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Abstract 

Countries around the world are suffering from many problems caused by the misuse of 

their resources either by using non-renewable ones or destroying the valuable features of the 

resources that are available. 

Some of the most important challenges facing humanity are related to food and energy 

security.  Food security includes many aspects besides providing people with an adequate 

amount of safe and healthy food; it also includes improving food processing to produce 

acceptable, high quality food products with reduced losses of nutrients, carbon footprint and 

using fewer resources in the production/packaging processes. 

Dried and concentrated foods have become an important category in the food products 

marketplace. Many of the usual traditional methods require very high energy inputs. These 

methods may also have significant negative impacts on the foodstuffs, especially their chemical 

properties, such as loss of essential nutrients, as well as their appearance, aromas and flavour. 

This project aimed to combine the electrokinetic phenomenon of electro-osmosis with the 

traditional functions of filtration to form a process of electrokinetically enhanced filtration 

(EKEF).  This process is based on using electrokinetic effects to enhance conventional filtration 

technologies to concentrate foodstuffs at low temperature which saves energy, time, and 

product constituents associated with product quality, especially the temperature-sensitive 

components such as Vitamin C, fruit/vegetable colours and key aromas. 

This study is concerned with factors affecting the efficiency of the EKEF process after its 

application to concentrate orange juice (14% dry matter content, pH=3.6) and malt extract (20% 

dry matter content, pH=4.55), and monitoring the changes that occur in indicators of food 

quality, such as the change in pH value, vitamin C content, colour, dry matter as well as the 

energy inputs to facilitate the EKEF. 

The process of electrokinetics was combined with micro-filtration (MF) to speed up the 

process and save time and energy.  This is carried out in an EKEF-rig which was designed to 

meet the project needs with an ability to change all the dependent parameters to find the 

optimum conditions to run this application. 

Applying EKEF improved the filtration process and achieved net dewatering efficiencies 

up to 7.43% and 4.86% for orange juice and 10.68% and 6.26% for malt extract after 5.5hrs of 

processing under 30V and 15V respectively; and increased dry matter content from 14% to 
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33.09% and 29.52% for orange juice and from 20% to 34.2% and 32.14% for malt extract after 

5.5hrs under 30V and 15V respectively. The maximum dry matter content was 28.75% and 

29.63% under the control condition after the same time for orange juice and malt extract 

respectively. 

Results showed that the performance of the EKEF process was dependent upon several 

parameters such as the sample’s conductivity, applied voltage used, applied pressure, initial 

sample’s thickness (the distance between electrodes) and filters pore size; all of these factors 

had a positive impact on improving the process efficiency except of the initial sample’s 

thickness which had a negative impact. 

Regarding the impact on the heat-sensitive food compounds, here represented by vitamin 

C; applying EKEF for 5.5hours reduced vitamin C retention in the concentrated juice to 41% 

under 15V and 7% under 30V. The retention of the total filtrate was also influenced by the 

EKEF process, where it fell to 48% under 15V and 35% under 30V. 

Vitamin C retention was better under the EKEF process compared with its value under 

conventional thermal methods, where it needed about 10-15min at 50-75ºC and (3min) at 90ºC 

to drop to 50% or less (Vikram et al., 2005). EKEF also had a negative impact on the juice 

colour and pH value. 

The direction of water flow and the profile of fluid flow between the two electrodes were 

thoroughly investigated to identify the main filtration outlet and its position; the power 

consumption of the application was also calculated and compared with power consumption of 

conventional thermal methods. 

The EKEF process resulted in a large power consumption addition compared with 

applying the pressure only; however, the required additional energy needed to achieve the same 

increase in dewatering efficiency by increasing the pressure only without EK was relatively 

small. On the other hand, EKEF showed a good efficiency in energy saving compared with the 

power consumption required in more conventional thermal methods used to evaporate an equal 

amount of water. This saving was up to 18.35 times and 47.34 times in OJ and ME dewatering 

respectively. 
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Glossary 

Anode: is the positively charged electrode, where the negative ions (anions) move to under a 

voltage application. 

Cathode: is the negatively charged electrode where, the positive ions (cations) move to under 

a voltage application. 

Anolyte: is the electro-osmotic flow corresponding to the respective movements toward the 

anode (Yang et al., 2005). 

Catholyte: is the electro-osmotic flow corresponding to the respective movements toward the 

cathode (Yang et al., 2005). 

Total Filtrate: is the total discharged filtrate exiting from both outlets, (anolyte and catholyte 

combined together) 

Flow rate: is the discharged filtrate weight per minute (g/min). 

Dewatering efficiency: is the ratio of the total filtrate weight (the anolyte and the catholyte 

weight) relative to the initial water weight in the sample. 

Net dewatering efficiency: is the total dewatering efficiency minus the efficiency of the control 

(without EKEF).  

Dewatering Process Outcome: is the weight (g) of the total filtrate streams exiting from the 

outlets through filters all over the dewatering process time. 

Control orientation: is a phrase used in this study to describe an experimental orientation when 

the EKEF is off and the voltage value is 0V (no voltage applied). 

Normal orientation: is a phrase used in this study to describe an experimental orientation when 

the EKEF is on, anode (+) is the bottom electrode and cathode (-) is the top electrode. 

Reversed orientation: is a phrase used in this study to describe an experimental orientation 

when the EKEF is on, the cathode (-) is the bottom electrode and anode (+) is the top 

electrode. 

Water Profile Direction: The direction of the major volume of discharged filtrate (or water) 

towards one of the two electrode. 
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The main outlet: is the outlet where the water profile goes to (the outlet of the major discharged 

filtrate volume). 

Anolyte to catholyte ratio (A/C ratio): the percentage (or the volume) of the anolyte relative 

to the percentage (or the volume) of the catholyte. 

Iso-electric Point (IEP): is the pH at which a particle is electrically neutral and carries no 

net electrical charge. 

The Lowest Conductivity Point (LCP): (used for this study) is the pH at which foodstuff has 

the lowest conductivity. 
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1.1. Introduction 

The UK food sector is one of the most important industrial sectors, and one of the richest 

areas for innovation. The need for better food quality as well as variety have increased in the 

last decade as the consumers have become better educated in terms of health issues, nutritional 

aspects and food quality. All these factors encourage food producers and companies to seek 

new methods and ways to offer better food products with higher quality and greater safety. 

Within this new-found demand for innovation, non-thermal processing of food has 

appeared as a possible opportunity for the industrial sector to provide better wellness and health 

for consumers, and potential new products with excellent quality and high inherent safety. 

These emerging technologies are surrounded by immense challenges. However, there is 

a long list of research groups interested in these research area as these non-thermal applications 

are developing and making a significant positive impact on energy and the food sector. It also 

provides an excellent balance between cost and high quality on one side, and safety and reduced 

processing on the other side. 

Non-thermal methods could be understood as an effective alternative to conventional 

thermal methods. However, non-thermal processing can also be effectively combined with 

thermal processing to achieve very good results in different areas such as inclusion of 

antimicrobials and/or bacteriocins, pH, and water activity modifiers.  

Very attractive prices and superb quality make the opportunities for these new products 

commercially attractive (Zhang et al., 2011). 

Within more recent food processing innovation, drying and concentrating are being re-

examined as effective methods to preserve food by removing water, which reduces water 

activity and thereby inhibits or decreases the growth of microorganisms and hinders decay and 

subsequent loss of quality. Dried and concentrated materials are classified into several 

categories according to the method used to dry them. Different methods of dewatering are used 

to give different products of different quality, physical and chemical properties with different 

prices (Russell and Gould, 2003). 

There have been significant improvements when using these methods, as drying food (to 

prevent spoilage) using the sun and wind are very old practices which have been used 

consistently since ancient times. Water is usually removed by several different methods; some 

of them depend on evaporation (air, sun, smoking or wind drying) but, in the case of freeze-
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drying, water is removed by sublimation after freezing food. Drying using heat to evaporate 

water is used widely. 

Each of these methods has several disadvantages and may have negative impacts on the 

quality of the resulting foodstuffs. They impact especially on the chemical properties such as 

loss of essential nutrients, as well as the appearance, the odour and the flavour. In addition, 

many of the previous methods require high energy consumption (Fellow, 2000). 

Nowadays, there are many non-thermal methods used to reduce water content such as 

industrial high-pressure or to minimise the microorganisms' activities such as pulsed electric 

field (PEF). Researchers are still working to improve these methods and innovate others, all 

these methods depend on controlling the activation, inactivation, or retention kinetics and 

mechanisms of microorganisms, viruses, allergens, nutrition and toxins subjected to non-

thermal processes (Knorr, 1993; Zhang et al., 2011). 

One of the ways used successfully in the field of dried and concentrated material to avoid 

these problems is microfiltration, “Membranes with a pore size of 0.1-10 µm. Microfiltration 

membranes remove all bacteria. Only part of the viral contamination is caught up in the 

process, even though viruses are smaller than the pores of a microfiltration membrane. This is 

because viruses can attach themselves to bacterial bio-film” (Lenntech, 2015). 

Microfiltration can be implemented in many different water treatment processes when 

particles with a diameter greater than 0.1 µm need to be removed from a liquid; and 

ultrafiltration, “a high-level filtration system for the treatment of water and other liquids; based 

on filtering colloids and molecules between 0.002 and 0.1 µm in size by forcing liquids through 

a membrane with extremely fine pores. This method is capable of removing solids, viruses and 

bacteria" (Chisti, 2007). 

Most filters in use today play a passive role, e.g. geo-membrane barriers help to prevent 

the passage of liquids. In addition, reinforcement in its turn provides tensile resistance, but that 

happens only after an initial strain has occurred. The passage of water is provided by the drain 

but the drain does not itself cause water to flow. Trying to improve this process, new methods 

need to be used as a separate process or a supportive one by combining it with other applied 

processes such as filtration.  

Applying an electric field to a charged liquid or semi-liquid material using two electrodes 

results in several processes starting at different components: charged liquid ions, charged liquid 

particles and the liquid itself. These processes, which are described as Electrokinetics, cause a 
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movement of these different components towards one of the electrode according to the process 

and the ion number and types. 

“The movement of charged particles in an aqueous medium to an electrode of opposite 

polarity is known as electrophoresis” (Weber and Stahl, 2002; Lockhart, 1981). The second 

type of movement, electro-osmosis, is defined as the displacement of liquid relative to the 

medium under the influence of an electric field (Weber & Stahl, 2002; Lockhart, 1981). There 

is another type of movement under electrokinetics which is produced by the same mechanism 

as electrophoresis but at the liquid level and works in the opposite direction to the charged ions 

that moves to the opposite polarity electrode under electrophoresis (Aziz, Dixon, Usher & 

Scales, 2006). 

Previous processes and their application have been a very rich interesting area for many 

researchers to understand the impact of applying an electric field to a liquid and control this 

impact to enhance the dewatering process by combining these electrical phenomena with the 

water motion.  

For instance, in the civil engineering area, new applications for geosynthetics have been 

created to provide an active role, initiating physical, chemical or biological changes to the 

matrix in which it is installed, by combining the electrokinetic phenomena of electro-osmosis, 

electrophoresis and associated electrokinetic functions such as electrolysis with the traditional 

functions of geosynthetics of drainage, filtration, containment and reinforcement to form 

electrokinetic geosynthetics (EKG) (Nettleton et al., 1998; Hamir et al., 2001). Electrokinetic 

geosynthetics (EKG) is an important technology which can be considered as a platform, one 

which combines a wide range of materials and processes to perform such various functions as 

dewatering, drying and concentrating for different materials such as food, soils, sludge and 

slurries (Jones et al., 2010). 

There is a relatively good number of published papers about using electrokinetics in the 

civil engineering area to dewater non-food materials such as soil, mine tailing, waste and others; 

and a few studies about using the pulsed electric field on food material to increase the shelf life 

of these materials during the storing period. However, the number of publications describing 

using electrokinetic phenomenon to improve filtration in the food process area is rare and 

mostly confined to one study was done by Ng et al. (2011) to investigate the impact of 

electrokinetics on dewatering food waste and to compare the power consumption of the 

application with the power consumption needed to dewater the same volume of water using 

conventional thermal methods.. Therefore, this study has been carried out to test the impact of 
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the electro phenomena (specifically the electrokinetically enhance filtration application EKEF) 

on the filtration efficiency including the flow rate amount and direction, the chemical properties 

and the power consumption. 

1.2. Aims and Objectives 

This project aimed to investigate the efficiency of the application of EKEF to food 

concentration and the factors affecting it, and the potential physical and chemical changes in 

the appearance and quality of the product. 

Several experiments were carried out with the following objectives: 

 Designing an experimental rig to help to control the effective factors that have an impact 

on the EKEF process such as conductivity, applied voltage, applied pressure, filter pore 

size, initial sample thickness (the distance between the two electrodes). 

 To investigate the efficiency of the application of EKEF in concentrating different food 

materials (orange juice and malt extract); and the impacts of the main factors which 

control the EKEF process progress and efficiency (the ones mentioned above), as well 

as the chemical properties of pH and LCP (the lowest conductivity point) values. 

 To investigate the potential changes that could have resulted from applying EKEF to 

foodstuffs by analysing some quality compounds, such as pH, vitamin C (ascorbic acid) 

content, colour, dry matter and moisture content, and compare these results of this 

application with the results of published conventional methods. 

 To measure the power consumption of this application under different running 

conditions. 

 To suggest ways to control the conditions that affect the EKEF process to increase the 

outcome (total filtrate), decrease the negative impacts on foodstuff quality compounds 

and reduce the power consumption. 

 Finally, to set up theoretical guidelines depending on the relationship between the 

chemical properties of samples and the direction of the water profile after applying an 

electric field which helps in the choice of the optimal application specification and to 

predict the process progress according to the food material properties. 
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2.1. Why Non-thermal Technologies? 

The drying and concentrating of food materials utilised in several industrial applications 

to reduce the volume of foodstuff which in turn reduces transportation cost and storing space; 

Drying and concentrating are some of the oldest methods used to preserve food by reducing the 

water content to inactive microorganisms and increase the food products shelf life.  

The most common processes used for food preservation are by thermal pasteurisation and 

thermal sterilisation. These two methods depend on heat to deliver the microbial inactivation 

and enzyme activity reduction in the food products which results in greater safety and an 

extended storage life compared with the raw equivalent. 

Thermal processes aim mainly to inactivate the pathogens and the microbial spores to 

produce food which are microbiologically inactive and therefore safer. However, thermal 

processes result in a number of changes which can affect the quality of the final product, for 

instance, colour, flavour, texture and the general appearance of the final product.  

Due to the recent increase in the consumers’ needs and demands for quality food products 

as well as their concern about the safety of their food, consumers start looking for more fresh 

food characteristics in their purchases, along with high nutrient content and sensory quality. 

Consumers have also become more aware of food content and processing technologies 

(Zhang et al., 2011; Evans and Cox, 2006). Thus, the need for an alternative method that 

preserves food’s fresh characteristics, which achieves microbial inactivation, produces 

environmentally-friendly products, and at reasonable cost, has become very crucial and 

considered as a significant present challenge of food producers, scientists, and technologists all 

over the world.  

In the last few years, non-thermal processes and applications have been explored widely 

as it represents a novel area of food processing. It is also very appropriate to combine these 

novel technologies either among themselves or with traditional ones. 

There are many factors which have drawn attention to the need for new methods to dry 

and concentrate foodstuffs such as preserving the food, reducing power consumption, the loss 

of nutrients and the cost at the same time. 
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2.1.1. Preserving Nutrient Content 

The need to inactivate microorganisms is a main condition to preserve food and extend 

the shelf life, but in most cases the processes that achieve this detrimentally affects the nutrient 

content of some food products due to the thermal sensitivity of some nutrients; for instance, 

juice, meat, eggs, fish, milk, and other important sources of protein which are affected greatly 

once they are subjected to thermal treatment such as pasteurisation or sterilisation. 

Thus, there is a big need for a process that can maintain original nutrient content and does 

not affect the functionality or the structure of ingredients. 

Non-thermal technologies are good ways to reach this goal , for example high hydrostatic 

pressure (HHP) has shown to have a negligible effect on food nutrient content; this was very 

clear with the anthocyanin content in fruits and vegetables after processing (Tiwari et al., 2009; 

Zhang et al., 2011). 

2.1.2. Sensorial Quality of Food 

It is very common to observe changes in the sensory characteristics of food after using 

thermal processing. Temperature works as catalyst for some chemical reactions between fats, 

amino acids, proteins, vitamins, mineral salts, pigments and other chemical species in food, 

resulting in a number of physical changes.  

Protein denaturation, coagulation or precipitation, browning, gelation, loss of colour and 

flavour, starch retrogradation, oxidation changes in microstructure and final texture loss of 

functionality, and other related chemical reactions occur in foodstuffs during thermal treatment. 

Some studies of using pressure in juice processing showed insignificant changes between 

the quality of fresh juice and the pressurised orange juice during storage for about 3 months at 

5°C (Knorr et al., 2002). In consumer tests, consumers preferred the pressurised version when 

they were asked to compare it with fresh-squeezed and thermal pasteurized juices (Evans and 

Cox, 2006). 

2.1.3. Power Shortage and Environmental Issues 

Food production is a multi-billion pound industry that converts animal and plant products 

into intermediate or final products for human consumption (or animal consumption as animal 

feed). This industry is dominated by large-scale, capital-intensive firms. The food-processing 

sector typically consumes significant high amount of energy and considered as one of the largest 
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manufacturing energy consuming sector; in USA for instance, the food processing sector has 

the fifth-highest energy consumption of the sectors considered in the analysis included in a 

report for U.S. Environmental Protection Agency (2007) prepared by ICF International in 2007.  

Energy is an important input cost for the food industry, and comes in as the third most 

significant portion of final cost along with raw materials and labour. 

For food manufacturing, the most important fuels are natural gas, purchased electricity, 

and coal. Thermal applications applied in food industry consume the major portion of the power 

and increase gas emissions. All data and research in this area mention the urgent need for 

developing new methods which reduce power consumption and gas emission (U.S. 

Environmental Protection Agency, 2007). 

2.2. Physical & Chemical Changes During Different General Drying Applications 

Several changes occur in food materials during the drying process; these changes affect 

the chemical and physical quality of the final products negatively. Some parameters have been 

tested to observe these changes. These parameters help to evaluate the effectiveness of the 

different methods. The following are the parameters and their changes under different methods: 

2.2.1. Moisture Content 

The main aim of the dewatering process is to decrease the water content of the food 

material which in turn decreases the volume of the final product and the microbiological 

activities and increase the shelf life of the product. 

2.2.2. Vitamin C (Ascorbic Acid) 

Vitamin C (ascorbic acid) is highly sensitive to degradation and has very low stability in 

aqueous solution. Vitamin C is oxidized readily in light, air and when heated. Because it is 

water soluble, heating in water (like thermal treatment) causes the vitamin to be oxidized and 

also to leach out of the food into the water (Tannenbaum and Walstra, 1985; Lee et al., 2004). 

Orange juice is a highly valued product representing a significant source of vitamin C in 

the diet. Different methods are used to concentrate orange juice especially thermal methods, 

(Polydera et al., 2003). 

Heat treatment during food processing would seem to be a real threat because of the high 

heat used. However, this high heat destroys the enzyme ascorbic acid oxidase, found in fruits 
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and vegetables, before much vitamin C is oxidized, so paradoxically some heat treatment may 

be beneficial to the final vitamin C content of the foodstuff. 

On the other hand, freezing also has a negative effect on vitamin C if the tissues of the 

product have been broken and exposed to air (Sizer et al., 2009). 

This suggests that all traditional dewatering methods would affect vitamin C negatively, 

either because of the high temperature, such as used in thermal treatment, or because of the 

oxidization in air after breaking the tissues such as in freezing, or as a loss with the output 

“effluent discharge” since vitamin C is water soluble.  

Vitamin C degradation in OJ at various temperatures heated by different methods was 

investigated previously by Vikram et al. (2005); manually squeezed orange samples were 

processed by different methods (conventional, ohmic, infrared and microwave) under different 

time and temperature combinations as shown in Table 2.1: 

Table 2.1. Thermal treatment conditions for OJ heating (Vikram et al., 2005) 

Conventional, Ohmic, 

Infrared Temperature  (ºC) 

Microwave 
Time (min) 

Power Level (W) Approximate temp. attained (ºC) 

50 245 100 1, 5, 8, 10, 15 

60 315 105 1, 2, 3, 5, 10 

75 385 110 1, 5, 8, 10 

90 455 125 0.5, 1, 1.5, 2, 3 

 

The results indicated that the heating methods had an impact on the retention of vitamin 

C. Under each heating method, the degradation was more rapid at higher temperatures. The 

retention of vitamin C under these methods of heating is indicated in Figure 2.1. Ohmic heating 

caused the most rapid degradation followed by microwave, and infrared heating. The 

conventional method had a longer lag period and the approximate vitamin C retentions at 

different temperature were as shown in Table 2.2, which shows that almost half of the vitamin 

C content was lost after 10min of the conventional heating method at 50ºC. 
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Figure 2.1. Change in vitamin C retention during heating by different methods at different temperatures 

(Vikram et al., 2005) 

 

Table 2.2. Vitamin C retention during heating by conventional method at different temperatures (Vikram et al., 

2005) 

Conventional Temperature  (ºC) Time (min) Vitamin C Retention % 

50 10 58 

60 10 50 

75 10 40 

90 3 57 
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Lower temperatures have also had a negative impact on vitamin C content, the thermal 

degradation of vitamin C in OJ was analysed over in a 20-45°C temperature range by Manso et 

al. (2001). 

Vitamin C retention change over 8 hours at 20, 30 and 45ºC was shown in Figure 2.2, which 

shows that vitamin C loss reached 5% at 20 ºC, 15% at 30 ºC, and 45% at 45 ºC after 5.5h. 

 

Figure 2.2. Change in Vitamin C retention during heating at different low temperatures (Manso et al., 2001) 

In addition to the heat impact vitamin C can be lost through other degradation reactions: 

 Ascorbic Acid Oxidation: An enzymatic reaction by ascorbic acid oxidase in the 

presence of light and oxygen especially during any freezing treatment of 

foodstuffs (Nursten, 2005).  

 Maillard degradation of vitamin C: Vitamin C is a reducing carbohydrate and can 

react with amino acids, peptides, and proteins. These types of reactions between 

carbohydrates (sugars) and proteins belong to a class of reactions known as 

Maillard reactions. The Maillard reactions of vitamin C are involved in the 

browning of cut fruit and can cause changes in the flavour of foods. In addition, 

the Maillard degradation of vitamin C in the body may be involved in clouding 

the lenses of the eyes and in the age-related loss of elasticity in the skin and sinews 

(Smuda & Glomb, 2013). 
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The process of vitamin C degradation has previously not been truly understood; 

Smuda & Glomb, 2013 have comprehensively studied the amine-catalyzed 

degradation of vitamin C in a model system and clarified about 75 % of the 

Maillard-induced degradation reactions of vitamin C, the end products of these 

reactions are carbonyl and dicarbonyl compounds, carboxylic acids, and amides. 

Among other compounds, the researchers identified N6-xylonyl lysine, N6-

lyxonyl lysine, and N6-threonyl lysine as unique characteristic end-products of 

vitamin C Maillard systems.  

2.2.3. Colour 

Food product colour is considered to be one of the important sensory attributes of interest 

to customers and workers the food industry. It is also considered as a very important indicator 

of sensory evaluation (Tepper, 1993). 

Non-enzymatic browning of citrus beverages is a major quality deterioration factor. More 

than one type of mechanism may be involved in the formation of brown pigments: the reactions 

between amino acids and reducing sugars (Maillard reactions), the aerobic and anaerobic 

degradation of the ascorbic acid (Azandouz and Puigserver, 1999; Johnson et al., 1995; Kacem 

et al., 1987 and Sakai et al., 1987) and further reactions of the carbonyl compounds via aldol 

condensation or reactions with the amino acids to yield brown pigments (Fustier et al., 2011). 

Generally the browning reactions in foods could be divided into: an enzymatic reaction 

(phenolase browning) and non-enzymatic reactions (Maillard, caramelisation and ascorbic acid 

oxidation) (Nursten, 2005). 

 Phenolase browning is an enzymatic reaction by polyphenol oxidase in the presence 

of light and oxygen especially during any freezing treatment of foodstuffs.  

 Maillard reaction: Is a chemical reaction between free amino acids and a reducing 

sugar, usually requiring heat (Madruga et al., 1995). 

A complex mixture of poorly-characterized molecules is formed when the sugar 

reactive carbonyl group reacts with the nucleophilic amino group of the amino acid; 

this complex mixture is responsible for a range of odours and flavours often 

characteristic of baked products. An alkaline environment accelerates this process, as 

the amino groups are de-proteinated and, hence, have an increased nucleophilic nature 

(Belderok, 2000). 
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García et al. (2010) reported that it is hard to evaluate the pH influence of the Maillard 

reaction, because the reaction itself influences pH significantly. The ratio of products 

formed and the rate of colour formation are also influenced by the pH; colour can be 

reduced by decreasing the pH. However, pH has a less dramatic effect on aroma than 

temperature, time or water content. The required temperatures for the reaction depend 

on the pH value but normally it should be more than 90ºC. These conditions are 

achieved during thermal treatments more frequently than during non-thermal 

treatments. 

 Caramelisation: Chen et al., (2008) reported that caramelisation is the browning of 

sugar. As the process occurs, some compounds such as furanones are produced and 

volatile chemicals are released, producing the characteristic caramel colour and 

flavour.  

Like the Maillard reaction, caramelisation is a type of non-enzymatic browning. 

However, unlike the Maillard reaction, caramelisation is a pyrolysis reaction, as 

opposed to a reaction of the sugars with amino acids. In caramelisation, disaccharides 

are broken down into the monosaccharides fructose and glucose (Ajandouz et al., 

2007). 

Caramelisation is very difficult to induce in non-thermal applications as it needs a 

temperature of more than 120ºC. 

 Ascorbic Acid Oxidation: A further mechanism appears to operate during the 

discoloration of dehydrated vegetables in which ascorbic acid is involved. The 

formation of dehydroascorbic acid and diketogluconic acids from ascorbic acid 

(mentioned in Section 2.2.2) is thought to occur during the final stages of the drying 

process and is capable of interacting with the free amino acids, non-enzymatically, 

producing the red-to-brown discoloration (Eskin, et al, 1971). 

Several factors can affect the formation of coloured complexes in food products. Among 

these are pH, temperature, moisture content, time, concentration and nature of reactants (Lee, 

1983). 

 The rate of browning increases with rising temperature. Since these reactions have 

been shown to have a high temperature coefficient, lowering of the temperature 

during the storage of food products can help to minimize these processes (Eskin, et 

al, 1971).  
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 These reactions being moisture dependent for optimum activity can be inhibited by 

reducing the moisture content through dehydrating procedures. In attempting to carry 

out these procedures one must ensure that the dehydrated product is suitable for sale 

in that form, and that the product is suitably packaged so as not to permit moisture 

uptake during storage. 

 Since the Maillard reaction is generally favoured at the more alkaline conditions, if 

this type of browning is involved, lowering of the pH might provide a good method 

of control (Eskin, et al, 1971). 

 Gas packaging is extremely useful in excluding oxygen by using an inert gas. This 

reduces the possibility of lipid oxidation, which in turn could give rise to reducing 

substances capable of interacting with amino acids. While this reaction does not 

appear to influence the initial carbonyl-amino reaction, exclusion of oxygen is 

thought to effect other reactions involved in the browning process (Eskin, et al, 

1971). 

 Chemical inhibitors have been used to advantage in limiting browning reactions 

during the production and storage of a variety of foods. Among those widely used 

are sulfites, bisulfites, thiols, and calcium salts (Eskin, et al, 1971). Sulfites proved 

successful in controlling a variety of browning processes. Bisulfites inhibit the 

conversion of D-glucose to S-hydroxymethyl- furfural, as well as the conversion of 

ascorbic acid to furfural by complexing through the reducing group. Consequently 

the formation of furfurals is blocked, thus preventing the production of the coloured 

pigments. They can also block the carbonyl group of the reducing sugars involved in 

the carbonyl-amino reaction (Fox, 1991). 

 Calcium chloride was reported to be a possible inhibitor of browning. Its inhibitory 

effect is due to the chelation of calcium with the amino acids (Eskin, et al, 1971). 

2.2.4. Carotenoids 

Carotenoids are some of the most important pigments in fruit, and they are present in 

moderate concentrations in orange juice (28µg Carotene/ 100g Orange juice). However, 

oranges also accumulate anthocyanin pigments such that their juices exhibit a characteristic 

reddish colour (Arena et al., 2000; Kirca and Cemeroglu, 2003; Meléndez-Martínez, 2005). 
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The chromospheres of conjugated double bonds of carotenoids are responsible for several 

properties such as the colour and other functions of these pigments (Britton, 1995; Meléndez-

Martínez et al., 2007a,b). The instability of these compounds should be taken into account 

especially with respect to oxygen, light and heat. To avoid these factors affecting carotenoids, 

a series of precautions must be taken during their preparation and analysis (Britton et al., 1992, 

1996; Schiedt and Liaaen-Jensen, 1995; Rodriguez-Amaya, 1999,2001; Meléndez-Martínez et 

al., 2004) such as separating them in a solution that help to increase their stability. 

Thermal processing can often lead to detrimental changes to the sensory properties and 

colour of products (Farnworth et al., 2001; Lee and Coates, 2003). For example, carotenoids 

are isomerised from 5, 6-epoxides to less intensely coloured 5, 8-epoxides, and anthocyanins 

are degraded to brown pigments (Fellow, 2000). 

Freezing treatment affects carotenoids in the same way as it affects vitamin C (oxidization 

with existence of air and light). 

2.2.5. pH Value 

No significant change in pH of test samples during thermal treatment has been reported 

(Friedman et al., 1990).Also in filtration and mechanical methods there is no change in the pH 

value. 

2.3. Electric Field Impact on a Charged Liquid 

Applying an electric field to a charged liquid or semi-liquid material using two electrodes 

results in several processes starting at different components: charged liquid ions, charged liquid 

particles and the liquid itself. These processes cause a movement of these different components 

towards one of the electrode according to the process and the ion number and types. 

These processes are described as Electrokinetic phenomena. 

Previous processes and their application have been a very rich interesting area for many 

researchers to understand the impact of applying electric field to a liquid and control this impact 

to enhance the dewatering process by combining these electrical phenomena with the water 

motion.  

These phenomena are called electrokinesis in general but this electrokinesis has several 

types according to the relative movement of particles, surfaces and fluids (Hunter, 1993; Aziz 

et al., 2006). 
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For example “the movement of charged particles in an aqueous medium to an electrode 

of opposite polarity is known as electrophoresis (Weber and Stahl, 2002; Lockhart, 1981)” 

which has been used in various applications mainly to determine the particles charge and to 

separate enzymes and proteins in general. 

A second type of movement, which known as electro-osmosis is defined as “the 

displacement of liquid relative to the medium under the influence of an electric field” (Weber 

and Stahl, 2002; Lockhart, 1981). These two types of processes are used to enhance solid–

liquid separation.  

A third type of movements which is produced by the same mechanism as electrophoresis 

but at the liquid level and works in the opposite direction to the charged ions that moves to the 

opposite polarity electrode under electrophoresis. 

The benefits of electrokinetic type applications are not new as they have been reported in 

the mid-1970s by Yukawa et al. (1976& 1978). Other researchers continued worked on the 

electro-osmotic and electrokinetic application in the area of dewatering such as removing heavy 

metal contaminants from soil by using an electric field in groundwater (Grundl and Michalski, 

1996; Shapiro and Probstein, 1993), enhancing the ultra-filtration process (Zumbusch et al., 

1998), and minimising the radioactive nucleotides level in radioactive materials (Turner and 

Dell, 1984a& b). 

The Operational parameters of these processes have been investigated such as the use of 

voltage and constant current conditions (Yukawa et al.,1976& 1978; Yoshida et al., 1980) as 

well as salt concentration, conductivity, ionic strength, suspension types, electrode material, 

intermittent current application and the effect of voltage (Aziz et al., 2006). 

Despite the fair amount of research on the potential use of an electrical field to improve 

dewatering of suspensions, the operational examples of their industrial use appear to be 

remarkably few and most of the research has been done in the soil, waste and mining areas.  

In the food processing area, electrokinetic applications have been used mainly for 

analytical procedures such as protein and enzyme separation; but their use at an industrial scale 

application has been minimal and the amount of research which has investigated the potential 

benefits and application of the technology on foodstuffs has been limited. There is a small 

amount of research investigating the technology, but mainly in the food waste area where 

electrokinetics is used to improve the dewatering process to reduce the volume of the waste by 

removing the water component (Rathore and Guttman, 2003). 
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2.3.1. Electro-osmosis, Electrophoresis and Electrokinetics 

Electro-osmosis and electrophoresis are the main applications of the liquids and 

suspension transport processes used in a wide range of applications especially the bio-analytical 

ones such as isoelectric focusing and capillary electrophoresis, and capillary electro-

chromatography (Oddy and Santiago, 2004). 

Both electro-osmosis and electrophoresis are caused by applying a low-intensity direct 

current between two electrodes on each side through a porous medium. Applying this current 

causes electro-osmosis of the aqueous phase as a migration of ions and electrophoresis of 

charged particles in the colloidal system to one of the electrodes according to the charge of ions 

and particles (Oddy and Santiago, 2004). 

Scientifically, electro-osmosis is defined as “the movement of the capillary water under 

the electric field due to the existence of the electrical double layer at the interface of water and 

the solid surface”, while electrophoresis is “the migration of charged particles or ions in a 

colloidal system towards the counter charged electrode”( Aziz et al., 2006). 

The direction of movement of ions under the electrophoresis process is decided by the 

nature of the charges on the surface of solid particles towards the electrode of opposite polarity; 

a positively charged particle will travel towards the cathode while the negatively charged 

particles will travel towards the anode (Aziz et al., 2006). 

Depending on the charge of the ions liquids moves in the opposite direction to the ions; 

This means that the movement of the water is divided between the electrodes in proportion to 

the ionic proportions (i.e. if the majority of liquid charged ions have a negative charge, the main 

ion movement will be towards the anode via electrophoresis). The liquid then migrates toward 

the opposite polarity electrode which is the cathode (Aziz et al., 2006); this movement of water 

in the opposite direction to ion particles is a result of the electrokinetic phenomena. 

These evolving technologies showed an effective impact not only in dewatering 

applications and soluble ions removal, but also in the removal of insoluble organics in porous 

media (Aziz et al., 2006). Research about the electrokinetic application have focused on the 

sludge dewatering, soil remediation from heavy metal, and organic contamination (Gladman et 

al., 2005) and waste dewatering; but research about electrokinetics use in the food area are still 

too few and insufficient to cover this application’s  benefits and parameters. 
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2.3.2. Electrokinetics History 

As mentioned before electrokinetics (the movement of water profile in the opposite way 

to the direction of travel of ions under an electrical field application) were investigated before 

in several studies mainly in dewatering sludge, soil and mining. 

Raats et al. (2002) reported that the solids content in drinking water sludge increased 

from 17% to 24% by combining electrokinetic dewatering with a belt press in a gravity-driven 

thickening belt combined with an additional energy consumption of 60 kWh/t of sludge. A high 

water content reduction from 87.8% to 62.6% was also achieved by Yuan and Weng (2003); 

Yang et al. (2005) in municipal sludge over 41 h at a potential gradient of 5.0V/cm using a 6 

cm long electrokinetic dewatering cell. 

Besides the sludge dewatering area, studies have focused on electrokinetic remediation 

of soil, implanting two electrodes in soils vertically (Ho et al., 1997) or horizontally (Ho et al., 

1999) achieving removal of more than 90% of the metals; this metal removal was also observed 

in an improved electrokinetic process using a cation selective membrane in front of the cathode 

to prevent the precipitation of metals in the vicinity of cathode (Li and Neretnieks, 1998). Cundy 

and Hopkinson (2005); Yang et al. (2005) investigated a potential application of electrokinetics 

using a ferric iron remediation and stabilization technique to decontaminate and consolidate 

soil. 

Studying electrokinetic applications has not been limited in soil dewatering and mineral 

removal areas, research has also focused on electrokinetic removal of neutral soluble or 

insoluble organic compounds from soil. Greater than 90% removal of hydrophobic polycyclic 

aromatic hydrocarbons (PAHs) by electrokinetics has been reported by Maini et al. (2000) in 

bench- and pilot-scale experiments, while in another study, Ho et al. (1999) reported 98% 

removal efficiency of p-nitro-phenol in one pilot unit. 

However, too few of investigations were done to study the use and impact of an 

electrokinetic application on food materials, the only recent study was done by Ng et al. (2011) 

and on food waste to investigated the impact of electrokinetics on dewatering food waste 

(Brewer’s spent grain, Orange peel, Melon peel, Mango peel and Cauliflower trimmings) by 

applying two voltages (15V and 30V) and compared it to a control (pressure impact with no 

voltage). The power consumption of the application under (0V, 15V and 30V) was compared 

with the power consumption needed to dewater the same volume of water using conventional 

thermal methods. 
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The results indicated that a electrokinetic process combined with mechanical dewatering 

can reduce the percentage of moisture from 77% to 68% for orange peel, from 78% to 71% for 

brewer’s spent grain, from 80% to 73% for mango peel, from 91% to 74% for melon peel and 

from 92% to 80% for cauliflower trimmings. The total moisture reduction showed a correlation 

with electrical conductivity (R2 = 0.89). The energy consumption of every sample was 

evaluated and was found to be up to sixty times more economical compared to thermal 

processing (Sing et al., 2011).  

None of the previous studies discussed the principles of applying electrokinetics on 

different types of food materials or the impact of the factors which control this application. In 

addition, the impact of this application on the food quality compound is still not discussed. 

2.3.3. Electrokinetics Theory 

In addition to the electrokinetic impact of migrating water in the opposite direction of the 

ions under electrophoresis, more phenomena happen when an electrical current is applied across 

electrodes in an aqueous solution to maintain charge equilibrium, the main electrolysis chemical 

reactions at the anode are: 

MA→ MA
 n+

(aq)+ ne− (Equation 1) 

6H2O → O2 (g) + 4H3O
+

(aq)+ 4e− (Equation 2) 

Where: MA is the anode metal. 

These two reactions occur together during the dewatering process under an electrical 

current at the anode, and they have specific impacts on the electrode, suspension composition, 

ions, pH and both ions and water movement; in addition to these changes each reaction produces 

specific products. For example, the reaction described by Equation 1, which occurs at the anode 

causes the anode metal to dissolve electrochemically which reduces the electrode capacity to 

an extent which depends on the reaction intensity and the electrode type and material; this 

decrease of electrode capacity is not the only disadvantage of the dissolving effect as the 

dissolved metal can also contaminate the filtration cake and filters. Reaction 2 described by 

Equation 2 on the other hand, generates hydronium ions, H3O
+, which results in a reduction in 

the pH of the suspension in the vicinity of the anode. 

Whilst reaction at the anode dissolves the anode metal and produce acids, metal ions could 

deposit on the cathode and alkaline liquid may be produced through the following reactions: 
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2H2O + 2e− → 2OH−
(aq)+ H2(g) (Equation 3) 

2H3O
+

(aq)+ 2e− → 2H2O + H2(g) (Equation 4) 

MC
 n+

(aq)+ ne− → MC (Equation 5) 

Where MC is metal that deposits on the cathode. 

Equation 5 describes the deposition of the electrode metal ions on the cathode travelling 

from the anode; while Equations 2 & 4 show the total gas generation (O2 at the anode and H2 

at the cathode); these gases could provide an extra pressure to the system. These in-between- 

layer- trapped gases have been observed to create gaps between the suspension layers and 

reduce the contact between the electrode and the suspension surfaces which in turn reduces the 

efficiency of the applied field to the suspension (Weber and Stahl, 2002). 

Describing the electrode metal dissolving and depositing as a ‘disadvantage’ 

(contaminating and electrode capacity reduction factor) is not totally fair as this ion migration 

may be used as an efficient application to remove heavy metal contamination. This application 

depends on the fact that the deposited metal on the cathode shown in Equation 5 not only comes 

from the dissolved anode metal Equation 1 but also from the heavy metal contaminants which 

are present in the sample (soil, waste, sludge etc.). In this case applying an electric field will 

cause the movement of these heavy metal contaminants to the cathode creating the cathode 

deposit which can be collected at the end of the process for disposal (Grundl and Michalski, 

1996; Shapiro and Probstein, 1993). 

The sum of all these electrochemical reactions in electrokinetics demonstrates to the 

relationship between the water and charged particles movement and electrical potential. Effects 

are directly related to the application of a voltage via electrodes include; heating, electrolysis 

of water, and other electrochemical processes. 

The flow of water, under a direct current (DC) voltage, and according to the sample 

chemical properties from one electrode to another is shown in Figure 2.3. Water is removed 

from the electrode, where the movement direction is toward this electrode, which in turn causes 

some changes in the material such as a volume reduction. 

The following are some of the changes during electrokinetic treatment (Jones et al., 2008): 

 Movement of positive and negative ions. 

 Movement of particles in the water (e.g. bacteria removal). 
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 Oxygen production at the anode. 

 Hydrogen production at the cathode (and sometimes ammonia evolution at the cathode 

according to the suspension composition). 

 Heat production. 

 Changes in pH. 

 

Figure 2.3. Conceptual representation of electro-osmosis1-Edited from Jones et al. (2010) 

2.4. Factors Affecting Electrokinetic Dewatering 

All applications of an electric field, mentioned above, can be applied either on their own 

or by combining them with mechanical compression.  

There are different factors which influence or limit these functions. The flow rate of water 

through the materials is one of these factors with which electrokinetics is used to improve or 

treat. The difference in pressure (in case of combining with a mechanical process), identified 

as the hydraulic head, is also one of the most important factors affecting water flow. The rate 

of water flow is directly related to particles size and is determined by the permeability of the 

material. Practically it is very difficult to move water through and out of many materials. Many 

engineers from different backgrounds are concerned with controlling water content and water 

movement in order to influence different characteristics such as volume, strength and 

particulate content of the water phase such as bacteria (Jones et al., 2010). 

Each of these factors can affect the process negatively or positively; the combination of 

these factors has important effects as well. To control this application the following factors 

should be controlled: 

                                                 
1
Water profile direction figure2.3 presents a specific situation, where water moves towards the cathode, which is not a 

general situation. 
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2.4.1. Residence Time 

Keeping the sample in the cell for a long time gives a better result in terms of reducing 

the moisture content of the sample; but besides the economic loss which results from the slow 

production, the long duration could affect the chemical properties of the product negatively 

particularly the pH and the oxidation  of compounds within the parent material. 

2.4.2. Applied Voltage 

High applied voltage leads to faster dewatering but also has many disadvantages; high 

voltage can cause very rapid drying out of the sample around the anode and results in a high 

pH rise of the effluent discharge at the cathode (Veal et al., 2000; Lockhart, 1983). 

Electrokinetic treatment is much more energy efficient at lower voltage gradients. Starting at a 

low voltage gradient then gradually increasing it can make conditions further optimized as 

dewatering proceeds since high voltage result in more negative impact and power consumption 

(Lockhart, 1983). 

2.4.3. Applied Pressure 

Higher applied pressures leads to faster drying, but the need for a higher pressure depends 

on different factors such as the initial moisture content of the sample, the applied voltage and 

the types of the filters. The lower the moisture content the greater the need for increasing the 

pressure. Increasing the voltage generates more gas which may form gas layers within the 

sample, for example, between sample and electrode.  This decreases the conductivity; in this 

case the best solution is to increase the pressure to compress the layers and help gas to escape. 

Regarding filter types, the smaller the size of the filter pores the slower the process, in this case 

increasing pressure may help to speed up the process. 

2.4.4. Filter Types 

Applying EKEF to food materials needs the use of several types of filters to save the 

quality components (nutrients, colour, flavour and aroma). The proportion of the lost 

compounds depends on the filter pore size. 

Filter type and material must be chosen according to the cell design, applied pressure and 

sample properties. The following are the filtration methods and their requirement: 

 Microfiltration: retains solid particles which are > 0.1 µm in size. 
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This type of filtration retains solid particles which are > 0.1 µm in size. Here the 

particles of the liquid or the soluble fraction are affected by the filtrate flow which 

carries them onto the membrane by convection, and the hydrodynamic lift force which 

transport them away from the membrane due to the parallel shear flow. 

Most of the food juice particles are smaller than 0.1 µm which makes this type of 

filtration inadequate to retain all needed compounds (Ripperger et al., 2009) in case of 

using one filtration step as most of these compounds and particles will exit with the 

discharged filtrate. However, in case of using second step as RO, microfiltration filters 

is enough to do the pre-treatment filtration. 

 Ultra-filtration: retains colloidal particles<0.1 µm. (The cut-off size= 1000- 100,000 

g/mol). 

Here the process is different, the separation is according to the size; the smaller the 

particles are the easier to pass through the filter to go with the filtrate while the larger 

particles are collected on the membrane. The cut-off size of an ultra-filtration is 

“usually defined as the molar mass (in g/mol) of a test suspension. Usually in practical 

application the cut-off size depends on other factors in addition to the pore size of the 

membrane such as the “gel” layer on the membrane consisting of retained colloids 

(Ripperger et al., 2009). 

 Nano-filtration: The cut-off size= 200-1000 g/mol. 

It is a relatively new technique; this method is a combination of features of ultra-

filtration and reverse osmosis with a high selectivity. It is called Nano-filtration 

because of its approximate cut-off size of some nanometres or more approximate molar 

masses of 200 – 1000 g/mol. 

To achieved this special Nano-filtration membranes are required which still have pores 

of a defined size, but their retention depends on the electrostatic charge of the 

molecules to be separated (bivalent anions are typically retained). 

 Reverse osmosis: retains molecules or ions, pores size 0.0001µ. It’s used for juice but 

pulp should be removed before (1-5 µ). 

Reverse osmosis use selective membranes without pores to retain molecules or ions. 

The separation in these membranes depends on several factors such as the size of the 

molecules, their solubility in the membrane material and the applied pressure. Certain 
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molecules, which are soluble in the membrane material, permeate through the 

membrane. Other molecules are not (or less) soluble and are retained (or concentrated) 

on the upstream side of the membrane. Reverse osmosis has a particular feature which 

is the need for high pressure to overcome the osmotic pressure of the retained 

molecules. This type of membrane is used in several applications such as desalination 

of seawater which is the most important field to use these membranes. In the food 

industry it is applied to concentrate juices at low temperatures (Ripperger et al., 2009). 

2.4.5. Sample Thickness (the Distance Between the Electrodes) 

Sample volume determines the distance between the two electrodes which called the 

sample thickness, different distances result in different current intensity which in turn affects 

the electrokinetic process. 

2.4.6. Moisture Content of the Sample 

The initial moisture content of the sample could play both a positive and negative role in 

the dewatering process depending on the conductivity and the composition of the dry matter 

present in the sample. 

2.4.7. Conductivity and Material of the Electrodes 

Different types and materials of electrodes will give different results. The materials of the 

electrodes differ according the use of the final product and the applied factors such as the 

chemical composition of the sample and the applied voltage. Usually the electrodes used are 

metal electrodes or/and carbon-coated metal electrodes. Awareness of the chemical interactions 

between the electrodes and the material under the different conditions such as the pH and the 

temperature is important. For example, copper is a very commonly used metal for electrodes 

but it dissolves very quickly under an electrical field which then contaminates the sample, this 

must be taken into account when dealing with food materials as this contamination with copper 

ions may reach high concentrations which could exceed the toxin allowance (for example: 0.1-

0.4 mg/Kg for oils (FAO/WHO, 2011) and 2mg/l for drinking water (EU Commission Council 

Directive, 1998); however using copper electrodes for soil application could be very efficient 

because of the cheap cost of copper electrodes compared with other electrodes such as titanium 

or platinum as well as its high conductivity.   
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2.4.8. Composition of the Tested Food Sample 

In addition to the two types of water mentioned in Section 2.2.1, the composition of the 

food affects the water binding capacity of the sample which also determines the dewatering 

efficiency. For example, fibre is well known for its high water holding and binding capacity. 

Fibre can directly bind water and material with a high fibre content should show a higher 

resistance towards dewatering. Besides fibre, protein also can increase the water holding 

capacity of the sample. The water held within protein structure is divided into two types: a) that 

part which is no longer available as a solvent and bound to the molecule; and b) the remaining 

water, with a corresponding co-matrix (polysaccharide, fat) or trapped in the protein matrix. 

2.4.9. Conductivity of the Food Sample 

The electrical conductivity of foods is a relatively recent interest for researchers. This 

interest started to develop in the late 1980s. Starting applying electrical fields to food increased 

the interest in food conductivity such as using pulsed electrical field in pasteurizing foods and 

the use of Ohmic heating. 

Samples with higher conductivity allow more ions to migrate towards the oppositely 

charged electrode which transfers momentum to the surrounding pore fluid molecules. This ion 

migration causes and electro-osmotic flow which contributes to the success of the electrokinetic 

dewatering process. This suggested that the conductivity measurement might be a good 

indicator to evaluate how well the electrokinetic method can dewater food (Zhang, 2009). 

2.4.10. Sample pH and Isoelectric Point 

The isoelectric point (pI, pH(I), IEP), is the pH at which a particle is electrically neutral 

and carries no net electrical charge. Naturally, particle surfaces may be charged to form a 

double layer (H+/OH−); the net surface charge is affected by the pH of the liquid in which the 

particle is submerged. 

 At this pH, the overall charge on the particle is 0, but this does not mean that the particle 

contains no charged groups; it means that the number of the negatively charged groups is equal 

to the number of positively charged groups on the surface of the particle. This pH value is very 

important in electrical food applications especially for protein applications as proteins 

precipitate at the isoelectric point because of the lack of a surface charge. The pH value of the 

isoelectric point differs for each particle; it depends on the ratio of the negative and positive 

ions carried by the particle. There are many food applications that use the isoelectric point 
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concept, for instance, in cottage cheese production; lactic acid is added to milk to bring the pH 

to the isoelectric point of the caseins (major milk protein). Caseins will then precipitate from 

the rest of the milk to give cheese (Vaclavik and Christian, 2013). 

2.5. The Drawbacks of the Electrokinetic Process 

Just like all other processes, electrokinetics has some drawbacks which impact the process 

efficiency; these drawbacks result from the potential chemical reactions occurring inside the 

electrokinetic cell during the process or from the cell components. The negative impacts of the 

drawbacks could affect the product properties or the power consumption. The following are the 

most important drawbacks of the electrokinetic process: 

2.5.1. Corrosion of the Electrodes 

Different studies reported a common problem during different electrokinetic applications 

which results in high corrosion rates at the anode.  For example, corrosion rates of 2.5g/A/day 

(Bjerrum et al., 1967), 26g/A/day (Sprute and Kelsh, 1982), and 1.1kg/dry-tonne of product 

(Lockhart and Stickland, 1984) have been reported.  Significant voltage losses at the electrodes 

are also reported to be as much as 25%-50% by Bjerrum et al. (1967). According to Lockhart 

(1983), the energy, required to achieve a particular solids content, is affected slightly by the 

type of metal. Using novel metals such as Platinum and Titanium for electrodes decreases this 

corrosion significantly, however, the problem still exists, and the issue of whether any 

proportion of corrosion will be acceptable in food industry is critical for the future development 

of this technology. 

Samaranayake et al. (2003b) carried out an investigation to compare different 

recommended materials to select the most suitable one for an electrode material for use in a 

pulsed electric field (PEF) chamber used for foodstuffs. The comparison considered electrode 

corrosion, electrode surface morphologies and toxicity of migrated element amounts. Several 

materials were tested as electrodes in this study; Titanium (Grade 2), platinised-titanium, 

stainless steel 316 and boron carbide. 

In general titanium is known as a good corrosion-resistant material and is often used 

where the corrosion resistance of stainless steel is not good enough (Peters and Leyens, 2003).  

Sometimes when the corrosion resistance is the main requirement instead of strength then it is 

recommended to use commercially pure titanium or low-alloy titanium grades (Samaranayake 

et al., 2003b). Platinum is well used for electrical contacts or corrosion-resistant apparatus since 

it is a noble material and is thus not oxidised in air at any temperature. However pure platinum 
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is expensive which leads to the use of platinised titanium instead especially when 

electrochemical processes are involved (Kamachi et al., 2000).  Grade 316 stainless steel has a 

better corrosion resistance than other stainless steel products (Samaranayake et al., 2003b). 

Therefore it is widely used in food processing, transportation and architecture. Boron carbide 

is a refractory and non-metallic compound which makes it corrosion resistant compared with 

metallic alloys (Rigaud, 2000).   

To analyse the corrosion of these electrodes the study depended on analysing the 

concentrations of Pt (from the platinised titanium electrodes), Ti (from the titanium electrodes), 

Fe (from the stainless steel electrode), and B (from the boron carbide electrodes) as migration 

of electrode materials into the media. Scanning electron microscopy was used to examine the 

effect of corrosion on the electrode surfaces. 

Samaranayake et al. (2003b) concluded that the most corrosion-resistant material for use 

as the electrode material was titanium which was not visibly changed much on the edge while 

boron carbide electrodes were worn out after 12 hours of process. The amount of migrated Ti 

was significantly less than migrated Pt, Fe, and B in the media. Platinised titanium electrodes 

were not as good as titanium. However, this material showed better corrosion resistance than 

the stainless steel 316 and boron carbide electrodes. Boron carbide was the least corrosion-

resistant material. 

2.5.2. High Temperature Near to the Electrodes 

During the treatment, the temperature of the material being dewatered increases 

especially near the electrodes because of the ion movement and the electric field, and this may 

affect the chemical properties of the products. When it is not possible to use mixing in the 

electrokinetic cell because of the design, the closest sample layers to the electrodes will be the 

most vulnerable to the effect of the high temperature.  

2.5.3. Rise in pH 

During Electrokinetic treatment pH value changes significantly due to the production of 

H+ and OH-, in the anode and cathode respectively, by the electrolysis of water (Equations 2 & 

3). This change affects the chemical interactions and the microbial activities especially during 

the storage period of non-pasteurised products, and also has a negative impact especially during 

juice concentration as this change of pH may reduce the product quality. Furthermore, lack of 

mixing in the electrokinetic cell will increase the variation of pH between the sample layers 

from the anode to the cathode (Saeedi et al., 2009; Weber and Stahl, 2002). 
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2.5.4. Oxidation Due to the Released Oxygen 

Electrokinetic treatment has been shown to result in oxygen gas generation at the anode, 

associated with the electrolysis of water (Equation 2). The oxygen generated at the anode is 

entrapped by the water flowing into the sample which makes it difficult to escape from the 

sample. However, in some cases when pressure is applied, the entrapped air may escape from 

the sample. Oxygen production may lead to increased oxidation in some materials especially 

foodstuffs which contain a significant percentage of fatty acids. This production can potentially 

also increase the rate of aerobic microbiological activity (Tamagnini et al., 2009). 

2.5.5. Creation of Gas Gaps 

Generated oxygen (Equation 2) and hydrogen (Equations 3 & 4) may create gas gaps 

within the sample layers, especially those with a dry matter of more than 30%; these gas gaps 

decrease the conductivity within the samples which in turn decreases the efficiency of the 

electrokinetic treatment and increases the power consumption.  These gas gaps also increase 

the surface area of the sample/oxygen interface and so potentially increase the risk for oxidative 

damage to food components. 

2.5.6. Power Consumption 

The power consumption of the electrokinetic treatment depends on the comparison made.  

For example, electrokinetic treatment has higher power saving efficiency than thermal drying 

methods; it shows, on the other hand, higher power consumption compared with other normal 

gravitational or hydraulic filtration processes. However, electrokinetic treatment is much more 

energy efficient at lower voltage gradients (Lockhart, 1983). 

2.6. Possible Effects of Applying an Electric Field on Food 

There are different uses of electric field in the food industry such as concentrating or 

preserving by inactivating microorganisms.  One of the preserving methods that uses electric 

field application is the Pulsed Electric Field process (PEF) which is "a non-thermal method of 

food preservation that uses short bursts of electricity for microbial inactivation and causes 

minimal or no detrimental effect on food quality attributes. PEF can be used for processing 

liquid and semi-liquid food products" (Balasubramaniam et al., 2010). 

This process is close to electrokinetics in terms of applying an electric field through 

foodstuff and between two electrodes. PEF uses a high voltage value for very short time (20-

80 kV usually for a couple of microseconds); but this application is used to inactivate microbial 
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growth not to dry foods. Despite the big difference between the applied voltage and the 

processing time between electrokinetics and PEF, the PEF impacts on food provide a good 

indication about the potential impact of electric field application. 

Many researchers concerned with the possible impact of the PEF process on orange juice 

have investigated the effects on compounds, especially bioactive ones such as vitamin C, 

carotenoids, and flavanones, comparing PEF with some other processes especially thermal 

methods. Sanchez-Moreno et al. ( 2005) compared some non-thermal technologies as follows: 

High pressure (HP) (400MPa/40˚C/1min), pulsed electric fields (PEF) (35 kV.cm-1/750s)) and 

some thermal ones (low pasteurisation temperature (LPT) (70˚C/30=s), high pasteurisation 

temperature (HPT) (90˚C/1min), HPT plus freezing (HPT+F) (-38˚C/15min), and freezing (F). 

The comparison has been run between the effects of the previous methods on the 

properties of orange juice, considering fresh squeezed orange juice as a control, the results were 

as shown in Table 2.3. 

Table 2.3. The impact of the non-thermal methods on the properties of orange juice, considering fresh squeezed 

orange juice as a control (Sanchez-Moreno et al., 2005) 

Properties Changes 

Physical& Physicochemical 

Characterization 

All of the treatments showed significantly higher Brix 

measurements than fresh squeezed orange juice.  

Colour Non-thermal processes showed significantly lower 

Chroma values, which represent colour intensity, than 

fresh squeezed orange juice 

Vitamin C Content 

 

A significant decrease in L-AA content (~7.79%) with 

all treatments including PEF (~6.98%) in comparison 

with fresh squeezed orange juice, except of LPT and F 

treatments did not exert any change. 

There were also decreases (~8.24%) in total vitamin C 

with all treatments except of HP and LPT did not exert 

any change. 

Even though the losses were <9%, treatments with the 

higher temperature tended to show the higher negative 

impact on the L-AA and L-DHAA contents. However, 

these losses in vitamin C are relatively low.  
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Carotenoids Content and 

Vitamin A Value 

 

HP-Treated orange juice showed the higher vitamin A 

value and carotenoids content compared with other 

treated juices. In general, each carotenoid showed a 

significant increase in comparison with the control 

sample: R-carotene (33.76%), â-carotene (30.24%), R-

cryptoxanthin (45.87%), α -cryptoxanthin (43.21%), 

zeaxanthin (44.52%), and lutein (75.43%). 

However, PEF-treated orange juice did not modify 

individual or total carotenoids content. Traditional 

thermal treatments did not show any significant impact 

on total carotenoids content or vitamin A value in 

comparison with freshly squeezed orange juice.  
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3.1. Introduction 

Electrokinetics has already been used as a technique to remove moisture from slurry, 

slimes, sewage and soil (a process described as dewatering). Different moisture contents in 

these different substrates will often result in different water contents in the final products. In 

previous studies, different moisture contents have been tested; generally the dry matter content 

of samples was between 35-60 % (Lamont-Black et al., 2007). Most of previous studies were 

done on non-food materials, the only about food materials was done by Ng et al. (2011) to 

investigate the power consumption of applying electrokinetics to dewater food waste. 

This present study tested the effectiveness of the electrokinetically enhanced filtration 

(EKEF) process on food materials with higher water contents; the chosen materials were two 

types of liquid food materials with water content higher than 80%. 

Furthermore, previous studies were concerned with enhancing flow rate in soil and waste 

materials where there was no need for consideration of the final product's sensory properties or 

its safety and suitability for human consumption. In this study one of the principle purposes of 

the experiments run was to investigate the EKEF impacts on food samples and their chemical 

and physical properties which affect the quality of the final products as a foodstuff; there are 

many parameters that change during the traditional dewatering methods (especially thermal 

treatment), for instance loss of vitamins (especially vitamin C and thiamine), colour, flavour, 

the oxidation of fatty substances, sugars and degradation in the Maillard reaction (sugars with 

amino acids) and the caramelisation of sugar because of the high temperature. 

3.2.The Experimental Rig 

Several filtration applications have been used to dry and concentrate food materials and 

to avoid the negative impact of thermal applications. In general these applications (including 

micro-filtration, ultra-filtration and reverse osmosis) showed very good results in terms of 

preserving food quality aspects and nutrients, but the main problem faced by manufacturers 

was the slowing down of filtration flow rate over time due to the caking of material on the filter 

and the relatively quick blockage of filters. 

Traditional methods to concentrate orange juice, such as thermal processes, result in many 

problems including colour degradation, a loss of flavour, and a cooked taste. In addition many 

nutrients such as citric acid and vitamin C are damaged because of the high temperatures 

involved. Traditionally, these nutrients can be recovered through essence recovery, careful 
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process control and blending to produce a good quality concentrate which is distinguishable 

from fresh juice, but still meets broad consumer acceptance needs.  

Much research has been undertaken to overcome this problem using methods such as 

applying pressures or/and using pre-filtration steps in order to separate different-sized particles 

of material through different steps which increased the filter usage time. 

For example, in 1985, FMC and DuPont began a joint research program to develop a 

membrane process.  The aim was to develop membranes to concentrate orange juice to 58°Brix 

and retain the fresh juice flavour. The process, which was called Fresh NoteTM, was based on 

combining ultra-filtration, reverse osmosis, pasteurization and blending, and aimed to 

concentrate orange juice with very high quality. 

Fresh NoteTM is used successfully to close the flavour gap between fresh and concentrated 

orange juice. 

Pasteurisation should be applied on juice to ensure the commercial stability; but the high 

temperature of this process could affect other sensitive compounds negatively therefore these 

sensitive compound must be isolated during the pasteurisation step by separating them in 

advance.  

This separation of key sensitive components could be done using ultra-filtration process, 

as shown in Figure 3.1. 

 

Figure 3.1. Fresh NoteTM System Diagram (U.S. Patent #4643902) (Cross, 1989) 

Juice produced by this system scored higher in flavour and is better in quality, when the 

juice is reconstituted, than any thermally concentrated product, and is often indistinguishable 

from the fresh juice used to produce it (Cross, 1989). 
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Despite of the good results of such systems, the filtration step still had some problems 

due to the juice bits and viscosity. The solid pectin content in orange juice creates a very viscous 

stream when concentrated. The high viscosity combined with the high osmotic pressure of 

concentrated sugars, results in low membrane permeate rates and low levels of concentration. 

The aim of this study was to enhance the juice concentration process using filtration 

systems by speeding up the filtration flow rate with a combination of electric field work and 

pressure work. 

Some test rigs and prototypes were considered for use to apply electrokinetics and 

evaluate its impacts on the sample; these rigs were mainly designed for use on soil in civil 

engineering and geology applications. However, because of the differences between food 

material (juice in particular) and soil in terms of physical and chemical aspects, a new test rig 

was designed specifically for the purposes of this research so that experimental parameters 

could be controlled in a better and more efficient way. 

The experimental rig was developed by modifying the testing cell ‘Rosli cell’ (Figure 

3.2) mentioned in Jones et al. (2005), which was used to test the effects of electrokinetics on 

dehydrating water from soil; these modification included many features and components, taking 

into account: 

 Differences between the physical properties of soil and foodstuffs in terms of dry matter 

and viscosity. Specifically this required a better sealing system to avoid leakage and 

different mechanisms to hold the electrodes. 

 Differences between the Chemical properties of soil and foodstuffs in terms of chemical 

composition, acidity and gas production. These differences led to the necessity to 

change the electrodes type. 

 Differences between the required functions.  The soil EKG cell was used to apply an 

electric field on soil while the foodstuffs cell required two processes, the application of 

an electric field on the foodstuff in addition to the filtration process. To achieve this 

function, two combinations of filters and meshes were added to the top and bottom 

outlets. 

 Some other modifications to ease the rig assembly and usage. 
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Figure 3.2. Schematic of electro-osmotic cell Jones et al. (2005) 

The cell shown in Figure 3.3 was designed using Autodesk Inventor Professional 2012 

(Autodesk® Inventor® 3D CAD software); and manufactured on commission by Dyer 

Engineering Limited (UK, County Durham, DH9 7RU). Other parts were then connected to the 

test cell to create the final functional rig shown in Figure 3.4. 
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Figure 3.3. The modified experimental Cell (the main part of the rig) 
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Figure 3.4. Final Rig (Total Parts) 

The following are the main parts of the experimental rig (check Appendices 7 for more details): 

3.2.1. The Cell 

The cell, which forms the main part of the rig, where the two processes of electrokinetics 

and filtration were applied on food material, is shown in Figure 3.5. 

 

Figure 3.5. The Cell 
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This cell includes several parts: 

 Main Plastic Tube: a transparent acrylic tube (OD=~200mm, 4mm thickness and 

500mm length) (Figure 3.6), this tube contained the sample with a capacity of up 

to 4 litres held between two horizontal electrodes forming the ends of the cell. 

Electrodes were fixed on the cell top cap at the top and on the piston at the bottom. 

 

Figure 3.6. Main Plastic Tube (left) with the bottom flange (right) 

 Top and Bottom Holding Parts: The acrylic tube was secured tightly between 

solid nylon ring mounts (top cap and bottom flange as shown in Figure 3.6. The 

top cap consisted of inner (Figure 3.7) and outer (Figure 3.8) parts between which 

the top electrode and filter combination was secured.  

 

Figure 3.7. Top cap inner (Top and bottom view) 
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Figure 3.8. Top cap outer (Top and bottom view) 

 Nylon Piston: which moves up and down vertically inside the acrylic tube.  The 

piston held the bottom electrode and filter combination on the top while 

connecting to the actuator rod from the bottom as shown in Figure 3.9. 

 

Figure 3.9. Nylon Piston; to the right the electrode on the top of the piston 

 Stainless Steel Plates: Two stainless steel disc plates were added on the top and 

bottom of the cell to provide more support against the applied pressure (Figure 

3.10). Each of the top cap and the piston head had two holes, one connected to a 

plastic tube forming the anolyte and the catholyte outlets passing through the 

two steel disks and the second to allow a wire to connect the electrodes with the 

power supplier as shown in Figure 3.11. 
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Figure 3.10. Top (right) and bottom (left) Stainless Steel disc Plates 

 

Figure 3.11. Outlet and wire through the piston (right) and through the top cap (left) 

3.2.2. Electrodes 

During the process of concentrating juice, the electrodes were in direct contact with the 

juice or other food materials. At the electrical interface, the electrode is influenced by two 

factors, the electric field formed between the layer of ions and the electrode, and the electrolyte 

charge held at the electrode. 

Here we have two situations: with no applied voltage, the electronation reaction is equal 

to the de-electronation reaction and the net current across the interface is equal to zero (Bockris 

and Reddy, 1970). On the other hand, when a voltage is applied to the electrode, the layer of 

ions increases at the interface and starts behave as a capacitor. Usually there is a certain 

threshold voltage; under this threshold the capacitive current does not involve any charge 

transfer or chemical reaction, but it results in removal or accumulation of electrical charges in 

the electrolyte near the interface and in the electrode. However, above this threshold voltage 

the electrochemical reactions could occur at the interface.  
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These reactions result in several chemical changes in food products and the electrodes; 

including the release of electrode material, electrode corrosion (at the anode) and deposit of 

particles on the electrode surface (at the cathode), as shown before in Equations 1 & 5. 

These reactions lead to several problems; the released electrode material could cause 

contamination, colour changes or activation of some undesirable interactions in foodstuff 

(Samaranayake et al., 2003b) and they also affect the electrode by shortening its life time.  

There are several ways to reduce these reactions, such as selecting proper electrode materials 

and changing the chamber design (Dunn and Pearlman, 1987; Jayaram and Lubicki, 1997). 

Some researchers suggest using special materials for electrodes in food industrial 

applications especially the inert materials such as gold, Titanium, platinum, carbon and metal 

oxide (Bushnell et al., 1996). Others recommend the use of electrically conductive polymers as 

electrode materials. 

There are many factors to be taken into account before choosing the electrode material; 

some of these factors are related to the cell efficiency, others are related to the health terms. 

The most important factors are the conductivity, the durability, the efficiency, the toxicity 

and the inactivity in food liquid. 

In a previous study (Iessa et al., 2011); copper was used as the electrode material and 

showed very good conductivity and efficiency. However, the copper electrodes reacted very 

actively with orange juice which produced different copper products with characteristic 

blue/green colours as shown in Figures 3.12 and 3.13. 

 

Figure 3.12. Blue-green copper salt in juice at the electrode interface 
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Figure 3.13. Orange juice before and after the electrokinetic treatment with copper electrodes 

This contamination of the fruit juice results in inappropriate production conditions for 

foodstuffs, and this was due to the change in colour and contamination of the product with toxic 

metal salts. 

Based on the literature review (Section 2.5.1), material cost, experimental aims and 

manufacturing requirements perforated Titanium discs (Figure 3.14) were used in the present 

study as anode and cathode materials, rather than using stainless steel. These discs were bought 

from Ti-Shop.com/ Division of William Gregor Ltd (UK, London, E14 8PX). 

 

Figure 3.14. Perforated Titanium disc as electrode 
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3.2.3. Choice of Filters 

Filter type and material must be chosen according to the cell design, applied pressure and 

sample properties.  

In the present study the samples used as test foods were freshly squeezed orange juice 

and malt extract. The main aim of the first filtration step is to capture the relatively big bits of 

juice before going to the reverse osmosis step; the most suitable filter for this study are 

microfiltration and ultra-filtration filters.  Cell walls can mechanically stand a maximum 

pressure up to 7bar; for this reason ultra-filtration processes could not be used effectively with 

this material.  In addition, according to the cell design, filters had to be available in sheets to 

cut to the required size which were only available as microfiltration filters. 

Taking these factors into consideration two filters were used in each experiment (either 

0.2µ or 1µ). Whatman® filters were bought from Schleicher & Schuell via 

www.sigmaaldrich.com. 

3.2.4. Actuator  

The bottom piston was connected to a vertical gas actuator (ISO Cylinder 80 x 300 mm) 

shown in Figure 3.15 which was connected to a CO2 gas cylinder through a control panel as 

shown in Figure 3.16. The actuator provided the cell with the required pressure (up to 7bar); 

and moved the piston up and down using the designed control panel. Actuator was bought from 

SMC® (UK, Buckinghamshire, MK8 0AN) via uk.rs-online.com. 

 

Figure 3.15. SO Cylinder 80 x 300 mm 
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Figure 3.16. Gas circulation and control panel 

3.2.5. Balances 

A sensitive electronic bench scale platform (METTLER TOLEDO PBA655/PBA655X) 

supplied by Northern Balance LTD (The Greens Farm, Consett Rd, Gateshead, NE11 0AN) 

was connected to Microsoft office Excel 2003 through WinCT (RsCom / RsKey / RsWeight by 

A&D Company Ltd) to measure the discharged filtrate weight every 5 seconds. 

3.2.6. Power Supplier 

An electric field was provided by a controllable power supplier (U8002A DC Power 

Supply, Agilent, 30V, 5A). Power supplier was bought from Chauvin Arnoux Group® (UK, 

West Yorkshire, WF12 7TH) via uk.rs-online.com. 

3.3. Test Materials 

3.3.1. Orange Juice (OJ) 

Samples were chosen from Marks and Spencer’s “Pure Freshly Squeezed Valencia 

Orange Juice/ with juicy bits, barcode number M0945257S” (UK, Newcastle upon Tyne, NE1 

7AS) (16 orange fruits per 1 litre orange juice). Table 3.1 shows the composition of the OJ as 

reported on the ingredient list: 

Table 3.1. The composition of OJ per 100ml (Marks and Spencer) 

Water 

(g) 

Protein 

(g) 

Fat 

(g) 

Carbohydrate 

(g) 

Energy 

value 

(Kcal) 

Fatty 

acids 

(g) 

Total 

sugars 

(g) 

Brix 

(°Bx) 

Fibre 

(%) 

Carotene 

(µg) 

Vitamin 

C (mg) 

86.1 0.8 0.2 10.7 50 0 9.3 10.5 5 28 48 
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OJ samples were tested directly without freezing or any other treatment. Samples were 

collected frequently during each experiment to be analysed later; some fresh samples were 

taken before treatment to be used as baseline controls (with no EKEF application), and then 

frequent samples were taken from every stage (at least one sample for each stage) to represent 

filtrate discharge of each stage. In addition at the end of each experiment further samples were 

taken from within the cell to represent the layers close to the cathode and the anode. 

3.3.2. Malt Extract (ME) 

ME samples were supplied by Muntons PLC (UK, Stowmarket, IP14 2AG) as dark dry 

malt then prepared in the laboratory to produce the ME with water content around 80%, using 

the following method suggested by Muntons PLC: 

Dark malt grain was dispensed onto water at 52°C in ratio of 1 part grain: 4 parts water) 

and stirred at 9rpm at 52°C for 20min. Then the contents were heated to 65°C, the stirrer speed 

was increased to 18rpm and held at this condition for 20min; the temperature was then raised 

to 89°C, and the stirring speed further increased to 36 rpm for 20min. After this time the sample 

was allowed to cool down and was kept in the fridge at 4°C for 24 hours to analyse. 

3.4. Experimental Design 

Pilot experiments were done at the beginning to check the efficiency of the experimental 

rig in terms of holding the samples without leakage and to modify the O-rings size and the filter 

types for better piston movement and to slow down the filtrate to have enough time to 

investigate the impacts and changes (Flowchart 3/ Step1). 

The next step included running experiments to determine the charges of the top and 

bottom electrodes (anode or cathode) or what is called later the optimum orientation for each 

material (OJ and ME). These experiments were based on the theory of water profile direction 

under electrokinetics impact (Section 2.3) and the orientation was chosen according to the 

experiment and sample material (as the water profile direction WPD was different according to 

the food material due to the difference between each product initial chemical properties). When 

results were not consistent with the theory, more research were done and new experiments were 

run (Flowchart 3/ Step2). 

The results of the optimum orientation showed differences between OJ and ME in terms 

of WPD due to the difference between OJ and ME chemical properties, therefore the impact of  

the chemical properties (pH and IP) were investigated and some theoretical guidelines about 
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the optimum orientation of each material according to its chemical properties were concluded 

(Flowchart 3/ Step3). 

These experiments helped to choose the optimum orientation for the next experiments 

(Flowchart 3/ Step4) which were run to investigate the impact of EKEF (electrical and 

mechanical factors) on the dewatering efficiency, where the electrical factors are the intensity, 

the voltage and the conductivity, while the mechanical ones are the pressure, sample initial 

thickness and filter pore size. 

 

Flowchart 3. The methodology of running experiments and collecting samples and data 

Different voltage values (0, 15 and 30V) and pressures (2, 3 and 4bar) were applied to 

investigate the impact of electric current, conductivity, voltage and pressure on EKEF 

dewatering efficiency. A sample of 20ml discharged filtrate from each of the anode and cathode 

outlet (Anolyte and Catholyte respectively) was taken every 30min, colour and pH analysis was 

done directly and samples then were kept in the fridge at 4°C for 24 hours to analyse (Flowchart 

4). Experiments for all tests are shown in Appendices 6. 
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Flowchart 4. The methodology of running experiments and collecting samples and data 

A different control experiment was run for each test due to the difference between the 

tests' aims; for instance, the control condition to investigate the voltage impact was with no 

electrokinetics application (V=0), while the control condition to investigate the impact of the 

pH adjusting was the pH of the fresh sample.  

The repetitions were done in different days under the same conditions. However, there 

was no ability to control all conditions especially the mechanical ones such as the distribution 

of the sample bits and particles on the filters, which resulted in a variation in the flow rate 

through the filters in the first 5min before the filtration cake formation. To minimise the data 

noise resulted from this variation the data recording started after the first 5min. 

Figure shows the repetitions of one experiment before deleting the first 5min (P-

value=0.348), while Figure shows the repetitions of one experiment after deleting the first 5min 

(P-value=0.647). 
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Figure 3.17. The repetitions of the OJ total filtrate weight in the control experiment (0V, 4bar, 0.2µ filter for 

5.5hours) before deleting the first 5min 

 

Figure 3.18. The repetitions of the OJ total filtrate weight in the control experiment (0V, 4bar, 0.2µ filter for 

5.5hours) after deleting the first 5min 

Collected data and observations showed that there were changes in sample pH value, 

vitamin C retention, colour, dry matters and power consumption over the time. These data were 

used to check this change and the potential reasons behind them (Flowchart 3/ Step5). 
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The experiments were carried out to investigate the following: 

3.5. Water Movements under the Application of the Electric Field 

Applying an electric field between two electrodes to food samples causes two types of 

movement: the movement of the charged ions and particles towards the electrodes (the anode 

and the cathode) under the influence of electrophoresis, which in turn results in the second 

movement of water towards the two electrode outlets (the anolyte and the catholyte) under the 

effect of electrokinetics. 

Negative ions and negatively charged particles, which are dissolved in water, move 

toward the anode (the positively charged electrode) and water then moves in the opposite 

direction to the cathode; in the same way, positive ions and positively charged particles move 

towards the cathode (the negatively charged electrode) and water moves in the opposite 

direction towards the anode (Aziz et al., 2006). 

Although electrokinetics cause movement of ions and water (discharged filtrate) towards 

the two outlets, the discharged filtrate volumes at each outlet are not equal. 

The percentage of water volume moving towards each electrode depends on the net 

electrical charge; if the suspension net electrical charge is positive the direction of the major 

volume of discharged filtrate (water) is towards the anode as the positive ions move towards 

the cathode.  In contrast, if the suspension net charge is negative the direction of the major 

volume of discharged filtrate (water) is towards the cathode. 

In this study, different expressions were used to define the phenomena resulting from 

water movements under Electrokinetic application.  The direction of the major volume of 

discharged filtrate (or water) towards one of the two electrodes is the water profile direction 

(WPD); and the outlet where the water profile goes to is the main outlet. In other words, when 

the sample net electrical charge is positive the WPD is towards the anode and the main outlet 

filtrate is the anolyte, while when the WPD is towards the cathode when the sample net 

electrical charge is negative, and the main outlet filtrate is the catholyte. 

The Anolyte to catholyte ratio (A/C ratio) was used to describe the percentage (or the 

volume) of the anolyte relative to the percentage (or the volume) of the catholyte; where the 

anolyte and catholyte refer to the electro-osmotic flows corresponding to the movement under 

the EKEF impact and/or the applied pressure towards either the anode or the cathode 

respectively (Yang et al., 2005).  
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3.5.1. EKEF Efficiency 

Different data were collected to investigate the EKEF efficiency: 

 Dewatering efficiency: is defined as the ratio of the total filtrate weight (the anolyte 

and the catholyte combined together) to the initial weight of the water in the sample.  

Dewatering efficiency = (weight of total filtrate/initial weight of water in the 

sample)*100 Equation 6. 

In this study, the initial moisture content was 86% for OJ and 80% for ME. 

 Net dewatering efficiency: is defined as the total dewatering efficiency minus the 

efficiency of the control (without electricity).  

Net dewatering efficiency = the total dewatering efficiency (with electricity) - the 

efficiency of the control (without electricity) Equation 7. 

 Total Flow rate (TFR): is defined as the total filtrate weight per minute; which was 

calculated by dividing the total discharged filtrate coming out from anode and cathode 

(anolyte and catholyte) by the total time (per min). 

 Anolyte and catholyte weight: each of anolyte and catholyte filtrates was collected 

separately in different bottles to identify the total amount eluted from each electrode 

outlet; these two values were summed later to give the total flow rate. 

 The change of total filtrate weight over time: total filtrate weight value was collected 

each 5 sec over the experiment duration by the electronic scale, see Section 3.2.5. 

3.5.2. The Optimal Experimental Specification (Optimal Orientation) 

The movement of discharged filtrate (water) under the application of EKEF is toward the 

opposite direction of the charged ions and particles dissolved in the water. The movement of 

these charged ions and particles depends on the net electrical charge of each particle, when the 

net electrical charge is positive the particle moves toward the cathode (-), while it moves toward 

the anode (+) when the net electrical charge is negative. The net electrical charge of any particle 

depends on the isoelectric point (IEP) of the particle and the pH of the medium. 

The isoelectric point is the pH value at which a particle is electrically neutral and carries 

no net electrical charge. Naturally, the particle surfaces charge to form a double layer (H+/OH−), 

the net surface charge is affected by the pH of the liquid in which the particle is submerged. 
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 At the pH of IEP, the overall charge (net electrical charge) on the particle is 0, but this 

does not mean that the particle contains no charged group; it means that the number of the 

negative charges is equal to the positive ones. This pH value is very important in electrical food 

applications especially as the conductivity decreases when the total ion content decreases by 

becoming neutral. 

Foodstuffs are a complex mixture of different compounds and particles which have 

different IEPs. Most of the devices that are usually used to measure the IEP are calibrated for 

specific (or single) compounds such as a protein, lipid, or polymer, etc. However, using the 

definition of IEP, another point was measured in samples to show the potential pH where the 

net charge of the complex material (the whole foodstuff) becomes almost neutral before turning 

to the opposite charge. Analysis showed that at this specific pH value, the measured 

conductivity was at its lowest value; this pH value is called in this study the lowest conductivity 

point (LCP). According to the LCP and the pH values of foodstuff, the majority of the 

discharged filtrate volume moves toward one of the two electrodes and eluted through its outlet, 

this outlet was called the main outlet. 

A JENWAY 4510 Conductivity meter was used to measure the lowest conductivity point 

(LCP) of the initial samples of OJ and ME; the titration solutions were made up manually. pH 

titration included ten 200ml adjusted pH samples of OJ and ME covering the pH range between 

1.5 and 6, using 10% NaOH (5g in 50 ml) and 10% HCl, as shown in Table 3.2, and then the 

Conductivity value was measured using the conductivity meter for each solution. 

Table 3.2. Titration solutions used to measure the LCP of OJ and ME 

  OJ ME 

Solution 
NaOH 10% 

(ml) 

HCl 37% 

(ml) 
pH 

NaOH 

10% (ml) 

HCl 37% 

(ml) 
pH 

Fresh - - 3.6 - - 4.55 

Solution 1 - 7.1 1.5 - 6.3 1.5 

Solution 2 - 5.5 2.09 - 5.5 2.1 

Solution 3 - 4 2.5 - 3.5 2.35 

Solution 4 - 2.5 3 - 2.5 3.1 

Solution 5 - 1.5 3.45 - 1.5 3.66 

Solution 6 1 - 4 - 1 4.23 

Solution 7 3.5 - 4.46 1.7 - 5.17 

Solution 8 5.3 - 5 2.5 - 5.7 

Solution 9 6.8 - 5.5  3.3 - 6.1 

Solution 10 8.2 - 6       

The position of the main outlet (top or bottom) had an important role in this process in 

the vertical set up as it determined whether the water profile movement was with or against the 
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gravity. In this study and for ease of orientation, the orientation when the anode (+) was the 

bottom electrode and the cathode (-) was the top electrode will be called Normal, while the 

opposite orientation when the anode was the top and the cathode was the bottom electrode will 

be called reversed; while the control orientation was when the EKEF effect was switched off 

(0V) (Table 3.3 and Figure 3.19). 

Table 3.3. Electrodes in the three different positioning orientations (control, normal and reversed) 

Orientation Top electrode Top Outlet Bottom electrode Bottom Outlet 

Normal  Cathode Catholyte Anode Anolyte 

Reversed  Anode Anolyte Cathode Catholyte 

Control  No Charge Top No Charge Bottom 

 

Figure 3.19. Electrodes in the three different positioning orientations (control, normal and reversed) 

To determine the optimum orientation of each food material (OJ and ME), experiments 

were divided into three sets (one with OJ and two with ME) and each set included three 

experiments one for each orientation (normal, reversed and control); experiments for each set 

were run under the same voltage (30V in all experiments), the same pressure (4bar in all 

experiments), and one of two pores sizes of filters (0.2µ or 1µ). Table 3.4 shows the 

experimental running conditions. 

Table 3.4. Running conditions of the three experiments sets 

Exp. 

Set 
Sample Position 

Sample 

volume 

(L) 

Time 

(hour) 

Voltage 

(V) 

Pressure 

(bar) 

Filter 

Size 

(µ) 

Top 

Electrode 

Bottom 

Electrode 

1 OJ 

Control 1 5.5 0 4 0.2 X X 

Normal 1 5.5 30 4 0.2 Cathode Anode 

Reversed 1 5.5 30 4 0.2 Anode Cathode 

2 ME 

Control 1 3.5 0 4 1 X X 

Normal 1 3.5 30 4 1 Cathode Anode 

Reversed 1 3.5 30 4 1 Anode Cathode 

3 ME 

Control 1 2 0 4 0.2 X X 

Normal 1 2 30 4 0.2 Cathode Anode 

Reversed 1 2 30 4 0.2 Anode Cathode 
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The values of the total filtrate weight and dewatering efficiency (total and net) were 

compared. In addition, A/C ratio was used to refer to the WPD and the main outlet, as well as 

to estimate the intensity of the EKEF effect as the following: 

 A/C ratio ≈1 means that the anolyte volume ≈ the catholyte volume, and the same 

volume (or weight) of discharged filtrate is exiting from both outlets. 

 A/C ratio >1 means that the anolyte volume > the catholyte volume, WPD towards the 

anode and more volume (or weight) of discharged filtrate is exiting from the outlet 

connected to the anode. 

 A/C ratio <1 means that the anolyte volume < the catholyte volume, WPD towards the 

cathode and more volume (or weight) of discharged filtrate is exiting from the outlet 

connected to the cathode. 

In addition to the chemical properties, other factors impacts were investigated such as 

voltage and pressure by running the experiments shown in Table 3.5: 

Table 3.5. Experiments of the voltage and pressure impact on WPD and A/C ratio 

Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

OJ Control 1 0 2 5.5 0.2 

OJ Normal 1 15 2 5.5 0.2 

OJ Normal 1 30 2 5.5 0.2 

OJ Control 1 0 3 5.5 0.2 

OJ Normal 1 15 3 5.5 0.2 

OJ Normal 1 30 3 5.5 0.2 

OJ Control 1 0 4 5.5 0.2 

OJ Normal 1 15 4 5.5 0.2 

OJ Normal 1 30 4 5.5 0.2 

3.5.3. Impact of the Experimental Factors on the EKEF Efficiency 

4. Several experiments were run to investigate the impacts of different factors: 

3.5.3.1. The impact of EKEF intensity on the Filtration Process 

All experiments were undertaken to investigate the impact of EKEF in enhancing the 

filtration efficiency. The EKEF process happens by applying an electric field between two 

electrodes through the sample layers, therefore the change in the electric current intensity under 

a constant voltage can be used as a representative parameter for the intensity of the EKEF 

intensity change. Thus, the impact of EKEF on the filtration flow rate can be shown through 
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the relationship between the electric current intensity and the flow rate value, where the flow 

rate is the filtrate weight per minute. Table 3.6 shows the experimental running conditions. 

Table 3.6. Experiments of EKEF intensity impact on the filtration process 

Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

OJ Normal 1 15 4 5.5 0.2 

OJ Normal 1 30 4 5.5 0.2 

ME Reversed 1 15 4 3.5 1 

ME Reversed 1 30 4 3.5 0.2 

3.5.3.2. Conductivity Impact on Dewatering Efficiency 

The process conductivity was calculated using the change in the electric current intensity 

under a stable voltage using the Equations 8 & 9: 

𝜎 = 𝐿/(𝐴. 𝑅) = (𝐿/𝐴)(𝐼/𝑉) (Equation 8) 

Where: 

𝜎: is the specific electrical conductance (Siemens/m, S/m) 

L: is the electrode gap or length of sample (m) 

A: is the area of cross section of the sample (m2) 

R: is the resistance of the sample (Ω) 

V = electrical potential (V) 

I = current flow (ampere) (Zhang, 2009) 

In the present study, A=0.0289 m² and L=0.0346m, L decreases over the experiment 

which make L/A≈1 and in this case: 

(Siemens, S) ≈1/R=I/V (Equation 9) 

Under a stable voltage value, the change in the electric current intensity over time 

represents the conductivity change, and both could be used to represent the change in the EKEF 

intensity. 

To investigate the impact of the initial conductivity, three experiments were run on OJ 

samples under three different initial conductivity values (0.22, 0.33 and 0.55S), pressure 4bar, 

and filter 0.2µ for duration of 5.5hours. Initial conductivity values were set using the power 
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supplier. Total filtrate weight of these three experiments was compared over time to show the 

impact of the three initial conductivities. Table 3.7 shows the experimental running conditions: 

Table 3.7. Experiments of the conductivity impact on dewatering efficiency 

Material Orientation Volume (L) Conductivity (S) Pressure (Bar) T (Hour) Filter (µ) 

OJ Normal 1 0.22 4 5.5 0.2 

OJ Normal 1 0.33 4 5.5 0.2 

OJ Normal 1 0.50 4 5.5 0.2 

3.5.3.3. The Impact of the Sample initial pH Value 

To investigate the impact of different pH value on the WPD and the dewatering 

efficiency, the pH of OJ samples (1L) were adjusted using NaOH 20% and HCl 37%, as shown 

in Table 3.8: 

Table 3.8. Titration solutions 

Solution NaOH 20% (ml) HCl 37% (ml) pH 

Solution 1 - 10.5ml 1.5 

Fresh - - 3.6 

Solution 2 15ml - 5 

Solution 3 35ml - 6.5 

Then the experiments were run under 30V and 4bar pressure using 1µ filter and compared 

to the results of fresh juice (pH=3.6, 30V and 4bar pressure) and the control (pH=3.6, 0V and 

4bar pressure) under the same conditions, as shown in Table 3.9: 

Table 3.9. Experiments of the sample initial pH Value impact on the dewatering efficiency 

Material Orientation pH Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

OJ Control 3.6 1 0 4 3 1 

OJ Normal 1.5 1 30 4 3 1 

OJ  Normal 3.6 1 30 4 3 1 

OJ  Normal 5 1 30 4 3 1 

OJ  Normal 6.5 1 30 4 3 1 

Total filtrate weight and WPD of these experiments was compared over time to show the 

impact of the different initial pH of samples. 

3.5.3.4. The Impact of the Applied Voltage 

To investigate the impact of the applied voltage, three different voltages (0, 15 and 30V) 

were applied on OJ samples under the same conditions (normal orientation anode is the bottom 
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electrode, 0.2µ filter, and 5.5 hours), these experiments were repeated three times under 

different pressures (2, 3 and 4bar) (Table 3.5). These three voltages were also applied on ME 

samples under the same conditions (reversed orientation cathode is the bottom electrode, 4bar 

pressure, 1µ filter, 3.5 hours) (Table 3.10): 

Table 3.10. Experiments of the applied voltage on the dewatering efficiency 

Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

ME Reversed 1 0 4 3.5 1 

ME Reversed 1 15 4 3.5 1 

ME Reversed 1 30 4 3.5 1 

The impact of the voltage values (15 and 30V) on the values of the total filtrate weight, 

A/C ratio, and dewatering efficiency (total and net) was compared with the control (same 

material and condition but under 0V, no EKEF). 

3.5.3.5. The Impact of the Applied Pressure 

Three different pressures (2, 3 and 4bar) were applied to OJ samples under the same 

condition (normal orientation anode is the bottom electrode, 0.2µ filter, 5.5 hours), OJ 

experiments were repeated three times under three different voltage values (0, 15 and 30V) 

(Table 3.5). 

The impact of pressure on the dewatering process was presented by the change in the 

values of the total filtrate weight, A/C ratio, and dewatering efficiency (total and net) under the 

three different pressure values. 

3.5.3.6. The Impact of the Filter Pore Size 

In order to investigate how filter pores size affected the EKEF process, two types of filters 

were used (0.2µ and 1µ) on the two material (OJ, where three voltage values were applied 0, 

15 and 30V) and (ME, where two voltage values were applied 0, and 30V) under the same 

pressure of 4bar, as shown in  

Table 3.11: 

 

 

 

Table 3.11. Experiments of the filter pore size on the dewatering efficiency 
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Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

OJ Control 1 0 4 5.5 0.2 

OJ Normal 1 15 4 5.5 0.2 

OJ Normal 1 30 4 5.5 0.2 

OJ Control 1 0 4 5.5 1 

OJ Normal 1 15 4 5.5 1 

OJ Normal 1 30 4 5.5 1 

ME Control 1 0 4 2.5 0.2 

ME Reversed 1 30 4 2.5 0.2 

ME Control 1 0 4 2.5 1 

ME Reversed 1 30 4 2.5 1 

The impact of the filter pore size on the values of the total filtrate weight, A/C ratio, and 

dewatering efficiency (total and net) was compared. 

3.5.3.7.The Impact of the Initial Thickness of the Sample (the initial distance between the 

electrodes) 

All experiments were run in the same cell with the same inner and outer diameters; 

therefore the only variable dimension is the distance between the two electrodes where the 

sample is captured.  The bottom electrode was connected to the piston and moves up and down 

freely. The initial distance between the two electrodes depends on the sample volume; this 

distance is considered as the sample initial thickness. To investigate the impact of the initial 

thickness, three volumes of the ME sample were used (0.5, 1 & 1.5L) which resulted in 

thicknesses of 17.3, 34.6 & 51.9mm, respectively for inner diameter of 0.192m, as shown in 

Table 3.12: 

Table 3.12. Experiments of the sample initial thickness on the dewatering efficiency 

Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

ME Control 0.5 0 4 2 0.2 

ME Reversed 0.5 30 4 2 0.2 

ME Control 1 0 4 2 0.2 

ME Reversed 1 30 4 2 0.2 

ME Control 1.5 0 4 2 0.2 

ME Reversed 1.5 30 4 2 0.2 
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All these samples have same dry matter content equal to 20% and each of them was used 

in a set of two experiments, under two voltages 0 and 30V, one pressure of 4bar, and for two 

hours to compare the net dewatering efficiencies of these sets. 

3.5.4. Potential Impacts of EKEF on the Food Samples 

In addition to the EKEF efficiency parameters described above, some other parameters 

were tested to investigate the potential impact of the EKEF on food quality. pH value, Vitamin 

C, colour and dry matter content were measured for previous purpose. Several devices were 

used to analyse these compounds in the collected samples: 

3.5.4.1. Impact on the pH Value of the samples 

The pH values of the collected sample (every half hour over time) were measured and 

compared with the pH of the fresh sample to investigate the change in the pH of (Anolyte, 

Catholyte and the total filtrate) of OJ experiments over time under two voltage values (15V and 

30V) and the control (0V), (normal orientation, 4bar pressure, 0.2µ and 5.5hr duration), and 

ME sample (Anolyte, Catholyte and the total filtrate) under (0V, 15V and 30V) (reversed 

orientation, 4bar pressure, 1µ and 3.5hr duration), as shown in Table 3.13: 

Table 3.13. Experiments of the pH change 

Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

OJ Control 1 0 4 5.5 0.2 

OJ Normal 1 15 4 5.5 0.2 

OJ Normal 1 30 4 5.5 0.2 

ME Control 1 0 4 3.5 1 

ME Reversed 1 15 4 3.5 1 

ME Reversed 1 30 4 3.5 1 

A standard pH meter (Martini Instruments Mi 150) was used to measure these values; the 

meter was calibrated daily using calibration standards (pH4, pH7 & pH10) before use.  

3.5.4.2. Vitamin C (Ascorbic Acid) Change 

Vitamin C is highly sensitive to degradation and has very low stability in solution and it 

is oxidized readily in light, air and when heated. Because it is also water soluble, heating in 

water (like thermal treatment) causes the vitamin to be oxidized and to leach out of the food 

into the water (Tannenbaum and Walstra, 1985; Lee et al., 2004). 



Chapter 3                                                                                                                     Materials and Methods 

 

65 

 

To compare between the EKEF process and the conventional methods for their impact on 

vitamin C content, several experiments were run on fresh OJ samples with vitamin C content 

of 46.79 ±6.83mg/100g (Marks and Spencer). Two different voltages were applied (15 and 

30V) under 4bar pressure and a duration of 5.5 hours and then compared with the control (0V, 

4bar pressure and 5.5hr duration), as shown in Table 3.14: 

Table 3.14. Experiments of the vitamin C retention change 

Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

OJ Control 1 0 4 5.5 0.2 

OJ Normal 1 15 4 5.5 0.2 

OJ Normal 1 30 4 5.5 0.2 

Samples were collected and vitamin C retention was calculated according to Equation 10: 

% Retention= [Concentration of vitamin C in processed juice / Concentration of vitamin in un-

processed juice (fresh)] x 100 (Equation 10) (Vikram et al., 2005) 

At the end of each experiment, fresh OJ was divided into two parts: the concentrated juice 

(juice left inside the EK cell at the end of the experiment), and the total filtrate (all filtrate 

exiting from the two outlets through the filters), total filtrate also consists of two streams (the 

anolyte and the catholyte).The retention of vitamin C of the two juice components under (0, 15 

and 30V) was compared with the initial vitamin C content. 

Vitamin C content was measures in all samples using an ESA CoulArray HPLC system 

as described in the next section. 

Vitamin C Protocol 

Vitamin C analysis was carried out on the ESA CoulArray HPLC. The column was a 

Hypersil GOLD AX with properties shown in Table 3.15, and column oven set at 37℃. The 

flow rate was 0.75mL/min, injection volume 20μl. The mobile phase was 100mM Ammonium 

Acetate pH 6.8/ Acetonitrile [MeCN] (30:70), vitamin C contents of all samples were measured 

as mg vitamin C/100g juice. 

 

 

 

Table 3.15. Hypersil GOLD AX column properties (Thermo Fisher Scientific, 2012) 
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Manufacturer Thermo Fisher Scientific 

Model Hypersil GOLD AX 

Diameter 4.6mm 

Length 250mm 

Particle Size 5µm 

Packing Material AX 

Sample Preparation: 

OJ samples were deproteinized by mixing 500µL of each sample with 500µL 1% meta-

phosphoric acid (MPA) in a micro-centrifuge tube on ice. The samples were left on ice for 5min 

after thorough mixing. Then the tubes were centrifuged for 5min at 16,000 rpm and the 

supernatant diluted and used for HPLC analysis. 

The samples needed dilution in order to reduce the MPA concentration in samples to 

maintain HPLC column life and to bring the vitamin C concentration into the required range 

for analysis.  Assuming that the vitamin C concentration in fresh OJ is around 0.50 mg/ml, this 

1ml extracted solution contained 0.25mg/ml vitamin C in 0.5% MPA.  A 400µL aliquot from 

this solution was taken and diluted to 5ml with 0.043% MPA to give a final MPA concentration 

of 0.08% and a vitamin C concentration of around 0.02mg/ml. 

Preparation of Standards: 

Vitamin C concentration in the OJ sample was expected to be around 0.02mg/ml in the 

extracted sample. Therefore, the standards range must cover potential vitamin C concentration 

values; standards of vitamin C were prepared using 0.05 mg/ml ascorbic acid (AA) in 0.08% 

MPA according to Table 3.16: 

Table 3.16. Vitamin C analysis standards 

Concentration  

(mg AA: ml MPa(0.08%)) 
Dilution 

0.05mg/ml 

AA:MPa (0.08%) 

MPa 

(0.01%) 

0.005 mg/ml 0.0005% 1ml 9 ml 

0.01 mg/ml 0.001% 2 ml 8 ml 

0.015 mg/ml 0.0015% 3 ml 7 ml 

0.02 mg/ml 0.002% 4 ml 6 ml 

0.025 mg/ml 0.0025% 5 ml 5 ml 

0.03 mg/ml 0.003% 6 ml 4 ml 
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3.5.4.3. Colour Change 

The change in the colour was monitored only in OJ samples as the colour of ME samples 

was black and did not visibly change over the experiment; the main discolouration was in the 

OJ samples. 

At the end of the process, fresh OJ was divided into two streams (concentrate and filtrate). 

Due to the design of the device it was not possible to monitor the colour change in the 

concentrated juice over time; therefore, only the colour of the final concentrate at the end of the 

experiment was measured. On the other hand, the change in the filtrate colour was measured 

every half hour during the experiment. 

Measuring colour change was based on the Hunter colour parameters (a, b and L). 

Samples were put into Petri dishes (60 x 15mm); the colour of samples was measured before 

and after concentrating using Minolta Chroma Meter CR-200. The instrument was standardized 

each time using a calibration plate (No.20533076 C: Y=92.7, x=.3132 and y=.3192). colour of 

each sample was measured and L, a, and b values of the measurements were recorded, where L 

represents the light–dark spectrum with a range from 0 (black) to 100 (white); a represents the 

green–red spectrum with a range from−60 (green) to +60 (red); and b represents the blue–

yellow spectrum with a range from−60 (blue) to +60 (yellow) (Fazaeli et al., 2013). 

The three measured colour parameters were reported as the browning index (BI). “BI 

represents the purity of the brown colour and is considered an important parameter associated 

with browning”. Browning index was calculated according to Equations 11 & 12 (Diamante et 

al., 2010; Fazaeli et al., 2013): 

BI= [100 (x-0.31)] / 0.17 (Equation 11) 

Where:  x= (a+1.75L) / (5.645L + a – 3.012b) (Equation 12) 

The measurements of the concentrated juice and the filtrate samples under three voltages 

(0, 15 and 30V) and three pressures (2, 3 and 4bar) shown in Table 3.5, were compared with 

measurements of fresh OJ. 

3.5.4.4. Carotenoids Change 

Fresh, filtrate and concentrate OJ samples were dried using vacuum freeze dryer to use 

the dried juice powder in the carotenoids analysis method.  

Samples preparation: 



Chapter 3                                                                                                                     Materials and Methods 

 

68 

 

70 mg of freeze dried sample was homogenized with 3.5 ml of ethyl acetate in 10 mL 

centrifuge tubes, samples were then vortexed for a few minutes, covered to keep them dark and 

placed in the refrigerator at 4°C overnight. The next day the samples were centrifuged for 10 

minutes at a speed of 4000 g and the supernatant put into a new screw-top test tube. 1 mL of 

ethyl acetate was added to the residue tube and mixed. Again, the samples were covered and 

put in the refrigerator for 1 hour. After that the samples were centrifuged and the supernatant 

transferred to screw-top test tube for extraction, and 0.5 mL of ethyl acetate was added to the 

residue tube and kept for 1hour again. Samples were then centrifuged and the supernatant 

removed. In total, the extraction procedure was carried out three times with the supernatant 

being placed into the same screw-top test tubes. They were then filtered using 1mL syringe and 

filtered (0.2μm). The extracts were combined and directly analysed by high performance liquid 

chromatography (HPLC). 

OJ samples experienced a problem during freeze drying due to a fault in the equipment, 

which resulted in a random loss in the samples weight; this loss made analysing carotenoids 

concentration in these samples meaningless. However a visual detection test was run on some 

samples to detect whether there is carotenoids in the filtrate samples or not; as carotenoids 

dissolves in ethyl acetate turning its colour from blank to yellow. 100 g of dried juice sample 

were dissolved and homogenized with 1.5 ml of water and then mixed with 3.5 ml of ethyl 

acetate in 10 mL centrifuge tubes, samples were then vortexed for a few minutes, covered to 

keep them dark and placed in the refrigerator at 4 °C overnight. Samples then will be divided 

into two phases, acetate at the bottom (0.897 g/cm³) and water at the bottom. 

3.5.4.5. Dry Matter Content Changes 

Due to the design of the cell, it was not possible to collect concentrated juice samples 

over time; therefore, the change in the dry matter content of the concentrated juice was 

calculated from the change in the total filtrate weight according to Equation 13: 

WFJ x DMFJ = WCJ x DMCJ + WTF x DMTF (Equation 13) 

Where: W: is the weight (g)  

DM: is the dry matter content (%) 

FJ: Fresh Juice 

CJ: Concentrated Juice 

TF: Total Filtrate 
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The dry matter content of the samples was determined after drying for 24 hours at 75ºC 

to measure the change of dry matter content over time under the application of three different 

voltages (0, 15 and 30V) in OJ (normal orientation, 4bar pressure and 0.2µ filter for a duration 

of 5.5 hours) and ME (reversed orientation, 4bar pressure and 0.2µ filter for a duration of 3 

hours), as shown in Table 3.17: 

Table 3.17. Experiments of the dry matter content change 

Material Orientation Volume (L) Voltage (V) Pressure (Bar) T (Hour) Filter (µ) 

OJ Control 1 0 4 5.5 0.2 

OJ Normal 1 15 4 5.5 0.2 

OJ Normal 1 30 4 5.5 0.2 

ME Control 1 0 4 3 0.2 

ME Reversed 1 15 4 3 0.2 

ME Reversed 1 30 4 3 0.2 

To determine whether dry matter contents were influenced by the electrode charge (anode 

or cathode) or the electrode position (top or bottom), the two orientations (normal and reversed) 

were used in ME experiments under 15V, 4bar and through 1µ filter for 2.5 hours. 

3.5.4.6. Power Consumption 

 The power consumption during the application of EKEF was measured to compare with 

estimated power consumption during thermal processing. 

The total power consumption of dewatering using EKEF can be calculated as the sum of 

electrical power consumed by the applied voltage across the sample and the mechanical power 

applied by the pneumatic pressure ram.  

Total theoretical energies required for the dewatering process under EKEF application 

are calculated according to Equations 14 to 16 (Ng et al., 2011). 

The energy used to apply pressure to the sample during the process was estimated based 

upon the distance travelled by the pneumatic ram and the volume displacement from the cell. 

Mechanical power consumption was calculated for the maximum pressure value (4bar), using 

Equation 14: 

𝐸1 = 𝑃 ×
𝑉

𝐴
 (Equation 14) 
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Where E = Energy (J), P = Pressure (KPa) (here P=400Kpas), V= Volume displacement 

of the cell (m³) (here V= 0.001m³, A= Cross sectional area of the cell (m²) (here A=0.0289 m² 

for inner diameter= 0.192m) : 

𝐸1 = 400 ×
0.001

0.0289
= 13.84 𝑗 = 0.384 × 10−5𝐾𝑊ℎ 

The electrical power consumed by applying voltage across the sample was calculated for 

two voltage values (the minimum 15V and the maximum 30V) using Equation 15: 

𝐸2 = ∫
(𝑉×𝐼)

1000
𝑑𝑡 (Equation 15) 

Where E = Energy (KW h), V= voltage (V) (V=15 and 30V), I= current (A) and dt= 

Processing time period (h) (every half hour). 

Total energy consumed over the process is the sum of the electrical and mechanical 

Energy: 

𝐸 = 𝐸1 + 𝐸2  (Equation 16) 

After calculating energies consumed over the experiments, a comparison between the 

energy consumption of EKEF application (electrokinetics 0&30V and pressure) and the normal 

microfiltration (with pressure only) was carried out. 

In addition, a comparison between the energy consumed during the EKEF application 

under 4bar pressure and three voltage values (0, 15 and 30V) and the estimated thermal energy 

required to remove same amount of water by evaporation for OJ and ME was made. The 

theoretical calculated energy required for thermal removal of water was determined using a 

value of 43kJ.mol-1, as quoted by Al-Asheh et al. (2004). This theoretical value assumes 100% 

energy transfer efficiency by the heating mechanism (oven, hot plate etc.) although the 

efficiencies are in reality much less than this. Some studies claimed even higher values for the 

required energy to evaporate water using thermal methods such as Murraya and Lagrange 

(2011) who claimed that the required energy was 3873.8 to 8234 kJ/kg product. 

3.6. Statistical analysis 

All main results were presented as means ± standard deviation (SD). Analysis of variance 

was performed on the data taken from triplicates. Differences were detected by one-way 

analysis for variance (ANOVA) and Time Series analysis. Correlations were obtained by using 

the Pearson correlation coefficient and R-squared values. Significance of differences between 
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means was determined at the level of 0.05 (p<0.05). Overall P-values are presented in tables 

for all experiments and for comparisons within an experiment. 

Due to the limitations on time some of the complementary experiments were done only 

once, therefore results of these experiments were presented as values not as means ± standard 

deviation. 

 All the statistical tests were completed using Minitab 16 Statistical Software and 

Microsoft Office Excel 2007. 



 

 

 

 

 

 

 

 

  

 

 

 

4. Chapter 4. Results 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                                                                              Results 

 

72 

 

 

F
lo

w
ch

a
rt

 5
. 

C
h

a
p

te
r 

4
 (

R
es

u
lt

s)
 C

o
n

te
n

t 



Chapter 4                                                                                                                                              Results 

 

73 

 

4.1. Introduction 

The EKEF process is based on the movement of ions and charged particles under an 

applied voltage gradient between two electrodes (electric force) in addition to the pressure 

applied by the actuator (mechanical force). These ions and particles arise mainly from the 

sample ions and particles, and partly from the dissolved electrode.  

From the literature review, this movement under a certain voltage gradient creates a 

constant electric current. The value of this current depends upon several conditions such as the 

voltage value, conductivity and material of electrodes, conductivity of the samples, amount and 

types of charged ions and particles (the type of the major ions has the main impact on the water 

profile movement direction).When these conditions change during the process, they have an 

impact on both the electric current value and the filtrate flow rate value. In addition to these 

conditions, there are some other conditions that have a significant impact on the filtrate flow 

rate and in turn on the dewatering process outcome, such as the applied pressure, the sample 

volume, the filter pore size and the generated gases within the sample inside the cell. 

In this chapter, results are divided into three parts as shown in Flowchart 5: the first part 

presents data to show the impact of the sample chemical properties on the water movement 

direction and to justify the reasons for choosing different orientation (normal or reversed) for 

OJ and ME, respectively. The second part presents data about the impacts of the EKEF 

conditions (conductivity, voltage, pressure, filter pore size and the sample volume) on the 

filtrate flow rate and the dewatering efficiency. The third part is about the impact of EKEF on 

the food sample properties (pH, vitamin C, colour and dry matter content). Finally, the power 

consumption of EKEF process was calculated to estimate the potential of power saving of this 

process. 

4.2. Factors Affecting WPD and A/C Ratio 

As mentioned in Section 3.5 different expressions were used to define the phenomena 

resulting from water movements under the EKEF application; such as water profile direction 

(WPD), the main outlet and the Anolyte to catholyte ratio (A/C ratio). 

There are several factors affecting the direction and the volume of discharged filtrate 

(water) moving towards each outlet. These factors are related to the sample chemical properties 

(pH and isoelectric point IEP/ the lowest conductivity point LCP values), experimental cell 

design (the position of the outlet, top or bottom), or experiment conditions (applied voltage and 

pressure). The following shows the impact of these factors on WPD and A/C ratio: 
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4.2.1. pH and LCP Values Impact on WPD and A/C Ratio: 

LCP values of OJ and ME were measured using the conductivity meter (Section 3.5.2) 

for each solution of the titration (Table 3.2); results are shown in Figure 4.1. 

 

Figure 4.1. Change in conductivity value of OJ and ME under different pH values, where LCP is the pH of the 

lowest conductivity. Each value is expressed as mean ± standard deviation (n=3) 

LCP values of fresh OJ and fresh ME were determined as the pH values where the 

material has the lowest conductivity; Table 4.1 shows pH value and LCP value of fresh OJ and 

fresh ME: 

Table 4.1. The pH and LCP values of fresh OJ and fresh ME samples 

sample pH LCP 

Fresh OJ 3.6 ~ 4.0 

Fresh ME 4.55 ~ 3.2 
 

 

Several experiments were run on the two contrasting samples (OJ and ME) to investigate 

the impact of pH and LCP values on WPD and A/C ratio, which later enabled choice of the 

optimal experimental specification (normal or reversed orientation) for each sample. 

Experiments were done according to the method mentioned in Section 3.5.2. Table 4.2 

shows the impact of the sample chemical properties (pH and LCP) and the orientation 

(normal/anode is the bottom electrode or reversed/cathode is the bottom electrode) on WPD 

and A/C ratio; the discharged filtrate moved almost equally toward the anode and the cathode 

when the EKEF was not applied (voltage=0V). However, the bottom outlet showed a small 
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increase. When the electric field was switched on, the difference between two outlets filtrates 

started to increase; examining the A/C ratio data, Table 4.2 shows that the A/C ratio was > 1 

for OJ in all experiments with EKEF and for ME was < 1 in all experiments with EKEF. 

Table 4.2. Impact of the sample's chemical properties (pH and LCP) and the orientation (normal or reversed) 

on WPD and A/C ratio2 

Experimental conditions 
Anolyte 

(g) 

Catholyte 

(g) 

Weight of 

total filtrate 

(g) 

Anolyte 

(%) 

Catholyte 

(%) 

A/C 

Ratio 

Experiment Set (1): 1 litre, OJ, 0.2µ filter, 30V, 4bar, 5.5 hours 

Control 239.3(B) 222(T) 461.3 51.88 48.12 1.08 

Normal / Cathode Top 329.9 192 521.9 63.21 36.79 1.72 

Reversed / Cathode Bottom 192.9 115.6 308.5 62.53 37.47 1.67 

Experiment Set (2): 1 litre, ME, 1µ filter, 30V, 4bar, 3.5 hours 

Control 202.40(B) 170.80(T) 373.20 54.23 45.77 1.19 

Normal / Cathode Top 139.30 187.70 327.00 42.60 57.40 0.74 

Reversed / Cathode Bottom 220.50 246.70 467.20 47.20 52.80 0.89 

Experiment Set (3): 1 litre, ME, 0.2µ filter, 30V, 4bar, 2 hours 

Control 80.70(B) 77.50(T) 158.20 51.01 48.98 1.04 

Normal / Cathode Top 90.40 110.10 200.50 45.09 54.91 0.82 

Reversed / Cathode Bottom 98.60 121.60 220.20 44.78 55.22 0.81 

4.2.2.  The Impact of the Orientation on WPD and EKEF Process Efficiency 

In addition to the impact of the sample chemical properties on the WPD and A/C ratio, 

the orientation could have a potential impact on the volume of the total discharged and in turn 

on the total process outcome. 

Table 4.3 shows the impact of choosing the correct orientation (normal or Reverse) for 

each material (OJ and ME) by comparing the dewatering efficiency of previous experiments 

mentioned in Table 4.2. 

Looking at data in Table 4.3, it can be seen that in experiments using OJ the weight of 

total filtrate after 5.5hours was 461.3g (average flow rate = 1.40g/min, dewatering efficiency = 

59.6%) under the control orientation; but when an electric field was applied in the normal 

orientation, the weight of total filtrate increased to 521.9g (average flow rate = 1.59g/min, 

dewatering efficiency = 67.43%), achieving a net dewatering efficiency (NDE) = 7.83%. 

                                                 
2 In control situation there is no electric field which means the outlets’ filtrates cannot be called anolyte and catholyte; but 

in the table, the bottom filtrate for the bottom is put under the anolyte and mentioned by letter (B) next to the value, while the 

top filtrate for the bottom is put under the catholyte and mentioned by letter (T) next to the value. 
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On the other hand, the weight of total filtrate was 308.5g (average flow rate = 0.93/min, 

dewatering efficiency = 39.86%) under the reversed orientation which decreased the dewatering 

process efficiency, achieving NDE = -19.74%, and much lower compared with the normal 

orientation. 

In the ME experiments, applying an electric field in the reversed orientation improved the 

NDE by 11.75%, while the normal orientation decreased the dewatering efficiency by -5.78% 

comparing with the control orientation using filter 1µ. Using 0.2µ in both reversed and normal 

orientations improved the efficiency comparing with the control values, however, the reversed 

orientation showed an improvement of 7.75% compared with the 5.29% improvement achieved 

by the normal orientation. 

Table 4.3. Impact of the orientation on the EKEF dewatering efficiency3 

Experimental conditions 
Weight of total filtrate 

(g) 

Flow Rate 

(g/min) 

Dewatering efficiency (%) 

Total Net 

Experiment Set (1): 1 litre, OJ, 0.2µ filter, 30V, 4bar, 5.5 hours 

Control 461.3 1.40 59.60   

Normal / Cathode Top 521.9 1.58 67.43 7.83 

Reversed / Cathode Bottom 308.5 0.93 39.86 -19.74 

Experiment Set (2): 1 litre, ME, 1µ filter, 30V, 4bar, 3.5 hours 

Control 373.20 1.78 46.65   

Normal / Cathode Top 327.00 1.56 40.88 -5.78 

Reversed / Cathode Bottom 467.20 2.22 58.40 11.75 

Experiment Set (3): 1 litre, ME, 0.2µ filter, 30V, 4bar, 2 hours 

Control 158.20 1.32 19.78   

Normal / Cathode Top 200.50 1.67 25.06 5.29 

Reversed / Cathode Bottom 220.20 1.84 27.53 7.75 

 

The impact of the orientation (normal or reversed) on the total filtrate weight is shown in 

Figures 4.2 to 4.4, which also show a significant difference between the normal and the reversed 

orientation (P<0.001) for OJ, ME (1µ) and ME (0.2µ). These figures show that for orange juice 

applying EKEF in the normal orientation played a positive role in increasing total filtrate weight 

over time in comparison with the control while the total filtrate weight was less using the 

reversed orientation. In contrast the reversed orientation was the optimal one to increase the 

                                                 
3
Dewatering efficiency = (weight of total filtrate/initial weight of water in the sample) *100 (take the initial moisture 

content as 86% for orange juice and 80% for malt extract). Net dewatering efficiency is the total dewatering efficiency minus 

the efficiency of the control (without electricity). Weight of the total filtrate is the total weight of the discharged filtrate going 

out through the two outlets, and the flow rate is the total filtrate weight per minute. 
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total filtrate weight over time comparing with normal and control orientation in ME 

experiments (1 and 0.2 µ filters). 

 

Figure 4.2. Impact of the orientation (control, normal and reversed) on the EKEF dewatering efficiency 

(Experiment Set (1): 1 litre, OJ, 0.2µ filter, 30V, 4bar, 5.5 hours). Each value is expressed as mean ± standard 

deviation (n=3) 

 

Figure 4.3. Impact of the orientation (control, normal and reversed) on the EKEF dewatering efficiency 

(Experiment Set (2): 1 litre, ME, 1µ filter, 30V, 4bar, 3.5 hours). Each value is expressed as mean ± standard 

deviation (n=3) 
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Figure 4.4. Impact of the orientation (control, normal and reversed) on the EKEF dewatering efficiency 

(Experiment Set (3): 1 litre, ME, 0.2µ filter, 30V, 4bar, 2 hours). Each value is expressed as mean ± standard 

deviation (n=3) 

For more explanation about the impact of EKEF on water movement and why it is 

important to choose the correct orientation, the weight of anolyte and catholyte was measured 

each half an hour to see the change in weight over time compared with the control (0V, 4bar). 

The EKEF process was applied to OJ under 30V, 4bar and 0.2M filter for 5.5h in two 

orientations (normal and reversed) (Figures 4.5 to 4.7). 

When the electric field was off the two filtrates were almost equal (anolyte=239.3g and 

catholyte=222g), with a small increase seen at the bottom (Figure 4.5), and the difference 

between them was not significant (P=0.679, One Way ANOVA). When the electric field was 

switched on, (voltage=30V) in the normal orientation, the anolyte showed a higher flow rate 

and the final anolyte weight after 5.5hours was significantly higher than the final catholyte 

weight (anolyte/bottom filtrate=329.9g, catholyte/top filtrate=192g and P=0.013) (Figure 4.6).  

Under the reversed orientation, the two outlets have also performed differently compared 

to the control orientation with higher anolyte weight compared with the catholyte. However, 

this difference between the two outlets was not significant after 5.5 hours (anolyte/top 

filtrate=192.9g, catholyte/bottom filtrate=115.6g and P=0.260) (Figure 4.7).  
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Figure 4.5. Change in the weight of OJ bottom, top and total filtrates over time under the control orientation 

(0.2µ filter, 0V, 4bar, 5.5 hours) 

 

Figure 4.6. Change in the weight of OJ anolyte, catholyte and total filtrate over time under the normal 

orientation (0.2µ filter, 30V, 4bar, 5.5 hours) 

 

Figure 4.7. Change in the weight of OJ anolyte, catholyte and total filtrate over time under the reversed 

orientation (0.2µ filter, 30V, 4bar, 5.5 hours) 
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4.2.3.  Other Factors Affecting WPD: (Voltage and Pressure) 

Furthermore, there are other factors affecting WPD and the discharged filtrate volume 

such as the applied voltage and pressure. 

The impact of applying three values of voltage (0, 15 and 30V) and pressure (2, 3 and 

4bars) on WPD and A/C ratio of OJ samples is shown in Figure 4.8 and Table 4.4. 

Anolyte and catholyte have almost equal volume (A/c ratio ~1) at the end of the control 

experiments (when voltage= 0V) under the three values of pressure (2, 3 and 4bar). However, 

the higher the pressure, the bigger the anolyte, the catholyte and total filtrate weight. 

When an electric field was applied (15V and 30V), water movement toward the bottom 

anolyte became greater (A/C ratio > 1); and this ratio increased as the voltage increased with 

greater movement towards the anode under 30V compared with 15V. 

Table 4.4. Impact of voltages (0, 15 and 30V) and pressures (2, 3 and 4bars) on WPD and A/C ratio (normal 

orientation, 0.2µ filter, 5.5 hours) 

Experimental 

conditions 

Anolyte 

(g) 

Catholyte 

(g) 

Total Weight 

of Filtrate (g) 

Anolyte 

(%) 

Catholyte 

(%) 

A/C 

Ratio 

At 2 bar        

Control (0V) 193.8(B) 173.1(T) 366.9 52.8 47.2 1.12 

15V  248.4 156.1 404.5 61.4 38.6 1.59 

30V 244.1 169.1 413.2 59.1 40.9 1.44 

At 3 bar        

Control (0V) 194.1(B) 192.7(T) 386.8 50.2 49.8 1.01 

15V 243.8 162.2 406.0 60.0 40.0 1.50 

30V 259.4 167.6 427.0 60.7 39.3 1.55 

At 4 bar        

Control (0V) 232.5(B) 229.2(T) 461.7 50.4 49.6 1.01 

15V 288.0 185.1 473.1 60.9 39.1 1.56 

30V 327.2 192.0 519.2 63.0 37.0 1.70 
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Figure 4.8. Impact of voltages (0, 15 and 30V) and pressures (2, 3 and 4bars) on WPD and A/C ratio (0.2µ 

filter, 5.5 hours) 
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For more details, the weight and the flow rate of anolyte, catholyte and total filtrate were 

observed over time under the application of three voltages and represented in Appendices 1 & 

2. 

Under 0V (control), both anolyte and catholyte extraction changed according to the 

normal filtration curve and ended with almost the same volume (P=0.679) (Appendices 1.1 and 

2.1). 

After applying an electric field, water moved towards the anode resulting in bigger-

anolyte volume comparing with the catholyte. The difference between anolyte and catholyte 

volume was not significant under 15V (P= 0.123) while it was significant under 30V (P=0.013) 

(Appendices 1.2 and 1.3). 

Elution of the anolyte under an electric field of 15V and 30Vchanged over time according 

to the normal filtration curve while the catholyte fluctuated over time; this fluctuation was 

higher with the higher voltage (30V) due to higher gas generation (Appendices 2.2 and 2.3). 

4.3. Impact of EKEF on the Filtration (dewatering) Process 

Impact of EKEF on the dewatering process (dewatering efficiency and filtrate flow rate) 

depends on the experimental conditions of applying EKEF. These conditions are: EKEF 

intensity (represented by the electric current intensity), process conductivity, applied voltage, 

applied pressure, filter pore size and the sample volume: 

4.3.1. The Impact of EKEF Intensity on the Filtration Process 

According to Section 3.5.3.1, the impact of EKEF on the filtration flow rate can be shown 

through the relationship between the electric current intensity, which represents the EKEF 

intensity, and the flow rate value, where the flow rate is the filtrate weight per minute. 

Table 4.5 shows the correlation between filtration efficiency (represented by the flow rate 

value) and EKEF intensity (represented by in the electric current intensity under a stable voltage 

gradient), from different experiments. This correlation is presented by R2 values and Pearson r 

correlation. In addition this correlation was shown in Appendices 3. 

The EKEF intensity (represented by the electric current intensity under a stable voltage 

gradient) and the filtration efficiency change over time (represented by the changes flow rate 

value) has a positively correlated relationship (r = 0.911 and 0.874 for OJ experiments under 

15V/4bar, 30V/4bar respectively, and 0.813, 0.986 for ME experiments under 15V/4bar, 
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30V/4bar respectively); this demonstrated that filtration efficiency increased as the EKEF value 

increased. 

Table 4.5. The correlation between electric field intensity and filtrate flow rate under different condition. Each 

value is expressed as mean ± standard deviation (n=3) 

Experiment Pearson r correlation 

OJ (15V/4bar) 0.911 

OJ (30V/4bar) 0.813 

ME (15V/4bar) 0.986 

ME (30V/4bar) 0.978 

4.3.2. Conductivity Impact Upon Dewatering Efficiency 

The process conductivity was calculated using the change in the electric current intensity 

under a stable voltage using Equation 9, Section 3.5.3.2; under a stable voltage value, the 

change in the electric current intensity over time represents the conductivity change, and both 

can be used to represent the change in the EKEF intensity of the EKEF applied. Figure 4.9 

shows the change of the process conductivity over time under 15V and 30V.  Process 

conductivity fluctuated and dropped over time under both voltages. This fluctuation was larger 

under 30V while the conductivity dropping was steadier under 15V.   

 

Figure 4.9. Change in the conductivity in OJ samples over the experiment time under two stable voltages 

(15V&30V), a pressure of 4bar, 0.2µ filter and for 3.5 hours. Each value is expressed as mean ± standard 

deviation (n=3) 
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Figure 4.10 shows the impact of different initial conductivity values (0.22, 0.33 and 0.5S) 

on the filtration efficiency (represented by the weight of the total filtrate) experiments were 

done as written in Section 3.5.3.2. The initial conductivity value played a significantly positive 

impact (P<0.001) on increasing the filtration efficiency. 

 

Figure 4.10. Impact of different initial conductivity values (0.22, 0.33 and 0.5S) on the weight of the total filtrate 

in OJ using 0.2µ filter, a pressure of 4bar and for 5.5 hours 

  

4.3.3. Initial pH Impact (pH/LCP Ratio)4 upon WPD and Dewatering Efficiency 

As shown in Section 3.5.3.3, the initial pH of OJ samples were adjusted to (1.5, 3.6, 5 and 

6.5) and then the experiments were run under 30V and 4bar pressure using 1µ filter and 

compared to the results of fresh juice (pH=3.6, 30V and 4bar pressure) and the control (pH=3.6, 

0V and 4bar pressure) under the same conditions. 

The results in Figure 4.11 and Table 4.6 show that the bigger the difference between the 

pH value and LCP value (LCP=~4), the higher the final outcome. Increasing the difference 

between pH an LCP is effective in both sides (either increasing the acidity (pH/LCP ratio<<1) 

or the alkalinity (pH/LCP ratio>>1)), the highest total filtrate weight was in OJ sample with 

pH=1.5 and then with pH=6.5. 

                                                 
4 In this study, LCP is used instead of IEP due to the difficulty of measuring the IEP of the experimental materials; however, 

findings are correct for IEP if it is measurable in the sample. 

0

100

200

300

400

500

600

T
o

ta
l 

F
il

tr
a

te
 W

ei
g

h
t 

(g
)

Time (hh:mm)

Conductivity & Flow Rate Value (P<0.001)

Cond.=0.22 S

Cond.=0.33 S

Cond.=0.5 S



Chapter 4                                                                                                                                              Results 

 

85 

 

 

Figure 4.11. Accumulative total filtrate weight of OJ samples with different initial pH values (1.5, 3.6, 5.0 

&6.5)under the application of electrokinetic dewatering (normal orientation, 30V,4bar,1µ filter and 3hours) in 

comparison with the control orientation (pH=3.6, 0V, 4bar, 1µ filter and 3hours) 

 

Table 4.6. Impact of adjusting OJ initial pH value (1.5, 3.6, 5.0 &6.5) on the electrokinetic dewatering efficiency 

(normal orientation, 30V, 4bar, 1µ filter and 3hours) in comparison with the control orientation (pH=3.6, 0V, 

4bar, 1µ filter and 3hours) 

Experimental 

conditions 

Anolyte 

(g) 

Catholyte 

(g) 

Total 

Filtrate 

Weight (g) 

Anolyte 

(%) 

Catholyte 

(%) 

Flow 

Rate 

(g/min) 

Dewatering 

efficiency (%) 

Total Net 

Control (0V) 

(pH=3.6) 
218 203 421.0 51.78 48.22 2.34 54.39   

pH=1.5 342.6 277.4 620.0 55.3 44.7 3.44 80.10 25.71 

pH=3.6 262.5 202 464.5 56.5 43.5 2.58 60.01 5.62 

pH=5.0 210.5 222.2 432.7 48.6 51.4 2.40 55.90 1.51 

pH=6.5 242.6 326.5 569.1 42.6 57.4 3.16 73.53 19.14 

Figure 4.12 illustrates the process final total filtrate weight of the previous samples with 

different pH values; in addition the outcome of the control experiment (fresh juice, pH=3.6, 0V 

& 4bar) is shown in this figure. 

This figure shows that the total filtrate weight increased as the difference between the pH 

and the LCP values increased; according to the curve, the lowest outcome was around the LCP 

in the range of pH between 4 and 5. 
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The total outcome of the control experiment was close to the outcome of the LCP, which 

demonstrates that when pH is close to the LCP (pH/LCP ratio≈1) the suspension is mostly 

neutral which reduces or cancels the impact of EKEF. 

 

Figure 4.12. Total filtrate weight of OJ samples with different initial pH values (1.5, 3.6, 5.0 &6.5) 
To explain the impact of increasing the difference between the pH and the LCP, the 

change of the current intensity of each pH experiment was measured over time and is shown in 

Figure 4.13. 

The larger the difference between the sample pH and the LCP the higher the current 

intensity. 

 

Figure 4.13. Change in electric current intensity through OJ samples with different initial pH values(1.5, 3.6, 

5.0 &6.5)under the application of electrokinetic dewatering (normal orientation, 30V, 4bar,1µ filter and 

3hours) in comparison with the control orientation (pH=3.6, 0V, 4bar, 1µ filter and 3hours) 
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In addition, changing the pH/LCP ratio changed the flow rate which was higher with 

larger pH/LCP difference, and also affected water profile direction which was toward the anode 

with pH/LCP ratio < 1 (resulting in higher anolyte A/C ratio > 1) (Figure 4.15), and toward the 

cathode with pH/LCP ratio > 1 (resulting in higher catholyte A/C ratio < 1), as shown in Figure 

4.16. The change in the flow rate of the OJ samples with pH values (3.5 and 5) is shown in 

Appendices 4. 

 

Figure 4.14. Change in OJ accumulative total and filtrate flow rate over time under the control orientation 

(pH=3.6, 0V, 4bar, 1µ filter and 3hours duration) 

 

Figure 4.15. Change in OJ accumulative filtrates and filtrate flow rate over time under the application of EKEF 

with initial pH value=1.5 (normal orientation, 30V, 4bar,1µ filter and 3hoursduration) 
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Figure 4.16. Change in OJ accumulative filtrates and filtrate flow rate over time under the application of EKEF 

with initial pH value=6.5 (normal orientation, 30V, 4bar,1µ filter and 3hours duration) 

4.3.4. The Impact of the Applied Voltage and pressure 

Applying voltage plays a role in WPD as water starts to move towards one of the 

electrodes after energising the electric field. In addition, voltage has an impact on the total 

filtrate weight and the EKEF dewatering efficiency. To investigate this impact, experiments on 

OJ and ME were run as described in Section 3.5.3.4; the results are shown in Table 4.7 and 4.8 

for OJ and ME respectively. 

The data shows that there was a positive net dewatering efficiency (NED) after applying 

EKEF of up to 7.43% in OJ experiments and to 10.68% in ME experiments, this NED was 

significant higher with 30V compared with 15V under a pressure of 2 and 3bar as the total 

filtrate weight increased when the voltage was increased, however the difference between 15V 

and 30V was not significant under 4bar pressure (P-value=0.093). In addition, when voltage 

was applied the filtrate started moving towards the anode with (A/C ratio >1) in OJ samples, 

and towards the cathode with (A/C ratio <1) in the ME samples and this movement was larger 

with 30V applied compared with 15V, while the difference between the anolyte and catholyte 

was smaller under 0V (control) with a slight increase at the bottom outlet. 
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Table 4.7. Impact of voltage (0, 15 and 30V) on the EKEF dewatering efficiency (OJ, in the normal orientation, 

5.5hours, 0.2µ filter, under the application of three pressure values (2, 3& 4bar))5 

Experimental 

conditions 

Anolyte 

(g) 

Catholyte 

(g) 

Total 

Filtrate 

Weight 

(g) 

Anolyte 

(%) 

Catholyte 

(%) 

A/C 

Ratio 

Flow 

Rate 

(g/min) 

Dewatering 

efficiency 

(%) 

Total Net 

At 2 bar          

Control (0V) 193.8(B) 173.1(T) 366.9 52.8 47.2 1.12 1.11 47.4  

15V 248.4 156.1 404.5 61.4 38.6 1.59 1.23 52.26 4.86 

30V 244.1 169.1 413.2 59.1 40.9 1.44 1.25 53.39 5.99 

At 3 bar          

Control (0V) 194.1(B) 192.7(T) 386.8 50.2 49.8 1.01 1.17 49.97  

15V 243.8 162.2 406 60 40 1.5 1.23 52.45 2.48 

30V 259.4 167.6 427 60.7 39.3 1.55 1.29 55.17 5.2 

At 4 bar          

Control (0V) 232.5(B) 229.2(T) 461.7 50.4 49.6 1.01 1.4 59.65  

15V 288 185.1 473.1 60.9 39.1 1.56 1.43 61.12 1.47 

30V 327.2 192 519.2 63 37 1.7 1.57 67.08 7.43 

 

Table 4.8. Impact of voltage (0, 15 and 30V) on the EKEF dewatering efficiency (ME, reversed orientation, 1µ 

filter, 3.5 hours, and a pressure of 4bar) 

Experimental 

conditions 

Anolyte 

(g) 

Catholyte 

(g) 

Total 

Filtrate 

Weight 

(g) 

Anolyte 

(%) 

Catholyte 

(%) 

A/C 

Ratio 

Flow 

Rate 

(g/min) 

Dewatering 

efficiency 

(%) 

Total Net 

Control (0V)  202.4(B) 170.80(T) 373.2 45.8 54.2 1.19 1.78 42.41  

15V  206.4 221.9 428.3 48.2 51.8 0.93 2.04 48.67 6.26 

30V 220.50 246.70 467.2 47.2 52.8 0.89 2.22 53.09 10.68 

 

The positive impact of voltage on the dewatering process is also represented by Figures 

4.17 to 4.19 which present the change in the total filtrate weight of OJ over time under the three 

different voltage conditions; each figure presents the results obtained under a different pressure. 

Change in the total filtrate weight of ME experiment over time under the three different voltage 

values and 4bar pressure is also presented in Figure 4.20.  

                                                 
5Dewatering efficiency = weight of total filtrate/initial weight of water in the sample (take the initial moisture content as 86% 

for orange juice). Net dewatering efficiency is the total dewatering efficiency minus the efficiency of the control (without 

electricity). Weight of the total filtrate is the total weight of the discharged filtrate going out through the two outlets, and the 

flow rate is the total filtrate weight per minute (experiments were run for 5.5h). 
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In addition, means and P-values were calculated using One Way ANOVA, and shown in 

Tables 4.9 and 4.10, which show that the impact of the applied voltage on the total filtrate 

weight was significantly positive (P<0.001) in comparison with the control experiment. The 

final total filtrate weight was higher under 30V compared with 15V in both OJ and ME 

experiments. However, the mean value of OJ total filtrate over time was higher under 15V than 

its value under 30V in the OJ experiments, while it was higher under 30V in the ME 

experiments (Figures 4.21 and 4.22). 

 

Figure 4.17. Change in OJ total filtrate over time under three voltage values (0, 15 &30V), (normal orientation, 

5.5 hours, 0.2µ filter, and 2bar). Each value is expressed as mean ± standard deviation (n=3) 

 

Figure 4.18. Change in OJ total filtrate over time under three voltage values (0, 15 &30V), (normal orientation, 

5.5 hours, 0.2µ filter, and 3bar).Each value is expressed as mean ± standard deviation (n=3) 
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Figure 4.19. Change in OJ total filtrate over time under three voltage values (0, 15 &30V), (normal orientation, 

5.5 hours, 0.2µ filter, and 4bar).Each value is expressed as mean ± standard deviation (n=3) 

 

Figure 4.20. Change in ME total filtrate over time under three voltage values (0, 15 &30V), (reversed 

orientation, 3.5 hours, 1µ filter, and 4bar). Each value is expressed as mean ± standard deviation (n=3) 

 

Table 4.9. P-values of the change of OJ total filtrate over time under three voltage values (0, 15 &30V), (normal 

orientation, 5.5hours, 0.2µ filter, and a pressure of 4bar) 

 P-value of the accumulative total filtrate 

 0V-15V-30V 0V-15V 15V-30V 0V-30V 

2bar <0.001 <0.001 <0.001 <0.001 

3bar <0.001 <0.001 <0.001 <0.001 

4bar <0.001 <0.001 0.093 <0.001 
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Table 4.10. P-values of the change in ME total filtrate over time under three voltage values (0, 15 &30V), 

(reversed orientation, 3.5hours, 1µ filter, and a pressure of 4bar) 

 P-value of the accumulative total filtrate 

 0V-15V-30V 0V-15V 15V-30V 0V-30V 

4bar <0.001 <0.001 <0.001 <0.001 
 

 

Figure 4.21. Means of the accumulative OJ total filtrate over time under three voltage values (0, 15 &30V), 

normal orientation, 5.5hours, 0.2µ filter, and (2,3&4bar) pressure 

 

Figure 4.22. Means of the accumulative ME total filtrate over time under three voltage values (0, 15 &30V), 

(reversed orientation, 3.5hours, 1µ filter, and a pressure of 4bar) 
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Figures 4.17 to 4.19 show that during the processing of OJ, 30V achieved a higher 

outcome after 5.5hours running, but up to a specific time the outcome of applying 15V was 

greater before the 30V impact accelerated and crossed the 15V line in what is called the voltage 

crossing point (VCP). This phenomenon is also shown in Figures 4.23 to 4.25 which show the 

time series plots of the flow rates under the three voltages and pressures.  

 

Figure 4.23. The Time series plot of the OJ filtrate flow rates under three voltage values (0, 15 &30V), (normal 

orientation, 5.5 hours, 0.2µ filter, and 2bar).Each value is expressed as mean ± standard deviation (n=3) 
 

 

Figure 4.24. The Time series plot of the OJ filtrate flow rates under three voltage values (0, 15 &30V), (normal 

orientation, 5.5 hours, 0.2µ filter, and 3bar).Each value is expressed as mean ± standard deviation (n=3) 
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Figure 4.25. The Time series plot of the OJ filtrate flow rates under three voltage values (0, 15 &30V), (normal 

orientation, 5.5 hours, 0.2µ filter, and 4bar).Each value is expressed as mean ± standard deviation (n=3) 
 

 

Using data in Figures 4.17 to 4.19 the details of the VCP under the three pressures were 

obtained and shown in Table 4.11, these details are: time of VCP, the weight and the percentage 

of the total filtrate and the concentrate at this point as well as the moisture content of the 

concentrate and the distance between the electrodes. 

Table 4.11. Voltage crossing points (VCP) properties under different pressures, (2, 3 and 4bar) normal 

orientation (0, 15 &30V, 4bar, 0.2µ and 5.5h duration) 

Pressure 

(bar) 

Time 

(hh:mm) 

Total 

Filtrate (g) 

Total 

Filtrate (%) 

Concentrate 

(%) 

Concentrate Dry 

matter (%) 

Distance between 

Electrodes (mm) 

2 ~04:45 377 41.9 58.1 24.09 18.097 

3 ~04:15 351 39.0 61.0 22.95 18.997 

4 ~03:40 384 42.7 57.3 24.42 17.855 

To investigate the improvement of using low voltage at the beginning then increasing it 

later, 15V was applied to an OJ sample for 3hours under 3bar pressure then increased later to 

30V and then let to run for about 2.5 hours. Results were compared with the previous results of 

applying 0V, 15V and 30V with 3bar and are shown in Figure 4.26. 

In the first three hours total filtrate weight was very close to the 15V total filtrate weight 

then later it accelerated after applying the 30V, acting better than 30V in the first 3hours and 

better than 15V in the last 2.5hours. 
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Figure 4.26. Change in OJ total filtrate over time under gradual voltage increase in comparison with constant 

0V, 15V and 30V normal orientation (3bar, 0.2µ and 5.5h duration) 

The impact of pressure on the dewatering process was also investigated according to 

Section 3.5.3.5. Table 4.7 shows also the change in the discharged filtrate weight over time 

under the three different pressure values 2, 3 and 4bar. Looking at this table, increasing applied 

pressure increased the flow rate over time and improved the net dewatering efficiency by up to 

13.69%. 

Means and P-values were and shown in Table 4.12 and Figure 4.27. 

The impact of increasing pressure was significantly higher with 4bar compared with 3 

and 2bar in all experiments (P<0.000). However, the pressure impact was significant only 

between 2 and 3bar in the control experiment while it was not significant when the voltage was 

applied. 

Table 4.12. P-values of the change in OJ total filtrate over time under three pressure values (2, 3 &4bar), normal 

orientation, (0, 15&30V), duration of 5.5hours and 0.2µ filter) 

 P-value 

 2-3-4bar 2-3bar 3-4bar 2-4bar 

0V <0.001 <0.001 <0.001 <0.001 

15V <0.001 0.777 <0.001 <0.001 

30V <0.001 0.232 <0.001 <0.001 
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Figure 4.27. Means of the accumulative OJ total filtrate over time under three pressure values (2, 3 &4bar), 

normal orientation, (0, 15&30V), duration of 5.5hours and 0.2µ filter) 

4.3.5. The Impact of Filtration Type (Filter Pores Size) 

In addition to previous conditions, filter pore size can also affect the filtration process 

outcome and efficiency. In order to investigate how filter pores size affected the EKEF process, 

the method described in Section 3.5.3.6 was used and results are shown in Tables 4.13 and 4.14. 

The change of the accumulative total filtrate under previous conditions is also shown in 

Figures 4.28 and 4.30, P-values and total filtrate means were calculated by   to show the 

significance of the effects, these values are shown in Figures 4.29, 4.31 and Tables 4.15 to 4.18. 

Comparing the net dewatering efficiency (NDE) between the two sizes of the filter in 

Tables 4.13 and 4.14, Figures 4.28 and 4.30, it can be seen that the larger the filters pore size 

the higher the NDE. NDE was 1.47% under 15V and 7.43% under 30Vin the OJ experiments 

and 7.81% under 30V in the ME experiments with 0.2µ filters, while it increased to 11.07% 

under 15V and 19.37% under 30V in OJ experiments and 10.68% under 30V in ME 

experiments when 0.2µ filters were replaced with 1µ filters. The impact of the filter pore size 

was significant (P<0.005) as shown in Figures 4.29, 4.31 and Tables 4.15 to 4.18. 

 

 

Table 4.13. Impact of filters pore size (0.2µ and 1µ) on the EKEF dewatering efficiency (OJ, normal orientation, 

0, 15 & 30V, a pressure of 4bar, and a duration of 5.5h) 
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Experimental 

conditions 

Anolyte 

(g) 

Catholyte 

(g) 

Filtrate 

Weight 

(g) 

Anolyte 

(%) 

Catholyte 

(%) 

A/C 

Ratio 

Flow 

Rate 

(g/min) 

Dewatering 

efficiency (%) 

Total% Net% 

0.2 µ Filter           

Control (0V) 232.5(B) 229.2(T) 461.7 50.36 49.64 1.01 1.4 59.65  

15V 288 185.1 473.1 60.88 39.12 1.56 1.43 61.12 1.47 

30V 327.2 192 519.2 63.21 36.79 1.71 1.57 67.08 7.43 

1 µ Filter          

Control (0V)  267(B) 254.3(T) 521.3 51.22 48.78 1.05 1.58 67.35  

15V  373.49 233.51 607 61.53 38.47 1.6 1.84 78.42 11.07 

30V 376.8 294.4 671.2 56.14 43.86 1.28 2.03 86.72 19.37 

Table 4.14. Impact of filters pore size (0.2µ and 1µ) on the EKEF dewatering efficiency (ME, reversed 

orientation, 0 & 30V, a pressure of 4bar, and a duration of 2.5h) 

Experimental 

conditions 

Anolyte 

(g) 

Catholyte 

(g) 

Filtrate 

Weight 

(g) 

Anolyte 

(%) 

Catholyte 

(%) 

A/C 

Ratio 

Flow 

Rate 

(g/min) 

Dewatering 

efficiency (%) 

Total Net 

0.2 µ Filter                  

Control (0V)  95.50(B) 70.20(T) 165.70 57.63 42.37 1.36 1.10 20.71  

30V 98.90 129.30 228.20 43.34 56.66 0.76 1.52 28.53 7.81 

1 µ Filter           

Control (0V)  185.4(B) 154.30(T) 339.70 45.42 54.58 1.20 2.26 42.46  

30V 220.5 246.7 467.2 47.2 52.8 0.89 2.22 53.09 10.68 

 

 

Figure 4.28. Impact of filters pore size (0.2µ and 1µ) on OJ accumulative total filtrate (normal orientation, 0, 

15 & 30V, 4bar pressure, and a duration of 5.5h). Each value is expressed as mean ± standard deviation (n=3) 
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Figure 4.29. Means of the accumulative OJ total filtrate over time using two filter sizes (0.2µand 1µ) (normal 

orientation, 0, 15 & 30V, 4bar pressure and a duration of 5.5h) 

 

Table 4.15. P-values of the change in OJ total filtrate over time under three voltages values (0, 15& 30V) under 

the same filter sizes (0.2µor 1µ), (normal orientation, 4bar pressure and duration of 5.5hours) 

  P-value of the accumulative total filtrate 

  0V-15V-30V 0V-15V 15V-30V 0V-30V 

0.2µ 4bar <0.001 <0.001 0.093 <0.001 

1µ 4bar <0.001 0.191 <0.001 <0.001 

 

Table 4.16. P-values of the change in OJ total filtrate over time using two filter sizes (0.2µand 1µ) under the 

same voltage value (0, 15 or 30V), (normal orientation, 4bar pressure and duration of 5.5hours) 

P-value of the accumulative total filtrate 

0V(0.2µ )-0V(1µ ) 15V(0.2µ) -15V(1µ) 30V(0.2µ) -30V(1µ) 

<0.001 <0.001 <0.001 

 

 

Figure 4.30. Impact of filters pore size (0.2µ and 1µ) on ME accumulative total filtrate and electric current 

intensity (reversed orientation, 0 & 30V, 4bar and 2.5h). Each value is expressed as mean ± standard deviation 

(n=3) 
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Figure 4.31. Means of the accumulative ME total filtrate over the time using two filter sizes (0.2µ and 1µ) 

(reversed orientation, 0 & 30V, 4bar pressure and 2.5h duration) 

Table 4.17. P-values of the change in ME total filtrate over time under two voltages values (0& 30V) under the 

same filter sizes (0.2µor 1µ), (reversed orientation, 4bar pressure and 2.5hr duration) 

  P-value of the accumulative total filtrate 

  0V-15V-30V 0V-15V 15V-30V 0V-30V 

0.2µ 4bar <0.001 <0.001 <0.001 <0.001 

1µ 4bar <0.001 <0.001 <0.001 <0.001 

 

Table 4.18. P-values of the change in ME total filtrate over time using two filter sizes (0.2µ and 1µ) under the 

same voltage value (0 or 30V), (reversed orientation, 4bar pressure and 2.5hr duration) 

P-value of the accumulative total filtrate 

0V(0.2µ )-0V(1µ ) 15V(0.2µ) -15V(1µ) 30V(0.2µ) -30V(1µ) 

<0.001 <0.001 <0.001 

4.3.6. Impact of the Initial Thickness of the Sample (the Distance Between the Electrodes) 

The impact of three different sample volumes (0.5, 1 & 1.5L), producing sample thickness 

of 17.3, 34.6 & 51.9mm, was measured according to method in Section 3.5.3.7, results are 

shown in Table 4.19; The change of the accumulative total filtrate and electric current under 

previous conditions is also shown in  Figure 4.32. 

Table 4.19 and Figure 4.32 show that the larger the initial sample thickness the smaller 

the EKEF dewatering efficiency as the NED dropped from 21.34% in the 0.5L volume sample 
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to 7.75% and 2.03% in 1L and 1.5L volumes respectively. In addition, Figure 4.32 shows that 

the electric current intensity was higher with smaller thickness. 

Table 4.19. Impact of sample’s initial thickness (0.5, 1 & 1.5L) on the EKEF dewatering efficiency of ME 

(reversed orientation, 0 & 30V, 4bar pressure, 0.2 µ, 2hr duration) 

Experimental 

conditions 

Anolyte 

(g) 

Catholyte 

(g) 

Total 

Weight of 

Filtrate (g) 

Anolyte 

(%) 

Catholyte 

(%) 

A/C 

ratio 

Flow 

Rate 

(g/min) 

Dewatering 

efficiency (%) 

Total Net 

0.5L: 17mm          

Control (0V) 68.1 72.8 140.9 48.3 51.7 0.9 1.17 32.62  

30V 103.7 129.4 233.1 44.5 55.5 0.8 1.94 53.96 21.34 

1L: 34.5mm          

Control (0V) 90.7(T) 67.5(B) 158.2 57.3 42.7 1.3 1.32 19.78  

30V 98.6 121.6 220.2 44.8 55.2 0.8 1.84 27.53 7.75 

1.5L: 52mm          

Control (0V) 98.6(T) 61.7(B) 160.3 61.5 38.5 1.6 1.34 13.36  

30V 88.8 95.9 184.7 48.1 51.9 0.9 1.54 15.39 2.03 

 

Figure 4.32. Impacts of the sample’s initial thickness (0.5, 1 & 1.5L) on ME accumulative total filtrate and 

electric current intensity (reversed orientation, 0 &30V, 4bar pressure, 2hr duration). Each value is expressed 

as mean ± standard deviation (n=3) 

4.4. EKEF Process Impact on the Sample Properties 

The following experiments were run to investigate the potential impact of EKEF on the 

chemical properties of the samples including pH value, vitamin C content, colour, and dry 

matter content. 
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4.4.1. Gas Generation 

Gas generation occurs next to the electrodes as shown in Equations 2 & 4 where two 

types of gases are generated: oxygen at the anode and hydrogen at the cathode, and then these 

gas bubbles gathered to create bubble clusters which flowed out from the top outlet (Figure 

4.33). 

 

Figure 4.33. The bubbles clusters flow out from the top outlet 

Table 4.20 presents gas generation time (from experiment start to the first appearance of 

the gas bubbles) in OJ experiments under different voltages and pressure values. Data in this 

table show that gas generation time and amount depends mainly on the applied voltage value; 

the higher the voltage the sooner and the larger the gas generation which explained the earlier 

time and the bigger fluctuation in the conductivity value under 30V compared with 15V. 

Table 4.20. Gas generation time (from experiment start to the first appearance of the gas bubbles) in OJ 

experiments under different voltages and pressure values (to the result) 

Experiment  Voltage (V)  Pressure (bar)  
Time of Gas first 

appearance (min)  

Exp1 30 2 27 

Exp2 15 2 145 

Exp3 0 2 -  

Exp4 30 3 30 

Exp5 15 3 190 

Exp6 0 3 -  

4.4.2. pH Change 

Figure 4.34 presents the change in pH value of Anolyte, Catholyte and the total filtrate 

of OJ experiments over time under two voltage values (15V and 30V) and the control (0V), 

normal orientation was used (anode is the bottom electrode). 
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The initial pH value of OJ samples was around 3.65; this value was stable over the whole 

process in the case of not applying any EKEF (the control orientation); but it started to change 

during the experiment when a voltage was applied; Increasing at the cathode (the top electrode) 

with a maximum value of 10.87 for the catholyte under 15V and 11.77 under 30V. On the other 

hand, the pH value under EKEF dropped at the anode (the bottom electrode) with a minimum 

value of 2.58 for the anolyte under 15V and 2.21 under 30V. However, the pH value of the total 

filtrate (the anolyte and the catholyte combined together) showed a maximum value of 

5.21under 15V and 6.74 under 30V. 

 

Figure 4.34. Change in pH value of (Anolyte, Catholyte and the total filtrate) of OJ experiments over time under 

three voltage values (0, 15 & 30V) (normal orientation, 4bar pressure, 0.2µ and 5.5hr duration). Each value is 

expressed as mean ± standard deviation (n=3) 

The same experiment was repeated on ME sample, and monitoring the change in the 

Anolyte, Catholyte and the total filtrate pH value over time under the reversed orientation 

(cathode is the bottom electrode) as shown in Figure 4.35. 

In the ME experiments, the pH value of the anolyte, catholyte and total filtrate changed 

over time very similarly to OJ pH. Under control experiments (voltage =0V), the pH value 

stayed stable around the fresh sample pH value of 4.55, but after applying EKEF, the pH value 

started to change during the experiment; Increasing in the catholyte (the bottom filtrate) with a 

maximum value of 10.94 under 15V and 11.3 under 30V. On the other hand, the anolyte (the 

top filtrate) pH value under EKEF dropped with a minimum value of 2.56 under 15V and 1.87 
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under 30V. However, the pH value of the total filtrate (the anolyte and the catholyte combined 

together) showed a maximum value of 8.80 under 15V and 9.31 under 30V. 

 

Figure 4.35. Change in pH value of (Anolyte, Catholyte and the total filtrate) of ME experiments over time 

under three voltage values (0, 15 & 30V) (reversed orientation, 4bar pressure, 1µ and 3.5hr duration) 

Figures 4.36 and 4.37 present the final pH value of the total filtrate and final concentrate 

of OJ with ME respectively, comparing with fresh samples under (0V, 15V and 30V); change 

in the pH value of the concentrate under different voltages was not significantly different 

compared with the fresh sample pH. However the total filtrate pH value was clearly higher than 

the fresh one. 

 

Figure 4.36. Final pH value of  the OJ total filtrate and final concentrate comparing with fresh sample under 

three voltage values (0, 15 & 30V) normal orientation (4bar pressure, 0.2µfilter, 5.5hr duration). Each value is 

expressed as mean ± standard deviation (n=3) 
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Figure 4.37. Final pH value of the ME total filtrate and final concentrate comparing with fresh sample under 

three voltage values (0, 15 & 30V) reversed orientation (4bar pressure, 1µ filter, 3.5hr duration). Each value is 

expressed as mean ± standard deviation (n=3) 

In addition to the previous data, the correlation between pH change and the flow rate 

change over the time was calculated using Pearson correlation, and Table 4.21shows this 

significant relationship (see Appendices 5 for more details). 

Table 4.21. Person correlation between pH change and the flow rate change over the time 

Sample pH & FR 

Catholyte (15v/4bar) -0.634066293 

Anolyte (15v/4bar) 0.77132684 

Total Filtrate (15v/4bar) -0.535820252 

Catholyte (30v/4bar) -0.603912256 

Anolyte (30v/4bar) 0.865773256 

Total Filtrate (30v/4bar) -0.460697015 

4.4.3. Vitamin C (Ascorbic Acid) Change 

To compare between the EKEF process and the conventional methods for their impact on 

vitamin C content, several experiments were carried out on OJ samples according to the 

methods in Section 3.5.5.2. Samples were collected and vitamin C retentions were then 

calculated according to Equation 10. 

The retention of vitamin C of the two juice parts (the final concentrated juice and the total 

filtrate) under (0, 15 and 30V) was compared with the initial vitamin C content. Figure 4.38 

4.53 4.57 4.514.49

5.23 5.35

4.48

4.13
4.42

0

1

2

3

4

5

6

0v/4bar 15v/4bar 30v/4bar

p
H

 V
a

lu
e

Time (hh:mm)

Fresh

Total Filtrate

Concentrate



Chapter 4                                                                                                                                              Results 

 

105 

 

shows that there was no degradation in vitamin C content of the control concentrated juice while 

the control total filtrate lost about 11% of its vitamin C content. 

However, after applying EKEF for 5.5hours, vitamin C retention of the concentrated juice 

dropped to 41% under 15V and 7.14% under 30V. Also the retention of the total filtrate was 

influenced by the impact of the EKEF, where it dropped to 47.8% under 15V and 35.45% under 

30V. 

 

Figure 4.38. Vitamin C retention of  OJ total filtrate and final concentrate compared to vitamin C content of  

fresh sample under three voltage values (0, 15 & 30V)(normal orientation, 4bar pressure, 0.2µ filter and 5.5hr 

duration). Each value is expressed as mean ± standard deviation (n=3) 

Due to the design of the rig it was difficult to monitor vitamin C content of the 

concentrated juice over the experiment period as concentrated juice was retained inside the cell 

during the entire experiment. However, the vitamin C content of the total filtrate and its two 

components was monitored and analysed every half an hour. 

Figure 4.39 shows that the vitamin C content of the total filtrate decreased to half (50%) 

after (2:50h) under 15V and (1:15h) under 30V compared with the initial values. 
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Figure 4.39. Change in vitamin C retention of OJ total filtrate over time under three voltage values (0, 15 & 

30V) (normal orientation, 4bar pressure, 0.2µ filter and 5.5hr duration)6 

To investigate whether the two electrodes were equal in terms of their impact on vitamin 

C, the change in the anolyte, catholyte and total filtrate vitamin C retention were measured over 

time under the following voltages, 0, 15 and 30V. 

Figures 4.40 to 4.42 show that when EKEF was applied the main degradation of vitamin 

C content occurred in the catholyte which lost its content very rapidly in comparison with the 

anolyte. Since vitamin C retentions of the anolyte and catholyte are different, the volume 

percentage of each of them in the total filtrate affects the final vitamin C content in the total 

filtrate, as shown in Table 4.22. 

                                                 
6
This figure (figure 4.39) shows the change in the total filtrate vitamin C retention over the time while in the previous figure 

(figure 4.48) the value of the final total filtrate retention presents vitamin C retention of the whole amount of the total filtrate 

eluted over the experiment. 
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Figure 4.40. Change in anolyte, catholyte and total filtrate vitamin C retention over time under (control 

orientation, 0V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.41. Change in anolyte, catholyte and total filtrate vitamin C retention over time under (normal 

orientation, 15V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.42. Change in anolyte, catholyte and total filtrate vitamin C retention over time under (normal 

orientation, 30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 
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Table 4.22. Change in vitamin C retention (Vit. CR%) in OJ anolyte, catholyte and total filtrate (TF) in the first 

3hours with respect for the percentage of anolyte and catholyte in the total filtrate (normal orientation, 0, 15 

&30V, 4bar pressure, 0.2µ filter and 3hr duration) 

  Time (hh:mm) 

 01:00 02:00 03:00 

  
Control 

(0V) 
15V 30V 

Control 

(0V) 
15V 30V 

Control 

(0V) 
15V 30V 

TF Weight (g) 64 66.5 55.1 50 39 35.1 44.1 27.1 35.5 

Anolyte % 51.41 51.88 70.42 51.40 66.67 82.62 51.70 80.07 73.52 

Catholyte % 48.59 48.12 29.58 48.60 33.33 17.38 48.30 19.93 26.48 

Anolyte Vit. C R% 91.22 74.45 67.45 93.31 63.44 42.11 89.55 27.86 6.30 

Catholyte Vit. C R% 94.57 83.46 53.08 94.99 47.52 3.73 93.31 9.49 2.71 

TF Vit. C R% 92.94 78.79 63.20 94.17 58.13 35.44 91.50 24.20 5.35 

 

To investigate the impact of the filter pore sizes on the vitamin C content, experiments 

on OJ samples were run using 0.2µ and 1µ filters (normal orientation, 30V, 4bar and 5.5h 

duration) and compared with the contents under the control experiment (0.2µ, 0V, 4bar and 

5.5h duration); Figure 4.43 shows vitamin C contents of fresh juice, final concentrate and total 

filtrate under these experiments. 

Using filters with a bigger pore size had a positive impact on the vitamin C retention of 

OJ total filtrate, as the vitamin C retention of the total filtrate going through the 1µ filters was 

57.4% in comparison with 35.45% using 0.2µ filters after 5.5h of process.  
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Figure 4.43. Vitamin C contents of fresh juice, final concentrate and total filtrate using two filters 0.2µ and 1µ 

(normal orientation, 30V, 4bar and 5.5hduration) in comparison with them under the control experiment (0.2µ, 

0V, 4bar and 5.5hduration). 

The change of total filtrate vitamin C retention over time was shown in Figure 4.44; the 

degradation of the 50% of vitamin C retention was after 1.30 hours using 0.2µ filters, while it 

was extended to 2 hours using a 1µ filters. 

 

Figure 4.44. Change in vitamin C retention of OJ total filtrate using two filters 0.2µ and 1µ (normal orientation, 

30V, 4bar and 5.5h duration) in comparison with the control experiment (0.2µ, 0V, 4bar and 5.5hduration). 

To investigate the potential reasons behind the vitamin C loss, the correlation between 

the change of the vitamin C retention and the pH change was calculated using Pearson 

correlation, in addition the correlation between the change of vitamin C retention and flow rate 

change was checked in the anolyte, catholyte and total filtrate. 

Table 4.23 shows that there is a significant relationship between pH change and the 

change of vitamin C retention as well as between vitamin C retention and the flow rate, although 

that the relationship with the flow rate change is less significant. 

Table 4.23. The correlation of the vitamin C retention with pH change and the flow rate change 

  pH & Vit C Vit C & FR 

Catholyte (15v/4bar) -0.915561448 0.840017889 

Anolyte (15v/4bar) 0.955441309 0.844178159 

Total Filtrate (15v/4bar) -0.841744547 0.829244011 

Catholyte (30v/4bar) -0.94929524 0.791428654 

Anolyte (30v/4bar) 0.961743796 0.845705373 

Total Filtrate (30v/4bar) -0.86274467 0.726273699 
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However, Figures 4.45 to 4.50  show that the maximum loss of vitamin C does not happen 

at the same time of the maximum change of pH, while Figures 4.51 to 4.56 show that the 

maximum loss of vitamin C occurs when the flow rate is at its lowest value. 

 

Figure 4.45. The change of vitamin C retention and pH of OJ anolyte over time under (normal orientation, 

30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.46. The change of vitamin C retention and pH of OJ catholyte over time under (normal orientation, 

30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 
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Figure 4.47. The change of vitamin C retention and pH of OJ total filtrate over time under (normal orientation, 

30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.48. The change of vitamin C retention and pH of OJ anolyte over time under (normal orientation, 

15V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.49. The change of vitamin C retention and pH of OJ catholyte over time under (normal orientation, 

15V, 4bar pressure, 0.2µ filter and 5.5hr duration) 
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Figure 4.50. The change of vitamin C retention and pH of OJ total filtrate over time under (normal orientation, 

15V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.51. The change of vitamin C retention and the flow rate change of OJ anolyte over time under (normal 

orientation, 30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.52. The change of vitamin C retention and the flow rate change of OJ catholyte over time under 

(normal orientation, 30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 
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Figure 4.53. The change of vitamin C retention and the flow rate change of OJ total filtrate over time under 

(normal orientation, 30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.54. The change of vitamin C retention and the flow rate change of OJ anolyte over time under (normal 

orientation, 15V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.55. The change of vitamin C retention and the flow rate change of OJ catholyte over time under 

(normal orientation, 15V, 4bar pressure, 0.2µ filter and 5.5hr duration) 
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Figure 4.56. The change of vitamin C retention and the flow rate change of OJ total filtrate over time under 

(normal orientation, 15V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

4.4.4. Colour Change 

Figure 4.57 is a view of the top surface of the concentrate, which was in contact with the 

cathode, at the end of the experiment under three different voltages (0, 15 and 30V), three 

pressures (2, 3 and 4bar) and normal orientation. 

No change in the concentrated juice colour was observed under 0V (the control). 

However, discoloration started to appear when voltage was applied and increased when voltage 

and pressure values increased, this discolouration was more under 30V comparing with 15V. 
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Figure 4.57. Top surface of concentrated OJ, under three voltages (0, 15 & 30V) and three pressures (2, 3 & 

4bar) (normal orientation, 0.2µ filter, 5.5hr duration) 

The discoloration was predominantly at the top layer next to the top electrode (the 

cathode) only. Blending the concentrated juice reduced this discoloration as the rest of 

concentrated juice had no change in the colour under the maximum condition of 30V and a 

pressure of 4bar, as shown in Figure 4.58 which shows fresh juice at the left and the filtrate at 

the right and the blended concentrate in the middle at the end of the experiment. 

 

Figure 4.58. Fresh juice (at the left) the filtrate (at the right), and the blended concentrate (in the middle) at the 

end of the experiment (normal orientation, 30V, 4bar, 0.2µ filtrate and 5.5hr duration) 
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The colour of the blended concentrated juice under the application of three different 

voltages (0, 15 and 30V) was compared with the fresh juice colour using Petri dishes 

(60x15mm) as shown in Section 3.5.5.3. The colour of the concentrate got darker as the voltage 

was increased (Figure 4.59). 

 

Fresh Concentrate (0V) Concentrate (15V) Concentrate (30V) 

Figure 4.59. Colour of the blended concentrated juices under three different voltages (0, 15 and 30V) comparing 

with the fresh sample colour (normal orientation, 30V, 4bar, 0.2µ, 5.5h) 

In addition to the visual comparison, change in the concentrate colour values were also 

compared under the three different voltages, where L/L0 presents the change in the sample’s 

light–dark spectrum of the sample (when L/L0<1 that means the concentrate is darker than the 

control which is the fresh sample) (Figure 4.60). The browning index presents the purity of the 

brown colour or the browning resulting from the process; results were shown as BI/BI0 (Figure 

4.61), where BI0 is the browning index of fresh OJ. 

These figures show that the colour of samples decreased by around 5%, 10% and 16% 

under 0V, 15V and 30V respectively on the light–dark spectrum which means that the 

concentrate got darker under the influence of EKEF and this discoloration increased under 

higher voltages. This result is shown again when the BI/BI0 was compared as the browning 

index of the concentrate increased by 9%, 10% and 13% under 0V, 15V and 30V respectively 

compared with the fresh OJ browning index. 
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Figure 4.60. Change in colour L value of the blended concentrated juices under three different voltages (0, 15 

and 30V) comparing with the fresh sample colour (normal orientation, 30V, 4bar pressure, 0.2µ filter, 5.5hr 

duration) 

 

Figure 4.61. Change in Browning Index of the blended concentrated juices under three different voltages (0, 

15 and 30V) comparing with the fresh sample colour (normal orientation, 30V, 4bar pressure, 0.2µ filter, 5.5hr 

duration) 

In contrast, monitoring the change in the colour over time was easier in the filtrate due to 

the ability to collect sample every half hour and the transparent nature of the colour of the initial 

filtrate. 

Figure 4.62 shows the change in the anolyte and catholyte under three different voltages 

(0, 15 and 30V); this change is compared to first collected filtrate sample. 
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Filtrates showed a minimal colour for the control samples and early stages of the 15V and 

30V samples. Colour started to appear in the catholyte after 3hours and 1.5 hours of the 

experiment under 15V and 30V respectively. While in the anolyte, colour appeared clearly only 

in the 30V catholyte after 4hours.  

 

Figure 4.62. Change in the filtrate colour over the experiment time under three different voltages (0, 15 and 

30V) (normal orientation, 30V, 4bar pressure, 0.2µfilter, 5.5hr duration) 

Filter pores size not only played a positive role for the outcome and vitamin retention 

only, but also had a positive impact on the juice discoloration. Figure 4.63 shows that the 

discolouration of the concentrate top surface was lower under the three different voltages 0V, 

15V and 30V using the 1µ filters in comparison with the discolouration using the 0.2µ filters. 
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Figure 4.63. Top surface of concentrated OJ, under three voltages (0, 15 & 30V) using two filters 0.2µ and 1µ 

(normal orientation, 4bar, 5.5h duration) 

 The discolouration of the total blended concentrate was also lower using the 1µ filters 

as shown in Figure 4.64, with lower browning index (Figure 4.65). 

 

Figure 4.64. Colour of the blended concentrated juices; under three voltages (0, 15 & 30V) using two filters 

0.2µ and 1µ (normal orientation, 4bar, 5.5h duration) 
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Figure 4.65. Change in Browning Index of the blended concentrated juices under three voltages (0, 15 & 30V) 

using two filters 0.2µ and 1µ (normal orientation, 4bar, 5.5h duration) 

In terms of the starting time of discolouration, the catholyte samples showed that the 

discolouration started to occur after 4.5hours under 15V and after 1.5hours under 30V through 

1µ filters, while it started after 3hours under 15V and after 1.5hours under 30V through 0.2µ 

filters (Figure 4.66). Even though the discolouration started at the same time through both filters 

under 30V it was light in the catholyte that exited through 1µ filters until 2.5hours of the 

experiment. 

 

Figure 4.66. Change in the catholyte colour over the experiment time under two voltages (15 & 30V) using two 

filters 0.2µ and 1µ (normal orientation, 4bar, 5.5hduration) 
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As mentioned in Section 3.5.5.4 a visual detection test was run on some discoloured 

samples to detect whether there is carotenoids in the filtrate samples or not, as carotenoids 

dissolves in ethyl acetate turning its colour from blank to yellow.  

Figure 4.67 shows that the ethyl acetate phase turned into yellow in both fresh and 

concentrated samples while it remained blank in the anolyte and catholyte samples which means 

that there is no carotenoids in the anolyte and catholyte samples. 

 

Figure 4.67. Carotenoids visual detection on fresh, concentrated, anolyte and catholyte OJ sample under 

(normal orientation, 30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

4.4.5. Dry Matter Content Change 

Figures 4.68 and 4.69 show the change in the concentrate dry matter content over time 

under the application of three different voltages (0, 15 and 30V) in OJ and ME respectively. 

Applying EKEF helped to increase dry matter content from 14% to 29.52% and 33.09% for OJ 

concentrate and from 20% to 32.14% and 34.2% for ME concentrate after 5.5hrs under 15V 

and 30V respectively while the maximum dry matter content was 28.75% and 29.63% under 

the control orientation after the same time for OJ concentrate and ME concentrate respectively. 
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Figure 4.68. Change in OJ concentrate dry matter content over time, under three different voltages (0, 15 and 

30V) (normal orientation, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Figure 4.69. Change in ME concentrate dry matter content over time, under three different voltages (0, 15 and 

30V) (reversed orientation, 4bar pressure, 0.2µ filter and 3hr duration) 

Water exits through the outlets creating the filtrate stream which has its own dry matter 

content that depends on the fresh juice dry matter content and the filter pore size. 

Figures 4.70 and 4.72 show the change in total filtrate dry matter content over time under 

three different voltages (0, 15 and 30V) in OJ and ME respectively, while Figures 4.71, 4.73, 

Tables 4.24 and 4.25 show the means and P-values of this change: 
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The voltage values did not have a significant impact on dry matter content of the total 

filtrate unlike on the concentrate dry matter content where it was significant with P<0.001. 

However OJ filtrate dry matter content was significantly lower under 30V (P<0.001) in 

comparison with 0V and 15V. 

 

Figure 4.70. Change in OJ total filtrate dry matter content over time, under three different voltages (0, 15 and 

30V) (normal orientation, 4bar pressure, 0.2µ filter, 5.5hr duration) 

 

Figure 4.71. Means of the dry matter content of OJ total filtrate over time under three different voltages (0, 15 

and 30V) (normal orientation, 4bar pressure, 0.2µ filter, 5.5hr duration) 
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Table 4.24. P-values of the change in the dry matter content of OJ total filtrate over time under three different 

voltages (0, 15 and 30V) (normal orientation, 4bar pressure, 0.2µ filter, 5.5hr duration) 

  P-value of the accumulative total filtrate 

  0V-15V-30V 0V-15V 15V-30V 0V-30V 

0.2µ 4bar 0.001 0.401 0.003 <0.001 

 

Figure 4.72. Change in ME total filtrate dry matter content over time, under three different voltages (0, 15 and 

30V) in (reversed orientation, 4bar pressure, 0.2µ filter, 3hr duration) 

 

Figure 4.73. Means of the dry matter content of ME total filtrate over time, under three different voltages (0, 

15 and 30V) in (reversed orientation, 4bar pressure, 0.2µ filter, 3h r duration) 
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Table 4.25. P-values of the change in dry matter content of ME total filtrate over time, under three different 

voltages (0, 15 and 30V) in (reversed orientation, 4bar pressure, 0.2µ filter, 3hr duration) 

  P-value of the accumulative total filtrate 

  0V-15V-30V 0V-15V 15V-30V 0V-30V 

0.2µ 4bar 0.082 0.840 0.077 0.087 

The main factor that impacted on filtrate dry matter content was the filter pore size, the 

larger the pore size the more of the dry matter passed through them. Figure 4.74 and Table 

4.266 shows the impact of filter pore size on the total filtrate dry matter content over time under 

the application of three different voltages (0, 15 and 30V) in ME. Filter with the larger pore 

size (1µ) allowed more particles to pass through which in turn resulted in significantly higher 

dry matter content compared with the small pore size filter (0.2µ) (P<0.001). 

 

Figure 4.74. Impact of the filter pore’s size (0.2&1µ) on ME total filtrate dry matter content over time, under 

(0 &30V, reversed orientation, 4bar pressure, and 2.5hr duration) 

Table 4.26. P-values of the filter pore’s size (0.2& 1µ) on ME total filtrate dry matter content over time, under 

(0 &30V, reversed orientation, 4bar pressure, and 2.5hr duration) 

P-value of the accumulative total filtrate 

0V(0.2µ )-0V(0.2µ ) 30V(0.2µ) -30V(1µ) 

<0.001 <0.001 

 

To investigate the potential impact of the electrode type and position on the dry matter 

content, the anolyte and catholyte were collected every half hour then the dry matter content 

was measured for each sample. Figure 4.75 shows the difference between the anolyte and 

catholyte dry matter content over time, under three voltages (0, 15 and 30V); these experiments 
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were run under the reversed orientation (cathode is the bottom). In addition Figure 4.76 and 

Table 4.27 show the means and P-values of this change 

The data show that there was a significant difference between the anolyte and the 

catholyte dry matter contents under 0V and 15V (P<0.001 and 0.002 respectively), where it was 

more stable over the experiment time in the catholyte while it dropped over time in the anolyte. 

However, the difference between the anolyte and the catholyte dry matter contents under 30V 

was not significant, (P=0.087). 

 

Figure 4.75. Change in the ME anolyte and catholyte dry matter content over time, under three different 

voltages (0, 15 and 30V) (reversed orientation, 4bar pressure, 1µ filter, 3hr duration) 

 

Figure 4.76. Means of the dry matter content of ME anolyte and catholyte dry matter content over time, under 

three different voltages (0, 15 and 30V, reversed orientation, 4bar pressure, 1µ filter, 3hr duration) 
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Table 4.27. P-values of the electrode type impact on ME total filtrate dry matter content over time, under (0 

&30V, reversed orientation, 4bar pressure, and 2.5hr duration) 

P-value of the accumulative filtrates 

0V(Anolyte )-0V(Catholyte ) 15V(Anolyte )-15V(Catholyte ) 30V(Anolyte )-30V(Catholyte ) 

0.002 <0.001 0.087 

All previous experiments were set as reversed orientation (cathode at the bottom); to 

check whether dry matter contents were influenced by the electrode charge (anode or cathode) 

or the electrode position (top or bottom), results of the two orientations (normal and reversed) 

under 15V, 4bar and through 1µ filter were compared as shown in Figure 4.77. This figure 

shows that the lowering in dry matter content was in the normal catholyte (the top outlet stream) 

and the reversed Anolyte (the top outlet stream). 

 

Figure 4.77. Change in the ME anolyte and catholyte dry matter content over time, under two orientations 

(reversed orientation/ Cathode is the bottom and normal orientation/ Anode is the bottom) (15V, 4bar pressure, 

1µ filter and 3hr duration) 
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of EKEF can be calculated as the sum of the mechanical power applied by the pneumatic 

pressure ram (E1) and the electrical power consumed by the applied voltage across the sample 

(E2). 

E1 was calculated using Equation 14 as the following: 
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For pressure = 400Kpas, volume displacement of the cell = 0.001m³, and cross sectional 

area of the cell = 0.0289 m² for inner diameter = 0.192m. 

Tables 4.28 and 4.29 show the values of the electrical current and the electrical energy 

consumption (E1) every half hour during the EKEF application under 15V (the minimum)  and 

30V (the maximum) in OJ and ME respectively: 

Table 4.28. Values of the electrical current and electrical energy consumption (E) every half hour during the 

EKEF application under (15 and 30V), in OJ samples (normal orientation, 0.2µ filter, 4bar pressure & 5.5hr 

duration) 

T (min) Electric Current (Amps) Voltage (V) dE2(KW h) 

 15V 30V 15V 30V 15V 30V 

00:00 0 0 0 0 0 0 

00:30 0.33 0.77 15 30 0.00248 0.01155 

01:00 0.26 0.68 15 30 0.00195 0.0102 

01:30 0.23 0.61 15 30 0.00173 0.00915 

02:00 0.2 0.5 15 30 0.0015 0.0075 

02:30 0.19 0.61 15 30 0.00143 0.00915 

03:00 0.19 0.59 15 30 0.00143 0.00885 

03:30 0.2 0.48 15 30 0.0015 0.0072 

04:00 0.24 0.54 15 30 0.0018 0.0081 

04:30 0.17 0.49 15 30 0.00128 0.00735 

05:00 0.15 0.48 15 30 0.00113 0.0072 

05:30 0.12 0.46 15 30 0.0009 0.0069 

 Total E (EKEF) 0.0171 0.09315 

Table 4.29. Values of the electrical current and electrical energy consumption (E) every half hour during the 

EKEF application under (15 and 30v), in ME samples (reversed orientation, 1µ filter, 4bar pressure &3.5hr 

duration) 

T (min) Electric Current (Amps) Voltage (V) dE2(KW h) 

 15V 30V 15V 30V 15V 30V 

00:00 0 0 0 0 0 0 

00:30 0.22 0.47 15 30 0.00165 0.00705 

01:00 0.13 0.49 15 30 0.00098 0.00735 

01:30 0.11 0.5 15 30 0.00083 0.0075 

02:00 0.1 0.46 15 30 0.00075 0.0069 

02:30 0.09 0.46 15 30 0.00068 0.0069 

03:00 0.08 0.4 15 30 0.0006 0.006 

03:30 0.07 0.39 15 30 0.00053 0.00585 

 Total E (EKEF) 0.006 0.04755 
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After calculating energies consumed over the experiments, a comparison between the 

energy consumption of EKEF application (electrokinetics and pressure) and the normal 

microfiltration (with pressure only) was carried out. 

Tables 4.30 and 4.31 show that EKEF application under 4bar pressure and two voltage 

values (15 and 30V) results in a large additional power consumption compared with applying 

pressure only with a relatively small increase in dewatering efficiency.  

The required additional energy needed to achieve the same increase in dewatering 

efficiency by increasing the pressure only without EK can be calculated as follows: 

P Additional=  
WEKEF−WP

WP
xP (eq. 15) 

E Additional= 
PAdditional x E 

P
 (eq. 16) 

Where: 

P Additional: is the required additional pressure needed to achieve the same increase in 

dewatering efficiency. 

E Additional: is the energy consumption resulted from applying the P Additional. 

P: is the original pressure applied; here P=4 bar. 

E: is the energy consumption resulted from applying the original pressure (P); here E= 

3.8378x10-6 KWh. 

WP: the amount of water removed by applying the original pressure (P) (Table 4.32). 

WEKEF: the amount of water removed by applying EKEF application (Table 4.32). 

For OJ this equates to an additional 9.47x10-8 and 4.78x10-7 KWh of energy expenditure 

for the equivalent of applying EKEF at 15V and 30V, respectively. For ME this equates to an 

additional 5.66x10-7 and 9.66x10-7 KWh for the equivalent of applying EKEF at 15V and 30V, 

respectively. 

Table 4.30. Comparison between the energy consumed during EKEF application on OJ under 4bar pressure 

and three voltage values (0, 15 and 30V) and the thermal energy required to remove same amount of water by 

evaporation 

Energy 

(Type) 

Orange Juice Normal (0.2µ, 4bar) 

Dewatering Efficiency 

(%) 

Energy (KWh) in 5.5h of 

process 

Energy (KJ/mol 

water) 

E Additional 

(KWh) 

Pressure 

+0V 
59.65 3.8378x10-6 0.001 - 

Pressure 

+15V 
61.12 0.017 2.343 9.47x10-8 

Pressure 

+30V 
67.08 0.093 11.626 4.78x10-7 



Chapter 4                                                                                                                                              Results 

 

130 

 

Table 4.31. Comparison between the energy consumed during EKEF application on ME under 4bar pressure 

and three voltage values (0, 15 and 30V) and the thermal energy required to remove same amount of water by 

evaporation 

Energy 

(Type) 

Malt Extract Reversed (1µ, 4bar) 

Dewatering Efficiency 

(%) 

Energy (KWh) in 3.5h of 

process 

Energy (KJ/mol 

water) 

E Additional 

(KWh) 

Pressure 

+0V 
42.41 0.0000038378 0.001 - 

Pressure 

+15V 
48.67 0.006 0.908 5.66x10-7 

Pressure 

+30V 
53.09 0.048 6.596 9.66x10-7 

 

Table 4.32. Moisture content of concentrated OJ and ME under 4bar pressure and different voltages (0, 15 and 

30V) 

Sample 

 

Time 

(h) 

Moister Content (%) Removed Water (g) 

Initial 

 

Pressure 

+0V 

Pressure 

+15V 

Pressure 

+30V 

Pressure 

+0V 

Pressure 

+15V 

Pressure 

+30V 

OJ 

Normal (0.2µ, 4bar) 
5.50 86.10 71.25 70.48 66.91 461.7 473.1 519.2 

ME 

Reversed (1µ, 4bar) 
3.50 80.00 69.73 67.25 65.23 373.2 428.3 467.2 

In addition a comparison between the energy consumption of EKEF and different thermal 

methods was carried out. Tables 4.33, 4.34 and Figures 4.78 to 4.80 show the comparison 

between the energy consumed during EKEF application under 4bar pressure and three voltage 

values (0, 15 and 30V) and the thermal energy required to remove the same amount of water 

by evaporation for OJ and ME. Amounts of removed water are shown in Table 4.32 for 

experiments concerning the application of EKEF. The theoretical calculated energy required 

for thermal removal of water (shown in Tables 4.33 and 4.34) was determined using a value of 

43kJ.mol-1, as quoted by Al-Asheh et al. (2004). This theoretical value assumes 100% energy 

transfer efficiency by the heating mechanism (oven, hot plate etc.) although the efficiencies are 

in reality much less than this. 

Tables 4.33 and 4.34 show that the electrical power consumed in applying pressure is 

very small and almost negligible compared with the electrical power consumed by the applied 

voltage, and the difference between the highest voltage and lowest voltage in terms of power 

consumption is very significant (Figures 4.78 and 4.79). The application of EKEF saves energy 

compared with the power consumption of the thermal method required to evaporate an equal 

amount of water. This saving was up to 18.35 times and 47.34 times in OJ and ME dewatering 

respectively (Figure 4.80). 
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Table 4.33. Comparison between the energy consumed during EKEF application on OJ under 4bar pressure 

and three voltage values (0, 15 and 30V) and the thermal energy required to remove same amount of water by 

evaporation 

  OJ Normal (0.2µ, 4bar) 

Energy (Type) Dewatering Efficiency (%) Energy (KWh) Energy Saving % EThermal/EEEF 

Thermal  
61.12 

0.31 
94.55 18.35 

Pressure +15V 0.02 

Thermal  
67.08 

0.34 
72.96 3.70 

Pressure +30V 0.09 

Table 4.34. Comparison between the energy consumed during EKEF application on ME under 4bar pressure 

and three voltage values (0, 15 and 30V) and the thermal energy required to remove same amount of water by 

evaporation 

  ME Reversed (1µ, 4bar) 

Energy (Type) Dewatering Efficiency (%) Energy (KWh) Energy Saving % EThermal/EEEF 

Thermal  
48.67 

0.28 
98.86 47.34 

Pressure +15V 0.006 

Thermal  
53.09 

0.31 
84.66 6.52 

Pressure +30V 0.048 

 

 

Figure 4.78. Comparison between the energy consumed during the application of EKEF to OJ under 4bar 

pressure and three voltage values (15 and 30V) and the thermal energy required to remove same amount of 

water by evaporation 
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Figure 4.79. Comparison between the energy consumed during the application of EKEF to ME under 4bar 

pressure and three voltage values (15 and 30V) and the thermal energy required to remove same amount of 

water by evaporation 

 

Figure 4.80. Energy saving ratio (EThermal/EEEF) gained by concentrating OJ and ME using the application of 

EKEF under 4bar pressure and three voltage values (15 and 30V) in comparison with the thermal energy 

required to remove same amount of water by evaporation 
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Table 4.35. Energy consumed during EKEF application on OJ and ME under 4bar pressure and three voltage 

values (15 and 30V) and the thermal energy required to remove same amount of water by evaporation (in 4 

units) 

 
Energy 

(KWh) 

Energy 

(KJ) 

Energy 

(KJ/mol water) 

Energy 

(KJ/Kg water) 

 Method OJ ME OJ ME OJ ME OJ ME 

Thermal  0.306 0.248 1102.95 891.53 43.000 43.000 2388.88 2388.88 

Pressure 

+0V 
3.83x10-6 3.83x10-6 0.01 0.01 0.001 0.001 0.030 0.037 

Thermal  0.314 0.284 1130.18 1023.16 43.000 43.000 2388.88 2388.88 

Pressure 

+15V 
0.017 0.006 61.57 21.61 2.343 0.908 130.150 50.464 

Thermal  0.345 0.310 1240.31 1116.09 43.000 43.000 2388.88 2388.88 

Pressure 

+30V 
0.093 0.048 335.35 171.19 11.626 6.596 645.905 366.425 
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5.1. Introduction 

All experiments were centred on two main investigations:  

(A) The major factors that influence the efficacy of EKEF. 

(B) The changes and impacts that the application of EKEF has on the quality and integrity 

of the samples. 

Results showed that there are several factors and conditions that control the EKEF process 

which change positively or negatively as they are modified; where positive changes mean a 

higher flow rate, less negative impact on the sample quality, and less power consumption. 

The major factors investigated in these experiments were: EKEF intensity (represented 

by the electric current intensity), sample conductivity, applied voltage, applied pressure, filters 

pore size, initial sample thickness, as well as the sample chemical properties of the pH and the 

LCP values. 

There were some impacts of EKEF on the process and the sample properties, most of 

these changes were investigated. The investigation centred on the impact of EKEF on the 

filtration flow rate (total, anolyte and catholyte), sample pH, sample colour, sample dry matter 

content and moisture content. 

 In addition, WPD between the two electrodes, the main filtration outlet and the optimal 

orientation for each material were thoroughly investigated; and the power consumption of this 

application was calculated and compared with alternative conventional thermal methods and 

their power consumption. 

5.2. Water Profile Direction WPD and Anolyte to Catholyte Ratio (A/C Ratio)  

In this present study, the occurrence of the two streams (anolyte and catholyte), 

corresponding to the respective movements toward either the anode or cathode, was observed 

and measured in all experiments. It is interesting to observe that many of the previous studies 

which investigated these movements observed only one stream (mostly the catholyte); for 

instance Yuan and Weng (2003) observed only catholyte during dewatering of municipal sludge 

cake and similarly Habibi (2004) also observed the movement of liquid toward the cathode 

during EKEF dewatering of oily sludge from a crude oil storage tank.  

However, some other studies have investigated two streams such as Yang et al. (2005) 

who measured the two filtrates and found that applying electrokinetics to oily sludge increased 
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both streams and resulted with unequal-weighted streams where the balance was in favour of 

the anolyte. 

5.2.1. Factors Affecting WPD and A/C Ratio  

The results of this present study showed that there were different factors affecting the 

direction and the volume of discharged filtrate (water) moving towards each outlet. 

These factors were related to the sample chemical properties (pH and LCP values), the 

orientation of the main outlet and electrodes (normal or reversed orientation), or experimental 

conditions (applied voltage and pressure). 

5.2.1.1. pH and LCP Values Impact on WPD and A/C Ratio 

WPD depends on the net electrical charge of the suspension, when the net electrical 

charge is positive, the percentage of the positive ion content is higher than the negative ion 

percentage, thereby the WPD is toward the anode and A/C ratio is >1, while it is toward the 

cathode when the net charge is negative and A/C ratio is <1. 

The net electrical charge of any particle depends on its pH and IEP values, where it is 

positive when pH value <IEP value and negative when pH value >IEP value. 

A foodstuff is a combination of many compounds and particles which have different IEPs; 

therefore there is no specific pH value where the net charge of the whole material is 0 because 

of the interaction of the charges associated with the various components of the foodstuff.  

However, there is a pH value where most of the compounds are neutral and at that pH the 

conductivity of the material has the lowest value as most of the ions and particles net electrical 

charge is neutral. This pH value is referred to as the lowest conductivity point (LCP). When the 

pH value is < LCP value the net electrical charge of the material is positive, as the majority of 

its particles have a positively charged surface (pH < IEP), while it is negative when the pH 

values > LCP value as the majority of its particles have a negatively charged surface (pH > 

IEP). 

Conductivity values for the titration solutions were shown in Figure 4.1 for OJ and ME 

samples, and the LCP of OJ was 4 while it was 3.2 for ME samples (Table 4.1); which means 

that the net charge of fresh OJ is positive as the OJ pH value of 3.5 is less than the OJ LCP 

value, while it is negative in ME as ME pH value= 4.55> ME LCP value. 

Theoretically, the WPD would be expected to be towards the anode with an A/C ratio 

more than 1 in OJ samples and towards the cathode with an A/C ratio less than1 in ME samples 
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when the EKEF is on according to the pH and LCP values of these two experimental materials 

as described by Aziz et al. (2006). 

This theory was demonstrated by Table 4.2 which shows the data of several experiments 

on the two foodstuff materials; under the normal orientation (anode is the bottom electrode) and 

in the reversed orientation (Cathode is the bottom electrode). Data in this table show that the 

discharged filtrate moves almost equally toward the anode and the cathode when the EKEF is 

not applied (voltage=0V) due to the equal pressure on both outlets. However, the bottom outlet 

showed a small increase in discharge due to the gravity impact that pushes water down to the 

bottom anode.  

Later when the electric field was switched on, the difference between the two outlets 

filtrates started to increase; the A/C ratio was > 1 for OJ in all experiments and for ME was < 

1 in all experiments. 

The fact that the WPD was toward the same electrode in both orientations (normal and 

reversed) regardless the position of the electrode whether it was at the top or bottom, confirms 

that when the electric field is on, WPD is related to the electrode charge (anode or cathode) not 

to the electrode position (either top or bottom). 

5.2.1.2. The Impact of the Orientation on the Process Efficiency 

WPD depends on the suspension net electrical charge and the electrode charge, but this 

fact does not mean that the main outlet position (top or bottom according to the orientation 

being normal or reversed (Figure 3.19 and Table 3.3) has no impact on the total process 

outcome. 

Determining the main outlet is important especially when the equipment is designed with 

one open electrode; in this case it is important to have the main water movement towards the 

open one. When the water movement is vertical (like in the rig used for this study), in this case 

it is important to choose the main outlet in a way that makes all other factors, which affects 

water movement and pushes water toward the main outlet, such as having the main outlet at the 

bottom to have the water movement supported by the impact of gravity. 

The importance of choosing the correct main outlet position (top or bottom) by using the 

correct orientation was shown in Table 4.3 and Figures 4.2 to 4.4 where experiments were run 

under the same conditions but in two orientations (normal and reversed). 
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This filtrate discharge, moving to the anode in the experiments using OJ is because its pH 

value is less than the LCP; while in experiments using ME, it moves to the cathode as the pH 

value is higher than the LCP. Thus the best orientation to apply an electric field is the normal 

orientation for OJ when the anode (the main outlet) is the bottom outlet, and the reversed 

orientation is required for ME when the cathode (the main outlet) is the bottom outlet. In other 

words, WPD depends on the food material type (mainly its chemical properties), and the main 

outlet is best located at the bottom to benefit from the gravity impact in the same direction as 

the main WPD. 

To conclude, in both orientations normal and reversed, water moved towards the anode 

(which is the bottom electrode with normal and the top with reversed orientation) in the OJ 

sample as pH value was < LCP value and towards the cathode in the ME samples as pH value 

was > LCP value. The normal orientation increased the dewatering efficiency in OJ experiments 

as the WPD was towards the bottom anode supported by the gravity, whereas the reversed 

orientation decreased it as it pushed water to the top anode working against gravity. In contrast 

reversed orientation increased the dewatering efficiency in ME experiments as the WPD was 

towards the bottom cathodes, whereas the normal orientation decreased it as it pushed water to 

the top cathode working against gravity. 

5.2.1.3. Other Factors (Voltage and Pressure) Affecting WPD 

In addition to the pH and LCP of food samples and the orientation, there are other factors 

affecting the WPD and the discharged filtrate volume such as the applied voltage and pressure. 

The data shows that pressure had a positive impact on the dewatering process as rising 

pressure increases the mechanical force to push water through the filters; this increase was 

shown in both the anolyte and the catholyte which in turn increased the total filtrate. Increasing 

applied voltage also had a positive impact on the dewatering process but not equally on anolyte 

and catholyte.  

5.2.2. Theory of WPD and A/C Ratio 

Some previous studies have investigated water movements in non-food materials under 

the application of electrokinetics and observed only one stream (mostly the catholyte); looking 

at their experimental sample properties could give an insight about the reason for focusing on 

the catholyte. Fourie et al. (2007), for instance, used an applied electric field to dewater mineral 

sands tailings (kaolinite and quartz) with a pH value of 6.4. The IEP of kaolinite varies between 

3.3 to 5 (Brian and Garrison, 1997) This basic medium (pH>IEP) causes water to move toward 
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the cathode, which was the basis of the rationale behind using six anodes in the outdoor test 

tank to push a higher amount of water toward a single cathode which was used as the extracting 

outlet (Figure 5.1). 

 

Figure 5.1. Cross section of (Fourie et al., 2007) outdoor experimental layout 

Lamont-Black et al. (2007) also applied EKEF on three types of thickened kimberlite 

slimes from diamond mines in southern Africa. The pH value of these three types were 9.53, 

7.88 and 8.63 (high pH values/ basic medium); and again the test equipment used the cathode 

as an outlet where the equipment provided an irrigated anode (bottom electrode) and open 

draining cathode (top electrode). 

Some previous studies adjusted the sample pH to increase the alkalinity of the medium, 

for example the study done by Aziz et al. (2006) who adjusted the suspension pH to 10, using 

concentrated sodium hydroxide (NaOH). In this experiment, the effect of making the 

suspension alkaline was that the liquid then migrated toward the cathode, which also acted as a 

permeable medium. 

However, some other studies experienced two streams (anolyte and catholyte) such as 

Yang et al. (2005) who measured the two filtrates and found that applying an electric field to 

an oily sludge increased both streams and resulted in unequal-weighted streams where the larger 

proportion was the anolyte. 

Yang et al. (2005) worked on oily sludge with a pH value of 5.3-5.6 and IEP value of 5.9; 

most of the electro-osmotic flow was towards the anode as the pH of the sludge was lower than 

its isoelectric point which means that the positive charges on sludge particles predominated. 

Yang et al. (2005) focused on the two flows (the anolyte and the catholyte) (Figure 5.2), and 

reported their volumes under several voltage values. 
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Figure 5.2. Anolyte and catholyte of the electrokinetic dewatering of gravity pre-thickened sludge (Yang et al., 

2005) 

A significant part of the present study focused on the WPD and A/C ratio with a view to 

identifying guidelines on how to set up the electrodes and the outlets in cells designed to utilise 

EKEF. 

Previously in Section 5.2, it was shown that the WPD depends on the net electrical charge 

of the sample, which depends on the sample pH and LCP value (or IEP value if it is measurable): 

 When pH value<LCP (IEP) value: the net charge of sample is positive (and the 

surfaces of particles are positively charged): WPD is towards the anode and the A/C 

ratio is > 1. 

 When pH value>LCP (IEP) value: the net charge of sample is negative (and the 

surfaces of particles are negatively charged): the WPD is towards the cathode and 

the A/C ratio is < 1. 

 When pH value ≈ LCP (IEP) value: the net charge of sample is almost zero (and the 

surfaces of particles are neutral): there is no impact of electric field, water moves 

under pressure and the impact of gravity only. WPD is almost equal towards both 

electrodes and the A/C ratio is  ≈  1 

Figure 5.3 shows the WPD under positive and negative net charge. 
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Figure 5.3. The impact of pH and LCP (IEP) values on WPD and A/C Ratio 

Before deciding on the orientation of any equipment designed to use EKEF the chemical 

properties as well as the impact of all chemical and electrical forces that affect particle 

movement in such foodstuffs must be taken into account. 

The following example will help to explain how to study all these factors: 

5.2.2.1.WPD Theory 

To concentrate foodstuffs in a vertical cell, two types of forces are used: (A) an electrical 

force by applying a voltage between two horizontal electrodes across the sample, and (B) a 

mechanical force applied by a pneumatic pressure ram. In addition to these two forces gravity 

also has an impact on juice particles and bits. 

Figure 5.4 shows the setting up of the electrodes and the forces that affect water 

movement under three orientations (Control, normal and reversed) and in two mediums (acidic 

pH<IEP (or LCP) and basic pH>IEP (or LCP)). 
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Figure 5.4. Forces affecting water movement inside an experimental cell under different orientations7 

FC: sum of the forces pushing particles to the cathode. 

FA: sum of the forces pushing particles to the Anode. 

P: Pressure. 

g: Gravity. 

EKC: EKEF toward the cathode. 

EKA: EKEF toward the anode. 

EKT (Total EKEF) = |EKC - EKA| 

IEP: Iso-electric Point. 

A: Anolyte. 

C: Catholyte. 

Three differing scenarios are considered to explain the significance of these factors on WPD: 

 

 

                                                 
7A. Control situation, B. Normal situation and acidic medium when pH<IEP, C. Reversed situation and acidic medium when 

pH<IEP, D. Normal situation and basic medium when pH>IEP, and E. Normal situation and basic medium when pH>IEP. 
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Case (1): Electric Field is off (Control) 

Water is influenced by the impact of pressure which pushes water equally toward both 

outlets and gravity additionally impacts by forcing water towards the bottom Figure 5.4(A) 

FTop = P -g 

FBottom = P +g 

WPD is almost equal toward both outlets with a small increase for the bottom outlet. 

Anolyte ≈ Catholyte  A/C ratio≈ 1 

Case (2): Electric Field is on and pH < IEP (LCP) 

This scenario is equivalent to using OJ. In addition to previous forces (pressure and 

gravity), water is influenced by the electric field which pushes (via EKEF) water towards either 

the anode or the cathode according to the ratio of the positive and negative ion content. Since 

the net electrical charge is positive (pH<IEP (LCP)), EKA > EKC and the EKT is towards the 

anode. 

 WPD is toward the anode (the bottom in the normal orientation and the top in the 

reversed orientation) as the net electrical charge is positive and the ions movement is 

toward the cathode. 

 Anolyte > Catholyte  A/C ratio > 1 

 Normal orientation (anode at the bottom) Figure 5.4(B) 

FC = P -EKT -g 

FA =P +g +EKT 

 Reversed orientation (cathode at the bottom) Figure 5.4(C) 

FC = P +g -EKT 

FA =P –g +EKT 

In this case choosing the normal orientation where the anolyte (the main outlet) in the bottom 

is the optimal choice as it is focusing the three forces (EKEF, gravity and pressure) to push 

water through it. 

Case (3): The Electric Field is on and pH > IEP (LCP) 

This scenario is equivalent to using ME. Since the net electrical charge is negative (pH>IEP 

(LCP)), EKA < EKC and the EKT is towards the cathode. 
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 WPD is toward the cathode (the Top in the normal orientation and the bottom in the 

reversed) as the net electrical charge is negative and the ions movement is toward the 

anode. 

 Anolyte < Catholyte  A/C ratio< 1 

 Normal orientation (anode at the bottom) Figure 5.4(D) 

FC = P -g +EKT 

FA =P +g -EKT 

 Reversed orientation (cathode at the bottom) Figure 5.4(E) 

FC = P +g +EKT 

FA =P -g -EKT 

In this case choosing the reversed orientation where the catholyte (the main outlet) in the bottom 

is the optimal choice as it focuses the three forces (EKEF, gravity and pressure) to push water 

through it. 

5.2.2.2. Anolyte to Catholyte Ratio (A/C Ratio) theory 

Measuring the pH value of a suspension is required not only to compare it with the IEP 

(or LCP) to determine the WPD but also to have insight about the change induced in filtrate 

volumes. 

Choosing the optimal orientation (the normal orientation when pH<IEP (or LCP) and the 

reversed when pH>IEP (or LCP)), does not mean that the whole filtrate will flow through the 

main outlet (the anolyte when pH<IEP (or LCP) and the catholyte when pH>IEP (or LCP)), as 

a part of the total filtrate will exit through the secondary outlet according to the A/C ratio. The 

difference between pH value and IEP (or LCP) controls the A/C ratio according to the 

orientations. If the optimal orientation is chosen (normal orientation in the acidic medium and 

reversed in the basic medium), four differing scenarios are considered to explain the impact of 

the difference between pH and IEP (or LCP) on the A/C ratio: 
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Figure 5.5. Impact of the A/C ratio on WPD in the optimal two orientations8 

1) If the difference between pH value and LCP is relatively large, the experimental material 

contains significant amounts of either negative or positive ions and negligible amount 

of the opposite charged ions. The ions with the highest amount move to the electrode 

with the opposite polarity resulting in an EKT impact in the opposite direction with an 

A/C ratio significantly higher or lower than 1, and here we have two cases: 

a) If the pH value is much less than LCP, the EKC is almost negligible as the anions 

(negative ions) content is too low, thereby the EKT will be mostly towards the 

anode which results in the anolyte volume being larger than the control outlet 

flow, and the catholyte volume is less than the control outlet flow depending upon 

the EKT intensity. Figure 5.5(A) shows the normal orientation when the anode is 

at the bottom and the anolyte is supported by gravity in addition to the EKT when 

the A/C ratio is significantly higher than 1. 

b) If pH value is much more than the LCP, EKA is almost negligible as the cation (positive 

ions) content is too low, thereby the EKT will be mostly towards the cathode which 

                                                 
8 A. acidic medium, Normal orientation and the difference between pH and IEP is relatively large, B. basic medium, 

Reversed orientation and the difference between pH and IEP is relatively large, C. acidic medium, Normal orientation and the 

difference between pH and IEP is relatively small, D. acidic medium, Normal orientation and the difference between pH and 

IEP is relatively small,  
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results in the anolyte volume being less than the control outlet flow, and the catholyte 

volume is larger than the control outlet flow depending on the EKT intensity. Figure 

5.5(B) shows the reversed orientation when the cathode is at the bottom and the 

catholyte is supported by the gravity in addition to the EKT with the A/C ratio being 

significantly lower than 1. 

2) The difference between pH value and LCP is relatively small, the experimental material 

contains significant amounts of both the negative and positive ions, which move to the 

electrode with the opposite polarity after applying an electric field resulting in an EKT 

impact in both  directions depending on the positive to negative charge ratio and 

resulting in the A/C ratio being relatively close to 1, and here we also have two cases: 

a) If the pH value is a relatively lower than the LCP, the EKA is relatively larger than 

EKC, thereby the EKT will be towards the anode and cathode in a percentage 

depending on the ratio of the positive and negative ions contained in solution 

which is relatively larger than 1, resulting in anolyte volume being significantly 

higher than the control outlet flow, and the catholyte volume flow a little higher 

than the control outlet flow depending on the EKT intensity. Figure 5.5(C) shows 

the normal orientation when anode is at the bottom and the anolyte is supported 

by the gravity in addition to the EKT with A/C ratio a little larger than 1. 

b) If pH value is a relatively higher than LCP, the EKA is relatively smaller than EKC, 

thereby the EKT will be towards the anode and cathode in a percentage that depends on 

the ratio of the positive and negative ions contained in solution which is less than 1, 

resulting in the anolyte volume being a little higher than the control outlet flow, and 

catholyte volume significantly higher than the control outlet flow depending on the EKT 

intensity. Figure 5.5 (D) shows the reversed orientation when cathode is at the bottom 

and the catholyte is supported by the gravity in addition to the EKT. 

 

 

 

 

5.3. Dewatering Efficiency 

Several data were collected to measure the EKEF process efficiency, one of the most 

important data was the dewatering efficiency, see Section 3.5.1. 
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Dewatering efficiency of any application is measured as the ratio of the total filtrate 

weight to the initial weight of water; where the total filtrate weight is the total weight exiting 

the outlets (the anolyte and the catholyte combined together). 

Evaluating the impact of any condition on the dewatering efficiency gives a good idea 

about its impact on the EKEF process. 

The impact of several conditions on the dewatering and EKEF efficiencies were 

investigated, these conditions, are related, either to the sample properties, or the parameters of 

the experiments, and are described in the following sections: 

5.3.1. The Impact of EKEF Intensity on the Dewatering Process 

Regardless of the variable conditions that affect the EKEF process, this process in general 

has a positive impact on dewatering efficiency. This impact has been investigated earlier by 

researchers on some of the soil dewatering applications. 

Raats et al. (2002) reported that the solids contents in drinking water sludge increased 

from 17% to 24% by combining electrokinetic dewatering with a belt press in a gravity-driven 

thickening belt combined with an additional energy consumption of 60 kWh/t of sludge. A high 

water content reduction from 87.8% to 62.6% was also achieved by Yuan and Weng (2003) 

with municipal sludge in 41h at a potential gradient 5.0 V/cm using a 6 cm long electrokinetic 

dewatering cell. 

Besides the sludge dewatering, studies have focused on electrokinetic remediation of soil, 

implanting two electrodes in the soil vertically (Ho et al., 1997) or with horizontal-electrodes 

(Ho et al., 1999) which achieved removal of more than 90% of metal contamination. 

Studying the application of EKEF has not been limited to soil dewatering and mineral 

removal areas; research has also focused on electrokinetic removal of neutral soluble or 

insoluble organic compounds from soils. Greater than 90% removal of hydrophobic polycyclic 

aromatic hydrocarbons (PAHs) by EKEF has been reported by Maini et al. (2000) in bench- 

and pilot-scale experiments, while in another study, Ho et al. (1999) reported 98% removal 

efficiency of p-nitro-phenol in one pilot unit (Yang et al., 2005). 

In this study the impact of EKEF was divided into two types, firstly: the relationship 

between filtration efficiency change over time (represented by the change of the flow rate value) 

and the change of the EKEF intensity (represented by the electric current intensity), and 

secondly:  the impact on the total dewatering efficiency. 
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The impact on the total dewatering efficiency was investigated under several conditions 

due to the variation of this impact under different orientation and factors. The relationship 

between the flow rate and the EKEF intensity was positive (Table 4.5). This positive 

relationship means that a higher EKEF intensity will result in higher flow rates and in turn a 

higher dewatering efficiency; and all factors that increase the EKEF intensity play a positive 

role in improving the process. 

5.3.2. Sample Conductivity: Change and Impacts on Dewatering Efficiency 

The total conductivity of the process depends on both the electrode conductivity and the 

food sample conductivity, and it changes as they change. The electrode material was chosen to 

be Titanium to minimise the electrode corrosion and the degradation of the electrodes which 

helps to avoid any contamination, and produce relatively stable electrode conductivity. 

Therefore, the main change in the conductivity process comes from the changes that occur in 

the food sample conductivity during the process. 

Figure 4.9 shows that conductivity fluctuated over time due to the fluctuation of the 

electric current intensity; in addition it was noted during the experiments that this fluctuation 

always started when the gas bubble clusters started to flow out through the top outlet. This 

fluctuation is due to the gas generation, which was also higher under 30V than 15V as shown 

in Figure 4.33 and Table 4.20, creating gas layers between the sample layers. These gas layers 

separate sample layers and decrease the connection between them which in turn decreases the 

sample conductivity and the electrical current flowing. 

Different materials under the same voltage values show different initial conductivity, and 

since the electrode conductivity is stable, the variation between materials depends mainly on 

the sample conductivity which depends on the content of charged ions and particles.  

In addition, higher voltage values result in higher electric current intensity in the same 

material at the same conductivity. 

Change in the initial conductivity not only affect the shape of the flow rate change, but 

also affect the total amount of the final filtrate which represents the filtration outcome, as shown 

in Figure 4.10, which represents the impact of different initial conductivity values (0.22, 0.33 

and 0.5S) on the dewatering efficiency (represented by the weight of the total filtrate). This 

figure shows that the initial conductivity value plays a significantly positive impact (P <0.001) 

on increasing the dewatering efficiency, which means that the higher the initial conductivity 

value is the higher the dewatering efficiency. 
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5.3.3. pH Impact (pH/LCP Ratio)9 Upon WPD and Dewatering Efficiency 

Each food material has its own natural chemical properties, but adjusting the initial pH 

could play a positive role in improving the process. Some other studies adjusted the sample pH 

to increase the alkalinity of the medium; one of these studies was done by Aziz et al. (2006) 

who adjusted the suspension pH to 10 using concentrated sodium hydroxide (NaOH), the liquid 

then migrates toward the cathode, which also acts as a permeable medium. 

The results of adjusting the initial pH of OJ samples show that the bigger the difference 

between the pH value and LCP value (LCP=~4), the higher the final outcome (Table 4.6 and 

Figure 4.11). Increasing the difference between pH an LCP is effective in both sides (either 

increasing the acidity (pH/LCP ratio<<1) or the alkalinity (pH/LCP ratio>>1)), the highest total 

filtrate weight was in OJ sample with pH=1.5 and then with pH=6.5. 

This figure shows that the total filtrate weight increased as the difference between the pH 

and the LCP values increased; according to the curve, the lowest outcome was around the LCP 

in the range of pH between 4 and 5. 

The total outcome of the control experiment was close to the outcome of the LCP, which 

demonstrates that when pH is close to the LCP (pH/LCP ratio≈1) the suspension is mostly 

neutral which reduces or cancels the impact of EKEF. 

The larger the difference between the sample pH and the LCP the higher the current 

intensity, due to the increase of the amount of the charged particles and ions, which increases 

the net electrical charge of the suspension; this high current resulted in a greater impact of 

EKEF which in turn increased the total filtrate weight. 

In addition, changing the pH/LCP ratio changed affected water profile direction which 

was toward the anode with pH/LCP ratio < 1 (resulting in higher anolyte A/C ratio > 1) (Figure 

4.15), and toward the cathode with pH/LCP ratio > 1 (resulting in higher catholyte A/C ratio < 

1), as shown in Figure 4.16. 

                                                 
9 In this study, LCP is used instead of IEP due to the difficulty of measuring the IEP of the experimental materials; however, 

findings are correct for IEP if it is measurable in the sample. 
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5.3.4. The Impact of Applied Voltage and Pressure  

Voltage application plays a role in WPD as water starts to move towards one of the 

electrodes after applying the voltage. In addition, the voltage has an impact on the total filtrate 

weight and the EKEF dewatering efficiency. 

The impact of the applied voltage on the dewatering efficiency for non-food materials has 

been previously discussed in several studies. For example, the impact of the electro-osmotic 

dewatering was investigated on a commercial scale with sludge containing a high content of 

aluminium ions, sludge which originated from the production of drinking water (Buijs et al., 

1994). In that study, applying a voltage improved the dewatering process and led to an increase 

in the solids content from 4% to 6.8% m/m (at 10 V DC across the slurry on top of the belt) and 

to 8.8% m/m at 20V.  

Raats et al. (2002) also investigated the effect of EKEF on the dewatering of waste slurry. 

Their results showed that without the application of an electric DC-field, the final dry solids 

contents was less than 17% m/m, while it increased to 19.5% and 20.5% m/m after applying a 

DC voltage of 15 or 30 V  respectively. 

This impact was also investigated in reducing the weight of a protein-rich sludge; the 

dewatering efficiency increased from 51.9% to 56.3% when the applied voltage increased from 

20V to 30V while it was 27.2% without applying any voltage (Yang et al., 2005). 

In this present study, the voltage also played a positive role on increasing the process 

efficiency. There was a positive net dewatering efficiency (NED) after applying EKEF of up to 

7.43% in OJ experiments (5.5 hours) and to 10.68% in ME experiments (3.5 hours), this NED 

was higher with 30V compared with 15V in all the experiments as the total filtrate weight 

increased when the voltage was increased. 

This positive impact of increasing voltage can be related to its impact on the ions 

movement. Since water movement depends on the ions movement; increasing voltage applied 

on the same material (same conductivity) increases the movement of the charged particles and 

ions to the opposite electrode which in turn increases the electric current intensity and speeds 

up the water movement, as well as to the other electrode. The effect of voltage is also influenced 

by other conditions in the experimental material, pressure filter pore size, sample's initial 

thickness. 
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This impact on the dewatering efficiency happened because the final total filtrate weight 

was higher under 30V compared with 15V in both OJ and ME experiments. However, the mean 

value of OJ total filtrate over time was higher under 15V than its value under 30V in the OJ 

experiments, while it was higher under 30V in the ME experiments (Figures 4.21 and 4.22). 

Analysing data using Time Series analysis showed that up to a specific time the outcome of 

applying 15V was greater before the 30V impact accelerated and crossed the 15V line in what 

is called the voltage crossing point (VCP). This phenomenon is also shown in Figure 4.23 to 

4.25. Data in Table 4.11 shows that VCPs happened after around 40% of juice had exited as 

filtrate. The distance between the electrodes was 34.5mm with 1L volume at the beginning of 

the experiments and decreased over time; and it was interesting that the VCPs occurred when 

the distance between electrodes became around 18mm in the three experiments which could be 

the reason behind this phenomenon as the impact of voltage is influenced by the distance 

between the electrodes as shown in Section 5.3.6. The other reason could be the concentrate dry 

matter content which was around 24% when the VCPs occurred. 

One of the ways to improve the process and decrease the negative impact on food quality 

compounds, as well as decreasing the power consumption, is using lower voltage values and 

then increase the voltage gradually if/when needed. 

In addition to the voltage positive impact Table 4.7 shows that increasing applied pressure 

value improved the net dewatering efficiency by up to 13.69% and was higher with 4bar 

compared with 3 and 2bar in all experiments. 

5.3.5. Impact of the Filter Pore Size 

Filter pore size plays an important role in the filtration process, as it controls the particle 

size of the filtrate that can go through it. The smaller the pores the smaller the particles passing 

into the filtrate stream. When the process goal is to concentrate foodstuff (juices), the 

concentrate then is the important part and any compounds that pass through with the filtrate are 

considered as a loss unless they are captured later in other steps. On the other hand, if the filter 

pores are too small then the required pressure to push filtrate through will need to be increased. 

In addition to the pressure, filter pore size can affect the filtration process outcome and 

efficiency as well. Comparing the net dewatering efficiency (NDE) between the two sizes of 

the filter pore used in this study (0.2µ and 1µ), it is clear that the larger the filters pore size the 

higher the NDE, and that this is also affected by the applied voltage. Bigger pores allow more 

particles to go through the filters which in turn slow down the cake formation and reduce the 

negative impact of cake formation on the flow rate. Under the same conditions, the pressure 
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values used to push water through the larger pores carrying all particles with sizes smaller than 

the cut off was faster than the smaller pores which capture more particles and form a filtration 

cake faster, and this slows down the filtration process sooner. However, the bigger the pores 

are the more the loss of particles which exit with the filtrate, and this could be a disadvantage 

to the overall concentrate product quality. 

5.3.6. The Impact of the Sample’s Initial Thickness (the Distance Between the Electrodes) 

The impact of the sample thickness (the distance between the electrodes) on the 

performance of EKEF was investigated in earlier studies on non-food materials; these studies 

reported the negative impact of sample thickness in the filtration enhancement under the 

application of electrokinetics. 

Lamont-Black et al. (2007) investigated the impact of EKEF on soil dewatering of two 

sample thicknesses of 35mm and 50mm under three voltage values 0V, 15V and 30V, where 

the percentage of the solid content was measured after 35min. The results showed that the solid 

content increased from ~59% to ~73% in the 50mm thickness under the higher voltage 30V 

compared with the control, while it increased from ~62% to ~83% in the 35mm thickness under 

the higher voltage 30V compared with the control, suggesting that the lower thickness was 

better for dewatering. 

Yang et al. (2005) also investigated this impact by comparing the net dewatering 

efficiency under 0V, 10V, 20V and 30V in three thicknesses 4, 6 and 8cm. the NED was only 

13% at 8cm while it increased to 16.1% and 29.1% in 6cm and 4 cm respectively, confirming 

the benefit of reducing distance between electrodes. 

Since all experiments in this present study were run in the same cell with the same inner 

and outer diameters, then the only variable dimension is the distance between the two electrodes 

where the sample is captured; one of these electrodes (the bottom one) is connected to the piston 

and moves up and down freely. The initial distance between the two electrodes depends on the 

sample volume; this distance is considered as the sample's initial thickness. 

Three volumes of the ME sample were used (0.5, 1 & 1.5L) which resulted in thicknesses 

(17.3, 34.6 & 51.9mm) respectively for inner diameter of 192mm. The results clearly 

demonstrated similar effects to those described above, with a decreasing NED with increased 

distance between the electrodes. This was most likely due to the higher electric current intensity 

with smaller thickness as the electrodes are closer, which in turn increases the impact of EKEF. 



Chapter 5                                                                                                                                        Discussion 

154 

 

This impact on electric current is because increasing the distance between the two 

electrodes reduces the capacitance according to the Equation 17: 

𝐶 = 𝜀𝑟
𝜀0𝐴

𝑑
 (Equation 17)(Terzic et al., 2012) 

Where: 

C: is the capacitance in farads (F), 

εr: is the relative static permittivity (dielectric constant) of the material between the 

electrodes, 

ε0: is the permittivity of free space, 

A: is the area of each electrode, in square meters and 

d: is the separation distance (in meters) of the two electrodes. 

This capacitance reduction results in dropping in the electric current intensity, according 

to Equation 18: 

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡
 (Equation 18)(Chaniotakis and Cory, 2006) 

Where: 

C: is the capacitance in farads (F), 

I: is the electric current intensity (Amp), 

V: is the voltage, and 

t: is the time; for DC (constant in time) signals (dV/dt =0) 

5.4. EKEF Process Impact on the Sample Properties 

Just like any other method, EKEF has an impact on the chemical properties and the quality 

compounds of the foodstuffs; these impacts are because the EKEF phenomenon happens due 

to the ions movements which create an electric current, some heat and gas.  

In this part of the study the focus was on the potential impact of the application of EKEF 

and comparison of it with the impact of the more commonly used thermal dewatering methods.  
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5.4.1. pH Change 

The pH values of the samples are very interesting when considering the EKEF process, it 

is not only that the initial sample pH affects the EKEF process by affecting the main direction 

of the water or WPD and determining the main outlet (anode or cathode); but also that the EKEF 

process has an impact on the sample pH which changes over time under the electric current 

application. 

This change was reported before by Yang et al. (2005), who stated that the distribution of 

pH along the length of the sludge was increased as soon as the cell was connected to the DC 

power supply, this distribution increased from around 5.4 to above 6.0 except for the interface 

of sludge and anode; and pH value changed from ~7 next to the cathode to ~2 next to the anode, 

while the initial pH was 5.3-5.6. 

In the present study, pH values were measured for the anolyte and the catholyte every 

half hour which represents the pH value next to the anode and cathode (the maximum and 

minimum values). Since there is no way to measure the distribution of pH along the sample due 

to the design of the cell, the final concentrate pH was measured after blending. 

Figures 4.34 and 4.35 show that the anode had the lowest pH value while the cathode had 

the highest in the two orientations (normal and reversed) regardless of the electrode position 

(top or bottom), which means that the pH value is related to the electrode charges. 

Going back to Equations 2 & 3, when the electric field was applied, it can be surmised 

that water electrolysis started at the anode and the cathode producing cations (H3O
+) at the 

anode (Equation 2), and anions (OH-) at the cathode (Equation 3); this ion production results 

in an acidic anolyte (with low pH value) and basic catholyte (with high pH value) exiting 

through the anode and the cathode respectively. 

The pH value of the final total filtrate (all the filtrate combined at the end of the process) 

depends on the pH of both the anolyte and the catholyte and their percentages in the total filtrate. 

Figures 4.36 and 4.37 shows that the change in the pH value of the concentrate under 

different voltages was insignificant compared with the fresh sample pH, as the ions produced, 

which cause the pH change, move to the opposite electrode to exit the cell with one of the flows 

(either the anolyte or the catholyte depending on the type of the ions), which also resulted in a 

significant change in the total filtrate pH value especially when applying 30V. 
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In addition to the ions movement impact, Table 4.21 and Appendices 5 show that there is 

a significant relationship between the change of the pH and the flow rate over the time as the 

amount of the immigrant ions increased with the high flow rate which speeds up the pH change 

to more acidity in the anolyte and more alkalinity in the catholyte. 

5.4.2. Vitamin C (Ascorbic Acid) Change 

Thermal methods have a negative impact on the heat sensitive compounds of fruit juice; 

degradation of these compounds depends on the type, temperature and the other conditions of 

pressure and oxygen presence. One of the most important heat sensitive compounds in OJ is 

vitamin C. 

Vitamin C is highly sensitive to degradation and has very low stability in solution. In 

addition, vitamin C is oxidized readily in light, air and when heated. Because it is also water 

soluble, heating in water (like thermal treatment) causes the vitamin to be oxidized and also to 

leach out of the food into the water (Tannenbaum and Walstra, 1985; Lee et al., 2004). 

Vitamin C degradation in OJ at various temperatures heated by different methods was 

investigated previously by Vikram et al. (2005); manually squeezed orange samples were 

processed by different methods (conventional, ohmic, infrared and microwave) under different 

time and temperature combinations as shown in Section 2.2.2, Figure 2.1. 

Lower temperatures have also had a negative impact on vitamin C content, the thermal 

degradation of vitamin C in OJ was analysed over in a 20-45°C temperature range by Manso et 

al. (2001) Section 2.2.2, Figure 2.2). 

In the present study there was no degradation in vitamin C content of the Control 

concentrated juice while the control total filtrate lost about 11% of its vitamin C content (Figure 

4.38) due to the contact with air unlike the concentrated juice which was inside the cell and was 

not exposed to the air. However, after applying EKEF for 5.5hours, vitamin C retention of the 

concentrated juice dropped to 41% under 15V and 7.14% under 30V. Also the retention of the 

total filtrate was influenced by the impact of the EKEF, where it dropped to 47.8% under 15V 

and 35.45% under 30V. 

The maximum temperature of the electrodes due to the application of EKEF was around 

25-35ºC, and according to Figure 2.2 after 5.5hours the vitamin C content drops to 95% at 20 

ºC, 85% at 30 ºC, and 55% at 45 ºC (Manso et al., 2001), which means that the vitamin C 

content drops more rapidly at a specific range of temperatures under the influence of EKEF 
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compared with the same temperature impacts without the use of EKEF. This negative impact 

could be due to the combination of heat and oxidization resulting from the gas generation by 

EKEF, this gas generation contributes to vitamin C degradation due to the high sensitivity of 

vitamin C to the oxygen which oxidises ascorbic acid to dehydroascorbic acid as shown in 

Figure 5.6. 

 

Figure 5.6. Ascorbic acid oxidisation mechanism (Ruiz et al., 1977) 

However vitamin C retention was higher under the EKEF process compared with its 

retention value under conventional thermal methods, as it needed about 10-15min at 50-75ºC 

and 3min at 90ºC to drop to 50% or less as shown in Table 2.2, while it took 2:50h under EKEF 

15V and 1:15h under 30V for OJ to drop to just 50% of vitamin C retention Figure 4.39. 

The main degradation of vitamin C content occurred in the catholyte which lost its content 

very rapidly in comparison with the anolyte. This difference between the anolyte and the 

catholyte could have resulted from the slow flow rate of the catholyte which results in a thinner 

juice layer and longer contact time between juice and the electrode which in turn increase the 

negative impact of the heat effects on the Vitamin C in the juice as well as the direct ionisation 

of vitamin C at the electrode. However, the main outlet from the application of EKEF to OJ in 

OJ experiments is the anolyte which means that the main volume of the total filtrate exited 

through the anolyte which in turn decreased the total loss of the vitamin C content in the final 

total filtrate, as shown in Table 4.22. 
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Using filters with bigger pore size had a positive impact on the vitamin C retention of OJ 

total filtrate, as the vitamin C retention of the total filtrate going through the 1µ filters was 

57.4% in comparison with 35.45% using 0.2µ filters after 5.5h of process. However, there was 

no significant difference in the vitamin C retention of the concentrates captured by both filters; 

this insignificance in the vitamin C retention of the concentrate was because these filters were 

in a direct contact with the electrodes in both experiments, and reached the same temperature 

when the electric field was switched on, and therefore, the impact of heat on the vitamin C was 

the same for both experiments with 1µ and 0.2µ filters. 

To investigate the potential reasons behind the vitamin C loss, the correlation between 

the change of the vitamin C retention and the pH change was calculated using Pearson 

correlation, in addition the correlation between the change of vitamin C retention and flow rate 

change was checked in the anolyte, catholyte and total filtrate. 

Table 4.23 shows that there is a significant relationship between pH change and the 

change of vitamin C retention as well as between vitamin C retention and the flow rate, although 

that the relationship with the flow rate change is less significant. However, Figures 4.45 to 4.50  

show that the maximum loss of vitamin C does not happen at the same time of the maximum 

change of pH, while Figures 4.51 to 4.56 show that the maximum loss of vitamin C occurs 

when the flow rate is at its lowest value. In addition, vitamin C retention dropped in both the 

anolyte and catholyte where pH decreased and increased respectively, which means that the 

relationship between the pH change and the vitamin C change is because both of them are 

related to the flow rate change as shown in Table 4.21, Appendices 5 and Figures 4.51 to 4.56. 

To conclude, EKEF application has a negative impact on the vitamin C content but this 

impact is significantly smaller in comparison to the impact of conventional thermal methods. 

The impact of EKEF is influenced by the processing time and the temperature of the electrodes, 

that increase with higher voltage values, as this negative impact increases with a longer 

processing time and higher temperature (higher voltage values). 

5.4.3. Colour Change 

Colour is one of the most important visual sensorial quality parameters, and one critic 

component of first impression formation. Thermal methods have a negative impact on the heat-

sensitive colour compounds of OJ; the degradation of these compounds depends on the type of 

juice and the temperatures used in processing. 
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There appeared to be no change in the concentrated juice colour under 0V. However, 

discoloration started to appear when voltage was applied and increased when voltage and 

pressure values increased. The discoloration was primarily at the top layer next to the top 

electrode (the cathode) only. Blending the concentrated juice after treatment reduced this 

discoloration as the majority of concentrated juice did not change in the colour as shown in 

Figure 4.57. 

Comparison between the colour of the blended concentrated juice under the application 

of three different voltages (0, 15 and 30V) showed that the colour of the concentrate got darker 

as the voltage was increased (Figure 4.58). In addition, the colour of samples decreased around 

5%, 10% and 16% under 0V, 15V and 30V respectively on the light–dark spectrum which 

means that the concentrate got darker under the influence of EKEF and this discoloration 

increases under higher voltages (Figure 4.59); and the browning index of the concentrate 

increased by 9%, 10% and 13% under 0V, 15V and 30V respectively compared with the fresh 

OJ browning index (Figure 4.60). 

Filtrates showed a neutral colour (very light) for the control samples and early stages of 

the 15V and 30V samples. Colour started to appear in the catholyte after 3hours of the 

experiment and 1.5 hours under 15V and 30V respectively. While in the anolyte, colour 

appeared clearly only in the 30V catholyte after 4hours as shown in Figure 4.61. 

Figure 4.67 shows that the ethyl acetate phase turned into yellow in both fresh and 

concentrated samples while it remained blanc in the anolyte and catholyte samples which means 

that there is no carotenoids in the anolyte and catholyte samples and proves that the colour, 

which disappears from the control filtrate and shows later, is not related to carotenoids or any 

other juice compounds. 

As mentioned in Section 2.2.3, the browning reactions in foods could be divided into: an 

enzymatic reaction (phenolase browning) and non-enzymatic reactions (Maillard, 

caramelisation and ascorbic acid oxidation) (Nursten, 2005). The maximum temperature of the 

electrodes due to the application of EKEF was around 25-35ºC, which excludes the impact of 

Maillard reaction (90ºC) and caramelisation reaction (120ºC). Comparing the discolouration 

times in Figure 4.62 with Figures 4.51 to 4.56, one could see a relationship between vitamin C 

degradation and discolouration as colour started to appear in the catholyte after 3hours and 1.5 

hours of the experiment under 15V and 30V respectively. While in the anolyte, colour appeared 

clearly only in the 30V catholyte after 4hours (Figure 4.62); and these are the time when vitamin 

C content was almost lost totally (Figures 4.51 to 4.56). Going back to Section 2.2.3 the 
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formation of dehydroascorbic acid and diketogluconic acids from ascorbic acid oxidisation 

reaction (Figure 5.6) is thought to occur during final stages of the drying process and is capable 

of interacting with the free amino acids, non-enzymatically, producing the red-to-brown 

discoloration. 

The difference of colour between the anolyte and catholyte is a dilution effect and is due 

to the differing flow rate out of each outlet which affects the vitamin C degradation; in this case 

using bigger-pores filters, if possible, could help speeding up the whole process and in turns 

increase the discoloration time as shown in Figures 4.63 to 4.666. 

5.4.4. Dry matter content Changes 

As the dewatering process progresses, the dry matter content of the concentrated juice 

keeps increasing due to the decrease of the water content. Different voltage values have 

different impacts on the dewatering process efficiency and in turn they have differing impacts 

on the dry matter content. 

Figures 4.68 and 4.69 show that applying EKEF helped to increase dry matter content by 

15.5% and 19% for OJ concentrate and by 12% and 14% for ME concentrate after 5.5hrs under 

15V and 30V respectively while the maximum increase in dry matter content was about 14.75% 

and 9.63% under the control orientation after the same time for OJ concentrate and ME 

concentrate respectively. However, voltage values did not have a significant impact on dry 

matter content of the total filtrate.  

Under the same condition of voltage and pressure, the main factor that impacted on filtrate 

dry matter content was the filter pore size, the larger the pore more of the dry matter passes 

through them. 

All previous ME experiments were set up as the reversed orientation (the cathode at the 

bottom); to check whether dry matter contents were influenced by the electrode charge (anode 

or cathode) or the electrode position (top or bottom), the two orientations (normal and reversed) 

results under 15V, 4bar and through 1µ filter were compared as shown in Figure 4.75. 

This figure shows that the lowering in dry matter content was in the normal catholyte (the 

top outlet stream) and the reversed Anolyte (the top outlet stream); which means that the 

effective factor is the position of the electrode. This result as well as the fact that the difference 

was significant between the anolyte and catholyte dry matter content under 0V and 15V but 
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insignificant under 30V indicates that this impact could be related to the suspension separation 

into two phases as most of the ME bits deposit in the bottom and not due to the impact of EKEF. 

To conclude, EKEF application has no significant impact on the filtrate dry matter 

content, while has an impact on the concentration dry matter by speeding up the filtration 

process and in turn decreasing the concentrate water content. 

5.5. Power Consumption 

Power consumption is one of the most important criteria to evaluate any food 

manufacturing process as it plays very important role in estimating the final product cost as 

well as the process impact on the environment. Decreasing power consumption is a very 

tempting area for researchers interested in new applications and methods to save energy. 

The application of electrokinetics has been studied before by several researchers in terms 

of its power requirement. Lo et al. (1991) reported that using electrokinetics to strengthen soft 

and sensitive clays was considered economically impractical (primarily because of the high 

operating costs). This note came to support Bjerrum et al.(1967), who used electrokinetics on 

clay as well and found that the cost of electricity was 25% of the total project cost, which is 

quite high.  

At this level of cost, electrokinetics would most certainly only be used as a last resort 

when there is no alternative choice (Fourie et al., 2007). 

Although most of the better known examples of the application of electrokinetics are in 

traditional civil engineering applications such as applications to mining operations and slope 

stabilization, one new study investigated power consumption of the application of 

electrokinetics in dewatering food products. Ng et al. (2011), investigated the impact of 

electrokinetics on dewatering food waste (Brewer’s spent grain, Orange peel, Melon peel, 

Mango peel and Cauliflower trimmings) by applying two voltages (15V and 30V) and 

compared it to a control (pressure impact with no voltage). In addition this study compared the 

power consumption of the application under (0V, 15V and 30V) with the power consumption 

needed to dewater the same volume of water using conventional thermal methods.  

For all experiments, the increase in the voltage supply resulted in a power increase in 

consumption per unit water removed, and the theoretical calculated energies required for 

thermal removal were significantly higher than the energy required by electrokinetic dewatering 

to remove equal amounts of water. Brewer’s spent grain showed the highest differences (up to 
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60 times more energy saving compared with thermal processing, 0.001KWh under 

15V/0.06KWh in thermal) while OJ showed the smallest ratios (up to 18 times more energy 

saving compared with thermal processing, 0.004KWh under 15V/0.07KWh in thermal) across 

the range of voltage applied (Ng et al., 2011). 

The present study followed the same method to compare the power consumption required 

using EKEF to dewater OJ and ME with the power consumption of applying the pressure only. 

Tables 4.30 and 4.31 show that as expected EKEF application under 4bar pressure and two 

voltage values (15 and 30V) resulted in a large additional power consumption compared with 

applying the pressure only. Dewatering efficiency was less with no electrokinetic application, 

however, the required additional energy needed to achieve the same increase in dewatering 

efficiency by increasing the pressure only without EK is relatively small; 9.47x10-8 and 

4.78x10-7 KWh for the equivalent of 15V and 30V, respectively for OJ, and 5.66x10-7 and 

9.66x10-7 KWh for the equivalent of 15V and 30V, respectively for ME.  This illustrates the 

power cost of the EKEF process, which is considerable compared with pressure alone.  

However, the additional energy expenditure is small compared with the energy needed to 

dehydrate foods under more conventional thermal processes suggesting that this method if 

scaled up could have industrial application.  In addition, increasing pressure further to increase 

dewatering might not be realistic under commercial operation as this would require additional 

high-pressure equipment and increases the possibility of blocking in-line filters. 

Tables 4.33 and 4.34 show that the electrical power consumed in applying pressure is very 

small and almost negligible compared with the electrical power consumed by the applied 

voltage, and the difference between the highest voltage and lowest voltage in terms of power 

consumption is very significant (Figures 4.78 and 4.79). 

Despite the fact that EKEF add more power consumption to the filtration process, this 

application still shows high power saving in comparison to the thermal methods; a comparison 

between the energy consumption of different methods was carried out. The application of EKEF 

saves energy compared with the power consumption of the thermal method required to 

evaporate an equal amount of water. This saving was up to 18.35 times and 47.34 times in OJ 

and ME dewatering respectively (Figure 4.80). 

It should also be taken into account that during the process, the electrical resistance 

increased gradually as the amount of water in each sample was reduced and subsequently the 

current across the sample is also reduced. This means that a higher voltage was required during 

the later stages. For more efficiency and energy saving it is advisable to increase the voltage 
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gradually which over time will save energy and help to avoid the increase of electrical resistance 

(Lockhart, 1983). 
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6.1. Introduction 

This thesis focuses on the design of an experimental rig and system to investigate the 

efficiency of the application of EKEF to concentrate different food materials. This efficiency 

was evaluated under different conditions to investigate their impacts on the process and the 

food products. 

The main factors investigated in the experiments were: sample conductivity, applied 

voltage, applied pressure, filters pore size, initial sample thickness, as well as the sample 

chemical properties of pH and LCP values. 

Investigating the impact of these factors led to some theoretical guidelines which help to 

choose the best application setup and to predict the process progress according to the food 

material properties. 

Results also showed that using EKEF has some impacts on the product quality 

compounds such as pH, colour, dry matter content and moisture content; these impacts were 

measured and compared with the impacts on such factors by the use of thermal methods. 

In addition, the WPD between two electrodes, the main filtration outlet and how to decide 

its position were thoroughly investigated; and the power consumption of this application of 

EKEF was also calculated and compared with the thermal methods power consumption. 

6.2. Review of Chapters 

In addition to the aims and objectives of this study which are stated in Chapter 1, the 

need to use non-thermal methods in the food processing area is discussed in Chapter 2 (the 

literature review). Furthermore, this chapter focuses mainly on the scientific principles driving 

the electrokinetic process and its results and applications in previous studies. The factors with 

potential impact on the electrokinetic process are also reported, as well as the potential impact 

of this application on food materials to justify the experimental system used in this study. 

Chapter 3 shows the experimental rig which is designed for this study to help applying 

EKEF and investigate the impact of certain factors on the process and the application’s impact 

on the foods studied. In this chapter each part of this device is shown and some of these parts 

are discussed in detail including their material and type such as electrodes and filters. The other 

part of this chapter shows the experimental samples properties (orange juice OJ and malt extract 

ME), and the experimental design. In addition, analytical equipment methods and protocols 

were introduced in this chapter. 
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Chapters 4 and 5 show the results and their discussion, including the efficiency of the 

application of EKEF to concentrate OJ and ME samples under different conditions and the 

impact of these conditions on the process and the food products; and present some theoretical 

guidelines which help to choose the best application setup and to predict the process progress 

according to the food material properties. 

In addition, these two chapters shows the impacts of EKEG application on the product 

quality compounds such as pH, colour, dry matter content and moisture content; these impacts 

were measured and compared with the impacts on such factors by the use of thermal methods. 

Furthermore, the power consumption of this application of EKEF was also calculated and 

compared with the thermal methods power consumption. 

6.3. Objectives and conclusions 

Going back to the objective mentioned in Chapter1, we can conclude the following: 

 Designing an experimental rig:  

The rig designed for this study was successful to control the effective factors that have 

an impact on the EKEF process such as sample conductivity, applied voltage, applied 

pressure, filter pore size, initial sample thickness (the distance between the two 

electrodes); and helped to accurately collect multiple filtrate samples over the time from 

the anolyte and catholyte separately, and to record several type of data such as the total 

filtrate weight every 5 second (with ability to control the recoding duration and the 

frequency), the voltage and the current intensity (in Amps).  

However, there was some limitations such as:  

 the impossibility of taking samples from the concentrate during the process due to 

the difficulty of adding an outlet to the cell wall which reduce the sealing and 

increase the potential damage under high pressures, therefore the concentrate 

samples were only taken at the beginning and the end of each experiment. 

 Temperatures were measured at the beginning and the end of each experiment 

only for the same reason. 

 There was no way to measure the temperature and take concentrate samples from 

different juice layers over the distance between electrodes which would help to 

get clearer idea about the impact of EKEF on juice before blending. 
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 Investigating the efficiency of the application of EKEF for concentrating different food 

materials (orange juice and malt extract):  

Applying EKEF improved the filtration process and achieved net dewatering 

efficiencies up to 7.43% and 4.86% for OJ and 10.68% and 6.26% for ME after 5.5hrs 

of processing under 30V and 15V respectively. 

 Investigating the impacts of the main factors those control the EKEF process progress 

and efficiency:  

 The performance of a process utilising EKEF was found to be dependent upon 

several parameters such as the conductivity, applied voltage, applied pressure, 

filter pores' size (filtration type), and the sample initial thickness or volume (the 

distance between the two electrodes). Each of these previous parameters has an 

impact on the performance of the EKEF process efficiency by influencing the 

filtrate discharge volume in total and in turn the dewatering efficiency. 

 The sample initial conductivity value plays a significantly positive part in 

increasing the filtration efficiency due to the increase in the electric current 

intensity, (P<0.001). Process conductivity mainly depends on the electrode 

conductivity which is relatively stable due to the stability of electrode material 

(Titanium), and the sample conductivity; this conductivity drops over the process 

due the decrease of the moisture content and fluctuates due to the gas generation, 

this fluctuation is higher under higher voltages. 

 Increasing the voltage has also a significant positive impact (P<0.001) by 

increasing the electric current intensity under the same conductivity. However 

15V showed better impact than 30V up to the VCP point, when 30V had improved 

the process efficiency. Monitoring this point can be used to apply a lower voltage 

at the beginning and then increase the voltage which improves the efficiency, 

reduces the negative impact on the food quality compounds and helps to save 

energy. 

 Pressure and filter pore size also had a significantly positive impact (P<0.001) on 

the total process efficiency as increasing pressure and pore size reduces the caking 

impact and speeds up the flow rate through the filters. 
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 Sample thickness (the distance between the two electrodes), in the other hand, has 

a negative impact on EKEF efficiency by reducing the capacitance. 

 Investigating the changes that could be resulted from applying EKEF to foodstuffs by 

analysing some quality compounds, and compare these results of this application with 

the results of published conventional methods: 

 The impact of EKEF on the chemical properties and the quality compounds of the 

foodstuffs is because that the EKEF phenomenon happens due to the ions 

movements which creates an electric current, some heat and gas.  

 The impact on the filtrate pH occurs when the electric field is applied, water 

electrolysis, started at the anode and the cathode, produces cations (H3O+) at the 

anode and anions (OH-) at the cathode; this ions production results in increasing 

the anolyte acidity (decreasing pH value) and catholyte alkalinity (increasing pH 

value), this change is related to the electrode charge regardless of the position (top 

or bottom). However, change in the pH value of the concentrate under different 

voltages was insignificant compared with the fresh sample pH as the produced 

ions, which cause the pH change, move to the opposite electrode to exit the cell 

with one of the flows (either the anolyte or the catholyte depending on the type of 

the ions). However, the same reason causes an extensive change in the pH value 

of the total filtrate especially under 30V. 

 Regarding the impact on the heat-sensitive food compounds represented by 

vitamin C, applying EKEF for 5.5hours reduced vitamin C retention of the 

concentrated juice to 41% under 15V and 7.14% under 30V. The retention of the 

total filtrate was also influenced by the impact of the EKEF, where it dropped to 

47.8% under 15V and 35.45% under 30V. 

Vitamin C content decreased to 50% after 2:50hr under 15V and 1:15hr under 

30V. The maximum temperature of the electrodes due to the EKEF application 

was around 25-35ºC, which means that vitamin C content dropped more rapidly 

at a specific range of temperatures under the impact of EKEF compared with the 

same temperature impacts without EKEF. This negative impact could be due to 

the combination of heat and oxidization resulting from the gas generation under 

EKEF, this gas generation contributes to vitamin C degradation due to the high 
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sensitivity of vitamin C to the oxygen which oxidises ascorbic acid to 

dehydroascorbic acid. 

However vitamin C retention was improved by utilising the EKEF process 

compared with its value under more conventional thermal methods, as it needed 

about 10-15min at 50-75ºC and 3min at 90ºC to drop to 50% or less (Vikram et 

al., 2005). 

The main degradation of vitamin C content occurred in the catholyte which lost 

its content very rapidly in comparison with the anolyte. This difference between 

the anolyte and the catholyte could have resulted from the slow flow rate of the 

catholyte which results in a thinner juice layer and longer contact time between 

juice and the electrode which increased the negative impact of the heat on the 

juice. However, the main outlet when EKEF is applied  in OJ experiments was the 

anolyte which means that the main volume of the total filtrate exits with the 

anolyte, and this decreased the total loss of the vitamin C content in the final total 

filtrate when re-combined. 

 EKEF also had an impact on OJ colour which was greater next to the catholyte 

(the secondary outlet) in comparison with the anolyte (the main outlet), due to the 

formation of dehydroascorbic acid and diketogluconic acids from ascorbic acid 

oxidisation reaction. Later on, when most of the juice exits and both filtrate rates 

slowdown, colour starts to appear in the anolyte in the highest voltage conditions. 

Concentrated juice colour was also influenced by the application of EKEF; the 

discoloration was clearly obvious at the top layer next to the top electrode (the 

cathode) only, while it decreased by blending concentrated juice at the end of the 

process. 

 The impact of the EKEF was influenced by the processing time and the 

temperature of the electrodes which increases with higher voltages; this negative 

impact increased with a longer processing time and higher temperature (higher 

voltage values generate higher temperature next to the electrodes). 

 Applying EKEF helped to increase dry matter content from 14% to 33.09% and 

29.52% for OJ and from 20% to 34.2% and 32.14% for ME after 5.5hrs under 

30V and 15V respectively while the maximum dry matter content was 28.75% 

and 29.63% under the control orientation after the same time for OJ and ME 



Chapter 6                                                                                                                                        Conclusion 

170 

 

respectively. The Brix degree (and the dry matter content) of the industrial 

concentrate orange juice, produced by the thermal methods, is 40-45°Bx and could 

reach 65°Bx in some products (Clark et al., 2014). 

However, changing the applied voltage value did not have a significant impact on 

dry matter content of the total filtrate, as the main factor that has impact on dry 

matter contents is the filter pore size. 

Results showed that the filter with the bigger pore size (1µ) allowed more particles 

to pass through which in turn resulted in significantly higher dry matter content 

compared with the small pore filter (0.2µ) (P<0.001). 

Regarding the impact of the electrode type and position on dry matter content, 

results showed that the fall in dry matter content was in the normal catholyte (the 

top outlet stream) and the reversed Anolyte (the top outlet stream); which means 

that the effective factor is the position of the electrode; this impact could be related 

to the suspension separation into two phases as most of the larger fragments of 

pulp in the juice deposit at the bottom by gravity and not due to the EKEF impact. 

 To measure the power consumption of this application under different running 

conditions:  

EKEF processes resulted in a large additional power consumption compared with 

applying the pressure only; and the required additional energy needed to achieve the 

same increase in dewatering efficiency by increasing the pressure only without EK is 

relatively small. On the other hand, EKEF showed a good efficiency in energy saving 

compared to the power consumption required in more conventional thermal methods 

used to evaporate an equal amount of water. This saving was up to 18.35 times and 

47.34 times in OJ and ME dewatering respectively which indicates that at a commercial 

scale use of EKEF could have a major impact on energy expenditure if it were to replace 

conventional thermal drying techniques.  Using EKEF would also allow the use of lower 

pressure vessels than would have to be used under high pressure dewatering methods. 

 To suggest some ways to control conditions affecting the EKEF process to increase the 

outcome (total filtrate), decrease the negative impacts on foodstuff quality compounds 

and reduce the power consumption: 
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 Adjusting pH to increase the difference between pH value and LCP which 

increases the impact of EKEF and the total improvement. 

 Using a larger filter pore size reduces the negative impact of this method on 

vitamin C and colour. 

 Applying gradual voltage increase also decreases the negative impact on the food 

quality compounds and reduces the power consumption. 

 Finally, to setup theoretical guidelines depending on the relationship between the 

chemical properties of samples and the direction of the water profile after applying the 

electric field which helps in the choice of the optimal application specification and to 

predict the process progress according to the food material properties:  

One of the main findings of this study was that the chemical properties of the food 

sample (pH and LCP values) determine the WPD, the main outlet and the optimal 

orientation; in this case analysing the sample before running the experiment is essential 

and then it is possible to follow one of these specifications: 

 When pH<LCP: WPD is toward the anode (the main outlet is the anolyte) which 

must be set as the bottom electrode (normal orientation). 

 When pH>LCP: WPD is toward the cathode (the main outlet is the catholyte) 

which must be set as the bottom electrode (reversed orientation). 

 When pH≈ LCP: the suspension is neutral and EKEF has no significant impact on 

the filtration flow rate, in this case adjusting pH value to increase the difference 

between pH and LCP values will improve the process and increase the impact 

possible from EKEF. 

In addition to the main water movement to the main outlet (WPD), there is also a 

movement toward the secondary outlet and the ratio of these two movements depends 

on the difference between pH and LCP values and presented by A/C ratio. This result 

means that neither the anolyte nor the catholyte should be ignored but at the same time 

the main outlet position must be chosen in a way that makes the water movement toward 

it supported by the sum of the affecting forces. 

6.4. Wider Commercial Implications  
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As mentioned in the conclusion, applying EKEF helped to increase dry matter content 

from 14% to 33.09% and 29.52% for OJ and from 20% to 34.2% and 32.14% for ME after 

5.5hrs under 30V and 15V respectively which is lower than the Brix degree of thermally 

produced concentrate orange juice (Clark et al., 2014). 

Furthermore, EKEF processes showed a good efficiency in energy saving compared to 

the power consumption required in more conventional thermal methods used to evaporate equal 

amount of water. This saving was up to 18.35 times and 47.34 times in OJ and ME dewatering 

respectively. 

The theoretical calculated energy required for thermal removal of water is 43kJ.mol-1, as 

quoted by Al-Asheh et al. (2004), and this means that power consumption increases in thermal 

process, as well as the negative impact of heat on the product quality compounds, as the amount 

of water required to evaporate increases, therefore, using electrokinetics as a first stage will 

help to decrease the negative impacts and the power consumption of the thermal process which 

may be used in later stages for achieving higher dry matter content. 

This present study showed that the main reason behind the negative impacts of EKEF on 

the food quality compounds is the heat produced at the electrodes and the slow flow rate of the 

secondary filtrate which is in a direct contact with the hot electrode. Therefore, using mixers or 

finding a way to cool down the temperatures of the electrodes will help avoiding the negative 

impact of EKEF in a commercial scale process. 

Also it should be taken into account that during the process, the electrical resistance 

increases gradually as the amount of water in each sample is reduced and subsequently the 

current across the sample is also reduced, which means that a higher voltage is required at the 

later stages of the process. For more efficiency and saving energy it is advisable to increase the 

voltage gradually which over time will save energy and help to avoid the increase of electrical 

resistance. 
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7.1. Study limitations 

This study set out to investigate the factors that could have a potential impact on the use 

of EKEF to dewater foodstuffs, as well as examining the potential impact of EKEF on the food 

quality compounds. 

The main limitation of this study was the time available; a large part of this study was 

spent designing and manufacturing the experimental rig. 

In addition, each experiment was run for 5.5h for OJ and 3.5h for ME; the large number 

of experiments needed to cover all study objectives and the duration of each experiment as well 

as the analysis time increased the difficulty of doing a large number of replications. Therefore, 

the replications were done for the main experiments only. 

Due to the high pressure used and the need for perfect sealing, the cell was designed in a 

way that does not allow taking concentrate samples over time, therefore all concentrate samples 

were the samples collected at the end of the experiments unlike the filtrate which was sampled 

each half hour over the experiment period. 

The other limitation is the scarcity of information about applying electrokinetics to 

foodstuffs; only a few researchers have examined the efficiency, feasibility and impacts of this 

process application and all of them were in the area of civil engineering. The only one study 

done on food was in food waste area to investigate the impact of electrokinetics on dewatering 

food waste and to compare the power consumption of the application with the power 

consumption needed to dewater the same volume of water using conventional thermal methods. 

In addition, there was difficulty in measuring the IEP value of OJ and ME; as a foodstuff 

is a large combination of different compounds and particles which have different IEPs. Most of 

the devices that are usually used to measure the IEP are calibrated for single specific compounds 

such as protein, lipid, polymer, etc. 

However, using the definition of IEP, another point was measured to show the potential 

pH where the net charge of the material (the combination of liquid and pulp) becomes almost 

neutral before turning to the opposite charge; analysis showed that at a specific pH value, 

conductivity shows the lowest value; this pH value is called in this study LCP (the lowest 

conductivity point). 
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In case of having enough repetitions, it is the author believe that time series analysis may 

reveal further answers in the data when comparing different results under different experimental 

conditions. 

7.2. Future Research Work 

This thesis focuses on the factors affecting the application of electrokinetics and the 

implications for future research, all these factors could be investigated separately in more 

details, and as a combination taking into account the interaction between these factors to find 

the best combination to run the application sufficiently. 

More research needed to prove which process is behind the discolouration and the reason 

of changes, and to measure whether there is an ions migration from electrodes. 

Also the shape of the cell could be modified to allow measuring the change in the 

concentrate properties over time and the cell length (sample layers). 

More repetitions are needed to show the reliability of these results and to do so each part 

could be studied separately as the required experiments and analytical procedures are highly-

time consuming. 

In addition, using EKEF process on a larger scale or even to a commercial scale is an 

important area to be covered in the future research. 
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Appendices 1 

The change in the weight of OJ bottom, top and total filtrates over time under three 

voltages (0, 15& 30V): 

 

Appendix 1.1. Change in the weight of OJ bottom, top and total filtrates over time under the control orientation 

(0.2µ filter, 0V, 4bar, 5.5 hours) 

 

Appendix 1.2. Change in the weight of OJ anolyte, catholyte and total filtrate the time under the normal 

orientation (0.2µ filter, 15V, 4bar, 5.5 hours) 
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Appendix 1.3. Change in the weight of OJ anolyte, catholyte and total filtrate over time under the normal 

orientation (0.2µ filter, 30V, 4bar, 5.5 hours) 

Appendices 2  

The change in the flow rate of OJ bottom, top and total filtrates over time under three 

voltages (0, 15& 30V, 0.2µ filter, 4bar, 5.5 hours): 

 

Appendix 2.1. Change in the flow rate of OJ bottom, top and total filtrates over time under the control 

orientation (0.2µ filter, 0V, 4bar, 5.5 hours) 
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Appendix 2.2. Change the flow rate of OJ anolyte, catholyte and total filtrate over time under the normal 

orientation (0.2µ filter, 15V, 4bar, 5.5 hours) 

 

Appendix 2.3. Change in the flow rate of OJ anolyte, catholyte and total filtrate over time under the normal 

orientation (0.2µ filter, 30V, 4bar, 5.5 hours) 
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Appendices 3 

The correlation between the OJ and ME filtrate flow rate and electric current intensity 

over experiment time under different conditions: 

 

Appendix 3.1. The correlation between OJ filtrate flow rate and electric current intensity over experiment time 

under 30V, a pressure of 4bar, 0.2µ filter and for 5.5 hours. Each value is expressed as mean ± standard 

deviation (n=3) 

 

Appendix 3.2. The correlation between OJ filtrate flow rate and electric current intensity over the experiment 

time under 15V, a pressure of 4bar, 0.2µ filter and for 5.5 hours. Each value is expressed as mean ± standard 

deviation (n=3) 
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Appendix 3.3. The correlation between ME filtrate flow rate and electric current intensity over the experiment 

time under 30V, a pressure of 4bar, 1µ filter and for 3.5 hours. Each value is expressed as mean ± standard 

deviation (n=3) 

 

Appendix 3.4. The correlation between ME filtrate flow rate and electric current intensity over the experiment 

time under 15V, a pressure of 4bar, 0.2µ filter and for 3.5 hours. Each value is expressed as mean ± standard 

deviation (n=3) 
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Appendices 4 

The change in the accumulative filtrates and filtrate flow rate of OJ samples with different 

pH values over time: 

 

Appendix 4.1. Change in OJ accumulative filtrates and filtrate flow rate over time under the application of 

EKEF with initial pH value=3.6 (normal orientation, 30V, 4bar, 1µ filter and 3hours duration) 

 

Appendix 4.2. Change in OJ accumulative filtrates and filtrate flow rate over time under the application of 

EKEF with initial pH value=5.0 (normal orientation, 30V, 4bar, 1µ filter and 3hoursduration) 
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The correlation between the change of the OJ anolyte, catholyte and total filtrate pH value 

and the flow rate over time under (normal orientation, 30V, 4bar pressure, 0.2µ filter and 5.5hr 

duration): 

 

Appendix 5.1. The change of the pH and the flow rate of OJ anolyte over time under (normal orientation, 30V, 

4bar pressure, 0.2µ filter and 5.5hr duration) 

 

Appendix 5.2. The change of the pH and the flow rate of OJ catholyte over time under (normal orientation, 

30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 

 

1.50

2.00

2.50

3.00

3.50

4.00

0

0.5

1

1.5

2

2.5

p
H

F
lo

w
 R

a
te

 (
g

/m
in

)

Time (hh:mm)

30V/4bar Anolyte

Flow Rate (g/min) ph

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0

0.5

1

1.5

2

2.5

p
H

F
lo

w
 R

a
te

 (
g

/m
in

)

Time (hh:mm)

30V/4bar Catholyte

Flow Rate (g/min) ph



Appendices                                                                                                                                                      . 

198 

 

 

Appendix 5.3. The change of the pH and the flow rate of OJ total filtrate over time under (normal orientation, 

30V, 4bar pressure, 0.2µ filter and 5.5hr duration) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

p
H

F
lo

w
 R

a
te

 (
g

/m
in

)

Time (hh:mm)

30V/4bar Total Filtrate

Flow Rate (g/min) ph



Appendices                                                                                                                                                      . 

199 

 

Appendices 6  

The running conditions of experiments done for each test: 

Test Experiments Material Orientation 
Volume 

(L) 
Voltage (V) 

Pressure 

(Bar) 

Time 

(Hour) 

Filter 

(µ) 

The voltage 

and pressure 

impact on 

WPD and A/C 

ratio 

Exp 1x3 OJ Control 1 0 2 5.5 0.2 

Exp 2 x3 OJ Normal 1 15 2 5.5 0.2 

Exp 3 x3 OJ Normal 1 30 2 5.5 0.2 

Exp 4 x3 OJ Control 1 0 3 5.5 0.2 

Exp 5 x3 OJ Normal 1 15 3 5.5 0.2 

Exp 6 x3 OJ Normal 1 30 3 5.5 0.2 

Exp 7 x3 OJ Control 1 0 4 5.5 0.2 

Exp 8 x3 OJ Normal 1 15 4 5.5 0.2 

Exp 9 x3 OJ Normal 1 30 4 5.5 0.2 

Exp 10 x3 ME Reversed 1 0 4 3.5 1 

Exp 11 x3 ME Reversed 1 15 4 3.5 1 

Exp 12 x3 ME Reversed 1 30 4 3.5 1 

The 

conductivity 

impact on 

dewatering 

efficiency 

    Conductivity (S)    

Exp 13 x3 OJ Normal 1 0.22 4 5.5 0.2 

Exp 14 x3 OJ Normal 1 0.33 4 5.5 0.2 

Exp 15 x3 OJ Normal 1 0.5 4 5.5 0.2 

The sample 

initial pH 

Value impact 

on the 

dewatering 

efficiency 

Pressure 4bar 

in all 
    pH   

Exp 16 x3 OJ Control 1 0 3.6 3 1 

Exp 17 x3 OJ Normal 1 30 1.5 3 1 

Exp 18 x3 OJ Normal 1 30 3.6 3 1 

Exp 19 x3 OJ Normal 1 30 5 3 1 

Exp 20 x3 OJ Normal 1 30 6.5 3 1 

The filter pore 

size on the 

dewatering 

efficiency 

Exp 1 x3 OJ Control 1 0 4 5.5 0.2 

Exp 2 x3 OJ Normal 1 15 4 5.5 0.2 

Exp 3 x3 OJ Normal 1 30 4 5.5 0.2 

Exp 21 x3 OJ Control 1 0 4 5.5 1 

Exp 22 x3 OJ Normal 1 15 4 5.5 1 

Exp 23 x3 OJ Normal 1 30 4 5.5 1 

Exp 24 x3 ME Control 1 0 4 2.5 0.2 

Exp 25 x3 ME Reversed 1 30 4 2.5 0.2 

Exp 10 x3 ME Control 1 0 4 2.5 1 

Exp 12 x3 ME Reversed 1 30 4 2.5 1 

The sample 

initial thickness 

on the 

dewatering 

efficiency 

Exp 26 x3 ME Control 0.5 0 4 2 0.2 

Exp 27 x3 ME Reversed 0.5 30 4 2 0.2 

Exp 1 x3 ME Control 1 0 4 2 0.2 

Exp 3 x3 ME Reversed 1 30 4 2 0.2 

Exp 28 x3 ME Control 1.5 0 4 2 0.2 

Exp 29 x3 ME Reversed 1.5 30 4 2 0.2 
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Test Experiments Material Orientation 
Volume 

(L) 
Voltage (V) 

Pressure 

(Bar) 

Time 

(Hour) 

Filter 

(µ) 

pH change under 

EKEF application 

Exp 1 x3 OJ Control 1 0 4 5.5 0.2 

Exp 2 x3 OJ Normal 1 15 4 5.5 0.2 

Exp 3 x3 OJ Normal 1 30 4 5.5 0.2 

Exp 10 x3 ME Control 1 0 4 3.5 1 

Exp 11 x3 ME Reversed 1 15 4 3.5 1 

Exp 12 x3 ME Reversed 1 30 4 3.5 1 

Vitamin C retention 

change  under EKEF 

application 

Exp 1 x3 OJ Control 1 0 4 5.5 0.2 

Exp 2 x3 OJ Normal 1 15 4 5.5 0.2 

Exp 3 x3 OJ Normal 1 30 4 5.5 0.2 

The dry matter 

content change  

under EKEF 

application 

Exp 1 x3 OJ Control 1 0 4 5.5 0.2 

Exp 2 x3 OJ Normal 1 15 4 5.5 0.2 

Exp 3 x3 OJ Normal 1 30 4 5.5 0.2 

Exp 30 x3 ME Control 1 0 4 3 0.2 

Exp 31 x3 ME Reversed 1 15 4 3 0.2 

Exp 32 x3 ME Reversed 1 30 4 3 0.2 
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Appendices 7  

 

 The experimental rig's parts: 

 

Appendix 7.1. The Cell (all parts) 



Appendices                                                                                                                                                      . 

202 

 

 

Appendix 7.2. The Main Tube Flange 

 

 

 



Appendices                                                                                                                                                      . 

203 

 

 

Appendix 7.3. The main Tube with the flange and (Studding, Nuts and Washers) 
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Appendix 7.4. The Piston 
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Appendix 7.5. The Piston with the main Tube and the Actuator Stroke 
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Appendix 7.6. The Top Cap Inner 
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Appendix 7.7. The Top Cap outer 
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Appendix 7.8. The Cell Top Part: Top Cap Inner, Top Cap Outer Plus Studding  
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Appendix 7.9. Top stainless steel plate 
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Appendix 7.10. Bottom stainless steel plate 

 

 

 
        

 
        


