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Abstract 

Primary Sjögren’s syndrome (pSS) is an autoimmune disease of the exocrine glands. The 

syndrome is characterized by many systemic features, including a markedly increased risk 

of lymphoma development. PSS-associated lymphoma was first reported in 1963, however, 

the mechanisms and the risk factors of lymphoma development in pSS patients remain 

incompletely understood. The aim of my project is to identify a whole-blood gene 

expression signature in pSS-associated lymphoma. To achieve this goal, I first evaluated 

the effect of the depletion of the abundant globin mRNA in whole-blood samples on 

microarray analyses of pSS. Then I prepared samples (globin mRNA depleted samples) 

from a “Discovery cohort” which consisted of five subject groups (“pSS (non-lymphoma)”, 

“pSS-associated lymphoma”, “pSS-paraproteinemia”, “pSS-other cancers” and “healthy 

controls”) to identify a list of differentially expressed genes (DEGs) between the “pSS 

(non-lymphoma)” and the “pSS-associated lymphoma” groups.  The next step was to 

confirm the differential expression of these genes using qRT-PCR. This has led to the 

identification of a potential gene expression signature for pSS-associated lymphoma. To 

further explore the role of these genes in the pathogenesis of pSS-associated lymphoma, I 

performed pathway analysis using various algorithms provided by Ingenuity Pathway 

Analysis (IPA). I also compared the microarray data of different subject groups to 

investigate whether the potential gene signature was “specific” for pSS-associated 

lymphoma.  I then validated the potential transcriptomic signature “biologically” using an 

independent cohort (the “Validation cohort”) consisting of two subject groups – “pSS 

(without lymphoma) and “pSS-associated lymphoma”. Moreover, the potential biosignature 

was tested in a group of pSS patients with untreated lymphoma. Prediction modelling was 

used to identify the important genes within the potential biosignature that best predict the 

development of pSS-associated lymphoma.  

I showed that globin mRNA depletion of whole-blood samples provided potentially more 

sensitive microarray data compared with paired non–globin RNA depleted samples. From 

the microarray analysis of the “Discovery cohort”, 68 DEGs were identified between the 

lymphoma and non-lymphoma groups (68-DEGs-Mi). qRT-PCR confirmed the differential 

expression of 26 genes (26-DEGs-MiPCR). Biological validation with an independent 



xv 
 

cohort verified 3 genes (3-gene biosignature), 2 of which were up-regulated (NUDT14, 

MGST3) and 1 gene was down-regulated (BMS1) in pSS-associated lymphoma. Moreover, 

2 genes in addition to NUDT14 (DRAP1, DYNLL1) were also differentially expressed in a 

cohort of pSS patients with untreated lymphoma. Prediction modelling suggested that 

NUDT14 was the most important gene in predicting membership in the pSS-associated 

lymphoma group. Pathway analysis of the differentially expressed genes in pSS-associated 

lymphoma revealed several canonical pathways such as “Aryl Hydrocarbon Receptor 

Signalling,” “Histamine Degradation,” “Unfolded protein response,” “Neuregulin 

Signalling,” and “T Cell Receptor Signalling.” In addition, the Downstream Effects 

analysis revealed the biological functions in pSS-associated lymphoma and the Upstream 

Regulators analysis investigates possible gene regulators. Moreover, comparisons of 

microarray gene-expression data between other pSS subgroups suggest the DEGs were 

unique to pSS-associated lymphoma. IPA showed that “Interferon Signalling pathway” was 

the top canonical pathway in all pSS subgroups.  Furthermore, similar patterns were seen in 

the IPA Downstream Effects analyses for the “pSS (non-lymphoma)”, “pSS-

paraproteinemia” and “pSS-other cancers” groups, while the “pSS-associated lymphoma” 

group showed a unique pattern, further indicate that a unique gene expression signature 

exist in pSS-associated lymphoma.           
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Chapter 1 

Introduction and literature review 

1.1 Overview of primary Sjögren’s Syndrome (pSS): 

Sjögren's Syndrome (SS) is an autoimmune disease of the exocrine glands, particularly the 

salivary and lacrimal glands. The hallmark features of SS are a dry mouth and dry eyes. In 

addition, a variety of systemic manifestations can be observed. Occurring alone without any 

other associated autoimmune conditions, it is referred to as primary Sjögren's Syndrome 

(pSS); when Sjögren's syndrome occurs with other autoimmune disease, it is referred to as 

secondary Sjögren's Syndrome (sSS) (Kassan and Moutsopoulos, 2004).  

Historically, the first case of a dry mouth and dry eyes (sicca syndrome) was reported by 

W.B. Hadden and J. W. Hutchinson in 1871. Afterward the term ‘Mikulicz disease’, which 

describes the association of parotid, submandibular and lacrimal glands enlargement with 

sicca syndrome, was introduced by Johann von Mikulicz-Radecki  in 1888. In 1925, 

Gougerot’s syndrome was described; this syndrome had the three main symptoms of 

Sjögren’s syndrome - a dry mouth, dry eyes and polyarthritis (Ghafoor, 2012). In 1933, the 

Swedish ophthalmologist Henrik Sjögren demonstrated the clinical symptoms of a dry 

mouth and dry eyes in association with rheumatoid arthritis in 13 of 19 women, and coined 

the term ‘keratoconjunctivitis sicca’ that discriminates the syndrome from xerophthalmia 

that results from vitamin A deficiency. Since then, the term ‘Sjögren's Syndrome’ has been 

widely accepted (Bloch et al., 1992). Henrik Sjögren’s work was published in English in 

1943 and given recognition for his contributions to the field of medicine (Ghafoor, 2012).  

Primary Sjögren's syndrome (pSS) has a population prevalence of about 0.5% with a 9:1 

female to male ratio (Bowman et al., 2004). Recently, a meta-analysis study including 21 

epidemiological studies of pSS which reported data on incidence rates (IRs), prevalence 

rates (PRs) and the female to male ratio was conducted by Qin and colleagues (Qin et al., 

2015). The pooled IRs of pSS was 6.92 (95% CI: 4.98 to 8.86)/100,000 person-years and 

the overall PRs was 60.82 (95% CI: 43.69 to 77.94) cases/100,000 inhabitants. 

Furthermore, within the incidence data the female to male ratio was 9.15 (95% CI: 3.35 to 

13.18), while the female to male ratio in the prevalence data was 10.72 (95% CI: 7.35 to 

15.62) (Qin et al., 2015).  
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pSS is characterized by lymphocytic infiltration in the affected glands. T-cells particularly 

the CD4
+
 subsets represent the majority of the infiltrating cells and seem to be the dominant 

cells in mild lesions, while the proportion of B-cells increased in the more severely affected 

glands (Mavragani and Moutsopoulos, 2010). The production of autoantibodies derived 

from autoreactive B-cells in both the affected glands and peripheral blood is another 

characteristic feature of pSS. Indeed, autoantibodies targeting the ribonucleoproteins Ro 

(SSA) and La (SSB) are included in the classification criteria of pSS by the American-

European Consensus Group (Vitali et al., 2002). In addition to the glandular manifestations, 

extraglandular manifestations also occur including fatigue, musculoskeletal involvement, 

dermatological involvement, pulmonary involvement, gastroenterological involvement, 

renal involvement, neurological involvement, Raynaud's phenomenon, liver involvement 

and lymphoproliferative disease particularly non-Hodgkin lymphoma (NHL) (Kassan and 

Moutsopoulos, 2004). 

Secondary Sjögren’s Syndrome (sSS) is defined as the presence of SS with other 

autoimmune diseases such rheumatoid arthritis (RA), systemic lupus erythromatosus (SLE) 

and others. The prevalence of sSS in RA has been estimated to be as high as 62% (Coll et 

al., 1987). Another study reported that 28% of a group of 307 RA patients has at least one 

positive feature of sicca complex but only 3.6% had sSS (Haga et al., 2012). The 

prevalence of sSS with SLE varies from 6.5–19% (Pan et al., 2008, Patel and Shahane, 

2014). SS may also occur with systemic sclerosis (SSc) and with other systemic and organ-

specific autoimmune diseases (Ramos-Casals et al., 2012). The occurrence of SS with other 

autoimmune disorders increases the number of symptoms and also complicates diagnosis, 

depending on the type of concurrent autoimmune disease. For instance, sSS patients with 

rheumatoid arthritis (RA) often differ clinically, pathologically, serologically and 

genetically from pSS, whereas patients with sSS in association with systemic lupus 

erythromatosus (SLE) are more similar to pSS patients (Peters and Isenberg, 2012).   

1.2 Characteristic features of primary Sjögren’s Syndrome: 

1.2.1 Histological features of primary Sjögren’s Syndrome: 

The characteristic histopathological feature of pSS is lymphocytic infiltration in the 

affected organs (salivary and lacrimal glands). At the initial stages of the disease the 
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infiltrates consist of CD4
+
 T-cells, B-cells, macrophages and dendritic cells (DCs), with 

CD4
+
 T-cells being the dominant cell type (Mavragani and Moutsopoulos, 2010). B-cell 

infiltrates in the glands contribute to the secretion of autoantibodies such as anti-Ro/SSA 

and anti-La/SSB, accompanied by the formation of germinal centre-like structure (GC-like 

structure (Routsias and Tzioufas, 2010). The germinal centre-like structure can be defined 

as the aggregation of immune cells (mostly T- and B-cells) to form a microenvironment or 

structure resembling germinal centres within the affected organs. These GC-like structures 

were identified in 17% of pSS patients and contributed to the production of autoantibodies, 

as patients with GC-like structure had increased levels of autoantibodies (Salomonsson et 

al., 2003). The proportion of different cell types within the cellular infiltrates changes with 

the degree of lesion severity. Although CD4
+
 T-cells are the dominant cells in the 

lymphocytic infiltrates in pSS salivary glands, the proportion of CD4
+
 T-cells proportion 

declines with increased lesion severity. In contrast, the proportion of CD20
+
 B-cells 

increases with increased severity of the lesion. Furthermore, the proportion of FOXP3
+ 

regulatory T-cells (Treg) increases in lesions with intermediate severity, while the 

percentages of CD8
+
 T-cells, follicular dendritic cell  (fDC) and natural killer (NK) cells in 

the inflammatory infiltrate had no correlation with the degree of lesion severity 

(Christodoulou et al., 2010). 

1.2.2 Immunological features of primary Sjögren's syndrome: 

Immune cells in pSS  

Various immune cells are involved in pSS, although much of the research has focused on 

T- and B-cells. Many researchers have studied CD4
+
 T-cells, which consist of T helper 

cells (Th) such as Th1, Th2, Th17, as well as other subtypes such as regulatory cells (Treg). 

It has been reported that Th1/Th2 imbalance is associated with pSS severity locally 

(salivary glands) and systematically (peripheral blood). However, pSS patients cannot be 

distinguished from those with non-pSS sicca syndrome according to this feature (van 

Woerkom et al., 2005, Alunno et al., 2013). Th17 cells rely on TGF-β, IL-6 and IL-1β for 

differentiation. Th17 cells and their products (IL-17, IL-6, IL-23 and IL-12) have also been 

implicated in pSS, as expansion of Th17 cells in pSS patients and animal models of SS as 

well as their role in the immunopathology in pSS has been documented (Katsifis et al., 

2009, Lin et al., 2014). Moreover, it has been suggested that Th17 cells play a critical role 
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in the pathology of pSS in animal models and might be a possible target for pSS treatment 

(Lin et al., 2015). With regard to regulatory T cells, it has been shown that FOXP3
+ 

Tregs 

were increased in severe lesions in the minor salivary gland of pSS patients. Furthermore, a 

reduced number of FOXP3
+ 

Treg
 
cells correlated with adverse predictors of lymphoma 

development such as low C4 levels and salivary gland enlargement (Christodoulou et al., 

2008). Another study recently described a subset of CD4
+
 T-cells, called the follicular T 

helper cells (Tfh), in the labial salivary gland in pSS patients. Tfh contributes to the 

progression of pSS, as these cells play an important role in the development of B-cells, and 

they are associated with the lymphocytic infiltration in pSS and the formation of GC-like 

structure (Maehara et al., 2012, Gong et al., 2014). 

B-cells are among the infiltrating cells in the salivary gland and are also the source of 

autoantibody production. The main types of infiltrative B-cells are type II transitional B-

cells (IgD
high

, CD38
low

) and the marginal zone-like B-cells (Youinou et al., 2010). Other B-

cell types that are found in pSS salivary glands include memory B-cells, naïve B-cells, 

plasmablast and long-lived plasma cells. The frequency of memory B-cells was less than 

other types of B-cells while the long-lived plasma cells seemed to have the highest 

frequency in the salivary gland (Aqrawi et al., 2012). In pSS patients, CD27
+
 memory B-

cells were found to be accumulating in the parotid glands, which might explain the finding 

of the reduction of these cells in peripheral blood (Hansen et al., 2002).  

The interaction between T-cells, B-cells and chemokines is known but not fully understood. 

Recently, Jin and colleagues have reported that B-cell maturation is promoted by 

CD4
+
CXCR5

+
Tfh cells, which are CD4

+
 T-cells that highly express the chemokine receptor 

CXCR5 which control Tfh migration to the salivary gland. In their study, the number of 

CD4
+
CXCR5

+
Tfh cells was increased in both the salivary glands and peripheral blood of 

pSS patients and was associated with increased number of abnormal CD19
+
CD27

+
 memory 

B cells and CD19
+
CD27

high
 plasma cells in the salivary glands, suggesting that these 

CD4
+
CXCR5

+
Tfh cells might contribute to pSS pathogenesis by promoting B-cells 

maturation (Jin et al., 2014a). The newly described regulatory B-cells (Bregs), which 

include CD19
+
CD24

hi
CD38

hi
 IL-10 producing cells, has been implicated in pSS 

(Furuzawa-Carballeda et al., 2013), but their role in pSS is still not clear. 
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Other immune cells that may be associated with the pathology of pSS include dendritic 

cells, monocytes and macrophages. It is likely that all these cells work together with 

various autoantibodies, cytokines and chemokines leading to the development of this 

complex inflammatory disease.              

Autoantibodies in pSS 

The presence of autoantibodies has been well described in autoimmune diseases. In pSS, 

the most commonly associated autoantibodies are antibodies against Ro/SSA and La/SSA 

autoantigens. Ro/SSA has two non-homologous proteins, Ro52/TRIM21 and 

Ro60/TROVE2. The tripartite motif Ro52/TRIM21 participates in many functions such as 

acting as an intracellular Fc-receptor or E3-ubiquitin ligase. When Ro52/TRIM21 serves as 

an E3-ubiquitin ligase, it regulates cell proliferation, as well as the activation and induction 

of cell death. Additionally, it regulates TLR-signaling leading to the production of 

interferon (IFN) through polyubiquitin-mediated degradation of interferon regulatory 

factors (IRFs); (reviewed (Oke and Wahren-Herlenius, 2012, Yang et al., 2009, Kyriakidis 

et al., 2014). The ring-shaped RNA binding protein (Ro60/TROVE2) is involved in RNA 

degradation, promoting cell survival after UV irradiation (Bollain-y-Goytia et al., 2000).  

Researchers have also showed that other type of autoantibodies are linked to pSS. For 

example, antinuclear antibodies (ANA) are found in 83% of pSS patients (Nardi et al., 

2006). Rheumatoid factor (RF) and cryoglobulins are also associated with pSS, present in 

36–74% and 9–15% of pSS sera respectively (Fauchais et al., 2010, Martel et al., 2011). 

The presence of cryoglobulins predicts a poor disease outcome and an increased risk of 

lymphoma development. Anti-centromere antibodies (ACA) are found in 3.7–27.4 % of 

pSS patients (Caramaschi et al., 1997, Hsu et al., 2006). Another autoantibody, anti-

mitochondrial antibody (AMA), has also been implicated in pSS (Zurgil et al., 1992). 

Antibodies against muscarinic receptor (anti-M3R), smooth muscle (anti-SMA)), carbonic 

anhydrase II (anti-CA-II) and cyclic citrullinated peptides (anti-CCP) have also been 

reported in pSS (Manthorpe et al., 1979, Bacman et al., 1996, Takemoto et al., 2005, 

Barcelos et al., 2009).           

Cytokines and chemokines in pSS 

Cytokines are produced by a variety of cells and their role is to regulate both innate and 

adaptive immunity. pSS is a chronic inflammatory disease and the chronic inflammatory 
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responses indicate cytokine imbalance in the affected organs and peripheral blood. The 

predominance of Th2 cytokines occurs in the initial stages of pSS, with disease 

progression, Th1 cytokines become more prevalent (Mitsias et al., 2002). Cytokines can act 

as pro-inflammatory or anti-inflammatory agents. Since the association of IFN in pSS has 

been widely investigated. Type I IFN includes IFN-α and IFN-β, and its upregulation in the 

salivary gland and peripheral blood of pSS patients has been well documented. It is thought 

that plasmacytoid dendritic cells (pDCs) found in pSS salivary glands are responsible for 

the production of IFN-α (Emamian et al., 2009, Oxholm et al., 1992, Gottenberg et al., 

2006, Szodoray et al., 2005). In addition to type I IFN, high levels of type II IFN 

(represented by IFN-γ) have also been documented in both the sera and salivary glands of 

pSS patients and may play a pathological role in pSS (Willeke et al., 2009).  

Another cytokine named Tumour Necrosis Factor alpha (TNF-α), which is produced by 

epithelial cells and CD4
+
 T-cells, correlates with the degree of systemic features of pSS 

(Garcic-Carrasco et al., 2001). Interestingly, both TNF-α and interleukin (IL)-1β are found 

in high levels in pSS patients and may contribute to the chronic inflammatory features of 

pSS within the affected glands (Ek et al., 2006). IL-12 and IL-18, both produced by 

monocytes and macrophages, are elevated in pSS and promote the secretion of IFN-γ 

(Dinarello, 2007, Manoussakis et al., 2007). IL-6 contributes in many functions, it plays a 

role in the differentiation and growth of B-cells and is present at high levels in the sera of 

pSS patients. IL-6 also stimulates T-cells and their transition to cytotoxic T-cells. Finally, 

IL-6 works with TNF-α in contributing to the inflammatory features in the pSS salivary 

gland (Ishihara and Hirano, 2002, Vucicevic Boras et al., 2006). The levels of B-cell 

activating factor (BAFF), known also as the tumour necrosis factor ligand superfamily 

member 13 B (TNFSF13B), are elevated in the serum and salivary glands of pSS patients 

(Szodoray et al., 2004). Moreover, it has also been suggested that A proliferation-inducing 

ligand (APRIL), which is another ligand of the BAFF receptor, may be important in pSS 

pathogenesis (Vosters et al., 2012). Other pro-inflammatory cytokines such as IL-17, IL-21 

and IL-22 and anti-inflammatory cytokines such as IL-4, IL-10 and TGF-β, may also be 

involved in pSS pathogenesis. More recently, over-expression of IL-22 receptor in pSS and 

pSS-associated lymphoma and the regulation of IL-22 by IL-18 have been reported (Ciccia 

et al., 2015).  
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Chemokines are important in the activation and chemotaxis of leucocytes and maintaining 

the Th1/Th2 balance in diseases and conditions such as autoimmune diabetes, atopic 

keratoconjunctivitis and cutaneous lupus erythematosus (Kim et al., 2002, Yamagami et al., 

2005, Wenzel et al., 2005). In pSS, they are involved in the process of recruiting 

inflammatory cells (T-cells) into the salivary gland. For instance, interferon-γ–inducible 10-

kd protein (IP-10) also known as (CXCL10) and monokine induced by IFN-γ (MIG) also 

known as (CXCL9) have been implicated in pSS pathogenesis (Ogawa et al., 2002). 

Another chemokine reported to be associated with pSS is chemokine (C-X-C Motif) Ligand 

13 (CXCL13), which regulates B-cell chemotaxis and serves as a biomarker for pSS 

(Kramer et al., 2013). More recently, it has been reported that high levels of serum 

CXCL13 was associated with lymphoma development and disease activity in pSS patients 

(Nocturne et al., 2015a) 

1.3 The pathogenesis of primary Sjögren's Syndrome: 

The exact aetiology of pSS is unknown. It is believed that one of the potential disease 

triggers is viral infection. Various viruses have been implicated, including Epstein–Barr 

virus (EBV), Human T-Lymphotropic virus 1 (HTLV-1) and retroviruses (Ramos-Casals et 

al., 2002, James et al., 2001, Terada et al., 1994, Lee et al., 2012).  Another aetiological 

factor is genetic predisposition, in particularly the major histocompatibility complex 

(MHC) class II molecules (Nakken et al., 2001). There is strong evidence for a relationship 

between the development of pSS and polymorphisms of MHC class II molecules. In 

European pSS patients, the production of anti-SSB/La autoantibodies correlates with the 

presence of human leukocyte antigen (HLA)-DQ heterodimer and is highly associated with 

HLA-DQB1*02 and HLA-DQA1*0501 allele (Tzioufas et al., 2002). HLA-DR2, DR3, and 

DQ8 are correlated with T-cell and B-cell responses to the human Ro60 molecules in mice 

(Paisansinsup et al., 2002). Meta-analyses of STAT4 rs7574856 single nucleotide 

polymorphism (SNP) showed a significant effect of the T allele on pSS development, 

implicating the gene in pSS pathogenesis (Palomino-Morales et al., 2010). Furthermore, it 

has been suggested that IRF-5, in particular the IRF5 rs2004640 T allele, may represent a 

genetic susceptibility allele but this finding requires confirmation using a bigger population 

(Miceli-Richard et al., 2007). Lessard and colleagues (2013) conducted a genome–wide 

association study (GWAS) to identify new risk loci that are important in the development 
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of pSS. In this study, the association of HLA region at 6p21 was revealed. In addition, new 

association were established as all of the associations identified surpassed the genome-wide 

significant (GWS) threshold (p= 5 × 10
-8

) including the interferon regulatory factor 5 

(IRF5), Signal transducer and activator of transcription 4 (STAT4), IL-12A, Family with 

sequence similarity 167, member A- B lymphoid kinase (FAM167A-BLK), chemokine (C-

X-C motif) receptor 5 (DDX6-CXCR5) and TNFAIP3 interactive protein 1 (TNIP1). 

Moreover, 8 associations were identified (statistically significant in the meta-analysis) but 

they did not exceed the GWS threshold, these associations were TNFAIP3, PTTG1, 

PRDM1, DGKQ, FCGR2A, IRAK1BP1, ITSN2, and PHIP (Lessard et al., 2013). In another 

study, GWAS experiment was performed in three stages (discovery and 2 replication 

stages), using samples from pSS patients and controls in Han Chineses. The previously 

identified associations of STAT4, TNFAIP3 and the MHC regions with pSS in Europeans 

were also confirmed in the Han Chinese samples. In addition, a new susceptibility locus 

represented by GTF2I at 7q11.23 was identified. Moreover, the rs117026326 in GTF2I 

showed the most significant  association with pSS (Li et al., 2013). Furthermore, in another 

study, 2 SNPs in TNIP1 (NF-κB repressor) were identified to be associated with 

seropositive pSS patients. The 2 identified SNPs are rs3792783 and rs7708392 (Nordmark 

et al., 2013).  

The first stage of pSS pathology is lymphocytic infiltration into the salivary and lacrimal 

glands. The cellular infiltrate is composed of T cells (CD4
+
) which form about 50–70% of 

the total population, other immune cells may also be involved and their proportion vary 

according to severity of the disease (Christodoulou et al., 2010). However, some patients 

suffer from glandular dysfunction without having severe inflammatory infiltration. In such 

cases, glandular dysfunction might be the result of an imbalance between pro-inflammatory 

(IFNs, IL-12, IL-18, TNF-α, IL-1β, IL-6, BAFF, IL-17 and IL-23) and anti-inflammatory 

cytokines (Transforming growth factor β (TGFβ), IL-4 and IL-10). The overall 

inflammatory milieu may decrease fluid secretion as well as cause systemic manifestations 

and lymphomagenesis (Roescher et al., 2009). 

Interestingly, vitamin D, which is known for its immune-modulatory function, may also be 

important in pSS. In this regard, the association between decreased levels of vitamin D and 

the presence of neuropathy or lymphoma has been described in pSS as well as in other 

conditions (Agmon-Levin et al., 2012).    
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Overall, exposure to the possible etiological factors leads to an imbalance of the 

immunological and autoimmune responses. Furthermore, glandular epithelial cells 

activation leads to the production of exosomes and apoptotic blebs that contain intracellular 

antigens. These self-antigens are then captured by antigen-presenting cells, which in turn 

may further promote the autoimmune responses. These biological processes eventually lead 

to glandular inflammation (Tzioufas et al., 2012). Figure 1.1 illustrates a possible model of 

pSS pathogenesis.       

 

 

Figure 1.1 A hypothetical model for pSS pathogenesis (Ramos-Casals et al., 2012) 

1.4 Biomarkers in pSS: 

A biomarker can be defined as a substance or a chemical that indicates a certain biological 

state. Biomarkers are useful for the assessment of normal vs. pathological states. 

Definitions of biomarkers in the literature share the same concepts. In 1998, the National 

Institute of Health Biomarkers Definition Working Group, defined a biomarker as ‘a 

characteristic that can be objectively measured and evaluated as an indicator of normal 
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biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention’. The World Health Organization (WHO), the United Nations and the 

International Labour Organization define biomarkers as ‘any substance, structure, or 

process that can be measured in the body or its products and influence or predict the 

incidence of outcome or disease’ (reviewed in (Strimbu and Tavel, 2010). 

The detection of biomarkers in pSS is useful for several reasons. First, the diagnosis of pSS 

involves an invasive procedure (biopsy) that may lead to diagnosis delay. Since pSS affects 

the salivary glands, identification of pSS biomarkers in the saliva is a promising approach. 

Accordingly, Hu and colleagues (Hu et al., 2007) identified protein and genomic 

biomarkers in the saliva of pSS patients. In their study, they have discovered 16 protein 

biomarkers in the whole saliva of pSS patients: 10 were upregulated and 6 were 

downregulated in pSS in comparison to healthy controls. In addition, they investigated the 

presence of genomic biomarkers in saliva. They reported the detection of the expression of 

27 genes including GIP2, which is an IFN-α inducible gene, could differentiate pSS cases 

and controls.  

Recently, a study reported profilins and carbonic anhydrase I (CA-I) as biomarkers in oral 

fluids in pSS, after removing high-abundance proteins in the samples (Deutsch et al., 2015, 

Krief et al., 2011). Profilins, which are actin–binding proteins, play a role in organizing 

microfilaments and cell motility, and regulate the dynamics of the actin polymerization as 

well as the development of embryos. Profilins contribute to many biological processes such 

as membrane trafficking and nuclear activity, as well as tumour formation (Witke, 2004, 

Rawe et al., 2006). Additionally, profilins have also been reported as a biomarker for oral 

cancer (Hu et al., 2008). CA-I is a metalloenzyme that is involved in many biological 

processes; its main role is to catalyse the hydration of carbon dioxide (Supuran, 2008). In 

addition, CA-I was also reported to predict the presence of oral squamous cell carcinoma 

(Liu et al., 2012). Another recent proteomic study revealed that salivary IL-4, IL-5 and 

clusterin were biomarkers of pSS (Delaleu et al., 2015).  

Along with the salivary glands, pSS also affects the lacrimal glands. Therefore, it has been 

proposed that tear fluid may be another source for pSS biomarkers. Tear cathepsin S was 

recently found to be increased significantly in pSS patients. Although cathepsin S activity 

was elevated in tear samples, it did not correlate with anti-Ro/SSA or anti-La/SSB levels in 
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pSS patients (Hamm-Alvarez et al., 2014). Furthermore, PAX6, a corneal lineage 

commitment regulator, is down-regulated in pSS which is associated with ocular surface 

damage in pSS patients depending on the levels of inflammation. Thus, PAX6 has been 

suggested to be a biomarker for ocular damage in pSS (McNamara et al., 2014). Several 

other biomarkers have also been reported in pSS. Many studies have shown that IFN type I 

activation is a common feature in pSS (Bave et al., 2005, Brkic et al., 2013, Brkic and 

Versnel, 2014). Moreover, myxovirus resistance protein A (MxA), which is a marker of 

type I IFN activity, correlates with disease activity and is reduced by IFN inhibitors such as 

hydroxychloroquine (Maria et al., 2014).  

Regarding genomic biomarkers, the contribution of epigenetics was investigated in pSS 

including DNA methylation, histone modification and microRNA (miRNA) (Konsta et al., 

2014). Several studies have been performed in order to identify miRNA biomarkers in pSS. 

For instance, miRNA-768-3p and miRNA-574 were found to be associated with salivary 

gland dysfunction (Alevizos et al., 2011). In addition, miRNA-146a was significantly 

elevated in pSS patients peripheral blood mononuclear cells (PBMCs) as well as in 

PBMCs, the salivary and lacrimal glands of SS-prone mice and WT C57BL/6J mice 

(Pauley et al., 2011). Another miRNA, miR-5100, was reported to be a biomarker for 

salivary gland function in pSS (Tandon et al., 2012).  

 

1.5 The diagnosis of primary Sjögren’s Syndrome: 

In 1993, the preliminary criteria for the classification of Sjögren's Syndrome were proposed 

(Vitali et al., 1993). Later on in 2002, the American-European Consensus Group (AECG) 

revised these to produce a more reliable set of criteria that enable a more accurate diagnosis 

for the syndrome. The AECG classification criteria include 6 criteria—ocular symptoms, 

oral symptoms, ocular signs, histopathology of minor salivary gland biopsies, salivary 

gland involvement and autoantibodies (Table 1.1) (Vitali et al., 2002). To fulfil the AECG 

criteria, a subject has to fulfil a minimum of 4 out of 6 criteria, of which must include either 

positive histopathology or autoantibodies or both. A subject fulfilling 3 out of the 4 

objective criteria can also be classified as having pSS.        

A new set of classification criteria were proposed recently by the American College of 

Rheumatology (ACR), led by investigators of the Sjögren’s International Collaborative 
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Clinical Alliance (SICCA) (Shiboski et al., 2012). The classification criteria proposed by 

SICCA are illustrated in Table 1.2. The ACR classification requires the fulfilment of at 

least 2 out of 3 criteria.  

The ACR classification criteria include the addition of IgG4-related disease as an exclusion 

criterion, as IgG4-related disease mimics pSS in some features (Masaki et al., 2009). The 

exclusion criteria of the ACR classification criteria include: History of head and neck 

radiation treatment, Hepatitis C infection, AIDS, Sarcoidosis, Amyloidosis, Graft versus 

host disease and IgG4-related disease (reviewed in (Fazaa et al., 2014). An ACR-EULAR 

working group is currently developing a revised set of ACR-EULAR criteria, with the aim 

of unifying the AECG and ACR criteria. 

Table 1.1 AECG classification criteria for primary Sjögren’s Syndrome(Vitali et al., 

2002) 

AECG classification criteria for Sjögren’s syndrome  

I. Ocular symptoms: a positive response to at least one of the following questions: 

1. Have you had daily, persistent, troublesome dry eyes for more than 3 months? 

2. Do you have a recurrent sensation of sand or gravel in the eyes? 

3. Do you use tear substitutes more than 3 times a day? 

II. Oral symptoms: a positive response to at least one of the following questions: 

1. Have you had a daily feeling of dry mouth for more than 3 months? 

2. Have you had recurrently or persistently swollen salivary glands as an adult? 

3. Do you frequently drink liquids to aid in swallowing dry food? 

III. Ocular signs—that is, objective evidence of ocular involvement defined as a positive result for at 

least one of the following two tests: 

1. Schirmer’s I test, performed without anaesthesia (<5 mm in 5 minutes) 

2. Rose bengal score or other ocular dye score (>4 according to van Bijsterveld’s scoring system) 

IV. Histopathology: In minor salivary glands (obtained through normal-appearing mucosa) focal 

lymphocytic sialoadenitis, evaluated by an expert 

histopathologist, with a focus score >1, defined as a number of lymphocytic foci (which are adjacent to 

normal-appearing mucous acini and contain more than 50 lymphocytes) per 4 mm
2
 of glandular tissue 

V. Salivary gland involvement: objective evidence of salivary gland involvement defined by a positive 

result for at least one of the following diagnostic tests: 

1. Unstimulated whole salivary flow (<1.5 ml in 15 minutes) 

2. Parotid sialography showing the presence of diffuse sialectasias (punctate, cavitary or destructive   pattern), 

without evidence of obstruction in the major ducts 

3. Salivary scintigraphy showing delayed uptake, reduced concentration and/or delayed excretion of tracer 

VI. Autoantibodies: presence in the serum of the following autoantibodies: 

1. Antibodies to Ro(SSA) or La(SSB) antigens, or both 
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Table 1.2 Classification criteria proposed by the Sjögren International Collaborative 

Clinical Alliance Group (SICCA). A patient can be classified as having pSS when there 

are at least 2 out of the 3 of the following criteria (Shiboski et al., 2012) 

Classification criteria  

 Positive serum anti-SSA/Ro and/or anti-SSB/La or (positive rheumatoid factor and 

antinuclear antibodies with titre ≥1:320) 

 Labial salivary gland biopsy exhibiting focal lymphocytic sialadenitis with a focus 

score ≥1 focus/4 mm
2
 

 Keratoconjunctivitis sicca with ocular staining score ≥ 3 (assuming that individual is 

not currently using daily eye drops for glaucoma and has not had corneal surgery or 

cosmetic eyelid surgery in the last 5 years) 

 

1.5.1 The UK primary Sjögren's Syndrome Registry (UKPSSR): 

The UK primary Sjögren's Syndrome Registry (UKPSSR) was established in 2009. To 

date, it consists of a cohort of over 800 pSS patients recruited from 35 centres from the UK. 

All patients fulfil the AECG classification criteria and the clinical data that have been 

collected in the registry are provided in Table 1.3. All information is stored in a secured 

database in an anonymised manner. The samples that have been collected include 

peripheral blood mononuclear cells, whole blood RNA, DNA and serum samples. In 

addition, age- and sex-matched healthy controls are also being recruited, with over 350 

recruited to date (Ng et al., 2011). 
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Table 1.3 The clinical and outcome measure data collected for the UKPSSR (Ng et al., 

2011) 

Clinician’s assessment Patient-reported outcome 

AECG classification criteria 

Demographics 

Treatment (pharmacological and non-

pharmacological) 

Comorbidity 

Disease activity 

  ESSDAI 

  SCAI 

  SSDAI 

Disease damage 

  SDI 

  SSDDI 

Optional 

  Cardiovascular risk assessment 

Symptom assessment 

  PROFAD-SSI 

  ESSPRI 

  Epworth Sleepiness Scale 

  Orthostatic symptoms scale 

Quality of life 

  EQ-5D 

  SF-36 

Anxiety and depressive symptoms 

  HADS 

Optional 

  Autonomic symptoms (COMPASS) 

  Cardiovascular risk 

  Lifestyle (smoking, physical activity) 

Clinician’s assessment Patient-reported outcome 

1.6 The treatment of primary Sjögren’s Syndrome: 

Currently there is no effective treatment for the syndrome and that in part is because the 

exact aetiology that triggers the disease is unknown. It is important for patients to be aware 

of the symptoms and the consequences so that general measures can be taken by the 

patients, such as strict maintenance of dental hygiene, avoidance of smoking and dry 

environments and the application of eye ointments and petroleum jelly on the lips 

(Venables, 2004). In addition, fluid replacement is often used for alleviating the sicca 

symptoms (Talal, 1991). Oral pilocarpine may be helpful in improving symptoms but not in 

objective measures such as Schirmer’s test (Tsifetaki et al., 2003). Pilocarpine as well as 

cevimeline are being used for xerostomia symptoms in pSS. Both medications stimulate the 

M1 and M3 receptors in the salivary glands and therefore enhance the secretary function 

(Fox et al., 2001, Fife et al., 2002). Other medications may be used for both glandular and 

extra-glandular manifestations. These medications include corticosteroids and other 
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immunomodulatory drugs such as: hydroxychloroquine, which may be effective in 

reducing salivary gland inflammation (Tishler et al., 1999); methotrexate (Winzer and 

Aringer, 2010); and cyclophosphamide (Mavragani and Kassan, 2012). Other 

immunomodulatory drugs such as leflunomide, interferon-α, mizoribine, mycophenolic 

acid, rebamipide, cladribine and fingolimod have also been tried in pSS treatment (Carsons, 

2012) but none of these medications are commonly used in clinic. Finally, the use of 

biological therapies in pSS is gaining interest among clinicians, researchers and the 

pharmaceutical industry. For instance, rituximab (RTX), an antibody against CD20 

expressed on most B-cell surface and B-cell lymphoma cells, is being investigated as a 

treatment for pSS with or without lymphoproliferative disorders (Somer et al., 2003, 

Quartuccio et al., 2009). Seror and colleagues reported that RTX treatment showed a good 

efficacy in 4 out of 5 pSS-associated lymphoma patients and 9 out 11 pSS patients with 

systemic features. Moreover, RTX treatment increased the level of BAFF along with B cell 

biomarkers level’s decline (Seror et al., 2007). The efficacy of RTX treatment in pSS 

patients was evaluated in a placebo-controlled randomised controlled trial (RCT), which 

consist of 120 patients with recent disease onset. In addition, all patients had visual 

analogue scales (VAS) > 50 mm in at least 2 out of 4 of global disease, pain, fatigue and 

dryness. Primary endpoint was measured at 24 weeks. Although RTX treatment did not 

show significant improvement in disease activity or symptoms over placebo at 24 week, 

significant improvement of some symptoms were noted in the RTX group at earlier time 

points (6 weeks) of the trial especially with the fatigue VAS score which was decreased by 

30 mm (Devauchelle-Pensec et al., 2014).     

1.7 Gene expression and primary Sjögren's Syndrome: 

Gene expression studies have been investigated in pSS using different kinds of samples 

including: exocrine gland biopsies, PBMCs and whole blood. Each of these studies will be 

described in more detail below.   

1.7.1 Gene expression studies in the salivary glands: 

The use of microarray profiling to investigate global gene expression in the minor salivary 

glands has been documented in several studies, implicating several chemokines, cytokines, 

the MHC molecules, the Bcl-like gene and the type I interferon (IFN) pathways in pSS. 

These data suggest that both innate and acquired immune system contribute to the pSS 



16 
 

pathology. In one study, CXCL13 and CD3D were overexpressed in more than 90% of pSS 

patients. Furthermore, lymphotoxin β, several MHC genes, cytokines and lymphocyte 

activation factors were also overexpressed. Type I IFNs, which play an important role in 

the protection against viral infections, were among the top 200 genes that were 

overexpressed in the minor salivary glands of pSS patients (Hjelmervik et al., 2005). In 

another study, 23 genes of the IFN pathway, including  Toll like receptor 8 and 9 (TLR8 

and TLR9), were found to be differentially expressed in salivary gland epithelial cells of 

pSS patients. Moreover, stimulation of salivary gland epithelial cells (SGECs) in vitro with 

IFN induced the expression of these genes (Gottenberg et al., 2006). Conversely, some 

genes were reported to be down-regulated such as carbonic anhydrase II and bcl-2 genes 

(Hjelmervik et al., 2005).  

1.7.2 Gene expression studies in lacrimal glands: 

The lacrimal gland is another organ affected in pSS. The main clinical manifestation is the 

reduction of tear secretion, which in turn results in chronic irritation of the eyes and 

keratoconjuctivitis sicca (KCS) (Rose and Mackay, 1998). Studying lacrimal glands faces 

many challenges. First, it is difficult to obtain a biopsy sample from the glands. Second, the 

lacrimal gland biopsy itself might result in more complications for the patient. As a result, 

few studies have investigated gene expression in human lacrimal glands. One study has 

shown that Fas, FasL and BAX genes, involved in promoting lacrimal glands epithelial 

cells apoptosis (pro-apoptotic genes), were up-regulated in pSS lacrimal glands; at the same 

time, the anti-apoptotic gene bcl-2 were down-regulated in the same patients (Wu et al., 

2000). Furthermore, in another study increased expression levels of IFITM1 and BAFF 

(2.5-fold and 3-fold, respectively) were reported in the conjunctival cells of pSS patients 

(Gottenberg et al., 2006). 

The majority of lacrimal gland studies were carried out on animal models, with easier 

access to lacrimal gland sampling. Data from these gene expression studies implicated 

abnormality in inflammatory responses, secretory function of the glands and the gland’s 

structure organization in the disease process. In an animal model using C57BL/6.NOD-

Aec1Aec2 mice, Nguyen and colleagues performed lacrimal glands gene expression 

profiling in the early phase of the disease.  Their experiment collected data at intervals 

ranging from 4–20 weeks and showed that 552 genes were differentially expressed. These 
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included ApoE, Baff, Clu, Ctla4, Fas/Fasl, Irf5, Lyzs, Nfkb, Socs3, Stat4, Tap2, Tgfb1, 

Tnfa, and Vcam1. Most of the differentially expressed genes were related to apoptosis and 

fatty acid homeostasis (Nguyen et al., 2009). Additionally, changes in gene expression were 

observed in the genes encoding the inter-epithelial junction proteins and the focal adhesion 

maturation; these changes led to an increase of infiltration of leukocytes into the lacrimal 

glands in the early stages of dacryoadenitis in C57BL/6.NOD-Aec1Aec2 mice (Peck et al., 

2011). 

1.7.3 Gene expression studies in peripheral blood: 

Peripheral blood consists of various types of cells which might provide a source of 

information about the ongoing biological events in pSS. Few studies have investigated 

peripheral blood gene expression profiling in pSS and pSS-associated lymphoma. Similar 

to the findings from gene expression in the salivary glands, activated IFN pathways were 

documented in these studies (Wildenberg et al., 2008, Emamian et al., 2009, Ogawa, 2010). 

Furthermore, a marked overexpression of the IFN-inducible gene, IFN-α–inducible protein 

27 (IFI27), was reported in one study (Kimoto et al., 2011). In another study, the 

overexpression of the genes that control IFN-α was demonstrated in the blood samples from 

pSS patients, in parallel with the overexpression of these genes in the labial salivary glands 

of these patients (Zheng et al., 2009). A very recent study has shown that miR-155 and the 

suppressor gene of cytokine signalling 1 (SOCS1) were overexpressed in the PBMCs of 

pSS patients (Chen et al., 2015a). The published peripheral blood gene expression data is 

summarised in more details in the introductions of Chapters 3 and 4.  

1.8 Primary Sjögren’s syndrome -associated lymphoma: 

The lymphomas associated with pSS not only develop in the affected organs such as the 

salivary glands, but might also develop in other extra-nodal sites such as the stomach, lungs 

and skin. The commonest type of lymphoma was the extranodal marginal-zone B-cell 

lymphoma of the mucosa-associated lymphoid tissue (MALT) (Voulgarelis et al., 1999). 

Furthermore, different types of non-Hodgkin’s lymphoma have been reported in pSS 

patients in addition to MALT lymphoma including low-grade marginal-zone lymphoma 

(MZL), and high-grade B cell-lymphomas such as diffuse large B cell lymphoma (DLBCL) 

(Royer et al., 1997, Kim et al., 2012). Although the first association of lymphoma with pSS 

was described in 1963, the increased risk of lymphoma development in pSS was not 
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reported until 1978. Lymphoma was found in 4.3% of pSS patients in a study carried out in 

1999 (Voulgarelis et al, 1999). The relative risk (RR) of lymphoma in pSS, especially non-

Hodgkin’s lymphoma (NHL) has been investigated in several studies and in different pSS 

cohorts. The first published study estimated up to a 44 times higher risk in pSS patients 

(Kassan et al., 1978). In two other studies, the RR was 15–20 while another study reported 

an odds ratio of 6.1 (95% CI: 1.4 to 27) (Zintzaras et al., 2005, Theander et al., 2006, 

Smedby et al., 2006). Recently, another study evaluated the risk of lymphoma development 

in pSS in a Norwegian cohort, reporting a 9-time increase in lymphoma development in 

pSS patients than the general population (Johnsen et al., 2013). Recently, a meta-analysis of 

the association of NHL with autoimmune diseases showed a smaller standardized incidence 

ratio (SIR) of 4.9 in pSS patients (Fallah et al., 2014). The SIR of lymphoma was estimated 

in different cohorts since 1978 and a summary of these studies is demonstrated in Table 1.4 

as reviewed in (Nishishinya et al., 2015).  

 

Table 1.4 Standardized incidence ratio of lymphoma in different pSS cohorts 

(Nishishinya et al., 2015) 

Study Name of the study cohorts Number of 

lymphomas 

SIR (95% CI) 

(Kassan et al., 1978)  Connecticut cancer register 4 44.40 (16.70–118.40) 

(Kauppi et al., 1997) Finnish cancer registry 11 8.70 (4.30–15.50) 

(Valesini et al., 1997) Local cancer registers 9 33.30 (17.30–64.00) 

(Davidson et al., 1999)  Cancer registry statistic 3 14.40 (4.70–44.70) 

(Pertovaara et al., 2001) Finnish cancer registry 3 13.00 (2.70–38.00) 

(Theander et al., 2006) National and local registers 11 15.57 (7.80–27.90) 

(Lazarus et al., 2006) Thames cancer registry 11 37.50 (20.70–67.60) 

(Zhang et al., 2010) Local cancer registers 8 48.10 (20.70–94.80) 

(Solans-Laque et al., 2011) GLOBOCAN database 11 15.60 (8.70–28.20) 

(Weng et al., 2012) Nationwide population 

cohort 

23 7.10 (4.25–10.30) 

(Johnsen et al., 2013) Cancer registry of Norway 7 9.00 (7.10–26.30) 

(Fallah et al., 2014) Nationwide cohort (meta-

analysis) 

143 4.90 (4.20–5.80) 

SIR—standardized incidence ratio, CI—confidence interval 
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1.8.1 Risk factors in pSS-associated lymphoma  

Several studies have examined risk factors for NHL development in pSS. These risk factors 

include: recurrent or constant swelling of salivary glands, lymphadenopathy, 

cryoglobulinaemia, splenomegaly, and lymphopenia; other factors include low complement 

factor C4 and C3, skin vasculitis or palpable purpura, monoclonal components in serum or 

urine, peripheral neuropathy, glomerulonephritis, elevated β2-microglobulin, CD4
+
 T-

lymphocytopenia, germinal center-like structures in minor salivary gland biopsies, genetic 

factors, and down-regulation of A20 (Jonsson et al., 2012, Ioannidis et al., 2002).  

Lymphadenopathy, which is an abnormal enlargement of the lymph node, is reported to be 

associated with pSS (Chen et al., 2013). Cryoglobulins, are serum immunoglobulins that 

precipitate at low temperatures. Three types of cryoglobulins have been described: type I 

(simple cryoglobulins) are monoclonal immunoglobulins which are mostly IgM. Type I 

cryoglobulins often accompany haematological disorders and monoclonal gammopathy. 

Type II and III are “mixed” cryoglobulins. Type II cryoglobulins consist of monoclonal 

IgM with rheumatoid factor (RF) activity and polyclonal IgG. Type III cryoglobulins also 

consist of polyclonal IgG, IgM and/or IgA, with one of them having RF activity. Type II 

and III cryoglobulins are associated mostly with systematic and infectious diseases. Mixed 

monoclonal cryoglobulinaemia as well as the monoclonal rheumatoid factor (mRF)–

associated cross-reactive idiotype (CRI) have been reported as predictive factors in pSS-

associated lymphoma (Tzioufas et al., 1996). Consistently, cryoglobulinaemia is associated 

with pSS-associated lymphoma (in particularly low-grade lymphoma) (Charitaki et al., 

2011, Anand et al., 2015). Recently, Quartuccio and colleagues reported the association of 

lymphoma with cryoglobulinaemic vasculitis (CV), but not with cutaneous vasculitis or 

hypergammaglobulinaemic vasculitis (HGV) in pSS patients (Quartuccio et al., 2015). 

Splenomegaly has been reported as a risk factor for lymphoid malignancies (Hall and Kahl, 

2015). The association of splenomegaly, cryoglobulinaemia and lymphopenia as lymphoma 

predictors in pSS has been noted in (Baimpa et al., 2009). Recently, RF was reported along 

with disease activity to be predictors of lymphoma development in pSS patients. These data 

was estimated in 101 pSS-associated lymphoma patients (Nocturne et al., 2015c).  
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1.8.2 Gene expression, biomarkers and predictors in pSS-associated lymphoma: 

Several studies have examined gene expression in pSS-associated lymphoma. The main 

limitation with these studies is their small sample sizes. For instance, Hu and colleagues, 

comparing the gene expression in the parotid glands with pSS-associated lymphoma and 

those without, reported eight candidate genes that discriminated pSS from pSS-associated 

lymphoma (Hu et al., 2009). These genes, listed in order of the highest level of statistical 

significant (lowest p-value), include GRB2, ARHGDIB, CD40, PSMB9, ALDOA, PRDXS, 

PARC and PPIA. The key limitation of this study was the small sample size, with only 8 

pSS and 9 pSS-associated lymphoma samples.  

Several clinical and serological parameters have been proposed as predictors for lymphoma 

development in pSS patients. One of the interesting biomarkers in pSS-associated 

lymphoma is Fms-like tyrosine kinase 3 ligand (Flt-3L). The serum level of Flt-3L was 

elevated in treated pSS-associated lymphoma (history of lymphoma) as well as at time of 

lymphoma diagnosis. Moreover, high levels of Flt-3L were associated with the presence of 

risk factors of lymphoma including low levels of C4 and IgM, high levels of β2-

microglobulin and pSS disease activity, lymphopenia and the presence of purpura (Seror et 

al., 2010, Tobon et al., 2013). Another biomarker that has been reported in pSS-associated 

lymphoma is the B-cell homeostatic chemokine CXCL13. This chemokine was reported to 

be elevated in both the serum and the salivary gland of pSS patients (Kramer et al., 2013, 

Chen et al., 2015b). Furthermore, CXCL13 is known for its association with ectopic 

reactive lymphoid tissue in the salivary gland of MALT lymphoma in pSS (Barone et al., 

2008). In addition, the serum level of CXCL13 was reported to be significantly high in 

pSS-associated lymphoma patients in compare with pSS patients without lymphoma 

(Nocturne et al., 2015a)   

The germinal center (GC)–like structure in the labial salivary glands is described as a 

potential predictive biomarker of lymphoma in pSS: in one study the GC-like structure 

occurred in 25% of pSS patients (43 patients out of 175); within this subgroup 6 patients 

who subsequently developed lymphoma were GC+ at the time of diagnosis. In contrast, 

among those without GC on biopsy at the time of diagnosis (n = 132), only one pSS patient 

subsequently developed lymphoma (Theander et al., 2011). Recently, the International 

Prognostic Index (IPI) score, which is a model to predict the outcome of patients with 

aggressive NHL based on their clinical characteristics prior to treatment, as well as the 
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EULAR SS disease activity index (ESSDAI) were identified as predictive indicators of 

pSS-associated lymphoma development (Papageorgiou et al., 2015b). 

More recently, the role of TNF alpha induced protein 3 (TNFAIP3) in pSS-associated 

lymphoma development was reported in a French cohort. Germline and somatic genetic 

variations of TNFAIP3 were more common in pSS-associated lymphoma compared with 

pSS patients without lymphoma (Nocturne et al., 2013). The TNFAIP3 gene, also known as 

A20, is found on chromosome 6, and encodes an ubiquitin-editing enzyme that regulates 

the activation of the nuclear factor κB (NF-κB), tumour necrosis factor receptor 1, CD40, 

toll-like receptors and IL-1 receptor (reviewed in (Ma and Malynn, 2012)). Furthermore, 

TNFAIP3 polymorphism (TT>A dinucleotide) is associated with other autoimmune 

diseases such as SLE and SSc (Adrianto et al., 2011, Koumakis et al., 2012). Data from 

animal models indicate that A20 deficiency in mice causes a severe inflammatory reaction 

leading to death, which was thought to be a consequence of failure in A20-mediated 

termination of TNF-induced NF-κB responses (Lee et al., 2000). Very recently, the 

germline polymorphism rs2230926 of TNFAIP3 was assessed in an UK cohort and a 

French cohort, which showed that the rs2230926G variant was correlated to pSS-associated 

lymphoma in the UK cohort. Additional confirmation was also obtained by performing 

meta-analysis of the data from both cohorts (Nocturne et al., 2015b). 

There is data suggesting that BAFF might play a role in the formation of ectopic germinal 

center leading to lymphomagenesis. Gottenberg and colleagues reported that high levels of 

BAFF and β2-microglobulin in patients who currently have lymphoma or have a history of 

lymphoma compared with patients without lymphoma (Gottenberg et al., 2013). Moreover, 

the serum level of BAFF was associated with high systemic disease activity, 

lymphoproliferative disorders and B-cell clonal expansion in pSS (Seror et al., 2010, 

Quartuccio et al., 2013). Another mutation in the BAFF receptor (BAFF-R His159Tyr 

mutation) was recently linked to pSS-associated lymphoma. In the literature, the correlation 

of BAFF, lymphoproliferative disorders and autoimmune diseases has been documented. In 

addition, the BAFF-R His159Tyr mutation is also documented in NHL (Ferrer et al., 2009, 

Hildebrand et al., 2010). Therefore, the assessment of BAFF-R His159Tyr mutation in 

pSS-associated lymphoma was compelling. Accordingly, this mutation occurs in 8.6% of 

pSS-associated lymphoma patients compared to 6.2% in pSS patients without lymphoma, 

and 1.7% in healthy controls. These differences between groups were statistically 
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significant. Moreover, the prevalence of this mutation was increased in a group of pSS-

associated lymphoma patients with disease onset below the age of 40 years (Papageorgiou 

et al., 2015a). Recently, polymorphisms of BAFF were reported to play a role in the 

development of lymphoma in pSS, as distinct BAFF gene haplotypes related to the 

increased risk and development of lymphoma in pSS (Nezos et al., 2014).  

Another mutation—the somatic MYD88 Leu265Pro mutation, recently described in 

Waldenström's macroglobulinemia (WM)—was tested in the peripheral blood of pSS 

patients and minor salivary glands biopsies of pSS and pSS-associated lymphoma patients. 

This mutation activates the IRAK-mediated NF-κB signaling. However, pSS and pSS-

associated lymphoma patients did not harbor this mutation, suggesting other mechanisms 

that might be implicated in pSS-associated lymphoma (Voulgarelis et al., 2014).   

1.8.3 Mechanisms of lymphoma development in pSS 

The mechanism underlying lymphoma development in pSS is still not fully understood. 

Nonetheless, studies of lymphomagenesis in pSS have provided several key observations 

and highlighted areas that need further investigation. To date, it is generally believed that 

the degree of disease severity along with B-cell activation and inflammation leads to pSS-

associated lymphoma development (Theander et al., 2006).  

Oncogenes may also play a role in lymphomagenesis in pSS. For instance, anti-p53 

antibodies were found in pSS-associated lymphoma patients, raising the possibility that the 

appearance of anti-p53 antibody may be an indicator of malignant transformation. 

Interestingly, while total inactivation of p53 leads to the progression of high-grade 

lymphoma, partial inactivation of p53 leads to low-grade lymphoma (Mariette et al., 1999, 

Du et al., 1995). 

The generation of immunoglobulins (Ig) starts at the early stages of B-cell development. 

The production and maturation of Ig involve breaking and reconnecting DNA 

(recombination, somatic mutation and isotype switching). These DNA ‘editing’ processes 

during Ig production increase the risk of translocation of oncogenes. One such sample is the 

translocation of the Bcl-2 and c-myc oncogenes into the Ig loci in chromosome 14q32 

(Sugai et al., 1994). This translocation event leads to the formation of mutagenic B-cells 
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with a V(H) mutation, which was found to occur in high frequency in the parotid glands in 

pSS (Zuckerman et al., 2010).  

B-cell activation factor (BAFF), which is thought to play an important role in the 

pathogenesis of pSS, may play an important role in the development of lymphoma in pSS 

patients. Thus, it has been reported that lymphoma develops more commonly in pSS 

patients with high levels of BAFF (Groom et al., 2002). Data suggest that germinal centres 

in the salivary glands of pSS patients can lead to the expansion of oligoclonal B-cell 

population, which in turn may lead to the development of MALT lymphoma (Voulgarelis 

and Moutsopoulos, 2001).  

Taken together, the existing body of evidence suggests that the interactions between 

epithelial cells, T cells and B cells in the salivary glands may provide a platform for 

lymphoma development. Lymphomagenesis is likely to be a multi-step process which 

evolves from polyclonal lymphoproliferation to monoclonal lymphoproliferation to MALT 

lymphoma and eventually to high-grade malignant lymphoma. Lymphoma development in 

pSS may also involve antigen-driven B-cell activation and oncogenic events such as p53 

inactivation and bcl-2 activation (Masaki and Sugai, 2004). Figure 1.2 illustrates a 

hypothetical model of lymphoma development in pSS. 

More recently, a new proposed mechanism for the pathophysiology of pSS-associated 

lymphoma was published by Nocturne and Mariette (Nocturne and Mariette, 2015). This 

new mechanism suggests that the chronic stimulation of polyclonal RF
+
 B-cells 

(autoreactive B-cells that express a B-cell antigen receptor (BCR) with CDR3 that is 

strongly homologous to RF) in the salivary gland by auto-antigens (potentially Ro and La 

or other auto-antigens) might be essential in lymphomagenesis. RF
+
 B-cell survival is 

promoted by BAFF and other cytokines production during pSS. Furthermore, the 

involvement of TNFAIP3 in pSS-associated lymphoma might play a role, as mutation and 

deletion in this gene, which controls NF-κB activation, support RF
+
 B-cell survival. 

Interestingly, genetic mutations of TNFAIP3 or other NF-κB–controlling genes might affect 

these B-cells, resulting in their escape as lymphoma B cells. In addition, the formation of 

GC-like structures might increase the stimulation of autoreactive B-cells that might have an 

oncogenic mutation featured by NF-κB signalling dysregulation. The failure of elimination 

of these auto-reactive B-cells within the GC-like structure may also leads to prolonged 
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activation-induced cytidine deaminase (AICDA or AID) activity (which has a role in RNA-

editing and it is the enzyme that mediates somatic hypermutations of the immunoglobulin 

variable region heavy chain (IgVH)), increasing the risk of oncogenic somatic mutations 

that give these B-cells a feature akin to low-grade B-cell lymphoma. 

 

Figure 1.2 Hypothetical model of pSS-associated lymphoma Chronic stimulation of 

antigen-specific B cells proliferation by external antigens or autoantigens plays a 

significant role in the multi-step process of developing lymphoma in pSS. Step 1—

Inflammation: CD4
+
 T cells, memory B cells and dendritic cells infiltration in the minor 

salivary glands perpetuate chronic inflammation. Step 2—Polyclonal B cell proliferation: 

Increased production of BAFF and IFNs in pSS patients cause the proliferation of 

polyclonal B cell and thereby contribute to the characteristic feature of myoepithelial 

sialadenitis (MESA) or the benign lymphoepithelial lesion. Step 3—Oligoclonal B cell 

proliferation: BAFF specifically play a role in the regulation and survival of B lymphocyte 

proliferation, altered the differentiation of B cells. Chronic stimulation by external antigens 

or autoantigens may drive the proliferation of antigen-specific B cells through the 

immunoglobulin heavy chain (IgVH-CDR3) restricted usage and increase their 

transformation frequency. Step 4—Monoclonal B cell proliferation: During the 

development of B cell, immunoglobulins undergo multiple processes including 

recombination, somatic mutation and isotype switching. Such events may increase the risk 

of the translocation of oncogenes (e.g. Bcl-2 and c-Myc) to the immunoglobulin loci 

(chromosome 14q32). Step 5—Transformation to high grade malignancy: the progression 

from low-grade MALT lymphoma to high-grade lymphoma may be facilitated by the P53 

tumour-suppressor activity defect, amplification of bcl-2 and/or c-Myc, high frequency of 

t(14,18) translocation and trisomy 3 (Dong et al., 2013). 



25 
 

1.8.4 Treatment of pSS-associated lymphoma: 

There are various therapeutic agents available for the treatment of pSS-associated 

lymphoma. Ideally, the treatment should target the autoimmunity and the malignancy at the 

same time. Anti-CD20 monoclonal antibody (e.g., rituximab (RTX)) has been used for the 

treatment of pSS-associated lymphoma. Rituximab depletes B cells and inhibits B-cell 

activation but its precise mechanism of action is still unclear (Abdulahad et al., 2012). 

Another treatment is belimumab, a monoclonal antibody targeting BAFF. Recently, it has 

been shown that belimumab results in the normalisation of the frequency of peripheral 

blood B-cells in pSS (Pontarini et al., 2015). Moreover, treatment of pSS with belimumab 

led to improvement in ESSDAI and ESSPRI scores as well as reduction of B-cell 

biomarkers after 28 weeks (De Vita et al., 2015). Despite these promising agents, more 

research is needed to identify the most effective therapeutic strategies for the management 

of pSS-associated lymphoma.  

1.9 Overall design of the project:  

Most studies have focused on serum protein biomarkers. However, genetic biomarkers for 

pSS-associated lymphoma have not been reported. The primary aim of the project is to 

identify a whole blood gene expression signature in pSS-associated lymphoma that would 

be useful for diagnosis. In order to accomplish this aim, I have used the following 

approach.  

First, because of the predominance of globin RNA in peripheral blood, I needed to 

investigate and optimise the effects of globin mRNA depletion on gene expression profiling 

in pSS. The reason behind performing the optimisation experiment in pSS but not in pSS-

associated lymphoma is the availability of gene expression data in pSS in the literature that 

I can use as a reference. Second, I identified a whole-blood gene expression signature of 

pSS-associated lymphoma using a whole genome microarray on a set of samples that I refer 

to as the ‘Discovery cohort.’ The Discovery cohort consisted of five subject groups—four 

pSS subgroups and a healthy controls group. The four pSS groups were: pSS (without 

lymphoma), pSS-associated lymphoma, pSS with paraproteinemia and pSS with other 

cancers. In this experiment, the microarray data were analysed to identify candidate genes 

in pSS-associated lymphoma by comparing the pSS (without lymphoma) and the pSS-

associated lymphoma groups. The differentially expressed genes were then technically 
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validated using qRT-PCR. A machine learning modelling was performed to predict which 

genes can serve as candidates to predict lymphoma in pSS. Third, an independent set of 

samples (the ‘Validation cohort’) was used to test whether the potential gene expression 

signature (i.e., the differentially expressed genes that were detected in the microarray and 

the qRT-PCR data), was also present in the Validation cohort. In this experiment, I also 

included a set of untreated pSS-associated lymphoma samples to test whether the potential 

gene expression signature identified in the Discovery cohort was also present in untreated 

lymphoma samples. Gene-expression levels were measured in the Validation cohort and the 

untreated pSS-associated lymphoma group using qRT-PCR. In addition, I performed 

biological pathway analysis in the Discovery cohort to explore the most important 

biological pathways in pSS-associated lymphoma using the Ingenuity Pathway Analysis 

(IPA) platform. Finally, I analysed gene expression microarray data and pathway analysis 

for the other pSS subgroups to ensure that the gene expression signatures and the pathway 

analysis data were unique to the pSS-associated lymphoma group. Diagram 1.3 illustrates 

the overall design of the project. 
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Figure 1.3 Overall design of the project. Boxes with the same colour are reported in the same chapter.  
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Chapter 2 

Materials and methods 

2.1 UK primary Sjögren’s syndrome registry (UKPSSR) and sample collection 

The majority of the samples used in this study were taken from the UK Primary Sjögren’s 

Syndrome Registry (UKPSSR) biobank (Ng et al., 2011). All pSS patients fulfil the 

American European Consensus Group (AECG) classification criteria. Each patient and/or 

healthy control has various biological samples to be collected including peripheral blood 

mononuclear cells, serum, RNA and DNA. Throughout my study I have used the RNA 

samples where the whole blood samples were collected into PAXgene blood RNA tubes 

(catalogue number 762165, BD, U.S.A.). The tubes contain reagents that stabilise 

intracellular RNA. The stabilisation of the RNA happens by preventing in vitro RNA 

degradation and gene induction from occurring after blood draw thereby enabling more 

accurate intracellular RNA analysis of the samples. All samples were kept in the PAXgene 

blood RNA tubes at –80 ºC until extraction. The following clinical data were extracted 

from the UKPSSR database for each sample: age, gender, unstimulated oral salivary flow, 

schirmer’s test, presence or absence of anti-Ro/SAA and anti-La/SSB, white cells count, 

Neutrophils count, lymphocytes count, erythrocyte sedimentation rate (ESR), 

immunoglobulin G (IgG), complement component 3 (C3), complement component 4 (C4), 

C-reactive protein (CRP), presence or absence of rheumatoid factor (RF), Sjögren’s 

Syndrome Damage Index (total SSDDI), EULAR Sjögren’s Syndrome Patient Reported 

Index (ESSPRI) and EULAR Sjögren’s Syndrome Disease Activity Index score  (ESSDAI 

score). For the samples in the Discovery and the validation cohorts, a Mann-Whitney U test 

was performed to evaluate any statistical differences on the above clinical data between the 

subject groups. The clinical data are presented in the relevant result sections of chapter 3 

and chapter 4. 
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2.2 Whole blood RNA extraction 

Materials: 

1. PAXgene Blood miRNA kit (catalogue number 763134, PreAnalytiX, Switzerland). The 

kit provides the following materials (some of the buffers were provided as concentrated 

solutions and they were diluted as instructed in the manufacturer’s protocol): 

 PAXgene RNA Spin Columns (red) 

 PAXgene Shredder Spin Columns (lilac) 

 Buffer BM1 (resuspension buffer) 

 Buffer BM2 (binding buffer) 

 Buffer BM3 (washing buffer) 

 Buffer BM4 (washing buffer) 

 Buffer BR5 (elution buffer) 

 Proteinase K 

 RNase-Free DNase set, which includes lyophilized RNase-Free DNase, Buffer RDD 

and RNase-Free water 

 Secondary Hemogard closures 

 RNase-Free water 

 Microcentrifuge and processing tubes  

2. Isopropanol (Catalogue number P/7490/17, Fisher Chemical, UK) 

Equipment: 

1. Pipettes (Labnet International, U.S.A.) 

2. SIGMA 6K15 swing-out rotor centrifuge (Sigma, Germany) 

3. Vortex Genie2 (Scientific Industries, U.S.A.) 

4. Thermomixer Compact, shaker- incubator (Eppendorf, Germany) 

5. Accuspin
TM

 Micro microcentrifuge (Fisher Scientific, Germany) 

6.  Nano-drop ND-1000 spectrophotometer (Nanodrop Technologies,  U.S.A.) 

Method: 

Whole blood total RNA was extracted using the PAXgene blood miRNA kit according to 

the manufacturer’s protocol. Briefly, frozen samples were thawed at room temperature (15–
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ºC) for 4 hours to ensure complete lysis of blood cells; the subsequent procedures of 

RNA extraction were as follows:  

1. Samples were pelleted using a swing-out rotor centrifuge for 10 min at 3000–5000 x g, 

the supernatant was then gently decanted into a container with Virkon solution and the 

rim of the tube dried with a clean paper towel.   

2. The pellets were washed by adding 4 ml RNase-free water, the tubes sealed using a 

new secondary Hemogard closure, and then the pellets were dissolved by vortex 

mixing followed by centrifugation for 10 min at 3000–5000 x g, after which the 

supernatant was discarded by decanting. 

3. The pellets were resuspended with buffer BM1 (350 μl) and vortexed until they were 

visibly dissolved. 

4. Samples were transferred into 1.5 ml microcentrifuge tubes and digested by adding 

buffer BM2 (300 μl) and proteinase K (40 μl) separately, samples then vortexed for 5 s,  

then an incubation for 10 min at 55 ºC in a shaker-incubator at 1400 rpm. 

5. The homogenisation step was then performed by pipetting the samples into PAXgene 

Shredder Spin Columns (lilac) placed in a 2 ml processing tube, which were spun in a 

microcentrifuge for 3 min at 13,000 x g. The supernatant of the flow-through was 

gently transferred into a new microcentrifuge tube to avoid disturbing the pellets. 

6. In order to optimise the binding conditions, Isopropanol (700 μl, 100%, purity grade 

puriss grade (p.a. = 98.5%)) was added and mixed by vortexing. 

7. A PAXgene RNA Spin Column (red) placed into a 2 ml processing tube was used at 

this stage. A portion of the sample (700 μl) was pipetted into the column and 

centrifuged for 1 min at 13,000 x g; this step was repeated with the remaining sample 

after replacing the processing tube with a new one. The RNA and miRNA in the 

sample were bound to the PAXgene silica-membrane in the RNA Spin Column.  

8. Buffer BM3 (350 μl) was then added, centrifuged for 15 s at 13,000 x g followed by 

replacing and discarding the used processing tube.    

9. DNase I was prepared by mixing 10 μl of DNase I stock solution (previously prepared 

by adding 550 μl RNase-free water to 1500 Kunitz units of solid DNase that was 

provided with the kit), with 70 μl of Buffer RDD for each sample, which was then 

flicked gently followed by brief centrifugation.  
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10. Genomic DNA was removed by adding the DNase mixture prepared in step 9 directly 

onto the PAXgene RNA Spin Column membrane and incubating the tube at room 

temperature for 15 min. 

11. Further washing steps were carried out by adding Buffer BM3 (350 μl) and Buffer 

BM4 (500 μl), respectively; each buffer addition was followed by centrifugation for 15 

s at 13,000 x g. The final washing step was carried out by adding Buffer BM4 (500 μl), 

followed by centrifugation for 2 min at 13,000 x g. The processing tubes were replaced 

with a new one after each washing step.  

12. To ensure all buffer solution was removed from the RNA Spin Column membrane, the 

columns were centrifuged for an additional 1 min at 13,000 x g. 

13. The RNA was eluted by placing the RNA Spin Columns in a new 1.5 μl 

microcentrifuge tube and adding 40 μl of Buffer BR5 directly onto the column’s 

membrane. The lid was closed gently and the tube centrifuged for 1 min at 13,000 x g 

and was repeated using another 40 μl Buffer BR5 in the same microcentrifuge tube, 

resulting in 80 μl of extracted RNA. 

14. The A26/A280 and A260/A230 ratios of the eluent (RNA) were assessed using the 

Nano-drop ND-1000 spectrophotometer and the RNA samples were then stored at -80 

ºC.  

2.3 Optimisation of whole blood gene expression signatures in pSS by globin mRNA 

depletion 

2.3.1 RNA clean up and concentration 

Materials: 

1. RNeasy 
® 

MinElute 
® 

Cleanup Kit (catalogue number 74204, QIAGEN, Netherlands). 

The kit provides the following materials (some of the buffers were provided as  

concentrated solutions and they were diluted as instructed in the manufacturer’s 

protocol): 

 RNeasy MinElute Spin Columns 

 Collection tubes with two capacities, 1.5 ml and 2 ml 

 Buffer RLT 

 Buffer RPE 
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2. RNase-Free water  

3. Ethanol 100% (catalogue number E/0650DF/17, Fisher Chemical) 

Equipment: 

1. Pipettes (Labnet International) 

2. Vortex Genie2 (Scientific Industries) 

3. Accuspin
TM

 Micro microcentrifuge (Fisher Scientific) 

4. Nano-drop ND-1000 spectrophotometer (Nanodrop Technologies) 

Method: 

The RNeasy 
® 

MinElute 
® 

Cleanup Kit was used in this experiment. Briefly, 1 μg of RNA 

from each sample was taken and its volume adjusted to 100 μl with RNase-free water. 

Buffer RLT (350 μl) was added and mixed well, followed by 250 μl of 96–100% ethanol 

and mixed by pipetting. Each sample was then transferred to an RNeasy MinElute Spin 

Column that was placed in a 2 ml collection tube and centrifuged for 15 s at 13,000 x g. 

Each Spin Column was placed in a new collection tube, 500 μl of Buffer RPE added and 

centrifuged for 15 s at 13,000 x g. This was followed by a washing step with 80% ethanol 

(500 μl), centrifuged for 2 min at 13,000 x g, and the columns were dried by placing them 

in new collection tubes and centrifuging them for 5 min at full speed with an opened lid. At 

this point, the columns were placed in new 1.5 μl microcentrifuge tubes and 14 μl of elution 

Buffer BR5 was added and centrifuged for 1 min at full speed to elute the concentrated 

RNA. The purity and concentration of the samples (A260/A280 and A260/A230 ratio) were 

measured using a Nano-drop ND-1000 spectrophotometer.  

2.3.2 Globin mRNA depletion 

Materials:  

1. Human GLOBINclear kit (catalogue number AM1980, Ambion Inc., U.S.A.) The kit 

provides the following materials (some of the buffers were provided as concentrated 

solutions and they were diluted as instructed in the manufacturer’s protocol): 

 Globin mRNA depletion reagents, which include Capture Oligo Mix, Streptavidin 

Magnetic Beads, 2X Hybridization Buffer, Streptavidin Bead buffer and Nuclease-

free water. 
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 RNA purification reagents, which include RNA Binding Beads, RNA wash solution 

(concentrated), Elution Buffer, RNA Bead Buffer, RNA Binding Buffer 

(concentrated). 

Equipment: 

1. Pipettes (Labnet International) 

2. Tube Magnetic stand 

3. Vortex Genie2 (Scientific Industries) 

4. Dry bath system (Star Lab, Taiwan) 

5. Accuspin
TM

 Micro microcentrifuge (Fisher Scientific) 

6. Nano-drop ND-1000 spectrophotometer (Nanodrop Technologies) 

 

Pre procedure preparations: 

1. Streptavidin Magnetic Beads preparation: For each sample, 30 μl of beads were added to 

a 1.5 ml microcentrifuge tube and washed by subjecting the beads to a magnet to remove 

the supernatant followed by resuspension with 30 μl of Streptavidin Beads Buffer.  

2. Bead Resuspension Mix: For each sample, a total volume of 20 μl was prepared by 

combining 10 μl of RNA binding beads, 4 μl of RNA Beads Buffer and 6 μl of 

Isopropanol followed by mixing thoroughly by a vortex mixer. 

 

Method: 

The globin RNA was depleted using the Human GLOBINclear kit, which was used 

according to the manufacturer’s protocol, except that a dry bath system instead of an 

incubator was used to warm up the 2X hybridization buffer and the Streptavidin Bead 

Buffer as well as other procedures requiring incubations. The kit uses a hybridization 

capture technology to remove globin mRNA as demonstrated in Figure 2.1. First, the 

globin mRNA was hybridized with the Globin Capture Oligonucleotides; to each 14 μl of 

the sample, 1μl of the Capture Oligo mix and 15 μl of pre-warmed 2X hybridization Buffer 

were added and the mixture allowed to hybridize by incubation for 15 min at 50 ºC. During 
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this stage the biotinylated oligonucleotides in the Capture Oligo mix bind to the globin 

mRNA in the sample. Second, the globin mRNA was removed by adding the pre-prepared 

Streptavidin Magnetic Beads (30 μl). The globin mRNA/biotinylated oligonucleotides were 

bound to the beads via a 30 min hybridization period at 50 ºC. Third, the bound globin 

mRNA/biotinylated oligonucleotides were removed by pulling the Streptavidin Magnetic 

Beads out of suspension using a magnet; the enriched  RNA (Globin mRNA–depleted) that 

was retained in the supernatant was transferred into a new 1.5 ml microcentrifuge tube. 

Fourth, the RNA samples were washed by adding 100 μl RNA Binding Buffer and 20 μl 

pre-prepared Bead Resuspension Mix. The enriched RNA bound to the resuspension beads, 

which were pulled out using a magnet, and the RNA eluted with the Elution Buffer (30 μl) . 

Finally, the purity and concentration of the RNA was measured using a Nano-drop ND-

1000 spectrophotometer and stored at -20 ºC until use. 
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Figure 2.1 Globin mRNA depletion procedure using the Human GLOBINclear kit 
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2.3.2 Evaluation of β-globin RNA expression levels in total RNA samples with or 

without Globin mRNA depletion 

Materials: 

1. M-MLV Reverse Transcriptase kit (Invitrogen, Life Technologies, U.S.A.) 

2. DNase-RNase-free water (catalogue number W 4502, SIGMA) 

3. TaqMan
®
 Gene Expression Master Mix (catalogue number 4369016, Applied 

Biosystems, U.S.A.)  

Equipment:  

1. Pipettes (Labnet International) 

2. Vortex Genie2 (Scientific Industries) 

3. Accuspin
TM

 Micro microcentrifuge (Fisher Scientific) 

4. PTC-200 Peltier Thermal Cycler (MJ Research Inc., U.S.A.) 

5. MicroAmp
®
 Fast Optical 96-well (catalogue number 4346906, Applied Biosystems, 

U.S.A.) 

6. MicroAmp
®
 Optical Adhesive Film (catalogue number 4311971, Applied Biosystems, 

U.S.A.) 

7. Heraeus Megafuge 40 (Thermo Scientific, Germany) 

8. Applied Biosystems 7900HT Real-Time PCR System, U.S.A. 

Method: 

The efficacy of globin mRNA depletion was evaluated using TaqMan qRT-PCR. As the 

amount of total RNA was limited in some samples, we assessed the level of β-globin 

mRNA in 11 paired samples with or without globin mRNA depletion (2 pSS patients, 9 

healthy controls). The forward and reverse primers for the β-globin gene were designed 

using the Universal probe library assay design and their sequences were 5’-

GCACGTGGATCCTGAGAACT-3’ and 5’-CACTGGTGGGGTGAATTCTT-3’ 

respectively. The primers were manufactured by SIGMA-Aldrich. The no. 61 Universal 

probe was used in the RT-PCR reaction. The 18S subunit mRNA sequence was used as a 

housekeeping gene. The step-by-step protocol is described below: 
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Step 1:  Reverse Transcription PCR. A total of 200 ng of RNA (in 8 μl) from each sample 

was used to generate cDNA as described in Table 2.1, based on the number of replicates 

needed for each assay, including an extra amount to allow for pipetting error.  

Step 2:  A 5 μl aliquot of the resultant cDNA solution from each sample was used for qRT-

PCR. The sample’s dilutions used were 1:5 for β-globin, and 1:10000 for 18S. To each 

cDNA sample, 15 μl of RT-PCR master mix were added. The reference volumes of Master 

mix reagents for a single reaction (20 μl) in the RT-PCR shown in Table 2.2. 

Step 3: qRT-PCR data were analysed by normalising the values obtained to the 

housekeeping gene 18S, and the relative expression level of the β-globin gene in the 

samples with or without globin mRNA depletion was calculated.  

 

Table 2.1 The M-MLV Reverse Transcriptase PCR reference volumes and their 

corresponding programs in the thermal cycler  

Component Volume (μl)/reaction 

Step 1: Master Mix 1 

dNTP 3 μl 

Hexamers 1 μl 

 Add 4 μl of Master Mix 1 to each sample 

 Heat to 70 ºC for 5 min. using the thermal cycler  

Step 2: Master Mix 2 

1
st
 strand 5X buffer 4  μl 

DTT 2  μl 

MMLV (M-MLV RT) 0.5 μl 

H2O 1.5 μl 

 Add 8 μl of Master Mix 2 to each sample (total 20 μl) 

 Heat to 37 ºC for 50 min. then 75 ºC for 15 min using the 

thermal cycler  
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Table 2.2 Master mix reagents reference volumes of a single reaction in the RT-PCR .

Component Volume (20 μl)/ reaction 

Forward primer 0.4 μl 

Reverse primer 0.4 μl 

Probe 0.2 μl 

TaqMan Gene Expression Master Mix 10 μl 

H2O 4 μl 

Total volume 15 μl 

 

2.3.4 Illumina Human HT12-v4 Expression BeadChip (Cambridge Genome 

Science/University of Cambridge, UK) 

A total of 48 samples, 24 globin mRNA-depleted samples (G-depleted group) and 24 non-

globin mRNA depleted samples (G non-depleted group) were used in this experiment. Two 

aliquots from each sample were sent for whole genome microarray analysis at the 

Cambridge Genomic Services (CGS), University of Cambridge. The first aliquot contained 

a total of 250 ng of RNA and a second aliquot contained 3 μl from the original sample for 

quality control (QC). RNA quality was assessed by the Aglient 2100 bioanalyzer using a 

special Aglient RNA Nano kit. The Bioanalyzer has software (Agilent 2100 Expert 

Software) for the analysis of the overall integrity of the RNA sample. An RNA Integrity 

Number (RIN score) was generated for each sample on a scale of 1–10 (1=lowest; 

10=highest) as an indication of RNA quality. The 18s/28s ratio and an estimation of RNA 

concentration were also produced. The Total Prep 96-RNA amplification kit (Ambion, Inc., 

U.S.A.) was used to amplify the sample by in vitro transcription of cDNA generated from 

the total RNA and the generation of biotin-labelled cRNA. The biotin-labelled cRNA was 

then used in the direct hybridization assay, which included sequential steps of array 

hybridization, washing, blocking and streptavidin-Cy3 staining as shown in Figure 2.2. The 

Illumina iScan was used to detect Cy3 fluorescence emission and the GenomeStudio 

(version 1.6) was used for the extraction of the raw data. 
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Figure 2.2 Direct Hybridization Assay used in illumina microarray. The left panel is an 

overview of the method and on the right panel is an illustration of the workflow 

(www.illumina.com)  

 

 

Microarray data analysis: 

Microarray data analysis was carried out with the assistance of the Bioinformatics Support 

Unit (BSU) at Newcastle University. The raw gene expression data was received from CGS 

in the form of IDAT files, which are binary data files directly from the microarray scanner. 

The IDAT files were background-corrected in Illumina’s Genome Studio, and exported as a 

sample probe profile that contained data fields specific to bead-level information such as 

bead standard error. The subsequent analysis was performed in R, utilising Bioconductor 

libraries (www.bioconductor.org) (Gentleman et al., 2004). The sample probe profile was 

read into R and pre-processed using the Lumi package (Du et al., 2008). Pre-processing 

steps consisted of a dataset transformation using the variance stabilising transformation 

(VST), and robust spline normalisation (RSN). VST is a log2-like transformation optimised 

for microarray data, and RSN is a normalisation method to help make samples comparable 

to one another. After pre-processing, a QC step was carried out to identify problematic or 

http://www.illumina.com/
http://www.bioconductor.org/
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outlier samples; common metrics were used including: detection p-values, principle 

component analysis (PCA), and unsupervised hierarchical clustering. If samples were 

deemed to be outliers or problematic then they were removed from the analysis and the pre-

processing stages ran again. Annotation of the array probes was mapped using the 

lumiHumanAll.db package, specifically nuID, Illumina ID, gene symbol, and description. 

Differential expression was achieved by fitting linear models using the Limma package 

(Smyth, 2004). Filters for significance were defined as a greater than absolute log2(1.2)-

fold change, and a Benjamini-Hochberg false discovery rate (FDR) corrected p-value of 

<0.05. The results of this analysis were visualised using volcano plots. Pathway analysis 

utilised the KEGG REST API as this is still currently maintained, unlike the Bioconductor 

package. Significant pathways were identified using a hypergeometric test, with an FDR 

adjusted p-value < 0.05. Additionally, Gene Ontology (GO) terms were identified in the 

same manner as pathways, for molecular function (MF), cellular components (CC), and 

biological process (BP). The R scripts for this microarray analysis can be found in 

supplementary table S1. 

2.4 Identification of whole blood gene expression signature of pSS-associated 

lymphoma 

2.4.1 Illumina Human HT12-v4 Expression BeadChip (Cambridge Genome 

Science/University of Cambridge, UK) 

The set of samples used to identify the whole blood gene expression signature of pSS-

associated lymphoma is the Discovery cohort, which consisted of 144 globin mRNA–

depleted subjects. To reduce the potential influence of gender on the transcriptomic 

signature of pSS-associated lymphoma, and since pSS predominantly affects females, I 

chose to use only female subjects. The cohort consists of the following 5 subject groups:   

1. 61 pSS patients without history of lymphoma (primary comparator group) 

2. 16 pSS-associated lymphoma patients  

3. 21 pSS-other cancers patients  

4. 23 pSS-paraproteinemia patients  

5. 23 healthy controls 
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All patients in the pSS-associated lymphoma group had a diagnosis of lymphoma in the 

past and had received treatment for the lymphoma. RNA extraction, depletion of globin 

mRNA, and a whole genome expression microarray analysis were carried out as described 

in section 2.3 with some additional steps, which are explained below.  

Microarray data analysis: 

The analysis of the Discovery cohort microarray data was similar to the protocol used for 

the Globin study, with some additional steps. An additional QC step was performed to 

identify outlier samples, using the arrayQualityMetrics package (Kauffmann et al., 2009). 

Outlier samples were removed from the raw data object and VST, and RSN pre-processing 

steps as previously described were reapplied. Samples with a RNA integrity number (RIN) 

of < 7 were removed, except for pSS-associated Lymphoma samples, since the pSS-

associated lymphoma group size in this experiment was already relatively small. Following 

pre-processing, batch effect was identified and this was corrected for using the ComBat 

function from the SVA package (Johnson et al., 2007). The ComBat function uses an 

empirical Bayes approach to remove a known batch effect. The resulting matrix from 

ComBat is used in the linear model to explore differential expression. The primary 

comparison that I used to identify the whole blood transcriptome of pSS-associated 

lymphoma was between the pSS and the pSS-associated lymphoma group. In the primary 

analysis, all samples with RIN < 7 were excluded in the pSS group. On the other hand, as 

the pSS-associated lymphoma samples were limited, only the technical outliers were 

excluded as the microarray data of these outliers are markedly different from the remaining  

samples and therefore might skew the analysis. In order to reduce the risk of overlooking 

genes that might be important in developing lymphoma in pSS, I performed several sub-

analyses in which different criteria were used for inclusion or exclusion of samples within 

the pSS-associated lymphoma groups based on the quality of the RNA samples and the 

detection as outliers during PCA analysis. More details about these analyses are described 

in Chapter 4. The final list of differentially expressed genes in pSS-associated lymphoma 

was compiled by combining the genes from all sub-analyses and ranking them according to 

their fold change and p-value.  

Finally, additional group comparisons were also performed in order to determine the 

specificity of the gene expression signature identified, these include: 
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1. pSS-associated lymphoma vs pSS-other cancers 

2. pSS-associated lymphoma vs pSS-paraproteinemia 

3. pSS vs pSS-other cancers 

4. pSS vs pSS-paraproteinemia 

5. pSS-other cancers vs pSS-paraproteinemia 

6. pSS vs HC 

7. pSS-associated lymphoma vs HC  

8. pSS-other cancers vs HC 

9. pSS-paraproteinemia vs HC 

In addition to identifying a list of differentially expressed genes, I have also conducted 

pathway analysis using the differentially expressed genes using Ingenuity Pathway 

Analysis (IPA) for all the comparisons. The methods of these additional analyses are 

described in the respective result chapters. The R scripts for this microarray analysis can be 

found in supplementary table S2. 

  

2.4.2 Technical validation of the differentially expressed genes from the microarray 

data by qRT-PCR 

The qRT-PCR was performed using TaqMan
®
 Custom gene expression array plates (Fast 

plates) from Applied Biosystems (Life Technologies, U.S.A.) for the technical validation of 

the potential signature identified from the microarray. Because of the limitations on the 

total amount of RNA available following globin mRNA removal, a total of 61 differentially 

expressed genes (out of 68) were chosen according to the fold change and p-value (higher 

fold changes and lower p-values). In addition, the selection of genes in common among the 

all the analyses (i.e. including the sub-analyses) was considered. Only samples from the 

pSS without lymphoma and pSS-associated lymphoma groups were used in the technical 

validation in all the array plates batches, while, samples from all pSS subgroups were used 

in the first 2 plate batches to evaluate the expression stability of the housekeeping genes.  

The TaqMan
®
 Custom gene expression array plates is a technology in which a fast TaqMan 

gene expression assay (probe and primers sets) is dried-down in a 96-well format plate. 
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Two formats (32-format and 16-format) of the plates were used. The TaqMan array plate 

assay involved two steps: 

1. Converting the RNA into cDNA by RT-PCR. 

2. TaqMan
®
 Custom gene expression array.  

1. Converting the total RNA into cDNA by Reverse Transcription PCR 

Materials: 

1. High-Capacity cDNA Reverse Transcription Kit (catalogue number 4368814, Thermo 

Fisher Scientific, U.S.A.), which includes 10X RT Buffer, 10X RT Random Primers, 

25X dNTP Mix and MultiScribe
TM

 Reverse Transcriptase. 

2. DNase-RNase-free water (catalogue number W 4502, SIGMA) 

Equipment: 

1. Pipettes (Labnet International) 

2. Vortex Genie2 (Scientific Industries) 

3. Accuspin
TM

 Micro microcentrifuge (Fisher Scientific) 

4. Heraeus Megafuge 40 (Thermo Scientific) 

5. PTC-200 Peltier Thermal Cycler (MJ Research Inc.) 

Method: 

1. The kit’s components were thawed on ice. 

2. As a result of limited RNA entities, both globin mRNA-depleted and non-depleted 

samples were used to validate the candidate genes. A total of 44 pSS and 15 pSS-

associated lymphoma globin mRNA-depleted samples with 250 ng of total RNA were 

used to validate 49 deferentially expressed genes. A total of 37 pSS and 8 pSS-

associated lymphoma non-depleted samples with 200 ng of total RNA were used to 

validate another 14 deferentially expressed genes.  For the protocol, 10 μl of each 

sample is required. Therefore, for samples with high RNA concentrations, DNase-

RNase-free water was added to make up the required volume, while for samples with 

low RNA concentrations, the RNA samples were concentrated by precipitation to 

achieve the required volume.  
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3. The RT master mix was prepared by calculating the component volumes as listed in 

Table 2.3, taking into account the total number of reactions and margins of error in 

pipetting. 

4. A volume of 10 μl of the 2X RT master mix was added to each 10 μl sample in a PCR 

micro tube, and mixed well by pipetting. The samples were then centrifuged briefly and 

placed on ice until RT-PCR was performed. 

5. The thermal cycler was programmed according to the conditions listed in Table 2.4. 

 

Table 2.3 The High-Capacity cDNA Reverse Transcription reference volumes of a single 

reaction  

 Component  Volume (μl)/reaction 

10X RT buffer 2 

25X dNTP Mix (100mM) 0.8 

10X RT Random Primers 2 

MultiScribe
TM

 Reverse Transcriptase 1 

Nuclease Free water 4.2 

Total volume per reaction 10 

 

Table 2.4 The High-Capacity cDNA Reverse Transcription thermal cycler conditions  

 Step 1 Step 2 Step 3 Step 4 

Temperature 25 ºC 37 ºC 85 ºC 4 ºC 

Time  10 min 120 min 5 min Continually 

 

 

2. TaqMan
®
 Custom gene expression array 

Materials: 

1. TaqMan
®
 Gene Expression Master Mix (Applied Biosystems)  

2. DNase-RNase-free water (catalogue number W 4502, SIGMA) 
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Equipment: 

1. Pipettes (Labnet International) 

2. Vortex Genie2 (Scientific Industries) 

3. Accuspin
TM

 Micro microcentrifuge (Fisher Scientific) 

4. Heraeus Megafuge 40 (Thermo Scientific) 

5. TaqMan
®
 Custom gene expression array plates (Fast plates) (Applied Biosystems, 

U.S.A.) 

6. MicroAmp
®
 Optical Adhesive Film (Applied Biosystems) 

7. Applied Biosystems 7900HT Real-Time PCR System  

Method: 

a. Housekeeping genes selection: 

The selection of the housekeeping genes (endogenous controls) for the experiment was 

performed using NormFinder (http://moma.dk/normfinder-software), an algorithm that 

ranks a set of candidate normalisation genes according to their expression stability in a 

given sample set and given experimental design (Andersen et al., 2004). The functionality 

of NormFinder can be added directly into Microsoft Excel. In my Discovery cohort dataset, 

32 housekeeping genes (representing 21 unique genes as each gene has several 

corresponding probes in the microarray) from the microarray data were selected by 

NormFinder as candidates. Two genes (YWHAZ and UBC) were identified as the best 

candidate genes for normalisation. In addition, in the first and second batches of the qRT-

PCR array, I included two other housekeeping genes: the first one was ACTB, which had 

the most stable expression value after the YWHAZ and UBC. The second one was the 18S 

subunit, because it is a commonly used housekeeping genes in RT-PCR analysis. After 

performing the first and the second batches of qRT-PCR, the expression levels of the four 

housekeeping genes were compared among the five subject groups using the Mann-

Whitney U Test. The third and fourth plate batched contain only YWHAZ and ACTB (the 

most stable housekeeping genes according to the results of the first two batches). 

 

 

http://moma.dk/normfinder-software
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b. Sample preparations: 

The TaqMan
®
 Custom gene expression array plates require a total cDNA amount between 

1 and 100 ng. Given the limited amount of RNA samples, I chose to use 5 ng cDNA (in 10 

μl) per reaction for the analysis. Equal volumes of cDNA and the TaqMan
®
 Gene 

Expression Master Mix, as shown in Table 2.5, were mixed together by vortex followed by 

a brief centrifugation. The total volumes of cDNA and Master Mix needed for the entire 

experiment was calculated from the total number of TaqMan assays. The preparations were 

placed on ice until the plates were ready. To each well of the array plate, 20 μl of the 

mixture was added before loading the plate into a qRT-PCR instrument using the suitable 

thermal cycling conditions. The genes that I have technically validated for the discovery 

cohort are listed in Table 2.6. 

 

Table 2.5 TaqMan gene expression Master mix reference volumes of a single reaction 

 Component  Volume (20 μl)/ 

reaction 

5 ng cDNA + DNase-free water 10 μl 

2X TaqMan
®
 Gene Expression Master Mix 10 μl 

Total volume 20 μl 
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Table 2.6 TaqMan gene expression assays of the technical validation of the Discovery 

cohort  

Gene 

symbol 

TaqMan assay ID type of gene Gene 

symbol 

TaqMan assay ID Type of gene 

18S Hs99999901_s1 housekeeping gene LGALS1 Hs00355202_m1 DEG 

ACTB Hs99999903_m1 housekeeping gene LRFN3 Hs00225874_m1 DEG 

UBC Hs00824723_m1 housekeeping gene LRIG1 Hs00394267_m1 DEG 

YWHAZ Hs00237047_m1 housekeeping gene MAGED1 Hs00986269_m1 DEG 

ALDH9A1 Hs00997881_m1 DEG MGST3 Hs01058946_m1 DEG 

ATG12 Hs01047860_g1 DEG MYC Hs00153408_m1 DEG 

ATP1A1 Hs00167556_m1 DEG NAT10 Hs01120371_m1 DEG 

BCL11B Hs01102259_m1 DEG NCSTN Hs00950933_m1 DEG 

BMS1 Hs01036249_m1 DEG NUDT14 Hs00418228_m1 DEG 

BTBD11 Hs00537023_m1 DEG OAF Hs00420156_m1 DEG 

C10orf32 Hs00376014_m1 DEG PAF1 Hs00219496_m1 DEG 

CBLL1 Hs01128720_m1 DEG POM121C Hs03406359_mH DEG 

Cd96 Hs00175524_m1 DEG PRKCQ Hs00989970_m1 DEG 

CDR2 Hs00386212_m1 DEG PRPF8 Hs01556852_m1 DEG 

CDV3 Hs00250190_m1 DEG RAB37 Hs03988369_g1 DEG 

CNPY3 Hs00198139_m1 DEG RASGRP1 Hs00996727_m1 DEG 

CYFIP2 Hs00910722_m1 DEG RBL2 Hs00180562_m1 DEG 

DDB1 Hs01096550_m1 DEG RBP7 Hs00364812_m1 DEG 

DRAP1 Hs01012815_g1 DEG RNA28S5 Hs03654441_s1 DEG 

DYNLL1 Hs00853309_g1 DEG RPA2 Hs00358315_m1 DEG 

EHBP1L1 Hs00411094_m1 DEG RRN3 Hs01592557_m1 DEG 

ESYT1 Hs00248693_m1 DEG SEC61G Hs00414142_m1 DEG 

ETS1 Hs00428293_m1 DEG SF3A1 Hs01066327_m1 DEG 

HCFC1R1 Hs01002754_m1 DEG SGK223 Hs00410725_m1 DEG 

HLA-DRB1 Hs99999917_m1  DEG SLC7A1 Hs00931450_m1 DEG 

HNMT Hs02759756_s1 DEG SMARCA2 Hs01030846_m1 DEG 

HNRNPUL1 Hs00199870_m1 DEG SPOCK2 Hs00360339_m1 DEG 

HSP90B1 Hs00427665_g1 DEG SRP14 Hs03055045_g1 DEG 

HSPA9 Hs00269818_m1 DEG SUN2 Hs00391446_m1 DEG 

ITK Hs00950637_m1 DEG UBXN11 Hs00377277_m1 DEG 

KCTD12 Hs00540818_s1 DEG VCP Hs00997642_m1 DEG 

KHDRBS1 Hs00173141_m1 DEG WAC Hs00249774_m1 DEG 

LEF1 Hs01547250_m1 DEG  

* DEGs= differentially expressed genes 
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c. Plate preparations: 

The first step of TaqMan
®

 Custom gene expression array plate preparation was to 

centrifuge the plate shortly, to prevent the loss of the lyophilized primers that are provided 

within each well when the plate is opened. After removing the plate cover, 20 μl of the 

cDNA-master mix mixture was dispensed into the appropriate wells, finally the plate was 

covered with MicroAmp
®
 Optical Adhesive Film and centrifuged shortly. 

d. Running the plate in an RT-PCR instrument: 

The plate was run using the Applied Biosystems 7900HT Real-Time PCR System. The 

software that used was the SDS v2.4.  The details of the PCR program used for the reaction 

are shown in Table 2.7.  

 

Table 2.7 TaqMan gene expression experimental parameters. The reactions were carried 

out using the Applied Biosystems 7900HT Real-Time PCR System 

Experiment parameters Thermal cycling conditions 

Stage Temp. (ºC) Time (min:sec) 

Reaction volume 20μl 

Ramp rate: Standard 

Stage 1 50 2:00 

Stage 2 95 10:00 

Stage 3 

(40 cycles) 

95 0:15 

60 1:00 

 

e. RT-PCR data analysis: 

The data were analysed using SDS RQ Manager 1.2.1. The analysis consisted of several 

steps: 

i. The AQ file was converted to an RQ file. 

ii. In analysing the levels of expression of each gene, the same baseline and threshold were 

used across all the samples. 
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iii. The data was normalised using the most stable “housekeeping” gene (YWHAZ) in the 

dataset as determined by the levels of expression across all subject groups. The relative 

expression level for individual gene to YWHAZ was then estimated. 

iv. Comparisons of the expression level of each candidate gene in the pSS versus pSS-

associated lymphoma groups were made using a non-parametric test (Mann-Whitney U 

Test) and p-values < 0.05 were considered statistically significant. 

2.5 Biological validation of the whole blood gene expression signature in pSS-

associated lymphoma 

A second set of independent samples (the Validation cohort) was used to provide biological 

validation of the potential whole blood gene expression signature in pSS-associated 

lymphoma that were identified in the Discovery cohort. This cohort consisted of 119 pSS 

and 17 pSS-associated lymphoma samples. Moreover, an additional set of 7 pSS-associated 

lymphoma samples was included from patients with pSS-associated lymphoma before 

treatment. Regarding the pSS-associated lymphoma samples, 8 were obtained from 

collaborators at the University of Uppsala, Sweden (2 pSS-associated lymphoma and 4 

untreated pSS-associated lymphoma), and 7 pSS-associated lymphoma samples were 

obtained from collaborators at Stavanger University, Norway. 

2.5.1 RNA clean up and concentration 

Materials: 

1. glycogen solution (catalogue number G 1767, SIGMA) 

2. 3 M sodium acetate (catalogue number S 7899, SIGMA) 

3. Ethanol 100% (catalogue number E/0650DF/17, Fisher Chemical) 

4. Ethanol 70% 

5. Free-DNase-RNase-water (catalogue number W 4502, SIGMA) 

Equipment: 

1. Accuspin
TM

 Micro microcentrifuge (Fisher Scientific) 

2. Nano-drop ND-1000 spectrophotometer (Nanodrop Technologies) 
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Method: 

RNA precipitation was used to concentrate RNA samples. Briefly, 1 μl of glycogen 

solution was added to each sample. Next, 0.1 volume of 3 M sodium acetate were added 

followed by 2 volumes of cold Ethanol 100%. After an overnight incubation at -80 ºC the 

samples were centrifuged (13,000 x g at 4 ºC for 20 min), the supernatant was carefully 

removed and the pellets were washed with 250 μl of 70% ethanol, followed by another 

centrifugation (13,000 x g at 4 ºC for 5 min). The supernatant was removed without 

disturbing the pellets, then the pellets were air-dried for 30 min. The RNA pellets were 

resuspended with 12 μl of free-DNase-RNase-water. The purity and concentration of the 

samples (A260/A280 and A260/A230 ratio) were measured by the Nano-drop ND-1000 

spectrophotometer. 

2.5.2 Biological validation of the microarray data by qRT-PCR 

The TaqMan
®
 custom gene expression plates were used as described previously in section 

2.4.2. Samples from all the groups including 119 from the pSS and 17 from the pSS-

associated lymphoma groups (treated lymphoma) and 7 from the untreated pSS-associated 

lymphoma (untreated lymphoma) were used to validate 24 genes out of the 26 genes that 

were differentially expressed in both microarray and qRT-PCR in the Discovery cohort.  

The genes and their assay IDs are listed in Table 2.8. 

The qRT-PCR data were normalised to the most stable housekeeping gene (YWHAZ), and 

the relative expression levels were calculated. A non-parametric test (Mann-Whitney U 

test) was used  to compared the expression levels of the genes tested between the 

lymphoma groups and the non-lymphoma group. 
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Table 2.8 TaqMan gene expression assays of the biological validation  

Gene symbol TaqMan assay ID Type of gene 

ACTB Hs99999903_m1 Housekeeping gene 

YWHAZ Hs00237047_m1 Housekeeping gene 

BMS1 Hs01036249_m1 DEG 

C10orf32 Hs00376014_m1 DEG 

CBLL1 Hs01128720_m1 DEG 

CNPY3 Hs00198139_m1 DEG 

CYFIP2 Hs00910722_m1 DEG 

DRAP1 Hs01012815_g1 DEG 

DYNLL1 Hs00853309_g1 DEG 

ESYT1 Hs00248693_m1 DEG 

HNRNPUL1 Hs00199870_m1 DEG 

LEF1 Hs01547250_m1 DEG 

LGALS1 Hs00355202_m1 DEG 

MAGED1 Hs00986269_m1 DEG 

MGST3 Hs01058946_m1 DEG 

NUDT14 Hs00418228_m1 DEG 

OAF Hs00420156_m1 DEG 

POM121C Hs03406359_mH DEG 

PRPF8 Hs01556852_m1 DEG 

RBP7 Hs00364812_m1 DEG 

SEC61G Hs00414142_m1 DEG 

SF3A1 Hs01066327_m1 DEG 

SGK223 Hs00410725_m1 DEG 

SRP14 Hs03055045_g1 DEG 

UBXN11 Hs00377277_m1 DEG 

VCP Hs00997642_m1 DEG 

                      * DEG= differentially expressed genes from the discovery cohort 
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2.6 Prediction models in pSS-associated lymphoma 

To identify the most important genes that can predict the group membership of pSS-

associated lymphoma, I have used modelling techniques. The gene expression data from 

qRT-PCR of the Discovery cohort was used to build these models, using multiple logistic 

regression techniques.  A training sets were based on a random two-thirds training set, with 

the remaining one-third of the cases was retained for testing of the models.  A stepwise 

regression analysis was performed with SAS JMP software.  A number of tools were used 

to minimise over-fitting including cross-validation, evaluation of Akaike and Bayesian 

Information Criteria and inspection of the residual deviance.  Robustness of the models was 

evaluated by inclusion and exclusion of alternative gene candidates.  Models based on the 

training set were then evaluated on the testing set comparing predicted group membership 

with observed group membership.  For the dataset from the independent validation cohort 

the models were tested by comparison of observed and predicted group membership and 

misclassification analysis and the results were represented by mosaic plots. 
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Chapter 3 

Optimisation of the identification of a whole blood gene expression 

signature in primary Sjögren’s Syndrome by globin mRNA depletion 

3.1. Introduction  

Gene expression profiling in Primary Sjögren’s Syndrome (pSS) using samples from a large 

patient cohort is very challenging for several reasons. Firstly, given the relatively low 

prevalence of pSS, samples from pSS patients and healthy controls have to be recruited 

from different centres across the UK. Moreover, because of the involvement of a variety of 

centres we needed a robust sample collection method that reduced variability between the 

samples. This led to our decision of using whole blood samples, an approach that is 

frequently employed in such multi-centre studies. Using whole blood sample has many 

advantages. Whole blood samples can reduce the variability in sample processing during 

the isolation of different cell subsets, as it involves additional steps. There are additional 

challenges in ensuring the same equipment and reagents are used in each tissue collection 

centre. Furthermore, the time from sample collection to processing may have a greater 

impact on the quality and quantity of RNA extracted from the samples. In addition, RNA 

extraction from whole blood is less time-consuming and less expensive, and provides an 

opportunity to study all the white blood cells subsets together (Vartanian et al., 2009). On 

the other hand, there are also disadvantages. For instance, whole blood samples contain 

numerous cellular and non-cellular components that contain RNA materials which may 

affect gene expression studies. 

A major concern regarding whole blood gene expression studies is the abundance of globin 

mRNA within the samples. It is known that the whole blood consists of red blood cells 

(RBCs; ~95%), platelets (~5%) and white blood cells (WBCs). WBCs typically constitute 

less than 1% of the cellular content (Mastrokolias et al., 2012). Therefore, globin transcripts 

represent about 70% of the total amount of mRNA isolated from whole blood samples 

(Field et al., 2007). The abundance of globin mRNA in whole blood samples may therefore 

affect the sensitivity of the microarray by reducing fluorescent label availability for other 

less-abundant transcripts and hence preventing them from detection by the microarray 

assay (Liu et al., 2006, Mastrokolias et al., 2012). Therefore, one approach to overcome this 
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problem is to perform blood fractionation, which removes RBCs from the samples for gene 

expression study, leaving a more homogenous cell population. However, the blood 

fractionation procedure may affect gene expression by WBCs as well as introduce 

additional sample variability due to the additional experimental procedures (Fan and 

Hegde, 2005). 

Globin mRNAs are stable mRNAs in RBCs that is important for the synthesis of globin 

proteins after RBC enucleation. There are 3 members of the globin gene family: α-globin 

genes, which are located in chromosome 16 (Goh et al., 2005); β-globin genes, which are 

located in chromosome 11 and are highly expressed in erythrocytes; and γ-globin genes, 

which are normally expressed only in foetal liver (Levings and Bungert, 2002).  Being the 

dominant mRNA species in whole blood samples, α-globin and β-globin transcripts may 

interfere with gene expression profiling using these samples, reducing the sensitivity of 

microarray signals. Several studies have been carried out to investigate globin reduction for 

blood-based gene expression studies, with the majority of these studies concluding that 

globin reduction is preferable (Winn et al., 2011). This preference results from that the 

reduction of globin mRNA from whole blood samples produced microarray data similar to 

those obtained from PBMC samples (Raghavachari et al., 2009, Wright et al., 2008). 

Furthermore, some investigators suggest that the interference of globin mRNA with whole 

genome gene expression studies is more prominent if the genes of interest are not highly 

expressed. However, globin mRNA depletion involves additional procedures that may 

introduce sample variability and damage to mRNAs.  

Various methods have been developed to eliminate globin mRNA from blood samples. One 

of these methods is the GLOBINclear
TM

 Kit. This kit uses a method that benefits from the 

strong binding between biotin and streptavidin molecules, nucleic acid hybridisation 

specificity and the use of magnetic beads to separate globin mRNAs from the remaining 

RNA species. This kit removes both α- and β-globin mRNA (Ambion, 2007). Another 

method of globin reduction involves blocking of the α- and β-globin mRNA by peptide 

nucleic acids  (PNAs) during the cDNA synthesis. The globin-reduction PNA oligomers are 

a set of four oligomers complimentary to globin mRNA (Affymetrix, 2004). This method 

works as an immobiliser that masks globin mRNA during reverse transcription, making 

non-globin mRNA more available for detection in microarray analysis.  
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Up to date, a few gene expression studies using pSS peripheral blood samples have also 

been carried out. One of these studies revealed that genes of the IFN pathways are among 

the most overexpressed genes involved in pSS pathogenesis, with ten of the top 20 up-

regulated genes in pSS being IFN-α inducible genes (Kimoto et al., 2011). The up-

regulation of IFN-α inducible genes was also detected in PBMCs from pSS (Emamian et 

al., 2009). This activated IFN signature in pSS was present regardless of the different 

versions of gene chips used. Interestingly, the IFN signature correlated with high levels of 

anti-Ro/SSA and anti-La/SSB autoantibodies. Peripheral blood gene expression profiling 

also revealed differentially expressed genes that are related to the inflammatory and other 

immune-related pathways. These pathways include B and T cell receptors, IGF-1, GM-

CSF, PPARα/RXRα, and PI3/AKT signalling. Moreover, the authors observed that the 

abundance of globin mRNA in peripheral blood may have reduced the sensitivity of 

detection of differentially expressed genes (DEGs) because the number of DEGs identified 

was greater when PBMC samples were used  (Emamian et al., 2009). To my knowledge, no 

study has been reported regarding the impacts of globin mRNA on whole blood gene 

expression profiling in pSS. 

In my first experiment, globin mRNA depletion was carried out using the GLOBINclear
TM

 

Kit. The kit separates out globin mRNA, permitting use of non-3'-bias techniques including 

the chemical labelling of RNA. Although this method affects RNA quality due to the 

additional preparation steps, it results in an improved gene expression profile outcome 

compared with other methods (Liu et al., 2006). Different downstream steps were evaluated 

and compared with paired samples without globin depletion.   

3.2 Aim and Design of the Experiment 

The aim of this experiment is to evaluate the effect of globin mRNA depletion on the whole 

blood gene expression signature in pSS. The data will also be used to optimize the gene 

expression profiling protocol to identify the transcriptomic signature of pSS-associated 

lymphoma. 

A total of 24 whole blood samples, collected in PAXgene RNA tubes, were selected from 

the UKPSSR biobank (pSS patients=12, healthy controls=12). The RNA was extracted, 

cleaned and concentrated (if required). Each sample was split into 2 aliquots, one aliquot 
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was subjected to the globin mRNA depletion protocol (G-depleted group), the other aliquot 

was kept without further processing (G non-depleted group). All forty-eight samples (G-

depleted=24 and G non-depleted=24) were sent to Cambridge Genomic Services (CGS) at 

the University of Cambridge for whole genome microarray analysis. The design of the 

experiment is shown in Figure 3.1. 

 

Figure 3.1 Globin mRNA depletion experimental design.  pSS= primary Sjögren’s syndrome, 

HC= Healthy Controls  
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3.4 Results: 

3.4.1 Demography of study subjects 

The pSS patients and healthy controls were selected from the UKPSSR (pSS patients=12, 

healthy controls=12). All the patients fulfilled the AECG classification criteria and were 

females with an average age of 52 yrs. (25–76 yrs). The presence of paraproteinemia, 

lymphoma or other types of cancer was not reported in the chosen pSS patients. The aged-

matched healthy controls included two males (females=10, male=2) with an average of 49 

yrs. (25–72 yrs). The clinical characteristics and demographics of the patients and healthy 

controls are shown in Table 3.1 

Table 3.1 Clinical data of pSS patients selected for the globin mRNA depletion 

experiment  

Clinical criteria pSS patients  

(mean ± S.E.M) 

Healthy control 

Age (years) 52 ± 4.49 49 ± 3.00  

Unstimulated oral salivary flow (ml/15 mins) 1.34 ± 0.54 N/A 

Schirmer’s test (mm/5 mins) 7.70 ± 3.34 N/A 

Anti-Ro/SSA positive (%) 75% N/A 

Anti-La/SSB positive (%) 66.6% N/A 

WCC (x 10^9/l) 5.41 ± 0.88 N/A 

Neutrophil (x 10^9/l) 3.13 ± 0.40 N/A 

Lymphocytes (x 10^9/l) 1.87 ± 0.36 N/A 

ESR (mm/hr) 25.60 ± 6.08 N/A 

IgG (g/L) 16.14 ± 1.99 N/A 

C3 (mg/dl) 1.18 ± 0.16 N/A 

C4 (mg/dl) 0.40 ± 0.20 N/A 

CRP (mg/L) 4.5 ± 1.53 N/A 

RF (IU) 62.5 ± 35.83 N/A 

Total SSDDI 3.5 ± 0.33 N/A 

ESSPRI (0-10) 6.47 ± 0.56 N/A 

ESSDAI (0-123) 4.45 ± 1.00 N/A 

 WCC= White Cell Count, ESR= Erythrocyte Sedimentation Rate, C3= Complement Component 3, 

C4= Complement Component 4, CRP=C-reactive Protein, RF=Rheumatoid Factor, 

IU=International units, ESSDAI score=(0-4 no activity, 5-12 moderate activity and ≥ 13 high 

activity) 
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3.4.2 Assessment of globin mRNA depletion from RNA samples: 

Before sending the RNA samples for microarray, the efficacy of globin mRNA depletion 

was assessed using qRT-PCR. Since the β-globin gene is the main globin gene expressed in 

adult erythrocytes (Antoniou et al., 1988, Johnstone et al., 2013), I chose to measure the 

amount of β-globin mRNAs in the samples to assess the efficacy of globin mRNA 

depletion. As the amount of RNA available from the biobanked samples was limited, the 

levels of β-globin transcripts from 11 paired samples (HC=9 and pSS patients=2) with or 

without globin mRNA depletion were measured.  The level of expression was normalised 

to the housekeeping gene 18S. The results showed a significant reduction (average of 64-

fold) in the amount of the β-globin mRNA in the G-depleted samples in comparison with 

their corresponding G non-depleted samples (p < 0.0001, Mann-Whitney U test) (Figure 

3.2).  
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Figure 3.2 Relative gene expression levels of β-globin with and without globin mRNA 

depletion. The amount of β-globin mRNA in paired samples, G-depleted and G non-

depleted samples (n=11), measured using qRT-PCR. There was a significant reduction 

(average of 64-fold, p<0.0001) in the expression levels of β-globin mRNA in the G-depleted 

samples compared to the G non-depleted samples, the error bars show the standard error 

of the means. 
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3.4.3 RNA quality for microarray analysis with or without globin mRNA depletion. 

The Bioanalyzer measured the RNA quality, and the data were analysed using the RIN 

algorithm, which ranks different RNA features, including the 28S to 18S ratio and other 

factors to give a robust evaluation of RNA quality. The higher the RIN score, the better the 

RNA quality. Depletion of globin mRNA led to a slight reduction in the RNA quality as 

shown by a reduction of the RIN score. Nevertheless, the RNA quality of the G-depleted 

samples remained good (with RIN values being greater than 7), which is considered 

suitable for microarray experiments.  As shown in Table 3.2, the RIN score for some 

samples could not be determined by the Bioanalyzer (shown in Table 3.2 as N/A). This 

does not necessarily mean that the RNA quality of the samples was low. An “N/A” result 

may be returned due to different factors, for instance, unusual ribosomal ratio and 

background noise. The quality of such samples was therefore judged by visual inspection of 

the electropherograms and the gel-like images of them. The electropherograms of the 

amplified cRNA from both pSS and healthy controls from the G-depleted group 

demonstrate the lack of a sharp peak of about 700 bp, which represents the Globin mRNA 

in the G-depleted group and which give the curve a bell shape similar to that obtained from 

PBMCs as demonstrated in Figure 3.3. All samples were judged by CGS staff to be of good 

quality for the microarray experiment. The electropherograms of the amplified cRNA found 

in supplementary figures SF1, SF2, SF3 and SF4. 

Table 3.2 The RIN scores of RNA samples with or without globin mRNA depletion. RIN 

scores were calculated by the algorithms provided by the Agilent Bioanalyzer 2100. 

Samples IDs with a suffix of “0” represented the healthy controls; whereas a suffix of “1” 

represented pSS patients   

Sample ID G-depleted G-non depleted Sample ID G-depleted G-non depleted 

BAS-017-0 7.4 8 NCL-011-1 8 N/A 

LEE-059-0 7.5 8.3 DER-006-1 8.1 10 

GAT-027-0 8.5 9.6 BIR-051-1 7.9 N/A 

BAT-023-0 8.4 9.6 NCL-055-1 7.6 N/A 

NCL-136-0 7.7 8.9 BIR-029-1 7.8 10 

NCL-091-0 7.8 9.8 NCL-052-1 8 9.9 

NCL-123-0 7 N/A NCI-083-1 7.6 9.6 

CAM-006-0 7.5 9.4 NCL-084-1 7.5 N/A 

NCL-113-0 7.3 9.2 NCL-024-1 7.5 9.8 

NCL-117-0 8.1 N/A NCL-060-1 7.7 9.8 

NCL-130-0 7.9 9.2 BIR-005-1 8.3 N/A 

LEE-049-0 7.5 N/A SUN-009-1 8.2 9.2 

*N/A-  RIN score not calculable by the Bioanalyzer software 
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Figure 3.3 Representative electropherograms of amplified cRNA of a paired sample with 

or without globin mRNA depletion. A) “G non-depleted” sample showing a sharp peak of 

about 700 base pair representing the globin mRNA, B) “G-depleted” sample shows a bell-

shaped curve and the absence of the globin mRNA’s sharp peak.  

 

3.3.4 The effect of globin mRNA depletion on microarray signal intensity and samples 

variability 

The single signal intensity for each probe in the microarray was calculated by 

GenomeStudio software, after the Illumina BeadChips was scanned (Johnstone et al., 

2013). The boxplots in Figure 3.4 illustrate how the probe signal intensity was distributed 

in the G-depleted and G non-depleted datasets. With regard to the raw data, the boxplots in 

the G non-depleted groups showed a more disproportionate spread and the mean of each 

array had a greater intra-group variability in comparison to the G-depleted groups. The 

normalised data (RSN method) showed a similar trend, with the G non-depleted samples 

showing a higher variability between individual arrays while the G-depleted group had a 

more homogeneous signal intensity across individual arrays. Furthermore, principle 

component analysis (PCA) of the normalised data of both groups revealed that the G-

depleted samples clustered closer together comparing to the G-non depleted samples 

(Figure 3.5). When the samples were further sub-classified  according to their disease status 

(i.e., pSS patients or healthy controls), again, G-depleted samples clustered closer together 

than the G non-depleted samples (Figure 3.6). Taken together, these observations suggest 

that the microarray data generated using G-depleted samples were of a better quality. 

 
     -                 -                

 ~700 bp  

globin mRNA 
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Figure 3.4 Boxplots of the microarray signal intensity of the paired samples with or without globin mRNA depletion. Left: raw data, 

showing a great spread of the boxplots medians among the G-non depleted group for both pSS patients and HC in comparison to the G-

depleted group. Right: normalised data (RSN method), the G-non depleted samples showed a slight variability unlike the G-depleted group, 

which revealed a more even signal intensity across individual microarrays.  
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Figure 3.5 PCA of normalised microarray data with or without globin mRNA depletion. 
The triangles represent the G depleted group whereas the G non-depleted group is 

represented by circles. Each paired samples have the same corresponding number showing 

its clustering location in their respective groups   

 

 

G-depleted group 
G-non depleted group 
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Figure 3.6 PCA of normalised microarray data of pSS patients and healthy controls with 

or without globin mRNA depletion . Each paired sample has the same corresponding 

number showing its clustering location in their respective groups. 

 

 

 

G-non depleted HC 
G-non depleted pSS 

G-depleted HC 
G-depleted pSS 
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3.3.5 Differentially expressed genes in pSS with or without globin mRNA depletion: 

The gene expression profile in pSS patients was investigated. Analysis of the microarray 

data (Illumina HT-12v4) revealed a total of 24642 detected probes. Moreover, when the 

analysis was performed separately for the G-depleted and G non-depleted groups, there 

were 21929 and 17851 detected transcripts/entities respectively. These numbers represented 

the number of probes that had passed the basic filter step with a detection p-value threshold 

<0.01. A total of 17211 transcripts/entities overlapped between the two groups. There were 

640 distinctive transcripts/entities in the G non-depleted group and 4718 distinctive 

transcripts/entities in the G-depleted group (Figure 3.7(A)).  

There were also differences in the number of differentially-expressed genes (DEGs) (fold-

change ≥ 1.2, adjusted p < 0.05) detected for pSS using G-depleted or G-non depleted 

samples. When using the G-depleted samples, a total of 1070 DEGs (733 up-regulated and 

337 down-regulated DEGs) between pSS and HC were identified. When using the G non-

depleted samples, 942 DEGs (670 up-regulated and 272 down-regulated DEGs) between 

pSS and HC were identified. Among the identified DEGs using these two groups of 

samples, 559 DEGs were in common (Figure 3.7(B)). The volcano plot in Figure 3.8 shows 

the DEGs using the G-depleted and G non-depleted samples. Among the up-regulated 

DEGs identified using the two groups of samples,  80% of the DEGs in the top 20 and top 

50 of up-regulated genes for pSS were identical. However only 64% of the DEGs were the 

same in the top 100 up-regulated genes for the G-depleted and G-non-depleted groups. The 

IFN-inducible genes dominated the top 20 up-regulated DEGs regardless of whether G-

depleted and G non-depleted samples were used, consistent with the published literature 

(Emamian et al., 2009). For the down-regulated genes between pSS and HC, however, there 

were more differences in the DEGs identified using the two groups of samples. Only 30%, 

28%, 32% of the DEGs were the same in the top 20, top 50, and top 100 down-regulated 

genes respectively , The top 20 up-regulated genes are shown in Table 3.3 and the top 20 

down-regulated genes are shown in Table 3.4.  
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Figure 3.7 Venn diagram of the number of detectable transcripts/entities and DEGs 

identified using samples with or without globin mRNA depletion. A) Venn diagram of the 

number of detectable transcripts/entities that had passed the detection threshold in the 

microarray analysis in the G-depleted and G non-depleted groups.  B) Venn diagram of the 

number of differentially expressed genes in pSS identified using in G-depleted and G non-

depleted groups samples  

 

Figure 3.8 Volcano plots of the differentially expressed genes in pSS using samples with 

or without globin mRNA depletion.The G-depleted (right) and G non-depleted (left) 

groups. The x axis represents the log2 of the fold change (FC) and the y axis represents 

the–log10 of the p-value; the dots in black represent the differentially expressed genes using 

the threshold values of FC ≥ 1.2, and adjusted p value < 0.05. 
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Table 3.3 Top 20 up-regulated DEGs in pSS in the G-depleted and G non-depleted 

groups, p<0.05, FC≥1.2 

G- depleted group G non-depleted group 
  Gene symbol adjusted 

P Value 

Fold change Gene symbol adjusted 

P Value 

Fold change 

IFI27 0.0319 7.170 IFI27 0.0233 6.802 

IFIT1 0.0219 4.418 IFIT1 0.0134 4.192 

IFI44 0.0156 4.317 IFI44L 0.0284 3.859 

IFI44L 0.0437 4.224 IFI44 0.0110 3.496 

RSAD2 0.0234 3.669 EPSTI1 0.0099 3.353 

EPSTI1 0.0168 3.274 ISG15 0.0300 3.137 

ISG15 0.0416 3.199 RSAD2 0.0172 2.932 

OAS3 0.0378 2.936 IFIT3 0.0214 2.894 

IFIT3 0.0382 2.757 HERC5 0.0373 2.610 

IFIT3 0.0226 2.563 IFITM3 0.0486 2.567 

IFIT2 0.0192 2.554 IFIT2 0.0194 2.525 

OAS1 0.0355 2.389 OAS3 0.0225 2.459 

IFIT3 0.0283 2.384 IFI6 0.0288 2.373 

RPL26 0.0163 2.265 S100A8 0.0132 2.342 

CHMP5 0.0021 2.243 OAS1 0.0127 2.214 

OAS1 0.0428 2.242 IFIT3 0.0082 2.208 

XAF1 0.0213 2.232 XAF1 0.0254 2.175 

S100A8 0.0210 2.109 RPL26 0.0115 2.170 

GBP1 0.0125 2.054 OAS1 0.0171 2.132 

RPL31 0.0461 2.040 TRIM22 0.0023 2.101 

 

Table 3.4 Top 20 down-regulated DEGs on pSS in the G-depleted and G non-depleted 

groups, p<0.05, FC≥1.2 

G- depleted group G non-depleted group 
  Gene symbol adjusted 

P Value 

Fold change Gene symbol adjusted 

P Value 

Fold change 

GPR162 0.0123 1.710 HLA-H 0.0207 2.413 

CLIC3 0.0403 1.671 PABPC1 0.0030 1.647 

PTGDS 0.0332 1.638 IMPA2 0.0096 1.629 

IMPA2 0.0110 1.612 RPS28 0.0055 1.615 

NINJ2 0.0261 1.597 RNA18S5 0.0414 1.601 

MATK 0.0207 1.571 NINJ2 0.0266 1.584 

MPZL1 0.0122 1.495 MARCH2 0.0390 1.581 

RYBP 0.0153 1.489 RPL14 0.0057 1.553 

ZBTB16 0.0140 1.488 GPR162 0.0115 1.540 

CABIN1 0.0002 1.487 HLA-G 0.0452 1.522 

ZNF467 0.0309 1.484 SIPA1L3 0.0380 1.513 

NCR3 0.0039 1.466 MATK 0.0437 1.492 

CCNY 0.0002 1.449 TUBA4A 0.0056 1.455 

DDIT4 0.0120 1.444 SH3GLB2 0.0082 1.444 

VPS37C 0.0055 1.442 CD7 0.0356 1.443 

MAPK8IP1 0.0490 1.442 RPL23AP64 0.0173 1.438 

CD7 0.0399 1.427 AMY1C 0.0055 1.432 

MARCH6 0.0390 1.423 ABTB1 0.0278 1.409 

ARRB1 0.0058 1.411 RPLP1 0.0087 1.406 

TBL1X 0.0264 1.408 FTH1P2 0.0361 1.405 
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3.3.6 Pathway analysis 

 I then examined whether the biological pathways identified using G-depleted and G non-

depleted samples were similar. Using the KEGG pathway analysis, two pathways 

“Spliceosome” and “Oxidative phosphorylation” were identified to be differentially 

activated in pSS patients in both the G-depleted and G non-depleted datasets. Using the 

gene ontology analysis, 319 and 493 Gene Ontology (GO) terms from the G-depleted and 

G non-depleted datasets were identified to be associated with pSS. A total of 230 of these 

GO terms were identical between the two datasets. For the top 10 GO terms, 6 (60%) were 

in common between the G-depleted and G non-depleted datasets (Table 3.5). The top three 

GO terms for both datasets were “Antigen processing and presentation of exogenous 

peptide antigen via MHC class Ib,” “Antigen processing and presentation of exogenous 

protein antigen via MHC class Ib, TAP-dependent” and “Detection of virus” 

Table 3.5 Top 10 GO terms in pSS using samples from the G-depleted and G-non 

depleted groups 

G- depleted group G- non depleted group 

GO ID P value Term GO ID P value Term 

GO:0002477 0.00498 antigen processing and 

presentation of 

exogenous peptide 

antigen via MHC class Ib 

GO:0002477 0.0046242 antigen processing and 

presentation of 

exogenous 

peptide antigen via MHC 

class Ib 

GO:0002481 0.00498 antigen processing and 

presentation of 

exogenous protein 

antigen via MHC class 

Ib, TAP-dependent 

GO:0002481 0.0046242 antigen processing and 

presentation of 

exogenous protein 

antigen via MHC class 

Ib, TAP-dependent 

GO:0009597 0.00498 detection of virus GO:0009597 0.0046242 detection of virus 

GO:0033364 0.00498 mast cell secretory 

granule organization 

GO:0032439 0.0046242 endosome localization 

GO:0034343 0.00498 type III interferon 

production 

GO:0033364 0.0046242 mast cell secretory 

granule organization 

GO:0034344 0.00498 regulation of type III 

interferon production 

GO:0034343 0.0046242 type III interferon 

production 

GO:0036337 0.00498 Fas signaling pathway GO:0034344 0.0046242 regulation of type III 

interferon production 

GO:0044565 0.00498 dendritic cell 

proliferation 

GO:0035616 0.0046242 histone H2B conserved 

C-terminal lysine 

deubiquitination 

GO:1902044 0.00498 regulation of Fas 

signaling pathway 

GO:0035726 0.0046242 common myeloid 

progenitor cell 

proliferation 

GO:0002428 

 

0.01423 

 

antigen processing and 

presentation of peptide 

antigen via MHC class Ib 

 

GO:0036257 

 

0.004624 

 

multivesicular body 

organization 
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3.4 Discussion  

The aim of this experiment was to evaluate the effect of globin mRNA depletion on whole 

blood gene expression profiling in pSS. The data generated helped me to determine the 

approach that I should use to identify the whole blood gene expression signature in pSS-

associated lymphoma. The reasons for choosing pSS gene expression profiling instead of 

pSS-associated lymphoma gene expression profiling was two-fold. First, whole blood gene 

expression data on pSS are available in the literature as reference data for my experiment, 

while there is no such data available for pSS-associated lymphoma. Second, only a limited 

amount of whole blood RNA was available from the pSS-associated lymphoma group.  

Whole blood RNA samples 

The use of whole blood samples might increase noise and decrease the responsiveness in 

microarray experiments (Feezor et al., 2004). The use of PAXgene blood RNA tubes and 

their stabilising reagents helps to stabilise the transcriptome once the specimen has been 

taken, and minimises RNA degradation for a long period of time (Rainen et al., 2002). 

Therefore, this blood collecting system is suitable for gene expression studies using RT-

PCR or microarrays (Stordeur et al., 2003, Thach et al., 2003). In this study, most of the 

RNA samples extracted from PAXgene tubes required additional “clean up” and 

“concentration” steps before globin mRNA depletion with the GLOBINclear kit. The need 

for these extra preparatory steps has also been reported (Liu et al., 2006) and was thought to 

be related to the different incubation times of the PAXgene tubes resulting in different  

RNA yields (Wang et al., 2004). 

RNA quality 

The RIN scores (thus the RNA quality) of my samples decreased after globin mRNA 

depletion. This observation is not unexpected and is in agreement with previous reports 

(Mastrokolias et al., 2012, Choi et al., 2014). The electropherogram of the cRNAs 

demonstrating the lack of a globin mRNA peak in my globin-depleted samples is also 

consistent with previous studies (Liu et al., 2006, Vartanian et al., 2009). The efficiency of 

the novel hybridisation capture technology used in the GLOBINclear kit as a globin 

reduction protocol has previously been evaluated for next generation sequencing 

(Mastrokolias et al., 2012). It is believed that the design of these oligonucleotides is a 
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crucial factor for the effectiveness in globin removal (Affymetrix, 2003). Regardless, the 

efficient depletion of β-globin mRNA in my G-depleted samples was satisfying. 

Microarray data 

The improvement of the microarray signal intensity and the reduction of signal intensity 

variability among the samples following globin mRNA depletion is consistent with 

previous reports using samples from humans, mice and rats (Liu et al., 2006, Whitley P, 

2007, Whitley P, 2005, Winn et al., 2010). In addition, the principle component analysis 

(PCA) illustrated a reduction in the overall variability within the respective subject groups 

(pSS patients and healthy controls) in the ‘G-depleted’ dataset. This observation suggests 

that globin mRNA reduction improved sample homogeneity. Furthermore, the number of 

detectable transcripts/entities (present call) were higher in the G-depleted dataset, which 

also has been reported previously (Affymetrix, 2003).    

With regard to the ability to detect DEGs in pSS, more DEGs were identified using the G-

depleted samples than using G non-depleted samples. However, it may not be a simple case 

of more DEGs being detected in the G-depleted datasets, since only approximately half of 

the DEGs identified were in common using both G-depleted and G non-depleted samples. 

The difference was more apparent for down-regulated genes. One possible explanation is 

that globin depletion may be more efficient in unmasking less-abundant transcripts (Liu et 

al., 2006). Nevertheless, for both G-depleted and G non-depleted datasets, the up-regulated 

genes showed a dominant pattern of IFN-inducible genes in the top 20 up-regulated genes, 

consistent with the hypothesis that an activated IFN signature is a hallmark of pSS (Brkic 

and Versnel, 2014).  

Pathway analysis  

Pathway analysis showed that similar pathways were enriched in both G-depleted and G 

non-depleted datasets and 60% of the top 10 GO terms was in common. Interestingly, the 

top three GO terms were related to immune response to viruses; this finding is consistent 

with the hypothesis that viruses (such as EBV, CMV, retroviruses) may play a role in the 

pathogenesis of pSS (Venables and Rigby, 1997, Willoughby et al., 2002). 
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In summary, globin mRNA depletion improved microarray signal intensity, and reduced 

sample variability. Regarding its impact on gene expression profiling, globin mRNA 

depletion resulted in the detection of more DEGs, but had relatively little impact on the 

DEGs with the highest fold changes. Globin mRNA depletion also appears to have a small 

impact on the outcome of pathway analysis of the microarray data.  Based on the data from 

this study, I believe that globin mRNA depletion may offer a slight advantage in my 

subsequent whole blood gene expression study of pSS-associated lymphoma.  
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Chapter 4 

Identification of Whole Blood Gene Expression Signature in 

primary Sjögren’s Syndrome -associated lymphoma 

4.1 Introduction 

I. Primary Sjögren's Syndrome (pSS)-associated lymphoma 

Lymphoma is one of the most serious extraglandular manifestations of pSS. It was first 

reported in pSS patients in 1963 (Talal and Bunim, 1964). The prevalence of lymphoma in 

pSS patients is approximately 5%. It has been reported that pSS patients have a 44-fold 

increased risk of developing non-Hodgkin lymphoma (NHL) (Kassan et al., 1978), 

although another study has reported a 16-fold increased risk to develop NHL (Theander et 

al., 2006). A meta-analysis investigating the association of NHL with autoimmune diseases 

showed a smaller SIR of 4.9 in pSS patients (Fallah et al., 2014). A summary of the studies 

regarding lymphoma prevalence in pSS has also been provided in the introduction chapter 

(Table 1.4). It has been documented that the most common type of pSS-associated 

lymphoma is the mucosa-associated lymphoid tissue (MALT) lymphoma followed by the 

nodal marginal zone lymphomas (NMZLs), and then the diffuse large B-cell lymphomas 

(DLBCLs), based on a study of 53 pSS patients with lymphoma from a cohort of 584 pSS 

patients (Voulgarelis et al., 2012). As lymphoma is a potentially fatal manifestation of pSS, 

the determination of lymphoma’s risk factors provides a useful background to understand 

its evolution. Several risk factors have been linked to the increased risk of lymphoma 

development among pSS patients. These risk factors include: low C4 levels in the blood, 

cryoglobulinaemia (De Vita et al., 2012), paraproteinemia, persistent salivary gland 

swelling, and palpable purpura (Skopouli et al., 2000). Reduced ratio of CD4
+
/CD8

+
 T cells 

and a low count of CD4
+
 T cells in peripheral blood are also associated with an increased 

risk; in this case, it has been speculated that the infiltration of CD4
+
 into the glandular 

tissue results in reduced CD4
+
 T cell number and reduced CD4

+
/CD8

+
 ratio in the blood 

(Pillemer, 2006). A recent paper from France reports that rheumatoid factor is also a risk 

factor (Nocturne et al., 2015c). 
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Few studies have been carried out investigating gene expression in pSS-associated 

lymphoma. These studies were limited by small sample size. As mentioned in the 

introduction chapter, one of the studies focused on the gene expression of MALT 

lymphoma in the parotid gland of pSS patients has identified eight candidate genes (GRB2, 

ARHGDIB, CD40, PSMB9, ALDOA, PRDXS, PARC and PPIA) that can differentiate pSS-

associated MALT lymphoma from pSS (Hu et al., 2009). Another study analysed the 

differentially expressed genes in the whole blood of pSS-associated lymphoma (marginal 

zone B cell lymphoma) patients using cDNA microarray; it showed that the ribosomal 

protein genes S29 and S27 are upregulated in pSS patients with lymphoma, while the IFN-

inducible genes, which are extensively overexpressed in pSS, were not. Interestingly, 

subsequently to chemotherapy and rituximab, the ribosomal protein genes S29 and S27 

were downregulated; this observation suggests that S29 and S27 may serve as biomarkers 

of pSS-related lymphoma (Kimoto et al., 2011, Ogawa, 2010). However, the molecular 

mechanisms that are important in the development of lymphoma remain poorly understood. 

 

II. Gene expression signature by microarray     

Recently, microarray technology has become a common tool to investigate gene 

expression. A microarray measures the expression of thousands of genes, giving the 

opportunity to use this huge source of information in different fields. This technology 

contributes widely in cancer research (Branca, 2003, Jeruss et al., 2008), disease treatments, 

and the identification of new biomarkers. The bead chip technology used in the Illumina 

Human HT-12 v4 Expression BeadChip utilises 3-micron silica beads that aggregate on 

either a planar silica slides or a fiber optic bundle, as illustrated in Figure 4.1. The 

BeadChip array is a more desirable technique as it requires less sample input and it is 

cheaper than other available platforms (Consortium, 2006). These beads are characterised 

by their ability of random self-assembly into microwells. This assemblage happens via van 

der Waals forces as well as the hydrostatic interaction of the beads and the well’s wall. The 

beads are covered with hundreds of thousands of specific copies of oligonucleotides, or 

probes, that capture particular sequences in the assay (www.illumina.com). Because of the 

random aggregation of the beads, the probes will be randomly distributed in different 

numbers and locations in the array. The analysis process includes the identification of the 

http://www.illumina.com/
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bead locations, bead types, and the microarray intensity. Subsequently, images were 

obtained from the scanner, and a pre-processing procedure was followed. The pre-

processing method consists of three steps: registration of beads, insertion of the lasting 

beads, and pinpointing the grid above the array (Gunderson et al., 2004, Arteaga-Salas et 

al., 2008).  Eventually, the probes on each bead were identified. The microarray data was 

corrected for background noise, which was produced by the hybridisation of nonspecific 

transcripts in the samples. As a result, the foreground, which is the mean of sharpened 

intensities from a 4 × 4 pixel square on the bead-centre, is separated from the background 

(Tarca et al., 2006, Wu, 2009, Smith et al., 2010).         

 

 

Figure 4.1 Illumina BeadChip technology. This is the technology conducted by Illumina 

whole genome microarray. (www.illumina.com)    

 

The next step in microarray data analysis is transformation of the data into a log scale. This 

step is important as the data might be skewed and the transformation might bring it closer 

http://www.illumina.com/
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to a normal distribution. The data is transformed either using Log2 scale or variance- 

stabilising transformation (VST). This latter has been reported to be more efficient than the 

Log2 transformation when using the Illumina platform (Lin et al., 2008). The selected 

normalisation method for the microarray data is crucial for further downstream analysis 

(Schmid et al., 2010). There are several normalisation methods that can be used to 

minimise the data variability that originates from noise and artifacts. The method that I 

used to analyse my data is the robust spline normalisation (RSN). This algorithm has the 

features of both the quantile and LOESS (Local regression) normalisation. In addition, this 

function, which is included in the “Lumi” package, will run the lumiT function if the data is 

not variance-stabilised, as it is designed to normalise VST-transformed data (Lin et al., 

2008).  

Conducting a large gene expression experiment involves many challenges. One such 

challenge is batch effects. Batch effects are derived from miniature differences in non-

biological factors, such as the use of different batches of reagents in sample preparation or 

minor differences in sample handling by different researchers and many others. It has even 

been reported that ozone levels have an impact on the microarray data (Fare et al., 2003, 

Chen et al., 2011, Luo et al., 2010). Many methods were introduced in order to minimise 

batch effects in order to obtain an accurate gene expression dataset for downstream 

analysis. One of these methods is ComBat function. ComBat is an empirical Bayes 

framework that effectively eliminates batch effects. The method works by "borrowing 

information” from across the probes and experimental conditions in hope that the 

“borrowed information” will lead to better estimates or more stable inferences. (Johnson et 

al., 2007, Stein et al., 2015). In comparison with other batch effect removal tools, ComBat 

is more effective in eliminating batch effects and producing more accurate microarray data 

(Chen et al., 2011). The final step in microarray analysis was to identify a list of 

differentially expressed genes and/or biological pathways between the comparative groups. 

Such differentially expressed genes might be valuable in biomarker discovery and the 

identification of key genes or biological pathways in the pathogenesis of the disease being 

studied.  
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III. Validation of microarray data by Real-Time RT-PCR 

High-throughput experiments, such as microarray, might be affected by the complexity of 

the assay. This complexity is reflected in the manufacturing of the array and the preparation 

procedures of the samples (Eisen and Brown, 1999). For this reason, it is important to use 

another method to confirm the findings of differentially expressed genes identified in 

microarray experiments. Real-Time RT-PCR is a standard technique in quantitative 

measurements of mRNA. RT-PCR has many advantages: it is inexpensive, not time-

consuming, and requires only a small amount of mRNA (Rajeevan et al., 2001). In this 

project, TaqMan® real-time PCR primers and probes were used in the validation of my 

potential gene expression signature in pSS-associated lymphoma identified from 

microarray. The TaqMan® Gene Expression Assays kit includes: one pair of unlabeled 

PCR primers, TaqMan® probe that is labeled with FAM
TM

 or VIC
®
 dye, and the third 

component is the minor groove binder (MGB) and non-fluorescent quencher (NFQ) on the 

3’ end. The MGB presence in the assay is very significant as it increases the probe’s 

melting temperature (Tm), leading to the stabilisation of the probe-target complex. This 

advantage enables the probes to be shorter than the outdated probes, and it also allows more 

specific detection targets by using probe sequences that are more specific to the target 

mRNA (www.lifetechnologies.com, 2012). Figure 4.2 illustrates the TaqMan® gene 

expression assay technology.   
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Figure 4.2 The TaqMan gene expression assay reaction steps.(taken from 

www.lifetechnologies.com) 

 

TaqMan® Array 96-Well Fast plates were used to perform the validation experiment. The 

advantages of this method are speed and the requirement of only small amounts of mRNA. 

Therefore, this method is well suited for a large experiment with many samples and genes 

to validate, such as mine. Within each of the plates, the predesigned TaqMan® Gene 

Expression Assays were dried down into the wells of the plates. The assays work with the 

pre-prepared cDNA of the sample, and the expression data for a given gene is measured 

(www.lifetechnologies.com, 2011). 

IV. Prediction models in pSS-associated lymphoma 

After the identification and technical validation of the whole blood potential gene 

expression signature in pSS-associated lymphoma, it was useful to find out which genes are 

the most important in predicting the membership in pSS-associated lymphoma. A 

prediction model is a collection of mathematical techniques that aims to identify a 

mathematical relationship between the genes of interest and the phenotype. When using 

prediction models, it is important to keep in mind that they are usually imperfect; and 

http://www.lifetechnologies.com/
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therefore it is important to include with the prediction a measurement of the percentage of 

uncertainty (Dickey, 2012).        

4.2 Aim and experimental design 

The ultimate aim of the project is to identify a whole blood gene expression signature in 

pSS-associated lymphoma. In order to achieve this goal, 144 samples were selected from 

the UKPSSR (Discovery cohort), and categorised into five groups. The group of interest is 

the pSS-associated lymphoma group (n=16) that will be used for comparison with the non-

lymphoma pSS group (n=61), which represents the disease controls. Additional 

controls/comparison groups were also included. The pSS-paraproteinemia group (n=23) 

was included to represent an “at risk” group, as paraproteins play an important role in many 

malignant diseases (Cook and Macdonald, 2007) and are a risk factor for lymphoma 

development in pSS. The pSS-other cancers group (n=21) was included to explore whether 

any of the altered gene expression detected in the pSS-lymphoma group is associated with 

malignancies ‘in general’ or is specific to lymphoma. Finally, a healthy control group 

(n=23) was also included. 

My first experiment is to perform a whole genome gene expression microarray. The 

microarray was performed by CGS after I extracted the RNA samples and depleted the 

globin mRNA. Data from the microarray were used to identify the differentially expressed 

genes between the lymphoma and the non-lymphoma groups. These differentially 

expressed genes were technically validated using qRT-PCR. Differentially expressed genes 

that have been confirmed using qRT-PCR were further validated using an independent set 

of samples (Validation cohort). In the independent cohort, I have also included a group of 

patients with pSS-associated lymphoma but have not yet received any treatment for their 

lymphoma (untreated pSS-associated lymphoma). Using the data from the RT-PCR of the 

Discovery cohort, I have tested the biological ‘signature’ based on these differentially 

expressed genes using a prediction modeling fit. Figure 4.3 summarises the experimental 

design. 
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Figure 4.3 The identification of whole blood gene expression signature in pSS-associated 

lymphoma experimental design 

 

4.4 Results 

4.4.1 Demography of study subjects 

All selected pSS patients used for identifying the gene expression signature in pSS-

associated lymphoma fulfil the AECG classification criteria. The clinical parameters of the 

subjects in the Discovery cohort, Validation cohort, and untreated lymphoma are illustrated 

in Tables 4.1 and 4.2, respectively. In the Discovery cohort, after applying the Mann-

Whitney test on the data, the results showed that the white cell count was significantly 

lower in the “pSS-associated lymphoma” group in comparison with the “pSS” group (p 

value = 0.040). In addition, a significantly lower level of C4 in the “pSS-associated 
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lymphoma” group was observed in comparison with the “pSS” and “pSS-other cancers” 

groups (p value = 0.0029 and 0.0027, respectively). The titre of IgG was significantly 

higher in the “pSS-associated lymphoma’ group in comparison with the “pSS-other cancer” 

group (p value = 0.038). SSDDI scores were statistically different among all of the groups 

(p value = 0.000).  

In the Validation cohort, after applying the Mann-Whitney test on the data (only from the 

samples from the UKPSSR biobank), the results showed a significantly lower C4 level in 

the “pSS-associated lymphoma” group in comparison with “pSS” (p = 0.0199). Significant 

differences were also showed in the  SSDDI and ESSDAI between the “pSS-associated 

lymphoma” and the “pSS” groups with p values of 0.0026 and 0.0266 respectively.      

The “pSS-associated lymphoma” group consists of patients who had different histological 

types of lymphomas. The type of lymphoma for each patient is listed in Table 4.3. In 

addition, all patients in the lymphoma group from the Discovery cohort had received 

treatment for their lymphoma at the time of blood sampling. 
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Table 4.1 Clinical data of pSS subgroups subjects in the Discovery cohort 

Clinical criteria Mean ± S.E.M 

pSS pSS-paraproteinemia pSS-other cancers pSS-associated lymphoma Healthy control 

Age (years) 60 ± 1.43 64 ± 2.73  66 ± 1.5 62 ± 3.33  57 ± 2.9 

Unstimulated oral salivary flow 

(ml/15 mins) 0.38 ± 0.08 0.63 ± 0.25 0.45 ± 0.14 0.18 ± 0.08 N/A 

Schirmer’s test (mm/5 mins) 3.07 ± 0.85 4.39 ± 1.17 4.76 ± 1.31 3.53 ± 1.43 N/A 

Anti-Ro/SSA positive (%)  93.4%  86.9%  80.9%  93.7%  N/A 

Anti-La/SSB positive (%)  83.6%  73.9%  57.1%   81.2% N/A 

WCC (x10^9/l) 5.79 ± 0.29 5.27 ± 0.40 5.49 ± 0.39 4.37 ± 0.43 N/A 

Neutrophil (x10^9/l) 3.65 ± 0.22 3.21 ± 0.28 3.50 ± 0.29 3.07 ± 0.35 N/A 

Lymphocytes (x10^9/l) 1.55 ± 0.08 2.31 ± 0.80 1.38 ± 0.11 1.23 ± 0.16 N/A 

ESR (mm/hr) 32.11 ± 3.30 36.30 ± 6.20 23.81 ± 5.53 39.63 ± 7.08 N/A 

IgG (g/L) 17.65 ± 0.98 15.64 ± 1.59 13.88 ± 1.75 17.39 ± 1.96 N/A 

C3 (mg/dl) 1.17 ± 0.04 1.17 ± 0.04 1.22 ± 0.10 1.10 ± 0.09 N/A 

C4 (mg/dl) 0.23 ± 0.02 0.16 ± 0.02 0.22 ± 0.02 0.14 ± 0.02 N/A 

CRP (mg/L) 3.87 ± 0.56 3.60 ± 0.62 6.39 ± 2.22 3.78 ± 0.90 N/A 

RF (IU) 56.45 ± 7.64 63.17 ± 14.13 42.38 ± 9.67 133.87 ± 72.05 N/A 

Total SSDDI 4.21 ± 0.20 4.61 ± 0.42 4.24 ± 0.41 9.06 ± 0.41 N/A 

ESSPRI (0-10) 4.86 ± 0.28 5.41 ± 0.46 5.48 ± 0.52 5.92 ± 0.79 N/A 

ESSDAI (0-123) 6.16 ± 0.92 4.61 ± 0.95 5.43 ± 1.02 6.06 ± 1.89 N/A 

WCC= White Cell Count, ESR= Erythrocyte Sedimentation Rate, C3= Complement Component 3, C4= Complement Component 4, CRP=C-reactive 

Protein, RF=Rheumatoid Factor, IU= International Units, ESSDAI score=(0-4 low activity, 5-12 moderate activity and ≥ 13 high activity), parameters 

in bold depict those values that were statistically significantly different to other subject groups when tested using Mann-Whitney test.  
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Table 4.2 Clinical data of pSS and pSS-associated lymphoma subjects in the Validation cohort 

Clinical criteria Mean ± S.E.M 

pSS (n = 119) pSS-associated lymphoma (n = 14) 

Age (years) 57 ± 1.11 60 ± 4.65 

Unstimulated oral salivary flow (ml/15 mins) 0.78 ± 0.15 0.59 ± 0.25 
Schirmer’s test (mm/5 mins) 6.05 ± 0.69 7.14 ± 3.36 
Anti-Ro/SSA positive (%) 88.2% 86.6% 

Anti-La/SSB positive (%) 64.7% 64.2% 

WCC (x10^9/l) 5.33 ± 0.17 5.54 ± 0.35 
Neutrophil (x10^9/l) 3.73 ± 0.51 3.55 ± 0.35 
Lymphocytes (x10^9/l) 1.73 ± 0.28  1.43 ± 0.18 
ESR (mm/hr) 25.39 ± 1.99 23.50 ± 6.76 
IgG (g/L) 18.18 ± 1.85 13.96 ± 1.32 
C3 (mg/dl)* 19.33 ± 12.97 1.16 ± 0.13 
C4 (mg/dl) 0.29 ± 0.07 0.16 ± 0.02 
CRP (mg/L)* 3.15 ± 0.30 4.87 ± 1.43 
RF (IU)* 64.15 ± 11.95 68.71 ± 23.07 
Total SSDDI* 3.32 ± 0.17 6.43 ± 1.09 
ESSPRI (0-10)* 5.02 ± 0.25 6.57 ± 0.52 
ESSDAI (0-123) 4.10 ± 0.44 6.79 ± 1.32 

* number of pSS-associated lymphoma samples = 7, WCC= White Cell Count, ESR= Erythrocyte Sedimentation Rate, C3= Complement Component 3, 

C4= Complement Component 4, CRP=C-reactive Protein, RF=Rheumatoid Factor, IU= International Units, ESSDAI score=(0-4 low activity, 5-12 

moderate activity and ≥ 13 high activity), parameters in bold are those values that were statistically significantly different between groups when tested 

using the Mann-Whitney test.  
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Table 4.3 Histological types of the subjects in the two pSS-associated lymphoma cohorts 

Type of lymphoma 
Discovery 

cohort 

Validation cohort 

treated  

pSS-associated 

lymphoma 

Untreated  

pSS-associated 

lymphoma 

Non- Hodgkin’s lymphoma 

DLBCL -  1 - 

Low grade follicular lymphoma - - 1 

Low grade MALT lymphoma - 1 - 

MALT lymphoma   7 13 5 

MZL  2 - - 

Not specific 3 1 - 

Parotid lymphoma  1 - 1 

Periorbital lymphoma  1 - - 

T cell/ histiocyte rich b cell lymphoma - 1 - 

Hodgkin's lymphoma 

Hodgkin's lymphoma 2 - - 

Total number of samples 16 17 7 

DLBCL = Diffused Large B-cell Lymphoma, MALT =  mucosa-associated lymphoid tissue, 

MZL = Marginal Zone lymphoma  

 

4.4.2 RNA quality  

Total RNA from patients and healthy controls were extracted from the PAXgene tubes, and 

the concentration of each sample was measured initially by Nano-drop. The quality and the 

concentration of the samples were also checked using an Agilent 2100 Bioanalyzer at the 

CGS. Generally, samples with RIN above 7 are considered achieving the quality standards 

for microarray experiments. A total of 117 RNA samples out of 144 were of good quality, 

with an RIN score that ranged from 7 to 8.8. Three RNA samples from the pSS group have 

N/A RIN values, but the samples were subsequently inspected visually by the staff at CGS 

and were considered as being of good quality (by comparing them with the profiling of a 

good-quality sample). Twenty-four samples have an RIN score < 7, of which 18 were 

considered being of ‘medium’ quality, with RIN scores ranging between 5 and 7. These 18 

samples were from 2 healthy controls, 5 pSS, 3 pSS-paraproteinemia, 6 pSS-other cancers 

and 2 pSS-associated lymphoma. The remaining 6 samples were of low quality with RIN 
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score < 5; these 6 samples were from 1 healthy control, 1 pSS-other cancers, and 4 pSS 

patients. The distribution of the samples according to their RIN scores is shown in Figure 

4.4. The amplification cRNA for all the samples showed the lack of a sharp peak of ~700 

bp that represents the globin mRNA, indicating that globin mRNA had been effectively 

removed.  

 

Figure 4.4 RNA integrity number (RIN) of the Discovery cohort. The black squares 

represent each sample, and the horizontal red lines mark out RIN score =5 and RIN score 

=7 cutoffs. 

 

 

4.4.3 Whole genome gene expression Bead Chip of pSS-associated lymphoma 

1. Microarray data analysis 

The microarray data analysis was performed using R packages. The data were transformed 

and normalised using the RSN method, followed by quality control analysis. These include 

removal of technical outliers that were detected during the analysis by Principal Component 

Analysis (PCA). The reason behind removing the technical outliers is that they might affect 

the downstream analysis of the data because they have dissimilar behaviours from the other 

samples in the data. The RNA quality of the samples was also taken into consideration.  

Since the sample size of the pSS-associated lymphoma group is the smallest among the five 

subject groups, all samples from the four different pSS subgroups with RIN score < 7 were 
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removed, but the two pSS-associated lymphoma samples with RIN score < 7 were kept 

during the analysis. The reason for keeping these two lymphoma samples is that their RIN 

score were more than 5, which is still considered acceptable for microarray experiments. 

Furthermore, excluding those 2 samples would have substantially reduced the power of the 

study due to the resultant smaller sample size of the lymphoma group. All technical outliers 

were removed from the analysis (including a pSS-associated lymphoma sample). This 

analysis will be referred to as Analysis A later in the chapter, and all of the figures and 

tables presented are generated using this analysis unless stated otherwise. 

 

2. Batch effect  

A large experiment such as this one might be affected by what is known as batch effects. 

PCAs were used to investigate these potential batch effects. PCA prior to batch correction 

showed batch effects that separate the samples into 3 groups, where each group represents a 

number of samples that were processed and scanned at a specific time, which differs from 

the time that the other two groups were processed and scanned. These differences created a 

non-biological variation leading to the batch effects as shown in Figure 4.5. Following 

batch correction, which was achieved by applying the ComBat correction method, the PCA 

showed that all of the samples were distributed more evenly as one group, indicating 

effective elimination of batch effects (Figure 4.6).    
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Figure 4.5 Batch effects of the microarray data of the Discovery cohort. Principal 

component analysis (PCA) showed that batch effects were present in the normalised gene 

expression microarray data. Three color coded groups of samples (red (1), green (2) and 

blue(3)) were clustered separately due to non-biological variation caused by differences in 

the time of sample processing and scanning. Each group is represented by a unique color 

to distinguish the clustering.  

 

Figure 4.6 Batch correction of the microarray data of the Discovery cohort. Principal 

component analysis (PCA) after batch correction of the normalised gene expression 

microarray data. All samples from the three color coded groups of samples (red (1), green 

(2) and blue(3)) were now more evenly distributed as a single group. 
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3. Differentially expressed genes in pSS-associated lymphoma 

As mentioned earlier, the pSS-associated lymphoma group has the smallest sample size (n= 

16). In the main analysis (Analysis A), for the lymphoma group, I have removed the one 

technical outlier in the analysis but included the two pSS-associated lymphoma samples 

with RIN scores 5.6 and 5.2; thus, the sample size was reduced from 16 to 15 samples. For 

the pSS-non-lymphoma group, the sample size, after removing samples based on technical 

outliers and RIN score (< 7), was 52 samples. The list of differentially expressed genes was 

generated from the comparison between the “pSS” and “pSS-associated lymphoma” 

groups. A negative log fold change (Log (FC)) means a downregulation of that gene in the 

pSS (non-lymphoma) group (or upregulation in the pSS-associated lymphoma group). 

Similarly, a positive Log (FC) represents an upregulation of the gene in the pSS group (i.e. 

downregulated in pSS-associated lymphoma group). Throughout the chapter, I will use the 

pSS-associated lymphoma group as the reference point to describe the level of gene 

expression (i.e. the direction of regulation) of the differentially expressed genes (DEGs). In 

the main analysis (Analysis A), a total of 57 DEGs were identified: 11 genes were 

upregulated in the pSS-associated lymphoma group, and 40 genes were downregulated, 6 

probes were identified as not applicable (NA), theses NAs represent a potential gene which 

has not been officially identified or validated. The NAs were excluded from the presented 

data shown in Table 4.4. The DEGs were also shown using a volcano plot (Figure 4.7). The 

heat map and the hierarchical clustering of the samples according to the DEGs in Analysis 

A are shown in Figure 4.8. 
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Table 4.4 Differentially expressed genes in pSS-associated lymphoma from Analysis A of the microarray data of the Discovery cohort. 

Data analysis performed in R, Cutoff values: adjusted p < 0.05, and fold change ≥ 1.2  

Gene symbol Name of gene 
Adjusted 

P. value 

Regulation in pSS-

associated lymphoma 
Fold change 

LGALS1 lectin, galactoside-binding, soluble, 1 0.0199 upregulation 1.36 

KCTD12 potassium channel tetramerisation domain containing 12 0.0329 upregulation 1.28 

DRAP1 DR1-associated protein 1 (negative cofactor 2 alpha) 0.0280 upregulation 1.27 

RBP7 retinol binding protein 7, cellular 0.0272 upregulation 1.26 

MGST3 microsomal glutathione S-transferase 3 0.0423 upregulation 1.23 

NUDT14 nudix (nucleoside diphosphate linked moiety X)-type motif 14 0.0058 upregulation 1.22 

UBXN11 UBX domain protein 11 0.0081 upregulation 1.21 

ATG12 autophagy related 12 0.0199 upregulation 1.21 

C10orf32(BORCS7) chromosome 10 open reading frame 32 0.0224 upregulation 1.21 

DYNLL1 dynein, light chain, LC8-type 1 0.0195 upregulation 1.2 

RNF7 ring finger protein 7 0.0294 upregulation 1.2 

RNA28S5 RNA, 28S ribosomal 5 0.0030 downregulation 1.6 

LEF1 lymphoid enhancer-binding factor 1 0.0390 downregulation 1.42 

SPOCK2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 2 0.0195 downregulation 1.4 

ETS1 v-ets avian erythroblastosis virus E26 oncogene homolog 1 0.0292 downregulation 1.39 

POM121C POM121 transmembrane nucleoporin C 0.0062 downregulation 1.35 

MYC v-myc avian myelocytomatosis viral oncogene homolog 0.0199 downregulation 1.32 

SGK223 homolog of rat pragma of Rnd2 0.0442 downregulation 1.32 

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 0.0071 downregulation 1.31 

RPL23AP5 ribosomal protein L23a pseudogene 5 0.0224 downregulation 1.31 

BCL11B B-cell CLL/lymphoma 11B (zinc finger protein) 0.0353 downregulation 1.3 

DDB1 damage-specific DNA binding protein 1, 127kDa 0.0058 downregulation 1.28 

CYFIP2 cytoplasmic FMR1 interacting protein 2 0.0498 downregulation 1.27 

WAC WW domain containing adaptor with coiled-coil 0.0058 downregulation 1.27 
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ESYT1 extended synaptotagmin-like protein 1 0.0442 downregulation 1.26 

MAGED1 melanoma antigen family D, 1 0.0442 downregulation 1.26 

PRPF8 pre-mRNA processing factor 8 0.0390 downregulation 1.26 

SUN2 Sad1 and UNC84 domain containing 2 0.0417 downregulation 1.26 

HNRNPUL1 heterogeneous nuclear ribonucleoprotein U-like 1 0.0390 downregulation 1.25 

CD96 CD96 molecule 0.0498 downregulation 1.24 

CDR2 cerebellar degeneration-related protein 2, 62kDa 0.0206 downregulation 1.24 

NAT10 N-acetyltransferase 10 (GCN5-related) 0.0330 downregulation 1.24 

VCP valosin containing protein 0.0195 downregulation 1.24 

ALDH9A1 aldehyde dehydrogenase 9 family, member A1 0.0212 downregulation 1.23 

BAG3 BCL2-associated athanogene 3 0.0235 downregulation 1.23 

LRIG1 leucine-rich repeats and immunoglobulin-like domains 1 0.0159 downregulation 1.23 

NCSTN Nicastrin 0.0465 downregulation 1.23 

PAF1 Paf1, RNA polymerase II associated factor, homolog (S. cerevisiae) 0.0199 downregulation 1.23 

SF3A1 splicing factor 3a, subunit 1, 120kDa 0.0442 downregulation 1.23 

ATP1A1 ATPase, Na+/K+ transporting, alpha 1 polypeptide 0.0058 downregulation 1.22 

KHDRBS1 KH domain containing, RNA binding, signal transduction associated 1 0.0405 downregulation 1.22 

LRFN3 leucine rich repeat and fibronectin type III domain containing 3 0.0452 downregulation 1.22 

RBL2 retinoblastoma-like 2 0.0224 downregulation 1.22 

RRN3 RRN3 RNA polymerase I transcription factor homolog (S. cerevisiae) 0.0153 downregulation 1.22 

SDHA succinate dehydrogenase complex, subunit A, flavoprotein (Fp) 0.0390 downregulation 1.22 

CBLL1 Cbl proto-oncogene-like 1, E3 ubiquitin protein ligase 0.0244 downregulation 1.21 

CDV3 CDV3 homolog (mouse) 0.0475 downregulation 1.21 

FOXJ3 forkhead box J3 0.0153 downregulation 1.21 

SMARCA2 
SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily a, member 2 
0.0299 

downregulation 
1.21 

HNRNPDL heterogeneous nuclear ribonucleoprotein D-like 0.0350 downregulation 1.2 

HSPA9 heat shock 70kDa protein 9 (mortalin) 0.0202 downregulation 1.2 
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Figure 4.7 Volcano plot of the differentially expressed genes in pSS-associated 

lymphoma in the Discovery cohort. The x axis represents log2 of the fold change and the y 

axis represents the –log10 of the adjusted p value. The dots in red represent the 

differentially expressed genes, and the red horizontal and vertical lines indicate the cut-off 

values of the adjusted p value and the fold changes. 
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Figure 4.8 Heat map and hierarchical clustering of samples in the Discovery cohort 

based on the Analysis A of the microarray data. The empty places represent the probes 

that were identified as NAs in the analysis.  

 

Since the main objective of the Discovery cohort was to identify a list of candidate genes 

that distinguish the lymphoma and the non-lymphoma groups, I have performed additional 

analyses using different RIN cut-off values (Analysis B, C, and D).  Although these 

analyses have included lymphoma samples that did not meet the ‘standard’ quality 

requirements for microarrays, I considered this approach to be acceptable for the Discovery 

cohort for two reasons. Firstly, the candidate genes identified in the Discovery cohort will 
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be validated technically and with an independent cohort; therefore, it will reduce the risk of 

identifying any false DEGs revealed using these additional analyses. Secondly, the 

lymphoma group has the smallest sample size and was therefore the key factor limiting the 

power of the study. Increasing the sample size of the lymphoma group could enable the 

detection of DEGs that are important but did not reach the statistical significance values 

due to a small sample size. The description of these additional analyses is provided in Table 

4.5. Each of these different analyses has yielded a set of deferentially expressed genes. For 

Analysis B (14 pSS-associated lymphoma samples) has generated 20 DEGs including 4 

NAs, Analysis C (16 pSS-associated lymphoma samples) has generated 45 DEGs including 

9 NAs, while Analysis D (13 pSS-associated lymphoma samples), generates 19 DEGs 

including 3 NAs. Each set of DEGs from these four analyses contains genes that are in 

common with one or more analyses, but there are also DEGs that were unique to each 

analysis (see Venn diagram in Figure 4.9). The lists of DEGs with the exclusion of the NAs 

of Analyses B, C, and D are shown in Tables 4.6, 4.7, and 4.8, respectively. The final list of 

candidate DEGs in pSS-associated lymphoma was generated by combining the lists of 

DEGs from all 4 analyses. The combined genes list contains 68 DEGs from the microarray 

experiments is referred to as the  “68-DEGs-Mi”. The workflow of the Discovery cohort 

and the genes selection for validation is shown schematically in Figure 4.10.   

 

Table 4.5 The analytic criteria used in the four microarray data analyses of pSS-

associated lymphoma gene expression signature in the Discovery cohort.  

 pSS group pSS-associated lymphoma group 

RIN<7 

removed 

Technical 

outliers removed 

RIN < 7 

removed 

Technical 

outliers removed 

No. of pSS-associated 

lymphoma samples 

Analysis A Yes Yes No Yes 15 

Analysis B Yes Yes Yes No 14 

Analysis C Yes Yes No No 16 

Analysis D Yes Yes Yes Yes 13 
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Table 4.6 Differentially expressed genes in pSS-associated lymphoma from Analysis B of the microarray data of the Discovery cohort. 

Data analysis performed in R, cutoff values: adjusted p < 0.05, fold change ≥ 1.2  

Gene symbol Gene name Adjusted p 

value 

Regulation in pSS-

associated lymphoma 

Fold change 

DRAP1 DR1-associated protein 1 (negative cofactor 2 alpha) 0.0418 upregulated 1.29 

DYNLL1 dynein, light chain, LC8-type 1 0.0155 upregulated 1.23 

SRP14 signal recognition particle 14kDa (homologous Alu RNA binding protein) 0.0419 upregulated 1.23 

PSMC1 proteasome (prosome, macropain) 26S subunit, ATPase, 1 0.0408 upregulated 1.23 

UBXN11 UBX domain protein 11 0.0167 upregulated 1.22 

OAF OAF homolog (Drosophila) 0.0418 upregulated 1.22 

NUDT14 nudix (nucleoside diphosphate linked moiety X)-type motif 14 0.0167 upregulated 1.22 

SEC61G Sec61 gamma subunit 0.0363 upregulated 1.21 

CNPY3 canopy FGF signaling regulator 3 0.0226 upregulated 1.21 

C10orf32(BORCS7) chromosome 10 open reading frame 32 0.0418 upregulated 1.21 

RNA28S5 RNA, 28S ribosomal 5 0.0015 downregulated 1.67 

RPL23AP5 ribosomal protein L23a pseudogene 5 0.0398 downregulated 1.31 

WAC WW domain containing adaptor with coiled-coil 0.0145 downregulated 1.27 

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 0.0408 downregulated 1.26 

DDB1 damage-specific DNA binding protein 1, 127kDa 0.0392 downregulated 1.23 

RPA2 replication protein A2, 32kDa 0.0225 downregulated 1.20 
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Table 4.7 Differentially expressed genes in pSS-associated lymphoma from Analysis C of the microarray data of the Discovery cohort. 

Data analysis performed in R, cutoff values: adjusted p < 0.05, fold change ≥ 1.2  

Gene symbol Gene name Adjusted p 

value 

Regulation in pSS-

associated lymphoma 

Fold change 

LGALS1 lectin, galactoside-binding, soluble, 1 0.0166 upregulated 1.34 

DRAP1 DR1-associated protein 1 (negative cofactor 2 alpha) 0.0096 upregulated 1.32 

UBXN11 UBX domain protein 11 0.0019 upregulated 1.25 

NUDT14 nudix (nucleoside diphosphate linked moiety X)-type motif 14 0.0019 upregulated 1.24 

RBP7 retinol binding protein 7, cellular 0.0390 upregulated 1.23 

ATG12 autophagy related 12 0.0102 upregulated 1.22 

RAB37 RAB37, member RAS oncogene family 0.0127 upregulated 1.21 

HCFC1R1 host cell factor C1 regulator 1 (XPO1 dependent) 0.0096 upregulated 1.21 

EHBP1L1 EH domain binding protein 1-like 1 0.0397 upregulated 1.20 

HLA-DRB1 major histocompatibility complex, class II, DR beta 1 0.0486 downregulated 3.59 

RNA28S5 RNA, 28S ribosomal 5 0.0015 downregulated 1.63 

LEF1 lymphoid enhancer-binding factor 1 0.0399 downregulated 1.39 

ETS1 v-ets avian erythroblastosis virus E26 oncogene homolog 1 0.0245 downregulated 1.38 

SPOCK2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 2 0.0381 downregulated 1.34 

RPL23AP5 ribosomal protein L23a pseudogene 5 0.0116 downregulated 1.32 

POM121C POM121 transmembrane nucleoporin C 0.0161 downregulated 1.30 

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 0.0071 downregulated 1.30 

RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 0.0486 downregulated 1.30 

MYC v-myc avian myelocytomatosis viral oncogene homolog 0.0190 downregulated 1.30 

BCL11B B-cell CLL/lymphoma 11B (zinc finger protein) 0.0315 downregulated 1.29 

WAC WW domain containing adaptor with coiled-coil 0.0015 downregulated 1.29 

ITK IL2-inducible T-cell kinase 0.0346 downregulated 1.29 

DDB1 damage-specific DNA binding protein 1, 127kDa 0.0112 downregulated 1.25 
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CD96 CD96 molecule 0.0382 downregulated 1.24 

RBL2 retinoblastoma-like 2 0.0114 downregulated 1.23 

ALDH9A1 aldehyde dehydrogenase 9 family, member A1 0.0137 downregulated 1.23 

CDR2 cerebellar degeneration-related protein 2, 62kDa 0.0184 downregulated 1.23 

RRN3 RRN3 RNA polymerase I transcription factor homolog (S. cerevisiae) 0.0078 downregulated 1.23 

HNRNPA1P10 heterogeneous nuclear ribonucleoprotein A1 pseudogene 10 0.0441 downregulated 1.23 

LRIG1 leucine-rich repeats and immunoglobulin-like domains 1 0.0137 downregulated 1.22 

KHDRBS1 KH domain containing, RNA binding, signal transduction associated 1 0.0292 downregulated 1.22 

CDV3 CDV3 homolog (mouse) 0.0346 downregulated 1.22 

SMARCA2 SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily a, member 2 

0.0255 downregulated 1.20 

VCP valosin containing protein 0.0346 downregulated 1.20 

HSPA9 heat shock 70kDa protein 9 (mortalin) 0.0137 downregulated 1.20 

PRKCQ protein kinase C, theta 0.0479 downregulated 1.20 
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Table 4.8 Differentially expressed genes in pSS-associated lymphoma from Analysis D of the microarray data of the Discovery cohort. 

Data analysis performed in R, cutoff values: adjusted p < 0.05, fold change ≥ 1.2 

Gene symbol Gene name Adjusted p 

value 

Regulation in pSS-

associated lymphoma 

Fold change 

DYNLL1 dynein, light chain, LC8-type 1 0.0102 upregulated 1.25 

C10orf32(BORCS7) chromosome 10 open reading frame 32 0.0249 upregulated 1.23 

HNMT histamine N-methyltransferase 0.0470 upregulated 1.23 

OAF OAF homolog (Drosophila) 0.0470 upregulated 1.22 

SEC61G Sec61 gamma subunit 0.0470 upregulated 1.21 

RNA28S5 RNA, 28S ribosomal 5 0.0073 downregulated 1.64 

SPOCK2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 2 0.0450 downregulated 1.41 

POM121C POM121 transmembrane nucleoporin C 0.0249 downregulated 1.34 

CYFIP2 cytoplasmic FMR1 interacting protein 2 0.0470 downregulated 1.32 

DDB1 damage-specific DNA binding protein 1, 127kDa 0.0185 downregulated 1.27 

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 0.0481 downregulated 1.26 

WAC WW domain containing adaptor with coiled-coil 0.0327 downregulated 1.24 

ATP1A1 ATPase, Na+/K+ transporting, alpha 1 polypeptide 0.0124 downregulated 1.23 

PAF1 Paf1, RNA polymerase II associated factor, homolog (S. cerevisiae) 0.0470 downregulated 1.23 

BMS1 BMS1 ribosome biogenesis factor 0.0260 downregulated 1.20 

BTBD11 BTB (POZ) domain containing 11 0.0278 downregulated 1.20 
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Figure 4.9 Venn diagram for the DEGs that are in common and unique among the four 

different microarray data analyses (A, B, C, and D) in the Discovery cohort 

 

Figure 4.10 Schematic representation of the microarray data analytic approach of the 

Discovery cohort. The NAs were excluded from the total number of the DEGs in each 

analysis. DEGs= Differentially expressed genes, IPA= Ingenuity Pathway analysis    
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4.4.4 Technical validation of the differentially expressed genes in pSS-associated 

lymphoma with qRT-PCR 

1. Housekeeping genes selection 

An important step in validating the DEGs associated with pSS-associated lymphoma is to 

select the most stable housekeeping genes for comparison. I used the NormFinder 

algorithm (Andersen et al., 2004) to calculate the stability of the housekeeping genes 

between the different subject groups. This algorithm revealed that UBC being the 

housekeeping gene with the most stable level of expression, with a stability value of 0.003 

(Figure 4.11). Moreover, taking into consideration of both the intra- and inter-group 

variations, the two genes with the most stable levels of expression are UBC and YWHAZ, 

with stability values of 0.003. In addition, I have included the ACTB gene, which came 

third in the stability value ranking based on NormFinder. Finally, I have also included the 

18S gene, as it has been frequently used in other studies and has been used in a previous 

study in our group to investigate the miRNA expression in pSS-associated lymphoma.       

 

Figure 4.11 The expression stability values for the housekeeping genes calculated by 

NormFinder. The bar chart shows the most stable housekeeping gene on the left and the 

most variable ones on the right. As the microarray contains more than one probe for some 

housekeeping genes, these probes were distinguished by adding a suffix of 1, 2, 3, etc. after 

the gene name.  
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Furthermore, the four selected housekeeping genes were also measured by qRT-PCR to 

check their levels of expression in the 5 subject groups. The qRT-PCR threshold cycle (Ct) 

value for each housekeeping gene was calculated and then compared among the 5 subject 

groups. The expression levels of YWHAZ and ACTB were stable across the subject groups. 

There was no statistically significant variation in the level of expression of these genes 

among the five groups (ANOVA p values of 0.819 and 0.892 for YWHAZ and ACTB, 

respectively). Furthermore, there were also no statistically significant differences when 

comparing the subject groups individually to each other. Finally, the standard deviations of 

expression levels for both genes across all samples were small (0.5532 and 0.7951, 

respectively). With regard to the UBC gene, there was no statistically significant variation 

between the five subject groups when analysed using ANOVA (p=0.123); however, there 

was a significant difference in the expression level when comparing the pSS-associated 

lymphoma versus pSS (p=0.009) groups. Interestingly, the 18S gene showed the highest 

variability of the 4 housekeeping genes that I have selected. Still, there was no significant 

variation between the 5 subject groups (ANOVA p=0.062). However, when comparing the 

pSS-associated lymphoma groups with all 4 other groups individually, there were 

statistically significant differences in the level of expression of 18S. I have therefore 

decided to exclude this housekeeping gene as well as UBC from my analysis. The details of 

these statistical analyses are provided in Table 4.9, and the comparisons of the Cts values 

are shown in Figure 4.12. Since the expression levels of YWHAZ are stable across all 

subject groups and have the lowest standard deviation, the data were normalised to this 

housekeeping gene in subsequent analysis. Due to limited RNA availability, the stability 

testing of the expression levels of the four housekeeping genes were performed in only the 

first two batches, while for the latter two batches I have used only YWHAZ and ACTB. The 

same strategy was employed with the second batch of qRT-PCR array plates, and the 

results were consistent with the results obtained from the first batch (Table 4.10).        
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Table 4.9 Statistical analysis of the expression levels stability of the 4 housekeeping 

genes across the 5 subject groups in the first batch of qRT-PCR plates. * = Statistically 

Significant (p < 0.05) 

 

 

Table 4.10 Statistical analysis of the expression level stability of the 4 housekeeping in 

the second batch of qRT-PCR plates. * = Statistically Significant (p < 0.05) 
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Figure 4.12 Bar charts of the Cts values of the 4 housekeeping genes measured with 

qRT-PCR for the 5 subject groups in the Discovery cohort. YWHAZ and ACTB had the 

most stable levels of expression. There was a significant difference in the expression level 

of UBC when comparing the pSS-associated lymphoma vs pSS groups. The expression level 

of 18S was the most variable among the samples. 
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2. Technical validation of the whole blood gene expression signature in pSS-associated 

lymphoma 

As the availability of RNA samples was limited, I was not able to technically validate 

differential expression of all of the candidate genes. In order to select the best candidates 

for technical validation, I used the following criteria. Firstly, the final list of DEGs (68-

DEGs-Mi) is ranked according to the fold change and the p value. Secondly, DEGs that 

were identified by all four analyses were selected.  A total of 61 out of the 68 DEGs were 

selected, the remaining 7 genes included 2 pseudogenes and 5 genes with small fold 

changes. The real-time RT-PCR experiment confirmed differential expression of 26 DEGs 

(Mann-Whitney test under P < 0.05) out of the 61 genes tested. These 26 DEGs included 

both upregulated and downregulated genes in pSS-associated lymphoma. The 

downregulated genes were BMS1, BTBD11, CBLL1, CYFIP2, ESYT1, HNRNPUL1, LEF1, 

MAGED1, POM121C, PRPF8, SF3A1, SGK223, and VCP, while the upregulated genes 

were C10orf32(BORCS7), CNPY3, DRAP1, DYNLL1, HNMT,  LGALS1, MGST3, 

NUDT14, OAF, RBP7, SEG61G, SRP14, and UBXN11. Twenty of these 26 genes were 

identified from the main analysis (Analysis A), and the remaining 6 genes were identified 

from the other analyses (Table 4.11). These 26 genes constituted the 26 differentially 

expressed genes from microarray and PCR (referred to as “26-DEGs-MiPCR”).  

Apart from these 26 DEGs, the expression level of RNA28S5 was also significantly 

different between the lymphoma and non-lymphoma groups, but the direction of regulation 

(i.e. up/down-regulation) was different in the qRT-PCR experiment and in the microarray. 

It is also important to mention that for HLA-DRB1, the expression levels could not be 

determined by the qRT-PCR experiment, as the amplification curves were jagged. A heat 

map representing the sample clustering according to the 26-DEGs-MiPCR is shown in 

Figure 4.13.      
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Table 4.11 The 26-DEGs-MiPCR of pSS-associated lymphoma from the Discovery cohort. For each DEG, the microarray analysis in 

which it was identified as candidate, the p value (measured by Mann-Whitney U test), the fold change and the regulation direction, Fc was 

calculated according to the housekeeping gene normalisation  

Gene symbol Gene name Analysis 

A 

Analysis 

B 

Analysis 

C 

Analysis 

D 

p value Fc & 

regulation 

NUDT14 Nudix (nucleoside diphosphate linked moiety X)-type motif 14 + + + - 0.0000 2.09 ↑ 

OAF OAF homolog (Drosophila) - + - + 0.0001 2.05 ↑ 

C10orf32(BORCS7) Chromosome 10 open reading frame 32 + + - + 0.0000 1.91 ↑ 

RBP7 Retinol binding protein 7, cellular + - + - 0.0005 1.88 ↑ 

LGALS1 Lectin, galactoside-binding, soluble, 1  + - + - 0.0001 1.74 ↑ 

DYNLL1 Dynein, light chain, LC8-type 1  + + - + 0.0000 1.65 ↑ 

HNMT histamine N-methyltransferase - - - + 0.0231 1.55 ↑ 

DRAP1 DR1-associated protein 1 (negative cofactor 2 alpha) + + + - 0.0000 1.50 ↑ 

SRP14 Signal recognition particle 14kDa (homologous Alu RNA 

binding protein) 
- + - - 0.0344 1.39 ↑ 

UBXN11 UBX domain protein 11 + + + - 0.0017 1.38 ↑ 

SEC61G Sec61 gamma subunit  - + - + 0.0005 1.37 ↑ 

CNPY3 Canopy FGF signaling regulator 3 - + - - 0.0004 1.32 ↑ 

MGST3 Microsomal glutathione S-transferase 3 + - - - 0.0079 1.07 ↑ 

VCP Valosin containing protein + - + - 0.0057 2.45 ↓ 

HNRNPUL1 Heterogeneous nuclear ribonucleoprotein U-like 1  + - - - 0.0238 2.35 ↓ 

ESYT1 Extended synaptotagmin-like protein 1 + - - - 0.0118 1.86 ↓ 

SGK223 Homolog of rat pragma of Rnd2 + - - - 0.0495 1.67 ↓ 

BTBD11 BTB (POZ) domain containing 11 - - - + 0.0338 1.66 ↓ 

BMS1 BMS1 ribosome biogenesis factor  - - - + 0.0012 1.50 ↓ 

PRPF8 Pre-mRNA processing factor 8 + - - - 0.0238 1.41 ↓ 

MAGED1 Melanoma antigen family D, 1 + - - - 0.0333 1.40 ↓ 

SF3A1 Splicing factor 3a, subunit 1, 120kDa + - - - 0.0106 1.32 ↓ 

LEF1 Lymphoid enhancer-binding factor 1 + - + - 0.0289 1.30 ↓ 

CYFIP2 Cytoplasmic FMR1 interacting protein 2  + - - + 0.0314 1.26 ↓ 

POM121C POM121 transmembrane nucleoporin C + - + + 0.0375 1.23 ↓ 

CBLL1 Cbl proto-oncogene-like 1, E3 ubiquitin protein ligase + - - - 0.0421 1.14 ↓ 
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Figure 4.13 Heat map and hierarchical clustering of samples of the Discovery cohort 

according to the 26-DEGs-MiPCR  

 

4.4.5 Biological validation of the potential whole blood gene expression signature of 

pSS-associated lymphoma 

A second independent set of samples (referred to as the Validation cohort) was used to 

validate the potential gene expression signature of pSS-associated lymphoma identified 

using the Discovery cohort. The Validation cohort consisted of only two groups, the pSS-

associated lymphoma group with 17 samples, and the pSS group with 119 samples. The 

clinical data for the samples are shown in Table 4.2. The reason for not including the 

additional pSS subgroups as in the Discovery cohort was that comparisons between the 

lymphoma group and the other pSS subgroups did not contribute to the identification of 

DEGs in the Discovery cohort (see chapter 6 for more details). Twenty-four genes were 

included in this biological validation experiment, of which only 3 genes were found to be 

differentially expressed between the lymphoma and the non-lymphoma groups. The qRT-

PCR data were normalised using YWHAZ as a housekeeping gene, the expression levels of 

which was also stable across the pSS-associated lymphoma and pSS groups in this cohort. 
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These 3 validated DEGs were BMS1 (downregulated gene in pSS-associated lymphoma), 

NUDT14 and MGST3 (upregulated). These genes were significantly differentially 

expressed with p values of <0.0000, 0.0137, and 0.0209 respectively, and fold changes of 2, 

1.40, and 1.28, respectively (Figure 4.14). Thus, these 3 genes (BMS1, NUDT14, and 

MGST3) were found to be the gene expression signature for pSS-associated lymphoma for 

this study (referred to as the “3-gene biosignature of pSS-associated lymphoma” in the 

thesis). For the remaining 21 genes, I have also examined in more detail those genes that 

satisfy the following criteria: (a) those with p values between 0.05 and 0.25 and (b) a 

consistent direction of regulation as observed in the Discovery cohort. Three genes satisfied 

these criteria: LEF1, OAF, and DRAP1. In addition, another five genes have a p value > 

0.25 but the same direction of regulation of the Discovery cohort; these genes were 

LGALS1, CBLL1, C10orf32 (BORCS7), DYNLL1, and SGK223 (Table 4.12). The p values, 

fold changes, and the direction of regulation of the remaining 13 non-validated genes are 

provided in supplementary table S3. 
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Figure 4.14 The relative gene expression levels of the 3-gene biosignature of pSS-

associated lymphoma. The expression levels of the genes were expressed as the ratio to the 

expression level of the housekeeping gene YWHAZ. The downregulated BMS1 gene is in 

red (p<0.0000, FC=2); the upregulated NUDT14 and MGST3 genes are in blue 

(p=0.0137, 0.0209 ;FC=1.40,1.28 respectively). The total number of samples used in the 

comparison were pSS = 119 and pSS-associated lymphoma = 17. 
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Table 4.12 The 3-gene biosignature of pSS-associated lymphoma and other potential 

candidate genes identified in the Validation cohort (i.e. those genes with expression levels 

that were not statistically significantly different between subject groups but have the same 

direction of regulation as the Discovery cohort). Fc was calculated according to the 

normalisation against the pSS group. 

Gene 

symbol 

Gene name p value Fold change 

and 

regulation  

3-gene biosignature of pSS-associated lymphoma (sig. p values & consistent regulation with 

the Discovery cohort) 

BMS1 BMS1 ribosome biogenesis factor  0.0000 2.00↓ 

NUDT14 Nudix (nucleoside diphosphate linked moiety X)-type 

motif 14 

0.0137 1.40 ↑ 

MGST3 Microsomal glutathione S-transferase 3 0.0209 1.28 ↑ 

Genes with 0.05 < p values >  0.25  consistent direction of regulation as the Discovery cohort 

LEF1 Lymphoid enhancer-binding factor 1 0.0607 1.25 ↓ 

OAF OAF homolog (Drosophila) 0.1370 1.33↑ 

DRAP1 DR1-associated protein 1 (negative cofactor 2 alpha) 0.1220 1.19 ↑ 

Genes with  p values >  0.25  consistent direction of regulation as the Discovery cohort 

LGALS1 Lectin, galactoside-binding, soluble, 1  0.3109 1.12 ↑ 

CBLL1 Cbl proto-oncogene-like 1, E3 ubiquitin protein ligase 0.5063 1.11 ↓ 

C10orf32 

(BORCS7) 

chromosome 10 open reading frame 32 0.4221 1.07 ↑ 

DYNLL1 Dynein, light chain, LC8-type 1  0.6263 1.07 ↑  

SGK223 homolog of rat pragma of Rnd2 0.6124 1.01 ↓ 

 

4.4.6 Testing the whole blood gene expression signature in untreated pSS-associated 

lymphoma patients  

A set of untreated pSS-associated lymphoma samples was also included within the 

Validation cohort. These samples were collected from 7 patients with untreated lymphoma 

at the time of sampling (4 samples were obtained from our collaborators in Sweden, while 

the remaining 3 were from the UKPSSR). Six genes (NUDT14, DRAP1, DYNLL1, RBP7, 

SF3A1, and VCP) were differentially expressed between “untreated lymphoma” and “non-

lymphoma” groups with p < 0.05 (Table 4.13). Among these 6 DEGs, NUDT14 was a DEG 

for both treated and untreated pSS-associated lymphoma groups. DRAP1 and DYNLL1 

were not validated in the Validation cohort, but they have the same direction of regulation 

in both treated lymphoma cohorts (i.e. Discovery and Validation cohorts). RBP7 was also 

not validated in the Validation cohort with p value > 0.05, and having an opposite direction 

of regulation between the Discovery and the Validation cohorts. Similarly, SF3A1 and VCP 

were downregulated in the “pSS-associated lymphoma” group in the Discovery cohort but 
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were ‘upregulated’ in the Validation cohort, albeit both with p < 0.05. Therefore, I 

considered that NUDT14, DRAP1, and DYNLL1 as genes that could be potential 

biomarkers for untreated pSS-associated lymphoma (Figure 4.15). The p values, fold 

changes, and the direction of regulation of the remaining genes are provided in 

supplementary table S4. 
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Figure 4.15 The relative gene expression levels of the 3 DEGs in untreated pSS-

associated lymphoma. All 3 genes (NUDT14, DRAP1 and, DYNLL1) were upregulated in 

the untreated lymphoma group with p=0.0097, 0.0323 and 0.0106; FC=1.68, 1.34 and 1.54 

respectively. The total number of samples used in the comparison were pSS = 119 and 

untreated pSS-associated lymphoma = 7 

Table 4.13 The significant DEGs in untreated pSS-associated lymphoma. Fc was 

calculated according to the normalisation against the control group. 

Gene symbol Gene name p value Fold change 

and 

regulation  

3-gene biosignature in pSS-associated lymphoma 

NUDT14 Nudix (nucleoside diphosphate linked moiety X)-type motif 14 0.0097 1.68 ↑ 

DEGs in untreated pSS-associated lymphoma (significant p values and consistent regulation direction 

with the treated lymphoma groups in both Discovery and Validation cohort) 

DRAP1 DR1-associated protein 1 (negative cofactor 2 alpha) 0.0323 1.34 ↑ 

DYNLL1 Dynein, light chain, LC8-type 1  0.0106 1.54 ↑ 

DEGs in untreated pSS-associated lymphoma (but not consistent regulation direction within treated 

lymphoma) 

SF3A1 splicing factor 3a, subunit 1, 120kDa 0.0123 1.79 ↑ 

RBP7 Retinol binding protein 7, cellular 0.043 1.29 ↑ 

VCP Valosin containing protein 0.0306 1.27 ↑ 
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4.4.7 Prediction models for transcriptomic biomarkers of pSS-associated lymphoma 

The gene expression data obtained from the qRT-PCR experiment of the Discovery cohort 

(60 DEGs) were used to build prediction models for pSS-associated lymphoma using 

logistic regression. Inspection of simple logistic regression plots for each of the individual 

candidates, followed by a stepwise logistic regression procedure, led to the identification of 

two candidate genes for subsequent modelling with one third of the data retained for model 

cross-validation, then the Two-Gene model.  

1. Two-Gene model 

In this model, a cross-validation method was used first to test the model within the data in 

the Discovery cohort, where the data is divided into thirds. Two thirds were used to build 

the model and the third part used to test it. Next, the Two-Gene model was applied to the 

whole dataset of the Discovery cohort.  

a. Cross-validation of the Two-Gene model 

The dataset set was randomly divided into thirds. Two-thirds of which were used as a 

“training set” to build the model and the remaining third was used for validation (named as 

the “test set”). NUDT14 and UBXN11 were identified as key candidates. Both genes were 

retained in the model. The correlation between the expression level of UBXN11 and the 

probability of having lymphoma in pSS patients was poor (p = 0.7743), while the 

correlation between NUDT14 expression levels and having lymphoma was statistically 

significant (p=0.0210) and robust to the inclusion of UBXN11, as in Table 4.14A. I also 

applied the “likelihood ratio test”, a statistical test used to compare the goodness of fit of 

the model to the null hypothesis. The test determines how many times more likely (i.e. the 

likelihood ratio) the data fit one model over the null model with the corresponding p value. 

In this model, the likelihood ratio test showed a significant p value for NUDT14 of 0.0027 

(Table 4.14 B), suggesting that NUDT14 may be a better predictor of pSS-associated 

lymphoma than UBXN11. 

The receiver operating characteristic (ROC) curve for the cross-validation of the Two-Gene 

model is shown in Figure 4.16 and the area under the curve (AUC) values for the training 

and testing sets were 0.875 and 0.944 respectively, indicating good overall performance.  In 

order to further evaluate the performance of the model, we performed a misclassification 

analysis comparing the observed and expected diagnoses according to the model in both the 
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training and test sets.  The off-diagonal values in the confusion matrix in Table 4.15 (A and 

B) highlight these misclassification errors.  Overall, the model correctly predicted 37 of the 

42 samples (88.09% accuracy) in the training set and correctly predicted 14 of the 18 

samples (77.7% accuracy) in the test set.  The model did not misclassify any of the 32 non-

lymphoma pSS controls, but 4 of the 9 pSS-associated lymphoma patients were 

misclassified in the training set. In the test set, the model did not misclassify any of the 12 

non-lymphoma pSS controls, but 4 of the 6 pSS-associated lymphoma patients were 

misclassified. Note that this model could be further refined by incorporating the prevalence 

of lymphoma in pSS patients as prior probabilities.  

  

 

Table 4.14 Statistical analysis of the Two-Gene model using cross-validation approach. 

A. Parameter Estimates. B. Effect Likelihood Ratio tests. The results were generated by 

JMP SAS. 

 

Parameter Estimates 

Term Estimate Std Error ChiSquare Prob>ChiSq 

intercept -5.3179632 2.5135689 4.48 0.0344* 

NUDT14 27.7794556 12.038592 5.32 0.0210* 

UBXN11 0.37521799 1.3085782 0.08 0.7743 

 

Effect Likelihood Ratio Tests 

Source Nparm DF ChiSquare Prob>ChiSq 

NUDT14 1 1 8.98441796 0.0027 

UBXN11 1 1 0.08133799 0.7755 

      * = Staistically signficant 

 

 

 

A 

B 
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Figure 4.16 Receiver operating characteristic (ROC) curves of the Two-Gene model 

using cross-validation approach. The specificity and sensitivity of the Two-Gene model to 

classify pSS patients with or without lymphoma using the cross-validation approach. The 

left figure is the ROC of the training set with AUC=0.875, and the right figure is the ROC 

of the test set with AUC=0.944. 

 

 

Table 4.15 Confusion matrix of the Two-Gene model using cross-validation approach. 

Showing actual and predicted classifications in training set (A) and test set (B). The results 

were generated by JMP SAS 

 

Actual classification  Predicted 

Training set pSS-associated lymphoma pSS 

pSS-associated lymphoma 5 4 

pSS 0 32 

 

Actual classification  Predicted 

Test set pSS-associated lymphoma pSS 

pSS-associated lymphoma 2 4 

pSS 0 12 

 

A 

B 
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b. Building the Two-Gene model 

In this model, a stepwise ordinal logistic regression method was used to identify the best 

classifier for pSS-associated lymphoma. For this model, I used the 60 DEGs (i.e. training 

and test sets were pooled together). NUDT14 and UBXN11 were again identified as key 

candidates. The correlation between UBXN11 expression and the probability of having 

lymphoma was not significant (p=0.0606), while that between NUDT14 expression levels 

and lymphoma development was statistically significant (p=0.0095) (Table 4.16A).  

I also applied the likelihood ratio test for this model, which showed a significant p value for 

NUDT14 of 0.0013 (Table 4.16B), suggesting that NUDT14 was a better predictor of pSS-

associated lymphoma than UBXN11. Similarly, the probability of the Lack of Fit test is not 

statistically significant, with a value of 0.927, suggesting that the goodness of fit of the 

model was good (Table 4.16 C). 

The ROC curve for this Two-Gene model has an area AUC value of 0.886, indicating good 

overall performance (Figure 4.17).  In order to further evaluate the performance of the 

model, I performed a misclassification analysis comparing the observed and expected 

diagnoses according to the model.  Overall, this model correctly predicted 50 of the 59 

samples (84.7% accuracy).  The model misclassified just 2 of the 44 non-lymphoma pSS 

patients, but 7 of the 15 pSS associated lymphoma patients were misclassified.  This model 

could be further refined by incorporating the prevalence of lymphoma in pSS patients as 

prior probabilities.  
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Table 4.16 Statistical analysis of the Two-Gene model. A. Parameter Estimates; B. Effect 

likelihood ratio tests; and C. the lack of fit. The results were generated by JMP SAS. 

 

Parameter Estimates 

Term Estimate Std Error ChiSquare Prob>ChiSq 

Intercept -7.0777384 2.0191171 12.29 0.0005* 

NUDT14 25.4739019 9.8198523 6.73 0.0095* 

UBXN11 1.50683684 0.80304 3.52 0.0606 

 

Effect Likelihood Ratio Tests 

Source Nparm DF ChiSquare Prob>ChiSq 

NUDT14 1 1 10.3598995 0.0013* 

UBXN11 1 1 3.60432543 0.0576 

 

Lack of Fit 

Source DF -LogLikelihood ChiSquare 

Lack of fit 56 20.714426 41.42885 

Saturated 58 0.000000 Prob>ChiSq 

Fitted 2 20.714426 0.927 

           * = Staistically signficant 

 

 

 

B 

C 
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Figure 4.17 Receiver operating characteristic (ROC) curve of the Two-Gene model. This 

represents the specificity and sensitivity of the Two Genes model to classify pSS patients 

with or without lymphoma; the AUC=0.8864. 

 

 

Table 4.17 Confusion Matrix of the Two-Gene model. Showing actual and predicted 

classifications in the Discovery cohort. The results were generated by JMP SAS 

Actual classification  Predicted 

Training pSS-associated lymphoma pSS 

pSS-associated lymphoma 8 7 

pSS 2 42 

 

 

2. The Single Gene model 

In the Two-Gene model, the UBXN11 gene achieves a small improvement on predictions, 

though it was only marginally significant. Since UBXN11 was not making a statistically 

significant contribution in the Two-Gene model, I have chosen to investigate whether a 

model that uses only the NUDT14 gene will also perform well in predicting membership of 

pSS-associated lymphoma. 
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a. Building the Single Gene model 

The logistic fit for NUDT14 is shown in Figure 4.18. It appears that NUDT14 plays an 

important role in distinguishing pSS patients with lymphoma from those without 

lymphoma. Thus, there was a statistically significant (p = 0.0011) correlation between the 

expression level of NUDT14 and the probability of having  lymphoma in pSS patients as in 

Table 4.18A. 

I then applied the likelihood ratio test, which showed a significant p value of 0.0001 (Table 

4.18 B). Similarly, the lack of fit test (p = 0.874) suggested that the goodness of fit of the 

model was good (Table 4.18 C). 

The ROC curve for the Single Gene model is shown in Figure 4.19 and the AUC was 

0.859, indicating good overall performance.  I then performed a misclassification analysis ( 

Table 4.19) Overall, the model correctly predicted 48 of the 59 samples (81.3% 

accuracy).  The model misclassified just 3 of the 44 non-lymphoma pSS patients, but 8 of 

the 15 pSS-associated lymphoma patients were misclassified.  This model could be further 

refined by incorporating the prevalence of lymphoma in pSS patients as prior probabilities.  

  

 

Figure 4.18 Logistic fit of NUDT14 in the Single Gene model. The red dots represent the 

pSS-associated lymphoma cases, and the blue dots represent the pSS without lymphoma 

cases. 
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Table 4.18 Statistical analysis of the Single Gene model. A. Parameter Estimates; B. 

Effect Likelihood ratio tests; and C. the Lack of Fit. The results were generated by JMP 

SAS. 

 

Parameter Estimates 

Term Estimate Std Error ChiSquare Prob>ChiSq 

Intercept -4.2933101 1.0582869 16.46 <0.0001* 

NUDT14 29.6484091 9.0728471 10.68 0.0011* 

 

Effect Likelihood Ratio Tests 

Source Nparm DF ChiSquare Prob>ChiSq 

NUDT14 1 1 21.8660478 <0.0001* 

 

Lack of fit 

Source DF -LogLikelihood ChiSquare 

Lack of fit 57 22.516588 45.03318 

Saturated 58 0.000000 Prob>ChiSq 

Fitted 1 22.516588 0.8743 

           * = Staistically signficant 

 

 

Figure 4.19 Receiver operating characteristic (ROC) curve of the Single Gene model. 

This represents the sensitivity and specificity of the Single Gene model to separate pSS 

patients with or without lymphoma; the AUC=0.859. 

B 

C 
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Table 4.19 Confusion matrix of the Single Gene model. Showing actual and predicted 

classifications in the Discovery cohort. The results were generated by JMP SAS 

Actual classification  Predicted 

Training pSS-associated lymphoma pSS 

pSS-associated lymphoma 7 8 

pSS 3 41 

 

3. Testing the Two-Gene and the Single Gene models using the Discovery and 

Validation cohorts  

Two-Gene model  

The Two-Gene model was applied to the Discovery and the Validation cohorts. The 

prediction was visualised with a mosaic plot that shows the predictions of non-lymphoma 

pSS and pSS-associated lymphoma groups. The x-axis represents the subject groups, while 

the y-axis represents the probability of patients belonging to the lymphoma group. The 

probability of predicting lymphoma membership for the lymphoma group was 80% in the 

Discovery cohort (Figure 4.20) but decreased to 38.5% in the Validation cohort (Figure 

4.21).  

 

Figure 4.20 Mosaic plot of the prediction probability of the Two-Gene model in the 

Discovery cohort. The red rectangles represent the proportion of patients predicted to have 

lymphoma. The blue rectangles represent the proportion of samples predicted not to have 

lymphoma. The actual diagnosis is shown on the horizontal axis. The vertical axis is the 

proportion of the prediction for a particular diagnosis. 
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Figure 4.21 Mosaic plot of the predictions probability of the Two-Gene model in the 

Validation cohort. The red rectangles represent the proportion of patients predicted to 

have lymphoma. The blue rectangles represent the proportion of samples predicted not to 

have lymphoma. The actual diagnosis is shown on the horizontal axis. The vertical axis is 

the proportion of the prediction for a particular diagnosis. 

 

The Single Gene model 

When the Single Gene model is applied to the datasets of the Discovery and Validation 

cohorts, the proportions of the prediction for each subject group are shown on the mosaic 

plots. The frequency of correctly predicting lymphoma cases in the lymphoma group was 

70% in the Discovery cohort (Figure 4.22), which reduced to 41.7% in the Validation 

cohort (Figure 4.23).  
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Figure 4.22 Mosaic plot of the prediction probability of the Single Gene model in the 

Discovery cohort. The red rectangles represent the proportion of patients predicted to have 

lymphoma. The blue rectangles represent the proportion of samples predicted not to have 

lymphoma. The actual diagnosis is shown on the horizontal axis. The vertical axis is the 

proportion of the prediction for a particular diagnosis. 

 

Figure 4.23 Mosaic plot of the predictions probability of the Single Gene model in the 

Validation cohort. The red rectangles represent the proportion of patients predicted to 

have lymphoma. The blue rectangles represent the proportion of samples predicted not to 

have lymphoma. The actual diagnosis is shown on the horizontal axis. The vertical axis is 

the proportion of the prediction for a particular diagnosis. 
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4.5 Discussion 

The goal of this project is to identify a whole blood gene expression signature in pSS-

associated lymphoma. For this goal, 144 whole blood globin-depleted samples represent the 

Discovery cohort. Then validate the potential gene expression signature identified in this 

cohort in an independent cohort. I also test the potential signature in a set of untreated pSS-

associated lymphoma and I attempted to use a machine learning approach to investigate 

which gene might be a candidate to predict lymphoma development in pSS patients.    

RNA quality  

The globin mRNA depletion is a multistep process, and adding more preparation steps 

might result in RNA degradation, as RNA is a molecule with thermodynamic stability. 

RNA degradation will have adverse impact on downstream analysis of RNA expression 

(Auer et al., 2003). In the Discovery cohort, the RIN score of 24 samples were below 7. 

The sub-optimal RIN scores might be caused by the globin depletion process, as it has been 

discussed in Chapter 3 and also in the literature (Shin et al., 2014, Choi et al., 2014, 

Mastrokolias et al., 2012). On the other hand, all of the amplified cRNA samples from the 

Discovery cohort lacked the ~700 bp peak that represents globin mRNA in the 

electropherograms (Vartanian et al., 2009), indicating  efficient globin mRNA depletion. 

Microarray data analysis 

The Illumina Human HT-12 v4 BeadChip microarray was used for the screening of the 

potential candidate gene expression signature of pSS-associated lymphoma. In general, 

avoiding bias is crucial in such experiments. For this reason, samples from the five subject 

groups were selected randomly to be run on the same microarray chip (each chip can 

measure up to 12 samples). This approach will avoid bias and systematic error being 

introduced (Pannucci and Wilkins, 2010). Because the sample size of the Discovery cohort 

is relatively large, it was therefore unavoidable to perform the microarray at different times 

and in different batches, which in turn will introduce batch effects. Batch effect detection 

and correction were therefore necessary when I analyse the microarray data. The correction 

of batch effects during microarray data analysis is important, and so is the choice of method 

to achieve that, in order to yield a robust data set (Larsen et al., 2014). Many methods have 

been developed for batch effect correction. The ComBat method has been suggested to 

have better performance than other batch effect correction methods (Chen et al., 2011). The 
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ComBat method collects information across genes and it minimises the parameter of the 

batch effects in the direction of the overall mean of the batch across the genes (Johnson et 

al., 2007, Larsen et al., 2014).  

In this project, I have identified many candidate genes from the Discovery cohort as a 

potential whole blood gene expression signature for pSS-associated lymphoma (68-DEGs-

Mi). The list of candidate genes is related to many different biological functions. For 

example, some of these genes have been linked to lymphoma development (such as 

BCL11B and MYC). Whether these genes are actually involved in lymphoma development 

in pSS is still under investigation.  

Technical validation of the microarray data 

I used real-time RT-PCR to technically validate the 68-DEGs-Mi. The results shown that 

DEGs were confirmed in 26 / 60 DEGs by qRT-PCR  (26-DEGs-MiPCR). The are several 

reasons why differential expression was not confirmed with RT-PCR for the remaining 34 

genes. It has been suggested that filtering of the microarray data by the fold change and p 

values is important to gain robust results (Morey et al., 2006). The fold changes of the 

DEGs from the microarray data ranged from 1.2-1.8, which  is relatively small. It is 

therefore unsurprising that not all of the DEGs were validated with qRT-PCR. A previous 

report has indicated that the correlation between microarray data and qRT-PCR decreases 

when the fold changes were less than 1.5 (Dallas et al., 2005). Furthermore, the biological 

and technical differences between the two techniques must be taken into consideration as a 

source of variation (Wurmbach et al., 2003, Chuaqui et al., 2002). One of the genes, HLA-

DRB1, failed to generate a normal amplification plot during the qRT-PCR. The failure in 

detecting this gene with RT-PCR might be due to the RNA concentration of the samples. 

Moreover, another reason of this failure is due to the polymorphism of HLA-DRB1. The 

polymorphism of HLA-DRB1 led to the use of alternative PCR techniques such as 

sequence-specific primers PCR to detect its expression (Song et al., 2012, Gersuk and 

Nepom, 2009). Certainly, the HLA-DRB1 gene plays an important role in the pathogenesis 

of pSS and other autoimmune diseases (Guggenbuhl et al., 1998, Doherty et al., 1998). 

Therefore, it warrants further investigation in the future.  
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Twenty of these 26 genes were identified from the main analysis (Analysis A), and the 

remaining 6 genes were identified from the other 3 sub-analyses. The validation of these 6 

additional genes justifies the inclusion of these analyses. 

 

Biological validation of whole blood gene expression signature in pSS-associated 

lymphoma  

Biological validation was carried out using an independent cohort. Differential expression 

of three genes (BMS1, NUDT14 and MGST3) was confirmed in this cohort.  These three 

genes are referred to as the 3-gene biosignature of pSS-associated lymphoma. The 

downregulated BMS1 or ribosome biogenesis factor, which is also known as ACC and 

BMS1L, is located in the nucleus of the cell. BMS1 encodes a protein called ribosome 

biogenesis factor,  which plays a role in ribosomal assembly and is critical for the 40S 

ribosome formation. Limited data are available concerning the role of BMS1. Nonetheless, 

it has been shown that the decrease in BMS1 level leads to late maturation of 18S rRNA. 

Furthermore, BMS1 mutation is linked to aplasia cutis congenital (ACC), which is caused 

by defects in cell cycle, reducing cell proliferation and affecting skin morphology 

(Marneros, 2013). No information linking this gene to any type of malignancy has been 

reported in the literature.  

NUDT14 or nudix (nucleoside diphosphate linked moiety X) – type motif 14, which was 

upregulated in pSS-associated lymphoma, is also known as NUDIX MOTIF 14, uridine 

diphosphate glucose pyrophosphatase (UGPP), UDPG pyrophosphatase, and UGPPase. 

The protein that this gene encodes is uridine diphosphate glucose pyrophosphatase, and it 

has a role in producing glucose 1-phosphate and UMP by hydrolysing UDPG (Yagi et al., 

2003). NUDT14 plays a role in the pyrophosphorylation of substrates that contain 

nucleosides (Yagi et al., 2003). In mice, the role of NUDT14 appears to be more related to 

ADP-ribose hydrolysis than UDP-glucose hydrolysis (Heyen et al., 2009). NUDT14 is 

located on chromosome 14q32.3. Deletion of NUDT14 has been described in the 14q32 

deletion syndrome, which causes mild facial dysmorphisms and intellectual disability 

(Holder et al., 2012).  
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Regarding the involvement of NUDT14 in malignancies,  Choi and co-workers (Choi et al., 

2011) reported an upregulation of NUDT14  in a rectal carcinoma cell line. However, the 

role of this gene in malignancy development is still unknown. Recently, modulation role of 

NUDT14 in viral infection, in particular, the human cytomegalovirus (HCMV), was 

reported. Wang and colleagues (Wang et al., 2016) found that the HCMV RL13 protein, 

which is encoded by the HCMV RL 13 gene, is co-localised with the NUDT14 protein in 

the cell membrane and the cytoplasm of human embryonic kidney HEK293 cells, and that 

they interact with each other. Furthermore, when the NUDT14 expression decreased, the 

number of the viral DNA copies in the infected cells increased. However, the 

overexpression of NUDT14 had no effect on the number of the viral DNA copies. NUDT14 

is differentially expressed in pSS-associated lymphoma cases regardless of their treatment 

status. Therefore, undertaking more studies is worthwhile to investigate the possible role of 

this gene in lymphoma development. 

MGST3 (microsomal glutathione S-transferase 3) is also known as GST III and GST-3. 

This gene encodes a protein named microsomal glutathione S-transferase 3. The protein is 

located mostly in the endoplasmic reticulum membrane, commonly expressed in skeletal 

muscles, adrenal cortex, and heart. The main function of this protein is to serve as a 

glutathione peroxidase (Jakobsson et al., 1997). The microsomal glutathione S-transferase 3 

(MGST3) is not evolutionarily related to the glutathione S-transferase (GST) gene family, 

but it encodes membrane-bound enzymes that possess GST-like activity (Nebert and 

Vasiliou, 2004). Young and Woodside (2001) have reported that the glutathione 

peroxidases contribute to the process of detoxification from both endogenous and 

exogenous toxins by eliminating lipid peroxidase (Young and Woodside, 2001). 

Furthermore, MGST3 is highly abundant in the liver as it is involved in drug metabolism 

(Morgenstern et al., 2011, Uno et al., 2013). Along with its main function in glutathione-

dependent peroxidase activity, MGST3 also contributes to the synthesis of the leukotriene 

C4, which leads to the production of inflammatory and hypersensitivity mediators (Ford-

Hutchinson, 1990). 

In the validation cohort, OAF, LEF1, and DRAP1 had adjusted p values  between 0.05 and 

0.25 with the same direction of regulation to the Discovery cohort. Five additional genes 

have a p value more than 0.25 but the same direction of regulation of the Discovery cohort. 
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these genes are CBLL1, C10orf32 (BORCS7), DYNLL1, LGALS1, and SGK223. I believe 

that these genes are also worthy of further investigation as potential gene expression 

signatures for pSS-associated lymphoma in the future. This is because the probability 

values report the likelihood of an effect being detected by chance but not the size of the 

effect. The p values are often affected by the sample size (Sullivan and Feinn, 2012).  

Identify possible whole blood gene expression signature for untreated pSS-associated 

lymphoma  

In this project, I had the opportunity to test whether the potential signature for pSS-

associated lymphoma was also present in untreated lymphoma samples. When compared to 

non-lymphoma pSS samples, 6 genes were found to be differentially expressed.  

Interestingly, NUDT14, which was upregulated in the treated lymphoma cases in both the 

Discovery and Validation cohorts, was also upregulated in untreated lymphoma cases.  

DRAP1 and DYNLL1 may also be of interest. Differential expression of these two genes 

was confirmed in the treated lymphoma samples from the Discovery cohort. These two 

genes also have the same direction of regulation in the treated lymphoma cases in the 

Validation cohort albeit with a p values of greater than 0.05. DRAP1 or DR1-associated 

protein 1 (also known as negative cofactor 2 alpha (NC2-alpha)) is a transcriptional 

repressor. In order to initiate a transcription, the assembly of RNA polymerase II is required 

as well as general transcriptional factors (GTFs) such as TFIIA, TFIIB, and TFIID. DRAP1 

interacting with TATA-binding protein (TBP) of TFIID precludeing TBP-DNA complex 

formation (Schluesche et al., 2007). Furthermore, evidence showed that in hypoxic 

conditions,  the activity of NC2 increases suggesting that a DRAP1 may play an important 

role in gene regulation in hypoxic conditions (Denko et al., 2003). In cancer settings,  

upregulation of DRAP1 has been reported to be an accurate predictor of radioresistance in 

prostate cancer patients undergoing radiotherapy, although the data were derived from a 

small dataset and therefore needs to be replicated (Valdagni et al., 2009).  

DYNLL1 or dynein light chain encodes the protein LC8-type 1, which is an enzyme 

complex that has a role in intracellular transport and motility. Evidence has revealed that 

the binding of the DYNLL1 encoded protein to pilin of the pathogen Pseudomonas 

aeruginosa stimulates an inflammatory response in the host, which might be harnessed for 

treatment purposes (Kausar et al., 2013). LC8 contributes to microtubule stability as 
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overexpression of LC8 increases microtubule acetylation and reduces microtubule 

susceptibility to cold- and nocodazole-induced depolymerisation, while decrease of LC8 

leads to disruption of bipolar spindle assembly, suggesting  a novel microtubule-associated 

protein-like function for LC8 (Asthana et al., 2012). LC8  also regulates the activity of the 

proapoptotic Bcl-2 family member BH3-only protein Bim,  through impounding Bim to the 

cellular microtubules in the state of healthy cells (Puthalakath et al., 1999). Therefore, the 

regulatory role of LC8 on Bim might have a role in malignancy development and resistance 

to cancer treatments (Izidoro-Toledo et al., 2013). Recently, DYNLL1 was reported to 

interact with human immunodeficiency virus type 1 integrase (HIV-1 integrase (IN)), 

leading to the reverse transcription and the multiplication of the virus (Jayappa et al., 2015). 

More experiments are needed to understand the possible role of DYNLL1 in pSS-associated 

lymphoma. 

Identifying the most important genes in predicting the group’s membership in pSS-

associated lymphoma  

To identify the key constituent genes of the pSS-associated lymphoma gene signature, I 

have examined two prediction models using the qRT-PCR data from the Discovery cohort 

based on the 60 DEGs. Both models indicated that NUDT14 is the best predictor or 

classifier of pSS-associated lymphoma membership. The data generated from these models 

were also consistent with my experimental findings, as NUDT14 has been shown to be 

differentially expressed in the two treated lymphoma cohorts and the untreated lymphoma 

cohort.  Although there is no data in the literature that implicate NUDT14 in lymphoma 

development, my data strongly suggest that further investigation into the role of NUDT14 

in the pathogenesis of lymphoma in pSS is worthwhile.    

In conclusion, the data from the microarray and qRT-PCR from the Discovery and 

Validation cohorts have identified several genes that warrant further investigations in larger 

cohorts of treated and untreated lymphoma as well as in longitudinal studies. Many of these 

candidate genes have not been linked directly to lymphoma development. Therefore, if the 

roles of these signature genes for pSS-associated lymphoma are confirmed, it will unravel 

novel mechanisms of lymphomagenesis in pSS. 
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Chapter 5 

Biological pathway analysis in primary Sjögren’s Syndrome -

associated lymphoma 

5.1 Introduction: 

Biological pathways in pSS, lymphoma and pSS-associated lymphoma 

A biological pathway refers to a series of molecular interactions within the cell that lead to 

the production of a certain molecule or a biological change within the cell. A valuable 

approach to the analysis of microarray gene expression data is to study whether there are 

indications of changes in biological pathways within the datasets. This linkage between the 

gene expression data and biological processes will help to gain a better understanding of a 

given disease.  

For instance, in pSS, analysis of microarray gene expression data have led to the discovery 

that the type I interferon pathway plays a major role in pSS pathology (Gottenberg et al., 

2006, Emamian et al., 2009). This observation is also consistent with the hypothesis that 

viruses being involved in the aetiology of pSS, as viral infections are potent inducers of 

IFN-alpha (Bave et al., 2005). The ‘Toll-like receptor (TLR) pathway’ is another pathway 

that has been shown to be activated in pSS. TLRs appear to be linked to salivary-gland 

epithelial cell pathology in pSS; epithelial cells from salivary glands of pSS patients have a 

higher level of TLR expression compared to those from healthy controls (Spachidou et al., 

2007).  

Many pathways have also been shown to be dysregulated in lymphoma. For example, it has 

been shown that the NF-κB signalling pathway is activated in lymphoma (Troppan et al., 

2015). Moreover, the NF-κB signalling pathway can be activated by the stimulation of B-

cells receptor in Diffused Large B Cells lymphoma (DLBCL). NF-κB signalling pathway 

also has an activating effect on the JAK2/STAT3 signalling pathway by stimulating TLR 

and interleukin receptors (IL-1 and IL-18), which leads to the progress of DLBCL 

lymphoma (Ngo et al., 2011, Turturro, 2015). Recently, the discovery of therapeutic drug 

that act as an inhibition of antigen receptor signalling pathway, including B-cell receptors, 

T-cells receptors, TLR and BAFF  might be a useful treatment for B cell lymphoma (Zhang 
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et al., 2015). Interestingly, the NF-κB signalling pathway has also been implicated in pSS 

pathogenesis (G'Sell et al., 2015). It is therefore possible that exploring the changes in 

biological pathways in pSS-associated lymphoma may improve our understanding of 

lymphomagenesis in pSS, reveal the biological meaning of the gene-expression signature 

for pSS-associated lymphoma and help to establish novel therapies.  

To date, there has been no published research on the use of microarray data to explore the 

biological processes that may be involved in pSS-associated lymphoma. Therefore, this 

study is the first attempt to investigate such relationships.       

Ingenuity Pathway Analysis (IPA):  

Many programs have been developed to analyse biological pathways for microarray data 

(Table 5.1). MetaCore by GeneGo, GenMapp and Ingenuity Pathway Analysis (IPA) 

(Bogner et al., 2011) are examples of such software. A key difference between these 

different tools is how up-to-date their databases are. In this regard, the knowledge database 

of Ingenuity Pathway Analysis is manually curated, literature supported, and frequently 

updated.  IPA is a web-based software program that enables researchers to discover the 

biological significance of their high-throughput biological data (Kramer et al., 2014). With 

IPA, specific pathways and networks that might be relevant to a certain disease (for 

example, pSS-associated lymphoma) can be identified. IPA uses a p-value calculated by the 

Fisher’s exact test, right-tailed and an activation z-score to present the outcome 

(Ingenuitysystems, IPA). A brief definition of some key terms used in the IPA is provided 

below:  

Focus genes: Probe identifiers of significantly differentially expressed genes (DEGs) 

uploaded from my experiment that are represented in the suggested network or a pathway.  

P-value: reflects the significance metric representative of the probability that the molecules 

or the genes are involved in a given pathway or network not by random chance. The lower 

the p-value below a given threshold (0.01 or 0.05) is the more significant.  

Z-score: reflects the statistical state of the direction of a relationship that is expected of the 

genes in a given experiment and the regulation direction that derived from the literature in 

IPA; normally, a z-score > 2 or z-score < -2 is considered significant.  
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Score: is the number of genes in the network, including the genes of the uploaded DEGs 

list from a given experiment and the genes that are added from the indirect interactions by 

IPA. 

Overlap p-value: is used in the upstream regulator analysis. It represents whether there is 

any statistically significant in common between the DEGs in a given experiment and their 

regulators.  

Ratio: the ratio is used in the canonical pathway analysis. It represents the ratio of the 

genes in the uploaded DEGs list from my experiment and the total number of genes that 

make up each pathway. Each indirect association is supported by literature. 

IPA maps a list of genes (commonly the list of DEGs) in a certain experiment to the 

Ingenuity Knowledge Base (IKB). The IKB is a database with detailed information on 

known biological interactions and functional annotations. The information was built from 

existing individual relationships between different molecules such as genes, proteins, cells, 

chemicals and diseases that can be found in the literature and is updated on a regular basis 

(http://www.ingenuity.com, 2015). Using IPA has many advantages: it provides biological 

function as well as sub-functions for each gene. Moreover, the bibliography in which the 

relationship is defined is provided through a direct link to the resource. Furthermore, the 

network analysis shows the interactions of the genes based on current knowledge (Jiménez-

Marín et al., 2009).  

Table 5.1 Software available for microarray data analyses(Jin et al., 2014b)   

Software  Feature Annotations URL 

PathMAPA A tool for displaying gene expression and performing 

statistical tests on metabolic pathways at multiple 

levels for Arabidopsis, based on expression data 

Local 

databases 

http://bioinformatics.

med.yale.edu/pathma

pa.htm 

MetaCore Based on a high-quality, manually curated database, 

MetaCore is an integrated software suite for functional 

analysis of microarray, metabolic, SAGE, proteomics, 

NGS, copy number variation, siRNA, microRNA and 

screening data 

MetaRodent, 

MetaLink, 

MetaSearch 

http://www.genego.co

m/  

Ingenuity 

Pathway 

Analysis 

(IPA) 

A comprehensive software/database search tool for 

finding functions and pathways for specific biological 

states. Manually curated in house 

GO, KEGG, 

BIND 

https://www.ingenuit

y.com/  

ePath3D An easy-to-use and powerful software for creating and 

managing illustrated 3D pathways for publications and 

presentations 

eProtein, 

ePathway 

http://www.proteinlou

nge.com/epath3d/  

http://bioinformatics.med.yale.edu/pathmapa.htm
http://bioinformatics.med.yale.edu/pathmapa.htm
http://bioinformatics.med.yale.edu/pathmapa.htm
http://www.genego.com/
http://www.genego.com/
https://www.ingenuity.com/
https://www.ingenuity.com/
http://www.proteinlounge.com/epath3d
http://www.proteinlounge.com/epath3d


127 
 

Pathway 

Builder 

An online pathway drawing tool which is the fastest 

and easiest method of creating signal transduction 

pathways, enabling the users to design their own 

project or use pre-made pathway templates to help get 

them started 

GenBank, 

Uniprot/Swiss-

Prot, TrEMBL, 

KEGG, 

ENZYME, etc 

http://www.pathwayb

uilder.com/  

Interactive 

Pathways 

Explorer 

(iPath) 

A web-based tool for the visualization, analysis and 

customization of various pathways maps from KEGG. 

The recently released version 2 could deal with 

metabolic pathway, regulatory pathway and 

biosynthesis of secondary metabolites 

KEGG https://pathwayexplor

er.genome.tugraz.at  

GSEA-P & R-

GSEA 

GSEA-P is a desktop application for Gene Set 

Enrichment Analysis, with a friendly graphic interface. 

R-GSEA is provided as a stand-alone R program. 

MSigDB, 

Gene Set 

Cards, GEO 

http://www.broadinsti

tute.org/gsea/  

DAVID A tool for augmenting and integrating functional 

annotations from other databases 

KEGG,GO http://david.abcc.ncifc

rf.gov/  

MetaCyc Applications include serving as an encyclopaedia of 

metabolism, providing a reference data set for the 

computational prediction of metabolic pathways in 

sequenced organisms, supporting metabolic 

engineering and helping to compare biochemical 

networks 

KEGG, 

BioCyc, 

EcoCyc 

http://metacyc.org/  

Reactome Intuitive bioinformatics tools for the visualization, 

interpretation and analysis of pathway knowledge to 

support basic research, genome analysis, modelling, 

systems biology and education 

KEGG http://www.reactome.

org/ 

GenMAPP Designed to visualize gene expression and other 

genomic data on maps representing biological 

pathways and groupings of genes 

GenMAPP, 

GO 

http://www.genmapp.

org 

FunCluster An integrative tool for analysing gene co-expression 

networks from microarray expression data; the analytic 

model implemented in the library involves two 

abstraction layers: transcriptional and functional 

(biological roles) 

GO, KEGG http://corneliu.henega

r.info/FunCluster.htm  

Graphite web A novel web tool for pathway analyses, consisting of 

topological-based analysis and network visualization 

for gene expression data of both microarray and RNA-

sequencing experiments 

KEGG, 

Reactome 

http://graphiteweb.bio

.unipd.it/  

 

5.2 Aim and experimental design: 

In this chapter, I will describe the biological pathway analysis in pSS-associated 

lymphoma, using the 68 DEGs from the microarray data generated in the Discovery cohort 

(68-DEGs-Mi) in order to gain a better understanding regarding the biology of pSS-

associated lymphoma. I used IPA for this analysis. In Chapter 4, I described the list of 

DEGs in pSS-associated lymphoma from the microarray experiment (68-DEGs-Mi), which 

is a combined list of DEGs that were generated from the four analyses of the microarray 

data using different criteria regarding sample inclusion.  

http://www.pathwaybuilder.com/
http://www.pathwaybuilder.com/
https://pathwayexplorer.genome.tugraz.at/
https://pathwayexplorer.genome.tugraz.at/
http://www.broadinstitute.org/gsea/
http://www.broadinstitute.org/gsea/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://metacyc.org/
http://www.reactome.org/
http://www.reactome.org/
http://www.genmapp.org/
http://www.genmapp.org/
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The reason behind choosing the 68-DEGs-Mi is that the list contains the largest number of 

DEGs in comparison with the validated lists (26-DEGs-MiPCR and the 3-gene biosignature 

in pSS-associated lymphoma); the more genes the list contains the more associated 

pathways can be identified, the added power from 4 variations of the differential expression 

tests could yield more informative, disease relevant pathways. The uploaded DEGs list can 

be found in Table 5.2. 

Table 5.2 The 68-DEGs-Mi list used in Ingenuity pathway analysis  

Gene symbol adjusted P-value Fold change regulation in pSS-associated 

lymphoma 

LGALS1 0.019861522 1.36 upregulated 

DRAP1 0.009554204 1.32 upregulated 

KCTD12 0.032858824 1.28 upregulated 

RBP7 0.027203463 1.26 upregulated 

DYNLL1 0.010184961 1.25 upregulated 

UBXN11 0.001878176 1.25 upregulated 

NUDT14 0.001878176 1.24 upregulated 

C10orf32 0.024934079 1.23 upregulated 

HNMT 0.046978282 1.23 upregulated 

SRP14 0.041910977 1.23 upregulated 

PSMC1 0.040796915 1.23 upregulated 

MGST3 0.042260308 1.23 upregulated 

OAF 0.046978282 1.22 upregulated 

ATG12 0.010241707 1.22 upregulated 

SEC61G 0.046978282 1.21 upregulated 

RAB37 0.012720244 1.21 upregulated 

HCFC1R1 0.009554204 1.21 upregulated 

CNPY3 0.022617674 1.21 upregulated 

RNF7 0.029377902 1.20 upregulated 

EHBP1L1 0.039664006 1.20 upregulated 

HLA-DRB1 0.048625399 3.59 downregulated 

RNA28S5 0.001454575 1.67 downregulated 

LEF1 0.038999435 1.42 downregulated 

SPOCK2 0.045033431 1.41 downregulated 

ETS1 0.029209021 1.39 downregulated 

POM121C 0.00623275 1.35 downregulated 

RPL23AP5 0.011557085 1.32 downregulated 

MYC 0.019861522 1.32 downregulated 

CYFIP2 0.046978282 1.32 downregulated 

SGK223 0.044226587 1.32 downregulated 

HSP90B1 0.007110164 1.31 downregulated 
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BCL11B 0.03531743 1.30 downregulated 

RASGRP1 0.048625399 1.30 downregulated 

WAC 0.001538691 1.29 downregulated 

ITK 0.03462919 1.29 downregulated 

DDB1 0.00579247 1.28 downregulated 

MAGED1 0.044226587 1.26 downregulated 

ESYT1 0.044226587 1.26 downregulated 

PRPF8 0.039035069 1.26 downregulated 

SUN2 0.041735128 1.26 downregulated 

HNRNPUL1 0.038999435 1.25 downregulated 

CDR2 0.020642125 1.24 downregulated 

NAT10 0.033024722 1.24 downregulated 

CD96 0.038246765 1.24 downregulated 

VCP 0.019508447 1.24 downregulated 

RBL2 0.011367948 1.23 downregulated 

BAG3 0.023506309 1.23 downregulated 

ATP1A1 0.012439918 1.23 downregulated 

NCSTN 0.046450529 1.23 downregulated 

ALDH9A1 0.013677032 1.23 downregulated 

LRIG1 0.015856148 1.23 downregulated 

RRN3 0.007770882 1.23 downregulated 

HNRNPA1P10 0.044075354 1.23 downregulated 

PAF1 0.019861522 1.23 downregulated 

SF3A1 0.044226587 1.23 downregulated 

LRFN3 0.045230731 1.22 downregulated 

SDHA 0.038999435 1.22 downregulated 

KHDRBS1 0.040527676 1.22 downregulated 

CDV3 0.03462919 1.22 downregulated 

FOXJ3 0.015259771 1.21 downregulated 

SMARCA2 0.029889934 1.21 downregulated 

CBLL1 0.024405233 1.21 downregulated 

BMS1 0.026000737 1.20 downregulated 

HSPA9 0.020187775 1.20 downregulated 

RPA2 0.022508992 1.20 downregulated 

HNRNPDL 0.035037482 1.20 downregulated 

PRKCQ 0.047925118 1.20 downregulated 

BTBD11 0.027803403 1.20 downregulated 
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5.3 Results: 

5.3.1 The Canonical pathways of pSS-associated lymphoma  

A total of 188 canonical pathways have been identified as being over-representated in pSS-

associated lymphoma (p < 0.05, Fischer’s exact test, right-tailed). Moreover, the number of 

genes in common between 68-DEGs-Mi and the total number of the genes included in each 

pathway was calculated by IPA and were shown as “ratio”. The top 5 most significant (i.e., 

with the lowest p-values,) canonical pathways that were enriched in pSS-associated 

lymphoma are shown in Table 5.3. ‘Aryl Hydrocarbon Receptor (AHR) signalling’ was the 

statistically most significant pathway in pSS-associated lymphoma. The other top 4 

pathways were ‘histamine degradation,’ ‘unfolded protein response,’ ‘Neuregulin 

signaling’ and ‘T-cell receptor signalling.’ Supplementary table S5 shows the complete list 

of the 188 canonical pathways identified in this analysis. 

Of note, one of the five genes that was in common between the genes in the ‘AHR 

signalling’ pathway and the 68-DEGs-Mi is MGST3, which was also one of the three genes 

in the 3-gene biosignature of pSS-associated lymphoma. Indeed, when I focussed on the 

three genes in the 3-genes biosignature of pSS-associated lymphoma (NUDT14, MGST3 

and BMS1) and the canonical pathways that these genes might be involved in (Table 5.4), 

interesting observations emerged. NUDT14 was involved in six canonical pathways. 

MGST3 was involved in five other canonical pathways, in addition to the ‘AHR signalling’ 

pathway. Both genes appeared to be involved in metabolic pathways.  The third gene, the 

down-regulated BMS1, was not associated with any of the canonical pathways identified in 

pSS-associated lymphoma.  

Furthermore, DYNLL1, the gene that I found to be significantly differentiated in the 

untreated pSS-associated lymphoma was involved in one canonical pathway named 

‘Phagosome maturation’ with a –log (p-value) of 1.20E+00. While DRAP1 did not show 

any associated with any of the canonical pathways identified in pSS-associated lymphoma.  

The IPA, however, was unable to predict the directionality (i.e. whether the pathways were 

activated or suppressed) of these enriched canonical pathways (the z-score was 0 or near 0 

in all pathways). Figure 5.1 shows the directionality analysis of the top 10 canonical 

pathways.  
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Table 5.3 Top 5 canonical pathways in pSS-associated lymphoma identified by IPA  

Ingenuity Canonical 

Pathways 

-log (p-

value)** 

No. of genes 

in common 

between the 

canonical 

pathway and 

genes of 

interest 

Genes in common between 

the canonical pathway and 

genes of interest 

Aryl Hydrocarbon Receptor 

Signalling 

3.99E+00 5/135 (3.7 %) MYC, ALDH9A1, RBL2, 

HSP90B1, MGST3* 

Histamine Degradation 3.12E+00 2/12 (16.7 %) HNMT, ALDH9A1 

Unfolded Protein Response 3.09E+00 3/53 (5.7 %) HSPA9, HSP90B1, VCP 

Neuregulin Signalling 2.50E+00 3/85 (3.5 %) MYC, HSP90B1, PRKCQ 

T-Cell Receptor Signalling 2.38E+00 3/94 (3.2 %) PRKCQ, ITK, RASGRP1 

 * The gene in bold represents the gene from the three-gene biosignature of pSS-associated 

lymphoma 

** The p values are presented in a –log scale, therefore, the higher the value on –log scale, the 

higher is the statistical significance (i.e. lower p-value). 

 

Table 5.4 The canonical pathways involvement of the three genes in the 3-genes 

biosignature in pSS-associated lymphoma  

Ingenuity Canonical Pathways -log(p-value) Ratio    
68-DEGs-Mi / 

genes in  pathway 

NUDT14 

D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis 1.18E+00 1.64E-02 

D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis 1.18E+00 1.64E-02 

D-myo-inositol-5-phosphate Metabolism 1.08E+00 1.45E-02 

3-phosphoinositide Degradation 1.08E+00 1.44E-02 

3-phosphoinositide Biosynthesis 1.03E+00 1.34E-02 

Super-pathway of Inositol Phosphate Compounds 8.69E-01 1.08E-02 

MGST3 

Aryl Hydrocarbon Receptor Signalling 3.99E+00 3.70E-02 

Xenobiotic Metabolism Signalling 1.93E+00 1.56E-02 

NRF2-mediated Oxidative Stress Response 1.63E+00 1.69E-02 

Glutathione Redox Reactions I 1.22E+00 5.56E-02 

Glutathione-mediated Detoxification 1.10E+00 4.17E-02 

LPS/IL-1 Mediated Inhibition of RXR Function 7.92E-01 9.62E-03 

BMS1 

No significant pathway identified N/A N/A 
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Figure 5.1 Bar chart of the top 10 canonical pathways in pSS-associated lymphoma 

identified by IPA. Grey bars represent that no prediction of directionality can be made. 

White bars represent the canonical pathways with a z-score near 0. The vertical threshold 

line in yellow represents the p-value cutoff of statistical significance. The yellow dots 

represent the ratio of the genes in common between the 68-DEGs-Mi and the total number 

of genes that made up each pathway. 

 

 

5.3.2 The Downstream Effects Analysis of pSS-associated lymphoma: 

Another approach to biological pathway analysis is to study the downstream effects of the 

genes in pSS-associated lymphoma (68-DEGs-Mi) and their connection with known 

biological functions or pathological conditions. For example, gene A may be reported to be 

associated with cancer development or gene B with apoptosis. Such knowledge may 

provide additional insight apart from the biological pathways of the pSS-associated 

lymphoma. In this analysis ‘disease and function’ of the 68-DEGs-Mi were analysed by 
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IPA. The directionality of the prediction was made based on casual effects derived from the 

literature. Three possible predictions can be made according to the direction of change as 

follow: 

1. If the direction of change is the same as reported in the literature then the function 

is considered increased in pSS-associated lymphoma 

2. If the direction of change was opposite to that reported in the literature then the 

function is decreased in pSS-associated lymphoma 

3. If the direction of change does not have a clear relationship with that reported in 

the literature then IPA will not make a prediction. 

Ten “diseases and functions” were identified (Figure 5.2). The ten diseases and functions 

were analyzed using the z-score algorithm, which avoids creating random significant 

predictions in 68-DEGs-Mi (Ingenuitysystems, IPA). Nine of these functions were 

increased and one was decreased. Three of these diseases and functions were biased, which 

suggest that their regulations are skewed to particular direction (Table 5.5).  

Furthermore, 490 other “diseases and functions” were identified by IPA to be associated 

with the genes from the 68-DEGs-Mi list. These “diseases and function” were all 

statistically significant but IPA was unable to make prediction of the directionality of the 

expected relationship according to the z-score (i.e., -2 <  z-score < 2).  

 



134 
 

 

 

Figure 5.2 Heatmap of the downstream effects analysis of the pSS-associated lymphoma 68-DEGs-Mi by IPA. The square size 

corresponds to the statistical significance of the p value (i.e., larger square = more significant (lower p-value)). The colours of the squares 

reflect the direction of change (activated or inhibited). Orange: IPA predicts that the biological process or function is increased in pSS-

associated lymphoma with a positive z-score (z-score ≥ 2). Blue: IPA predicts that the biological process or function is decreased in pSS-

associated lymphoma with a negative z-score (z-score ≤ -2) Gray: represent that no prediction can be made with regard to directionality. 

White: represent the z-score is near 0. The strength of the prediction is represented by the intensity of the colour.   
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Table 5.5 The Downstream Effects analysis of pSS-associated lymphoma 68-DEG-Mi by IPA. The ten statistically significant biological 

processes and functions and the genes involved  

Categories Diseases or 

Functions 

Annotation 

p-Value Predicted 

Activation 

State 

Activation 

z-score 

Notes Genes No. of 

genes  

Infectious Diseases,  

Organismal Injury and 

Abnormalities 

infection of 

embryonic cell 

lines 

2.51E-02 Increased 2 bias HNRNPDL,KHDRBS1,PRPF8,SF3A1 4 

Haematological System 

Development and Function, 

Tissue Morphology 

quantity of T 

lymphocytes 

5.52E-04 Increased 2.211  ETS1,HLA-DRB1,HSP90B1,ITK,LGALS1, 

PRKCQ,RASGRP1 

7 

Cellular Function and 

Maintenance 

cellular 

homeostasis 

5.42E-04 Increased 2.228  ATG12,ATP1A1,BAG3,BCL11B,ETS1,HSP90B1, 

ITK,LEF1,LGALS1,MYC,NCSTN,PRKCQ, 

RASGRP1,VCP,WAC 

15 

Cell Death and Survival cell viability 2.04E-03 Increased 2.253 bias ATG12,BAG3,HNRNPUL1,HSP90B1,LEF1, 

LRIG1,MYC,NCSTN,PRKCQ,PRPF8,SF3A1, 

SMARCA2,VCP 

13 

Cell Death and Survival cell survival 1.05E-03 Increased 2.415  ATG12,BAG3,HNRNPUL1,HSP90B1,LEF1,LRIG

, MYC,NCSTN,PRKCQ,PRPF8,RRN3,SF3A1, 

SMARCA2,VCP 

14 

Cellular Movement cell movement 8.82E-03 Increased 2.539  ATG12,BCL11B,CBLL1,ETS1,ITK,KHDRBS1, 

LEF1,LGALS1,LRIG1,MYC,PAF1,PRKCQ,RASG

,RP1,RNF7,SUN2,VCP 

16 

Cell Death and Survival cell viability of 

tumour cell lines 

9.35E-05 Increased 2.557 bias BAG3,HNRNPUL1,HSP90B1,LEF1,LRIG1,MYC,

NCSTN,PRKCQ,PRPF8,SF3A1,SMARCA2,VCP 

12 

Tissue Morphology quantity of cells 1.40E-03 Increased 2.602  DYNLL1,ETS1,HLA-DRB1,HSP90B1,HSPA9, 

ITK,KHDRBS1,LEF1,LGALS1,MYC,NAT10, 

PRKCQ,RASGRP1,RBL2 

14 

Cellular Movement migration of cells 6.32E-03 Increased 2.893  ATG12,BCL11B,CBLL1,ETS1,ITK,KHDRBS1, 

LEF1,LGALS1,MYC,PAF1,PRKCQ,RASGRP1, 

RNF7,SUN2,VCP 

15 

Cell Death and Survival cell death of 

melanoma cell 

lines 

3.96E-04 Decreased -2.166  BAG3,CYFIP2,ETS1,MYC,PAF1,SF3A1 6 
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5.3.3 The Molecular Networks analysis of the 68-DEGs-Mi of pSS-associated 

lymphoma: 

Molecular Networks analysis provide information regarding the visualization of the 

relations of the genes of interest and the directionality of their regulation. Molecular 

networks analysis are related to the downstream effects analysis. In the Molecular Network 

analysis, two terms , ‘Focus Molecules’ and the ‘Score.’ are used in the report deserve 

further explanation. The ‘Focus molecules’ of a network represent the number of the genes 

in the uploaded DEGs list from my experiment that are represented in the network, while 

the ‘Score’ is the total number of genes in the network, including the genes of the 68-

DEGs-Mi and the genes that were added from the indirect interactions predicted by IPA. 

The networks analysis by IPA revealed nine potentially significant molecular networks in 

pSS-associated lymphoma. The top four networks showed the highest Scores (between 21 

and 32) while the other five showed much lower Scores (2). Therefore, only the top four 

networks are discussed in this chapter. 

The top network (Network 1) has a Score of 32 with Focus Molecules of 17. The top 

diseases and functions involved in this network, shown in Figure 5.3, include ‘Cell Death 

and Survival,’ ‘Cell-mediated Immune Response’ and ‘Cellular Development.’ Figure 5.4 

shows the second network (Network 2), involving ‘Cell Cycle,’ ‘DNA Replication,’ 

‘Recombination and Repair’ and ‘Gene Expression,’ and has a Score of 23 and Focus 

Molecules of 13. Network 3 (Figure 5.5) included the diseases and functions of ‘Cell-

mediated Immune Response,’ ‘Cellular Development’ and ‘Cellular Function and 

Maintenance’; this network has a Score and Focus Molecules of 21 and 12 respectively. 

Network 4 has the same Score and Focus Molecules as Network 3. The most important 

diseases and biological functions within the fourth network were ‘Cell Death and Survival,’ 

‘DNA Replication,’ ‘Recombination and Repair’ and ‘Cancer’ (Figure 5.6).  

Interestingly, two of these networks (Networks 2 and 4) included two genes in the three-

gene biosignature in pSS-associated lymphoma (NUDT14 and MGST3). The other two 

networks (Networks 1 and 3) included the two genes that were significantly associated with 

untreated pSS-associated lymphoma (DYNLL1 and DRAP1). The significant gene 

associated with untreated pSS-associated lymphoma, DYNLL1, was included in network 1 

and has an indirect interaction with complexes ERK and Jnk. In network 2, MGST3 was 
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included and was regulated by PPARA in a direct interaction. DRAP1, which was also 

significant in untreated pSS-associated lymphoma, has a direct interaction with myc in 

network 3. Network 4 contains NUDT14, the most consistently differentially expressed 

gene throughout all the cohorts. The interactions in Network 4  are most likely related to 

cancer biology, as it includes TP53, which binds to WT1, which in turn has a direct 

relationship with TCOF1.  TCOF1 has an indirect interaction with NUDT14.      
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Figure 5.3 Network 1 of pSS-associated lymphoma identified by IPA. A total of 17 genes from the pSS-associated lymphoma gene 

expression signature are involved in ‘Cell Death and Survival’ ,‘Cell-mediated Immune Response’ and ‘Cellular Development’. Genes in 

red represent up-regulated genes in pSS-associated lymphoma. Genes in blue represent down-regulated genes in pSS-associated lymphoma. 

Genes in white represent genes in the global network but not included in the putative pSS-associated lymphoma gene-expression signature. 

DYNLL1, which was differentially expressed in untreated pSS-associated lymphoma, was included in this network. 
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Figure 5.4 Network 2 of pSS-associated lymphoma identified by IPA. A total of 13 genes from the pSS-associated lymphoma gene 

expression signature are involved in ‘Cell Cycle’, ‘DNA Replication’, ‘Recombination and Repair’ and ‘Gene Expression’. Genes in red 

represent up-regulated genes in pSS-associated lymphoma. Genes in blue represent down-regulated genes in pSS-associated lymphoma. 

Genes in white represent genes in the global network not included in the putative pSS-associated lymphoma gene-expression signature. 

MGST3, which was differentially expressed in pSS-associated lymphoma (3-gene biosignature), was included in this network. 
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Figure 5.5 Network 3 of pSS-associated lymphoma identified by IPA. A total of 12 genes from the pSS-associated lymphoma gene 

expression signature are involved in ‘Cell-mediated Immune Response’, ‘Cellular Development’ and ‘Cellular Function and Maintenance’. 

Genes in red represent up-regulated genes in pSS-associated lymphoma. Genes in blue represents the down-regulated genes in pSS-

associated lymphoma. Genes in white represent genes in the global network not included in the pSS-associated lymphoma gene-expression 

signature. DRAP1, which was differentially expressed in untreated pSS-associated lymphoma, was included in this network. 
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Figure 5.6 Network 4 of pSS-associated lymphoma identified by IPA. A total of 12 genes from the pSS-associated lymphoma gene 

expression signature are involved in ‘Cell Death and Survival’, ‘DNA Replication’, ‘Recombination and Repair’, and ‘Cancer’. Genes in 

red represent up-regulated genes in pSS-associated lymphoma. Genes in blue represent down-regulated genes in pSS-associated lymphoma. 

Genes in white represent genes in the global network not included in the putative pSS-associated lymphoma gene-expression signature.  

NUDT14, which was differentially expressed in pSS-associated lymphoma (3-gene biosignature), is included in this network. 
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5.3.4 The Upstream Regulators Analysis of pSS-associated lymphoma:   

The Upstream Regulator Analysis by IPA allows researchers to identify the cascade of the 

upstream transcriptional factors that control the genes of interest. The interactions between 

certain genes and the upstream regulators may explain changes in the expression of these 

genes and the effects of these changes on a certain biological function. As in other analyses 

in IPA, it also predicts whether the regulators that are involved in genes of interest are 

activated or inhibited by calculating the z-score.  

Applying Upstream Regulator Analysis to my dataset (68-DEGs-Mi), I have identified 219 

regulators that were significantly linked to pSS-associated lymphoma (p < 0.05, Fisher’s 

Exact test). Focusing on my 3-gene biosignature of pSS-associated lymphoma, IPA 

predicted upstream regulators for NUDT14 and MGST3 but not BMS1. One regulator 

(TCOF1) was predicted to regulate NUDT14. Two regulators (NFE2L2 and PPARA) were 

predicted to be involved in the regulation of MGST3.  

Furthermore, I searched for upstream regulators that regulate the differentially expressed 

genes in untreated lymphoma. Five regulators (NFE2L2, PPARA, SLC6A2, BARX2 and 

SLC18A2) were predicted to regulate DYNLL1. However, SLC6A2, BARX2 and SLC18A2 

seem to be less important regulators as they only regulate one gene (DYNLL1). No 

upstream regulators were predicted for DRAP1. These six regulators identified included 

transcription regulators, transporters and ligand-dependent nuclear receptors (Table 5.6). 

Despite the statistically significant association, IPA was unable to make prediction to 

whether these regulators were activated or inhibited in pSS-associated lymphoma as the 

calculated absolute z-scores were not significant. 
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Table 5.6 The upstream regulators of pSS-associated lymphoma identified by IPA. Six 

regulators were predicted to be involved in the regulation of the genes in the 3-genes 

biosignature and the differentially expressed genes in untreated pSS-associated lymphoma. 

Z-score is not significant for all the upstream regulators. 

Upstream 

Regulator 

Molecule Type p-value  Target molecules  

NFE2L2 Transcription regulator 5.66E-04 ATP1A1, DYNLL1, HSP90B1, 

MGST3, PSMC1, VCP 

PPARA Ligand-dependent nuclear 

receptor 

2.52E-02 DYNLL1, MGST3, MYC, 

RBP7 

TCOF1 Transporter 2.36E-02 HNRNPDL, NUDT14 

BARX2 Transcription regulator 2.72E-02 DYNLL1 

SLC18A2 Transporter 3.06E-02 DYNLL1 

SLC6A2 Transporter 1.71E-02 DYNLL1 

 

5.4 Discussion:   

In this chapter I have focused on the biological processes/pathways that might be associated 

with pSS-associated lymphoma. The identified biological pathways will provide additional 

insight in particularly to understand the interactions of the genetic factors that are important 

in the pathogenesis of lymphoma in pSS.  

The Canonical pathways in pSS-associated lymphoma 

I applied different analytic methods provided by IPA to my dataset (68-DEGs-Mi). The 

first analysis in the IPA core analysis is the ‘Canonical Pathway Analysis’. The ‘Canonical 

Pathway Analysis’ identified a total of 188 pathways, most of these were related to cancer 

biology. It is important to keep on mind that many of these pathways were generated using 

cancer as research model, and therefore may introduce potential bias. The canonical 

pathway with the lowest p-value was the ‘AHR signalling’ pathway. Despite the highly 

significant p-value, no prediction of the direction of change (i.e., activation or inhibition) 

for the pathway could be made. One possible explanation is that the small number of genes 

in 68-DEGs-Mi may make it difficult to link the genes of interest with the pathway 

information in the Ingenuity Knowledge Base (IKB). AHR is a ligand-activation 

transcriptional factor in the Pern-Arnt-Sim (PAS) family (Burbach et al., 1992). This 

receptor is also considered to be a xenobiotic receptor. Originally, the role of AHR was 

believed to be limited to xenobiotic metabolism, until it was discovered that AHR has the 
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ability to mediate toxic responses. For this reason, AHR was heavily investigated in 

toxicology studies (Barouki et al., 2007). The link between AHR and immune responses 

and other endogenous functions was only recently discovered. For instance, AHR has a role 

in regulating cell shape, cell adhesion and cell migration (Carvajal-Gonzalez et al., 2009, 

Ikuta and Kawajiri, 2006). In addition, Aryl Hydrocarbon Receptor nuclear translocators 

(ARNT) are crucial for haematopoietic stem cell (HSC) viability. Furthermore, it has been 

found that the HSCs with ARNT deficiency experienced programmed death process 

(apoptosis) (Krock et al., 2015). Many studies have also been conducted to investigate the 

role of AHR in different types of lymphoma and cancer. Ding and co-workers recently 

reported that the AHR/ARNT complex regulates MEF2B, a transcription factor that 

regulates the expression of B-cell lymphoma 6 (BCL6). The regulation of BCL6 by both 

AHR/ARNT and MEF2B leads to the expression of the germinal centre markers in diffused 

B-cell lymphomas (Ding et al., 2015). Furthermore, AHR has been suggested to play a role 

in other malignancies such as pleomorphic adenoma, which is a benign mixed tumour of 

the parotid gland (Drozdzik et al., 2015).  

On the other hand, the linkage between the environmental and endogenous ligand by AHR 

can be harnessed as an adjunct to the treatment of cancers. For example, activation of AHR 

in the presence of chemo-preventive agents (Chrysin) in cancer cell lines, leads to the 

induction of Chrysin-induced apoptosis. This induction of apoptosis is due to the activation 

of TNF-α and TNF-β, which is dependent on AHR serving as a ligand to Chrysin 

(Ronnekleiv-Kelly et al., 2015). In another study, the presence of TNF-α plays a role in 

modulating the AHR function as an activator of apoptosis. These modulation effects were 

investigated by using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which acts as a ligand 

to AHR. In the presence of TNF-α and TCDD, lymphocyte apoptosis is reduced 

(Ghatrehsamani et al., 2015). Thus, it is noteworthy that TNF-α is over-expressed in pSS 

(Kang et al., 2011), which might suggest similar mechanisms lead to the development of 

lymphoma in pSS by reducing lymphocyte apoptosis.   

Emerging data indicate that AHR acts as a co-factor in autoimmune disease development. 

Veldhoen et al. (2008) have shown that AHR activation through a high-affinity ligand leads 

to the development of TH17 cells. Notably, this activation must occur during the 

development of this cell subset. Eventually, the increased percentage of TH17 cells leads to 
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an increase in TH17 cytokines, which include IL-22 (Veldhoen et al., 2008). Moreover, 

AHR also regulates the function of regulatory T cells (Treg), an important mechanism of 

self-tolerance (Quintana et al., 2008). It is known that IL-17 and IL-22 are elevated in pSS 

(Miletić et al., 2012, Lavoie et al., 2011). Therefore, it is plausible that similar mechanisms 

might be involved in the pathology of pSS and pSS-associated lymphoma. The role of AHR 

and the linkage between environmental and endogenous ligands is illustrated in Figure 5.7. 

 

Figure 5.7 The Aryl Hydrocarbon Receptor (AHR) integrates responses from 

environmental and endogenous ligands to mount appropriate immune responses at 

barrier organs (Cella and Colonna, 2015) 

 

It is of interest that one of the genes included within the AHR pathway is MGST3, one of 

the genes in the 3-gene biosignature in pSS-associated lymphoma. The genes connected to 

AHR pathways are summarized below:  

MGST3: Since AHR is involved in response to xenobiotics such as chemicals and drugs, 

many researchers have studied the role of AHR in drug metabolism. The microsomal GST3 

(MGST3) gene is known for its involvement in metabolic reactions. Given the close 

connection between the AHR pathway and the role of MGST3, it is not surprising that 

studies have confirmed the correlation (upregulation/activation) of MGST3 and AHR in 

drug metabolism in mice. Similar studies involving the gene ALDH9A1, which controls the 

metabolism of aldehydes, have demonstrated their correlation to AHR in drug metabolism 

in the liver of mice. Furthermore, MGST3 was reported to correlate with transcriptional 
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factors such as NFE2L2 and PPARA (Aleksunes and Klaassen, 2012, Fu and Klaassen, 

2014). Interestingly, the same transcriptional factors (NFE2L2 and PPARA) were 

discovered to regulate MGST3 in my dataset.   

MYC: Yang and colleagues in 2005 demonstrated that the activation of AHR in Hs578T 

cancer cells could inhibit the expression of the oncogene MYC. Down-regulation of MYC in 

our Discovery cohort microarray was consistent with this observation. Furthermore, AHR-

mediated regulation could affect apoptosis (increase or decrease) depending on the cell line 

used (Yang et al., 2005).   

HSP90: It is known that there is a link between AHR and heat shock proteins (HSP). Thus, 

HSP90 associates with AHR, leading to the activation of the receptor in response to 

xenobiotics (Tsuji et al., 2014).   

RBL2: It has been shown that the expression of AHR is associated with the retinoblastoma-

like 2 (RBL2) gene (also known as Rb2 and p130), and such association affected the AHR-

mediated cell cycle in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in 5L 

hepatoma cells (Ge and Elferink, 1998). Overexpression of the rbl2 gene acted as a tumour 

suppressor in nude mice. It has been suggested that RBL2 modulates angiogenetic balance, 

which is essential for tumour formation (Claudio et al., 2001). Consistently, RBL2 was 

down-regulated in my dataset.  

To summarise, ‘AHR signalling’ may play an important role in pSS pathogenesis and may 

provide a link between environmental factors and the progression of pSS (Inoue et al., 

2012). AHR signalling also has an important role in tumourigenesis, anti-cancer therapies, 

as well as pSS pathology. Further studies should be conducted to investigate the role of this 

pathway in pSS-associated lymphoma.  

The Histamine Degradation pathway is another canonical pathway in pSS-associated 

lymphoma. Moreover, histamine, in particular H4 histamine receptor (H4R), is important in 

the pathology of pSS. Studies have shown that dendritic cells and T-cells synthesize 

histamine (Oda et al., 2000). The role of H4R is important to sustain the health of the 

tubuloacinar epithelium (Stegaev et al., 2012). Furthermore, H4R activation inhibits TNF-

α/IMD-0354-induced apoptosis in salivary gland cells in pSS (Stegajev et al., 2014).  
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In my dataset, histamine N-methyltransferase (HNMT) was one of the genes that was 

involved in the histamine degradation pathway and was present in both the 68-DEGs-Mi 

and 26-DEGs-MiPCR signatures. Due to the fact that limited RNA samples were available, 

the expression of the HNMT gene was not tested during biological validation. HNMT has 

been linked to many malignancies. For example, HNMT has been identified as a key gene 

that predicted the prognosis of paediatric acute lymphoblastic leukaemia (ALL) (Gao et al., 

2015). Another study also reported that the HNMT gene was expressed in the bone marrow 

of breast cancer patients (Del Valle et al., 2014). Histamine degradation is also linked to the 

expression of ALDH9A1. Of note, ALDH9A1 gene was also differentially expressed in the 

microarray dataset in the Discovery cohort. Thus, the role of the ‘Histamine degradation 

pathway’ in pSS-associated lymphoma also warrants more investigation. 

Another canonical pathway associated with pSS-associated lymphoma is the ‘Unfolded 

protein response (UPR)’. This pathway is responsible for endoplasmic reticulum (ER) 

homeostasis. The key role of the ER is the organization of the biosynthesis and the 

secretion of proteins. The UPR consists of three ‘sensors’: first, the inositol-requiring 

transmembrane kinase/endoribonuclease 1 (IRE1), second, the double-stranded RNA 

(PKR)–activated protein kinase-like eukaryotic initiation factor 2α kinase (PERK), and 

third, the activating transcription factor-6 (ATF6). Figure 5.8 illustrates the relationships 

between the UPR pathway and infectious inflammatory diseases and cancer.  

The genes from my dataset that overlapped with genes that make up the UPR pathway were 

two heat-shock proteins (HSPA9, HSP90B1) and valosin-containing protein (VCP). Both 

heat shock protein genes were down-regulated in pSS-associated lymphoma. Data have 

shown that inhibition of the heat shock protein HSP90 will activate UPR in a myeloma cell 

line (Davenport et al., 2007). Furthermore, HSP90B1 inhibition has a role in the 

chaperoning of integrin and Toll-like receptor (TLR) in B cells, which is important in 

cancer and lymphoma pathogenesis (Liu and Li, 2008). VCP is associated with both heat 

shock protein and the activation of UPR (Abisambra et al., 2013). VCP has also been linked 

to the development of malignancies such as hepatocellular carcinoma (HCC) and has been 

considered a potential therapeutic target (Yi et al., 2012). 
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Figure 5.8 The Unfolded Protein Receptor (UPR) signalling in diseases. The three arms 

of the UPR pathway are IRE1α-XBP1s, PERK-eIF2α phosphorylation-ATF4 and ATF6, 

which are all important for tumour cell survival and growth under hypoxic conditions. 

IRE1α and PERK can trigger c-JUN N-terminal kinase (JNK) and NFκB to stimulate 

inflammation and apoptosis that can contribute to inflammation in the pancreatic β-cell 

death and obesity in diabetes. In addition, CHOP production in the PERK pathway 

exacerbates oxidative stress in diabetes and atherosclerosis, aggravating these diseases 

(Wang and Kaufman, 2012). 

 

The fourth pSS lymphoma-associated pathway is ‘Neuregulin Signalling.’ This pathway 

has been implicated in psychiatric disorders such as schizophrenia (Buonanno, 2010, 

Hatzimanolis et al., 2013). The neuregulins (NRGs) are members of the growth factor 

family, which has multiple functions regarding important organs such as the heart and the 

nervous system. It has also been linked to diseases such as cancer.  For instance, 

overexpression of NRG was found in many ovarian carcinoma cell lines (Gilmour et al., 

2002). The neuregulin family consists of four members: NRG1, NRG2, NRG3 and NRG4. 

NRG binds to the receptor tyrosine kinases (the human epidermal growth factor receptor 

HER) ErbB3 or ErbB4, leading to the formation of homo or heterodimer ErbB2, which is 

also known as HER2. Previous studies have demonstrated that NRG4 and HER4 are 
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predominantly expressed in MALT lymphoma clinical samples from patients with 

gastrointestinal lymphoma. The recombinant NRG4 stimulates HER4 tyrosine 

phosphorylation leading to proliferation in a lymphoma cell line (Ebi et al., 2011). 

Stimulation of heat-shock protein 70 inhibits the NRG1-induced demyelination through 

increased proteasomal degradation of c-Jun (Li et al., 2012). These biological mechanisms 

might provide an explanation to the association of ‘Neuregulin Signalling’ pathway in pSS-

associated lymphoma, as the heat-shock protein gene (HSP90B1) was down-regulated in 

the lymphoma group in my dataset. Investigating the role of NGRs and HER in pSS-

associated lymphoma may provide a better understanding of the pathogenesis of lymphoma 

in pSS.       

The fifth canonical pathway associated with pSS-lymphoma is the ‘T-cell receptor 

signalling’ pathway. T-cell receptor signalling, which involves many steps including the 

activation of NF-κB, has an important role in the development of lymphoma in 

haemophagocytosis (An et al., 2011).     

While the Canonical Pathway analysis has demonstrated that these pathways were enriched 

in pSS-associated lymphoma, IPA could not make a prediction of whether these canonical 

pathways were activated or inhibited in pSS-associated lymphoma. There are several 

reasons why no prediction on the directionality of these canonical pathways in pSS-

associated lymphoma could be made. First, there was insufficient information in the 

literature and/or the IPA knowledge base. Second, there were only 68 differentially 

expressed genes included in the analysis. Interestingly, among the three genes in the three-

gene biosignature in pSS-associated lymphoma, BMS1 does not appear to be associated 

with any of the 188 lymphoma-associated canonical pathways. In contrast, both NUDT14 

and MGST3 were associated with six different canonical pathways. The canonical pathways 

that were associated with NUDT14 were all metabolic pathways. Similarly, MGST3 is 

involved in metabolic pathways as well as the xenobiotic pathway (AHR signalling 

pathway).  

The Downstream Effects and Networks analysis in pSS-associated lymphoma 

With regard to the top ‘diseases and biological function’ that might be implicated in pSS-

associated lymphoma, IPA predicted that most of these functions were related to cell 
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function, cell viability, cell survival and cell movement. These functions are known to be 

associated with different types of malignancies and with lymphoma, in particularly, non-

Hodgkin lymphoma (Pon et al., 2015).  

The network analysis illustrated the involvement of the DEGs in pSS-associated lymphoma 

and their interactions through nine networks. Knowledge of such gene-gene interactions 

provides information of how my genes of interest may interact with each other and with 

other genes from the global molecular network at the molecular level. These data may 

improve the understanding of the pathogenesis of pSS-associated lymphoma. 

The Upstream Regulators analysis in pSS-associated lymphoma 

The Upstream Regulator analysis identified upstream regulators for the 2 genes of the 3-

gene biosignature of pSS-associated lymphoma and 1 gene of the significant genes in the 

untreated pSS-associated lymphoma (See Table 5.6). Nuclear factor (erythroid-derived 2)-

like 2 (NFE2L2) is known for its role in the regulation of the genes with antioxidant 

function MGST3. Both NFE2L2 and MGST3 were functioning within the same pathway in 

weakening the lung function in smokers. More interestingly, both genes were involved in 

the ‘AHR signalling’ pathway (Curjuric et al., 2012), reinforcing the association between 

pSS-associated lymphoma development and AHR signalling.  

Another upstream regulator of interest is peroxisome proliferator-activated receptor alpha 

(PPARA). PPARA regulates MGST3 and DYNLL1 and is a vital upstream regulator of genes 

that involve in cell metabolism (Blavy et al., 2014).   

The third identified upstream regulator is Treacher Collins-Franceschetti syndrome 1 

(TCOF1), which regulates NUDT14, involved in nucleotide sugar catabolism (Yagi et al., 

2003). TCOF1 encodes a protein called ‘treacle’ which is important for ribosomal RNA 

(rRNA) transcription. The gene was investigated in mouse Neuroblastoma cell line N1E-

115 in order to identify its role in the regulation of proliferation and differentiation of cells. 

In this study, genes with changes in expression level that were concordant with the TCOF1 

expression level were involved in promoting cell proliferation, whereas genes with changes 

in expression level discordant with TCOF1 were either involved in proliferation repression 

or cell-death stimulation. Interestingly, NUDT14 was one of the genes that correlated 
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negatively with TCOF1 (Mogass et al., 2004). Consistent with my dataset, NUDT14 is 

thought to have an indirect interaction with TCOF1.  

The upstream regulator analysis in pSS-associated lymphoma revealed the importance of 

metabolic genes in the development of lymphoma.  Regarding the upstream regulators 

analysis of the genes (DYNLL1) that were implicated in untreated pSS-associated 

lymphoma, BARX homobox 2 (BARX2) is a transcriptional factor that controls several 

genes through its homeodomain binding sites. A homeodomain is a 60 amino acid helix-

turn-helix DNA-binding domain. The DNA sequence that encodes the homeodomain is 

called the ‘homeobox’ and homeobox-containing genes are known as ‘hox genes’. BARX2 

abnormality has been linked to ovarian cancer cells through its role as a suppressor of cell 

adhesion, migration and invasion of these cells (Sellar et al., 2001). Another study has 

reported that inhibition of BARX2 affects the cell growth of a human breast cancer cell line 

(MCF7 breast cancer cell line) (Stevens et al., 2004).  

It would be of interest to investigate whether BARX2 may also affect pSS-associated 

lymphoma cell growth via its regulation of DYNLL1. The solute carrier family 18 (vesicular 

monoamine transporter), member 2 (SLC18A2) and the solute carrier family 6 

(neurotransmitter transporter) member 2 (SLC6A2) are upstream regulators of DYNLL1. 

SLC18A2 acts as a vesicular monoamine transporter; abnormalities in this gene have been 

associated with neuropsychiatric disorders through its role in regulating monoamine 

neurotransmitters. The only type of cancer that has been reported in the literature linked to 

SLC18A2 is prostate cancer. Thus, DNA hyper-methylation that causes silencing of 

SLC18A2 in prostate cancer, make this gene a novel predictor to the response to treatment 

(Sorensen et al., 2009). SLC6A2 is a norepinephrine transporter (NET). Studies have 

demonstrated that polymorphism of this gene contributes to Major Depression (MD) 

susceptibility (Wang et al., 2015). These associations might be of interest as depression and 

fatigue are common in pSS.  

In conclusion, the identification of the canonical pathways provides an improved 

understanding of the possible mechanisms that might be involved in pSS-associated 

lymphoma. Additionally, network analysis and upstream regulators analyses revealed 

molecules that interact with or regulate the genes of interest in pSS-associated lymphoma. 

As it is likely that many biological processes and mechanisms are involved in lymphoma 



152 
 

development in pSS, IPA has provided me with clues for further investigations into such 

mechanisms. 
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Chapter 6 

Gene expression profiling and pathway analysis of different pSS 

subgroups in the Discovery cohort 

6.1 Introduction 

The association between pSS and cancers, especially haematological tumours, is widely 

acknowledged. However, the associations with other types of cancer have also been 

reported, but without conclusive overall evidence. A meta-analysis of 14 cohort studies 

consisting of a total of over 14,523 patients reported a significant increase in the 

malignancy development including all forms of cancer. The authors also recommended the 

conduction of more studies to examine the role of NHL in increasing the risk of overall 

malignancy (Liang et al., 2014). The determination of the risk factors for other types of 

tumour in pSS has been poorly understood. However, in Sweden it has been reported that 

10 excess tumour cases were found in pSS patients in addition to the NHL cases (Theander 

et al., 2006). Lazarus and colleagues reported an increased risk of developing more than 

one type of cancer in pSS (Lazarus et al., 2006). One example is the lung adenocarcinoma 

association with pSS as pulmonary involvement is a known pSS systemic manifestation 

(Takabatake et al., 1999). Another example was a case report suggested hepatocellular 

carcinoma as a possible outcome of pSS (Yan et al., 2013). Breast cancer is another type of 

non-haematological tumours that might be linked to pSS, as evidence has suggested that 

systemic inflammation might affect neoplasia of the breast epithelia, especially in elderly 

women (Gadalla et al., 2009). The prevalence of different types of cancers other than 

lymphoma was also recorded in the UKPSSR cohort.  

Paraproteinemia or monoclonal gammopathy (MG) is a recognised extra-glandular 

manifestation of pSS. Paraproteinemia is defined as the presence of monoclonal 

immunoglobulins in the blood or immunoglobulin light chains (Bence Jones protein) in the 

urine. Paraproteinemia can be detected in two clinical conditions: monoclonal gammopathy 

of undetermined significance (MGUS), and multiple myeloma. Additionally, 

paraproteinemia is associated with many other disorders, including lymphoproliferative 

disorders such as chronic lymphocytic leukemia (CLL) and lymphoplasmacytic 

lymphoma/Waldenstrom macroglobulinaemia (LPL/WM) (reviewed in (Cook and 
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Macdonald, 2007). The association between paraproteinemia and autoimmune diseases has 

also been documented . Moreover, paraproteinemia indicates an increased risk of malignant 

progression in patients with these autoimmune disorders (Kelly et al., 1991). In pSS, the 

presence of MG was reported to be associated with a high risk for the development of 

multiple myeloma (MM), more so than for lymphoma development (Tomi et al., 2015). 

However, the presence of IgM and IgG paraproteinemia was observed in patients with low-

grade B-cell lymphoma (Iwatani et al., 2014). Recently, lymphoplasmacytic lymphoma, 

defined as a type of B-cell non-Hodgkin’s lymphoma, was linked to the presence of IgA 

paraproteinemia. More studies were needed to define more accurately the lymphoma type 

in this study (Guan et al., 2015). MG was correlated with high systemic disease activity in 

pSS (as measured using ESSDAI), which was in turn associated with a higher risk of death 

in those patients (Brito-Zeron et al., 2014). The UKPSSR database includes information on 

whether paraproteinemia was present in the pSS patients.  

Although identifying a gene expression signature in pSS-associated lymphoma is my main 

goal, given the documented association between paraproteinemia and the development of 

haematological malignancies, comparing the gene expression profiles of pSS patients with 

lymphoma and those with paraproteinemia is worthwhile. Similarly, comparing and 

contrasting the gene expression profiles of pSS-associated lymphoma and pSS patients with 

other cancers is also of interest. Because of the limited availability of biobanked RNA, I 

will focus my analysis on the DEGs from the microarray data and biological pathway 

analysis (using IPA).    

6.2 Aim and experimental design 

The aim of this chapter is to generate more evidence demonstrating that the whole blood 

gene expression signature of pSS-associated lymphoma that I identified in the Discovery 

cohort was “specific.” For this reason, nine different comparisons were made. The first two 

comparisons were made between pSS-associated lymphoma and pSS-other cancers and 

pSS-associated lymphoma and pSS-paraproteinemia. Additionally, the pSS-other cancers, 

pSS-paraproteinemia and pSS (without lymphoma) groups were compared with each other. 

These additional comparative analyses provide assurance that the identified signature is 

specific to pSS-associated lymphoma. The final four comparisons examined pSS,  pSS-
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associated lymphoma, pSS-other cancers and pSS-paraproteinemia versus healthy controls. 

To sum up, the new comparisons I have performed are as follows: 

1. pSS-associated lymphoma vs pSS-other cancers 

2. pSS-associated lymphoma vs pSS-paraproteinemia 

3. pSS vs pSS-other cancers 

4. pSS vs pSS-paraproteinemia 

5. pSS-other cancers vs pSS-paraproteinemia 

6. pSS vs HC 

7. pSS-associated lymphoma vs HC  

8. pSS-other cancers vs HC 

9. pSS-paraproteinemia vs HC 

As mentioned in Chapter 4, in the Discovery cohort, 144 globin mRNA-depleted samples 

were used, and the samples were categorized into five groups: pSS-associated lymphoma 

(n=16); pSS (n=61); pSS-paraproteinemia (n=23); pSS-other cancers (n=21) and healthy 

controls (n=23). Data from the whole genome gene expression microarray were analysed to 

generate lists of differentially expressed genes (DEGs) between groups (Analysis A) as 

described in Chapter 4. Each list of DEGs was then uploaded onto the IPA platform for 

pathway analysis, as described in Chapter 5.  

Patient demography can be found in Chapter 4, Table 4.1. The pSS-other cancer group 

includes a variety of different cancers, such as breast cancer, bowel cancer, cervical cancer, 

thyroid papillary carcinoma, benign meningioma, endometrial cancer, uterine cancer and 

renal cancer. 

6.3 Results 

6.3.1 RNA quality and RIN score 

The RNA quality of the samples has been described in detail in Section 4.4.2. 
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6.3.2 Whole genome gene expression Bead Chip of pSS subgroups 

1. Microarray data analysis 

The microarray data analysis was performed using R Packages, as previously described in 

chapter 4, section 4.4.3. All samples with RIN < 7 were excluded from the analysis for all 

the pSS subgroups. An exception was made for the pSS-associated lymphoma, where two 

samples with RIN < 7 were included. In addition, the technical outliers were removed. The 

data were transformed and normalised using the RSN method. Finally, the quality control 

was performed tested. Finally the DEGs were generated using a p-value cut-off of p < 0.05 

or the fold change cut-off of 1.2.  

2. Batch effects on the microarray data 

The ComBat function was applied to remove the batch effects from the microarray data, as 

described in Chapter 4 (Figures 4.5 and 4.6). 

3. Differentially expressed genes from the microarray data analysis 

The analyses to generate the list of differentially expressed genes (DEGs) for each of the 

nine comparisons. Not all the comparisons have generated a DEGs list, as the differences in 

gene expression levels between the comparison groups did not reach either the adjusted p-

value cut-off of p < 0.05 or the fold change cut-off of 1.2. The summary of the DEGs 

analysis is as follows: 

1. pSS vs HC                                                                           Generation of a DEGs list  

2. pSS vs pSS-other cancers                                                    No DEGs  

3. pSS vs pSS-paraproteinemia                                               No DEGs 

4. pSS-associated lymphoma vs HC                                       Generation of a DEGs list 

5. pSS-associated lymphoma vs pSS-other cancers                Only one DEG (RNA28S5) 

6. pSS-associated lymphoma vs pSS-paraproteinemia           No DEGs 

7. pSS-other cancers vs HC                                                     Generation of a DEGs list 

8. pSS-other cancers vs pSS-paraproteinemia                         No DEGs 

9. pSS-paraproteinemia vs HC                                                Generation of a DEGs list 

DEGs were identified only in the comparisons between pSS subgroups and healthy controls 

and the number of DEGs identified varied for each comparison. A total of 278 DEGs were 

identified in the comparison between pSS and healthy controls (221 upregulated genes, 57 
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downregulated genes). For pSS-paraproteinemia versus healthy controls, a list of 178 DEGs 

(148 upregulated genes, 30 downregulated genes) was generated, while pSS-other cancers 

versus healthy controls generated a list of 123 DEGs (113 upregulated genes, 10 

downregulated genes). The comparison of pSS-associated lymphoma against healthy 

controls generates the highest number of DEGs, with 557 (301 upregulated genes, 256 

downregulated genes). The comparison of pSS-other cancers and pSS-associated 

lymphoma identified only one DEG (RNA28S5). It is noticeable that the interferon-

inducible genes dominated the DEGs lists in these comparisons. The top 10 up- and down-

regulated genes in each comparison group are listed in Table 6.1. The DEGs from the four 

comparison groups are visualized using volcano plots in Figure 6.1. The complete DEGs 

lists (NAs excluded) for the four comparisons can be found in the supplementary tables S6, 

S7, S8 and S9. 

Focusing on comparing the 68-DEGs-Mi signature identified in the Discovery cohort to the 

DEGs list from the comparison of pSS-associated lymphoma versus healthy control, there 

were some DEGs that were in common between the two lists. Firstly, 54 (79.4%) of the 68-

DEGs-Mi signature were in common with the DEGs in the comparison of pSS-associated 

lymphoma versus healthy controls. Thus, 14 DEGs (20.6%) were specific for the 

comparison between pSS and pSS-associated lymphoma. The three genes of the 3-gene 

biosignature in pSS-associated lymphoma (NUDT14, MGST3 and BMS1) were found 

within the 54 DEGs that are in common. The rest of the 503 genes were differentially 

expressed only in pSS-associated lymphoma versus healthy controls. Furthermore, 

comparing the 26-DEGs-MiPCR signature identified in the Discovery cohort to the DEGs 

list from the comparison of pSS-associated lymphoma versus healthy controls, 20 DEGs 

(76.9%) were in common, with 6 DEGs (23.1%) unique to the 26-DEGs-MiPCR signature 

and 537 DEGs differentially expressed only in pSS-associated lymphoma versus healthy 

controls.  

Focusing on comparing the 68-DEGs-Mi signature identified in the Discovery cohort to the 

DEGs lists from the other comparisons of pSS subgroups versus healthy control. First, two 

genes, DRAP1 and SMARCA2, were in common with the 68-DEGs-Mi signature, in the 

differentially expressed genes of pSS-other cancers group versus healthy controls. Second, 

three DEGs (DRAP1, SMARCA2, BCL11B) were in common with the 68-DEGs-Mi 
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signature in the comparison between pSS-paraproteinemia and healthy controls. DRAP1 

was included in the 26-DEGs-MiPCR but DRAP1, SMARCA2 and BCL11B were not 

validated in the Validation cohort; DRAP1 was however differentially expressed in the 

untreated pSS-associated lymphoma group. Third, only DRAP1 was in common between 

the 68-DEGs-Mi signature and pSS versus healthy controls. There were no DEGs in 

common between the 3-gene biosignature and the DEGs lists for different pSS subgroups 

and healthy controls. Overall, these comparisons showed that DRAP1 was differentially 

expressed in all pSS subgroups as well as in pSS patients with untreated lymphoma. 
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Table 6.1 Top 10 up and down regulated DEGs in microarray analysis among different pSS subgroups versus healthy controls. A. 

Upregulated genes. B. Downregulated genes.  

pSS 

 

pSS-paraproteinemia 

 

pSS-other cancers 

 

pSS-associated lymphoma 

 

Gene 

symbol 

Adjusted 

P value 

Fold 

change 

Gene 

symbol 

Adjusted 

P value 

Fold 

change 

Gene 

symbol 

Adjusted 

P value 

Fold 

change 

Gene 

symbol 

Adjusted 

P value 

Fold 

change 

IFI27 6.12E-07 11.51 IFI27 0.00078165 9.26 IFI44L 8.9011E-05 7.13 IFI27 1.5037E-05 16.86 

IFI44L 9.852E-11 8.75 IFI44L 1.58534E-06 7.62 IFI27 0.03815265 6.60 IFI44L 7.4968E-09 12.44 

ISG15 2.151E-10 5.63 IFIT1 1.58534E-06 5.09 IFIT1 8.9011E-05 4.90 IFIT1 7.4968E-09 7.66 

IFIT1 9.852E-11 5.60 ISG15 4.80787E-06 4.88 ISG15 8.9011E-05 4.79 RSAD2 9.0914E-09 7.33 

RSAD2 1.618E-10 5.39 RSAD2 4.80787E-06 4.61 RSAD2 0.000102181 4.43 ISG15 2.5047E-08 7.23 

IFI44 1E-09 5.23 IFI44 6.83017E-05 4.05 IFIT3 5.16374E-05 4.00 IFI44 1.0884E-07 6.51 

OAS3 8.28E-10 4.35 IFIT3 1.58534E-06 3.82 IFI44 0.00085592 3.95 LY6E 1.2523E-07 5.43 

EPSTI1 9.852E-11 4.29 IFITM3 1.80416E-05 3.79 OAS3 0.000166919 3.77 EPSTI1 7.4968E-09 5.39 

IFIT3 9.852E-11 4.28 OAS3 1.50298E-05 3.76 EPSTI1 8.9011E-05 3.62 IFIT3 7.4968E-09 5.34 

IFITM3 6.055E-09 4.09 HERC5 4.44311E-06 3.66 LY6E 0.000653176 3.56 OAS3 1.2032E-07 5.19 

  

pSS 

 

pSS-paraproteinemia 

 

pSS-other cancers 

 

pSS-associated lymphoma 

 

Gene symbol Adjusted 

P value 

Fold 

change 

Gene 

symbol 

Adjusted 

P value 

Fold 

change 

Gene 

symbol 

Adjusted 

P value 

Fold 

change 

Gene 

symbol 

Adjusted 

P value 

Fold 

change 

HLA-DRB4 0.02191445 2.24 NELL2 0.0016615 1.51 NELL2 0.01363656 1.49 HLA-DRB1 0.01957886 4.75 

MYOM2 0.00632069 1.84 TXNDC12 0.04806856 1.45 ANXA7 0.00506038 1.25 MYH9 0.00154487 1.59 

TXNDC12 0.00356056 1.46 BCL11B 0.03711457 1.32 ESYT2 0.04281725 1.25 SPOCK2 0.00077385 1.55 

IMPA2 0.00518347 1.39 EIF3L 0.00087021 1.31 SMARCA2 0.04281725 1.24 SGK223 0.00041848 1.55 

GPR162 0.02652862 1.37 EIF4B 0.00364144 1.27 MID2 8.9011E-05 1.24 LEF1 0.00844086 1.52 

PYGL 0.03946276 1.35 TBC1D14 0.02947428 1.27 USP9X 0.00895127 1.24 TXNDC12 0.01253812 1.52 

FAM212B 0.00969497 1.32 EEF2 0.01107357 1.27 HNRNPA0 0.048907 1.22 NELL2 0.00229604 1.51 

PPM1F 0.0006649 1.31 SERTAD2 0.03359516 1.26 NR3C2 0.00206934 1.21 ABLIM1 0.00995283 1.49 

RPL3 0.00202947 1.30 FEZ1 0.03100429 1.26 DSC1 0.03419917 1.20 BCL11B 0.00050068 1.48 

MIR181A2HG 0.03875588 1.29 ALDOC 0.02060631 1.26  PIK3IP1 0.00202645 1.48 

 

B 

A 
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Figure 6.1 Volcano plots of the differentially expressed genes in the four pSS subgroups. A. pSS vs HC. B. pSS-paraproteinemia vs HC.  

C. pSS-other cancers vs HC. D. pSS-associated lymphoma vs HC. The x-axes represent log2 of the fold change and the y-axes represent the 

–log10 of the adjusted p value. The red dots represent the differentially expressed genes and the red lines indicate the cut-offs for the 

adjusted p value and fold change. 

A 

B 

C 

D 
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4. Validation of DRAP1 in pSS subgroups by qRT-PCR 

DRAP1 was the only gene from the 68-DEGs-Mi and 26-DEGs-MiPCR signatures of the 

Discovery cohort that was also differentially expressed in the pSS subgroups versus healthy 

control comparison. Furthermore, although DRAP1 was not included in the 3-gene 

biosignature in pSS-associated lymphoma, it was differentially expressed in the untreated 

pSS-associated lymphoma group. The gene was included in the qRT-PCR plates that I ran 

to detect the stability of the housekeeping genes. For this reason, qRT-PCR expression data 

from all the pSS groups was available for this gene. DRAP1 was significantly upregulated 

in all the pSS subgroups compared to healthy controls. The p values were < 0.0000, 0.0007, 

0.0005 and < 0.0000, with fold change values of 1.54, 1.54, 1.55 and 2.37 for pSS, pSS-

paraproteinemia, pSS-other cancers and pSS-associated lymphoma, respectively (Figure 

6.2). 

 

Figure 6.2 Relative expression levels of DRAP1 in pSS subgroups evaluated by qRT-

PCR. DRAP1 was differentially expressed in all pSS subgroups and the levels were 

significantly higher compared to healthy controls(n = 16). The p values were < 0.0000, 

0.0007, 0.0005 and < 0.0000  and fold change values of 1.54, 1.54, 1.55 and 2.37 for pSS 

(n = 44),  pSS-paraproteinemia (n = 15), pSS-other cancers (n = 14) and pSS-associated 

lymphoma (n = 15), respectively.  
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6.3.3 Pathways analysis of pSS subgroups 

1. Canonical pathways in different pSS subgroups 

For this canonical pathway analysis, the 4 lists of DEGs from comparing the 4 pSS 

subgroups with healthy controls (HC) were uploaded onto the IPA platform. Each 

comparison using different pSS subgroups revealed a different set of canonical pathways. 

In total, 178 pathways were identified in the pSS vs HC comparison: 216 pathways in the 

pSS-paraproteinemia vs. HC comparison and 74 pathways in the pSS-other cancers vs. HC 

comparison. The pSS-associated lymphoma vs HC comparison revealed the highest number 

of canonical pathways (351 pathways). The Venn diagram in Figure 6.3A showed that 

sixty-seven pathways were in common between all four comparisons. The p value was 

calculated using the Fischer’s exact right-tailed test. P < 0.05 was considered statistically 

significant. Moreover, the number of genes in the uploaded pSS subgroups’ DEGs lists 

from my experiment that were in common with the total number of the genes included in 

each pathway was calculated. The top 5 canonical pathways (based on levels of statistical 

significance) in each comparison are shown in Table 6.2 and Figures 6.4 and 6.5. The 

“Interferon Signalling pathway” was activated in all four pSS subgroups and was the most 

statistically significant pathway. Interestingly, 178 out of 188 canonical pathways (94.9%) 

identified from the pSS-associated lymphoma vs. pSS comparison were in common with 

the pathways identified in the pSS-associated lymphoma versus HC comparisons. The ten 

canonical pathways that are only identified in pSS versus pSS-associated lymphoma are: 

Retinoate Biosynthesis II, Mitochondrial Dysfunction, Amyloid Processing, Serotonin 

Degradation, GABA Receptor Signalling, Basal Cell Carcinoma Signalling, Role of 

Wnt/GSK-3β Signalling in the Pathogenesis of Influenza, Oxidative Phosphorylation, Role 

of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis and G-Protein 

Coupled Receptor Signalling. The canonical pathways identified in pSS-associated 

lymphoma versus healthy controls that have a significant z-score can be found in 

supplementary table S10. 

The number of pathways identified in the pSS versus pSS-associated lymphoma 

comparison from chapter 5 that were also identified in other group comparisons were as 

follows: 37 in the pSS-other cancers subgroup (all included in the list of the 178 canonical 

pathways that are in common when comparing pSS and/or healthy controls to pSS-
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associated lymphoma), 78 in the pSS group and 113 pSS-paraproteinemia group (for both 

groups 77 and 112 canonical pathways were included in the 178 canonical pathways that 

are in common when comparing pSS and/or healthy controls to pSS-associated lymphoma) 

Figure 6.3B.   

 

 

Figure 6.3 Venn diagram of the canonical pathways identified in the four pSS subgroup 

comparisons with healthy controls (HC). A. Sixty-seven canonical pathways were in 

common between the four pSS subgroups comparisons. B. The common canonical 

pathways between pSS subgroups and the common pathway identified between pSS-

associated lymphoma vs. pSS and pSS-associated lymphoma vs. healthy control. C.P.= 

Canonical Pathways. 
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Table 6.2 Top 5 canonical pathways analysis in the four pSS subgroups (compared to 

healthy controls) 

Ingenuity Canonical Pathways  -log 

(p-value) 

Ratio  Genes  

pSS 

Interferon Signaling 1.89E+01 3.89E-01 OAS1,IRF9,IFITM1,IFIT3,STAT2,IFI6,IFITM3,

TAP1,IFIT1,STAT1,ISG15,MX1,IFI35,SOCS1 

Activation of IRF by Cytosolic Pattern 

Recognition Receptors 

1.07E+01 1.75E-01 DHX58,IRF9,IRF7,STAT1,IFIH1,STAT2,ISG15,

ADAR,DDX58,ZBP1,IFIT2 

Role of Pattern Recognition Receptors 

in Recognition of Bacteria and Viruses 

7.40E+00 8.73E-02 EIF2AK2,OAS1,IRF7,MYD88,IFIH1,OAS3, 

C1QB,OAS2,CASP1,DDX58,C3AR1 

Antigen Presentation Pathway 7.25E+00 1.89E-01 HLA-A,TAP2,HLA-DRB4,TAP1,PSMB9, 

HLA-F,HLA-DRA 

Retinoic acid Mediated Apoptosis 

Signaling 

5.66E+00 1.13E-01 PARP10,PARP12,ZC3HAV1,TNFSF10,RXRA, 

PARP9,PARP14 

pSS-paraproteinemia 

Interferon Signaling 1.74E+01 3.33E-01 OAS1,IRF9,IFIT1,IFITM1,STAT1,IFIT3,STAT2,

ISG15,MX1,IFI35,IFI6,IFITM3 

Activation of IRF by Cytosolic Pattern 

Recognition Receptors 

1.26E+01 1.75E-01 DHX58,IRF9,IRF7,STAT1,IFIH1,STAT2,ISG15,

ADAR,DDX58,ZBP1,IFIT2 

Role of Pattern Recognition Receptors 

in Recognition of Bacteria and Viruses 

5.78E+00 6.35E-02 EIF2AK2,OAS1,IRF7,IFIH1,OAS3,OAS2, 

CASP1,DDX58 

UVA-Induced MAPK Signaling 5.77E+00 7.95E-02 PARP10,PARP12,ZC3HAV1,STAT1,PARP9, 

PARP14,RRAS 

Retinoic acid Mediated Apoptosis 

Signaling 

5.52E+00 9.68E-02 PARP10,PARP12,ZC3HAV1,TNFSF10,PARP9,

PARP14 

pSS-other cancers 

Interferon Signaling 1.94E+01 3.33E-01 OAS1,IRF9,IFIT1,IFITM1,STAT1,IFIT3,STAT2,

ISG15,MX1,IFI35,IFI6,IFITM3 

Activation of IRF by Cytosolic Pattern 

Recognition Receptors 

1.27E+01 1.59E-01 DHX58,IRF9,IRF7,STAT1,STAT2,ISG15,ADAR,

DDX58,ZBP1,IFIT2 

Retinoic acid Mediated Apoptosis 

Signaling 

5.06E+00 8.06E-02 PARP10,PARP12,TNFSF10,PARP9,PARP14 

Role of Pattern Recognition Receptors 

in Recognition of Bacteria and Viruses 

4.66E+00 4.76E-02 EIF2AK2,OAS1,IRF7,OAS3,OAS2,DDX58 

UVA-Induced MAPK Signaling 4.32E+00 5.68E-02 PARP10,PARP12,STAT1,PARP9,PARP14 

pSS-associated lymphoma 

Interferon Signaling 1.74E+01 4.44E-01 OAS1,IRF9,IFITM1,IFIT3,STAT2,JAK1,IFI6,IF

ITM3,TAP1,IFIT1,STAT1,ISG15,MX1,IFI35, 

SOCS1,PSMB8 

Activation of IRF by Cytosolic Pattern 

Recognition Receptors 

7.25E+00 1.75E-01 DHX58,IRF9,IRF7,STAT1,IFIH1,STAT2,ISG15,

ADAR,DDX58,ZBP1,IFIT2 

Role of Pattern Recognition Receptors 

in Recognition of Bacteria and Viruses 

5.70E+00 1.03E-01 EIF2AK2,OAS1,MYD88,CREB1,PRKCQ,OAS2,

CASP1,DDX58,C3AR1,IRF7,OAS3,IFIH1, 

PRKCH 

mTOR Signaling 5.11E+00 8.02E-02 PRKCQ,EIF4B,EIF3L,EIF3B,RPS3,ULK1, 

RPS6KA5,EIF3D,PDPK1,RPS4X,PRKCH, 

EIF4A3,VEGFB,RRAS,FNBP1 

Huntington's Disease Signaling 4.65E+00 6.99E-02 GNB4,CREB1,PRKCQ,NAPA,CASP1,PSME1, 

PSME2,HSPA6,TAF4,HSPA9,PDPK1,GNG5, 

SIN3A,PRKCH,HDAC1,GLS 
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Figure 6.4 Top 5 canonical pathways analysis in pSS and pSS-paraproteinemia.Grey bars indicate that no prediction of activation or 

inhibition can be made. Yellow bars represent pathways that are enriched and activated, with a significant positive z-score. Blue bars 

represent pathway that are enriched and inhibited, with a significant negative z-score. White bars represent the canonical pathways with a 

z-score near 0. The threshold line in yellow represents the statistically significant p value (0.05). The yellow dots represent the ratio of the 

number of genes that were present in my dataset to the total number of genes in each pathway. A. pSS, B. pSS-paraproteinemia.  

 

A B 
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Figure 6.5 Top 5 canonical pathways analysis in pSS-other cancers and pSS-associated lymphoma created by IPA Grey bars indicate that 

no prediction of activation or inhibition can be made. Yellow bars represent the pathways that are enriched and activated, with a significant 

positive z-score. Blue bars represent the pathways that are enriched and inhibited, with a significant negative z-score. White bars represent 

canonical pathways with a z-score near 0. The threshold line in yellow represents the statistically significant p value (0.05). The yellow dots 

represent the ratio of the number of genes present in my dataset to the total number of genes in each pathway. A. pSS-other cancers, B. pSS-

associated lymphoma. 

B 
A 
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2. The Downstream Effects analysis in pSS subgroups  

The downstream effects analysis including the identification of diseases and functions in 

the pSS subgroups revealed the top diseases and functions associated with each pSS 

subgroup. For the pSS, pSS-paraproteinemia and pSS-other cancers groups, the most 

significant “disease and function” was “infectious diseases,” as shown in Figures 6.6, 6.7 

and 6.8, respectively. The most significant function for the pSS-associated lymphoma was 

“cell death and survival,” as shown in Figure 6.9. Notably, the “infectious diseases” 

function was inhibited in all pSS subgroups. In contrast, the “cell death and survival” 

function was activated in all subgroups, and was the second most significant function in 

both the pSS-paraproteinemia and pSS-other cancers subgroups and the fourth most 

significant function in the pSS groups. “Inflammatory responses” was also increased in all 

4 subgroups. “Haematological system development” and “immune cell trafficking” were 

increased in pSS subgroup, but were much less prominent in the other 3 subgroups. The 

Downstream Effects analysis with the diseases and functions identified in pSS-associated 

lymphoma versus healthy controls that have a significant z-score can be found in 

supplementary table S11.  
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Figure 6.6 Heatmap of the Downstream Effects analysis in the pSS group.  The size of the squares is a graphic representation of the 

statistical significance of the p value (larger square = more significant). The colours of the squares reflect the direction of change. Orange: 

IPA predicts that the biological process or function is increased, with a positive z-score (z-score ≥ 2). Blue: IPA predicts that the biological 

process or function is decreased, with a negative z-score (z-score ≤ -2). Grey: no prediction can be made in the current situation. White: the 

canonical pathways with a z-score near 0. The strength of the prediction is indicated by the intensity of the colour.  
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Figure 6.7 Heatmap of the Downstream Effects analysis in the pSS-paraproteinemia group. The size of the squares is a graphic 

representation of the statistical significance of the p value (larger square = more significant). The colours of the squares reflect the 

direction of change. Orange: IPA predicts that the biological process or function is increased, with a positive z-score (z-score ≥ 2). Blue: 

IPA predicts that the biological process or function is decreased, with a negative z-score (z-score ≤ -2). Grey: no prediction can be made in 

the current situation. White: the canonical pathways with a z-score near 0. The strength of the prediction is indicated by the intensity of the 

colour.  
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Figure 6.8 Heatmap of the Downstream Effects analysis in the pSS-other cancers group. The size of the squares is a graphic 

representation of the statistical significance of the p value (larger square = more significant). The colours of the squares reflect the 

direction of change. Orange: IPA predicts that the biological process or function is increased, with a positive z-score (z-score ≥ 2). Blue: 

IPA predicts that the biological process or function is decreased with a negative z-score (z-score ≤ -2). Grey: no prediction can be made in 

the current situation. White: the canonical pathways with a z-score near 0. The strength of the prediction is indicated by the intensity of the 

colour.  

 

 

 



171 
 

 

Figure 6.9 Heatmap of the Downstream Effects analysis in the pSS-associated lymphoma group. The size of the squares is a graphic 

representation of the statistical significance of the p value (larger square = more significant). The colours of the squares reflect the 

direction of change. Orange: IPA predicts that the biological process or function is increased, with a positive z-score (z-score ≥ 2). Blue: 

IPA predicts that the biological process or function is decreased, with a negative z-score (z-score ≤ -2). Grey: no prediction can be made in 

the current situation. White: the canonical pathways with a z-score near 0. The strength of the prediction is indicated by the intensity of the 

colour.  
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3. Molecular Networks analysis in pSS subgroups: 

Many molecular networks were identified in each pSS subgroup. In the pSS group, IPA 

reported 13 networks. In the pSS-paraproteinemia and pSS-other cancers groups, IPA 

identified 10 and 8 networks respectively, whereas in the pSS-associated lymphoma group, 

25 different networks were identified. In the network analysis, the term “Focus molecules” 

refers to the number of genes in the uploaded DEG list that were also represented in the 

network, while the “Score” is the number of genes in the network (including genes from the 

uploaded DEG list and the genes that were added from the indirect interactions by IPA). I 

first focus on DRAP1, which was the only DEG in common for all pSS subgroups 

compared to HC. In the pSS subgroup, the network that involves DRAP1 includes 

biological functions such as “Antimicrobial Response, Inflammatory Response and Cell 

Signaling” (Score = 27, Focus molecules = 19) with DRAP1 interacted directly with HLA-

DRA in this network. Importantly, In the pSS-paraproteinemia and the pSS-other cancers 

groups, DRAP1 was involved in the network including biological functions of “Cellular 

Development, Cell Death and Survival and Tissue Morphology” (Score = 22, Focus 

molecules = 15) and “Cellular Development, Haematological System Development and 

Function and Haematopoiesis” (Score = 22, Focus molecules = 14) respectively. In both 

networks, DRAP1 interacted directly with MYC. The three networks are shown in Figures 

6.10, 6.11 and 6.12.    
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Figure 6.10 Network analysis of the pSS group. The networks show the interactions of DRAP1.  
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Figure 6.11 Network analysis of the pSS-paraproteinemia group. The networks show the interactions of DRAP1.  
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Figure 6.12 Network analysis of the pSS-other cancers group.  The networks show the interactions of DRAP1.  
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In the comparison of pSS-associated lymphoma versus healthy controls, 25 networks were 

identified. When investigating the networks that involves the genes from the 3-gene 

biosignature in pSS-associated lymphoma, only two of the genes (NUDT14 and MGST3) 

appeared in two networks. There were two other networks involving the two differentially 

expressed genes (DRAP1 and DYNLL1) in untreated pSS-associated lymphoma. NUDT14 

was involved in the “Molecular Transport, RNA Trafficking, RNA Post-Transcriptional 

Modification“ network (Score = 6, Focus molecules =  7). This gene interacted indirectly 

with TCOF1 in the network. TCOF1 had a direct interaction with WT1, which binds to 

TP53 (Figure 6.13). MGST3 was involved in the “Inflammatory Disease, Respiratory 

Disease, Antigen Presentation” network (Score = 15, Focus molecules = 15) and was 

regulated by PPARA (Figure 6.14). DRAP1 was included in the network “Lipid 

Metabolism, Molecular Transport, Nucleic Acid Metabolism” (Score = 43, Focus 

molecules = 30), in which DRAP1 directly interacted with MYC (Figure 6.15). 

Interestingly, the network containing DRAP1 was the most significant in the pSS-

associated lymphoma versus healthy control comparison. DYNLL1 was included in the 

“Infectious Diseases, Antimicrobial Response, Inflammatory Response” network (Score = 

32, Focus molecules = 25), with an indirect interaction with the NF-κB complex (Figure 

6.16). 
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Figure 6.13 The interactions of NUDT14 in the network analysis of pSS-associated lymphoma versus healthy controls. 
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Figure 6.14 The interactions of MGST3 in the network analysis of pSS-associated lymphoma versus healthy controls. 
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Figure 6.15 The interactions of DRAP1 in the network analysis of pSS-associated lymphoma versus healthy controls. 
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Figure 6.16 The interactions of DNYLL1 in the network analysis of pSS-associated lymphoma versus healthy controls. 
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4. Upstream regulators: 

Analysis of the upstream regulators revealed that a total of 401 upstream regulators were 

identified in pSS, 370 in pSS-paraproteinemia and 255 in pSS-other cancers. For pSS-

associated lymphoma 495 regulators were identified. Among these 495 regulators, 87 with 

absolute z-scores ≥ 2 or z-scores ≤ -2  (58 regulators were activated and 29 regulators were 

inhibited). The top 10 activated upstream regulators showed a predominance of IFN 

regulators, as shown in Table 6.3. When investigating the upstream regulators of the genes 

constituting the 3-gene biosignature of pSS-associated lymphoma and the 2 DEGs in 

untreated pSS-associated lymphoma, two of the three upstream regulators identified were 

the same as the upstream regulators identified previously in the “pSS versus pSS-associated 

lymphoma” comparison (chapter 5). These two regulators were NFE2L2 and TCOF1. The 

other upstream regulator was NR3C1. Two regulators involved in the regulation of 

NUDT14 and MGST3 and one upstream regulator controls both MGST3 and DYNLL1 

(Table 6.4). The Upstream regulators analysis identified in pSS-associated lymphoma 

versus healthy controls that have a significant z-score can be found in supplementary data 

S12.  

 

Table 6.3 Top 10 activated upstream regulators in pSS-associated lymphoma versus 

healthy control 

Upstream 

Regulator 

Molecule Type Predicted 

Activation 

State 

Activation 

z-score 

p-value  

IFNL1 cytokine Activated 6.664 9.18E-66 

IFNA2 cytokine Activated 6.539 6.77E-55 

PRL cytokine Activated 6.291 2.15E-54 

IRF7 transcription regulator Activated 5.798 4.99E-40 

IRF3 transcription regulator Activated 5.944 1.46E-38 

Ifnar group Activated 5.728 5.59E-37 

IFNG cytokine Activated 7.442 1.91E-35 

STAT1 transcription regulator Activated 5.378 4.25E-31 

MAVS other Activated 4.516 6.85E-26 

IFNB1 cytokine Activated 5.093 2.56E-25 
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Table 6.4 The upstream regulators of the genes constituting the 3-gene biosignature and 

DEGs in untreated pSS-associated lymphoma.  

Upstream 

regulator 

Molecule  p-value of 

overlap 

Target molecules in uploaded DEG list 

from my experiment 

NR3C1 Ligand-dependent 

nuclear receptor 

3.99E-03 ADCK3,AKTIP,ARRB1,BAG3,BTG1,CCL, 

CXCL10,DYNLL1,FOXO1,GADD45B, 

HSPA6,IFI6,IFIH1,IFIT2,IL15,ISG15, 

MYC,MYD88,OASL,SERTAD2,TNFAIP6 

NFE2L2 Transcription regulator 9.47E-03 ACTG1,ARF1,ATP1A1,CXCL10,DYNLL1, 

EPHB4,GSTO1,HSP90B1,IL1RN,LY6E, 

MGST3,PAFAH1B1,VCP 

TCOF1 Transporter 4.49E-02 AKR1B1,HNRNPDL,NUDT14,QRICH1 

* The genes from the 3-gene biosignature and those that were differentially expressed in 

untreated pSS-associated lymphoma are highlighted in bold  

 

6.4 Discussion 

Microarray gene expression data in pSS subgroups 

The aim of this chapter was to investigate whether the identified whole blood gene 

expression signature of pSS-associated lymphoma was also present in other pSS subgroups. 

The microarray gene expression data from the Discovery cohort revealed DEGs only in the 

comparisons between the pSS subgroups and healthy controls. In contrast, there were no 

DEGs identified in all other comparisons, with the exception of 1 gene (RNA28S5) that was 

differentially expressed between the pSS-associated lymphoma and pSS-other cancers 

groups but this gene was not validated. Importantly, the DEGs identified between the 3 

non-lymphoma pSS subgroups and healthy controls did not include the genes of the 3-gene 

biosignature of pSS-associated lymphoma. These observations indicate that the gene 

expression signature I have identified is unique to pSS-associated lymphoma. On the other 

hand, a dominant interferon signature was apparent in all 4 pSS subgroups. It should 

however be noted that IFN activation is not only well-documented in pSS, but also one of 

the key shared signatures with other inflammatory systematic diseases such as SLE and RA 

(Emamian et al., 2009, Toro-Dominguez et al., 2014). At an individual gene level, the gene 

DRAP1 may be of particular interest, as the differential expression of this gene was 

validated in all 4 pSS subgroups by qRT-PCR. DRAP1 is a transcriptional factor that has a 

role in either inhibition or activation of transcription (Cang and Prelich, 2002, Castaño et 

al., 2000, Creton et al., 2002, White et al., 1994).   
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The Canonical pathways in pSS subgroups 

Consistent with the microarray data, “Interferon signaling pathway” was a canonical 

pathway being identified in all 4 pSS subgroups. Type I interferon signaling activation in 

pSS has already been reported (Yao et al., 2013). Type I interferon signaling is crucial for 

pSS pathogenesis, as knockout mice (B6.Aec1Aec2Ifnar1
-/-

) that lack interferon alpha 

receptor 1 (Ifnar1) exhibit less salivary gland dysfunction (Szczerba et al., 2013). 

Moreover, it has been reported that type I interferon, together with other factors, are 

associated with both pSS and pSS-associated lymphoma (reviewed recently by (Nezos and 

Mavragani, 2015). Interestingly, in the canonical pathway analysis, almost all of the 

canonical pathways identified in pSS versus healthy controls were included in the list of 

canonical pathways identified in pSS-associated lymphoma versus healthy controls, with 

the exception of only 6 canonical pathways. Interestingly, when comparing the canonical 

pathways identified in the comparison between pSS-associated lymphoma and pSS 

(identified in Chapter 5), the top 5 canonical pathways were not included in the top 40 

canonical pathways identified from the comparison between pSS-associated lymphoma and 

healthy controls. These data suggest that the canonical pathways identified in Chapter 5 

comparing pSS and pSS-Lymphoma represent the important and unique pathways for pSS-

associated lymphoma.  

The Downstream Effects and Networks analyses of pSS subgroups  

Another interesting observation from the IPA was the Downstream Effects analysis. The 

pSS-associated lymphoma clearly displayed a different pattern from the other three pSS 

subgroups, which showed a more similar pattern with one other. Furthermore, the relative 

importance of the different “diseases and functions” also differed between the pSS-

associated lymphoma and the other pSS subgroups. Notably, “cell death and survival” was 

the most important downstream effects in the lymphoma group. This is perhaps 

unsurprising given the link between cell death and survival is well known in malignancies 

(Labi and Erlacher, 2015).  

The network analysis from different pSS subgroups revealed the interactions between the 

genes within the uploaded DEGs list from my experiment and with other genes in the 

pathways found in the literature. The networks analysis of pSS-associated lymphoma 
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versus healthy controls showed that two of the genes in the 3-gene biosignature in pSS-

associated lymphoma (with the exception of BMS1) were included in two networks (out of 

a total of 25 networks) identified by IPA. Furthermore, the two genes that were 

differentially expressed in untreated pSS-associated lymphoma were also included in two 

networks. All these genes had interactions with similar genes to those identified and 

discussed in Chapter 5.  

The Upstream regulators analysis in pSS subgroups 

Focusing on the upstream regulators of the genes in the 3-gene biosignature, IPA revealed 

two upstream regulators NFE2L2 and TCOF1. Both regulators have been also identified in 

when using the DEG list from the comparison between pSS and pSS-associated lymphoma 

(see chapter 5). The roles of NFE2L2 and TCOF1, have been discussed in chapter 5 with 

the former regulator linked to antioxidant functions and the latter related to cell 

proliferation. The analysis also identified NR3C1 as an upstream regulator of DYNLL1, 

which was differentially expressed in untreated the pSS-associated lymphoma. NR3C1 

(nuclear receptor subfamily 3 group C member 1), is a glucocorticoid receptor as well as a 

transcriptional factor. NR3C1 has recently been linked to tumorigenesis of adult acute 

lymphoblastic leukaemia (ALL) (Safavi et al., 2015) as well as being identified as a 

candidate gene related to the development of lung adenocarcinoma (Zhao et al., 2015). 

Therefore, further investigation of NR3C1 regulation of DYNLL1 might be important in 

understanding the pathogenesis of pSS-associated lymphoma.  

To summarise, no DEGs were identified in the comparison between the 3 non-lymphoma 

pSS subgroups. In the Downstream Effects analysis, all 3 non-lymphoma pSS subgroups 

exhibited a similar pattern with only minor differences, but were substantially different 

from the pSS-lymphoma group. This supports the notion that distinct biological 

mechanisms are involved in lymphoma development and pSS pathogenesis. Finally, further 

investigation of the role of the transcriptional factor DRAP1 in pSS pathogenesis and 

lymphoma development might be worthwhile.    
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Chapter 7 

Conclusion and future work 

7.1 Conclusion: 

During my PhD study, I have focused on the identification of a whole-blood gene 

expression signature in pSS-associated lymphoma. Several gene expression studies have 

been carried out regarding pSS, focusing on gene-expression profiling in the most affected 

organs (salivary and lacrimal glands). Only one study has used whole-blood samples from 

pSS patients (Emamian et al., 2009). No data was found in the literature, however, 

regarding whole-blood gene expression profiling in pSS-associated lymphoma.  

By identifying a whole-blood gene expression signature in pSS-associated lymphoma, it 

will help to understand the molecular mechanisms underlying the development of 

lymphoma in pSS patients and to discover genetic biomarkers that might help to predict, 

diagnose or monitor lymphoma development in pSS. Such biomarkers will have substantial 

translational potentials in the clinic. 

In contrast to salivary gland biopsy, which is an invasive procedure which can lead to 

permanent paraesthesia, obtaining peripheral blood samples is simple and widely 

acceptable to patients. In addition, collecting blood specimens can be easily repeated at 

regular intervals. One major problem with analysing gene expression using whole blood 

samples is the presence of globin mRNA. This abundance of globin mRNA can interfere 

with gene expression profiling studies. For this reason in my project, I first examined the 

impact of globin mRNA on gene expression study in pSS. This optimisation step is 

important as it has been recommended that globin mRNA depletion should be optimised for 

different experiments and microarray platforms (Dumeaux et al., 2008). In this experiment, 

I used pSS whole-blood samples and not pSS-associated lymphoma samples because 

peripheral blood gene expression data in pSS are available in the literature providing a 

robust set of data for comparison with my work. As described in chapter 3, I used paired 

samples with or without globin mRNA depletion from 12 pSS patients and 12 healthy 

controls. Globin mRNA depletion resulted in an increase in the microarray signal intensity, 

more  transcripts being detected and a higher number of differentially expressed genes 

being identified. The increased number of detectable transcripts indicated that the depletion 
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of globin mRNA may improve the detection of low-abundance genes (Kam et al., 2012). 

However, the overall gene expression profiles for pSS using samples with or without globin 

mRNA depletion were comparable. Important, these gene expression profiles were 

consistent with the published data in the literature. The concordance between the globin-

depleted and non-globin depleted datasets was more noticeable among the up-regulated 

genes, characterised by the presence of an activated type I IFN-inducible gene signature.  

Unlike the clear differences in gene expression profiles between pSS patients and healthy 

controls, I reasoned that the differences in gene expression between pSS and pSS-

associated lymphoma may be more subtle for two reasons.  Firstly, lymphoma development 

is likely to be a multi-step process from pre-lymphoma stage to lymphoma, therefore, gene 

expression changes relevant to lymphoma development may have occurred in some of the 

non-lymphoma pSS patients. Furthermore, the majority of the samples that I will be using 

for the experiment were from pSS patients who have already received treatment for their 

lymphoma, which may also blunted the differences in gene expression profiles between 

lymphoma and non-lymphoma cases. Therefore, I have decided to deplete globin mRNA 

from my samples for my microarray experiments as it may increase the sensitivity of 

detecting differentially expressed genes between the lymphoma and non-lymphoma groups. 

In the discovery experiment, 144 globin mRNA-depleted samples were used. There were 

five subject groups: first, the target group (pSS-associated lymphoma), and second, the 

disease control groups (pSS), in which the comparison will be made to identify the gene 

expression signature for pSS-associated lymphoma. The other three groups included two 

subgroups of pSS (pSS with paraproteinemia, pSS with other cancers) and a healthy control 

group. The inclusion of these groups was to test the “specificity” of the identified gene 

expression signature for pSS-associated lymphoma. Sixty-eight DEGs were identified in 

pSS-associated lymphoma from the microarray data of the Discovery cohort (68-DEGs-

Mi). Due to limited availability of RNA samples, the expression levels of only 61 genes 

were measured with qRT-PCR, which  validated the differential expression of 26 genes 

(26-DEGs-MiPCR). These 26-DEGs-MiPCR was selected as candidate whole-blood gene 

expression signature for pSS-associated lymphoma.   

Due to limited availability of RNA samples, the expression levels of 24 out of the 26 genes 

were measured in a second independent cohort (Validation cohort) using qRT-PCR. The 
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Validation cohort consisted of only pSS patients without lymphoma and pSS-associated 

lymphoma. This cohort has included patients from our collaborators in Sweden and 

Norway as well as the UKPSSR samples. Three genes (BMS1, NUDT14 and MGST3) were 

validated and they were referred to as the ‘3-gene biosignature of pSS-associated 

lymphoma’. 

During the study, I was able to obtain a few samples from the UKPSSR and our 

collaborators in Sweden of pSS patients with lymphoma before treatment was initiated. The 

expression levels of the same 24 genes were also tested for these samples. Six genes 

(NUDT14, DRAP1, DYNLL1, RBP7, SF3A1 and VCP) were differentially expressed 

between the untreated lymphoma and the non-lymphoma pSS groups. The differential 

expression for the latest 3 genes (RBP7, SF3A1 and VCP ) was not confirmed in the 

Validation cohort as the genes have opposite regulation direction, therefore, for my thesis I 

just considered the first 3 genes (NUDT14, DRAP1 and DYNLL1) for discussion. 

Interestingly NUDT14 is also one of the constituent genes of the 3-gene biosignature of 

treated pSS-associated lymphoma. Furthermore, DRAP1 and DYNLL1 were also candidate 

DEGs for treated pSS-associated lymphoma even though differential expression was not 

confirmed in the Validation cohort with p > 0.05 but they have the same regulation 

direction. The summary findings of the DEGs identified in each stage of the experiment are 

shown in Table 7.1. 
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Table 7.1 Summary of the DEGs in pSS-associated lymphoma at all the project’s stages  

Discovery cohort Validation cohort 
6 -DEGs in untreated pSS-

associated lymphoma   68-DEGs-Mi 26-DEGs-MiPCR 
3-gene biosignature of pSS-

associated lymphoma 

Gene symbol 

regulation in  

Gene symbol 

regulation in  
Gene 

symbol 

regulation in  

Gene symbol 

regulation in 

pSS-associated 

lymphoma 

pSS-associated 

lymphoma 

pSS-associated 

lymphoma 

 pSS-associated 

lymphoma 

ATG12 upregulated C10orf32(BORCS7) upregulated MGST3 upregulated DRAP1 upregulated 

C10orf32(BORCS7) upregulated CNPY3 upregulated NUDT14 upregulated DYNLL1 upregulated 

CNPY3 upregulated DRAP1 upregulated BMS1 downregulated NUDT14 upregulated 

DRAP1 upregulated DYNLL1 upregulated     RBP7 upregulated 

DYNLL1 upregulated HNMT upregulated     SF3A1 upregulated 

EHBP1L1 upregulated LGALS1 upregulated     VCP upregulated 

HCFC1R1 upregulated MGST3 upregulated         

HNMT upregulated NUDT14 upregulated         

KCTD12 upregulated OAF upregulated         

LGALS1 upregulated RBP7 upregulated         

MGST3 upregulated SEC61G upregulated         

NUDT14 upregulated SRP14 upregulated         

OAF upregulated UBXN11 upregulated         

PSMC1 upregulated BMS1 downregulated         

RAB37 upregulated BTBD11 downregulated         

RBP7 upregulated CBLL1 downregulated         

RNF7 upregulated CYFIP2 downregulated         

SEC61G upregulated ESYT1 downregulated         

SRP14 upregulated HNRNPUL1 downregulated         
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UBXN11 upregulated LEF1 downregulated         

ALDH9A1 downregulated MAGED1 downregulated         

ATP1A1 downregulated POM121C downregulated         

BAG3 downregulated PRPF8 downregulated         

BCL11B downregulated SF3A1 downregulated         

BMS1 downregulated SGK223 downregulated         

BTBD11 downregulated VCP downregulated         

CBLL1 downregulated             

CD96 downregulated             

CDR2 downregulated             

CDV3 downregulated             

CYFIP2 downregulated             

DDB1 downregulated             

ESYT1 downregulated             

ETS1 downregulated             

FOXJ3 downregulated             

HLA-DRB1 downregulated             

HNRNPA1P10 downregulated             

HNRNPDL downregulated             

HNRNPUL1 downregulated             

HSP90B1 downregulated             

HSPA9 downregulated             

ITK downregulated             

KHDRBS1 downregulated             

LEF1 downregulated             

LRFN3 downregulated             
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LRIG1 downregulated             

MAGED1 downregulated             

MYC downregulated             

NAT10 downregulated             

NCSTN downregulated             

PAF1 downregulated             

POM121C downregulated             

PRKCQ downregulated             

PRPF8 downregulated             

RASGRP1 downregulated             

RBL2 downregulated             

RNA28S5 downregulated             

RPA2 downregulated             

RPL23AP5 downregulated             

RRN3 downregulated             

SDHA downregulated             

SF3A1 downregulated             

SGK223 downregulated             

SMARCA2 downregulated             

SPOCK2 downregulated             

SUN2 downregulated             

VCP downregulated             

WAC downregulated             
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Another approach that I used to identify the gene expression signature for pSS-associated 

lymphoma was to use machine-learning method. This method enable me to predict which 

genes among the 60 DEGs from the qRT-PCR data in the Discovery cohort were most 

important in predicting the group membership of pSS-associated lymphoma. This method 

has yielded two prediction models. Both models identified NUDT14 being the best gene in 

distinguishing pSS patients with or without lymphoma. 

To further explore my microarray data, pathway analysis was performed using the IPA. 

Due to the small number of validated DEGs between the lymphoma and non-lymphoma 

groups (i.e. only 3 genes), I chose to use the 68 DEGs identified from the microarray 

experiment in the Discovery cohort (68-DEGs-Mi) for the pathway analysis. The top 5 

canonical pathways identified were “Aryl Hydrocarbon Receptor (AHR) signalling,” 

“Histamine Degradation,” “Unfolded protein response,” “Neuregulin Signalling,” and “T 

Cell Receptor Signalling.” AHR signalling appeared to have a special and important role in 

the pathology of pSS. Moreover, MGST3 is one of the genes in the AHR signalling 

pathway. Several other canonical pathways also included the genes of the 3-gene 

biosignature of pSS-associated lymphoma. Interestingly, all the pathways that contained 

these 3 genes related to metabolic functions. In addition to canonical pathway analysis, 

downstream effects and gene-gene interactions were explored through the molecular 

networks analysis. Additionally, important upstream regulators of the 3 biosignature genes 

include NFE2L2, PPARA and TOCF1. NFE2L2 and PPARA are regulators of MGST3 and 

also DYNLL1 (which was differentially expressed in untreated pSS-associated lymphoma) 

whereas  TOCF1 regulates NUDT14.  

In conjunction with the gene expression profiling and the pathway analysis of pSS-

associated lymphoma, I have also investigated the gene expression profiling and performed 

pathway analyses of the other comparison groups from the Discovery cohort. There were 

no DEGs among these additional pSS subgroups comparisons (with the exception of one 

DEG (RNA28S5) between the “pSS-associated lymphoma” and “pSS-other cancers” 

groups). DEGs were however identified between each of these pSS subgroups and healthy 

controls. The DEGs between these pSS subgroups and healthy controls were used for 

pathway analyses using IPA. The canonical pathways showed 67 common pathways among 

all the pSS groups. Focusing on pSS-associated lymphoma versus healthy controls, 351 
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canonical pathways were identified, 94.9% of the canonical pathways in this comparison 

were in common with the canonical pathways identified when comparing pSS-associated 

lymphoma with pSS. The “Interferon Signaling pathway” was the top pathway for all pSS 

subgroups comparing with healthy controls.  In addition, the non-lymphoma pSS subgroups 

(i.e. pSS, pSS-paraproteinemia and pSS-other cancers) showed similar patterns of “diseases 

and biological functions” in the downstream analysis, but were different from the “pSS-

associated lymphoma” group. These results further support the biosignature of pSS-

associated lymphoma identified was specific. Finally, DRAP1, a transcriptional factor, was 

found to be differentially expressed in all pSS subgroups compared to healthy controls. In 

addition, the molecular network analysis demonstrates DRAP1 in all pSS subgroups. These 

results might provide a key to a deeper understanding and a direction for future studies to 

investigate the development of lymphoma in pSS patients. 

7.2 Future work: 

In this project, I have identified a whole-blood gene expression signature in pSS-associated 

lymphoma. To explore the clinical and biological significance of my findings, several 

future experiments can be pursued. Below is a list of such experiments: 

 To investigate the presence or absence of the biosignature in different immune cell 

subsets. It will help to gain a better understanding of the role of theses genes in pSS-

associated lymphoma. The expression of these genes could be measured using single-

cell analysis technologies such as Mass Cytometry (CyTOF) or SmartFlare
TM

.  

 The determination of the type of cell responsible for the expression of each gene would 

facilitate knockout or knock-in studies in animal models of pSS. These kinds of studies 

help to understand the exact role of each gene in many biological functions, for instance, 

apoptosis and lymphoproliferation in pSS.    

 Evaluation of the expression of the signature genes in salivary and lacrimal glands of 

pSS patients with or without lymphoma as well as the lymphoma tissues from 

lymphoma patients without pSS.  

 Evaluation of the expression of the signature genes in the whole blood of lymphoma 

patients without pSS. 
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 A longitudinal study to determine the level of expression of the signature genes 

throughout different stages of pSS progression.  

 A microarray experiment using whole blood samples from untreated pSS-associated 

lymphoma and pSS patients without lymphoma may reveal a new set of genes that are 

important for lymphoma development in pSS.  
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Supplementary Tables 

S1 R scripts for microarray data analysis of the Globin mRNA depletion effects on pSS 

gene expression profiling  

source("http://bioconductor.org/biocLite.R") 

biocLite(c("lumi", "gplots", "ggplot2", "limma", "annotate", "lumiHumanAll.db", "limma", "sva", 

"lumiHumanIDMapping")) 

install.packages(c("scales", "reshape2")) 

library(stringr) 

library(sva) 

library(lumi) 

library(gplots) 

library(ggplot2) 

library(annotate) 

library(lumiHumanAll.db) 

library(limma) 

library(scales) 

library(reshape2) 

library(lumiHumanIDMapping) 

##'---------------------------------------------------------------------------------------------------------# 

filename              <- "raw_data_SA.txt" 

raw_data             <- lumiR(filename) 

pheno_table        <- read.table("pheno.txt", 

                                    header=T, 

                                    sep="\t", 

                                    row.names=1, 

                                    stringsAsFactors=F) 

pData(raw_data)  <- pheno_table 

##'---------------------------------------------------------------------------------------------------------# 

det <- melt(detection(raw_data)) 

dtp <- ggplot(data=det, aes(x=Var2, y=value)) + 

           geom_boxplot(outlier.size=0.5, 

          size=0.2) + 

          scale_x_discrete(name="") + 

          scale_y_continuous(name="Amplitude") + 

          theme_bw() + 

          theme(axis.text.x=element_text(angle=90, vjust=0.5, 

          size=6), 

          axis.text.y=element_text(size=6), 

          axis.title.y=element_text(size=6)) 

image_deploy(dtp, "DetectionPval_") 

##'---------------------------------------------------------------------------------------------------------# 

raw_data_det          <- raw_data 

raw_data_det          <- raw_data[, grep("Globin_Clear", pData(raw_data)$class)] 

# raw_data_det       <- raw_data[, grep("Full_RNA",     pData(raw_data)$class)] 

##'---------------------------------------------------------------------------------------------------------# 

vst_data               <- lumiT(raw_data_det, method='vst') 

rsn_data               <- lumiN(vst_data, method = "rsn") 

lumi.Q                 <- lumiQ(rsn_data) 

exprs_data           <- exprs(lumi.Q) 

present_count      <- detectionCall(lumi.Q) 

normalised_data  <- exprs_data[present_count > 0, ] 
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##'-----------------------------------------------------------------------------------------# 

probe_list      <- rownames(normalised_data) 

nuIDs            <- probeID2nuID(probe_list)[, "nuID"] 

symbol          <- getSYMBOL(nuIDs, "lumiHumanAll.db") 

name             <- unlist(lookUp(nuIDs, "lumiHumanAll.db", "GENENAME")) 

anno_df         <- data.frame(ID = nuIDs, probe_list, symbol, name) 

entrez_map   <- data.frame(nuID=as.vector(anno_df$ID), 

                           EntrezID=nuID2EntrezID(as.vector(anno_df$ID), 

                          "lumiHumanIDMapping")) 

##'-----------------------------------------------------------------------------------------# 

design                      <- model.matrix(~0 + factor(pData(raw_data_det)$treatment, 

                                     levels=c("SS", "control"))) 

colnames(design)    <- c("SS", "control") 

num_parameters      <- ncol(design) 

fit                             <- lmFit(normalised_data, design) 

cont_mat                 <- makeContrasts(SS-control, levels=c("SS", "control")) 

fit2                          <- contrasts.fit(fit, contrasts=cont_mat) 

fit2                          <- eBayes(fit2) 

fit2$genes               <- anno_df 

##'-----------------------------------------------------------------------------------------# 

comparisons <- c("SS - control") 

p_cut_off     <- 0.05 

fold_change <- 1.2 

i                    <- 1 

gene_list_unfiltered <- topTable(fit2, 

                                     coef="SS - control", 

                                     number=Inf, 

                                     adjust.method="BH") 

gene_list                  <- topTable(fit2, 

                                    coef="SS - control", 

                                    p.value=p_cut_off, 

                                    lfc=log2(fold_change), 

                                    number=Inf, 

                                    adjust.method="BH") 

##'-----------------------------------------------------------------------------------------# 

pca         <- prcomp(t(normalised_data)) 

d             <- as.data.frame(pca$x) 

d             <- cbind(d, pData(raw_data_det)) 

d$pairs   <- as.factor(d$pairs) 

 

gg1         <- ggplot(d, aes(x=PC1, y=PC2, shape=class)) + 

                   geom_point(size=3) + 

                   geom_text(label=d$pairs, size=4, vjust=1.2, hjust=-0.2) + 

               theme_bw() + 

               theme(axis.title.x = element_text(size=20), 

              axis.title.y = element_text(size=20)) 

 

gg2       <- ggplot(d, aes(x=PC1, y=PC2, shape=class)) + 

                 geom_point(aes(colour=treatment), size=3) + 

                 geom_text(label=d$pairs, size=4, vjust=1.2, hjust=-0.2) + 

                scale_colour_grey(start = 0, end = .9) + 

                theme_bw() + 

                theme(axis.title.x = element_text(size=20), 
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                axis.title.y = element_text(size=20)) 

##'-----------------------------------------------------------------------------------------# 

library(VennDiagram) 

unfiltered_fullrna    <- topTable(fit2, coef="SS - control", number=Inf, 

                                  adjust.method="BH") 

unfiltered_fullrna_in <- unfiltered_fullrna 

unfiltered_globin     <- topTable(fit2, coef="SS - control", number=Inf, 

                                  adjust.method="BH") 

unfiltered_globin_in  <- unfiltered_globin 

 

afc  <- 1.2 

pval <- 0.05 

 

unfiltered_fullrna_in$pass  <- unfiltered_fullrna_in$adj.P.Val < pval & 

abs(unfiltered_fullrna_in$logFC) > log2(afc) 

unfiltered_fullrna_in$class <- "Full_RNA" 

unfiltered_globin_in$pass   <- unfiltered_globin_in$adj.P.Val < pval & 

abs(unfiltered_globin_in$logFC) > log2(afc) 

unfiltered_globin_in$class  <- "Globin_Clear" 

df                          <- rbind(unfiltered_fullrna_in, unfiltered_globin_in) 

 

ggplot(df, aes(x=logFC, y=-log(adj.P.Val, 10))) + 

  geom_point(aes(colour=pass, shape=pass), show_guide=F) + 

  scale_colour_manual(values=c(alpha('grey', 0.5), 'black')) + 

  geom_hline(yintercept=-log(pval, 10), colour="black", linetype=2) + 

  geom_vline(xintercept=-log2(afc), colour="black", linetype=2) + 

  geom_vline(xintercept=log2(afc), colour="black", linetype=2) + 

  facet_grid(. ~ class) + 

  theme_bw() 

 

ggplot(unfiltered_fullrna_in, aes(x=logFC, y=-log(adj.P.Val, 10))) + 

  geom_point(aes(colour=pass, shape=pass), show_guide=F) + 

  scale_colour_manual(values=c(alpha('grey', 0.5), 'black')) + 

  geom_hline(yintercept=-log(pval, 10), colour="black", linetype=2) + 

  geom_vline(xintercept=-log2(afc), colour="black", linetype=2) + 

  geom_vline(xintercept=log2(afc), colour="black", linetype=2) + 

  ggtitle("Full RNA Differential Expression: PSS - Control") + 

  theme_bw() 

 

ggplot(unfiltered_globin_in, aes(x=logFC, y=-log(adj.P.Val, 10))) + 

  geom_point(aes(colour=pass, shape=pass), show_guide=F) + 

  scale_colour_manual(values=c(alpha('grey', 0.5), 'black')) + 

  geom_hline(yintercept=-log(pval, 10), colour="black", linetype=2) + 

  geom_vline(xintercept=-log2(afc), colour="black", linetype=2) + 

  geom_vline(xintercept=log2(afc), colour="black", linetype=2) + 

  ggtitle("Globin Clear Differential Expression: PSS - Control") + 

  theme_bw() 

##’---------------------------------------------------------------------------------------------------------# 

 

S2 R scripts for microarray data analysis of the whole blood gene expression signature in 

pSS-associated lymphoma 
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filename              <- "Fai_Sample_Probe_Profile.txt" 

raw_data              <- lumiR(filename) 

##'Gender Discrepancies 

raw_data              <- raw_data[, -c(2, 6)] 

pheno_table           <- read.table("sample_info.txt", 

                                    header=T, 

                                    sep="\t", 

                                    stringsAsFactors=F) 

rownames(pheno_table) <- pheno_table$Sentrix_ID 

pData(raw_data)       <- pheno_table 

##'---------------------------------------------------------------------------------------------------------# 

 

##'"IPS-004-1", - Detected Outlier 

removal     <- c("IPS-004-1", "IPS-002-1", "NCL-130-0", "SWI-084-0", "LEE-060-0", "NCL-113-

0", "TOR-006-1") 

removal_pos <- match(rownames(pData(raw_data)[pData(raw_data)$SampleID %in% removal,]), 

colnames(raw_data)) 

raw_data_in <- raw_data[,-removal_pos] 

 

##'RIN SCORE EXCLUSION 

##'Arrays Less than 7 

Seven <- c("LEE-060-0","BIR-033-1","NCL-097-0","NCL-007-1","TOR-006-1","BIR-039-

1","LEE-034-1", 

           "LEE-062-1","TOR-007-0","NOT-036-1","FIF-027-1","BIR-011-1","SWI-006-1","BIR-

030-1", 

           "IPS-002-1","DER-019-1","FIF-014-1","WIN-016-1","LEE-016-1","LEE-012-1","GLA-

019-1", 

           "BIR-041-1","SWI-031-1","NCL-053-1") 

removal_pos <- match(rownames(pData(raw_data_in)[pData(raw_data_in)$SampleID %in% 

Seven,]), colnames(raw_data_in)) 

raw_data_in <- raw_data_in[,-removal_pos] 

 

##'Arrays Less than 7 with lymphoma 

SevenL <- c("LEE-060-0", "BIR-033-1", "NCL-097-0", "NCL-007-1", "TOR-006-1", "BIR-039-1", 

"LEE-034-1", 

            "LEE-062-1", "TOR-007-0", "BIR-011-1", "SWI-006-1", "BIR-030-1", 

            "IPS-002-1", "DER-019-1", "FIF-014-1", "WIN-016-1", "LEE-016-1", "LEE-012-1", 

"GLA-019-1", 

            "BIR-041-1", "SWI-031-1", "NCL-053-1") 

removal_pos <- match(rownames(pData(raw_data_in)[pData(raw_data_in)$SampleID %in% 

SevenL,]), colnames(raw_data_in)) 

raw_data_in <- raw_data_in[,-removal_pos] 

 

 

##'Arrays Less than 5 

Five <- c("NCL-097-0", "BIR-011-1", "SWI-006-1", "BIR-041-1", "SWI-031-1", "NCL-053-1") 

removal_pos <- match(rownames(pData(raw_data_in)[pData(raw_data_in)$SampleID %in% 

Five,]), colnames(raw_data_in)) 

raw_data_in <- raw_data_in[,-removal_pos] 

 

##'BATCH EXCLUSION 

raw_data_in <- raw_data_in[,-grep(1, pData(raw_data_in)$Batch)] 

pData(raw_data_in)$Batch <- pData(raw_data_in)$Batch - 1 
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##'---------------------------------------------------------------------------------------------------------# 

 

det <- melt(detection(raw_data)) 

dtp <- ggplot(data=det, aes(x=Var2, y=value)) + 

  geom_boxplot(outlier.size=0.5, 

               size=0.2) + 

  scale_x_discrete(name="") + 

  scale_y_continuous(name="Amplitude") + 

  theme_bw() + 

  theme(axis.text.x=element_text(angle=90, 

                                 vjust=0.5, 

                                 size=6), 

        axis.text.y=element_text(size=6), 

        axis.title.y=element_text(size=6)) 

 

image_deploy(dtp, "DetectionPval_") 

##'---------------------------------------------------------------------------------------------------------# 

vst_data         <- lumiT(raw_data_in, method='vst') 

rsn_data         <- lumiN(vst_data, method = "rsn") 

lumi.Q           <- lumiQ(rsn_data) 

 

##'Detection Threshold Filtering 

exprs_data       <- exprs(lumi.Q) 

present_count    <- detectionCall(lumi.Q) 

normalised_data  <- exprs_data[present_count > 0, ] 

##'---------------------------------------------------------------------------------------------------------# 

batches             <- pData(raw_data_in)$Batch 

pheno               <- data.frame(sample=c(1:ncol(normalised_data)), 

                                  outcome=as.factor(pData(lumi.Q)$Group), 

                                  batch=batches) 

rownames(pheno)     <- colnames(normalised_data) 

batch               <- pheno$batch 

mod                 <- model.matrix(~as.factor(outcome), data = pheno) 

batchCorrected_data <- ComBat(dat=normalised_data, 

                              batch=batch, 

                              mod=mod, 

                              par.prior=T, 

                              prior.plots=F) 

##'---------------------------------------------------------------------------------------------------------# 

probe_list       <- rownames(batchCorrected_data) 

nuIDs            <- probeID2nuID(probe_list)[, "nuID"] 

symbol           <- getSYMBOL(nuIDs, "lumiHumanAll.db") 

name             <- unlist(lookUp(nuIDs, "lumiHumanAll.db", "GENENAME")) 

anno_df          <- data.frame(ID = nuIDs, probe_list, symbol, name) 

entrez_map       <- data.frame(nuID=as.vector(anno_df$ID), 

                               EntrezID=nuID2EntrezID(as.vector(anno_df$ID), 

                                                      "lumiHumanIDMapping")) 

##'---------------------------------------------------------------------------------------------------------# 

 

 

 

 

treatments          <- unique(pData(raw_data_in)$Group) 
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treatment_arrays    <- pData(raw_data_in)$Group 

batchCorrected_data <- data.matrix(batchCorrected_data) 

design              <- model.matrix(~0 + factor(treatment_arrays, levels = treatments)) 

colnames(design)    <- treatments 

num_parameters      <- ncol(design) 

fit                 <- lmFit(batchCorrected_data, design) 

 

cont_mat            <- makeContrasts(SS-Control, 

                                     Lymphoma-Control, 

                                     Cancer-Control, 

                                     PreMalignancy-Control, 

                                     SS-Lymphoma, 

                                     SS-Cancer, 

                                     SS-PreMalignancy, 

                                     Lymphoma-Cancer, 

                                     Lymphoma-PreMalignancy, 

                                     Cancer-PreMalignancy, 

                                     levels=treatments) 

fit2                <- contrasts.fit(fit, contrasts=cont_mat) 

fit2                <- eBayes(fit2) 

##'-----------------------------------------------------------------------------------------# 

comparisons <- c("SS - Control", "Lymphoma - Control", "Cancer - Control", 

                 "PreMalignancy - Control", "SS - Lymphoma", "SS - Cancer", 

                 "SS - PreMalignancy", "Lymphoma - Cancer", "Lymphoma - PreMalignancy", 

                 "Cancer - PreMalignancy") 

p_cut_off   <- 0.05 

fold_change <- 1.2 

i           <- 5 

 

gene_list_unfiltered <- topTable(fit2, 

                                 coef=comparisons[i], 

                                 number=Inf, 

                                 adjust.method="BH") 

 

gene_list            <- topTable(fit2, 

                                 coef=comparisons[i], 

                                 p.value=p_cut_off, 

                                 lfc=log2(fold_change), 

                                 number=Inf, 

                                 adjust.method="BH") 

##'-----------------------------------------------------------------------------------------# 
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S3 The qRT-PCR data for the remaining validated genes tested in the validation cohort. 

The table includes p values, fold changes and regulation in pSS-associated lymphoma. Fc 

was calculated according to the housekeeping gene normalisation   

Gene 

symbol 
Gene name p value 

Fold change 

and regulation  

CNPY3 Canopy FGF signaling regulator 3 0.163 1.09 ↓ 

CYFIP2 Cytoplasmic FMR1 interacting protein 2  0.1949 1.11 ↑ 

ESYT1 Extended synaptotagmin-like protein 1 0.1098 1.26 ↑ 

HNRNPUL1 Heterogeneous nuclear ribonucleoprotein U-like 1  0.3141 1.07 ↑ 

MAGED1 Melanoma antigen family D, 1 0.0617 1.30 ↑ 

POM121C POM121 transmembrane nucleoporin C 0.2661 1.00 ↑ 

PRPF8 Pre-mRNA processing factor 8 0.0515 1.19 ↑ 

RBP7 Retinol binding protein 7, cellular 0.6217 1.24 ↓ 

SEC61G Sec61 gamma subunit  0.0248 1.31 ↓ 

SF3A1 Splicing factor 3a, subunit 1, 120kDa 0.0005 1.39 ↑ 

SRP14 
Signal recognition particle 14kDa (homologous Alu RNA binding 

protein) 
0.0185 1.35 ↓ 

UBXN11 UBX domain protein 11 0.4145 1.10 ↓ 

VCP Valosin containing protein 0.037 1.20 ↑ 
 

S4 The qRT-PCR data for the remaining validated genes tested in the untreated pSS-

associated lymphoma. The table includes p values, fold changes and regulation in pSS-

associated lymphoma. Fc was calculated according to the housekeeping gene 

normalisation    

Gene 

symbol 
Gene name p value 

Fold change 

and regulation  

BMS1 BMS1 ribosome biogenesis factor  0.1695 1.17 ↓ 

C10orf32 Chromosome 10 open reading frame 32 0.8647 1.06 ↓ 

CBLL1 Cbl proto-oncogene-like 1, E3 ubiquitin protein ligase 0.0884 1.41 ↑ 

CNPY3 Canopy FGF signaling regulator 3 0.9406 1.10 ↓ 

CYFIP2 Cytoplasmic FMR1 interacting protein 2  0.5159 1.08 ↑ 

ESYT1 Extended synaptotagmin-like protein 1 0.5652 1.13 ↑ 

HNRNPUL1 Heterogeneous nuclear ribonucleoprotein U-like 1  0.2773 1.08 ↑ 

LEF1 Lymphoid enhancer-binding factor 1 0.1359 1.21 ↓ 

LGALS1 Lectin, galactoside-binding, soluble, 1  0.101 1.30 ↑ 

MAGED1 Melanoma antigen family D, 1 0.6701 1.03 ↑ 

MGST3 Microsomal glutathione S-transferase 3 0.0526 1.43 ↑ 

OAF OAF homolog (Drosophila) 0.0864 1.31 ↑ 

POM121C POM121 transmembrane nucleoporin C 0.2371 1.31 ↑ 

PRPF8 Pre-mRNA processing factor 8 0.9067 1.12 ↓ 

SEC61G Sec61 gamma subunit  0.628 1.05 ↑ 

SGK223 Homolog of rat pragma of Rnd2 0.5298 1.32 ↑ 

SRP14 
Signal recognition particle 14kDa (homologous Alu RNA binding 

protein) 
1.0000 1.22 ↑ 

UBXN11 UBX domain protein 11 0.8899 1.08 ↓ 
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S5 The canonical pathways in pSS-associated lymphoma. The table represents the canonical pathways in pSS vs pSS-associated lymphoma  

Ingenuity Canonical Pathways -log(p-value) Ratio z-score Overlapped 

downregulated 

genes 

Overlapped 

upregulated 

genes 

Molecules 

Aryl Hydrocarbon Receptor Signaling 3.99E+00 3.70E-02 NaN 1/135 (1%) 4/135 (3%) MYC,ALDH9A1,RBL2,HSP90B1,MGST3 

Histamine Degradation 3.12E+00 1.67E-01 NaN 1/12 (8%) 1/12 (8%) HNMT,ALDH9A1 

Unfolded protein response 3.09E+00 5.66E-02 NaN 0/53 (0%) 3/53 (6%) HSPA9,HSP90B1,VCP 

Neuregulin Signaling 2.50E+00 3.53E-02 NaN 0/85 (0%) 3/85 (4%) MYC,HSP90B1,PRKCQ 

T Cell Receptor Signaling 2.38E+00 3.19E-02 NaN 0/94 (0%) 3/94 (3%) PRKCQ,ITK,RASGRP1 

Telomerase Signaling 2.35E+00 3.12E-02 NaN 0/96 (0%) 3/96 (3%) MYC,HSP90B1,ETS1 

iCOS-iCOSL Signaling in T Helper Cells 2.33E+00 3.06E-02 NaN 0/98 (0%) 3/98 (3%) HLA-DRB1,PRKCQ,ITK 

CD28 Signaling in T Helper Cells 2.21E+00 2.78E-02 NaN 0/108 (0%) 3/108 (3%) HLA-DRB1,PRKCQ,ITK 

Molecular Mechanisms of Cancer 2.10E+00 1.39E-02 NaN 0/359 (0%) 5/359 (1%) NCSTN,MYC,PRKCQ,LEF1,RASGRP1 

Thyroid Cancer Signaling 2.10E+00 5.13E-02 NaN 0/39 (0%) 2/39 (5%) MYC,LEF1 

L-carnitine Biosynthesis 1.99E+00 3.33E-01 NaN 0/3 (0%) 1/3 (33%) ALDH9A1 

eNOS Signaling 1.94E+00 2.22E-02 NaN 0/135 (0%) 3/135 (2%) HSPA9,HSP90B1,PRKCQ 

Xenobiotic Metabolism Signaling 1.93E+00 1.56E-02 NaN 1/256 (0%) 3/256 (1%) ALDH9A1,HSP90B1,PRKCQ,MGST3 

Retinoate Biosynthesis II 1.86E+00 2.50E-01 NaN 1/4 (25%) 0/4 (0%) RBP7 

Endometrial Cancer Signaling 1.86E+00 3.85E-02 NaN 0/52 (0%) 2/52 (4%) MYC,LEF1 

Calcium-induced T Lymphocyte Apoptosis 1.84E+00 3.77E-02 NaN 0/53 (0%) 2/53 (4%) HLA-DRB1,PRKCQ 

Aldosterone Signaling in Epithelial Cells 1.81E+00 1.99E-02 NaN 0/151 (0%) 3/151 (2%) HSPA9,HSP90B1,PRKCQ 

Thrombopoietin Signaling 1.81E+00 3.64E-02 NaN 0/55 (0%) 2/55 (4%) MYC,PRKCQ 

ErbB4 Signaling 1.77E+00 3.45E-02 NaN 0/58 (0%) 2/58 (3%) NCSTN,PRKCQ 

Role of NFAT in Regulation of the Immune 

Response 

1.75E+00 1.87E-02 NaN 0/160 (0%) 3/160 (2%) HLA-DRB1,PRKCQ,ITK 

Cell Cycle: G1/S Checkpoint Regulation 1.70E+00 3.17E-02 NaN 0/63 (0%) 2/63 (3%) MYC,RBL2 

NRF2-mediated Oxidative Stress Response 1.63E+00 1.69E-02 NaN 1/177 (1%) 2/177 (1%) PRKCQ,VCP,MGST3 

Regulation of the Epithelial-Mesenchymal 

Transition Pathway 

1.61E+00 1.66E-02 NaN 0/181 (0%) 3/181 (2%) NCSTN,LEF1,ETS1 

Prolactin Signaling 1.58E+00 2.74E-02 NaN 0/73 (0%) 2/73 (3%) MYC,PRKCQ 

RAR Activation 1.57E+00 1.60E-02 NaN 1/187 (1%) 2/187 (1%) RBP7,PRKCQ,SMARCA2 

Acute Myeloid Leukemia Signaling 1.54E+00 2.60E-02 NaN 0/77 (0%) 2/77 (3%) MYC,LEF1 

Leukocyte Extravasation Signaling 1.54E+00 1.55E-02 NaN 0/193 (0%) 3/193 (2%) PRKCQ,ITK,RASGRP1 

Role of BRCA1 in DNA Damage Response 1.53E+00 2.56E-02 NaN 0/78 (0%) 2/78 (3%) RBL2,SMARCA2 

Prostate Cancer Signaling 1.51E+00 2.50E-02 NaN 0/80 (0%) 2/80 (3%) HSP90B1,LEF1 
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Factors Promoting Cardiogenesis in 

Vertebrates 

1.42E+00 2.25E-02 NaN 0/89 (0%) 2/89 (2%) PRKCQ,LEF1 

Chronic Myeloid Leukemia Signaling 1.39E+00 2.17E-02 NaN 0/92 (0%) 2/92 (2%) MYC,RBL2 

Assembly of RNA Polymerase III Complex 1.39E+00 8.33E-02 NaN 0/12 (0%) 1/12 (8%) SF3A1 

Glioma Signaling 1.38E+00 2.13E-02 NaN 0/94 (0%) 2/94 (2%) RBL2,PRKCQ 

Mouse Embryonic Stem Cell Pluripotency 1.38E+00 2.13E-02 NaN 0/94 (0%) 2/94 (2%) MYC,LEF1 

Nitric Oxide Signaling in the Cardiovascular 

System 

1.37E+00 2.11E-02 NaN 0/95 (0%) 2/95 (2%) HSP90B1,PRKCQ 

Huntington's Disease Signaling 1.36E+00 1.33E-02 NaN 0/226 (0%) 3/226 (1%) HSPA9,PRKCQ,SDHA 

HGF Signaling 1.30E+00 1.92E-02 NaN 0/104 (0%) 2/104 (2%) PRKCQ,ETS1 

The Visual Cycle 1.30E+00 6.67E-02 NaN 1/15 (7%) 0/15 (0%) RBP7 

Fatty Acid خ±-oxidation 1.30E+00 6.67E-02 NaN 0/15 (0%) 1/15 (7%) ALDH9A1 

Oxidative Ethanol Degradation III 1.30E+00 6.67E-02 NaN 0/15 (0%) 1/15 (7%) ALDH9A1 

PKCخ¸ Signaling in T Lymphocytes 1.27E+00 1.85E-02 NaN 0/108 (0%) 2/108 (2%) HLA-DRB1,PRKCQ 

Putrescine Degradation III 1.27E+00 6.25E-02 NaN 0/16 (0%) 1/16 (6%) ALDH9A1 

Tryptophan Degradation X (Mammalian, via 

Tryptamine) 

1.24E+00 5.88E-02 NaN 0/17 (0%) 1/17 (6%) ALDH9A1 

Protein Ubiquitination Pathway 1.24E+00 1.18E-02 NaN 1/254 (0%) 2/254 (1%) HSPA9,HSP90B1,PSMC1 

Glutathione Redox Reactions I 1.22E+00 5.56E-02 NaN 1/18 (6%) 0/18 (0%) MGST3 

P2Y Purigenic Receptor Signaling Pathway 1.20E+00 1.69E-02 NaN 0/118 (0%) 2/118 (2%) MYC,PRKCQ 

phagosome maturation 1.20E+00 1.69E-02 NaN 1/118 (1%) 1/118 (1%) HLA-DRB1,DYNLL1 

Ethanol Degradation IV 1.20E+00 5.26E-02 NaN 0/19 (0%) 1/19 (5%) ALDH9A1 

D-myo-inositol (1,4,5,6)-Tetrakisphosphate 

Biosynthesis 

1.18E+00 1.64E-02 NaN 1/122 (1%) 1/122 (1%) ATP1A1,NUDT14 

D-myo-inositol (3,4,5,6)-tetrakisphosphate 

Biosynthesis 

1.18E+00 1.64E-02 NaN 1/122 (1%) 1/122 (1%) ATP1A1,NUDT14 

Glucocorticoid Receptor Signaling 1.18E+00 1.11E-02 NaN 0/270 (0%) 3/270 (1%) HSPA9,HSP90B1,SMARCA2 

Cdc42 Signaling 1.17E+00 1.63E-02 NaN 0/123 (0%) 2/123 (2%) HLA-DRB1,ITK 

Dopamine Degradation 1.15E+00 4.76E-02 NaN 0/21 (0%) 1/21 (5%) ALDH9A1 

Endoplasmic Reticulum Stress Pathway 1.15E+00 4.76E-02 NaN 0/21 (0%) 1/21 (5%) HSP90B1 

Polyamine Regulation in Colon Cancer 1.13E+00 4.55E-02 NaN 0/22 (0%) 1/22 (5%) MYC 

Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis 

1.12E+00 1.06E-02 NaN 0/284 (0%) 3/284 (1%) MYC,PRKCQ,LEF1 

B Cell Development 1.12E+00 4.35E-02 NaN 0/23 (0%) 1/23 (4%) HLA-DRB1 

TCA Cycle II (Eukaryotic) 1.12E+00 4.35E-02 NaN 0/23 (0%) 1/23 (4%) SDHA 

Estrogen-mediated S-phase Entry 1.10E+00 4.17E-02 NaN 0/24 (0%) 1/24 (4%) MYC 
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Glutathione-mediated Detoxification 1.10E+00 4.17E-02 NaN 1/24 (4%) 0/24 (0%) MGST3 

D-myo-inositol-5-phosphate Metabolism 1.08E+00 1.45E-02 NaN 1/138 (1%) 1/138 (1%) ATP1A1,NUDT14 

3-phosphoinositide Degradation 1.08E+00 1.44E-02 NaN 1/139 (1%) 1/139 (1%) ATP1A1,NUDT14 

Cell Cycle Control of Chromosomal 

Replication 

1.05E+00 3.70E-02 NaN 0/27 (0%) 1/27 (4%) RPA2 

Glioblastoma Multiforme Signaling 1.05E+00 1.38E-02 NaN 0/145 (0%) 2/145 (1%) MYC,LEF1 

3-phosphoinositide Biosynthesis 1.03E+00 1.34E-02 NaN 1/149 (1%) 1/149 (1%) ATP1A1,NUDT14 

Tec Kinase Signaling 1.02E+00 1.33E-02 NaN 0/150 (0%) 2/150 (1%) PRKCQ,ITK 

Role of p14/p19ARF in Tumor Suppression 1.02E+00 3.45E-02 NaN 0/29 (0%) 1/29 (3%) SF3A1 

Mitochondrial Dysfunction 1.01E+00 1.32E-02 NaN 0/152 (0%) 2/152 (1%) NCSTN,SDHA 

Retinoate Biosynthesis I 1.01E+00 3.33E-02 NaN 1/30 (3%) 0/30 (0%) RBP7 

Retinol Biosynthesis 1.01E+00 3.33E-02 NaN 1/30 (3%) 0/30 (0%) RBP7 

Ethanol Degradation II 1.01E+00 3.33E-02 NaN 0/30 (0%) 1/30 (3%) ALDH9A1 

Noradrenaline and Adrenaline Degradation 9.79E-01 3.12E-02 NaN 0/32 (0%) 1/32 (3%) ALDH9A1 

Autoimmune Thyroid Disease Signaling 9.54E-01 2.94E-02 NaN 0/34 (0%) 1/34 (3%) HLA-DRB1 

Wnt/ ²خ -catenin Signaling 9.49E-01 1.20E-02 NaN 0/166 (0%) 2/166 (1%) MYC,LEF1 

Endothelin-1 Signaling 9.45E-01 1.20E-02 NaN 0/167 (0%) 2/167 (1%) MYC,PRKCQ 

B Cell Receptor Signaling 9.45E-01 1.20E-02 NaN 0/167 (0%) 2/167 (1%) PRKCQ,ETS1 

Nucleotide Excision Repair Pathway 9.42E-01 2.86E-02 NaN 0/35 (0%) 1/35 (3%) RPA2 

Antigen Presentation Pathway 9.31E-01 2.78E-02 NaN 0/36 (0%) 1/36 (3%) HLA-DRB1 

autophagy 9.31E-01 2.78E-02 NaN 1/36 (3%) 0/36 (0%) ATG12 

Notch Signaling 9.20E-01 2.70E-02 NaN 0/37 (0%) 1/37 (3%) NCSTN 

Allograft Rejection Signaling 8.98E-01 2.56E-02 NaN 0/39 (0%) 1/39 (3%) HLA-DRB1 

Graft-versus-Host Disease Signaling 8.98E-01 2.56E-02 NaN 0/39 (0%) 1/39 (3%) HLA-DRB1 

ILK Signaling 8.88E-01 1.10E-02 NaN 0/181 (0%) 2/181 (1%) MYC,LEF1 

Mechanisms of Viral Exit from Host Cells 8.78E-01 2.44E-02 NaN 0/41 (0%) 1/41 (2%) PRKCQ 

ERK/MAPK Signaling 8.73E-01 1.08E-02 NaN 0/185 (0%) 2/185 (1%) MYC,ETS1 

Superpathway of Inositol Phosphate 

Compounds 

8.69E-01 1.08E-02 NaN 1/186 (1%) 1/186 (1%) ATP1A1,NUDT14 

UVC-Induced MAPK Signaling 8.68E-01 2.38E-02 NaN 0/42 (0%) 1/42 (2%) PRKCQ 

Nur77 Signaling in T Lymphocytes 8.32E-01 2.17E-02 NaN 0/46 (0%) 1/46 (2%) HLA-DRB1 

nNOS Signaling in Neurons 8.32E-01 2.17E-02 NaN 0/46 (0%) 1/46 (2%) PRKCQ 

OX40 Signaling Pathway 8.15E-01 2.08E-02 NaN 0/48 (0%) 1/48 (2%) HLA-DRB1 

Amyloid Processing 7.98E-01 2.00E-02 NaN 0/50 (0%) 1/50 (2%) NCSTN 

LPS/IL-1 Mediated Inhibition of RXR 

Function 

7.92E-01 9.62E-03 NaN 1/208 (0%) 1/208 (0%) ALDH9A1,MGST3 
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UVB-Induced MAPK Signaling 7.75E-01 1.89E-02 NaN 0/53 (0%) 1/53 (2%) PRKCQ 

Serotonin Degradation 7.61E-01 1.82E-02 NaN 0/55 (0%) 1/55 (2%) ALDH9A1 

ErbB2-ErbB3 Signaling 7.54E-01 1.79E-02 NaN 0/56 (0%) 1/56 (2%) MYC 

Phospholipase C Signaling 7.51E-01 9.05E-03 NaN 0/221 (0%) 2/221 (1%) PRKCQ,ITK 

Myc Mediated Apoptosis Signaling 7.40E-01 1.72E-02 NaN 0/58 (0%) 1/58 (2%) MYC 

Colorectal Cancer Metastasis Signaling 7.22E-01 8.66E-03 NaN 0/231 (0%) 2/231 (1%) MYC,LEF1 

CCR5 Signaling in Macrophages 7.14E-01 1.61E-02 NaN 0/62 (0%) 1/62 (2%) PRKCQ 

T Helper Cell Differentiation 7.14E-01 1.61E-02 NaN 0/62 (0%) 1/62 (2%) HLA-DRB1 

ERK5 Signaling 7.14E-01 1.61E-02 NaN 0/62 (0%) 1/62 (2%) MYC 

GM-CSF Signaling 7.14E-01 1.61E-02 NaN 0/62 (0%) 1/62 (2%) ETS1 

Mitotic Roles of Polo-Like Kinase 7.07E-01 1.59E-02 NaN 0/63 (0%) 1/63 (2%) HSP90B1 

Pyridoxal 5'-phosphate Salvage Pathway 7.07E-01 1.59E-02 NaN 0/63 (0%) 1/63 (2%) PRKCQ 

Hypoxia Signaling in the Cardiovascular 

System 

7.07E-01 1.59E-02 NaN 0/63 (0%) 1/63 (2%) HSP90B1 

Remodeling of Epithelial Adherens Junctions 6.89E-01 1.52E-02 NaN 0/66 (0%) 1/66 (2%) CBLL1 

GABA Receptor Signaling 6.89E-01 1.52E-02 NaN 0/66 (0%) 1/66 (2%) ALDH9A1 

Erythropoietin Signaling 6.83E-01 1.49E-02 NaN 0/67 (0%) 1/67 (1%) PRKCQ 

Melatonin Signaling 6.78E-01 1.47E-02 NaN 0/68 (0%) 1/68 (1%) PRKCQ 

Macropinocytosis Signaling 6.78E-01 1.47E-02 NaN 0/68 (0%) 1/68 (1%) PRKCQ 

Growth Hormone Signaling 6.72E-01 1.45E-02 NaN 0/69 (0%) 1/69 (1%) PRKCQ 

Renal Cell Carcinoma Signaling 6.72E-01 1.45E-02 NaN 0/69 (0%) 1/69 (1%) ETS1 

Basal Cell Carcinoma Signaling 6.72E-01 1.45E-02 NaN 0/69 (0%) 1/69 (1%) LEF1 

IL-3 Signaling 6.61E-01 1.41E-02 NaN 0/71 (0%) 1/71 (1%) PRKCQ 

Small Cell Lung Cancer Signaling 6.61E-01 1.41E-02 NaN 0/71 (0%) 1/71 (1%) MYC 

IL-4 Signaling 6.61E-01 1.41E-02 NaN 0/71 (0%) 1/71 (1%) HLA-DRB1 

Role of Wnt/GSK-3 ²خ  Signaling in the 

Pathogenesis of Influenza 

6.56E-01 1.39E-02 NaN 0/72 (0%) 1/72 (1%) LEF1 

LPS-stimulated MAPK Signaling 6.51E-01 1.37E-02 NaN 0/73 (0%) 1/73 (1%) PRKCQ 

NF-خ؛B Activation by Viruses 6.51E-01 1.37E-02 NaN 0/73 (0%) 1/73 (1%) PRKCQ 

STAT3 Pathway 6.51E-01 1.37E-02 NaN 0/73 (0%) 1/73 (1%) MYC 

Communication between Innate and Adaptive 

Immune Cells 

6.45E-01 1.35E-02 NaN 0/74 (0%) 1/74 (1%) HLA-DRB1 

BMP signaling pathway 6.45E-01 1.35E-02 NaN 0/74 (0%) 1/74 (1%) MAGED1 

VEGF Family Ligand-Receptor Interactions 6.40E-01 1.33E-02 NaN 0/75 (0%) 1/75 (1%) PRKCQ 

HER-2 Signaling in Breast Cancer 6.35E-01 1.32E-02 NaN 0/76 (0%) 1/76 (1%) PRKCQ 

Altered T Cell and B Cell Signaling in 6.35E-01 1.32E-02 NaN 0/76 (0%) 1/76 (1%) HLA-DRB1 
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Rheumatoid Arthritis 

VDR/RXR Activation 6.30E-01 1.30E-02 NaN 0/77 (0%) 1/77 (1%) PRKCQ 

PDGF Signaling 6.30E-01 1.30E-02 NaN 0/77 (0%) 1/77 (1%) MYC 

GPCR-Mediated Nutrient Sensing in 

Enteroendocrine Cells 

6.02E-01 1.20E-02 NaN 0/83 (0%) 1/83 (1%) PRKCQ 

 Adrenergic Signaling 5.93E-01 1.18E-02 NaN 0/85 (0%) 1/85 (1%) PRKCQ-±خ

ErbB Signaling 5.93E-01 1.18E-02 NaN 0/85 (0%) 1/85 (1%) PRKCQ 

Bladder Cancer Signaling 5.89E-01 1.16E-02 NaN 0/86 (0%) 1/86 (1%) MYC 

G Beta Gamma Signaling 5.80E-01 1.14E-02 NaN 0/88 (0%) 1/88 (1%) PRKCQ 

Apoptosis Signaling 5.80E-01 1.14E-02 NaN 0/88 (0%) 1/88 (1%) PRKCQ 

Virus Entry via Endocytic Pathways 5.76E-01 1.12E-02 NaN 0/89 (0%) 1/89 (1%) PRKCQ 

Crosstalk between Dendritic Cells and 

Natural Killer Cells 

5.76E-01 1.12E-02 NaN 0/89 (0%) 1/89 (1%) HLA-DRB1 

PPAR Signaling 5.72E-01 1.11E-02 NaN 0/90 (0%) 1/90 (1%) HSP90B1 

Salvage Pathways of Pyrimidine 

Ribonucleotides 

5.68E-01 1.10E-02 NaN 0/91 (0%) 1/91 (1%) PRKCQ 

Fc  Receptor-mediated Phagocytosis in ³خ

Macrophages and Monocytes 

5.63E-01 1.09E-02 NaN 0/92 (0%) 1/92 (1%) PRKCQ 

Oxidative Phosphorylation 5.63E-01 1.09E-02 NaN 0/92 (0%) 1/92 (1%) SDHA 

Neuropathic Pain Signaling In Dorsal Horn 

Neurons 

5.37E-01 1.01E-02 NaN 0/99 (0%) 1/99 (1%) PRKCQ 

phagosome formation 5.37E-01 1.01E-02 NaN 0/99 (0%) 1/99 (1%) PRKCQ 

Cholecystokinin/Gastrin-mediated Signaling 5.33E-01 1.00E-02 NaN 0/100 (0%) 1/100 (1%) PRKCQ 

Type I Diabetes Mellitus Signaling 5.29E-01 9.90E-03 NaN 0/101 (0%) 1/101 (1%) HLA-DRB1 

Rac Signaling 5.22E-01 9.71E-03 NaN 0/103 (0%) 1/103 (1%) CYFIP2 

Corticotropin Releasing Hormone Signaling 5.12E-01 9.43E-03 NaN 0/106 (0%) 1/106 (1%) PRKCQ 

Fc Epsilon RI Signaling 5.08E-01 9.35E-03 NaN 0/107 (0%) 1/107 (1%) PRKCQ 

fMLP Signaling in Neutrophils 5.08E-01 9.35E-03 NaN 0/107 (0%) 1/107 (1%) PRKCQ 

Natural Killer Cell Signaling 5.05E-01 9.26E-03 NaN 0/108 (0%) 1/108 (1%) PRKCQ 

Renin-Angiotensin Signaling 5.05E-01 9.26E-03 NaN 0/108 (0%) 1/108 (1%) PRKCQ 

Androgen Signaling 4.98E-01 9.09E-03 NaN 0/110 (0%) 1/110 (1%) PRKCQ 

CCR3 Signaling in Eosinophils 4.92E-01 8.93E-03 NaN 0/112 (0%) 1/112 (1%) PRKCQ 

Sperm Motility 4.89E-01 8.85E-03 NaN 0/113 (0%) 1/113 (1%) PRKCQ 

Type II Diabetes Mellitus Signaling 4.86E-01 8.77E-03 NaN 0/114 (0%) 1/114 (1%) PRKCQ 

p38 MAPK Signaling 4.83E-01 8.70E-03 NaN 0/115 (0%) 1/115 (1%) MYC 

Synaptic Long Term Potentiation 4.80E-01 8.62E-03 NaN 0/116 (0%) 1/116 (1%) PRKCQ 
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14-3-3-mediated Signaling 4.80E-01 8.62E-03 NaN 0/116 (0%) 1/116 (1%) PRKCQ 

p70S6K Signaling 4.74E-01 8.47E-03 NaN 0/118 (0%) 1/118 (1%) PRKCQ 

Role of Pattern Recognition Receptors in 

Recognition of Bacteria and Viruses 

4.71E-01 8.40E-03 NaN 0/119 (0%) 1/119 (1%) PRKCQ 

PI3K/AKT Signaling 4.68E-01 8.33E-03 NaN 0/120 (0%) 1/120 (1%) HSP90B1 

Hereditary Breast Cancer Signaling 4.51E-01 7.94E-03 NaN 0/126 (0%) 1/126 (1%) SMARCA2 

GNRH Signaling 4.48E-01 7.87E-03 NaN 0/127 (0%) 1/127 (1%) PRKCQ 

Ovarian Cancer Signaling 4.42E-01 7.75E-03 NaN 0/129 (0%) 1/129 (1%) LEF1 

IL-12 Signaling and Production in 

Macrophages 

4.37E-01 7.63E-03 NaN 0/131 (0%) 1/131 (1%) PRKCQ 

Human Embryonic Stem Cell Pluripotency 4.37E-01 7.63E-03 NaN 0/131 (0%) 1/131 (1%) LEF1 

Protein Kinase A Signaling 4.36E-01 5.41E-03 NaN 0/370 (0%) 2/370 (1%) PRKCQ,LEF1 

Synaptic Long Term Depression 4.27E-01 7.41E-03 NaN 0/135 (0%) 1/135 (1%) PRKCQ 

Epithelial Adherens Junction Signaling 4.07E-01 6.99E-03 NaN 0/143 (0%) 1/143 (1%) LEF1 

Gخ±q Signaling 4.03E-01 6.90E-03 NaN 0/145 (0%) 1/145 (1%) PRKCQ 

CXCR4 Signaling 3.89E-01 6.62E-03 NaN 0/151 (0%) 1/151 (1%) PRKCQ 

Gap Junction Signaling 3.89E-01 6.62E-03 NaN 0/151 (0%) 1/151 (1%) PRKCQ 

Dopamine-DARPP32 Feedback in cAMP 

Signaling 

3.76E-01 6.37E-03 NaN 0/157 (0%) 1/157 (1%) PRKCQ 

Hepatic Cholestasis 3.74E-01 6.33E-03 NaN 0/158 (0%) 1/158 (1%) PRKCQ 

Dendritic Cell Maturation 3.68E-01 6.21E-03 NaN 0/161 (0%) 1/161 (1%) HLA-DRB1 

NF-خ؛B Signaling 3.62E-01 6.10E-03 NaN 0/164 (0%) 1/164 (1%) PRKCQ 

PPARخ±/RXRخ± Activation 3.60E-01 6.06E-03 NaN 0/165 (0%) 1/165 (1%) HSP90B1 

Acute Phase Response Signaling 3.56E-01 5.99E-03 NaN 1/167 (1%) 0/167 (0%) RBP7 

CREB Signaling in Neurons 3.52E-01 5.92E-03 NaN 0/169 (0%) 1/169 (1%) PRKCQ 

Role of NFAT in Cardiac Hypertrophy 3.41E-01 5.71E-03 NaN 0/175 (0%) 1/175 (1%) PRKCQ 

AMPK Signaling 3.39E-01 5.68E-03 NaN 0/176 (0%) 1/176 (1%) SMARCA2 

Production of Nitric Oxide and Reactive 

Oxygen Species in Macrophages 

3.34E-01 5.59E-03 NaN 0/179 (0%) 1/179 (1%) PRKCQ 

mTOR Signaling 3.29E-01 5.49E-03 NaN 0/182 (0%) 1/182 (1%) PRKCQ 

IL-8 Signaling 3.27E-01 5.46E-03 NaN 0/183 (0%) 1/183 (1%) PRKCQ 

Thrombin Signaling 3.20E-01 5.35E-03 NaN 0/187 (0%) 1/187 (1%) PRKCQ 

Systemic Lupus Erythematosus Signaling 3.19E-01 5.32E-03 NaN 0/188 (0%) 1/188 (1%) PRPF8 

Breast Cancer Regulation by Stathmin1 3.15E-01 5.26E-03 NaN 0/190 (0%) 1/190 (1%) PRKCQ 

Actin Cytoskeleton Signaling 2.85E-01 4.76E-03 NaN 0/210 (0%) 1/210 (0%) CYFIP2 

Role of Osteoblasts, Osteoclasts and 2.80E-01 4.67E-03 NaN 0/214 (0%) 1/214 (0%) LEF1 
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Chondrocytes in Rheumatoid Arthritis 

G-Protein Coupled Receptor Signaling 2.31E-01 3.94E-03 NaN 0/254 (0%) 1/254 (0%) RASGRP1 
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S6 DEGs list in pSS vs. healthy control. The (-) sign in FC column represents the 

downregulated genes in pSS-associated lymphoma (p<0.02, FC cut off=1.2). NAs excluded 

Gene symbol Adjusted p value FC Gene symbol Adjusted p 

value 

FC 

IFI27 6.1203E-07 11.51 IRF7 1.1052E-07 1.99 

IFI44L 9.8518E-11 8.75 OAS1 0.00286509 1.98 

ISG15 2.1509E-10 5.63 LAP3 1.5486E-06 1.96 

IFIT1 9.8518E-11 5.60 PARP9 2.3007E-08 1.96 

RSAD2 1.6184E-10 5.39 OAS2 2.485E-07 1.93 

IFI44 1.0004E-09 5.23 USP18 1.027E-05 1.92 

OAS3 8.2797E-10 4.35 PARP14 8.0137E-09 1.92 

EPSTI1 9.8518E-11 4.29 OAS2 1.2484E-07 1.91 

IFIT3 9.8518E-11 4.28 HERC6 2.1619E-06 1.89 

IFITM3 6.0553E-09 4.09 HELZ2 1.8633E-07 1.87 

HERC5 2.1509E-10 4.04 IFIH1 1.1189E-06 1.86 

LY6E 1.6081E-08 3.98 TIMM10 0.00141889 1.86 

IFI6 1.564E-10 3.64 PARP12 5.9388E-07 1.83 

OAS1 1.1626E-09 3.61 SPATS2L 3.8514E-06 1.80 

MX1 1.3295E-09 3.56 STAT1 4.7985E-08 1.79 

OASL 1.564E-10 3.45 SCO2 1.8633E-07 1.79 

OAS1 2.278E-09 3.33 MT1A 1.0666E-05 1.79 

XAF1 1.1351E-10 3.19 DDX60 1.8622E-06 1.78 

IFIT3 1.1052E-07 3.05 HLA-DRB4 0.00011162 1.78 

XAF1 8.9622E-09 3.01 STAT2 2.8561E-08 1.77 

OAS2 1.1833E-07 2.95 RTP4 7.1145E-07 1.77 

IFIT3 3.2097E-08 2.84 TNFAIP6 0.00337936 1.76 

IFIT2 1.1833E-07 2.70 PARP9 3.9313E-08 1.75 

OTOF 0.00182888 2.53 OASL 6.2852E-08 1.75 

EIF2AK2 6.4838E-09 2.43 BATF2 1.5139E-06 1.74 

SERPING1 6.3208E-08 2.37 CEACAM1 3.7958E-07 1.72 

SAMD9L 8.2597E-10 2.31 STAT1 1.0171E-08 1.71 

GBP1 1.7593E-07 2.28 STAT1 1.5486E-06 1.69 

HLA-DRB6 0.01348724 2.26 UBE2L6 3.2965E-07 1.68 

IRF7 6.2852E-08 2.19 DHX58 1.2289E-06 1.67 

ZBP1 4.7985E-08 2.12 GBP1P1 5.1765E-07 1.63 

IFI44L 2.2601E-06 2.11 FBXO6 3.3811E-07 1.63 

TRIM22 3.3867E-08 2.10 IFITM1 1.1052E-07 1.63 

HES4 2.7065E-05 2.09 IFI16 3.3811E-07 1.60 

IFI6 3.9313E-08 2.07 MX2 1.815E-05 1.60 

OAS1 7.1042E-07 2.06 BST2 8.0137E-09 1.60 

IFI35 9.3684E-09 2.04 CEACAM1 8.0804E-07 1.58 

GBP1 1.1189E-06 2.03 TNFSF10 4.2476E-05 1.56 

MT2A 1.9606E-06 2.03 FCGR1A 0.00599652 1.55 

GBP5 8.0916E-06 1.99 LAMP3 2.5802E-07 1.54 
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SHISA5 9.1194E-06 1.54 TOR1B 0.00017337 1.36 

DHRS9 0.00172583 1.54 APOBEC3A 0.02503283 1.36 

FCGR1B 0.01085872 1.53 HSH2D 0.00067639 1.36 

TNFSF13B 0.00019361 1.53 SP110 0.00056916 1.35 

OAS3 6.4975E-07 1.53 TYMP 0.00218665 1.35 

GBP4 0.00020481 1.53 CXCL10 0.02057559 1.35 

CHMP5 0.01816947 1.53 C3AR1 4.2476E-05 1.35 

TMEM140 0.00032783 1.52 TRIM69 9.3418E-06 1.34 

PARP10 2.9039E-06 1.52 CASP1 0.00590912 1.34 

SAMD9 0.00668398 1.52 LGALS9 9.1817E-05 1.34 

DDX60L 0.00016309 1.52 CMTR1 2.3946E-06 1.33 

PLSCR1 3.5562E-05 1.51 PIK3AP1 0.02021398 1.33 

REC8 1.5429E-08 1.50 C1QB 0.04448298 1.33 

DHRS9 0.01251414 1.50 GPR1 0.02591635 1.33 

DDX58 2.2505E-06 1.49 CASP1 0.01348724 1.33 

IFIT5 0.00056916 1.48 ISG20 0.00029951 1.32 

ANKRD22 0.03561342 1.47 DRAP1 0.00037743 1.32 

TAP1 0.00025813 1.47 GBP2 0.00681183 1.31 

CCR1 0.00062612 1.46 NT5C3A 0.03924027 1.31 

IRF9 4.1905E-08 1.46 GCH1 2.9457E-05 1.31 

TMEM123 0.03561342 1.46 NUB1 0.000285 1.31 

PSME2 8.4344E-07 1.45 RHBDF2 0.00110442 1.30 

TDRD7 6.1203E-07 1.45 FGD2 0.02977371 1.30 

TNFSF13B 0.00069558 1.45 IFI30 0.03504812 1.30 

FCGR1C 0.00484405 1.45 MAFB 0.02364289 1.30 

CMPK2 2.6863E-06 1.44 LGALS9 0.00011464 1.30 

UBE2L6 0.00019071 1.44 SMCO4 0.00608333 1.30 

PHF11 2.8262E-06 1.43 GPBAR1 0.04494512 1.30 

SP110 9.9778E-05 1.43 GALM 0.0086087 1.29 

LGALS3BP 0.00038232 1.42 SP140 0.00221738 1.29 

TAP2 0.00013868 1.42 SP110 0.01097291 1.29 

LAG3 0.01843014 1.42 CTSL 0.01365326 1.29 

BLVRA 3.1112E-05 1.41 TRIM38 0.00510626 1.28 

FAM46A 2.2154E-05 1.40 C19orf66 4.4689E-05 1.28 

PHF11 0.00015576 1.39 ADAR 0.00399478 1.28 

UNC93B1 8.7056E-05 1.39 SAT1 0.00892901 1.28 

SP110 0.00043463 1.39 IFIT1 0.00267798 1.28 

MOV10 8.5572E-06 1.38 PSMB9 0.02475062 1.28 

TRIM5 0.00013588 1.38 OAS2 0.00012809 1.27 

VAMP5 0.00127331 1.38 SCARB2 0.00056916 1.27 

CEACAM1 4.2476E-05 1.36 LOC100128274 0.00587583 1.27 

IL1RN 0.02859237 1.36 ANKFY1 0.00011731 1.27 

TYMP 0.00290922 1.36 SEPT4 0.01100047 1.27 

ADAR 3.3401E-05 1.36 RHBDF2 0.00243183 1.26 
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SP100 0.00011464 1.26 IMPA2 0.00518347 -1.39 

TRAFD1 0.00267487 1.26 GPR162 0.02652862 -1.37 

CTSL 0.00854154 1.26 PYGL 0.03946276 -1.35 

TRIM21 0.00217263 1.26 FAM212B 0.00969497 -1.32 

HLA-A 0.0165758 1.26 PPM1F 0.0006649 -1.31 

HLA-F 0.03282891 1.25 RPL3 0.00202947 -1.30 

PSMB9 0.00165278 1.25 MIR181A2HG 0.03875588 -1.29 

C1orf85 0.02995833 1.25 RPS5 0.01348724 -1.28 

TRIM25 0.01463022 1.25 TBL1X 0.01551496 -1.27 

MT1G 0.00087699 1.25 RXRA 0.02023698 -1.27 

TYMP 0.02107649 1.24 WLS 0.04310778 -1.27 

ETV7 0.00012809 1.24 EIF3L 0.00186693 -1.26 

TRIM6 0.00056916 1.24 EIF3L 0.00026111 -1.26 

BTN3A1 0.02976317 1.24 IMPDH1 0.011807 -1.26 

LYSMD2 0.02394556 1.24 FAM101B 0.00902316 -1.26 

LMO2 0.02672869 1.24 IRS2 0.04448298 -1.26 

TYMP 0.03490352 1.24 EEF1G 0.04786736 -1.25 

ZC3HAV1 0.00280296 1.24 TBC1D14 0.00376538 -1.25 

PCK2 0.00025813 1.23 RPS3 0.0101884 -1.25 

LHFPL2 0.04327692 1.23 ICAM3 0.00881026 -1.25 

REC8 1.0666E-05 1.23 CCNY 0.00027901 -1.25 

RNF213 0.04533332 1.23 RPS14 0.03669829 -1.25 

DUSP5 0.00235267 1.23 EEF2 0.00188502 -1.24 

ZC3HAV1 0.00787496 1.22 RPS6KA5 0.01089737 -1.24 

ACOT9 0.00620092 1.22 ZNF746 0.00280527 -1.24 

MT1IP 0.00362303 1.22 EIF4B 0.00071312 -1.23 

TRIM5 7.4935E-05 1.21 FEZ1 0.00890452 -1.23 

SOCS1 0.00255775 1.21 RASSF2 0.02995833 -1.23 

ANKFY1 0.00045049 1.21 RPS14 0.03715746 -1.23 

CD38 0.03927095 1.21 RPS8 0.04823418 -1.22 

MYD88 0.01463022 1.21 CCNJL 0.01884647 -1.22 

HLA-DRA 0.03421476 1.21 SCAP 0.02756616 -1.21 

TRIM56 0.00404656 1.21 ARRB1 0.03875588 -1.21 

GADD45B 0.00532618 1.21 RPL13A 0.02685321 -1.21 

CCL2 0.00349719 1.21 PTOV1 0.00205049 -1.21 

BTN3A3 0.00510626 1.21 TP53INP2 0.00344213 -1.21 

SP100 0.00100736 1.20 TPRG1L 0.00188502 -1.20 

MYOF 0.03504812 1.20 DSC1 0.00023024 -1.20 

ODF3B 0.00058825 1.20    

EPB41L3 0.01796162 1.20    

ATF3 0.00029951 1.20    

HLA-DRB4 0.02191445 -2.24    

MYOM2 0.00632069 -1.84    

TXNDC12 0.00356056 -1.46    



255 
 

S7 DEGs list in pSS-paraproteinemia vs. healthy control. The (-) sign in FC column 

represents the downregulated genes in pSS-associated lymphoma (p<0.02, FC cut off =1.2). 

NAs excluded 

Gene symbol Adjusted p value FC Gene symbol Adjusted p value FC 

IFI27 0.00078165 9.26 PARP14 0.0000452 1.82 

IFI44L 0.00000159 7.62 USP18 0.00393644 1.82 

IFIT1 0.00000159 5.09 MT1A 0.00082371 1.80 

ISG15 0.00000481 4.88 TNFAIP6 0.02834293 1.80 

RSAD2 0.00000481 4.61 OAS2 0.00069217 1.80 

IFI44 0.0000683 4.05 TIMM10 0.04089623 1.79 

IFIT3 0.00000159 3.82 LAP3 0.00450693 1.76 

IFITM3 0.000018 3.79 GBP1 0.02173078 1.76 

OAS3 0.000015 3.76 SCO2 0.00012054 1.76 

HERC5 0.00000444 3.66 OAS2 0.00092249 1.73 

IFI6 0.00000147 3.66 MX2 0.0000952 1.73 

EPSTI1 0.00000458 3.63 TRIM22 0.00502449 1.71 

LY6E 0.0000627 3.59 PARP9 0.00142196 1.69 

MX1 0.000005 3.39 OASL 0.00014469 1.67 

OAS1 0.00000938 3.29 STAT2 0.00017389 1.67 

OASL 0.00000159 3.27 SPATS2L 0.00469705 1.66 

OAS1 0.00000798 3.15 BATF2 0.00208978 1.63 

XAF1 0.00000798 3.00 DHX58 0.00062508 1.63 

XAF1 0.00000274 2.93 STAT1 0.00117505 1.61 

OAS2 0.00017389 2.76 GBP1 0.04749386 1.60 

IFIT3 0.00165209 2.48 DDX60 0.0086334 1.59 

EIF2AK2 0.00000444 2.48 BST2 0.00000798 1.59 

IFIT3 0.0007451 2.37 TNFSF10 0.00142196 1.59 

IFIT2 0.00196135 2.24 RTP4 0.00471405 1.59 

HES4 0.00070573 2.19 PARP10 0.0000795 1.58 

OAS1 0.01079063 2.15 TNFSF13B 0.00225167 1.58 

IRF7 0.0000931 2.10 IFITM1 0.00023134 1.56 

IRF7 0.00000938 2.09 STAT1 0.00047068 1.56 

SERPING1 0.00068254 2.09 PARP9 0.00215663 1.54 

SAMD9L 0.0000261 2.08 IFIH1 0.03874027 1.53 

IFI44L 0.0012519 2.00 CEACAM1 0.00803466 1.51 

OAS1 0.00057187 1.97 FBXO6 0.00185527 1.51 

ZBP1 0.00019114 1.97 UBE2L6 0.00502449 1.50 

IFI6 0.0000927 1.97 SHISA5 0.00293771 1.49 

MT2A 0.00076998 1.96 IFI16 0.00211597 1.48 

IFI35 0.0000348 1.95 OAS3 0.00069217 1.48 

HELZ2 0.0000703 1.87 DDX58 0.0005829 1.48 

HERC6 0.00066256 1.85 TNFSF13B 0.00890402 1.47 

PARP12 0.00012054 1.84 CEACAM1 0.00421342 1.46 
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REC8 0.0000823 1.44 ANKFY1 0.00443378 1.27 

IRF9 0.0000627 1.44 PSMB9 0.01873972 1.26 

FAM46A 0.00060689 1.43 KIAA0319L 0.01143196 1.26 

BLVRA 0.00097532 1.43 SP100 0.00125743 1.26 

GBP1P1 0.01832553 1.42 ODF3B 0.00068254 1.26 

ISG20 0.00024796 1.42 TRIM21 0.04027824 1.25 

UNC93B1 0.00153611 1.42 MS4A14 0.03229019 1.25 

TYMP 0.00661229 1.41 GSTO1 0.04427576 1.24 

TYMP 0.01229455 1.41 TRIM69 0.04802239 1.24 

VAMP5 0.01037169 1.41 ACOT9 0.03438561 1.23 

RNF213 0.04487247 1.41 ZC3HAV1 0.04241708 1.23 

FGD2 0.02784943 1.40 TTC21A 0.00048808 1.23 

SP110 0.01037169 1.39 TRIM56 0.02426733 1.23 

DRAP1 0.0007451 1.39 PCK2 0.01079063 1.23 

VCAN 0.04857966 1.39 TRIM14 0.0007451 1.21 

KLHDC8B 0.03177238 1.39 CD86 0.03479376 1.21 

PLSCR1 0.03471629 1.38 NELL2 0.0016615 -1.51 

LAMP3 0.00940818 1.38 TXNDC12 0.04806856 -1.45 

LGALS9 0.00091277 1.38 BCL11B 0.03711457 -1.32 

CASP1 0.03962541 1.37 EIF3L 0.00087021 -1.31 

MOV10 0.00171684 1.36 EIF4B 0.00364144 -1.27 

ADAR 0.00197242 1.36 TBC1D14 0.02947428 -1.27 

LGALS9 0.00044535 1.36 EEF2 0.01107357 -1.27 

PHF11 0.01650733 1.36 SERTAD2 0.03359516 -1.26 

TOR1B 0.00695755 1.36 FEZ1 0.03100429 -1.26 

SCARB2 0.00082371 1.34 ALDOC 0.02060631 -1.26 

CMPK2 0.01107357 1.34 GTF2IP1 0.00417508 -1.26 

SAT1 0.02060631 1.33 LRRC26 0.00242618 -1.26 

TYMP 0.01930483 1.33 EIF3L 0.03677415 -1.25 

TDRD7 0.00974749 1.33 CTDSP2 0.04539763 -1.25 

MT1G 0.00061761 1.33 ANXA7 0.00171491 -1.23 

PHF11 0.01722046 1.32 PAQR8 0.03493695 -1.22 

PSME2 0.01372558 1.32 SIAH1 0.01998406 -1.22 

TRIM38 0.02173078 1.32 ESYT2 0.03403468 -1.22 

CMTR1 0.00153534 1.30 NMT2 0.03644079 -1.22 

TYMP 0.03229019 1.30 SMARCA2 0.03358119 -1.22 

HK3 0.02598473 1.30 SIN3A 0.01180687 -1.22 

CEACAM1 0.02868831 1.29 CDKN1B 0.03711457 -1.22 

REC8 0.0000266 1.29 SESN1 0.01079063 -1.21 

RRAS 0.04052875 1.28 MBP 0.02598473 -1.21 

MS4A4A 0.00082371 1.28 MID2 0.0000795 -1.21 

SP100 0.00185527 1.28 LINC00623 0.03677967 -1.21 

MT1IP 0.0032513 1.28    

C19orf66 0.00400343 1.27    
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S8 DEGs list in pSS-other cancers vs. healthy control. The (-) sign in FC column represents 

the downregulated genes in pSS-associated lymphoma (p<0.02, FC cut off =1.2). NAs 

excluded 

Gene symbol Adjusted p value FC Gene symbol Adjusted p value FC 

IFI44L 8.90E-05 7.13 GBP1 0.045682442 1.81 

IFI27 0.03815265 6.60 PARP12 0.001679555 1.80 

IFIT1 8.90E-05 4.90 HERC6 0.007581113 1.80 

ISG15 8.90E-05 4.79 OAS2 0.003663257 1.77 

RSAD2 0.000102181 4.43 OAS2 0.006587646 1.77 

IFIT3 5.16E-05 4.00 USP18 0.034708812 1.77 

IFI44 0.00085592 3.95 STAT2 0.000233021 1.76 

OAS3 0.000166919 3.77 MT1A 0.01245208 1.74 

EPSTI1 8.90E-05 3.62 MX2 0.000929208 1.72 

LY6E 0.000653176 3.56 TRIM22 0.024572779 1.72 

HERC5 8.90E-05 3.55 STAT1 0.00167034 1.69 

MX1 8.90E-05 3.53 OASL 0.000880267 1.69 

OAS1 8.90E-05 3.42 STAT1 0.000233021 1.67 

IFI6 8.90E-05 3.28 PARP9 0.015134363 1.65 

OAS1 0.000102181 3.16 BATF2 0.010675641 1.64 

IFITM3 0.003696931 3.07 BST2 8.90E-05 1.61 

OASL 8.90E-05 3.06 DHX58 0.007337187 1.60 

XAF1 7.27E-05 3.01 UBE2L6 0.006303719 1.58 

XAF1 0.00017948 2.90 TNFSF13B 0.014490376 1.57 

IFIT3 0.003414857 2.68 CEACAM1 0.013311905 1.57 

OAS2 0.002156565 2.68 SP110 0.000880267 1.56 

IFIT3 0.000852243 2.63 RTP4 0.03815265 1.56 

EIF2AK2 8.90E-05 2.43 PARP10 0.001909718 1.54 

HES4 0.00121236 2.34 TNFSF10 0.03188489 1.52 

IFIT2 0.010804285 2.25 PARP9 0.022472172 1.51 

IRF7 0.000866371 2.10 FAM46A 0.000451667 1.50 

SAMD9L 0.000236626 2.09 TNFSF13B 0.024845865 1.50 

LAP3 0.000774552 2.06 REC8 0.00014025 1.50 

ZBP1 0.001019367 2.00 UNC93B1 0.00109746 1.49 

IFI35 0.00017948 1.99 IRF9 0.000102181 1.49 

SERPING1 0.012098879 1.97 FGD2 0.029604923 1.46 

MT2A 0.005060379 1.96 IFITM1 0.016946873 1.46 

IFI6 0.000880267 1.96 IFI16 0.026198366 1.45 

IRF7 0.000710192 1.96 SHISA5 0.03786659 1.45 

OAS1 0.005093636 1.94 OAS3 0.011555212 1.44 

PARP14 0.000102181 1.91 CEACAM1 0.042650839 1.43 

SCO2 0.000166919 1.87 LAMP3 0.018542689 1.42 

HELZ2 0.000880267 1.85 PSME2 0.005060379 1.41 

IFI44L 0.034708812 1.84 BLVRA 0.01109232 1.41 



258 
 

SP110 0.042650839 1.39    

DDX58 0.034037138 1.39    

PHF11 0.013636559 1.38    

MOV10 0.008061982 1.37    

ADAR 0.008240337 1.37    

LGALS9 0.006757455 1.37    

SP110 0.037659257 1.37    

ISG20 0.008951273 1.37    

CMPK2 0.023505453 1.37    

LGALS9 0.003663257 1.35    

FOXP1-IT1 0.042817254 1.34    

TDRD7 0.042650839 1.33    

CMTR1 0.003817828 1.32    

ANKFY1 0.003459426 1.32    

DRAP1 0.04332153 1.32    

NUB1 0.034037138 1.31    

SP100 0.005751943 1.30    

SYAP1 0.045683609 1.28    

DUSP5 0.016001267 1.28    

MT1G 0.028621277 1.27    

SP100 0.006759859 1.26    

TRIM56 0.039988487 1.25    

ATF3 0.003663257 1.25    

REC8 0.010675641 1.22    

ODF3B 0.03728581 1.21    

NEXN 0.042650839 1.21    

C9orf91 0.045680309 1.20    

NELL2 0.013636559 -1.49    

ANXA7 0.005060379 -1.25    

ESYT2 0.042817254 -1.25    

SMARCA2 0.042817254 -1.24    

MID2 8.90E-05 -1.24    

USP9X 0.008951273 -1.24    

HNRNPA0 0.048907002 -1.22    

NR3C2 0.002069335 -1.21    

DSC1 0.034199174 -1.20    
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S9 DEGs list of pSS-associated lymphoma vs. healthy control. The (-) sign in FC column 

represent the downregulated genes in pSS-associated lymphoma (p<0.02, FC=1.2) 

Gene symbol Adjusted p value FC Gene symbol Adjusted p value FC 

IFI27 1.5E-05 16.86 OAS2 1.41E-06 2.19 

IFI44L 7.5E-09 12.44 TNFAIP6 0.000917 2.18 

IFIT1 7.5E-09 7.66 PARP12 1.98E-06 2.15 

RSAD2 9.09E-09 7.33 GBP1 0.000172 2.10 

ISG15 2.5E-08 7.23 HERC6 6.21E-05 2.05 

IFI44 1.09E-07 6.51 RTP4 2.72E-06 2.05 

LY6E 1.25E-07 5.43 OAS1 0.018468 2.04 

EPSTI1 7.5E-09 5.39 OAS2 2.84E-05 2.04 

IFIT3 7.5E-09 5.34 MT1A 6.21E-05 2.01 

OAS3 1.2E-07 5.19 PARP9 1.94E-05 1.99 

HERC5 2.3E-08 5.03 USP18 0.000917 1.96 

IFITM3 7.27E-07 4.84 TNFSF10 2.05E-06 1.95 

IFI6 7.5E-09 4.78 HELZ2 4.17E-05 1.94 

OAS1 3.1E-08 4.61 PARP14 1.08E-05 1.93 

MX1 2.06E-07 4.14 GBP5 0.003049 1.90 

OAS1 6.55E-08 4.13 RNASE2 0.012504 1.90 

OASL 4.11E-08 3.94 IFIH1 0.000238 1.90 

IFIT3 4.79E-06 3.59 STAT2 4.38E-06 1.88 

XAF1 3.37E-08 3.59 SPATS2L 0.00029 1.88 

IFIT3 2.1E-06 3.28 DDX60 0.000119 1.88 

OAS2 3.93E-05 3.09 TNFSF13B 3.37E-05 1.82 

XAF1 1.1E-05 3.06 DHX58 2.18E-05 1.82 

EIF2AK2 7.35E-08 2.92 OASL 1.49E-05 1.81 

IFIT2 2.39E-05 2.89 STAT1 3.76E-05 1.81 

HES4 8.14E-06 2.76 BATF2 0.000172 1.80 

SAMD9L 2.5E-08 2.70 HLA-DRB4 0.003986 1.80 

OTOF 0.016387 2.61 IFITM1 1.43E-06 1.80 

IRF7 2.5E-08 2.59 PARP9 2.6E-05 1.77 

IFI44L 5.58E-06 2.59 STAT1 5.61E-06 1.76 

ZBP1 1E-06 2.45 SAMD9 0.002968 1.75 

IRF7 3.9E-06 2.44 FCGR1A 0.004621 1.75 

SERPING1 4.89E-05 2.39 MX2 0.000144 1.74 

OAS1 7.28E-06 2.38 UBE2L6 4.51E-05 1.74 

MT2A 1.96E-05 2.32 ANKRD22 0.009801 1.73 

IFI35 3.18E-07 2.30 IL1RN 0.000405 1.73 

SCO2 2.25E-08 2.30 FBXO6 1.94E-05 1.73 

LAP3 8.42E-06 2.29 CHMP5 0.012217 1.72 

GBP1 0.000202 2.23 SHISA5 2.6E-05 1.71 

IFI6 5.61E-06 2.23 TNFSF13B 8.86E-05 1.70 

TRIM22 8.54E-06 2.21 IFIT5 0.000218 1.70 
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BLVRA 5.31E-07 1.70 LGALS9 6.71E-06 1.47 

DRAP1 5.47E-08 1.68 TYMP 0.000474 1.47 

FCGR1B 0.01376 1.67 CASP1 0.003753 1.46 

GUSBP1 0.015554 1.65 PSMB9 8.42E-06 1.46 

CEACAM1 0.000714 1.65 NT5C3A 0.012504 1.46 

PARP10 2.72E-05 1.65 IFI30 0.008201 1.46 

IL1RN 0.001121 1.65 TOR1B 0.000429 1.46 

BST2 4.32E-06 1.64 CHMP5 0.018223 1.45 

DDX58 8.4E-06 1.64 CCR1 0.016069 1.45 

IRF9 5.93E-08 1.64 HSH2D 0.001736 1.44 

STAT1 0.001501 1.62 PHF11 0.002192 1.44 

VAMP5 0.000105 1.61 NT5C3A 0.044945 1.43 

GBP1P1 0.000404 1.61 TMEM140 0.045044 1.41 

TMEM123 0.031091 1.59 ADAR 0.000572 1.41 

CEACAM1 0.000405 1.57 TAP2 0.007716 1.40 

UNC93B1 2.84E-05 1.56 MS4A6A 0.036008 1.40 

OAS3 0.000122 1.56 DYNLT1 0.007837 1.40 

PSME2 9.01E-06 1.56 SEPT4 0.002296 1.40 

IFI16 0.00059 1.55 GBP4 0.047205 1.40 

FAM46A 1.94E-05 1.55 ISG20 0.000723 1.40 

ANKRD22 0.020882 1.55 TRIM5 0.003753 1.40 

LAMP3 0.00015 1.55 SAT1 0.003753 1.40 

DDX60L 0.00514 1.53 KLHDC8B 0.02115 1.40 

LGALS9 6.71E-06 1.53 MS4A7 0.006492 1.39 

CMPK2 4.34E-05 1.53 MS4A6A 0.017423 1.39 

PHF11 4.31E-05 1.52 HK3 0.001602 1.39 

TYMP 0.000563 1.52 CD36 0.031481 1.39 

GPBAR1 0.002153 1.52 SP110 0.010107 1.39 

CXCL10 0.00656 1.52 IFIT1 0.001648 1.38 

REC8 1.33E-05 1.51 PSMB9 0.012791 1.38 

TYMP 0.001319 1.51 TAP1 0.038526 1.38 

UBE2L6 0.001394 1.51 TRIM21 0.00059 1.38 

CASP1 0.0023 1.51 CST3 0.030373 1.38 

FFAR2 0.012071 1.49 LYSMD2 0.004199 1.37 

GLRX 0.044792 1.49 TRIM38 0.005591 1.37 

SMA4 0.03066 1.49 GSTO1 0.000651 1.36 

PLSCR1 0.003909 1.49 HSPA7 0.011826 1.36 

FCGR1C 0.020263 1.49 MT1G 0.00025 1.36 

GPBAR1 0.006059 1.49 ODF3B 3.43E-06 1.36 

FGD2 0.004199 1.49 LGALS3BP 0.036504 1.35 

TDRD7 7.65E-05 1.49 HSPA6 0.02616 1.35 

SP110 0.001172 1.49 CMTR1 0.00038 1.34 

MOV10 4.16E-05 1.49 SCARB2 0.001003 1.34 

LGALS1 0.001067 1.48 PLAC8 0.024225 1.34 
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LOC100128274 0.007811 1.34 TRAFD1 0.023378 1.27 

TYMP 0.010652 1.33 ADAR 0.046774 1.27 

RRAS 0.008912 1.33 SP140 0.043972 1.26 

NBN 0.003653 1.33 KIAA0319L 0.008183 1.26 

C19orf66 0.000457 1.33 RAB24 0.030636 1.26 

CREB1 0.001062 1.33 BRSK1 0.046237 1.26 

C1GALT1 0.010189 1.32 MS4A14 0.015701 1.26 

TRIM69 0.00282 1.32 FAM13A 0.009829 1.26 

WSB1 0.001292 1.32 POMP 0.000218 1.26 

LMO2 0.018223 1.32 CTSH 0.043277 1.26 

C3AR1 0.008294 1.31 NMI 0.042268 1.26 

AP5B1 0.046669 1.31 ANKFY1 0.008562 1.25 

GCH1 0.002263 1.31 OAF 0.008962 1.25 

GSTO1 0.006376 1.31 ACOT9 0.015421 1.25 

TRIM56 0.001003 1.31 RNF7 0.006271 1.25 

KYNU 0.049183 1.30 PRO0628 0.033767 1.25 

SOCS1 0.000954 1.30 ZDHHC19 0.049994 1.25 

ACER3 0.008612 1.30 NAPA 0.001067 1.25 

PRDX4 0.005904 1.30 LOC100128288 0.03597 1.24 

DUSP19 0.000463 1.30 GADD45B 0.012504 1.24 

LHFPL2 0.032922 1.30 REC8 0.000689 1.24 

SLIRP 0.018223 1.30 ATP5J2 0.005904 1.24 

LOC284837 0.006376 1.29 PSMA3 0.030059 1.24 

CAMK1 0.006759 1.29 DYNLL1 0.003715 1.24 

NEXN 0.000172 1.29 MGST3 0.036168 1.24 

MT1F 0.023286 1.29 NUDT14 0.002457 1.24 

SP110 0.046669 1.29 IL15 0.016102 1.24 

MYD88 0.007856 1.29 ZC3HAV1 0.028613 1.24 

SP100 0.002126 1.29 TRIM6 0.015483 1.24 

CARD16 0.013794 1.29 PSMB8 0.003134 1.24 

RAB24 0.013469 1.28 CYSLTR1 0.018349 1.23 

KLHL28 0.028917 1.28 GNG5 0.007716 1.23 

SP100 0.000318 1.28 ACOT9 0.011321 1.23 

MT1IP 0.003419 1.28 RBM43 0.007909 1.23 

ADAP2 0.016826 1.28 ZC3HAV1 0.03379 1.23 

HINT3 0.036666 1.28 PTTG1 0.006343 1.23 

NCOA7 0.036373 1.28 UNC93B1 0.003849 1.23 

CEACAM1 0.031829 1.27 TMOD2 0.014744 1.23 

MAD2L1BP 0.001509 1.27 GALNT4 0.021994 1.23 

CCL2 0.003057 1.27 HCFC1R1 0.004443 1.23 

OAS2 0.00667 1.27 TRIM14 0.000378 1.23 

KCTD12 0.040119 1.27 MS4A4A 0.011826 1.23 

CCDC53 0.000346 1.27 LRRFIP1 0.020685 1.23 

IGFBP7 0.019533 1.27 PCK2 0.010186 1.23 
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SP100 0.006946 1.23 FAM102A 0.000786 -1.42 

HNMT 0.025315 1.22 SEC14L1 0.017125 -1.41 

MED28 0.005891 1.22 ETS1 0.006399 -1.41 

THOC7 0.018952 1.22 SERTAD2 0.00029 -1.40 

ETV7 0.012464 1.22 ALDOC 0.000109 -1.40 

TRIM5 0.003057 1.22 CTDSP2 0.000346 -1.40 

SFT2D1 0.046894 1.22 MAGED1 0.002516 -1.39 

SCIMP 0.014539 1.22 POM121C 0.002162 -1.38 

C4orf3 0.028728 1.22 HIST1H1C 0.038916 -1.38 

PSMB8 0.013067 1.22 SCAP 0.000884 -1.38 

SEC61G 0.020633 1.22 SIRPA 0.019085 -1.38 

TMEM219 0.005891 1.21 HNRNPUL1 0.001521 -1.37 

RAB37 0.015716 1.21 IMPA2 0.049109 -1.37 

GNB4 0.002286 1.21 HNRNPA1P10 0.001159 -1.37 

TMSB10 0.007643 1.21 SF3A1 0.000713 -1.37 

DUSP5 0.035707 1.21 TBC1D14 0.001101 -1.36 

SRBD1 0.00656 1.21 EIF4B 6.21E-05 -1.36 

COMMD1 0.003134 1.21 JAK1 0.027337 -1.36 

RNF31 0.038024 1.21 ZNF746 0.000446 -1.36 

SSB 0.038673 1.20 TBL1X 0.012504 -1.36 

FAM13A 0.044387 1.20 SUN2 0.003786 -1.35 

PNPT1 0.00028 1.20 CYFIP2 0.008696 -1.35 

PSME1 0.03379 1.20 CD247 0.023958 -1.35 

FRMD3 0.006751 1.20 BAG3 0.000368 -1.35 

HLA-DRB1 0.019579 -4.75 RPL23AP5 0.008183 -1.35 

MYH9 0.001545 -1.59 ALDH9A1 0.00042 -1.34 

SPOCK2 0.000774 -1.55 ADCK3 0.002508 -1.34 

SGK223 0.000418 -1.55 FAM102A 0.002693 -1.34 

LEF1 0.008441 -1.52 SMARCA2 0.00026 -1.34 

TXNDC12 0.012538 -1.52 ESYT1 0.008661 -1.33 

NELL2 0.002296 -1.51 ATP6V1A 0.014592 -1.33 

ABLIM1 0.009953 -1.49 RPL10A 0.018349 -1.33 

BCL11B 0.000501 -1.48 ARRB1 0.007317 -1.33 

PIK3IP1 0.002026 -1.48 DDB1 0.000495 -1.33 

IL2RB 0.023723 -1.47 FNBP1 0.010107 -1.32 

ETS1 0.008164 -1.47 CD247 0.049653 -1.32 

IGF2R 0.004967 -1.47 APMAP 0.030463 -1.32 

SYTL2 0.009112 -1.45 HNRNPDL 0.000445 -1.32 

RNA28S5 0.021678 -1.45 SIN3A 8.86E-05 -1.32 

SORL1 0.019438 -1.44 LAMP1 0.007708 -1.32 

CACNA1I 0.001334 -1.43 PRKDC 0.000214 -1.32 

TKT 0.015824 -1.42 VCP 0.000704 -1.32 

PRPF8 0.0004 -1.42 VEGFB 0.020685 -1.31 

LEF1 0.042038 -1.42 PARP1 0.038153 -1.31 
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GTF2IP1 0.000448 -1.31 CIRBP 0.013827 -1.27 

UBE2H 0.004967 -1.31 WAC 0.004259 -1.26 

MEF2D 0.000956 -1.30 BACH2 0.010319 -1.26 

ITK 0.03597 -1.30 HNRNPUL1 0.01454 -1.26 

TPRG1L 0.000346 -1.30 VPS51 0.012045 -1.26 

SCYL1 0.004443 -1.30 ANKRD11 0.004535 -1.26 

CD96 0.011884 -1.30 AXIN2 0.012045 -1.26 

MYH9 0.045193 -1.30 EPHX2 0.041367 -1.26 

MBP 0.000619 -1.30 ULK1 0.023685 -1.26 

OSBPL10 0.012791 -1.30 RPS6KA5 0.039348 -1.26 

GLS 0.000451 -1.30 PAF1 0.006384 -1.26 

MAP7D1 0.02294 -1.30 NCL 0.02294 -1.26 

PRKCH 0.028917 -1.30 EEF2 0.014462 -1.25 

RGCC 0.048765 -1.30 LOC283070 0.047081 -1.25 

MSN 0.020569 -1.30 RPS4X 0.029797 -1.25 

RBL2 0.001591 -1.29 ABLIM1 0.04298 -1.25 

EIF3L 0.008456 -1.29 PEBP1 0.023532 -1.25 

ULK1 0.011854 -1.29 FOXJ2 0.002608 -1.25 

ID3 0.010653 -1.29 PHRF1 0.034796 -1.25 

KIAA1147 0.017676 -1.29 LRFN3 0.02487 -1.25 

KLF13 0.028613 -1.29 KHDRBS1 0.017423 -1.25 

NMT2 0.0029 -1.28 BTG1 0.012504 -1.25 

MED16 0.044467 -1.28 MID2 8.54E-06 -1.25 

RNF44 0.006524 -1.28 COBLL1 0.023532 -1.25 

CDR2 0.005421 -1.28 TP53INP2 0.007716 -1.25 

RPS4X 0.02473 -1.28 SLC12A9 0.018349 -1.25 

MYC 0.038922 -1.28 HDAC1 0.007716 -1.25 

ACOX1 0.038153 -1.28 PRKCQ 0.021994 -1.25 

FAM53C 0.03421 -1.28 GMEB2 0.00018 -1.24 

TGOLN2 0.010088 -1.28 SAFB 0.004935 -1.24 

SMAP2 0.041808 -1.28 BANP 0.005891 -1.24 

CRKL 0.001067 -1.27 FOXO1 0.004005 -1.24 

ARID1A 0.016338 -1.27 FRMD8 0.002608 -1.24 

ICAM3 0.028873 -1.27 CBLL1 0.006399 -1.24 

ARHGEF18 0.013838 -1.27 EPHA1 0.018349 -1.24 

ANXA7 0.000346 -1.27 HNRNPA0 0.005641 -1.24 

ZSCAN18 0.021678 -1.27 RPRD2 1.96E-05 -1.24 

PEX5 0.000122 -1.27 EIF3B 0.023886 -1.24 

RPA2 0.000321 -1.27 PI4KA 0.048768 -1.24 

RPS3 0.032879 -1.27 DOCK2 0.049261 -1.24 

HSP90B1 0.018107 -1.27 FOXJ3 0.003753 -1.24 

NOTCH1 0.030178 -1.27 DHRS3 0.018349 -1.24 

LRRC26 0.002057 -1.27 RAB22A 0.000364 -1.24 

EIF3L 0.006489 -1.27 TAF4 0.005587 -1.24 
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SLC7A1 0.000346 -1.24 ACTG1 0.008675 -1.21 

TUBB 0.008534 -1.23 NR3C2 0.000446 -1.21 

ST13P4 0.046641 -1.23 COCH 0.000349 -1.21 

GEMIN4 0.023723 -1.23 EIF3D 0.005577 -1.21 

KAT8 0.002078 -1.23 BMS1 0.005252 -1.21 

INTS1 0.007234 -1.23 RAPGEF6 0.031091 -1.21 

U2AF1 0.008294 -1.23 TNFRSF13B 0.023908 -1.21 

RPA1 0.002187 -1.23 THOC5 0.032389 -1.21 

QRICH1 0.002162 -1.23 PAFAH1B1 0.007971 -1.21 

RPN1 0.000218 -1.23 KLHL3 0.042037 -1.21 

ASNS 0.030636 -1.23 MAGED1 0.003599 -1.21 

PDPK1 0.03597 -1.23 STXBP5 0.014454 -1.21 

LRIG1 0.014497 -1.23 EIF4A3 0.043043 -1.21 

AP1M1 0.044312 -1.23 ENO2 0.024421 -1.21 

VPS35 0.021994 -1.23 PRPF19 0.012045 -1.21 

ALKBH5 0.009412 -1.23 FAM120B 0.016568 -1.21 

DSC1 0.002296 -1.23 LRRC47 0.006532 -1.21 

MAN1C1 0.040336 -1.23 RNF216 0.00652 -1.21 

DNAJA3 0.00667 -1.23 USP7 0.002126 -1.21 

ARCN1 0.03678 -1.23 FHL1 0.021284 -1.21 

CS 0.028841 -1.23 SRRM1 0.003582 -1.20 

RRN3 0.009783 -1.23 IMPDH2 0.048273 -1.20 

SYTL2 0.024498 -1.22 SNRPN 0.040929 -1.20 

SLC16A10 0.00038 -1.22 MDC1 0.036666 -1.20 

USP9X 0.003986 -1.22 HSPA9 0.019311 -1.20 

NDRG3 0.0023 -1.22 TBC1D9 0.048261 -1.20 

CALM3 0.03379 -1.22 ARF1 0.028643 -1.20 

DANCR 0.00042 -1.22 DEXI 0.021246 -1.20 

PRKCSH 0.028917 -1.22 ASF1B 0.046464 -1.20 

CDK19 0.008365 -1.22 NIPSNAP1 0.001486 -1.20 

SPECC1L 0.011998 -1.22 BCL2L13 0.010699 -1.20 

SMARCC1 0.001067 -1.22 FAM174A 0.029365 -1.20 

DSC1 0.002665 -1.22    

EPHB4 0.015716 -1.22    

XRN2 0.007856 -1.22    

GTF2IP1 0.02167 -1.22    

HSPBAP1 0.006979 -1.22    

CYB561D1 0.000767 -1.22    

BCAP31 0.01671 -1.22    

ATP1A1 0.006399 -1.22    

EXTL3 0.030463 -1.22    

AKR1B1 0.046774 -1.22    

AKTIP 0.039388 -1.22    

PTBP1 0.023723 -1.22    
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S10 The canonical pathways identified in pSS-associated lymphoma vs healthy controls  The table contains only the pathways that have a 

significant z-score (2 < z-score > -2) 

Ingenuity Canonical Pathways -log(p-value) Ratio z-score Molecules 

Interferon Signaling 1.74E+01 4.44E-01 2.84 
OAS1,IRF9,IFITM1,IFIT3,STAT2,JAK1,IFI6,IFITM3, 

TAP1,IFIT1,STAT1,ISG15,MX1,IFI35,SOCS1,PSMB8 

Dendritic Cell Maturation 2.95E+00 6.21E-02 2.333 
FCGR1B,IL15,HLA-DRB1,IL1RN,MYD88,CREB1, 

STAT1,FCGR1A,STAT2,HLA-DRB4,FCER1G 

RhoGDI Signaling 1.18E+00 4.05E-02 2.236 GNB4,GNG5,ACTG1,MSN,PI4KA,ARHGEF18,FNBP1 

Huntington's Disease Signaling 4.65E+00 6.99E-02 -2 
GNB4,CREB1,PRKCQ,NAPA,CASP1,PSME1,PSME2, 

HSPA6,TAF4,HSPA9,PDPK1,GNG5,SIN3A,PRKCH,HDAC1,GLS 

CD28 Signaling in T Helper Cells 1.96E+00 5.93E-02 -2 
HLA-DRB1,PDPK1,CALM1 (includes 

others),PRKCQ,ITK,FCER1G,CD247 

RhoA Signaling 9.71E-01 4.10E-02 -2 RAPGEF6,EPHA1,ACTG1,MSN,PI4KA 

Calcium-induced T Lymphocyte 

Apoptosis 
4.32E+00 1.25E-01 -2.236 

HLA-DRB1,CALM1 (includes 

others),PRKCQ,FCER1G,PRKCH,MEF2D,CD247,HDAC1 

iCOS-iCOSL Signaling in T Helper 

Cells 
2.76E+00 7.41E-02 -2.236 

HLA-DRB1,PDPK1,CALM1 (includes others),PRKCQ,ITK,IL2RB, 

FCER1G,CD247 

Aldosterone Signaling in Epithelial 

Cells 
1.87E+00 5.26E-02 -2.236 

HSPA9,PDPK1,HSP90B1,PRKCQ,NR3C2, 

PRKCH,HSPA6,PI4KA 

Nitric Oxide Signaling in the 

Cardiovascular System 
1.77E+00 6.00E-02 -2.236 

CALM1 (includes others),SLC7A1,HSP90B1,PRKCQ,PRKCH, 

VEGFB 

Signaling by Rho Family GTPases 6.84E-01 2.99E-02 -2.236 GNB4,GNG5,ACTG1,MSN,PI4KA,ARHGEF18,FNBP1 

Leukocyte Extravasation Signaling 9.41E-01 3.54E-02 -2.646 ACTG1,CRKL,PRKCQ,ICAM3,ITK,MSN,PRKCH 
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S11 The downstream analysis in pSS-associated lymphoma vs healthy controls  The table contains only the diseases and functions that 

have a significant z-score (2 < z-score > -2) 

Categories Diseases or 

Functions 

Annotation 

p-Value Predicted 

Activatio

n State 

Activatio

n z-score 

Molecules 

Cell-To-Cell Signaling and 

Interaction, Cellular Function 

and Maintenance, 

Inflammatory Response 

phagocytosis 

of blood 

cells 

1.25E-03 Increased 2.012 CD36,CXCL10,FCGR1A,GLRX,IL15,ISG15,MYD88,RGCC,SIRPA 

Cell Death and Survival cell death of 

leukocyte 

cell lines 

4.56E-08 Increased 2.026 CD247,CREB1,DNAJA3,EIF2AK2,EIF4B,GADD45B,GLS,HLADRB4,IFIH1,IL15, 

LGALS1,MYC,NBN,NOTCH1,PNPT1,PRKCQ,RRAS,SOCS1,TNFSF10,TUBB 

Cell Death and Survival apoptosis of 

hematopoieti

c cell lines 

7.96E-05 Increased 2.175 CREB1,DNAJA3,EIF2AK2,EIF4B,ICAM3,IFIH1,IL15,MYC,NBN,NOTCH1,PARP1, 

PNPT1,PRKCQ,SOCS1,TNFSF10 

Cell-To-Cell Signaling and 

Interaction, Inflammatory 

Response 

immune 

response of 

T 

lymphocytes 

3.88E-04 Increased 2.232 C3AR1,CASP1,ETS1,FOXO1,IL15,ITK,LGALS9,MYD88,PSME2 

Cell-To-Cell Signaling and 

Interaction, Hair and Skin 

Development and Function 

response of 

epithelial cell 

lines 

8.45E-07 Increased 2.377 DDX58,IFIH1,MID2,TRIM14,TRIM21,TRIM38,TRIM5,TRIM56,TRIM6 

Cell-To-Cell Signaling and 

Interaction, Embryonic 

Development 

response of 

embryonic 

cell lines 

1.00E-06 Increased 2.377 DDX58,IFIH1,MID2,TRIM14,TRIM21,TRIM38,TRIM5,TRIM56,TRIM6 

Cell-To-Cell Signaling and 

Interaction, Renal and 

Urological System 

Development and Function 

response of 

kidney cell 

lines 

1.19E-06 Increased 2.377 DDX58,IFIH1,MID2,TRIM14,TRIM21,TRIM38,TRIM5,TRIM56,TRIM6 

Neurological Disease, 

Skeletal and Muscular 

Disorders 

neuromuscul

ar disease 

1.16E-10 Increased 2.391 ANKRD11,ARRB1,ATP6V1A,BANP,BCL11B,CASP1,CCL2,CIRBP,COCH,CREB1, 

CST3,CYFIP2,DUSP5,DYNLT1,ENO2,EPHB4,EPHX2,EPSTI1,FCGR1A,FCGR1B, 

GBP1,GCH1,HNRNPDL,HSP90B1,ID3,IFIT1,IL1RN,IMPDH2,IRF7,ISG15,LAMP1

, 
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LY6E,MBP,MEF2D,MT1G,MT2A,MX1,NAPA,NDRG3,OAS1,OAS3,PARP1,PEBP1, 

PSMB8,PSMB9,PSME1,RPS4X,RPS6KA5,RSAD2,SAT1,SCARB2,SERPING1, 

SIN3A,SLIRP,SORL1,VCP 

Inflammatory Response immune 

response of 

cells 

3.56E-10 Increased 2.403 C3AR1,CASP1,CCL2,CD247,CD36,CEACAM1,CXCL10,DDX58,DOCK2,ETS1,FC

ER1G,FCGR1A,FOXO1,GLRX,IFIH1,IL15,IRF7,ISG15,ITK,JAK1,LGALS9,MID2,

MYC, 

MYD88,MYH9,PARP1,PSME2,RGCC,SF3A1,SIRPA,SOCS1,STAT1,TRIM14,TRIM2

1, 

TRIM38,TRIM5,TRIM56,TRIM6,UBE2L6 

Cell-To-Cell Signaling and 

Interaction, Inflammatory 

Response 

immune 

response of 

leukocytes 

6.21E-06 Increased 2.479 C3AR1,CASP1,CCL2,CD36,CXCL10,DDX58,ETS1,FCER1G,FOXO1,GLRX,IL15, 

ISG15,ITK,LGALS9,MYD88,PSME2,RGCC,SIRPA,UBE2L6 

Cell Death and Survival apoptosis of 

leukocyte 

cell lines 

6.71E-04 Increased 2.751 CREB1,DNAJA3,EIF2AK2,EIF4B,IFIH1,MYC,NBN,NOTCH1,PNPT1,PRKCQ,SOC

S1,TNFSF10 

Neurological Disease progressive 

motor 

neuropathy 

1.66E-06 Increased 2.891 ARRB1,CALM1(includesothers),CASP1,CCL2,CD36,CST3,ENO2,EPSTI1,FCGR1A, 

FCGR1B,FOXO1,GCH1,HNRNPDL,IFIT1,IMPDH2,IRF7,ISG15,LAMP1,LY6E, 

MAGED1,MBP,MEF2D,MX1,OAS1,OAS3,PEBP1,RPS4X,RSAD2,SCARB2,SERPIN

G1 

Cell Signaling I-kappaB 

kinase/NF-

kappaB 

cascade 

5.73E-07 Increased 3.067 BST2,CASP1,CD36,DNAJA3,HDAC1,LGALS1,LGALS9,MID2,MYD88,PDPK1,RNF

31,SHISA5,STAT1,TRIM22,TRIM38,TRIM5,ZC3HAV1 

Inflammatory Disease, 

Neurological Disease, 

Skeletal and Muscular 

Disorders 

Multiple 

Sclerosis 

8.20E-08 Increased 3.148 ARRB1,CASP1,CCL2,CST3,EPSTI1,FCGR1A,FCGR1B,IFIT1,IMPDH2,IRF7,ISG15

, 

LY6E,MBP,MX1,OAS1,OAS3,RSAD2,SERPING1 

Inflammatory Disease, 

Neurological Disease, 

Skeletal and Muscular 

Disorders 

relapsing-

remitting 

multiple 

sclerosis 

1.54E-07 Increased 3.148 EPSTI1,IFIT1,IRF7,ISG15,LY6E,MX1,OAS1,OAS3,RSAD2,SERPING1 

Cell Signaling protein 

kinase 

cascade 

1.74E-06 Increased 3.313 BST2,CASP1,CCL2,CD36,CEACAM1,CRKL,DNAJA3,DUSP19,EIF2AK2,GADD45

B, 

HDAC1,LGALS1,LGALS9,MID2,MYC,MYD88,NMI,PAFAH1B1,PDPK1,PEBP1,RN

F31,SHISA5,SOCS1,STAT1,STAT2,TRIM22,TRIM38,TRIM5,ZC3HAV1 

Infectious Diseases replication of 

virus 

1.41E-23 Decreased -4.852 ADAR,AKTIP,AP1M1,ARCN1,ATP6V1A,BST2,CBLL1,CCL2,CCR1,CEACAM1,CRE

B1,CST3,CXCL10,DDX58,EIF2AK2,EIF3L,EIF4A3,FCGR1A,GBP1,IFIH1,IFIT1,IF
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ITM1, 

IFITM3,IL15,IRF9,ISG15,ISG20,JAK1,LGALS9,LY6E,MED28,MX1,MX2,MYC,MY

D88,NCL,NMI,OAS1,OASL,PARP12,PI4KA,PRPF8,RSAD2,SAFB,SF3A1,SOCS1, 

SP110,STAT1,STAT2,TAP1,TNFSF10,TRIM14,TRIM21,TRIM38,TRIM5,TUBB,UBE

2L6,USP7,VCP,ZC3HAV1 

Infectious Diseases Viral 

Infection 

4.46E-27 Decreased -4.474 ADAR,AKTIP,AP1M1,ARCN1,ARF1,ARID1A,ARRB1,ATP6V1A,BST2,C3AR1,CAM

K1,CARD16,CBLL1,CCL2,CCR1,CD247,CD36,CEACAM1,CHMP5,CREB1,CST3,C

XCL10,DDX58,DDX60L,DNAJA3,EIF2AK2,EIF3L,EIF4A3,FCGR1A,FCGR1B,FO

XJ2,GBP1,GSTO1,HDAC1,HIST1H1C,HNRNPDL,HSPA6,HSPA9,IFI35,IFIH,IFIT

1,IFIT2,IFIT3, 

IFITM1,IFITM3,IGF2R,IL15,IL1RN,IL2RB,IMPA2,IMPDH2,IRF9,ISG15,ISG20,IT

K, 

JAK1,KHDRBS1,LEF1,LGALS1,LGALS9,LY6E,MED16,MED28,MOV10,MS4A4A, 

MT2A,MX1,MX2,MYC,MYD88,NCL,NMI,OAS1,OASL,PAF1,PARP1,PARP12,PARP

9, 

PI4KA,PRKCH,PRPF8,PSMA3,PSME2,PTTG1,RNASE2,RNF216,RPL10A,RSAD2, 

SAFB,SAMD9,SCARB2,SEC14L1,SEC61G,SF3A1,SFT2D1,SMARCA2,SOCS1,SP10

0, 

SP110,SPATS2L,SSB,STAT1,STAT2,TAP1,TKT,TNFSF10,TRAFD1,TRIM14,TRIM2

1, 

TRIM22,TRIM38,TRIM5,TRIM56,TUBB,UBE2H,UBE2L6,UNC93B1,USP7,VCP, 

ZC3HAV1 

Cell Signaling replication of 

viral replicon 

2.63E-18 Decreased -4.3 ADAR,BST2,EIF2AK2,IFI16,IFIT1,IFITM1,IFITM3,ISG15,ISG20,MX1,OAS1,OAS3,

OASL,PARP10,PI4KA,PLSCR1,RSAD2,TRIM6,ZC3HAV1 

Infectious Diseases replication of 

RNA virus 

1.21E-21 Decreased -4.225 ADAR,AKTIP,AP1M1,ARCN1,ATP6V1A,BST2,CBLL1,CCR1,CEACAM1,CREB1,CS

T3,CXCL10,DDX58,EIF2AK2,EIF3L,EIF4A3,FCGR1A,GBP1,IFIH1,IFIT1,IFITM1, 

IFITM3,IRF9,ISG15,ISG20,JAK1,LGALS9,LY6E,MED28,MX1,MYC,MYD88,NCL,N

MI,OAS1,OASL,PARP12,PI4KA,PRPF8,RSAD2,SAFB,SF3A1,SOCS1,SP110,STAT1,

STAT2,TAP1,TNFSF10,TRIM14,TRIM21,TRIM38,TRIM5,TUBB,UBE2L6,ZC3HAV1 

Protein Synthesis metabolism 

of protein 

1.49E-04 Decreased -3.372 ARRB1,BAG3,BANP,CASP1,CIRBP,CREB1,CST3,CTSH,CYFIP2,DNAJA3,EEF2,EI

F2AK2,EIF3B,EIF3D,EIF3L,EIF4A3,EIF4B,FBXO6,FOXO1,IFI30,IL1RN,LAMP1,

LAP3,MYC,MYD88,MYH9,NOTCH1,PARP12,PRKCQ,PTBP1,RPS4X,SAMD9L,SAT

1,SLC7A1,SORL1,SSB,TBL1X,TNFSF10,TNFSF13B,TP53INP2,UBE2H,USP18,US

P7,VCP 

Infectious Diseases replication of 

Herpesvirida

e 

1.58E-13 Decreased -3.189 ADAR,CST3,CXCL10,DDX58,IFIH1,IRF9,ISG20,MX2,MYD88,OAS1,OASL,PARP1

2, 

RSAD2,STAT1,STAT2 
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Infectious Diseases infection of 

kidney cell 

lines 

1.78E-06 Decreased -3.038 ADAR,ARID1A,EIF2AK2,FOXJ2,HDAC1,HNRNPDL,IFITM1,IFITM3,ISG20,KHD

RBS1,MT2A,PARP9,PRKCH,PRPF8,PSMA3,RNF216,RPL10A,RSAD2,SF3A1,TRIM

56, 

UBE2H,ZC3HAV1 

Infectious Diseases, 

Organismal Injury and 

Abnormalities 

infection of 

embryonic 

cell lines 

1.32E-06 Decreased -3.022 ADAR,ARID1A,EIF2AK2,FOXJ2,HDAC1,HNRNPDL,IFITM1,IFITM3,ISG20, 

KHDRBS1,MT2A,PARP9,PRKCH,PRPF8,PSMA3,RNF216,RPL10A,RSAD2,SF3A1, 

TRIM56,UBE2H,ZC3HAV1 

Infectious Diseases infection of 

epithelial cell 

lines 

1.32E-06 Decreased -3.022 ADAR,ARID1A,EIF2AK2,FOXJ2,HDAC1,HNRNPDL,IFITM1,IFITM3,ISG20, 

KHDRBS1,MT2A,PARP9,PRKCH,PRPF8,PSMA3,RNF216,RPL10A,RSAD2,SF3A1, 

TRIM56,UBE2H,ZC3HAV1 

Infectious Diseases replication of 

Flaviviridae 

4.97E-07 Decreased -2.931 CXCL10,EIF2AK2,IFIT1,IFITM1,IFITM3,ISG15,OASL,PI4KA,RSAD2,UBE2L6 

Infectious Diseases replication of 

Murine 

herpesvirus 4 

1.68E-10 Decreased -2.828 ADAR,CXCL10,DDX58,IFIH1,ISG20,MX2,OAS1,PARP12 

Infectious Diseases infection by 

DNA virus 

5.62E-08 Decreased -2.669 ADAR,EIF2AK2,FCGR1A,FCGR1B,IGF2R,IL15,IL1RN,LGALS1,MYD88,SAMD9, 

STAT1,TRIM21,UNC93B1 

Infectious Diseases infection of 

mammalia 

4.72E-06 Decreased -2.572 CASP1,CD36,DDX58,EIF2AK2,IFI30,IFIH1,IL15,ISG15,ITK,MYD88,STAT1,UNC9

3B1,USP18 

Cell Cycle interphase 6.05E-07 Decreased -2.476 ARRB1,BAG3,BRSK1,BTG1,CAMK1,CD247,EIF2AK2,ETS1,FOXO1,GADD45B, 

HDAC1,ID3,IGFBP7,IL15,LEF1,LGALS1,MT1A,MX2,MYC,NBN,NOTCH1,PAF1, 

PARP1,PLAC8,PLSCR1,PNPT1,PRKCH,PRKDC,PRPF19,PRPF8,PTTG1,RBL2, 

RGCC,RNF31,RPA1,SMARCA2,STAT1,SUN2,TRIM21 

Infectious Diseases infection by 

Herpesvirida

e 

8.89E-06 Decreased -2.463 FCGR1A,FCGR1B,IGF2R,IL15,IL1RN,LGALS1,MYD88,STAT1,UNC93B1 

Cell Cycle G1 phase 6.93E-06 Decreased -2.393 ARRB1,BAG3,CAMK1,CD247,EIF2AK2,ETS1,FOXO1,GADD45B,ID3,IGFBP7,LE

F1,LGALS1,MT1A,MX2,MYC,NOTCH1,PARP1,PLSCR1,PNPT1,PRKCH,PRKDC,P

RPF8, 

RBL2,RGCC,SMARCA2 

Infectious Diseases Bacterial 

Infections 

3.31E-07 Decreased -2.342 CASP1,CCL2,CCR1,CD36,CXCL10,CYSLTR1,FCER1G,FCGR1A,FCGR1B,IFI30,I

L15,IL1RN,IL2RB,MYD88,PARP1,RNASE2,RPS6KA5,SIRPA,SOCS1,STAT1,TRAF

D1, 

UNC93B1,USP18 

Infectious Diseases replication of 

vesicular 

stomatitis 

1.47E-12 Decreased -2.328 DDX58,FCGR1A,IFIH1,IFITM3,IRF9,ISG20,LY6E,OAS1,OASL,PARP12,SOCS1,SP

110,STAT2,TAP1,TRIM38 
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virus 

Infectious Diseases infection of 

cells 

1.18E-10 Decreased -2.265 ADAR,ARCN1,ARF1,ARID1A,ARRB1,CAMK1,CARD16,CASP1,CCR1,DDX58,DDX

60L,EIF2AK2,FOXJ2,HDAC1,HNRNPDL,HSPA9,IFI35,IFITM1,IFITM3,IGF2R,IL

15, 

ISG20,JAK1,KHDRBS1,LGALS9,MED28,MT2A,PAF1,PARP9,PI4KA,PRKCH,PRP

F8,PSMA3,PSME2,RNF216,RPL10A,RSAD2,SAMD9,SEC14L1,SEC61G,SF3A1,SF

T2D1, 

SP110,SPATS2L,SSB,STAT1,STAT2,TAP1,TRAFD1,TRIM21,TRIM5,TRIM56,UBE2

H, 

UNC93B1,ZC3HAV1 

Infectious Diseases replication of 

Influenza A 

virus 

8.05E-09 Decreased -2.257 ADAR,AKTIP,ARCN1,ATP6V1A,CBLL1,CREB1,DDX58,EIF2AK2,EIF3L,EIF4A3, 

GBP1,IFITM1,IFITM3,ISG15,JAK1,MX1,MYC,NMI,PRPF8,RSAD2,SAFB,SF3A1, 

STAT1,TRIM14,TRIM21,TUBB 

Inflammatory Response inflammation 

of eye 

3.81E-04 Decreased -2.236 CST3,IL1RN,IRF9,LGALS1,SOCS1,STAT1 

Infectious Diseases replication of 

Hepatitis C 

virus 

5.35E-04 Decreased -2.201 EIF2AK2,IFIT1,IFITM1,ISG15,PI4KA,UBE2L6 

Cancer, Organismal Injury 

and Abnormalities, 

Reproductive System Disease 

mammary 

tumor 

3.76E-04 Decreased -2.2 ACOT9,AKR1B1,ALDOC,ARID1A,ARRB1,ASF1B,ATP5J2,AXIN2,BLVRA, 

CALM(includesothers),CCL2,CMPK2,CXCL10,EIF2AK2,EIF3B,EIF4B,EPHX2,ETS

1, 

GADD45B,GSTO1,HDAC1,HIST1H1C,HNRNPUL1,HSP90B1,IFIT1,LGALS1,LMO

2, 

MT1F,MT1G,MT2A,MYC,MYH9,NBN,NCL,NOTCH1,PARP1,PDPK1,PRKCQ,PTB

P1,PTTG1,RNF7,RPS3,RPS4X,SIN3A,SLIRP,STAT1,TBC1D9,TNFSF10,TUBB,TYM

P,U2AF1/U2AF1L5,USP9X 

Infectious Diseases replication of 

Influenza 

virus 

2.08E-09 Decreased -2.135 ADAR,AKTIP,ARCN1,ATP6V1A,CBLL1,CREB1,DDX58,EIF2AK2,EIF3L,EIF4A3, 

GBP1,IFITM1,IFITM3,ISG15,JAK1,MX1,MYC,NMI,PRPF8,RSAD2,SAFB,SF3A1,S

TAT1,TNFSF10,TRIM14,TRIM21,TUBB 

Infectious Diseases infection by 

RNA virus 

7.27E-10 Decreased -2.077 ARCN1,ARF1,ARID1A,ARRB1,CAMK1,CARD16,CD36,CEACAM1,DDX58,DDX60

L, 

EIF2AK2,FCGR1A,FCGR1B,FOXJ2,HDAC1,HNRNPDL,HSPA9,IFI35,IFIH1,IFIT

M3, 

IL2RB,IMPDH2,ISG15,ISG20,JAK1,KHDRBS1,LGALS9,MED28,MT2A,MYD88,PA

F1,PARP9,PI4KA,PRKCH,PRPF8,PSMA3,PSME2,RNF216,RPL10A,RSAD2,SEC14

L1, 

SEC61G,SF3A1,SFT2D1,SP110,SPATS2L,SSB,STAT1,STAT2,TAP1,TNFSF10,TRAF
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D1,TRIM5,TRIM56,UBE2H,ZC3HAV1 

 

S12 The upstream regulators in pSS-associated lymphoma vs healthy controls  The table contains only the upstream regulators that have a 

significant z-score (2 < z-score > -2) 

Upstream 

Regulator 

Molecule 

Type 

Predicted 

Activation 

State 

Activation 

z-score 

p-value Target molecules in dataset 

IFNL1 cytokine Activated 6.664 9.18E-66 BST2,C19orf66,CXCL10,DDX58,DDX60,EIF2AK2,GBP1,HERC5,HERC6,IFI27,IFI35,IFI

44,IFI44L,IFI6,IFIH1,IFIT1,IFIT2,IFIT3,IFIT5,IFITM1,IFITM3,IRF9,ISG15,ISG20,LGAL

S3BP,MX1,OAS1,OAS2,OAS3,OASL,PHF11,PLSCR1,PSMB9,RSAD2,SAMD9,SP100,SP1

10,STAT1,TDRD7,TMEM140,TRIM14,TRIM22,UBE2L6,USP18,ZC3HAV1 

IFNA2 cytokine Activated 6.539 6.77E-55 BST2,C19orf66,CXCL10,DDX58,DDX60,EIF2AK2,GBP1,HERC5,HERC6,HSH2D,IFI27,I

FI35,IFI44,IFI44L,IFI6,IFIH1,IFIT1,IFIT2,IFIT3,IFIT5,IFITM1,IFITM3,IRF7,IRF9,ISG1

5,ISG20,LGALS3BP,LY6E,MX1,OAS1,OAS2,OAS3,PARP12,PLSCR1,RSAD2,SOCS1,SP10

0,SP110,STAT1,TDRD7,TNFSF10,TRIM14,UBE2L6,USP18,ZC3HAV1 

PRL cytokine Activated 6.291 2.15E-54 ADAR,BST2,C19orf66,CAMK1,CMPK2,CST3,CTSH,CXCL10,DDX58,DDX60L,DHX58,EI

F2AK2,EPSTI1,HELZ2,HERC5,HERC6,ID3,IFI35,IFI44,IFI44L,IFI6,IFIH1,IFIT1,IFIT3,I

FIT5,IFITM1,IRF7,IRF9,ISG15,LAMP3,LY6E,MAGED1,MSN,MX2,MYC,OAS1,OAS2,OA

S3,PARP10,PARP12,PARP14,PLSCR1,PNPT1,PSME1,PSME2,REC8,RSAD2,SAMD9,SA

MD9L,SHISA5,SOCS1,SP100,SP110,STAT2,TDRD7,TMEM140,TRIM14,USP18,XAF1 

IRF7 transcription 

regulator 

Activated 5.798 4.99E-40 CMPK2,CXCL10,DDX58,DHX58,FCGR1A,GBP5,HELZ2,IFI16,IFIH1,IFIT2,IFIT3,IFIT

M3,IL15,IRF7,ISG15,ISG20,NT5C3A,OAS1,OAS2,OAS3,OASL,PARP12,PARP14,PHF11,

PLAC8,RSAD2,SAMD9L,STAT1,STAT2,TAP1,TDRD7,TNFSF10,UBE2L6,USP18,ZBP1 

IRF3 transcription 

regulator 

Activated 5.944 1.46E-38 CCL2,CMPK2,CXCL10,DDX58,DHX58,FCGR1A,GBP5,HELZ2,IFI16,IFI6,IFIH1,IFIT1,I

FIT2,IFIT3,IFITM3,IL15,IRF7,ISG15,ISG20,NT5C3A,OAS1,OAS2,OAS3,OASL,PARP12,P

ARP14,PHF11,PLAC8,RSAD2,SAMD9L,STAT1,STAT2,TAP1,TDRD7,UBE2L6,USP18,ZB

P1 

Ifnar group Activated 5.728 5.59E-37 CCL2,CXCL10,DDX58,EIF2AK2,FCER1G,IFI16,IFI35,IFIH1,IFIT2,IFIT3,IFITM3,IL15,I

RF7,IRF9,ISG20,MYD88,OAS1,OAS2,OASL,PNPT1,PSMB8,PSMB9,RSAD2,STAT1,STAT

2,TAP1,TAP2,TNFSF10,TRIM21,UBE2L6,UNC93B1,USP18,XAF1,ZBP1 

IFNG cytokine Activated 7.442 1.91E-35 ATP1A1,BATF2,BTG1,CASP1,CCL2,CEACAM1,CMPK2,CTSH,CXCL10,DDB1,DDX58,E

IF2AK2,FCER1G,FCGR1A,FCGR1B,GBP1,GBP4,GBP5,GCH1,GNB4,HERC6,IFI16,IFI2

7,IFI44,IFI44L,IFI6,IFIH1,IFIT1,IFIT2,IFIT3,IFIT5,IL15,IL1RN,IRF7,IRF9,ISG15,ISG20,

KCTD12,LAMP3,LGALS3BP,LGALS9,LY6E,MX1,MX2,MYC,MYD88,NMI,NOTCH1,OAS
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1,OAS2,OAS3,OASL,PRKCQ,PRPF8,PSMB8,PSMB9,PSME1,PSME2,RNF31,RSAD2,RTP

4,SAMD9,SF3A1,SOCS1,SP100,SP110,STAT1,STAT2,TAP1,TAP2,TNFSF10,TNFSF13B,T

RIM22,TYMP,USP18 

STAT1 transcription 

regulator 

Activated 5.378 4.25E-31 BATF2,CASP1,CCL2,CEACAM1,CMPK2,CXCL10,EIF2AK2,FCER1G,GBP1,GBP5,HER

C6,IFI16,IFI27,IFI6,IFIT1,IFIT2,IFIT3,IFITM1,IL15,IRF7,IRF9,ISG15,KCTD12,MX1,MY

C,OAS2,OASL,PARP9,PSMB8,PSMB9,PSME1,PSME2,RSAD2,SOCS1,SP110,STAT1,STA

T2,TAP1,TNFSF10,TRAFD1 

MAVS other Activated 4.516 6.85E-26 CMPK2,CXCL10,DDX58,DHX58,IFIT1,IFIT2,IFIT3,IFITM3,IRF7,ISG15,ISG20,NT5C3A,

OAS1,OAS2,OASL,PARP12,RSAD2,SOCS1,STAT1,STAT2,UBE2L6 

IFNB1 cytokine Activated 5.093 2.56E-25 BST2,CASP1,CCL2,CMPK2,CXCL10,DDX58,EIF2AK2,GBP4,GBP5,GNB4,IFI16,IFI27,I

FIH1,IFIT1,IFIT2,IFIT3,IRF7,IRF9,ISG15,ISG20,MX1,MYC,NMI,NOTCH1,NT5C3A,OAS

1,OAS2,RSAD2,SOCS1,STAT1,STAT2,TNFSF10,TRIM21,USP18 

IRF5 transcription 

regulator 

Activated 4.383 1.95E-24 CMPK2,CXCL10,DDX58,DHX58,IFIH1,IFIT2,IFIT3,IFITM3,IRF7,ISG15,ISG20,NT5C3A

,OAS1,OAS2,OASL,PARP12,RSAD2,STAT1,STAT2,UBE2L6 

EIF2AK2 kinase Activated 4.856 1.52E-23 DDX58,EIF2AK2,IFI27,IFI35,IFI6,IFIT1,IFIT5,IFITM1,ISG15,ISG20,LGALS3BP,MYC,N

MI,OAS1,OAS3,PARP12,PARP9,PLSCR1,REC8,SP140,STAT1,UBE2L6,USP18,ZC3HAV1 

TGM2 enzyme Activated 4.906 2.13E-23 CCL2,CD36,CEACAM1,CXCL10,DDX60,DDX60L,FCER1G,FFAR2,HK3,ICAM3,IFI35,I

FI6,IFIT1,IFIT2,IFIT3,IFIT5,IRF9,LGALS9,LY6E,MT2A,MYC,OAS1,OAS2,OAS3,OASL,P

ARP14,PARP9,PLSCR1,SAMD9L,SIRPA,SP110,STAT1,TAP1,TOR1B,TRIM22,XAF1 

TLR3 transmembran

e receptor 

Activated 4.042 5.14E-22 CMPK2,CXCL10,DDX58,DHX58,EIF2AK2,GADD45B,GBP4,GCH1,HERC5,IFI16,IFI44,

IFI44L,IFI6,IFIH1,IFIT1,IFIT2,IFIT3,IL15,IRF7,ISG15,ISG20,MX1,MX2,MYD88,OAS1,O

ASL,RSAD2,STAT1,TNFSF10,TNFSF13B,TRIM38,USP18,ZC3HAV1 

DDX58 enzyme Activated 3.615 1.07E-19 CXCL10,DDX58,EIF2AK2,IFI35,IFI44,IFIH1,IFIT1,IFIT2,IFIT3,IRF7,ISG15,ISG20,NMI,

OAS1,RSAD2,SOCS1,STAT1,STAT2 

IFNAR1 transmembran

e receptor 

Activated 3.665 1.53E-19 CMPK2,CXCL10,EIF2AK2,IFI16,IFI44,IFIH1,IFIT2,IFIT3,IL15,IRF7,ISG15,MYC,OAS1,

OAS2,OAS3,OASL,PARP12,RNASE2,RSAD2,RTP4,SOCS1,STAT1,TNFSF13B,USP18 

Interferon 

alpha 

group Activated 4.666 5.96E-17 BCL2L13,CASP1,CXCL10,DDX58,EIF2AK2,GBP1,IFI16,IFI27,IFIT1,IFIT2,IFIT3,IL15,I

RF7,ISG15,ISG20,MYD88,OAS1,OAS2,PHF11,RNF31,SF3A1,SOCS1,TNFSF10,TNFSF13

B,USP18 

TLR7 transmembran

e receptor 

Activated 4.534 6.61E-16 CCL2,CXCL10,IFI35,IFI44L,IFIT1,IFIT3,IFITM1,IRF7,IRF9,ISG15,ISG20,MX1,MX2,MY

D88,OAS2,OAS3,RSAD2,SOCS1,STAT1,STAT2,TRIM38 

TLR9 transmembran

e receptor 

Activated 4.357 2.27E-15 CXCL10,GADD45B,GCH1,IFI16,IFI35,IFI44L,IFIT1,IFIT2,IFIT3,IFITM1,IRF7,IRF9,ISG

15,ISG20,MX1,MX2,OAS2,OAS3,RSAD2,SOCS1,STAT1,STAT2,TNFRSF13B,USP18 

SASH1 other Activated 3.638 1.39E-14 CMPK2,CXCL10,HDAC1,HELZ2,IFIT2,IFIT3,IL15,IRF7,ISG15,ISG20,NMI,OASL,RSAD

2,SOCS1,STAT1,STAT2,TRIM21 

SAMSN1 other Activated 3.3 2.34E-14 CMPK2,CXCL10,HDAC1,HELZ2,IFIT2,IFIT3,IL15,IRF7,ISG15,ISG20,NMI,OASL,RGCC,

RSAD2,SOCS1,STAT1,STAT2,TRIM21 
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PAF1 other Activated 3.742 1.10E-13 DDX58,FAM46A,HELZ2,HERC5,IFI44,IFI44L,IFIT3,IFITM3,ISG15,ISG20,OAS2,OAS3,

OASL,ZC3HAV1 

DOCK8 other Activated 3.5 1.13E-13 CMPK2,CXCL10,HDAC1,HELZ2,IFIT2,IFIT3,IL15,IRF7,ISG15,ISG20,NMI,RSAD2,SOC

S1,STAT1,STAT2,TRIM21 

TLR4 transmembran

e receptor 

Activated 3.517 1.12E-12 CCL2,CMPK2,CXCL10,HDAC1,HELZ2,IFI16,IFIT2,IFIT3,IFITM3,IL15,IL2RB,IRF7,ISG

15,ISG20,MX1,NMI,OASL,RGCC,RSAD2,SOCS1,STAT1,STAT2,TNFRSF13B,TNFSF10,T

RIM21,TRIM38 

IFNA1/IFN

A13 

cytokine Activated 2.736 2.32E-12 EIF2AK2,IFI6,IFIT2,ISG15,MX1,OAS1,OAS2,RSAD2 

FADD other Activated 2.851 2.90E-12 CXCL10,DDX58,DHX58,EIF2AK2,GADD45B,IFIH1,IFIT2,IRF7,LY6E,MYC,PSMB8,SOC

S1,STAT1,STAT2,TRAFD1 

NFATC2 transcription 

regulator 

Activated 3.638 6.41E-12 CMPK2,CXCL10,HDAC1,HELZ2,IFIT2,IFIT3,IL15,IRF7,ISG15,ISG20,MYC,NMI,OASL,R

SAD2,SOCS1,STAT1,STAT2 

IRF1 transcription 

regulator 

Activated 2.569 7.88E-12 CASP1,CCL2,CEACAM1,CXCL10,IFI44L,IL15,MYC,PSMB8,PSMB9,PSME1,PSME2,SO

CS1,TAP1,TAP2,TNFSF10,TRIM22 

IFNAR2 transmembran

e receptor 

Activated 2.646 8.45E-11 HERC5,ISG15,OAS1,PSMB8,PSMB9,PSME2,UBE2L6,USP18 

TNF cytokine Activated 4.241 6.62E-10 ATP1A1,BST2,CASP1,CCL2,CCR1,CXCL10,DUSP5,ETS1,GBP1,GCH1,GNB4,HK3,HLA-

DRB4,IFI16,IFIT3,IL15,IL1RN,ISG15,JAK1,KYNU,LAMP3,MYC,OAS1,OAS2,OASL,PLSC

R1,PSMB8,PSMB9,PSME2,RNASE2,RNF31,RPS3,SAT1,SCO2,SLC7A1,SOCS1,STAT1,TA

P1,TDRD7,TNFSF10,TNFSF13B,TYMP,UBE2H 

TICAM1 other Activated 3.921 1.10E-09 CCL2,CMPK2,CXCL10,DDX58,IFI16,IFIT1,IFIT2,IFIT3,IL15,IRF7,ISG15,ISG20,OASL,R

SAD2,SOCS1,TNFSF10 

TNK1 kinase Activated 2.646 1.32E-08 IFI16,IFIH1,IFIT2,IRF7,ISG20,OAS2,TNFSF10 

IFN 

alpha/beta 

group Activated 3.132 1.17E-07 CCL2,IFI16,IFIT3,LY6E,RSAD2,SOCS1,STAT1,STAT2,TNFSF10,TRIM21 

FZD9 g-protein 

coupled 

receptor 

Activated 2.433 4.45E-07 CXCL10,IFI16,IFI44,IRF7,ISG15,STAT1 

IFN Beta group Activated 2 1.73E-06 IFI6,IFIT1,IRF9,MX1,OAS2,SOCS1,STAT1,USP18 

MAPKAP1 other Activated 2 8.15E-06 IFI16,IFIT2,OAS2,PHF11 

MYD88 other Activated 2.845 1.99E-05 CCL2,CMPK2,CXCL10,IFIT2,IL15,IL1RN,IRF7,ISG15,OASL,RSAD2,SOCS1,TNFRSF13B

,TNFSF13B,USP18 

MAP2K6 kinase Activated 2.224 2.83E-05 CXCL10,IRF9,ISG15,STAT1,TNFSF10 

Map3k7 kinase Activated 2.63 1.05E-04 CMPK2,CXCL10,IFIT2,IL15,ISG15,ISG20,RSAD2 
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ARHGAP2

1 

other Activated 2.449 1.45E-04 CXCL10,IFIT3,IL15,ISG20,NMI,TRIM21 

JAK1 kinase Activated 2.219 1.59E-04 CCL2,EIF2AK2,IFIT2,MX1,STAT1 

IFIH1 enzyme Activated 2.2 1.59E-04 CXCL10,IRF7,ISG15,OAS1,OAS2 

IL12B cytokine Activated 2.393 2.12E-04 CXCL10,DUSP5,IRF9,SOCS1,STAT1,STAT2 

SMARCB1 transcription 

regulator 

Activated 2.449 2.35E-04 BAG3,BTG1,CEACAM1,EIF2AK2,IFITM1,MX1,OAS1,OAS3 

MAP2K3 kinase Activated 2.213 3.05E-04 CXCL10,IRF9,ISG15,STAT1,TNFSF10 

JUN transcription 

regulator 

Activated 2.184 4.50E-04 ASNS,C3AR1,CCL2,CXCL10,IFI16,IGF2R,MBP,MT2A,MYC,RNF7,SNRPN,STAT1 

TMEM173 other Activated 2.236 4.70E-04 GBP5,IFI16,ISG15,OAS1,OASL 

IL12A cytokine Activated 2.183 6.94E-04 CXCL10,IRF9,SOCS1,STAT1,STAT2 

PLK4 kinase Activated 2 1.14E-03 CMPK2,CXCL10,IFIT2,IL15 

IKBKB kinase Activated 3.124 1.68E-03 CCL2,CCR1,CXCL10,ETS1,GCH1,IFI16,IL1RN,ISG15,MBP,MYC,SOCS1 

IL27 cytokine Activated 2.412 2.89E-03 CCL2,CXCL10,IL1RN,SOCS1,STAT1,TAP1 

CD14 transmembran

e receptor 

Activated 2 3.67E-03 CCL2,CXCL10,IFIT1,SOCS1 

P38 MAPK group Activated 2.071 3.99E-03 BATF2,CCL2,CXCL10,ETS1,GBP1,IRF7,MYC,STAT1,TNFSF10,ULK1 

NFkB 

(complex) 

complex Activated 2.775 4.49E-03 CCL2,CXCL10,DUSP5,IL15,IRF7,MYC,NOTCH1,PSMB9,RSAD2,SOCS1,TAP1,TAP2,TN

FSF10,TRIM38 

CD40LG cytokine Activated 2 1.27E-02 ANXA7,CCL2,GCH1,HLA-DRB4,LAMP3,STAT1 

IL1B cytokine Activated 2.629 1.96E-02 AKR1B1,ATP1A1,CCL2,CXCL10,FOXO1,GCH1,IL15,IL1RN,ISG15,MT2A,NMI,PLSCR1,

TNFAIP6 

IKBKG kinase Activated 2.417 2.17E-02 CCR1,GCH1,IFI16,IL1RN,IRF7,ISG15 

BTNL2 transmembran

e receptor 

Activated 2 5.30E-02 GBP4,IFITM3,NCOA7,TNFSF10 

MAPK1 kinase Inhibited -7.59 1.81E-46 ADAR,BST2,CDK19,DDX58,EIF2AK2,GBP1,GBP5,GLS,HERC5,IFI16,IFI27,IFI35,IFI44,

IFI6,IFIH1,IFIT1,IFIT2,IFIT3,IFIT5,IFITM1,IFITM3,IGFBP7,IRF7,IRF9,ISG15,ISG20,L

AMP3,LAP3,LGALS1,LGALS3BP,MX2,NMI,OAS1,OAS2,OAS3,OASL,PARP12,PHF11,PL

SCR1,PSMB8,PSMB9,PSME2,SMARCC1,SP100,SP110,STAT1,STAT2,SUN2,TAP1,TDRD

7,TNFSF10,TRIM14,TRIM21,TRIM22,TRIM38,TRIM5,UBE2L6,USP18,ZC3HAV1 

TRIM24 transcription 

regulator 

Inhibited -5.874 2.04E-37 CMPK2,CXCL10,DDX58,DDX60,DHX58,EPSTI1,GBP4,HERC6,IFI35,IFI44,IFIH1,IFIT2

,IFIT3,IRF7,IRF9,ISG15,LGALS3BP,MOV10,NMI,OAS1,OASL,PARP12,PHF11,PLAC8,P
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RKCQ,PSMB8,PSMB9,RTP4,SAMD9L,SHISA5,SOCS1,STAT1,STAT2,TAP1,TRAFD1,USP

18 

CNOT7 transcription 

regulator 

Inhibited -2.621 1.11E-31 BST2,CMPK2,HERC6,IFI27,IFI35,IFI44L,IFI6,IFIT5,IFITM1,ISG15,LGALS3BP,OAS1,O

AS2,OAS3,PARP12,PLSCR1,PSMB8,SP110,STAT1,TAP1,TAP2,UBE2L6 

IL1RN cytokine Inhibited -5.385 6.14E-29 DDX58,GBP1,HERC6,IFI27,IFI44,IFI44L,IFI6,IFIH1,IFIT3,IFIT5,IRF7,IRF9,ISG20,LA

MP3,LGALS9,MX1,MX2,OAS1,OAS2,OAS3,OASL,RSAD2,RTP4,SAMD9,SP100,STAT2,T

NFSF10,TRIM22,USP18 

ACKR2 g-protein 

coupled 

receptor 

Inhibited -4.583 3.51E-27 ADAR,CXCL10,DDX58,DDX60,DHX58,EIF2AK2,IFI16,IFI44,IFIT2,IFIT3,IRF7,ISG15,IS

G20,OAS1,OAS2,OAS3,OASL,RSAD2,STAT1,STAT2,USP18 

SOCS1 other Inhibited -3.674 3.61E-14 CXCL10,DDX58,GBP5,IFI16,IFI44,IFIH1,IFIT1,IFIT2,IFIT3,IL2RB,IRF7,ISG15,ISG20,

MX1,OAS1,OAS2,SOCS1,STAT1 

USP18 peptidase Inhibited -3.104 1.92E-13 CXCL10,IFI6,IFITM3,IRF7,IRF9,ISG15,MX1,OAS1,SOCS1,TNFSF10 

PTGER4 g-protein 

coupled 

receptor 

Inhibited -4.013 9.02E-13 CCL2,CMPK2,CXCL10,DDX58,GBP4,HERC6,IFI16,IFI35,IFIH1,IFIT2,IRF7,ISG20,LHF

PL2,PARP14,RSAD2,RTP4,TNFSF10,TRIM21,USP18,XAF1 

DNASE2 enzyme Inhibited -2.606 3.66E-12 CXCL10,DHX58,IFIT3,IRF7,ISG15,OAS1,OAS3,RSAD2,RTP4,USP18,ZBP1 

BTK kinase Inhibited -3.101 5.55E-12 CXCL10,ETS1,IFI35,IFI44L,IFIT1,IFIT3,IFITM1,IRF9,ISG15,ISG20,MX1,MX2,OAS2,OA

S3,STAT1 

TAB1 enzyme Inhibited -2.985 1.76E-10 CXCL10,GBP1,GCH1,IFIH1,IFIT1,IRF7,TNFSF10,TNFSF13B,XAF1 

GAPDH enzyme Inhibited -2.534 2.24E-10 CCL2,FCER1G,IFI6,IFIT2,IFITM1,OAS1,OAS2,OAS3,STAT1,UBE2L6 

Irgm1 other Inhibited -2.53 4.31E-09 CXCL10,ID3,IFI16,IFIT2,IFIT3,IRF7,OAS2,OASL,RSAD2,USP18 

MAP3K7 kinase Inhibited -2.985 7.04E-09 CXCL10,GBP1,GCH1,IFIH1,IFIT1,IRF7,TNFSF10,TNFSF13B,XAF1 

ISG15 other Inhibited -2.219 1.36E-08 DDX58,IFI6,IFITM3,MX1,OAS1 

IRF4 transcription 

regulator 

Inhibited -2.377 1.52E-08 CXCL10,GBP1,IL1RN,IRF7,IRF9,PHF11,PLSCR1,PRKCQ,STAT1,STAT2,TNFSF10, 

TNFSF13B 

mir-21 microrna Inhibited -2.892 9.25E-07 CXCL10,DHX58,FCGR1A,GBP5,IFI16,ITK,MYD88,OAS2,OAS3,PSME2,STAT1,STAT2,T

AP1 

SOCS3 phosphatase Inhibited -2.804 1.73E-06 CXCL10,IFIT1,IFIT2,ISG20,MX1,OAS1,OAS2,SOCS1 

mir-146 microrna Inhibited -2.207 8.49E-06 CCL2,CXCL10,MBP,MYD88,SOCS1 

IL10RA transmembran

e receptor 

Inhibited -3 1.34E-04 BATF2,CD36,CYFIP2,FHL1,GBP5,HK3,IFI16,IL1RN,IRF7,PSMB8,PSMB9,RSAD2,STAT

1, 

TAP1,TAP2,ZBP1 
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CD3 complex Inhibited -2.411 1.75E-03 BTG1,CD247,ETS1,HSP90B1,IL2RB,IRF9,LAMP1,LEF1,STAT1,TNFSF10 

RPSA translation 

regulator 

Inhibited -2 2.02E-03 GBP4,ISG15,STAT1,TAP1 

SUMO3 other Inhibited -2 3.29E-03 CEACAM1,ISG15,LAMP3,LY6E 

SUMO2 enzyme Inhibited -2 5.00E-03 CEACAM1,ISG15,LAMP3,LY6E 

ERK1/2 group Inhibited -2.18 5.84E-03 ARRB1,CCL2,FOXO1,IFIT1,MYC,PSMB8,PSMB9,TAP1,TAP2 

MKNK1 kinase Inhibited -2.236 3.64E-02 BAG3,MYC,NELL2,PAFAH1B1,PTBP1 

ADORA2A g-protein 

coupled 

receptor 

Inhibited -2.236 6.64E-02 ALDOC,CXCL10,EEF2,IFITM3,NAPA 

CLDN7 other Inhibited -2 6.66E-02 GLS,LYSMD2,MT1A,MT2A 

IGF1 growth factor Inhibited -2.207 1.63E-01 MBP,PSMB8,PSMB9,TAP1,TAP2 
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Supplementary Figures 

SF1 Electropherograms of the amplified cRNA of the first 12 G-depleted samples. A01-

A12 represent the samples which distributed randomly on the Bioanalyzer chip   

 

SF2 Electropherograms of the amplified cRNA of the second 12 G-depleted samples. 

B01-B12 represent the samples which distributed randomly on the Bioanalyzer chip   
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SF3 Electropherograms of the amplified cRNA of the first 12 G-non depleted samples. 

C01-C12 represent the samples which distributed randomly on the Bioanalyzer chip. The 

sharp peaks represents the globin mRNA within the samples.    

 

SF4  Electropherograms of the amplified cRNA of the second 12 G-non depleted samples. 

D01-D12 represent the samples which distributed randomly on the Bioanalyzer chip. The 

sharp peaks represents the globin mRNA within the samples.    
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SF5 The molecular networks analysis in pSS-associated lymphoma vs healthy controls Only 18 networks from the analysis are shown as 3 

networks have only 2 genes 

    

Network 2 Network 3 
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Network 4 Network 6 
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Network 7 Network 8 
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Network 9 Network 10 
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Network 11 Network 12 
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Network 13 Network 14 
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Network 15 Network 17 
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Network 18 Network 19 
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Network 20 Network 21 

 


