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PREFACE

This thesis describes original work which has not been submitted for a degree at any

other university.

The investigations were carried out in the Materials Division, Department of
Mechanical, Materials and Manufacturing Engineering, The University of Newcastle
upon Tyne, United Kingdom, During the period of December 1990 to April 1994 under
supervision of Dr. H. W. Chandler.

This thesis describes the establishment of a mixed FE formulation by first-order
stress function. Its application to the elasticity, rigid-perfect-plasticity and elasto-
plasticity problems as well as the simulation of part of the spot-welding process was

also carried out.
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ABSTRACT

A mixed finite element method is introduced in this thesis by two or three first-order
P stress functions for plane or axisymmetric problems respectively, which satisfy the
force equilibrium equations, along with a constraint to impose the moment equilibrium
equations. The stresses so expressed are equivalent to those in terms of the higher
order Airy or Love stress function. With compatibility condition satisfied in the same
way as in a displacement finite element (FE) method, the remaining constitutive relation
in elasticity, i.e. Hooke’s law, is satisfied by minimizing a mixed functional, with
variables of the displacement vector and two/three first-order stress functions.

Some elementary problems in plane and axisymmetric elasticity are solved by this
method. Itis found that for an incompressible solid and a solid with a crack, the mixed
model yields better results than the conventional FE method. The effects of Gaussian
integration and Poisson’s ratio on the solution are discussed in detail. Special attention
is paid in bending a beam and a disc, where the importance of the constraint to enforce
moment equilibrium is studied.

For rigid-perfect-plasticity, the Levy-Mises flow rule and the corresponding yield
condition are satisfied by another extremum principle. By substituting the plastic part
of the elasto-plastic strain into the extremum for rigid plasticity, and the elastic part of
the elasto-plastic strain into the extremum for elasticity, an extremum principle for
elasto-plasticity is established straightaway. Applications of this method to some well-
known examples are discussed. In comparison with the conventional displacement
method and/or analytical solution, this method offers very satisfactory results and good
convergence of the solution.

An interesting feature of this method is that the value of each functional indicates
in some degree the solution error at a giving point or region. This may provide useful
information for accuracy control or a remeshing procedure.

A more sophisticated problem is solved by a so-called mixed fluid-FE model,
which is the simulation of the flow of an adhesive between two aluminium sheets
squeezed by a pair of electrodes in spot-process. The effects of various factors on the
formation of the entrapment of the adhesive in the central area of faying surface are
studied in detail. Very close results between displacement method and the mixed

method are obtained in this study.
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CHAPTER 1
INTRODUCTION

The finite element method offers a way of interpolating functions in space. In this
thesis the functions used are stress functions (to be defined later) and the components
of a displacement vector. Their formulation allows mixed extremum principles to be
used to find numerical solutions to a number of problems in solid mechanics. The
validity of the algorithms produced will be checked by a few test cases in plane
elasticity. By carefully choosing three stress functions, the same idea will be applied

to axisymmetric elasticity.
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Fig. 1.1 Stress distributions in an elasto-perfectly plastic

cylinder under internal pressure.

The principal objective of this thesis is to establish a mixed-extremum principle for
plane and axisymmetric elasto-plasticity, based on the discretization of stresses tested
in elasticity problems and an extremum principle for rigid-perfect-plasticity. This
formulation is expected to give better results than a conventional displacement method
for the problems with a large scale of plasticity, e.g. an elasto-perfectly plastic cylinder

under internal pressure. The power of this method is demonstrated by the excellent
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agreement between the finite element results and the theoretical results shown in fig.1.1
(discussed in detail in Chapter six). A more complex problem is demonstrated in the

simulation of part of the spot-welding process by this mixed model.
1.1 GENERAL

The finite element (FE) method was originated by engineers in the 1950s to analyse
aircraft structural systems using the emerging digital computer, where naturally discrete
systems such as structural frameworks are presented. Turner et al.[116] (1956)
published the first paper, followed by Argyris 4l (1960) and Clough [24] (1960), who
first time in history used the name finite elements. As the finite element method
applied to structural problem matured, the concept of a "force balance" at a node was
replaced by theory founded in the variational calculus and the classical Rayleigh-Ritz
method (Rayleighl®®, 1877; Ritz!®6) 1909). These are known as variational
approaches. Application of the finite element method to non-structural problems was

reported by Zienkiewicz and Cheungl1281(1965).

Later the establishment of the finite element method was extended on a broader
base in terms of the weighted residual approaches[31], a term first used by
Crandall(25)(1956). Since then, the finite element method has become one of the most
significant tools in the history of computational methods. Modern finite element
packages allow large areas of theoretical physics to be put to practical use. Typical
problems are heat transfer, fluid mechanics, electromagnetism, geo-mechanics and

acoustics.
1.2 SINGLE-FIELD AND MULTI-FIELD FINITE ELEMENT MODELS

If a problem in the 2D theory of elasticity (plane strain) is investigated there are four
components of stress, three components of strain and two components of displacement.
In order to solve such a problem one needs to take account of the two equations of
equilibrium and the three strain-displacement relations. It is usual however to reduce

the number of variables at the outset to just the displacements by eliminating stress and
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strain. This is known as reducing the problem to a single-field formulation.

In fact, this formulation in terms of displacement, or displacement model, is the
most successful model and is used extensively in practical applications and in the
development of commercial structural analysis packages. This provides the simplest
approach to element formulation and to the assembly of the element equations into the

global system. However the displacement model has some shortcomingst’7};

e Difficulty in constructing compatible shape functions N for C! elements,
(e.g., plate and shell elements based on Kirchhoff theory)

® Poor performance in constrained media problems,
(e.g., incompressible and nearly incompressible materials)

® Loss of accuracy in calculating secondary fields
(e.g., stress calculations using displacement models)

® convergence of a solution can not be guaranteed.

As the understanding of finite element method deepened, alternative models, mulfi-field
models, in which there are more than one unknown field, have been proposed in the
hope of overcoming such shortcomings. The hybrid models and mixed models are two

kinds of such multi-field models.
1.2.1 Hybrid finite element formulation

Hybrid models are multi-field models in which the formulation is based on a modified
variational principle with relaxed interelement requirements. In the modified principles
some or all of the interelement requirements are treated as constraints and are enforced
in an average sense by means of Lagrange multipliers, which will be continuous
functions of the boundary coordinates. Therefore, the formulation involves independent
approximation of the fields variables within the element and the Lagrange multipliers
along the element boundaries.

In solid mechanical problems, hybrid finite element models are obtained by relaxing
the condition of displacement continuity or traction reciprocity along the interelement

boundaries. It was first introduced by Pian®3! in 1964 for plane elasticity problems.
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Since then, hybrid models have been successfully applied to many problems in solid and
fluid mechanics, such as in plate bending!!!!l |aminated materials'67) and fracture
mechanics(6:112] - The most favourable character of these models is that the elements
so built can be incorporated into any existing package with the displacement model.
However this model usually involves many arithmetic operations including the inverse

of a matrix at the element level.
1.2.2 Mixed finite element formulation

On the other hand, in mixed models, the element parameters contain more than one
field, and unlike hybrid models all the field variables are described within the element
as well as on its boundary. Tt is usually founded on mixed variational principles, such
as Hu-Washizu principlel*1201 or Hellinger-Reissner principle3%931  or their
modifications in which two or three fields are included. Two types of mixed models

may be distinguished:

a. Discontinuous models
Here the continuity of only one field is enforced across element boundaries, the
parameters used in approximating the other fields can be discontinuous and
eliminated at the element level, and the size of the system analysis is the same as
that in a single-field solution. Again, similar to a hybrid model, many arithmetic

operations including inverse of a matrix at the element level must be done.

b. Continuous models
If the continuity of all field variables is enforced across element boundaries, the
size of the system analysis is expanded well beyond that in a conventional single-
field solution. Therefore a very efficient approximation of all fields in this model

is required to reduce the variables to as few as possible.
1.2.3 Comments on multi-field models

The multi-field models possess several major advantages over single-field models.



Chapter One Introduction

Because the governing equations of the mixed models are the more basic equations of
mechanics (or physics) with lower-order derivatives, the interelement continuity
requirements on the assumed fields are of lower order than for the conventional single-
field models. Furthermore the development of the element matrices in FE formulations
for multi-field models involves fewer arithmetic operations than that of their equivalent
single-field models. It is also true that for some nonlinear problems multi-field models
lead to a simpler problem to solve than those obtained by a single-field model.

Multi-field models can directly yield quantities of practical interest thus saving time
for further calculations, such as the stress computations in solid mechanics and
evaluation of stress intensity factors in fracture mechanics. Multi-field models of the
combination of mixed and hybrid (mixed-hybrid) types provide a convenient way to
match approximate solutions for different regions which make them most suited for
analysing nonhomogeneous media with discontinuous properties.

Insensitivity regarding the variations in the structure dimensions and the material
properties is an important factor for a finite element method. It is one of the difficulties
inherent in the single-field model, where special precautions have to be taken to assure
the accuracy of the answer. The multi-field models are considerably less sensitive to
variations in such characteristics of the structure than are the single field (displacement)
models. For example, in solid mechanics, the performance of the displacement model
for nearly incompressible materials give problems. The application of shear-flexible
plate (or shell) elements to analyze thin plates (or shells) with negligible shear
deformation can cause "locking" problems.

Some techniques are used to overcome these problems in a single-field method.
For example a reduced integration scheme is used to solve incompressible materials,
while an extra constraint is introduced in the virtual work principle for plate (or shell)
to prevent "locking". As Zienkiewicz pointed out in ref [126], these are all equivalent
to corresponding multi-field models.

While there are a number of advantages in multi-field finite element models,
difficulties of the mixed variational principles arise from the fact that these principle are
not extremum principles, but stationary principles. Unlike in the single-field model
where the system matrix is positive definite, the final equations derived from mixed

variational principles include a non-positive-definite matrix. Therefore some efficient
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algorithms used with the single-field models cannot be applied.

For the mixed continuous models, the increase in the number of degrees of freedom
results in a substantial increase in the size of the element matrices, and in the number
of simultaneous equations, as compared with the single-field models. It is also found
that some of the hybrid models and the mixed discontinuous models contain spurious

mechanisms (associated with zero eigenvalues).

1.3 SCOPE OF THIS THESIS

The main effort of the three years work by the author was trying to develop finite
element formulations from very elementary principles, e.g. Airy and Love stress
function, Hooke’s law, von Mises flow rule and the Least squares method(to be
defined later). It in turn provides a better understanding of all kinds of relationships
in elasticity, rigid perfectly-plasticity and elasto-plasticity.

This thesis treats the establishment and application of some mixed finite element
models in solid mechanics. Three new mixed models based on corresponding mixed
extremum principles, suitable for elasticity, rigid plasticity or elasto-plasticity
respectively, will be presented. In each case, some elementary problems are studied
along with conventional FE method and/or analytical method as bench-mark tests. A
more complicated application of the mixed model for elasto-plasticity is dealt with in
the mechanical simulation of part of a resistance spot-welding process.

The components of the stress will be interpreted in terms of two little known C°
constrained stress functions in plane problems, mentioned by Brezzi’s work!!2l, For
axi-symmetric problems, a novel interpretation of stresses with three CP stress functions
will be conceived by author. The well-known isoparametric shape function is used for
discretizing both the displacement components and stress functions. 4 variables per
node are needed in 2D cases, while 5 are needed for axisymmetric cases.

In Chapter two of this thesis a historic review of the mixed finite element
formulation will be given. All the basic formulations in the mixed FE method, such
as the discretization of the displacement field and stress field as well as an extremum
principle, are introduced in Chapter three with plane elasticity. The axisymmetry

elasticity will be studied in Chapter four with the new description of the stress field.
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Applications to simulation of spot-welding along with some simple solutions are carried
out. Nonlinear problems are first introduced in Chapter five with rigid-perfect
plasticity. There an extremum principle will be proposed to impose Levy-Mises flow
rule and yield condition. An optimum method, the Golden Section Search, will be
utilized for solving the nonlinear equations. The extremum principle is further
developed for elasto-plasticity in Chapter six. Some basic elasto-plastic problems are
solved to demonstrate the efficiency of this model. A practical application of this
method will be shown in the mechanical simulation of part of a spot welding process
with an adhesive interlayer in Chapter seven. Finally, Chapter eight will give the
final remarks about these models.

For the convenience of future reference, some basic concepts in FE method and
primary knowledge for the construction of its formulations, such as about discretization,
variational principles and their modifications, will be introduced in the next section of

this chapter.

1.4 APPROACHES TO CONSTRUCT FE FORMULATIONS

In this section, a brief description of approaches to establish a finite element
formulation in solid mechanics will be given, where emphases are on the discretization
of the basic field(s) and some approaches to create the fundamental principles, on which

the finite element formulations are based, will also be reviewed.

1.4.1 Finite Element Discretization

Basically the finite element method solves a problem starting with discretization of the
original domain. We will seek an unknown function u such that it satisfies a

differential equation

P(u)=90 (1.1)
in a domain  (fig.1.2), together with certain boundary conditions

p(u)=0 (1.2)

on the boundaries I' of the domain (fig.1.2). Here P and p are operators defining

7
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governing differential equations and boundary conditions.

Fig. 1.2 The discretization of domain Q by finite element mesh.

If we divide the whole domain @ by a number of subdivisions Q° (fig.1.2), known
as "elements", then within each element we can approximate the unknown function u
by a much simpler function u’ defined by a few unknown parameters a; within each

element

n
u=u* =Y Nga =Na (1.3)
i=1

where N, is an interpolation function——the shape function prescribed locally for the
element in terms of independent variables (such as the coordinates x, y, etc.). Usually
we define g; as the values of u at the nodes defining the geometry of the element.
Therefore g, are often called the nodal variables. So far we have simplified the original
problem of finding a continuous unknown function u into a problem of finding a
number of nodal variables g; element by element, this process is termed as
discretization.

However if the differential equation (1.1) plus boundary equation (1.2) can be

equivalent to an integral form, the approach of which will be discussed in section 1.4.2,

IQG(u*)dQ + jrg(u*)dI‘ =0 (L.4)
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in which G and g are known operators, by the merits of integration we have,

i[ erG(u*)dQ - Jreg(u*)dl‘] =0 (1.5)

e=1

A useful example arises from linear elasticity in solid mechanics where the differential

equations are linear, i.e.
P(u)=Lu+1
p(u)=Mu+m (1.6)

where L, M, 1 and m are constant operators. Eq.(1.5) will then yield a set of linear

equations of the form
Ka+f=0 1.7

with

K;=Y K; ; fi:ez:if: (L.8)

e=1

where Kij and f; are two constant coefficient matrices.
1.4.2 Weighted residual approaches and variational approaches

Creation of detailed integral formulations of the type shown in eq.(1.4) is the most
critical step in establishing the finite element formulation. Two distinct procedures are
available for obtaining such integral forms. The first is the weighted residual
approachB3!] the second is the variational approach!71:70]

As the differential equations (1.1) and (1.2) have to be satisfied at each point of the

domain Q, it follows that

T
J oV T Pwdn

il
o

j Tpwar = 0 (1.9)

where v and ¥ are any functions. If the above statement is valid for the reverse case,
i.e., if eq.(1.9) is always true for arbitrary functions v and v, the differential equation
(1.1) and (1.2) must be satisfied at all points of the domain. Indeed, the integral
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statement that

J QvTP(u)dQ + J FVTp(u)dI‘ =0 (1.10)

is satisfied for all v and ¥ is equivalent to the satisfaction of the differential equation
(1.1) and its boundary equation (1.2)B1. Therefore we have achieved the construction
of the integral form equivalent to the differential equation, which is just what the finite
element formulation needs. Because such a statement can be intuitively interpreted as
the requirement of inbalance of differential equations (1.1) and (1.2) to be zero in a
weighted average sense, the procedure based on eq.(1.10) is named as the weighted
residual approach, and both v and ¥ are called the weight functions. Obviously this
method is valid for any continuum problem for which differential equations are well-
defined. The well-known Galerkin method is only a special case in which v is chosen
to be identical to the shape functions N.

On the other hand, the variational approach is based on the existence of a
variational principle: the solution to a continuum problem is a function u which makes
a functional II stationary with respect to a small variation éu, i.e.

oIl = 0 (1.11)

where II is defined by an integral form

= 9 9 1.12
II JQH(u,au,...)dQ+Jrh(u,axu,...)dI‘ (1.12)

where H and h are known operators. If a variational principle can be found, an
approximate method is immediately established for obtaining solutions in the standard,
integral form suitable for finite element formulation.

From eq.(1.3), eq.(1.11) can be further expressed in terms of nodal variables g; as.

6H=6_H§al+a_naaz+ . oo+ oIl
da, da

éa, =0 (1.13)
da, n

n

This being true for any variations éa yields a set of equations

T
om _fem ol _g4 (1.14)
da da, da

10
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from which parameters g; are found. The famous Rayleigh-Ritzl°0:%6] method falls into
this category.

Some ‘"natural" variational principles exist in the physical world such as
minimization of total potential energy to achieve equilibrium in mechanical systems, the
least energy dissipation principle in slow viscous flow, etc. Unfortunately they do not
exist for all continuum problems for which well-defined differential equation may be
formulated. A thorough study for deriving natural variational principles from linear

differential equations is available in the works of Mikhlin{717°]

1.4.3 Constrained variational principles: Lagrange multiplier methods

Consider the problem of making a functional II stationary, subject to the unknown u

obeying some set of additional differential equations as constraints

Q(u)=20 inQ : q(u)=0 inT (1.15)

we can introduce this constraint by forming another functional

I (u, A, %) = (u) + JQATQ(u)dQ + JPXTq(u)dI‘ (1.16)

in which A and A are some set of functions of the independent coordinates in a domain
{ and boundary I' respectively, known as Lagrange multipliers. The variation of the

new functional is now

8II; (u, \,X) = 6II(u) + J anT Q(u)dQ + j Faqu(u)dp

. (1.17)
* j A T8Q)d0 + j XTsqdr

And this is zero providing Q(u) = 0 and q(u) = 0, and simultaneously 8II = 0.
Eq.(1.17) is known as the modified variational principle. The most general variational
principle in solid mechanics, the Hu-Washizu principle!*120] yas created using such
an approach.

Naturally, we may use the governing differential equation (1.1) and boundary

condition eq.(1.2) themselves as "constraints”, i.e. P (u) = Q (u) in domain Q and
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p (u) = q (u) on boundary T, and leave oI = 0. It gives

ST (u,\,X) = j ) TP(u)dQ + I SXTp(u)dr

(1.18)
¥ j MEPW o + j X op(u)dT

It is worthwhile to mention that the new principle so obtained has more variables (u,
6\ and 6)) than before, and the zero diagonal will exist in the final matrix, which
means it is no longer positive-definite.

One interesting case is that when P and p are linear operators as defined in
eq.(1.6), where 6P and ép are no longer the functions of u, eq.(1.18) can be totally

decoupled as two equations

STL;(u) = j anT P(u)dQ + j raXT pdl =0

(1.19)
SI (A, %) = J QATanQ+ J PXTﬁde‘=O

The second equation in eq.(1.19) only includes Lagrange multipliers A and N
Therefore the A and A can be obtained independent of variables u. The first equation
in it has variables u with some known function A and A With comparison to eq.(1.10)
on which weighted residual approaches are based, it is easy to see they are identical if
arbitrary functions v and ¥ being replaced by &) and 8\. However, unlike v and v can
be any function in weighted residual approaches, 6 and 5\ are governed by the second

equation in eq.(1.19) in Lagrange multiplier methods.
1.4.4 Constrained variational principles: Penalty function methods

In section 1.4.3, we found the constrained variational principle can be obtained by
Lagrange multiplier method at the expense of increasing the total number of unknowns.
In addition, even in linear problems, the algebraic equations are now complicated by
having zero diagonal terms. In this section we shall consider another technique to
introduce constraints which does not have such drawbacks.

Consider once again the problem of obtaining stationary of II with a set of

constraint equations Q (u) = 0 in domain © and q (u) = 0 on boundary I'. We note
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that the products

T 2 2 2
Q'Q = Q1+Q2+Q3+‘°' (1.20)
2 2 2
q'q=qg,*q,+q3+--

where

QT =[0, 0, 03 +--]
qT =[q, ¢ g5 *--1]

have a minimum of zero when all the constraints are satisfied. We can immediately

write a new functional

Mp(w) =TIW +e [ QT )QWdL + [ g™ (Wq@dT (1.21)

in which « and « are penalty numbers. If the minimum of II is the solution then the
penalty numbers should be positive number. The solution obtained by the extremum
of the functional I, will satisfy the constraints only approximately. The larger the
value of « and o are, the better will the constraints be satisfied. Obviously, it does not
increase the unknown functions u, nor will it yield the zero diagonal terms.

Similar to the previous section, if the constraints become simply the governing
equation (1.1) and boundary condition (1.2) of the problem, i.e. P(u)=Q(u) in Q and

p(u)=q(u) at T, we can write a variational principle

Ip=a I 9PT(u)P(u)am + o J rpT(u) p(u)dl’ (1.22)

for any set of differential equations.

Clearly equation (1.22) is simply a requirement that the sum of squares of the
errors of the differential equations (1.1) and boundary conditions (1.2) should be a
minimum at the true solution. This is the well-known Least squares method of
approximation. The least squares method is a very powerful alternative procedure for

obtaining integral forms and have been used with considerable success!63,127]
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CHAPTER 2
LITERATURE REVIEW

Mixed finite element models were initially developed in the 1960s to avoid the difficulty
in constructing a compatible displacement field for plate-bending problems which are
governed by fourth order differential equations. In 1966 Herrmann(4?l developed the
first mixed finite element model for the linear static bending analysis of thin plates. In

this chapter, we will give a historic review of the development of mixed FE models.
2.1 FUNDAMENTAL PRINCIPLES

In general, there are three approaches for formulating the mixed finite element models
(or mixed models for simplicity) which are the direct method, the variational approach

and the weighted residual approach.

2.1.1 Direct method

The direct method for formulating a mixed model combines the fundamental equations
in their natural or primitive form for each element directly. In structural and solid
mechanics problems, the fundamental equations include equations of motion (or
equilibrium), constitutive relations, and strain-displacement relations. This approach
is useful for simple elements such as truss and beam elements in structural mechanics.
Some of the early applications of mixed models in structural mechanics were made by
KleinP*4 by such methods. However, it becomes difficult to apply to more complex

elements and will not be discussed further.

2.1.2 Variational Approach

The variational approach to formulating mixed models is by far the most commonly
used to date. Almost all the reported applications of the variational approach in the
solid mechanics field are based on the two field Hellinger-Reissner(39-89:93] or three-

field Hu-Washizal44120] yzriational principle, or their modifications,
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Hellinger presented in 1914039 a two-field mixed variational principle for finite
elasticity problems, in which stresses and displacements are varied independently. For
linear elasticity problems, Prange(®) modified Hellinger’s principle by including the
boundary conditions. In 1950 Reissner presented(93} an equivalent variational theorem
for linear elasticity with independent displacement and stress fields, which includes the
boundary conditions. This variational principle is the famous Hellinger-Reissner (H-R)
principle. There are no subsidiary conditions needed for the stress components and
displacement vector. It later became one of the most popular principles for mixed
models.

Hu, on the other hand, presented in 1955441 a three-field mixed variational
theorem, which includes independent displacement, stress and strain fields as well as
all the boundary conditions. The complete fifteen equations in elasticityl110) are the
Euler equations of this variational principle. A similar theorem was also reported
independently by Washizul12% (1955). This variational principle is the well-known Hu-
Washizu (H-W) principle, which is another basic principle for the mixed models.

The earlier applications of mixed variational principle date back to the mid-1960s
when the use of the mixed models for plate-bending was proposed, independently, by
Herrmann(#%)(1966) and by Hellan3®1(1967). Herrmann used an alternative form of H-
R principle for bending of the thin plates by relaxing the constraint conditions of c!
continuity for normal displacement. Dunham and Pister!3%)(1968) used the classic H-R
variational principle to produce mixed finite elements for plane elasticity and plate
bending problem.

During the following decades, the mixed models based on the H-R principle or the
H-W principle were successfully applied in almost every area where the conventional
displacement methods had been applied. The mixed models do show superior results
over those obtained by a connventional displacement model in constrained media
problems, e.g. incompressible and nearly incompressible materials®:117] for problems
with high gradients (or singularities) in strains or stresses, such as near sharp crackl’8)
or for laminated composites(76-84:123.231 and highly inelasticity such as rubber-like
materials(4117],

Chouchaoui and Shirazi-Adl (1992) in their workl23] reproted a mixed formulation

based on the H-R variational principle to analyse composite structures. It demonstrated
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to have a satisfactory degree of accuracy, especially in view of the observed inability
of the conventional compatible method to yield reliable stress results.

The potential advantages of the mixed models in contact problems are realised by
many scientists working in this areal102:82.211  First, because both displacements and
stress are retained as variables, both the kinematic and equilibrium conditions on a
region of contact can be incorporated explicitly. Secondly, a study made by
Brezzi(1991) et al in ref. [12] indicated a superior accuracy over the displacement
method in analysing certain stress concentration problems.

For handling the contact boundary conditions, Tseng and Olsen(1981)[115] modified
Hellinger-Reissner principle by adding an integration term, which acts as a Lagrange
multiplier term. The displacements and stresses boundaries are explicitly included in
the functional. In a progressive contact problem which is frictionless and between two
elastic components, it shows better results in predicting the contact area than those from
displacement method.

More recently, Cescotto and Charlier?11(1993) applied a modified Hu-Washizu
principle to friction contact problems. It was first presented in the framework of
infinitesimal deformations and subsequently was extended to large inelastic strains.

For soil-structure interaction and construction sequence problems, Desai and
Lightner(1985)[28] proposed a mixed finite element procedure with triangular and
quadrilateral elements to nonlinear elastic and elastoplastic analysis. A number of
special techniques such as symbolic programming, utilization of dihedral symmetry and
the frontal solution method were employed to achieve computational economy. Again,
the classic H-R principle was used for the formation of the global equations, which
causes matrices to be non-positive definite. A number of examples in plane problems
were presented which gave the stresses to high accuracy. In a multi-media problem
where discontinuous stress exists this mixed finite element model gives reasonable
results.

For large displacement motion of solid bodies, a mixed updated Lagrangian
formulation was derived by Liao and Tsai(1992)5°], based on the incremental nonlinear
theory of solid and H-R principle. Two quadrilateral isoparametric mixed elements
were used in the study with continuous stresses across the elements. In the linear

analysis of plane problems, the mixed model can obtain accurate displacements and
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stresses, but in nonlinear analysis, the predicted stresses do not show monotonic
convergence.

The applications of mixed models to axisymmetric problem and 3D problems are
quite uncommon. Mahapatra(1988)64] derived the Hellinger-Reissner expression for
axisymmetric statement for both elastic and elasto-plastic material behaviour. A thick
cylinder under internal pressure and the Boussinesq point load problem were used to
demonstrate the efficiency of this model. This model was further extended to some
axisymmetric geomechanic problems in 1991[65],

A three-field mixed formulation in terms of displacements, stresses and an
"enhanced" strain field, based on a modified Hu-Washizu principle, was presented by
Simo and Rifai(1990)!193], Because there is no subsidiary condition of strains needed,
they chose a so-called "enhanced" strain which is merely a superposition of the
conventional compatible strain and a incompatible "enhanced" strain. They had
demonstrated how the classic method of incompatible modes arise merely as a result of
particular interpolations within a certain class of mixed methods. Analysis of Cook’s
membrane and the problem of a clamped arch in elasto-plasticity shows that this model
possesses very good convergence and accuracy in the calculation of displacements and
strains. The method was later extended to include geometrically nonlinear by Simo et
al (1992) in ref.[106].

In 1991, the analysis of elastoplastic large strains was reported by Jetteur and
Cescottol*8], It is also based on the Hu-Washizu principle and uses a co-rotational
formulation for describing large strain. A 4-node element with 1 integration point was

used in the formation of the matrices. Few results were given.

2.1.3 Weighted Residual Approach

The weighted residual approaches, on the other hand, has a broader scope than either
of the direct approaches or variational approaches, though for some problems, the
Galerkin process of the weighted residual approaches yield results which are identical
to those obtained by variational approaches. As mentioned in section 1.4.2, they do not
require the existence of a variational principle and therefore can be easily applied to

non-structural mechanics.
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Most of the applications of the mixed finite element models based on the weighted
residual approach have been in the fluid mechanics or solid-fluid interaction problems
(coupling problems) where variational principles are difficult to construct, Meissner!®®]
(1973) used a mixed model in potential flow problems. Hutton et all4>]1(1980) and
Jackson[#6] (1981) applied a mixed method on the solution of viscous incompressible
flow. Silvester[1931(1990) and Jenson[471(1992) discussed the Navier-stokes equation by
a mixed model. Applications of the weighted residual approaches to steady fluid and
metal flow problemst!25](Yamada et al, 1975) and soil-structure interaction problems
were reported by Lightnerl®®1(1981) and Sandhul®”1(1990). A discontinuous mixed FE
model in solving two-phase incompressible flow was presented by Chavent2] et al
(1990).

In 1990, Spilker and Maxian{!9°] reported a mixed-penalty FE formulation of the
linear biphasic theory for soft tissues, which was represented by a continuum theory of
mixtures involving intrinsically incompressible solid and incompressible inviscid fluid
phases. In this formulation, the continuity equation of the mixture was replaced by a
penalty form of this equation which was introduced along with the momentum equation
and mechanical boundary condition for each phase into a weighted residual form.

Heyliger and Kriz[411(1989) used a "variational formulation" in solving crack
problems, where the analytical solutions of the displacement and stress field near crack
tip were added to the conventional displacement and stress terms. The stress intensity
factors are included in the general variables. However, the procedure for obtaining the
formulation is exactly the same as the weighted residual approaches, where the weight
functions were taken as the first variations of the displacement components and the
stress components.

Loula et all®1)(1990) solved steady-state creep problems with monotone constitutive
laws. Finite element approximations are constructed based on mixed Petrov-Galerkin
formulations for constrained problems. Numerical results are presented confirming the
convergence of predicted by the Babuska-Brezzi criterion!1?].

In solid mechanics, most of the reported applications of the weighted residual

approaches have used either Galerkin or a least-square approach.
2.1.4 Other Approaches
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So far, however, in this review all the principles adopted in this particular area of the
finite element method were fallen into two main categories as already described in
section 1.4.2. With the mixed variational principles, based on Hu-Washizu or
Hellinger-Reissner principles, the applications to more sophisticated situations use extra
terms added to the already complex system. With the weighted residual approach the
governing equations are normally chosen residual form, which are usually high-order
differential equations.

Sohn and Heinricht1971(1990) proposed a penalty finite element models to solve
viscous incompressible flows, where the second derivatives appearing in the weak
formulation of the Poisson equation are calculated from (ol velocity approximation using
a least squares method. A similar models was also reported by Reddy[®21(1993) in
study of viscous incompressible flows.

On the other hand, Shyu et all1921(1989) proposed a mixed finite element model for
friction-contact from a perturbed Lagrangian variational principle. The displacements
and contact pressure in an element were independently approximated. Some examples
were included in the study.

A very interesting application of weighted residual approaches was reported by
Moitinho de Almedal’31(1992) in which compatibility or equilibrium is satisfied locally.
In the approach, linearly independent functions were defined within each element
irrespectively of the location of the nodes. The lack of interelement continuity, due to
abandoning the concept of the nodal variables, is eliminated a posteriori by utilizing the
weighted residual approach. As the approach used is independent of the choice of basic
functions and of the shape of the elements, it is very general. The matrices obtained
for the governing system are symmetric, sparse and semi-definite. However, the results
in the examples show that the interelement continuity is not secured very well when
lower order basic functions are chosen for approximating the stress or displacement
within the element.

A mixed variational principle based upon a combination of modified potential and
complementary energy principles was shown by Day and Yang[261(1982). Compatibility
and equilibrium are satisfied throughout the domain a priori, leaving only the boundary
conditions to be satisfied by a variational principle. The nodal concept is also

abandoned due to the difficulties to establish stress distribution identically satisfying the
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equilibrium equations and still expressible in terms of a convenient set of nodal
quantities, but the continuity between elements is not explicitly satisfied. This is
enforced in a weighted average sense by an extra term in the variational principle. The
resulting system equation is unsymmetric. Numerical examples show that high order
of trial functions are generally needed to maintain the good results and convergency.
In the area of 2D linear elasticity, progress was reported by Chandlert!31(1992)
where a mixed extremum principle was developed. The continuity of displacements and
the force equilibrium equations are both satisfied within an element and at the element
boundary by means of shape functions and vector stress functions a priori. The
Hooke’s Law can be approximately imposed at the maximum of the functional, which
approximately brings the satisfaction of the moment equilibrium. The advantage over
some existing mixed formulations is that the global matrix is symmetric and positive-
definite and only C° continuity is needed between the elements for both types of
variables. An application of this model was reported in the analysis of an

incompressible plane strain disc.
2.2 DISCRETIZATION IN MIXED MODELS

As we have just shown in section 2.1 that mixed models utilize different fundamental
principles, such as mixed variational principles, from those in the conventional
displacement method to construct the model. In addition, the mixed models also
involve the discretization of the secondary variable(s) within each element, i.e. stresses
and/or strains, while only displacements are needed to be discretized in displacement

methods.
2.2.1 Discretization with Continuous Variable(s)

A natural way to discretize stresses is, analogous to formulations in the displacement

methods, to approximate each component of stresses by means of shape functions

o(x,y) = N°; g;, together with  u(x,y) = N* u; @2.1)
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where ¢ = { o, , 0, , Try 3T and  u = { Uy s Uy }T are the stress and
displacement fields respectively within an element for 2D problems. o; and u; are the
nodal variables of the element. N°; and N*; are shape functions for stress components
and displacement vectors respectively.

Usually the shape functions of the displacement variables in mixed model are C°
continuity functions, identical to those in a displacement model in plane problems. The
shape functions for stresses are independent of those of displacement variables but they
can be the same. The character of this manner of discretization is that both the
displacement and the stress are continuous across the interelement boundaries and the
nodal variables also include both of them. It is the kind of discretization which is used
by the continuous models defined in section 1.2.2

Desail?8] in his work used such approaches to construct a 6-noded triangle elements
and an 8-noded isoparametric elements in plane elasticity. The degree-of-freedom
(DOF) is 5 per node, i.e. u,, U, 0y, 0y, and o,,. Similar approximations are adopted
by Liao[59], where 4-noded and 8-noded quadrilateral elements are used.

A 3-noded triangle element with 5 degree-of-freedom per node is used by
Tsengl!15] for the analysis of contact problems in a similar way. Mahapatral®4l, in
axisymmetric problems, uses the continuous stress and displacement approximation,

where 2 displacements u, and Uy, and 4 stress components o,,, 0.

v Oz Oy, @Nd 0gg are the

system variables, e.g. 6 X8 = 48 DOF for an 8-noded element.

There are also some models where superpositions are used in expressing the stress
variables. Normally, the higher order polynomial series, (e.g. the analytical solution
of the stress field near crack), are added to the conventional continuous stress
approximation. Heyliger4!] used such an approach in the solution of the crack
problems. The polynomial series are taken as the analytical solution of the crack tip

displacement and stress fields. The approximation functions are

-

Y 6,6 ‘R
; 2.2)
2

n
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- -
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T

where n and m are the number of nodes per element and number of terms of polynomial
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series respectively. u; and g; are the nodal variables of displacements and stresses,

g
u i
X
ul = , o'i = O'yyi (2.3)
u
Vi o
XY

and f; are unknown parameters to define the analytical solutions. ©; and Z; are known
coefficient matrices. The transition function R is employed to ensure the continuity of
both displacement and stress between the “enriched” elements and the conventional
elements. R is taken as 1.0 next to the enriched elements and as 0.0 next to the
conventional elements. The number of total variables per elements is 5Xn + m.
The difficulty faced by continuous mixed models is to construct shape functions
which automatically ensure that the resulting stresses satisfy a priori the equilibrium

equations. Therefore the equilibrium condition has to be imposed a posteriori.
2.2.2 Discontinuous Mixed Models

Although the C° continuous stress approximation of the mixed method produces more
accurate results than the standard displacement analysis does{!%6], the disadvantages are
obvious: it brings additional variables into the system, and when there is a rapid change
of the material properties, the discontinuity of the true solution can not be reproduced.
Zienkiewicz[126] described this disability as excess continuity.

In fact, in applying the principles, such as the mixed variational or weighted
residual approaches, it is not necessary to maintain the continuity of stresses or even
the traction reciprocity along the interelement boundary, it is permissible to express the
stresses in terms of stress parameters which are only defined locally in each element.
The stress parameters can then be eliminated in the element level and the system
remains the same as if displacements are the only variables. The mixed models based
on such a discretization are called the discontinuous models defined in section 1.2.2

Herrmann(40] in his pioneering work in a mixed bending model, used a linear C°
function for the transverse displacement w, which is identical to it in plane problems,

but constant C! distributions for the three stress components. The final equations
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leaded to only 6 variables per element, which is the same as in a displacement model.

A three field mixed model by Simol195] also discretizes both strains and stresses
into discontinuous functions. The stresses are then eliminated from the system.

In solid-fluid problems or incompressible problems, the discontinuous pressure p
is usually chosen. This was adopted by Spilker in ref.[109]. In the mixed penalty
formulation, solid displacement, fluid velocity and pressure are independently
interpolated within the element; o continuity is required for the displacement/velocity,
and discontinuity(C 1) is required for the pressure. For the axisymmetric 6 node
triangle, the displacement/velocity interpolation is quadratic and continuous between
elements, while the pressure interpolation is linear but discontinuous.  After
interpolation, the unknown pressure will be eliminated at the element level.

The discontinuous mixed model gives more flexibility when constructing the stress
approximate function. The nodal variables for the stress and/or strain are replaced by
the parameters in a polynomial series. However nodal variables for displacement
remain in the system since continuous displacement is generally required. The most
clever option is to choose a polynomial series which satisfies the equilibrium equations
or simply uses the analytical solutions as the approximate functions, which can greatly
reduce the work in constructing the variational principles. The corresponding
parameters are included in the system variables.

Zienkiewicz!126] gave a survey on the varieties of the mixed models. In
discontinuous mixed model, the principle of limitation has to be taken care of: If the
approximation for the secondary variables is capable of reproducing precisely the same
type of variation as that determinable from the displacement method, no additional
accuracy will result, and indeed the two approximations will yield identical answers.
This discovery was made by Fraeijs de Veubeke!?3,

Clearly, this limitation is not applicable to the mixed models with C° continuous
stresses and displacements since c° displacement can not reproduced a C° continuous
stress.

Considering that both the displacements and stresses and/or strains are
discontinuous across boundaries, the nodal variables can be eventually abandoned in the
whole system. In fact, this was done by Day[?%] in his work, who introduced a mixed

model with polynomial displacements and stress approximations which are both
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discontinuous across the interelement boundaries. The compatibility and equilibrium
are satisfied throughout the domain a priori by carefully choosing the polynomial
functions. No nodal variable appears in the model. The system variables are
parameters of the polynomials, called general displacement parameters and general
stress parameters. Although the formulations representing each field are independent
in the theoretical sense, the practical examples show that two assumed functions should
be comparable, i.e. the order for stresses should be equal to or less than it for
displacements. In order to get a reasonable results in this model, a fifth order
displacement trial and a fifth order stress trial function are desired, where there are 22
displacement and 23 stress parameters per element. Obviously, the system variables
are formidable compared with the conventional displacement method, e.g. 4-node
element with 8 DOF and 8-node with 16 DOF in 2D problems. Although the idea of
this model is new, it is doubtful that any practical interests will result from it. A
similar idea was also conceived by Moitinhol”3) in his work, in the hope of establishing

a general approach to the construction of finite element formulations for solids.

2.2.3 Discretization of Stress Function

All the discretization approaches mentioned so far try to discretize directly the
components of the stress and/or strain. The approximate stress field so chosen may or
may not satisfy the local equilibrium equations. If they satisfy the equilibrium
requirement in the domain and obey the traction reciprocity along the interelement
boundaries, a simpler principle is needed to construct a model and also fewer operations
are needed to form the element matrices. But these functions are more difficult to find.
Alternatively, the easy-to-find functions, which do not satisfy the equilibrium equations
but are continuous, leads to more complicated principles in order to approximately
impose the equilibrium equations. Thanks to the versatility of the variational principle
approaches and weighted residual approaches, this is not a problem but at the expense
of more operations. Therefore, the ideal discretization of stresses is the one that satisfy
both equilibrium equations and traction reciprocity, and are easy to express, i.e. not too
many variables or high order function involved.

The well-known stress functions in solid mechanics are clearly the best candidate.
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Stress derived from them automatically obeys the equilibrium conditions. If the stress
functions are continuous in the discretized solid, the traction reciprocity along any
interelement boundary within the domain is also obeyed. In 2D problems, the Airy

functionl! is the stress function,

_ 8% P’ . _ __0% (2.4)
Ty Wi aax 0 T oy

If we discretize ¢ within each element in the same way as discretizing displacements

which are continuous of course, the following expression can be obtained,

6=3 N, @)

Sarigull®®! uses such approximate stress in his assumed stress function finite element
method in 2D elasticity, in which complementary energy is used to formulate the
system equations.

One critical shortcoming of this approach is that the approximate stress function ¢
has to have C! continuity since the second order differential of ¢ is present. This is
why the stress function discretization is rarely used in the mixed model.

In fact, two first order stress functions ¢/, and qby with C° continuity, were
reported by Wood(!24] and Chandler!!?] independently, from which the stresses can be
derived

X "3y ¥ ay (2.6)
> ox > Tox

and so as to satisfy force equilibrium equation o;;; = 0. But it does not satisfy moment

equilibrium equation o;; = ¢;; . This is only satisfied if

$.=9% . _99 @.7)
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where ¢ is the Airy stress function.

In Wood’s study!!?*], moment equilibriums are not required in the couple-stress
problems. However this requirement has to be satisfied in conventional elasticity. In
ref [15], this was accomplished by the approximate satisfaction of the Hooke’s law a
posteriori by an extremum principle. It is also found that vector stress functions allow
permissible stress jumps across a surface, as would be required if the material
properties change as the surface was crossed.

A plane strain disc under internal pressure loading was analysed by such method
in ref [15] for both compressible and incompressible materials. The results show that
this mixed model does represent the moment equilibrium properly and has much better
performance in incompressible cases. However, the more difficult cases, where shear
strain plays a crucial role, have not yet been encountered in the example, e.g. beam
bending under tip traverse loading, where an error in calculation of the shear stresses

may arise due to lack of symmetry of stress tensor in the stress approximation.
2.3 MATERIALS PROPERTIES

Before getting further the application of the mixed models to nonlinear problems, it is
useful to have historical remarks about the development of various theories of material

behaviours.
2.3.1 Mathematical Theories of Elasticity and Plasticity

The description of elastic behaviour is firmly established, for example the Hooke’s

[110]:

law 0;; =Cijis € - The hypothesis on which it bases is that the stress of the

ij
material is proportional to the strain sustained and the removal of the stress will leads
to no residual strain or permanent strain in the material. The material is said to be
elastic.

Most materials have an initial region on the stress-strain diagram in which the
material behaves both elastically and linearly. However when the stress is beyond a
limit, i.e the elastic limit, Hooke’s law is no longer correct because plasticity takes

place.
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The study of plasticity was initiated by Trescalll3] in 1864. In that year he
published a preliminary account of experiments on punching and extrusion, which led
him to state that a metal yielded plastically when the maximum shear stress attained a
critical value. The actual formulation of the theory was done in 1870 by St. Venant{27],
who introduced the basic constitutive relations for what today we would call rigid,
perfectly plastic materials in plane stress. It remained for Levyl®®l later in 1871 to
obtain the general equations in three dimensions. A generalization similar to the results
of Levy was arrived at independently by von Mises in a landmark paper in 1913[118]
accompanied by his well-known yield criterion. The established relationship of stress-
strain for rigid-plastic is called the Levy-Mises equations.

In 1924 Prandtl11%] extended Levy-Mises equation for plane continuum problems
to include the elastic component of strain. Reuss®*) in 1930 carried out the extension
to three dimensions. The relation is called the Prandtl-Reuss equation in elastic-
perfectly plasticity. In 1928, Von Misest11°] generalized his previous work for rigid,
perfectly plastic solid to include a general yield function and discussed the relation
between the direction of plastic strain rate (increment) and the regular or smooth yield
surface, thus introducing formally the concept of using the yield function as a plastic
potential in the incremental stress-train relations of flow theory, known as the
associated flow theory. It is well-known now that the Von Mises yield function may
be regarded as a plastic potential for Levy-Mises stress-strain relations.

For hardening materials, independently of the work of Melanl®® in 1938,
Pragerl®)] in a significant paper published in 1949, gave a general framework for the
plastic constitutive relations. A very important concept of work hardening, termed the
material stability postulate, was proposed by Drucker!?®l in 1951. With this concept,
the plastic stress-strain relations together with many related fundamental aspects of the

subject may be treated in a unified manner.
2.3.2 Mixed FE Models for Elasto-Plasticity

Now we are in the position to discuss the mixed finite element model with regard to the
material properties. In the framework of displacement finite element formulations,

plastic loading is tested at each quadrature point of the element, and a return mapping

27



Chapter Two Literature Review

algorithm is performed at this point for given incremental displacements. Only total
and plastic strains are the independent variables, while the stress is regarded as
dependent variable which is computed from the elastic strains by means of stress-strain
relations.

In contrast to this view, many literature on plasticity has been concerned with the
formulation if the elasto-plastic problem with the stress field as the independent
variable. In a mixed model this is natural true because both displacement and stress are
almost certainly independent variables. Normally stresses so obtained only satisfy the
equilibrium conditions but do not obey the yield criterion. Similar algorithms of stress
integration for calculating stress components are normally borrowed from the
conventional displacement method, such as the well-known elastic predictor-radial
return method[33:7%] in order to make the stress obey the yield criterion. A detailed
survey of stress integration can be found in Ortiz’s work[3%,

Mahapatra and Dasguptal®4(1988) used an mapping algorithm in his mixed model,
which is identical to the one in displacement method, in elasto-plastic axisymmetric
problems. A similar algorithm is also used by Jetteurl*81(1991) in a large inelastic
strain study, and by Liao®®1(1992) for large displacement and elasto-plastic and post-
buckling response of plane problems.

Simo et all1941(1989) presented a interesting formulation for elasto-plasticity based
on the principle of maximum plastic dissipation. The fundamental difference is that the
plastic return mapping algorithm can no longer be formulated independently at each
Gauss point, in contrast with displacement-like methods. The closest-point-projection
iteration that restores consistency is performed at the global element level and involves
all the Gauss points within the element. It was found that for a given mesh the mixed
model converges slower than the displacement model.

Chandler!!8] reported an interesting variational principle in rigid plasticity for
granular materials, where Drucker’s postulate is inappropriate. Since the requirements
in advance are a displacement field that obeys the kinematic boundary conditions, and
a stress field that obeys equilibrium and the static boundary conditions, the variational
principle itself was to impose the constitutive relation of the granular materials.
Therefore, the stresses obtained by the stationary of the functional will not only satisfy

equilibrium equations, but also the yield criterion.
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2.4 CONVERGENCE OF MIXED MODELS

The most favourite character of mixed models is that the sufficient and necessary
condition of the stability and convergence of a solution exists: if Babuska-Brezzi(B-B)
condition is satisfied, a solution must converge to the true solutionl!2l. Such a criterion
is simply not available in conventional displacement methods. B-B condition is very
general and complicated. Therefore for some specific mixed models, simplified
criterions of solution may be desired.

A lot of researchers have devoted themselves to this topic. Silvester{193](1990)
gave a sufficient condition for the stability of low-order mixed finite element methods.
Pinsky(831(1991) studied the dependency of the numerical stability and accuracy of the
results from the mixed shell elements on the balance between the stress, displacement
and Lagrange multiplier fields.

In 1990, Brezzi and Bathel!!l discussed the general mathematical conditions for
solvability, stability and optimal error bounds of mixed finite element discretizations.
A numerical test that is useful to identify numerically wether, a given finite element

discretization satisfies the stability and optimal error bound conditions, is also given.
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CHAPTER 3
MIXED MODEL IN PLANE ELASTICITY

A good example of problem in continuum mechanics is 2D linear elasticity. To solve

such problems successfully is the first step in solving more difficult problems.
3.1 MIXED EXTREMUM PRINCIPLE

Consider a body B with surface I' and with Cartesian coordinates x;. An exact linear
elastic solution requires:
* A continuous displacement vector field, with components #;, which obeys the
kinematic boundary conditions and from which the components of the strain tensor ¢;
can be derived by using

1
€j = 50+ 1)

3.1)
which is symmetric. The subscript after the comma represents differentiation with
respect to the corresponding spacial coordinate. Such a displacement field is termed
kinematically admissible.

® A stress tensor field with components Tjj» which satisfies the force equilibrium

05; = 0 (3.2)
and the moment equilibrium
0; = o (3.3)

t] = 0::N: (3.4)

on the boundary surface. Such a stress field is termed statically admissible. The
moment equilibrium implies that stress tensor 93 is symmetric. Note that the Einstein
summation convention is used here and elsewhere in this thesis.

* These components of stress and strain obey Hooke’s law,
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"ij = Ci]'klekl (3.5)
where Cyjy is the stiffness tensor.
This can also be written in a matrix form as
o = D¢ (3.6)

where o and ¢ are vector forms of stress and strain tensors respectively defined by

_ T
e=[e)) &n &3 €12 &3 &3] G.7)
_ T
0=[0y) 0y 033 015 O3 03]

and D is the elastic stiffness matrix for isotropic elasticity defined by

1 . _* 9 0 0 |
(1-» A-»
r 1 _r 0 0 0
1-v) 1-»
_r_ _r 1 0 0 0
_ EQ-» i-» (@-») (3.8)
I+n1-2v) | o 0 o 12 0 0
2(1-»)
0 0 0 1 9
2(1-»)
0 0 0 0 0 1-2v
i 2(1-1/)_‘

for three dimensional (3D) cases. The constants » and E are the Poisson’s ratio and the
Young’s modulus respectively. The overall number of the independent components of
the stress and strain are six due to the fact of o;=0;; and g;=¢;;.

Alternatively, it is sometimes, especially in elasto-plasticity, more convenient to
describe the Hooke’s law in terms of deviatoric stress s; and deviatoric strain dj;
together with mean stress g,, and volume strain e,,

s;=2Gd; 3 o, =Ke, (3.9
where 1
Om = 3%k m = ik (3.10)
. .
sij = o‘ij—5ijtfm dU = ey—§-5,jem
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The independent constants K and G in eq.(3.9) are shear modulus and bulk modulus
respectively and are both positive.

In a conventional displacement method, Hooke’s law is explicitly incorporated in
deducing the fundamental principles, such as in minimum potential energy principle.
As to the kinematic admissibility and static admissibility requirements, only one is
satisfied in advance in such single-field models. On the other hand, most of the mixed
models choose an approximate displacement which is fully kinematically admissible,
and an approximate stress which is only locally statically admissible. Therefore for the
mixed models, satisfaction of the overall equilibrium is left to the task of the mixed
principles. In both conventional models and mixed models the boundary conditions are
imposed by fundamental principles, which becomes one of the main advantages of the
FE method. They largely simplify the solution of a boundary value problem.

We may also assume that both kinematic condition and static conditions are fully
satisfied in our approximate displacement and stress field, which are called as
admissible displacement and admissible stress respectively. Now only the stress-strain
relation is imposed by the mixed principle. This is the case in this chapter where a
mixed extremum principle is proposed in a least square sense to approximately enforce
Hooke’s law. As reviewed in chapter 2, very little work appears in the literature where
the constitutive relations are to be imposed by extremum principles. The most
favourable point of this scheme is that principles suitable for any materials can be
readily obtained by imposing the explicit constitutive relationship, without change of
formulation in the admissible displacement and stress. We will see later in chapter 5
and chapter 6 that it is of special interest if the constitutive relationship is taken as the
one for rigid perfectly-plasticity or elasto-plasticity.

In the case of linear isotropic elasticity we can construct an extremum principle
very easily. Give an assumed strain e,-j* and an assumed stress aij* which are either
kinematically admissible or statically admissible. The corresponding deviatoric strain

d.”, stress s, mean stress Um* and volume strain em* can be derived by substituting

y y?

eij* and Uij* for e;; and oy in eq.(3.10). Since they do not satisfy eq.(3.9), it follows

Ry .d7) = (s 12G-d; =20 ; Ri(o,en) = (om/K-ey)?20 (-1

where R; and R, can be considered as some kind of residual functions of admissible
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stress and strain. It is straightforward to obtain the following inequality for elasticity

a5 = [ [0 R, (S,, Ay ) + o, R(o” e, )]dV = 0 (3.12)

where o, and «, are two arbitrary positive constants.

It is evident that IT ;. has a minimum of zero, and the equality is only true when
dij*, s,-j*, Um* and em* fully satisfy the Hooke’s law, i.e. equation (3.9).

Recall what we have described in section 1.4.4. It immediately turns out that
eq.(3.12) is identical to the least squares method in the penalty function approach.
Thus the two coefficients «; and a, can be simply regarded as penalty numbers. It
comes to a question: how to choose the penalty numbers and what are the best choices?
One answer is a; = G and a, = K/2 which will then allow the formulation to be
reduce to the principles of minimum potential energy and minimum complementary

energy. It can be verified as follows.

Expanding eq.(3.12) by substituting eq.(3.11), it follows that

I =

2
m_2 o.e + e:,]dV (3.13)
K

= os5d+ dd) |3

Q (4G2 2677

Replacing «; and a, by G and K/2 respectively and reordering this equation, it is very

interesting to find that the right hand side is composed of three terms

Weias = [ 4=2(0mm + 35id) *[5CDddy + 2Ky 1+ 255+ =00y 1dV (3.14)

2(20) ljs ]
The first term in bracket is twice the internal energy, the second the strain energy U,
and the third the complementary strain energy U,. Therefore eq.(3.12) can be written

II -20,€;+U+Uc = 0 (3.15)

elas = ijvij

If stresses are statically admissible and the strains are kinematically admissible, then the
theorem of virtual work(108]

can be used to replace the internal energy with the external work done in eq.(3.15)

33



Chapter Three Mixed Model in Plane Elasticity

]}ude‘ >0

s

jQ(Us+UC)dQ- jrkfjujdr- [r
where T’ is the boundary with the traction f; fixed, while T, is the boundary with the
displacement u; fixed.

Let displacements and strains be functions of o; and stresses be functions of B;.

The minimum of II can be found by

f ]
aU ou;
=|[ —=do-(_ F—Ldr|sq
Q da; T,/ do; !
L i i (3.16)
[ aU, of _
Zeqgn-{ Zigar|eg =0
dif 3B, Irkaﬁiuf B

Because o; and B, in eq.(3.16) are independent variables, the above equation yields the

following equations:

an=IQaUSdQ-IFJ§5ude =0

which is the principle of minimum potential energy, and

811 = jﬂaUch - jrk@;.u—jdr =0

which is principle of minimum complementary energy.

From now on, G and K/2 replace «; and a, in all expressions of IL,,.
3.2 DISCRETIZATION OF DISPLACEMENTS FOR PLANE PROBLEMS

Following the procedure in a conventional displacement model, the discretization of

displacements in this mixed model is accomplished by means of the isoparametric

u(Em| _ o 1 0w, 3.17
(E,n)} ;N‘(E’“)[o 1]{"-} o

formulation[126]

where £ and 7 are local coordinates in an element, u(£,7) and v(£,7) are approximate

displacements in x-direction and y-direction respectively. u; and v; are the nodal
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variables of the element corresponding to u(£,n) and v(§,n), N, is the shape function
of node i in an element, m is the number of nodes per element, as shown in fig.3.1.
Shape functions in isoparametric are defined as(12¢]

For a 4-noded element

NiEm = (L+EE) (1 +mm))

Local node number £ n;
1 -1 -1
2 1 -1
3 1 1
4 -1 1

Fig.3.1 The geometric layouts of a 4-noded and a 8-noded isoparametric element.

For a 8-noded element

N, m =2 +EE) A +nm) (ELi+qn=1) i=1,3,5,7
1 ,
N(E,m =26 A+EE) (- + 50l (L+mn) (1-£D); i=2,4,6.8
Local node number £ 7,
1 -1 -1
2 0 -1
3 1 -1
4 1 0
5 1 1
6 -1 1
7 -1 0
8 0 0
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The continuity condition of displacement within the element and on the inter-element
boundary is ensured by such formulations!!26] If the strain is expressed by eq.(3.1),
the compatibility condition is also ensured, which implies that the displacement field so
obtained is kinematically admissible.

In 2D plane stress problems, the vector forms of strain and deviatoric strain tensors
are introduced for convenience of FE formulation as

e={en ey € e e 5 d={d, d, d, d, d})T

where 5 components of strain are used in order to take into account the fact that

0y, =0y, does not apply in our model. Then strain, deviatoric strain tensors and volume

strain can be approximated in matrix forms as

m m m
d d d

e=YB; B ; d=YByB ; e,=YB,b (3.18)
i=1 i=1 '

where . T
Bpi = B - 3 TBy,
[ 1 1 v T
Nix 3Ny 2Ny 0~
Bi =
1 1 v
0 3Nk 5Nix Niy ~15Niy
-1 0010 (3-19)
T =
10010
Bui = [Nix Niyl (for plane stress)
B, = 1; Nix N;,|  (for plane strain)
_V s,
d T
B; = {“i Vi}

For plane strain, the last row of B; should be replaced by [0, 0] .

3.3 DISCRETIZATION OF STRESSES FOR PLANE PROBLEMS

The discretization of stresses is always an important but difficult task in the mixed
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model. A good formulation for discretizing the stress field will enable the model to be
highly accurate and efficient.
To satisfy of the force equilibrium equation (3.2), it is easy to verify that the

following representation of the components of stress is appropriate

oF, dF,
0. .= ’ g..=—
"5y Yo 9y (3.20)
oF dF
-—_ Y . = X
R

where F, and F, are two independent functions. Because no explicit second order
derivative of F, and F, is included, the continuity of these functions is C°. Therefore
functions F, and F, are called the first-order stress functions. However it does not

imply the satisfaction of the moment equilibrium equation (3.3) since

OF, _ 9F, (3.21)
dy ox

is not true for two arbitrary functions F, and F,. If we upgrade the order of eq.(3.20)
by specifying that
F, = % and F, = a_(b
dy Yo ox
where ¢ is a second-order continuous function, the equilibrium conditions (3.2) and
(3.3) are fully satisfied. The components of the stress can then be expressed
_ %% . __ %
= _ T ; 0. =T
9y> Y oxdy

2 2
Oyy = —_a d) 5 O,., = a_¢
Yooy TP g2

(3.22)

in which ¢ is the well-known Airy stress functionl®], Since the Airy stress function is
the lowest order and the simplest function to express equilibrated stress components in
2D problems, it is inevitable that to impose both force and moment equilibrium
conditions C ! second-order functions must be used.

However if we give the functions F, and Fy a constraint such that eq.(3.21) is true,

the description of the stress in eq.(3.20) will fully satisfy equilibrium conditions

37



Chapter Three Mixed Model in Plane Elasticity

eq.(3.2) and eq.(3.3). In other words, the second-order Airy stress function is
decomposed into two first-order functions, which obey force equilibrium condition, and
a constraint which imposes moment equilibrium condition. Now we have achieved the
construction of a first order stress function together with a constraint, or a constrained
first order stress function. The constraint will be treated later as in the constrained
variational principles by a penalty function described in section 1.4.4.

With C° stress function in hand, the discretization of the stress becomes the
discretization of the C° stress functions F_ and Fy, which can be thought as two
components of a vector. Therefore isoparametric formulation can be used again to
discretize stress function,

m
g gl g e
y i=1 yi
where F (¢,7) and Fy(E,n) are two approximate stress functions. F,; and Fyi are nodal
variables of the element corresponding to F,(£,1) and Fy(E ,m), N, is the shape function
of node i in the element and m is the number of nodes per element. Again for the

convenience of FE formulation, vector forms of stress and deviatoric stress tensors are

introduced

g = {axx Oxy Oy Oyy azz}T ;0§ = {sxx S Syx Syy szz}T

Then from eqs.(3.20) and (3.23) the stress, deviatoric stress and mean stress for plane

stress cases can be expressed in matrix forms as

m m m
v = ¥Ai B, ; s= z; A B 5 o, =Y AuB (329
1= i= 3

i=1

where _
N; T
0 i,y ADi = Ai_TAmi
-N; y 0 1 1
. A . = [_N _N ] f 1 t
A = o -N.| . mi = |30 3Ny (for plane stress) (3.25)

N, O Ami = [1_;_1:1\,1_,)‘ 1—;21\7,),] (for plane strain)

. 0 0 Bf:{F)a Fyi}T
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T is the same as in eq.(3.19). For plane strain problems, the last row of matrix A,
should be replaced by [vN,,, Ny 1.

As we have reviewed in chapter 2, there are difficulties and inaccuracies brought
in by the discretization of the stress field with either continuous or discontinuous stress
across inter-element boundaries. For example, the models with discontinuous stress do
not satisfy the traction reciprocity along the inter-element boundaries. Although this
violation of the equilibrium condition can be partly cured by the mixed principles, it
brings an inaccuracy into the solutions. On the other hand, the models with continuous
stress do not permit the discontinuity of stress when there is a rapid change of the
material properties, though traction reciprocity along the inter-element is ensured. This
is termed as excess continuiry!!?6), However, the model in this thesis can solve the
above problems entirely: it allows "stress jump"” where material properties change

rapidly, and at the same time satisfies the traction reciprocity at inter-element

boundaries.

Fig.3.2 Local coordinate system at the element boundary.

Consider a surface I' with a normal vector n, and a tangent vector 7. These two
vectors form a local Cartesian coordinate system, as shown in fig.(3.2). The traction

at any point on this surface is obtained by eq.(3.4) as follows,

Oy + O

Iy yxTty (3.26)
ty = Oyl + Oy T
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where n, and n, are direction cosines of the normal vector n. By projecting ¢, and L

in the normal and tangent directions, the two components of the traction are

by = Myly + My,

(3.27)
t, = nyly - ML,
From eq.(3.26), it follows that
2 2
by = MyOxe + Ny 0y, + NN, (0y, + 0, (3.28)
2 2
by = NNy (04 = 0y) + 10,0y ~ 1, 0,)
Remembering the following relations,
d d a
J— —_—tn —
ox "ar " an
d d

and substituting eq.(3.20) into eq.(3.28), the traction can be expressed in terms of stress

functions as

JF JF
t, = -n,—2 + ny_x

67’ 67' (3.29)
L, O @F,

_*-n_2
* or Y or

It shows that there is only the derivatives of F, or F,, with respect to 7. Now assume
two elements A and B, which are adjacent to one another. Since C° continuity of F,
and F, is ensured by the isoparametric formulations, then (Fx)A =(Fx)B and

(Fy)A=(Fy)B are true. Furthermore since the two elements are sharing common

boundary, then (a/aT)A= (6/87-)3 is also true. It leads to the conclusion that traction
reciprocity is exactly satisfied by this model, i.e. (r,,)A = (tn)B and (tT)A = (tT)lf
It is of special interest that while traction reciprocity is satisfied exactly, the
discontinuity of stress across inter-element boundaries is also permitted. This is
automatically true in our model since the stress functions F, and F, are of c°

continuity, the components of the stress expressed by their first derivatives, such as in

40



Chapter Three Mixed Model in Plane Elasticity

eq.(3.20), must be of C 1 continuity, i.e. discontinuous across inter-element boundaries.

Therefore a "stress jump" is reproducible.
3.4 BOUNDARY CONDITIONS

In conventional single field models, boundary conditions are easy to be imposed by
means of virtual work principle. However in using this, the symmetry of a stress
tensor is essential. This is no longer true for our model, and therefore a different
approach must be employed. The boundary conditions can be treated as some sort of
constraints in the mathematical sense. For the variational principle approach, there are
two constrained principles available, Langrange multiplier method or penalty function
method. The penalty function method, of course, is the best choice since it does not
bring extra variables to the system, neither does it cast the non-positive-definite of the
matrix, as discussed in section 1.4.4.

Say (', V') are given displacements at any point i on the boundary. By means of
a quadratic penalty function, the true u and v are those which make the following

functional

1, =(87-8H7 ol (87 -6%) (3.30)

minimum, where

d .

a |Pui 0 a4 -2 )y
Pi = d > B; = V. > B; =14—
0 pvi ! vi

In eq.(3.30), pid is a 2 X2 penalty matrix, the diagonal components of which are either
a large positive number (penalty number) or zero depending on which degree of
freedom at node i is to be fixed. It follows that the first derivative of II,; with respect

to Bid can be expressed in a matrix form

oIl

387

- k3p? + F] (3.31)

? 1

where
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d d—

d Py 0 d Pyl
kj; ; Ky o=

d 1 d—

0 »y, PyiVi

Let us turn our attention to the stress boundary conditions. Say there is a boundary line
T, of the length dL pointing from node a to b. The positive direction of this line is
defined as when walking from a to b, the right hand is always pointing to the outside
of the body. If the length dL is small, the derivatives of F and F, with respect to 7 can

be approximated by

dF, 1 dF. 1
—* =~ 2 (F..-F) : _2 = 1(F.-F. (3.32)
o~ g =g Eh

Substitute eq.(3.32) into eq.(3.29) and rewrite it in a matrix form

1 3:1 1
t -_(—ny n, n, -n,) ; t,=E(nx n, -n, ny)

- (3.33)

where the nodal variables 8,° and 8,° are defined as in eq.(3.25). The value of the
prescribed traction f; and 7 along a small segment of the boundary line dT' can be

imposed again using a quadratic penalty function

m - [ (3.34)

|

|
ol
W—l

H
©
@«

PN

|

I

\—v—/

n
t‘l'
where pS is a 2X2 matrix similar to p9

s
0 o,

where p,’* and p_® are two penalty numbers. It follows that the first derivative of II

with respect to 8,° and 8,° is

faI_Is\
8 A
) aB“, - kS Pa + F$ (3.35)
aH ab s
s Bb
3B,
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where
k> = _ _
ab Ire(Tn+T7)dI‘ ; FS = [Fetnfn + [Tff)dr'
nyny ‘nx]ly ~nyny nxny - _nxﬁ
20° | -n n
Tn = dZ; n“illy nxnx nxny —n}lx . f _ 2pf’ 4 nx [
- s f, =
vy Wy nmn, o-nn, dL | n,
L leny L -nxny n, —nxJ
My MMy -men, -npn, ’ nx‘
Ay
ro< 2P | Y Wy a2 |y
T2 | -np, Ay mn, T AL | -n,
| Ty Ty 1y, gy, | My

In the next section, we will discuss how to add these constraints to the functional I,

in eq.(3.14) to form a complete system for a 2D elasticity problem.

3.5 GLOBAL SYSTEM OF EQUATIONS

We have given a functional I, in section 3.1, whose minimum corresponds to the
true status of elasticity on condition that the displacement field and stress field are
kinematically and statically admissible respectively. This in turn is ensured by the
discretization of the displacement, strain and stress fields as described in sections 3.2
and 3.3. In section 3.4. two additional functionals II; and II, with regard to the
displacement and traction boundary conditions are also introduced. The boundary
conditions are satisfied approximately when these functionals are minimum. In other
words, the true status of a solid under specific boundary conditions is the one which

makes the functional

I0; = I, + I, + 1L, + 11, (3.36)

an extremum. Functionals I, II; and II_ were defined in eqgs.(3.14), (3.30) and

(3.34) respectively. II_in eq.(3.36) is a penalty function term to impose the symmetry
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0;=0j; by means of the constraint of stress functions eq.(3.21), which is

2
I = j ¢ OF, _ OF, dQ (3.37)
¢ 0 dy ox

where p° is a penalty number. The first derivative of I in an element Q¢ with respect
to 8;° can be expressed by
oIl )
)
6Bj

Y kfiﬁj (3.38)
=1

where

kc=J 2p Nl,}’NI»}’ _erj\.,by dQ
volere “NixNjy NixlNjx

With egs.(3.18) and (3.24), it is straightforward to express the first derivative of II;,

in any element Q¢ with respect to general nodal variables §; in a matrix form

al-Ielas — e 3.39
B, Y. ky B G-5)
j i=1
where
T T T d
“ = e ; i=
? -A]"B, ApiAp;/2G+A i A il K 8

Because each item in eq.(3.36) is only the function of general nodal §8;, the minimum

of II; requires

oMy _ My O, oM, oM (3.40)

a8;  9B; aB; 9B 9B

Substitute eqs.(3.31), (3.35), (3.37) and (3.39) into eq.(3.40), the global system

equations can be expressed by a linear equation in terms of general nodal variables 3

k8 + Fy =0 (3.41)
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where k; takes the place of the well-known element stiffness matrix and Fy becomes the

load vector of equivalent nodal forces of the element

k; = k® + k9 + k® + k€ (3.42)
Fy; =F9 + F$

The elements of the matrices are described in egs.(3.31), (3.35), (3.37) and (3.39)

respectively. Expansion of the original matrices k9, k® K are needed to construct ky

since the variables are neither Bid nor B;° but general variable 8;. Also it is worthwhile

to mention that k% and k® exist only when the element has at least one node or one side

at the boundary I'. Otherwise they are replaced by zero.

The standard assembly procedure is used to form the global stiffness matrix and
load vector element by element. Because the stiffness matrix is symmetric, positive-
definite, eq. (3.41) can be easily solved by any efficient approaches used in
conventional displacement method, e.g. the LDLT procedure. A variable bandwidth
algorithm is used in the work described in this thesis.

An interesting feature of this model is that the value of the functional Il is a
direct measure of the accuracy of the solution in that region and therefore could be used
to show where further refinement of the mesh might be appropriate. The reason for
this is very simple. Because the equilibrium condition eq.(3.2) and compatible
condition eq.(3.1) are exactly satisfied in advance, errors can only result from the
inaccuracy of the stress-strain relation, eq.(3.5). There is no need to account for the

error from eq.(3.3) since it can be reflected in the error of the stress-strain relation.
3.6 NUMERICAL TEST CASES

The examples presented below illustrate some features of this method when used to
solve linear elastic problems in plane strain and plane stress. These include: very good
performance when modelling essentially incompressible materials without recourse to
reduced integration; the ability to cope with changes in material properties from element
to element, which can not be handled by a normal continuous mixed model; and the
existence of a natural error measure. The examples discussed are internal pressure in

a hollow cylinder; an elastic but stiff punch pushed into a softer elastic material;
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bending of a cantilever with transverse tip loading; and a ribbon crack under remote
tension. For each case, the convergence of the model against the element size is also

discussed.

3.6.1 Hollow Cylinder under Internal Pressure

Consider a hollow cylinder of internal radius ¢ and external radius 2a in which there
is an internal pressure P. For simplicity, the plane strain condition is assumed. Due
to the symmetry, only 1/4 cylinder will be used in the finite element model. In the first
instance a fine mesh with 50 8-noded quadrilaterals elements is used in discretizing the

model, as shown in fig.3.3.

lvAvAvAvA AvAvAvAv]

LY

Fig. 3.3 Finite element models of a hollow cylinder under internal pressure.

In order to study the sensitivity of the mixed model with regard to the changes of
Poisson’s ratio, four values of Poisson’s ratio »=0.3, 0.4, 0.45 and 0.49 are used in
the solutions.

Let us define the error of a FE solution as the difference between the analytical
solution and the FE solution. Then the errors of the axial and hoop stresses at the
Gauss points by the mixed method and the displacement method with 2 X2 integration,
are shown in fig.3.4(a)-(d). Both models show quite good agreement with the analytical
solution for almost all values of ». The errors of ¢,, and oy appearing in the figures
are almost identical.

As Zienkiewicz mentioned in his reviewl128l ' the situation is quite different when

3X3 integration is used in solving the problem, as shown in fig.3.5(a)-(d). When
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Poisson’s ratio is getting bigger (>0.40 ), the mixed model has much better
performance than the displacement model. In fig.3.5(d) where » is as 0.49, the results
from the displacement model are obviously meaningless, but those from the mixed
model can remain quite similar even at »=0.499999(not shown).

Before comparing the convergence of both models, a criterion needs to be given.

In this case, the average error is introduced as the criterion

m . .
S 6
1=

where m is the number of integral points along the r-axis. eﬂi and Gooi are the relative

errors of the radial and hoop stresses at a particular Gauss point.

eir = I(GfrEM—affaa)llP ; 5;9 = |(ong—oZ;aa)|/P (3.44)

Four meshes with 2, 3, 4 and 5 elements along r-axis are used to obtain the average
errors. In fig.3.6 for 2 X2 integration, the convergence of the two models is similar
for different Poisson’s ratios. However the mixed model has much lower errors than
those of displacement model for every mesh when 3 X3 integration is used, as shown
in fig.3.7. In this case, the convergence of the mixed model remains insensitive to »,
while that of the displacement model is affected severely by Poisson’s ratio. The larger
is », the more severe the accuracy of the solution by the displacement model depends
on element size.
In fig.3.8 and fig.3.9, the average values of functional II,, in the mixed model
defined by m
I, = LY 1, Jo'e (3.45)
Mi=1
are plotted together with the corresponding average errors. It is interesting to find that
the figures of II;,, show similar patterns to those of average errors calculated directly
from the stress for each » and integration. Therefore it is fair to say that the value of
the II,,,, do indicate local errors at some degree.
The superiority of the 2 X2 integration seems not to be a disadvantage as it needs
less computing time. However, in the next example we will show an example in which

2 X2 integration can cause problems when a very coarse mesh is used.
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Chapter Three Mixed Model in Plane Elasticity

3.6.2 Elastic Punch Pressing into a Compliant Layer

Consider a punch made from an elastic material with Young’s modulus E, and
Poisson’s ratio ». It presses into, allowing no slip at the interface, a linear elastic
material with Young’s modulus E, and the same Poisson’s ratio. The ratio E,/E,, is
10000. Two different meshes of FE models are shown as fig.3.10, where 7 and 34
elements of 8-noded quadrilaterals are used in each model. Solutions are carried out

under the Plane strain assumption with both 3 X3 and 2 X2 Gaussian integration.

Yy Y

fiile {{P

A
Y ) ENANNANES)
12 )
AN S
IOENONNANNS)
T InurnNe

N\

| @)
2. 01 (T

X

LI V) L) 19] L@ O UL /
2 7

N

LA
Fig.3.10 FE models for analysis of a punch pressing into a layer.

First let us look at the deformation modelled by either model. In fig.3.11 the
displacement model with a coarse mesh gives poor displacement results (deformation
of the mesh) for » = 0.3 and v = 0.49 when 2 X2 integration is used: the deformation
of the punch should be rather smaller. A similar problem is found in the solution of
the mixed model under 2 X2 integration, as shown in fig.3.12. When 3 X3 integration
is used in the solutions, both models yield sensible predictions for deformation in the
case of either Poisson’ ratio, as shown in fig.3.13 and fig.3.14.

Now let us turn our attention to the stress results. There is a little problem in
judging the stress results since an exact solution of such a problem is normally not
available. However by comparing the consistency of the results under different
integration schemes and different mesh size, the performance of each model for this
kind of problems with a tremendous change of the material properties can be studied

at some degree.
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In the case of » = 0.49, seen in fig.3.15(c) and fig.3.15(d), o,, and Ty obtained
from mixed model show consistency between 2 X2 and 3 X3 integrations. But this is
not found in the case of the displacement model. As a matter of fact, the results from
the displacement model under 3 X3 integration become meaningless. Although at » =
0.3, results from the displacement model are much better, there still exists a
inconsistency between results obtained under different integrations, as seen in
fig.3.15(a) and fig.3.15(b).

One explanation of this is that in the displacement model, stresses are calculated
from the displacements, which are different under 2 X2 and 3 X3 integrations, as shown
in fig.3.11(a) and fig.3.13(a). Although a similar problem exists in the deformations
from the mixed model (fig.3.11(a) and fig.3.13(a)), it does not affect the stresses since
they are calculated directly from the nodal stress functions. Thus stresses by the mixed
model under different integrations are almost identical, as seen in fig.3.15(a) and
fig.3.15(b).

Problems of this type with a coarse mesh can create problems for the displacement
method because they give poor stresses when 3 X3 integration is used and spurious
modes of deformation when 2 X2 integration is used(126]. The mixed method also gives
poor displacements but good stresses when reduced integration is used, while both good
stresses and good displacements are obtained when 3 X3 integration is used.

There is one solution for this problem, which is to use finer mesh. In fig.3.16,
fig.3.17, fig.3.18 and fig.3.19, deformations predicted by both the displacement model
and the mixed model with 34 elements mesh are shown under two Poisson’s ratio » =
0.3 and » = 0.49 as well as 2x2 and 3 X3 integrations. No spurious modes occur
under 2 X2 integration from either model. This offers the displacement model a chance
to give both good displacements and stresses by 2 X2 integration at » = 0.49, as seen
in fig.3.16(b) and fig.3.20(c).

At v = 0.49, the stresses from either model are reasonably close, shown in
fig.3.20(2) and fig.3.20(b). A "kink" exists in o, obtained from the displacement
model, while the mixed model gives a smoother curve. In the case of » = 0.49 with
3 %3 integration (fig.3.20(d)), the displacement model gives bad stress results again.

Once again, the mixed model shows its insensitivity against Poisson’s ratio and the

integration schemes. All four graphs in fig.3.20 are in a very similar pattern.
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The discontinuity of o, in this problem can also be clearly identified in fig.3.15
and fig.3.20. This means the mixed model can cope with "stress jumps" across a

boundary where material properties change rapidly.
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Fig. 3.11

@)

(b)

Deformations obtained from the displacement model by a FE mesh with
7 elements when 2 X2 integration is used. (a): »=0.3, (b):»=0.49.

........

...........

Fig. 3.12

@)

®)

Deformations obtained from the mixed model by a FE mesh with 7
elements when 2 X2 integration is used. (a): »=0.3, (b):»=0.49.
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@ (b)

Fig. 3.13 Deformations obtained from the displacement model by a FE mesh with
7 elements when 3 X3 integration is used. (a): »=0.3, (b):»=0.49.

(@) (b)

Fig. 3.14 Deformations obtained from the mixed model by a FE mesh with 7
elements when 3 X3 integration is used. (a): »=0.3, (b):»=0.49.
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................

() (®)

Fig. 3.16 Deformations obtained from the displacement model by a FE mesh with
34 elements when 2 X2 integration is used. (a): »=0.3, (b):»=0.49.

@) (®)

Fig. 3.17 Deformations obtained from the mixed model by a FE mesh with 34
elements when 2 X2 integration is used. (a): »=0.3, (b):»=0.49.
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@ (b)

Fig. 3.18 Deformations obtained from the displacement model by a FE mesh with
34 elements when 3 X3 integration is used. (a): »=0.3, (b):»=0.49.

...........................

(@ (®)

Fig. 3.19 Deformations obtained from the mixed model by a FE mesh with 34
elements when 3 X3 integration is used. (a): »=0.3, (b):»=0.49.
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Chapter Three Mixed Model in Plane Elasticity

3.6.3 Plane with a Central Crack under Remote Tension

It is easy to anticipate that the mixed model will produce more accurate stress results
than a displacement model. This is particularly true when stress changes tremendously,
such as near a crack or in laminated composite materials, as reviewed in chapter 2. In
this section, an analysis of a plane with a central crack with length 2a under remote
tension will be made to demonstrate the performance of our mixed model when applied

to a case where stress singularity exists.

T

gt

Fig.3.21 FE model for a plane with a central crack.

The finite element model used in this problem is shown in fig.3.21. Only one quarter
of the plate is presented because of the symmetry. Four different meshes with 8, 16,
37 and 56 8-noded quadrilateral elements were used in each model and the solutions
were obtained with 3 X3 Gaussian integration in the plane stress condition. Poisson’s
ratio was » = 0.3 and a unique distributed tension at remote end of the plate was P.
In fig.3.22(a)-(d) results of oy, obtained by both the displacement model and the mixed
model for four different meshes are presented, as well as an analytical solution.

In order to investigate the basic properties of each model in coping with the
singularity of stress, no dislocation of the mid-node of the elements around the crack
tip was made in either model in the first instance. It is seen that in each mesh, the
mixed model always gives the better prediction of a,, at the nearest point from the

crack tip comparing with the exact solutionl®), while the displacement model behaves

clearly poorer at this location. The gradient of the stress given by the displacement
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model is less than that by the mixed method in the area where singularity of the stress
exists. This implies that the mixed model can represent the singularity of stress more
accurately than the conventional displacement method in the case of normal element
(without mid-node moved).

However if the mid-node of the element surrounding the crack tip is moved by one
quarter toward crack tip, we shall call them distorted element here, the results from
displacement model are improved significantly and are superior to those from the mixed
method. The improvement in the mixed model is not that outstanding, as shown in
fig.3.23(a)-(d). This may be explained as that the singularity of the stress functions
caused by moving mid-node of the element is not as obvious as it for the displacements.

Near the edges of the plate, both models converge together, but deviate from the
analytical solution. This is because the analytical solution in ref [5] is only correct near
the crack tip.

Now let us see if there is any relation between the value of I1,;,/ceT and the error

calculated by € = (any- ;y)/P at a given point. The point is selected at (2a/8, 2a/8)

which is on 45° from the crack line and 2ay/2/8 from the crack tip. In fig.3.24, the
e and I, /oe’ are plotted against crack length 2¢ / minimum element’s size. It
appears that both curves almost coincide: the higher value of IL,;, / ge?, the larger value

of e. When element’s size becomes very small, both values are approaching zero.
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Chapter Three Mixed Model in Plane Elasticity

3.6.4 Beam Bending under Transverse Loading at End

Fig. 3.25 The FE models of the beam bending by transverse load.

The difficulty faced by this mixed model is that the stress obtained will not be precisely
symmetric, i.e. shear stress ¢;; will not be equal to g;; since the assumed stress only
satisfies the force equilibrium eq.(3.2), but does not satisfy the moment equilibrium
€q.(3.3). The problem will become more severe if shear is dominating the deformation,
such as in beam bending under transverse loading. We have proposed, in chapter three,
a penalty function eq.(3.37) to overcome this problem. In order to study the efficiency
of the penalty function and the mixed model, a beam bending is studied below.

Two FE meshes with 4X4 and 8X10 of 8-noded plane stress elements are
presented as in fig.3.25. Two set of different values of p, are used, i.e. p, = 0, 1.0,
5.0, 10.0 for 2X2 integration and p, = 0, 1.0, 10.0, 50.0 for 3 X3 integration where
p. = 0 corresponds to Chandler’s workl!3],

In the case of 4X4 mesh, the results of g, cross the section at x/L=0.5 are
presented in fig.3.26 with 2 X2 integration and fig.3.27 with 33 one. It is seen that
with 2X2 one, mixed model gives reasonable when p, = 5.0. However p, = 10.0 is
required to reach the similar accuracy when 3 X3 integration is used. A similar

situation is also found in the results of the shear stress o, and oy, in fig.3.28 and

xy
fig.3.29. When penalty number p_ increase, the inequality between Ty and Ty
disappears. It is interesting to find that if we take the simple average 0.5 X (0 +0y)

as the approximate shear stress, then very good results can be obtained at p,=1.0 for
2X2 case and p,=10.0 at 3 X3 case, and these are both better than those obtained from

the displacement model.
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In the case of the 8 X10 mesh, both models give better results and the smaller
penalty number is required to obtain results of o,,, o,y and o, at the similar accuracies

as at 4 X4 mesh. In fig.3.30 and fig.3.32, results of o,, and O.SX(axy+ayx) under

2 X2 integration are quite good compared with the exact solution at p,>1.0, while those
under 3 X3 one are very good at p.>10.0, as shown in fig.3.31 and fig.3.33.

In fig.3.34 to fig.3.37 the deflections of the beam are given under both meshes and
different p.. The accuracy of the results also greatly depends on the penalty number.
p.=35.0 is enough to get good results for 4 X4 mesh (fig.3.34) and p.=1.0 for §x10
mesh (fig.3.36), both with 2 X2 integration, which are similar to the stress calculations.
However the case of 4 X4 with 3X3 integration requires larger penalty number e.g.
p.=10.0 to get reasonable deflection, as seen in fig.3.35, where only p,>5.0 is needed
for the stress calculation. The deflection obtained by 8 X 10 mesh with 3 X3 integration
requires similar p_ as in the stress ones, as seen fig.3.37.

In all cases, 810 mesh gives better results than those from 4 X4 and p_.=5.0 is

generally required.
3.6.5 Comments on the test cases

In previous sections of this chapter, a few problems are solved by the mixed model in
order to justify the mixed extremum principle along with the C° stress functions. In
comparison with an exact solution, the mixed model often shows superior properties
over displacement one. It gives better stress results in the nearly incompressible
materials (section 3.6.1). It represents stress singularity more accurately (section
3.6.2), although most mixed models do. It handles the "stress jump" at the interface
of two materials correctly (section 3.6.3), which is normally not the case for continuous
mixed models. Although the mixed model may have potential difficulties when applied
to the cases where shear is important, these can be entirely overcome by introducing
the penalty term eq.(3.37) (section 3.6.4) to reinforce the symmetry of the stress tensor.
The most interesting feature of this mixed model is that it has a natural "error
estimator" which seems very meaningful and is simple to calculate. Therefore it is fair
to say that the newly established mixed extremum principle is successful and the stress

discretization used in this chapter is efficient to many plane problems.
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CHAPTER 4
MIXED MODEL IN AXISYMMETRIC ELASTICITY

In practical engineering, there are many structures or components of structure with a
geometry that are formed by simply rotating a curve around an axis. This is called
axisymmetry. Often the force applied on the structure is also symmetrical about the
axis and produces no torsion, such as the pressure within a gas cylinder. This
particular symmetry enables a simple 2D formulation to describe the 3D structure since
all parameters do not vary with the angle of rotation § and are only functions of the
radius r and height z. The basic formulation suitable for axisymmetric problems is
firmly established in the classical theory of elasticity!}0]. Many applications have also
been successfully made by the displacement model of FE method. Although axi-
symmetric problems has become one of the major areas in the application of FE
method, only few such examples by mixed models are found in literature, as reviewed
in chapter 2. Unlike in the displacement model, where no substantial changes need to
be made to include an axisymmetric formulation in an existing 2D plane formulation,
the mixed models need to approximate the new stress field which is much more
complicated than in plane problems. By introducing a stress function ¢ the equilibrium

equations are satisfied if we take

i
2
8| 2, @8| o, =2|@-nVv2- “
U"__E[V ¢ ar coz| 3z” 4.1)
3 (o2, 139 _ 3 y 78]
) T[ ¢ - rar] O = 5 (1-»)V°p -~ az

provided that the stress function ¢ satisfies the equation

+

2 2 2 2
o0 19 |08, 13 0% _v2pz, g (42
ar? ror 372 or* r or 8z2

¢ is the well-known Love stress functionl62] for axisymmetric problems. Compared
with the Airy stress function in eq.(3.22), it is much more complex so it is easy to see

how much extra work needs to be done in discretizing the stress field. This is the
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Chapter Four Mixed Model for Axisymmetric Elasticity

reason why mixed models have not been extensively used in practice.
In order to exploit the potential merits of the mixed model in axisymmetric

problems we will introduce new constrained first-order stress functions in this chapter.

4.1 CONSTRAINED FIRST-ORDER STRESS FUNCTIONS
FOR AXISYMMETRIC PROBLEMS

The complexity of the Love stress function makes it difficult to directly decrease the
order of the stress function from the third to the first, which was done to Airy stress

function. Look at the equilibrium equations in axisymmetric problems first, which is

do,, . do, 0,0y 0
ar a9z r 4.3)
36rz + Eizf + 2 =0
or 0z r
and
0, = 0y 4.9

It is not difficult to see that the second equation in eq.(4.3) is quite similar to the one
in plane problems (eq.3.2) except for an extra term o,,/r. Now recall the expression
of the components of the stress in eq.(3.20) for plane problems, and replace x, y, z of
Cartesian system for plane problems by the relevant r, z, 8 of the cylindrical system for
axisymmetric problems. With the new stress functions F, and F, it is straightforward
to satisfy the second equation in eq.(4.3) by simply adding a term F,/7 to g,,, i.e. 0,
= F,, + F,/r, tobalance g,,/r. If 0,, is conceived in the same way by adding F/r,
i.e. ¢, = F,, + F/r, one left component gy, is immediately obtained by substituting

0,, and o, into the first equation in eq.(4.3), i.e. opy = F,, + F,,.

However in order to satisfy eq.(4.3), it is not necessary to use F, in the expression
of o,, and oy, since any variable, say Fy, is eligible. Therefore the components of the
stress obeying force equilibrium equation (4.3) in axisymmetric problems finally take
the form ofl!”]
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Chapter Four Mixed Model for Axisymmetric Elasticity

g, = E .Fi : g, = —.(22 ;
T 9z r '’ rZ 3z ’ 4.5)
oF, oF, F, OF, . OF,
= - M =+ __ . 8 e R,
Tar or SRR A A P T

where F,, F, and Fy are three first-order stress functions.
As we did in plane elasticity in chapter 3, the moment equilibrium eq.(4.4) is again

satisfied approximately a posteriori as a constraint

oF oF
I =_2 in domain Q (4.6)
9z ar

by means of a penalty function. Therefore F,, F, and Fy are also termed as the
constrained first-order stress functions.

We shall now show that the components of the stress defined by eq.(4.5) possess
the same merits as by eq.(3.20) for plane elasticity: it allows the discontinuity of stress,
and at the same time satisfies the traction reciprocity at inter-element boundaries.

Consider a surface with normal vector n, and a tangent vector 7. After performing
similar operations as in eqgs.(3.26) and (3.27), and using the new expression of the
components of stress in eq.(4.5), we have obtained the components 7, and ¢, of traction

at any point on this surface

t=-ni§+nﬂ+n2§+nzi
" T or t or r *r 4.7)
-, OF O F,-F
T e o T

where n, and n, are direction cosines defined by n, = cos(n,r) ; n, = cos(n,z).
Eq.(4.7) shows that there are only the derivatives of F,, F, or F, with respect to
7 involved. If the C° continuity of F,, F, and Fy is ensured, at the common boundary

between two adjacent elements @ and b the following relations

(F)=(F)° ; (F)Y=() ; (Fp°=(Fp*
and aF\ (oF) (an "_(an)’ _ [aﬂo}“_(aFe b
oc) \ac) “\&) \ac) > (o) \ae
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Chapter Four Mixed Model for Axisymmetric Elasticity

are exactly true. It means that the traction reciprocity is exactly obeyed, i.e.
W' =) 5 @)=’ “.8)

Certainly the same argument as for plane problems is also suitable for explaining the
ability for this model to cope with the discontinuity at the inter-element boundary in

axisymmetric problems.

4.2 DISCRETIZATION OF DISPLACEMENT AND STRESS
FOR AXISYMMETRIC PROBLEMS

In the classical theory of elasticity, the components of a compatible strain can be

expressed by the displacements as

e = oW e, = .,

™ ar % or 9z 4.9)
e 2w du ., _ ow . e = U
AT

in which, u are w are the radial and axial displacements respectively. Comparing with
eq.(4.5) of the components of stress, it is not difficult to find that both stress and strain
fields are expressed by the first order-derivatives of r or z, which means that only C°
continuous functions are required to approximate the components of strain or stress by
u, wor F,, F, and Fy. Therefore the same discretization of displacement and stress
function as in plane problems, i.e. isoparametric formulation can then be directly

applied in axisymmetric problems

uE,ml _ ¢ 1 0}fu, 4.10
(a,n)}‘,;”i“’“)[o ll{w} 0
and
F&ED)  m L 0OffF,
F&mt =Y NEm |0 1 01 Fy, @0
Fy6,m | el 00 1||Fa

where u, w, F,, F, and Fj are approximate displacements and stress functions at point
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(¢,m), while u;, w;, F,, F, and Fy are the corresponding nodal variables of the
element. For the convenience of FE formulation, the following matrix forms of stress

and strain tensors are introduced

e={err € €y € eeo}T ’ d={drr drz dzr dzz doo}T

T . —
o={o,, Oy Oy Oy oget 5 s={s,, S,2 Sy Siz Spal

4.12)

where e and d are strain and deviatoric strain, while ¢ and s are stress and deviatoric

stress. The nodal variables for axisymmetric problem are defined as
d
B = {w; w3l 5 B ={F, Fy Ine “.13)

Substituting eq.(4.10) and eq.(4.11) into eq.(4.9) and making use of eq.(3.9) and

eq.(3.10), o, e, s, d, mean stress o, and volume strain e, can be expressed in matrix

forms as
e=Y BB ; d=YByB ; e,=Y By  “19
i=1 i=1 i=1
where
1 T
Bpi = Bi = 3 TaBui @.15)
Bui = [Nix+N/r Ny |
T
_ Ni»’ Ni,z Ni,z 0 Ni/r
' |0 N, N, N, 0
and
m s m m
0= AL 5 s=NAnB ; 0,=Y AmB @16
=1 i=1 i=1
where
T
ADI = Ai - TsAmi

@.17)

i,2

Api = [%(Ni,rﬂvi/r) éN
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0 -N, 0 N, ,+N/r 077

A|= Ni,z 0 _Ni,r 0 Nz
Ni/r 0 0 0 N;

ir

T, and T are constant coefficient matrices defined by

1oo010| LOOTO
T, - , T,=[10010

10010
10010

T

4.3 BOUNDARY CONDITIONS

The displacement boundary conditions can be imposed by exactly the same method as
in egs.(3.30) and (3.31) for plane elasticity except that v and v; should be replaced by
w and w; respectively. However to impose the traction boundary conditions more work
has to be done due to the obviously different expressions of traction ¢, and z,. Consider
a segment ab at the boundary, as defined in section 3.3. If the length dL is small, the
stress functions F,, F, and F, can be treated as linear functions of 7. By means of

linear Lagrange interpolation the following approximate relations exist

dF 1 oF, 1
E A ot A @19
and
1 1
Fr(T) = (E—d—;)Fra + (5+d_1)Frb
-l 1 . dL dL
Fin) = G-D)Fp + G+Fy Tg[-__z_ , 7] (4.19)

1 1
FG(T) = (E_d_‘rL)Fea + (E+d_2)F0b

The derivatives of stress functions are obviously constants. Substituting egs.(4.18) and

(4.19) into eq.(4.7) and omitting the mathematical details for clarity, we finally have

tn = VnBaslb ) t‘r = Vrﬁzb (4'20)

where
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1 2
V, = z[(-~1+ozlnz)nz n, on,

2
(L+oynyn, -n, ayn, ]

Vv, = 7112[(1 —an)n, n. apn, ~(Lragnyn,  -n, N, ]

s o dL dL
Ban = {62 B} a1=—r‘-:- ;=

B/ is the nodal stress function variables defined in eq.(4.13). The value of a prescribed
traction 7, and 7 along the small segment ab of the boundary line I' can be imposed

again by using a quadratic penalty function

f n
$ ar

tT

4.21)

.,
[}
d“ =ﬂ
———
ﬂ
v‘
S
|
ﬂN :M
———

where p® is defined exactly the same as that for plane elasticity. Writing eq.(4.21) in
a matrix form by using ¢, and ¢_in eq.(4.20), it follows the first derivative of II, with

respect to 8,° and B8,°

oIl
= = kg + FS (4.22)
aBab
where
kap = [((O+TDAT 5 F* = [ (G + TE)Ar
and
T T
T =25V Vo fy = 20,V
T, T ’ T 7y, T
Tg = 20V, V, f; = 20V,

4.4 GLOBAL SYSTEM EQUATIONS
FOR AXISYMMETRIC PROBLEMS

The global functional II; in eq.(3.36) is true for any elasticity problems on condition
that the displacement field is kinematically admissible and the stress field is statically

admissible regardless of geometry dimensions. When applied to particular problems,
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it is necessary to substitute the suitable expressions of admissible displacement, strain
and stress, and their correspondent boundary conditions. Therefore eq.(3.39) for the
first order-derivative of I1,;,., eq.(3.38) for the first derivative of II, are applicable to
axisymmetric cases. However all the matrices in the expression of kﬁe in eq.(3.39)
should use the corresponding ones defined in eqs.(4.14) and (4.16). The kﬁd in
eq.(3.31) with regard to displacement boundary is also true with the change of v; to w;.
kijc in eq.(3.39) should be written as

c_ NiNjz  ~NiflNj, (4.23)
ki j 20, dQ
T NN Nig

It is important to note that the general nodal variable B; is changed from 4 components

to 5 components, i.e.

g
Bi=1 Y={w, w;, F; F; F}7 (4.24)

l i
which means that the size of the sub-matrix kue becomes 5 X5 instead of 4X4. The
element system equation is identical to the eqs.(3.41) and (3.42) for plane problems.
The expansion of k4 and k® is needed to perform the operations in matrix form.
The standard assembling procedure is used to form the global system equations, i.e. the
global stiffness matrix and the global load vector element by element. Because the
global stiffness matrix is again symmetric positive-definite, the solution is readily

obtained by a classical variable bandwidth algorithm. In the next section, some

numerical examples will be presented in order to demonstrate the quality of this model.
4.5 ELASTIC SOLUTIONS IN AXISYMMETRIC PROBLEMS

Some axisymmetric problems in linear elasticity are solved below by the mixed method
in this section to illustrate how this model can cope with these kinds of problems.
These include: bending of a circular plate and spherical container under internal
uniform pressure. Then a more complex problem is to be solved by this model which

is the mechanical modelling of the early stages of the spot-welding process.
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4.5.1 Bending of a Circular Plate

y

SRR NN

7

Fig. 4.1 FE models for bending of a circular plate under uniform pressure.

This example is to investigate the capability of this model to cope the problems with
severe shear deformation, as we did in section 3.6.4 in plane stress condition. A
similar FE model to fig.3.20 is used to analyse a circular plate with radius R, thickness
2T under a uniform transverse pressure p at the upper boundary, as shown in fig.4.1.
The analytical results can be found in ref. [72].

Only one FE mesh with 8 X10 of 8-noded axisymmetric elements is used in the
analysis. Two sets of different values of p_ are used again, i.e. p, = 0, 1.0, 5.0, 10.0
for 2 X2 integration and p, = 0, 1.0, 10.0, 50.0 for 33 integration.

The results of o,, at the surface along r-axis are presented in fig.4.2 for 2X2
integration and fig.4.3 for 3 X3. It is seen that with 2 X2, the mixed model gives very
good values for ,, when p, = 5.0. However only when p. = 5.0 does it yield a good
result when 3 X3 integration is used. In the other words the results from mixed model
with 33 are conditional: you cannot use small, nor use large p, to get a good results.

In the case of gp, the results of mixed model with 3X3 integration in fig.4.5 are
similar to fig.4.3 for o,,, i.e. p, = 5.0 gives best results. However those with 2X2
one are not quite so good compared with the analytical results, as seen in fig.4.4.
Obviously results obtained with p, = 5.0 and p, = 10.0 do give better than those with
p. = 0.0 or p, = 1.0, but they yield fairly large deviation along r-axis, especially near
the clamped end.

For the deflection of the central line of the disc, a larger penalty number p_ is

generally required. In fig.4.6 and fig.4.7, they show that a good result can only be
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obtained when p_, = 50.0 is employed for both 2X2 and 3 X3 integrations.

For all above cases, the displacement model gives constantly better results than the
mixed model. Does this mean that this mixed model is not suitable for the axi-
symmetric problem? Not necessarily. Since this example is an extreme case which
deliberately tests this approaches, it behaves reasonably well. In the next example, a
spherical container under internal uniform pressure will be analysed and better results

from the mixed model are obtained.
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Chapter Four Mixed Model for Axisymmetric Elasticity

4.5.2 Spherical Container under Internal Uniform Pressure

A sphere with internal radius a and external radius 5=2a in which there is an internal
pressure p are analysed in this section. It is straightforward to solve this problem by
applying the same finite element mesh in fig.3.3 in section 3.6.1 for a hollow cylinder
case. Various tests are carried out to note the effects on stress of different integration
schemes, element sizes and Poisson’s ratio. The results are shown in fig.4.8 to
fig.4.13.

For the 50 element mesh, fig.4.8 and fig.4.9 show the errors of o,, and ¢, along
r-axis under 2X2 and 3X3 integrations respectively. Unlike the expansion of a
cylinder where similar figures between displacement and mixed models are found with
2X2 integration for various Poisson’s ratios », in this example mixed model shows
much better results than those from the displacement model when » = 0.4, even with
2 X2 integration. For 3 X3 cases, the mixed model naturally shows its consistent merits
over the displacement one. In fig.4.9 it is noted that oy, from the mixed model is
poorer that o,,.

Fig.4.10 and fig.4.11 give the convergence of both models against the number of
elements in the r-axis with either integration scheme. Four FE meshes are used to
obtain these curves and the average error defined in eq.(3.43) is used to measure the
error in each solution. Again the mixed one shows consistency under different Poisson
v and when a fine mesh is used the error approaches zero. This does not happen in the
results from the displacement model where the convergence varies with » and for some
cases, i.e. in fig.4.10, it converges very slowly. For a specific mesh, the mixed model
always yields less error than the displacement one.
of the
mixed model are presented in fig.4.12 for 2 X2 integration and fig.4.13 for 3 X3 one.

The consistencies of the average error and the value of the functional I,
The former shows some relations between them but it is not very good since the error
in 2X2 case is so little that the calculations of both the average error and II,;,, can be
affected by the computer precision. The good results are found in fig.4.13 for 3X3
integration.  Therefore an error estimator also exists in the mixed model for

axisymmetric problem which is the value of the functional II,.
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Chapter Four Mixed Model for Axisymmetric Elasticity

4.5.3 Electrode Squeezing Aluminium Sheets

In the last two examples, we dedicated ourselves to some classical elementary problems,
in order to illustrate the validity of this model to some basic axisymmetric problems.
A more complicated problem will be dealt with in this section, which is a pair of

aluminium sheets squeezed by a pair of electrodes (fig.4.14a).

RETTTRT T
o ’\E|‘ )
i | (a) |

Fig.4.14 The layout of a pair of electrodes and aluminium sheets (a) and the FE
model for the analysis (b).

Because of the symmetry only one quarter of the whole structure is modelled, and there
is no movement of the structure at r=0 at r direction, nor at z=0 at z direction. The
load is represented by a uniform pressure at a section of electrode. The FE mesh and
constraints are shown in fig.4.14b. There are 30 elements used to model the electrode
and another 56 ones used to model the aluminium sheet. In the first instance the 4-
noded isoparametric element is used in the FE model.

The contact condition between the electrode and aluminium sheet is assumed as no-
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slip, i.e. the friction at the surface is large enough to prevent any relative movement
at the contact surface. On the other hand no friction exists at the faying surface since
there is no relative movement at a symmetric surface.

The material properties for the copper electrode are Young’s modulus E,=120GPa
and Poisson’s ratio »,=0.25. For the aluminium sheet they are E,;=75GPa and
v4=0.33. The thickness of the aluminium sheet is T=2mm, the radius concerned is
Rg=10mm. The radius of the water cooling chamber is Ry=2.0mm and the radius of
the electrode itself is R;=5.0.

When the load is applied, the separation of the two aluminium sheets is also found,
as we can anticipate. This causes the size of contact area at both the electrode surface
and the faying surface vary with loading, which results in the change of electric
resistance.

Deformations of both the aluminium sheet and the electrode predicted by the mixed
model and the displacement one with 4-noded elements are shown as in fig.4.15 and
fig.4.16 respectively. Almost identical results can be found though the mixed one gives
slightly smaller separation in the outer range of the aluminium sheet than the
displacement method. This can be cured by using a larger penalty number p_.

The results of the pressure and shear distributions at the electrode surface and the
faying surface are shown in fig.4.17. Both mixed model and displacement model give
similar results in most areas. However the gap is wider near the edge of the electrode.

Generally speaking, the former gives smooth 0,, but bad while the latter gives

Oz
smooth g, but jerky o,,. Therefore it is natural to find that the mixed model obviously
gives worse results of normal stress (0,,) than the displacement model at the faying
surface, as in fig.4.18.

Now we use 8-node isoparametric element to model this problem with the same
mesh. At the electrode surface (fig.4.19), the shear stress 0,, Vvirtually coincide each
other in the most area except in the last element at the edge. The displacement model
tends to give a rapidly increasing shear stress in that region, while the mixed model
gives a near zero shear stress. This situation needs to be further studied.

The curves for normal stress g, are also close to each other. The most significant

results come from normal stress o,, at the faying surface in fig.4.20. The curves for

two methods are consistently close through the whole range.
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A more complicated model of the spot welding will be dealt with in chapter seven

where elasto-plasticity is included.
4.5.4 Comments on the Mixed Model for Axisymmetric Elasticity

Three axisymmetric problems, axial expansion, transverse bending and later a complex
load modes i.e. squeeze of aluminium sheets by electrodes, have just been discussed to
demonstrate the performance of three €0 stress functions. Except for the bending of
a disc (section 4.5.2) where results depend on the choice of penalty number p,_, in the
rest two examples, the mixed model gives very good stress and displacement results on
various mesh sizes and integration schemes. As in plane problems, the penalty number
is a constant depending merely on the integration scheme, i.e. p,=5.0 for 2X2 and
p,=10.0 for 3X3.

For near incompressible materials, the mixed model gives much better results over
the displacement model under both 2 X2 and 3 X3 integrations, rather than only under
3 X3 one in plane problems (section 4.5.1).

When 4-noded elements are used in the solution, mixed model tends to approximate
the o,, as constant function within an element. Thus the results turn to be dis-
continuous. A similar problem exists in the results of o,, from the displacement model
by 4-noded elements. Therefore if an accurate o, is needed 8-noded elements must be
employed in the mixed model.

A similar error estimator exists in the mixed model which is value of functional
Il The larger it is the bigger error a solution has; the smaller it the less error a

solution has. The zero corresponds to the exact solution.
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Fig.4.15 Deformation of the FE mesh of the electrode and the aluminium
sheet in spot welding, obtained by mixed models.

Fig.4.16 Deformation of the FE mesh of the electrode and the aluminium
sheet in spot welding, obtained by displacement models.
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Fig.4.18
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CHAPTER 5
MIXED MODEL FOR RIGID-PERFECT-PLASTICITY

During structural collapse or in metal forming plastic strains are very much larger than
elastic strains. Under these circumstances a useful approximation to the deformation
field can be found by assuming that the material is either rigid or flowing plastically at
a constant yield stress. This material model is commonly known as rigid-perfectly-
plastic.

In this chapter, a mixed extremum principle is proposed and used to construct a
mixed FE formulation for rigid-perfect-plasticity. This formulation forms a base on

which the FE formulation for elasto-plasticity will be constructed in chapter 6.

5.1 MIXED EXTREMUM PRINCIPLE FOR
RIGID-PERFECT-PLASTICITY

A problem in the theory of rigid-perfect-plasticity should be defined as follows. Ata
given time, a body 2, composed of rigid-perfect-plastic material, is assumed to be in
a state of quasi-static equilibrium. Now, the application of an external force F,
i=1,2,3 is prescribed on a boundary T, while a surface velocity i, i=1,2,3 is
prescribed on a boundary I',. Here, i, denotes a component of the velocity with respect
to the rectangular Cartesian coordinates. The stress o;; and velocities i induced in the
body are unknown fields which need to be found. Thus the governing equations for the

problem are expressed as

e Equation of equilibrium 0;; =0 6.1
e Strain rate - velocity relations ey = Uiy * W (.2)
 Condition of incompressibility é; =0 (-3)

69



Chapter Five Mixed Model for Rigid-Perfect-Plasticity

i s

® Boundary conditions on T

o~n~=§ on T 5.4)
U

u

The basis of rigid-plasticity is that the stresses must lie on the yield surface for plastic
flow to take place, otherwise the material is rigid. We must also consider strain
increments instead of strains. As plasticity considered hence is rate dependent, we can
use the dot notation to indicate an increment. The simplest constitutive relation of this
type has two parts:

* von Mises yield condition
SiSij = 2k? (-3

where s;; is the component of the deviatoric stress defined in eq.(3.10) and % is a

material constant with regard to the yield stress for rigid-perfect-plasticity;

e Levy-Mises flow rule

i Ds.. . —
dj = — where D = ,/2k2d,.jd,.j (5.6)

2k>

where D is the energy dissipation rate. This represents incompressible plastic flow and
is appropriate for metal plasticity[19].

It is seen that the above problem is defined in a way similar to a linear elasticity
theory, except for the stress-strain relations and introduction of velocity and strain rate.
It is of note that no stress rates appear this theory. Once the problem in incremental
theory has been thus formulated, problems of finite plastic deformation can be obtained
by integrating the relations along the prescribed loading path.

As we did in plane elasticity, the kinematic condition eq.(5.2) and static condition
eq.(5.1) are fully satisfied by the admissible displacement eq.(3.18) and stress
eq.(3.24). The boundary conditions in eq.(5.4) will be handled in the same manner as
before by two penalty function II; in eq.(3.30) and I, eq.(3.34). In order to impose
the incom-pressibility condition eq.(5.3), the yield condition eq.(5.5) and the Levy-

Mises equation eq.(5.6), the following functional is constructed
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Hrgd = lejdlj Sijsij -Sijd'ij-*pgfxz +p(ém)2 (5'7)

where ¢,, is defined in the same way as e,, in eq.(3.10), but in a form of strain rate

instead of strain, and p is a positive penalty number. y is a function defined as

J = VS _ 4 (5.8)
2k

It is straightforward to see that y is the criterion of plastic yield. If it is equal to zero
then plastic flow can occur; otherwise the material is rigid. There results a mixed

extremum principle which may be stated as follows:

Among all the admissible strains and stresses which satisfy the compatibility
condition and equilibrium conditions, as well as the kinematic and static boundary

conditions, the true solution renders the functional 1L, ,; an absolute minimum.

This can be justified as follows. Let the exact deviatoric stress, strain rate and
velocity of the exact solution be denoted by s, 41 and i, and the deviatoric stress,

strain rate and velocity of an admissible solution by s,--*, dij* and u,* Then

* o % * % [ 5.9
S;j dy 5‘/;17 Sij ‘/‘;dfj ©-9)

by Schwarz’s inequality, and

Sijdif\/si;"ij Vd,.jd,.j (5-10)

*

since s,; and d; are proportional to each other. The admissible solution by s;;”, d; also

lj b
yields
2 2
%* *
¢*2= vslj sij -1 2¢2= S]S] -1 =0

V2 k VY (5.11)

and
*2 2
é, ¢, =0
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Combining eq.(5.9), eq.(5.10) and eq.(5.11), we obtain

’ - - . 2

,* t’-*-t x % £2 *2

Therefore the functional II,,; has an extremum of zero.

At the extremity, there is no doubt that eq.(5.10) is satisfied. If we pre-multiply
both sides of eq.(5.10) by s;;,

g = ‘/d,-jd,-j 8;i8ij s
y o o o <.y

8ij5ij

or

equation (5.12) is immediately transformed to the Levy-Mises flow rule eq.(5.6) by the
fact that at the extremity s; must obey the von Mises yield condition eq.(5.5).
Origin of this functional is known paper by Markov{%¢],

5.2 FE FORMULATION FOR RIGID-PERFECT-PLASTICITY

Approximations of velocity & and stress o;; are obviously independent of constitutive
equations. Therefore eqs.(3.18), (3.19), (3.24) and (3.25) for plane elasticity and
eqs.(4.14), (4.15), (4.16) and (4.17) for axisymmetric elasticity are directly applicable
to the formulation for rigid plasticity. However the stiffness matrix, being closely

related to the material properties, is completely different.
5.2.1 Calculation of Stiffness Matrix

The fact that the functional IL ., is not a quadratic function of the stress and strain
requires that the extremum of it be found by solving a non-linear set of equations. For
various nonlinear solution procedure, the Hessian matrix, which is the matrix of second-
order differential of Hrg ,
Hessian matrix is identical to the elastic stiffness matrix, while in elasto-plasticity, it

is essential to the iteration procedure. In linear elasticity, the

is elasto-plastic stiffness matrix.

There are two ways to get the second-order differential of a function. The
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analytical approach, which is accurate but algebraically complicated, and the numerical
approach, which is usually simpler to obtain but is only an approximation. Normally
an analytical method is more efficient than the corresponding numerical one. However,
if the analytical differential turns out to be very complicated, and a lot of arithmetic
operations are needed, the efficiency may be reduced. It is not impossible that the
efficiency of an analytical approach reduces so much that it becomes even lower that
the numerical one. In that case, the better choice might be a numerical one.
Therefore, before we code the program, the efficiencies of both approaches must be
compared for the particular functional IT, ;.

Let us start with the numerical one. For the convenience of FE formulation, we
will employ matrix notations rather than tensor notations from now on. Two vectors
d and s with the components ¢ and s; respectively, representing deviatoric strain rate
and deviatoric stress, are defined in the same way as in sections 3.2 and 3.3 for plane
elasticity. It is easy to see that functional IL .4 in eq.(5.7) is a function of d, s and e,

Let the following terms be defined,

Lo g e Ol
4 "o e, 0 e Tae,
2 2 2
LlJ - d 1-Irgd ) Llj — d Hrgd ) §y o_ d IIrgd
@ ddod;, Y odds; " 35,05,

Three first-order differentials with respect to d, s and é,, can be obtained by the central-

difference formulall22]

I0, . (s +A;,d,¢,,) ~TL, (5 -4,d,8,)

L(s,d,e,) = 5
Lisde )= I, . 4(5,d +4;,2,,) —Hrgd(s,&—Ai,ém) (5.13)
"i »"“Hrim - 2C

I1, 0 (5,,¢,,+€) ~I,04(5,d,€,,~C)
2c

Lém(s,('l,ém) =

where A, is a vector with components A, = §;, ¢. 8; is the Kronecker Delta and ¢ is
a constant of small value. Following the same routine, the second-order differentials

of functional II,,; can be obtained by making use of the corresponding first-order
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differentials

i . i .
Lis,de y= s Apden “Li(s-4d,e,)

2c
LU(s,d,,) = L‘l:’(s’a+Aj’em)2"cL2(s’a‘Ajsén)
s~ L;(s+Aj,&,é,,,)2-CL2(s—Aj,&,ém) 5.1
L;Z;(s,d,ém) N Lsi(s,('i+Aj,e'm)2—CL;(s,('l—Aj,ém)

It is straightforward to get the following differential with respect to ¢, by simple

observation

61—Irgd
de, ¢,

Myga : OMhea _ g (5.15)
ds;0e,, adde,,

=-2

If I, is a continuous function, the third and fourth equations in eq.(5.14) must yield
identical results. In appendix A, results of the differential of II,; with the numerical
approach are presented.

Now let us turn our attention to the analytical method. If we look up the functional
IT, .4 in eq.(5.7) carefully it is easy to see that the difficulty of the differentials comes

from the terms of the form

f(x) = VXiX; 3 i=1,5 (5.16)

From eq.(5.16), the functional II,o4 becomes

I, = f@)Fs) -8 Td+py?+pe,
where Y = RIO) -1

2k

(.17

Let,

fi/(x) A filjl(x) = ﬁzf(_x)

dr, drdx,

then differentiating eq.(5.17) with respect to d, s and é,, twice gives
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Ly = (@) ~d;+20 3¢ ¢
Ly = £/ -s;+20y 2% a‘”

t

Lém = 2p¢,,
and

LY = (@f6)+20 (4 5 asj 5.5

i = )@+ 20 (p 0V 3""” 5.18
LY = 1@ Sy (5.18)
.. 2

LI = -5, +f(@F () + 200 Y+ "’W

T = 8+ f(@f() +20 () 22 s %)

together with the differentials in eq.(5.15). In eq.(5.18), the derivatives of f(x) and
with respect to x and differentials of y with respect to s have to be deduced
65 X X;
fleo = : ®) = (5.19)
f( ) Jits f(X) f3(x)
and

od;  dd;od;  9d;ds;

1

1 L
f’() s myo

Substituting them into eq.(5 .18), it follows the differentials in terms of f{x):

= f(d)f;(s) +20 = [ASY(9) +f] (s)/(s)] - ,,(s)}

6s

i /. (5.20)
Ldfd = f(s)/;(d)

LY = -5, +f(df(s)

A comparison of the accuracies and the computing time of these two approaches is

presented in Appendix A when applied to a practical example. The numerical method
shows numerical instability and is more time-consuming. It takes about 30 times more
computing time than the analytical one to differentiate the IL ;. Together with the
higher accuracy and efficiency, the analytical method obviously proves to be the better

one for the functional II, 4.
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5.2.2 Global System Equation

We have given a functional II, ,; in section 5.1 (in order to impose the Levy-Mises flow
rule, the von Mises yield condition and the incompressibility condition), and its
differentials with respect to the deviatoric strain rate d, deviatoric stress s and volume
strain rate é,. A complete problem in rigid plasticity also includes the satisfaction of
some boundary conditions. Furthermore, since the same admissible stress is used as
in elasticity, the constraints for moment equilibrium equation should again be imposed.

Therefore a functional IIj; is constructed similar to that use to solve elastic problems

I, = Hrgd + I, + I + 11, (5.21)

in which, II,;, I, and II are penalty terms described in eqs.(3.30), (3.34) and (3.37)
for imposing displacement boundary, traction boundary and moment equilibrium
equation respectively. The admissible stress field and strain rate field are introduced
in the same manner as those in elasticity in egs.(3.24) and (3.18) by nodal variables ﬁid

and B;°. The extremum of II; can be found by solving the following equation

oIl _ ) . oI, . dll, . oIl -0 (5.22)

B8 98 aB B 0B

where 8 is the general variable defined in eq.(3.39). The resulting equations are
obviously nonlinear.

For various iterative procedures for solving nonlinear problems, linearizing the
original nonlinear equation by an incremental form is usually required. This linearized
equation can then be solved step by step. Say B® is a known solution at time i and

ﬁ‘” D = B(i)+AB(i) is the unknown variable at time i+1. With Taylor’s expansion,

® 27®
oIl 0°II;
H(’ + 1) (i) B(l) + ( B(l))Z (5 . 23)

ﬁ B 33

where IL,® = I1,(8). Note that the first and the second differential of IT,;® at time
i are constants and substitute the approximate expression of II; in eq.(5.23) into

eq.(5.22). It follows the linearized equation at the irh step
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® ®  20® 20O 0} i ® ® 5.24
Pl PIg 910 I oMy, Ol oI amp| 0( )
0808 dBaB 9B dpBAB B 98 9B 9B
The second to fourth terms in the first bracket of eq.(5.24) are obviously the constant
matrices k9, k® and KkC defined in eqs.(3.31), (3.35) and (3.38) respectively. The
corresponding terms in the second bracket are residual terms AFY, AFS and AF®
AFd = FAE+D _pd® . Aps — @D _ps@ . AFC = 0
where F4 and F* were defined in eq.(3.31) and eq.(3.35) respectively. If the first term

AB +

in the first bracket and the second bracket are designated as k'8d and AF™&4

respectively, they can be obtained by making use of the differentials of ILg4 in
eq.(5.15) and eq.(5.20)

i {L,»j s, i adj] as; [L,.j o, adj] oy 32,3,

-—_— o« —_— — S S + p
Pq 5§ d. d dd
an y aﬁq aﬁp y an an aBP aﬁp aﬁq (525)
;05 ;0d, aé
N Sl et +2p0e, "
p s d m
a8, 3B, B,
From eq.(3.17) and eq.(3.21), the following relations exist.
aS,. 0 . aé'- l;l‘ aém _ :p
B, |ap,| " 198,/ o] ~ 198,/ |o
k"% and AF™8¢ in eq.(5.25) can then be written in matrix forms as
T, ij T T, ij T, i T |(5.26
- ByL;By+20By By BpL) Apg —y B,L;+2p¢,B (5.26)
ADFLSJ' q ADpL.gvADp ADpL.;'

where kpq’ 84 is a 4 x4 sub-matrix of k™9 and AFp’gd is a 4x1 sub-matrix of AF™®% in
the case of plane problems. Therefore the global system equation for rigid plasticity

at arbitrary time i can be written in a more familiar form as
kg)AB(i) + AFg) =0 (5.27)
where kyj is the rigid-perfect-plasticity stiffness matrix, while AFy; is the residual force

vector
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kn=k"gd+kd+ks+k°

(5.28)
AFy = AF™89 + AFY + AFS

5.3 MINIMIZATION — LINE - SEARCH METHOD

In the last section, it is shown how a minimization of the functional II;; can be
equivalent to solving a nonlinear equation (5.27) where only the differentials of the
functional is presented. Then an incremental load or displacement control along with
full or modified Newton-Raphson iterations!!?2] are normally required to solve it.
Although these techniques still provide the basis for most nonlinear finite element
programs, additional sophistication can be achieved to produce a more effective, more
robust solution algorithm by making use of the functional itself. The line-search
method is one of these methods.

The line-search method is an important numerical technique for most unconstrained
optimisation and can be used with a wide range of iterative solution procedures!!®l.

Using such a technique, one would obtain a direction from an iteration procedure such

as the full Newton-Raphson iteration in eq.(5.27), i.e.

A B(i) = _(kg)) TAfp® (5.29)

where kn(i) is the stiffness matrix at the end of the previous iteration. Then general

variables 8*1) at time i+1 would be updated according to

gD _ g, AgM (5.30)

where 8% is the fixed general variable at the end of the previous iteration and AS® the
fixed direction obtained from eq.(5.29). For the Newton-Raphson procedures, the
scalar 7 in eq.(5.30) is set to unity. With the introduction of line-searches, the scalar
1 becomes the iterative "step length" which is the only variable, and is chosen to give
the lowest value of II,;. The multi-dimensional minimization has therefore been
converted to a one-dimensional optimisation problem with regard to scalar 7.

In this thesis, Brent’s method, one of many line-search methods, is used to find

the line-minimum of the functional IT; along the direction obtained by solving the
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eq.(5.27) by Newton-Raphson method. A brief description of such a method will be
given in Appendix B. A flow-chart of the solution of rigid-plasticity by the mixed

model is presented in fig.5.1. Here only one load step is discussed.

5.4 EXPANSION OF A HOLLOW CYLINDER IN
RIGID-PERFECT-PLASTICITY

In this chapter, the expansion of a hollow cylinder under a given displacement loading
will be analysed. The load is assumed large enough such that the cylinder is in rigid-
perfect-plasticity everywhere, as a rigid region cannot be treated in this method. The
same FE model with 24 8-noded elements as shown in fig.3.3 in section 3.6.1 are used
in this study.

The analytical solution is obtained from ref.[42] under Tresca’s yield criterion.
However the results by this mixed model is based on the von Mises. In order to
compare these results with each other, a translation of the analytical results under the
Tresca’s criterion to those under the von Mises’s criterion is required.

In plane strain condition, a simple relation between those two criterion exists: if
results under the Tresca’s criterion are obtained at yield stress a, then the corresponding
results under the von Mises’s criterion can be obtained by changing the yield stress as
20),/\/3— . More details about this can be found in Appendix C.

The radial stress o,, and the hoop stress o, are shown in fig.5.2. When compared
with the analytical results, it can be seen that the mixed model gives excellent results
for both stress components.

Fig.5.3 presents the convergence of the iteration process. The average error and
average II, ., are calculated as eq.(3.43) and eq.(3.45). It is seen that the convergency
of solution is very good. After one iteration, the error falls within 0.1 %. On the
other hand the value of II,.; shows a similar convergent pattern as the average error.
It again illustrates a natural error estimator in the mixed model which is the value of
the functional IL, . ;.

Only one example is discussed here as more examples will be presented in the next
chapter when elasto-plasticity is dealt with by a mixed model based on this model. This

allows the "rigid" region to be introduced.
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Initialization

Input DATA: FE model
and material properties

Inital guess of AR'©®
by solving k,AB+AF;=0
as in elasticity

Calculate the elastic
stress 0 and strain e®

Recalculate k;, and
solve K AB+AF,; =0
by Newton’s method

0

=
Start line search by -g
BU=p"+88"n , to find o
a local minimum of II; 9

ff 11, <Tol No
Yes
Fig.5.1 Flow-chart of the solution procedure for rigid-plasticity by the mixed

model.
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Mixed Model for Rigid-Perfect-Plasticity
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Fig.5.2 Stress distributions in a rigid-perfectly plastic cylinder under displacement
loading at 10th iteration. A FE mesh with 24 8-noded elements are used in the

computation.
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Fig.5.3

Mixed Model for Rigid-Perfect-Plasticity
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CHAPTER 6
MIXED MODEL FOR ELASTO-PLASTICITY

The three previous chapters contain discussions of the extreme cases of elasticity and
rigid-perfectly-plasticity. In this chapter, the problem of elasto-plasticity will be
addressed. For the last three decades or so, elasto-plastic FE method has successfully
been applied to solve many practical problems, by making use of elasto-plastic model
of materials. There are plenty of excellent techniques concerning with an elasto-plastic
FE method in literature. However, the basic routine of FE method to solve elasto-
plasticity problems remains unchanged. Most of the methods normally try to establish
elasto-plastic FE model by modifying the existing elastic FE model.

In these formulations elasto-plasticity is simulated by perturbing the elastic solution
by plastic strains. Instead, in this chapter, a rigid-plastic solution will be perturbed by
elastic strains. This is particular straightforward in a mixed method as the elastic
strains can immediately be calculated from the current stresses. In the plastic region,
the yield criterion is approximated as well as the flow rule for the plastic strains, by
minimizing the functional given in the last chapter. In the region of no plastic flow the

plastic strain is made zero by minimizing the sum of the invariants dgd{’ and (D)2

The details of this model will be given first followed by examples which can be
accompanied with analytical solutions. It must be noted that a finite deformation
solution would require the Jouman stress rate. For the sake of simplicity this
sophistication has been ignored. So the present formulation is only applicable to small

deformation.
6.1 MATERIALS MODEL FOR ELASTO-PLASTICITY

It is well established that metals obey the von-Mises yield criterion,
;s S —kz(x) =0 (6.3)

where k is a material property reflecting yield stress a, and « is hardening parameter

which depends on the total strain. S;j is the deviatoric stress defined in eq.(3.10).
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Materials obeying such a yield condition are called von-Mises materials in this thesis,
and if the associated flow rule is used to establish the constitutive relation of such
materials, then

Ds

ep _ e P _ . [ -
dij = dij+dij = 2l + ?;J where D = J2 d,.’;dg 64

where d; is the elastic part of the full deviatoric strain rate and d,-’; is the plastic part

of the full deviatoric strain rate. The plastic part of the full elasto-plastic deviatoric

strain rate d'g obeys the same equation as the Levy-Mises equation (5.6) governing the
rigid-plasticity. The elastic part of the éi;p obviously obeys the Hooke’s law eq.(3.9)

in elasticity but with the stresses replaced by stress rates.

The assumption of linear isotropic hardening leads to the parameter k in eq.(6.1)

k=ko+k,|dPd” (63)

where k, and k, are constants. It remains to decide how to impose this constitutive

€p

relation in the model. In the conventional method, eq.(6.2) is used to express é; as

a piece-wise linear relation, such as by introducing an elasto-plastic modulus matrix

{é;P = [Dep]-l{aij} 6.9

and is then solved incrementally as in elasticity, with modified stiffness and load terms
to account for the elasto-plasticity. Because there is no explicit involvement of the yield
condition in the solution process, the stress results have to be corrected to satisfy the
yield condition eq.(6.1).

In this chapter, since the plastic part of the full elasto-plastic deviatoric strain rate
obeys the same equation as in rigid-plasticity, the mixed extremum principle for rigid
plasticity introduced in chapter 5 can be directly applied to solve the elasto-plastic

problem by introducing the full elasto-plastic strain rate e,.j" into the functional

implicitly by,
P _ P _,€ )
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which will be discussed in the next section.
6.2 MIXED-EXTREMUM PRINCIPLE FOR ELASTO-PLASTICITY

If we replace d;; and ¢, inTl, ;in eq.(5.7) by df and e}, then the functional is
immediately suitable for expressing the plastic part of elasto-plasticity

Wy = [ VS VdGdG =Sl +pv*+p(er)" aV (6.6)

where d’g and é,’:, are the plastic deviatoric strain rate and the plastic volumetric strain

rate respectively, defined in eq.(6.5). By means of the Hooke’s law eq.(3.9), the
elastic strain rate in eq.(6.5) can be replaced by the corresponding stress rate, and by

rewriting in a deviatoric form, eq.(6.5) turns into

df =af-_Y ;b =e7-

er_"y 6.7)
vy 2G ’

where ¢,, and $;; are mean stress rate and deviatoric stress rate respectively. There

is only one problem arising from eq.(6.6). This is when,

3P _ 7P _ Y _
¢? =0 or %4 %_0 6.8)
j = epgeep-6m=0
m “m -
K

which corresponds to the elastic area. In such an area the functional Hep_p is no longer
suitable, since it comes from the functional for rigid plasticity which is only applicable
in plastic area.

It is quite natural to think that we may turn to the functional II,;,, in eq.(3.12) for
elasticity to solve this problem. Putting d'i;p , eF

m » S and 0, into two residual

functions R; and R, in eq.(3.11), the functional for the Hooke’s law in eq.(3.12) yields

I GF -—=$;)° (e"P 16,0 dv=0

2G'J

However, we have already used equation (6.7) so this reduces to
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= P ap , K ,p\2
1, = j o Gdgdl + Z(ep)* av (6.9)
Before we build a complete elasto-plastic model which can switch between an elastic
area and an elasto-plastic area automatically, a criterion to indicate the elastic area and
the plastic area needs to be proposed. Here we choose ¢ in eq.(6.6) as this criterion,
which is equivalent to the yield criterion in eq.(6.1). This is because that y is an

intrinsic term of IT,___ and thus no extra work is needed to calculate it at any location

ep-p
in . The new mixed-extremum principle is then presented as

(
j Q,/s,.,.s,-j dfdf -sdf+py*+peh)* dv ,  when ¢ =Qg 10)

ep
3PP L K ,p\2
j [ Gdfdl+ 5 @py? dv , when ¢<0

where

VS _1 . gp_gep_ 1 P _ s4ep_ 1.
¢-72_? 1 ; dj=d; Tes and ¢, = ¢, ~20,

There are four variables within IT : the stress rate 4;;, the stress o;;, the elasto-plastic
ep y y p

strain rate ¢;7 and the elasto-plastic strain e;;. B integrating &;; and é; along the
ij P y ij ij g

ij-
loading path, 9 and e;j can be uniquely determined. Furthermore, elasto-plastic strain

rate e,.j” can be expressed as a linear function of velocity #;, as shown in eq.(5.4).
In conclusion, II,, is only a functional of stress rate &;; and velocity #; . Therefore

extremum principle falls into a two-field mixed extremum principle, which can be stated

as follows:

Among all the admissible strains and stresses which satisfy the compatibility
condition and equilibrium condirions, as well as the kinematic and static boundary
conditions, the true solution renders the functional 11, an absolute minimum.

By making use of the displacement-strain rate relation eq.(5.4) and the constrained

first-order stress rate functions F, and F,,,
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. OF, . OF,
O === 3 Ty ="y
dy ady (6.11)
. oF, . _OF,
T YT x
along with a constraint &,, = ¢,, , which is a rate form of eq.(3.3), the kinematic

conditions and static conditions are implied, as described in previous chapters. Two
kinds of boundary conditions, displacement and traction boundary conditions, are again
imposed in the same way as we did before by introducing the penalty functions II, in

eq.(3.30) and II; in eq.(3.34). Finally, the general functional for elasto-plasticity is

My =10, + T, + 00, + I0, (6.12)

where II. is the penalty term for imposing the constraint of stress rate functions. The

rate form of eq.(3.37) should be used at this case.

6.3 GLOBAL SYSTEM EQUATIONS

In chapter 3 and chapter 4 for linear elastic problems, system variables were only total
stress and displacement. While in chapter 5 for rigid-plasticity, we introduced a rate

type variables, i.e. velocity u; in place of displacement u;. No stress rate is employed

since no unloading is allowed, thus the solution is independent of the loading history.

However in elasto-plasticity, all variables should be in a rate form since the
solution strongly depends on the load history. Therefore the system variables in this
chapter should be taken as velocity, strain rate and stress rate.

In the meantime, the total displacement, strain and stress also remain in the system
equations. For instance, total plastic strain will be used to calculate the hardening of
yield, while total stress is necessary to evaluate the effective stress. But they are not
essential variables and can be obtained by integrating rate variables along load path.

For the convenience of reference, in the next section we will reintroduce the
admissible velocity, strain rate and stress rate in terms of nodal rate variable
B and f5.
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6.3.1 Stress Function Rate and Velocity in FE Implementation

In section 6.2, tensor notation is used to establish the mixed-extremum principle. For
the convenience of FE formulation, we will employ matrix notation in the following

sections. Several basic vectors are defined as follows:

plastic strain rate &P with component ¢/,

P = [sP 4P 4P 4P GP\T
¢ = [of el ef of o)

total deviatoric stress s with component s;
= T
S = {Sax Sxy Syx Syy 57}

and deviatoric stress rate § with component S; ,

$ = {Sxx Sxy $yx 5y su}T

total elasto-plastic deviatoric strain d°P with component d;”

as® = {a? a¥ 47 af 4}

and elasto-plastic deviatoric strain rate d®® with component d;” .
~ep _ [ieP jep yep jep yep\T
asr = {a? aF a7 47 a7
The discretization of the velocity for plane problem is similar to the one of displacement
in eq.(3.17)

d(ﬁ,n)} - 1 0} (6.13)
) = SON(E, X -
E) ‘21: (LY P

where u(£,m) and v(&,n) are approximate velocities in x and y directions respectively.
u; and v; are the corresponding nodal variables of an element. N; is the shape
function of node i in the element, m is the number of nodes per element, as defined in
section 3.2. Thus the elasto-plastic deviatoric and the volumetric strain rate for plane

problems are expressed by
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m
o .d ,d
d® = ZBDi Bi by = zBmi B; (6.14)

i=] im]

in which matrices By, and B,;; are defined as same as in eq.(3.19) for plane elasticity.

In case of axisymmetric problem, they should be those defined eq.(4.15). Bfl is nodal

velocity variables. The total elasto-plastic strain can only be calculated by integrating

the strain rate.
Because only C° continuity of stress function rate is required, the approximate

stress function rates F, and Fy are also presented in terms of isoparametric

FEn)| & 1 0‘ F, (6.15)
. = N.(E, . .
{ry(z,n)} 2N ")[0 I[Fy,-}

where F,(¢£,7) and Fy(E ,n) are two approximate stress rate functions. F,; and Fy,- are

formulation as

nodal variables of the element. The components of the deviatoric stress, deviatoric

stress rate and mean stress rate can then be expressed for plane problems as

s=YAnB 5 s=YALE ; 6, =Y Auf (616

i=] i=] i=]

in which constant matrices Ap, and A . are defined in eq.(3.25) for plane elasticity.
In case of axisymmetric problem, they should be those defined in eq.(4.17). Bf is
nodal stress function rate variables. The total stress can be calculated by integrating
the stress rate. Finally, the plastic deviatoric stain rate dP and plastic volumetric

strain rate é,’:l defined as in eq.(6.10) can be expressed in a matrix form

dP = 2; [BDi _%ADi] {B:} ; e = 2; [Bmi ‘71<Ami] {8} (6.17)

by introducing the general nodal variable, Bi = {Bf Bf }T , and making use of
€q.(6.14) and eq.(6.16).
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6.3.2 Calculation of Stiffness Matrix and Residual Force Rate

The nature of this kind of problem decides that the system equation will be nonlinear.
It is believed that the Hessian matrix, which is defined by the second-order differential
of II;,;, is essential to solve this kind of equations. In section 5.3.1, we have
demonstrated that the analytical differentiation of the functional II,,, is superior to the
numerical one. We can anticipate that for the differentiation of II,, the conclusion is
still the same since there is little difference between these two functionals as far as
computing time is concerned.

Again the function f(x) = ‘/x,-x,- has been introduced in order to simplify the

differential operation and the functional II,, , tumns out to be

I,,., = f@P)f(s)-s TP +py? +pel) (6.18)
where ¥ and k are defined as eq.(5.17) and eq.(6.3) respectively. Only minor changes
from I1,.; in eq.(5.17) is found in the new functional II,, , in eq.(6.18):dP and el
in eq.(6.18) are in place of the corresponding d and ¢,, in eq.(5.17). Consequently,

all the differentials of II,, , remain the same as those of I, in eq.(5.18),except

thatd and ¢,, should be replaced bydP and é”.

On the other hand, differentials of II,_, with respect to dg are very easy to obtain

ep-e
by the observation of the second equation in eq.(6.10) as follows

2
anf':“ =2Gd! ’ ge”f; = 2G
ad! 24. ad (6.19)
dll Il _
ep-e _ Kérlr)z : pep;’3 =K
deb debael

It remains to determine the differentials of the yield function y with respect to both §
and dP. In chapter 5, the situation was simplified by the fact that the constant k does
not vary with plastic deviatoric strain dP or deviatoric strain rate dP. In this chapter,

hardening effect has been taken into account, which means that k is function of dP.

Therefore corresponding to eq.(5.20), differentials of y with respect to dP should be
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given as

oy _ _kf®) %) . k,dys;
odf  2k* f@%)  9dfas;  2KPEAP)E)
2y _ 2% drdree) _kf©) (6;£%(@P) -d}d))
odfodf  2KPfX(dP) 2 k2 63ap)

(6.20)

The differential of f with respect to x is identical to the one in last chapter, as seen in
eq.(5.19).

So far all the necessary differentials have been calculated. Then we will start
deducing the stiffness matrix k®P. It is worthwhile to mention that all the processes in
the deduction of k®P should be carried out in two different cases: elastic case and elasto-

plastic case. Say

2 2 2
Ldi{j= 9 HeP—P : L;J.s‘ = d HeP-P : L;::- = 9 I.IeP-P (6.21)
8d? ad? 8d? 3s; 05,94,
we have
4D . 7P 7P 5P 1,P

Pq KXY . d . - ds y dd . - . B
0B, “ob,| a8, 9B, 0By | B, 96,08, (4
9P A 3P p p
k;[;-e = 2Ga(?i ad.i +Kaefm aé'm
331, an 9B, 9B,

Following eqs.(6.16) and (6.17), the differentials of §, dP and é,’:, with respect to the

general nodal variable 3 are
. : B), . B,
% ={A°T} N | 0 A Lt O N S (R
B, Dp B, _'Z_GADp 9B, ‘;Amp

Substituting eq.(6.23) into eq.(6.22), the stiffness matrix k°P is immediately obtained
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2GBp, B, B -BT T
K - fg Dp +KBmP mq (BDPADq+BmpADq) 4o (6.24)

Pq
~(AppBp, +Am,B,)  Ap,Ap2G + AL A K

when ¥y < 0, and

BnLUB, +2pBLB..  BmAVA 2"3 A

mp~ mq mp”"mq
el dQ (6.25)
g _ 2P T vij 2p 0
A l,A B Ammeq Ap A KQAmpAmq

when ¢y = 0, in which the intermediate variables A and X are

1 i ij j_ U g i, 1,4
l]_
AV =LY - sgliy and XV =Lg- Li-Liv L7,

Note that if the following equality

T
B, A, =Bp Ap +B1 A

mp‘mgq
is substituted into eq.(6.24), it is easy to find that k®P in eq.(6.24) is identical to k® in

eq.(3.39) for elasticity.
Let

L; = anep-p . Ll = anep-p

ds; ¢ aaP

following the similar routine of the one in chapter 5, the "residual force rate" vector,

which is defined as

afer = e
a8

corresponding to the stiffness kP in Newton’s method, can also be expressed in terms

of differentials of éP and ¢, with respect to the general nodal variable {3 as
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. . 38; _;0dY e
AR = j L;EJJLd +2pé,. %m gy ;  wheny>0
038, 43B, 36, (6.26)
. ad? aé'
AR = [ 2GdP - 3, +Ke,,,F dv . wheny <0

then the matrix form of AF P is readily obtained by making use of eq.(6.23)

“Pol P T
2Gd’Bp,+KerB
AF;p = ‘ Tp Tmp ;  when ¢y <0 (6.27)
-dipADp _élfrAmp

and

T s P
By L. +2pé B p (6.28)
AF? = pLd - :  when y>0

Apo(Li-LJ2G)-2peEA 1 /K

6.3.3 Solving the Linearized System Equation

The solution of a complete elasto-plastic problem can be obtained by finding the
extremum of II;;, as stated in section 6.2. No subsidiary condition is needed if
admissible strain rate and stress are given by eq.(6.14) and eq.(6.16). By Newton’s
method, the nonlinear equation of finding the minimum of II;; is linearized at any given

time ¢ as
From eq.(6.12), kyy and AFy are obtained by

o%11 1L, kI, oI

kim = — Pr "+ =+ —°
039 9BaB 9B  9Bap (6.30)
. em,, A, oI o,

o8 a8 o8 3B
The last three terms in both equations are k4, kS and k€ as well as the rates of AFY,
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AF® and AF®
AFd=Fd(i+l)_Fd(i) . AFs=Fs(i+1)_Fs(i) - AF¢ =0

defined in section 5.2.2. The first term in these equations are kP defined in eq.(6.24)
and eq.(6.25) and AF°®P in eq.(6.27) and eq.(6.28). It immediately comes out

km=kep+kd+ks+kc

_ (6.31)
AFyy = AF®P + AFY + AF®

The linear search method described in section 5.3 is again used to find the minimum
of I, the search direction A3 of which is obtained by solving eq.(6.29). The whole
solution procedure includes the following steps:

Say at a particular time i the true velocity u® and true stress ¢ have been

obtained. To calculate the velocity, strain and stress at the next step i+1,

a) solve the linear equations of elasticity to get first approximate velocity u(i+D + ,

strain rate é(i*l)* and stress rate oU+D * . The approximate stress o(i"l)* ,

obtained by integrating the stress rate, satisfies the equilibrium equation but does

not obey the yield condition.

b) The approximate stress is then used to give the first evaluation of elastic zone
and plastic zone from which stiffness matrix k®® and force AF®P in eq.(6.24) /

eq.(6.25) and eq.(6.27) / eq.(6.28) are able to be obtained.

c) Solve the linearized equation eq.(6.29), from which the line search direction
AB® is obtained. By means of line search, BU*D* =@+ A0  the line

minimum of the functional II; is found giving a specific value of 7.

d)The rate variable 39*1* is used to calculate the velocity @*1* | strain rate
e®*D* and stress rate 6@ * by eqs.(6.13), (6.14) and (6.16), from which the

total displacement and stress at step i+1 are then obtained as follows

91



Chapter Six Mixed Model for Elasto-Plasticity
wED* @ GeDx g e L0 ey (6.3D)

where for a static plastic flow, the time increment dt is taken as 1.0.

e) If the value of II;; with B=BE*D* s close to zero at a given tolerance, then
the solution of the stress at this step o@*1 is taken as o¢%*D* and that of the

displacement ui*1 is taken as w*D* 1t i is not, then go back to step b).
The flow chart of the solution procedure is shown in fig.6.1.
6.3.4 Solution Procedure for Various Load Conditions

Elasto-plasticity, is different from either rigid-perfect-plasticity or elasticity in that the
solution is history dependent. Special remarks need to be made on the capability of the
current model to deal with this. Briefly, a history-dependent constitutive relation
implies that when loading, unloading or reloading, the constitutive relations appear in

different forms

a) Loading——occur when extra loads are added to the current level. From the
incremental theory of plasticity the constitutive relation remains elasto-plastic, as shown
by line OA in fig.6.2. In the solution procedure described in section 6.3.3, the first
estimate under the assumption of elastic relation gives higher stress level than reality.
As a result, the minimum of II;; is not found at this step, and other iterations are
needed. At this moment, the switch function ¥, being the same as the yield function,
is greater than zero. Then eq.(6.25) and eq.(6.28) are used to construct the global

system equation eq.(6.29), which implies the constitutive relation of elasto-plasticity.

b) Unloading is to remove a load increment from the current level. Here only
a small increments of loads is concerned since the isotropic hardening is only valid in
such a case, as shown by line AO’ in fig.6.2. In the solution procedure described
section 6.3.3, the first guess for the unloading step is as in elasticity. The yield

function ¢ will not be greater than zero at this moment since the updated stress is well
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Initialization

Input DATA: FE model
and material properties

Load increment
F(“‘l)zp(l)_*_ AF(‘)

Inital guess of AR™"
by solving k,Af +AF,,=0
aty <O(elasticity)

If ¥ <0

Where

No

Yes

Load step i=1,m

Recalculate k , and

solve k,Af+AF,=0 aty>0
by Newton’s method

Start line search by
F=p"+86"N , to find
a local minimum of II,

Iterations

No

¥ I, <Tol

Yes

UpdateB“for step i+1
|

Fig.6.1 Flow-chart of the solution procedure for elasto-plasticity by the mixed
model.
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below the yield surface. No further correction is needed since eq.(6.24) and eq.(6.27)

have already been used to obtain the first guess. This represents an elastic solution.

Fig.6.2 Loading conditions in elasto-plasticity

c¢) Reloading here is termed as a loading process after an unloading from yield
surface, as shown by line O’A or O’B in fig.6.2. For the case of reloading from point
O’ to point A, the first elastic estimate will immediately yield the correct answer since
¥ <0 thus the minimum of II;; will be reached by such an estimate. The iteration
terminates. It means that the procedure switches the constitutive relation to elastic one
as the situation arises.

For the case of reloading from point O’ to point B the first guess will certainly not
bring the II;; to the minimum since it is beyond the yield surface and the first equation
of eq.(6.15) must replace the second equation of it from which the first guess is
obtained. This brings the solution procedure to the normal elasto-plastic one.

In conclusion the model proposed in this chapter can handle all the three loading
cases described above automatically and correctly. If kinametic hardening is used, it

should be able to predict residual stresses.

6.4 SOLUTIONS OF ELASTO-PLASTIC PROBLEMS

There are only a few analytical solutions for some simple plasticity problems which are
available in literature. In this section similar problems to the previous chapter in
elasticity will be solved in plasticity to demonstrate the efficiency and validity of this

mixed model concerned with elasto-plasticity. Thus no new mesh is required.
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6.4.1 Expansion of a Thick Spherical Shell

A thick-walled spherical shell, whose internal and external radii are a and b=2a
respectively, is subjected to uniform internal pressure p of gradually increasing
magnitude, as shown in fig 6.3. If the internal pressure is increased to a critical value
De» Plastic yielding begin at the radius where yield criterion is first satisfied, which is

obvious at the inner radius r = a.

Fig. 6.3 Expansion of a thick spherical shell and its FE model.

With a further increase in the internal pressure, the plastic zone spreads outward and
the elasto/plastic boundary, say r = c, is a spherical surface at each stage, as in fig.6.3.

In our finite element model, only one mesh with 50 8-noded axisymmetric elements
is used in the analysis, as seen in fig.3.1. 3 X3 integration scheme is adopted in the
calculation of the stiffness matrix kP and the stress and strain. In fig.6.4 the hoop
stresses oy9/ 0y and radial stresses o,,/oy under four different ¢/b, 0.5, 0.6, 0.7 and 0.8,
corresponding different pressure p are plotted along radius/b. For various loads, only
one load-step is used in the solution with the full pressure p instead of applying it
incrementally.

It is seen that the mixed model gives very good radial stress o,, for each c/b.
However gy, slightly deviates the analytical solution when ¢/b=0.8, especially near the

elasto-plastic boundary. The rest of the cases are in excellent agreement. Nevertheless,
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the mixed has superb capability to solve the elasto-plasticity, considering only one load
step is used.

The penalty number p. was chosen to be the same as it was in elasticity. However
another penalty number p is needed for imposing the yield condition, as in eq.(6.15).
It is suggested that it should be chosen to be between 50.0 to 500.0 for a normal elasto-
plastic problem.

In fig.6.5, the logarithms of the value of Hep (a) and the average errors (b) are
plotted against the iteration numbers. At ¢/b=0.6, it yields a results after two iterations
at an average error less than 0.2 % fig.6.5(b). But at ¢/b=0.7, three iterations are
needed for an average error about 0.7 % while at ¢/b=0.8, four iterations give an
average error around 1.0%.

The curves in fig.6.5(a) for I1,, are similar to fig.6.5(b). Therefore the error of

a elasto-plastic solution can also be estimated by the value of IT,, in this model.
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Fig.6.4 Stress distributions in an elasto-perfectly plastic hollow sphere under internal

pressure. A FE mesh with 50 8-noded elements are used in the computation.
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Fig.6.5 Convergence of the elasto-plastic solution of a hollow sphere under internal
pressure. A FE mesh of 50 8-noded elements with 3 X3 integration are used

in the computation.
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6.4.2 Expansion of a Thick-walled Cylinder

Although for analytical solution, a 2D cylinder is more complicated than a full 3D
sphere, it is usually simpler when it is solved by the finite element method. Except that
the element type should be replaced by a plane one, the entire models of the last section
for spherical shell are directly applicable to the current problems.

The radial stress o,,/oy and the hoop stress o4y/0y are presented in fig.6.6 obtained
from the mixed model and the analytical solution[*2), Almost identical results are found
between two methods under four different plastic range: ¢/b= 0.5, 0.6, 0.7 and 0.8.
Only a point near elasto-plastic boundary at c/b= 0.8 is slightly apart from the exact
solution. The reason is that for such a large plastic deformation, one load step is too
few to achieve a desirable solution. This is not unusual in the solution of the
conventional displacement model too. In fact the displacement model is diverged when
solving this problem at ¢/b= 0.8 with a single load-step.

The convergence of the mixed is also good for this problem. Fig.6.7(b) shows that
when ¢/b= 0.6, two iteration is enough to yield a result with an average error less thari
0.2%, while figure for ¢/b= 0.8 is three iterations to yield a result with an average
error about 1.7%. Fig.6.7(a) again shows consistency between the error and the value
of I'Iep.

In comparison with the analytical solution, excellent results for both spherical shell
and cylinder cases have been obtained by the mixed model. However these cases are
governed by the problems where stress distribution is either axially or spherically
symmetrical. It remains to demonstrate how this model behaves for problems with

emphasis on the shear stress in the next example.
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Fig.6.6 Stress distributions in an elasto-perfectly plastic cylinder under internal

pressure. A FE mesh with 50 8-noded elements are used in the computation.
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Fig.6.7 Convergence of the elasto-plastic solution of a cylinder under internal pressure.

A FE mesh of 50 8-noded elements with 3 X3 integration are used in the
computation.
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6.4.3 Cantilever by a Load at an End

A uniform cantilever of length L, having a rectangular cross section of width b and
height 27, is loaded by a concentrated load P at the free end. It can be anticipated that
yielding first occurs at the top and bottom corner of the built-in end, where the bending
moment has its greatest value, the corresponding load My being such that M= PL.
When the load P exceeds Py, the plastic zones spread symmetrically inward from the
corners.

The FE model is as same as in fig.3.25. Only one mesh with 80 8-noded elements
is used in the study. The integration used is 3X3. Two penalty numbers are taken as
p.=10.0 and p=50.0.

The load-deflection curve of the elasto-plastic beam is plotted dimensionlessly in
fig.6.9. D is the deflection of the beam at the free end under load P. Dy is the
maximum elastic deflection of the beam at the free end, which corresponds to load limit
for elasticity Ppg.

It is seen that at the early stage of yielding (P/Pg<1.3), the displacement model
and the mixed model give very similar curves, both deviate slightly from the analytical
one. This is probably due to the inaccuracy of the analytical solution resulting from the
simple beam assumption.

When the load is getting larger (P/Pg>1.3), the mixed model gives much more
accurate deflection than displacement model in comparison with the analytical one. The
conventional displacement model tends to give small deflections when the plastic range
is built up. Even surprisingly, the results obtained by the displacement model are
solved in ten load-steps, while those by the mixed model is only one single load-step.

Theoretically the maximum load is P/Pg> 1.5 at which the D/D, is infinite. Both
FE models fail to get a converged result when P/Pg>1.44.

The normal stress and shear stress are shown in fig.6.9. Since the mixed model
has a difficulty near the built in end of the beam, we choose a section x/L=0.15 to

analyse. In the case of ¢

o Tesults from the mixed model are very close to the

analytical one especially in the area of plasticity. Like other examples, difficulties arise
near the elastic-plastic boundary. The mixed model again gives less good results in this

aréd.
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As to the shear stress o,, the mixed model gives very good results near the upper
and lower edges, where plastic deformation occurs. However the higher shear stress
is predicted near the mid area of the section. The shear stress shown is calculated in

terms of the arithmetic average of o, and o,,,.
6.4.4 Comments on the Mixed model for Elasto-plasticity

Three elasto-plastic solutions have just been produced in the previous sections. In these
applications, it was demonstrated that the mixed FE formulation described in this
chapter can simulate problems with large portion of plastic deformations correctly. The
larger the plastic strain is, the greater value of p to impose the yield criterion eq.(6.1)
should be chosen. For a normal elasto-plastic problem it should be chosen to be 50.0
to 500.0.

The stress and deformation results obtained from the mixed model are also highly
accurate, both in the case with simple axial stress (section 6.4.1 and section 6.4.2) as
well as with severe shear stress (section 6.4.3). Compared with analytical results, the
mixed model gave closer deformation results in the beam bending in section (6.4.3)
than the displacement model.

In addition, the mixed model also has better convergence to the solution. All
solutions in these three examples were obtained with one single load step by the mixed
model, and only a few iterations (3-5) are enough to give converged results. While by

the displacement model, multi-load steps, each with a few iterations, are required.
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ELASTO-PLASTIC BENDING

10 12 14 16 18 20 22
1.5 I 1 , ] 1 1 L 45
r
l‘l' A
V4

47 Elastic ,l'l 4 14
o’ /l' o
= =
AR rs L1373
° / e

s Exact

a " [-7]
2 ) o Mixed o
@ ¥/ @
>1 2 p/ A Displ =12 >
(= =
o (=]
- A et

1 14 A 11

&
1 0f& Y T — T T 10
10 ]2 14 16 18 20 22

mens on es def ect on at free end O O

Fig.6.8 The tip deflection of the elasto-plastic bending of a beam. A FE mesh of 80
8-noded elements with 3 X3 integration is used in the computation. p,=10.0 is
taken.
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Fig.6.9 Stress distributions of the elasto-plastic bending of a beam at section x/L=0.15.

A FE mesh of 80 8-noded elements with 3 X3 integration is used. p.=10.0 is

taken.



CHAPTER 7
MECHANICAL SIMULATION OF SPOT-WELDING
BY THE MIXED METHOD

7.1 INTRODUCTION OF RESISTANCE SPOT-WELDING

Resistance spot-welding was invented in 1877 by Elihu Thomson and has been widely
used since then as a manufacturing process for joining sheet metal. Even though
resistance spot-welding is over 100 years old, the physics of the process has not been
well understood, however this has not hindered its industrial application for joining a
large variety of metals. A schematic representation of a single point resistance spot-

welding is shown in fig.7.1.

Electrode Force

copper alloy electrode

!
molten nugget current

Sheet #1

) )
_ I
{} Sheet #2 faying surface
3
]
[
===
[

Fig.7.1 The schematic picture of a single point spot-welding

7.1.1 Physics Process of Resistance Spot-Welding

Basically, welding is accomplished by passing a large electrical current through the

materials to be joined. The welding current is introduced through a pair of electrodes
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which also clamp the workpieces tightly together. The Joulean thermal energy
generated in the region of current concentration between the electrodes produces a
molten nugget. The molten nugget cools upon termination of the welding current and
solidifies into a fused, welded joint.

Physically, resistance spot-welding is a coupled electrical-thermal-mechanical
problem. The discrete stages in the process are: a) electrode squeeze, b) weld, c) hold
and d) release.

A squeeze load is applied to the sheets to be attached through electrodes, which
create intimate contact between the sheets of metal and a pathway for current flow
during the welding stage. It also might damage surface oxide on the faying surface.
When a current passes through, the contact resistance at the electrode-sheet interface
and at the faying surface results in the greatest heat generate at these surfaces. This
heat generation produces a temperature increase at all of the surfaces, with the increase
being greatest and most rapid at the faying surface due to poorer cooling ( the copper
electrodes are water cooled). Melting begins at the faying surface and the resulting
nugget grows towards the electrodes until current flow is terminated. The electrode

squeeze load continues to applied during the hold stage until cooling has occurred.

7.1.2 Resistance Spot-Welding of Aluminium

Resistance spot-welding is the most common joining method used in the automotive
industry. The method has been well proven for joining low carbon steels. All the
parameters for controlling the spot-welding process have been thoroughly studied and
methods to control the quality of a weld in low carbon steels are well established.

However for the resistance spot-welding of aluminium, such a position has not been
reached. The high electrical and high thermal conductivities of aluminium cause big
problems for spot-welding since heat generation and concentration are two important
factors in producing a weld. The lack of specific standards in spot-welding of
aluminium becomes a big obstacle if aluminium is to be used in the automotive
industry.

In recent years there has been a move towards improving the degree of corrosion

protection so as to increase vehicle life or decrease weight of the vehicle. Both
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aluminium and coared steel offer better corrosion protection than the low carbon steels
currently used. However aluminium is roughly one third the weight of steel and has
considerable strength, which means that a smaller engine with less emission is generally
sufficient for the car to achieve a similar performance to a steel car.

Therefore an understanding of the resistance spot-welding of aluminium becomes

an important current issue.
7.1.3 Controlling Parameters in Spot-Welding

The fact that resistance spot-welding is a coupled electrical-thermal-mechanical process

means that controlling parameters in spot-welding may be divided into three categories:

a) Electrical aspects. These include: the type of current (AC, DC or MF); density
and period of the current applied to the work-piece and the contact resistance at
the electrode surfaces and the faying surfaces (mating surfaces).

b) Thermal aspects. The cooling system within electrodes can be controlled: the
temperature and the flow speed of the water in cooling hole and the location of
cooling hole within the electrodes. The thermal conductivities of electrodes and
the workpiece can affect welding, but they are not controlling parameters of
spot-welding equipment as they are usually keep constant.

¢) Mechanical aspects. There are a lot of parameters which affect mechanical
behaviours of the electrodes and the work-pieces. But only some are related to
the formation of spot-weldingl53); the squeeze loading pattern; the geometry of
the head of the electrodes and location of the cooling hole. These can largely

affect the contact resistance at the electrode surface and the faying surface.

The above parameters acts in a coupled manner. For example, changes of electrical
parameters obviously affect temperatures of the work-pieces and the electrode which
will lead to changes of mechanical aspects. The varied mechanical behaviour will
normally alter the contact resistance, which in turn affect electrical and thermal aspects.
The more details concerning the controlling parameters can be found in Kim’s work in

ref.[53]. Also a review of current experimental studies and numerical simulation of
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spot-welding will be given in Appendix D.

7.1.4 Work in this chapter

The Spot-Welding in Aluminium group in Newcastle University is devoted to the
numerical simulation of both electro-thermal and thermo-mechanical behaviours during
spot-welding. This is sponsored by Alcan International Ltd.

In this chapter, the mixed FE model introduced in previous chapters will be used
to solve a very simple, but very useful case in the thermo-mechanical simulation of
spot-welding. That is the squeezing of the aluminium sheets by a pair of truncated
electrodes, where the sheets are initially attached together by adhesive materials.

The fact that adhesive is introduced in the structure causes difficulties to produce
a weld since adhesives are not conductors. It also increase difficulties for the numerical
simulation since both solid and fluid have to be treated together to model the thin layer
of adhesives, aluminium sheet itself and the electrode.

In the following section, an axisymmetric elasto-plastic model will be developed
with the adhesives taken into account in terms of thin-film theory. Our purpose is to
identify some factors which are related to the deformation of the adhesives during the
initial squeeze of aluminium sheets in the cold condition, and eventually control the
minimum thickness of the deformed adhesive and the size of the entrapment between
two aluminium sheets. In the meantime, it is our intention to verify the validity of the
mixed model when applied to such a complicated problem.

A more complete study of the thermo-mechanical simulation of spot-welding with

an pair of curved electrodes is presented in Appendix D where only conventional

displacement is used.

7.2 FE-FLUID MODEL FOR SPOT-WELDING

In this section, a new FE model is proposed in order to simulate the initial squeeze of
attached aluminium sheets by electrodes. It is constructed by introducing a traction
boundary condition which can be obtained for the thin-film theory!!) in fluid dynamics,

which replaces the displacement constraint at the faying surface of the FE mesh.
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In section 7.2.1, fluid pressure of adhesive caused by a deformation of aluminium
sheets will be deduced by means of the thin-film theory. Then in section 7.2.2, an
interactive model, FE-fluid model, will be presented by incorporating this fluid
pressure onto a normal mixed FE model in terms of a deformation dependent applied

traction.
7.2.1 Fluid Pressure of a Deformed Adhesive

Suppose that we have an incompressible Newtonian fluid of constant density p and

constant viscosity u. Its motion is governed by the Navier-Stokes equations

90 L -V)i=-Lvp+rV2ieg (7.1)
ot p

and the continuity equation

Ve = 0 (7.2)

The character of a steady viscous flow depends strongly on the relative magnitude of
the terms (0-V)u and »W2i in the Navier-Stokes equation (7.1). Let & be the
thickness of flow and L the typical horizontal length scale of the flow. When A <L,
the equation of motion can be simplified by ignoring inertia terms and considering only
flow in the long direction in eq.(7.1). In axisymmetric cases, it becomes(!]

op _ O, (7.3)

or #622

where #, is the velocity of fluid at r direction and p is the pressure of the fluid being

a function of r and ¢ only. The incompressibility condition V-.u = 0 takes form of

1 a(ru,) . ou,

r or 0z

=0 (7.4)

in axisymmetric cases. Eq.(7.3) and eq.(7.4) are called the thin-film equations(!]. Now

let us derive the pressure p caused by a movement at z-direction (#,) by making use
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of thin-film equations (7.3) and (7.4).
Say a fluid is enclosed by two symmetric solid bodies with boundaries at z=H(r,?).

The moving speed of the boundaries is

u = 9 (1.5)

as seen in fig.7.1.

solid boundary

\ H(rt)
Y%t v

7 222222777

-H(r,t)

adhesive

Fig.7.2 The adhesive enclosed by symmetric solid boundaries.

By integrating eq.(7.3) with respect to z twice and applying the no slip condition at

boundaries:
it follows the velocity at radial direction u,
1 aP (z H) (7.6)

It is straightforward to derive #, by substituting eq.(7.6) into eq.(7.4).

ad
e 19 r@( H?) (7.7)
0z 2ur or

Integrating both side of eq.(7.7) with respect to z and imposing boundary condition
eq.(7.5), it follows that
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. L2 [r@.gs] (7.8)

in which the symmetric condition #, = 0 at z=0 has been used. The pressure p is then
easily obtained by integrating eq.(7.8) twice with respect to r to give

p= -j “ |:_3‘_‘-[0r(%i1-r)dr:| dr (7.9)

ro| =3
The boundary condition pressure p=0 at r=a has been used, where a is the outer
radius of fluid. A special case is that the solid boundary is simply a flat disc which
means H is not a function of r. This leads a much simpler expression for p

= 3w dH 2 _ 2
)/ _4H_37(r a”) (7.10)

Say a load F is acted on the disc, then following relation exists

- 2x a =_31r;ta4dH 7.11
F Io Uoprdr a = -7 (7.11)

Therefore a load F acted on a flat fluid will cause a pressure py with a distribution like

2F
po = —(r*-a%) (7.12)
xa
In next section, we will show how to incorporate the pressure just obtained into a

conventional FE method.
7.2.2 Solution Procedure of the FE-Fluid Model

For a solid-fluid coupled problem, there are two types of approaches available. The
first is to solve it uniquely by means of FE method where both solid and fluid are
treated as an integrated continuum which has big changes of materials properties among
each area. As a results, only some modifications of a FE method are required. This
also implies that the normal restrictions to the conventional FE method may also apply
to this case.

The second is to solve the solid and fluid separately, each of which is modelled
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with a different approach. For instance, the solid part is modelled by a FE model while
the fluid is modelled by a finite difference model. These two part are combined to
form a integrated system such that they satisfy some common boundary conditions at
the solid-fluid boundary.

The problem we are facing now is to model such a thin-film fluid that the first
approach (FEM) can not be used due to the geometry restraints of FE method in the
fluid part. Therefore the second approach is chosen, which is to model solid part by
FE method and fluid part by the thin-film theory. In the remainder of this section, we
will show how our FE-fluid model works.

Say there is a thin-film adhesive with a initial thickness H O=H(r,1) and a load P
acting it through electrodes and aluminium sheets. Since no deformation of aluminium
sheets is made at time =0, the fluid pressure p, caused by load P at this time is
calculated by eq.(7.12).

(a) (b)

% aluminium sheet aluminium sheet
b hALLA L L L L)L) '
777 77 7 7777

NPT

fluid pressure

displacement constraints

Fig.7.3 The modifications of the force and displacement boundary at the
aluminium/adhesive surface. (a) in a conventional model without
adhesive; (b) in the FE-fluid model.

The external force P and the pressure p, form a balanced system applied upon the solid
part, as seen in fig.7.3. Therefore the deformation of aluminium sheets at the faying
surface uz(o)*(r) can be easily obtained by elasto-plastic FE method.

However u{9*(r) is not the whole movement of the aluminium surface near
adhesive. This is because when FE method is used to model the solid part of spot-
welding, it is required that the z-displacement at the lower-central point of the
aluminium sheet has to be fixed in order to prevent the rigid movement of aluminium

sheets at z direction, i.e.
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@ _ . O
U, |

Up = r=0,z=0 = 0

In reality this point at aluminium surface does have a movement at z-direction along the
change of the thickness of the adhesive. Therefore the whole movement of the
aluminium surface will be the displacement uz(o)*(r) plus an unknown movement at z-

direction at the central point of aluminium ug)(O)Writing for any time r=i, it is
O = uP© + u?* () (7.13)
The solid-fluid boundary H\(7) for the adhesive at =i is then assymed as

HY() = HI() + o) (7.14)

The velocity of the boundary H¢+1D is approximately calculated by

dr z

dH™ G uf*V/Ar (7.15)

where Ar’ is the ith time increment of the load P. The pressure p' +1* is then calculated
by eq.(7.9) with eq.(7.15) and the modified boundary in eq.(7.14).

This pressure p'*1* is then applied again to the FE model, which gives a updated
solid-fluid boundary H¢+1* Theoretically H¢+1 and HE*D* should be the same when
the solution is found. In reality, a few iterations of the above circle are to perform.

It remains to decide how to get the unknown movement of adhesive/aluminium at
the central point u,%)(0), on which p and Hi+1 both depend on. This can be easily
obtained by the fact that H'*1 with a velocity of uf”) should yield a pressure p which

should balance the external load P at z-direction of the aluminium sheets. Golden-line

search introduced in Appendix B is used to find it.
7.3 RESULTS AND DISCUSSION

In this section, we are going to give a practical application of FE-fluid model, which
is the simulation of the initial squeeze of two attached aluminium sheets by electrode.
The geometry and mesh of the FE-Fluid model used in this section is the same as the

one defined in section 4.5.3. The constraints of the FE-Fluid are modified to include
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the pressure boundary conditions at the surface between the aluminium sheets and the
adhesive, as shown in fig.7.3.

The material properties for both aluminium sheets and the copper electrode are

shown in Tab.I. All the data are for the room temperature (25°C).

Tab.I = Material constants of the aluminium sheet and the electrode
Material constants Young’s modulus Poisson’s ratio Yield stress(cold) Plastic
modulus
aluminium 72000MPa 0.25 158MPa 294MPa
copper 126000MPa 0.25 560MPa 294MPa

The constitutive relation of both the materials is taken as a linear hardening elasto-
plasticity. Since loading is a dynamic process, the P(f) pattern needs to be given too.
P(t) = Pt

For simplicity, the linear relation is chosen. Also it is assumed that

whole P, is reached by one single time (or loading) step in the computation.

The parameters concerning the layer of adhesive is that the initial thickness of the
layer of adhesive is H, = 100um. Two viscosities, 500PaS and 1000PaS, of the
adhesive, two forces P, ., -5000N and -10,000N, and two duration times, ¢ = 0.5sec
and ¢t = 1.0sec of loading are used in the simulations.

In order to judge the validity of this FE-fluid model in which the mixed FE model
is used to model the solid part of the construction, another FE-fluid model was
constructed in the same way as we described in the last section except that the solid part
is modelled by means of the conventional displacement model. (All the results presented

in Appendix D are obtained by such a model)

7.3.1 Deformation of the Adhesive

During spot welding process, it is required that the insulation layer of adhesive between
two aluminium sheets be broken down successfully by squeezing electrodes at the initial

stage, so that the current can then pass through. In the following part of the section,

the deformation of the adhesive squeezed by electrodes through two aluminium sheets
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will be analysed by the FE-fluid models just discussed.

In fig.7.4 the relative thickness of adhesive and the corresponding fluid pressure
caused by the deformation are plotted along the radius. The viscosity of the adhesive
is assumed as 1000 PaS, while the force and its duration are -10000N and half a
second.

It is interesting to find that the minimum thickness of the layer is not situated at the
centre of the faying surface but a distance away from it. For example, the minimum
relative thickness is about 0.322 at r=3.5mm, but at the centre r=0, it is about 0.33.

Imagine that the location with the minimum thickness is where two aluminium
sheets first contact each other at faying surface, and therefore the electric current first
passes through. It is possible that the centre parts of aluminium sheets will never
contact each other. In practical spot-welded specimen, it is seen that the faying surface
of some spot-welds shows a ring-alike weld rather than a solid circle!®). In other
words, there must be some adhesive "trapped" inside this small space. This is verified
by the fact that in some specimens there is the remains of the adhesive in the centre
portion of the weld. To find out what is happening here is one of our aims of studying
the deformation of the adhesive.

The results in fig.7.4 show that FE-fluid models with displacement model and the
mixed model give very consistent fluid pressures and thicknesses. When time duration
is taken as one second, the thickness from the mixed model is slightly different from
that from the displacement model while pressure is still close, as shown in fig.7.5. The
minimum relative thickness becomes about 0.26 at r=3.5, while at the centre where
r=0.0, it is about 0.27.

When the viscosity of the adhesive is reduced as 500 PaS, as in fig.7.6, the
minimum relative thickness further reduces to about 0.21 at r=0.38 and at the centre
it is about 0.22. Near the minimum one, the deviation between the displacement model
and the mixed model is bigger than at the centre portion. But the biggest one is near
the edge of the sheet.

Among all results in fig.7.4, fig7.5 and fig.7.6, the patterns of the deformation of
the adhesive are similar. So are fluid pressure patterns in them. However if the

squeeze force P,,,, is changed, say P,,,.=-5000N, the situation is no longer the same,
as seen in fig.7.7.
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Obviously, the fluid pressure should be different since it has to balance the squeeze
force P,,.. The deformation of adhesive is also slightly different than before. The
minimum relative thickness is located at r=3.5 with 0.266, while at the centre it is
about 0.27. The difference between them is 0.04, less than those in last three cases
where it is around 0.1. Therefore it might say that the entrapment of the adhesive is
less severe than in the last three cases.

Further discussions about the effects on the entrapment by various factors can be

found in Appendix D.
7.3.2 Stress Distribution within the Electrode and the Aluminium Sheet

The stress distributions of the electrode and the aluminium sheet are shown in fig.7.8,
fig.7.9, fig.7.10 and fig.7.11 in terms of colour contour maps. Only one quarter of the
whole structure is shown in those graphs.

In fig.7.8 the normal stresses (o,,) obtained the mixed model are presented. It is
seen that the stress levels in the lower-central region is the highest in the aluminium
sheet, which is consistent with the pressures seen in fig.7.4 to fig.7.7. While at the
electrode/aluminium surface, the highest stress level is found near the edge of the
electrode. In fact, there should be a singularity at the edge if only elasticity is
modelled, as seen in fig.4.17 and fig.4.19.

The corresponding shear stress distributions 7,, obtained from the mixed model are
presented in fig.7.9 in the same way. The shear stress is calculated by the average of
7, and 7,,.

Generally speaking, the shear stress level in both aluminium sheet and the electrode
are low. At the faying surface, it is zero since it is a symmetry plane. The biggest
shear stress exists at the electrode/aluminium sheet interface. It provides a tearing force
to break down the oxides at aluminium surface which enable an electric current to pass
from the electrode to the aluminium sheet.

The corresponding results from the FE-fluid model by displacement model are
shown in fig.7.10 and fig.7.11. It is seen that the normal stresses (o,,) obtained from
both models (fig.7.8 and fig.7.10) are quite similar. However the contour maps of

shear stresses (fig.7.9 and fig.7.11) appear slightly different.
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It is understood that the mixed model faces a big difficulty at a corner with no
shear on one side and a severe shear on the other side because the moment equilibrium
(3.3) is not satisfied automatically in the mixed model. It is imposed approximately by
a penalty term, which becomes incompetent in this extreme condition. The corner
formed by the electrode wall and the top surface of the aluminium sheet is just in this
kind of situation. As a result, the shear stress predicted by the mixed model is lower

than it should be.
7.3.3 Comments on the FE-fluid Model with Mixed Model

The results we have just shown demonstrate that the mixed model is capable of handling
a more complicated situation in addition to those in chapter 3 to chapter 6 where only
some basic problems were discussed. In comparison with the conventional displacement
model, it gives very good normal stresses, fluid pressure and the deformation of the
adhesive results. But the shear stresses in some region is not quite good, which can be
improved by using smaller elements.

Together, these results provide useful information about the mechanical behaviours
during initial squeeze stage of the spot welding process. They also give some ideas
about how the adhesive deforms under the squeeze and how to minimize the entrapment
of it.

Although only a single loading step with a linear function of time is used in the
simulation, it is readily to extend such a FE-fluid model to a more realistic one where
P(t) can put into the model in a arbitrary function of time by using multi-loading step
with varying time increment at each step. As the matter of fact such a method is used
in Appendix D.

Results from the mixed model in this chapter are obtained under penalty number
p. = 100.0. Deformation of the adhesive obtained under smaller one tends to be
"flatter” than those we have just shown. The reason of this may arise from the fact that
there is a fairly large shear stress existing near the electrode/sheet interface and

therefore higher p is needed to maintain the satisfaction of 7, = 7.
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CHAPTER 8
DISCUSSION AND CONCLUSION

A new mixed model was introduced in the previous chapters. It was applied to some
elementary examples as well as in the simulation of part of the spot-welding process.
As addressed in chapter one, the main objective of this thesis was to establish a model
which arises from very basic concepts of continuum mechanics, and to provide a better
understanding of mutual relationship between all the basic equations encountered in

solid mechanics. In the remains of this chapter, we will give some remarks on this

model.
8.1 PERFORMANCE OF THE MIXED MODEL

Basically the work in this thesis was about constructing and testing three new mixed
extremum principles which approximately imposed the constitutive relationships for
elasticity, rigid plasticity and elasto-plasticity respectively. The kinematic and static
constraints to be satisfied in advance by the strain-displacement relation and by means
of little used first order stress functions for plane problems and a newly established
stress functions for axisymmetric problems.

Chapter three and chapter four dealt with elastic problems. For some problems
where shear stress is small, such as in expansion of a thick cylinder and a hollow
sphere, the model gave very good stress and displacement results.

Particularly for nearly incompressible materials, it had a superior performance over
the displacement method. Unlike the displacement model where 2 X2 integration must
be used in order to obtain a meaningful stress results, the mixed model gave good stress
results under both 2X2 and 3 X3 integrations. Therefore for the problem with small
shear the mixed model is not sensitive to the integration scheme.

For those that the shear stress is obviously as important as the normal stress, as in
bending of a short beam (section 3.6.4) and bending of a disc (section 4.5.1), an extra
penalty function is needed to maintain the symmetry of a stress tensor. The reason for

this is that the stresses represented by the first order stress do not automatically satisfy

the moment equilibrium eq.(3.3).
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Chapter Eight Discussion and Conclusion

Different penalty numbers p_ were used in the analysis of beam bending and disc
bending. It is seen that for plane problems, p, = 5.0 is generally sufficient for
obtained good displacement and stress results for 4 X4 and 8 X10 meshes with 2x2
integration. The finer mesh is, the better results can be obtained.

However, for such problems integration schemes did have some effect on the
results of the mixed model. For example, in order to obtain good displacement and
stress results under 3 X3 integration, p, = 10.0 was generally required.

For axisymmetric problems, the requirement of symmetry of the stress tensor is
emphasized by the fact that a larger penalty number is needed for obtaining
displacements and stresses with the same accuracy as for plane problems. For example
in bending a disc in section 4.5.1, p. = 10.0 was needed for 2X2 integration, while
p. = 50.0 for 3 X3 integration.

The above examples demonstrated that the idea to decompose the Love’s stress
function into three first-order stress functions, which satisfy the force equilibrium
eq.(4.3), along with a constraint which imposes the moment equilibrium eq.(4.4) is
successful. This enables a continuous mixed model for axisymmetric problem to be
constructed with C° continuity.

As is mentioned in chapter two, "excess continuity" can occur in a mixed model
with continuous variables where stress discontinuity exists, e.g. at interface of two
materials. However, the mixed model in this thesis can reproduce a stress dis-
continuity, though it is a continuous mixed model. This was illustrated in section 3.6.2
where the elastic punch pressing into a compliant layer was analysed. The discontinuity
of stress o, can be clearly identified in fig.3.15 and fig.3.20.

A interesting feature of this mixed model is that it has an intrinsic "error estimator"
which seems very meaningful and is simple to use. This was illustrated in section 3.6.3
where a plate with a central crack under remote tension was analysed. The error of the
solution decreased with the element size in a similar manner as the value of the function
I1,,, varies at a given point. A similar phenomenon can be found in other examples.
In conclusion, the value of the functional II can be used to judge the error of a solution
locally or globally.

Near the area with high stress singularity, such as a crack tip, the mixed model

tends to give stresses with a higher singularity than the displacement model when a
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normal element is used. However if the corresponding "distorted" element is used, the
displacement model overtakes the mixed model, though both models have improved
results. This can also be found in section 3.6.3. This means that the singularity caused
by moving the mid-point of the element near the crack tip is less effective on the mixed
model than it is on the displacement model.

The favourable feature of the mixed model on this is that if we have no idea where
to put the "distorted" element, the mixed model can simulate the singularity of the
stress more accurately than the displacement model.

In chapter five of this thesis, rigid plasticity was discussed. By means of the
Schwarz inequality, the constitutive relation for a rigid plasticity, i.e. Levy-Mises
equation, was equivalent to the minimum of a mixed extremum principle IL,;. The
discretization of the displacement and the stress were exactly the same as chapter three
and four for elasticity.

Since the system equation from the minimizing the I, was a nonlinear equation,
linear search method was used to solve it iteratively. In a simple example presented
in section (5.4), which was the expansion of a rigid plastic cylinder, the mixed method
gave wonderful results compared with the analytical solution. In addition to the high
accuracy of the solution, it also converged very quickly. If the initial guess of the
solution is chosen by the corresponding elastic solution, then only one or two iterations
were normally enough to get a satisfactory rigid-plasticity solution.

Not surprisingly, the value of the functional II,,; again showed consistence with
the error of the solution.

In plasticity theory, it is well established that the elasto-plastic strain (full strain)
is composed of an elastic strain and a plastic strain. In this thesis, this concept was
extended to express the relationship among three basic solution methods in solid
mechanics, i.e. elastic solution, rigid-plastic solution and elasto-plasticity solution. It
can be stated as follows:

An elasto-plastic solution is equivalent to a rigid plastic solution if the elastic strain
in full strain is removed in the plastic area. The corresponding elastic area becomes
the rigid area in the rigid plastic solution.

This enables us to construct a functional for elasto-plasticity: in the elasto-plastic

area, the functional for rigid-plasticity II.; is used, while in the elastic area the
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functional for elasticity II,;,, should be switched to.

In chapter six, such a assumption was tested by various examples in section 6.4.
The mixed model gave very satisfactory results in comparison with the analytical results
and those from the displacement model. The convergence of the solution was well
behaved, especially when a large part of body concerned is in plasticity.

For elasto-plastic bending of a beam, p, was again used. The deflection-load curve
predicted by the mixed model was closer to the analytical solution than that by the
displacement model.

Therefore we conclude that the assumption made in this thesis is correct. In
addition to give better displacement and stress results in some cases, it possesses
another advantage which is a quick convergence.

All the solutions made by the mixed model were solved in a single load step. The
more plastic strain, the more iteration within this load step is required. However in the
displacement model, multi-load step is generally essential to solve the corresponding
problems. For a highly plastic problem, more load steps and more iterations are
needed.

Part of the reason for this is that in the mixed model, no stress correction is
performed. The solution obtained by minimizing Hep satisfies all the equations
governing elasto-plasticity. This is simply not true in the displacement model in the
way that stresses are calculated from displacements, thus no yield condition is involved.
To perform a normal stress correction, such as predictor-radial return method, a
sufficiently small step is necessary.

For a more complex problem, chapter seven solved a fluid-solid coupling problem,
which was the squeeze of two aluminium sheets by a pair of electrodes. The
deformation and the fluid pressure of the adhesive were simulated by both the mixed
model and the displacement model. Very similar results were obtained with both
methods. This demonstrated that the mixed model is capable of solving complex cases
as well as simple cases. For the fluid-solid problem encountered in chapter seven, the
mixed model showed its convenience in handling the fluid pressure in the way that the
pressure calculated from the fluid theory can be directly applied to the mixed model as
a pressure boundary condition, instead of transforming the pressure into nodal forces

in the displacement model.
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8.2 MATHEMATICAL ASPECTS OF THE MIXED MODEL

The mixed model in elasticity yields a global matrix which is positive definite.
Therefore a standard solver for a displacement model can be used to solve the system
equation in this model. This is a advantage of this model over the other mixed models,
which may have a non-positive-definite matrix or semi-positive-definite matrix.

However, the mixed model for rigid plasticity and elasto-plasticity mentioned in
this thesis can have a non-positive-definite matrix when the iteration is far from the
solution. A simple trick is used to handle this: allow a negative diagonal terms in
LTLD solver during the decomposition of the matrix. All the results shown in this
thesis were solved by such a treatment.

Another worry may arise from the discontinuity of the functional II,, at the
elastic/plastic boundary, which can lead to an indefinite derivative of the functional IL,.
However, numerically this will never happen. Since calculations of the derivative of
Hep are always carried out at a specific Gauss point, which is either in elastic area or
in plastic area, the value of the derivative are definite. This was verified in practical
solutions.

With regard to the conditioning of the system equation, i.e. egs.(3.41), (5.27) and
(6.29), it is clear these equations were very badly conditioned, or ill-conditioned. This
is because that the magnitude of the diagonals of the coefficient matrices ky, kyy and kyyy
varied tremendously. For instance, in k; for elasticity, the magnitude of the first
diagonal was about G times larger than that of the second diagonal.

Such a problem was found when material properties were taken for a metal.

However, this can be cured by redefining the general variable B; as
T 1
B = [ Bf %Bf ]

The diagonals in ky are then in a similar magnitude. A same substitution was also
carried out for the system equations for rigid plasticity and elasto-plasticity, which
largely improved the results.

The nonlinear equations in rigid-plasticity and elasto-plasticity were also to be

treated specially. Newton’s method or modified Newton’s method is not particularly
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good at solving those equations. Therefore. the linear-search method was used in
conjunction with the Newton’s method in the way that Newton’s method gives the
search direction, and then linear-search method finds the line minium along this
direction.

Such a method was used in obtaining all the results in rigid-plasticity and elasto-
plasticity. The performance of it was satisfactory, although if the initial guess is not

properly chosen the linear search might take a relatively long time to find a minimum.
8.3 SOME DRAWBACKS OF THE MIXED MODEL

With the above merits, the mixed model also has some shortcomings. Like most FE
models by mixed formulations, the enormous computing time for a solution is the most
serious problems with the mixed model. In particular, the mixed model in this thesis
belongs to the continuous mixed model, where more degrees of freedom per node must
be employed. As a result, the system equation is much larger than the corresponding
displacement model.

In addition, the mixed model for elasto-plasticity in this thesis also suffers another
problem with the computing time, which comes from the line search process. Firstly
at each iteration, a direction is found by solving eq.(6.29) by Newton’s method. Then
a line search along this direction is performed to find a line minium of the functional.
Surprisingly, this stage takes even more computing time than the solution of the
linearized system equation (5.27) or eq.(6.29), which is supposed to take most
computing time in the solution. Therefore a better algorithm is desired to find the
minimum of the functional after Newton’s method.

Another weakness of the mixed model is that for some kinds of problems, this
model is not robust enough. This is because that the results may depend on a couple
of penalty numbers at some degree. For example, in a bending problem, the penalty
p. can affect the stress and displacement resuits largely. Although for most problems
the penalty number is not difficult to choose, the value of it is not determined by the
system itself, but by a user, which largely depends on his or her experience.

For elasto-plastic problems, it is also required that penalty number p, for imposing

the yield condition, is to be specified. Generally speaking, the more plastic strain, the
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bigger value of it must be used. The big p tends to give more accurate local stresses
and displacement results, and it only has very small effects on the results at the global
level. Therefore this will not cause problems in reality.

The mixed model is also found to give inaccurate shear stress near a corner,
especially when one face of the corner is free and another one is subjected to a
considerable shear strain. For example at the corner of the built-in end of a beam and
at the corner formed by the electrode wall and the top surface of the aluminium sheet,
the mixed model fails to predict the shear stress correctly. The difficulties arises from
imposement of the moment equilibrium equation (3.3): at the free surface, the shear
stress must be zero, while at another face it has certain values. Only right at the corner
node, shear stresses at each face is equal to each another. However in this mixed
model, the force boundary condition is imposed in an average tense within an element,
instead of a node. Therefore eq.(3.3) will never be exactly satisfied in reality at the
boundary. As a result, this leads to a lower value of shear stress at the fixed surface
and in the near area.

In order to solve this problem, sufficiently small elements are required at those

corners, or only the stress some distance away from the corner can be used.

8.4 CONCLUSIONS AND FURTHER WORK

After three years work on this mixed model, we would like to draw the following

conclusions:

(2) The Love’s stress function for axisymmetric problems can decomposed
into three first-order stress functions with C° continuity respectively,
with which force equilibrium is satisfied, in conjunction with a constraint
to impose the moment equilibrium.

(b) The resulting mixed FE model with above stress discretization is a

continuous mixed model, which can reproduce the traction reciprocity as

well as the stress discontinuity correctly.
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(c) The mixed model for elasto-plasticity was established by a functional for
rigid-plasticity and a functional for elasticity, where elasto-plastic strain
was introduced implicitly within a plastic strain to the system. The
examples prove that this mixed model is correct. The convergence of

the solution by this model is rapid.

d) The value of the functional at any point in a body can be used to
indicated the error of the solution by the mixed model at that point. The

bigger it is, the more error the solution is.

It is also desired that some further work be done in order to improve the efficiency and
the robustness. Firstly, the way to impose the stress boundary needs to be updated,
probably by using more accurate integration methods. This might improve the
capability of the model to give the better stress results near a corner.

Secondly, a better solution method for the elasto-plastic problems to replace the
current line search method by Brent’ method is to be used, which should take much less
time to find a line minium of the function after solving the linearized equation by the
Newton’s method. Alternatively, we may choose another solution method to replace
the Newton’s method, and eventually discard the line-search process.

Thirdly, the hardening treatment in the elasto-plastic model needs to be extended
to include the kinematic hardening, which enables the mixed model to handle cycling

loads and predict residual stresses.
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APPENDIX A
Comparison of Differential Methods

in the Formation of Stiffness Matrices

In order to compare the efficiency and the accuracy of the numerical differential method
and the analytical methods described in chapter five, a practical differentiation of the
functional I ., are presented below. Say the deviatoric stress and strain are taken
arbitrarily as

s =[ 1.0, 0.0, 0.0, 0.0, 0.3 ]; e =[1.0,0.0,0.0,0.0,0.37; k=100

Substituting above data into eq.(5.18), the differentials from analytical method are

0.3005E+03 0.0000E+00 0.0000E+00 0.3590E+03 0.1105E+03
0.0000E+00 0.7700E+03 0.0000E+00 0.0000E+00 0.0000E+00
L,, = |0.0000E+00 0.0000E+00 0.7700E+03 0.0000E+00 0.0000E+00
0.3590E+03 0.0000E+00 0.0000E+00 0.4955E+03 -0.8447E+02
0.1105E+03 0.0000E+00 0.0000E+00 -0.8447E+02 0.7440E+03

[-0.3897E+00 0.0000E+00 0.0000E+00 -0.4667E+00 -0.1405E+00
0.0000E+00 -0.1000E+01 0.0000E+00 0.0000E+00 0.0000E+00
L, =| 0.0000E+00 0.0000E+00 -0.1000E+01 0.0000E+00 0.0000E+00
-0.4667E+00 0.0000E+00 0.0000E+00 -0.6431E+00 0.1098E+00
-0.1436E+00 0.0000E+00 0.0000E+00 0.1098E+00 -0.9662E+00

-0.5227E-01 0.0000E+00 0.0000E+00 -0.6364E-01 -0.1958E-01

0.0000E+00 -0.1355E+00 0.0000E+00 0.0000E+00  0.0000E+00
L, =| 0.0000E+00 0.0000E+00 -0.1355E+00 0.0000E+00 0.0000E+00
-0.6364E-01 0.0000E+00 0.0000E+00 -0.8683E-01 0.1497E-01
-0.1958E-01 0.0000E+00 0.0000E+00 0.1497E-01 -0.1309E+00

(A.1)
For the numerical differential method, an internal variable ¢, which is a small constant
defined in eq.(5.13), has to be chosen. From the theoretical point of view, the smaller
the ¢ is, the better the approximation of the differentials can be obtained. However,
in practical calculation, the round-off error and truncated error of computer have to be
taken into account. It means that too small c is likely to bring computing error into the

results. Therefore for a particular problem there is an optimum value of c.
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Comparison of the Differential Methods

In following examples, three values ¢ = 102 ,c= 10" , ¢ = 108 are used in the

calculations and the results are listed below.

0.6925E+02
0.0000E+00
L,, = |0.0000E+00
0.1064E+00
0.3269E-01

-0.9425E+00

0.0000E+00
L, = | 0.0000E+00
-0.4390E-01
-0.1394E-01

-0.5229E-01

0.0000E+00
L, = | 0.0000E+00
-0.6363E-01
~0.1958E-01

0.3075E+03
0.0000E+00
L,, = |0.0000E+00
0.3567E+03
0.1087E+03

-0.3910E+00
0.0000E+00
L, = | 0.0000E+00
-0.4650E+00
-0.1428E+00

-0.5227E-01

0.0000E+00
L, = | 0.0000E+00
-0.6364E-01
-0.1958E-01

c

0.0000E +00
0.6930E+02
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00
-0.1000E+01
0.0000E +00
0.0000E +00
0.0000E+00

0.0000E +00
-0.1355E+00
0.0000E +00
0.0000E+00
0.0000E +00

Cc

0.0000E+00
0.7615E+03
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00
-0.1000E+01
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00
-0.1355E+00
0.0000E +00
0.0000E +00
0.0000E+00

= 102

0.0000E+00
0.0000E+00
0.6930E+02
0.0000E+00

0.0000E +00
0.0000E +00
-0.1000E+01
0.0000E +00
0.0000E +00

0.0000E+00
0.0000E+00
-0.1355E+00
0.0000E+00
0.0000E+00

= 10

0.0000E +00
0.0000E +00
0.7615E+03
0.0000E+00

0.0000E+00
0.0000E+00
~0.1000E+01
0.0000£+00
0.000CE+00

0.0000E+00
0.0000E+00
-0.1355E+00
0.0000E+00
0.0000E+00

121

0.1064E+00
0.0000E+00
0.0000E+00

0.3269E-01
0.0000E+00
0.0000E+00

0.6927E+02 -0.2497E-01
0.0000E+00 -0.2497E-01

-0.4395E-01
0.0000E+00
0.0000E+00

~0.9664E+00
0.1032E-01

-0.6363E-01
0.0000E+00
0.0000E+00

-0.8684E-01
0.1497E-01

0.3567E+03
0.0000E+00
0.0000E+00

0.6930E+02

-0.1352E-01
0.0000E+00
0.0000E+00
0.1033E-01

-0.9968E+00

-0.1958E-01
0.0000E+00
0.0000E +00
0.1497E-01

-0.1309E+00

0.1087E+03
0.0000E+00
0.0000E+00

0.4997E+03 -0.8257E+02
0.0000E+00 -0.8257E+02

-0.4657E+00
0.0000E+00
0.0000E+00

-0.6444E+00Q
0.1092E+00

-0.6364E-01
0.0000E+00
0.0000E+00

-0.8683E-01
0.1497E-01

0.7372E+03

-0.1433E+00
0.0000E+00
0.0000E+00
0.1094E+00

-0.9664E+00]

-0.1958E-01
0.0000E+00
0.0000E+00
0.1497E-01

-0.1309E+00

(A.2)
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c=10%

0.2998E+03 0.0000E+00 0.0000E+00
0.0000E+00 0.7683E+03 0.0000E+00
L,, = |0.0000E+00 0.0000E+00 0.7683E+03 0.0000E+00
0.3619E+03 0.0000E+00 0.0000E+00 0.4907E+03
0.1132E+03 0.0000E+00 0.0000E+00 -0.8438E+02

0.3619E+03
0.0000E+00

0.1132E+03
0.0000E+00
0.0000E+00
-0.8438E+02
0.7416E+03

-0.2220E+01
0.0000E+00
0.0000E+00

-0.4441E+01
0.2220E+01

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00
0.0000E +00
0.0000E+00
0.0000E+00
0.0000E+00

0.2220E+01
0.0000E+00 0.0000E+00
0.0000E+00  0.0000E+00
0.0000E+00 -0.2220E+01
0.0000E+00  0.0000E+00

0.2220E+01

L,=

0.0000E+00 0.0000E+00 0.0000E+00 -0.4441E+01
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

L, =| 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
-0.4441E+01 0.0000E+00 0.0000E+00 -0.2220E+01
0.0000E+00 0.0000E+00 0.0000E+00 -0.6661E+01

0.0000E+00
0.0000E +00
0.0000E+00
-0.6661E+01
0.0000E+00

(A.4)
It is seen in eq.(A.2) to eq.(A.4) that the results of the numerical algebraic are largely
dependent on the value of ¢. When ¢ = 1072, it gives good results of L, but bad ones
of Lyg and Ly, while when ¢ = 108, it gives excellent results of Ly4, but the results
of Lys and L, are disastrous in comparison with the analytical one in eq.(A.1). Only
the choice of ¢ = 10 enable the numerical one to yield good results for all the
differentials. Therefore the best choice of ¢ for these specific s and € is 104, The
difficulty is that we do not know which value of ¢ should be the best choice for every
deviatoric stress s and strain rate €, while there is no such a problem at all for
analytical arithmetic. Let us look at the computing time needed for both the algebraic

on SUN sparc workstation.

Table 1 Computing time of two differential algebraic

computing time(seconds)

1,000 times

10,000 times

analytical arithmetics

1.198 seconds

12.00 seconds

numerical arithmetics

38.77 seconds

387.90 seconds
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do same numbers of differentials. Together with the higher accuracy and numerical

stability, the analytical algebraic obviously proves to be the better approach for the
functional II, ;.

The similar conclusion exists in the differentiations of functional II erp for elasto-

plasticity in chapter six.
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APPENDIX B
Line-Search Method

B.1 Golden-Section Search Method

Golden section search!'??! is a well-known method among one-dimensional optimisation
procedures. It requires fewest conditions of a functional II to perform the optimizing,
that is the value of the functional is finite and predictable, and a proper bracket in
which a minimum exists is given. No continuity condition of II is needed. The last
merit of this approach is very attractive to us since in chapter six the functional IL;; for
elasto-plasticity will be no longer continuous.

A minimum of a function f{x) is known to be bracketed only when there is a triplet
of points, a< b <c, such that f(b) is less than both f(a) and f(c). In this case we know
that the function (if it is not singular) has a minimum in the interval (a, ¢).

Choose a new point x, either between a and b or between b and ¢. Suppose, to be
specific, that we make the latter choice. Then we evaluate f(x). If f(b) <f(x), then the
new bracketing triplet of points is a<b<x; Contrariwise, if f(b) > f(x), then the new
bracketing triplet of points is b<x<c. In all cases the middle point of the new triplet
is the abscissa whose ordinate is the best minimum so far. We continue the process of
bracketing until the distance between the two outer points of the triplet is tolerably
small.

It remains to decide on a strategy for choosing the new point x for given a, b, c.
In ref[122], it is suggested that the optimal bracketing interval a <b <c¢ has its middle
point b a fractional distance 0.38197 from one end (say, a), and 0.61803 from the
other end (say b). These fractions are those of the so-called golden mean or golden
section. This optimal method of function minimization is thus called the golden section

search method.
B.2 Brent’s Method

A golden section search is designed to handle the worst possible case of function
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minimization. If the function is nicely parabolic near to the minimum——surely the
generic case for sufficiently smooth functions——then the parabola fitted through any

three points should take us a single leap to the minimum, or at least very near to it, as

seen in fig.B.1.

Fig.B.1 The schematic configuration of golden-section search.

Since we want to find an abscissa rather than an ordinate, the procedure is technically
called inverse parabolic interpolation. The formula for the abscissa x which is the

minimum of a parabola through three points f(a), f(b), and f(c) is

. 1 5-a)’[f(b) -£(0)] - (b-c)*[f(}) - (a)] (B.1)

3 b —
X ) [B) ~FO)] - (b-0) [£(}) - F(@)]

This formula fails only if the three points are collinear, in which case the denominator
is zero (minimum of the parabola is definitely far away). Note, however, that eq.(5.35)
can jump to a parabolic maximum as well. No minimization scheme that depends
solely on eq.(B.1) is likely to succeed in practice.

A marvellous scheme is to rely on a sure-but-slow technique like golden-section
search when a function is not cooperative, but switch over to eq.(B.1) when the
function allows. However a few difficulties need to be overcomel!22]

a) The housekeeping needed to avoid unnecessary function evaluations in switching

between the two methods can be complicated;

b) Careful attention must be given to the "end game", where the function is being

evaluated very near to the round-off limit of eq.(B.1);

¢) The scheme for detecting a cooperative versus non-cooperative function must be

very robust.
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Brent’s method(122] (1973) is a excellent scheme to achieve such a task. It is keeping
track of six function points, a, b, u, v, w, and x, not all distinct. Initially (a, b) is the

interval on which f is defined, and

v=w=x=a +(3-%/5—)(b—a)

25 =0.381966... is rather arbitrarily chosen so that the first step

3

the magic number

is the same as for a golden-section search.

At the start of a cycle the points a, b, u, v, w, and x always serve as follows: a
local minimum lies in [a, b]; of all the points at which f has been evaluated, x is the
one with the least value of £, or the point of the most recent evaluation if there is a tie;
w is the point with the next lowest value of f; v is the previous value of w, and u is the

last point of which f has been evaluated.

Let m =%(a+b) be the mid-point of the interval known to contain the minimum.
If [x-m)| S2tol-%(b-a) , then the procedure terminated with x as the approximate
position of the minimum. Otherwise, a inverse parabolic interpolation will be used on
the three point (v, f(v)), (w, f(w)) and (x, f(x)). Modified slightly to avoid the collinear

case of v, w, x, eq.(B.1) now is presented by p and g,

/

x'=x +%p/q (B.2)

where

p=0e=W2[f(x) = f(w)] - (x-w)* [f®) ~ )]

q = (c=v) [f(x) - f(w)] - (x-w) [f(x) - (V)]
If two or more of three points coincide, or the parabola degenerates to a straight line,
then ¢ = 0, the program will automatically turns to perform golden section search.

Normally the correction p/q should be small if x is close to a minimum. Let e be the

value of p/q at the second last cycle. If |e| <Tol or |p/q|=1/2|e|, then a golden

section search step is performed.
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APPENDIX C

Translation between results from von Mises and Tresca

In the analytical solutions it is quite normal to use Tresca’s yield condition for a elasto-
plastic or rigid plastic problem. On the other hand, von Mises’s yield condition is
proven to be the better one in the most situations and is extensively used in numerical
solutions, such as in finite element method. In order to compare the results obtained
from these methods, a proper interpretation is necessary.

In most situations, the direct relation between these two yield conditions is not
clear. However, if the problem concerned is in plane strain condition, a simple relation
does exist.

Let three principal stresses be oy, 0, and o;3. From Hooke’s law, we have

&, = %[ozz—v(oxx+oyy)] (C.1)

Plane strain condition requires that g,, = 0, which leads to

= On ) = 0 2

or 0y = V(0 * cryy)

and 7,, = 7,, = 0, which means that ¢, is one of the principal stresses, say o;. It1is

T
y
known that in plane problems (o, + 0,,) is equal to the sum of the rest two principal
stress, i.e. (0, +0,)!11%], Remembering that in a plastic region Poisson’s ratio » =

0.5, eq.(C.2) is then equivalent to

03 = _;_(01 +0,) (C.3)

On the other hand, we have the second deviatoric stress invariant J; expressed as

Jy = %[(01-02)2+(02-03)2+(63-01)2] (C.4)
Substituting eqd.(C.3) into eq.(C.4), it follows
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7 =L - o’ (C.5)

EN|

von Mises yield condition can be expressed in terms of J; as

@ - o (C.6)

With expression of J; in eq.(C.5), it is straightforward to describe von Mises yield

condition in terms of two principal stresses as

73(0'1 -02)=0Y or 01-02=—2—0Y (C'7)
3

On the other hand, Tresca yield condition can also be described by those principal

stresses as
0'1-0'2 = O'Y = 2K (C8)

The only difference between eq.(C.7) and eq.(C.8) is that yield stress is expressed
differently: in von Mises condition, it is /3_ /20y while in Tresca condition, it is oy.

Above arguments enable us to translate results solved in Tresca condition to those
in von Mises condition. The process is very simple: replace \/3_ 2 oy for gy, then solve
it in Tresca condition. The results obtained is equivalent to those solved in von Mises
condition.

For 3D problems, such a simple translation is not normally available except for the
uniformly expansion of a sphere where o,,, 0., and oy are naturally three principal

stresses 0}, 05 and o5. They are not independent but

0, = 0y (C.9)
Substituting eq.(C.9) into J; expression in eq.(C.4) the von Mises yield condition turns
out to be identical to eq.(C.8), which is Tresca yield condition. Therefore, the

conclusion is that for uniformly expansion of a sphere elasto-plastic solution under von

Mises yield condition yields identical results to those under Tresca yield condition.
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APPENDIX D
Thermo-Mechanical Simulation of the Spot-Welding Process

D.1 REVIEW OF THE STUDIES IN SPOT-WELDING
D.1.1 Experimental and Numerical studies of the Thermal Problem

A number of experimental efforts have been made on gaining greater insight into nugget
formation by monitoring the temperatures involved in and around the weld. Bentley
et all’l Lee and Nagel®”!, Cho and Chol22), and Sheppard(1%0] related metallurgical
changes in a number of semicompleted welds to the peak temperatures seen at locations
in the weld region at various time in the weld cycle. Lee and Nagell®”] as well as Kim
and Eager!>%92] made a number of high speed films of half welds painted with thermo-
sensitive paint in order to measure the movement of isotherms during welding. This
technique vividly shows temperature patterns. Also, Kim and Eager(50:52] used infrared
monitoring of the surface of both the electrode and sheet. More recently Hanl*7 used
a slotted weld specimen that allowed for a thermal couple to be placed in kear effective
z0ne(HAZ).  Alcinil23] used a half-weld technique which uses multiple bendless
microthermal couples for temperature measurements.

These empirical studies are able to provide valuable temperature data. However
the experimental techniques do have their limitations. Unsealed half welds lack the
ability to retain molten metal along the exposed surface, and therefore cease to emulate
a full weld after welding has initiated; surface techniques do not allow for faying
surface or internal temperature to be monitored; thermocouple data gives temperatures
only at selected points. Also, the metallurgical technique uses phase changes to flag
the passage of a particular temperature, but is not able to give a description of the
overall temperature field. Finally, several of the techniques require expensive
equipment. These shortcomings make computer simulation an attractive tool for
complementing experimental temperature studies!101],

Rice and Funkl3] developed a one-dimensional finite difference simulation with

which these researchers got the functional relationship between electrical contact
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resistance and temperature when two thin sheets are welded together. A combined
analytical-experimental approach was used in developing this relationship. Kaiser et
all*l used the same approach as ref.[95] for estimating the contact resistance for the
one-dimensional model. Houchens, Page and Yangl43! developed a one-dimensional
finite difference method to study electrode temperatures in the hope of improving
electrode life. In 1987, Gould®®) presented a combined experimental and analytical
study on nugget formation where a one dimensional finite difference formulation was
used again. Although information on the nugget depth could be extracted from the one-
dimensional analysis, the effect of the diameter which is important for the mechanical
strength of the weld could not be deduced. A two-dimensional finite difference
simulation of spot welding was developed by Greenwood[3¢l. It assumed: there is no
electrical contact resistance; material properties are constant with temperature; and no
heat is lost from free surface. Houchens et all*3] later extended the same approach to
include the effect of temperature dependant properties. In 1984, a two-dimensional
finite element method was used by Nied!”) to compute the temperature distribution
from an electro-thermal simulation.

More recently Cho and Chol?2l, Han et al®”l, Tsai et alll’4l, Reddy and
Sharmal®!l, and Kim{3!) presented numerical studies of the thermal cycling in resistance
spot welding of sheet steel. Works [22], [37] and [91] were based on the finite
difference formulation, while [114] and [51] used the finite element method. All studies
assumed that the size of the contact area at the faying surface remain constant
throughout thermal cycling and the truncated copper electrode were selected which

means no change in the contact area of the electrode-sheet surface occurs.
D.1.2 Thermo-Mechanical Simulation by FE Method

In the work mentioned above, it is evident that the thermo-mechanical coupling of the
resistance spot welding process was inadequately explored. Most of the mathematical
models were devoted to analyzing the thermal behaviour of the process under different
sets of parameters, while neglecting the major role of the mechanical and thermal

stresses involved in the process.

In 1984, Nied[7] used a finite element package known as ANSYS to introduce an
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axisymmetric model which included the geometry of electrode and workpiece, and
accounted for temperature dependant thermal properties, melting and Joule heating.
Predictions of electrode and sheets deformations were illustrated and stress distribution
along the interfaces were also obtained. It solved the thermo-mechanical problem in a
coupled manner but did not change the contact area in the faying surface, and all the
mechanical solution was based on elasticity. Tsail!l4l used a similar method in studying
nugget geometry.

In 1990, Kim et all®3) used a coupled electro-thermo-mechanical finite element
method to investigate the fundamental parameters controlling the weld quality. It was
a very successful model where elasto-plasticity and changes of the contact area were
accounted for. Unfortunately, it can only be used for the truncated electrode. For the
curved electrode, the numerical approach would be much more complicated.

So far, although the studies mentioned before involved both electro-thermal and
thermo-mechanical aspects, the main purpose was to study the thermal phenomenon
rather than the mechanical one, and mechanical simulation is used as a tool to get the
pressure and contact area for thermal studies.

Where good fatigue performancel!0!] is a requirement it is important to be able to
estimate any residual stresses. Residual stresses are introduced into a part whenever
nonuniform heating and cooling result in plastic deformation. These stresses are often
difficult to measure and their presence can largely influence fatigue performance. For
example, Lawrence, Corten and McMahon[®®] experimented with post-weld coining of
spot welded joints which introduces compressive residual stresses in the HAZ and found
life improvement of joints when compared with joints in the as-welded condition.
Measured values of residual stress in the weld region fell from 92% of the tensile yield
strength in the as-welded condition to 74% of the compressive yield strength in the
coined condition. Widmann{!2!] found that tensile-shear plug weld specimens that had
been heat treated subsequent to welding shown improved fatigue life. Concluding that
the presence of residual stress partially (if not totally) results in this change in fatigue
performance is supported by Bolton!®] who found that post weld heat treatment could
reduce the residual stresses in spot welding by as much as 50%. Schoepfell®! found
that water quenching the HAZ of a tensile-shear plug weld immediately after weld

termination also improved fatigue performance by more than doubling the life.
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However the residual stress studies of spot welding by numerical methods are rarely

found in the public literature.
D.1.3 Researches in Spot-Welding Group

The Spot Welding in Aluminium group in the Newcastle University has devoted itself
to numerical simulation of both thermal and mechanical behaviour during spot welding
and is supported by Alcan International Ltd. The difference of the current studies
from others exists in that Finite Difference Method(FDM) is used for the electro-
thermal solution, while Finite Element Method(FEM) for the thermo-mechanical
response. Therefore advantages of finite difference method in electro-thermal solution
and finite element method in thermo-mechanical stress studies can be fully utilised. In
addition, because we used the curved electrode in the FEM simulation, it allows us to
use the electrode curvature as a additional control parameter in the spot welding

process.
In order to handle this electrical, thermal and mechanical coupling problem

efficiently, the research work was divided into two parts;
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Fig. D.1 Finite difference model for the electric-thermal simulation of the spot-
weldingl11),
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a. Electric-thermal simulation

This work has been done by Brownel!3.14] where a axisymmetric finite difference model
has been developed and a large number of results have been obtained concerned with
the effect of thermal conductivity, contact resistance and water cooling position on the
nugget formation. The electric current, its duration, material properties of electrode and
sheets, and the geometry must be supplied for this model. The main output is the
temperature distribution in the sheets and electrodes during the welding process. The

finite different mesh used in this study is shown in Fig.D.1[13]

b. Thermo-mechanical simulation

Fig. D.2 Finite element model for the thermo-mechanical simulation of the spot-
welding.

An axisymmetric elasto-plastic finite element model was developed for the thermo-
mechanical simulation. The contact area and pressure of electrode-sheet and faying
surfaces at any stage of welding can be obtained by giving the temperature dependant
material properties from DATA FILE and the temperature distribution data from the
FDM solution. The finite element model is shown in Fig.D.2, where only one quarter
of the whole geometry is needed for the model because of the symmetry conditions of

geometry and loading.

133



Appendix D Thermo-Mechanical Simulation of the Spot-Welding Process

These two programs are combined in one integrated package. An interface was
designed to transmit the required data between these two program. Eventually the
package will output the temperature field, the deformation of electrode and sheet, the
stress in electrode and sheet in hot condition and the residual stress of sheets after
terminating the welding for various cooling processes.

The source code for the finite difference model(FDM) was written by Browne for
a Pascal compiler operating in UNIX system on SUN Spark station. The program for
the FE model was written by author for a Forrran compiler also operating in UNIX on
SUN Spark station. The integrated program runs in the manner in which FDM uses
FEM as a single procedure.

This appendix will only be concerned with the finite element simulation of the

thermo-mechanical problem.

¢. Simulation of the adhesive between aluminium sheets

The interest of simulating the adhesive between aluminium sheets arises from the
practical welding. It is found in some welds, there are remains of the adhesive at the
central area of the faying surface. This may lead to a poor weld due to lack direct
contact between two aluminium sheets.

As far as the mathematics is concerned, there should always be an entrapment of
fluid when a viscous fluid is pressed by a flat discl’4). In other words, it is impossible
to entirely rule out the entrapment theoretically.

Our study is aimed at providing some ideas about how to control the size of
entrapment such that it will not effect welding in engineering practise. A Fluid-FE

model is proposed to analyse the deformation of the adhesive under squeeze force.
D.2 FE MODELLING OF SPOT WELDING

Simulations of the spot welding process can be classified as a 3D thermal-elasto-plastic,
large-strain problem. To simplify this problem, an 2D axisymmetric elasto-plastic,
small-strain finite element model was developed for the cold condition and later

developed to include the effect of temperature on the yield strength and the thermal
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strain.

In the case of sheets with equal thickness and equal electrode geometry, only one
quarter of the model has to be constructed due to geometric symmetry, as shown in
fig.D.2. 4-noded isoparameteric elements were used to represent the electrode and the

aluminium sheet.

A

Fig. D.3 The boundaries in the FE mesh representing the aluminium sheet.

In order to discuss the boundary condition, the FE mesh for aluminium sheet is
presented in fig.D.3. On boundary B the radial displacements are all zero while the
vertical ones are free. On boundary A, the faying surface, the vertical displacements
can only be positive or zero because the sheet-sheet surface can part but can not
overlap, and no tensile traction exists in vertical direction. The boundary conditions
on C are more complicated and will be discussed in next section in detail.

The material model used for representing the elasto-plastic problem is Von Mises
linear isotropic hardening model. Modified Newton’s method was used to solve the
nonlinear system equation sets for this elasto-plasticity.

Because the curved electrode was used in the simulation, the modifications
concerned with the constraints on boundary C must be made to handle it as conract

problem. Two treatments used in this study will be presented below.
D.2.1 Simple Contact Treatment at Surface A and C
The assumptions used in this simple model are, a) electrodes are rigid enough that there

is no deformation occurred; b) as long as the final configuration of sheet coincides with

the electrode, the actual history of deformation in the contact area is not important since

135



Appendix D Thermo-Mechanical Simulation of the Spot-Welding Process

there is no unloading occurred in the sheets when they are cold.

— s

(a) (®)

Fig.D.4  The actual contact pattern and the one used in the FE model with simple
contact treatments.

Obviously, with above assumptions the contact problem can be solved by specifying the
displacement loading on the sheet with the same shape of the electrode by a usual FEM.
No electrode appears in the FE mesh. When solved by an incremental method, the
final displacement load was divided into a number of steps as shown in Fig.D.4(b).
Clearly the actual process should be like the case in Fig.D.4(a). We think the
differences between the cases in Fig.D.4(a) and Fig.D.4(b) are small due to the
2STUIMpHoN b).

The boundary conditions on the faying surface must be specified carefully. Firstly,
it is assumed that all nodes on the faying surface are contact, which means these nodes
are constrained. Then the reaction forces of the nodes on the faying surface can be
obtained. Since it is not true for every node to be contact, some tensile force will be
found on some nodes, which should be released by allowing them to go free as in
Fig.D.5(a).

= ST
wraction M:D]m]:[['_mu deflection
pressure

pressure

(a) (b)
Fig.D.5 Handling the boundary conditions at the faying surface.

Secondly, after we adjust the contact nodes during the first stage, the model is solved
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and then the contact condition will be checked again. However at this time both
reaction forces and deflection of the nodes at the faying surface need to be used. When
all the reaction forces are compressive (this is possible when contact area is not large
enough), the deflections of the nodes should be checked. If any node cross the faying
surface is found, as shown in Fig.D.5(b), additional constraints should be imposed.

The above steps will form small iterations, and final solution will be reached when
there are both no tensile force and no negative displacement on the faying surface.
After the solution, the contact area can be obtained by counting the number of
contacting nodes at the faying surface. The reaction forces of the nodes at the faying
surface were added together and formed inversely the external loading required on the
electrode to achieve such contact situation.

There are two models used to represent the situation of the interface between the

electrode and the sheet: Slip model and No slip model

-Slip There is no friction existed on the electrode-sheet surface. The
displacement in radial direction is totally free.
No slip The friction on the electrode-sheet surface is so large that there exists no

relative movement on such surfaces.

The main advantage of this contact model is that any conventional finite element
program can be used to solve the contact problem in the spot welding. However the
shortcomings of it are obvious. Usually, we give the load by forces rather than
displacements. When you first give the displacement loading, you can calculate the
external loads from the reaction forces, which is often not equal to the force you intend
to apply. Thus you have to adjust the displacement loading again and again to meet the
actual load condition. Furthermore, this method cannot give the deformation and stress

state of the electrode, and the rigid electrode assumption is often not correct.

D.2.2 Full Contact Treatment

Consider two bodies A and B. We discretize problems into finite element models by

the standard method, except for the contact surface where pairs of nodes are designated
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as candidates for contact as shown in

Fig.D.6. The assumptions are as follows: —/B/l

- displacements and strains are
small,

« the contact surface is continuous A

line or curve,
- the frictional force acting at the
contact surface follows the

Fig.D.6 Two contact bodies A and B
Coulomb type criterion for

friction.

Let g;; and R;; be the nodal displacement and nodal force at the contact surface, where
the subscript j indicates the body identification and i the direction. The displacement
and force increments must satisfying the following equilibrium equations and continuity
conditions for different contact conditions, which can be expressed as the following

mathematical formulations:

1. Open condition: gap remains or becomes open

ARy;=ARp = AR, <0
Aq ;i -Aqp; = Al; (i=x,y)

2. Stick condition: gap remains closed and no slipping occurs,

ARAi=—ARBiEARp>O
Agy;-Agp; +6;=0 (@i=x,y)

3. Slipping condition: gap remains closed and slipping occurs.

ARAI=_ARBIEAR)'>0 . ARAX=_ARBX=i#ARy
Aq 4 -Aqp +6,=0 ’ A4 ~Agpy +8,=0

(when slipping is in the x-direction)
Here, §; is the initial relative displacement which is zero except for the initial state, Al;
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is the relative displacement between the contact node pairs. AR; > 0 means that body
A and body B are pushing each other while AR; < 0 means they are pulling each other.

Above contact conditions were imposed on a normal FE program by means of
quadratic penalty function. This leads to a program which can treat spot welding as a
real contact process, as shown in fig.D.4(a). At the moment, the program used in this
study cannot deal with Coulomb friction yet.

The finite element mesh with full contact treatment is shown as Fig.D.2. The loads
are applied incrementally by distributing pressure on the upper end of electrode. Very
small loading steps were chosen for the requirement of contact simulation.

In addition to a simple curve shaped, an electrode with any profile can be simulated
by this program and the thermo-mechanical behaviour of the electrode can be obtained

at the same time.

D.3 TEMPERATURE EFFECT ON THE SOLUTION

Fig.D.7 Typical temperature distribution of the sheet and the electrode during
spot-welding process{!2]

In the previous discussion there is no temperature mentioned. The real spot welding
occurs inevitably at high temperatures. Thus temperature effects are crucial factors in
welding. The typical temperature distribution used in this report is shown as Fig.D.7
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in [ref.14].

The highest temperature is near the centre of the faying surface, which may be
higher than 1000° K and the temperature gradient is significant over the whole area of
sheets and electrodes.

For the numerical simulation used in this study, the temperature effects were

accounted for by two aspects,

D.3.1 Temperature dependant material properties

The material properties concerned with thermo-elasto-plastic are:
E: Young’s modules
v Poisson’s ratio

H/M: Hardening modules

Yield stress

ot Coefficient of linear thermal expansion
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D.8 The temperature dependant properties of low carbon steel.

Except Poisson’s ratio that is thought to be independent of temperature, all other

properties are functions of the temperature. For low carbon steel the functions are
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shown by Fig.D.8!53],
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Fig.D.9 The temperature dependant yield stress of aluminium.

About aluminium, unfortunately, we have not got so much information. We used
only temperature dependant yield stress in the program, which is thought to affect
greatest on plastic strain and residual stress. The data was supplied by Alcan Itd and
is shown as Fig.D.9.

D.3.2 Thermal strain effects

The thermal strain is usually interpreted as "“initial strain". The Hooke’s law can

be written in elasticity by(3!)
o* =D(e-®) =g-¢°

to handle the thermal problem.

When the incremental method is used to solve the elasto-plastic problem, the initial
stress status caused by thermal strain is computed before any external force is applied.
There maybe exists plastic strain. The thermo-mechanical stress under external force
is then superimposed upon the thermal stress and strain just obtained.

For plane stress situation, thermal strains are simply presented by
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0 _ . 0 _.
€, = aT; €xy =0
0 _ . 0 _
0 _ X 0 _
e, =al, €7 =0

where o is the coefficient of linear thermal expansion and T is the temperature
measured from an arbitrary data. It is required for plane stress situation that initial
stress component in the through-thickness direction orzo be zero.

For plane strain, the through-thickness initial stress azo is non-zero but the
corresponding strain component ezo is required to vanish. Consequently,

— X 0
e = (1 + v) aT; & =0
e = (L+ v)aT; el =0

0 _ X 0 _
g, = -E aT, €z =0

where » is the Poisson’s ratio for the material.

D.4 RESULTS AND DISCUSSION

As discussed in the last section, the full contact model has to be used when unloading
occurs at high temperatures. Therefore the thermo-mechanical simulation will be
performed by using this full contact model. In studying geometrical effect of the
electrode on mechanical contact in cold conditions, the simple contact model will be

used to simplify this slightly more complicated problem.
D.4.1 Geometric and Material Parameters

Basically, the aluminum sheets are modelled as a rectangle with a thickness H and
radius R;. The electrode is constructed as a curved head with the curvature of R, and
the radius of electrode is R,. In the centre there is a space for water cooling with

radius R. The height of the cooling area and the electrode are H, and H,,
respectively.
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side A
' R, m
H. ]
R, : o
H,-Hy
t 1-‘1/
R,

Fig.D.10 Schematic structure of a electrode in spot welding.

The force is applied by distributing a pressure on side A of the electrode in our model
instead of the shear force on side B as observed in practice. The difference between
these loading configurations is thought to be very little since either side A or side B is
far away from the location concerned. The schematic figure of the geometry is shown
in Fig.D.10. The constants concerning geometry and material properties of both copper

ang afurmninom are fisted as foliows,

Tab.D.1 Material and geometrical constants

Material constants | Young’s Modular | Poisson’s ratio | Yield stress(cold) Plastic Modular
of aluminium
70000MPa 0.25 158MPa 294MPa
Material constants | Young’s Modular | Poisson’s ratio | Yield stress(cold) Plastic Modular
of copper
126000MPa 0.25 560MPa 294MPa
Sht. thickness Sht. radius Elc. radius Col. radius
H = 2.00mm R, = 20.0mm R, =5.0mm R_ = 2.0mm
Geometric
constants Elc. curvature Elc. height Col. height Distance
R, = 50.0 H, = 6.0mm H,; = 2.0mm H H 4 =4.0mm
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D.4.2 Deformation and Stress of Electrode and Sheet
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Fig.D.11 Pressure at the faying surface and at the electrode in cold condition.
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Fig.D.12 Deformations of aluminium sheets under squeeze force. (a) Predicted by
slip model; (b) by no slip model under cold condition.

In cold condition the pressures at the faying surface and the electrode-sheet surface are
shown in Fig.D.11. The initial contact areas at both surface are defined by their radii,

which are: r,; = 2.23mm and Ty = 2.69mm. The whole deformed aluminium sheets
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are reconstructed from the deformed FE mesh which is only a quarter of it, as seen in
fig.D.12.

When electrical current passes through the sheets, the temperature builds up and
the yield stress of the material drops. This causes the redistribution of the stresses and
the changes in the contact area. The modification of the contact area can in turn affect

the electrical resistance of the welding.

contact radius

contact radius

—0— clectrode
14 —A— faving L 1
0 T u T | T T T 0
0 1 2 3 4 5 6 7 8

Number of cycles

Fig.D.13 The contact areas at both the faying surface and electrode surface at each
cycle of the current.

The contact areas of both the faying and electrode surfaces at each cycle of current
are shown in Fig.D.13. The pressures on both surfaces at cycle 0, 4 and 8 are shown
in Fig.D.14 and Fig.D.15 respectively.

In Fig.D.13, the contact area of both the faying and the electrode surfaces have a
tendency to increase with the increasing number of cycles. The changes are larger in
the beginning since there are tremendous changes in material properties as temperature
increases. These changes are observed until at the fifth cycle. After this, both contact

areas remain almost constant. This is probably because no further significant
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redistribution of stress and strain takes place during these cycles.
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Fig.D.14 Pressures at the faying surface for some cycles of the current.
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Fig.D.15 The pressures at the electrode surface for some cycles of the current.

At the faying surface, we also find some decrease of the contact area, which can be

explained as the larger plastic deformation at the centre area causes the two sheets to

separate more than before, thus reduce the contact area. Obviously this will not occur
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at the electrode surface.

Pressures at the faying surface in Fig.D.14 are well behaved when everything is
cold. However at cycle No.4 and cycle No.8, some oscillation of the pressures is
found. In the central area the pressures are released because of the decreased yield
stress in this high temperature area. The compressive area at the faying surface is also
seen to be larger than at cycle No.0.

For a numerical simulation, the situation for the electrode surface is more difficult
to handle because the surface condition is more complicated. This is why even in cold
condition, the pressure at the electrode surface proves to be unstable, as found in
Fig.D.11 and Fig.D.15. However the results in Fig.D.15 do show reduction of the
pressures after heating in central area of welding, and the maximum pressures at cycle
No.4 and cycle No.5 are located at about 1.5mm away from the centre of the electrode.
The reason why the maximum pressures move outwards is partly because the outer
material is colder than at the centre, and thus it has a higher yield stress. As a result,

damage of the electrode surface will be more likely in these areas.

D.4.3 Effects of the Profile of the Electrode

The profile of the electrode plays a very important role in the welding process. It can
affect the contact area of both the faying and electrode surfaces which may cause
changes in the electrical resistance. The shear stresses on both surfaces, are also a vital
factor. They break down the electrically insulating Yayers on the Aluminiurn sheets and
enable welding to start.

However, it is quite clear that at the faying surface, which is the symmetric plane,
no shear exists. Of course, the real welding process is more complicated and cannot
be fully modelled by a purely mathematical system. But the model can give us some
idea how to modify the profile of electrodes such that shear stresses at the faying
surface will be produced.

Three pairs of electrodes, male-male model, male-flat model and male-female
model, aimed at studying shear stress at the faying surface are proposed as shown in
Fig.D.16.

This time we use the simple contact model to handle this situation. No
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Male-male model Male-flat model Male-female model

_
=

|

Fig.D.16 Three electrode models for creating shear stress at the faying surface.

temperature effect was included in the study. The shear stresses and normal stresses
are presented in Fig.D.17 and Fig.D.18.

The shear stress in the male-male model, which is most close to the real one, is
insignificant, while the male-female has largest shear stress among them. The male-flat
model has fairly big shear and has about the same normal pressure as that in male-male

model, as shown in Fig.D.18.
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Fig.D.17 Shear stresses at the faying surface.
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Fig.D.18 Normal stresses at the faying surface.

Compared with the male-male and male-flat models, the male-female model has only
about half the contact pressure, which means that it may lack the compressive force to
keep the two sheets in full contact. Therefore, to achieve a best weld, our study
suggest that the best pair of electrode should be the male-flat model.

In addition to choose a optimum profile of the electrode, the mathematic model can
also give us the information about what and how the welding process is influenced by
a worn electrode.

Fig.D.19 shows two models of the electrode in the cold condition: Flat-curved
electrode and Slope-curved electrode. The former one is to simulate the electrode
which is worn and becomes flat in the centre area.

The pressures on the faying surface by this model are shown in Fig.D.20, where
four different r, are used to represent different degrees of wearing of the electrode.
The pressures change tremendously but there are always pressures in the central area,
which means that the sheets are kept together no matter how much wear the electrode
has undergone. In the meantime, the contact areas at the faying surface increase largely

when r, increase, which may affect the temperature distribution because the electrical
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resistance 1S varied.

Flat-curved electrode Slope-curved electrode

_ I N

T —— ~——_l -

To

| r = 5mm ¢ = 5mm

Fig.D.19 Two models for studying of a worn electrode

On the other hand, the Slope-curved electrode is an extreme case of a damaged
electrode, which is designed to show whether it is possible for the two aluminium sheets
to separate in the central area when a badly damaged electrode is used.

Fig.D.21 shows pressures under four different r,. When r, increases under
external load of 8kn, the pressures in the central area decrease. If r, = 4.0mm, i.e.
80% of the radius of the electrode R,, the pressure at the centre is zero. This means
that separation may occur between two aluminium sheets. This can also take place
when less external load (3.5kn) is applied while r, = 3.5mm, i.e. 70% of R,.

However these extreme cases are unlikely to happen since in Fig.D.15, the most
probable position for an damage at the electrode tip is at about 30% of R, at the

electrode surface.

D.4.4 Deformation of the Adhesive under Cold Condition

Say an adhesive is used to attach two aluminium sheets together with viscosity u at cold
condition. The deformation of the adhesive under the squeeze force is affected by

following parameters:
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Fig.D.21 Pressures at the faying surface in the Slope-curved model.
Loading profile: F(¢) determined by Frand 8 = Fp/ Fyr;
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Viscosity of the adhesive: y;
- Yield stress of aluminium sheet: 0y
- Thickness of aluminum sheet: H;

- Radius of the electrode curvature:R,.
The size of the entrapment is represented in terms of volume of the shaded area in

fig.D.22.

undeformed adhesive

deformed adhesive

faying surface
entrapment

Fig.D.22 The size of the entrapment is presented by the volume of the shaded area.

The simplified load process is presented by an exponential function with different rates
of B8, as shown in fig.D.23. Various deformations of adhesive under different load

profiles are also presented in this fig.
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Fig.D.23 Load profile F(f) assumed as a exponential function. The deformations
with different 8 under Fy=-5000kn, p=1000PaS, ory=1.58MPa.
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It is clearly found that the minium thickness of the adhesive after deformation is at
about 1.5mm away from centre. Therefore if two aluminium sheets eventually contact,

there is a space that "traps" a small amount of adhesive.
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-
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radius(mm)

Fig.D.24 Formation of the entrapment of the adhesive at the same condition as
fig.D.23.

Fig.D.24 shows that how the "entrapment” is built up. When 30% of F is achieved,
no entrapment is found. This is because that the curve electrode presses the centre part
of the aluminium sheet more than outer range. With further increase of the load to
70%, the entrapment can be identified. This may cause by yielding of the centre part
of the aluminium sheet. Finally at 100% of Fy, more deformation of adhesive is
caused. The volume of trapped adhesive is increased too.

It can be anticipated that the yield stress of the aluminium and the viscosity of the
adhesive play a important role of the entrapment. In fig.D.25, it is shown that
entrapment increases with the higher viscosities of adhesive. With regard to the yield
stress, the situation is that the entrapment decreases with the lower o,. It is also
noticed that when very high a,, is used, i.e. 200MPa, there is virtually no entrapment
found.

Other parameters such as the thickness of the aluminium sheet H and the radius of

the electrode curvature R, also have effects on the entrapment in some degree. Our
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Fig.D.25 The effects of viscosity on the deformation of the adhesive. Fy=-5000kn,
0,=1.58MPa, H=2.0mm and R,=50.0mm.
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Fig.D.26 The effects of yield stress on the deformation of the adhesive. Fp=-
5000kn, p=1000PaS, H=2.0mm and R,=50.0mm.

task is to find a parameter which can include all the parameters and also directly related

to the size of the entrapment.

Say « is designated as such a dimensionless parameter and v' is dimensionless
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volume, i.e.

Fr
oy R,H

v = Y

R,

.

=

If dimensionless parameter « calculated with three different value for each parameters
is plotted against the dimensionless v*, then a very interesting relationship between is
found, as seen in fig.D.27. V" varies with « nearly parabolically. In other words, to
minimize the entrapment can be achieved by carefully choosing a set of Fr, Ry, H and

gy, such that « is small enough.
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Fig.D.27 Dimensionless volume v’ vary with dimensionless parameter a.
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APPENDIX E
Fortran Program MIXEP.F for ELASTO-PLASTICITY

c program penalty function,tape5=input

c *output,tape8=output, tape4,tapelld)
c**********************************************************************L
c Rk ke elastoplastic program ****x%*

c SUN & HP version

c first order stress function and displacement variable----

c mixed-fem package for plane and axisymmetric

c using Newton's method in incremental form

c and changed the integration method in axisymmetric

c situation. program has been tested.
c
c
c
c
c
c
c
c
c

variational equation:
when ps>=0
= 8*d - sqrt(s*s)sqrt(d*d) - rho*ps~2 - rho*e~2
when ps<0
= =2G*d*d - k*e~"2
The general variable B is dimensionless by replacing F by F/2G
designed by J.Wen
**************************************************************
implicit double precision(a-h,o-z)
parameter (nmax=4000, tol=1.0e-4)
external sign, dmax, dmin, delt, times
dimension ifpre(5,1000),1lnods(500,9),leqgns(45,500),coord(1000,2),

* fgrce( 4000) ,props (10, 5) ,mhigh( 4000), matno(500),
* dispt( 4000),posgp(4) ,weigp(4),stifi(200000),
* maxai( 4000),bline(4,500), presc(3,100), gpcod(2,4500)

common stres(5,4500),strin(5,4500),strdd(5,4500)

common /dfunc/pcom(nmax), xicom(nmax), ncom

read(5,*)trial,niter
open(5,file='mixep.in',status='old")
open(8,file="mixep.ou',status='unknown')
open(4,file="fort04',status='unknown')
open(l3,file="'fort.13',status='unknown')

call contol (ndofn ,nelem ,nmats ,npoin )

c
call inputd (coord ,presc ,lnods ,matno ,ndime ,ndofn ,nelem ,
* ngaus ,nmats ,nnode ,npoin ,nstre ,ntype ,posgp ,
* props ,weigp ,nbdis ,nline ,bline )
ncom=npoin*ndofn
do 20 i=1,ncom
dispt(i)=0.0
20 pcom(i)=0.0
rho=1.0e20
c
call linkin (force ,ifpre ,npoin ,legns ,lnods ,maxai ,
* nwktl ,mhigh ,ndofn ,nelem ,neqgns ,nnode )
c
do 1000 iiter=1,niter
write(6,'(1x,6hiiter=,i5)")iiter
write(4,'(1x,6hiiter=,i5)"')iiter
call gstiff (coord ,stifi ,leqns ,lnods ,matno ,maxai ,
* nwktl ,ndime ,ndofn ,nelem ,ngaus ,nmats ,
* nnode ,npoin ,nstre ,ntype ,props ,weigp ,
* posgp ,dispt ,neqns ,nbdis ,nline ,bline ,
* ifpre ,rho ;presc ,force ,gpcod ,iiter ,
* trial)
do 100 icom=1,ncom
xicom(icom)=dispt (icom)
100 continue
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E Fortran Program MIXEP.F for Elasto-Plasticity

write(6,'(1x,6hgstiff)"')

ax=1.0
bx=2.0
call mnbrak(ax, bx, cx, fa ,fb, fc, rho,
lnods, coord, nnode, nevab, ndofn,
npoin, nelem, ndime, ntype, nstre, ngaus,
props, nmats, matno, weigp, posgp,
presc, bline, ifpre, nbdis, nline,iiter)
write(6,'(1x,6hmnbrak)"’)
write(6,'(1x,3el2.4)"')ax,bx,cx
write(6,'(1x,3el2.4)')fa,fb,fc

call brent(ax, bx, cx, tol, xmin, vm ,rho,

lnods, coord, nnode, nevab, ndofn,
npoin, nelem, ndime, ntype, nstre,ngaus,
props, nmats, matno, weigp, posgp,
presc, bline, ifpre, nbdis, nline,iiter)
write(6,'(1x,6hbrent ,2el2.4)')xmin,vm
do 200 j=1,ncom
pcom(j)=pcom(j)+xicom(j) *xmin
dispt (j)=pcom(3)
continue
call output (dispt,npoin,nelem,nstre,ngaus,ndofn,gpcod,
coord)
if (dabs(xmin).1lt.1.0e-5)stop
continue
close(8)
stop
end

subroutine contol (ndofn ,nelem ,nmats ,npoin )
KAEAKAAA AR A AR AR AR A AR AR AR A AR AR KA AR KRARRAAKR AR R TR AR AR Ak kh %k

read control data and check for dimension

LR R EEE SR E SRR SR 222 2 2 R R R S X2 22 2SS 2222 SRR RS S ES R S R
read(5,* ) npoin,nelem,ndofn,nmats

if(nelem.gt. 500) go to 200

if (npoin.gt. 1000) goto 200

if (nmats.gt. 10) goto 200

goto 210

write(8,120)

stop

format (/'set dimension exceeded - contol check '/)
format (161i5)

continue

return

end

subroutine inputd (coord ,presc ,lnods ,matno ,ndime ,ndofn ,
nelem ,ngaus ,nmats ,nnode ,npoin ,nstre ,
ntype ,posgp ,props ,weigp ,nbdis ,nline ,
bline )

AR E R AR R SERSE RS RS SRR SRS 22 R S22 2R 2 2 R R 2R Rt A X R X2 R

input routine

LA R AR RS ERRE RS EERRRRR R AR R A2 X222 20 23

implicit double precision(a~h,0-2)

dimension coord(npoin,*) ,presc(3,*) ,weigp(*) ,matno(*) ,
lnods(nelem, *) ,props(nmats,*) ,posgp(*) ,title(10),
bline(4,*)

read(5,913) title

format (20a4)
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write(8,914) title
914 format(//,5x,20a4)

c
c***x read the first data card, and echo it immediately.

c
read (5,* ) nbdis,nline,ntype,nnode,nprop,ngaus,ndime,nstre

write(8,901) npoin,nelem,ntype,nnode,ndofn,nmats,nprop,
* ngaus,ndime,nstre,nbdis,nline
901 format (/5x,18hcontrol parameters/

* /5x,8h npoin =,i10,5x%,8h nelem =,il0,5x,8h ntype =,il0,
* /5x,8h nnode =,il10,5%,8h ndofn =,il0,5%,8h nmats =,il0,
* /5x,8h nprop =,110,5x%,8h ngaus =,il0,5x%,8h ndime =,il0,
* /5x,8h nstre =,i110,5x,8h nbdis =,i10,5x,8h nline =,1i10/)

900 format (16i5)
c
c*** read the element nodal connections, and the property numbers
c
write (8,902)
902 format(//5x,8h element,3x,8hproperty, 6x,12hnode numbers)
do 530 ielem=1l,nelem
read (5,* ) num,matno(num), (lnods(num,inode),inode=1,nnode)
write(13,915) (lnods(ielem,i),i=1,nnode)
530 write(8,903) matno(ielem), (lnods(ielem, inode), inode=1,nnode)
903 format (6x,1i9,6x,101i5)
915 format(1x,8(i5,"',"'))

c*** read some nodal coordinates, finishing with the last node of all

904 format(//5x,5h node,9x,1hx,9x,1lhy, 5x)

200 read (5,* ) (1, (coord(l,idime),idime=1,ndime),i=1,npoin)
write(8,906) (i, (coord(i,idime),idime=1,ndime),i=1,npoin)
write(13,'(1x,2el5.4)"')((coord(i,idime),idime=1,ndime),i=1,npoin)

905 format(i5,6f10.5)

906 format (5x,15,2el15.4)

c*** read the available selection of element properties

write(8,910)
910 format(//5x,19hmaterial properties)
do 520 imats=1,nmats
read(5,* ) numat
read(5,* ) (props(numat,iprop),iprop=1,nprop)
write(8,911) numat
911 format (/5x,11hmaterial no,i5)
520 write(8,912) (props(numat,iprop),iprop=1,nprop)
912 format (/5x,13hyoung modulus,gl2.4/5x,13hpoisson ratio,gl2.4/
* 5x,13hthickness +912.4/5x,13hreference no ,gl2.4/
* 5x,13hhardening par,gl2.4/)
read(5,*) ((presc(i,ibdis),i=1,3),ibdis=1,nbdis)
write(8,121)
121 format (5x, 'displacement boundry information'/)
write(8,120) ((presc(i,ibdis),i=1,3),ibdis=1,nbdis)
120 format(1x,f8.2,4x,2el12.4)
read(5,*) ((bline(i,iline),i=1,4),iline=1,nline)
write(8,123)
123 format (5x, 'stress boundry information'/)
write(8,124)((bline(i,iline),i=1,4),iline=1,nline)
124 format (3x,2£8.1,5x,2e12.4)

c
call gaussq (ngaus,posgp,weigp)
return
end
c

subroutine linkin (force ,ifpre ,npoin ,leqgns ,lnods ,maxai ,
* nwktl ,mhigh ,ndofn ,nelem ,negns ,nnode )
A 2R R AR RS RS RS EEERREE RS RSS2 a2 s X X R R R 2 X 2R R X

(o}
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c*** links with profile solver

C
AR EAEEEEEL SRR SERESRR RS R RS RER RS2 2222222222222 T E]

implicit double precision(a-h,o0-2z)
dimension lnods(nelem,*),leqns(45,*),maxai(*),legnn(45),

* ifpre(ndofn,*) ,force(*), mhigh(*)
c
nevab=nnode*ndofn
c
Chk*k number of unknowns
c
negns=0
do 100 ipoin=1l,npoin
do 150 idofn=1,ndofn
negns=neqgns+1l
ifpre(idofn,ipoin)=neqgns
150 continue
100 continue
megns=1+neqns
c
chkx connectivity array legns
c
do 70 ielem=1,nelem
do 70 ievab=1,nevab
70 legns(ievab, ielem)=0
do 50 ielem=1,nelem
ievab=1
do 80 inode=1l,nnode
ident=1lnods(ielem, inode)
do 80 idofn=1,ndofn
legns(ievab,ielem)=ifpre(idofn, ident)
80 ievab=ievab+1l
c write(8,6) ielem, (legns(ievab,ielem),ievab=1,nevab)
50 continue
6 format (i10,24i3)
7 format (4i10)
8 format (8el2.4)
c
c** loop over all elements
c

250 do 190 ielem=1l,nelem
do 300 le=1,nevab
legnn(le)=legns(le,ielem)

300 continue
c
call colmht (mhigh, nevab,legnn)
190 continue
c
CH** addresses of diagonal elements- maxa array
c

call addres(maxai,mhigh,negns,nwktl,mkoun)
write(8,920)neqns,nwktl

920 format(/5x, 'negns="',1i5,5x, 'nwktl="',1i5/)
if (nwktl.gt.200000) goto 210
goto 220
210 write(8,910)
stop
220 continue
910 format (/'set dimension exceeded - check linkin '/)
return
end
Cc

subroutine gstiff (coord ,stifi ,leqns ,lnods ,matno ,maxai
nwktl ,ndime ,ndofn ,nelem ,ngaus ,nmats
nnode ,npoin ,nstre ,ntype ,props ,weigp
posgp ,dispt ,neqns ,nbdis ,nline ,bline
ifpre ,rho presc ,force ,gpcod ,iiter

. W w wo~

* % X *
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* trial)
c******************************************************************
c
c evaluates linear stiffness matrix
c for mixed extrieme mothed
c

CHAEANIAANAARAAFAA A AR A AN A A A A A A A A h A h bbb A r bbb h kbbb hhhdd

implicit double precision(a-h,o-2z)

double precision 1dd(5,5),1ss(5,5),1ds(5,5),1d1(5),1s81(5)

dimension coord(npoin,*) ,elcod(2,9) ,lnods(nelem,*) ,cartd(2,9),
props(nmats,*) ,leqns(45,*),estif( 820) ,
deriv(2,9) ,shape(9) ,legnn(45), bline(4,*),
amatx(5,30),bmatx(5,20),asmat(5,30) ,bsmat(5,20),
ammat (30), bmmat(20),gpcod(2,*),ifpre(ndofn,*),
presc(3,*),force(*)

common stres(5,4500),strin(5,4500),strdd(5,4500)

* * % ¥ *

c
dimension stifi(*),maxai(*),posgp(*),dispt(*),weigp(*),matno(*),
* s(5),d(5),dt(5)

c
twopi=6.283185307179586
kgaus=0

c

c*** loop over each element

c
nstrl=5

nevab=ndofn*nnode

do 500 iwktl=1l,nwktl
500 stifi(iwktl)=0.0

do 70 ielem=1,nelem

lprop=matno(ielem)

c*** evaluate the coordinates of the element nodal points

do 10 inode=1,nnode
lnode=1lnods(ielem, inode)
do 10 idime=1,ndime
10 elcod(idime, inode)=coord(lnode, idime)
young=props (lprop, 1)
poiss=props(lprop, 2)
thick=props(lprop, 3)
y0 =props(lprop, 4)*0.816497
y =props(lprop, 5)*0.816497
shear=young/2.0/(1.0+poiss)
xkcon=young/3.0/(1.0-2.0*poiss)
factr=young/props(1,1)

cx** jnitialaze the element stiffness matrix 820=nevab*(nevab+1l) /2

do 20 isize=1,820

20 estif(isize)=0.0

c

c*** enter loops for area numerical integration
c

do 50 igaus=1,ngaus
exisp=posgp(igaus)
do 50 jgaus=1,ngaus
etasp=posgp(jgaus)
kgaus=kgaus+1

call sfr2 (deriv,nnode, shape,exisp,etasp)
call jacob2 (cartd,deriv,djacb,elcod,gpcod,
* ielem, kgaus,nnode, shape)

dvolu=djacb*weigp(igaus)*weigp(jgaus)
radiu=gpcod(1, kgaus)

if (ntype.eq.3) dvolu=dvolu*twopi*radiu
if(ntype.eqg.1l) dvolu=dvolu*thick
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c*** evaluate the a,b,as,bs,am and bm matrices

c
if(iiter.eq.1l)then
if (ntype.ne.3) then
c
CHhhxk for rigid plastic poiss=0.5
call matrip(amatx, bmatx, asmat, bsmat,ammat, bmmat,
* radiu, shape, cartd, poiss,nnode,ntype,0)
else
call matria(amatx, bmatx, asmat, bsmat,ammat, bmmat,
* radiu, shape, cartd, poiss,nnode,ntype,0)
end if
end if
c

c*xx* calculate the differential of 1

if(iiter.gt.1) then
sigma=(stres(1l,kgaus)+stres(4,kgaus)+stres(5,kgaus))/3.0
epcilt= strin(1l,kgaus)+strin(4,kgaus)+strin(5,kgaus)
epcild= strdd(1l,kgaus)+strdd(4,kgaus)+strdd(5,kgaus)
s(l)=stres(1l,kgaus)-sigma
dt(1l)=strin(1l,kgaus)-epcilt/3.0
d(1l)=strdd(1,kgaus)-epcild/3.0
s(2)=8stres(2,kgaus)
dt(2)=strin(2,kgaus)
d(2)=strdd(2,kgaus)
s(3)=stres(3,kgaus)
dt(3)=strin(3,kgaus)
d(3)=strdd(3,kgaus)
s(4)=stres(4,kgaus)-sigma
dt (4)=strin(4,kgaus)-epcilt/3.0
d(4)=strdd(4,kgaus)-epcild/3.0
g(5)=s8tres(5,kgaus)-sigma
dt(5)=strin(5,kgaus)-epcilt/3.0
d(5)=strdd(5,kgaus)-epcild/3.0

c
call differ2(s,d,dt,ldd,1ss,1ds,1d1,1s1,y0,y,ps)

c

ChRRRR for rigid plastic poiss=0.5

c

plasp=poiss
c if(ps.ge.0)plasp=0.49
if(ntype.ne.3) then
call matrip(amatx, bmatx, asmat, bsmat,ammat, bmmat,

* radiu, shape, cartd, plasp,nnode,ntype,0)
else
call matria(amatx, bmatx, asmat, bsmat,ammat, bmmat,
* radiu, shape, cartd, plasp,nnode,ntype,0)
end if
call differl(force,bsmat,asmat,ammat,bmmat, lnods,nelem,
* nnode, ndofn,nstre,ntype,ielem,dvolu,ldl,lsl,
* epcild,epcilt, shear,xkcon,ps,dt)
end if
c**x* calculate the element stiffness
c
call estifn(estif,amatx,bmatx,asmat,bsmat,ammat,bmmat,
* nnode, shear,xkcon,dvolu, kgaus,ndofn, ntype,
* ldd ,lss ,1lds ,ps (iiter, trial, factr)
50 continue
c

c*** generates global stiffness matrix in compacted coln form
do 18 le=1,nevab
legnn(le)=legns(le,ielem)
18 continue

call addban (stifi,maxai,estif,leqnn,nevab)
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70 continue

c

CHhhkk add boundary conditions
c

if (ntype.ne.3) then
call boundp(stifi,maxai,ifpre,nbdis,presc,nline,thick,

* bline,ndofn,rho,coord,npoin, force,dispt, shear)
else
call bounda(stifi,maxai,ifpre,nbdis,presc,nline,thick,
* bline,ndofn,rho,coord,npoin, force,dispt,shear)
end if

do 100 iegns=1,neqgns
dispt(iegns)=force(ieqgns)
force(ieqns)=0.0
100 continue
c
cx*xxxxx do decomposition for global stiffness matrix

c
call decomp (stifi ,maxai ,negns , 1 )

c
call redbak (stifi,dispt,maxai,neqgns)
return
end
c
subroutine matrip(amatx, bmatx, asmat, bsmat,ammat, bmmat,
* radiu, shape, cartd, poiss, nnode ,ntype, key )
c******'k*******************************************
c this is a routine to form a, b, as
c bs, am, bm for plane problem using shape function n

o3 AR R R SRR SRRt RRRRRR Rttt sl st Sl

implicit double precision(a-h,o-z)
dimension amatx(5,* ), bmatx(5,* ), asmat(5, *), bsmat(5,* ),

* ammat( * ), bmmat(* ), cartd(2,9 ), shape(¥*)
c
icont=0
do 10 inode=1,nnode
c
Ch*** a matrix
amatx(1l,icont+1)=0.0
amatx(l,icont+2)= cartd(2,inode)
amatx(2,icont+l)=-cartd(2,inode)
amatx(2,icont+2)=0.0
amatx(3,icont+1)=0.0
amatx(3,icont+2)=-cartd(1, inode)
amatx(4,icont+1)= cartd(1l,inode)
amatx(4,icont+2)=0.0
c
if (ntype.eq.1l) then
amatx(5,icont+1)=0.0
amatx(5,icont+2)=0.0
end if
if (ntype.eq.2) then
amatx (5, icont+l)=poiss*cartd(1, inode)
amatx(5,icont+2)=poiss*cartd(2,inode)
end if
if (key.eq.1l) goto 20
c
Chhxkk b matrix

bmatx(1l,icont+1l)= cartd(1l, inode)
bmatx(1l,icont+2)= 0.0
bmatx(2,icont+1)=0.5*cartd(2, inode)
bmatx(2,icont+2)=0.5*cartd (1, inode)
bmatx(3,icont+1)=0.5*cartd (2, inode)
bmatx(3,icont+2)=0.5*cartd (1, inode)
bmatx(4,icont+1)=0.0
bmatx(4,icont+2)= cartd(2,inode)
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if(ntype.eq.l)then
bmatx(5,icont+1)=-poiss*cartd(1l,inode)/(1.0-poiss)
bmatx (5, icont+2)=-poiss*cartd(2,inode)/(1.0-poiss)

end if
c
if(ntype.eq.2) then
bmatx(5,icont+1)=0.0
bmatx(5,icont+2)=0.0
end if
c
Chkkk am matrix and bm matrix
ammat (icont+1l)=(amatx(1l,icont+l)+amatx(4,icont+1)
* +amatx(5,icont+1))/3.0
ammat (icont+2)=(amatx(1l,icont+2)+amatx(4,icont+2)
* +amatx(5,icont+2))/3.0
c
bmmat (icont+l)=bmatx(1,icont+1)+bmatx(4,icont+l)
* +bmatx(5,icont+1)
bmmat (icont+2)=bmatx (1, icont+2)+bmatx(4,icont+2)
* +bmatx (5,icont+2)
c
c**** ag matrix
c
asmat(1l,icont+l)=amatx(1l,icont+l) -ammat(icont+1)
asmat (1,icont+2)=amatx(1l,icont+2) -ammat(icont+2)
asmat (2,icont+1l)=amatx(2,icont+1)
asmat(2,icont+2)=amatx(2,icont+2)
asmat (3,icont+1l)=amatx(3,icont+1)
asmat (3,icont+2)=amatx (3, icont+2)
asmat (4,icont+1l)=amatx(4,icont+1l) —ammat(icont+1)
asmat (4, icont+2)=amatx(4,icont+2) —-ammat(icont+2)
asmat(5,icont+1l)=amatx(5,icont+1l) -ammat(icont+1l)
asmat (5,icont+2)=amatx(5,icont+2) —ammat(icont+2)
c
Chhkkx bs matrix

bsmat (1, icont+l)=bmatx(1l,icont+l) -bmmat(icont+1)/3.0
bsmat (1,icont+2)=bmatx(1,icont+2) -bmmat(icont+2)/3.0
bsmat (2,icont+1)=bmatx(2,icont+1)
bsmat (2,icont+2)=bmatx (2, icont+2)
bsmat (3,icont+1)=bmatx(3,icont+1)
bsmat (3, icont+2)=bmatx(3,icont+2)
bsmat (4, icont+1l)=bmatx(4,icont+1l) -bmmat(icont+1)/3.0
bsmat (4, icont+2)=bmatx(4,icont+2) -bmmat(icont+2)/3.0
bsmat (5,icont+1l)=bmatx(5,icont+1) -bmmat(icont+1l)/3.0
bsmat (5,icont+2)=bmatx(5,icont+2) -bmmat(icont+2)/3.0
20 icont=icont+2

10 continue
return
end
c
subroutine matria(amatx, bmatx, asmat, bsmat,ammat, bmmat,
* radiu, shape, cartd, poiss, nnode ,ntype, key )
c**************************************************
c this is a routine to form a, b, as
c bs, am, bm for axisymmetric problem using shape function n

C**************************************************
implicit double precision(a-h,0-2)
dimension amatx(5,*), bmatx(5,* ), asmat(5,* ), bsmat(5,* ),

* ammat ( * ), bmmat (* ), cartd(2,9 ), shape(*)
c
icont=0
do 10 inode=1,nnode
c
Chkhkk a matrix

amatx(1l,icont+1)=0.0
amatx (1, icont+2)= cartd(2,inode)
amatx(1l,icont+3)=shape(inode)/radiu
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amatx(2,icont+l)=-cartd(2,inode)
amatx(2,icont+2)=0.0
amatx(2,icont+3)=0.0
amatx(3,icont+1)=0.0
amatx (3, icont+2)=-cartd(1, inode)
amatx(3,icont+3)=0.0

amatx (4, icont+1l)= cartd(1l,inode)+shape(inode) /radiu

amatx(4,icont+2)=0.0
amatx(4,icont+3)=0.0
amatx(5,icont+1)=0.0
amatx(5,icont+2)=cartd(2, inode)
amatx(5,icont+3)=cartd(1,inode)

am matrix and

ammat (icont+l)=(amatx(1l,icont+l)+amatx (4, icont+l)
+amatx(5,icont+1))/3.0

ammat (icont+2)=(amatx(1l,icont+2)+amatx(4,icont+2)
+amatx(5,icont+2))/3.0

ammat (icont+3)=(amatx(1l,icont+3)+amatx(4,icont+3)
+amatx(5,icont+3))/3.0

as matrix

asmat (1, icont+l)=amatx(1l,icont+1)
asmat (1l,icont+2)=amatx(1,icont+2)
asmat (1,icont+3)=amatx(1l,icont+3)
asmat (2, icont+l)=amatx(2,icont+1)
asmat (2, icont+2)=amatx(2,icont+2)
asmat (2,icont+3)=amatx(2,icont+3)
asmat (3, icont+l)=amatx(3,icont+l)
asmat (3, icont+2)=amatx(3,icont+2)
asmat (3,icont+3)=amatx(3,icont+3)
asmat (4,icont+1l)=amatx(4,icont+1l)
asmat (4, icont+2)=amatx(4,icont+2)
asmat (4, icont+3)=amatx(4,icont+3)
asmat (5, icont+l)=amatx(5,icont+1)
asmat (5, icont+2)=amatx(5,icont+2)
asmat (5,icont+3)=amatx(5,icont+3)

icont=icont+3
icont=0
do 20 inode=1, nnode

b matrix

bs

bmatx(1l,icont+l)= cartd(l, inode)
bmatx(1l,icont+2)= 0.0

—ammat (icont+1)
—ammat (icont+2)
—ammat (icont+3)

—ammat (icont+1)
—ammat (icont+2)
—ammat (icont+3)
—ammat (icont+1)
—ammat (icont+2)
—ammat (icont+3)

bmatx(2,icont+1)=0.5*cartd (2, inode)
bmatx (2, icont+2)=0.5*cartd(1l, inode)
bmatx(3,icont+1)=0.5*cartd(2, inode)
bmatx(3,icont+2)=0.5*cartd(1, inode)

bmatx (4, icont+1)=0.0
bmatx(4,icont+2)= cartd(2, inode)

bmatx (5, icont+1)=shape(inode)/radiu

bmatx(5,icont+2)=0.0

bmmat (icont+1)=bmatx(1l,icont+1l)+bmatx(4,icont+1)

+bmatx (5, icont+1)

bmmat (icont+2)=bmatx(1l,icont+2)+bmatx(4,icont+2)

+bmatx (5, icont+2)

matrix

bsmat (1,icont+1)=bmatx(1,icont+l)
bsmat (1, icont+2)=bmatx(1,icont+2)
bsmat (2,icont+1)=bmatx(2,icont+1)
bsmat (2,icont+2)=bmatx(2,icont+2)
bsmat (3, icont+1)=bmatx(3,icont+1)
bsmat (3, icont+2)=bmatx(3,icont+2)
bsmat (4,icont+1)=bmatx(4,icont+1)
bsmat (4,icont+2)=bmatx(4,icont+2)
bsmat (5, icont+1l)=bmatx (5, icont+1)
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bsmat (5,icont+2)=bmatx(5,icont+2) -bmmat(icont+2)/3.0
20 icont=icont+2
return
end

subroutine output (dispt,npoin,nelem,nstre,ngaus,ndofn,
* gpcod, coord)
(el A XA RS R RS R R R RRRS st s i st s st s s sttt s d L2

c
c ouput routine for displacements and streses
c
CARRA R AR A AR A AR A KRR A A KRR AR TR IR IR TR A kA Ak Ak kb kkkhkkhkkkd
implicit double precision(a-h,o-z)
dimension dispt(*),gpcod(2,*),coord(npoin, *)
common stres(5,2700)
mgaus=ngaus*ngaus
kgaus=nelem*mgaus
write(8,900)
900 format (3x, 'node:', 8x,'displacement=',10x,'stress vector='/)
do 600 ipoin=1,npoin
inl=(ipoin-1)*ndofn+l
in2=(ipoin-1)*ndofn+2
in3=(ipoin-1)*ndofn+3
in4=(ipoin-1)*ndofn+4
in5=(ipoin-1)*ndofn+5

c write(10,911)coord(ipoin,2),dispt(in2)
if (ndofn.eq.4)
* write(8,910)ipoin,dispt(inl),dispt(in2),6dispt(in3),dispt(in4)
if(ndofn.eq.5)
* write(8,910)ipoin,dispt(inl),dispt(in2),dispt(in3),dispt(in4)
* dispt(in5)
write(13,911)dispt(inl),dispt(in2)
910 format (1x,i5, 2el12.4,2x,'|',3el2.4)
911 format(1lx,2el5.4)
600 continue
c
write(8,920)
920 format (/10x, '***xx*xxxxx*xelement stressesx**xxxxx%'//,
* 5x, 'stress-xx',5x, 'stress-xy’',5x, 'stress-yx',
* 5x, 'stress-yy',5x, 'stress-zz'/)
ielem=0

do 100 igaus=1,kgaus
write(4,980)gpcod(1,igaus),gpcod(2,igaus),
* (stres(istre,igaus),istre=1,nstre)
980 format (1x,7e15.6)
110 continue
if((igaus-1)/mgaus*mgaus.eq.(igaus-1)) then
ielem=ielem+1
write(8,940)ielem

940 format(/15x, 'ielem=:"',i4/)
end if
write(8,930) (stres(istre,igaus),istre=1,nstre)
930 format (1x,5el4.5)
100 continue
return
end
c
subroutine estifn(estif,amatx,bmatx,asmat,bsmat,ammat,bmmat,
* nnode, shear, xkcon,dvolu, kgaus,ndofn, ntype,
* ldd ,1ss ,lds ,ps ,iiter, trial, factr)
C*************************************************
c this routine is to form a stiffness
c matrix at each gauss point. when iiter=1 for elstic
c when iiter>1 for rigid plastic

CREAARAKRARRAKRAARKEAKRAR KA AR R KA KRR AR AR Rk Ak hkhdkkk
implicit double precision(a-h,o0-z)
double precision kmatx(40,40),1d4d(5,5),1ss(5,5),1ds(5,5)
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dimension amatx(5,* ), bmatx(5,* ), asmat(5,* ), bsmat(5,* ),

ammat (* ), bmmat(* ), estif(* )
ndofl=2
ndof2=2
if (ntype.eq.3)ndof2=3
nstre=5
plt=50.0

gl=shear*2.0
nevab=ndofn*nnode

alfa=2.0*ghear/xkcon

do 1000 inode=1,nnode
do 1000 jnode=1,nnode

bs~*1dd*bs + 2p*bm~bm or 2G(bs"bs + k/2G*bm~*bm)
do 10 idofn=1,ndofl
ivar=(inode-1)*ndofl+idofn
igar=(inode-1)*ndofn+idofn
do 10 jdofn=1,ndofl
jvar=(jnode-1)*ndofl+jdofn
jgar=(jnode-1)*ndofn+jdofn
kmatx(igar,jgar)=0.0
if(iiter.eqg.l.or.ps.1t.0.0) then
do 21 i=1,nstre
kmatx (igar, jgar)=kmatx(igar, jgar)+bsmat(i,ivar)
*bsmat (1, jvar)
continue
kmatx (igar,jgar)=kmatx(igar, jgar)+
bmmat (ivar)*bmmat (jvar)/alfa
else
do 20 i=1,nstre
do 20 j=1,nstre
kmatx (igar,jgar)=kmatx{igar,jgar)+bsmat(i,ivar)
*1dd(i,J) *bsmat (j, jvar)
continue
kmatx (igar,jgar)=kmatx(igar,jgar)+
bmmat (ivar)*bmmat (jvar)*2.0*plt
end if
continue

as~{1dd/2G/2G-1ds/2G+1lss}*as+2pam~am/k/k or as"*as/2G +

do 30 idofn=1,ndof2
ivar=(inode-1)*ndof2+idofn
igar=(inode-1)*ndofn+2+idofn
do 30 jdofn=1,ndof2
jvar=(jnode-1)*ndof2+jdofn
jgar=(jnode-1)*ndofn+2+jdofn
kmatx (igar, jgar)=0.0
if(iiter.eqg.l.0r.ps.1lt.0.0) then
do 41 i=1,nstre
kmatx (igar, jgar)=kmatx(igar, jgar)+asmat(i,ivar)
*asmat (i, jvar)/factr/factr
continue
kmatx (igar, jgar)=kmatx(igar, jgar)+ammat(ivar)
*ammat (jvar)*alfa/factr/factr
+(asmat (2,ivar)-asmat (3, ivar))
* (asmat (2, jvar)-asmat(3,jvar))*trial
else
do 40 i=1,nstre
do 40 j=1,nstre
tmp=(1lss(i,j)*gl-2.0*1lds(i,]j))*gl+1ldd(i,]j)
kmatx (igar, jgar)=kmatx(igar,jgar)+asmat (i, ivar)
*tmp*asmat(j,jvar)
continue
kmatx(igar, jgar)=kmatx(igar,jgar)+2.*plt/factr/factr
*ammat (ivar)*ammat (jvar)*alfa*alfa
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+(asmat (2,ivar)-asmat(3,ivar))
* (asmat (2, jvar)—-asmat(3,jvar))*trial*gl
end if
30 continue

Chrkk bs*{-1dd/2G+1lds}as-2pbm~am/k or b**a
do 50 idofn=1,ndofl
ivar=(inode-1)*ndofl+idofn
igar=(inode-1)*ndofn+idofn
do 50 jdofn=1,ndof2
jvar=(jnode-1)*ndof2+jdofn
jgar=(jnode-1)*ndofn+2+jdofn
kmatx (igar,jgar)=0.0
if(iiter.eq.l.0r.ps.1t.0.0) then
do 61 i=1l,nstre
kmatx (igar, jgar)=kmatx(igar, jgar)-bmatx(i,ivar)
*amatx(i,jvar)/factr
61 continue
else
do 60 i=1,nstre
do 60 j=1,nstre
tmp=-1dd(i,j)+1lds(i,j)*qgl
kmatx (igar, jgar)=kmatx(igar,jgar)+bsmat (i, ivar)
*tmp*asmat (j,jvar)
60 continue
kmatx(igar, jgar)=kmatx(igar,jgar)-2.0*plt*alfa
*bmmat (ivar) *ammat (jvar) /factr
end if
kmatx (jgar, igar)=kmatx(igar,jgar)
50 continue
1000 continue

Ch*** transfer k to 1-d matrix
kount=0
do 2000 ievab=1,nevab
do 2000 jevab=ievab,nevab
kount=kount+1
if(iiter.eq.l.or.ps.1t.0.0) then
estif (kount)=estif (kount)+kmatx(ievab,jevab)*dvolu*gl
else
estif (kount)=estif (kount)+kmatx(ievab, jevab)*dvolu
end if
2000 continue
return
end

subroutine boundp(stifi,maxai,ifpre,nbdis,presc,nline,thick,

bline,ndofn, rho,coord,npoin, force,dispt, shear)
AR R R R RS R RS RS R R S R RRRR s Rtsssass sa s s s E L R

o]

*

c impose conditions of displacements
c and stresses for penalty function
c

c********************************************************
implicit double precision (a-h,o-z)
parameter (pent=1.0e30)
dimension stifi(*), ifpre(ndofn,*),maxai(*),idrec(2),
presc(3,*), bline(4,*),coord(npoin,2),force(*),
tmatx(4,4),vectr(4),dispt(*)
alfa=2.0*shear

kK x displacement condition
do 10 ibdis=1,nbdis
ipoin=presc(1l,ibdis)

idrec(1l)=(presc(l,ibdis)-ipoin+0.05)*10
tmp=idrec(1)/10.0
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idrec(2)=(presc(l,ibdis)~ipoin-tmp+0.005)*100
do 100 i=1,2
if(idrec(i).ne.0) then
iegns=iabsg(ifpre(i,ipoin))
ifpre(i,ipoin)=-iegns
idres=maxai(iegns)
stifi(idres)=stifi(idres)+2.0*rho
force(iegns)=force(ieqns)+2.0*rho* (presc(i+1,ibdis)
* -dispt(ieqgns))
end if
100 continue
10 continue
c
ChrukKkx stress conditions
c
do 20 iline=1,nline
ipotl=bline(1l,iline)
ipot2=bline(2,iline)
if(ifpre(3,ipotl).1lt.ifpre(3,ipot2)) then
iegqnl=ifpre(3,ipotl)
iegqn2=ifpre(3,ipot2)
cordlx=coord(ipotl,1)
cordly=coord(ipotl,2)
cord2x=coord(ipot2,1)
cord2y=coord(ipot2,2)
else
iegqnl=ifpre(3,ipot2)
ieqn2=ifpre(3,ipotl)
cordlx=coord(ipot2,1)
cordly=coord(ipot2,2)
cord2x=coord(ipotl,1)
cord2y=coord(ipotl,2)
end if

do 200 i=1,2

if(ifpre(i,ipotl).gt.O.or.ifpre(i,ipot2).gt.0) then
call transp(cordlx,cordly,cord2x,cord2y,tmatx,vectr,i,il)
if(ntype.eq.l)pload=bline(2+il,iline)/thick/alfa
if(ntype.eq.2)pload=bline(2+il,iline)/alfa

c **x for right-hand side

irowl=ieqgnl
irow2=ieqnl+l
irow3=ieqgn2
irow4=ieqgn2+1
prl=tmatx(1l,1)*dispt(irowl)+tmatx(1,2)*dispt(irow2)

* +tmatx(1,3)*dispt(irow3)+tmatx(1,4)*dispt(irowd)
pr2=tmatx(2,1)*dispt (irowl)+tmatx(2,2)*dispt(irow2)
* +tmatx(2,3)*dispt (irow3)+tmatx(2,4)*dispt(irowd)
pr3=tmatx(3,1)*dispt(irowl)+tmatx(3,2)*dispt(irow2)
* +tmatx(3,3)*dispt (irow3)+tmatx(3,4)*dispt(irowd)
pr4=tmatx(4,l)*dispt(irow1)+tmatx(4,2)*dispt(irowz)
* +tmatx(4,3)*dispt (irow3)+tmatx(4,4)*dispt (irow4)
C **k%x for stiffness matrix

idrll=maxai(iegnl)
idrl2=maxai(ieqgnl+l)+1
idrl3=maxai(iegn2)+(iegn2-ieqgnl)
idrl4=maxai(ieqgn2+1)+(iegn2-ieqnl)+1
idr22=idril2-1

idr23=idrl13-1

idr24=idrl4-1

idr33=maxai(ieqn2)
idr34=maxai(ieqgn2+1)+1
idr44=idr34-1

stifi(idrll)=stifi(idrll)+2.0*rho*tmatx(1,1)

stifi(idrl2)=stifi(idrl2)+2.0*rho*tmatx(1,2)
stifi(idrl3)=stifi(idrl3)+2.0*rho*tmatx(1,3)
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stifi(idrl4)=stifi(idrl4)+2.0*rho*tmatx(1,4)
stifi(idr22)=stifi(idr22)+2.0*rho*tmatx(2,2)
stifi(idr23)=stifi(idr23)+2.0*rho*tmatx(2,3)
stifi(idr24)=stifi(idr24)+2.0*rho*tmatx(2,4)
stifi(idr33)=stifi(idr33)+2.0*rho*tmatx(3,3)
stifi(idr34)=stifi(idr34)+2.0*rho*tmatx(3,4)
stifi(idrd44)=stifi(idr44)+2.0*rho*tmatx(4,4)

force(irowl)=force(irowl)+2.0*rho*(pload*vectr(l)-prl)
force(irow2)=force(irow2)+2.0*rho* (pload*vectr(2)-pr2)
force(irow3)=force(irow3)+2.0*rho*(pload*vectr(3)-pr3)
force(irow4)=force(irow4)+2.0*rho* (pload*vectr(4)-pr4)
end if
200 continue
20 continue
icl=ifpre(3,npoin)
ic2=ifpre(4,npoin)
stifi(maxai(icl))=stifi(maxai(icl))+pent
stifi(maxai(ic2))=stifi(maxai(ic2))+pent
return
end

subroutine bounda(stifi,maxai,ifpre,nbdis,presc,nline,thick,

bline,ndofn,rho,coord,npoin, force,dispt, shear)
c********************************************************

c

*

c impose conditions of displacements
c and stresses for penalty function
c

c********************************************************

implicit double precision (a-h,o-z)

parameter (pent=1.0e30)

dimension stifi(*), ifpre(ndofn,*),maxai(*),idrec(2),
presc(3,*), bline(4,*),coord(npoin,2),force(¥*),
tmatx(6,6),vectr(6),dispt(¥*)

c
twopi=6.283185307179586
alfa=2.0*shear
c
CrExx displacement condition
c
do 10 ibdis=1,nbdis
ipoin=presc(1l,ibdis)
rad=coord(ipoin,1)
idrec(1)=(presc(l,ibdis)~-ipoin+0.05)*10
tmp=idrec(1)/10.0
idrec(2)=(presc(l,ibdis)-ipoin-tmp+0.005)*100
do 100 i=1,2
if (idrec(i).ne.0) then
iegns=iabs(ifpre(i,ipoin))
ifpre(i,ipoin)=-ieqns
idres=maxai(iegns)
stifi(idres)=stifi(idres)+2.0*rho
force(ieqns)=force(ieqgns)+2.0*rho*
* (presc(i+l,ibdis)~-dispt(iegns))
end if
100 continue
10 continue
c
chhhkkk stress conditions
c

do 20 iline=1l,nline
ipotl=bline(l,iline)
ipot2=bline(2,iline)
if (ifpre(3,ipotl).lt.ifpre(3,ipot2)) then
ieqnl=ifpre(3,ipotl)
ieqn2=ifpre(3,ipot2)
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C *R%x

C kkx%
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cordlx=coord(ipotl,1)
cordly=coord(ipotl,2)
cord2x=coord(ipot2,1)
cord2y=coord(ipot2,2)

else

iegnl=ifpre(3,ipot2)
iegn2=ifpre(3,ipotl)
cordlx=coord(ipot2,1)
cordly=coord(ipot2,2)
cord2x=coord(ipotl, 1)
cord2y=coord(ipotl,2)

end if

do 200 i=1,2

if(ifpre(i,ipotl).gt.0.or.ifpre(i,ipot2).gt.0) then
call transa(cordlx,cordly,cord2x,cord2y,tmatx,vectr,i, il)
pload=bline(2+il,iline)/alfa

for right-hand side

irowl=ieqnl

irow2=ieqnl+l

irow3=ieqgnl+2

irow4=ieqgn2

irowS5=ieqn2+1

irowb6=ieqgn2+2

prl=tmatx(1l,1)*dispt(irowl)+tmatx(1,2)*dispt(irow2)
+tmatx(1,3)*dispt (irow3)+tmatx(1,4)*dispt(irowd)
+tmatx(1,5)*dispt (irow5)+tmatx(1,6)*dispt(irow6)

pr2=tmatx(2,1)*dispt(irowl)+tmatx(2,2)*dispt(irow2)
+tmatx(2,3)*dispt(irow3)+tmatx(2,4)*dispt(irowd)
+tmatx(2,5)*dispt(irows)+tmatx(2,6)*dispt(irowé)

pr3=tmatx(3,1)*dispt(irowl)+tmatx(3,2)*dispt(irow2)
+tmatx(3,3)*dispt(irow3)+tmatx(3,4)*dispt(irowd)
+tmatx(3,5)*dispt (irow5)+tmatx(3,6)*dispt(irow6)

pr4=tmatx(4,1)*dispt(irowl)+tmatx(4,2)*dispt(irow2)
+tmatx (4,3)*dispt(irow3)+tmatx(4,4)*dispt(irowd)
+tmatx(4,5)*dispt(irow5)+tmatx(4,6)*dispt(irow6)

pr5=tmatx(5,1)*dispt(irowl)+tmatx(5,2)*dispt(irow2)
+tmatx(5,3)*dispt(irow3)+tmatx(5,4)*dispt(irowd)
+tmatx(5,5)*dispt(irow5)+tmatx(5,6)*dispt (irowb)

pré6=tmatx(6,1)*dispt(irowl)+tmatx(6,2)*dispt(irow2)
+tmatx(6,3)*dispt (irow3)+tmatx(6,4)*dispt(irow4)
+tmatx(6,5)*dispt (irow5)+tmatx(6,6)*dispt(irow6)

for stiffness matrix

idrll=maxai(iegnl)
idrl2=maxai(iegnl+1)+1
idrl3=maxai(ieqnl+2)+2
idrl4=maxai(ieqgn2)+(iegn2-ieqgnl)
idrl5=maxai(ieqn2+1)+(iegn2-ieqnl)+1
idrl6=maxai(iegn2+2)+(iegn2-ieqnl)+2
idr22=idrl2-1

idr23=idrl3-1

idr24=idrl4-1

idr25=idrlS5-1

idr26=idrl6-1

idr33=idrl3-2

idr34=idri14-2

idr35=idr15-2

idr36=idrl16-2

idr44=maxai(iegn2)
idr45=maxai(iegn2+1)+1
idr46=maxai(ieqn2+2)+2
idr55=idr4s5-1

idr56=idr46-1

idr66=idr46-2

stifi(idrll)=stifi(idrll)+2.0*rho*tmatx(1,1)
stifi(idrl2)=stifi(idrl2)+2.0*rho*tmatx(1,2)
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stifi(idr13)=stifi(idrl3)+2.0*rho*tmatx(1,3)
stifi(idrl4)=stifi(idrl4)+2.0*rho*tmatx(1,4)
stifi(idr15)=stifi(idrl5)+2.0*rho*tmatx(1,5)
stifi(idr16)=stifi(idrl6)+2.0*rho*tmatx(1,6)

stifi(idr22)=stifi(idr22)+2.0*rho*tmatx(2,2)
stifi(idr23)=stifi(idr23)+2.0*rho*tmatx(2,3)
stifi(idr24)=stifi(idr24)+2.0*rho*tmatx(2,4)
stifi(idr25)=stifi(idr25)+2.0*rho*tmatx(2,5)
stifi(idr26)=stifi(idr26)+2.0*rho*tmatx(2,6)

¢ stifi(idr33)=stifi(idr33)+2.0*rho*tmatx(3,3)
stifi(idr34)=stifi(idr34)+2.0*rho*tmatx(3,4)
stifi(idr35)=stifi(idr35)+2.0*rho*tmatx(3,5)
stifi(idr36)=stifi(idr36)+2.0*rho*tmatx(3,6)

¢ stifi(idr44)=stifi(idrd4)+2.0*rho*tmatx(4,4)
stifi(idr45)=stifi(idr45)+2.0*rho*tmatx(4,5)
stifi(idr46)=stifi(idr46)+2.0*rho*tmatx(4,6)

¢ stifi(idr55)=stifi(idr55)+2.0*rho*tmatx(5,5)
stifi(idr56)=stifi(idr56)+2.0*rho*tmatx(5,6)

stifi(idr66)=stifi(idr66)+2.0*rho*tmatx(6,6)

force(irowl)=force(irowl)+2*rho*{pload*vectr{(2}-prl)}
force(irow2)=force(irow2)+2*rho* (pload*vectr(2y-pr)
force(irow3d)=force(irow3)+2*rho* (pload*vectr(3)-pr3)
force(irowd4)=force(irow4)+2*rho* (pload*vectr(4)-pr4)
force(irow5)=force(irow5)+2*rho* (pload*vectr(5)-prS)
force(irow6)=force(irow6)+2*rho* (pload*vectr(6)-pré)
end if
200 ¢Ontinue
20 continue
icl=ifpre(3,npoin)
ic2=ifpre(4,npoin)
ic3=ifpre(5,npoin)
c stifi(maxai(icl))=stifi(maxai(icl))+pent
stifi(maxai(ic2))=stifi(maxai(ic2))+pent
c stifi(maxai(ic3))=stifi(maxai(ic3))+pent
return
end
c
subroutine decomp (stiff ,maxai ,neqns ,ishot )
oA SRR RS SRS SRR SRR Ras 2 2t 2 s X R L 2]
c
c factorises (1l)*(d)*(1l) transpose of stiffness matrix
c
oA A X R RS SR SRR A RSS2 22 s s s XX R X T
implicit double precision(a-h,o0-z)
dimension stiff(*) ,maxai(¥*)

if(negns.eq.1l) return
do 200 iegns=1,neqns
imaxa=maxai (iegns)
lower=imaxa+1l
kuper=maxai(ieqgns+1)-1
khigh=kuper-lower
if (khigh) 304,240,210
210 ksize=ieqgns-khigh
icoun=0
juper=kuper
do 260 jhigh=1,khigh
icoun=icoun+l
juper=juper-1
kmaxa=maxai(ksize)
ndiag=maxai(ksize+1l)-kmaxa-1
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if(ndiag) 260,260,270
270 ncolm=min0 (icoun,ndiag)
count=0.
do 280 icolm=1,ncolm
280 count=count+stiff (kmaxa+icolm)*stiff (juper+icolm)
stiff (juper)=stiff (juper)-count
260 ksize=ksize+l
240 ksize=ieqgns
bsumm=0.
do 300 icolm=lower, kuper
ksize=ksize-1
jmaxa=maxai (ksize)
ratio=stiff(icolm)/stiff(jmaxa)
bsumm=bsumm+ratio*stiff (icolm)
300 stiff(icolm)=ratio
stiff (imaxa)=stiff (imaxa)-bsumm
304 if(stiff(imaxa)) 310,310,200
310 if(ishot.eq.0) go to 320
if(stiff(imaxa).eq.0) stiff(imaxa)=-1l.e-16
go to 200
320 write(8,2000) iegns,stiff(imaxa)
stop
200 continue
return
2000 format(//48h stop -~ stiffness matrix not positive definite ,//
*32h nonpositive pivot for equation ,i4,//10h pivot = ,e20.12 )
end
c
subroutine redbak (stiff ,force ,maxai ,neqns)
c**************************************************************
c
c to reduce and back substitute iteration vector
c
c**************************************************************
implicit double precision(a-h,o0-2)
dimension stiff(*) ,force(*) ,maxai(*)

do 400 iegns=1,neqns

lower=maxai (iegns)+1

kuper=maxai (ieqgns+1)-1

if (kuper-lower) 400,410,410
410 jegns=iegns

sumcc=0.0

do 420 icolm=lower, kuper

jegns=jegns-1

420 sumcc=sumcc+stiff (icolm)*force(jegns)
force(ieqns)=force(iegns)-sumcc

400 continue

(o]

do 480 iegns=1,negns
kmaxa=maxai(iegns)

480 force(ieqns)=force(ieqns)/stiff (kmaxa)
if(negns.eq.l) return
jegns=neqgns
DO 500 IEQNS=2,NEQNS
lower=maxai(jegns)+1
kuper=maxai(jegns+1)-1
if (kuper-lower) 500,510,510

510 kegns=jeqgns
do 520 icolm=lower, kuper
kegns=kegns-1

520 force(keqgns)=force(kegns)-stiff(icolm)*force(jeqns)
500 jegns=jeqgns-1

return

end
c

subroutine addban (stiff,maxai,estif,leqns,nevab)
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c*****************************************************************

c
c assembly of total stiffness vector

[o]
CRAKKKAKRANAAARARAKRARKRARAKNKARRKR A AR R AR KRR RKR AR R AR ARk hhk kA khkkkhkhh k%

implicit double precision(a-h,o0-2z)
dimension stiff(*),maxai(*),estif(*),legns(*)

kount=0
do 200 ievab=1,nevab
iegns=legns(ievab)
if(iegns) 200,200,100
100 imaxa=maxai (ieqgns)
kevab=ievab
do 220 jevab=1,nevab
jegns=leqns(jevab)
if(jegns) 220,220,110
110 ijegn=ieqgns-jegns
if(ijeqgn) 220,210,210
210 isize=imaxa+ijeqn
jsize=kevab
if(jevab.ge.ievab) jsize=jevab+kount
stiff(isize)=stiff(isize)+estif(jsize)
220 kevab=kevab+nevab-jevab
200 kount=kount+nevab-ievab
return
end

c
subroutine colmht (mhigh ,nevab ,legns )
c***********************************************************

c
c evaluates the column height of stiffness matrix

[+
c***********************************************************

implicit double precision(a-h,o0-z)
dimension legns(*) ,mhigh(*)
maxam=100000
do 100 ievab=1l,nevab
if(legns(ievab)) 110,100,110
110 if(legns(ievab)-maxam) 120,100,100
120 maxam=legns (ievab)
100 continue
do 200 ievab=1,nevab
iegns=leqgns(ievab)
if(iegns.eq.0) go to 200
jhigh=iegns-maxam
if(jhigh.gt.mhigh(iegns)) mhigh(iegns)=jhigh
200 continue
return
end
c

subroutine addres (maxai ,mhigh ,negns ,nwktl ,mkoun )
c************************************************************

c
c evaluates adresses of diagonal elements
c
C***********************************************************
implicit double precision(a-h,0-2)
dimension maxai(*) ,mhigh(¥*)
negnn=neqgns+1l
do 20 ieqgnn=1,negnn
20 maxai(iegnn)=0
maxai(l)=1
maxai(2)=2
mkoun=0
if (negns.eq.1l) go to 30
do 10 iegns=2,neqgns
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if (mhigh(iegns).gt.mkoun) mkoun=mhigh(iegns)

10 maxai (iegns+1)=maxai(ieqgns)+mhigh(iegns)+1
30 mkoun=mkoun+1

nwktl=maxai (negns+1l)-maxai(l)

return

end
c

subroutine sfr2(deriv,nnode,shape,exisp,etasp)
A AR AR AR SRR SRS REE sttt sttt sttt ittt sttt ittt ssss ]

c
c****x this subroutine evaluates shape functions and their derivatives
c for linear,quadratic lagrangian and serendipity

c isoparametric 2-d elements

c

c********************************************************************
implicit double precision(a-h,o-2)
dimension deriv(2,9) ,shape(9)
s=exisp
t=etasp
if(nnode.gt.4) go to 10
st=8*t

c*** ghape functions for 4 nodes element

shape(l)=(1-t-s+st)*0.25
shape(2)=(1-t+s-st)*0.25
shape(3)=(1+t+s+st)*0.25
shape(4)=(1l+t-s8-st)*0.2%5

c*** sghape functions derivatives

deriv(l,1)=(-1+t)*0.25
deriv(1l,2)=(+1-t)*0.25
deriv(1l,3)=(+1+t)*0.25
deriv(1l,4)=(-1-t)*0.25
deriv(2,1)=(-1+8)*0.25
deriv(2,2)=(-1-8)*0.25
deriv(2,3)=(+1+8)*0.25
deriv(2,4)=(+1-s)*0.25
return

10 if(nnode.gt.8) go to 30
82=8*2.0
t2=t*2.0
88=8*g
tt=t*t
st=s*t
sst=g*g*t
stt=s*t*t
st2=g*t*2

c*** ghape functions for 8 noded element

shape(1)=(-1.0+st+ss+tt-sst-stt)/4.0
shape(2)=(1.0-t-ss+sst)/2.0
shape(3)=(-1.0-st+ss+tt-sst+stt) /4.0
shape(4)=(1.0+s-tt-stt) /2.0
shape(5)=(-1.0+st+ss+tt+sst+stt) /4.0
shape(6)=(1.0+t-ss-sst)/2.0
shape(7)=(~-1.0-st+ss+tt+sst-stt) /4.0
shape(8)=(1.0-s-tt+stt) /2.0

c*** sghape function derivatives
deriv(l,1)=(t+s2-st2-tt)/4.0
deriv(1l,2)=-s+st

deriv(l,3)=(-t+s2-st2+tt) /4.0
deriv(1l,4)=(1.0-tt)/2.0
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30

Chr*

chKhk

20

*

deriv(1l,5)=(t+s2+st2+tt) /4.0
deriv(l,6)=-s-st
deriv(1l,7)=(-t+s2+st2-tt)/4.0
deriv(1l,8)=(-1.0+tt)/2.0
deriv(2,1)=(s+t2-88-8t2)/4.0
deriv(2,2)=(-1.0+s88)/2.0
deriv(2,3)=(-s+t2-ss+st2) /4.0
deriv(2,4)=-t-st
deriv(2,5)=(8+t2+s88+8t2) /4.0
deriv(2,6)=(1.0-88)/2.0
deriv(2,7)=(-s+t2+s8-8t2)/4.0
deriv(2,8)=-t+st

return

continue

ss=s8*g

st=8*t

tt=t*t

sl=s+1.0

tl=t+1.0

82=8*2.0

t2=t*2.0

89=s8-1.0

t9=t-~-1.0

Fortran Program MIXEP.F for Elasto-Plasticity

shape functions for 9 noded elemednt

shape(1)=0.25%s9*st*t9
shape(2)=0.5*(1.0-ss)*t*t9
shape (3)=0.25*51*st*t9
shape(4)=0.5*s*sl*(1.0-tt)
shape(5)=0.25*sl*st*t1l
shape(6)=0.5*(1.0-s5)*t*tl
shape(7)=0.25*%s9*st*tl
shape(8)=0.5*s*s9* (1.0-tt)
shape(9)=(1.0-ss)*(1.0-tt)

shape function derivatives

deriv(1,1)=0.25*t*t9*(-1.0+s2)
deriv(l,2)=-st*t9
deriv(1,3)=0.25%(1.0+s2)*t*t9
deriv(1,4)=0.5*(1.0+s2)*(1.0-tt)
deriv(1,5)=0.25*%(1.0+82)*t*tl
deriv(l,6)=-st*tl
deriv(1,7)=0.25*(-1.0+s2)*t*tl
deriv(1,8)=0.5%(-1.0+s2)*(1.0-tt)
deriv(1,9)=~s82*(1.0-tt)
deriv(2,1)=0.25*%(-1.0+t2)*s*s9
deriv(2,2)=0.5*%(1.0~-s8)*(-1.0+t2)
deriv(2,3)=0.25*%s*gl*(-1.0+t2)
deriv(2,4)=-st*sl
deriv(2,5)=0.25*g*g1*(1.0+t2)
deriv(2,6)=0.5*(1.0-ss)*(1.0+t2)
deriv(2,7)=0.25*s*s9*(1.0+t2)
deriv(2,8)=~st*s9
deriv(2,9)=-t2*(1.0-ss)
continue

return

end

subroutine jacob2(cartd,deriv,djacb,elcod,gpcod,ielem,kgaus,

nnode, shape)

ChkhkhhkhhhhhhhhhkhhhhrhhhhAhhhkhhhhhkrhkhk bk rkhhkhkhhhhkhhdhhhdhdhdhhhhhrhhhdx

(o]
Chk*x*
C
C

this subroutine evaluates the jacobian matrix and the cartestian

shape functon derivatives
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c**********************************************************************

implicit double precision(a-h,o0~-z)
dimension cartd(2,9),deriv(2,9),elcod(2,9),gpcod(2,*),shape(9),

* xjaci(2,2),xjacm(2,2)
c
c*** calculate coordinates of sampling point
c
do 2 idime=1,2
gpcod(idime, kgaus)=0.0
do 2 inode=1,nnode
gpcod (idime, kgaus)=gpcod(idime, kgaus)+elcod(idime, inode)
* *ghape (inode)
2 continue
c
c*** create jacobian matrix xjacm
c
do 4 idime=1,2
do 4 jdime=1,2
xjacm(idime, jdime)=0.0
do 4 inode=1,nnode
xjacm(idime,jdime)=xjacm(idime, jdime)+deriv(idime, inode)
* *elcod(jdime, inode)
4 continue

c*** calculate determinant and inverse of jacobian matrix

djacb=xjacm(1l,1)*xjacm(2,2)-xjacm(1l,2)*xjacm(2,1)
if(djacb) 6,6,8

6 write(8,600) ielem,djacb
stop
8 continue

xjaci(l,1l)=xjacm(2,2)/djacb
xjaci(2,2)=xjacm(1,1)/djacb
xjaci(l,2)=-xjacm(1l,2)/djacb
xjaci(2,1)=-xjacm(2,1)/djacb

c
c*** calculate cartesian derivatives
c
do 10 idime=1,2
do 10 inode=1,nnode
cartd(idime, inode)=0.0
do 10 jdime=1,2
cartd(idime, inode)=cartd(idime, inode)+xjaci(idime, jdime)*
* deriv(jdime, inode)
10 continue
600 format(//,36h program halted in subroutine jacob2,/,1llx,
* 22h zero or negative area, /5x,'element number',i5,
* 5x, 'djacb="',el2.5)
return
end
c

subroutine gaussq (ngaus,posgp,weigp)
c**********************************************************************

c
c*x** this subroutine sets up the gauss-legendre integration constants

c
C**********************************************************************
implicit double precision(a-h,o-2z)
dimension posgp(4) ,weigp(4)
if(ngaus.gt.2) go to 4

2 posgp(1)=-0.577350269189626
weigp(1)=1.0
go to 6

4 posgp(1)=-0.77459666924183

posgp(2)=0.0
weigp(1)=0.555555555555556
weigp(2)=0.888888888888889

176



Appendix E Fortran Program MIXEP.F for Elasto-Plasticity

6 kgaus=ngaus/2
do 8 igash=1,kgaus
jgash=ngaus+1l-igash
posgp(jgash)=-posgp(igash)
weigp(jgash)=weigp(igash)

8 continue
return
end

c

subroutine nodxyr (coord,lnods,nelem,nnode,npoin,nrads,ntype)
CHRAEA KA KA KRR AKRAAKRAKRAK AR KA AR AR AR IR IR AN Ak kA ke kkhkhhkkhhkkk
c
c*** interpolation of midside and center nodes
c
c*******************************************************************
implicit double precision(a-h,o-z)
dimension coord(npoin,*),lnods(nelem, *)

if(ntype.ne.3.or.nrads.eq.0) go to 40

cc

c*** change polar coordinates to cartisian
do 50 ipoin=1,npoin
raddi=coord(ipoin, 1)
theta=coord(ipoin,2)
theta=0.017453292*theta
coord(ipoin,l)=raddi*dsin(theta)

50 coord(ipoin,2)=raddi*dcos(theta)
c

40 if (nnode.eq.4) return

c

lnode=nnode-1
do 30 ielem=1l,nelem
c*** loop over each element edge
do 20 inode=1,nnode,2
if(inode.eq.9) go to 20
c*** compute the node number of the first node
nodst=1lnods(ielem, inode)
igash=inode+2
if(igash.gt.lnode) igash=1
c*** compute the node number of the last node
nodfn=1lnods(ielem, igash)
midpt=inode+l
c*** compute the node number of the intermediate node
nodmd=1lnods(ielem,midpt)
total=dabs(coord(nodmd, 1) )+dabs(coord(nodmnd, 2))
c*** if the coordinates of the intermediate node are both zero

c intermediate by a straight line
if(total.gt.0.0) go to 20
kount=1
10 coord(nodmd, kount ) =(coord (nodst, kount )+coord (nodfn,kount)) /2.0

kount=kount+1
if (kount.eq.2) go to 10

20 continue
30 continue
return
end
c
subroutine transp(cordlx,cordly,cord2x,cord2y,tmatx,vectr,
* key, opt)
A2 A SRR R AR SRR RRRRRRRERERRRR SRR iRt sttt s R R RS R R RS
c form the stress boundary matrix for normal stress
c and shear stress in "plane problem"

o2 AR RRR RS AR RREEE SRR ERRREER SRR R s s R s s 22 2 A RS S R X 20
implicit double precisioN(A-H,0-Z)
integer opt
parameter (err=1.0e-5)
dimension tmatx(4,4),vectr(4)
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12

*

Fortran Program MIXEP.F for Elasto-Plasticity

r=dsqrt ( (cordlx-cord2x)**2+(cordly-cord2y)**2)
t=(cord2x-cordlx)/r
s=(cord2y-cordly)/r
descide the normal and the tangent vector

opt=key
if(dabs(t).lt.err)opt=key
if(dabs(s).lt.err)opt=3-key
88=8*8
tt=t*t
st=s*t
if(opt.eq.l) then

vectr(l)=-t

vectr (3
vectr (4

)
)

14

+j)=vectr(i)*vectr(j)/r
continue

end if

if (opt.eq.2) then

vectr(l)=-8
vectr(2)=t
vectr(3)= 8
vectr(4)=-t
do 12 i=1,4
do 12 j=1,4
tmatx(i,j)=vectr(i)*vectr(j)/r

continue

end if

return

end

subroutine transa(cordlx,cordly,cord2x,cord2y,tmatx,vectr,
key, opt )

CRAAXARKR KA AAIA A A AR A AR AR AR R A h Ak AR Ak bk hkkhkkkhhkkhkkhhhhx
c form the stress boundary matrix for normal stress

c

and shear stress in "axisymmetric prroblem”

o222 R R R R R R RS R RRSRRRRRE RS i s 2 a2 s 2 XXX R R 2 2

Chxrkkk

implicit double precision(a-h,o-z)
integer opt
double precision 1
parameter (err=1.0e-5,pent=1.0e20)
dimension tmatx(6,6),v(6),vectr(6),p(4),w(4)
twopi=6.283185307179586
ng=3
call gaussq(ng,p,w)
r=dsqrt ( (cordlx-cord2x)**2+(cordly-cord2y)**2)
t=(cord2x-cordlx)/r
s=(cord2y-cordly)/r
descide the normal and the tangent vector
opt=key
if(dabs(s).lt.err)opt=3-key
ss=sg*s
tt=t*t
st=s*t

do 20 i=1,6

vectr(i)=0.0
do 20 j=1,6
tmatx(i,3j)=0.0

do 10 ig=1l,ng
1=0.5*p(ig)
x=(cordlx+cord2x) /2.0+(cord2x-cordlx)*1l
djcb=0.5*twopi*r*w(ig)

if (dabs(x).lt.err) then
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ax=pent

else
ax=1.0/x

end if

if(opt.eq.l) then
v(l)=-t/r*x+tt*(0.5-1)
v(2)=-8/r*x
v(3)= 88*(0.5-1)
v(4)= t/r*x+tt*(0.5+1)
v(5)= 8/r*x
v(6)= 88*(0.5+1)

do 11 i=1,6
vectr (i)=vectr(i)+v(i)*djcb
do 11 j=1,6
11 tmatx(i,j)=tmatx(i,j)+v(i)*v(j)*djcb*ax
end if
c
if(opt.eq.2) then
v(1l)==8/r*x+st*(0.5-1)
v(2)= t/r*x
v(3)=-st*(0.5-1)
v(4)= s/r*x+st*(0.5+1)
v(5)==t/r*x
v(6)=-st*(0.5+1)
do 12 i=1,6
vectr(i)=vectr(i)+v(i)*djcb
do 12 4=1,6
12 tmatx (i, j)=tmatx(i,j)+v(i)*v(j)*djcb*ax
end if
10 continue
return
end
c
subroutine mvalue (lnods, coord, x , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp,val, props, nmats, matno, weigp,
* presc, bline, ifpre, nbdis, nline,rho,iiter)
ChRhhkhhkhkhkAkhkhk XAk hhkhkhkhhkhhhkhhhkhhhhhhkhhhkhkhhhkrhhkhkxhdhhrhhhhdd
c*
c* calculate m from obtained stranes and
c* stresses for each gauss point
c*

oA A2 2R R RS R R R Rt a Rt Attt AR nE S Rk
implicit double precision(a-h,o-2z)
double precision k
parameter (nmax=4000,err=1.0e-5,pent=1.0e20)
dimensioncoord(np, *),1lnods(ne, *),elcod(2,9),cartd(2,9),shape(9),

* gpcod(2,2700) ,deriv(2,9),amatx(5,30),bsmat(5,20),
* am(30),bmatx(5,20),bm(20),asmat(5,30),dispt (nmax),
* posgp(*), weigp(*),props(nmats,5),matno(¥*),
* ifpre(ndofn, *),presc(3,*),bline(4,*),
* id(2),£(2),di(5),dit(5),si(5),sd(5)
common stres(5,4500),strin(5,4500),strdd(5,4500)
common /dfunc/pcom(nmax), xicom(nmax), ncom
plt=50.0
do 100 j=1,ncom
dispt(j)=pcom(j)+x*xicom(j)
100 continue
c
twopi=6,283185307179586
ndofl=2
ndof2=2
e0=props(1, 1)
pO=props (1, 2)
g0=e0/2.0/(1.0+p0)
if(ntype.eq.3)ndof2=3
c
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c*** loop over each element
val=0.0
kcont=0
do 500 ie=1,ne
lprop=matno(ie)
young=props (lprop, 1)
poiss=props(lprop, 2)
thick=props(lprop, 3)
y0 =props(lprop, 4)*0.816497
y =props(lprop, 5)*0.816497
shear=young/2.0/(1.0+poiss)
xkcon=young/3.0/(1.0-2.0*poiss)
c
c*** evaluate the coordinates of the element nodal points
c
do 10 inode=1l,nnode
lnode=1nods(ie, inode)
do 10 idime=1,ndime
10 elcod(idime,inode)=coord(lnode, idime)

do 500 igaus=1,ngaus

do 500 jgaus=1,ngaus
kcont=kcont+1
xpoin=posgp(igaus)
ypoin=posgp(jgaus)

call sfr2 (deriv,nnode, shape,xpoin, ypoin)
call jacob2 (cartd,deriv,djacb,elcod,gpcod,
* ie, kcont,nnode, shape)

radiu=gpcod (1, kcont)
c
c*** evaluate the a,b,as,bs,am and bm matrices
c
plasp=poiss
if(ntype.ne.3) then
call matrip(amatx, bmatx, asmat, bsmat, am, bm,
* radiu, shape, cartd, plasp, nnode, ntype, 0)
else
call matria(amatx, bmatx, asmat, bsmat, am, bm,
* radiu, shape, cartd, plasp, nnode, ntype, 0)
end if
do 25 istre=1,nstre
stres(istre,kcont)=0.0
sd(istre)=0.0
do 21 jevab=1,nnode*ndof2
jnode=(jevab-1) /ndof2+1
jdofn=jevab+2-(jnode-1)*ndof2
jpoin=lnods(ie, jnode)
jpott=(jpoin-1)*ndofn+jdofn
stres(istre,kcont)=stres(istre,kcont)+2.0*g0
* *amatx (istre,jevab)*dispt (jpott)
sd(istre)=sd(istre)+2.0*g0
* *amatx (istre, jevab)*xicom(jpott) *x
21 continue
sigma=(stres(1l,kcont)+stres(4,kcont)+stres(5,kcont))/3.0
si(l)=stres(l,kcont)-sigma
si(2)=stres(2,kcont)
si(3)=stres(3,kcont)
si(4)=stres(4,kcont)-sigma
si(5)=stres(5,kcont)-sigma
ss=dsqrt(times(si,si))
psO=ss/y0-1.0
strin(istre,kcont)=0.0
strdd(istre, kcont)=0.0
do 20 ievab=1,nnode*ndofl
inode=(ievab-1)/ndofl+l
idofn=ievab-(inode-1)*ndofl
ipoin=lnods(ie, inode)
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ipott=(ipoin-1)*ndofn+idofn
strin(istre, kcont)=strin(istre, kcont)
* +bmatx (istre,ievab)*dispt (ipott)
strdd(istre, kcont)=strdd(istre, kcont)
* +bmatx(istre,ievab)*xicom(ipott)*x
c * +bmatx (istre,ievab)*dispt (ipott)
20 continue
25 continue

C *k* evaluate the residual strain on each Gauiss ponit

if(iiter.eq.l.and.ps0.ge.0.0) goto 340
strin(l,kcont)=strin(1l,kcont)-(stres(1l,kcont)-poiss*

* (stres(4,kcont)+stres(5,kcont)))/young
strin(2,kcont)=strin(2,kcont)~-(stres(2,kcont)

* +stres(3,kcont))/4.0/shear
strin(3,kcont)=strin(2,kcont)
strin(4,kcont)=strin(4,kcont)-(stres(4,kcont)-poiss*

* (stres(1l,kcont)+stres(5,kcont)))/young
strin(5,kcont)=strin(5,kcont)-(stres(5,kcont)-poiss¥*

* (stres(1,kcont)+stres(4,kcont)))/young
if(ntype.eq.1l) then

strin(5,kcont)=strin(5,kcont)+poiss*(stres(1,kcont)

* +stres(4,kcont))/young
end if

C **x evaluate the residual incremental strain on each Gauiss ponit

strdd (1, kcont)=strdd(1l,kcont)-(sd(1l)-poiss*
* (sd(4)+sd(5)))/young
strdd (2, kcont)=strdd(2,kcont)—-(sd(2)+sd(3))/4.0/shear
strdd(3,kcont)=strdd (2, kcont)
strdd (4, kcont)=strdd(4,kcont)-(sd(4)-poiss*
* (sd(1)+sd(5)))/young
strdd(5,kcont)=strdd(5,kcont)-(sd(5)-poiss*
* (sd(1)+sd(4)))/young
if (ntype.eq.l) then
strdd (5, kcont)=strdd(5,kcont)+poiss*(sd(1)
* +sd(4))/young
end if
340 continue

epcilt= strin(l,kcont)+strin(4,kcont)+strin(5,kcont)
epcild= strdd(1l,kcont)+strdd(4,kcont)+strdd(5,kcont)
dit(l)=strin(l,kcont)-epcilt/3.0
di(l)=strdd(1l,kcont)-epcild/3.0
dit(2)=strin(2,kcont)

di(2)=strdd(2,kcont)

dit(3)=strin(3,kcont)

di(3)=strdd(3,kcont)

dit (4)=strin(4,kcont)-epcilt/3.0
di(4)=strdd(4,kcont)-epcild/3.0
dit(5)=strin(5,kcont)-epcilt/3.0
di(5)=strdd(5,kcont)-epcild/3.0

k=yO+y*dsqrt (times(dit,dit))
dd=dsqrt(times(di,di))
ps=ss/k-1.0
if(ps.ge.0.0)then
val=val+(-times(si,di)+dd*ss+plt*(ps*ps+epcild*epcild))
* *djacb*weigp(igaus)*weigp(jgaus)
else
val=val+(shear*times(dit,dit)+0.5*xkcon*epcilt*epcilt)
* xdjacb*weigp(igaus)*weigp(jgaus)
end if
500 continue
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Ch*kk displacement penalty terms
c
do 60 ibdis=1,nbdis
ipoin=presc(1l,ibdis)
djacb=1.0
c if (ntype.eq.3)djacb=twopi*coord(ipoin,1)
id(1l)=(presc(l,ibdis)-ipoin+0.05)*10
tmp=id(1)/10.0
id(2)=(presc(l,ibdis)-ipoin-tmp+0.005)*100
do 70 i=1,2
if(id(i).ne.0) then
iegns=iabs(ifpre(i,ipoin))
ifpre(i,ipoin)=-ieqgns
val=val+rho*(presc(i+l,ibdis)-dispt(ieqns))**2*djacb
end if
70 continue
60 continue
c
CHA*AX% stress penalty terms
c
do 80 1iline=l,nline
ipotl=bline(l,iline)
ipot2=bline(2,iline)
if(ifpre(3,ipotl).lt.ifpre(3,ipot2)) then
iegnl=ifpre(3,ipotl)
iegn2=ifpre(3,ipot2)
cordlx=coord(ipotl, 1)
cordly=coord(ipotl,2)
cord2x=coord(ipot2,1)
cord2y=coord(ipot2,2)
else
ieqnl=ifpre(3,ipot2)
iegn2=ifpre(3,ipotl)
cordlx=coord(ipot2,1)
cordly=coord(ipot2,2)
cord2x=coord (ipotl,1)
cord2y=coord(ipotl,2)
end if

d=dsqgrt ( (cordlx-cord2x) **2+(cordly-cord2y) **2)

r=0.5*(cordlx+cord2x)

c=(cord2x-cordlx) /d

s=(cord2y-cordly)/d

dfx=dispt(iegn2)-dispt(ieqgnl)

dfy=dispt (ieqn2+1)-dispt(ieqnl+1l)

if(ntype.eq.3) then
djacb=twopi*r*d
cc=c*c
gsg=s*g
sc=s*c
if (dabs(cordlx).lt.err) cordlx=pent
if (dabs(cord2x).lt.err) cord2x=pent
fct=0.5*(dispt(ieqnl+2) /cordlx+dispt(ieqn2+2)/cord2x)
fxx=0.5*(dispt (ieqgnl) /cordlx+dispt(ieqn2)/cord2x)
f(1)=((dfx*c+dfy*s)/d + ss*fct+cc*fxx)
f(2)=((dfx*s-dfy*c)/d + sc*(fxx-fct))

else
f(1)=(dfx*c+dfy*s)/d
f(2)=(dfx*s-dfy*c)/d
djacb=d

end if

if (ntype.eqg.3.and.iline.eq.1l) goto 80

do 90 k=1,2
if(ifpre(k,ipotl).gt.0.or.ifpre(k,ipot2).gt.0) then
i=k
if(dabs(s).lt.err)i=3-k
pload=bline(2+i,iline)/2.0/g0
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val=val+rho* (pload~f(i))**2*djacb

end if
90 continue
80 continue
return
end

subroutine brent(ax, bx, cx, tol, xmin, vm, rho,

* lnods, coord, nnode, nevab, ndofn,

* np, ne, ndime, ntype, nstre, ngaus,
* props, nmats, matno, weigp, posgp,

* presc, bline, ifpre, nbdis, nline,iiter)

ChAIhhRA kAR AR IR AN KA KA AR AR IRk Ak khkhhhkkhhkhkhkhkkhkkhhxhkk

c
c brent's method to find a minimum
c
el AR R SRR Rttt st st st i s s st st Rt s R s Rt R R R 2]
implicit double precision(a-h,o-z)
parameter (itmax=100, cgold=0.3819660, zeps=1.0e-4,nmax=4000)
dimension coord(np,*),lnods(ne, *),posgp(*),weigp(*),
* props(nmats,5), matno(*), ifpre(ndofn,*),
* presc(3,*), bline(4,*)
common /dfunc/pcom(nmax), xicom(nmax), ncom
common stres(5,4500),s8trin(5,4500),strdd(5,4500)
a=dmin(ax,cx)
b=dmax (ax, cx)

v=bx
W=V
x=v
e=0.0
c fx=func(x)
call mvalue (lnods, coord, x , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fx , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)
fv=£fx
fw=fx

do 100 iter=1,itmax
xm=0.5% (a+b)
toll=tol*dabs(x)+zeps
tol2=2.*toll
if (dabs(x-xm).le.(tol2-0.5*(b-a))) goto 3
if(dabs(e).gt.toll) then
r=(x-w)*(fx-£fv)
g=(x-v)*(fx-£fw)
P=(X-V) *q- (X-w) *r

q=2.0*(q-r)
if(q.gt.0.0) p=-p
g=dabs(q)
etemp=e
e=d
if(dabs(p).ge.dabs(0.5*q*etemp).or.p.le.g*(a-x).or.
* p.ge.q*(b-x)) goto 1
Ch** the above conditons determine the acceptability of the
c parabolic fit. here it is ok
d=p/q
u=x+d
if(u-a.lt.tol2.or.b-u.lt.tol2) d=sign(toll, xm-x)
goto 2
end if
1 if(x.ge.xm) then
e=a-x
else
e=b-x
end if
d=cgold*e
2 if(dabs(d).ge.toll) then
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u=x+d
else
u=x+sign(toll,d)
end if
c fu=func(u)
call mvalue (lnods, coord, u , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
posgp, fu , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)

*

if (fu.le.fx)then
if(u.ge.x) then
a=x
else
b=x
end if
v=w
fv=fw
w=Xx
fw=£fx
Xx=u
fx=fu
else
if(u.lt.x) then
a=u
else
b=u
end if

if(fu.le.fw.or.w.eq.x) then
v=w
fv=~fw
w=u
fw=fu
else if(fu.le.fv.or.v.eqg.x.or.v.eq.w) then
v=u
fv=£fu
end if
end if
100 continue
pause 'brent exceed maximum iterations.'
3 xmin=x
vm=£x
return
end

subroutine mnbrak(ax,bx,cx,fa,fb, fc, rho ,

* lnods, coord, nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* props, nmats, matno, weigp, posgp,
* presc, bline, ifpre, nbdis, nline,iiter)
implicit double precision(a-h, o-z)
parameter( gold=1.618034, glimit=100., tiny=1.0e-20,nmax=4000)
dimension coord(np, *),lnods(ne,*),posgp(*),weigp(*),
* props(nmats,5), matno(*),ifpre(ndofn, *),
* presc(3,*), bline(4,*)
common /dfunc/pcom(nmax), xicom(nmax), ncom
common stres(5,4500),strin(5,4500),strdd(5,4500)
call mvalue (lnods, coord, ax , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fa , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)
call mvalue (lnods, coord, bx , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp,fb , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)

if(fb.gt.fa) then
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dum=ax
ax=bx
bx=dum
dum=£fb
fb=fa
fa=dum
end if
cx=bx+gold* (bx-ax)
call mvalue (lnods, coord, cx , nnode, nevab, ndofn,

* np, ne, ndime, ntype, nstre, ngaus,

* posgp, fc , props, nmats, matno, weigp,

* presc,bline, ifpre, nbdis, nline, rho,iiter)
1 if(fb.ge.fc) then

r=(bx-ax)*(fb-fc)
g=(bx—-cx)*(fb-fa)

u=bx-( (bx-cx)*g-(bx-ax)*r)/(2.*sign(dmax(dabs(g-r),tiny),g~r))
ulim=bx+glimit* (cx-bx)
if ((bx-u)*(u-cx).gt.0) then

call mvalue (lnods, coord, u , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fu , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)
if(fu.lt.fc) then
ax=bx
fa=fb
bx=u
fb=fu
goto 1
else if(fu.gt.fb) then
cxX=u
fc=fu
goto 1
end if
u=cx+gold* (cx-bx)
call mvalue (lnods, coord, u , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fu , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)
else if((cx-u)*(u-ulim).gt.0) then
call mvalue (lnods, coord, u , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fu , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)
if(fu.lt.fc) then
bx=cx
cx=u
u=cx+gold* (cx-bx)
fb=fc
fc=fu
call mvalue (lnods, coord, u , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fu , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)
end if
else if((u-ulim)*(ulim-cx).ge.0) then
u=ulim
call mvalue (lnods, coord, u , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fu , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)
else
u=cx+gold* (cx-bx)
call mvalue (lnods, coord, u , nnode, nevab, ndofn,
* np, ne, ndime, ntype, nstre, ngaus,
* posgp, fu , props, nmats, matno, weigp,
* presc,bline, ifpre, nbdis, nline, rho,iiter)

end if
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ax=bx
bx=cx
cx=u
fa=fb
fb=fc
fc=fu
goto 1
end if
return
end

subroutine differ2(si,di,dit,dldd,dlss,dlds,dldl,dlsl,y0,y,ps)

c************************************************************

C
[+
C
(o]

20

calculate the second order differential of 1

on each gauss point by analytical method
------- 3 mar. 1992

o3 A A AR AR SRR RS SRRl s s s s 222222222223

implicit double precision(a-h,o-z)
double precision k
dimension di(5),dit(5),si(5),fdi(5),fdti(5),£fsi(5),
pdi(5),psi(5),dldd(5,5),dlss(5,5),dlds(5,5),
dldl(5),dlsl(5)
plt=50.0
fs=dsqrt(times(si,si))
£fs2=1.0/fs/fs
fd=dsqgrt(times(di,di))
fd2 =1.0/fd/fd
fdt=dsqgrt(times(dit,dit))
fdt2=1.0/fdt/fdt
k=y*fdt+y0
d= k*fd
ps=fs/k-1.0
if(ps.1t.0.0)return
do 10 i=1,5
fdi(i)=di(i)/fd
fdti(i)=dit(i)/fdt
fsi(i)=si(i)/fs
pdi(i)=-y*fs*fdti(i)/k/k
psi(i)=fsi(i)/k

dldl(1)——sx(1)+f5*fdl(1)+2 O*plt*ps*pdi(i)
dlsl(1)—-d1(1)+fd*f51(1)+2 O*plt*ps*psi(i)
continue

do 20 i=1,5
do 20 j=i,5

fes=(fs*delt (i,j)-Si(i)*fsi(j))*fs2
fdd=(fd*delt (i, j)-di(i)*fdi(j))*£fd2
fddt=(fdt*delt(i,]j)-dit(i)*£fdti(j))*fdt2
pdd=y*fsx (2.0*y*fdti(i)*fdti(j)-k*fddt)/k/k/k
pss=£fss/k
pds=-y*fdti(i)*£si(J)/k/k

dldd(i,)j)=fs*fdd+2*plt* (ps*pdd+pdi(i)*pdi(j))
dlss(i,)j)=fd*fss+2*plt* (ps*pss+psi(i)*psi(j))
dlds(i,j)=-delt(i,j)+fdi(i)*fsi(j)+2*plt*(ps*pds+
pdi(i)*psi(j))
dldad(j,i) dldd(l,])
dlss(j,i)=dlss(i,J)
dlds(j,1i)=dlds(i,])

continue

return

end

subroutine differl(force,bsmat,asmat,ammat,bmmat, lnods,nelem,
nnode,ndofn, nstre,ntype, ielem,dvolu,dldl,dlsl,
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* epcild,epcilt,shear,xkcon, ps,dt)
c********************************************************************
c
c this routine is to calculate the first derivative
c of L at each gauss point and form the 'force' term
c

CARARRAEKER KA AEKR KRR R AR KRR AR T AKRAKIR AR IR KRR AR R R AR Rk hk kA k kX kK
implicit double precision(a-h,o0-z)
dimension lnods(nelem,*), asmat(5,*),bsmat(5,*), ammat(*),
* bmmat (*),dld1l(*),dlsl(*),force(*),dt(*)
plt=50.0
ndofl=2
ndof2=2
if(ntype.eq.3) ndof2=3
gl=2.0*shear
do 150 inode=1, nnode
ndofi=(lnods(ielem,inode)-1)*ndofn
do 165 idofn=1,ndofl
igar=ndofi+idofn
ivar=(inode-1)*ndofl+idofn
do 160 istre=1,nstre
if(ps.ge.0.0) then
force(igar)=force(igar)-dldl(istre)*bsmat (istre, ivar)

* *dvolu
else
force(igar)=force(igar)-dt(istre)*bsmat (istre,ivar)
* *glxdvolu
end if
160 continue
if(ps.ge.0.0)then
force(igar)=force(igar)-2.0*plt*epcild*bmmat (ivar)*dvolu
else
force(igar)=force(igar)-xkcon*epcilt*bmmat (ivar)*dvolu
end if
165 continue

do 175 jdofn=1,ndof2
jgar=ndofi+ndofl+jdofn
jvar=(inode-1)*ndof2+jdofn
do 170 jstre=l,nstre
if(ps.ge.0.0)then
tmp=dlsl(jstre)*gl-dldl(jstre)
force(jgar)=force(jgar)-asmat(jstre,jvar)*tmp*dvolu
else
force(jgar)=force(jgar)+asmat (jstre, jvar)
* *dt (jstre)*dvolu*gl
end if
170 continue
if(ps.ge.0.0)then
force(jgar)=force(jgar)+2.0*plt*epcild*ammat (jvar)
* *gl/xkcon*dvolu
else
force(jgar)=force(jgar)+epcilt*ammat (jvar)*dvolu*gl
end if
175 continue
150 continue
return
end

function times(a,b)
implicit double precision(a-h,o-z)
dimension a(5),b(5)
times=0.0
do 10 i=1,5
10 times=times+a(i)*b(i)
return
end
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function delt(i,j)
double precision delt

delt=0.0
if(i.eq.j)delt=1.0
return
end
c
function sign(a,b)
implicit double precision(a-h, o-z)
if(b.gt.0.0) then
sign=dabs(a)
else
sign=-dabs(a)
end if
return
end
c
function dmax(a,b)
implicit double precision(a~h, o-2z)
if(a.gt.b) then
dmax=a
else
dmax=b
end if
return
end
c

function dmin(a,b)
implicit double precision(a-h, o-z)
if(a.lt.b) then
dmin=a
else
dmin=b
end if
return
end

188



References

REFERENCES

10.

11.

12.

Acheson, D. J., Elementary Fluid Dynamics, Clarendon Press,
Oxford(1990).

Alcini, W. V., Experimental Measurement of Liquid Nugget Heat
Convection in Spot Welding, Welding Journal, ppl77-180(1990).

Alcini, W. V., A Measurement Window into Resistance Welding, Welding
Journal, pp47-50(1990).

Argyris, J. H., Energy Theorems and Structural Analysis,
Butterworth(1960).

Atkin, R. J. and Fox, N, An Introduction to the Theory of Elasticity,
Longman, London(1980).

Atluri, S. N., Kobayashi, A. S. and Nakagaki, M., Application of an
Assumed Displacement Hybrid Element Procedure to Two-Dimensional
Problems in Fracture Mechanics, AIAA/ASME/SAE Fifteenth Structures,
Structural Dynamics and Materials Conference, April 17-19, Las Vegas(1974).
Bentley, K. P., Greenwood, J. A., Knowlson, P. and Baker, R. G.,
Temperature distributions in spot welds, BWRA REPORT, pp613-619
(1963).

Bercovier, M., Finite Elements for Incompressible or Nearly
Incompressible Materials, Proceedings of the ADINA Conference,
Massachusetts Institute of Technology,Cambridge, pp.384-400(1977).
Bolton, W., Residual stresses in and around spot welds, British Welding
Journal, Vol 8, pp57-60(1961).

Brent, R. P., Algorithms for Minimization without Derivatives, England
Cliffs, N. J.:Prentice-Hall(1973).

Brezzi, F and Bathe, K. J., A Discourse on the Stability Conditions for
Mixed Finite Element Formulations, Computer Methods in Applied
Mechanics and Engineering, Vol. 82, pp.27-57(1990).

Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods,

189



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

References

Springer, London(1991).

Browne, D., Computer Model of Nugget Formation in the Spot-Welding
of Aluminium, A report prepared for Alcan International(1991).

Browne, D., Computer Modelling of Aluminium Spot Welding, A report
prepared for Alcan International(1992).

Chandler, H. W., A Finite Element Implementation of a Mixed Extremum
Principle for Linear Elasticity, Communications in Applied Numerical
Methods, Vol. 8, pp.9-15(1992).

Chandler, H. W., Preparation of a Report on Mechanical Simulation of
Spot-Welding, Private conversation with Jian Wen(1993).

Chandler, H. W., First-order Stress Functions for Axisymmetric problems,
Private conversation with Jian Wen(1991).

Chandler, H. W., Homogeneous and Localised Deformation in Granular
Materials: a Mechanic Model, Int. J. Engng Sci., Vol. 28, pp.719-
734(1990).

Chandler, H. W., A Plasticity Theory Without Drucker’s Postulate,
Suitable for Granular Materials, J. Mech. Phys. Solids. Vol 77(1985).
Chavent, G., Cohen, G., Jaffre, J. Eymard, R., Dominique, R. and Weiil, L.,
Discontinuous and Mixed Finite Elements for Two-Phase Incompressible
Flow, SPE Reservoir Engineering (Society of Petroleum Engineers), Vol.5,
No.4, pp567-575(1990).

Cescotto, S. and Charlier, R., Frictional Contact Finite Elements Based on
Mixed Variational Principles, International Journal for Numerical Methods
in Engineering, Vol.36, pp.1681-1701(1993).

Cho, H. S. and Cho, Y. J., A Study of the Thermal Behaviour in
Resistance Spot Welds, Weld Journal, pp236-244(1989).

Chouchaoui, B., Shirazi-Adl, A., Mixed Finite Element Formulation for the
Stress Analysis of Composite Structures, Computers and Structures, Vol.
43, No.4, pp687-698(1992).

Clough, R. H., The Finite Element in Plane Stress Analysis, Proceedings
of the Second Conference on Electronic Computation, ASCE, pp.345-
378(1960).

190



25.
26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

References

Crandall, S. H., Engineering Analysis, McGraw-Hill(1956).

Day, M. L. and Yang, T. Y., A mixed Variational Principle for Finite
Element Analysis, International Journal for Numerical Methods in
Engineering, Vol. 18, pp.1213-1230(1982).

de Saint-Venant, B., Comptes Rendus Acad. Sci. Paris, Vol. 70(1870).
Desai, C. S. and Lightner, J. G., Mixed Finite Element Procedure for Soil-
Structure Interaction and Construction Sequences, International Journal for
Numerical Methods in Engineering, Vol. 21, pp.801-824(1985).

Drucker, D. C., A More Fundamental Approach to Plastic Stress-strain
Relation, Proc. 1st National Congress of Applied Mechanics, ASME, Chicago,
pp-487-491(1951).

Dunham, R. S. and Pister, K. S., A Finite Element Application of the
Hellinger-Reissner Variational Theorem, Proceedings of the Conference on
Matrix Methods in Structural Mechanics, AFFDL-TR-68-150, pp471-(1968).
Finlayson, B. A., The Method of Weighted Residuals and Variational
Principles, Academic Press(1972).

Fletcher, R., Practical Methods of Optimisation, 2nd Edition, Wiley(1987).
Fraeijs de Veubeke, B., Displacement and equilibrium models in finite
element method, Chapter 9 of Stress Analysis, eds O. C. Zienkiewicz and C.
S. Holister, Wiley, pp.145-242(1965).

Goleniewski, G., Low-order Mixed Method finite elements in non-linear
elasticity., Communications in Applied Numerical Methods, Vol. 7, No. 1,
pp-57-63(1991).

Gould, J. E., An examination of nugget development during spot welding,
using both experimental and analytical technique, Welding Journal, pp1-
10(1987).

Greenwood, T. A., Temperature in Spot Welding, BWRA Report, pp3 16-
322(1961).

Han, Z., Orozco, J., Indacochen, J. E. and Chen, C. H., Resistance Spot
Welding: A Heat Transfer Study, Welding Journal, pp363-371(1989).
Hellan, K., Analysis of Elastic Plates in Flexure by a Simplified Finite

Element Method, Acra Polytechnica Scandinavica, Civil Engineering Series

191



39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

References

No. 46(1967).

Hellinger, E., Der Allgemeine Ansatz der Mechanik der Kontinua,
Encyclopedie der Mathematischen Wissenschafien, Vol. 4, Part 4, pp.602-
694(1914).

Herrmann, L. R., A Bending Analysis of Plates, Proceedings of the
Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-66-80,
pp. 577-604(1966).

Heyliger, P. R. and Kriz, R. D., Stress Intensity Factors by Enriched
Mixed Finite Elements, International Journal for Numerical Methods in
Engineering, Vol. 28, pp.1461-1473(1989).

Hill, R., The Mathematical Theory of Plasticity, Oxford at Clarendon
Press(1950).

Houchens, A. F., Page, R. E. and Yang, W. H., Numerical modelling of
resistance spot welding, Numerical Modelling of Manufacturing Processes,
eds. Jones, R. F., Armin, H. and Fong, J. T., presented at ASME WAM,
pp117-129(1977).

Huy, H. C., On Some Variational Principles in the Theory of Elasticity and
the Theory of Plasticity, Scientia Sinica, Vol. 4, pp.33-45(1955).

Hutton, S. G., Exeter, M. K., Fussy, D. E., Webster, J. J. and Rigon, C.,
Primitive Variable Finite Element Formulations for Steady Viscous Flows,
International Journal for Numerical Methods in Engineering, Vol. 15, pp.209-
223(1980).

Jackson, C. P. and Cliffe, K. A., Mixed Interpolation in Primitive Variable
Finite Element Formulations for Incompressible Flow, International Journal
Jfor Numerical Methods in Engineering, Vol. 17, pp.1659-1688(1981).
Jenson, S., P-version of Mixed Finite Element Methods for Stokes-like
Problems, Computer Methods for Applied Mechanics and Engineering,
Vol.101, pp.27-41(1992).

Jetteur, PH. and Cescotto, S., A Mixed Finite element for the Analysis of
Large Inelastic Strains, International Journal for Numerical Methods in
Engineering, Vol. 31, pp.229-239(1991).

Kaiser, J. G., Dunn, G. J. and Eagar, T. W., The effect of Electrical

192



50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

References

Resistance on Nugget Formation During Spot Welding, Welding Journal,

ppl67-174(1982).

Kim, E. W. and Eagar, T. W., Transient Thermal behaviour in resistance

spot welding. Sheet Metal Welding Conference 111, Paper No.2, Detroit
(1988).

Kim, E., Analysis of Resistance Spot Welding Lobe Curve, PhD Thesis,

MIT(1989).

Kim, E. W. and Eagar, T. W., Measurement of Transient Temperature
Response during Resistance Spot Welding, Welding Journal, pp303-
312(1989).

Kim, E. and Eagar, T. W., Controlling Parameters in Resistance Welding,
Sheet Metal Welding Conference 1V, Paper No. 17(1990).

Klein, B., A Simple Method of Matrix Structural Analysis, Journal of the
Aeronautical Sciences, Vol. 24, No.1, pp.39-46(1957).

Krieg, R. D. and Krieg, B. B., Accuracies of Numerical Solution Methods
for the Elasto-perfectly plastic model, J. Press. Vess. Technol. ASME, Vol.
99, pp.510-515(1977).

Lawrence, F. V. Jr., Corten, H. T. and McMahon, J. C., Final report to the
American Iron and Steel Institute on the improvement of steel spot weld
fatigue resistance(1985).

Lee, A. and Nagel, G. L., Basic phenomena in resistance spot welding.
SAE Paper no. 880277(1988).

Levy, M., Journ. Math. pures et app., Vol 16(1871).

Liao, C. L. and Tsai, J. S., A Mixed Finite Element Formulation for
Nonlinear Analysis of Plane Problems, International Journal for Numerical
Methods in Engineering, Vol. 33, pp.1721-1736(1992).

Lightner, J. G., A Mixed Finite Element Procedure for Soil-Structure
Interaction Including Construction Sequences, Ph.D Dissertation, Virginia
Polytechnic Institute and State University, Blacksburg(1981).

Loula,A. F. D. and Guerreiro, J. N. C., Finite Element Analysis of
Nonlinear Creeping Flows, Computer Methods in Applied Mechanics and
Engineering, Vol.79, No.1, pp87-109(1990).

193



62.

63.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

References

Love, A. E. H., Mathematical Theory of Elasticity, 4tk ed., Cambridge
University Press, New York, p274-(1927).

Lynn, P. P. and Arya, S. K., Finite Element Formulation by the Weighted
Discrete Least Squares Method, International Journal for Numerical Methods
in Engineering, Vol. 8, pp.71-161(1974).

Mabhapatra, R. C. and Dasgupta, S. P., The Mixed Finite Element Method
in Elastic and Elasto-plastic Axisymmetric Problems, Computers and
Structures, Vol. 30, pp1047-1065(1988).

Mahapatra, R. C. and Dasgupta, S. P., Elasto-plastic Solution of Some
Axially Symmetric Geomechanic Problems by Mixed Finite Elements,
Computers and Structures, Vol.41, No.1 pp93-92(1991).

Markov, A. A., On Variational Principles in the Theory of Plasticity,
Prikladnaia Matematika i Mekhanika, Vol.11, pp.339-389(1947).

Mau, S. T., Pian, T. H. H. and Tong, P., Vibration Analysis of Laminated
Plates and Shells by a Hybrid Stress Element, AIAA Journal, Vol. 11,
pp.1450-1452(1973). '

Meissner, U., A Mixed Finite Element Model for Use in Potential Flow
Problems, International Journal for Numerical Methods in Engineering, Vol.
6, pp.467-473(1973).

Melan, E., Ingenieur-Archiv, vol. 9(1938).

Miklin, S. C., The Problems of the Minimum of a Quadratic Functional,

Holden-Day(1965).

Miklin, S. C., Variational Methods in Mathematical Physics,
MacMillan(1964).

Marguerre, K. and Woernle H., Elastic Plates, Blaisdell Publishing
Company(1969).

Moitinho de Almeida, J. P. and Teixeira de Freitas, J. A., Continuity
Conditions for Finite Element Analysis of Solid, International Journal for
Numerical Methods in Engineering, Vol. 33, pp.845-853(1992).

Moore, D. F., The Friction and Lubrication of Elastomers, Pergamon
Press(1972).

Nied, H. A., The finite element modelling of the resistance spot welding

194



76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

References

process, Welding Journal, ppl23-132(1984).

Noor, A. K. and Andersen, C. M., Mixed Isoparametric Elements models
of Laminated Composite Shells, Computer Methods in Applied Mechanics
and Engineering, Vol. 11, pp.255-280(1977).

Noor, A. K., State-of-the Art Surveys on Finite Element Technology,
ASME, ed. by A. K. Noor and W. D. Pilkey, New York, pp.127-158(1983).
Olson, M. D. and Mirza, F. A., A Mixed Finite Element Method for
Calculation of Stress Intensity Factors, Numerical Methods in Fracture
Mechanics, ed. by A. R. Luxmore and D. R. J. Owen, University College of
Swansea,pp.798-803(1978).

Ortiz, M and Popov, E. P., Accuracy and Stability of Integration
Algorithms for Elastoplastic Constitutive Relation, International Journal for
Numerical Methods in Engineering, Vol. 21, pp.1561-1576(1985).

Ortiz, M and Simo, J. C., An Analysis of a New Class of the Integration
Algorithms for Elastoplastic Constitutive Relations, International Journal
Jor Numerical Methods in Engineering, Vol. 23, pp.353-366(1986).

Owen, D. R. J. and Hinton, E., Finite Elements in Plasticity, Theory and
Practice, Pineridge Press(1980).

Papadopoulos, P, Taylor, R. L., Mixed Formulation for the Finite Element
Solution of Contact Problems, Computer Methods in Applied Mechanics and
Engineering, Vol.94, No.3, pp373-389(1992).

Pian, T. H. H., Derivation of Element Stiffness Matrices by Assumed
Stress Distributions, JAI4A4, Vol. 2, pp.1333-1338(1964).

Pinsky, P. M., Jasti, R. V., Mixed Finite Element for Laminated
Composite plates based on the use of Bubble Functions, Engineering
Computations (Swansea, Wales), Vol.6, No.4, pp316-330(1989).

Pinsky, P. M., Jasti, R. V., On the Use of Lagrange Multiplier Compatible
Modes for Controlling Accuracy and Stability of Mixed Shell Finite
Elements, Computer Methods in Applied Mechanics and Engineering, Vol.85,
No.2, pp151-182(1991).

Prager, W., Recent Developments in the Mathematical Theory of
Plasticity, Journal of Applied Physics, Vol.20, pp.235-241(1949).

195



87.

g88.
89.

90.

ol.

92.

93.

%4,

95.

96.

97.

98.

99.

100.

101.

References

Prager, W. and Synge, J. L., Approximations in Elasticity Based on the
Concept of Function Space, Quart. Appl. Math., Vol. 5, pp.241-269(1974).
Prandtl, L., Proc. Ist Int. Cong. App. Mech., Delft(1924).

Prange, G., Das Extremum der Formanderungsarbeit, Habilitation Thesis,
Hannover(1916).

Rayleigh, J. W. S., Theory of Sound, First edition(1877), revised at Dover,
N. Y. (1945).

Reddy, G. P. and Sharma, S., Simulation of spot weld process, Recent
Trends in Welding Science and Technology, pp59-68(1989).

Reddy, J. N., Finite Element Analysis of Viscous Incompressible Flows
Using Primitive Variables, Computers and Structures, Vol.47, pp857-
869(1993).

Reissner, E., On a Variational Theorem in Elasticity, Journal of
Mathematics and Physics, Vol. 29, pp.90-95(1950).

Reuss, A., Zeits. ang. Math. Mech., Vol.10(1930).

Rice, W. and Funk, E. J., An analytical investigation of the temperature
distribution during resistance welding, Welding Journal, ppl75-186(1967).
Ritz, W., Uber eine neue Methode zer Losung gewisser Variations -
Probleme der Mathematischen Physik, J. Reine Angew. Math., Vol. 135,
pp-1-61(1909).

Sandhu, R. S., Shaw, H. L. and Hong and S. J., Three-Field Finite Element
Procedure for Analysis of Elastic Wave Propagation through Fluid-
Saturated Soils, Soil Dynamics and Earthquake Engineering, Vol.9, No.1,
pPp58-65(1990).

Sarigul, N, Assumed Stress Function Finite Element Method: Two-
Dimensional Elasticity, Inrernational Journal for Numerical Methods in
Engineering, Vol. 28, pp.1577-1598(1989).

Schoepfel, A., Fatigue Performance of Plug Welds, Diploma thesis,
Munchen, Technical University Munchen, TUM-MW 14/8805-DA(1988).
Sheppard, S., Residual Stresses in Resistance Spot Welds, NSF Status
Report, Grant No. DMC86-18462-A1(1989).

Sheppard, S., Thermal and Mechanical Simulations of Resistance Spot

196



102.

103.

104.

105.

106.

107.

108.
109.

110.

111.

112.

References
Welding, Sheet Metal Welding Conference IV, paper no. 20(1990).
Shyu, S. C., Chang, T. Y., Saleeb, A. F., Friction-Contact Analysis Using
A Mixed Element Method, Computers and Structures, Vol.32, No.1, pp223-
242(1989).
Silvester, D. J. and Kechkar, N., Stabilised Bilinear-Constant Velocity-
Pressure Finite Elements for the Conjugate Gradient Solution of the
Stokes Problem, Computer methods in Applied Mechanics and Engineering,
Vol.79, No.1, pp71-86(1990).
Sime, J. C., Kennedy, J. G. and Taylor, R. L., Complementary Mixed
Finite Element Formulation for Elasto-Plasticity, Computer methods in
Applied Mechanics and Engineering, Vol.74, No.2, pp177-206(1989).
Simo, J. C. and Rifai, M. S., A Class of Mixed Assumed Strain Methods
and The Method of Incompatible Modes, International Journal for
Numerical Methods in Engineering, Vol. 29, pp.1595-1638(1990).
Simo, J. C. and Armero, F., Geometrically Nonlinear enhanced Strain
Mixed Methods and The Method of Incompatible Modes, International
Journal for Numerical Methods in Engineering, Vol. 33, pp.1413-1449(1992).
Sohn, J. L. and Heinrich, J. C., Poisson Equation Formulation fro Pressure
Calculation in Penalty Finite Element Models for Viscous Incompressible
flows, International Journal for Numerical Methods in Engineering, Vol.30,
pp349-361(1990).
Spencer, A. J. M., Continuum Mechanics, Longman, London(1980).
Spilker, R. L. and Maxian, T. A., A Mixed-Penalty Finite Element
Formulation of the Linear Biphasic Theory for Soft Tissues, International
Journal for Numerical Methods in Engineering, Vol. 30, pp.1063-1082(1990).
Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, McGraw-Hill,
New York(1951).
Tong, P., New Displacement Hybrid Finite Element Models for Solid
Continua, International Journal for Numerical Methods in Engineering, Vol.
2, pp.73-83(1970).
Tong, P. and Pian, T. H. H. and Lasry, S. J., A Hybrid Element approach

to Crack Problems in Plane Elasticity, International Journal for Numerical

197



113.
114.

115.

116.

117.

118.
119.
120.

121.

122.

123.

124.

125.

References

Methods in Engineering, Vol. 7, pp.297-308(1973).

Tresca, H., Comptes Rendus Acad. Sci. Paris, Vol. 59(1864).

Tsai, C. L., Jammal, O. A. and Dickimson, D., Study of Nugget Formation
in Resistance Spot Welding Using the Finite Element Method, Recent
Trends in Welding Science and Technology, ppl4-18(1989).

Tseng, J. and M. D. Olson, The Mixed Finite Element Method Applied to
Two-dimensional Elastic Contact Problems, International Journal for
Numerical Methods in Engineering, Vol. 17, pp.991-1014(1981).

Turner, M. J., Clough, R. W., Martin, H. C. and Topp, L. J., Stiffness and
Deflection Analysis of Complex Structures, Journal of Aeronautical
Sciences, Vol. 23, pp.805-823(1956).

Van den Bogert, P. A., De Borst, R., Luiten, G. t. and Zeilmaker, J., Robust
Finite Elements for 3D-Analysis of Rubber-like Materials, Engineering
Computations (Swansea, Wales), Vol.8, No.1, pp3-17(1991).

Von Mises, R., Gottinger Nachrichten, Math. Phys. Klasse(1913).

Von Mises, R., Zeits. ang. Math. Meth. Vol. 8(1928).

Washizu, K., On the Variational Principles of Elasticity and Plasticity,
Rep. 25-18, Contract N5 Ori-07833, Aeroelastic and Structures Research
Laborarory, Massachusetts Institute of Technology, Cambridge(1955).
Widmann, J., Fatigue resistance of simulated spot welds status report III,
a report to S. Sheppard and H. Fuchs(1988).

William, H. P. et al, Numerical Recipes: The Art of Scientific Computing
(Fortran Version), Cambridge University Press(1989).

Wilt, T. E., Saleeb, A. F. and Chang, T. Y., Mixed Element for Laminated
Plates and Shells, Computers and Structures, Vol. 37, No. 4, pp.597-
611(1990).

Wood, R. D., Finite Element Analysis of Plane Couple-stress Problems
Using First Order Stress Functions, International Journal for Numerical
Methods in Engineering, Vol. 26, pp.489-509(1988).

Yamada, Y., Ito, K., Yokouchi, Y., Tamano, T. and Ohtsubo, T., Finite
Element Analysis of Steady Fluid and Metal Flow, Finite Elements in
Fluids,ed. by R. H. Gallagher, J. T. Oden, C. Taylor and O. C. Zienkiewicz,

198



126.

127.

128.

References

Vol. 1, John Wiley and Sons, pp.73-94(1975).

Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4% ed.,
Vol. 1 McGraw-Hill, London(1988).

Zienkiewicz, O. C., Owen, D. R. J. and Lee, K. N., Least Square Finite
Element for Elasto-static Problems - Use of Reduced Integration,

International Journal for Numerical Methods in Engineering, Vol. 8, pp.341-
399(1974).

Zienkiewicz, O. C. and Cheung, Y. K., Finite Elements in the Solution of
Field Problems, The Engineer, pp.507-510(1965).

199



	DX181749_1_0001.tif
	DX181749_1_0003.tif
	DX181749_1_0005.tif
	DX181749_1_0007.tif
	DX181749_1_0009.tif
	DX181749_1_0011.tif
	DX181749_1_0013.tif
	DX181749_1_0015.tif
	DX181749_1_0017.tif
	DX181749_1_0019.tif
	DX181749_1_0021.tif
	DX181749_1_0023.tif
	DX181749_1_0025.tif
	DX181749_1_0027.tif
	DX181749_1_0029.tif
	DX181749_1_0031.tif
	DX181749_1_0033.tif
	DX181749_1_0035.tif
	DX181749_1_0037.tif
	DX181749_1_0039.tif
	DX181749_1_0041.tif
	DX181749_1_0043.tif
	DX181749_1_0045.tif
	DX181749_1_0047.tif
	DX181749_1_0049.tif
	DX181749_1_0051.tif
	DX181749_1_0053.tif
	DX181749_1_0055.tif
	DX181749_1_0057.tif
	DX181749_1_0059.tif
	DX181749_1_0061.tif
	DX181749_1_0063.tif
	DX181749_1_0065.tif
	DX181749_1_0067.tif
	DX181749_1_0069.tif
	DX181749_1_0071.tif
	DX181749_1_0073.tif
	DX181749_1_0075.tif
	DX181749_1_0077.tif
	DX181749_1_0079.tif
	DX181749_1_0081.tif
	DX181749_1_0083.tif
	DX181749_1_0085.tif
	DX181749_1_0087.tif
	DX181749_1_0089.tif
	DX181749_1_0091.tif
	DX181749_1_0093.tif
	DX181749_1_0095.tif
	DX181749_1_0097.tif
	DX181749_1_0099.tif
	DX181749_1_0101.tif
	DX181749_1_0103.tif
	DX181749_1_0105.tif
	DX181749_1_0107.tif
	DX181749_1_0109.tif
	DX181749_1_0111.tif
	DX181749_1_0113.tif
	DX181749_1_0115.tif
	DX181749_1_0117.tif
	DX181749_1_0119.tif
	DX181749_1_0121.tif
	DX181749_1_0123.tif
	DX181749_1_0125.tif
	DX181749_1_0127.tif
	DX181749_1_0129.tif
	DX181749_1_0131.tif
	DX181749_1_0133.tif
	DX181749_1_0135.tif
	DX181749_1_0137.tif
	DX181749_1_0139.tif
	DX181749_1_0141.tif
	DX181749_1_0143.tif
	DX181749_1_0145.tif
	DX181749_1_0147.tif
	DX181749_1_0149.tif
	DX181749_1_0151.tif
	DX181749_1_0153.tif
	DX181749_1_0155.tif
	DX181749_1_0157.tif
	DX181749_1_0159.tif
	DX181749_1_0161.tif
	DX181749_1_0163.tif
	DX181749_1_0165.tif
	DX181749_1_0167.tif
	DX181749_1_0169.tif
	DX181749_1_0171.tif
	DX181749_1_0173.tif
	DX181749_1_0175.tif
	DX181749_1_0177.tif
	DX181749_1_0179.tif
	DX181749_1_0181.tif
	DX181749_1_0183.tif
	DX181749_1_0185.tif
	DX181749_1_0187.tif
	DX181749_1_0189.tif
	DX181749_1_0191.tif
	DX181749_1_0193.tif
	DX181749_1_0195.tif
	DX181749_1_0197.tif
	DX181749_1_0199.tif
	DX181749_1_0201.tif
	DX181749_1_0203.tif
	DX181749_1_0205.tif
	DX181749_1_0207.tif
	DX181749_1_0209.tif
	DX181749_1_0211.tif
	DX181749_1_0213.tif
	DX181749_1_0215.tif
	DX181749_1_0217.tif
	DX181749_1_0219.tif
	DX181749_1_0221.tif
	DX181749_1_0223.tif
	DX181749_1_0225.tif
	DX181749_1_0227.tif
	DX181749_1_0229.tif
	DX181749_1_0231.tif
	DX181749_1_0233.tif
	DX181749_1_0235.tif
	DX181749_1_0237.tif
	DX181749_1_0239.tif
	DX181749_1_0241.tif
	DX181749_1_0243.tif
	DX181749_1_0245.tif
	DX181749_1_0247.tif
	DX181749_1_0249.tif
	DX181749_1_0251.tif
	DX181749_1_0253.tif
	DX181749_1_0255.tif
	DX181749_1_0257.tif
	DX181749_1_0259.tif
	DX181749_1_0261.tif
	DX181749_1_0263.tif
	DX181749_1_0265.tif
	DX181749_1_0267.tif
	DX181749_1_0269.tif
	DX181749_1_0271.tif
	DX181749_1_0273.tif
	DX181749_1_0275.tif
	DX181749_1_0277.tif
	DX181749_1_0279.tif
	DX181749_1_0281.tif
	DX181749_1_0283.tif
	DX181749_1_0285.tif
	DX181749_1_0287.tif
	DX181749_1_0289.tif
	DX181749_1_0291.tif
	DX181749_1_0293.tif
	DX181749_1_0295.tif
	DX181749_1_0297.tif
	DX181749_1_0299.tif
	DX181749_1_0301.tif
	DX181749_1_0303.tif
	DX181749_1_0305.tif
	DX181749_1_0307.tif
	DX181749_1_0309.tif
	DX181749_1_0311.tif
	DX181749_1_0313.tif
	DX181749_1_0315.tif
	DX181749_1_0317.tif
	DX181749_1_0319.tif
	DX181749_1_0321.tif
	DX181749_1_0323.tif
	DX181749_1_0325.tif
	DX181749_1_0327.tif
	DX181749_1_0329.tif
	DX181749_1_0331.tif
	DX181749_1_0333.tif
	DX181749_1_0335.tif
	DX181749_1_0337.tif
	DX181749_1_0339.tif
	DX181749_1_0341.tif
	DX181749_1_0343.tif
	DX181749_1_0345.tif
	DX181749_1_0347.tif
	DX181749_1_0349.tif
	DX181749_1_0351.tif
	DX181749_1_0353.tif
	DX181749_1_0355.tif
	DX181749_1_0357.tif
	DX181749_1_0359.tif
	DX181749_1_0361.tif
	DX181749_1_0363.tif
	DX181749_1_0365.tif
	DX181749_1_0367.tif
	DX181749_1_0369.tif
	DX181749_1_0371.tif
	DX181749_1_0373.tif
	DX181749_1_0375.tif
	DX181749_1_0377.tif
	DX181749_1_0379.tif
	DX181749_1_0381.tif
	DX181749_1_0383.tif
	DX181749_1_0385.tif
	DX181749_1_0387.tif
	DX181749_1_0389.tif
	DX181749_1_0391.tif
	DX181749_1_0393.tif
	DX181749_1_0395.tif
	DX181749_1_0397.tif
	DX181749_1_0399.tif
	DX181749_1_0401.tif
	DX181749_1_0403.tif
	DX181749_1_0405.tif
	DX181749_1_0407.tif
	DX181749_1_0409.tif
	DX181749_1_0411.tif
	DX181749_1_0413.tif
	DX181749_1_0415.tif
	DX181749_1_0417.tif
	DX181749_1_0419.tif
	DX181749_1_0421.tif
	DX181749_1_0423.tif
	DX181749_1_0425.tif
	DX181749_1_0427.tif
	DX181749_1_0429.tif
	DX181749_1_0431.tif
	DX181749_1_0433.tif
	DX181749_1_0435.tif
	DX181749_1_0437.tif
	DX181749_1_0439.tif
	DX181749_1_0441.tif
	DX181749_1_0443.tif
	DX181749_1_0445.tif
	DX181749_1_0447.tif
	DX181749_1_0449.tif
	DX181749_1_0451.tif
	DX181749_1_0453.tif
	DX181749_1_0455.tif
	DX181749_1_0457.tif
	DX181749_1_0459.tif
	DX181749_1_0461.tif
	DX181749_1_0463.tif
	DX181749_1_0465.tif
	DX181749_1_0467.tif
	DX181749_1_0469.tif
	DX181749_1_0471.tif
	DX181749_1_0473.tif
	DX181749_1_0475.tif
	DX181749_1_0477.tif
	DX181749_1_0479.tif
	DX181749_1_0481.tif
	DX181749_1_0483.tif
	DX181749_1_0485.tif
	DX181749_1_0487.tif
	DX181749_1_0489.tif
	DX181749_1_0491.tif
	DX181749_1_0493.tif
	DX181749_1_0495.tif
	DX181749_1_0497.tif
	DX181749_1_0499.tif
	DX181749_1_0501.tif
	DX181749_1_0503.tif
	DX181749_1_0505.tif
	DX181749_1_0507.tif
	DX181749_1_0509.tif
	DX181749_1_0511.tif
	DX181749_1_0513.tif
	DX181749_1_0515.tif
	DX181749_1_0517.tif
	DX181749_1_0519.tif
	DX181749_1_0521.tif
	DX181749_1_0523.tif
	DX181749_1_0525.tif
	DX181749_1_0527.tif
	DX181749_1_0529.tif
	DX181749_1_0531.tif
	DX181749_1_0533.tif
	DX181749_1_0535.tif
	DX181749_1_0537.tif
	DX181749_1_0539.tif
	DX181749_1_0541.tif

