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This thesis describes the establishment of a mixed FE formulation by first-order

stress function. Its application to the elasticity, rigid-perfect-plasticity and elasto-

plasticity problems as well as the simulation of part of the spot-welding process was

also carried out.
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ABSTRACT

A mixed finite element method is introduced in this thesis by two or three first-order

C0 stress functions for plane or axisymmetric problems respectively, which satisfy the

force equilibrium equations, along with a constraint to impose the moment equilibrium

equations. The stresses so expressed are equivalent to those in terms of the higher

order Airy or Love stress function. With compatibility condition satisfied in the same

way as in a displacement finite element (FE) method, the remaining constitutive relation

in elasticity, i.e. Hooke's law, is satisfied by minimizing a mixed functional, with

variables of the displacement vector and two/three first-order stress functions.

Some elementary problems in plane and axisymmetric elasticity are solved by this

method. It is found that for an incompressible solid and a solid with a crack, the mixed

model yields better results than the conventional FE method. The effects of Gaussian

integration and Poisson's ratio on the solution are discussed in detail. Special attention

is paid in bending a beam and a disc, where the importance of the constraint to enforce

moment equilibrium is studied.

For rigid-perfect-plasticity, the Levy-Mises flow rule and the corresponding yield

condition are satisfied by another extremum principle. By substituting the plastic part

of the elasto-plastic strain into the extremum for rigid plasticity, and the elastic part of

the elasto-plastic strain into the extremum for elasticity, an extremum principle for

elasto-plasticity is established straightaway. Applications of this method to some well-

known examples are discussed. In comparison with the conventional displacement

method and/or analytical solution, this method offers very satisfactory results and good

convergence of the solution.

An interesting feature of this method is that the value of each functional indicates

in some degree the solution error at a giving point or region. This may provide useful

information for accuracy control or a remeshing procedure.

A more sophisticated problem is solved by a so-called mixed fluid-FE model,

which is the simulation of the flow of an adhesive between two aluminium sheets

squeezed by a pair of electrodes in spot-process. The effects of various factors on the

formation of the entrapment of the adhesive in the central area of faying surface are

studied in detail. Very close results between displacement method and the mixed

method are obtained in this study.
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CHAPTER 1

INTRODUCTION

The finite element method offers a way of interpolating functions in space. In this

thesis the functions used are stress functions (to be defined later) and the components

of a displacement vector. Their formulation allows mixed extremum principles to be

used to find numerical solutions to a number of problems in solid mechanics. The

validity of the algorithms produced will be checked by a few test cases in plane

elasticity. By carefully choosing three stress functions, the same idea will be applied

to axisymmetric elasticity.
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Fig. 1.1	 Stress distributions in an elasto-perfectly plastic
cylinder under internal pressure.

The principal objective of this thesis is to establish a mixed-extremum principle for

plane and axisymmetric elasto-plasticity, based on the discretization of stresses tested

in elasticity problems and an extremum principle for rigid-perfect-plasticity. This

formulation is expected to give better results than a conventional displacement method

for the problems with a large scale of plasticity, e.g. an elasto-perfectly plastic cylinder

under internal pressure. The power of this method is demonstrated by the excellent
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Chapter One	 Introduction

agreement between the finite element results and the theoretical results shown in fig. 1.1

(discussed in detail in Chapter six). A more complex problem is demonstrated in the

simulation of part of the spot-welding process by this mixed model.

1.1 GENERAL

The finite element (FE) method was originated by engineers in the l9SOs to analyse

aircraft structural systems using the emerging digital computer, where naturally discrete

systems such as structural frameworks are presented. Turner et al"61 (1956)

published the first paper, followed by Argyris [41 (1960) and Clough [24] (1960), who

first time in history used the name finite elements. As the finite element method

applied to structural problem matured, the concept of a "force balance" at a node was

replaced by theory founded in the variational calculus and the classical Rayleigh-Ritz

method (Rayleigh190 , 1877; Ritz1961 , 1909). These are known as variational

approaches. Application of the finite element method to non-structural problems was

reported by Zienkiewicz and Cheung [ ' 281 (1965).

Later the establishment of the finite element method was extended on a broader

base in terms of the weighted residual approaches 311 , a term first used by

CrandallE25] (1956). Since then, the finite element method has become one of the most

significant tools in the history of computational methods. Modern finite element

packages allow large areas of theoretical physics to be put to practical use. Typical

problems are heat transfer, fluid mechanics, electromagnetism, geo-mechanics and

acoustics.

1.2 SINGLE-FIELD AND MULTI-FIELD FINITE ELEMENT MODELS

If a problem in the 2D theory of elasticity (plane strain) is investigated there are four

components of stress, three components of strain and two components of displacement.

In order to solve such a problem one needs to take account of the two equations of

equilibrium and the three strain-displacement relations. It is usual however to reduce

the number of variables at the outset to just the displacements by eliminating stress and

2



Chapter One	 introduction

strain. This is known as reducing the problem to a single-field formulation.

In fact, this formulation in terms of displacement, or displacement model, is the

most successful model and is used extensively in practical applications and in the

development of commercial structural analysis packages. This provides the simplest

approach to element formulation and to the assembly of the element equations into the

global system. However the displacement model has some shortcomings771:

• Difficulty in constructing compatible shape functions N for C' elements,

(e.g., plate and shell elements based on Kirchhoff theory)

• Poor performance in constrained media problems,

(e.g., incompressible and nearly incompressible materials)

• Loss of accuracy in calculating secondary fields

(e.g., stress calculations using displacement models)

• convergence of a solution can not be guaranteed.

As the understanding of finite element method deepened, alternative models, multi-field

models, in which there are more than one unknown field, have been proposed in the

hope of overcoming such shortcomings. The hybrid models and mixed models are two

kinds of such multi-field models.

1.2.1 Hybrid finite element formulation

Hybrid models are multi-field models in which the formulation is based on a modified

variational principle with relaxed interelement requirements. In the modified principles

some or all of the interelement requirements are treated as constraints and are enforced

in an average sense by means of Lagrange multipliers, which will be continuous

functions of the boundary coordinates. Therefore, the formulation involves independent

approximation of the fields variables within the element and the Lagrange multipliers

along the element boundaries.

In solid mechanical problems, hybrid finite element models are obtained by relaxing

the condition of displacement continuity or traction reciprocity along the interelement

boundaries. It was first introduced by Piant83 in 1964 for plane elasticity problems.

3



Chapter One	
Introduction

Since then, hybrid models have been successfully applied to many problems in solid and

fluid mechanics, such as in plate bending l " 1 1, laminated materials 167] and fracture

mechanics 6 ' 2] The most favourable character of these models is that the elements

so built can be incorporated into any existing package with the displacement model.

However this model usually involves many arithmetic operations including the inverse

of a matrix at the element level.

1.2.2 Mixed finite element formulation

On the other hand, in mixed models, the element parameters contain more than one

field, and unlike hybrid models all the field variables are described within the element

as well as on its boundary. It is usually founded on mixed variational principles, such

as Hu-Washizu principle 144"20] or Hellinger-Reissner principle 139 '93 ] , or their

modifications in which two or three fields are included. Two types of mixed models

may be distinguished:

a. Discontinuous models

Here the continuity of only one field is enforced across element boundaries, the

parameters used in approximating the other fields can be discontinuous and

eliminated at the element level, and the size of the system analysis is the same as

that in a single-field solution. Again, similar to a hybrid model, many arithmetic

operations including inverse of a matrix at the element level must be done.

b. Continuous models

If the continuity of all field variables is enforced across element boundaries, the

size of the system analysis is expanded well beyond that in a conventional single-

field solution. Therefore a very efficient approximation of all fields in this model

is required to reduce the variables to as few as possible.

1.2.3 Comments on multi-field models

The multi-field models possess several major advantages over single-field models.

4



Chapter One	 Introduction

Because the governing equations of the mixed models are the more basic equations of

mechanics (or physics) with lower-order derivatives, the interelement continuity

requirements on the assumed fields are of lower order than for the conventional single-

field models. Furthermore the development of the element matrices in FE formulations

for multi-field models involves fewer arithmetic operations than that of their equivalent

single-field models. It is also true that for some nonlinear problems multi-field models

lead to a simpler problem to solve than those obtained by a single-field model.

Multi-field models can directly yield quantities of practical interest thus saving time

for further calculations, such as the stress computations in solid mechanics and

evaluation of stress intensity factors in fracture mechanics. Multi-field models of the

combination of mixed and hybrid (mixed-hybrid) types provide a convenient way to

match approximate solutions for different regions which make them most suited for

analysing nonhomogeneous media with discontinuous properties.

Insensitivity regarding the variations in the structure dimensions and the material

properties is an important factor for a finite element method. It is one of the difficulties

inherent in the single-field model, where special precautions have to be taken to assure

the accuracy of the answer. The multi-field models are considerably less sensitive to

variations in such characteristics of the structure than are the single field (displacement)

models. For example, in solid mechanics, the performance of the displacement model

for nearly incompressible materials give problems. The application of shear-flexible

plate (or shell) elements to analyze thin plates (or shells) with negligible shear

deformation can cause "locking" problems.

Some techniques are used to overcome these problems in a single-field method.

For example a reduced integration scheme is used to solve incompressible materials,

while an extra constraint is introduced in the virtual work principle for plate (or shell)

to prevent "locking". As Zienkiewicz pointed out in ref [126], these are all equivalent

to corresponding multi-field models.

While there are a number of advantages in multi-field finite element models,

difficulties of the mixed variational principles arise from the fact that these principle are

not extremum principles, but stationary principles. Unlike in the single-field model

where the system matrix is positive definite, the final equations derived from mixed

variational principles include a non-positive-definite matrix. Therefore some efficient

5



Chapter One	 Introduction

algorithms used with the single-field models cannot be applied.

For the mixed continuous models, the increase in the number of degrees of freedom

results in a substantial increase in the size of the element matrices, and in the number

of simultaneous equations, as compared with the single-field models. It is also found

that some of the hybrid models and the mixed discontinuous models contain spurious

mechanisms (associated with zero eigenvalues).

1.3 SCOPE OF THIS ThESIS

The main effort of the three years work by the author was trying to develop finite

element formulations from very elementary principles, e.g. Airy and Love stress

function, Hooke's law, von Mises flow rule and the Least squares method(to be

defined later). It in turn provides a better understanding of all kinds of relationships

in elasticity, rigid perfectly-plasticity and elasto-plasticity.

This thesis treats the establishment and application of some mixed finite element

models in solid mechanics. Three new mixed models based on corresponding mixed

ext remum principles, suitable for elasticity, rigid plasticity or elasto-plasticity

respectively, will be presented. In each case, some elementary problems are studied

along with conventional FE method and/or analytical method as bench-mark tests. A

more complicated application of the mixed model for elasto-plasticity is dealt with in

the mechanical simulation of part of a resistance spot-welding process.

The components of the stress will be interpreted in terms of two little known C

constrained stress functions in plane problems, mentioned by Brezzi's work' 21 . For

axi-symmetric problems, a novel interpretation of stresses with three C 0 stress functions

will be conceived by author. The well-known isoparametric shape function is used for

discretizing both the displacement components and stress functions. 4 variables per

node are needed in 2D cases, while 5 are needed for axisymmetric cases.

In Chapter two of this thesis a historic review of the mixed finite element

formulation will be given. All the basic formulations in the mixed FE method, such

as the discretization of the displacement field and stress field as well as an extremum

principle, are introduced in Chapter three with plane elasticity. The axisymmetry

elasticity will be studied in Chapter four with the new description of the stress field.

6



Chapter One	 Introduction

Applications to simulation of spot-welding along with some simple solutions are carried

out. Nonlinear problems are first introduced in Chapter five with rigid-perfect

plasticity. There an extremum principle will be proposed to impose Levy-Mises flow

rule and yield condition. An optimum method, the Golden Section Search, will be

utilized for solving the nonlinear equations. The extremum principle is further

developed for elasto-plasticity in Chapter six. Some basic elasto-plastic problems are

solved to demonstrate the efficiency of this model. A practical application of this

method will be shown in the mechanical simulation of part of a spot welding process

with an adhesive interlayer in Chapter seven. Finally, Chapter eight will give the

final remarks about these models.

For the convenience of future reference, some basic concepts in FE method and

primary knowledge for the construction of its formulations, such as about discretization,

variational principles and their modifications, will be introduced in the next section of

this chapter.

1.4 APPROACHES TO CONSTRUCT FE FORMULATIONS

In this section, a brief description of approaches to establish a finite element

formulation in solid mechanics will be given, where emphases are on the discretization

of the basic field(s) and some approaches to create the fundamental principles, on which

the finite element formulations are based, will also be reviewed.

1.4.1 Finite Element Discretization

Basically the finite element method solves a problem starting with discretization of the

original domain. We will seek an unknown function u such that it satisfies a

differential equation

P(u) =0
	

(1.1)

in a domain (I (fig. 1.2), together with certain boundary conditions

p(u) =0
	

(1.2)

on the boundaries F of the domain (fig. 1.2). Here P and p are operators defining
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Chapter One	 Introduction

governing differential equations and boundary conditions.

Fig. 1.2 The discretization of domain by finite element mesh.

If we divide the whole domain 1? by a number of subdivisions ( (fig.1.2), known

as "elements", then within each element we can approximate the unknown function u

by a much simpler function u defined by a few unknown parameters a1 within each

element

u	
=	

Na1 = Na	 (1.3)

where N is an interpolation function	 the shape function prescribed locally for the

element in terms of independent variables (such as the coordinates x, y, etc.). Usually

we define a1 as the values of u at the nodes defining the geometry of the element.

Therefore a are often called the nodal variables. So far we have simplified the original

problem of finding a continuous unknown function u into a problem of finding a

number of nodal variables a1 element by element, this process is termed as

discretization.

However if the differential equation (1.1) plus boundary equation (1.2) can be

equivalent to an integral form, the approach of which will be discussed in section 1.4.2,

JnG(u*)d1 + Jg(u*)dr = 0	 (1.4)

8



aiapter One	 Introduction

in which G and g are known operators, by the merits of integration we have,

[ JiieG 
*)j + Jeg(u*)dlj =	 (1.5)

A useful example arises from linear elasticity in solid mechanics where the differential

equations are linear, i.e.

P(u)Lu+l

p(u)Mu+m	 (1.6)

where L, M, 1 and m are constant operators. iEq.(1.5) will then yield a set of linear

equations of the form

Ka+f=O
	

(1.7)

with
m	 m

K1 =>K,	 ;
	 (1.8)

where K and j are two constant coefficient matrices.

1.4.2 Weighted residual approaches and variational approaches

Creation of detailed integral formulations of the type shown in eq.(l.4) is the most

critical step in establishing the finite element formulation. Two distinct procedures are

available for obtaining such integral forms. The first is the weighted residual

approach 3111 , the second is the variational approach71'70l.

As the differential equations (1.1) and (1.2) have to be satisfied at each point of the

domain , it follows that

J
v ''P(u)di	 0 ;	 J Tp(u)dr	 0	 (1.9)

where v and S are any functions. If the above statement is valid for the reverse case,

i.e., if eq.(1.9) is always true for arbitrary functions v and V, the differential equation

(1.1) and (1.2) must be satisfied at all points of the domain. Indeed, the integral
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statement that

J

+ JvT p(u)dr=o	 (1.10)

is satisfied for all v and V is equivalent to the satisfaction of the differential equation

(1.1) and its boundary equation (1.2)1311. Therefore we have achieved the construction

of the integral form equivalent to the differential equation, which is just what the finite

element formulation needs. Because such a statement can be intuitively interpreted as

the requirement of inbalance of differential equations (1.1) and (1.2) to be zero in a

weighted average sense, the procedure based on eq. (1.10) is named as the weighted

residual approach, and both v and V are called the weight functions. Obviously this

method is valid for any continuum problem for which differential equations are well-

defined. The well-known Galerkin method is only a special case in which v is chosen

to be identical to the shape functions N.

On the other hand, the variational approach is based on the existence of a

variational principle: the solution to a continuum problem is a function u which makes

a functional 11 stationary with respect to a small variation ôu, i.e.

ö11=0
	

(1.11)

where 11 is defined by an integral form

11 = I H(u,_u,...)d( +	 h(u,--u,...)dF	 (1.12)
j cI	 ôx	 jr	 ax

where H and h are known operators. If a variational principle can be found, an

approximate method is immediately established for obtaining solutions in the standard,

integral form suitable for finite element formulation.

From eq.(1.3), eq.(1.11) can be further expressed in terms of nodal variables a1 as.

ari a	311	 311-	 a	 +	 =0	 (1.13)

	

1 3a	 0a

This being true for any variations a yields a set of equations

01-I	 p311	
3111T

=	 . . .	 ]	

= 0	 (1.14)
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Chapter One	 Introduction

from which parameters a are found. The famous Rayleigh-Ritz 90 '961 method falls into

this category.

Some "natural" variational principles exist in the physical world such as

minimization of total potential energy to achieve equilibrium in mechanical systems, the

least energy dissipation principle in slow viscous flow, etc. Unfortunately they do not

exist for all continuum problems for which well-defined differential equation may be

formulated. A thorough study for deriving natural variational principles from linear

differential equations is available in the works of Mikhlin71'701

1.4.3 Constrained variational principles: Lagrange multiplier methods

Consider the problem of making a functional 11 stationary, subject to the unknown u

obeying some set of additional differential equations as constraints

Q(u)=O in	 ;	 q(u)=O mr	 (1.15)

we can introduce this constraint by forming another functional

11L(11 , ) , X) = 11(u) + J x TQ(u)d1 + JXTq(u)aT	 (1.16)

in which A and A are some set of functions of the independent coordinates in a domain

[ and boundary T respectively, known as Lagrange multipliers. The variation of the

new functional is now

ÔIIL(u ,A,X) ö11(u)-- J ox TQudrJ + JXTq(u)dr	
(1.17)

+ J X T Q(u)d1 + JXTjq(u)dr

And this is zero providing Q(u) = 0 and q(u) = 0, and simultaneously 11 0.

Eq.(l.17) is known as the modified variational principle. The most general variational

principle in solid mechanics, the Hu-Washizu principle E44l201, was created using such

an approach.

Naturally, we may use the governing differential equation (1.1) and boundary

condition eq.(1.2) themselves as "constraints", i.e. P (u) = Q (u) in domain J and
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p (u) = q (u) on boundary I', and leave oh 	 0. It gives

J
x

+ 

f
ox	 + JoXTp(u)dr	

(1.18)[1

or(ujc +
0

It is worthwhile to mention that the new principle so obtained has more variables (u,

OX and OX) than before, and the zero diagonal will exist in the final matrix, which

means it is no longer positive-definite.

One interesting case is that when P and p are linear operators as defined in

eq.(1.6), where OP and Op are no longer the functions of u, eq.(1.18) can be totally

decoupled as two equations

= J ox Tp(u)dc + J oX Tp(u)dJ =	
(1.19)

OIIL(X , X) = JnXT3PdJrXT3pO

The second equation in eq.(1.19) only includes Lagrange multipliers A and .

Therefore the A and A can be obtained independent of variables u. The first equation

in it has variables u with some known function A and A. With comparison to eq.(1.10)

on which weighted residual approaches are based, it is easy to see they are identical if

arbitrary functions v and being replaced by OX and OX. However, unlike v and can

be any function in weighted residual approaches, OX and OX are governed by the second

equation in eq.(1. 19) in Lagrange multiplier methods.

1.4.4 Constrained variational principles: Penalty function methods

In section 1.4.3, we found the constrained variational principle can be obtained by

Lagrange multiplier method at the expense of increasing the total number of unknowns.

In addition, even in linear problems, the algebraic equations are now complicated by

having zero diagonal terms. In this section we shall consider another technique to

introduce constraints which does not have such drawbacks.

Consider once again the problem of obtaining stationary of II with a set of

constraint equations Q (u) = 0 in domain ( and q (u) = 0 on boundary r. We note

12
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that the products

QTQ 
= Q+Q+Q+...

2 22qTq = q1+q2+q3+•..

(1.20)

where

QT = [Qi Q2 Q3 •••]
qT = Eq 1 q2 q3 •..]

have a minimum of zero when all the constraints are satisfied. We can immediately

write a new functional

llp(U) =11(u) +a J Q T(u)Q(u)d + JqT(u)q(u)ff	 (1.21)

in which a and a are penalty numbers. If the minimum of 11 is the solution then the

penalty numbers should be positive number. The solution obtained by the extremum

of the functional 11 will satisfy the constraints only approximately. The larger the

value of a and are, the better will the constraints be satisfied. Obviously, it does not

increase the unknown functions u, nor will it yield the zero diagonal terms.

Similar to the previous section, if the constraints become simply the governing

equation (1.1) and boundary condition (1.2) of the problem, i.e. P(u)=Q(u) in ( and

p(u) =q(u) at I', we can write a variational principle

ll = a J p T(u) P(u)d + J r T(u) p(u)dI'
	

(1.22)

for any set of differential equations.

Clearly equation (1.22) is simply a requirement that the sum of squares of the

errors of the differential equations (1.1) and boundary conditions (1.2) should be a

minimum at the true solution. This is the well-known Least squares method of

approximation. The least squares method is a very powerful alternative procedure for

obtaining integral forms and have been used with considerable successE63,127].
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Mixed finite element models were initially developed in the 1960s to avoid the difficulty

in constructing a compatible displacement field for plate-bending problems which are

governed by fourth order differential equations. In 1966 Herrmann 1401 developed the

first mixed finite element model for the linear static bending analysis of thin plates. In

this chapter, we will give a historic review of the development of mixed FE models.

2.1 FUNDAMENTAL PRINCIPLES

In general, there are three approaches for formulating the mixed finite element models

(or mixed models for simplicity) which are the direct method, the variational approach

and the weighted residual approach.

2.1.1 Direct method

The direct method for formulating a mixed model combines the fundamental equations

in their natural or primitive form for each element directly. In structural and solid

mechanics problems, the fundamental equations include equations of motion (or

equilibrium), constitutive relations, and strain-displacement relations. This approach

is useful for simple elements such as truss and beam elements in structural mechanics.

Some of the early applications of mixed models in structural mechanics were made by

Klein 541 by such methods. However, it becomes difficult to apply to more complex

elements and will not be discussed further.

2.1.2 Variational Approach

The variational approach to formulating mixed models is by far the most commonly

used to date. Almost all the reported applications of the variational approach in the

solid mechanics field are based on the two field Hellinger-Reissner t39 ' 89 '93 or three-

field Hu-Washizu E44 ' 120] variational principle, or their modifications.
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Hellinger presented in 19l4 ] a two-field mixed variational principle for finite

elasticity problems, in which stresses and displacements are varied independently. For

linear elasticity problems, Prange 891 modified Hellinger's principle by including the

boundary conditions. In 1950 Reissner presented E93] an equivalent variational theorem

for linear elasticity with independent displacement and stress fields, which includes the

boundary conditions. This variational principle is the famous Hellinger-Reissner (H-R)

principle. There are no subsidiary conditions needed for the stress components and

displacement vector. It later became one of the most popular principles for mixed

models.

Hu, on the other hand, presented in 1955 	 a three-field mixed variational

theorem, which includes independent displacement, stress and strain fields as well as

all the boundary conditions. The complete fifteen equations in elasticity U '°l are the

Euler equations of this variational principle. A similar theorem was also reported

independently by Washizu' 201 (1955). This variational principle is the well-known Hu-

Washizu (H-W) principle, which is another basic principle for the mixed models.

The earlier applications of mixed variational principle date back to the mid-1960s

when the use of the mixed models for plate-bending was proposed, independently, by

Herrmann 40 (1966) and by Hellan[381 (1967). IHerrmann used an alternative form of H-

R principle for bending of the thin plates by relaxing the constraint conditions of C1

continuity for normal displacement. Dunham and Pister 30] (1968) used the classic H-R

variational principle to produce mixed finite elements for plane elasticity and plate

bending problem.

During the following decades, the mixed models based on the H-R principle or the

H-W principle were successfully applied in almost every area where the conventional

displacement methods had been applied. The mixed models do show superior results

over those obtained by a connventional displacement model in constrained media

problems, e.g. incompressible and nearly incompressible materia1s 8''7] , for problems

with high gradients (or singularities) in strains or stresses, such as near sharp crack781

or for laminated composites 76 ' 84 ' 123 '231 , and highly inelasticity such as rubber-like

materia1st34'71.

Chouchaouj and Shirazi-Adi (1992) in their work E23] reproted a mixed formulation

based on the H-R variational principle to analyse composite structures. It demonstrated
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to have a satisfactory degree of accuracy, especially in view of the observed inability

of the conventional compatible method to yield reliable stress results.

The potential advantages of the mixed models in contact problems are realised by

many scientists working in this area 102 ' 82 '21] First, because both displacements and

stress are retained as variables, both the kinematic and equilibrium conditions on a

region of contact can be incorporated explicitly. Secondly, a study made by

Brezzi(1991) et al in ref. [12] indicated a superior accuracy over the displacement

method in analysing certain stress concentration problems.

For handling the contact boundary conditions, Tseng and Olsen(1981)" 51 modified

Hellinger-Reissner principle by adding an integration term, which acts as a Lagrange

multiplier term. The displacements and stresses boundaries are explicitly included in

the functional. In a progressive contact problem which is frictionless and between two

elastic components, it shows better results in predicting the contact area than those from

displacement method.

More recently, Cescotto and Charlier1211 (1993) applied a modified Hu-Washizu

principle to friction contact problems. It was first presented in the framework of

infinitesimal deformations and subsequently was extended to large inelastic strains.

For soil-structure interaction and construction sequence problems, Desai and

Lightner(1985) [281 proposed a mixed finite element procedure with triangular and

quadrilateral elements to nonlinear elastic and elastoplastic analysis. A number of

special techniques such as symbolic programming, utilization of dihedral symmetry and

the frontal solution method were employed to achieve computational economy. Again,

the classic H-R principle was used for the formation of the global equations, which

causes matrices to be non-positive definite. A number of examples in plane problems

were presented which gave the stresses to high accuracy. In a multi-media problem

where discontinuous stress exists this mixed finite element model gives reasonable

results.

For large displacement motion of solid bodies, a mixed updated Lagrangian

formulation was derived by Liao and Tsai(1992) [591 , based on the incremental nonlinear

theory of solid and H-R principle. Two quadrilateral isoparametric mixed elements

were used in the study with continuous stresses across the elements. In the linear

analysis of plane problems, the mixed model can obtain accurate displacements and
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stresses, but in nonlinear analysis, the predicted stresses do not show monotonic

convergence.

The applications of mixed models to axisymmetric problem and 3D problems are

quite uncommon. Mahapatra(1988) [64] derived the Hellinger-Reissner expression for

axisymmetric statement for both elastic and elasto-plastic material behaviour. A thick

cylinder under internal pressure and the Boussinesq point load problem were used to

demonstrate the efficiency of this model. This model was further extended to some

axisymmetric geomechanic problems in 1991[651.

A three-field mixed formulation in terms of displacements, stresses and an

"enhanced" strain field, based on a modified Hu-Washizu principle, was presented by

Simo and Rifai(1990)111051 . Because there is no subsidiary condition of strains needed,

they chose a so-called "enhanced" strain which is merely a superposition of the

conventional compatible strain and a incompatible "enhanced" strain. They had

demonstrated how the classic method of incompatible modes arise merely as a result of

particular interpolations within a certain class of mixed methods. Analysis of Cook's

membrane and the problem of a clamped arch in elasto-plasticity shows that this model

possesses very good convergence and accuracy in the calculation of displacements and

strains. The method was later extended to include geometrically nonlinear by Simo et

al (1992) in ref.[106].

In 1991, the analysis of elastoplastic large strains was reported by Jetteur and

Cescotto 481 . It is also based on the Hu-Washizu principle and uses a co-rotational

formulation for describing large strain. A 4-node element with 1 integration point was

used in the formation of the matrices. Few results were given.

2.1.3 Weighted Residual Approach

The weighted residual approaches, on the other hand, has a broader scope than either

of the direct approaches or variational approaches, though for some problems, the

Galerkin process of the weighted residual approaches yield results which are identical

to those obtained by variational approaches. As mentioned in section 1.4.2, they do not

require the existence of a variational principle and therefore can be easily applied to

non-structural mechanics.
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Most of the applications of the mixed finite element models based on the weighted

residual approach have been in the fluid mechanics or solid-fluid interaction problems

(coupling problems) where variational principles are difficult to construct. Meissner681

(1973) used a mixed model in potential flow problems. Hutton et a1 1145] (1980) and

Jackson 461 (1981) applied a mixed method on the solution of viscous incompressible

flow. Si1vester'°31 (1990) and Jenson 471 (1992) discussed the Navier-stokes equation by

a mixed model. Applications of the weighted residual approaches to steady fluid and

metal flow problems' 251 (Yamada et al, 1975) and soil-structure interaction problems

were reported by Lightner 601 (1981) and Sandhu 971(1990). A discontinuous mixed FE

model in solving two-phase incompressible flow was presented by Chavent 201 et al

(1990).

In 1990, Spilker and Maxian 109 ' reported a mixed-penalty FE formulation of the

linear biphasic theory for soft tissues, which was represented by a continuum theory of

mixtures involving intrinsically incompressible solid and incompressible inviscid fluid

phases. In this formulation, the continuity equation of the mixture was replaced by a

penalty form of this equation which was introduced along with the momentum equation

and mechanical boundary condition for each phase into a weighted residual form.

Heyliger and Kriz 411 (1989) used a "variational formulation" in solving crack

problems, where the analytical solutions of the displacement and stress field near crack

tip were added to the conventional displacement and stress terms. The stress intensity

factors are included in the general variables. However, the procedure for obtaining the

formulation is exactly the same as the weighted residual approaches, where the weight

functions were taken as the first variations of the displacement components and the

stress components.

Loula et al 61 (1990) solved steady-state creep problems with monotone constitutive

laws. Finite element approximations are constructed based on mixed Petrov-Galerkin

formulations for constrained problems. Numerical results are presented confirming the

convergence of predicted by the Babuska-Brezzi criterion'21.

In solid mechanics, most of the reported applications of the weighted residual

approaches have used either Galerkin or a least-square approach.

2.1.4 Other Approaches
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So far, however, in this review all the principles adopted in this particular area of the

finite element method were fallen into two main categories as already described in

section 1.4.2. With the mixed variational principles, based on Hu-Washizu or

Hellinger-Reissner principles, the applications to more sophisticated situations use extra

terms added to the already complex system. With the weighted residual approach the

governing equations are normally chosen residual form, which are usually high-order

differential equations.

Sohn and HeinrichE1071 (1990) proposed a penalty finite element models to solve

viscous incompressible flows, where the second derivatives appearing in the weak

formulation of the Poisson equation are calculated from C0 velocity approximation using

a least squares method. A similar models was also reported by Reddy E92 (1993) in

study of viscous incompressible flows.

On the other hand, Shyu et a1 t1021(1989) proposed a mixed finite element model for

friction-contact from a perturbed Lagrangian variational principle. The displacements

and contact pressure in an element were independently approximated. Some examples

were included in the study.

A very interesting application of weighted residual approaches was reported by

Moitinho de Almeda 731 (1992) in which compatibility or equilibrium is satisfied locally.

In the approach, linearly independent functions were defined within each element

irrespectively of the location of the nodes. The lack of interelement continuity, due to

abandoning the concept of the nodal variables, is eliminated aposteriori by utilizing the

weighted residual approach. As the approach used is independent of the choice of basic

functions and of the shape of the elements, it is very general. The matrices obtained

for the governing system are symmetric, sparse and semi-definite. However, the results

in the examples show that the interelement continuity is not secured very well when

lower order basic functions are chosen for approximating the stress or displacement

within the element.

A mixed variational principle based upon a combination of modified potential and

complementary energy principles was shown by Day and Yang E261 (1982). Compatibility

and equilibrium are satisfied throughout the domain a priori, leaving only the boundary

conditions to be satisfied by a variational principle. The nodal concept is also

abandoned due to the difficulties to establish stress distribution identically satisfying the
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equilibrium equations and still expressible in terms of a convenient set of nodal

quantities, but the continuity between elements is not explicitly satisfied. This is

enforced in a weighted average sense by an extra term in the variational principle. The

resulting system equation is unsymmetric. Numerical examples show that high order

of trial functions are generally needed to maintain the good results and convergency.

In the area of 2D linear elasticity, progress was reported by ChandlerE'51(1992)

where a mixed extremum principle was developed. The continuity of displacements and

the force equilibrium equations are both satisfied within an element and at the element

boundary by means of shape functions and vector stress functions a priori. The

Hooke's Law can be approximately imposed at the maximum of the functional, which

approximately brings the satisfaction of the moment equilibrium. The advantage over

some existing mixed formulations is that the global matrix is symmetric and positive-

definite and only C0 continuity is needed between the elements for both types of

variables. An application of this model was reported in the analysis of an

incompressible plane strain disc.

2.2 DISCRETIZATION IN MIXED MODELS

As we have just shown in section 2.1 that mixed models utilize different fundamental

principles, such as mixed variational principles, from those in the conventional

displacement method to construct the model. In addition, the mixed models also

involve the discretization of the secondary variable(s) within each element, i.e. stresses

and/or strains, while only displacements are needed to be discretized in displacement

methods.

2.2.1 Discretization with Continuous Variable(s)

A natural way to discretize stresses is, analogous to formulations in the displacement

methods, to approximate each component of stresses by means of shape functions

u(x,y) = IP o, together with u(x,y) = IV u1	(2.1)
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where a { a , a. ç 1T and u { u , u, }T are the stress and

displacement fields respectively within an element for 2D problems. a1 and u1 are the

nodal variables of the element. ISP. and IV are shape functions for stress components

and displacement vectors respectively.

Usually the shape functions of the displacement variables in mixed model are

continuity functions, identical to those in a displacement model in plane problems. The

shape functions for stresses are independent of those of displacement variables but they

can be the same. The character of this manner of discretization is that both the

displacement and the stress are continuous across the interelement boundaries and the

nodal variables also include both of them. It is the kind of discretization which is used

by the continuous models defined in section 1.2.2

Desai 28 in his work used such approaches to construct a 6-noded triangle elements

and an 8-noded isoparametric elements in plane elasticity. The degree-of-freedom

(DOF) is 5 per node, i.e. u, u,, a, o and a,. Similar approximations are adopted

by Liao 591 , where 4-noded and 8-noded quadrilateral elements are used.

A 3-noded triangle element with 5 degree-of-freedom per node is used by

Tseng' 151 for the analysis of contact problems in a similar way. Mahapatra 641 , in

axisymmetric problems, uses the continuous stress and displacement approximation,

where 2 displacements u and u., and 4 stress components ar., o,. and o are the

system variables, e.g. 6x8 = 48 DOF for an 8-noded element.

There are also some models where superpositions are used in expressing the stress

variables. Normally, the higher order polynomial series, (e.g. the analytical solution

of the stress field near crack), are added to the conventional continuous stress

approximation. Heyliger 411 used such an approach in the solution of the crack

problems. The polynomial series are taken as the analytical solution of the crack tip

displacement and stress fields. The approximation functions are

u =	 +
(2.2)

a =	 +
	 •R

where n and m are the number of nodes per element and number of terms of polynomial
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series respectively. u, and o are the nodal variables of displacements and stresses,

	

u.=l

1	
,	 gjjc1yyj

	

I u1	
10.xxil

U
yi J

and (3 are unknown parameters to define the analytical solutions. O and Z are known

coefficient matrices. The transition function R is employed to ensure the continuity of

both displacement and stress between the enriched" elements and the conventional

elements. R is taken as 1.0 next to the enriched elements and as 0.0 next to the

conventional elements. The number of total variables per elements is 5 Xn + m.

The difficulty faced by continuous mixed models is to construct shape functions

which automatically ensure that the resulting stresses satisfy a priori the equilibrium

equations. Therefore the equilibrium condition has to be imposed a posteriori.

2.2.2 Discontinuous Mixed Models

Although the C continuous stress approximation of the mixed method produces more

accurate results than the standard displacement analysis does 1261 , the disadvantages are

obvious: it brings additional variables into the system, and when there is a rapid change

of the material properties, the discontinuity of the true solution can not be reproduced.

Zienkiewicz11261 described this disability as excess continuity.

In fact, in applying the principles, such as the mixed variational or weighted

residual approaches, it is not necessary to maintain the continuity of stresses or even

the traction reciprocity along the interelement boundary, it is permissible to express the

stresses in terms of stress parameters which are only defined locally in each element.

The stress parameters can then be eliminated in the element level and the system

remains the same as if displacements are the only variables. The mixed models based

on such a discretjzation are called the discontinuous models defined in section 1.2.2

Herrmann[401 in his pioneering work in a mixed bending model, used a linear C0

function for the transverse displacement w, which is identical to it in plane problems,

but constant C1 distributions for the three stress components. The final equations

(2.3)
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leaded to only 6 variables per element, which is the same as in a displacement model.

A three field mixed model by Simo11051 also discretizes both strains and stresses

into discontinuous functions. The stresses are then eliminated from the system.

In solid-fluid problems or incompressible problems, the discontinuous pressure p

is usually chosen. This was adopted by Spilker in ref.[109]. In the mixed penalty

formulation, solid displacement, fluid velocity and pressure are independently

interpolated within the element; C0 continuity is required for the displacement/velocity,

and discontinuity(C 1) is required for the pressure. For the axisymmetric 6 node

triangle, the displacement/velocity interpolation is quadratic and continuous between

elements, while the pressure interpolation is linear but discontinuous. After

interpolation, the unknown pressure will be eliminated at the element level.

The discontinuous mixed model gives more flexibility when constructing the stress

approximate function. The nodal variables for the stress and/or strain are replaced by

the parameters in a polynomial series. However nodal variables for displacement

remain in the system since continuous displacement is generally required. The most

clever option is to choose a polynomial series which satisfies the equilibrium equations

or simply uses the analytical solutions as the approximate functions, which can greatly

reduce the work in constructing the variational principles. The corresponding

parameters are included in the system variables.

Zienkiewicz 1261 gave a survey on the varieties of the mixed models. In

discontinuous mixed model, the principle of limitation has to be taken care of: If the

approximation for the secondary variables is capable of reproducing precisely the same

type of variation as that determinable from the displacement method, no additional

accuracy will result, and indeed the two approximations will yield identical answers.

This discovery was made by Fraeijs de Veubeke331.

Clearly, this limitation is not applicable to the mixed models with c continuous

stresses and displacements since c displacement can not reproduced a C0 continuous

stress.

Considering that both the displacements and stresses and/or strains are

discontinuous across boundaries, the nodal variables can be eventually abandoned in the

whole system. In fact, this was done by Day 261 in his work, who introduced a mixed

model with polynomial displacements and stress approximations which are both
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discontinuous across the interelement boundaries. The compatibility and equilibrium

are satisfied throughout the domain a priori by carefully choosing the polynomial

functions. No nodal variable appears in the model. The system variables are

parameters of the polynomials, called general displacement parameters and general

stress parameters. Although the formulations representing each field are independent

in the theoretical sense, the practical examples show that two assumed functions should

be comparable, i.e. the order for stresses should be equal to or less than it for

displacements. In order to get a reasonable results in this model, a fifth order

displacement trial and a fifth order stress trial function are desired, where there are 22

displacement and 23 stress parameters per element. Obviously, the system variables

are formidable compared with the conventional displacement method, e.g. 4-node

element with 8 DOF and 8-node with 16 DOF in 2D problems. Although the idea of

this model is new, it is doubtful that any practical interests will result from it. A

similar idea was also conceived by Moitinho 731 in his work, in the hope of establishing

a general approach to the construction of finite element formulations for solids.

2.2.3 Discretization of Stress Function

All the discretization approaches mentioned so far try to discretize directly the

components of the stress and/or strain. The approximate stress field so chosen may or

may not satisfy the local equilibrium equations. If they satisfy the equilibrium

requirement in the domain and obey the traction reciprocity along the interelement

boundaries, a simpler principle is needed to construct a model and also fewer operations

are needed to form the element matrices. But these functions are more difficult to find.

Alternatively, the easy-to-find functions, which do not satisfy the equilibrium equations

but are continuous, leads to more complicated principles in order to approximately

impose the equilibrium equations. Thanks to the versatility of the variational principle

approaches and weighted residual approaches, this is not a problem but at the expense

of more operations. Therefore, the ideal discretization of stresses is the one that satisfy

both equilibrium equations and traction reciprocity, and are easy to express, i.e. not too

many variables or high order function involved.

The well-known stress functions in solid mechanics are clearly the best candidate.
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Stress derived from them automatically obeys the equilibrium conditions. If the stress

functions are continuous in the discretized solid, the traction reciprocity along any

interelement boundary within the domain is also obeyed. In 2D problems, the Airy

function 51 is the stress function,

	

824)	 824)	 824)

	

= 3y3y	 = aa	 = = - axay	
(2.4)

If we discretize 4) within each element in the same way as discretizing displacements

which are continuous of course, the following expression can be obtained,

(2.5)

sarigui 981 uses such approximate stress in his assumed stress function finite element

method in 2D elasticity, in which complementary energy is used to formulate the

system equations.

One critical shortcoming of this approach is that the approximate stress function 4)

has to have C1 continuity since the second order differential of 4) is present. This is

why the stress function discretization is rarely used in the mixed model.

In fact, two first order stress functions 4)/ and 4 with C0 continuity, were

reported by Wood 1241 and Chandler 151 independently, from which the stresses can be

derived

34)
0- =-xx

34)
a

and so as to satisfy force equilibrium equation o = 0. But it does not satisfy moment

equilibrium equation i =	 . This is only satisfied if

4) =_± .	 4)	 (2.7)
X	 y
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where is the Airy stress function.

In Wood's study 1241 , moment equilibriums are not required in the couple-stress

problems. However this requirement has to be satisfied in conventional elasticity. In

ref [15], this was accomplished by the approximate satisfaction of the Hooke's law a

posteriori by an extremum principle. It is also found that vector stress functions allow

permissible stress jumps across a surface, as would be required if the material

properties change as the surface was crossed.

A plane strain disc under internal pressure loading was analysed by such method

in ref [15] for both compressible and incompressible materials. The results show that

this mixed model does represent the moment equilibrium properly and has much better

performance in incompressible cases. However, the more difficult cases, where shear

strain plays a crucial role, have not yet been encountered in the example, e.g. beam

bending under tip traverse loading, where an error in calculation of the shear stresses

may arise due to lack of symmetry of stress tensor in the stress approximation.

2.3 MATERIALS PROPERTIES

Before getting further the application of the mixed models to nonlinear problems, it is

useful to have historical remarks about the development of various theories of material

behaviours.

2.3.1 Mathematical Theories of Elasticity and Plasticity

The description of elastic behaviour is firmly established, for example the Hooke's

law 110 : o =C13k1 eki . The hypothesis on which it bases is that the stress of the

material is proportional to the strain sustained and the removal of the stress will leads

to no residual strain or permanent strain in the material. The material is said to be

elastic.

Most materials have an initial region on the stress-strain diagram in which the

material behaves both elastically and linearly. However when the stress is beyond a

limit, i.e the elastic limit, Hooke's law is no longer correct because plasticity takes

place.
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The study of plasticity was initiated by Tresca 1131 in 1864. In that year he

published a preliminary account of experiments on punching and extrusion, which led

him to state that a metal yielded plastically when the maximum shear stress attained a

critical value. The actual formulation of the theory was done in 1870 by St. Venantt271,

who introduced the basic constitutive relations for what today we would call rigid,

perfectly plastic materials in plane stress. It remained for Levy 581 later in 1871 to

obtain the general equations in three dimensions. A generalization similar to the results

of Levy was arrived at independently by von Mises in a landmark paper in 1913111181,

accompanied by his well-known yield criterion. The established relationship of stress-

strain for rigid-plastic is called the Levy-Mises equations.

In 1924 Prandt1 11191 extended Levy-Mises equation for plane continuum problems

to include the elastic component of strain. Reuss 1941 in 1930 carried out the extension

to three dimensions. The relation is called the Prandtl-Reuss equation in elastic-

perfectly plasticity. In 1928, Von Mises 1191 generalized his previous work for rigid,

perfectly plastic solid to include a general yield function and discussed the relation

between the direction of plastic strain rate (increment) and the regular or smooth yield

surface, thus introducing formally the concept of using the yield function as a plastic

potential in the incremental stress-train relations of flow theory, known as the

associated flow theory. It is well-known now that the Von Mises yield function may

be regarded as a plastic potential for Levy-Mises stress-strain relations.

For hardening materials, independently of the work of Me1an 1169 in 1938,

Prager 11861 , in a significant paper published in 1949, gave a general framework for the

plastic constitutive relations. A very important concept of work hardening, termed the

material stability postulate, was proposed by Drucker 291 in 1951. With this concept,

the plastic stress-strain relations together with many related fundamental aspects of the

subject may be treated in a unified manner.

2.3.2 Mixed FE Models for Elasto-Plasticity

Now we are in the position to discuss the mixed finite element model with regard to the

material properties. In the framework of displacement finite element formulations,

plastic loading is tested at each quadrature point of the element, and a return mapping
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algorithm is performed at this point for given incremental displacements. Only total

and plastic strains are the independent variables, while the stress is regarded as

dependent variable which is computed from the elastic strains by means of stress-strain

relations.

In contrast to this view, many literature on plasticity has been concerned with the

formulation if the elasto-plastic problem with the stress field as the independent

variable. In a mixed model this is natural true because both displacement and stress are

almost certainly independent variables. Normally stresses so obtained only satisfy the

equilibrium conditions but do not obey the yield criterion. Similar algorithms of stress

integration for calculating stress components are normally borrowed from the

conventional displacement method, such as the well-known elastic predictor-radial

return method 55 '791 in order to make the stress obey the yield criterion. A detailed

survey of stress integration can be found in Ortiz's work801.

Mahapatra and Dasgupta 641 (l988) used an mapping algorithm in his mixed model,

which is identical to the one in displacement method, in elasto-plastic axisymmetric

problems. A similar algorithm is also used by Jetteur [481 (1991) in a large inelastic

strain study, and by Liao 59 (l992) for large displacement and elasto-plastic and post-

buckling response of plane problems.

Simo et al [1041 (1989) presented a interesting formulation for elasto-plasticity based

on the principle of maximum plastic dissipation. The fundamental difference is that the

plastic return mapping algorithm can no longer be formulated independently at each

Gauss point, in contrast with displacement-like methods. The closest-point-projection

iteration that restores consistency is performed at the global element level and involves

all the Gauss points within the element. It was found that for a given mesh the mixed

model converges slower than the displacement model.

Chandler' 81 reported an interesting variational principle in rigid plasticity for

granular materials, where Drucker's postulate is inappropriate. Since the requirements

in advance are a displacement field that obeys the kinematic boundary conditions, and

a stress field that obeys equilibrium and the static boundary conditions, the variational

principle itself was to impose the constitutive relation of the granular materials.

Therefore, the stresses obtained by the stationary of the functional will not only satisfy

equilibrium equations, but also the yield criterion.
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2.4 CONVERGENCE OF MIXED MODELS

The most favourite character of mixed models is that the sufficient and necessary

condition of the stability and convergence of a solution exists: if Babuska-Brezzi(B-B)

condition is satisfied, a solution must converge to the true solution 1121 . Such a criterion

is simply not available in conventional displacement methods. B-B condition is very

general and complicated. Therefore for some specific mixed models, simplified

criterions of solution may be desired.

A lot of researchers have devoted themselves to this topic. Silvester11031(1990)

gave a sufficient condition for the stability of low-order mixed finite element methods.

PinskyI85] (1991) studied the dependency of the numerical stability and accuracy of the

results from the mixed shell elements on the balance between the stress, displacement

and Lagrange multiplier fields.

In 1990, Brezzi and Bathe1111 discussed the general mathematical conditions for

solvability, stability and optimal error bounds of mixed finite element discretizations.

A numerical test that is useful to identify numerically wether, a given finite element

discretization satisfies the stability and optimal error bound conditions, is also given.
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CHAPTER 3

MIXED MODEL IN PLANE ELASTICITY

A good example of problem in continuum mechanics is 2D linear elasticity. To solve

such problems successfully is the first step in solving more difficult problems.

3.1 MIXED EXTREMUM PRINCIPLE

Consider a body B with surface I' and with Cartesian coordinates x1 . An exact linear

elastic solution requires:

• A continuous displacement vector field, with components u . , which obeys the

kinematic boundary conditions and from which the components of the strain tensor

can be derived by using

=	 ^	 (3.1)

which is symmetric. The subscript after the comma represents differentiation with

respect to the corresponding spacial coordinate. Such a displacement field is termed

kinematically admissible.

• A stress tensor field with components o, which satisfies the force equilibrium

a,j,j = 0
	

(3.2)

and the moment equilibrium

c7lj =
	

(3.3)

in the interior B and is consistent with the prescribed traction

=
	

(3.4)

on the boundary surface. Such a stress field is termed statically admissible. The

moment equilibrium implies that stress tensor	 is symmetric. Note that the Einstein

summation convention is used here and elsewhere in this thesis.

• These components of stress and strain obey Hooke's law,
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= CUkiek!	
(3.5)

where C1Jkl is the stiffness tensor.

This can also be written in a matrix form as

U = D
	 (3.6)

where ti and i are vector forms of stress and strain tensors respectively defined by

C= [ 6ii 622 633 612 623 61T
	

(3.7)

a22 °33 0 12 a23

and D is the elastic stiffness matrix for isotropic elasticity defined by

	

1	 0	 0	 0
(1-i') (1-i')

1	 0	 0	 0
(1-i')	 (1-i')

1	 0	 0	 0

D =	 E(1-v)	 (1-i')	 (3.8)
(1+v)(1-2v)	 0	 0	 0	

1-2v	 0	 0
2(1-i')

	

o	 0	 0	 0	 1-2v

2(1 -v)

	

o	 o	 o	 o	 o
2(1 -ii)

for three dimensional (3D) cases. The constants v and E are the Poisson's ratio and the

Young's modulus respectively. The overall number of the independent components of

the stress and strain are six due to the fact of	 and

Alternatively, it is sometimes, especially in elasto-plasticity, more convenient to

describe the Hooke's law in terms of deviatoric stress and deviatoric strain d,

together with mean stress am and volume strain em

	

= 2Gd13 	= Ke 1	(3.9)

where	 1	 -
am = akk	 em - ekk	

(3.10)

= a - ô.t, am	 d1	 eU-.jem
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The independent constants K and G in eq.(3.9) are shear modulus and bulk modulus

respectively and are both positive.

In a conventional displacement method, Hooke's law is explicitly incorporated in

deducing the fundamental principles, such as in minimum potential energy principle.

As to the kinematic admissibility and static admissibility requirements, only one is

satisfied in advance in such single-field models. On the other hand, most of the mixed

models choose an approximate displacement which is fully kinematically admissible,

and an approximate stress which is only locally statically admissible. Therefore for the

mixed models, satisfaction of the overall equilibrium is left to the task of the mixed

principles. In both conventional models and mixed models the boundary conditions are

imposed by fundamental principles, which becomes one of the main advantages of the

FE method. They largely simplify the solution of a boundary value problem.

We may also assume that both kinematic condition and static conditions are fully

satisfied in our approximate displacement and stress field, which are called as

admissible displacement and admissible stress respectively. Now only the stress-strain

relation is imposed by the mixed principle. This is the case in this chapter where a

mixed extremum principle is proposed in a least square sense to approximately enforce

Hooke's law. As reviewed in chapter 2, very little work appears in the literature where

the constitutive relations are to be imposed by extremum principles. The most

favourable point of this scheme is that principles suitable for any materials can be

readily obtained by imposing the explicit constitutive relationship, without change of

formulation in the admissible displacement and stress. We will see later in chapter 5

and chapter 6 that it is of special interest if the constitutive relationship is taken as the

one for rigid perfectly-plasticity or elasto-plasticity.

In the case of linear isotropic elasticity we can construct an extremum principle

very easily. Give an assumed strain e* and an assumed stress oj* which are either

kinematically admissible or statically admissible. The corresponding deviatoric strain

d1*, stress S j" , mean stress am* and volume strain em* can be derived by substituting

e,* and	 for e and	 in eq.(3.1O). Since they do not satisfy eq.(3.9), it follows

R(s ,dJ) = (sJ/2G-dJ)2 ^ 0 ; R(cr, ,e,) = (cr,/K-e,)2 0	 (3.11)

where R1 and R2 can be considered as some kind of residual functions of admissible
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stress and strain. It is straightforward to obtain the following inequality for elasticity

11eias = J ç [a iR( ,d1 ) + a2Ri, ,e,)]dV ^ 0	 (3.12)

where a 1 and a2 are two arbitrary positive constants.

It is evident that elas has a minimum of zero, and the equality is only true when

dU*, S, cr, and em* fully satisfy the Hooke's law, i.e. equation (3.9).

Recall what we have described in section 1.4.4. It immediately turns out that

eq. (3.12) is identical to the least squares method in the penalty function approach.

Thus the two coefficients a 1 and a2 can be simply regarded as penalty numbers. It

comes to a question: how to choose the penalty numbers and what are the best choices?

One answer is a 1 = G and a2 = K/2 which will then allow the formulation to be

reduce to the principles of minimum potential energy and minimum complementary

energy. It can be verified as follows.

Expanding eq.(3.12) by substituting eq.(3.11), it follows that

2

' 4G 2G	 )	
K m m mJ	

(3.13)--a e -Fe

Replacing a 1 and a2 by G and K12 respectively and reordering this equation, it is very

interesting to find that the right hand side is composed of three terms

ITelas 
J 

-2(±o e + ±s . d ..) +[±(2G)d,fJ + IKe2 11 + [_
1
 s.js i:i + __aJdV (3.14)

rnm 2ijy 2 m	 2(2G)

The first term in bracket is twice the internal energy, the second the strain energy U

and the third the complementary strain energy U. Therefore eq.(3. 12) can be written

11eias = -2a,.e 11 + U5 + Uc ^ 0	 (3.15)

If stresses are statically admissible and the strains are kinematically admissible, then the

theorem of virtual worlcU°81

Joedç 
= J rk JJ	 + Js

can be used to replace the internal energy with the external work done in eq.(3. 15)
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J (U + U)d[2-J j3d1'J1	 ^ 0

where T is the boundary with the traction f fixed, while "k is the boundary with the

displacement u, fixed.

Let displacements and strains be functions of c and stresses be functions of i3.

The minimum of II can be found by

=
 [

I	
- fL dF1 &

fl 3a	 Jr5J8a	
j	 (3.16)

+ [
	

U 
d1 -	 3f iTdr] &ei = 0JFk313jJ

Because c and I3 in eq. (3.16) are independent variables, the above equation yields the

following equations:

o11=JoUdrl-Ji?udr = 0

which is the principle of minimum potential energy, and

ôfl=JUcd1_JrôJdF = 0

which is principle of minimum complementaiy energy.

From now on, G and K/2 replace a 1 and a2 in all expressions of 11elas•

3.2 DISCRETIZATION OF DISPLACEMENTS FOR PLANE PROBLEMS

Following the procedure in a conventional displacement model, the discretization of

displacements in this mixed model is accomplished by means of the isoparametric

formulationE'26l

{
u(,r')	

m	 Ii 01 1u1)	 (3.17)
V(,)} 

=	 N(1l)[0 
ijlvJ

where E and are local coordinates in an element, u(,) and v(E,) are approximate

displacements in x-direction and y-direction respectively. u, and v1. are the nodal
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variables of the element corresponding to u(,) and v(E,n), 1V is the shape function

of node i in an element, m is the number of nodes per element, as shown in fig.3.1.

Shape functions in isoparametric are defined as'26

For a 4-noded element

N(E,n) =±(1
4

Local node number

1
2
3
4

4	 3

1LU12

lii

	-1 	 -1

	

1	 -1

	

1	 1

	

-1	 1

7	 6	 5

4
-C-1	 2	 3

Fig.3. 1 The geometric layouts of a 4-noded and a 8-noded isoparametric element.

For a 8-noded element

N(,'q)=±(1 + EE)(l
4

N1(E,j) =(1 i-E,)(l _71 2) +!?(1 +p,)(1 -E2);

Local node number

1=1,3,5,7

1=2,4,6,8

lii

1	 -1	 -1
2
	

0	 -1
3
	

1	 -1
4
	

1
	

0
5
	

1
	

1
6	 -1
	

1
7
	 -1
	

0
8
	

0
	

0
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The continuity condition of displacement within the element and on the inter-element

boundary is ensured by such formulations' 261 . If the strain is expressed by eq.(3.i),

the compatibility condition is also ensured, which implies that the displacement field so

obtained is kinematically admissible.

In 2D plane stress problems, the vector forms of strain and deviatoric strain tensors

are introduced for convenience of FE formulation as

e = {e e,	 e}T ; d = {d d	 d d}T

where 5 components of strain are used in order to take into account the fact that

does not apply in our model. Then strain, deviatoric strain tensors and volume

strain can be approximated in matrix forms as

em =	 Bmi I3'
	

(3.18)

where

e = E B I j3' ; d =	 B0

BDI=BI-..TB

[N,	 0

B1 = [
0	 1N.	 1

•	 i,X

[1 0 0 1	
T

T=I
[i 0 0_i 0]

Bmi =	 Vi,y]	 (for plane stress)

Bmi = TL[1V N y] (for plane strain)

j31 = 
{u v}T

For plane strain, the last row of B, should be replaced by [0 , 0 1

3.3 DISCRETIZATION OF STRESSES FOR PLANE PROBLEMS

The discretization of stresses is always an important but difficult task in the mixed
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model. A good formulation for discretizing the stress field will enable the model to be

highly accurate and efficient.

To satisfy of the force equilibrium equation (3.2), it is easy to verify that the

following representation of the components of stress is appropriate

3F
	

3F
crxx =
	

o•xy =

aF

	 (3.20)

o•yx = ---- 	a

where F and F are two independent functions. Because no explicit second order

derivative of F and F, is included, the continuity of these functions is d. Therefore

functions F and F are called the first-order stress functions. However it does not

imply the satisfaction of the moment equilibrium equation (3.3) since

aF =	 (3.21)

is not true for two arbitrary functions F and F. If we upgrade the order of eq. (3.20)

by specifying that

F =k	 and F =X	 '	 ax

where 4 is a second-order continuous function, the equilibrium conditions (3.2) and

(3.3) are fully satisfied. The components of the stress can then be expressed

= -_	 cr 
= - axay

a2 	•	 a2
(3.22)

in which 4 is the well-known Airy stress function 51 . Since the Airy stress function is

the lowest order and the simplest function to express equilibrated stress components in

2D problems, it is inevitable that to impose both force and moment equilibrium

conditions C 
1 second-order functions must be used.

However if we give the functions Fx and F a constraint such that eq.(3.21) is true,

the description of the stress in eq.(3.20) will fully satisfy equilibrium conditions
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0
	

Ni,

0

A=	 0

	

N1
	 0

	0
	

0

(for plane stress)	
(3.25)

(for plane strain)

Chapter Three	 Mixed Model in Plane Elasticity

eq.(3.2) and eq.(3.3). In other words, the second-order Airy stress function is

decomposed into two first-order functions, which obey force equilibrium condition, and

a constraint which imposes moment equilibrium condition. Now we have achieved the

construction of a first order stress function together with a constraint, or a constrained

first order stress function. The constraint will be treated later as in the constrained

variational principles by a penalty function described in section 1.4.4.

With C' stress function in hand, the discretization of the stress becomes the

discretization of the C stress functions F and F, which can be thought as two

components of a vector. Therefore isoparametric formulation can be used again to

discretize stress function,

Fx(,r)	
m	 Ii OlIFj

} =
	

N()[ ljlFyJ
(3.23)

where F5(E,n) and Fy(E,fl) are two approximate stress functions. F, and are nodal

variables of the element corresponding to F(,n) and Fy(?J) ]V is the shape function

of node i in the element and m is the number of nodes per element. Again for the

convenience of FE formulation, vector forms of stress and deviatoric stress tensors are

introduced

= {0xr 0xy 0yx	
T	 s = {s s	 s s}T

Then from eqs.(3.20) and (3.23) the stress, deviatoric stress and mean stress for plane

stress cases can be expressed in matrix forms as

s=ADII37
	

=	
Ami 137
	

(3.24)

AD1 = A1-TA

Ami = [!pQ !p]

i37 = {F F}T
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T is the same as in eq.(3. 19). For plane strain problems, the last row of matrix A

should be replaced by [vN, vN,J.

As we have reviewed in chapter 2, there are difficulties and inaccuracies brought

in by the discretization of the stress field with either continuous or discontinuous stress

across inter-element boundaries. For example, the models with discontinuous stress do

not satisfy the traction reciprocity along the inter-element boundaries. Although this

violation of the equilibrium condition can be partly cured by the mixed principles, it

brings an inaccuracy into the solutions. On the other hand, the models with continuous

stress do not permit the discontinuity of stress when there is a rapid change of the

material properties, though traction reciprocity along the inter-element is ensured. This

is termed as excess cofltinuily 6l. However, the model in this thesis can solve the

above problems entirely: it allows "stress jump" where material properties change

rapidly, and at the same time satisfies the traction reciprocity at inter-element

boundaries.

Fig.3.2 Local coordinate system at the element boundary.

Consider a surface 1' with a normal vector n, and a tangent vector r. These two

vectors form a local Cartesian coordinate system, as shown in fig.(3.2). The traction

at any point on this surface is obtained by eq.(3.4) as follows,

J=	 x + yx fly	 (3.26)

I	 = cr5 fl + Oyyfly
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where n and	 are direction cosines of the normal vector n. By projecting t and

in the normal and tangent directions, the two components of the traction are

[t =ntn	 xx	 yy
(3.27)

tr = flyt - xty

From eq.(3.26), it follows that

J
t,j = fl1y +	 x'y(°xyyx)	 (3.28)

I
7 =

Remembering the following relations,

Ia_	 a	 a
+fi -

I -
	 fly.;:	 x

ta=	

a
-n _+flX3	 Y3

and substituting eq.(3.20) into eq.(3.28), the traction can be expressed in terms of stress

functions as

0F	 aF

aF	

aF

tn - flxT +
-	

a	 (3.29)

= flx—äT7:- -

It shows that there is only the derivatives of F or F with respect to r. Now assume

two elements A and B, which are adjacent to one another. Since C continuity of F

and F is ensured by the isoparametric formulations, then (F)A = (F) B and

(F)A = (F)a are true. Furthermore since the two elements are sharing common

boundary, then (a/ar)A= (a/ary is also true. It leads to the conclusion that traction

reciprocity is exactly satisfied by this model, i.e. (tY	 (t)B and (tT)A

It is of special interest that while traction reciprocity is satisfied exactly, the

discontinuity of stress across inter-element boundaries is also permitted. This is

automatically true in our model since the stress functions F and F are of C0

continuity, the components of the stress expressed by their first derivatives, such as in
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eq.(3.2O), must be of C 1 continuity, i.e. discontinuous across inter-element boundaries.

Therefore a "stress jump" is reproducible.

3.4 BOUNDARY CONDITIONS

In conventional single field models, boundary conditions are easy to be imposed by

means of virtual work principle. However in using this, the symmetry of a stress

tensor is essential. This is no longer true for our model, and therefore a different

approach must be employed. The boundary conditions can be treated as some sort of

constraints in the mathematical sense. For the variational principle approach, there are

two constrained principles available, Langrange multiplier method or penalty function

method. The penalty function method, of course, is the best choice since it does not

bring extra variables to the system, neither does it cast the non-positive-definite of the

matrix, as discussed in section 1.4.4.

Say (ii, V) are given displacements at any point i on the boundary. By means of

a quadratic penalty function, the true u and v are those which make the following

functional

	

11d (	
dTd	 d

	= 	 -i3) p1.(fl1-i3) (3.30)

minimum, where

[
d	 1

Pu1 01
pj=I	 I

dI
[0 Pvij

In eq. (3.30), .d is a 2x2 penalty matrix, the diagonal components of which are either

a large positive number (penalty number) or zero depending on which degree of

freedom at node i is to be fixed. It follows that the first derivative of 11d with respect

to	 can be expressed in a matrix form

where
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d

dk . = 2
d

0 p

d—

dF.=2
d—
vi

Let us turn our attention to the stress boundary conditions. Say there is a boundary line

re of the length dL pointing from node a to b. The positive direction of this line is

defined as when walking from a to b, the right hand is always pointing to the outside

of the body. If the length dL is small, the derivatives of F and F with respect to r can

be approximated by

1	 _	 (3.32)-	 (F, - F. )	 ;	
dL

Substitute eq.(3.32) into eq.(3.29) and rewrite it in a matrix form

k;1	 1fi1
= ._ (-n3, n n, -iz) 

1	
I ; 

ç =
	

n -n n)	
F 

(3.33)

(13bJ

where the nodal variables 13a5 and fibs are defined as in eq.(3.25). The value of the

prescribed traction ç and ç along a small segment of the boundary line dl' can be

imposed again using a quadratic penalty function

iT1IjT'l	
ft	 IIJ ni

JdP
II 

=	 - ltjj

where p is a 2 x2 matrix similar to

p	
- lttIj

	
(3.34)

S	
0

0 pi

where p5 and p are two penalty numbers. It follows that the first derivative of ll
with respect to !3aS and fibs is

S

Sfi1

=kb
S

(3.35)
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where

kb = JrtTiTr)ctp F s =	 etn1n + if)dI'
Jr

	

flyny -nxny _flyn flxfly	
-fix

T = 
2p	 -flny XflX 

xy -nxflx
	

2p	
flx

	

-nyny xy flfl 
-nxfly

	 n -;:iz-	 n

	

-nxJlx .flxny flxnx
	

-fix

fixfix nxfly fixflx 	 a!1y

	

T=-	 nyny -flxny -flyny
	

fly

	

2L
	

-nxfly
	

/Zx 11x1y
	

dL -n

-nyfly flxfly flfl
	

-fly

In the next section, we will discuss how to add these constraints to the functional elas

in eq.(3.14) to form a complete system for a 2D elasticity problem.

3.5 GLOBAL SYSTEM OF EQUATIONS

We have given a functional 11elas in section 3.1, whose minimum corresponds to the

true status of elasticity on condition that the displacement field and stress field are

kinematically and statically admissible respectively. This in turn is ensured by the

discretization of the displacement, strain and stress fields as described in sections 3.2

and 3.3. In section 3.4. two additional functionals r1d and 1T15 with regard to the

displacement and traction boundary conditions are also introduced. The boundary

conditions are satisfied approximately when these functionals are minimum. In other

words, the true status of a solid under specific boundary conditions is the one which

makes the functional

= "elas + 11d + 11s +
	

(3.36)

an extremum. Functionals 11e1as' 1d and ll were defined in eqs.(3. 14), (3.30) and

(3.34) respectively. 1 in eq. (3.36) is a penalty function term to impose the symmetry
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o=cr, by means of the constraint of stress functions eq.(3.21), which is

r	 12
laF	 oF I

II = I pc i__f __fI d(1
J(	 [Oy	 Ox]

(3.37)

where pC is a penalty number. The first derivative of 11 in an element 11e with respect

to 1t can be expressed by

(3.38)
3i3;	 i=1

where

y1

JVNj,xj d

With eqs.(3.18) and (3.24), it is straightforward to express the first derivative of lleias

in any element ç1e with respect to general nodal variables f3 in a matrix form

___ =	 k flu
	 (3.39)

where

e	
[2jBDj+KBjBmj	 _BA	 1 

d ; fl=k = Je[	

_AB	 AAp/2G+AjA/K]	 l7J
Because each item in eq.(3.36) is only the function of general nodal 	 the minimum

of ll requires

011 _ t3lleias	 3'd arid 	 ori
____	

+	 C 
=	 (3.40)

Ofi

Substitute eqs.(3.31), (3.35), (3.37) and (3.39) into eq.(3.40), the global system

equations can be expressed by a linear equation in terms of general nodal variables (3

k1 (3 + F1 = 0
	

(3.41)
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where k1 takes the place of the well-known element stiffness matrix and F1 becomes the

load vector of equivalent nodal forces of the element

k1=ke+kd+ks+kc	
(3.42)

F1 =F d + Fs

The elements of the matrices are described in eqs.(3.31), (3.35), (3.37) and (3.39)

respectively. Expansion of the original matrices kd , ks kc are needed to construct k1

since the variables are neither d nor /35 but general variable f3• Also it is worthwhile

to mention that kd and ks exist only when the element has at least one node or one side

at the boundary r. Otherwise they are replaced by zero.

The standard assembly procedure is used to form the global stiffness matrix and

load vector element by element. Because the stiffness matrix is symmetric, positive-

definite, eq. (3.41) can be easily solved by any efficient approaches used in

conventional displacement method, e.g. the LDLT procedure. A variable bandwidth

algorithm is used in the work described in this thesis.

An interesting feature of this model is that the value of the functional el is a

direct measure of the accuracy of the solution in that region and therefore could be used

to show where further refinement of the mesh might be appropriate. The reason for

this is very simple. Because the equilibrium condition eq.(3.2) and compatible

condition eq.(3.l) are exactly satisfied in advance, errors can only result from the

inaccuracy of the stress-strain relation, eq.(3.5). There is no need to account for the

error from eq.(3.3) since it can be reflected in the error of the stress-strain relation.

3.6 NUMERICAL TEST CASES

The examples presented below illustrate some features of this method when used to

solve linear elastic problems in plane strain and plane stress. These include: very good

performance when modelling essentially incompressible materials without recourse to

reduced integration; the ability to cope with changes in material properties from element

to element, which can not be handled by a normal continuous mixed model; and the

existence of a natural error measure. The examples discussed are internal pressure in

a hollow cylinder; an elastic but stiff punch pushed into a softer elastic material;
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bending of a cantilever with transverse tip loading; and a ribbon crack under remote

tension. For each case, the convergence of the model against the element size is also

discussed.

3.6.1 Hollow Cylinder under Internal Pressure

Consider a hollow cylinder of internal radius a and external radius 2a in which there

is an internal pressure P. For simplicity, the plane strain condition is assumed. Due

to the symmetry, only 1/4 cylinder will be used in the finite element model. In the first

instance a fine mesh with 50 8-noded quadrilaterals elements is used in discretizing the

model, as shown in fig.3.3.

Fig. 3.3 Finite element models of a hollow cylinder under internal pressure.

In order to study the sensitivity of the mixed model with regard to the changes of

Poisson's ratio, four values of Poisson's ratio v=O.3, 0.4, 0.45 and 0.49 are used in

the solutions.

Let us define the error of a FE solution as the difference between the analytical

solution and the FE solution. Then the errors of the axial and hoop stresses at the

Gauss points by the mixed method and the displacement method with 2 x2 integration,

are shown in fig.3.4(a)-(d). Both models show quite good agreement with the analytical

solution for almost all values of ii . The errors of cr,7 and a00 appearing in the figures

are almost identical.

As Zienkiewicz mentioned in his review E ' 26] , the situation is quite different when

3x3 integration is used in solving the problem, as shown in fig.3.5(a)-(d). When
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Poisson's ratio is getting bigger (>0.40 ), the mixed model has much better

performance than the displacement model. In flg.3.5(d) where v is as 0.49, the results

from the displacement model are obviously meaningless, but those from the mixed

model can remain quite similar even at v=0.499999(not shown).

Before comparing the convergence of both models, a criterion needs to be given.

In this case, the average error is introduced as the criterion

m

Eav =
	 (3.43)

where m is the number of integral points along the r-axis. €77! and €' are the relative

errors of the radial and hoop stresses at a particular Gauss point.

FEM exact FEM exact	 (344)= J(o,7.	 -cr,7 )/P	 = I(aee	 oo )I/P

Four meshes with 2, 3, 4 and 5 elements along r-axis are used to obtain the average

errors. In fig.3.6 for 2 x2 integration, the convergence of the two models is similar

for different Poisson's ratios. However the mixed model has much lower errors than

those of displacement model for every mesh when 3 x3 integration is used, as shown

in fig.3.7. In this case, the convergence of the mixed model remains insensitive to v,

while that of the displacement model is affected severely by Poisson's ratio. The larger

is ii , the more severe the accuracy of the solution by the displacement model depends

on element size.

In fig.3.8 and fig.3.9, the average values of functional 11elas in the mixed model

defined by

nay =
	

ll1J aTe
	 (3.45)

are plotted together with the corresponding average errors. It is interesting to find that

the figures of 11elas show similar patterns to those of average errors calculated directly

from the stress for each v and integration. Therefore it is fair to say that the value of

the 11elas do indicate local errors at some degree.

The superiority of the 2 x2 integration seems not to be a disadvantage as it needs

less computing time. However, in the next example we will show an example in which

2 x2 integration can cause problems when a very coarse mesh is used.
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3.6.2 Elastic Punch Pressing into a Compliant Layer

Consider a punch made from an elastic material with Young's modulus E and

Poisson's ratio v. It presses into, allowing no slip at the interface, a linear elastic

material with Young's modulus Eb and the same Poisson's ratio. The ratio EIEb is

10000. Two different meshes of FE models are shown as fig.3. 10, where 7 and 34

elements of 8-noded quadrilaterals are used in each model. Solutions are carried out

under the Plane strain assumption with both 3 x 3 and 2 x 2 Gaussian integration.

Fig.3. 10 FE models for analysis of a punch pressing into a layer.

First let us look at the deformation modelled by either model. In fig.3.11 the

displacement model with a coarse mesh gives poor displacement results (deformation

of the mesh) for v = 0.3 and i' = 0.49 when 2 x2 integration is used: the deformation

of the punch should be rather smaller. A similar problem is found in the solution of

the mixed model under 2 X2 integration, as shown in fig.3. 12. When 3 x3 integration

is used in the solutions, both models yield sensible predictions for deformation in the

case of either Poisson' ratio, as shown in fig.3.13 and fig.3.14.

Now let us turn our attention to the stress results. There is a little problem in

judging the stress results since an exact solution of such a problem is normally not

available. However by comparing the consistency of the results under different

integration schemes and different mesh size, the performance of each model for this

kind of problems with a tremendous change of the material properties can be studied

at some degree.
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In the case of v = 0.49, seen in fig.3.15(c) and fig.3.15(d), r and obtained

from mixed model show consistency between 2 x2 and 3 x3 integrations. But this is

not found in the case of the displacement model. As a matter of fact, the results from

the displacement model under 3 x3 integration become meaningless. Although at p

0.3, results from the displacement model are much better, there still exists a

inconsistency between results obtained under different integrations, as seen in

fig.3.15(a) and fig.3.15(b).

One explanation of this is that in the displacement model, stresses are calculated

from the displacements, which are different under 2 x2 and 3 x3 integrations, as shown

in fig.3. 11(a) and fig.3. 13(a). Although a similar problem exists in the deformations

from the mixed model (fig.3. 11(a) and fig.3. 13(a)), it does not affect the stresses since

they are calculated directly from the nodal stress functions. Thus stresses by the mixed

model under different integrations are almost identical, as seen in fig.3. 15(a) and

fig.3. 15(b).

Problems of this type with a coarse mesh can create problems for the displacement

method because they give poor stresses when 3 X3 integration is used and spurious

modes of deformation when 2x2 integration is used 1261 . The mixed method also gives

poor displacements but good stresses when reduced integration is used, while both good

stresses and good displacements are obtained when 3 x3 integration is used.

There is one solution for this problem, which is to use finer mesh. In fig.3.16,

fig.3. 17, fig.3. 18 and fig.3. 19, deformations predicted by both the displacement model

and the mixed model with 34 elements mesh are shown under two Poisson's ratio p =

0.3 and v = 0.49 as well as 2x2 and 3x3 integrations. No spurious modes occur

under 2 x2 integration from either model. This offers the displacement model a chance

to give both good displacements and stresses by 2 x2 integration at v = 0.49, as seen

in fig.3.16(b) and fig.3.20(c).

At p = 0.49, the stresses from either model are reasonably close, shown in

fig.3.20(a) and fig.3.20(b). A ukinku exists in cr, obtained from the displacement

model, while the mixed model gives a smoother curve. In the case of v = 0.49 with

3 x3 integration (fig.3.20(d)), the displacement model gives bad stress results again.

Once again, the mixed model shows its insensitivity against Poisson's ratio and the

integration schemes. All four graphs in fig.3.20 are in a very similar pattern.
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The discontinuity of i in this problem can also be clearly identified in fig.3. 15

and fig.3.20. This means the mixed model can cope with "stress jumps" across a

boundary where material properties change rapidly.
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(a)
	

(b)

Fig. 3.11	 Deformations obtained from the displacement model by a FE mesh with
7 elements when 2 x 2 integration is used. (a): v = 0.3, (b): v = 0.49.

(a)
	

(b)

Fig. 3.12	 Deformations obtained from the mixed model by a FE mesh with 7
elements when 2x2 integration is used. (a): v=0.3, (b):v=0.49.
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(a)
	

(b)

Fig. 3.13	 Deformations obtained from the displacement model by a FE mesh with
7 elements when 3x3 integration is used. (a): p =0.3, (b):v=O.49.

(a)
	

(b)

Fig. 3.14	 Deformations obtained from the mixed model by a FE mesh with 7
elements when 3 x3 integration is used. (a): v=0.3, (b):v=0.49.
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(a)
	

(b)

Fig. 3.16	 Deformations obtained from the displacement model by a FE mesh with
34 elements when 2x2 integration is used. (a): v=0.3, (b):v=O.49.

(a)
	

(b)

Fig. 3.17	 Deformations obtained from the mixed model by a FE mesh with 34
elements when 2x2 integration is used. (a): p =0.3, (b):=0.49.
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(a)
	

(b)

Fig. 3.18	 Deformations obtained from the displacement model by a FE mesh with
34 elements when 3 x3 integration is used. (a): v=O.3, (b):v=O.49.

(a)
	

(b)

Fig. 3.19	 Deformations obtained from the mixed model by a FE mesh with 34
elements when 3 x3 integration is used. (a): v=O.3, (b):v=O.49.
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3.6.3 Plane with a Central Crack under Remote Tension

It is easy to anticipate that the mixed model will produce more accurate stress results

than a displacement model. This is particularly true when stress changes tremendously,

such as near a crack or in laminated composite materials, as reviewed in chapter 2. In

this section, an analysis of a plane with a central crack with length 2a under remote

tension will be made to demonstrate the performance of our mixed model when applied

to a case where stress singularity exists.

Fig.3.21 FE model for a plane with a central crack.

The finite element model used in this problem is shown in fig.3.21. Only one quarter

of the plate is presented because of the symmetry. Four different meshes with 8, 16,

37 and 56 8-noded quadrilateral elements were used in each model and the solutions

were obtained with 3 x3 Gaussian integration in the plane stress condition. Poisson's

ratio was p = 0.3 and a unique distributed tension at remote end of the plate was P.

In fig.3.22(a)-(d) results of obtained by both the displacement model and the mixed

model for four different meshes are presented, as well as an analytical solution.

In order to investigate the basic properties of each model in coping with the

singularity of stress, no dislocation of the mid-node of the elements around the crack

tip was made in either model in the first instance. It is seen that in each mesh, the

mixed model always gives the better prediction of at the nearest point from the

crack tip comparing with the exact solution 51 , while the displacement model behaves

clearly poorer at this location. The gradient of the stress given by the displacement
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model is less than that by the mixed method in the area where singularity of the stress

exists. This implies that the mixed model can represent the singularity of stress more

accurately than the conventional displacement method in the case of normal element

(without mid-node moved).

However if the mid-node of the element surrounding the crack tip is moved by one

quarter toward crack tip, we shall call them distorted element here, the results from

displacement model are improved significantly and are superior to those from the mixed

method. The improvement in the mixed model is not that outstanding, as shown in

fig.3.23(a)-(d). This may be explained as that the singularity of the stress functions

caused by moving mid-node of the element is not as obvious as it for the displacements.

Near the edges of the plate, both models converge together, but deviate from the

analytical solution. This is because the analytical solution in ref [5] is only correct near

the crack tip.

Now let us see if there is any relation between the value of flela1 T and the error

calculated by e = (o - o)/P at a given point. The point is selected at (2a/8, 2a/8)

which is on 45 ° from the crack line and 2aI/8 from the crack tip. In fig.3.24, the

c and rleiasio-eT are plotted against crack length 2a I minimum element's size. It

appears that both curves almost coincide: the higher value of IIelajj 
creT , the larger value

of c. When element's size becomes very small, both values are approaching zero.
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3.6.4 Beam Bending under Transverse Loading at End

Fig. 3.25 The FE models of the beam bending by transverse load.

The difficulty faced by this mixed model is that the stress obtained will not be precisely

symmetric, i.e. shear stress will not be equal to since the assumed stress only

satisfies the force equilibrium eq.(3.2), but does not satisfy the moment equilibrium

eq.(3.3). The problem will become more severe if shear is dominating the deformation,

such as in beam bending under transverse loading. We have proposed, in chapter three,

a penalty function eq. (3.37) to overcome this problem. In order to study the efficiency

of the penalty function and the mixed model, a beam bending is studied below.

Two FE meshes with 4 x4 and 8 x 10 of 8-noded plane stress elements are

presented as in fig.3.25. Two set of different values of p are used, i.e. p = 0, 1.0,

5.0, 10.0 for 2x2 integration and '	 0, 1.0, 10.0, 50.0 for 3x3 integration where

= 0 corresponds to Chandler's work151.

In the case of 4 x4 mesh, the results of cr cross the section at xIL=0.5 are

presented in fig.3.26 with 2x2 integration and fig.3.27 with 3x3 one. It is seen that

with 2x2 one, mixed model gives reasonable when p ^ 5.0. However p ^ 10.0 is

required to reach the similar accuracy when 3 x3 integration is used. A similar

situation is also found in the results of the shear stress cr, and 	 in fig.3.28 and

fig.3.29. When penalty number ' increase, the inequality between cr, and cr

disappears. It is interesting to find that if we take the simple average 0.5 x (cr, 
+ 
r)

as the approximate shear stress, then very good results can be obtained at '= 1.0 for

2x2 case and =1O•O at 3 x3 case, and these are both better than those obtained from

the displacement model.
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In the case of the 8 X 10 mesh, both models give better results and the smaller

penalty number is required to obtain results of cr, cr, and 	 at the similar accuracies

as at 4X4 mesh. In fig.3.30 and fig.3.32, results of 	 and 0.5X(cr,+cr) under

2 X2 integration are quite good compared with the exact solution at PC ^ 1.0, while those

under 3 x3 one are very good at p^ 10.0, as shown in fig.3.31 and fig.3.33.

In fig.3.34 to fig.3.37 the deflections of the beam are given under both meshes and

different p. The accuracy of the results also greatly depends on the penalty number.

,^5.0 is enough to get good results for 4x4 mesh (fig.3.34) and p^ 1.0 for 8x10

mesh (fig.3.36), both with 2 x2 integration, which are similar to the stress calculations.

However the case of 4 x4 with 3 x3 integration requires larger penalty number e.g.

10.0 to get reasonable deflection, as seen in fig.3.35, where only p^5.O is needed

for the stress calculation. The deflection obtained by 8 x 10 mesh with 3 x 3 integration

requires similar p as in the stress ones, as seen fig.3.37.

In all cases, 8 x 10 mesh gives better results than those from 4 x4 and p =5.O is

generally required.

3.6.5 Comments on the test cases

In previous sections of this chapter, a few problems are solved by the mixed model in

order to justify the mixed extremum principle along with the C0 stress functions. In

comparison with an exact solution, the mixed model often shows superior properties

over displacement one. It gives better stress results in the nearly incompressible

materials (section 3.6.1). It represents stress singularity more accurately (section

3.6.2), although most mixed models do. It handles the "stress jump" at the interface

of two materials correctly (section 3.6.3), which is normally not the case for continuous

mixed models. Although the mixed model may have potential difficulties when applied

to the cases where shear is important, these can be entirely overcome by introducing

the penalty term eq. (3.37) (section 3.6.4) to reinforce the symmetry of the stress tensor.

The most interesting feature of this mixed model is that it has a natural "error

estimator" which seems very meaningful and is simple to calculate. Therefore it is fair

to say that the newly established mixed extremum principle is successful and the stress

discretization used in this chapter is efficient to many plane problems.
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2

+	 +
3r2	 r3r	 -J

+	
+	 =	 = 0

rBr	 3z2j
(4.2)

CHAPTER 4

MIXED MODEL IN AXISYMMETRIC ELASTICITY

In practical engineering, there are many structures or components of structure with a

geometry that are formed by simply rotating a curve around an axis. This is called

axisymmetry. Often the force applied on the structure is also symmetrical about the

axis and produces no torsion, such as the pressure within a gas cylinder. This

particular symmetry enables a simple 2D formulation to describe the 3D structure since

all parameters do not vary with the angle of rotation 0 and are only functions of the

radius r and height z. The basic formulation suitable for axisymmetric problems is

firmly established in the classical theory of elasticity 11101 Many applications have also

been successfully made by the displacement model of FE method. Although axi-

symmetric problems has become one of the major areas in the application of FE

method, only few such examples by mixed models are found in literature, as reviewed

in chapter 2. Unlike in the displacement model, where no substantial changes need to

be made to include an axisymmetric formulation in an existing 2D plane formulation,

the mixed models need to approximate the new stress field which is much more

complicated than in plane problems. By introducing a stress function 4) the equilibrium

equations are satisfied if we take

a
(1,1. =
	

ar2j

=	 IPV24)__l
°•o9	 rarJ

a2 1o.zz = . [2 - v) V24) -

324)1
=	 [ - v) V24) -

(4.1)

provided that the stress function 4) satisfies the equation

4) is the well-known Love stress functionE62] for axisymmetric problems. Compared

with the Airy stress function in eq.(3.22), it is much more complex so it is easy to see

how much extra work needs to be done in discretizing the stress field. This is the
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reason why mixed models have not been extensively used in practice.

In order to exploit the potential merits of the mixed model in axisymmetric

problems we will introduce new constrained first-order stress functions in this chapter.

4.1 CONSTRAINED FIRST-ORDER STRESS FUNCTIONS

FOR AXISYMMETRIC PROBLEMS

The complexity of the Love stress function makes it difficult to directly decrease the

order of the stress function from the third to the first, which was done to Airy stress

function. Look at the equilibrium equations in axisymmetric problems first, which is

	

Idcr,7 + -	 + ______ 
0	

(4.3)

	

3z	 r

	+ 	 +=

and

= cr
	 (4.4)

It is not difficult to see that the second equation in eq.(4.3) is quite similar to the one

in plane problems (eq.3.2) except for an extra term cr,./r. Now recall the expression

of the components of the stress in eq.(3.20) for plane problems, and replace x, y, z of

Cartesian system for plane problems by the relevant r, z, 0 of the cylindrical system for

axisymmetric problems. With the new stress functions Fr and F, it is straightforward

to satisfy the second equation in eq.(4.3) by simply adding a term F,Jr to o, i.e. o

= Fr,r + F,Jr, to balance cr,./r. If a,7. is conceived in the same way by adding F,ir,

i.e. a. =	 + F,Jr, one left component cr is immediately obtained by substituting

a. and 0zr into the first equation in eq.(4.3), i.e. a =	 + Fr,..

However in order to satisfy eq.(4.3), it is not necessary to use Fr in the expression

of a. and a since any variable, say F0 , is eligible. Therefore the components of the

stress obeying force equilibrium equation (4.3) in axisymmetric problems finally take

the form of1171
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3F F0
=_+	 ;	 =-öz	 r	 8z	 (45)

8F	 3F Fr	 3F 3F9= - --	 ;	 =-- + --	 ;	 '	 =	 +

where F , F and F9 are three first-order stress functions.

As we did in plane elasticity in chapter 3, the moment equilibrium eq.(4.4) is again

satisfied approximately a posteriori as a constraint

3Fr =
in domain [	 (4.6)

--

by means of a penalty function. Therefore Fr, F and F0 are also termed as the

constrained first-order stress functions.

We shall now show that the components of the stress defined by eq. (4.5) possess

the same merits as by eq.(3.20) for plane elasticity: it allows the discontinuity of stress,

and at the same time satisfies the traction reciprocity at inter-element boundaries.

Consider a surface with normal vector n, and a tangent vector r. After performing

similar operations as in eqs.(3.26) and (3.27), and using the new expression of the

components of stress in eq.(4.5), we have obtained the components t, and tj,. of traction

at any point on this surface

I

8F	 3F 2F9
fl	 z3T
t = -n - + n	 r7z7	

(4.7)

1	 0F	 3F	 FrFg
=	 -	 - nrnz

where r and n are direction cosines defined by	 = cos(n,r) ; n = cos(nz).

Eq.(4.7) shows that there are only the derivatives of Fr F or F9 with respect to

r involved. If the C0 continuity of F,.,, F and F9 is ensured, at the common boundary

between two adjacent elements a and b the following relations

(Fr)a = (F,.)b ; (Fy2 = (
f)b ; (F9)" =

and	
(aF,.r(3F,i . (aF)4 (aF)b 	(aF0)"(aF)1'

a)	 a) '&)	 8t) 'a)	 )
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are exactly true. It means that the traction reciprocity is exactly obeyed, i.e.

(t,)b	 ;	 (t)b
	

(4.8)

Certainly the same argument as for plane problems is also suitable for explaining the

ability for this model to cope with the discontinuity at the inter-element boundary in

axisymmetric problems.

4.2 DISCRETIZATION OF DISPLACEMENT AND STRESS

FOR AXISYMMETRIC PROBLEMS

In the classical theory of elasticity, the components of a compatible strain can be

expressed by the displacements as

0Ur
err	 3r

=+zr	 0r 3z

3w 3ue =—+-rz	 3r	 i9z

e	 3w
(4.9)

U

r

in which, u are w are the radial and axial displacements respectively. Comparing with

eq. (4.5) of the components of stress, it is not difficult to find that both stress and strain

fields are expressed by the first order-derivatives of r or z, which means that only C0

continuous functions are required to approximate the components of strain or stress by

u, w or Fr, F and F0. Therefore the same discretization of displacement and stress

function as in plane problems, i.e. isoparametric formulation can then be directly

applied in axisymmetric problems

{
u(,T')	

m	
11 o11u1

W(,11)} 
= EN(11)[ 

ijlwJ

{

Fr( , ?7)1 m [1 0 01 1F1

Fz()J 

= E Ni(,n) lo 1 01 J Fl
F0(,)	 1=1	

Lo 0 1] IFOjJ

(4.10)

(4.11)

where u, w, Fr, F and F0 are approximate displacements and stress functions at point
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(j), while u, w, F, F1 and Fo are the corresponding nodal variables of the

element. For the convenience of FE formulation, the following matrix forms of stress

and strain tensors are introduced

e = {e,.,. e	 ezr e	 e90}T ; d = {d,.,. d dzr d d00}T

u{0	 '7rz 0zr	
a}T ; s = {s,7. S	 S S	 s00}T

(4.12)

where e and d are strain and deviatoric strain, while i and s are stress and deviatoric

stress. The nodal variables for axisymmetric problem are defined as

j3' = { u1 w}T ;	 j3 = {F F1 f0.}T 	 (4.13)

Substituting eq.(4.lO) and eq.(4.1l) into eq.(4.9) and making use of eq.(3.9) and

eq.(3.1O), a, e, s, d, mean stress m and volume strain em can be expressed in matrix

forms as

e=Bj3' ; d = BDj /3' ; em=EBm1/3'
	

(4.14)

where

BDI = B - .. TdBI

Bmi = [N + N1/r	 ]

B. = [N,r &z N:,z 0 NIrl 
T

L 0	 Vi,r 1Vi,r	 0]

and

rn	 m	 m

if E A 1 j3 ; s= E ADI I37 ; omEAmiI37
1=1	 i=1	 1=1

where

(4.15)

(4.16)

ADI = A 1 - TSA
(4.17)

Ami = [.(I'Tir+Nj/T)	 2N	 ±(Ni,r+NiIr)]
.j I,z	 3
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0	 0	 ,r +N/r 0 T

A 1 =	 0
	

0
	

Nj,

	

N/r 0	 0
	

0
	

Ni,r

Td and T5 are constant coefficient matrices defined by

T
10010

Td=
10010

T
10010

T= 10010

10010

4.3 BOUNDARY CONDITIONS

The displacement boundary conditions can be imposed by exactly the same method as

in eqs.(3.30) and (3.31) for plane elasticity except that v and v should be replaced by

w and w respectively. However to impose the traction boundary conditions more work

has to be done due to the obviously different expressions of traction t and ç. Consider

a segment ab at the boundary, as defined in section 3.3. If the length dL is small, the

stress functions Fr, F and F0 can be treated as linear functions of r. By means of

linear Lagrange interpolation the following approximate relations exist

t3Fr	 1	 aF	
_•_(FZbFZa)	 (4.18)____(FrbFra)	

3TdL

and

1 T	
+ (±+_L ) F bF ( i-) = (___) Fra

	2 dL
dL1F (r)	 ( 1 __)F + (!-- 7 ) Fzb 	 ;	 Tc[__	 (4.19)

2 dL za	 2	 7
1 r	 + (1+ T)FF0(r) = (__) F0a 	

2 dL

The derivatives of stress functions are obviously constants. Substituting eqs.(4. 18) and

(4.19) into eq.(4.7) and omitting the mathematical details for clarity, we finally have

tfl = Vj	 tT = V7I31,
	 (4.20)

where
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2
a2flr

a2nrnz I

v, =

V = _L1(1-a iflz)nr•	 dLl.

= 
{i3 j35}T

a 1 fl	 (1	 -flz

flz	 a	 -(1	 21)h1r

dL r	 dL r
=--- ; a,+_2r r	 ' 2r r

(3.S is the nodal stress function variables defined in eq.(4. 13). The value of a prescribed

traction and ç along the small segment ab of the boundary line 1' can be imposed

again by using a quadratic penalty function

Us	
i{}	

Itn}]T	
[J	 Itnhl

=	

- - itt	 LItJ - itjJ
(4.21)

where pS is defined exactly the same as that for plane elasticity. Writing eq.(4.21) in

a matrix form by using t and ç in eq. (4.20), it follows the first derivative of ll with

respect to (3aS and 3b5

where

0ll =
kb3b + FS

S

013ab

' —n	 7f)drI (tf	 +kb = Jr TdI' ; FS 
= Jr n s

(4.22)

and

T' = 2pVV

T = 2pVV7

n	 nT= 2pV
r	 r T= 2p5V7

4.4 GLOBAL SYSTEM EQUATIONS

FOR AXISYMMETRIC PROBLEMS

The global functional ll in eq.(3.36) is true for any elasticity problems on condition

that the displacement field is kinematically admissible and the stress field is statically

admissible regardless of geometry dimensions. When applied to particular problems,

61



Chapter Four	 Mixed Model for Axi.symmetric Elasticity

it is necessary to substitute the suitable expressions of admissible displacement, strain

and stress, and their correspondent boundary conditions. Therefore eq.(3.39) for the

first order-derivative of 11e1as' eq.(3.38) for the first derivative of [I are applicable to

axisymmetric cases. However all the matrices in the expression of	 in eq (3 39)

should use the corresponding ones defined in eqs.(4.14) and (4.16). The 	 in

eq.(3.31) with regard to displacement boundary is also true with the change of v to w1.

in eq.(3.39) should be written as

[Ni	 1i,rtj,z1
= Jç1e2Pc 

M,r1' ,z 	r,r] 
d

(4.23)

It is important to note that the general nodal variable j3 is changed from 4 components

to 5 components, i.e.

j31

I3=	 ={u1
I3

w F F F01 } T (4.24)

which means that the size of the sub-matrix	 becomes 5 x5 instead of 4 x4. The

element system equation is identical to the eqs.(3.41) and (3.42) for plane problems.

The expansion of kd and ks is needed to perform the operations in matrix form.

The standard assembling procedure is used to form the global system equations, i.e. the

global stiffness matrix and the global load vector element by element. Because the

global stiffness matrix is again symmetric positive-definite, the solution is readily

obtained by a classical variable bandwidth algorithm. In the next section, some

numerical examples will be presented in order to demonstrate the quality of this model.

4.5 ELASTIC SOLUTIONS IN AXISYMMETRIC PROBLEMS

Some axisymmetric problems in linear elasticity are solved below by the mixed method

in this section to illustrate how this model can cope with these kinds of problems.

These include: bending of a circular plate and spherical container under internal

uniform pressure. Then a more complex problem is to be solved by this model which

is the mechanical modelling of the early stages of the spot-welding process.
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4.5.1 Bending of a Circular Plate

Fig. 4.1 FE models for bending of a circular plate under uniform pressure.

This example is to investigate the capability of this model to cope the problems with

severe shear deformation, as we did in section 3.6.4 in plane stress condition. A

similar FE model to fig.3.20 is used to analyse a circular plate with radius R, thickness

2T under a uniform transverse pressure p at the upper boundary, as shown in fig.4. 1.

The analytical results can be found in ref. [72].

Only one FE mesh with 8 x 10 of 8-noded axisymmetric elements is used in the

analysis. Two sets of different values of pare used again, i.e. p = 0, 1.0, 5.0, 10.0

for 2x2 integration and p = 0, 1.0, 10.0, 50.0 for 3x3 integration.

The results of Cr,7 at the surface along r-axis are presented in fig.4.2 for 2 x2

integration and fig.4.3 for 3x3. It is seen that with 2x2, the mixed model gives very

good values for a,.,. when p ^ 5.0. However only when p = 5.0 does it yield a good

result when 3 x3 integration is used. In the other words the results from mixed model

with 3 x3 are conditional: you cannot use small, nor use large ' to get a good results.

In the case of cr09 , the results of mixed model with 3 x3 integration in fig.4.5 are

similar to fig.4.3 for a,,., i.e. p = 5.0 gives best results. However those with 2X2

one are not quite so good compared with the analytical results, as seen in fig.4.4.

Obviously results obtained with p = 5.0 and ' = 10.0 do give better than those with

= 0.0 or = 1.0, but they yield fairly large deviation along r-axis, especially near

the clamped end.

For the deflection of the central line of the disc, a larger penalty number is

generally required. In fig.4.6 and fig.4.7, they show that a good result can only be
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obtained when ' = 50.0 is employed for both 2 x2 and 3 x3 integrations.

For all above cases, the displacement model gives constantly better results than the

mixed model. Does this mean that this mixed model is not suitable for the axi-

symmetric problem? Not necessarily. Since this example is an extreme case which

deliberately tests this approaches, it behaves reasonably well. In the next example, a

spherical container under internal uniform pressure will be analysed and better results

from the mixed model are obtained.
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4.5.2 Spherical Container under Internal Uniform Pressure

A sphere with internal radius a and external radius b=2a in which there is an internal

pressure p are analysed in this section. It is straightforward to solve this problem by

applying the same finite element mesh in fig.3.3 in section 3.6.1 for a hollow cylinder

case. Various tests are carried out to note the effects on stress of different integration

schemes, element sizes and Poisson's ratio. The results are shown in fig.4.8 to

fig.4. 13.

For the 50 element mesh, fig.4.8 and fig.4.9 show the errors of t. and 090 along

r-axis under 2 x2 and 3 x3 integrations respectively. Unlike the expansion of a

cylinder where similar figures between displacement and mixed models are found with

2 x2 integration for various Poisson's ratios v, in this example mixed model shows

much better results than those from the displacement model when i' ^ 0.4, even with

2 x2 integration. For 3 x3 cases, the mixed model naturally shows its consistent merits

over the displacement one. In fig.4.9 it is noted that cr from the mixed model is

poorer that O77

Fig.4. 10 and fig.4. 11 give the convergence of both models against the number of

elements in the r-axis with either integration scheme. Four FE meshes are used to

obtain these curves and the average error defined in eq.(3.43) is used to measure the

error in each solution. Again the mixed one shows consistency under different Poisson

i' and when a fine mesh is used the error approaches zero. This does not happen in the

results from the displacement model where the convergence varies with v and for some

cases, i.e. in fig.4. 10, it converges very slowly. For a specific mesh, the mixed model

always yields less error than the displacement one.

The consistencies of the average error and the value of the functional '1elas of the

mixed model are presented in fig.4. 12 for 2 x2 integration and fig.4. 13 for 3 x3 one.

The former shows some relations between them but it is not very good since the error

in 2 x2 case is so little that the calculations of both the average error and '1elas can be

affected by the computer precision. The good results are found in fig.4. 13 for 3 x3

integration. Therefore an error estimator also exists in the mixed model for

axisymmetric problem which is the value of the functional lTleias.
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4.5.3 Electrode Squeezing Aluminium Sheets

In the last two examples, we dedicated ourselves to some classical elementary problems,

in order to illustrate the validity of this model to some basic axisymmetric problems.

A more complicated problem will be dealt with in this section, which is a pair of

aluminium sheets squeezed by a pair of electrodes (fig.4. 14a).

(b)

2RL	
-i

(a)

Fig.4. 14	 The layout of a pair of electrodes and aluminium sheets (a) and the FE
model for the analysis (b).

Because of the symmetry only one quarter of the whole structure is modelled, and there

is no movement of the structure at r=O at r direction, nor at z=O at z direction. The

load is represented by a uniform pressure at a section of electrode. The FE mesh and

constraints are shown in fig.4. 14b. There are 30 elements used to model the electrode

and another 56 ones used to model the aluminium sheet. In the first instance the 4-

noded isoparametric element is used in the FE model.

The contact condition between the electrode and aluminium sheet is assumed as no-
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slip, i.e. the friction at the surface is large enough to prevent any relative movement

at the contact surface. On the other hand no friction exists at the faying surface since

there is no relative movement at a symmetric surface.

The material properties for the copper electrode are Young's modulus E= 12OGPa

and Poisson's ratio v—O.25. For the aluminium sheet they are Eai=75GPa and

al=°33 The thickness of the aluminium sheet is T=2mm, the radius concerned is

Rs 10mm. The radius of the water cooling chamber is Rw=2.Omm and the radius of

the electrode itself is RES.O.

When the load is applied, the separation of the two aluminium sheets is also found,

as we can anticipate. This causes the size of contact area at both the electrode surface

and the faying surface vary with loading, which results in the change of electric

resistance.

Deformations of both the aluminium sheet and the electrode predicted by the mixed

model and the displacement one with 4-noded elements are shown as in fig.4. 15 and

fig.4. 16 respectively. Almost identical results can be found though the mixed one gives

slightly smaller separation in the outer range of the aluminium sheet than the

displacement method. This can be cured by using a larger penalty number PC.

The results of the pressure and shear distributions at the electrode surface and the

faying surface are shown in fig.4. 17. Both mixed model and displacement model give

similar results in most areas. However the gap is wider near the edge of the electrode.

Generally speaking, the former gives smooth c, but bad a, while the latter gives

smooth a but jerky o. Therefore it is natural to find that the mixed model obviously

gives worse results of normal stress (cr) than the displacement model at the faying

surface, as in fig.4.18.

Now we use 8-node isoparametric element to model this problem with the same

mesh. At the electrode surface (fig.4. 19), the shear stress cr,. virtually coincide each

other in the most area except in the last element at the edge. The displacement model

tends to give a rapidly increasing shear stress in that region, while the mixed model

gives a near zero shear stress. This situation needs to be further studied.

The curves for normal stress are also close to each other. The most significant

results come from normal stress cr at the faying surface in fig.4.20. The curves for

two methods are consistently close through the whole range.
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A more complicated model of the spot welding will be dealt with in chapter seven

where elasto-plasticity is included.

4.5.4 Comments on the Mixed Model for Axisymmetric Elasticity

Three axisymmetric problems, axial expansion, transverse bending and later a complex

load modes i.e. squeeze of aluminium sheets by electrodes, have just been discussed to

demonstrate the performance of three C° stress functions. Except for the bending of

a disc (section 4.5.2) where results depend on the choice of penalty number PC' in the

rest two examples, the mixed model gives very good stress and displacement results on

various mesh sizes and integration schemes. As in plane problems, the penalty number

is a constant depending merely on the integration scheme, i.e. p=S.O for 2 x2 and

p=lO.O for 3x3.

For near incompressible materials, the mixed model gives much better results over

the displacement model under both 2 x2 and 3 x3 integrations, rather than only under

3 x3 one in plane problems (section 4.5.1).

When 4-noded elements are used in the solution, mixed model tends to approximate

the	 as constant function within an element. Thus the results turn to be dis-

continuous. A similar problem exists in the results of from the displacement model

by 4-noded elements. Therefore if an accurate cr is needed 8-noded elements must be

employed in the mixed model.

A similar error estimator exists in the mixed model which is value of functional

11ela.r The larger it is the bigger error a solution has; the smaller it the less error a

solution has. The zero corresponds to the exact solution.
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Fig.4. 15	 Deformation of the FE mesh of the electrode and the aluminium
sheet in spot welding, obtained by mixed models.

Fig.4. 16	 Deformation of the FE mesh of the electrode and the aluminium
sheet in spot welding, obtained by displacement models.
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Fig.4. 17	 and a on the electrode surface. The FE mesh is made of 86 4-noded
isoparametric elements. (a) 2x2 integration; (b) 3 x3 integration.
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Fig.4.18	 on the faying surface. The FE mesh is made of 86 4-noded isoparametric
elements. (a) 2x2 integration; (b) 3x3 integration.
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CHAPTER 5

MIXED MODEL FOR RIGID-PERFECT-PLASTICITY

During structural collapse or in metal forming plastic strains are very much larger than

elastic strains. Under these circumstances a useful approximation to the deformation

field can be found by assuming that the material is either rigid or flowing plastically at

a constant yield stress. This material model is commonly known as rigid-perfectly-

plastic.

In this chapter, a mixed extremum principle is proposed and used to construct a

mixed FE formulation for rigid-perfect-plasticity. This formulation forms a base on

which the FE formulation for elasto-plasticity will be constructed in chapter 6.

5.1 MIXED EXTREMUM PRINCIPLE FOR

RIGID-PERFECT-PLASTICITY

A problem in the theory of rigid-perfect-plasticity should be defined as follows. At a

given time, a body [, composed of rigid-perfect-plastic material, is assumed to be in

a state of quasi-static equilibrium. Now, the application of an external force F,

1=1,2,3 is prescribed on a boundary T, while a surface velocity i, 1=1,2,3 is

prescribed on a boundary r. Here, i4 denotes a component of the velocity with respect

to the rectangular Cartesian coordinates. The stress and velocities à induced in the

body are unknown fields which need to be found. Thus the governing equations for the

problem are expressed as

• Equation of equilibrium	 = 0

	
(5.1)

• Strain rate - velociiy relations	 =	 + uj,i
	 (5.2)

• Condition of incompressibilily 	 eu = 0
	

(5.3)
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• Boundary conditions
	 a1j fl =	 On i'3	

(5.4)

The basis of rigid-plasticity is that the stresses must lie on the yield surface for plastic

flow to take place, otherwise the material is rigid. We must also consider strain

increments instead of strains. As plasticity considered hence is rate dependent, we can

use the dot notation to indicate an increment. The simplest constitutive relation of this

type has two parts:

von Mises yield condition

= 2k2
	

(5.5)

where s13 is the component of the deviatoric stress defined in eq.(3. 10) and k is a

material constant with regard to the yield stress for rigid-perfect-plasticity;

• Levy-Mises flow rule

Ds..	 2d .. = —4 where D = /2k d..d..
2k2

where ii is the energy dissipation rate. This represents incompressible plastic flow and

is appropriate for metal piasticity191.

It is seen that the above problem is defined in a way similar to a linear elasticity

theory, except for the stress-strain relations and introduction of velocity and strain rate.

It is of note that no stress rates appear this theory. Once the problem in incremental

theory has been thus formulated, problems of finite plastic deformation can be obtained

by integrating the relations along the prescribed loading path.

As we did in plane elasticity, the kinematic condition eq.(5.2) and static condition

eq.(5.1) are fully satisfied by the admissible displacement eq.(3.18) and stress

eq.(3.24). The boundary conditions in eq.(5.4) will be handled in the same manner as

before by two penalty function 11d in eq.(3.30) and ll eq.(3.34). In order to impose

the incom-pressibility condition eq.(5.3), the yield condition eq.(5.5) and the Levy-

Mises equation eq.(5.6), the following functional is constructed

(5.6)
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'1rgd =	 -si1+p,b2+p()2	 (5.7)

where em is defined in the same way as em in eq.(3.10), but in a form of strain rate

instead of strain, and p is a positive penalty number. is a function defined as

= %JSySly - 
1	 (5.8)

It is straightforward to see that i,b is the criterion of plastic yield. If it is equal to zero

then plastic flow can occur; otherwise the material is rigid. There results a mixed

extremum principle which may be stated as follows:

Among all the admissible strains and stresses which satisfy the compatibility

condition and equilibrium conditions, as well as the kinematic and static boundary

conditions, the true solution renders the Jltnctional 111rgd an absolute minimum.

This can be justified as follows. Let the exact deviatoric stress, strain rate and

velocity of the exact solution be denoted by and ü, and the deviatoric stress,

strain rate and velocity of an admissible solution by 5j', 
4_* 

and à. Then

; ^/s; ; /a;	 (5.9)

by Schwarz's inequality, and

/7j.	 (5.10)

since s and are proportional to each other. The admissible solution by s,	 also

yields

1212	 1[I * *	

I	
-1I	

0
si_is13 

_1	

^2=
(5.11){k

and
*2

em ^e0
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Combining eq.(5.9), eq.(5.lO) and eq.(5.11), we obtain

o	
(5.12)

^	 Ii;a; _s1;a1;+*2+e2

Therefore the functional 11rgd has an extremum of zero.

At the extremity, there is no doubt that eq.(5. 10) is satisfied. If we pre-multiply

both sides of eq.(5.10) by s1,

(ss,j)d = ( i/s js	 i&si

or	
=	 JSUSd

SYSI)

equation (5.12) is immediately transformed to the Levy-Mises flow rule eq.(5.6) by the

fact that at the extremity must obey the von Mises yield condition eq.(5.5).

Origin of this functional is known paper by Markovt661.

5.2 FE FORMULATION FOR RIGID-PERFECT-PLASTICITY

Approximations of velocity i and stress are obviously independent of constitutive

equations. Therefore eqs.(3. 18), (3.19), (3.24) and (3.25) for plane elasticity and

eqs.(4. 14), (4.15), (4.16) and (4.17) for axisymmetric elasticity are directly applicable

to the formulation for rigid plasticity. However the stiffness matrix, being closely

related to the material properties, is completely different.

5.2.1 Calculation of Stiffness Matrix

The fact that the functional l:Irgd is not a quadratic function of the stress and strain

requires that the extremum of it be found by solving a non-linear set of equations. For

various nonlinear solution procedure, the Hessian matrix, which is the matrix of second-

order differential of 11rgd' is essential to the iteration procedure. In linear elasticity, the

Hessian matrix is identical to the elastic stiffness matrix, while in elasto-plasticity, it

is elasto-plastic stiffness matrix.

There are two ways to get the second-order differential of a function. The
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differentials

= L;(S+ , a,,) -L(s-,1,e,)
L(s,i1,é,,)

2c

L j(S , 1+ j,ëir) _L(S,IJ_I.j4p)
L(s,d,é,)=	

2c

L j(S j , hi1 ,èm) -L(s-,a,e,,)
L(s,i1,e,,) =
	 2c

(5.14)

L-'(s,i1,ë,) L(s,d+A,ë,) -L(s,J-,e,)

sd	 2c

It is straightforward to get the following differential with respect to m by simple

observation

311rgd = -
2p	

1rgd =
	

arId =
	 (5.15)

'	 adiaem

'11rgd is a continuous function, the third and fourth equations in eq.(5.14) must yield

identical results. In appendix A, results of the differential of 11rgd with the numerical

approach are presented.

Now let us turn our attention to the analytical method. If we look up the functional

'1rgd in eq.(5.7) carefully it is easy to see that the difficulty of the differentials comes

from the terms of the form

f(x) = 4JX1X1	 i=1,5
	 (5.16)

From eq.(5. 16), the functional rgd becomes

2	 .2
"rgd = f(a)f(s)-STi1+p +pem

where	 =

Let,

4(x) =	 and J(x) 
= d2f(x)

dx	 dx4rj

then differentiating eq.(5. 17) with respect to I, s and ë,7 twice gives

(5.17)
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and

L = f()J '(s) — +	
,

L = f(s)J'(1) -s+2pl,b

Lém = 2Pëm

L = f(1)f(s) +2p( _d2,b
______ 

+
as1 as	 s1 9s

LL 
= f(s)J,'(1) +2p(,,&_

82'

ad&i &i 34,

Li'S 
= -b11 +/(a)/(s) + 2p (	 + . !

313s &i 3s1

(5.18)

together with the differentials in eq.(5. 15). In eq.(5. 18), the derivatives of f(x) and t'

with respect to x and differentials of & with respect to s have to be deduced

f(x)	
'	 Jf(x) =	

— xixj	
(5.19)

f(x) f3(x)

and

____ 
= 321,

M &t 34, &i 8s

=	 ;	
0)b 

= _LJ(s)
3S1	 /k	 3S3S1	 k

Substituting them into eq.(5. 18), it follows the differentials in terms of J(x):

L = f(1)J{(s) + 2p {_- [fs)t(s) +1'(s)4(s)] — __'__f!(s)}
2k-	 /2k

L = f(s)JJ(1)	
(5.20)

L' = -ô1^J(I)J'(s)

A comparison of the accuracies and the computing time of these two approaches is

presented in Appendix A when applied to a practical example. The numerical method

shows numerical instability and is more time-consuming. It takes about 30 times more

computing time than the analytical one to differentiate the 11rgd Together with the

higher accuracy and efficiency, the analytical method obviously proves to be the better

one for the functional "rgd

75



Chapter Five	 Mixed Model for Rigid-Perfect-Plasticity

5.2.2 Global System Equation

We have given a functional rgd in section 5.1 (in order to impose the Levy-Mises flow

nile, the von Mises yield condition and the incompressibility condition), and its

differentials with respect to the deviatoric strain rate deviatoric stress s and volume

strain rate Em. A complete problem in rigid plasticity also includes the satisfaction of

some boundary conditions. Furthermore, since the same admissible stress is used as

in elasticity, the constraints for moment equilibrium equation should again be imposed.

Therefore a functional llfl is constructed similar to that use to solve elastic problems

= "rgd + 11d + ll + ll	 (5.21)

in which, 11d' 11 and ll are penalty terms described in eqs.(3.30), (3.34) and (3.37)

for imposing displacement boundary, traction boundary and moment equilibrium

equation respectively. The admissible stress field and strain rate field are introduced

in the same manner as those in elasticity in eqs.(3.24) and (3.18) by nodal variables ,3d

and 13(. The extremum of llfl can be found by solving the following equation

311 = &I.g .J +	 +	
+	 = o	 (5.22)

313	 313	 313	 (3/3

where /3 is the general variable defined in eq.(3.39). The resulting equations are

obviously nonlinear.

For various iterative procedures for solving nonlinear problems, linearizing the

original nonlinear equation by an incremental form is usually required. This linearized

equation can then be solved step by step. Say 13 (1) is a known solution at time i and
1) = /3(1) + 

A13' is the unknown variable at time i +1. With Taylor's expansion,

11(i+1)	 ll + 13(i) 0ll	 1 (j3(i))2 3211(1)
	

(5.23)+-
2	 3j3313

where (0 = 111(/3(i)) Note that the first and the second differential of llfl® at time

i are constants and substitute the approximate expression of ll fl in eq.(5.23) into

eq.(5.22). It follows the linearized equation at the it/i step
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81rgd8"d
0/3	 013

32Hd + a2ri( +

aj3a3 8130(3

2(l) 3211(i)
S +
	

C

8/38/3 8(30/3

Oil® + 3il	 (5.24)

013	 8/31

The second to fourth terms in the first bracket of eq.(5.24) are obviously the constant

matrices kd , ks and kc defined in eqs.(3.31), (3.35) and (3.38) respectively. The

corresponding terms in the second bracket are residual terms 	 APS and 1AFc

= Fd (i+ 1) - Fd® ;	 FS	
1 s(i+ 1) - ps(1) ;
	 = o

where Fd and PS were defined in eq.(3.31) and eq.(3.35) respectively. If the first term

in the first bracket and the second bracket are designated as gd and F''

respectively, they can be obtained by making use of the differentials of	 in

eq.(5.15) and eq.(5.20)

k'= [L' Os1 +LL 1 !+ [L
pq	

[ 
Ss•ä--	 ds (9/3q ] 8[3	

[ 
ds 

013q	
dd 0[3q] 13	 1313	

(5.25)

F;dJ = _+LL3i	 13d.

p

From eq.(3. 17) and eq.(3.21), the following relations exist.

1 T'
las.	 10 •
	 l3éi}...rP(.

I pJ	 Dpi	 i	 t°J

LT

13e 11 _Jmp

lf to
rgd and	 rgd in eq. (5.25) can then be written in matrix forms as

B TLq +2PB pBmq BLADq l 	 JBpL + 2penjB T 1(5.26)
q

pq [

	
ApL;q	 APLADP] ; 

F= [

where kpqrdI is a 4 x4 sub-matrix of rgd and LFTd is a 4 x 1 sub-matrix of rgd in

the case of plane problems. Therefore the global system equation for rigid plasticity

at arbitrary time i can be written in a more familiar form as

k/3® +	 = 0
	 (5.27)

where k11 is the rigid-perfect-plasticity stiffness matrix, while F11 is the residual force

vector
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k11=kr+kd+ks+kt	 (5.28)
=	 rgd +	 + FS

5.3 MINIMIZATION - LINE - SEARCH METHOD

In the last section, it is shown how a minimization of the functional 1111 can be

equivalent to solving a nonlinear equation (5.27) where only the differentials of the

functional is presented. Then an incremental load or displacement control along with

full or modified Newton-Raphson iterations 1221 are normally required to solve it.

Although these techniques still provide the basis for most nonlinear finite element

programs, additional sophistication can be achieved to produce a more effective, more

robust solution algorithm by making use of the functional itself. The line-search

method is one of these methods.

The line-search method is an important numerical technique for most unconstrained

optimisation and can be used with a wide range of iterative solution procedures'°1.

Using such a technique, one would obtain a direction from an iteration procedure such

as the full Newton-Raphson iteration in eq.(5.27), i.e.

= -(kAF	 (5.29)

where k11 ' is the stiffness matrix at the end of the previous iteration. Then general

variables j3(l) at time i+ 1 would be updated according to

,(i+1) = 13 (i) ^ 113(i)	 (5.30)

where j3(i) is the fixed general variable at the end of the previous iteration and 3@ the

fixed direction obtained from eq.(5.29). For the Newton-Raphson procedures, the

scalas in eq.(5.3O) is set to unity. With the introduction of line-searches, the scalar

v becomes the iterative "step length" which is the only variable, and is chosen to give

the lowest value of 11,gd• The multi-dimensional minimization has therefore been

converted to a one-dimensional optimisation problem with regard to scalar .

In this thesis, Brent's method, one of many line-search methods, is used to find

the line-minimum of the functional llfl along the direction obtained by solving the
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eq.(5.27) by Newton-Raphson method. A brief description of such a method will be

given in Appendix B. A flow-chart of the solution of rigid-plasticity by the mixed

model is presented in fig.5.1. Here only one load step is discussed.

5.4 EXPANSION OF A HOLLOW CYLTh1DER IN

RIGID-PERFECT-PLASTICITY

In this chapter, the expansion of a hollow cylinder under a given displacement loading

will be analysed. The load is assumed large enough such that the cylinder is in rigid-

perfect-plasticity everywhere, as a rigid region cannot be treated in this method. The

same FE model with 24 8-noded elements as shown in fig.3.3 in section 3.6.1 are used

in this study.

The analytical solution is obtained from ref.[42] under Tresca's yield criterion.

However the results by this mixed model is based on the von Mises. In order to

compare these results with each other, a translation of the analytical results under the

Tresca's criterion to those under the von Mises's criterion is required.

In plane strain condition, a simple relation between those two criterion exists: if

results under the Tresca' s criterion are obtained at yield stress cr then the corresponding

results under the von Mises's criterion can be obtained by changing the yield stress as

More details about this can be found in Appendix C.

The radial stress a,7 and the hoop stress a are shown in fig.5.2. When compared

with the analytical results, it can be seen that the mixed model gives excellent results

for both stress components.

Fig.5.3 presents the convergence of the iteration process. The average error and

average 11rgd are calculated as eq.(3.43) and eq.(3.45). It is seen that the convergency

of solution is very good. After one iteration, the error falls within 0.1 %. On the

other hand the value of 11rgd shows a similar convergent pattern as the average error.

It again illustrates a natural error estimator in the mixed model which is the value of

the functional "rgd

Only one example is discussed here as more examples will be presented in the next

chapter when elasto-plasticity is dealt with by a mixed model based on this model. This

allows the "rigid" region to be introduced.
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Fig.5.1	 Flow-chart of the solution procedure for rigid-plasticity by the mixed
model.
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CHAPTER 6

MIXED MODEL FOR ELASTO-PLASTICITY

The three previous chapters contain discussions of the extreme cases of elasticity and

rigid-perfectly-plasticity. In this chapter, the problem of elasto-plasticity will be

addressed. For the last three decades or so, elasto-plastic FE method has successfully

been applied to solve many practical problems, by making use of elasto-plastic model

of materials. There are plenty of excellent techniques concerning with an elasto-plastic

FE method in literature. However, the basic routine of FE method to solve elasto-

plasticity problems remains unchanged. Most of the methods normally try to establish

elasto-plastic FE model by modifying the existing elastic FE model.

In these formulations elasto-plasticity is simulated by perturbing the elastic solution

by plastic strains. Instead, in this chapter, a rigid-plastic solution will be perturbed by

elastic strains. This is particular straightforward in a mixed method as the elastic

strains can immediately be calculated from the current stresses. In the plastic region,

the yield criterion is approximated as well as the flow rule for the plastic strains, by

minimizing the functional given in the last chapter. In the region of no plastic flow the

plastic strain is made zero by minimizing the sum of the invariants 	 and (e)2

The details of this model will be given first followed by examples which can be

accompanied with analytical solutions. It must be noted that a finite deformation

solution would require the Jouman stress rate. For the sake of simplicity this

sophistication has been ignored. So the present formulation is only applicable to small

deformation.

6.1 MATERIALS MODEL FOR ELASTO-PLASTICITY

It is well established that metals obey the von-Mises yield criterion,

.sjj sU_ k2(K) = 0	 (6.3)

where k is a material property reflecting yield stress and K is hardening parameter

which depends on the total strain.	 is the deviatoric stress defined in eq.(3.lO).
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Materials obeying such a yield condition are called von-Mises materials in this thesis,

and if the associated flow rule is used to establish the constitutive relation of such

materials, then

• e	 '••	 J,si.
d = d.. +d?' =	 + _2 whereii	 '	 2G	 2k2

-	 - 0m
m

D =
(6.4)

where	 is the elastic part of the full deviatoric strain rate and ti is the plastic part

of the full deviatoric strain rate. The plastic part of the full elasto-plastic deviatoric

strain rate i obeys the same equation as the Levy-Mises equation (5.6) governing the

rigid-plasticity. The elastic part of the è' obviously obeys the Hooke's law eq.(3.9)

in elasticity but with the stresses replaced by stress rates.

The assumption of linear isotropic hardening leads to the parameter k in eq.(6. 1)

k =k0
	 (6.3)

where k0 and k are constants. It remains to decide how to impose this constitutive

relation in the model. In the conventional method, eq.(6.2) is used to express e 17 as

a piece-wise linear relation, such as by introducing an elasto-plastic modulus matrix

( iji 
= [DePy.l{&11}
	

(6.4)

and is then solved incrementally as in elasticity, with modified stiffness and load terms

to account for the elasto-plasticity. Because there is no explicit involvement of the yield

condition in the solution process, the stress results have to be corrected to satisfy the

yield condition eq.(6.l).

In this chapter, since the plastic part of the full elasto-plastic deviatoric strain rate

obeys the same equation as in rigid-plasticity, the mixed extremum principle for rigid

plasticity introduced in chapter 5 can be directly applied to solve the elasto-plastic

problem by introducing the full elasto-plastic strain rate e7' into the functional
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which will be discussed in the next section.

6.2 MIXED-EXTREMUM PRINCIPLE FOR ELASTO-PLASTICITY

If we replace d and Em in "rgd in eq.(5.7) by d and e, then the functional is

immediately suitable for expressing the plastic part of elasto-plasticity

'1ep-p 
= J 

s/ss j /l4 -si +pi,1'2 +p (e,)2 dV	 (6.6)

where	 and E are the plastic deviatoric strain rate and the plastic volumetric strain

rate respectively, defined in eq.(6.5). By means of the Hooke's law eq.(3.9), the

elastic strain rate in eq.(6.5) can be replaced by the corresponding stress rate, and by

rewriting in a deviatoric form, eq.(6.5) turns into

= ieP_ SJ	
èp =I.,	 if	 '	 m	 m	 K

where Tm and	 are mean stress rate and deviatoric stress rate respectively. There

is only one problem arising from eq.(6.6). This is when,

dP=deP__ 0Li	 ii	 2G
or

which corresponds to the elastic area. In such an area the functional pep-p is no longer

suitable, since it comes from the functional for rigid plasticity which is only applicable

in plastic area.

It is quite natural to think that we may turn to the functional 11elas in eq.(3. 12) for

elasticity to solve this problem. Putting d",	 and &m into two residual

functions R1 and R2 in eq.(3. 11), the functional for the Hooke's law in eq.(3. 12) yields

f
G(i'"-±...)2 + (E eP _1& )2 dV^0

0	 U	 2G'./	2 m K"1

However, we have already used equation (6.7) so this reduces to

(6.7)

0 (6.8)
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11ep-e 
= J 

Ga'i + (e)2 dV	 (6.9)

Before we build a complete elasto-plastic model which can switch between an elastic

area and an elasto-plastic area automatically, a criterion to indicate the elastic area and

the plastic area needs to be proposed. Here we choose in eq.(6.6) as this criterion,

which is equivalent to the yield criterion in eq.(6.1). This is because that is au

intrinsic term of 11epp and thus no extra work is needed to calculate it at any location

in 11. The new mixed-extremum principle is then presented as

'1ep 

= {

where

-sj	 +pi/i2+p(ë)2

I Gi"d" + IC(éP)2 dv'3') 2 m

when 1'^Q61O)

when ('<O

_____ 
-1

'3	 U	 2G'-'

	

.ep	 1.
and	 è, = em

There are four variables within 11ep the stress rate &,, the stress	 the elasto-plastic

strain rate e,7 and the elasto-plastic strain e. By integrating ir and ë, along the

loading path, a, and e can be uniquely determined. Furthermore, elasto-plastic strain

rate e7' can be expressed as a linear function of velocity ü, as shown in eq.(5.4).

In conclusion, 11ep is only a functional of stress rate	 and velocity u,. Therefore

extremum principle falls into a two-field mixed extremum principle, which can be stated

as follows:

Among all the admissible strains and stresses which satisfy the compatibility

condition and equilibrium conditions, as well as the kinematic and static boundary

conditions, the true solution renders the functional 11ep an absolute minimum.

By making use of the displacement-strain rate relation eq.(5.4) and the constrained

first-order stress rate functions E and
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=

•	 aty
ci

•	 3Fx

•	 aEx
0• =-''	 3x

(6.11)

along with a constraint 	 =	 which is a rate form of eq.(3.3), the kinematic

conditions and static conditions are implied, as described in previous chapters. Two

kinds of boundary conditions, displacement and traction boundary conditions, are again

imposed in the same way as we did before by introducing the penalty functions 
d in

eq.(3.30) and [I in eq.(3.34). Finally, the general functional for elasto-plasticity is

= "ep +	 + ll + ll	 (6.12)

where H is the penalty term for imposing the constraint of stress rate functions. The

rate form of eq.(3.37) should be used at this case.

6.3 GLOBAL SYSTEM EQUATIONS

In chapter 3 and chapter 4 for linear elastic problems, system variables were only total

stress and displacement. While in chapter 5 for rigid-plasticity, we introduced a rate

type variables, i.e. velocity ü 1 in place of displacement u1 . No stress rate is employed

since no unloading is allowed, thus the solution is independent of the loading history.

However in elasto-plasticity, all variables should be in a rate form since the

solution strongly depends on the load history. Therefore the system variables in this

chapter should be taken as velocity, strain rate and stress rate.

In the meantime, the total displacement, strain and stress also remain in the system

equations. For instance, total plastic strain will be used to calculate the hardening of

yield, while total stress is necessary to evaluate the effective stress. But they are not

essential variables and can be obtained by integrating rate variables along load path.

For the convenience of reference, in the next section we will reintroduce the

admissible velocity, strain rate and stress rate in terms of nodal rate variable
•d
j3 and f3.
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6.3.1 Stress Function Rate and Velocity in FE Implementation

In section 6.2, tensor notation is used to establish the mixed-extremum principle. For

the convenience of FE formulation, we will employ matrix notation in the following

sections. Several basic vectors are defined as follows:

plastic strain rate ê with component e"

= 1è(xr xy yx yy zzJ

total deviatoric stress s with component s1

S = (S Sxy Syx Syy s4T

and deviatoric stress rate	 with component	 ,

S = ( rxyyxyy zzj

total elasto-plastic deviatoric strain	 with component df"

d ep = Id ep d ep d ep d ep deptT
xr xy yx yy ZZJ

and elasto-plastic deviatoric strain rate d ep with component d''.

d ep = Jdep 11ep a ep	 aeptT
L xx xy yx yy zzJ

The discretization of the velocity for plane problem is similar to the one of displacement

in eq.(3.17)

	

Ii 011u1)	 (6.13)=	 N1(,ii)	
i1li;i1

where ü(E,n) and i'(,) are approximate velocities in x and y directions respectively.

ü and i' are the corresponding nodal variables of an element. N is the shape

function of node i in the element, m is the number of nodes per element, as defined in

section 3.2. Thus the elasto-plastic deviatoric and the volumetric strain rate for plane

problems are expressed by
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m	 rn
d ep 

= E BD1 I	 ; em = E Bmi I'

	
(6.14)

i-i	 i-i

in which matrices B and Bmi are defined as same as in eq.(3. 19) for plane elasticity.

In case of axisymmetric problem, they should be those defined eq.(4. 15). 	 is nodal

velocity variables. The total elasto-plastic strain can only be calculated by integrating

the strain rate.

Because only C° continuity of stress function rate is required, the approximate

stress function rates E and	 are also presented in terms of isoparametric

formulation as

Fx()	
m	 Ii o11E1

=	
1jlEyJ

(6.15)

where E5(,) and E(,i) are two approximate stress rate functions. E and	 are

nodal variables of the element. The components of the deviatoric stress, deviatoric

stress rate and mean stress rate can then be expressed for plane problems as

s = E ADI i37 ;	 =	 A1 i7 ; Urn =	
A1	 (6.16)

i-i	 i-i	 i-i

in which constant matrices ADI and Amj are defined in eq.(3.25) for plane elasticity.

In case of axisymmetric problem, they should be those defined in eq.(4. 17). j7 is

nodal stress function rate variables. The total stress can be calculated by integrating

the stress rate. Finally, the plastic deviatoric stain rate d 	 and plastic volumetric

strain rate è defined as in eq.(6. 10) can be expressed in a matrix form

rnm
d =	 [i11 _ ADi] {i} ; e" = E [Bmi _ 4mi] {i3}	 (6.17)

i1i-i

d STby introducing the general nodal variable, (3 = {(3 (3 } , and malung use of

eq.(6.14) and eq.(6.16).
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6.3.2 Calculation of Stiffness Matrix and Residual Force Rate

The nature of this kind of problem decides that the system equation will be nonlinear.

It is believed that the Hessian matrix, which is defined by the second-order differential

of 11m' is essential to solve this kind of equations. In section 5.3.1, we have

demonstrated that the analytical differentiation of the functional 1'rgd is superior to the

numerical one. We can anticipate that for the differentiation of '1ep the conclusion is

still the same since there is little difference between these two functionals as far as

computing time is concerned.

Again the function f(x) = /x 1x 1 has been introduced in order to simplify the

differential operation and the functional 'epp turns out to be

11ep-p = f(l P)f(s) _s T I p + pe'2
	

(6.18)

where & and k are defined as eq.(5. 17) and eq.(6.3) respectively. Only minor changes

from rlrgd in eq.(5.l7) is found in the new functional 11ep-p in eq.(6.18):d P and

in eq.(6. 18) are in place of the corresponding d and é, 7 in eq. (5.17). Consequently,

all the differentials of 11ep-p remain the same as those of rgd in eq.(5.18),except

that1 and em should be replaced byI and ë.

On the other hand, differentials of II ep e with respect to	 are very easy to obtain

by the observation of the second equation in eq.(6. 10) as follows

It remains to determine the differentials of the yield function b with respect to both

and d P In chapter 5, the situation was simplified by the fact that the constant k does

not vary with plastic deviatoric strain d or deviatoric strain rate d 	 In this chapter,

hardening effect has been taken into account, which means that k is function of d .

Therefore corresponding to eq.(5.20), differentials of ' with respect to d should be
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given as

= kf() af . _____ = -

f(a P)	 a	 jTk2 f(ci P) f(s)	
(6.20)

_______ = 2kiiff() - kf() ( f2( P) -

&if'&ij'	 k3f2(i1)	 %/k2f3(I)

The differential of f with respect to x is identical to the one in last chapter, as seen in

eq.(5. 19).

So far all the necessary differentials have been calculated. Then we will start

deducing the stiffness matrix kep. It is worthwhile to mention that all the processes in

the deduction of ke) should be carried out in two different cases: elastic case and elasto-

plastic case. Say

i2U
L' - 

1epp	
L' = " 

ep-p
dd 

t9a	

'	 ci.s	 ailt' aj

we have

I ep=	 +LL1!+ Lu	
a	 &	 3e

+LU	
.,	 m m

pq	

[ 

SSj	 dS0jq]	
"01q] 

313p	 pq (6.22)

&i? ad?	 ae
= 2GLL+K_L_.pq	

31 31 q	0f3, 3q

Following eqs.(6.16) and (6.17), the differentials of , 	 and e with respect to the

general nodal variable i3 are

T

fa1 1 0 1 	 1&it' 	 Bp

jf Aicj li;} l_thAITpI

DT

{

ae	 mp

i}= T'
(6.23)

Substituting eq. (6.23) into eq.(6.22), the stiffness matrix 	 is immediately obtained
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k = ( 

[2GB P BDq +KB p Bmq 	- 3A +BA) 
1dQ	 (6.24)

_(AT B +A p B q) A P A/2G + ApAmc/KjDpDq

when < 0, and

1

	

[B PLBDq +2pBpBmq	
K nip mq

e	
'dOkM =J 

Q[APAB - .EA T B	 AXI +	 A I

	

Dq K 
nip wq	 nip mj

(6.25)

when ^ 0, in which the intermediate variables A and X are

A1	
d 2G dd 

and X' =	
2G	 2G

Note that if the following equality

BAq B p ADq +BpAmq

is substituted into eq. (6.24), it is easy to find that kep in eq.(6.24) is identical to ke in

eq.(3.39) for elasticity.

Let

- arlep_p
L- L = 011ep-p

d

following the similar routine of the one in chapter 5, the "residual force rate" vector,

which is defined as

ll=	 ep

0/

corresponding to the stiffness keg) in Newton's method, can also be expressed in terms

of differentials of and em with respect to the general nodal variable ( as
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when^O
(6.26)

when<O

pP = LL+Ll ' +2pè tmdV
Jn S3f3

{ 

ep 
= J2Gdr+Ke	 dV

p

then the matrix form of	 ep is readily obtained by making use of eq (6.23)

I2GdrBpp4.Kern1p	

when ' <0AFep 

= i -drA -e,A' J
and

(6.27)

pP

 I

B+2peB	 1	 (6.28)

A(L-L22 _2PeAmTpIKJ ; 
when # ^ 0

6.3.3 Solving the Linearized System Equation

The solution of a complete elasto-plastic problem can be obtained by finding the

extremum of as stated in section 6.2. No subsidiary condition is needed if

admissible strain rate and stress are given by eq.(6.14) and eq.(6.16). By Newton's

method, the nonlinear equation of finding the minimum of L[ is linearized at any given

time t as

kA + At111 = 0
	

(6.29)

From eq.(6.12), k and A 111 are obtained by

-	 ep

an
AF111 = __g +

____ + ____ +
ai	 aja	 aja

3/3

(6.30)

The last three terms in both equations are kd, ks and ke as well as the rates of
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and 4W

j'd = jd(i41)_j'd(i) ;	 jr s =Es(i+1)_s(i)	 MC = 0

defined in section 5.2.2. The first term in these equations are k' defined in eq.(6.24)

and eq.(6.25) and F ep in eq.(6.27) and eq.(6.28). It immediately comes out

k = k ep + k d + k s + kc	
(6.31)

=	 ep +	 +

The linear search method described in section 5.3 is again used to find the minimum

of 11m the search direction z of which is obtained by solving eq.(6.29). The whole

solution procedure includes the following steps:

Say at a particular time i the true velocity ') and true stress (') have been

obtained. To calculate the velocity, strain and stress at the next step 1+1,

a) solve the linear equations of elasticity to get first approximate velocity 	 *

strain rate e'' * and stress rate àI1 * . The approximate stress g(1 'l) *

obtained by integrating the stress rate, satisfies the equilibrium equation but does

not obey the yield condition.

b) The approximate stress is then used to give the first evaluation of elastic zone

and plastic zone from which stiffness matrix kep and force	 in eq.(6.24) /

eq.(6.25) and eq. (6.27) I eq. (6.28) are able to be obtained.

c) Solve the linearized equation eq.(6.29), from which the line search direction

j(1) is obtained. By means of line search,	 ^1) * = fl(i) +?j(1), the line

minimum of the functional I1 is found giving a specific value of j.

d)The rate variable j3(1+1) * is used to calculate the velocity u'1 * , strain rate
* and stress rate ('l) * by eqs.(6. 13), (6.14) and (6.16), from which the

total displacement and stress at step i+ 1 are then obtained as follows
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*	
+'1 * • dt	 ;	

(j+l) * =(i) + r''1 * • dt	 (6.32)

where for a static plastic flow, the time increment dt is taken as 1.0.

e) If the value of ri with 13 
..i+1) * is close to zero at a given tolerance, then

the solution of the stress at this step (i+ 1) is taken as (I+ 1)* and that of the

displacement	 is taken as u(i)*. If it is not, then go back to step b).

The flow chart of the solution procedure is shown in fig.6.1.

6.3.4 Solution Procedure for Various Load Conditions

Elasto-plasticity, is different from either rigid-perfect-plasticity or elasticity in that the

solution is history dependent. Special remarks need to be made on the capability of the

current model to deal with this. Briefly, a history-dependent constitutive relation

implies that when loading, unloading or reloading, the constitutive relations appear in

different forms

a) Loading occur when extra loads are added to the current level. From the

incremental theory of plasticity the constitutive relation remains elasto-plastic, as shown

by line OA in fig.6.2. In the solution procedure described in section 6.3.3, the first

estimate under the assumption of elastic relation gives higher stress level than reality.

As a result, the minimum of ll is not found at this step, and other iterations are

needed. At this moment, the switch function ii', being the same as the yield function,

is greater than zero. Then eq.(6.25) and eq.(6.28) are used to construct the global

system equation eq.(6.29), which implies the constitutive relation of elasto-plasticity.

b) Unloading is to remove a load increment from the current level. Here only

a small increments of loads is concerned since the isotropic hardening is only valid in

such a case, as shown by line AO' in fig.6.2. In the solution procedure described

section 6.3.3, the first guess for the unloading step is as in elasticity. The yield

function i/ will not be greater than zero at this moment since the updated stress is well
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Fig.6. 1	 Flow-chart of the solution procedure for elasto-plasticity by the mixed
model.
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below the yield surface. No further correction is needed since eq. (6.24) and eq. (6.27)

have already been used to obtain the first guess. This represents an elastic solution.

Fig.6.2	 Loading conditions in elasto-plasticity

c) Reloading here is termed as a loading process after an unloading from yield

surface, as shown by line O'A or O'B in fig.6.2. For the case of reloading from point

0' to point A, the first elastic estimate will immediately yield the correct answer since

L' <0 thus the minimum of [Is, will be reached by such an estimate. The iteration

terminates. It means that the procedure switches the constitutive relation to elastic one

as the situation arises.

For the case of reloading from point 0' to point B the first guess will certainly not

bring the 11111 to the minimum since it is beyond the yield surface and the first equation

of eq.(6.l5) must replace the second equation of it from which the first guess is

obtained. This brings the solution procedure to the normal elasto-plastic one.

In conclusion the model proposed in this chapter can handle all the three loading

cases described above automatically and correctly. If kinametic hardening is used, it

should be able to predict residual stresses.

6.4 SOLUTIONS OF ELASTO-PLASTIC PROBLEMS

There are only a few analytical solutions for some simple plasticity problems which are

available in literature. In this section similar problems to the previous chapter in

elasticity will be solved in plasticity to demonstrate the efficiency and validity of this

mixed model concerned with elasto-plasticity. Thus no new mesh is required.
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6.4.1 Expansion of a Thick Spherical Shell

A thick-walled spherical shell, whose internal and external radii are a and b =2a

respectively, is subjected to uniform internal pressure p of gradually increasing

magnitude, as shown in fig 6.3. If the internal pressure is increased to a critical value

Pe ' plastic yielding begin at the radius where yield criterion is first satisfied, which is

obvious at the inner radius r = a.

Fig. 6.3 Expansion of a thick spherical shell and its FE model.

With a further increase in the internal pressure, the plastic zone spreads outward and

the elasto/plastic boundary, say r = c, is a spherical surface at each stage, as in fig.6.3.

In our finite element model, only one mesh with 50 8-noded axisymmetric elements

is used in the analysis, as seen in fig.3.1. 3x3 integration scheme is adopted in the

calculation of the stiffness matrix kep and the stress and strain. In fig.6.4 the hoop

stresses o00/aand radial stresses cr,7 /a under four different c/b, 0.5, 0.6, 0.7 and 0.8,

corresponding different pressure p are plotted along radius/b. For various loads, only

one load-step is used in the solution with the full pressure p instead of applying it

incrementally.

It is seen that the mixed model gives very good radial stress o,. for each c/b.

However a slightly deviates the analytical solution when c/b =0.8, especially near the

elasto-plastic boundary. The rest of the cases are in excellent agreement. Nevertheless,
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the mixed has superb capability to solve the elasto-plasticity, considering only one load

step is used.

The penalty number ' was chosen to be the same as it was in elasticity. However

another penalty number p is needed for imposing the yield condition, as in eq.(6. 15).

It is suggested that it should be chosen to be between 50.0 to 500.0 for a normal elasto-

plastic problem.

In fig.6.5, the logarithms of the value of 11ep (a) and the average errors (b) are

plotted against the iteration numbers. At c/b =0.6, it yields a results after two iterations

at an average error less than 0.2 % fig.6.5(b). But at c/b=0.7, three iterations are

needed for an average error about 0.7 % while at c/b=0.8, four iterations give an

average error around 1.0%.

The curves in fig.6.5(a) for lie,, are similar to fig.6.5(b). Therefore the error of

a elasto-plastic solution can also be estimated by the value of 11ep in this model.
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Stress distributions in an elasto-perfectly plastic hollow sphere under internal
pressure. A FE mesh with 50 8-noded elements are used in the computation.
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Fig.6.5 Convergence of the elasto-plastic solution of a hollow sphere under internal
pressure. A FE mesh of 50 8-noded elements with 3 x3 integration are used
in the computation.
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6.4.2 Expansion of a Thick-walled Cylinder

Although for analytical solution, a 2D cylinder is more complicated than a full 3D

sphere, it is usually simpler when it is solved by the finite element method. Except that

the element type should be replaced by a plane one, the entire models of the last section

for spherical shell are directly applicable to the current problems.

The radial stress a,7J and the hoop stress a90/oy are presented in fig.6.6 obtained

from the mixed model and the analytical solutiont421 . Almost identical results are found

between two methods under four different plastic range: c/b= 0.5, 0.6, 0.7 and 0.8.

Only a point near elasto-plastic boundary at clb= 0.8 is slightly apart from the exact

solution. The reason is that for such a large plastic deformation, one load step is too

few to achieve a desirable solution. This is not unusual in the solution of the

conventional displacement model too. In fact the displacement model is diverged when

solving this problem at c/b = 0.8 with a single load-step.

The convergence of the mixed is also good for this problem. Fig.6.7(b) shows that

when c/b= 0.6, two iteration is enough to yield a result with an average error less than

0.2%, while figure for c/b = 0.8 is three iterations to yield a result with an average

error about 1.7%. Fig.6.7(a) again shows consistency between the error and the value

of 11ep

In comparison with the analytical solution, excellent results for both spherical shell

and cylinder cases have been obtained by the mixed model. However these cases are

governed by the problems where stress distribution is either axially or spherically

symmetrical. It remains to demonstrate how this model behaves for problems with

emphasis on the shear stress in the next example.
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pressure. A FE mesh with 50 8-noded elements are used in the computation.
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6.4.3 Cantilever by a Load at an End

A uniform cantilever of length L, having a rectangular cross section of width b and

height 2T, is loaded by a concentrated load P at the free end. It can be anticipated that

yielding first occurs at the top and bottom corner of the built-in end, where the bending

moment has its greatest value, the corresponding load ME being such that ME= PEL.

When the load P exceeds E' the plastic zones spread symmetrically inward from the

corners.

The FE model is as same as in fig.3.25. Only one mesh with 80 8-noded elements

is used in the study. The integration used is 3 x3. Two penalty numbers are taken as

' =10•0 and p=5O.O.

The load-deflection curve of the elasto-plastic beam is plotted dimensionlessly in

fig.6.9. D is the deflection of the beam at the free end under load P. DE is the

maximum elastic deflection of the beam at the free end, which corresponds to load limit

for elasticity 
13EV

It is seen that at the early stage of yielding ('E < 1.3), the displacement model

and the mixed model give very similar curves, both deviate slightly from the analytical

one. This is probably due to the inaccuracy of the analytical solution resulting from the

simple beam assumption.

When the load is getting larger (PIPE > 1.3), the mixed model gives much more

accurate deflection than displacement model in comparison with the analytical one. The

conventional displacement model tends to give small deflections when the plastic range

is built up. Even surprisingly, the results obtained by the displacement model are

solved in ten load-steps, while those by the mixed model is only one single load-step.

Theoretically the maximum load is PIPE > 1.5 at which the DIDe is infinite. Both

FE models fail to get a converged result when PIPE> 1.44.

The normal stress and shear stress are shown in fig.6.9. Since the mixed model

has a difficulty near the built in end of the beam, we choose a section x/L=0. 15 to

analyse. In the case of o, results from the mixed model are very close to the

analytical one especially in the area of plasticity. Like other examples, difficulties arise

near the elastic-plastic boundary. The mixed model again gives less good results in this

area.

97



Chapter Six	 Mixed Model for Elasro-Plasti city

As to the shear stress the mixed model gives very good results near the upper

and lower edges, where plastic deformation occurs. However the higher shear stress

is predicted near the mid area of the section. The shear stress shown is calculated in

terms of the arithmetic average of 	 and o.

6.4.4 Comments on the Mixed model for Elasto-plasticity

Three elasto-plastic solutions have just been produced in the previous sections. In these

applications, it was demonstrated that the mixed FE formulation described in this

chapter can simulate problems with large portion of plastic deformations correctly. The

larger the plastic strain is, the greater value of p to impose the yield criterion eq. (6.1)

should be chosen. For a normal elasto-plastic problem it should be chosen to be 50.0

to 500.0.

The stress and deformation results obtained from the mixed model are also highly

accurate, both in the case with simple axial stress (section 6.4.1 and section 6.4.2) as

well as with severe shear stress (section 6.4.3). Compared with analytical results, the

mixed model gave closer deformation results in the beam bending in section (6.4.3)

than the displacement model.

In addition, the mixed model also has better convergence to the solution. All

solutions in these three examples were obtained with one single load step by the mixed

model, and only a few iterations (3-5) are enough to give converged results. While by

the displacement model, multi-load steps, each with a few iterations, are required.
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Fig.6.8

ELASTO-PLASTIC BENDING

	

10	 12	 14	 16	 18	 20	 22
1.5-	 I	 I	 I

/	 £

I 4-	 /	 AD " 	 - 1 4Elastic

/
ci

l3-	 /	 -13
o	 /	 0

/	 - Exacto	 a)

	

/	 o Mixed
a)	 /	 a)

1 2	 Dinpl	 -1 2 ,
=

	

	 =

A

11-	 A	 -11

A

I 0	 I.	 -1 0

	

10	 12	 14	 16	 18	 20	 22

mono on es def act on at f(Oe end 0

The tip deflection of the elasto-plastic bending of a beam. A FE mesh of 80
8-noded elements with 3x3 integration is used in the computation. p= 10.0 is
taken.

05
	

04	 03	 02	 00	 05

1	 3

a. a. at the sact on a L	 15
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CHAPTER 7

MECHAMCAL SIMuLATION OF SPOT-WELDING

BY THE MIXED METHOD

7.1 INTRODUCTION OF RESISTANCE SPOT-WELDING

Resistance spot-welding was invented in 1877 by Elihu Thomson and has been widely

used since then as a manufacturing process for joining sheet metal. Even though

resistance spot-welding is over 100 years old, the physics of the process has not been

well understood, however this has not hindered its industrial application for joining a

large variety of metals. A schematic representation of a single point resistance spot-

welding is shown in fig.7.1.

Electrode Force

copper alloy electrode	
-

FJ

molten

Sheet #1

Sheet #2	 I
faying surface

[-:-:-:

Fig.7. 1 The schematic picture of a single point spot-welding

7.1.1 Physics Process of Resistance Spot-Welding

Basically, welding is accomplished by passing a large electrical current through the

materials to be joined. The welding current is introduced through a pair of electrodes
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which also clamp the workpieces tightly together. The Joulean thermal energy

generated in the region of current concentration between the electrodes produces a

molten nugget. The molten nugget cools upon termination of the welding current and

solidifies into a fused, welded joint.

Physically, resistance spot-welding is a coupled electrical-thermal-mechanical

problem. The discrete stages in the process are: a) electrode squeeze, b) weld, c) hold

and d) release.

A squeeze load is applied to the sheets to be attached through electrodes, which

create intimate contact between the sheets of metal and a pathway for current flow

during the welding stage. It also might damage surface oxide on the faying surface.

When a current passes through, the contact resistance at the electrode-sheet interface

and at the faying surface results in the greatest heat generate at these surfaces. This

heat generation produces a temperature increase at all of the surfaces, with the increase

being greatest and most rapid at the faying surface due to poorer cooling (the copper

electrodes are water cooled). Melting begins at the faying surface and the resulting

nugget grows towards the electrodes until current flow is terminated. The electrode

squeeze load continues to applied during the hold stage until cooling has occurred.

7.1.2 Resistance Spot-Welding of Aluminium

Resistance spot-welding is the most common joining method used in the automotive

industry. The method has been well proven for joining low carbon steels. All the

parameters for controlling the spot-welding process have been thoroughly studied and

methods to control the quality of a weld in low carbon steels are well established.

However for the resistance spot-welding of aluminium, such a position has not been

reached. The high electrical and high thermal conductivities of aluminium cause big

problems for spot-welding since heat generation and concentration are two important

factors in producing a weld. The lack of specific standards in spot-welding of

aluminium becomes a big obstacle if aluminium is to be used in the automotive

industry.

In recent years there has been a move towards improving the degree of corrosion

protection so as to increase vehicle life or decrease weight of the vehicle. Both
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aluminium and coated steel offer better corrosion protection than the low carbon steels

currently used. However aluminium is roughly one third the weight of steel and has

considerable strength, which means that a smaller engine with less emission is generally

sufficient for the car to achieve a similar performance to a steel car.

Therefore an understanding of the resistance spot-welding of aluminium becomes

an important current issue.

7.1.3 Controlling Parameters in Spot-Welding

The fact that resistance spot-welding is a coupled electrical-thermal-mechanical process

means that controlling parameters in spot-welding may be divided into three categories:

a) Electrical aspects. These include: the type of current (AC, DC or MF); density

and period of the current applied to the work-piece and the contact resistance at

the electrode surfaces and the faying surfaces (mating surfaces).

b) Thermal aspects. The cooling system within electrodes can be controlled: the

temperature and the flow speed of the water in cooling hole and the location of

cooling hole within the electrodes. The thermal conductivities of electrodes and

the workpiece can affect welding, but they are not controlling parameters of

spot-welding equipment as they are usually keep constant.

c) Mechanical aspects. There are a lot of parameters which affect mechanical

behaviours of the electrodes and the work-pieces. But only some are related to

the formation of spot-welding 1531 : the squeeze loading pattern; the geometry of

the head of the electrodes and location of the cooling hole. These can largely

affect the contact resistance at the electrode surface and the faying surface.

The above parameters acts in a coupled manner. For example, changes of electrical

parameters obviously affect temperatures of the work-pieces and the electrode which

will lead to changes of mechanical aspects. The varied mechanical behaviour will

normally alter the contact resistance, which in turn affect electrical and thermal aspects.

The more details concerning the controlling parameters can be found in Kim's work in

ref. [53]. Also a review of current experimental studies and numerical simulation of
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spot-welding will be given in Appendix D.

7.1.4 Work in this chapter

The Spot-Welding in Aluminium group in Newcastle University is devoted to the

numerical simulation of both electro-thermal and thermo-mechanical behaviours during

spot-welding. This is sponsored by Alcan International Ltd.

In this chapter, the mixed FE model introduced in previous chapters will be used

to solve a very simple, but very useful case in the thermo-mechanical simulation of

spot-welding. That is the squeezing of the aluminium sheets by a pair of truncated

electrodes, where the sheets are initially attached together by adhesive materials.

The fact that adhesive is introduced in the structure causes difficulties to produce

a weld since adhesives are not conductors. It also increase difficulties for the numerical

simulation since both solid and fluid have to be treated together to model the thin layer

of adhesives, aluminium sheet itself and the electrode.

In the following section, an axisymmetric elasto-plastic model will be developed

with the adhesives taken into account in terms of thin-film theory. Our purpose is to

identify some factors which are related to the deformation of the adhesives during the

initial squeeze of aluminium sheets in the cold condition, and eventually control the

minimum thickness of the deformed adhesive and the size of the entrapment between

two aluminium sheets. In the meantime, it is our intention to verify the validity of the

mixed model when applied to such a complicated problem.

A more complete study of the thermo-mechanical simulation of spot-welding with

an pair of curved electrodes is presented in Appendix D where only conventional

displacement is used.

7.2 FE-FLUm MODEL FOR SPOT-WELDING

In this section, a new FE model is proposed in order to simulate the initial squeeze of

attached aluminium sheets by electrodes. It is constructed by introducing a traction

boundary condition which can be obtained for the thin-film theory 11 in fluid dynamics,

which replaces the displacement constraint at the faying surface of the FE mesh.
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In section 7.2.1, fluid pressure of adhesive caused by a deformation of aluminium

sheets will be deduced by means of the thin-film theory. Then in section 7.2.2, an

interactive model, FE-fluid model, will be presented by incorporating this fluid

pressure onto a normal mixed FE model in terms of a deformation dependent applied

traction.

7.2.1 Fluid Pressure of a Deformed Adhesive

Suppose that we have an incompressible Newtonian fluid of constant density p and

constant viscosity . Its motion is governed by the Navier-Stokes equations

a11 .	 )u=_!Vp+vV2u+g	 (7.1)- + (u V
at	 p

and the continuity equation

= 0
	 (7.2)

The character of a steady viscous flow depends strongly on the relative magnitude of

the terms (u V)ü and vV2i:i in the Navier-Stokes equation (7.1). Let h be the

thickness of flow and L the typical horizontal length scale of the flow. When h <<L,

the equation of motion can be simplified by ignoring inertia terms and considering only

flow in the long direction in eq.(7.l). In axisymmetric cases, it becomes'1

ap - 32Ür	 (7.3)— L-

where t:lr is the velocity of fluid at r direction and p is the pressure of the fluid being

a function of r and t only. The incompressibility condition V U = 0 takes form of

1 a(rur) au
-___ +____=o	 (7.4)
r 3r	 3z

in axisymmetric cases. Eq.(7.3) and eq.(7.4) are called the thin-film equations' 1 . Now

let us derive the pressure p caused by a movement at z-direction (u) by making use
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of thin-film equations (7.3) and (7.4).

Say a fluid is enclosed by two symmetric solid bodies with boundaries at z—H(r,t).

The moving speed of the boundaries is

dH

- dt

as seen in fig.7.1.

Fig.7.2 The adhesive enclosed by symmetric solid boundaries.

By integrating eq.(7.3) with respect to z twice and applying the no slip condition at

boundaries:

Iz = -H(r,t)
Ur = 0	 at	 lz= H(r,t

it follows the velocity at radial direction

lapUr = ._-ã_(z2H2)	
(7.6)

It is straightforward to derive u by substituting eq.(7.6) into eq.(7.4).

a u = -	 a [r.R (z2 - H2)l	 (7.7)
--	 rr[8r

Integrating both side of eq. (7.7) with respect to z and imposing boundary condition

eq.(7.5), it follows that

(7.5)
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=---- rH	 (7.8)
dt 3r0r 3r

in which the symmetric condition ü	 0 at z =0 has been used. The pressure p is then

easily obtained by integrating eq.(7.8) twice with respect to r to give

p=-I
a [ 3t r ( dH )d l dr	 (7.9)

Jr rH3J° dt

The boundary condition pressure p=0 at r=a has been used, where a is the outer

radius of fluid. A special case is that the solid boundary is simply a flat disc which

means H is not a function of r. This leads a much simpler expression for p

p = _(r2 _a2)	 (7.10)
4H3 dt

Say a load F is acted on the disc, then following relation exists

F=J 2r I t a
J 0 r dr) dO = _ 3r,ua4dH	 (7.11)

Therefore a load F acted on a flat fluid will cause a pressure Po with a distribution like

' (r2 _a2)	 (7.12)PO
ra

In next section, we will show how to incorporate the pressure just obtained into a

conventional FE method.

7.2.2 Solution Procedure of the FE-Fluid Model

For a solid-fluid coupled problem, there are two types of approaches available. The

first is to solve it uniquely by means of FE method where both solid and fluid are

treated as an integrated continuum which has big changes of materials properties among

each area. As a results, only some modifications of a FE method are required. This

also implies that the normal restrictions to the conventional FE method may also apply

to this case.

The second is to solve the solid and fluid separately, each of which is modelled
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with a different approach. For instance, the solid part is modelled by a FE model while

the fluid is modelled by a finite difference model. These two part are combined to

form a integrated system such that they satisfy some common boundary conditions at

the solid-fluid boundary.

The problem we are facing now is to model such a thin-film fluid that the first

approach (FEM) can not be used due to the geometry restraints of FE method in the

fluid part. Therefore the second approach is chosen, which is to model solid part by

FE method and fluid part by the thin-film theory. In the remainder of this section, we

will show how our FE-fluid model works.

Say there is a thin-film adhesive with a initial thickness H 0 =H(r,t) and a load P

acting it through electrodes and aluminium sheets. Since no deformation of aluminium

sheets is made at time t=O, the fluid pressure P caused by load P at this time is

calculated by eq. (7. 12).

Fig.7.3 The modifications of the force and displacement boundary at the
aluminium/adhesive surface. (a) in a conventional model without
adhesive; (b) in the FE-fluid model.

The external force P and the pressure Po form a balanced system applied upon the solid

part, as seen in fig.7.3. Therefore the deformation of aluminium sheets at the faying

surface uO)*(r) can be easily obtained by elasto-plastic FE method.

However i40)*(r) is not the whole movement of the aluminium surface near

adhesive. This is because when FE method is used to model the solid part of spot-

welding, it is required that the z-displacement at the lower-central point of the

aluminium sheet has to be fixed in order to prevent the rigid movement of aluminium

sheets at z direction, i.e.

106



Chapter Seven	 Mechanical Simulation of Spot-Welding

(i)	 (i)
U 0 - U r0,z-O -

In reality this point at aluminium surface does have a movement at z-direction along the

change of the thickness of the adhesive. Therefore the whole movement of the

aluminium surface will be the displacement uO)*(r) plus an unknown movement at z-

direction at the central point of aluminium u(0)Writing for any time t=i, it is

(j)*	 (7.13)
u(r) = u(0) + u	 (r)

The solid-fluid boundary IP(r) for the adhesive at t=i is then assumed as

IJi+l (r) = H 1 (r) + u(r)	 (7.14)

The velocity of the boundary j.jO+ ) is approximately calculated by

dHi+l	 .(i+1)	 (7.15)_=uz 	 =uz
---

where & is the ith time increment of the load P. The pressure pi+l* is then calculated

by eq.(7.9) with eq.(7.15) and the modified boundary in eq. (7. 14).

This pressure p+l* is then applied again to the FE model, which gives a updated

solid-fluid boundary jj0+ 1)*• 
Theoretically Fi( 1) and iP 1)* 

should be the same when

the solution is found. In reality, a few iterations of the above circle are to perform.

It remains to decide how to get the unknown movement of adhesive/aluminium at

the central point u(O (0), on which p and Jji+1 both depend on. This can be easily

obtained by the fact that	 with a velocity of	 should yield a pressure p which

should balance the external load P at z-direction of the aluminium sheets. Golden-line

search introduced in Appendix B is used to find it.

7.3 RESULTS AND DISCUSSION

In this section, we are going to give a practical application of FE-fluid model, which

is the simulation of the initial squeeze of two attached aluminium sheets by electrode.

The geometry and mesh of the FE-Fluid model used in this section is the same as the

one defined in section 4.5.3. The constraints of the FE-Fluid are modified to include
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the pressure boundary conditions at the surface between the aluminium sheets and the

adhesive, as shown in fig.7.3.

The material properties for both aluminium sheets and the copper electrode are

shown in Tab.I. All the data are for the room temperature (25°C).

Tab.!	 Material constants of the aluminium sheet and the electrode

Material constants	 Young's modulus	 Poisson's ratio	 Yield stress(cold)	 Plastic

modulus

aluminium	 72000MPa	 0.25	 158MPa	 294MPa

copper	 126000MPa	 0.25	 56OMPa	 294MPa

The constitutive relation of both the materials is taken as a linear hardening elasto-

plasticity. Since loading is a dynamic process, the P(t) pattern needs to be given too.

For simplicity, the linear relation P(t) =	 t is chosen. Also it is assumed that

whole P,, is reached by one single time (or loading) step in the computation.

The parameters concerning the layer of adhesive is that the initial thickness of the

layer of adhesive is H0 = lOOjm. Two viscosities, 500PaS and 1000PaS, of the

adhesive, two forces	 -5000N and -1O,000N, and two duration times, t O.5sec

and t = 1.Osec of loading are used in the simulations.

In order to judge the validity of this FE-fluid model in which the mixed FE model

is used to model the solid part of the construction, another FE-fluid model was

constructed in the same way as we described in the last section except that the solid part

is modelled by means of the conventional displacement model. (All the results presented

in Appendix D are obtained by such a model)

7.3.1 Deformation of the Adhesive

During spot welding process, it is required that the insulation layer of adhesive between

two aluminium sheets be broken down successfully by squeezing electrodes at the initial

stage, so that the current can then pass through. In the following part of the section,

the deformation of the adhesive squeezed by electrodes through two aluminium sheets
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will be analysed by the FE-fluid models just discussed.

In fig.7.4 the relative thickness of adhesive and the corresponding fluid pressure

caused by the deformation are plotted along the radius. The viscosity of the adhesive

is assumed as 1000 PaS, while the force and its duration are -10000N and half a

second.

It is interesting to find that the minimum thickness of the layer is not situated at the

centre of the faying surface but a distance away from it. For example, the minimum

relative thickness is about 0.322 at r=3.5mm, but at the centre r=0, it is about 0.33.

Imagine that the location with the minimum thickness is where two aluminium

sheets first contact each other at faying surface, and therefore the electric current first

passes through. It is possible that the centre parts of aluminium sheets will never

contact each other. In practical spot-welded specimen, it is seen that the faying surface

of some spot-welds shows a ring-alike weld rather than a solid circle' 61 . In other

words, there must be some adhesive trappedu inside this small space. This is verified

by the fact that in some specimens there is the remains of the adhesive in the centre

portion of the weld. To find out what is happening here is one of our alms of studying

the deformation of the adhesive.

The results in fig.7.4 show that FE-fluid models with displacement model and the

mixed model give very consistent fluid pressures and thicknesses. When time duration

is taken as one second, the thickness from the mixed model is slightly different from

that from the displacement model while pressure is still close, as shown in fig.7.5. The

minimum relative thickness becomes about 0.26 at r=3.5, while at the centre where

r=0.0, it is about 0.27.

When the viscosity of the adhesive is reduced as 500 PaS, as in fig.7.6, the

minimum relative thickness further reduces to about 0.21 at r=O.38 and at the centre

it is about 0.22. Near the minimum one, the deviation between the displacement model

and the mixed model is bigger than at the centre portion. But the biggest one is near

the edge of the sheet.

Among all results in fig.7.4, fig7.5 and fig.7.6, the patterns of the deformation of

the adhesive are similar. So are fluid pressure patterns in them. However if the

squeeze force P, is changed, say P11 =-5000N, the situation is no longer the same,

as seen in fig.7.7.
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Obviously, the fluid pressure should be different since it has to balance the squeeze

force The deformation of adhesive is also slightly different than before. The

minimum relative thickness is located at r=3.5 with 0.266, while at the centre it is

about 0.27. The difference between them is 0.04, less than those in last three cases

where it is around 0.1. Therefore it might say that the entrapment of the adhesive is

less severe than in the last three cases.

Further discussions about the effects on the entrapment by various factors can be

found in Appendix D.

7.3.2 Stress Distribution within the Electrode and the Aluminium Sheet

The stress distributions of the electrode and the aluminium sheet are shown in fig.7.8,

fig.7.9, fig.7. 10 and fig.7. 11 in terms of colour contour maps. Only one quarter of the

whole structure is shown in those graphs.

In fig.7.8 the normal stresses (rn) obtained the mixed model are presented. It is

seen that the stress levels in the lower-central region is the highest in the aluminium

sheet, which is consistent with the pressures seen in fig.7.4 to fig.7.7. While at the

electrode/aluminium surface, the highest stress level is found near the edge of the

electrode. In fact, there should be a singularity at the edge if only elasticity is

modelled, as seen in fig.4. 17 and fig.4. 19.

The corresponding shear stress distributions r, obtained from the mixed model are

presented in fig.7.9 in the same way. The shear stress is calculated by the average of

and r.

Generally speaking, the shear stress level in both aluminium sheet and the electrode

are low. At the faying surface, it is zero since it is a symmetry plane. The biggest

shear stress exists at the electrode/aluminium sheet interface. It provides a tearing force

to break down the oxides at aluminium surface which enable an electric current to pass

from the electrode to the aluminium sheet.

The corresponding results from the FE-fluid model by displacement model are

shown in fig.7. 10 and fig.7. 11. It is seen that the normal stresses (au) obtained from

both models (fig.7.8 and fig.7.l0) are quite similar. However the contour maps of

shear stresses (fig.7.9 and fig.7. 11) appear slightly different.
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It is understood that the mixed model faces a big difficulty at a corner with no

shear on one side and a severe shear on the other side because the moment equilibrium

(3.3) is not satisfied automatically in the mixed model. It is imposed approximately by

a penalty term, which becomes incompetent in this extreme condition. The corner

formed by the electrode wall and the top surface of the aluminium sheet is just in this

kind of situation. As a result, the shear stress predicted by the mixed model is lower

than it should be.

7.3.3 Comments on the FE-fluid Model with Mixed Model

The results we have just shown demonstrate that the mixed model is capable of handling

a more complicated situation in addition to those in chapter 3 to chapter 6 where only

some basic problems were discussed. In comparison with the conventional displacement

model, it gives very good normal stresses, fluid pressure and the deformation of the

adhesive results. But the shear stresses in some region is not quite good, which can be

improved by using smaller elements.

Together, these results provide useful information about the mechanical behaviours

during initial squeeze stage of the spot welding process. They also give some ideas

about how the adhesive deforms under the squeeze and how to minimize the entrapment

of it.

Although only a single loading step with a linear function of time is used in the

simulation, it is readily to extend such a FE-fluid model to a more realistic one where

P(t) can put into the model in a arbitrary function of time by using multi-loading step

with varying time increment at each step. As the matter of fact such a method is used

in Appendix D.

Results from the mixed model in this chapter are obtained under penalty number

= 100.0. Deformation of the adhesive obtained under smaller one tends to be

"flatter" than those we have just shown. The reason of this may arise from the fact that

there is a fairly large shear stress existing near the electrode/sheet interface and

therefore higher p is needed to maintain the satisfaction of 	 = r,.
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CHAPTER 8

DISCUSSION AND CONCLUSION

A new mixed model was introduced in the previous chapters. It was applied to some

elementary examples as well as in the simulation of part of the spot-welding process.

As addressed in chapter one, the main objective of this thesis was to establish a model

which arises from very basic concepts of continuum mechanics, and to provide a better

understanding of mutual relationship between all the basic equations encountered in

solid mechanics. In the remains of this chapter, we will give some remarks on this

model.

8.1 PERFORMANCE OF THE MIXED MODEL

Basically the work in this thesis was about constructing and testing three new mixed

extremum principles which approximately imposed the constitutive relationships for

elasticity, rigid plasticity and elasto-plasticity respectively. The kinematic and static

constraints to be satisfied in advance by the strain-displacement relation and by means

of little used first order stress functions for plane problems and a newly established

stress functions for axisymmetric problems.

Chapter three and chapter four dealt with elastic problems. For some problems

where shear stress is small, such as in expansion of a thick cylinder and a hollow

sphere, the model gave very good stress and displacement results.

Particularly for nearly incompressible materials, it had a superior performance over

the displacement method. Unlike the displacement model where 2 x2 integration must

be used in order to obtain a meaningful stress results, the mixed model gave good stress

results under both 2 x2 and 3 x3 integrations. Therefore for the problem with small

shear the mixed model is not sensitive to the integration scheme.

For those that the shear stress is obviously as important as the normal stress, as in

bending of a short beam (section 3.6.4) and bending of a disc (section 4.5.1), an extra

penalty function is needed to maintain the symmetry of a stress tensor. The reason for

this is that the stresses represented by the first order stress do not automatically satisfy

the moment equilibrium eq.(3.3).
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Chapter Eight	 Discussion and Conclusion

Different penalty numbers p were used in the analysis of beam bending and disc

bending. It is seen that for plane problems, ' 5.0 is generally sufficient for

obtained good displacement and stress results for 4 x4 and 8 x 10 meshes with 2 x2

integration. The finer mesh is, the better results can be obtained.

However, for such problems integration schemes did have some effect on the

results of the mixed model. For example, in order to obtain good displacement and

stress results under 3 x3 integration, p = 10.0 was generally required.

For axisymmetric problems, the requirement of symmetry of the stress tensor is

emphasized by the fact that a larger penalty number is needed for obtaining

displacements and stresses with the same accuracy as for plane problems. For example

in bending a disc in section 4.5.1, Pc = 10.0 was needed for 2x2 integration, while

= 50.0 for 3X3 integration.

The above examples demonstrated that the idea to decompose the Love's stress

function into three first-order stress functions, which satisfy the force equilibrium

eq.(4.3), along with a constraint which imposes the moment equilibrium eq.(4.4) is

successful. This enables a continuous mixed model for axisymmetric problem to be

constructed with d continuity.

As is mentioned in chapter two, "excess continuity" can occur in a mixed model

with continuous variables where stress discontinuity exists, e.g. at interface of two

materials. However, the mixed model in this thesis can reproduce a stress dis-

continuity, though it is a continuous mixed model. This was illustrated in section 3.6.2

where the elastic punch pressing into a compliant layer was analysed. The discontinuity

of stress o can be clearly identified in fig.3. 15 and fig.3.20.

A interesting feature of this mixed model is that it has an intrinsic "error estimator"

which seems very meaningful and is simple to use. This was illustrated in section 3.6.3

where a plate with a central crack under remote tension was analysed. The error of the

solution decreased with the element size in a similar manner as the value of the function

'1elas varies at a given point. A similar phenomenon can be found in other examples.

In conclusion, the value of the functional II can be used to judge the error of a solution

locally or globally.

Near the area with high stress singularity, such as a crack tip, the mixed model

tends to give stresses with a higher singularity than the displacement model when a
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normal element is used. However if the corresponding "distorted" element is used, the

displacement model overtakes the mixed model, though both models have improved

results. This can also be found in section 3.6.3. This means that the singularity caused

by moving the mid-point of the element near the crack tip is less effective on the mixed

model than it is on the displacement model.

The favourable feature of the mixed model on this is that if we have no idea where

to put the "distorted" element, the mixed model can simulate the singularity of the

stress more accurately than the displacement model.

In chapter five of this thesis, rigid plasticity was discussed. By means of the

Schwarz inequality, the constitutive relation for a rigid plasticity, i.e. Levy-Mises

equation, was equivalent to the minimum of a mixed extremum principle Urgd. The

discretization of the displacement and the stress were exactly the same as chapter three

and four for elasticity.

Since the system equation from the minimizing the 11rgd was a nonlinear equation,

linear search method was used to solve it iteratively. In a simple example presented

in section (5.4), which was the expansion of a rigid plastic cylinder, the mixed method

gave wonderful results compared with the analytical solution. In addition to the high

accuracy of the solution, it also converged very quickly. If the initial guess of the

solution is chosen by the corresponding elastic solution, then only one or two iterations

were normally enough to get a satisfactory rigid-plasticity solution.

Not surprisingly, the value of the functional '1rgd again showed consistence with

the error of the solution.

In plasticity theory, it is well established that the elasto-plastic strain (full strain)

is composed of an elastic strain and a plastic strain. In this thesis, this concept was

extended to express the relationship among three basic solution methods in solid

mechanics, i.e. elastic solution, rigid-plastic solution and elasto-plasticity solution. It

can be stated as follows:

An elasto-plastic solution is equivalent to a rigid plastic solution f the elastic strain

in full strain is removed in the plastic area. The corresponding elastic area becomes

the rigid area in the rigid plastic solution.

This enables us to construct a functional for elasto-plasticity: in the elasto-plastic

area, the functional for rigid-plasticity 11rgd is used, while in the elastic area the
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functional for elasticity 11elus should be switched to.

In chapter six, such a assumption was tested by various examples in section 6.4.

The mixed model gave very satisfactory results in comparison with the analytical results

and those from the displacement model. The convergence of the solution was well

behaved, especially when a large part of body concerned is in plasticity.

For elasto-plastic bending of a beam, p was again used. The deflection-load curve

predicted by the mixed model was closer to the analytical solution than that by the

displacement model.

Therefore we conclude that the assumption made in this thesis is correct. In

addition to give better displacement and stress results in some cases, it possesses

another advantage which is a quick convergence.

All the solutions made by the mixed model were solved in a single load step. The

more plastic strain, the more iteration within this load step is required. However in the

displacement model, multi-load step is generally essential to solve the corresponding

problems. For a highly plastic problem, more load steps and more iterations are

needed.

Part of the reason for this is that in the mixed model, no stress correction is

performed. The solution obtained by minimizing 11ep satisfies all the equations

governing elasto-plasticity. This is simply not true in the displacement model in the

way that stresses are calculated from displacements, thus no yield condition is involved.

To perform a normal stress correction, such as predictor-radial return method, a

sufficiently small step is necessary.

For a more complex problem, chapter seven solved a fluid-solid coupling problem,

which was the squeeze of two aluminium sheets by a pair of electrodes. The

deformation and the fluid pressure of the adhesive were simulated by both the mixed

model and the displacement model. Very similar results were obtained with both

methods. This demonstrated that the mixed model is capable of solving complex cases

as well as simple cases. For the fluid-solid problem encountered in chapter seven, the

mixed model showed its convenience in handling the fluid pressure in the way that the

pressure calculated from the fluid theory can be directly applied to the mixed model as

a pressure boundary condition, instead of transforming the pressure into nodal forces

in the displacement model.
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8.2 MATHEMATICAL ASPECTS OF THE MIXED MODEL

The mixed model in elasticity yields a global matrix which is positive definite.

Therefore a standard solver for a displacement model can be used to solve the system

equation in this model. This is a advantage of this model over the other mixed models,

which may have a non-positive-definite matrix or semi-positive-definite matrix.

However, the mixed model for rigid plasticity and elasto-plasticity mentioned in

this thesis can have a non-positive-definite matrix when the iteration is far from the

solution. A simple trick is used to handle this: allow a negative diagonal terms in

LTLD solver during the decomposition of the matrix. All the results shown in this

thesis were solved by such a treatment.

Another worry may arise from the discontinuity of the functional 11ep at the

elastic/plastic boundary, which can lead to an indefinite derivative of the functional

However, numerically this will never happen. Since calculations of the derivative of

"ep are always carried out at a specific Gauss point, which is either in elastic area or

in plastic area, the value of the derivative are definite. This was verified in practical

solutions.

With regard to the conditioning of the system equation, i.e. eqs.(3.41), (5.27) and

(6.29), it is clear these equations were very badly conditioned, or ill-conditioned. This

is because that the magnitude of the diagonals of the coefficient matrices k1 , k11 and k

varied tremendously. For instance, in k1 for elasticity, the magnitude of the first

diagonal was about G2 times larger than that of the second diagonal.

Such a problem was found when material properties were taken for a metal.

However, this can be cured by redefining the general variable f3 as

T	
1/3.]I3=

The diagonals in k1 are then in a similar magnitude. A same substitution was also

carried out for the system equations for rigid plasticity and elasto-plasticity, which

largely improved the results.

The nonlinear equations in rigid-plasticity and elasto-plasticity were also to be

treated specially. Newton's method or modified Newton's method is not particularly
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good at solving those equations. Therefore, the linear-search method was used in

conjunction with the Newton's method in the way that Newton's method gives the

search direction, and then linear-search method finds the line minium along this

direction.

Such a method was used in obtaining all the results in rigid-plasticity and elasto-

plasticity. The performance of it was satisfactory, although if the initial guess is not

properly chosen the linear search might take a relatively long time to find a minimum.

8.3 SOME DRAWBACKS OF THE MIXED MODEL

With the above merits, the mixed model also has some shortcomings. Like most FE

models by mixed formulations, the enormous computing time for a solution is the most

serious problems with the mixed model. In particular, the mixed model in this thesis

belongs to the continuous mixed model, where more degrees of freedom per node must

be employed. As a result, the system equation is much larger than the corresponding

displacement model.

In addition, the mixed model for elasto-plasticity in this thesis also suffers another

problem with the computing time, which comes from the line search process. Firstly

at each iteration, a direction is found by solving eq. (6.29) by Newton's method. Then

a line search along this direction is performed to find a line minium of the functional.

Surprisingly, this stage takes even more computing time than the solution of the

linearized system equation (5.27) or eq.(6.29), which is supposed to take most

computing time in the solution. Therefore a better algorithm is desired to find the

minimum of the functional after Newton's method.

Another weakness of the mixed model is that for some kinds of problems, this

model is not robust enough. This is because that the results may depend on a couple

of penalty numbers at some degree. For example, in a bending problem, the penalty

can affect the stress and displacement results largely. Although for most problems

the penalty number is not difficult to choose, the value of it is not determined by the

system itself, but by a user, which largely depends on his or her experience.

For elasto-plastic problems, it is also required that penalty number p, for imposing

the yield condition, is to be specified. Generally speaking, the more plastic strain, the
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bigger value of it must be used. The big p tends to give more accurate local stresses

and displacement results, and it only has very small effects on the results at the global

level. Therefore this will not cause problems in reality.

The mixed model is also found to give inaccurate shear stress near a corner,

especially when one face of the corner is free and another one is subjected to a

considerable shear strain. For example at the corner of the built-in end of a beam and

at the corner formed by the electrode wall and the top surface of the aluminium sheet,

the mixed model fails to predict the shear stress correctly. The difficulties arises from

imposement of the moment equilibrium equation (3.3): at the free surface, the shear

stress must be zero, while at another face it has certain values. Only right at the corner

node, shear stresses at each face is equal to each another. However in this mixed

model, the force boundary condition is imposed in an average tense within an element,

instead of a node. Therefore eq.(3.3) will never be exactly satisfied in reality at the

boundary. As a result, this leads to a lower value of shear stress at the fixed surface

and in the near area.

In order to solve this problem, sufficiently small elements are required at those

corners, or only the stress some distance away from the corner can be used.

8.4 CONCLUSIONS AND FURTHER WORK

After three years work on this mixed model, we would like to draw the following

conclusions:

(a) The Love's stress function for axisymmetric problems can decomposed

into three first-order stress functions with C0 continuity respectively,

with which force equilibrium is satisfied, in conjunction with a constraint

to impose the moment equilibrium.

(b) The resulting mixed FE model with above stress discretization is a

continuous mixed model, which can reproduce the traction reciprocity as

well as the stress discontinuity correctly.
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(c) The mixed model for elasto-plasticity was established by a functional for

rigid-plasticity and a functional for elasticity, where elasto-plastic strain

was introduced implicitly within a plastic strain to the system. The

examples prove that this mixed model is correct. The convergence of

the solution by this model is rapid.

(d) The value of the functional at any point in a body can be used to

indicated the error of the solution by the mixed model at that point. The

bigger it is, the more error the solution is.

It is also desired that some further work be done in order to improve the efficiency and

the robustness. Firstly, the way to impose the stress boundary needs to be updated,

probably by using more accurate integration methods. This might improve the

capability of the model to give the better stress results near a corner.

Secondly, a better solution method for the elasto-plastic problems to replace the

current line search method by Brent' method is to be used, which should take much less

time to find a line minium of the function after solving the linearized equation by the

Newton's method. Alternatively, we may choose another solution method to replace

the Newton's method, and eventually discard the line-search process.

Thirdly, the hardening treatment in the elasto-plastic model needs to be extended

to include the kinematic hardening, which enables the mixed model to handle cycling

loads and predict residual stresses.
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APPENDIX A

Comparison of Differential Methods

in the Formation of Stiffness Matrices

In order to compare the efficiency and the accuracy of the numerical differential method

and the analytical methods described in chapter five, a practical differentiation of the

functional rgd are presented below. Say the deviatoric stress and strain are taken

arbitrarily as

s = [1.0, 0.0, 0.0, 0.0, 0.3 1;	 e = [1.0, 0.0, 0.0, 0.0, 0.3 1;	 k=100

Substituting above data into eq.(5. 18), the differentials from analytical method are

0.3005E+03 O.0000E+O0 0.0000E+00 O.3590E+03 0.1105E+03

0.0000E+00 O.7700E+03 0.0000E+O0 O.0000E+OO 0.0000E^O0

La - 0.0000E400 O.0000E400 O.7700E+03 O.0000EiOO 0.0000EiOO

0.3590E+03 O.0000E+0O 0.0000E+OO O.4955E^03 -O.8447E+02

0.1 105E+03 O.0000Es-O0 O.0000E+00 -0.8447E+02 0.7440E+03

-O.3897E+00 O.0000E+00 0.0000E+00 -O.4667E+00 -O.1405E^00

O.0000E+O0 -0.1000E+O1 0.0000E+00 0.0000E^00 O.0000E+00

La O.0000E400 0.0000E+00 -O.1000E+O1 0.0000EiOO O.0000E400

-0.4667E+00 0.0000E+00 0.0000Ei-00 -O.6431Es-0O O.1098E+00

-0.1436E+00 0.0000E+00 O.0000E+OO 0.1098E+00 -0.9662E+00

-O.5227E-01 0.0000E^00 0.0000E'-OO -O.6364E-01 -0.1958E-01

0.0000E^00 -O.1355E+O0 0.0000E+00 0.0000E+00 0.0000E+O0

L, 0.0000E+00 0.0000E+00 -O.1355E+00 0.0000E+00 0.0000E^O0

-O.6364E-01 0.0000E+OO 0.0000E+O0 -0.8683E-01 0.1497E-01

-O.1958E-01 0.0000E+00 0.0000E+O0 O.1497E-01 -O.1309E^00

(A.1)

For the numerical differential method, an internal variable c, which is a small constant

defined in eq.(5. 13), has to be chosen. From the theoretical point of view, the smaller

the c is, the better the approximation of the differentials can be obtained. However,

in practical calculation, the round-off error and truncated error of computer have to be

taken into account. It means that too small c is likely to bring computing error into the

results. Therefore for a particular problem there is an optimum value of c.
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In following examples, three values c = 10-2 , c = i0 , c = 10-8 are used in the

calculations and the results are listed below.

C = 10-2

O.6925E+02 O.0000E+OO O.0000E+OO O.1064E+OO O.3269E-01

O.0000E+OO O.6930E+02 O.0000E+OO O.0000E+OO O.0000E+OO

L - O.0000E+OO O.0000E+OO O.6930E+02 O.0000E+OO O.0000E+OO

O.1064E^OO O.0000E+OO O.0000E^OO O.6927E+02 -O.2497E-01

O.3269E-01 O.0000E+OO O.0000E+OO -O.2497E-01 O.6930E+02

-O.9425E+OO O.0000E+OO O.0000E^OO -04395E-01 -O.1352E-01

O.0000E+OO -O.1000E+O1 O.0000E+OO O.0000E+OO O.0000E+OO

L - O.0000E+OO O.0000E+OO -O.1000E+O1 O.0000E+OO O.0000E^OO

-O.4390E-01 O.0000EsOO O.0000Ei-OO -O.9664E^OO O.1033E-OI

-O.1394E-01 O.0000E+OO O.0000E^OO O.1032E-01 -O.9968E+OO

-O.5229E-01 O.0000E+OO O.0000E+OO -O.6363E-01 -O.1958E-01

O.0000E+OO -O.1355E+OO O.0000E+OO O.0000E+OO O.0000E+OO

L - O.0000E+OO O.0000E+OO -O.1355E^OO O.0000E+OO O.0000E+OO

-O.6363E-01 O.0000E+OO O.0000E+OO -O.8684E-01 O.1497E-01

-O.1958E-01 O.0000E+OO O.0000E^OO O.1497E-01 -O.1309E^OO

(A .2)

c=10

O.3075E+03 O.0000E+OO O.0000E+OO O.3567E+03 O.1087E+03

O.0000Ei-OO O.7615E+03 O.0000E+OO O.0000E+OO O.0000E+OO

La = O.0000E+OO O.0000E+OO O.7615E+03 O.0000E+OO O.0000E4J0

O.3567E+03 O.0000E+OO O.0000E+OO O.4997E+03 -O.8257Ei-02

O.1087E+03 O.0000E+OO O.0000E+OO -O.8257Ei-02 O.7372E+03

-O.3910E+OO O.0000E+OO O.0000E+OO -O.4657E+OO -O.1433E+OO

O.0000E+OO -O.I000E+O1 O.0000E^OO O.0000E+OO O.0000E+OO

L 1, O.0000E+OO O.0000E+OO -O.1000E+O1 O.0000E+OO O.0000E+OO

-O.4650E+OO O.0000E+OO OOOOOE+OO -O.6444Ei-OO O1094E+OO

-O.1428E+OO O.0000E+OO O.0000E+OO O.1092E+OO -O.9664E+OO

-O.5227E-01 O.0000E^OO O.0000E+OO -O.6364E-01 -O.1958E-01

O0000E+OO -O.1355E+OO O.0000E+OO O.0000E+OO O.0000E+OO

L,2 - O.0000E+OO O.0000E+OO -O.1355E^OO O.0000E+OO O.0000E+OO

-O.6364E-01 O.0000Ei-OO O.0000E+OO -O.8683E-01 O.1497E-01

-O.1958E-01 O.0000E+OO O.0000E^OO O.1497E-01 -O.1309E^OO

(A.3)
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C = 10-8

O.2998E+03 O.0000E+OO O.0000E+OO O.3619E+03 O.1132Es-03

O.0000E+OO O.76$3E+03 O.0000E+OO O.0000E+OO O.0000E+OO

L - O.0000E+OO O.0000E+OO O.7683E+03 00000E+OO O.0000E+OO

O.3619E+03 O.0000Es-OO O.0000E+OO O.4907E+03 -O.8438Ei-02

O.1132E+03 O.0000E+OO O.0000E^OO -O.8438E^02 O.7416E+03

-O.2220E+O1 O.0000E+OO O.0000E+OO O.2220E+O1 O.2220E^O1

O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO O.00OOE4O

L = O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO O.00OOEO

-O.4441Ei-OI O.0000E+OO O.0000E^OO O.0000E+OO -O.222OEi-01

O.2220E+O1 O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO

O.0000E+OO O.0000E+OO O.0000E+OO -O.4441E+O1 O.0000E+OO

O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO

L - O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO

-O.4441E+O1 O.0000E+OO O.0000E+OO -O.2220E+O1 -O.6661E^O1

O.0000E+OO O.0000E+OO O.0000E+OO -O.6661E+O1 O.0000E+OO

(A.4)

It is seen in eq.(A.2) to eq.(A.4) that the results of the numerical algebraic are largely

dependent on the value of c. When c = 10-2 , it gives good results of but bad ones

of Ldd and LdS, while when c = 10 8 , it gives excellent results of Ldd , but the results

of LdS and	 are disastrous in comparison with the analytical one in eq.(A. 1). Only

the choice of c = l0 enable the numerical one to yield good results for all the

differentials. Therefore the best choice of c for these specific s and is iO4. The

difficulty is that we do not know which value of c should be the best choice for every

deviatoric stress s and strain rate !, while there is no such a problem at all for

analytical arithmetic. Let us look at the computing time needed for both the algebraic

on SUN sparc workstation.

Table 1 Computing time of two differential algebraic

computing time(seconds) 	 1,000 times	 10,000 times

analytical arithmetics 	 1.198 seconds	 12.00 seconds

numerical arithmetics 	 38.77 seconds	 387.90 seconds
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Comparison of the Differential Methods

do same numbers of differentials. Together with the higher accuracy and numerical

stability, the analytical algebraic obviously proves to be the better approach for the

functional rlrgd.

The similar conclusion exists in the differentiations of functional	 for elasto-

plasticity in chapter six.
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minimization. If the function is nicely parabolic near to the minimum 	 surely the

generic case for sufficiently smooth functions then the parabola fitted through any

three points should take us a single leap to the minimum, or at least very near to it, as

seen in fig.B.1.

Fig.B. 1 The schematic configuration of golden-section search.

Since we want to find an abscissa rather than an ordinate, the procedure is technically

called inverse parabolic interpolation. The formula for the abscissa x which is the

minimum of a parabola through three points f(a), f(b), and f(c) is

= b +! (b-a)2[f(b) -f(c)] - (b-c)2[f(b) -f(a)]	 1)
2 (b-a) [f(b) - f(c)] - (b-c) [f(b) - f(a)]

This formula fails only if the three points are collinear, in which case the denominator

is zero (minimum of the parabola is definitely far away). Note, however, that eq.(5.35)

can jump to a parabolic maximum as well. No minimization scheme that depends

solely on eq. (B. 1) is likely to succeed in practice.

A marvellous scheme is to rely on a sure-but-slow technique like golden-section

search when a function is not cooperative, but switch over to eq.(B. 1) when the

function allows. However a few difficulties need to be overcome1122'

a) The housekeeping needed to avoid unnecessary function evaluations in switching

between the two methods can be complicated;

b) Careful attention must be given to the "end game", where the function is being

evaluated very near to the round-off limit of eq.(B. 1);

c) The scheme for detecting a cooperative versus non-cooperative function must be

very robust.
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Brent's methodE122] (1973) is a excellent scheme to achieve such a task. It is keeping

track of six function points, a, b, u, v, w, and x, not all distinct. Initially (a, b) is the

interval on which f is defined, and

v=w=x=a+( 3 5)(b-a)

the magic number	 =0.381966... is rather arbitrarily chosen so that the first step

is the same as for a golden-section search.

At the start of a cycle the points a, b, u, v, w, and x always serve as follows: a

local minimum lies in [a, b]; of all the points at which f has been evaluated, x is the

one with the least value of f, or the point of the most recent evaluation if there is a tie;

w is the point with the next lowest value of f; v is the previous value of w, and u is the

last point of which f has been evaluated.

Let m =(a+b) be the mid-point of the interval known to contain the minimum.

If k-mi ^2tol-(b-a), then the procedure terminated with x as the approximate

position of the minimum. Otherwise, a inverse parabolic interpolation will be used on

the three point (v, f(v)), (w, f(w)) and (x, f(x)). Modified slightly to avoid the collinear

case of v, w, x, eq.(B. 1) now is presented by p and q,

/	 1
x =x+.p/q

where

p = (x-v)2 [f(x) - f(w)] - (x_w)2 [f(x) - f(v)]

q = (x-v) [f(x) - f(w)] - (x-w) [f(x) - f(v)]

If two or more of three points coincide, or the parabola degenerates to a straight line,

then q = 0, the program will automatically turns to perform golden section search.

Normally the correction plq should be small if x is close to a minimum. Let e be the

value of p/q at the second last cycle. If Jei ^Tol or p/qI ^ 1/21e1, then a golden

section search step is performed.

(B.2)

126



AppendL C
	

Translation between von Mises and Tresca

APPENDiX C

Translation between results from von Mises and Tresca

In the analytical solutions it is quite normal to use Tresca's yield condition for a elasto-

plastic or rigid plastic problem. On the other hand, von Mises's yield condition is

proven to be the better one in the most situations and is extensively used in numerical

solutions, such as in finite element method. In order to compare the results obtained

from these methods, a proper interpretation is necessary.

In most situations, the direct relation between these two yield conditions is not

clear. However, if the problem concerned is in plane strain condition, a simple relation

does exist.

Let three principal stresses be 0 1, 2 and a3 . From Hooke's law, we have

=	 (C.1)

Plane strain condition requires that 	 = 0, which leads to

= 0
(C.2)

or	 =

and = = 0, which means that o is one of the principal stresses, say o. It is

known that in plane problems (o + o,) is equal to the sum of the rest two principal

stress, i.e. (a 1 +a2) 1101 . Remembering that in a plastic region Poisson's ratio v

0.5, eq.(C.2) is then equivalent to

03 = I(a 1 +a2)	 (C.3)

On the other hand, we have the second deviatoric stress invariant J expressed as

= [(i -a2)2 +(c2 -a3)2 +(a3 -a1 )2]	 (C.4)

Substituting eq.(C.3) into eq.(C.4), it follows
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=	 (i - cr)2	(C.5)

von Mises yield condition can be expressed in terms of J as

= cry
	 (C.6)

With expression of J in eq.(C.5), it is straightforward to describe von Mises yield

condition in terms of two principal stresses as

__(cr 1 — cr2)=cry	 or
	 2	 (C .7)

On the other hand, Tresca yield condition can also be described by those principal

stresses as

	

= cry	 2K
	

(C.8)

The only difference between eq.(C.7) and eq.(C.8) is that yield stress is expressed

differently: in von Mises condition, it is JI2 cry while in Tresca condition, it is cry.

Above arguments enable us to translate results solved in Tresca condition to those

in von Mises condition. The process is very simple: replace f/2 cr ) for cry, then solve

it in Tresca condition. The results obtained is equivalent to those solved in von Mises

condition.

For 3D problems, such a simple translation is not normally available except for the

uniformly expansion of a sphere where cr,7, and cr are naturally three principal

stresses crp cr2 and cr3 . They are not independent but

cr2 = cr3 	(C.9)

Substituting eq.(C.9) into Jexpression in eq.(C.4) the von Mises yield condition turns

out to be identical to eq.(C.8), which is Tresca yield condition. Therefore, the

conclusion is that for uniformly expansion of a sphere elasto-plastic solution under von

Mises yield condition yields identical results to those under Tresca yield condition.
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APPENDIX D

Thermo-Mechanical Simulation of the Spot-Welding Process

D.1 REVIEW OF THE STUDIES IN SPOT-WELDING

D.1.1 Experimental and Numerical studies of the Thermal Problem

A number of experimental efforts have been made on gaining greater insight into nugget

formation by monitoring the temperatures involved in and around the weld. Bentley

et al 71 , Lee and Nagel 571 , Cho and Cho 221 , and Sheppard'°°1 related metallurgical

changes in a number of semicompleted welds to the peak temperatures seen at locations

in the weld region at various time in the weld cycle. Lee and Nagel 5'1 as well as Kim

and Eager 50 ' 521 made a number of high speed films of half welds painted with thermo-

sensitive paint in order to measure the movement of isotherms during welding. This

technique vividly shows temperature patterns. Also, Kim and Eagert50521 used infrared

monitoring of the surface of both the electrode and sheet. More recently Han 37' used

a slotted weld specimen that allowed for a thermal couple to be placed in heat effective

zone(HAZ). Alcini 2 ' 31 used a half-weld technique which uses multiple bendless

microthermal couples for temperature measurements.

These empirical studies are able to provide valuable temperature data. However

the experimental techniques do have their limitations. Unsealed half welds lack the

ability to retain molten metal along the exposed surface, and therefore cease to emulate

a full weld after welding has initiated; surface techniques do not allow for faying

surface or internal temperature to be monitored; thermocouple data gives temperatures

only at selected points. Also, the metallurgical technique uses phase changes to flag

the passage of a particular temperature, but is not able to give a description of the

overall temperature field. Finally, several of the techniques require expensive

equipment. These shortcomings make computer simulation an attractive tool for

complementing experimental temperature studies1011.

Rice and FunkL95] developed a one-dimensional finite difference simulation with

which these researchers got the functional relationship between electrical contact
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resistance and temperature when two thin sheets are welded together. A combined

analytical-experimental approach was used in developing this relationship. Kaiser et

a!1491 used the same approach as ref. [95] for estimating the contact resistance for the

one-dimensional model. Houchens, Page and Yang 1431 developed a one-dimensional

finite difference method to study electrode temperatures in the hope of improving

electrode life. In 1987, Gould1351 presented a combined experimental and analytical

study on nugget formation where a one dimensional finite difference formulation was

used again. Although information on the nugget depth could be extracted from the one-

dimensional analysis, the effect of the diameter which is important for the mechanical

strength of the weld could not be deduced. A two-dimensional finite difference

simulation of spot welding was developed by Greenwood 136 . It assumed: there is no

electrical contact resistance; material properties are constant with temperature; and no

heat is lost from free surface. Houchens et a1 1431 later extended the same approach to

include the effect of temperature dependant properties. In 1984, a two-dimensional

finite element method was used by Nied1751 to compute the temperature distribution

from an electro-thermal simulation.

More recently Cho and Cho1221 , Han et a! 1371 , Tsai et a111141 , Reddy and

Sharma1911 , and Kim1511 presented numerical studies of the thermal cycling in resistance

spot welding of sheet steel. Works [22], [37] and [91] were based on the finite

difference formulation, while [114] and [51] used the finite element method. All studies

assumed that the size of the contact area at the faying surface remain constant

throughout thermal cycling and the truncated copper electrode were selected which

means no change in the contact area of the electrode-sheet surface occurs.

D.1..2 Thermo-Mechanical Simulation by FE Method

In the work mentioned above, it is evident that the thermo-mechanical coupling of the

resistance spot welding process was inadequately explored. Most of the mathematical

models were devoted to analyzing the thermal behaviour of the process under different

sets of parameters, while neglecting the major role of the mechanical and thermal

stresses involved in the process.

In 1984, Nied t75l used a finite element package known as ANSYS to introduce an
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axisymmetric model which included the geometry of electrode and workpiece, and

accounted for temperature dependant thermal properties, melting and Joule heating.

Predictions of electrode and sheets deformations were illustrated and stress distribution

along the interfaces were also obtained. It solved the thermo-mechanical problem in a

coupled manner but did not change the contact area in the faying surface, and all the

mechanical solution was based on elasticity. Tsai 141 used a similar method in studying

nugget geometry.

In 1990, Kim et a11531 used a coupled electro-thermo-mechanical finite element

method to investigate the fundamental parameters controlling the weld quality. It was

a very successful model where elasto-plasticity and changes of the contact area were

accounted for. Unfortunately, it can only be used for the truncated electrode. For the

curved electrode, the numerical approach would be much more complicated.

So far, although the studies mentioned before involved both electro-thermal and

thermo-mechanical aspects, the main purpose was to study the thermal phenomenon

rather than the mechanical one, and mechanical simulation is used as a tool to get the

pressure and contact area for thermal studies.

Where good fatigue performance 11011 is a requirement it is important to be able to

estimate any residual stresses. Residual stresses are introduced into a part whenever

nonuniform heating and cooling result in plastic deformation. These stresses are often

difficult to measure and their presence can largely influence fatigue performance. For

example, Lawrence, Corten and McMahon 561 experimented with post-weld coining of

spot welded joints which introduces compressive residual stresses in the HAZ and found

life improvement of joints when compared with joints in the as-welded condition.

Measured values of residual stress in the weld region fell from 92% of the tensile yield

strength in the as-welded condition to 74% of the compressive yield strength in the

coined condition. Widmann 1211 found that tensile-shear plug weld specimens that had

been heat treated subsequent to welding shown improved fatigue life. Concluding that

the presence of residual stress partially (if not totally) results in this change in fatigue

performance is supported by Boltont91 who found that post weld heat treatment could

reduce the residual stresses in spot welding by as much as 50%. Schoepfel 991 found

that water quenching the HAZ of a tensile-shear plug weld immediately after weld

termination also improved fatigue performance by more than doubling the life.
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However the residual stress studies of spot welding by numerical methods are rarely

found in the public literature.

P.1.3 Researches in Spot-Welding Group

The Spot Welding in Aluminium group in the Newcastle University has devoted itself

to numerical simulation of both thermal and mechanical behaviour during spot welding

and is supported by Alcan International Ltd. The difference of the current studies

from others exists in that Fmite Difference Method(FDM) is used for the electro-

thermal solution, while Finite Element Method(FEM) for the thermo-mechanical

response. Therefore advantages of finite difference method in electro-thermal solution

and finite element method in thermo-mechanical stress studies can be fully utilised. In

addition, because we used the curved electrode in the FEM simulation, it allows us to

use the electrode curvature as a additional control parameter in the spot welding

process.

In order to handle this electrical, thermal and mechanical coupling problem

efficiently, the research work was divided into two parts;

1 Axis of Symmetry

Fig. D. 1	 Finite difference model for the electric-thermal simulation of the spot-
welding"]
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a. Electric-thermal simulation

This work has been done by Browne[ ' 3 ' 14] where a axisymmetric finite difference model

has been developed and a large number of results have been obtained concerned with

the effect of thermal conductivity, contact resistance and water cooling position on the

nugget formation. The electric current, its duration, material properties of electrode and

sheets, and the geometry must be supplied for this model. The main output is the

temperature distribution in the sheets and electrodes during the welding process. The

finite different mesh used in this study is shown in Fig.D. 111131

b. Thermo-mechanical simulation

Fig. D.2	 Finite element model for the thermo-mechanical simulation of the spot-
welding.

An axisymmetric elasto-plastic finite element model was developed for the thermo-

mechanical simulation. The contact area and pressure of electrode-sheet and faying

surfaces at any stage of welding can be obtained by giving the temperature dependant

material properties from DATA FILE and the temperature distribution data from the

FDM solution. The finite element model is shown in Fig.D.2, where only one quarter

of the whole geometry is needed for the model because of the symmetry conditions of

geometry and loading.
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These two programs are combined in one integrated package. An interface was

designed to transmit the required data between these two program. Eventually the

package will output the temperature field, the deformation of electrode and sheet, the

stress in electrode and sheet in hot condition and the residual stress of sheets after

terminating the welding for various cooling processes.

The source code for the finite difference model(FDM) was written by Browne for

a Pascal compiler operating in UNIX system on SUN Spark station. The program for

the FE model was written by author for a Fortran compiler also operating in UNIX on

SUN Spark station. The integrated program runs in the manner in which FDM uses

FEM as a single procedure.

This appendix will only be concerned with the finite element simulation of the

thermo-mechanical problem.

c. Simulation of the adhesive between aluminium sheets

The interest of simulating the adhesive between aluminium sheets arises from the

practical welding. It is found in some welds, there are remains of the adhesive at the

central area of the faying surface. This may lead to a poor weld due to lack direct

contact between two aluminium sheets.

As far as the mathematics is concerned, there should always be an entrapment of

fluid when a viscous fluid is pressed by a flat disc1741 . In other words, it is impossible

to entirely rule out the entrapment theoretically.

Our study is aimed at providing some ideas about how to control the size of

entrapment such that it will not effect welding in engineering practise. A Fluid-FE

model is proposed to analyse the deformation of the adhesive under squeeze force.

D.2 FE MODELLING OF SPOT WELDING

Simulations of the spot welding process can be classified as a 3D thermal-elasto-plastic,

large-strain problem. To simplify this problem, an 2D axisymmetric elasto-plastic,

small-strain finite element model was developed for the cold condition and later

developed to include the effect of temperature on the yield strength and the thermal
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strain.

In the case of sheets with equal thickness and equal electrode geometry, only one

quarter of the model has to be constructed due to geometric symmetry, as shown in

fig.D.2. 4-noded isoparameteric elements were used to represent the electrode and the

aluminium sheet.

C

A

Fig. D.3 The boundaries in the FE mesh representing the aluminium sheet.

In order to discuss the boundary condition, the FE mesh for aluminium sheet is

presented in fig.D.3. On boundary B the radial displacements are all zero while the

vertical ones are free. On boundary A, the faying surface, the vertical displacements

can only be positive or zero because the sheet-sheet surface can part but can not

overlap, and no tensile traction exists in vertical direction. The boundary conditions

on C are more complicated and will be discussed in next section in detail.

The material model used for representing the elasto-plastic problem is Von Mises

linear isotropic hardening model. Modified Newton's method was used to solve the

nonlinear system equation sets for this elasto-plasticity.

Because the curved electrode was used in the simulation, the modifications

concerned with the constraints on boundary C must be made to handle it as contact

problem. Two treatments used in this study will be presented below.

D.2.1 Simple Contact Treatment at Surface A and C

The assumptions used in this simple model are, a) electrodes are rigid enough that there

is no deformation occurred; b) as long as the final configuration of sheet coincides with

the electrode, the actual history of deformation in the contact area is not important since
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there is no unloading occurred in the sheets when they are cold.

(a)
	

(b)

Fig.D.4 The actual contact pattern and the one used in the FE model with simple
contact treatments.

Obviously, with above assumptions the contact problem can be solved by specifying the

displacement loading on the sheet with the same shape of the electrode by a usual FEM.

No electrode appears in the FE mesh. When solved by an incremental method, the

final displacement load was divided into a number of steps as shown in Fig.D.4(b).

Clearly the actual process should be like the case in Fig.D.4(a). We think the

differences between the cases in Fig.D.4(a) and Fig.D.4(b) are small due to the

mp1 o3\ ks>.

The boundary conditions on the faying surface must be specified carefully. Firstly,

it is assumed that all nodes on the faying surface are contact, which means these nodes

are constrained. Then the reaction forces of the nodes on the faying surface can be

obtained. Since it is not true for every node to be contact, some tensile force will be

found on some nodes, which should be released by allowing them to go free as in

Fig.D .5(a).

Fig.D.5 Handling the boundary conditions at the faying surface.

Secondly, after we adjust the contact nodes during the first stage, the model is solved
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and then the contact condition will be checked again. However at this time both

reaction forces and deflection of the nodes at the faying surface need to be used. When

all the reaction forces are compressive (this is possible when contact area is not large

enough), the deflections of the nodes should be checked. If any node cross the faying

surface is found, as shown in Fig.D.5(b), additional constraints should be imposed.

The above steps will form small iterations, and final solution will be reached when

there are both no tensile force and no negative displacement on the faying surface.

After the solution, the contact area can be obtained by counting the number of

contacting nodes at the faying surface. The reaction forces of the nodes at the faying

surface were added together and formed inversely the external loading required on the

electrode to achieve such contact situation.

There are two models used to represent the situation of the interface between the

electrode and the sheet: Slip model and No slip model

• Slip	 There is no friction existed on the electrode-sheet surface. The

displacement in radial direction is totally free.

•No s1ip The friction on the electrode-sheet surface is so large that there exists no

relative movement on such surfaces.

Tne mthn aàvaraage of trñs contact model is that any conventional finite element

program can be used to solve the contact problem in the spot welding. However the

shortcomings of it are obvious. Usually, we give the load by forces rather than

displacements. When you first give the displacement loading, you can calculate the

external loads from the reaction forces, which is often not equal to the force you intend

to apply. Thus you have to adjust the displacement loading again and again to meet the

actual load condition. Furthermore, this method cannot give the deformation and stress

state of the electrode, and the rigid electrode assumption is often not correct.

D.2.2 Full Contact Treatment

Consider two bodies A and B. We discretize problems into finite element models by

the standard method, except for the contact surface where pairs of nodes are designated
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as candidates for contact as shown in

Fig.D.6. The assumptions are as follows:

• displacements and strains are

small,

• the contact surface is continuous

line or curve,

• the frictional force acting at the

contact surface follows the

Coulomb type criterion for

friction.

A

Fig.D.6 Two contact bodies A and B

Let and be the nodal displacement and nodal force at the contact surface, where

the subscript j indicates the body identification and i the direction. The displacement

and force increments must satisfying the following equilibrium equations and continuity

conditions for dIfferent contact conditions, which can be expressed as the following

mathematical formulations:

1. Open conàition: gap remains or becomes open

Ai'?Bi =	 ^ 0
qAi —qB	 (i=x,y)

2. Stick condition: gap remains closed and no slipping occurs,

- 'Bi	 > 0
- qB + tsi = 0	 (i=x,y)

3. Slipping condition: gap remains closed and slipping occurs.

= - ERBi 1R> 0
qAi —qBl +=O

(when slipping is in the x-direction)

Here, ô is the initial relative displacement which is zero except for the initial state,
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in [ref.141.

The highest temperature is near the centre of the faying surface, which may be

higher than 1000° K and the temperature gradient is significant over the whole area of

sheets and electrodes.

For the numerical simulation used in this study, the temperature effects were

accounted for by two aspects,

D.3.1 Temperature dependant material properties

The material properties concerned with thermo-elasto-plastic are:

E:	 Young's modules

Poisson's ratio

H/M: Hardening modules

oy:	 Yield stress

c:	 Coefficient of linear thermal expansion

Tewperaflire (C)

D.8 The temperature dependant properties of low carbon steel.

Except Poisson's ratio that is thought to be independent of temperature, all other

properties are functions of the temperature. For low carbon steel the functions are
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shown by Fig.D.8153].

0	 100 200 300 400 500 600 700 800 900 1000

Temperature/c

Fig.D.9 The temperature dependant yield stress of aluminium.

About aluminium, unfortunately, we have not got so much information. We used

only temperature dependant yield stress in the program, which is thought to affect

greatest on plastic strain and residual stress. The data was supplied by Alcan ltd and

is shown as Fig.D.9.

D.3.2 Thermal strain effects

The thermal strain is usually interpreted as "initial strain". The Hooke's law can

be written in elasticity by811

*	 0	 0o• =D(c- )a-o

to handle the thermal problem.

When the incremental method is used to solve the elasto-plastic problem, the initial

stress status caused by thermal strain is computed before any external force is applied.

There maybe exists plastic strain. The thermo-mechanical stress under external force

is then superimposed upon the thermal stress and strain just obtained.

For plane stress situation, thermal strains are simply presented by
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- aT;	 = 0

eO_O

€ -'	 €yz -

where a is the coefficient of linear thermal expansion and T is the temperature

measured from an arbitrary data. It is required for plane stress situation that initial

stress component in the through-thickness direction	 be zero.

For plane strain, the through-thickness initial stress 	 is non-zero but the

corresponding strain component 	 is required to vanish. Consequently,

= (1 + v) aT;	 = 0

= (1. + v'j cIT;	 = 0

cr°=-EcxT;	 c0=O

where v is the Poisson's ratio for the material.

D.4 RESULTS AND DISCUSSION

As discussed in the last section, the full contact model has to be used when unloading

occurs at high temperatures. Therefore the thermo-mechanical simulation will be

performed by using this full contact model. In studying geometrical effect of the

electrode on mechanical contact in cold conditions, the simple contact model will be

used to simplify this slightly more complicated problem.

D.4.1 Geometric and Material Parameters

Basically, the aluminum sheets are modelled as a rectangle with a thickness H and

radius R5. The electrode is constructed as a curved head with the curvature of Rh and

the radius of electrode is R. In the centre there is a space for water cooling with

radius R. The height of the cooling area and the electrode are Hd and H,

respectively.
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side A

Fig.D. 10 Schematic structure of a electrode in spot welding.

The force is applied by distributing a pressure on side A of the electrode in our model

instead of the shear force on side B as observed in practice. The difference between

these loading configurations is thought to be very little since either side A or side B is

far away from the location concerned. The schematic figure of the geometry is shown

in Fig.D.l0. The constants concerning geometry and material properties of both copper

imd mtn'um ie is1ed folos,

Tab.D.1 Material and geometrical constants

Material constants	 Young's Modular Poisson's ratio	 Yield stress(cold) 	 Plastic Modular

of aluminium

	

70000MPa	 0.25	 158MPa	 294MPa

Material constants	 Young's Modular Poisson's ratio	 Yield stress(cold)	 Plastic Modular

of copper

	

126000MPa	 0.25	 56OMPa	 294MPa

Sht. thickness	 Sht. radius	 Elc. radius	 Col. radius

	

H = 2.00mm	 R, = 20.0mm	 R =5.0mm	 R = 2.0mm
Geometric_________________ _______________ _________________ ________________

constants	 Elc. curvature	 Elc. heigbt	 Col. height	 Distance

	

Rh = 50.0	 Hd = 6.0mm	 Hd = 2.0mm	 Hd-Hd=4.Omm
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D.4.2 Deformation and Stress of Electrode and Sheet
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z
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Radius(rnxn)

Fig.D. 11 Pressure at the faying surface and at the electrode in cold condition.

(a)

(b)

Fig.D. 12 Deformations of aluminium sheets under squeeze force. (a) Predicted by
slip model; (b) by no slip model under cold condition.

In cold condition the pressures at the faying surface and the electrode-sheet surface are

shown in Fig.D. 11. The initial contact areas at both surface are defined by their radii,

which are:	 = 2.23mm and r, = 2.69mm. The whole deformed aluminium sheets

1.0	 1.5	 2.0	 2.5	 3.0	 3.5	 4.0	 4.5	 5.0

P10'
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are reconstructed from the deformed FE mesh which is only a quarter of it, as seen in

fig.D. 12.

When electrical current passes through the sheets, the temperature builds up and

the yield stress of the material drops. This causes the redistribution of the stresses and

the changes in the contact area. The modification of the contact area can in turn affect

the electrical resistance of the welding.

0	 1	 2	 3	 4	 5	 6	 7	 8

0	 1	 2	 3	 4	 5	 6	 7	 8

Number of cycles

Fig.D. 13 The contact areas at both the faying surface and electrode surface at each
cycle of the current.

The contact areas of both the faying and electrode surfaces at each cycle of current

are shown in Fig.D. 13. The pressures on both surfaces at cycle 0, 4 and 8 are shown

in Fig.D.14 and Fig.D.15 respectively.

In Fig.D. 13, the contact area of both the faying and the electrode surfaces have a

tendency to increase with the increasing number of cycles. The changes are larger in

the beginning since there are tremendous changes in material properties as temperature

increases. These changes are observed until at the fifth cycle. After this, both contact

areas remain almost constant. This is probably because no further significant
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redistribution of stress and strain takes place during these cycles.

5*101. _0;5

	 1:0	 1b	 20	 2:5	 30	 3 ; 5	 40	 l5	
5j0510.

	

0*1001	
I	 I	 1 -	 I	 I	

0*100

	

0.0	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0	 3.5	 4.0	 4.5	 5.0
Radius(mm)

Fig.D. 14 Pressures at the faying surface for some cycles of the current.
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Fig.D. 15 The pressures at the electrode surface for some cycles of the current.

At the faying surface, we also find some decrease of the contact area, which can be

explained as the larger plastic deformation at the centre area causes the two sheets to

separate more than before, thus reduce the contact area. Obviously this will not occur
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at the electrode surface.

Pressures at the faying surface in Fig.D. 14 are well behaved when everything is

cold. However at cycle No.4 and cycle No.8, some oscillation of the pressures is

found. In the central area the pressures are released because of the decreased yield

stress in this high temperature area. The compressive area at the faying surface is also

seen to be larger than at cycle No.0.

For a numerical simulation, the situation for the electrode surface is more difficult

to handle because the surface condition is more complicated. This is why even in cold

condition, the pressure at the electrode surface proves to be unstable, as found in

Fig.D.11 and Fig.D.15. However the results in Fig.D.15 do show reduction of the

pressures after heating in central area of welding, and the maximum pressures at cycle

No.4 and cycle No.5 are located at about 1.5mm away from the centre of the electrode.

The reason why the maximum pressures move outwards is partly because the outer

material is colder than at the centre, and thus it has a higher yield stress. As a result,

damage of the electrode surface will be more likely in these areas.

D.4.3 Effects of the Profile of the Electrode

The profile of the electrode plays a very important role in the welding process. It can

affect the contact area of both the faying and electrode surfaces which may cause

changes in the electrical resistance. The shear stresses on both surfaces, are also a vital

factor. They break down the electrically insulating layers on tne M'urrñiñ'em snets

enable welding to start.

However, it is quite clear that at the faying surface, which is the symmetric plane,

no shear exists. Of course, the real welding process is more complicated and cannot

be fully modelled by a purely mathematical system. But the model can give us some

idea how to modify the profile of electrodes such that shear stresses at the faying

surface will be produced.

Three pairs of electrodes, male-male model, male-flat model and male-female

model, aimed at studying shear stress at the faying surface are proposed as shown in

Fig.D. 16.

This time we use the simple contact model to handle this situation. No
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Male-male model
	

Male-flat model
	

Male-female model

H Li H
P1
	 Li

Fig.D. 16 Three electrode models for creating shear stress at the faying surface.

temperature effect was included in the study. The shear stresses and normal stresses

are presented in Fig.D.17 and Fig.D.18.

The shear stress in the male-male model, which is most close to the real one, is

insignificant, while the male-female has largest shear stress among them. The male-flat

model has fairly big shear and has about the same normal pressure as that in male-male

model, as shown in Fig.D.18.

0.0	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0
60	 -1-60

0.0
	

0.5	 1.0	 1.5	 2.0	 2.5
	

3.0

Fig.D. 17 Shear stresses at the faying surface.
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0.0	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0

0.0	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0

Fig.D. 18 Normal stresses at the faying surface.

Compared with the male-male and male-flat models, the male-female model has only

about half the contact pressure, which means that it may lack the compressive force to

keep the two sheets in full contact. Therefore, to achieve a best weld, our study

suggest that the best pair of electrode should be the male-flat model.

In addition to choose a optimum profile of the electrode, the mathematic model can

also give us the information about what and how the welding process is influenced by

a worn electrode.

Fig.D. 19 shows two models of the electrode in the cold condition: Flat-curved

electrode and Slope-curved electrode. The former one is to simulate the electrode

which is worn and becomes flat in the centre area.

The pressures on the faying surface by this model are shown in Fig.D.20, where

four different r0 are used to represent different degrees of wearing of the electrode.

The pressures change tremendously but there are always pressures in the central area,

which means that the sheets are kept together no matter how much wear the electrode

has undergone. In the meantime, the contact areas at the faying surface increase largely

when r0 increase, which may affect the temperature distribution because the electrical
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resistance is varied.

Flat-curved electrode	 Slope-curved electrode

Fig.D. 19 Two models for studying of a worn electrode

On the other hand, the Slope-curved electrode is an extreme case of a damaged

electrode, which is designed to show whether it is possible for the two aluminium sheets

to separate in the central area when a badly damaged electrode is used.

Fig.D.21 shows pressures under four different r0. When r0 increases under

external load of 8kn, the pressures in the central area decrease. If r0 = 4.0mm, i.e.

80% of the radius of the electrode R, the pressure at the centre is zero. This means

that separation may occur between two aluminium sheets. This can also take place

when less external load (3.5kn) is applied while r0 = 3.5mm, i.e. 70% Of Re.

However these extreme cases are unlikely to happen since in Fig.D.15, the most

probable position for an damage at the electrode tip is at about 30% of Re at the

electrode surface.

D.4.4 Deformation of the Adhesive under Cold Condition

Say an adhesive is used to attach two aluminium sheets together with viscosity at cold

condition. The deformation of the adhesive under the squeeze force is affected by

following parameters:
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Fig.D.20 Pressures at the faying surface in the Flat-curved model.
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Fig.D.21 Pressures at the faying surface in the Slope-curved model.

Loading profile: F(t) determined by FT and fi = FT I F1,T;
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• Viscosity of the adhesive: ji;

• Yield stress of aluminium sheet:

• Thickness of aluminum sheet: H;

• Radius of the electrode curvature:Rh.

The size of the entrapment is represented in terms of volume of the shaded area in

fig.D.22.

z

d adhesive

:rrnedadh:i:

faying surface
\_entrapment

Fig.D.22 The size of the entrapment is presented by the volume of the shaded area.

The simplified load process is presented by an exponential function with different rates

of , as shown in fig.D.23. Various deformations of adhesive under different load

profiles are also presented in this fig.

0.0	 0.1
0.3j

'025
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•	 0.2
V

.0

-. 015
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•	 01
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Fig.D.23 Load profile F(t) assumed as a exponential function. The deformations
with different $ under FT= -S000kn, = 1000PaS, 03 = 1.58MPa.
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It is clearly found that the minium thickness of the adhesive after deformation is at

about 1.5mm away from centre. Therefore if two aluminium sheets eventually contact,

there is a space that "traps" a small amount of adhesive.

Fig.D.24 Formation of the entrapment of the adhesive at the same condition as
fig.D.23.

Fig.D.24 shows that how the "entrapment" is built up. When 30% of FT is achieved,

no entrapment is found. This is because that the curve electrode presses the centre part

of the aluminium sheet more than outer range. With further increase of the load to

70%, the entrapment can be identified. This may cause by yielding of the centre part

of the aluminium sheet. Finally at 100% of FT, more deformation of adhesive is

caused. The volume of trapped adhesive is increased too.

It can be anticipated that the yield stress of the aluminium and the viscosity of the

adhesive play a important role of the entrapment. In flg.D.25, it is shown that

entrapment increases with the higher viscosities of adhesive. With regard to the yield

stress, the situation is that the entrapment decreases with the lower cry,. It is also

noticed that when very high cr is used, i.e. 200MPa, there is virtually no entrapment

found.

Other parameters such as the thickness of the aluminium sheet H and the radius of

the electrode curvature Rh also have effects on the entrapment in some degree. Our
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0	 1	 2	 3	 4	 5	 8
radius(mrn)

Fig.D.25 The effects of viscosity on the deformation of the adhesive. FT=-5000kn,
a=1.58MPa, H=2.Omm and Rh=5O.Omm.

0	 1	 2	 3	 4	 5	 6

0	 1	 2	 3	 4	 5	 6

Fig.D.26 The effects of yield stress on the deformation of the adhesive. Fr=-
5000kn, =1OOOPaS, H=2.Omm and Rh=50.Omm.

task is to fmd a parameter which can include all the parameters and also directly related

to the size of the entrapment.

Say a is designated as such a dimensionless parameter and v* is dimensionless
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volume, i.e.

FTv	 =!..	 ,

	

R,	 crYRhH

If dimensionless parameter a calculated with three different value for each parameters

is plotted against the dimensionless v, then a very interesting relationship between is

found, as seen in fig.D.27. v varies with a nearly parabolically. In other words, to

minimize the entrapment can be achieved by carefully choosing a set of FT, Rh, H and

such that a is small enough.
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Fig.D.27 Dimensionless volume v' vary with dimensionless parameter a.
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APPENDIX E

Fortran Program MIXEP.F for ELASTO-PLASTICITY

c	 program penalty function,tape5=input
c	 *output, tape8=output, tape4 , tapel3)
C**********************************************************************L
C	 elastoplastic program ******
C	 SUN & HP version
c	 first order stress function and displacement variable-----
c	 mixed-fern package for plane and axisymmetric
c	 using Newton's method in incremental form
c	 and changed the integration method in axisymmetric
c	 situation, program has been tested.
C
c	 variational equation:
c when ps>=0
c	 L= s*d - sqrt(s*s)sqrt(d*d) - rho*ps'-2 - rho*e"2
c when ps<0
C	 L= _2G*d*d - k*e2
c The general variable B is dimensionless by replacing F by F/2G
c	 designed by J.Wen
c*	 * * ** *** * *** * *** ** * ****************************************

implicit double precision(a-h,o-z)
parameter (nmax=4000, tol=l.Oe-4)
external sign, dmax, dmin, delt, times

dimension ifpre(5,l000),lnods(500,9),leqns(45,500),coord(10002),
*	 force( 4000),props(l0, 5) ,mhigh( 4000), matno(500),
*	 dispt( 4000),posgp(4) ,weigp(4),stifi(200000),
*	 maxai( 4000),bline(4,500), presc(3,l00), gpcod(2,4500)

common stres(5,4500) ,strin(5,4500) ,strdd(5,4500)
common /dfunc/pcom(nmax), xicom(nmax), ncom
read(5, *)trial,niter

open( 5, file= 'mixep. in' , status= 'old')
open(8,file='mixep.ou' ,status='unknown')
open(4,file='fortO4' ,status='unknown')
open( 13, file= • fort.13 , status= 'unknown')

call contol (ndofn ,nelem ,nrnats ,npoin
C

call inputd (coord
*	 ngaus
*	 props

ncom=npoin*ndofn
do 20 i=1,ncom
dispt(i)=0.0

20	 pcom(i)=0.0
rho=1.0e20

C

,presc ,lnods ,matno ,ndime ,ndofn ,nelem
,nmats ,nnode ,npoin ,nstre ,ntype ,posgp
,weigp ,nbdis ,nline ,bline

C

call linkin (force ,ifpre ,npoin ,leqns ,lnods ,maxai
*	 nwktl ,mhigh ,ndofn ,nelem ,neqns ,nnode

do 1000 iiter=1,niter
write(6, ' (lx,6hiiter=,i5) ')iiter
write(4, ' (lx,6hiiter,i5) ')iiter
call gstiff (coord ,stifi ,leqns

nwktl ,ndime ,ndofn
nnode ,npoin ,nstre
posgp ,dispt ,neqns
ifpre ,rho	 ,presc
trial)

do 100 icom=1,ncom
xicom( icom)=dispt(icom)

continue

,lnods ,matno ,maxai
,nelem ,ngaus ,nmats
,ntype ,props ,weigp
,nbdis ,nline ,bline
,force ,gpcod ,iiter

156



Appendix E
	

Fortran Program MIXEP.F for Elasto-Plasti city

write(6, (lx,6hgstiff) I)
C

ax=1.0
bx=2.0
call. mnbrak(ax, bx, cx, fa ,fb,

*	 mode, coord, nnode,
*	 npoin, nelem, ndime,
*	 props, nmats, matno,
*	 presc, bline, ifpre,

write(6, '(lx,6hmnbrak) )
write(6, ' (lx,3e12.4) )ax,bx,cx
write(6, (lx,3e12.4) )fa,fb,fc

C

fc,	 rho,
nevab, ridofn,
ntype, nstre, ngaus,
weigp, posgp,
nbdis, nhine, liter)

call brent(ax, bx, cx, tol, xmin, vm ,rho,
*	 lnods, coord, nnode, nevab, ndofn,
*	 ripoin, nelem, ndime, ntype, nstre,ngaus,
*	 props, nmats, matno, weigp, posgp,
*	 presc, bline, ifpre, nbdis, nline,iiter)

write(6,(lx,6hbrent ,2e12.4)')xmin,vm
do 200 j=1,ncom

pcom(j )=pcom( j )+xicom(j )*xmin
dispt (j) =pcom( j)

200	 continue
C

call output (dispt,npoin,nelem,nstre,ngaus,ndofn,gpcod,
*	 coord)

if(dabs(xmin).lt.1.Oe-5)stop
1000	 continue

close(8)
c

stop
end

c
subroutine contol (ndofn ,nelem ,nmats ,npoin

c*************************************************************
c

read control data and check for dimension
C

***** * * ** * ****** * * **

read (5, * ) npoin, nelem, ndofn, nmats
if(nelem.gt. 500) go to 200
if(npoin.gt. 1000) goto 200
if(nmats.gt. 10) goto 200
goto 210

200	 write(8,120)
stop

120	 forrnat(/set dimension exceeded - contol check 7)
110	 format(16i5)
210	 continue

return
end

C
subroutine inputd (coord ,presc ,lnods ,matno ,ndime ,ndofn

*	 nelem ,ngaus ,nmats ,nnode ,npoin ,nstre
*	 ntype ,posgp ,props ,weigp ,nbdis ,nline
*	 bline

c** * ** ** *** **********************************************************
C

input routine
C
C**** **** * * *** * *** * ** * *** * ***** ** *****************

implicit double precision(a-h,o-z)
dimension coord(npoin,*) ,presc(3,*) ,weigp(*) ,matno(*)

*	 lnods(nelem,*) ,props(nmats,*) ,posgp(*) ,title(10),
*	 bline(4,*)
read(5,913) title

913	 format(20a4)
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write(8,914) title
914
	

format(//, 5x,20a4)
C
c*** read the first data card, and echo it immediately.
C

read (5,* ) nbdis,nline,ntype,nnode,nprop,ngaus,ndime,nstre
write(8,901) npoin,nelein,ntype,nnode,ndofn,nmats,nprop,

*	 ngaus,ndime,nstre,nbdis,nline
901	 format (/5x,l8hcontrol parameters!

*	 /5x,8h npoin =,ilO,5x,8h nelem =,ilO,5x,8h ntype =,ilO,
*	 /5x,8h nnode ,ilO,5x,8h ndofn =,ilO,5x,8h nmats =,ilO,
*	 /5x,8h nprop =,ilO,5x,8h ngaus =,ilO,5x,8h ndime =,i1O,
*	 /5x,8h nstre =,ilO,5x,8h nbdis =,i10,5x,8h nline =,ilO/)

900	 format(16i5)
C
c*** read the element nodal connections, and the property numbers

write (8,902)
902
	

format(//5x,8h element,3x,Shproperty,6x,l2hnode numbers)
do 530 ielem=1,nelem
read (5,* ) num,matno(num),(lnods(num,inode),inode=1,nnode)
write(13,915) (lnods(ielem,i),i=l,nnode)

530
	

write(8,903) matno(ielem), (lnods(ielem,inode),inode=1,nnode)
903
	

format(6x, i9, 6x, 10i5)
915
	

format(lx,8(i5, ', '))
c
c*** read some nodal coordinates, finishing with the last node of all
c
904
	

format(//5x,5h node,9x,lhx,9x,lhy,5x)
200 read (5,* ) (l,(coord(l,idime),idime=l,ndime),i=1,rlpoin)

write(8,906) (i,(coord(i,idime),idime=l,ndime),i=1,npoin)
write(13, ' (lx,2e15.4) ')((coord(i,idime),idime=l,ndime) ,i=l,npoin)

905
	

format ( i5, 6f10.5)
906
	

format(5x, i5,2e15.4)
c

read the available selection of element properties
c

write(8,9].0)
910
	

format (//5x, l9hmaterial properties)
do 520 imats=l,nmats
read(5,* ) numat
read(5, * ) (props(numat, iprop) , iprop=l,nprop)
write(8,911) numat

911
	

format ( /5x, llhmaterial no, i5)
520
	

write(8,9l2) (props(numat,iprop),iprop=1,nprop)
912
	

format(/5x,l3hyoung modulus,g12.4/5x,l3hpoisson ratio,g12.4/
*	 5x,l3hthickness	 ,g12.4/5x,l3hreference no ,g12.4/
*	 5x,l3hhardening par,g12.4/)
read(5,*) ((presc(i,ibdis),i1,3),ibdisl,flbdis)
write(8, 121)

121
	

format(5x, 'displacement boundry information'/)
write(8,l20)((presc(i,ibdis),i=1,3),ibdis=l,nbdis)

120
	

format(lx, f8.2,4x,2e12.4)
read(5,*) ((bline(i,iline),i=1,4),iline=1,nline)
write(8, 123)

123
	

format(5x, stress boundry information'!)
write(8,124)((bline(i,iline),i=1,4),iline=l,nline)

124
	

format(3x,2f8.l,5x,2e12.4)
C

call gaussq (ngaus,posgp,weigp)
return
end

c
subroutine linkin (force ,ifpre ,npoin ,leqns ,lnods ,maxai

*	 nwktl ,mhigh ,ndofn ,nelem ,neqns ,nnode )
c*** ** * ** ** *	 ****** ** * ******* ***********************************
C
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c*** links with profile solver
C
c** ** ** * ** *** * **** *** * *** *******************************************

implicit double precision(a-h,o-z)
dimension lnods(nelem,*),leqns(45,*),maxai(*),leqnn(45),

*	 ifpre(ndofn,*) ,force(*), mhigh(*)
C

nevab=nnode*ndofn
C

number of unknowns
C

neqns=0
do 100 ipoin=1,npoin
do 150 idofn=1,ndofn

neqns=neqns+1
ifpre ( idofn, ipoin) =neqns

150
	

continue
100
	

continue
meqns=1+neqna

C
c***	 connectivity array leqns
C

do 70 ielem=1,nelem
do 70 ievab=1,nevab

70
	

leqns(ievab, ielem)=0
do 50 ielem=1,nelem
ievab=1
do 80 inode=1,nnode
ident=lnods (ielem, mode)
do 80 idofn=1,ndofn
leqns ( ievab, ielem)=ifpre(idofn, ident)

80
	

ievab=ievab+1
C	 write(8,6) ielem, (leqns(ievab,ielem),ievab=1,nevab)
50
	

continue
6
	

format(ilO, 24i3)
7
	

format(4i10)
8
	

format(8e12.4)
C
C**
	

loop over all elements
C
250
	

do 190 ielem=1,nelem
do 300 le=1,nevab

leqnn(le)=leqns(le, ielem)
300
	

continue
C

call colmht (mhigh, nevab,leqnn)
190
	

continue
C
c***	 addresses of diagonal elements- maxa array
C

call addres(maxai,mhigh,neqns,nwktl,mkoun)
write(8,920)neqns,nwktl

920	 format(/5x,'neqns=',i5,5x,'nwkt1=,i5/)
if(nwktl.gt.200000) goto 210
goto 220

210	 write(8,910)
stop

220	 continue
910	 format(/set dimension exceeded - check linkin 7)

return
end

C
subroutine gstiff (coord ,stifi ,leqns ,lnods ,matno ,maxai

*	 nwktl ,ndime ,ndofn ,nelem ,ngaus ,nmats ,
*	 nnode ,npoin ,nstre ,ntype ,props ,weigp ,
*	 posgp ,dispt ,neqns ,nbdis ,nline ,bline ,
*	 ifpre ,rho	 ,presc ,force ,gpcod ,iiter ,
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*	 trial)
c* *** * * **** * *** * * ****** **** **********************
C
c	 evaluates linear stiffness matrix
c	 for mixed extrieme mothed
C
c******************************************************************

implicit double precision(a-h,o-z)
double precision ldd(5,5),lss(5,5),lds(5,5),ldl(5),lsl(5)
dimension coord(npoin,*) ,elcod(2,9) ,lnods(nelem,*) ,cartd(2,9),

*	 props(nmats,*) ,leqns(45,*),estif(	 820)
*	 deriv(2,9) ,shape(9) ,leqnn(45), bline(4,*),
*	 amatx(5,30),bmatx(5,20),asmat(5,30),bsmat(5,20),
*	 ammat(30), bmmat(20) ,gpcod(2,*) ,ifpre(ndofn,*),
*	 presc(3,*),force(*)

common stres(5,4500),strin(5,4500),strdd(5,4500)
C

dimension stifi(*),maxai(*),posgp(*),dispt(*),weigp(*),matno(*),
*	 s(5),d(5),dt(5)

c
twopi=6 .283185307179586
kgaus=0

C
c** loop over each element
c

nstrl=5
nevab=ndofn*nnode
do 500 iwktl=l,nwktl

500	 stifi(iwktl)=0.0
do 70 ielem=1,nelem
lprop=matno ( ielem)

c
evaluate the coordinates of the element nodal points

c
do 10 inode=1,nnode
lnode=lnods ( ielem, mode)
do 10 idime=1,ndime

10	 elcod(idime, inode)=coord(lnode,idime)
you ng=props ( lprop, 1)
poiss=props(lprop, 2)
thick=props(lprop, 3)

yO =props(lprop, 4)*0.816497
y =props(lprop, 5)*0 816497

shear=young/2 .01(1. 0+poiss)
xkcon=young/3 .0/ (1.0-2. 0*poiss)
factr=young/props ( 1, 1)

c
c*** initialaze the element stiffness matrix 820=nevab*(nevab+l)/2
c

do 20 isize=1,820
20
	

estif(isize)=0.0
C
c*** enter loops for area numerical integration
c

do 50 igaus=1,ngaus
exisp=posgp( igaus)
do 50 jgaus=1,ngaus
etasp=posgp(jgaus)
kgaus=kgaus+l
call sfr2	 (deriv,nnode,shape,exisp,etasp)
call jacob2 (cartd,deriv,djacb,elcod,gpcod,

*	 ielem,kgaus,nnode,shape)
dvolu=dj acb*weigp(igaus) *weigp(jgaus)
radiu=gpcod (1, kgaus)
if (ntype . eq. 3) dvolu=dvolu*twopi*radiu
if (ntype. eq. 1) dvOlu=dvolu*thick

c

160



Appendix E
	

Fortran Program MJXEP.F for Elasto-Plasti city

evaluate the a,b,as,bs,am and bm matrices
C

if(iiter.eq. l)then
if(ntype.ne.3) then

C
for rigid plastic poiss=O.5

call matrip(amatx, bmatx, asmat, bsmat,ammat, bmmat,
*	 radiu, shape, cartd, poiss,nnode,ntype,O)

else
call matria(amatx, bmatx, asmat, bsmat,ammat, bmmat,

*

	

	 radiu, shape, cartd, poiss,nnode,ntype,0)
end if

end if
C
c*** calculate the differential of 1
c

if(iiter.gt.1) then
sigma=(stres(1,kgaus)+stres(4,kgaus)+stres(5,kgaus))/3.0
epcilt= strin(l,kgaus)+strin(4,kgaus)+strin(5,kgaus)
epcild= strdd(l,kgaus)+strdd(4,kgaus)+strdd(5,kgaus)
s(1)stres(1,kgaus)-sigrna
dt(1)strin(l,kgaus)-epcilt/3.0
d(1)strdd(l,kgaus)-epcild/3.0
s(2 ) stres (2, kgaus)
dt(2)strin(2,kgaus)
d(2)strdd(2,kgaus)
s(3)stres(3,kgauS)
dt(3)strin(3,kgaus)
d(3)strdd(3,kgaus)
s(4)stres(4,kgaus)-sigma
dt(4)strin(4,kgaus)-epcilt/3.0
d(4)strdd(4, kgaus)-epcild/3.0
s(5) stres( 5, kgaus)-sigma
dt(5)strin(5,kgaus)-epci1t/3.0
d(5)strdd(5,kgaus)-epcild/3.0

C
call differ2(s,d,dt,ldd,iss,ids,ldl,lsl,yO,y,ps)

C
C****
	

for rigid plastic poiss=0.5
C

plasp=poiss
c
	 if(ps.ge. 0)plasp=0.49

if(ntype.ne.3) then
call matrip(amatx, bmatx, asmat, bsmat,ammat, bmmat,

*

	

	 radiu, shape, cartd, plasp,nnode,ntype,0)
else

call matria(amatx, bmatx, asmat, bsmat,ammat, bmmat,
*

	

	
radiu, shape, cartd, plasp,nnode,ntype,0)

end if
call differl(force,bsmat,asmat,ammat,bmmat,lnods,nelem,

*	 nnode, ndofn,nstre,ntype,ielem,dvolu,ldl,lsl,
*

	

	 epcild,epcilt, shear,xkcon,ps,dt)
end if

C*** calculate the element stiffness
c

call estifn(estif,amatx,bmatx,asmat,bsmat,ammat,bmmat,
*	 nnode,shear,xkcon,dvolu,kgaus,ndofn,ntype,
*	 ldd ,lss ,lds ,ps	 ,iiter, trial, factr)

50
	

continue
c
c*** generates global stiffness matrix in compacted coin form
c

do 18 le=l,nevab
leqnn( ie)=ieqns(ie, ielem)

18
	 continue

C
call addban (stifi,maxai,estif,leqnn,nevab)
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70	 continue
c

	

c****	 add boundary conditions
c

if(ntype.ne.3) then
call boundp(stifi,maxai,ifpre,nbdis,presc,nline,thick,

	

*	 bline,ndofn,rho,coord,npoin,force,dispt,shear)
else

call bounda(stifi,maxai,ifpre,nbdis,presc,nline,thick,

	

*	 bline,ndofn,rho,coord,npoin, force,dispt,shear)
end if

c
do 100 ieqns=l,neqns

dispt ( ieqns ) =force ( ieqns)
force(ieqns)0.0

100 continue
c
c******* do decomposition for global stiffness matrix
c

call decomp (stifi ,maxai ,neqns ,
c

call redbak (stifi,dispt,maxai,neqns)
return
end

c
subroutine matrip(amatx, bmatx, asmat, bsmat,ammat, bmmat,

*	 radiu, shape, cartd, poiss, nnode ,rttype, key
c* *** ** ** * *** *** * * * 	 ** * * *** **********************
c	 this is a routine to form a, b, as
c	 bs, am, bm for plane problem using shape function n
c**************************************************

implicit double precision(a-h,o-z)
dimension amatx(5,* ), bmatx(5,* ), asmat(5, *), bsmat(5,* ),

*	 ammat( * ), bmmat(*	 ), cartd(2,9 ), shape(*)
c

icont=0
do 10 inode=l,nnode

C
a matrix
amatx(1, icont+1)=0.0
amatx(1, icont+2)= cartd(2,inode)
aniatx(2, icont+1)=-cartd(2, mode)
amatx(2, icont+2)=0.0
amatx(3, icont+1)=0.0
amatx(3, icont+2)=-cartd(1,inode)
amatx(4, icont+1)= cartd(1,inode)
amatx(4, icont+2)=0.0

c
if(ntype.eq.1) then
amatx(5, icont+1)0.0
amatx(5, icont+2)=0.0

end if
if(ntype.eq.2) then

amatx (5, icont+1 ) =poiss*cartd (1, mode)
amatx(5, icont+2)=poiss*cartd(2, mode)

end if
if (key.eq.1) goto 20

c
c*****	 b matrix

bmatx(1, icont+l)= cartd(1, mode)
bmatx(1,icont+2)= 0.0
bmatx(2,icont+1)=O.5*cartd(2,inode)
bmatx(2,icont-*-2)=0.5*cartd(1,inode)
bmatx(3,icont+1)=O.5*cartd(2,inode)
bmatx(3,icont+2)=O.5*cartd(1,inode)
bmatx(4, icont+1)=O.O
bmatx(4, icont+2)= cartd(2, mode)
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if(ntype.eq. 1)then
bmatx(5,icont+1)=_poiss*cartd(l,inode)/(1.Opoiss)
bmatx(5,icont^2)=_pojss*cartd(2,jnode)/(1.O_poiss)

end if
C

if(ntype.eq.2) then
bmatx(5, icont+1)=0.0
bmatx(5, icont+2)=0.0

end if
C
c****	 am matrix and bm matrix

ammat(icont+1)=(amatx(1,icont+1)+amatx(4,icont+1)
*	 +amatx(5,icont+1))/3.0

ammat(icont+2)=(amatx(1, icont+2)+amatx(4, icont+2)
*	 +amatx(5,icont+2))/3.0

C
bmmat (icont+1 ) =bmatx (1, icont+1 ) +bmatx (4, icont+1)

*	 +bmatx(5, icont+1)
bmmat(icont+2)=bmatx(1,icont+2)+bmatx(4,icont+2)

*	 +bmatx(5,icont+2)
C

as matrix

asmat ( 1, icont+1 ) =amatx (1, icont+1)
asmat(1, icont+2)=amatx(1, icont+2)
asmat (2 , icont+1 ) =amatx (2, icont+1)
asmat (2, icont+2 ) =amatx (2, icont+2)
asmat (3, icont+1 ) =amatx (3, icont+1)
asmat (3, icont+2 ) =amatx (3, icont+2)
asmat (4, icont+1)=amatx(4, icont+1)
asmat (4, icont+2 ) =amatx (4, icont+2)
asmat (5, icont+1 ) =amatx (5, icont+1)
asmat(5, icont+2)=amatx(5,icont+2)

C
bs matrix

bsmat ( 1, icont+1) =bmatx (1, icont+1)
bsmat(1, icont+2)=brnatx(1, icont+2)
bsmat (2, icont+1) =bmatx (2, icont+1)
bsmat (2, icont+2 ) =bmatx (2, icont+2)
bsmat(3, icont+1)=bmatx(3,icont+l)
bsmat(3, icont+2)=bmatx(3, icont+2)
bsmat (4, icont+1)=bmatx(4, icont+1)
bsmat (4, icont+2 ) =bmatx (4, icont+2)
bsmat(5, icont+1)=bmatx(5,icont+1)
bsmat (5, icont+2 ) =bmatx (5, icont+2)

20	 icont=icont+2
10	 continue

return
end

-ammat ( icont+1)
-ammat ( icont+2)

-bmmat(icont+1)/3.0
-brnmat(icont+2 ) /3.0
-bmmat(icont+1)/3.0
-bmmat(icont+2) /3.0

c
subroutine matria(amatx, bmatx, asmat, bsmat,ammat, bmmat,

*	 radiu, shape, cartd, poiss, nnode ,ntype, key
c**************************************************
c	 this is a routine to form a, b, as
c	 bs, am, bm for axisymmetric problem using shape function n
c**** **** *** ***** **********************************

implicit double precision(a-h,o-z)
dimension amatx(5,*), bmatx(5,* ), asrnat(5,* ), bsmat(5, * ),

*	 ammat(*	 ), bmmat(*	 ), cartd(2,9 ), shape(*)

icont=0
do 10 inode=l,nnode

c
c**** a matrix

amatx(1, icont+1)=0.0
amatx(1, icont+2)= cartd(2, mode)
amatx (1, icont+3 ) = shape ( mode) /radiu
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c****

c****

amatx (2, icont+1)=-cartd(2, mode)
amatx(2, icont+2)=0.0
amatx(2, icont+3)=0.0
amatx(3, icont+1)=0 .0
amatx (3, icont+2 ) =-cartd (1, mode)
amatx(3, icont+3)=0.0
amatx(4, icont+1)= cartd(1,inode)+shape(inode)/radiu
amatx(4, icont+2)=0.0
amatx(4, icont+3)=0.0
amatx(5, icont+1)=0.0
amatx (5, icont+2 ) =cartd( 2, Lnode)
amatx ( 5, icont+3 ) =cartd (1, mode)

am matrix and
amrrtat ( icont+1 ) = (amatx (1, icont+1) +amatx (4, icont+1)

+amatx(5,icont+1))/3.0
ammat(icont+2)=(amatx(1,icont+2)+amatx(4, icont+2)

+amatx(5,icont+2))/3..0
ammat ( icorit+3 ) = (amatx (1, icont+3 ) +amatx (4, icont+3)

+amatx(5, icont+3) ) /3.0

as matrix

10

asmat(1, icont+1)=amatx(1, icont+1)
asmat (1, icont+2 ) =amatx ( 1, icont+2)
asmat ( 1, icont+3 ) =amatx (1, icont+3)
asmat(2, icont+].)=amatx(2, icont+1)
asmat(2, icont+2)=amatx(2,icont+2)
asmat(2, icont+3)=amatx(2,icont-I-3)
asmat (3, icont+1 ) =amatx (3, icont+1)
asmat (3, icont+2 ) =amatx (3, icont+2)
asmat(3, icont+3)=amatx(3,icont+3)
asmat(4, icont+1)=amatx(4,icont+1)
asmat (4, icont+2 ) =amatx (4, icont+2)
asmat (4, icont+3 ) =amatx (4, icont+3)
asmat (5, icont+]. ) =amatx (5, icont+1)
asmat (5, icont+2 ) =amatx (5, icont+2)
asmat ( 5, icont+3 ) =amatx (5, icont+3)

icont=icont+3
icont=0
do 20 inode=1,nnode

c***** b matrix
bmatx(1,icont+1)= cartd(1,inode)
bmatx(1, icont+2)= 0.0
bmatx(2, icont+1)=0.5*cartd(2, mode)
bmatx(2, icont+2)=0.5*cartd(1, mode)
bmatx(3,icont+1)=O.5*cartd(2,inode)
bmatx(3, icont+2 )=0. 5*cartd(1, mode)
bmatx(4, icont+1)=0.0
bmatx(4, icont+2)= cartd(2,inode)
bmatx ( 5, icont+1) =shape ( mode) /radiu
bmatx(5, icont+2)=0.0
bmniat ( icont+1 ) =bmatx (1, icont+]. ) +bmatx (4, icont+1)

+bmatx (5, icont+1)
bmnlat(icont+2)=bmatx(1, icont+2)+bmatx(4,icont+2)

+bmatx(5,icont+2)

c***** bs matrix
bsmat(1, icont-I-1)=bmatx(1,icont+1)
bsmat ( 1, icont+2 ) =bmatx (1, icont+2)
bsmat(2, icont+1)=bmatx(2, icont+1)
bsmat (2, icont+2 ) =bmatx (2, icont+2)
bsmat (3, icont+1)=bmatx(3, icont+1)
bsmat (3, icont+2 ) =bmatx (3, icont+2)
bsmat (4, icont+1)=bmatx(4, icont+1)
bsmat (4, icont+2 ) =bmatx (4, icont+2)
bsmat (5, icont+1)=bmatx(5, icont+1)

-bmmat(icont+1)/3.O
-bmmat(icont-I-2)/3.0

-bmmat(icont+1)/3.Q
-bmmat(icont-4-2)/3.O
-bmmat(icont+1)/3.O
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bsmat(5, icont+2)=bmatx(5,icont+2) -brnmat(icont+2)/3.0
20	 icont=icont+2

return
end

C
subroutine output (dispt,npoin,nelem,nstre,ngaus,ndofn,

*	 gpcod,coord)
c********************************************************************
C
c	 ouput routine for displacements and streses
C
c********************************************************************

implicit double precision(a-h,o-z)
dimension dispt(*),gpcod(2,*),coord(npojrl,*)
common etres(5,2700)
mgaus=ngaus*ngaus
kgaus=nelem*mgaus
write(8,900)

900	 format(3x, 'node:', 8x, 'displacernent=' ,lOx, 'stress vector='/)
do 600 ipoin=1,npoin

inl=( ipoin-1) *ndofn+1
in2=( ipoin-1) *ndofn+2
in3=( ipoin-1) *ndofn+3
in4=( ipoin-l) *ndofn+4
in5=( ipoin-1) *ndofn+5

c	 write(10,911)coord(ipoin,2),dispt(in2)
if(ndofn.eq.4)

* write(8,910)ipoin,dispt(inl),diSpt(in2),dispt(in3),djspt(1n4)
if(ndofn.eq.5)

* write(8,910)ipoin,dispt(inl),dispt(in2),dispt(jn3),djspt(in4)
*	 ,dispt(in5)

write(13,911)dispt(inl),dispt(in2)
910	 format(lx,i5, 2e12.4,2x,' I ',3e12.4)
911	 format(lx,2e15.4)
600	 continue
c

write(8, 920)
920	 format(/lOx,'**********element stresses*********'//,

*	 5x, 'stress-xx' ,5x, 'stress-xy' ,5x, 'stress-yx',
*	 5x, 'stress-yy' ,5x, 'stress-zz'/)

ielem=0
do 100 igaus=1,kgaus

write(4,980)gpcod(1,igaus),gpcod(2,igaus),
*	 (stres(istre, igaus) ,istre=1,nstre)

980	 format(lx,7e15.6)
110	 continue

if((igaus_1)/mgaus*mgaus.eq. (igaus-1)) then
ielem=ielern+1
write(8,940)ielem

940	 format(/15x, 'ielem=: ',i4/)
end if
write(8,930)(stres(istre,igaus),istre=1,nstre)

930	 format(lx,5e14.5)
100	 continue

return
end

c
subroutine estifn(estif,amatx,bmatx,asmat,bsmat,ammat,bmmat,

*	 nnode,shear,xkcon,dvolu,kgaus,ndofn,ntype,
*	 ldd ,lss ,lds ,ps ,iiter, trial, factr)

c*************************************************
c	 this routine is to form a stiffness
c	 matrix at each gauss point, when iiter=1 for elstic
c	 when iiter>1 for rigid plastic
c*************************************************

implicit double precision(a-h,o-z)
double precision kmatx(40,40),ldd(5,5),lss(5,5),lds(5,5)
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dimension amatx(5,* ), bmatx(S, ), asmat(5,* ), bsmat(5,* ),
*	 ammat(*	 ), bmmat('	 ), estif(*

ndofl2
ncIof2=2
if(ntype.eq. 3)ndof2=3
nstre=5
plt=50.0
gl=shear*2 .0
nevab=ndofn*nriode

alfa=2 . 0*shear/xkcori
do 1000 inode=1,rinode

do 1000 jnode=1,nnode

c***	 bs"*ldd*bs + 2p*bm'bm or 2G(bsbs + k/2G*bm*bm)
do 10 idofn=1,ndofl

ivar=( inode_1)*ndofl+idofn
igar= ( mode-i) *ndofn+idofn
do 10 jdofn=i,ndofi

jvar=( jnode-1) *ndofi+jdofn
jgar=(jnode-1) *ndofn+jdofn
kmatx(igar, jgar)=0.0
if(iiter.eq. i.or.ps. lt.0.0) then
do 21 i=1,nstre

kmatx(igar,jgar)=krnatx(igar,jgar)+bsmat(i,ivar)
*	 *bsmat(i,jvar)

21	 continue
kmatx(igar, jgar)=kuiatx(igar, jgar)+

*	 bmrnat(ivar)*bmrnat(jvar)/alfa
else

do 20 i=1,nstre
do 20 j=1,nstre

kmatx(igar,jgar)=kmatx(igar,jgar)+bsmat(i,ivar)
*	 *idd(i,j)*bsmat(j,jvar)

20	 continue
kmatx(igar, jgar)=kmatx(igar,jgar)+

*	 bmmat(ivar)*bmmat(jvar)*2.0*plt
end if

10	 continue
C

as'{1dd/2G/2G_lds/2G+lss}*as+2pamam/k/k or as'*as/2G +
am' * am/k

do 30 idofn=l,ndof2
ivar= ( mode-i) *ndof2+idofn
igar= ( mode-i) *ndofn+2+idofn
do 30 jdofn=1,ndof2

jvar=(jnode_l)*ndof2+jdofn
jgar=(jnode-i) *ndofn+2+jdofn
kmatx(igar, jgar)=0.0
if(iiter.eq.l.or.ps.lt.0.0) then
do 41 i=i,nstre

kmatx(igar,jgar)=kmatx(igar,jgar)+asmat(i,ivar)
*	 *asmat(i,jvar)/factr/factr

41	 continue
kmatx(igar, jgar)=kmatx(igar,jgar)+amxnat(ivar)

*	 *aat(jvar) *alfa/factr/factr
*	 +(asmat(2, ivar)-asmat(3, ivar))
*

	

	 *(asmat(2,jvar)_asmat(3,jvar))*tria].
else

do 40 i=1,nstre
do 40 j=1,nstre

tmp=(lss(i,j)*gi_2.0*lds(i,i))*gl+ldd(i,j)
kmatx(igar, jgar)=kmatx(igar, jgar)+asmat(i,ivar)

*	 *tmp*asmat(j,jvar)
40	 continue

kmatx(igar,jgar)=kmatx(igar,jgar)+2.*plt/factr/factr
*	 *an1jnat(ivar)*aflat(jvar)*aifa*alfa
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+(asrnat(2,ivar)-asmat(3,ivar))
*(asmat(2,jvar)_asmat(3,jvar))*trial*gl

end if
30	 continue
C
c***	 bs{-1dd/2G+1ds}as-2pbmam/k or b*a

do 50 idofn=1,ndof 1
ivar= ( mode-i) *ndofi+jdofn
igar= ( mode-i) *ndofn+idofn
do 50 jdofn=1,ndof2

jvar= ( jnode-1) *ndof2+jdofn
jgar=(jnode_1)*ndofn+2+jdofn
krnatx(igar, jgar)=0.0
if(iiter.eq. 1.or.ps. lt.0.0) then
do 61 i=1,nstre

kmatx(igar,jgar)=kmatx(igar,jgar)-bmatx(i,ivar)
*	 *amatx(i,jvar)/factr

61

50
1000
c
c****

continue
else

do 60 i=1,nstre
do 60 j=1,nstre

tmp=-ldd(i, j)+lds(i, j )*g].
kmatx(igar, jgar)=kmatx(igar, jgar)+bsmat(i, ivar)

*tmp*asmat(j , jvar)
continue
kmatx(igar, jgar)=kmatx(igar, jgar)-2 . 0*plt*alfa

*brpat (ivar) *afl1at ( jvar) /factr
end if
kmatx(jgar, igar)=krnatx(igar,jgar)

continue
continue

transfer k to l-d matrix
kount=0
do 2000 ievab=i,nevab

do 2000 jevab=ievab,nevab
kount=kount+1

if(iiter.eq. i.or.ps.lt.0.0) then
estif(kount)=estif(kount)+kxnatx(ievab,jevab)*dvolu*gi

else
estif(kount)=estif(kount)+kmatx(ievab,jevab)*dvolu

end if
2000	 continue

return
end

C
subroutine boundp(stifi,maxai, ifpre,nbdis,presc,nline,thick,

*	 bline,ndofn,rho,coord,npoin, force,dispt,shear)
C*** ***** ******** * ** * *** ** * *** ******** ****************** *

c
c	 impose conditions of displacements
c	 and stresses for penalty function
C
c********************************************************

implicit double precision (a-h,o-z)
parameter (pent=1 . 0e30)
dimension stifi(*), ifpre(ndofn,*),maxai(*),jdrec(2),

presc(3,*), bline(4,*) ,coord(npoin,2) ,force(*),
tmatx(4,4),vectr(4),dispt(*)

alfa=2 .0* shear
C
c****	 displacement condition

do 10 ibdis=i,nbdis
ipoin=presc(1,ibdis)
idrec(1)=(presc(1,ibdis)-ipoin+0.05)*iO
tmp=idrec(i)/i0.0
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idrec(2 )=(presc( 1, ibdis)-ipoin-tmp+0.005) *100
do 100 i=1,2

if(idrec(i).ne.0) then
ieqns=iabs ( ifpre( i, ipoin))
ifpre(i, ipoin)=-ieqns
idres=maxai ( ieqns)
stifi(idres)=stifi(idres)+2.0*rho
force(iegns)=force(ieqns)+2.O*rho*(presc(j+1,ibdis)

*

	

	 -dispt(ieqns))
end if

100	 continue
10	 continue

c******	 stress conditions

do 20 iline=1,nline
ipotl=bline(1, iline)
ipot2=bline(2, iline)
if(ifpre(3,ipotl).lt.ifpre(3,ipot2)) then

ieqnlifpre( 3, ipoti)
ieqn2=ifpre(3, ipot2)
cordlx=coord( ipoti, 1)
cord 1y=coord ( ipoti, 2)
cord2x=coord ( ipot2, 1)
cord2y=coord ( ipot2 , 2)

else
ieqnlifpre(3, ipot2)
ieqn2=ifpre(3, ipoti)
cordlx=coord ( ipot2, 1)
cord ly=coord ( ipot2 , 2)
cord2x=coord ( ipoti, 1)
cord2y=coord ( ipoti, 2)

end if

do 200 i=1,2
if(ifpre(i,ipotl) .gt.0.or.ifpre(i,ipot2) .gt.0) then
call transp(cordlx,cordly,cord2x,cord2y,tmatx,vectr,i,il)
if(ntype.eq.l)ploadbline(2+il,iline)/thick/alfa
if(ntype.eq.2)ploadbline(2+il,iline)/alfa

c	 for right-hand side
irowl=ieqnl
irow2=ieqnl+1
irow3=ieqn2
irow4=ieqn2+1
prl=tmatx(1,1)*diSpt(irOW1)+tmatX(1,2)*disPt(1r0W2)

*	 +tmatx(1,3)*dispt(iroW3)+tmatx(l,4)*diSpt(irOW4)
pr2=tmatx (2,1) *diSpt ( irowl)+tmatx(2, 2) *diSpt(iroW2)

*	 +tmatx(2,3)*diSpt(irOW3)+tmatX(2,4)*disPt(ir0W4)
pr3=tmatx(3,1)*diSpt(irOW1)+tmatX(3,2)*di5Pttr0w2)

*	 +tmatx(3,3)*diSpt(irOW3)+tmatX(3,4)*diSPtt]r0w4)
pr4=tmatx(4,1)*diSpt(iroW1)+tmatX(4,2)*di5Pt(0w2)

*	 +tmatx(4,3)*diSpt(iroW3)+tmatX(4,4)*diSPt(ir0W4)
c **	 for stiffness matrix

idrll=maxai(ieqnl)
idrl2=maxai ( ieqnl+].)+l
idrl3=maxai( ieqn2 )+(ieqn2-ieqnl)
idrl4=maxai( ieqn2+1)+(ieqn2-ieqnl)+l
idr22=idrl2-1
idr23=idrl3-1
idr24=idrl4-1
idr33=maxai ( ieqn2)
idr34=maxai(ieqn2+1)+1
idr44=idr34-1

stifi(idrll)=stifi(idrll)+2.0*rho*tmatx(1,1)
stifi(idrl2 )=stifi(idrl2)+2 0*rho*tmatx(1, 2)
stifi(idrl3)=stifi(idrl3)+2.O*rho*tmatx(1,3)
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stifi(idrl4)=stifi(idrl4)+2 . 0*rho*tmatx(1, 4)
stifi(idr22)=stifi(idr22)+2.0*rho*tmatx(2,2)
stifi( idr23)=stifi(idr23)+2 . 0*rho*tmatx(2 , 3)
stifi(idr24)=stifi(idr24)+2.0*rho*tmatx(2,4)
stifi(idr33)=stifi(idr33)+2 . 0*rho*tmatx(3, 3)
stifi( idr34)=stifi(idr34)+2 .0*rho*tmatx(3 , 4)
stifi(idr44)=stifi(idr44)+2 . 0*rho*tmatx(4, 4)

C
force ( irowl ) = force ( irowl ) +2 . 0*rho* (pload*vectr ( 1) -pri)
force ( irow2 ) = force ( irow2 ) +2. 0*rho* (pload*vectr (2 ) -pr2)
force ( irow3 ) =force ( irow3 ) +2 . 0*rho* (pload*vectr (3) -pr3)
force ( irow4 ) =force ( irow4 ) +2. 0*rho* (pload*vectr (4) -pr4)

end if
200	 continue
20	 continue

iclifpre(3, npoin)
ic2=ifpre(4,npoin)
stifi(maxai(icl))=stifi(maXai(icl))+pent
stifi(maxai(ic2))=stifi(maxai(ic2))+pent
return
end

C
subroutine bounda(stifi,maxai,ifpre,nbdis,presc,nline,thick,

*	 bline,ndofn,rho,coord,npoin,force,dispt,shear)

c
c	 impose conditions of displacements
c	 and stresses for penalty function
c
c* * * **** * ** * ** * * * ** ** * ***** ******** * ** ****** ************ *

implicit double precision (a-h,o-z)
parameter (pent=l . 0e30)
dimension stifi(*), ifpre(ndofn,*),maxai(*),idrec(2),

*	 presc(3,*), bline(4,*),coord(npoin,2),force(*),
*	 tmatx(6,6),vectr(6),dispt(*)

twopi=6. 283185307179586
alfa=2 . 0*shear

c
c****	 displacement condition
C

do 10 ibdis=1,nbdis
ipoin=presc(l, ibdis)
rad=coord(ipoin, 1)
idrec(1)=(presc(1,ibdis)-ipoin+0.05)*10
tmp=idrec(1)/10.0
idrec(2)=(presc(1,ibdis)_ipoin_trnp+Q.005)*100
do 100 i=1,2

if(idrec(i) .ne.0) then
ieqns=iabs(ifpre(i,ipoin))
ifpre(i, ipoin)=-ieqns
idres=maxai ( ieqns)
stifi(idres)=stifi(idres)+2 . 0rho
force ( ieqns ) =force ( ieqns)+2 . 0*rho*

*	 (presc(i+1,ibdis)-dispt(ieqns))
end if

100	 continue
10	 continue
c

stress conditions
C

do 20 iline=l,nline
ipotl=bline(1, iline)
ipot2=bline(2, iline)
if(ifpre(3,ipotl).lt .ifPre ( 3 , iPOt2 )) then

ieqril=ifpre(3,ipotl)
ieqn2=ifpre(3, ipot2)
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cordlx=coord ( ipoti, 1)
cordly=coord(ipotl, 2)
cord2x=coord ( Lpot2, 1)
cord2y=coord ( ipot2, 2)

else
ieqnl=ifpre(3,ipot2)
ieqn2=ifpre(3, ipoti)
cord lx=coord ( ipot2, 1)
cord ly=coord ( ipot2, 2)
cord2x=coord ( ipoti, 1)
cord2y=coord ( ipotl, 2)

end if
C

do 200 i=1,2
if(ifpre(i,ipotl) .gt.O.or.ifpre(i,ipot2) .gt.0) then
call transa(cordlx,cordly,cord2x,cord2y,tmatx,vectr,i, ii)
pload=bline(2+il, iline)/alfa

c ***	 for right-hand side
irowl=ieqnl
irow2=ieqnl+l
irow3=ieqnl+2
irow4=ieqn2
irow5=ieqn2+1
irow6=ieqn2+2
pr1=tmatx(l,l)*diSPt(iroW1)+tmatx(1,2)*diSPt(]r0W2)

*	 +tmatx(l,3)*dispt(irOW3)+tmatx(1,4)*disPt(irOW4)
*	 +tmatx(l,5)*diSPt(iroW5)+tmatX(1,6)*diSPt(2r0W6)

pr2=tmatx(2, 1) *dispt(irowl)+tmatx(2, 2) *dispt( irow2)
*	 +tmatx(2,3)*diSPt(irOW3)+tmatx(2,4)*diSPt(irOW4)
*	 +tmatx(2,5)*disPt(iroW5)+tmatx(2,6)*disPt(irow6)

pr3=tmatx(3,1)*di8Pt(ir0W1)+tmatX(3,2)*di5Pt(2r0J2)
*	 +tmatx(3,3)*d35PtL1r0W3)+tmatx(3,4)*di5Pt(ir0W4)
*	 +tmatx(3,5)*disPt(ir0W5)+tmatX(3,6)*disPt(ir0W6)

pr4=tmatx (4,1) *dis pt ( irowl)+tmatx(4, 2) *disPt( irow2)
*	 +tmatx(4,3)*diSPt(iroW3)+tmatX(4,4)*d2SPt(ir0W4)
*	 +tmatx(4,5)*disPt(iroW5)+tmatx(4,6)*disPt(ir0W6)

pr5=tmatx(5, 1) *dispt(irowl)+tmatx(5, 2) *dispt(irow2)
*	 +tmatx(5,3)*diSpt(irow3)+tmatx(5,4)*diSPt(irOW4)
*	 +tmatx(5,5)*diSpt(irOW5)+tmatx(5,6)*diSPt(irOW6)

pr6=tmatx(6,1)*dispt(irOWl)+tmatx(6,2)*disPt(irOW2)
*	 +tmatx(6,3)*diSpt(irOW3)+tmatx(6,4)*di-Spt(iroW4)
*	 +tmatx(6,5)*dispt(irOW5)+tmatx(6,6)*diSpt(irOW6)

c ***	 for stiffness matrix
idrll=maxai(ieqnl)
idrl2=maxai(ieqnl+1)+1
idrl3=maxai(ieqnl+2)+2
idrl4=maxai( ieqn2 )+(ieqn2-ieqnl)
idrl5=maxai( ieqn2+1)+( ieqn2-ieqnl)+1
idrl6=maxai( ieqn2-4-2 )+(ieqn2-ieqnl)+2
idr22=idrl2-1
idr23=idrl3-].
idr24=idrl4-].
idr25=idrl5-1
idr26=idrl6-1
idr33=idrl3-2
idr34=idrl4-2
idr35=idrl5-2
idr36=idrl6-2
idr44=maxai ( ieqn2)
idr45=maxai( ieqn2-I-1)^1
idr46=maxai ( ieqn2+2 ) +2
idr55=idr45-1
idr56=idr46-1
idr66=idr46-2

c
stifi(idrll)=stifi(idrll)+2 0*rho*tmatx(1, 1)
stifi(idrl2)=stifi(idrl2)+2 . 0*rho*tmatx(1, 2)

170



AppendL E	 Fortran Program MIXEP.F for Elasto-Plasti city

stifi(idrl3)=stifi(idrl3)+2 0*rho*tmatx(1, 3)
stifi(idrl4)=stifi(idrl4)+2.O*rho*tmatx(].,4)
Stifi(idrl5)=stifi(idrl5)+2 . 0*rho*tmatx(l, 5)
stifi(idrl6)=stjfi(idrl6)+2.0*rho*tmatx(1,6)

C stifi(idr22)=stjfi(idr22)+2.0*rho*tmatx(2,2)
stifi(idr23)=stifi(idr23)+2.0*rho*tmatx(2,3)
stifi(idr24)=stifi(iclr24)+2.0*rho*tmatx(2,4)
stifi(idr25)=stifi(idr25)+2 .0*rho*tmatx(2, 5)
stifi(idr26)=stifi(idr26)+2 . 0*rho*tmatx(2, 6)

C stifi(idr33)=stifi(idr33)+2.0*rho*tmatx(3,3)
stifi(idr34)=stifi(idr34)+2.0*rho*tmatx(3,4)
stifi(idr35)=stifi(idr3s)+2.0*rho*tmatx(3,5)
stifi(idr36)=stifi(idr36)4-2 0*rho*tmatx(3, 6)

C stifi(idr44)=stifi(idr44)+2.0*rho*tmatx(4,4)
stifi(idr45)=stifi(idr45)+2.O*rho*tmatx(4,5)
stifi(idr46)=stifi(idr46)+2.0*rho*tmatx(4,6)

C	 stifi(idr55)=stifi(idr55)+2.0*rho*tmatx(5,5)
stifi(idr56)=stifi(idr56)+2 . 0*rho*tmatx(5, 6)

C
stifi(1dr66)=stifi(idr66)+2 0*rho*tmatx(6, 6)

C
force(irow1)=force(irow1)+2*rho*(p1oaO*vecr21_p.r2l
force(irow2)=force(irow2)+2*rho* (load*vect2\_2\
force(irow3)=force(irow3)+2*rho*(pload*vectr(3)_pr3)
force(irow4)=force(irow4)+2*rho*(pload*vectr(4)_pr4)
force ( irow5 ) =force ( irow5 ) +2 *rho* (pload*vectr (5) -pr5)
force(irow6)=force(irow6)+2*rho*(pload*vectr(6)_pr6)

end if
200	 0ntinue
20	 cotltinUe

ici.ifpre(3, npoin)
ic2ifpre(4,npoin)
ic3 = ifpre(5, npoin)

C	 stifj(maxai(icl))=stifi(maxai(icl))+perit
stifi(maxai(ic2))=stifi(maxai(ic2))+pent

C	 stifi(maxai(ic3))=stifi(maxai(ic3))+pent
return
end

subroutine decomp (stiff ,maxai ,neqns ,ishot
c*********************************************************

factorises (l)*(d)*(l) transpose of stiffness matrix

C* ** **	 * *** * * ***** ***** * ********************** ******

implicit double precision(a-h,o-z)
dimension stiff(*) ,maxai(*)

if(rieqns.eq.1) return
do 200 ieqns=l,neqns
imaxa=maxai ( ieqns)
lower=imaxa+l
kuper=maxai ( ieqns+l) -1
khigh=kuper-lower
if(khigh) 304,240,210

210	 ksize=ieqns-khigh
icoun=0
j uper=kuper
do 260 jhigh=1,khigh
icouri=icoun+1
juper=juper-1
kmaxa=maxai (ks ize)
ndiag=maxai(ksize+1)-kmaxa-1
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if(ndiag) 260,260,270
270	 ncolm=min0 ( icoun, ndiag)

count=0.
do 280 icolm=1,ncolm

280	 courlt=count+stiff(kmaxa+icolm)*stiff(juper+icolm)
stiff(juper)=stiff(juper)-count

260	 ksize=ksize+1
240	 ksize=ieqns

bsumm=0.
do 300 icolm=lower,kuper
ksize=ksize-1
jmaxa=maxai (ksize)
ratio=stiff(icolm) /stiff(jmaxa)
bsumm=bsumm+ratio*stiff(icolm)

300	 stiff(icolm)=ratio
stiff(imaxa)=stiff(imaxa)-bsumm

304	 if(stiff(imaxa)) 310,310,200
310	 if(ishot.eq.0) go to 320

if(stiff(imaxa) .eq.0) stiff(imaxa)=-1.e-16
go to 200

320	 write(8,2000) ieqns,stiff(imaxa)
stop

200 continue
return

2000 format(//48h stop - stiffness matrix not positive definite ,//
*32h nonpositive pivot for equation ,i4,//lOh pivot = ,e20.12
end

c
subroutine redbak (stiff ,force ,maxai ,neqns)

c**************************************************************
C

c	 to reduce and back_substitute iteration vector
C

implicit double precision(a-h,o-z)
dimension stiff(*) ,force(*) ,maxai(*)

c
do 400 ieqns=1,neqns
lower=maxai ( ieqns ) +1
kuper=maxai ( ieqns+1) -1
if(kuper-lower) 400,410,410

410	 jeqns=ieqns
sumcc=0. 0
do 420 icolm=lower,kuper
j eqns=j eqns-1

420	 sumcc=sumcc+stiff(icolm) *force(jeqns)
force ( ieqns) = force ( ieqns) -sumcc

400	 continue
C

do 480 ieqns=1,neqns
kmaxa=maxai ( ieqns)

480	 force(ieqns)=force(ieqns) /stiff(kmaxa)
if(neqns.eq.1) return
j eqns=neqns
DO 500 IEQNS=2,NEQNS
lower=maxai ( j eqns) +1
kuper=maxai( jeqns+1) -1
if(kuper-lower) 500,510,510

510	 keqns=jeqns
do 520 icolm=lower,kuper
keqns=keqns-1

520	 force(keqns)=force(keqns)_stiff(icolm)*force(jeqns)
500	 jeqns=jeqns-1

return
end

subroutine addban (stiff,maxai,estif, leqns,nevab)
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c****** ** ** * ******* * * *** *** ***************************************
C
c	 assembly of total stiffness vector
C
c*** *** * * * * ** * ********* *** ***** *********************

implicit double precision(a-h,o-z)
dimension stiff(*),maxai(*),estif(*),leqns(*)

C
kount=0
do 200 ievab=1,nevab
ieqns=leqns ( ievab)
if(ieqns) 200,200,100

100	 imaxa=maxai(ieqns)
kevab= ievab
do 220 jevab=1,nevab
jeqns=leqns(jevab)
if(jeqns) 220,220,110

110	 ijeqn=ieqris-jeqns
if(ijeqn) 220,210,210

210	 isize=imaxa+ijeqn
j size=kevab
if(jevab.ge . ievab) jsize=jevab+kount
stiff(isize)=stiff(isize)+estif(j size)

220 kevab=kevab+nevab- j evab
200 kount=kount+nevab-ievab

return
end

C
subroutine colmht (mhigh ,nevab ,leqns

c***********************************************************
C
c	 evaluates the column height of stiffness matrix
C
c***********************************************************

implicit double precision(a-h,o-z)
dimension leqns(*) ,mhigh(*)
maxam=100000
do 100 ievab=1,nevab
if(leqns(ievab)) 110,100,110

110	 if(leqns(ievab)-maxam) 120,100,100
120	 maxam=leqns(ievab)
100	 continue

do 200 ievab=1,nevab
ieqns=leqns(ievab)
if(ieqns.eq.0) go to 200
j high=ieqns-maxam
if(jhigh.gt.mhigh(ieqns)) mhigh(ieqns)=jhigh

200 continue
return
end

C
subroutine addres (maxai ,mhigh ,neqns ,nwktl ,mkoun

C* *** ** * * * ** **** ******* **** ***** *****************************

C
c	 evaluates adresses of diagonal elements
C
c* * ** * ** * * * * * * ****** * * *** * ***** ************** ***************

implicit double precision(a-h,o-z)
dimension maxai(*) ,mhigh(*)
neqnn=neqns+1
do 20 ieqnn=1,neqnn

20	 maxai(ieqnn)=0
maxai ( 1)1
maxai (2) =2
mkoun=0
if(neqns.eq.1) go to 30
do 10 ieqns=2,neqns
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if(mhigh(ieqris) .gt.mkoun) mkoun=mhigh(ieqns)
10	 maxai(ieqrls+1)=maxai(ieqns)+mhigh(ieqns)+1
30	 mkoun=mkouri+].

nwktl=maxai(rieqns+1)-maxai(1)
return
end

C
subroutine sfr2(deriv,nnode,shape,exisp,etasp)

c*** ** * *** * ****** * * ****** *******************************************
C
c**** this subroutine evaluates shape functions and their derivatives
c	 for linear,quadratic lagrangian and serendipity
c	 isoparametric 2-d elements
C
c******** ** * **** **** * * ** * *** *****************************************

implicit double precision(a-h,o-z)
dimension deriv(2,9) ,shape(9)
s=ex isp
t=etasp
if(nnode.gt .4) go to 10
Bt=s*t

C
c*** shape functions for 4 nodes element
C

shape(1)=(l_t_s+st)*0.25
shape (2 ) =( 1-t+s_st ) *0 25
shape(3)=(1+t+s-3-st)*O.25
shape(4)=(l+t-s-st)*O.25

C
c*** shape functions derivatives
C

deriv(1, 1)=(_1+t)*0.25
deriv(1,2)=(+1_t)*0.25
deriv(l,3)=(+1+t)*0.25
deriv(1,4)=(_1_t)*0.25
deriv(2, 1)=(_1+s)*0.25
deriv(2,2)=(_1_s)*0.25
deriv(2,3)=(+].+s)*0.25
deriv(2,4)=(+1_s)*0.25
return

10
	

if(rinode.gt.8) go to 30
82=9*2.0
t2=t*2 .0
999*5
tt=t*t
st=8*t
Sst=s*s*t
stt=s*t*t
st2=s*t*2

C
shape functions for 8 noded element

C
shape( 1) = (-].. 0-fst+ss+tt-sst-stt) /4.0
shape(2)=(1.0-t-ss+sst)/2.0
shape(3) = (-1. 0-st+ss+tt-sst+stt) /4.0
shape(4)=(1.0+s-tt-stt)/2.0
shape(5)=(-1.O+st+ss+tt-4-sst+stt)/4.0
shape(6)=(1.O-l-t--ss-sst)/2.0
shape(7)=(-1.0-st+ss+tt+sst-stt)/4.0
shape (8) = (1. 0-s-tt+stt) /2.0

C
C*** shape function derivatives
C

deriv(1, 1)=(t+s2-st2-tt)/4. 0
deriv(1,2)=-s+st
deriv(1,3)=(-t+s2-st2+tt)/4.0
deriv(1, 4)=(1.0-tt)/2.0
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deriv(l, 5)=(t+s2+st2+tt)/4.0
deriv(l,6)=-s-st
deriv(l,7)=(-t+s2+st2-tt)/4.0
deriv(l,8)=(-l.0+tt)/2.0
deriv(2, l)=(s+t2-ss-st2)/4.0
deriv(2,2)=(-l.0+ss)/2.0
deriv(2,3)=(-s+t2-ss+st2)/4.0
deriv(2,4)=-t-st
deriv(2, 5)=(s+t2+ss+st2)/4.O
deriv(2,6)=(l.0-ss)/2.0
deriv(2, 7)=(-s+t2+ss-st2)/4.0
deriv(2,8)=-t+st
return

30	 continue
S8=B5
st=s*t
tt=t*t
sl=s+l.0
tl=t+l.0
s2=s*2.0
t2=t*2 .0
s9=s-l.0
t9=t-]. .0

C
shape functions for 9 noded elemedrit

shape ( 1) =0. 25 *59*st*t9
shape(2)=0. 5*(l.0_ss)*t*t9
shape (3 ) =0. 25 *sl*st *t9
shape(4)=0. 5*s*sl*(l.0_tt)
shape(5)=0.25*sl*st*tl
shape(6)=O. 5*(l.0_gs)*t*tl
shape(7)=0. 25*s9*st*tl
shape(8)=0. 5*s*59*(1.O_tt)
shape(9)=(l.O_es)*(1.O_tt)

c
shape function derivatives

c
deriv(l,l)=0.25*t*tg*(_1.O+s2)
deriv(l,2)=_st*t9
deriv(]., 3)=0.25*(l.0+s2)*t*t9
deriv(l,4)=0.5*(l.0+s2)*(l.0_tt)
deriv(1,5)=O.25*(1.O-,-92)*t*tl
deriv(l, 6)-st*tl
deriv(l,7)=0.25*(_]..O+52)*t*tl
deriv(l,8)=0.5*(_1.O+52)*(1.O_tt)
deriv(l, 9)=_s2*(l.0_tt)
deriv(2,l)=0.25*(_1.O+t2)*s*99
deriv(2,2)=0.5*(l.0_ss)*(_1.Q+t2)
deriv(2,3)=O.25*s*sl*(_1.O+t2)
deriv(2, 4)st*sl
deriv(2,5)=0.25*s*s1*(1.O-,-t2)
deriv(2,6)=0.5*(l.0_sg)*(l.0+t2)
deriv(2,7)=0.25*s*sg*(l.0+t2)
deriv(2,8)=-st*s9
deriv(2, 9)-t2*(l. 0-ss)

20	 continue
return
end

C
subroutine jacob2(cartd,deriv,djacb,elcod,gpcod,ielem,kgaus,

*	 nnode,shape)
c********************************************************************
c
c*** this subroutine evaluates the jacobian matrix and the cartestian
c	 shape functon derivatives
c
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c******* * *** * * ****** *** ****** ********************************* *********
implicit double precision(a-h,o-z)
dimension cartd(2,9) ,deriv(2,9) ,elcod(2,9) ,gpcod(2,*) ,shape(9),

*	 xjaci(2,2) ,xjacm(2,2)
C
c*** calculate coordinates of sampling point
C

do 2 idime=1,2
gpcod(idime, kgaus)=0.0
do 2 inode=l,nnode
gpcod C idime, kgaus) =gpcod ( idime, kgaus) +elcod ( idime, mode)

*	 *shape(jnode)
2
	

continue
C
c* * * create jacobian matrix xjacm
C

do 4 idime=l,2
do 4 jdime=l,2
xjacm(idime, jdime)=0.0
do 4 inode=l,nnode
xjacm(idime,jdime)=xjacm(idime,jdime)+deriv(idime,inode)

*	 *elcod(jdime, mode)
4	 continue
C
c*** calculate determinant and inverse of jacobian matrix
C

djacb=xjacm(l,l)*xjacm(2,2)_xjacm(1,2)*xjacm(2,1)
if(djacb) 6,6,8

6	 write(8,600) ielem,djacb
stop

8	 continue
xjaci(1,l)=xjacm(2,2)/djacb
xjaci(2,2)=xjacm(l,j.)/djacb
xjaci(1,2)=-xjacm(1,2)/djacb
xjaci(2,1)=-xjacm(2,l)/djacb

C
c*	 calculate cartesian derivatives
C

do 10 idime=1,2
do 10 inode=l,nnode
cartd(idime, inode)=0.0
do 10 jdime=l,2
cartd(idime,inode)=cartd(idime,inode)+xjaci(idime,jdime)*

*	 deriv(jdime, mode)
10	 continue
600	 format(//,36h program halted in subroutine jacob2,/,llx,

*	 22h zero or negative area,/5x,element number',i5,
*	 5x,djacb=,e12.5)
return
end

c
subroutine gaussq (ngaus,posgp,weigp)

c******* * **** ** ** * *** * * ************************************************
C
c*** this subroutine sets up the gauss-legendre integration constants
c
c**********************************************************************

implicit double precision(a-h,o-z)
dimension posgp(4) ,weigp(4)
if(ngaus.gt.2) go to 4

2	 posgp(1)=-0.577350269189626
weigp(1)=1.0
go to 6

4	 posgp(1)=-0.77459666924183
posgp(2)=0.0
weigp(1)=0. 555555555555556
weigp(2 )=0.888888888888889
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6	 kgaus=ngaus/2
do 8 igash=1,kgaus
j gash=ngaus+l-igash
posgp( jgash)=-posgp(igash)
weigp(jgash)=weigp(igash)

8	 continue
return
end

C
subroutine nodxyr (coord, lnods,nelem,nnode,npoin,nrads,ntype)

c
c*** interpolation of midside and center nodes
c
c** ** * ** *** ** ***** * * ***** *******************************************

implicit double precision(a-h,o-z)
dimension coord(npoin,*),lnods(nelem,*)

if(ntype.ne.3.or.nrads.eq.0) go to 40
cc
c*** change polar coordinates to cartisian

do 50 ipoin=1,npoin
raddi=coord( ipoin, 1)
theta=coord( ipoin, 2)
theta=0. 017453292 *theta
coord(ipoin, 1)=raddi*dsin(theta)

50
	 coord( ipoin, 2 )=raddi*dcos (theta)

C
40
	

if(nnode.eq.4) return
c

lnode=nnode-1
do 30 ielem=l,nelem

c*** loop over each element edge
do 20 inode=1,nnode,2
if(inode.eq.9) go to 20

c*** compute the node number of the first node
nodst=lnods(ielem, mode)
igash=inode+2
if ( igash. gt . lnode) igash=1

c*** compute the node number of the last node
nodfn=lnods ( ielem, igash)
midpt=inode+1

c*** compute the node number of the intermediate node
nodmd=lnods(ielem,midpt)
total=dabs(coord(nodmd,1))+dabs(coord(nodmd,2))

c*** if the coordinates of the intermediate node are both zero
c
	

intermediate by a straight line
if(total.gt.0.0) go to 20
kount=1

10
	

coord(nodmd,kount)=(coord(nodst,kount)+coord(nodfn,kount) )/2.0
kount=kount+1
if(kount.eq.2) go to 10

20
	

continue
30
	

continue
return
end

c
subroutine transp(cordlx,cordly,cord2x,cord2y,tmatx,vectr,

*	 key, opt)
c** ** * ** * * * **** * * ***** ** ** ****************** ******* *************
c	 form the stress boundary matrix for normal stress
c	 and shear stress in "plane problem"
c***************************************************************

implicit double precisioN(A-H,0-Z)
integer opt
parameter (err=1 . Oe-5)
dimension tmatx(4,4),vectr(4)
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r=dsqrt( (cordlx_cord2x)**2+(cordly_cord2y)**2)
t= (cord2x-cordlx) /r
s=(cord2y-cordly)/r

descide the normal and the tangent vector
opt=key

c	 if(dabs(t).lt.err)opt=key
if(dabs(s).lt.err)opt=3-key
58=9*9
tt=t*t
st=s*t
if(opt.eq.1) then
vectr(l)=-t
vectr(2 ) =-s
vectr(3) t
vectr(4) S
do 11 i1,4

do 11 j=l,4
tmatx(i,j)=vectr(i)*vectr(j)/r

11	 continUe
end if

C
if(opt.eq.2) then

vectr (1) =-s
vectr(2) t
vectr(3) S
vectr(4)t
do 12 i1,4

do 12 j=1,4
tmatx(i,j)=vectr(i)*vectr(j)/r

12	 continue
end if
return
end

C
subroutine transa(cordlx,cordly,cord2x,cord2y,tmatx,vectr,

*	 key, opt
C**** ** ** * * * ******* ** ** **** **** *********************************
c	 form the stress boundary matrix for normal stress
c	 and shear stress in "axisymmetric prroblem"
C***************************************************************

implicit double precision(a-h,o-z)
integer opt
double precision 1
parameter (err=1 . Oe-5 , pent=1. 0e20)
dimension tmatx(6,6) ,v(6) ,vectr(6),p(4) ,w(4)
twopi=6 .283185307179586
ng=3
call gaussq(ng,p,w)
r=dsqrt( (cordlx_cord2x)**2+(cordly_cord2y)**2)
t= ( cord2x-cordlx) /r
s=(cord2y-cordly)/r

descide the normal and the tangent vector
opt=key
if(dabs(s) .lt.err)opt=3-key
ss=s*5
tt=t*t
St=s*t

do 20 i=1,6
vectr(i)0.0
do 20 j=1,6

20	 tmatx(i,j)0.0
C

do 10 ig=1,ng
1=0. 5*p(ig)
x=(cordlx+cord2x)/2 .04(cord2x.cord1x)*l
djcb=0. 5*twopi*r*w(ig)

if(dabs(x).lt.err) then
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ax=pent
else

ax=1.0/X
end if
if(opt.eq.l) then
v(1)-t/r*x+tt*(0.5-l)
v(2 ) -S/r*x
v(3)	 ss*(O.5_l)
V(4) t/r*x+tt*(0.5+l)
V(5) S/r*x
v(6) = S5*(05+l)
do 11 i=1,6

veCtr(i)=vectr(i)+v(i)*djcb
do 11 j=].,6

11	 tmatx(i,j)=tmatx(i,j)+v(i)*v(j)*djcb*ax
end if

C
if(opt.eq.2) then
v(1)=s/r*x4-gt*(O.5_1)
v(2) t/r*x
v(3)=-st*(O.5_l)
v(4)= s/r*x+st*(0.5+l)

6) -st* (0. 5+1)
do 12 i=1,6

vectr(i)=vectr(i)+v(i)*djcb
do 12 j=l,6

12	 tmatx(i,j)=tmatx(i,j)+v(j)*v(j)*djcb*ax
end if

10 continue
return
end

subroutine mvalue (inods, coord, x 	 , nnode, nevab, ndofn,
*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 posgp,val,	 props, nmats, matno, weigp,
*	 presc, bline, ifpre, nbdis, nhine,rho,iiter)

c*
c*	 calculate m from obtained stranes and
c*	 stresses for each gauss point
c*
c** *** ** ** * * * **** **** ***********************************

implicit double precision(a-h,o-z)
double precision k
parameter (nmax=4000,err=1.Oe-5,pent=1.0e20)

dimensioncoord(np,*),lnods(ne,*),elcod(2,9),cartd(2,9),shape(9),
*	 gpcod(2,2700),deriv(2,9),amatx(5,30),bsmat(5,20),
*	 am(30),bmatx(5,20),bm(20),asmat(5,30),dispt(nmax),
*	 posgp(*), weigp(*) ,props(nmats,5) ,matno(*),
*	 ifpre(ndofn,*),presc(3,*),bline(4,*),
*	 id(2),f(2),di(5),dit(5),si(5),sd(5)

common stres(5,4500) ,strin(5,4500) ,strdd(5,4500)
common /dfunc/pcom(nmax), xicom(rlmax), ncom
plt=50.0
do 100 j=1,ncom

dispt(j )=pcom(j)+x*xicom(j)
100	 continue
c

twopi=6 .283185307179586
ndof 1=2
ridof2=2
eO=props(1, 1)
pO=props(1, 2)
gO=eO/2.0/(1.0+pO)
if(ntype.eq.3)ndof2=3
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loop over each element
val=0.0
kcont=0
do 500 ie=i,ne

lprop=matno ( ie)
young=props (iprop, 1)
poiss=props(lprop, 2)
thick=props ( iprop, 3)
yO =props(lprop, 4)*O.816497
y =props(lprop, 5)*O 816497

shear=young/2 .01(1. 0+poiss)
xkcon=young/3 .0/(1.0-2. 0*poiss)

c*** evaluate the coordinates of the element nodal points
C

do 10 inode=1,nnode
lnode=lnods( ie, mode)
do 10 idime=l,ndime

10	 elcod(idime,inode)=coord(lnode,idime)
C

do 500 igaus=l,ngaus
do 500 jgaus=1,ngaus

kcont=kcont+1
xpoin=posgp ( igaus)
ypoin=posgp(jgaus)
call sfr2	 (deriv,nnode,shape,xpoin,ypoin)
call jacob2 (cartd,deriv,djacb,elcod,gpcod,

*	 ie, kcont, nnode, shape)
radiu=gpcod (1, kcont)

C
c* evaluate the a,b,as,bs,am and bm matrices
C

plasp=poiss
if(ntype.ne.3) then
call matrip(amatx, bmatx, asmat, bsmat, 	 am,	 bm,

*	 radiu, shape, cartd, plasp, nnode, ntype, 0)
else

call matria(amatx, bmatx, asmat, bsmat, 	 am,	 bm,
*	 radiu, shape, cartd, plasp, nnode, ntype, 0)

end if
do 25 istre=i,nstre

stres(istre, kcont)=0. 0
sd(istre)0.0
do 21 jevab=1,nnode*ndof2

jnode=(jevab-1) /ndof2+1
j dofn=j evab+2- ( j node-i) *ndof2
jpoin=lnods(ie, mode)
jpott=(jpoin_1)*ndofn+jdofn
stres(istre, kcont)=stres(istre, kcont)+2 . 0*gO

*

	

	 *amatx(istre, jevab)*dispt(jpott)
sd(istre)=sd(istre)+2 . 0*gO

*	 *amatx(istre,jevab)*xicom(jpott)*x
21	 continue

sigma=(stres(1,kcont)+stres(4,kcont)+stres(5,kcorit))/3.0
si(1)=stres(i,kcorit)-sigma
si(2)=stres(2,kcont)
si(3)=stres(3,kcont)
si(4)=stres(4,kcont)-sigma
si(5)=stres(5,kcont)-sigma
ss=dsqrt(times(si,si))
psOss/yO-i .0
strin(istre, kcont)=0. 0
strdd(istre,kcont)=0.0
do 20 ievab=1,nnode*ndof 1

inode= ( ievab-l) /ndofi+i
idofn=ievab- ( mode-i) *ndof 1
ipoin=lnods (ie, mode)
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C
20
25
C
C ***

C

ipott (ipoin-l) *ndofn+idofn
strin(istre,kcont)=strin(istre,kcont)

+bmatx(istre, ievab) *digpt(jpott)
strdd ( istre, kcont ) =strdd ( istre, kcont)

+bmatx ( istre, ievab) *xicom( ipott) *x
+bmatx ( istre, ievab) *dispt ( ipott)

continue
continue

evaluate the residual strain on each Gauiss ponit

if(iiter.eq. l.and.pso.ge.0.0) goto 340
strin( 1 ,kcont)=strin(1, kcont)-(stres(1, kcont)_poiss*

*	 (stres(4,kcont)+stres(5,kcont)))/young
strin(2,kcont)=strin(2,kcont)-(stres(2,kcont)

*	 +stres(3,kcont))/4.O/shear
strin(3,kcont)=strin(2,kcont)
strin(4, kcont)=strin(4, kcont)-(stres(4, kcont)_poiss*

*	 (stres(l,kcont)+stres(5,kcont)))/young
strin( 5, kcont)=strin(5, kcont) -(stres(5, kcont)_poiss*

*	 (stres(1,kcont)+stres(4,kcont)))/young
if(ntype.eq.1) then

strin(5, kcont)=strin(5, kcont)+poiss* (stres (1, kcont)
*	 +stres(4,kcont) )/young

end if
c
c **	 evaluate the residual incremental strain on each Gauiss ponit
c

strdd(l,kcont)=strdd(1,kcont)_(sd(l)_poiss*
*	 (sd(4)+ad(5)))/young

strdd(2,kcont)=strdd(2,kcont)-(sd(2)+sd(3))/4.0/shear
strdd (3, kcont) =strdd (2, kcont)
strdd(4,kcont)=strdd(4,kcont)_(sd(4)_poiss*

*	 (sd(1)+sd(5)))/young
strdd(5,kcont)strdd(5,kcont)_(sd(5)_poiss*

*	 (sd(l)+sd(4)))/young
if(ntype.eq.1) then

strdd(5,kcont)=strdd(5,kcont)+poiss*(sd(1)
*	 +sd(4))/young

end if
340	 continue
c

epcilt strin(1,kcont)+strin(4,kcont)+strin(5,kcont)
epcild strdd(1,kcont)+strdd(4,kcont)+strdd(5,kcont)
dit(l)=strin(1,kcont)-epcilt/3.0
di ( l)=strdd(1, kcont)-epcild/3 .0
dit(2)=strin(2,kcont)
di(2)=strdd(2,kcont)
dit(3)=strin(3,kcont)
di(3)=strdd(3,kcont)
dit(4)=strin(4,kcont)-epcilt/3 .0
di(4)=strdd(4,kcont)-epcild/3.0
dit(5)=strin(5,kcont)-epcilt/3.O
di( 5)strdd(5 , kcont)-epcild/3 .0

kyO+y*dsqrt(times(dit,dit))
dd=dsqrt ( times ( di, di)
ps=ss/k-1 .0
if(ps.ge. 0. 0)then
val=val+(_times(si,di)+dd*ss+plt*(ps*ps+epcjld*epcjld))

*dj acb*weigp(igaus) *weigp( jgaus)
else

val=val+(shear*times(dit,dit)+0.5*xkcon*epcilt*epcilt)
*djacb*weigp(igaus) *weigp(jgaus)

end if
continue
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c***	 displacement penalty terms

do 60 ibdis=l,nbdis
ipoin=presc(l, ibdis)
djacb=1.0

c	 if(ntype.eq.3)djacb=twopi*coord(ipoin,].)
id(l)=(presc(1,ibdis)-ipoin+0.05)*1O
tmp=id(l)/lO.O
id(2)=(presc(1,ibdis)-ipoin-tmp+O.005)*100
do 70 i=l,2

if(id(i).ne.0) then
ieqns=iabs(ifpre(i,ipoin))
ifpre( i, ipoin)=-ieqns
val=val+rho*(presc(i+l,ibdis)_dispt(ieqns))**2*djacb

end if
70	 continue
60	 continue

stress penalty terms

do 80 iline=l,nline
ipotl=bline(1, iline)
ipot2=bline(2, iline)
if(ifpre(3,ipotl).lt.ifpre(3,ipot2)) then

ieqnl=ifpre(3, ipoti)
ieqn2=ifpre(3, ipot2)
cord lx=coord ( ipoti, 1)
cordly=coord(ipotl, 2)
cord2x=coord( ipot2, 1)
cord2y=coord ( ipot2 , 2)

else
ieqnl=ifpre(3, ipot2)
ieqn2=ifpre(3, ipoti)
cord lx=coord ( ipot2, 1)
cord ly=coord ( ipot2 , 2)
cord2x=coord ( ipoti, 1)
cord2y=coord ( ipoti, 2)

end if

d=dsqrt( (cordlx_cord2x)**2+(cordly_cord2y)**2)
r=0. 5 * (cordlx+cord2x)
c= (cord2x-cordlx) /d
s= (cord2y-cordly) /d
dfx=dispt ( ieqn2 ) -dispt (ieqnl)
dfy=dispt (ieqn2+1) -dispt ( ieqnl+1)
if(ntype.eq.3) then

dj acb=twopi*r*d
cc=c*c
ss=B*9
sc=s*c
if(dabs(cordlx) .lt.err) cordlx=pent
if(dabs(cord2x) .lt.err) cord2x=pent
fct0. 5*(dispt(ieqnl+2)/cordlx+dispt(ieqn2+2)/cord2x)
fxx=0.5*(dispt(ieqnl)/cordlx+dispt(ieqn2)/cord2x)
f(l)=((dfx*c+dfy*s)/d + ss*fct+cc*fxx)
f(2)=((dfx*s_dfy*c)/d + sc*(fxx_fct))

else
f(l)=(dfx*c+dfy*s)/d
f(2)=(dfx*s_dfy*c)/d
djacb=d

end if
if(ntype.eq.3. and. iline.eq. 1) goto 80
do 90 k=l,2

if(ifpre(k,ipotl).gt.0.or.ifpre(k,ipot2) .gt.0) then
i=k
if(dabs(s) .lt.err)i=3-k
pload=bline(2+i, iline) /2. O/gO
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valval+rho* (pload-f (i) ) **2*dj acb
end if

90	 continue
80	 continue

return
end

C
subroutine brent(ax, bx, cx, tol, xmin, vm, rho,

*	 mode, coord, nnode, nevab, ndofn,
*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 props, nmats, matno, weigp, posgp,
*	 presc, blirie, ifpre, nbdis, nhine,iiter)

c*** *** * ** ******* * * *********** *** ***** ********** ******* ****
C
c	 brent's method to find a minimum
C
c*********************************************************************

implicit double precision(a-h,o-z)
parameter (itmax=100, cgold=0.3819660, zeps=1.Oe-4,nmax=4000)
dimension coord(np,*),lnods(ne,*),posgp(*),weigp(*),

*	 props(nmats,5), matno(*), ifpre(ndofn,*),
*	 presc(3,*), bline(4,*)

common /dfunc/pcom(nmax), xicom(nmax), ncom
common stres(5,4500),strin(5,4500),strdd(5,4500)
a=dmin (ax, cx)
b=dmax ( ax, cx)
v=bx
w=v
x=v
e=0.0

c	 fx=furic(x)
call mvalue (inods, coord, x 	 , nnode, nevab, ndofn,

*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 posgp,fx ,	 props, nmats, matno, weigp,
*	 presc,bline, ifpre, nbdis, nline, rho,iiter)

fv=fx
fwfx
do 100 iter=1,itmax

xm=0. 5*(a+b)
toll=tol*dabs(x)+zeps
tol2=2. *toll
if(dabs(x-xm) .le. (tol2_0.5*(b_a))) goto 3
if(dabs(e).gt.toll) then

r=(x-w) *(fx_fv)
q=(x_v)*(fx_fw)
p=(x-v) *q_(x_w) *r
q=2.0*(q_r)
if(q.gt.0.0) p=-p
q=dabs (q)
etemp=e
e=d
if(dabs(p).ge.dabs(0.5*q*etemp).or.p.le.q*(a_x).or.

*	 p.ge.q*(b-x)) goto 1
c*	 the above conditons determine the acceptability of the
c	 parabolic fit. here it is ok

d=p/q
ux+d
if(u-a. lt.tol2 .or.b-u. lt .tol2) d=sign(toll,xm-x)
goto 2

end if
if(x.ge.xm) then
e=a-x

else
e=b-x

end if
dcgold*e

2	 if(dabs(d).ge.toll) then
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C

*
*
*

C

u=x+d
else

u=x+sign(toll,d)
end if
fu=func (U)
call mvalue (mode, coord,

np,	 ne,
posgp,fu
presc, bline,

u	 , nnode, nevab, ndofn,
ndime, ntype, nstre, ngaus,

props, nmats, matno, weigp,
ifpre, nbdis, nline, rho,iiter)

Fortran Program MIXEP.F for Elasto-Plasti city

if(fu. le. fx )then
if(u.ge.x) then

a=x
else

b=x
end if
v=w
fv=fw
w=x
fw=fx
x=u
fx=fu

else
if(u.lt.x) then

a=u
else

b=u
end if

C
if(fu.le.fw.or.w.eq.x) then
v=w
fv=fw
w=U
^^^^^

else if(fu. le. fv.or.v.eq.x.or.v.eq.w) then
v=u
fv=fu

end if
end if

100
	

continue
pause 'brent exceed maximum iterations.'

3
	

xmin=x
vm=fx
return
end

C
subroutine mnbrak(ax,bx,cx,fa,fb,fc, 	 rho

*	 mode, coord, nnode, nevab, ndofri,
*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 props, nmats, matno, weigp, posgp,
*	 presc, bline, ifpre, nbdis, nline,iiter)

implicit double precision(a-h, o-z)
parameter( gold=l.6l8034, glimit=lOO., tiny=l.Oe-20,nmax=4000)
dimension coord(np,*),lnods(ne,*),posgp(*),weigp(*),

*	 props(nmats,5), matno(*) ,ifpre(ndofn,*),
*	 presc(3,*), bline(4,*)

common /dfunc/pcom(nmax), xicom(nmax), ncom
common stres(5,4500) ,strin(5,4500) ,strdd(5,4500)
call mvalue (mode, coord, ax	 , nnode, nevab, ndofn,

*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 posgp,f a ,	 props, nmats, matno, weigp,
*	 presc,bline, ifpre, nbdis, nline, rho,iiter)

call mvalue (inods, coord, bx 	 , nnode, nevab, ndofn,
*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 posgp,fb ,	 props, nmats, matno, weigp,
*	 presc,bline, ifpre, nbdis, nline, rho,iiter)

if(fb.gt .fa) then
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1

dumax
ax=bx
bxdum
dumfb
fb=fa
fa=dum

end if
cx=bx+gold* (bx-ax)

call mvalue (inods, coord, cx	 , nnode, nevab, ndofn,
*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 posgp,f c ,	 props, nmats, rnatno, weigp,
*	 presc,bline, ifpre, nbdis, nline, rho,iiter)

if(fb.ge.fc) then
r=(bx_ax)*(fb_fc)
q=(bx_cx)*(fb_fa)

u=bx_((bx_cx)*q_(bxax)*r)/(2.*sign(dmax(dabs(q_r),tiny),q_r))
ulim=bx+glimit*(cx_bx)
if((bx_u)*(u_cx).gt.0) then
call mvalue (lnods, coord, u 	 , nnode, nevab, ndofn,

	

*	 np,	 ne,	 ndime, ntype, nstre, ngaus,

	

*	 posgp,fu ,	 props, nmats, matno, weigp,

	

*	 presc,bline, ifpre, nbdis, nline, rho,iiter)
if(fu.lt.fc) then

ax=bx
fa=fb
bxu
fb=fu
goto 1

else if(fu.gt.fb) then
Cx=u
fc=fu
goto 1

end if
u=cx+gold* (cx-bx)

call mvalue (lnods, coord, u 	 , nnode, nevab, ndofn,

	

*	 np,	 ne,	 ndime, ntype, nstre, ngaus,

	

*	 posgp,fu ,	 props, nmats, matno, weigp,

	

*	 presc,bline, ifpre, nbdis, nline, rho,iiter)
else if((cx_u)*(u_ulim) .gt.0) then
call mvalue (mode, coord, u	 , nnode, nevab, ndofn,

	

*	 np,	 ne,	 ndime, ntype, nstre, ngaus,

	

*	 posgp,fu ,	 props, nmats, matno, weigp,

	

*	 presc,bline, ifpre, nbdis, nline, rho,iiter)
if(fu.lt.fc) then
bx=cx
Cx=u
u=cx+gold* (cx-bx)
fb=fc
fc=fu

call mvalue (lnods, coord, u 	 , nnode, nevab, ndofn,

	

*	 np,	 ne,	 ndime, ntype, nstre, ngaus,

	

*	 posgp,fu ,	 props, nmats, matno, weigp,

	

*	 presc,bline, ifpre, nbdis, nline, rho,iiter)
end if

else if((u_ulim)*(ulim_cx).ge.0) then
u=ulim

call mvalue (lnods, coord, u 	 nnode, nevab, ndofn,

	

*	 np,	 ne,	 ndime ntype, nstre, ngaus,

	

*	 posgp,fu ,	 props, nmats, matno, weigp,

	

*	 presc,bline, ifpre, nbdis, nline, rho,iiter)
else

u=cx+gold* (cx-bx)
call mvalue (lnods, coord, u 	 , nnode, nevab, ndofn,

*	 np,	 ne,	 ndime, ntype, nstre, ngaus,
*	 posgp,fu ,	 props, nmats, matno, weigp,
*	 presc,bline, ifpre, nbdis, nline, rho,iiter)

end if
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ax=bx
bx=cx
cx=u
fa=fb
fb=fc
fc=fu
goto 1

end if
return
end

C
subroutine differ2(si,di,dit,dldd,dlss,dlds,dldl,dlsl,yO,y,ps)

c*************************************************************

c	 calculate the second order differential of 1
c	 on each gauss point by analytical method
C

	

	 3mar. 1992
c*************************************************************

implicit double precision(a-h,o-z)
double precision k
dimension di(5) ,dit(5),si(5),fdi(5),fdti(5),fsi(5),

*	 pdi(5),psi(5),dldd(5,5),dlss(5,5),dld(5,5),
*	 dldl(5),dlsl(5)

plt=50.O
fs=dsqrt (times ( si, si)
fs2=1. O/fs/fs
fd=dsqrt (times (di, di)
fd2 =1.0/fd/fd
fdt=dsqrt(times(dit,dit))
fdt2=1 . 0/fdt/fdt
k=y* fdt+yO
d= k*fd
ps=fs/k-1 .0
if(ps. lt.0.0)return
do 10 i=1,5

fdi(i)=di(i)/fd
fdti(i)=dit(i)/fdt
fsi(i)=si(i)/fS
pdi(i)=_y*fs*fdti(i)/k/k
psi(i)=fsi(i)/k

dldl(i)=_si(i)+fs*fdi(i)+2.0*plt*ps*pdi(i)
dlsl(i)=_di(i)+fd*fsi(i)+2.0*plt*ps*psi(i)

10	 continue
C

do 20 i1,5
do 20 ji,5

fss(fs*delt(i,j)...si(i)*fsi(j))*fs2
fdd(fd*delt(i,j)di(i)*fdi(j))*fd2
fddt=(fdt*delt(i,j)_dit(i)*fdti(j))*fdt2
pdd=y*fs*(2.0*y*fdti(i)*fdti(j)_k*fddt)/k/k/k
pss=fss/k
pds=_y*fdti(i) *fsi(j )/k/k

c
dldd(i,j)=fs*fdd+2*plt*(ps*pdd+pdi(i)*pdi(j))
dlss(i,j)=fd*fSS+2*plt*(ps*pSs+psi(i)*psi(j))
dlds(i,j)=_delt(i,j)+fdi(i)*fsi(j)+2*plt*(ps*pds+

*	 pdi(i)*psi(j))
dldd(j , i)=dldd(i, j)
dlss(j,i)=dlss(i,j)
d1ds(j,i)dlds(i,j)

20	 continue
return
end

C
subroutine differl(fOrCe,bsmat,asmat,ammat,bmmat,lnods,nelem,

*	 nnode,ndofn,nstre,ntype,ielem,dvolu,dldl,dlsl,
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*	 epcild,epcilt, shear,xkcon,ps,dt)
c* ** * *** * * * *** **** ***** ******* ***************************************

C
c	 this routine is to calculate the first derivative
c	 of L at each gauss point and form the 'force' term
C
c********************************************************************

implicit double precision(a-h,o-z)
dimension lnods(nelem,*), asmat(5,*),bsmat(5,*), ammat(*),

*	 bmmat(*),dldl(*),dlsl(*),force(*),dt(*)
plt=50.0

ndof 1=2
ndof2=2
if(ntype.eq.3) ndof2=3

gl=2 . 0*shear
do 150 inode=1,nnode

ndofi=( lnods(ielem, inode)-1) *ndofn
do 165 idofn=1,ndofl

igar=ndofi+idofri
ivar= ( mode-i) *ndofi+jdofn
do 160 istre=i,nstre

if(ps.ge.0.0) then
force ( igar) =force ( igar) -didi (istre) *bsmat (istre, ivar)

*	 *dvolu
else
force ( igar) =force ( igar) -dt ( istre) *bsmat ( istre, ivar)

*	 *gl*dvolu
end if

160
	

continue
if(ps.ge.0.0)then
force ( igar) =force ( igar) -2. 0*plt*epcild*bmmat ( ivar) *dvolu
else
force(igar)=force(igar)_xkcon*epcilt*bmmat(ivar)*dvolu
end if

165
	

continue
do 175 jdofn=i,ndof2

j gar=ndof i+ndofi+j dofn
jvar=(iriode-i) *ndof2+jdofn
do 170 jstre=1,nstre

if(ps.ge.0.0)then
tmp=dlsi(j stre) *gi_dldi (j stre)
force ( jgar) =force (j gar) -asmat (j stre, jvar) *tmp*dvolu

else
force(jgar)=force(jgar)^asmat(jstre,jvar)

*	 *dt(j stre) *dvolu*gi
end if

170	 continue
if(ps.ge.0.0)then
force(jgar)=force(jgar)+2.0*plt*epcild*ammat(jvar)

*	 *gi/xkcon*dvolu
else
force(jgar)=force(jgar)+epcilt*ammat(jvar)*dvolu*gi
end if

175	 continue
150	 continue

return
end

C
function times(a,b)
implicit double precision(a-h,o-z)
dimension a(5),b(5)
times=0.0
do 10 i=i,5

10	 times=times+a(i)*b(i)
return
end

C
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C

function delt(i, j)
double precision delt
delt=O.O
if(i.eq.j)delt=l.O
return
end

function sign(a,b)
implicit double precision(a-h, o-z)
if(b.gt.O.0) then

sign=dabs (a)
else

sign=-dabs (a)
end if
return
end

function dmax(a,b)
implicit double precision(a-h, o-z)
if(a.gt.b) then
dmax=a

else
dmaxb

end if
return
end

C

function dmin(a,b)
implicit double precision(a-h, o-z)
if(a.lt.b) then

dm i ri= a
else

dmin=b
end if
return
end
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