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Abstract

Video-based single human tracking has found wide application but multiple

human tracking is more challenging and enhanced processing techniques are

required to estimate the positions and number of targets in each frame. In

this thesis, the particle probability hypothesis density (PHD) filter is there-

fore the focus due to its ability to estimate both localization and cardinality

information related to multiple human targets. To improve the tracking per-

formance of the particle PHD filter, a number of enhancements are proposed.

The Student’s-t distribution is employed within the state and measure-

ment models of the PHD filter to replace the Gaussian distribution because

of its heavier tails, and thereby better predict particles with larger ampli-

tudes. Moreover, the variational Bayesian approach is utilized to estimate

the relationship between the measurement noise covariance matrix and the

state model, and a joint multi-dimensioned Student’s-t distribution is ex-

ploited.

In order to obtain more observable measurements, a backward retrod-

iction step is employed to increase the measurement set, building upon the

concept of a smoothing algorithm. To make further improvement, an adap-

tive step is used to combine the forward filtering and backward retrodiction

filtering operations through the similarities of measurements achieved over

discrete time. As such, the errors in the delayed measurements generated by

false alarms and environment noise are avoided.

In the final work, information describing human behaviour is employed
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to aid particle sampling in the prediction step of the particle PHD filter,

which is captured in a social force model. A novel social force model is

proposed based on the exponential function. Furthermore, a Markov Chain

Monte Carlo (MCMC) step is utilized to resample the predicted particles,

and the acceptance ratio is calculated by the results from the social force

model to achieve more robust prediction. Then, a one class support vector

machine (OCSVM) is applied in the measurement model of the PHD filter,

trained on human features, to mitigate noise from the environment and to

achieve better tracking performance.

The proposed improvements of the particle PHD filters are evaluated

with benchmark datasets such as the CAVIAR, PETS2009 and TUD datasets

and assessed with quantitative and global evaluation measures, and are com-

pared with state-of-the-art techniques to confirm the improvement of multi-

ple human tracking performance.
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Chapter 1

INTRODUCTION

1.1 Video tracking

“The process of estimating over time the location of one or more objects using

a camera as a sensor is referred to as video tracking” - Emilio Maggio [3].

With the accelerated development of microelectronics and video analysis

algorithms, capturing video and obtaining desired information from video

frames is becoming increasingly easy. Such technology represents a step

towards machines that have the ability to see and understand their environ-

ment in an intelligent way automatically. One of the fundamental challenges

for intelligent machines to achieve this goal is to detect and track the objects

of interest, namely perform video tracking. During the past decade, the cre-

ation of new algorithms and applications for video tracking systems has been

accelerated by the rapid increase in computational power and the dramatic

improvement in both quality and resolution of imaging sensors such as cam-

eras, which have been applied in many areas, such as surveillance, security,

medical imaging, robotics, human identification, human-machine interaction

and assisted living in recent life [7, 8]. Some application contexts of video

tracking are represented in Fig. 1.1.

All these example applications require tracking of multiple objects, which

implies correctly detecting, identifying and finding the locations of desired

targets with the help of some noisy measurements acquired through sen-

sors. Besides the camera, other sensors have also been employed for track-

1
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(a) (b) (c)

(d) (e) (f)

Figure 1.1. Example video frames for different video tracking appli-
cation contexts, where (a) is tracking in an indoor environment; (b)
is from an outdoor monitoring system; (c) is as in an assisted living
system; (d) and (e) are for security in a train station and airport en-
vironment respectively and (f) is for competitive analysis in a football
match.

ing applications. For example, depth sensors such as Kinect have been used

for human-machine interaction, particularly in video applications [9]; wired

or wireless sensors, for example, laser based tracking systems have been

developed in the area of human surveillance and medical imaging applica-

tions [10, 11]; and audio signal based tracking can be used in human-robot

interaction techniques to improve the accuracy of interaction systems [12].

However, in this thesis, tracking based upon video sequences is employed be-

cause of its universal applicability and the rich information content of video

sequences, which can be used for tracking and identifying.

Most recent video-based multiple human tracking developments fall into

one of three categories: achieving a more accurate dynamic model for pre-

diction such as using an interaction model when predicting the position

and velocity of a target [5, 6]; generating more stable recursive mathemati-

cal models such as unscented Kalman filters and Markov Chain Monte Carlo
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(MCMC) particle filters; and searching for more accurate measurement mod-

els [13,14], for example, the tracking-learning-detection (TLD) [15] approach.

The almost universally accepted mathematical framework used to describe

multiple target tracking is that of filtering theory and, in particular, Bayesian

filtering [16]. Instead of tracking the exact location of multiple targets, the

Bayesian approach relies on estimating the probability distribution of the

state, which contains the location, velocity and size information of the tar-

get. In particular, the posterior probability distribution is recursively pre-

dicted by the knowledge of the state model in the prediction stage, which

describes the motion of a target as a prior distribution, after which, the

predictions are corrected when a new observation becomes available, namely

the updating stage [17]. In the case of video tracking, the pixels of a video

frame are employed to help update the predictions.

By employing Bayesian filtering video tracking methods, the tracker is

required to have the following capacities, namely to be able to:

• Estimate the location of each human target, which means the tracker

should output the location of each target at each time frame.

• Update the dynamic model in order to predict the target states, which

is used as the prior knowledge in the Bayesian filtering framework.

• Exploit the measurements of human targets in the processing, so that

corrections to the prediction results can be performed.

• Determine the number of targets at each time frame as human targets

may appear and disappear in the scenario; moreover, occlusions may

also cause a varying number of targets.

To achieve the above requirements of a human tracking algorithm, par-

ticular consideration should be given to: the non-rigid nature of the human

body and its non-linear movement and that when employing the Bayesian
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filtering framework, the tracking performance depends on the accuracy of the

measurement set, in particular, the environmental noise in the measurement

can cause failure of the tracker. To give solutions for the above requirements,

the aims and objectives of this thesis are listed in the next section.

In order to address the above challenges, particularly the problem of

varying number of targets, the random finite set (RFS) [18] concept and the

probability hypothesis density (PHD) filter which has been recently proposed

[19] will be exploited. Both the cardinality of the targets and their states

are estimated within the PHD filter, and thus it avoids the need for data

association techniques as part of the multiple target tracking framework

[20, 21]. Moreover, it mitigates the computational complexity issue which

often occurs in other multiple target tracking approaches such as multiple

hypothesis tracking (MHT) [3] since it simply utilizes the first-order moment

of the multi-target posterior rather than the posterior itself [22].

Although the particle PHD filter has mainly been employed in multi-

ple human tracking, there are several weaknesses within the particle PHD

framework which can be improved. First of all, in the traditional PHD filter

the prediction and updating model are assumed to be Gaussian distributed

and are independent from each other, which can be improved by exploiting

heavier-tailed distributions and combining the prediction model and updat-

ing model with a joint distribution. Secondly, by employing a backward step

in the particle PHD filter, more observable measurements can be obtained

which can improve the accuracy of the tracking system. Thirdly, the predic-

tion model for multiple human tracking can be improved by utilizing human

behaviour. Moreover, the measurement model can be made more robust to

environment noise.
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1.2 Aims and objectives

The overall aims of this thesis are to overcome the aforementioned weak-

nesses of the particle PHD filter and enhance its tracking performance. The

particular objectives are:

• Objective 1: Improving tracking performance by replacing the Gaus-

sian distribution in the traditional PHD filter by a Student’s-t distri-

bution

In Chapter 4, the Student’s-t distribution is employed in the prediction

and measurement models of the particle PHD filter, which can yield larger

amplitude particles because of its heavier tails compared with the Gaussian

distribution.

• Objective 2: Improving tracking performance by applying a joint dis-

tribution

In Chapter 4, the Student’s-t distribution is also employed as a joint

distribution between the covariance matrix of the measurement noise and

the state model, where a variational Bayesian step is used to estimate the

best solution for the measurement noise covariance.

• Objective 3: Improving tracking performance by applying the delayed

measurement adaptively

In Chapter 5, a retrodiction step is used to describe the backward smoother-

like step for the particle PHD filter, where the delayed measurement is em-

ployed in the particle PHD filter to obtain more observable measurements,

hence the tracking performance is improved. Moreover, after the retrod-

iction step, the forward and backward results are combined adaptively by

employing an adaptive parameter calculated by the similarity of the forward

and backward measurements, so further improvement is obtained.
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• Objective 4: Improving tracking performance by employing the human

behaviour in the prediction model

In Chapter 6, the social force model is employed to describe the human

behaviour in the tracking scenario, which is also used to calculate the likeli-

hood for the MCMC resampling step, after which, the predicted particles are

resampled by the MCMC, hence obtaining a more reliable prediction model

for the particle PHD filter.

• Objective 5: Improving tracking performance by applying an OCSVM

classifier in the updating step of the particle PHD filter

The measurement set can be affected by the environment noise in multi-

ple human tracking, therefore, in Chapter 6, the OCSVM classifier is applied,

which is trained by human features including histograms of colour and ori-

ented gradient. In this case, the environment noise in the measurement set

is mitigated and better tracking performance ensues.

1.3 Thesis outline

The outline of this thesis is listed as follows:

Chapter 2 includes a relevant literature review of visual multiple hu-

man tracking work, where different methods for multiple human tracking

are given. Moreover, different challenges associated with multiple human

tracking work are described, including varying number of targets, occlusions,

environment noises and state estimation. Different tracking algorithms are

discussed to address these challenges. Then multiple human tracking meth-

ods are categorized according to different aspects, where the application of

different categories as well as their advantages and disadvantages are given.

Chapter 3 focuses on the background preliminaries of visual based mul-

tiple human tracking. In this thesis, the Bayesian filtering algorithm is used
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as the fundamental tracking framework, which mainly contains prediction

and updating processes. Based upon the concept of the Bayesian filtering

algorithm, two commonly used filters, namely the Kalman filter and the par-

ticle filter are introduced in this chapter. In order to address the challenge of

varying number of targets, the PHD filter is employed and is also described

in detail in this chapter. At the end of the chapter, the datasets used for

evaluation in this thesis and the evaluation measures are given.

Chapter 4 satisfies the first and second objectives of this thesis, the

Student’s-t distribution is firstly employed to replace the Gaussian distribu-

tion in the prediction and updating stages due to its heavier tails. In order

to achieve further improvement, the Student’s-t distribution is used as a

joint distribution between the covariance matrix of measurement noise and

the state model, where a variational Bayesian approach is used to estimate

the best solution of the measurement noise, hence the tracking accuracy is

improved.

Chapter 5 employs an adaptive Retro-PHD filter to improve the tracking

performance. The smoothing algorithm is first explained, based on the con-

cept of the backward smoothing method, then a backward method for a non-

linear non-Gaussian particle PHD filter is proposed, namely the Retro-PHD

filter, where the delayed measurement is employed to obtain more observable

measurements. Moreover, after obtaining the retrodiction filtering results,

an adaptive step is employed, where the adaptive weight is calculated by

the similarity of the measurement achieved to correct the tracking results

from both forward filtering and backward retrodiction steps, and hence can

improve the tracking performance.

In Chapter 6, the tracking performance is improved by enhancing both

the prediction and updating steps of the particle PHD filter. The social force

model is employed to describe the human behaviour which aids the prediction

of the state model; moreover, an MCMC resampling step is employed to
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resample the predicted particles with the aid of results from the social force

model, in this way, a more accurate particle set is obtained from prediction.

In the updating step, an OCSVM classifier is employed to calculate the

likelihood for the particles, which is trained by the histograms of colour and

oriented gradient of human features to mitigate the environment noise from

background subtraction. Evaluation comparisons confirm the improvement

of the proposed tracking method over other state-of-the-art techniques.

Finally, conclusions are drawn, and future work is then discussed in

Chapter 7.



Chapter 2

RELEVANT LITERATURE

REVIEW

2.1 Introduction

In video-based multiple human tracking work, a video tracker estimates the

target location by capturing target information in the form of sets of image

pixels and modelling the relationship between the appearance of the target

and its corresponding pixel values [3]. Besides the position of the targets,

such relationship between the human targets and their image projections

also depends on other factors, such as the velocity and size information of

the targets, which makes multiple human tracking a difficult task. Differ-

ent tracking methods have been proposed to give the solutions for multiple

human tracking work in the literature. In this chapter, the challenges of

video-based multiple human tracking work are discussed firstly, followed by

different relevant solutions for each of them, then the components and dif-

ferent designs of video trackers are reviewed.

2.2 Challenges associated with multiple human tracking

To design a video-based multiple human tracker, the challenges are mainly

related to four aspects [3]: the varying appearance of the human targets,

which correspond to the changes of pose, velocity, ambient illumination and

9
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colour information of targets; the similarity in appearance between the target

and other objects and background, which commonly results in clutter and

noise in the processing context; varying number of targets over time; and

occlusions, which can be classified as partial occlusions and full occlusions.

Fig. 2.1 represents some example challenges within video-based multiple

human tracking work.

(a) (b) (c)

(d) (e) (f)

Figure 2.1. Example video frames for challenging cases in video-based
multiple human tracking, where in (a) and (b) a target changed its pose
and therefore the appearance is changed in the camera; the ambient
illumination changes within the frame which cause the failure of detec-
tion for one target in (c); (d) is an example of the clutter challenge,
where the bin in the frame shares a similar colour with the target and
therefore distracts the tracker from the desired target of interest; (e)
and (f) are examples for full and partial occlusion respectively, which
may cause missed detections for the tracker. Figures (a) and (b) are
sequences from the PETS2009 dataset [1] while others are from the
CAVIAR dataset [2].

In the following subsections, the main challenges for video-based multiple

human tracking work related to this thesis are studied, and their different

relevant solutions are discussed.



Section 2.2. Challenges associated with multiple human tracking 11

2.2.1 Varying number of targets

Compared with the single target tracking work, multiple human tracking

work has the particular challenge of varying number of targets, which can

change with time, caused by new targets entering, or existing targets leaving

the view of the video camera.

Many developments have been proposed recently to address the chal-

lenge of variable number of targets in video based multiple human tracking

work. For instance, a reversible jump MCMC sampling technique is pro-

posed in [23] to solve the varying number of targets problem, where the

concept of Bayesian multiple-blob tracker [24] is employed to describe the

set of identifiers of targets and hence provide the targets number. However,

this method requires a strong assumption that the targets are restricted to

enter and or leave from a very small region in the video frame. The method

of combining the Bayesian filtering and clustering approaches is used in [25],

which estimates the target number based on the number of detected clusters

and produces multiple clusters per frame, but the accuracy of performance is

limited since non-rigid human bodies may cause failure in detection. Based

upon the concept of the random finite set (RFS) [18], the multiple hypothesis

filter (MHT) [26] is proposed to track multiple targets with varying cardinal-

ity, with the basic idea to delay a decision regarding the assignment of an old

trajectory to a new measurement, which is based upon the assumption that

the targets generate independent measurements. The MHT method can also

give a solution to data association, which is present in the video based mul-

tiple human tracking work framework, however, with the increasing number

of targets, the computational complexity of the tracker grows exponentially,

which is also a common problem for the tracking methods introduced above.

In order to avoid this problem, based upon the concept of RFS, the PHD

filter is proposed, which simply utilizes the first-order moment of the multi-

target posterior distribution rather than the posterior itself [22] for multiple
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target tracking, and is the focus of this thesis. Besides the PHD filter, the

multi-Bernoulli filter [27] is also proposed for multiple human tracking, par-

ticularly to provide a solution for varying number of targets by employing the

multi-Bernoulli recursion as a tractable approximation to the Bayes multiple

target recursion under low clutter density scenarios [28,29].

In this thesis, the PHD filtering algorithm is chosen because of its ability

to cope with the challenge of varying number of targets in multiple human

tracking, and also its relatively low computational complexity.

2.2.2 Occlusion

Besides the challenge of a varying number of targets, occlusion is also a po-

tential problem for multiple human tracking, where human targets can be

occluded by other targets or objects of no interest. Many researchers have

given solutions to this challenge. One of the methods is to use multi-cameras

in video-based tracking work as proposed in [30–32], however, exchanging of

information is required between cameras which needs additional processing

and results in the requirement of higher processing speed. Another method

to overcome the occlusion challenge is to use 3-D calibration information,

which is different from the 2-D tracking system which mainly depends on

the appearance models of human targets. For example, in [33], a generative

model is used to describe the shape, appearance and motion of the human

body, and then use the 3-D articulated model is used for tracking. Apart

from the above approaches, information from other sensor besides the video

camera has also been considered for tracking. For instance, the audio local-

ization methods [34–36] are widely used to aid video tracking because the

audio generally remains unaffected during visual occlusions. However, the

human targets are required to be speaking during the period when occlu-

sion happens. Interaction models such as social force model [5, 6] are also

employed to mitigate the influence from occlusion by introducing human
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behaviour in the tracking systems. This solution works well when multiple

targets do not occupy the same space, however, they fail to overcome the

inter-target occlusions when targets crossover with other targets or objects.

2.2.3 Clutter

Clutter can also influence the tracking accuracy, which is caused by the sim-

ilarities of objects in the background with the desired targets. The most

commonly used method to address this problem by employing a classifier to

distinguish the clutter and the targets. For example, A dictionary learning

method for multiple human tracking is proposed in [37], where the dictionary

is pre-trained by human features. Then it is used for the likelihood calcula-

tion for the desired targets; this method requires prior knowledge about the

human targets. Another widely used method is to use different features to

describe the human targets. For instance, besides the colour and gradient

information, human poses can also be employed to better discriminate hu-

man targets from background information [38]; moreover, by employing an

online classifier [39], the observation measurement can be updated overtime,

hence the tracking system can further overcome the clutter problem with

a more accurate measurement set, thus the improved tracking performance

ensues.

In this section, the main challenges as well as the developments to ad-

dress them has been discussed. In the next section, necessary components

required to design a video tracker, which can also give solutions to the above

challenges are introduced.

2.3 Main components and relevant solutions

As introduced in [3], the main goal to design a video tracker is to model

the relationship between the appearance model and its corresponding pixel



Section 2.3. Main components and relevant solutions 14

values, in particular to address the challenges discussed in Section 2.2. Most

video trackers contain the main logical components as: feature extraction,

target representation, localisation and track management [3], which can be

shown as Fig. 2.2.

Figure 2.2. Common frame chart for video tracking, which shows the
main logical components of video tracking systems [3].

In this section, following the main components described in Fig. 2.2,

different developments to achieve the required components are given and

discussed.

2.3.1 Feature extraction

Human targets from video sequences can be easily captured by human be-

ings, however, for a machine, it is much more difficult to achieve this goal.

Hence extracting relevant features for targets is important in video-based

human tracking work, which can be used as observation in the measure-

ment model. Many approaches have been developed for feature extraction.

For example, low-level features such as colour [40] or gradient information

are commonly used as human features, which can carry important informa-

tion about the appearance of objects of interest. This method can be easily

achieved by simple processing of the obtained video frames from the camera,

however, the accuracy is limited since it can be affected by clutter and noise
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from the background. Mid-level features such as interest points and edges

have also been widely used as human features, such as the Scale-invariant

Feature Transform (SIFT) [41] method. It can be used as a robust feature

because it is detectable under changes in image scale, noise and illumina-

tion. Besides the low and mid level features, the feature extraction step can

also be achieved by the detection of change, object classification and motion

classification. For instance, the popular deep learning methods have been

considered to be employed in the video-based tracking framework [42, 43],

where with a hierarchical learning method is used to train the classification

system, the natural progression structures trained from low level to high

level of human features [44]. However, the deep learning methods require a

large number of training datasets and the computational complexity is high

due to the training of multiple layers in deep learning networks.

In this thesis, the main target is to improve the tracking algorithm to

improve the performance in terms of tracking accuracy both in terms of

localization error and determining the cardinality of targets, whilst reducing

the computational complexity.

2.3.2 Target representation

The representation of targets gives the characteristics of the target to be used

by the tracker, where the information of appearance and shape of targets

can be included.

As mentioned in [3], the challenge of target representation is the trade-

off between the invariance and the accuracy of description of human targets,

so a robust representation method should be descriptive enough to have the

ability to distinguish clutter and false alarms, while allowing a degree of

flexibility to handle the change of pose, position, environment and partial

occlusions.

For example, to represent human targets with shape information, three
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kinds of models can be employed: basic models, articulated models and de-

formable models [3]. Basic models such as point approximation [45], area

approximation [46] and volume approximation [47] use single points, bound-

ing area and 3-D shape to represent human targets respectively; in particular,

when applying the spatial volume approximation method, the challenge of

occlusion can be handled with the estimation of the relative position with

respect to the camera by giving camera calibration information. Besides

the basic models, articulated models and deformable models are commonly

employed [3], where the articulated models use topological connections and

motion constraints of rigid models to represent targets, and deformable mod-

els employ fluid, contours and point distribution to represent targets and can

solve the problem of limitation of prior information in the above two models.

Apart from the shape information, appearance representation methods

can also be employed to describe the targets in human tracking [3], they

are models of the expected projection of the target appearance onto the

video frames. By employing the appearance model, a likelihood function is

usually formulated to calculate the similarity of the appearance model and

the particular target states. The advantage of using this likelihood function

based method is its smoothness, which allows small variations in the target

position and size.

2.3.3 Track management and localisation

Another important step in video based human tracking is track managing

and localisation, which is the link between the target states and their mea-

surement models. Methods to achieve this step can be separated into three

categories: firstly, the trackers which rely on the detection of targets in every

video frame, for example, methods described in [48,49]; secondly, the track-

ers which use a state transition model to predict the targets states, then

when the latest measurements are received, the predictions are updated and
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the tracking results are obtained, as in the algorithms in [4, 23, 50]; and the

third category is to use a basic detection technique to obtain the locations

of targets [25]. Methods in the first category use detectors to generate ini-

tial tracking estimations, then targets over different frames are linked by

employing further strategies such as an appearance model; however, these

methods may fail in the situations when an occlusion happens; one way to

overcome this challenge is to employ large amounts of training data to train

the detector, which makes the tracker slow. The second category builds on

the prediction and updating of target states, where the interaction mod-

els and robust state transition models can be employed within the tracking

framework to obtain more robust tacking performance. Methods in the third

category only depend on the results from detection, such as background sub-

traction, which can give solutions to close interactions, however, the tracker

will fail because of clutter and occlusions.

The work in this thesis depends on the Bayesian filtering based track-

ing algorithm, which mainly falls into the second category. In the Bayesian

filtering framework, the unknown posterior probability density function is

estimated recursively over time using incoming measurements and a math-

ematical processing model. When compared with other tracking methods

such as the tracking learning and detection (TLD) approach [15] and mean

shift tracking method, the Bayesian tracking method attains advantages by

employing the prior knowledge of the targets and recursively updating the

posterior of the target distribution. When employed in tracking, Bayesian

filters mainly contains two parts: the state model which is used for dynamic

prediction and the measurement model, which is employed for making cor-

rection for target states [51]. Two fundamental tracking algorithms based

upon the Bayesian filtering algorithm are the Kalman filter and particle filter;

the Kalman filter has best performance when the models are Gaussian and

linear. However, when the state and measurement models are non-Gaussian
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and nonlinear, the extended Kalman filter [51] and the unscented Kalman

filter can be employed to solve the problem caused by the non-Gaussian and

nonlinearity. Moreover, the particle filter was also designed to give a solution

for this problem [52]. However, although the Kalman filter and particle fil-

ter can perform well for single target tracking, however, they are not always

able to associate measurements with particular targets for multiple human

tracking. As introduced in Section 2.2.1, researchers have proposed many

tracking methods for multiple target tracking, for example multiple hypoth-

esis tracking (MHT) and joint probability data association (JPDA) tracking,

but the computational complexity grows exponentially with increase in tar-

get number; in this case, the PHD filter, where only the first moment of the

posterior probability density function rather than the whole posterior is em-

ployed, is chosen to be the basic tracking method in this thesis. Moreover,

in order to cope with the non-Gaussian and nonlinear measurement model,

the particle filtering based PHD filter is employed.

Improvement in the performance of Bayesian based tracking is mainly

obtained from two aspects: enhancing from the state model or the mea-

surement model. For the state model, approaches such as the dynamic ap-

pearance model, kinematic model or Langavine model [3] can be employed

to describe the evolution of the states of human targets more accurately.

Moreover, the interaction of human targets can also be employed to enhance

the state model, for example, the social force model [5], which considers the

interactions between human targets. Besides the state model, improvement

from the measurement model can also improve tracking performance. In hu-

man tracking work, the main target of the measurement model is to represent

the target from the prior information within the state model. As introduced

in Section 2.3.2, different levels of features including ones from deep belief

networks can be employed to aid the accuracy of the measurement model.
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2.4 Summary

In this chapter, the challenges associated with video-based multiple human

tracking along with the main components of the video tracking framework

were presented and discussed. Firstly, different algorithms which can be

employed to cope with the challenges as well as their advantages and disad-

vantages were studied. In the second part of this chapter, the main compo-

nents to build the video tracker were presented, then different methods to

obtain each component were briefly summarized. From the large number of

algorithms in the literature reviewed in this chapter, the requirements of a

robust video-based multiple human tracking can be summarised as to

• handle the varying number of targets and estimate the target number

over time;

• cope with clutter and false alarms caused by the similarities of objects

from background;

• give solutions to the failures caused by occlusions.

Therefore, the focus of this thesis is to achieve these abilities and achieve

the above requirements.

In the next chapter, the background preliminaries of the tracking tech-

niques which will be used in the thesis will be presented.



Chapter 3

BACKGROUND

PRELIMINARIES

3.1 Introduction

In this chapter, the background material related to the problem of multi-

ple human tracking investigated in this thesis will be introduced. Many

researchers have proposed multiple human tracking methods in different ar-

eas, such as computer vision, video signal processing and in wearable sensor

technology [3]. In this thesis, the target is to achieve a more robust mul-

tiple human tracking system by exploiting video signal processing. Section

3.2 describes the Bayesian approach for state estimation type tracking al-

gorithms. Based on the fundamental Bayesian approach, two basic tracking

methods, the Kalman filter and particle filter are given in Section 3.3. In

Section 3.4 a more robust particle filtering algorithm, which is called the

Markov chain Monte Carlo (MCMC) particle filter is explained. In Section

3.5, based upon the random finite set (RFS) concept, the particle PHD filter

is explained. At the end of this chapter, evaluation sequences from three

different datasets as well as the performance evaluation criteria employed in

this thesis for making comparison between different tracking algorithms are

introduced.

20
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3.2 Bayesian estimation approach for tracking

In multiple human tracking, the primary objective is to estimate the states

of targets. In this thesis, the Bayesian approach is employed to estimate

the states of targets. The state for one target in video frame k is defined

as xk, which includes its location {x, y}, its component velocities {vx, vy}

and its size {h,w}. The goal is to track the state of every target during the

monitoring interval k, which is achieved with the aid of the measurement

zk obtained at a sensor. In this thesis, a video camera is used as the sensor

for multiple human tracking. In this case, the measurement zk is composed

of features such as the gradient and colour histogram information captured

from the frames measured by the video camera after background subtrac-

tion. In every video frame k, target state xk is tracked with the aid of the

measurement zk.

In the Bayesian filtering tracking model, the state estimation problem

corresponds to estimating the probability distribution p(xk|zk) with the aid

of current and past measurement {zk, z1:k−1} sequentially, where z1:k denotes

the measurements from frame 1 to k. The estimation includes two main

stages: prediction and updating. In the prediction step, the target state x̂k

is estimated with the prior knowledge of the previous state estimate xk−1

and the transition function f , which can be described as [16,53]

x̂k = f(xk−1,wk) (3.2.1)

where ·̂ denote the estimated state value from the prediction and wk is the

prediction noise vector. After predicting the new state, the estimated states

are updated with the aid of the measurement zk, which can be formulated

as

zk = h(x̂k,vk) (3.2.2)
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where h is the measurement transition function and vk is the measurement

noise vector. By assuming that the initial PDF p(x0|z1) ≡ p(x0), then in the

prediction stage of the Bayesian filtering framework, model (3.2.1) is invoked

to obtain the prior PDF of the state at time k via the Chapman-Kolmogorov

equation [16]

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.2.3)

Then when a measurement zk is available, the update step of the tracking

system, namely calculating the posterior PDF, is obtain via Bayes’ rule [16]

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

(3.2.4)

where p(zk|xk) is the likelihood function, and from (3.2.4), the measurement

zk is used to modify the prior density to obtain the required posterior density

of the current state.

A graphical representation of the Bayesian filtering model is described

in Fig. 3.1 wherein the state is evolving from left to right.

Figure 3.1. Graphical representation of the state and measurement
evaluation within Bayesian filtering.

In the following section, based upon the concept of Bayesian filtering,

two fundamental tracking methods, the Kalman filter and particle filter will

be introduced.
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3.3 Kalman and particle filtering

In the following two sections, Kalman and particle filtering are introduced.

3.3.1 Kalman filtering

The Kalman filter has been widely used by many researchers because of

its optimal minimize mean square error (MMSE) performance within Gaus-

sian and linear environments. Based upon the Bayesian filtering framework,

the Kalman filter involves five main steps: prediction, calculating the mini-

mum prediction mean square error (MSE) covariance matrix, calculating the

Kalman gain matrix, correction and updating the MSE covariance matrix.

The state and measurement models are assumed to be Gaussian and linear

with the state and measurement transition matrices F and H respectively.

By assuming that the noise vectors vk and wk in models (3.2.1) and (3.2.2)

are Gaussian and are distributed as vk ∼ N (0,Pk) and wk ∼ N (0,Rk), the

distribution of the state can be defined as N (xk; mk,Pk), which is a Gaus-

sian density with argument xk, mean mk and covariance Pk, the Kalman

filtering algorithm, which can be derived from the state and measurement

models of the Bayesian filtering algorithm, can be described by the following

recursive relationships [51]:

p(xk−1|z1:k−1) = N (xk−1; mk−1,Pk−1) (3.3.1)

p(xk|z1:k−1) = N (x̂k; m̂k, P̂k) (3.3.2)

p(xk|z1:k) = N (xk; mk,Pk) (3.3.3)

where

m̂k = Fmk−1 (3.3.4)

P̂k = Qk−1 + FPk−1F
T (3.3.5)
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mk = m̂k + Kk(zk −Hm̂k) (3.3.6)

Pk = P̂k −KkHP̂k (3.3.7)

and the Kalman Gain matrix Kk at time k is calculated as [51]

Kk = P̂kH
T (HP̂kH

T + Rk)
−1 (3.3.8)

A graphical representation of the Kalman filtering model is given as Fig.

3.2 [51] The Kalman filter is widely employed in tracking work because it is

Figure 3.2. Graphical representation of Kalman filtering

optimal in the MMSE sense in the linear and Gaussian environment, more-

over, with a non-linear model, the extended Kalman filter has also been

proposed to use a local linearization of the equations as a sufficient descrip-

tion of the nonlinearity [51]. However, in a non-linear and non-Gaussian

environment, (3.3.1) to (3.3.8) can not be derived accurately because of the

approximation errors during the Jacobian step accumulating over sample

times, hence in this thesis the particle filter is used as a fundamental filter-

ing algorithm.

3.3.2 Particle filtering

Based on the concept of the sequential Monte Carlo algorithm, the key idea

of the particle filter is to represent the required posterior density function

p(xk|zk) by a set of random samples {xik, wik}Ni=1 with associated weights



Section 3.3. Kalman and particle filtering 25

and to compute estimates based on these samples and weights, where N is

the number of particles employed to represent the target states [16].

A discrete weighted sample set is employed to approximate the true pos-

terior PDF p(xk|zk) [16], where the weights are chosen using the principle of

importance sampling [52]. Suppose p(xik) ∝ π(xik) as a probability density

from which it is difficult to draw samples but for which π(xik) can be eval-

uated. Then let particle samples xik ∼ q(xk), i = 1, ..., N , be samples that

are easily generated from a proposed distribution q(.), which is called the

importance density, then a weighted approximation p(·) to the density q(·)

can be given by:

p(xk) ≈
N∑
i=1

wikδ(xk − xik) (3.3.9)

where the weights of the samples can be described as:

wik ∝
π(xik)

q(xik)
(3.3.10)

which are the normalized weights of the particles. In this way, when the

particle xik is drawn from the importance density q(xk|z1:k), the weights of

the particle can be calculated as:

wik ∝
p(xik|z1:k)

q(xik|z1:k)
(3.3.11)

When returning to the sequential case, at each iteration, the target is

to sample an approximation to p(xk−1|z1:k−1) and then to approximate

p(xk|z1:k) with a new set of samples, so that the importance density can

be factorized as [52]

q(xk|z1:k) , q(xk|xk−1, z1:k)q(xk−1|z1:k−1) (3.3.12)

then samples xik ∼ q(xk|z1:k) can be obtained by augmenting each of the

existing samples xik−1 ∼ q(xk−1|z1:k−1) with the new state xik.
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By employing the Bayesian filtering framework (3.2.3) and (3.2.4), the

posterior pdf p(xk|zk) can be calculated as [16]

p(xk|z1:k) =
p(zk|xk, z1:k−1)p(xk|xk−1)p(xk−1|z1:k−1)

p(zk|z1:k−1)

=
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
× p(xk−1|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(xk−1|zk−1).

(3.3.13)

When combining equations (3.3.12) and (3.3.13) above into (3.3.11), the

relationship between the weight of the current particle and its previous value

can be calculated as:

wik ∝ wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
(3.3.14)

and the posterior filtered density p(xk|zk) can be approximated as:

p(xk|zk) ≈
N∑
i=1

wikδ(xk − xik) (3.3.15)

There are many methods to draw samples xik from the importance density

q(·) [52], here two such choices are described in detail.

Optimal choice

For the optimal choice, the importance density is equal to the posterior

density, which can be described as [52]:

q(xk|xik−1, zk)opt = p(xk|xik−1, zk) =
p(zk|xk,xik−1)p(xk|xik−1)

p(zk|xik−1)
(3.3.16)

in this case, the weight of the particle can be obtained as below:

wik ∝ wik−1p(zk|xik−1)

= wik−1

∫
p(zk|xik)p(xk|xik−1)dxik

(3.3.17)
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Using a Gaussian model to represent the importance density q(xk|xik−1, zk)

in this importance choice, as in the Kalman filter [54], two models are ex-

ploited, one is the state model and the other is the measurement model:

xk = Fxk−1 + vk (3.3.18)

zk = Hkxk + wk (3.3.19)

where (3.3.18) represents the state evolution model of the particle filter and

(3.3.19) represents the measurement model. In this case, the optimal impor-

tance density and posterior density are Gaussian, that is:

p(xk|xk−1, zk) = N(xk; ak,Σk) (3.3.20)

p(zk|xk−1) = N(zk; bk,Sk) (3.3.21)

where ak denotes the mean of the particles and Σk denotes the covariances

matrix of the noise; bk denotes the mean of the measurement particles and

Sk denotes the covariance matrix of the measurement noise [55]

ak = Fxk−1 + ΣkH
T
kR−1

k (zk − bk) (3.3.22)

Σk = Qk −QkH
T
k S−1

k HkQk (3.3.23)

Sk = HkQkH
T
k + Rk (3.3.24)

bk = HkFxk−1 (3.3.25)

However, for many models, such analysis equations are not possible be-

cause of their Gaussian and linear requirement. Another option was pro-

posed in [52], which is known as the suboptimal importance density selection

for particle filtering.
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Suboptimal choice

In this thesis, the suboptimal choice for the importance density is used,

where the prior distribution of particle states is chosen to be the importance

density, which can be described as follows [52]:

q(xk|xik−1, zk)sub−opt = p(xk|xik−1) (3.3.26)

so the posterior density is simply:

p(zk|xk−1) = N (xk; fxk−1,Qk−1) (3.3.27)

and the weights can be calculated as:

wik ∝ wik−1p(zk|xik) (3.3.28)

By solving the above equations, the particle set {xik}Ni=1 associated with

their weights {wik}Ni=1 at time k can be obtained, moreover, in this way,

the choice can avoid the requirement that the state and measurement be

Gaussian and linear, hence it has much wider potential application.

Resampling

By employing the particle filtering algorithm described above, one common

problem is the degeneracy phenomenon [16], where after a few iterations,

all but one particle will have negligible weight but the variance of the im-

portance weights can only increase over time, thus causing the problem of

degeneracy. One popular measure of degeneracy of the algorithm is the

effective sample size Neff , which can be calculated as [52]

Neff =
1

N∑
i=1

(wik)
2

(3.3.29)
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A smaller value of Neff indicates a larger degeneracy; when all the particles

have uniform weights, Neff should be equal to the number of particles N .

The solution for this problem is known as resampling [52].

Suppose the importance sampling approximation of the target distribu-

tion p(xk|zk) is represented as p̂(xk|zk), which is based on the weighted

samples from the importance density q(xk|zk), the resampling process elim-

inates the samples with low weights and concentrates on the samples with

high weights. The resampling process generates N samples from the approx-

imated probability distribution p̂(xk|zk) and assigns equal weights 1/N to

every particle. The pseudocode is shown in Algorithm 3.1 [52]:

Algorithm 3.1 Resampling Algorithm for particle filtering

Input: {xik, wik}Ni=1.
Output: {xj

∗

k , w
j
k, i

j}Nj=1.
1: Initialize the cumulative sum of weights (CSW): c1 = w1

k

2: for i = 2 : N do
3: Construct CSW: ci = ci−1 + wik
4: end for
5: Start at the bottom of the CSW: i = 1
6: Draw a starting point from a uniform distribution: µ1 ∼ U [0, N−1]
7: for j = 1 : N do
8: Move along the CSW: µj = µ1 +N−1(j − 1)
9: while µj > ci do

10: ∗i = i+ 1
11: end while
12: Assign sample: xj

∗

k = xik
13: Assign weight: wjk = N−1

14: Assign parent: ij = i
15: end for

In a summary, the pseudocode for the whole algorithm for the particle

filter is shown in Algorithm 3.2 [52], where the particles are sampled from

the prediction stage, then after calculating the likelihood of the particle, the

updating stage is employed to update and obtain the target state at the

current time. After the above steps, the resampling step is employed to

avoid the problem of degeneracy.
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Algorithm 3.2 Pseudocode for Particle Filtering

Input: {xik−1, w
i
k−1}Ni=1.

Output: {xik, wik}Ni=1.
1: for i = 1 : N do
2: Draw particle xik with importance density function.
3: Calculate ŵik with (3.3.14).
4: end for
5: for i = 1 : N do

6: Normalize: wik = wik/
N∑
i=1

wik

7: Resample as Algorithm 3.1.
8: end for

3.4 MCMC particle filtering

In the traditional particle filter, importance sampling is used in the sample

selection step. Another approach is to apply a Markov Chain Monte Carlo

(MCMC) approach in the sampling step, which is called the MCMC particle

filter [23]. By building a Markov chain, the MCMC particle filter explores the

posterior distribution, and thus can obtain more accurate tracking results.

As described in [56], during the MCMC resampling, a particle xik is

propagated to a new state xi∗k based on the following model

xi∗k = xik + q (3.4.1)

where q denotes a zero-mean Gaussian noise vector. From the Metropolis-

Hastings acceptance probability [52], the acceptance ratio is calculated as

α = min

{
1,
p(zk|xi∗k )p(xi∗k |xk−1)q(xik|xi∗k )

p(zk|xik)p(xik|xmk−1)q(xi∗k |ik)

}
. (3.4.2)

Since in this thesis, q(·|xik) is symmetric in its arguments, that is:

q(xi∗k |xik) = q(xik|xi∗k ) (3.4.3)
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the acceptance ratio α can be calculated as:

α = min

{
1,
p(zk|xi∗k )p(xi∗k |xk−1)

p(zk|xik)p(xik|xk−1)

}
. (3.4.4)

The state to be preserved is determined by drawing a point j from a

uniform distribution. If j < α then the new state xi∗k is retained, otherwise

it is rejected.

Figure 3.3. Graphical representation of the MCMC particle filtering.

Fig. 3.3 shows the steps of the MCMC particle filtering algorithm, where

a particle x̂ik predicted from the state model is chosen as the initial value of

the Markov chain. Then a posterior PDF is obtained in the form of weighted

samples [23]. After calculating the acceptance ratio α for each particle and

discarding the burn-in samples [23], more robust particles are obtained by the

MCMC particle filter, hence more accurate tracking results can be obtained.

The example pseudocode of this MCMC particle filter for target m is then

summarised as Algorithm 3.3, where the inputs are the predicted particles

for target m and the output is the posterior distribution, and B denotes the
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number of burn-in period particles.

Algorithm 3.3 MCMC particle filtering

Input: {xik−1, w
i
k−1}i=Ni=1

Output: {xik, wik}i=Ni=1

1: Initialize the Markov chain by the predicted particles from the state
transition function using the states of the target at k − 1.

2: for i = 1:N +B do
3: Propagate xi∗k from xik with (3.4.1).
4: Compute α with (3.4.4).
5: Draw a point j from a uniform distribution.
6: if j < α then
7: retain the new state: xik = xi∗k .
8: else reject the new state.
9: end if

10: end for
11: Discard the first B particles of the iterations.

The previous sections introduced the fundamental method for multiple

target tracking, however, video based multiple human tracking often involves

the problem of varying number of targets. To address this challenge, the

particle PHD filter is employed in this thesis.

3.5 Particle PHD filtering

In multiple target tracking problems, the common problems are variable

number of targets and occlusion; the probability hypothesis density (PHD)

filter was therefore proposed to overcome the problem of a variable num-

ber of targets. In this section, the random finite set (RFS) approach for

multiple targets is described firstly, and then, the first order moment of an

RFS, known as the PHD, is propagated, namely the intensity, instead of the

posterior density, to yield the particle PHD filter.

3.5.1 Random finite set

An RFS provides a principled solution to the problem of extension of the

uncertainty modelling to the cardinality of the state set Xk, which contains
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the state of all Mk targets at time k, where Xk = {xmk ,m = 1, ...,Mk},

and the observation set Zk [57], which contains all the observations obtained

from the video camera at time k. An RFS is a set where [3]:

• The elements are random stochastic processes.

• The set cardinality is also a stochastic process.

Compared with existing solutions such as multiple hypothesis tracking

(MHT) [3], the RFS method presents a more effective way to deal with

the birth of new targets, clutter, missing detection and spatial noise, it can

integrate spatial and temporal filtering in a single Bayesian framework. As

it is described in [3], let Ξk be the RFS associated with the multi-target state

Ξk = Sk(Xk−1)
⋃

Bk(Xk−1)
⋃

Γk (3.5.1)

where Sk(Xk−1) denotes the RFS of survived targets, Bk(Xk−1) denotes the

targets spawned from the previous set of targets Xk−1 and Γk is the RFS

of the new-born targets. By generalizing the single target recursive Bayes

filter, the multiple prediction and update recursive equations for the RFS

can be written as

p(Xk|Zk−1) =

∫
p(Xk|Xk−1)p(Xk−1|Zk−1)µ(dXk−1) (3.5.2)

p(Xk|Zk) =
p(Zk|Xk)p(Xk|Zk−1)∫

p(Zk|Xk)p(Xk|Zk−1)µ(dXk)
(3.5.3)

where p(Xk|Zk) is the multi-target posterior density at time k and p(Zk|Xk)

is the multi-target likelihood, µ is an appropriate dominating measure on

the RFS Ξ [58]. In order to limit computational cost and memory usage,

a hypothesis pruning mechanism can be applied [3]. In the next section a

better solution to this problem known as the PHD filter is described.
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3.5.2 Probabilistic hypothesis density filter

Although Monte Carlo methods can compute the recursion of (3.5.2) and

(3.5.3), as the dimensionality of the multiple target tracking state Xk in-

creases with the number of targets in the scene, the number of particles

required grows exponentially with the scene [22]. For this reason, an ap-

proximation is necessary to make the problem computationally tractable.

In this case, instead of a posterior density, the first-order moment of the

multi-target posterior can be propagated. The resulting filter is known as

the PHD filter, which is based on the following three assumptions [3]

• The targets evolve and generate measurements independently.

• The clutter RFS, Υk, is Poisson-distributed.

• The predicted multi-target RFS is Poisson-distributed.

Denoting D(·) as the PHD at time k associated with the multi-target

posterior density p(Xk|Zk), the Bayesian interactive prediction and update

D(x) is known as the PHD filter [59].

The PHD prediction step is defined as:

D(Xk|Zk−1) =

∫
φ(xk|Xk−1)D(Xk−1|Zk−1)d(ξ) + Υk (3.5.4)

where Υk is the intensity function of the new target birth RFS, φ(·) is the

analogue of the state transition probability in the single target case

φ(xk|Xk−1) = e(xk|Xk−1) + β(xk|Xk−1) (3.5.5)

in which e(·) is the probability that the target still exists at time k and β(·)

is the intensity of the RFS that a target is spawned from the state Xk−1.
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The PHD update step is defined as [60]:

D(Xk|Zk) =

pM (xk) +
∑

zk∈Zk

ψk,zk(xk)

κk + 〈ψk,zk , D(Xk|Zk−1)〉

D(Xk|Zk−1)

(3.5.6)

where pM is the missing detection probability, ψk,zk(xk) = (1−pM )gk(zk|xk)

is the single-target likelihood defining the probability that zk is generated by

a target with state xk, κk is the clutter intensity the inner product 〈f, g〉 =∫
f(x)g(x)dx [3].

3.5.3 SMC probabilistic hypothesis density filter

There are numerical solutions for the integrals in (3.5.4) and (3.5.6), one of

which is a solution obtained using a sequential Monte Carlo method that

approximates the PHD with a set of weighted random samples, which is

called the particle PHD filter. Where the PDF and PHD of the states of

Mk targets are described by a set of weighted particles [16] {xik, wik}
Mk×N
i=1 ,

where Mk is the target number at time k. By employing the concept of

the particle filter described in Section 3.3, and by utilizing N particles to

represent the state of each target m, the prediction and updating steps of

the particle PHD filer can be described as:

1. Prediction: Particles x̂ik are drawn from the predicted particle set as

(3.3.27) and fed into (3.5.4), which is the prediction model of the particle

PHD filter, which is described as [60]

D(Xk|Zk−1) =

∫
φ(x̂ik|Xk−1)D(Xk−1|Zk−1)δx̂ik + Υk(Xk) (3.5.7)

where

φ(x̂ik|Xk−1) = e(x̂ik|Xk−1) + β(x̂ik|Xk−1) (3.5.8)

When exploiting the PHD filter with the particle filter, the PHD of the
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states is represented by the weights of the particles, which include the sur-

vived particles and new-born particles. Assuming at time k, Jk particles are

sampled for the new-born targets, the initial weights assigned to the new

born particles, which are employed to represent the new-born targets, are

calculated as

ŵik =
1

Jk
, i = Mk−1 ×N + 1, ...,Mk−1 ×N + Jk (3.5.9)

then the weights are fed into (3.5.7). With this method, a particle set is

obtained, which includes particles for both survived targets and new born

targets

{x̂ik, ŵik}
Mk−1×N+Jk
i=1 (3.5.10)

where i is the index of the ith particle. The weights obtained from the

prediction step are given as

ŵik =


φ(x̂ik)w

i
k−1 i = Mk−1 ×N

Υk
Jk

i = Mk−1 ×N + 1, ...,Mk−1 ×N + Jk

(3.5.11)

In this way, the predicted PHD D(Xk|Zk−1) at time k for target states

Xk is obtained based on the weights of the particles.

2. Measurement update: In the particle PHD filter, the PHD D(·) is

represented by the weights of particles. Once the new set of observations

is available, by substituting the approximation of D(Xk|Zk−1) into (3.5.6),

the weights of each particle are updated based upon the receipt of the mea-

surement Zk as [60]

wik =

pM (x̂ik) +
∑
∀zk∈Zk

ψk,zk(x̂ik)

κk + Ck(zk)

 ŵik (3.5.12)
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where

Ck(zk) =

Mk−1×N+Jk∑
i=1

ψk,zk(x̂ik)ŵ
i
k (3.5.13)

Then the number of targets is calculated by the sum of all the weights

for particles as follows [60]

M̂k =

Mk−1×N+Jk∑
i=1

wik (3.5.14)

Mk = int(M̂k) (3.5.15)

where int(·) denotes the integer nearest to M̂k.

Algorithm 3.4 Adapted particle PHD filter

Input: {xmk−1}
m=Mk−1

m=1 .

Output: {xmk }
m=Mk
m=1 with Mk targets.

1: Generate {xik−1, w
i
k−1}

Mk×N
i=1 from {xmk−1}

m=Mk−1

m=1 and feed into
(3.5.7).

2: Select new-born particles.
3: Obtain particle weights as (3.5.11).
4: for i = 1 : Mk−1 ×N + Jk do
5: Calculate g(zk|x̂ik).
6: Update particle weights with (3.5.12).

7: end for; % Achieve particle set {x̂ik, ŵik}
Mk−1×N+Jk
i=1 with updated

weight.
8: Calculate Mk by (3.5.14) and (3.5.15).
9: Normalize wik.

10: Initialize the cumulative probability c1 = 0
11: Update ci = ci−1 + ŵik, i = 2, ...,Mk−1 ×N + Jk.
12: Draw a starting point µ1 ∼ [0, (Mk ×N)−1]
13: for j = 1, ...,Mk ×N do
14: µj = µ1 + (j − 1)/(Mk ×N)
15: while µj > ci do
16: i = i+ 1
17: end while
18: xjk = x̂ik
19: wjk = N−1

20: end for
21: Clustering {xik, 1

N
}i=Mk×N
i=1 , calculate (3.3.15) and output {xmk }

m=Mk
m=1

At each iteration k, Jk new particles are added to the old Mk−1×N parti-
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cles for the new born targets. To limit the growth of the number of particles,

and to avoid the problem of degeneracy, a resampling step is performed after

the update step.

The algorithm for the adapted particle PHD filter with a resampling

step at each time k is described as Algorithm 3.4 [4], where the input

{xmk−1}
m=Mk−1

m=1 represents the survived targets from the previous time k− 1

and the output {xmk }
m=Mk
m=1 denotes the tracking results in the form of the

states of the targets.

The above method underpins the traditional particle PHD filter for mul-

tiple human tracking. In the next section, evaluation datasets as well as

evaluation measures employed in this thesis will be introduced.

3.6 Evaluation dataset

In order to evaluate the performance of the proposed system for multiple

human tracking, particularly to handle the situation of varying number of

targets, close interactions and occlusions, sequences from three different pub-

licly available video datasets are chosen: one from the PETS2009 dataset [1]

where 3-6 human targets are walking in an outdoor campus environment,

one sequence from the CAVIAR dataset [2] where 1-5 human targets are

walking in a shopping mall environment and one from the TUD dataset [42]

where 5-7 human targets are walking in an outdoor-shopping mall environ-

ment. Some of the selected samples from the three dataset are shown in Fig.

3.4

3.7 Performance evaluation methods

Several measures are employed to examine the performance of the proposed

particle PHD filter and compare the results from the related algorithms, in-

cluding the Euclidean error in each frame, the optimal subpattern assignment
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(a) Frames from the CAVIAR dataset

(b) Frames from the PETS2009 dataset

(c) Frames from the TUD dataset

Figure 3.4. Selected frames from the three selected sequences
from three different datasets, i.e. (a) is from the ‘EnterExitCross-
ingPaths1cor’ sequence from the CAVIAR dataset, (b) is from the
‘PETS09 View001 S2 L1’ sequence from the PETS2009 dataset and
(c) is from ‘TUD Stadtmitte’ sequence from the TUD dataset.

(OSPA) [61] [62], and the multiple object tracking precision (MOTP) [63].

For a sequence with ` frames, assuming at time k, the tracking system gives

the tracking results Ok = {o1
k, ...,o

n
k} with n targets while Y = {y1

k, ...,y
m
k }

is the ground truth information with m targets. These measures are defined

below. In addition, the computational complexity can also been considered

in evaluations.

Mean and standard deviation of Euclidean error on each frame

The localization error for each target in terms of mean and variance can be

used as a performance metric to evaluate the accuracy and stability of our

proposed tracking system. The mean of Euclidean errors (MEE) at frame

number k is denoted by

MEEk =
1

n

n∑
i=1

‖oik − yik‖ (3.7.1)
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where ‖ · ‖ denotes Euclidean distance and its standard deviation (SD) is

given by

SDk =

√√√√ 1

n

n∑
i=1

(‖oik − yik‖ −MEEk)2 (3.7.2)

OSPA

In multiple human tracking, the accuracy not only depends on the error

between the estimated position and the ground truth information of the

targets in the scenario, but also the missed detections and false alarms.

Dominic et al. proposed a metric to evaluate the tracking system by error

from both distance and the number of targets [64] which is used by Ristic

et al. [61] for evaluating multiple human tracking algorithms. As described

in [64], given the set of tracking results Ok and the ground truth information

Yk, the distance between Ok and Ym
k , dck(o

n
k ,y

m
k ) := min(c, d(onk ,y

m
k )) with

cut off at c > 0 and 1 ≤ p ≤ ∞, is calculated as [61]

dck,p(Ok,Yk) :=

(
1

n

(
min
π∈

∏
n

m∑
i=1

dc(oik,y
π(i)
k )p + cp(n−m)

)) 1
p

(3.7.3)

for m ≤ n, and dck,p(O,Y) = dcp(Y,O) for m > n. The function dcp is named

as the OSPA metric of order p with cut-off c. In this thesis, c = 20 and p = 2

are used in evaluations as are commonly used by other researchers. Based

on the OSPA metric, a new evaluation measure for multiple target tracking

has been recently proposed, named optimal subpattern assignment for mul-

tiple target tracking (OSPAMT) [62], however, in this thesis OSPA and the

following MOTP measure, which is also employed in [65], are sufficient for

comparative evaluation.

MOTP

The MOTP [63] is the total error in the estimated position for matched

object-hypotheses pairs over all frames, averaged by the total number of
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matches made. It shows the ability of the tracker to estimate the precise

object positions, which can be calculated as

MOTPk =

i=n,k=`∑
i=1,k=1

errorik

∑̀
k=1

ck

(3.7.4)

where errorik denotes the Euclidean error for each target i at time k and ck

is the total number of matched targets at time k.

3.8 Summary

In this chapter, the fundamental algorithms for multiple tracking with Bayesian

filters were explained, where four solutions: the Kalman filter, the particle

filter, the MCMC particle filter and the PHD filter are introduced. The

Kalman filter is optimal for linear and Gaussian systems, however, when

the models are nonlinear and non-Gaussian, such as in human tracking from

video, particle filtering algorithm is widely employed. These two algorithms

give solutions in the Bayesian tracking framework, however, they fail to ad-

dress the problem of varying number of targets in multiple human tracking

work, so the particle PHD filter is employed in this thesis. At the end of

this chapter, the performance evaluation measures as well as the evalua-

tion sequences were given to evaluate the tracking performance. In the next

chapter, the Student’s-t and variational Bayesian methods will be proposed

to improve the tracking performance of the particle PHD filter.



Chapter 4

PARTICLE PHD FILTER

WITH STUDENT’S-T

DISTRIBUTION AND

VARIATIONAL BAYESIAN

APPROACH FOR MULTIPLE

HUMAN TRACKING

4.1 Introduction

As described in Chapter 3, the particle PHD filter is proposed for multiple

human tracking, particularly to address the problem of varying number of

targets. Within the Bayesian filtering framework [16], the noise vectors vk

and wk representing model uncertainty are particularly important in the

prediction and updating models. In the traditional PHD filter, the two

noise vectors are assumed to be independent within each model and are

represented as Gaussian distributions. However, the performance of the

PHD filter can be affected by estimation errors which are related to the

42
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noise vectors. The Student’s-t distribution, which is also a member of the

family of continuous probability distributions, has been widely employed

by researchers in many areas such as source separation [66], filtering [67]

and tracking [68] in order to achieve more robust performance due to its

heavier tails than a Gaussian distribution. In this chapter, the Student’s-

t distribution is firstly employed in the prediction and updating steps of

the particle PHD filter, which is introduced in Section 4.2. Moreover, by

considering the relationship between the measurement noise vector wk and

the prediction model, which is

x̂k = f(xk−1,wk) (4.1.1)

the Student’s-t distribution is employed as a joint distribution between wk

and the predicted state vector (4.1.1) with a variational Bayesian approach,

which will be introduced in Section 4.3 as another approach in detail. This

chapter is targeted at satisfying the first two objectives of this thesis, which

are the Student’s-t distribution particle PHD filter published in [69] and

the variational Bayesian particle PHD filter for multiple human tracking

published in [70].

The performance of the two proposed tracking algorithms is evaluated

with real video sequences from the CAVIAR and PETS2009 datasets, and

compared with the traditional particle PHD filter for multiple human track-

ing. Tracking and comparison results are shown at the end of this chapter,

which confirm the improved performance from the two proposed trackers by

reducing the OSPA value.
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4.2 Particle PHD filter with Student’s-t distribution for multiple

human tracking

In this section, the univariate Student’s-t distribution is firstly introduced

and compared with the univariate Gaussian distribution, then it is employed

to represent the prior and posterior distributions instead of the Gaussian dis-

tribution for the particle PHD filter. In multiple human tracking work, the

state and measurement models contain multiple variables, such as location,

velocity and size of target, so the differentiation and integration of func-

tions involve multiple variables, therefore rather than scalar, multivariate

distributions are employed in this work.

4.2.1 Student’s-t distribution

Developed by William Sealy Gosset under the pseudonym Student [71], the

Student’s-t distribution is known as a super Gaussian distribution, which has

heavier tails than the Gaussian distribution, hence more robust prediction

of the target states can generally be achieved. In particular, the statistical

dependence modelled by a multivariate Student’s-t distribution can be an

advantage when sampling particles.

The univariate Student’s-t distribution can be exploited as the marginal

density function, which can be formed as [72]:

p(x) =
Γ(v+1

2 )
√
vπΓ(v2 )

(
1 +

x2

v

)− v+1
2

(4.2.1)

where v is the degree of freedom parameter and Γ is the gamma function,

which can be calculated as

Γ(v) = (v − 1)! (4.2.2)

From the probability density function, it can be deduced that the degree



Section 4.2. Particle PHD filter with Student’s-t distribution for multiple human tracking 45

of freedom parameter v can tune the variance and leptokurtic nature of the

distribution, with decreasing v, the tails of the distribution becomes heavier.

Fig. 4.1 shows the comparison of the density for the univariate Student’s-t

distribution for increasing values of v compared with the normal distribution

with zero mean and unit variance.

Figure 4.1. Comparison of univariate Gaussian distribution and uni-
variate Student’s-t distribution with different degree of freedom rates.

From the comparison, it is clear that, when compared with the normal

distribution, the distribution for the Student’s-t distribution is lower and

wider, which can potentially improve robustness by increasing the proba-

bility in sampling particles of larger amplitude and thereby providing more

variable states when applied in the Bayesian tracking system. Due to the

advantages from the Student’s-t distribution, in this chapter, it is employed

for the prediction stage for the particle PHD filter. However, since the states

and measurements within the human tracking framework contains multiple

variables, the multivariate Student’s-t distribution is employed instead of

the univariate one. Given the d× 1 dimension variable vector x, the pdf of
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the multivariate Student’s-t distribution is given as

p(x) =
1

Γ(v2 )vd/2πd/2‖Σ‖1/2
Γ[(v + d)/2]

[1 + 1
v (x− µ)TΣ−1(x− µ)](v+d)/2

(4.2.3)

where µ and Σ are the location vector and scale matrix for the multivariate

Student’s-t distribution.

4.2.2 Student’s-t distribution particle PHD filter for multiple hu-

man tracking

Two fundamental actions for the particle PHD filter are prediction and up-

dating. As introduced in Section 3.5, the basic principle of importance sam-

pling, which is used for PHD prediction is to represent a PHD D(Xk|Zk) by

a set of particles associated with their weights, namely {xik, wik}Ni=1, where

Xk and Zk contain the states for all targets xk and all measurements zk at

time k respectively. The Student’s-t distribution based particle PHD filter is

designed to sample and update the particles in the models generated by the

Student’s-t distribution. Assuming the particle set at time k−1 {xik−1}Ni=1 is

sampled from the pdf p(Xk−1|Zk−1), based on the Bayesian filtering method,

the Student’s-t distribution based particle PHD filter mainly contains two

steps [73]:

Prediction: Draw particle xik−1 from D(Xk−1|Zk−1) and feed it into

the prediction model of particle PHD filter:

D(Xk|Zk−1) =

∫
φ(x̂ik|Xk−1)D(Xk−1|Zk−1)δx̂ik + Υk(Xk) (4.2.4)

to obtain particles at time k. If the distribution of Xk−1 has a Student’s-t

distribution or stays close to it, then the predicted PHD D(Xk|Zk) can be

approximated as the first moment of a Student’s-t distribution. Thus the
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prediction model can be calculated by

D(Xk|Zk−1) =

∫
φ(x̂ik|Xk−1)D(Xk−1|Zk−1)δx̂ik + Υk(Xk)

≈ t(Xk|Ωk−1)

(4.2.5)

where t(·) is the predicted PHD and Ωk−1 is the importance density for

the Student’s-t distribution of the PHD filter. By exploiting the Student’s-t

distribution for prediction, larger amplitude particles are more likely to be

sampled due to its heavier tails compared with the Gaussian distribution,

which makes the prediction more widely distributed. After obtaining the

new-born particles, the predicted particle set can be achieved as

ŵik =


φ(x̂ik)w

i
k−1 i = Mk−1 ×N

Υk
Jk

i = Mk−1 ×N + 1, ...,Mk−1 ×N + Jk

(4.2.6)

which has been described in Section 3.5.3.

Updating: Upon the receipt of the measurement set Zk, the likelihood

of each prior sample g(zk|x̂ik), can be evaluated with the probability density

function of the Student’s-t distribution (4.2.3) [73]. Feeding the likelihood

into the particle PHD updating model, the PHD at time k can be calculated

as:

D(Xk|Zk) =

∫ pM (x̂ik) +
∑
∀zk∈Zk

ψk,zk(X̂i
k)

κk + Ck(zk)

D(x̂ik|Zk−1)δx̂ik

= t(Xk|Ωk)

(4.2.7)

Equations (4.2.5) and (4.2.7) form the basis of the proposed robust Student’s-

t distribution particle PHD filter, and after obtaining the PHD at time k,

Algorithm 3.4 introduced in Chapter 3 can be employed to calculate the

target position and number. The simulation results will be shown in Sec-
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tion 4.4, which show the improvement from the Student’s-t distribution;

in order to find another approach based upon the Student’s-t distribution,

the Student’s-t distribution is employed as a joint distribution between the

Gaussian distribution and the inverse Gamma distribution, and the varia-

tional Bayesian approach is employed to estimate the parameters within the

tracking system, which is introduced in the next section.

4.3 Variational Bayesian approach for particle PHD filter for mul-

tiple human tracking

In the above section, the Student’s-t distribution was employed to represent

the prior and posterior distributions of the Bayesian filtering framework,

which improved the robustness of the particle PHD filter. In this section,

the variational Bayesian approach is employed to estimate the parameters

within the Bayesian filtering framework, where the Student’s-t distribution is

utilized as a joint distribution between the state model and the measurement

noise covariance.

The traditional particle PHD filter often assumes a priori knowledge

of the measurement and dynamic model parameters, including the noise

statistics. However, such knowledge is not always available in practical ap-

plications [74]. Recently, the variational Bayesian approximation technique

proposed in [75] has been introduced to estimate the target states in the

linear Gaussian scenario with unknown measurement noise variance. The

main idea of the variational Bayesian approach is that the joint posterior

of the target state and measurement noise covariance can be approximated

by a factored free form or a fixed form distribution [76]. In this work, the

variational Bayesian technique is introduced into the framework of the par-

ticle PHD filter for multiple human tracking to jointly estimate the posterior

of multi human target states and measurement noise covariance by using a
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factored free form Student’s-t distribution.

4.3.1 Optimal Bayesian filtering

The state model and measurement models of the Bayesian filtering are given

as

xk = Fxk−1 + wk (4.3.1)

zk = Hkxk + vk (4.3.2)

where F and H are state and measurement transition functions respectively,

and wk, vk are the state and measurement noise vectors, with covariance

matrices Pk and Rk respectively. By assuming that the state model (3.2.1)

and measurement model (3.2.2) are independent, taking the single target

state vector xk and measurement vector zk as example, the relationship

between the covariance matrix Rk for measurement noise with the state

model can be described as

p(xk,Rk|xk−1,Rk−1) = p(xk|xk−1)p(Rk|Rk−1) (4.3.3)

In this work, the goal of Bayesian optimal filtering of the above model is

to compute the posterior of the joint distribution p(xk,Rk|zk). As described

in [74], the filtering problem consists of the following steps [77]:

Initialization: Start the recursion with the given initial prior distribu-

tion as p(x0,R0).

Prediction: The predictive distribution of the state vector xk and mea-

surement noise covariance matrix Rk is given by the Chapman-Kolmogorov

equation:

p(xk,Rk|zk−1) =

∫
p(xk|xk−1)p(Rk|Rk−1)×

p(xk−1,Rk−1|zk−1)dxk−1dRk−1

(4.3.4)
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Updating: When the measurement vector zk is available, the predictive

distribution (4.3.4) is updated to a posterior distribution with the Bayes

rule [75]:

p(xk,Rk|zk) ∝
p(zk|xk,Rk)p(xk,Rk|zk−1)∫

p(zk|xk,Rk)p(xk,Rk|zk−1)dxkdRk
(4.3.5)

where p(zk|xk,Rk) is the likelihood function. The integrations in the general

solution are usually not analytically tractable due to the involved integra-

tions [74]; in the following section, the recursion steps are solved by using

a variational Baysian approximation step for the posterior update, which is

accompanied by the suitable dynamics for the measurement noise covariance

matrix [75].

4.3.2 Variational approximation

Given that the inverse-Gamma distribution is the conjugate prior distribu-

tion for the variance of a Gaussian distribution [77], a product of inverse-

Gamma distributions can be adopted to approximate the posterior distribu-

tion for the measurement noise matrix Rk and the state model, in this case,

assuming the posterior distribution at time k − 1 can be represented by

p(xk−1,Rk−1|zk−1) =N (xk−1, µk−1,Pk−1)

×
d∏
i=1

IG(σ2
k−1,i|αk−1,i, βk−1,i)

(4.3.6)

where d is the dimension of the measurement noise vector and IG(σ2
k−1,i|

αk−1,i, βk−1,i) denotes the inverse-Gamma distribution, which has the de-

grees of freedom parameter αk−1,i and the scalar parameter βk−1,i.

Because the dynamic models of the state and measurement noise variance

are independent, the joint predictive distribution remains a factored form

[78] of a Gaussian distribution for predicted state vector xk with mean µk
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and covariance matrix Pk. It is assumed that the dynamic model for the

parameters in the inverse Gamma distribution p(σ2
k,i|σ2

k−1,i) are of such a

form that each σ2
k,i will always results in an inverse Gamma distribution

with parameters αk,i and βk,i in the variational Bayesian prediction step. So

the joint distribution can be predicted as

p(xk,Rk|zk) = p(xk|zk−1)p(Rk|zk−1)

= N(xk, µk,Pk)
d∏
i=1

IG(σ2
k,i|αk,i, βk,i)

(4.3.7)

where in the joint posterior distribution, the state and measurement noise

covariance will be coupled with the likelihood function p(zk|xk,Rk), which

makes the exact posterior intractable.

The next step is to derive an analytical expression for the posterior dis-

tribution within the update equation; in order to make the computation

tractable, an approximation of the posterior distribution is formed [76]. The

standard VB approach is employed and a free form factored approximate

distribution p(xk,Rk|zk) can be approximated as [75]

p(xk,Rk|zk) ≈ Qx(xk)QR(Rk) (4.3.8)

where Qx(xk) and QR(Rk) are respectively a Gaussian distribution and

inverse Gamma distribution as follows:

Qx(xk) = N (xk, µk,Pk) (4.3.9)

QR(Rk) =
d∏
i=1

IG(σ2
k,i|αk,i, βk,i) (4.3.10)

Then the approximate posterior densities can be determined by minimizing

the Kullback-Leibler(KL) divergence between the separable approximation
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and the true posterior density, which is expressed as

KL{Qx(xk)QR(Rk)||p(xk,Rk|zk)} =∫
Qx(xk)QR(Rk) log

Qx(xk)QR(Rk)

p(xk,Rk|zk)
dxkdRk

(4.3.11)

In order to minimize the KL-divergence, methods from calculus of variations

[74] are employed. Using alternating optimisation, the probability densities

Qx(xk) and QR(Rk) are calculated in turn, while keeping the other fixed,

yielding:

Qx(xk) ∝ E
{∫

log p(zk,xk,Rk|zk−1)QR(Rk)dRk

}
(4.3.12)

QR(Rk) ∝ E
{∫

log p(zk,xk,Rk|zk−1)Qx(xk)dxk

}
(4.3.13)

Since the two equations are coupled, they cannot be solved directly,

however, computing the expectation of the first equation yields the following

equation [74]

∫
log p(zk,xk,Rk|zk−1)QR(Rk)dRk =

− 0.5(zk −Hkxk)
T 〈R−1

k 〉R(zk −Hkxk)

− 0.5(xk − Fkxk−1)T (P−1
k )(xk − Fkxk−1) + C1

(4.3.14)

where 〈·〉R =
∫

(·)QR(Rk)dRk denotes the expected value with respect to

the approximation distribution QR(Rk) as (4.3.10) and C1 denotes the terms

independent of xk.

Similarly, the second expectation can be computed as follows [75]

∫
log p(zk,xk,Rk|zk−1)Qx(xk)dxk = −

d∑
i=1

(
3

2
+ αk,i) ln(σ2

k,i)

−
d∑
i=1

βk,i
σ2
k,i

− 1

2

d∑
i=1

〈(zk −Hkxk)
2
i 〉x

σ2
k,i

+ C2

(4.3.15)
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where 〈·〉x =
∫

(·)Qx(xk)dxk denotes the expected value with respect to the

approximation distribution Qx(xk) as (4.3.9), C2 denotes the terms indepen-

dent of Rk. Given the parameters µk,Pk, αk,i and βk,i follow the Gaussian

and inverse Gamma distribution as model (4.3.9) and (4.3.10) respectively,

they are considered to be the solutions to the following coupled set of equa-

tions [75]:

µk = µk−1 + P̂kH
T
k (HT P̂kH

T + R̂k)
−1(zk −Hµ̂k)

Pk = P̂k − P̂kH
T (HT P̂kH

T + R̂k)
−1HT P̂k

αk,i = α̂k−1,i +
1

2

βk,i = β̂k−1,i +
1

2
[(zk −Hµ̂k)

2
i + (HPkH

T )ii]

(4.3.16)

where (·)i denotes the ith dimension of the vector and the estimated covari-

ance matrix R̂k is

R̂k = diag

{
βk,1
αk,1

, ...,
βk,d
αk,d

}
(4.3.17)

where ‘ ·̂ ’ denotes the estimate of the parameters. Following (4.3.16) and

(4.3.17), the process of variational Bayes measurement parameter updating

can be described as in [78], which includes prediction and updating steps:

Prediction: Compute the parameters of the predicted distribution as

follows:

α̂k,i = ρiαk−1,i

β̂k,i = ρiβk−1,i

µ̂k = Fµ̂k−1

P̂k = FP̂k−1F
T + Qk−1

(4.3.18)

where ρi ∈ (0, 1] is a scalar used for the extension of the noise fluctuations.

Updating: In the updating step, a fixed point iteration method is em-

ployed to achieve the best solution of the equations given in (4.3.16). First
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set the initial parameters following (4.3.19)

µ0
k = µ̂k

P0
k = P̂k

α0
k,i =

1

2
+ α̂k,i

β0
k,i = β̂k,i

(4.3.19)

for i = 1, ..., d. Then use the fixed-point iteration to achieve the solution of

(4.3.16) and (4.3.17) for ` steps and find the best solution as β`k,i,m
`
k and

Pk = P `k , then set βk,i = β`k,i,mk = m`
k and Pk = P `k , after obtaining the

optimal solution for the equations, the parameters are updated within the

measurement model of the particle filter which thereby helps calculate the

weights of each particle.

In this way, the noise vector for the measurement model is estimated

with the aid of the variational approach. Then it can be fed into the particle

PHD framework and more accurate tracking results should ensue.

4.3.3 Variational Bayesian PHD recursion

The above subsection introduced the variational Bayesian approach for pa-

rameter estimation, in this subsection, the above approach is introduced into

the PHD filter for multiple human tracking with unknown measurement noise

variance, which is called VB-PHD.

In the prediction step of the VB-PHD filter, each survived target is as-

sumed to follow a linear Gaussian model, and the birth intensity Υk in (4.2.4)

is comprised of an inverse Gamma distribution and a Gaussian distribution,

so coupled with Υk(Xk,R), the joint predicted PHD at time k can be given
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as

D(Xk,Rk|Zk−1) =

∫
φ(x̂ik,Rk|Xk−1,Rk−1)D(Xk−1,Rk−1|Zk−1)δx̂ik

+ Υk(Xk,Rk)

(4.3.20)

and the parameters for the joint distribution are predicted following (4.3.18).

After obtaining the predicted particle set associated with weights, the vari-

ational Bayesian approach is employed to estimate the measurement noise

covariance matrix Rk. By utilizing the fixed point iteration to find the best

solution for the coupled equations (4.3.16), the measurement noise with co-

variance matrix Rk is employed to calculate the likelihood g(zk|x̂ik), which

is employed to calculate the weights for particles following the traditional

particle PHD filter updating stage:

wik =

pM (x̂ik) +
∑
∀zk∈Zk

(1− pM (x̂ik)g(zk|x̂ik))
κk + Ck(zk)

 ŵik (4.3.21)

then the states and number of targets can be obtained as the traditional

particle PHD filter.

In summary, the VB-PHD filter can be described by the pseudocode

given in Algorithm 4.5.

The simulation results are presented in Section 4.4, which shows the

outcome from the variational Bayesian approach.

4.4 Simulation experiments

The performance of the proposed algorithms is analyzed with the aid of

two sequences from the CAVIAR and PETS2009 datasets, both sequences

are recorded at 25 frames per second with an image size of 320×240 pixels.

The Student’s-t distribution and variational Bayesian based particle PHD
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Algorithm 4.5 Variational Bayesian PHD filter

Input: {xmk−1}
m=Mk−1

m=1 .

Output: {xmk }
m=Mk
m=1 with Mk targets.

1: Generate {xik−1, w
i
k−1}

Mk×N
i=1 from {xmk−1}

m=Mk−1

m=1 and feed into
(4.3.20).

2: Sample new-born particles following the Gaussian-inverse Gamma
joint distribution.

3: Variational Bayesian parameters prediction following (4.3.18).
4: for i = 1 : Mk−1 ×N + Jk do
5: Given {P0

k, α
0
k, β

0
k} as the initialization parameters for varia-

tional Bayesian step.
6: Using a fixed point iteration to solve the coupled equations

(4.3.16) and calculate Rk.
7: Calculate likelihood for particle g(zk|x̂ik) from measurement

model by predicted Rk.
8: Update particle weights with (4.3.21).
9: end for;

10: Calculate Mk =
Mk−1×N+Jk∑

i=1

wik.

11: Particle resampling.
12: Clustering {xik, 1

N
}i=Mk×N
i=1 and output {xmk }

m=Mk
m=1

filters are compared with the traditional particle PHD filter for multiple

human tracking proposed in [4]. The proposed method is specifically for

tracking multiple human targets with appearing, disappearing and occlusion

randomly in the scenario; both methods are tested to track the position of

the human targets. All the parameters are chosen empirically to yield the

best results.

4.4.1 State model

Based upon the concept of the Bayesian filtering framework, the states of the

survived particles are estimated from the state model, which is described as

function e(·) in the particle PHD filter. A rectangular region which contains

the whole body of the human target is used to represent the area of the

target. The pixel in the center of the rectangular is considered as the center of

the human body. For the survived particles, the transition state model used
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to test the proposed system is given as (4.3.1) and the transition function F

is given as

F =



1 0 ∆t 0 0 0

0 1 0 ∆t 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.4.1)

where ∆t is the time interval between frame k and k + 1 which is set as 1

in the simulations, the zero-mean noise vector wk for prediction in the state

model has covariance structure cov{w0} = Diag{25, 25, 16, 16, 4, 4} and for

v0 cov{vk} = Diag{25, 25}. The missed detection probability pM = 0.01,

the survival probability e = 0.99, the new born intensity Υ = 0.1 and clutter

intensity κ = 0.01, which are selected empirically to fit the situations in the

video frames.

4.4.2 Likelihood model

In the Bayesian filtering concept, the likelihood model is important since it

helps to calculate the weights for the particles. In this work, the likelihood

model is obtained from background subtraction.

The codebook method is employed for background subtraction, which is

robust to capture structural background motion over a long period of time

under limited memory. In this method, samples at each pixel are clustered

into the set of codewords based on a colour distortion metric together with

brightness bounds. Not all pixels are represented with the same number

of codewords. The background is encoded on a pixel-by-pixel basis. Back-

ground/foreground detection involves testing the difference of the current

image from the background model with respect to colour and brightness

differences. If an incoming pixel satisfies two conditions, it is classified as
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background: first, the colour distortion to a codeword is less than the de-

tection threshold; second, its brightness lies within the brightness range of

that codeword. Otherwise, it is classified as foreground [79].

Some background subtraction results are shown in Fig. 4.2.

Figure 4.2. Examples of background subtraction results from the
‘EnterExitCrossingPaths1cor’ sequence of the CAVIAR dataset. The
left, middle and right figures correspond to frame 188, 67 and 345
respectively. The green part in the left figure shows the occlusion of
two human targets, which may cause missed detection; the red part
in the middle figure shows the appearance of another human target
and the yellow part in the right figure shows the disappearance of a
human target. Noise components can be observed in the background
subtraction results, including patches of salt and pepper noise, which
may cause false alarms in the multiple human tracking.

The results can be used to select the new-born targets and build up an

RFS for the measurement set. The center of each block ck = [ck,x, ck,y]
T

which contains the localization information, can be employed as one part of

the measurement [4], so the likelihood for each particle based upon one mea-

surement zk from the foreground position RFS g(ck|x̂ik) can be calculated

as

g(zk|x̂ik) = e
− (pik−ck)

T (pik−ck)

σ2
R (4.4.2)

which shows the distance between the state of the particles and the fore-

ground information, where pik = [pik,x, p
i
k,y]

T denotes the position of the

targets taken from the particle x̃ik and σR is the standard deviation of the

measurement model in the Bayesian filtering model.
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4.4.3 Student’s-t distribution based particle PHD filter results

The Student’s-t distribution aided particle PHD filter is evaluated by two se-

quences, one from the CAVIAR dataset and one from the PETS2009 dataset,

which contain human targets appearing, occluding and disappearing in the

scenario. To make comparison, the number of particles are set to be 1000

and the OSPA measure is used for evaluation.

In order to select the most suitable value for the degrees freedom pa-

rameters v, as an example, the mean of the OSPA measure as a function

of the freedom rate value are calculated by employing a sequence from the

CAVIAR dataset, where v = 1, ..., 5 are set for comparison, which is shown

in Table 4.1.

Table 4.1. Degrees of freedom parameter comparisons for Student’s-t
distribution based particle PHD filters

v = 1 v = 2 v = 3 v = 4 v = 5
OSPA 24.31 23.48 18.97 20.58 22.27

The comparison shows that the value of degrees of freedom parameter

chosen as 3 tends to provide a good compromise.

A performance comparison is presented between the proposed algorithm

and the traditional particle PHD filter proposed in [4]. Both the algorithms

are tested on the same video sequences to track the human targets. The

OSPA measure comparison for the two sequences are shown in Fig. 4.3

and Fig. 4.4. It is clear from the results that the particle PHD filter with

Student’s-t distribution successfully tracks the targets which results in a

smaller OSPA as compared to the traditional particle PHD filter.

To make clearer comparison, the mean of the OSPA value for both algo-

rithms are compared, and the improvement from the Student’s-t distribution

is shown in Table 4.2, where PHD denotes the results from the traditional

particle PHD filter and T-PHD denote the results from the Student’s-t dis-
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Figure 4.3. Comparison of OSPA measure between the proposed and
traditional particle PHD filter with sequence from CAVIAR dataset,
where the blue line denotes the OSPA value from the traditional particle
PHD filter proposed in [4] and the red line denotes the OSPA value from
the proposed Student’s-t distribution based particle PHD filter.

Figure 4.4. Comparison of OSPA measure between the proposed and
traditional particle PHD filter with sequence from PETS2009 dataset,
where the blue line denotes the OSPA value from the traditional particle
PHD filter proposed in [4] and the red line denotes the OSPA value from
the proposed Student’s-t distribution based particle PHD filter.

tribution based particle PHD filter.

The comparisons show the improvement from the proposed algorithm,

where for the sequences from the CAVIAR and PETS2009 datasets, the

mean of the OSPA value reduced by 4.72 and 2.54 pixels respectively. The

improvement is due to the heavier tails from the Student’s-t distribution

when compared with the Gaussian distribution, hence more robust predic-
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Table 4.2. Comparison between the traditional and the proposed
Student’s-t distribution based particle PHD filter with sequences from
CAVIAR and PETS2009 dataset

CAVIAR PETS2009
PHD 23.69 21.72

T-PHD 18.97 19.18
Improvement 19.92% 11.70%

tion for the target states are estimated, thus can obtain more accurate track-

ing results.

4.4.4 Variational Bayesian based particle PHD filter results

To evaluate the proposed variational Bayesian particle PHD filter, the same

sequences used for evaluating the T-PHD filter are employed. Besides the

parameters used for the traditional particle PHD filters, in the VB-PHD

filter, other parameters are set as α0 = 1, β0 = 1, the forgetting factor ρ is

set to be 0.9 and the iteration step number ` = 20. The OSPA comparisons

are shown as Fig. 4.5, Fig. 4.6 and Table 4.3.

Figure 4.5. Comparison of OSPA measure between the proposed and
traditional particle PHD filter with sequence from CAVIAR dataset,
where the blue line denotes the OSPA value from the traditional particle
PHD filter proposed in [4] and the red line denotes the OSPA value from
the proposed variational Bayesian based particle PHD filter.
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Figure 4.6. Comparison of OSPA measure between the proposed and
traditional particle PHD filter with sequence from PETS2009 dataset,
where the blue line denotes the OSPA value from the traditional particle
PHD filter proposed in [4] and the red line denotes the OSPA value from
the proposed variational Bayesian based particle PHD filter.

Table 4.3. Comparison between the traditional and the proposed
Student’s-t distribution based particle PHD filter with sequences from
CAVIAR and PETS2009 dataset

CAVIAR PETS2009
PHD 23.69 21.72

VB-PHD 20.74 15.82
Improvement 12.45% 27.16%

Fig. 4.5, Fig. 4.6 and Table 4.3 shows that the proposed variational

Bayesian particle PHD filter performs better than the traditional parti-

cle PHD filter, where for the sequences from the CAVIAR and PETS2009

datasets, the mean of the OSPA value reduced by 2.95 and 5.9 pixels respec-

tively. The higher OSPA value at the first frames of the CAVIAR dataset

is because when employing the variational Bayesian step, the parameters

are estimated recursively. Since the OSPA values are calculated from the

aspect of both error from location and error from the number of target, the

proposed algorithm can be deduced to be more accurate with a lower OSPA

value.
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4.5 Summary

Two improved particle PHD algorithms were proposed in this chapter. The

Student’s-t distribution was firstly employed to replace the Gaussian distri-

bution in the state and updating stages of the particle PHD filter to improve

the robustness of the tracking system; the tracking results were compared

with the results from the traditional particle PHD filter by sequences from

CAVIAR and PETS2009 datasets. It was shown that the proposed algorithm

provided better performance because of the heavier tails of the Student’s-t

distribution. Then the Student’s-t distribution was exploited as a joint dis-

tribution of the measurement noise covariance and the state model, where the

variational Bayesian approach was employed for parameters estimation. The

OSPA evaluation also showed the improvement of the tracking performance,

which is because more accurate parameters in the measurement model were

employed. Both proposed methods helped to achieve better tracking results

and reduced tracking error in both localization and cardinality aspects.

However, although the proposed tracking methods can obtain better

tracking performance compared with the traditional one, they have limi-

tations. In the measurement model, only the results from the background

subtraction are employed because of the variational Bayesian step, which is

because of the requirement of linear and Gaussian models. In human track-

ing work, human features can be employed as the measurement to calculate

the likelihood of particles. Another limitation of the proposed algorithms

is that only the forward filtering concept was employed. The next chapter

proposes a new tracking framework where the forward and retrodiction steps

are combined with an adaptive step to improve the tracking performance.



Chapter 5

ADAPTIVE RETRO-PHD

FILTER FOR MULTIPLE

HUMAN TRACKING

5.1 Introduction

In the previous chapters, the particle PHD filter for multiple human track-

ing has been introduced to address the problem of a variable number of tar-

gets. Chapter 3 provided the fundamental preliminary knowledge underlying

Bayesian filtering algorithms. In Chapter 4, the Student’s-t distribution was

employed to obtain a more robust prediction and posterior distribution, and

it was employed as a joint distribution of the measurement noise and state

model, where the variational Bayesian approach was utilized to estimate

the measurement noise variance. However, as mentioned in [80], the perfor-

mance of the PHD filter depends on the current measurement set, so in the

case of a low number of observable target measurements, the performance is

limited. In order to achieve a more accurate measurement set, the delayed

measurements have been considered by recent researchers, and relates to a

smoothing algorithm. This chapter focuses on the third objective of this

thesis, which is the adaptive Retro-PHD filter for multiple human tracking

accepted by IEEE Signal Processing Letters.

64
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When employing the smoothing algorithm, the backward estimation is

employed with the aid of the delayed measurement [81]; in this way, more

observable measurements are obtained, hence the accuracy of the tracking

system can be potentially improved. The smoothing algorithm has been

employed in many scenarios, such as the Kalman filter [82], particle filter

[83] and PHD filter [84]. However, in [82], Psiaki has pointed out that,

when using the smoothing algorithm for a nonlinear filtering system, it is

necessary to consider a batch of data and minimize the aggregated error. As

a consequence, when one attempts the backward processing with embedded

approximations such as in PHD smoothing with a nonlinear model, the use

of the term smoother should be avoided. In this case, the term retrodiction is

adopted to represent the backward filtering process, namely the Retro-PHD

in this thesis.

Adaptive filters [85, 86] on the other hand are a widely used signal pro-

cessing technique for their exploitation of recursion in tracking [11]. Fol-

lowing the idea of the combination of adaptive filters proposed in [85], in

this thesis, a new method for the Retro-PHD filter is proposed by using an

adaptive recursion step, in which the measurements from both forward and

backward processing are employed for target state estimation. In the adap-

tive step, forward and backward measurements are utilized to calculate the

adaptive weights, which are then used to enhance the tracking results.

In this chapter, the concept of the backward smoothing algorithm is

firstly introduced in Section 5.2; based upon the concept of backward filtering

in the smoother, the Retro-PHD is proposed in Section 5.3. By combining

the forward filtering algorithm with the backward retrodiction step by an

adaptive weight, the adaptive retrodiction particle PHD filter is obtained,

which will be described in Section 5.4. Evaluation and comparisons will be

shown at the end of this chapter in Section 5.5, which show the improvement

from the proposed tracking algorithm.
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5.2 Smoothing algorithms

In previous chapters, the Bayesian filtering algorithms can be observed to

provide an approximation of the distribution p(xk|zk), where xk is the single

target state and zk denotes the single measurement. However, the results

from the forward filtering algorithms can be improved by extending the ob-

servable measurement; in order to address this challenge, delayed measure-

ments are considered, which will be utilized in the backward stage, namely

a smoothing type algorithm.

Given the current time k, and t denotes the time for the target state to

be obtained. If t > k, the system is called prediction; the system is called

filtering when t = k; and it is called smoothing in the case of t < k [81].

There are three smoothing methods used widely by recent researchers: fixed-

interval smoothing, fixed-point smoothing and fixed-lag smoothing. By using

the fixed-interval smoothing algorithm, the density p(xk|zk) is found at all

time indices t = 1, ..., k, and is employed commonly in off-line systems; the

fixed-point smoothing algorithm is concerned with the density at a fixed

time t when k varies; when the fixed-lag smoothing algorithm is employed,

the density at time t = k − ` is concerned, where ` is the fixed time lag.

In this work, the fixed-lag smoothing algorithm is utilized to estimate the

target states, which contains two main steps: forward filtering and backward

smoothing.

The prediction and measurement updating models of the Bayesian model

are given as

pk|k−1(Xk|Z1:k−1) =

∫
pk|k−1(Xk|Xk−1)pk−1|k−1(Xk−1|Z1:k−1)dXk−1

(5.2.1)

and

pk|k(Xk|Z1:k) =
pk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
pk(Zk|Xk)pk|k−1(Xk|Z1:k−1)dXk

(5.2.2)
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where Xk denotes the multi-target states at time k, Z1:k denotes the col-

lected measurement up to time k; pk(Zk|Xk) denotes the multi-target likeli-

hood function and pk|k−1(Xk|Xk−1) denotes the transition model from multi-

target states at time k − 1 to time k [81].

Similar to the forward Bayesian filtering algorithm, the formula for the

backward smoothing step at time t where t < k can be given as [81,87]:

pt|k(Xt|Z1:k) = pt|t(Xt|Z1:t)×
∫
pt+1|k(Xt+1|Z1:k)pt+1|t(Xt+1|Xt)

pt+1|t(Xt+1|Z1:t)
dXt+1

t = k − 1, ..., k − `

(5.2.3)

where pt|t(Xt|Z1:t) is the density for multi-target state at time t from the

forward filtering step [87]. In a Gaussian and linear model, the backward

model (5.2.3) can be easily achieved, however, as mentioned in [82] when the

model is non-linear and non-Gaussian, a computationally tractable approxi-

mation is necessary; in addition, within the smoothing algorithms, a batch of

data should be considered to minimize the aggregated error over the batch

at each time to mitigate the approximation error. In [82], Psiaki gives a

solution for the smoothing algorithm with a non-linear model, namely the

backward smoothing extended Kalman filter (BSEK). In the BSEK, given

the Bayesian state and measurement model as

xk|k−1 = f(xk−1|k−1,wk) (5.2.4)

where (·)k|k−1 denotes the estimated state value at time k from time k − 1

and wk is the prediction noise vector with covariance matrix Pk. And the

measurement model

zk = h(xk|k−1,vk) (5.2.5)

where h is the measurement transition function and vk is the measurement
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noise vector with covariance matrix Rk. Then the cost function for the

BSEK can be calculated as [82]

J =
1

2

k−1∑
t=0

{wT
t Q−1

t wt+[zt+1 − h(xt+1|t)]
TR−1

t+1[zt+1 − h(xt+1|t)]}

+
1

2
(x0 − x̂0)TP−1

0 (x0 − x̂0)

(5.2.6)

where Qt is the covariance matrix for the process noise, which is modeled as

discrete time Gaussian white noise with zero mean; and the starting point

of the filtering is t = 0 with a posterior state estimate x̂0 and the posterior

state estimation error covariance matrix P0 [82].

In this case, the target of the BSEKF is to find xt given x1:k−1 and w1:k−1

by minimizing the cost function J . However, as it is shown in the function,

the model is required to be Gaussian, moreover, in BSEKF, a batch filter is

required to find the best solution for minimizing the cost function. Since the

above challenges are difficult to be addressed in the particle PHD filter, the

backward stage in the backward PHD filtering algorithm cannot be named

as a smoother; in this case, instead of the term of smoothing algorithm, the

term retrodiction is employed in this thesis, where the integration step is

approximated by an importance sampling step following the concept of the

particle filter and is employed in the PHD backward recursion, namely the

retrodiction particle PHD filter (Retro-PHD).

5.3 Retrodiction Particle PHD filter

Following the concept of the smoothing algorithm, the tracking performance

can be improved by employing a backward processing. A retrodiction step is

also utilized in the PHD framework to use the delayed measurement, hence

improving the accuracy of the tracking system.



Section 5.3. Retrodiction Particle PHD filter 69

5.3.1 Forward particle PHD filtering

In the particle Retro-PHD algorithm, the forward particle PHD filtering step

is firstly employed, as introduced in Chapter 3, the main steps of the particle

filtering are prediction and updating. In the prediction stage, the particle set

contains the survived particles and the new-born particles, and the density

PHD of the targets at time k − 1 is

Dk−1|k−1(Xk−1|Zk−1) =

Lk−1∑
i=1

wik−1|k−1δ(x
i
k−1|k−1) (5.3.1)

where Lk−1 is the particle number at time k − 1, which is also used as the

number of survived particle number at time k in the prediction step. In this

case, the forward PHD prediction stage can be given as

Dk|k−1(Xk|Zk−1) =

Lk−1∑
i=1

wie|k−1δ(x
i
k|k−1) +

Jk∑
i=1

wiΥk|k−1δ(x
i
Υk|k) (5.3.2)

where e denotes the probability of the particles survived at time k and Υk

denotes the probability for the new-born particles from the target state

at time k. In this way, the predicted particle set with associated weights

{xik|k−1, w
i
k|k−1}

Lk−1+Jk
i=1 can be calculated as

wik|k−1 =


e(xik|k−1|Xk)w

i
k−1 i = 1, ..., Lk−1

Υk
Jk

i = Lk−1 + 1, ..., Lk−1 + Jk

(5.3.3)

where Jk denotes the particle number used to represent the new born targets.

The details have been described in Section 3.5 of Chapter 3.

After obtaining the predicted particle set, as introduced in Section 3.5,

the PHD updating step is employed based upon the receipt of the measure-
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ment set Zk as:

wik|k =

pM (xik|k−1) +
∑
∀zk∈Zk

ψk,zk(xik|k−1)

κk + Ck(zk)

wik|k−1 (5.3.4)

where

Ck(zk) =

Lk−1+Jk∑
i=1

ψk,zk(xik|k−1)wik|k−1 (5.3.5)

and ψk,zk(xik|k−1) = (1 − pM (xik|k−1))g(zk|xik|k−1) is the single target likeli-

hood. In this work, since the adaptive step will be employed with the aid

of information from the human features, the likelihood of each particle is

calculated by histograms of colour and oriented gradient features of human

targets [69], which will be introduced in Section 5.5 later. By assuming that

the noise on the colour and oriented gradient likelihood function is Gaussian

g(zk|xik|k−1) ∼ N (zk; 0, σ2
g)

=
1√

2πσ2
g

exp

(
−
{G(xik|k−1)}2

2σ2
g

)
(5.3.6)

where σ2
g is the variance of the noise for the colour and gradient likelihood

and G(xik|k−1) is the colour similarities calculated as the Bhattacharyya dis-

tance between the reference measurement and the histogram of colour and

oriented gradient o(·) extracted from the rectangular area centered around

the particle location, which can be calculated as

G(xik|k−1) =
√

1− o(xik|k−1)T zk (5.3.7)

After the updating step of the particle PHD filter, the number of targets

is calculated by the sum of all the weights for particles as [60]

M̃k = int

Lk−1+Jk∑
i=1

wik|k

 (5.3.8)
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where int(·) takes the nearest integer. After calculating the number of tar-

gets, a resampling step is employed as described in [3] in order to limit the

number of particles, which has been introduced in detail in Algorithm 3.4 in

Chapter 3, thereby avoiding the number of particles growing exponentially

and obtaining the resampled particle set {x̃ik, w̃ik}
Lk
i=1. Then the tracking re-

sults {x̃mk }
m=M̃k
m=1 are obtained from the particle PHD filter, where (̃·) denotes

the states from the forward PHD filtering algorithm.

5.3.2 Particle Retro-PHD filtering

The Retro-PHD filter is employed to use more measurements beyond the

current time by processing information from later stages in an approximate

manner, and can potentially achieve more accurate tracking results. Similar

to forward particle PHD filtering, the retrodiction step is also generalized

by the RFS [59, 81]. By employing the concept of the fixed-lag smoothing

algorithm, the backward retrodiction algorithm is concerned with the density

at time t = k−`, where ` is the time lag. When employing the particle Retro-

PHD filter, the retrodicted particle weights at time t are evaluated using the

backward iterations using filter outputs {x̃ik, w̃ik}
Lk
i=1, for t = k − `, ..., k.

The particle weights from the backward retrodiction stage are computed as

derived in [81]:

ŵit|k = w̃it|t

e(x̃it|t) Lt∑
q=1

wqt+1|kft+1|t(x̃
q
t+1|t+1|x̃

i
t|t)

µqt+1|t
+ (1− e(x̃it))

 (5.3.9)

where

µqt+1|t = Υt+1(x̃qt+1|t+1)+

Lt∑
r=1

w̃rt|t×{e(x̃
r
t+1|t+1)ft+1|t(x̃

q
t+1|t+1|x̃

r
t|t)} (5.3.10)
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and the conversion function ft|t−1(·) is given as:

ft|t−1(x̃it|x̃it−1) =

exp

(
− (x̃it−F(x̃it−1))T (x̃it−F(x̃it−1))

2σ2
f

)
√

2πσ2
f

(5.3.11)

where σ2
f is the variance of the conversion function and F(·) is the state

transformation matrix. After obtaining the particle set {x̂it, ŵit}i=Ni=1 from

the particle Retro-PHD filter, the number and states of the human targets

are obtained in the same way as in the forward particle PHD filter and

in order to mitigate the effects of particle depletion, a resampling step is

employed as described in the following subsection [84].

5.3.3 Particle Retro-PHD resampling

In order to address the challenge of particle depletion, a resampling step is

employed after the retrodiction stage. Assuming the target density PHD

from the retrodiction step at time t is given as

Dt|k(Xt|Z1:k) =

Lt|k∑
i=1

wit|kδ(x
i
t|k) (5.3.12)

where wit|k contains the weights for the particles from both target PHD and

the particles from missed detection. By employing the traditional resam-

pling algorithms as described in Algorithm 3.1 introduced in Chapter 3,

particles are resampled proportionally, so the particles with lower weights

are rarely selected for resampling, which may incur losses in tracking in the

backward retrodiction stage. To address this problem, a different resam-

pling method is utilized for the retrodiction PHD as proposed in [84], where

the particles from the target PHD and missed detection are resampled sepa-

rately. Assuming Lt|k particles are obtained from the backward stage of the

Retro-PHD, which includes particles from both the missed detected parti-
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cle set {xim,t|k, w
i
m,t|k}

Lm,t|k
i=1 and the particle set obtained from target PHD

{xid,t|k, w
i
d,t|k}

Ld,t|k
i=1 , where Lm,t|k denotes the particle number for the missed

detection and Ld,t|k denotes the number of particles from the target PHD;

in this way, the resampled approximation of the target density PHD can be

described as

Dt|k(Xt|Z1:k) = wd,t|k

Ld,t|k∑
i=1

δ(xid,t|k) + wm,t|k

Lm,t|k∑
i=1

δ(xim,t|k) (5.3.13)

where the resampled weights for particles from target PHD wd,t|k and missed

detection weights wm,t|k are given as

wd,t|k =

Ld,t|k∑
i=1

wid,t|k/Ld,t|k wm,t|k =

Lm,t|k∑
i=1

wim,t|k/Lm,t|k (5.3.14)

After the resampling step, the tracking results from the particle Retro-

PHD filter are represented as {x̂mk }
m=M̂k
m=1 . The comparison between the

forward particle PHD filter and the Retro-PHD filtering algorithm will be

shown in Section 5.5, which shows the improvement from the Retro-PHD.

When evaluating the Retro-PHD algorithm, for multiple human track-

ing, although the approach can improve the tracking results over the PHD

filter, its performance deteriorates with an increasing number of human tar-

gets appearing and disappearing in the monitored area. In such a scenario,

more false measurements for delayed estimation are introduced by false alarm

or missed detection. Moreover, the measurement noise can also reduce the

accuracy of the backward Retro-PHD. To address these challenges, an adap-

tive solution is employed, where the forward and retrodiction results are

combined adaptively to improve the tracking performance.
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5.4 Adaptive solution for particle Retro-PHD filter

From the above steps, results from both the forward and backward filtering

processes are obtained, in which the forward measurements are utilized in

the filtering algorithm and backward measurements are utilized in the retro-

diction algorithm to estimate the target states, which are represented with

the black lines and the blue lines in the graphical representation in Fig. 5.1

respectively. However, as mentioned in Section 5.3.2, the accuracy of the

Figure 5.1. Graphical comparison between PHD filtering, Retro-PHD
filtering and the proposed adaptive Retro-PHD filtering algorithms,
where the black lines denote the PHD filtering algorithm, the blue lines
denote the Retro-PHD filtering algorithm and the red lines denote the
proposed adaptive retrodiction step.

backward state estimation from the Retro-PHD filter is limited because of

the limitation of the accuracy of the delayed measurements. When the num-

ber of targets changes and the environmental noise increases, the delayed

measurements are easily influenced by missed detection and false alarms,

which will cause false measurements, and hence reduce the accuracy of the

Retro-PHD filter. To address this issue, an adaptive step is designed for

combining the forward and retrodiction state estimation. As shown in the

red lines of Fig. 5.1, an adaptive scalar parameter λ is employed to weight
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the results given from the forward filtering and retrodiction filtering algo-

rithms, which is calculated by the similarity of the measurement set over

discrete time samples. Assuming the measurement set at times k − 1, k,

k+ 1 are Zk−1, Zk and Zk+1 respectively, which are generated by the target

states being tracked, and the measurement RFS is extracted from the RFS

of the tracking results, which includes Mk targets. Adaptive parameters

λo, o ∈ {filtering, retrodiction} are calculated as:

λfiltering =

∑Mk
i=1

∑Mk−1

r=1 exp

(
− (zik−z

r
k−1)T (zik−z

r
k−1)

2σ2
λ

)
Mk−1

(5.4.1)

λretrodiction =

∑Mk
i=1

∑Mk+1

r=1 exp

(
− (zik−z

r
k+1)T (zik−z

r
k+1)

2σ2
λ

)
Mk+1

(5.4.2)

and by normalizing λfiltering and λretrodiction, the weight value for the for-

ward and backward measurements is given as:

λ =
λfiltering

λfiltering + λretrodiction
. (5.4.3)

which gives convex weights to the results from both tracking and filtering.

Thus the tracking position from the adaptive step is found by using a convex

combination of results from both filtering and retrodiction as:

x̌mk =


x̃mk if target m disappears at k + 1

λx̃mk + (1− λ)x̂mk otherwise

(5.4.4)

where (̌·) denotes the results from the adaptive recursion retrodiction step.

The convex combination is used because it is a simple and intuitive way for

fusing the information and provides flexibility to automatically control the

contribution of the forward and backward information adaptively. In this

way, the filtering results are employed to make corrections for the results
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from the Retro-PHD filter based on the similarity between forward and de-

layed measurements, which reduces the probability of the false measurements

caused by missed detection and false alarms.

In summary, for time k > 1, the adaptive particle Retro-PHD filter can

be described as Algorithm 5.6.

Algorithm 5.6 Adaptive Retro-PHD filter

Input: {xik−1, w
i
k−1}i=Ni=1 .

Output: {x̌mk−1}
m=Mk−1

m=1

1: Forward Filtering
2: Select new-born particles from background subtraction.
3: Particle prediction by (5.3.2).
4: Obtain prediction weights by (5.3.3).
5: for i = 1 : Lk−1 + Jk do
6: Calculate g(zk|x̃ik) by (5.3.6).
7: Update particle weights with (5.3.4).
8: end for
9: Calculate target number by (5.3.8).

10: Resample updated particles and discard Jk particles.
11: Data association for survived and new-born particles.
12: Clustering with K-means and obtain {x̃mk }

m=Mk
m=1 .

13: Backward Retrodiction
14: for i = 1 : Lt do
15: if xit ∈ survived particles then
16: Calculate f(·) following (5.3.11).
17: end if
18: Calculate retrodiction weight with (5.3.9).
19: end for
20: Clustering with K-means and obtain {x̂mt }m=Mt

m=1 .
21: Adaptive Recursion
22: Obtain the measurement set Zk.
23: for m = 1 : Mt do
24: Calculate filtering and retrodiction weight λ by (5.4.3).
25: Make correction for tracking position with λ by (5.4.4).
26: end for
27: Clustering with K-means and obtain {x̌mt }m=Mt

m=1 .

The above steps give the adaptive solution for the particle Retro-PHD.

Simulation results will be given in Section 5.5, where the comparison will

confirm the improvement of performance from the adaptive step.
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5.5 Simulation

In order to evaluate the performance of the proposed adaptive particle Retro-

PHD filter, sequences from the CAVIAR and PETS2009 datasets are em-

ployed, where in the CAVIAR dataset, 3-5 human targets are walking in a

shopping mall environment and in the PETS2009 dataset, 3-6 human targets

are walking in a campus environment, and these include human target occlu-

sion, appearing and disappearing randomly in the scene. In this work, 1000

particles are employed to represent targets in the CAVIAR dataset and 1500

particles are employed in the PETS2009 dataset; 200 particles are employed

for new-born targets in each frame.

5.5.1 State model and measurement model

Following previous experience, the zero-mean noise vector wk for prediction

in the state model has covariance structure cov{wk} = diag{25,

25, 16, 16, 4, 4} and for vk, cov{vk} = diag{25, 25}. The missed detection

probability pM = 0.01, the survival probability e = 0.99, the new born

intensity is given as Υ = 0.1 and clutter intensity κ = 0.01. The variance

of the conversion function σ2
f and λ function σ2

λ are set empirically to be 25

and 25 respectively. In order to reduce the computational complexity, the

time lag ` is set to be 1. The state transformation matrix F is given as

F =



1 0 ∆t 0 0 0

0 1 0 ∆t 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(5.5.1)

where ∆t is the time interval between time k and k − 1.
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As introduced in Section 5.3, the measurement contains the histograms

of colour and oriented gradient features of human targets, which is employed

in the likelihood calculation of each particle.

The histogram of oriented gradient feature is employed in this thesis be-

cause: 1) Capture edge or gradient structure is characteristic of local shape;

2) It is relatively invariant to local geometric and photometric transforma-

tions; 3) The spatial and orientation sampling densities can be tuned for

application. As proposed in [88], the histogram of oriented gradient (HOG)

was designed to describe the human feature in video frame by gradient infor-

mation. As introduced in [88], the basic idea of HOG is to describe the local

object appearance and shape by the distribution of local intensity gradients

of edge directions. The main steps for calculating the HOG are given as:

• Colour normalisation;

• Computing the gradients;

• Orientation binning, where each pixel votes for an orientation accord-

ing to the closest bin in the range;

• Gradients normalization;

• Collect HOG over detection window.

In this thesis, the bin number of HOG windows per bound box is chosen as

3 and the number of histogram bins is set as 9.

Besides HOG, the colour histogram is also employed in this work, since

the colour of the human targets and background are different, it can be

used to classify the human target from the image. As described in [89],

scaled versions of red (R), green (G) and blue (B) colours are used to obtain

the colour histogram for human targets, where R-G and G-R are employed

to represent the chrominance information and the luminance information is
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represented by the R+G+B. In this work, 16 × 16 × 16 histogram bins are

used to model the colour information.

At the initial frame of the video sequence, the reference measurement

s includes the histogram of colour and oriented gradient. When a particle

xik|k−1 is obtained, the Bhattacharyya distance G(xik|k−1) between the refer-

ence measurement and the image patch extracted from the states described

in the predicted particle as

G(xik|k−1) =
√

1− o(xik|k−1)T zk (5.5.2)

and the likelihood model is given as

g(zk|xik|k−1) ∼ N (zk; 0, σ2
g)

=
1√

2πσ2
g

exp

(
−
{G(xik|k−1)}2

2σ2
g

)
(5.5.3)

where σ2
g is the variance of the noise, which is given as 25 empirically.

The above settings give the state and measurement models of the adap-

tive Retro-PHD algorithm. In the next subsection, the simulation as well as

comparison between PHD filtering, Retro-PHD filtering and adaptive Retro-

PHD are given.

5.5.2 Retro-PHD results

To evaluate the Retro-PHD algorithm, sequences from the CAVIAR and

PETS2009 datasets are employed, where the mean of Euclidean error (MEE)

between tracking results and ground truth and OSPA are utilized for com-

parison. The MEE comparison results are shown in Table 5.1 while the

comparison for OSPA are shown in Fig. 5.2 and 5.3.

The comparisons show the improvement from the Retro-PHD over the

traditional PHD filtering algorithm. However, although Table 5.1 shows the
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Table 5.1. MEE comparison between the forward PHD filtering and
the Retro-PHD filtering algorithms with sequences from CAVIAR and
PETS2009 dataset.

CAVIAR PETS2009
PHD 34.85 43.08

Retro-PHD 28.43 36.49
Improvement 18.42% 15.30%

Figure 5.2. Comparison of OSPA measure between the traditional
particle PHD and Retro-PHD algorithms with sequence from CAVIAR
dataset, where the blue line denotes the OSPA value from the tradi-
tional particle PHD filter proposed in [4] and the red line denotes the
OSPA value from the Retro-PHD.

improvement by comparing the MEE in each frame, when evaluating by

OSPA measure, the improvement from the Retro-PHD filtering algorithm is

limited, whereas for the CAVIAR dataset shown in Fig. 5.2, the mean of

the OSPA value reduces from 15.95 to 13.93 and for the PETS2009 dataset

shown in Fig. 5.3, the mean value reduces from 13.69 to 13.66. The reason

for this poor improvement is that the accuracy of the delayed measurement

is limited because of the missed detection and false alarms caused by mea-

surement noise and variable number of targets. To make further comparison,

sequence ‘OneLeaveShopReenter2cor’ is also employed to evaluate the Retro-
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Figure 5.3. Comparison of OSPA measure between the tradi-
tional particle PHD and Retro-PHD algorithms with sequence from
PETS2009 dataset, where the blue line denotes the OSPA value from
the traditional particle PHD filter proposed in [4] and the red line de-
notes the OSPA value from the Retro-PHD.

PHD filtering algorithm, for which the OSPA evaluation result is shown as

Fig. 5.4, where the average of the OSPA value reduces from 19.59 to 18.39,

which shows the improvement from the backward retrodiction step of the

Retro-PHD filtering algorithm.

In order to mitigate the influence caused by the delayed measurement,

the adaptive step is employed with the aid of the similarity of measurement,

and the simulations given in the next subsection confirms the improvement

from the proposed algorithm.

5.5.3 Adaptive Retro-PHD results

In order to obtain further improvement, as introduced in Section 5.4, the

adaptive step is employed after the retrodiction step of Retro-PHD filter-

ing. To evaluate the proposed adaptive Retro-PHD, the same sequences

used for evaluating the Retro-PHD filtering algorithm are employed. As in-

troduced in Section 5.4, human features including histograms of colour and
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Figure 5.4. Comparison of OSPA measure between the tradi-
tional particle PHD and Retro-PHD algorithms with sequence ‘One-
LeaveShopReenter2cor’ from CAVIAR dataset, where the blue line de-
notes the OSPA value from the traditional particle PHD filter proposed
in [4] and the red line denotes the OSPA value from the Retro-PHD.

oriented gradient are employed to calculate the adaptive parameter λ. The

improvement shown by MEE evaluation results are given in Table 5.2 where

Retro-PHD denotes the results from the Retro-PHD filtering algorithm and

A-PHD denotes the results from the proposed adaptive Retro-PHD filtering

method. In order to evaluate the proposed method from both localization

and cardinality aspects, the OSPA measure is employed, which are shown

in Fig. 5.5 and Fig. 5.6. The traditional PHD filter and the Retro-PHD

are used as baselines for comparison, which show the improvement from the

adaptive step.

Table 5.2. MEE comparisons for PHD, Retro-PHD and Adaptive
Retro-PHD.

CAVIAR PETS2009
PHD Retro-

PHD
A-
PHD

PHD Retro-
PHD

A-
PHD

ME (pixel) 34.85 28.43 25.71 43.08 36.49 34.95
Improvement (%) - 18.42% 26.23% - 15.30% 18.87%

From the comparison, it is clear that for the CAVIAR dataset, the av-



Section 5.5. Simulation 83

Figure 5.5. Comparison of OSPA measure between the traditional
particle PHD and Retro-PHD algorithms with sequence from CAVIAR
dataset, where the blue line denotes the OSPA value from the tradi-
tional particle PHD filter proposed in [4] and the red line denotes the
OSPA value from the Retro-PHD.

Figure 5.6. Comparison of OSPA measure between the tradi-
tional particle PHD and Retro-PHD algorithms with sequence from
PETS2009 dataset, where the blue line denotes the OSPA value from
the traditional particle PHD filter proposed in [4] and the red line de-
notes the OSPA value from the Retro-PHD.

erage value of OSPA is reduced by 4.61 and 2.69 when compared with the

PHD and Retro-PHD, respectively. For the PETS2009 dataset, the average
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value of OSPA is reduced by 2.48 and 2.45 respectively. The peak value

around frame 80 of the CAVIAR dataset from the adaptive Retro-PHD is

caused by the change of the number of targets and occlusion. To make fur-

ther comparison, sequence ‘OneLeaveShopReenter2cor’ is also employed to

evaluate the Retro-PHD filtering algorithm, for which the OSPA evaluation

result is shown as Fig. 5.7, where the red line denotes the OSPA value from

the proposed adaptive Retro-PHD filtering algorithm and also confirms the

improvement over the PHD and Retro-PHD filtering algorithms.

Figure 5.7. Comparison of OSPA measure between the traditional
particle PHD and Retro-PHD algorithms with ‘OneLeaveShopReen-
ter2cor’ sequence from CAVIAR dataset, where the blue line denotes
the OSPA value from the traditional particle PHD filter proposed in [4]
and the red line denotes the OSPA value from the Retro-PHD.

When employing the adaptive recursion step, the weights for the mea-

surements from filtering and retrodiction are given based upon the observa-

tion extracted from the state, hence can address the challenges caused by

false measurements caused by time-varying number of targets, missed detec-

tions and false alarms. Because of this step, the tracking system becomes

more accurate as verified by these experiments.
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5.6 Summary

In this chapter, the backward retrodiction approach was employed for mul-

tiple human tracking based upon the concept of smoothing algorithm. The

fundamental knowledge of the smoother was introduced firstly at the begin-

ning of this chapter, however, since the recently proposed PHD-smoother

lacks the processing of employing a batch of data at each step to mitigate

the approximation error, which is necessary in nonlinear model, the term of

retrodiction PHD filtering was used to replace the term of PHD smoother.

By employing the backward retrodiction step, delayed measurement set was

employed to obtain more accurate tracking results, the improvement from

the Retro-PHD was confirmed by the comparison results shown in Section

5.5.2. Moreover, since in multiple human tracking work, the accuracy could

be influenced by the limitation of the accuracy of delayed measurement, an

adaptive step was proposed to combine the forward and retrodiction step

with a convex function, where the convex parameter was achieved by cal-

culating the similarity of the measurement set over discrete samples. The

evaluation results given in Section 5.5.3 showed the improvement when com-

pared with the forward PHD Retro-PHD algorithms.

In the next chapter, to obtain further improvement, contributions from

both prediction and updating models are considered. In the prediction stage,

human behaviour is considered to describe the transition function, namely

the social force model. An MCMC resampling approach is also employed to

aid in the prediction of more robust particles for the PHD filter. Moveover,

an OCSVM classifier which is trained by features from both colour and

oriented gradient histogram is utilized to mitigate measurement noise in

background subtraction, thereby further reducing the probability of false

alarms and hence improving the performance of the PHD filter.



Chapter 6

SOCIAL FORCE MODEL

BASED MCMC-OCSVM

PARTICLE PHD FILTER FOR

MULTIPLE HUMAN

TRACKING

6.1 Introduction

In this chapter, improvements to the particle PHD filter are made both in

terms of the prediction step and updating step. In the prediction step of

the particle PHD filter, a novel exponential term based social force model

is employed to describe the human behaviour, which aids the estimating of

the state of the human target. Moreover, to further improve the prediction

accuracy, the predicted particles are resampled by an MCMC step, in which

the acceptance ratio is obtained with the aid of the results from the social

force model. In the updating step, the background subtraction approach

is firstly used as the measurement; however, since the noise from the back-

ground subtraction may cause false detection, a one-class support vector

machine (OCSVM) is employed to mitigate the noise, which is trained by

86
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human features including histograms of colour and oriented gradient. This

chapter focuses on the fourth and fifth objectives of this thesis, which re-

late to the social force model aided robust particle PHD filter for multiple

human tracking published in [90] and the social force model based MCMC-

OCSVM particle PHD filter for multiple human tracking submitted to IEEE

Transactions on Multimedia [91].

In this Chapter, to make the notations in the later sections clearer, the

particle PHD filter framework is briefly described at the beginning, which

has been described in detail in Chapter 3. Then the social force model is

firstly introduced in Section 6.3; after introducing the traditional social force

model, an exponential-term social force model is proposed and is employed

to calculate the likelihood in the MCMC resampling step as detailed in Sec-

tion 6.4. After obtaining a more robust predicted particle set, the OCSVM

is trained and used to calculate the likelihood model in the updating step of

the particle PHD filter, which is explained in Section 6.5. The above contri-

butions are then added in the particle PHD filter framework and introduced

as pseudocode in Section 6.6. At the end of this chapter, simulations and

comparisons as well as the failure cases of the proposed tracking system

are given in Section 6.7, which confirm the improvement from the proposed

social force model based MCMC-OCSVM particle PHD filter.

6.2 Adapted particle PHD filter

Assuming the target set {xmk }
m=Mk
m=1 includes the states of all the human

targets, where xmk = [pmk,x, p
m
k,y, v

m
k,x, v

m
k,y, h

m
k , w

m
k ]T ∈ R6 denotes the state

of the m-th target at discrete time k, including the 2D position (pmk,x, p
m
k,y),

velocity (vmk,x, v
m
k,y), height and width of targets hmk , wmk ; where (·)T denotes

the transpose operator and subscripts x, y are the horizontal and vertical

coordinates of the target; Mk is the number of targets at time k. Denote
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the measurement set at time k as Zk, which includes zk for each target and

Xk = {xm,ik ,m = 1, ...,Mk, i = 1, ..., N}, which denotes all the particles

utilized to describe the states of all human targets at time k, where N is

the number of particles employed to describe the state of a target; in this

chapter, the notation with superscript (·)m,i denotes a particle with index

i employed to describe the state of the target with index m. Given a set

of targets with states at time k − 1, {xmk−1}
m=Mk−1

m=1 , the set of predicted

particles and the associated weights from the state model at time k is given

by [16]

{x̃m,ik , wm,ik−1}
m=Mk,i=N
m=1,i=1 (6.2.1)

As has been introduced in Chapter 3 in detail, the prediction and up-

dating step for the particle PHD filter can be described as follows:

1. Prediction: Particles x̃m,ik are drawn from the predicted particle set

and fed into the prediction model of the particle PHD filter, which is de-

scribed as [60]

D(Xk|Zk−1) =

∫
φ(x̃m,ik |Xk−1)D(Xk−1|Zk−1)δx̃m,ik + Υk(Xk−1) (6.2.2)

where Υk is the intensity function of the new target birth RFS, φ(x̃m,ik ) is the

analogue of the state transition probability in the single target case which is

calculated from

φ(x̃m,ik |Xk−1) = e(x̃m,ik |Xk−1) + β(x̃m,ik |Xk−1) (6.2.3)

in which e(·) is the probability that the target still exists at time k and β(·)

is the intensity of the RFS for spawned targets. When exploiting the PHD

filter with the particle filter, the PHD of states is represented by the weights

of the particles, which include the survived particles and new-born particles.

In the traditional particle PHD filter, the particles employed to describe
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the new-born targets are selected randomly in the scene; however, in human

tracking, the new-born targets can be obtained by employing a background

subtraction step. With this method, the particle set, which includes particles

for both survived targets and new born targets can be obtained

{x̃ik, w̃ik|k−1}
i=(Mk−1+Jk)×N
i=1 (6.2.4)

where i is the index of the i-th particle and Jk is the number of new blocks

from the background subtraction, which is assumed to be the number of

new born targets in the prediction step. The weights obtained from the

prediction step are given as

w̃ik|k−1 =


φ(x̃ik)w

i
k−1 i = 1, ...,Mk−1 ×N

Υk
Jk×N i = Mk−1 ×N + 1, ..., (Mk−1 + Jk)×N

(6.2.5)

In this way, the predicted PHD D(Xk|Zk−1) at time k for target states Xk

is obtained based on the weights of the particles.

2. Measurement update: The updating step of the particle PHD filter

is defined as [60]: Once the new set of observations is available, the weights

of each particle are updated based upon the receipt of the measurement Zk

as [60]

w̃ik =

pM (x̃ik) +
∑
∀zk∈Zk

ψk,zk(x̃ik)

κk +
(Mk−1+Jk)×N∑

i=1
ψk,zk(x̃ik)w̃

i
k|k−1

 w̃ik|k−1 (6.2.6)

Then the number of targets is calculated by the sum of all the weights

for particles as follows [60]

M̃k =

(Mk−1+Jk)×N∑
i=1

w̃ik (6.2.7)
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Mk = int(M̃k) (6.2.8)

where int(·) takes the integer nearest to M̃k. The above steps constitute

the main steps of the particle PHD filter, and the details have been given in

Chapter 3.

6.3 Social force model

The interaction information is exploited by a model constraining the motion

between the targets in this thesis. Within existing interaction models, the

social force model (SFM) [5] is considered due to its ability in handling the

interaction between human targets as well as their typical behaviour. Several

researchers have used social force models to predict the states of humans

based on their behaviour [5,6]. Within the social force model, the behaviour

of human targets is modelled via energy potentials which are adjusted by

other targets and obstacles through repulsive forces [92].

Given a current set of target states {xmk }
m=Mk
m=1 based on the position,

velocity and walking behaviour of each target including their destination

and avoiding collision with others [6], it is assumed in a social force model

that every human target knows its current position and velocity, as well as

its destination. In addition, it has social force with other targets if they are

closer in distance than a pre-defined threshold. It is also often assumed that

each target will predict the movement of other targets via a constant velocity

model. Thus, the position information pmk = [pmk,x, pmk,y]
T and the velocity

information vmk = [vmk,x, vmk,y]
T , from the state of target xmk at time k, can

be used to represent the social force between the targets. The social force

model for target m is calculated between target m and all other targets. For

example, the social force between targets m and n (n 6= m) is calculated

based upon the following parameters: the distance and angular displace-

ment between m and n: dmk (n) and Amk (n); the change of velocity compared
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with target m: Umk and the cosine of the angle between the velocity and

destination path of target m: Wm
k [5].

The distance dmk (n) can be calculated as [6]

dmk (n) = ‖pmk + tvmk − pnk − tvnk‖ (6.3.1)

where ‖ · ‖ denotes the Euclidean norm and t is the time interval between

frame k− 1 and k. Since each target is assumed to intend to avoid collisions

with other targets, the angular displacement between the velocity of the two

targets is also considered as one of the important parameters for the social

force model, which can be represented as factor Amk (n) [5]

Amk (n) = 1 +
(vmk )Tvnk
‖vmk ‖‖vnk‖

(6.3.2)

In the social force model, each target m is assumed to walk towards a

destination pmo = [pmo,x, p
m
o,y]

T , and in doing so tries to maintain a desired

speed um = [umx , u
m
y ]T . These two components can be described as two

energy functions Umk and Wm
k , which denote the change of velocity and

cosine of the angle between the current velocity and destination path for

target m respectively

Umk = ‖(vmk − um)‖ (6.3.3)

Wm
k =

(pmo − pmk )Tvmk
‖pmo − pmk ‖‖vmk ‖

(6.3.4)

where vmk denotes the velocity of target m at time k.

After calculating the above parameters, the overall social force for target

m at time k can be written as [6]

Smk =
∑
n6=m

dmk (n)Amk (n) + λ1U
m
k + λ2W

m
k (6.3.5)

where λ1 and λ2 ∈ R+ control the influence of the two regularizers. After
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the social force is obtained for each target, it can be incorporated into the

prediction step of the particle filter.

6.4 Exponential-term based social force model aided MCMC re-

sampling

In order to achieve more robust predicted particle set, an exponential-term

is employed to describe the social force model, and the output is used as the

likelihood model to calculate the acceptance ratio in the MCMC resampling

step.

6.4.1 Exponential-term based social force model

In this work, an exponential-term based energy function similar to that in [6]

is exploited to describe the social force model for the likelihood calculation

in the prediction stage of the MCMC-PHD filter. When a particle x̃m,ik

is predicted to represent the state of target m, xmk , at time k, its weight

is predicted by the social force model representing interactions with other

existing targets. Based upon (6.3.1), the distance between particle x̃m,ik from

target m and the state xnk of target n can be used within an energy term

Em,ik,d (n) = e

d
m,i
k

(n)

2σ2
d (6.4.1)

where σd controls the influence of the distance factor (denoted by subscript

d) on the social force model. So the larger the distance between the predicted

particle and the selected target, the higher the energy from the distance as-

pect, and Em,ik,d (n) becomes minimum if the linear trajectories collide with

each other. In this work, obstacles in the scenes are also considered; the

states of which are considered as targets with velocity vmk = [0, 0]T to cal-

culate the social force model for each particle. Since the pedestrians will
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change their speed and angular velocity in order to avoid collision with oth-

ers, by employing (6.3.2), the angular displacement factor for the social force

model can be represented as

Em,ik,φ (n) = (Am,ik (n))β (6.4.2)

where β controls the influence from the direction of the velocity and the

subscript φ is used to represent angular displacement. Based on (6.4.1) and

(6.4.2), the influence of multiple subjects can now be modeled as a weighted

product. For example where particle x̃m,ik is assigned an energy with respect

to each target n (n 6= m) depending on its current distance and angular

displacement φ [6] becomes

Em,ik (n) = Em,ik,d (n)Em,ik,φ (n) (6.4.3)

Two energy functions which denote the change of velocity and cosine

of the angle between current velocity and destination path for particle xm,ik

respectively can also be represented:

Ek,U (m, i) = e
−
U
m,i
k
2σ2v (6.4.4)

Ek,W (m, i) = e
−
W
m,i
k

2σ2
D (6.4.5)

where σv and σD control the influence of changing the velocity and destina-

tion on the social force of the target respectively.

To represent the state of target m, the overall interaction energy for

particle xm,ik is predicted as

Sm,ik =
∏
n6=m

Em,ik (n)Ek,U (m, i)Ek,W (m, i) (6.4.6)

where the calculation of Sm,ik is different from those in [5] and [6] where a
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sum function instead of a product function was used.

The above equations can be used as the social force weight functions

for establishing a posterior distribution within the prediction stage of the

particle PHD filter.

By calculating the social force from other targets, the estimated weight

for prediction sm,ik can be obtained by normalizing Sm,ik . After calculating the

social force, the particle set with their social force model results is obtained,

which is used to derive the likelihood for particles in the MCMC resampling

step described in the next subsection, and thereby achieve more accurate

prediction for particles.

In order to make a clear comparison between the social force model pro-

posed in this work and two existing social force models, the proposed social

force model is compared with the two early proposed social force models

proposed in [5] and [6], where their similarities, differences, advantages and

disadvantages are considered: In all these approaches, interaction forces be-

tween the targets are used to simulate the dynamic model of pedestrians;

distance and angle between the targets, change of velocity and destination of

individual targets are considered in the models; and the models are designed

to use domain knowledge and thereby improve the performance of multi-

ple human tracking. The major differences are that in [5] a sum function

is used to combine the components of the social force model, but in [6] an

exponential-term model is used and, a summation form is used to combine

the model parameters. The approach instead uses a product function as

described by (6.4.6) and the influence of each model parameter is controlled

by the variance terms in the exponential models. Moreover, a threshold is

introduced to avoid calculating social forces when two targets are a large

distance apart. The model in [5] has the advantage that it is simple, but

the model in [6] is more flexible offering better tracking accuracy. Equation

(6.3.5) also allows the influence from different model components to be more



Section 6.4. Exponential-term based social force model aided MCMC resampling 95

easily matched to different environments. The model in this work offers fur-

ther improvement in accuracy in more complicated environments and these

are demonstrated in Table 6.4 in the simulation section. Finally, in terms of

disadvantages, the approach in [5] has much less flexibility for use in different

environments than the proposed approach and that in [6].

6.4.2 Social force model based MCMC resampling

In the traditional particle filter, an importance function is used in the sam-

ple selection step [23,52], however, the MCMC resampling step replaces the

importance sampling step by building a Markov chain which exploits the

posterior distribution [52], and thereby improves diversity among particles.

In this work, the MCMC resampling step is employed to improve the ac-

curacy of the prior distribution, where the social force model is utilized to

replace the likelihood function in the traditional MCMC particle filter [93].

As described in [56], during the MCMC resampling, a particle x̃m,ik is

propagated to a new state x̃m,i∗k based on the following model

x̃m,i∗k = x̃m,ik + q (6.4.7)

where q denotes a zero-mean Gaussian noise vector. From the Metropolis-

Hastings acceptance probability [52], the acceptance ratio is calculated as

α = min

{
1,
p(zk|x̃m,i∗k )p(x̃m,i∗k |xmk−1)q(x̃m,ik |x̃

m,i∗
k )

p(zk|x̃m,ik )p(x̃m,ik |xmk−1)q(x̃m,i∗k |x̃m,ik )

}
. (6.4.8)

Since in this work, q(·|x̃m,ik ) is symmetric in its arguments, that is:

q(x̃m,i∗k |x̃m,ik ) = q(x̃m,ik |x̃
m,i∗
k ) (6.4.9)
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in this case, the acceptance ratio α can be calculated as:

α = min

{
1,
p(zk|x̃m,i∗k )p(x̃m,i∗k |xmk−1)

p(zk|x̃m,ik )p(x̃m,ik |xmk−1)

}
. (6.4.10)

In this work, the likelihoods of particle state p(zk|·) are replaced by the

results obtained from the social force model, thus

α = min

{
1,
sm,i∗k p(x̃m,i∗k |xmk−1)

sm,ik p(x̃m,ik |xmk−1)

}
. (6.4.11)

The state to be preserved is determined by drawing a point j from a uniform

distribution. If j < α then the new state xm,i∗k is retained, otherwise it is

rejected. In this way, the social force model is fed into the MCMC resampling

step for achieving more robust prediction.

Fig. 6.1 shows the steps of the social force model aided MCMC resam-

pling step with an example target m. As shown in Fig. 6.1, a particle x̃m,ik

Figure 6.1. The basic operation of the proposed social force model-
aided MCMC based particle filter.

predicted from the state model is chosen as the initial value of the Markov
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chain. Then the posterior density is obtained in the form of weighted sam-

ples [93], where the predicted weight w̃ik|k−1 is obtained from the social force

model described in Section 6.4.1. After calculating the acceptance ratio α for

each particle and discarding the burn-in samples [23], the prior distribution

p(Xk) can be obtained from the MCMC prediction, which can be utilized by

the particle PHD updating step. The example pseudocode of this MCMC

particle filter for target m is then summarised as Algorithm 6.7, where the

inputs are the predicted particles for target m and the output is the pos-

terior distribution from the prediction stage, and B denotes the number of

burn-in period particles.

Algorithm 6.7 Social force model based MCMC resampling step
(SFM-MCMC)

Input: Predicted particles for target m from state model {x̃m,ik }i=Ni=1

Output: Particles with predicted weights from the social force model
aided MCMC resampling {x̃m,ik , w̃m,ik|k−1}i=Ni=1

1: Initialize the Markov chain by the predicted particles from the state
transition function using the states of target at k − 1.

2: for i = 1:N +B do
3: Propagate x̃m,i∗k from x̃m,ik with (6.4.7) .
4: Calculate sm,ik and sm,i∗k for x̃m,ik and x̃m,i∗k with (6.4.6).
5: Compute α with (6.4.11).
6: Draw a point j from a uniform distribution.
7: if j < α then
8: retain the new state: x̃m,ik = x̃m,i∗k .
9: else reject the new state.

10: end if
11: end for
12: Discard the first B particles of the iterations.

6.5 One class support vector machine for likelihood calculation

Besides the state model, another important step is the measurement model

for particle updating. In this work, two main steps are employed to obtain a

robust measurement model: background subtraction and a one class support

vector machine.
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As introduced in Chapter 4, the codebook method is employed for back-

ground subtraction. The results can be used to select the new-born targets

and build up an RFS for the measurement set. The center of each block

ck = [ck,x, ck,y]
T which contains the localization information, can be em-

ployed as one part of the measurement [4], so the likelihood for each particle

based upon the foreground position gb(ck|x̃ik) can be calculated as

gb(ck|x̃ik) = e
− (pik−ck)

T (pik−ck)

σ2
R (6.5.1)

which shows the distance between the state of the particles and the fore-

ground information, where pik = [pik,x, p
i
k,y]

T denotes the position of the

targets taken from the particle x̃ik and σR is the standard deviation of the

measurement model in the Bayesian filtering model.

However, the raw background subtraction results generally contain many

artifacts, which include small ‘salt and pepper’ terms and large noise patches

caused by the problem of poor illumination and similar colour between the

foreground and background. The noise patches may be regarded as new born

targets in the prediction step of the PHD filter and cause the occurrence of

false alarms. To address this issue, in this work, an OCSVM classifier [94]

is used to distinguish the human targets from noise as described next.

The basic idea of the OCSVM is that given a data set drawn from an

underlying probability distribution p, the OCSVM estimates a function f to

describe its ‘support region’ (where a sample of p most likely comes from),

where the corresponding values of the function f are larger than a particular

threshold value [69].

To design the classifier, based on a training dataset, the following quadratic
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optimisation problem needs to be solved:

min
w,ς,ρ

1

2
‖w‖2 +

1

νL

L∑
i=1

ςi − ρ

subject to (wTΦ(x̃ik)) ≥ ρ− ςi, ξi ≥ 0 (6.5.2)

where w is the normal vector, ν ∈ (0, 1], ρ is from the Lagrangian model

of the SVM, which is set to be zero in this work and the nonzero slack

variables ς = [ς1, ..., ςL] are introduced to allow for the possibility of outliers

(the data points which are not drawn from the supporting region) and Φ(·)

is a nonlinear kernel function which maps the original data into a different

space for better separation. For a test particle x̃ik, the decision function for

estimating whether it comes from the determined distribution is:

f(x̃ik) = (wTΦ(x̃ik))− ρ (6.5.3)

In the application of multiple human tracking, the features from both

colour and oriented gradient [88,95] of multiple human regions are employed

for training the OCSVM classifier, which can be used to estimate the likeli-

hood function value for each particle. Given a particle x̃ik at time instance

k, the features from both the colour and oriented gradient histogram are

extracted based upon the position, width and height information of x̃ik and

the corresponding likelihood function, ϑk(x̃
i
k) can be estimated as:

ϑk(x̃
i
k) = e($·f(x̃ik)) (6.5.4)

where $ is a constant set for calculating the weights for the particles, thereby

controlling the influence of the sub-likelihood from the OCSVM. Its value is

chosen empirically in this work. In this way, the likelihood for each particle

is obtained and these weights can then be taken as the input to the updating

step of the PHD filter.
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Thus, the likelihood model of the proposed particle PHD filter g(zk|x̃ik)

is calculated based upon the results from both background subtraction and

the OCSVM:

g(zk|x̃ik) = ϑk(x
i
k)gb(ck|x̃ik) (6.5.5)

By feeding (6.5.5) into (6.2.6), the weights of the particles are updated. Then

the number of human targets and the particles are resampled as described

in Section 6.2.

6.6 Summary of the social force model aided MCMC-OCSVM

particle PHD filter

A summary of the proposed system is given in Algorithm 6.8, which is re-

ferred to as SFM-MCMC-OCSVM-PHD.

Algorithm 6.8 Social force model-aided MCMC-OCSVM particle
PHD filter (SFM-MCMC-OCSVM-PHD)

Input: Video sequence with ` frames.
Output: {xmk }

Mk
m=1 and Mk.

1: OCSVM classifier training.
2: Initialize targets states in the first frame {xm1 }

m=M0
m=1 .

3: for k = 2:` do
4: Background subtraction to extract the measurement set Zk for

targets and the estimated positions of the new-born targets.
5: Predict particles for both survived targets and new born targets

separately.
6: Calculate social force sik for each particle.
7: SFM-MCMC resampling with Algorithm 6.7.
8: Calculate g(zk|x̃ik) by (6.5.1), (6.5.4) and (6.5.5).
9: Update the PHD weights with (6.2.6).

10: Calculate Mk by (6.2.8).
11: Particle resampling.
12: Output tracking results at time k, {xmk }

Mk
m=1 and Mk.

13: end for

In the next section, the simulation results and comparisons with baseline

methods will be given and the performance of the proposed SFM-MCMC-
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OCSVM-PHD method will be shown.

6.7 Simulation

In this section, simulations are provided to examine the performance of the

system and to compare with results from other recent methods.

6.7.1 Dataset selection and parameter setup

In order to evaluate the performance of the proposed system for multiple

human tracking, particularly to handle the situation of varying number of

targets, close interactions and occlusions, sequences from three different pub-

licly available video datasets are chosen: one from the PETS2009 dataset [1]

where 3-6 human targets are walking in an outdoor campus environment,

one sequence from the CAVIAR dataset [2] where 1-5 human targets are

walking in a shopping mall environment and one from the TUD dataset [42]

where 5-7 human targets are walking in an outdoor-shopping mall environ-

ment. In order to make a more reliable evaluation, 17 more sequences from

the CAVIAR dataset are also employed. All sequences are recorded at a

resolution of 320 × 240 pixels at 25 frames/sec and each sequence contains

around 200 frames, including human targets appearing, disappearing and

occlusion in the scenario, and selected example frames are given in Fig. 6.2.

100 particles are employed for each target and for the MCMC step, 20 burn-

in particles are used for each target in the MCMC resampling step. The set

up of the remaining parameters is discussed in the following sections. The

dynamic and measurement models which were used to predict and update

the particles are described as

xk = Fxk−1 + ωk (6.7.1)

zk = Hxk + vk (6.7.2)
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where the state and measurement transformation matrices F and H are given

as

F =



1 0 ∆t 0 0 0

0 1 0 ∆t 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


H =



1 0

0 1

0 0

0 0

0 0

0 0



T

(6.7.3)

where ∆t is the time interval between frame k and k + 1 which is set as 1

in the simulations, the zero-mean noise vector ωk for prediction in the state

model has covariance structure cov{ωk} = Diag{25, 25, 16, 16, 4, 4} and for

vk cov{vk} = Diag{25, 25}. The missed detection probability pM = 0.01,

the survival probability e = 0.99, the new born intensity Υ = 0.1 and clutter

intensity κ = 0.01. The parameters for background subtraction, exponential-

term based social force model and OCSVM classifier are selected empirically,

which are shown as follows:

Parameters for background subtraction

For the background subtraction method described in Section 6.5, the param-

eters that need to be set include the shadow bound αb, the highlight bound

βb and the colour detection threshold εb which for each sequence are given as

Table 6.1, which were found empirically to yield best performance. For other

parameters, the default values are used as those set in [79], for example, the

colour sampling bandwidth is set to be 20 and the max negative run-length

is set to be 60% for all these three datasets.

Parameters for exponential-term based social force model

The exponential-term based social force model introduced in Section 6.4 has

many parameters, such as σd, β, σv, and σD, which control the influence
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Table 6.1. Background subtraction parameters for each sequence

αb βb εb
CAVIAR dataset 0.5 2 30

PETS 2009 0.7 1.5 20
TUD dataset 0.7 1.7 10

from distance, angular displacement, change of velocity and destination re-

spectively. In this work, the parameters are selected based on pilot tests, a

sequence from PETS2009 is employed to perform simulations with different

values of the above four parameters and use the mean Euclidean error for

each target position as the evaluation measure to select the best parameter

set, which is shown in Table 6.2.

Table 6.2. Experimental values for parameters used in the social force
model

σd β σv σD Mean of
Euclidean

error
1 1 1 1 5.15
1 1 1 2 5.11
1 1 1 4 5.33
1 1 1 8 5.12
1 2 1 2 5.15
1 4 1 2 5.14
1 8 1 2 5.33
1 4 2 2 5.53
1 4 4 2 5.21
1 4 8 2 5.41
2 4 4 2 5.12
4 4 4 2 5.05
8 4 4 2 5.22
16 4 4 2 5.09
32 4 4 2 5.18

From the experiment and comparison, it is found when the parameters

are chosen as: σd = 4, β = 4, σv = 4, and σD = 2, the exponential-

term based social force model performs the best, therefore these settings are
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adopted for simulations in subsequent sections.

Parameters for OCSVM-classifier

In this work, to obtain the OCSVM classifier, the training dataset S =

[s1, ..., sL] is employed, where each training data sample s is a 593 × 1 vec-

tor, containing human features extracted from the training frame, including

512 parameters from the colour histogram and 81 from oriented gradient

histogram. The OCSVM classifier is trained by 82 sets of features extracted

from different human targets. The influence of the OCSVM is controlled

by parameter $ in (6.5.4), which is also chosen based on experiments. The

OSPA results with respect to the different values of $ are shown as Table

6.3. From the comparison, $ = 75 is found to perform the best, hence is

employed in later simulations.

Table 6.3. Parameters values used in OCSVM classifier and system
evaluation

$ value 1 25 50 75 100
OSPA value 4.49 4.77 4.86 4.25 4.77

6.7.2 Evaluation of tracking results

In this section, the proposed exponential-term based SFM-MCMC is com-

pared with the traditional SFM proposed in [5] and the S-SFM proposed

by Pellegrini et al. in [6]. The proposed SFM-MCMC-OVSCM-PHD fil-

ter is compared with the traditional particle PHD filter in [4]. First, the

comparison between the particle PHD filter and SFM-MCMC-PHD filter

is made, followed by the comparison between the SFM-MCMC-PHD and

SFM-MCMCOCSVM-PHD filters.
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Background subtraction results

Fig. 6.2 shows some selected frames and results from the background sub-

traction for three datasets, from which, it is clear that many targets appear

in the scenario. However, there is still much noise from the environment,

which may cause false alarms and hence influence the performance. More-

over, sometimes it may fail to detect the targets because of occlusion and

poor lightning conditions. In this case, the OCSVM classifier is employed to

aid calculation for each particle. In this way, the noise is mitigated, in the

later section, the improvement made by employing OCSVM will be shown.

Social force model results

By employing the parameters in Table 6.2, and three example sequences

selected from different datasets, the proposed social force model is first com-

pared with the traditional SFM [5] and the S-SFM [6]. Fig. 6.3 shows

the comparison of Eulidean tracking error in each frame between the above

methods for the three sequences. The mean of the Euclidean error in each

frame (MEE) over all the frames and their standard deviation (SD) are also

compared in Table 6.4.

From Table 6.4 and Fig. 6.3 it is evident that the proposed social force

model consistently attains better performance for the three sequences in

terms of both the MEE and SD, as compared with the two baseline so-

cial force models. The improvement of the proposed social force model

comes from the exponential-term model employed to describe the parame-

ters such as the distance, angle, change of velocity, and the destination used

in the model, with their influence controlled by the variance terms in the

exponential-term model. In addition, in the proposed social force model, a

threshold has been employed to control the modelling of the social forces

between two targets, by excluding those that are far apart from each other

in terms of distance (i.e. greater than the pre-defined threshold). This es-
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(a) Frames from the CAVIAR dataset and background subtraction results

(b) Frames from the PETS2009 dataset and background subtraction results

(c) Frames from the TUD dataset and background subtraction results

Figure 6.2. Selected frames examples and their related background
subtraction results from the three selected sequences from three differ-
ent datasets, i.e. (a) is from the ‘EnterExitCrossingPaths1cor’ sequence
from the CAVIAR dataset, (b) is from the ‘PETS09 View001 S2 L1’ se-
quence from the PETS2009 dataset and (c) is from ‘TUD Stadtmitte’
sequence from the TUD dataset, and it can be found that the human
target boundaries are extracted successfully, but there is still much en-
vironmental noise which may cause missed detections and false alarms.
In order to mitigate such noise, an OCSVM classifier will be employed
based upon the features from both colour and oriented gradient his-
tograms of human targets.

sentially avoids the influence from unnecessary targets, hence improving the

tracking accuracy when more targets are present in the environment.
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Table 6.4. Comparison of the mean of the Euclidean tracking errors
over the frames and their standard deviation by three social force mod-
els for the ‘EnterExitCrossingPaths1cor’ sequence from the CAVIAR
dataset, the ‘PETS09 View001 S2 L1’ sequence from the PETS2009
dataset and the ‘TUD Stadtmitte’ sequence from the TUD dataset.

MEE (pixel) SD (pixel)

CAVIAR
SFM [5] 31.81 39.55
S-SFM [6] 14.28 9.99
SFM-MCMC 13.22 8.26

PETS2009
SFM [5] 68.25 17.20
S-SFM [6] 40.76 14.95
SFM-MCMC 39.41 13.29

TUD
SFM [5] 188.70 85.12
S-SFM [6] 89.60 41.06
SFM-MCMC 77.0 33.64

After the SFM-MCMC resampling, the predicted weights for particles

are updated. Fig. 6.4 shows an example distribution of predicted particle

weights, for frame 11 of the ‘PETS09 View001 S2 L1′ sequence from the

PETS2009 dataset.

The figure shows that the particles with higher social force are given

higher weights than others, the redundant peaks in the figure are because

of the noise patches which will be mitigated in the updating step. Com-

pared with the traditional particle PHD filter, where the particles are given

the same weights in the prediction stage, the weights in the SFM-MCMC-

PHD filter are determined based on the SFM which leads to more accurate

prediction.

OSPA evaluation

In order to evaluate the proposed system in terms of both localization and

cardinality, the OSPA metric has also been employed. In this work, c = 20

and p = 2 are used. Comparisons for the three example sequences as in the

previous experiment are shown in Fig. 6.5, where the black line denotes the
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(a) Social force model comparison for the CAVIAR dataset

(b) Social force model comparison for the PETS2009 dataset

(c) Social force model comparison for the TUD dataset

Figure 6.3. Comparison in terms of Euclidean error of the three social
force models when employed by the particle PHD filter for multiple
human tracking. Subfigure (a) is the comparison for the ‘EnterEx-
itCrossingPaths1cor’ sequence from the CAVIAR dataset, (b) is for the
‘PETS09 View001 S2 L1’ sequence from the PETS2009 dataset and (c)
is for the ‘TUD Stadtmitte’ sequence from the TUD dataset. The blue
line denotes the traditional SFM [5], the green line denotes S-SFM [6]
and the red line denotes the SFM-MCMC algorithm proposed in this
work.

OSPA value from the traditional PHD filter, the blue line corresponds to the

proposed SFM-MCMC-PHD particle PHD filter and the red line denotes the

proposed SFM-MCMC-OCSVM-PHD algorithm.

To perform more reliable evaluation, the average OSPA values for all

the 20 sequences based upon different methods have been obtained and are
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(a)

(b)

Figure 6.4. Comparison between the two distributions of the pre-
dicted particle weights, where (a) is from the traditional particle PHD
filter and (b) is from the SFM-MCMC-PHD filter; for frame 11 of the
‘PETS09 View001 S2 L1′ sequence from the PETS2009 dataset, where
the ground truth position of the targets are (142,102), (233,115) and
(200,95).

shown in Table 6.5.

Table 6.5. Comparison of OSPA over 20 sequences for proposed PHD
filters

PHD [4] SFM-
MCMC-

PHD

OCSVM-
PHD

SFM-
MCMC-
OCSVM-

PHD
OSPA (pixel) 21.93 13.54 12.42 8.83
Improvement - 38.25% 43.36% 59.73%

From the above comparison, it can be observed that the improvement

of the proposed system comes from both the exponential-term based SFM-

MCMC resampling step and the OCSVM likelihood calculation step. The
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(a) OSPA comparison for the CAVIAR dataset

(b) OSPA comparison for the PETS2009 dataset

(c) OSPA comparison for the TUD dataset

Figure 6.5. Performance evaluation with OSPA performance measure
for the proposed social force model aided MCMC particle PHD filter
and the traditional particle PHD filter for multiple human tracking.
The performance is examined with the ‘EnterExitCrossingPaths1cor’
sequence from the CAVIAR dataset, the ‘PETS09 View001 S2 L1’ se-
quence from the PETS2009 dataset and the ‘TUD Stadtmitte’ sequence
from the TUD dataset. The black line in the figure denotes the OSPA
value from the traditional PHD particle PHD filter; the blue line shows
the result by adding a social force model aided MCMC resampling step
in the prediction stage of the particle PHD filter; and the red line de-
notes the OSPA value from the proposed SFM-MCMC-OCSVM-PHD
filter.

background subtraction is an integrated component as in [4] which is used

to determine the measurement foreground pixels. Without background sub-

traction, none of the methods under study would operate, so the individual
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improvement from background subtraction is not provided in this work. By

using the OCSVM, the average OSPA value for the 20 sequences is further

reduced by 4.71 pixels since the OCSVM can distinguish the measurement

of the human targets from the noise in the environment. To examine the

difference in OSPA results between the traditional particle PHD filter and

the proposed SFM-MCMC-OCSVM-PHD filter, the one-way ANOVA based

F -test [96] is performed. F = 8.74, p-value = 0.0051 are obtained and the

degree of freedom (1,42), where the F value is the ratio of the between-group

variability to the within-group variability and the p-value is the probability

of a more extreme result than the value actually achieved when the null

hypothesis is true. Using the degree of freedom value and significant value

0.05, the critical value Fcrit is found to be 4.07 from the F -distribution table

given in [96]. According to the test, the results are accepted as statistically

significant if F ≥ Fcrit and the p-value is less than the significant value.

The test results confirm the difference in OSPA results between the pro-

posed SFM-MCMC-OCSVM-PHD and traditional PHD filter is statistically

significant.

MOTP evaluation

Besides the Euclidean error in each frame, standard deviation and OSPA

used for evaluation, MOTP is also employed to evaluate the proposed track-

ing system. The MOTP results for the three selected sequences from different

datasets are shown in Table 6.6.

From the MOTP comparison, it can be observed clearly that the pro-

posed method can greatly improve the tracking accuracy over the traditional

PHD filter. For the CAVIAR dataset, the MOTP value is reduced by 6.14

pixels by employing the SFM-MCMC-PHD filter and then further reduced by

2.71 by employing the SFM-MCMC-OCSVM-PHD filter. For the PETS2009

dataset, the MOTP value is reduced by 1.67 and 2.92 pixels respectively. For
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Table 6.6. MOTP comparison for three sequences using the traditional
and proposed particle PHD filters

CAVIAR PETS2009 TUD
PHD [4] 12.49 8.23 16.42

SFM-MCMC-PHD 6.35 6.56 13.86
OCSVM-PHD 5.73 6.15 14.21
SFM-MCMC-
OCSVM-PHD

3.64 4.84 12.07

the TUD dataset, the MOTP value is reduced by 2.56 and a further 1.79

pixels respectively. The average MOTP value over all the 20 sequences is

reduced from 10.70 to 8.63 pixels by employing the SFM-MCMC-PHD filter

and a further 6.31 pixels by the SFM-MCMC-OCSVM-PHD filter. The re-

duction of MOTP is mainly due to the utilization of the social force model

aided MCMC step for resampling in the prediction stage, so that a more

accurate posterior distribution is achieved. Moreover, the OCSVM classi-

fier in the updating step helps to mitigate the measurement noise from the

environment so that the problems of missed detections and false alarms are

mitigated. By performing a one way ANOVA based F test for the proposed

SFM-MCMC-OCSVM-PHD filter and the traditional particle PHD filter, F

= 6.86, p-value = 0.0131 are obtained and the degree of freedom (1,34). By

setting the significant value to be 0.05, the critical value Fcrit is found to

be 4.13 from the F -distribution table given in [96]. From the test results,

it is obvious that the difference in MOTP results between the proposed

SFM-MCMC-OCSVM-PHD and the traditional PHD filter is statistically

significant.

Computational complexity

The computational complexity is also examined through the run-time. Since

the particle PHD filter is used in this system, the number of particles plays an

important role in affecting the computational complexity. In order to select
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the most suitable number of particles, as an example, the OSPA measure

and run-time as a function of the number of particles are calculated by

employing a sequence from the PETS2009 dataset, the results of which are

shown in Table 6.7. It can be observed that the increase in particle number

Table 6.7. Comparison of OSPA related to the number of particles

Number of
particles

50 100 500 1000

Run-time/frame 1.44s 1.84s 4.85s 5.10s
OSPA (pixel) 22.52 21.32 21.06 21.03

has a bigger impact on the computational cost as compared with that on the

OSPA results. Similar results have been observed for other sequences. In the

simulations, the number of particles is selected empirically based on these

experiments. The comparison shows that the number of particles chosen

as 100 tends to provide a good compromise between run time and tracking

performance.

The computational complexity of the proposed tracking system has also

been considered. Compared with RFS, the particle PHD filter has a smaller

computational cost since only the first moment of the posterior is employed

instead of the posterior itself. However, the main growth of the time com-

plexity is from the background subtraction and the OCSVM part of the

proposed tracking system. If the times needed for determining the bright-

ness and colour conditions are denoted as TB and TC respectively, and the

update time is TU , the total processing time for a single image pixel can be

expressed as

T = NBTB +NC(TB + TC) +NU (TB + TC + TU ) (6.7.4)

where NB is the number of codewords rejected after testing the brightness

condition, NC is the number of codewords rejected after testing both the
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brightness and colour conditions and NU is 1 if a matching codeword is

found and 0 otherwise. Furthermore, the computational complexity of the

OCSVM classifier is O(m3) where m is the number of the training patterns.

As compared with the traditional PHD filter [4], the time complexity of the

proposed algorithm becomes higher due to the introduction of the SFM and

OCSVM steps. The average run-time (calculated using 20 video sequences

from the three different datasets) is shown in Table 6.8. This run-time

comparison is made by implementing the algorithms with MATLAB (version

R2015a) with a 3.4GHz I5 processor.

Table 6.8. Run-time comparisons for proposed PHD filters

PHD [4] SFM-
MCMC-

PHD

SFM-
MCMC-
OCSVM-

PHD
Run-time/frame 1.39s 1.43s 1.95s

From this table it can be found that the run time for the traditional

particle PHD filter is 1.39s/frame, and the overhead for the social force model

aided MCMC resampling step is 0.04s/frame and for the one class SVM

is 0.52s/frame, the run-time increases 2.9% by employing the social force

based MCMC resampling step, and grows 36% by employing the OCSVM.

However, the tracking accuracy has been improved by 38.25% and 34.9%

by employing them respectively. The comparison show that the increase

of time complexity is mainly due to the use of the OCSVM classifier when

calculating the features from the colour and oriented gradient histograms for

each particle.

Comparison with state-of-the-art methods

The proposed method is also compared with two recent multiple human

tracking methods proposed in [97] and [98]. In [97], online learning of non-
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linear motion patterns and robust appearance models are used for multiple

target tracking and in [98] a background subtraction based multi-Bernoulli

filtering method is proposed for visual tracking. The mean of the OSPA

measure is employed for evaluation, which is shown in Table 6.9. All the three

methods are evaluated on the 20 sequences from the CAVIAR, PETS2009

and TUD datasets.

Table 6.9. OSPA comparison of three recent methods and the pro-
posed method over 20 sequences

PHD [4] Method
in [98]

Method
in [97]

Proposed
method

OSPA (pixels) 21.93 15.39 12.95 8.83

From the comparison in the table it can be observed that the background

subtraction based multi-Bernoulli filter proposed in [98] performs better than

the particle PHD filter proposed in [4]. However, in [98], a kernel based back-

ground subtraction method was employed instead of the codebook method

which is employed in this system. As such, the quality of the measurement

is generally worse than that in the proposed system. Moreover, the social

force model based MCMC resampling step provides more accurate predic-

tions of targets states. The appearance modelling based method in [97],

however, does not address the challenge of varying number of targets hence

it generates an OSPA value that is higher than the proposed method.

Examples of tracking failures

Nevertheless, the tracking results of the proposed system can be degraded by

the following factors: increase in the number of targets and the variations

in lighting and colour of the targets which will influence the results from

background subtraction. For example, for the sequence Browse1 from the

CAVIAR dataset, the lighting in the environment is varying, and there is

a large amount of noise in the results obtained from the background sub-
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traction, hence it fails to provide accurate foreground measurement, which

also leads to possible failure of the tracking system. What is more, when

human targets are very crowded in the visual scene, the social force model

can be influenced by false alarms. These tracking scenarios pose common

challenges to many existing methods such as [99–101] as well as the baseline

methods [4] [98]. The proposed method gives advantages over the baselines

in the scenarios especially with group target movements, varying number of

targets, and large amount of environmental noise. However, to address the

aforementioned common challenges, more powerful techniques in appearance

modeling and occlusion handling are required which will be the focus of the

suggestions for future research.

6.8 Summary

In this chapter, contributions for improving tracking performance were pro-

posed by enhancing both the prediction and updating steps. In the predic-

tion stage, an exponential term based social force model was proposed and

was exploited in the likelihood of an MCMC resampling step, from which,

a more robust predicted particle set was obtained. In the updating stage,

an OCSVM classifier which was trained on human features including his-

tograms of colour and oriented gradient was employed in order to mitigate

the measurement noise from background subtraction. From the above con-

tributions, the accuracy of the tracking system was improved. In Section

6.7, comparisons were made between the proposed novel social force model

and traditional ones. Moreover, the evaluation confirms the improvement

from each of the proposed steps.

However, as mentioned in Section 6.7.2, failure cases are given, more-

over, by evaluating the run-time of the proposed method, the proposed

SFM-MCMC-OCSVM particle PHD filter had a more complex computa-
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tional complexity caused by the MCMC resampling step and the OCSVM

calculation. In order to address these challenges, approaches such as sparse

dictionary learning method will be employed, which could be described in

the suggestions for future work introduced in the next chapter.



Chapter 7

CONCLUSIONS AND

FUTURE WORK

In this chapter, the contributions of this thesis are summarized in Section

7.1, and the suggestions for future work are given in Section 7.2.

7.1 Conclusions

This thesis gives solutions to video-based multiple human tracking, in par-

ticular to handle the challenges of varying number of target, interaction be-

tween targets and occlusions. In order to achieve these targets, in particular

to handle a varying number of targets, the particle PHD filter was employed

as the fundamental framework of the tracking system. The contributions

to improve the particle PHD filter satisfy the four objectives mentioned in

the introduction chapter. The first contribution is to replace the Gaussian

distribution by the Student’s-t distribution in the state and measurement

models of the particle PHD filter; the second contribution is building a joint

distribution between the measurement noise covariance matrix and the state

model, then to use the variational Bayesian approach to find the best so-

lution for the joint distribution, which is distributed by the multi-variate

Student’s-t distribution; the third contribution is improving the tracking

performance by applying the delayed measurement adaptively, namely the

adaptive Retro-PHD filter; the fourth contribution is to use the human be-

118
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haviour and an MCMC resampling step in the prediction model to improve

the accuracy; and the last contribution is to improve the robustness of the

measurement model by employing an OCSVM classifier to mitigate the en-

vironment noise. The details of the contributions are as follows:

In Chapter 4, the Student’s-t distribution was employed to improve the

tracking performance. Firstly, the Student’s-t distribution was used to re-

place the Gaussian distribution in the state and measurement models in the

traditional particle PHD filter due its heavier tails than the Gaussian dis-

tribution, which can achieve predicted particles with larger amplitude. The

simulation results confirm the outcome from the proposed method, where

the OSPA for the sequences from CAVIAR and PETS2009 datasets were

improved by 19.92% and 11.70% respectively. Then the Student’s-t distri-

bution was employed as a joint distribution between the measurement noise

covariance matrix and the state model, and the variational Bayesian ap-

proach was employed to estimate the most suitable parameters for the joint

distribution, the tracking performance was improved by 12.45% and 27.16%

for the sequences from CAVIAR and PETS2009 dataset respectively when

evaluated by the OSPA measure.

In Chapter 5, following the concept of the fixed-lag smoothing algo-

rithm, the backward measurements were employed in order to achieve more

observable measurements; firstly, the non-linear and non-Gaussian proper-

ties of the particle PHD filter were considered, so the term ‘smoother’ was

replaced by the term ‘Retrodiction’, which employed the backward retrod-

iction step after the PHD filtering step. The performance of the tracking

system was improved because more observable measurements were obtained,

by evaluating by the OSPA measure with sequences from the CAVIAR and

PETS2009 datasets, the performances of the tracking results were improved

by 18.42% and 15.30%. In order to obtain further improvement, an adaptive

approach was developed to combine the forward and retrodiction step adap-



Section 7.2. Suggestions for future work 120

tively, namely the adaptive Retro-PHD filtering, where the convex adaptive

parameter was calculated by the similarity between the measurement set

over discrete samples; the outcome of this approach can be shown by evalu-

ating the OSPA measure, which was improved by 13.12% and 17.94% over

the Retro-PHD filtering for the sequences from CAVIAR and PETS2009

dataset respectively.

In Chapter 6, the social force model aided MCMC-OCSVM particle PHD

filter was proposed, which can be separated into three main contributions

to improve the tracking performance from both the prediction model and

the updating models to improve the tracking performance. Firstly, a novel

exponential term based social force model was employed to represent human

behaviour in order to predict more robust particles; secondly, the particles

were resampled by an MCMC step, where the acceptance ratio was obtained

with the aid of the social force model; thirdly, in the measurement model,

an OCSVM classifier was employed to mitigate the environmental noise.

The proposed tracking system was evaluated with 20 sequences from the

CAVIAR, PETS2009 and TUD datasets, which showed the improved accu-

racy when compared with the traditional particle PHD filter. By employing

the novel social force model aided MCMC resampling step and the OCSVM,

the OSPA values of the tracking system were reduced by 38.25% and 43.36%

respectively, and the overall reduction of OSPA from the proposed tracking

sytem was 59.73%, which confirmed the significant improvement of employ-

ing the proposed social force model aided MCMC-OCSVM particle PHD

filter.

7.2 Suggestions for future work

In order to further improve this study, there are several topics which could

be further researched.
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Firstly, in order to obtain further improvement in respect of a more

robust measurement model, besides the traditional classifier such as the

OCSVM, the dictionary learning method can be considered, which can help

to build the template measurement set with the human features. Moreover,

an online classification method can be exploited, which can update the mea-

surement from human targets overtime, which can also improve the ability

to handle the partial occlusion in the multiple tracking system.

Secondly, apart from the histograms of colour and oriented gradient,

other human features could be employed in the likelihood function, for ex-

ample, the SIFT feature and features obtained from other sensors could be

employed to aid the information from the camera, for example, the audio sig-

nal and features extracted from the Depth sensor. By achieving a measure-

ment set with richer human features, the tracking accuracy can potentially

be improved.

Thirdly, data association methods can be considered to be exploited in

the tracking framework and several such approaches have been proposed

such as [20, 92]. This data association scheme can help to identify the new

born targets and the survived targets, which can help particle sampling in

the prediction stage of the particle PHD filter.

Fourthly, although the improvement from employing the social force

model can be seen in Chapter 6, the tracker may fail when more than one

targets move together; in order to give a solution to this challenge, the

group social force model can be employed, which uses a hierarchy frame-

work to separate the multiple human targets into groups, then the social

forces are firstly calculated between the groups, and the inter-forces are cal-

culated within each group. This development can also handle the occlusion

challenge and hence achieve more accurate tracking performance.

Finally, one of the most important problems within the video-based mul-

tiple human tracking work is its computational complexity, although by em-
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ploying the PHD filter, the tracker avoids the exponential growth of the

complexity, the run-time of the tracking system still increases because of the

large dimension of the measurement. In order to reduce the computational

complexity caused by the measurement model, a sparse representation tech-

nique has been employed for human tracking recently [102], where the human

features are represented by a sparse vector and the likelihood is calculated

by a sparse coding method. Moreover, the dictionary learning method can

be combined with a sparse representation method to build the measurement

set, namely a sparse dictionary, which can be used in the particle PHD up-

dating step. As for the combination, a richer measurement set is achieved

and the computational complexity to use this approach is reduced by ignor-

ing the unnecessary elements in the feature vector, and the performance of

the tracker can be potentially improved. This is an interesting avenue for

future work.
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