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ABSTRACT 

The continued threat to security in our interconnected world today begs for urgent 

solution. Iris biometric like many other biometric systems provides an alternative solution 

to this lingering problem. Although, iris recognition have been extensively studied, it is 

nevertheless, not a fully solved problem which is the factor inhibiting its implementation 

in real world situations today. There exists three main problems facing the existing iris 

recognition systems: 1) lack of robustness of the algorithm to handle non-ideal iris 

images, 2) slow speed of the algorithm and 3) the applicability to the existing systems in 

real world situation. In this thesis, six novel approaches were derived and implemented 

to address these current limitation of existing iris recognition systems.  

A novel fast and accurate segmentation approach based on the combination of graph-cut 

optimization and active contour model is proposed to define the irregular boundaries of 

the iris in a hierarchical 2-level approach. In the first hierarchy, the approximate boundary 

of the pupil/iris is estimated using a method based on Hough’s transform for the pupil and 

adapted starburst algorithm for the iris.  Subsequently, in the second hierarchy, the final 

irregular boundary of the pupil/iris is refined and segmented using graph-cut based active 

contour (GCBAC) model proposed in this work.  The segmentation is performed in two 

levels, whereby the pupil is segmented first before the iris. In order to detect and eliminate 

noise and reflection artefacts which might introduce errors to the algorithm, a pre-

processing technique based on adaptive weighted edge detection and high-pass filtering 

is used to detect reflections on the high intensity areas of the image while exemplar based 

image inpainting is used to eliminate the reflections.  After the segmentation of the iris 

boundaries, a post-processing operation based on combination of block classification 

method and statistical prediction approach is used to detect any super-imposed occluding 

eyelashes/eyeshadows. The normalization of the iris image is achieved though the rubber 

sheet model.  

In the second stage, an approach based on construction of complex wavelet filters and 

rotation of the filters to the direction of the principal texture direction is used for the 

extraction of important iris information while a modified particle swam optimization 

(PSO) is used to select the most prominent iris features for iris encoding. Classification 

of the iriscode is performed using adaptive support vector machines (ASVM). 

Experimental results demonstrate that the proposed approach achieves accuracy of 

98.99% and is computationally about 2 times faster than the best existing approach.  
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Chapter 1 

 

1.   INTRODUCTION 

This chapter presents a brief introduction to iris recognition, the motivation behind 

this research, the aims and objectives of this research and the contributions made by this 

research work. Also discussed in this chapter are the structure, strengths and weaknesses, 

and evaluation methodology of a typical iris recognition system.  

 

1.1 Biometrics 

With the ever increasing need for security and personal authentication, and the 

new dimensions in security challenges facing the world today, the need for a reliable and 

secure authentication system is highly imperative. Biometric authentication systems have 

become quite popular due to their ability to authenticate individuals by their unique 

personal measureable characteristics which is more difficult to manipulate or forge [1-

14]. The incessant hacking into organizational and personal systems and the rampant 

identity theft experienced in the world today is an evidence that the traditional 

authentication systems based on key codes, passwords and tokens are obsolete and cannot 

be relied upon in today’s technologically advanced world. Iris biometrics which is 

relatively a new biometric technology compared to other biometric technologies has 

become quite popular to researchers and scientist in the field of computer vision and 

pattern recognition due to some major factors: 1) The iris is an internal organ of the body 

which can be captured noninvasively using a cheap CCD camera [1-24], 2) The iris is 

adjudged to be one of the most reliable biometric trait in existence today and it is highly 

unique to the individual that even the iris patterns of both irises of same individual and 

that of identical twins are completely different [12-19]. These interesting characteristics 

of the iris have inspired research into the use of iris patterns for person authentication. 

However, iris recognition involves complex mathematical processes, which sometimes 

are too slow to be implemented in today’s highly demanding and advanced systems. Also, 

the capture process of most implemented iris recognition systems involves a stop and 

stare process or head positioning process which is not quite convenient and may amount 
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to waste of time. Moreover, the environmental setup for the capture of iris images involve 

the use of near-infrared lightening to illuminate the iris before capture which is also a 

source of error and demands subject’s full co-operation. These are limiting factors for the 

iris biometric technology. Today, new researches have started to push the boundaries of 

iris biometrics technology and iris capture on the move and at a distance is becoming 

prevalent. These new mechanisms of iris capture are now yielding non-ideal iris images 

which are more challenging to process using the standard iris biometric algorithm. Figure 

1.1 shows examples of iris images captured in a non-ideal situation with different types 

of challenges. The most common challenges of non-ideal iris images include camera 

noise, reflections and occlusions.  

Extracting the iris portion from the captured eye image, or more generally 

segmentation of iris portion in an eye image is a very important task for any iris 

recognition system because it defines the portion of the iris image which would be used 

for the iris recognition. As can be seen from the example iris images in Figure 1.1, this 

process can be a very challenging task given the heterogeneous nature of the iris images. 

Also, extraction of the important iris features used for representing the iris sample is also 

highly challenging due to the richness and complexity of the iris texture.  A novel methods 

for iris achieving these tasks are presented in this work and are evaluated to establish their 

efficacies.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Samples of iris images captured under varying environmental conditions 
and with less subject’s co-operation taken from both CASIA and UBIRIS databases.
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1.2 Motivation and Challenges 

The remarkable uniqueness of iris patterns as well as the ability to capture iris 

image non-invasively have inspired researchers in biometrics, pattern recognition and 

computer vision to develop automated system for iris recognition based on 2-D iris 

images. Although existing iris recognition systems have recorded good performances, the 

problem of achieving high recognition accuracy in non-ideal iris images at an efficient 

speed still remains a challenge with no efficient solution yet [44, 45], [47, 48]. The 

effectiveness and efficiency of iris recognition systems is highly dependent on the 

accuracy and speed of the iris segmentation module [17]. Therefore, improving the speed 

and accuracy of the segmentation module will greatly enhance the effectiveness and 

efficiency of the iris recognition system. In typical non-ideal iris image segmentation, the 

iris boundaries are either segmented through a costly curve evolution technique based on 

level-set method [51-56], or using a supervised learning method [44-47]. These two 

methods are computationally expensive and impacts negatively on the overall speed of 

the system.  

Also, the extraction of important features from the non-ideal iris sample is still a 

problem that begs for solution. Current methods of iris feature extraction represent the 

iris sample with high dimensional iris code which impacts negatively on the classification 

efficiency. Moreover, with lower quality iris images captured under lower of no subject’s 

co-operation being the order of the day, the existing iris feature extraction algorithms 

mostly leads to many false rejection errors.  Hence, representing the iris with smaller iris 

codes is a problem that have been studied with no efficient solution yet. Most current 

methods for iris feature extraction and representation have tried to use discrete wavelets 

to extract iris features [13, 16-18]. This approach is normally affected by shift variance 

and phase problems which is inherent in discrete wavelet transforms (DWT).  A new 

system needs to be developed to overcome these challenges and create an iris 

segmentation and feature representation technique that is more efficient and accurate, 

which is our major motivation in this research. Moreover, our greatest motivation lies in 

the successes which iris recognition have achieved in various critical application areas 

including: homeland security, border surveillance and security, web security, national 

identity management, rapid passenger’s information management, controlled access to 

privileged information, forensic investigation and welfare management to mention but a 

few. Therefore, the wide area of applicability of iris biometrics implies that this research 

work will be highly beneficial to many organisation, government and individuals alike.  
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The main challenges of iris recognition systems are: 

I. Lack of robustness: The high recognition accuracy recorded by most current iris 

recognition algorithm in highly constrained imaging condition can be easily 

depleted when the same algorithm is applied in an unconstrained situation. In 

strictly constrained imaging situation, where high quality iris image is acquired 

using a sophisticated imagery setup, it is very easy to achieve an impressive 

performance with low error rate [19], [20-32]. However, most of the current state-

of-the-art iris recognition algorithms fail when implemented in less co-operative 

iris capture environment, where the probability of capturing low quality iris image 

is very high. In an uncontrolled imaging environment, iris images are captured 

using a flexible imagery setup and as such, the images are normally affected by 

noises like: motion blur, camera diffusion, head rotation, gaze direction, camera 

angles, reflections, poor contrast, luminosity, occlusions, and pupil dilation [33-

58]. These non-idealities drastically reduce the performances of both the iris 

segmentation and feature representation algorithms considerably, and as such the 

overall performance of the iris recognition algorithm is degraded. 

II. Non-Circularity of the iris boundaries: Researchers have found that, the iris 

and pupil boundaries are of arbitrary shapes [43-45], [47-48]. Therefore, this can 

lead to segmentation errors, if fitted with some presumed simple shapes like: 

circles or ellipses. The accurate determination of the boundaries of the iris remains 

an issue until date.  

III. Speed: Currently, the time efficiency of available iris recognition systems limits 

the application of iris biometric in today’s highly demanding and fast systems. Iris 

segmentation is considered the bottle-neck in the iris recognition systems for 

being the most time consuming module in the system [47], [48].  

IV. Dimensionality: Also, the millions of interclass and intraclass comparisons that 

take place during iris recognition is another contributor to time inefficiency in iris 

biometric systems. There is a clear indication that a system that will meet today’s 

demands will require higher accuracy as well as faster speed. The high 

dimensionality of IrisCode increases the interclass and intraclass comparison that 

take place at the classification level thereby impacting negatively on the overall 

recognition speed. Therefore, there is need to reduce the dimensionality of the 

IrisCode while maintaining high accuracy at the same time.   
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In light of these challenges, it is pertinent that a new iris segmentation algorithm with 

enhanced performance and efficiency is developed to meet today’s needs. Also, this 

research work also looks at reducing the dimensionality of the iris feature vector through 

a feature selection/optimisation technique. The first phase of this research work focused 

on developing a robust iris preprocessing (segmentation) algorithm aimed at handling the 

different challenges of non-ideal iris images captured in less-constrained environment. A 

model is developed to effectively define the accurate boundaries of the iris with 

significantly improved speed by combining a local and global boundary optimisation 

technique. Subsequently, attention is drawn to improving the iris recognition performance 

by the extraction of the most important iris textural information using a multi-scale, multi-

dimensional approach based on complex wavelet filters (CWF) and principal component 

analysis (PSO). In order to improve on the speed of the recognition system, a method is 

developed for selecting the most prominent features of the iris for iris representation 

which reduces the dimensionality of the iris feature vector and improve speed. The 

accurate classification of iris patterns using adaptive support vector machines (ASVMs) 

is also able to overcome the problems encountered with fixed thresholding of the iris 

matching systems.  

 

   1.3 Iris Biometrics: An Overview 

Iris recognition is, perhaps, the most reliable biometric technique for person 

authentication which has been successfully deployed in many large-scale biometric based 

identity management systems where accurate authentication of a person’s identity is a 

critical issue [44], [46-47], [51]. Such large-scale authentication systems include: border 

control systems, authentication of users wanting access to resources in networked 

computer environment, boarding of commercial flight, accessing home appliances 

remotely, gaining access to nuclear facilities, performing bank transactions, etc. [51-52], 

[53-55]. There are several crucial features of the iris which has made it outstanding as a 

biometric trait and they include: the uniqueness of iris textures, its non-invasiveness, the 

stability of iris patterns, public acceptance of iris biometric, and availability of user 

friendly capturing devices to mention but a few. These promising features have attracted 

researchers and scientists to this evolving field over the past decade.  

The iris is the annular part of the human eye which is located between the dark pupil and 

the whitish sclera (see Figure 1.3) [59-62]. The iris is made up of many extraordinary 



 

6 
 

structures that provides many interlacing minutiae characteristics such as freckles, 

coronas, stripes, crypts, ciliary, collarette, radial and concentric furrows and the pupillary 

area, which are unique to each individual and to each eye [59]. The iris is an internal 

organ which is visible externally. The iris uses the constriction and dilation of the 

sphincter muscles to controls the amount of light that enters the eye through the pupil 

[44]. The elastic fibrous tissues that makes up the iris structure is very complex and very 

unique to each eye and individual [44], [47]. The iris pattern is generated by a chaotic 

process which is highly independent of the individual’s genetic structure [47]. The 

formation of the human iris begins at the early stage of gestation, around the first three 

months, and the iris structures are completely formed by the eighth month of gestation 

[47], [48]. Although, the colour and pigmentation of the iris may continue to build 

throughout the first year of a child’s birth [48], the structure of the iris remains stable 

throughout a person’s life time, except for direct physical damage or changes caused 

through eye surgery. In recent research works, the stability of the human iris for life time 

have been questioned, but no credible experimental proof have been provided yet to refute 

the claim that iris structures remains stable for life time [18]. The uniqueness of iris 

patterns as well as the further advantage that the iris is an internal organ yet visible 

externally makes it less susceptible to damages over a person’s life time. The necessity 

of the eye as a visual organ will deter many criminals from taking drastic measures to try 

to change their iris identity through other means. Figures 1.2 and 1.3 shows the eye and 

iris anatomies, respectively. The iris anatomy is more relevant to the proposed iris 

recognition methodologies. Thus, we briefly discuss the key visible features, as annotated 

in Figure 1.3. Therefore, the viability of the iris as a biometric security trait is 

unquestionable and this research and study of iris biometric is both timely and pertinent 

for meeting the security challenges facing the digital world today. 

 

1.3.1 Features of the Iris 

The iris is made up complex features which is the reason for its uniqueness and 

reliability. Some of these features are discussed below: 

Medial canthus: The angle between the upper and lower eyelids near the centre of the 

face. 

Sclera: The white region of an eye image normally enclosing the iris. 
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Pupil: The darkest central part of an eye image normally enclosed by the iris. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1.2: The anatomy of the human eye [53]. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.3: The anatomy of the human iris 
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Pupillary Area: The inner part of the iris whose edges form the contour of the pupil. This 
is the region of sphincter muscles that enclose the pupil residing in this area. 
 
Ciliary Area: This is the iris region from the pupillary area to the ciliary body. It is the 
region of dilator muscles that controls the dilation and constriction of the pupil. 
 
Stroma Fibres: The pigmented fibro vascular tissue that constructs most of the visible 
iris patterns. 
 
Crypts and Furrows: The two types of inconsistencies that are usually found in the 
distribution of stroma fibres. 
 
Collarette: The region that divides the pupillary area from the ciliary area. 

 
 
 
1.3.2 A Typical Iris Recognition System 

Figure 1.4a shows the block diagram of a typical iris recognition system which is 

made up of two building blocks: the iris acquisition block and iris recognition block. The 

iris recognition block is made up of four different phases including: segmentation, 

normalization/unwrapping, feature extraction, matching/ classification.  

 Iris Image Acquisition Block: Iris image acquisition is the preliminary step of any 

iris recognition system. It is considered a critical step of the iris recognition system 

since all the subsequent stages depend highly on the image quality acquired in this 

step. Most traditional iris recognition systems do not include this step but it is 

important to have this in mind when designing an iris recognition system. A 

specially designed camera is used to capture a sequence of iris images. An iris 

image capturing device considers the following three key factors [19]:  

 

1) The lighting of the system,  

 

2) The positioning of the system, and 

 

3) The physical capture system. 
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 Iris Recognition Block: The effectiveness of the entire iris recognition system is 

highly dependent on this module. This module is made up of four different phases: 

segmentation, normalization/unwrapping, feature extraction, and 

matching/classification. In the first step, the portion of the eye image that belongs 

to the iris is segmented from the rest of the image. The segmented iris region is 

unwrapped into a set rectangular block size in order to avoid the size 

inconsistencies. This is followed by the extraction of the most discriminating 

features from the unwrapped image and finally, the extracted features are used for 

matching and classification with stored iris templates in the iris database for 

individual’s authentication. 

 

Iris image 

acquisition 

 

Segmentation 

Iris Recognition 

Normalization 

Feature 
extraction 

Matching

Decision

   Database of iris 

templates 

(a) 

Extracted iris 

feature values 

Iris template

0000101010101 

1010101001010 

Original iris 
image 

Segmented iris 

image 

Normalized iris image

(b) 

Figure 1.4: An iris recognition system; (a) Steps of a typical iris recognition system, 
(b) A typical iris recognition system steps in greater details. 
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1.3.3  Strengths and Weaknesses of the Biometric Iris Recognition 

systems 

Among all of the biometric traits, the iris has been considered as the most accurate 

and reliable biometric trait [42], [44], [51]. However, it has some intrinsic pitfalls that 

cannot be ignored. The major strengths and weaknesses of the iris as a biometric 

technique are discussed respectively in the Sections 1.3.3.1 and 1.3.3.2. 

 

1.3.3.1 Strengths of Iris Biometrics 

 The iris patterns have small intra-class variability [11], [14]. 

 The iris is a well-protected internal organ of the eye which contains a high degree 

of randomness [14], [17]. 

 The iris is externally visible which makes iris image acquisition possible from a 

distance [22], [29], [32]. 

 The iris pattern remains stable throughout the lifetime of a person and it is 

assumed that each individual has a unique iris pattern [11], [41]. 

 It is possible to encode the iris pattern and the recognition system’s decidability 

is tractable [42], [44]. 

 No evidence of genetic influence has been found in the structure of the iris [21]. 

Therefore, the iris structures in both eyes of the same person are different and 

those of identical twins are also different [40], [41]. 

 Iris recognition systems require very low maintenance costs with high 

interoperability between different hardware vendors. Also, iris recognition 

technology has the ability to work well with applications from other vendors [1], 

[18], [32]. 

 
 
1.3.3.2 Weaknesses of Iris Biometrics 

 It is difficult to capture the iris image since the size of the iris is very small (its 

approximate diameter is 1 cm). A specialized camera with an extensive apparatus 

setup is needed to acquire iris images [9], [14].  

 The iris could be partially occluded by lower and upper eyelids, and obscured by 

eyelashes, reflections, and lenses [19 – 25]. 

 The size of the pupil changes, non-elastic deformation is a major drawback [8-

11], [22]. 
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1.3.4  Iris Recognition System Performance Estimation 

The following terminologies are widely used to estimate the performance of an iris 

recognition system [20-21], [53-56]: 

 

 False Accept (FA): Accepting an imposter as an authorized subject. The 

probability at which the false accept errors occur is called the False Accept Rate 

(FAR). 

 

 False Reject (FR): Rejecting an authorized subject incorrectly. The probability at 

which the false reject errors occur is denoted as the False Reject Rate (FRR). 

 

 True Accept (TA): Accepting a true subject correctly. The probability at which 

the true accept occur is denoted as the True Accept Rate (TAR). 

 

 True Reject (TR): Rejecting an untrue subject correctly, the probability at which 

the true reject occurs is called True Reject Rate (TRR). 

 

 Equal Error (EE): When the FA and FR are equal, the error is referred to as Equal 

Error (ER) and the probability at which FAR=FRR, is called the Equal Error Rate 

(EER). 

 

Generally, the performance verification of an iris recognition system can be demonstrated 

by using the Receiver Operator Characteristics (ROC) curve. If the functions FAR (t) and 

FRR (t) provide the error rates when the recognition decision is made at a threshold t, 

then the ROC curve is used to plot the error rates against each other [20], where: 

ܴܣܶ ൌ 	
ܣܶ

ሺܶܣ ൅ ሻܴܨ
										ሺ1.1ሻ 

 

The false accept rate is the number of false accepts divided by the total number of false 

claims: 

ܴܣܨ ൌ 	
ܣܨ

ሺܣܨ ൅ ܴܶሻ
									ሺ1.2ሻ 

 

Therefore the false reject rate is  
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ܴܴܨ ൌ 1 െ ܴܣܶ ൌ 	
ܴܨ

ሺܶܣ ൅ ሻܴܨ
									ሺ1.3ሻ 

The ROC curve is plotted as: 

	

ሺ߬ሻܥܱܴ ൌ ൫ܴܣܨሺ߬ሻ, 	ሺ1.4ሻ														ሺ߬ሻ൯ܴܴܨ

	

The FAR and FRR are mapped as a function of ߬: 

 

ሺ߬ሻܥܱܴ ൌ ൫ܴܣܨሺ߬ሻ, ሺ߬ሻ൯ܴܴܨ 	→ 	 ൜
ሺ1,0ሻ			݄݊݁ݓ	߬	 → 	െ∞
ሺ0,1ሻ				݄݊݁ݓ	߬	 → 			∞		

												ሺ1.5ሻ 

 

which implies that if ߬ is high, then the FRR is high and the FAR is low and conversely 

when ߬ is low, the FAR is high and the FRR is low. 

 
 
1.4 Non-Ideal Iris Recognition: A New Challenge 

Most current iris recognition algorithms that have recorded high recognition 

accuracy are based on iris images captured with subject’s cooperation, within a 

constrained image capturing build. The performances of those systems greatly diminish 

in unconstrained capture situation with less or no subject’s co-operation where low 

quality images are captured. Non-ideal iris image refer to iris images captured with less 

subject’s co-operation and varying environmental conditions. Non-ideal iris images 

captured in unconstrained imaging setup environment mostly suffer from issues like 

partial occlusion from eyelids, eyelashes, and shadows, reflections from infra-red 

lightning used in the acquisition process, off angle gaze, motion blur and poor 

illuminations to mention but a few. Moreover, the inner and outer boundaries of the iris 

may not maintain any particular shape or size. These challenges mentioned above makes 

non-ideal iris recognition extremely difficult and tasking.   

Other challenges that may face non-ideal iris images include: defocusing, poor 

contrast, oversaturation, camera diffusion, head rotation, gaze direction, camera angle, 

pupil dilation, etc. Therefore, the non-ideal conditions contained in iris images can affect 

iris segmentation and feature extraction performances considerably, and may 

consequently influence the overall recognition accuracy. Therefore, it is imperative to 
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design an accurate and robust iris recognition method that can cope with such diverse 

noise factors and thereby increase the iris recognition accuracy for non-ideal irises.  

 

1.5 Aim and Objectives of the Thesis  

The thesis aims to study iris recognition techniques, including the technical 

background, ideas, concepts and some of the practical issues presently involved in them. 

The emphasis will be to develop new methods of improving the accuracy as well as time 

efficiency of existing iris recognition systems.  The initial investigation involves several 

stages relating to the study of segmentation, feature extraction and classification, which 

focus on improving accuracy and speed. The possible variations in iris recognition 

techniques are discussed and in accordance, a novel approach utilizing graph cut based 

active contour model (GCBAC), principally rotated complex wavelet filters (PR-CWF) 

and particle swam optimization (PSO), and adaptive support vector machine (ASVM) 

were introduced for iris segmentation, feature selection and classification of the iris, 

respectively. The thesis attempts to demonstrate that accurate, robust, fast and 

implementable iris recognition is a viable proposition.   

More specifically, the thesis objectives includes the following: 

1) To develop an effective reflection detection and removal method which is able to 

preserve the structure of the unaffected parts of the iris image as much as possible 

for further processing. 

2) To develop a novel boundary segmentation methodology which is robust enough 

to handle noise and occlusions in non-ideal iris images and able to deal with the 

shape irregularities of the iris boundaries. 

3) To improve the effectiveness and efficiency of the proposed iris segmentation 

algorithms, through post-processing of the segmented iris image for the detection 

of any occluding eyelashes and shadows which might still be present after 

segmentation of the iris.   

4) To design and implement a novel iris features extraction and selection approach, 

which is able to extract and represent the iris sample with reduced dimensionality 

iris template while maintaining high accuracy and performance.  
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5) To analyse and evaluate a range of iris recognition systems applied to both ideal 

and non-ideal iris image, in order to identify the advantages and disadvantages 

offered by the various approaches. 

6) To evaluate the proposed iris recognition system and present the result in a 

standard format. 

7) To identify the limitations of the final proposed iris recognition system and 

propose a line of further research to investigate these limitations. 

 

1.6 Contributions of the Thesis 

Iris recognition has been continually designed and several methods of iris 

segmentation, feature extraction and matching have been proposed by researchers in 

recent years. Most iris recognition techniques focus on ideal iris images collected under 

a stable and constrained imaging conditions and on improving the accuracy of the 

recognition system only. However, this does not represent real-life implementable 

solution today.  Some existing iris recognition systems have concentrated on improving 

the accuracy of the iris recognition system for non-ideal iris images, without paying 

adequate attention to the efficiency and speed of the system.  

This thesis presents a novel methodology and pioneered a direction for new research 

that will enable new developments in the areas of iris segmentation, and feature extraction 

capable of yielding better performance in identification and verification process. The 

proposed method is able overcome the limitations associated with conventional 

(traditional) and current iris recognition approaches in both ideal and non-ideal iris 

images acquired under varying imaging conditions. The thesis presents six novel 

contributions in two different stages of iris recognition system representing improvements 

in iris segmentation, and feature extraction and selection. The contributions of the thesis 

can be outlined in these areas as follows: 

I. Iris segmentation 

a. The methodology for reflections detection and removal developed in this 

thesis represents a new technique of identifying and locating reflection 

artefacts in iris images and removing them without altering the image 

structure in other unaffected parts of the iris. This preserves as much 



 

15 
 

structure of the image as possible for further processing and enhances 

segmentation accuracy. 

b. A novel methodology for approximating the boundaries of the iris is 

developed which greatly improved the speed of the segmentation 

algorithm. 

c. A new hierarchical method of localizing both boundaries of the iris based 

on combination of graph cut optimization (global information) and active 

contour model (local information) was introduced to overcome the 

common setbacks of active contour based on level-set method and 

significantly improve speed and accuracy. 

d. The block-based technique for eyelash and shadows detection represents 

a new adaptive technique for correctly identifying or predicting the 

eyelash/shadow pixels based on local neighbour information using block 

classification approach and statistical prediction approach. 

 

II. Iris feature extraction, selection and encoding 

a. A new framework for feature extraction based on construction of complex 

wavelet filters rotated in the directions of the principal texture ensures that 

invariant features of the iris are extracted. 

b. A new step is introduced to eliminate redundant information and for 

selecting the best features for iris representation. This methodology 

reduces the feature dimensionality while maintaining highest level of 

accuracy and performance for the iris recognition system. 

 

1.7 Structure of the Thesis  

The thesis presents the work carried out by the author in an effort to achieve the aim and 

objectives outline in section 1.5. The structure and contents of the thesis is described as 

follows in a chapter-by-chapter basis.  

Chapter 2: Provides a background to the field of biometrics and iris recognition 

and a short insight into previous works in the field. 

Chapter 3: Proposes a new segmentation approach using a combined effort of 

graph-cut energy optimization and active contour deformation model. The proposed 
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approach starts by employing an adaptive multiscale edge detection and weighted high-

pass filter to identify and isolate reflections in the high intensity areas of the iris image.  

An adaptive exemplar based image inpainting method is then employed for filling the 

reflection points in the image. The segmentation of each boundary of the iris is then 

carried out using a two level hierarchical approach. The approximate boundaries of the 

iris is first determined using an adaptive starburst algorithm while the proposed graph-cut 

based active contour (GCBAC) model is used to finally defined the boundaries. 

Furthermore, a post-processing operation based on block classification and statistical 

predication method is used for efficient detection of occlusions which might be present 

in the segmentation iris portion. The outcome of the proposed techniques indicates a fast 

processing as well as accurate segmentation of iris images even in low quality and highly 

challenging iris images.  

Chapter 4: The aim of this chapter is to extract and select the most important 

textural features of the iris for the representation of the iris sample.   A complex wavelet 

filter is constructed and rotated in the principal texture direction in order to extract the 

best iris features. In order to maintain greater orientation selectivity, the filters is also 

rotated in an opposite direction of the principal texture direction to extract another set of 

iris features. PSO technique is then applied to select the most important features from the 

set of features for iris representation. Adaptive Support Vector Machine is used for 

matching and classification.  

  Chapter 5: Analyses of the performance of the proposed approaches were 

conducted using two main datasets that include more than 2000 iris images captured under 

varying environmental conditions, less subject’s co-operation and heterogeneous 

subject’s backgrounds.  Also, it presents the performance of the proposed models in 

comparison with other existing state-of-the-art approaches in other to evaluate 

performance.  To demonstrate the generalization abilities of the proposed approaches, we 

also tested the algorithm using a database of combined images with over 1000 iris images.  

Chapter 7: Discusses and concludes the overall results and contributions of this 

work. The chapter ends with some pointers and comments to the future work derived from 

the thesis.  
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Chapter 2 

 

2.   BACKGROUND STUDY AND 
LITERATURE REVIEW 
 

 

2.1 Introduction 

This chapter presents a background study on some of the techniques employed in 

this research work as well as a review of some important literatures related to this study. 

In the background study, a number of key techniques used in this work such as active 

contour, graph-cut optimisation, discrete wavelet transform (DWT) and complex wavelet 

transform (CWT) are presented. Also, some benchmark techniques which have been 

widely implemented in real world situations such as: integro-differential operator and 

Hough transform techniques are presented and discussed. The literature review 

summarizes and compares some of the well-known methods used in iris recognition 

which are at the forefront of this exciting and challenging field. A review of a number of 

strong techniques used in iris segmentation and feature extraction of iris images are also 

presented and discussed. 

 

2.2 Iris as a Biometric Trait 

The iris is the annular shaped part of the eye between the pupil and the sclera 

which regulates the amount of light entering the eye through the pupil [1-5]. The iris is 

physically small in size (about 11mm) but a well-designed optical system is able to 

magnify the human iris into a high-resolution image that is approximately 200 to 300 

pixels in diameter [2], [3], [6-7]. The iris contains many minutia features such as freckles, 

collarette, stroma, coronas, stripes, furrows and crypts, etc., which make up the iris 

patterns [4-5]. It should be noted that the visual pattern of the human iris include both 

colour and texture. However, iris colour have limited discriminating power for person 



 

18 
 

recognition. So, gray-level iris images captured under near infrared illuminations are 

often used to record iris patterns for person identification/verification. 

The iris texture pattern is formed and becomes stable within the first eight months 

of the human gestation [6], [8]. It is commonly believed that the formation of iris patterns 

is determined by the gestation environment, i.e. iris is a phenotypic biometric trait. So 

even identical twins can be discriminated using suitable iris features; even the iris patterns 

of the left and right eyes of the same person are different. The first challenge that often 

faces the automatic recognition of persons by their iris patterns is the determination of the 

iris portion from the eye image which is called segmentation. 

 

2.3 Iris Segmentation 

Iris segmentation plays a pivotal role in the effective person recognition using iris 

pattern. The iris segmentation module defines the effective part of the eye image 

belonging to the iris. Some key techniques for defining the region of the eye belonging to 

the iris are presented and analysed in this section.  

   

2.3.1 Daugman’s Integro-Differential Operator 

  Iris is the annular part of the eye which lies between the pupil and the sclera. 

Daugman [8-11], in his early work proposed a method of approximating each boundary 

of the iris as circles. Thus, each boundary of the iris can be estimated based on three 

parameters which includes: the radius r, and the ݔ଴ and ݕ଴ centre coordinates of the circle. 

Therefore, Daugman [8] proposed an integro-differential operator which searches through 

an ܰ parameter space for detection of edges corresponding to the iris boundaries. The 

integro-differential operator can be given as: 

maxሺݎ, ,଴ݔ ଴ሻݕ ቤܩఙሺݎሻ ∗ 	
߲
ݎ߲
	ර

,ݔሺܫ ሻݕ

ݎߨ2
ݏ݀	

௥,௫బ,௬బ

ቤ																				ሺ2.1ሻ 

 

Where ܩఙሺݎሻ represents the smoothing function and ܫ	ሺݔ,  ሻ represents the image of theݕ

eye with ሺݔ,   .ሻ parameters corresponding to the current pixel locationݕ
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Figure 2.1: Results of iris boundaries segmentation using Daugman’s integro-differential 

operator on both ideal and non-ideal iris images, (a) the segmentation results on ideal iris 

images from CASIA v1.0, (b) the segmentation results on non-ideal iris images taken 

from CASIA v4.0.  

 

Daugman’s approach [8-11], and most of the early researches into iris 

segmentation are based on the simple assumption that iris boundaries are circular. 

However, recent investigations have shown that the pupillary and limbic boundaries are 

not perfectly circular [39], [41], [42-57]. Figure 2.1a shows some iris segmentation results 

based on Daugman’s approach on ideal iris image with near circular boundaries while, 

Figure 2.1b shows some of the segmentation results on  non-ideal iris images taken from 

CASIA v4.0 dataset. It can be clearly seen from Figure 2.1b, that the assumption that iris 

boundaries are circular can leads to failure of the algorithm in some non-ideal iris images. 

Also, it can be noted that in some non-ideal iris images, the low contrast between the iris 

and sclera boundaries can pose a problem for Daugman’s edge (intensity change between 

boundaries) dependent algorithm. Moreover, the possible occlusions from the upper and 

lower eyelids/eyelashes can lead to false recognition even when the inner and outer 

boundaries of the iris have been found.  

 

 

 

 

(a) 

(b)
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2.3.2 Wildes’ Hough Transform 

In a similar approach, Wildes [12], proposed a different technical method for 

estimation of iris boundaries. Wildes proposed the computation of a binary edge maps 

followed by a Hough transform for the detection of circles in the iris image. It involves 

two steps. First, a binary edge map is generated by using a Gaussian filter. Then, a Hough 

transform technique is employed to consider the set of edge points and find the circle that 

best fits the most edge points. Subsequently, votes are cast in a circular Hough space and 

analysed to estimate the three parameters of the circle ሺݔ଴, ,଴ݕ  ሻ. The circular Houghݎ

space can be defined as  

 

,଴ݔሺܪ ,଴ݕ ሻݎ ൌ෍݄ሺݔ௜, ,௜ݕ ,଴ݔ ,଴ݕ ሺ2.2ሻ																									ሻݎ
௜

 

Where ሺݔ௜,   ௜ሻ represents an edge pixel andݕ

 

݄ሺݔ௜, ,௜ݕ ,଴ݔ ,଴ݕ ሻݎ ൌ ቄ1			݂݅	ሺݔ௜, ,଴ݔሺ	݈݁ܿݎ݅ܿ	݄݁ݐ	݊݋	ݏ௜ሻ݅ݕ ,଴ݕ ;ሻݎ
																																															݁ݏ݅ݓݎ݄݁ݐ݋				0

 

 

The location in ሺݔ଴, ,଴ݕ ,଴ݔሺܪ ሻ which has the highest value ofݎ ,଴ݕ  ሻ is chosen as theݎ

parameter vector for the strongest circular boundary.   

Wildes’ approach modelled the eyelids as a parabolic arcs. The estimation of the 

upper and lower eyelids was achieved using a Hough transform based approach which is 

similar to the one described above. However, votes are cast for parabolic arcs instead of 

circles. Figure 2.2 show the process of iris segmentation using Hough transform. 

Hough’s transform method is generally faster than the integro-differential 

operator approach and it is able to find circles in the iris image even when parts of the iris 

is hidden through occlusion. Although the segmentation results in Figure 2.2, shows the 

effectiveness of the algorithm, its performance can be greatly affected by noise and low 

contrast between boundaries which is very common in non-ideal iris images. Several 

challenges have been noted in practical iris segmentation using the traditional approach. 

For example, most non-ideal iris images suffer from partial occlusion from the eyelids, 

eyelashes, and shadows. 

 

 

 

 



 

21 
 

    

 

 

 

 

 

 

 

 

 

 

 

The iris boundaries can also be affected by false edges introduced by specular 

reflections or point source reflection generated by the infrared lightning or user wearing 

glasses during iris capture. Moreover, it has been found that often, the pupillary and 

limbic boundaries of the iris are non-circular and can therefore lead to inaccuracies in 

fitting a simple shape to the iris boundaries. Some other challenges of iris segmentation 

include: defocusing, motion blur, poor contrast, and oversaturation etc. 

 

 

2.3.3 Iris Segmentation using Active Contour Method 

A paper by Daugman in 2007 [51] explained the use of active contours for fitting 

iris boundaries. Active contour which has been widely used in image segmentation is an 

energy minimization spline, which can be operated under the influence of internal contour 

forces, image forces and external constraint forces. First, the image gradient in the radial 

direction is calculated and an active contour model based on Fourier series expansion is 

applied to fit a contour to the image gradient data. The detection of occlusions by eyelids 

are modelled with separate splines. In any active contour method, there is a trade-off 

Figure 2.2: Iris segmentation process using Hough transform: (a) original iris 

image, (b) edge image showing casting of votes using Hough transform (c) edge 

image showing selected edge based vote casting, (d) edge image showing the fitted 

circle to the iris boundary, (e) segmented iris image. 

(a)  (b)  (c) 

(d)  (e) 
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between how closely the contour fits the data versus the desired constraints on the final 

shape of the contour. Therefore, Daugman modelled the pupil boundary with weaker 

constraints than the iris boundary, because he found that the pupil boundary tends to have 

stronger gradient data than the iris boundary. Daugman’s method is dependent on gradient 

difference between the iris and pupil and/or iris and sclera/eyelid boundaries.  

Similarly, Vatsa et al. [54] improved the speed of active contour based iris 

segmentation by using a two-level hierarchical approach. First, they found an 

approximate initial pupil boundary. The boundaries were modelled as an ellipse with five 

parameters. The parameters were varied in a search for a boundary with maximum 

intensity change. For each possible parameter combination, the algorithm randomly 

selected 40 points on the elliptical boundary and calculated total intensity change across 

the boundary. Once the pupil boundary was found, the algorithm searched for the iris 

boundary in a similar manner, this time selecting 120 points on the boundary for 

computing intensity change. The approximate boundaries of the iris were refined using 

an active contour approach. The active contour was first initialized to the approximate 

pupil boundary and allowed to vary in a narrow band of +/- 5 pixels. In refining the limbic 

boundary, the contour was allowed to vary in a band of +/- 10 pixels. These methods 

showed an improvement compared to the traditional circle fitting iris segmentation 

methods. However, active contour based on the level-set active functional is 

computationally intensive and is slow to converge. Also, active contour based on edge 

stopping function is highly sensitive to noise and occlusions which may distort the edges 

and causes the algorithm to fail. Moreover, active contour based on the stopping function 

is sensitive to low-contrast between edges.  The two main types of active contour methods 

are discussed in sections 2.3.3.1 and 2.3.3.2. 

 

 

2.3.3.1 Iris Segmentation Using Active Contour Based On Level-

Set Method 

Generally, the boundaries of the iris can be defined using a deformable contour 

described by an active contour model [51-57]. Active contour are of two main forms: 

active contour based on level-set method and active contour based on variation regional 

energy. The idea of representing an active contour as the level zero of a higher 

dimensional function ∅ (which is often a signed distance function) was first introduced 
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in [89]. Active contour (snakes) model have since been implemented for the segmentation 

of iris images [53], [56]. 

Active contour based on level-set (LS) is of the following form: Let ߗ represent 

the image domain, and ܫ represent the iris image. Now, consider evolving a coutour ܥ in 

 The active .ߗ representing the boundary of an open set ߱ inside the image domain ,ߗ

contour embeds the evolving curve as the zero-LS of a higher dimensional function, 

which can be defined as: 

∅ሺݔ, ,ݕ ݐ ൌ 0ሻ ൌ േ݀,							ሺ2.3ሻ 

Where ݀ denotes the distance from ሺݔ, ݐ at time ܥ ሻ toݕ ൌ 0 and the positive or negative 

sign before ݀ is selected if the point ሺݔ,  .repectively ,ܥ ሻ is outside or inside the curveݕ

The curve evolution function solves the following PDE of the form [53]: 

߲∅
ݐ߲

ൌ ݃ሺܫሻሺܿଵ|׏∅| ൅ ܿଶ|׏∅|ሻ∅଴ሺݔ,  ሺ2.4ሻ								ሻ,ݕ

Where, ܿଵ is a constant advection term that causes the curve to either expand or contract 

uniformly based on its sign, while ܿଶ is a smoothing function employed to smooth out the 

high curvature areas of the curve. The set ሼሺݔ, ,ሻݕ ∅଴ሺݔ, ሻݕ ൌ 0ሽ is employed to define the 

initial contour, while ݃ሺܫሻ is an edge stopping function which is used to stop the curve 

evolution when it hits the boundaries of the iris.  

The function ݃ሺܫሻ can be defined as [53]: 

݃ሺܫሻ ൌ
1

1 ൅ ,ݔఙሺܩ׏| ሻݕ ∗ ,ݔሺܫ ሻ|ఘݕ
, ߩ ൒ 1,													ሺ2.5ሻ 

Where, ܩఙሺݔ, ሻݕ ∗ ,ݔሺܫ  with the Gaussian ܫ ሻ represents the convolution of the imageݕ

kernel ܩఙሺݔ, ሻݕ ൌ ଵିߪ ଶ⁄ ݁ିห௫
మା௬మห ସఙ⁄ . The discretization of ∅ is achieved by applying a 

finite difference scheme which was proposed in [56]. In order to evolve the contour, the 

discretization and linearization of the contour parameters is performed as follows: 

∅௜,௝
௡ାଵ ൌ ∅௜,௝

௡ െ ሾݐ∆ ො݃ሺܫሻሺܿ̂ଵ|׏∅| ൅ ܿ̂ଶ|׏∅|ሻሿ							ሺ2.6ሻ 

Now, ∆ݐ represents the time step, while ሺݔ௜, ௜ሻ represents the grid points between 1ݕ ൑

݅, ݆ ൑ ܰ, and ∅௜,௝
௡ ൌ ∅ሺݔ௜, ,ݔሻ is used to approximate ∅ሺݐߜ௜݊ݕ ,ݕ ݊ ሻ withݐ ൒ 0, ∅଴ ൌ ∅଴. 

The ܿଵ|׏∅| can be estimated using an upwind scheme as follows: 
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ܿଵ|׏∅| ൌ ቂmax൫∆ି௫∅௜,௝
௡ , 0൯

ଶ
൅ min൫∆ି௫∅௜,௝

௡ , 0൯
ଶ
൅max൫∆ା௫∅௜,௝

௡ , 0൯
ଶ
൅

min൫∆ା௫∅௜,௝
௡ , 0൯

ଶ
ቃ
ଵ ଶ⁄

																																																																																											ሺ2.7ሻ  

The term ܿଶ|׏∅| depends on the curvature ݇ሺ݇ ൌ ݒ݅݀ ൬
∅׏
ห׏∅ห

൰ሻ, which can be estimated as 

follows: 

ܿଶ|׏∅| ൌ െ߳ܭ ቈ൬
∅௜ାଵ,௝
௡ െ ∅௜ିଵ,௝

௡

2ൗ ൰
ଶ

൅ ൬
∅௜,௝ାଵ
௡ െ ∅௜,௝ିଵ

௡

2ൗ ൰
ଶ

቉							ሺ2.8ሻ 

Where ߳ is a constant.  

In order to segment the image, the active contour ∅଴ is initialized and the curve ܥ is 

evolved to the boundary of the object of interest in the image. Figure 2.3, shows some 

samples iris images segmented using active contour based on level-set functional.  

 

 

 

 

 

 

 

 

Active contour based on level-set method is able to segment the pupil accurately 

where the contrast between the edges is high. However, active contour based on level-set 

have some setbacks. Level-set based active contour is dependent on edge information 

which makes it difficult for it to segment the iris limbic boundary where there is low 

contrast between the boundaries. The images on the lower row of Figure 2.3, shows 

inaccuracies in the limbic boundary segmentation using level-set based active contour. 

Figure 2.3: Examples of iris images segmented using level-set based active contour 
model: the upper row shows the effects of reflection of the segmentation model, the 
lower row shows the effects of eyelashes and smooth boundary between the iris and 
sclera on the model. 
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Also, Active contour based on level-set (LS) function is slow to convergence and is highly 

sensitive to initialization and noise. The upper row of Figure 2.3, shows the effects of 

noise and initialization on the iris image segmentation using level-set based active 

contour. These limitations leads to failure of the level-set based active contour in non-

ideal iris images with diverse kinds of noise and occlusion.   

 

2.3.3.2 Iris Segmentation Using Regional Energy Based Active 

Contour (Chan-Vese Model) 

In 2001, Chan-Vese introduced a new active contour model based on regional 

energy minimization of the variational level-set function [84-85]. This model improved 

the speed and the accuracy of the standard LS based method significantly. In this study, 

we apply the Chan-Vese method to segment the pupil and the iris boundaries in order to 

better understand its strengths and weaknesses. Figure 2.3 is a sample of ideal iris image 

segmented using the regional energy based active contour (RAC). This showed better 

result compared to the LS method.  

 

 

 

 

 

The active contour model based on regional energy is represented by a parametric 

curve of the form ݒሺݏሻ ൌ ሾݔሺݏሻ, ݏ			,ሻሿ்ݏሺݕ ∈ ሾ0,1ሿ which evolves through the iris image 

to minimize the energy functional: 

௖ܧ ൌ 	න ൤
1
2
ሺݒ|ߙᇱሺݏሻ|ଶ ൅ ሻ|ଶሻݏᇱᇱሺݒ|ߚ ൅ ሻሻ൨ݏሺݒ௘௫௧ሺܧ ݏ݀

ଵ

଴
									ሺ2.9ሻ 

Where ߙ and ߚ are weighting parameters representing the smoothness or tautness of the 

contour, respectively. While ݒᇱ and ݒᇱᇱ are the first and second derivatives of ݒሺݏሻ with 

Figure 2.4: Iris segmentation using regional active contour (RAC) model: (a) 
original iris image, (b) pupil detection using regional energy based active 
contour, (c) iris detection using regional energy based active contour. 

(a)  (b) (c) 
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respect to ܧ .ݏ௘௫௧ is used to denote the external energy, which yields a small value at the 

object of interest (OBI), such as edge of the pupil or iris. The typical external energy for 

a gray-level iris image ܫሺݔ,   :ሻ for seeking edges can be given asݕ

௘௫௧ଵܧ ሺݔ, ሻݕ ൌ 	െ|ܫ׏ሺݔ,  ሺ2.10ሻ													ሻ|ଶݕ

௘௫௧ଶܧ ሺݔ, ሻݕ ൌ 	െ|׏ሾܩఙሺݔ, ሻݕ ∗ ,ݔሺܫ  ሺ2.11ሻ								ሻሿ|ଶݕ

Where, ܩఙሺݔ,  and ∗ represents the standard ߪ ,ሻ is a 2D Gaussian function whileݕ

deviation and a linear convolution, respectively.  Also, ׏ represents the gradient operator. 

Therefore, at the minima of Equation (2.9), the contour must satisfy the Euler-Lagrange 

equation: 

ᇱᇱݒߙ െ ;;;;ݒߚ െ ሻݒ௘௫௧ሺܧ׏	 ൌ 0														ሺ2.12ሻ 

Which can be considered as a force balance equation where ݒߙᇱᇱ െ  is the internal ;;;;ݒߚ

force to constrain the contour smoothness and tautness, and െ	ܧ׏௘௫௧ሺݒሻ is the external 

force that attracts the contour towards the object of interest (OBI). The solution of ݒሺݏሻ 

is treated as a function of time ݐ which is obtained when a steady state solution of the 

following gradient descent equation: 

,ݏሺݒ߲ ሻݐ
ݐ߲

ൌ ,ݏᇱᇱሺݒߙ ሻݐ െ ,ݏሺ;;;;ݒߚ ሻݐ ൅ ௘݂௫௧	൫ݒሺݏ,  	ሺ2.13ሻ												ሻ൯ݐ

is reached from an initial contour position of ݒሺݏ, 0ሻ. Now, to achieve a numerical 

solution to Equation (2.13) on a discrete grid, the discretization of ݏ is iteratively solved 

using a finite difference approach. The continuous contour ݒሺݏሻ, ݏ ∈ ሾ0,1ሿ is sampled 

and represented by a set of ݊	discrete points ݒ௜, ݅ ∈ ሼ0,1, … . , ܰ െ 1ሽ. The update 

procedure for the entire contour can be written in matrix form as: 

ሺܫ ൅ ሻܸ௧ାଵܤ߬ ൌ ܸ௧ ൅  ሺ2.14ሻ									௧ܨ߬

Where ܫ is the ܰ ൈ ܰ identity matrix, ܸ௧ ൌ 	 ሾݒ଴
௧, ଵݒ

௧, … . , ேିଵݒ
௧ ሿ் and ܨ௧ ൌ

	ሾ ௘݂௫௧ሺݒ଴
௧ሻ, ௘݂௫௧ሺݒଵ

௧ሻ, … . , ௘݂௫௧ሺݒேିଵ
௧ ሻሿ் are ܰ ൈ 2 matrices representing the positions and 

the external forces of the snakes at the time ݐ, repectively. ܤ is an ܰ ൈ ܰ cyclic 

pentadiagonal matrix used to compute the internal force. Since ሺܫ ൅  ሻ is a cyclicܤ߬

symmetric pentadiagonal positive definite matrix, the algorithm can be decomposed by 

for instance the Cholesky decomposition method.  
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The generalized RAC has a large capture range and has the ability to capture 

boundary concavities which is good for segmenting non-ideal iris images with irregular 

boundaries. Notwithstanding, there are still several unsolved problems, such as the 

ambiguous relationship between the capture range and the parameters, the sensitivity of 

the parameters to noise, especially impulse noise like occlusions and false edges and 

expensive computational cost. Figure 2.5, depicts an excellent pupil segmentation on 

ideal iris images with less noise and no occlusion on the pupil. However, the performance 

of the segmentation algorithm deteriorated rapidly with non-ideal iris images as shown in 

Figures 2.6 and 2.7. 

 
Figure 2.5: Samples of ideal iris images showing the results of pupil segmentation using 

active contour based on level-set method. 

 

 
Figure 2.6: Samples of non-ideal iris images with the pupil boundary segmented using 

active contour based on level-set method. 

 

 

 

 

 

 

 

 

 

 
Figure 2.7: Samples of non-ideal iris images showing the results of pupil and 
iris boundaries segmentation using the RAC model.  
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The errors in the segmentation results shown in Figures 2.6 and 2.7 are as a result 

of some properties of the active contour model. Active contour are sensitive to local 

minima which is the reason why they are attracted to short edges like the reflection edges 

as shown in Figure 2.6.  Also, RAC model is highly sensitive to occlusions and noises 

like the eyelid and eyelashes (see Figure 2.7). 

 

 

2.3.4 Graph Cut Optimization 

Graph cut optimization remains an active research area in the field of computer 

vision and graphics [50], [91-99]. Graph cut now forms the basis for many new signal 

and image processing applications. Researchers and scientists alike have successfully 

applied graph cut to solve problems like: dynamic programming, shortest paths, Markov 

random fields, statistical physics, simulated annealing and other regularization 

techniques, sub-modular functions, random walk, Bayesian networks and belief 

propagation, integral/differential geometry, anisotropic diffusion, level sets and other 

variational methods [91-98].  

Graph cut is a multidimensional optimization tool which can enforce piecewise 

smoothness while preserving relevant sharp discontinuities within an image. Graph cut 

has proven to be an essential tool for interactive image segmentation but its potential for 

automatic image segmentation has not been fully explored [95]. Image segmentation, 

which can somewhat be defined as the process of assigning labels to every pixel in an 

image such that pixels with the same labels share certain visual characteristics, can be 

stated as a graph cut problem. The main goal of image segmentation is to simplify and/or 

change the representation of an image into something that is more meaningful and easier 

to analyse. Segmentation by computing a minimal cut on a graph is quite new but holds 

huge potentials as a means of dealing with many challenges inherent in noisy image 

segmentation [96]. This approach guarantees global solutions, which always finds best 

solutions, and in addition, these solutions are not dependent on a good initialization [91], 

[95-97]. Also, graph cut is guaranteed to converge and within polynomial time.  

A graph is an abstract representation of a set of objects, where several pairs of the 

objects are connected by links as shown in Figure 2.8. A graph is made up of a set of 

vertices ܸ also called nodes and a set of edges (arcs) ܧ that connect them. An edge is 

related to two vertices, and the relationship can be represented as an unordered pairs of 
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vertices with respect to the particular edge. There are two special vertices in a graph called 

the source ݏ and the sink ݐ. Therefore, a graph can be said to a mathematical structure 

which can be used to model pairwise relationship between objects from a certain 

collection. A cut on the graph known as graph cut is the partitioning of the vertices of the 

graph into two disjointed subsets (in the case of binary graph). The cut on the graph 

determines the set of edges that has one end point in each subset of the partition. In a flow 

network, an ݏ െ  cut is a cut that segments the source and the sink into different subsets ݐ

and it consists of edges going from the source to the sink as shown in Figure 2.8b. There 

are two main links in a graph namely: the ݐ െ ݈݅݊݇, which connects each node to either 

the source or sink and the ݊ െ ݈݅݊݇ which connects one node to another. As shown in 

Figure 2.8, ݐ െ ݊ are shown in either red or blue lines while ݏ݈݇݊݅ െ  are shown in ݏ݈݇݊݅

yellow lines. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Structural diagram of graph cut optimization model [95] 

 

Now, let ࡳ ൌ ሺࢂ,  denote the ࡱ and ࢂ ሻ represent the graph of an image, whereࡱ

set of vertices and edges of the graph ࡳ, repectively. A weighted graph associates a label 

(weight) with every edge in the graph. A weight is a number associated with an edge 

which could represent a distance, time or cost. An ݏ െ  graph as shown in Figure 2.8, is ݐ

a weighted directed graph with two identifiable (binary) nodes, represented as the source 

ݏ An .ݐ and the sink ݏ െ ,ݏሺܥ cut ݐ  ௖௨௧ such that thereܧ is a set of edges ܩ ሻ, in the graphݐ

is no path from the source to the sink when ܧ௖௨௧ is removed from ܩ. The cost of a cut 

,ݑ௖௨௧. The flow of the graph ݂ሺܧ ௖௨௧ is the sum of edge weights inܧ ݂ ሻ is a mappingݒ ∶

ܧ		 → ܴା, ሺݑ, ሻݒ → ݂ሺݑ,  ሻ which fulfils the conservation of flow and the weightݒ

Vertices 

Nodes 

Edges 

Vertices 

n-links 

(a) (b) 
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constraint. The value of the flow is defined by |݂| ൌ ∑ ݂ሺݏ, ሻ௩∈௏ݒ , where ݏ is the source 

of the graph which represents the amount of flow passing from the source to the sink. The 

maximum flow problem can be defined as the maximization of |݂| which finds the 

maximum flow possible from some given source node to a given sink node. The max-

flow min-cut theorem states that the maximum value of an ݏ െ  flow is equal to the ݐ

minimum weight of an ݏ െ  cut. The main goal of graph cut image segmentation is to ݐ

construct a graph such that the minimal cut on this graph will cut the boundaries 

connecting the pixels of the object from the rest of the image.  

Therefore, the cut ܥ on the graph is an arbitrary partitioning of the graph nodes 

into different subsets ܵ and ܶ. A cut on the graph can be defined as a binary labelling of 

݂, whereby labels ௣݂ ∈ ሼ0,1ሽ are assigned to image pixels: if ݌ ∈ ܵ then ௣݂ ൌ 0 and if ݌ ∈

ܶ then ௣݂ ൌ 1. The cost of the cut ܥሼܵ, ܶሽ on the graph is computed as the sum of the 

weights of the various t-links and n-links in the graph. Each image pixel ݌ contributes a 

regional cost of either ܦ௣ሺ0ሻ or ܦ௣ሺ1ሻ towards the t-link part of the cut cost, which is 

dependent on the label ௣݂ assigned to the pixel by the cut (see Figure 2.8). The cost of the 

cut also includes the weights of several n-links ሺ݌, ሻݍ ∈ ܰ. Therefore, the cut on the graph 

can be given as; 

|ܥ| ൌ 	෍ܦ௣൫ ௣݂൯ ൅		 ෍ ߱ሺ݌, ,ሻݍ
ሺ௣,௤ሻ∈ே
௣∈ௌ,			௤∈்

௣∈௉

									ሺ2.15ሻ 

The cost ܥ is defined by the energy of the corresponding labelling ݂: 

 

ሺ݂ሻܧ 	≔ 	 |ܥ| ൌ 	෍ܦ௣൫ ௣݂൯ ൅ ߣ		 ∙ ෍ ൫ܫ ௣݂ ൌ 0, ௤݂ ൌ 1൯
ሺ௣,௤ሻ∈ே

,
௣∈௉

							ሺ2.16ሻ 

 

Where, ܫሺ∙ሻ is the identity function which gives a value of 1 if the argument is true and 0 

if the argument is false.  The first term in equation (2.15) is the regional or data term 

which ensures that the pixel labels ݂ ௣ agrees with the observed data while the second term 

is the boundary term which penalizes discontinuities between neighbouring pixels. The 

parameter ߣ is used to weigh the relative importance between the data term and the 

boundary term. Therefore, when ߣ		is	very	small,	each	pixel	݌	is	assigned	a	label	 ௣݂	that	

minimizes	the	data	cost	ܦ௣ሺ ௣݂ሻ	and	vice	versa.	Also,	if	ૃ	is	big,	then	all	pixels	must	

choose	one	label	that	has	a	smaller	average	data	cost	and	vice	versa.	Noise	pixels	

and	other	outliers	conforms	to	their	neighbours	which	is	one	of	the	main	reasons	
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why	graph	cut	can	easily	overcome	the	local	maxima	problems	inherent	in	the	active	

contour	model.	

Although,	the	above	approach	have	shown	excellent	segmentation	results	in	

some	natural	images,	the	same	cannot	be	claimed	for	such	images	as	the	iris.	This	is	

because,	the	global	optimisation	method	encounters	problems	with	heterogeneous	

image	like	non‐ideal	iris	images	with	so	many	artefacts	and	noise.		

	

	

2.4	 Iris	Feature	Extraction	

2.4.1 Wavelet Transform for Image Feature Extraction  

Recent research works on features extraction are focusing more attention on 

multichannel and mulit-resolutional analysis algorithms such as Gabor filters and discrete 

wavelet transform techniques. In this work, we have chosen to further study discrete 

wavelet transform which has the potentials for more efficient texture analysis and have 

been successfully applied in computer vision and image processing tasks. Wavelet 

transform is a powerful tool for texture analysis and representation [65], [67], [69], [70], 

[77]. A wavelet can be defined as a small wave, with an irregular and asymmetric 

waveform of effectively limited duration that has an average of zero. Wavelet analysis 

can be likened to breaking up a signal into shifted and scaled versions of the 

original/mother wavelet. Figure 2.9 illustrates a selection of common mother wavelets 

used in practical applications. The wavelet transform of a continuous signal, ݂ ሺݐሻ, is given 

as [85] 

 

,௖ሺ߬ܨ ሻݏ ൌ
1

ඥ|ݏ|
න ݂ሺݐሻ߰ ൬

ݐ െ ߬
ݏ

൰ ,߬	݁ݎ݄݁ݓ					ݐ݀ ݏ ∈ Թሺݏ ൐ 0ሻ
ஶ

ିஶ
					ሺ2.17ሻ 

 

where the original wavelet is denoted by ߰ሺݐሻ and the factor 1 ඥ|ݏ|⁄  is used to conserve 

the norm. The parameters ߬ and ݏ denote the location of the wavelet in time and scale, 

respectively. The elements in ܨ௖ሺ߬,  ሻ are called wavelet coefficients, each waveletݏ

coefficient is associated to a scale (frequency) and a point in the time domain but without 

phase information.  
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Figure 2.9: Four mother wavelets. (a) Harr. (b) Gaussian wave (first derivative of a 

Gaussian). (c) Mexican hat (second derivative of a Gaussian). (d) Morlet (real part) 

 

The lack of phase information is a major constraint of DWT for feature extraction.  

The global information of a signal can be characterised by a large scale transformation 

which corresponds to the low frequency while, the small scales transformation correspond 

to high frequency which provides the details of a signal [85]. The decomposition step of 

a DWT generates two sets of coefficients called ‘approximation’ and ‘detail’ vectors 

which is obtained by convolving the original signal with a low-pass filter and a high-pass 

filter, respectively, and followed by dyadic decimation, i.e., removing every odd element 

of an input sequence, as illustrated in Figure 2.10. Reconstruction of the original signal is 

accomplished by upsampling, filtering, and summing the individual subbands [107]. 

 

 

 

 

 

 

 

 

Figure 2.10: One-level decomposition algorithm introduced by [58]. Downsampling 

process keeps the even indexed elements to reduce the overall number of computations. 
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Using the same idea, the two-dimensional wavelet coefficients of an image can be 

achieved by employing separable filters for each dimension (i.e., row and column) along 

with downsampling process as illustrated in Figure 2.10. The outputs of the 

decomposition algorithm in Figure 2.11, denoted as; ܿܣ, ,௏ܦܿ  ஽, are calledܦܿ ு, andܦܿ

the approximation, vertical detail, horizontal detail, and diagonal detail subbands of the 

image, respectively. 

 
Figure 2.11: Diagram showing one-level DWT decomposition algorithm for a given 

image.  

 

Although the discrete wavelet transform (DWT) has multi-scale and mulit-

resolution benefits for image feature extraction, there still exists some major setbacks. 

The DWT is based on real valued oscillating wavelets which causes the coefficients to 

oscillate positive and negative around singularities thereby making singularity extraction 

very difficult. This means that a small shift in the image signal produces great perturbation 

in the wavelet coefficient’s oscillating pattern around the singularities. Therefore, the 

problems of shift invariance exists in DWT. Again, DWT suffers from aliasing problems 

caused by the down-sampling operation. The limitation in directional selectivity is 

another major problem with DWT. Texture analysis using DWT provides singularities 

(edges) in only three directions ሼ0଴, 45଴, 90଴ሽ and without phase information which limits 

its rotational selectivity and makes application of DWT to image analysis difficult.  
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2.4.2 Complex Wavelet Transform 

The complex wavelet transform (CWT) is a relatively new development which is 

based on discrete wavelet transform (DWT) [81-83], [114-115]. The CWT is designed to 

provide solutions to many of the problems limiting the application of DWT for image 

analysis. CWT proffers effective solution to most of the major limiting factors of DWT 

like: shift variance, limited orientation selectivity, aliasing problem (absence of phase 

information) and oscillations around singularities. These limiting factors greatly hinder 

the use of DWT for modelling and processing of geometric features of images like ridges 

and edges. CWT is nearly shift invariant and directionally selective in two or higher 

dimensions [114]. Higher dimensionality using CWT can be achieved with a minimal 

redundant factor of 2ௗ for n-dimensional signal, which is substantially lower compared 

to the undecimated DWT. Therefore, CWT is a coherent multiscale and multidimensional 

signal processing algorithm which is able to exploit both the phase and magnitude 

information of the image unlike the DWT.  

Unlike DWT, which uses real-valued oscillating wavelets to analyse signals, 

CWT employs Fourier transform which is based on complex-valued oscillating sinusoids 

free from the problems of aliasing, oscillations from positive to negative domain, and 

shift variance. The complex-valued oscillating sinusoid can be given as [114]: 

 

݁௝ఆ௧ ൌ cosሺݐߗሻ ൅  ሺ2.18ሻ			ሻݐߗሺ݊݅ݏ݆

 

Where ݆ ൌ √െ1. The oscillating cosine and sine components corresponding to the real 

and imaginary parts, respectively, form a Hilbert transform pair (i.e., they are 90଴ out of 

phase with each other). The magnitude of the Fourier transform does not oscillate positive 

and negative like DWT but rather provides a smooth positive envelope in the Fourier 

domain.  This simply implies that the magnitude of the Fourier transform is perfectly shift 

invariant with a small linear phase offset encoding the shift and as such CWT is nearly 

shift invariant.  Also, the Fourier coefficients are not aliased and do not need a 

complicated aliasing cancellation property to reconstruct the image. The CWT with 

complex-valued scaling function and complex-valued wavelet can be represented as 

[115]: 

߰௖ሺݐሻ ൌ ߰௥ሺݐሻ ൅ ݆߰௜ሺݐሻ								ሺ3.18ሻ 
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Where ߰௥ሺݐሻ is the real and even part and ݆߰௜ሺݐሻ is the imaginary and odd part of 

the function. Also, ߰௥ሺݐሻ and ߰௜ሺݐሻ form a Hilbert transform pair (90௢ out of phase with 

each other) and therefore, ߰௖ሺݐሻ is an analytical signal and supported on only one-half of 

the frequency axis.  

Then, the complex wavelet coefficients can be obtained by projecting the signal onto the 

Fourier domain 2௝௟ଶ߰௖ሺ2௝ݐ െ ݊ሻ, which can be given as:  

݀௖ሺ݆, ݊ሻ ൌ ݀௥ሺ݆, ݊ሻ ൅ ݆݀௜ሺ݆, ݊ሻ											ሺ3.19ሻ 

With magnitude 

|݀௖ሺ݆, ݊ሻ| ൌ ඥሾ݀௥ሺ݆, ݊ሻ ൅ ݆݀௜ሺ݆, ݊ሻሿଶ								ሺ3.20ሻ 

And phase 

∠݀௖ሺ݆, ݊ሻ ൌ ݊ܽݐܿݎܽ ൬
݀௜ሺ݆, ݊ሻ
݀௥ሺ݆, ݊ሻ

൰									ሺ3.21ሻ 

Where |݀௖ሺ݆, ݊ሻ| 	൐ 0. The CWT analyses the signals and represents both the real 

valued signals and complex-valued signals. The CWT enables a multiscale signal analysis 

that exploits the complex magnitude and phase information. Therefore, a large magnitude 

indicates the presence of a singularity while the phase indicates its position within the 

support of the wavelets [111-112], [114-115].  

CWT have not been widely applied in signal and image processing due to the 

complexity of designing complex filters that will meet the perfect reconstruction property. 

Also, the CWT is only approximately magnitude/phase and shift invariant, which means 

that its application is still limited. In order to overcome these limitation, Kingsbury [81] 

designed a dual-tree version of the CWT which employs two trees of real filters in order 

to generate the real and imaginary parts of the wavelet coefficients. The dual-tree complex 

wavelet transform (DT-CWT) for 1D signal are as shown in Figure 2.12. The DT-CWT 

is implemented using two critically sampled DWTs which are in parallel to each other as 

show in Figure 2.12. The outputs of each tree are downsampled by the summation of the 

two trees. However, the aliased components of the signal are supressed during the 

reconstruction stage in order to achieve shift invariance. As shown in Figure 2.12, the 

upper part of the tree represents the real part of the transformation while the lower part of 

the tree represents the imaginary part. The idea behind the dual-tree approach is quite 

simple. The dual tree employs two real DWTs; the first DWT gives the real part of the 
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transform while the second DWT gives the imaginary part [112]. In the first layer of the 

decomposition, a sample delay between tree A and tree B is used to ensure that the first 

layer of the second sample of tree B is just the lost value of A. This is equivalent to not 

taking the second sample (see Figure 2.12). For subsequent layers of decomposition, there 

is a half-sample delay interval between tree A and tree B.  

Therefore, the practical implementation requires that when odd length 

biorthogonal filters are used in tree A, even length filters can be used in the other tree in 

order to ensure uniform interval between samples from the two trees below the first level 

and satisfy perfect reconstruction (PR) conditions. The two sets of filters are jointly 

designed so that the overall transform is approximately analytic. 

 From Figure 2.12, if ݄଴ሺ݊ሻ and ݄ଵሺ݊ሻ denote the low-pass and high-pass filter 

pair for the upper FB, respectively and g଴ሺ݊ሻ and gଵሺ݊ሻ denote the low-pass and high-

pass filter pair for the lower FB. 

 
Figure 2.12: Diagram of the analysis FB for the dual-tree CWT. 

 

Then, the two wavelets associated with each of the two real wavelet transforms can be 

represented as ߰௛ሺݐሻ and ߰୥ሺݐሻ. Therefore, the filters are designed so that ߰୥ሺݐሻ is 

approximately the Hilbert transform of ߰୦ሺݐሻ which is denoted as ߰୥ሺݐሻ ൎ ࣢ሼ߰௛ሺݐሻሽ. 

The extraction of the rich and complex iris textures demands the implantation of 

multi-scale, multiresolution analysis approach. DT-CWT which is a multi-scale, 

multiresolutional wavelet transform based on the Fourier representation of the signal is 

well suited for this task. The extension of DT-CWT from one dimension to two 

dimensions provides for even greater directional selectivity. The extension is achieved 
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through separable filtering. The real textured images contains relevant information in both 

the first and second quadrants of the spectrum. Therefore, the column filter outputs are 

also filtered by the complex conjugates of the row filters in order to elicit more 

information. This gives rise to 4:1 redundancy for two dimensional signals. Therefore, 

the subsampled outputs of the row filters and their complex conjugates form six bandpass 

images, three in each quadrant. These subimages are strongly oriented at 

േ	ሾ15௢, 45௢, 75௢ሿ. These orientations are obtained by separating the complex filters into 

positive and negative frequencies in both horizontal and vertical directions [110]. The 

many advantages of DT-CWT highlighted here include: multi-scale and multi-resolution 

analysis ability, magnitude/phase and shift invariance, non-aliased, etc. However, some 

major setbacks still exist with 2-D DT-CWT. The DT-CWT is only strongly oriented in 

six direction which is a limitation to its rotational selectivity. Greater orientation 

selectivity will be highly advantageous for iris feature representation.  

 

2.5 Related Works 

2.5.1  History of Iris Biometrics 

The history of person identification based on iris dates back over 100 years [1-

14]. However, automatic iris recognition is relatively more recent, dating back only 

decades ago [7-15].  In 1882, a French police officer Alphonse Bertillon carried out the 

first research trying to use eye measurements to identify criminals [1], [6] and later in 

1886, Bertillon [1], suggested that the human eye (eye colour) can be used for biometric 

recognition [16-18]. Later, in 1936, Frank Burch [7] first proposed the use of iris patterns 

for human identification. In a clinical textbook “Physiology of the Eye” of 1953 where F. 

H. Adler [3] contributed a chapter, he described how the marking of the iris are so 

distinctive that the photographs of the iris can be used as a means of identification, instead 

of the fingerprints. Apparently, Adler’s work was based on comments by a British 

ophthalmologist J. H. Doggart [2], who in his book “Ocular Signs in Slit-Lamp 

Microscopy (OSSLM) 1949 has written that “Just as every human being has different 

fingerprint, so does the minute architecture of the iris exhibit variations in every subject 

examined.” The first patented work on iris recognition was that of Flom and Safir in 1987 

[4]. They obtained a US patent for an unimplemented conceptual design of an automated 

iris biometrics system which is based on Adler’s and Doggart’s earlier proposals. 

However, it was in 1992 that a breakthrough study by Johnston [5], proved that the 
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patterns of the iris remains stable for a period of at least 15-months interval. The research 

was based on iris images acquired from 650 individuals in the interval of 15-months. 

Their report highlighted the complexity of an iris image, including specular highlights 

and reflections. The report concluded that iris biometrics held a potential for both 

verification and identification tasks, but no experimental results were presented to support 

their report. 

The pioneer research work and the basis for almost all commercially implemented 

iris biometric systems is the work of Daugman [8-11], [14-15]. In 1994, Daugman [8-9] 

patented a publications describing an operational iris recognition system in some detail. 

Daugman’s approach has now become a standard reference model for Iris biometrics as 

the field has continued to develop with his concepts. Almost all current commercial iris 

biometric technologies are based on Daugman’s work due to the Flom and Safir patent 

and the Daugman patent being held for some time by the same company.  

 
Figure 2.13: Iris biometric publication by year [15]. 

 

Although, Daugman’s algorithms still remains significant in public deployments 

of iris recognition, academic research into many areas of iris technology have exploded 

within the last decade. Figure 2.13, shows a chart of iris biometrics publications by year 

up till 2010. As can be seen from the chart, there has been a geometric progression in 

research into the field of iris recognition in the last few decades. Also, in a survey papers 

presented by Bowyer et al., [16-18], there were over 1,000 published papers that 

addressed different areas of iris biometric technology during the last few years.  
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2.5.2 Review of Selected Relevant Literatures 

Daugman [8], [11], proposed the traditional iris segmentation approach based on 

the approximation of the pupillary and limbic boundaries of the iris as circles. Given the 

acquired eye image, an integro-differential operator was proposed for detecting the iris 

inner and outer boundaries through an N-dimensional search of the image parameter 

space. Following the correct segmentation of the iris region, Daugman proposed a 

normalization process based on the rubber-sheet model which transforms the iris from 

radial coordinate system to polar coordinate system for size invariance. The normalized 

iris image is then convolved with 2-D Gabor filters in order to extract the rich textural 

information of the iris sample. He proposed Hamming distance (HD) as a measure of 

similarity between the iris template and other templates held in the database. Daugman’s 

approach yielded an impressive performance where high quality iris image acquired 

under constrained imaging condition is applied.  

Similarly, Wildes [12], proposed the localization of iris boundaries by computing 

the binary edges followed by Hough transform. Hough transform considers the set of edge 

points and finds a circle that best fits most edge points representing the iris boundary. 

Wildes also applied Laplacian of Gaussian filters at multiple scales in order to compute 

the iris template. Correlation was adopted as a similarity measure in order to obtain the 

similarity between the iris templates. Wildes [12], demonstrated the effectiveness of his 

approach. His approach show an improved speed compared to Daugman’s approach. 

However, these two traditional iris recognition system are based on the assumption that 

iris boundaries are circular. The pupillary and limbic boundaries of the iris are not 

perfectly circular or elliptical, which is a major source of error to shape dependent models 

adopted in Daugman’s and Wilde’s approaches. Also, in Daugman’s approach, the search 

through the N-dimensional parameter space is inefficient and computationally intensive.  

In an effort to overcome these challenges, many new modifications or 

combination of the traditional segmentation approaches began to emerge in literature. In 

[19], Masek proposed a modified method based on the application of circular Hough 

transform for the detection of the iris and pupil boundaries. He then employed 1D log-

Gabor filters for the extraction of the iris features while HD was used for template 

matching. Also, Tisse et al., [20] proposed a segmentation method based on the 

combination of integro-differential operators and Hough Transform. His method was able 

to reduce computation time and excluded potential centres that lies outside of the eye 

image. However, it did not consider eyelash occlusions and noises which might influence 
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the results of the algorithm. Liam et al. [21], proposed a simple method based on 

thresholding and function maximization in order to obtain the two ring parameters 

representing the iris inner and outer boundaries. While, in [22], Liu et al. adopted a 

modification of the circular Hough transform to improve the iris segmentation. They 

applied a noise reduction and a hypothesis-and-verify scheme to improve the accuracy 

and robustness of Wildes method. Also, they introduced an eyelid detection technique 

where, the upper and lower eyelids are modelled as two straight lines. In another 

approach, Trucco and Raseto [24], proposed to find the optimal circle parameter of the 

iris boundaries by a simulated annealing algorithm. All these methods tried to either 

improve speed or accuracy but not both. Also, eyelids/eyelash occlusions as well as other 

noise factors were not given proper considerations. 

Soon, researchers began to pay more attention to noise and occlusion detection in 

iris segmentation [25-36]. In [25], Haung et al., proposed a coarse segmentation of the 

iris using edge detection filters and Hough transform before normalization. The noise due 

to eyelids and eyelashes are then segmented by edge information based on phase 

congruency method. In [26], Li Ma et al., proposed an iris recognition approach based on 

characterizing key local intensity variations. The basic idea was to use the sharp local 

variation points to represent characteristics of the iris boundaries. Feature extraction was 

performed by constructing a set of 1D intensity signals to isolate the most important 

information from the original 2D image. A position sequence of local sharp variation 

points in such signals were captured as features, using a particular class of wavelets. A 

matching scheme based on the ܱܴܺ operation was then adopted to measure the similarity 

between a pair of position sequences. These methods failed to consider low quality iris 

image captured under less constrained imaging conditions which limits its applicability.  

Nowadays, the challenges posed by non-ideal iris images captured in less-

constrained imaging conditions have started to catch the attention of researchers and 

scientist alike [37-57]. In [39], Schuckers et al. tried two different approaches of handling 

“off-angle” irises. In both approaches, they sought to transform an off-angle image into 

an equivalent frontal image before segmentation. Also, He et al. [43-45], presented an iris 

boundaries segmentation based on pulling and pushing method. A cascaded Adaboost 

learning algorithm is first implemented to learn if the input image is an iris image and the 

rough position of the centre and size of the iris in the image. The final segmentation of 

the iris boundaries is then achieved based on edge fitting and the pulling and pushing 

method. The eyelids were segmented using edge detection followed by curve fitting 

process, while eyelash detection is achieved using a learned statistical prediction 
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approach. Proenca and Alexandre [46-48], proposed a segmentation method which first 

extracts the position and intensity feature information for each pixel of the iris image and 

applies fuzzy k-means clustering algorithm on the feature vector to produce a normalized 

intermediate image. Edge map construction is then applied to localize the boundaries of 

the iris using the normalized intermediate image. Their results showed that this method 

significantly improved edge map based segmentation methods for non-ideal iris images. 

Ryan et al. [49] presented an alternative fitting algorithm, called the Starburst method, 

for segmenting the iris. The iris image is first filtered using a smoothing filter and a 

gradient detection filter. Then, the darkest 5% of the image pixels was set to black, and 

all other pixels to white. A Chamfer image was then created where the darkest pixels in 

the Chamfer image are the pixel farthest from any white pixel in the threshold image. 

They used the darkest point of the Chamfer image as a starting point for iris segmentation. 

Next, they computed the gradient of the image along rays pointing radially away from the 

starting point. Two highest gradient locations assumed to be points on the pupillary and 

limbic boundaries were retained. The detected points were fit with several ellipses using 

randomly selected subsets of points. An average of the best ellipses was reported as the 

final boundary. The eyelids were detected using active contour method. Pundlik et al. [50] 

presented another alternative segmentation algorithm based on graph cut. Their algorithm 

was a labelling routine instead of a fitting routine like the Starburst method. Their first 

goal was to assign a label - either “eyelash” or “non-eyelash” - to each pixel. Then after 

removing specular reflections, the gradient covariance matrix was used to measure the 

intensity variation of each pixel in different directions. Eigenvectors and eigenvalues 

obtained using the gradient covariance matrix are used to create a probability map, P that 

assigns the probability of having high texture in its neighbourhood or not to each pixel. 

The “energy” corresponding to a particular labelling of the image pixel was written as a 

function of a smoothness term and a data term. The data term was based on a texture 

probability map. They treated the image as a graph where pixels were nodes and 

neighbouring pixels were joined with edges, and they used a minimum graph cuts 

algorithm to find a labelling that minimized the energy function. The second goal was to 

assign each pixel a one of four labels: eyelash, pupil, iris, or background. They used a 

method similar to the initial iris segmentation for this; however, this time they used an 

alpha-beta swap graph-cut algorithm. Finally, they refined their labels using a geometric 

algorithm to approximate the iris boundaries with an ellipse. This is computationally 

intensive method given the alpha beta swap for all the pixels of the image is very tasking. 
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Although most of these approaches yielded good results, many of them are based on 

supervised learning which is computationally intensive.  

Recently, the application of active contour model for the segmentation of the iris 

boundaries began to gain the attention of many researchers [51-57]. In [51], Daugman 

proposed a new method of segmenting iris boundaries using active contours based on the 

Fourier series approximations to the iris data.  He adopted a statistical inference method 

for detection and exclusion of the eyelashes. Feature extraction and matching were 

conducted using Log-Gabor filtering and Hamming distance computation, respectively.  

Also, in [52], Shah and Ross proposed the segmentation of iris boundaries using geodesic 

active contour model. The pupil is first segmented by a binarization method followed by 

circle fitting to the pupil’s boundary. A contour is then initialized and evolved from the 

pupil boundary toward the iris boundary in order to determine the accurate boundary of 

the iris. Vatsa et al. [54] tried to improve the speed of active contour segmentation by 

using a two-level hierarchical approach. First, they found an approximate initial boundary 

of the pupil. Then, the boundary was later modelled as an ellipse with five parameters. 

The parameters were varied in a search for a boundary with maximum intensity change. 

For each possible parameter combination, the algorithm randomly selected 40 points on 

the elliptical boundary and calculated total intensity change across the boundary. Once 

the pupil boundary was found, the algorithm searched for the iris boundary in a similar 

manner, this time selecting 120 points on the boundary for computing intensity change. 

The approximate iris boundaries were refined using an active contour approach. The 

active contour was initialized to the approximate pupil boundary and allowed to vary in 

a narrow band of +/- 5 pixels. In refining the limbic boundary, the contour was allowed 

to vary in a band of +/- 10 pixels. This approach can lead to failure of the algorithm if the 

first step of the process is erroneous. Therefore, a new method is highly needed to address 

the challenges of effective and efficient segmentation of non-ideal iris images.  

In similarly way, a lot of different techniques for iris feature extraction have been 

proposed in literature [12], [58-81]. A survey paper by Patil et al. [76], summarised 

enormous number of papers and their different alternative methods for iris feature 

extraction. Daugman [8-11], was first to apply the 2-D Complex Gabor filters to extract 

the rich iris information. Gabor filters have been extensively used in computer vision and 

machine learning, especially for texture analysis. Gabor method is capable of extracting 

the visual properties of the iris in different directions but it naturally suffers from some 

setbacks. The Gabor filter is an even symmetric filter which has a DC component that is 

affected by the changes in the background illuminations of the image. Also, Gabor filter 
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is not completely a band pass filter therefore, Gabor function tends to overrepresent the 

low frequency component of the filter and also underrepresent the high frequency 

component of the filter [61], [81-82]. These setbacks can easily be overcome by applying 

some modification or using the Log-Gabor version of the filter.  The 2-D Log-Gabor 

filters have witnessed great popularity in image processing field. The Log-Gabor filter 

did not inherit the DC component problem of Gabor filters therefore, it is better able to 

handle textured image information. In [121], Yao et al. in their paper “Iris recognition 

algorithm using Modified Log-Gabor Filters” was able to represent iris features using 

Log-Gabor method. Also in [61], the multichannel Gabor filter-based iris recognition 

scheme was proposed, and in [62], the circular symmetry filters were used for iris 

recognition. These methods tried to improve the complex Gabor wavelet method earlier 

proposed by Daugman. However, the improvements comes with a cost. The slow speed 

of techniques like the 2-D Log Gabor filter or multi-channel Gabor filter is a source of 

worry.  

In another approach, Boles and Boashash [12], [32], was first to propose iris 

feature extraction technique based on wavelet transform (WT) zero crossing. They 

implemented a wavelet function which is the first derivative of the cubic spline for the 

construction of the iris feature representation. Similarly, Rydgren et al. [65], proposed an 

iris feature extraction technique based on wavelet packets. They determined that feature 

extraction techniques based on discrete wavelet functions are generally faster compared 

to Gabor method. However, discrete wavelets normally suffer from shift variance and 

lack of phase information. Wavelet packets is an extension of the discrete wavelet 

transform which combines the idea of best basis selection and entropy basis criteria for 

signal representation.  

In [63], a new method based on Discrete Cosine Transform (DCT) was introduced 

for iris feature extraction. Also, Belcher and Du [71] proposed a region-based scale 

invariant feature transform (SIFT) approach for iris feature extraction. They cited 

multiple advantages of using SIFT namely: the method “does not require highly accurate 

segmentation, transformation to polar coordinates, or affine transformation”. They 

divided the iris area into three regions: left, right, and bottom. Each of the regions is then 

subdivided into more sub-regions, each containing a potential feature point. The unstable 

points are first eliminated before finding the dominant orientation and feature point 

descriptions using the SIFT approach. When comparing two images, they only compared 

a feature from a given sub-region in the first image with the corresponding sub-region in 

the second image, or with the eight nearest sub-regions in the second image. 
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Bodade and Talbar [81] suggested the use of a 2D Dual Tree Complex Wavelet Transform 

(CWT) and a 2D Dual Tree Rotated CWT which provided shift invariant features in more 

directions than a Discrete Wavelet Transform (DWT) and are more computationally 

economical than Gabor filters. Although this technique is highly promising, it is not 

rotationally invariant.  

A more comprehensive review of iris recognition literatures can be found in a 

survey paper presented by Bowyer et al. [16-18] and [76] which listed an enormous 

number of papers which have tried alternative methods of iris recognition. Very few 

researches have been conducted using graph cut optimization, complex wavelet a filters 

(CWF), particle swam optimization (PSO) and SVMs. In this research, we develop and 

iris recognition system based on combination of graph cut optimization and active contour 

for the robust segmentation of iris image, and a principally rotated complex wavelet filters 

(PR-CWF) was adopted for iris feature extraction while feature selection is achieved 

using particle swam optimization (PSO). The classification of the iris templates is 

achieved using SVMs.  

 
 

2.6 Summary 

In this chapter, some key iris segmentation approaches are presented which 

includes IDO, Hough transform and active contours. Also, a background study of graph-

cut optimization is also presented which aims at unearthing the characteristics and 

advantages of graph-cut energy minimization technique.  Moreover, a feature extraction 

technique based on wavelet transform and complex wavelet transform were analysed to 

highlight their strengths and weaknesses. Then, a brief summary of the some related 

works that are important to this study is presented as discussed. Despite all the research 

and developments in the area of iris recognition, the segmentation and feature 

representation of non-ideal iris images remains unsolved. In the coming chapter, an 

efficient and effective solution to iris segmentation using graph cut based active contour 

will be presented.  
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Chapter 3 

 

3. IRIS SEGMENTATION FOR IRIS 

BIOMETRICS 

In this chapter, a novel fast and accurate iris segmentation method for accurate 

estimation of the inner (pupil) and outer (limbic) boundaries of the iris is presented. This 

chapter mainly focused on addressing the common problems of iris segmentation 

including: irregularity of iris boundaries, noise and reflection, occlusions from eyelids 

and eyelashes, blurriness and non-uniform illuminations. To achieve these objectives, the 

iris boundaries are modelled using a dynamic approach based on graph-cut energy 

minimization and active contour model (GCBAC). In section 3.1, we briefly presented a 

short background of the problem. Then, in section 3.2, other related works are considered 

and reviewed in brief. Section 3.3, describes the pre-processing steps for detecting and 

eliminating any specular reflections that might be present in the original eye image. While 

in section 3.4, we present the process of localizing the pupil and limbic boundaries of the 

iris. Section 3.5, describes other post-processing steps which is aimed at refining the 

segmentation result and dealing with other artefacts like occlusion. The samples of the 

segmentation results are provided in section 3.6, and finally in section 3.7, a summary of 

the key points of this chapter is presented. 

 
 

3.1 Overview of the Proposed Approach 

In non-ideal iris images, the low quality images captured under low-constrained 

imaging condition can be heavily affected by noise and other artefacts which can 

negatively impact on the segmentation result. Generally, most iris segmentation algorithm 

tries to enhance the quality of the image before segmentation. Also, most current 

segmentation algorithms carry out iris boundaries segmentation in two dependent steps. 

However, in this work, we propose a 2-level 2-step hierarchical process for iris boundaries 

segmentation. The two levels are carried out independently in order to contain errors. The 
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algorithm starts by first estimating the rough boundary of the pupil before the finally 

segmenting the pupil through a refining process. Also, the outer (limbic) boundary is 

segmented using the same process. Figure 3.1, illustrates the main components of the 

proposed iris segmentation framework.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The segmentation process uses grayscale component of the original iris image. Therefore, 

visible wavelength (VW) images where they exists are first converted to grayscale image 

before the segmentation process.  

Original iris image 

Image enhancement 
(reflection removal)

Pupil boundary estimation 
using Hough transform

Actual pupil segmentation 
based on GCBAC model

Iris boundary estimation 
using starburst algorithm

Actual pupil segmentation 
based on GCBAC model

Block-based sampling for 
eyelash/shadow detection/removal

Segmented iris image 

2-Level hierarchical iris segmentation 

1st Level 

2nd Level 

Step 1 Step 2 

Step 1 Step 2 

Figure 3.1: The block diagram showing the main components of the proposed iris 
segmentation approach. Pupil and iris segmentation on two levels hierarchical approach 
as well as pre-processing and post-processing processes for noise detection and removal. 
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3.2 Introduction 

Most current iris recognition algorithms have reported high performance and 

accuracy from their experimentation and testing. However, their performances are usually 

based on ideal iris images obtained in highly constrained environment, where the images 

are acquired using very sophisticated imagery setup. The performance of such system can 

deteriorate quickly when low quality iris images acquired under less co-operative imagery 

environment are used. The quality of an image is a major factor in most pattern 

recognition problems. Low quality images often present distorted patterns or misleading 

information which can result in false rejection.  With the diversification of iris recognition 

to areas such as schools, hospitals, airport, banks, border control, and prisons, iris based 

authentication systems have now become quite popular and now implemented for 

surveillance and monitoring. Low quality iris image captured on the move, in a user 

operated setting, or at a distance are fast becoming the order of the day in modern 

implementation of iris recognition. Figure 3.2 shows samples of non-ideal iris images 

obtained under flexible imaging setup.  

In a constrained capturing setup, subjects are conditioned to stop and look into the 

iris camera from a predetermined distance, position their head and sight, and then, their 

iris images are captured. However, in unconstrained iris imaging system, the iris image 

can be capture on the move, at a distance of up to 8 meters or in a user operated 

environment. Iris images captured in such an unconstrained environment normally result 

in non-ideal iris images with varying levels of noise and artefacts present. In non-ideal 

iris images, the iris region may be severely occluded by eyelids, eyelashes and shadows, 

the eye may not be properly opened, or the iris may be obscured by specular reflections 

and other artefacts. These noise factors can have severe effects on the segmentation 

results, and consequently, the overall recognition accuracy. The non-ideal iris images are 

normally affected by noises like: motion blur, camera diffusion, head rotation, gaze 

direction, camera angles, reflections, contrast, luminosity, and other size and shape 

irregularity problems due to contraction and dilation of the pupil [44], [48].  

Several iris recognition methods have been proposed by many researchers and 

scientists alike to effectively tackle the different aspects of iris recognition [8-57]. While 

most of the researches are focused on ideal iris images, recently, there have been a new 

important directions for iris based biometrics researches. The strive for development of a 

robust iris segmentation algorithm as well as non-invariant multiscale and multiresolution 
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feature extraction and selection technique for representing the important textural features 

of “non-ideal iris images” is shifting the boundaries of research today. In this chapter, we 

deploy a methodology to compensate for the various non-idealities found in non-ideal iris 

images in order to effectively and efficiently define the inner and our boundaries of the 

iris. Our main interest is to improve the iris recognition performance though accurate and 

efficient localization of non-ideal iris images, captured under a flexible imagery setup. 

Figure 3.2 show some samples of non-ideal iris images which are obtained from CASIA 

and UBIRIS iris databases. The non-idealities found these images ranges to various 

degrees from occlusion, specular highlights, blur, variations in illumination, to dilation 

and constriction of the pupil.  

     

  

 

 

 

 

 

Figure 3.2: Samples of non-ideal iris images taken from CASIA and UBIRIS datasets: 

(a) images from CASIA iris dataset, (b) images from UBIRIS dataset. 

Therefore, a new and enhanced method for coping with the various challenges of 

non-ideal iris images needs to be developed. From the sample iris images shown in Figure 

3.2, the different shapes of iris boundaries can be seen. Therefore, the general assumption 

that iris boundaries are circular or elliptical can no longer hold for non-ideal iris images. 

For instance, in iris images where the eye is half open, the highly occluded regions can 

be extracted, which leads to false recognition and thus, the segmentation performance can 

be greatly affected [51].  Considering these challenges, a new and improve method of iris 

segmentation algorithm is developed here for non-ideal iris image segmentation.  

In this chapter, we propose a two-level two-step hierarchical approach for iris 

segmentation. The first level of the segmentation process deals with the segmentation of 

the inner (pupil) boundary, while the second level performs the outer (limbic) boundary 

(a)  (b
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segmentation. Each of the iris boundaries are segmented in two steps. This design is 

aimed at containing and resolving any segmentation error within each level/step and 

making sure that errors at one level or step does not affect the segmentation result in 

subsequent levels or steps. In the first step of the first level, the rough approximate 

boundary of the pupil is estimated. Subsequently, in the second step of the first level, a 

contour is initialized on the estimated boundary obtained from the first step and the 

contour is then evolved to the actual boundary of the pupil. Similarly, in the second level 

of the hierarchy, the same procedure is repeated again for the segmentation of the limbic 

boundary. The final contour at each level is estimated by refining the initialized contour 

using graph-cut energy minimization based on active contour model (GCBAC). Before 

the start of the segmentation process, an initial pre-processing step is carried out on the 

image to detect noise and specular reflections that are usually present in non-ideal iris 

images. Then, after segmentation, a post-processing method is also employed to detect 

and exclude any superimposed eyelashes/shadows which might be present in the iris 

image.  

In the pre-processing step, the highest intensity areas of the original iris image are 

marked out and a multiscale edge weighted high-pass filter is developed to detect closed 

contours within the highest intensity areas representing reflections regions. Closed 

contour within the highest intensity areas are identified as holes representing reflection 

points in the iris image. The detected reflections are then filled using a modified adaptive 

exemplar based image in-painting method [104]. In order to approximate the initial pupil 

boundary, the pre-processed iris image is complimented and a circular Hough transform 

is deployed to directly search for circles in the iris image. Detected circles are further 

refined to find the circle representing the approximate pupil boundary. A contour is then 

initialized around the approximate boundary and graph cut based active contour 

(GCBAC) is applied to finally segment the pupil boundary. Once the pupil final boundary 

has been determined, the same procedure is repeated to segment the iris boundary except 

that this time an energy based starburst algorithm is developed and used for the rough 

approximation of the limbic boundary in the first step. The limbic boundary has lesser 

contrast between the boundary compared to the pupil boundary and it is normally 

occluded with eyelids and eyelashes. Therefore, the earlier method based on Hough 

transform used for approximating the pupil boundary will fail in the case of limbic 

boundary. An energy based starburst algorithm is therefore used to search of energy 

transition in different angles along rays pointing from the centre of the image to the 
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boundary of the image. The energy transition points are detected and refined and finally 

a contour is initialized on the points to represent a rough estimate of the limbic boundary.  

Finally, in order to model the small short variation in intensity of the iris as a result 

of superimposed eyelash or shadow pixels, a block based approach is adopted to calculate 

local energy of each pixel in each image block and predict the absence or presence of 

eyelash or shadow per block. The image is first partitioned into non-overlapping blocks 

and blocks are then classified into candidate eyelash (CEL), non-candidate eyelash (NEL) 

and approximate eyelash (AEL) based on the sharpness and smoothness of the block. The 

blocks are classified using a Bayesian classifier which is a simple probabilistic classifier 

based on the application of the “Bayes theorem” with strong naïve independence.  Finally, 

eyelash/shadow pixels are detected using statistical prediction method. 

 

3.3 Reflection Detection and Removal 

In the first phase of the iris segmentation process, a method is employed to detect 

and remove reflections which is capable of influencing the iris recognition performance. 

Reflections when they occur within the iris portion is capable of introducing spurious 

information into the iris pattern, which can degrade the recognition accuracy. Also, when 

reflection occur near the iris boundaries, they normally possess stronger properties than 

the properties of the pupil or iris edges which means that it is capable of influencing the 

segmentation algorithm and leading to erroneous segmentation. Therefore, it is very 

important that a fast and accurate algorithm for detecting and removing reflections 

without greatly altering the iris structure is developed.  

Reflection detection and removal or more generally object detection and removal 

is a very challenging task in computer vision and image processing due to vast variations 

in the shapes and locations of objects in an image. Reflections in iris images can be 

classified into weak and strong reflections according to their intensity levels. Most 

popular methods for detecting and removing/filling reflection in iris images tend to 

significantly alter the iris structure making further processing with the same image 

difficult. For instance, one of the most popular methods for reflection removal is by 

evolving the image with a partial differential equation (PDE) called flood filling [29-30], 

[47], which interactively erodes away the specular reflection component at each pixel.  

Although, this method tends to yield impressive results, it significantly alters the structure 
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of the iris image and reduce its quality significantly. Figure 3.3, illustrates the process and 

shows the result of reflection removal using the flood filling approach. Original iris image 

is first complemented and a flood filling is performed on the entire image before the image 

is complemented back to its original form again. Although this method seems to produce 

a good visual result, the structure of the iris image is greatly altered to a large extent which 

may affect further processing using the same image.  

Other methods of specular reflection removal in iris images include: interpolation 

method, radial autocorrelation, and mathematical morphological approach to mention but 

a few. These methods suffers from either limited accuracy or speed which is a major 

hindrance to its practical implementation. Some of them also greatly alter the structure of 

the iris image in the process of reflection removal. 

 

   

 

 

              

 

 

 

 

Figure 3.3: Result of reflection removal from an iris image using the flood filling 

approach; (a) original iris image, (b) complemented iris image, (c) filled iris image (d) 

final result of the flood filling. 

We propose a two-steps approach to reflections detection and removal which aims 

to fill only the reflection points while the unaffected areas of the image are unaltered. In 

the first step, an adaptive threshold approach is employed to detect the areas of highest 

intensity in the image using the average intensity (brightness) of the image. Then, a 

multilevel edge detection method using adaptive high-pass edge weighted filter is 

employed to detect closed contours in the areas of highest intensities which represent the 

reflection points. In the second step, a modified exemplar based image in-painting method 

is employed for filling the reflection points. This method is superior to other methods in 

(a) (b) 

(c) (d) 
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terms of speed, accuracy and ability to retain the original structure of the unaffected parts 

of the image.  Figure 3.4, illustrates the process of reflection detection and removal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original iris image 

High intensity areas 
mapping 

Reflection points 
mapping 

Label reflection maps 
(object), n=1,…,N. 

Divide the image into 
patches of size ሺ3 ൈ 3ሻ  

Select an object  

Select a patch ݅ ൌ 1,… ,  ,ܫ
containing both the 

object and background 

Calculate the sum squared 
error (SSE) between the 

patch and the background 
boundary patches 

Replace the patch ݅ with 
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Is n>N 
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No 

Pre-processed iris image 

Step 1 

Reflection/noise detection 
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Figure 3.4: The block diagram of the reflection/noise detection and removal process: 
closed contour representing reflections are detected after filtering in the first step while 
the second step uses an exemplar based image inpainting method to fill the detected 
points.   
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The method proves to be very effective at enhancing the image while preserving the 

original structure for further processing. Also, because of the restriction of the algorithm 

to the boundary of the fill region, the algorithm proves to be also very fast.  

 

3.3.1 Reflection Detection and Mapping 

Usually, specular reflection appear as the brightest points surrounded by large 

gradient values in iris image [33], [34]. According to Kong and Zhang [33], strong 

reflection areas can easily be detected by deploying a simple threshold approach. 

However, calculating ideal threshold for detecting both weak and strong reflections 

present in a heterogeneous image like iris is a trivial task.  

In our approach, we try to compensate for the variations in luminance of the iris 

images by using adaptive thresholding. The image brightness is first computed and a 

threshold is determining based on the image brightness. The threshold process is used to 

detect the high intensity areas of the image instead of reflection points as proposed in 

[33]. In the next step, the reflection points are then detected within the high intensity 

regions by finding closed edges representing reflections within the region. This ensures 

that both weak and strong reflections are detected. 

Given the iris image ܫሺݔ, ,ݔሻ, where ሺݕ  ሻ denote the location of a pixel, theݕ

regions of highest intensities can be detected by the following inequality expression [26]: 

,ݔሺܫ ሻݕ ൐  ሺ3.1ሻ																		௦ߚ	

Where ܫሺݔ,  ௦ is the brightness of the imageߚ ሻ denotes the intensity of the image andݕ

which is given as: 

௦ߚ ൌ 	
∑ ,ݔሺܫ ሻேݕ
௜ୀଵ

ܰ
																					ሺ3.2ሻ 

Where, ܰ denotes the total number of pixels in the image calculated by 

multiplying the row size by the column size. Figure 3.5(b) shows the result of fixed 

thresholding method on the iris image using the 5% brightest intensity as the threshold. 

Figure 3.5(c) is the result of our adaptive thresholding method based on the brightness of 

the image. 
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Figure 3.5: Results of thresholding the iris image using different approaches: (a) original 

iris image, (b) Fixed threshold using 5% brightest pixel intensity, (c) adaptive threshold 

using image brightness. 

It can be noted from Figures 3.5(b) and (c) that the fixed threshold method using 

5% brightest intensities of the image failed to detect a weak reflection on the left side near 

the medial canthus of the iris image marked with a circle but the adaptive threshold 

method using Equations (3.1) and (3.2) was able to detect it. Although it can be seen from 

Figure 3.5(c) that areas of hue saturation was largely detected, this is refined in 

subsequent steps and the actual reflection points mapped.  

Once the areas of highest intensity have been marked out as shown in Figure 

3.5(c), a multi-scale edge-weighted high-pass filter is employed to detect closed contours 

(edges) which represent the reflection point boundaries. The closed contours are mapped 

as reflection points representing the boundaries of reflection in the iris image as shown in 

Figure 3.6(b).  

 

 

 

 

Figure 3.6: Reflection maps on iris image; (a) original iris image, (b) iris image 

with reflection maps 

Experiments based on image intensity histograms carried out on the datasets in both 

CASIA and UBIRIS databases indicates that the intensity values of reflections in iris 

images are normally greater than the image brightness value. Areas of highest intensities 

normally include the reflection points and parts of the eyelids areas affected by hue 

(a) (b) 

(a)  (b)  (c) 

. 
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saturation (see Figure 3.5c). To detect edges within the marked high intensity regions, a 

multi-scale edge weighted highpass filter is applied to the image. Edges that form closed 

contours represent reflections and are marked with reflection maps as shown in Figure 

3.6b.  

The iris image is now filtered using the adaptive multi-scale edge weighted highpass filter 

in order to detect the varying edges representing the reflection boundaries. A high-pass 

filtered iris image can be represented as: 

݂ሺݔ, ሻݕ ൌ 	 |Ԫ݂ሺݔ, ,ݔሺ݂ܪሻ|௣ݕ  ሺ3.3ሻ															ሻݕ

 

Where |Ԫ݂|௣ is the image formed by raising every point ݂ܮሺݔ,  ሻ in the image Ԫ݂ to theݕ

p-th power. The image |Ԫ݂|௣ weights the highpass filtered image ݂ܪ pointwise according 

to the strength of the local edges Ԫ. Further details on highpass filtering can be found in 

[117]. The smoothed image ݂ሺݔ,  ሻ is now decomposed by applying a discrete waveletݕ

transform (DWT). At scale 2௝, three detail images are obtained ଶܹೕ
௛ , ଶܹೕ

௩  and ଶܹೕ
ௗ   and 

an approximation image ܣଶೕ. The superscripts ݄, ݒ, and ݀ represent horizontal, vertical 

and diagonal detail coefficients, respectively. Edges in the candidate reflection areas are 

characterized at each scale 2௝ by computing the local maxima of the detailed coefficients 

which is given as [110]: 

 

,ݔଶೕ݂ሺܦ ሻݕ ൌ 	ටห ଶܹೕ
௛݂ሺݔ, ሻหݕ

ଶ
൅	 ห ଶܹೕ

௩ ݂ሺݔ, ሻหݕ
ଶ
൅	 ห ଶܹೕ

ௗ݂ሺݔ, ሻหݕ
ଶ	
																				ሺ3.4ሻ 

 

An edge-weighted highpass filtered image is computed by pointwise manipulation of 

highpass filtered image ݂ܪ with หܦଶೕ݂ห
௣
 which produces a P + 1st-order weighted 

highpass filters tuned to edges at scale 2௝. The multiscale analysis produces a set of edge-

weighted highpass filters, each tuned to edges at prescribed scale. Therefore the reflection 

map ܴሺݔ,   ,ሻ can be given asݕ

ܴሺݔ, ሻݕ ൌ ෍෍หܦଶೕ݂ห
௣
	݂ܪ

௃

௝ୀଵ

௉

௣ୀଵ

																					ሺ3.5ሻ 

 

Which represent the boundaries of the reflection points. 
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The reflection maps of the detected points are as shown in Figures 3.7b and 3.7c, 

which illustrates the boundaries of the reflection points. Once the reflection points are 

detected, further processing is carried out to remove the reflections.  

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.7: Iris images showing reflection detection and removal using the proposed 

algorithm; columns (a) Original iris images, (b) Thresholded iris images, (c) Iris images 

with reflection maps, (d) Iris images with reflections filled. 

 

3.3.2 Reflection Removal 

After reflection detection (mapping of the reflection points), a modified adaptive 

exemplar based image in-painting is applied to fill the reflection points. Exemplar based 

image in-painting [107], [108], have been widely used in vision computing for restoring 

natural images with some defects. Exemplar based image in-painting seeks to fill the areas 

of defects considered as “holes” in an image by searching for the best exemplar (similar) 

information from the non-defect region and simply copying it to the defected region. 

There exists some setbacks to this method which include erroneous reconstruction of 

edges and a global search for best exemplar which is time consuming. We modify this 

model to better adapt to edges and limit the search area to the boundaries of the holes 

(b)(a) (c) (d) 
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(reflection points) in order to improve speed. Full details of exemplar based image in-

painting can be found in [107]. 

Now, Given the original image ܫሺݔ,  ሻ with mapped reflection points, let’s denoteݕ

a reflection point as Ω while the boundary of the reflection point (contour) be denoted by 

 Ω. For clarity, we refer to the reflections points as “holes” or “fill region” while the restߜ

of the image is referred to as the “target region”. The method in [107] is adopted in this 

work with some modification to enhance edge reconstruction and improve patch 

similarity computation.  

In order to compute the similarity between the fill region and the target region, a 

patch of the image is selected at any one time. A patch given as ߰௜ is a square sub-region 

of the image centered at pixel ݅. Generally, the size of ߰௜ is decided to be slightly larger 

than the largest distinguishable texture element. The most common patch size of 9 x 9 is 

normally used for natural images but in this work a patch size of 3 × 3 is adopted which 

is more effective for highly textured images like the iris image. The fill patch given as  

߰௣ must contain a mixture of regions: part of the fill region (hole) and part of the target 

region. Whenever a patch of the fill region ߰௣௜  is selected, a search is conducted through 

the target region. When ܰ-most similar patch is found, the ߰ ௣௜ patch is linearly combined 

with the target patch ߰ ௤௜ to predict the unknown region of ߰௣.  In order to limit the search 

area to the reflection boundary, priority is given to the patches based on distance. The 

priority for the filling order ܲሺ݌ሻ is based on the product of two terms, ܥሺ݌ሻ confidence 

term and ܦሺ݌ሻ data term and is given as [107]: 

ܲሺ݌ሻ ൌ ሻ݌ሺܥ	 ∗  ሺ3.6ሻ						ሻ݌ሺܦ

Where  

ሻ݌ሺܥ ൌ 	
∑ ஼ሺ௤ሻ೜∈ഗ೛∩Ωഥ

หట೛ห
ሻ݌ሺܦ       , ൌ 	

ห׏ூ	೛̝		.		௡೛ห

ఈ
 

and ห߰௣ห is the area of ߰௣, and ߙ is a normalization factor ( which is ߙ ൌ 255 for the 

grayscale iris image), and ݊௣ is a unit vector orthogonal to the boundary ߜΩ of the point 

 In order to improve edge reconstruction, the data term is optimized in a non-linear .݌

fashion by modifying Equation (3.6) as shown in Equation (3.7). 

෠ܲሺ݌ሻ ൌ ሻ݌ሺܥ ∗ expቆ
ሻ݌ሺܦ
ଶߪ2

ቇ					ሺ3.7ሻ 
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The squared exponential of the data tern ܦሺ݌ሻ increases the influence of the data term on 

Equation (3.7) thereby increasing the match between ߰௣ and ߰௤௜ closer to the boundary. 

The selection of the patch ߰௤௜ from K-similar patches is achieved by minimizing the sum 

of squared distance SSD which is given as 

߰௤௜ ൌ argmin
ట೜∈Ωഥ

݀ௌௌ஽൫ܲ߰௣, ܲ߰௤൯						ሺ3.8ሻ 

Where ݀ௌௌ஽ is the SSD distance, while the ሼܲሽ extracts the known region from the patch 

߰௣ (known or already filled pixels). The results of the filling method is as shown in Figure 

3.7(d). 

 

3.4 Iris Boundaries Segmentation  

In this section, we present the iris boundary segmentation model using a graph cut 

based active contour (GCBAC) model. The algorithm adopts a 2-level 2-step hierarchical 

approach which performs pupil segmentation first before the limbic boundary 

segmentation. Each level of the segmentation process is performed in two steps with 

initial boundary approximation performed first before the final boundary segmentation. 

This type of approach is aimed at tracking and handling any error which may arise at any 

level to make sure it is resolved at that level and not carried over to the subsequent levels 

and cause failure of the whole algorithm. Figure 3.8, shows the block diagram of the iris 

boundaries segmentation process. In the first hierarchical level of the segmentation 

process which is the segmentation of the pupil boundary, the first step of the algorithm 

starts by roughly approximating the pupil’s boundary using a method based on circular 

Hough transform. Then, the final boundary of the pupil is segmented by refining the initial 

approximate contour based on the proposed GCBAC model. After pupil boundary 

segmentation, the same process is repeated again to segment the iris limbic boundary 

except that the initial approximation of the limbic boundary is carried out using an energy 

based method. The rough estimation of the limbic boundary is achieve using a modified 

energy based starburst algorithm. The first step of the iris segmentation process is a 

prerequisite for contour initialization. The main aim is to initialize the active contour close 

enough to the actual boundary of the pupil or iris in order to enhance segmentation 

accuracy and reduce computational time.  
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The model benefits from high accuracy and reduced processing time by 

initializing the active contour close enough to the actual boundary. The model showed 

improved performance compared to other methods that evolve the contour from the pupil 

boundary to the iris boundary.  
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Figure 3.8: Block diagram illustrating the 2-level hierarchical segmentation approach for the 
iris inner and outer boundaries of the iris. (a) The 2-level hierarchical pupil and limbic 
boundary segmentation process. (b) Detailed block diagram showing the segmentation 
process at each step. 
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3.4.1 Estimation of the Approximate Pupil Boundary 

The pupil is the darkest portion of the eye image which is surrounded by the 

relatively lighter coloured iris. Consequently, there exists a large contrast between the 

dark pupil and the surrounding iris portion in most iris images. The pupil can sometime 

be partially eclipsed by occlusions from the eyelids/eyelashes. Also, as a result of the 

reflective properties of the cornea and the infrared IR source lights normally used to 

capture the iris image, the pupil and its surrounding can be affected by specular 

reflections. In order to effectively approximate the pupil’s boundary, the pre-processed 

iris image is now complimented and convolved with a smoothing filter. Then, a circular 

Hough transform is employed to search for and detect circles within the pre-processed 

iris image. The detected circles are called candidate pupils ܥ௣. An evaluation scheme is 

developed to find the candidate pupil ܥ௣௜ which corresponds to the actual pupil based on 

established properties of the pupil. The final segmentation of the pupil’s boundary is 

subsequently achieved by refining the resulting initial contour of the pupil using the 

proposed graph-cut based active contour (GCBAC) model detailed in section 3.4.3.  

A Hough transform is essentially a shape detector, which has been widely used to 

detect straight lines and circles in edge images [12]. The greatest advantage of Hough 

Transform is that it can be successful even when the shape to be detected is partially 

hidden. In this context, the pupil’s shape is usually close to a circle but can sometime be 

partially hidden by the eyelids/eyelashes. This makes Hough Transform an attractive 

method for estimating the boundary and position of the pupil. 

The circular Hough transform search of the iris image normally produce many 

candidate pupils as shown in Figure 3.9(c). These candidate pupils includes the actual 

pupil and many fake pupil candidates normally emanating from the eyelash region. In 

order to select the actual pupil from the candidate pupils and also, eliminate the chances 

of choosing a ‘fake pupil’, we make some assumptions based on some distinct features of 

the pupil.  

1) The pupil is the darkest circular or near circular portion of the iris image located 

closest to the centre of the image. 

2) The actual pupil candidate is the candidate with the smoothest intensity variations. 

These assumptions are based on a pre-processed iris image where specular 

reflections have been removed. Based on these assumptions, we perform a rough 
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segmentation of the pupil using a method similar to the one in [27]. The whole image is 

searched for circles using circular Hough transform and the circle with the shortest 

distance to the centre of the image is selected as the pupil. Figure 3.9(c) shows some 

sample iris images with many detected candidate pupil circles. The blue marker shown 

on the images of Figure 3.9(c) indicates the centre of the iris image while the red asterisk 

markers show the centre of the candidate pupil circles.  

    

 

 

  

 

 

 

 

 

 

 

 

 

 

The image is first complemented before convolving it with a square matrix of size 

ሺ݊	 ൈ ݊ሻ of all ones to reduce noise. Circular Hough Transform is then applied to search 

for candidate pupils ܥ௣ in the image. The Euclidian distances of all the ܥ௣ from the centre 

of the image are then computed. The ܥ௣with the lowest Euclidean distance to the image 

centre is then chosen as the pupil.  

Considering some non-ideal iris images, the rotation of the eye can cause the iris 

to be located nearer to the boundary of the iris image instead of image centre. Therefore, 

in order to compensate for such non-ideality and to avoid the error of selecting a ‘fake 

pupil’ candidate that is closer to the centre of the image as the pupil, we further refine the 

pupil candidates with an additional condition.  

Figure 3.9: Iris images showing the approximate pupil’s boundary estimation process; 
(a) original iris image, (b) pre-processed iris image, (c) complement of the iris image 
showing the pupil candidates, (d) segmented pupil. 

(a)  (b)  (c)  (d) 
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A measure of the entropy of the candidate pupils ܥ௣ can help to distinguish the 

real pupil candidate from the “fake pupils” candidates. In our investigation, detected fake 

pupil candidates normally lie within the dark eyelash region as shown in the images of 

Figure 3.9(c).  These fake candidates normally present higher entropy values (higher 

intensity variation) compared to the real pupil candidate.  

Now, the adjusted intensity values ܫ஼೛ of the pupil candidates ܥ௣௜ are calculated 

by convolving the intensity values of the image with a square matrix of size ሺ5 ൈ 5ሻ of 

all ones in order to smoothen the image and reduce noise. Hough transform is employed 

to detect the pupil’s candidates within the image. The actual pupil candidate is selected 

based on their distances from the image centre and the intensity variation (entropy) within 

the candidate pupil circle.  This can be stated mathematically as follows: 

,ݔ஼೛ሺܫ ሻݕ ൌ 	
ᇱ௫,௬ܫ

1 ൅ 3݀ଶሺ௫,௬ሻ
൅  ሺ3.9ሻ											ܪ

Where ݀ଶ represents the Euclidean distance measure between a pupil candidate and the 

centre of the image. H is a measure of dispersion inside a candidate pupil ܥ௣ computed 

using Shannon entropy which is defined as 

ܪ ൌ	෍ ௜݈ܲ݃݋
1

௜ܲ
ൌ	

௠

௜ୀଵ

െ෍݌௜݈݃݋ ௜ܲ					ሺ3.10ሻ

௠

௜ୀଵ

 

 ᇱ is the adjusted intensity value which is given asܫ 

ᇱܫ ൌ ሺ255 െ ሻܫ ∗ 	1௡ൈ௡																ሺ3.11ሻ 

 

The value of ݊ is selected based on the 5% of the image resolution. ܫᇱ௫,௬ is the intensity 

of the image within a candidate at location ሺݔ,  ሻ. The candidate with the highest adjustedݕ

intensity is selected as the true pupil candidate. The result of the procedure is as shown 

in Figure 3.9(d). The Hough’s Transform returns three parameters ሺݔ଴, ,଴ݕ  :ሻݎ

representing the coordinates of the pupil centre ݔ଴ and ݕ଴ and the radius ݎ. These three 

parameters are used to initialize a contour close enough to the pupil’s boundary in the 

next phase of the segmentation approach.  
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3.4.2 Approximate Iris Boundary Estimation 

To approximate the iris limbic boundary, we employ a modified starburst 

algorithm. Starburst algorithm has been successfully used for the processing of low 

quality images and in eye tracking technologies. The starburst method provides a rough 

estimation of iris limbic boundary for contour initialization. Figure 3.10, shows the 

process of approximating the iris limbic boundary using the modified starburst algorithm. 

Finally, in the subsequent subsections, the iris and pupil boundaries were 

refined/segmented using the active contour based model described in sections 3.4.4, 

3.4.4.1, 3.4.4.2.  

Starburst is a randomized local search algorithm which has since been used to 

model eye tracking technologies [49], [109]. Starburst was first proposed by Li et al. [109] 

to compensate for the high degree of noise present in low cost off-the-shelf camera 

images. The original starburst algorithm proved to be a stable way of tracking the eye 

under NIR illumination. Although the starburst algorithm have been quite successful for 

eye tracking purposes, they do have some inherent setbacks when applied to iris boundary 

estimation which include: difficulty in distinguishing between features of the pupil and 

the limbus boundaries, erroneous feature points generated by specular reflections that can 

cause the algorithm to fail, and the eyelashes and eyelids which can introduced noisy 

feature points that are able to influence the result of the algorithm.  

Recall that in our earlier pre-processing step of section 3.3, possible specular 

reflections that might exist in the original iris image have been detected and eliminated. 

This presents us with a better quality iris image for further processing. Also, the difficulty 

in distinguishing between the pupil and limbus boundaries feature points can be 

simplified by the hierarchical segmentation framework adopted in this work. In the first 

phase of the hierarchy, the pupil is segmented and the information obtained from the pupil 

segmentation helps to identify and eliminate the feature points belonging to the pupil in 

the next phase which is the limbic boundary segmentation.   

Our adaptation of starburst algorithm, shown in Figure 3.10, requires the 

determination of a proper initialization point in the image. This initialization point of the 

starburst algorithm is chosen to the centre of the pupil whose coordinates has been 

determined in Section 3.4.1. Rays from the centre of the pupil are projected away in a 

star-like fashion towards the boundary of the image. The gradient change is computed 

along each ray which is used to identify feature points at the points of highest intensity 

changes. Two highest feature points along each ray are retained and the rest are discarded. 



 

64 
 

In order to reduce the effects of eyelash which mostly occlude the upper region of the iris, 

a steerable filter is applied to the image before implementing the starburst algorithm 

computation. The two feature points retained represents the iris boundary and a possible 

eyelid/eyelash edges. To discard the non-boundary feature points, a distance measure as 

well as an energy based method is employed to distinguish between the noisy feature 

points belonging to the possible eyelash and the limbic boundary feature point. Later, the 

remaining feature points are then interpolated using ܤ-spline cubic interpolation to form 

a closed contour.   

To detect feature points on the rays, a dot product is used to calculate the 

components of the gradient collinear with rays pointing radially away from the originating 

point. In each ray, the two feature points are marked at the points of highest gradient 

change within an experimentally determined epsilon distance. Feature points that fall on 

the pupil boundary are first eliminated before selecting the two highest feature points. 

 

 

 

 

 

 

 

 

 

 

 

In order to select the two feature points with highest intensity change, a ranking 

system is introduced to classify each of the feature points based on their energy and 

distance from the centre point. The ranks indicate which of the feature points fits more to 

the iris boundary and which is considered as noise. A rank of 1 is given to the feature 

points with high energy and closer to the origin of the ray, while a rank of 2 is given to 

feature points further away from the origin of the rays with lower energy. Surviving 

Original iris image  Iris image with the 
Pupil segmented

Iris image filtered 
using steerable filter

Iris image with the 
starburst algorithm

Estimated iris regionContour fitting 

Figure 3.10: Iris boundary approximation process using the modified starburst 
algorithm. 
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feature points are classified into two categories: iris, and junk. The junks are discarded 

while the iris feature points are then interpolated using ܤ-spline interpolation to form a 

closed contour. The contour is then used for the initialization of the GCBAC model in 

section 3.4.4.  

 

3.4.3 The Proposed Graph-Cut Based Active Contour (GCBAC) Model 

In this section, a graph cut based active contour model (GCBAC) model is 

proposed for the final refinement/segmentation of the iris boundaries. Accurate extraction 

of iris boundaries is an important issue which have been widely investigated in the field 

of computer vision and image processing. The extraction of accurate and optimal 

boundaries of the iris has great challenges which include: occlusions of the boundaries, 

noise and other artefacts in the image. The problem of extracting an optimal iris boundary 

can be naturally formulated as an energy minimization problem. However, it is very 

difficult to define a cost function that can solve for the global optimal result, and even if 

a cost function is defined, the minimization problem is still difficult to solve. The GCBAC 

model presented here is a combination of the idea of iterative deformation of active 

contour and the global optimization properties of graph cut.  

This approach is different from the traditional active contours because, it uses 

graph cut energy to iteratively deform the contour and its cost function is defined as a 

summation of edge weights on the graph. This implies that the resulting contour at each 

iteration is the global optimum within the contour neighbourhood (CN). The adoption of 

CN is used to overcome graph cut’s well-known shortcoming of biasness to shorter 

boundaries [93-102]. Also, the combination of the two approaches (graph cut and active 

contour) is able to overcome another well-known shortcoming of active contour model 

of yielding to local maxima. Nevertheless, the proposed model still retains the graph cut’s 

advantages as a global optimization tool and computation within a polynomial time. Also, 

as a result of its global optimization properties of GCBAC, the model is able to segment 

irregular boundaries and easily overcome the problem of noise and outliers in the iris 

image. This ensures that the proposed scheme is able to overcome the level-set’s greatest 

disadvantage of slow convergence and the potential of getting stuck at local maxima while 

maintaining the advantage of active contour deformation to trace irregular boundaries.  
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Several methods have been proposed for segmentation of the iris portion from the 

original eye image [11-13], [19-58]. However, most of these methods are solely based on 

boundary or regional information which is highly limited. Graph cut method utilizes both 

boundary and regional information for the segmentation of image which is highly 

advantageous. The combination of regional and boundary information enables graph cut 

to find optimal boundary and overcome the problem of outlier and noise in the image. 

Graph cut establishes an objective energy function which reaches a minimum value at the 

object’s boundary.  

Now, let ܿଵ denote an initial curve representing the approximate pupil or limbic 

boundary of the iris as obtained from sections 3.4.1 and 3.4.2, respectively. Also, let ܿଶ 

represent a new contour obtained by dilating the initial contour to its surrounding 

neighbourhood area as shown in Figure 3.11(b). Given the pre-processed eye image 

,ݔሺܫ  ሻ with ݀ଵ and ݀ଶ representing the pixels inside ܿଵ and outside ܿଶ, respectively asݕ

shown in Figure 3.11. A graph ܩ ൌ ሺܸ,  ሻ is established with a set of vertices ܸ, and aܧ

set of edges ܧ as shown in Figure 3.11. The vertices or nodes of the graph is a set of 

terminals (pixels) ܸ ൌ ሼݒଵ, ,ଶݒ … . . , ,௡ݒ ,ݏ  ሽ with two special terminals called the sourceݐ

 Figure 3.11(c) shows the structure of a graph with its terminals and their .ݐ and the sink ݏ

links. The edges (links) corresponds to a set of connections between vertices ܧ ൌ ሼݑ,  .ሽݒ

There are two types of links which include: the ݐ െ ݊ and ݏ݈݇݊݅ െ ݐ The .ݏ݈݇݊݅ െ  ݏ݈݇݊݅

include edges which connect the terminal nodes to the neighbouring nodes while, the ݊ െ

 are the links that connect the neighbouring pixels together. The edges in the graph ݏ݈݇݊݅

are assigned with a non-negative measurements of the similarity between neighbouring 

pixels ݌ and ݍ called edge weights  ߱ሺ݅, ݆ሻ. The edge weights which is also known as cost 

are obtained from the measurement between neighbouring pixels. A cut is a subset of 

edges which is denoted as ܥ and expressed as sum of edges with maximum cost 

representing areas of highest dissimilarity in the image. The pixels inside ܿଵ and outside 

ܿଶ the contour ܦ, represents the two special terminal nodes (seeds) called the source ݏ 

and the sink ݐ.   

In the works of Boykov and Kolmogorov [96], the computation of minimal 

surfaces or geodesics with placement of markers was studied.  Two seeds was specified 

and their method automatically finds the optimal curve (or surface) separating the two 

sets of seeds by computing the minimal energy between them. Graph cut tries to find the 

maximal flow of energy from node ݏ, to node ݐ, which is equivalent to computing the 
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minimal cut on the graph [102-98] ,[97] ,[95] ܩ. A cut ܿሺܵ, ܶሻ is given by a pair of 

complementary subsets of nodes ሺܵ, ܶሻ where ݏ ∈ ܵ and ݐ ∈ ܶ. Image segmentation can 

be regarded as a pixel labelling problem where the label for the object can be set to 1 

while that of the background can be set to 0. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The segmentation process can be achieved through the minimization of an energy 

function called graph energy. So, let the label ܮ ൌ ൛݈ଵ, ݈ଶ, ݈ଷ, … , ݈௜, … ݈௣ൟ, where ݌ is the 

number of pixels in the iris image and ݈௜ ∈ ሼ0,1ሽ. The set ܮ contains two labels ሼ0,1ሽ, 

where the pixels labelled 1 belongs to the object while the pixels labelled 0 belongs to 

the background. The energy function can be defined according to Equation (12), which 

can be minimized using the max-flow/min-cut in the ݏ െ  .graph [98] ݐ

Figure 3.11: An illustrated diagram of the graph cut segmentation process. (a) Original iris 
image, (b) pre-processed iris image with initialized contours (c) graph cut segmentation 
diagram showing the source and sink and connections.  
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(b) 

Source S 

Sink T 

Cut 

arcs (links) 
nodes 

t‐link 

n‐link 

(c) 



 

68 
 

ሺ߰ሻܧ ൌ ஻ሺ߰ሻܧ ൅  ሺ12ሻ											ோሺ߰ሻ,ܧ߮

 ஻ is the boundary energy term which incorporates the boundary constraint intoܧ 

the segmentation process while, ܧோ is the regional energy term representing the regional 

image energy information in the segmentation process. The boundary term is used to 

penalize dissimilar neighbours in the graph cut equation, while the regional term penalizes 

pixel labels based on local properties of the negative log-likelihood of the image 

intensities. Also, ߮ is a regularization term between the regional and the boundary 

information which weights the importance of each in the equation. When ߮ is set to 0, 

the regional information is ignored and only the boundary information is considered. The 

regional energy term can be defined as [99-101]: 

ோܧ ൌ 	෍ܴ௣൫ܮ௣൯,									ሺ13ሻ
௣∈௉

 

Where ܴ ௣ሺ݈௣ሻ is the penalty for assigning the label ݈ ௣ to the pixel ݌. The weight of ܴ ௣ሺ݈௣ሻ 

is obtained by comparing the intensity of the pixel ݌ with the given intensity histogram 

of the object and background. The weights of the ݐ െ  :is defined as follows ݏ݈݇݊݅

௣ሺ1ሻܧ ൌ െ݈݊ܲݎሺ൫ܫ௣ห′ܱܾ݆݁ܿݐᇱ൯,									ሺ14ሻ 

௣ሺ0ሻܧ ൌ െ݈݊ܲݎሺ൫ܫ௣ห′ܾ݇݃݀݊ݑ݋ݎᇱ൯,									ሺ15ሻ 

Therefore, when the probability of the object ܲݎሺ൫ܫ௣ห′ܱܾ݆݁ܿݐ′൯ is larger than that 

of the background ܲݎሺ൫ܫ௣ห′ܾ݇݃݀݊ݑ݋ݎ′൯, ܧ௣ሺ1ሻ will be smaller that ܧ௣ሺ0ሻ. This indicates 

that the pixel is more likely to belong to the object rather than the background and the 

penalty for grouping the pixel into object is much smaller than that of grouping it to 

background. Thus the regional term is fully minimized when all of the pixels have been 

correctly separated into two subsets. Similarly, the boundary term ܤழ௣,௤வ, is defined by 

the increasing function of ห݈௣, ݈௤ห as follows [101]: 

ߙ	ழ௣,௤வܤ exp൭െ
൫ܫ௣ െ ௤൯ܫ

ଶ

ଶߪ2
	 .

1
,݌ሺݐݏ݅݀ ሻݍ

൱,															ሺ16ሻ 

Where ܫ௣ and ܫ௤ represents neighbouring pixels and ߪ denotes the camera noise. 

This indicates that when the intensity difference between the two neighbouring pixels is 

small, the penalty is high, otherwise it is low. Therefore, the energy function is more 
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likely to reach a minimum value at the boundary of the object rather than at any other 

point. In Boykov and Jolly [95], it was shown that the minimized energy of the graph can 

be computed by a min-cut through max-flow energy on the image. Thus, the minimum 

energy problem can be converted to the graph cut problem. In order to get a reasonable 

segmentation result, the assignment of the weight in the ݏ െ  .graph is very important ݐ

Table 3.2, shows the assignment of weight in the ݏ െ   .graph image ݐ

 

 

 

 

 

 

 

Table 3.1: The assignment of weights to the ݏ െ  .graph image ݐ

From the table, it can be inferred that when the intensity of the pixel is inclined to 

the object, the weight of the pixel and the ݏ െ  will be larger than the weight of the ݁݀݋݊

neighbouring pixel and the ݐ െ  Therefore, the cut is more likely to occur at the .݁݀݋݊

edge with smaller weight and dissimilar intensity values. Also, for neighbouring pixels, 

when their intensity difference is smaller, the weight is bigger which is more likely to be 

separated by the cut. Thus the implementation of the graph cut can be fulfilled by the 

max-flow/min-cut as described in [95 -101].  

A cut on the graph partitions the nodes of the graph into subset of edges such that 

the terminals becomes separated. In combinatorial optimization, it is always normal to 

define cost of a cut as the sum of edge weights (cost) of the edges that it severs. Therefore, 

as illustrated in Figure 3.11, the partitioning of the nodes corresponds to the segmentation 

of the underlying image. A minimum cut generates a segmentation that is optimal in terms 

of the properties that are built into the edge weights. Therefore, the cost of the min-cut on 

the graph can be defined as [95]: 

Edge   Weight  Condition  

൏ ,݌ ݍ ൐  ழ௣,௤வܤ ሼ݌, ሽݍ ∈ ܰ 

 
 

													ሼܲ, ܵሽ 

߮. ோሺ0ሻܧ ݌ ∈ ܲ ሺܷ݇݊݊ݓ݋ሻ 

ܭ ݌ ∈  ݐ݆ܾܱܿ݁

0 ݌ ∈  ݀݊ݑ݋ݎ݃݇ܿܽܤ

 
 
             ሼܲ, ܶሽ 

߮. ோሺ1ሻܧ ݌ ∈ ܲ ሺܷ݇݊݊ݓ݋ሻ 

0 ݌ ∈  ݐ݆ܾܱܿ݁

ܭ ݌ ∈  ݀݊ݑ݋ݎ݃݇ܿܽܤ
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,ሺܵݐݑܥ ܶሻ ൌ෍෍߱ሺ݅, ݆ሻ
௝∈்௜∈ௌ

,						ሺ3.17ሻ 

The minimal cut on the graph can be computed in polynomial time, which 

guarantees good speed. The GCBAC model tries to relate the cost of the cut on the graph 

to the length of an underlying curve as shown in Figure 3.13 (a).  

Now, consider an image which is embedded in a discrete grid. The neighbourhood 

system ܰ ௚ of the image can be of different forms as shown in Figure 3.12 (a-c). The edges 

of the neighbourhood system forms a family of lines in different directions  

ሾെ,			, ̸,				|,				\	ሿ as shown in Figure 3.13 (a).  

The cost of an ሺݏ,  :ሻ cut in the constructed graph is now equivalent toݐ

ܿሺܵ, ܶሻ ൌ෍෍ܿሺ݅, ݆ሻ
௝∈்௜∈ௌ

ൌ ෍ߙ௡ሺ݇ሻ߱௞,							ሺ3.18ሻ

ே೒

௞ୀଵ

 

Where ߙ௖ሺ݇ሻ is the number of arcs or edges of the family of lines ݇ that connects ܵ to ܶ, 

and ߱௞ is the weight of the arcs of family of lines ݇. 
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Figure 3.12: The graph neighbourhood system, (a) 4 neighbourhood system, 
(b) 8 neighbourhood system and (c) 16 neighbourhood system.  

(a)   (b)  (c)  



 

71 
 

 

 

 

 

 

 

 

 

In order to relate the family of arcs or lines (as shown in Figure 3.9 (a)) formed 

using graph cut, with the continuous contour representing the boundary of the image, the 

Cauchy-Crofton formula is employed to relate the length of the curve ܥ to a measure of 

a set of lines intersecting it. Let ܮሺߩ,  ሻ be a straight line which is represented in the polarߠ

coordinates by the two parameters ሺߩ,  ሻ. The Cauchy-Crofton formula which can be usedߠ

to establish the Euclidean length of the curve is given as: 

ఌ|ܥ| ൌ
1
2
න න ܰሺߩ, ߠ

ஶ

ିஶ
ሻ݀ߠ݀݌,							ሺ3.19ሻ

గ

଴
 

Where ܰሺߩ, ,ߩሺܮ ሻ is the number of linesߠ  is a ܥ and ,ܥ ሻ intersecting with the curveߠ

regular curve. The Cauchy-Crofton formula can be extended to Riemannian space, such 

that the length of the curve ܥ according to the metric tensor ܦ is given by: 

ோ|ܥ| ൌ
1
2
න න

ܦݐ݁݀
2ሺݑ௅

௨௅ሻଷܦ் ଶ⁄ ܰሺߩ, ߠ
ஶ

ିஶ
ሻ݀ߠ݀݌

గ

଴
,						ሺ3.20ሻ 

Where ݑ௅ is a unit vector in the direction of the line ܮ.  

Now, the neighbourhood system ௚ܰ on the discrete grid, can be defined by a finite set of 

undirected vectors ݁௞, where ௚ܰ ൌ ൛݁௞: 1 ൏ ݇ ൏ ݊௚ൟ. Each of the vectors ݁௞ generates a 

family of lines as shown in Figure 3.12. The lines are made up of a family of lines which 

are separated by a common distance ∆ߩ௞. In each direction ߠ௞, there exist a family of 

parallel lines separated by a distance ∆ߩ௞ as shown in figure 3.13(a). 

Figure 3.13: The 16-neighbourhood system, Cauchy-Crofton formula used to 
establish a link between a finite set of lines and the length of the curve C.  

(a)  (b) 
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The approximation of the Euclidean length of the curve ܥ can be obtained by the 

discretization of Equation (3.20), which is given as follows: 

ఌ|ܥ| ൌ
1
2
෍ሺ෍ߙ௖ሺ݅, ݇ሻ∆ߩ௞ሻ∆ߠ௞ ൌ ෍߮௖ሺ݇ሻ

ଶߜ ∙ ௞ߠ∆
2|݁௞|

௡೒

௞ୀଵ௜

௡೒

௞ୀଵ

,												ሺ3.21ሻ 

Where ݅ is an index of the ݇௧௛ family of lines, while ߙ௖ሺ݅, ݇ሻ is the count of the 

number of intersections of lines	݅ of the ݇௧௛ family of lines with the curve ܥ. The total 

number of intersections of the ݇௧௛ family of lines with the curve	ܥ can be given as 

௖ሺ݇ሻߙ ൌ ∑ ,௖ሺ݅ߙ ݆ሻ௜ . 

In order to set the arc weights, the Cauchy-Crofton’s formula given in Equation (3.19) is 

used. The arc weights are set such that the cost of the graph approximates the Euclidean 

length of the contour separating the two sets ܿଵ and ܿଶ as follows: 

ܿሺܿଵ, ܿଶሻ ൌ ෍݊௖ሺ݇ሻݓ௞			݁ݎ݄݁ݓ	ݓ௞ ൌ
௞ߠ∆ଶߜ
2|݁௞|

,									ሺ3.22ሻ

௡೒

௞ୀଵ

 

This can be extended to the Riemannian metric using the following weights: 

߱௞ሺ݌ሻ ൌ
ଶߜ ∙ |݁௞|ଶ ∙ ௞ߠ∆ ∙ det	ሺܦሺ݌ሻሻ

2ሺ݁௞
ሻ݁௞ሻଷ݌ሺܦ் ଶ⁄ ,									ሺ3.23ሻ 

Where ߱ ௞ሺ݌ሻ is the weights of the arcs leaving the node ݌, while ܦሺ݌ሻ is the local 

Riemannian metric at point ݌. This is able to show explicitly the relationship between the 

cost of graph cut and the geometric length of the contour separating the sets ܿଵ and ܿଶ 

which is defined by the cut.  

The method we have described here is computationally expensive and it cannot 

be used iteratively on a large dataset. However, inspired by this approach, we propose a 

new method for fast and accurate computation of approximate geodesics and minimal 

surfaces based on the Chan-Vese active contour model.  
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3.4.3.1 The Modified Total Variation Normalization Approach 

Active contour based on variational level-set method was introduced by Chan-

Vese [86], [87]. The Chan-Vese model is a special case of Mumford-Shah functional for 

segmentation by level-sets. It is different from other active contour models in that it is not 

edge dependent which means that it is more capable of detecting objects whose 

boundaries are not gradient dependent. The region detection step was accomplished in 

sections 3.4.1 and 3.4.2, which provides a set of regions which is passed as an 

initialization to the GCBAC segmentation method. We exploit the efficiency and 

accuracy of a global optimal total variation segmentation approach to calculate the 

accurate boundary of each of the boundaries of the iris. This hybrid algorithm combines 

active contour with a graph cut’s regional model to create an energy functional for iris 

segmentation. Instead of discretizing the Euler-Lagrange equations as shown earlier, we 

discretize the variation functional based on Chan-Vese model. The GCBAC model can 

now be formulated using binary level set function ∅ ൌ ൛∅หΩ	 → ሼ0,1ሽൟ, representing 

inside and outside the contour ܥ. Where ∅ is a function representing the level-set 

functional of the iris image and ߗ is a set of labels representing subsets of the image 

belonging to either foreground or background. Therefore, we derive a curve evolution 

solution for the min cut problem. The min cut problem originates from graph cut 

partitioning as shown in Equation 3.17. In continuous domain, the equivalent energy 

functional can be defined as follows [87]: 

min
∅,௖భ,௖మ

,∅஼௏ሺܧ ܿଵ, ܿଶሻ ൌ ݒ	 න ݔ݀|∅׏| ൅ ∅ௗ௔௧௔ሺܧ
Ω	

ሻ																									ሺ3.24ሻ 

Where  

ௗ௔௧௔ሺ∅ሻܧ ൌ න ൛∅|ܿଶ െ ଴|ఉߤ ൅ ሺ1 െ ∅ሻ|ܿଵ െ ሺ3.25ሻ										ݔ଴|ఉൟ݀ߤ
Ω	

 

The discretization of the Equation (3.24), is achieved by using the anisotropic variant of 

the total variation term. The anisotropic variant, using 1-norm is given as: 

ܶ ଵܸሺ∅ሻ ൌ න ݔଵ݀|∅׏| ൌ 	න ห∅௫భห ൅
ఆఆ

ห∅௫మห݀ݔ,										ሺ3.26ሻ 

Now, let ߩ ൌ ሼሺ݅, ݆ሻ ⊂ Ժଶሽ denote the set of grid points. For each pixel ݌ ൌ

ሺ݅, ݆ሻ ∈ the neighbourhood system ௣ܰ ,ߩ
௞ ⊂  for four neighbourhood system is defined  ߩ

as  
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௣ܰ
ସ ൌ ሼሺ݅ േ 1, ݆ሻ, ሺ݅, ݆ േ 1ሻሽ ∩ ܲ,								ሺ3.27ሻ 

Where ܲ denotes the all the neighbouring pixels of ݌. 

Therefore, the discrete energy function of the GCBAC can be formulated as: 

min
∅,௖భ,௖మ

ௗܧ ൌ ෍ݒ ෍ ߱௣௤ห∅௣ െ ∅௤ห ൅෍ܧ௣ௗ௔௧௔൫∅௣൯
௣∈Ƥ

,
௤∈ே೛

ೖ௣∈Ƥ

						ሺ3.28ሻ 

Where  

௣ௗ௔௧௔൫∅௣൯ܧ ൌ ቄ∅௣หܿଶ െ ௣଴หߤ
ఉ
൅ ሺ1 െ ∅௣ሻหܿଵ െ ௣଴หߤ

ఉ
ቅ,							ሺ3.29ሻ 

The weights ߱௣௤ is therefore given as: 

߱௣௤ ൌ
ଶߜ4

݌‖݇ െ ଶ‖ݍ
	,																	ሺ3.30ሻ 

This is similar to the weights derived from the Cauchy-Crofton formula of integral 

geometry as shown in Equation (3.19). 

The discretization problem of Equation (3.28) can be minimized globally using graph cut 

optimization. Graph cut is a well-known global optimization technique which is able to 

find global solution for a given set of boundary conditions. Due to the duality theorem 

provided by Ford and Fulkerson [69], there are now several fast algorithms for this kind 

of problem out there. It was introduced as a computer vision tool by Greig et al. [70], in 

connection with Markov random fields [63], and has later been studied by Kolmogorov 

et al. [62- 64]. It has been widely applied in many areas of computer vision including: 

stereo vision, segmentation [53], and noise removal and image restoration [55].  

The discrete energy function ܧ in Equation (3.28), is composed of pairwise interaction 

terms between binary variables which can be minimized using graph cuts. Therefore the 

graph representation of the total variation problem can be given as [96]: 

min
ೞࣰ, ೟ࣰ

ܿሺ ௦ࣰ, ௧ࣰሻ ൌ min
∅
,∅ௗሺܧ ܿଵ, ܿଶሻ ൅෍ߪ௣,															ሺ3.31ሻ

௣∈Ƥ

 

Where ߪ௣ ∈ Թ are fixed for each pixel ݌ ∈ Ƥ. The graph is constructed such that there is 

a one-to-one correspondence between cuts on ܩ and the level set function ∅. The 

minimum cost cut will correspond to the level set function ∅ minimizing the energy in 
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Equation (3.28). In the graph, the two vertices are associated to each grid point ݌ ∈ Ƥ 

which are denoted by ݒ௣,ଵ and ݒ௣,ଶ and corresponds to the set of pixels inside and outside 

the contour ܥ. Hence the set of vertices is defined as  

ࣰ ൌ ቄ൛ݒ௣,௜ห݌ ∈ Ƥ,			݅ ൌ 1,2ൟ ∪ ሼݏሽ ∪ ሼݐሽቅ									ሺ3.32ሻ 

The edges are constructed such that the relationship in Equation (3.29) is satisfied. For 

each grid point ݌ ∈ Ƥ, the edges constituting the data term can be defined as: 

ሻ݌஽ሺߝ ൌ ൫ݏ, ௣,ଵ൯ݒ ∪ ൫ݒ௣,ଵ, ൯ݐ ∪ ൫ݒ௣,ଶ, ൯ݐ ∪ ൫ݒ௣,ଵ, ௣,ଶ൯ݒ ∪ ൫ݒ௣,ଶ,  ሺ3.33ሻ										௣,ଵ൯,ݒ

Where ߝ஽ is the set of all data edges which is defined as ∪௣∈  ሻ. Also, the edges݌஽ሺߝ݌

corresponding to the regularization term is defined as 

ோߝ ൌ ൛൫ݒ௣, ,௤൯ݒ ,݌∀ ݍ ⊂ Ƥ	ݏ. .ݐ ݍ ∈ ௣ܰൟ,						ሺ3.34ሻ 

Weights are assigned to edges such that the relationship in Equation (3.34) is satisfied. 

The regularization edge weights are given as: 

߱൫ݒ௣, ௤൯ݒ ൌ ߱൫ݒ௤, ௣൯ݒ ൌ ௣௤߱ݒ ,							⩝ ݌ ∈ Ƥ, ݍ ∈ Ɲ௣,							ሺ3.35ሻ	 

And, the weights on the data edges ߝ஽ for a grid point such as ݌ ∈ Ƥ is given as: 

ሻ݌ሺܣ ൌ ߱൫ݒ௣, ሻ݌ሺܤ			,൯ݐ ൌ ߱൫ݏ,  ሺ3.36ሻ									௣൯,ݒ

Therefore, a cut ܥሺ ௦ࣰ, ௧ࣰሻ, on the graph corresponding to the level set function can be 

defined as: 

∅௣ ൌ ൜
௣ݒ	݂݅					1 ∈ ௦ࣰ

௣ݒ	݂݅				0 ∈ ௧ࣰ
		,								ሺ3.37ሻ 

 

3.4.4 Pupil/Iris Boundary Segmentation Using GCBAC 

The GCBAC model presented in section 3.4.3.1, provides us with a method for 

computing the global optimal partition of iris boundaries in the eye image. This is 

achieved by first transforming the image into an edge capacitated graph ܩሺܸ, ,ܧ ߱ሻ and 

then computing a minimum cut on the graph. Each pixel within the image is mapped to a 

vertex ݒ ∈ ܸ and if two pixels are adjacent, there exist and undirected edge ሺݑ, ሻݒ ∈  ܧ

between the corresponding vertices ݑ and ݒ. Edge weight is assigned according to a 
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measure of similarity between two pixels as shown in Table 3.1. A cut on the graph will 

partition the nodes into two subsets with minimum capacity where the summation of edge 

weights across the cut is minimized. Therefore, the corresponding contour on the graph 

will partition the image into two segments with the minimum between-segments-

similarities. The contour that partitions the image into two subsets ܵ and ܶ corresponds 

to a cut ܿሺܵ, ܶሻ on the graph.  

The GCBAC proposed in this work is a kind of narrow-band algorithm using the 

basic concept proposed by Boykov and jolly [92]. Given an initial contour as determined 

in sections 3.4.1 and 3.4.2, the algorithm iteratively searches for the closest contour and 

replaces the initial contour with a global minimum within the contour neighbourhood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

(d)  (e)

(g)

(f) 

Figure 3.14: Sample iris image showing the GCBAC segmentation process for the 
pupil: (a) original iris image (b) pre-processed iris image (c) iris image showing 
initialized contour on the approx. pupil boundary, (d) iris image showing the initialized 
contour and the dilated contour  (e) GCBAC energy image, (f) iris image showing the 
initial contour and the dilated contour with the pixels labelling process in-between, (f)  
final image showing the segmented pupil. 
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Consider the original iris image to be segmented. The image is first pre-processed 

according to the proposed algorithm in section 3.4. This initial step is carried out to detect 

and remove noise and reflection which is capable of influencing the segmentation result. 

Now, a contour is initialized at the approximate boundary of the iris as shown in Figure 

3.14 and 3.15. The initial contour is dilated into its contour neighbourhood (CN) in order 

to create a narrow band around the initial contour and minimize time. For the pupil 

segmentation, a structuring element of ൅5 is used to dilate the contour while for iris 

segmentation a structuring element of ൅10 was adopted. The computation of the minimal 

cut on the graph is achieved by minimizing the graph cut energy equation in (3.31). The 

difference in intensities within and outside the initial contour is computed using graph cut 

optimization, and a new contour is initialized based on the new subsets computed using 

the graph cut energy. The evolution of the contour to the new subset boundary does not 

(a)  (b) (c) 

(f) 

(g)

(e)(d) 

Figure 3.15: Sample iris image showing the GCBAC segmentation Process for the iris: (a) 
original iris image (b) pre-processed iris image (c) iris image showing initialized contour on 
the approximate iris boundary, (d) iris image showing the initialized contour and the dilated 
contour  (e) GCBAC energy image, (f) iris image showing the initial contour and the 
dilated contour with the pixels labelling process in-between, (g)  final image showing the  
segmented pupil. 
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require an edge stopping function which is one of the main advantages of the proposed 

GCBAC. The edge stopping is now determined based on the result of the cut on the graph.     

Given the pre-processed iris image, a contour is initialized in the first level at the 

approximate boundary of the pupil. Also, a contour embedding function ∅ is initialized 

as a signed distance function to ߛሺݐ ൌ 0ሻ. The discretization of the evolving contour is 

performed in a highly non-uniform manner according to Equation (3.26). The evolution 

of the contour needs to be fit to points on the iris boundary. The implication is that the 

thin-plate spline energy driving the contour will tend to zero if all the contour points lies 

on a circle. However, where there is non-uniform evolution of the contour, the thin-plate 

energy starts to rise in accordance to the degree of deviation of the contour from the initial 

contour. Therefore, a simple solution was proffered in [56] to deal with this problem. In 

[56], the difference between the initial contour and the evolved contour is computed in 

order to regulate the contour evolution scheme. Thus, where the difference between initial 

contour and the evolved contour is zero (which signifies that the evolution has reached 

the minimum cut), then the contour evolution is stopped. Also, if the difference is more a 

threshold of േ5, (indicating that the evolution is highly irregular), the contour is re-

initialized.  However, where the graph cut boundary is irregular, the thin-plate spline 

energy may not be minimized and the contour can evolve continuously. This can affect 

the segmentation result and lead to the contour incorrectly encompassing some portions 

of the sclera inside the final contour. Therefore, refining the graph cut result using 

mathematical morphology approach yields a more precise contour on the iris boundary.  

The proposed GCBAC model, has the advantage of overcoming the splitting and 

merging of the contour around boundaries. This particular property is very important in 

order to handle effects of radial fibres which can sometime be thick in some parts of the 

iris image, or dark crypts which might be present in the ciliary region of the iris image, 

leading to prominent edges. In segmentation techniques based on parametric curve (e.g., 

the snake segmentation technique [34]), the problem of “local minima” can cause the 

curve to terminate at some of these prominent edges. However, GCBAC is able to 

overcome such problems by basing the curve evolution on the graph cut energy which is 

not dependent on local information only. Thus, the proposed algorithm is able to deal 

effectively with the problem of local minima thereby ensuring that the final contour 

corresponds to the true iris boundary. 
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Also, the contour evolution process around a narrow band accelerates the 

evolution procedure significantly and hence, the whole discretization and normalization 

process is performed in less than a second in a C-Language environment. The evolution 

of the contour can be non-uniform around the boundary which is influenced by obstacles 

such as eyelashes, shadow, blur, etc. Therefore, the embedding function is re-initialized 

again after few iterations, by re-computing as a signed distance function from the new 

contour.  

This hierarchical formation approach adopted here minimizes possible errors. The final 

segmentation of the iris boundaries is carried out in the following steps. 

1. Set the index of the current step to ݅ ൌ 0. 

2. Initialize a contour ܥ on the given image according to Sections 3.4.1 and 3.4.2. 

3. Dilate the current contour ܿ௜ into its contour neighbourhood ܰܥሺܿ௜ሻ within an outer 

contour ܱܥ௜. 

4. Identify all the vertices belonging inside and outside the initial contour ܥ as the source 

 .௜, respectivelyݐ ௜ and the sinkݏ

5. Compute the ݏ െ  min cut to obtain a new boundary that better separates the inner ݐ

boundary from the outer boundary. 

6. Terminate the algorithm if the resulting contour ܿ̂ reoccurs, otherwise set ݅ ൌ ݅ ൅ 1, 

and return to step 1.  

The iris images in figure 3.15, shows samples of iris images segmented using the 

proposed approach. The result show the accuracy of the segmentation method.  

 

3.4 Eyelash Detection  

Eyelashes are most times superimposed in the iris in non-ideal iris images. This 

can significantly hamper the recognition accuracy if not detected and excluded. The 

eyelash appears in the iris image as dark transient signals with high intensity variation 

than the background. This can easily be measured using the traditional wavelet 

transformation. In order to overcome the challenge normally posed by the heterogeneous 

nature of iris images, a block based approach is adopted for the estimation of the eyelash 

region before final detection of the eyelashes.  

Let ܫሺܰ,ܯሻ be the original iris image which is then subdivided into blocks where 

each block is a sub-image of the original image. For each block ݊	 ൈ ݉, the local energy 
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is computed using discrete wavelet transform (DWT), which is a multiscale frequency 

decomposition technique [85]. The high frequency sub-bands of the detailed wavelet 

coefficients denoted by ܦ௜ ൌ ሼܮܪ,  ሽ are able to capture the high frequencyܪܪ,ܪܮ

variations in both horizontal, vertical and diagonal directions. The lowest computational 

cost wavelet transform, the Haar wavelet with one level of resolution is chosen to 

decompose each block into four frequency bands of size 
௡೗
ଶ
ൈ ௠೗

ଶ
. The square root of the 

second order moment of wavelet coefficients in each detailed coefficient ܦ௜ is computed 

as defined in [50]. 

݂ሺ݇ሻ ൌ ሺ
1
2
෍෍ ௞ܹ,௜,௝

ଶ ሻ
ଵ
ଶ

௒೗
ଶ

௝ୀ଴

௑೗
ଶ

௜ୀ଴

								ሺ3.33ሻ 

Where ݇ ∈  ௜ and ௞ܹ represents the matrix of wavelet coefficients of the blockܦ

in the ܦ௜ set. The texture descriptor representing the maximum energy of the block (local 

energy) is determined as  

௡ܧ ൌ ݇∀					,ሺ݇ሻ݂ݔܽ݉ ൌ  ሺ3.34ሻ						௜ܦ

Where ݂ሺ݇ሻ is the energy of the high frequency sub-bands. A 1-D energy vector 

 ௡, is then used in block wise clustering approach to capture the region of interest (ROI)ܧ

as shown in Figure 3.16c.  

 

 

 

 

 

 

 

 

 

(a)  (b) 

(e) 

(c) (d) 

Figure 3.16: The eyelash detection process: (a) original image, (b) image partitioned 
into blocks, (c) result of block based classification, (d) iris image showing the 
candidate eyelash and non-candidate eyelash regions, (e) Eyelash segmented iris 
image
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The classification of the blocks into candidate eyelash region (CES) and non-

eyelash (NES) regions was achieved using a Bayesian classification approach. A Bayes 

classifier is a simple probabilistic classifier based on applying Bayes’ theorem (from 

Bayesian statistics) with strong (naive) independent assumptions to predict data classes.  

Despite their naive design and over-simplified assumptions, naive Bayes classifier has 

worked quite well in many complex real world situations.  Three regions are defined 

namely: high frequency ܤு blocks, low frequency ܤ௅blocks and medium frequency 

 ெblocks, respectively. High frequency blocks include regions in the image with highܤ

frequency (sharp edges) such as eyelash blocks, and pupil edge blocks. Having known 

the location of the pupil edges from the pupil segmentation process in section 3.4.4, it is 

very easy to eliminate the pupil edge blocks from the region of interest blocks. Low 

frequency blocks (with no edges at all or very smooth edges) include blocks such as 

limbic edge blocks and other smooth areas of the image while medium frequency blocks 

include blocks with weak edges such as separable eyelash blocks. Therefore the blocks 

of interest (BOI) is given as the sum of medium frequency ܤெ blocks and high 

frequencyܤு blocks. The regions are first estimated by applying k-means classifier to 

roughly cluster ܧ௡ into three classes and final classification is achieved using Bayes 

classifier given as follows:  

ܲሺݔ௡|ܧሻ ൌ
ܲሺܧ௞|ݔ௡ሻܲሺݔ௡ሻ

ܲሺܧሻ
									ሺ3.35ሻ 

Where ܲሺܧ௞|ݔ௡ሻ denotes the probability distribution of the extracted feature 

component ܧ௞ conditioned by the clustered result ݔ௡.  

Now, in order to detect the eyelash pixels, a relative difference ratio (RDR) based 

on energies of the eyelash candidate and non-eyelash candidate regions was used. This 

idea stems from the fact that the eyelash is normally darker than the surrounding iris 

background pixels and as such they portend higher energy than the iris pixels.  

Let ܧ௜
ௗԦሺݔ,  ሻ be the regional energy term for a particular region of the iris, andݕ

௜,௞ܦ
ௗԦ ሺݔ, ,ݔሻ be the gray level intensity value of the pixel in positionሺݕ  ሻ. Where ݅ is theݕ

resolution level, and Ԧ݀ is the direction symbol representing horizontal, vertical and 

diagonal directions of the detailed coefficients of the wavelet transform and ݇ represents 

the region. The regional energy can be computed as: 
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௜ܧ
ௗԦሺݔ, ሻݕ ൌ ෍ ቂܦ௜

ௗԦሺ݊ ൅ ݊ᇱ,݉ ൅݉ᇱሻቃ
ଶ
,

௡ᇲ∈௅,௠ᇱ∈௄

								ሺ3.36ሻ 

Where		ሬ݀ሬሬԦ ൌ 1,2,3. The relative difference ratio of the eyelash candidate and non-

eyelash candidate regions are then evaluated as 

ܴܦܴ ൌ 	
ቀܧߤ௜,௞ଵ

ௗԦ െ ௜,௞ଶܧߤ
ௗԦ ቁ

௜,௞ଵܧߤ
ௗԦ

,									ሺ3.37ሻ 

Also, the standard deviation ߪ௜ of the non-eyelash candidate region is also 

computed. Now for every iris pixel, if the mean energy ܧߤ௜
ௗԦ  (energy in horizontal, vertical 

and diagonal directions) is greater than one of its eight neighbours and is less than T, then 

the pixel is considered as an eyelash pixel. T is a threshold which is determined as:  

ܶ ൌ ௜,௞ଵܧߤ
ௗԦ െ  ሺ3.38ሻ						௜,ߪ2.5

 

 

3.5 Iris Image Normalization and Enhancement 

Normalization is performed on the segmented iris image in order to achieve size 

invariance of the iris sample. We adopt the rubber sheet model [11] to normalize or 

unwrap the isolated iris area. The eyelash may occlude the iris region and significantly 

impact of the recognition performance. We apply eyelash detection strategy described in 

section 3.4, to exclude the eyelash portion. We create a binary mask based on the 

extracted iris contour and detected eyelashes. Since the elicited iris regions does not 

exhibit exact circular or elliptical properties, and may exhibit arbitrary shapes, a circle 

fitting strategy proposed by Shah and Ross [52] is employed to compensate for the size 

irregularities of the iris. In order to transform the detected iris region to rectangular form, 

the radius and corresponding centre coordinates of the iris needs to be estimated. Shah 

and Ross [52], considered only those points on the contour laying on the iris/sclera 

boundary, since the circle that fits all the points of the extracted contour may all lie inside 

the actual iris boundary especially if a significant portion of the iris is occluded by the 

eyelids. In our approach, we approximate the radius R, at six points selected from the 

extracted iris contour at the angles of [-30o, 30o, 0o, 150o, 180o, 210o] with respect to the 
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horizontal axis, and their average distance from the centre of the pupil are calculated. A 

circle fitting strategy is then adopted so that all the points on the contour are within a 

distance of ܴ േ 15 pixels from the centre of the pupil. The centre values obtained through 

the elliptical fitting process and the approximate radius of such as circle are used for the 

unwrapping process. Full description is available in [52]. The normalization produces a 

2-D array with the horizontal dimensions corresponding to the angular resolution, and the 

vertical dimensions corresponding to the radial resolution. The images shown in Figure 

3.13a, illustrates the approximate iris/pupil contours, while Figure 3.13b, shows the 

segmented iris images after iris/pupil localization, eyelash detection and iris/pupil 

boundary approximations. 

In order to compensate for the elastic deformation of the iris texture, the localized 

iris regions is unwrapped into a normalized rectangular block of a fixed size 64	 ൈ 512, 

by converting from the Cartesian coordinate system to the polar coordinate system [11]. 

Given ܫሺݔ, ,ݎሺܫ ሻ as the localized image, the polar representation of the formݕ  ሻ can beߠ

obtained as follows: 

 

 

ݎ ൌ ඥሺݔ െ ௜ሻଶݔ ൅ ሺݕ െ 0								௜ሻଶ,ݕ ൑ ݎ ൑  						ሺ3.39ሻ					௠௔௫,ݎ

 

ߠ ൌ ଵି݊ܽݐ ൬
ݕ െ ௜ݕ
ݔ െ ௜ݔ

൰,							ሺ3.40ሻ 

Where ݎ and ߠ are defined with respect to the centre coordinates ሺݔ௜,  ௜ሻ. The centreݕ

coordinate values obtained during the elliptical fitting are used as the centre points for 

unwrapping the iris image. 
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Figures 3.13a and b, show the normalized iris images. Since the normalized iris 

images are of relatively low contrast, and may also be affected by non-uniform 

illumination due to the positioning of light sources, a local intensity based histogram 

equalization technique is applied to enhance the image. This technique improves the 

quality of the normalized iris image, thereby increasing the recognition accuracy. Figures 

3.13c and d show the effects of iris image enhancement using the histogram equalization 

technique.  

 

(a) 

ࣂ

r

Normalized iris 

Normalized iris mask 

Black region denote region 
of interest 

White region denote noise 

Original iris image 
including eyelash 

(b) 

r

 ࣂ

Normalized iris image 

Original iris image with 
eyelash excluded 

Normalized iris mask 

Region of interest 

Figure 3.17: (a) unwrapping of the iris image without eyelash exclusion, (b) unwrapping of the 
iris image with the eyelash occluded region excluded. 
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3.6  Summary 

In this chapter, the model for the accurate segmentation of the pupil and iris 

boundaries have been presented. The key steps of this model include: reflection detection 

and removal using a multiresolution edge-weighted highpass filter and an exemplar based 

image inpainting method, iris boundaries segmentation using a two level, two steps 

hierarchical approach based on graph cut optimization and active contour method and a 

post processing operation for the removal of eyelashes and shadows using a block based 

classification and statistical prediction method. A normalization method based 

Daugman’s rubber sheet model is also applied to normalize the segmented iris image. The 

algorithm is accurate at localizing iris boundaries by combining both local and regional 

information of the iris to estimate and refine iris boundaries. Also, the algorithm is robust 

at handing most of the non-idealities of the iris image using pre-processing and post-

processing operations.   

  

(a)  (b) 

(c)  (d) 

Figure 3.18: The results of the iris sample enhancement; (a, b) shows the 
unwrapped iris image before enhancement, (c, d) shows the unwrapped iris 
image after enhancement. 
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Chapter 4 

 

4  DISTINCTIVE IRIS FEATURE 
EXTRACTION AND CLASSFIFICATION FOR 
IRIS BIOMETRICS 

This chapter presents the feature extraction and classification methods used in this 

work. In Section 4.1, a brief introduction to the subject of iris feature extraction and 

classification for iris recognition is presented. The proposed feature extraction 

methodology is discussed in Sections 4.2 and 4.3. While, Section 4.4 introduces the iris 

pattern matching and classification process adopted in this work. Section 4.7 summarizes 

the key points and contributions of this chapter. 

 

4.1 Introduction  

Due to the increasing demand for enhanced security, iris based biometrics for 

personal identification has become a hot research topic in the fields of pattern recognition, 

computer vision, machine learning and computer security [13-46]. Most current state-of-

the-art iris recognition algorithms focus mainly on improving the iris pre-processing 

module for iris recognition, but recently, important new directions have been identified 

in the area of iris feature extraction research for iris biometrics. Iris feature extraction is 

a process used for extracting or deriving informative and non-redundant values (features) 

from the iris sample which is intended to facilitate the learning and/or recognition of an 

individual’s iris pattern. The iris feature extraction is effectively a type of dimensionality 

reduction technique that efficiently represents interesting parts of the iris image as a 

compact feature vector. This is useful in order to reduce the dimensionality of the feature 

vector and for fast image matching and classification. It is also important for the 

representation of the iris sample with a more invariant feature vector which is more stable 

even if there is a change in the original sample by rotation, scale, size, and translation. 

The general aim of iris feature extraction and representation is to represent the iris sample 

with a small enough as well as discriminative enough feature vectors which is able to 

distinguish one sample from another. By discriminative feature vector we mean the ability 
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of the feature vector to possess unique information that can distinguish it from the feature 

vector of another sample. 

Daugman [8-11] in his work utilized a multi-scale 2-D complex Gabor filters to 

demodulate the texture phase structure information of the iris image. The decomposition 

of the iris image using the 2-D complex Gabor filters generated a 1024 complex-valued 

phasors which denote the phase structures of the iris at different scales. The phasors are 

then quantized into four quadrants in the complex plane giving rise to 2048 component 

iris code, used to represent the iris. This can be considered to be of high dimensionality 

as a feature code. The high dimensionality of the iris code can have a major impact on the 

efficiency of the subsequent matching and classification modules.  A method needs to be 

adopted in order to reduce the dimensionality of the iris code while still maintaining a 

high level of accuracy of IrisCode for representing an individual’s iris pattern.  

 In this chapter, we propose an iris recognition scheme based on Principally 

Rotated Complex Wavelet Filters PR-CWF for iris texture feature extraction. Particle 

Swam Optimization (PSO) is employed for feature selection and encoding while adaptive 

support vector machine (ASVMs) is used for matching and classification. PR-CWF is 

able to elicit important discriminative iris features from the iris image in the directions of 

the principal texture pattern. In the second stage, the PSO which is a population based 

stochastic optimization technique is employed to select optimal features from the feature 

vector pool for the correct representation of the iris sample. Also, instead of using the 

entire iris image for feature extraction, we elicit the iris information from a subsample of 

the localized iris image in order to reduce errors caused by occlusions from eyelids, 

eyelashes and shadow.  

The selection of a feature subset from the original feature vector pool is relatively 

new in the field of iris feature extraction [53]. The process is aimed at significantly 

lowering the dimensionality of the feature set and increasing the overall speed of the 

system. The iris sample normally contain high level of textural features with 

comparatively small number of samples per subject, which makes accurate and reliable 

iris pattern classifications a difficult task [54-63]. The huge textural information in the 

iris create high level of redundancy in the extracted iris features. A feature selection 

scheme can be used to select the best features from the feature pool in order to reduce the 

feature dimensionality.  

There have been many traditional selection schemes like the Principal Component 

Analysis (PCA), Independent Component Analysis (ICA), Singular Value Decomposition 

(SVD), etc., used for this kind of task. However they mostly require a sufficient number 
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of samples per subject in order to select the salient feature sequence present. Moreover, 

accumulating a large number of samples is costly due to the resources needed for the 

management of such huge data. Therefore, feature subset selection is a multi-criterion 

optimization problem, which increase the speed of the iris recognition system by lowering 

the computational task.  

New feature selection schemes like Genetic Algorithm (GA) and Neural Networks 

(NN) have been proposed to solve this problem and produce improved performance. 

However, they also suffer from slow convergence and the likeliness to fall into local 

minima. The particle swam optimisation PSO which has many similarities with 

evolutionary computation technique like GA, presents an alternative approach to solving 

this kind of problem. PSOs are generally very effective in rapid global search of large, 

non-linear and poorly understood data [66]. The PSO is preferred to GA because it is easy 

to implement, has few parameters to adjust and unlike GA, PSO do not have evolution 

operators like crossover or mutation. In view of the many advantages of PSO, we adopt 

PSO based technique for the selection of the optimal feature subset from the extracted 

feature sequence.  

SVMs have successfully been applied to solve a lot of classification problems due 

to their outstanding ability to interpret data geometrically. SVM is able to discriminate 

one class of data from the other by separating them with a hyperplane which has the 

maximum margin, for the binary cases [55], [56]. An SVM is a supervised learning model 

with associated learning algorithm which uses a vector space based machine learning 

method to find a decision boundary (hyperplane) between two classes that is maximally 

far from a point in the training data.  The scheme is able to discount some points as outliers 

or noise in the classification process. With SVMs, the classification accuracy can be 

estimated by their expected misclassification rate on the target dataset. Therefore, it is 

assumed that the costs for different types of misclassification error are the same. 

However, this assumption is not always the case in many real world situations [56]. The 

two cases in which the above-mentioned assumptions are not valid are described as 

follows: The first case is the sample ratio bias, where in some conditions, especially in 

the one-versus-many condition, the sample proportion between two classes is highly 

unbalanced. The second case is a case where, the different types of misclassification error 

may have different costs, which can lead to different misclassification losses [57]. Most 

of the iris datasets suffer from the lack of sufficient iris samples per subject. Therefore, 

we have adopted the adaptive approach of SVMs by taking into account the above-

mentioned issues. The proposed classification scheme with adaptive SVMs is well suited 
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for different datasets (like the CASIA [189] and the UBIRIS Nonideal [192] datasets), 

where the number of samples per subject is not fixed. 

 

 

4.2 Distinctive Iris Features Extraction 

In this section, we propose to apply the principally rotated complex wavelet filters 

(PR-CWF) to elicit the iris textural information from the iris image [27], [53]. The PR-

CWF is formulated by constructing a complex wavelet filters and rotating the filters in 

the direction of the principal texture direction of the image. In comparison to Gabor 

wavelets which are symmetric with respect to their principal axis, and discrete wavelet 

transform (DCT) which is based on real value oscillating wavelet, complex wavelet 

transform is based on complex-valued oscillating sinusoids which is shift invariant, does 

not oscillate positive and negative around singularities and still maintains all other 

advantages of the DWT as already highlighted in Chapter 2, Section 2.4.   

Several distinctive feature extraction algorithms have been proposed by many 

researchers to extract important iris feature set from the iris sample [56-60]. However, 

most of these algorithms do not perform well for non-ideal iris images captured under 

less-constrained imagery setup. A feature extraction method based on multiscale and 

multiresolution application of PR-CWF on the normalized and enhanced iris sample is 

proposed to cope with the low quality and degraded iris images under study in this work.  

 Some of the related research works on iris feature extraction have proposed 

interesting approaches which are relevant to this work.  In [72], an extension of Gabor 

wavelet-based algorithm, which utilizes the local ordinal information extracted from 

original unfiltered images, was proposed to represent iris images while the modified Log-

Gabor filters were deployed in [61] to extract the iris phase features which is more tolerant 

to the background illumination. Cai et al. [64], proposed an optical wavelet packet 

transform (OPWT) technique for the extraction of the iris features while, Bodade et al. 

[79], introduced the application of a combination of complex wavelet and rotated complex 

wavelet to elicit iris information.  

In this work, PR-CWF is used to extract the characteristic values of the iris from 

the normalized (and enhanced) iris image, and the technique is well suited for analysing 

signals in a multi-resolution mode. The segmented iris image is first divided into four 

sectors. The upper and lower sectors are eliminated because of possible eyelash occlusion. 
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The right and left sectors as shown in Figure 4.2 and 4.3, are normalized and used for 

feature extraction. The normalized (unwrapped) iris image is first enhanced by applying 

a median filter to reduce the effects of non-uniform illumination and improve the quality 

of the image. Then, the principal direction ߠ of textures in the normalized iris image is 

computed using principal component analysis before iris feature extraction is performed 

using PR-CWF. The details of the process for the iris feature extraction are presented in 

the following subsections.  

 

 

 4.2.1 Principal Texture Direction Computation 

Principal component analysis (PCA) have been widely used in the fields of pattern 

recognition and machine learning for feature analysis. PCA technique is normally 

employed to emphasise variation and highlight strong patterns in a dataset. It can be 

defined as a mathematical procedure that uses orthogonal transformation to convert as set 

of data of possibly correlated variables into a set of values of linearly uncorrelated 

variables called principal component [122-124]. The Principal Component Analysis 

(PCA) used in this work is only applied in order to compute the principal texture direction 

(PD) before application of complex wavelet filters to extract the iris features. The 

computation of the principal texture direction is very important since a subset of the 

features is going to be used as the end for representing the iris image. The most distinctive 

feature of the iris sample can be elicited by filtering along the principal texture direction. 

The principal texture direction (PD) of the iris texture pattern is first computed and the 

angle ߠ of the principal direction is subsequently determined by maximizing the variance 

of the projections of the input normalized image.  

Now, given the normalized iris sample ܰ ሺ݅, ݆ሻ we derive the principal components 

PC by maximizing the variances in the directions of the principal vectors. For the given 

normalized iris sample, with ܺ	ܻ-dimensional vectors ݊ ௝ aligned in the data matrix ܺ . Let 

 be a direction which is a vector of length 1. The projection of the j-th vector ௝݊ onto the ݑ

vector ݑ can be computed using Equation (4.1) given as:   

 

௝ܲ ൌ .	ሬԦ்ݑ ሬ݊Ԧ௝ ൌ෍ݑ௜݊௜,௝

ெ

௜ୀଵ

									ሺ4.1ሻ 
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We now find a direction ݑ that maximizes the variance of the projections of all 

the input vectors ݐ௝, ݆ ൌ 1,…ܰ, ݅ ൌ 1,…  The maximization function is given as .ܯ,

follow: 

ሬԦሻݑ௉஼஺ሺܬ ൌ ଶ൫ߪ	 ௝ܲ൯ ൌ 	
1
ܰ
෍ሺ ௝ܲ െ ܲሻଶ ൌ 	… 	ൌ തݑ∑	ത்ݑ

ே

௝ୀଵ

,							ሺ4.2ሻ 

Where ∑ is the covariance matrix of the data matrix N. Let ܰሺ݅, ݆ሻ denote a 

normalized iris image. The PCA can be given as: 

∑ ൌ
1
ܰ
෠ܺ	. ෠்ܺ,													ሺ4.3ሻ 

Where  ෠ܺ ൌ ܺ െ .	ߤ	 1ଵ୶ே,          ߤ ൌ ሾߤଵ, … . . ,  ௠ሿ்ߤ

So that 

∑ ൌ ൥
ܽଵ െ ଵߤ ܾଵ െ ଵߤ ܿଵ െ ଵߤ
ܽଶ െ ଶߤ ܾଶ െ ଶߤ ܿଶ െ ଶߤ
ܽଷ െ ଷߤ ܾଷ െ ଷߤ ܿଷ െ ଷߤ

൩,														ሺ4.4ሻ 

 

From the covariance matrix ∑, the eigenvalues and eigenvectors are calculated. 

The eigenvalues and eigenvectors represents the direction of principal texture pattern. 

The largest eigenvalue equals the maximal variance, while the corresponding eigenvector 

determines the direction of the maximal variance.  

For instance, the 1,1 entry of ∑ is given as: 

 

∑ଵଵ ൌ
1

3 െ 1
ሺሺܽଵ െ ଵሻଶߤ ൅ ሺܾଵ െ ଵሻଶߤ ൅ ሺܿଵ െ  ሺ4.5ሻ										ଵሻଶሻ,ߤ

 

Which is precisely the variance of the first variable. Also the 2, 1, entry of the 

covariance ∑ can be given as: 

 

∑ଵଵ ൌ
1

3 െ 1
൫ሺܽଵ െ ଵሻሺܽଶߤ െ ଶሻߤ ൅ ሺܾଵ െ ଵሻሺܾଶߤ െ ଶሻߤ

൅ ሺܿଵ െ ଵሻሺܿଶߤ െ  	ሺ4.6ሻ																																									ଶሻ൯,ߤ

The eigenvector corresponding to the highest eigenvalue is the principal 

eigenvector and its angle can be given as: 

ߠ ൌ ݊ܽݐܿݎܽ
௜ߣ െ ∑ଵଵ
∑ଶଵ

,									ሺ4.7ሻ 
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Where ߣ௜ represents the eigenvalues. Once the principal texture orientation has been 

computed, a complex wavelet filter is constructed in order to elicit important iris 

information in the direction of the principal texture.  

 

 

4.2.2 Construction of the 2-D Complex Wavelet Filters  

Once the principal texture direction is determined, a complex wavelet filter 

(CWF) is built and rotated in the angle ߠ of the principal texture direction and in the 

opposite angle of ߠ– 90௢ in order to extract important iris information. This approach 

enables us to extract shift invariant and rotation invariant iris information for iris 

representation. As discussed earlier in Chapter 2, multiscale transforms are powerful tools 

for signal and image processing. The 1-D wavelet transform, which acts as a 

multiresolution version of the Nth-order derivative operator with ܰ vanishing moments 

can be a good example of the multiscale transform. The extension of the I-D wavelet to 

multiple dimensions (especially 2-D) has gained the attention of researchers in image 

processing [56-60]. This is typically achieved by forming tensor product basis functions. 

Practically, the extension of 1-D wavelet transform to 2-D wavelet transform can be 

achieved by filtering the row and columns of the signal using separable filters. However, 

the major problem of separable wavelets is that it is not well matched to the singularities 

occurring in images, such as lines and edges, which can be arbitrarily oriented or even 

curved. Therefore, even the 2-D discrete wavelet transform suffers from poor 

directionality, shift sensitivity and lack of phase information which is the initial 

motivation behind the development of complex valued DWT. Moreover, the complex 

wavelet transform constructed in 2-D format is able to overcome most of the challenges 

of DWT highlighted earlier.  

The complex wavelet transform (CWT) uses complex-valued filtering (analytic 

filter) to decomposes the real/complex signals into real and imaginary parts in the 

transform domain. The real and imaginary coefficients are them employed to calculate 

the amplitude and phase information, which holds the information needed to accurately 

describe the energy localization of the oscillating functions (wavelet basis). A detailed 

review of works in the domain of complex wavelets can be found in [122-123]. The 

design and supporting works of the complex wavelet transform is discussed in the 

following sections. 
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4.2.2.1 The Discrete wavelet Transform  

The complex wavelet filters for signal analysis is constructed using two separable 

discrete wavelet filters. The term wavelet is used to refer to the oscillatory vanishing 

waves with time limited extend, which has the ability to describe the time-frequency plane 

with atoms of different time supports [115]. A wavelet is a mathematical tool which can 

be used to extract information from different kinds of signals, including images. 

Mathematically, a wavelet ߰ can be stated as a function of zero average, having the 

energy concentration in time which can be given as [114]: 

න ߰ሺݐሻ݀ݐ ൌ 0

ஶ

ିஶ

,						ሺ4.8ሻ 

Then for more flexibility in extracting time and frequency information, a family 

of wavelets can be constructed from the function ߰ሺݐሻ, which is also referred to as the 

‘Mother Wavelet’, normally confined to a finite interval. ‘Daughter Wavelets’, ߰௨.௦ሺݐሻ 

can then be formed from the ‘Mother Wavelet’ by translation and dilation with factors ݑ 

and ݏ, respectively, which can be expressed as follows [113-114]: 

߰௨,௦ሺݐሻ ൌ
1

ݏ√
	. ߰ ൬

ݐ െ ݑ
ݏ

൰							ሺ4.9ሻ 

Using these wavelets as a basis, the wavelet transform is able to decompose a 

signal over a set of dilated and translated wavelets in a multiresolution approach. This 

technique ensures that the time resolution is increased when the high frequency portion 

of the signal is analysed and the frequency localization is increased when analysing the 

low-frequency portion of the same signal.   

The first implementation of wavelet is the continuous wavelet transform C୭WT 

which is highly redundant and difficult to implement for discrete types of signal. The 

discretization of the scale and translation variable of the wavelet termed Discrete Wavelet 

Transform (DWT) was introduced to overcome these challenges of C୭WT [110]. The 

discrete wavelet transform (DWT) is an implementation of the wavelet transform using 

discrete set of wavelet scales and translations that obey some defined rules. The first rules 

states that the scaling function ∅ must be orthogonal to its discrete translation which can 

be given by the dilation equation as follows [111]: 
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∅ሺݔሻ ൌ 	 ෍ ௞∅ሺܵ௫ߙ െ ݇ሻ,									ሺ4.10ሻ

ஶ

௞ୀିஶ

 

Where ܵ is a scaling factor usually chosen as 2. Also, the area between the 

function must be normalized and the scaling function must be orthogonal to its integer 

translations, which can be stated mathematically as follows [111]:  

න ∅ሺݔሻ∅ሺݔ ൅ ݈ሻ݀ݔ ൌ ଴,௟ߛ	

ஶ

ିஶ

,								ሺ4.11ሻ 

Where, ∅ሺ. ሻ is the scaling function and ߛ is the normalized function.  

The discrete wavelet transform (DWT) involves the evaluation of the scale and 

shift parameters on discrete grid of time-scale plane which leads to a discrete set of 

continuous basis functions. The time-scale plane can be indexed using two integers, 

where the first integer, ݆ corresponds to the discrete scale step while the second integer, 

݊ corresponds to the discrete translation step.  The discretization is performed by setting 

the dilation parameter  ݏ ൌ ଴ݏ
௝ and the translation parameter ݑ ൌ ଴ݏ݇

௝ݑ଴,  for ݆, ݇	 ∈ Ժ. 

Where, ݏ଴ ൐ 1, represents the dilated step, and ݑ	 ് 0, represents the translated step. The 

family of wavelets can then be given as: 

߰௝,௡ሺݐሻ ൌ ଴ݏ
ି௝ ଶൗ 	߰൫ݏ଴

ି௝	ݐ െ ଴ݏ଴ݑ	݇
௝൯,								ሺ4.12ሻ 

Therefore, the discrete wavelet decomposition of a function ݂ሺݐሻ can be given as: 

݂ሺݐሻ ൌ 	෍ 		෍ ,ሺ݆	௙ܦ	 ݊ሻ		߰௝,௡ሺݐሻ,									ሺ4.13ሻ
௞௝

 

Where 	ܦ௙	ሺ݆, ݊ሻ represents the 2-D set of coefficients of the function and ߰௝,௞ሺݐሻ is the 

wavelet basis function (mother wavelet). 

The discretization of the wavelet basis function is such that ݏ଴ ൌ 2 and ݑ଴ ൌ 1 is in the 

dyadic time-scale grid. Then, the selection of ߰ሺݐሻ representing the discrete wavelet 

transform is done in such a way that basis function set ൛߰௝,௞ൟ constitute an orthonormal 

basis of ܮଶሺԸሻ such that  
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,௙ሺ݆ܦ ݊ሻ ൌ 	 න ߰௝,௡
∗ ሺݐሻ݂ሺݐሻ݀ݐ ൌ 	 〈߰௝,௡ሺݐሻ݂ሺݐሻ〉

ஶ

ିஶ

,											ሺ4.14ሻ 

This represents the wavelet basis for the evaluation of the function ݂ሺݐሻ using the 

summation of finite basis over index ݆ and ݊ with finite DWT coefficients. 

The multi-resolution analysis (multi-scale analysis) (MRA) of the DWT is derived 

by a sequence of embedded subspaces given as: ܸ ଶ ⊂ ଵܸ ⊂ ଴ܸ ⊂ ܸି ଵ ⊂ ܸି ଶ …… ∈  ଶሺԸሻܮ

as shown in Figure 4.1. 

 

 

 

 

Figure 4.1: The nested vector spaces spanned by the scaling and wavelet basis functions. 

These approximation spaces must satisfy the following conditions: 

1.            ௝ܸ ⊂ ௝ܸାଵ,							݆ ∈  ࢆ

2.            ܸି ஶ ൌ 	 ሼ0ሽ, and ஶܸ ൌ  ,ଶܮ

3.            ݂ሺݐሻ ∈ ௝ܸ 	⇔ ݂ሺ2ݐሻ ∈ ௝ܸାଵ 

4.            ଶܸ ൌ ଴ܸ ൅ ଵܹ ൅ ଵܹ 

ଶܮ            .5 ൌ ⋯൅ ିܹଶ ൅ ିܹଵ ൅ ଴ܹ ൅ ଵܹ ൅ ଶܹ ൅ ⋯ ൌ ଴ܸ ൅ ଴ܹ ൅ ଵܹ ൅ ଶܹ ൅ ⋯ 

6.            ܹି ஶ ൅⋯൅ ିܹଶ ൅ ିܹଵ ൌ ଴ܸ																																													ሺ4.15ሻ 

A scaling function ߮ሺݐሻ (father wavelet) is introduced such that for each fixed ݆, the 

family of wavelets 

߮௝,௡ ൌ 2ି௝ ଶ⁄ 	߮൫2ି௝ ଶ⁄ ݐ െ ݇൯, ሺ݆, ݊ ∈ ܼሻ and  ߮׬ሺݐሻ݀ݐ ൌ 1								ሺ4.16ሻ 

is an orthonormal basis for of the subspace ௝ܸ.  

Therefore, if ௝ܹ is an orthonormal component of ௝ܸሺ ௝ܹ ٣ ௝ܸሻ in the subspace ௝ܸାଵ, then 

there exist a function ߰ሺݐሻ (mother wavelet) such that for each fixed ݆, the family of 

wavelets can be given as: 

଴ܸ
W଴

Wଵ 

Wଶ 
ଷܸ

ଶܸ

ଵܸ

௝ܸ : Subspaces 

corresponds to scaling 

basis (approximations) 

௝ܹ : Subspaces 

corresponds to wavelet 

basis (details) 

V଴	⏊	W଴	⏊	Wଵ	⏊Wଶ 
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߰௝,௡ ൌ 2ି௝ ଶ⁄ 	߰൫2ି௝ ଶ⁄ ݐ െ ݇൯, ሺ݆, ݊ ∈ ܼሻ,								ሺ4.17ሻ 

Which is an orthonormal basis for the subspace ௝ܹ.  

Then, given the nested subspace and the MRA conditions, the scaling function must 

satisfy the 2-scale dilation or refinement equation given as: 

߮ሺݐሻ ൌ 	√2	 ෍ ݄଴ሾ݊ሿ	߮ሺ2ݐ െ ݊ሻ, ݊ ∈ ܼ

ஶ

௡ୀିஶ

							ሺ4.18ሻ 

Which satisfies that admissibility condition ∑ ݄଴ሾ݊ሿ ൌ 	√2௡ . Also, the wavelet function 

must satisfies similar condition which can be given as shown in equation 4.19. 

߰ሺݐሻ ൌ 	√2	 ෍ ݄଴ሾ݊ሿ	߮ሺ2ݐ െ ݊ሻ, ݊ ∈ ܼ,

ஶ

௡ୀିஶ

							ሺ4.19ሻ 

With conditions ∑ ݄ଵሾ݊ሿ ൌ 0௡    and   ݄ଵሾ݊ሿ ൌ ሺെ1ሻ௡	݄଴ሾെ݊ ൅ 1ሿ. 

Where, ݄଴ሾ݊ሿ and ݄଴ሾ݊ሿ represents the coefficients of the lowpass and highpass filters, 

respectively. The MRA of any function ݂ሺݐሻ can be computed using both the scaling and 

wavelet function as follows: 

݂ሺݐሻ ൌ 	෍ ෍ ,௙ሺ݆ܥ ݊ሻ
ஶ

௡ୀିஶ

	߮௃భ	௡ሺݐሻ ൅	

௃భ

௝ି௃బ

෍ ෍ ,ሺ݆	௙ܦ ݊ሻ
ஶ

௡ୀିஶ

	ѱ௃,௡ሺݐሻ

௃భ

௝ି௃బ

,						ሺ4.20ሻ 

Where, ܥ௙ሺ݆, ݇ሻ ൌ 〈߮௝,௞ሺݐሻ, ݂ሺݐሻ〉 are the scaling function coefficients, ܬ଴ is the arbitrary 

starting scale for coarsest resolution, and ܬଵ is an arbitrary finite upper limit for the highest 

resolution with ܬଵ ൐  .଴ܬ

Therefor, ܥ௙ሺ݆, ݇ሻ and ܦ௙	ሺ݆, ݇ሻ represents the scaling coefficients (approximations) and 

the wavelet coefficients (details), respectively for the discrete wavelet transform (DWT) 

of the signal ݂ሺݐሻ. The successive lower resolution of the signal are then recursively 

derived based on equations (4.21) and (4.22) with MRA concept as follows: 

ሺ݆	௙ܥ ൅ 1, ݇ሻ ൌ 	෍݄଴ሾ݊ െ 2݇ሿ	ܥ௙ሺ݆, ݊ሻ,
௡

								ሺ4.21ሻ 
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ሺ݆	௙ܦ ൅ 1, ݇ሻ ൌ 	෍݄ଵሾ݊ െ 2݇ሿ	ܥ௙ሺ݆, ݊ሻ,										ሺ4.22ሻ
௡

 

These equations are implemented as a tree-structured filterbank as shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

Figure 4.2: The three-level two-channel analysis filterbank structure for 1-D DWT 

The Figure 4.2 shows the standard 1-D DWT tree structure for the analysis of 

signals. From the figure, we can see that the size of the approximate (scaling) coefficients 

and the detailed (wavelet) coefficients decrease by a factor of 2 at each successive 

decomposition level. Thus, the standard DWT is perfectly non-redundant version of ܱ ሺ݊ሻ 

representation of a given signal in the multi-resolutional, multi-scale environment. Also, 

the DWT function satisfies the perfect reconstruction conditions. The reconstruction 

ability of the DWT is not discussed in this work as we are only interested in the analysis 

side of the signal or image rather than the synthesis. This forms the basis for the 

construction of PR-CWF which we will be discussing later in this chapter. 

 

 

 

 

݄଴ 

݄ଵ 

2 

2 

݄଴

݄ଵ

2 

2 

,௙ሺ݆ܥ ݇ሻ 
௙ሺ݆ܦ ൅ 1, ݇ሻ

௙ሺ݆ܦ ൅ 2, ݇ሻ 

௙ሺ݆ܦ ൅ 3, ݇ሻ 

௙ሺ݆ܥ ൅ 3, ݇ሻ

Lowpass channel 

Highpass channel 

݄଴

݄ଵ

2 

2 



 

98 
 

4.2.2.2  Extension to Two Dimensional Discrete Wavelet Transform (2-D 

DWT) 

In section 4.2.2.1, we have discussed the simple implementation of the 1-D DWT 

filterbank structure. However, image analysis/processing requires the implementation of 

2-D wavelet transforms. This can be achieved using separable dyadic 2-D DWT, which 

is only an extension of the 1-D DWT applied separately on the rows and then the columns 

of the image.  

The implementation of the DWT analysis filterbank for a single level 2-D DWT is as 

shown in Figure 4.3.  

 

 

 

 

 

 

 

 

Figure 4.3: A single level analysis filterbank structure for 2-D DWT 

The structure gives three detailed sub-images (HH, HL and LH) which 

corresponds to three different directional orientations (diagonal, horizontal and vertical), 

respectively. The lower resolution sub-image LL represents the approximation 

coefficients which can be further iterated to the second and higher levels of the wavelet 

decomposition. The further iteration of the LL channel give rise to the multilevel 

decomposition.  The multilevel decomposition hierarchy of an image can be illustrated as 

shown in Figures 4.4. The corresponding coefficient in the higher levels are aliased ash 

shown in Figure 4.4 and there is a 1 4⁄  reduction in the size of the image coefficients at 

higher levels as well.   
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Figure 4.4: Multilevel decomposition hierarchy of an image with 2-D DWT. 

The decomposition of the image using 2-D DWT breaks the parent image into four child 

images at each level. Each of the sub-images is 1 4⁄  the size of the parent image as 

mentioned earlier. The sub-images are placed according to the position of each sub-band 

in the 2-D partition of the frequency plane as shown in Figure 4.4. The synthesis filter 

bank structure follows exactly the same implementation of the filterbank in reverse order 

using synthesis filters ݄଴෪ and ݄ଵ෪. Synthesis is not discussed in this work because our 

implementation does not require image synthesis.  

The separable wavelets are also described as tensor products of 1-D wavelets and scaling 

functions. Therefore, given a 1-D wavelet ߰ሺݔሻ, associated with 1-D scaling function 

߮ሺݔሻ, the three 2-D wavelets associated with the three sub-images are given as follows:  

߰௏	ሺݔ, ሻݕ ൌ 	߮ሺݔሻ	߰ሺݕሻ																									LH,							ሺ4.23ሻ 

߰ு	ሺݔ, ሻݕ ൌ 	߰ሺݔሻ	߮ሺݕሻ																											HL,							ሺ4.24ሻ 

߰஽	ሺݔ, ሻݕ ൌ 	߰ሺݔሻ߰ሺݕሻ																													HH,						ሺ4.25ሻ 
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Figure 4.5: Frequency plane partitioning of the 2-D DWT 

The arrangements of the wavelet coefficient according to the positional sub-bands 

are as shown Figure 4.5. There are also various extensions of non-separable 2-D wavelet 

transforms but we are only interested in the separable 2-D wavelet transform in this work. 

Figure 4.6, is a test iris image and its 2-D DWT decomposition carried out using the 

Matlab wavelet toolbox.  

As can be seen from Figure 4.6, the 2-D DWT is only directionally oriented in 

three direction (horizontal, vertical and diagonal) which limits its ability to extract 

information about curves and bends in images. Also, the 2-D DWT lacks the ability to 

encode phase information which leads to lack of feature positional information in the 

analysis of images using DWT. These setbacks have lead researchers to look for more 

reliable means of analysing image information.  
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Figure 4.6: Single level decomposition of original iris image using Haar DWT, 

(a) Test iris image, (b) single level 2-D DWT decomposition of the same image.  
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4.2.2.3 The Two Dimensional Dual Tree CWF Design Structure 

In our earlier discussion, it’s been highlighted that the standard DWT and its 

extensions suffer from two or more major limitations, which is the main motivation 

behind the development of the complex-valued wavelet Transform (CWT). The absence 

of phase information in DWT limits its applicability to image processing. Also, the 

limited directional selectivity and the lack of shift invariance pose a great hindrance to its 

application for image texture analysis. The Complex Wavelet Transform (CWT) employs 

a complex-valued filterbank (analytic filter) for the decomposition of the real/complex 

signals into real and imaginary parts in the transform domain. The real and imaginary 

coefficients are then used to compute the amplitude and phase information, which is very 

necessary for accurately describing the energy localization in a given image sample. 

Edges and texture patterns in images manifest themselves as oscillating coefficients in 

wavelet domain. The amplitude of such coefficients describe the strength of the 

singularity while the phase indicates the location of the singularities. Therefore, to 

determine the correct value of the localized envelop and the phase of the oscillating 

function, ‘analytic’ or ‘quadrature’ representations of the image is needed. This type of 

representation can be obtained from the Hilbert transform of the image coefficients 

employed in complex wavelet filterbank CWF of CWT. Also, the CWT based on the 

Fourier sinusoid does not oscillate positive and negative in the transform domain which 

make it shift invariant.   

The CWT is based on Fourier Transform unlike the DWT which is based on the 

real-valued oscillating wavelets. Therefore the CWT does not suffer from oscillations 

from positive to negative in magnitude as do DWT but is based on a smooth positive 

envelop in the Fourier domain. The magnitude of the Fourier transform is perfectly shift 

invariant, with a simple linear phase offset encoding the shift and the also, the Fourier 

coefficient is not aliased and does not require complex aliasing cancellations for signal 

reconstruction. These great attributes of CWT coupled with the its multiresolution 

property makes complex wavelet filterbank and attractive functional for the analysis of 

high textured image like the iris.  

The complex valued sinusoid of the Fourier transform can be given as [114]: 

݁௝ఆ௧ ൌ cosሺݐߗሻ ൅  ሺ4.26ሻ											ሻ,ݐߗሺ݊݅ݏ݆
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Where, ݆ ൌ 	√െ1. The oscillating sine and cosine components represent the real 

and imaginary parts, respectively and they form a Hilbert transform pair which means 

they are 90௢ out of phase with each other. The cosine and sine component together form 

an analytic signal ݁௝ఆ௧ which is supported on only one half of the frequency axis (0<ߗ). 

The complex wavelet transform CWT was inspired by the Fourier representation of the 

signal whereby the signal is represented by the complex-valued scaling function and 

complex-valued wavelets which can be given as [114]: 

߰௖ሺݐሻ ൌ 	߰௥ሺݐሻ ൅ ݆߰௜ሺݐሻ,										ሺ4.27ሻ 

Where, ߰௥ሺݐሻ represents the real and even component while ߰௜ሺݐሻ represents the 

imaginary and odd component. Both ߰ ௥ሺݐሻ and ߰ ௜ሺݐሻ form a Hilbert transform pair which 

means that ߰௖ሺݐሻ is analytical and supported only on one half of the frequency axis. The 

complex scaling function is also similarly defined. See, [114] for more details. The 

complex wavelet coefficients of a signal can be obtained by projecting the signal on to 

the complex wavelet basis function 2௝ ଶట೎ሺଶೕ௧ି௡ሻ⁄  as follows: 

݀௖ሺ݆, ݊ሻ ൌ 	݀௥ሺ݆, ݊ሻ ൅ ݆݀௜ሺ݆, ݊ሻ								ሺ4.28ሻ 

Where the magnitude can be given as: 

݀௖ሺݐሻ ൌ 	ඥ|݀௥ሺ݆, ݊ሻ|ଶ ൅ |݀௜ሺ݆, ݊ሻ|ଶ,								ሺ4.29ሻ 

And the phase as: 

∠݀௖ሺ݆, ݊ሻ ൌ arctan ቆ
݆݀௜ሺ݆, ݊ሻ

݀௥ሺ݆, ݊ሻ
ቇ,									ሺ4.30ሻ 

Where, |݀௖ሺ݆, ݊ሻ| ൐ 0. 

Complex wavelet transform can be broadly classified into two namely: redundant 

and non-redundant complex wavelet transform. The details of the theories of redundant 

and non-redundant CWTs can be found in [114]. In this work, we focus on the redundant 

CWT with dual tree approach which is more relevant to our filter design. The redundant 

CWT with both ߰௥ሺݐሻ and ߰௜ሺݐሻ individually forming orthogonal and biorthogonal basis 

function results in a 2x redundant tight frame in 1-D with the power to overcome the 

shortcomings of the DWT. The dual-tree CWT based on two filter bank FB trees was 

introduced by Kingsbury [114], and is designed using two standard DWT filters. This is 
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an effective way of implementing an analytic wavelet transform. The dual CWT employs 

two real DWTs where the first DWT gives the real part of the transform while the second 

DWT gives the imaginary part. The analysis filter bank FB structure used to implement 

the dual-tree CWT is illustrated in Figure 4.7.  The two real wavelets use two different 

set of filters, where each must satisfy the perfect reconstruction PR condition. Also, in 

addition to that, the filters are designed so that the complex wavelets ߰ሺݐሻ ≔ ߰௥ሺݐሻ ൅

߰௜ሺݐሻ is approximately analytic. Therefore, they are designed so that the ߰௜ሺݐሻ is 

approximately the Hilbert transform of ߰௥ሺݐሻ, which can be denoted as ߰௜ሺݐሻ ൎ

࣢ሼ߰௜ሺݐሻሽ. In other to achieve this, two almost similar complex wavelet filterbanks are 

employed in a dual-tree structure to achieve the quadrature filter (Hilbert pair) effect. 

These redundant type of filters involves two conventional DWT filterbank trees working 

in parallel with respective filters of both trees in approximate quadrature. Therefore, the 

DT-CWT provides phase information and are shift invariant with improved directionality. 

These attributes is the major motivation for the application of complex wavelet transform 

for image analysis.  

Figure 4.7, shows a 1-D DT-CWT spanned over three levels. The DT-CWT 

filterbanks structure shows close resemblance to the filterbank structure of standard DWT 

shown in Figure 4.2, with twice the complexity. It can be interpreted as two standard 

DWT trees operating in parallel to each other. One tree is called the real tree while the 

other is called the imaginary tree. For the purpose of clarity, the real tree might also be 

referred to as tree-a while the imaginary tree can be referred to as tree-b. As a result of 

the dual tree implementation, the dual-tree CWT exhibits less shift variance and more 

directional selectivity than the critically sampled DWT, with only a 2ௗ redundancy factor 

for d-dimensional signal, which is much less compared to logଶ ܰx redundancy of a 

perfectly shift invariant DWT.  

The Fourier based complex wavelet transform (CWT) structure based on a form 

of conjugate filter can be given as follows [114]: 

߰௫ ൌ ݄௫ ൅ ݆g௫,												ሺ4.31ሻ 

Where, ݄௫ is the set of filters ሼ݄଴, ݄ଵሽ, and g௫ is the set of filters ሼg଴, gଵሽ, both sets 

in 1-D (ݔ െ  ሻ only. Also, the filters ݄଴ and ݄ଵ are the real-valued lowpass and݊݋݅ݐܿ݁ݎ݅݀

highpass filters, respectively for tree-a. The same applies for g଴ and gଵ which are also the 

lowpass and highpass filters, respectively for tree-b as well. With ݆ ൌ √െ1, The 
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oscillating cosine (real) and sine (imaginary) components form a Hilbert transform pair. 

Also, the filters ൛݄௜௔,	 ௝݄௔ൟ form a pair of conjugate filter in the real tree and the complex 

tree filters ൛g௜௕, g௝௕ൟ is another pair of conjugate filter for the imaginary tree. All the filters 

are orthogonal and are also real-valued. Also, in order to satisfy the Hilbert transform pair 

and approximate analytic wavelet conditions, filter from both trees are made to be offset 

of each other by a half-sample delay after the first level. 

In the implementation of the DT-CWT, the filters at first stage is required to be 

different from the filter at successive stages of the wavelet decomposition in other to 

achieve the Hilbert transform pair and meet the analytic condition. This is because to get 

uniform intervals between samples from the two trees below level 1, the filters in one tree 

must provide delays that half a sample different from those of the other trees. Therefore, 

the (10, 10)-tap filter and the db7 filters are chosen for tree a and tree b, respectively. 

These are fully decimated wavelet filters providing odd length in one side and even length 

in the other side of the tree.  
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The shift invariance can be achieved with the real wavelets by doubling the sample 

rate at each level of the tree. However, the samples must also be evenly spaced. The 

sampling rate can be doubled by eliminating the down sampling of DWT by 2 after the 

level 1 filters. This is equivalent to having two parallel fully-decimated trees a and b as 

shown in Figure 4.7, provided that the delays of g଴௕ and gଵ௕ are one sample offset from 

݄଴௕ and hଵ௕. Therefore, the lowpass filter after the first level and at first level 1 is given 

as follows: 

݄଴଴ሺ݊ሻ ൌ ݄଴ሺ݊ െ 0.5ሻ,										ሺ4.32ሻ 

h଴ሺ݊ሻ ൌ ݄଴ሺ݊ െ 1ሻ,													ሺ4.33ሻ 

Whereas the highpass filters area similarly given as follows: 

g଴଴ሺ݊ሻ ൌ ݄ଵሺ݊ െ 0.5ሻ,												ሺ4.34ሻ 

g଴ሺ݊ሻ ൌ ݄ଵሺ݊ െ 1ሻ,											ሺ4.35ሻ 

To achieve the half-sample delay difference between level-1 and higher-levels the filter 

periods of 0 and 
ଵ

ଶ
 were chosen. This is achieved by using with an asymmetric even-length 

filter ܪሺݖሻ and its time reversed filter ܪሺିݖଵሻ [114] as mentioned earlier. The 

combination of the quadrature tree components of each coefficient is performed by a 

simple sum and difference operations. This yields a pair of complex coefficients which 

forms two separate sub-bands in adjacent quadrants of the 2-D spectrum. The lowpass 

filter for the imaginary tree is then derived from the half sample delayed condition of the 

real filters.   

Kingsbury [114], in an earlier work have proposed the extension of the DT-CWT 

to 2-Ds, in order to achieve greater orientation selectivity and perfect shift invariance. 

The extension of complex wavelets to 2-D is achieved by applying two separable filters 

along the rows and columns of the image. The 2-D DT-CWF structure is an extension of 

conjugate filtering in 2-D. The filterbank structure of the 2-D dual-tree CWF is as shown 

in Figure 4.8. The 2-D separable DWT can now be expressed in terms of 1-D scaling 

functions ሺ߮ሻ and the wavelet function ሺ߰ሻ as follows [81]: 

߰଴ሺݔ, ሻݕ ൌ 	߮ሺݔሻ	߰ሺݕሻ,									ሺ4.36ሻ 

߰ଽ଴ሺݔ, ሻݕ ൌ ߰ሺݔሻ	߮ሺݕሻ									ሺ4.37ሻ 
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߰േସହሺݔ, ሻݕ ൌ 		߰ሺݔሻ߰ሺݕሻ,							ሺ4.38ሻ 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Filterbank structure of the 2-D DT-CWT 

As shown in figure 4.8, the 2-D structure needs four trees for analysis and same 

for synthesis. The oriented non-separable 2D wavelets transform is derived by combining 

the sub-bands of two separable 2-D DWTs. The pairs of conjugate filters are applied to 

two dimensions ݔ and ݕ, which can be expressed as follows [81-82]: 

ሺ݄௫ ൅ ݆g௫ሻ൫݄௬ ൅ ݆g௬ ൌ 	 ሺ݄௫݄௬ ൅ g௫g௬൯ ൅ ݆൫݄௫g௬ ൅ g௫݄௬൯,										ሺ4.39ሻ 

Then, the real part of the 2-D DT-CWT is obtained by combining Tree-a and Tree-b 

ሺ݄௫݄௬ െ g௫g௬ሻ. Similarly, the imaginary part of the 2-D DWT tree of the CWT is 

obtained from Tree-c and Tree-d ሺ݄௫݄௬ ൅ g௫g௬ሻ. The 2-D decomposition of the image is 

performed stage-by-stage in a standalone mode and a total of 6 sub-bands of detailed 

image coefficients are derived at each stage with three being for the real tree and the other 

three for the imaginary tree. Then, at each level, the resulting three sub-bands of the 2-D 
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DWT are oriented in the directions: horizontalሺ0௢ሻ, diagonal ሺ45௢ሻ and verticalሺ90௢ሻ. 

Therefore, the six sub-bands of the 2-D DT-CWT are therefore derieved as follows [81]: 

߰ଵ,ଵሺݔ, ሻݕ ൌ 	߮௛ሺݔሻ	߰௛ሺݕሻ             ߰ଶ,ଵሺݔ, ሻݕ ൌ 	߮୥ሺݔሻ	߰୥ሺݕሻ,							ሺ4.34ሻ 

߰ଵ,ଶሺݔ, ሻݕ ൌ 		߰௛ሺݔሻ߮௛ሺݕሻ             ߰ଶ,ଶሺݔ, ሻݕ ൌ 	߰୥ሺݔሻ	߮୥ሺݕሻ,							ሺ4.35ሻ 

߰ଵ,ଷሺݔ, ሻݕ ൌ 	߰௛ሺݔሻ	߰௛ሺݕሻ	             ߰ଶ,ଷሺݔ, ሻݕ ൌ 	߰୥ሺݔሻ߮୥ሺݕሻ,								ሺ4.36ሻ 

Where, ߮ is the scaling function while ߰ , represents the wavelet function.  ߰ ଵ,௜ represents 

the sub-bands of the real wavelet tree while ߰ଶ,௜, represents the sub-bands of the 

imaginary tree. These can be combined to form the sub-bands of the 2-D CWT as follows: 

߰௜ሺݔ, ሻݕ ൌ 	
1

√2
ሺ߰ଵ,௜ሺݔ, ሻݕ െ ߰ଶ,௜ሺݔ,  ሺ4.37ሻ										ሻሻ,ݕ

߰௜ାଷሺݔ, ሻݕ ൌ 	
1

√2
ሺ߰ଵ,௜ሺݔ, ሻݕ ൅ ߰ଶ,௜ሺݔ,  ሺ4.38ሻ										ሻሻ,ݕ

The normalization by 1 √2⁄  is employed so that the sum and difference operation yields 

orthornormality. The six wavelet sub-bands of the 2D-CWT are strongly oriented at 

ሼ൅15௢, ൅45௢, ൅75௢, െ15௢, െ45௢, െ75௢	ሽ direction. Thus, the 2-D DT-CWT are only 

strongly oriented in six directions, it is also approximately analytic and also 

approximately shift invariant. Figure 4.9, shows the result of the iris sample 

decomposition using the 2-D DT-CWT. Notwithstanding the many advantages of the 2-

D DT-CWT which we have emphasised before, it still have some shortcomings. The 2-D 

DT-CWT is not fully directionally selective compared to the Gabor wavelet transform. 

This can be improve using the proposed CWF. Also, the 2-D DT-CWT is only 

approximately shift invariant. These two properties are very important for high 

performance image representation. In other to achieve shift invariance and greater 

directionality, the principally rotated complex wavelet filters is designed. 

     

 

 

 

 

Figure 4.9: Sample showing the coefficients of the complex wavelet transform.  
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4.2.3  The Implementation of Proposed PR-CWF for Iris Features 

Extraction 

In this section, the invariant iris feature is extracted using the rotated complex 

wavelet filterbank (R-CWF) proposed in this work. The normalized iris sample from 

Chapter 3, Section 3.5 is scale invariant which already accounts for the size 

inconsistencies normally caused by factors like pupil dilation and constriction. In order 

to compensate for eyelid/eyelash occlusions which is normally a problem with non-ideal 

iris images, the segmented iris region is divided into sectors and the upper and lower 

sectors are eliminated as shown in Figure 4.12. The rotation of the CWF is performed on 

the filters instead of the iris sample to achieve greater orientation selectivity and maintain 

shift invariance of the extracted iris features.   

The normalized iris sample ܰ ሺ݅, ݆ሻ such as shown in Figure 4.12c is first converted 

to binary image and the principal texture direction is computed using the procedure 

discussed in section 4.2.1. Once, the principal texture direction ߠ has been determined, 

the complex wavelet filters (CWF) discussed in section 4.2.2 is then rotated in the 

principal direction ߠ for the decomposition of the image and later in the opposite direction 

–  for a repeat decomposition again.  In [82], Kokare et al. implemented the rotation of ߠ

the 2-D CWT filters by 45௢ in order to extract the rich iris feature which he named the 2-

D Rotated Complex Wavelet Filters (RCWF). This had the ability of achieving strong 

orientations in 12 directions which is higher than the standard 2-D DT-CWT. However, 

since greater textural information is always available in the direction of the principal 

texture, we have chosen to rotate the filter in the principal direction. The approach using 

a new set of filters retains the othorgonality property of the CWT because it able to satisfy 

the Hilbert transforms condition given as: 

1
ߨ2

න ௜ሺ߱ሻܪ

ஶ

ିஶ

ఫሺ߱ሻതതതതതതതത݀߱ܪ	 ൌ 0, ሺ݅ ് ݆ሻ,								ሺ4.39ሻ 

Where ܪ௜ሺ߱ሻ is the Fourier transform of the 2-D filter. In this work, we have 

adopted a new computationally more efficient method based on rotation of the filter sub-

bands in the direction of the principal texture in order to more distinctive features. The 

oriented and approximate rotated complex wavelet filterbank can be obtained by using 

the various sub-bands of the CWT, without designing a new set of filters. This is because 

once the angle difference between the individual filters are maintain, the condition of 
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othorgonality is also maintained when the filters are rotated as a set as shown in Figure 

4.13.  

 

 

 

 

 

 

 

 

Figure 4.10: Orientations of the wavelet sub-bands: (a) orientations of DWT sub-bands, 

(b) orientations of CWT sub-bands and (c) the orientations of an example PR-CWF at 

angle an of ߠ ൌ 45௢. 

 

The twelve sub-band components of the principally rotated complex wavelet 

filterbank (PR-CWF) are derived by approximation of the six sub-bands components of 

the CWT whereas, that six sub-band components of the CWT are derived from the three 

basic sub-band components of the two DWTs by simple approximations as discussed 

earlier in Section 4.5.  For instance, the േ15௢ are the horizontal components of the real 

and imaginary trees of the CWT and these are also considered as the approximation of 

the horizontal component ሺ0௢ሻ of the basic DWT. Likewise, the vertical ሺേ75௢ሻ and 

diagonal ሺേ45௢ሻ components of the CWT are also the vertical ሺ90௢ሻ and diagonal ሺ45௢ሻ 

components of the DWT as shown in Figure 4.10. The same rules have been adopted to 

find the components of the (PR-CWF) from the components of CWT. Table 4.1 shows 

the mapping of the six components of the PR-CWF and the opposite of the PR-CWF.  

Components of  PR-CWF  Components of the –PR-CWF 

Real horizontal component Real vertical component (RV) 

Real vertical component Imaginary vertical component (IV) 

Real diagonal component Real Horizontal component (RH) 

Imaginary horizontal component Real diagonal component (RD) 

Imaginary vertical component Imaginary diagonal component (ID) 

Imaginary diagonal component Imaginary horizontal component (IH) 

 

Table 4.1: Mapping of the sub-band components of PR-CWF and -PR-CWF. 

90௢ሺܸሻ
45௢ሺܦሻ

0௢ሺܪሻ 

െ45௢ሺܦሻ 
െ90௢ሺܸሻ ൌ 90௢ 

75௢ሺ ோܸሻ

45௢ሺܦோሻ

15௢ሺܪோሻ

െ15௢ሺܪூሻ

െ45௢ሺܦூሻ
െ75௢ሺ ூܸሻ

120௢ሺܸ′ோሻ 
90௢ሺܦ′ோሻ

60௢ሺܪ′ோሻ

30௢ሺܪ′ூሻ

0௢ሺܦ′ூሻ

െ30௢ሺܸ′ூሻ

െ60௢ሺܸᇱூሻ ൌ ൅120

ሺܽሻ  ሺܾሻ ሺܿሻ 
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Therefore, the six sub-bands of the PR-CWF in terms of the horizontal, vertical 

and diagonal components of the real and imaginary trees of the CWT are computed using 

Table 4.1 and Equation (40), which are given as: 

 

ܾݑݏ	ݐݏܫ െ ܴܲ	݂݋	ܾ݀݊ܽ െ ܨܹܥ ൌ	1 √2ሺܴܸ െ ⁄ሻܦܴ  

ܾݑݏ	ݐݏ2 െ ܴܲ	݂݋	ܾ݀݊ܽ െ ܨܹܥ ൌ 	1 √2ሺܴܸ ൅ ⁄ሻܦܴ  

ܾݑݏ	ݐݏ3 െ ܴܲ	݂݋	ܾ݀݊ܽ െ ܨܹܥ ൌ	1 √2ሺܸܫ െ ⁄ሻܦܫ  

ܾݑݏ	ݐݏ4 െ ܴܲ	݂݋	ܾ݀݊ܽ െ ܨܹܥ ൌ	1 √2ሺܸܫ ൅ ⁄ሻܦܫ  

ܾݑݏ	ݐݏ5 െ ܴܲ	݂݋	ܾ݀݊ܽ െ ܨܹܥ ൌ	1 √2ሺܴܸ െ ⁄ሻܪܫ  

ܾݑݏ	ݐݏ6 െ ܴܲ	݂݋	ܾ݀݊ܽ െ ܨܹܥ ൌ 	1 √2ሺܴܸ ൅ ⁄ሻܪܫ ,													ሺ40ሻ 

 

These sub-bands are approximately the rotated version of the sub-bands of CWT 

which are now strongly oriented in ሼ൅60௢,൅90௢,൅120௢ሺെ60௢ሻ, െ30௢, 0௢, െ30௢ሽ as 

shown in the example rotation of Figure 4.10. Therefore, the combination of the features 

of the PR-CWF rotated in the principal direction ߠ and in the opposite direction of –  ,ߠ

forms the coefficients of feature vectors in 12 directions. Hence the method is 

computationally more efficient compared to Gabor filters normally used for the same kind 

of computation.  

 

 

 

 

 

 

Figure 4.11: The coefficients of the iris sample decomposed using the proposed PR-CWF. 

 

Hence, the decomposition of the image using PR-CWF produces 12 sub-samples 

image coefficients oriented in different directions instead of six achieved using 2-D DT-

CWT. The decomposition is performed till level 3 and a total of 12 multiplied by 3 sub-

images are produced.   
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The extracted features using the proposed method compensates for the limited orientation 

selectivity of the standard 2-D DT-CWT. Therefore, we are able to extract rotation and 

scale invariant features of the iris. The proposed method is also computationally more 

efficient and effective compared to other popular approach for iris feature extraction like 

Gabor wavelets and DWT.  

 

 

4.3 Iris Feature Selection Using Modified PSO 

The iris sample contains a huge number of features and a comparatively small 

number of samples per class, and this makes accurate and fast classification or recognition 

difficult [37]. Some researcher have made great efforts aimed at solving this problem. 

Chen et al. [40], proposed a method based on the selection of edge-type features for iris 

recognition, and AdaBoost algorithm was then used to select a filter bank from a pile of 

1 
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4

(a)  (b)

1  2 3 4

(a)

1 3

(b)

Figure 4.12: Sub-sampled iris normalization, (a) a description of the iris portion 
of the image, (b) iris image with mapped sectors 

Figure 4.13: Normalized sub-sample of the iris image; (a) normalized iris image 
showing the sectors, (b) final normalized iris image with some sectors eliminated
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filter candidates. In [41], the authors applied a feature correlation evaluation approach for 

iris image quality measure. This approach was able to discriminate the artificial patterns 

from the natural iris patterns and it could also be able to measure iris image quality for 

uncompressed images. In [42], the portions of the iris with the most distinguishable 

changing patterns were chosen and used to measure the feature information. Proenca and 

Alexandre [46], proposed a method to measure the quality of each feature in the extracted 

feature sequence and separate them into two sets: noisy features and noise-free features. 

The similarity between the two sets was then measured and used to discover the identity 

of a specific subject.   

In this research effort, we propose apply a modified particle swam optimization 

(PSO) in order to select the most prominent iris features and based on this information, a 

matching computation is performed using adaptive SVMs [55]. The PSO is a population 

based stochastic optimization technique developed by Kennedy and Eberhart [55] and 

modelled after the social behaviour of bird flocks. It was developed as an improvement 

of the GA and Ant Colony Algorithms. In PSO, each particle represents a potential 

solution to the optimization problem. Initially, each particle is assigned a randomized 

velocity, and is allowed to determine the direction and distance of the movement within 

the problem space in order to find optimal solution. Each particle keeps track of the 

following information about the problem space: the current position of the particle ݔ௜, the 

current velocity of the particle ݒ௜, the best position of the particle. The best position yields 

the best fitness value for that particle.  The fitness value of the position is called pbest 

while the fitness value of the entire particles is called gbest.  

The PSO produces the particles of the initial population randomly and the 

evolutionary computation is used to find the optimal solution for the function. In each 

evolution, the particle would change the individual’s search direction based on two search 

memories. The first memory search is the optimal individual’s variable memory pbest 

and the other is the optimal variable memory of the entire population gbest. After the 

computation, the PSO would calculate the optimal solution according to the optimal 

variable memory. 

Given an iris feature vector pool ܵ, the position of a particle ݏ is given as ௜ܵ ൌ

ሺݏ௜,ଵ, ,௜,ଶݏ ,௜,ଷݏ …… , ܸ ௜,ேሻ், and the velocityݏ ௜ ൌ ሺݒ௜,ଵ, ,௜,ଶݒ ,௜,ଷݒ …… ,  ௜,ேሻ். The particle’sݒ

flight experience is given as ௜ܲ ൌ ሺ݌௜,ଵ, ,௜,ଶ݌ ,௜,ଷ݌ …… ,  ௜,ேሻ which is regarded as the pbest݌

and the group experience is ܩ௜ ൌ ሺg௜,ଵ, g௜,ଶ, g௜,ଷ, …… , g௜,ேሻ which is also regarded as the 

gbest. The particle is able to determine the next movement through their own experience 
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݇ For the .ݐݏand the group experience of the entire population gܾ݁ ݐݏܾ݁݌ ൅  ,iteration ݄ݐ1

each particle of PSO changes position according to the following equations: 

  

௜ܸ,௝
௞ାଵሺݐ, 1ሻ ൌ ߱ ௜ܸ,௝

௞ ൅ 1ݎ1ܿ ∗ ൫ ௟ܲ௕௘௦௧ െ ௜,௝ݏ
௞ ൯ ൅ 2ݎ2ܿ ∗ ൫ ୥ܲ௕௘௦௧ െ ௜,௝ݏ

௞ ൯,				ሺ4.41ሻ 

 

௜,௝ݏ
௞ାଵ ൌ ௜,௝ݏ

௞ ൅ ௜,௝ݒ
௞ାଵ,						ሺ4.42ሻ 

Where ݅ ൌ 1,2, …… 	;is the number of particles ܯ and ܯ, ௜ܸ,௝
௞  is the ݄݀ݐ dimensional 

component of the ݄݇ݐ iteration, the velocity vector of the particle s, and ݏ௜,௝
௞  is the ݄݀ݐ 

iteration dimensional component of the ݄݇ݐ iteration of the position vector of particle s. 

 ,dimensional component of the best position of an individual particle s ݄ݐ݀ is the ݐݏܾ݁݌

and gܾ݁ݐݏ is the ݄݀ݐ dimensional component of the best position of the group . ܿ1, ܿ2 are 

the positive acceleration constants, whereas 1ݎ,  are uniformly distributed random 2ݎ

numbers between 0 and 1, and 	߱  is the inertia weight between [0,1] which provides a 

balance between global and local search abilities of the algorithm. 

 

 

4.4 Modified PSO for Optimized SVM Classification 

Support vector machine (SVM) [55], is a new learning methodology proposed by 

Vapnik et al. [118], which finds optimal separating hyperplane in a high dimensional 

feature space. It uses a linear hyperplane to create a classifier with a maximum margin 

[119]. The algorithm aims to find support vectors and their corresponding co-efficients to 

construct an optimal separating surface by the use of kernel function in dimensional 

feature space [119]. SVM which is considered a good candidate for learning in image 

retrieval that has a strong theoretical foundation and has been used for object recognition, 

text classification etc. SVM was originally designed for binary classification but can be 

applied for multi-class problems.  

Now, given a training data set ሼݔ௜, ܺ ௜ሽ representing vectors in a spaceݕ ⊆

ܴௗbelonging to two separate classes with their labels ݕ௜ ∈ ሼെ1,1ሽ. The aim is to find a 

hyperplane ߱ݔ ൅ ܾ ൌ 0 which separates the data which is given as gሺݔሻ ൌ ݔ߱ ൅ ܾ. 

Amon many possible hyperplanes, the optimal hyperplace (OSP) is the hyperplane which 

maximizes the margin (the distance between the hyperplane and the nearest data point of 

each class). After normalization of gሺxሻ, OSP can be computed as the minimization of 

‖߱‖ which is given as follows: 
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min 			∅ሺ߱ሻ ൌ
1
2
‖߱‖ଶ ,							ሺ4.43ሻ 

.ݏ ௜ሺ߱ݕ							.ݐ ∙ ௜ݏ ൅ ܾሻ െ 1 ൒ 0,											݅ ൌ 1,2, … . . , ܰ 

Then, defining ܰ langragians ߙ௜, ݅ ൌ 1,…… ,ܰ. After solving the quadratic optimization 

problem, we get the best hyperplane, which ߱ ൌ ∑ ௜ߙ ∙ ௜ݕ ∙ ௜ܺݔ௜
ே
௜ୀଵ  is the support vector, 

which refer to the training samples that lie closest to the hyperplane. The vectors lying on 

one side of the hyperplane are labelled as -1 and those laying on the other side of the 

hyperplane are labelled as +1. The classification function is given by 

݂ሺݔሻ ൌ ሺ෍݊݃݅ݏ ௜ߙ ∙ ௜ݕ ∙ ௜ݔ ൅ ܾሻ
ே

௜ୀଵ
,						ሺ4.44ሻ 

Now, for the iris image, the data cannot be linearly separated. Therefore, we use 

a kernel function to transform that data into a higher dimensional space. The classification 

foundation is then transformed to 

݂ሺݔሻ ൌ ሺ෍݊݃݅ݏ .	௜ߙ .	௜ݕ ,௜ݔሺܭ ሻݔ ൅ ܾሻ,				ሺ4.45ሻ	
ே

௜ୀଵ
 

The SVM is trained using the RBF kernel which can be given as  

,௜ݔሺܭ ሻݔ ൌ expቆ
ሺݔ௜ െ ሻଶݔ

ଶߪ
ቇ,						ሺ4.46ሻ 

To train the data samples, the normalized iris image is decomposed into twelve bandpass 

oriented subbands at each scale using the dual tree PR-CWF. The decompositions was 

done recursively to level three using the low-low pass residual image. The decomposition 

gives a total of 12 ൈ 3 subband images. The total of 36 subband images that was 

generated are then used as samples for the PSO feature selection process. The feature 

selection and classification are achieved in the following steps: 

Step 1. The initialization of the PSO is set to ݏ ൌ ଵܨ ,1
௣௕௘௦௧ ൌ ଶܨ

௣௕௘௦௧ ൌ ⋯ ൌ ேܨ
௣௕௘௦௧ ൌ 0. 

The number of particles ܰ, the number of iteration ܩ, and the four parameters 

,ଵܥ ,ଶܥ ,௠௔௫ߛ   .௠௜௡ are all givenߛ

Step 2. The initial velocity ௜ܸ ൌ ሺݒ௜,ଵ, ,௜,ଶݒ ,௜,ଷݒ …… , ௜,ேሻ் and the initial position ௜ܲݒ ൌ

ሺ݌௜,ଵ, ,௜,ଶ݌ ,௜,ଷ݌ …… ,  .௜,ேሻ of N particles are created݌

Step 3. The fitness value of each particle in the ݄݃ݐ iteration is calculated using (). The 

fitness function which is expressed by the reciprocal of the computation time is given as  

൫ܨ ௛ܲ
௚൯ ൌ ൫ݐ݂݅ ௛ܲ

௚൯,					݄ ൌ 1,2, … . . , ܰ,							ሺ4.47 

Step 4. The best feature ܨ௛
௣௕௘௦௧ and the best position ௛ܲ

௣௕௘௦௧ for each particle were 

determined as follows: 
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௛ܨ
௣௕௘௦௧ ൌ ቊ

௛ܨ
௚,						݂݅	ܨ௛

௣௕௘௦௧ ൑ ௛ܨ
௚

௛ܨ
௣௕௘௦௧, ,݁ݏ݅ݓݎ݄݁ݐ݋

				݄ ∈ ሼ1,2, … . . , ܰሽ, 							ሺ4.48ሻ 

௛ܲ
௣௕௘௦௧ ൌ ቊ ௛ܲ

௚,						݂݅	ܨ௛
௣௕௘௦௧ ൑ ௛ܨ

௚

௛ܲ
௣௕௘௦௧, ,݁ݏ݅ݓݎ݄݁ݐ݋

				݄ ∈ ሼ1,2, … . . , ܰሽ, 								ሺ4.49ሻ 

Where, ௛ܲ
௣௕௘௦௧ is the individual optimal fitness value ܨ௛

௣௕௘௦௧ form the starting to the 

current generation. 

Step 5. The index ݍ of the particle with the highest fitness function is designed by 

 

 

4.5  Summary 

In this chapter, a novel iris feature extraction and selection technique has been presented. 

This method is capable of reducing the dimensionality of the iris feature code and 

speeding up the matching/classification step. Also the rotation of the CWF in the direction 

of the principal textures extracts important iris information that is rotation and shift and 

scale invariant.   
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Chapter five 

 

5. EXPERIMENTAL RESULTS AND 

ANALYSIS 

In this chapter, we present the results, and the analysis of the accuracy, 

performance and time efficiency of the proposed iris segmentation and feature extraction 

schemes. We have conducted some experiments to evaluate the performance of the 

proposed schemes and summarized the results in this chapter. The robustness of the 

proposed approach is also evaluated on non-ideal images from different heterogeneous 

iris image datasets. We also compared the performance of the proposed approach with 

some other state-of-the-art iris recognition algorithms in order to evaluate its efficacy. 

Section 5.1 briefly set out an introduction to the evaluation methods. 

 

5.1 Introduction 

We conduct extensive experiments using four selected iris datasets namely: 

UBIRIS v1, UBIRIS v2, CASIA Iris V1 and CASIA Iris V4 in order to ascertain the 

efficacy of the proposed methods. These iris datasets contains mainly heterogeneous 

images with varying degrees of noise and other artefacts. The detail description of the 

datasets are given in section 5. 5. The chosen databases are made up of ideal and non-

ideal iris images captured under less constrained imaging environments which is ideal for 

our testing purpose. Experiments are carried out in two stages. The first stage, evaluates 

the performances and accuracies of the proposed segmentation, feature extraction and 

selection algorithms. In the second stage, the performances of the proposed algorithms 

are compared with other state-of-the-art iris recognition algorithms. A comparative 

analysis of our method with the other state-of-the-art methods are carried out to show the 

effectiveness of the proposed schemes. Experiments are carried out on the selected iris 

datasets to evaluate the performance of the proposed algorithms in both verification (one-

to-one) and identification (one-to-many) modes.  
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The verification mode is able to assess the performance of the algorithms in terms 

of genuine acceptance rate (GAR), false acceptance rate (FAR) and equal error rate 

(EER). Similarly, the performance estimation in the identification mode is a one-to-many 

search of the entire dataset for a given test sample. The identification mode adopts a 

correct recognition rate (CRR) measure in order to evaluate the performance of the 

algorithm.   

In the first stage, we focused on the performance evaluation of the proposed 

approach based on segmentation accuracy. Thereafter, we evaluate the performance of 

the proposed approach for iris segmentation, feature extraction, optimum feature selection 

and iris recognition using SVM. The verification performance of the proposed method is 

demonstrated using the receiver operating curve (ROC) curve and equal error rate (EER). 

As mentioned earlier in chapter 1, the EER is the point where the FAR and the FRR are 

equal in value. In earnest, the lower the EER value, the better the accuracy of the iris 

recognition system [17].  

In the second stage, experiments are carried out to provide a comparative analysis 

of our method with the other existing methods with respect to the recognition accuracy. 

The average time consumption pertaining to the different parts of the proposed iris 

recognition system are computed and comparisons are drawn with other existing methods 

in order to ascertain the efficiency of the proposed method.   

 

5.2 Experimental Setup 

This section gives detailed information on the experimental setup used for conducting 

each analysis of the research. 

 

5.2.1 Iris Image Database 

In order to ascertain the efficiency of the proposed iris recognition scheme based 

on GCBAC for iris segmentation, PR-CWF and PSO for feature extraction and selection 

and SVM for classification, tests were performed on two free publicly available iris 

datasets: UBIRIS v2.0 and CASIA-IrisV4. For simplicity, four sub-sets of the datasets 

namely: UBIRIS v2.0, CASIA-Iris-Interval, CASIA-Iris-Lamp, and CASIA-Iris-
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Distance were selected.  All of the four iris image datasets selected contain challenging 

iris images obtained under less constrained imaging conditions. This criteria meets the 

main objectives of our experimentation since images acquired under less constrained 

imaging conditions tends to contain high level of noise which makes it more challenging 

to recognise that others.  

The UBIRIS v2.0 iris dataset which have been extensively used for many research 

evaluations was released by University of Beira, Portugal in 2010 [103]. It includes 

11,102 non-ideal iris images from 522 irises captured from 261 subjects in two distinct 

sessions [105]. The development of this database was aimed at improving the UBIRIS 

v1.0 database by capturing real life iris images on-the move or at-a-distance, in visible 

wavelength with less subject co-operation. This database is normally classified as difficult 

for iris segmentation purpose [103]. The captured iris images in this database were 

classified into three categories: “light”, “medium”’ and “heavy” pigmented.  The “light” 

pigmented category contains the blue and light green iris images with the highest 

luminance value average ߛߤ and standard deviation ߛߪ values of 51.95 and 3.90, 

respectively. The “medium” contains the light and medium brown and dark green irises 

with ߛߤ ൌ 37.70 and ߛߪ ൌ 3.15, while, the “heavy” pigmented iris images contains dark 

brown and almost black irises with ߛߤ ൌ 29.46 and ߛߪ ൌ 2.25, respectively.  

The image acquisition was implemented under both artificial and natural lightning 

sources. Images were captured within two weeks in two distinct imaging sessions with an 

interval of one week. The subjects were made up of about 90% of mainly Latin 

Caucasian, 8% Black Africans, and 2% percent Asian people. About 60% of the subjects 

were able to participate in the two imaging sessions. While, about 40% of the participants 

performed exclusively in one session, either during the first or second capture session. 

The images were captured at a distance of between 4 to 8 meters from the camera and a 

total of 15 images per eye and session were capture from a large majority of the 

individuals. This is one of the major distinguishing point between this database and other 

iris image databases.  UBIRIS v2.0 images are captured using visible imaging and the 

images are 24-bit colour images in TIFF format with a resolution of 800	 ൈ 600 bits. 

There are 14 different noise factors identified in this database which include: iris 

obstruction, reflections, off-angle, partial image, poor focus, motion blur, rotated, 

improper lightning and out-of-focus iris images to mention but a few.  
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The CASIA-IrisV4 iris dataset [104] was recently released by the Institute of 

Automation, Chinese Academy of Sciences as an extension of CASIA-IrisV3 iris dataset. 

It contains a total of 54,601 iris images captured from more than 1,800 genuine subjects 

and about 1,000 virtual subjects. All the images are captured under near infrared 

illumination or synthesized to an 8-bits gray-level JPEG file format. The images were 

captured at a distance from the subject. Therefore, it contains many poor images with so 

many challenges like: heavy occlusion, poor contrast, pupil deformation, e.t.c. CASIA 

iris database is the largest iris image database in the public domain till today by our best 

judgement.  

CASIA-IrisV4 contain six subsets, three of which are from CASIA-IrisV3 dataset 

which includes: CASIA-Iris-Interval, CASIA-Iris-Lamp, and CASIA-Iris-Twins. The 

remaining three new subsets include: CASIA-Iris-Distance, CASIA-Iris-Thousand, and 

CASIA-Iris-Syn, respectively. The CASIA-Iris-Interval images were captured with a 

self-developed closed-up iris camera. The camera is designed to use a circular NIR LED 

array, with suitable luminosity flux to capture iris images. The iris image captured using 

this design is very clear. Similarly, CASIA-Iris-Lamp images were captured using a 

handheld iris sensor designed by OKI. The infrared light is turned on/off close to the 

subject in order to introduce more intra-class variations during capture. The mechanism 

produces elastic deformation of iris texture due to pupil expansion and contraction under 

different illumination conditions which is one of the major challenges of iris 

segmentation. This database provides good sample iris images for studying non-uniform 

iris normalization and robust iris feature representation. CASIA-Iris-Twins in the same 

way contains iris images of 100 pairs of twins, collected using OKI IRISPASS-h camera.  

CASIA-Iris-Distance contains iris images captured using a self-developed long 

range multi-modal biometric image acquisition and recognition system. A biometric 

sensor is used to identify subjects from a 3-meter distance by actively searching for iris 

or face pattern in the visual field via intelligent multi-camera imaging system. Also, 

CASIA-Iris-Thousand contains 20,000 iris images from 1,000 subjects, captured using 

IKEMB-100 camera produced by Irisking. Subject are meant to look into the camera’s 

LCD and adjust their pose for fit into the bounding box for high quality iris capture. 

Finally, CASIA-Iris-Sync contains 10,000 synthesized iris images of 1,000 classes.  The 

iris textures of these images are synthesized automatically from a subset of CASIA-IrisV1 

dataset. These are artificial iris images developed by embedding iris ring regions into real 

iris images to make them look more realistic. The intra-class variations introduced into 
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the synthesized iris dataset include, blurring and rotation which raises a challenge for iris 

feature extraction and matching.  

The two iris datasets used in this experiment were acquired at a distance ranging 

from 3 to 8m, which justifies one of the main objective of this research. Also, CASIA iris 

database was acquired from subjects of mainly Chinese and Asian origin while UBIRIS 

database images were acquired from a mixture of subjects where majority of about 90% 

are mainly of Latin Caucasian origin, 8% of whom are of black origin, and 2% are of 

Asian origin, respectively. Therefore this satisfies the versatility and diversity of subjects 

as well as the heterogeneity in the iris samples used in this experiments which is a major 

objective of this study.  

 

5.2.2 Evaluation Framework of the Proposed Schemes 

To validate the performance of the proposed segmentation algorithm, we perform 

experiments on the four selected datasets as well as on a combined dataset built from iris 

images from all the different versions of UBIRIS and CASIA iris datasets. In the first 

phase of the evaluation, each iris image in the considered test database is processed using 

the proposed segmentation, feature extraction and matching algorithm and based on the 

matching and classification results, evaluations are made. In order to detect the specular 

reflections in the original iris image, the iris image is first processed with the proposed 

multiscale adaptive edge-weighted high-pass fitter for reflection mapping. The mapped 

reflection points are then removed using the proposed modified exemplar based image 

inpainting. The boundaries of the iris are then localized using the proposed GCBAC. 

Normalization of the iris sample is achieved using Daugman’s rubber sheet model [8], 

[11]. Distinctive iris features are then extracted and encoded using the proposed PR-CWF 

and PSO. Subsequently, classification using adaptive support vector machine (ASVM) is 

performed.  Once, the iris images are encoded, identical template matching is performed 

to generate the genuine and impostor matching distributions.  

In order to determine the accuracy of our iris recognition algorithm, various 

experiments were carried out on the dataset which include; manual observation, and 

automatic performance analysis methods. Performance evaluation is carried out after 

template matching is performed to generate the genuine and impostor matching 

distributions. Based on this distribution, Receivers Operating Characteristics (ROC) 
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curves are used to measure the performance of the algorithm. The ROC plot for each 

algorithm is given as the plot of the Genuine Accept Rate (GAR) against the False 

Acceptance Rate (FRR). Also, the Equal Error Rate (EER) is used to give the quantitative 

evaluation of the algorithm. EER is a point in the ROC curve where the FAR and FRR 

are equal, and the smaller the value of EER is, the better the algorithm.  

For the computation of the verification rates namely FRR and FAR and GMR, the 

following formulas were used: 

Let ߮௚ represent the set of all genuine comparison score, 

and ߮௜ represent the set of all imposter comparison score. 

߮௚ሺݐሻ is the set of all gunine socres ݏ	 ൐  ,ݐ

߮௜ሺݐሻ is the set of all imposter scores ݏ	 ൐  ݐ

ሻݐሺܴܯܩ ൌ
ฮ߮௚ሺݐሻฮ

ฮ߮௚ฮ
,							ሺ5.1ሻ 

ሻݐሺܴܣܨ ൌ 	
‖߮௜ሺݐሻ‖
‖߮௜‖

,									ሺ5.2ሻ 

ሻݐሺܴܴܨ ൌ 1 െ  ሺ5.3ሻ								ሻ,ݐሺܴܯܩ

Where t represents the threshold. False acceptance rate (FRR), is one of the most 

important indicators of the security level of biometric system, which is completely 

determined by the imposter distribution.  

 

5.2.3 Implementation Details and Experimental Results 

Our experiments were performed on images from the UBIRIS v2.0, and CASIA-Iris-

Interval, CASIA-Iris-Lamp, CASIA-Iris-Distance and a combined iris dataset from all 

the different datasets. After pre-processing and feature extraction, the images was trained 

using the hybrid PSO based SVM models for efficient classification.  

The pre-processing includes five steps from the iris segmentation to the representation of 

the iris sample using the binary iris code. The steps includes: 
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 Reflection detection and removal – detects and fills the reflected parts of the 

original iris image. 

 Iris segmentation – effectively defined the boundaries of the iris portion of the 

image. 

 Normalization – transforms the segmented iris sample from the radial co-ordinate 

system to the rectangular polar co-ordinate system in order to maintain 

size/translation invariance.  

 Feature extraction – the analysis if the iris sample for iris representation. 

 Feature selection- the representation of the iris sample by selection of best iris 

features.  

Using the pre-processing steps, we avoid the undesirable effects of occlusions and non-

uniform illumination as well as erroneous segmentations which might affect the 

recognition quality.   

To evaluate the performance of the algorithms, several measures were deployed 

in our work. 10-fold cross-validation is the standard way of measuring the accuracy of a 

learning scheme on a particular dataset. The datasets are divided randomly into 10 parts 

where the class is represented with approximately the same properties as full dataset. 

During each run, we use different sets of images for training and testing in the 

classification algorithm in order to ascertain the performance of our proposed methods. 

For UBIRIS v2.0 dataset, a total of 5 images per subject out of the 15 images per subject 

per eye was chosen randomly for training while the rest of the images from the dataset 

were used for testing. Also, for CASIA-Iris-Interval, CASIA-Iris-Lamp, CASIA-Iris-

Distance and the combined subsets, a total of three images per subject were chosen for 

training while the rest of the images in the dataset were used for testing purposes. These 

sets are non-overlapping which means no subject is used for training purpose was used 

for testing. Classifier performance is evaluated by calculating the ratio of the number of 

correctly classified instances to the total number of instances (Accuracy).  

It is important to find the optimal parameter ܥ and gamma for each particular 

parameter setup because different parameter setup are suitable for solving different 

problems. We employ algorithm PSO for fixing the parameters W, c1 and c2 with the 

values set as W=0.75, c1=c2=1.5 and number its particles with 30, whereas the iteration 

count is 100. As regards to topology vicinity, we chose a vicinity ‘gbest’ which ensures 



 

124 
 

that it converges faster that the model ‘lbest’.  The selected iris feature code (irisCode) 

based on particle swam optimisation is feed directly into the ASVM for iris recognition.  

All the experiments were run on a standard Pentium IV 3.40GHZ with 16.0GB 

memory running the Windows 7 Enterprise operating system. We compare the results 

obtained with the PSO-SVM model with other state of the algorithm for performance 

verification considered by using the approach of multiclass and one-vs-one. The results 

of the experiments are presented in subsequent sections.  

 

 

5.3 Accuracy of the Reflection Detection and Removal Scheme 

In this section, we evaluate the efficiency of the proposed reflection removal 

methodology on images of CASIA V4.0 iris image database. The whole of the images in 

CASIA V4.0 (interval and lamp) database were processed with the proposed reflection 

detection and removal algorithm based on edge-weighted high-pass filter and exemplar 

image inpainting method. Figure 5.1, shows the result of the reflection removal algorithm 

on some selected iris images from CASIA-Iris-V4-Lamp and CASIA-Iris-V4-Interval. 

Evaluation using manual observation approach shows that more than 99 percent 

of reflections in the selected datasets were successfully detected and accurately filled. 

From the results shown in Figure 5.1, we can see that both the strong and weak reflections 

were accurately detected and filled and edges were preserved. Moreover, the detection 

algorithm made sure that only reflection points are detected and filled thereby preserving 

the iris structure for further processing.  

Accurate reflection detection and removal paves way for effective pupil and 

limbic boundary segmentation. Also, it is very important that the method of filling the 

reflections in the iris image preserves the original structure of the image as much as 

possible so that further processing steps can be successfully carried out on the image. 
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Figure 5.1: Results of the reflection removal algorithm on challenging iris images from both 

CASIA and UBIRIS datasets using the proposed reflection detection and removal algorithm; 

images to the left of Columns (a) and (b) are the original iris images while the ones to the right 

of the columns (a) and (b) are the processed iris images 

 

In this work, the level of alteration to the iris structure after reflection removal is 

computed and compared to other popular methods in order to demonstrate the efficacy of 

the proposed method in preserving the original structure of the image. To evaluate the 

level of preservation of the structure of the iris after inpainting, a method based on the 

calculation of Structural Similarity Index (SSIM) and the Mean Squared Error (MSE) of 

the original and the inpainted images is adopted. Figure 5.2, shows the SSIMs of the 

proposed method in comparison with other well-known popular reflection removal 

(a)  (b) 
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methods and our proposed method recorded the lowest SSIM index while maintaining 

zero MSE. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: A bar plot showing the SSIM indexes of the original iris images before 

reflection removal against the equivalent processed iris images using the proposed 

reflection removal algorithm, the PDE method and the bilinear interpolation method on 

the combined iris image dataset, comparing the impact of each algorithm on the iris image 

structure. 

This indicates that our method is better than the other methods in terms of 

accuracy and also in preserving the original structure of the image after removing 

reflection. 

 

5.4 Evaluation of the Pupil/Iris Segmentation Scheme 

To validate the performance of the proposed iris segmentation scheme, several 

experiments were carried out on the selected datasets. A number of different segmentation 

approaches were applied to segment the iris images. The iris images are segmented using 

active contour based on Shah and Ross method [53], Roy et al method [54], Daugman’s 
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IDO method [17] and our proposed GCBAC method. Our proposed feature extraction and 

classification algorithms were applied for the iris recognition process in all the four 

different methods. In order to maintain the same standard in the evaluation scheme, the 

proposed reflection detection and removal method was applied to detect and remove 

reflection from the iris images before segmentation is carried out in some models where 

reflection detection and removal does not already exists. For instance, the Daugman’s 

method does not include a reflection detection algorithm. Also, the proposed eyelash 

detection is applied where they do not already exist. These additional procedures 

increased the processing times for those approaches where they were applied but that also 

increased their performances as well. To provide numerical results and evaluate the 

performance of the proposed approach, the ROC curve framework is adopted. Also 

manual visual evaluation and comparison are used to evaluate the performance of the 

proposed approach. A sample of five test images each from the CASIA-Iris-V1.0 and 

CASIA-Iris-V4-Lamp representing ideal and non-ideal iris images, respectively have 

been selected to compare the efficacy of  proposed segmentation scheme with other state-

of-the-art active contour based segmentation algorithms on both ideal and non-ideal iris 

images. Figure 5.3, shows the segmentation results. 

As shown in the first four images of Figure 5.3, all the approaches including the proposed 

approach achieved a satisfactory visual segmentation result for the first four images 

representing ideal iris images. However, for the last four non-ideal iris images, the 

proposed approach achieved a better visual segmentation result compared to the other 

approaches.  
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Also, we show the results of the proposed algorithm on several challenging iris 

datasets. Figures 5.4-5.6 shows the segmentation results on CASIA-V4-Interval, CASIA-

V4-Lamp and CASIA-V4-Twins, respectively.  

 

Figure 5.3: Visual comparison of the segmentation results of the proposed algorithm and other 
state-of-the-art algorithms on some selected images from CASIA iris dataset, (a) original iris 
image, (b)-(d) Results from [51-54], respectively, (e) Results for our segmentation approach.  

(a)  (b)  (c)  (d)  (e) 
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The visual results of the segmentation algorithms on CASIA Iris V4-Interval iris 

image subset is very impressing. The prevalent noise on this iris image subset is the 

presence of reflection and hue saturation. The impressive result on this subset shows that 

the proposed segmentation algorithm is able to overcome outliers which normally 

influence active contour based methods.    

Similarly, Figure 5.5 displays the results of the proposed segmentation algorithms 

on the CASIA Iris V4-Lamp subset. The images of CASIA Iris V4-Lamp suffer from 

heavy occlusions and specular reflections as well. Also, as a result of the heavy 

occlusions, the boundaries of the iris are clearly non-circular in these images. However, 

the proposed segmentation algorithms still achieved good results. This goes a long way 

to show the power of active contour side of the algorithm in tracing irregular boundaries.  

(a)  (b)  (c)  (d) 

Figure 5.4: GCBAC segmentation results on non-ideal iris images from CASIA-Iris-
V4-Interval dataset, columns (a) and (c) are the original iris image, columns (b) and 
(d) are the results of the segmentation process. 
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Also, as can be deduced from the displayed images, the images of this subset 

suffer from poor illumination. However, the segmentation algorithm is able to enhance 

the image and the accurate boundary of the iris are easier to detect from the enhanced 

image.  

Lastly, the images shown in Figure 5.6 are taken from the CASIA Iris V4-Distance 

subset. They are heavily occluded and with poor illumination. They also suffer from 

specular reflections. Also, as with other subsets, the proposed segmentation algorithm 

was able to achieve good visual segmentation results on these images even with heavy 

occlusion and irregular shapes.  

  

 

(a)  (b)  (c)  (d) 

Figure 5.5: GCBAC segmentation results on non-ideal iris images from CASIA-Iris-
V4-Lamp, columns (a) and (c) are the original iris image, columns (b) and (d) are 
the results of the segmentation process. 
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In the same vain, we experimentally analyse the performance of the proposed iris 

segmentation algorithm to ascertain the efficacy of the method. The experiments were 

carried out as discussed in Sections 5.2.2 and 5.2.3. Figures 5.7 – Figure 5.11 shows the 

ROC curves of the proposed GCBAC iris segmentation algorithm compared with other 

current state-of-the-art iris segmentation algorithms. 

 

 

 

 

 

 

 

(a)  (b)  (c)  (d) 

Figure 5.6: GCBAC segmentation results on challenging non-ideal iris images from 
CASIA-Iris-V4-Twin dataset, columns (a) and (c) are the original iris image, columns 
(b) and (d) are the results of the segmentation algorithm. 
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From Figure 5.7, we can see that the proposed GCBAC outperformed other state 

of the art iris segmentation algorithms on the CASIA Iris V4-Interval. The iris images of 

the CASIA Iris V4-Interval contains clear iris images with challenges like reflections, hue 

saturations, occlusions and other artefacts which is the reason why most of the other 

algorithms did not performed very well. 

 

 

 

 

 

 

 

 

 

Figure 5.7: ROC curves showing the performance of the proposed GCBAC 

segmentation technique compared with other state-of-the-art segmentation 

algorithms [51-53], on CASIA Iris V4-Interval subset. 
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Figure 5.8: ROC curves showing the performance of the proposed GCBAC 

segmentation technique compared with other state-of-the-art iris segmentation 

algorithms [51-53], on CASIA Iris V4-Lamp subset. 
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The performance of the proposed GCBAC algorithm on the CASIA Iris V4-Lamp 

is as shown in Figure 5.8. The ROC curves shows that the proposed GCBAC again 

outperformed other current state-of-the-art segmentation algorithms on this data subset. 

As can be seen also, the integro-differential method performed better on this data subset 

compared to its performance CASIA Iris V4-Interval. 

 

 

 

 

 

 

 

 

 

Also, the performance of the proposed GCBAC algorithm on the CASIA Iris V4-

Distance is as shown in Figure 5.9. The ROC curves shows that the proposed GCBAC 

again outperformed other current state-of-the-art segmentation algorithms as usual on this 

data subset. This iris image data subset is very challenging but that notwithstanding, our 

proposed algorithm achieved an impressive performance of 99.97%. 

Likewise, Figures 5.10 and 5.11 displays the ROC curves on UBIRIS V2.0 and 

the combined dataset from all the other iris image datasets. The experiments on these 

dataset are designed to ascertain the robustness of the proposed iris segmentation 

algorithm. The figures show robustness of the algorithm to handle the diverse challenges 

of different kinds of these iris image subsets. Also, the UBIRIS dataset is highly 

challenging as it contains iris images obtained from near real life condition under varying 

lightning illuminations. 

 

Figure 5.9: ROC curves showing the performance of the proposed GCBAC 

segmentation technique compared with other state-of-the-art segmentation 

algorithms [51-53], on CASIA Iris V4-Distance subset. 
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From Figure 5.10, it can be seen that the proposed GCBAC algorithm 

outperformed other state-of-the-art iris segmentation algorithms. However, the 

performance of the algorithm on this dataset is lower compared to the pervious datasets 

tested. 

 

 

 

 

 

 

 

 

 

Figure 5.10: ROC curves showing the performance of the proposed GCBAC 

segmentation technique compared with other state-of-the-art segmentation 

algorithms [51-53], on UBIRIS V2.0 iris image dataset.
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Figure 5.11: ROC curves showing the comparison of the proposed GCBAC 

segmentation technique with other state-of-the-art existing segmentation 

techniques [51-53], on the combined subset. 
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The proposed GCBAC algorithm showed impressive performance on the combined iris 

image dataset as can be seen from Figure 5.11. However, most other current state-of-the-

art iris segmentation algorithms experience a decline in performance on this image subset 

due to the heterogeneous nature of the images in this subset. This illustrates the ability of 

our algorithm to deal with variety of images. 

 

 

 

 

 

 

 

 

Notwithstanding the impressive performance of the proposed iris segmentation 

algorithm based on GCBAC, there are still some images that remains challenging to the 

algorithm. Figure 5.8, depicts samples of highly occluded iris images where our 

segmentation algorithm failed to segment the iris boundaries. It can be seen that these iris 

images are heavily occluded and mostly impossible to segment.  

To further demonstrate the time efficiency and accuracy of the segmentation 

algorithm, the proposed algorithm is compared with other active contour based methods 

on the combined dataset and their classification accuracy and speed are as shown in Table 

5.1. The experiment was carried out by implementation of the proposed GCBAC method 

and other current methods based on geodesic active contour GAC [53], as well as the 

level set LS based active contour method [52], on a standard Pentium IV 3.40GHZ 

computer with 16.0GB memory running Windows 7 Enterprise operating system. The 

implementation was carried out by segmenting the iris images using the different methods 

while the proposed feature extraction and classification methods was used for all of the 

different approaches.  The result of the experiment is as shown in Table 5.1 and as can be 

deduced from the table, our algorithm outperformed the other methods.   

Figure 5.12: Samples of iris images from UBIRIS and CASIA datasets where the 

proposed segmentation schemes failed to detected the iris and pupil boundaries 
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Algorithm Classification 
accuracy (%) 

Time 
(ms) 

Shah&Ross [52] 98.12 13335.2 

Roy et al. [53] 98.08 11467.5 

Proposed GCBAC  99.58 7482.20 

Table 5.1: Comparison of accuracy and speed of the proposed method and other 

active contour based methods on the combined dataset. 

 

Table 5.2: Comparison of the EER of the proposed method with other active contour 

based methods on the combined dataset.  

Algorithm Correct Recognition Rate (CRR) (%) 

CASIA-V4 

Interval 

CASIA-V4 

Twin 

CASIA-V4 

Lamp 

CASIA-V4 

Distance 

UBIRIS 

V2.0 

Daugman [17] 98.13 95.70 97.28 83.14 93.43 

Shah and Ross [52] 95.79 95.54 95.45 78.33 92.56 

Roy et. al. [53] 95.64 94.90 95.78 77.24 91.30 

Proposed 

GCBAC scheme 

98.99 97.55 98.97 99.50 97.30 

Table 5.3: Comparison of the CRR of the proposed method with other active contour 

methods on the combined dataset.  

 

Algorithm Equal Error Rate (EER) (%) 

 

CASIA-V4 

Interval 

CASIA-V4 

Twin 

CASIA-V4 

Lamp 

CASIA-V4 

Distance 

UBIRIS

V2.0 

Daugman [17] 0.49 1.80 0.96 8.45 6.38 

Shah&Ross [52] 0.44 1.28 0.77 1.91 1.20 

Roy et al. [53] 0.40 0.93 0.70 1.80 1.14 

Proposed 

GCBAC  

0.38 0.90 0.60 1.02 0.93 
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5.5 Evaluation of the Feature Extraction and Selection Scheme 

To validate the feature extraction method, the iris images in the combined dataset 

are first segmented using the proposed iris segmentation algorithm. The proposed feature 

extraction method based on principally rotated complex wavelet filters (PR-CWF) and 

the feature extraction method in [82] which is based on dual tree complex wavelet 

transform 2D DT-CWT was employed to extract the important iris information. While, 

the modified adaptive SVM classification was used for the classification of the iris 

samples. Performance evaluations of the two methods was achieved using the methods 

discussed in Sections 5.22 and 5.2.3. Figure 5.13, shows the comparison of the proposed 

feature extraction method using PR-CWF and the feature extraction using DT-CWT.  

 

 

 

 

 

 

 

 

 

 

Also, Table 5.4, shows the comparison of the proposed feature extraction 

algorithm with other popular feature extraction algorithms in [44-43]. The table compares 

the length of the feature vector, the accuracy and time efficiency of the algorithms. It is 

evident from the table that our algorithm yields a better accuracy and time efficiency than 

other methods.  
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Figure 5.13: ROC curves showing the comparison of the 

proposed feature extraction based on PR-CWF and DT-CWT 
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Algorithm Length of 

feature vector 

Accuracy 

(%) 

Time 

(ms) 

Daugman [17] 2048 bits 84.12 246 

Ma et al. [31] 384 elements 88.70 186 

Narote et al. [77] 1088 elements 90.88 87.1 

Bodade [78] 72 elements 92.87 90.3 

PR-CWF 110 elements 98.57 46 

 

Table 5.4: Comparison of the feature vector lengths, accuracies and speed of the proposed 

PR-CWF scheme with other feature extraction techniques.  

 

 

 

 

 

Table 5.5: Average time consumption of the different parts of the proposed iris 

recognition algorithm.   

 

5.6 Evaluation of the Computation Complexity of the Algorithms 

 In this section we introduce a complexity analysis to determine the amount of 

resources (such as time or storage) necessary to execute the algorithm. Most algorithms 

are designed to accept inputs of arbitrary size. Therefore, the efficiency or running time 

of the algorithm will be stated as a function relating the input size to the number of steps 

(time complexity) or storage (space complexity). The analysis of algorithm is a very 

important part of the computation complexity theory, which provides theoretical 

estimates for the resources needed by any algorithm, as a complexity function for any 

arbitrary large input.  

The BigΟ notation have been employed in this work to this end. Time complexity 

of the algorithm is of crucial importance if the algorithm is designed to run in 

Algorithm Time (ms) 

Iris Segmentation 7250 

Unwrapping 95 

Feature Extraction 46 

Matching 91.20 

Average Execution Time 7482.20 
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environments where tasks are given a small amount of time to perform tasks. To 

determine the computation complexity of the proposed GCBAC segmentation algorithm, 

we need to examine the computation complexity of each step in the algorithm. The 

function RefRemove needs time ܱሺܰܯሻ, since there are 
ெே

௅మ
 holes in the image. The 

segmentation of the inner and outer boundaries of each iris requires ܱ ሺܭଶሻ time while the 

time for feature calculation is given as ܱሺ1ሻ. The functions InitGraph and InitSeed need 

ܱ ቀெே
௅మ
ቁ time, because there are 

ெே

௅మ
 vertices and 

ଶሺெିଵሻሺேିଵሻ

௅మ
 edges in graph ܩ଴ and 

ெே

௅మ
 sets 

in label ݈଴ initially. After the first iteration, the number of nodes in level ݅ is at most, half 

of the nodes in level ݈ െ 1. Therefore, there are at most ሺ݈݋gெே
௅మ
ሻ iterations. So, the total 

time needed in one iteration is ܱሺெே
௅మ
ሻ, except for the subroutines CreateGraph. The 

subroutine CreateGraph needs ܱሺ| ௟ܸ௘௩௘௟ିଵ| ൅  ௟௘௩௘௟ିଵ|ሻ time. Therefore, the total timeܧ|

needed for a single iteration is ܱሺெே
௄మ
ሻ and the computation complexity of the whole 

algorithm can be is given as: 

ܱ ൬ܰܯ ൅
ܰܯ
ଶܮ

log ൬
ܰܯ
ଶܮ

൰൰,					ሺ5.4ሻ 

Therefore, considering the model’s time complexity in Equation (5.4), we can conclude 

that the model is highly efficient in finding the optimal boundaries of the iris.  

 

 

5.6 Summary 

In this chapter, we tested our proposed approaches with different heterogeneous 

iris image datasets. Our proposed approaches have also been compared with other existing 

state-of-the-art iris recognition algorithms. As evident from Table 5.5, our approach with 

98.57% accuracy value outperforms existing state-of-the-art approaches for extracting the 

most significant iris features in non-ideal iris images. Also, our segmentation approach 

with accuracy values of 98.99%, 97.55%, 98.97%, 99.50% and 97.30 on CASIA-V4-

Interval, CASIA-V4-Twin, CASIA-V4-Lamp, CASIA-V4-Distance and UBIRIS V2.0, 

respectively, outperformed other state-of-the-art segmentation algorithms [51-53]. For 

the best active contour based approach [52] compared with our proposed approach the 

improvement is 1.46% on the combined dataset. Similarly, for the best traditional and 
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most popular iris segmentation algorithms [17], the improvement is an average of 5.19% 

on the four CASIA V4 (Interval, Twins, Lamp and Distance) iris datasets. In addition, the 

extraction of iris features is of great importance at the classification level. As illustrated 

in Table 5.1, there is approximately twice a reduction in the average computational time 

by using the proposed segmentation algorithm compared to other state-of-the-art 

segmentation algorithms. This reduction in computational time is caused by two main 

reasons: 1) the initialization of the active contour close to the boundaries of the iris, 2) 

the hybrid method of graph cut energy and active contour which eliminates the 

complexity of the LS function. This demonstrates that our approach while running on a 

slower platform is computationally more efficient than other approaches while still 

maintaining higher accuracy than the other approaches. This major advantage would be 

applicable to a number of iris based recognition systems that require real time 

identification of individual identity such as online transactions and embedded systems.   
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Chapter 6 

 

6. CONCLUSION AND FUTURE WORK 

This chapter discusses the key contributions of our research work in Section 6.1, 

and suggests the ways of conducting future research in section 6.2. 

 

6.1 Conclusion 

Iris recognition has been a highly interesting research topic over the last decade 

due to the increased security requirements for the sophisticated personal identification 

systems based on biometrics. The rich unique and stable textural details of the iris patterns 

makes iris a biometric modality for identifying an individual accurately and reliably. Most 

current iris recognition algorithms exhibits high recognition accuracies in relatively 

cooperative environments. However, the processing and recognition of degraded iris 

image still remains a challenging issue. In this thesis, we have focused on the processing 

of non-ideal iris images using GCBAC, PR-CWF, PSO, and ASVMs. In order to verify 

the claimed performances, the proposed methods were evaluated on several challenging 

iris datasets, namely: CASIA Version 4 Interval, CASIA Version 4 Twins, CASIA 

Version 4 Distance, UBIRIS Version 2.0 and a heterogeneous combined dataset.  

Furthermore, to show the effectiveness of the proposed algorithms, comparisons are made 

with several state-of-the-art iris recognition methods.   

The accurate segmentation of the iris plays an important role in iris recognition 

because the accuracy of the subsequent phases depends on the correct segmentation of 

the iris region. While most of the current iris recognition schemes based on active contour 

are based on the evolution of a curve from the boundary of the pupil to the boundary of 

the iris. This proposed scheme adopted an efficient 2-level hierarchical approach which 

first roughly approximates the boundaries of the iris and then refines the approximated 

boundary using the proposed GCBAC. This approach eliminates errors from one level 

from getting into the subsequent levels and the repetition of the process makes the process 

complimentary.  Also, while current methods are based on the LS algorithm or regional 



 

142 
 

energy, which is slow to convergence and is attracted to local minima like the reflection 

boundaries, the pupillary boundaries and other outlayers in the image caused by noise,   

The proposed iris segmentation algorithm is based on GCBAC algorithm which brings 

together region-based and boundary-based methods and appropriates different probability 

spaces into a common information-sharing framework and accurately overcome outlayers 

and detect the accurate boundary at efficient time. The accurate localization of the iris 

regions from the degraded eye images has been achieved at almost half the speed of most 

current iris segmentation algorithms. The proposed localization scheme based on 

GCBAC avoids over-segmentation and performs well in blurred images of the iris/sclera 

boundary. The image enhancement algorithm is able to increase the quality of the iris 

image and reduce the effects of noise while leaving the original image’s structure largely 

unaltered. This keeps the image in good form for further processing. Finally, the proposed 

algorithm localizes the iris regions accurately from degraded iris images that have been 

affected by different nonideal factors.  

Also, the importance of extracting important iris features from the segmented iris 

sample cannot be overemphasised. Extracting redundant iris features impacts greatly on 

the classification accuracy and speed. The proposed principally rotated complex wavelet 

features (PR-CWF) and particle swam optimization (PSO), is able to extract the most 

important iris features and selected the most prominent features from the feature vector 

for the representation of the iris. While most of the current iris recognition algorithms 

utilize the complete iris information for iris recognition, we have chosen to use the right 

and left sectors of the iris image which is less susceptible to occlusions from the eyelids 

and eyelashes for iris recognition and this leads to higher recognition accuracy and 

reduced false rejection. The combined PR-CWF and PSO based feature selection method 

reduces the dimensionality of the extracted iris feature sequence without losing the 

matching accuracy. The employed ASVM performs well even in poorly balanced sample 

space and control different classification errors. We also provide experimental validations 

which exhibits an encouraging performance with respect to the accuracy of other relative 

non-ideal iris recognition algorithms.  
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6.2 Future Research 

In this thesis, the proposed iris recognition approaches performs reasonably well in 

degraded iris images. However, there are numerous issues that should be addressed and 

resolved in order to improve the performance even the more. Future research could be 

conducted along the following directions to build a robust iris (biometrics) recognition 

system.  

1. In this thesis, the GCBAC model uses the combination of the strengths of the 

gradient local and region-based methods for finding the iris boundaries. However, 

a simple region based method can still be used by fussing multiple regions in order 

to determine the optimum boundaries of the iris. An improved iris segmentation 

scheme can possibly be developed by integrating the RAC model with the VLS 

based boundary finding method while using game theory as a fusion scheme. 

Also, shape prior along with the region and boundary data can be applied to 

attempt to further improve the segmentation performance. Moreover, reversing 

the order of the segmentation process can significantly improve the algorithm. 

Processing the eyelashes first and eliminating the eyelid/eyelash before applying 

the segmentation algorithm can greatly enhance the segmentation accuracy and 

act as a way of accessing the quality of the original iris image before initializing 

the processing of the image.  

2. Since the quality of the images affect the overall matching accuracy and In order 

to eliminate time wasted in highly degraded iris images, an iris image quality 

assessment scheme needs to be employed to eliminate closed eyes and other iris 

image that cannot pass for recognition. Most current iris image quality assessment 

methods deal exclusively with the iris images captured in a Near Infra-Red (NIR) 

setup, an enhanced method can be deployed to assess the quality of iris images 

captured by using the Visible Wavelength (VW) light imagery.  In general, the 

VW imaging setup is able to acquire iris data at significantly larger distances and 

on moving subjects.  

3. In this thesis, we only used the global or local features for iris recognition. 

However, the recognition performance can possibly be improved by fussing both 

the local and global features while using PSO and SVMs as fusion strategies.  

4. In this thesis, we have dealt with iris images that have been captured in both NIR 

and VW imagery setup. However, a more sophisticated iris segmentation scheme 
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can be develop for the VW iris images only. In this way, the whitish sclera can be 

utilized for segmentation instead of the iris information.   

5. In real-world application, the unimodal biometric system like the iris recognition 

system is often faced with significant limitations due to noisy sensor data, 

restricted degree of freedom, intra-class variability, unacceptable error rates, and 

a lot of other factors. Multimodal biometric systems seeks to alleviate some of 

these problems by providing multiple pieces of evidence for the same identity. 

Multimodal biometric systems can significantly improve the recognition 

performance in addition to improving greater population coverage, better anti-

spoofing measures, increasing the degree of freedom, and reduces the failure to 

enrol rate. An effective fusion scheme that can combine information presented by 

the multiple domain experts, based on score level fusion method can be able to 

address some of the limitations of the existing unimodal authentication systems. 

In more specific terms, the combination of the iris and the keystroke dynamics 

representing physical and behavioural biometrics of an individual can be utilized 

for accurate and reliable identification purpose especially for monitoring and 

surveillance purposes.  

6. As can be seen, the most computation intensive part of the algorithm involves the 

segmentation of the iris. Since we have implemented the system in Matlab, which 

is an interpreted language, an improvement in speed can be achieved if the most 

time consuming part of the system is implemented in C++ programming language 

environment. 

7. The iris liveness detection is a major issue in the area of iris recognition otherwise, 

a high resolution photograph can be presented to an iris recognition system which 

might result to a false match. Fake iris detection is another important factor which 

should be given careful attention. The contact lenses vastly used nowadays is 

capable of changing the colour of an individual’s iris. This may lead to problems 

with the iris recognition system since a fake iris pattern is printed on the surface 

of the lens. The system may lead to false rejection of an enrolled user. Contrary, 

the system may falsely accept a subject, if the iris patterns of that subject has been 

enrolled in the database. Therefore, further research is required to overcome these 

challenges.  
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