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Abstract 

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) is a heterogeneous 

disease in which patient outcome is influenced by genetic lesions. This outcome 

has improved due to increasingly tailored treatment regimens, selected through 

risk stratification by use of cytogenetic, copy number alterations (CNAs) 

classifiers, genomic, and molecular data.  

Translocations involving the Immunoglobulin Heavy Chain Locus (IGH) 

comprise 5% of BCP-ALL and lead to overexpression of juxtaposed genes, due 

to the powerful IGH enhancer elements. Multiple IGH partner genes have been 

described in BCP-ALL, including five members of the Ccaat Enhancer-Binding 

Protein (CEBP) transcription factor family. A cohort of 33 IGH-CEBP BCP-ALL 

patients was identified including 11 IGH-CEBPD, 10 IGH-CEBPA, 8 IGH-

CEBPB, 3 IGH-CEBPE and 1 IGH-CEBPG patients, comprising 19% of the IGH 

cohort, and 1% of ALL as a whole. The patients displayed variation between 

individual CEBP subgroups, with IGH-CEBPB patients showing higher white 

blood cell counts (WBC), higher relapse rates, higher number of CNAs and 

older age than other CEBP patients. The CEBPD subgroup included mostly 

younger patients, under the age of 10 years, and had the lowest number of 

CNAs per patient. Deletions of CDKN2A/B were the most commonly occurring 

CNA followed by intragenic exon 4-7 deletions of IKZF1, which were found 

exclusively in the IGH-CEBPB and IGH-CEBPD subgroups (p=0.04). A novel 

intragenic deletion of the tyrosine kinase gene, ABL2, was found in four patients 

in the cohort, which may represent a deletion unique to this subgroup. This 

finding in combination with the IKZF1 deletions is suggestive of a BCR-ABL1-

like profile. 

Retroviral expression of the CEBPD gene in CD34+ cells was found to hinder 

proliferation in transduced cells, potentially through cell cycle arrest via the 

RB/E2F pathway. RNA sequencing analysis of two IGH-CEBP patients showed 

very different expression profiles, suggesting two mechanisms of oncogenesis 

in IGH-CEBP patients: one through inactivation of the CEBP function, leading to 

deregulation of cell cycle and differentiation control, and another through 

upregulation of inflammatory factors.  
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Chapter 1 Introduction 

 

Cancer is a highly heterogeneous disease triggered by deregulation of controlled 

cellular processes. Classified by initiating cell of origin, the disease is propagated 

by genetic aberrations, which modify the function of key genetic pathways 

involved in kinase/cytokine signalling, cell cycle control, and cell death. The 

number of genetic lesions necessary to initiate tumourigenesis is highly variable 

and heavily dependent upon the cancer type and the pathway affected. 

Leukaemias are cancers of the haematopoietic system, which account for 3% of 

all cancers (Cancer Research Worldwide Cancer Stats 2011). They are 

characterised by recurring cytogenetic rearrangements and genetic lesions. 

Acute lymphoblastic leukaemia (ALL) is the second most common 

haematological malignancy. It is the most common cancer in children between 

the ages of 1 to 4 years, and the second most prevalent in children under 12 

months. The incidence of paediatric ALL in Britain is between 35-40 children for 

every 106 per year and accounts for 8% of all leukaemias in the UK (Cancer 

Research Worldwide Cancer Stats 2011) (Parkin et al., 1988). Incidence 

generally decreases with age. The number of patients has increased at roughly 

1% per year in affluent societies (Draper et al., 1994). ALL is comprised of two 

disease subtypes; B-cell precursor ALL (BCP-ALL) occurring in ~85% and T-

lineage ALL (T-ALL) making up the remaining 15% (Chiaretti and Foa, 2009).  

 

1.1 Haematopoiesis 

Leukaemic development is the result of aberrant haematopoiesis, which occurs 

in the bone marrow. Haematopoietic stem cells (HSCs) undergo sequential 

rounds of differentiation and fate restriction to give rise to all haematopoietic 

lineages (Figure 1.1). Haematopoietic stem cell fate is dependent upon the 

interplay between the master regulator genes: PU.1 and GATA1. Expression of 

GATA1 leads to PU.1 inhibition and commitment to the erythroid lineage, while 

PU.1 expression results in lymphoid or myeloid commitment depending upon 

expression levels of the gene, with lower expression leading to production of 

lymphoid progenitors and higher expression to myeloid progenitors (Nerlov and 

Graf, 1998). 
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Further cell maturation is controlled by several master regulator genes, which 

include CEBPA, CEBPB, CEBPE, GFI1, IRF8, RUNX1, SCL, JUNB, IKZF1 and 

MYC. These genes activate multiple downstream targets, leading to activation of 

diverse functions in the cell, some of the most important being the 

activation/deactivation of lineage specific genes and the downregulation of self-

renewal genes. These genes exert control on a myriad of downstream targets, 

including expression of receptor genes G-CSF and M-CSF, and chromatin 

remodelling genes SWI/SNF, which prime sections of the chromosome for 

transcription (Rosenbauer and Tenen, 2007). Initial B-lymphoid commitment is 

dictated by IKZF1, PU.1 and TCF3. After the first round of differentiation directed 

by PU.1 and GATA1, IKZF1 recruits SWI/SNF chromatin remodelling genes, 

exposing focal sections of chromosomes in preparation for B-cell proliferation. 

TCF3 and IKZF1 continue the priming process through expression of multiple 

lymphoid lineage genes including EBF1, while supressing HSC and other lineage 

genes (Mansson et al., 2007; Dias et al., 2008). TCF3 maintains the expression 

of EBF1 throughout the differentiation process, leading to maturation into 

common lymphoid progenitors (CLPs), and is required for the initiation and 

maintenance of PAX5 and MB1 expression in later developmental stages (Kwon 

et al., 2008) (Sigvardsson et al., 2002). PAX5 then maintains B lymphoid identity 

through activation and deactivation of further gene sets (Cobaleda et al., 2007). 

As the cell begins to move toward maturation, V(D)J recombination is initiated, 

where PAX5 (Fuxa et al., 2004) and IKZF1 both function to expose the 

participating chromosomal regions containing the antibody chain sequences 

(Thompson et al., 2007). PAX5 also directly activates genes coding for important 

components of pre-BCR signalling (Nutt et al., 1997), while IKZF1 modulates the 

expression of early B-cell specific genes, such as IGLL1, which code for the pre-

B receptor. After rearrangement of the V(D)J segments and successful BCR 

signalling, the naive B-cells then migrate out of the bone marrow to circulate 

throughout the body in a dormant state until binding with a novel antigen, which 

initiates differentiation into memory B-cells and plasma cells. 
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Figure 1.1. Diagram of the three main haematopoietic lineages in humans; erythroid, myeloid and lymphoid.  

Haematopoietic stem cells (HSCs) differentiate into multipotent progenitors (MPPs) which in turn branch into common 

lymphoid progenitors (CLPs) and terminally differentiate into B-cells, T-cells and natural killer (NK) cells. Common myeloid 

progenitors (CMPs) give rise to both granulocytes, and erythroid progenitors which can also be propagated by MPPs. 

CMPs differentiate into myeloblasts, which differentiate into a host of cells; neutrophils, basophils, eosinophils and 

macrophages, forming the bulk of the innate immune system. MPPs and CMPs also differentiate into erythrocytes, 

megakaryocytes and thrombocytes.  

 

1.1.1 V(D)J Rearrangement  

V(D)J rearrangements are the hallmark of B-cell maturation. The process is a 

complex multi-step method creating between 106-107 variable antibody 

molecules. These are subsequently secreted by plasma cells, acting as free 

roaming markers of antigens, or as membrane bound immunoglobulins on 

activated memory B-cells. 

Antibodies consist of two immunoglobulin heavy chains (IgH) and two identical 

immunoglobulin light chains (IgL), which are either lambda (IgLλ) or kappa (IgLκ), 

these polypeptides are formed by combinations between the variable (V), 

diversity (D), joining (J) and constant (C) gene segments. The heavy chain is 

produced first, the initial joining taking place in pro-B cells where the D and J 

segment are spliced together. This function is facilitated by RAG1 and RAG2 

enzymes, which recognise recombination signal sequences (RSS) flanking the V 
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and D segments (Figure 1.2). RAG1 and RAG2 enzymes cleave the sequence 

between the RSS sites, creating double stranded DNA breaks that are 

subsequently joined via non-homologous end joining (NHEJ) (Mani and 

Chinnaiyan, 2010). This is initiated by heterodimerisation between the Ku70 and 

Ku80 proteins, the binding formed by these proteins attracts DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs) activating protein kinase activity. 

This complex brings the DNA ends together and recruits and phosphorylates the 

DNA nuclease, Artemis, which degrades any single stranded DNA overhangs. 

Finally a heterodimer consisting of Ligase IV and XRCC4 in the presence of DNA 

ligases binds the complex and repairs the break (Figure 1.2 A). 

Following this initial recombination, the variable sequence is spliced to the DJ 

segment forming a VDJ segment attached to the remaining constant regions.  

This is expressed as an mRNA transcript which is spliced together excising all 

but one constant M segment. The mRNA is then transcribed into a complete 

heavy chain, which upon expression classifies the cell as a pre-B cell. The heavy 

chain regions provide different antibody variants through expression of different 

C chains of which there are five; alpha, beta, gamma, epsilon and delta, however 

the pre-BCR receptor is always created with a functionally rearranged IgM heavy 

chain. The membrane bound IgM heavy chain is expressed with either the IgLλ 

or IgLĸ surrogate chains. If signalling is successful, pre-BCR expression leads to 

several cycles of pre-B cell proliferation. During this process, the IgL chain begins 

to assemble, combining VJ segments with constant region kappa or lambda 

chains. During the VJ recombination process of both light and heavy chains, new 

nucleotides can be added to increase both diversity and specificity of the 

antibody. If functional, the IgL chain is expressed and assembles with the IgH 

chain on the cell surface. This creates the fully functioning BCR receptor, which 

is expressed on the cell membrane, classifying the cell as a surface membrane 

bound immunoglobulin (smIg+) immature B-cell. The cell will then migrate into 

the periphery (Figure 1.2 B). B-cells undergo both positive and negative selection 

during the differentiation process. Positive selection includes successful 

signalling with the surrogate light chain, it is estimated that as many as half of IgH 

chain expressing pre-B cells fail to pass this critical checkpoint, with these cells 

undergoing apoptosis (Vettermann et al., 2006). Negative selection includes 

failure to successfully undergo V(D)J recombination. Should this occur in one 
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allele the process begins again in the second allele, if this process fails again the 

cell will undergo apoptosis. Successful V(D)J recombination results in silencing 

of the second allele, leading to monospecificity in B-cells (Vettermann and 

Schlissel, 2010). The majority of autoreactive cells, which have undergone 

successful V(D)J recombination, undergo apoptosis or anergy (Nemazee, 2006).     
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Figure 1.2. Lineage maturation of B-lymphoid cells.  

A. NHEJ for the development of mature B-lymphocytes. (1-2) RAG1 and RAG2 proteins create a double stranded DNA 

break between conserved Recombination Signal Sequences (RSS). (3-5) The Ku70/80 protein heterodimers bind to the 

exposed DNA ends, this attracts the catalytic subunit of the DNA-dependent protein kinase (DNA-PKCS) and activates 

kinase activity, the main action of which is to regulate NHEJ. (5-7) Compatible DNA ends are then joined by the Ligase 

IV/XRRC4 complex, in a reaction stimulated by the XLF/Cernunnos protein. Adapted from Adapted from (van Gent and 

van der Burg, 2007) and (Pastwa and Blasiak, 2003). B. Sequential V(D)J recombination and B-cell maturation with CD 

marker expression of maturing lymphoid lineage, adapted from (van Zelm et al., 2005). 

 

1.2 Etiology 

Leukaemic development is driven by multiple genetic insults to the cell of origin 

before full oncogenic transformation is achieved. This theory was originally 

coined by Alfred G. Knudson whose ‘multiple-hit’ hypothesis postulated that 

cancer was the result of multiple genetic aberrations, acquired over time, leading 

to a pre-cancerous phenotype that is rarely diagnosed. These pre-cancerous 

cells gain an aberration, described as a driver, which leads to oncogenesis and 

deregulated cellular proliferation. This theory has been supported by studies in 
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monozygotic twins, showing several prenatal aberrations which pre-dispose new-

borns to leukaemia and create pre-leukaemic phenotypes (Ford et al., 1993; 

Bateman et al., 2010; Cazzaniga et al., 2011). However, there appears to be 

some exceptions to the multi-hit theory between leukaemic subtypes. Generally, 

the initiating mechanisms between infant and childhood leukaemia are believed 

to be different, with infant ALL resulting from one or more mutations in utero and 

childhood leukaemias being a mix of in utero and post-natal genetic lesions. An 

example in infant ALL is the leukaemia subgroup with KMT2A (MLL) 

translocations, which can be initiated from a single hit in utero, during foetal 

haematopoiesis (Greaves et al., 2003). In childhood ALL, the multi-hit model is 

more relevant, where an initial genetic lesion occurs in utero, and at least one 

secondary postnatal hit initiates the disease. An example is the prevalence of the 

ETV6-RUNX1 translocation in new born infants, thought to be at 1% (Mori et al., 

2002), which increases susceptibility to ALL but is not sufficient to initiate the 

disease itself.  

The causes of these transforming mutations has been investigated over many 

years, yet few have been associated with disease initiation with any statistical 

significance. One clear link was the exposure to high levels of ionizing radiation 

(~200mSv) of the survivors of the Hiroshima and Nagasaki atom bombings, 

leading to the development of ALL (Preston et al., 1994). However research on 

the influence of background ionizing radiation on children, normally at around 2-

3mSv, has shown no convincing correlation (Investigators, 2002). The same lack 

of evidence has been found for the causative effects of electromagnetic field 

radiation (Skinner et al., 2002). Various other potential causes have been 

speculated, including car exhaust fumes, pesticides, and parental cigarette 

smoking, but none with any significant findings (Greaves, 2006). Infections have 

long been considered a trigger of leukaemia, initially as an effect from specific 

pathogens, such as the T-cell lymphotrophic virus 1, which has been shown to 

cause infections leading to T-cell leukaemia and lymphoma (Jaffe et al., 1984). 

Such direct links however are rare. Later theories, such as the ‘Population Mixing’ 

hypothesis by Kinlen, built on the infection premise. The theory came from 

observations of increased incidences of paediatric ALL in populations from 

initially isolated small towns, which subsequently grew for economic reasons. 

Influxes of multicultural workers in these towns, where herd immunity was lower 
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than dense urban centres, led to an increase in viral infections and a threefold 

increased incidence of ALL. Kinlen theorised that the heightened incidence of 

ALL was caused by the lack of an immune response to novel pathogens (Kinlen, 

1995). This theory is now less favourable as a transforming pathogen is yet to be 

discovered.  

Other theories include Greaves ‘delayed-infection’ hypothesis, which theorises 

that infections lead to increased immune system function and in turn cell 

proliferation, leading to increased likelihood of oncogenic aberrations due to rapid 

expansion of immune cells (Greaves, 1997). Such data is supported by the lower 

incidence of ALL in the less affluent developing world (Parkin et al., 1988). 

 

1.3 Treatment and Survival 

Survival in ALL has dramatically improved over the last decades as a result of 

risk stratification of patients for treatment. Patients are typically divided into three 

main subgroups; high, intermediate and low risk groups, with treatment tailored 

for each group. Risk stratification is based on several risk factors; white blood cell 

count (WBC), age, cytogenetics and response to initial therapy. Low WBC is 

normally a good predictor of outcome with higher blast counts associated with 

progressively worse outcome. Patients with WBC higher than 50 x 109/L are 

classified as high risk. Patient age is also an indicator of outcome, with patients 

over the age of 10 years exhibiting worse outcome than those under 10 years. 

Cytogenetic alterations are a major factor in stratification, typically older patients 

are more likely to exhibit high risk cytogenetics (Moorman, 2012a). An excellent 

example of risk stratification leading to improved outcome is the 

intrachromosomal amplification of chromosome 21 (iAMP21), in which 

reclassification of patients as high risk was successful in improving outcome 

(Moorman et al., 2014) (Figure 1.1). Targeted therapies have also improved 

outcome, such as the tyrosine kinase inhibitor (TKI), Imatinib, which has 

dramatically improved the dismal survival rates of BCR-ABL1 positive patients.  

Treatment is separated into three stages; 1) induction therapy given upon 

diagnosis of the disease, aimed at reducing white cell counts and inducing 

remission, 2) consolidation therapy, which intensifies treatment to remove 

remaining drug resistant leukaemic cells, and 3) maintenance treatment. The 
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duration of each stage is dependent upon the risk group and response to 

treatment (Schrappe et al., 2000). Typically treatment lasts for 2-3 years, with 

boys being treated for longer than girls due to the risk of testicular relapse. In 

paediatric ALL, induction therapy typically consists of dexamethasone, 

vincristine, L-asparaginase and daunorubicin producing complete remission in 

95% of children (Moricke et al., 2010). Upon remission, consolidation therapy is 

a mixture of methotrexate, cytarabine, mercaptopurine, etoposide, and L-

asparaginase. Maintenance therapy includes daily doses of 6-mercaptopurine 

and weekly doses of methotrexate. High risk patients who fail to achieve complete 

remission are candidates for allogenic stem cell transplantation (Leung et al., 

2011). Prevention of central nervous system (CNS) relapse is facilitated by use 

of systemic intrathecal methotrexate (Pui and Howard, 2008). These 

modifications have achieved an overall 5 year event free survival rate of around 

80-90% (Moorman et al., 2014). Adult treatment is similar, with complete 

remission achieved in >90% of patients. However due to relapse and drug 

toxicity, only around 50% of patients reach a 5 year event free survival (Rowe et 

al., 2005). Older patients, especially >60 years have an unfavourable outcome 

due to a higher incidence of poor risk cytogenetics, and increased drug toxicity. 

 

Figure 1.3 Kaplan-Meier survival curves of iAMP21 patient outcome on standard and high risk treatment regimens, 

showing improved survival of the previously unidentified subgroup. Taken from (Harrison et al., 2014). 

 



 36   
 

1.4 Leukaemia 

Leukaemia is broadly divided into four subgroups described by the differentiation 

stage and lineage of the affected cells.  Acute leukaemia arises from 

haematopoietic progenitors, which have lost the ability to differentiate, leading to 

accumulation of immature blasts in the bone marrow. This accumulation rapidly 

spreads throughout the body, including the central nervous system (CNS), 

requiring early diagnosis and treatment. Chronic leukaemia progresses more 

slowly, can remain benign for years and comprises more mature blasts. The 

second classifier is based upon the haematopoietic lineage propagating the 

malignancy, with the most common leukaemias originating from lymphoid or 

myeloid lineages (Figure 1.1).  

Cytogenetic techniques have been used to identify chromosomal abnormalities 

in leukaemia for decades. Karyotype analysis led to the identification of the first 

leukaemia associated chromosomal abnormality in 1960, when the Philadelphia 

chromosome was described in chronic myeloid leukaemia (CML) (Nowell and 

Hungerford, 1960). These techniques were further developed including Giemsa 

banding (G-banding), when it was recognised that Giemsa would stain GC rich 

chromosomal regions more intensely than the AT regions of less condensed 

chromatin, creating distinct banding patterns along each chromosome allowing 

for their precise identification (Seabright, 1971). The development of ‘molecular 

cytogenetics’ technique: fluorescence in situ hybridization (FISH), has allowed 

detailed analysis of deletions, gains and rearrangements in interphase nuclei. 

Here complementary DNA probes are bound to fluorescent tags, which target 

specific loci. These techniques allowed identification of cryptic translocations and 

aberrations too small to be visible by conventional cytogenetics alone. FISH first 

identified the cryptic translocation, t(12;21)(p13;q22), giving rise to the ETV6-

RUNX1 fusion in ALL (Romana et al., 1994). It is also used to screen patients for 

known oncogenic lesions to aid in treatment stratification, which will be discussed 

below.  

 

1.4.1 Chronic Leukaemias   

Chronic lymphocytic leukaemia (CLL) is a B-cell malignancy affecting the mature 

B-cells, affecting mainly adults, with over 75% of patients being over the age of 

60 years at diagnosis (Chiorazzi et al., 2005).  
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Chronic myeloid leukaemia (CML) arises from uncontrolled proliferation of mature 

granulocytes; eosinophils, basophils and neutrophils. It is most prevalent in the 

middle aged and the elderly population, accounting for 15-20% of all adult 

leukaemia in the West (Faderl et al., 1999). Over 90% of CML patients express 

the BCR-ABL1 fusion gene (Faderl et al., 1999). The disease progresses in three 

phases; the chronic phase, accelerated phase and blast crisis. At this final stage, 

CML transforms into an aggressive acute leukaemia with a high mortality rate 

(Faderl et al., 1999). Recently treatment of CML has focused on arresting the 

leukaemia in the chronic phase, by using TKIs, which halt disease progression 

(Gambacorti-Passerini et al., 2011). 

 

1.4.2 Acute Leukaemias  

 Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults, 

rarely affecting children. The disease has a median age of 63 years and accounts 

for ~90% of acute leukaemias in adults (Jemal et al., 2002). It is highly 

heterogeneous, which has resulted in the creation of complex classification 

systems. The first system, the French-American-British (FAB) classification 

system, created in 1976, was based on the originating cell type, the maturity of 

the abnormal clone, and the cytogenetic profile (Table 1.1). More recently, in 

2008, a system was introduced by the World Health Organisation taking into 

account genetics and AML prognostic factors (Table 1.2). 
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The French-American-British AML Classification system 

Types Name 

M0 Minimally differentiated acute myeloblastic leukaemia 

M1 Acute myeloblastic leukaemia with minimal maturation 

M2 Acute myeloblastic leukaemia with maturation 

M3 Acute promyelocytic leukaemia (APL) 

M4 Acute myelomonocytic leukaemia 

M4eo Acute myelomonocytic leukaemia with eosinophilia 

M5 Acute monocytic leukaemia 

M6 Acute erythroid leukaemia 

M7 Acute megakaryoblastic leukaemia 

Table 1.1. 
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The World Health Organisation AML Classification System Adapted from 

(Vardiman et al., 2009) 

Acute myeloid leukaemia with recurrent genetic abnormalities  

AML with (8;21)(q22;q22); RUNX1-RUNT1T1 

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

Acute promelocytic leukaemia (APL) with t(15;17)(q22;q12); PML-RARA 

AML with t(9;11)(p22;q23); KMT2AT3-KMT2A 

AML with t(6;9)(p23;q34); DEK-NUP214 

AML with inv(3)(q21q26.2) or t(t(3;3)(q21;q26.2); RPN1-EVI1 

AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1 

Provisional entity: AML with mutated NPM1 

Provisional entity: AML with mutated CEBPA 

Acute myeloid leukaemia with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

Acute myeloid leukaemia, not otherwise specified (similar to previous FAB classification) 

AML with minimal differentiation (M0) 

AML without maturation (M1) 

AML with maturation (M2) 

Acute myelomonocytic leukaemia (M4) 

Acute monoblastic/monocytic leukaemia (M5) 

Acute erythroid leukaemias (M6) 

      Pure erythroid leukaemia 

      Erythroleukaemia, erythroid/myeloid 

Acute megakaryoblastic leukaemia (M7) 

Acute basophilic leukaemia 

Acute panmyelosis with fibrosis 

Myeloid sarcoma 

Myeloid proliferations related to Down syndrome 

Transient abnormal myelopoiesis 

Myeloid leukaemia associated with Down syndrome 

Blastic plasmacytoid dendritic cell neoplasms 

Table 1.2.  

 

Approximately 70% of patients diagnosed with AML have defined chromosomal 

abnormalities, which are strongly linked to outcome, as indicated in Figure 1.4. 

AML chemotherapy is divided into induction and post-remission phases. HSC 
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transplantation is used if a patient fails induction therapy, or relapses (Pulte et al., 

2008). 

 

Figure 1.4. Kaplan Meier curve of AML patient survival separated by cytogenetic subgroups over ten years taken from 

(Grimwade et al., 2010). 

 

1.4.3 Acute Lymphoblastic Leukaemia (ALL)  

The majority of BCP-ALL are defined by recurrent numerical or structural 

chromosomal abnormalities, which are linked to outcome (Figure 1.5) (Harrison, 

2013). There are clearly defined good and poor risk subgroups (Figure 1.6) 

(Moorman, 2012a). The relative incidences of the most significant cytogenetic 

subgroups in BCP-ALL are shown in Figure 1.4 and their variable outcome within 

childhood and adult cohorts are shown in Figure 1.5. 
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Figure 1.5. Incidence of established cytogenetic abnormalities among childhood ALL, data from UK ALL trials (Harrison, 

2013). 

 

 

Figure 1.6. Kaplan Meier curves of childhood and adult survival divided by subgroups, indicating the impact of subgroup 

on overall survival. 

A. Kaplan Meier curve of a childhood trial (ALL97) event free survival of the main cytogenetic subgroups in paediatric 

ALL. B. Kaplan Meier curve of an adult trial (UKALLXII) event free survival for risk groups in adult ALL, taken from 

(Moorman, 2012a). 

 

1.4.4 Established BCP-ALL Subgroups 

The majority of BCP-ALL subgroups are defined by recurrent cytogenetic 

alterations, involving either aneuploidy or translocations. Cytogenetic 

classification is vitally important in determining patient treatment options. Below 

are some of the most common BCP-ALL subgroups.  

 

1.4.4.1 ETV6-RUNX1/t(12;21)(p13;q22)  

The t(12;21) translocation forming the ETV6-RUNX1 gene fusion is the most 

commonly occurring translocation in BCP-ALL at ~30% (Golub et al., 1995; 

Romana et al., 1995), and is found almost exclusively in paediatric patients 

(Codrington et al., 2000). The translocation is cytogenetically cryptic, requiring 

FISH or Reverse Transcription Polymerase Chain Reaction (RT-PCR) to be 

identified. The translocation creates a fusion gene which contains the protein 

dimerization domains of ETV6 and the majority of the DNA binding and activating 

regions of RUNX1, allowing ETV6 to de-regulate the expression of multiple 

RUNX1 target genes, a number of which are critical for normal haematopoietic 

development (Fenrick et al., 1999).  This process leads to enhanced proliferation 
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and heightened self-renewal of BCP cells, which are unable to differentiate (Mori 

et al., 2002). The translocation is present in early B-cell progenitors in utero, 

creating a pre-leukaemic clone, which may reside in the bone marrow for several 

years (Mori et al., 2002). Patients with ETV6-RUNX1 gene fusion tend to have an 

average of 11 additional genetic lesions, which is higher than many other 

subgroups (Papaemmanuil et al., 2014). Almost all patient trials show excellent 

overall survival and low incidence of relapse (Figure 1.6 A) (Conter et al., 2010; 

Moorman et al., 2010b).  

 

1.4.4.2 BCR-ABL1/t(9;22)(q34;q11)  

The BCR-ABL1 fusion arises from the translocation, t(9;22)(q34;q11) or a variant 

rearrangement (Nowell and Hungerford, 1960). It results in constitutive activation 

of the ABL1 tyrosine kinase, leading to phosphorylation of a number of important 

downstream genes, activating multiple molecular pathways that lead to 

proliferative deregulation and decrease in cellular differentiation and adhesion. 

The fusion is predominant in CML but also present in ALL and AML. In ALL the 

BCR-ABL1 fusion is often accompanied by an intragenic deletion of the IKZF1 

gene (Mullighan et al., 2008a). There are three fusion protein variants identified, 

however all lead to constitutive activation of the ABL1 protein. Incidence 

increases with age, accounting for 2% of childhood ALL, rising to 40% in adults 

over 40 years (Moorman et al., 2007a; Burmeister et al., 2008; Moorman et al.).  

Expression of the BCR-ABL1 fusion protein in ALL was associated with a dismal 

outcome until the development TKIs, including Imatinib and Dasatinib which have 

improved three year EFS rates to 80% in children and 60% in adults (Ottmann 

and Pfeifer, 2009). 

 

1.4.4.3 KMT2A (MLL) Translocations 

KMT2A regulates haematopoiesis partly through transcriptional activation of HOX 

genes. The gene has over 100 fusion partners seen in ALL and AML and was 

first identified as an oncogene through use of FISH and southern blotting (Ziemin-

van der Poel et al., 1991). The general mode of deregulation is due to the fusion 

of the 5’ part of the KMT2A gene with the 3’ end of the partner gene (Marschalek, 

2011). KMT2A translocations are unique in being able to initiate 
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leukaemogenesis as a seemingly sole genetic lesion. They have been shown to 

be initiated in utero, with a high predominance in infants (Mullighan et al., 2007). 

The most common KMT2A translocation in ALL is KMT2A-AFF1/t(4;11)(q21;q23) 

at an incidence of 50% of all paediatric KMT2A translocations (Meyer et al., 

2009). KMT2A translocations are predominant in infants with an incidence of 70-

80%, dropping to ~2% in children >2 years and is associated with a poor outcome 

across all ages (Pieters et al.; Moorman et al., 2010b). 

 

1.4.4.4 High Hyperdiploidy (HeH)  

HeH is defined as a non-random gain of 5-19 whole chromosomes. The most 

frequently gained are chromosomes 4, 6, 10, 14, 17, 18, 21 and X (Paulsson et 

al., 2010). HeH is one of the most common genetic subgroups of ALL in ~30% of 

children and ~10% of adults (Moorman et al., 2010a). Prognosis is good, 

however, due to the high number of cases, relapse remains a significant problem 

(Sutcliffe et al., 2005; Moorman et al., 2010b). Recently whole genome 

sequencing (WGS) and whole exome sequencing (WES) was performed on a 

total of 55 HeH patients. Analysis showed involvement of the RTK-RAS pathway 

and of histone modifiers in the majority of these patients, identifying potentially 

new therapeutic targets for the subgroup. There was also a strong indication that 

the chromosomal gains in the subgroup were early events, supporting the idea 

that HeH is the main oncogenic driver in these leukaemias (Paulsson et al., 

2015). 

 

1.4.4.5 TCF3-PBX1/t(1;19)(q23;p13)  

The TCF3-PBX1 fusion gene occurs as a result of either a balanced t(1;19) 

translocation or an unbalanced translocation, where only the derived 19 is 

observed (Barber et al., 2007). Patients with the translocation show a pre-B 

immunophenotype expressing cytoplasmic μ. The occurrence of the subtype 

does not vary with age and comprises 3-5% of ALL (Mancini et al., 2005). TCF3 

is required for the development of B and T lymphocytes. The TCF3-PBX1 gene 

fusion transcript places the DNA targets of PBX1 under the transcriptional control 

of TCF3, leading to deregulation of affected genes and leukaemogenesis 
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(Mellentin et al., 1989). More recently, treatment intensification for this subgroup 

has resulted in improved outcome (Felice et al., 2011).  

 

1.4.5 Impact and Incidence of Genetic Aberrations   

The importance of collaborating aberrations in ALL is dependent upon the 

subgroup; ETV6-RUNX1 positive ALL tends to have a higher incidence of 

associated secondary abnormalities of 6-8 genetic lesions per patient. In 

contrast, patients with translocations involving KMT2A have none or few 

associated secondary changes, with the deregulation of KMT2A alone being 

sufficient to initiate leukaemogenesis (Marschalek, 2011). Up to 25% of childhood 

ALL patients show no established chromosomal rearrangements. These so-

called B-other ALLs are presumably driven by acquired submicroscopic 

abnormalities (Harrison, 2009). The secondary aberrations most frequently 

observed occur in genes controlling B-cell differentiation, cell cycle  and those 

involved in key signalling pathways:, including PAX5, IKZF1, CDKN2A/B, RB1, 

EBF1, ETV6 and BTG1. The most common abnormalities are discussed below 

in further detail.  

 

1.4.5.1 PAX5 

PAX5 is a vital early regulator of B-cell development and is one of the most 

recurrently abnormal genes in BCP-ALL, occurring in ~30% of patients 

(Familiades et al., 2009) (Mullighan et al., 2007). Multiple mutations of the PAX5 

gene lead to haplosufficiency. Focal internal deletions also occur leading to 

truncated proteins, or truncated DNA binding and transactivation domains. PAX5 

is also translocated with multiple partners (Mullighan et al., 2007; Nebral et al., 

2009). Genetic lesions of PAX5 however have not been linked to patient outcome. 

 

1.4.5.2 IKZF1 

IKZF1 aberrations occur in 15% of BCP-ALL patients and have been associated 

with a poor outcome (Kuiper et al., 2010). They are more common in high risk 

ALL subgroups such as BCR-ABL1 and BCR-ABL1-like, with up to a third of 

patients exhibiting genetic lesions (Mullighan et al., 2008a; Harvey et al., 2010b). 
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Aberrations are varied, the predominant form of de-regulation in BCP-ALL is 

through whole gene or exon 4-7 deletions. The latter leads to the loss of 4 N-

terminal zinc fingers that mediate DNA binding, resulting in the formation of the 

dominant negative protein isoform, Ik6 (Mullighan et al., 2008a).  Aberrations in 

this gene are also associated with a threefold risk of treatment failure (Mullighan 

et al., 2009b; Kuiper et al., 2010). The mechanism behind IKZF1 loss and 

leukaemogenesis is unclear, although it has been proposed that IKZF1 exerts 

cell cycle control through inhibition of MYC (Ma et al., 2010), as such, loss of 

IKZF1 would lead to deregulated proliferation in affected cells. 

 

1.4.5.3 CDKN2A/B 

CDKN2A/B deletions are the most commonly occurring genetic lesion in BCP-

ALL (Schwab et al., 2013). The genes lie within the INK4/ARF tumour suppressor 

locus on human chromosome 9p21.3, which codes for several tumour 

suppressors (Sherr, 2012). CDKN2A codes for the p16 protein, and CDKN2B for 

the p15 protein, both of which act by slowing cell cycle progression from G1 to S 

phase by preventing activation of CDK4 and CDK6 kinases by CCND1. This 

inhibition halts phosphorylation of the RB1 protein and in turn prevents the 

nuclear localisation of E2F1, which is instrumental in the progression of cell cycle 

from G1 to S phase (Rayess et al., 2012). 

 

1.4.6 B-Other Subgroups 

BCP-ALL is a disease characterised by cytogenetic abnormalities, however 

approximately 25% of BCP-ALL patients show no consistent cytogenetic 

aberrations, and remain unclassified. Without specific characteristics these 

patients have been grouped together as intermediate risk. In recent years 

however, cytogenetic and molecular analysis has revealed several recurring 

genetic lesions among patients within this subgroup. Both  IGH translocations 

and the iAMP21 subgroup were initially classified as B-other, prior to independent 

classification (Harewood et al., 2003; Chapiro et al., 2006; Akasaka et al., 2007; 

Robinson et al., 2007; Russell et al., 2008; Russell et al., 2009). Gene expression 

profiling identified a subgroup among these patients, with a similar profile to those 

expressing the BCR-ABL1 fusion protein (Den Boer et al., 2009; Harvey et al., 
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2010b), termed BCR-ABL1-like/Philadelphia-like (Ph-like) ALL, this group is 

discussed below. Approximately 12% of B-other patients exhibit intragenic ERG 

deletions. They have a distinctive gene expression profile, linked to a good 

outcome (Clappier et al., 2014). Other abnormalities  in the B-other group include 

PAX5 abnormalities (Forestier et al., 2008; Nebral et al., 2009; Moorman et al., 

2010b), and the IGH translocations with unknown partner genes (Russell et al., 

2014). Around a quarter of B-other patients however remain unclassified, with no 

recurring genetic lesions observed to date. 

 

1.4.6.1 Intrachromosomal Amplification of Chromosome 21 (iAMP21) 

iAMP21 is an abnormality involving the long arm of chromosome 21 with multiple 

regions of deletion, inversion and amplification, occurring in 2% of childhood 

BCP-ALL (Moorman et al., 2013). This abnormality was identified during routine 

FISH screening for the ETV6-RUNX1 fusion, when, in the absence of the fusion, 

multiple copies of clustered RUNX1 signals were observed in a number of 

patients (Harewood et al., 2003). This abnormality has since been defined as 

three or more additional copies of RUNX1 seen by FISH (Moorman et al., 2007b; 

Robinson et al., 2007; Rand et al., 2011). In the majority of cases, iAMP21 is the 

primary event, remaining constant in both diagnostic and relapse samples (Rand 

et al., 2011).  Copy number arrays of iAMP21 patients have revealed a common 

region of amplification of 5.1Mb on the long arm of chromosome 21, including 

RUNX1. While the RUNX1 gene is located within this region, there is no evidence 

to indicate that it plays a role in the development of ALL, supported by the 

observation that fold change of RUNX1 mRNA remain the same in iAMP21 

patients when compared to other BCP-ALL patients with chromosome 21 

abnormalities (Strefford et al., 2006). iAMP21 is associated with a host of 

secondary aberrations including gain of chromosomes 10, 14 and X, monosomy 

7, deletions of chromosomal arms 7p, 11q and genes ETV6, RB1, and the 

P2RY8-CRLF2 fusion (Harrison et al., 2014). Interestingly, despite sharing the 

common region of amplification with the Down Syndrome (DS) critical region, only 

one DS patient has been discovered with iAMP21 (Harrison et al., 2014). 

Recently individuals with the constitutional Robertsonian translocation, 

rob(15;21)(q10;q10)c, have been shown to have an extremely high risk of 

developing iAMP21-ALL (Li et al., 2014). iAMP21 patients had a high relapse risk 
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on standard therapy  (5 year EFS 29%), this improved dramatically when they 

were treated as high risk (5 year EFS 78%). Relapse risk also decreased from 

70% to 16% and overall survival rose from 67% to 89% (Moorman et al., 2013). 

Patients with iAMP21 are now treated as high risk.  

 

1.4.6.2 BCR-ABL1-Like/Ph-Like  

Originally part of the B-other group, BCR-ABL1-like/Ph-like patients were 

identified from the similarity of their gene expression profiles to BCR-ABL1 

positive patients. This BCR-ABL1-like subgroup comprises 10% of childhood ALL 

(Den Boer et al., 2009; Harvey et al., 2010b). The most common abnormalities 

are IKZF1 deletions and deregulated expression of CRLF2, both occurring in 

around 50%. The remaining 50% of non-CRLF2 patients show rearrangements 

affecting other kinases including PDGFRB, ABL1, ABL2, JAK2, EPOR, IL-7R and 

SH2B3. Several of these aberrations activate the JAK-STAT pathway (Figure 

1.7). Currently it is proposed that the outcome for this subgroup is very poor; 

however as a novel subgroup these patients are yet to be incorporated into risk 

stratification algorithms (Den Boer et al., 2009). Recently is has been shown that 

patients in this subgroup who respond poorly to initial treatment can be salvaged 

through use of minimal residual disease (MRD) based risk directed therapy 

(Roberts et al., 2014b). 

 

 

Figure 1.7 BCR-ABL1-like ALL subgroup divided by associating abnormalities in a. Children, b. Adolescents, and c. Young 

Adults. Taken from (Roberts and Mullighan, 2015), originally adapted from (Roberts et al., 2014a). 
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1.4.6.3 Immunoglobulin Heavy Chain Locus (IGH) Translocations 

Translocations within the IGH locus lead to the overexpression of juxtaposed 

genes. This is due to the presence of powerful enhancer elements located in the 

region, which drive expression of multiple gene segments. The pathogenesis of 

these translocations has been well characterised in several subtypes of mature 

B-cell malignancies including IGH-MYC in Burkitt lymphoma, IGH-BCL2 in 

follicular lymphoma and IGH-CCND1 in mantle cell lymphoma (Willis and Dyer, 

2000). A recent analysis of the IGH subgroup showed that they comprised 5% of 

BCP-ALL, with involvement in both B and T-ALL (Russell et al., 2014). The most 

common partner genes are CRLF2 at 22%, the CEBP gene family at 11% and 

ID4 at 7%. The remainder occur at very low levels and are a mix of established 

oncogenes (EPOR, mir-125b, BCL gene family), new partners (LHX4), or 

antibody specific loci (IGK, TCRA/D) (Russell et al., 2014). For over half of IGH 

translocations the partner gene is as yet unidentified, providing scope for further 

investigation. Incidence of IGH translocations varies according to partner gene; 

in patients with CRLF2, CEBPA, CEBPB and BCL2 as partners, the majority of 

blasts harbour the translocation, suggesting that these genetic aberrations occur 

early in the development of the leukaemia. In contrast, patients with IGH-CEBPE 

exhibit low level populations suggesting a secondary role in the development of 

BCP-ALL. HeH is the most common associating aberration (n=9/148, 6%), 

followed by ETV6-RUNX1 (n=8/148, 5%), BCR-ABL1 (n=6/148 4%) and KMT2A 

(n= 2/148, 1%) rearrangements (Russell et al., 2014). Other genetic insults 

include CDKN2A/B and IKZF1 deletions occurring in ~40% of patients. The 

incidence of IGH translocations increases with age, peaking in 20-24 year olds, 

who comprise 11% of all IGH patients with those younger than 5 years accounting 

for only 2%. Older patients peak in the 30-34 and 45-49 age ranges (Figure 1.8). 

DS patients account for 16% of cases.  Survival analysis showed that children 

with IGH translocations were more likely to belong to the NCI high risk group 

when compared to IGH negative children, 68% and 42%, respectively, and were 

more likely to be MRD positive at day 28, 72% vs 47%. The association with poor 

outcome was not due to increased relapse rates, but due to higher death rates 

following relapse. In young adults and adults the translocation was found to lead 

to an adverse outcome over an eight year follow up period (P = 0.002) (Russell 

et al., 2014). 
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Figure 1.8. Incidence of IGH translocations by age and partner gene, taken from (Russell et al., 2014). 

 

1.4.6.4 CRLF2 

CRLF2 codes for the receptor bound by thymic stromal lymphopoietin (TSLP), 

which along with IL-7 leads to activation of the JAK-STAT pathway. The most 

common form of CRLF2 deregulation occurs from an interstitial deletion within 

the Pseudoautosomal Region 1 (PAR1), located to the p arm of the X and Y 

chromosomes, which juxtaposes the P2RY8 promoter next to the CRLF2 gene. 

The second common method is the t(X;14)(p22;q32) or t(Y;14)(p11;q32)/IGH-

CRLF2 translocation, with the ratio between these two forms of deregulation of 

5:1 P2RY8:IGH (Russell et al., 2009). The third rarely occurring method of 

deregulation is through activating mutations of CRLF2, being an F-C amino acid 

substitution at position 232 (Chapiro et al., 2010; Hertzberg et al., 2010), which 

was confirmed to lead to IL-3 independent growth in vitro and increased colony 

formation in vivo (Chapiro et al., 2010). CRLF2 overexpression constitutively 

activates the JAK-STAT pathway leading to expression of a large panel of genes 

including inflammatory factors JUN, FOS and NF-κB. These abnormalities occur 

in ~5% of both children and adults, with the incidence of IGH-CRLF2 subtype 

increasing with age. There are conflicting reports regarding outcome in CRLF2 

deregulated patients. Data from the UK show 5 year survival figures consistent 

with intermediate risk (Ensor et al., 2011). Research from the US indicates a poor 

outcome, however these data may be skewed due to the large numbers of 

Hispanic patients in the study cohort, which have been shown to have higher 
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incidence of BCP-ALL (Harvey et al., 2010a; Dores et al., 2012). CRLF2 

deregulation is the most common cytogenetic abnormality in DS ALL with 50% of 

patients having the abnormality (Mullighan et al., 2009a; Russell et al., 2009; 

Chapiro et al., 2010; Hertzberg et al., 2010). More recent analysis of CRLF2 

deregulation suggested that the abnormality negatively impacts on EFS and 

overall survival (OS) of adolescents and adults (Moorman, 2012a). More recently 

the subgroup has been characterised at the molecular level. Primary CRLF2 

rearranged ALL samples were stimulated in vitro with the CRLF2 ligand TSLP, 

which showed signal transduction through the JAK-STAT and PI3K/mTOR 

pathways. These primary samples were then treated with JAK inhibitor: 

Ruxolitinib, mTOR inhibitor: Rapamycin, and PI3k/mTOR inhibitor: PI103. 

Ruxolitinib was shown to inhibit both the JAK-STAT and the PI3K/mTOR 

pathways, while the other two inhibitors showed specificity for the PI3K/mTOR 

pathway, giving scope for multiple inhibitor molecules in future treatment 

protocols (Tasian et al., 2012). Further targeted treatment of the subgroup has 

not been published, however the use of JAK inhibitors has shown promise in Ph-

like patients exhibiting JAK mutations and CRLF2 deregulation in xenograft 

models (Maude et al., 2012; Roberts et al., 2014a).  

 

1.5 CCAAT Enhancer Binding Proteins (CEBPs) 

The CEBPs are a family of six multifunctional basic leucine zipper (bZIP) 

transcription factors, which function by regulating mRNA transcription, cell 

differentiation, proliferation control, metabolism and immunity. The genes are 

located on different chromosomes, CEBPA and CEBPG at 19q13, separated by 

71kb, CEBPB at 20q13, CEBPD at 8q11, CEBPE at 14q11 and CEBPZ at 2p22. 

The transcription factors function by binding with the CCAAT (cytosine-cytosine-

adenosine-adenosine-thymidine) box motif located within a range of gene 

promoter regions. The genes are well established in myeloid, adipose and hepatic 

genesis and differentiation. 

 

1.5.1 IGH-CEBP in BCP-ALL 

Translocations involving IGH have been observed in five of the six CEBP family 

members (Akasaka et al., 2007). They comprise the second most common IGH 
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subgroup: 11% of IGH and around 0.6% of ALL as a whole (Russell et al., 2014). 

The IGH translocations are: t(14;19)(q32;q13) for CEBPA/G, t(14;20)(q32;q13) 

for CEBPB t(8;14)(q11;q32) for CEBPD and inv(14)(q11q32)/t(14;14)(q11;q32) 

for CEBPE with the most common translocation being IGH-CEBPD (Russell et 

al., 2014). Median age at diagnosis is 15 years with a low white blood cell count 

(median 9x109/L) (Akasaka et al., 2007). These translocations are unique to ALL, 

although the mechanism of leukaemogenesis remains unknown. A study of 44 

patients showed DS to be the most commonly associated cytogenetic 

abnormality with IGH-CEBPD in 12 of the 44 patients (Lundin et al., 2009). This 

link is specific to IGH-CEBPD, with one exception of an IGH-CEBPE DS patient 

reported (Akasaka et al., 2007). CEBPA is a myeloid differentiation gene 

exclusively expressed in myeloid and monocytic lineages (Nerlov, 2007). It has 

been described as a tumour suppressor in this setting, thus expression in the 

lymphoid lineage and action as a tumour promoter is an unexpected finding. 

Typically observed as a single phenotype translocation, a IGH-CEBPE 

translocation was discovered in a patient with a complex karyotype, involving 

unbalanced rearrangements of both chromosomes 14; der(14)t(13;14)(q21;q21) 

and dup(14)(q11q32), giving rise to two individual IGH-CEBPE translocations in 

the same cells. This patient provides the first evidence of a chromosome 

duplication and cryptic insertion creating a IGH-CEBPE fusion (Pierini et al., 

2011). 

 

1.5.2 Structure and Function  

The C-terminus of the CEBP genes is highly conserved, with a sequence 

similarity of >90%. This region contains the leucine zipper and basic DNA binding 

domains and the sequence similarity translates into similar structural and 

functional properties of all family members (Figure 1.9). The leucine zipper 

consists of a heptad of leucine repeats, which form an alpha helix (Vinson et al., 

1993). This protein structure allows bZIP family members to homo and 

heterodimerise with each other; a crucial step in the action of the CEBPs, which 

stabilises the proteins interaction with target DNA (Cooper et al., 1995; Parkin et 

al., 2002). The DNA binding domain is located upstream of the bZIP, the function 

of which is determined by approximately 20 amino acids in the region (Johnson, 

1993). The N-terminus of the CEBP proteins contain the transactivating and 
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regulatory domains, which allow protein interactions. This region is more variable 

than the C-terminus. Different CEBP genes and isoforms express different 

numbers of transactivating domains (TD). These domains have been shown to 

exert varying potencies of transactivation and have been observed to bind 

different targets, but also act synergistically (Nerlov and Ziff, 1995). Differing 

isoform function is in part conferred by variation in which TD is expressed. For 

example, CEBPA contains three TDs: TDI, TDII and TDIII, with different CEBPA 

isoforms expressing different TDs. Isoform p42 expresses the most powerful TD, 

TDI, which is lacking in the shorter p30 isoform (Figure 1.9). CEBPG contains no 

TDs, giving rise to the theory that CEBPG is a dominant negative isoform 

functioning by inactivation of other CEBP and bZIP family members. The other 

CEBPs contain varying numbers of TDs depending upon the gene and protein 

isoform (Figure 1.9).  

Regulatory domains are also present in the N-terminus, with four of the CEBP 

genes expressing these domains (Figure 1.9), which function in an inhibitory 

manner. Regulatory domain I has been shown to have binding sequences for the 

small ubiquitin-related modifier (SUMO) protein, which post transcriptionally 

modifies its targets and generally functions by SUMOylating and inhibiting 

transcription factors. Further research has since discovered that SUMOylation 

exerts a regulatory effect on specific CEBP isoforms in several different settings, 

exerted by multiple SUMO family genes (Eaton and Sealy, 2003; Wang et al., 

2006; Khanna-Gupta, 2008).  
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Figure 1.9. IGH partnered CEBP protein domain loci, with protein isoforms.  

The proteins show a conserved C-terminal region with the leucine zipper domain, allowing for protein heterodimerisation, 

and a DNA binding domain. The N-terminus shows more variation with different combinations of transactivating and 

regulatory domains present, dependent upon gene and protein isoform.  CEBPA is predominantly expressed as two 

isoforms, the full length p42 isoform and the regulatory p30 isoform. CEBPB is expressed as three isoforms, the activating 

LAP* and LAP isoforms, and the negative LIP isoform. CEBPD is expressed as a single isoform. CEBPE is expressed as 

four p32, p30, p27 and p14 isoforms whose interplay controls terminal granulocytic differentiation. CEBPG shows no 

activating or regulatory domains and is believed to mainly function as a dominant negative protein for the other CEBP 

members. Adapted from (Schrem et al., 2004). 

 

CEBP isoforms are created by altered ribosomal translation points, which begin 

at codons downstream of the mRNA sequence (Lin et al., 1993; Ossipow et al., 
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1993). This translation is controlled by the mTOR pathway, which determines 

CEBP isoform ratios through the elF4E gene (Calkhoven et al., 2000).  

Isoform expression is particularly important for CEBPA, CEBPB and CEBPE, all 

of which have dominant negative isoforms influencing the function of their full 

length CEBP proteins (Figure 1.9). The CEBP proteins exhibit largely identical 

DNA binding specificities in vitro, making it difficult to predict which CEBP protein 

will bind to which sequences (Tsukada et al., 2011). Although DNA binding 

specificity is generally unique, the CEBP proteins can function in place of each 

other. For example, in haematopoiesis and adipocyte differentiation, CEBPA can 

function in place of CEBPB (Jones et al., 2002; Chiu et al., 2004). Synergy has 

also been observed in CEBP heterodimers, with CEBPB and CEBPD acting in 

concert in inflammatory signalling (Yan et al., 2012). In contrast CEBPA and 

CEBPD play opposing roles in hypoxia signalling through the HIF-1α gene, with 

CEBPA inhibiting its function and CEBPD supporting HIF-1α expression 

(Balamurugan and Sterneck, 2013). Other examples will be discussed below. 

As well as forming hetero- and homodimers within the CEBP family, the proteins 

can also form heterodimers with other bZIP family members, such as the 

CREB/ATF and FOS/JUN family, generally to facilitate existing CEBP functions, 

such as immune signalling and response, as well as differentiation control 

(Tsukada et al., 1994; Newman and Keating, 2003). They also repress CEBP 

function (Podust et al., 2001).  

While the CEBP genes act in concert in haematopoiesis (Figure 1.10) and in the 

development of other tissues, there is a level of complexity in their interplay, both 

in specific tissues and with each other. It is understood that the proteins can and 

do heterodimerize, but the results of such dimerization are largely unclear. Even 

known functions can be inverted depending upon context. Below is a brief 

description of some of the many functions of the CEBP gene family members 

(Figure 1.10). 
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Figure 1.10. Natural and induced CEBP expression in haematopoiesis from published reports (Tsukada et al., 2011).  

Blue arrows indicate natural lineage progression, orange arrows indicate experimentally induced differentiation (Heavey 

et al., 2003; Xie et al., 2004). CEBP expression is mostly sequential, beginning with CEBPA directing haematopoiesis 

down the myeloid lineage, and continuing with interplay between the CEBP genes in CMPs and myeloblasts and ending 

with specific CEBPs contributing to the terminal differentiation of the branched myeloid lineages. CEBPB and CEBPD 

expressed in monocytes and macrophages, and CEBPE and CEBPA expressed in terminal granulocytes. CEBPs 

importance in myeloid differentiation was underlined upon induced expression in lymphocytes leading to forced 

differentiation into myeloid cells.   

  

1.5.3 CEBPA  

CEBPA is an intronless gene located on chromosome 19q13.1. It has two major 

protein isoforms, one 42kDa containing three transactivating domains, coding 

from the second AUG site in the gene (Nerlov and Ziff, 1995), and a 30kDa 

protein, with  altered transactivating potential, due to a truncated transactivating 

domain coded from the third AUG site (Lin et al., 1993; Ossipow et al., 1993; 

Calkhoven et al., 2000).  More recently it has been discovered that there is a third 
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larger CEBPA isoform coding from a GUG site, this isoform functions specifically 

within the nucleolus to enhance ribosomal DNA transcription (Muller et al., 2010). 

 

1.5.3.1 Function   

CEBPA is best known for its function as a myeloid differentiation gene, controlling 

haematopoietic progression from CMP to myeloblast cells. It also shows high 

levels of expression in liver, lung, and adipose cells and is involved in the 

proliferation and differentiation of these tissues, often acting in concert with other 

CEBP genes (Lekstrom-Himes and Xanthopoulos, 1998). The short isoform, p30, 

lacks TDI important for interaction with various transcriptional initiating factors 

and growth arrest through regulation of MYC (Johansen et al., 2001). The second 

transactivating domain shared by the protein isoforms interacts with cell cycle 

genes CDK2/4 and chromatin remodelling complexes SWI/SNF (Wang et al., 

2001) (Figure 1.11). 

CEBPA directly activates lineage specific gene promoters, such as the G-CSF 

receptor, basal transcriptional apparatus, histone acetyl transferases, and 

chromatin remodelling complexes, SWI/SNF. It drives tissue specific 

differentiation through cooperation with specific collaborating transcription 

factors. In haematopoiesis these adaptors are thought to be the GATA factors 

(McNagny et al., 1998). The role of CEBPA as a critical myeloid differentiation 

gene has been supported both by loss and gain of function experiments. Ectopic 

expression of CEBPA was shown to induce differentiation and loss of proliferation 

in myeloid cells (Nerlov, 2004; Johnson, 2005), while CEBPA knock out mice 

displayed high levels of undifferentiated myeloid precursor cells (Zhang et al., 

1997). While not involved in lymphoid differentiation, over-expression of CEBPA 

and CEBPB was observed to transform B-cells into myeloid precursor cells, 

through upregulation of PU.1, antagonism of PAX5, and use of endogenous SPI1 

(Heavey et al., 2003; Xie et al., 2004) (Figure 1.10). Expression of CEBPA and 

CEBPB also differentiates committed T-cell progenitors into inflammatory 

macrophages via PU.1 and down regulation of T-cell lineage genes, such as 

Notch-1 and GATA3 (Hsu et al., 2006). In hepatocytes, expression of CEBPA is 

critically important in glucose homeostasis, as shown by null CEBPA mice being 

unable to store hepatic glycogen, leading to death from hypoglycaemia shortly 

after birth (Wang et al., 1995). CEBPA has also been shown to be modified post 
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transcriptionally via FLT3 phosphorylation of serine 21, leading to loss of 

granulopoietic differentiation (Radomska et al., 2006).  

 

1.5.3.2 Cancer   

CEBPA functions as an important driver of myeloid differentiation, giving it a 

natural role as a tumour suppressor in a haematopoietic setting. The importance 

of this role is highlighted by the presence of biallelic mutations in both sporadic 

and familial AML (Pabst et al., 2001; Nerlov, 2004; Smith et al., 2004), where they 

are associated with a good prognosis (Preudhomme et al., 2002; Fröhling et al., 

2004). The majority of patients show single allele frameshift mutations preventing 

the expression of the full p42 isoform and leading to expression of the dominant 

negative p30 isoform (Nerlov, 2004). Other patients with biallelic mutations 

showed that the most common partner mutation of the CEBPA p42 frameshift 

mutation was amino acid insertions within the DNA binding domain. These 

insertions produce incorrect alignment of bound DNA, effectively leading to 

inactivation of the protein. These two separate mutations completely knock out 

CEBPA function (Asou et al., 2003). CEBPA mutations are most commonly found 

in the minimally differentiated M1 and M2 FAB types, which support the role of 

CEBPA in differentiation from CMP to myeloblasts and later differentiation of 

granulocytes. Interestingly, gene expression analysis of patients with CEBPA 

mutations showed upregulation of erythroid differentiation genes and down 

regulation of myeloid commitment genes (Hackanson et al., 2008). The tumour 

suppressor role of CEBPA is further supported by findings that CEBPA and 

CEBPB are both downregulated at the mRNA level in BCR-ABL1 positive 

patients, and a number of other haematological malignancies (Guerzoni et al., 

2006).  

 

1.5.4 CEBPB  

CEBPB is an intronless gene located on chromosome 20q13.13, which is 

expressed as three protein isoforms whose interplay dictates the functional role 

of the gene. The largest isoform is known as liver enriched activating protein* 

(LAP*) of 44kDa, followed by a smaller isoform, LAP, of 42kDa and the smallest 

isoform, liver inhibitory protein (LIP) at 20kDa. Transactivational activity of 
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CEBPB is determined by the ratios of LAP*, LAP and LIP, with LIP acting as an 

inhibitor of the other two isoforms (Ramji and Foka, 2002; Zahnow, 2009; 

Tsukada et al., 2011). LAP* is a less potent activator of gene activity than LAP. 

However LAP* has the ability to recruit more co-activators than LAP, due to its 

extended N-terminus, providing a broader range of functions, including 

interaction with MYB to induce myeloid differentiation (Kowenz-Leutz and Leutz, 

1999). 

 

1.5.4.1 Function   

Strongly induced by bacterial lipopolysaccharides (LPS), CEBPB plays an 

important part in immune and inflammatory responses. It was identified as a 

mediator of IL-6, binding to its IL-1 response element. It has also been found to 

bind to the regulatory regions of acute phase and cytokine genes such as TNF, 

IL8 and G-CSF (Akira et al., 1990; Poli et al., 1990).  

CEBPB plays an important role in haematopoietic differentiation, specifically in 

the myeloid lineage, where it is active in late macrophage cell differentiation. A 

high LAP/LIP ratio, indicating LAP* and LAP dominance are important in 

monocytic lineage commitment (Gutsch et al., 2011), with increasing LAP/LIP 

ratios observed in cells committed to the myeloid and macrophage lineage. The 

same trend is observed in hepatocyte and adipocyte differentiation (Buck et al., 

1994). The importance of CEBPB in macrophage differentiation is observed in 

CEBPB knockout mice, where the resulting macrophages show reduced 

functional activity (Screpanti et al., 1995). LAP and LAP* can also promote 

granulocyte differentiation in emergency conditions such as infections, where 

rapid increases of immune cells are required (Popernack et al., 2001; Hirai et al., 

2006). Overexpression of the larger isoforms results in decreased myeloid 

progenitors and increased granulocytes in murine primary bone marrow cells, 

while LIP overexpression did not affect myeloid progenitor formation (Popernack 

et al., 2001). 

The CEBPB LAP/LIP ratio also dictates proliferation and cell cycle, which is 

controlled by FLT3 through induced expression of the short LIP isoform, leading 

to inactivation of LAP* and LAP. Inactivation of the larger protein isoforms 

removes their inhibition of MYC and in turn promotes cell cycle progression. 
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(Gutsch et al., 2011; Zhang et al., 2011) (Figure 1.11). In mouse fibroblasts and 

in pre-monocytic cells, CEBPB was observed to associate with RB-E2F protein 

complex, preventing transition from G1 to S phase (Johnson, 2005; Sebastian et 

al., 2005) (Figure 1.11). In later development, CEBPB loss enhances 

differentiation (Screpanti et al., 1995; Gutsch et al., 2011), leading to an increase 

in the number of cells in S phase (Gutsch et al., 2011; Zhang et al., 2011). 

Complete absence of CEBPB in murine monocytes affects cells at early and late 

stages of development. In early progenitors, prior to granulocytic commitment, 

cell proliferation is retarded thus lowering myeloid colony formation in 

methylcellulose tests (Hirai et al., 2006).  

 

1.5.4.2 Cancer   

CEBPB is linked to leukaemia mainly through inactivation of the large isoform 

proteins by LIP, leading to deregulation of CEBPB cell cycle control (Figure 1.11). 

AML patients with FLT3-ITD have high LIP expression, leading to deregulated 

CEBPB function (Haas et al., 2010). This trend is also observed in several FLT3-

ITD positive monocytic cell lines (Wall et al., 1996) and across several cancer 

types, including HeLa cells and breast cancer cells (Zahnow et al., 1997; Zahnow 

et al., 2001; Gomis et al., 2006). Indeed the expression of larger LAP isoforms is 

generally reduced in highly proliferative cells, such as bone marrow derived CML 

cells from patients during blast crisis (Guerzoni et al., 2006). The importance of 

the LAP/LIP ratio is underlined by upregulation of LAP/LAP* which is shown to 

reduce proliferation and induce differentiation in acute promyelocytic leukaemia 

(APL) (Duprez et al., 2003) and in primary AML cells (Studzinski et al., 2005), 

among other examples. 

 

1.5.5 CEBPD  

Located on chromosome 8q11.21, the CEBPD gene is coded by a single exon 

and is expressed as a single isoform, coding for a 28kDa protein which readily 

forms heterodimers with CEBPA and CEBPB (Tsukada et al., 2011). This gene 

is an important mediator within inflammatory pathways, as well as adipocyte and 

granulocyte differentiation. Although important in multiple pathways, findings from 

CEBPD knock out mice has shown that the gene is not crucial for normal 
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development (Tanaka et al., 1997). This view is supported by the generally low 

and specific expression of the gene, as well as the overlap of function with CEBP 

proteins. These observations and the rapid upregulation of CEBPD in response 

to specific stimuli, such as inflammation and corticosteroids, has led to the theory 

that CEBPD functions as a modulator for physiological adaptations (Balamurugan 

and Sterneck, 2013). 

 

1.5.5.1 Function   

CEBPD has been shown to operate as both an activator and repressor of multiple 

genes, depending upon the context and cell of expression. One of its first 

observed functions was up-regulation, due to bacterial LPS and pro-inflammatory 

cytokine stimulation, leading to its discovery as an activator of inflammatory 

pathways (Ramji and Foka, 2002). Further research into the inflammatory 

pathways has shown CEBPD to act as both a mediator of chronic inflammation 

and of macrophage function (Wu et al., 2011; Ko et al., 2012). 

CEBPD exhibits the same cell cycle control mechanisms as CEBPA and CEBPB, 

although it upregulates both CDKN1B and CDKN1C (Figure 1.11) (O'Rourke et 

al., 1999; Barbaro et al., 2007; Pawar et al., 2010). It promotes growth control by 

influencing multiple targets in G0/G1 of the cell cycle and later in S phase. 

CEBPD also drives maturation in both macrophage differentiation and function 

(Litvak et al., 2009), as well as granulocyte differentiation (Gery et al., 2005). 

CEBPD also promotes cell death through induction of STAT3, leading to the down 

regulation of CCND1, upregulation of IGFBP5 and P53, and regulation of the BCL 

family (Thangaraju et al., 2005).  

As with other CEBP family members, CEBPD acts primarily as a transcriptional 

regulator, however it has also been shown to function as a chaperone protein, 

guiding the DNA repair gene, FANCD2, into the nucleus, which is a unique 

function for this family of genes (Wang et al., 2010).  

 

Cancer 

In cancer, CEBPD acts as both a tumour promoter and suppressor. Cell cycle 

control through CEBPD has been observed in many cancer cell lines through 



 61   
 

multiple interactions with the RB/E2F pathway (Figure 1.11). CEBPD binds 

several targets during early cell cycle progression, it has been shown to mitigate 

the proliferative action of E2F1 in breast cancer (Pan et al., 2010), and in limbal 

stem cells. In limbal cells, CEBPD mediated downregulation of E2F1 and 

upregulation of CDKN1B and CDKN1C was considered to encourage stemness 

as cells were halted at the G0 phase, prolonging their lifespan (Barbaro et al., 

2007). Conversely in breast cancer cell lines, CEBPD is down regulated by the 

ubiquitin ligase, SIAH2, resulting in deregulation of cell cycle control and 

increased proliferation (Sarkar et al., 2012). Expression of CEBPD resulted in the 

growth arrest and subsequent differentiation of CEBPD deficient CML cell lines, 

KCL22 and K562. Growth arrest was achieved through interaction with RB and 

E2F1 proteins, down regulation of MYC and CCNE1 and upregulation of 

CDKN1B. Subsequent differentiation occurred through upregulation of G-CSFR 

and collagenase (Gery et al., 2005). This differentiation capability was also 

observed during overexpression of CEBPD in mouse progenitor cells, resulting 

in AML and differentiation of acute myelogenous leukaemia cell line models down 

the myeloid pathway (Gery et al., 2005). Supporting the function of CEBPD in cell 

cycle control and differentiation in AML, is the finding that the CEBPD promoter 

is silenced in 35% (28/80) AML patient samples (Agrawal et al., 2007), with 

reduced protein levels observed in a number of other cancers (Radich et al., 

2006). However in prostate cancer cell lines, results are inconsistent, with the 

androgen dependent LNCAP cell line exhibiting growth inhibition, while the 

androgen dependent prostate cancer cell line, CWR22, remains unaffected 

(Ikezoe et al., 2005; Sanford and DeWille, 2005). 

These data suggest that the main function of CEBPD in tumour suppression is 

through cell cycle control. As a tumour promoter, CEBPD has been shown to 

upregulate levels of SOD-1, a reactive oxygen species scavenger, conferring 

drug resistance to urothelial carcinoma cell lines (Hour et al., 2010). In a recent 

breast cancer study, it was observed as both a promoter and a suppressor, 

protecting from the initiation of oncogenesis, while promoting metastasis 

(Balamurugan et al., 2010).  

Interestingly, CEBPD is located within a fragile site, which is often lost in cancer 

cell lines due to proximity to the KIAA0146 gene. However, it is unclear whether 

this loss directly influences oncogenesis (Brueckner et al., 2013). Sequencing of 
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CEBPD and CEBPB in haematological malignancies found little evidence that 

mutations in these genes contributed to the development of oncogenesis 

(Vegesna et al., 2002), unlike CEBPA. Although this observation did not include 

the effects of expression change through gene amplification or copy number loss. 

The strongest evidence of CEBPD as a tumour promoter is found in brain 

tumours. CEBPD mRNA is overexpressed in mesenchymal glioblastoma cells 

and is linked to a poor outcome (Cooper et al., 2012). The action of CEBPD in 

promoting cell survival in these conditions is through upregulation of HIF-1α, 

leading to improved tumour cell survival in hypoxic conditions. Additionally 

CEBPD inhibits expression of FBXW7α in glioblastoma cell lines (Balamurugan 

et al., 2010), which is a subunit of the SCF E3 ubiquitin ligase complex and a 

confirmed tumour suppressor in glioblastoma (Hagedorn et al., 2007; Cheng and 

Li, 2012). Despite this action, there is evidence to suggest that CEBPD actively 

recruits tumour associated macrophages to the hypoxic rich regions in murine 

tumours (Balamurugan and Sterneck, 2013). Simplified, the two main actions of 

CEBPD as a tumour promoter are through enhanced hypoxic survival in tumour 

cells, and increased inflammatory signalling, leading to increased DNA damage 

(Trinchieri, 2012). 

 

1.5.6 CEBPE  

Coded by a two exon gene, CEBPE is located on chromosome 14q11.2 and 

expressed as four different protein isoforms; p32, p30, p27, and p14 , with 

variable transactivating domains and differing transcriptional activities 

(Chumakov et al., 1997; Yamanaka et al., 1997) (Figure 1.11). CEBPE is 

expressed primarily in myeloid and lymphoid cells (Yamanaka et al., 1997), the 

highest expression is seen in pro-myelocytes and late myeloblasts (Thomassin 

et al., 1992; Antonson et al., 1996; Morosetti et al., 1997). The gene and isoforms 

are weak transcriptional activators, which require coactivators for full functional 

activity (Yamanaka et al., 1997).  

 

1.5.6.1 Function and Cancer 

CEBPE is involved in terminal granulocyte differentiation. This function is 

supported by the observations in CEBPE mutant mice, which die after 2-5 months 
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due to the build-up of immature granulocytes (Cohen et al., 2008). Research has 

also shown that lack of CEBPE results in neutrophil specific granule deficiency 

(Lekstrom-Himes and Xanthopoulos, 1998; Gombart et al., 2001), due to its 

importance in the expression of genes coding for proteins stored in specific 

neutrophil granules. All four CEBPE isoforms are expressed in mature 

neutrophils and eosinophils, but isoform expression varies between different 

neutrophil and eosinophil progenitors. The p32/30 isoforms were found to 

promote eosinophil differentiation, while the smaller p27 isoform inhibited 

eosinophil differentiation through GATA-1 inactivation, resulting in neutrophil 

differentiation. The smallest p14 repressor isoform inhibited eosinophil 

differentiation, while pushing erythroid commitment (Bedi et al., 2009). CEBPE 

also plays a role in early myeloid differentiation, inducing cell cycle arrest at the 

myelocytic stage (Nakajima et al., 2006). Like the other CEBPs as discussed 

above, CEBPE interacts with E2F1, RB1 and MYC to exert cell cycle control 

(Gery et al., 2004). Genome wide association studies have found CEBPE Single 

Nucleotide Polymorphisms (SNPs) to be among a group of genes, which 

significantly increase the likelihood of developing paediatric ALL (Papaemmanuil 

et al., 2009).  

 

1.5.7 CEBPG  

CEBPG is a ubiquitously expressed gene initially discovered by its affinity for cis-

regulatory sites in the immunoglobulin heavy chain promoter and enhancer 

(Roman et al., 1990), which shows highest expression in progenitor cells 

(Thomassin et al., 1992; Cooper et al., 1995). Located on chromosome 19q13.11, 

the two exon gene codes for a single 16.4kDa protein isoform, which does not 

possess a transcriptional transactivating domain, leading to the theory that the 

protein acts as a dominant negative regulatory factor for the other CEBP proteins.  

 

1.5.7.1 Function and Cancer 

While functioning as the main CEBP regulator, CEBPG itself is regulated by 

CEBPA. CEBPA has been shown to bind to the proximal promoter region of 

CEBPG, repressing expression of the gene (Alberich-Jorda et al., 2012). CEBPG 

shows high expression in lymphoid and myeloid precursors, becoming down 
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regulated as cells mature (Cooper et al., 1995). In a murine setting, CEBPG 

controls the function of CEBPB through heterodimerisation, leading to 

inactivation of pro-inflammatory cytokines and chemokines, and cell senescence 

in mouse embryonic fibroblasts (Huggins et al., 2013). CEBPG has been shown 

to inactivate other CEBPs through heterodimerisation in a cell specific manner, 

successfully inactivating the function of CEBPB and CEBPD in fibroblastic cells, 

while failing to do so in HepG2 hepatoma cells. It also completely failed to 

inactivate the function of CEBPA in either cell type (Parkin et al., 2002). CEBPG 

functions as an inhibitor of neutrophil differentiation through blockage of G-CSF, 

and theoretically CEBPB, as demonstrated in vitro, in vivo, and in a specific 

subset of CEBPA downregulated AML patients. However subsequent 

downregulation of CEBPG in vitro resulted in granulocytic differentiation of these 

primary AML cells (Alberich-Jorda et al., 2012). Depletion of CEBPG has been 

shown to negatively impact A549 lung adenocarcinoma cells. Expression of 

CEBPG mRNA has also been shown to have a statistically significant association 

with patient outcome in clinical cancer studies, with higher expression linked to 

poorer outcomes (Huggins et al., 2013). In cancer, the main role of CEBPG 

appears to be the inactivation of other CEBP members, resulting in deregulation 

of cell cycle control and a block in cellular differentiation. 

 

1.5.8 CEBPZ  

Also known as CHOP and DDIT3, CEBPZ is the only CEBP gene not identified 

as that a translocation partner of IGH. Containing three exons, the gene is located 

at chromosome 2q13.32 and is a ubiquitously expressed upon DNA damage 

(Fornace et al., 1989). It readily dimerizes with the other CEBPs, but cannot bind 

to the cognate DNA enhancer element due to mutations in the DNA binding 

domain (Lekstrom-Himes and Xanthopoulos, 1998). Aberrant methylation of the 

CEBPZ promoter has been described in AML, suggesting a functional role in the 

development of the leukaemia (Yao et al., 2011). There are suggestions that 

CEBPZ acts as a negative regulator of stress induced genes (Ron and Habener, 

1992). 
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Figure 1.11. CEBP influence on cell cycle control at the G0/1 and S phase.  

The capacity to exert cell cycle control is a unifying ability in CEBP genes containing TDs. While some details may differ, 

broadly CEBPA, CEBPB, CEBPD and CEBPE have been observed to control G0 to G1 progression in several cell types. 

CEBPs exert this function by controlling the interplay between cyclins, cylin dependent kinases (cdks), cylin inhibitors, the 

RB protein family and the E2F transcription factor family. The cyclin inhibitors upregulated are dependent upon the 

individual CEBP gene, CEBPA upregulates CDKN1A (p21CIP1) (Wang et al., 2001), CEBPB upregulates CDKN1B 

(p27KIP1) (Gutsch et al., 2011) and CEBPD upregulates both CDKN1B (p27KIP1) and CDKN1C (p57KIP2) (O'Rourke et 

al., 1999). These individual cyclin kinase inhibit all cyclins at the G1 stage. These CEBPs also directly inhibit cyclin 

function, repressing CCND1/cdk4, CCND1/cdk6 and CCNE1/cdk2. All of the above process function to prevent the 

phosphorylation of the RB protein family (Johnson, 2005). This is vital as this family binds to E2F transcription factors, 

repressing the transcription of S phase genes which drive the cell cycle forwards (Classon and Harlow, 2002). The E2F 
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transcription factors are also affected by CEBP genes through indirect binding which inhibits E2Fs interaction with target 

genes. CEBP genes also exert an effect later in S phase, where they disrupt E2F-S phase gene complexes, promoting 

cell cycle withdrawal, and function to stabilise pRB-E2F complexes in combination with the SWI/SNF chromatin 

remodelling complex (Muchardt and Yaniv, 2001). Indirectly CEBPA, CEBPB, CEBPD and CEBPE downregulate MYC. 

Nullifying the effects of MYC which acts to drive cell cycle progression through down regulation of cyclin inhibitors and 

upregulation of cyclin/cdk complexes, with CEBPA shown to have a reciprocal relationship, balancing proliferation with 

growth arrest  (Freytag and Geddes, 1992).  

 

 Aims 

Detailed characterisation of multiple ALL subgroups has resulted in improved 

survival as a result of altered treatment stratification and/or the identification of 

novel therapeutic targets. This PhD aimed to characterise the IGH-CEBP 

subgroup, to identify common clinical characteristics, established and novel 

genetic lesions, and affected molecular pathways to determine the role of CEBP 

deregulation in BCP-ALL.  

This would be achieved by: 

 Identifying an IGH-CEBP patient cohort through use of FISH screening 

 Performing statistical analysis on patient clinical data to identify potential 

trends 

 Genetically characterising the IGH-CEBP cohort using Multiplex Ligation-

Dependent Probe Amplification (MLPA), SNP and FISH techniques.  

 Using functional techniques to model CEBP deregulation in vitro and in 

vivo. 

 Using molecular characterisation techniques on primary patient material 

and generated functional model material to identify molecular pathways 

important in IGH-CEBP BCP-ALL. 
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Chapter 2 Materials and Methods 

 

2.1 Approval 

 

2.1.1 Ethical Approval for patient material  

Informed consent was given by all patients in accordance with the Declaration of 

Helsinki and ethics committee approval. 

2.1.2 Ethical Approval for mouse studies  

Mouse studies were conducted in accordance with the UK Animals (Scientific 

Procedures) Act (ASPA) 1986 under the project licence PPL60/4552. 
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2.2 Materials 

2.2.1 List of Suppliers 

Company Location 

Abbott Molecular Chicago, IL, USA 

Affymetrix Santa Clara, CA, USA 

Agilent Technologies Santa Clara, CA, USA 

Beckman Coulter Brea, CA, USA 

BGM Labtech Ortenberg, Germany 

Bio-Rad Hercules, CA, USA 

Clontech Mountain View, CA, USA 

Cytocell Cambridge, UK 

Eppendorf Hamburg, Germany 

Erba Diagnostics Miami Lakes, FL, USA 

Fisher Scientific Loughborough, UK 

GE Healthcare Little Chalfont, UK 

Labtech International Uckfield, UK 

Leica Biosystems Nussloch, Germany 

Life Tech (Applied Biosystems, Invitrogen and 

Gibco) 

Carlsbad, CA, USA 

Macherey-Nagel Düren, Germany 

MRC Holland Amsterdam, Netherlands 

Olympus Tokyo, Japan 

Promega Madison, WI, USA 

Qiagen Venlo, Netherlands 

Santa Cruz Biotechnologies Dallas, TX, USA 

SANYO Osaka, Japan 

Sigma-Aldrich St. Louis, MO, USA 

Syngene Cambridge, UK 

Takara  Mountain View, CA, USA 

Thermo Scientific Waltham, MA, USA 

VWR International Radnor, PA, USA 
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2.2.2 Laboratory Equipment  

Equipment Company 

5415R Microcentrifuge Eppendorf 

2100  BioAnalyzer Agilent Technologies 

2720 Thermal Cycler Applied Biosystems 

Affymetrix GeneChip SNP 6.0 array Affymetrix 

Amersham ECL Gel Box  GE Life Sciences 

Beckman Coulter CEQ 8800 Beckman Coulter 

BX61 Fluorescent Microscope Olympus 

CO2 Incubator SANYO 

Digital Heating Ceramic Plate Velp Scientifica 

FACS Canto II Becton Dickinson 

FACS Fusion Sorter Becton Dickinson 

Fluostar Omega Plate Reader  BMG Labtech 

G:BOX Chemi XL1.4 Imaging System Syngene 

Gel Electrophoresis Tanks Bio-Rad 

GeneAmp PCR System 2700 Applied Biosystems 

HemaVet Erba Diagnostics 

Hybrite Vysis 

IKA vortexer  Agilent Technologies 

LSRFortessa X-20  Becton Dickinson 

NanoDrop 1000 Thermo Scientific 

Qubit 2.0 Fluorometer Life Technologies 

Rocking Platform Bibby Scientific 

SRT9 Roller Mixer Stuart 

Superior Haemocytometer Marienfeld 

Thermobrite Statspin Abbott Molecular 

ViiA 7 Real-Time PCR System Applied Biosystems 

ViiA7 Real-Time PCR System  Life Technologies 
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2.2.3 Software  

Software Company 

CytoVision 7.1 Leica Biosystems 

FACSDiva Becton Dickinson 

FlowJo Flow Jo 

GeneMarker V1.85 SoftGenetics 

Genotyping Console V4.1.1.834 Affymetrix 

ImageJ software (Version 1.48) Freeware 

New England Biolabs Cutter V2.0 New England Biolab 

Primer 3Plus General Public License 

ViiA 7 Software 1.1 Life Technologies 

 

2.2.4 Chemicals and Reagents   

2.2.4.1 Chemicals and Reagents  

Chemical / Reagent Company 

16% Formaldehyde solution Thermo Scientific 

1kb Ladder Promega 

Amersham ECL Gel GE Life Sciences 

Ampicillin Sigma-Aldrich 

Aqua dUTP 431nm (Red) Abbot Molecular 

Busulfan Sigma-Aldrich 

cDNA reagents Promega 

Chloramphenicol Sigma-Aldrich 

DAPI Solution Vector 

DMSO Fisher Scientific 

dNTP Master Mix Enzo 

Ethanol Fisher Scientific 

Ficoll-Paque PREMIUM GE Healthcare 

Gel Red VWR International 

Gold dUTP Abbot Molecular 

Green dUTP 496nm Abbot Molecular 

Human Cot-1 DNA Invitrogen 

Hybridisation Buffer Cytocell 
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Hybridisation Buffer Cytocell 

Isopropanol Fisher Scientific 

Kanamycin Sigma-Aldrich 

Loading Dye (6x) Promega 

Methanol Fisher Scientific 

Mineral Oil Beckman Coulter 

PCR Markers Promega 

Phosphate buffered saline (PBS)  GIBCO 

Phosphate buffered saline tablets Sigma-Aldrich 

Polybrene Sigma-Aldrich 

Polybrene  Sigma-Aldrich 

Puromycin Promega  

PVDF membrane Merck Millipore 

Red dUTP 580nm Abbot Molecular 

Sodium Acetate Sigma-Aldrich 

Spectra Multicolor Broad Range 

Protein Ladder  

Thermo Scientific 

Taqman Universal Mastermix II Applied Biosystems 

Triton X-100 Sigma-Aldrich 

Trypan blue  Bio-Rad 

Ficoll-Paque PREMIUM GE Healthcare 

Restore™ Western Blot Stripping 

Buffer 

Thermo Scientific 

 

2.2.4.2 Experimental Kits  

Experimental Kit Company 

Amersham Enhanced Chemiluminescence Prime 

Western Blotting Detection Reagent  

GE Healthcare 

Agilent RNA 6000 Nano Kit  Agilent 

Anti-Mouse Ig, κ/Negative Control Compensation 

Particles Set 

BD Bioscience 

CD34 MicroBead Kit Miltenyi Biotec 

DNeasy Blood and Tissue Kit Qiagen 
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EndoFree Plasmid Maxi Kit Qiagen 

GeneJET Gel Extraction Kit Thermo Scientific 

Illustra ProbeQuant G-50 Micro Column  GE Healthcare 

Illustra ProbeQuant G-50 Micro Columns GE Healthcare 

Life Sciences 

Nick Translation DNA Labelling Kit Enzo 

NucleoBond Midi Kit Macherey-Nagel 

One Shot® Stbl3 Chemically Competent E. coli Life Technologies 

Pierce™ Coomassie (Bradford) Protein Assay Kit Thermo Scientific 

QIAPrep Spin Mini Kit Qiagen 

QIAshredder Qiagen 

RNeasy Micro Kit Qiagen 

RNeasy Mini Kit Qiagen 

SALSA MLPA P335 ALL-IKZF1 probemix MRC Holland 

 

2.2.4.3 Culture Media and Supplements  

Culture Media and Supplements Company 

Foetal Bovine Serum Gibco 

Foetal Bovine Serum Sigma-Aldrich 

L-Glutamine Sigma-Aldrich 

Trypsin  Sigma-Aldrich 

Cell Disassociation Buffer Gibco 

Dulbeco’s Modified Eagle’s Medium Sigma-Aldrich 

Iscove’s Modified Dulbeco’s Medium Gibco 

Minimum Essential Medium Eagle Alpha Modification 

Medium 

Gibco / Sigma 

Gelatin Solution Sigma-Aldrich 

 

2.2.4.4 Culture Media Cytokines 

Cytokine Company Product Code 

Recombinant human Flt-3 Ligand Miltenyi 130-093-854 

Recombinant human stem cell factor Miltenyi 130-093-991 

Recombinant human thrombopoietin Miltenyi 130-094-011 

Recombinant human IL-3 Miltenyi 130-093-908 
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Recombinant human IL-6 Miltenyi 130-095-365 

Recombinant human IL-7 Life Technologies PHC0075 
 

 

2.2.5 Buffers and Media  

2.2.5.1 Fluorescence in situ Hybridisation Buffers  

Name Composition 

WASH 1 (1L) 20ml 20X SSC 

3ml NP40 

WASH 2 (1L) 100ml 20X SSC 

1ml igepal-CA-630 

 

2.2.5.2 Western Immunoblotting Buffers  

 Western Immunoblotting Transfer Buffers  

Name Composition 

10x Running Buffer 

(1L) 

30.3g Tris 

144g Glycine 

10g SDS 

10x Transfer Buffer 

(1L) 

144g Glycine 

30.3g Tris 

Urea Buffer 7.92M Urea 

100mM NaH2PO4 

80mM Tris-HCl (pH 8) 

 

 Western Immunoblotting Direct Lysis Buffer  

Reagents Volume 

2X Laemmli Sample Buffer:  700µl 

β-Mercaptoethanol:  70µl 

1X PBS  416µl 

100X Na3VO4 14µl 

7X protease inhibitor  200µl 
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2.2.5.3 Freezing Buffers  

Name Composition 

Newcastle Freezing 

Solution 

90% FBS 

10% DMSO 

Cincinnati Freezing 

Solution 1 

HES 500µl 

IMDM 300µl 

BSA (25%) 200µl 

Cincinnati Freezing 

Solution 2 

DMSO 100µl 

HES 500µl 

IMDM 300µl 

BSA (25%) 200µl 

 

2.2.5.4 Bacterial Culture Buffers  

 Name Composition 

Fix 75% Methanol 

25% Acetic Acid 

LB Agar Plates LB Medium 

1.5% w/v agar 

LB Medium 1% w/v tryptone 

0.5% w/v yeast extract 

1% w/v NaCl 

pH 7 

     

2.2.5.5 Cell Culture Media 

Cells Medium Supplements Cytokines 

(10ng/µl) 

293T cells Dulbecco's 

Modified Medium 

10% FBS + 2mM L-

glutamine 

NA 

CD34+ cells Iscove's Modified 

DMEM 

10% FBS + 2mM L-

glutamine 

SCF, TPO, 

FLT3-L, IL-3, 

IL-6, IL-7 

CD34+ cells Alpha-MEM 20% FBS + 2mM L-

glutamine 

SCF, FLT3-L, 

IL-7 
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MS-5 Cells, 

OP9 Cells 

Alpha-MEM 20% FBS + 2mM L-

glutamine 

NA 

 

2.2.5.6 Retroviral Transfection Buffers 

Name Composition 

2M CaCl2 

Solution 

(50ml) 

14.701g CaCl2 

50ml H2O 

0.2µm filter 

HBSS x2 

Solution 

(50ml) 

43.822ml H2O 

2.778ml 0.9M HEPES (pH 7.1) for a total conc of 

50mM 

2.8ml 5M NaCl for a total conc of 280mM 

0.6ml 125mM Na2HPO4.7H2O for a total conc of 

75mM  

0.2µm filter 

 

2.2.5.7 Xenograft Buffers 

Name Composition 

Ammonium chloride 

red lysis buffer 10X 

8.3g Ammonium Chloride 

1.0g Potassium 

Bicarbonate  

0.38g EDTA 

100ml dH2O 

 

2.2.6 Oligonucleotide Sequences  

2.2.6.1 Quantitative PCR Primers TaqMan 

Gene Exon 

Boundary 

Assay 

Location 

Amplicon 

Length 

Life Tech ID 

CEBPA 1 - 1 1538 77 Hs00269972_s1 

CEBPB 1 - 1 838 75 hs00270923_s1 

CEBPD 1 - 1 943 107 Hs00270931_s1 

CEBPE 1 - 2 1030 121 Hs00357657_m1 
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CEBPG 2 - 2 3463 134 Hs01922818_s1 

IKZF1 2 - 3 209 73 Hs00958474_m1 

GAPDH 3 - 3 229 122 Hs99999905_m1 

GUSB 11 - 12 1925 81 Hs99999908_m1 

B2M 3 - 4 431 81 Hs00984230_m1 

ABL1 3 - 4 549 91 Hs00245445_m1 

 

2.2.6.2 Quantitative PCR Primers SYBR Green 

Primer Name Position Forward Sequence Reverse Sequence 

ABL2 Set 1 Exon 2 TTTGAATGCCATGAAAAGGA TCCATTCCCTGTTCTCCATC 

ABL2 Set 2 Exon 2 ATCACTTTGCCAGCTGTGTG AACCCTTGAATTTGTGGTTCC 

ABL2 Set 1 Exon 3 CTTTGCATCGTCCCTATGGT TGAGTGTGTTATCACCACTTGCT 

ABL2 Set 2 Exon 3 AGCTTTGCATCGTCCCTATG CTGAGTGTGTTATCACCACTTGC 

ABL2 Set 1 Exon 4 TGCCAAGCAACTACATCACC ACACGTCCCTCGTACCTGAG 

ABL2 Set 2 Exon 4 GGTGCCAAGCAACTACATCA GCCATCTGCAGTGGTATTGA 

ABL2 Set 1 Exon 5 TTGGCAGAGCTTGTACACCA GACGCCAACGTAAACCTCTC 

ABL2 Set 2 Exon 5 TGGGCTGGTGACAACATTAC GACGCCAACGTAAACCTCTC 

ABL2 Set 1 Exon 7 TGTGTACTTTGGAGCCACCAT AGTACTCCATTGCAGAAGAAATCTG 

ABL2 Set 2 Exon 7 TTTGGAGCCACCATTTTACA TTCTCTAAGTACTCCATTGCAGAAGA 

ABL2 Set 1 Exon 9 TGGGGTATTGTTGTGGGAAA CTCAGGCTGTTCCATTCGAT 

ABL2 Set 2 Exon 11 TAGCTGAGGAGCTTGGGAGA CTGGTGCTAAACTGGAAGCA 

B2M Intron 1-2 TCTAGGCGCCCGCTAAGTT TCGCGTGCTGTTTCCTCC 

RPLPO Intron 2-3 ATAAACGGGCTCAGGCAAGTT CGCGCTCTTTTAGAAGCCAG 

TBP Intron 5-6 TCTCTCTGACCATTGTAGCGGTT CCGTGGTTCGTGGCTCTCT 

 

2.2.7 Cloning Restriction Enzymes 

Restriction 

Enzyme 

Sequence Promega 

Buffer 

NEB Buffer Incubation 

Temp 

Heat 

Inactivation 

Temp 

PvuII CAG/CTG B 3.1 37°C 65°C 

EcoRI G/AATTC H 2.1 37°C 65°C 

NcoI C/CATGG D 3.1 37°C 80°C 

XhoI C/TCGAG D CutSmart Buffer 37°C 65°C 

BglII A/GATCT D 3.1 37°C 65°C 

NotI GC/GGCCGC D 3.1 37°C 65°C 
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2.2.8 Mammalian Cell Lines  

Cell 

Line 

Origin 

MS-5 Murine bone marrow cultures 

OP-9 Murine bone marrow cultures 

293T Human embryonic kidney cells 

 

2.2.9 Bacterial Strains  

Name Source 

One Shot® Stbl3™ Chemically 

Competent E. coli 

Life Technologies 

E.coli Bac Pac Resources 

E.coli Roswell Park 

 

2.2.10 Antibodies  

2.2.10.1 Flow Cytometry Antibodies 

Marker Fluorochrome Clone 
Laser 

FACSCanto II Fortessa X20 FACSAria II 

CD34 Allophycocyanin (APC) 561 Red 663nm 660/20 Red 640nm 670/30 NA 

CD19 Phycoerythrin (PE) HIB19 Blue 488nm 585/42 Yellow/Green 561nm 586/15 
Blue 488nm 

575/26 

CD19 Pacific Blue (PB) HIB19 Violet 405nm 450/50 Violet 405nm 450/50 NA 

CD19 Allophycocyanin (APC)  SJ25C1 Red 663nm 660/20 Red 640nm 670/30 NA 

CD33 
Phycoerythrin-Vio770 (PE-

Vio770) 
AC104.3E3 Blue 488nm 780/60 Yellow/Green 561nm 780/60 

Blue 488nm 

780/60 

CD33 Pacific Blue (PB) WM53 Violet 405nm 450/50 Violet 405nm 450/50 NA 

CD33 Allophycocyanin (APC) P67.6 Red 663nm 660/20 Red 640nm 670/30 NA 

CD33 Phycoerythrin (PE) 
P67.6 

Blue 488nm 585/42 Yellow/Green 561nm 586/15 
Blue 488nm 

575/26 

CD10 
Phycoerythrin-Cyanine7 

(PE-Cy7) HI10a 
Blue 488nm 780/60 Yellow/Green 561nm 780/60 

Blue 488nm 

780/60 

CD10 
Allophycocyanin-Cyanine7 

(APC-Cy7) 
HI10a Red 663nm 780/60 Red 640nm 780/60 NA 

CD11b Pacific Blue (PB) ICRF44 Violet 405nm 450/50 Violet 405nm 450/50 NA 

hCD45 

Peridinin Chlorophyll 

Protein Complex -Cyanine 

5.5 (PerCP-Cy5.5) 

HI30 Blue 488nm 670LP Blue 488nm 710/50 
Blue 488nm 

710/50 

hCD45 
Phycoerythrin-Cyanine7 

(PE-Cy7) HI30 
Blue 488nm 780/60 Yellow/Green 561nm 780/60 

Blue 488nm 

780/60 
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mCD45 
Allophycocyanin-Cyanine7 

(APC-Cy7) 
30-F11 Red 663nm 780/60 Red 640nm 780/60 NA 

Death 

Marker 
Zombie Aqua NA Violet 405nm 525/50 Violet 405nm525/50 NA 

7AAD Far-Red NA Red 663nm 660/620 Red 663nm 670/14 NA 

DAPI NA NA Violet 405nm 450/50 UV 355nm 450/50 
UV 355nm 

450/50 

EGFP FITC NA Blue 488nm 530/30 Blue 488nm 530/30 
Blue 488nm 

520/20 

Biotin 

(CD90) 
NA 5E10 NA NA NA 

Thy1 
Phycoerythrin (PE) 

Sreptavidin 
NA Blue 488nm 585/42 Yellow/Green 561nm 586/15 

Blue 488nm 

575/26 

Flow cytometry antibody markers, with corresponding emissions and the lasers used to detect them on the relevant flow 

cytometry analyser. 

 

2.2.10.2 Flow Cytometry Isotype Controls 

Marker Fluorochrome Clone 

IgG1, κ Isotype Ctrl (FC) Antibody APC MOPC-173 

IgG1, κ Isotype Ctrl (FC) Antibody PE MOPC-21 

IgG1, κ Isotype Ctrl (FC) Antibody APC-Cy7 MOPC-21 

IgG1, κ Isotype Ctrl (FC) Antibody PB MOPC-21 

Mouse IgG1 PE-Vio770 IS5-21F5 

 

2.2.10.3 Primary Antibodies for Western Immunoblotting 

Marker Species Dilution Company 

CEBPD Rabbit 1:200 Santa Cruz 

Ikaros Goat 1:200 Santa Cruz 

CEBPB Rabbit 1:200 Santa Cruz 

α-tubulin Mouse 1:1000 Cell Signalling 

Technology 

β-actin  1:2000 Abcam 

 

2.2.10.4 Secondary Antibodies for Western Immunoblotting 

Marker Conjugate Dilution Company 

Anti-rabbit Horseradish Peroxidase 

(HRP) 

1:2000 Santa Cruz 
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Anti-goat Horseradish Peroxidase 

(HRP) 

1:1000 Santa Cruz 

Anti-mouse Horseradish Peroxidase 

(HRP) 

1:1000 Cell Signalling 

Technology 

 

 

2.3 Methods 

2.3.1 Genetic Characterisation Techniques 

Genetic characterisation techniques were used to identify common and novel 

copy number alterations (CNAs) and chromosomal structural abnormalities in the 

IGH-CEBP cohort. IGH-CEBP translocations and CNAs were identified using 

fluorescence in situ hybridisation (FISH). Multiplex ligation-dependent probe 

amplification (MLPA) was used to investigate CNAs of a panel of preselected 

genes commonly abnormal in BCP-ALL, and SNP arrays were used to identify 

novel CNAs in the cohort. 

 

2.3.1.1 Fluorescence In Situ Hybridisation (FISH) 

Fluorescence in situ hybridisation (FISH) is a technique, which makes use of DNA 

segments bound to fluorescent reporter molecules to visualise gains, deletions, 

or chromosomal rearrangements through complementary DNA binding in 

targeted nuclei. The technique is highly customisable, allowing for use of multiple 

fluorochromes and probes of varying sizes. In this study, FISH was used to 

identify translocations, fusions, deletions, and gains of multiple target genes.  

 

 FISH Probes 

Multiple probe sets were created to investigate CEBP gene rearrangements. 

Several probes were previously created by Dr. L.J. Russell (Akasaka et al., 

2007), over the course of this study several probes were altered to boost signal 

intensity, an IGH-CEBPD fusion probe was also created to confirm fusion 

events (Table 2.1). The DNA clones were selected using the UCSC 

(GRCh38/hg38) and Ensembl (Version 82) genome browsers. Clone sizes 

varied depending upon library coverage and gene location, larger bacterial 
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artificial chromosome (BAC) probes were between 150-350 kb in length and 

were ordered from Roswell Park (Buffalo, USA). Smaller fosmid clones, up to 

40kb in length were ordered from Bac Pac Resources (Oakland, USA). 

Individual clone libraries were treated with specific antibiotics, RP-6, 21, 31, 91 

and 92 libraries were grown on agar and in medium containing 50µg/ml 

Kanamycin, all other libraries were grown with 25µg/ml Chloramphenicol. 

Clones were ordered as agar stabs and grown on LB Agar plates with 

appropriate selection antibiotic at 37°C for 16 hours. Individual colonies were 

selected after incubating, and grown in a starter culture of 5mls of LB Broth and 

selection antibiotic for up to 8 hours in a shaking incubator at 37°C. 200ul of the 

starter culture was added to 200ml of LB Broth with the appropriate selection 

antibiotic. DNA was extracted using the NucleoBond Midi kit (Macherey-Nagel, 

Germany) following the manufacturer’s instructions (http://www.mn-

net.com/tabid/1479/default.aspx). The bacterial culture was decanted into 50ml 

falcon tubes and spun down at 6000 x g at 4°C for 15 minutes. The resulting 

supernatant was discarded and bacterial pellets were resuspended in a total of 

16ml of Resuspension Buffer. A further 16ml of Lysis Buffer was added and the 

solution was inverted 10-12 times by hand. The sample was left to incubate at 

room temperature for 5 minutes. During this incubation step a separation 

column was equilibrated with 12ml of Equilibration Buffer by adding the buffer 

slowly to the rim of the column in a clockwise motion. After the incubation step 

16ml of Neutralisation Buffer was added to the sample after which it was 

inverted five times, halting the lysis step. The sample was then pelleted down at 

6000 x g at 4°C for 15 minutes. The resulting lysate was applied to the rim of 

the equilibrated separation column slowly, being careful to avoid uptake of any 

resulting flocculate. After the lysate had flowed through the column 5ml of 

Equilibration Buffer was added to the rim of the separation column after which 

the column filter was discarded. The remaining silica membrane was washed 

using 8ml of Wash Buffer. After the buffer had passed through the membrane 

the column was transferred to a 50ml falcon tube for plasmid collection. DNA 

was eluted by addition of 5ml of Elution Buffer. Elution buffer could be warmed 

to 37°C to increase DNA yield.   

To precipitate the plasmid DNA 3.5ml of isopropanol was added to the elute. The 

sample was vortexed and left at room temperature for 2 minutes and then 
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centrifuged at 15,000 x g for 30 minutes. The supernatant was carefully removed 

and 3.5ml of 70% ethanol was added followed by a further centrifugation step at 

15,000 x g for 5 minutes. The supernatant was carefully removed and the 

resulting pellet was left to air dry for 10-15 minutes at room temperature. Once 

the pellet was dry it was reconstituted with dH2O. DNA was assessed using the 

NanoDrop 1000 (Thermo Scientific, USA) and stored at -20°C.  

 

Table 2.1. Composition of all FISH probes used in this study with clone names, sizes, locations and colours. 

DNA was labelled with the Nick Translation DNA labelling kit (Enzo, UK) with 

fluorophores red (580nm), green (496nm), gold (525nm) or aqua (431nm)(Enzo, 

UK). 1µg of extracted DNA was diluted in a total of 25ul dH2O. This was mixed 

with 5µl dNTP mix; 2.5µl dTTP mix; 2.5µl Fluorophore-dUTP; 5µl DNA 

Polymerase I; and 5µl DNase I. The solution was mixed gently and incubated at 

15°C overnight in the dark. The reaction was halted by adding 3µl 0.5M EDTA. 

The sample was pipetted directly into an Illustra ProbeQuant G-50 Micro Column 

(GE Healthcare Life Sciences, UK) and centrifuged at 12,396 x g for one minute 

to remove any unbound nucleotides via gel filtration. The sample was precipitated 

by adding 3µg of Cot-1 DNA (Invitrogen) and then making up to 16µl with dH2O. 

Following this 6µl of 3M sodium acetate (Sigma-Aldrich) and 160µl of ice-cold 

Probe Name Clone Start Probe (bp) End Probe (bp) Length (bp) Location Position to Gene Fluorophores

CEBPA/G RP11-475K23 33,379,992 33,528,442 148,451 19q13.11 Centromeric Red

CEBPA/G RP11-270I13 33,674,047 33,855,563 181,517 19q13.11 Centromeric Red

CEBPA/G RP11-547I3 33,778,074 33,941,111 163,038 19q13.11 Telomeric Green

CEBPA/G RP11-423J18 33,958,632 34,156,514 197,883 19q13.11 Telomeric Green

CEBPB RP4-710H13 48,578,865 48,658,543 79,778 20q13.13 Centromeric Green

CEBPB RP5-1185N5 48,658,544 48,772,032 113,588 20q13.13 Centromeric Green

CEBPB RP11-290F20 48,865,332 49,025,542 160,210 20q13.13 Telomeric Red

CEBPB RP5-894K16 49,025,543 49,157,049 131,606 20q13.13 Telomeric Red

CEBPD RP11-279A10 48,330,964 48511171 180,208 8q11.21 Centromeric Red

CEBPD RP11-626C19 48,437,683 48,624,740 187,058 8q11.21 Centromeric Red

CEBPD RP11-265N3 48,700,294 48,845,685 145,391 8q11.21 Telomeric Green

CEBPD RP11-17B11 48,815,291 48,977,937 162,646 8q11.21 Telomeric Green

CEBPE RP11-790N13 23,205,313 23,396,392 191,079 14q11.2 Centromeric Green

CEBPE RP11-298I3 23,452,107 23,467,632 15,525 14q11.2 Centromeric Green

CEBPE RP11-1075E4 23,895,114 24,068,603 173,490 14q11.2 Telomeric Red

CEBPE RP11-1080M7 23,641,443 23,806,016 164,574 14q11.2 Telomeric Red

IGH CTD-3034B12 106,081,078 106,124,038 42,960 14q32.33 Centromeric Red

IGH RP11-676G2 106,252,717 106,448,848 196,131 14q32.33 Centromeric Red

ABL2 RP11-18E13 178,645,775 178,821,857 176,083 1q25.2 Centromeric Red

ABL2 RP11-351I08 178,859,159 179,049,521 190,362 1q25.2 Centromeric Red

ABL2 RP11-520H23 179,257,963 179,466,011 208,048 1q25.2 Telomeric Green

ABL2 RP11-545A16 179,437,790 179,593,205 155,416 1q25.2 Telomeric Green

CDKN2A/B RP11-149I2 21,909,259 22,010,413 101,155 9p21.3 Covering Aqua

IKZF1 W12-3001F15 50,381,496 50,422,338 40,842 7p12.2 Covering Gold

PAX5 RP11-469D03 36,928,510 37,098,070 169,560 9p13.2 Covering Gold

ABL2 G248P8248G11 179,079,924 179117361 37,438  1q25.2 Covering Gold
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100% ethanol were added, the sample was left for two hours at -80°C then spun 

for 30 minutes at 14,549 x g at -4°C. The supernatant was discarded and pellets 

air dried and re-suspended in 14µl hybridisation buffer (Cytocell, UK) and 6µl 

dH2O. 

 

 General FISH Technique 

Fixed patient nuclei were analysed by placing 2.5µl of the suspension onto the 

centre of 76mm x 26mm Superfrost glass microscope slides (Thermo Scientific). 

Slides were labelled and placed onto a heat block set at 60°C for 10 minutes to 

denature the DNA. Probes were mixed 1:1 with hybridisation solution unless 

stated, although this varied depending upon probe signal intensity. A total of 2µl 

probe mix was placed onto a 13mm diameter No. 1.5 glass coverslip (VWR 

International) and carefully placed onto the dried fixed cell nuclei. Air bubbles 

were removed by applying pressure to the coverslip which was sealed to the slide 

using Fixogum (Marabu). The slide was then placed into a HYBrite probe 

hybridisation platform (Abbott Molecular) which would heat the slide to 75°C for 

5 minutes, to facilitate unravelling of nucleic material and improve access of the 

FISH probe, followed by incubation at 37°C for 16 hours. 

After hybridisation the Fixogum was removed and the slides were soaked in 

2xSSC solution until the coverslips detached. The slides were then placed into 

WASH1, warmed to 72°C in the water bath, for two minutes. Finally the slides 

were soaked in room temperature WASH 2 for 2 minutes, after which they were 

removed and drained on paper towels to remove excess solution. After this 7µl 

of DAPI solution (Vector Laboratories) was added to a 24mm x 50mm No. 1 glass 

cover slide (VWR International) which was placed onto a still wet sample slide. 

Any air bubbles were removed. Slides were analysed using a BX61 fluorescence 

microscope (Olympus) equipped with a 100x magnification, 1.30 aperture oil-

immersion objective lens using the CytoVision 7.1 program.  

 

 FISH Signal Interpretation 

The designed CEBP break apart probes showed several signal patterns, normal 

nuclei showed a signal pattern of 0 red, 0 green, and 2 fusion signals (0R0G2F) 

indicating that the red and green probes were in proximity to each other, creating 
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a yellow signal (Figure 2.1 Ai). Translocations involving one allele would separate 

the signals giving a signal pattern of 1R1G1F (Figure 2.1 Aiii).  

For more complex cases, a fusion probe was created to confirm IGH-CEBPD 

rearrangements, this was achieved by labelling centromeric IGH clones in the red 

fluorophore and telomeric CEBPD clones in the green fluorophore. Gene 

rearrangement would be denoted by juxtaposition of the green CEBPD probe 

next to the red IGH probe giving one fusion signal and two separated signals 

(1R1G1F), while normal patient nuclei would show no translocation (2R2G0F) 

(Figure 2.1 B). 

Cutoff slides were set up to determine the percentage of false positive results. 

Normal human peripheral blood samples were hybridised with the appropriate 

FISH probe on three independent slides. Slides were scored by both eye and 

automation to determine presence of abnormal nuclei. A mean value was 

calculated using the scores from the three blood samples to create a value above 

which abnormal populations would be considered as real.  
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Figure 2.1. FISH probe designs and signal patterns.  

A. The CEBPD break apart FISH probe was used to confirm CEBPD translocations. Centromeric DNA clones RP11-

279A10 and RP11-626C19 labelled in red, telomeric DNA clones RP11-265N3 and RP11-17B11 (all at 8q11.21) labelled 

in green (Table 2.1).  A.i. The pattern observed in normal patient nuclei; a signal pattern of 0R0G2F where the red and 

green signals are juxtaposed, this pattern indicates no translocation events. A.ii. The beginning of the translocation event, 

sections of chromosome 8 which contains the CEBPD gene and the green centromeric FISH probe, and chromosome 14 

detach from their respective chromosomes. A.iii. The detached sections attach to the partner chromosomes, giving a 
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derived chromosomes 8 and 14, bringing the CEBPD gene into close proximity to the IGH enhancer and giving the FISH 

signal pattern of 1R1G1F. B. The IGH-CEBPD fusion probe was created to confirm the presence of the IGH-CEBPD 

translocation in patients with more complex translocation events. The telomeric clones from the CEBPD probe, RP11-

265N3 and RP11-17B11 were combined with DNA clones CTD-3034B12 and RP11-676G2, within the IGH locus at 

14q32.33, labelled in red (Table 2.1).  B.i. Shows the pattern observed in a normal patient nucleus, with two probe sets, 

the green signals in the vicinity of the CEBPD gene on chromosome 8 and the red signals covering the IGH locus on 

chromosome 14, giving a signal pattern of 0R0G2F. B.ii. Shows the beginning of the translocation event, sections of 

chromosome 8 which contains the CEBPD gene and the red signal, and chromosome 14 detach from their respective 

chromosomes. B.iii. The detached sections attach to the partner chromosomes, giving a derived chromosomes 8 and 14. 

This translocation has brought CEBPD and the red signal into close proximity to the IGH locus and the green signal, 

creating a fusion signal with the signal pattern 1R1G1F.         

 

2.3.1.2 Multiplex Ligation-dependent Probe Amplification (MLPA) 

In the last three decades molecular techniques such as RT-PCR have also been 

used widely in screening for the detection of specific abnormalities. A more 

modern technique utilising RT-PCR is MLPA, a rapid multiplex PCR based 

technology allowing for the comparative quantification of multiple genetic regions 

(Schouten et al., 2002). MLPA is very sensitive, detecting single nucleotide 

changes, with the advantage of simultaneous detection of up to 50 genomic DNA 

or RNA targets. The technique was created for use in high throughput genetic 

screening in a clinical setting, giving rapid, accurate results. A specific probe set 

is in routine use for the screening of BCP-ALL patients and investigation of CNA 

involving significant genes including (see below): IKZF1, PAX5 and CDKN2A/B 

(Schwab et al., 2010a) (Supplementary Table 7.1). The technique can identify 

single exon aberrations in genes, too small to be detected by FISH. Such 

aberrations have been shown to be important in prognosis (Moorman et al., 

2014). MLPA however cannot differentiate between biallelic deletions in mixed 

populations and monoallelic deletions, or reliably detect clonal populations of 

20% or less, making it unsuitable for the analysis of  aberrations expressed at a 

low level (Schwab et al., 2010a). False positive results may be achieved when 

additional chromosomes are gained, making MLPA unsuitable for screening for 

ploidy changes. 

 

 Multiplex Ligation-dependent Probe Amplification Protocol 

Patients with between 10-100ng DNA available were selected for MLPA analysis 

using the SALSA MLPA P335 kit (MRC Holland, The Netherlands).This kit 

includes probes for IKZF1 (8 probes), CDKN2A/B (3 probes), PAX5 (6 probes), 
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EBF1 (4 probes), ETV6 (6 probes), BTG1 (4 probes), RB1 (5 probes), and the 

PAR1 region: CRLF2, CSF2RA, IL-3RA (1 probe each) 

(http://tinyurl.com/j5qn7ky). The protocol was performed as described by Schwab 

et al (Schwab et al., 2010a), using the Beckman Coulter CEQ 8800 system and 

data were analysed using the CEQ 8800 analysis software and GeneMarker 

V1.85 analysis software (SoftGenetics).  

 

2.3.1.3 Single Nucleotide Polymorphism Array 

Single Nucleotide Polymorphism (SNP) arrays have replaced older methods such 

as Comparative Genomic Hybridisation (CGH), for investigation of the whole 

genome for copy number abnormalities and to detect loss of heterozygosity 

(LOH) (Raghavan et al., 2005; Teh et al., 2005). The Affymterix Genome-wide 

SNP 6.0 array provides 950,000 copy number variation markers and 744,000 

probes, evenly spread throughout the genome, as well as 900,000 SNP markers 

that allow detection of LOH and uniparental disomies (copy number neutral LOH-

CNLOH). Interestingly, CNLOH leads to inactivation of the CEBPA gene in a 

subset of AML patients, which is associated with an increased risk of leukaemia 

(Raghavan et al., 2005; Teh et al., 2005). SNP arrays provide an affordable 

method for novel gene target identification, as was demonstrated in 2007 with the 

discovery of the prognostic importance of IKZF1 deletions in ALL (Mullighan et 

al., 2007). SNP arrays however do have limits as the technology cannot detect 

balanced translocations or small abnormal populations. 

 

 Single Nucleotide Polymorphism Array Protocol 

Patients with 750ng of available DNA were selected for SNP analysis. The 

samples were sent to Aros Biotechnology (Denmark) for analysis on the 

Affymetrix GeneChip SNP 6.0 array. Affymetrix genotyping console version 

4.1.1.834 was used for data analysis.  

The Median of the Absolute values of all Pairwise Differences (MAPD) was used 

to assess the quality of the array data. The MAPD value is the recommended 

method of assessing ‘noise’ in SNP copy number array data. The Log2 gene 

expression value for a specific probe within a sample, divided by the reference 

gene expression value for the same probe. Log2 values are taken for all probe 

http://tinyurl.com/j5qn7ky
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pairs, and a median value is assigned for the sample, this is the MAPD value. 

The MAPD value represents the typical variation between the reference SNP and 

the sample SNP values. The higher the MAPD value, the greater the deviation 

between reference and sample set, suggesting erroneous sample reads either 

due to sample quality or array issues.  

 

2.3.2 General Laboratory Techniques 

General techniques used throughout this study included the growth, storage, and 

extraction of bacterial cultures, for harvesting of desired plasmids. Protocols are 

also included for the DNA, RNA and protein extraction from mammalian cells, 

and their quantification.   

 

2.3.2.1 Storage of Bacterial cultures 

For long term storage of cultures, bacteria was grown overnight in LB broth, the 

following morning 800µl of the culture was mixed with 200µl of glycerol. The 

suspension was pipette mixed and placed in a microcentrifuge tube to be stored 

at -80°C. 

 

2.3.2.2 DNA Extraction 

 Cell Lines and Patient Material 

The DNeasy Blood & Tissue kit (Qiagen) was used to extract DNA from cell lines, 

xenograft cells, fixed cell patient material, and primary diagnostic viable cells. For 

fixed cells samples, cells were centrifuged at 14,000 x g for two minutes and the 

fix discarded. The resulting pellet was resuspended in sterile PBS and centrifuged 

again at 14,000 x g for two minutes and supernatant discarded, this wash step 

was repeated once more centrifuging for five minutes and discarding the 

supernatant. After this step samples from all sources were treated identically.  

Pellet was resuspended in 200µl PBS and 20µl proteinase K. 200µl lysis buffer 

AL was added and samples were mixed thoroughly by vortexing and spinning 

down briefly to remove air bubbles. Samples were incubated on a hot block at 

56°C for 10 minutes. After incubation 200µl, of 100% ethanol was added. The 

samples were vortexed and pipetted into DNeasy mini spin columns, the columns 
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were centrifuged at 5500 x g for one minute, flow through discarded and the 

column placed into a new 2ml collection tube. 500µl of wash buffer, Buffer AW1, 

was added and the column was centrifuged at 5500 x g for one minute. The flow 

through was discarded and the column placed into a new 2ml collection tube. 500 

µl of Buffer AW2 was added and the column centrifuged at 16,800 x g for two 

minutes. Flow through was discarded and the column was spun for a further one 

minute at 16,800 x g to dry the DNeasy membrane. Columns were added to a 

pre-labelled 1.5ml Eppendorf for collection. 50µl of buffer AE was pipetted directly 

to the DNeasy membranes and left to incubate at room temperature for one 

minute. After incubation the columns were centrifuged at 5500 x g for one minute.  

To increase yield Buffer AE flow through could be passed through the DNeasy 

column for a second time or a second elution could be performed by pipetting 

fresh Buffer AE and leaving at -4°C overnight before centrifuging and collecting 

the DNA the following morning. Sample quality and quantity was analysed with 

the Nanodrop 1000 Spectrophotometer, with samples being stored at -20°C for 

future use.  

 

 Bacterial Plasmid Extraction 

The QIAprep Spin Miniprep Kit (Qiagen) was used to extract plasmid DNA from 

bacterial cultures of 5ml or less. All centrifugation steps were performed at 18,000 

x g in a minicentrifuge. The kit lyses bacterial cell walls and denatures genomic 

DNA and plasmid DNA through use of a sodium dodecyl sulphate and sodium 

hydroxide alkaline mixture. The addition of potassium acetate allows the smaller 

plasmid DNA to reanneal while the larger genomic DNA clumps together and is 

removed along with bacterial protein upon centrifugation with the selection 

column. Further spin steps remove salts and endonucleases. 

A single colony growing on a LB agar selection plate was collected using a pipette 

tip and placed into a 15ml Falcon tube with 5ml of LB media, the colony was 

grown over night in a shaking incubator at 37°C. For long term storage of cultures, 

the following morning 800µl of the culture was mixed with 200µl of glycerol. The 

suspension was pipette mixed and placed in a microcentrifuge tube to be stored 

at -80°C. Cultures to be used immediately were pelleted by centrifuging at 6,800 

x g for three minutes. Pellets were resuspended in 250µl Buffer P1 and 

transferred to individual 1.5ml microcentrifuge tubes. 250µl of Buffer P2 was 
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added and the samples were mixed thoroughly by inverting 4-6 times. The 

samples were incubated at room temperature for five minutes for the lysis step 

which was ended by adding 350µl Buffer N3 and inverting 4-6 times to halt the 

reaction. Samples were pelleted by centrifugation for 10 minutes. The resulting 

supernatant was added to QIAprep spin columns and centrifuged for one minute, 

the supernatant discarded. The QIAprep columns were washed with 500µl of 

Buffer PB and centrifuged for one minute, the flow through was discarded. The 

columns were then washed with 750µl of Buffer PE and centrifuged for one 

minute and flow through was discarded, a further one minute spin step was 

performed to dry the column membrane from any residual buffers. Columns were 

then switched to a 1.5ml microcentrifuge tube for collection of plasmid DNA. 50µl 

elution buffer EB or dH2O applied directly to the membrane, incubated at room 

temperature for one minute and DNA was harvested by centrifugation for one 

minute. DNA concentration and quality was assessed using a Nanodrop 1000 

Spectrophotometer, samples were stored at -20°C. 

 

 DNA Precipitation 

DNA precipitation was performed to purify and concentrate DNA after extraction 

using the reagents in Table 2.2. All volumes used in this protocol were relative to 

the original amount of DNA lysate used. 1/10 volume of sodium acetate (final 

concentration of 0.3M) was added to the DNA lysate. If concentrating small 

amounts of DNA, 1µl of glycogen was added to the solution to improve visibility 

of the pellet. 2-2.5 volumes of ice cold 100% ethanol were added and mixed 

thoroughly. The solution was spun down at maximum speed in a microcentrifuge 

for 15 minutes. Supernatant was removed and discarded carefully, so as not to 

disturb the resulting pellets. 0.7-1ml of 70% ethanol was added to the pellets and 

mixed. The solution was spun down at maximum speed in a microcentrifuge for 

5 minutes. Supernatant was discarded and the spin step repeated, and any 

residual ethanol was removed with a pipette. The DNA pellets were allowed to air 

dry for 10-30 minutes. When all the remaining ethanol had evaporated pellets 

were resuspended in H20 or TE buffer. 

Reagents 

3M Sodium Acetate (pH 5.2) 
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DNA lysate 

Ice cold 100% ethanol 

Room temperature 70% ethanol 

Glycogen 5mg/ml 

Table 2.2. Reagents for DNA precipitation. 

 

 DNA Quantification Qubit Fluorometer 

Qubit was used to analyse double stranded DNA using highly sensitive 

fluorescent based quantification assays which use dyes that only emit signal 

when bound to the specific target molecule.  

Reagents were thawed in the dark and used when at room temperature. A master 

mix was created for each sample to be analysed plus an extra two reactions for 

the two Qubit standards. The master mix consisted of 199µl Qubit Buffer and 1µl 

Qubit Reagent for a total of 200µl of master mix. To set up the standards 10µl of 

the appropriate standard was added to 190µl of the master mix. Tubes were 

vortexed and spun down to remove any air bubbles, and incubated at room 

temperature in the dark for 2 minutes. The Qubit Fluorometer was switched on 

and the dsDNA assay was selected, standard one was inserted into the machine 

and measured, followed by standard two. Following this 199µl of the master mix 

and 1µl of sample DNA were mixed, vortexed and incubated in the dark at room 

temperature for 2 minutes. Samples were then analysed and values were 

recorded.  

 

2.3.2.3 RNA Extraction 

RNA extractions were performed using the RNeasy Micro (Qiagen) and Mini 

(Qiagen) kits. The kit used was dependent upon cell numbers: less than 5 x 105 

cells extracted - Micro kit; above 5 x 105 cells - Mini kit. 

 

 QIAshredder 

Collected cells were first homogenised by being passed through QIAshredder 

(Qiagen) columns. Protein was also collected from the resulting supernatant if 

cell numbers were over 5 x 105.  
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Up to 1 x 107 cells were resuspended in 350µl of RLT buffer and passed through 

QIAshredder columns (Qiagen), which employ a biopolymer-shredding system to 

homogenise cells and increase RNA yield. Cells were centrifuged at 20000 x g 

for two minutes and elute was kept for RNA and protein collection.  

 

 RNeasy Mini Kit 

QIAshredder elute was collected in a 2ml collection tube to which an equal 

volume (350µl) of 70% ethanol was added. The suspension was pipette mixed 

and placed into an RNeasy column and centrifuged at 8000 x g for 30 seconds.  

Flow through was kept for protein isolation described in section 2.3.1.4.1. The 

RNeasy spin column was placed into a new 2ml collection tube and 700µl of 

Buffer RW1 was added to the sample. The column was centrifuged at 8000 x g 

for 30 seconds, flow through discarded and the collection tube dried on tissue 

paper to remove any remaining liquid. 500µl of Buffer RPE was added and the 

column was centrifuged at 8000 x g for 30 seconds, flow through was discarded 

and the 2ml collection tube dried on tissue paper.  A second wash step was 

performed with 500µl Buffer RPE and the column was centrifuged at 8000 x g for 

two minutes, flow through was discarded. The samples were placed into clean 

2ml collection tubes and centrifuged at 8000 x g for one minute to dry the 

membrane of any residual buffers. The columns were then placed into clean pre-

labelled 1.5ml microcentrifuge tubes and RNA was eluted by adding dH2O 

applied directly to the membrane, incubating at room temperature for one minute 

and centrifuging at 8000 x g for one minute, dH2O amount varied depending upon 

cell number extracted with a range of 20-50µl. To increase yield dH2O flow 

through could be put through the RNeasy column for a second time. RNA elute 

was analysed with the Nanodrop 1000 Spectrophotometer or the Bioanalyser. 

Samples were stored at -80°C. 

 

 RNeasy Micro Kit 

QIAshredder elute was collected in a 2ml collection tube to which an equal 

volume (350µl) of 70% ethanol was added. The suspension was pipette mixed 

and placed into an RNeasy MiniElute spin column and centrifuged at 8000 x g for 

30 seconds. Flow through was discarded and 350µl of Buffer RW1 were added 
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to the samples and then centrifuged 8000 x g for 30 seconds. Next 10µl of DNase 

I stock solution was added to 70µl of Buffer RDD, the solution was mixed by 

inversion then added directly to the RNeasy MiniElute spin column membrane 

and incubated at room temperature for 15 minutes. After the incubation step 

350µl of Buffer RW1 were added to the samples and then 8000 x g for 30 

seconds. Resulting elute and collection tubes were discarded. The columns were 

placed into a new 2ml collection tube and 500 µl of Buffer RPE were added to the 

spin columns, samples were centrifuged at 8000 x g for 30 seconds, flow through 

was discarded. Next, 500 µl of 80% ethanol were added, and columns were 

centrifuged at 8000 x g for two minutes, elute and collection tubes were 

discarded. Columns were placed into new 2ml collection tubes and lids were 

opened for a 5 minute dry spin at full centrifugal speed. Collection tubes were 

discarded and columns were placed into clean pre-labelled 1.5ml microcentrifuge 

tubes, RNA was eluted by adding 14µl dH2O applied directly to the membrane 

and centrifuging at full speed for one minute. To increase yield dH2O flow through 

could be passed through the RNeasy MiniElute spin column for a second time or 

a second elution could be performed by pipetting 14µl of fresh dH2O and leaving 

at -4°C overnight before centrifuging and collecting the RNA the following 

morning as a second elute, although this approach would lead to some RNA 

degradation. RNA concentration and quality was assessed using a Nanodrop 

1000 Spectrophotometer, samples were stored at -80°C.  

 

 RNA Analysis Agilent RNA 6000 Nano Kit 

Several platforms require high quality RNA for analysis. RNA quality was 

measured on the Agilent 2100 bioanalyser to generate RNA integrity numbers 

(RIN). RIN scores are generated from the algorithmic analysis of the 28S and 

18S rRNA ratio. 

The priming station syringe clip was set to the stop position. All reagents were 

equilibrated to room temperature before use, and all dyes were kept in the dark 

when possible. RNA 6000 NanoLadder was heat denatured at 70oC for 2 minutes 

before use. Aliquots were stored at -80oC. RNA samples were aliquoted at a 

maximum of 50ng/µl in 3µl of solution. RNA was denatured at 70oC for 2 minutes 

before use. 
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The RNA nano Chip gel was prepared by mixing 550µl of the gel into a spin filter 

and centrifuging at 1500 x g for 10 minutes. 65µl of the filtered gel was used and 

the rest was stored at 4oC to be used within 4 weeks. 1µl of vortexed RNA dye 

was added to the gel. The solution was vortexed thoroughly and centrifuged at 

13000 x g for 10 minutes. While the gel was spinning the RNA chip was placed 

into the priming station and 9µl of gel-dye mix was pipetted into the appropriate 

well displayed on the kit instructions. Placing the syringe plunger at the 1ml mark, 

the priming station was clipped into position and the plunger was pushed down 

until held by the metal clip. The plunger was left in this position for 30 seconds, 

and the clip was released, the plunger was left for 5 seconds and then moved 

back up to the 1ml mark on the syringe. The priming station was then unclipped 

and a further 9µl each was pipetted into two further marked wells. 5µl of RNA 

marker was added to all appropriate wells, 1µl of RNA ladder was added to the 

ladder well, 1µl of RNA sample was added per sample well, up to 12. 1µl of RNA 

marker was added to unused sample wells. The chip was then placed into an IKA 

vortexer and vortexed at 2400 rpm for 1 minute. The chip was ran on the Agilent 

2100 Bioanalyzer instrument within 5 minutes of vortexing.  

 

2.3.2.4 Protein Extraction 

 Newcastle Protocol 

This protocol uses acetone to lower the dielectric constant of the cell lysate, 

lowering protein solubility and encouraging precipitation. The resulting protein is 

then solubilised and stored in urea buffer. 

The first elute from RNeasy spin column protocol was mixed with two volumes 

(700µl) of acetone. The samples were capped and left to incubate on ice for one 

hour. After incubation samples were centrifuged at 20000 x g for 15 minutes. 

Acetone supernatant was discarded and samples were centrifuged 20000 x g for 

two minutes and any remaining solution was removed. Resulting pellets were 

resuspended in Urea Buffer at 100µl per 1 x 107 cells. Samples were stored at -

20°C. 
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 Cincinnati Protocol 

This protocol lyses cells through sonification, and protects the resulting protein 

by storage in Laemmli buffer, which consists of protease inhibitors, dye and β-

Mercaptoethanol which serves to reduce intra and inter-molecular disulphide 

bonds within the protein, linearizing it.   

Cells were pelleted and washed in 1ml of ice cold PBS and spun down at 10,400 

x g for 2 minutes, supernatant was discarded and pellets were resuspended in 

30ul Direct Lysis Buffer (Section 2.2.5.2.2) per 1 million cells, mixed thoroughly, 

and placed on ice. Cells were then sonicated and boiled at 96ᵒC for 5 minutes 

after which they were ready for use immediately or could be frozen down and 

stored at -80ᵒC. 

 

2.3.2.5 cDNA Synthesis 

The Promega M-MLV Reverse Transcriptase system was used to reverse 

transcribe RNA into cDNA.  

1µg of extracted RNA was mixed with 1µl of Oligo (dT) primer (20µg) (Promega) 

to a total of 12.5µl with dH2O. This solution was heated to 70°C for five minutes 

on a hot block. After the incubation step, the sample was pipette mixed with 12.5µl 

of the cDNA synthesis master mix (Table 2.3). The sample was incubated at 42°C 

for one hour, the reaction was inactivated by heating at 95°C for five minutes. 

The sample was diluted with 75µl of dH2O for a final concentration of 1 µg of 

cDNA. 

Reagents Volume 

5X Reaction Buffer 5µl 

10mM dNTP mix 1.25µl 

RNAsin Ribonuclease Inhibitor 40U/µl 0.625µl 

M-MLV Reverse Transcriptase 200U/µl 1µl 

dH2Oµl 4.625µl 

Table 2.3. cDNA synthesis master mix. All reagents from Promega. 
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2.3.3 General Cell Culture  

General cell culture techniques include the thawing, counting, viable storage, and 

culture of viable mammalian cells.  

 

2.3.3.1 Thawing Cells 

Working quickly but gently, vials were thawed in a water bath set at 37°C, 

sterilised with ethanol and slowly re-suspended in 1 ml of the appropriate culture 

medium warmed to 37°C. The re-suspended cells were added to a 15ml falcon 

tube containing the appropriate culture medium to make a total of 10mls. Cells 

were centrifuged at 365 x g for 5 minutes, supernatant was discarded and cells 

were re-suspended and plated out for further growth. 

 

2.3.3.2 Cell Counts Using Haemocytometer 

Cell counts were performed using a haemocytometer, trypan blue was used to 

test viability. Cell suspensions were mixed with trypan blue at 1:1. 10ul of the 

solution was pipetted into the haemocytometer chamber and cells were counted 

using an inverted phase contrast microscope. Dead cells stained blue due to 

cytoplasmic rupture and were disregarded when counting. Four quadrants were 

counted, a quadrant has a volume of 0.1 mm3, the number of cells in four 

quadrants (at a 1:1 dilution) multiplied by 5000 gives the value of cells per ml. 

2.3.3.3 Cell Culture of Suspension Cells 

Free floating cells were counted using the haemocytometer to calculate the 

necessary dilutions. The cells and medium were transferred to a 50ml falcon tube 

and spun down at 365 x g for 5 minutes. The supernatant was aspirated and the 

cells were re-suspended in fresh medium. The cells were re-suspended at 5 x 

105 cells per ml and added to a new culture flask and the passage number was 

noted. 

 

2.3.3.4 Cell Culture of Adherent Cells 

For the passaging of adherent cells, old medium was aspirated carefully so as 

not to disturb the cell layer, PBS at room temperature was added ensuring 

coverage of all cells to wash off any remaining FBS. PBS was aspirated and 1-
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2mls of 1X trypsin was added to cover all cells, left at room temperature for 2 

minutes and checked under an inverted phase microscope to observe 

detachment from the culture flask. Medium was added to the flask, to wash off 

remaining adhered cells. The solution was collected and added to a 50 ml falcon 

tube and spun down at 365 x g for 5 minutes. Supernatant was aspirated and 

cells re-suspended in fresh medium. T The cells were re-suspended at 5 x 105 

cells per ml and added to a new culture flask with fresh medium. Passage number 

was noted. 

 

2.3.3.5 Heat Inactivation of foetal bovine serum 

Foetal bovine serum (FBS) was thawed at room temperature and mixed 

thoroughly. The FBS was then incubated at 56ᵒC for 30 minutes, and was mixed 

3-4 times during this incubation step. Heat inactivated FBS was then aliquoted 

into 50ml falcon tubes and stored at -20ᵒC for future use. 

 

2.3.3.6 Freezing Viable Cells – Newcastle and Cincinnati Protocols 

Cells were frozen at up to 1x107 per ml. Selected cells were spun down at 365 x 

g for 5 minutes, supernatant was aspirated and the pellet was re-suspended with 

freezing solution (Table 2.2.5.3) in cryo vials and placed on ice until ready for 

storage at -80ᵒC. In Cincinnati pelleted cells were re-suspended in 400µl of 

solution 1 combined with 100µl of 25% BSA and placed in a cryo vial. In a 

separate vial 400µl of solution 2 was combined with 100µl of 25% BSA solution 

and was slowly added dropwise to the solution 1, cell pellet mixture. Working 

rapidly, re-suspended cells were placed into a room temperature Mr. Frosty 

freezing container, and frozen down at -80°C. Vials were moved to liquid nitrogen 

for long term storage.  

 

2.3.4 General Cloning Techniques 

General cloning techniques were used to create plasmids through restriction 

digests, isolation of specific fragments through gel purification, and finally ligation. 

Desired plasmids were then expanded by transforming competent E. coli.   
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2.3.4.1 Collecting Plasmids from Whatman paper 

Plasmids were shipped having been blotted onto Whatman. The plasmid was 

collected by soaking the paper in 100µl of TE buffer for 2 hours at 37ᵒC. The TE 

buffer containing the plasmid was analysed on the Nanodrop 1000 

Spectrophotometer and stored at -20°C for future use. 

 

2.3.4.2 Plasmid Restriction Enzyme Digest 

Restriction enzymes were used to integrate desired DNA sequences into 

plasmids of choice for downstream applications, such as retroviral particle 

production. 

DNA sequences to be digested were pasted into the New England Biolabs Cutter 

V2.0 program to access optimal restriction enzymes. The appropriate restriction 

enzyme was selected and ordered. 0.2-1.5µg of template DNA was mixed with 

2-10x excess of the restriction enzyme. A master mix was created (Table 2.4) up 

to the volume of 20µl and incubated at the enzymes optimum temperature for 1-

4 hours. Restriction enzyme buffer and incubation temperature were both 

dependent upon the restriction enzyme used (Section 2.2.6.3). Results were 

analysed by gel electrophoresis and band size. 

Component Volume 

dH2O 16.5µl 

Restriction Enzyme 10X Buffer 2µl 

Acetylated BSA 10µg/µl 0.2µl 

DNA 1µg/µl 1µl 

Restriction Enzyme 10u/µl 0.3µl 

Table 2.4. Restriction enzyme digest master mix. 

 

2.3.4.3 Gel Digest 

After performing successful restriction digests on target plasmids confirmed by 

gel electrophoresis, bands were analysed using the SYNGENE G:box imager 

and selected bands were excised using a clean scalpel. The cut gel was placed 

into a clean 1.5ml microcentrifuge tube and weighed. The GeneJET Gel 

Extraction Kit was used to dissolve the gel and access the DNA. Binding Buffer 

was added to the gel, 1µl per 1mg of gel weight. The mixture was incubated at 
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50-60°C for 10 minutes and inverted several times to facilitate the melting 

process. After ensuring that the gel had completely dissolved the mixture was 

vortexed and up to 800µl was added to a GeneJET Purification Column. The 

column was centrifuged at 13,000 x g for one minute. Flow through was discarded 

and the column was returned to the collection tube. 100µl Binding Buffer was 

added and the column was centrifuged at 13,000 x g for one minute, flow through 

was discarded. 700µl of Wash Buffer was added and the sample centrifuged at 

13,000 x g for one minute, flow through was discarded. The empty column was 

centrifuged at 13,000 x g for one minute to remove any residual buffer. The 

column was then placed into a clean pre-labelled 1.5ml microcentrifuge tube and 

the DNA eluted with 50µl of Elution Buffer pipetted directly onto the column 

membrane after centrifugation for one minute. Elution volume can be altered to 

increase DNA concentration. DNA was analysed with the Nanodrop 1000 

Spectrophotometer and stored at -20°C. 

 

2.3.4.4 Thermosensitive Alkaline Phosphatase (TSAP) 

TSAP was used to improve cloning efficiency by catalysing the removal of 5’ 

phosphate groups and preventing the recircularization of plasmid DNA after 

restriction digests, facilitating insert DNA integration.  

After a restriction digest where up to 1µg of DNA was used, 1µl of TSAP was 

added for digests using Promega Buffers A-L and MULTI-CORE 10X Buffer, and 

2µl of TSAP for digests using Promega Buffer F. The samples were then 

incubated at 37°C for 15 minutes, followed by heat inactivation at 74°C for 15 

minutes. The samples were then ready for use with T4 DNA ligase (Promega). 

 

2.3.4.5 T4 DNA ligation   

T4 DNA ligase catalyses the formation of phosphodiester bonds between 5’ 

phosphate and 3’ hydroxyl termini in DNA, joining blunt ends and repairing nicks 

in double stranded DNA. 

After insert and vector DNA was isolated, and vector DNA was prepared with 

TSAP and the samples were ligated to create the desired plasmid. 
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The recommended ratio of vector to insert in the Promega T4 Ligase protocol 

varied between 1:1, 1:3 or 3:1. The calculation used to determine the amount of 

insert was as follows: 

 

   

TSAP dephosphorylated vector DNA was mixed with the calculated amount of 

insert and mixed as shown in Table 2.5. Samples were incubated at either room 

temperature for three hours, 4°C overnight, or 15°C for 4-18 hours. 

Component Volume 

Vector DNA Up to 100ng 

Insert DNA Up to 17ng 

Ligase 10X Buffer 1µl 

T4 DNA Ligase 0.1-1u 

Nuclease Free H2O Final volume of 10µl 

Table 2.5. Composition of T4 DNA ligation master mix, per sample. 

 

2.3.4.6 Transformation of competent bacteria 

Whole and recombined plasmid constructs were amplified through transfection 

into Stbl3 E. coli cells, specialised bacteria designed to reduce the frequency of 

homologous recombination of long terminal repeats and provide a transformation 

efficiency greater than 1 × 108 transformants /µg plasmid DNA. Amplified 

plasmids were extracted and aliquots frozen down for future use. 

500 µl of competent One Shot Stbl3 E. coli cells (Life Technologies) were thawed 

on ice, the bacteria were separated into aliquots of 250µl per reaction. Each 

aliquot was seeded with 1µl of the relevant DNA construct and one aliquot was 

seeded with 1µl pUC19 positive control DNA (10 pg/µl) and gently flick mixed, the 

reaction was then incubated on ice for 30 minutes. After this incubation period 

the sample was heat shocked by being placed at 42°C for 45 seconds before 

being incubated on ice again for a further two minutes. Following this 125µl SOC 

medium (Invitrogen) was then added per sample and incubated at 37°C in a 

shaking incubator for an hour. The samples were evenly spread onto pre-
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prepared ampicillin LB agar selection plates, and left over night for up to 16 hours 

at 37°C. The following day plates were checked for colony formation, with only 

ampicillin resistant colonies growing on the selection plates indicating plasmid 

recombination was successful. Single colonies were selected, cultured, and 

stored as glycerol stocks and for growth for plasmid extraction using the Qiagen 

Mini prep kit as described in Section 2.3.1.1. 

 

2.3.5 Isolation of CD34+ Cells  

These techniques were performed for the isolation and expansion of human cord 

blood CD34+ cells. 

 

2.3.5.1 Preparation of Cord Blood 

Fresh cord blood was received in blood bags, which were sterilised with 70% 

ethanol before being opened in a tissue culture hood. The blood was split 

between several 50ml falcon tubes, never exceeding more than 40mls per tube. 

7mls of sterile hydroxyethyl starch (HES) solution were added to each falcon 

tube, the solutions were gently mixed by hand and left at room temperature for 1 

hour. After the incubation period the red cells pooled at the bottom of the tube, 

the top layer of the solution was collected when the red layer was less than one 

third of the total liquid. Supernatant from all tubes was collected and pooled into 

one 50ml falcon tube, the red cells were discarded. The collated solution was 

spun down at 300g for 10 minutes, supernatant was aspirated and cells were re-

suspended in 20mls of FACS buffer. Cells were counted using either a 

haemocytometer or Hemavet 950 FS machine (Erba Diagnostics).  

CD34+ cells were isolated following the Miltenyi Biotec CD34+ Micro Bead Kit 

following the LS column instructions with some amendments. 

(http://www.miltenyibiotec.com/~/media/Images/Products/Import/0001400/IM00

01498.ashx).  

The sample was centrifuged at 300×g for 10 minutes after which the supernatant 

was discarded. Up to 2 x 108 total cells were resuspended in 300µl of FACS buffer 

with 100μl of FcR Blocking Reagent (Miltenyi Biotec and 100μl of CD34 

MicroBeads (Miltenyi Biotec). The solution was mixed well and left at 4°C for 30 

minutes. After the incubation step cells were washed with 10mls of FACS buffer 

http://www.miltenyibiotec.com/~/media/Images/Products/Import/0001400/IM0001498.ashx
http://www.miltenyibiotec.com/~/media/Images/Products/Import/0001400/IM0001498.ashx
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and centrifuged at 300×g for 10 minutes, discarding the supernatant after the spin 

step. The sample was then resuspended in 500μl of FACS buffer ready for 

magnetic separation. 

 

2.3.5.2 Magnetic Selection of CD34+ Cells 

To prepare for the separation, the LS column was attached to the MACS 

Magnetic separator (Miltenyi Biotec), a 30µm Pre-Separation Filter (Miltenyi 

Biotec) was added to the column to avoid cell clumping and blockage, the column 

and separator were washed with 3ml of FACS buffer. The cell suspension was 

then slowly added to the column with a 50ml Falcon tube underneath the column 

to catch unbound cells. The column was then washed with 3ml of FACS buffer, 

this process was repeated twice for a total of three washes. The column was then 

removed from the MACS Magnetic separator placed into a 15ml Falcon tube, 

where the magnetised cells were washed out using 5mls of FACS buffer and a 

plunger. Cells were counted using a haemocytometer, a small sample was set 

aside for FACS analysis, the remainder were frozen down using the Cincinnati 

Freezing Protocol (Section 2.3.2.6). Isolated cells were stained with the anti-

human CD34 fluorochrome and the 7AAD viability marker, purity was analysed 

via flow analysis.  

 

2.3.6 Retroviral Protocols 

Retroviral vectors were created to express CEBPD and IK6. Variants of the 

Murine Stem Cell Virus (MSCV)-internal ribosomal entry site (IRES) retroviral 

plasmids (Figure 2.2) were combined with the RD114 envelope plasmid, which 

specifically targets HSCs and reduces cell toxicity (Bell et al., 2010), and the m57 

gag/pol plasmid.  

 

Figure 2.2. Retroviral Plasmids used during this study.  

AMP = Ampicillin. Selection marker. Ori = Origin of amplification. Viral replication is initiated at this site. 5’/3’LTR = Long 

terminal repeats. Enhances transcriptional activation and prevents transcriptional repression, variable among viruses and 
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contain promoters, enhancers, and transcriptional termination. Ψ = Psi Packaging element. Regulates the packing of the 

retroviral genome in the viral capsid during replication. IRES = Internal ribosome entry site. Allows for the initiation of 

translocation in the middle of an mRNA sequence. Yellow boxes show target gene cDNA, green boxes represent the 

EGFP selection marker and orange boxes represent the Thy1 selection marker. MIGR1 denotes the MSCV-IRES-GFP 

empty vector plasmid, MiT denotes the MSCV-IRES-Thy1 empty vector plasmid (Coffin et al., 1997; Cherry et al., 2000; 

Buchschacher, 2001). 

 

Retroviral particles were created using calcium phosphate co-precipitation and 

used to transduce CD34+ cells.  

 

2.3.6.1 Calcium Phosphate Transfection  

Calcium phosphate co-precipitation, introduced in 1973 (Graham and van der Eb, 

1973) is a popular transfection method due to the low cost, ease of the technique, 

and efficiency with numerous culture and cell types. The technique functions by 

creating a precipitate of calcium, phosphate and DNA, which facilitates the 

binding of the precipitated DNA to the target cell surface, and entry into the cell 

via endocytosis. The protocol includes aeration of the phosphate buffer while 

adding the DNA-calcium chloride solution to ensure the resulting precipitate is 

fine, and not clumped, which hinders DNA adherence to the target cell surface. 

The protocol has several challenges including identifying and maintaining optimal 

pH for precipitate formation, causing cell toxicity due to buffer and salt 

concentrations, and a lower transfection efficiency in comparison to other 

chemical transfection methods. 

 

 Calcium Phosphate Transfection Protocol 

2-3 million 293T cells were plated in a 10cm tissue culture treated plate 24 hours 

before transfection. Cells were transfected when ~70% confluent. All transfection 

reagents were thawed at room temperature and mixed thoroughly before use. 

Two tubes were prepared for the transfection, tube 1 containing DNA, water and 

CaCl2 in that order. 1ml of HBSS x2 was added to tube 2.  

Reagents µg per dish 

Viral envelope (RD114) 3 

Viral gag/pol (M57) 10 

Viral vector 12 
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Table 2.6. Insert DNA concentrations for retroviral particle synthesis per 10cm tissue culture dish. 

 

In a tissue culture hood, while gently vortexing the HBSS x2 solution, the contents 

of tube 1 were added drop wise to tube 2, continuously vortexing. After 

combining, the mixture was left at room temperature for 30 minutes. After 

incubation the solution was once again vortexed and added drop wise to the 293T 

cells which were cultured in media appropriate for the cells to be transduced 

(Section 2.2.5.5). 10ul of 25mM chloroquine solution was also added. The plate 

was swirled to evenly distribute the virus. Plates were left for 24 hours before 

harvesting the first batch of virus. 

 

2.3.6.2 Harvesting Viral Media  

Viral medium was harvested from 293T cells 24 hours after transfection and 

replaced with fresh medium. Harvested media was syringe filtered (0.2µm), and 

was used fresh on cells undergoing transduction, remaining media was stored at 

-80°C. The second harvest was performed 12 hours after the first and followed 

the same protocol. The third and final harvest was performed 12 hours later. 

 

2.3.6.3 CD34+ Cell Transduction  

A 6 well tissue culture treated plate was coated with 2mls of retronectin, which 

was left either overnight at 4°C or for 1 hour at room temperature. Retronectin 

was collected and stored at -20°C to be re-used up to three times. The plate was 

washed with 1x PBS and blocked with 1x PBS + 2% BSA for 30 minutes at room 

temperature. The plate was washed with PBS and stored at 4°C with 2mls of PBS 

in coated wells to prevent them drying out. The plate can be stored for up to a 

week. Before use, PBS was aspirated and 3mls of viral media were added to 

coated wells, the plate was spun at 1000-2000 x g for 90 minutes. During this 

spin the cells for transduction were re-suspended in viral media with the 

appropriate cytokines and 4ug/ml of polybrene at a cell density of 125k cells per 

ml. The cells were centrifuged at 815 x g for 60 minutes. After spinning the cells 

were re-suspended in viral medium and cytokines and added to the retronectin 

coated wells. Cells were transduced twice more at 12 hour intervals. Medium was 

carefully aspirated and freshly harvested viral medium, cytokines and polybrene 
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were added. After a further 6-8 hours cells were harvested using disassociation 

buffer and plated out in normal medium with SCF, TPO, FLT3-L, all at 100ng/µl 

for up to 48 hours, to expand the primitive lymphoid population. Cells were plated 

out for specific experiments after 8 hours. No viral titrations were performed as 

the main aim of these experiments was the high expression of CEBPD and IK6. 

Transduced CD34+ cells were cultured in cytokine rich medium to stimulate 

expansion of haematopoietic cells and progenitors. Cytokines included in this 

study were as follows: 

SCF – A growth factor with a broad range of activities including the promotion of 

haematopoiesis. SCF is expressed as a membrane bound protein and can also 

be cleaved into a soluble form, both forms promote proliferation. It performs 

most efficiently combined with other cytokines: such as TPO, GM-CSF, G-CSF, 

M-CSF, IL-3, and IL-7, to induce proliferation. 

TPO - Thrombopoeitin is a regulatory factor for megakaryocytopoiesis and 

thrombopoiesis. It functions by stimulating the growth and maturation of 

megakaryocytes, synergistically with other cytokines, to induce haematopoietic 

proliferation and differentiation. 

FLT3-L – FLT3 Ligand binds and activates the FLT3 receptor. FLT3 is important 

in the development of dendritic cells. It synergistically stimulates the 

proliferation and differentiation of haematopoietic cells and haematopoietic 

progenitors.  

IL-3 - A growth factor which promotes survival, differentiation and proliferation of 

multiple myeloid and erythroid lineages. It also directly activates monocytes, 

suggesting additional immunoregulatory roles. This cytokine is heavily 

dependent upon co-stimulation of other cytokines. 

IL-6 – A pleiotropic cytokine, which regulating immune and inflammatory 

responses. It stimulates B-cell differentiation and synergizes with IL-3 in 

megakaryocyte development and platelet production. 

IL-7 – A hematopoietic growth factor, which stimulates the differentiation of 

pluripotent hematopoietic cells into lymphoid progenitor and lymphoid lineage (B 

cells, T cells and NK cells) cells.  
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2.3.6.4 Co-culture of CD34+ Cells 

CD34+ transduced cells were cultured with MS-5 stromal cells in α-MEM medium 

with 20% FBS and 1% pen/strep and SCF, Flt-3L, IL-7 cytokines at 10ng/ml; 6 

well tissue culture plates and 10cm tissue culture dishes were used for co-culture. 

Wells were coated with a 50% gelatin solution and left for one minute at room 

temperature, to encourage stromal cell adherence to the plastic surface. Stromal 

cells were plated out in the gelatin coated wells and grown to confluence. CD34+ 

cells were seeded at 80,000 cells per ml. Cells were monitored and split once or 

twice a week depending upon confluence. Fresh medium was added every time 

cells were split. When splitting cultures, the stromal layer was gently washed with 

medium to loosen settled cells while avoiding detaching the stroma, to provide an 

accurate representation of cells when performing cell counts and to harvest 

sufficient cells for flow cytometry analysis or cell collection.  

 

2.3.6.5 Harvesting of Co-cultured CD34+ Cells for Flow Sorting 

To harvest co-cultured CD34+ cells, first the medium was removed and stored to 

be spun down.  Next, the well and stromal layer was washed several time with 

PBS and added to the collected media. 1X trypsin was added, covering the 

stromal layer, and incubated at 37°Cfor 3 minutes to loosen the cell layer. After 

the incubation step the stromal layer was carefully removed from the well and 

added to a separate tube, the well was washed with more PBS to collect any 

remaining cells and added to the medium tube. The falcon containing the stromal 

layer was vortexed to encourage disassociation of any remaining attached 

CD34+ cells. The stromal and medium were filtered through 50µl mesh to remove 

the larger stromal cells, then collated and spun down at 365 x g for 5 minutes. 

The resulting pellet was counted and stained following the FACS staining protocol 

(Section 2.3.9.3).  

 

2.3.7 Xenograft Techniques 

Xenograft mouse models were used for the expansion of viable patient samples 

and transduced CD34+ cells. 
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2.3.7.1 General Monitoring of Mice 

NOD scid gamma (NSG) mice were raised with up to six littermates in ventilated 

cages (IVCs) supplied by a sterile air supply. The animals were checked weekly 

by researchers and daily by trained technicians. The mice were weighed weekly 

to monitor health, and were sacrificed if a weight loss of more than 10% was 

observed for three consecutive days or if 20% weight loss was observed at any 

point, as disease burden or other factors had begun to affect quality of life.  

 

2.3.7.2 Busulfan Conditioning of Immunodeficient Mice 

Busulfan, a CML chemotherapeutic, was used to condition murine recipients by 

thinning bone marrow to improve engraftment of patient or transduced material, 

by removing competing cells from the environmental niche. 

To create a 10X Busulfan stock, Busulfan powder was dissolved in DMSO at a 

concentration of 30mg/ml. After briefly vortexing, the solution was placed on a 

rocking platform for ~5 minutes until all Busulfan crystals had dissolved. The 

solution was kept at room temperature at all times as incubation on ice would 

lead to precipitation of the powder. The solution was passed through a 0.2µm 

syringe filter in a tissue culture hood to remove potential contaminants. The 10X 

stock was diluted to a 1X concentration using PBS prior to injection into mice by 

adding 150µl of 10X stock to 1350µl of PBS. Upon dilution to the 1X concentration 

the solution had to be used within a few minutes due to rapid precipitation of 

Buslfan in PBS. The 1X stock was injected intraperitoneally at 30mg/kg per NSG. 

Busulfan conditioning was performed 24 hours before intra-femoral injections 

which were performed by Dr. Helen Blair. 

 

2.3.7.3 Flow Cytometry Analysis of Peripheral Blood from Xenografts 

To harvest blood, mice were placed in a rotating tail injector where blood was 

collected by opening a tail vein. Around 50µl of blood was collected and stored in 

Microvette CD300 lithium heparin tubes. Blood was transferred to a 1.5ml 

Eppendorf where FACS antibodies were added, and the sample was incubated 

in the dark at room temperature for 20 minutes. After incubation, 1.2mls of 1X 

ammonium chloride red cell lysis solution was added to the sample and mixed. 

The Eppendorfs were then spun down at 300g for 5 minutes in a microcentrifuge 
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and washed twice with 1ml FACS buffer. Samples were then resuspended in 

500ul of FACS buffer and analysed by flow cytometry. 

 

2.3.7.4 Harvesting Xenograft Material 

Organs, skull and bone marrow were dissected from sacrificed mice. The spleen 

was excised and weighed to judge potential engraftment. Kidneys and liver were 

also checked for engraftment by weight and the presence of white spots or 

discolouration on the surface of the organ. All organs were stored in sterile PBS 

after collection. Mouse heads were harvested for use by Dr. C. Halsey. Heads 

were detached, skin and eyes were removed and the samples were placed in 

formaldehyde solution for preservation and future analysis by Dr. Halsey’s lab. 

Murine legs were collected for bone marrow material, both femurs and tibias were 

excised from flesh and flushed with sterile PBS to collect bone marrow. This was 

performed by removing the top and bottom of the stripped bones and inserting a 

25 gauge needle attached to a 5ml syringe filled with PBS into the cut bone to 

flush the cells out. Flushed bone marrow was collected in 5ml bijou container 

prior to use. 

For collection of engrafted cells, spleen/liver/kidneys were placed into 10cm 

sterile petri dishes and finely cut by scalpel to encourage release of cells. After 

mincing, the organ was washed with PBS and the resulting mix was passed 

through a 40µm cell strainer to remove larger clumps of tissue. These were forced 

through the strainer using the syringe top to increase cell yield. Bone marrow was 

also passed through a 40µm cell strainer to remove any bone fragments.  

Harvested cells were centrifuged at 400 x g for 10 minutes and resuspended in 

PBS after which cell number was determined using a haemocytometer. Cells 

were frozen down using the Newcastle Protocol (Section 2.3.2.5). If required 

human cells were separated from murine cells by use of Ficoll-Paque PREMIUM 

solution. This solution works by density gradient centrifugation, separating out the 

higher density murine cells from human cells, specifically lymphocyte cells. 3ml 

of Ficoll-Paque was added to 15ml falcon tubes where 4ml of cell suspension 

was layered onto the solution using a glass Pasture pipette. This was done 

carefully to avoid mixing between the two solutions. The sample tubes were then 

centrifuged at 400 x g for 40 minutes at room temperature. After the spin step the 
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mononuclear human cells formed an isolated layer which was carefully harvested 

using a glass Pasture pipette. The cells were then washed with 10ml of cell 

culture media and centrifuged at 400 x g for 10 minutes. Cells were resuspended, 

density was determined using a haemocytometer and samples were frozen down 

using the Newcastle Protocol (Section 2.3.2.5) at the desired concentration. 

 

2.3.8 Flow Cytometry 

Flow cytometry was used to analyse cell surface marker expression on 

transduced cell populations to examine the impact of retroviral expression on cell 

lineage. The technique was also used to investigate engraftment of injected cells 

in xenograft samples.  

Flow cytometry was performed using several different BD machines and 

fluorochrome panels. The machines used were FACSCanto II, Fortessa X20 and 

for cell sorting FACSAria II. All markers used and corresponding paired lasers 

are displayed in section 2.2.10.1.  

 

2.3.8.1 Flow Cytometry Compensation Set Up 

The use of multiple flow markers facilitates the necessity of compensation 

alignment to minimise the expression of false positives or negatives due to the 

overlap of fluorochrome emission spectra. Compensation set up was performed 

using Anti-Mouse Ig, κ/Negative Control Compensation Particles (BD 

Bioscience).  

Two drops of Anti-Mouse Ig, κ beads and two drops of negative control beads 

were mixed in a Falcon 5ml round bottomed polystyrene test tube for each 

fluorochrome to be compensated, excluding CD33 PE-Vio770 which was 

incompatible with the Ig, κ beads due to the composition of the stain as a λ chain 

antibody. CD33 compensation was set up with CD34+ cells cultured for at least 

two weeks in standard liquid media (Section 2.3.2.3). ~ 1 x 106 of cells of a 

comparable morphology and marker expression of those to be tested were also 

stained with single antibodies, and were treated identically to the beads. An 

additional negative unstained cell control was prepared. Antibody concentrations 

for fluorochromes were ~0.20µg per 1 x 106 cells. Antibody stains were applied 
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and beads/cells were incubated in the dark for 15 minutes at room temperature 

or for 30 minutes at 4°C. Samples were washed with 1ml of FACS Buffer and 

centrifuged at 400 x g for 5 minutes. Supernatant was discarded and the wash 

step was repeated and supernatant was discarded. Samples were then prepared 

for compensation set up on the FACS machine of choice.  

Negative and single fluorochrome cell preparations were used to adjust machine 

photomultiplier tube (PMT) voltages to ensure all desired cells were analysed. 

PMTs are optical detectors, which record the presence of fluorescence, 

converting photons to electrical signals as stained cells pass through the relevant 

lasers. Adjusting the voltage to the PMTs determines the intensity of the PMT 

signal. After PMT voltage had been adjusted a compensation wizard program 

provided with the FACS Diva suite was opened and prepared to capture the 

single antibody stains comprising the multicolour FACS panel. The compensation 

particles were analysed and data captured, gates were created to capture the 

positively stained Ig, κ beads, and the negative beads. This was repeated for 

each fluorochrome in the particular multicolour panel. CD33 compensation was 

performed using stained CD34+ cells as positive controls and unstained CD34+ 

cells as negative controls. After each stain was captured the FACS Diva program 

performed automatic compensation on the multicolour panel based on captured 

data, although compensation could also be adjusted at a later date if necessary. 

The experiment was saved, ready for use with experimental cells. 

 

2.3.8.2 Analysis of Transduction Efficiency 

Transduced cells were analysed using flow cytometry. EGFP expression 

representing MSCV-IRES-EGFP vector transduction and Thy1 expression 

representing MSCV-IRES-Thy1 vector transduction, which was tagged to the PE 

fluorochrome. Both markers were compared against positive and negative 

controls.  

 

2.3.8.3 Analysis of Cell Surface Phenotype 

In vitro cells were analysed weekly, up to 1 x 106 cells were isolated and 

aliquoted into individual pre-labelled 5ml polystyrene tubes. The cells were 

washed with 1ml of FACS Buffer and centrifuged at 400 x g for 5 minutes. 
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Supernatant was discarded and cells were stained with the relevant FACS 

panel (Supplementary Table 7.2, Supplementary Table 7.3) and 50µl of FACS 

Buffer. The cells were incubated in the dark for 15 minutes at room temperature 

or for 30 minutes at 4°C. Samples were washed with 1ml of FACS Buffer and 

centrifuged at 400 x g for 5 minutes. Supernatant was discarded and the wash 

step was repeated and supernatant was discarded. The samples were stored in 

the dark and used within 2 hours of preparation. Cells were run with a pre-

prepared compensation set up (Section 2.3.8.1).  

 

2.3.8.4 Thy1 Biotin-Streptavidin Labelling  

Thy1 expressing cells were labelled with biotin conjugated CD90 antibody and 

stained with PE Streptavidin for visualisation using flow cytometry.  

Cells were isolated and labelled with 0.5µl of biotin antibody in 20µl of FACS 

buffer per 200k-1 million cells, incubated for 30 minutes at 4ᵒC, washed with 

FACS buffer, and pelleted by centrifuging at 1200g for 5 minutes, supernatant 

was discarded. Cells were resuspended with 0.5µl of PE Streptavidin in 20µl of 

FACS buffer and incubated for 30 minutes at 4ᵒC, washed with FACS buffer, and 

pelleted by centrifuging at 1200g for 5 minutes. Supernatant was discarded and 

cells were analysed using flow cytometry. 

 

2.3.8.5 Cell Sorting  

Cells were treated identically to section 2.3.8.3, with the exception being that the 

amount of antibody used was raised to ~0.40µg per 1 x 106 cells. Cells were 

sorted on the FACSAria II. Single colour controls were analysed prior to sorting 

to optimise PMT voltage and compensation settings. Sorted cells were 

resuspended in RLT buffer and stored at -20°C before use. 

 

 Cell Fixation and DAPI Staining 

Cells grown in vitro were analysed weekly, up to 1 x 106 cells were isolated and 

aliquoted into individual pre-labelled 5ml polystyrene tubes. Samples were 

washed with 1ml of FACS Buffer and centrifuged at 400 x g for 5 minutes, 

supernatant was discarded. Cells were then fixed using 2% Formaldehyde, 
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0.01% Triton X-100 solution. Cells were incubated at room temperature between 

8-16 hours, cells were centrifuged at 400 x g for 5 minutes and supernatant was 

discarded. Samples were washed with 1ml of FACS Buffer and centrifuged at 

400 x g for 5 minutes, supernatant was discarded. Samples were resuspended 

in 500µl of DAPI solution and were incubated in the dark at room temperature 

between 8-16 hours. Cells were centrifuged at 400 x g for 5 minutes, supernatant 

was discarded. The cells were then ready to be analysed on the flow cytometer. 

Cells were captured at a low flow rate for optimal results. 

 

2.3.9 Quantitative Polymerase Chain Reaction 

Quantitative PCR or Real Time PCR (qPCR) allows for the real time analysis of 

targeted products in a selected sample. qPCR can be used to test for relative 

expression levels of gene targets, gene copy number, or SNP detection and 

quantification.  

The TaqMan platform uses a combination of probes, which bind to multiple points 

on exposed DNA/cDNA and specifically designed target primers. The probes 

contain two elements bound to the 5’ and 3’ end, at the 5’ end is the reporter and 

the 3’ end the quencher, when these two molecules are in close contact the 

quencher prevents the excitation of the reporter by absorbing light energy through 

fluorescence resonance energy transfer. The reporter can only produce signal 

when the probe is broken, separating the reporter and quencher. During a 

reaction, polymerase will begin elongation from a primer strand and upon contact 

with a probe will cleave the molecule separating the reporter from the quencher. 

The reporter can then fluoresce, free of the quencher, providing a permanent 

increase in fluorescence, which represents the doubling of the target sample. For 

gene expression profiling, a method termed relative quantification is used, gene 

expression in the selected sample is compared against the other samples in the 

assay. The comparison is performed by comparing the comparative threshold 

cycles (Ct) values. Ct denotes the PCR cycle number at which the fluorescence 

signal crosses the threshold barrier, or the point where significant and specific 

target amplification takes place. 

The SYBR Green assay measures targeted product increase by binding of the 

reporter dye exclusively to double stranded DNA. The dye only fluoresces when 
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bound to double stranded DNA, and intensity increases with each cycle as more 

of the dye is bound. This requires high specificity when designing experiments as 

unspecific primer binding and primer dimers can create false positive results. The 

use of melting curves allows for the detection of multiple amplicons, suggesting 

unspecific binding in the assay. For copy number analysis with the SYBR green 

platform the absolute quantification method is used, where a standard curve is 

generated using known DNA dilutions, this can then be used to analyse unknown 

samples.  

 

2.3.9.1 SYBR Green qPCR Primer Design 

Gene sequences were identified using http://www.ncbi.nlm.nih.gov/ genome data 

base and primers were designed to cover potential transcript variant and exon-

exon boundaries. Sequences were pasted into PrimerPlus3 to produce 

amplicons of 50-150bp, contain a G/C content between 30-80% and a melting 

temperature of 58-60oC. The resulting primer sequences were then validated by 

BLAST and BLAT to determine specificity. Lysophilised primers were ordered 

from Sigma at a concentration of 100µmol, resuspended with dH2O and stored 

at -80oC, working concentration at 10µmol was stored at -20oC. Primer dimer 

formation was tested by investigating resulting melt curves, which indicate the 

presence of none specific product amplification. Upon the detection of multiple 

peaks, when investigating melt curves, different primer combinations were used 

when multiple primer sets for identical targets were available or different primer 

concentrations were tested. If both of these steps failed to produce one clean 

single peak of amplified material, new primers were designed.  

 

2.3.9.2 SYBR Green qPCR Platform 

SYBR Green master mix was created using reagents in Table 2.7 for each target 

gene, SYBR green contains ROX reference dye which reduces background noise 

by normalising non-PCR fluorescence variation.  Samples were analysed in 384 

well plates with 6ul of master mix pipetted per well and 4µl of 1ng patient DNA 

(4ng) added for a total of 10µl per well. Each well was repeated in triplicate. A 

standard curve is used to quantify unknown sample expression against a known 

set of standards, standard curves were generated for each primer target. A 
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standard master mix solution was used with dilutions of control DNA purchased 

from Promega. DNA dilutions used to create standard curves varied but the most 

common dilution combination was 100ng, 75ng, 50ng, 10ng, 7.5ng and 5ng. H2O 

negative controls were created for each primer combination. When completed an 

adhesive cover was placed over the plate, which was then briefly centrifuged to 

remove air bubbles in individual wells. The plate was then placed into the ViiA 7 

Real-Time PCR machine and analysed using the standard curve program 

settings. 

Reagents Volume 

SYBR Green qPCR 

Master Mix 

5.1µl 

Forward Primer 10µM 0.2µl 

Reverse Primer 10µM 0.2µl 

H2O 0.5µl 

Table 2.7. Composition of SYBR Green master mix per well. 

 

2.3.9.3 TaqMan Platform 

TaqMan qPCR setup was highly similar to SYBR Green qPCR. Master Mix 

components differed (Table 2.8) and 5ng of cDNA was used for the sample 

template for a total of 20µl of solution per well. Experimental plates were created 

with triplicate wells per reaction and negative RNAse Free H2O control wells per 

gene target. When placing into the ViiA 7 Real-Time PCR machine plates were 

analysed using the Delta CT program settings. 

Reagents Volume 

Gene Expression qPCR 

Master Mix 

10µl 

Probe / Primer Mix 1µl 

cDNA (1ng/µl) 5µl 

RNAse Free H2O 4µl 

Table 2.8. Composition of TaqMan master mix per well. 
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2.3.10 Molecular characterisation of IGH-CEBP Patients 

Only two patients had sufficient RNA of a high enough quality for further 

investigation. These two patients, 11739 and 23395, were analysed on the RNA-

seq Illumina 

HiSeq 2500 platform (requiring 200-400ng RNA with a RIN score >5) by Aros 

Applied Biotechnology (Denmark), and TaqMan qPCR platforms.  

 

2.3.11 Protein Analysis 

Protein analysis was performed to analyse the expression of proteins and protein 

isoforms in patient samples through use of Western Immunoblotting. 

2.3.11.1 Bradford Assay – Coomassie Dye Based Protein Assay 

Coomassie dye is used to quantify extracted protein lysate. The dye binds to the 

extracted protein resulting in a shift from the dyes standard absorbance maximum 

at 465nm (reddish brown) to 595nm (blue). The binding efficiency of the 

Coomassie dye ligands bound to protein is proportional to the number of positive 

charges on the protein. Generally the protein must be at least 3kDa in size to be 

bound by the dye. 

Bradford assays were set up in 96 well plates. BSA provided with the assay was 

diluted into a series of standards according to Table 2.9 used to quantify protein 

samples, all standards were set up in triplicate. 250µl of Coomassie dye was 

mixed with 5µl of protein or standard sample. Protein samples were set up in 

duplicate due to limited availability. The plate was analysed within an hour of 

preparation, absorbance was measured at 595nm using the Fluostar Omega 

plate reader. 

Tube Volume of 

Diluent 

Volume and Source 

of BSA 

Final BSA 

Concentration 

A 0 300µl of stock 2000µg/ml 

B 125µl 375µl of stock 1500µg/ml 

C 325µl 325µl of stock 1000µg/ml 

D 175µl 175µl of vial B dilution 750µg/ml 

E 325µl 325µl of vial C dilution 500µg/ml 

F 325µl 325µl of vial E dilution 250µg/ml 
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G 325µl 325µl of vial F dilution 125µg/ml 

H 400µl 325µl of vial G dilution 25µg/ml 

I 400µl 0 0µg/ml 

Table 2.9. Dilution scheme for Bradford Assay standards. 

 

2.3.11.2 Western Immunoblotting 

Western immunoblotting was performed to detect the presence and quantity of 

selected protein. This was achieved by first separating proteins by weight and 3-

D structure by using polyacrylamide gel electrophoresis, upon separation 

proteins were transferred to a polyvinylidene fluoride (PVDF) membrane and 

probed by antibodies for the protein of interest.  

 

  Gel Electrophoresis 

Amersham ECL Gel was briefly rinsed with dH2O and placed into an Amersham 

ECL Gel Box and then filled with 180ml 1x running buffer. The gel was run at 

160V for 12 minutes, the gel comb was then removed and the wells filled with 6ml 

of 1x running buffer. Samples were then loaded into the gel with 10ul of Spectra 

Multicolor Broad Range Protein Ladder. Empty wells were filled with 30µl of urea 

buffer mixed with 5µl of loading buffer. The gel was run at 160V for 60 minutes. 

 

  Protein Transfer 

The PVDF membrane was cut with clean scissors to match the size of gel, the 

membrane was activated by being soaked in 100% Methanol for one minute, after 

the incubation time the membrane was left submerged in 1x transfer buffer until 

needed.  

Six pieces of filter paper matching the size of the gel and PVDF membrane were 

cut and soaked in 1x transfer buffer along with transfer sponges. Sponges were 

thoroughly squeezed and soaked in transfer buffer until all air bubbles had been 

removed.  

After the gel had completed running it was detached from the plastic cassette and 

the stacking gel was removed. Keeping the gel moist, the PVDF membrane was 

carefully placed on the gel and sandwiched between the soaked filter paper and 



 116   
 

sponges (Figure 2.3). This stack was placed into a transfer cassette and a protein 

gel tank, making sure that the membrane faced the positive electrode. The tank 

was filled with 1x transfer buffer. The tank was either placed in a polystyrene box 

filled with ice or an ice pack was placed in the tank to maintain a low temperature 

during protein transfer. The samples were transferred by running the power pack 

at 100V for 60 minutes. 

 

 

Figure 2.3. Western immunoblot set up for protein transfer to PVDF membrane adapted from abcam western blotting 

beginners guide. 

 

  Immunoblotting 

After the run had finished, successful transfer was confirmed by viewing the 

transmission of the multi-coloured protein ladder to the PVDF membrane. The 

membrane was then blocked in 5% skimmed milk powder solution for at least 30 

minutes at room temperature or overnight at 4ᵒC on a rocking platform. The 

membrane was washed three times with TBST solution and stored in TBST to 

prevent it from drying out. The membrane was then cut appropriately using the 

protein ladder as a guide to separate the membrane containing the loading 

control protein from the target protein. Antibodies were diluted as displayed in 

Section 2.2.9.2. Membrane sections were placed in separate 50ml falcon tubes 

with 4mls of 50% 5% skimmed milk solution (2.5% after dilution) and 50% TBST 

solution with the respective diluted antibody. The falcons containing the 

membranes and antibody mix was incubated at room temperature for one hour 

on a roller mixer, or for up to 18 hours at 4ᵒC. The membranes were then washed 

a further three times in TBST solution and the incubation process was repeated 

with the secondary antibody for one hour, followed by the same wash steps. 
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Finally to visualise the proteins the PVDF membrane was stained with Amersham 

Enhanced Chemiluminescence Prime Western Blotting Detection Reagent. This 

was performed by mixing 500ul of reagent A and B and adding the mixture to the 

membrane, and leaving at room temperature for one minute. After the incubation 

period excess solution was carefully removed by tipping off the membrane onto 

tissue paper. The membrane was then placed into a plastic folder, air bubbles 

were carefully removed and the blot was inserted into the G:Box for imaging and 

analysed using ImageJ software (Version 1.48). 

 

  Protein Stripping 

Some membranes were stripped from their original antibodies due to the 

necessity of re-probing with different target antibodies, or the need to visualise a 

stronger antibody signal. The selected PVDF membrane was washed with TBST 

solution and immersed in Restore™ Western Blot Stripping Buffer (Thermo 

Scientific) for one hour at room temperature in a shaker. After stripping the 

membrane was washed a further three times with TBST solution and blocked in 

5% milk solution before being incubated with the desired primary antibody, 

following the standard western immunoblotting protocol (Section 2.3.7.1.3).  
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Chapter 3 Genetic Characterisation of IGH-CEBP 

translocated B-cell precursor acute lymphoblastic 

leukaemia 

 

 

3.1 Introduction 

Understanding the genetic basis of ALL has led to the identification of novel 

subgroups. These findings have led to improved survival by stratification of these 

subgroups according to risk and the identification of novel therapeutic targets. 

Further, determining incidences of commonly occurring abnormalities has given 

scope for statistical analysis with added insights into patient outcome. 

The development of new sequencing and array technologies has facilitated the 

screening of both known and novel genetic lesions by improving detection rates, 

lowering costs, or reducing the amount and quality of patient sample needed. 

These advances have led to the identification of the BCR-ABL1-like/Ph-like 

subgroup, (Den Boer et al., 2009; Harvey et al., 2010b). A group characterised 

by JAK pathway genetic lesions, including CRLF2 and JAK translocations, and 

by kinase signalling lesions including ABL1 and ABL2. This discovery has opened 

the possibility of the use of JAK inhibitors and TKIs for treatment, and has been 

tested successfully in vitro and in vivo (Roberts et al., 2014a). This success for 

TKIs has now been demonstrated in patients carrying tyrosine pathway 

abnormalities, who are refractory to conventional chemotherapy (Eyre et al., 

2012; Weston et al., 2013).  

Refinement of risk stratification in low risk ALL subgroups has also been fruitful. 

Recently the use of MLPA, FISH and cytogenetic data, in combination with 

statistical analysis, identified subgroups with low risk BCP-ALL who may benefit 

from treatment deintensification (Moorman, 2012b). Such examples highlight the 

importance of further characterising both known and unknown subtypes of ALL. 
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3.2 Aims 

The IGH-CEBP subgroup has been previously identified, but limited patient 

numbers have made full genetic characterisation and meaningful statistical 

analysis difficult to perform. In this chapter an IGH-CEBP cohort was created and 

genetically characterised by achieving the following aims: 

 

 To define a cohort of IGH-CEBP positive patients by searching the CIMS 

database for patients with karyotypes showing translocations involving the 

chromosomal regions of IGH and the CEBP partner genes and confirm 

the translocations using custom designed FISH probes.  

 To screen the cohort for commonly associated BCP-ALL genetic lesions. 

 To screen the cohort for novel genetic lesions. 

 To determine whether IGH-CEBP translocations were primary or 

secondary genetic insults in BCP-ALL development. 

 To investigate common clinical characteristics of the cohort. 
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3.3 Results 

 

3.3.1 Creating a Patient Cohort  

 

3.3.1.1 Database Search and FISH testing 

The LRCG CIMS database was mined for karyotypes with cytogenetic 

breakpoints corresponding to known IGH-CEBP translocations (Supplementary 

Table 7.4). Patients with the appropriate karyotypes, with available fixed cells, 

were initially tested for the presence of an IGH translocation using the LSI IGH 

Dual Colour Break Apart Rearrangement Probe (Vysis). Eleven patients with 

verified IGH translocations were then tested with custom made CEBP FISH 

probes to confirm IGH-CEBP translocations. These patients were added to a 

previously established IGH-CEBP cohort of 19 patients created by Dr. L.J. 

Russell (Akasaka et al., 2007) (Supplementary Table 7.5). Three patients, 25458, 

25505 and 25541, were added to the cohort on cytogenetic data alone as no fixed 

cells were available for FISH analysis (Table 3.1), providing a total of 33 patients 

for study.  
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Table 3.1. IGH-CEBP cohort showing age, sex, WBC and FISH results for IGH and corresponding CEBP partner gene.  
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3.3.2 Clinical and Demographic Features of the IGH-CEBP Cohort 

Over the course of the study, 14 additional patients were identified to possess 

IGH-CEBP translocations of which the majority displayed classic IGH-CEBP 

breakpoints. Six patients had variant breakpoints and are discussed further is 

section 3.3.3. Patient data from the 33 patients were statistically analysed using 

the Fisher exact test, used to derive significance from small sample numbers. 

The final cohort consisted of 11 (34%) CEBPD, 10 (30%) CEBPA, 8 (24%) 

CEBPB, 3 (9%) CEBPE and 1 (3%) CEBPG patient (Table 3.1). The median age 

for the cohort was 15 years (range of 2 – 65 years). There were significant 

differences in age between CEBP subgroups, IGH-CEBPD patients comprised 

the majority of patients under the age of 10 years, while CEBPA and CEBPB 

patients were older (p=0.005) (Table 3.1) (Figure 3.1) (Supplementary Table 7.6). 

These findings remained significant both with (p=0.02) and without (p=0.04) the 

inclusion of DS patients in the CEBPD subgroup. There was a slight prevalence 

of female patients: 18 females to 15 males. The median WBC was low at 8.24 x 

109/L, (range of 0.9 - 430 WBC x 109/L) (Supplementary Table 7.7). The highest 

median WBC was observed in the CEBPB subgroup at 23.5 x 109/L in 

comparison to CEBPA 6.25 x 109/L, CEBPD 17.40 x 109/L, and CEBPE 2 x 109/L 

(p=0.05) (Figure 3.2).  

There was no consistent association with other established primary 

abnormalities, with the exception of DS. The abnormalities identified were 

t(9;22)(q34;q11) translocation  (n=1, 10859), HeH (n=1, 7143), hypodiploidy (n=1, 

23168), and DS (n=5, 2734, 19734, 19794, 23395 and 22541). All DS-ALL 

patients were in the IGH-CEBPD subgroup, supporting previous findings (Lundin 

et al., 2009) (Table 3.1). Whole chromosomal gains were also rare and non-

recurrent, with only three patients affected; 6889 (+4), 5588 (+8), and 25505 (+X).   
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Figure 3.1. IGH-CEBP translocated patients divided by age group (P=0.005). Distribution shows CEBPD patients 

comprising the majority of the under 25 age group, while other subgroups showed greater variation. 

 

 

Figure 3.2. Box plots generated using patient WBC data, dots indicate outliers. CEBPB patients have a broader range of 

WBCs than other CEBP patients.  

A. WBC separated by CEBP subgroup (P=0.5). B. WBC comparison between CEBPB subgroup against all other CEBPs 

(P=0.08). 

 

Available clinical data were collected for all IGH-CEBP patients and analysed to 

identify potential trends within the cohort. Nine (27%) patients were deceased, 

these patients displayed no age or gender bias and included almost all CEBP 

genes. Mortality was highest in the CEBPB subgroup, with 4/8 (50%) patients 

deceased, followed by CEBPE with 1/3 (33%), CEBPA 2/10 (20%), and CEBPD 

2/11 (18%). The most common cause of death was infection, recorded in 4/9 
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(44%) patients (Table 3.2). Five relapses occurred in the cohort (15%); three of 

which occurred CEBPD patients, which included one DS patient. Two of these 

patients subsequently died. The remaining relapses occurred in CEBPA and 

CEBPB translocated patients. All relapses occurred in the bone marrow, 

excluding patient 6889, whose site of relapse is unknown (Table 3.2). MRD data 

at day 28 were available for 8/33 (24%) patients; CEBPD (n=3), CEBPA (n=2), 

CEBPB, CEBPE and CEBPG (n=1 each). Although numbers were low, an 

interesting trend was identified in that all three MRD negative patients had 

CEBPD involvement, while the remaining five MRD positive patients comprised 

all other CEBP subgroups (p=0.09) (Table 3.2). 

 

Patient ID Age / Sex WBC x 109L Status Cause of Death Relapse MRD Status

CEBPA  (19q13.1) 

1798 10/M 5.9 Alive NA No Unknown

4175 11/F 44.7 Alive NA No Unknown

4198 28/F 6.6 Deceased Infection / ALL No Unknown

4774 19/F 4.2 Alive NA No Unknown

7143 44/F 5 Alive NA No Unknown

7617 12/F 70.8 Alive NA No Positive

24880 15/M 32.6 Alive NA No Positive

25505 52/M 1.3 Alive NA Yes 1 - BM Unknown

25855 14/F 0.9 Alive NA No Unknown

25952 55/M 9.87 Deceased Infection / ALL No Unknown

CEBPG  (19q13.1) 

11540 10/M 3.1 Alive NA No Positive

CEBPB  (20q13) 

3455 15/M 3 Alive NA No Unknown

5588 43/F 36.9 Deceased Post BMT toxicity No Unknown

5632 13/F 103 Alive NA No Unknown

10859 34/F 80.6 Deceased ALL - Died in remission No Unknown

11682 30/F 10.1 Alive NA Yes 1 - BM Unknown

11739 14/F 430 Deceased ALL No Positive

25458 31/M 1.2 Alive NA No Unknown

25686 59/F 1.5 Deceased ALL No Unknown

CEBPD (8q11) 

2734 5/M 2.8 Deceased ALL - 2nd Relapse Yes 2 - BM Unknown

3622 9/M 6.4 Alive NA No Unknown

3759 15/F 4.6 Deceased Infection / ALL Yes 1 - BM Unknown

6889 8/M 47.9 Alive NA Yes 1 - Unkown Unknown

19734 12/M 21.9 Alive NA No Unknown

19794 17/F 14.8 Alive NA No Negative

20580 18/F 1.8 Alive NA No Negative

22355 6/F 20 Alive NA No Unknown

23168 8/F 20.6 Alive NA No Negative

23395 13/M Unknown Alive NA No Unknown

25541 8/M 24.8 Alive NA No Unknown

CEBPE  (14q11) 

7247 45/M 24.3 Alive NA No Unknown

23567 2/F 2 Alive NA No Positive

27181 65/M 1.2 Deceased Infection / ALL No Unknown
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Table 3.2. Relapsed and deceased patients in the IGH-CEBP cohort. Table shows cause of death and relapse status, 

with the relapse column showing the number of relapses, and site of relapse. Acute Lymphoblastic Leukaemia (ALL), 

Bone Marrow (BM), Bone Marrow Transplant (BMT), Female (F), Male (M). 

 

3.3.3 Other Abnormal Patients 

During screening, six patients were found to display more complex signal patterns 

requiring further investigation to determine IGH-CEBP involvement. These 

patients were classified as other abnormal (Table 3.3). Patient 11540 was not 

analysed further as IGH-CEBP involvement had been previously proven 

(Akasaka et al., 2007). Patient 25458 was also omitted as no fixed cells were 

available for FISH. 

 

 

Table 3.3. Table displaying patients classed as other abnormal due to more complex Karyotype and FISH data. Table 

shows multiple FISH tests performed. 

 

3.3.3.1 Patient 11739 

Patient 11739 displayed a complex karyotype with numerical and structural 

abnormalities. The main CEBPB FISH population (34%) in this sample showed a 

signal pattern of 0R1G2F with the CEBPB breakapart probe, the extra green 

Patient ID Karyotype FISH Probe FISH Signal Population

IGH 1R1G1F 85%

0R1G2F 34%

1R1G1F 6%

1R1G2F 5%

1R0G1F 42%

1R1G1F 21%

0R0G2F 67%

0R0G3F 29%

0R2G0F 80%

0R3G0F 15%

IGH 1R0G1F 78%

CEBPD 0R1G2F 85%

8 Alpha Satelite (green) 0R2G0F 94%

2R2G1F 34%

1R2G1F 32%

1R1G1F 30%

IGH 1R0G1F 75%

CEBPD 0R1G1F 94%

1R0G0F 57%

2R0G0F 41%

1R1G1F 44%

2R2G1F 25%

2R1G1F 22%

19794 47,XX,der(14)t(8;14)(q11.2;q32),+21c[6]

IGH-CEBPD

23168
44,XX,der(3)(3qter->3p25::21q11->21q22.3::21q22.3-

>21pter)c,-8,der(14)t(8;14)(q11;q32)[9]

14q Subtelomere (red)

IGH-CEBPD

11739
47,XX,t(5;14)(q1?5;q32.?3),add(9)(p?13),der(20)t(5;20)(

q1?5:q13),+mar[19] CEBPB

19734 47,XY,der(14)t(8;14)(q11;q32),+21c[5]/47,XY,+21c[5]

IGH

CEBPD

8 Alpha Satelite (green)
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signal indicating a break within the centromeric probe (Table 3.3). Further FISH 

analysis of this patient was halted as DNA had been sent for WGS as part of a 

separate project. 

Data gained from the WGS project showed a high level of complexity with a series 

of translocations between IGH and several regions on chromosomes 5 and 20 

observed (Figure 3.3A).  

Translocations of interest included IGH-CEBPB, where the observed breakpoint 

was more centromeric than the standard IGH-CEBPB translocation, causing a 

split within the green section of the CEBPB probe giving the 1G0R2F signal 

pattern (Table 3.3). However NGS data showed this translocation to be more 

complicated, with the IGH involved in several juxtapositions between CEBPB and 

a section of 5q14.3 (two genes of interest in this region are MEF2C a gene 

involved in myogenesis and CETN3 important in microtubule organisation) 

essentially creating two IGH translocations in this patient. The presence of two 

individual IGH translocations supports the discrepant FISH analysis between the 

IGH probe, which was found to be translated in 85% of cell nuclei, and CEBP 

probe where translocations were found to comprise ~45% of cell nuclei. The 

remaining 40% of IGH translocations may represent the 5q14.3 translocation.  
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Figure 3.3. Mechanism of CEBPB deregulation in patient 11739.   

Breakpoint identified by NGS of patient 11739 confirming the IGH-CEBPB breakpoint and the cytogenetic break within 

the CEBPB probe. A. Visualisation of NSG data which indicated a complex series of rearrangements between 

chromosome 14 and chromosomes 5 and 20. B. NSG data indicating the juxtaposition of the IGH and CEBPB genes. 

Green text indicates IGHD sequence while red text indicates CEBPD sequence. Figure created by Illumina. 

 

3.3.3.2 Patient 19734 

The t(8;14)(q11.2;q32)/IGH-CEBPD translocation was identified in patient 19734 

by conventional cytogenetic analysis. IGH FISH identified two main signal 

patterns, 1R0G1F (34%) indicating a loss of the telomeric green signal, either 

through loss of a derived chromosome or natural deletions occurring through 

V(D)J rearrangements, and 1R1G1F (6%) indicating a split within the IGH locus 

(Table 3.3). The CEBPD probe however presented no visible translocation, with 

signal patterns of 0R0G2F (67%) and 0R0G3F (29%). Chromosomal copy 
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number was first investigated due to the gained fusion signal of CEBPD, a 

chromosome 8 alpha satellite centromeric probe (green) (Qbiogene) was used, 

displaying the predominant population with a normal signal pattern, 0R2G0F 

(80%). There was however a small population of 0R3G0F cells (15%), indicating 

a gain of chromosome 8 (Table 3.3).  

Available SNP array data for this patient was analysed, showing two copies of 

chromosome 8 with a gain of the majority of the 8q arm (copy number 3). The 

breakpoint for this arm occurred at 8q11.21, encompassing the CEBPD gene 

(Figure 3.4 C). Other CNAs included a small region of the 14q arm which was lost 

(copy number 1). As this patient had both diagnostic and remission SNP data 

available rearrangements were compared and confirmed to be somatic.  

The gain of this specific region of chromosome 8, linked with loss of 14q, the 

observations of a population of cells with three copies of chromosome 8 alpha 

satellite signals, and the loss of the IGH telomeric signal in a population of cells 

suggested the following; 

During the evolution of this leukaemia, a copy of chromosome 8 was gained, from 

this population emerged a lineage of cells in which an IGH-CEBPD translocation 

occurred. This translocation involved a region more centromeric than the 

designed CEBPD break apart probe, resulting in the probe being translocated 

whole onto chromosome 14, this was supported by the SNP data. This 

translocation put a distance of 322kb between the CEBPD gene and the IGH 

promoter (Figure 3.4 A&C). This population of cells lost the derived chromosome 

8, resulting in an altered copy number profile for this patient, where only a region 

of the chromosome 8q arm remained. Therefore the presence of the derived 

chromosome 14 shows the copy number of chromosome 8 as being at 2 with the 

exception of the 8q arm which remained on the derived chromosome 14, and a 

loss of 14q which was lost with the derived chromosome 8. This is supported by 

the small population of cells with three copies of the chromosome 8 alpha 

satellite, and the loss of the telomeric IGH break apart probe signal.  

 



 129   
 

 

Figure 3.4. Mechanism of CEBPD deregulation in patient 19734.  

A.i. Beginning with a normal nucleus with two copies of chromosome 8 and 14 respectively. Aii A small population of cells 

were found to have three copies of the chromosome 8 alpha satellite probe signal A.iii. A breakpoint on chromosome 14, 

and a centromeric breakpoint on chromosome 8 take place, failing to split the CEBPD signal, the 0R0G2F signal pattern 

is seen. A.iv. The chromosomal segments reattach to the respective derived chromosomes. A.v. During clonal evolution 

of the sample the derived chromosome 14 is lost and an extra chromosome 8 is acquired, giving the FISH signal pattern 

of 0R0G3F. B. Image of a 0R0G3F FISH pattern in a patient nucleus. C. Matched diagnostic (green) and remission (blue) 

SNP array data for patient 19734 showing gain of 8q, including the specific section of chromosomal material 
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encompassing the CEBPD gene translocated to the der (14), CEBPD FISH probe positions have been placed onto the 

image to display the centromeric break point of the patient.  

 

3.3.3.3 Patient 19794 

The t(8;14)(q11.2;q32)/IGH-CEBPD translocation was identified in patient 19794 

by conventional cytogenetic analysis . IGH FISH showed the main pattern to be 

1R0G1F, indicating a loss of the telomeric green signal, either through loss of 

derived chromosome or deletions occurring during V(D)J rearrangement (Table 

3.3). The CEBPD probe showed the main clonal population to be 0R1G2F in 85% 

of cells. As a gain of the green FISH signal was observed the next step was to 

elucidate if this gain was chromosomal, confined to the gene, or a break within 

the green probe itself splitting the telomeric probe and giving an extra green 

signal (Table 3.3). Chromosome 8 copy number was first assessed using alpha 

satellite centromere 8 probe (green) (Qbiogene), which displayed 0R2G0F in 

94% of cells, excluding gain of chromosome 8. Thus the possibility remained of 

an altered breakpoint. Rather than attempting to map the potential breakpoint, an 

IGH-CEBPD fusion probe was created to investigate the presence of the fusion 

gene (Figure 2.1). The signal pattern of this probe displayed three prevalent 

populations all with a fusion signal confirming the rearrangement (Table 3.3). The 

probe also showed additional red and green signals, suggesting potentially 

differing IGH and CEBPD breakpoints within the same patient.  

 

3.3.3.4 Patient 23168 

CEBPD FISH of patient 23168 showed a pattern of 0R1G1F in 94% of cells 

indicating a deleted centromeric signal (Table 3.3). The karyotype of this patient 

showed losses of chromosomes 8 and 14 with only the derived chromosome 14 

present. To confirm the presence of the fusion, the IGH-CEBPD fusion probe was 

used (Figure 2.1) giving three prevalent populations confirming the translocation 

(Table 3.3). A 14q subtelomeric probe was used to check chromosome copy 

number confirming loss of chromosome 14 in 57% of blasts (Table 3.3). Figure 

3.5 indicates the possible mechanism in this patient.  
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Figure 3.5. Potential mechanism leading to the translocation of CEBPD gene in patient 23168.  

A. The pattern observed in normal patient nuclei, a signal pattern of 0R0G2F where the red and green FISH signals are 

expressed next to each other, with the CEBPD gene located between, this pattern indicates no translocation events. B. 

The start of the translocation event, sections of chromosome 8 which contains the CEBPD gene and the green centromeric 

FISH probe, and chromosome 14 detach from their respective chromosomes. C. The detached sections attach to the 

opposite chromosomes, giving a derived chromosomes 8 and 14, bringing the CEBPD gene into contact with the IGH 

locus and giving the FISH signal pattern of 1R1G1F. D. During clonal evolution of the sample the derived chromosome 8 

and chromosome 14 are lost giving the FISH signal pattern of 0R1G1F, as shown. 

 

3.3.4 MLPA Screening 

To identify commonly occurring genetic lesions, patients with sufficient DNA 

(n=28) were screened by MLPA with the SALSA MLPA P335 ALL IKZF1 kit 

(Supplementary Table 7.1. Chromosomal copy number abnormalities based on 

karyotype were considered when analysing MLPA data. 

CNAs between CEBP subgroups varied in both number of patients affected and 

number of alterations per patient. All patients in the CEBPB subgroup had CNA 

of the genes tested (6/6). Three out of seven CEBPA (43%), 3/11 CEBPD (23%) 

and 1/3 (33%) CEBPE patients also showed CNA of these genes (Figure 3.6) 

(Supplementary Table 7.8, Supplementary Table 7.9). 

The CEBPB subgroup, showed 12 CNA within 6/6 patients, CEBPA with 12 CNA 

in 3/7 (43%) patients, followed by the CEBPD subgroup with 7 CNA in 3/11 (23%) 

patients, CEBPE subgroup had 1 CNA in 1/3 (33%) patients with CEBPG 

showing no CNA (Figure 3.7). Overall 15/28 (54%) patients displayed no CNA, 

four of which were DS patients (Figure 3.7). Incidence of CNA per patient was 

highest in CEBPB at 2 CNAs per patient, CEBPA at 1.7, CEBPD at 1.5 CNAs, 

CEBPA at 1.2 CNAs, and CEBPE 1 CNA per patient.  
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Figure 3.6. Graph showing incidence of copy number alterations by CEBP subgroup (P=0.05).  

The CEBPB subgroup displayed CNAs in all patients, however the number of CNAs per patient was low, with the majority 

showing one or two aberrations. CEBPD conversely showed a low number of patients with CNAs, however patients 

affected had high numbers of aberrations, with two patients with 11 CNAs between them. CEBPA and CEBPD patients 

displayed a similar profile. 

 

The most common CNA identified were whole gene deletions of 

CDKN2A/CDKN2B in 7/28 (25%) patients, and IKZF1 deletions in 6/28 (21%), all 

of which were focal deletions of exons 4-7 resulting in the creation of the dominant 

negative IK6 protein isoform. These IKZF1 deletions were found in only two 

subgroups, 4/6 (67%) in CEBPB patients and 2/6 (33%) in CEBPD patients 

(P=0.04) (Figure 3.7). CNA of PAX5 occurred in 4/28 (14%) patients, two of these 

patients showed gains of the gene with exon 5 gained in patient 7247, and exons 

7 and 8 gained in patient 3455. These gains are of interest as single exon gains 

have been predicted to lead to altered PAX5 protein activity (Familiades et al., 

2009; Schwab et al., 2010b). The remaining two patients showed one whole gene 

deletion in patient 23168, and loss of exon 1 in 1798.  Other CNA included whole 

gene deletions of ETV6 in 3/28 (11%) of patients, and several other non-recurrent 

CNA (Figure 3.7).  
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Figure 3.7. Collated heat map of all patient MLPA P335 ALL IKZF1 kit CNAs, sex, age, WBC, associating abnormalities, 

mortality and relapse data. 
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3.3.5 Clonal Evolution 

Having screened for the most commonly occurring abnormalities in BCP-ALL, the 

next step of the project focused on identifying if IGH-CEBP translocations were a 

primary abnormality occurring early in disease progression, or an abnormality 

acquired later in leukaemic development. 

Six patients with multiple CNA abnormalities that were trackable by FISH were 

chosen for analysis using a multiple colour FISH approach. These probes 

covered the relevant CEBP gene and the genes identified by MLPA. IKZF1 and 

PAX5 probes were labelled with spectrum gold, and CDKN2A/B with spectrum 

aqua, to complement the red and green CEBP break apart probes (Table 2.1).  

 

3.3.5.1 Patient 10859  

Patient 10859 displayed two main clonal populations, the predominant clone 

(69%) exhibited the translocation of the CEBPB gene and a heterozygous 

deletion of IKZF1, the second clone (18%) displayed only the CEBPB 

translocation suggesting the translocation arose before the IKZF1 deletion 

(Figure 3.12). Table of all clones identified (Supplementary Table 7.10). 
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Figure 3.8.  Tracking the clonal evolution of patient 10859 through analysis of CEBPB and IKZF1, with additional images 

of nuclei showing FISH signal patterns. 

 

3.3.5.2 Patient 4774  

Patient 4774 displayed three predominant clones. The initiating clone (20%) was 

observed with no aberrations, the subsequent population displayed homozygous 

loss of the CDKN2A/B probe (9%). The terminal population (55%) displayed the 

homozygous loss of CDKN2A/B with a translocation of CEBPA. (Figure 3.13). 

These clones indicate that the CDKN2A/B deletion occurred prior to the CEBPA 

translocation in this patient. Table of all clones identified (Supplementary Table 

7.11). 
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Figure 3.9. Tracking the clonal evolution of patient 4774 through analysis of CEBPA and CDKN2A/B, with additional 

images of nuclei showing FISH signal patterns. 

 

3.3.5.3 Patient 11739  

Patient 11739 displayed seven predominant populations, divided between three 

potential clonal lineages. As mentioned previously (Section 3.3.3.1) the 

breakpoint of the CEBPB translocation in patient 11739 was more centromeric 

than standard CEBPB translocations, therefore all clonal populations with 

0R1G2F are positive for a CEBPB translocation. The most prevalent clone (26%) 

exhibited no CEBPB translocation, a homozygous deletion of CDKN2A/B and a 

heterozygous deletion of IKZF1. The second most prevalent clone (19%) 

displayed the centromeric CEBPB translocation, a homozygous loss of 

CDKN2A/B and heterozygous loss of IKZF1. Other clones exhibited a mix of 

deletions and translocations (Figure 3.10). Interpretation of these data indicates 

that there were two lineages of cells with potentially independent IGH-CEBPB 

translocations, both the classic (1R1G1F) and the centromeric (0R1G2F) 

breakpoints with each showing homo and heterozygous deletions of CDKN2A/B 

and IKZF1. The remaining cells (~30%) did not show the IGH-CEBPB 

translocation, however these cells may contain the translocation involving IGH 

and chromosome 5. Interpretation of data indicates that deletions of both 

CKDN2A/B and IKZF1 occurred as primary events in the same cells, prior to 
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CEBPB rearrangement. Table of all clones identified (Supplementary Table 

7.12Supplementary Table 7.10). 

 

 

 

Figure 3.10. Tracking the clonal evolution of patient 11739 through analysis of CEBPB, IKZF1 and CDKN2A/B. Blue 

arrows indicate known evolution, orange arrows indicate potential evolution. 

 

3.3.5.4 Patient 3455 

Patient 3455 displayed four predominant clones, the most commonly occurring 

(50%) exhibited a CEBPB translocation and gain of the PAX5 gene. The other 

populations had CEBPB translocation only (32%), no translocation and a gain of 

PAX5 (7%), and no aberrations (6%) (Figure 3.11). These results indicate two 

potential routes of clonal evolution, one with a gain of PAX5 occurring prior to the 

translocation (7%) and the second suggesting that the translocation occurs 

before the gain of PAX5 (32%), ultimately both would lead to the same final and 

predominant clone with both aberrations present (50%). It is more likely that the 

IGH-CEBPB translocation arose first followed by the gain of PAX5 due to the 

higher incidence of the translocation blasts in comparison to the gained PAX5 
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blasts (32% vs 7% respectively). Table of all clones identified (Supplementary 

Table 7.13)  

 

 

Figure 3.11. Tracking the clonal evolution of patient 3455 through analysis of CEBPB and PAX5. Blue arrows indicate 

known evolution, orange arrows indicate potential evolution.  

 

3.3.5.5 Patient 11682  

Patient 11682 displayed four predominant clonal populations, the highest (65%) 

exhibited a translocation of CEBPB and a heterozygous deletion of IKZF1. The 

three remaining populations were a IKZF1 deleted clone (9%), a CEBPB 

translocated clone (8%), and a CEBPB translocation with homozygous IKZF1 

deleted clone (6%) (Figure 3.16). The primary genetic lesion in the observed 

genes is difficult to ascertain in this sample, the early clones comprise a similar 

percentage of the population (8% and 9%), and both may have given rise to later 

clones. Table of all clones identified (Supplementary Table 7.14). 
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Figure 3.12. Tracking the clonal evolution of patient 11682 through analysis of CEBPB and IKZF1. Blue arrows indicate 

known evolution, orange arrows indicate potential evolution. 

 

3.3.5.6 Patient 6889  

Patient 6889 displayed 6 clonal populations divided into two potential clonal 

lineages. The main lineage exhibiting a CEBPD translocation and heterozygous 

loss of CDKN2A/B (5%), which progresses into a population with homozygous 

loss of CDKN2A/B (19%) and further gain of the CEBPD centromeric signal 

(30%). The second potential lineage shows homozygous loss of CDKN2A/B and 

two additional copies of the CEBPD centromeric region (6%) which may 

culminate in a population with a CEBPD translocation in addition to the gained 

centromeric region (18%) (Figure 3.13). The complexity of this sample suggests 

several ways in which the more advanced clones may have arisen. Interestingly 

the additional CEBPD signals were not observed in the initial CEBPD FISH for 

this patient. Suggesting potentially more complex sequences of gains and losses 

in the region. Regardless of the CEBPD probe signal pattern, it is unclear which 

genetic lesion occurred first in this sample. Table of all clones identified 

(Supplementary Table 7.15). 
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Figure 3.13. Tracking the clonal evolution of patient 6889 through analysis of CEBPD and CDKN2A/B. Blue arrows 

indicate known evolution, orange arrows indicate potential evolution.  

 

3.3.5.7 Patient 20580  

Patient 20580 displayed five predominant clonal populations divided into two 

potential clonal lineages. The populations suggest that this sample has two clonal 

lineages which developed independently from an ancestral clone (Figure 3.14). 

The more dominant lineage, displayed translocation of the CEBPD gene and 

heterozygous deletions of both CDKN2A/B and IKZF1 (9%), which continues to 

develop an additional deletion of the CDKN2A/B gene (17%). The second less 

dominant lineage first exhibits one gain of the CEBPD centromeric region (5%), 

then gains a second addition of this region (7%), this could be suggestive of a 

separate centromeric IGH-CEBPD translocation breaking the centromeric probe 

apart and giving two signals, which then occurs at the second locus  (Figure 2.1). 

The presence of the two lineages indicates two independent CEBP breakpoints 

in this patient. Table of all clones identified (Supplementary Table 7.16). 
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Figure 3.14. Tracking the clonal evolution of patient 20580 through analysis of CEBPD IKZF1, and CDKN2A/B.  

 

3.3.6 SNP Screening 

Having investigated the common CNAs, the focus of the study shifted to search 

for novel genetic lesions. Fifteen patients in the cohort had sufficient diagnostic 

DNA (750ng) of high enough quality to be analysed on the SNP 6.0 platform. Of 

the fifteen, six also had a matched remission sample (Supplementary Table 7.17).

  

Samples were prepared (Section 2.3.1.3.1) and processed by Aros Applied 

Biotechnology, to be analysed on the Affymetrix Genome-wide Human SNP array 

6.0. Samples with MAPD values higher than 0.35 were discarded. This included 

diagnostic samples 22355 and 6889, leaving 13 patients to analyse. CNAs in 

common regions of variation; 2p 11.2, 7p 14.1, 7q 34, 14q 11.2, 14q 32.33 and 

22q 11.22 were discarded. CNAs found in diagnostic samples were compared 

against remission samples when available, CNAs also found to occur in remission 

samples were discarded as the focus of this study was to identify somatic lesions 

only. Patients without remission samples were analysed as CNAs had to occur in 

three or more patients to be investigated further. CNAs were cross checked 

between MLPA and SNP data, where a high level of correlation was found with 

all but two samples, 2734 and 6889, which did not allow for accurate comparison 

due to poor DNA quality (Supplementary Figure 7.1). 
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SNP analysis of the IGH-CEBP cohort identified several recurring CNAs, several 

were discarded due to being pseudogenes such as REREP3 (three deletions 

within the cohort), functionally irrelevant such as OR4N3P, an olfactory receptor 

(three deletions within the cohort) with no functional links to cancer and no 

published work. Or CNAs were found in regions of naturally high variation such 

as SCAPER (five deletions in the cohort) (Supplementary Table 7.18). One gene 

of interest, the tyrosine kinase ABL2 located on 1q25.2, did show promise both 

due to the function of the gene and due to the focal nature of the deletion 

observed (Figure 3.15). The log2 ratio data from the SNP arrays indicated a 

deletion within this gene. While the log2 ratio data showed more variation in ABL2 

deletion patients there was still an observable dip in this region (Figure 3.15B). 

Deletions involving this gene were found in three patients, 7143, 11682 and 

10859.  

When observing the array using the copy number state graph the first two patients 

displayed a focal exon 2 deletion, while patient 10859 displayed a  larger deletion 

in the region covering exons 2-7. Patient 6889, although it had been discarded 

for a high MAPD score, was also found to contain a 2-7 exonic deletion matching 

patient 10859 (Figure 3.16A). While the log2 ratio data showed more variation in 

the ABL2 deleted patients, particularly in patient 6889 which had a MAPD score, 

the observed array data warranted further investigation. A FISH probe covering 

the ABL2 gene was designed, confirming the deletions in three of four patients 

(3.3.7).Locations of open reading frames were investigated to determine if the 

deletions observed in the SNP array data would lead to whole gene inactivation 

through frame shift or start codon loss. Transcript initiation for the ABL2 gene 

begins at exon 1, as no deletions of exon 1 were observed it can be determined 

that the intragenic deletions of both exon 2 and exon 2-7 would be expressed. 

Multiple exons in the ABL2 gene contained splice junctions, meaning that loss of 

exons could lead to frame shifts and loss of gene function. Exon 2 deletions would 

not result in frame shift mutations despite a splice junction between exons 1-2, 

as exons 2-3 also contained a splice junction which maintained the codon order 

(Figure 3.16Bi). However deletions of 2-7, resulting in fusion of exons 1-8 would 

result in a frame shift and a totally altered protein (Figure 3.16Bii). 

To further investigate this novel deletion, a search was performed of other 

available patient data published by St. Judes Hospital in 2007, consisting of 242 
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paediatric ALL patients (Mullighan et al., 2007), which revealed 38 patients with 

ABL2 abnormalities mainly linked to whole chromosomal gains or losses. Non-

focal whole gene deletions were observed (Supplementary Table 7.19). 

To conclude, while numerical abnormalities of ABL2 were not uncommon the 

IGH-CEBP cohort presented here, gains or deletions of this gene were absent in 

the St. Jude cohort. This observation highlights a possible association of ABL2 

deletions and IGH-CEBP translocations. 
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Figure 3.15 SNP identification of the ABL2 intragenic deletion.  

A. The ABL2 gene (highlighted) shows no natural genetic variation, and the log2ratio for four patients showed a small dip, 

B. Log2 ratio of probes covering the ABL2 gene displays a dip over the covering the gene in four patients. Copy number 

from 0 to -1 is highlighted to aid in visualisation of probe location. Higher variation is observed in the ABL2 deletion positive 

patients but a greater loss is observed over the ABL2 gene. 
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Figure 3.16. Observed deletions of the ABL2 gene.  
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A. SNP array data displaying the focal deletion of ABL2 found in four IGH-CEBP patients. Dark red shows the common 

region deleted in all four patients, covering exon 2 of the ABL2 gene, light red shows the extended deleted region of the 

ABL2 gene in patients 10859 and 6889 encompassing exons 3, 4, 5, 6, and 7.Bi. Potential consequence of the ABL2 exon 

2 deletion in protein expression, with the open reading frame being unaffected in the fusion of the exon 1 and 3 fusion. 

Bii. Potential consequence of the ABL2 exon 2-7 deletion in protein expression, with the open reading frame being altered, 

leading to a frame shift in the gene. Green boxes indicating the original codons of the ABL2 gene prior to potential 

intragenic deletions.  

 

3.3.7 ABL2 FISH Analysis 

Having observed ABL2 loss in three high quality and one low quality SNP array, 

an ABL2 FISH probe was designed to confirm the SNP findings. A search of the 

Ensembl and UCSC Genome Browser was performed to identify clones with the 

potential to identify both ABL2 deletions. FISH probes are typically created from 

several bacterial artificial chromosome (BAC) clones 150-350Kb in size, situated 

alongside each other to bolster the signal strength, giving more robust results 

when analysing individual nuclei. However the common region of deletion 

covering exon 2 of the ABL2 gene found in all four patients was a small target at 

32,748bp, too small for a traditional BAC probe. Thus larger BAC clones were 

disregarded in favor of smaller DNA plasmids of up to 40kb named fosmids. The 

best located fosmid, G248P8248G11, covered exons 2-10 of the ABL2 gene 

(Figure 3.17). Due to the small size of the fosmid the ABL2 deletion probe was 

created using gold dNTP as this fluorochrome showed the highest signal 

intensity. The probe was created using standard methods (Section 2.3.1.1.1).  

 

 

Figure 3.17 Location of the ABL2 fosmid clone G248P8248G11. 

 

All four patient samples with observed SNP deletions were hybridized with the 

gold ABL2 deletion probe and probe to the corresponding IGH partner gene. 

Patient 7143 failed to show any gold signal as the fixed cells available were of a 
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very poor quality. Although the ABL2 signal was weak the remaining three 

patients were scored successfully and the presence of an ABL2 deletion was 

confirmed in both exon 2 and exon 2-7 deleted patients (Supplementary Table 

7.20, Supplementary Table 7.21, Supplementary Table 7.22). There were 

difficulties in analysis of ABL2 FISH due to the weak signal of the fosmid probe, 

and failure of the probe to hybridise to samples with low quality patient samples. 

ABL2 translocations had been previously reported in BCP-ALL (Roberts et al., 

2014a), a break apart ABL2 probe was created to rule out the possibility of a 

translocation in the four patients. Patient 7143 once again failed, the remaining 

three patients exhibited no translocation of the ABL2 gene (Table 2.1) (Data not 

shown).  

 

3.3.8 ABL2 qPCR Screen 

Having confirmed the presence of the ABL2 deletion in three patients, the 

possibility of further ABL2 deletions was investigated. In addition to the 13 

patients analysed by SNP platform, 13 patients had available fixed cells. Due to 

difficulties in analysis of the ABL2 FISH, failure of hybridisation in lower quality 

fixed cell samples, and the large coverage of the fosmid clone, The alternative 

approach of copy number qPCR screening for the presence of this deletion was 

pursued. 

The SYBR green qPCR platform was selected, due to the ability to design probes 

covering specific gene regions. Primers were designed using Primer3Plus, 7 

exons within ABL2 were selected for analysis and multiple primer pairs were 

evaluated for the best available primer combinations. Primer combinations and 

disassociation curves were analysed (Figure 3.18) (Supplementary Table 7.23).   
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Figure 3.18. Optimisation of primer probes for SYBR Green qPCR for ABL2 copy number analysis.  

A. Disassociation curve assessing ABL2 exon 2 primer pair combination 1, a clear ‘shoulder’ is observed for the run of 

the primer pair showing nonspecific amplification or primer dimerisation. B. Disassociation curve assessing ABL2 exon 2 

primer pair combination 2, at least two separate peaks are observed showing nonspecific amplification. C & D. 

Disassociation curves assessing new ABL2 exon 2 primer combinations (C. ABL2exon2n1. D. ABL2exon2n2) and specific 

amplification of product.  

 

Copy number was evaluated on the known deletion positive patients, discovered 

by SNP arrays, before being applied to the rest of the cohort. Patient 5632 was 

selected as a negative control for the deletion as SNP analysis displayed a 

normal ABL2 copy number. Near haploid BCP-ALL patient 22795 was chosen as 

the positive control for the deletion as the patient’s karyotype indicated a single 

copy of chromosome 1, the location of the ABL2 gene. Initial qPCR plates had 

low R^2 values, indicating a poor fit of data points to the generated standard curve 

(Figure 3.19 A&B). Several further optimisations were attempted, including 

varying primer concentrations and combinations, DNA concentration for the 

creation of the standard curve and recalibration of pipettes. Two variations of 

ABL2 exon 2 primers were tested together to investigate variation between primer 
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pairs, which improved efficiency (Figure 3.19 C&D). The experiment was 

performed twice, but was not successful. Copy number analysis of control and 

deleted patients failed to validate FISH and karyotype data (Figure 3.20), while 

patient 27795 displayed lower expression of the target exons than patient 5632, 

yet the fold change was not significant. Additionally, the three ABL2 deletion 

patients showed high copy number of exon 2 in comparison to other exons, with 

no variation observed to suggest gene deletion. Further work was ruled out due 

to time constraints. 

 

 

Figure 3.19. Standard curve data and optimisation for SYBR Green qPCR of ABL2 copy number analysis.  

A. Standard curve of ABL2 exon 2n1 primer pair showing problems with the experiment as displayed by a low Slope value 

(-0.64) indicating poor efficiency, and a poor R2 value indicating that the data is not plotting well to the standard curve. B. 

Standard curve of ABL2 exon 2n1 primer pair after use of new DNA and DNA dilution series 50ng, 25ng, 12.5ng, 6.25ng, 

3.12ng and 1.56ng. Both Slope (-2.481) and R2 value (0.969) have improved, although slope is not at the optimal -3.32 

value indicating perfect efficiency resulting in 100% efficiency in doubling of template product during exponential 

amplification. 
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Figure 3.20. Graph displaying copy number data for ABL2 exons 2, 3, 5, 7, 9 and 11 in ABL2 deleted patients 10859, 

6889 and 7143, and positive and negative control DNA normalised against B2M gene (N=2). 

  

3.4 Discussion 

Genetic characterisation of the IGH-CEBP cohort revealed several novel findings. 

The numbers of IGH-CEBP patients in this study was low, reflecting the rarity of 

the subgroup. Nevertheless this study comprises the largest IGH-CEBP cohort 

analysed to date which has provided the opportunity to perform statistical analysis 

on the subgroup as a whole, as well as on individual IGH partners; CEBPA, 

CEBPB and CEBPD.  

For the majority of patients the cytogenetic breakpoint, indicating the relevant 

IGH-CEBP translocation, was easily confirmed using FISH. The exceptions were 

the four patients defined as ‘other abnormal’ who were all ultimately confirmed as 

IGH-CEBP (Section 3.3.3). Among these patients, complexity arose through 

variant breakpoints giving unusual signal patterns resembling extra probe signals 

and false fusions signals (patients 11739, 19734, 19794). In addition there was 

the loss of derived chromosomes following the translocation event, giving 

different probe patterns (patient 21368). However karyotype data was accurate 

and facilitated accurate signal interpretation of the FISH patterns. For this reason 

three patients (25505, 25458 and 25541) were able to be included in the cohort 

based on cytogenetic data alone. 
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Patient data were analysed and compared to previously published cohorts, these 

included a IGH-CEBP cohort from Akasaka et al (Akasaka et al., 2007), two 

mixed IGH cohorts, one published by Russell et al (Russell et al., 2014), and the 

second by Chapiro et al (Chapiro et al., 2013). Two further studies focused on 

the analysis of the t(8;14)(q11;q32) breakpoint, which is indicative of the IGH-

CEBPD translocation, the Lundin et al study (Lundin et al., 2009), and the 

Messinger et al study (Messinger et al., 2012).  

It is important to note that 17 of the patients from this cohort were included in the 

Russell et al study, and 19 (Supplementary Table 7.5) in the Akasaka study. 

Patients from this cohort were also included in the Lundin study as this was a 

review of all known t(8;14)(q11;q32) patients at the time. 

The clinical data between all cohorts compared showed a high degree of 

correlation. Median ages were within the young adult age range of 15-30 years 

for all cohorts but the exclusive t(8;14)(q11;q32) subgroup which were younger 

(Table 3.4), supporting findings in this study suggesting IGH-CEBPD BCP-ALL 

initiates earlier. This could be due to the translocation requiring fewer oncogenic 

hits, or due to hits occurring in utero. WBC also showed a high degree of 

correlation with low expression in all studies, although the range differed (Table 

3.4). Finally, incidence of DS was present in all cohorts with the exception of the 

Chapiro study which did not mention the subgroup. DS incidence was higher in 

the t(8;14)(q11;q32) cohorts, at 27% for Lundin, and 32% for Messinger, in 

comparison to this study, at 15%. This is logical as DS is almost totally unique to 

the IGH-CEBPD subgroup in IGH-CEBP BCP-ALL, with one exception found in 

the Akasaka cohort which contained one IGH-CEBPE DS patient (Table 3.4). 

Study Cohort 

Size 

Cohort Median 

Age 

Age Range Median 

WBC 

109/L 

WBC 

Range 

109/L 

DS 

Incidence 

No. (%) 

Current 

Study 

33 IGH-CEBP 15 2 - 65 9 1 - 430 5 (15%) 

Akasaka ‡ 27 IGH-CEBP 15 3 - 49 6 1 - 140 3 (11%) 

Russell ‡ 159 IGH 16 NA 11 NA 9 (16%) 

Chapiro* 29 IGH 25 5 - 85 NA NA NA 

Lundin ‡* 44 t(8;14)(q11;q32) 13 3 - 49 9 2 - 172 12 (27%) 

Messinger 22 t(8;14)(q11;q32) 11 3 – 17 10 1 - 172 7 (32%) 

Table 3.4. Comparison of a collection of studies including IGH-CEBP and potential IGH-CEBP patients.  
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Median age is similar across most studies, as is median WBC. Incidence of DS appears slightly higher in the Lundin and 

Messinger cohorts which were comprised of entirely t(8;14)(q11;q32) translocated patients, which is indicative of the IGH-

CEBPD translocation. All DS patients were found in the IGH-CEBPD subgroup with the exception of one patient in the 

Akasaka cohort, who was an IGH-CEBPE patient.‡ Cohort contains patients from this study. * Study is a review, with mix 

of new and previously published patients.   

 

Further in-depth analysis of the cohorts identified some interesting trends. The 

Akasaka IGH-CEBP cohort consisted of 27 patients (CEBPD n=10, CEBPA n=9, 

CEBPE n=4, CEBPB n=3, CEBPG n=1), and was the first report of multiple CEBP 

partners to be involved in IGH rearrangements. Comparisons between the 

Akasaka cohort and this cohort showed the median age for both studies was 15 

years. However the ranges differed, with our study showing a larger spread 

(range, 2-65 years) in comparison (range, 3-49 years). This may have been 

influenced by the inclusion of older patients on the UKALL14 clinical trial 

(Supplementary Table 7.24). Both cohorts contained one patient each with 

t(9;22)(q34;q11) translocation.  

The composition of the two cohorts differed slightly. This cohort identified an 

increased number of IGH-CEBPB patients, which comprised 24% of total patient 

numbers (n=8/33) in comparison to 11% (n=3/27) in the Akasaka cohort. 

Although CEBPD and CEBPA were the most prevalent IGH partner in both 

studies.  

The Russell, et al cohort comprised 148 BCP-ALL patients and 11 T-ALL patients 

with IGH translocations, including IGH-CEBP (n=17). This study aimed to perform 

the biggest screen of the IGH subgroup to date, investigating clinical and genetic 

features in patients with both known and unknown IGH partners. Overall IGH-

CEBP patients displayed both similarities and differences to the IGH group as a 

whole. Adding the new IGH-CEBP patients to the Russell cohort gave a total of 

175 IGH positive patients and 3285 ALL patients, this gave an incidence of 19% 

IGH-CEBP patients in the IGH group and 1% incidence in ALL. A similar median 

age and WBC was observed in the Russell cohort, however relapse was lower 

(7%), in comparison to the IGH-CEBP subgroup (15%), indicating that the CEBP 

subgroup may be at higher risk than other IGH partners. This did not affect 

mortality rates which were similar at 22% in IGH and 27% in IGH-CEBP. 
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The Lundin study gathered data on previously published occurrences of 

t(8;14)(q11;q32), in BCP-ALL indicative of IGH-CEBPD rearrangement, and 

added three new patients to the study cohort. This report included the Akasaka 

cohort and several others, giving a total of 44 t(8;14)(q11;q32) patients, only the 

Akasaka cases having been confirmed as IGH-CEBPD.  

Karyotype data for the Lundin cohort showed the t(8;14)(q11;q32) translocation 

as the sole chromosomal aberration in  13 (30%) of cases, occurring in 50% of 

DS patients and 22% of non-DS patients. Karyotype data also showed no 

additional acquired changes in any of the DS patients. In non-DS patients the 

t(9;22)(q34;q11) translocation was found in seven patients (16%). Gain of 

chromosome X (11%) and somatic gain of chromosome 21 (14%) were also 

observed, however one of the gains was observed in a HeH patient, individual 

gains of these chromosomes in non HeH patients occurred at 9% for both X and 

21 gains. Overall the Lundin study highlighted the low level of associating 

abnormalities in the IGH-CEBPD subgroup, in particular that of the DS patients, 

and reported t(9;22)(q34;q11) as a recurring abnormality. My data did not observe 

this trend, with a single t(9;22)(q34;q11) occurring in a IGH-CEBPB patient. 

The Messinger cohort analysed the treatment and survival data of 22 

t(8;14)(q11;q32) BCP-ALL cases. The only t(9;22)(q34;q11) rearrangement was 

discovered in a non-DS patient. Interestingly, DS patients were found to have a 

better 5 year event free survival vs non-DS patients (100% vs. 50.1 ± 17.7%; 

p=0.04) using Children Oncology Group (COG) treatment protocols, which 

separated the group between standard-risk (7/22) and high-risk (15/22), although 

the criteria for the stratification of these patients was unclear with no age or WBC 

bias in the selection. Improvement in patient outcome was not due to treatment 

stratification as DS patients were split between standard (n=3) and high risk 

(n=4). Patients were treated on protocols spanning several decades, which may 

have impacted on survival, through refinement of treatment protocols. The 

general characteristics of the Messinger cohort were similar to both the Lundin 

and this cohort. Young adults with low WBC counts and a high incidence of DS 

patients. Although Messinger et al found a lower incidence of t(9;22)(q34;q11) 

rearranges in comparison to Lund, with only one patient. This work is interesting 

as it suggests that potentially IGH-CEPD patients may benefit from treatment 

stratification based on DS occurrence, which is not an expected outcome in DS 
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BCP-ALL as these patients have been shown to have worse outcome (Xavier 

and Taub, 2010). Although there needs to be a larger cohort of this subgroup to 

investigate this work further. 

The Chapiro cohort consisted of 29 BCP-ALL IGH translocated patients, 

containing 11 IGH-CEBP patients, and several other known partners; BCL2, ID4 

and EPOR, and several unknown partners. This study found recurring gains of X 

(n=4/11) and non-constitutional gains of 21 (n=2/11). Both which had also been 

observed in the Lundin study, although neither trend was observed in this cohort. 

While this IGH-CEBP cohort shows little variation from previous findings both in 

relation to other IGH-CEBP and other IGH partners, when the cohort is further 

subdivided into individual CEBP subgroups interesting trends are observed. 

There is a clear difference in age among CEBP subgroups (Figure 3.1). Patients 

with CEBPB translocations were significantly older, while patients with CEBPD 

involvement were predominantly children, a significant finding with and without 

the inclusion of DS patients in the CEBPD subgroup, suggesting that the young 

age of the IGH-CEBPD subgroup was not biased by DS patients (Xavier and 

Taub, 2010). These data are limited in consideration of patient survival but when 

added to the observation that IGH-CEBPB patients have the highest WBC, 

highest median number of CNAs, and the highest number of deceased patients, 

it raises an interesting point that this subgroup may benefit from more intensive 

treatment regimens. Although such suggestions should be interpreted with 

caution on such small patient numbers, and the natural correlation between 

worse outcome and age in BCP-ALL (Harrison, 2011). 

A study of past literature is difficult as the majority of studies published on this 

subgroup contained patients in this study, with only Chapiro and Messinger 

having no overlap. Overall the representation of IGH-CEBPs and potential IGH-

CEBPs is concurrent with this study, showing IGH-CEBPs as afflicting younger 

patients, showing low WBCs and being associated with DS. While previous 

observations of recurrent gains of +X and non-constitutional +21 was not found. 

Survival analysis is certainly an avenue of future research for this cohort as it 

grows larger, with Messinger et al highlighting some interesting trends in DS 

survival in their cohort.  
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This study is the only one to date to perform in-depth CNA analysis of the IGH-

CEBP subgroup. CNAs were most common in the CEBPB subgroup (100% 

patients with CNAs) and least common in the CEBPD subgroup (27% patients 

with CNAs). This may be related to patient age, while 4/5 DS patients in the 

CEBPD subgroup exhibited no CNAs, which may suggest that trisomy 21 is a 

potent oncogenic event in itself, requiring fewer additional genetic lesions for 

BCP-ALL development, an observation partially supported by the low number of 

additional karyotype abnormalities in DS patients in the Messinger cohort. CNA 

comparisons between the Russell IGH cohort and this cohort showed several 

similarities; the dominant deletions in both cohorts were CDKN2A/B (occurring at 

41% vs 25% respectively) and IKZF1 (40% vs 21%), while PAX5 abnormalities 

were the next most prevalent (25% vs 14%). Incidence of CNAs were consistently 

lower in the IGH-CEBP cohort. Other trends were observed, while CDKN2A/B 

deletions were evenly spread throughout the IGH-CEBP cohort, IKZF1 deletions 

were found exclusively among the CEBPB and CEBPD subgroups, providing 

further evidence that the CEBP translocations may be subdivided by both clinical 

and genetic differences.  

Tracking clonal evolution in selected IGH-CEBP patients showed heterogeneity 

between individual cases. Of the seven patients two patients, 10859 and 3455, 

displayed the IGH-CEBP translocation as the primary genetic event observed. A 

further four patients, 4774, 11739, 6889 and 20580, showed the emergence of 

the associating gene deletions prior to the IGH-CEBP translocation event. With 

CDKN2A/B being the gene deleted prior to the IGH translocation in all cases, and 

IKZF1 deletions observed both before and after translocation events. The order 

of events in patient 11682 remains unclear. Although populations with levels of 

signal patterns below the 5% cut off value suggested that associating deletions 

were the primary events, these findings require further investigation, either 

through increasing the numbers of nuclei scored by FISH or through use of 

alternative experimental platforms such as single cell qPCR to analyse individual 

cell transcript expression. Patients analysed were skewed towards the CEBPB 

subgroup as the majority of MLPA abnormalities discovered were in these 

patients. It is interesting however that the two patients showing the translocation 

as the primary event were IGH-CEBPB patients. The patients showing gene 

deletions as primary events were one IGH-CEBPD patient and one IGH-CEBPB 
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patient, although this data maybe misleading as other genetic aberrations may 

be occurring prior to the IGH-CEBP translocation. The heterogeneous nature of 

the IGH-CEBP translocations is supported by variation of expression between the 

patients. Median range of the incidence of IGH-CEBP positive clones was; 

CEBPA 73%, CEBPB 70%, CEBPD 77% and CEBPE 57%, with a range of 11-

94% suggesting that IGH-CEBP translocations are early initiating lesions in some 

patients, and a later acquisition in others. Although no trends were observed, the 

percentage of the clonal population in IGH-CEBPE patients was lower than other 

CEBP subgroups, a trend highlighted when compared to other IGH partners as 

was observed in the Russell et al study (Figure 3.21). However as only three 

patients had this translocation, it is difficult to speculate on this point further. 

 

 

Figure 3.21. Box plot showing percentage of IGH translocated cells with different partner genes with CEBPE and unknown 

partner genes as the lowest occurring. Taken from (Russell et al., 2014). 

Overall the IGH-CEBP cohort did not exhibit many recurring aberrations, those 

observed were mainly found in natural regions of high variability, were functionally 

irrelevant, or coded for pseudogenes.  

However a novel recurrent finding was focal deletions within the ABL2 gene. 

ABL2, a paralogue of ABL1, is responsible for transmembrane signaling and the 

activation of signaling pathways, which control multiple processes within the cell 

including cell proliferation and survival (Colicelli, 2010). Both genes have 
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individual and overlapping physiological roles, which have been tested in mice. 

Murine knock out of the genes showed differing consequences, with ABL1 knock 

out mice displaying thymic and splenic atrophy and reduced B and T lymphocyte 

numbers among other effects, (Schwartzberg et al., 1991; Tybulewicz et al., 

1991) while ABL2 knock outs displayed dendrite destabilisation and neuronal 

defects (Miller et al., 2004; Greuber and Pendergast, 2012). Although the 

aberrant expression of ABL1 is well established in leukaemia, the role of ABL2 is 

less well known. More information is available on solid tumors, where 

amplification of ABL2 has been observed in breast cancer (Eirew et al., 2015), 

hepatocelullar carcinomas (raw data NCI), and both amplifications and mutations 

observed in lung adenocarcinomas (Giordano, 2014). However the dominant 

route of de-regulation for ABL2 across the majority of published datasets was 

amplification, with few mutations or deletions observed (Greuber et al., 2013). 

Previous findings in leukaemia document translocations with the ETV6 gene in 

rare cases of AML and T-ALL (De Braekeleer et al., 2012), and more recently 

translocations between PAG1-ABL2, RCSD1-ABL2 and ZC3HAV1-ABL2 (in 

seven patients) in BCR-ABL1 like BCP-ALL have been reported, and result in 

cytokine-independent proliferation and activation of phosphorylated STAT5 

(Roberts et al., 2014a). In all ABL2 fusions the tyrosine kinase domain remained 

intact, suggesting a different downstream effect to the deletions observed in this 

cohort. 

Combining these findings with those from St Jude 2007 cohort, suggests that 

focal deletions of the ABL2 gene are a rare event in BCP-ALL. The common 

region of deletion in our patients covers the N-terminal cap region which functions 

in the stabilisation of the Src Homology 3 domain (SH3) and SH2 domain (Figure 

3.22 A&B). The SH domains allow the ABL2 protein to dock to phosphorylated 

tyrosine kinase residues. This function is important for signal transduction 

through the cell membrane, and activation or repression of multiple downstream 

targets. The SH3 domain has also been shown to bind the SH2 kinase linker 

which suppresses kinase activity of the protein. The N-terminal cap, also known 

as the myristoylated residue, stabilises this process by binding to the hydrophobic 

pocket within the C-lobe of the kinase domain, and maintains protein 

conformation in the inactive state (Figure 3.22 C). Loss of this cap would 

potentially lead to constitutive kinase activation due to inability of the SH2 and 
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SH3 domains to keep the kinase domain in a closed conformation (Figure 3.22 

D) (Chen et al., 2008b). Although only the 1b ABL2 isoform contains this cap, and 

therefore would be affected, while the 1a isoform is regulated by other methods. 

The importance of the N-terminal cap in control of ABL function is highlighted by 

type 3 TKIs GNF-2 and GNF-5 which target the myristoyl-binding pocket to 

maintain the closed protein conformation of the ABL1 protein (Zhang et al., 2010). 

Patients 10859 and 6889 both showed larger deletions covering exons 2-7. 

These deletions remove part of the N-terminal cap, SH2, SH3 regions and part 

of the kinase domain and would result in disruption of the gene reading frame 

due to splice sites the affected exon boundaries. This would again leave the 

kinase domain uncovered due to lack of the SH regions to keep the ABL2 protein 

in a locked conformation, leading to constitutive activation, or more likely simply 

inactivated due to the frame shift.  

Unfortunately attempts to perform a cohort wide screen of ABL2 using qPCR 

were unsuccessful. Further analysis of the incidence and functional consequence 

of ABL2 deletions would also be valuable to determine its specific role within the 

IGH-CEBP cohort. Developing the SYBR Green qPCR copy number assay would 

allow a cohort wide screen with little DNA needed. The functional consequence 

of the deletion would be an interesting avenue of research and could include 

using gene editing systems such as CRISPR to investigate the effects of ABL2 

exon 2, and exon 2-7 loss in CD34+ cells or pre-B cells, alone and in combination 

with other genetic lesions. Determining if these deletions lead to constitutive 

activation could allow a section of IGH-CEBP patients for treatment with class 1 

TKIs, should activation prove to be resulting in real functional downstream 

consequences in the leukaemia. ABL2 constitutive activation has been treated 

with the use of Disatinib in subsets of BCR-ABL1-like patients (Roberts et al., 

2014a). Potential methods of investigation would be investigating direct 

downstream targets using RNA sequencing (RNA-seq) for transcript expression 

or immunoblotting for protein expression. This would however require additional 

viable patient material. Investigation of downstream targets and regulatory 

molecules is another option. For example ABL kinases directly interact with the 

RIN1 gene at the SH2 and SH3 regions, this gene has been shown to function 

as an adaptor protein which enhances ABL catalytic activity (Cao et al., 2008). 

Co-immunoprecipitation of RIN1 with the exon 2 deleted ABL2 patients could be 
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performed to investigate protein-protein interaction. Interaction would be 

expected in wild type ABL2 and exon 2 deleted ABL2, but lost in the larger 2-7 

exon deleted samples.  

 

Figure 3.22. The location and potential consequences of the focal ABL2 deletion in IGH-CEBP patients.  

A. Normal function of the ABL2 protein, displaying the function of the SH2 and SH3 regions, maintaining the protein in the 

inactive conformation by inhibiting contact with the kinase domain, and upon phosphorylation of tyrosine residues Y245 

and Y412, the active state of the protein, with SH2 and SH3 releasing the linker chains of the protein, allowing interaction 

with the kinase domain region. B. Amino acid sequence of the deleted exons, covering part of the N-terminal cap (denoted 

by bold and underlined black text), SH3 region (denoted by bold and underlined blue text), SH2 region (denoted by bold 

and underlined orange text) and part of the kinase domain (denoted by bold and underlined yellow text). The highlighted 

sections in dark red display the region of the protein sequence lost due to exon 2 deletion, a part of the N-terminal cap. 

Highlighted sections in light red display the regions of the protein sequence lost due to exon 3-7 loss, covering the 

remaining N-terminal cap sequence, the SH2, SH3 regions and part of the Kinase domain. The same areas are displayed 

on the protein loci exhibited with alternative splicing isoforms 1a and 1b and with individual protein domains. C. Potential 

consequences of exon 2 and exon 2-7 deletions in the ABL2 protein. Exon 2 deletion resulting in partial deletion of the N-

terminal cap would result in destabilization of the SH2 and SH3 domain due to failure to the linkage protein to bind to the 

Myristate binding pocket, leaving the protein in a constitutively active conformation. Exon 2-7 deletion would result in loss 

of the N-terminal cap and SH2, SH3 and partial kinase domain loss resulting in a constitutively active and potentially 

inactivated protein due to frame shift. Figures A and C adapted from (Greuber et al., 2013). 
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To conclude; of the five IGH partner genes, CEBPB seems to be linked to the 

development of a more aggressive disease phenotype, with higher WBC and 

reduced survival. With CEBPB patients showing at least one CNA by MLPA and 

CEBPD patients showing the lowest number of CNAs (Figure 3.11). Additionally 

IKZF1 deletions appeared to be exclusive to the CEBPA and CEBPB subgroups. 

Comparing the cohort against those previously reported suggests that the IGH-

CEBP subgroup is a more aggressive subset of IGH translocations in BCP-ALL. 

The IGH-CEBP translocations appear to be both primary and secondary 

oncogenic events. The discovery of the ABL2 intragenic deletion appears to be 

unique to the IGH-CEBP cohort and may represent a new oncogenic aberration 

in BCP-ALL. 
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Chapter 4 Optimisation and Analysis of in vivo and 

in vitro Functional Work in the IGH-CEBP Cohort 

 

4.1 Introduction 

The use of disease models has become a powerful tool for the molecular 

characterisation of cancer. Disease models were first established using 

immortalised cell lines, which provided a virtually unlimited supply of 

homogeneous cells for analysis. Uses have included the identification of 

oncogenes, determining cytogenetic breakpoints (Drexler et al., 1995), testing 

novel therapies (Carroll et al., 1997), and investigating gene knock down and 

overexpression (Kennedy and Barabe, 2008). Weaknesses of cell line models 

include issues with pre-existing germline mutations interfering with induced 

genetic lesions potentially biasing data, and the discrepancy between in vitro and 

in vivo cell environments. 

The adoption of transgenic mice for disease modelling is an alternative technique 

with several advantages over in vitro cultures. Similarities between human and 

murine genetics, physiology and anatomy, coupled with the relative ease of 

murine genetic modification and low costs of up keep, have resulted in a powerful 

tool for long term modelling in a favourable environment. A prime example are 

the NOD SCID Gamma (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) (NSG) mice with 

combined genetic modifications resulting in wide scale immunodeficiency, which 

facilitates the expansion of foreign cells. NSG mice were the culmination of 

decades of research, beginning with the introduction of a mutation in the Prkdc 

gene, which was discovered to improve engraftment of primary material in mice 

due to hindrance of murine B and T cell development. However the action of NK 

cells remained a major problem in efficient expansion of foreign cells (Bosma et 

al., 1983). Non-obese diabetic (NOD) mice were bred initially as an animal model 

for type 1 diabetes. As this murine strain also exhibited low levels of NK cells, it 

was crossed with the SCID strain, resulting in further improved engraftment of 

foreign cells (Shultz et al., 1995). However, the activity of NK cells and 

components of innate immunity meant engraftment levels were still low. Finally a 

null mutation affecting the IL2Rγ chain was expressed in a murine strain, 
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inactivating receptor signalling of multiple interleukins vital for B, T and NK cell 

development and function. Crossing these mice with the previously developed 

NOD-SCID strains removed the functionality of the remaining NK cells, facilitating 

the use of mouse models in haematopoietic and leukaemic studies (Shultz et al., 

2005).  

Such mice are used to expand primary patient material, investigate clonal 

evolution of patient samples and transduced cells, perform functional studies of 

oncogenes and tumour suppressor genes, and to test therapeutic agents 

(Bernardi et al., 2002). Conditioning techniques, such as sub-lethal irradiation 

and the use of chemotherapeutics such as Busulfan (Robert-Richard et al., 2006) 

have further improved engraftment of selected cells in mice by facilitating removal 

of the competing murine bone marrow microenvironment. 

The use of primary human material in disease modelling conveys the obvious 

advantage of experimentation in a similar cellular environment to primary patient 

samples, particularly advantageous in leukaemic disease as human 

haematopoietic progenitors are relatively easy to isolate. Prime sources include 

adult bone marrow, peripheral blood (PB) and most commonly human cord blood, 

which is both abundant and enriched for haematopoietic progenitors such as 

CD34+ cells (Zhang et al., 1997). The use of these cells in combination with 

retroviral particles allows for the expression of specific genes of interest, normally 

tagged to a selection marker, enabling visualisation of the induced genetic lesion. 

These approaches allow for long term tracking of expressed retroviral constructs 

and use in cell proliferation, self-renewal and differentiation assays. This system 

has been successfully used with multiple oncogenic targets including gene 

fusions such as BCR-ABL1 (Chalandon et al., 2002), RUNX1-ETO (Mulloy et al., 

2003), KMT2A-AF9 (Barabe et al., 2007), as well as single genes, such as 

CEBPA (Mulloy et al., 2003). The linchpin for such work has been the 

development of increasingly sophisticated retroviruses which have become 

potent DNA delivery systems allowing for efficient and stable long term 

expression of target sequences.  

Retroviruses are the most popular method of gene delivery and are divided into 

simple (murine leukaemia virus (MLV)) or complex (lentiviruses) classifications. 

The difference being additional regulatory and accessory genes present in 

lentiviruses, allowing for their integration into non-dividing cells. 
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A retrovirus consists of an inner viral core containing two copies of single 

stranded (ss) RNA, 7-12kb in length which code for the gag, pol and env genes. 

This core also contains three protein enzymes, which act at different stages of 

viral replication. The reverse transcriptase enzyme transcribes the single 

stranded RNA into a DNA strand. The integrase enzyme acts to integrate the 

transcribed viral DNA into the host genome and the protease enzyme cleaves 

transcribed viral polyproteins into functional protein segments (Figure 4.1). 

During viral replication the gag gene is transcribed into a polyprotein, which is 

cleaved by the viral proteases to create the inner viral core consisting of the 

matrix protein and nucleocapsid. The env gene is transcribed into a 

glycopolyprotein (gp160), which is cleaved by host cell proteases to create 

surface envelope glycoprotein (gp120) and transmembrane protein (gp41). 

These two glycoproteins form the outer membrane of the retrovirus and facilitate 

the entry of the retroviral nucleocapsid into the host cell. The pol gene, 

transcribed as gag-pol due to a ribosomal frame shift during gag mRNA 

translocation, codes for the inner core enzymes; reverse transcriptase, integrase 

and protease (Freed, 2001; Barker and Planelles, 2003; Warnock et al., 2011) 

(Figure 4.1). 

Viral infection begins when the surface envelope g120 protein binds with the host 

cell cellular and core receptors. This binding alters the conformation of the viral 

outer envelope bringing the transmembrane envelope protein (gp41) into contact, 

and in turn fusion, with the host cell membrane leading to the delivery of the viral 

core into the host cell cytoplasm. Upon delivery to the host cell, the single 

stranded (ss) RNA is transcribed into double stranded (ds) DNA while still 

contained within the viral core (Freed, 2001; Fanales-Belasio et al., 2010). For 

simple retroviruses the viral dsDNA can only enter the host cell nucleus upon 

breakdown of the nuclear membrane during mitosis (Warnock et al., 2011). 

Lentiviruses have an additional set of genes, which allow for integration of the 

viral dsDNA outside of cell replication; a beneficial characteristic of lentiviral 

vectors.  
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Figure 4.1. The composition of a retrovirus with a representation of the gag, pol and env genes and their respective 

products.  

Integration is mediated by the integrase enzyme, which digests the 3’ termini of 

both DNA strands and cleaves the cellular DNA, allowing for ligation of the viral 

DNA. Site integration, while initially thought to be random, appears to be at least 

partially targeted with different preferences depending upon the retrovirus. 

Preferences include integration into coiled or uncoiled chromatin (Daniel and 

Smith, 2008), integration within genes (Daniel and Smith, 2008), seclusion from 

transcriptional start sites, near 5’ transcriptional units, in proximity to DNase I-

hypersensitive sites, or CpG Islands (Bolognesi, 1993; Dropulic, 2011). The level 

of complexity is increased when considering other host cell factors. Generally 

however it is accepted that lentiviral vectors produce lower oncogenic 

integrations in comparison to retroviral vectors (Bolognesi, 1993; Dropulic, 2011). 

Once integrated, viral DNA is then expressed by the natural cellular machinery , 

using viral promoters in the 5’ long terminal repeat (LTR) region (Buchschacher, 

2001), and transported into the cellular cytoplasm, where new viral protein 

components are assembled in the rough endoplasmic reticulum. These are 

assembled together with viral RNA synthesised in the nucleus at the cell 

membrane, where the virus exits the cell to begin the process again. 

A popular lineage of retroviral vectors stems from the MLV virus, which is classed 

as a group VI gamma retrovirus. Group VI viruses contain positive strand RNA 

within the viral nucleocapsid, which is reverse transcribed into DNA, ready for 
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insertion into the host genome. These retroviruses also contain a conserved RNA 

structural element, named the core encapsidation signal, which is crucial for 

genome packaging during viral assembly (D'Souza et al., 2004). 

The MSCV retroviral vector was developed from the MLV virus due to difficulties 

in expressing viral vectors in embryonic and haematopoietic stem cells. The first 

difficulty was due to repression by trans-acting regulatory factors expressed by 

the host cell upon infection. This repressive action was supplemented by host cell 

cis-factors, which effectively prevented expression of the retroviral vectors (Laker 

et al., 1998). Three important modifications were made to the MLV LTR site; a 

high affinity binding site for the SP1 transcription factor was introduced, the 

binding site for the ECF-1 regulatory transcription factor was disrupted and the 

negative regulatory element was removed, eliminating a potent repressor of LTR 

mediated transcription (Laker et al., 1998). Other modifications include the 

addition of the GFP marker (Cherry et al., 2000) and the use of the IRES, which 

allows for the expression of multiple genes from one promoter, ensuring 

expression of the selected marker in tandem with the target insert (Coffin et al., 

1997).  

To further facilitate viral integration into haematopoietic cells, specific gag/pol and 

env sequences have been isolated and optimised. The RD114 envelope is 

derived from the feline leukaemia virus, another gamma retrovirus. This envelope 

provides greater particle stability, lower host cell toxicity, and the expression of 

the neutral amino acid transporter receptor, which is widely expressed in HSCs 

(Bell et al., 2010). Gag/pol sequences have also been adapted for use, the m57 

gag/pol fragment was isolated from the MLV, giving separate functional 

expression of pol and gag proteins (Enssle et al., 1996).  

 

4.2 Aims 

Using the knowledge acquired from the IGH-CEBP patient cohort, the focus of 

this chapter was to investigate the consequences of CEBP overexpression in a 

haematopoietic setting. CEBPD, the most commonly occurring IGH-CEBP 

partner, and IK6, a commonly occurring genetic lesion within the cohort, were 

selected to be cloned into retroviral vectors and expressed in CD34+ cells. To 

investigate the effects of CEBPD overexpression on haematopoietic 
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development, using in vitro and in vivo modelling. The development and initial 

optimisation of this model was performed in collaboration with Dr. James Mulloy’s 

group at the Cincinnati Children’s Hospital, and was based on a previous study 

developed by the group which created lymphoid lineage cells (Mulloy et al., 

2003). One pilot and two additional experiments, Experiments 1 and 2, were 

performed in Cincinnati, after which the technique was brought to Newcastle to 

be repeated in our laboratory. After several optimisation steps, transduction of 

CD34+ cells was performed successfully and Experiments 3 and 4 were 

performed.  

The aims of this section of the project were as follows: 

 To clone CEBPD and IK6 cDNA into appropriate retroviral vectors. 

 To create retroviral particles and successfully overexpress CEBPD in 

CD34+ cells. 

 To create retroviral particles and successfully express IK6 in CD34+ cells. 

 To express CEBPD and IK6 retroviral vectors together in CD34+ cells. 

 To optimise the CD34+ cell transduction protocol within our laboratory in 

Newcastle. 

 To expand transduced cells in vitro and in vivo. 

 To track lineage progression of transduced cells and monitor for the 

emergence of a CD19+ lymphoid lineage. 

 To sort transduced cells by lineage for comparative gene expression array 

analysis. 
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4.3 Method Development and Results 

4.3.1 Generating Retroviral Particles  

To express target genes, retroviral vectors were first created by inserting the 

desired target cDNA sequence into the relevant MSCV-IRES plasmids (Section 

2.3.6). 

 

4.3.2 Confirming CEBPD cDNA presence and sequence 

A full coding cDNA transcript for the CEBPD gene was identified (NCBI genome 

browser) (Supplementary Sequence 7.1) and purchased (Fermentas, Germany). 

The construct was received as a bacterial stab, which was expanded using 

standard bacterial culture techniques (Section 2.3.2.2.2). The CEBPD construct 

was extracted from bacterial pellets (Section 2.3.2.2.2) and was excised from the 

pCR4-TOPO plasmid (Supplementary Figure 7.2) by performing a restriction 

digest using the EcoRI site (Section 2.3.4.2). The digested DNA was run on a 1% 

agar gel to confirm the presence of the 879bp CEBPD insert. Three pCR4-TOPO-

CEBPD colonies were grown and extracted, DNA from colony 1 was discarded 

as the sample displayed multiple bands indicating nonspecific DNA digestion 

(Figure 4.2). CEBPD colonies 2 and 3 exhibited bands between the 750bp and 

1000bp DNA ladder indicating the presence of the CEBPD transcript (Figure 4.2). 

Undigested DNA from CEBPD colonies 2 and 3 was sent for sequencing (DBS 

Genomics, England), using the -21M13 and M13 primers (Supplementary Table 

7.25), a common primer sequence cloned into the pCR4-TOPO construct, to 

confirm the presence of the CEBPD sequence. Both colonies were found to 

contain the full CEBPD cDNA sequence and were suitable for downstream 

applications.  
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Figure 4.2. Excised pCR4-TOPO-CEBPD colony DNA run on 1% agarose gel, with uncut DNA control.  

Colony 1 shows multiple DNA bands indicating unspecific DNA digestion by the EcoRI restriction enzyme. Colonies 2 and 

3 show two specific bands, the ~6000bp band indicating the pCR4-TOPO construct and the ~1000bp band indicating the 

CEBPD sequence.  

 

To isolate the CEBPD sequence for downstream applications, pCR4-TOPO-

CEBPD colonies 2 and 3 were re-digested with the EcoRI restriction enzyme and 

samples were run on a 1% agarose gel. Bands at ~1000bp were excised and 

DNA was extracted using a gel extraction kit (Section 2.3.4.3) to collect the 

excised CEBPD cDNA transcript. The transcript was stored at -20ᵒC for future 

use with selected retroviral vectors. 

 

4.3.2.1 Retroviral Vectors MIGR1, MIVR1 and MiT isolation and preparation. 

Retroviral vectors used in this study were kindly donated by Dr. James Mulloy 

and Dr. Eric Clambey. All vectors were variations of the MSCV retroviral vector. 

MIGR1 retroviral vector contained the EGFP marker (MSCV-IRES-EGFP) 

(Supplementary Sequence 7.2), the MIVR1 vector contained the venus marker 

(MSCV-IRES-Venus) (Supplementary Sequence 7.3) and the MiT vector 

contained the Thy1 marker (MSCV-IRES-Thy1) (Section 2.3.6).  
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Retroviral vector plasmids, MIGR1, MIVR1 and MiT, were harvested from 

Whatman paper (Section 2.3.4.1) and inserted into Stbl3 E.coli (Section 2.3.4.6) 

to be expanded for glycerol and DNA stocks. Plasmids were grown using 

standard bacterial culture methods with the chloramphenicol antibiotic (Section 

2.3.2). Three individual colonies were selected per plasmid, grown up and DNA 

extracted (Section 2.3.2.2). PvuII restriction digests were performed to confirm 

the presence of the vectors in individual colonies (Section2.3.4.2). The PvuII 

enzyme was selected as it creates three bands for the vectors at sizes ~3700bp, 

~2360bp and ~430bp. The PvuII digest worked successfully on all colonies 

(Figure 4.3). 

Four different bands were observed; ~375bp, ~1750bp, ~2500bp, and ~4500bp 

(Figure 4.3). MiT and MIGR1 vectors expressed the expected fragment sizes at 

~375bp, ~2500bp, and ~4500bp (Figure 4.3). Bands for the MIVR1 vector were 

smaller than expected, with fragments at ~1750bp and no fragment at ~4500bp 

visible. However bands were consistent across all colonies, discounting the 

possibility of a random loss of genetic material. All colonies were sent for 

sequencing (DBS genomics, England), confirming vector sequences. Colonies 

were expanded for DNA and glycerol stocks.  

While initially all three vectors were considered for use, ultimately only two were 

needed. The MIGR1 and MiT vectors were selected for further downstream 

applications, MIGR1, due to ease of visualisation of the EGFP protein, and MiT, 

due to the variability of the Thy1 marker, which could be biotin labelled with a 

variety of fluorochromes and also used for magnetic bead selection. 
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Figure 4.3. Restriction digest of retroviral vector MIGR1, MIVR1 and MiT colonies using the PvuII enzyme, with MIVR1 

C1 uncut control run on a 1% gel.  

All colonies show consistent DNA bands. Retroviral plasmids for the MiT and MIGR1 vectors show expected bands at 

~375bp, ~2500bp, and ~4500bp. MIVR1 plasmid shows presence of a smaller band ~1750bp and no fragment at 

~4500bp. 

 

4.3.2.2 Cloning of the CEBPD sequence into the MIGR1 retroviral vector 

With the CEBPD transcript isolated and the retroviral vectors extracted, the next 

stage focused on cloning the CEBPD transcript into the MIGR1 retroviral 

construct.  

The MIGR1 vector was digested using the EcoRI restriction enzyme, creating a 

staggered cut end to the double stranded DNA, leaving an overhang of 

nucleotides. This overhang readily adheres to a complementary overhang to 

allow for more efficient integration of the selected DNA insert. To prevent re-

annealing of the cut plasmid, the sample was treated with TSAP (Section 2.3.4.4), 

and run on a 1% agarose gel to confirm digestion of the plasmid. The uncut coiled 

MIGR1 plasmid was carried through the gel at a greater speed than the linearized 
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plasmid, resulting in different positions of the two samples in the agarose gel 

(Figure 4.4). 

 

 

Figure 4.4. EcoRI digest of the MIGR1 retroviral vector with an uncut MIGR1 control, run on a 1% agarose gel.  

While the DNA ran on the gel is identical, there is a clear disparity in band position, due to linearised plasmid traveling 

through the agarose gel at a slower pace in comparison to the coiled uncut plasmid. The CEBPD cDNA construct was 

added to the vector and ligated. The resulting DNA construct was expanded in Stbl3 E.coli. Custom primers were designed 

to span from within the CEBPD insert across the ligation point into the MIGR1 construct, with successful integrations 

creating PCR products ~250bp in size. Cloned colonies were analysed on a 1% agar gel, two colonies displayed PCR 

bands for CEBPD-MIGR1 clones confirmed via sequencing. 
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Figure 4.5. Cloning of the CEBPD cDNA insert into the MIGR1 vector and subsequent confirmation of the product.  

A. Strategy for identifying CEBPD cDNA integration into the MIGR1 vector using PCR primers. B. PCR products of cloned 

MIGR1-CEBPD colonies run on a 1% agarose gel. Image was created from two separate gel images. Colonies 2 and 3 

showing PCR products at ~250bp for primers spanning from the MIGR1 sequence to the CEBPD sequence, indicating 

successful integration of the CEBPD cDNA construct. C. A chromatogram view of CEBPD cDNA sequence present in 

MIGR1-CEBPD colony 2, with the blue segment and letters indicating the presence of the CEBPD cDNA and the black 

segment and letters representing the MIGR1 vector sequence.    

 

4.3.2.3 Preparation of MiT-IK6 retroviral vector. 

The IKZF1 dominant negative isoform, IK6, was selected as the associating 

abnormality to be expressed in combination with CEBPD in CD34+ cells. 

The IK6 transcript was kindly donated by Dr. Eric Clambey both individually and 

cloned into the MiT vector. All DNA was received on Whatman filter paper. The 

plasmids were harvested (Section 2.3.4.1), transformed in Stbl3 E.coli (Section 

2.3.4.6) and expanded for glycerol stocks and DNA. Five colonies of the MiT-IK6 

construct were extracted to confirm the presence of the IK6 insert. The 869bp IK6 

cDNA (Supplementary Sequence 7.4) was excised from the MiT by performing a 

double digest of the construct using BglII and NotI restriction enzymes (Section 

2.3.4.2). The digested DNA was analysed on a 1% gel, where the IK6 insert was 

observed at ~900kb, with a second band produced at ~6.1kb for the MiT vector 
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(Figure 4.6). Colonies were expanded and stored as glycerol stocks and DNA 

extracted for future use. 

 

Figure 4.6. Restriction digest of MiT-IK6 construct colonies, run on a 1% gel. All colonies indicate the presence of the IK6 

cDNA sequence at ~1000bp, with the MiT vector visible at ~6000 bp. 

 

4.3.2.4 Creation of Retroviral Particles 

Empty vector controls for MIGR1 and MiT were added to the prepared MIGR1-

CEBPD and MiT-IK6 retroviral constructs (Section 2.3.6), ready for retroviral 

particle production. The M57 gag/pol plasmid and the RD114 envelope plasmid 

(Supplementary Sequence 4.1), kindly supplied by Dr. James Mulloy, were used 

with the selected constructs to create functioning retroviral particles in 293T cells 

(Section 2.3.6.1). Media was harvested over three days (Section 2.3.6.2) and 

used immediately for the transduction of CD34+ cells or stored at -80ᵒC for future 

use.  

Retroviral function was tested by harvesting protein lysate from 293T cells used 

in the creation of the respective retroviral particles (Section 2.3.2.4). The 

presence of the CEBPD protein and IK6 protein isoform were determined using 

the Western Blot technique (Section 2.3.11.2). Empty vectors for MIGR1 and MiT 

and non-transduced 293T cells served as controls (Figure 4.7). 293T cells used 
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in the production of retroviral particles showed clear expression of the respective 

protein. CEBPD, at ~28kDa, was highly expressed in comparison to both controls 

(Figure 4.7 A). Only IK6 293T cells showed expression of the IK6 isoform present 

at ~37kDa (Figure 4.7 B). 

 

Figure 4.7. Western immunoblots of 293T cells used in the production of retroviral vectors.  

A. Western immunoblot showing CEBPD expression in 293T cells used for CEBPD retroviral production, 293T cells used 

for MIGR1 empty vector retroviral production and parental  293T cells, with α-Tubulin loading control. B. Western 

immunoblot showing IKZF1 antibody expression in 293T cells used for IK6 retroviral production, 293T cells used for MiT 

empty vector retroviral production and wild type 293T cells, with α-Tubulin loading control. 

 

4.3.3 Transduction of CD34+ Cells in Cincinnati and Newcastle 

Having successfully prepared the MSCV-IRES plasmids, the next stage of the 

protocol was to create the relevant retroviral particles and to transduce 

haematopoietic progenitors for modelling of CEBPD overexpression. To perform 

this task, I worked for six months with Dr. James Mulloy’s group at the 

Cincinnati Children’s Hospital with the aim of achieving the following targets: 

 To isolate CD34+ cells from cord blood.  

 To transduce the isolated CD34+ cells with retroviral particles expressing 

CEBPD and IK6. 

 To inject the transduced CD34+ cells into mice to create xenograft (in 

vivo) models. 

 To culture transduced CD34+ cells in vitro with and without a stromal co-

culture.  

 To use flow cytometry to analyse cell surface marker expression to track 

lineage differentiation. 

 To identify CEBPD expressing CD19+ and CD33+ cells arising in vivo or 

in vitro and to isolate them by FACS sorting. 
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Having achieved the above aims and acquired the skills to perform CD34+ cell 

isolation and transduction, I returned to our laboratory in Newcastle to repeat 

the transduction experiments, which I had performed in Cincinnati. However, 

fresh cords were not available in Newcastle, resulting in the purchase of 

isolated CD34+ cells (Allcells, England). The aims for work performed in 

Newcastle were: 

 To repeat the transduction of CD34+ cells with CEBPD in Newcastle. 

 To repeat the aims and experiments set in Cincinnati. 

 To perform molecular analysis on flow sorted cells with the aim of 

identifying the function of CEBPD in lineage differentiation in 

haematopoietic cells. 

While the above aims were met and two further experiments were performed in 

vivo and in vitro (Experiment 3 and Experiment 4), there were several 

challenges which had to be overcome before CD34+ transduction could be 

performed successfully in Newcastle. Several early attempts to transduce 

CD34+ cells failed and optimisation steps were performed prior to transduction. 

The issues which arose and subsequent optimisation steps performed are 

detailed below. 

 

4.3.4 Optimisation of CD34+ Cell Retroviral Transduction Protocol in 

Newcastle 

The protocol selected for the transduction of CD34+ cells with the prepared 

retroviral vectors was based upon a protocol from the Mulloy laboratory (Mulloy 

et al., 2003). This protocol, using a combination of SCF, FLT-3L and IL-7 

cytokines co-cultured with MS-5 stromal cells, had been developed to culture 

RUNX1-ETO transduced CD34+ cells for an extended period of time, which 

resulted in an expansion of both lymphoid and myeloid cell lineages.  

When initially performing this protocol in Cincinnati, CD34+ cells were co-cultured 

with both MS-5 and HS-5 stromal cell lines, to investigate efficacy of the co-

cultures in expansion of lymphoid cells. The MS-5 cell line was selected for future 

use as results from both stromal co-cultures showed little variation (data not 

shown) and MS-5 stroma had been used by the Mulloy group.  
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Several difficulties were experienced during the recreation of the transduction 

experiments in Newcastle, those difficulties are discussed below, after which all 

experimental data from Cincinnati and Newcastle is presented together.  

 

4.3.4.1 Protocol Optimisation: Retroviral Solution pH  

The first challenge encountered during the attempted transduction of CD34+ cells 

in Newcastle was optimisation of the pH of the calcium phosphate solution. A fine 

precipitate should be created to improve uptake by recipient 293T cells. After 

combination, cultures are viewed using a light microscope to search for crystalline 

formations in the medium, indicating the formation of a calcium-phosphate-DNA 

co-precipitate. This co-precipitate facilitates binding to the cell surface, resulting 

in improved endocytic integration. For successful calcium phosphate co-

precipitation, the pH value of the final solution must be between pH 7.0 – 7.2, 

optimally at pH 7.1. Solution pH had to be readjusted after filtration.  

 

4.3.4.2 Protocol Optimisation: Foetal Bovine Serum Batch Tests 

After optimisation of pH, the second challenge encountered in Newcastle was 

failure of CD34+ cells to exhibit transduction after culturing with viral supernatant. 

The CD34+ cells showed low GFP expression for both CEBPD (5%) and MIGR1 

(7%) (Figure 4.8 A). To determine the source of the failure, 293T cells were used 

to produce new retroviral particles, then analysed by FACS to determine the GFP 

levels in the cells. After confirming GFP expression in CEBPD (71%) and MIGR1 

(88%) 293T cells (Figure 4.8 B), other variables were tested.  



 177   
 

 

Figure 4.8. FACS analysis of GFP expression measured by FITC expression.  

A. CD34+ cells from the first transduction experiment in Newcastle, showing low GFP expression in CEBPD and MIGR1 

infected cells. B. 293T cells used in a subsequent culture to produce CEBPD and MIGR1 retroviral particles show strong 

expression of GFP, indicating retroviral particles were produced, but did not integrate into CD34+ cells. 

 

CD34+ cells were cultured for 24 and 48 hours in KTF 100ng/ml cytokine medium, 

to determine whether CD34+ cells cultured from frozen aliquots required a longer 

incubation period in the cytokine rich environment than fresh cells. No 

proliferation was observed (data not shown). Cells were re-plated in standard 

KTF36 10ng/ml cytokine medium and monitored over 12 days (Figure 4.9 A). As 

no growth was seen, different sources of FBS were used to determine whether 

endotoxin levels were responsible for failure of cell expansion. High performance 

FBS, with endotoxin level ≤ 5 EU/ml, was ordered (Gibco, USA) and 8.6 x 104 

cells were re-plated and grown in the medium containing the new FBS. CD34+ 
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cells were plated out and counted over 23 days, at which point cell growth was 

observed (Figure 4.9 B).  

 

 

Figure 4.9. Absolute cell counts of CD34+ cells depicting cellular proliferation.  

A .CD34+ cells grown in culture medium with standard FBS with SCF, TPO, Flt3-L, IL-3 and IL-6 at 10ng/ml over 12 days. 

B. CD34+ cells grown in high quality FBS with SCF, TPO, Flt3-L, IL-3 and IL-6 at 10ng/ml over 23 days, showing improved 

CD34+ cell proliferation. 
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High quality FBS (FBS1) and two  standard FBS sources, non-USA origin FBS 

batch F7524-024M3398 from Sigma (FBS2), and USA origin FBS batch F2442-

13E120 from Sigma (FBS 3), were analysed to determine if only high quality, low 

endotoxin FBS was suitable for expansion of CD34+ cells. Heat inactivation of 

FBS was also tested (Section 2.3.3.5), as this was the standard protocol in the 

Mulloy lab. Cells were plated out at 4.3 x 105 cells per well and monitored over 

20 days. Growth was observed in all batches of FBS. Heat inactivation appeared 

to improve CD34+ proliferation in all three FBS batches (Figure 4.10). Heat 

inactivated FBS2 exhibited high growth, and showed the greatest variation 

between heat inactivated and non-heat inactivated FBS (Figure 4.10 B). FBS3 

exhibited high growth for both heat inactivated and non-heat inactivated FBS 

(Figure 4.10 C&D). A peak in cell proliferation was observed in all cultures nearing 

the end of the experiment. This peak declined in FBS1 and FBS3 (Figure 4.10 

A&C), but continued in FBS2 heat inactivated cultures (Figure 4.10 B), suggesting 

that the cells had reached the end of their proliferative capacity in cultures FBS1 

and FBS3.  

Using these assays, it was determined that the batch of FBS initially used for 

CD34+ culture was unsuitable and that F3 was the best choice for long term 

culture of the cells, due to the highest mean cell counts (Figure 4.10 E). 
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Figure 4.10. Absolute cell counts of CD34+ cells examining the effects of three FBS batches and the effects of heat 

inactivation (HI) on proliferation of cells grown with SCF, TPO, Flt3-L, IL-3 and IL-6 cytokines at 10ng/ml over 20 days.  

A .FBS batch 1. B. FBS batch 2. C. FBS batch 3. D. Comparison of all FBS batches on cell proliferation. E. Box plot of 

cell counts across all FBS variants, showing distribution and mean values, FBS3 and FBS3 HI show the highest average 

cell counts in comparison to other FBS batches. 

 

4.3.5 Experimental set up of Retroviral Transduction Experiments  

Over the course of this study, four transduction experiments were performed. 

Experiments 1 and 2 were designed to investigate the effects of CEBPD alone 

and in combination with IK6 in human CD34+ cells. However, focus was shifted 

to CEBPD overexpression only for experiments 3 and 4, as IK6 showed little 

effect on transduced cells (Table 4.1) (Sections 4.3.5.3). All transduced cells were 

divided for in vitro and in vivo studies (Figure 4.11). Cells allocated to in vitro 

studies were divided between liquid and stromal cultures. All stromal cultures 

were performed using MS-5 cells (Figure 4.11). Liquid and stromal culture cell 
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numbers varied between individual experiments (Table 4.1). Xenograft injections 

were performed intrafemoraly on Busulfan conditioned (Section 2.3.7) female 

NSG mice using 75,000 transduced cells. Experimental variation between studies 

is displayed in Table 4.1. 

 

Location 
Experimen
t No. 

CD34+ 
Cell 
Sourc
e 

Transduced 
CD34+ Cell 
Populations 

Experiments 
in vitro / in 
vivo 

Mice per 
Populatio
n 

Cells in 
vitro 
Culture 

Tissue 
Culture 
Setting 

Cincinnati 1 Fresh 

CEBPD Both 3 

40,000 

6 well 
tissue 
culture 
plates 

IK6 in vitro 0 

CEBPD + 
IK6 

in vitro 
0 

MIGR1 + 
MiT 

Both 
3 

Cincinnati 2 Fresh 

CEBPD + 
MiT 

Both 

5 

40,000 

6 well 
tissue 
culture 
plates 

IK6 + 
MIGR1 5 

CEBPD + 
IK6 5 

MIGR1 + 
MiT 5 

Newcastl
e 

3 Frozen 

CEBPD 

Both 

3 

40,000 

6 well 
tissue 
culture 
plates 

MIGR1 
2 

Newcastl
e 

4 Frozen 

CEBPD 

Both 

3 
100,000
* 

10 cm 
tissue 
culture 
dish 

MIGR1 
3 

Table 4.1. Table displaying variations in experimental set up of all transduction studies.  

Experiments 1 and 2 were carried out in Cincinnati, using freshly isolated CD34+ cells for transduction experiments, 

Experiments 3 and 4 replicated the Cincinnati protocols in Newcastle with frozen CD34+ cell aliquots. For Experiment 1, 

CD34+ cells were divided into four subsets for transduction with the following retroviral particle combinations; CEBPD 

alone, IK6 alone, CEBPD+IK6 double transduced, MIGR1+MiT double transduced, and a fraction of non-transduced 

CD34+ cells. For Experiment 2 transduced populations were altered with empty vector controls added to the targeted 

retroviral populations, giving the following populations; CEBPD+MiT, IK6+MIGR1, CEBPD+IK6, and MIGR1+MiT. 

Experiments 3 and 4 only focused on CEBPD and MIGR1 retroviral vectors. . All experiments were performed in vivo and 

in vitro, with the exception of IK6 and CEBPD + IK6 cells from Experiment 1 due to low NSG mouse numbers available. 

All in vitro experiments were conducted in 6 well tissue culture plates with the exception of Experiment 4 which was 

performed in 10cm tissue culture treated dishes to increase the number of viable transduced cells for downstream 

applications.* Experiment 4 stromal culture was seeded with 100,000 cells, liquid culture was seeded with 40,000 cells. 

 

Cell numbers were assessed twice weekly and maintained at 5 x 105 cells per ml. 

Cell surface marker expression was analysed once each week using flow 

cytometry to determine the effects of retroviral vectors on lineage differentiation. 
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From this point forward, the MIGR1-CEBPD construct will be referred to as 

CEBPD, the MiT-IK6 construct as IK6, the MIGR1 empty vector control as 

MIGR1, and the MiT empty vector control as MiT.  

 

 

Figure 4.11. Transduction of CD34+ Cells, Experiment 1.  

A. CD34+ cells are stimulated in a SCF, TPO, FLT3L 100ng/ml cocktail for 16 hours to stimulate growth. B. CD34+ cells 

were divided into 5 fractions and transduced with the created retroviral particles and retroviral controls over three days, 

some cells were left untransduced as controls. C. Cell fractions were divided for three experiments, in vitro suspension 

culture in standard suspension culture with SCF, TPO, FLT3L, IL-3 and IL-6 at 10ng/ml, in vitro stromal culture conditions 

with SCF, FLT3L and IL-7 at 10ng/ml, and for xenograft experiments. 

 

4.3.5.1 Cellular Transduction 

Transduction efficiency of retroviral vectors was analysed using flow cytometry 

(Section 2.3.8.3). GFP expression represented cells transduced with CEBPD and 

MIGR1 vectors, and Thy1 represented cells transduced with IK6 and MiT vectors. 

Expression of the Thy1 marker was visualised by conjugation with the PE 
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fluorochrome (Section 2.3.8.4). GFP expression in CEBPD transduced cells was 

interpreted as expression of the CEBPD protein, Thy1 expression in IK6 

transduced cells was interpreted as expression of the IK6 protein isoform. Marker 

expression was analysed using the geometric mean, which is a more appropriate 

method of analysis for data points such as percentages gauged from human 

observation. The geometric mean is calculated by taking the same data points as 

the arithmetic mean, but instead of adding the points together and dividing them 

by the number of data points, the geometric mean multiplies the data points 

together and divides them by the nth root of the product, with n being the number 

of data points. 

 

4.3.5.2 GFP expression rapidly decreases in CEBPD transduced cells but not in MIGR1 

control cells suggesting that CEBPD expression is hindering proliferation 

Transduction rates of CEBPD and MIGR1 were high for the majority of 

experiments, with an average of 56% and 47%, respectively. One notable 

exception was MIGR1 cells in Experiment 4 (Figure 4.12 G&H). GFP expression 

displayed a similar trend across three of the four experiments. Experiments 1, 2, 

and 3, all showed a more rapid loss of GFP expression in cells transduced with 

the CEBPD retrovirus in comparison to MIGR1 empty vector controls (Figure 4.12 

A-F). Additional expression of IK6 or MiT with CEBPD did not show any additional 

trends, with GFP only affected by CEBPD expression (Figure 4.12 A-D). 

Experiment 4 displayed differing results to previous findings, with MIGR1 GFP 

expression being lower than that of CEBPD transduced cells. This was due to a 

very low starting transduction level of 1%. However GFP expression in these cells 

did increase over the course of the experiment, while Experiment 4 CEBPD cell 

behaviour was identical to the previous three experiments, starting with a high 

GFP level which was lost over the course of the experiment. GFP expression was 

generally higher in stromal cultures (geometric mean (GM) = 16%) in comparison 

to liquid cultures (GM = 8%). These findings suggest that CEBPD expressing 

cells show decreased proliferative capabilities, while the expression of IK6 

exerted no additional biological effects 
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Figure 4.12. Transduction levels of GFP in CD34+ cells across four experiments under two different in vitro culture 

conditions.  

A. Experiment 1: GFP percentages in CEBPD, CEBPD+IK6 and MIGR1+MiT CD34+ transduced cells across 9 weeks in 

suspension culture. B. Experiment 1: GFP percentages in CEBPD, CEBPD+IK6 and MIGR1+MiT CD34+ transduced cells 

across 9 weeks on MS-5 stromal co-culture. C. Experiment 2: GFP percentages in CEBPD+MiT, CEBPD+IK6, 

IK6+MIGR1 and MIGR1+MiT CD34+ transduced cells across 9 weeks in suspension culture. D. Experiment 2: GFP 

percentages in CEBPD+MiT, CEBPD+IK6, IK6+MIGR1 and MIGR1+MiT CD34+ transduced cells across 9 weeks on MS-

5 stromal co-culture. E. Experiment 3: GFP percentages in CEBPD and MIGR1 CD34+ transduced cells across 7 weeks 

in suspension culture. F. Experiment 3: GFP percentages in CEBPD and MIGR1 CD34+ transduced cells across 7 weeks 

on MS-5 Stroma co-culture. G. Experiment 4: GFP percentages in CEBPD and MIGR1 CD34+ transduced cells across 5 

weeks in suspension culture. H. Experiment 4: GFP percentages in CEBPD and MIGR1 CD34+ transduced cells across 

5 weeks on MS-5 Stroma co-culture. 
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4.3.5.3 IK6 Expressing CD34+ cell populations did not show a clonal advantage alone 

or in combination with CEBPD 

Presenting Experiment 2 as an example, expression of IK6 did not influence cell 

populations. Initial integration rates of cells transduced with the Thy1 vector were 

all above 50% (Figure 4.13). As with GFP expression, Thy1 expression was found 

to be higher in stromal cultures (GM = 40%) than liquid cultures (GM = 18%). 

Also, expression in suspension cultures showed a more severe decline (GM = 

71% - 6%) in comparison to stromal cultures (GM = 71% - 21%) over 6 weeks 

(Supplementary Figure 7.3). As with GFP alone and Thy1 alone GFP+Thy1 

double positive populations were higher in stromal cultures, no other significant 

trends were observed. 

 

Figure 4.13 Transduction levels of Thy1 transduced and Thy1+GFP transduced in CD34+ cells in Experiment 2 in two 

culture conditions. 

 

 

4.3.5.4 CEBPD expression shows consistent growth inhibition  

Cell counts were performed weekly to track the proliferative effects of the 

retroviral particles. Cumulative counts are displayed for both suspension and 



 186   
 

stromal cultures across both experiments (Figure 4.14). In both Experiment 1 and 

2, little difference was observed in proliferation rates of CD34+ cells in 

suspension, with the exception of a decline in IK6 transduced cells in Experiment 

1 (Figure 4.14 A), a trend not replicated in Experiment 2 (Figure 4.14 C). Growth 

on stroma showed greater variation. In Experiment 1, proliferation rates clearly 

divided the transduced populations with the CEBPD cells showing least growth; 

a trend replicated in Experiment 2 (Figure 4.14B&D). Higher proliferation rates 

were observed in suspension cultures than stromal cultures, which was expected 

due to CD34+ cell migration under the MS-5 stroma.  

CEBPD proliferation also declined in Experiments 3 and 4, with MIGR1 

populations showing higher growth across all experiments and culture conditions 

(Figure 4.14E-H), although a less pronounced difference was observed in 

Experiment 4 (Figure 4.14G&H). Expression of CEBPD was shown to 

consistently decrease cell proliferation, with the effects being more pronounced 

in stromal cultures. 
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Figure 4.14. Cumulative growth of CD34+ cells across two experiments in two different in vitro culture settings.  

A. Experiment 1: growth of transduced CD34+ cells in suspension culture. B. Experiment 1: growth of transduced CD34+ 

cells on MS-5 stromal co-culture. C. Experiment 2: growth of transduced CD34+ cells in suspension culture. D. Experiment 

2: growth of transduced CD34+ cells on MS-5 stromal co-culture. E. Experiment 3: growth of transduced CD34+ cells in 

suspension culture. F. Experiment 3: growth of transduced CD34+ cells on MS-5 stromal co-culture. G. Experiment 4: 

growth of transduced CD34+ cells in suspension culture. H. Experiment 4: growth of transduced CD34+ cells on MS-5 

stromal co-culture. 
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4.3.6 Cell Surface Analysis 

Cell surface markers were chosen to investigate the consequence of retroviral 

expression on lineage commitment. The markers consisted of the early 

haematopoiesis marker CD34, myeloid markers CD11b, CD13, CD14, CD16 and 

CD33, and lymphoid markers CD10 and CD19.  

 

4.3.6.1  Initial CD34 expression is high declining over time, indicating loss of 

haematopoietic progenitors 

Two main trends were observed in CD34 marker expression, varying between 

experiments but not culture conditions. One trend was observed in Experiment 1 

(Figure 4.15A&B), with alternating waves of high and low expression for the 

duration of the experiment. The alternating high / low expression was more 

uniform in the suspension culture (Figure 4.15 A), with all transduced cells 

showing similar levels of expression. Experiment 1 stromal culture displayed 

more variation among the cell populations with the IK6 cells showing a peak of 

expression at week 5, while the CEBPD population began to decline in week 4 

(Figure 4.15B). A different trend was observed in Experiments 2-4, where a high 

starting expression dropped rapidly over the duration of all experiments in both 

suspension and stromal cultures (Figure 4.15 C-H), with little heterogeneity 

across populations. Overall CD34 expression showed more variation between 

Experiment 1 and Experiments 2-4 suggesting one reason for differential 

expression of the CD34 marker could be due to cord blood heterogeneity. 
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Figure 4.15. Cell surface expression of CD34 in Experiment 1 transduced populations CEBPD + IK6, CEBPD, IK6, MIGR1 

+ MiT and Experiment 2 transduced populations CEBPD + IK6, CEBPD + MiT, IK6 + MIGR1 and MIGR1 + MiT, and 

Experiment 3 and 4 transduced populations CEBPD and MIGR1.  

A. Experiment 1 CD34 marker expression over 9 weeks in suspension culture. B. Experiment 1 CD34 marker expression 

over 8 weeks in MS-5 stromal co-culture. C. Experiment 2 CD34 marker expression over 6 weeks in suspension culture. 

Experiment 2 CD34 marker expression over 6 weeks in MS-5 stromal co-culture. E. Experiment 3 CD34 marker 

expression over 7 weeks in suspension culture. F. Experiment 3 CD34 marker expression over 7 weeks in MS-5 stromal 

co-culture. G. Experiment 4 CD34 marker expression over 5 weeks in suspension culture. H. Experiment 4 CD34 marker 

expression over 5 weeks in MS-5 stromal co-culture. 
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4.3.6.2 CD33 expression is consistently high throughout all experiments, indicating a 

strong myeloid bias in culture 

Expression patterns of CD33 markers displayed variation between all 

experiments and cultures, particularly liquid and stromal cultures. Although 

overall expression was high, it was not surprising, due to the presence of myeloid 

biasing cytokines in the culture medium (Section 2.2.4.3, Section 2.3.6). (Figure 

4.16). Experiment 1 showed low expression at the start. It should be noted that 

the first two weeks of CD33 analysis in Experiment 1 was analysed using the 

Pacific Blue fluorochrome, which had been shown to have lower expression by 

the Mulloy lab. As a result, the CD33 marker was changed to the APC 

fluorochrome at week 3, resulting in higher expression, which remained 

unchanged. As a result Experiment 1 weeks 1 and 2 in both liquid and stromal 

cultures were omitted from this work.  

Expression of CD33 was consistently high across all liquid culture experiments, 

a decline in CD33 expression in stromal cultures was expected as the culture 

medium of these experiments was designed for lymphoid expansion. In addition 

to cytokines, contact with the stromal feeder layer and additional secretion of the 

IL-7 cytokine into the medium by stromal cells would have provided additional 

cues for lymphoid differentiation, lowering the level of the myeloid cell population.   
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Figure 4.16. Cell surface expression of CD33 in Experiment 1 transduced populations CEBPD + IK6, CEBPD, IK6, MIGR1 

+ MiT and Experiment 2 transduced populations CEBPD + IK6, CEBPD + MiT, IK6 + MIGR1 and MIGR1 + MiT.  

A. Experiment 1 CD33 marker expression between weeks 3- 9 in suspension culture. Weeks 1-2 were omitted due to 

differing FACS fluorophores giving greatly contrasting marker expression. B. Experiment 1 CD33 marker expression 

between weeks 3-8 in MS-5 stromal co-culture. Weeks 1-2 were omitted due to differing FACS fluorophores giving greatly 

contrasting marker expression. C. Experiment 2 CD33 marker expression over 6 weeks in suspension culture. Experiment 

2 CD33 marker expression over 6 weeks in MS-5 stromal co-culture. E. Experiment 3 CD33 marker expression over 7 

weeks in suspension culture. F. Experiment 3 CD33 marker expression over 7 weeks in MS-5 stromal co-culture. G. 

Experiment 4 CD33 marker expression over 5 weeks in suspension culture. H. Experiment 4 CD33 marker expression 

over 5 weeks in MS-5 stromal co-culture. 
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4.3.6.3 CD19 expression was observed in CEBPD expressing cells 

Expression of CD19 was generally low across all experiments (Figure 4.17). 

However, suspension cultures displayed very low CD19 expression, apart from 

the empty vector controls, MIGR1+MiT, which showed small peaks at several 

time points, determined to be nonspecific binding of the CD19 antibody (Figure 

4.17A&C). Stromal cultures showed higher levels of CD19 expression, with 

Experiments 1, 2 and 4, all showing increasing levels up to the final week of the 

experiment (Figure 4.17B, D&H). In Experiment 1, stromal cultures displayed 

small increases of CD19 from week 6 to week 8, with one large increase of the 

marker at weeks 4-6 observed in the CEBPD population (Figure 4.17B). This 

population will be discussed further below. 

As expected, overall expression of CD19 was low in the myeloid biasing liquid 

culture conditions and slightly higher in the stromal cultures, where both IL-7 

secreted by the stromal cells and supplemented IL-7 were present. 
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Figure 4.17. Cell surface expression of CD19 in Experiment 1 transduced populations CEBPD + IK6, CEBPD, IK6, MIGR1 

+ MiT and Experiment 2 transduced populations CEBPD + IK6, CEBPD + MiT, IK6 + MIGR1 and MIGR1 + MiT.  

A. Experiment 1 CD19 marker expression over 9 weeks in suspension culture. B. Experiment 1 CD19 marker expression 

over 8 weeks in MS-5 stromal culture. C. Experiment 2 CD19 marker expression over 6 weeks in suspension culture. 

Experiment 2 CD19 marker expression over 6 weeks in MS-5 stromal culture. E. Experiment 3 CD19 marker expression 

over 7 weeks in suspension culture. F. Experiment 3 CD19 marker expression over 7 weeks in MS-5 stromal co-culture. 

G. Experiment 4 CD19 marker expression over 5 weeks in suspension culture. H. Experiment 4 CD19 marker expression 

over 5 weeks in MS-5 stromal co-culture. 
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In Experiment 1 stromal culture, expression of CD19 between weeks 3-6 (Figure 

4.18) was further analysed, as these cells uniquely showed co-expression of 

GFP. A clear CD19 positive population developed at week 3 (1.2%), increasing 

by week 4 (2.1%) and 5 (15.4%), and decreasing at week 6 (7.3%) (Figure 

4.18A). Expression of the CD19 marker against GFP displayed separate 

populations with expression of either GFP or CD19 at week 3. By week 4, a small 

but distinct population appeared which was positive for both CD19 and GFP 

(0.6%). This population was significantly increased by week 5 (10.7%), which 

began to decrease at week 6 (3.6%). By week 7, the GFP positive population had 

disappeared (Figure 4.18B). This population was unique as it was the only in vitro 

GFP, CD19 double positive population observed in this study. The short life span 

of the transduced population was in keeping with previously reported 

physiological effects of CEBPD expression due to cell cycle arrest (Gery et al., 

2005). 

 

Figure 4.18. FACS plots of Experiment 1 CEBPD transduced CD34+ cells over a four week period. A. Expression of CD19 

marker against side scatter in CEBPD transduced CD34+ cells. B. Expression of GFP marker against CD19 marker in 

CEBPD transduced cells.  

 

4.3.6.4 Other flow cytometry markers 

Myeloid markers CD11b, CD13, CD14, and CD16, and lymphoid marker CD10 

were also tracked during the course of Experiments 1 and 2, however no trends 

were observed and these data are not reported in detail. 
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4.4 Retroviral Transduction of CD34+ Cells in vivo Assays 

Xenograft experiments were set up alongside the in vitro studies described above 

(Table 4.2). After injection with transduced CD34+ cells, tail bleeds and bone 

marrow aspirates were performed on recipient mice every two weeks to assess 

engraftment status.  

Experiment 
No. 

Transduced CD34+ Cell 
Populations 

No. of Mice per 
Population 

Experiment 
Ended 

1 

CEBPD 3 

Week 20 
IK6 0 

CEBPD + IK6 0 

MIGR1 + MiT 3 

2 

CEBPD + MiT 5 

Week 20 
IK6 + MIGR1 5 

CEBPD + IK6 5 

MIGR1 + MiT 5 

3 
CEBPD 3 Week 22 (n=1) 

MIGR1 2 NA 

4 
CEBPD 3 

NA 
MIGR1 3 

Table 4.2. Xenograft experiments performed for this study.  

Experiment 1 was ended at week 20 after bone marrow aspirates showed complete loss of the GFP+CD19+ population, 

data discussed below.  Experiment 2 was ended at week 20 where all mice were sacrificed to harvest GFP+CD19+ cell 

populations observed via flow cytometry. Experiment 3 is continuing, one MIGR1 mouse died as a result of Busulfan 

toxicity in the first week of the experiment. One mouse, containing CEBPD CD34+ transduced cells, was sacrificed and 

cells harvested, after displaying weight loss as a result of engraftment. All other animals in the experiment remain alive 

and have shown no engraftment via flow cytometry. Experiment 4 is continuing, no mice have shown engraftment to date.  

 

4.4.1 Experiment 1 

4.4.1.1 All CEBPD and some MIGR1 mice showed human CD34+ cell engraftment  

Cells were taken at weeks 8 (PB), 15 (PB) and 18 (bone marrow, BM) and 

analysed using flow cytometry. Little/no engraftment was observed in week 8 

(data not shown). Flow cytometry at week 15 displayed both murine CD45 

(mCD45) and human CD45 (hCD45) positive populations in all CEBPD mice, and 

one MIGR1 mouse (Figure 4.19A). Following this observation, mice were 

maintained for a further three weeks prior to culling to allow these successfully 

engrafted populations to expand. Mice were sacrificed at week 20 of Experiment 

1, spleens and BM were collected (Section 2.3.5.4) and tested for hCD45 
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expression. Engraftment was observed primarily in bone marrow (Figure 4.19 C), 

with some expression in splenic tissue (Figure 4.19B).  

Human CD45+ expression decreased in two CEBPD mice from week 15 to week 

18. Two mice, one CEBPD and one MIGR1, exhibited an increase of hCD45+ 

cells between weeks 15 and 18. The remaining MIRG1 mouse displayed a small 

number of hCD45+ cells in the bone marrow, suggesting that human cells were 

beginning to engraft (Figure 4.19). Overall, transduced CEBPD CD34+ cells 

appeared to engraft more efficiently than the empty vector MIGR1 controls.  

 

 

Figure 4.19. FACS plots of NSG mice intrafemorally injected with CEBPD transduced CD34+ cells (CEBPD NN, CEBPD 

RN and CEBPD BN) and mice intrafemorally injected with MIGR1 transduced CD34+ cells (MIGR1 NN, MIGR1 LN, and 

MIGR1 RN).  

A. FACS plot analysing hCD45 expression against mCD45 expression of NSG mice bone marrow aspirates taken at week 

15 post intrafemoral injection. FACS plot analysing hCD45 expression against mCD45 expression of NSG mice spleens 

and bone marrow 18 weeks post intrafemoral injection. 

 

4.4.1.2 Transduced cells disappeared between weeks 15 and 18. 

At week 15, small amounts of nonspecific GFP expression was observed in all 

mice, with the exception of CEBPD mouse RN, which displayed two distinct GFP+ 



 197   
 

populations with different intensities (Figure 4.20A). However, at week 18 all 

GFP+ cells had disappeared (Figure 4.20B).  

 

Figure 4.20. FACS plots of NSG mice intrafemorally injected with CEBPD transduced CD34+ cells (CEBPD NN, CEBPD 

RN and CEBPD BN) and mice intrafemorally injected with MIGR1 transduced CD34+ cells (MIGR1 NN, MIGR1 LN, and 

MIGR1 RN).  

A. FACS plot analysing GFP expression against hCD45 expression of NSG mice bone marrow aspirates taken at week 

15 post intrafemoral injection. FACS plot analysing GFP expression against hCD45 expression of NSG mice spleens and 

bone marrow 18 weeks post intrafemoral injection. 

 

4.4.1.3 CD19 expression increased between weeks 15 and 18. 

Mice with CEBPD transduced cells displayed varying levels of CD19 expression 

at week 15, mouse NN exhibited high CD19 expression (40%), while the 

remaining two mice both displayed low levels of CD19 positivity (5.5% and 6.8%) 

(Figure 4.21A). MIGR1 mice NN and LN showed some nonspecific expression of 

the marker, while mouse RN exhibited a clear CD19+ population (1.6%) (Figure 

4.21A). At week 18, expression of this marker was more pronounced in all murine 

bone marrow and to a lesser extent in spleens, with CEBPD mice all displaying 

expression levels at ~60%, as did MIGR1 mouse RN.  
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Figure 4.21. FACS plots of NSG mice intrafemorally injected with CEBPD transduced CD34+ cells (CEBPD NN, CEBPD 

RN and CEBPD BN) and mice intrafemorally injected with MIGR1 transduced CD34+ cells (MIGR1 NN, MIGR1 LN, and 

MIGR1 RN).  

A. FACS plot analysing CD19 expression against hCD45 expression of NSG mice bone marrow aspirates taken at week 

15 post intrafemoral injection. FACS plot analysing CD19 expression against hCD45 expression of NSG mice spleens 

and bone marrow 18 weeks post intrafemoral injection. 

 

Cell selection for Experiment 1 was not performed as all CD19+ cells disappeared 

between weeks 15 and 18.  

 

4.4.2 Experiment 2 

4.4.2.1 Transduced cells were found primarily in MIGR1+MiT mice 

Mice displayed good engraftment of human cells with expression of hCD45 

observed in all mice (Figure 4.22). CEBPD+IK6 mice showed the highest average 

hCD45 expression (GM = 25.7%), followed by MIGR1 + IK6 (GM = 20.1%), 

CEBPD+MiT (GM = 19.7%) and MIGR1+MiT (GM = 15.5%).  

GFP expression was low in most of the mice at week 18, despite high expression 

of hCD45 (Figure 4.22). Eight mice showed GFP expression, including five 

MIGR1+MiT empty vector control, two CEBPD+MiT and one CEBPD+IK6 mice.  

Cells from mice 1N, 2N, 3N, 1R and 1B were selected for cell sorting (Figure 
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4.22) (Section 4.5.1). The results suggested that, as observed for the in vitro 

culture and Experiment 1 murine data, GFP expression was short lived.  

 

4.4.2.2 Cells selected for sorting showed high CD19 expression and low CD13&CD33 

expression 

DAPI negative, hCD45 positive and GFP positive cells from the five mice 

mentioned above were examined for CD19 and CD13+CD33 expression, to 

determine the lineage of the cells expressing the CEBPD and MIGR1 vectors. No 

lineage difference was observed between CEBPD and MIGR1 transduced cells. 

All mice expressed high levels of CD19 and low levels of CD13+CD33. 

CD13+CD33 expression was higher in mouse 1B (27%), however cell numbers 

were low for all FACS plots (Figure 4.23). 
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Figure 4.22. FACS plot GFP vs hCD45 from NSG mice intrafemorally injected with transduced CD34+ cell populations 

(CEBPD+MiT, MIGR1+MiT, IK6+MIGR1 and CEBPD+IK6), week 18. Plots highlighted by red were selected for viable cell 

sorting two weeks later, mouse ID in red.  

 



 201   
 

 

Figure 4.23. FACS plot of CD19 vs CD33 from BM cells gated for DAPI negativity, hCD45 positivity, and GFP positivity, 

plots from mice selected at Cincinnati for viable cell sorting, week 18. All mice display similar expression patterns of 

markers, with strong expression of CD19 and very little CD33 positivity observed.  

 

4.5 In vivo and in vitro Cell Sorting  

4.5.1 Experiment 2: in vivo Cell Sorting  

FACS analysis and viable cell sorting was kindly performed by Mark Wunderlich 

in Cincinnati Children’s Hospital, as I had returned to Newcastle prior to murine 

engraftment. NSG mice were sacrificed at week 18, bone marrow was collected 

(Section 4.4.2.2) and cells were sorted using the BD FACSAria II machine. The 

first stage involved gating of appropriately sized cells, using forward and side cell 

scatter to exclude cell doublets and debris (Figure 4.24 A). These selected cells 

were gated for GFP positivity and Thy1 negativity, isolating only human 

transduced cells (Figure 4.24 B). Finally, the GFP+ Thy1- cells were separated 

into two fractions, CD19+ cells and CD33+ cells, which were resuspended in RLT 

buffer and stored at -20ᵒC (Figure 4.22 C). Final CD19+ and CD33+ fractions 

comprised a small percentage of the total sorted population (Figure 4.24D). This 
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process was performed on five mice, 1 CEBPD (mouse 1R), 1 CEBPD + IK6 

(mouse 1B), and 3 MIGR1 (mice 1N, 2N and 3N), which were sufficiently well 

engrafted for a successful cell sort. Sorted cell numbers showed variation 

between mice (Table 4.3). Unfortunately the RNA harvested from the sorted cells 

was not of a sufficient quantity for downstream applications. 

 

Figure 4.24. Cell sorting protocol performed on NSG bone marrow samples with fluorochromes used for the process, 

image from sample 1B. Cell sorting images provided by Mark Wunderlich. 

A. First selection gate isolating cells by side scatter and forward scatter. B. Second selection gate isolating cells for GFP 

positivity and Thy1 negativity. Third selection gates isolating cells into two populations, CD19 positivity and CD33 

positivity. D. Table displaying all populations in the FACS process. Cells were sorted using the BD FACSAriaII machine.   
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Mouse 

Transduced 

Cells Lineage Cell Count 

1R CEBPD CD19 25,000 

1R CEBPD CD33 19,000 

1B CEBPD + IK6 CD19 1,100,000 

1B CEBPD + IK6 CD33 360,000 

1N MIGR1 CD19 2,100,000 

1N MIGR1 CD33 350,000 

2N MIGR1 CD19 160,000 

2N MIGR1 CD33 200,000 

3N MIGR1 CD19 2,000,000 

3N MIGR1 CD33 530,000 

Table 4.3. Flow sorted cells harvested from NSG mouse bone marrow with mouse identification, transduced cells, lineage 

of sorted cells and final cell count after sort. 

 

4.5.2 Experiment 3 and 4: in vitro Cell Sorting  

The original aim of this study was to create and isolate CD19+ GFP+ cells. This 

population was observed in Experiment 1 in vitro, but declined before cells could 

be sorted (Section 4.3.6.3). The same phenomenon was also observed in 

Experiment 1 mice, with the CD19 population disappearing between weeks 15 

and 18 (Figure 4.21). The CD19+ GFP+ population was not observed in 

Experiment 2 in vitro cultures. However these cultures showed strong 

engraftment and thus were FACS sorted (see below). When the work was 

repeated in Newcastle, the criteria for sorting of CD19+ GFP+ cells was changed 

as no population expressing the CD19 marker appeared. As a result, only GFP+ 

CD33+ cells were isolated for extraction. The first selection gate was by size, 

using forward scatter (FSC) vs side scatter (SSC) (Figure 4.25 A), followed by 

hCD45 marker expression (Figure 4.25B), with positive cells being gated by GFP 

expression (Figure 4.25C). GFP negative cells were collected for RNA and 

protein extraction, GFP positive cells were taken forward for the final selection 

step, which analysed CD19 and CD33 expression. As there were no CD19 + cells 

observed, the cells were isolated into CD33 + and CD33 - populations (Figure 

4.25D). 

A small side population was observed in the hCD45+ selection gate (P6) (Figure 

4.25 B), these cells were selected and also sorted by GFP, CD33 and CD19 

expression and combined with the existing CD33+ and CD19+ populations. Cells 
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isolated from Experiment 4 were sorted using the same selection criteria (Table 

4.5). Unfortunately isolation of RNA from the sorted cells of both experiment was 

not of a high enough quality and quantity for downstream analysis. 

 

 

Figure 4.25. Cell sorting of CEBPD transduced CD34+ cells cultured on MS-5 stroma at week 8.  

A. First selection gate by FSC and SSC (P1). B. Second selection gate collecting hCD45+ cells (P2). C. Third and fourth 

selection gates, GFP+ cells selected for further sorting (P4) and GFP- cells sorted and stored for RNA and protein 

extraction (P7). Final selection gates separating cells by CD19 and CD33 expression, as there was no CD19+ cells 

populations were divided into CD33+ and CD33- populations for RNA and protein extraction. E. Modified table displaying 

selection gates of the flow sort and FACS markers and respective fluorochromes. 

  

Transduced 
Cells 

Lineage Cell Count 

CEBPD GFP- 5973 

CEBPD GFP+CD33+ 8720 

CEBPD GFP+ CD33- 3058 

MIGR1 GFP- 2908 

MIGR1 GFP+CD33+ 6292 

MIGR1 GFP+ CD33- 2033 
Table 4.4. Experiment 3 viable cell sort from CD34+ cells transduced with CEBPD retroviral vector. 
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Transduced 

Cells 

Lineage Cell 

Count 

CEBPD GFP- 11,313 

CEBPD GFP+CD33+ 39,301 

CEBPD GFP+ CD33- 5615 

MIGR1 GFP- 374 

MIGR1 GFP+CD33+ 21,756 

MIGR1 GFP+ CD33- 2379 

Table 4.5. Experiment 4 viable cell sort from CD34+ cells transduced with CEBPD retroviral vector. 

 

4.6 Mouse Xenografts – Skull Sectioning and Immunohistochemistry  

An aim of this study was the expansion of viable patient cells in NSG mice, to 

increase material for study. Initially, three viable patient samples were injected 

into selected NSG females (Table 4.6). Unfortunately upon sacrificing of mice, no 

engraftment was observed, with the exception of low levels of hCD45 in mouse 

20580 (IGH-CEBPD) BN. Splenic cells from this mouse were serially transplanted 

into a further three NSG mice (Table 4.6). The skulls of the xenograft mice were 

sent to Dr. Halsey, a collaborator in Glasgow University, investigating the 

metastatic potential of ALL subgroups.  

Patient ID Source Mouse ID Cell Numbers Injected Date Injected Date Ended Material 
19734 Primograft RN per mouse: ~1.8 x 10

5 13/01/2012 11/10/2012 Spleen, BM 
19734 Primograft LN per mouse: ~1.8 x 10

5 13/01/2012 18/08/2012 BM 
19734 Primograft BN per mouse: ~1.8 x 10

5 13/01/2012 13/09/2012 Spleen, BM, R.Kidney, L.Kidney 
19794 Primograft LN per mouse: ~8.7 x 10

5 13/01/2012 01/02/2012 Spleen, BM 
19794 Primograft RN per mouse: ~8.7 x 10

5 13/01/2012 22/02/2012 Spleen, BM 

19794 Primograft LN per mouse: ~8.7 x 10
5 13/01/2012 30/10/2012 

Spleen, BM, R.Kidney, L.Kidney, 
Liver 

20580 Primograft BN* per mouse: ~7 x 10
5 13/01/2012 15/11/2012 

Spleen, BM, R.Kidney, L.Kidney, 
Liver 

20580 Primograft 2LN per mouse: ~7 x 10
5 13/01/2012 12/10/2012 

Spleen, BM, R.Kidney, L.Kidney, 
Liver 

20580 Primograft NN per mouse: ~7 x 10
5 13/01/2012 28/11/2012 Spleen, BM 

20580 Xenograft RN per mouse: ~5x10
5 28/11/2012 08/02/2013 Spleen, BM 

20580 Xenograft LN per mouse: ~5x10
5 28/11/2012 18/02/2013 Spleen, BM 

20580 Xenograft BN per mouse: ~5x10
5 28/11/2012 18/02/2013 Spleen, BM 

Table 4.6. Patient cells selected for engraftment into NSG mice. Samples denoted as primografts were taken from viable 

cells. Samples denoted as xenograft were selected from mouse BN* which showed potential engraftment in FACS 

analysis (data not shown). All primary patient samples were from IGH-CEBPD translocated patients. 
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Work in Glasgow included paraffin embedding, sectioning and 

immunohistochemistry staining of received skulls. Invasion of the mouse calveria 

was observed in 3 of the 4 skulls sent. All infiltrations were in mice engrafted with 

the same viable sample, originating from patient 20580. Skulls tested negative 

for human CD19 and human CD45. However, a clearly invasive cellular 

population was observed (Table 4.7) (Figure 4.26), suggesting that some of the 

viable IGH-CEBP patient cells may have crossed the blood brain barrier in three 

of the sectioned skulls.  

Patient ID Source Mouse ID Calvarial BM Meninges/CNS 
20580 Xenograft RN Heavy Engraftment Rim of meningeal infiltration grade 3-4 
20580 Xenograft LN Heavy Engraftment Rim of meningeal infiltration grade 3-4 
20580 Xenograft BN Heavy Engraftment Very heavy meningeal infiltration grade 5 
Table 4.7. IGH-CEBPD xenograft murine skulls sectioned and analysed in Glasgow University.  

 

 



 207   
 

Figure 4.26. Mouse 20580 LN skull sections. Mouse was engrafted with viable cells from IGH-CEBPD patient 20580. 

Engraftment of cells in meningeal vein showing negativity for human CD19. Image created by Dr. Halsey. 

 

The failure of initial primary samples to engraft was a hindrance to this project. 

However, during my time in Cincinnati, I was able to observe and use the 

chemotherapeutic agent, Busulfan, in conditioning of NSG mice (Section 2.3.7.2). 

After returning from Cincinnati, this technique was used in Newcastle in three 

NSG mice, when a new viable IGH-CEBP sample was received (patient 23395). 

The viable sample was injected after conditioning with Busulfan, currently all 

three mice have been sacrificed, having suffered from splenomegaly and 

anaemia. Spleens and BM have been collected and are being prepared for FACS 

analysis to confirm engraftment. Busulfan conditioning could be considered for 

future use with viable patient samples, to decrease the incidence of engraftment 

failure, which is more common among viable samples from low and intermediate 

risk ALL patients.    

 

4.7 Discussion 

The aim of this section of the project was to overexpress CEBPD within an early 

haematopoietic setting, both alone and in combination with IK6, to expand the 

transduced cells in vivo and in vitro and to observe the effects of the chosen 

retroviral vectors on proliferation and lineage commitment. The hope was to 

generate a CD19+ lineage among CEBPD transduced cells, to confirm that 

overexpression of this transcriptional regulator is an oncogenic event which can 

drive lymphoid differentiation.  

The process of transducing CD34+ cells was successfully achieved in Cincinnati 

and, after several optimisation steps, was successfully recapitulated in 

Newcastle. Some of the issues encountered in Newcastle warrant further 

discussion. 

The FBS batch used for the culture of CD34+ cells proved to be crucial for cell 

expansion. Initial attempts to expand CD34+ cells in Newcastle failed. One cause 

of failure may have been the presence of high levels of endotoxin in a particular 

FBS batch. Endotoxin is a complex lipopolysaccharide, which is a main 

component of the outer membrane of most gram-negative bacteria. Levels of 
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endotoxin had been found to vary greatly between FBS batches in the 1980s, 

going from 0.006 ng/ml to 800ng/ml (Case-Gould, 1984). Although improved 

handling protocols and filtration have since decreased overall endotoxin levels, it 

was discovered that concentrations as low as 1ng/ml could inhibit colony 

formation of murine erythroid cells (Case-Gould, 1984).  

Failure of the initial CD34+ cells to expand may have been due to naturally 

varying endotoxin levels between FBS batches, as ultimately it was discovered 

that both high performance and standard FBS could be used to culture CD34+ 

cells (Figure 4.10). The origin of FBS was shown not to be important as both non 

U.S. (FBS 2) and U.S. (FBS 3) FBS batches resulted in cell growth. Future 

culturing of CD34+ cells should only be performed with tested FBS batches. 

Analysis also identified heat inactivation of FBS as a positive factor in CD34+ cell 

expansion. Originally FBS heat inactivation was performed to inactivate 

complement and remove mycoplasma. The use of the technique is debated as 

improved filtration of FBS has led to the suggestion that heat inactivation is not 

only unnecessary, but deleterious to cell expansion. This hypothesis was tested, 

with heat inactivation at 56°C proving to negatively impact on most cell lines used 

(Scientific, 1996). It was hypothesised that the FBS batches used, was negatively 

influencing CD34+ cell proliferation, as heat inactivation at 56°C for 30 mins was 

shown to improve CD34+ cell proliferation with all FBS batches (Figure 4.10). 

The handling of CD34+ cells prior to transduction was a potential factor. In 

Cincinnati, cells were isolated from fresh cord blood, often less than 24 hours old. 

In Newcastle frozen cells were used (Allcells, England), which may have 

impacted on cell proliferation and decreased viability of CD34+ transduced cells 

at later weeks of the in vitro experiments.  

Ultimately production of retroviral vectors for the transduction of CD34+ cells was 

successfully performed after optimisation of the protocol from the Mulloy group.  

CEBPD was selected for transduction as it was the most commonly occurring 

CEBP gene within the IGH-CEBP cohort and it had been possible to inject two 

viable IGH-CEBPD positive patient samples into NSG mice for in vivo expansion. 

The original plan had been to compare the gene expression profiles of CEBPD 

transduced CD34+ cells with expanded viable patient samples. However, both 

viable samples failed to engraft.  
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CEBPD expression is documented to occur in late stage myeloid differentiation, 

functioning in granulocyte (Wang and Friedman, 2002) and macrophage 

maturation (Gery et al., 2005). Expression of CEBPD in early haematopoiesis has 

not been reported, with CEBPA being the only CEBP gene expressed at the HSC 

stage (Zhang et al., 2004) (Figure 1.10). CEBPA positively regulates and is 

positively regulated by PU.1, a master regulator responsible for myeloid and 

lymphoid differentiation over that of GATA-1 driven erythroid commitment 

(Arinobu et al., 2007). 

 

Figure 4.27. Interplay of CEBPA with PU.1 in haematopoiesis.  

GATA-1 and PU.1 negatively regulate each other, controlling lineage commitment between GATA-1 positive erythroid 

cells or PU.1 positive myeloid and lymphoid cells. PU.1 expression increases with terminal differentiation of myeloid cells. 

Monocytes show the highest expression of PU.1. CEBPA interacts with PU.1 at multiple stages, including committing 

multipotent progenitors to the myeloid pathway, upregulating PU.1 as part of monocyte commitment, and also acting 

independently of PU.1 for granulocyte commitment. In lymphoid commitment the gene down regulates and is down 

regulated by PAX5 in B lymphoid cells, and Notch in T lymphoid cells. Green indicates expression of PU.1 in cells, with 

the darker green representing higher expression of PU.1. Red indicates expression of GATA1. Adapted from (Arinobu et 

al., 2007) and (Friedman, 2007). 
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The act of overexpressing CEBPD during early haematopoietic differentiation 

poses interesting questions due to the co-dependent nature of the CEBP 

proteins. CEBP ratios would be altered, and as a consequence so would CEBP 

function. Overexpressed CEBPD would likely form heterodimers with other 

available CEBP proteins, altering function and either knocking out the wildtype 

action of CEBPA homodimers, or functioning interchangeably, as has been 

shown with CEBPA and CEBPB (Jones et al., 2002; Chiu et al., 2004). The result 

of such heterodimerisation would be; either myeloid commitment, suggesting that 

CEBPD would function in the same role as CEBPA, supporting previously 

documented examples of CEBP gene functions as paralogues (Jones et al., 

2002): or lymphoid commitment, as in IGH-CEBPD BCP-ALL patients, 

suggesting that CEBPD is either inactivating myeloid commitment function of 

CEBPA by inhibiting its interaction with PU.1 (Figure 4.27), or by encouraging 

lymphoid commitment through a different mechanism. The PU.1 inactivation 

theory is supported by previous reports of CEBPA interaction with the gene. 

CEBPA and PU.1 upregulation is reciprocal, without upregulation by CEBPA, 

PU.1 would be expressed but not up-regulated (Figure 4.27) (Reddy et al., 2002). 

This is important as high levels of exogenous PU.1 in PU.1 negative 

haematopoietic progenitors resulted in myeloid differentiation, while low levels of 

PU.1 resulted in B-cell differentiation, (DeKoter and Singh, 2000). Thus, low 

levels of PU.1 would theoretically be sufficient to commit haematopoietic 

progenitors away from the erythroid lineage, while not providing sufficient levels 

of PU.1 to commit to myeloid differentiation, leading to lymphoid commitment, 

suggesting a lineage biasing mechanism in this leukaemia type. Inactivation of 

CEBPA by CEBPD may also be supported by CEBPA down regulation of the B-

lymphoid differentiation gene, PAX5. Should this block be removed, lymphoid 

differentiation would occur more readily. There is a fallacy in this argument 

because if this were so then IGH-CEBPA patients would present with a myeloid 

leukaemia. As such it is more likely that IGH-CEBP patient lineage commitment 

is not directly influenced by the CEBP genes, potentially due to prior lineage 

commitment caused by an associating genetic lesion, such as a CDKN2A/B, 

PAX5, IKZF1, and ETV6 deletions. In the clonal evolution FISH studies that were 

performed, IGH-CEBP translocations were observed to arise both prior to, and 

after associating CNAs.  
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For this study it was decided that screening by flow cytometry would be the most 

efficient method for analysis of retroviral expression in CD34+ cells. Marker, GFP 

and Thy1 expression showed variation between individual experiments. However 

some interesting trends were identified; 

Over expression of CEBPD in CD34+ cells hinders cell proliferation, as observed 

in stromal cultures in Cincinnati, and stromal and suspension cultures in 

Newcastle (Figure 4.12). Rapid loss of GFP expression was exhibited in CEBPD 

transduced cells, both alone and in combination with IK6 (Section 4.3.5.3). The 

same observation was made in xenograft Experiment 1, where GFP positive cells 

were lost between weeks 15 and 18 (Figure 4.17). The failure of these cells to 

expand supports the suggestions that CEBPD negatively influences cellular 

proliferation, and while the transduced population in these cultures was short 

lived, they had a detrimental effect on the population overall. As CEBPD has not 

been previously overexpressed at the HSC stage, discussion as to how this effect 

is exerted must include observations made for other CEBP partners. If it can be 

assumed that CEBPD controls cell cycle in a haematopoietic setting in a similar 

or identical manner to the other CEBP genes (Johansen et al., 2001; Gutsch et 

al., 2011), or in the same manner as it has been shown in other cellular 

environments (O'Rourke et al., 1999; Pawar et al., 2010), then mechanistically 

this outcome can be explained by CEBPD mediated down regulation of cyclin 

complexes, MYC, E2F1 and upregulation of CDKN1B (Figure 1.11) (Heavey et 

al., 2003), which resulted in cell cycle arrest at the G0/G1 phase. Within an early 

haematopoietic setting, the findings relating to the effects of CEBPA on HSCs 

have been mixed. In a murine haematopoietic setting, CEBPA deletion resulted 

in a pronounced expansion of adult HSCs, as CEBPA was shown to function as 

a proliferative regulator of foetal to adult HSC differentiation, through down 

regulation of MYCN (Ye et al., 2013). These findings have been disputed in 

another study, showing loss of CEBPA leading to loss of self-renewal potential 

and exhaustion of HSCs (Hasemann et al., 2014). 

Ultimately these findings may support either theory behind CEBPA function in 

HSCs, as CEBPD may be exerting an influence by inactivating CEBPA through 

protein heterodimerisation, therefore removing its function in HSCs, supporting 

the theory that CEBPA is important in HSC renewal. Alternatively, CEBPD may 

be functioning in tandem with CEBPA and exerting cell cycle control through 
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MYCN downregulation. To answer this question, the function of the CEBPA-

CEBPD heterodimer would need to be ascertained:  by tandem overexpression 

of both genes in target host cells, the presence of the heterodimer could be 

determined through Western Immunoblotting; cells could be sorted using FACS 

and gene expression or RNA expression studies performed.  

Over expression of CEBPD alone and in tandem with IK6 was not sufficiently 

powerful to create an oncogenic phenotype in CD34+ cells. These double positive 

CD34+ cells displayed no improvement in proliferative or clonal potential.  

Expression of IK6 declined at a slower rate than the empty vector controls in 

experiments, suggesting that although IK6 was not boosting proliferation, it was 

not hindering cell division, especially when compared to CEBPD expression. 

However this trend was only observed once, while IK6 transduced cells did not 

expire as quickly as their CEBPD counterparts, no proliferative advantage was 

observed in vitro or in vivo. This negative observation was disappointing as IKZF1 

has been shown to inhibit cell cycle progression by: up regulation of CDKN1B 

kinase inhibitor, arresting cell line growth at the G0/G1 stage (Kathrein et al., 

2005), down regulation of MYC and cyclin D3 expression, and up-regulation of 

CDKN1B in pre-B cells (Ma et al., 2010). Similar work published during the course 

of this study investigated the interplay of the BCR-ABL1 fusion protein with IK6 in 

a CD34+ cell setting, with IK6  only cells found to have no proliferative advantage 

over controls (Theocharides et al., 2015), supporting the findings in this study. 

More recent work on disease modelling in BCP-ALL has shown that more than 

two hits are required for oncogenesis, with pre-B cells expressing BCR-ABL1, 

CDKN2A (ARF) and IK6 being used to model ARF loss (Churchman et al., 2015).   

Transduced cells also failed to achieve consistent lymphoid transformation, as 

indicated by CD19 expression and GFP positivity. Although this effect was 

observed in CEBPD overexpressed CD34+ cells in one of four experiments 

(Figure 4.17B), the results were not successfully recapitulated and the observed 

population was minor and temporary (Figure 4.17). However, a similar 

observation was made in xenograft samples, where loss of CD19 expressing cells 

was observed between weeks 15 and 18. There are several potential reasons 

why an isolated experiment exhibited CD19+GFP+ cells. The first is retroviral 

integration. The MSCV retroviral vector was developed from the MLV virus. 

Studies into the integration sites of this virus and MLV-derived vectors found the 



 213   
 

preferential integration sites were; 20% in the 5’ end of transcription units, 17% 

in the vicinity of CpG islands (Felice et al., 2009), 11% in the vicinity of DNase I-

hypersensitive sites (Lewinski et al., 2006) with the remaining integration sites 

being random (Mitchell et al., 2004). Integration into the 5’ region of a gene, such 

as RUNX1, IKZF1, EBF1, E2A or PAX5, could push commitment into the B-

lymphoid lineage  

Natural genetic variation between haematopoietic cell donors may be another 

cause. CD34 marker expression from Experiment 1 showed a large degree of 

deviation in both suspension and stroma cultures, with fluctuating patterns of high 

and low expression suggesting activation of CD34+ cells from a quiescent to a 

proliferative state several times over. All other experiments exhibited a pattern 

that was initially high CD34 expression followed by a steady decline over the 

course of the experiment, as the haematopoietic cells differentiated.  

Additionally the integration of the viral vector in cells at different differentiation 

stages may play a large part in development of downstream clones. Integration 

of the CEBPD retrovirus into a pro-B cell of origin could be a strong push for 

myeloid differentiation, while integration into more mature pre-B cell or later, could 

fail to achieve the same differentiation due to V(D)J rearrangement resulting in 

commitment of the cell to the lymphoid lineage, resulting in a different oncogenic 

effect. Thus, transducing more mature B-cells may have resulted in more CD19+ 

CEBPD expressing cells. 

CD19 expression was virtually non-existent in suspension cultures. This result 

was expected due to a lack of lymphoid lineage supporting cytokines. Low CD19 

expression was observed in all transduced populations cultured on stroma, with 

a slight increase in marker expression observed in three of the experiments, over 

the course of each experiment. However only the Experiment 1 CEBPD 

population displayed a CD19+ GFP+ population, while CD33+ GFP+ populations 

were present in all experiments. 

Currently in vivo experiments in Newcastle have yielded one mouse with potential 

engraftment of CEBPD transduced CD34+ cells, displaying a large spleen and 

anaemia. However this mouse was sacrificed only recently and no experimental 

data are yet available. Thus the Cincinnati in vivo experiments only can be 

discussed. Xenografts set up in Experiment 1 included three CEBPD mice and 
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three MIGR1 mice. All three CEBPD mice engrafted in comparison to one MIGR1 

mouse.  

Cell sorting of xenografts from Experiment 2 was successful, with both CD19 and 

CD33 positive cells isolated from five mice (Table 4.3). Overall numbers were low 

however, resulting in low levels of RNA and no available protein for downstream 

applications. Cells were also isolated from in vitro cultures in Experiments 3 and 

4, for gene array analysis, but the resulting RNA was not of sufficient quality 

and/or quantity.  

Several challenges were highlighted during this study, the greatest being low 

output of GFP+ cells at the end of the modelling process, with CEBPD transduced 

cells having a brief and limited proliferative life span. There was insufficient RNA 

and protein due to the low number of cells, which resulted in downstream 

applications, such as qPCR expression analysis, immunoblotting for protein 

expression, and cell cycle analysis, yielding poor quality data. This aspect was 

particularly challenging in stromal cultures, in which cells migrated under the MS-

5 stromal layer, making it difficult to track cell numbers accurately and to harvest 

cells.  

Other issues emerged from attempts to reproduce the same experiments in 

Newcastle. Stromal cultures did not show the same viability as those in 

Cincinnati, for which there were several potential reasons: in Cincinnati, high 

levels of CD34+ cells were observed to migrate and detach the stromal feeder 

layer. This problem was avoided in Newcastle by maintaining cell density below 

5 x105/L. However the stromal feeder layer did not appear to support expansion 

of transduced cells as efficiently in Newcastle as Cincinnati, with slower growth 

of transduced cells observed. MS-5 cells cultured in Cincinnati and Newcastle 

were from different stocks, although both were less than 10 passages. Potentially 

identical sources of MS-5 cells should have been used, with an aliquot of cells 

sent from Cincinnati to Newcastle, if only to standardise experimental settings. 

CD34+ cell source was also different between Cincinnati and Newcastle, with 

CD34+ cells in Cincinnati being isolated from fresh cord blood, and undergoing 

transduction within several days of extraction. In Newcastle, frozen cells were 

purchased and thawed for use. This may have impacted on later cell proliferation 
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and the decreased viability of CD34+ transduced cells in the later weeks of in 

vitro experiments.  

Analysis of transduced cell populations was performed by FACS, however the 

methods varied between sites, with different fluorochromes, machines, lasers, 

and optimisation used. In Cincinnati three fluorochrome tubes were set up 

(Supplementary Table 7.2) with differing fluorochromes to test all lineage 

markers. Prior to every FACS run, machine voltage and compensation was set in 

real time. This adjustment was necessary, as the voltage of the BDS Canto II 

machine varied day to day, due to heavy use, making it impossible to use one 

standardised set of compensation and voltage parameters. It manifested as 

variation in marker expression from week to week, as shown in CD19 expression 

in Experiments 1 and 2 (Figure 4.17A-D), although this variation was minimised 

by using IgG and unstained controls (Section 2.3.8.1). In Newcastle, initially the 

BDS Canto II machine was used to investigate five fluorochrome markers 

(Section 2.2.10.1) (Supplementary Table 7.3), one compensation programme 

was set up for use across the entire experiment, with the aim of maintaining stable 

voltages to give clearer, less erratic marker expression. However week to week 

variation in GFP expression between CEBPD and MIGR1 transduced cells in 

Experiment 3, with CEBPD cells declining in GFP expression and MIGR1 cells 

increasing in expression (Figure 4.12 E&F), resulted in emission spectra of the 

FITC fluorochrome (490-525nm) overlapping with the dead gate, Zombie Aqua 

(425-516nm) marker, and CD11b Pacific Blue (410-455nm) marker. This problem 

was solved by changing FACS machines: the three laser BD Canto II machine 

was replaced by the five laser BD FortessaX20 machine, allowing fluorochromes 

to be separated onto individual lasers, removing the possibility of spectral spill 

over. The Zombie Aqua dead gate marker was also replaced by DAPI, due to the 

availability of a UV laser on the new machine. The switch to the FortessaX20 

improved the quality of the overall data and the necessity for compensation 

adjustments.  

As the aim was to recapitulate CEBPD overexpression in a haematopoietic 

environment similar to that of patients, use of more mature haematopoietic cells 

may have been appropriate, mimicking the natural development of ALL more 

closely. This could have been achieved through several methods: Extending the 

culture time of CD34+ cells to allow for differentiation into pre/pro-B cells before 
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retroviral transduction may have been more representative of true leukaemic 

development, where the activating genetic lesion likely arose in committed 

lymphoid cell.  These cells could have been initially tracked by flow cytometry and 

transduced upon expression of early B-cell markers, such as CD10, CD24, and 

CD5. The same protocol could have been performed with inducible retroviral 

vectors, activated upon expression of the same markers. 

Inducible vectors could have been used with multiple genes of interest, allowing 

for expression of selected genes in a controlled step wise manner. Such an 

experiment would allow us to implement the knowledge gained in Chapter 3, 

during analysis of the clonal evolution of IGH-CEBP BCP-ALL, investigating 

whether the order of acquired genetic lesions influenced cell lineage and 

proliferation. Another option would be the use of a lineage specific vector, such 

as a modified self-inactivating woodchuck hepatitis virus with a CD19 promoter, 

designed to specifically express only in B-lymphoid cells (Werner et al., 2004). 

A different option may have been expression of CEBPD in pre-B cell lines, such 

as REH, NALM16 or MHH-CALL-2. However each of these cell lines had an 

oncogenic phenotype from other genetic abnormalities such as ETV6-RUNX1 

(REH) or high hyperdiploidy (NALM16 and MHH-CALL-2). This option was not 

considered as Experiment 1 exhibited the increase in GFP+ CD19 + population, 

giving hope that such a result could be repeated. 

In retrospect, the use of the IK6 dominant negative isoform for transduction at the 

HSC stage was an error, as knocking out of the IKZF1 gene prior to lineage 

commitment of CD34+ cells has now been shown not to be conducive to lymphoid 

differentiation. Recent work performed in CD34+ cells, investigating co-

expression of BCR-ABL1 and IK6, resulted in cells differentiating into myeloid 

leukaemia, with up-regulation in granulocyte-monocytic progenitor and stemness 

transcriptional programmes (Theocharides et al., 2015). These results were 

unexpected, as the authors were originally attempting to create an ALL disease 

model. However it was discovered that IK6 expression strongly supressed B-cell 

progenitor programmes. 

This problem may have been avoided by transducing pre/pro-B lineage cells, 

which were already committed to lymphoid differentiation, or avoiding IK6 

expression and working with a different associating abnormality such as 



 217   
 

CDKN2A/B knock down. However, knock down of genes is a less elegant method 

of genetic alteration, with difficulties in long term assays. Knock down of 

CDKN2A/B or p16 has not been achieved over long periods of time. siRNA 

technology has achieved knock down of p16 for ~96 hours (Bond et al., 2004). 

Improved RNAi technology has been developed, which persists for several days 

(Pieraets et al., 2012). A potential method would be CRISPR-Cas technology, 

which has yielded guide RNAs for CDKN2A knock out, and transcription 

activator–like effector (TALE) technology, imitating epigenetic suppression, has 

been successfully carried out in fibroblast cells targeting CDKN2A (Bernstein et 

al., 2015). However both of these methods are more recent developments, which 

were not available at the time of planning this study. Another option would have 

been the use of transgenic mice knockout models for CDKN2A/B, which have 

been developed for two decades (Serrano et al., 1996). Such mice have been 

used in retroviral models to investigate the consequences of additional genetic 

lesions with CDKN2A/B loss (Williams et al., 2006), resulting in transplantable 

leukaemia. A different choice would have been the knockdown / knockout of 

PAX5. As an important B lineage regulator, PAX5 has been shown to function as 

a tumour suppressor in BCP-ALL (Dang et al., 2015). A potential downside for 

use of PAX5 in this context may have been the loss of an important B-cell 

commitment gene in tandem with a myeloid gene resulting in strong myeloid 

commitment, although this hindrance could have been mitigated by introducing 

PAX5 loss later in cell development and after initial lymphoid commitment.  

Further work is also needed to determine the source of the cells detected in NSG 

mice calvaria sent to Glasgow. These cells were tested for hCD45 and hCD19 

and tested negative for both, suggesting either a lineage switch of IGH-CEBP 

cells (hCD45- hCD19-), or infiltration of foreign mouse cells. To determine the 

source of the cells, staining with the murine splenic marker, CD45R, should first 

be performed as these cells tested negative for hCD45, hCD33 and hCD19 with 

flow cytometry (data not shown). In the event of a negative stain for the murine 

marker, a more widely expressed human marker must be considered for staining 

in order to determine the origins of the cells. An observed lineage switch would 

be particularly interesting, as there are no reports of IGH-CEBP translocations 

outside of BCP-ALL. Additional work could also be performed as spleen and BM 

viable cells were frozen for all three mice.  
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Ultimately although several challenges were presented in the expansion of 

transduced cells, some were successfully sorted for further analysis into the 

effects of CEBPD. Additionally, the potential engraftment of transduced CD34+ 

cells in the xenograft model in Newcastle provides further potential for additional 

work. 
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Chapter 5 Functional Characterisation of IGH-CEBP 

translocated B-cell precursor acute lymphoblastic 

leukaemia 

 

5.1 Introduction 

The use of gene expression arrays and RNA-seq technology has advanced 

scientific understanding of leukaemia at the transcriptional level. This technology 

has uncovered important pathway signatures through identification of vital 

transcriptional regulators. Such identification has improved stratification of 

patients who do not fit into the well-defined cytogenetic subgroups. These studies 

have led to the identification of more appropriate therapeutic agents, resulting in 

improved survival and reduced treatment toxicity. One example is the 

identification of the BCR-ABL1-like, or Ph-like ALL subgroup and treatment with 

TKI.  

Identification of deregulated pathways in cancer is becoming increasingly 

important, as more targeted therapeutic agents are identified. Agents  which are 

effective in specific cancers have also been shown to function in non-related 

malignancies, such as the successful use of the TKI, imatinib, in the treatment of 

gastrointestinal stomach tumours (Din and Woll, 2008),  due to identical signalling 

pathways being altered.  

Identification of specific deregulated pathways in IGH-CEBP BCP-ALL would 

elucidate both the development of the disease and provide potential targets for 

treatment. One obvious link with CEBP overexpressing leukaemias is the RB/E2F 

pathway, and inflammatory and immune system signalling, which have all been 

established as important CEBP functional domains (Section 1.5), providing 

potential pathways of oncogenic deregulation. 

The mechanism behind RB/E2F pathway oncogenesis has been discussed in 

previous chapters, the function of inflammation in oncogenesis has not been 

discussed in great detail. Chronic inflammation is considered to be the hallmark 

of malignancy (Colotta et al., 2009). The link between inflammation and cancer 

can be described in two main mechanisms.  
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1. Extrinsic mechanisms involving immune and microenvironment factors, 

where a constant inflammatory state contributes to the initiation and 

progression of the cancer. 

2. Intrinsic mechanisms including acquired genetic lesions affecting 

oncogenes, tumour suppressors and genes involved in genome stability 

that contribute to the activation of the inflammatory pathways. 

 

Multiple links between inflammation and leukaemia have been reported.  

Extrinsic factors include regulation of tumour activated macrophages (TAMs), 

which have been shown to destroy AML cells in mouse models. Upregulation of 

the marker, CD47, which confers protection against TAMs, was shown to inhibit 

TAM function. Conversely AML engrafted mice, treated with an anti CD47 

antibody, showed improved clearance of AML and improved survival (Jaiswal et 

al., 2009; Majeti et al., 2009; Chao et al., 2011).  

However, the majority of links between inflammation and leukaemia are intrinsic 

and linked to cytokine and chemokine signalling. Activation of cell surface 

receptors by cytokines, chemokines and growth factors regulate signal 

transduction activity and the interaction between cells and the bone marrow 

microenvironment (Ferretti et al., 2012). The frequency of activation of signal 

transduction in AML exceeds the levels of observed mutations or genetic 

lesions found in pathway receptors, suggesting an alternative mechanism of 

stimulation in pathway signalling. This signalling provides leukaemic cells with 

selective advantages through inhibition of apoptosis, stimulation of proliferation 

and blocking differentiation (Van Etten, 2007).  

There is evidence of abnormal cytokine signalling in AML, which has been 

tested via single cytokine serum level analysis (Schwieger et al., 2009). In depth 

studies have been performed on 27 patients with AML and myelodysplastic 

syndromes. Expression of specific cytokines and chemokines were found to be 

predictive of outcome including CCL5, IL-8, IL-2, CCL4 and IL-5 were predictive 

of outcome, and a panel of 11 cytokines and chemokines (including CCL3 and 

CCL5) that stratified patients into favourable, intermediate and adverse groups 

with statistically significant median survival rates (p = 0.003) (Kornblau et al., 
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2010). Cytokine expression levels decreased in leukaemia patients upon 

remission (Van Etten, 2007). 

The main regulators of inflammation are the NF-κB transcription factor family. 

They have been shown to activate more than 200 genes, including inflammatory 

cytokines, adhesion molecules and COX2 genes (Sun 2011). Many promote 

survival of malignant cells through induction of anti-apoptotic genes, such as 

BCL2. NF-κB is sequestered in the cytoplasm and held in an inactive state by 

Inhibitor-κB (IκB). Signalling from inflammatory cytokines or chemokines, 

activation of the immune system, or DNA damage, results in phosphorylation of 

IκB and release of NF-κB for entry into the nucleus and initiation of signalling. 

Downstream targets include activation of the bZIP genes, JUN and FOS. They 

combine post transcriptionally to create the AP1 transcription factor protein, 

which exerts a direct effect on cell proliferation, differentiation, and apoptosis 

(Hess et al., 2004). Constitutive activation of NF-κB is frequent in malignant 

cells (Giles et al., 2014). In leukaemia, upregulation of NF-κB has been 

observed in multiple studies, but no direct observation on survival has been 

shown (Estrov et al., 1999; Guzman et al., 2002; Frelin et al., 2005). In in vitro 

studies deregulation of NF-κB signalling in CD34+ cells alone was insufficient to 

induce oncogenesis  (Romano et al., 2003; Schepers et al., 2006). It has been 

hypothesised that NF-κB activation is the result of autocrine production of 

cytokines (Dokter et al., 1995), mainly expressed in LSCs.  This activation 

confers chemotherapeutic resistance to these cells leading to relapse of the 

disease (Guzman et al., 2001). Specifically in ALL, constitutive activation of NF-

κB occurred in Ph+ samples, while Ph- samples and B-precursor cell lines had 

normal expression (Munzert et al., 2004). Multiple other genes and gene 

families have been implicated in regulation of the NF-κB signalling pathway, 

including vascular endothelial growth factors, tumour necrosis factors, toll like 

receptors, and matrix metalloproteases (Giles et al., 2014).  

STAT3 is a member of the STAT family, which is affected by multiple 

inflammatory signals and are involved in hematopoietic cytokine receptor 

signalling pathways, which control cell proliferation, differentiation and survival. 

This gene family is deregulated in AML, and constitutive activation has been 

associated with poor outcome (Benekli et al., 2002). These genes are activated 

by multiple cytokines (IL-5 and IL-6) which interact to control expression of a 
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number of genes, such as PAI-1, which is involved in cancer cell metastasis 

and angiogenesis (Placencio and DeClerck, 2015), and anti-apoptotic genes 

BCL2 and BCL3 (Grivennikov and Karin, 2010).  

The COX2 signalling gene, functions by initiating the formation of prostanoids, 

and is another major mediator of inflammation observed in multiple 

malignancies. Increased expression of COX2 has been identified in CML and 

CLL, with correlation to prognosis (Bao et al., 2007). AICDA (AID) provides 

another potential link between inflammation and leukaemia. This gene is 

involved in somatic hyper mutation and class switch recombination (Wang et al., 

2014) , chronic inflammation has been shown to trigger aberrant AID expression 

in B-cells. NF-κB has been shown to mediate expression of AID 

(Mechtcheriakova et al., 2012), leading to increased oncogenic aberrations in 

vivo (Shimizu et al., 2012).  

Multiple other genes and gene families have been implicated in regulation of the 

NF-κB signalling pathway, including vascular endothelial growth factors, tumour 

necrosis factors, toll like receptors, and matrix metalloproteases (Giles et al., 

2014).  

The ability to identify the aberrant pathway signalling in leukaemia is the 

cornerstone of modern cancer treatment, both through stratification and 

targeted therapy.  

Due to the complex and highly interactive nature of molecular pathways, 

multiple downstream genes can be targeted for therapy. One example is 

KMT2A-AF4 rearranged ALL, which expresses high levels of BCL2. KMT2A-

AF4 positive cells have been successfully eliminated by the BCL2 antagonist, 

ABT-199, in cell lines and xenograft models (Benito et al., 2015). Such 

approaches directed to downstream targets are highly specific to leukaemic 

cells, thus more protective of normal cells. 

The ever increasing numbers of targeted chemotherapeutics has made 

identification of affected molecular pathways highly valid option for the 

improvement of patient treatment and in turn survival. 
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5.2 Aims 

Having performed genetic screening of IGH-CEBP patient samples, this section 

of the project aimed to investigate the consequences of CEBP overexpression at 

the molecular level. RNA-seq technology was used to identify potential genes 

and pathways affected in available samples. Analysis of CEBP expression was 

also performed by qPCR to investigate CEBP expression fold changes in 

comparison to both patient and normal controls. Protein analysis was performed 

using SDS PAGE to investigate CEBP protein isoforms in available samples, to 

elucidate post transcriptional CEBP expression. 

 

Aims 

 To investigate CEBP expression levels in patients using qPCR. 

 To investigate CEBP protein isoform expression in relation to mRNA 

expression in available patient samples.  

 To analyse RNA sequencing data of two IGH-CEBP patients to identify 

differentially expressed genes and pathways. 
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5.3 Results 

 

5.3.1 Patient Analysis - qPCR shows CEBP mRNA expression is 

upregulated in IGH-CEBP BCP-ALL patients 

The expression of CEBPs was investigated in two patients using the qPCR 

TaqMan platform to assess the extent of IGH mediated overexpression (Figure 

5.1). Patient 11739 had the IGH-CEBPB translocation in 45% of blasts, and 

patient 23395 the IGH-CEBPD translocation in 61% of blasts. The samples were 

compared against other BCP-ALL patients (Supplementary Table 7.26). The 

following controls were chosen: normal liver was a positive control for CEBPB 

and CEBPG and a negative control for CEBPD; normal kidney as a positive 

control for CEBPD and negative for CEBPB and CEBPG; BM was selected as a 

reference sample. Genes analysed were the known IGH partners of the two 

selected patients and the CEBPG gene, which functions as a dominant negative 

isoform. 

Expression of CEBP genes among control BCP-ALL patients was varied (Figure 

5.1). CEBPB and CEBPD are typically expressed in a tissue and context specific 

manner for short periods of time, while CEBPG is generally expressed across all 

tissue types. CEBPG expression was observed across all patients and controls. 

Expression was particularly high in patients 2058, 4679, 23395 and 11739 

(increase of 14, 15, 5 and 3 fold, respectively) when compared to BM cDNA. 

IGH-CEBPB patient 11739, showed a high level of expression of CEBPB 

(increased 2.8 fold) in comparison to other patients. High expression was also 

observed in the liver positive control. CEBPB expression was low among all other 

patient and control cDNAs. CEBPD expression was low and restricted to the IGH-

CEBPD patient 23395 (increased 1.5 fold) and positive control kidney tissue. 

These data indicate that respective CEBP genes were overexpressed in the 

patients analysed. 
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Figure 5.1. Expression of CEBP genes in IGH-CEBP patients, with BCP-ALL and tissue controls, normalised against the 

GUSB house keeping gene with BM used as the reference sample. Experiment performed in duplicate.  

 

5.3.2 Patient Analysis – CEBPB Protein Expression using SDS PAGE 

Shows dominant expression of the LAP* and LAP isoforms 

Identifying the CEBP protein isoforms expressed in patient samples may 

elucidate the mechanism of action behind IGH-CEBP translocated BCP-ALL. 

Protein samples were only available for patient 11739 for investigation (Figure 

5.2). Other BCP-ALL samples from patients without an IGH-CEBP translocation 

were used as controls (Supplementary Table 7.27). Protein concentration was 

low, between 30-40ng/μl for control samples and 46ng/μl for sample 11739 

(Supplementary Table 7.27); α-tubulin expression low in control 1 and 2, with no 

protein in control 3. Although α-tubulin expression was low in Patient 11739, 

CEBPB expression was evident in comparison to patient controls. All three 

isoforms were present, with the 44kDa LAP* and 42kDa LAP proteins being the 

most highly expressed. The dominant negative isoform LIP was visible at 20kDa 

at a lower concentration. Other bands were also visible, suggesting post 

transcriptional modification of the CEBPB protein. These data suggested that 

CEBPB was not being inactivated through LIP inactivation in patient 11739. 
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Figure 5.2. Immunoblot for CEBPB protein of IGH-CEBPB 11739, and BCP-ALL control sample lysate, with α-Tubulin 

loading control.  

Although all samples show low levels of α-tubulin loading control CEBPB protein is clearly expressed in patient sample 

11739. All three CEBPB protein isoforms are visible, LAP* at 44kDa, LAP at 42kDa and LIP at 20kDa. The sample shows 

that the IGH mediated overexpression of the CEBPB gene is mainly driving expression of the functional LAP* and LAP 

proteins.   

 

5.3.3 Patient Analysis - RNA-seq  

Two patients, 11739 and 23395, had sufficient RNA for RNA-seq. These samples 

were normalised against 14 BCP-ALL control samples, comprising IGH-other, 

iAMP21, and B-Other patients (Supplementary Table 7.28). RNA reads were 

converted to log2 fold change values, using the DESeq2 method, which minimises 

individual reads exponentially, in order to tackle the problems inherent with small 

replicate numbers, large dynamic range of reads and outliers (Love et al., 2014).  

These values were then subtracted from controls to give the final log2 fold change 

values, discussed below in relation to transcript level. While data obtained from 

this analysis cannot be considered significant, due to a low sample size, some 

interesting trends were observed.  
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5.3.3.1 IGH-CEBPB Patient 11739 shows variation in downstream effects on CEBPB 

targets 

The first focus of the RNA-seq data analysis; the fold change of CEBP family 

members was investigated. IGH-CEBP Patient 11739 showed a 2.8 fold increase 

of CEBPB, while the other CEBP genes were downregulated, with the exception 

of CEBPZ (Figure 5.3 A). This result conflicted with expression of CEBPG on the 

qPCR platform, where expression was higher (Figure 5.1). RNA-seq data 

however must be considered against the controls it is normalised to, as other 

BCP-ALL patients may have high expression of CEBPG. Indeed, such a trend 

was observed in the qPCR analysis of BCP-ALL controls, in which CEBPG was 

highly expressed across all patients. Additionally, normal BM comprises a mixture 

of haematopoietic cell types, with varying expression levels of CEBPG, while 

patient controls would be predominantly immature B-cells. 

Genes known to be involved in haematopoietic differentiation were investigated 

in an attempt to elucidate the mechanism of linage commitment. Patient 11739 

showed decreased expression of both erythroid GATA factors and myeloid ID 

family genes, while lymphoid commitment genes, IKZF1, PAX5, and EBF1, 

showed increased expression (Figure 5.3 B). A 2.1 fold increase in IKZF1 

expression was notable as this patient had the 4-7 IKZF1 deletion, which leads 

to expression of the IK6 isoform. Overexpression of this dominant negative 

isoform may be considered as an oncogenic hit, contributing to the development 

of the leukaemia. One copy number gain of EBF1 correlated with a 0.8 fold 

increase in RNA transcripts. 

Early cell cycle phase genes, comprising predominantly of the RB/E2F pathway, 

were investigated in more detail due to the documented interactions with the 

cyclin kinase inhibitors, cyclins, RB family genes, and E2F genes (Tsukada et al., 

2011). Patient 11739 showed upregulation of RB1, MYC and cyclin / cyclin kinase 

complexes (Figure 5.4 A). The deleted cyclin inhibitors, CDKN2A and CDKN2B, 

showed reduced expression of both transcripts at -1.1 and -1.7 fold, respectively. 

Due to the importance of the CDKN2A/B pathway there are many regulatory 

mechanisms influencing the expression of these genes. CDKN2A/B genes are 

directly expressed erythroblast transformation- specific (ETS) transcription 

factors ETS1, ETS2, and E47, in response to oncogenic and senescent signalling 

(Ohtani et al., 2001), while ID1 functions to repress CDKN2A/B expression. 
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Lowered expression of the ID genes in patient 11739 may be factor influencing 

expression of CDKN2A/B. JUN is another repressor of CDKN2A/B expression 

which shows lowered expression in patient 11739. 

Downstream, the E2F family is divided into E2F activator genes, E2F1-E2F3, 

which function in cell cycle progression, and E2F repressor genes, E2F4-E2F8, 

which function to downregulate E2F activator genes (Polager and Ginsberg, 

2008). These genes showed mixed levels of expression. E2F activator genes 

showed low expression, while E2F repressor genes were predominantly 

upregulated, suggesting proliferative inhibition (Figure 5.4 C). Direct downstream 

targets of the E2F family, linked with cell cycle progression, showed decreased 

expression, while E2F targets linked with cell synthesis were expressed normally, 

supporting observation that cell cycle may be inhibited in this patient (Figure 5.4 

D). Several cell cycle genes showed variant expression, with genes directly 

promoted by CEBPB, MYC and MYBL2 showing downregulation. 

As CEBP genes are heavily regulated post transcriptionally, other CEBP targets 

were assessed to determine whether CEBP overexpression was translating into 

visible downstream effects. Several direct targets of CEBPB, broadly divided 

between functioning in the immune system and in haematopoiesis, were 

analysed. An interesting trend was observed, in which a number of genes 

reported to be upregulated by CEBPB were found to have low expression in 

patient 11739. This was found in 3/4 immune system genes and 2/6 

haematopoiesis genes comparing against previously published data (Figure 5.5 

C&D) (Supplementary Table 7.29). The two genes with lowered expression in 

haematopoiesis, ID1 and ID2, were of particular interest as they have been 

shown to function as part of the B-cell differentiation pathway, facilitating 

differentiation beyond the pro-B stage. Lowered expression of these genes could 

be suggestive of a B-cell differentiation block.  

Genes with the greatest differential expression showed few obvious trends. In 

patient 11739, both oncogenes and tumour suppressors were upregulated, all of 

which were shown to be associated with prognostic outcome in solid tumours 

such as head and neck cancer, due to strong links in metastasis (Supplementary 

Table 7.30). Three genes showing significant downregulation were involved in 

the inflammatory pathway, two of them, JUN and FOS, heterodimerise to create 

the AP1 transcription factor, which is involved in the inflammatory cascade, 
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proliferation and cell differentiation (Angel and Karin, 1991; Zenz et al., 2008). 

The third one, CXCL8, is a potent pro-inflammatory signalling chemokine (Gales 

et al., 2013). 

 

 

 

Figure 5.3. RNA-seq expression of CEBP family genes in IGH-CEBPD patient 23395 and IGH-CEBPB patient 11739. 

Values were calculated from RNA-seq transcript reads and converted into fold change values. Data was normalised 

against control BCP-ALL patient samples.  

A. The expression of the CEBP genes shows a variation between patients, however there were some trends observed. 

Over expression of the IGH partner is visible in both patients. Myeloid biasing CEBPs; CEBPA, CEBPB, CEBPD, CEBPE 

are either downregulated or show very low expression, with the exception of the IGH partner CEBPB and CEBPD in the 

respective patients. B. Expression of haematopoiesis differentiation genes. Patient 11739 shows down regulation of 
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multiple myeloid differentiation genes with all GATA and ID family genes showing down regulation, and IKZF1 upregulated. 

Patient 23395 shows the opposite regulation of myeloid genes and down regulation of IKZF1.   

 

 

 

 

 

Figure 5.4. RNA sequencing displaying log2 fold change in the RB/E2F pathway and downstream targets dictating cell 

cycle progression from G1 to S phase.  



 231   
 

A. Patient 11739 shows marginal upregulation of MYC (increase 1.8 fold), Cyclin and Cyclin dependent kinases, RB family 

and E2F family genes, while cyclin inhibitors were downregulated. Dashed arrows show potential mechanisms of 

upregulation or downregulation as a result of MYC upregulation. B. Patient 23395 shows upregulation of all gene groups 

with the exception of MYC which was downregulated (decrease of 0.2 fold). C. A detailed view of the E2F family and 

individual gene log2 fold changes in patients 23395 and 11739. E2F genes are divided between E2F activator genes E2F1, 

E2F2, and E2F3, and E2F repressor genes E2F4, E2F5, E2F6, E2F7, and E2F8. Patient 23395 shows higher expression 

of E2F activators while patient 11739 shows downregulation of the primary activator E2F1 and upregulation of multiple 

E2F repressor genes. D. Downstream pre-transcriptional targets of the E2F family divided by function into cell cycle 

progression genes and cell biogenesis genes. Direct E2F targets show upregulation in patient 23395, particularly cell 

cycle progression genes, while patient 11739 shows low expression of cell cycle genes and high expression of cell 

biogenesis genes.     

 

5.3.3.2 IGH-CEBPD Patient 23395 shows expected downstream effects on CEBPD 

targets 

IGH-CEBPD Patient 23395 displayed no CNAs detectable by MLPA and had 

insufficient DNA for SNP6.0 analysis. RNA-seq showed the expected 

upregulation of the IGH partner CEBPD, while the CEBP with myeloid bias; 

CEBPA, CEBPB and CEBPE, were either down regulated or showed only minor 

transcriptional alterations (Figure 5.3 A).      

Expression of haematopoiesis differentiation gene GATA.1 and the myeloid 

committing ID family were high, while IKZF1 and TCF3 were low (Figure 5.3B). 

The patient predominantly showed high expression of both cell cycle progression 

and cell cycle arrest genes, with MYC being the most notably downregulated 

gene (Figure 5.4B). Despite MYC downregulation patient 23395 showed high 

expression of E2F activator genes and low expression of E2F repressors, in 

particular E2F5 (Figure 5.4C). High expression was observed in downstream E2F 

activator target genes, in particular cell cycle progression genes; CCNE1, and 

MYBL2 (Figure 5.4D), suggesting that despite increased expression, the RB 

family were not functioning to inactivate E2F activators. Direct CEBPD targets 

(including CREB1, CREBBP, PPARG, IL-6 and PER2), with a number of different 

functions, predominantly showed transcript levels to be at expected from previous 

publications (Supplementary Table 7.31), with only 2/11 genes showing variation 

from expected transcript levels (Figure 5.5A&B) (Supplementary Table 7.31). 

Of note, genes involved in PI3K/Akt signalling pathway (FN1, TNC, COL1A, 

COL3A1, COL11A1 and IBSP) were amongst the most highly expressed genes 

in this patient. The majority were collagens and fibronectins, likely functioning 

through binding of the PTK2 (FAK) receptor, leading to activation of PI3K (Xia et 
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al., 2004; You et al., 2015). Multiple oncogenes associated with solid tumours, 

where they enhance metastasis and angiogenesis, were also observed 

(Supplementary Table 7.32). Genes involved in inflammatory pathways were also 

upregulated, including MMP13 a matrix metalloprotease, GJA1 involved in 

intracellular communication, and the CXCL12 chemokine. 

 

 

5.3.3.3 Comparisons between patient 11739 and patient 23395 shows altered CEBP 

function. 

There was a high level of variability between the two patient samples analysed 

on the RNA-seq platform. Initial comparison of these data was focused on the 

CEBP genes and their direct targets.  

In both patients the respective CEBP gene partnered with IGH (CEBPB for patient 

11739, and CEBPD for patient 23395) was overexpressed, while the early 

myeloid biasing gene CEBPA was downregulated in both patients (Figure 5.3 A).  

Several CEBP target genes showed differential expression between the two 

patients. Reduced expression levels of MYC were observed in patient 23395, 

supporting suggestions of CEBPD mediated MYC downregulation, observed in 

myeloid cell lines (Gery et al., 2005). However, MYC showed high expression in 

patient 11739 (Figure 5.4 A). Other genes that showed differential expression 

were ID1 and ID2, downregulated and upregulated in patient 11739 and 23395, 

respectively (Figure 5.5 C&D).  

Genes involved in the inflammatory response that are activated by CEBPD and 

CEBPB (Yan et al., 2012) were downregulated in patient 11739, suggesting that 

CEBPB function was impaired (Figure 5.5 A). A similar trend was observed for 

another CEBPB target, PPARG. This gene is found to be upregulated by both 

CEBPB and CEBPD in the literature, and was upregulated in patient 23395, but 

not in patient 11739, again suggesting that CEBPB function was impaired 

(Figure 5.5 C).  
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Figure 5.5. RNA sequencing fold variations of CEBP target genes in the two IGH-CEBP patients.  

A. Table showing CEBPD pre-transcriptional target genes divided by function, with the role of the CEBPD gene next to 

each target. Genes found to be expressed differentially to previously published findings (Supplementary Table 7.32) are 

highlighted in yellow. This table shows that CEBPD broadly functions as expected in patient 23395, while IGH-CEBPB 
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patient 11739 shows altered function of genes from expected CEBP effects, such as downregulation of inflammation 

genes and PER2 despite previous reports as a promoter. B. Graphical representation of table A. C. Table showing CEBPB 

pre-transcriptional target genes divided by function, with the CEBPB gene role next to each target. Genes found to be 

expressed differentially to previous findings (Supplementary Table 7.29) are highlighted in yellow. This table shows that 

CEBPB is showing mixed expression of target genes with 3/4 and 2/6 genes differentially expressed in immune system 

and haematopoiesis gene subsets respectively. D. Graphical representation of table C.      

 

In patient 23395, CEBPD downstream targets involved in inflammation showed 

strong upregulation. This upregulation would confer advantages to the recipient 

blasts in the form of increased mutagenesis through DNA damage (CXCL8, IL-

6), increased chemotaxis, which has been shown to increase resistance to 

chemotherapy (CXCL12, MMP13, IL-6), and increased proliferation (FOS, 

PPARG, IL-6) (Giles et al., 2014). Patient 11739 exhibited the opposite 

expression profile, with multiple inflammatory genes downregulated (Figure 5.6 

B&C). It is interesting to note that NF-κB factors showed no upregulation in these 

patients, suggesting that the inflammatory upregulation observed in patient 

23395 is mediated through another pathway. 
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Figure 5.6. Top dysregulated genes in IGH-CEBP patients identified by RNA-seq.  

A. Top and bottom 15 dysregulated genes in patient 23395, with highlighted genes involved in inflammation. B. Top and 

bottom 15 dysregulated genes in patient 11739, with highlighted genes involved in inflammation. Patient 23395 shows 

upregulation of multiple inflammatory genes, while patient 11739 shows the opposite with downregulation of inflammatory 

genes.  

 

5.4 Discussion 

The molecular analysis of CEBP deregulation was limited due to the small 

number of patient samples, hampered further by the necessity to analyse patient 

samples using different platforms and different controls. The low numbers of 

viable CD34+ transduced cells was also a limiting factor. Thus this chapter should 

be viewed as gathering pilot data for future work. Data from RNA-seq was 

analysed in the greatest depth, as the controls for these samples comprised a 

range of BCP-ALL subgroups.  
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IGH-CEBPB Patient 11739 

Expression of CEBP family genes in patient 11739 showed upregulation of 

CEBPB across all experimental platforms. All other CEBP genes showed 

downregulation or only marginal expression. This patient also had available 

protein lysate to analyse expression of CEBPB protein isoforms, whose interplay 

determines the function of the gene. As CEBPB is coded from a single exon, gene 

transcript analysis was unable to determine which protein isoform was 

transcribed. Western immunoblotting showed that the major protein isoforms in 

this patient were LAP* and LAP activating proteins, while the dominant negative 

LIP protein was expressed at a lower level. This expression pattern indicated a 

high LAP/LIP ratio, which would result in CEBPB mediated transcriptional 

regulation. This regulation has been shown to halt cellular proliferation, as well 

as increase cellular differentiation, inflammation and phagocytosis. However, the 

opposite was observed in patient 11739, in which direct CEBPB target genes 

were inactivated, including genes involved in both haematopoiesis and 

inflammation. 

Multiple genes involved in the immune system and inflammatory process showed 

down regulation despite CEBPB LAP* and LAP upregulation. The CXCL8 gene, 

a potent pro-inflammatory signalling chemokine, whose expression has been 

shown to promote angiogenesis and metastasis in solid tumours, was 

significantly downregulated (Gales et al., 2013). Downregulation of ID1 and ID2 

was also observed, suggesting that  a post transcriptional regulatory mechanism 

may inactivate CEBPB, as CEBPB has been shown to directly upregulate both of 

these genes (Sun, 1994; Saisanit and Sun, 1997). It is unlikely that the interplay 

between CEBP genes is playing a role in patient 11739, as all other family 

members were downregulated. Inconsistencies between CEBPG qPCR and 

RNA-seq data were observed. However different controls were used between 

experiments, which may explain the different expression levels. If qPCR CEBPG 

expression data is to be considered in place of RNA-seq data, the fold of CEBPG 

is at a similar level to CEBPB, this would be sufficient to block functionality of the 

activating CEBPB proteins. This is unlikely however as multiple CEBPB 

downstream targets are observed to be upregulated in the RNAseq data. 

Genes involved in haematopoietic differentiation were analysed in order to 

investigate the consequences of CEBP overexpression on important transcription 
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factors. Patient 11739 showed a lymphoid primed expression profile, with 

erythroid driving GATA genes being downregulated, as well as the myeloid 

genes; PU.1 and ID family members. The ID family has been hypothesised to 

facilitate the development of IGH-CEBP BCP-ALL (Nerlov, 2007), as these genes 

function to inactivate TCF3 and are directly upregulated by CEBPA and CEBPB 

(Sun, 1994; Saisanit and Sun, 1997). It has been suggested that initial ID1 

expression is required for pro-B lymphoid differentiation, while ID1 must then be 

downregulated by TCF3 for continued B-cell development. Should an IGH-

CEBPB translocation take place in a pro-B cell, the CEBP gene would promote 

expression of ID1 and ID2, inhibiting further progression down the lymphoid 

pathway. This inhibition would occur due to failure to induce TCF3, which in turn 

would fail to function along with EBF1 to induce V(D)J recombination in affected 

cells, as shown experimentally in murine haematopoietic cells (Sun, 1994). 

However, the decreased expression of ID1 and ID2 in patient 11739 suggests 

that this is not the mechanism behind leukaemic development in this patient. 

Lymphoid commitment genes, IKZF1, PAX5, and EBF1, all showed varying levels 

of upregulation. Previously published work showed that forced expression of 

CEBPB in precursor B cells leads to differentiation into myeloid precursors, 

through CEBP mediated downregulation of PAX5 and synergy with endogenous 

PU.1 (Xie et al., 2004). Further work in pro-B PAX5 null cells showed that forced 

expression of CEBPA, GATA1, GATA2 and GATA3 resulted in a myeloid switch 

(Heavey et al., 2003), also seen in T-cells (Laiosa et al., 2006). This phenomenon 

was not observed in this study, where continued expression of PAX5 and low 

levels of PU.1 and GATA factors likely were responsible for B lineage 

commitment.  

The effects of CEBP transcription factors on the RB/E2F pathway was 

investigated, because it is the main mechanism of CEBP mediated cell cycle 

control. E2F expression in patient 11739 showed low levels of activator E2Fs, but 

increased expression of regulator E2Fs. E2F7 and E2F8 control proliferation 

either by repressing E2F1 to induce apoptosis, or downregulating MCM and 

CDC6 cell cycle control genes to promote proliferation (Lammens et al., 2009). 

Neither MCM nor CDC6 were down regulated in patient 11739 (data not shown), 

suggesting that the regulatory E2Fs were downregulating E2F1, potentially 

explaining the low expression level of the gene transcript. Direct E2F targets 
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included upregulation of biogenesis genes and the early G1 phase cell cycle 

progression gene, CCND1, while late cell cycle progression genes, CCNE1 and 

MYBL2, showed low expression. The cyclin genes are upregulated at G1 and S 

phases of the cell cycle, providing a feedback loop to drive proliferation forward. 

Increased expression of CCND1 is interesting as this gene is not normally 

expressed in a haematopoietic setting. Cylin genes CCND2 and CCND3 are 

typically found in lymphoid tissue (Lam et al., 2000; Sicinska et al., 2003), while 

expression of CCND1 in the same setting is only observed in cancerous cells with 

mantle cell lymphoma (Rosenwald et al., 2003), multiple myeloma (Bergsagel et 

al., 2005) and hairy cell leukaemia (de Boer et al., 1996) all showing de-regulation 

of this gene. This can be brought about by multiple methods including 

translocation with the IGH locus. Expression of CCND1 in this novel setting is 

likely to disturb the balance between CCND2 and CCND3 leading to the de-

regulation of cell cycle control. WhileMYBL2 drives late cell cycle progression 

interacting with the downstream target, FOXM1, to improve binding to late cell 

cycle promoters (Sadasivam and DeCaprio, 2013). Other late cell cycle 

progression genes, such as CCNA1, CCNA2 and CCNAB1, all showed 

upregulation (data not shown), suggesting that direct E2F cell cycle progression 

targets are being negatively affected, but not sufficiently to halt cell cycle 

progression.  

Among the most differentially expressed genes in patient 11739 were the bZIP 

family genes, JUN and FOS, which were downregulated. As bZIP family 

members, both have been found to heterodimerise with members of the CEBP 

family, although no direct regulatory role has been reported between the genes. 

Heterodimers of these genes form the AP1 activator protein, which is involved in 

inducing the inflammatory cascade, proliferation and differentiation, downstream 

of the NF-κB protein complex. The significant downregulation of these genes may 

explain the low expression of downstream inflammation genes in this patient. 

In patient 11739, the CEBPB gene was not exerting its expected effect across 

multiple genes, due to a number of potential reasons: the complex genome of the 

patient, comprising unknown mutations, translocations, or epigenetic 

modifications; post transcriptional modification of CEBPB, through ubiquitination, 

SUMOylation; inactivation through heterodimerisation with other bZIP family 

proteins. FLT3 has been shown to inactivate CEBPA protein through 
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posttranscriptional phosphorylation (Radomska et al., 2006). In previously 

published work, we (Akasaka et al., 2007) speculated that this was one of the 

possible methods of CEBPA mediated IGH-CEBP leukaemogenesis, as the 

myeloid biasing gene was being inactivated to allow for lymphoid differentiation. 

Recently activating mutations of FLT3 have been found to indirectly inactivate 

CEBPB through interaction with the microRNA, miR-155 (Salemi et al., 2015). 

FLT3 was upregulated in patient 11739, making this theory a possibility. What 

must be considered when discussing these data is that only certain CEBPB target 

genes seem to be affected including those involved in: cell cycle progression, 

CCNE1, MYBL2 and MYC; cell differentiation, ID family; inflammation, IL-6, IL-

10, PPARG, CD14, and CXCL8. Whether these genes were randomly or 

specifically downregulated remains unclear. The AICDA gene was upregulated 

in patient 11739. This observation was of interest as this gene is known to be 

involved in induction of mutations within the somatic hypermutation mechanism. 

Screening of additional patients for expression of this gene would indicate 

whether heightened expression is a consistent or unique feature of among CEBP 

subgroups.  

 

IGH-CEBPD Patient 23395 

Patient 23395 showed upregulation of its IGH partner across all platforms, 

although the range of expression varied between techniques. qPCR analysis also 

showed high expression of CEBPG in this patient, while RNA-seq did not. These 

observations suggest that RNA-seq data are likely to be the more trustworthy, as 

downstream targets directly affected by CEBPD were upregulated, discounting 

the possibility that CEBPD is being inactivated by CEBPG expression. 

Low expression of PU.1, TCF3, GATA2, and RUNX1; low expression of the 

lymphoid genes, IKZF1 and PAX5, and high expression of GATA1 and the ID 

family genes were observed in this patient. These findings suggest a more 

myeloid or, due to expression of GATA1, erythroid biased profile. High transcript 

expression of the ID family was of interest, suggesting that CEBPD functions in 

upregulation of this family in a haematopoietic setting, as shown for both CEBPB 

and CEBPA (Sun, 1994). The expression of these genes in a lymphoid committed 

leukaemia could give credence to the theory that ID1 and ID2 are able to mediate 
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a differentiation block of the lymphoid lineage in the pro-B stage, with TCF3 

inhibited by the ID genes being unable to induce expression of EBF1, PAX5, and 

IKZF1, to facilitate expansion of these cells.  

Expression of downstream CEBPD target genes showed the expected 

expression, with little variation observed. Patient 23395 broadly mirrored previous 

findings in expression of RB/E2F, with MYC downregulated, RB1 and several 

kinase inhibitors upregulated. Despite these results, E2F expression was high. 

Interestingly the regulator gene, E2F5, was heavily downregulated in this patient. 

E2F5 functions by binding to RBL1 and RBL2, and mediating cell cycle arrest at 

the G1 phase (Gaubatz et al., 2000). The loss of E2F5 may contribute to loss of 

cell cycle control, resulting in increased proliferation. This E2F expression profile 

was likely influenced by the upregulation of E2F targets involved in cell cycle 

progression, biogenesis and apoptosis. Downstream E2F targets also showed 

higher overall expression. Cell cycle genes, CCND1, CCNE1 and MYBL2, were 

all upregulated, suggesting continued proliferation. The overall profile was 

indicative of oncogenic deregulation with cyclin kinase inhibitors broadly 

downregulated and cyclins and dependent kinases upregulated. 

Patient 23395 showed upregulation of multiple inflammatory and environmental 

cytokines and chemokines linked with collagen, fibronectin and cell extracellular 

matrix interaction (Supplementary Table 7.32). The majority of such genes have 

been implicated in metastasis and angiogenesis in a variety of solid tumours. In 

leukaemia such genes have been increasingly identified as being important in 

BM niche microenvironment, and proliferation of HSCs and potential leukaemic 

cells which use this niche to escape chemotherapy induced apoptosis (Chiarini 

et al., 2016). Additionally, several of these genes are involved in the PI3K/AKT 

pathway, this is likely through fibronectin and collagen mediated activation of the 

PTK2 (FAK) tyrosine kinase which in turn activates downstream PI3K/AKT genes. 

Upregulation of this pathway would potentially lead to increased proliferation and 

survival of blasts (You et al., 2015). Several of the down regulated genes 

observed in this patient are known tumour suppressors in solid tumours, linked 

to prevention of metastasis and angiogenesis, while three zinc finger proteins are 

potentially involved in gene expression control. Such a profile viewed in solid 

tumours would be indicative of a highly metastatic cancer. However, in the 
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context of this leukaemia, it is more likely the consequence of CEBPD mediated 

inflammatory pathway upregulation.  

 

Inflammation and leukaemia  

In depth studies have been performed investigating the link between expression 

of inflammatory chemokines and cytokines in leukaemia. In AML, specific 

expression patterns of CCL chemokines and interleukins were resulted in higher 

remission and survival rates (Kornblau et al., 2010). However, this interplay was 

highly complex with multiple factors influencing expression levels.  

In this project, key inflammatory regulators showed limited upregulation in both 

IGH-CEBP patients. NFκB factors were almost universally downregulated in both 

RNA-seq patients, a surprise as NFκB is a downstream target of multiple genes 

found to be upregulated in the IGH-CEBP patients. Other inflammatory regulators 

included the STAT3 transcripts which were slightly upregulated in both patients, 

while HIF-1α showed upregulation in CEBPD patient 23395 and down regulation 

in patient 11739, showing no single pathway was involved in inflammatory 

regulation in these patients. This supports the theory that CEBPB is not 

upregulating inflammatory signalling in patient 11739, and signalling that is taking 

place in patient 23395 appears to be independent of NFκB. 

The genes expressed however were functionally relevant. The chemokine, 

CXCL12, is well characterised in cancer and leukaemia. Expression of this gene 

in AML cells, along with CXCR4, was shown to facilitate binding to the bone 

marrow stroma, with associated improvements in survival, proliferation and 

chemotherapeutic resistance of AML cells (Koblas et al., 2007). Interestingly, a 

CXCL12 analogue, Plerixafor, has been used to mobilise AML blasts into 

peripheral circulation, improving their removal when used in combination with 

chemotherapy in mice. This analogue was also used in phase I/II clinical trials 

and was found to improve remission rates (Uy et al., 2012). Interestingly patient 

23395 showed a high levels of CXCL12 expression.  

Activation of multiple chemo- and cytokines has been shown to result in increased 

cell survival. However, CEBPB patient 11739 showed no upregulation of 
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inflammatory factors, despite its well documented action as a mediator of 

inflammation.   

Investigating the role of inflammation in genomic instability is of interest. 

Overexpression of the AICDA gene which is upregulated by multiple pro-

inflammatory factors (Mechtcheriakova et al., 2012) in CD34+ cells would be of 

interest, as this gene induces multiple double stranded DNA breaks. The function 

of AICDA in CD34+ cells could be tested through long term cell culture and 

subsequent analysis by karyotype, FISH with whole chromosomal paints to 

identify translocation events. 

 

Variation Between IGH-CEBP Patient RNA-seq Data 

From the RNA-seq data, both IGH-CEBPB patient 11739 and IGH-CEBPD 

patient 23395 showed decreased CEBPA expression, which is interesting in the 

context of the disease. Along with CEBPB, CEBPA is the most potent early 

myeloid commitment gene in the CEBP family. Both genes have been shown to 

function in place of each other, providing a broad range of redundancy. The down 

regulation of CEBPA in both patients, after normalising against other BCP-ALL 

controls, may indicate that the overexpressed CEBP genes may be responsible 

for down regulation of the CEBPA gene indirectly. Although CEBPB has been 

observed to directly upregulate CEBPA expression, it has only been reported in 

adipocyte differentiation (Tang et al., 2003). While CEBPA mutations are 

common in AML, none have been observed in BCP-ALL, and no CNA involving 

this gene emerged from SNP arrays, discounting CNA driven change of 

expression of this gene. All other myeloid biasing CEBP genes were either 

downregulated or showed low expression, as expected in the context of this 

disease.  

It seems that by the time these leukaemic precursors enter the pre- or pro-B stage 

they become locked into the lymphoid lineage. The effect of CEBPs as myeloid 

differentiators is not sufficient to transform the cells. Interestingly, in a RNA-seq 

study of eight BCP-ALL cases, which switched to monocytic lineage, CEBPD was 

among the most differentially expressed genes, whose expression was initially 

high and continued to increase as the switch occurred. CEBPA was also 

overexpressed (Fier et al., 2014). These patients did not express known genomic 
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aberrations by MLPA or FISH. It would be of interest to know whether these 

patients had been investigated for the presence of IGH-CEBP translocations. It 

would also be of interest to compare my cohort with this lineage switching cohort, 

in an attempt to determine what is inducing one group of patients to switch lineage 

and the other to maintain lineage, despite seemingly strong pressure to 

differentiate.  

The main difference between patients 11739 and 23395 from RNA-seq data was 

the variation in expression of direct CEBP targets. Overall CEBPD appeared to 

function as expected. However, CEBPB was different. Cell cycle progression 

genes showed low expression, while the expression profiles of other direct 

targets, such as the ID genes, varied markedly between the two patients.  Firstly, 

these observations suggested that CEBPD functions in the same manner as 

CEBPB in working to upregulate expression of ID1. If ID1 deregulation was an 

influencing factor in patient 23395, it would suggest that different IGH-CEBP 

leukaemias developed through different CEBP mediated pathways. The 

consistent difference in ID expression in both patients and committed lineage 

cells is worthy of further study It may be that FLT3 is exerting a posttranscriptional 

effect, but FLT3 expression was upregulated in both patients to the same degree, 

seemingly with no negative effects in patient 23395. This may be due to FLT3 

only exerting post transcriptional regulation on CEBPA and CEBPB. However, 

there are no reports to date of CEBPD – FLT3 interactions.  

High expression of the MYF6 gene was also observed in both samples. This gene 

functions in myocyte differentiation with no direct link to the CEBP genes, 

although interaction with EP300, a CEBPD target gene, and TCF3 have been 

reported. Further work to determine the role of this gene in BCP-ALL may be 

worthwhile.   

It will be necessary to unravel the potential mechanisms behind CEBP function 

in these patients. Application of various protein analysis techniques may shed 

light on post transcriptional variation of CEBPB. Interactions with FLT3 and 

CEBPD could be analysed, to determine whether the two proteins interact. The 

phosphorylation status of CEBPB should be investigated. Chromatin 

immunoprecipitation assays could be used to investigate CEBPB interaction with 

target genes, such as ID1, ID2, CXCL8, and other differentially expressed targets.  
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These approaches would provide invaluable data, the limiting factor being the 

amount of protein lysate available from patient samples. 

The impact of the ID family in IGH-CEBP requires further study. All four ID genes 

have been implicated in multiple forms of cancer including ALL (Lasorella et al., 

2014). If more patients are identified with forced expression of the ID genes, this 

would identify them as suitable targets to facilitate differentiation of leukaemic 

blasts. The ID1 gene has been targeted in metastatic breast cancer cells after 

transduction with ID1 antisense knock out (Fong et al., 2003).   

The analysis of these patients has highlighted the heterogeneity of transcript 

expression between different IGH-CEBP patients. Due to the function of the 

CEBP genes and their interactive nature with members of the bZIP family, further 

work, particularly protein analysis, needs to be performed to determine the 

function of these genes in BCP-ALL. 
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Chapter 6 Discussion 

 

With continually improving genetic technologies the volume of genomic data is 

increasing. The challenge in BCP-ALL research is translation of these data into 

improved risk stratification and increased patient survival through identification 

of novel treatment options. The classification of BCP-ALL into subgroups 

provides the backbone for treatment selection. This system has traditionally 

used established cytogenetic alterations in combination with demographic and 

clinical data, such as age, sex and WBC, to classify patients, which has 

translated into improved survival rates (Harrison, 2011).   

Despite this success much remains to be improved; older patients have a far 

lower five year event free survival rate, while relapse occurs across all age 

groups with high mortality (Moorman et al., 2014). Another challenge is to 

improve survival of patients with no clear recurring genetic alterations, who may 

be difficult to treat (Roberts et al., 2012). The use of WGS and WES has not 

only increased the detection rate of novel genetic lesions but, along with RNA 

sequencing, has helped to identify the molecular mechanisms deregulated in 

some of these patients, identifying new subgroups. These discoveries are 

providing options for more targeted treatments, contributing to decreased 

chemotherapy related toxicity and improved survival.  

Originally included in the unclassified B-other subgroup, IGH-CEBP patients are 

predominantly teenagers and young adults, who are already associated with 

inferior outcome. Since the identification of this subtype of BCP-ALL (Chapiro et 

al., 2006; Akasaka et al., 2007), few studies have characterised the group 

further. Many have simply collected additional patients, comprising small 

numbers for analysis of clinical and cytogenetic data (Chapiro et al., 2006; 

Akasaka et al., 2007; Lundin et al., 2009; Messinger et al., 2012; Chapiro et al., 

2013; Russell et al., 2014). 

The aim of this project was to characterise IGH-CEBP patients using detailed 

genomic and functional techniques, and to make full use of the UK clinical trials 

database resource to create a cohort large enough to identify patterns within 
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clinical and cytogenetic data, which was not previously possible due to small 

patient numbers.  

 

Genetic Characterisation 

In this project genetic characterisation of the subgroup has revealed a number 

of interesting new findings. A total of 33 IGH-CEBP patients were identified, 

successfully generating the largest known cohort of this subgroup, which was 

found to comprise 19% of the IGH cohort, higher than the 11% previously 

reported (Russell et al., 2014), and 1% of ALL as a whole. Clinical comparisons 

of this group with the IGH subgroup as a whole showed multiple similarities, 

with the exception of relapse rate, which was found to be twice as high in the 

IGH-CEBP patients. Despite these findings there were not sufficient patients to 

analyse the CEBPE and CEBPG subgroups, highlighting the need for an even 

larger cohort. There is an ongoing recruitment drive in the UK which will ensure 

the cohort will grow with time, however other options are also available. 

Forming collaborative links with other groups who have access to IGH-CEBP 

patients would be extremely useful. The Children’s Oncology Group likely have 

multiple IGH-CEBP patients to add to this cohort, for example the Messinger 

cohort mentioned previously (Messinger et al., 2012). Additional viable samples 

gained can now be expanded more reliably in vivo, through use of Busulfan 

conditioning in NSG mice, giving more material for downstream applications.  

Despite an ongoing need for more patients, this IGH-CEBP cohort identified for 

the first time, novel differences between individual IGH-CEBP partners. IGH-

CEBPB patients were significantly older, had a higher mortality rate and higher 

number of CNAs. Conversely, CEBPD patients had low WBC, the lowest 

number of CNAs, and included the youngest patients, which remained 

significant whether or not DS patients were included. The incidence of CNAs 

between different CEBP subgroups was similar to those observed between 

individual BCP-ALL subtypes: CEBPD patients showed low levels of CNAs 

similar to the HeH subgroup, while CEBPB patients showed a profile more 

similar to iAMP21 or BCR-ABL1 patients (Schwab et al., 2013). The most 

common alterations varied from the incidence typical of paediatric BCP-ALL. 

For example, the IGH-CEBP subgroup showed deletions of CDKN2A/B (25%), 
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IKZF1 (21%), PAX5 (14%) and ETV6 (11%) at different levels from other 

paediatric B-ALL subgroups at 27%, 13%, 19% and 22%, respectively 

(Harrison, 2013). The higher incidence of IKZF1 deletions in IGH-CEBP patients 

was interesting due to its association with the BCR-ABL1 and BCR-ABL1-like 

subgroups and link to a poor outcome (Den Boer et al., 2009; Mullighan et al., 

2009b; Harvey et al., 2010b). Another interesting trend relating to IKZF1 in this 

cohort was its restricted occurrence to the CEBPB and CEBPD subgroups, 

which was a novel and statistically significant finding. Additionally, SNP6.0 

arrays identified one novel aberration not previously observed in BCP-ALL: a 

focal deletion involving the ABL2 gene, potentially leading to constitutive 

activation of this tyrosine kinase. 

 

ABL2 and Classification of the IGH-CEBP Subgroup 

A novel finding in this project was the discovery of four ABL2 deleted patients 

within three CEBP subgroups (CEBPA, CEBPB and CEBPD). The outcome for 

these patients was poor, with two patients relapsing and one dying. The 

deceased patient however also harboured a BCR-ABL1 translocation, which 

likely contributed to the poor outcome. When compared to the IGH group as a 

whole, ABL2 deleted patients were slightly older with a similar WBC and 

mortality rate, but an increased incidence of relapse, and IKZF1 deletions 

(Table 6.1).  

IGH-CEBP 

Patients 

No. of 

Patients 

Mean 

Age 

WBC x 

109L Deaths (%) Relapse (%) IKZF1 del 

ABL2 

Deleted 4 29 36 1 (25%) 2 (50%) 2 (50%) 

ABL2 

Wildtype 29 22 33 8 (28%) 3 (10%) 4 (14%) 

Table 6.1. Comparison of ABL2 deleted and wildtype patients in the IGH-CEBP cohort  

 

TKIs have been used successfully in treatment of leukaemia and cancer 

(Greuber et al., 2013), thus the presence of ABL2 deletions highlights a 

potential novel treatment option for the IGH-CEBP subgroup. Cells from BCR-

ABL1-like patients with ABL2 translocations have been treated in vitro with the 

ABL1 TKI, dasatinib, with successful response (Roberts et al., 2014a). Currently 
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there are no ABL2 specific TKIs,  likely due to the high efficiency of those TKIs 

initially developed for ABL1 inhibition (Greuber et al., 2013). However, before 

these findings can be used clinically, additional work needs to be performed, 

firstly to identify the incidence of the deletion in the subgroup as a whole, and 

secondly to confirm the hypothesis that focal deletions are resulting in ABL2 

deregulation. 

In order to identify new patients with ABL2 deletions, a FISH screening 

approach could be confidently applied for larger deletions. An alternative option 

for those patients with smaller exon 2 deletions and/or without fixed cells is the 

continued development of copy number qPCR. Should additional ABL2 

deletions be found in the cohort, it would be of interest to expand screening to 

other BCP-ALL subgroups. An efficient high throughput method to perform such 

a screen would be the development of a specific MLPA kit, covering exons of 

interest, although this would method would not be sufficient for identification of 

clones below 20% incidence (Schwab et al., 2010a). Targeted NGS provides 

another screening option, which has been shown to detect deletions at levels as 

low as 1% in targeted regions (Grotta et al., 2015). Alternatively high density 

SNP arrays have been shown to efficiently identify CNA; decreasing costs and 

lower DNA requirements make this a valid option. Such screens will be most 

useful if the ABL2 deletion is found to be functionally relevant, which could be 

tested by a range of methods. For example, the CRISPR-Cas9 system could be 

used. Guide RNAs could be selected to delete selected exons from the ABL2 

gene, recreating both the exon 2 and exons 2-7 deletions. This approach could 

be used on CD34+ cells, in order to investigate the consequences on a blank 

haematopoietic background, in a BCP-ALL cell line such as REH, or IGH-CEBP 

patient material without the ABL2 deletion. A disadvantage of using leukaemia 

cell lines would be the confounding effect of additional genetic lesions. This 

disadvantage could be mitigated through the use of the same cancer cell lines 

as control samples when performing RNA-seq or gene expression array 

analysis, serving to remove the effects of aberrant expression resulting from 

other genetic lesions. The advantages of using cancer cell lines are simple cell 

culture protocols, more rapid expansion of edited cells, and potentially unlimited 

material. Clonogenic assays could also be performed to monitor effects on 

proliferation and survival. The initial aim of such an experiment would be to 
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confirm constitutive activation of the gene, and later, the consequences of 

oncogenic deregulation. RNA-seq / gene expression analysis in combination 

with western blotting would prove interaction of the modified ABL2 protein with 

direct downstream targets, such as CRK, RIN1 or RAC1 (Cao et al., 2008; Li 

and Pendergast, 2011). Deregulating ABL2 translocations in the BCR-ABL-like 

subgroup have been observed to lead to phosphorylation of STAT5 (Roberts et 

al., 2014a), something that could be tested with Western Blotting and a 

phosphor-specific antibody. Such studies would help to confirm the functional 

consequences of the ABL2 deletion.  

If ABL2 deletions lead to deregulation of the tyrosine kinase, then these patients 

may belong to the BCR-ABL1-like subgroup. Clinically there are not many 

similarities between IGH-CEBP and BCR-ABL1-like patients to determine this 

relationship. Examination of data published by others (Den Boer et al., 2009; 

Roberts et al., 2014b), showed that the median age of BCR-ABL1-like patients 

was younger than the IGH-CEBP subgroup. WBC was similar to the Roberts 

study, but not the Den Boer study, which was higher, while IKZF1 deletions 

occurred at a lower incidence in the IGH-CEBP group (21%) compared to the 

BCR-ABL1-like (40%). However recurrent IKZF1 deletions and potential 

tyrosine kinase deregulation suggests that IGH-CEBP patients may benefit from 

treatment protocols similar to those of BCR-ABL1-like patients with ABL class 

fusions. 

An alternative method of classifying the IGH-CEBP subgroup could be through 

a more recent classification system, which uses bioinformatics modelling to 

combine cytogenetic and genomic data to create a new risk stratification model 

for treatment of BCP-ALL patients (Moorman et al., 2014). This work has taken 

MLPA data on eight genes/regions commonly altered in BCP-ALL and 

integrated these data on a total of 1551 patients within known cytogenetic risk 

groups to create new genetic good and a poor risk groups, which are 

independent of other risk factors. Prevalence of CNAs was important in 

determining outcome, as incidence of three or more CNAs was classified as 

poor risk. Those genes which were affected were also important, as deletions of 

IKZF1, PAR1, EBF1 or RB1 were immediately classified as poor risk. Any 

cytogenetic profile which had not previously been classified as good risk was 

considered to be poor risk. Using this classification system for the IGH-CEBP 
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subgroup would result in the CEBPB and CEBPD patients classified as poor 

risk, due to the high incidence of IKZF1 deletions, as well as several other 

CEBPs due to the high incidence of CNAs, while other patients would be 

classified as good risk as no CNAs were observed. Application of this 

classification system would divide the CEBP subgroup, resulting in higher 

intensity treatment for the majority of the CEBPB subgroup, where the majority 

of deaths occurred. 

 

Clonal Evolution in the IGH-CEBP Subgroup 

Another issue with the IGH-CEBP subgroup was the high rate of relapse in 

comparison to the IGH group as a whole. Relapse in ALL has several origins, 

with smaller clones present at diagnosis defined as one of the sources 

(Mullighan et al., 2008b). These clones evade initial treatment and expand upon 

elimination of a dominant clone. One of the methods considered to decrease 

relapse rates is through targeting of primary and secondary abnormalities at the 

start of treatment, destroying smaller clones before they can expand to cause a 

relapse. 

In this study, we discovered that IGH-CEBP translocations could occur as either 

primary or secondary events. This knowledge could be an important factor 

when deciding upon treatment strategies. Previously published work on clonal 

evolution in BCP-ALL also showed that IGH translocations can occur as 

secondary events in patients with another known established genetic 

abnormality, such as, ETV6-RUNX1, BCR-ABL1, iAMP21 and KMT2A 

translocations. This work included two patients from this cohort, who displayed 

IGH translocations occurring both as primary and secondary events. HeH 

patient 7143 (IGH-CEBPA) had an IGH translocation in the earliest known 

clone, in combination with additional chromosomes 4, and two copies of 

chromosome 21  and a BCR-ABL1 patient 10859 (IGH-CEBPB), where the IGH 

translocation was secondary to BCR-ABL1 (Jeffries et al., 2014). Work 

performed in this project also shown variation in the occurrence of IGH 

translocations in relation to CNAs. IGH-CEBP translocations occurred as both 

primary and secondary events, with the latter slightly more common. These 

findings indicate that IGH-CEBP translocations can occur as both primary and 
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secondary alterations, depending upon the patient and the associating 

abnormalities. As the study was restricted to abnormalities which could be 

detected by FISH, the presence of other genetic lesions occurring at different 

time points cannot be ruled out. The involvement of the ABL2 deletion was not 

investigated as the CNA was identified after the clonal evolution study had been 

performed. However it would provide interesting future work. Additionally, 

hypodiploid patient, 23168 (IGH-CEBPD), could also be analysed to determine 

order of occurrence.  

 

Functional Characterisation  

While functional characterisation of the IGH-CEBP disease proved difficult, in 

retrospect the results found in this project support other recently published 

modelling studies. Modelling CEBPD deregulation in CD34+ cells showed that 

CEBPD and IK6 overexpression in tandem were insufficient for proliferative 

deregulation and consistent lymphoid differentiation. CEBPD exerted cell cycle 

arrest, as shown in other cell types, with reduced proliferation of transduced 

cells.  

A study (Theocharides et al., 2015)  modelled BCP-ALL by expressing BCR-

ABL1 and IK6 in CD34+ cells. Myeloid expansion was observed in double 

transduced cells, with cells expressing IK6 only exhibiting no oncogenic traits 

when compared to non-transduced CD34+ cells. Myeloid differentiation was an 

unexpected and novel finding in this study, particularly in cells expressing a 

combination of genetic alterations commonly found in BCP-ALL. It appears that 

IK6 expression is insufficient to push lymphoid differentiation, which may be a 

reason for why no visible lymphoid commitment was seen in transduced cells in 

my study. A more recent study modelled a range of IKZF1 deregulation 

(including IK6 expression) with CDKN2A loss in BCR-ABL1 cells, which resulted 

in development of BCP-ALL (Churchman et al., 2015). Both studies showed that 

the oncogenic hits selected for modelling were crucially important for the 

development of BCP-ALL. This project indicated that CEBPD upregulation 

cannot be considered as an oncogenic hit, rather as a tumour suppressor, 

considering the strong anti-proliferative action observed here. As a result, 

CEBPD expressing populations were short lived, both in vivo and in vitro, and 
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the cells sorted by FACS were not of sufficient quantity or quality to extract the 

amount of RNA needed for gene expression analysis.   

Future efforts in modelling of this disease would benefit from making use of 

WGS and WES data to select the most appropriate genetic alterations to 

express dependent upon those molecular pathways affected in patients. 

CDKN2A would have been a good choice as an important cell cycle control 

gene, the removal of this gene may have offset the cell cycle control properties 

of CEBPD (O'Rourke et al., 1999).  

 

Potential Oncogenic Mechanisms of IGH-CEBP in BCP-ALL 

RNA-seq data analysis showed large differences in transcript expression 

between two IGH-CEBP patients. Doubtlessly the characteristic natural 

variation of any leukaemia will be responsible in part for differences in 

transcription profiles. However, despite different CEBP genes being 

overexpressed, it was surprising to see the extent of the differences in 

downstream CEBP targets between the two patients. CEBPB did not appear to 

function as expected: direct CEBPB targets were not affected by high CEBPB 

upregulation, with low expression of inflammation factors and down regulation 

of the ID family being particularly surprising. Conversely high expression of the 

ID family in the IGH-CEBPD patient suggested a direct interaction of CEBPD 

with the ID family, as has been reported previously for CEBPB (Saisanit and 

Sun, 1997) and CEBPA (Wagner et al., 2006).  

The downregulation of CEBPB targets is not the result of a dominant negative 

LIP protein. The western blot performed in this project showed strong 

expression of the LAP* and LAP isoforms, indicating an active role for CEBPB 

in this patient. This observation suggested that the gene expression patterns 

observed using RNA-seq are the result of posttranscriptional controls in patient 

11739. Only one other study has published data on CEBP protein expression, a 

IGH-CEBPA patient who expressed the active p42 isoform of this gene (Chapiro 

et al., 2006). These findings, now in two IGH-CEBP patients, indicate that the 

active protein isoforms of CEBP are overexpressed and are contributing to 

leukaemogenesis by activation, rather than inactivation of CEBP function. 
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It is unclear how increased expression of the CEBP genes may influence 

leukaemogenesis. However, the fact that five members of the same gene family 

are IGH partners suggests a common deregulatory mechanism between CEBP 

genes. Yet what is being observed from the RNA-seq data in this project 

suggests that there may be two distinct mechanisms behind CEBP mediated 

oncogenesis. Logically, inactivation is the most likely mechanism behind CEBP 

oncogenesis, as this would result in the removal of CEBP mediated cell cycle 

control and differentiation. This mechanism may be supported by the existence 

of the single IGH-CEBPG patient, as high expression of the dominant negative 

CEBPG protein could only function by inactivating other CEBP proteins. 

Inactivation of other CEBPs by CEBPG is something observed in a range of 

cancer types (Section 1.5.7.1).  

The second potential mechanism of leukaemogenesis is through CEBP 

upregulation. One common function of multiple CEBP genes is regulation of 

inflammation and the immune system, typically triggered by infection (Tsukada 

et al., 2011). Upregulation of multiple inflammatory genes has been found to 

contribute to multiple cancers, including leukaemia, and is a hypothesis that is 

explored further below.  

 

Inflammation as an Oncogenic Hit in the IGH-CEBP Subgroup 

High variation in expression of multiple inflammatory factors was found in the 

RNA-seq data analysed in this project. Inflammation genes were among the top 

15 most highly expressed genes in patient 23395, among them were 

inflammatory factors, such as CXCL12, IL-6, CCL2, and MMP13, which are 

indicative of leukaemia with a strongly upregulated inflammatory phenotype 

(Giles et al., 2014). The action of the majority of these genes provide an 

oncogenic effect through increased migration of leukaemic cells to the bone 

marrow microenvironment and adherence to this niche, providing shelter from 

chemotherapeutic agents. CXCL12 and its receptor, CXCR4, are important in 

the maintenance and adherence of the haematopoietic stem cell pool (Tzeng et 

al., 2011), and the migration of leukaemic cells to the BM through chemotaxis 

via p38MAPK and PI3K activation (Wang et al., 2000; Juarez et al., 2009; Sahin 

and Buitenhuis, 2012). Specifically, high expression of CXCL12 has resulted in 
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increased levels of malignancy in both solid tumours (de Oliveira Cavassin et 

al., 2004) and leukaemia (de Oliveira et al., 2007). CCL2 has also been shown 

to increase adhesion of ALL cells to BM stroma resulting in increased survival 

and proliferation of ALL cells (de Vasconcellos et al., 2011). 

Such a phenotype would result in improved cell survival, through resistance to 

apoptotic signals and chemotherapy, and increased metastasis, due to matrix 

metalloprotease expression and IL-6 expression. This upregulation of 

inflammatory factors may be the oncogenic push conferred by the CEBP family 

in IGH-CEBP BCP-ALL, although it appears to be independent of NF-κB. The 

high expression of such factors may play a role in the increased relapse rate of 

the IGH-CEBP subgroup in comparison to other IGH patients (15% vs 7%) 

(Figure 6.1), but they may also provide interesting targets for therapy with the 

aim of decreasing relapse rates, which has been observed in AML with the use 

of the CXCL12 analogue Plerixafor, which binds to the CXCR4 receptor and 

prevents downstream signalling (Uy et al., 2012). 

Ultimately, upregulation of CEBP genes appears to lead to oncogenesis, either 

through upregulation of inflammatory factors or through deregulation of cell 

cycle and differentiation control. 

 

What are the Posttranscriptional Pressures and Protein Interactions of the 

CEBP Genes? 

These RNA-seq finding raise an important question, what are the post 

transcriptional pressures on the CEBP genes? The seemingly erratic function of 

CEBPB is likely due to post transcriptional regulation and not expression of the 

dominant negative LIP isoform. This observation suggests inactivation through 

other means, such as FLT3 mediated phosphorylation, or ubiquitination / 

SUMOylation. SUMOylation can likely be discounted as the source of regulation 

because all SUMO gene transcripts are downregulated in patient 11739 (data 

not shown). FLT3 has been shown to force expression of the CEBPB dominant 

negative LIP protein isoform, which is achieved by dephosphorylation of PKR, a 

phosphorylating agent which inactivates elf-2α and removes its inhibition of elf-

4E, the translation factor responsible for expression of fully formed CEBPB and 

CEBPA (Calkhoven et al., 2000; Haas et al., 2010). Alternatively, it would be 
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interesting to investigate the binding partners for the CEBP genes, which could 

be achieved using chromatin immunoprecipitation assays to determine protein 

interaction with DNA. Targets such as the ID family and the multiple 

inflammatory factors could be analysed in patients 11739 and 23395, to identify 

whether CEBP binding was taking place at the desired target gene. Standard 

immunoblotting could be used to determine CEBP dimers and to investigate 

their interplay with other bZIP genes. Genes such as FOS, JUN, and 

CREB/ATF are CEBP partners, with potential to be functionally inactivated due 

to high expression of CEBP genes leading to sequestering of other functional 

bZIP partners in IGH-CEBP BCP-ALL cells.  

 

Lineage commitment in the IGH-CEBP Subgroup 

A question which was initially interesting in this study was attempting to identify 

why myeloid differentiation was blocked in IGH-CEBP patients, particularly with 

the myeloid committing role of the CEBP family. It is most likely that IGH-CEBP 

translocations occur later in leukaemia development, when the affected blast is 

already committed to the lymphoid lineage. In the two patients, PU.1 expression 

was low while PAX5 expression was normal. CEBPs initiate myeloid 

differentiation in lymphoid committed cells by working synergistically with PU.1 

and down regulating PAX5. It is surprising that with this powerful transformative 

ability, there is no recorded incidence of myeloid leukaemia with an IGH-CEBP 

translocation. This may be due to the natural function of the CEBP family; 

translocations occurring prior to B-lymphoid commitment undergo RB/E2F 

mediated cell cycle arrest and differentiate into myeloid cells, followed by cell 

death, preventing the expansion of a potentially oncogenic clone. The 

importance of PAX5 in maintenance of B-cell identity in IGH-CEBP BCP-ALL 

could be investigated by culturing primary patient material and knocking out 

PAX5 using CRISPR-Cas9 technology. The use of this technology with primary 

cells has been successfully tested and performed on T-cells and CD34+ cells 

by using modified guide RNAs (Hendel et al., 2015). Modified cell lineage could 

be tracked using cell surface marker expression with flow cytometry. 
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Figure 6.1.  The potential mechanisms of IGH-CEBP mediated oncogenesis.   

A. An IGH-CEBP translocation occurring in a CLP cell without prior genetic aberrations, leading to myeloid differentiation 

and apoptosis as a result of the upregulation of myeloid committing and cell cycle arrest genes. B. IGH-CEBP 

leukaemogenesis may develop as follows; several priming genetic alterations commit the recipient cell to the lymphoid 
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lineage and induce proliferative deregulation, following these events the IGH-CEBP translocation occurs. CEBP functions 

controlling myeloid differentiation and cell cycle arrest is blunted due to prior genetic alterations, however CEBP mediated 

upregulation of inflammatory factors is not affected, and an oncogenic push is exerted through upregulation of 

inflammatory genes leading to increased DNA damage and drug resistance. This theory fits the RNA-seq data observed 

in patient 23395. C. A second potential mechanism of IGH-CEBP leukaemogenesis may occur through the target cell 

receiving priming genetic insults, again committing the cell to the lymphoid lineage, on this occasion however CEBP 

function is hindered post IGH-CEBP translocation through an unknown mechanism, leading to a loss CEBP function, 

including control of cell cycle control which results in oncogenesis. This theory is reflected in the RNA-seq data observed 

for patient 11739, and the mechanism of oncogenesis observed in CEBPG deregulated cancers. 

 

Therapeutic Targets for IGH-CEBP Patients 

Other than the potential application of TKIs for IGH-CEBP patients with ABL2 

deletions, there is potential for therapeutic targets focused on inhibition of the 

CEBP genes themselves. Berberine, a well-studied plant alkaloid, indirectly 

downregulates the CEBP genes through upregulation of CEBP family repressors; 

CEBPZ and DEC1 / DEC2, which in turn inhibit the function of CEBPA through 

interruption of DNA binding. This experiment was performed on 3T3-L1 

preadipocytes and found to inhibit adipogenesis (Pham et al., 2011). Berberine 

controls cell cycle progression at multiple stages, one by inhibiting expression of 

CCND1, CCND2, and CCNE1 and halting cell cycle progression at the G1 phase 

(Mantena et al., 2006), and downregulating CDK1 and CCNB1 expression, 

resulting in cell cycle arrest at the G2/M phase (Lin et al., 2006). This therapeutic 

agent may be particularly attractive for use with certain IGH-CEBP BCP-ALLs, as 

it hits multiple inflammatory targets such as were observed to be upregulated in 

patient 23395; IL-6 (Chen et al., 2008a), COX2 (Kuo et al., 2005) and HIF-1α (Lin 

et al., 2004). It would be of interest to investigate whether this therapeutic 

compound could function in inhibition of other CEBPs, which would be feasible 

as DEC1 and DEC2 have been shown to lead to CEBPB inhibition in 

adipogenesis (Gulbagci et al., 2009).  

Betulinic acid is a well-established therapeutic agent with antimalarial, anti-

inflammatory and anticancer properties, which was found to inhibit CEBPD, 

CEBPE and CEBPG to a similar degree, while showing little effect on CEBPB 

(Hollis et al., 2012). The drug operates by inhibiting binding of CEBP dimers to 

target DNA, in 3T3-L1 preadipocytes, resulting in inhibited adipocyte 

differentiation in a dose dependent manner, suggesting inhibition of CEBPA and 

CEBPD. Betulinic acid was reported to lead to cell death of K562 myelogenous 
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leukaemia cells through upregulation of BAX and caspase-3 (Wu et al., 2010). It 

was also found to induce apoptosis in 65% of primary paediatric acute leukaemia 

cells and leukaemia cell lines, through induction of caspases and release of 

cytochrome c and Smac, mitochondrial apoptosis induction genes (Ehrhardt et 

al., 2004). In combination with RNA-seq data, both of these compounds could be 

tested on primary patient material to investigate their efficacy on IGH-CEBP BCP-

ALL cells. As CEBPs are expressed for specific functions at specific time points, 

their downregulation in BCP-ALL patients could potentially avoid a number of side 

effects, dependent on drug concentrations.  

 

Future Screening Approaches and Targets in IGH-CEBP BCP-ALL 

With continuing patient enrolment in UK trails, new IGH-CEBP patients are 

likely to be identified. To expand genomic data, these samples could be 

analysed with a combination of WGS, WES, SNP and RNA-seq. Using these 

approaches on a greater number of patients would add depth to the 

characterisation of this subgroup as recurring mutations could be identified, 

something that this project has lacked. SNP arrays would provide data on 

CNAs. They are cheap and were successfully used to identify the recurring 

ABL2 deletion in this project. Potentially the most interesting platform for 

additional work would be RNA-seq, as the vastly different expression profiles of 

patients 11739 and 23395 have posed many questions as to the prominent 

mechanism of oncogenesis in the IGH-CEBP group. Epigenetic analysis would 

also be valuable as CEBP gene promoters have been shown to be methylated, 

leading to their inactivation. While this mechanism is unlikely to play a role in 

IGH-CEBP BCP-ALL, the CEBP genes are involved indirectly in acetylation and 

histone modification. An example is posttranscriptional inactivation of CEBPB 

by the histone-lysine N-methyl transferase, H3 lysine-9 specific 3, through 

binding to the CEBPs TAD (Pless et al., 2008).   

 

Final Conclusion 

The discoveries made during this PhD support the increasing number of studies 

identifying the importance of genomic data for patient treatment. Findings such 
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as the identification of RTK-RAS pathway deregulation in HeH (Paulsson et al., 

2015), and the split in haploid BCP-ALL patients between cases with RAS 

activating mutations and those with TP53, CDKN2A/B, and/or RB1 deletions 

(Holmfeldt et al., 2013), show how improved screening is resulting in altered 

treatment options even in established BCP-ALL subgroups. Additional work is 

required with a larger patient cohort, but the IGH-CEBP subgroup shows 

several indications that it may be sub-divided further to impart the best possible 

patient treatment options. Whether these divisions are between individual CEBP 

subgroups based on clinical data, or individual patients based on genetic 

profiles, and specific CNAs such as ABL2 deletions, remains to be confirmed. 

However data acquired in this project suggest that there are current therapeutic 

options such as dasatinib (ABL2 deletions) and Plerixafor (CXCL12 

overexpression) which could improve patient survival. Rather than going 

through the long process of developing new therapeutic agents, this body of 

work implies that treatment options in the IGH-CEBP subgroup may be already 

available. 
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Chapter 7 Supplementary Data 

 

7.1 Supplementary Tables 

Gene No of 

probes 

Region Deletion / Deregulation in 

BCP-ALL 

IKZF1 8 7p12.2 29% 

CDKN2A/B 3 9p21.3 20% 

PAX5 7 9p13.2 32% 

EBF1 4 5q33.3 2% 

ETV6 6 12p13.2 5% 

BTG1 4 12q21.3

3 

9% 

RB1 5 13q14.2 5-11% 

PAR1 Region* 1 each Xp22.33 6% 

Supplementary Table 7.1. Table showing probe distribution in the SALSA MLPA P335-A1 ALL IKZF1 kit, location of 

targeted genes and incidence of genetic lesions in BCP-ALL. 

 

Panel Name Tube No. Marker Name Fluorochrome 

Cincinnati 
Standard 
Panel 

1 

Thy1 PE 

CD34 APC 

CD11b PB 

Death Marker 7AAD 

2 

CD14 PE 

CD16 APC-Cy7 

CD33 APC 

Death Marker 7AAD 

3 

CD19 PB 

CD10 PE-Cy7 

CD20 PE 

Death Marker 7AAD 

Cincinnati 
Xenograft 
Panel 

1 

hCD45 PE-Cy7 

mCD45 APC-Cy7 

CD19 Pacific Blue 

CD13 PE 

CD33 PE 

CD34 APC 

Death Marker 7AAD 

Supplementary Table 7.2. Flow cytometry panels used in Cincinnati 
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Panel Name Tube No. Marker Name Fluorochrome 

Newcastle Standard Panel 1 CD34 APC 

CD19 PE 

CD33 PE-Vio770 

CD10 APC-Cy7 

CD11b Pacific Blue 

*DAPI / Zombie 

Aqua 

UV/Pacific 

Blue 

Newcastle Xenograft FACS 

Panel 

1 hCD45 PerCP-Cy5.5 

mCD45 APC-Cy7 

CD19 PE 

CD33 PE-Vio770 

DAPI UV 

Newcastle CD34+ Cell Sort 

FACS Panel 

1 hCD45 PerCP/Cy5.5 

CD19 PE 

CD33 PE-Vio770 

DAPI UV 

Supplementary Table 7.3. Flow cytometry panels used in Newcastle.* Newcastle standard panel switched from Zombie 

Aqua to DAPI during the course of experiment 3. 

 

Partner Gene Cytogenetic Break Point 

IGH-CEBPA / CEBPG t(14;19)(q32;q13) 

IGH-CEBPB t(14;20)(q32;q13) 

IGH-CEBPD t(8;14)(q11;q32) 

IGH-CEBPE inv(14)(q11q32)/t(14;14)(q11;q32) 

Supplementary Table 7.4. Cytogenetic breakpoints used to search for potential IGH-CEBP patients. 

 

Patient ID IGH Partner 

1798 CEBPA 

4175 CEBPA 
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4198 CEBPA 

4774 CEBPA 

7143 CEBPA 

7617 CEBPA 

11540 CEBPG 

3455 CEBPB 

5632 CEBPB 

10859 CEBPB 

11682 CEBPB 

2734 CEBPD 

3622 CEBPD 

3759 CEBPD 

6889 CEBPD 

20580 CEBPD 

23395 CEBPD 

22355 CEBPD 

7247 CEBPE 

Supplementary Table 7.5. Patient cohort created by Dr. L. J. Russell. 

 

 Patient Age (%) 

IGH Partner <10 10-18 18-25 >25 Mean Median 

CEBPA 0(0) 5(50) 1(10) 4(40) 26 17 

CEBPB 0(0) 3(38) 0(0) 5(62) 30 31 

CEBPD 6(55) 4(36) 1(9) 0(0) 11 9 

CEBPE 1(33) 0(0) 0(0) 2(67) 37 45 

CEBPG 0(0) 1(100) 0(0) 0(0) NA NA 

Total 7(21) 13(39) 2(6) 11(33) 22 15 

Supplementary Table 7.6. Age of IGH-CEBP translocations patients divided by subgroup and age group (P=0.005). 

 

 

   

 WBC x 109/L 

IGH Partner <50 50+ 
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CEBPA 9 1 

CEBPB 5 3 

CEBPD 10 1 

CEBPE 3 0 

CEBPG 1 0 

Total 28 5 
Supplementary Table 7.7. WBC of IGH-CEBP translocations patients (P=0.45). 

 

 

 

Number of 
Abnormalities 

IGH Partner 0 +1 

CEBPA 4(57) 3(43) 

CEBPB 0(0) 6(100) 

CEBPD 8(73) 3(27) 

CEBPE 2(67) 1(33) 

CEBPG 1(100) 0(0) 

Total 15(54) 13(46) 
Supplementary Table 7.8. Copy number abnormalities split by 0 and 1 or greater in the IGH-CEBP cohort (P=0.025).  

 

IGH Partner 0 1 2 3 5 6 

CEBPA 4(27) 1(25) 0(0) 1(33) 0(0) 1(50) 

CEBPB 0(0) 3(75) 2(67) 1(33) 0(0) 0(0) 

CEBPD 8(53) 0(0) 1(33) 0(0) 1(100) 1(50) 

CEBPE 2(13) 0(0) 0(0) 1(33) 0(0) 0(0) 

CEBPG 1(7) 0(0) 0(0) 0(0) 0(0) 0(0) 
Supplementary Table 7.9. Copy number abnormalities split numerical incidence in the IGH-CEBP cohort, percentages in 

brackets (P=0.05).  

 

10859     

Red Green Fusion Gold Average 

% 

1 1 1 1 68.8 

1 1 1 2 18.2 

0 0 2 1 4.4 

0 0 2 2 3.1 

1 1 1 3 1.9 

0 1 2 1 1.2 
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2 1 1 1 0.5 

2 1 1 1 0.5 

0 1 1 1 0.5 

0 0 2 3 0.2 

0 1 1 1 0.2 

1 1 1 4 0.2 

2 1 1 2 0.2 

Supplementary Table 7.10. Clonal evolution populations of patient 10859. Probes are CEBPB break apart probe in red 

and green and IKZF1 in gold. 

 

4774     

Red Green Fusion Aqua Average 

% 

1 1 1 0 54.6 

0 0 2 2 20.4 

0 0 2 0 9.2 

2 1 1 0 3.9 

1 1 1 2 3.3 

1 0 2 0 3.3 

1 1 1 1 2.0 

2 2 0 0 1.3 

0 0 2 1 1.3 

1 0 2 1 0.7 

Supplementary Table 7.11. Clonal evolution populations of patient 4774. Probes are CEBPA break apart probe in red and 

green and CDKN2A/B in aqua. 

 

11739      

Red Green Fusion Gold Aqua Average 

% 

0 0 2 1 0 25.9 

0 1 2 1 0 19.2 

1 1 1 1 0 9.7 

0 0 2 1 1 7.7 
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0 0 2 2 0 7.7 

1 1 1 1 1 6.2 

0 1 2 1 1 5.5 

0 1 2 2 0 4.5 

0 0 2 2 1 3.2 

0 0 2 1 2 2.7 

1 1 1 1 2 1.5 

0 0 2 2 2 1.5 

1 1 1 2 1 1.0 

1 1 1 2 0 1.0 

0 1 2 2 1 0.5 

2 0 1 2 0 0.2 

1 1 1 3 1 0.2 

1 1 1 0 1 0.2 

1 1 1 0 1 0.2 

0 1 2 3 1 0.2 

0 0 2 0 0 0.2 

0 2 2 2 2 0.0 

Supplementary Table 7.12. Clonal evolution populations of patient 11739. Probes are CEBPB break apart probe in red 

and green, IKZF1 probe in gold and CDKN2A/B in aqua. 

 

3455     

Red Green Fusion Gold Average 

% 

1 1 1 3 50.3 

1 1 1 2 32.3 

0 0 2 3 6.5 

0 0 2 2 5.8 

0 1 1 3 1.3 

2 2 0 2 0.6 

2 0 1 3 0.6 

1 1 1 1 0.6 

2 2 2 4 0.3 
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1 2 2 4 0.3 

0 0 2 4 0.3 

1 1 2 3 0.3 

1 0 1 2 0.3 

2 2 0 2 0.3 

0 0 2 4 0.0 

Supplementary Table 7.13. Clonal evolution populations of patient 3455. Probes are CEBPB break apart probe in red and 

green and PAX5 in gold. 

 

11682     

Red Green Fusion Gold Average 

% 

1 1 1 1 64.5 

0 0 2 1 9.3 

1 1 1 2 8.4 

1 1 1 0 5.5 

0 0 2 2 4.0 

2 2 2 2 3.7 

0 1 1 1 1.1 

0 0 2 0 1.1 

0 1 1 2 0.9 

2 1 1 1 0.9 

2 1 1 2 0.4 

1 1 2 3 0.2 

Supplementary Table 7.14. Clonal evolution populations of patient 11682. Probes are CEBPB break apart probe in red 

and green and IKZF1 in gold. 

 

 

6889     

Red Green Fusion Aqua Average 

% 

2 1 1 0 29.5 

1 1 1 0 19.3 
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3 1 1 0 18.0 

2 0 2 0 5.7 

1 1 1 1 4.9 

0 0 2 2 4.9 

0 0 2 0 4.5 

0 0 2 1 2.5 

1 0 2 1 2.5 

2 1 1 1 1.2 

2 0 1 0 0.8 

2 0 2 2 0.8 

1 0 2 0 0.8 

1 0 2 2 0.8 

3 0 2 0 0.4 

0 0 3 0 0.4 

1 2 1 0 0.4 

1 1 2 1 0.4 

1 1 1 1 0.4 

1 2 1 0 0.4 

1 1 1 2 0.4 

3 1 1 1 0.4 

2 1 2 1 0.4 

Supplementary Table 7.15. Clonal evolution populations of patient 6889. Probes are CEBPD break apart probe in red and 

green and CDKN2A/B in aqua. 

 

20580      

Red Green Fusion Gold Aqua Average% 

0 0 2 2 2 24.1 

1 1 1 1 0 17.4 

1 1 1 1 1 9.4 

2 0 2 2 2 7.1 

1 0 2 2 2 4.9 

2 1 1 1 0 4.0 

1 1 2 1 1 3.1 
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1 1 1 0 0 3.1 

1 1 1 2 1 2.2 

0 0 2 1 2 2.2 

0 0 2 1 1 2.2 

2 2 1 1 1 1.8 

2 1 1 2 0 1.3 

0 0 2 2 0 1.3 

1 1 2 2 2 1.3 

2 1 1 1 2 1.3 

0 1 1 1 1 1.3 

1 0 2 2 1 1.3 

2 0 2 2 0 0.9 

0 0 2 1 0 0.9 

2 1 2 2 2 0.9 

1 0 1 1 2 0.9 

2 1 1 1 2 0.9 

3 2 1 2 0 0.4 

1 1 1 2 2 0.4 

0 0 2 2 1 0.4 

0 0 2 4 2 0.4 

2 1 1 2 1 0.4 

0 0 2 3 2 0.4 

1 1 1 2 0 0.4 

2 0 2 3 2 0.4 

2 2 1 0 0 0.4 

2 2 1 2 0 0.4 

2 1 1 2 1 0.4 

0 1 1 1 0 0.4 

Supplementary Table 7.16. Clonal evolution populations of patient 20580. Probes are CEBPD break apart probe in red 

and green, IKZF1 probe in gold and CDKN2A/B in aqua. 

 

Patient LRCG File Name 

Diagnostic 

Sample Aros ID MAPD 

Remission 

Sample Aros ID MAPD 
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20580 A1739 A1739-11 0.18 A1739-40 0.21 

19794 A1739 A1739-41 0.20 A1739-42 0.21 

19734 A1739 A1739-43 0.19 A1739-44 0.19 

11540 A1739 A1739-45 0.20 A1739-46 0.19 

22355 A1864 A1864-48 0.40 A1864-49 0.26 

24880 A2883 A2883-06 0.22 A2883-07 0.20 

2734 A1091 A1091 (file 0210)  NA  

5632 A1091 A1091 (file 0210)  NA  

4175 A1613 A1613-02 0.23 NA  

7143 A1613 A1613-03 0.35 NA  

3622 A1613 A1613-04 0.19 NA  

3759 A1613 A1613-05 0.19 NA  

11682 A1613 A1613-07 0.32 NA  

10859 A1864 A1864-46 0.33 NA  

6889 A1864 A1864-47 0.40 NA  

Supplementary Table 7.17. Table displaying patients analysed by SNP array, data shows patient number, file names and 

corresponding MAPDH value. 

 

Gene Name Occurrenc

e 

Location CNS Valid Target? 

RHD x2 Chr 1 

p36.11 

Deletio

n (0-1) 

No, Blood group D antigen 

ABL2 x4 Chr 1 

q25.2 

Deletio

n (1) 

Yes, related to ABL1 and specific to this 

subgroup 

OR4N4, OR4N3P, 

OR4M2 

x3 Chr 15 

q11.2 

Deletio

n (1) 

No, region of high variation 

REREP3 x3 Chr 15 

q11.2 

Deletio

n (1) 

No, region of high variation and 

pseudogene 

SCAPER x5 Chr 15 

q24.3 

Gain / 

Deletio

n 

No, region of high variation and present 

in multiple controls 

NPIP x2 Chr 16 

p11.2 

Deletio

n (1) 

No, region of high variation 

PDXDC1 x2 Chr 16 

p13.11 

Deletio

n (1) 

No, region of high variation 

FAM86DP x2 Chr 3 

p12.3 

Deletio

n (1) 

No, Pseudogene and in a region of high 

variation 
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UGT2B15, UGT2B17 x4 Chr 4 

q13.2 

Deletio

n (0-1) 

No, region of high variation 

GALNTL6 x2 Chr 4 

q34.1 

Deletio

n (0-1) 

No, region of high variation 

C6orf142 (MLIP) x3 Chr 6 

p12.1 

Deletio

n (1) 

No, region of high variation and small 

intragenic deletion 

ADAM5P, ADAM3A x3 Chr 8 

p11.22 

Gain / 

Deletio

n 

No, region of high variation, potential 

pseudogenes 

LOC100132396 

(ZNF705B ) 

x2 Chr 8 

p23.1 

Gain / 

Deletio

n 

No, region of high variation 

KMT2AT3 x3 Chr 9 

p21.3 

Deletio

n (1) 

No, same region as CDKN2A/B 

KLHL9 x3 Chr 9 

p21.3 

Deletio

n (0-1) 

No, same region as CDKN2A/B 

KIAA1797 x3 Chr 9 

p21.3 

Deletio

n (0-1) 

No, same region as CDKN2A/B 

IFNB1 + Multiple other 

IFN genes 

x3 Chr 9 

p21.3 

Deletio

n (0-1) 

No, same region as CDKN2A/B 

FBXW10 x2 Chr 17 

p11.2 

Gain / 

Deletio

n 

No functional relevence 

FAM18B1 x2 Chr 17 

p11.2 

Gain / 

Deletio

n 

Possibly, highly conserved unknown 

function 

LOC220594 

(USP32P2) 

x2 Chr 17 

p11.2 

Gain / 

Deletio

n 

No, region of high variation 

LOC284344 x3 Chr 19 

q13.31 

Deletio

n (1) 

No, region of high variation 

PSG4 x3 Chr 19 

q13.31 

Deletio

n (1) 

No, region of high variation 

PSG9 x2 Chr 19 

q13.31 

Deletio

n (1) 

No, region of high variation 

Supplementary Table 7.18. Potential IGH-CEBP cohort target genes identified using the SNP platform. 

 

Patient Abnormality  Notes 

20120305_145154 Gain 3 1q Gain 

BCR-ABL SNP#36 Gain 3 1q Gain 

BCR-ABL SNP#36 Gain 3 1q Gain 

BCR-ABL SNP#40 Gain 3 1q Gain 

BCR-ABL-SNP#20-250kknsp Deletion 1 NA 
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BCR-ABL-SNP#21-250kknsp Deletion 1 NA 

BCR-ABL-SNP#24-250kknsp Deletion 1 NA 

BCR-ABL-SNP#24-250kknsp Deletion 1 NA 

BCR-ABL-SNP#27-250kknsp Deletion 1 NA 

BCR-ABL-SNP#28-250kknsp Deletion 1 NA 

BCR-ABL-SNP#30-250kknsp Deletion 1 NA 

BCR-ABL-SNP#34-250kknsp Deletion 1 NA 

BCR-ABL-SNP#35-250kknsp Deletion 1 NA 

BCR-ABL-SNP#36-250kknsp Deletion 1 NA 

BCR-ABL-SNP#4-250kknsp Deletion 1 NA 

BCR-ABL-SNP#9-250kknsp Deletion 1 NA 

E2A-PBX1 SNP #1 Gain 3 1q Gain 

E2A-PBX1 SNP #10 Gain 3 1q Gain 

E2A-PBX1 SNP #11 Gain 3 1q Gain 

E2A-PBX1 SNP #12 Gain 3 Partial Gain 

E2A-PBX1 SNP #13 Gain 3 1q Gain 

E2A-PBX1 SNP #14 Gain 3 1q Gain 

E2A-PBX1 SNP #15 Gain 3 1q Gain 

E2A-PBX1 SNP #16 Gain 3 1q Gain 

E2A-PBX1 SNP #17 Gain 3 1q Gain 

E2A-PBX1 SNP #2 Gain 3 1q Gain 

E2A-PBX1 SNP #3 Gain 3 1q Gain 

E2A-PBX1 SNP #4 Gain 3 1q Gain 

E2A-PBX1 SNP #5 Gain 3 1q Gain 

E2A-PBX1 SNP #6 Gain 3 1q Gain 

E2A-PBX1 SNP #7 Gain 3 1q Gain 

E2A-PBX1 SNP #8 Gain 3 Partial Gain 

E2A-PBX1 SNP #9 Gain 3 1q Gain 

E2A-PBX1-SNP#11-250kknsp Deletion 1 NA 

E2A-PBX1-SNP#5-250kknsp Deletion 1 NA 

E2A-PBX1-SNP#6-250kknsp Deletion 1 NA 

Hyperdip50 #10 Gain 3 1q Gain 

Pseudodip #10 Deletion 1 1q Deletion 

Supplementary Table 7.19. All ABL2 copy number alterations in the Mullighan paediatric ALL 2007 cohort. 

 

11682     

CEBPD ABL2     

Red Green Fusion Gold Average  % 

1 1 1 1 47.0 

1 1 1 2 24.2 
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0 0 2 2 16.2 

1 1 1 0 8.6 

0 0 2 1 6.6 

0 0 2 0 2.0 

2 2 2 2 0.5 

Supplementary Table 7.20. Table showing FISH scores for CEBP break apart probes and ABL2 copy number probe for 

CEBPD patient 11682. 

 

10859     

CEBPB ABL2    

Red Green Fusion Gold Average  % 

1 1 1 2 57.0 

1 1 1 1 27.9 

0 0 2 2 7.8 

0 0 2 1 2.5 

2 1 1 2 1.6 

2 1 1 1 1.2 

0 0 1 1 0.8 

1 1 1 0 0.8 

0 0 2 0 0.4 

Supplementary Table 7.21. Table showing FISH scores for CEBP break apart probes and ABL2 copy number probe for 

CEBPB patient 10859. 

 

6889     

CEBPD ABL2    

Red Green Fusion Gold Average  % 

1 1 1 2 50.4 

1 1 1 1 24.4 

2 1 1 2 16.3 

0 0 2 2 3.7 

0 0 2 1 2.2 

2 1 1 1 2.2 

1 0 2 2 0.7 

Supplementary Table 7.22. Table showing FISH scores for CEBP break apart probes and ABL2 copy number probe for 

CEBPD patient 6889. 

 

Primer Name Position Forward Sequence Reverse Sequence 

ABL2 Set 1 Exon 2 TTTGAATGCCATGAAAAGGA TCCATTCCCTGTTCTCCATC 

ABL2 Set 2 Exon 2 ATCACTTTGCCAGCTGTGTG* AACCCTTGAATTTGTGGTTCC 

ABL2 Set 3 Exon 2 GAAGCTTAAGAAAAGTGACGTGGT TGCCAATGCCTTAGTTCAAA* 

ABL2 Set 1 Exon 3 CTTTGCATCGTCCCTATGGT* TGAGTGTGTTATCACCACTTGCT* 

ABL2 Set 2 Exon 3 AGCTTTGCATCGTCCCTATG CTGAGTGTGTTATCACCACTTGC 



 273   
 

ABL2 Set 1 Exon 5 TTGGCAGAGCTTGTACACCA* GACGCCAACGTAAACCTCTC* 

ABL2 Set 2 Exon 5 TGGGCTGGTGACAACATTAC GACGCCAACGTAAACCTCTC 

ABL2 Set 1 Exon 7 TGTGTACTTTGGAGCCACCAT* AGTACTCCATTGCAGAAGAAATCTG* 

ABL2 Set 2 Exon 7 TTTGGAGCCACCATTTTACA TTCTCTAAGTACTCCATTGCAGAAGA 

ABL2 Set 1 Exon 9 TGGGGTATTGTTGTGGGAAA* CTCAGGCTGTTCCATTCGAT* 

ABL2 Set 2 Exon 11 TAGCTGAGGAGCTTGGGAGA* CTGGTGCTAAACTGGAAGCA* 

B2M Intron 1-2 TCTAGGCGCCCGCTAAGTT* TCGCGTGCTGTTTCCTCC* 

RPLPO Intron 2-3 ATAAACGGGCTCAGGCAAGTT* CGCGCTCTTTTAGAAGCCAG* 

TBP Intron 5-6 TCTCTCTGACCATTGTAGCGGTT* CCGTGGTTCGTGGCTCTCT* 

Supplementary Table 7.23. Primers used during optimisation of SYBR Green qPCR of ABL2 copy number analysis. Used 

primer combinations are denoted by *. 

 

Reg ID DoB Age At Diagnosis Trial ID 

23567 27/06/2007 2 IBFM-IGH 

2734 18/06/1992 5 ALL97 

22355 12/02/2003 6 ALL2003 

23168 03/06/2001 8 ALL2003 

6889 26/01/1995 8 MRD PILOT 

25541 29/06/2004 8 RELAPSE 

3622 07/03/1990 9 ALL97 

1798 25/08/1984 10 UKALLXI 

11540 30/05/1996 10 UKALLXIIR 

4175 13/09/1988 11 ALL97 

19734 01/05/1995 12 ALL2003 

7617 08/10/1991 12 UKALLXIIR 

23395   13 ALL2003 

5632 12/10/1988 13 ALL97 

25855 26/10/1998 14 UKALL2011 

11739 28/04/1992 14 UKALLXIIR 

24880 11/12/1995 15 ALL2003 

3759 01/06/1984 15 ALL97 

3455 05/02/1983 15 UKALLXII 

19794 27/11/1989 17 ALL2003 

20580 26/07/1989 18 ALL2003 

4774 02/04/1982 19 UKALLXII 

4198 02/02/1972 28 UKALLXII 

11682 27/05/1976 30 ALL2003 

25458 23/12/1980 31 ALL2003 

10859 24/12/1971 34 ALL2003 

5588 05/02/1959 43 UKALLXII 

7143 14/11/1959 44 UKALLR3 

7247 27/09/1958 45 UKALLXIIR 

25505 18/08/1960 52 UKALL14 

25952 29/12/1957 55 UKALL14 
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25686 20/06/1953 59 UKALL14 

27181 11/04/1949 65 UKALL2011 
Supplementary Table 7.24. Patient age and Trials, older patients in newer trials. 

 

Primer 

Name 

Sequence  

-21M13 TTGTAAAACGACGGCCAGTG 

M13 reverse CACACAGGAAACAGCTATGAC C 

Supplementary Table 7.25. Primers used for sequencing of plasmids by DBS Genomics. 

 

RegID Subgroup 

20033 IGH-CRLF2 Rearrangement 

11538 CRLF2 Rearrangement 

20951 IGH-Other Rearrangement 

2025 Other Abnormal 

2058 Other Abnormal 

6637 KMT2A Rearrangement 

4679 TCF3 Rearrangement 
Supplementary Table 7.26. Control samples for TaqMan qPCR analysis.  

RegID Subgroup 
Protein Conc 
ng/μl 

11672 B-Other 39 

22045 B-Other 40 

21532 B-Other 36 

21226 B-Other 37 

11739 IGH-CEBPB 46 
Supplementary Table 7.27. BCP-ALL Control patients for Western immunoblotting.  

 

LRCG No. Patient ID Subgroup 

LRCG 1 27422 B-other 

LRCG 6 20515 B-other 

LRCG 14 20683 B-other 

LRCG 18 22340 B-other 

LRCG 20 10442 B-other 

LRCG 21 12356 B-other 

LRCG 19 10248 B-other 

LRCG 17 21795 B-other 

LRCG 7 27460 iAMP21 

LRCG 8 25190 iAMP21 

LRCG 9 27109 iAMP21 
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LRCG 16 21567 iAMP21 

LRCG 2 7147 JAK-PDGFRB Translocation  

LRCG 4 5985 TCR translocation 

Supplementary Table 7.28. BCP-ALL Control patients for RNA-seq. Comprised of eight B-other, four iAMP21, and two 

translocation patients.   

 

Pathway / 

Function 

Gene CEBPB Role 11739 

Fold 

Change 

Link to Data Paper 

Immune System CD14 Promoter 0.0 http://onlinelibrary.wiley.com/doi/10.1002/jcp.24513/epdf Wang et al 2007 

CHIT1 Promoter 0.8 http://www.ncbi.nlm.nih.gov/pubmed/17540774 Pham et al 2007 

CXCL8 Promoter -7.5 http://www.ncbi.nlm.nih.gov/pubmed/19734226 John et al 2009 

PPARG Promoter -0.9 http://www.spandidos-publications.com/mmr/6/5/961 Meng et al 2012 

Haematopoiesis ID1 Promoter -4.0 http://www.ncbi.nlm.nih.gov/pubmed/9001238 Saisanit et al 

1997 

ID2 Promoter -3.7 http://www.ncbi.nlm.nih.gov/pubmed/15809228 Karaya et al 

2005 

GATA2 Repressor -2.3 http://mcb.asm.org/content/25/2/706.long Tong et al 2005 

ZFPM1 Repressor -1.6 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261555/ Mancini et al 

2012 

MYB Promoter 0.4 http://www.ncbi.nlm.nih.gov/pubmed/11792321 Tahirov et al 

2007 

SMARCA2 Promoter 0.9 http://www.ncbi.nlm.nih.gov/pubmed/10619021 Kowenz-Leutz et 

al 1999 

Pathway / 

Function 

Gene CEBPD Role 23395 

Fold 

Change 

Link to Data Paper 

Immune System CD14 NA 0.8     

CHIT1 NA 0.7     

CXCL8 NA 3.1     

PPARG Promoter 3.7 http://tinyurl.com/j3vq4p9  Cao et al 1995 

Haematopoiesis ID1 NA 1.1     

ID2 NA 2.3     

GATA2 NA -0.4     

ZFPM1 NA -1.0     

MYB NA 1.0     

SMARCA2 NA 0.5     

Supplementary Table 7.29. Documented expression patterns of CEBPB targets. Data was gathered using BioGRID 3.4, 

String (known and predicted protein-protein interactions) and pubmed. 

 

Top 15 

Upregulated 

Genes 

Fold 

Change 

Function Association Journal Links 

SCN5A 9.2 A key regulator of a 

gene transcriptional 

network that controls 

colon cancer invasion 

and metastasis. 

Cancer, 

Invasion 

  

MYF6 8.0 Involved in muscle 

differentiation (myogenic 

factor) potentially 

upregulated in breast 

cancer. 

Differentiatio

n 

 http://www.ncbi.nlm.nih.gov/pubmed/20651255 

http://tinyurl.com/j3vq4p9
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BMP8B 7.8 Mediates the survival of 

pancreatic cancer cells 

and regulates the 

progression of 

pancreatic cancer. 

Cancer   

HS3ST4 7.6 Expression of this gene 

is thought to play a role 

in HSV-1 pathogenesis. 

Disease, 

Metabolism 

  

XIST 7.3 Inactivates the X gene.     

LAMP5 6.9 Protein coding gene.     

DFNA5 6.9 Methylated in colorectal 

cancer, is a tumour 

suppressor gene. 

Cancer, 

Tumour 

Suppressor 

  

DCHS2 6.4 Gastric and colorectal 

cancer adhesion. 

Cancer, 

Adhesion 

  

EFEMP1 6.4 This gene encodes a 

member of the fibulin 

family of extracellular 

matrix glycoproteins, 

also involved in ERK 

signalling and prostate 

cancer.  

ERK 

signalling, 

Cancer 

http://www.ncbi.nlm.nih.gov/pubmed/25211630 

NCKAP5 6.1 Protein coding gene. 

Associated with 

hypersomnia. 

    

HCG22 5.8 Protein coding gene. 

Associated with folicular 

lymphoma. 

Cancer   

SPRY4 5.7 Invovled in MAPK 

singnalling inhibition. 

Tumour suppressor 

small cell carcinoma. 

Cancer, 

Tumour 

Suppressor 

  

SYNPO 5.6 Actin-associated protein 

that may play a role in 

actin-based cell shape 

and motility. 

Adhesion   

CSPG4 5.6 Onocogene in 

melanoma, carcinoma 

head and neck and 

breast. 

Cancer, 

Adhesion 

 http://www.ncbi.nlm.nih.gov/pubmed/20455858 

CHST3 5.5 Encodes an enzyme 

which is found in the 

extracellular matrix and 

most cells which is 

involved in cell migration 

and differentiation. 

Adhesion, 

Metabolism 

  

     

Top 15 

Downregulated 

Genes 

Fold 

Change 

Function Association Journal Links 

MCAM -8.4 Melanoma adhesion 

molecule, associated 

with metastasis in 

several cancers. 

Cancer, 

Adhesion 

  

RGS1 -7.8 The gene encodes a 

member of the regulator 

of G-protein signalling 

family. Found to be a 

poor risk marker in 

melanoma. 

Cancer, 

Adhesion 

 http://www.ncbi.nlm.nih.gov/pubmed/18580492 

BTG3 -7.6 This family has 

structurally related 

proteins that appear to 

have antiproliferative 

properties. Breast and 

gastric cancer target. 

Cancer   

CXCL8 -7.5  This chemokine is one 

of the major mediators 

of the inflammatory 

response, Involved in 

carcinogenesis 

metastasis and 

angiogenesis.   

Cancer, 

Angiogenesi

s 

http://www.hindawi.com/journals/isrn/2013/859154/ 

JUN -7.5 Bzip family member - 

invovled in cAMP 

signalling, inflammation, 

and several cancers.  

Cancer, 

Inflammatio

n 

http://www.nature.com/nrc/journal/v5/n8/full/nrc1687.html 

SCN3A -6.8 Responsible for the 

generation and 

propagation of action 

potentials in neurons 
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and muscle. Involved in 

cAMP signalling. 

ATF3 -6.6 Encodes a member of 

the mammalian 

activation transcription 

factor/cAMP responsive 

element-binding (CREB) 

protein family of 

transcription factors. 

Tumour suppressor in 

prostate cancer.  

Cancer, 

Tumour 

Suppressor 

http://www.nature.com/onc/journal/v34/n38/full/onc2014426

a.html 

NEU4 -6.6  Has a broad substrate 

specificity being active 

on glycoproteins. 

Contributes to invasive 

properties of colon 

cancers. 

Cancer   

MYO18B -6.5 May influence 

intracellular trafficking 

when in the cytoplasm. 

Mutations in this gene 

are associated with lung 

cancer, potential tumour 

suppressor gene. 

Cancer, 

Tumour 

Suppressor 

  

FFAR1 -6.4 May be involved in the 

metabolic regulation of 

insulin secretion. Onco 

gene in breast cancer. 

Cancer   

MSR1 -6.3 Macrophage receptor, 

mutations of which  lead 

to cancer. 

Cancer, 

Immune 

System 

  

RPS4Y1 -6.1 Ribosome protein 

coding gene.  

    

FOS -6.1 Heterodimerises with 

JUN to form AP-1. 

Inflammatio

n, PI3K 

cascade 

  

ARPP21 -6.1 Encodes a cAMP-

regulated 

phosphoprotein. 

cAMP 

signalling 

  

ZNF492 -6.1 May be involved in 

transcriptional 

regulation. 

Gene 

Expression 

  

Supplementary Table 7.30. Top 15 up and down regulated genes via the RNAseq platform in IGH-CEBPB patient 11739.   

 

Pathway / 

Function 

Gene CEBPD 

Role 

23395 

Fold 

Change 

Link to Data Paper 

cAMP 

signalling 

CREB1 Promoter 0.3 http://www.jbc.org/content/278/38/36959.long Kovacs et al 2003 

CREBBP Promoter 0.4 http://www.jbc.org/content/278/38/36959.long Kovacs et al 2003 

EP300 Promoter -0.7 http://www.ncbi.nlm.nih.gov/pubmed/16397300 Wang et al 2006 

Immune 

System 

RELA Promoter 0.8 http://www.ncbi.nlm.nih.gov/pubmed/9570146 Xia et al 1997 

Inflammation PPARG Promoter 3.7 http://www.ncbi.nlm.nih.gov/pubmed/21257317 Tsukada et al 

2010 

IL6 Promoter 6.2 http://www.nature.com/ni/journal/v10/n4/pdf/ni.1721.pdf  Litvak et al 2008 

IL10 Promoter 2.0 http://www.jbc.org/content/early/2002/12/18/jbc.M207448200.full.pdf Brenner et al 

2002 

Apoptosis SOD1 Promoter 0.1 http://www.ncbi.nlm.nih.gov/pubmed/20385105 Hour et al 2010 

Hypoxia 

Signalling 

HIF1A Promoter 1.0 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018791/ Balamurugan et 

al2010 

Tumour 

Supressor 

FBXW7 Repressor 0.7 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018791/ Balamurugan et 

al2010 

Ubiquitination PER2 Promoter 1.0 http://ict.sagepub.com/content/8/4/317.long Gery et al 2009 

http://www.nature.com/ni/journal/v10/n4/pdf/ni.1721.pdf
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Pathway / 

Function 

Gene CEBPB 

Role 

11739 

Fold 

Change 

Link to Data Paper 

cAMP 

signalling 

CREB1 NA 0.5     

CREBBP NA -0.1     

EP300 NA -0.9     

Immune 

System 

RELA NA -1.5     

Inflammation PPARG Promoter -0.9 http://www.jbc.org/content/281/12/7960.long Zuo et al 2005 

IL6 Promoter -2.6 http://www.ncbi.nlm.nih.gov/pubmed/21257317 Tsukada et al 

2010 

IL10 Promoter -3.8 http://www.jbc.org/content/early/2002/12/18/jbc.M207448200.full.pdf Brenner et al 

2002 

Apoptosis SOD1 NA -1.1     

Hypoxia 

Signalling 

HIF1A NA -1.7     

Tumour 

Supressor 

FBXW7 NA -0.7     

Ubiquitination PER2 Promoter -0.9 http://ict.sagepub.com/content/8/4/317.long Gery et al 2009 

Supplementary Table 7.31. Documented expression patterns of CEBPD targets. Data was gathered using BioGRID 3.4, 

String (known and predicted protein-protein interactions) and pubmed. 

 

Top 15 

Upregulated 

Genes 

Fold 

Chang

e 

Function Association Journal Links 

MMP13 9.4 Degrades collagen type I. Does not act 

on gelatin or casein. Breast cancer 

marker promostes angiogenesis. 

Cancer, 

Angiogenesis 

  

POSTN 8.0 Enhances incorporation of BMP1 in the 

fibronectin matrix of connective tissues. 

Aids cancer metastasis. 

Cancer, 

Metastasis 

  

TNC 8.0 Extracellular matrix protein implicated 

in guidance of migrating neurons as 

well as axons during development, 

synaptic plasticity as well as neuronal 

regeneration. Promostes metastasis. 

Cancer, 

Metastasis 

  

MYF6 7.7 Involved in muscle differentiation 

(myogenic factor) potentially 

upregulated in breast cancer. 

    

COL3A1 7.7 Fibrillar collagen that is found in 

extensible connective tissues such as 

skin, lung, uterus, intestine and the 

vascular system. 

PI3K-Akt   

IBSP 7.6 Potentially important to cell-matrix 

interaction. Involved in breast and 

prostate invasion and growth.  

Cancer, 

Metastasis 

http://www.ncbi.nlm.nih.gov/gene/3381 

LUM 7.3 Important in collagen and other 

connective molecule formations. 

Overexpressed in multiple cancers and 

is linked to a poor outcome.  

Cancer, 

Metastasis 

http://www.ncbi.nlm.nih.gov/pubmed/17671

699 

COL1A2 7.2 Expressed in majority of collagens. 

Hypermethylatin of this gene is linked 

to outcome in head and neck cancer. 

Cancer, 

PI3K-Akt 

http://www.ncbi.nlm.nih.gov/pubmed/22674

299  

FN1 7.1 Fibronectin 1 acts as a potential 

biomarker for radioresistance. 

Cancer https://www.ncbi.nlm.nih.gov/pubmed/2093

0522 

GJA1 7.1 Gap junction protein that acts as a 

regulator of bladder capacity. Multiple 

cancer links through metastasis. 

Cancer, 

Metastasis 

  

IGFBP5 7.0 Gene associated with neuroblastoma 

and breast cancer metastasis.  

Cancer, 

Metastasis 

  

STC1 7.0 Stimulates renal phosphate 

reabsorption. Involved in breast cancer 

metastasis. 

Cancer, 

Metastasis 

  

ZNF804A 7.0 Zinc finger protein.     

http://www.ncbi.nlm.nih.gov/pubmed/22674299
http://www.ncbi.nlm.nih.gov/pubmed/22674299
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COL11A1 6.9 Collagen gene. Involved in ovarian 

cancer and tumour progression. 

Cancer   

CXCL12 6.8 Macrophage recruitment chemokine 

involved in inflammation. 

Inflammation, 

Immune 

System 

  

     

Top 15 

Downregulated 

Genes 

Fold 

Chang

e 

Function Association Journal Links 

ZNF793 -6.1 May be involved in transcriptional 

regulation. 

Transcription

al Regulation 

  

CALN1 -5.6 May play a role in the physiology of 

neurons and is potentially important in 

memory and learning.  

    

ZNF135 -5.5 Zinc finger protein involved in gene 

expression. Linked with renal pelvis 

carcinoma. 

Gene 

Expression 

  

ZNF582-AS1 -5.2 Linc-RNA     

CLECL1 -5.2 May function in mediating immune cell-

cell interactions. May act as a T-cell 

costimulatory molecule. 

Immune 

System 

  

LOC10012839

8 

-5.1 ncRNA gene.     

PNMA3 -5.0 Gene shares homology with retroviral 

Gag proteins. 

    

CSMD1 -5.0 Potential suppressor of squamous cell 

carcinoma. 

Cancer, 

Tumour 

Suppressor 

  

EVC2 -5.0 Positive regulator of the hedgehog 

signalling pathway (By similarity). Plays 

a critical role in bone formation and 

skeletal development. 

Sonic 

Hedgehog 

Signalling 

  

MYO7B -4.9 Myosins are actin-based motor 

molecules with ATPase activity. 

    

GPA33 -4.8 May play a role in cell-cell recognition 

and signalling. 

    

BMPR1B -4.8 Involved in endochondral bone 

formation and embryogenesis. 

    

RGMA -4.7 This gene performs several functions in 

the developing and adult nervous 

system. Tumour suppressor in prostate 

cancer preventing metastasis. 

Cancer, 

Tumour 

Suppressor 

http://www.ncbi.nlm.nih.gov/pubmed/26721

439 

SEMA6A -4.7 Important role in cell-cell signalling. 

Required for normal granule cell 

migration in the developing cerebellum.  

Cell-cell 

Signalling 

  

PLEKHG4B -4.7 Protein coding gene.     

Supplementary Table 7.32. Top 15 up and down regulated genes via the RNAseq platform in IGH-CEBPD patient 22395.   
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7.2 Supplementary Figures  

 

 

Supplementary Figure 7.1. Concurrence between MLPA and SNP, green blocks shows positive concurrence, red blocks 

show a miss match. 

 

 

Supplementary Figure 7.2. pCR-4TOPO construct, image from 

https://www.thermofisher.com/order/catalog/product/K457502. 
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Supplementary Figure 7.3 Transduction levels of Thy1 transduced and Thy1+GFP transduced in CD34+ cells in 

Experiment 1 in two culture conditions. 

7.3 Supplementary Sequences  

Homo sapiens CCAAT/enhancer binding protein (C/EBP), delta, mRNA (cDNA 

clone MGC:132769 IMAGE:8144112), complete cds  

http://www.ncbi.nlm.nih.gov/nuccore/BC105109.1 

ACAGCCTCGCTTGGACGCAGAGCCCGGCCCGACGCCGCCATGAGCGCCG

CGCTCTTCAGCCTGGACGGCCCGGCGCGCGGCGCGCCCTGGCCTGCGG

AGCCTGCGCCCTTCTACGAACCGGGCCGGGCGGGCAAGCCGGGCCGCG

GGGCCGAGCCAGGGGCCCTAGGCGAGCCAGGCGCCGCCGCCCCCGCCA

TGTACGACGACGAGAGCGCCATCGACTTCAGCGCCTACATCGACTCCATG

GCCGCCGTGCCCACCCTGGAGCTGTGCCACGACGAGCTCTTCGCCGACC

TCTTCAACAGCAATCACAAGGCGGGCGGCGCGGGGCCCCTGGAGCTTCT

TCCCGGCGGCCCCGCGCGCCCCTTGGGCCCGGGCCCTGCCGCTCCCCG

CCTGCTCAAGCGCGAGCCCGACTGGGGCGACGGCGACGCGCCCGGCTC

http://www.ncbi.nlm.nih.gov/nuccore/BC105109.1
http://www.ncbi.nlm.nih.gov/nuccore/BC105109.1


 282   
 

GCTGTTGCCCGCGCAGGTGGCCGCGTGCGCACAGACCGTGGTGAGCTTG

GCGGCCGCAGGGCAGCCCACCCCGCCCACGTCGCCGGAGCCGCCGCGC

AGCAGCCCCAGGCAGACCCCCGCGCCCGGCCCCGCCCGGGAGAAGAGC

GCCGGCAAGAGGGGCCCGGACCGCGGCAGCCCCGAGTACCGGCAGCGG

CGCGAGCGCAACAACATCGCCGTGCGCAAGAGCCGCGACAAGGCCAAGC

GGCGCAACCAGGAGATGCAGCAGAAGTTGGTGGAGCTGTCGGCTGAGAA

CGAGAAGCTGCACCAGCGCGTGGAGCAGCTCACGCGGGACCTGGCCGG

CCTCCGGCAGTTCTTCAAGCAGCTGCCCAGCCCGCCCTTCCTGCCGGCC

GCCGGGACAGCAGACTGCCGGTAACGCGCGGCCGGGGCGGGAGAGACT

CAGCAA 

Supplementary Sequence 7.1. CEBPD cDNA insert sequence. 

 

MIGR1 retroviral vector sequence  

Cgatctctcgaggttaacgaattccgccccccccccctaacgttactggccgaagccgcttggaataaggccg

gtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtct

tcttgacgagcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaag

cagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggcagcggaaccccccacc

tggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacctgcaaaggcggcacaaccccag

tgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaa

ggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcg

aggttaaaaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataatatg

gccacaaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacgg

cgacgtaaacggccacaagttcagcgtgtctggcgagggcgagggcgatgccacctacggcaagctgacc

ctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggc

gtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggc

tacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcga

gggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctgggg

cacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatca

aggcgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcaga

acacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagc

aaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcgg

catggacgagctgtacaagtaatgaattaattaagaattatcaagcttatcgatttcgccgacctgcagccaag

cttatcgataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttg

gcaagctagcttaagtaacgccattttgcaaggcatggaaaatacataactgagaatagagaagttcagatc
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aaggttaggaacagagagacagcagaatatgggccaaacaggatatctgtggtaagcagttcctgccccgg

ctcagggccaagaacagatggtccccagatgcggtcccgccctcagcagtttctagagaaccatcagatgttt

ccagggtgccccaaggacctgaaatgaccctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttc

gcgcgcttctgctccccgagctcaataaaagagcccacaacccctcactcggcgcgccagtcctccgataga

ctgcgtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgg

gagggtctcctctgagtgattgactacccgtcagcgggggtctttcatgggtaacagtttcttgaagttggagaac

aacattctgagggtaggagtcgaatattaagtaatcctgactcaattagccactgttttgaatccacatactccaa

tactcctgaaatagttcattatggacagcgcaaaaagagctggggagaattgtgaaattgttatccgctcacaat

tccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacatt

aattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacg

cgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcgg

ctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcagg

aaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttc

cataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacag

gactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccg

gatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgt

aggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaac

tatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagca

gagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagt

atttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaac

caccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatc

ctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatca

aaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttg

gtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctg

actccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcga

gacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtg

gtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaat

agtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctcc

ggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctcc

gatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcat

gccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgacc

gagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattg

gaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtg

cacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgcc

gcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcattt
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atcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgca

catttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgta

tcacgaggccctttcgtctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacg

gtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgg

gtgtcggggctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaatac

cgcacagatgcgtaaggagaaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgggaa

gggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagtt

gggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgccacgctctcccttatgcgactc

ctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgca

aggagatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgctca

tgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctg

tggcgccggtgatgccggccacgatgcgtccggcgtagaggcgattagtccaatttgttaaagacaggatatc

agtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagccatagataaaat

aaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagctta

agtaacgccattttgcaaggcatggaaaatacataactgagaatagagaagttcagatcaaggttaggaaca

gagagacagcagaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaag

aacagatggtccccagatgcggtcccgccctcagcagtttctagagaaccatcagatgtttccagggtgcccc

aaggacctgaaatgaccctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgct

ccccgagctcaataaaagagcccacaacccctcactcggcgcgccagtcctccgatagactgcgtcgcccg

ggtacccgtattcccaataaagcctcttgctgtttgcatccgaatcgtggactcgctgatccttgggagggtctcct

cagattgattgactgcccacctcgggggtctttcatttggaggttccaccgagatttggagacccctgcccaggg

accaccgacccccccgccgggaggtaagctggccagcggtcgtttcgtgtctgtctctgtctttgtgcgtgtttgtg

ccggcatctaatgtttgcgcctgcgtctgtactagttagctaactagctctgtatctggcggacccgtggtggaact

gacgagttctgaacacccggccgcaaccctgggagacgtcccagggactttgggggccgtttttgtggcccg

acctgaggaagggagtcgatgtggaatccgaccccgtcaggatatgtggttctggtaggagacgagaaccta

aaacagttcccgcctccgtctgaatttttgctttcggtttggaaccgaagccgcgcgtcttgtctgctgcagcgctg

cagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaattagggccagactgttaccactccctt

aagtttgaccttaggtcactggaaagatgtcgagcggatcgctcacaaccagtcggtagatgtcaagaagag

acgttgggttaccttctgctctgcagaatggccaacctttaacgtcggatggccgcgagacggcacctttaacc

gagacctcatcacccaggttaagatcaaggtcttttcacctggcccgcatggacacccagaccaggtccccta

catcgtgacctgggaagccttggcttttgacccccctccctgggtcaagccctttgtacaccctaagcctccgcct

cctcttcctccatccgccccgtctctcccccttgaacctcctcgttcgaccccgcctcgatcctccctttatccagcc

ctcactccttctctaggcgccggaatt 

Supplementary Sequence 7.2. MIGR1 retroviral vector sequence. 
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MIVR1 retroviral vector sequence  

Cgatctctcgaggttaacgaattccgccccccccccctaacgttactggccgaagccgcttggaataaggccg

gtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtct

tcttgacgagcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaag

cagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggcagcggaaccccccacc

tggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacctgcaaaggcggcacaaccccag

tgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaa

ggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcg

aggttaaaaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataatatg

gccacaaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacgg

cgacgtaaacggccacaagttcagcgtgtctggcgagggcgagggcgatgccacctacggcaagctgacc

ctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggc

gtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggc

tacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcga

gggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctgggg

cacaagctggagtacaactacaacagccacaacgtcTATATCACCGCCGACAAGCAGAAG

AACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGGCGG

CGTGCAGCTCgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccga

caaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctg

ctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaatgaattaattaagaatt

atcaagcttatcgatttcgccgacctgcagccaagcttatcgataaaataaaagattttatttagtctccagaaaa

aggggggaatgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatgga

aaatacataactgagaatagagaagttcagatcaaggttaggaacagagagacagcagaatatgggccaa

acaggatatctgtggtaagcagttcctgccccggctcagggccaagaacagatggtccccagatgcggtccc

gccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgaccctgtgcctta

tttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccac

aacccctcactcggcgcgccagtcctccgatagactgcgtcgcccgggtacccgtgtatccaataaaccctctt

gcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggg

gtctttcatgggtaacagtttcttgaagttggagaacaacattctgagggtaggagtcgaatattaagtaatcctg

actcaattagccactgttttgaatccacatactccaatactcctgaaatagttcattatggacagcgcaaaaaga

gctggggagaattgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaa

agcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaa

cctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccg
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cttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggta

atacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggcc

aggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatc

gacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctcc

ctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgct

ttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccc

cccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatc

gccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaa

gtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcgg

aaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagca

gattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacg

aaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatg

aagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacct

atctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggaggg

cttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaata

aaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaatt

gttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgt

ggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatccccc

atgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcac

tcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactc

aaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccg

cgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatctta

ccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtt

tctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttg

aatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgt

atttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaacc

attattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtctcgcgcgtttcggtgatgacg

gtgaaaacctctgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcaga

caagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggctggcttaactatgcggcatcagagcag

attgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcagg

cgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagct

ggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaa

acgacggccagtgccacgctctcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccg

ttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacgggg

cctgccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggt
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gatgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgt

agaggcgattagtccaatttgttaaagacaggatatcagtggtccaggctctagttttgactcaacaatatcacc

agctgaagcctatagagtacgagccatagataaaataaaagattttatttagtctccagaaaaaggggggaat

gaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaatacataac

tgagaatagagaagttcagatcaaggttaggaacagagagacagcagaatatgggccaaacaggatatct

gtggtaagcagttcctgccccggctcagggccaagaacagatggtccccagatgcggtcccgccctcagca

gtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgaccctgtgccttatttgaactaac

caatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccctcact

cggcgcgccagtcctccgatagactgcgtcgcccgggtacccgtattcccaataaagcctcttgctgtttgcatc

cgaatcgtggactcgctgatccttgggagggtctcctcagattgattgactgcccacctcgggggtctttcatttgg

aggttccaccgagatttggagacccctgcccagggaccaccgacccccccgccgggaggtaagctggcca

gcggtcgtttcgtgtctgtctctgtctttgtgcgtgtttgtgccggcatctaatgtttgcgcctgcgtctgtactagttagc

taactagctctgtatctggcggacccgtggtggaactgacgagttctgaacacccggccgcaaccctgggag

acgtcccagggactttgggggccgtttttgtggcccgacctgaggaagggagtcgatgtggaatccgaccccg

tcaggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttg

gaaccgaagccgcgcgtcttgtctgctgcagcgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtat

ttgtctgaaaattagggccagactgttaccactcccttaagtttgaccttaggtcactggaaagatgtcgagcgg

atcgctcacaaccagtcggtagatgtcaagaagagacgttgggttaccttctgctctgcagaatggccaaccttt

aacgtcggatggccgcgagacggcacctttaaccgagacctcatcacccaggttaagatcaaggtcttttcac

ctggcccgcatggacacccagaccaggtcccctacatcgtgacctgggaagccttggcttttgacccccctcc

ctgggtcaagccctttgtacaccctaagcctccgcctcctcttcctccatccgccccgtctctcccccttgaacctc

ctcgttcgaccccgcctcgatcctccctttatccagccctcactccttctctaggcgccggaatt 

Supplementary Sequence 7.3 MIVR1 retroviral vector sequence. 

 

IK6 cDNA Sequence  

atggatgcggatgaaggccaggatatgagccaggtgagcggcaaagaaagcccgccggtgagcgatacc

ccggatgaaggcgatgaaccgatgccgattccggaagatctgagcaccaccagcggcggccagcagagc

agcaaaagcgatcgcgtggtgggcgataaaggcctgagcgataccccgtatgatagcagcgcgagctatg

aaaaagaaaacgaaatgatgaaaagccatgtgatggatcaggcgattaacaacgcgattaactatctgggc

gcggaaagcctgcgcccgctggtgcagaccccgccgggcggcagcgaagtggtgccggtgattagcccga

tgtatcagctgcataaaccgctggcggaaggcaccccgcgcagcaaccatagcgcgcaggatagcgcggt

ggaaaacctgctgctgctgagcaaagcgaaactggtgccgagcgaacgcgaagcgagcccgagcaaca

gctgccaggatagcaccgataccgaaagcaacaacgaagaacagcgcagcggcctgatttatctgaccaa
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ccatattgcgccgcatgcgcgcaacggcctgagcctgaaagaagaacatcgcgcgtatgatctgctgcgcgc

ggcgagcgaaaacagccaggatgcgctgcgcgtggtgagcaccagcggcgaacagatgaaagtgtataa

atgcgaacattgccgcgtgctgtttctggatcatgtgatgtataccattcatatgggctgccatggctttcgcgatcc

gtttgaatgcaacatgtgcggctatcatagccaggatcgctatgaatttagcagccatattacccgcggcgaac

atcgctttcatatgagc 

Supplementary Sequence 7.4 IK6 cDNA insert sequence. 

 

ngagctcaggacaggtagaaagaatgaatagaacaataaaagagacccttactaaattgaccttagagact

ggcttaaaagattggagacgcctcctatctctggctttgttaagagccagaaatacgcccaaccgttttcggctc

accccatatgaaatcctttatgggggacccccccctttgtcaaccttgctcaattccttctccccctccgatcctaa

gactgatttacaagcccgactaaaagggctgcaaggcgtgcaggcccaaatctggacacccctggccgaat

tgtaccggccaggacatccacaaactagccacccatttcaggtgggagactccgtgtacgtccggcggcacc

gctctcaaggattggagcctcgttggaagggaccttacatcgtcctgctgaccacgcccaccgccataaaggtt

gacgggatcgccgcctggattcacgcatcgcacgccaaggcagccccaaaaacccctggaccagaaact

cccaaaacctggaagctccgccgttcggagaaccctcttaagataagactctcccgtgtctgactgctaatcca

ccttgtccctgtactaacccaaaatgaaactcccaacaggaatggtcattttatgtagcctaataatagttcgggc

agggtttgacgacccccgcaaggctatcgcattagtacaaaaacaacatggtaaaccatgcgaatgcagcg

gagggcaggtatccgaggccccaccgaactccatccaacaggtaacttgcccaggcaagacggcctactta

atgaccaaccaaaaatggaaatgcagagtcactccaaaaatctcacctagcgggggagaactccagaact

gcccctgtaacactttccaggactcgatgcacagttcttgttatactgaataccggcaatgcaggcgaattaata

agacatactacacggccaccttgcttaaaatacggtctgggagcctcaacgaggtacagatattacaaaacc

ccaatcagctcctacagtccccttgtaggggctctataaatcagcccgtttgctggagtgccacagcccccatcc

atatctccgatggtggaggacccctcgatactaagagagtgtggacagtccaaaaaaggctagaacaaattc

ataaggctatgactcctgaacttcaataccaccccttagccctgcccaaagtcagagatgaccttagccttgatg

cacggacttttgatatcctgaataccacttttaggttactccagatgtccaattttagccttgcccaagattgttggct

ctgtttaaaactaggtacccctacccctcttgcgatacccactccctctttaacctactccctagcagactccctag

cgaatgcctcctgtcagattatacctcccctcttggttcaaccgatgcagttctccaactcgtcctgtttatcttcccct

ttcattaacgatacggaacaaatagacttaggtgcagtcacctttactaactgcacctctgtagccaatgtcagta

gtcctttatgtgccctaaacgggtcagtcttcctctgtggaaataacatggcatacacctatttaccccaaaactg

gaccagactttgcgtccaagcctccctcctccccgacattgacatcaacccgggggatgagccagtccccatt

cctgccattgatcattatatacatagacctaaacgagctgtacagttcatccctttactagctggactgggaatca

ccgcagcattcaccaccggagctacaggcctaggtgtctccgtcacccagtatacaaaattatcccatcagtta

atatctgatgtccaagtcttatccggtaccatacaagatttacaagaccaggtagactcgttagctgaagtagttc

tccaaaataggaggggactggacctactaacggcagaacaaggaggaatttgtttagccttacaagaaaaa
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tgctgtttttatgctaacaagtcaggaattgtgagaaacaaaataagaaccctacaagaagaattacaaaaac

gcagggaaagcctggcaaccaaccctctctggaccgggctgcagggctttcttccgtacctcctacctctcctg

ggacccctactcaccctcctactcatactaaccattgggccatgcgttttcagtcgcctcatggccttcattaatga

tagacttaatgttgtacatgccatggtgctggcccagcaataccaagcactcaaagctgaggaagaagctca

ggattgagcttccgggacaaaagcaggggggaatgagaagtcagaaccccccacctttgctacataaataa

ccgctttcatttcgcttctgtaaaacgcttatgcgccccaccctagccggaaagtccccagccgctacgcaacc

cgggccccgagttgcatcagccgttcgcaacccgggctccgagttgcatcagccgaaagaaacttcatttcca

agctt 

Supplementary Sequence 7.5 FEV RD114 envelope sequence. 
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