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Abstract

The study of turbulence in superfluid Helium II suggests that at least in part the rules

of classical turbulence are obeyed. The question posed is, whether the tangles of quantised

vorticity that represent turbulence in a superfluid are directly analogous to the swirls and

eddies found in turbulent classical fluids. A cornerstone of classical turbulence has been

the evidence of the Kolmogorov scaling and this has been observed in some experimental

studies of superfluid turbulence. Here we contrast quantum turbulence in various scenar-

ios to further our understanding and confidence in such modelling as well as to search for

evidence of any adherence to Kolmogorov.

In all numerical simulations presented here turbulence in the superfluid is driven by

motions of the normal fluid. My work approaches the superfluid turbulence through three

distinct normal fluid models. In most physical experiments with superfluid helium, turbu-

lence is generated in two ways. Firstly, thermally (by applying a heat flux, as in thermal

counterflow) and we model this by using a uniform normal fluid. Secondly, mechanically

(by stirring the liquid) and we model this in one of two ways; either a synthetic turbulence

using a kinematic simulations (KS) flow or with a frozen snapshot from a direct numerical

simulation (DNS).

We determine the difference between thermally and mechanically driven quantum tur-

bulence. Using the kinematic simulations model we find that in the latter the energy

is concentrated at the large scales, the spectrum obeys Kolmogorov scaling, vortex lines

have small curvature, and the presence of coherent vortex structures induces vortex recon-

nections at small angles. In contrast, when we employ our uniform normal fluid we find

the energy is concentrated at the mesoscales, the curvature is larger, the vorticity field

is featureless and reconnections occur at larger angles. Our results suggest a method to

experimentally detect the presence of superfluid vortex bundles.

We show that vortex tangles with the same vortex line density have different energy

spectra, depending on the driving normal fluid, and identify the spectral signature of two

forms of superfluid turbulence: Kolmogorov tangles and Vinen tangles. By decomposing

the superfluid velocity field into local and nonlocal contributions, we find that in Vinen

tangles the motion of vortex lines depends mainly on the local curvature, whereas in Kol-

mogorov tangles the long-range vortex interaction is dominant and leads to the formation

of clustering of lines, in analogy to the ‘worms’ of classical turbulence.

Finally, we compute the frequency spectrum of superfluid vortex density fluctuations

for tangles of the same vortex line density, but which are driven by two different nor-

mal fluid models. Taking our measurements in a sufficiently small cube to eliminate any

filtering effect, we observe the f−5/3 that has been experimentally observed within the

Kolmogorov tangles whereas for the Vinen tangles we find a flat and featureless spectrum.
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Chapter 1

Introduction

1.1 Classical Turbulence

A Formula 1 car built with a supreme understanding of combustion engine technology

and the fullest appreciation of how to make the stickiest rubber tyres would be completely

ineffective without a fundamental understanding of turbulence. In our world virtually

everything that moves creates turbulence. Some systems are designed to overcome turbu-

lence, some to harness turbulence, but an understanding of turbulence is key to much of

man’s interaction with his home planet. What allows a Formula 1 car to travel at speeds

up to 230 mph and yet not take to the skies like a plane is the designers exploitation of

turbulent flows.

With the advent of satellite imaging we can now observe large scale turbulent flows

such as those generated by hurricanes and note perhaps their similarity to the flow of

water disappearing out of the sink. The range of scales for these turbulent events is huge

and the forces acting within them range from barely enough to move a bubble to large

enough to bring down a building. How could we predict the movement of a hurricane and

protect ourselves from it, how could we use the force of moving water to deliver us power?

These questions are addressed daily by engineers, mathematicians and physicists.

Even at the cutting edge of research and design with turbulent flows, the understand-

ing is far from complete and in spite of the significant resources spent on the matter each

year only the tiniest advances are made. The basic law defining turbulent flows - the

Navier-Stokes Equation, the basis of which was first formulated in 1845 [Navier, 1822;

Stokes, 1845] - is well understood but the wind tunnel and not the computer still reigns

supreme.
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From the early pictorial representations of turbulent flows such as those famously de-

picted by Leonardo da Vinci (dated between 1508 and 1513), right through to the present

time, we consider turbulence as a set of swirls of varying sizes, the larger appearing to

propagate the smaller. We term these elements ‘eddies’ or ‘vortices’. Turbulent flows are

typically chaotic in nature and lacking any form of symmetry. The velocity field within

a turbulent flow can vary greatly in both time and space creating a very unpredictable

system.

Figure 1.1: Leonardo da Vinci’s sketch of turbulence. Image taken from [Frisch, 1995]

Within such a complex system we are able to create models based on a concept of

a mean flow with an additional fluctuating component - this is known as the Reynolds

decomposition (more on this on page 8). Modelling in this way allows the emergence of

near-universal statistical characteristics, whereby we can begin to describe flows in terms

of these averaged properties. Within fully developed turbulence (found in everyday life)

there is a broad spectrum of eddy sizes and timescales for these eddies to either break

down or dissipate. It is this combination of massive length scales and widely varying time

scales, which means numerical simulations of realistic and useful flows are, to all intents

and purposes, impossible with the current computing power available, and indeed any

computing power likely to be coming available in the near future.
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In 1922 L. F. Richardson [Richardson, 1922] adapted The Siphonaptera nursery rhyme

to produce:

“Big whirls have little whirls;

That feed on their velocity;

And little whirls have lesser whirls;

And so on to viscosity”

This poem nicely describes what is known as the Richardson Cascade in turbulence.

This is where instabilities within the flow give rise to the creation of large eddies which

then dissipate their energy into the creation of smaller eddies. Hence we have a ‘cascade’

of energy through the eddies from large to small scales. It is the inertial forces, and not

viscosity, that are responsible for the cascade until the point where the eddies are reduced

to a size where their Reynolds number (the ratio of the magnitudes of inertial force (per

unit mass) and viscous force (per unit mass)) is of order unity. At this point viscosity

drives the cascade to extinction and it is at this scale that all the kinetic energy of the

system is dissipated as heat.

Figure 1.2: Visualisation of Richardson’s cascade. Image taken from [Nazarenko, 2011]

Feynman asserted that ‘turbulence is the most important unsolved problem of classi-

cal physics’ [Feynman et al., 1964], and there are a great many reasons why it remains
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unsolved. Along with those already highlighted, we encounter yet more problems when

we try to define what an ‘eddie’ actually is, and how it breaks down.

In trying to understand and model turbulence we are forced to deal with the Navier-

Stokes equation. Strictly speaking this equation describes the behaviour of all incompress-

ible flows (∇ · v = 0). For dealing with laminar flows within a pipe it is quite the useful

tool, however when dealing with turbulent flows it presents quite the obstacle. If we look

at the equation itself

ρ

[

∂v

∂t
+ (v ·∇)v

]

= −∇P + µ∇2v + F, (1.1)

where ρ is the fluid density, v is the velocity vector, P is the fluid pressure, µ is the viscos-

ity of the fluid (a measure of the relative difficulty of displacing the fluid by an external

force), and F is the ‘body force’ an example of which could be gravity. It is the nonlin-

earity of this equation that makes both the analytic process and the numerical modelling

of it so complex and computationally expensive.

In observing the decay of a turbulent system it is this same nonlinear element of

the Navier-Stokes that drives the flow through ever smaller scales. If we consider the

following 1D velocity field v = sin(kx) and examine the effect of putting this through the

nonlinearity (also in 1D) we find:

v
∂v

∂x
= sin(kx)

∂

∂x
(sin(kx)) (1.2)

= sin(kx)k cos(kx) (1.3)

=
k

2
sin(2kx). (1.4)

So clearly this nonlinearity has taken in a flow of one scale and produced a flow half

the size since sin(2kx) varies over length scales half the size of sin(kx).

We have already discussed how turbulence within a flow manifests itself on a wide

range of scales. If we now seek to give these scales some form of mathematical definition

we note the following categories; the ‘Energy containing eddies’ (or ‘Injection range’) con-

tain the largest eddies within our flow and the typical scale of these eddies L is referred

to as the integral scale; most of the energy within the flow is contained here. Next we

have the ‘Universal equilibrium range’ where the motions of the flow are independent of

the motions of the large scale flow, then we have the ‘Inertial subrange’ which contains a

range of scales away from both the largest and smallest scales where viscous effects are of
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little importance. Finally we have the ‘Dissipation Range’ which holds the smallest eddies

within our flow and it is here where viscous effects take hold and dissipate our energy, the

typical scale of eddies within this grouping η is known as the Kolmogorov microscale.

Figure 1.3: Visualisation of the scales within a turbulent flow and their energy containment1.
Image adapted from [Gnedin et al., 2015]

In order to gain a clearer understanding of the consequences of the Navier-Stokes

Equation, we need to know a little more about the concept of the Reynolds number. We

have already noted that it is the ratio of the magnitudes of inertial force (per unit mass)

and viscous force (per unit mass) but we have not yet given it mathematical meaning. If

we say that U is a typical velocity within the flow and that the integral scale L is the

characteristic length scale of the flow we can then say that the order of the magnitude of

the inertial force (v ·∇)v is U2/L and the order of magnitude of the viscous force ν∇2v

is νU/L2. Therefore the ratio of the two quantities is (U2/L)/(νU/L2) which gives us the

Reynolds number as:

Re =
UL

ν
. (1.5)

It is worth noting that experiments indicate that eddies of this scale will ‘break-up’

on a timescale of the order τ = L/U . We can now introduce the Reynolds number in

to the Navier-Stokes equation by using the following dimensionless variables (using the

background pressure P0)

1For clarity it should be noted that we use wavenumbers k as another way to describe length scales r.
They are related by k = 2π/r.
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x′ =
x

L
, v′ =

v

U
, t′ =

tU

L
, P ′ =

P − P0

ρU2
, (1.6)

and substituting them in to the Navier-Stokes equation (Eqn. 1.1) to obtain:

ρ

[

∂v

∂t
+ (v ·∇)v

]

= −∇P +
1

Re
∇2v. (1.7)

This is the dimensionless Navier-Stokes equation (note we have dropped the primes from

the new variables which feature in this equation and we neglect any body forces). From

this it can be understood that the Reynolds number is a key determinant on the magni-

tude of the viscous term within the equation.

As mentioned earlier, the Navier-Stokes equation does have solutions and indeed in

1941 Kolmogorov derived one of the limited number of ‘exact’ results [Kolmogorov, 1941],

however in order to achieve this he allowed himself the assumption of a homogeneous and

isotropic flow which means the flow has no preferred direction of motion nor does it differ

from one area to the next. Following the approach of Frisch [Frisch, 1995] we use dimen-

sional analysis to derive the results.

Kolmogorov’s 1st similarity hypothesis was that the statistical properties of the small

scale motions, η within the flow are uniquely determined by the energy dissipation, ϵ and

the viscosity of the fluid, ν.

η ! ναϵβ . (1.8)

The dimensions of these quantities in SI units are [η] = m, [ν] = m2/s, and [ϵ] = m2/s3.

Thus dimensional analysis yields:

m =

(

m2

s

)α(
m2

s3

)β

⇒ 1 = 2α+ 2β, (1.9)

0 = −α− 3β. (1.10)

This gives us α = 3/4 and β = −1/4 and we obtain our first scaling law:

η !

(

ν3

ϵ

)1/4

. (1.11)

We now turn our attention to the large scale motions of the flow. We note firstly that

the kinetic energy density is defined to be (1/2)ρ|v|2, and secondly (from earlier) that the

typical decay timescale of these motions is of order L/U . From these we can therefore say
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that the rate of loss of kinetic energy within our flow is ! U2/(L/U) = U3/L. This loss of

kinetic energy is what drives the cascade and so the rate of flow of energy into the cascade

is given by U3/L. Therefore in statistically steady turbulence - where the rate of flow of

energy in to the cascade is balanced by the rate at which viscosity dissipates energy - we

can define the rate of viscous energy dissipation as:

ϵ !
U3

L
. (1.12)

Taking these together we can form a relation between the largest and smallest scale

motions of our flow:-

η !

(

ν3

ϵ

)1/4

=

(

ν3

U3/L

)1/4

=

(

L4ν3

U3L3

)1/4

= L
( ν

UL

)3/4
= L(Re)−3/4. (1.13)

We now move on to Kolmogorov’s 2nd similarity hypothesis in which he asserts that

within the inertial subrange of the flow, where viscosity is irrelevant, only the length scale

ℓ under consideration (where ℓ = 2π/k and k is the wavenumber) and the rate of energy

dissipation, ϵ determine the statistical properties at a given scale.

A highly significant statistical property of turbulence is the energy spectrum. We recall

that the kinetic energy density is defined as (1/2)ρ|v|2 , using this we define the energy

spectrum E(k) which is the total energy per unit mass contained at each scale 2π/k, per

logarithmic interval of k as:

∫ ∞

0
E(k)dk =

1

2
⟨v2⟩, (1.14)

where the angular brackets represent an averaging of the velocity. The dimension of the

wavenumber k is [1/m] and hence the dimension of the energy spectrum is:

[E(k)] =
m2/s2

1/m
=

m3

s2
. (1.15)

Now from Kolmogorov’s 2nd similarity hypothesis we are able to state

E(k) ! ϵδkγ . (1.16)

Once again deploying dimensional analysis, we derive:

7



Chapter 1. Introduction

m3

s2
=

(

m2

s3

)δ (
1

m

)γ

⇒ 3 = 2δ − γ (1.17)

2 = 3δ, (1.18)

which gives us δ = 2/3 and γ = −5/3, thus we have obtained what is arguably Kol-

mogorov’s most famous scaling law:

E(k) = Cϵ2/3k−5/3, (1.19)

where C is known as the Kolmogorov constant which is expected to be of order unity.

This equation and its implications are a cornerstone of the work in this thesis and will be

referred to multiple times throughout.

Although the foregoing mathematics is not and was not intended as a thorough testing

and analysis of Navier-Stokes and Kolmogorov’s work in this area it does leave us with a

clear understanding of some of the complexities faced by mathematicians working in the

field of classical turbulence. The last of the issues with the Navier-Stokes Equation that

we will address is the ‘closure problem’. Put simply, whenever we seek to analytically

solve our governing equations, we have by definition more variables to solve for than we

have equations to solve them with. We can demonstrate this principle by deploying the

Reynolds decomposition within the Navier-Stokes equation in order to obtain the Reynolds

equation. In the Reynolds decomposition we can decompose the velocity in to a mean and

fluctuating component, such that:-

v = v̄+ v′, (1.20)

where v̄ is the mean component and v′ is the fluctuating component. We can likewise

decompose both the body force and the pressure of a flow. Writing the Navier-Stokes

equation out in suffix notation we have:

ρ

[

∂vi
∂t

+ vj
∂vi
∂xj

]

= −
∂P

∂xi
+ ρν∇2vi + Fi. (1.21)

If we now apply the Reynolds decomposition to this equation we obtain:

ρ
∂

∂t
(v̄i + v′i) + ρ(v̄j + v′j)

∂

∂xj
(v̄i + v′i) = −

∂

∂xi
(P̄ + P ′) + ρν∇2(v̄i + v′i) + F̄i. (1.22)

By averaging this equation we effect the removal of several terms and ultimately we derive:
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ρ
∂

∂t
v̄i + ρv̄j

∂

∂xj
v̄i + ρ

〈

v′j
∂

∂xj
v′i

〉

= −
∂

∂xi
P̄ + ρν∇2v̄i + F̄i. (1.23)

This is comparable to the Navier-Stokes equation for the mean flow but has the additional

term ρ⟨v′j∂/∂xj(v
′
i)⟩ representing the effect of the turbulent fluctuations on the mean flow.

We can rewrite this term as:-

ρ

〈

v′j
∂

∂xj
v′i

〉

=
∂

∂xj
⟨ρv′iv

′
j⟩, (1.24)

where −⟨ρv′iv
′
j⟩ is defined as the Reynolds Stress. Substituting this back in to equation

1.24 and rearranging gives us:

ρ
∂

∂t
v̄i + ρv̄j

∂

∂xj
v̄i = −

∂

∂xj
⟨ρv′iv

′
j⟩ −

∂P̄

∂xi
+ ρν∇2v̄i + F̄i. (1.25)

This is the Reynolds equation, and if the Reynolds stress is known the equation can be

solved to find the mean flow. However, if the Reynolds stress is not known and we attempt

to evolve the equation numerically we find that,

∂

∂t
(−⟨ρv′iv

′
j⟩) depends upon ⟨ρv′iv

′
jv

′
k⟩, (1.26)

and similarly,

∂

∂t
(−⟨ρv′iv

′
jv

′
k⟩) depends upon ⟨ρv′iv

′
jv

′
kv

′
l⟩. (1.27)

Each request of the Reynolds equation to produce a solution simply results in the pro-

duction of another problem, and this persists no matter how many iterations we proceed

through and Navier-Stokes has no mechanism for overcoming this closure problem. A

great deal of effort has been concentrated on this issue but if progress is to be made then

we need extra assumptions that can be reasonably made to allow us to model the closure.

Whilst the Naiver-Stokes Equation is adequate and sufficient for us to describe and

understand classical turbulence, there is a liquid environment where the laws of quan-

tum mechanics govern all motion, and not classical physics. At temperatures approaching

absolute zero, helium is a liquid that flows without large scale eddies and where energy

is not dissipated through viscosity. In modelling this ‘superfluid’ world we preclude the

difficulties of Navier-Stokes and instead take advantage of the peculiar nature of vorticity,

although even without the need to solve Navier-Stokes, the world of quantum turbulence

is still proving slow to give up its secrets.

Perhaps the most profound effect demonstrated by a superfluid is that vorticity in the
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system is constrained to lie on ‘vortex filaments’ (more of which in section 1.2), and it is

around these that the flow circulates. Another notable contrast to classical turbulence is

that instead of having eddies of varying strength and size, in a superfluid all the vortices

have the exact same strength and core structure (size). Classical fluids are always subject

to viscosity and any motion that is induced in the fluid will be dampened to extinction by

this viscosity. Superfluids by contrast, are not subject to viscosity and receive no damping

effect through this mechanism.

In a non-viscous world, what concept do we have for turbulence? Well, we have our

filaments which can be induced to move and in doing so they interact to form vortex

tangles. These ‘tangles’ can be steady chaotic systems which in some cases do exhibit

some of the near-universal properties of classical turbulence [Skrbek & Sreenivasan, 2012;

Vinen & Niemela, 2002].

The question is; will a deeper understanding of the turbulence found in our ‘superfluid’

(known as Quantum Turbulence) provide a better understanding of the classical turbu-

lence we are subject to everyday?

1.2 From helium I to helium II

We start our counting of time from notable dates: The big bang, the birth of Christ, but for

low temperature physicists perhaps counting from 10th July 1908 would be equally valid.

At 5.45am on this date, having spent the previous 3 years accumulating sufficient stocks of

helium gas, Heike Kamerlingh Onnes (1853 - 1926) and his team at The University of Lei-

den in Holland started the cooling process designed to liquefy helium for the first time ever.

Onnes had founded his Cryogenics Laboratory in 1904, inviting fellow researchers to

join him in the quest to liquefy helium. Onnes was keen to share his efforts with others in

the field, this was in contrast perhaps to the approach of James Dewar, who was another

key figure in the efforts to liquefy the permanent gases and a long term rival of Onnes.

Dewar was known for hiding key parts of his apparatus when presenting his public lectures

to the Royal Institute and it is some irony that it was indeed the eponymous Dewar flask2

that was the key piece of apparatus used by Onnes in his iterative Joule-Thomson cooling

2The Dewar flask is a twin walled glass vessel with the inner space evacuated which allows a liquid
contained within it to dissipate very little heat through the walls. Dewar sued Thermos for stealing his
design and although the court and Thermos acknowledged it was indeed Dewar’s invention, his failure to

patent this meant he forfeit the right to benefit from its exploitation.
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system3 that finally succeeded in producing liquid helium.

Figure 1.4: Onnes and his blue boys. Image taken from [Bellows, 2014]

Dewar’s quest to liquefy the ‘final’ permanent gas, which began in 1878 was ultimately

to be undermined by a seemingly unrelated event which had occurred ten years earlier.

In 1868, there had been a total solar eclipse which was observed by, amongst others,

Pierre-Jules-Csar Janssen. His examination of the sun’s spectrum during the eclipse lead

to the discovery of the signature for a new element. On reviewing Janssen’s findings, Sir

Norman Lockyer concluded that the line on the absorption spectrum representing 587.49

nanometers in wavelength was proof of an element forming part of the sun but not known

to exist on earth. Lockyer named this element helium, after the Greek sun god ‘Helios’.

In 1895, helium was discovered to exist on Earth by Sir William Ramsay, and so by

the time Dewar succeeded in his quest to liquefy hydrogen in 1898, it was no longer the

final permanent gas and the recognition he had hoped for was severely blunted. It was

to be Onnes whose work in this field was recognised with the award of a Nobel Prize for

Physics in 1913 (“for his investigations on the properties of matter at low temperatures

3The Joule-Thomson cooling process is one whereby the principles underlying the first law of ther-

modynamics are employed to provide cooling through the adiabatic expansion of the pre-cooled target
gas.
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which led, inter alia, to the production of liquid helium”).

Onnes’ success in 1908 was the end of a long race to liquefy all the permanent gases, a

race which spanned almost a century and began with Michael Faraday (1791-1867) in 1823

when he achieved the liquefaction of chlorine [Faraday, 1823]. Although Onnes’ triumph

marked the end of liquefying permanent gases, it was only the beginning for the study

into liquid helium and its bizarre properties . . .

It became apparent that the observed properties of this liquid were at odds with any

single physical state. In much the same way as scientists had grappled with light exhibit-

ing in some instances properties of particle physics and in others that of a waveform, early

theorists had to find an explanation for why this new liquid could sometimes appear to

behave as a classical fluid and at others as what we now know as a superfluid.

Liquid helium can exist in two states, helium I and helium II, and the phase diagram

on the left of figure 1.5 below attempts to visualise this concept. The area shaded yellow

is helium I, a classical fluid, and the area shaded blue is helium II, a superfluid. For com-

parison, the right of figure 1.5 shows a typical solid-liquid-gas phase diagram where we can

see a point (labelled the ‘triple point’) where all three forms could exist in equilibrium.

There is no such corresponding point for helium.

Figure 1.5: Helium phase diagram on the left and a regular solid-liquid-gas phase diagram on the
right4.

4Images adapted from http://www.learner.org/courses/physics/unit/text.html?unit=8&secNum=3
and accessed in August 2015.
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If the temperature of liquid helium I is reduced, at a temperature of around 2.17 K5 it

undergoes a quite amazing transformation. At this critical temperature, its specific heat

undergoes a most unexpected increase which falls away asymmetrically as the cooling

passes down through this point. The liquid above 2.17 K is referred to as helium I and

the liquid beneath 2.17 K is referred to as helium II.

Helium I is cooled to low temperatures (down to 1 K) by evaporation. This evaporation

is achieved by reducing the pressure above the liquid by means of a vacuum pump and

the latent heat of vaporisation of the liquid helium effectively cools the remaining liquid.

Given the very low specific heat of helium I, a large percentage of the liquid’s volume needs

to be evaporated to produce a significant cooling. Indeed to take the temperature from

4K down to the lambda point requires the evaporation of one third of the initial volume.

Following helium’s phase transformation at the lambda point, the new liquid has some

astonishing properties; for example the thermal conductivity of ‘superfluid’ helium II is

of the order of 1,000,000 times greater than that of helium I and even 100 times greater

than copper or silver.

In 1938 Tisza [Tisza, 1938] suggested that helium II was best represented as a degener-

ate Bose-Einstein gas (BEC) whereby the fluid exists in two fluid fractions, one a classical

fluid and the other a superfluid, where the atoms exist in their ‘ground’ state (lowest

energy level). This concept was also noted by Lev Landau [Landau, 1941] who ultimately

came up with his own two fluid model which was not based on any notion of a BEC, for

which he was to receive a Nobel Prize in 1962. The two fluid components are coupled by

a mutual friction [Donnelly, 1991], the proportions of which alter with temperature (as

shown in figure 1.6), and as we approach absolute zero the superfluid component tends

to dominate the mix. These two fluid components have markedly different properties and

behaviours.

The superfluid component is entirely inviscid which can be demonstrated experimen-

tally by lifting a container full of helium II out of a surrounding larger mass using a vessel

with a microporous ceramic base. This container will normally hold liquid helium without

leakage through the base, this being inhibited by the viscosity of the fluid. Once past the

transition point the now superfluid helium II will pass through this ceramic base in a clear

demonstration of a superflow.

The superfluid component has another intriguing characteristic, which is that it has

zero entropy. This too can be demonstrated experimentally by immersing one end of a

5This temperature is known as the critical temperature or lambda point.
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Figure 1.6: Composition of helium II, where ρs is the density of the superfluid component, ρn is
the density of the normal fluid component and ρ is the total fluid density i.e. ρ = ρs + ρn. Image
taken from [Codoluto & Dykhoff, 2014]

specially designed double open ended tube into helium II. The end in the helium has been

formed into a bulb packed with just about the finest material known to man - jeweller’s

rouge - held in place with cotton bungs above and below. The interstitial spaces between

this medium are such that no viscous fluid could pass through and any flow through it

must thereby be a superflow. When this bulb is warmed by an external light source falling

upon it, a flow is induced from the helium II through the rouge into the free space above

(subject only to the saturated vapour pressure of helium II). The flow of helium through

this bulb is one from a colder region to a warmer region. This appears to be in defiance of

the second law of thermodynamics. The flow cannot be a thermal flow, and cannot involve

the transfer of heat energy. This effect, known as the fountain effect, demonstrates that

the superfluid component of helium II has zero entropy.

1.3 Quantised vortices

A final intriguing attribute of the superfluid component of helium II is the quantisation

of the circulation. The circulation Γ is given by:-

Γ =

∮

vs · dℓ, (1.28)

where vs is the superfluid velocity. The superfluid component of He II represents a conden-

sate where all the particles occupy the lowest energy level i.e. are in the ground state. This

14



Chapter 1. Introduction

condensate’s wavefunction Ψ can be given by Ψ(r, t) = R(r, t)eiS(r,t) under the Madelung

transform, where R(r, t) and S(r, t) represent the amplitude and phase distributions re-

spectively. If we now consider following a closed path C, the integrated change in the

phase will be:

∆S =

∮

C
∇S · dℓ. (1.29)

As we are following a closed path, the end point is the same as the starting point and

since that the wavefunction must be single-valued, it follows that,

∆S = 2πq, (1.30)

where q is an integer. Where q ̸= 0 this means that there must be a phase defect within

our region, whereby the phase can take any value from 0 to 2π. In order that there should

be no such phase singularity the density, ρs, on this line will need to be zero. Such lines are

therefore quantised vortices. Noting that the phase distribution defines the fluids velocity

through the following equation,

vs = (!/m)∇S, (1.31)

where ! is Planck’s constant and m is the mass of a helium atom. If we combine this with

Equation 1.28 we can say that the circulation about C is given by,

Γ =

∮

vs · dℓ = q

(

h

m

)

. (1.32)

Which is to say that the circulation is quantised by the ratio of Plank’s constant over

the mass of a helium atom which is known as the quantum of circulation and denoted κ.

From Equation 1.31 it follows that the superfluid flow is irrotational, and from this

you could conclude that there is no vorticity within the superfluid. However, Equation

1.32 allows for non-zero circulation. For both of these statements to be satisfied, we need

a hollow region close to the singularity with nothing inside it such that the superfluid

density is zero. By assuming this, the superfluid velocity is undefined within the core and

incompressibility can still be satisfied outside this core region. Hence we are left with

hollow-core vortices where the circulation of the fluid is constrained to lie on thin lines of

fixed core size a0 (approximately 1 Angstrom in diameter) and circulation.

This phenomenon was first predicted by Onsager in 1948 [Onsager, 1948] and then

further developed by Feynman in 1955 [Feynman, 1955b] and it was first observed ex-

perimentally in 1961 by Vinen [Vinen, 1961]. Developments in experimental techniques
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have lead to the visualisation of vortices within helium II [Packard, 1972; Guo et al., 2014].

Vortices can be induced in both classical fluids and superfluids. In superfluids these

vortices are nucleated when the superfluid is rotated or when the superfluid flow exceeds

a critical velocity (the speed of sound in He II at the given temperature). These filaments

of vorticity will often tend to have inherent instabilities and will eventually collide. In

such collisions these filaments meet at a node point where their direction of rotation and

relative velocities are resolved in what is commonly termed a reconnection.

The net effect of the motion and interaction of these vortices is to create a tangle of

vortices. These tangles are what we term Quantum Turbulence and it is the investigation

of this via numerical modelling that is the basis of my thesis.

1.4 Quantum Turbulence

The term ‘Quantum Turbulence’ was first coined by R. J. Donnelly in a symposium ded-

icated to the memory of classical turbulence genius, G. I. Taylor in 1986. Though it’s ac-

cepted that Donnelly imparted the name to this concept, its roots were firmly established

in the work of Feynman [Feynman, 1955b] as early as 1955 and soon after experimentally

demonstrated by Vinen in 1957 [Vinen, 1957b, 1958, 1957c,a].

Turbulence is perhaps best described as the non-linear complex movement of any fluid

(liquid or gas) whereby the velocity and pressure fields are subjected to rapid variations

both spatially and temporally, where rotation is observed and unless sustained by an ex-

ternal energy source, turbulence will quickly decay by means of an energy cascade from

large scale motions to ever smaller scales until eventually viscosity kicks in and dissipates

the energy.

This cascade of energy is described as a Richardson Cascade and when Richardson

himself sought to describe it in 1922 he produced his adapted Siphonaptera referred to

earlier in this chapter. This clearly describes ‘little whirls’ being created by the ‘big whirls’

and not big whirls breaking up into little whirls, however this has often been misconstrued.

A clear description of the cascade has recently been given by Paoletti and Lathrop [Pao-

letti & Lathrop, 2011] whereby they say “one should not picture large vortices or eddies

spawning smaller ones, given that this has never been observed. Rather, the correct picture

is that large eddies (small k) interact with one another, producing small-scale structures

(large k) with high strain and shear that dissipate energy”.
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In helium II we have two interpenetrating fluid components, a normal fluid and a

superfluid, which are coupled by a mutual friction and which each have their own velocity

fields vn and vs and temperature-dependent densities ρn and ρs respectively. Turbulence

can be induced and observed in both of the fluid forms. The normal ‘classical’ fluid will

have continuous swirls and eddies whereas the superfluid component has turbulence built

from a tangle of discrete quantised vortices.

Figure 1.7: Visualisation of a superfluid vortex tangle from one of our numerical simulations.

When viewed at suitable coarse-grained scales the aggregated movement of these su-

perfluid tangles can be very closely analogous to classical turbulence, although the driving

interactions and mechanisms for dissipation of the effects are very different. The relative

movement of the two fluids and the nature of their turbulence will act as triggers for the

propagations of further turbulence in each of their counterpart fluids. These effects are

investigated and described in more detail in later chapters.

1.5 Experiments in Quantum Turbulence

Once the case for the two fluid nature of liquid helium II had been accepted, early stud-

ies tended to concentrate on thermally driven experiments known as counterflow [Vinen,

1957b, 1958, 1957c,a]. Following the ground breaking work of Donnelly, Tabeling and

their co-workers [Maurer & Tabeling, 1998; Stalp et al., 1999; Skrbek et al., 2000] attention

shifted to mechanically driven experiments where comparisons with classical turbulence
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are more readily accessible.

As counterflow relies completely on the two fluid nature of helium II there is no equiv-

alent experimentation on pure classical fluids. Where superfluid turbulence is incited by

mechanical means then many of the methods used in the study of classical fluids can cross

over nicely in to the quantum world as in the use of small Pitot tubes to measure pressure

head fluctuations [Maurer & Tabeling, 1998] and its ramifications.

A fundamental outcome of experimentation in classical fluids is the ability to visualise

the results. Such visualisations are assisted by means of dyes and tracer particles. Given

the scale of the vortices which we are trying to detect (a vortex core is of order 1 Angstrom)

and evaluate within superfluid helium there is a clear difficulty, for instance in having tracer

particles where they would ideally need to be of a lesser magnitude than the manifestation

they are trying to demonstrate and not themselves modify the quantum turbulence. The

physical environment that needs to be maintained for low temperature experimentation

makes visualisation extremely difficult and therefore detection and measurement tend to

be the order of the day.

1.5.1 Thermally Driven Turbulence

In order to study the nature of superfluid helium II it is necessary to change its natural

equilibrium state. A key technique known as thermal counterflow has provided a means

by which controlled movement and turbulence of the superfluid can be established.

For a more thorough analysis of the work done in this area Tough carried out a com-

prehensive review of the published material in 1982 [Tough, 1982] and Donnelly carried

out a further such review in 1998 [Donnelly, 1999].

The basic principle is to contain helium II in a closed end tube fitted with a heater at

the closed end and the whole apparatus immersed in a helium bath as shown in Figure 1.8.

When heat flux is applied, counterflow is established within the tube. This counterflow

develops as heat is picked up by the superfluid being drawn toward the heat source, thus

transforming it in to normal fluid and this then flowing away from the heat source. At

small values of the heat flux the established counterflow will be laminar. Above critical

heat flux values the superfluid and normal fluid components of the counterflow become

turbulent.
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Figure 1.8: Sketch of the experimental setup used to investigate thermal counterflow.

In 1957-1958 W. F. Vinen published a series of four papers in the Proceedings of

the Royal Society A [Vinen, 1957b, 1958, 1957c,a]. These papers detailed Vinen’s find-

ings from his pioneering experiments with counterflow turbulence. Through the extensive

experimentation which was to form the basis of these papers Vinen was able to obtain

accurate measures of many of the quantities (amongst others) described above as well as

develop a phenomenological model for the turbulence he was investigating.

Using the results from his experiments along with the intuitive assumption that the

decay of superfluid tangles could be modelled using a classical Kolmogorov cascade, Vinen

developed the Vinen Equation which seeks to define a model for the dynamics of superfluid

vortices.

dL

dt
= χ1

B

2

ρn
ρ
vnsL

3/2 −
χ2κ

2π
L2, (1.33)
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where B is the mutual friction coefficient, vns is the counterflow velocity, ρ is the total

fluid density, ρn is the normal fluid density, κ is the quantum of circulation and χ1 and

χ2 are phenomenological constants. In 1988, Schwarz published findings of his research in

this area [Schwarz, 1988] but in deriving his analogous equation he uses the laws of vortex

dynamics to derive values for χ1 and χ2.

In Tough’s 1982 review of the large amount of published data he concluded that coun-

terflow turbulence could be classified in to a number of states [Tough, 1982]. The first

state, TI, is now generally thought to be when the heat flux is great enough to induce

turbulence in the superfluid component but not so great as to also induce turbulence in

the normal fluid component. The next state, TII, is when the heat flux is increased to

the point whereby the normal fluid becomes turbulent alongside the superfluid. Tough

identified a third state, TIII, which is for high-aspect-ratio channels only and has similar

properties to TII.

1.5.2 Mechanically Driven Turbulence

Routine validation of studies into turbulence has required the search for and discovery

of inter alia Kolmogorov scaling (as previously derived). With experiments in classical

turbulence we now routinely expect to find Kolmogorov scaling and where it might not be

found we look for errors in the modeling rather than accepting its absence.

Quantum turbulence at observable scales bears no visual resemblance to our classical

turbulence and yet through modeling and more latterly physical experiment, the following

Kolmogorov scaling is indeed found to be present,

E(k) = Cϵ2/3k−5/3. (1.34)

Paoletti [Paoletti & Lathrop, 2011], following arguments originally proffered by Kozik

and Svistinov [Kozik & Svistunov, 2004, 2005, 2008a, 2009, 2008b], usefully describes the

mechanism for energy dissipation within a superfluid as T → 0 as “(a) Bundles of nearly

parallel quantized vortices form through interactions with the normal fluid that tend to

align them. These bundles produce large-scale motions similar to small wavenumber (large

spatial extent) eddies in classical fluids. (b) Energy is transmitted to larger k via reconnec-

tion between individual vortices [...] (c) Reconnection events trigger polychromatic helical

Kelvin waves on the vortex lines. (d) The Kelvin waves interact nonlinearly, producing

even larger wavenumbers until they lose energy to phonon emission, which radiates energy

to the boundaries. Aspects of the quantum turbulent cascade remain controversial, and

this is an active area of research and debate”. The figure below is a representation of this
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decay mechanism clearly identifying the various stages of the dissipation.

Figure 1.9: Schematic (log-log) of the superfluid energy dissipation. At small wave numbers k,
the system exhibits a classical Kolmogorov energy cascade due to the interaction of the vortices
forming near parallel bundles giving rise to large scale motions (kD). At scales smaller than that of
the intervortex spacing (kℓ), quantum effects become important and processes like reconnections
(including self-reconnections), and the Kelvin wave cascade dominate the dissipative scaling up to
the point where phonon emission (kp) ends the decay. (Some of the sketch elements are adapted
from [Vinen, 2006])

At high temperatures where the normal fluid component plays an active role in the

superfluid turbulence, it is mutual friction and not phonon emission which is the main

dissipative mechanism.

The link between these two forms of turbulence is a fascination that continues to drive

research. Two landmark pieces of research have been carried out in this area, firstly

by Maurer and Tabeling [Maurer & Tabeling, 1998] looking at Kolmogorov spectra at a

range of temperatures and secondly by Salort and Roche [Salort et al., 2010] looking at

Kolmogorov spectra in a greater range of experimental set-ups.
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Looking at Maurer and Tabeling’s ‘Local investigation of superfluid turbulence’ from

1998 [Maurer & Tabeling, 1998], using the experimental set-up utilising two counter-

rotating disks as illustrated in figure 1.10 they set out to measure local pressure fluctu-

ations using a small total-head tube as shown. The outer containment vessel contains

the liquid helium with a space above it such that the pressure may be varied to achieve

a change in temperature of the contained helium. The whole electromechanical appara-

tus is immersed in the liquid helium with special DC motors designed to operate at low

temperature and to drive the counter-rotating disks each with their four attached paddles

measuring 1mm thick by 3cm wide by 3.8cm long at a constant 6Hz.

Figure 1.10: Schematic of the experimental set-up of Maurer and Tabeling, 1: DC motor, 2:
Propellor/Disk, 3: Probe. Figure taken from [Maurer & Tabeling, 1998].

The probe actually provides pressure readings and these are shown on the left of Figure

1.11 for the three temperatures sampled. Using a Fourier transform the spectra for the

energy was derived and is shown on the right of Figure 1.11.
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Figure 1.11: Left: time-series obtained by Maurer and Tabeling, Right: energy spectra obtained
by Maurer and Tabeling. For both panels the three traces are at the following temperatures; (a)
2.3K, (b) 2.08K and (c) 1.4K. Figure taken from [Maurer & Tabeling, 1998].

On both the left and right hand panels of Figure 1.11 we see three distinct traces (a),

(b) and (c), these traces represent three distinct signals taken at three different tempera-

tures. Trace (a) is taken at 2.3K when the helium is 100% normal fluid (helium I). Trace

(b) is taken at 2.08K where the normal fluid component still constitutes 95% of the mix.

Finally, trace (c) is taken at 1.4K where the normal fluid component now constitutes less

than 10% of the mix.

It should be noted that on the right hand panel of Figure 1.11 the peak around 25Hz

is a reading induced by the driving frequency of the disks. Likewise the peak at around

900Hz is a function of the inner containment vessel, which is necessarily open to the out-

side liquid helium, producing an organ pipe frequency. The results shown, when studied

between 30 and 600Hz show a clear power law corresponding to the Kolmogorov ‘-5/3’

scaling. The traces are virtually indistinguishable regardless of the proportion of super-

fluid present.

In summing up their findings Maurer and Tabeling state: “The existence of a Kolmogorov-

like regime below Tλ reveals a striking similarity between ordinary and superfluid turbu-

lence. It also underlines the ubiquity of the cascade process, which does not seem to be

sensitive to the precise way how the energy is dissipated at small scales, in agreement with

the Kolmogorov picture.”. Following their work the scientific community now had the

‘What’ and the search for the ‘Why’ began.

Picking up the baton laid down by Maurer and Tabeling in 1998, Salort and Roche set

about providing the first experimental confirmation of the 1998 results as well as extending

the range of experimental set-ups over which the confirmation data was gathered.
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Turbulent flows were created in two very different physical environments (see Figure

1.12) and with two types of flow (grid turbulence and wake turbulence) in the TSF (Tor-

sional Stall Flutter) wind tunnel and a single flow known as chunk turbulence in the NEEL

wind tunnel (an apparatus especially designed by the experimenters at the NEEL Institute

in Grenoble).

Figure 1.12: Schematic of the experimental set-up of Roche and Salort, (a) TSF wind tunnel:
Schematics of the test section and the probe locations for runs 1 and 2. For run 1, a removable
cylinder can be inserted across the flow at a distance Lc downstream the grid. It was originally
designed to protect a hot-wire during the transient of the system. The stagnation pressure probe
1, located at a distance Lc+L1 downstream the grid can either measure grid turbulence when the
cylinder is removed or wake turbulence when the cylinder is inserted in the flow. Probe 1 was not
positioned on the pipe axis to avoid the wake of the hot-wire. For run 2, two stagnation pressure
probes (2 and 3) are available. (b) NEEL wind tunnel: Schematics and picture of the test section
and location of stagnation pressure probe 4. Figure and caption taken from [Salort et al., 2010].

The two flows studied in the TSF apparatus produced quite different results and in

analysing their results from the Wake Turbulence Flow, the experimenters postulated that

the absence of Kolmogorov scaling was similar to results obtained in classical turbulence

when measuring spectra in strongly inhomogeneous flows.

The grid turbulence model was chosen as results for this type of flow in classical flu-

ids are well understood and correlations (if observed in superfluid flows) could be readily

compared. They tested their set-up at a range of temperatures (from 2.6K corresponding

to 100% normal fluid down to 1.7K corresponding to 24% normal fluid component) and

a range of driving velocities (from 0.4m/s to 5m/s) and found that they do indeed see a
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Kolmogorov scaling for all realisations of the flow as shown in Figure 1.13 (left).

Using their custom designed NEEL wind tunnel, fixing the temperature of the helium

II to 1.55K (around 86% superfluid) and deploying a range of driving speeds (from 0.25 -

1.3 m/s), once again the experimenters were able to demonstrate Kolmogorov scaling, see

Figure 1.13 (right).

Figure 1.13: Left: Velocity spectra obtained for various temperatures and driving speeds by Roche
and Salort using the TSF Wind Tunnel, Right: Velocity spectra obtained at 1.5K for various
driving speeds by Roche and Salort using the NEELs Wind Tunnel. Figure taken from [Salort
et al., 2010].

Salort and Roche were able for the first time to experimentally validate the results

obtained by Maurer and Tabeling, and Kolmogorov scaling in superfluid turbulent flows

is now accepted as a real phenomenon.

1.5.3 Visualisation of Quantum Turbulence

If things are hard to measure and view in the ‘normal’ world then they are almost impos-

sible to measure and view in our very specialist quantum world. Much effort is currently

devoted to devise techniques that allow us to visualise mechanisms where even tracer parti-

cles of more than a few atoms are already larger than the system to be imaged or measured.

A recent publication in PNAS [Guo et al., 2014] provided a useful overview of the latest

techniques being used in the superfluid helium world. There are three principle techniques

currently being used, two are adaptations from the field of classical fluid dynamics: PIV,
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and PTV and a third which utilises a unique property of helium atoms to create a direct

visualisation of atoms within the superfluid itself.

PIV (particle image velocimetry) is an aggregate method for tracking an array of tracer

particles, while PTV (particle tracking velocimetry) seeks to track individual tracer parti-

cles. The third technique, known as ‘He∗2 Fluorescence Imaging Technique’ creates triplet

molecules within the superfluid which themselves act as tracer particles.

PIV is a somewhat broad brush approach to imaging and has been successfully used

with micron-sized solid particles to obtain averaged measurements within a section of fluid

[Zhang & Van Sciver, 2005a; Zhang et al., 2004; Zhang & Van Sciver, 2005b].

PTV allows our focus to be refined down to resolutions where individual vortex lines

can be imaged [Bewley et al., 2006]. Furthermore PTV has allowed us to observe recon-

nections of superfluid vortices for the first time ever [Paoletti et al., 2010], as shown in

Figure 1.14 below.

Figure 1.14: Image showing experimental evidence of vortex reconnection using PTV. Figure taken
from [Guo et al., 2014].

Researchers at Charles University in Prague have recently used PTV with solid deu-

terium particles as tracers to study velocity and acceleration statistics within steady state

thermal counterflow in helium II [La Mantia et al., 2013, 2012; La Mantia & Skrbek,

2014]. They found that at length scales smaller than the typical intervortex spacing they
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see non-classical (quantum) statistics for the velocities and accelerations, however if they

looked at scales larger than the intervortex spacing then they observe classical statistics.

It seems that where Kolmogorov scaling leads, other classical fluid effects follow and in

this research the particle acceleration statistics at times mirror their classical counterparts.

The exact nature of the normal fluid flow in counterflow has long exercised researchers

in the field. The technique of He∗2 fluorescence imaging developed at Florida State Uni-

versity has allowed researchers to create tracer particles within helium II which at high

T are bound to the normal fluid and which allow for visualising only the normal fluid

component of the thermal counterflow [Benderskii et al., 1999] (at low temperatures these

tracer particles would become trapped on the vortex cores and allow direct visualisation

of the superfluid voritces).

The figure below shows on the left a thin line (80µm) of fluoresced tri-atomic helium

molecules in our helium II with no heat flux applied. The middle snapshot shows a

similar tracer 900 ms after creation in a laminar flow resultant from a mild heat flux of 10

mW/cm2. The rightmost panel shows an initially straight tracer line a mere 15 ms later

in what is clearly a turbulent flow resultant from a heat flux of 215 mW/cm2.

Figure 1.15: Images of fluorescing tracer lines of He∗2. Figure taken from [Guo et al., 2014].

Clearly, the once impenetrable world of quantum turbulence is slowly being opened up

to human gaze and will doubtless create a launch pad for even further study.

1.6 Publications Arising

The research for my thesis has resulted in the publication of two papers and a further

paper in preparation. The publications arising from my research are included as chapters

4 and 5 as follows:
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Chapter 4: - Baggaley et al. [2012d ]

Chapter 5: - Sherwin-Robson et al. [2015]
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Numerical method

Time and money being no object it would be sensible to carry out most experiments into

superfluid turbulence in a real physical environment. However, the physical constraints of

experimental setup are such that the costs are generally prohibitive and the setup times for

a given experiment too long to allow this to be the only means by which we investigate the

matter. While the experimentalists wrestle with their pressure vessels, vacuums and mi-

croscopic probes, mathematicians can numerically investigate the properties of superfluids

(including some not currently accessible in experiments) and thus assist the experimen-

talists.

Mathematicians take a number of approaches to computationally represent the physical

world and to establish and test the rules that govern it. Following on from the pioneering

work of Schwarz [Schwarz, 1985], we model superfluid vortices as space curves s = s(ξ, t)

of infinitesimal thickness (where t is time and ξ is arc length).

2.1 The Schwarz Equation

Since its introduction in 1985 [Schwarz, 1985] the Vortex Filament Model (VFM) which

utilises the Schwarz Equation, whereby we model superfluid vortex lines as space curves

s(ξ, t) (where t is time and ξ is arc length) of infinitesimal thickness with circulation

κ = 9.97 × 10−4 cm2/s has become the de-facto standard for modelling vortex filaments

in superfluids [Adachi et al., 2010; Baggaley & Barenghi, 2012; Hanninen & Baggaley,

2014]. Though the mathematics involved can tend towards the complex, the underlying

principles adopted by Schwarz have an elegant simplicity. The key forces deemed to be

acting on the vortex filaments are the Magnus force (arising from a flow past a rotating

body) and the drag force (arising from the interaction of the vortices with the normal

fluid). Resolving these forces gives rise to the equation of motion for a vortex point:-
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ds

dt
= v = vs + αs′ × (vext

n − vs)− α′s′ × [s′ × (vext
n − vs)]. (2.1)

This is the Schwarz Equation where α and α′ are temperature-dependent friction

coefficients [Barenghi et al., 1983; Donnelly & Barenghi, 1998], vs is the superfluid velocity,

vn is the normal fluid velocity, and a prime denotes a derivative with respect to arc length

(hence s′ = ds/dξ is the local unit tangent vector, and C = |s′′| is the local curvature; the

radius of curvature, R = 1/C, is the radius of the osculating circle at the point s).

2.1.1 The Magnus Force

The eponymous Magnus force is one which was described by the german physicist Heinrich

Gustav Magnus, after Sir Isaac Newton’s earlier observations. It is intended to explain

the deviation from the ‘normal’ path of a rotating body. Although Magnus postulated the

effect to be the result of the roughness of the outer skin of the rotating object and the

viscosity of the medium through which it was travelling, such forces would be too small

to explain the size of deviations observed.

Our filament within a uniform flow in 2-dimensions is represented in figure 2.1. We

consider our filament to be a circular body with radius a0, which has a clockwise circulation

κ around it, sat in a uniform flow of velocity U from the left. Where the circulation opposes

the flow at the 6 o’clock position then the velocity of flow is reduced and the pressure on

the filament is increased at this point, conversely, where the circulation is aligned with

the flow at the 12 o’clock position then the velocity of the flow is increased resulting in

an area of low pressure on the filament at this point. This pressure differential gives rise

to a resultant force Fm acting on our filament tending to move it upwards in a direction

perpendicular to the flow. This is akin to the aerofoil lift principle, well understood in

classical mechanics.

Figure 2.1: Visualisation of Magnus Force in 2D
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In our 3D superfluid simulations, the Magnus force acting on the vortex filaments is given

by:

Fm = ρsκs
′ × (v − vs), (2.2)

where ρs is the superfluid density and κ is the circulation.

2.1.2 The Drag Force

Although vortex lines are an manifestation of the superfluid, nonetheless other than at

very low temperatures (T < 0.7K) they exist in a space where there is also a normal fluid

and the vortex interaction with this fluid results in mutual friction forces at their interface.

If we consider our vortex filament as a rectilinear tube orientated along the z-axis, then

all drag forces acting upon it act in a plane perpendicular to the tangent s′ which can be

resolved in to two components, one in the x direction and one in the y direction.

Figure 2.2: Visualisation of Drag Force

It is generally believed that the drag force is a result of the collisions between excitations

such as rotons and the vortices. This gives rise to a drag force of the form:

Fd = −γ0s
′ × [s′ × (vn − v)] + γ′0s

′ × (vn − v), (2.3)

where γ0 and γ′0 are one set of temperature dependent friction coefficients. It is ac-

cepted that the scale of these interactions is directly related to the relative velocities of

the superfluid component vs and the normal fluid component vn. Following Donnelly

[Donnelly [1991]-chapter 3] we can now express the drag force as:

Fd = −αρsκs
′ × [s′ × (vn − vs)]− α′ρsκs

′ × (vn − vs), (2.4)
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where α and α′ are another set of temperature dependent friction coefficients which are

related to the experimentally determined Hall-Vinen parameters B and B′ by α = Bρn/2ρ

and α′ = B′ρn/2ρ. The relationship between α, α′ and γ0, γ′0 is given by:

γ0 =
ρsκα

(1− α′)2 + α2
, (2.5)

γ′0 =
ρsκ(α2 − α′ + α′2)

(1− α′)2 + α2
. (2.6)

2.1.3 Resolving the forces

Now that we have the forces which act up on our vortex (neglecting inertia) we can use

Newton’s Second Law F = ma to formulate our equation of motion. Given that the radius

of the vortex core is in the order of 1 Angstrom, we can effectively assume the mass of the

vortex to be 0, and hence the total force must be zero.

F = 0, (2.7)

⇒ Fd + Fm = 0. (2.8)

Substituting our values for Fm and Fd from above gives:

ρsκs′ × (v − vs)− αρsκs′ × [s′ × (vn − vs)]− α′ρsκs′ × (vn − vs) = 0, (2.9)

ρsκs′ × [(v − vs)− αs′ × (vn − vs)− α′(vn − vs)] = 0. (2.10)

The above means that the terms in the square brackets must now either be in the

direction of s′ or be zero. If we assume the latter we obtain:

v = vs + αs′ × (vn − vs) + α′(vn − vs), (2.11)

which can be rewritten as:

v = vs + αs′ × (vn − vs)− α′s′ × [s′ × (vn − vs)]. (2.12)

The above simplification from equation 2.11 to equation 2.12 was carried out using the
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following:

s′ × [s′ × (vn − vs)] = (s′ · (vn − vs))s
′ − (s′ · s′)(vn − vs),

= (s′ · (vn − vs))s
′ − (vn − vs), s′ · s′ = 1

= −(vn − vs); s′ · (vn − vs) = 0 (orthogonal vectors).

(2.13a)

(2.13b)

(2.13c)

2.2 Modelling the Superfluid Velocity

The superfluid velocity vs consists of two components such that: vs = vext
s + vself

s . The

former vext
s represents any externally applied superflow; the latter vself

s the self-induced

velocity at the point s. There are two methods for evaluating the self-induced component

of the superfluid velocity, these being; The Biot-Savart Law or the simpler though usually

less accurate Local Induction Approximation (LIA).

2.2.1 Biot-Savart

For a classical, incompressible fluid it has been established [Saffman, 1993] that the velocity

field v is determined by the instantaneous distribution of vorticity ω via the Biot-Savart

law:

v(x) =
1

4π

∫

ω(x′)× (x− x′)

|x− x′|3
d3x′, (2.14)

where the integral extends over the entire flow.

In a superfluid, the self-induced velocity vself
s at the point s, results from Equation 2.14

in the limit of concentrated vorticity:

vself
s (s) = −

κ

4π

∮

L

(s− r)

|s− r|3
× dr, (2.15)

where the line integral extends over the entire vortex configuration L (for a full derivation

of this see Appendix A).

A clear problem with equation 2.15 is that as r → s the integral diverges and when

r = s the integral is singular. Schwarz addressed himself to this, but noted that although

a similar problem existed in regard to classical hydrodynamics, no proposed classical solu-

tion would be transferrable to this superfluid environment as the physics of the vortex core

is quite different in both situations. Schwarz proposed a solution to the problem [Schwarz,

1985] whereby the self induced velocity vself
s is decomposed into two components; a local

velocity vloc
s and a nonlocal velocity vnon

s such that vself
s = vloc

s + vnon
s .
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If we now step through Schwarz’s analysis of the problem as outlined by Aarts [Aarts,

1993], we begin by noting that the velocity of a superfluid vortex ring has been experi-

mentally observed to obey the velocity of a classical vortex ring [Lamb, 1945; Leonard,

1980; Saffman, 1970], where the velocity is given by:

vring(s) = −
κ

4π

∮

Lχ

(s− r)

|s− r|3
× dr, (2.16)

where Lχ denotes the line integral which extends over the vortex configuration but excludes

a length χ (which is of the same order as the core size) from each side of r such that

the integral does not diverge. The parameter χ is dependent upon the structure of the

vortex core; due to the physical nature of superfluid vortices where their density drops to

zero within the core, they most closely correlate to the behaviour of classical hollow-core

vortices. In a hollow-core vortex χ is given by:

ln

(

2χ

a0

)

=
1

2
. (2.17)

The integral in equation 2.16 can now be analytically solved [Saffman, 1970]. The

resulting velocity is dependent upon both the radius of the vortex ring Rr and the vortex

core size a0:

vring(s) = −
κ

4πRr
ln

(

tan
χ

4Rr

)

e⊥, (2.18)

where e⊥ is a unit vector perpendicular to the plane of the vortex ring. Given that

a0 << Rr we can employ the approximation tan(χ/4Rr) ≈ χ/4Rr. This along with Eq.

2.17 gives the velocity of the ring to be:

vring(s) =
κ

4π
ln

(

8Rr

e1/2a0

)

e⊥
Rr

. (2.19)

Now that we have the value for the total velocity of the ring we need to decompose

this in to a local contribution and a nonlocal contribution whereby: vring = vloc
ring +vnon

ring.

This decomposition is shown in Fig. 2.3
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Figure 2.3: The decomposition of a vortex ring in to a local component (red) and a nonlocal
component (blue).

Schwarz deals in the first instance with the nonlocal contribution which can be obtained

by the integration of equation 2.16 over the path Lnon [Lamb, 1945] which excludes the

local segment of the ring:

vnon
ring(s) = −

κ

4π

∮

Lnon

(s− r)

|s− r|3
× dr, (2.20)

= −
κ

8πRr
ln [tan(φ+/4) tan(φ−/4)] e⊥. (2.21)

where φ+ and φ− are angles related to the size of the local contribution (as seen in figure

2.3). If we now once again use our approximation to tan we can simplify the expression

for the nonlocal contribution. This can then be subtracted from the total velocity of the

ring to yield the expression for the local contribution:

vloc
ring(s) =

κ

4πRr
ln

(

2
√

ℓjℓj+1

e1/2a0

)

e⊥, (2.22)

where ℓj and ℓj+1 are the arc lengths of the curves between the point sj and the

adjacent points sj−1 and sj+1 along the vortex. We now have the local velocity of our ring

provided R >> ℓ >> a0. As the local term is not dependent upon the remainder of the

vortex, the self induced velocity of a given vortex structure can be calculated using this for

the local component. To do this in a more general case we will require an expression for

the vector e⊥. In deriving this expression it is useful to note the following set of mutually

perpendicular vectors s′, s′′ and s′ × s′′ (remembering that a prime denotes the derivative

with respect to the arc length ξ therefore s′ = ds
dξ and s′′ = d2s

dξ2 ), as seen below in figure
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2.4:-

Figure 2.4: Illustration of the set of mutually perpendicular vectors; the tangent s′, the principal
normal s′′ and the binormal s′ × s′′.

The tangent vector s′ is a unit vector and therefore |s′| = 1. The length of the principal

normal is the inverse of the local radius of curvature R and is therefore |s′′| = R−1. Given

the lengths of the first two vectors we can obtain the length of the binormal vector s′ × s′′

which is given by |s′ × s′′| = R−1. Using these equations we can form an expression for

e⊥:

e⊥ = R s′ × s′′. (2.23)

If we now substitute the above expression in to equation 2.22 we can obtain a gener-

alised expression for the local component of the velocity of a vortex:

vloc
s (s) =

κ

4π
ln

(

2
√

ℓjℓj+1

e1/2a0

)

s′ × s′′. (2.24)

Finally, we can now form the complete expression for the total self induced velocity of

a vortex:-

vself
s (sj) = vloc

s (sj)+vnon
s (sj) =

κ

4π
ln

(

2
√

ℓjℓj+1

e1/2a0

)

s′j×s′′j+
κ

4π

∮

L′

(sj − r)

|sj − r|3
×dr, (2.25)

where L′ is the original vortex configuration L but now without the section between sj−1

and sj+1. The superfluid vortex core radius a0 ≈ 10−8 cm now acts as a cut-off parameter.
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2.2.2 Local Induction Approximation (LIA)

The concept of the Local Induction Approximation was advanced by Schwarz [Schwarz,

1985] to overcome the computational overhead of a full Biot-Savart modelling. Schwarz

offers:

vself
s (sj) ≃

κ

4π
sj

′ × sj
′′ ln

(

R

a0

)

, (2.26)

which provides a first order approximation to the self induced velocity given by the

Biot-Savart Law. For a full derivation of this methodology please see Appendix B.

It should be noted, that more recent studies of the LIA [Adachi et al., 2010] have lead

to the conclusion that it is not sufficient to address the relative complexity of quantum

turbulence, as it cannot capture large-scale classical-like flows.

2.3 Basic structure of the code

In the remainder of this chapter I will run through the code I have used to model my

superfluid world, namely ‘qvort’. This fortran code has been developed by Dr. Andrew

Baggaley and adapted and further developed by me in the course of my research. I will

begin with the basic structure of the code and then I will move on to some of the more

complex concepts and detail how they are implemented.

Figure 2.5: Left: A numerically generated view of superfluid turbulence, where D represents the
size of the numerical cube. Right: The highlighted section from the left panel is enlarged to
highlight some key dimensions within our superfluid tangle.
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On the left of Figure 2.5 we have a snapshot of a numerically created 3D cube con-

taining our representation of superfluid turbulence. On the right we highlight two key

dimensions which are fundamental to our model; a0 is the vortex core size which in our

model of superfluid Helium II is given to be a0 = 8.244023 × 10−9cm [Barenghi et al.,

1983], ℓ is the typical distance between any two vortices known as the inter-vortex spacing

and within our simulations it will typically be in the range of 10−3 < ℓ < 10−2cm.

Initially we numerically discretise the vortex lines into a large number of vortex points

sj where j = 1, . . . , P . The code uses this concept to populate its numerical domains.

The initial conditions for a single simulation under which my domain is populated

requires the number of vortex points P to be defined. This number will however vary as

each simulation progresses due to the need to maintain both a minimum and a maximum

distance between the vortex points as the vortices are advected in the flow.

2.3.1 Key parameters - physical space and time frame

Physical Space

Although the code could work with large parameters for the defined space, in practice the

larger the space the greater the computational effort required and the longer the runs take

to simulate a passage in real time. Even at a physical size of a mere 1 mm3, at the highest

resolutions and at zero temperature, one second of real time can take 3 months to run on

a relatively high powered desktop computer.

The key physical parameters are . . .

• D (cm) - the computational box size:

My research has restricted itself to periodic domains representing a real world space

of 1 mm3. The choice of this space size allows me to adequately deal with the number

of calculations required to calculate and represent the various interactions between,

essentially, the vortex points in this space. Experimental physicists conduct their

investigations in spaces ranging from the 1 mm3 in Lancaster [Bradley et al., 2011]

through to 4.5 cm3 in Manchester [Walmsley & Golov, 2008] and more recently

attempts are being made to create an actual 1 m3 space [Saint-Michel et al., 2014].

• δ - the numerical resolution:

This determines the limits to the proximity of any two neighbouring vortex points.

No two adjacent points are allowed to be further apart than δ or closer together

than δ/2. The choice of δ needs to be sufficiently small such that the necessary fine
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details in the domain can be resolved. Smaller is better but also computationaly

more expensive and inevitably this value is a trade-off. A good utilitarian value is

1.6× 10−3cm.

• α & α′ - the mutual friction coefficients:

The values of these two friction coefficients define the temperature at which the

simulation is running. They are bound pairs looked up from tables for any given

temperature, and are themselves derived from the Hall-Vinen parameters B and B′

[Hall & Vinen, 1956] where α = ρnB/2ρ and α′ = ρnB′/2ρ which are experimentally

measured values [Donnelly & Barenghi, 1998].

Time Frame

For each simulation we need to define the total time that the physical world will be

modelled over. We input the time as a given number of time intervals:

• ∆t (s) - the size of each time interval:

This is the temporal equivalent of the numerical resolution (δ above). This needs to

be small enough to allow the simulation to pick up the slightest of changes and yet

not so small as to ‘choke’ the computer with the amount of steps required. Once

again small is best but large is fastest, however there are constraints to the maximum

size and where sufficient detail cannot be resolved with a given choice of ∆t, the code

will abort the run and report the applicable maximum time interval allowable based

on the following argument.

The fastest motions within our domain are those which occur on the smallest scale.

From above we know the smallest scale within our code is δ/2 and so a Kelvin wave

on this scale has a wavenumber of kmax = 4π/δ. Along a straight vortex the long

wave approximation (ka0 ≪ 1) to the angular frequency of a Kelvin wave is given

by [Barenghi et al., 1985]:

ω ≈ −
κk2

4π
[ln 2/(ka0)− γ], (2.27)

where γ = 0.5772 is Euler’s constant. Given k = kmax above we derive the timescale

for the fastest motions to be:

(ωmax)
−1 ≈

π(δ/2)2

4κ ln(δ/(2πa0)− γ)
. (2.28)

Based on the above a suitable choice for the maximum time interval would be defined
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by:

∆t <
(δ/2)2

κ log(δ/2πa0)
. (2.29)

At temperatures above absolute zero the damping effect of mutual friction means

that this restriction can be used for mere guidance rather than absolute adherence.

• N - the number of time intervals:

Simple arithmetic provides us this value given our time interval and our desired real

world simulation time.

2.3.2 Data storage

To understand how a simulation works it is important to know how the data is stored.

For each vortex point sj (where j = 1, . . . , P ) we store the following information (amongst

others)...

• The position, stored as a 3 element array - sj

• The velocity, stored as a 3 element array - vj

• The array index of the vortex point in front, stored as an integer number - fj

• The position of of the vortex point in front, stored as a 3 element array - sj+1

• The array index of the vortex point behind, stored as an integer number - bj

• The position of the vortex point behind, stored as a 3 element array - sj−1

• The position of of the vortex point 2 in front, stored as a 3 element array - sj+2

• The position of the vortex point 2 behind, stored as a 3 element array - sj−2

• The velocity at the previous time-step, stored as a 3 element array - vn−1
j

• The velocity at the time-step 2 previous, stored as a 3 element array - vn−2
j

The above information is essential for orientating the vortices, for calculating the ve-

locities, for calculating the new vortex point positions and for calculating and reporting

diagnostics such as the curvature information.

Below is a simple visualisation of a vortex ring with a nominal 20 vortex points. The

actual shape of these rings can be anything and the number of vortex points is in a range

from 5 upwards (5 is the minimum due to the higher order derivatives we use for the

spatial derivatives which require 2 points either side of any given point).
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Figure 2.6: Visualisation of vortex point numbering

Below is the same visualisation with added data to represent when the code is address-

ing itself to vortex point j.

Figure 2.7: Visualisation of vortex point index numbering

The table below is a snapshot of part of the data

j sj,x sj,y sj,z fj bj . . .

1 2 0 0 2 20

2 1.9 0.6 0 3 1
...

19 1.6 -1.2 0 20 18

20 1.9 -0.6 0 1 19

2.3.3 A walk through the code

Qvort itself is a hugely complex and intricate code and in this section I have identified

the key steps required to perform a simulation. The following algorithm represents an

overview of the procedure we step through in the code:-
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Setup or read in initial condition ;

for each time step n = 1 to N do

for each vortex point j do

Calculate the superfluid velocity vsj
;

Calculate the normal fluid velocity vn ;

Combine velocities in Schwarz equation ;

end

for each vortex point j do

Calculate the new position of j using Adams-Bashforth ;

end

Re-mesh by inserting vortex points if they have moved more than δ apart ;

Reconnect vortex points where necessary ;

Re-mesh by removing vortex points if they have become closer than δ/2 away ;

Enforce periodic boundary conditions ;

Increment the time t = t+ dt ;

end

Algorithm 1: Basic steps taken within the code. Note: In this and all subsequent

algorithms the coloured text is used to identify mathematical equations and the

black text explains methodolgy.

Each of these steps warrants a section of its own in order to appreciate what calculations

are required.

2.4 Time-stepping

The code uses a fixed time-interval ∆t with a prescribed number of iterations N . We

utilise the 3rd order Adams-Bashforth method to re-position the vortex points at each

iteration. This method requires that for the calculation of the new position sn+1
j for a

given vortex point snj (where n refers to the time, i.e. tn = n∆t where n = 0, 1, . . . , N .),

the velocity from the two previous time intervals vn−1
j and vn−2

j are known.

This clearly gives rise to two exception conditions which have to be addressed, these

being the very first step where there is no previous data available and the second step

where we only have the velocity from the first step.

• First Step:

For the initial time-step the lower order Euler Scheme is used whereby only the
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current position and velocity of a vortex point are required to calculate the new

position, the recursion formula for this is given by:

sn+1
j = sn +∆tvn

j . (2.30)

• Second Step:

When we encounter the difficulty on the second time around the time-stepping loop,

in this instance a lower order Adams-Bashforth scheme is implemented where the

recursion formula takes the form:

sn+1
j = snj +

∆t

2
(3vn

j − vn−1
j ). (2.31)

• Third and all subsequent steps:

Once we have two previous velocities stored for a point we can move on to use the

3rd order Adams-Bashforth method:-

sn+1
j = snj +

∆t

12
(23vn

j − 16vn−1
j + 5vn−2

j ). (2.32)

This can be derived in the following way. We begin with an equation of the form

s′ = v(t, s) where we wish to know the value of s at the next time-step i.e.

s(tn+1) = s(tn) +

∫ tn+1

tn

s′(t)dt, (2.33)

= s(tn) +

∫ tn+1

tn

v(t, s)dt. (2.34)

To perform this integration we use a Lagrangian interpolation polynomial p(t) where

p is a good approximation to v. An interpolant polynomial of degree d − 1 will incur

an error of order d and therefore when we substitute p in to our integral the Adams-

Bashforth method will be of order d. So for the 3-step Adams-Bashforth method we

require an interpolant of degree 2 which passes through vn, vn−1 and vn−2. As a result

we now need only consider the following equation which can be solved directly:

s(tn+1) = s(tn) +

∫ tn+1

tn

p(t)dt, (2.35)

where
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p(t) =
2
∑

i=0

vn−iℓi (2.36)

= vnℓ0 + vn−1ℓ1 + vn−2ℓ2, (2.37)

where ℓi are Lagrange basis polynomials defined in the following way:

ℓi =
∏

0≤m≤2
m̸=i

t− tn−m

ti − tn−m
. (2.38)

Substituting this back in to p gives:

p(t) = vn t− tn−1

tn − tn−1

t− tn−2

tn − tn−2
+ vn−1 t− tn

tn−1 − tn

t− tn−2

tn−1 − tn−2
+ vn−2 t− tn

tn−2 − tn

t− tn−1

tn−2 − tn−1
.

(2.39)

Now since tn, tn−1, and tn−2 are all equally spaced we can say tn−tn−1 = tn−1−tn−2 =

∆t, this gives:-

p(t) = vn t− tn−1

∆t

t− tn−2

2∆t
+ vn−1 t− tn

−∆t

t− tn−2

∆t
+ vn−2 t− tn

−2∆t

t− tn−1

−∆t
(2.40)

=
vn

2∆t2
(t− tn−1)(t− tn−2)−

vn−1

∆t2
(t− tn)(t− tn−2) +

vn−2

2∆t2
(t− tn)(t− tn−1).

(2.41)

Substituting p back in to our integral and splitting the integral out gives:

∫ tn+1

tn

p(t)dt =
vn

2∆t2

∫ tn+1

tn

(t− tn−1)(t− tn−2)dt−
vn−1

∆t2

∫ tn+1

tn

(t− tn)(t− tn−2)dt

+
vn−2

2∆t2

∫ tn+1

tn

(t− tn)(t− tn−1)dt.

(2.42)

Each integral can now be evaluated in turn . . .

vn

2∆t2

∫ tn+1

tn

(t− tn−1)(t− tn−2)dt =
vn

2∆t2

(

23

6
∆t3

)

=
23∆t

12
vn, (2.43)

−
vn−1

∆t2

∫ tn+1

tn

(t− tn)(t− tn−2)dt = −
vn−1

∆t2

(

4

3
∆t3

)

=
−4∆t

3
vn−1, (2.44)
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vn−2

2∆t2

∫ tn+1

tn

(t− tn)(t− tn−1)dt =
vn−2

2∆t2

(

5

6
∆t3

)

=
5∆t

12
vn−2. (2.45)

Finally, substituting all of these solutions back in gives us our final recursion equation:

sn+1 = sn +
∆t

12
(23vn − 16vn−1 + 5vn−2). (2.46)

2.5 Evaluating the Spatial Derivatives

In order to evaluate the self-induced superfluid velocity at a point sj either by means of

the fully non-local Biot-Savart calculation or by the Local Induction Approximation, we

need to obtain values for the first and second derivates s′j and s′′j with respect to the arc

length ξ. Given that the distances between adjacent vortex points can vary between δ

and δ/2, we need a method for obtaining the first and second order derivatives, s′ and s′′,

that is sufficiently accurate for the purpose. It was established by Gamet et al. [1999] that

using a fourth order finite difference scheme provides the necessary values.

The arc lengths of the necessary pairs of adjacent points are denoted:

ℓj−1 = |sj−1 − sj−2|,

ℓj = |sj − sj−1|,

ℓj+1 = |sj+1 − sj |,

ℓj+2 = |sj+2 − sj+1|.

Such that the fourth order finite difference scheme gives us the first derivative to be:

s′j = A1jsj−2 +B1jsj−1 + C1jsj +D1jsj+1 + E1jsj+2, (2.47)

where the coefficients A1j , B1j , C1j , D1j and E1j are given by,

A1j =
ℓjℓ2j+1 + ℓjℓj+1ℓj+2

ℓj−1(ℓj−1 + ℓj)(ℓj−1 + ℓj + ℓj+1)(ℓj−1 + ℓj + ℓj+1 + ℓj+2)
, (2.48)

B1j =
−ℓj−1ℓ2j+1 − ℓjℓ2j+1 − ℓj−1ℓj+1ℓj+2 − ℓjℓj+1ℓj+2

ℓj−1ℓj(ℓj + ℓj+1)(ℓj + ℓj+1 + ℓj+2)
, (2.49)

C1j = −(A1j +B1j +D1j + E1j), (2.50)

D1j =
ℓj−1ℓjℓj+1 + ℓ2j ℓj+1 + ℓj−1ℓjℓj+2 + ℓ2jℓj+2

ℓj+1ℓj+2(ℓj + ℓj+1)(ℓj−1 + ℓj + ℓj+1)
, (2.51)

E1j =
−ℓj+1ℓ2j − ℓj−1ℓjℓj+1

ℓj+2(ℓj+1 + ℓj+2)(ℓj + ℓj+1 + ℓj+2)(ℓj−1 + ℓj + ℓj+1 + ℓj+2)
. (2.52)
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Similarly the second derivative is defined to be:

s′′j = A2jsj−2 +B2jsj−1 + C2jsj +D2jsj+1 + E2jsj+2, (2.53)

where the coefficients A2j , B2j, C2j , D2j and E2j are given by

A2j =
2[−2ℓjℓj+1 + ℓ2j+1 − ℓjℓj+2 + ℓj+1ℓj+2]

ℓj−1(ℓj−1 + ℓj)(ℓj−1 + ℓj + ℓj+1)(ℓj−1 + ℓj + ℓj+1 + ℓj+2)
, (2.54)

B2j =
2[2ℓj−1ℓj+1 + 2ℓjℓj+1 − ℓ2j+1 + ℓj−1ℓj+2 + ℓjℓj+2 − ℓj+1ℓj+2]

ℓj−1ℓj(ℓj + ℓj+1)(ℓj + ℓj+1 + ℓj+2)
, (2.55)

C2j = −(A2j +B2j +D2j + E2j), (2.56)

D2j =
2[−ℓj−1ℓj − ℓ2j + ℓj−1ℓj+1 + 2ℓjℓj+1 + ℓj−1ℓj+2 + 2ℓjℓj+2]

ℓj+1ℓj+2(ℓj + ℓj+1)(ℓj−1 + ℓj + ℓj+1)
, (2.57)

E2j =
2[ℓj−1ℓj + ℓ2j − ℓj−1ℓj+1 − 2ℓjℓj+1]

ℓj+2(ℓj+1 + ℓj+2)(ℓj + ℓj+1 + ℓj+2)(ℓj−1 + ℓj + ℓj+1 + ℓj+2)
. (2.58)

Note that if the distances between adjacent vortex points were to be uniformly equal

such that ℓj−1 = ℓj = ℓj+1 = ℓj+2 = h, then the above expressions reduce to familiar

finite-difference schemes for a uniform mesh:

s′j =
1

12h
(sj−2 − 8sj−1 + 8sj+1 − sj+2) +O(h4), (2.59)

s′′j =
1

12h2
(−sj−2 + 16sj−1 − 30sj + 16sj+1 − sj+2) +O(h4). (2.60)

2.6 Computing the Superfluid Velocity

If all things were equal, then the Biot-Savart method would be the obvious choice, however

there are times when it’s prudent to forego the accuracy of Biot-Savart for the speed of the

LIA. As a guide the increased effort to compute additional points P in the LIA is linear

whereas with Biot-Savart it is quadratic. Whichever approach is adopted we need values

for the first and second derivatives s′j and s′′j which are calculated as per the equations

described in section 2.5.

2.6.1 Computing the Biot-Savart Integral

In section 2.2.1 we derived the fully non-local Biot-Savart equation, however equation 2.25

is not the form which we implement within our code.

Given that our model already represents a vortex curve as a series of suitably small
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straight lines we are able to perform the integration of the nonlocal component by splitting

the integral into discrete parts which give the contribution to the velocity at the point sj

from the straight line segment between si and si+1 to be

vnon
s (sj)

i =
κ

2π(4ac − b2)

(

2c+ b

(a+ b+ c)1/2
−

b

a1/2

)

(si − sj)× (si+1 − si). (2.61)

If we then sum all of these small segments (except those directly connected with j) we

obtain the total nonlocal velocity at the point sj :-

vnon
s (sj) =

∑

i

κ

2π(4ac − b2)

(

2c+ b

(a+ b+ c)1/2
−

b

a1/2

)

(si − sj)× (si+1 − si), (2.62)

where i loops over every vortex point except j and its two adjacent points and a = |sj−si|2,

b = 2(si − sj) · (si+1 − si) and c = |si+1 − si|2.

We now have an analytical solution of the Biot-Savart integral which can be directly

implemented within the code without the need for any form of numerical integration such

as Riemann Integration or Trapezoidal Integration. The algorithm below highlights the

general process for implementation:-

47



Chapter 2. Numerical method

Calculate first derivative s′j ;

Calculate second derivative s′′j ;

Calculate the local component of the velocity vloc
sj ;

β = κ/(4π) log(2
√

(sj − sj+1)(sj − sj−1)/e1/2a0) ;

vloc
sj = β s′j × s′′j ;

for each vortex point i do

if i is not ‘local’ to j i ̸= j, j + 1, j − 1 then

Calculate the nonlocal component of the velocity vnon
sj ;

a = |sj − si|2 ;

b = 2(si − sj) · (si+1 − si) ;

c = |si+1 − si|2 ;

vnon
sj = κ

2π(4ac−b2)

(

2c+b
(a+b+c)1/2

− b
a1/2

)

(si − sj)× (si+1 − si) ;

Combine the local & nonlocal components to form the total superfluid

velocity vsj ;

vsj = vloc
sj + vnon

sj ;

end

end

if using periodic boundaries then

Get additional nonlocal velocity from periodic wrap ; /* See Algorithm 7 */

end

Algorithm 2: Procedure for calculating the Biot-Savart velocity

The described methodology and its implementation have been widely reviewed and tested,

details of which can be found [Baggaley, 2012; Baggaley & Barenghi, 2011a; Hanninen &

Baggaley, 2014; Adachi et al., 2010].

2.6.2 Computing the Local Induction Approximation

Once it is established that the superfluid velocity is to be calculated using the local in-

duction approximation the following procedure is implemented within the code for vortex

point sj :-
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Calculate first derivative s′j ;

Calculate second derivative s′′j ;

Calculate the local radius of curvature ;

R = 1/C = 1/
√

s′′j · s
′′
j ;

Calculate β ;

β = κ/(4π) log(R/a0) ;

Calculate LIA velocity ;

vs = β s′j × s′′j ;

Algorithm 3: Procedure for LIA

2.7 The Normal Fluid Velocity

There are numerous approaches to the modelling of the normal fluid velocity vn. Not one

is an obvious choice regardless of computational power available, rather they each have

their strengths and weaknesses depending on what it is we are trying to model. The two

principle models we deploy are Counterflow and a Kinetic Simulation (KS) flow. Typically

we use Counterflow when we are modelling physical experimentalists where they use a heat

source to drive a ‘thermal’ flow [Vinen, 1957b, 1958, 1957c,a], KS flow is more suited to

model experiments where there is thought to be a ‘turbulent’ normal fluid such as when

the fluid is stirred with a grid [Maurer & Tabeling, 1998; Salort et al., 2010].

The properties of the superfluid tangles ultimately created, are quite different depen-

dent upon the choice of normal fluid modelling. Even where parameters have been chosen

so as to produce similar line densities, and average curvatures, when ‘viewed’ in depth,

the structures are vastly different.

2.7.1 Counterflow

Where our chosen model is to be counterflow (thermal counterflow which is the most used

model in the literature from the pioneering work of Schwarz [1988] to the recent calcula-

tions of Tsubota and collaborators [Adachi et al., 2010].) we simulate a flow in our normal

fluid arising through convection from a uniformly distributed heat source at one end of our

experimental closed channel. We assume our flow to be away from the boundaries of the

channel where friction might induce a ‘drag’ effect which would prevent a uniform cross

section of flow being present, although we do not model profiles such as the Poiseuille

profile this has been done by others [Baggaley & Laurie, 2015; Yui & Tsubota, 2014].

We need also to be mindful that with an increasing heat flux Q̇, the tendency towards

turbulence arising within it increases and again produce a non linear cross section of flow
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[Melotte & Barenghi, 1998; Guo et al., 2010].

Our model imposes a uniform normal fluid velocity vext
n = Vnx̂, this flow being away

from the heat source which we designate as being in the x-direction, and proportional to

the applied heat flux Vn = Q̇/(ρST ), where S is the specific entropy and T is the tem-

perature. To conserve mass the superfluid velocity is then given by vext
s = −(ρn/ρs)Vnx̂

in the opposite direction to vext
s . It is convenient for us to solve our equations of motion

(Eqs. (2.1) and (2.15)) in this imposed superflow’s reference frame, therefore we ultimately

set vext
s = 0 such that our counterflow velocity is given by vns = |vext

n −vext
s | = Q̇/(ρsST ).

2.7.2 The KS Flow

At the time when the Navier-Stokes Equation was first formulated there was zero com-

puting power to prove it and much less to make use of it. Even today with the ready

availability of formidable computing power, we are forced to find ways to approximate the

full Navier-Stokes Equation as the time taken to compute the vast number of iterations

required to model even the simplest of real world flows is unacceptably long.

To allow the numerical simulation of flows without the computational overhead of a

full Navier-Stokes implementation, a numerical model was developed by Fung et al. [1992].

This is a Lagrangian model which uses KS to model turbulence. This has since been widely

tested and has proven to be in good agreement with other numerical schemes, such as DNS

as well as physical experiments [Osborne et al., 2006; Fung & Vassilicos, 1998; Malik &

Vassilicos, 1999].

For simulating a KS flow our model builds on the work of Fung and Osborne [Fung

et al., 1992; Osborne et al., 2006], and is adapted by Baggaley [Baggaley, 2009] in par-

ticular to introduce periodicity. In physical flows we observe large eddies which dissipate

through a cascade to smaller eddies and so on. When we seek to model this we model each

of the eddy sizes (turbulent modes) separately such that they are mutually independent

and none of the modelling is reductive whereby a given size eddy dissipates in to a number

of smaller sized eddies.

In our model the flow velocity is built by aggregating blocks of independent turbulent

modes which are then each modelled by a Fourier mode. The summation of these inde-

pendent and randomly orientated Fourier modes prescribes our velocity. At a time t for a

given point x the velocity is given by:
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vn(x, t) =
N
∑

n=1

(An × kn cos(kn · x+ ωnt) +Bn × kn sin(kn · x+ ωnt)) , (2.63)

where N is the number of Fourier modes and ωn is the unsteadiness frequency. The

decomposition coefficients An and Bn correspond to the wave vector kn given by

kn = knk̂n, (2.64)

which is randomly orientated by the assignment of a random unit vector k̂n. The

distribution of the wave numbers is given by

kn = k1

(

kN
k1

)(n−1)/(N−1)

. (2.65)

The principles of our modelling require that the Fourier modes are randomly orientated

and that the velocity field satisfies incompressibility. To ensure these criteria are met we

independently and randomly select the orientations of An and Bn under the constraint

that they are in a plane at right angles to k̂n i.e. An · k̂n = Bn · k̂n = 0.

A key feature of this model is that we can prescribe the energy spectrum as:

E(k) = k4(1 + k2)−(2+p/2)e−1/2(k/kN )2 . (2.66)

In the inertial range (where 1 ≪ k ≪ kN ) this equation reduces to E(k) ∝ k−p and so

clearly if p = 5/3 then we will have prescribed the Kolmogorov spectrum. We choose the

magnitudes of An and Bn such that the prescribed energy spectrum is satisfied,

|An × k̂n| = An, (2.67)

An = Bn =

√

2E(kn)∆kn
3

, (2.68)

where ∆kn is given by

∆kn =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

k2 − k1
2

, n = 1,

kn+1 − kn−1

2
, 1 < n < N,

kN − kN−1

2
, n = N.

(2.69)

The above ensures that the following is true:
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1

V

∫

V

1

2
|u|2dV =

∫ ∞

0
E(k)dk ∼

N
∑

n=1

E(kn)∆kn. (2.70)

To ensure that the flow shall vary over time we introduce a time-dependence through

the unsteadiness frequency. For each mode n, ωn is proportional to the eddy turnover

frequency:

ωn =
√

k3nE(kn). (2.71)

In order to force a truly isotropic distribution of the wave vectors we write the unit

vector k̂n as

k̂n =

⎛

⎜

⎝

√

1− ζ2n cos θn
√

1− ζ2n sin θn

ζn

⎞

⎟

⎠
, (2.72)

where, θn ∈ [0, 2π) and ζn ∈ [−1, 1], are uniformly distributed random numbers.

2.8 Remeshing

At the initial setup we have set the maximum distance that any two points can be apart

as δ (the resolution). This choice of δ automatically sets the minimum distance that can

exist between any two points as δ/2. We need the ability to choose and vary resolutions

depending on the needs of the particular simulation. If we wish to see fine detail on

small artefacts (such as Kelvin Waves) then we need to set a high resolution i.e. small δ,

conversely if the nature of the simulation does not require the observation of fine detail

or if indeed such fine detail would not exist (due to friction damping in relatively higher

temperature simulation) then we can set a low resolution i.e. a large δ.

Remeshing takes two forms each with distinct methodology; one deals with the inser-

tion of extra points and the other with the removal of surplus points. The code evaluates

each in turn in that order.
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Firstly we deal with possible insertions:

for each vortex point i do

Check distance between current point and point in front ;

disti =
√

(s(x)i − s(x)i+1)2 + (s(y)i − s(y)i+1)2 + (s(z)i − s(z)i+1)2 ;

if distance is greater than resolution disti > δ then

/* We need to insert a new vortex point */

Get 2nd derivative s′′i ;

Calculate the curvature C ;

C =
√

s′′i · s
′′
i ;

if C is above minimum curvature C > 0.00001 then

Use interpolation including curvature to determine new point’s location;

R = 1/C ; /* Define the radius of curvature */

snew = 0.5(si + si+1) + (
√

R2 − (disti/2)2 −R)R s′′ ;

else

/* Point lies on more or less a straight line */

Use linear interpolation to determine new point’s location ;

snew = 0.5(si + si+1) ;

end

Define new point’s velocity ;

vnew = 0.5(vi + vi+1) ;

Set in-front and behind points of new point ;

behindsnew = si ;

frontsnew = si+1 ;

Set new point as behind previous in-front ;

behindsi+1
= snew ;

Set new point as in-front current point ;

frontsi = snew ;

end

end

Algorithm 4: Procedure for Inserting a vortex point

Now we deal with possible removals:
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for each vortex point i do

Check distance between current point and the point 2 in front ;

distii =
√

(s(x)i − s(x)i+2)2 + (s(y)i − s(y)i+2)2 + (s(z)i − s(z)i+2)2 ;

if distance is less than resolution then

/* We must remove the point in front */

Set in-front of current point to be location of point 2 ahead ;

frontsi = si+2 ;

Set behind of point 2 ahead to be current point ;

behindsi+2
= si ;

Clear the particle in front ;

end

end

Algorithm 5: Procedure for Removing a vortex point

2.9 Reconnections

The systems we are trying to model have energy loss even at very low temperatures where

there is no mutual friction between the vortices and the normal fluid. One mechanism

for this loss is through the transformation of kinetic energy into acoustic energy during

reconnections [Leadbeater et al., 2001] but we also have losses through the elimination of

small vortex rings and through phonon emissions.

It is impractical for us to model directly these energy loses, however all our recon-

nections result in a loss of line length and we use this loss to simulate the real world

energy loss. We use our line length as a proxy for energy in the system as it is known

that the energy is proportional to the length for a straight vortex and therefore we as-

sume that the energy in our vortices is the length multiplied by the energy per unit length.

It has been shown experimentally that reconnections occur naturally when vortices

come sufficiently close together [Paoletti et al., 2010]. This is further borne out in mi-

croscopic models such as those based on the GPE [Koplik & Levine, 1993; Tebbs et al.,

2011; Kerr, 2011; Kursa et al., 2011], however our reconnections must be ‘hand made’.

Inspired by the early work of Schwarz [1988] there are now numerous algorithms seeking

to deal with the issue of reconnection. The principle candidates are examined in this study

[Baggaley, 2012]. Our code implements the following...

For the determination of a reconnection there are three criteria to be evaluated.
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• Closeness test

• Orientation test

• Line length reduction test

for each vortex point i do

Establish the closest point j which is not either the point in front or behind ;

if distance between i & j is less than δ/2 then

/* i & j pass the closeness test */

Determine the relative orientation φ of i and j ;

s′i · s
′
j = φ ;

if i and j are not parallel(ish) cos(φ) < 0.9 then

/* i & j pass the orientation test */

Check current line length before proposed reconnection ;

Check what the line length would be after proposed reconnection ;

if length after is less than length before then

/* i & j pass line length test ⇒ so will now reconnect i

& j */

Perform reconnection by reassigning relevant in front and behind

values ;

frontsj−1
= si+1 ;

behindsi+1
= sj−1 ;

frontsi = sj ;

behindsj = si ;

Check if either resultant loop is 5 points or less and if so remove ;

end

end

end

end

Algorithm 6: Procedure for Reconnections
A schematic for this reconnection algorithm can be seen in Figure. 2.8.
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Figure 2.8: Reconnection visualisation. Once points i and j have been approved for reconnection
(meet all criteria) the top is the topology of the vortices before the reconnection and the bottom
is the topology after.

2.10 Periodic Boundaries

If we are to run the code with periodic boundaries, then when calculating the vortex

point velocities we need to introduce the concept of ‘Periodic Wrapping’. In essence this

wrapping defines and limits the space frame within which we need to consider the effects

on objects in the ‘root cell’ (the computational domain at the core of the wrapping) of

all relevant other vortex points. This wrapping is achieved by fully enclosing the root cell

with replications of itself known as copies on all its sides and corners.

The possibilities for the translation of the root cell whilst still retaining a minimum

single point contact with itself is determined by a number of shifts of the root cell in

cartesian space. In each of the 3 directions the box can shift by either ±D or not at all,

this means there are 3 choices for each direction which gives 27 possible shifts all of which
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must be accounted for except the null shift as this would result in a double counting of

the root cell. This gives us a total of 26 copies surrounding the 1 original root cell. This

also ensures that the minimum dimension of ‘enclosure’ of any point in the original root

cell is the box size D, for the computational integrity of this model it is assumed that the

nonlocal effects vortex points beyond size D distance are so small as to be negligible by

either inclusion or omission. The distribution of ‘tangles’ within the copy cells are deemed

to be identical to those in the original root cell.

Figure 2.9: Visualisation of periodic wrapping with our original root cell (coloured black) sur-
rounded by the 8 copies (coloured red)

The existence and influence of any vortex point within the 26 copy cell matrix is

acknowledged in the mathematical computation of the superfluid velocity of each vortex

point.

vnon
s (sj) =

κ

4π

∮

LP

(sj − r)

|sj − r|3
× dr (2.73)

Where LP is the vortex configuration within the copy cells. To implement this within

the code the following algorithm is applied:-
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for r = 1 . . . 26 do /* where hr are the 26 possible translations */

for each vortex point i do

Calculate the nonlocal velocity over the 26 copy cells ;

a = |sj − (si + hr)|2 ;

b = 2((si + hr)− sj) · (si+1 − si) ;

c = |si+1 − si|2 ;

vnon
sj = κ

2π(4ac−b2)

(

2c+b
(a+b+c)1/2

− b
a1/2

)

((si + hr)− sj)× (si+1 − si) ;

Add this in to the total superfluid velocity ;

vsj = vloc
sj + vnon

sj ;

end

end

Algorithm 7: Procedure for calculating the nonlocal velocity component with Biot-

Savart using periodic boundaries

For each vortex point sj in the root cell, we have now established the Biot-Savart velocity

as the combination of its local velocity with the additional influence of all other points in

the root cell and its copies.

Our model does not allow the removal of vortex points by physical displacement. That

is to say, should a vortex point exit our periodic box at a given time-step then it is
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reintroduced on the other side of the box as detailed in Algorithm 8.

for each vortex point i do

/* First look at the x-component of the position... */

if it is now outside the RHS of the box - s(x)i > D/2 then

Reintroduce point on the LHS within our box ;

s(x)i = s(x)i −D ;

else if it is now outside the LHS of the box - s(x)i < −D/2 then

Reintroduce point on the RHS within our box ;

s(x)i = s(x)i +D ;

else

Current position is within bounds of box - do nothing ;

end

/* Next look at the y-component of the position... */

if it is now outside the front of the box - s(y)i > D/2 then

Reintroduce point at the back within our box ;

s(y)i = s(y)i −D ;

else if it is now outside the back of the box - s(y)i < −D/2 then

Reintroduce point at the front within our box ;

s(y)i = s(y)i +D ;

else

Current position is within bounds of box - do nothing ;

end

/* Finally look at the z-component of the position... */

if it is now outside the top of the box - s(z)i > D/2 then

Reintroduce point at the bottom within our box ;

s(z)i = s(z)i −D ;

else if it is now outside the bottom of the box - s(z)i < −D/2 then

Reintroduce point at the top within our box ;

s(z)i = s(z)i +D ;

else

Current position is within bounds of box - do nothing ;

end

end

Algorithm 8: Procedure for enforcing periodic boundaries
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2.11 The Tree Method

To calculate the effect a nonlocal vortex point has on our target vortex point requires one

cycle of our Biot-Savart code. Clearly with a very high number of particles (possibly ex-

ceeding 105) this can require a large number of cycles of the code (of the order 105 × 105).

It would be advantageous to find a robust method whereby the number of cycles can be

reduced with an acceptable sacrifice in accuracy. Astrophysicists dealing with the infinity

of space had similar computational issues in tracking many millions of celestial objects.

Barnes & Hut [1986] successfully deployed tree algorithms to reduce the computational

load.

The influence of a nonlocal object is directly proportional to its distance away from the

target vortex point. There comes a point when these nonlocal vortex points need no longer

be considered as individual objects but rather can be treated as a group with other vortex

points in their vicinity and the effect on the target can be an averaged value for this group.

If we choose a suitable reference framework whereby this averaging can be successfully

implemented then it has been shown [Springel et al., 2005] that tree algorithms can deliver

the required accuracy with many fewer computational cycles.

The basic idea behind our tree algorithm is the division of our periodic box into ever

smaller subsets of space and at each of these divisions calculating the total circulation and

the centre of circulation for these subspaces. If we start with our periodic box, a cube of

width x then the first step in our tree algorithm is to divide this space up in to octets,

these being cubes whose width is x/2. We do our calculations for these 8 cubes for the

total circulation, given by

sΣ =
Nc
∑

i=1

(si+1 − si). (2.74)

where Nc is the total number of points in the cube, and we then calculate the centre of

circulation, given by:

s̄ =
1

Nc

Nc
∑

i=1

si. (2.75)

Any cube which contains more than one vortex point (Nc > 1) will then be subdivided

in to 8 smaller cubes of width x/4 and the process is repeated until every vortex point is

contained within its own cube, at which point we will have completed our octree.

A single vortex point can therefore have a presence in a number of cubes of varying

width; when calculating the effect a particular nonlocal vortex point has on our target
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we need to decide which is the relevant cube for calculation purposes. We do this by

setting a limiting parameter θ which is the ratio of the cube width w to the distance of the

centre of circulation for the cube containing our nonlocal point to the target point d i.e.

θ = w/d. The key factor in the successful use of our tree algorithm is the limit to this ratio

θmax: too large results in too much averaging and therefore an unacceptable loss in ac-

curacy, too small and we tend to pure Biot-Savart which is computationally unsustainable.

The code is able to efficiently cascade through the tree by the use of pointers from

each ‘parent’ cube to its 8 ‘child’ cubes, and as it does so the cube width w is halved and

therefore the likelihood of that cube passing our limit test is doubled.

Only points defined to be ‘close’ based on our limiter (w/d < θmax) need be individually

evaluated, others can be considered as range of single large vortex points which lie at the

centre of circulation for each cube. The resultant time for the code to execute the tree’s

construction is of magnitude N log(N) (where N is the total number of vortex points)

as each point does not need comparing with every other point, such that the tree can

comfortably be redrawn for each time-step. For clarity, Figure. 2.10 is a 2 dimensional

representation of the grouping and subgrouping of vortex points down to the single vortex

point level. Figure 2.11 illustrates how a vortex ring in our periodic cube is eventually

contained within smaller cubes built by our octree.
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(a) (b)

(c) (d)
Figure 2.10: Illustration of the tree’s construction in 2D. Panel (a) shows our periodic box con-
taining 13 vortex points (in blue), panel (b) represents the effect of our halving the side length of
our reference square resulting in four smaller squares, this ‘halving’ is repeated in panels (c) and
(d) by which time we have a single point in each square. Image taken from [Baggaley & Barenghi,
2012].

Figure 2.11: From left to right: 3D Illustrations of a vortex ring in our periodic cube and then
when it is contained within the tree structure. Finally a 2D slice in the xy-plane through the centre
of the ring (at z = 0) showing the partitioning of vortex points within their own ‘cube’. Images
taken from [Baggaley & Barenghi, 2012].
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2.12 Basic Tests of the code

My adopted code has been widely tested and shown to be a very capable vehicle for the

simulations I run. However, based on the principle that it’s always best to pack your own

parachute, I have separately and independently tested the code and I am satisfied the

results agree with analytic tests.

2.12.1 The velocity of a vortex ring

It is well established [Barenghi & Donnelly, 2009; Donnelly, 1970] that a vortex ring moves

with its own self induced velocity vr:

vr = −
κ

4πr

[

ln

(

8r

a0

)

−
1

2

]

, (2.76)

where κ is the quantum of circulation, r is the radius of the ring and a0 is the vortex core

size.

In order to test this within my code I performed a series of seven simulations - all at

zero temperature within a periodic box of size D = 0.1cm using the local induction ap-

proximation to calculate the self induced velocity of the vortex ring. I would initialise my

code with a single vortex ring orientated in the xy-plane, each time using a progressively

larger radius for the ring. Figure 2.12 highlights the progression of the ring sizes.

Figure 2.12: Left: The first and smallest vortex ring tested, with a radius r = 1.19 × 10−2cm,
Middle: The fourth and ‘middle’ vortex ring tested, with a radius r = 2.98× 10−2cm, Right: The
last and largest vortex ring tested, with a radius r = 4.77× 10−2cm.

For each simulation I would take note of the radius and velocity of the ring in order

to compare my results with that of the analytical solution above. My results are shown

in Figure 2.13.
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Figure 2.13: Plot of the z-component of the velocity, Vr against the radius of the loop, r. The
purple line is the expected result from the analytical derivation of the velocity (Eq. 2.76). The
back circles are the measured velocities from the seven simulations run in the code.

It is clear from the above figure that my results (black circles) are in excellent agreement

with the expected velocity (purple line) of a vortex ring.

2.12.2 The Donnelly-Glaberson Instability

As a further check of the integrity of the code, I set about trying to reproduce the known

results of a flow past a slightly perturbed vortex (known as the Donnelly-Glaberson In-

stability).

To begin, we need to derive an analytical expression for the growth of the radius of the

perturbations (ϵ) over time so that we can compare this to the results generated within

the code.

If we have a vortex line which is orientated in the x-direction and we give it a small

helical perturbation (as shown on the left of Figure 2.14) then the position s along the

vortex is given by:

s = (x, ϵ cos φ, ϵ sinφ), (2.77)

where φ = kx− ωt.
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Figure 2.14: Left: Representation of the helix at the start, Middle: Representation of the helix
after the perturbations have grown, Right: The grown helix shown in the yz-plane where the radius
of the circles is ϵ.

We can now differentiate s with respect to time to calculate the velocity which is given

by ds/dt:

ds

dt
= (0, ϵω sinφ+

dϵ

dt
cosφ,−ϵω cosφ+

dϵ

dt
sinφ). (2.78)

This expression can be directly compared with the equation of motion we use within

the code. If we use the local induction approximation to calculate the superfluid velocity

(i.e. vself
s = βs′ × s′′) our approximation for ds/dt will be:-

ds

dt
= βs′ × s′′ + αs′ × [vn − βs′ × s′′]. (2.79)

Now if we substitute our s from above and assume a uniform flow past the vortex also

in the x-direction, such that vn = (V, 0, 0) we should be able to obtain an equation for

dϵ/dt and hence gain an expression for ϵ over time.

To do this we will need expressions for s′ and s′′. A prime here denotes a derivative

with respect to arc length which we can approximate as a derivative with respect to x and

therefore we obtain:

s′ = (1,−ϵk sinφ, ϵk cosφ), (2.80)

s′′ = (0,−ϵk2 cosφ,−ϵk2 sinφ). (2.81)

Using the above equations we can now calculate our expression for ds/dt using equation

2.79. To show how this is executed we will split the calculation up in to sections:
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s′ × s′′ =

⎛

⎜

⎝

1

−ϵk sinφ

ϵk cosφ

⎞

⎟

⎠
×

⎛

⎜

⎝

0

−ϵk2 cosφ

−ϵk2 sinφ

⎞

⎟

⎠
=

⎛

⎜

⎝

ϵ2k3

ϵk2 sinφ

−ϵk2 cosφ

⎞

⎟

⎠
. (2.82)

Building this up we have:

s′ × (vn − βs′ × s′′) =

⎛

⎜

⎝

1

−ϵk sinφ

ϵk cosφ

⎞

⎟

⎠
×

⎛

⎜

⎝

⎛

⎜

⎝

V

0

0

⎞

⎟

⎠
− β

⎛

⎜

⎝

ϵ2k3

ϵk2 sinφ

−ϵk2 cosφ

⎞

⎟

⎠

⎞

⎟

⎠

=

⎛

⎜

⎝

0

(V − βϵ2k3)ϵk cosφ− βϵk2 cosφ

(V − βϵ2k3)ϵk sinφ− βϵk2 sinφ

⎞

⎟

⎠
.

(2.83)

Linearising this in ϵ gives us (note by doing this our result will only hold in the limit of

small ϵ):

s′ × (vn − βs′ × s′′) =

⎛

⎜

⎝

0

(V − βk)ϵk cosφ

(V − βk)ϵk sinφ

⎞

⎟

⎠
. (2.84)

Hence we finally obtain our expression for ds/dt:

ds

dt
= βs′ × s′′ + αs′ × (vn − βs′ × s′′) =

⎛

⎜

⎝

0

βϵk2 sinφ+ (V − βk)αϵk cosφ

βϵk2 cosφ+ (V − βk)αϵk sinφ

⎞

⎟

⎠
. (2.85)

If we now look at only the y-component of ds/dt above and we compare it with the

y-component of the analytic solution obtained in equation 2.78 we arrive at:

ϵω sinφ+
dϵ

dt
cosφ = βϵk2 sinφ+ (V − βk)αϵk cosφ. (2.86)

Now by comparing the coefficients of cosφ we obtain:

dϵ

dt
= (V − βk)αϵk. (2.87)

If we now say σ = αk(V − βk), then we have:

66



Chapter 2. Numerical method

dϵ

dt
= σϵ (2.88)

⇒

∫

dϵ

ϵ
=

∫

σdt (2.89)

⇒ ln |ϵ| = σt+ C (2.90)

⇒ ϵ = Aeσt. (2.91)

So over time we expect ϵ to grow exponentially governed by the following equation:

ϵ = Aeα(V k−βk2)t, (2.92)

where A is the initial amplitude of our perturbation, α is a temperature dependent friction

coefficient, V is the x-component of the normal fluid velocity, and k is the wavenumber.

Finally it is this equation which we will check our simulation results are in good agreement

with.

To compare this result with the code, I setup a simulation in a periodic box of size

D = 0.05cm with a numerical resolution of δ = 0.0005cm and a time-step of dt = 2×10−6s,

using the local induction approximation to calculate the self-induced superfluid velocity,

with a normal fluid flow (in the x-direction only) of speed V = 1m/s. I then fix the value

of β to be β = 1.3× 10−2, and set α = 1 (and also α′ = 0), the initial condition is a single

line orientated in the x-direction (shown on the left of figure 2.14).

I then let this simulation evolve over time, monitoring the radius of the perturbation ϵ

in the yz-plane where ϵ =
〈√

s2y + s2z

〉

and the results for this are shown below in Figure

2.15.
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Figure 2.15: Plot of time against the radius of the perturbation, ϵ. The purple line is the expected
result from the analytical derivation of the velocity. The black dots are the measured velocities
from the time-series run in the code.

Looking at Figure 2.15, the correlation between my results and those of the analytical

solution. It is clear that values and trends are closely aligned showing that the code is

behaving in accordance with expectation.
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Thermally and mechanically

driven quantum turbulence in

helium II

3.1 Background

Recent work [Skrbek & Sreenivasan, 2012; Vinen & Niemela, 2002] has highlighted sim-

ilarities between the turbulence of superfluid helium II (quantum turbulence) and the

turbulence of ordinary (classical) fluids. In particular, experimental [Maurer & Tabeling,

1998; Salort et al., 2010] (as discussed in section 1.5.2) and theoretical [Nore et al., 1997;

Araki et al., 2002; Kobayashi & Tsubota, 2005; Sasa et al., 2011; Baggaley & Barenghi,

2011b; Baggaley et al., 2012b; Lvov et al., 2006] studies have established that the dis-

tribution of the superfluid kinetic energy over the length scales (energy spectrum) obeys

the same k−5/3 Kolmogorov scaling of ordinary turbulence [Frisch, 1995] where k is the

wavenumber. The similarity is remarkable because helium II is unlike an ordinary fluid:

firstly, it has a two-fluid nature, consisting of a viscous normal fluid component and an

inviscid superfluid component coupled by a mutual friction [Donnelly, 1991]; secondly,

superfluid vorticity is not a continuous field (as in an ordinary fluid) but is restricted to

discrete vortex filaments around which the circulation is fixed to the ratio of Planck’s

constant and the mass of one helium atom.

As previously addressed in section 1.5, for most experiments, turbulence in helium II

is excited mechanically (by stirring the helium with grids [Stalp et al., 1999; Zmeev et al.,

2015] or propellers [Smith et al., 1993; Maurer & Tabeling, 1998; Salort et al., 2010] or

forcing it along pipes [Walstrom et al., 1988]), or thermally (by the application of a heat

flux [Vinen, 1957b, 1958, 1957c,a; Tough, 1982]). The simplest, most studied form of
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thermal stirring (to which hereafter we restrict our work) is called thermal counterflow

(for more detail see section 1.5.1). Other forms of heat transfer (e.g. pure superflow) and

other techniques to generate turbulence (e.g. ultrasound [Schwarz & Smith, 1981], ion

injection and spin-downs [Walmsley & Golov, 2008]) are either less studied, or refer to

the low temperature limit (below 1 K), or have a special character (rotating turbulence,

turbulent fronts, the Kibble-Zurek mechanism, etc.), thus they are not our interest here,

and nor are the special methods used to model them. For these aspects we refer the reader

to a recent review by Tsubota & Halperin [2009].

The aim of this work is to clarify the difference between thermally-excited counterflow

turbulence and mechanically-excited turbulence in helium II. For simplicity, we are con-

cerned only with statistically steady state turbulence away from boundaries (thus ignoring

the important problems of turbulence decay and flow profiles), and at the relatively high

temperatures, where mutual friction is the dominant dissipative mechanism.

Following the methods laid out in Chapter 2 we set up to investigate thermally-driven

turbulence using our counterflow model and mechanically-driven turbulence using our KS

flow model. All simulations in this chapter are computed within a periodic box of size

D = 0.1, and using a tree-method with a critical opening angle of θ = 0.4. We then

compute the energy spectrum of counterflow turbulence, compare it to the spectrum of

mechanically-driven turbulence, and test the idea which has been proposed in the lit-

erature that “counterflow turbulence has only one length scale”, meaning the average

intervortex distance (section 3.2). We also find that thermally- and mechanically-induced

turbulence differ with respect to curvature (section 3.3), the presence of coherent struc-

tures (section 3.4) and vortex reconnection statistics. The last result suggests a method to

detect experimentally the existence of superfluid vortex bundles (section 3.5). Section 3.6

summarises the conclusions.

It must be stressed that our models have a limitation: the normal fluid is prescribed

rather than computed self-consistently. The inclusion of the back-reaction of the superfluid

vortices onto the normal fluid would require the numerical solution of the Navier-Stokes

equation for the normal fluid (suitably modified by the inclusion of a mutual friction

term), alongside the time evolution of the superfluid vortices. However, a dynamically

self-consistent model would be very complex and computationally expensive, and one

could not easily explore parameter space and the effects of changing numerical resolution

and initial conditions. This approach was attempted for a single vortex ring [Kivotides

et al., 2000], but in the case of turbulence, this approach has so far been limited to the

initial growth of a cloud of vortex lines [Kivotides, 2011] and subsequently to the decay of
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turbulence [Kivotides, 2015].

3.2 Energy spectrum

We choose temperature T = 1.9 K (at which α = 0.206 and α′ = 0.0083) which is typical

of experiments and allows direct comparison with previous work, and numerical resolu-

tion ∆ξ = 0.0016 cm. First we calculate thermally-induced turbulent vortex tangles at

increasing values of vns.

Figure 3.1: Thermally-induced turbulence. The evolution of the vortex line density L (cm−2) vs
time t (s) at counterflow velocities (from top to bottom) vns = 1.25 cm/s (black), 1.0 cm/s (red),
0.75 cm/s (blue), and 0.55 cm/s (green). Note: this colour scheme is utilised throughout all figures
in this chapter.

We find that, after an initial transient, the vortex line density L (vortex length per unit

volume) saturates to a statistically steady state (see Fig. 3.1) of density L = γ2v2ns which

is independent of the details of the initial condition (various vortex loops configurations

were tried). Fig. 3.2 (top) shows a snapshot of such vortex tangle.
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Figure 3.2: Snapshots of vortex tangles (y, z projections). Top: thermally-driven by counterflow
(vns = 0.75 cm/s, L ≈ 12000 cm−2); bottom: mechanically-driven (Re = 208, L ≈ 12000 cm−2)

Our vortex line densities agree with previous work; for example, taking T = 1.9 K we

obtain γ ≈ 137 s/cm2 which compares well to γ ≈ 140 and 133 obtained in the numerical

simulations of Adachi et al. [2010] and in the experiments of Childers and Tough [1976]

respectively.

To analyse our results we Fourier-transform the superfluid velocity and compute the

energy spectrum Ek. If the turbulence is isotropic, Ek is defined by
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E =
1

V

∫

V

1

2
v2
sdV =

∫ ∞

0
Ekdk, (3.1)

where V is volume, k = |k|, and k is the three-dimensional wavenumber. However, it is

well known [Schwarz, 1988; Adachi et al., 2010] that counterflow turbulence is flattened

on the (y, z) plane perpendicular to the direction (x) of the heat flux. For example,

if Lx, Ly and Lz are the vortex lengths (per unit volume) projected in the x, y and

z-direction, at vns = 1.25 cm/s we have Lx/L = 0.34 < Ly/L = 0.55 = Lz/L. It

is therefore better to distinguish between parallel and perpendicular superfluid energy

spectra, E∥ and E⊥, calculated replacing |v2
s | = v2sx + v2sy + v2sz in Eq. (3.1) with 3v2sx

and (3/2)(v2sy + v2sz) respectively. Fig. 3.3 (left) shows E⊥ for various vns plotted in the

range kD = 2π/D ≤ k⊥ ≤ k∆ξ = 2π/∆ξ (where k⊥ is the perpendicular wavevector); the

vertical lines mark the wavenumbers kℓ = 2π/ℓ corresponding to the average intervortex

spacing, ℓ ≈ L−1/2. It is apparent that the perpendicular energy spectrum E⊥ has a

broad peak in the mesoscales at intermediate wavenumbers kD < k < kℓ. At larger k the

spectrum follows the typical k−1 scaling of smooth isolated vortex lines as expected. The

parallel spectrum E∥ vs k∥ (where k∥ is the parallel wavevector) exhibits similar features,

see Fig. 3.3 (right). Plotting E⊥ and E∥ vs k rather than k⊥ and k∥ yields similar results.

We note that the counterflow energy spectrum, which we measure, is qualitatively similar

to the spectrum shown by Nemirovskii, Tsubota and Araki [Nemirovskii et al., 2002] in

their Fig.2.

Figure 3.3: Counterflow turbulence. Left: the perpendicular energy spectrum E⊥(k⊥) (arbitrary
units) vs wavenumber k⊥ (cm−1). Right: the parallel energy spectrum E∥(k∥) (arbitrary units) vs
wavenumber k∥ (cm−1). The vertical lines mark kℓ at increasing vns from right to left.

Proceeding in analogy to what we did for counterflow turbulence, we start from an

arbitrary seeding initial condition, drive the vortex tangle with the synthetic turbulent

73



Chapter 3. Thermally and mechanically driven quantum turbulence in helium II

flow of Eq. (2.63), and let L grow and saturate to a statistical steady state of turbulence

which does not depend on the initial condition (the time behaviour of L is similar to

Fig. 3.1). A snapshot of this mechanically-driven tangle is shown in Fig. 3.2 (bottom). We

then compute the superfluid energy spectrum. In agreement with previous experimental

[Maurer & Tabeling, 1998; Salort et al., 2010] and theoretical [Baggaley & Barenghi,

2011b; Lvov et al., 2006] work, we find that the energy is concentrated at the largest

scales, k ≈ kD, and that Ek ∼ k−5/3 for small k (see Fig. 3.4).

Figure 3.4: Mechanically-induced turbulence. Energy spectrum Ek (arbitrary units) vs wavenum-
ber k (cm−1) of vortex tangle driven by the synthetic turbulent flow of Eq. (2.63) with M = 188
modes. The vertical dashed blue line marks kℓ. The dashed red line shows the k−5/3 Kolmogorov
scaling. The effective Reynolds number of the normal fluid is Re = (kM/k1)4/3 = 208, defined by
the condition that the dissipation time equals the eddy turnover time at kM .

We conclude that there is a remarkable spectral difference between thermally-driven

turbulence and mechanically-driven turbulence. Whereas in the former the turbulent ki-

netic energy is concentrated at intermediate length scales, in the latter most of the energy

is at the largest scales, as in classical ordinary turbulence.

An argument is often made in the literature that counterflow turbulence has only one

characteristic length scale, the intervortex distance ℓ: it is apparent from Fig. 3.3 that Ek

does not have a sharp peak at k ≈ kℓ = 2π/ℓ (indicated by the vertical lines), but rather

a broad maximum at smaller wavenumbers in the mesoscale region kD < k ≤ kℓ. The

traditional argument, although quantitatively wrong, is thus qualitatively correct.
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3.3 Curvature

Figure 3.5: Probability density function (PDF) of the mean curvature per vortex loop C̄ (cm−1)
. Solid black line: mechanically-driven turbulence; dashed red line: thermally-driven turbulence.
Notice the larger curvatures present in thermally-driven turbulence.

If we look carefully at the vortex tangles shown in Fig. 3.2, we notice that the thermally-

driven tangle (top) contains relatively more closed loops, and the mechanically-driven

tangle (bottom) contains relatively more long vortices which extend throughout the pe-

riodic computational domain. We sample the curvature C = |s′′| along each vortex loop

and construct the probability density function (PDF) of the mean curvature C̄ of each

distinct loop. Fig. 3.5 shows the result. We notice that mechanically-driven turbulence

contains smaller curvatures (that is, larger radii of curvature R = 1/C) than thermally-

driven turbulence; indeed, for the latter PDF(C̄) has a maximum at C̄ ≈ 250 cm−1 in

correspondence of the maximum of the energy spectrum shown in Fig. 3.3.

As an additional numerical experiment, we compute the energy spectra of configura-

tions of circular vortex rings placed randomly in the periodic box of size D as a function

of the rings’ radius R. We find that if R ≥ D (in which case rings are “folded” into broken

arches by the periodic boundary conditions) most of the energy is concentrated at the

largest length scales, whereas if R < D the energy spectrum peaks at intermediate scales,

in analogy with the counterflow spectrum.
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3.4 Coherent structures

Figure 3.6: Smoothed vorticity |ω| sustained by a constant vext
n (thermally-driven turbulence).

We also notice another difference between the two forms of turbulence. If we convolve the

vortex filaments with a Gaussian kernel and define a smoothed vorticity field ωs (the details

of the procedure are described in Ref. [Baggaley et al., 2012b]), it becomes apparent - see

Fig. 3.6 - that the thermally-induced tangle (sustained by the uniform vext
n ) is essentially

featureless, whereas the mechanically-induced tangle (sustained by the turbulent vext
n )

contains “vortical worms”, or regions of concentrated vorticity - see Fig. 3.7. This result is

consistent with the observation of “worms” in two other related turbulent flows: ordinary

viscous turbulence [Frisch, 1995] and pure superfluid turbulence at T = 0 without the

normal fluid [Baggaley et al., 2012b]; both flows satisfy the Kolmogorov k−5/3 scaling.
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Figure 3.7: Smoothed vorticity |ω| sustained by a turbulent vext
n (mechanically-driven turbulence).

Notice the intense vortical regions compared to Fig. 3.6 which is plotted on the same scale.

It is known from previous work that if intense regions of normal fluid vorticity are im-

posed, such as Gaussian vortex tubes [Samuels, 1993], ABC flows [Barenghi et al., 1997] or

worms [Kivotides, 2006; Morris et al., 2008], these structures will induce (via the friction

force) similar structures in the superfluid vortex lines. Our synthetic turbulent flow vext
n ,

although not completely featureless on its own, contains only weak vortex structures, much

smaller [Fung et al., 1992] than the vortical worms arising from direct numerical simula-

tions of the Navier-Stokes equation. Therefore the observation of superfluid vortex bundles

driven by the synthetic turbulent flow vext
n of Eq. (2.63) must be an underestimate of the

strength of these bundles. If we solved the Navier-Stokes equation for the normal fluid

(rather than imposing vext
n ), the normal fluid’s worms would probably “imprint” vortex

bundles in the superfluid, besides the bundles which arise naturally in the superfluid as a

consequence of Euler dynamics [Baggaley et al., 2012b].

A tentative explanation of the observation that the vortex configuration is rather ho-

mogeneous for thermally-driven turbulence and inhomogeneous for mechanically-driven

turbulence is that in the former (assuming, as we do, a uniform normal flow) the growth

rate of the Donnelly-Glaberson (DG) instability (which transforms normal fluid’s energy

into superfluid vortex length) is the same everywhere, whereas in the latter it changes

with time and space.

The DG mechanism is the following [Tsubota et al., 2004]. If it is large enough, the
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component V of the normal fluid velocity along a vortex line can destabilise a (helical)

Kelvin wave of given wavenumber k. In this case, the Kelvin wave grows with amplitude

A(t) = A(0)eσt, where A(0) is the initial amplitude of the helix and

σ(k) = α(kV − ν ′k2), (3.2)

is the growth rate, ν ′ = κL1/(4π) ≈ κ, and L1 = ln [1/(ka0)]. The growth of the Kelvin

wave, however, may be interrupted by a vortex reconnection which “breaks” the vortex

line. It is known that vortex reconnections play an essential role in the turbulence [Feyn-

man, 1955a; Schwarz, 1988; Nemirovskii, 2008]. Therefore, it is prudent to assess the effect

of reconnections on the DG instability.

Consider mechanically-driven turbulence in a statistically steady state at T = 1.9 K

(α = 0.206) driven by the rms normal fluid velocity V ≈ 0.93 cm/s, with average vortex

length Λ ≈ 11.5 cm, vortex line density L ≈ 1.15 × 104 cm−2, and intervortex spac-

ing ℓ ≈ 9.3 × 10−3 cm, and thermally-driven turbulence at the same temperature with

V = 0.75 cm/s, Λ ≈ 11.88 cm, L ≈ 1.19 × 104 cm−2, and ℓ ≈ 9.2 × 10−3. The average

number ζ of vortex reconnections per unit time is monitored during the numerical calcula-

tions; we obtain ζ ≈ 4370 and 7386 s−1 for mechanically and thermally driven turbulence,

respectively (in reasonable agreement with the estimate ζ ≈ (2/3)κL5/2 ≈ 9500 s−1, for a

homogeneous isotropic tangle, of Barenghi & Samuels [Barenghi & Samuels, 2004]).

The mode which undergoes the most rapid DG instability has wavenumber kmax =

V/(2ν ′) and growth rate σmax = αV 2/(4ν ′), corresponding to the length scale dmax =

2π/kmax. In both mechanically-driven and thermally-driven cases this length scale (dmax =

0.015 and 0.017 cm respectively) is larger than the average distance between vortices ℓ,

and so not suitable for our analysis. We therefore perform an analysis for Kelvin waves

with a wavelength and a wavenumber equal to ℓ and kℓ = 2π/ℓ, respectively; we assume

that such waves are the lowest frequency waves in our system. The growth rate of such a

waves is σDG = σ(kℓ), where σ(k) is defined in Eq. (3.2).

The reconnection rate ζ computed during the simulations is a statistical property of

the vortex tangle as a whole. However we can compute a reconnection frequency for a

wavenumber and wave amplitude by scaling the total reconnection rate by the fraction of

the total vortex length that a given wavelength takes. In such a manner we define

σr(A) =
ζ

Λ

∫ ℓ

0

[

1 + (Akℓ)
2 cos2(kℓx)

]−1/2
dx. (3.3)
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Figure 3.8: Plot of σDG/σr (ratio of Donnelly-Glaberson and vortex reconnection frequencies)
vs wave amplitude A (cm), for thermally (dashed, red line) and mechanically (solid line) driven
turbulence; the (blue) dot-dashed line represents σDG = σr.

Fig. 3.8 shows the ratio σDG/σr vs wave amplitude A for the two simulations described

above. We note a large contrast in the behaviour of the ratio of these two timescales when

comparing the mechanically and thermally driven cases. For the latter one would estimate

that the amplitude of perturbations along the vortices can grow to approximately the

intervortex spacing before reconnections dominate the behaviour of the tangle. However,

in the mechanically driven case σDG ≈ σr for A ≈ D/3 so that the large amplitude

perturbations are able to grow, before reconnections randomise the tangle and introduce

topological changes. Therefore the difference in the balance between these two competing

timescales is likely to be partially responsible for the differences in the nature of the two

turbulent systems.

3.5 Vortex reconnections

The existence of superfluid vortex bundles [Samuels, 1993; Barenghi et al., 1997; Kivotides,

2006; Morris et al., 2008], their dynamics [Alamri et al., 2008] and their particular signif-

icance at very low temperatures [L’vov et al., 2007; Kozik & Svistunov, 2008a] have been

discussed in the literature, but so far there is no clear experimental evidence for them. It

has been argued that the presence of bundles of locally almost parallel vortices (which we

have demonstrated in the previous section for mechanically-induced turbulence) leads to

a suppression of vortex reconnections [L’vov et al., 2007; Kozik & Svistunov, 2008a].
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In the vortex filament model, vortex reconnections are performed algorithmically; the

details are described in Ref. [Baggaley, 2012]. Within the approximation, intrinsic to the

model, it is instructive to study the distribution of the angles θ between reconnecting vor-

tex lines at the level of discretisation which we use (which is necessarily much larger than

a0). The normalised distribution of values of θ, PDF(θ), is shown in Fig. 3.9: the solid

black line with black circles refers to mechanically-driven turbulence, and the solid red line

with red squares to thermally driven turbulence. It is apparent that in thermally-induced

turbulence the majority of vortex reconnections take place between vortex filaments which

are nearly anti-parallel (θ ≈ π), whereas in mechanically-driven turbulence most recon-

nections are between vortices which are nearly parallel (θ < π/2). Our results confirm

that indeed the presence of organised bundles of vortices changes the typical geometry of

reconnections.

Figure 3.9: The probability density function (PDF) of the angle between reconnecting vortices, θ.
Thermally-driven turbulence: at T = 2.1 K (dashed red line) and at T = 1.9 K (solid red squares);
mechanically-driven turbulence: at T = 2.1 K (solid black line) and at T = 1.9 K (solid black line
with solid black circles). Note that for thermally-driven turbulence the distribution peaks at large
θ, whereas for mechanically-driven turbulence it peaks at small θ.

To check the temperature dependence of the results we repeat our calculations at

higher temperature, T = 2.1 K. At this temperature the friction coefficients are larger

(α = 1.21 and α′ = −0.3883), therefore a more intense vortex tangle is generated at the

same value of the drive; moreover, short Kelvin waves are damped out more quickly. We
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check that at the higher temperature T = 2.1 K the same differences between thermally-

driven and mechanically-driven turbulence are present, which we have described in the

previous sections for T = 1.9 K in terms of energy spectrum, curvature and coherent

structures. Fig. 3.9 shows that, qualitatively, the distribution of reconnecting angles is

also temperature independent (the black solid line, which refers to mechanically-driven

turbulence peaks at small θ, the solid red line which refers to thermally-driven turbulence

peaks at large θ).

This result could be exploited to look for experimental evidence of superfluid vortex

bundles in the following way. Using solid hydrogen tracer particles to visualise the vor-

tex lines, Paoletti, Fisher and Lathrop et al. [Paoletti et al., 2010] determined that the

minimum distance δ(t) between vortex lines before and after a reconnection scales as

δ(t) = A(κ|t − t0|)
1/2(1 + c|t− t0|), (3.4)

where t0 is the time at which the reconnection takes place, with fitting coefficients A ≈ 1.2

and c ≈ 0. We proceed in this way, monitoring vortex reconnections in our numerical

calculations. Fig. 3.10 shows the probability density functions of our fitting parameters

A and c obtained for 1107 reconnections in thermally-driven turbulence (average values

⟨A⟩ = 2.6 and ⟨c⟩ = 1.6) and 879 reconnections in mechanically-driven turbulence (average

values ⟨A⟩ = 1.8 and ⟨c⟩ = 0.7 s−1). Our fitting coefficients thus agree fairly well with

the experimental findings of Ref. [Paoletti et al., 2010] and with the numerical results of

Tsubota and Adachi [Tsubota & Adachi, 2011] (A ≈ 3 and c ≈ 0 s−1).

Figure 3.10: Probability density functions (PDF) of the fitting parameters A (left) and c (s−1)
(right) of Eq. 3.4. Solid black line: mechanically-driven turbulence; dashed red line: thermally-
driven turbulence.

Fig. 3.10 shows that the distribution of values of A is different for thermally-driven
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and mechanically-driven turbulence. The effect must arise from the different distributions

of curvature and reconnecting angles θ for vortex bundles, which are present only in

mechanically-driven turbulence. This is confirmed by Fig. 3.11, which displays scatter

plots of the fitting parameters A (top) and c (middle). Fig. 3.11 also shows the angular

dependence of the mean curvature C̄r (bottom) of the reconnecting vortex segments.

Figure 3.11: Scatter plots of the fitting parameters A (top) and c (middle) of Eq. 3.4 vs the angle,
θ, between the reconnecting vortices. The bottom figure shows the mean curvature C̄r of the
reconnecting vortex segments vs the angle θ. Solid black points: mechanically-driven turbulence;
open red circles: thermally-driven turbulence.
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It is clear that the curvature of the filaments after a reconnection is dependent on

the angle of the reconnection. From inspection of the local induction approximation

[Saffman, 1993] we would expect larger velocities (and thus A) with increased curvature,

as we observe in the numerical simulations. These results suggest a possible experimental

strategy to establish the existence of vortex bundles based on the careful analysis of the

reconnection fitting parameter A.

3.6 Conclusions

In conclusion, we have addressed the question of the energy spectrum of thermally-induced

counterflow turbulence, and found that it is unlike the spectrum of turbulence generated

mechanically. More generally, we have found that the two forms of quantum turbulence

which can be generated in superfluid helium are quite different. Counterflow turbulence,

driven thermally by a constant normal fluid velocity, is uniform in physical space and

the energy spectrum is concentrated at intermediate wavenumbers k. On the contrary,

quantum turbulence driven mechanically by a turbulent normal fluid contains regions of

concentrated coherent vorticity and vortex lines with larger radii of curvature; the energy is

concentrated at the largest scales, exhibiting the same k−5/3 scaling of ordinary turbulence

which suggests the presence of an energy cascade. Our results prove that counterflow

turbulence, a form of disordered heat transfer unique to liquid helium, lacks the multitude

of interacting length scales which is perhaps the main property of ordinary turbulence.

Vortex reconnections are affected by the presence of bundles of almost parallel vortices,

suggesting an experimental technique to detect these bundles based on monitoring the

vortex separation after reconnections.
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Chapter 4

Local and nonlocal dynamics in

superfluid turbulence

4.1 Aim and Methodology

Under certain conditions, it has been argued [Vinen & Niemela, 2002; Skrbek & Sreeni-

vasan, 2012] that the turbulent tangle is characterised by a single length scale, the average

distance ℓ between the vortex lines, which is inferred from the experimentally observed

vortex line density L (length of vortex line per unit volume) as ℓ ≈ L−1/2. Models based on

this property describe fairly well the pioneering experiments of Vinen 1957a, in which an

applied heat flux drives the superfluid and the normal fluid in opposite directions (thermal

counterflow). More recently, such ‘Vinen’ tangles were created at very low temperatures

by short injections of ions [Walmsley & Golov, 2008], exhibiting the characteristic decay

L ∼ t−1 predicted by Vinen [Baggaley et al., 2012a].

Under different conditions, however, the experimental evidence is consistent with a

more structured vortex tangle [Vinen & Niemela, 2002; Volovik, 2004], where the kinetic

energy is distributed over a range of length scales according to the same Kolmogorov law

which governs ordinary turbulence. ‘Kolmogorov’ tangles have been generated at high

temperatures by stirring liquid helium with grids [Smith et al., 1993] or propellers [Mau-

rer & Tabeling, 1998; Salort et al., 2010], and at very low temperatures also stirring with

grids [Zmeev et al., 2015] or by an intense injection of ions [Walmsley & Golov, 2008],

exhibiting the decay L ∼ t−3/2 expected from the energy spectrum [Smith et al., 1993;

Baggaley et al., 2012a].

The experimental evidence for these two forms of superfluid turbulence is only indi-

rect and arises from macroscopic observables averaged over the experimental cell, such
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as pressure [Maurer & Tabeling, 1998; Salort et al., 2010] (for more detail see section

1.5.2) and vortex line density [Smith et al., 1993], not from direct visualisation of vortex

lines. In a recent paper [Baggaley et al., 2012d ], included as Chapter 3 of this thesis, we

have characterised the energy spectrum of the two forms of turbulence, and shown that

‘Kolmogorov’ turbulence contains metastable, coherent vortex structures [Baggaley et al.,

2012b,c], similar perhaps to the ‘worms’ which are observed in ordinary turbulence [Frisch,

1995]. The aim of this chapter is to go a step further, and look for the dynamical origin

of the reported spectral difference and coherent structures.

As discussed in section 2.2.1 it is well known [Saffman, 1993] that in an incompressible

fluid the velocity field v is determined by the instantaneous distribution of vorticity ω via

the Biot-Savart law:

v(x) =
1

4π

∫

ω(x′)× (x− x′)

|x− x′|3
d3x′ (4.1)

where the integral extends over the entire flow. The question which we address is whether

the velocity at the point x is mainly determined by the (local) vorticity near x or by (non-

local) contributions from further away. Since the quantisation of the circulation implies

that the velocity field around a vortex line is strictly 1/r, where r is the radial distance

from the line (see section 1.3 for more detail), from the predominance of local effects we

would infer that the vorticity is randomly distributed and nonlocal effects cancel each

other out; conversely, the predominance of nonlocal effects would suggest the existence of

coherent structures.

If the vorticity were a continuous field, the distinction between local and nonlocal

would involve an arbitrary distance, however in our problem the concentrated nature of

vorticity introduces a natural distinction between local and nonlocal contributions, as we

shall see.

Again following the numerical approach outlined in Chapter 2, we set up a series of

simulations incorporating three types of normal fluid flow. All calculations are performed

in a cubic periodic domain of size D = 0.1 cm using an Adams-Bashforth time-stepping

method (with typical time step ∆t = 5 × 10−5 s), a tree-method [Baggaley & Barenghi,

2012] with opening angle θ = 0.4, and typical minimal resolution δ = 1.6 × 10−3 cm. For

example, an increase in the numerical resolution from δ = 0.0016 cm to δ = 0.0008 cm pro-

duces a small increase of 2.5% in the importance of the nonlocal contribution in Fig. (4.8).

Moreover, the tests against experiments mentioned above [Baggaley & Barenghi, 2011b;

Hanninen & Baggaley, 2014; Adachi et al., 2010], guarantee that the numerical resolution

is sufficient, and put the distinction between vloc
s and vnon

s on solid ground.
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We choose a temperature typical of experiments, T = 1.9 K (corresponding to α =

0.206 and α′ = 0.00834). In all three cases, the initial condition consists of a few seeding

vortex loops, which interact and reconnect, quickly generating a turbulent vortex tangle

which appears independent of the initial condition.

We study the following three different regimes of superfluid turbulence, characterised

by the following forms of the normal fluid’s velocity field vext
n :

1. Uniform normal flow (fully detailed in section 2.7.1). Firstly, to model

turbulence generated by a small heat flux at the blocked end of a channel (thermal

counterflow), we impose a uniform normal fluid velocity vext
n = Vnx̂ in the x-direction

(which we interpret as the direction of the channel) which is proportional to the

applied heat flux; to conserve mass, we add a uniform superflow vext
s = −(ρn/ρs)Vnx̂

in the opposite direction, where ρn and ρs are respectively the normal fluid and

superfluid densities. Eqs. (2.1) and (2.25) are solved in the imposed superflow’s

reference frame.

2. Synthetic turbulence (fully detailed in section 2.7.2). To model turbulence

generated by pushing helium through pipes or channels [Salort et al., 2010] using

plungers or bellows or by stirring it with grids [Smith et al., 1993] or propellers

[Maurer & Tabeling, 1998], we start from the observation that, due to liquid helium’s

small viscosity µ, the normal fluid’s Reynolds number Re = V D/νn is usually large

(where V is the rms velocity and νn = µ/ρn the kinematic viscosity), hence we

expect the normal fluid to be turbulent. We assume vext
s = 0 and [Osborne et al.,

2006]

vext
n (s, t) =

M
∑

m=1

(Am × km cosφm +Bm × km sinφm), (4.2)

where φm = km · s + fmt, km are wavevectors and fm =
√

k3mE(km) are angular

frequencies. The random parameters Am, Bm and km are chosen so that the normal

fluid’s energy spectrum obeys Kolmogorov’s scaling E(km) ∝ k−5/3
m in the inertial

range k1 < k < kM , where k1 ≈ 2π/D and kM correspond to the outer scale of

the turbulence and the dissipation length scale respectively. Then we define the

Reynolds number via Re = (kM/k1)4/3. The synthetic turbulent flow defined by

Eq. (4.2) is solenoidal, time-dependent, and compares well with Lagrangian statis-

tics obtained in experiments and direct numerical simulations of the Navier-Stokes

equation. It is therefore physically realistic and numerically convenient to model

current experiments on grid or propeller generated superfluid turbulence.
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3. Frozen Navier-Stokes turbulence. Synthetic turbulence, being essentially the

superposition of random waves, lacks the intense regions of concentrated vorticity

which are typical of classical turbulence [Frisch, 1995]. For this reason we consider a

third model: a turbulent flow vext
n obtained by direct numerical simulation (DNS) of

the classical Navier-Stokes equation in a periodic box with no mean flow. Since the

simultaneous calculation of superfluid vortices and turbulent normal fluid would be

prohibitively expensive, we limit ourselves to a time snapshot of vext
n . In other words,

we determine the vortex lines under a ‘frozen’ turbulent normal fluid. Our source for

the DNS data is the John Hopkins Turbulence Database [Li et al., 2008a,b], which

consists of a velocity field on a 10243 spatial mesh. The estimated Reynolds number

is Re ≈ (L0/η0)4/3 = 3205 where L0 is the integral scale and η0 the Kolmogorov scale.

Although Re = 3205 is not a very large Reynolds number, at T = 1.9 K helium’s

viscosity is µ = 1.347×10−5 g/(cm s), the normal fluid density is ρn = 0.0611 g/cm3,

the kinematic viscosity is νn = µ/ρn = 0.22 × 10−3 cm/s [Donnelly & Barenghi,

1998], and therefore Re = UD/νn = 3205 corresponds to the reasonable speed

U = 0.7 cm/s in a typical D = 1 cm channel. To keep the resulting vortex line

density of this model to a computationally practical value, we rescale the velocity

components such that they are 60 percent of their original values, thus obtaining

the vortex line density L ≈ 20, 0000 cm−2. To obtain Fig. 4.11 the scaling factor is

only 45 percent, yielding L ≈ 6, 000 cm−2; because of the nonlinearity of the Navier-

Stokes equation, this procedure is clearly an approximation but is sufficient for our

aim of driving a less intense or more intense vortex tangle.

Fig. 4.1 shows the magnitude of the normal velocity field plotted (at a fixed time t)

on the xy plane at z = 0, corresponding to models 2 and 3 (we do not plot the normal

fluid velocity for model 1 because it is uniform). It is apparent that models 1, 2 and 3

represent a progression of increasing complexity of the driving normal flow. In Fig. 4.1,

note in particular the localised regions of strong velocity which appear in model 3.
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Figure 4.1: (color online). Magnitude of the driving normal fluid velocity field, |vext
n |, plotted on

the xy-plane at z = 0 corresponding to model 2 (synthetic normal flow turbulence, left) and model
3 (frozen Navier-Stokes turbulence, right). The velocity scales (cm/s) are shown at right of each
panel. Note the more localised, more intense regions of velocity which are present in model 3.

4.2 Results

The intensity of the turbulence is measured by the vortex line density L = Λ/V (where Λ

is the superfluid vortex length in the volume V = D3), which we monitor for a sufficiently

long time, such that the properties which we report, refer to a statistically steady state

of turbulence fluctuating about a certain average L (we choose parameters so that L is

typical of experiments).
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Figure 4.2: (color online). Evolution of the vortex line density L (cm−2) vs time t (s) for model 1
(red line, uniform normal flow), model 2 (black line, synthetic normal fluid turbulence) and model
3 (dashed blue line, frozen Navier-Stokes turbulence). The inset displays the oscillations of L vs t
in more detail. Parameters: temperature T = 1.9 K, Vn = 1 cm/s (for model 1), Re = 79.44 (for
model 2), and Re = 3025 (for model 3).

Fig. 4.2 shows the initial transient of the vortex line density followed by the saturation

to statistically steady-states of turbulence corresponding to model 1 (uniform normal flow),

model 2 (synthetic normal flow turbulence) and model 3 (frozen Navier-Stokes turbulence).

In all cases, the intensity of the drive is chosen to generate approximately the same vortex

line density, L ≈ 20, 000 cm−2.

Figure 4.3: Snapshot of the vortex tangle for model 1 (uniform normal fluid, left), model 2 (syn-
thetic turbulence, middle) and model 3 (frozen Navier-Stokes turbulence, right) at time t = 20 s
(parameters as in Fig. (4.2).

Snapshots of the vortex tangles are shown in Fig. 4.3. The vortex tangle driven by
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the uniform normal fluid (model 1, left) appears visually as the most homogeneous; the

vortex tangle driven by the frozen Navier-Stokes turbulence (model 3, right) appears as

the least homogeneous. What is not apparent in the figure is the mild anisotropy of the

tangle driven by the uniform normal fluid. To quantify this anisotropy, we calculate the

projected vortex lengths in the three Cartesian directions (Λx, Λy, Λz) and find Λx/Λ =

0.34 < Λy/Λ = Λz/Λ = 0.54 for model 1, confirming a small flattening of the vortices in

the yz plane (this effect was discovered by the early investigations of Schwarz 1988). In

comparison, models 2 and 3 are more isotropic: for model 2 (tangle driven by synthetic

turbulence) we find Λx/Λ = 0.50, Λy/Λ = 0.47 and Λz/Λ = 0.49), and for model 3

(tangle driven by frozen Navier-Stokes turbulence) we obtain Λx/Λ = 0.48, Λy/Λ = 0.50,

Λz/Λ = 0.49.
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Figure 4.4: (color online). Average curvature C (cm−1) vs time t (s) for model 1 (uniform nor-
mal flow, red line), model 2 (synthetic turbulence, black line) and model 3 (frozen Navier-Stokes
turbulence, dashed blue line). Parameters as in Fig. (4.2).

Fig. 4.4 and 4.5 shows the average curvature C =< Cj > (sampled over the discreti-

sation points j = 1, · · ·N) and the distributions of local curvatures Cj = |s′′j |. The tangle

generated by model 3 (frozen Navier-Stokes turbulence) has the smallest average curva-

ture: the presence of long lines (large radius of curvature R = 1/|s′′|) is indeed visible in

Fig. 4.2. In terms of curvature, the tangles generated by models 1 and 2 are more similar

to each other - the average curvature is almost twice as large as for model 3, indicating

that the vortex lines are more in the form of small loops.
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Figure 4.5: (color online). Left: Probability density function of the curvature, PDF(C), vs cur-
vature, C (cm−1), corresponding to model 1 (uniform normal flow, red line), model 2 (synthetic
turbulence, black line) and model 3 (frozen Navier-Stokes turbulence, dashed blue line). Right:
the same data plotted on a log log scale, where the matching slopes on the plot illustrate that we
have the same Kelvin waves in all three models (because they are all at the same temperature).
Parameters as in Fig. 4.2.

However, vortex line density (Fig. 4.2), visual inspection (Fig. 4.3) and curvature

(Fig. 4.4 and 4.5) do not carry information about the orientation of the vortex lines, a

crucial ingredient of the dynamics. Fig. 4.6 shows the energy spectrum Es(k), defined by

1

V

∫

V

1

2
v2
sdV =

∫ ∞

0
Es(k)dk, (4.3)

where k is the magnitude of the three-dimensional wavevector. The energy spectrum

describes the distribution of kinetic energy over the length scales. The spectra of the

tangles generated by synthetic normal flow turbulence (model 2) and by the frozen Navier-

Stokes turbulence (model 3) are consistent with the classical Kolmogorov scaling Es(k) ∼

k−5/3 for k < kℓ = 2π/ℓ; the kinetic energy is clearly concentrated at the largest length

scales (small k). In contrast, the spectrum of the tangle generated by the uniform normal

fluid (model 1) peaks at the intermediate length scales, and at large wavenumbers is

consistent with the shallower k−1 dependence of individual vortex lines.
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Figure 4.6: (color online). Energy spectrum E(k) (arbitrary units) vs wavenumber k (cm−1) (time
averaged over the saturated regime) corresponding to vortex tangles generated by uniform normal
fluid (model 1, top), synthetic normal fluid turbulence (model 2, middle) and frozen Navier-Stokes
turbulence (model 3, bottom). The dashed lines indicate the k−1 (top) and the k−5/3 dependence
(middle and bottom), respectively. Parameters as in Fig. (4.2). The compensated spectra kEs(k)
and k5/3Es(k) in the insets show the regions of k–space where the approximate scalings k−1 and
k−5/3 apply.
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A natural question to ask is whether our results are affected by the particular vortex

reconnection algorithm used. In principle, both the large k region and the small k region of

the spectrum could be affected: the former, because vortex reconnections involve changes

of the geometry of the vortices at small length scales, the latter because the energy flux

may be affected. To rule out this possibility we have performed simulations using the

reconnection algorithm of Kondaurova et al. [Kondaurova et al., 2008], which tests whether

vortex filaments would cross each others path during the next time step (for details, see

also ref. [Baggaley, 2012]). Fig. (4.7) is very similar to Fig. (4.6), confirming that the

shape of the energy spectra does not depend on the reconnection algorithm.
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Figure 4.7: (color online). Energy spectrum E(k) (arbitrary units) vs wavenumber k (cm−1) (time
averaged over the saturated regime) as in Fig. (4.6), but the simulations are performed using the
reconnection algorithm of Kondaurova et al. [Kondaurova et al., 2008]. Note that there is no
significant difference from spectra obtained using our standard algorithm, see Fig. (4.6). Vortex
tangles generated by uniform normal fluid (model 1, top), synthetic normal fluid turbulence (model
2, middle) and frozen Navier-Stokes turbulence (model 3, bottom). The dashed lines indicate the
k−1 (top) and the k−5/3 dependence (middle and bottom), respectively. Parameters: temperature
T = 1.9 K, Vn = 0.75 cm/s (for model 1), Re = 81.59 (for model 2), and Re = 3025 (for model 3).
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It is also instructive to examine the spatial distribution of the superfluid energy den-

sities arising from the three normal fluid models: Fig. 4.8 displays the superfluid energy

density ϵs = |vs|2/2 on the xy plane averaged over z. The left panel (model 1, uniform

normal flow) shows that ϵs is approximately constant, that is to say the vortex tangle

is homogeneous; the middle and right panels (model 2 and 3 for synthetic normal flow

turbulence and frozen Navier-Stokes turbulence) show that the energy density is increas-

ingly nonhomogeneous, particularly model 3. The localised regions of large energy density

correspond to vortex lines which are locally parallel to each other, reinforcing each other’s

velocity field rather than cancelling it out.
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Figure 4.8: Superfluid energy density ϵs = |vs|2/2 smoothed over the average intervortex spacing
ℓ, plotted on the xy plane and averaged over z. Left: model 1 (uniform normal fluid); middle:
model 2 (synthetic turbulence); right: model 3 (frozen Navier-Stokes turbulence). Parameters as
in Fig. (4.2).

The natural question which we ask is what is the cause of the spectral difference

shown in Fig. 4.6. To answer the question we examine the local and nonlocal contri-

butions to the superfluid velocity, defined according to Equation 2.25. Fig. 4.9 shows

the fraction vnon/vself of the superfluid velocity which arises from nonlocal contributions,

where vnon =< |vnon(sj)| > and vself =< |vself (sj)| > are sampled over the discretisation

points j = 1, · · ·N at a given time t. The difference is striking. Nonlocal effects are re-

sponsible for only 25 percent of the total superfluid velocity field in the tangle generated

by the uniform normal fluid (model 1), for 45 percent in the tangle generated by synthetic

normal flow turbulence (model 2), and for more than 60 percent in the tangle generated

by frozen Navier-Stokes turbulence (model 3).
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Figure 4.9: (colour online). Ratio of nonlocal to total self-induced velocity as a function of time
t (s) for tangles generated by uniform normal fluid (model 1, red line, bottom), synthetic normal
fluid turbulence (model 2, black line, middle) and frozen Navier-Stokes turbulence (model 3, blue
line, top). Parameters as in Fig. (4.2).

Finally, we explore the dependence of the result on the vortex line density L by gen-

erating statistically steady states of turbulence driven by uniform normal fluid (model 1)

and synthetic turbulence (model 2) with different values of L, see Fig. 4.10. Fig. 4.11

shows that for model 1 (uniform normal flow) the relative importance of nonlocal contri-

butions remains constant at about 25 percent over a wide range of vortex line density, from

L ≈ 6000 to L ≈ 20, 000 cm−2, whereas for model 2 (synthetic normal flow turbulence)

and 3 (frozen Navier–Stokes turbulence), it increases with L.
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Figure 4.10: (color online). Evolution of the vortex line density L (cm−2) vs time t (s) for model 1
(red line, uniform normal flow, respectively at Vn = 1 (cm/s) (top), Vn = 0.75 (cm/s) (middle) and
Vn = 0.55 (cm/s) (bottom)), model 2 (black line, synthetic normal fluid turbulence, respectively
at Re = 79.44 (top), Re = 81.59 (middle) and Re = 83.86 (bottom)), and model 3 (dashed blue
line, frozen Navier-Stokes turbulence, at Re = 3025).
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Figure 4.11: (color online). Ratio vnon/vself as a function of vortex line density L (cm−2) corre-
sponding to model 1 (uniform normal flow, red circles), model 2 (synthetic normal flow turbulence,
black crosses) and model 3 (frozen Navier-Stokes equation, blue stars).

4.3 Discussion

Turbulent vortex tangles can be produced in the laboratory using various means: by im-

posing a flux of heat, by pushing liquid helium II through pipes, or by stirring it with

moving objects. The numerical experiments presented here show that reporting the vor-

tex line density L is not enough to characterise the nature of the superfluid turbulence
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which can be generated in helium II. Vortex tangles with the same value of L may have

very different energy spectra, depending on the normal fluid flow which feeds energy into

the vortex lines, as shown in Fig. 4.6. If the normal fluid is turbulent, energy is contained

in the large eddies and is distributed over the length scales consistent with the classical

k−5/3 Kolmogorov law at large k, suggesting the presence of a Richardson cascade. If

the normal fluid is uniform, most of the energy is contained at the intermediate length

scales, and the energy spectrum scales consistently with k−1 at large k. Using a termi-

nology already in the literature, we identify these two forms of superfluid turbulence as

‘Kolmogorov tangles’ and ‘Vinen tangles’ respectively.

The superfluid velocity field is determined by the instantaneous configuration of vortex

lines. Since the superfluid velocity field decays only as 1/r away from the axis of a quantum

vortex line, the interaction between vortex lines is long-ranged, at least in principle. By

examining the ratio of local and nonlocal contributions to the total velocity field, we have

determined that in Vinen tangles far-field effects tend to cancel out (vnons /vselfs ≈ 25% in-

dependently of L), the motion of a vortex line is mainly determined by its local curvature,

and the vortex tangle is homogeneous. In Kolmogorov tangles, on the contrary, nonlocal

effects are dominant and increase with the vortex line density; this stronger vortex-vortex

interaction leads to the clustering of vortex lines, for which the vortex tangle is much

less homogeneous and contains coherent vorticity regions, in analogy to what happens in

ordinary turbulence. The presence of intermittency effects such as coherent structures in

the driving normal fluid, which we have explored with model 3, enhances the formation

of superfluid vortex bundles, resulting in a more inhomogeneous superfluid energy and in

larger nonlocal contributions to the vortex lines’ dynamics.

Future work will explore the problem for turbulence with nonzero mean flow.
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Chapter 5

Fluctuations of the vortex line

density

5.1 Motivation

In 2011 Baggaley and Barenghi [Baggaley & Barenghi, 2011b] sought to numerically re-

produce the findings of Roche et al. in 2007 [Roche et al., 2007] where they measured

the fluctuations of the vortex line density L in turbulent He4 and observed that the fre-

quency spectrum scales as f−5/3 (where f is the frequency). This result was surprising as

it appeared to contradict the common interpretation of L as a measure of the superfluid

vorticity ω = κL [Vinen & Niemela, 2002; Skrbek & Sreenivasan, 2012; Stalp et al., 1999].

Classically we would expect the enstrophy (the square of the vorticity) spectrum to

scale as k2E(k) [Farge et al., 2003], and hence naively one may expect the fluctuations of

the vortex line density to scale as f1/3. A resolution to this apparent paradox was put

forward by Roche and Barenghi [Roche & Barenghi, 2008] who argued that the vortex line

density could be decomposed into two parts, such that

L(x, t) = L×(x, t) + L∥(x, t), (5.1)

where L∥ represents ‘structured’ vortex line density, i.e. vortices organised into bundles

which are responsible for the Kolmogorov scaling. In contrast L×(x, t) contributes to the

vortex line density but not to the superfluid vorticity and reflects randomly oriented vortex

lines. They then made the assumption that the velocity field is dominated by the velocity

induced by the coherent vortex line density, and so in effect L× acts like a passive vector

field. It has been shown numerous times [Antonia et al., 1998] that passive vectors (ad-

vected by a turbulent flow) have a power spectrum which obeys the Kolmogorov scaling

law, and this formed the basis of their explanation of the observed power spectrum of the
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vortex line density.

Baggaley and Barenghi studied the spectral properties of the volume integrated line

density for quantum turbulence driven by a disordered normal fluid. In addition they also

considered passive vortex lines (effectively setting κ = 0). Their results supported the

argument put forward by Roche and Barenghi. However, in response to this publication

Roche put forward an argument [Roche, 2012] that the good correlation of his results and

those of Baggaley and Barenghi might have been influenced by a filtering effect induced

when they interpreted the spectra of the volume integrated line density. Roche suggested

the effect of this volume integration would tend to act as a low pass filter on the data and

therefore small scale motions would be averaged out causing a steepening of the spectrum.

Here we seek to address these issues and provide substantial numerical agreement with

Roche.

5.2 Implementation

In order to establish whether this filtering effect existed and if it existed to what extent it

impacted on a proper understanding of the results we use our numerical model as outlined

in Chapter 2 and set up two types of simulation.

We conducted one run with a uniform normal fluid setup to simulate an experiment

with counterflow where there would be a small heat flux applied at one end of the channel

[Vinen, 1957b] and another where we set up a frozen Navier-Stokes normal fluid (fully

detailed in Chapter 4) to simulate an experiment with a turbulent normal fluid such as

turbulence generated by stirring the helium with grids [Smith et al., 1993] or by using

bellows or plungers to push the helium through pipes or channels [Salort et al., 2010;

Maurer & Tabeling, 1998].

For both simulations we conduct our numerics in a periodic box of size D = 0.1 cm

with a numerical discretisation resolution of δ = 0.0016 cm, at a temperature realistic

for physical experiments of T = 1.9 K (which corresponds to the temperature dependent

friction coefficients being α = 0.206 and α = 0.00834). We use an Adams-Bashforth time-

stepping algorithm to move our vortices with a time step of ∆t = 5×10−5 s and we deploy

our tree algorithm to resolve the Biot-Savart integral with an opening angle of θ = 0.4.

Our chosen model for counterflow turbulence is the most commonly used in the litera-

ture [Schwarz, 1988; Adachi et al., 2010] and we impose a uniform normal fluid velocity of
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the form vext
n = Vnx̂ in the x-direction (which we take to be the direction of the channel)

where Vn = 1 cm/s. To uphold the conservation of mass we add a uniform superflow of

the form vs = −(ρn/ρs)Vnx̂ in the opposite direction. We then solve our equations of

motion Eqs. (2.1) and (2.25) in the imposed superflows reference frame.

Our chosen model for a turbulent normal fluid is obtained by a direct numerical sim-

ulation (DNS) of the classical Navier-Stokes equation (see equation 1.1), however as the

simultaneous calculation of the superfluid vortices and the turbulent normal flow would

be computationally too expensive we choose to limit ourselves to a single time snapshot

of vext
n the data for which was obtained from the John Hopkins Turbulence Database [Li

et al., 2008a,b] originally for the work done in Chapter 4. The Reynolds number of our

normal fluid is Re = 3205 which is estimated from the ratio of the integral scale L0 and

the Kolmogorov microscale η0 as Re = (L0/η0)4/3. In order that the computational time

be kept to a reasonable period we rescaled the velocity components of our DNS snapshot

to about 60% of their original values. Note, this flow is no longer a solution to the Navier-

Stokes Equation, but it is sufficient for our purposes.

To measure the intensity of our superfluid tangles we use the vortex line density L.

We allow the model sufficient time to fully saturate (such that the line density achieved

is of the order of L̄ = 20, 000cm−2) and choose a sufficiently long observation period over

which to take our measurements. Figure 5.1 shows our line density developing over time

with a fully saturated model for both achieved by t = 10 s. Once saturated we observe a

mean line density with clear fluctuations about it.
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Figure 5.1: Vortex line density L (cm−2) plotted as a function of time t (s) for counterflow
turbulence (red line) and frozen Navier-Stokes turbulence (blue line). The inset highlights the
fluctuations of L vs T in greater detail. Parameters: Vn = 1 cm/s for the counterflow simulation
and Re = 3025 for the frozen Navier-Stokes simulation.

5.3 Results

To examine the distribution of the kinetic energy over the length scales within our flow we

extract a three dimensional snapshot of the superfluid velocity vs on a 10243 mesh and use

a Fourier-transform to compute the energy spectra Es(k) which for isotropic turbulence

is defined by

1

V

∫

V

1

2
v2
sdV =

∫ ∞

0
Es(k)dk, (5.2)

where V is the volume of our periodic cube, k = |k| and |k| is the three dimensional

wavenumber. Figure 5.2 shows our results. It is clear that the spectrum from the frozen

Navier-Stokes turbulence (on the RHS of Fig 5.2) demonstrates the classical Kolmogorov

k−5/3 scaling for k < kℓ (where kℓ = 2π/ℓ is the wavenumber corresponding to the typical

inter-vortex spacing ℓ), and that the kinetic energy is concentrated at the largest scales in

our flow i.e. at small k. The results for the spectrum generated using our uniform normal

flow (shown on the LHS of Fig 5.2) do not demonstrate any Kolmogorov scaling, rather

they show the shallower k−1 dependence typical of individual vortex lines at large wave

numbers. The concentration of the kinetic energy within the intermediate scales indicates

that within this flow no large scale motions are being generated.
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Figure 5.2: Energy spectrum E(k) (arbitrary units) vs wavenumber k (cm−1) corresponding to
vortex tangles generated by a counterflow (left) and frozen Navier-Stokes turbulence (right). The
coloured dashed lines indicate the k−1 (left) and the k−5/3 dependence (right), respectively and
the vertical dotted line marks kℓ = 2π/ℓ. Parameters as in Fig. (5.1). The compensated spectra
kEs(k) and k5/3Es(k) in the insets show the regions of k–space where the approximate scalings
k−1 and k−5/3 apply.

In his experiment Roche used a newly devised micromachined second-sound probe to

measure the spectrum of the fluctuations of the vortex line density in turbulent He4 at a

temperature of T = 1.6K. He did this by interpreting the attenuation of second-sound on

the static ‘no flow’ frequency of the probe. The volume in which Roche took his measure-

ments was estimated to be Vc ≃ 1mm×1mm×250µm = 0.25 mm3 and the total turbulent

flow approximately occupies the volume of 105 mm3 (in a cylinder with diameter 23mm

and length 250mm), so clearly Roche’s probe was measuring in a very much smaller vol-

ume than that of the total cylinder.

To produce our spectra of the fluctuations of the vortex line density we analyse four

signals for each simulation, the first signal is measured over the entire periodic box which

has length d1 = 0.1. For the second signal we half the length of the box in which we take

our measurements and so d2 = d1/2 = 0.05, and so on for the third signal where d3 = 0.025

and the fourth signal where d4 = 0.0125. We begin by measuring the total vortex line

density within our cube (this was the approach of Baggaley and Barenghi in 2011) at over

1000 discrete and equal time-steps (this is actually the signal which is seen in Figure 5.1),

we then discard the transient period of the vortex line density as our interest here is in

the steady-state turbulence. Subsequently we measure the average vortex line density L̄

and subtract this from our signal leaving us with only the fluctuations of the vortex line

density. It is this signal which is then Fourier transformed to create our spectrum of the

vortex line density fluctuations. As we increase the resolution of our probe by reducing
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our measurement volume to one eighth of its previous volume, we repeat our measurement

and analysis process. At each resolution of our probe we confirm that average vortex line

density is consistent with that of the volume as a whole to establish that the resolution is

not so fine as not to be representative of the flow in total. We plot these results in Figure

5.3.
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Figure 5.3: Power spectral density PSD (arbitrary units) of the fluctuations of the total vortex line
density L for counterflow turbulence (left) and frozen Navier-Stokes turbulence (right), measured
within box sizes (di) (from bottom to top): d1 = D = 0.1 (red line), d2 = 0.05 (blue line),
d3 = 0.025 (green line), d4 = 0.0125 (black line). Dashed verticals are calculated as: fℓi = κ/d2i

Examining Figure 5.3 it is clear that the volume in which the fluctuations signal is

measured does indeed have an effect on the spectrum produced. Table 5.1 attempts to

quantify the scale of the difference observed. We should note that the coloured dashed

vertical lines marked fℓi refer only to their corresponding signal (e.g. the black vertical

line fℓ4 should only be looked at in conjunction with the black signal for box size d4).

Counterflow Frozen Navier-Stokes

α1 -1.6168 -2.5263

α2 -1.1749 -2.2076

α3 -0.51558 -1.9269

α4 -0.085651 -1.6053

Table 5.1: Measured values of the slopes, where αi is the slope for signal di from the point fℓ3 to
the end point in figure 5.3.

When viewing the fluctuations spectrum for a particular box size di we have thus areas

to the right and to the left of the corresponding vertical fℓi . We say that the scales to
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the right, representing as they do motions which are smaller than the box size, are likely

to be affected by any filtering whereas the scales to the left are unlikely to be affected by

such filtering.

Shown on the LHS of figure 5.3 are the spectra for our uniform normal fluid simulation.

If we were to only measure the signal over the entire volume of our periodic cube we would

see a sloping spectrum (see the red trace) indicating behaviour within the flow. As we

reduce our probe size moving through the blue and green traces we see that by the time

our probe is reduced to around 0.2% of the original volume, as seen in the black trace, we

have a flat, featureless spectrum.

Shown on the RHS of figure 5.3 are the spectra for our frozen Navier-Stokes normal

fluid simulation. As we reduce our probe size moving again from the red trace through

the blue and green traces to the black trace we maintain a slope albeit reduced in gradi-

ent. If we look at figure 5.4 which shows the compensated spectra we note that the black

trace does flatten out and exhibit good agreement with the f−5/3 spectrum seen by Roche.

10−1 100 101
103

104

105

106

107

108

fl1 fl2 fl 3 fl 4

f

f
5
/3
P
S
D

 

 

Figure 5.4: Compensated power spectral density f5/3PSD (arbitrary units) of the fluctuations of
the total vortex line density L for frozen Navier-Stokes turbulence. Parameters as in Fig. (5.3)

.

Given the very clear difficulty that physical experimentalists have in taking measure-

ments at sufficiently varied spaces within their apparatus, in 1938 Taylor put forward his
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hypothesis that makes the assumption that the advection contributed by the small scale

eddies/fluctuations must be much less than that of the advection by the large scale mean

flow (which is where the majority of the energy within the flow is contained) and therefore

any advection of a turbulent field past a fixed point can be considered to be a consequence

of the mean flow and not the fluctuations. This hypothesis, where applicable, allows ex-

perimentalists to infer information about their spatial structure based on time-series data

measured in a single point. Thus it might be possible for an experimentalist, adopting

Taylor’s hypothesis to ‘calculate’ the total energy in their flow based on a time-series mea-

surement of the velocity from a single probe at a single point in space.

It is a considerable benefit of the numerical modeller to have access to all elements and

measurements of their data sets and this allows them to observe that which cannot (or

cannot yet) be measured experimentally, as is the case with the Energy Spectrum Es(k).

Our numerical modelling gives us access to simultaneous measurements of any output

from our systems. Thus for example we can establish what the distribution of energy

within the system is alongside determining the spectrum of the fluctuations of the vortex

line density. By analysing these simultaneous results we can establish relationships and

equivalence not available to the experimentalists. Thus it is, for example, we can say that

there is a direct equivalence between the energy spectrum (not currently measured exper-

imentally) and the spectrum of the fluctuations (which can be measured experimentally).

Where we see an energy spectrum which exhibits a Kolmogorov k−5/3 dependence we also

see a fluctuations spectrum which shows a f−5/3 dependence. Likewise, where we see an

energy spectrum which exhibits a ‘bump’ at intermediate length scales followed by a k−1

dependence at large wavenumbers we also see a flat and featureless fluctuations spectrum.

Such information may assist the physical experimentalists in directing their work.
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Figure 5.5: PDF’s of vortex line density fluctuations for both the uniform normal fluid simulation
(solid red lines) and the frozen Navier-Stokes simulation (solid blue lines), the dashed lines represent
the theoretical normal distribution of the data. On the left is the PDF of the fluctuations signal
taken over the whole cube for box length d1 = 0.1 cm, where the standard deviations of the
theoretical normals are σ = 415.39 for the uniform normal fluid and σ = 459.15 for the frozen
Navier-Stokes normal fluid. The PDF on the right is taken from the signal measured in our cube
representing around 1.6% of the entire volume where our box length is d3 = 0.025 cm, the standard
deviations of the theoretical normals are σ = 3.2×103 for the uniform normal fluid and σ = 3.0×103

for the frozen Navier-Stokes normal fluid.

Alongside examining the spectrum of the fluctuations of the vortex line density we also

had a look at the PDF’s of the fluctuations. Our results shown in Figure 5.5 demonstrate

a clear normal distribution of the fluctuations. On the left of this figure we see the PDF

for the fluctuations signal taken over the entire volume of our cube and on the right is the

PDF of the less artificial fluctuations signal taken in a volume representing around 1.6%

of the entire volume. We note that there is a much larger variance in the signal taken

within the smaller volume and this is because we are no longer aggressively averaging over

the ‘true’ fluctuation values.

5.4 Spatial structure of the vortex line density

So far we have been able to generate energy spectra from a time snapshot of our vortex

tangles and we have been able to relate these to the spectra of the vortex line density

fluctuations taken from a time-series signal (as they do experimentally). Ideally we would

now like to obtain the spectra of the total vortex line density taken from an instantaneous

snapshot of the vortex tangle as this would mean we would no longer be reliant on Taylor’s

frozen hypothesis. In order to do this we need the vortex line density L as a continuous

field. Unfortunately, despite using two different approaches we were not able to generate

any meaningful spectra. We believe that the issue is a lack of scales between the largest

scales in our computational box and the inter-vortex spacing ℓ and that the solution to
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this problem will come only with the next generation of numerical models where 100 times

as many vortex points may be feasible in a simulation. For completeness we set out below

the approaches we took and such results as we were able to obtain, and although we were

unable to make a giant leap forward, the data obtained and its analysis may provide a

stepping-stone to further our understanding of the spatial distribution of the vortex line

density.

Figure 5.6: Vortex line density measured within a 163 mesh, plotted on the xy-plane at z = 0
corresponding to counterflow turbulence (left) and frozen Navier-Stokes turbulence (right). The
line density scales (cm−2) are shown at the right of each figure (plotted on the same scale for
both left and right). Note the regions of much greater line density which are present in the frozen
Navier-Stokes turbulence (right).

If we look at Figure 5.6 these are representations of our readings for the vortex line

density taken across a slice of our computational cube. We obtain these density measure-

ments by splitting our computational cube in to 163 smaller cubes and measuring the total

line length within each mini cube and dividing it by the volume of this mini cube. On the

left of this figure we see the results for the counterflow turbulence and we can note that

most of the values fall in the low density range with very few outliers in the mid-range.

In contrast the illustration on the right which is taken from the frozen Navier-Stokes tur-

bulence is populated with values from the lowest to the highest values and exhibits visual

clustering. The visual cues from the counterflow turbulence figure (left) suggest a high

number of relatively low density points evenly distributed throughout the system whereas

the Navier-Stokes turbulence illustration (right) suggests contrasting regions of high and

low density juxtaposed suggestive of bundling of the vortex lines.

We could view this data as a probability density function (PDF). This format would
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allow us to capture more data by measuring over all z-values and not just a slice as in

Figure 5.6. The PDF where all 163 cubes in our computational box have been sampled

is shown in Figure 5.7. We can readily see the maximum density obtained in the coun-

terflow simulation (red line), where no values in excess of 105 exist; in contrast the frozen

Navier-Stokes simulation (blue line) has a higher and longer tail which tells us that there

are more high-value densities found within this flow which is consistent with what we can

see in Figure 5.6.
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Figure 5.7: PDF of the vortex line density measured within a 163 mesh for all x, y, z. D here
represents the vortex line density measured in each of the 4096 mini cubes within the mesh.

Figure 5.6 represents a slice through our box which has been divided up in to 4096

(163) equal cubes, we can dramatically increase the resolution of our measurements by

dividing the box in to a greater number of cubes. However when we do this with the

‘standard’ coarse-graining, the data is very noisy. An alternative is to use a more sophis-

ticated technique to compute the smoothed line density ⟨L⟩. Dividing our computational

box in to 1283 cubes and following a similar process to that used by Baggaley and Laurie

[Baggaley et al., 2012c] (which is one commonly employed in the smoothed particle hy-

drodynamics literature [Monaghan, 1992]) we define a smoothed line density field ⟨L⟩ at

the discretisation points sj using a kernel density smoothing:
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⟨L(x)⟩ =
1

V

N
∑

j=1

W (rj, h)∆ξj , (5.3)

where rj = |x− sj |, ∆ξj = |sj+1− sj|, W (r, h) = g(r/h)/(πh3), h is a characteristic length

scale and

g(q) =

{ 1− 3
2q

2 + 3
4q

3, 0 ≤ q < 1;
1
4 (2− q)3, 1 ≤ q < 2;

0, q ≥ 2.

(5.4)

Setting h = ℓ, the smoothed line density field only takes in to account the contribution of

discretisation points within a radius 2ℓ from each point x. Figure 5.8 (bottom row) rep-

resents our smoothed vortex line density ⟨L⟩ plotted at an isosurface level ⟨L⟩ > 2.5Lrms

where Lrms =
√

1
N

∑N
i=1 |⟨L⟩|

2.

The two illustrations on the top of Figure 5.8 represent the same snapshot plotted

more traditionally as vortex lines. Although the illustrations at the top row of Figure

5.8 are clearly different they are not obviously hugely dissimilar. In contrast following

our smoothing technique the illustrations on the bottom row make it very clear that in

the counterflow turbulence (on the left) we have an evenly distributed, random topology,

whereas for the frozen Navier-Stokes we have a very obvious well defined bundling of the

vortices.

112



Chapter 5. Fluctuations of the vortex line density

Figure 5.8: Top: Snapshot of the vortex configuration for counterflow turbulence (left) and frozen
Navier-Stokes turbulence (right) taken once the simulations are in a statistically steady state.
Bottom: Smoothed line density sustained by counterflow turbulence (left) and frozen Navier-
Stokes turbulence (right). All four snapshots are taken from the same perspective at the same
time.

5.5 Summary

This work has provided very strong support for Roche’s experimental work where he quite

unexpectedly found an f−5/3 scaling in the spectrum of the vortex line density fluctua-

tions. Roche’s reluctance to accept the initial results of Baggaley and Barenghi lead us to

further work on the modelling of his experiment, and revealed the ‘filtering’ effect which he

suspected might be operating on the data. This filtering effect which has become apparent

through our work and which is attributed to the finite size of the probe, is new to the

field and has not been taken in to account in the previous experimental and theoretical

literature.
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As a by-product of our work to test and ultimately validate Roche’s initial findings,

we have found further evidence of differences in the Kolmogorov (or Quasi-classical) tur-

bulence and Vinen (or Ultra-quantum) turbulence of helium II.

Where we have Kolmogorov turbulence as evidenced by the Kolmogorov scaling of the

energy spectrum, we have found a f−5/3 dependence in the spectrum of the fluctuations of

the vortex line density. This confirms the idea of Roche and Barenghi [Roche & Barenghi,

2008] which was supported by Baggaley and Laurie [Baggaley et al., 2012c] that the vortex

line density behaves like a classical passive vector field which is known to have a power

spectrum which exhibits the f−5/3 scaling [Ohkitani, 2002]. We have also observed per-

haps our clearest visual evidence yet for bundling within the superfluid turbulence.

Where we have observed Vinen turbulence as evidenced by the k−1 scaling of the

energy spectrum at high k with a clear peak at the intermediate scales, we have found

a flat, featureless spectrum of the fluctuations along with clear visuals of a randomly

orientated, and ‘evenly’ distributed vortex tangle.
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Conclusions

No matter how we set about measuring it and no matter the initial setup and apparatus,

our superfluid turbulence manifests itself in two distinct forms.

Perhaps the most accessible and understandable of these is what we term Quasiclassical

or Kolmogorov turbulence. This has characteristics that, if not the same as, are certainly

analogous to those found in classical turbulence and hence the name. Less accessible and

perhaps therefore all the more intriguing is the other form of superfluid turbulence namely,

Ultraquantum turbulence, sometimes referred to as Vinen turbulence.

My studies have for the most part concentrated on relatively high temperatures for the

field, but have consistently demonstrated the presence of these two types of turbulence.

We have ‘lifted the fingerprints’ of turbulence in many different scenarios and the evidence

for the existence of the two forms of turbulence is irrefutable.

In our simulations where we seek to replicate experiments performed with either grids

or propellors we generate our quasiclasscial turbulence which we promote by using either

a synthetic turbulence (KS flow) or a frozen DNS (spatially varying but fixed in time

DNS simulation) to model the normal fluid drive. In doing this we observe a distinctly

structured tangle with dense bundles of near parallel vortices and we have found that non-

local effects are very important in helping to generate these bundles. We have observed a

‘Kolmogorov’ energy spectrum implying a cascade of energy from large to small scales.

In contrast, when we replicate thermal counterflow experiments (in a T1 state) by

using a uniform normal fluid to drive our simulations, we generate ultraquantum turbu-

lence. Here we observe properties which accord very well with Vinen’s original intuition.

We find disordered, random tangles, where nonlocal effects play very little role and hence
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no bundles are generated. Without these bundles we do not find energy at the largest

scales and we observe an energy spectrum with a distinct ‘bump’. From this we can infer

that there is no cascade of the energy from the large to small scales.

Our main investigative tool for the identification of our two forms of superfluid turbu-

lence has been the energy spectrum. Work at lower temperatures carried out in 2008 in

Manchester by Walmsley and Golov [Walmsley & Golov, 2008] used a different approach

to this type of investigation in actual physical experiments. Here they chose to measure

the rate of decay of their tangles. Perhaps unsurprisingly, but certainly reassuringly, they

too found evidence of the two distinct forms of turbulence we encounter.

Walmsley and Golov created their turbulence by injecting ions into the helium II,

where each induces a vortex ring which eventually interacts with others to form tangles.

For a prolonged period of initial ion injection (> 30s), tested at temperatures above 0.7K

these tangles are quasiclassical and identical to those produced mechanically. For much

shorter periods of ion injection (typically between 0.1 − 1s) at temperatures below 0.5K

the generated tangles are ultraquantum in nature. In measuring the decay of these tangles

they found both the t−3/2 fingerprint associated with quasiclassical turbulence and the t−1

fingerprint of ultraquantum turbulence.

A useful piece of work published by Baggaley et al. [Baggaley et al., 2012a] in 2012

nicely demonstrates the link between Walmsley’s tangle decay rates and the energy spec-

tra which have been the principal focus of this work. Baggaley simulates Walmsley and

Golov’s experiments and obtains the same decay that Walmsley saw but he was also able to

see the energy spectrum, something not available to Walmsley. Where Baggaley observed

the t−1 decay of Walmsley, he also observed the same energy spectrum with a ‘bump’

obtained in our work. Similarly, where Baggaley observed the t−3/2 decay of Walmsley,

he also observed the same ‘Kolmogorov’ energy spectrum obtained in our work.

Given the close match between our energy spectra and those obtained by Baggaley

in mirroring Walmsley’s work, it is reasonable to conclude that we are all observing one

and the same thing. It seems highly likely that our T1 counterflow simulations, driven

as they are by an anisotropic normal fluid, are themselves then an anisotropic form of

the Ultraquantum/Vinen turbulence observed by Walmsley and in general the energy

dissipation of Walmsley’s turbulence at very low temperatures has the same fingerprint

as our turbulence at much higher temperatures. Given the absence of any friction forces

at low temperature to assist energy decay it is perhaps surprising that the fingerprints

match.
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Biot-Savart derivation

We begin with vorticity, ω = ∇× v.

We want to get v from ω:

For an incompressible flow we have ∇ · v = 0.

This means we can say v = ∇× a (where a is the vector potential)

(a can be chosen such that ∇ · a = 0).

Thus:

ω = ∇× v

= ∇× (∇× a)

= ∇(∇ · a)−∇2a (we chose a such that ∇ · a = 0)

ω = −∇2a.

This is a Poisson equation for a which has a well known solution given by a Greens Function, which

is...

a = −
1

4π

∫

V

ω(s)

|r− s|
dV,

(where r = (x, y, z) and s is a point on a space curve of infinitesimal thickness used to approximate

a vortex line.)

Then since vorticity is just along s we can transform this in to a line integral, so ω(s)dV = κdℓ

where κ is the circulation.

Thus we now have:

a = −
κ

4π

∮

dℓ

|r− s|
.

Then,
da

dr
= −

κ

4π

dℓ

|r− s|
.
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If we now take the curl of this we obtain,

∇×
da

dr
= −

κ

4π
∇×

(

dℓ

|r− s|

)

,

d ∇× a

dr
= −

κ

4π
∇×

(

dℓ

|r− s|

)

,

dv

dr
= −

κ

4π

{

∇
1

|r− s|
× dℓ+

1

|r− s|
∇× dℓ

}

, (using: ∇× (φψ) = ∇φ× ψ + φ∇× ψ)

v =

∮

−
κ

4π
∇

1

|r− s|
× dℓ.

Aside: ∇|r− s|−1 = −|r− s|−2∇|r− s| = −|r− s|−2(r− s)/|r− s| = −(r− s)/|r− s|−3

Hence we have;

v =

∮

−
κ

4π
∇|r− s|−1 × dℓ,

=

∮

−
κ

4π
·
−(r− s)

|r− s|3
× dℓ,

and finally we obtain the Biot-Savart Law which is:

v =
κ

4π

∮

(r− s)

|r− s|3
× dℓ.
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Local induction approximation

derivation

We begin with the Biot-Savart Law to describe the self-induced velocity (v) of a vortex,

where s = s(ξ) is a curve which is used to represent a vortex filament, r represents a point

on the curve, ξ is the arclength between s and r and κ is the circulation of the vortex.

Integrating over ℓ means integrating over all the space curves.

v =
κ

4π

∮

ℓ

(s− r)

|s− r|3
× ds.

We then form a Taylor Series Expansion for s about the point r giving:

s ≃ r+ ξs′ +
1

2
ξ2s′′ + ..., (B.1)

differentiating this we obtain,

ds

dξ
≃ s′ + ξs′′ + ... ⇒ ds ≃ (s′ + ξs′′ + ...)dξ. (B.2)

I can then rewrite equation B.1 as

s− r ≃ ξs′ +
1

2
ξ2s′′ + ..., (B.3)

substituting equations B.2 and B.3 into the Biot-Savart Law gives:

v ≃
κ

4π

∮

ℓ

(ξs′ + 1
2ξ

2s′′ + ...)× (s′ + ξs′′ + ...)

|ξs′ + 1
2ξ

2s′′ + ...|3
dξ. (B.4)
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Aside: using the fact that a× b = −b× a and that a× a = 0 ⇒

(ξs′ +
1

2
ξ2s′′ + ...)× (s′ + ξs′′ + ...) = ξs′ × s′ + ξ2s′ × s′′ + 1/2ξ2s′′ × s′ + 1/2ξ3s′′ × s′′

= 0 + ξ2s′ × s′′ − 1/2ξ2s′ × s′′ + 0

= 1/2ξ2s′ × s′′.

We can now substitute the above back into equation B.4 to obtain,

v ≃
κ

8π
s′ × s′′

∮

ℓ

ξ2

|ξs′ + 1
2ξ

2s′′ + ...|3
dξ. (B.5)

Now using |ab| = |a||b| we obtain,

v ≃
κ

8π
s′ × s′′

∮

ℓ

ξ2

|ξ|3|s′ + 1
2ξs

′′ + ...|3
dξ. (B.6)

Now we need to use a · a = |a|2 ⇒ |a| = (a · a)1/2 ⇒ |a|3 = (a · a)3/2

v ≃
κ

8π
s′ × s′′

∮

ℓ

|ξ|−1

((s′ + 1
2ξs

′′ + ...) · (s′ + 1
2ξs

′′ + ...))3/2
dξ. (B.7)

Then since

(s′ +
1

2
ξs′′ + ...) · (s′ +

1

2
ξs′′ + ...) = s′ · s′ + ξs′ · s′′ +

1

4
ξ2s′′ · s′′

= |s′|2 +
1

4
ξ2|s′′|2 (using the fact that s′ and s′′ are orthogonal)

= 1 +
ξ2

4R2
, (using |s′| = 1 and |s′′| = R−1)

This gives

v ≃
κ

8π
s′ × s′′

∮

ℓ
|ξ|−1(1 +

ξ2

4R2
)−3/2dξ. (B.8)

We can now use a negative binomial series expansion of the form (1 + x)−n = 1 − nx +

1/2n(n + 1)x2 − ... to get

(1 +
ξ2

4R2
)−3/2 = 1−

3

2

ξ2

4R2
+

1

2

3

2

5

2

ξ4

16R4
− ...

= 1−
3ξ2

8R2
+

15ξ4

128R4
− ...,
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Substituting this back into the integral gives

v ≃
κ

8π
s′ × s′′

∮

ℓ
|ξ|−1(1 +O(ξ2))dξ neglecting O(ξ2) terms

v ≃
κ

8π
s′ × s′′

∮

ℓ
|ξ|−1dξ

v ≃
κ

8π
s′ × s′′

∮ ∞

−∞

1

|ξ|
dξ

v ≃
κ

4π
s′ × s′′

∮ ∞

0

1

|ξ|
dξ. since 1/|ξ| is an even function

I need to create upper and lower limit cut-offs for this integral as it would produce ln(0)

and ln(∞) neither of which can happen so it makes more sense to use the core width a0

as the lower limit and the radius of curvature R as an upper limit. This gives...

v ≃
κ

4π
s′ × s′′

∮ R

a0

1

|ξ|
dξ

v ≃
κ

4π
s′ × s′′ ln

(

R

a0

)

,

which is the local induction approximation.

121



Appendix B. Local induction approximation derivation

122



Bibliography

Aarts, R. 1993 A numerical study of quantized vortices in He II. PhD thesis.

Adachi, H., Fujiyama, S. & Tsubota, M. 2010 Steady-state counterflow quantum

turbulence: Simulation of vortex filaments using the full biot-savart law. Phys. Rev. B

81, 104511.

Alamri, S. Z., Youd, A. J. & Barenghi, C. F. 2008 Reconnection of superfluid vortex

bundles. Phys. Rev. Lett. 101, 215302.

Antonia, R. A., Zhou, T. & Zhu, Y. 1998 Three-component vorticity measurements

in a turbulent grid flow. Journal of Fluid Mechanics 374, 29–57.

Araki, T., Tsubota, M. & Nemirovskii, S. K. 2002 Energy spectrum of superfluid

turbulence with no normal-fluid component. Phys. Rev. Lett. 89, 145301.

Baggaley, A. 2012 The sensitivity of the vortex filament method to different reconnec-

tion models. Journal of Low Temperature Physics 168 (1-2), 18–30.

Baggaley, A. & Barenghi, C. 2012 Tree method for quantum vortex dynamics. Jour-

nal of Low Temperature Physics 166 (1-2), 3–20.

Baggaley, A. W. 2009 Flux rope dynamo. PhD thesis.

Baggaley, A. W. & Barenghi, C. F. 2011a Quantum turbulent velocity statistics and

quasiclassical limit. Phys. Rev. E 84, 067301.

Baggaley, A. W. & Barenghi, C. F. 2011b Vortex-density fluctuations in quantum

turbulence. Phys. Rev. B 84, 020504.

Baggaley, A. W., Barenghi, C. F. & Sergeev, Y. A. 2012a Quasiclassical and

ultraquantum decay of superfluid turbulence. Phys. Rev. B 85, 060501.

Baggaley, A. W., Barenghi, C. F., Shukurov, A. & Sergeev, Y. A. 2012b Co-

herent vortex structures in quantum turbulence. EPL (Europhysics Letters) 98 (2),

26002.

123



Bibliography

Baggaley, A. W. & Laurie, J. 2015 Thermal counterflow in a periodic channel with

solid boundaries. Journal of Low Temperature Physics 178 (1), 35–52.

Baggaley, A. W., Laurie, J. & Barenghi, C. F. 2012c Vortex-density fluctuations,

energy spectra, and vortical regions in superfluid turbulence. Phys. Rev. Lett. 109,

205304.

Baggaley, A. W., Sherwin, L. K., Barenghi, C. F. & Sergeev, Y. A. 2012d

Thermally and mechanically driven quantum turbulence in helium II. Phys. Rev. B 86,

104501.

Barenghi, C., Donnelly, R. & Vinen, W. 1983 Friction on quantized vortices in

helium II. A review. Journal of Low Temperature Physics 52 (3-4), 189–247.

Barenghi, C. & Samuels, D. 2004 Scaling laws of vortex reconnections. Journal of Low

Temperature Physics 136 (5-6), 281–293.

Barenghi, C. F. & Donnelly, R. J. 2009 Vortex rings in classical and quantum sys-

tems. Fluid Dynamics Research 41 (5), 051401.

Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. 1985 Thermal excitation of waves

on quantized vortices. Physics of Fluids 28 (2), 498–504.

Barenghi, C. F., Samuels, D. C., Bauer, G. H. & Donnelly, R. J. 1997 Superfluid

vortex lines in a model of turbulent flow. Physics of Fluids (1994-present) 9 (9), 2631–

2643.

Barnes, J. & Hut, P. 1986 A hierarchical o(n log n) force-calculation algorithm. Nature

324 (6096), 446–449.

Bellows, A. 2014 Absolute zero. http://www.damninteresting.com/absolute-zero-is-0k,

accessed: August 2015.

Benderskii, A. V., Zadoyan, R., Schwentner, N. & Apkarian, V. A. 1999 Photo-

dynamics in superfluid helium: Femtosecond laser-induced ionization, charge recombi-

nation, and preparation of molecular rydberg states. The Journal of Chemical Physics

110 (3), 1542–1557.

Bewley, G. P., Lathrop, D. P. & Sreenivasan, K. R. 2006 Superfluid helium:

Visualization of quantized vortices. Nature 441 (7093), 588–588.

Bradley, D. I., Fisher, S. N., Guenault, A. M., Haley, R. P., Pickett, G. R.,

Potts, D. & Tsepelin, V. 2011 Direct measurement of the energy dissipated by

quantum turbulence. Nat Phys 7 (6), 473–476.

124

http://www.damninteresting.com/absolute-zero-is-0k


Bibliography

Childers, R. K. & Tough, J. T. 1976 Helium II thermal counterflow: Temperature-

and pressure-difference data and analysis in terms of the Vinen theory. Phys. Rev. B

13, 1040–1055.

Codoluto, D. & Dykhoff, D. 2014 Temperature Dependence of Second Sound in

He-II. https://wiki.umn.edu/MXP/S14SpeedofSecondSound, accessed: August 2015.

Donnelly, P. H. R. R. J. 1970 Dynamics of vortex rings. Physics Letters A 31 (3),

137–138.

Donnelly, R. J. 1991 Quantized Vortices in Helium II. 346.

Donnelly, R. J. 1999 Cryogenic fluid dynamics. Journal of Physics: Condensed Matter

11 (40), 7783.

Donnelly, R. J. & Barenghi, C. F. 1998 The observed properties of liquid helium at

the saturated vapor pressure. Journal of Physical and Chemical Reference Data 27 (6),

1217–1274.

Faraday, M. 1823 On hydrate of chlorine. Quarterly Journal of Science 15 (71).

Farge, M., Schneider, K., Pellegrino, G., Wray, A. A. & Rogallo, R. S. 2003

Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison

between cvs-wavelet and pod-fourier decompositions. Physics of Fluids 15 (10), 2886–

2896.

Feynman, R. 1955a Chapter {II} application of quantum mechanics to liquid helium.

Progress in Low Temperature Physics, vol. 1, pp. 17 – 53. Elsevier.

Feynman, R., Leighton, R. & Sands, M. 1964 The Feynman Lectures on Physics:

Mainly electromagnetism and matter. Volume 2 . Addison-Wesley Publishing Company.

Feynman, R. P. 1955b Application of quantum mechanics to liquid helium. Progress in

Low Temperature Physics 1, 17–53.

Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov.. Cambridge University

Press.

Fung, J. C. H., Hunt, J. C. R., Malik, N. A. & Perkins, R. J. 1992 Kinematic

simulation of homogeneous turbulence by unsteady random fourier modes. Journal of

Fluid Mechanics 236, 281–318.

Fung, J. C. H. & Vassilicos, J. C. 1998 Two-particle dispersion in turbulentlike flows.

Phys. Rev. E 57, 1677–1690.

125

https://wiki.umn.edu/MXP/S14SpeedofSecondSound


Bibliography

Gamet, L., Ducros, F., Nicoud, F. & Poinsot, T. 1999 Compact finite difference

schemes on non-uniform meshes. application to direct numerical simulations of com-

pressible flows. International Journal for Numerical Methods in Fluids 29 (2), 159–191.

Gnedin, N. Y., Glover, S. C. O., Klessen, R. S. & Springel, V. 2015 Star For-

mation in Galaxy Evolution: Connecting Numerical Models to Reality . Springer-Verlag

Berlin Heidelberg.

Guo, W., Cahn, S. B., Nikkel, J. A., Vinen, W. F. & McKinsey, D. N. 2010

Visualization study of counterflow in superfluid 4He using metastable helium molecules.

Phys. Rev. Lett. 105, 045301.

Guo, W., La Mantia, M., Lathrop, D. P. & Van Sciver, S. W. 2014 Visualiza-

tion of two-fluid flows of superfluid helium-4. Proceedings of the National Academy of

Sciences of the United States of America 111, 4653–4658.

Hall, H. E. & Vinen, W. F. 1956 The Rotation of Liquid Helium II. The Theory of

Mutual Friction in Uniformly Rotating Helium II. Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences 238 (1213), 215–234.

Hanninen, R. & Baggaley, A. W. 2014 Vortex filament method as a tool for compu-

tational visualization of quantum turbulence. Proceedings of the National Academy of

Sciences 111 (Supplement 1), 4667–4674.

Kerr, R. M. 2011 Vortex stretching as a mechanism for quantum kinetic energy decay.

Phys. Rev. Lett. 106, 224501.

Kivotides, D. 2006 Coherent structure formation in turbulent thermal superfluids. Phys.

Rev. Lett. 96, 175301.

Kivotides, D. 2011 Spreading of superfluid vorticity clouds in normal-fluid turbulence.

Journal of Fluid Mechanics 668, 58–75.

Kivotides, D. 2015 Decay of finite temperature superfluid helium-4 turbulence. Journal

of Low Temperature Physics 181 (1), 68–76.

Kivotides, D., Barenghi, C. F. & Samuels, D. C. 2000 Triple Vortex Ring Structure

in Superfluid Helium II. Science 290 (5492), 777–779.

Kobayashi, M. & Tsubota, M. 2005 Kolmogorov spectrum of superfluid turbulence:

Numerical analysis of the gross-pitaevskii equation with a small-scale dissipation. Phys.

Rev. Lett. 94, 065302.

126



Bibliography

Kolmogorov, A. 1941 The Local Structure of Turbulence in Incompressible Viscous

Fluid for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady 30, 301–305.

Kondaurova, L., Andryuschenko, V. & Nemirovskii, S. 2008 Numerical simulations

of superfluid turbulence under periodic conditions. Journal of Low Temperature Physics

150 (3-4), 415–419.

Koplik, J. & Levine, H. 1993 Vortex reconnection in superfluid helium. Phys. Rev.

Lett. 71, 1375–1378.

Kozik, E. & Svistunov, B. 2004 Kelvin-wave cascade and decay of superfluid turbu-

lence. Phys. Rev. Lett. 92, 035301.

Kozik, E. & Svistunov, B. 2005 Scale-separation scheme for simulating superfluid

turbulence: Kelvin-wave cascade. Phys. Rev. Lett. 94, 025301.

Kozik, E. & Svistunov, B. 2008a Kolmogorov and kelvin-wave cascades of superfluid

turbulence at t = 0: What lies between. Phys. Rev. B 77, 060502.

Kozik, E. & Svistunov, B. 2008b Scanning superfluid-turbulence cascade by its low-

temperature cutoff. Phys. Rev. Lett. 100, 195302.

Kozik, E. V. & Svistunov, B. V. 2009 Theory of decay of superfluid turbulence

inthelow-temperature limit. Journal of Low Temperature Physics 156 (3), 215–267.

Kursa, M., Bajer, K. & Lipniacki, T. 2011 Cascade of vortex loops initiated by a

single reconnection of quantum vortices. Phys. Rev. B 83, 014515.

La Mantia, M., Chagovets, T. V., Rotter, M. & Skrbek, L. 2012 Testing the per-

formance of a cryogenic visualization system on thermal counterflow by using hydrogen

and deuterium solid tracers. Review of Scientific Instruments 83 (5).

La Mantia, M., Duda, D., Rotter, M. & Skrbek, L. 2013 Lagrangian accelerations

of particles in superfluid turbulence. Journal of Fluid Mechanics 717, R9 (11 pages).

La Mantia, M. & Skrbek, L. 2014 Quantum turbulence visualized by particle dynam-

ics. Phys. Rev. B 90, 014519.

Lamb, H. 1945 Hydrodynamics. Dover Publications.

Landau, L. D. 1941 J. Phys. USSR 5, 71.

Leadbeater, M., Winiecki, T., Samuels, D. C., Barenghi, C. F. & Adams, C. S.

2001 Sound emission due to superfluid vortex reconnections. Phys. Rev. Lett. 86, 1410–

1413.

127



Bibliography

Leonard, A. 1980 Journal of Computational Physics 37, 289.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen,

S., Szalay, A. & Eyink, G. 2008a A public turbulence database cluster and

applications to study lagrangian evolution of velocity increments in turbulence.

http://turbulence.pha.jhu.edu, accessed: November 2013.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S.,

Szalay, A. & Eyink, G. 2008b A public turbulence database cluster and applications

to study lagrangian evolution of velocity increments in turbulence. Journal of Turbulence

9, N31.

L’vov, V. S., Nazarenko, S. V. & Rudenko, O. 2007 Bottleneck crossover between

classical and quantum superfluid turbulence. Phys. Rev. B 76, 024520.

Lvov, V., Nazarenko, S. & Skrbek, L. 2006 Energy spectra of developed turbulence

in helium superfluids. Journal of Low Temperature Physics 145 (1-4), 125–142.

Malik, N. A. & Vassilicos, J. C. 1999 A lagrangian model for turbulent dispersion

with turbulent-like flow structure: Comparison with direct numerical simulation for

two-particle statistics. Physics of Fluids 11 (6), 1572–1580.

Maurer, J. & Tabeling, P. 1998 Local investigation of superfluid turbulence. EPL

(Europhysics Letters) 43 (1), 29.

Melotte, D. J. & Barenghi, C. F. 1998 Transition to Normal Fluid Turbulence in

Helium II. Phys. Rev. Lett. 80, 4181–4184.

Monaghan, J. J. 1992 Smoothed particle hydrodynamics. Annual Review of Astronomy

and Astrophysics 30, 543–574.

Morris, K., Koplik, J. & Rouson, D. W. I. 2008 Vortex locking in direct numerical

simulations of quantum turbulence. Phys. Rev. Lett. 101, 015301.

Navier, C. L. M. H. 1822 Mem. Acad. Sci. Inst. France 6 (389).

Nazarenko, S. 2011 Wave Turbulence. Heidelberg ; New York : Springer Verlag.

Nemirovskii, S. K. 2008 Kinetics of a network of vortex loops in He II and a theory of

superfluid turbulence. Phys. Rev. B 77, 214509.

Nemirovskii, S. K., Tsubota, M. & Araki, T. 2002 Energy Spectrum of the Ran-

dom Velocity Field Induced by a Gaussian Vortex Tangle in He II. Journal of Low

Temperature Physics 126 (5-6), 1535–1540.

128

http://turbulence.pha.jhu.edu


Bibliography

Nore, C., Abid, M. & Brachet, M. E. 1997 Kolmogorov turbulence in low-

temperature superflows. Phys. Rev. Lett. 78, 3896–3899.

Ohkitani, K. 2002 Numerical study of comparison of vorticity and passive vectors in

turbulence and inviscid flows. Phys. Rev. E 65, 046304.

Onsager, L. 1948 Unpublished: Remark given at the Low Temperature Physics confer-

ence at Shelter Island.

Osborne, D. R., Vassilicos, J. C., Sung, K. & Haigh, J. D. 2006 Fundamentals of

pair diffusion in kinematic simulations of turbulence. Phys. Rev. E 74, 036309.

Packard, R. E. 1972 Pulsar Speedups Related to Metastability of the Superfluid

Neutron-Star Core. Physical Review Letters 28, 1080–1082.

Paoletti, M., Fisher, M. E. & Lathrop, D. 2010 Reconnection dynamics for quan-

tized vortices. Physica D: Nonlinear Phenomena 239 (14), 1367 – 1377, at the bound-

aries of nonlinear physics, fluid mechanics and turbulence: where do we stand? Special

issue in celebration of the 60th birthday of K.R. Sreenivasan.

Paoletti, M. S. & Lathrop, D. P. 2011 Quantum turbulence. Annual Review of

Condensed Matter Physics 2 (1), 213–234.

Richardson, L. 1922 Weather Prediction by Numerical Process. Cambridge University

Press.

Roche, P.-E. 2012 Private communication.

Roche, P.-E. & Barenghi, C. F. 2008 Vortex spectrum in superfluid turbulence: In-

terpretation of a recent experiment. EPL (Europhysics Letters) 81 (3), 36002.

Roche, P.-E., Diribarne, P., Didelot, T., Franais, O., Rousseau, L. &

Willaime, H. 2007 Vortex density spectrum of quantum turbulence. EPL (Europhysics

Letters) 77 (6), 66002.

Saffman, P. G. 1970 The velocity of viscous vortex rings. Studies in Applied Mathematics

49 (4), 371–380.

Saffman, P. G. 1993 Vortex Dynamics. Cambridge University Press, cambridge Books

Online.

Saint-Michel, B., Herbert, E., Salort, J., Baudet, C., Bon Mardion, M., Bon-

nay, P., Bourgoin, M., Castaing, B., Chevillard, L., Daviaud, F., Diribarne,

P., Dubrulle, B., Gagne, Y., Gibert, M., Girard, A., Hbral, B., Lehner, T.,

129



Bibliography

Rousset, B. & Collaboration, S. 2014 Probing quantum and classical turbulence

analogy in von karman liquid helium, nitrogen, and water experiments. Physics of Fluids

26 (12).

Salort, J., Baudet, C., Castaing, B., Chabaud, B., Daviaud, F., Didelot, T.,

Diribarne, P., Dubrulle, B., Gagne, Y., Gauthier, F., Girard, A., Habral,

B., Rousset, B., Thibault, P. & Roche, P.-E. 2010 Turbulent velocity spectra in

superfluid flows. Physics of Fluids (1994-present) 22 (12), –.

Samuels, D. C. 1993 Response of superfluid vortex filaments to concentrated normal-

fluid vorticity. Phys. Rev. B 47, 1107–1110.

Sasa, N., Kano, T., Machida, M., L’vov, V. S., Rudenko, O. & Tsubota, M.

2011 Energy spectra of quantum turbulence: Large-scale simulation and modeling. Phys.

Rev. B 84, 054525.

Schwarz, K. & Smith, C. 1981 Pulsed-ion study of ultrasonically generated turbulence

in superfluid 4he. Physics Letters A 82 (5), 251 – 254.

Schwarz, K. W. 1985 Three-dimensional vortex dynamics in superfluid 4He: Line-line

and line-boundary interactions. Phys. Rev. B 31, 5782–5804.

Schwarz, K. W. 1988 Three-dimensional vortex dynamics in superfluid 4He: Homoge-

neous superfluid turbulence. Phys. Rev. B 38, 2398–2417.

Sherwin-Robson, L. K., Barenghi, C. F. & Baggaley, A. W. 2015 Local and

nonlocal dynamics in superfluid turbulence. Phys. Rev. B 91, 104517.

Skrbek, L., Niemela, J. J. & Donnelly, R. J. 2000 Four Regimes of Decaying Grid

Turbulence in a Finite Channel. Physical Review Letters 85, 2973–2976.

Skrbek, L. & Sreenivasan, K. R. 2012 Developed quantum turbulence and its decaya).

Physics of Fluids (1994-present) 24 (1), –.

Smith, M. R., Donnelly, R. J., Goldenfeld, N. & Vinen, W. F. 1993 Decay of

vorticity in homogeneous turbulence. Phys. Rev. Lett. 71, 2583–2586.

Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao,

L., Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J. A., Cole,

S., Thomas, P., Couchman, H., Evrard, A., Colberg, J. & Pearce, F. 2005

Simulations of the formation, evolution and clustering of galaxies and quasars. Nature

435 (7042), 629–636.

130



Bibliography

Stalp, S. R., Skrbek, L. & Donnelly, R. J. 1999 Decay of grid turbulence in a finite

channel. Phys. Rev. Lett. 82, 4831–4834.

Stokes, G. G. 1845 On the theories of the internal friction of fluids in motion, and of

the equilibrium and motion of elastic solids. Trans. Cambridge Philos. Soc. 8, 287–305.

Tebbs, R., Youd, A. J. & Barenghi, C. F. 2011 The approach to vortex reconnection.

Journal of Low Temperature Physics 162 (3), 314–321.

Tisza, L. 1938 Transport Phenomena in Helium II. Nature 141, 913.

Tough, J. 1982 Chapter 3: Superfluid turbulence*. Progress in Low Temperature Physics,

vol. 8, pp. 133 – 219. Elsevier.

Tsubota, M. & Adachi, H. 2011 Simulation of counterflow turbulence byvortex fila-

ments. Journal of Low Temperature Physics 162 (3-4), 367–374.

Tsubota, M., Barenghi, C. F., Araki, T. & Mitani, A. 2004 Instability of vortex

array and transitions to turbulence in rotating helium II. Phys. Rev. B 69, 134515.

Tsubota, M. & Halperin, W., ed. 2009 Progress in Low Temperature Physics, vol. 16.

Elsevier.

Vinen, W. & Niemela, J. 2002 Quantum turbulence. Journal of Low Temperature

Physics 128 (5-6), 167–231.

Vinen, W. F. 1957a Mutual Friction in a Heat Current in Liquid Helium II. I. Ex-

periments on Steady Heat Currents. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences 240 (1220), 114–127.

Vinen, W. F. 1957b Mutual Friction in a Heat Current in Liquid Helium II. II. Experi-

ments on Transient Effects. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences 240 (1220), 128–143.

Vinen, W. F. 1957c Mutual Friction in a Heat Current in Liquid Helium II. III. Theory

of the Mutual Friction. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences 242 (1231), 493–515.

Vinen, W. F. 1958 Mutual Friction in a Heat Current in Liquid Helium II. IV. Crit-

ical Heat Currents in Wide Channels. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences 243 (1234), 400–413.

Vinen, W. F. 1961 The Detection of Single Quanta of Circulation in Liquid Helium II.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences 260 (1301), 218–236.

131



Bibliography

Vinen, W. F. 2006 An introduction to quantum turbulence. Journal of Low Temperature

Physics 145 (1), 7–24.

Volovik, G. 2004 On developed superfluid turbulence. Journal of Low Temperature

Physics 136 (5-6), 309–327.

Walmsley, P. M. & Golov, A. I. 2008 Quantum and quasiclassical types of superfluid

turbulence. Phys. Rev. Lett. 100, 245301.

Walstrom, P., II, J. W., Maddocks, J. & Sciver, S. V. 1988 Turbulent flow pressure

drop in various He {II} transfer system components. Cryogenics 28 (2), 101 – 109.

Yui, S. & Tsubota, M. 2014 Counterflow quantum turbulence in a square channel under

the normal fluid with a poiseuille flow. Journal of Physics: Conference Series 568 (1),

012028.

Zhang, T., Celik, D. & Van Sciver, S. W. 2004 Tracer particles for application to

piv studies of liquid helium. Journal of Low Temperature Physics 134 (3), 985–1000.

Zhang, T. & Van Sciver, S. W. 2005a Large-scale turbulent flow around a cylinder in

counterflow superfluid4He (He (II)). Nat Phys 1 (1), 36–38.

Zhang, T. & Van Sciver, W. S. 2005b The motion of micron-sized particles in He

II counterflow as observed by the PIV technique. Journal of Low Temperature Physics

138 (3), 865–870.

Zmeev, D. E., Walmsley, P. M., Golov, A. I., McClintock, P. V. E., Fisher,

S. N. & Vinen, W. F. 2015 Dissipation of quasiclassical turbulence in superfluid 4He.

Phys. Rev. Lett. 115, 155303.

132


	Introduction
	Classical Turbulence
	From helium I to helium II
	Quantised vortices
	Quantum Turbulence
	Experiments in Quantum Turbulence
	Thermally Driven Turbulence
	Mechanically Driven Turbulence
	Visualisation of Quantum Turbulence

	Publications Arising

	Numerical method
	The Schwarz Equation
	The Magnus Force
	The Drag Force
	Resolving the forces

	Modelling the Superfluid Velocity
	Biot-Savart
	Local Induction Approximation (LIA)

	Basic structure of the code
	Key parameters - physical space and time frame
	Data storage
	A walk through the code

	Time-stepping
	Evaluating the Spatial Derivatives
	Computing the Superfluid Velocity
	Computing the Biot-Savart Integral
	Computing the Local Induction Approximation

	The Normal Fluid Velocity
	Counterflow
	The KS Flow

	Remeshing
	Reconnections
	Periodic Boundaries
	The Tree Method
	Basic Tests of the code
	The velocity of a vortex ring
	The Donnelly-Glaberson Instability


	Thermally and mechanically driven quantum turbulence in helium II
	Background
	Energy spectrum
	Curvature
	Coherent structures
	Vortex reconnections
	Conclusions

	Local and nonlocal dynamics in superfluid turbulence
	Aim and Methodology
	Results
	Discussion

	Fluctuations of the vortex line density
	Motivation
	Implementation
	Results
	Spatial structure of the vortex line density
	Summary

	Conclusions
	Biot-Savart derivation
	Local induction approximation derivation
	Bibliography

