These levels were consistent with the reactor amendments, where one 

would expect high Zn to be present in reactors where 100 mg/L of Zn (high Zn) was dosed. 

However the total level of Zn prior to amendment was not significantly different to levels 

measured in low (Mann-Whitney; p-value = 0.117) and high (Mann-Whitney; p-value = 

0.246) Zn-amended reactors seeded with sediment from WB (Figure 4-2). 

Total Zn levels in reactors dosed with low Zn and seeded with WA sediment were 

significantly higher (12400 mg-Zn/kg dry sediment; S.E. ± 524) compared to levels measured 

in reactors dosed with low Zn and seeded with WB sediment (319 mg-Zn/kg dry sediment; 

S.E. ± 55.3; Mann-Whitney; p-value = 0.000; Figure 4-2). 
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Figure 4-2 Measured total Zn levels (mg/kg) in batch reactors seeded with Warks Burn (WB) 

and West Allen (WA) sediment and respectively amended with low (2.00 mg/L) and high (100 

mg/L) Zn. Values indicated for each condition are averages of triplicate reactors and also 

averaged data of all 309 sampling points. Standard error (S.E.) bars are shown. 

Similarly there were also higher levels of Zn present in reactors amended with high Zn and 

seeded with sediments from WA (13000 mg-Zn/kg dry sediment; S.E. ± 547) compared to 

those measured in reactors with low Zn and WB sediment (319 mg-Zn/kg dry sediment; S.E. 

± 55.3; Mann-Whitney; p-value = 0.000; Figure 4-2). Therefore, there is wide contrast of Zn 

conditions, which was intended in the experiment. 

Overall, Zn levels are consistent with historic information from the river, which reflect levels 

approaching those in the South Tyne (Macklin et al., 1994; Macklin et al., 1997) as well as 

with the previous study (Chapter 3; section 3.3.5). Despite the different Zn amendments, in 

reactors seeded with WA sediment, there were no significant differences between the low and 

high Zn batch reactors seeded with WA sediments (Mann-Whitney; p-value = 0.658); 

however, there were significantly lower levels of Zn measured in WA sediment of 10600 mg-

Zn/kg dry sediment (S.E. ± 21.1) compared to those measured in reactors seeded with the 

same sediment and amended with low (12400 mg-Zn/kg dry sediment; S.E. ± 524; Mann-

Whitney; p-value = 0.000) and high (13000 mg-Zn/kg dry sediment; S.E. ± 547; Mann-

Whitney; p-value = 0.000) Zn (Figure 4-2). It must also be noted that levels of total Zn 

measured prior to amendment were considerably higher than those concentrations measured 

in sediment from WB and WA in Chapter 3. Despite the collection of sediment from the same 

area, fluvial processes and weather conditions may have caused erosion or transportation of 
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sediment, resulting in heterogeneous sediment samples, with higher Zn content, being 

collected. 

The analysis of the soluble Zn levels from each reactor over time showed that reactors dosed 

with high Zn and seeded with WB sediment had significantly higher soluble Zn levels than 

reactors dosed with low Zn (Mann-Whitney; p-value = 0.001), where the measured average 

level over 309 days was 1.29 mg/L soluble Zn (S.E. ± 0.34; Figure 4-3). In addition soluble 

Zn levels were also higher in reactors dosed with low Zn and seeded with WA sediment (0.77 

mg/L; S.E. ± 0.29), compared with those dosed with low Zn and seeded with WB sediment 

(0.11 mg/L Zn; S.E. ± 0.02; Mann-Whitney; p-value = 0.006; Figure 4-3). 

 

Figure 4-3 Measured soluble Zn levels (mg/L) in batch reactors seeded with Warks Burn 

(WB) and West Allen (WA) sediment and respectively amended with low (2.00 mg/L) and high 

(100 mg/L) Zn. Values indicated for each condition are averages of triplicate reactors and 

also averaged data of all 309 sampling points. Standard error (S.E.) bars are shown. 

Soluble Zn levels were higher in reactors amended with high Zn and seeded with WA 

sediment (0.67 mg/L soluble Zn; S.E. ± 0.36) compared to those measured in reactors with 

low Zn and WB sediment (0.11 mg/L Zn; S.E. ± 0.02; Mann-Whitney; p-value = 0.004; 

Figure 4-3). Interestingly soluble Zn levels were higher in reactors with high Zn and WB 

sediment compared to reactors with high Zn and seeded with WA sediment, however these 

were only significant at a 0.10% level (Mann-Whitney; p-value = 0.093; Figure 4-3). In 

reactors seeded with WA sediment, no significant differences were observed between the low 

and high Zn amended reactors (Mann-Whitney; p-value = 0.859) and, soluble Zn levels were 

actually lower in reactors containing the highest Zn amendment (0.67 mg/L soluble Zn; S.E. ± 

0.36) compared to the levels measured in low Zn amended reactors (0.77 mg/L; S.E. ± 0.29; 
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Figure 4-3). There were also differences between total and soluble Zn measured in all 

reactors, with total Zn levels significantly higher than soluble Zn levels (Mann-Whitney; p-

value = 0.000; Figure 4-3). In summary, a significant contrast in Zn conditions was developed 

across the 12 reactors, which was the intent of the experimental design. 

4.3.2 Observed relative meropenem resistance in batch reactors 

In reactors dosed with low Zn and WB sediment, relative meropenem resistance levels 

progressively increased with time, although percent levels did not substantially increase after 

169 days. The highest percent resistance was observed at day 309 (13.7%; S.E. ± 2.52; Figure 

4-4). 

 

Figure 4-4 Percentage (%) of colonies resistant to 2.00 mg/L meropenem over a time period 

of 309 days, in reactors seeded with Warks Burn (WB) and West Allen (WA) sediment and 

respectively amended with low (2.00 mg/L) and high (100 mg/L) Zn. Values indicated for 

each time point are averages of triplicate reactors (all data shown in Table B-3) and standard 

error (S.E.) bars are shown). 

In reactors dosed with high Zn and WB sediment, meropenem resistance also increased with 

time, with the highest resistance observed at days 295 (30.5%; S.E. ± 2.01) and 309 (30.5%; 

S.E. ± 2.85; Figure 4-4). Resistance on days 253, 295 and 309 in reactors with high Zn and 

WB sediment were significantly higher than that observed on days 14, 28 and 84 (ANOVA; 
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Tukey’s comparison; p-values < 0.05; Table B-4; Figure 4-4). In addition, resistance on days 

295 and 309 were also significantly higher than resistance observed on day 112 (ANOVA; 

Tukey’s comparison; p-values < 0.05; Table B-4; Figure 4-4) in reactors with high Zn and 

WB sediment. Therefore apparent percent meropenem resistance increased with time in 

reactors amended with high levels of Zn and seeded with WB sediment. 

Resistance in reactors seeded with high Zn and WB sediment also were statistically higher on 

days 309 (30.5%; S.E. ± 2.85; ANOVA- Tukey’s comparison; p-value = 0.033) and 295 

(30.5%; S.E. ± 2.01; ANOVA- Tukey’s comparison; p-value = 0.005) compared to resistance 

observed in reactors dosed with low Zn and WB sediment on the same days (13.7%; S.E. ± 

2.52 and 11.3%; S.E. ± 2.37, respectively; Figure 4-4). This suggests that the level of Zn 

amended in reactors on those days did have an effect on apparent meropenem resistance, with 

higher levels of Zn resulting in higher percent meropenem resistant isolates. 

In reactors dosed with low Zn and WA sediment, meropenem resistance increased from day 

14 to day 309, with significantly higher meropenem resistance observed on day 309 (16.7%; 

S.E. ± 0.52) compared to that observed on day 14 (ANOVA- Tukey’s comparison; p-value = 

0.048) and 28 (ANOVA- Tukey’s comparison; p-value = 0.049; Figure 4-4). The trend was 

similar in reactors dosed with high Zn and WA sediment, where meropenem resistance 

increased with time, with the highest on day 309 (21.3%; S.E. ± 0.35). Resistance at this time-

point was significantly higher than resistance observed on days 14 (ANOVA- Tukey’s 

comparison; p-value = 0.017), and 28 (ANOVA- Tukey’s comparison; p-value = 0.019; 

Figure 4-4). Thus reactors amended with high levels of Zn and seeded with WA sediment, 

also showed similar patterns to resistance observed in reactors seeded with WB sediment, 

where apparent meropenem resistance increased with time.  

Resistance in reactors dosed with high Zn and seeded with WA sediment were also 

statistically higher on day 295 (14.5%; S.E. ± 1.30; ANOVA; Tukey’s comparison; p-value = 

0.044), than in reactors with low Zn on that day (12.2%; S.E. ± 0.59; Figure 4-4), further 

suggesting that the level of Zn has an effect on the level of resistance seen.  

4.3.3 Relationships between meropenem resistance and Zn levels 

The culturing data show that relative percent meropenem resistance increased in all reactors 

over time. In addition the reactors dosed with the higher Zn levels had increased levels of 

relative meropenem resistance than those with lower Zn levels. When combining data from all 

reactors, there was no significant correlation between percent meropenem resistant isolates 



 

78 

 

and total Zn levels (Pearson’s correlation = -0.294; p-value = 0.354; Figure 4-5a) which 

suggests that total Zn did not directly influence the apparent level of meropenem resistance. 

 

 

Figure 4-5 Pearson’s correlations (r) between meropenem resistance and (a) total Zn (mg/kg) 

and, (b) soluble Zn (mg/L) in reactors seeded with sediment from Warks Burn (WB) and West 

Allen (WA) and amended with low (2.00 mg/L) and high (100 mg/L) Zn. Total and soluble Zn 

data used are averages from Zn measured over all time-points for each reactor. 

However, when looking at the measured soluble Zn levels in all reactors, a positive significant 

correlation was demonstrated between percent meropenem resistant isolates and total soluble 

Zn levels (Pearson’s correlation = 0.628; p-value = 0.029; Figure 4-5b). This suggests that the 

soluble fraction of Zn may be driving meropenem resistance, rather than total Zn levels in the 

sediment or the reactor seed sediment. Previous studies (described in Chapter 3) showed a 

similar correlation between soluble and colloidal Zn levels and combined meropenem and Zn 

resistance (combined resistance) in actual sediments from parallel river sediment sites 

(Section 3.3.5). 
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When combining data from the reactors seeded with WB sediment only, correlation analysis 

showed that the relationship between relative meropenem resistant isolates and soluble Zn is 

most apparent in reactors seeded with WB sediment, where highly significant, positive 

correlations were observed (Pearson’s correlation = 0.953; p-value = 0.003; Figure 4-6). 

 

Figure 4-6 Pearson’s correlation (r) between meropenem resistance and soluble Zn (mg/L) in 

reactors seeded with sediment from Warks Burn (WB). Soluble Zn data used are averages 

from Zn measured over all time-points. 

However, when combining data from the reactors seeded with WA sediment only, 

correlations between meropenem resistant isolates and soluble Zn were not statistically 

correlated (Pearson’s correlation = -0.052; p-value = 0.922). Average measured soluble Zn 

levels in these reactors seeded with WA sediment, showed that indeed reactors amended with 

high levels of Zn had lower soluble Zn levels (0.67 mg/L; S.E. ± 0.36) than reactors amended 

with low levels of Zn (0.77 mg/L; S.E. ± 0.29). The concentrations and bioavailability of 

heavy metals in sediments and water can influenced by environmental factors, including the 

pH and the level of oxygen (Seiler and Berendonk, 2012). Therefore this relationship suggests 

that high native total Zn levels present in these sediments (10600 mg/kg-Zn) as well as such 

environmental factors may be influencing the amount of available Zn present in the reactors 

and to microbial communities.  

4.3.4 The effect of batch reactor seed source on meropenem resistance 

Reactors amended with high soluble Zn and seeded with WB sediment generally had higher 

resultant meropenem resistance than those seeded with WA sediment, where meropenem 

resistance observed on day 295 in reactors with high Zn and WB sediment was significantly 

higher, at 30.5% compared to resistance observed in high Zn and WA reactors, at 14.5% 
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(Section 4.3.2; Figure 4-4). However, resistance levels in reactors amended with low levels of 

Zn and respective sediments were not that different.  

This trend suggested that resistance was higher in reactors seeded with WB a relatively 

pristine and low metal sediment when further soluble Zn was added. This can be compared to 

a similar study by Knapp et al. (2011) where it was firstly demonstrated that relatively low 

total metal levels correlated with ARG abundances in soils. The study further suggested that 

low metal levels may also co-select for AR. The level of resistance seen in these reactors, 

could be due to the amount of available Zn present in the environment of each reactor, rather 

than the total metal concentrations in the seed. Average soluble Zn levels in reactors with WB 

sediment and amended with high Zn were higher (1.29 mg/L) than the soluble Zn in reactors 

from WA sediment and high Zn (0.66 mg/L), and therefore more Zn was available to 

organisms in these reactors. As mentioned above the solubility of heavy metal cations, such as 

Zn are influenced by many factors, such as pH, oxygen level, and pollutants. For example the 

presence of organic matter can act as a ‘sink’ for metals and may result in the reactor 

environment becoming anaerobic due to high decomposition. This can influence the oxygen 

level and the redox potential, which in turn reduces the solubility of Zn (Schulz-Zunkel and 

Krueger, 2009; Seiler and Berendonk, 2012). In contrast, low pH values can increase the 

solubility of Zn. 

Furthermore, polluted sediments contain high anions levels, which can also influence Zn 

availability, by binding with soluble Zn. (Schulz-Zunkel and Krueger, 2009). As sediments 

from WA contain high native total Zn levels, due to previous industrial activities, it is 

possible that they contain other contaminants, which may be influencing the available Zn, 

which in turn impacts the level of meropenem resistance. Further analysis, including anion 

analysis, DO and pH measurements are needed to estimate the impact of these factors on Zn 

availability. 

The fact that resistance did not differ between sediment seed in reactors where low levels of 

Zn were added, suggests that the type of sediment used did not influence the relative percent 

meropenem resistance in isolates. Therefore the level of native Zn in sediments had less of an 

impact on meropenem resistance, than the addition of soluble Zn to the reactors. 

4.3.5 The effect of batch reactor Zn amendment on meropenem resistance 

In reactors dosed with high levels of 100 mg/L Zn and seeded with WB sediment, there was 

an increase in meropenem resistance over time (Section 4.3.2; Figure 4-4). Similarly the same 

pattern was seen, where reactors seeded with high Zn and WA sediment, had significantly 
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higher levels of meropenem resistance over time than reactors amended with low Zn (Section 

4.3.2; Figure 4-4). Therefore, this suggests that the increased level of Zn (100 mg/L) was 

likely responsible for the increased resistance. However, increased resistance was only 

statistically higher on days 253, 295 and 309, in both WB and WA sediments (Appendix B3; 

Table B4 and Table B5).  

One reason for this increased resistance observed on those days could be due to a change in 

the microbial community. The survival of microorganisms depends on intrinsic factors, such 

as the availability of food and extrinsic factors such as temperature and pH (Chung et al., 

2006). As nutrients were not replenished in reactors after sample collection every month, the 

community was probably under starvation and nutrient stress. Under such stressed conditions, 

microorganisms use signal systems to sense environmental stresses that in turn control the 

expression of genes involved in cellular defence mechanisms (Kennelly and Potts, 1996).  

When looking at the number of isolates present in each reactor, over all the time-points, there 

was a decline in bacteria, of an average two orders of magnitude (Figure 4-7). 

 

Figure 4-7 Logarithmic number of colonies present on non-amended agar plates (control 

colonies) over a time period of 309 days, in reactors seeded with Warks Burn (WB) and West 

Allen (WA) sediment and respectively amended with low (2.00 mg/L) and high (100 mg/L) Zn. 

Values indicated for each time point are averages of triplicate reactors and standard error 

(S.E.) bars are shown. 
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This decline could be due to increased competition for food and nutritional resources, which 

is the main focus of microbial competition, and many mechanisms, including the production 

of antibiotics, motility and co-ordinated behaviour are used by bacteria to acquire these 

resources (Hibbing et al., 2010). 

As well as nutritional stress, the community within these sediments were also under high 

metal stress, due to the high level of soluble Zn, therefore only bacteria capable of tolerating 

these high levels would survive. Such bacteria employ cell defence mechanisms, such as 

metal ion homeostasis factors and MR determinants to reduce and regulate intracellular metal 

accumulation in their cells (Nies, 1999). Zn specifically can be removed from cells using the 

CDF and RND efflux pumps (Nies et al., 1987; Hassan et al., 1999; Nies, 1999; Mergeay et 

al., 2003). 

The results from this work can be compared to the river sediment studies described in Chapter 

3, where bacteria within sediments with high levels of Zn showed increased resistance to 

combined meropenem and Zn. The results can also be compared to similar studies looking at 

the link between high metal levels and increased MR and AR. For example experimental 

studies done in Cu amended soils, found that there were increased numbers of Cu resistant 

bacteria and an associated increase of antibiotic resistant bacteria relative to non-amended 

control soils (Berg et al., 2005). This suggested that indirect selection for antibiotic resistance 

occurred during the field experiment (Berg et al., 2005). A further study demonstrated that 

soil microbes from a Cu contaminated site were more resistant to Cu and clinically important 

antibiotics, including vancomycin and tetracycline than the associated control site (Berg et al., 

2010). 

Some possible reasons for this resistance, observed in Chapter 3 included, cross resistance 

and the influence of co-regulation mechanisms with the bacterial community. In this case, the 

presence of high Zn resulted in the community showing increased resistance to meropenem 

over time, despite the source of the sediment. Therefore it is possible that the bacteria both 

under metal and nutrient stress developed resistance due to the up-regulation of a combination 

of altered OM and RND efflux pumps (Nikaido, 1994; Saier Jr et al., 1994). This data can 

also be compared to a study by Perron et al. (2004) (described previously in Chapter 3), 

where it was revealed that the presence of a two component sensor protein czcS, responsible 

for the regulation of a heavy metal efflux pump, had resulted in a co-regulation between 

carbapenem influx and heavy metal efflux.  

Generic stress as well as abiotic factors, including temperature, pH, nutrient availability, 

oxygen and moisture content and, biotic factors, including commensal and mutualistic 
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relationships among the microorganisms can also contribute to increased rates of HGT, which 

can result in the transfer of ARGs to other organisms (Aminov, 2011). For example, work by 

Ilves et al. (2001) showed that the mobility of transposons were affected by starvation. Stress 

factors such as the induction of the SOS response or the deprivation of certain enzymes can 

also lead to further HGT of DNA (Melechen and Go, 1980). Further the SOS response also 

controls the recombination of resistance gene cassettes such as integrons which are common 

and abundant in environmental organisms (Stokes et al., 2001; Holmes et al., 2003; Guerin et 

al., 2009; Gillings, 2014). These integrons tend to be linked to mobile elements, such as 

transposons (Mazel, 2006) and can enhance the potential exchange of resistant cassettes 

(Guerin et al., 2009).  Furthermore the evolution of these integrons is further driven by their 

exposure to selective agents, such as heavy metals, where metals such as Zn can co-select for 

ARGs, as these resistance genes are carried on mobile elements that also carry MR genes 

(Baker-Austin et al., 2006; Wright et al., 2008; Rosewarne et al., 2010; Seiler and Berendonk, 

2012; Gillings, 2013). Therefore it is possible that such gene cassettes contained within 

integrons are present in some of the bacteria within these reactors, which can be a vital 

component of bacterial adaptation; for example in polluted marine sediments, cassettes can 

encode a variety of functions responsible for the catabolism of industrial waste (Koenig et al., 

2009).  

Although these may not be the only mechanisms contributing to meropenem resistance, it is 

possible that increased resistance in the batch reactors amended with high Zn was due to the 

expression of efflux pumps associated with Zn removal and increased HGT, as a result of  

increased microbial stress. Therefore a key piece of future work would be to quantify known 

efflux pump genes over all time-points and in all reactors. The results from this study support 

the trends seen in Chapter 3, where it is clear that increased Zn levels in both studies 

increased the abundance of meropenem resistant organisms.  

4.3.6 Diversity of microbial communities within batch reactors 

Despite the same general sediments being assessed in situ in Chapter 3 work, it is very 

probable that dominant organisms in the reactors are different than those seen in the 

environment, due to the significant different habitat conditions. To assess how the 

communities might have changed in the reactors relative to the source, samples from day 0, 

112, 204 and 309 of each batch reactor were analysed using DGGE.  

The visualising of the DGGE gels showed that reactors seeded with WB sediment and low 

and high Zn all have some similar dominant bands (Figure 4-8). When looking at each reactor 

specifically, there were distinct differences in bands observed on day 0 compared to days 112, 
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204 and 309, at which there are more bands (Figure 4-8a). In reactors amended with high Zn 

there are also differences in bands observed at day 0 compared to days 112, 204 and 309 

(Figure 4-8b). In reactors seeded with WA sediment there were also some dominant bands 

that were present throughout the study (Figure 4-9). However there were differences in bands 

observed over time, such as bands observed in reactors amended with low Zn, although bands 

were more closely related at days 204 and 309 (Figure 4-9a). In reactors amended with high 

levels of Zn, bands were distinctly different between day 0 and days 112, 204 and 309 (Figure 

4-9b). Therefore this suggests that apparent dominant organisms may have changed 

throughout the experiment, compared to what they were at the start (day 0).
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Figure 4-8 DGGE gels of 16S rDNA products from batch reactors seeded with WB sediment and amended with, a) low Zn and b) high Zn for days 0, 

112, 204 and 309. Markers (M) on either side and in the centre. 

0 112 204 309 M M M 0 112 204 309 M M M 

a) b) 
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Figure 4-9 DGGE gels of 16S rDNA products from batch reactors seeded with WA sediment and amended with, a) low Zn and b) high Zn for days 0, 

112, 204 and 309. Markers (M) on either side and in the centre. 

0 112 204 309 M M M 0 112 204 309 M M M 

a) b) 
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The analysis of the presence and absence data, obtained from the visual representation of each 

sample and using BioNumerics and Bray-Curtis similarity tests was expressed using MDS 

ordination plots (Figure 4-10). In order to express how well the data is represented by the 

statistical analysis, a goodness of fit statistic was used, known as a stress value. For MDS 

ordination plots, the stress value is based on the differences between the actual distances and 

their predicted values. Here the stress value of 0.24 on the MDS ordination plot, suggests that 

the spatial representation of the data was good and not random (values close to 0 = excellent, 

0.1 = good, <0.3 = poor). 

Two-way crossed ANOSIM tests comparing the time points (0, 112, 204 and 309) and the 

sampling sites (WB and WA), showed that the apparent diversity in reactors seeded with 

sediment from WB on days 112, 204 and 309 were significantly different to diversity on day 

0 (ANOSIM; all p-values = 0.010; Figure 4-10). Furthermore, apparent community 

characteristics on day 309 significantly differed to those seen on day 112 (ANOSIM; p-value 

= 0.010; Figure 4-10). In reactors seeded with sediment from WA, community characteristics 

significantly differed between each time point (ANOSIM; all p-values = 0.010; Figure 4-10). 

This shows that there were increasing differences in community species composition as time 

proceeded, especially in reactors seeded with WA sediment. 

When comparing the time points and Zn amendments (low and high), reactors dosed with low 

Zn (2.00 mg/L) had significantly different apparent community characteristics at day 0 

compared to days 112, 204 and 309 (ANOSIM; all p-values = 0.010; Figure 4-10). In 

addition, characteristics of samples from day 309 were significantly different that samples 

taken on days 112 and 204 (ANOSIM; p-values = 0.010 and 0.040 respectively; Figure 4-10), 

therefore apparent communities changed over time throughout the experiment. Finally, 

community conditions in reactors dosed with high Zn (100 mg/L) significantly differed 

between each time point (ANOSIM; all p-values = 0.010; Figure 4-10), which implies the Zn 

dose influenced communities in the reactors, especially in reactors dosed with high Zn.
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Figure 4-10 Multi-dimensional Scaling analysis ordination plot, with overlay of cluster analysis. Contours of 20, 40, 60 and 80 showed similarities 

between samples taken on days 0, 112, 204 and 309 from batch reactors seeded with Warks Burn (WB) sediment and dosed with low Zn (blue) and 

high Zn (grey) and, batch reactors seeded with West Allen (WA) sediment and dosed with low Zn (black) and high Zn (red).
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When comparing the time points and the sampling sites plus their Zn amendments, one-way 

ANOSIM tests showed that there were trends between all samples, although differences were 

only apparent at a 90.0% confidence level (ANOSIM; all p-values = 0.100; Figure 4-10). 

However there were no differences in apparent diversity at day 0, between reactors seeded 

with WB and WA sediments and amended with low Zn (ANOSIM; p-value = 0.500) and 

reactors seeded with WA sediment and amended with low and high Zn (ANOSIM; p-value = 

0.300; Figure 4-10). In addition there were no differences between reactors seeded with WA 

sediment and amended with low Zn on day 0 and those seeded with WB sediment and 

amended with low Zn on day 112 (ANOSIM; p-values = 0.800; Figure 4-10). 

It is reasonable to assume that the microbial community at day 0 was roughly similar to the 

community present in the original river sediments, whereas community conditions changed by 

day 309, although data imply changes in community conditions differed among treatments. 

There may be many reasons for this that need further evaluating using different studies, 

however one reason could be due to competition between the species for resources, which 

tend to reduce biodiversity in most ecosystems (Hibbing et al., 2010). It is possible that the 

communities within the batch reactors increased in response to richer media conditions in the 

20.0% R2A media (i.e., richer than natural sediments), but apparent diversity decreased as 

resources became sparser as the experiment proceeded and starving ensued. Interestingly, 

community conditions were still surprisingly similar on day 309 which implies microbial 

stress and starvation that prevailed in all reactors might have been more important than 

environmental treatment in the resultant microbial communities. However, this speculation 

needs more work to distinguish between treatment specific and generic starvation effects.  

4.3.7 Abundance of genes in batch reactors 

To determine whether there was any relationship between resistance levels and selected genes 

abundances, bla-CTX-M and bla-NDM-1 were quantified using qPCR, to assess the abundance of 

selected genes associated with ESBL resistance (bla-CTX-M) and MBL/carbapenem resistance 

(bla-NDM-1) (Figure 4-11 and Figure 4-12). Figure 4-11 shows that there was no obvious trend 

between variation of relative bla-CTX-M gene levels and batch reactor conditions. Further there 

was no trend between gene levels and time points (0, 112, 204 and 309; Figure 4-11). 
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Figure 4-11 Relative abundances of bla-CTX-M genes and absolute bla-CTX-M and 16S genes in batch reactors seeded with Warks Burn (WB) and West 

Allen (WA) sediment and dosed with low (2.00 mg/L) and high (100 mg/L) Zn on days 0, 112, 204 and 309. Relative abundances were normalised to 

16S rDNA gene abundances to account for differences in background local gene abundances. Values indicated for each time point are averages of 

triplicate reactors (all relative abundance data shown in Table B-5).
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Figure 4-12 Relative abundances of bla-NDM-1 genes and absolute bla-NDM-1 and 16S genes in batch reactors seeded with Warks Burn (WB) and West 

Allen (WA) sediment and dosed with low (2.00 mg/L) and high (100 mg/L) Zn on days 0, 112, 204 and 309. Relative abundances were normalised to 

16S rDNA gene abundances to account for differences in background local gene abundances. Values indicated for each time point are averages of 

triplicate reactors (all relative abundance data shown in Table B-6).
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When looking at relative gene abundances of bla-NDM-1, significantly higher relative bla-NDM-1 

gene levels were detected on day 112 in reactors dosed with low Zn and seeded with WB 

sediment, compared to levels in reactors seeded with WA sediment and dosed with low 

(ANOVA; Tukey’s comparison; p-value = 0.038) and high (ANOVA; Tukey’s comparison; 

p-value = 0.000; Figure 4-12) Zn. There were also higher bla-NDM-1 gene levels on day 112 in 

reactors with low Zn and WB sediment compared to reactors with the same seed but high Zn 

(ANOVA; Tukey’s comparison; p-value = 0.002; Figure 4-12). In addition there were also 

higher gene levels in reactors seeded with low Zn and WA sediment on day 112, compared to 

those seeded with the same sediment but dosed with high Zn (ANOVA; Tukey’s comparison; 

p-value = 0.001; Figure 4-12). 

When looking at variations between gene levels and time-points for each reactor, reactors 

with low Zn and WB sediment had significantly higher bla-NDM-1 gene levels on days 112, 204 

and 309 compared to those on day 0 (ANOVA; Tukey’s comparison; p-value = 0.046, 0.006 

and 0.002 respectively; Figure 4-12). Reactors seeded with the same sediment but high Zn, 

also had significantly higher gene levels on days 204 and 309 compared to those on day 0 

(ANOVA; Tukey’s comparison; p-value = 0.002 and 0.004 respectively) and 112 (ANOVA; 

Tukey’s comparison; p-value = 0.014 and 0.025 respectively; Figure 4-12). Reactors seeded 

with WA sediment only had increased gene levels in reactors dosed with high Zn on days 204 

compared to levels on day 0 and 112 (ANOVA; Tukey’s comparison; p-value = 0.014 and 

0.011 respectively; Figure 4-12). 

These results suggest that relative bla-NDM-1 gene levels did increase over time, especially in 

those reactors seeded with WB sediment. When looking at absolute 16S levels, gene levels 

slightly decreased over time in all reactors except reactors seeded with WA and amended with 

low Zn levels. Interestingly when comparing the number of isolates in each reactor (Figure 

4-7) and absolute 16S gene levels (Figure 4-11 and Figure 4-12), the number of isolates 

dropped more rapidly between days 204 and 309 than the number of absolute 16S genes. A 

possible reason for this, could be that the 16S qPCR reaction is detecting all cells in the 

sample, including the dead cells or the DNA of some of them (Chaiyanan et al., 2001; Nogva 

et al., 2003; Pathak et al., 2012). As mentioned in section 4.3.5, nutrients were not 

replenished in reactors after sample collection every month, putting the microbial community 

under starvation and nutrient stress. Therefore some organisms would not be able to survive, 

hence the lower number of total isolates, but higher number of absolute 16S gene levels, due 

to the persistence of DNA after cell death.  
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In contrast bla-NDM-1 gene levels increased at a faster rate than 16S genes decreased. This 

suggests that the increase in relative bla-NDM-1 gene abundances might have resulted from the 

presence of Zn, but also due to environmental stress, such as starvation and nutrient stress. 

However, it must be noted that that the abundance of genes detected may not be bla-NDM-1 

genes but similar carbapenem or bla-NDM-1 like genes. This is due to the fact that the absolute 

abundance of bla-NDM-1 genes was considerably higher than expected. For all reactions, all 

efficiency amplification values were between 90.0 -105%, and the r2 of the linear standard 

curve was > 0.980. Further all replicates were consistent. Despite this indication that the 

qPCR reactions were sufficiently optimised, there may be several reasons for this higher 

abundance. 

Firstly the primer set chosen, was based on a primer set used to detect positive isolates 

directly from clinical samples (Naas et al., 2011). Hence pure isolates were tested rather than 

environmental ones, as in this case, and the primer set may have detected closely related 

genes, rather than the rare bla-NDM-1. Therefore the primer design and specificity needs to be 

considered for future analysis. Secondly it is possible, that the mixture used in the qPCR 

reaction, in this case Ssofast, was inhibiting the reaction. Therefore different reaction mixtures 

need to be tested to compare the results with this study. A further reason that could have had 

an effect on all qPCR reactions, was that the DNA isolation procedure and-or the kit used to 

extract the DNA from the samples, did not produce high quality total DNA. The sequencing 

of PCR amplicons could verify whether the bla-NDM-1 gene levels detected in the batch 

reactors were targeting carbapenemase associated sequences or similar carbapenemase like 

sequences. 

4.4 Conclusions 

In this study, batch reactors were set up and seeded with different sediments, taken from a 

metal free environment in the North Tyne (WB) and a high Zn contaminated environment in 

the South Tyne (WA). The batch reactors were then amended with low (2.00 mg/L) and high 

(100 mg/L) levels of Zn and assessed microbiologically and molecularly for 309 days. The 

culturing results showed that the relative percent of meropenem resistant isolates increased 

over time in all reactors. Further, there were significantly higher meropenem resistant 

organisms in reactors amended with high levels of Zn compared to those amended with low 

levels of Zn. Therefore this suggests that the amendment of high levels of Zn in reactors 

seeded with either sediment, selected for higher meropenem resistance levels. 
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When looking at the diversity of species at four time-points throughout the study for each 

batch reactor, there was a clear shift in the apparent diversity between days 0 and 309, 

indicating that the species richness changed over time. Samples from reactors seeded with the 

same sediment tend to cluster together, while there were also differences between reactor 

amendments, indicating the amendment of reactors with low or high Zn also had an effect on 

the overall diversity. Therefore it is possible that the increased meropenem resistance seen 

towards the end of the study was due to a group of different microbial species making up the 

overall environment, which were able to withstand and tolerate the level of meropenem 

present in the agar plates.  

The increased abundance of bla-NDM-1 gene levels in all reactors over time, suggested that the 

apparent community in the reactors had changed, possibly due to the presence of soluble Zn 

but also due to environmental stress. However it is possible, that the gene abundances 

detected were similar carbapenem genes and not pure bla-NDM-1. This data can be related to the 

DGGE fingerprinting data, as well as the culturing data, suggesting that over 309 days, there 

were shifts in the apparent communities present in the reactors, which could have resulted to 

the increased relative percent meropenem resistant isolates observed, as well as the increases 

in carbapenem bla-NDM-1 gene abundances. 
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Chapter 5 Impact of meropenem and zinc levels on resistance 

development in biofilms in rotating tubular reactors 

5.1 Introduction 

The presence of potentially toxic compounds, such as xenobiotics, heavy metals and organic 

solvents, can select for AR determinants in natural environments (Foster, 1983; Alonso et al., 

2001; Stepanauskas et al., 2006). This was shown and assessed in the previous chapters, 

where a clear link was seen between high Zn levels in river sediments, and elevated 

meropenem and combined Zn and meropenem resistance (combined resistance) in sediment 

bacterial isolates (Chapter 3). Further, batch reactors seeded with river sediments amended 

with varied concentrations of Zn showed that meropenem resistance increased over time in 

reactors with highest Zn concentrations, regardless of sediment source (Chapter 4). 

Another environmental system where elevated Zn in wastes might be apparent is in WWTPs, 

where effluents are eventually returned to the environment and may ultimately have an impact 

on human health (Wellington et al., 2013) (Section 2.1). It is also known that the transfer and 

emergence of ARGs can take place in compartments with high bacterial densities, such as in 

biofilms (Murray, 1997), which exist in WWTPs. Biofilms may be present in pipes within 

treatment systems or in certain treatment processes, such as aerobic or anaerobic treatment 

units, making them potential hotspots for HGT (Kümmerer, 2004). 

Many studies have shown that WWTPs do contain abundant ARGs, for example β-lactam and 

aminoglycoside resistance genes were identified in activated sludge in a WWTP in Germany 

(Tennstedt et al., 2005). Furthermore, ESBL resistance genes have also been identified in 

sewage sludge in Portugal (Henriques et al., 2006) and, ESBL producing-bacteria have been 

found in all treatment stages of a hospital sewage treatment works in Brazil (Prado et al., 

2008). In addition other compounds, such as metals, precisely Zn will also enter WWTPs. Zn 

is used in many industrial and manufacturing processes, such as paint production, smelting 

and in fertilisers and pesticides. It is also used as a pigment, such as in plastics, wallpaper and 

printing inks (Charif et al., 2012).  

As concentrations of antibiotics and metals can both exert a selective pressure on bacteria 

within an ecosystem, the movement of ARGs among environmental bacteria could be 

promoted with such compounds (Alonso et al., 2001; Stepanauskas et al., 2005; Stepanauskas 

et al., 2006; Wright et al., 2006; Segura et al., 2009). Hence the study and impact of heavy 

metals, such as Zn on AR in communities within WWTPs, such as those present in biofilms is 

important and should be assessed. Therefore, this study aimed to measure and assess changes 
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in meropenem and combined resistance in microbial biofilm communities and effluents of 

rotating tubular reactors, treating domestic sewage. These rotating tubular reactors mimicked 

trickling filter beds and were amended with different levels of meropenem and Zn. The study 

was done in accordance to ‘Organisation for Economic Co-operation and Development’ 

(OECD) guidelines (OECD, 2015b) using the ‘Activated Sludge Respiration Inhibition Test 

(ASRIT; Test No. 209)’ (OECD, 2010) and the ‘Simulation Test for Aerobic Sewage 

Treatment using biofilms (303B)’ (OECD, 2001); however, some methods were modified. 

The objectives of the study were as follows: 

a) To determine the concentrations of meropenem and Zn that influenced microbial 

communities within WWTPs. 

b) To assess whether varied levels of Zn had an effect on relative Zn, meropenem and 

combined resistance in microbial communities in wastewater biofilms and effluents. 

c) To investigate differences in relative Zn, meropenem and combined resistance, and 

measured Zn levels between three different sampling points of each rotating tubular 

reactor. 

d) To determine whether elevated Zn and meropenem levels selected for MBL associated 

genes. 

5.1.1 Organisation for Economic Co-operation and Development (OECD) 

The OECD is an intergovernmental organisation which promotes policies with the aim of 

improving the economic and social welfare of people globally and has established a number 

of guidance protocols related to chemical safety and biosafety (OECD, 2015a). As 

background, the OECD, was established in 1961 and consisted of 18 European members and 

the United states of America (USA) and Canada, and now consists of 34 members ranging 

from North and South America to Europe and Asia- Pacific (OECD, 2015a). Among other 

roles, it provides a common forum to work together in order to solve problems and share 

experiences (OECD, 2015a), including the development of ‘a collection of internationally 

agreed test methods used by government, industry and independent laboratories’ (OECD, 

2015b). This allows test methods for chemical safety and chemical preparation, such as good 

laboratory practice (GLP), to be harmonised within member countries, with the aim of 

collecting high quality and reliable data and include industrial chemicals, such as antibiotics 

and pesticides (OECD, 2015b).  

Throughout this study, ‘OECD guidelines for the testing of chemicals’, consisting of 150 

internationally agreed methods, were used to assess the effects of chemicals on the 
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environment and human health (OECD, 2015b). Specifically, the ‘Activated Sludge 

Respiration Inhibition Test (ASRIT; Test No. 209)’ (OECD, 2010) was initially employed for 

assessing effects of Zn and meropenem on biotic systems to determine the appropriate 

concentrations for use in the main study. Secondly, the ‘Simulation Test for Aerobic Sewage 

Treatment using biofilms (303B)’ (OECD, 2001) was used to assess the degradation and 

accumulation of Zn, meropenem and combined resistance in rotating tubular reactors. 

5.1.2 Activated Sludge Respiration Inhibition Test (ASRIT; 209)  

This OECD test guideline assesses the effects of a specific substance or chemical on 

microorganisms present in activated sludge of WWTPs (OECD, 2010). This is done by 

measuring how much oxygen is consumed by such microorganisms in the presence of a 

substance or combination of substances after three hours of exposure (OECD, 2010). For this 

study, various combinations of Zn and meropenem were assessed and total inhibition of 

oxygen uptake was quantified. Preliminary and definitive ASRITS tests were conducted and, 

based on results, appropriate concentrations and combinations of meropenem and Zn were 

chosen and used in the main study, using method 303B. 

5.1.3 Aerobic Sewage Treatment Simulation Test: Biofilms (303B) 

This OECD test guideline assesses the behaviour of a chemical or substance to wastewater 

treatment methods with biofilms, such as percolating or trickling filters, rotating biological 

contactors and fluidised beds (OECD, 2001). The test is performed by adding chemicals or 

substances within synthetic and-or domestic sewage to slowly rotating and inclined tubular 

reactors (OECD, 2001). Biofilms form on the internal walls of the reactor tubes after 

acclimation. Effluent is then collected and analysed for dissolved organic carbon (DOC) and 

the concentration of the substance is measured to determine “effects”. The difference in DOC 

between reactors amended with substances and control reactors is presumed to be caused by 

added substance(s). The fate of substance from influent to effluent also can reflect effects 

(OECD, 2001). 

In this study this test was modified, where the same test apparatus was used and the same 

conditions were followed. However, the concentration of the chemical (i.e., antibiotic itself) 

was not measured due to its known chemical instability (Mendez et al., 2006; Cielecka-

Piontek et al., 2008). Instead samples were collected from two different parts of the biofilm, 

as well as the effluent to assess changes in meropenem, Zn and combined resistance levels 

across amended and control reactors. 
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5.2 Materials and Methods 

5.2.1 Inoculum of rotating tubular reactors 

Wastewater was collected once a week from the overflow channel of the primary 

sedimentation tank at the Totnes WWTP (Figure 5-1), which predominantly treats domestic 

sewage. 

 

Figure 5-1 Location of Totnes sewage treatment works in Totnes, Devon, UK (Bing, 2015). 

The collected wastewater was stored at 4°C, until use, where it was added together with a 

100-fold concentrated stock of synthetic sewage to a common influent tank and used as the 

inoculum to the rotating tubular reactors (Table 5-1). Each prepared stock of synthetic sewage 

was autoclaved at a temperature of 121°C for 15 minutes (Touchclave R, LTE Scientific, 

Oldham, UK) and stored at 4°C and the pH was measured and adjusted to 7.5 ± 0.5. A volume 

of 10.0 ml was added to every L of fresh wastewater inoculum to achieve DOC concentration 

of 100 mg/L.
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Table 5-1 Amounts of chemicals used for the preparation of 1.00 L of 100 fold concentrated 

stock of synthetic sewage (OECD, 2001). 

Chemical Amounts added (g) 

Peptone 16.0 

Meat extract (or comparable vegetable extract) 11.0 

Urea 3.00 

Sodium chloride (NaCl) 0.70 

Calcium chloride dehydrate (CaCl2 · 2H2O) 0.40 

Magnesium sulphate heptahydrate (MgSO4 ·7H2O) 0.20 

Anhydrous dipotassium hydrogen phosphate (KH2PO4)* 2.80 

* KH2PO4 added after the previous chemicals are dissolved in 800 ml of warm de-ionised 

water, and then filled to a 1.00 L level. 

5.2.2 Activated Sludge Respiration Inhibition Test (ASRIT)  

In order to determine the suitable levels of meropenem and Zn to be added to the rotating 

tubular reactors, an ASRIT was conducted in accordance to OECD Test Guideline 209 

(OECD, 2010). The aim of the test was to measure inhibition of respiration caused by 

meropenem, Zn and a series of combinations of meropenem and Zn to activated sludge 

systems. 

a. Preparation and procedure of ASRIT  

A total of 20.0 ml activated sludge from tanks at Totnes WWTP (Figure 5-1) was collected 

two days prior the test, allowed to settle, and half the total volume of liquid was decanted to 

obtain a sludge solids concentration of 3.00 g/L. The solids were fed with 50.0 ml synthetic 

sewage feed/ L of activated sludge and the pH was measured and adjusted to 7.0 ± 1.0. The 

activated sludge was then continuously aerated at 2.00 L/minute and kept at ambient room 

temperature of 20 ± 2°C until use. The sludge solids concentration (total filterable solids) of 

the activated sludge was determined by filtering a known amount of sample on pre-weighed 

filter papers and drying in an oven at 105°C, for one hour according to standard methods 
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(APHA, 2005) and using Equation 5-1. The volume of activated sludge required for a set 

volume was then calculated using Equation 5-2. 

Equation 5-1 The equation used to determine the sludge solids concentration. 

𝑆𝑙𝑢𝑑𝑔𝑒 𝑠𝑜𝑙𝑖𝑑𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑔 𝐿⁄ ) = 𝐴 × 𝐵 

Where: 

A = Weight of dry solids (mg) 

B = Sample volume (ml) 

Equation 5-2 The equation used to determine the volume of activated sludge required for each 

150 ml flask when a sludge solids concentration of 1500 mg/L (1.50 g/L) is required.  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 × 𝑠𝑙𝑢𝑑𝑔𝑒 𝑠𝑜𝑙𝑖𝑑𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑚𝑔/𝐿)

𝑆𝑙𝑢𝑑𝑔𝑒 𝑠𝑜𝑙𝑖𝑑𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑔/𝐿)
 

For each ASRIT a total of 36 glass test vessels, each of a total capacity of 250-ml were used 

(OECD, 2010). These were prepared in sets of six, with intervals of 15 minutes between each 

set, where each set included one blank control vessel containing the prepared activated sludge 

at a sludge solids concentration of 1.50 g/L, (determined using Equation 5-1 and Equation 

5-2), 5.00 ml of synthetic sewage feed (prepared as described in Table 5-1) and de-ionised 

water to give a total volume of 150 ml (Figure 5-2). 

 

Figure 5-2 Photo of the set-up of aerated glass test vessels used for the definitive ASRIT 

study, with the appropriate meropenem and Zn amendments, activated sludge at a sludge 

solids concentration of 1.50 g/L, 5.00 ml of synthetic sewage feed and, de-ionised water to 

give a total volume of 150 ml. 
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The remaining five vessels contained activated sludge and synthetic sewage at the same 

concentrations, together with targeted concentrations of meropenem and Zn, filled to a total 

volume of 150 ml with de-ionised water. A set of 6 vessels were also inoculated with a 

reference inhibitory substance, 3,5-dichlorophenol (3,5-DCP), as it is a known inhibitor of 

respiration. Furthermore, the pH of each flask was measured and then aerated via glass 

sinters, for a three-hour exposure period. Compressed air from the laboratory supply was used 

at 0.50 L/min, to maintain a DO concentration at 60.0% saturation and all flasks were kept at 

an ambient temperate of 20  2C. After the three-hour exposure period, the pH and 

temperature of each vessel was measured and the respiration rate of each set of six vessels 

was measured using a Strathkelvin Strathtox respirometer (Strathkelvin Instruments, 

Scotland, UK), which measures oxygen uptake rate of six samples simultaneously. 

The respirometer consisted of a six-place stirrer unit, with 20-ml nominal volume glass 

sample tubes. Six microcathode oxygen electrodes, mounted in electrode holders, fitted into 

the tubes to measure oxygen concentrations of the test solutions. The electrodes were 

connected to an interface unit, which in turn, were connected to a computer that then 

determined respiration rates for the six samples and, calculated the 50.0% effect concentration 

value (EC50), based on amendment concentrations logged in the computer. The EC50 is the 

concentration that has a 50.0% effect on organisms within the activated sludge based on the 

exposure substance. This value provides an approximation of the toxicity of each amendment 

to activated sludge; i.e., aerobic wastewater bacteria. The percentage inhibition (IT) of total 

oxygen consumption at each concentration was then calculated using Equation 5-3. 

Equation 5-3 The equation used to calculate the percentage inhibition (IT) of total oxygen 

consumption.  

I𝑇  =  [1 −
𝑅𝑇

𝑅𝑇𝐵
] × 100% 

Where: 

 IT = percentage inhibition (%) 

RT = respiration rate of test vessel (mg O2/L/h) 

RTB = mean respiration rate of control flasks (mg O2/L/h)  

b. Experimental design 

Two different ASRITs were set-up. The first was a preliminary study that employed 

concentrations of 0.00, 0.20, 2.00 and 20.0 mg/L of meropenem and 0.00, 2.00, 10.0, 30.0 and 

100 mg/L of Zn, and included different combinations of these concentrations (Table C-1). The 
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first three sets of test vessels consisted of vessels where de-ionised water replaced the 

activated sludge in order to determine if meropenem or Zn alone showed any respiration 

activity. The second study, the definitive study, included test combinations of 2.00 mg/L 

meropenem plus 0.00, 2.00, 20.0 or 100 mg/L Zn, as well as 2.00 mg/L of meropenem and 

2.00 mg/L of Zn alone (Table 5-2). These concentrations were chosen based on the 

preliminary ASRIT study (Table C-1) and performed in quintuplicate. 

Table 5-2 Concentrations of meropenem and Zn used in the definitive ASRIT study, 

determined from the preliminary ASRIT. 

Test vessel number Test substance Nominal concentrations (mg/L) 

Solids 

concentration 

(g/L) 

1 

3,5-

dichlorophenol 

0.00 1.50 

2 1.00 1.50 

3 3.20 1.50 

4 10.0 1.50 

5 32.0 1.50 

6 32.0 0.00 

7 
Meropenem 

0.00 1.50 

8- 12 2.00 1.50 

13 
Zn 

0.00 1.50 

14- 18 2.00 1.50 

 

Meropenem 

and Zn 

Meropenem Zn  

19 0.00 0.00 1.50 

20-24 2.00 2.00 1.50 

 

Meropenem 

and Zn 

Meropenem Zn  

25 0.00 0.00 1.50 

26-30 2.00 20.0 1.50 

 

Meropenem 

and Zn 

Meropenem Zn  

31 0.00 0.00 1.50 

32-36 2.00 100 1.50 
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For both the preliminary and definitive ASRITs, stock solutions of 3,5-DCP, meropenem and 

Zn (as zinc sulfate heptahydrate; ZnSO4 · 7H2O) (Sigma- Aldrich, St. Louis, MO, USA) were 

prepared by weighing out the appropriate amounts (Sartorius, Surrey, UK) and diluting in de-

ionised water. The concentration of ZnSO4 needed to produce defined Zn concentrations in 

the test vessels was calculated using Equation 3-1 and the volumes of 3,5-DCP, meropenem 

and Zn needed by each vessel was calculated using Equation 3-2 (Section 3.2.5), as the initial 

and final concentrations, as well as the final volume required were known. 

5.2.3 Rotating Tubular reactor set-up 

An apparatus containing six aerobic rotating tubular reactors was assembled at a constant 

room temperature of 22 ± 2°C in accordance with OECD Test Guideline 303B (OECD, 

2001). The apparatus consisted of a bank of acrylic tubes, each 30.5-cm long and 5-cm 

internal diameter, supported on rubber-rimmed wheels contained within a metal supporting 

frame (Figure 5-3). 

   

Figure 5-3 Photo of the six rotating tubular reactors, inclined at an angle of approximately 

one degree to the horizontal. Starting from the left the reactor amendments were as follows: 

Control (R1; black label), 2.00 meropenem (R2, red label), 2.00 Zn (R3; green label), 2.00 

mg/L meropenem and 2.00 mg/L Zn (R4; yellow label), 2.00 mg/L meropenem and 20.0 mg/L 

Zn (R5; blue label), 2.00 mg/L meropenem and 100 mg/L Zn (R6; yellow/green label). 

Each tube had an outside lip, approximately 0.5-cm deep, to retain it on the wheels and a 0.5-

cm deep internal lip at the upper (feed) end to retain the liquid. The internal surface of each 

tubular reactor was roughened with coarse wire. The rubber-tyred wheels were rotated using a 

motor at 18 ± 2 rpm. Lubricant was also applied to the tubes initially and periodically through 

the test to ensure proper functioning and to prolong the life of the rolling tubes. The tubes 
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were inclined at an angle of approximately one degree to the horizontal to achieve consistent 

slow residence time of 125 ± 12.5 seconds. Chosen rates, rotation speeds and times were used 

as they provide 80.0% DOC removals and higher, according to previous studies (OECD, 

2001). The feed medium was contained in a 100-L storage vessel (influent tank), which was 

retained at 4 ± 2°C to minimize biological activity before entering each tube. The storage 

vessel had an outlet that was connected by silicone rubber tubing (Thermo Fisher Scientific, 

Waltham, MA, USA) via a peristaltic pump (Watson Marlow, Cornwall UK), adjusted to 

deliver 125 ± 12.5 ml/h of the feed medium at the top end of each inclined tube. Effluent was 

allowed to drip from the lower end of each inclined tube to be collected in a separate storage 

vessel per tube. The rubber tubings in the peristaltic pump were changed every week and the 

influent vessel was replaced weekly with fresh waste and synthetic sewage and also wiped 

down with 1.00% Virkon (VWR, Leicestershire, UK) to remove any microbial growth. 

5.2.4 Experimental design and sampling procedure 

A mixture of domestic primary settled sewage and synthetic sewage feed (Section 5.2.1) was 

pumped through each rotating tubular reactor and samples were taken from the influent tank 

and each of the six effluent tanks twice per week for DOC (Carbon Analyser IL500, Hach 

Lange, Salford, UK) and pH analysis. Samples were filtered through Whatman (No. 4) filter 

papers (Thermo Fisher Scientific, Waltham, MA, USA) before analysis. The measured DOC 

values were used to determine the percentage removal of DOC from each reactor using 

Equation 5-4. 

Equation 5-4 The equation used to determine the percentage (%) removal of DOC. 

𝐷𝐵(%)  = 100(
1 − 𝐸𝑜

𝐶𝑚
) 

Where: 

Eo = measured DOC of the reactor effluent at time t (mg/L) 

Cm = DOC of the influent at time t (mg/L) 

After 21 days, when surface biofilms had reached optimal thickness, determined once DOC 

removals of 80.0% were consistent in each rotating tubular reactor, targeted concentrations of 

meropenem and Zn were introduced to the reactor feeds, except the control reactor that was 

provided only with waste and synthetic sewage feed (Figure 5-3; Table 5-3). 
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Table 5-3 The concentration of meropenem and Zn added to each reactor after 21 days of 

biofilm growth. 

Rotating 

Tube 

Rotating Tube condition Nominal Amendments (mg/L) 

Meropenem Zn 

R1 Control 0.00 0.00 

R2 Meropenem 2.00 0.00 

R3 Zn 0.00 2.00 

R4 Meropenem and Zn 2.00 2.00 

R5 Meropenem and Zn 2.00 20.0 

R6 Meropenem and Zn 2.00 100 

Nominal amendments for each rotating tubular reactor were determined based on results from 

the definitive ASRIT study (Section 5.2.2). Syringe pumps (Harvard Apparatus, MA, USA), 

using syringes (Hamilton, GR, Switzerland) connected to the top end of each tubular reactor 

by PTFE tubing (Harvard Apparatus, MA, USA), were employed to dose each tubular reactor 

with the appropriate amendment at a constant rate of 125 ml/hr. One syringe was used per 

concentration of amendment and fresh stock solutions of 1.00 g/L meropenem and 1.00, 10.0 

and 50.0 g/L Zn were prepared (Section 3.2.5) twice weekly and dosed into each tubular 

reactor for 29 days. During the dosing period, samples for microbiological and metal analysis 

were taken once a week from the influent and effluent of each reactor. Samples were also 

taken from biofilms at the top (upper) and bottom (lower) ends of each tube, by using separate 

and sterilised plastic spatulas, to scrape off 2 cm of biofilm. DOC and pH analysis were 

continued during the dosing period. 

5.2.5 Quantifying meropenem and Zn resistance 

Samples were collected and analysed for meropenem and Zn resistant bacteria using classical 

spread-plating techniques (Section 3.2.4) according to the spread plate (9215C) standard 

method (APHA, 2005). All media preparation and culturing were done in a class II 

microbiological safety cabinet (Thermo Fisher Scientific, Waltham, MA, USA) where for 

each set of samples, agar plates were prepared using R2A agar and amended as follows: no 

amendment (control), 2.00 mg/l meropenem, 65.0 mg/L Zn, and a combination of 2.00 mg/L 
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meropenem and 65.0 mg/L Zn (as described in sections 3.2.4 and 3.2.5). Each prepared agar 

plate was inoculated with 50.0 µl of each, serially diluted sample, and incubated for 4 days at 

20 ± 2°C (a day longer than previous studies described in Chapter 3 and Chapter 4, due to the 

lower incubation temperatures of 20 ± 2 °C; section 3.2.5). Petri dishes with roughly 30-300 

colony forming units (CFU) per plate were counted (in accordance with APHA (2005) 

standard method 9215A) and the number of CFU/ml were calculated using Equation 3-3, 

followed by the calculation of the percentage ratio of CFU/ml in amended petri dishes relative 

to un-amended control petri dishes (Equation 3-4; section 3.2.6). 

5.2.6 Preparation and analysis of samples for metal analysis 

Prior to analysis, all glass vials (VWR, Leicestershire, UK) were prepared as described in 

section 3.2.7. Biofilm samples from the upper and lower ends of each tubular reactor were 

transferred to the “clean” glass vials of known weight, which had been dried overnight at 

104°C, and the vials were re-weighed to determine the dry weight of solids present in each 

biofilm sample. Samples were acid digested using nitric acid (1N HNO3; 65.0%, Suprapur®, 

Merck, NJ, United States), according to the APHA (2005) standard method (3030 E.2), prior 

to metal analysis (Section 3.2.8). All acid-digested samples were then filtered prior to analysis 

using 0.2-µm cellulose acetate membrane filters (VWR, Leicestershire, UK) and diluted by at 

least factor of ten. Samples taken from the influent tank and each of the six effluent tanks 

were also filtered through 0.2-µm cellulose acetate membrane filters and, 0.5 ml 1N HNO3 

was added to 1-ml of each of the filtered samples and filled to a volume of 5-ml with de-

ionised water. All prepared samples were analysed for metals including Cd, Co, Cu, Ni, Pb 

and Zn (Section 3.2.8) using an ICP-OES (Vista MPX CCD Simultaneous ICP-OES, Varian, 

Australia). 

5.2.7 Extraction of DNA from samples 

Samples for DNA extraction were collected weekly for 28 days during the dosing period, 

including samples from the influent tank; from the six effluent tanks; and from the upper and 

lower biofilms on each reactor. DNA extractions were performed using BIO 101 FastDNA 

Spin Kits (Q-Biogene, MP Biomedicals, UK) as described in section 4.2.6.  

5.2.8 Quantitative polymerase chain reactions (qPCR) 

The abundance of eubacterial (as 16S rDNA), integron-1 (IntI1) and bla-NDM-1 genes were 

analysed using qPCR for all DNA samples, as described in section 4.2.10. As mentioned in 

section 4.3.5, integrons are common and abundant in environmental organisms (Stokes et al., 
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2001; Holmes et al., 2003; Guerin et al., 2009; Gillings, 2014). Generally integrons are 

genetic elements that incorporate small mobile elements called gene cassettes into a recipient 

genome, via site-specific recombination (Wright et al., 2008). Intl1 genes were assessed as 

previous studies have reported that they play a role in the dissemination of AR gene cassettes 

in clinical bacteria (Stokes et al., 2001) and, in a broad range of clinical and environment 

gram-positive and gram-negative bacteria (Nandi et al., 2004; Stokes et al., 2006; Boucher et 

al., 2007).   

Standards of 7 different dilutions were used per plate (10+8 - 10+2) and per primer set to 

produce a standard curve, in order to quantify the relative abundance of target genes. 

Standards for 16S rDNA and bla-NDM-1 gene qPCR reactions were prepared from growing 

clones containing the necessary fragments, and extracting and quantifying concentrations of 

the plasmids (Section 4.2.110). Standards for IntI1 qPCR reactions were prepared from DNA 

extracts containing the relevant gene (Section 5.2.9). Once prepared the reactions were run 

using appropriate programs, determined for each set of primers (Table 5-4). The results from 

each qPCR reaction were analysed using absolute quantification, where CT values of test 

samples were compared to the standard curve (produced from using relevant standards) and 

the gene abundance of the test samples (Starting Quantity; SQ) were determined. The 

logarithmic gene abundances (copy number) per DNA extract (Equation 4-2) and per ml of 

samples (Equation 4-3) were determined as described in section 4.2.10. 
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Table 5-4 Primer sets used for qPCR analysis of all samples followed by their sequences and appropriate reaction conditions. 

  

Primer Batch Sequence 
Initial 

denaturation 
Denaturation Annealing Extension 

No. of 

cycles1 

16S 

(Yu et al., 2005; 

Huber et al., 

2007) 

BAC338F 

BAC1046R 

ACTCCTACGGGAGGCAGC 

CGACARCCATGCANCACCT 

98°C for 3 

minutes 

98°C for 5 

seconds 

60°C for 10 

seconds 
 40  

Bla-NDM-1 

(Naas et al., 

2011) 

NDM-1-F 

NDM-1-R 

ATTAGCCGCTGCATTGAT 

CATGTCGAGATAGGAAGTG 

95°C for 5 

minutes 

95°C for 15 

seconds 

60°C for 1 

minute 
 50  

IntI1 

(Xu et al., 2007) 

IntI 1F 

IntI 1R 

GTTCGGTCAAGGTTCTGG 

CGTAGAGACGTCGGAATG 

95°C for 3 

minutes 

95°C for 10 

seconds 

63.5°C for 

10 seconds 

72°C for 30 

seconds 
30  

1Number of cycles for denaturation, annealing and extension steps 
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5.2.9 Preparation of standards for IntI1 

In order to determine the absolute and abundance of IntI1 genes, standards were prepared by 

growing a strain of E. coli OB3, which contains an 890 base-pair insert of the IntI1 gene 

(provided with gratitude from Professor Julian Davies, University of British Columbia). The 

strain was grown in 50.0 ml of Luria-Bertani (LB) broth (Oxoid Limited, Basingstoke, UK) at 

150 rpm at 37°C for 24 hours. To ensure the culture was pure, it was streaked on LB agar 

plates and incubated at 37°C for 24 hours. Both the LB broth and agar were prepared 

according to the manufacturer’s instructions. All culturing and streaking were done in a class 

II microbiological safety cabinet. After growth, plasmids were extracted using the Roche 

High Pure Plasmid Isolation kit (Roche Diagnostics Limited, West Sussex, UK ) and a PCR 

was carried out, as described in section 4.2.7. The reaction conditions consisted of 95°C for 3 

minutes, followed by 31 cycles of 95°C for 30 seconds, 60°C for 1 minute and a final 1 

minute at 72°C for extension. The products of the PCR reaction were examined by agarose 

gel electrophoresis, using a 1.50% agarose gel, reference PCR markers and negative and 

positive controls that were run for 45 minutes at 100v and visualised by UV illumination 

(Bio-Rad Fluor-S ® MultiImager, Bio-Rad, Hertfordshire, UK) (Section 4.2.8). The PCR 

product was then cleaned using a QIAquick PCR Purification Kit (Qiagen, Manchester, UK), 

according to the manufacturer’s instructions, and the DNA concentration of each PCR product 

was quantified using a NanoDrop 3300 Fluorospectrometer (Thermo Scientific, 

Leicestershire, UK). The copy number per µl of sample was determined using Equation 

4-4and the volume of DNA needed to produce a 10+9 standard was determined using Equation 

3-2. 

5.2.10 Data analysis 

All data was statistically analysed using Minitab (Version 17, Coventry, UK), as described in 

section 3.2.9. As data was not normal, Mann-Whitney non-parametric test were used, where 

all tests were conducted by assessing whether sample-pairs were significantly different to 

each other using 95.0% significance tests. Bi-variate correlation analysis also was performed 

to assess linear correlations and general trends among measured parameters. The Pearson’s 

coefficient (value of r) signified the strength of the test, where the closer the coefficient to 1, 

the stronger the correlation, whereas p-values < 0.050 were significantly different. 
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5.3 Results and discussion 

5.3.1 Preliminary Activated Sludge Respiration Inhibition Test (ASRIT) 

The preliminary ASRIT (Section 5.2.2) study showed that percent inhibition of oxygen 

concentration increased in flasks amended with 30.0 and 100 mg/l Zn when no meropenem 

was added. The highest inhibition of oxygen uptake was at 40.0% (EC40; Figure 5-4). 

 

Figure 5-4 The percentage inhibition of total oxygen consumption to concentrations of 0.00, 

0.20, 2.00 and 20.0 mg/L of meropenem and 0.00, 2.00, 10.0, 30.0 and 100 mg/L of Zn. 

In flasks containing 0.20 mg/L meropenem, inhibition was observed when 100 mg/L Zn was 

present at 42.5% (EC42.5; Figure 5-4). In flasks containing 2.00 mg/L meropenem and 0.00, 

2.00, 10.0, 30.0 and 100 mg/L Zn, inhibition was higher than in flasks where lower 

concentrations or no meropenem was present and the highest inhibition was observed in 

flasks amended with 100 mg/L Zn at 44.0% (EC44; Figure 5-4). A similar pattern to the latter 

was observed in flasks containing 20.0 mg/L meropenem and various concentrations of Zn, 

with the highest inhibition observed in flasks amended with the highest level of Zn at 51.0% 

(EC50; Figure 5-4). When looking at the averages of flasks amended with 0.00, 2.00, 10.0, 

30.0 and 100 mg/L Zn, two sample statistical tests confirmed that inhibition was significantly 

higher in flasks amended with 100 mg/L Zn compared to those with no Zn amendment, 2.00, 

10.0 and 30.0 mg/L Zn (Mann-Whitney; all p-values = 0.030). When considering only the 

averages of flasks amended with 0.00, 0.20, 2.00 and 20.0 mg/L meropenem, there were 

trends between flasks amended with 0.20 mg/L meropenem and 2.00 and 20.0 mg/L 
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meropenem, where the latter two had higher inhibition, compared to flasks amended with 0.20 

mg/L meropenem (Mann-Whitney; all p-values = 0.095). 

These results suggested that the higher the concentrations of meropenem and Zn in activated 

sludge, the greater the inhibition of oxygen consumption. From preliminary tests, the suitable 

concentrations were suggested for meropenem and Zn for the definitive ASRIT test. These 

were 2.00 and 20.0 mg/L of meropenem and Zn concentrations, ranging from 0.00 to 100 mg-

Zn/L. However, a concentration of 20.0 mg/L meropenem is not realistic in a WWTP, 

therefore 2.00 mg/L meropenem was chosen for subsequent ASRIT testing.  

5.3.2 Definitive Activated Sludge Respiration Inhibition Test (ASRIT) 

The definitive ASRIT (Section 5.2.2) showed that percentage inhibition of total oxygen 

consumption to Zn and meropenem increased as the level of Zn increased from 2.00 to 100 

mg/L (Figure 5-5). The concentrations that inhibited oxygen uptake by 50.0% (EC50) were 

60.0 mg/L Zn and 2.00 mg/L meropenem. Addition of 2.00 mg/L meropenem marked the 

beginning of inhibition at EC15, and that increased to EC21 when 2.00 mg/L meropenem and 

2.00 mg/L Zn were added in tandem (Figure 5-5). 

 

Figure 5-5 The percentage inhibition of total oxygen consumption to: 2.00 mg/L meropenem, 

2.00 mg/L meropenem and 2.00 mg/L Zn, 2.00 mg/L meropenem and 20.0 mg/L Zn and, 2.00 

mg/L meropenem and 100 mg/L Zn. Values indicated are averages of quintuplicate test 

vessels and standard error (S.E.) bars are shown. There was no inhibition of total oxygen 

consumption with the addition of 2.00 mg/L Zn, so this treatment was not added to the bar 

chart. 

 

0

10

20

30

40

50

60

70

80

90

100

2 mg/L meropenem 2 mg/L meropenem
and 2 mg/L Zn

2 mg/L meropenem
and 20 mg/L Zn

2 mg/L meropenem
and 100 mg/L Zn

In
h

ib
it

io
n

 (
%

)



 

112 

Inhibition increased to EC24 when 2.00 mg/L meropenem and 20.0 mg/L Zn were added, 

which was statistically higher than inhibition when only meropenem was added (Mann-

Whitney; p-value = 0.031). The highest inhibition of oxygen uptake was at 75.0% (EC75) 

when 2.00 mg/L meropenem and 100 mg/L Zn were added, which was statistically higher 

than inhibition in flasks amended with only meropenem and, 2.00 mg/l meropenem with 2.00 

mg/L and, 20.0 mg/L Zn (Mann-Whitney; all p-values = 0.005; Figure 5-5). It is important to 

note that the addition of 2.00 mg/L Zn alone had no effect on oxygen uptake, therefore it is 

apparent that the addition of meropenem to Zn is most influential in reducing oxygen use by 

microorganisms in the activated sludge (Figure 5-5). As such, Zn/meropenem mixtures were 

compared with Zn and meropenem to assess the longer term effect of these concentrations on 

microbial communities in settled sewage and within biofilms in the subsequent rotating 

tubular reactor experiment. 

5.3.3 DOC removal in the rotating tubular reactors 

DOC levels in each tubular reactor were monitored over the duration of the study. The DOC 

removal rates before Zn and meropenem additions were commenced were consistently 

between 70.0 and 80.0%. When  meropenem and Zn additions were started, DOC removal 

rates declined in all reactors, except the control (R1) and the reactor dosed with 2.00 mg/L Zn 

(R3; Figure 5-6). 

 

Figure 5-6 Average percentage (%) removal of DOC (mg/L) in the six rotating tubular 

reactors, before dosing (day 12-22), at the dosing point (day 26) and during dosing (day 33- 

51). Values indicated are average over days stated above and standard error (S.E.) bars are 

shown. 
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However statistically significant changes were only seen in the reactor dosed with 2.00 mg/L 

meropenem (R2), where removal statistically decreased to 61.9% (S.E. ± 0.37; ANOVA; 

Tukey’s comparison; p-value = 0.025) and in the reactor dosed with 2.00 mg/L meropenem 

and 100 mg/L Zn (R6), where it significantly decreased to 41.5% (S.E. ± 0.11; ANOVA; 

Tukey’s comparison; p-value = 0.000; Figure 5-6), compared to the removal prior to dosing. 

The addition of 2.00 mg/L meropenem alone had more of an effect on organisms than the 

addition of meropenem plus 2.00 or 20.0 mg/L Zn (ANOVA; Tukey’s comparison; R4: p-

value = 0.662 and R5: p-value = 0.262 respectively). The dosing of 2.00 mg/L Zn (R3), did 

not change the DOC removal rates; in the contrary, it increased removal (ANOVA; Tukey’s 

comparison; p-value = 0.189), showing that Zn alone at low levels of 2.00 mg/L did not have 

a significant or sudden effect on the microbial population, however as indicated above, high 

concentrations of 100 mg/L Zn and meropenem did have an effect on the DOC (Figure 5-6). 

The DOC removal rates recovered throughout the dosing period, as the organisms gained 

tolerance to the concentrations of meropenem and Zn. However there were only significant 

differences between the removal measured at the dosing point and during the dosing in R2 

and R6 (ANOVA; Tukey’s comparison; R2: p-value = 0.017 and R6: p-value = 0.000), where 

removal rates recovered and increased to 82.0% (S.E. ± 3.31) and 71.9% (S.E. ± 0.29) 

respectively. Despite recovery, in R6, removal rates were still lower than they were before 

dosing (ANOVA; Tukey’s comparison; p-value = 0.004), showing that high concentrations of 

100 mg/L Zn and meropenem still had an effect on the microbial communities (Figure 5-6). 

5.3.4 Observed resistance in the upper and lower biofilms and effluent of each rotating 

tubular reactor using different selective media 

Culturing of samples from the top end of each reactor (upper biofilm) on agar plates amended 

with 65.0 mg/L Zn, 2.00 mg/L meropenem, and a combination of both showed that Zn, 

meropenem and combined resistance all significantly increased in reactors dosed with 2.00 

mg/L meropenem plus 20.0 or 100 mg/L Zn (R5 and R6) relative to the un-amended control 

(R1; Mann-Whitney; both p-values = 0.030; Figure 5-7). 
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Figure 5-7 Percentage (%) of colonies in the upper biofilm, resistant to 65.0 mg/L Zn, 2.00 

mg/L meropenem and 2.00 mg/L meropenem and 65.0 mg/L Zn for each rotating tubular 

reactor; Control (R1), 2mg/L meropenem (R2), 2 mg/L Zn (R3), 2 mg/L meropenem and 2 

mg/L Zn (R4), 2 mg/L meropenem and 20 mg/L Zn (R5) and 2 mg/L meropenem and 100 mg/L 

Zn (R6). Values indicated are averages over 4 weeks of sampling (all data shown in Table 

C-2) and standard error (S.E.) bars are shown. 

This suggests that reactors amended with 2.00 mg/L meropenem plus 20.0 or 100 mg/L Zn 

(R5 and R6) increases all forms of observed resistance. In addition, there also were 

statistically higher CFUs from these two reactors that were resistant to both Zn and combined 

meropenem and Zn, compared with R2 where only meropenem was provided (Mann-

Whitney; both p-values = 0.030; Figure 5-7). This shows that the presence of elevated Zn in 

biofilms, makes resident organisms less susceptible to meropenem, especially when Zn was 

dosed at 20.0 and 100 mg/L, which is consistent with observations in River Tyne sediments 

(see Chapter 3). Other observations also showed that R6 had higher meropenem and 

combined resistance than R3, where only Zn was provided (Mann-Whitney; p-value = 0.030; 

Figure 5-7), indicating meropenem plus high levels of 100 mg/L Zn, increased resistance 

related to meropenem. The same pattern was seen in R2 (only meropenem), where 

meropenem and combined resistance were higher than resistance in the control reactor (R1; 

Mann-Whitney; p-value = 0.030; Figure 5-7). This shows meropenem addition alone (i.e., 

without Zn) can increase all forms of meropenem resistance, including combined resistance. 
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Detected resistance levels at the bottom end of the reactor (lower biofilms) had similar, but 

generally weaker trends than the upper biofilms. For example, higher levels of Zn, 

meropenem and combined resistance were seen in reactors with 2.00 mg/L meropenem plus 

20.0 or 100 mg/L Zn (R5 and R6) compared to the control (R1), although differences were 

only significant with an 80.0% confidence level (Mann-Whitney; both p-values = 0.194; 

Figure 5-8). 

 

Figure 5-8 Percentage (%) of colonies in the lower biofilm resistant to 65.0 mg/L Zn, 2.00 

mg/L meropenem and 2.00 mg/L meropenem and 65.0 mg/L Zn for each rotating tubular 

reactor. Values indicated are averages over 4 weeks of sampling (all data shown in Table 

C-3) and standard error (S.E.) bars are shown. 

The analysis of liquid samples taken from the effluent tanks of each reactor provided further 

evidence that Zn, meropenem and combined resistance were significantly higher in R5 and 

R6, when compared to the control (R1) and the raw influent (Mann-Whitney; both p-values = 

0.030; Figure 5-9). Levels of all forms of resistance were especially high when meropenem 

and 100 mg/L Zn were provided to the reactors. 
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Figure 5-9. Percentage (%) of colonies in the effluent, resistant to 65.0 mg/L Zn, 2.00 mg/L 

meropenem and 2.00 mg/L meropenem and 65.0 mg/L Zn for each rotating tubular reactor. 

Values indicated are averages over 4 weeks of sampling (all data shown in Table C-4) and 

standard error (S.E.) bars are shown. 

In addition, Zn resistance was significantly higher in R5 and R6 compared to Zn alone (R3; 

Mann-Whitney; both p-values = 0.030) and, meropenem plus 2.00 mg/L Zn (R4; Mann-

Whitney; both p-value = 0.030; Figure 5-9). Meropenem and combined resistance also were 

higher in R4, R5 and R6 relative to R3, which implies meropenem plus Zn increases all forms 

of detected resistance observed in liquid effluents (Figure 5-9). 

5.3.5 Measured Zn concentrations in biofilms and liquid effluents of each rotating 

tubular reactor 

The mean concentrations of total Zn in the liquid effluent ranged from below the detection 

limit of 0.01 mg/L to 2.51 mg/L Zn. The raw influent and R2 (no Zn addition) also were 

below detection limit relative to Zn (Figure 5-10). Highest mean Zn concentrations in the 

liquid effluent were detected in the highest Zn dosed reactor (R6; 2.51 mg/L Zn; S.E. ± 0.52), 

which were significantly higher than levels found in reactors dosed with only 2.00 mg/L Zn 

(R3; 0.11 mg/L; S.E. ± 0.06; Mann-Whitney; p-value = 0.030; Figure 5-10). The liquid level 

of total Zn in the reactor dosed with 20.0 mg/L Zn (R5; 0.39 mg/L; S.E. ± 0.05) also was 

statistically higher than levels observed in R3 (Mann-Whitney; p-value = 0.030). 
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Figure 5-10 The concentrations of Zn in the raw influent and each rotating tubular reactor. 

The axis on the left represent the upper biofilm and lower biofilm Zn concentrations in mg/kg, 

while the axis on the right represent the raw influent and liquid effluent Zn concentrations in 

mg/L. Values indicated are averages (all data shown in Table C-5) over 4 weeks of dosing 

and standard error (S.E.) bars are shown. 

Overall, absolute Zn levels in the liquid effluents were much lower than nominal levels added 

to the reactors, presumably because of Zn precipitation and accumulation in biofilms within 

the reactors. Hence, measured Zn levels in the upper and lower biofilms of all reactors were 

much higher than liquid-phase Zn levels at a statistically significant level (Mann-Whitney; 

Upper biofilm R1: p-value = 0.030; R2: p-value = 0.029; R3: p-value = 0.030; R4: p-value = 

0.029; R5: p-value = 0.030; R6: p-value = 0.030; Lower biofilm- R1: p-value = 0.029; R2: p-

value = 0.030; R3: p-value = 0.030; R4: p-value = 0.029; R5: p-value = 0.030; R6: p-value = 

0.030; Figure 5-10).  

The measured Zn levels in the upper biofilm were significantly higher in R3, R4, R5 and R6 

compared to the control (R1) and R2 (Mann-Whitney; all p-values = 0.030). In addition, 

measured Zn levels in R5 and R6 where both significantly higher than concentrations in R3 

(Mann-Whitney; p-value= 0.030) and R4 (Mann-Whitney; p-value= 0.030; Figure 5-10). 

Further, concentrations of Zn in the upper biofilm of all reactors were generally higher than 

those in the lower biofilm of all reactors. However, differences were only significant at lower 

confidence levels and quite variable (Mann-Whitney; R1: p-value = 0.030; R2: p-value = 

0.312; R3: p-value = 0.312; R4: p-value = 0.194; R5: p-value = 0.061; R6: p-value = 1.000; 

Figure 5-10).  
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The reasons for these differences are probably due to the Zn being dosed in the top of each 

reactor, allowing the upper biofilm to retain more Zn and more closely match Zn dose levels. 

The large standard errors associated with these values are probably due to the fact that Zn 

accumulated in some areas of the biofilm more than others, which was also reflected by 

weekly variations in detected Zn levels and differential sloughing of bio-solids out of the 

reactors. Despite the majority of Zn being retained in the biofilms of the reactors, there still 

was a strong positive correlation between Zn dose and Zn measured, in the upper and lower 

biofilms of each rotating tubular reactor (Pearson’s correlation coefficient = 0.972; p-value = 

0.001). 

5.3.6 Relationships between measured Zn levels and Zn, meropenem and combined 

resistance in rotating tubular reactors 

Resistance to Zn, meropenem and combined meropenem and Zn was higher in reactors dosed 

with 2.00 mg/L meropenem plus 20.0 or 100 mg/L Zn (Section 5.3.4). This was observed 

both in biofilms and in the liquid effluent, and significant correlations were observed between 

dosed and measured Zn levels (Section 5.3.5). However, these observations are specific to 

each reactor and it is important determine whether data from all the reactors can show more 

general trends. 

Combining all upper biofilm data (i.e., all reactors), significant positive correlations are 

apparent between relative Zn, meropenem and combined resistance levels, and biofilm Zn 

levels (Pearson’s correlation; p-value= 0.000; Figure 5-11a-c). Correlations were strongest 

between the percent abundance of meropenem resistant isolates and total Zn levels (Figure 

5-11b). Similar correlations were seen between resistance and measured total Zn levels in the 

lower biofilms (Figure 5-11d-f), although trends and correlations are weaker, than those 

observed in the upper biofilms. Furthermore the same pattern between correlations was found, 

where correlations were strongest between relative percent meropenem resistant isolates and 

total Zn levels (Figure 5-11e).
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Figure 5-11 Pearson’s correlations (r) between total Zn and percent Zn, meropenem (mero) and combined resistance in the upper biofilm (a, b, c), 

lower biofilm (d, e, f,) and effluent (g, h, i).
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When combining data from liquid effluents from all reactors against measured Zn, generally 

positive trends were also seen (Figure 5-11g-i). However, the shape of data implies 

relationships may actually be non-linear, although there is not enough data to confirm this 

observation. These significant positive correlations observed between Zn level and all forms 

of resistance in the biofilms and the reactor effluents, confirms results seen in the river 

(Chapter 3) and long-term flasks samples (Chapter 4), and show that the presence of elevated 

Zn drives increased Zn, meropenem and combined resistance in all settings assessed here. 

Parallels were especially strong between Zn levels and combined meropenem and Zn 

resistance in the river sediment studies (Section 3.3.5). 

5.3.7 The effect of increased Zn amendments on Zn, meropenem and combined resistance 

in rotating tubular reactors 

Rotating tubular reactors dosed with 20.0 and 100 mg/L of Zn, as well as 2.00 mg/L 

meropenem, resulted in higher percent abundances of Zn, meropenem and combined resistant 

isolates (Section 5.3.4). Further there were also significant relationships between measured Zn 

levels and all forms of resistance (Section 5.3.6). These results can be compared to a similar 

study, where wastewater treatment units were set up with different metal and antibiotic inputs 

(Peltier et al., 2010). Peltier et al. (2010) showed that the addition of Zn accompanied with 

moderate levels of antibiotics caused increased bacterial resistance to ciprofloxacin, 

oxytetracycline and tylosin. Therefore the pattern observed in the rotating tubular reactors 

dosed with high concentrations of Zn, provides further evidence that there are strong links 

between Zn and ambient AR levels. 

As described in Chapter 3, possible reasons for this strong relationship include cross 

resistance and the influence of co-regulation mechanisms with the bacterial community. In the 

case of the rotating tubular reactors, the development of Zn resistance appears to confer 

resistance to meropenem due to cross resistance mechanisms, such as the same efflux proteins 

being used to export or import both meropenem and Zn (Chapman, 2003). This has been 

reported in many parallel contexts, using P. aeruginosa, where resistance to antibiotics have 

resulted from altered OM permeability as well as multiple RND efflux pumps, which were up 

regulated due to metal stress (Nikaido, 1994; Saier Jr et al., 1994). Furthermore, a study done 

by Mata et al. (2000) reported that a MDR pump present in L. monocytogenes can export both 

metals and antibiotics from their cells. As data from the definitive ASRIT study shows that 

bacterial communities in the reactors dosed with 20.0 and 100 mg/L Zn (R5 and R6) were 

under metal stress, similar mechanisms are possible that would confer resistance to Zn and 

meropenem. 
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Another possible mechanism is co-regulation, where resistance is conferred when the 

exposure of bacteria to one toxic compound, can result in resistance to another compound, 

due to transcriptionally linked regulatory systems (Baker-Austin et al., 2006) (Section 2.8). 

An example of this is co-regulatory metal and antibiotic resistance, seen in clinical P. 

aeruginosa isolates (mentioned in section 3.3.7), where selected strains were resistant to both 

Zn and imipenem (Perron et al., 2004). Therefore,  meropenem and combined resistance 

trends seen in this study could result from similar mechanisms as those identified by Perron et 

al. (2004). 

Many reports have demonstrated that biofilms can have effective and additional mechanisms 

of resistance to both metals and antibiotics, which are presented for cellular protection 

(Stewart and Costerton, 2001; Teitzel and Parsek, 2003; Harrison et al., 2005). Bacteria 

within biofilms exhibit different physical and biochemical characteristics than ‘free 

swimming’ bacterial cells (i.e., planktonic bacteria), often using variable gene expression to 

coordinate cell movement and dispersal within these complex multilayered communities 

(Sauer et al., 2002; Stoodley et al., 2002). Furthermore, due to the close proximity of the 

bacteria in these biofilms, increased HGT could take place (Baker-Austin et al., 2006). 

Therefore, the presence of biofilms in each rotating tubular reactor, may further contribute to 

higher levels of Zn, meropenem and combined resistance in the tubular reactors. 

Some mechanisms behind this increased resistance to heavy metal and antibiotics include, the 

ability of the biofilm to accumulate or sequestrate metals or antibiotics, as well as the 

presence of persister cells (Harrison et al., 2005). These are produced in microbial biofilms at 

a higher frequency than those in planktonic cells populations and they contribute to the 

amount of time required for biofilm or planktonic cells to become tolerant to high 

concentrations of antibiotics (Harrison et al., 2005; Harrison et al., 2007). Furthermore the 

addition of metal and antibiotics to planktonic cells can also stimulate the production of 

extracellular polymeric substances (EPS), leading to the eventual formation of a biofilm 

(Baker-Austin et al., 2006). This was seen in studies where sub-inhibitory concentrations of 

tetracycline increased the presence of a precursor, needed for biofilm formation (Rachid et al., 

2000). The exposure of metals to archaea (Baker-Austin et al., 2006), the cyanobacterium 

Phormidium (Garcia-Meza et al., 2005), and, Pseudomonas species (Kidambi et al., 1995) 

also increased the production of EPS, while EPS has also been observed in biofilms from 

metal contaminated activated sludge (Wuertz et al., 2001). Therefore cross resistance and co-

regulation resistance mechanisms are important in biofilms, where increased levels of metals, 

can also increase the ability of the cell to adopt AR determinants.  
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5.3.8 Abundance of genes in rotating tubular reactors 

To determine whether there was any relationship between resistance levels and selected genes 

abundances, Intl1 and bla-NDM-1 were quantified using qPCR. Figure 5-12 shows that there 

was no obvious trend between variation of Intl1 gene levels and reactor operating conditions, 

although Intl1 gene abundances were generally higher in the biofilms, especially the upper 

biofilm of each reactor, and lowest in the liquid effluent. 

 

Figure 5-12 Relative abundances of Intl1 genes in the common raw influent, effluent, lower 

biofilm and upper biofilm of each rotating tubular reactor. All values were normalised to 16S 

rDNA gene abundances to account for differences in background local gene abundances. Box 

plots represent median and range values (n= 4, all data shown in Table C-6) and the symbol 

represents the mean of each sample. 

However, relative gene abundances were significantly higher in the upper biofilm of the 

reactor containing 2.00 mg/L Zn (R3) relative to the 2.00 mg/L meropenem (R2; Mann- 

Whitney; p-value = 0.030) and the 2.00 mg/L meropenem and 100 mg/L Zn reactor (R6; 

Mann-Whitney; p-value = 0.030; Figure 5-12). Interestingly, this shows that there were 

indeed much lower Intl1 genes in the liquid effluent and, that despite the high addition of 100 

mg/L Zn (R6), their abundance was still higher in samples of the top biofilm in R3, containing 

only 2.00 mg/L Zn. Also, it was expected that the 2.00 mg/L meropenem and 100 mg/L Zn 

(R6) reactor would have higher genes abundances than other units, but this was not the case, 

suggesting that the genes responsible for co-selection between Zn and meropenem may not be 

associated with Intl1 proteins. However, despite this, Intl1 genes were present in all reactors, 
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which implies they are ubiquitous in the domestic wastewater regardless of Zn or meropenem 

levels.  

Intl1 genes may be present in bacterial communities in the natural environment due to (i) 

there closeness to enriched sources of Intl1 genes, such as WWTPs, (ii) the dispersal ability of 

the integron, through mobilization to a plasmid or transposons, (iii) the potential of HGT in 

the bacterial community and (iv) selective pressure (e.g., presence of heavy metals that can 

select and maintain genes contained within integrons) (Wright et al., 2008). Therefore, it is 

possible that co-selection is taking place in natural environments due to co-resistance, where 

genes with metal and antibiotic resistant determinants are located on the same genetic 

elements, such as in plasmids, integrons or transposons (Chapman, 2003).  

When looking at relative gene abundances of bla-NDM-1, an extended spectrum β-lactamase 

gene, there was no apparent trend between the variation of bla-NDM-1 genes and reactor 

amendments. However, the highest gene levels were generally found in the upper biofilm of 

each reactor, except for R3, which was dosed with Zn only. The lowest abundances were 

generally found in the liquid effluent of each reactor (Figure 5-13). 

 

Figure 5-13 Relative abundances of bla-NDM-1, genes in the common raw influent, effluent, 

lower biofilm and upper biofilm of each rotating tubular reactor. All values were normalised 

to 16S rDNA gene abundances to account for differences in background local gene 

abundances. Box plots represent median and range values (n= 4, all data shown in Table 

C-7) and the symbol represents the mean of each sample. 
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There was also no general trends between the detection and abundance of bla-NDM-1 genes and 

Intl1 genes in the reactors. All reactors contained bla-NDM-1 genes, however there were no 

significant differences between reactors suggesting that the different dosages of Zn in the 

reactors, did not influence the abundance of these genes. In addition, there was a possibility 

that the abundances shown consisted of similar carbapenem or bla-NDM-1 like genes, as the 

absolute abundance of bla-NDM-1 genes was higher than expected. There may be several 

reasons for this, which are outlined and explained in section 4.3.7. However, the fact that gene 

abundances were not higher in the reactor dosed with the higher levels of Zn (R5 and R6), one 

should not dismiss the fact that there may be similar or other genes that are causing the 

increased meropenem and combined meropenem and Zn resistance in the colonies of these 

reactors.  

5.4 Conclusions 

This study assessed culturable Zn, meropenem and combined meropenem and Zn resistance 

(combined resistance) and Intl1 and bla-NDM-1 gene abundances, in upper and lower biofilms 

and liquid effluents of rotating tubular reactors provided with different supplemental additions 

of meropenem and Zn. Sampling over 4 weeks showed significantly higher abundances of 

bacteria resistant to Zn, meropenem and a combination of both, in the upper biofilm and 

effluents of rotating tubular reactors dosed with 2.00 mg/L meropenem plus 20.0 or 100 mg/L 

Zn (R5 and R6), compared to control (R1) reactors. No significant trends were demonstrated 

between reactor dosages in the lower biofilm; however, trends were similar to those seen in 

upper biofilms in R5 and R6 and the control reactor. Furthermore, in the upper biofilm, Zn 

and combined resistance also were higher compared to the reactor with only meropenem 

addition (R2). This implies that the high dosed concentrations of 20.0 and 100 mg/L Zn, 

where measured Zn levels were significantly higher, may have had an effect on the level of 

resistance observed in isolates.   

In addition there were greater numbers of culturable meropenem and combined resistant 

isolates in the upper biofilm of R5 and R6, compared to the reactor dosed with only Zn (R3), 

suggesting that the presence of 2.00 mg/L meropenem may also have had an effect on 

resistance observed. This pattern was also seen in the effluent, where meropenem and 

combined resistance was higher in R4, R5 and R6 compared to R3. Positive correlations were 

apparent between relative percent Zn, meropenem and combined resistant isolates and 

measured Zn levels in all parts of the reactor, demonstrating that the dosing of increased Zn, 

resulted in high measured Zn, which also resulted in higher resistance. Therefore Zn may be 
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conferring resistance to Zn, meropenem and a combination of both, due to a variety of 

mechanisms, including cross resistance and co-regulation. 

When assessing the abundance of Intl1 and bla-NDM-1 gene levels, there were no apparent 

trends between the reactor dosages and the abundance of genes, however the highest gene 

abundances were generally observed in the upper biofilm of each reactor. Despite there not 

being a relationship between high measured Zn and increased Intl1 and bla-NDM-1 gene 

abundances, there may be similar or other genes that are facilitating in the co-selection of 

meropenem and Zn resistance in the colonies of these reactors.
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Chapter 6 Conclusions and recommended future work 

6.1 Conclusions 

This thesis studied relationships between total and soluble Zn levels, and relative levels of 

meropenem and combined meropenem and Zn resistance (combined resistance) in the 

environment. Three large studies were performed that used sediments and associated water 

from local rivers (Chapter 3); experimental bioreactors seeded with sediments and amended 

with different Zn levels (Chapter 4); and rotating tubular reactors inoculated with wastewater 

and different levels of Zn and meropenem to assess how Zn and meropenem resistance 

changed under different exposures (Chapter 5).  

The overall aim of this thesis was to assess and determine whether Zn concentrations 

increased and promoted relative percent meropenem and combined resistance in microbial 

communities within rivers and wastewaters. The following hypothesis were also made: 

a) Ambient Zn conditions influence levels of meropenem and combined resistance in 

aquatic systems 

b) Zn availability influences meropenem and combined resistance 

c) The observed resistance relationships translate from reactor to sediment conditions 

All three studies met the overall aim and showed that environments with high concentrations 

of Zn, especially soluble Zn, displayed greater abundances of culturable meropenem and 

combined meropenem and Zn resistant strains, which is important for understanding how 

heavy metals, like Zn, influence the extent and characteristics of AR in the environment. It 

should be noted that many other experiments were performed within this work, but only the 

most explanatory have been included in the thesis. 

Initial work focused on quantitative and phenomenological studies on relationships between 

in situ Zn levels and meropenem resistance along the two arms of the River Tyne (Chapter 3). 

These studies were performed to determine whether Zn levels and apparent meropenem 

resistance were related in nature, which would provide the basis for further laboratory 

investigations. Chapter 3 shows that the relative percent of Zn and combined resistance were 

significantly higher in sediments and river water from reaches along the river with higher 

concentrations of Zn (South Tyne), relative to resistance observed in low Zn reaches (North 

Tyne). Specifically, total, soluble and colloidal Zn levels all were statistically significantly 

higher at sites within the South Tyne basin (Featherstones; FS, West Allen; WA, and River 

Nent; RN) relative to sites from the North Tyne basin (Reavehill; RH and Warks Burn; WB), 

which were associated with significantly higher levels of Zn resistant isolates. Further, 
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stronger significant correlations were observed between soluble Zn levels and combined 

resistance, which implies that in situ resistance in soluble Zn is more important than total Zn, 

possibly due to toxicity induced cross resistance in resident strains. 

The first hypothesis (a) can therefore be accepted, as ambient Zn conditions influenced levels 

of meropenem and combined resistance in aquatic systems with high levels of Zn 

contamination. Further the second hypothesis (b) can also be accepted as it is clear that the 

availability of soluble Zn influences the level of meropenem and combined resistance seen in 

river sediments and waters. 

Experiments conducted in Chapter 4 also confirm the acceptance of the latter hypothesis (b). 

Increased relative meropenem resistance was observed in experiments (Chapter 4), where 

batch reactors were seeded with sediments taken from the North Tyne (WB) and South Tyne 

basins (WA) and amended with high (100 mg/L) and low levels (2.00 mg/L) of soluble Zn. 

Interestingly, the original sediment source had no influence on the level of observed 

meropenem and combined resistance over 309 days. However, meropenem resistance 

significantly positively correlated with soluble Zn levels in all reactors, confirming that 

soluble Zn is probably more bioavailable and stress-inducing than total Zn. Therefore, metal 

form and probably speciation will likely be critical to the observance of in situ resistance to 

meropenem in natural and engineered environments. 

Within this context, experiments were performed using continuous-flow rotating tubular 

reactors treating settled domestic wastewater to assess whether similar observations related to 

the co-occurrence of Zn and meropenem resistance were apparent in a contrasting 

environment (Chapter 5). Reactors were acclimated to effectively treat the wastewater and 

biofilms readily formed on their walls. The reactors were then dosed with 0.00 or 2.00 mg/L 

meropenem and-or 2.00, 20.0 or 100 mg/L Zn respectively, and compared with a non-

amended control reactor. 

Similar to the field and batch experimental studies (Chapter 3 and Chapter 4), significantly 

higher relative abundances of bacteria resistant to Zn, meropenem and a combination of both 

were observed in the upper biofilm (top end of the reactor) and liquid effluents of the reactors 

with 2.00 mg/L meropenem added plus 20.0 or 100 mg/L Zn, compared to the control reactor. 

Positive significant correlations were also apparent between relative percent Zn, meropenem 

and combined resistant isolates, and measured Zn levels in all parts of the reactor, which 

confirms dosing with Zn results in higher measured Zn levels and in higher observed 

resistance. Although it is speculation, Zn appears to select for resistance to Zn, meropenem 

and a combination of both in bioreactor microbial communities, probably due to a variety of 
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mechanisms, including cross resistance and co-regulation. Thus this study (Chapter 5) also 

confirmed the second hypothesis (b), indicating that indeed available soluble Zn plays a major 

role in meropenem and combined resistance. Further the experiments conducted in Chapter 4 

and Chapter 5, where reactor set-ups were used, confirms that the observed resistance 

relationship can be translated from reactor to sediment conditions. In both these experiments 

the presence of Zn increased the observed resistance to meropenem and-or combined 

resistance, confirming the acceptance of the third hypothesis (c). 

To investigate quantitative phenotypic observations, molecular biology work using 

community fingerprinting (DGGE) and qPCR was employed to better understand possible 

relationships between Zn levels and microbial communities in the seeded batch reactors 

(Chapter 4) and rotating tubular reactors (Chapter 5). This work revealed that there was a 

clear shift in observed microbial community diversity over time in the sediment-seeded batch 

reactors (Chapter 4); i.e., higher levels of observed meropenem resistance were associated 

with significantly altered microbial communities that were able to withstand and tolerate 

meropenem exposure in culturable isolates. This increased resistance, could be because of 

evolutionary change at a genetic level specific to Zn or could simply result from increased 

community tolerance to stress, which may have occurred due to stringent nutrient conditions 

in the reactors.  

To assess possible direct genetic change versus a community stress response, bla-NDM-1 gene 

levels were quantified among reactors (a Zn-associated meropenem resistance-related gene) 

and were found to increase in abundance over time in all reactors (Chapter 4). However this 

apparent increase could result from factors unrelated to the sediment source or Zn 

amendments, such as the bla-NDM-1 probe detecting similar genes in the natural samples that 

do not relate to Zn resistance specifically or generic cell stress in the reactors due to starvation 

conditions. Delineating mechanisms requires further work. In contrast, there were no apparent 

trends between the reactor Zn and meropenem dosages and the abundance of bla-NDM-1 genes 

in the rotating tubular reactors (Chapter 5). However, the highest bla-NDM-1 gene abundances 

were generally observed in the upper biofilm of each reactor, which is where Zn and nominal 

meropenem levels are the highest, suggesting there may be some influence of Zn and 

meropenem on genes where exposure levels are high. It should be noted that in both studies, 

other possible genes that facilitate co-selection of meropenem and Zn resistance might also be 

present, which were not tested here. Examples include genes that code for Zn efflux and 

uptake pumps, which could be induced by Zn, but then confer meropenem resistance due to 

non-specific restricted efflux or uptake.  
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In total, the broad conclusion of this work is that the presence of elevated Zn, especially 

soluble Zn, that is intrinsically more toxic, significantly influences microbial communities in 

natural environments and experimental bioreactors. This, in turn, results in increased relative 

meropenem, Zn and combined resistance to locations of high soluble Zn. However, observed 

meropenem resistance may be Zn-dependent, which implies meropenem resistance will be 

most apparent when Zn is present and may not translate to other environments when Zn levels 

are reduced. 

6.2 Future work 

An array of additional work is possible from this project. Most importantly, further 

development of culturing and molecular techniques is essential to provide deeper insights on 

why meropenem resistance is increasing in natural environments and experimental 

bioreactors, when microbial communities are exposed to high Zn levels. Specifically, when 

examining relationships between Zn, meropenem and combined resistance in the two river 

basins with low and high Zn levels (Chapter 3), other heavy metals, including Pb and Cd were 

also high in the sediments, and further study is required to determine the relative importance 

of these metals. Areas of improvement to this experiment include:  

 Culturing for isolates on Pb and Cd amended agar plates (with and without 

meropenem) from sediments from each basin to compare with the Zn and meropenem 

resistance data. 

 Testing different concentrations and combinations of Pb, Cd and Zn amendments 

would also be valuable to assess the impact of metal mixtures on observed meropenem 

resistance. 

 Performing additional cross resistance studies and identification of novel isolates 

using Matrix Assisted Laser Desorption/Ionisation-Time of Flight Mass Spectrometry 

(MALDI-TOF) and-or isolate sequencing. These isolates could then be assessed on 

very specific level relative to both gene expression and cross- and multi-resistance 

traits.  

The set-up of batch reactors seeded with sediments from a low and high contaminated Zn area 

and amended with low and high levels of Zn (Chapter 4), showed that meropenem resistance 

increased over time (309 days) independent of the original Zn levels in sediments. Areas of 

further development in context with this experiment include:  

 The set-up of similar batch experiments, where batch reactors are amended with a 

spread of Zn concentrations to determine what level of Zn tends to select for the 
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highest number of meropenem resistant isolates. An experiment of this type was 

performed within this project, but operational problems ensued and results were 

inconclusive. This experiment should be performed again, but additional genetic work 

should be included, especially qPCR on possible Zn efflux and uptake genes, to 

contrast their abundance over time and the co-occurrence of combined resistance in 

isolates from the same systems.  

 Distinguish between treatment-specific versus generic starvation effects, with such an 

experiment to determine whether resistance developed due to Zn specifically, 

starvation alone, or starvation impacted Zn-specific effects.  

Independent of the above specific experiments, quantifying known efflux/uptake pump genes 

in different Zn-exposed environments are needed to delineate mechanisms of metal-induced 

resistance, especially over time and across exposures. This work could be coupled with; 

 Further analysis of water and sediments samples from the North and South Tyne 

(Chapter 3), and also from rotating tubular reactors inoculated with wastewater and 

dosed with varying concentrations of meropenem and Zn (Chapter 5).  

 Design new qPCR probes for this work that target co-resistance and efflux/influx 

genes to determine how Zn levels correlate with these genes and observed meropenem 

co-resistance.
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Appendix A  

Table A-1 Measured total Zn (mg/kg dry sediment) levels over six months for each sampling site; Reaverhill (RH), Warks Burn (WB), Featherstone 

(FS), River West Allen (WA) and River Nent (RN). 

Sampling sites Total Zn (mg/kg dry sediment) 

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

Reaverhill (RH) 34.3 88.2 47.9 42.7 51.0 57.5 

Warks Burn (WB) 26.0 17.6 11.8 14.2 20.8 19.7 

Featherstone (FS) 781.1 2880 1100 1290 1700 15600 

River West Allen (WA) 2710 5570 2990 1590 5370 3030 

River Nent (RN) 2830 7110 4400 3000 666 3380 
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Table A-2 Measured soluble Zn (mg/L) levels over six months for each sampling site; Reaverhill (RH), Warks Burn (WB), Featherstone (FS), River 

West Allen (WA) and River Nent (RN). 

Sampling sites Soluble Zn (mg/L) 

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

Reaverhill (RH) 0.01 0.01 0.01 0.01 0.01 0.01 

Warks Burn (WB) 0.01 0.01 0.01 0.01 0.01 0.01 

Featherstone (FS) 0.06 0.10 0.23 0.12 0.15 0.11 

River West Allen (WA) 0.66 0.60 1.19 1.26 1.19 1.73 

River Nent (RN) 4.66 4.90 2.72 4.32 3.47 5.59 
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Table A-3 Measured colloidal Zn (mg/L) levels over six months for each sampling site; Reaverhill (RH), Warks Burn (WB), Featherstone (FS), River 

West Allen (WA) and River Nent (RN). 

Sampling sites Colloidal Zn (mg/L) 

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

Reaverhill (RH) 0.01 0.01 0.01 0.01 0.01 0.02 

Warks Burn (WB) 0.01 0.01 0.01 0.00 0.01 0.02 

Featherstone (FS) 0.01 0.08 0.20 0.10 0.13 0.08 

River West Allen (WA) 0.35 0.48 0.90 0.66 0.86 1.56 

River Nent (RN) 0.39 1.46 1.86 3.73 2.22 3.11 
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Table A-4 Correlations (first value) and p-values (second value) between all total (mg/kg dry sediment cadmium (Cd), cobalt (Co), copper (Cu), nickel 

(Ni), lead (Pb) and zinc (Zn) data. 

Total metals 

(mg/kg dry sediment) 
Cadmium (Cd)* Cobalt (Co)* Copper (Cu)* Nickel (Ni)* Lead (Pb)* 

Cobalt (Co) 
0.451 

0.191 
    

Copper (Cu) 
0.747 

0.013 

0.539 

0.108 
   

Nickel (Ni) 
0.137 

0.707 

0.863 

0.001 

0.515 

0.128 
  

Lead (Pb) 
0.864 

0.001 

0.663 

0.037 

0.716 

0.020 

0.305 

0.392 
 

Zinc (Zn) 
0.973 

0.000 

0.553 

0.097 

0.754 

0.012 

0.207 

0.567 

0.951 

0.000 

* First value: Pearson’s correlation; Second value: p-value. 
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Table A-5 Percentage (%) of colonies in sediment resistant to 65.0 mg/L Zn, 2.00 mg/L meropenem and 2.00 mg/L meropenem and 65.0 mg/L Zn 

(combination of both) from each of the sites; Reaverhill (RH), Warks Burn (WB), Featherstone (FS), River West Allen (WA) and River Nent (RN). 

Month Agar amendments Percentage (%) of colonies showing resistance 

Reaverhill (RH) Warks Burn (WB) Featherstone (FS) 
River West Allen 

(WA) 
River Nent (RN) 

1 

65 mg/L Zn 6.23 7.54 22.07 43.34 47.95 

2 mg/L meropenem 5.19 6.09 5.95 4.34 3.64 

Combination of both 2.57 3.76 3.85 3.44 3.22 

2 

65 mg/L Zn 7.61 3.12 16.04 21.96 21.62 

2 mg/L meropenem 3.62 3.84 3.27 5.44 4.88 

Combination of both 2.60 1.98 1.54 4.12 5.83 

3 

65 mg/L Zn 14.22 3.02 8.57 36.05 25.35 

2 mg/L meropenem 11.83 5.00 4.45 5.25 10.95 

Combination of both 4.41 0.70 1.05 4.78 12.35 

Table continued on next page.
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Month Agar amendments 
Reaverhill (RH) Warks Burn (WB) Featherstone (FS) 

River West Allen 

(WA) 
River Nent (RN) 

3 

65 mg/L Zn 3.82 5.19 17.39 11.63 39.49 

2 mg/L meropenem 13.15 3.05 9.72 6.20 5.85 

Combination of both 0.97 0.71 1.14 4.61 5.97 

4 

65 mg/L Zn 1.08 5.97 27.04 61.67 44.86 

2 mg/L meropenem 3.67 9.20 10.55 10.69 24.45 

Combination of both 0.55 7.93 5.09 4.83 16.98 

5 

65 mg/L Zn 8.77 15.37 21.62 16.19 27.63 

2 mg/L meropenem 8.54 12.11 5.54 15.61 9.43 

Combination of both 2.71 3.10 4.12 11.70 11.79 
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Table A-6 Percentage (%) of colonies in river water resistant to 65.0 mg/L Zn, 2.00 mg/L meropenem and 2.00 mg/L meropenem and 65.0 mg/L Zn 

(combination of both) from each of the sites; Reaverhill (RH), Warks Burn (WB), Featherstone (FS), River West Allen (WA) and River Nent (RN). 

Month Agar amendments Percentage (%) of colonies showing resistance 

Reaverhill (RH) Warks Burn (WB) Featherstone (FS) 
River West Allen 

(WA) 
River Nent (RN) 

1 65 mg/L Zn 8.37 13.65 12.96 26.19 31.72 

 2 mg/L meropenem 5.65 12.88 2.96 16.19 3.45 

 Combination of both 1.41 5.77 2.22 13.33 6.90 

2 65 mg/L Zn 1.97 2.28 4.77 7.72 7.20 

 2 mg/L meropenem 1.10 1.02 0.89 1.28 0.91 

 Combination of both 0.32 0.05 0.66 2.72 0.83 

3 65 mg/L Zn 3.29 3.92 2.92 8.67 5.58 

 2 mg/L meropenem 3.34 3.00 2.29 0.50 3.18 

 Combination of both 1.02 0.71 1.85 3.08 1.36 

Table continued on next page.
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Month Agar amendments Reaverhill (RH) Warks Burn (WB) Featherstone (FS) 
River West Allen 

(WA) 
River Nent (RN) 

4 65 mg/L Zn 0.56 1.33 4.81 8.12 10.30 

 2 mg/L meropenem 0.37 0.56 0.39 0.71 2.69 

 Combination of both 0.05 0.20 0.74 0.49 1.19 

5 65 mg/L Zn 1.36 1.21 6.67 8.17 10.96 

 2 mg/L meropenem 0.73 0.38 2.63 1.48 0.77 

 Combination of both 0.10 0.03 1.87 0.87 1.92 

6 65 mg/L Zn 3.30 2.13 8.26 13.51 9.11 

 2 mg/L meropenem 3.06 3.59 3.31 4.68 5.31 

 Combination of both 0.38 1.13 2.11 4.94 4.33 
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Table A-7 Correlations (first value) and p-values (second value) between all total (mg/kg dry sediment), soluble (mg/L) and colloidal (mg/L) cadmium 

(Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) data and all Zn, meropenem and combined resistance (%) data. 

Metal Analysis Relative Zn resistance (%)* Relative meropenem resistance (%)* Relative combined resistance (%)* 

Cd 

Total Cd (mg/kg dry sediment) 0.926; 0.000 -2.04; 0.571 0.761; 0.011 

Soluble Cd (mg/L) 0.880; 0.001 -0.049; 0.893 0.971; 0.000 

Colloidal Cd (mg/L) 0.865; 0.001 -0.005; 0.989 0.957; 0.000 

Co 

Total Co (mg/kg dry sediment) 0.555; 0.096 -0.182; 0.614 0.540; 0.107 

Soluble Co (mg/L) 0.253; 0.481 0.179; 0.620 -0.001; 0.999 

Colloidal Co (mg/L) 0.565; 0.089 0.326; 0.358 -0.355; 0.314 

Cu 

Total (mg/kg dry sediment) 0.676; 0.032 -0.386; 0.271 0.322; 0.364 

Soluble (mg/L) -0.252; 0.483 -0.407; 0.243 -0.207; 0.566 

Colloidal (mg/L) 0.249; 0.487 -0.441, 0.202 0.282; 0.429 

Ni 

Total (mg/kg dry sediment) 0.189; 0.602 -0.306; 0.390 0.063; 0.863 

Soluble (mg/L) 0.516; 0.126 -0.054; 0.882 0.682; 0.030 

Colloidal (mg/L) 0.865; 0.001 --0.229; 0.524 0.852; 0.002 

*First value: Pearson’s correlation; Second value: p-value. 

Table continued on next page. 
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Metal Analysis Relative Zn resistance (%)* Relative meropenem resistance (%)* Relative combined resistance (%)* 

Pb 

Total (mg/kg dry sediment) 0.926; 0.000 -0.211; 0.559 0.845; 0.002 

Soluble (mg/L) 0.859; 0.001 -0.272; 0.448 0.814; 0.004 

Colloidal (mg/L) 0.695; 0.026 0.038; 0.918 0.662; 0.037 

Zn 

Total (mg/kg dry sediment) 0.972; 0.000 -0.220; 0.542 0.838; 0.002 

Soluble (mg/L) 0.777; 0.008 0.014; 0.969 0.936; 0.000 

Colloidal (mg/L) 0.765; 0.010 0.021; 0.955 0.914; 0.000 

*First value: Pearson’s correlation; Second value: p-value
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Appendix B  

Table B-1 Measured total Zn (mg/kg dry sediment) levels over 309 days, in all batch reactors seeded with Warks Burn (WB) and West Allen (WA) 

sediment and amended with low (2.00 mg/L) and high (100 mg/L) Zn. 

Batch reactor 
Total Zn (mg/kg dry sediment) 

14 28 84 112 169 204 253 295 309 

Low Zn Warks Burn 

38.3 23.9 134 849 652 456 464 458 298 

38.3 158 309 331 234 210 206 179 211 

38.3 186 422 522 529 502 3866 397 384 

High Zn Warks Burn 

636 1810 171 1790 1610 2800 1520 1870 1560 

636 307 1070 3350 2020 1220 2170 2330 1740 

636 123 1670 3380 1410 1740 1650 2000 1390 

Low Zn West Allen 

11600 11000 17400 12100 11800 12300 12500 14500 14800 

11600 11100 11000 12400 1170 12600 15800 13600 13100 

11600 11200 8260 14900 13500 12300 15300 16300 10900 

High Zn West Allen 

7780 12300 12700 19400 16900 13200 5460 19100 17500 

7780 10200 10100 11200 10600 10800 11600 12900 22600 

7780 7030 14700 16500 16600 11300 17300 18100 10600 
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Table B-2 Measured soluble (mg/L) levels of zinc (Zn) over 309 days, in all batch reactors seeded with Warks Burn (WB) and West Allen (WA) 

sediment and respectively amended with low (2.00 mg/L) and high (100 mg/L) Zn. 

Batch reactor 
Soluble Zn (mg/L) 

14 28 84 112 169 204 253 295 309 

Low Zn Warks Burn 

0.15 0.16 0.12 0.16 0.10 0.01 0.01 0.01 0.01 

0.15 0.03 0.03 0.59 0.08 0.01 0.01 0.01 0.01 

0.15 0.05 0.10 0.40 0.61 0.01 0.01 0.01 0.01 

High Zn Warks Burn 

0.09 0.47 1.14 1.17 1.62 0.94 0.92 0.80 0.81 

0.09 0.62 2.09 3.01 3.06 2.32 2.34 2.05 2.06 

0.09 0.52 1.50 1.84 1.76 0.83 1.06 0.74 0.81 

Low Zn West Allen 

0.15 0.25 0.07 0.77 0.57 0.07 0.11 6.72 0.14 

0.15 0.27 0.06 0.64 0.23 0.07 0.09 0.09 0.12 

0.15 0.21 0.15 0.81 0.96 0.63 1.93 2.42 3.03 

High Zn West Allen 

0.60 0.41 0.10 0.44 0.76 0.03 0.18 0.09 0.16 

0.60 0.32 0.04 0.67 0.67 0.06 0.08 0.13 0.24 

0.60 0.42 0.17 0.77 0.60 0.06 2.17 3.20 4.42 
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Table B-3 Percentage (%) of colonies resistant to 2.00 mg/L meropenem over a time period of 309 days, in reactors seeded with Warks Burn (WB) and 

West Allen (WA) sediment and respectively amended with low (2.00 mg/L) and high (100 mg/L) Zn. 

Batch reactor 
Day 

14 28 84 112 169 204 253 295 309 

Low Zn Warks Burn 

0.25 0.05 6.68 14.25 15.61 4.89 8.20 6.53 8.89 

0.25 0.24 1.12 1.16 2.53 4.51 7.57 13.33 14.83 

0.25 0.08 2.47 5.03 9.30 19.14 14.06 13.93 17.41 

High Zn Warks Burn 

2.77 7.09 6.58 8.19 11.68 12.28 19.47 27.42 30.42 

2.77 5.40 7.15 14.70 27.36 28.41 33.55 34.30 35.53 

2.77 2.29 1.46 1.63 9.83 10.29 16.98 29.88 25.65 

Low Zn West Allen 

0.38 0.49 6.50 8.50 11.36 18.28 21.91 22.40 20.05 

0.38 0.41 2.40 4.51 5.00 5.21 6.98 7.72 14.50 

0.38 0.29 0.72 0.81 3.71 3.67 4.14 6.54 15.55 

High Zn West Allen 

3.59 3.08 6.59 6.52 6.42 7.80 11.20 15.10 24.81 

3.59 3.95 4.73 7.92 7.70 8.10 11.11 16.40 19.91 

3.59 4.29 5.21 2.28 4.45 7.30 11.63 12.01 19.20 
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Table B-4 P-values, showing significant differences at a 95.0% level, for comparisons between meropenem resistance at each time point in batch 

reactors seeded with Warks Burn (WB) sediment and amended with high (100 mg/L) Zn. P-values were determined from using ANOVA statistical tests 

and Tukey simultaneous tests for differences of means. 

Factors (days) 253 295 309 

14 0.002 0.000 0.000 

28 0.010 0.000 0.000 

84 0.011 0.000 0.000 

112 - 0.000 0.000 
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Table B-5 Relative abundances of bla-CTX-M genes in batch reactors seeded with Warks Burn (WB) and West Allen (WA) sediment and dosed with high 

(100 mg/L) and low (2.00 mg/L) Zn on days 0, 112, 204 and 309. All values were normalised to 16S rDNA gene abundances to account for differences 

in background local gene abundances. 

Batch reactor 
Logarithmic gene abundances of bla-CTX-M (copies/16S rDNA gene level) 

0 112 204 309 

Low Zn Warks Burn 

1.03 0.85 1.01 0.86 

0.82 0.88 0.79 0.86 

0.81 0.86 0.89 0.85 

High Zn Warks Burn 

0.82 0.84 0.84 0.79 

0.73 0.79 0.84 0.77 

0.76 0.77 0.95 0.83 

Low Zn West Allen 

0.76 0.89 0.77 0.71 

0.81 0.82 0.94 0.92 

1.07 0.87 0.75 0.76 

High Zn West Allen 

0.74 0.84 0.91 0.81 

0.83 0.81 0.73 0.80 

0.89 0.74 0.91 0.88 
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Table B-6 Relative abundances of bla-NDM-1 genes in batch reactors seeded with Warks Burn (WB) and West Allen (WA) sediment and dosed with high 

(100 mg/L) and low (2.00 mg/L) Zn on days 0, 112, 204 and 309. All values were normalised to 16S rDNA gene abundances to account for differences 

in background local gene abundances. 

Batch reactor 
Logarithmic gene abundances of bla-NDM-1 (copies/16S rDNA gene level) 

0 112 204 309 

Low Zn Warks Burn 

0.70 0.82 1.00 1.00 

0.69 0.84 0.80 0.92 

0.61 0.84 0.93 0.98 

High Zn Warks Burn 

0.69 0.77 0.83 0.89 

0.61 0.72 0.92 0.91 

0.68 0.70 1.03 0.93 

Low Zn West Allen 

0.63 0.79 0.66 0.82 

0.68 0.75 0.95 0.95 

0.84 0.78 0.93 0.75 

High Zn West Allen 

0.66 0.70 1.10 0.93 

0.67 0.70 0.84 0.82 

0.79 0.68 0.99 0.88 
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Appendix C  

Table C-1 Concentrations of meropenem and Zn used in the preliminary ASRIT study. 

Test vessel number Test substance Test vessel 
Test substance concentration 

(mg/L) 
Solids concentration (g/L) 

1 

3,5-dichlorophenol 

Blank 0.00 1.50 

2 1.00 1.00 1.50 

3 3.2 3.20 1.50 

4 10.0 10.0 1.50 

5 32.0 32.0 1.50 

6 Control 32.0 0.00 

7 

Zn only 

Control 0.00 0.00 

8 Blank 0.00 1.50 

9 0.00 2.00 1.50 

10 0.00 10.0 1.50 

11 0.00 30.0 1.50 

12 0.00 100 1.50 

Table continued on next page.
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Test vessel number Test substance Test vessel 
Test substance concentration 

(mg/L) 
Solids concentration (mg/L) 

13 

Meropenem only 

Control 0.00 0.00 

14 Blank 0.00 1.50 

15 0.20 0.20 1.50 

16 2.00 2.00 1.50 

17 2.00 2.00 1.50 

18 2.00 2.00 1.50 

   Meropenem Zn  

19 

Meropenem & Zn 

Blank 0.00 0.00 0.00 

20 0.20 0.20 0.00 1.50 

21 0.20 0.20 2.00 1.50 

22 0.20 0.20 10.0 1.50 

23 0.20 0.20 30.0 1.50 

24 0.20 0.20 100 1.50 

Table continued on next page.
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Test vessel number Test substance Test vessel 
Test substance concentration 

(mg/L) 
Solids concentration (mg/L) 

   Meropenem Zn  

25 

Meropenem & Zn 

Blank 0.00 0.00 1.50 

26 2.00 2.00 0.00 1.50 

27 2.00 2.00 2.00 1.50 

28 2.00 2.00 10.0 1.50 

29 2.00 2.00 30.0 1.50 

30 2.00 2.00 100 1.50 

   Meropenem Zn  

31 

Meropenem & Zn 

Blank 0 0.00 1.50 

32 20.0 20.0 0.00 1.50 

33 20.0 20.0 2.00 1.50 

34 20.0 20.0 10.0 1.50 

35 20.0 20.0 30.0 1.50 

36 20.0 20.0 100 1.50 
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Table C-2 Percentage (%) of colonies in the upper biofilm resistant to 65.0 mg/L Zn, 2.00 mg/L meropenem and 2.00 mg/L meropenem and 65.0 mg/L 

Zn for each rotating tubular reactor on days 6, 12, 19 and 27. 

Day Agar amendments Percentage (%) of colonies showing resistance 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem and 

2 mg/L Zn (R4) 

2 mg/L 

meropenem and 

20 mg/L Zn (R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

6 

65 mg/L Zn 7.31 6.16 10.8 1.09 13.5 16.7 

2 mg/L meropenem 0.74 14.9 10.2 1.07 9.10 14.5 

Combination of 

both 
0.39 8.56 11.2 0.93 10.1 16.2 

12 

65 mg/L Zn 5.67 11.2 19.5 18.6 66.8 50.2 

2 mg/L meropenem 0.83 14.6 3.86 9.80 53.2 52.6 

Combination of 

both 
0.39 6.69 4.07 5.29 47.3 51.3 

Table continued on next page.
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Day Agar amendments Percentage (%) of colonies showing resistance 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem 

and 2 mg/L Zn 

(R4) 

2 mg/L meropenem 

and 20 mg/L Zn 

(R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

19 

65 mg/L Zn 3.10 5.64 16.1 16.5 60.5 49.1 

2 mg/L meropenem 3.22 4.78 11.5 29.5 34.20 50.5 

Combination of 

both 
0.94 4.10 3.08 27.6 21.0 53.2 

27 

65 mg/L Zn 6.24 10.1 2.19 10.7 25.8 84.3 

2 mg/L meropenem 0.73 3.32 0.49 7.53 21.4 72.2 

Combination of 

both 
0.61 1.63 0.45 4.91 14.4 97.5 
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Table C-3 Percentage (%) of colonies in the lower biofilm resistant to 65.0 mg/L Zn, 2.00 mg/L meropenem and 2.00 mg/L meropenem and 65.0 mg/L 

Zn for each rotating tubular reactor on days 6, 12, 19 and 27. 

Day Agar amendments Percentage (%) of colonies showing resistance 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem and 2 

mg/L Zn (R4) 

2 mg/L 

meropenem and 

20 mg/L Zn (R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

6 

65 mg/L Zn 16.2 15.3 10.5 5.91 5.87 4.58 

2 mg/L meropenem 16.0 10.2 12.1 6.00 6.04 4.14 

Combination of 

both 
8.33 10.2 10.7 6.30 6.13 3.31 

12 

65 mg/L Zn 19.2 7.12 11.9 10.8 35.4 67.1 

2 mg/L meropenem 37.3 6.48 3.20 7.97 41.9 69.3 

Combination of 

both 
20.2 1.62 3.33 6.86 67.6 88.5 

Table continued on next page.
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Day Agar amendments Percentage (%) of colonies showing resistance 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem and 2 

mg/L Zn (R4) 

2 mg/L 

meropenem and 

20 mg/L Zn (R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

19 65 mg/L Zn 2.76 28.6 22.1 12.4 82.3 75.2 

 2 mg/L meropenem 3.82 40.4 18.2 23.1 25.7 69.3 

 Combination of 

both 
1.15 5.71 8.90 10.1 30.2 59.1 

27 65 mg/L Zn 8.75 6.44 41.8 8.41 4.30 29.7 

 2 mg/L meropenem 1.26 0.55 1.27 27.3 1.66 29.7 

 Combination of 

both 
0.04 0.01 1.43 1.65 0.83 15.3 
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Table C-4 Percentage (%) of colonies in the liquid effluents resistant to 65.0 mg/L Zn, 2.00 mg/L meropenem and 2.00 mg/L meropenem and 65.0 

mg/L Zn for each rotating tubular reactor on days 6, 12, 19 and 27. 

Day Agar amendments Percentage (%) of colonies showing resistance 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem and 2 

mg/L Zn (R4) 

2 mg/L 

meropenem and 

20 mg/L Zn (R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

6 

65 mg/L Zn 4.81 6.01 13.6 21.5 37.5 39.8 

2 mg/L meropenem 1.42 11.5 3.10 17.8 13.3 38.7 

Combination of 

both 
0.79 8.65 2.99 11.3 12.2 38.4 

12 

65 mg/L Zn 14.8 19.1 3.55 10.1 63.1 82.0 

2 mg/L meropenem 3.92 13.1 1.10 9.60 29.5 62.8 

Combination of 

both 
4.62 4.94 1.10 10.8 27.8 99.0 

Table continued on next page.
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Day Agar amendments Percentage (%) of colonies showing resistance 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem and 2 

mg/L Zn (R4) 

2 mg/L 

meropenem and 

20 mg/L Zn (R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

19 

65 mg/L Zn 9.53 41.2 20.3 19.0 65.0 73.9 

2 mg/L meropenem 1.93 20.6 5.77 40.0 34.5 87.5 

Combination of 

both 
0.60 7.05 5.63 15.3 39.2 68.6 

27 

65 mg/L Zn 4.00 11.3 8.21 18.5 23.3 30.6 

2 mg/L meropenem 0.49 15.5 1.12 12.0 12.5 16.7 

Combination of 

both 
0.20 4.02 1.11 5.99 9.6 16.6 
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Table C-5 The concentrations of Zn in the raw influent2, upper and lower biofilms (mg/kg dry sludge) and the liquid effluents (mg/L) of each rotating 

tubular reactor on days 6, 12, 19 and 27. 

Day Sample Concentration of Zn (mg/kg for biofilms and mg/L for liquid effluents) 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem and 2 

mg/L Zn (R4) 

2 mg/L 

meropenem and 

20 mg/L Zn (R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

6 

Upper biofilm 409 265 54100 17600 202000 198000 

Lower biofilm 623 634 7770 9880 46100 33800 

Liquid effluent <0.011 <0.011 0.011 0.03 0.52 3.22 

12 

Upper biofilm 390 1410 3870 65700 381000 307000 

Lower biofilm 713 569 12000 19800 113000 505000 

Liquid effluent <0.01 <0.01 0.12 0.03 0.33 1.40 

1Below detection limit of 0.01 mg/ L Zn; 2Raw influent below detection limit of 0.01 mg/L Zn.  

Table continued on next page.
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Day Sample Concentration of Zn (mg/kg for biofilms and mg/L for liquid effluents) 

  Control (R1) 
2 mg/L 

meropenem (R2) 
2 mg/L Zn (R3) 

2 mg/L 

meropenem and 2 

mg/L Zn (R4) 

2 mg/L 

meropenem and 

20 mg/L Zn (R5) 

2 mg/L 

meropenem and 

100 mg/L Zn (R6) 

19 

Upper Biofilm 393 446 38200 105000 310000 583000 

Lower biofilm 279 563 2810 24200 22700 591000 

Liquid effluent 0.03 0.02 0.28 0.07 0.29 3.56 

27 

Upper Biofilm 565 421 68500 57000 128000 506000 

Lower biofilm 643 543 38200 21000 167000 373000 

Liquid effluent <0.01 <0.01 0.04 0.04 0.44 1.86 

1Below detection limit of 0.01 mg/ L Zn; 2Raw influent below detection limit of 0.01 mg/L Zn. 
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Table C-6 Relative abundances of Intl1 genes in the raw influent, upper and lower biofilms and liquid effluent of each rotating tubular reactor on days 

6, 12, 19 and 27. All values were normalised to 16S rDNA gene abundances to account for differences in background local gene abundances. 

Day Sample Logarithmic gene abundances of Intl1 (copies/16S rDNA genes) 

  Raw influent Control (R1) 

2 mg/L 

meropenem 

(R2) 

2 mg/L Zn 

(R3) 

2 mg/L 

meropenem 

and 2 mg/L Zn 

(R4) 

2 mg/L 

meropenem 

and 20 mg/L 

Zn (R5) 

2 mg/L 

meropenem 

and 100 mg/L 

Zn (R6) 

6 

Upper Biofilm 0.00E+00 1.45E+00 7.60E-01 1.45E+00 8.48E-01 1.54E+00 9.31E-01 

Lower biofilm  1.25E+00 7.39E-01 1.38E+00 7.72E-01 1.38E+00 7.15E-01 

Liquid effluent  0.00E+00 0.00E+00 7.34E-01 0.00E+00 7.22E-01 7.82E-01 

12 

Upper Biofilm 7.02E-01 0.00E+00 0.00E+00 8.28E-01 0.00E+00 6.46E-01 0.00E+00 

Lower biofilm  0.00E+00 8.09E-01 7.97E-01 5.94E-01 7.80E-01 7.60E-01 

Liquid effluent  6.77E-01 7.28E-01 0.00E+00 7.17E-01 0.00E+00 0.00E+00 

Table continued on next page.
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Day Sample Logarithmic gene abundances of Intl1 (copies/16S rDNA genes) 

  Raw influent Control (R1) 

2 mg/L 

meropenem 

(R2) 

2 mg/L Zn 

(R3) 

2 mg/L 

meropenem 

and 2 mg/L Zn 

(R4) 

2 mg/L 

meropenem 

and 20 mg/L 

Zn (R5) 

2 mg/L 

meropenem 

and 100 mg/L 

Zn (R6) 

19 

Upper Biofilm 8.90E-01 6.83E-01 6.70E-01 1.26E+00 9.27E-01 1.26E+00 7.37E-01 

Lower biofilm  7.32E-01 0.00E+00 6.75E-01 0.00E+00 6.93E-01 7.18E-01 

Liquid effluent  9.78E-01 7.39E-01 7.88E-01 8.71E-01 8.64E-01 0.00E+00 

27 

Upper Biofilm 8.97E-01 1.21E+00 1.12E+00 1.13E+00 9.31E-01 9.43E-01 8.47E-01 

Lower biofilm  6.83E-01 7.18E-01 1.38E+00 7.39E-01 0.00E+00 7.40E-01 

Biofilm Lower 4  0.00E+00 0.00E+00 7.92E-01 6.88E-01 7.01E-01 6.73E-01 
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Table C-7 Relative abundances of bla-NDM-1 genes in the raw influent, upper and lower biofilms and liquid effluent of each rotating tubular reactor on 

days 6, 12, 19 and 27. All values were normalised to 16S rDNA gene abundances to account for differences in background local gene abundances. 

Day Sample Logarithmic gene abundances of bla-NDM-1 (copies/16S rDNA genes) 

  Raw influent Control (R1) 

2 mg/L 

meropenem 

(R2) 

2 mg/L Zn 

(R3) 

2 mg/L 

meropenem 

and 2 mg/L Zn 

(R4) 

2 mg/L 

meropenem 

and 20 mg/L 

Zn (R5) 

2 mg/L 

meropenem 

and 100 mg/L 

Zn (R6) 

6 

Upper Biofilm 8.54E-01 1.19E+00 8.14E-01 1.18E+00 8.25E-01 1.19E+00 8.50E-01 

Lower biofilm  1.24E+00 8.36E-01 1.25E+00 8.16E-01 1.17E+00 7.74E-01 

Liquid effluent  7.82E-01 7.84E-01 8.05E-01 8.45E-01 7.92E-01 7.95E-01 

12 

Upper Biofilm 7.73E-01 7.31E-01 6.81E-01 6.66E-01 7.68E-01 6.11E-01 6.55E-01 

Lower biofilm  7.81E-01 7.24E-01 7.08E-01 7.14E-01 8.41E-01 8.35E-01 

Liquid effluent  7.44E-01 7.67E-01 8.17E-01 7.78E-01 7.56E-01 7.75E-01 

Table continued on next page.
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Day Sample Logarithmic gene abundances of bla-NDM-1 (copies/16S rDNA genes) 

  Raw influent Control (R1) 

2 mg/L 

meropenem 

(R2) 

2 mg/L Zn 

(R3) 

2 mg/L 

meropenem 

and 2 mg/L Zn 

(R4) 

2 mg/L 

meropenem 

and 20 mg/L 

Zn (R5) 

2 mg/L 

meropenem 

and 100 mg/L 

Zn (R6) 

19 

Upper Biofilm 7.06E-01 7.06E-01 5.62E-01 5.04E-01 7.99E-01 1.12E+00 7.50E-01 

Lower biofilm  7.95E-01 8.83E-01 7.33E-01 7.12E-01 7.57E-01 7.65E-01 

Liquid effluent  7.31E-01 6.56E-01 8.07E-01 8.75E-01 8.48E-01 7.67E-01 

27 

Upper Biofilm 8.82E-01 1.17E+00 1.05E+00 1.01E+00 9.26E-01 9.22E-01 8.73E-01 

Lower biofilm  7.56E-01 7.21E-01 1.14E+00 7.75E-01 7.83E-01 7.06E-01 

Biofilm Lower 4  7.13E-01 7.48E-01 7.75E-01 6.95E-01 7.41E-01 7.08E-01 

 


