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ABSTRACT 

The dysregulation of DNA damage repair has a significant clinical impact in ovarian 

cancer. DNA double strand breaks (DSB) are repaired by the homologous 

recombination (HR) and the non homologous end joining (NHEJ) pathways. 50 % of 

ovarian cancers are HR defective (HRD), which makes these cancers sensitive to 

poly(ADP-ribose) polymerase inhibitors (PARPi). The role of PARP-1 in NHEJ, and 

the interaction between the two pathways in cancer chemo- and radio-sensitivity has 

been reported.  

In this study, a primary ovarian cancer (PCO) culture model, derived from ascites, 

was optimised and the association of HRD with PARPi and cisplatin sensitivity 

confirmed. One PCO culture spontaneously immortalised, forming a novel cell line, 

NUOC-1, which was characterised demonstrating extensive genomic instability, 

clonal evolution and genomic aberrations consistent with an endometrioid / clear cell 

ovarian cancer.  

NHEJ was found to be defective in 40 % of ovarian cancers, which was independent 

of HR and was associated with resistance to the PARPi, rucaparib. DNA-PKcs, Ku70 

and Ku80 were found to be promising biomarkers for NHEJ function, however utility 

may be limited by intra-tumour heterogeneity. The role of PARP-1 in DNA DSB 

recognition and repair was assessed. Whilst PARP-1 expression and activity were 

independent of HR and NHEJ, PARP-1 was found to interact with DNA-PK and ATR 

in DSB recognition and repair.  

HR recovery was found to lead to cisplatin and rucaparib cross resistance, and this 

appeared to be independent of BRCA and NHEJ function. Additionally, cisplatin 

resistant HRD cells were found to remain sensitive to rucaparib. Mutational and gene 

expression profiles were found to be cell and drug dependent with complex 

alterations in all resistant cell lines. 

These results demonstrate the essential role of DSBs repair pathways in platinum 

and PARPi sensitivity. Stratification of tumours by HR and NHEJ function may 

therefore improve patient selection for treatment. 
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CHAPTER 1 INTRODUCTION 

1.1 Background  

Ovarian cancer poses challenges to clinicians due to advanced presentation, poorly 

understood aetiology, limited treatment modalities at relapse and a high mortality 

rate. Worldwide, ovarian cancer accounts for around 4 % of all cancers diagnosed in 

women. The risk of developing ovarian cancer by age 75 is between 0.5 % and 1.6 % 

(National Cancer Institute, 2014). Despite recent developments, overall mortality has 

changed little over the past 20 years, with the 5-year overall survival remaining low at 

40 % (Jemal et al., 2009). The insidious onset of non-specific symptoms, coupled 

with a lack of a reliable detection method for early stage disease, results in a late 

stage at presentation at which time there are widespread metastases (Menon et al., 

2009). The current standard treatment for epithelial ovarian cancer (EOC) is surgery 

accompanied by chemotherapy based on platinum compounds, with or without 

Taxanes (Ramirez et al., 2011). Although 70-80 % of women present with advanced 

stage disease, rates of response to primary chemotherapy are good, leading to 

improved median survival times. Aggressive surgical and medical treatment for 

primary and recurrent disease is thought to be responsible for the small improvement 

seen in survival (Kitchener, 2008). However, high rates of recurrence and the 

development of chemo-resistance limits further improvements (Kaye, 1996). 

Chemotherapy in platinum resistant disease is a challenge, and is associated with 

significant toxicity with the current chemotherapeutic agents (Markman, 2009). It is 

these reasons that also make ovarian cancer an important study target, as there is 

an urgent need for new therapeutic approaches and the means to identify patients 

who will benefit from them (Schilsky, 2010). 

PARP inhibitors (PARPi) are an exciting new class of chemotherapeutic agents 

which act by exploiting defects in DNA repair pathways of cancer cells (Farmer et al., 

2005, McCabe et al., 2006, Helleday et al., 2005, Ashworth, 2008b). The response of 

cancers known to have BRCA1/2 mutations, to PARPi, has been demonstrated in 

phase III clinical trials and they are now licensed for clinical use (Kim et al., 2015, 

Scott et al., 2015). With clinical trials continuing, a better understanding of the DNA 

repair pathway defects which results in cancer response to these drugs is now 

essential.  
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Attempts to stratify treatment have so far concentrated on identifying defects in the 

homologous recombination repair (HR) pathway (Mukhopadhyay et al., 2010). 

However, there is now increasing evidence for the role of PARP in the regulation of 

non homologous end joining (NHEJ) and alternative end joining (A-EJ) pathways; for 

interactive effects of PARPi and DNA-dependent protein kinase (DNA-PK) inhibitors; 

and for the role of the NHEJ pathway in PARPi resistance in HR deficient (HRD) cells 

(Boulton et al., 1999, Ruscetti et al., 1998, Veuger et al., 2003, Veuger et al., 2004, 

Mitchell et al., 2009a, Wang et al., 2006b, Audebert et al., 2006, Lu et al., 2006, 

Audebert et al., 2008, Hochegger et al., 2006, Saberi et al., 2007).  

Established primary ovarian cancer culture (PCO) models provide us with an 

opportunity to improve the understanding of ovarian cancer response to PARPi and 

allow improved patient stratification by molecular pathology on an individual patient 

basis. Therefore, the primary aim of this project was to assess NHEJ function using 

the PCO model and provide further insight into the mechanisms of interaction of DNA 

double strand break (DSB) repair pathways in sensitivity and resistance to cisplatin 

and PARPi. 

1.2 Tumour Biology in Ovarian Cancer 

The term ‘ovarian cancer’ represents a complex group of tumours in terms of 

histology, molecular characterisation, prognoses and clinicopathological features. 

EOC is the most common subtype in the adult population (90 %) and the work in this 

project concentrates on EOCs. EOCs can be divided into low and high grade serous, 

mucinous, endometrioid, clear cell, transitional (Brenner type) and mixed tumour, 

according to their histological morphology. EOCs can be further subdivided into 

malignant and borderline tumours. However, following an understanding that ovarian 

cancer subtypes develop through the disruption of distinct genetic and biological 

pathways, new classification systems have emerged (Shih and Kurman, 2004, Kobel 

et al., 2008). The commonly referenced model classifies ovarian tumours into two 

groups based on the similarities of tumour presentation, evolution, and most 

importantly genetic mutations (Shih and Kurman, 2004). Type I cancers are the low 

grade serous, mucinous, endometrioid, or clear-cell histology. These cancers are 

often diagnosed at an early stage, grow slowly, and resist conventional 

chemotherapy. The more prevalent type II cancers are high grade serous, high grade 
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clear cell / endometrioid, or carcinosarcoma. These cancers present at a late stage, 

grow aggressively, and respond to conventional chemotherapy. 

1.2.1 Molecular Characteristics of Type I and Type II Tumours 

Clear differences in molecular alterations are also noted between the two groups 

(Table 1-1). Type I cancers tend to have a normal karyotype and wild-type TP53 and 

BRCA1/2, but frequent mutations in the B-RAF and KRAS (Grisham et al., 2012). 

Clear-cell and endometrioid carcinomas share a similar gene expression pattern that 

is consistent with a common origin. These include ANXA4 and UGT1A1 genes, 

which are associated with chemo-resistance (Farley et al., 2008). Furthermore, 

inactivating mutations of ARID1A and PTEN, and activating mutations of PIK3CA that 

up-regulate phosphatidylinositol-3-kinase (PI3K) signaling, have been reported to be 

characteristic (Kuo et al., 2009, Wiegand et al., 2010, Jones et al., 2010). 

Type II cancers are characterised by copy number abnormalities and marked 

genomic instability (Romero and Bast, 2012). The Cancer Genome Atlas Project, 

which analysed more than 300 high-grade serous cancers, detected amplification of 

more than 30 growth-stimulatory genes (Vockley et al., 2012). BRCA1/2 germline 

and somatic mutations are common in type II ovarian cancers (Romero and Bast, 

2012), whilst mutations of TP53 are almost universal (Ahmed et al., 2010, Cancer 

Genome Atlas Research, 2011).  

1.2.2 Precursor Lesions for Ovarian Tumours 

Type I tumours appear to develop from well-established precursor lesions such as 

cystadenomas, atypical proliferative (borderline) tumours and endometriosis (Shih 

and Kurman, 2004). Molecular genetic alterations in PTEN and ARID1A and 

microsatellite instability, can be detected in the epithelial cells of endometriotic cysts 

and a clonal relationship between endometriosis and endometriosis related ovarian 

carcinomas has been demonstrated in several studies (Kim et al., 2014). 

Recently, precursor lesions in the fallopian tube that pass through a stage of 

intraepithelial carcinoma, so-called “serous tubal intraepithelial carcinoma (STIC)” 

(Crum et al., 2007), have been suggested as precursors for type II tumours.  
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Table 1-1 Molecular classification of Ovarian Cancer.  

EOC is classified into type I and type II tumours (Shih and Kurman, 2004). 

Features  

 

Type I tumours Common 

Precursors 

Most 

frequent 

mutations 

Chromoso

mal 

instability 

Slow growing 

Diagnosed at 

lower stages 

Identifiable 

precursor lesions 

Resistant to 

platinum 

chemotherapy 

Low-Grade 

Serous Carcinoma 

Serous 

cystadenoma / 

adenofibroma 

KRAS 

BRAF  

Low 

Endometriod 

Carcinoma 

Endomeriosis 

Adenofribroma 

Intraepithelial 

carcinoma 

PTEN 

CTNNB1 

KRAS 

MSI 

ARID1A 

PI3KCA 

MSI 

Low 

Clear Cell 

Carcinoma 

Endomeriosis 

Adenofibroma 

Intraepithelial 

carcinoma 

KRAS 

PI3KCA 

PTEN 

MSI 

HNF1-β up 

regulation 

ARID1A 

MMR 

pathway  

CTNNB1 

Low 

Mucinous 

Carcinoma 

Mucinous 

borderline 

tumour 

KRAS Low 

 Type II tumours    

Rapid growth  

Early metastasis  

No clearly 

defined 

precursor lesions 

Sensitive to 

platinum 

chemotherapy 

High-Grade 

Serous Carcinoma 

Not recognised TP53 

BRCA1/2 

Amplification 

of HER2 and 

AKT2 

Inactivation 

of p16 

PIK3CA  

CCNE1 

High 

Cacinosarcoma Not recognised TP53  



5 
  

1.2.3 Treatment Considerations for Type I and Type II Tumours 

Regardless of subtype, EOC is uniformly treated with surgical de-bulking and a 

combination of carboplatin and paclitaxel. However, the treatment of type I and type 

II tumours must be individualised.  

As type I tumours are slow growing, chemotherapeutic agents that are effective 

against the more rapidly proliferating type II tumours are not as effective. Many 

studies relate the poor prognosis of clear cell with resistance to platinum-based and 

taxane-based chemotherapy (Itamochi et al., 2008, Anglesio et al., 2011). In many 

type I carcinomas, there is constitutive activation of the MAPK signaling pathway 

because of mutations in ERBB2, KRAS or BRAF, the upstream regulators of MAPK. 

BRAF and other MAPK inhibitors could improve overall survival in patients with these 

types of tumours when combined with conventional chemotherapy (Shih and 

Kurman, 2004). Furthermore, hormone therapies such as progestogens, tamoxifen, 

luteinizing hormone releasing hormone agonists and more recently aromatase 

inhibitors, may have a role (Walker et al., 2007, Karagol et al., 2007). 

Treatment for type II tumours should also be based on the detection of sensitive and 

specific biomarkers. Type II tumours have an 80 % response rate to platinum therapy 

(Anglesio et al., 2011). More recently it has been demonstrated that hereditary or 

acquired EOC with BRCA mutations and HRD are more sensitive to PARPi, as well 

as to platinum therapy (Mukhopadhyay et al., 2012). 

1.2.4 Risk Factors 

A hereditary predisposition to ovarian cancer occurs in 10 - 15 % of cases. This is 

caused by germline mutations in the tumour suppressor genes BRCA1 and BRCA2, 

or in DNA mismatch repair (MMR) genes (Gayther and Pharoah, 2010). A genome 

wide association study identified a further EOC susceptibility locus at chromosome 

9p22.2 (Song, 2009). The lifetime risk of developing EOC in women with a germline 

BRCA1/2 mutation can be up to 66 % and 27 % respectively (Robles-Diaz, 2004). A 

greater understanding of the functional role of the various BRCA1/2 mutations is 

urgently needed to predict which women will develop gynaecological cancers.  

Although ovarian cancer aetiology remains unclear, a number of risk and protective 

factors have been identified for sporadic ovarian cancer detailed in Table 1-2 
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(Sueblinvong, 2009, Lahmann, 2010, Huncharek, 2003, Salehi, 2008). The most 

important risk factor is advancing age, with more than 85 % of patients being aged 50 

years or older at diagnosis.  

Table 1-2 Risk Factors for Ovarian Cancer Development 

A list of risk and protective factors for the development of ovarian cancer 
(Sueblinvong, 2009, Lahmann, 2010, Huncharek, 2003, Salehi, 2008). 

Risk Factors  Protective Factors 

Increasing age 

Family history 

Early menarche/Late menopause 

Hormone replacement therapy 

Polycystic ovarian syndrome 

Obesity 

Smoking 

Nulliparity 

Fertility drugs 

White ethnicity 

Talcum powder 

Parity  

Breastfeeding  

Combined Oral Contraceptive Pill   

Sterilisation 

Hysterectomy 

1.2.5 Hypotheses for Tumour Origin 

The initial proposed origin of ovarian cancer was from the less differentiated ovarian 

surface epithelial (OSE) cells. OSE are mesothelial-like cells that share 

embryological origin with the Mullerian tract epithelium, which eventually gives rise to 

the tubal, endometrial and endocervical epithelium (Ahmed et al., 2012). 

Subsequently it was suggested that the invaginations which develop in the OSE may 

be incorporated into the ovarian stroma, forming inclusion cysts (Folkins, 2009). The 

formation of inclusion cysts lined by OSE cells was suggested as the origin of EOC, 

but this was later refuted (Dubeau, 1999).  

A further hypothesis put forward for the development of EOCs included Mullerian 

trans-differentiation of trapped OSE cells after repeated ovulation (Roskelley and 

Bissell, 2002, Cheng et al., 2005); which goes some way to explain the risk reduction 

associated with pregnancy and oral contraception (Fathalla, 1971). Ovarian biopsies 

from women receiving ovulation stimulating fertility treatment have revealed a higher 

rate of dysplasia (Fathalla, 1971).  
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More recently, ovarian cancer development directly from mullerian derivatives has 

been suggested (Kindelberger, 2007, Lee et al., 2007b, Herrington, 2010). This is 

evident in some studies which showed dysplastic changes in fallopian tubes in 

women who underwent prophylactic removal of ovaries and fallopian tubes for BRCA 

gene mutation (Hartley et al., 2000, Carcangiu et al., 2006, McCluggage, 2011). 

Further studies systematically examined the tubes in patients with sporadic high 

grade serous ovarian carcinomas (HGSOC) and found similar lesions in up to 60 % 

of cases (Kindelberger, 2007, Przybycin, 2010).  

The heterogeneous behaviour of ovarian cancers suggests that distinct 

morphological subtypes may indeed have different pathogenic processes (Shih and 

Kurman, 2004). HGSOC may originate from the fallopian tubes implanting into 

inclusion cysts or the peritoneal cavity. Endometrioid and clear cell ovarian cancers 

have been linked to retrograde menstruation (Kurman and Shih, 2011) and 

endometriosis (Worley, 2013), and therefore may originate from the endometrial 

cavity. 

1.3 Treatment of Ovarian Cancer 

The majority of women with ovarian cancer present with stage III / IV disease. The 

current gold standard for treatment of advanced ovarian cancer is cytoreductive 

surgery in combination with platinum-based chemotherapy.  

1.3.1 Surgery 

Surgery plays a pivotal role in the management of ovarian cancer. The significance of 

optimal resection (to no tumour or less than one centimetre nodules) is well-

established and maximal cyto-reduction has been shown to be one of the most 

powerful determinants of survival among patients with EOC (Bristow et al., 2002, 

Elattar et al., 2011, Al Rawahi et al., 2013).  

Surgery can be either primary debulking surgery, performed prior to administration of 

six cycles of adjuvant chemotherapy or interval debulking surgery, performed after 

three cycles of neoadjuvant chemotherapy, followed by three further cycles of 

chemotherapy post operatively. Recent major clinical trials have not shown any 

difference in survival after primary surgery compared to survival after neoadjuvant 
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chemotherapy with interval debulking surgery in advanced ovarian cancer (Vergote 

et al., 2010). 

1.3.2 Chemotherapy 

Primary surgery, even in early disease results in a significant proportion of cases 

relapsing and two large randomised controlled trials (RCTs): ICON 1 and ACTION, 

have shown that platinum-based adjuvant chemotherapy after complete cyto-

reduction improves OS  as well as recurrence-free survival at 5 years (Colombo et 

al., 2003, Trimbos et al., 2003). Mixed results have been reported from trials 

assessing the addition of further agents. Several RCTs have shown the importance 

of the addition of paclitaxel to platinum therapy (Piccart et al., 2000, McGuire et al., 

1996) with improvements in progression free survival (PFS) and overall survival (OS) 

(Piccart et al., 2000, McGuire et al., 1996, Bookman et al., 2003). ICON3 however, 

demonstrated that there was no survival benefit between first-line treatment with 

single-agent carboplatin or with the addition of paclitaxel, and the option of single or 

double agent chemotherapy is therefore currently tailored to the individual 

(Collaborators, 2002, Redman et al., 2011). Attempts to improve the standard two 

drug chemotherapy by adding a third agent failed to affect PFS or OS, but did result 

in increased adverse effects (Bookman et al., 2009, du Bois et al., 2006, Pfisterer et 

al., 2006, Hoskins et al., 2010) . To date, standard treatment is offered to all patients 

irrespective of histological subtype, stage or surgical outcome. 

1.3.2.1 Resistance to Chemotherapy  

Both intrinsic and acquired resistance results from the numerous genetic and 

epigenetic changes occurring in cancer cells. The majority of resistance mechanisms 

described are common to several drugs.  Specific changes have also been described 

for platinum and PARPi resistance development. These are discussed in more 

details in chapter 6. One of the most important determinants of drug sensitivity and 

resistance is the cancer cell ability to repair DNA damage. This is discussed in details 

in section 1.4. 

1.3.2.1.1 Alterations in Proliferation Signalling Pathways 

Dysregulation of proliferative signaling pathways is a characteristic of cancer cells 

(Rebucci and Michiels, 2013). Two important cell proliferation pathways are the 
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MAPK and the PI3K, both of which have been reported to be mutated in ovarian 

cancer (Geyer et al., 2009, Nakayama et al., 2006, Willner et al., 2007). 

The PI3K pathway (Figure 1-1) transduces extra cellular signals, to promote cellular 

growth, proliferation and reduce apoptosis. PIK3CA proto-oncogene amplification or 

mutations increasing catalytic activity is associated with EOC (Meng, 2006, 

Yokomizo, 1998, De Luca et al., 2012). PIK3CA is increased in copy number in 40 % 

of ovarian cancer cell lines and patient tumour samples (Shayesteh, 1999). The PI3K 

inhibitor, LY294002, has been shown to inhibit ovarian cancer cell proliferation in 

vitro and to decrease ovarian cancer growth and ascites formation in mice (Hu, 

2000). LY294002 has also been proven to increase the efficacy of paclitaxel in mice 

(Hu, 2000). More recently, a dual inhibitor of PI3K and PARP has been shown to 

significantly suppress tumour growth by downregulating BRCA1/2 in xenograph 

models (Ibrahim et al., 2012). 

 

Figure 1-1 Schematic representation of the PI3K signalling pathway.  

PI3K is coupled with a variety of growth factor-dependent tyrosine kinase receptors. 
Upon stimulation of its upstream receptors, PI3K is activated and generates 
Phosphatidylinositol (3,4,5)-triphosphate (PIP3) from Phosphatidylinositol 4,5-
bisphosphate (PIP2)). PIP3 binds pleckstrin-homology domains to AKT and 
translocate to the plasma membrane where they are activated. All Akt isoforms (Akt1, 
Akt2, Akt3), once activated, promote cellular proliferation and inhibit apoptosis 
through phosphorylation of multiple substrates (Leary et al., 2013). 
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AKT1 and 2 are frequently amplified in ovarian cancer (Cheng et al., 1992, Sun, 

2001). PI3K inhibitors and mTOR (downstream effectors related to growth and 

protein synthesis) inhibitors have been shown to increase the effectiveness of 

cisplatin and tamoxifen in ovarian cancer cells with activated Akt signaling (Treeck, 

2006, Mabuchi, 2007). 

A second signaling pathway that is often overexpressed in cancer cells is the 

Ras/Raf/MAPK pathway (Rebucci and Michiels, 2013). The pathway induces cell 

proliferation and differentiation; and several components have been found to be 

mutated in different cancers.  

 

Figure 1-2 Schematic representation of MAPK pathway.  

Binding of GTP, resulting in activation of the Ras-family GTPases, enables the 
transmission of external signals to the interior of the cell. The active GTP-Ras 
complex then interacts with Raf1 (Smalley, 2003) and a cascade of MEK 
phosphorylation activation steps follows, which in turn phosphorylate ERK. On 
activation, ERK enzymes phosphorylate cytoplasmic targets or migrate to the 
nucleus, where they phosphorylate and activate transcription factors (Treisman, 
1994). They also target membrane bound proteins responsible for protecting cells 
against apoptosis (Lewis, 1998). The activation of the ERK MAPK pathway induces 
synthesis of cyclin D1 (Lavoie, 1996), promoting cell division. 
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Oncogenic mutations lead to activation of the pathway in the absence of a mitogenic 

signal, causing the cell to enter the S phase and continue to divide without any 

control. If cells divide before any DNA damage is repaired, the daughter cells inherit 

the mutations, and should these mutations confer a growth advantage leading to 

bypassing the apoptotic signals, growth of these cells will be selected for in that 

population. 

In ovarian cancer mutations in KRAS, BRAF and ERBB2 oncogenes, which result in 

constitutive activation of the MAPK pathway have been reported (Mayr, 2006, 

Gemignani, 2003). KRAS mutations are reported in 2/3rds of mucinous, 1/3rd of low 

grade / borderline serous and 1/5th of endometrioid cancers (Ho et al., 2004). The 

KRAS mutation is a functional variant located in the KRAS 3’UTR in a let-7 miRNA 

complementary site, which is a significant predictor of platinum resistance (Ratner, 

2011). BRAF mutation is seen in 1/3rd of the low grade serous tumours (Nakayama et 

al., 2008). All known BRAF mutations occur within the kinase domain, with a single 

substitution of A for the T at nucleotide position 1796, accounting for at least 80 % of 

BRAF mutations (Davies et al., 2002, Rajagopalan, 2002). cMYC and ERBB2 over 

expression is seen in 36 - 76 % and 10 - 20 % of advanced stage EOCs and is 

associated with poorer prognoses (Dimova, 2006). 

1.3.2.1.2 Suppression of Tumour Suppressor Genes 

In addition to induction of positive growth signals, tumour cells also down regulate 

tumour suppressor genes (Ertel et al., 2010). Phosphatise and tensin homologue 

deleted from chromosome 10 (PTEN) inhibits the PI3K/Akt pathway. Mutations 

leading to the loss of PTEN result in the activation of the PI3K/Akt pathway and 

increased cell survival (Nagata et al., 2004). Inactivating mutations of PTEN and 

activating mutations of PIK3CA that up-regulate phosphatidylinositol-3-kinase (PI3K) 

signaling have been reported to be characteristic of type I ovarian cancers (Romero 

and Bast, 2012, Munksgaard and Blaakaer, 2012). 

The TP53 tumour suppressor gene is involved in controlling cell cycle, apoptosis and 

maintaining the genome integrity. p53 levels rapidly increase following DNA damage; 

p53 activates genes involved in cell cycle arrest to prevent the cell from entering S 

phase until the damage is repaired. If the damage to the cell genome is too extensive 

to be repaired, p53 induces apoptosis. p53 has also been implicated in the regulation 
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of BRCA1 function (Bouwman et al., 2010) and in the transcriptional regulation of 

RAD51 (Arias-Lopez et al., 2006).  

The majority of studies demonstrate that tumours harboring mutated TP53 are 

associated with resistance (Lai et al., 2012) and treatment failure (Knappskog and 

Lonning, 2012) when compared to wild type. p53 over expression has been 

associated with shorter time to progression and overall survival as well as increased 

platinum resistance (Shahin et al., 2000, Reles et al., 2001, Folkins et al., 2008). In 

HGSOC, p53 mutations are reported to be ubiquitous (Ahmed et al., 2010, Cancer 

Genome Atlas Research, 2011). The therapeutic potential of restoration of wild-type 

p53 expression in tumour cells and use of oncolytic adenoviruses, which can only 

replicate in cells that have lost p53 have failed to show promising results in ovarian 

cancer patients (Buller et al., 2002, Vasey et al., 2002). 

1.3.2.1.3 Insufficient Exposure of Cancer Cells to the Drugs 

Pharmacokinetic approaches to overcome drug resistance are based on attempts to 

improve drug delivery to the cancer cells. Initial trials concentrating on increasing 

drug dose failed to overcome drug resistance (Gore et al., 1998). Intraperitoneal 

delivery of chemotherapy has been reported to improve PFS and OS. Other 

approaches that increase tumour-cell drug exposure include the development of 

Liposomes which increase tumour-cell-specific drug delivery. An example of this 

approach is liposomal doxorubicin, which is now approved for treatment (Strauss et 

al., 2008). Antibody-directed enzyme prodrug therapy and gene-directed enzyme 

prodrug therapy approaches also aim to increase tumour cell specific drug exposure 

to overcome drug resistance with minimal toxicity to normal tissues (Tong et al., 

1998). 

1.3.2.1.4 Changes to Drug Export 

Decreased cellular drug accumulation by resistant cells is one of the major 

mechanisms of resistance. This may be due to either, an inhibition of drug uptake, an 

increase in drug efflux, or both. CTR1 regulates cellular influx of platinum (Holzer et 

al., 2006, Song et al., 2004). Two copper exporters, ATP7A and ATP7B, have also 

been proposed to be involved in cellular resistance to cisplatin (Samimi et al., 2004) 

and it has been shown that ovarian cancer patients with ATP7A expression have a 

lower survival rate than patients with undetectable levels (Samimi et al., 2003). 



13 
  

1.3.2.1.5 Tumour Microenvironment 

Tumours are not only made up of cancer cells but also of stromal cells, macrophages 

and vasculature, which all play an important role in cancer biology and drug 

sensitivity (Rebucci and Michiels, 2013). Ovarian cancer cells can regulate the 

composition of their stroma by promoting the formation of ascitic fluid and by 

stimulating the differentiation of stromal cells. Stromal cells secrete cytokines which 

activate anti-apoptotic pathways and exchange drug efflux proteins enabling 

improved drug metabolism (Castells et al., 2012). Adipocytes secrete growth factors 

which activate TLR4 signalling in macrophages and thereby stimulate the production 

of pro-inflammatory mediators involved in chemo-resistance (Roodhart et al., 2011). 

1.3.3 Treatment of Recurrent Disease 

The treatment of recurrent ovarian cancer is mainly based on chemotherapy and is 

used with palliative, rather than curative intent (Hennessy et al., 2009, Herzog, 2004). 

Secondary cytoreductive surgery has a place in a well selected population (Lorusso 

et al., 2012, Harter et al., 2006). The main prognostic factor for successful treatment 

is the disease free interval from completion of chemotherapy until recurrence. The 

cancer is regarded as platinum-resistant if this time-interval is less than six months, 

and as platinum refractory if progression occurs during treatment (Markman et al., 

1991). ICON 4 has shown increased survival in recurrent ovarian cancer with 

addition of paclitaxel to carboplatin treatment (Parmar et al., 2003). Numerous 

second line agents are now available for use in ovarian cancer (Table 1-3). Evidence 

for these therapies is limited and decisions are therefore made on individual patient 

basis. 

1.3.4 Targeted Therapies 

Besides increased toxicity with recurrent chemotherapies, development of resistance 

against the chemotherapy remains a problem. Novel biologically targeted agents 

target tumour cells and/or microenvironment by exploiting specific molecular 

abnormalities in the tumour. Multiple components of signaling cascades are aberrant 

in ovarian cancer, resulting in the activation of critical oncogenic pathways involved in 

processes such as cell proliferation, survival, migration and angiogenesis. In addition 

to PARPi, which will be discussed in detail in section 1.3.6, antiangiogenic agents are 

the most developed of the novel therapies. 
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  Table 1-3 Second line systemic therapy for the treatment of ovarian cancer.  

Agents Target Resulting effect Licenced 

Indication 

Side-effect Profile Refs 

Bevacizumab 

 

A recombinant monoclonal 

antibody which binds to VEGF. 

Prevention of angiogenesis and 

metastasis  

Suboptimal 

cytoreduction and 

recurrent disease 

Necrotising faciitis 

GI perforation / fistula 

Hypertension 

(Monk et al., 

2013) 

Doxorubicin 

 

Anthracycline antibiotic with 

antimitotic and cytotoxic 

activity. 

Prevents DNA ligation by 

complexes with DNA by 

intercalation between base 

pairs and inhibiting 

topoisomerase II activity. 

Platinum and 

paclitaxel 

refractory disease 

Myleosuppression 

Mucositis/stomatitis 

Rash 

(Strauss et al., 

2008) 

Gemcitabine 

 

A nucleoside analogue 

activated intracellularly to 

dFdCTP by deoxycytidine 

kinase. 

Inhibits DNA synthesis and 

induces apoptosis.  

Pre-treated 

ovarian cancer  

Myelosuppression 

Hepatic impairment 

 

(Kodaz et al., 

2015) 

Topotecan 

 

A synthetic camptothecan 

derivative that binds to the 

topoisomerase I-DNA complex 

Interfers with the replication 

fork at SSB, leading to 

replication arrest and DNA 

DSB. 

Platinum and 

paclitaxel 

refractory disease 

Myelosuppression (Markman et 

al., 2000) 

Etoposide 

 

A semisynthetic derivative of 

podophyllotoxin. Inhibits DNA 

topoisomerase II, thereby 

inhibiting DNA re-ligation 

Causes critical errors in DNA 

synthesis and subsequent 

apoptosis.  

Recurrent ovarian 

cancer  

Myelosuppression 

Diarrhoea / vomiting 

(Thavaramara 

et al., 2009) 

Tamoxifen 

 

Binds to oestrogen receptors 

altering the regulation of 

oestrogen dependent genes 

Reduces DNA polymerase 

activity and impairs thymidine 

utiliSation  

ER positive 

cancers 

Convulsions 

Respiratory distress 

 

(Markman et 

al., 2004) 
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Angiogenesis, the formation of new blood vessels, is a critical component of cancer 

growth and metastasis. Bevacizumab is a monoclonal antibody against Vascular 

Endothelial Growth Factor (VEGF). Two randomised, phase III trials, GOG 0218 

(Burger et al., 2011) and ICON7 (Perren et al., 2011) have demonstrated an 

improvement in PFS but not OS, when bevacizumab was added to the combination 

of carboplatin and paclitaxel followed by maintenance therapy, as the first line 

treatment for advanced EOC.  

Furthermore, the addition of bevacizumab to chemotherapy in platinum sensitive 

(OCEANS) (Aghajanian et al., 2012) and platinum resistant (AURELIA) (Pujade-

Lauraine et al., 2012) recurrent disease has been shown to improve PFS. A number 

of other angiogenesis inhibitors have also entered clinical trials (Karlan et al., 2012, 

Coleman et al., 2011). 

The main challenges facing targeted therapies are toxicities (Burger et al., 2007, 

Cannistra et al., 2007) and identification of the appropriate target population. 

Circulating short VEGFA isoforms, expression of neuropilin-1 and VEGF receptor 1 

and genetic variants in VEGFA are potential biomarkers for angiogenesis inhibitors 

(Lambrechts et al., 2013). 

1.4 DNA Repair Pathways 

The accumulation of DNA damage can initiate cancer and lead to genomic instability 

of the cell, which is then able to break and reform chromosomes, inactivate tumour 

suppressor genes, amplify drug resistance genes, and consequently become more 

malignant and drug resistant over time (Kennedy and D'Andrea, 2006, Lengauer et 

al., 1998). The cancer cell must first however be able to tolerate the DNA damage. 

This tolerance can be achieved firstly by the cancer cells losing DNA damage 

signaling and check point pathways such as those controlled by p53 (Macaluso et al., 

2005, Bartkova et al., 2005). Secondly, the cancer cells may knock out one of the 

major DNA repair pathways (Kennedy and D'Andrea, 2006).  Endogenous DNA 

damage occurs naturally in all cells with a high frequency of >104 spontaneous 

damage events per cell every day, as a result of replication errors, cellular 

metabolism-induced oxygen radicals, as well as environmental agents e.g. UV 

radiation (Ames and Gold, 1991, Hoeijmakers, 2001). Faulty DNA repair mechanisms 

not only predispose cells to becoming cancer cells, but also affect sensitivity to 
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treatment. Most cytotoxic chemotherapy agents induce DNA damage in order to kill 

cancer cells. Resistance to these agents can result from an ability to proliferate 

through loss of checkpoint function. This can also result in increased sensitivity as 

the cells go through the cell cycle unrepaired, which leads to cell death (Curtin, 

2012).  

There are six major mechanisms responsible for the repair of DNA lesions: direct 

repair, MMR, base excision repair (BER), nucleotide excision repair (NER), HR, 

NHEJ, and A-EJ (Hoeijmakers, 2001, Bernstein et al., 2002). 

1.4.1 Direct Repair by O6-methylguanine-DNA Methyltransferase  

Direct repair by O6-methylguanine-DNA methyltransferase (MGMT) removes the alkyl 

group of the O6 position of guanine, which causes a mismatch of the alkylated 

guanine with thymine, instead of cystosine during replication. Use of cancer agents 

such as temozolomide, dacarbazine and nitrosoureas causes alkylation of O6-

methylguanine, which, if the MGMT pathway is deficient, results in persistent 

mismatching of bases during replication. The MMR pathway attempts to correct this 

mismatch, but as the alkylated base is permanently bound with the template DNA, is 

unsuccessful; thus triggering futile cycles of excision and repair, which ultimately 

results in apoptosis.  

1.4.2 Mismatch Repair 

MMR is responsible for the recognition and repair of DNA damage caused by 

deamination, oxidation and replication errors and also targets DNA dimers and 

alkylated bases (Duval and Hamelin, 2002). MMR is subdivided into 2 pathways 

according to the protein complexes that bind to the DNA lesion (Figure 1-3).  
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Figure 1-3 Schematic representation of MMR pathway.  

The MutSα (consisting of MSH2: MSH6) complex binds in base-base and 
insertion/deletion mismatches, and the MutSß complex (MSH2: MSH3) binds only to 
insertion/deletion mismatches. These assemble at the DNA mismatch site and recruit 
hMutLa (MLH1:PMS2), along with other proteins to initiate the repair process. 

 

The products of the genes participating in DNA MMR were originally identified for 

their involvement in the Hereditary Non Polyposis Colorectal Cancer (HNPCC) 

syndrome (Scartozzi et al., 2003). HNPCC is caused by germline mutations in one of 

the MMR genes (Bronner et al., 1994, Cyr et al., 2011). It results in an increased 

lifetime risk of colon (80 %) and ovarian (12 %) cancer (Watson and Lynch, 2001). 

Mutations in MLH1, MSH2, and MSH6 account for the majority of reported MMR 

germline variants, but there are numerous other missense mutations which can also 

result in loss of MMR function (Peltomaki and Vasen, 2004). 

Loss of MLH1 has been observed in 50 % of stage III/IV ovarian cancers (Scartozzi 

et al., 2003). Further to HNPCC syndrome, epigenetic silencing though promoter 

hypermethylation of hMLH1 has been reported in endometrial, gastric, colon and 

ovarian cancers (Geisler et al., 2003, Strathdee et al., 1999). Microsatellite instability 

(MSI) has been confirmed to be a marker of MMR deficiency and MMR deficiency 

has been reported in up to 39 % of ovarian tumours, mostly in endometrioid types 

(Helleman et al., 2006, Zhang et al., 2008). 
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Cisplatin and carboplatin function by binding to the DNA and forming DNA adducts, 

leading to intra-strand or inter-strand cross-links which disrupt the structure of the 

DNA molecule, resulting in steric changes in the helix (Sharma et al., 1995). When 

MMR is deficient, the cells bypass the intra-strand crosslinks and continue to 

proliferate in spite of the DNA damage, and are therefore resistant to platinum agents 

as well as DNA methylating agents and thiopurines (Helleman et al., 2006). Defects 

in the MMR pathway have been demonstrated to be significantly higher in tumours 

post chemotherapy, compared to untreated controls (Scartozzi et al., 2003, Cooke 

and Brenton, 2011, Watanabe et al., 2001). Therefore, research has focused on 

attempts to reactivate epigenetically silenced MLH1. After promising preclinical data 

that demonstrated chemo-sensitisation, clinical trials were stopped due to adverse 

reactions (Plumb et al., 2000). 

1.4.3 Nucleotide Excision Repair 

NER encompasses with the wide class of helix-distorting lesions that interfere with 

base pairing and generally obstruct transcription and normal replication 

(Hoeijmakers, 2001); for example, UV radiation induced thymidine dimers resulting in 

stalled replication forks. NER is the predominant pathway repairing platinum-DNA 

adducts (Figure 1-4). Different studies with ovarian cancer cell lines have 

demonstrated that high ERCC1 mRNA expression is correlated with increased 

capacity of cells to repair cisplatin-induced DNA damage, thus conferring resistance 

to the drug (Damia, 1998, Ferry, 2000, Li et al., 2000). In vitro studies have 

demonstrated sensitivity to platinum in NER defective human ovarian cell lines, in 

particular those with reduced levels of ERCC1 and XPF proteins. Knockdown of 

ERCC1 in cell lines and in mice, has shown increased sensitivity to platinum 

(Selvakumaran et al., 2003, Dabholkar et al., 1994, Kohn et al., 1994). 
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Figure 1-4 Schematic representation of NER pathway.  

There are two NER sub-pathways to remove these lesions: global genome NER 
(GG-NER) which surveys the entire genome for distorting injury; and transcription-
coupled repair (TCR) which focuses on damage that blocks elongating RNA 
polymerases (Christmann et al., 2003). Upon recognition of the DNA lesion, (either 
by binding of XPC-hHR23B or DNA polymerase II stalling) a cascade of proteins are 
recruited. These proteins are the same for both TC-NER and GG-NER. The XPF and 
XPA helicases and the multi-unit transcription factor TFIIH open the damaged region 
(Le Page et al., 2000). The single-stranded-binding protein replication protein A 
(RPA) binds to the corresponding undamaged strand and stabilises it. In the rate-
limiting step, the endonucleases XPG and ERCC1-XRF complex then cleave the 
open DNA strands and excise the damaged 25 – 30 bases site. DNA polymerase δ/ε, 
ligase 3 and ERCC3 re-synthetise the removed region (Hoeijmakers, 2001). 

1.4.4 Base Excision Repair  

BER is the main guardian against damage due to cellular metabolism, including that 

resulting from reactive oxygen species, methylation, deamination and hydroxylation 

(Hoeijmakers, 2001). BER is involved in the removal of either a single damaged 

nucleotide (short patch repair) or a few (2-15) nucleotides (long patch repair) (Figure 

1-5). Following DNA base damage, PARP-1 binds to the single strand breaks (SSB) 

(Benjamin and Gill, 1980). Activation of PARP-1 results in the production of PAR, 

which is attached to histones or PARP-1 itself. This leads to the relaxation of the 

chromatin fibre and facilitates the recruitment of proteins necessary for repair (Figure 

1-5) (Althaus et al., 1993, Dantzer et al., 2000). Inhibition of PARP-1 activity inhibits 
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the formation of XRCC1 foci (El-Khamisy et al., 2003), and failure of BER results in 

DSB due to collision of the SSB with the progressing replication fork (Gottipati et al., 

2010). 

 

Figure 1-5 Schematic representation of BER pathway.  

Short-patch repair takes place after the excision of a damaged base. It involves the 
PAR mediated recruitment of the scaffold protein XRCC1, followed by DNA polβ and 
DNA ligase III which conducts the ligation of the DNA. Long-patch repair occurs after 
direct DNA breaks (e.g. after IR damage); it involves recruitment of XRCC1 followed 
by polynucleotide kinase (PNK), which converts the damaged ends to 5'-phosphate 
and 3'-hydroxyl moieties. Proliferating cell nuclear antigen (PCNA) and DNA 
polymerase δ/ε extend and fill the gap by 2–15 nucleotides, and FEN1 cleaves the 
resulting flap. The nick is then ligated by DNA ligase I (Baute and Depicker, 2008). 

 

APE1 has been shown to be is overexpressed in 71.9 % of ovarian cancers and to 

correlate with tumour type, optimal debulking, and overall survival (Al-Attar et al., 

2010). Additional studies have also demonstrated that altered APE1 expression or 

cytoplasmic localisation is associated with platinum resistance and overall prognosis 

(Sheng et al., 2012, Zhang et al., 2009). Furthermore, XRCC1 399 Arg/Arg genotype 

has been shown to be linked to a lower survival rate (Cheng, 2012). 

1.4.5 DNA Double Strand Break Repair  

DNA DSBs are repaired by one of three pathways: HR, NHEJ and A-EJ. HR involves 

alignment of a homologous chromatid to provide a template for error free repair and 

is therefore limited to the S or G2 phase of the cell cycle when a sister chromatid is 

present. NHEJ is the predominant method of repair in G0/G1 but functions in all 
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stages of the cell cycle. NHEJ does not require a complementary template as it 

repairs the defect by direct ligation and is therefore error prone (Helleday, 2010, 

Lieber, 2008). A-EJ has been shown to involve BER pathway genes; predominate in 

S and G2 phase of the cell cycle; and to compete with or compensate for the loss of 

HR. A-EJ uses short sequences of microhomology, which results in large excisions of 

DNA, and is therefore extremely error prone.  

1.4.5.1 Homologous Recombination 

HR is the principal repair pathway during the S-phase of the cell cycle and so 

appears to be a critical pathway for the maintenance of genomic stability. The HR 

pathway is activated by DNA DSBs (Kanaar et al., 1998, Shrivastav et al., 2008), and 

stalled and collapsed replication forks (McGlynn and Lloyd, 2002, Petermann et al., 

2010). HR repair of DSBs uses the sister chromatid as a template, resulting in error-

free repair (Figure 1-6). DSBs activate the ataxia telangiectasia-mutated (ATM) and 

ATM and Rad3 related (ATR) kinases, which triggers a cascade of phosphorylation 

events involving CHK2 and p53 to activate cell cycle checkpoints and promote DNA 

repair (Jacquemont and Taniguchi, 2007, Hartlerode and Scully, 2009). Mediated by 

BRCA1, the RAD50-MRE11-NSB1 (MRN) complex exposes the 3’ ends on either 

side of the DSB (Paull and Lee, 2005, Zhong et al., 1999). The MRN complex binds 

to the damaged DNA and undergoes a series of conformational changes to activate 

and increase ATM affinity for its substrates, and retain active ATM at sites of DSBs 

(Paull and Lee, 2005). ATM phosphorylates H2AX, NBS1, BRCA1 and FANCD2 

(Jacquemont and Taniguchi, 2007, Hartlerode and Scully, 2009). Single strand DNA 

is rapidly bound by the RPA, which unwinds the DNA's secondary structure (Sung 

and Klein, 2006). The RPA is replaced with RAD51, which is mediated by BRCA2 

(Davies et al., 2001). The damaged 3’ advancing strand then invades the 

complementary sequence of the homologous chromosome sets up a D-loop 

intermediate and primes DNA synthesis by using the duplex DNA as a template 

(Hartlerode and Scully, 2009, Sung and Klein, 2006). If the D-loop captures the 

second end of the break, Holliday junctions (HJs) are formed (Hartlerode and Scully, 

2009, Sung and Klein, 2006). 
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Figure 1-6 Schematic representation of HR pathway. 

DSBs activate the ATM/ATR which in turn phosphorylates H2AX, NBS1, BRCA1 and 
FANCD2. Mediated by BRCA1 the MRN complex exposes the 3’  ends on either side 
of the DSB. RPA binds to single strand DNA and unwinds the DNA’s secondary 
structure. The RPA is replaced with RAD51, which is mediated by BRCA1, PALB2 
and BRCA2. The 3’  advancing strand from the damaged chromosome then invades 
the complementary sequence of the homologous chromosome. Following the 
synapsis, the invading strand sets up HJ and primes DNA synthesis by using the 
duplex DNA as a template. RAD54 promotes branch migration whilst BLM and GEN1 
resolve the HJ (Cerbinskaite et al., 2012). 

 

The resolution of a HJs can be executed by several enzyme complexes, such as 

BLM in complex with topoisomerase IIIα, which can dissolve double HJs to form non-

crossover products (Wu and Hickson, 2003, Bohr, 2008), or GEN1, which promotes 

junction resolution by symmetrical cleavage (Ip et al., 2008). After replication has 

extended past the region of the DSB, the strand replication continues to the end of 

the chromosome (Hoeijmakers, 2001, Khanna and Jackson, 2001). 

1.4.5.1.1 HR Defects in Cancer  

A number of inherited syndromes show a defect in HR and a predisposition to cancer 

or premature aging i.e., Ataxia telangiectasia (Milne, 2009, Taylor et al., 1975), 

Ataxia-telangiectasia like disorder (Taylor et al., 2004), Nijmegen Breakage 
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syndrome (Chistiakov et al., 2008, Digweed and Sperling, 2004) and Fanconi 

anaemia (Alter, 1996, Kennedy and D'Andrea, 2005, Kutler et al., 2003). Cells 

deficient in this pathway are susceptible to several anti-cancer agents, however, 

recombination may also result in loss of heterozygocity (LOH), leading to inactivation 

of tumour suppressor genes, or cause gross gene rearrangements that can activate 

proto-oncogenes (Moynahan and Jasin, 1997). The function of the entire repair 

pathway can be affected if one or more genes involved in the pathway are defective. 

Defects in the majority of genes involved in the HR pathway have been reported in 

human cancers, as summarised in table 1-4 and reviewed in (Cerbinskaite et al., 

2012). For the purposes of this report, only HR gene defects reported in ovarian 

cancer will be discussed in detail.   

Table 1-4 Reported links to human cancers of HR gene alterations.  

Summary of HR genes which are reported to harbor mutations, function altering 
polymorphisms or epigenetic alterations leading to reduced function in human cancer 
(Cerbinskaite et al., 2012). 

Cancer Site HR Genes 

Head and Neck ATM, FANCF  

Medullo-blastoma FANCD1/BRCA2 

Nasopharyngeal ATM 

Oral ATM  

Thyroid XRCC3  

Lung NBS1, BRCA1, FANCF, XRCC2  

Breast ATM, RAD50, NBS1, BRCA1, BRCA2, RAD51, FANCJ  

Stomach ATM, ATR, BRCA1, BRCA2  

Pancreas BRCA2, RAD51, FANCC  

Colorectal ATM, MRE11, BRCA1, BRCA2  

Ovarian MRE11, RAD50, BRCA1, BRCA2, FANCF  

Endometrial ATR  

Cervical BRCA1, FANCF  

Prostate ATM, NBS1, BRCA2  

Multiple Myeloma RAD51  

Leukaemia ATM, NBS1, RAD51, FANCA, FANCC, FANCF, FANCG  

Melanoma NBS1, XRCC3, BRCA2 

Lymphoma NBS1  
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1.4.5.1.2 Role of HR in Ovarian Cancer 

The role of the HR pathway in ovarian cancer became an important research field 

due to the function of tumour suppressor genes BRCA1 and BRCA2. These genes 

are best known as breast and ovarian cancer susceptibility genes (Gayther et al., 

1999), however, they have also been linked to a number of different human cancers 

(Table 1-4). Inactivation of the BRCA1 or BRCA2 results in genetic instability and 

chromosomal rearrangements (Bishop and Schiestl, 2002, Ban et al., 2001). 

Knockout of the BRCA1 is embryonically lethal in mice (Gowen et al., 1996) and 

down regulation of BRCA1 halts the cell cycle at the G2 to M transition, which leads 

to cell cycle arrest or apoptotic cell death (Bouwman et al., 2010). BRCA2 functions 

are largely limited to DNA repair and recombination (Chistiakov et al., 2008). The 

protein controls the availability, localisation, DNA binding and stabilisation of RAD51 

(Ayoub et al., 2009, Shivji et al., 2009, Davies et al., 2001). 

The lifetime risk of developing EOC in women with a germline BRCA1/2 mutation can 

be up to 66 % and 27 % respectively (Robles-Diaz, 2004). Cancers containing 

BRCA1 mutations are more common in younger women (<50 years at diagnosis), 

compared to cancers with BRCA2 mutations in older women (>60 years) with 

hereditary ovarian cancers (Risch et al., 2001). Mutation rates vary between patients 

of different ancestry, being higher among Jewish (26 %), Italian (24 %), and Indo-

Pakistani (14 %) and lower in British (3.5 % - 4.7 %) (Janezic et al., 1999, Stratton et 

al., 1997, Risch et al., 2001). They also vary with histological type, being higher in 

serous cancers (10.9 % BRCA1 and 5.6 % BRCA2 mutations) and lower in 

endometrioid cancers (2.1 % mutation rate for both BRCA genes) (Risch et al., 

2001). Reports of BRCA1/2 mutations in mucinous and borderline cancers are 

contradictory (Risch et al., 2001, Boyd et al., 2000, Stratton et al., 1997).  

Epigenetic silencing of BRCA genes has also been noted. BRCA1 alterations 

occurring by gene deletion, loss of gene expression (due to promoter methylation) or 

by loss of protein expression have been reported in about 5-31 % of sporadic ovarian 

cancers (Wang et al., 2004a, Jacinto and Esteller, 2007, Hilton et al., 2002). 

BRCA1/2 deficiency, defined as mutations and loss of expression, was reported in 

30 % of HGSOC (Hennessy et al., 2010). BRCA1/2 associated tumours have distinct 

clinical features tending to be HGSOC, carboplatin sensitive and to be associated 

with an improved survival (Ramus and Gayther, 2009, Cass et al., 2003). 
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1.4.5.1.3 Concept of HRD and Therapy 

Further to the loss of the BRCA genes HRD due to mutations in other genes involved 

in the HR pathway has also been described. These include mutations of EMSY, 

MRE11, RAD50, XRCC2, XRCC3 and FANC pathway genes (Brown et al., 2006, 

Heikkinen et al., 2003, Heikkinen et al., 2006, Nagaraju et al., 2009, Kennedy and 

D'Andrea, 2006, Taniguchi et al., 2003). It is believed that in fact around 50 % of 

EOCs could be potentially HR deficient (Mukhopadhyay et al., 2010, Cancer Genome 

Atlas Research, 2011).  

1.4.5.1.4 Inhibitors that Block HR Function 

Novel inhibitors that block HR function have been developed. Mirin is an inhibitor of 

MRE11 endonuclease activity and thus of HR function (Dupre et al., 2008). However, 

MRE11 function is not limited to HR as it is also upstream of NHEJ, and so mirin also 

inhibits NHEJ (Rass et al., 2009). The BCR-ABL1 inhibitor imatinib blocks HR by 

inhibiting the activation of RAD51 and sensitized cells to DNA crosslinking agents 

and IR (Choudhury et al., 2009). Other RAD51 inhibitors have also been identified 

(Huang et al., 2011a). A further way to block HR is to inhibit CDK1, which activates 

BRCA1. Preclinical studies showed that the CDK1 inhibitor AG024322 is synthetically 

lethal with PARPi (Johnson et al., 2011). ATM and ATR have crucial roles by 

signalling DNA damage to cell cycle checkpoints and DNA repair pathways. ATM 

promotes HR by recruiting BRCA1 and NHEJ by recruiting p53 binding protein 1 

(53BP1) to DSBs (Bouwman et al., 2010). ATM inhibitors have been reported to 

induce sensitisation to IR, etoposide and camptothecin in vitro (Hickson et al., 2004, 

Rainey et al., 2008). ATR is activated by the DNA single-strand–double-strand 

junction, and it activates MMR and HR pathways (Wang et al., 2004b). Preclinical 

studies have demonstrated ATR inhibitor induced in vitro chemo and radio-

sensitisation (Reaper et al., 2011, Peasland et al., 2011). ATR role and inhibitors will 

be further discussed in chapter 5. The effects of HR inhibition on patient outcomes 

still needs to be evaluated.  

1.4.5.2 Non Homologous End Joining 

In the classical or DNA-PK dependent NHEJ pathway (Figure 1-7) the end-joining 

process starts with the binding of Ku70/Ku80 heterodimers to the DNA ends, followed 

by DNA-PKcs. The nuclease functions are performed by Artemis (Ma et al., 2002), 
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however, some resection is done by the MRN complex (Dinkelmann et al., 2009, 

Quennet et al., 2011). DNA polymerase μ and λ participate in the repair and DNA 

ligase IV, supported by two components called XRCC4 and XLF, catalyses the final 

end-joining reaction (Lieber et al., 2003, Ahnesorg et al., 2006, Buck et al., 2006). 

Recent studies have also shown a role for PARP in the NHEJ pathway (Spagnolo et 

al., 2012, Mitchell et al., 2009a), however, the mechanism of this is unclear. 

NHEJ is an essential part of the DNA end-joining phase in V(D)J recombination, the 

mechanism that assembles coding regions for the variable domains of 

immunoglobulin and T cell receptors in developing lymphocytes (Grawunder et al., 

1998, Tonegawa, 1983). Lymphoid-specific RAG proteins generate DNA double 

strand breaks which are re-joined by NHEJ (Tonegawa, 1983, Grawunder et al., 

1998). Hypomorphic mutations in XLF, Artemis and LIG4 lead to a number of rare 

hereditary disorders characterised by immunodeficiency (Artemis) and/or 

developmental abnormalities (XLF, LIG4), which underscore the general importance 

of the NHEJ pathway for genome integrity and development (Jeggo et al., 2004, 

Sekiguchi and Ferguson, 2006). 

 

Figure 1-7 Schematic representation of NHEJ. 

After phosphorylation of H2AX at DNA DSB sites, NHEJ is initiated by the binding of 
the Ku heterodimer (composed of Ku70 and Ku80). DNA-PKcs is then recruited and 
binds to the DNA end, activating its serine/threonine kinase activity. The 
Ku70/Ku80/DNA-PKcs complex, referred to as DNA-PK, holds the two DNA strands 
together in a synapse. Activation of DNA-PK by phosphorylation allows the alignment 
of the DNA strands, which are subsequently joined by the ligase IV/XRCC4 complex. 
This reaction is stimulated by XLF protein, which interacts with XRCC4 to catalyse 
the final end-joining reaction (Lieber et al., 2003, Ahnesorg et al., 2006, Buck et al., 
2006). 
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1.4.5.2.1 Non Homologous End Joining Defects in Cancer  

Further to the rare hereditary disorders, the NHEJ pathway activity has also been 

linked to a number of human cancers. NHEJ activity was reported to be reduced and 

increasingly error prone in bladder cancers (Bentley et al., 2009, Bentley et al., 2004, 

Windhofer et al., 2008). DNA end-joining capacities in peripheral blood mononuclear 

cells of breast cancer patients were reported to be consistently lower than those from 

healthy women (Bau et al., 2007) and dysregulated NHEJ has also been reported in 

leukaemia patients (Deriano et al., 2005, Gaymes et al., 2002).  

A number of studies have investigated individual gene mutations and polymorphisms 

in the NHEJ pathway in human cancers. Table 1-5 summarises the NHEJ genes 

which are reported to harbor mutations, SNPs or epigenetic alterations leading to 

altered function in human cancers. Overexpression of NHEJ genes and pathway 

function has also been linked to drug resistance (Kim et al., 2000, Deriano et al., 

2005). 

Table 1-5 Reported links to human cancers of NHEJ gene alterations.  

Summary of NHEJ genes which are reported to harbor mutations or epigenetic 
alterations leading to reduced function in human cancer. Adapted from manuscript in 
preparation. Full table in appendix 1. 

Cancer Site NHEJ Genes 

Head and Neck DNA-PK,  

Laryngeal PARP-1 

Glioma XRCC4, LIG IV 

Nasopharyngeal KU70 

Lung DNA-PK, XRCC4, LIG IV 

Breast DNA-PK, KU70, Ku80, XRCC4, Lig IV 

Gastric/colorectal DNA-PK, KU70, KU80 

Pancreas LIG IV 

Cervical DNA-PK, KU70, KU80 

Bladder DNA-PK, XRCC4, KU 

Multiple Myeloma Lig IV, Ku80 

Leukaemia DNA-PK, KU70, KU80,Lig IV, Artemis 

Lymphoma Lig IV 

Neuroblastoma DNA-PK 

Fibrosarcoma DNA-PK, Ku 80 
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1.4.5.2.2 BRCA1 Role in NHEJ Pathway 

Although BRCA1 is thought to be primarily involved in the HR pathway (Turner et al., 

2005), it has been implicated in the NHEJ pathway as well (Bau et al., 2004, Coupier 

et al., 2004, Bau et al., 2006). In vitro studies have demonstrated that cell extracts 

derived from BRCA1-deficient cells exhibit reduced end-joining activity (Bau et al., 

2004, Zhong et al., 2002). Moreover, recent reports have indicated that BRCA1 

functions to inhibit NHEJ (Bau et al., 2004, Wang et al., 2006a, Zhuang et al., 2006), 

this may be by protecting from excess trimming by exonucleases (Paull et al., 2001). 

This notion is also supported by the observation that, in BRCA1-deficient cells, there 

is an increased tendency towards the generation of large deletions (>2 kb) during 

NHEJ (Zhuang et al., 2006). It is therefore postulated that BRCA1 not only promotes 

HR but also reduces error-prone NHEJ processes. However, the role of BRCA1 in 

NHEJ, if any, is still poorly understood as conflicting results have been reported, 

including promotion, suppression, or no effect (Wei et al., 2008).  

1.4.5.3 Alternative End Joining Pathway 

An alternative end joining (A-EJ), also known as backup NHEJ pathway (B-NHEJ) or 

microhomology-mediated end joining (MMEJ), which lies somewhere between HR 

and NHEJ and is more error prone, has been suggested in eukaryotic cells (Wang et 

al., 2003, Iliakis et al., 2004, Yan et al., 2007, Corneo et al., 2007). Alternative end-

joining is suggested to rely on microhomologies, which are short sequences of a few 

homologous base pairs. Unlike HR, A-EJ is inherently error-prone because the use of 

microhomology leads to deletions of sequences from the strand being repaired and 

chromosomal translocations. Evidence of this pathway comes from several in vitro 

assays (Cheong et al., 1999, Wang et al., 2003, Perrault et al., 2004) and in vivo 

studies (Liang and Jasin, 1996, Audebert et al., 2008). PARP-1 / DNA ligase III / 

XRCC1 / histone 1 module and Polθ are suggested to be involved in A-EJ (Audebert 

et al., 2004, Wang et al., 2005, Wang et al., 2006b, Rosidi et al., 2008). Polθ has 

been shown to be overexpressed in HGSOC (Ceccaldi et al., 2015a). 

A-EJ is reported to be suppressed by the DNA-PK dependent NHEJ (Perrault et al., 

2004), to show cell cycle dependence with a more pronounced function during the 

G2 phase (Wu et al., 2008), and may be compromised in non-cycling cells 

(Windhofer et al., 2007). Recent publications have shown that A-EJ and HR are 

competing pathways, as evidenced by the observation of increased HR in cells 
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lacking Polθ. Furthermore, A-EJ has been demonstrated to compensate for the loss 

of HR, however, this results in chromosomal rearrangement and reduced ability of 

the cells to survive (Ceccaldi et al., 2015a, Mateos-Gomez et al., 2015). 

1.4.5.4 Selection of DNA Double Strand Repair Pathway 

The choice between which DSB pathway repairs a lesion is thought to be cell cycle 

dependent (Figure 1-8) (Symington and Gautier, 2011). In G1 phase, DSB 5’ end 

resection is halted by the 53BP1/Rif1 proteins allowing Ku to bind and NHEJ 

predominance (Chapman et al., 2012a, Chapman et al., 2013). Synthesis of BRCA1 

in S and G2 phases inhibits Rif1 and allows 5’ end resection, subsequent inhibition of 

NHEJ and repair by HR (Chapman et al., 2012a, Chapman et al., 2013). As HR 

requires homologous sequences, it may only be active in cell cycle stages where 

these are available (S and G2 phases) (Lieber, 2010). A-EJ is also thought to act on 

5’ resected lesions (Wang et al., 2006b, Bentley et al., 2004). Like NHEJ, A-EJ 

rejoins lesions with minimal end processing, however, as the DNA ends have already 

been resected, large amounts of genetic material may be lost and this pathway is 

thought to be highly toxic (Bétermier et al., 2014). The choice between HR and A-EJ 

is thought to be decided by the length of resected segments, with HR principally 

dealing with long segments and A-EJ shorter (Bétermier et al., 2014). A-EJ requires 

PARP for its activity and is susceptible to PARP inhibition (Mansour et al., 2010).  

 

Figure 1-8 Schematic representation of the pathway choice for the repair of a DSBs 

(Bétermier et al., 2014, Chapman et al., 2013). 
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1.4.6 Poly (ADP) Polymerase (PARP) 

PARP-1 has been the most studied and described enzyme in the family of 17 PARPs 

(Ame et al., 2004). The gene encoding PARP-1 protein is the ADPRT-1 located on 

1q41-q42 (Auer et al., 1989). PARP-1 is an abundant 113 kDa nuclear enzyme and 

plays a role in a number of cellular processes and therefore has a number of clinical 

applications (Sodhi et al., 2010, Pacher and Szabo, 2007, Lupachyk et al., 2011, 

Crawford et al., 2010, Giansanti et al., 2010), however, for the purposes of this 

report, only PARP-1 application in DNA repair and cancer will be discussed further.  

1.4.6.1.1 PARP Role in SSB Repair 

Following DNA base damage, PARP-1 binds to the SSB (Benjamin and Gill, 1980). 

Activation of PARP-1 results in the production of PAR, which is attached to histones 

or PARP-1 itself. This leads to the relaxation of the chromatin fibre and facilitates the 

recruitment of proteins necessary for repair (described in section 1.4.4) (Althaus et 

al., 1993, Dantzer et al., 2000). Inhibition of PARP-1 activity inhibits the formation of 

XRCC1 foci (El-Khamisy et al., 2003), and failure of BER results in DSBs due to 

collision of the SSB with the progressing replication fork (Gottipati et al., 2010). 

1.4.6.1.2 PARP Role in DSB Repair 

PARP-1 binds to and is activated by stalled replication forks (Bryant et al., 2009, 

Sugimura et al., 2008) and is necessary for the accumulation of MRE11 and NBS1 at 

the site of DSBs (Hegan et al., 2010, Benjamin and Gill, 1980, Haince et al., 2008). 

Inhibition of PARP has been shown to retard the rejoining of IR-induced DNA DSBs 

(Mitchell et al., 2009a, Boulton et al., 1999). Interaction of PARPi and DNA-PKi in 

radio-sensitisation has also been demonstrated (Ruscetti et al., 1998, Veuger et al., 

2003, Veuger et al., 2004, Mitchell et al., 2009a). In irradiated cells, the higher affinity 

of Ku for DSBs has been suggested to limit PARP-1 contribution to DSB repair, 

however, when the classical NHEJ pathway is not functional PARP-1 may be 

recruited (Wang et al., 2006b). The function of PARP-1 in the A-EJ has been shown 

by both in vitro and in vivo studies (Wang et al., 2006b, Audebert et al., 2006, Lu et 

al., 2006, Audebert et al., 2008). In other studies, PARP-1 has been shown to have a 

protective role in HR by suppressing access of NHEJ to DNA DSBs (Hochegger et 

al., 2006, Saberi et al., 2007). With on-going studies into the clinical application of 

PARPi, further clarification of the role PARP in DNA DSB repair is needed.  
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1.4.6.1.3 PARP Activity in Cancer 

V762A single nucleotide polymorphism (SNP) results in amino acid substitution in 

PARP-1 and can reduce PARP-1 catalytic activity by 30-40 % (Lockett et al., 2004). 

V762A SNP in PARP-1 has been reported to be associated with prostate cancer, 

colon cancer and multiple myeloma (Doll et al., 1996, Lyn et al., 1993, Lockett et al., 

2004, Bernstein et al., 2002). Reduced PARP activity in response to DNA damage 

has also been reported in laryngeal cancer (Rajaee-Behbahani et al., 2002). 

Conversely, reports in breast cancer are contradictory; with studies reporting PARP-1 

expression to be increased in more than 50 % of breast tumours (Bieche et al., 

1996), while others report lower (Hu et al., 1997, Lockett et al., 2004, Wang et al., 

2007, Smith et al., 2008) or no association of PARP-1 activity with risk of breast 

cancer (Zhai et al., 2006, Zhang et al., 2006). 

PARP-1 and PARP-2 expression varies widely across all nucleated human cells 

excluding neutrophils (Schreiber et al., 2002, Csete et al., 2009). Pilot studies 

measuring PARP-1 activity in peripheral blood mononuclear cells from healthy 

volunteers and metastatic melanoma patients before and during temozolomide 

therapy and in tumour biopsies, revealed large inter-individual differences in PARP 

activity in both healthy volunteers (20-615 pmol/106 cells) and cancer patients (15-

430 pmol/104 cells) (Plummer et al., 2005). This was also confirmed by a more recent 

study, comparing PARP activity in sarcoma patients with their monozygotic twins 

(Zaremba et al., 2011). This may explain the conflicting results seen in previous 

studies.  

1.4.6.1.4 Synthetic Lethality and PARP Inhibitors 

The concept of synthetic lethality describes a phenomenon where 2 non-lethal 

genetic mutations can lead to lethality in combination (Dobzhansky, 1946). This may 

involve genes in complementary pathways or acting along a single or related 

pathway, in which case, the loss of both genes, rather than just one, significantly 

affects pathway signaling and function. This concept has now been exploited in 

cancer therapy, whereby tumour cells harboring specific genetic lesions can be 

challenged by targeting the synthetically lethal partner genes or pathways leading to 

selective tumour cell death (Kaelin, 2005, Helleday et al., 2008, Brough et al., 2011). 

This allows a large therapeutic window whereby the non-cancerous cells in the body, 
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not harboring the gene defect, are not affected by the chemotherapeutic agent, 

allowing the chemotherapy to impact only on the cancerous cells.  

Studies in cell lines have showed that HR defects result in sensitivity to PARPi; there 

was an observed 100-1000 fold increase in sensitivity to PARPi in cells homozygous 

for BRCA1 or BRCA2 mutation, compared to heterozygous or BRCA wild-type cell 

lines (Bryant et al., 2005, Farmer et al., 2005). Furthermore, siRNA-mediated 

depletion of BRCA2 in BRCA wild type breast cancer cell lines also caused sensitivity 

to PARPi (Bryant et al., 2005). Cancers defective in HR pathway due to loss of 

function of other genes involved in this pathway are also hypersensitive to PARPi 

(Bryant and Helleday, 2006, McCabe et al., 2006, Drew et al., 2011). BRCA1/2 

mutation carriers are heterozygous for the defect in all other cells; therefore still have 

a functional HR pathway. PARPi are less cytotoxic to normal cells, therefore, their 

associated side-effects, including myelosuppression and nausea, are relatively mild 

(Plummer and Calvert, 2007, Mukhopadhyay et al., 2011).  

Reversion mutations have been reported in BRCA gene in ovarian cancer in vitro 

(Taniguchi et al., 2003). Furthermore, it has been shown that in cell lines and tumour 

samples, secondary reverting mutations in BRCA1/2 genes can lead to cisplatin 

resistance in BRCA1/2 mutation carriers (Swisher et al., 2008, Sakai et al., 2008, 

Sakai et al., 2009, Edwards et al., 2008). This reversion has been suggested to be 

due to the function of the NHEJ pathway, which results in secondary reverting BRCA 

mutations resulting in restoration of HR function (Ashworth, 2008a, Sakai et al., 

2009). Furthermore, pathway ‘rewiring’ may also alter responses to DNA damage in 

DNA repair deficient cells. An example of this is 53BP1 overexpression that results in 

the inhibition of NHEJ and upregulation of the HR pathway in BRCA1 deficient 

tumours (Bouwman et al., 2010, Aly and Ganesan, 2011). 

1.4.6.1.5 PARP Inhibitors in Cancer Clinical Trials 

The first PARPi to enter a clinical trial was rucaparib in 2003. It was used to 

potentiate the effect of radio- and chemo-therapies, and showed a beneficial effect in 

several cancers (Plummer et al., 2005). In ovarian cancer the initial trials 

concentrated on hereditary EOCs with known BRCA1/2 mutations (Fong et al., 2009, 

Audeh et al., 2010). The focus of research has subsequently been re-directed to 

evaluate the use of PARPi as a stand-alone therapy in patients with HRD beyond 

BRCA1/2 mutations (Plummer and Calvert, 2007, Clinical_Trials.gov, 2012). The 
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application of PARPi in platinum resistant EOCs is also being explored (Fong et al., 

2010, Audeh et al., 2010). Ongoing and completed clinical trials are summarised in 

Appendix 2. Further to on-going clinical trials into the application for PARPi, the 

identification of the HRD EOC population, through identification and validation of 

biomarkers is an active area of on-going research (Mukhopadhyay et al., 2010). 

1.4.6.1.6 The Potential Role of NHEJ in PARPi Induced Cell Killing 

It is thought the minimal end processing in NHEJ repair makes the pathway error 

prone and may lead to lethal genomic instability (Patel et al., 2011). Research 

published in 2011 suggested the erroneous repair mediated by the NHEJ pathway is 

critical in driving the lethality of PARPi in HRD cells (Patel et al., 2011). The group 

found that PARPi resulted in activation of DNA-PK and that genetic or 

pharmacological inhibition of NHEJ rescued PARP lethality in HRD cells. Although 

NHEJ may not be as toxic as A-EJ, it may still be crucial to PARPi mediated cell 

killing in HRD tumours (Bétermier et al., 2014). 

1.5 Rationale for This Project 

A number of questions still remain unanswered. Whilst there is a clear understanding 

of the importance of DNA repair in ovarian cancer, the study of DNA DSB repair has 

so far been limited to HR. The function of NHEJ and the more recently described A-

EJ pathways have had little assessment in ovarian cancer to date. It is therefore, 

difficult to be certain of the exact proportion of human cancers which are NHEJ 

defective (NHEJD), as many of the mutations are rare and have been reported from 

studies with a limited number of samples; consequently it is not always clear what the 

impact of a polymorphism is on function of the protein transcribed. Individual risk 

increases due to each SNP reported are low, therefore, the impact to individuals 

carrying these variants may be limited. However, due to the frequency of occurrence 

of these SNPs the population based risk is likely to be significant. Large genome 

association studies to identify further SNPs and mutations in NHEJ genes, and 

therefore, estimate the true proportion of NHEJD cancers are essential. These are 

however, beyond the scope of this project. 

Genome wide association studies will not provide all the answers, as the functional 

role of all mutations identified need to be assessed. The challenge is therefore to be 

able to identify the cancers which are functionally NHEJD or up-regulated, arising 



 

34 
 

from mutations or SNPs of any one or a combination of the genes described. Work is 

well underway to develop biomarker tests which will accurately identify those cancers 

which are HRD (Mukhopadhyay et al., 2010). Functional assays which are capable of 

assessing the NHEJ pathway are now needed to be applied in combination with 

those assessing HR. Such tests will be designed to spot defective functional 

pathways rather than just identifying one gene abnormality at a time and will 

hopefully allow treatment of patients based on tumour biology rather than by the 

organ of origin, thus potentially widening the therapeutic options available. 

With increasing evidence supporting the application of PARPi, a clearer 

understanding is required into the role of this protein in the NHEJ pathway, and the 

biological significance of inhibition of PARP in the presence and absence of a 

functional NHEJ pathway. Furthermore, whilst the interaction of DSB repair pathways 

has been suggested, this relationship in ovarian cancer still remains to be 

determined.  

The evidence to date has also demonstrated the role of DNA repair dysfunction in the 

development of chemo-resistance in ovarian cancer. Whilst a number of mechanisms 

for platinum resistance have been explored, these are still not fully understood and 

attempts to overcome this has not yet yielded clinically significant results. With the 

aim to introduce PARPi into clinical practice the mechanisms for resistance to PARPi 

also need to be understood. Furthermore, understanding the similarities and 

differences between PARPi and platinum resistance is essential for the clinical 

application of this new drug. Being able to understand, predict and prevent resistance 

development would put PARPi treatment at the forefront of ovarian cancer therapy in 

appropriately selected patients. 
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1.6 Project Hypothesis 

The interactions of multiple DSB repair pathways have an important role in ovarian 

cancer biology and sensitivity to platinum and PARPi treatment. 

1.7 Project Aims 

The primary objective of this project was to investigate the interaction of DSB repair 

mechanisms in ovarian cancer biology and to assess their role in mediating 

therapeutic response to cisplatin and rucaparib. The strategies for achieving this 

were:  

 To optimise models for the study of ovarian cancer by characterisation of the 

primary ovarian cancer (PCO) cultures and a novel ovarian cancer cell line. 

 To assess NHEJ and HR function in a panel of PCO cultures and to correlate 

these with sensitivity to rucaparib and cisplatin. 

 To assess the interactions of NHEJ and HR pathways in ovarian cancer 

biology, and the interaction of these two pathways with PARP-1, using drug 

inhibition and knockdown models.  

 To develop rucaparib and cisplatin resistant cell line models and to assess the 

role of DNA repair pathways in resistance development. Furthermore, to 

perform genome-wide molecular analysis in order to investigate mechanisms 

of resistance development.  

Further details of specific aims are described in each individual chapter.  
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CHAPTER 2 MATERIALS AND METHODS 

2.1 General Laboratory Practice  

All experiments were performed in accordance with the University standards for safe 

working with chemical substances in laboratories, which comply with the Control of 

Substances Hazardous to Health Regulations (COSHH) and BioCOSHH. Routinely 

used chemicals of analytical or molecular biology grade were purchased from Sigma-

Aldrich Co. Ltd. (Dorset, UK), unless otherwise stated. Phosphate buffered saline 

(PBS) (137 nM NaCl, 83 mMKCl, 10 nM Na2HPO4) was prepared from PBS tablets 

(Invitrogen Life Technologies, Paisley, UK) and was autoclaved prior to use for 

sterility. 

2.2 Cell Culture Methods 

Tissue culture plastic ware was from Corning-Costar (supplied by VWR International 

Ltd., Leicestershire, UK). All cell culture was carried out in a class II microbiological 

safety cabinet (BIOMAT-2, Medical Air Technology Ltd., Oldham, UK) using an 

aseptic technique.  

2.2.1 Routine Cell Culture 

All cell lines were maintained as adherent cultures in media as detailed in Table 2-1 

with 10 % (v/v) heat inactivated foetal calf serum (FCS), 20 mM L-glutamine and 50 

g/ml penicillin / streptomycin in 75 cm3 sterile cell culture flasks. All media were 

stored at 4 °C and warmed to 37 °C in a water bath prior to use. Cultures were 

incubated at 37 °C (OSEC-1 and OSEC-2 at 33 °C) in a humidified 5 % CO2 

incubator (Heraeus Equipment Ltd., Essex, UK). Testing for mycoplasma was 

performed by E.C. Matheson at 2 month intervals using a MycoAlert kit (Lonza 

Biologics, Slough, UK).  

2.2.2 Primary Culture 

Ascitic fluid was collected from patients undergoing primary surgery for ovarian 

cancer or primary peritoneal cancer debulking surgery at Queen Elizabeth Hospital, 

Gateshead. All patients gave informed consent. Consent form can be seen in 

appendix 3. Ethical approval was sought, and specimens were registered in 
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accordance with the Human Tissue Act 2004. All cultures were labelled PCO 

followed by a serial number which identifies the patient from whom the sample was 

collected. All collected primary cultures were entered in the NICR central tissue 

resource database. 20 mls of ascitic fluid was added to 20 mls of culture medium, 

which comprised of RPMI 1640 medium supplemented with 20 % FCS, 20 mM L-

glutamine, and 1 % penicillin and streptomycin in 75 cm3 sterile tissue culture flasks 

and incubated at 37 °C / 5 % carbon dioxide. The medium was aspirated and 13 mls 

of warmed fresh medium replaced on day 4 to 5 of incubation. The medium was 

replaced every 4 to 5 days until cells reached >80 % confluence. 

Table 2-1 Cell lines used in the project.  

Cell line Source Medium Characteristics 

OSEC-1 Generated at 

Newcastle 

University (Davies 

et al., 2003) 

RPMI 

1640 

BRCA2 heterozygote, HRC, 

telomerase and temperature 

sensitive SV40 large T antigen 

immortalised normal OSE cell line  

OSEC-2 Generated at 

Newcastle 

University (Davies 

et al., 2003) 

RPMI 

1640 

BRCA wild type, HRC, telomerase 

and temperature sensitive SV40 

large T antigen immortalised 

normal OSE cell line  

SKOV3 ATCC ® HTB-77 RPMI 

1640 

Ovarian adenocarcinoma cell line 

derived from ascites of a patient 

with moderately well differentiated 

ovarian adenocarcinoma 

(Debernardis et al., 1997) 

OVCAR3 ATCC ® HTB-161 RPMI 

1640 

Derived from a patient with an 

ovarian epithelial adenocarcinoma 

A2780 Provided by Prof. 

R. Brown (Beatson 

Laboratories, 

Glasgow, 

Scotland) 

RPMI 

1640 

Human ovarian carcinoma p53 

and MMR-proficient, (Anthoney et 

al., 1996) 

A2780-CP70 Provided by Prof. 

R. Brown (Beatson 

Laboratories, 

Glasgow, 

Scotland) 

RPMI 

1640 

hMLH1 promoter hypermethylation 

(Strathdee et al., 1999) variant of 

A2780, 5-fold resistant to cisplatin 

relative to the parental A2780 cell 

line (Anthoney et al., 1996) 

IGROV-1 ATCC RPMI 

1640 

Human ovarian adenocarcinoma 

(Benard et al., 1985) 

MDAH ATCC ® CRL-

10303 

RPMI 

1640 

Human ovarian adenocarcinoma 
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MO59J ATCC ® CRL-

2366 

RPMI 

1640 

Malignant glioblastoma cells, 

DNA-PK mutated 

MO59FUS-1  RPMI 

1640 

Paired cell line to MO59J. DNA-PK 

competent by virtue of transfer of 

portion of Chr8 (Virsik-Kopp et al., 

2004) 

V3 Provided by Dr. 

Penny Jeggo 

(University of 

Sussex, UK) 

DMEM DNA-PKCS deficient Chinese 

hamster ovary cells 

V3-YAC Provided by Dr. 

Penny Jeggo 

(University of 

Sussex, UK) 

DMEM Derived from V3 cells, transfected 

with a yeast artificial chromosome 

(YAC) carrying the human DNA-

PKCS gene 

UWB1-289 ATCC ® CRL-

2945 

50 % 

MEBM 

50 % 

RPMI 

BRCA1-null human ovarian cancer 

derived from papillary serous 

ovarian carcinoma (DelloRusso et 

al., 2007) 

UWB1-289-

BRCA1 

ATCC ® CRL-

2946 

50 % 

MEBM 

50 % 

RPMI 

Ovarian carcinoma cell lines 

derived from UWB1.289, a 

BRCA1-null human ovarian cancer 

line, in which wild-type BRCA1 

was restored (DelloRusso et al., 

2007) 

PEO1 PEA - 10032308 RPMI 

1640 

Derived from malignant effusion 

from the peritoneal ascites of a 

patient with a poorly differentiated 

serous adenocarcinoma contains 

BRCA2 mutation [5193C>G 

(Y1655X)] 

PEO4 PEA - 10032309 RPMI 

1640 

Derived from the same patient as 

PEO1 after clinical resistance 

developed to chemotherapy. 

Contains a secondary BRCA2 

mutation [5193C>T (Y1655Y)] that 

cancelled the inherited mutation 

2.2.3 Pancytokeratin Staining 

To confirm epithelial cell origin, pancytokeratin staining was used in PCO cultures. A 

sterilised 22 mm2 cover slip was placed in 6-well plate prior to the seeding of cells at 

a density of 1 x 106. The plates were incubated for 24 hours (hrs) to allow cells to 

adhere. Medium was removed and cells were fixed with ice-cold methanol for 10 

minutes (min). Cells were washed with PBS and incubated in 250 µl (1:100 dilution) 
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of FITC conjugated Anti-Cytokeratin Pan mouse monoclonal antibody (Millipore) for 1 

hr. Excess antibody was washed with PBS and coverslip mounted to glass slide with 

VECTASHIELD® Mounting Medium with DAPI (Vector Laboratories). Slides were 

examined using fluorescence microscope (Leica DMR, Leica Microsystems, UK). 

Cells incubated with no primary antibody were used as negative control. Cultures 

containing greater than 95 % epithelial cells were considered to be cytokeratin 

positive and were utilised in further assays.  

2.2.4 Cell Passaging 

Cell lines and established PCO cultures were passaged when cells were 80 % 

confluent in order to maintain cells in exponential growth phase. Medium was 

aspirated and the cells were rinsed with warm sterile PBS followed by incubation in 5 

ml 0.25 % trypsin-EDTA (ethylene-diamine-tetra acetic acid, Sigma - Aldrich) for 5 

min in the incubator (until all the cells had detached). Full medium was added to 

detached cells to neutralise the trypsin. Cell suspension was centrifuged at 230 x G 

for 5 min. The supernatant was discarded; the cell pellet was re-suspended in full 

medium and plated in new flasks / culture dishes as required. Cell lines were 

passaged a maximum of 30 times, after which fresh stocks were resuscitated from 

liquid nitrogen storage.  

2.2.5 Cell Counting 

Cells were trypsinised and resuspended in 10 ml of media. 10 l of the solution was 

loaded onto a Neubauer Haemocytometer (VWR International Ltd.) and a minimum 

of 100 cells were recorded for each cell count.  

2.2.6 Cryopreservation of Cell Stocks 

Cells were trypsinised and centrifuged in sterile BD FalconTM centrifuge tubes (BD 

Biosciences, Oxford, UK) at 230 x G for 5 min. The supernatant was discarded, after 

which cell pellets were resuspended in 1 ml freezing medium [usual growth medium 

supplemented with 10 % v/v FCS and 10 % (v/v) dimethyl sulphoxide (DMSO)] and 

transferred to sterile polypropylene cryovials (Invitrogen Life Technologies). Cells 

were frozen slowly (approximately 1 °C per minute) to -80°C and transferred to liquid 

nitrogen for long term storage.  
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2.2.7 Resuscitation of Frozen Cell Stocks 

Cryopreserved cell aliquots were thawed rapidly and transferred to 5 ml pre-warmed 

RPMI medium. Suspensions were then centrifuged at 230 x G for 5 min, after which 

the supernatant was completely removed and discarded. Resulting cell pellets were 

re-suspended in 7 ml 10 % RPMI culture medium, transferred to 25 cm3 sterile cell 

culture flasks and incubated at 37 °C / 5 % CO2. Cell cultures were checked daily for 

growth and used in experiments once normal exponential cell growth had resumed. 

2.3 Clinical Data and Survival Analysis 

Patient data including age, pretreatment tumor markers, operative details and 

histologic subtype, stage, and grade were recorded from the clinical database. 

Histologic diagnosis of primary ovarian/PPC was confirmed by independent 

gynecologic-specific pathologists. Surgical stage, histologic grade, and cell type were 

classified according to the World Health Organization (WHO) and Federation 

Internationale des Gynaecologistes et Obstetristes (FIGO) standards. All patients 

received platinum-based chemotherapy with or without paclitaxel as first-line 

treatment.  

Survival data were calculated using the date of diagnosis, defined as the date of 

histologic or cytologic confirmation of EOCs. For progression free survival (PFS) 

patient who had documented progression were uncensored, whereas patients who 

had not progressed at last follow up were censored. For overall survival (OS), 

patients who died at follow-up (any cause) were considered uncensored, whereas 

patients alive at follow-up were censored. Statistical Package for Social Sciences 

Software (SPSS version 15.0; SPSS Inc.) was used for analyses. Univariate 

analyses for OS and PFS were generated by Kaplan–Meier survival curves and log-

rank (Mantel–Cox) tests for statistical significance.  

2.4 Measurement of DSB Induction and Repair 

DSB recognition and repair was assessed by estimation of the foci formation of 

γH2AX (recognition) and RAD51 and DNA-PKcs (repair) using immunofluorescent 

staining. This technique involves permibilisation of cells after DNA damage and 

subsequent detection of target proteins of interest using immunofluorence labelled 

antibodies. The antibody molecules which bind to each protein can be visualised as 
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foci and counted, therefore protein expression levels can be compared between cell 

lines. Cells were plated on cover slips in a sterile 6 well cell culture plate at a 

concentration of 5 x 105 / well and incubated for 24 hrs to allow cells to adhere 

followed by treatment with a DNA damaging agent. 

2.4.1 Induction of DNA Damage with Ionizing Radiation  

Ionising radiation (IR) was used to induce DNA damage in the experiments to assess 

DNA-PK phosphorylation, formation of double strand breaks and radio-sensitisation 

by inhibitors. Exposure to IR was performed using a D3300 X-ray system (Gulmay 

Medical Ltd., Surrey, UK) at a dose rate of 2.4 Gy / min, 310 kV, 10 mA. 

2.4.2 Use of PARP Inhibitor, Rucaparib to Produce DSBs  

Rucaparib (Clovis), a potent inhibitor of PARP-1 and PARP-2 (Ki < 5 nM/L) was used 

at a concentration of 10 µM to prevent repair of endogeneous SSB leading to SSB 

accumulation and conversion to DSB in exponentially growing cell lines and primary 

cultures. Cells were incubated for 24 hrs following drug treatment.  

Table 2-2 DNA damage induction and detection experiments.  

Experiment  Protein detected DNA-damage 

induction 

Incubation 

prior to fixation 

NHEJ pathway 

activation 

pDNA-PKcs 2 / 4 Gy IR 1 hr 

HR assay RAD51 and ƴH2AX 10 µM rucaparib 

and 2 Gy IR 

24 hrs 

DNA DSB 

formation 

ƴH2AX 2 Gy IR Time line: 0, 

15min, 2, 6, 24 

and 48 hrs 

2.4.3 Cell Fixation and Staining  

Following DNA damage, cells were incubated for an optimised length of time (Table 

2-2). Cover slips in 6 well plates were then washed with cold PBS (4 °C), fixed with 

ice cold methanol for 10 min, re-hydrated with 2 changes of PBS for 20 min and 

transferred to 90 mm petri dishes covered with para film. Cells were then 

permeabilised with 150 μl / cover slip blocking buffer [KCM buffer (120 mM KCl, 20 

mM NaCl, 10 mM Tris-HCl, 1 mM EDTA, pH 8.0, 0.1 % v/v Triton X-100), 2 % (w/v) 
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bovine serum albumin, 10 % (w/v) milk powder, and 10 % (v/v) goat serum (DAKO, 

Denmark)] for 1 hr at room temperature (RT).  

Table 2-3 Antibody preparation for immunofluorescence experiments. 

Reagent Dilution Incubation 

time 

Source/content 

Primary Ab 

ƴH2AX 

1:200 1 hr at RT Anti-phospho-Histone H2AX 

(Ser139), clone JBW301 (IgG1 

mouse monoclonal antibody) 

Upstate, Millipore Corp. 

Primary Ab 

RAD51 

1:200 1 hr RT and 

ON at 4 °C 

Anti-RAD51 Rabbit pAb. (PC 130), 

Calbiochem, EMD Biosciences, Inc.  

Primary Ab 

pDNA-PKcs 

1:50 1 hr RT and 

ON at 4 °C 

Anti-phospho-S2056 DNA-PK 

Abcam 

Secondary Ab 

γH2AX 

1:1000 1 hr at RT Alexa Fluor R 546 Goat anti-mouse 

IgG (H + L). Invitrogen  

Secondary Ab 

RAD51 / pDNA-

PKcs 

1:1000 1 hr at RT Alexa Fluor 488 Goat anti- Rabbit 

IgG (H + L). Invitrogen  

 

Primary antibody diluted in blocking buffer (Table 2-3) was added to the cover slips 

and incubated for the appropriate length of time. Cover-slips were then washed (3 x 

15 min per wash). Secondary antibodies were added to the cover slips and incubated 

in the dark at RT for 1 hr each. KCM buffer (3 x 15 min per wash) was used after 

each change of antibodies. Cover slips were mounted on slides using Vectashield 

mounting medium containing DAPI (Vector Laboratories, Inc. Burlingame). Slides 

were air dried in the dark at RT before storing them at 4 °C. All experiments were 

done alongside untreated controls and treated slides with no primary antibodies. 

2.4.4 Immunofluorescence Microscopy 

A Leica DMR (Wetzlar, Germany) fluorescent microscope was used. All images were 

captured using RT SE6 Slider Camera Spot Advanced software version 3.408 

(Diagnostic Instruments, Inc), and stored as tiff / bitmap images. The settings used to 

take pictures are detailed in Table 2-4. 
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Table 2-4 Leica DMR fluorescent microscope settings. 

Stain  FilterColor Gamma Gain  Exposure 

time(ms) 

DAPI Blue 0.35 4/8 300 

RAD51 / 

pDNA-PKcs 

Green 0.35 16 3500 

ƴH2AX Red 0.35 16 3500 

2.4.5 Counting Foci 

ImageJ software was used to count (Abramoff et al., 2004) the total number of cells 

across 3 fields. Overlapping cells, and cells with fragmented nuclear outline on DAPI 

staining were excluded to avoid over/under estimation of foci counts. The average 

number of foci / cell (mean, SD) was calculated for each field using ImageJ software 

and make mask and foci counting macros (Znojek PhD thesis). The final count was 

taken as the mean and SEM after 3 independent experiments. 

2.5 Cytotoxicity Assays 

Cytotoxicity assays were used throughout the project to assess drug or radiation 

response in cell lines and primary cultures. Cells were assessed in pairs with their 

parental cell lines, where available. 

2.5.1.1 Reagents and Exposures 

Stock solutions of chemotherapeutic agents for use in cytotoxicity assays were 

prepared according to Table 2-5 using appropriate solvents. All stock solutions were 

aliquoted and stored at -80 °C. Working solutions were stored at -20 °C.  

2.5.1.2 Clonogenic Assay 

Clonogenic assays were performed to study the effect of drug treatments on cell 

survival by assessing the ability of cells to form colonies. Cells were seeded in a 6 

well plate for 24 hrs to allow attachment. Medium was gently aspirated and replaced 

with 2 ml of fresh full medium containing the required treatments. Cells were 

incubated for 24 hrs followed by aspiration of the medium, washed in PBS x 1, and 2 

ml of fresh full medium was added. Cells were incubated at 33 °C / 5 % CO2 for 14 

days (OSEC-2) or 37 °C / 5 % CO2 for 30 days (PEO1, PEO4, UWB1.289, 

UWB1.289+BRCA1 and NUOC-1) to check for colony formation. The medium was 
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aspirated, plates were washed in PBS once and then fixed using the Carnoy’s 

fixative (acetic acid: methanol 1:3 v/v, stored at RT) followed by staining with 1 % 

crystal violet. Colony formation efficiency was calculated as number of colonies / 

number of cells seeded x 100. Survival was determined as a fold change over the 

untreated control. 

Table 2-5 Details of cytotoxic agents and small molecule inhibitors. 

Cytotoxic agent Drug Class Molecular 

weight g/mol 

Solvent Stock 

solution 

Cisplatin Bifunctional alkylating 

agent – inhibit DNA 

synthesis 

300.01 SDW 4 mM 

Paclitaxel Plant Alkaloids - Mitotic 

spindle inhibitor: 

enhances tubulin 

polymerization  

853.91 Methanol 10 mM 

Camptothecin Plant Alkaloids -  

Topoisomerase I inhibitor 

  

348.35 DMSO 10 mM 

Doxorubicin Anthracycline antibiotic - 

Topoisomerase II 

inhibitors 

543.52  SDW 10 mM 

Rucaparib  PARP inhibitor  421.36 DMSO 10 mM 

NU7441 Small molecule DNA-PK 

inhibitor 

413.49  DMSO 4 mM 

NU6027 A selective inhibitor ATR. 

Developed as an inhibitor 

of cyclin-dependent 

kinase-2 (CDK2) 

251.28 DMSO 10 mM 

KU55933 Small molecule ATM 

kinase inhibitor  

395.5 DMSO 10 mM 

2.5.1.3 SRB Assay 

Primary cultures do not form colonies with a high frequency, so growth inhibition 

following various treatments was assessed using a 96 well SRB assay instead. The 

sulforhodamine B (SRB) assay is used for cell density determination, based on the 

measurement of cellular protein content (Skehan et al., 1990). SRB is a bright pink 

aminoxanthene dye, with two sulphonic groups that bind to basic amino-acid 

residues under mild acidic conditions, and dissociate under basic conditions. As the 
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binding of SRB is stoichiometric, the amount of dye extracted from the stained cells is 

directly proportional to the cell mass (Vichai and Kirtikara, 2006).  

Cells were seeded at a concentration of 1000 cells per well in 96 well plates and left 

to attach overnight. After gently aspirating out the medium, 100 μl of fresh full 

medium containing drug treatments was added to each well, using 6 replicate wells 

per condition. The plates were incubated for 3 doubling times for the cell line or 10 

days for PCO cultures, at which point the cells were fixed with 25 μl of 50 % 

trichloracetic acid (TCA) per well, and stored at 4 °C for one hr. Plates were then 

washed and dried. 100 μl of 0.4 % SRB solution (4 g SRB in 1 litre 1 % acetic acid) 

was added to each well for 30 min at RT followed by five washes in 1 % acetic acid, 

to remove unbound SRB. 100 μl of 10 mM Tris (pH 10.5) was added to each well to 

solubilise bound SRB, and absorbance read at 570 nm using a Spectra Max 250 

plate reader (Molecular Devices). The mean and SD of optical densities following 

each treatment were calculated.  

2.6 Non Homologous End Joining Assays 

In order to assess NHEJ function two previously published in vitro assays were 

selected.  

2.6.1 Cell Extract End Joining Assay  

A previously described protein extract end joining assay was selected to be used for 

this project (Diggle et al., 2003). End joining is assessed by the ability of cell extracts 

to rejoin linearised vector monomers into multimers (Figure 2-1). The vectors produce 

either compatible or incompatible ends when linearised using BstXI. Rejoining was 

visualised by agarose gel electrophoresis with gel red stain and quantified by 

densitometry. The results were expressed as: 100 x (density of multimers) / (density 

of multimers + monomers). 
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Figure 2-1 Schematic representation of cellular extract NHEJ assay. 

 

2.6.1.1 Cell-free Extract Preparation 

Cells were grown in 175 cm3 flasks until 70 % confluent. 3 flasks were used for each 

lysate sample. Cells were washed 3 times with cold PBS and once in hypotonic 

buffer (10 mM Tris–HCl pH 8.0, 1 mM EDTA, 1 mM DTT) by gently resuspending the 

cells by pipetting, followed by pelleting at 230 x G for 4 min. The cell pellets were 

resuspended in 400 µl hypotonic buffer and left on ice for 20 min, with occasional 

gentle agitation, prior to homogenisation using a 20 g needle in the presence of 

protease inhibitors (0.17 mg / ml phenylmethylsulphonyl fluoride, 0.01 U / ml 

aprotinin, 1 µg / ml pepstatin, 1 µg / ml chymostatin, 1 µg / ml leupeptin). The 

suspension was then left on ice for a further 20 min with occasional gentle agitation, 

then mixed with 0.5 volume of high salt buffer (50 mM Tris–HCl pH 7.5, 1 M KCl, 2 

mM EDTA, 1 mM DTT). The samples were ultracentrifugated at 70000 rpm for 56 

min in a Beckman TLA120 Optima table top ultracentrifuge using a TLA120 fixed 

angle rotor, then dialysed against dialysis buffer (20 mM Tris–HCl pH 8.0, 20 % v/v 

glycerol, 0.1 M KOAc, 0.5 mM EDTA, 1 mM DTT) for 2 hrs before storage at -80 °C. 
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Protein concentration was assessed using the Pierce Assay protein reagent kit 

according to the manufacturer’s instructions (Pierce Biotechnology, Milwaukee, WI). 

2.6.1.2 DNA Substrates 

Vectors were digested using BstXI enzyme (New England biolabs) as per 

manufacturer’s instructions (Figure 2-2.A). Complete digestion was confirmed using 

gel electrophoresis and gelRed stain (Figure 2-2.B). A 1 % agarose gel was prepared 

by melting UltrapureTM agarose (Invitrogen Life Technologies) in TBE buffer [89 mM 

Tris-HCl ph 8, 89 mM Boric acid, 2 nM EDTA]. Gels were stained with GelRED. 

GelRED is a DNA intercalating agent which, when exposed to UV light fluoresces 

brightly with a red colour when incorporated in nucleic acids. Its inclusion in the gel, 

therefore allows visualisation of the DNA following separation. The gel was allowed 

to set at RT. 

The gel cassette was placed in a Sub-Cell® GT Agarose Gel Electrophoresis System 

(Bio-Rad Laboratories Ltd.) filled with TBE buffer. To allow estimation of the size of 

PCR products, 5 μl of quick-Load® 100 bp DNA Ladder (New England Biolabs (UK) 

Ltd., UK) was loaded in to the first well. Electrophoresis was performed at 100 V for 

45 min. DNA was visualised using Gel DocTM XR (Bio-Rad Laboratories Ltd.). The 

Gel Doc software (Quantity OneR V4.5.0) was used to capture an image of the gel. 

Digested bands were cut out and purified using a gel purification kit (Qiagen, UK), 

following the manufacturer’s instructions. For each digestion reaction, PCR using 

NHEJ forward and reverse primers was performed to assess for any contamination 

with uncut vector. The presence of uncut vector was confirmed by a band at 551 bps 

(Figure 2-2.C). Any digested samples found to contain uncut vector were discarded. 

Digested vectors were resuspended to 5 ng / μl concentration in water and stored at -

20 °C for up to 7 days before use. 
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A 

 
B 

 

C 

 

Figure 2-2 Optimisation of BstXI digestion.  

A. Diagrammatic representation of the three vectors and products. B. Confirmation of 
BstXI digestion using agarose gel electrophoresis and gelRed staining. Digestion 
produced a 3.2kb band by excising a 1.2kbλ fragment. C. Check for uncut vector 
contamination. PCR reaction was performed using forward and reverse primers for 
each digested sample (Co, 2I and 4I). Uncut vector was used as positive control for 
PCR reaction. H2O and mastermix only reactions were used as controls for 
contamination. 

2.6.1.3 DNA End Joining Assay 

End-joining reactions (20 μl) were carried out with 50 μg protein extract and 100 ng 

DNA substrate in the presence of T4 ligase manufacturer's recommended buffer at 

37 °C for 2 hrs. Extract from DNA-PK deficient cell lines (V3) and no protein loaded 

sample, was used as a negative control, DNA-PKcs competent (V3-YAK) and T4 

ligase (New England Biolabs, Beverly, MA) were used as positive controls.  



 

49 
 

Monomers only are used in this assay, and therefore, repair by HR was not possible. 

Microhology sequencies in the DNA are a significant distance from the cut site. 

Repair by A-EJ therefore results in the large loss of DNA sequence and hence 

smaller product.  

Samples were incubated with RNase A (80 μg / ml) for 10 min and then protein was 

removed by incubation with proteinase K (2 mg/ml) and 0.5 % (w/v) SDS for 10 min 

followed by incubation at 65 °C for 10 min. Analysis was performed by agarose 

(0.7 %) gel electrophoresis and GelRed staining. Gels were transferred to a dark box 

with CCD camera (Fuji LAS 3000 system, Raytek, Sheffield, UK). An image was 

acquired using Fuji LAS imaging software (version 1.1), which was then analysed 

using Aida Image Analyser software (version 3.28.001, Raytek).  

2.6.1.4 Optimisation of Extract End Joining Assay 

The quantity of vector DNA required, and the maximum concentration of DMSO 

which could be used in a reaction, was optimised using OSEC-2 cells. 100 ng vector 

DNA yielded bands that were, detectable and quantifiable (Figure 2-3.A). DMSO 

inhibited end joining (Figure 2-3.B) and therefore the concentration of DMSO was 

kept below 1 % when inhibitors were used in subsequent assays. 

A 

 

B 

 
Figure 2-3 Optimisation of cell extract end joining assay.  

A. Optimisation of amount of vector DNA loaded into the assay. B. Optimisation of 
amount of DMSO to be used in NHEJ assay. 
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2.6.2 Luciferase Cellular End Joining Assay 

The cellular luciferase assay quantifies end joining of the linearised luciferase gene 

containing pGL2 plasmid using luciferase function. pGL2 plasmid was completely 

linearised using either HindIII or EcoRI and transfected into cells using Lipofectamine 

(Figure 2-4). 

 

Figure 2-4 Schematic representation of Luciferase cellular end joining assay. 

 

The transfectants were harvested 48 hrs after transfection and assayed for luciferase 

activity. Luciferase only functions when the vector is rejoined, thus demonstrating 

NHEJ. The vector linearisation produces blunt ends and does not contain any 

microhomology sequences preventing repair by HR and A-EJ.  

The linearisation of the vector EcoRI cutting site is located within the luciferase gene, 

which therefore requires precise rejoining. The HindIII site is before the luciferase 

gene, therefore some loss of nucleotides would still result in functioning luciferase 

and thus assessed overall rejoining. Transfection of uncut vector acts as control for 

transfection efficiency for the cell line. Results were expressed as 100 * (EcoRI cut / 

uncut) / (HindIII cut / uncut). 

2.6.2.1 DNA Substrates 

Plasmid pGL2 (Promega, Madison, WI) was completely linearised using either HindIII 

or EcoRI, as confirmed by agarose gel (1 %) electrophoresis and GelRed staining. 

DNA fragments were purified using spin columns (Qiagen, UK), dissolved in sterilised 
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water at 5 ng / μl and stored at -20 °C (for up to 7 days), before use. Linearised 

plasmids were transfected into cells using Lipofectamine 2000 (Invitrogen).  

2.6.2.2 Lipofectamine Transfection 

The manufacturer’s protocol for Lipofectamine TM 2000 (Invitrogen, USA, Cat No. 

11668-027) was followed. Adherent cells were grown in 24 well plates for 24 hrs in 

10 % FCS media (2 ml / well) to attain 80 % confluency. For each well, 500 μl of DNA 

/ Lipofectamine mix (1: 2.5 ratio) was prepared as follows: each of 500 ng of plasmid 

DNA in 8 µl DSW and 0.5 μl of PLUS reagent were added to 491.5 μl of serum free 

media, shaken vigorously for 5 min then incubated at RT for 15 min. 3.0 l 

Lipofectamine LTX reagent was added, mixed well and incubated at RT for 30 - 60 

min. Media was aspirated from the cells and replaced with the 500 μl of DNA / 

lipofectamine mix.  After 5 hrs of incubation, 1.5 ml of full media with 10 % FCS was 

added per well.  

2.6.2.3 Transfection by Electroporation in Cell Lines and Primary Cultures 

A cell suspension containing 1 x 106 cells / ml of media was prepared and 250 l 

placed in 4 mm electroporation Cuvettes (Eurogentec, Product code- CE0004-50). 1-

5 μg of pGL2 plasmid was added to the cell suspension. Electroporation was carried 

out using an EPI-2500 electroporator at 100 - 500 volts. The cell suspension was the 

added to the media containing 10 % FCS in 6 well plates and incubated for 48 hrs 

before the transfectants were harvested and assayed for Luciferase activity.  

2.7 Western Immunoblotting 

To determine whether the levels of particular proteins differed in cell lines and PCO 

cultures, quantitation of protein expression was performed by western 

immunoblotting. This technique involves extraction of total cytosolic proteins, 

separation of proteins according to size, followed by immunoblotting onto a 

membrane, and subsequent detection of target proteins of interest using labelled 

antibodies. The number of antibody molecules which can bind to each protein (and 

hence the amount of label detected) is proportional to the amount of protein present, 

therefore, protein expression levels can be quantified and compared between 

samples. 
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2.7.1 Cytosol Preparation  

Cells were plated in a 6 well plate at a concentration of 5 x 105 per well and incubated 

for 24 hrs to allow cells to adhere. The medium was then aspirated and 5 ml of fresh 

medium with required treatments was added. Cells were incubated for the 

appropriate time period.  

Culture medium was removed and cells were washed with PBS, then harvested by 

adding 3 ml of chilled PBS and scrapping the plate to ensure all cells were removed. 

The cell suspension was transferred to chilled 15 ml falcon tubes and centrifugated at 

500 x G at 4 °C for 5 min after which the supernatant was removed. The pellet was 

lysed in 50 ml Merck phosphosafe buffer (Merck Chemicals Ltd.) by incubating at RT 

for 5 min, then centrifuged at 16000 x G at 4 °C for 5 min. Protein concentration was 

estimated using Pierce® BCA Protein assay Kit (Fisher Scientific UK Ltd., 

Leicestershire, UK) as per the manufacturer’s instructions. 

2.7.2 SDS PAGE and Electrophoretic Transfer 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used 

to separate proteins in the cytosolic extracts according to size. To a 22.5 µl of sample 

7.5 µl 4 x Bio-Rad XT Sample Buffer (Bio-Rad Laboratories Ltd.) was added and cell 

lysates were then denatured at 100 °C for 10 min prior to loading onto gels. 4 µl 

Seeblue protein ladder was resolved alongside protein samples to assess protein 

size (4 kDa to 250 kDa). For analysis of ATR, the samples were loaded into Tris-

glycine 4-15 % gel. For the analysis of all other proteins Criterion XT Tris-Acetate 3–

8 % gels were used (both purchased from Bio-Rad Laboratories Ltd.). 

Electrophoresis was performed in the reservoir buffer (77.9 % glycine, 16.6 % tris-

base, 5.48 % SDS) using a constant voltage of 200 mV until the bromophenol blue 

dye front reached the bottom of the gel.  

Following separation, proteins were transferred electrophoretically from the gels onto 

a nitrocellulose membrane (Hybond C-extra, Amersham, Biosciences). Gels were 

removed from their casing and placed in transfer cassettes with PVDF membrane 

(soaked in 100 % methanol immediately prior to use), sandwiched between 3 mm 

Whatman® chromatography papers (supplied by VWR International Ltd.) and 

transfer sponges, all of which had been pre-soaked in transfer buffer [10 mM CAPS-

NaOH pH 11, 10 % (v/v) methanol]. Cassettes were placed in an Electrophoretic 
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Transfer Cell filled with transfer buffer (78.7 % glycine, 21.2 % tris-base) and 

electrophoresis was performed at a constant voltage of 100 mV for 1 hr using a 

magnetic stirrer to maintain ion distribution in the buffer.  

2.7.3 Antibody Detection and Visualisation of Bound Proteins 

PVDF membranes with bound proteins were removed from transfer cassettes and 

immersed in 5 % blocking solution [TBS-Tween, 5 % (w/v) BSA powder] with 

constant agitation for one hr at RT to block non-specific antibody binding sites. 

Following blocking, membranes were cut into appropriate sections (depending on 

which proteins were to be detected) and transferred to 50 ml BD FalconTM centrifuge 

tubes containing 3 ml primary antibody solution (prepared according to dilution 

specified in Table 2-6). Incubation in most cases was over night at 4 °C with gentle 

agitation (using a roller mixer). 

After incubation in primary antibody, membranes were washed in 5 ml TBS/Tween 

[0.01 M TrisHCl pH 7.5, 0.1 M NaCl, 0.05 % (v/v) Tween-20] at RT for 10 min (with 

gentle agitation). This wash step was repeated twice more to ensure removal of any 

unbound primary antibody. Membranes were then transferred to fresh 50 ml Falcon 

tubes containing 3 ml 1:1000 horseradish peroxidase (HRP) conjugated secondary 

antibody (goat anti-rabbit, rabbit anti-mouse or donkey anti-goat, Dako, Ely, UK ) and 

incubated for 1 hr at RT (with gentle agitation). Following this, a total of 4 washes 

were performed, as above, to ensure any unbound antibody was completely 

removed.  

Detection of bound antibodies was performed using ECL detection fluid (Amersham) 

according to the manufacturer’s protocol. Visualisation of chemiluminescence was 

achieved via exposure of membranes to Kodak BioMax Light film (VWR International 

Ltd.) for the appropriate length of time (10 seconds to 10 min, depending on target 

protein). Films were developed using a Mediphot 937 X-Ray Film processor 

(ColentaLobortechnik, Austria). 
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Table 2-6 Antibodies used for protein detection by western blotting.  

Primary Antibody Size 

(kD) 

Dilution Supplier 

Rabbit polyclonal anti  

Oestrogen receptor α 

66 1:1000 Santa Cruz  

Rabbit polyclonal anti 

Progesterone receptor 

90 1:1000 Cell Signaling 

Rabbit polyclonal anti  

Androgen receptor 

110 1:1000 Santa Cruz  

Mouse monoclonal anti EGFR 180 1: 10,000 Cell Signaling 

Rabbit polyclonal anti Her-2 185 1:1000 Santa Cruz  

Rabbit polyclonal anti Her-3 185 1:1000 Santa Cruz  

Mouse monoclonal anti Alpha 

tubulin 

50 1:4000 Sigma Aldrich 

HRP linked anti GAPDH 37 1:30,00 Santa cruz 

Rabbit polyclonal 

Anti pDNA-PKcs 

471 1:500 Abcam 

Rabbit polyclonal 

Anti DNA-PKcs 

471 1:1000 Santa Cruz 

 

Mouse monoclonal 

Anti Ku70 

70 1:800 Abcam 

 

Mouse monoclonal anti Ku80 80 1:800 Abcam 

 

Mouse monoclonal 

Anti Lig IV 

104 1:800 Abcam 

 

Rabbit polyclonal anti XRCC4 38 1:1000 AbDSerotec  

Goat polyclonal anti ATR 217 1:200 Santa Cruz 

Rabbit polyclonal anti PTEN 47 1:200 Cell Signalling 

Rabbit polyclonal  

anti ATM 

350 1:1000 Calbiochem 

Mouse monoclonal anti MDM2 90 1:300 Calbiochem 

Rabbit monoclonal anti MDMX 80 

 

1:1000 Bethyl 

Mouse monoclonal anti P53 53 1:500 Vector 

Mouse monoclonal anti P21  21 1:100 Calbiochem 
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2.7.4 Optimisation of Loading Control Protein 

To ensure equitable protein loading, two commonly used loading controls, α-tubulin 

and GAPDH, were compared across different cell lines (Figure 2-5). Despite protein 

quantification using the Pearce protein assay, marked discrepancies were found 

between α-tubulin levels, whereas, GAPDH had uniform expression, and was 

therefore selected for subsequent experiments. 

 

Figure 2-5 Expression of tubulin and GAPDH across a panel of cell lines.  

Blots are representative of three independent experiments. 

2.8 Immunohistochemistry  

Immunohistochemistry (IHC) involves the binding of a primary antibody specific to a 

protein of interest within histological tissue sections mounted on microscope slides. 

HRP is conjugated to the primary antibody (via a secondary antibody, where 

required) and the application of a chromogen (3,3'-Diaminobenzidine (DAB) to HRP) 

produces visible staining. Staining may be quantified by scoring based on colour 

intensity and the relative area occupied by graded intensities. Higher scores equate 

to a higher total protein expression.  

2.8.1 Formalin-Fixed Paraffin-Embedded Tissue 

Ovarian tissue from patients undergoing surgery at the Northern Gynaecological 

Oncology Centre (Gateshead, UK) was formed into formalin-fixed paraffin embedded 

(FFPE) blocks by the hospital histology department. FFPE tissue was used to 

analyse protein expression by IHC and mRNA expression by real time PCR (qPCR). 

Tissue micro arrays (TMA) were constructed by Dr Peter Donoghue. Two cores from 

each tumour, along with appropriate positive and negative control tissues, were 

included. The TMAs were sectioned at 4 µm and mounted on adhesive slides (Leica, 

IL, USA) by Dr Peter Donoghue.  
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2.8.2 Antigen Retrieval 

Slides were de-waxed in xylene for 5 min and hydrated through graded alcohols 

(99 %→95 %→70 %→50 %). Slides to be labelled with Ku70 and Ku80 primary 

antibodies underwent 10 min microwave-based antigen retrieval (2 x 5 min at 850 

watts) in tris buffer (pH 9) (Sigma-Aldrich, Poole, UK). Slides to be labelled with DNA-

PKcs primary antibody were subjected to antigen retrieval using an antigen decloaker 

for 30 seconds at 125 ºC in citrate buffer (pH 6) (VWR, Leuven, Belgium). Following 

cooling and washing, sections were drawn around with a hydrophobic marker (Dako, 

Glostrup, Denmark) to prevent reagent loss. Endogenous peroxidase activity was 

blocked through application of 3 % hydrogen peroxide solution for 10 min (30 % 

hydrogen peroxide diluted in TBS buffer). 

2.8.3 Antibody Detection  

Primary antibodies were diluted in TBS buffer and applied as shown in Table 2-7. 

Negative controls were included in all runs (TBS buffer only). Antibody detection was 

carried out using the Menapath X-Cell detection kit (Menarini Diagnostics, Berkshire, 

UK). After antibody incubation, slides were subjected to 30 min application of 

universal secondary antibody probe. All slides underwent a 30 min application of 

HRP-polymer. DAB chromogen was diluted in the supplied buffer (1 drop of 

chromogen per 1 ml of buffer) and applied to the slides. Excess DAB solution was 

neutralised in sodium hypochlorite solution. Slides were counter-stained in Gills II 

haematoxylin (Leica) and blued in Scott’s tap-water (Leica). Following rinsing, slides 

were dehydrated through graded alcohols (50 %→70 %→95 %→99 %) and cleared 

in xylene for 5 min before application of cover slips using DPX mounting agent 

(Sigma).  

Table 2-7 Antibodies, concentrations and incubation times used for IHC. 

Antibody Dilution Incubation Time Manufacturer 

Ku70 1:700 Overnight, at 4 °C Abcam (Cambridge, UK) 

Ku80 1:1250 Overnight, at 4 °C Abcam (Cambridge, UK) 

DNA-PKcs 1:750 1 Hr at 15-25 °C, at RT  Santa Cruz (TX, USA) 
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2.8.4 Imaging 

Slides were scanned using the AperioScanScope slide scanner (Leica) and images 

viewed using Aperio Spectrum Webscope (Leica). 

 

Figure 2-6 Graded scoring intensities for each antibody. 

Tissue cores were graded from 1-3 depending on intensity of staining as shown 
above. For DNA-PKcs HGSOC and Non-Serous TMAs required different example 
intensities due to a slight discrepancy between the staining of the two slides. 

2.8.5 Scoring 

TMA cores were scored independently by Richard O’Sullivan (MRes 2014) and Dr 

Peter Donoghue using a modified H-score as previously described (McCarty et al., 

1986). 

Before scoring, the scorers discussed the range of intensities produced for each 

antibody and produced examples of each intensity from 1-3 (Figure 2-6). Intra-class 

Correlation Coefficients (ICC) were calculated to assess the correlation between the 

two scorers in the scoring of TMA cores (Hecht et al., 2008). Excellent reproducibility 

of scoring was found (Table 2-8). 
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Table 2-8 IHC scores for DNA-PKcs, Ku70 and Ku80.  

ICC and 95 % confidence interval between the scorers for both raw scores and after 
discussion of heterogeneous results. 

 Intraclass Correlation Coefficient 

(95 % confident intervals) 

Primary Antibody Raw Scores Post Discussion 

DNA-PKcs 0.84 (0.76-0.90) 0.95 (0.92-0.97) 

Ku70 0.91 (0.86-0.94) 0.95 (0.92-0.97) 

Ku80 0.90 (0.85-0.93) 0.94 (0.91-0.96) 

2.9 Cell Cycle Assessment using Flow Cytometry 

Propidium Iodode (PI) staining was used to study cell cycle profiles. Stoichiometric 

binding of PI to DNA results in increased dye uptake as cells synthesise DNA and 

progress through cell cycles. PI fluorescence is detected in the FL2 channel of flow 

cytometers. This quantification of DNA content of the cells allows determination of 

cells in the sub G1 (apoptotic cells) G1, S and G2 phases of the cell cycle.   

2.9.1 Sample Preparation  

Cells were plated in a 6 well plate at a concentration of 5 x 104 per well and incubated 

for 24 hrs to allow cells to adhere, the medium was then aspirated and replaced with 

fresh full medium containing 1 M rucaparib, 1 M NU7441 and 10 M NU6027 

individually and in combination. Cells incubated in full medium were used as positive 

control and stain free samples as negative controls. 48 hrs following treatment, cells 

were harvested and cell pellets were resuspended in 500 µl of 2 % FCS in PBS, with 

the addition of 125 μl of 0.25 % PI in 5 % Triton and 50 μl RNAseA solutions.  

Samples were incubated at RT for 10 min prior to analysis with flow cytometry. 

2.9.2 Sample Analysis 

Samples were run through a Becton-Dickinson FACScan Flow Cytometer (BD 

Becton Dickinson UK Limited, Oxford, UK).  Three detectors were used: one in line 

with the light beam (Forward Scatter), one perpendicular to it (Side Scatter) and 

fluorescent detector FL2 for PI florescence, measuring cell size, density, and 

fluorescence respectively.  

 

http://en.wikipedia.org/wiki/Fluorescent


 

59 
 

The following settings were optimized for this assay: 

Parameter  Detector  Voltage  Amp Gain  Mode 

P1   FSC   E-1   3.94   Linear 

P2  SSC   304   1.00   Linear 

P3   FL1   535   N/A   Log 

P4   FL2   443   N/A   Log 

Events counted: 10000 

2.9.3 Data Analysis 

Data analysis was performed with the Window Multiple Document Interface software 

(WinMDI) version 2.8. For cell cycle analysis, forward scatter and side scatter 

dotplots were created with WinMDI software to define studied cell population and 

exclude debris and dead cells. The studied cell population were then plotted against 

cells with PI staining, with the relative DNA content which determined the proportion 

of cells in G1, G2 and S phase. Cells in G1, G2 and S phase were plotted on a 

frequency histogram and cell cycle areas designated with the use of marker settings 

with software calculated percentage of cells in each phase. 

The data was transferred and interpreted using Microsoft Excel software. The mean 

and standard deviation of the percentage of cells in each phase of cell cycle were 

calculated. Final data represented the mean of three experimental repeats, each 

experiment containing 3 replicates, with SEM. 

2.9.4 Optimising Flow Cytometry  

Population gating was necessary to establish the cell cycle phases and discriminate 

doublets by relying upon cellular DNA content (Nunez, 2001). A third population was 

noted in the NUOC-1 cell line and hypothesised to be due to NUOC-1 tetraploidy 

(Figure 2-7). This work was carried out with Eleanor Earp (MRes 2013). Cell 

incubation in serum-starved conditions has been shown to arrest cells in G1 phase. 

To assess if the third population noted was the G2/M phase of multiploid cells, 

NUOC-1 cells were serum-starved for 3 doubling times prior to assessment of cell-

cycle.  
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NUOC-1 cells grown in FCS-free media displayed unaltered cellular DNA 

populations, which did not aid in identifying the third population, but gave an insight 

into their possible resistance to starvation. 

A 

 
B  

 
Figure 2-7 Gating for flow cytometry. 

A. OSEC-2 and B. NUOC-1 cell line gating using cyflogic software. A third population 
(circled in red) appears in NUOC-1 cells that is absent from OSEC-2, hypothesised to 
be derived from tetraploidy. 

2.10 Poly (ADP-ribose) Polymerase Assay 

Poly(ADP-ribose) (PAR) is quantified following maximal stimulation of a defined 

quantity of permeabilised cells. Excess NAD+, a substrate for the PARP enzyme, 

alongside oligonucleotides that induce DSBs, thereby activating PARP, are added. 

Cells are blotted on to a membrane which is treated with anti PAR primary antibody 

followed by secondary antibody conjugated with HRP. A chemilumuniscence agent is 

added, an image is captured and PARP activity is assessed as ‘luminiscent arbitrary 

units’. This assay has been previously validated in our laboratory (Plummer et al., 

2005) to GCLP standard and used as a pharmacodynamic endpoint for clinical trials 

(Plummer et al., 2008). 

NICR standard operating procedure No.212 (revision 3) was followed. PCO cell 

pellets and one 106 cell aliquot of L1210 (quality control) were defrosted, washed 

twice in ice cold PBS and permeabilised with digitonin (0.15 mg/ml) at RT for 5 min.  
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Nine volumes of ice-cold isotonic buffer (7 mM HEPES, 26 mM KCl2, 0.1 mM 

Dextran, 0.4 mM EGTA, 0.5 mM MgCl2, 45 mM sucrose dissolved in distilled water, 

pH 7.8) was added and the samples placed on ice. A 10 μl cell suspension was 

mixed 1:1 (v/v) with trypan blue and permeabilised cells counted. The cell 

suspension was diluted with isotonic buffer to a density of 6 x 105 cells / ml. Duplicate 

samples (1000 cells) were exposed to oligonucleotide at 200 μg / mL in the presence 

of excess NAD1 (7 mM) in reaction buffer (100 mM Tris–HCl, 120 mM MgCl2, pH 

7.8) for 6 min at 27°C, alongside unreacted cells. 500 μl of the PARP reaction 

mixture was loaded alongside PAR standards into a 48-well manifold containing a 

nitro cellulose Hybond-N membrane and drawn through using a vacuum pump. 400 

μl 10 % trichloro acetic acid / 2 % sodium pyrophosphate followed by 800 μl 70 % 

ethanol were drawn through the membrane as a fixative. The membrane was PBS 

washed 3 times and blocked (5 % milk powder in 0.0005 % Tween-20 PBS) for 1 hr. 

Mouse monoclonal anti-PAR 10H antibody (1:1000) was added for 1 hr, followed by 

polyclonal goat anti-mouse IgG anti-PAR HRP antibody (1:1000). Secondary anti-

body was followed by Amersham ECL detection fluid and chemiluminescence 

recorded by Fujifilm LAS 3000 imager then analysed using Aida Image Analyser 

software (version 3.28.001).  

2.10.1 Data Analysis 

A standard curve was constructed by non-linear regression of the PAR standard 

values using Graph Pad Prism 6. The resulting equation relating PAR to 

chemiluminescence (R2 ≥ 0.9) was used to calculate the amount of PAR present in 

each well. Results were expressed as picomoles of ADP-ribose monomer 

incorporated per 106 permeabilised cells. Results were normalised to PAR in internal 

controls (L1210 cell line) to account for inter-assay variability.  

2.11 Gene Expression Analysis by Quantitative Real-time PCR  

In order to determine whether the expression of particular genes involved in DNA 

DSB repair was altered in PCO cultures relative to control cell lines and in 

knockdown and resistant derivatives relative to paired parental cell lines, gene 

expression analysis was performed by real time quantitative PCR using Syber green 

chemistry. This technique involves two stages; firstly, mRNA is reverse transcribed to 

cDNA; and secondly, PCR is performed using primers specific for the gene of 
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interest, during which accumulation of the PCR products is detected in real-time. This 

is achieved through the binding of syber green to double strand DNA and emitting a 

fluorescent signal when it is bound. As the target sequence is amplified the 

fluorescent signal amplifies. With progressive PCR cycles an exponential phase is 

reached where the quantity of product and associated magnitude of fluorescence of 

an intercalated reporter molecule doubles with each successive cycle. During this 

phase an absolute quantification of the amount of product can be calculated through 

comparison with a concurrently amplified standard curve of known concentrations. 

Multiple samples can be compared by normalising quantities to that of a 

‘housekeeping gene’ assumed to be present at the same level in all samples. 

Relative quantification of expression of the target genes was performed and 

normalised to GAPDH for all cell line and PCO samples and HPRT1 for FFPE 

extracted RNA.  

2.11.1 RNA Extraction and Quantification 

For each cell line and primary culture, a frozen cell pellet obtained from a confluent 

75 cm3 flask was thawed on ice. Total RNA was extracted from thawed cells using an 

RNAeasy® Mini kit (Qiagen, Crawley, UK) according to the manufacturer’s protocol. 

Briefly, cells were lysed and homogenised, then RNA was bound to an RNAeasy® 

silica gel membrane in spin-column format, after which contaminants were removed 

by washing in the provided buffers. RNA was eluted in 30 µl nuclease-free distilled 

water (dH2O) (Invitrogen Life Technologies). Quantification of RNA was performed 

using a NanoDrop® ND-1000 spectrophotometer (Thermo Scientific, DE, USA) which 

measures the absorbance of UV light at 260 mm passed through a 1 µl aliquot of 

extracted RNA, and performs the necessary calculations according to the Beer 

Lambert Law to provide the RNA concentration (in ng / µl). 

2.11.2 RNA Extraction from FFPE Tissue 

Samples were extracted from 10 µm sections cut from the donor FFPE tissue blocks. 

Extractions were performed using the All Prep DNA / RNA FFPE Kit (QIAGEN, 

Venlo, Netherlands) as per the manufacturer’s instructions. Briefly, samples were 

deparaffinised twice in xylene and washed in 100 % ethanol. Tissues were lysed in 

the supplied Proteinase K and incubated at 80 ºC to partially reverse formaldehyde 

crosslinking. The sample was added to the supplied spin column and centrifuged with 
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720 µL of 100 % ethanol to bind the RNA to the spin column membrane. Incubation 

with DNase1 was performed to remove contaminating DNA. Following subsequent 

wash and purification steps, RNA was eluted by centrifugation with 14 µL of RNase 

free water (Life Technologies, CA, USA). 

2.11.3 Reverse Transcription of RNA into cDNA 

2 µg of the total RNA was incubated at 65 °C for 5 min followed by 37 °C for 5 min 

prior to addition of Promega MMLV-reverse transcriptase master mix (4 µl 5 x 

Moloney Murine Leukaemia Virus RT buffer, 2 µl 4 mM dNTPs, 1 µl 50 µM Oligo 

dT15 and 0.3 µl MMLV reverse transcriptase) and incubation at 37 °C for 1 hr 

followed by 95 °C for 5 min. A blank reaction was also prepared using nuclease-free 

dH2O in place of RNA, to ensure no contamination of reagents. Assuming a reverse 

transcription efficiency of 100 %, this yielded 20 µl of cDNA at the concentration of 

100 ng / µl. This was subsequently adjusted to 20 ng / µl by addition of 80 µl 

nuclease-free dH2O and stored at -20 °C until required.  

2.11.4 Real-time PCR Setup 

PTEN primer sequences were purchased from Sigma-Aldrich. All other primers were 

purchased from Sigma Genosys and all primers were diluted to 100 µM as per the 

manufacturer’s instructions. Working stocks were diluted 1:40 by addition of 390 µl 

dH2O to 10 µl of stock solution and aliquoted. Both stocks were stored at -20 °C. 

Sequences of primers are detailed in Table 2-9. 2 µl of cDNA was loaded on to a 386 

well plate in triplicate with Invitrogen SYBR green Master Mix (dNTPs, optimised 

buffer, UDG, ROX reference dye, AmpliTaq DNA polymerase UP and SYBR green 

ER dye) and 2.5 mM of the appropriate forward and reverse primers. For each gene 

two controls were also prepared, using a blank reverse transcription reaction and a 

nuclease free dH2O in place of cDNA, to ensure no contamination of reagents. 

Assays (and controls) were setup in triplicate for each gene in each cell line. 

Samples were run on an AbiPrism Applied Biosystems real time PCR machine for 10 

min at 95 °C, 40 cycles (15 s at 95 °C, 60 s at 60 °C), 15 s at 95 °C, 15 s at 60 °C, 15 

s at 95 °C. 

Following completion of thermal cycling, detected fluorescence was converted to a Ct 

value for each reaction using the SDS2.3 software, using standard parameters. The 
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means of the triplicate Ct values generated for each gene (in each cell line) were 

used for quantification of gene expression, as described below.  

Table 2-9 Primers used for PCR.  

Primer Set Sequence Annealing 

temp 

DNA-PKcs 5’ – CTAACTCGCCAGTTTATCAATC – 3’ 

5’ – TTTTTCCAATCAAAGGAGGG – 3’ 

55 

DNA-PKcs 5’ – GATCTGAAGAGATATGCTGTG – 3’ 

5’ – GTTTCAGAAAGGATTCCAGG – 3’ 

55 

Ku70 5’ – AAGAAGAGTTGGATGACCAG – 3’ 

5’ – GTCACTTCTGTATGTGAAGC – 3’ 

55 

Ku80 5’ – TTCATTCAGTGAGAGTCTGAG – 3’ 

5’ – CGATTTATAGGCTGCAATCC – 3’ 

55 

ATR 5’ – CCTTCAGATTTCCCTTGAATAC – 3’  

5’ – GCAGTTCATGTTTTGATGAG – 3’  

55 

ATR 5’ – GTAACAGAGTTCCCAAGATTC – 3’  

5’ – TCAAGTTCCTACAGAAGAGG – 3’ 

55 

LIG IV 5’- TGAGTGGAACAGATAGCCAGCCAA-3’ 

5’ – ATTACACAGTACGTGTCTGGGCCT-3’ 

55 

XRCC4 5’-CTGAAATGACTGCTGACCGAGATCCA-3’ 

5’- CTGAAGCCAACCCAGAGAGATCAGTT-3’ 

55 

PTEN  5’ – CAGAGCCATTTCCATCCTGC - 3’  

5’ – CATTACACCAGTTCGTCCCTTTC – 3’ 

55 

PTEN  

 

5’ – CATGTTGCAGCAATTCAC – 3’ 

5’ – GGTATGAAGAATGTATTTACCCA – 3’ 

55 

PTEN  5’ – CCACAAACAGAACAAGATGCTAA – 3’ 

5’ – CATGGTGTTTTATCCCTCTTGAT – 3’ 

55 

HPRT1  5’ – TTGCTTTCCTTGGTCAGGCA – 3’ 

5’ – AGCTTGCGACCTTGACCATCT – 3’ 

55 

HPRT1  5’ – TGAACGTCTTGCTCGAGATGTG – 3’ 

5’ – CCAGCAGGTCAGCAAAGAATTT – 3’ 

55 

HPRT1  5’ – TTGTAGCCCTCTGTGTGCTCA – 3’ 

5’ – TTTTATGTCCCCTGTTGACTGG – 3’ 

55 

GAPDH 

 

5’ – CGACCACTTTGTCAAGCTCA – 3’ 

5’ – GGGTCTTACTCCTTGGAGGC – 3’ 

55 

ARID1A  5’ – TATGGAGGTCCTTATGACAG – 3’ 

5’ – ATTGCCATAGGAATCATGTC – 3’ 

55 

 5’ – CCTTTCTCTCCTCATACCTC – 3’ 

5’ – CTTGATTGGTTCATGGAAGG – 3’ 

55 

 5’ – GGATTAATAGTATGGCTGGC – 3’ 

5’ – TYGGATTTGGATTCTGTCTTG – 3’ 

55 

P53 5’ – CGAGCTGTCTCAGACACTGG – 3’  

5’ – CCTTGTCCTTACCAGAACGTTG – 3’ 

58  

 5’ – CATGGGACTGACTTTCTGCTCTTG – 3’ 55  
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5’ – CGGGGACAGCATCAAATCATC – 3’ 

 5’ – GTTCTGGTAAGGACAAGGGT – 3’  

5’ – ATACGGCCAGGCATTGAAGT – 3’ 

55  

 5’ – ATCTGTTCACTTGTGCCCTG – 3’  

5’ – CAACCAGCCCTGTCGTCTCTC – 3’ 

55  

 5’ – GCCTCTGATTCCTCACTGAT – 3’  

5’ – GGAGGGCCACTGACAACCA – 3’ 

55  

 5’ – AAGGCGCACTGGCCTCATCTT – 3’  

5’ – CAGGGGTCAGCGGCAAGCAGA – 3’ 

60  

 5’ – GAGCCTGGTTTTTTAAATGG – 3’  

5’ – TTTGGCTGGGGAGAGGAGCT – 3’ 

60  

 5’ – AGCGAGGTAAGCAAGCAGG – 3’  

5’ – GCCCCAATTGCAGGTAAAACAG – 3’ 

55  

 5’ – CTTCTCCCCCTCCTCTGTTGC – 3’  

5’ – GAAGGCAGGATGAGAATGGA – 3’ 

60  

 5’ – TGGTCAGGGAAAAGGGGCAC – 3’  

5’ – GAGAGATGGGGGAGGGAGGC – 3’ 

58  

2.11.5 Data Analysis 

Relative quantification using the 2-Ct method (Livak and Schmittgen, 2001) was 

performed to determine the expression level of each gene of interest. Briefly, analysis 

by this method first involved normalisation of the expression of each gene of interest 

to the expression of house-keeping gene in all cell lines. The normalised expression 

levels of genes of interest were then compared to control cell lines, generating values 

representing fold change in expression for each gene. All calculations were 

performed using Microsoft Excel. The entire investigation was repeated a total of 

three times, using new frozen cell pellets each time.  

2.12 RNA Genome Expression Arrays 

RNA was extracted as described in section 2.7.1, quality checked, then processed by 

the Oxford Genomics Centre (Oxford, UK) using Illumina Genome Studio and 

HumanHT 12v4.0 R1 15002873 array, as per manufacturer’s instructions.  

RNA concentration and purity was checked by Agilent RNA bioanalyser and RNA 

6000 Nano Lab chip kit (Agilent Technologies, USA) as per manufacturer’s 

instructions. Briefly, 2 μl samples of concentrated RNA extract are treated for 2 min 

at 70 °C before adding 1 μl aliquots to the Agilent RNA chip. A 6-peak RNA nano 

ladder is included in the chip for control.  Data analysis was done using the 2100 

Expert software. Good quality RNA was verified by the presence of a sharp 
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distinction at the small side of both the 18 S and 28 S ribosomal RNA bands and 

peaks. Any smearing or shouldering to the rRNA bands or peaks was indicative of 

RNA degradation. An RNA integrity number (RIN) of >8.0 was considered 

satisfactory. 

The HumanHT-12 v4 Expression BeadChip consist of oligonucleotides immobilised 

to beads held in microwells on the surface of an array substrate and provides 

genome-wide transcriptional coverage of well-characterized genes, gene candidates, 

and splice variants, with high-throughput processing of 12 samples per BeadChip. 

Each array on the HumanHT-12 v4 Expression BeadChip targets more than 47,000 

probes derived from the National Centre for Biotechnology Information Reference 

Sequence (NCBI) RefSeq Release 38 (2009). Labelled cRNA are detected by 

hybridisation to 50-mer probes on the Beadchip. After washing and staining steps 

using the Direct Hybridization Assay, beadchips are scanned on the HiScan or iScan 

systems.  

2.12.1 Data Analysis 

Arrays processing, background correction, normalisation and quality control checks 

were performed using the R package ‘Lumi’. Probes intensity values were converted 

to VSD (variance stabilized data) using variance stabilising transformation. The 

robust spline normalisation (RSN) was used as an array normalization method. 

Irrelevant samples, poor quality probes (detection threshold < 0.01), and probes that 

are not detected at all in the remaining arrays were removed prior downstream 

analysis. The remaining probe normalised intensity was used in the differential 

expression analysis. Differential expression analysis was performed using the R 

package ‘Limma’, and p values were adjusted to control the false discovery rate 

(FDR) using the Benjamini–Hochberg method.  

Illumina Genome Studio Gene expression software is used to extract relative gene 

expression across samples, clustering them into differential groups. The comparative 

Ct (ΔΔCt) method was used to assess the expression level of components of each 

pathway relative to endogenous controls normalised to the reference panel. The fold 

change differences in expression of each gene between sample categories (HRC 

and HRD; NHEJC and NHEJD) was calculated. 

http://products.illumina.com/technology/direct_hybridization_assay.ilmn
http://products.illumina.com/systems/hiscan.ilmn
http://products.illumina.com/systems/iscan.ilmn
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2.13 DNA Sequencing  

Sequencing of TP53 and ARID1A was performed by PCR amplification and Sanger 

sequencing. 

2.13.1 DNA Extraction and Quantitation 

Frozen cell pellets consisting of ~5 x 106 cells were thawed and resuspended in 100 

µl PBS. Genomic DNA was extracted using a QIAmp DNA Mini Kit (Qiagen) 

according to the supplied manufacturer’s protocol. Briefly, DNA extraction was 

achieved through binding of DNA to a QIAmpR silica gel membrane (in spin column 

format) after which contaminants were removed by washing using the provided 

buffers. DNA was eluted in 200 μl Buffer AE [10 mM Tris-CHL, 0.5 mM EDTA, pH 

9.0], quantification of DNA was performed using a NanoDropR ND-1000 

spectrophotometer which measures the absorbance of UV light at 260 nm passes 

through a 1 µl aliquot of extracted DNA, and performs the necessary calculations 

according to the Beer Lambert Law to provide DNA concentration (in ng / µl).  

For each sample, a 20 µl aliquot of DNA at a concentration of 100 ng / µl was 

prepared using buffer AE and stored at 4 °C for use in PCR reactions. Remaining 

DNA was stored at -20 °C. 

2.13.2  PCR Amplification 

PCR primer sequences are shows in Table 2-9. PCR reaction conditions were the 

same for each gene/exon and consisted of 1 x ReddyMix PCR buffer (Thermo 

Scientific), 10 pmol primers, 0.2 mM (each) dNTPs (Invitrogen Life Technologies), 1.5 

mM MgCl2, 0.5 units ThermoPrimeTaq DNA polymerase (Thermo Scientific) and 100 

ng cDNA in a total volume of 10 µl. For setup of reactions, the appropriate volume of 

PCR mastermix was initially prepared and 19 µl was dispensed into the appropriate 

number of wells on a 96 well PCR plate on ice. To this, 1 µl of 100 ng / µl DNA was 

added. Controls were also prepared using nuclease free dH2O in place of DNA, to 

ensure no contamination of reagents. Thermal cycles were performed as follows: 1 

min at 94 °C, 40 cycles (30 s at 94 °C, 30 s at 55 °C, 30 s at 72 °C), 5 min at 72 °C. 

In order to confirm successful PCR amplification of exons, a 5 µl aliquot of each 

reaction was assessed using GelRED stained agarose gel electrophoresis as 

described in section 2.4.4. and 15 µl of PCR reactions were diluted by addition of 85 
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µl of dH2O and sent for Sanger sequencing (Beckman Coulter Genomics). The 

samples were analysed with mutation surveyor (Softgenetics) and mutations were 

searched for in the literature using Cancer Gene Census of the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database (Wellcome Trust Sanger Institute, 2013). 

Both forward and reverse sequences were analysed to ensure accurate coverage of 

entire exons.  

2.13.3 Whole exome sequencing  

DNA was extracted from parent and resistant cell lines as previously described. 

Whole exome sequencing was performed off site by Oxford gene technology (OGT) 

(Oxfordshire, UK). Briefly, Agilent SureSelect All Exon Plus v4+UTR was used for 

exome capture and Illumina HiSeq 2000 minimum (San Diego, CA) for 100 bp paired 

end sequencing. Multiple sample vcf files were created by OGT using individual raw 

bam files. Raw bam files were generated from the sequencer and contained the 

whole sequenced data aligned to the reference genome of the parental cell line. 

Genome Analysis Toolkit (GATK; Broad Institute) was used for data quality 

assurance as well as variant discovery. Variant characterization, including filtering, 

annotation, classification, prioritization and inheritance pattern analysis was 

performed using SNP & Variation Suite (SVS) v8.1.5 (Golden Helix, Inc., Bozeman, 

MT, www.goldenhelix.com). Briefly, quality-control metrics (QC) were set to only 

retain variants in the positions with Read Depth ≥20 and Genotype Quality ≥20. 

Variants were classified, annotated, and functionally profiled in SVS v8.1.5 using 

multiple publicly available databases. The impact of the mutations on protein function 

was evaluated by database of non -synonymous functional predictions (dbNSFP). 

Functional predictions were performed using track of SVS for SNPs, and Indel SIFT 

webtool for Indel mutations (http://sift.bii.atar.edu.sg/www/SIFT_indels2.html). These 

analyses were carried out by OGT. 

To identify those mutations that were of potential importance to the chemo-resistant 

phenotype from the data received, a selection criteria was applied. Firstly known 

SNPs were excluded during the analysis. Secondly the frequency of mutation 

reported in both parent and resistant lines; mutations which were present in >5 % of 

read in the parent line were excluded. Additionally, only mutations that were resent in 

more than 25 % of reads (and therefore 50 % of cells, assuming heterozygosity) in 
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the resistant lines, and were either not observed in parental cells or had more than a 

3 fold increase in frequency, were taken forward for further analysis. 

2.14 SNP Array Analysis 

SNP arrays were performed on NUOC-1 cell line subpopulations and matched 

genomic DNA. SNP arrays assess the expression of both SNPs and non-polymorphic 

sites distributed throughout the entire genome using probes hybridised to a chip. This 

data can be used to demonstrate copy number aberrations (CNAs) in individual 

samples, indicated by the deletion or amplification of particular probes. It can also 

reveal regions of copy-neutral loss of heterozygosity (cn-LOH) by comparing of SNP 

genotype to those of matched germline DNA. SNP arrays were performed offsite by 

Almac Diagnostics Ltd. (Craigavon, UK) using the Affymetrix SNP 6.0 platform. The 

SNP 6.0 array includes more than 906,600 SNPs and 946,000 non-polymorphic 

probes.  

For SNP array analysis DNA was extracted using QIAmp DNA Kit as per the 

manufacturer’s instructions. A minimum of 10 µl of DNA at a concentration of 50 ng / 

µl was analysed. 

2.14.1 Data Analysis 

Raw array-generated data in the form of .CEL files were received from Almac 

Diagnostics Ltd. Processing of raw data to identify CNAs and regions of cn-LOH in 

each samples was kindly performed by Prof J.M. Allan using Genotyping Console 

v4.0 (Affymetrix, Ca, USA).  

The work flow for data processing briefly involved initial generation of SNP genotype 

calls using the birdseed v2 algorithm. This was followed by quantile normalisation of 

data and copy number and LOH analyses (via Hidden Markov Model) using default 

software settings (with regional GC correction applied). Matched germline DNA was 

used as reference model for LOH analysis. Segment analysis of CN data was 

performed to identify regions of CAN (with detection thresholds set to exclude 

regions smaller than 100 kb and involving fewer than 5 markers).  

CNAs and regions of LOH were compared between sub-populations and parent line 

of NUOC-1 cell line, using affymetrix Genotyping Console Browser (version 1.0.12). 
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This also allowed identification of genes within affected regions (of CAN or LOH) 

based on annotations taken from the NCBI RefSeq database.  

Quality control assessment of data was performed by determining the call rate at 

control SNPs, and by measurement of concordance between sub populations and 

parent line.  

2.15 G-band Karyotyping  

Karyotyping was performed offsite by the Cancer Cytogenetics department at 

Newcastle University, according to established protocols. Briefly, tetaphase 

chromosome spreads were prepared by incubating proliferating cells with 100 ng/ml 

colcemid for 4 h followed by resuspension in 75 mm KCl for 7 min. Cells were fixed by 

resuspension in 3:1 methanol:acetic acid before karyotyping. Slide-fixed cells were 

incubated overnight at 60 °C and G-banded by soaking in the trypsin solution (1.9  

mg/ml trypsin, 74  mM NaCl, 0.469  mg/ml NaH2PO4 and 0.937  mg / ml Na2HPO4) 

for 10  s and in the staining solution [(8  ml Giemsa stain, 0.5  ml Leishman stain and 

40 ml Gurr buffer (0.469  mg / ml NaH2PO4 and 0.937  mg / ml Na2HPO4)] for 3  

min. Four metaphase chromosome spreads were analysed for each population and 

the karyotypes recorded. 

2.16 Fluorescence in Situ Hybridization for c-MYC   

Fluorescence in situ hybridization (FISH) is a cytogenetic technique that uses 

fluorescent probes that bind to only those parts of the chromosome with a high 

degree of sequence complementarity. It is used to detect and localise the presence 

or absence of specific DNA sequences on chromosomes. Fluorescence microscopy 

can be used to find out where the fluorescent probe is bound to the chromosomes. 

FISH analysis was performed offsite by the Cancer Cytogenetics department at 

Newcastle University, according to established protocols. Briefly, the Cytocell MYC 

‘breakapart’ Probe set (Figure 2-8) was hybridised to nuclei as recommended by the 

suppliers. Slides were heated to 72 °C for 5 min and then incubated for 24 hr at 37 °C 

in a humidified hybridisation chamber (HYBrite; Abbott Molecular). After hybridisation, 

slides were counterstained with 4′,6-diamidino-2-phenylindole (Vector Laboratories, 

Peterborough, UK). FISH was scored with an Olympus BX-61 fluorescence 

microscope (Olympus, Southend-on-Sea, UK) with a x 100 oil objective. Images were 

analysed using the CytoVision 7.2 SPOT counting system (Leica Microsystems, 

https://en.wikipedia.org/wiki/Cytogenetics
https://en.wikipedia.org/wiki/Hybridization_probe
https://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/DNA_sequence
https://en.wikipedia.org/wiki/Chromosome
https://en.wikipedia.org/wiki/Fluorescence_microscopy
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Gateshead, UK). A minimum of 100 nuclei were scored per test by two independent 

analysts. 

 

Figure 2-8 Cytocell MYC ‘breakapart’ probe set. 

2.17 Mouse experiments 

To assess the ability of NUOC-1 cells to generate tumours, their ability to form 

explants in mice was assessed. The mouse injections and monitoring was kindly 

performed by Huw Thomas. All animal studies were performed in compliance with the 

UK Home Office Animals (Scientific Procedures) Act 1986 for the use of animals in 

scientific procedures, and have undergone local ethical review; project license 

number PPL 60/42222. 

2.17.1 Subcutaneous Injection 

Exponentially growing NUOC-1 cells were trypsinised and resuspended at a 

concentration of 2 x 108 / ml in 500 µl 10 % FCS RPMI 1640, mixed with 50 % (v/v) 

matrigel (Becton Dickinson) making a total volume of 300 µl. Cells were transferred 

on ice to the animal house and injected subcutaneously into the right flank of 5, 8-10 

week old mice under sterile conditions. Mice were then monitored for tumour growth 

and wellbeing for a maximum of 100 days.   

2.17.2 Intraperitoneal Injection 

Intraperitoneal (IP) injection of cells better represents ovarian cancer in humans, and 

therefore, NUOC-1 cells were injected IP into 5 further mice.  
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2.17.2.1 Cell Labelling  

To allow monitoring of IP injected NUOC-1 cells, they were first labelled with 

luciferase by transfection of a vector containing luciferase. The vector was kindly 

gifted by Dr Alex Elder. An 800 µg / ml stock solution of hexadimetrine bromide was 

prepared by dissolving 800 µg hexadimetrinebromide in 1 ml sterile dH2O. The stock 

solution was filter sterilised using a 0.2 µM filter (VWR International Ltd.), stored at 

4 °C and used neat, as required. 

Cells were seeded at 5 x 105 / 6 well plate, and after 24 hrs incubation (to allow 

adherence) 100 µl or viral vector, and 10 µl 8 µg/ml of hexadimetrine bromide was 

added to the well. A control well had hexadimetrine bromide added only. The plate 

was then wrapped in paraffin and centrifuged at 900 x G for 50 min at 34 °C; 

following which the cells were incubated at 37 °C / 5 % CO2 until confluent. Control 

cells were treated in the same way. Cells were incubated and passaged as required 

to reach the required cell numbers.  

2.17.2.2 Confirming Cell Transfection  

Once cell populations had resumed normal exponential growth, transduction 

efficiency was determined by assessment of the expression of GFP by flow cytometry 

(the principles of flow cytometry are described in section 2.8). A suspension 

containing 2 x 105 cells was dispensed into a BD FalconTM capped polystyrene tube. 

Cells were centrifuged at 450 x G for 4 min, supernatant discarded, and cells 

resuspended in 500 µl PBS. Flow cytometry was performed using a FACSCalibur 

flow cytometer with BD CellQuest Pro software (BD Biosciences) using pre-optimised 

instrument settings for detection of GFP fluorescence. A total of 10,000 cells were 

assessed from each transduced cell population. For assessment of GFP-expressing 

cells, cell debris and dead cells were first excluded from the analysis based on 

forward and side scatter signals. Percentage of GFP-expressing cells in the 

remaining cell population was then determined based on detection of GFP 

fluorescence. 

2.17.2.3 Injections into Mice 

Cells were trypsinised, washed in PBS, then 5 x 106 cells were resuspended in 300 

µl PBS. This was transferred to the animal house and injected into the peritoneum of 
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five mice by Huw Thomas. The animals were housed under sterile conditions in a 

laminar flow environment with ad-lib access to food and water. 

2.17.2.4 Imaging Mice 

Tumour formation was assessed by non-invasive whole-body imaging at 0, 10 and 

55 and 85 days after implantation using the IVIS Spectrum Imaging system (Caliper 

Life Sciences, Hopkington,MA, USA). Animal handling was kindly performed by Dr 

Helen Blair. Mice were injected IP with 3 mg / mouse D-luciferin (Promega) solution 

10 min before being anaesthetized for the imaging procedure. Photon emission was 

captured and expressed in p/s/cm2/sr using Living Image software (version 4.3.1., 

CaliperLifeSciences). Mice were labelled using ear notching to ensure florescence in 

each mouse could be followed over time. The mice were then returned to an 

incubator to recover.  

2.18 Generation of Stable PTEN, DNA-PKcs and ATR Defective Cell Lines using 

Short Hairpin RNA-Mediated Gene Knockdown 

Stable knockdown subclones of cell lines OSEC-2 and NUOC-1 were generated 

using Short Hairpin RNA (shRNA)-mediated gene knockdown. In this process, 

lentiviral particles are used to deliver shRNA constructs into cells which become 

incorporated into the host genome. Translation by RNA polymerase III (due to the H1 

promoter sequence included in the construct) results in continual production of 

shRNA molecules. These molecules are cleaved to produce small interfering RNA 

(siRNA) molecules. The siRNA molecules become bound to the RNA-induced 

silencing complex molecules, which subsequently binds to and cleaves mRNA 

molecules which match the siRNA, hence permanently blocking expression of the 

target gene.  

2.18.1 shRNA Constructs 

Pre-packaged lentiviral transduction particles containing verified MISSION®shRNA 

constructs, targeting the coding domain sequence of DNA-PKcs and ATR and PTEN 

(in pLKO.1-puro plasmid vectors) were purchased from Sigma-Aldrich, UK. The 

sequences of the shRNA constructs were not disclosed by the supplier. In addition, 

Lentiviral transduction particles containing a random shRNA construct confirmed not 

to target any known human or mouse genes (MISSION® Non-Target shRNA Control 
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Transduction Particles), were also purchased to use as controls for transduction. All 

purchased lentiviral particles were received as frozen stock and stored at -80 °C. 

Upon first use, particles were aliquoted appropriately and stored at -80 °C until 

required.  

2.18.2 Assessment of Puromycin Sensitivity 

The pLKO.1-puro plasmid used as a vector for the shRNA constructs contains a 

puromycin resistance gene, meaning the antibiotic can be used to select cells which 

have been successfully transduced. However many cell lines are inherently sensitive 

to the effect of puromycin, hence preliminary investigations were necessary to 

establish the minimum puromycin concentration required to kill all non-transduced 

cells. The following investigation was performed for OSEC-2 and NUOC-1 cells. 

A cell suspension at a densitiy of 7.5 x 103 cells / ml was established in RPMI 

medium (20 ml). 2 ml of solution was added to each well of a sterile 6 well culture 

plate and allowed to adhere overnight. An appropriate volume of working puromycin 

solution was then added to each well. Purimycin concentrations of 0 (control), 2, 4, 6, 

8 or 10 µg / ml were tested, as recommended by the manufacturer (Sigma-Aldrich). 

Plates were incubated at 37 °C / 5 % CO2 (33 °C for OSEC-2) and assessed 

microscopically each day for cell death.  

In the case of both cell lines 72 hrs in culture following puromycin administration, all 

cells in all treated cultures were found to be dead upon microscopic inspection. 

Therefore, for both cell lines, selection of transduced cells was performed using 

media supplemented with puromycin at a concentration of 2 µg / ml. 

2.18.3 Assessment of Transduction Efficiency 

Prior to performing transduction with lentiviral particles containing shRNA constructs, 

it was necessary to determine the optimum multiplicity of the infection (MOI) required 

for transduction of each cell line using MISSION®TurboGFPTM Control Transduction 

Particles. This also served as a control to determine whether the transduction 

process itself had any effect on cell growth, so that these could be separated from 

the effects of shRNA-mediated gene knockdown. Lentiviral transduction of OSEC-2 

and NUOC-1 cells was performed using MISSION®TurboGFPTM Control 
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Transduction Particles according to Section 2.17.4. MOIs of 0 (Control), 1, 2 and 5 

were prepared as recommended by manufacturer (Sigma-Aldrich). 

Once cell populations transduced with MISSION®TurboGFPTM Control Transduction 

Particles had resumed normal exponential growth following puromycin selection, 

transduction efficiency was determined by assessment of the expression of GFP by 

flow cytometry (as described in section 2.16.2). Expression of GFP was similar for all 

MOIs tested, in both cell lines. Based on the time taken to recover exponential cell 

growth MOI of 2 was selected for subsequent lentiviral transductions.  

It was also noted at this point that the growth kinetics of transduced cells was not 

significantly different from non-transduced cells, demonstrating that the transduction 

process itself has no apparent effect on the growth of OSEC-2 cells. The 

transduction process did, however, slow the growth of NUOC-1 cells. Therefore, all 

comparisons were made between non target control samples and knockdown 

samples, to take into account the slowed cell growth due to the transduction process.  

2.18.4  Lentiviral Transduction 

Cells were seeded at a density of 1 x 105 per well in a sterile 6 well plate. After 24 hrs 

an appropriate volume of thawed lentiviral particle suspension was added directly to 

the cell suspension (Table 2-10). A normal control was prepared for each cell line / 

shRNA combination according to the same procedures, but without the addition of 

lentiviral particles. After 24 hrs incubation, the media was aspirated, washed with 2 

ml of warm PBS and replaced by warmed 10 % RPMI media.  
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Table 2-10 Viral titres and required volumes for each ShRNA construct. 

Construct Viral Titre (TU/ml) Volume to give MOI 2 (µl) 

DNA-PK 6255 8.0 x 106 25.0 

DNA-PK 6256 1.3 x 107 15.4 

DNA-PK 6257 1.5 x 107 13.3 

DNA-PK 6258 4.5 x 106 44.4 

DNA-PK 6259 1.5 x 107 13.3 

ATR 10300 7.8 x 106 25.6 

ATR 10301 6.7 x 106 29.9 

ATR 10302 6.4 x 106 31.3 

ATR 39613 9.2 x 106 21.7 

ATR 39614 9 x 106 22.2 

PTEN 2745 1.7 x 107 11.8 

PTEN 2746 1.3 x 107 15.4 

PTEN 2747 1.4 x 107 14.3 

PTEN 2748 1.7 x 107 11.8 

PTEN 2749 1.6 x 107 12.5 

2.18.5 Selection of Transduced Cells 

After 72 hrs incubation, the media was aspirated and replaced with 2 ml of 10 % 

RPMI media supplemented with 2 µg / ml puromycin. Cultures were incubated at 

37 °C / 5 % CO2 and selection media was replaced every 72 hrs until normal 

exponential cell growth had resumed. At this point, cell populations were deemed to 

consist entirely of transduced cells, given that only cells which had taken up a 

plasmid could survive in selection media due to acquired puromycin resistance.  

Control non-transduced parental cell populations were treated in the same way as 

above, except normal 10 % RPMI culture media was used in place of selection 

media. 

2.18.6 Assessment of Knockdown Efficiency 

The efficiency of shRNA-mediated knockdown of target genes, relative to control 

non-transduced cells, was assessed by real time q-PCR and western immunoblotting 

according to the protocols described in sections 2.6 and 2.10. The cellular amounts 

of DNA-PKcs and ATR mRNA and proteins were also assessed in cells transduced 

with the non-target shRNA control to exclude any effects of transduction and shRNA 

processing on target gene expression.  
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2.19 Generation of Drug Resistant Cell Lines by Escalating Dosage 

In order to model the development of chemo-resistance in vitro, HRD cell lines were 

cultured in the presence of escalating doses of either rucaparib or cisplatin, in an 

attempt to generate drug-resistant subclones for analysis of HR status and NHEJ 

status. PEO1 and UBW1-289 cell lines were used.  

2.19.1 Concentration Finding Assay 

In order to identify a suitable concentration for each drug in each cell line, 

concentration finding assays were performed by treating the cell lines with a range of 

concentrations of each drug, and LC50 was selected as a starting concentration. 

Concentration finding assays were performed using SRB and clonogenics assays in 

all cases as described in section 2.3. The selected treatment doses are detailed in 

Table 2-11. 

Table 2-11 Resistance development dosing. 

Cell line Treatment Initial Dose Dose Increment  Final Dose  

PEO1 Rucaparib 1 µM 1 µM 20 µM 

PEO1 Cisplatin 10 nM 0.2 µM 2 µM 

PEO1 IR 5 Gy 5 Gy Total IR of 60 Gy 

UWB1.289 Rucaparib 1 µM 1 µM 20 µM 

UWB1.289 Cisplatin 10 nM 0.2 µM 3 µM 

UWB1.289 IR 5 Gy 5 Gy Total IR of 60 Gy 

2.19.2 Drug Dosing 

For each cell line and drug combination, 1 x 106 cells were resuspended in 5 ml of 

appropriate medium supplemented with the appropriate volume of drug, and 

transferred to a sterile 25 cm3 cell culture flask. At the same time, a similar culture 

was set up using medium supplemented with DMSO but no drug. Cultures were 

incubated at 37 °C / 5 % CO2 and assessed at regular intervals for resumption of 

normal exponential growth (by microscopic appearance). Once normal growth had 

resumed in the dosed culture, the next drug dose was applied using the same 

procedure (Table 2-11). 
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2.19.3 Assessment or Resistance 

Following recovery of exponential cell growth after the final drug dose, acquired 

resistance to the drug with which cells were treated and cross resistance was 

assessed relative to respective parental cultures using SRB and clonogenics assays.   

2.20 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism version 6.00 (GraphPad 

Software, La Jolla California USA). Unpaired student t tests or Mann–Whitney tests 

were used depending on a D'Agostino & Pearson omnibus normality test. Multiple 

comparisons were performed using 1-way or 2-way Anova with appropriate multiple 

comparisons correction. All statistical tests were considered statistically significant if 

the p value was less than 0.05. Statistical tests were two-sided.  

 

 

 

 

 

 

 

 

 

 

 



 

79 
 

CHAPTER 3 FUNCTIONAL CHARACTERISATION OF OVARIAN 

CANCER MODELS 

3.1 Introduction 

The term ‘ovarian cancer’ represents a heterogeneous group of tumours in terms of 

histology, molecular characterisation, prognoses and clinical and pathological 

features (Vaughan et al., 2011, Kurman and Shih, 2010). The differences between 

type I and type II ovarian cancer biology and treatment are discussed in chapter 1. 

To investigate novel treatments in ovarian cancer, representative models are needed 

for the different groups. A number of experimental models for the study of ovarian 

cancer are available to the research community, however all have limitations. 

Cell lines that are derived from tumours are the most frequently utilised models in 

cancer research. Existing human ovarian cancer cell lines possess the advantages of 

high proliferative capacity, clonogenicity and extended life span in culture. However, 

most have acquired significant genetic alterations from their cells of origin, loss of 

heterogeneity and are rarely derived from chemotherapy-naive patients (Daniel et al., 

2009, Domcke et al., 2013). Additionally, there is evidence to suggest that many cell 

lines contain significant misidentification, duplication, and loss of integrity (Korch et 

al., 2012, Ertel et al., 2006, Stein et al., 2004, Gillet et al., 2011, Sandberg and 

Ernberg, 2005). 

Primary cells isolated from patients are often considerably different from established 

cell lines of similar origin. The ability to culture and characterise freshly isolated 

cancer cells from patients provides an important experimental system that has the 

potential to resemble the patient situation more accurately (Dunfield et al., 2002, 

Mukhopadhyay et al., 2010). However, primary cultures have slow growth rates and 

short life spans, which limit their use.  

Mouse models have been extensively used in research. Genetically engineered mice 

(GEM) develop cancer either spontaneously (Hardisty, 1985) or following various 

'environmental' exposures such as radiation (Vankranen et al., 1995). The most 

sophisticated animal models, have either knockout of tumour suppressor genes or 

overexpression of oncogenes (Jonkers and Berns, 2002, Frese and Tuveson, 2007). 

The drawback of GEM models is that they do not encompass a human origin and 
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different mutations in the same gene may elicit different phenotypes (Frese and 

Tuveson, 2007). Additionally, human cancers are thought to develop from a single 

mutated cell, whereas in GEM the oncogenic event is initiated simultaneously 

throughout the organ (Frese and Tuveson, 2007). The development of patient 

derived xenograft (PDX) models enabled in vivo assessment of tumour tissue and 

cell lines in immunocompromised mice (Kendall et al., 2006, Rubio-Viqueira and 

Hidalgo, 2009). The drawback of PDX models is the long graft latency, the 

specialised skill set which significantly increases the cost of research and varied 

engraftment success, which has been reported to be higher in more clinically 

aggressive tumours (DeRose et al., 2011, Loukopoulos et al., 2004). Furthermore, 

genetic alterations are more prevalent in engrafted tumours compared with their 

parental cancers (Ding et al., 2010), with less differentiated tumours being more 

prone to changes (DeRose et al., 2011).  

The Helene Harris Memorial Trust meeting in 2004 (Balkwill et al., 2004), outlined a 

number of actions required to improve ovarian cancer outcomes. Development of 

more appropriate and better characterised experimental models was one of the 

actions and is the focus of this chapter.   

3.2 Aims for Chapter 3 

For this study two models for ovarian cancer were optimised. The first model was a 

primary ovarian cancer culture (PCO) model. PCO cultures are derived from ascitic 

fluid collected at the time of surgery for ovarian cancer. This model was previously 

established in the group (Mukhopadhyay et al., 2010, ODonnell et al., 2014). 

The specific aims of characterisation were:  

 To optimise antigen expression characterisation and storage of PCO cultures. 

 To assess the growth of PCO cultures. 

 To assess HR function of PCO cultures. 

 To assess PCO cultures sensitivity to rucaparib and cisplatin and correlate 

with HR function. 

During this project one of the ascitic cultures (PCO 142) immortalised spontaneously. 

This novel cell line was named NUOC-1 and is the basis for the second model to be 

used. The specific aims were to perform the following: 
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 Molecular characterisation, including expression of surface antigens and 

receptors  

 P53 function analysis 

 PTEN functional analysis 

 DNA repair assessment 

 Drug sensitivity assessment  

 Mutational analysis 

 Assessment of  tumourgenicity 

 Copy number alterations analysis 

 Clonal evolution assessment  

3.3 Results 

Between 2011 and 2013, ascites samples were collected from 78 patients. Samples 

were collected by me, Rachel O’Donnell and Angelika Kaufman. Patients enrolled in 

this study were treated at the NGOC at Queen Elizabeth Hospital, Gateshead. The 

histological diagnosis of ovarian cancer was confirmed by independent pathologists 

and surgical stage, grade and cell type were classified according to WHO and FIGO 

standards (Prat 2013). Demographic, surgical and pathological data was collected 

from the hospital and pathology databases (Table 3-1).  

Ascites samples were collected at the time of surgery (65 patients, 83 %) or at the 

time of drainage of symptomatic ascites (13 patients, 16 %). Of the samples collected 

intra-operatively, 53 (82 %) were collected during primary surgery and 12 (18 %) 

during interval surgery following chemotherapy. Erythrocytes and cellular debris from 

ascites did not adhere to the culture flask and were removed following media change. 

Successful growth was achieved in 69 cases (88 %). Three cultures were discarded 

due to infection, three due to failed epithelial characterisation, and 5 cultures were 

excluded based on the pathology reporting non-ovarian cancer. 58 (74 %) cultures 

were used in further experiments. 
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Table 3-1 Patient characteristics for PCO culture samples. 

Age at diagnosis  Median (range) 63 (43-85) 

Histology HGSOC 41 

Endometrioid / clear cell  6 

Mixed 2 

Mucinous 2 

Carcinosarcoma 2 

Low grade serous 1 

Non ovarian pathology 4 

Stage 1 2 

2 2 

3 A 1 

3 B 1 

3 C 42 

4 6 

NA 4 

Pre-op Ca125 Median 790 

Type of surgery Primary surgery 39 

IDS following NACT  17 

No surgery 2 

Outcome of surgery Complete 11 

Optimal 38 

Suboptimal 7 

No surgery  2 

 

3.3.1 PCO Culture Characterisation  

In general, the appearance of each culture was that of a cobblestone monolayer 

pattern (Figure 3-1.A), as previously described (Dunfield et al., 2002). As they 

approached senescence, cells developed a more mesenchymal phenotype, 

becoming elongated and exhibiting a markedly reduced growth rate.  

3.3.1.1 Antigen expression in PCO Cultures  

Ascitic fluid is composed of multiple cellular components, and in order to confirm 

exclusive growth of cancer cells, characterisation of cultured cells is required. 

Immunoflourescent characterisation of the cultures was carried out using a panel of 

antibodies to detect expression of pancytokeratin, CA125, EpCAM, MOC-31, D2-40 

and Vimentin (Figure 3-1.B-G). Cultures were rejected if they failed to demonstrate 

greater than 95 % cytokeratin positivity. This work was conducted by me, Rachel 
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O’Donnell, Michelle Dixon and Angelika Kaufmann. Further to expression of 

cytokeratin, the majority of PCO cultures expressed an epithelial marker (EpCAM or 

MOC31) or the ovarian marker (CA125) (Figure 3-1 and Table 3-2). 

 
 
Figure 3-1 PCO characterisation panel.  

A. Brightfield demonstrating cobblestone monolayer; immunoflourescent images with 
antibodies targeted against; B. FITC-anti-CK; C. Alexafluor 596 anti-CA125; D. 
Alexflour 488 anti-EpCAM; E. Alexafluor 596 anti-MOC 31; F. Alexaflour 488 anti-
Vimentin; G. Alexaflour 596 anti-D240 (PCO 160 – dysgerminoma).  

 

Table 3-2 Summary of PCO antigen expression. 

Tissue marker Antigen Number 

tested 

Expression N (%) 

Epithelial CK  n=50 46 (100 %) 

EpCAM  n=38 13 (44.8 %) 

MOC31  n=29 11 (45.8 %) 

Ovarian CA125  n=24 11 (45.8 %) 

Germ cell D240  n=21 0 (0 %) 

Mesenchymal Vimentin n=25 23 (95.8 %) 

A           B          C 
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3.3.1.2 PCO Cultures Growth 

The growth rate of PCO cultures was assessed using SRB assay over a period of 10 

days. The median PCO growth rate was markedly slower than many of the 

commercially available cell lines and highly variable. The median doubling time was 

135 hrs (95 % CI = 104.2 to 284.6 hrs, Figure 3.2). Senescence occurred between 

the 2nd and 8th passages, most commonly between 4th and 5th. Cultures were 

considered unsuccessful when no growth was seen after 28 days (ODonnell et al., 

2014).  

No correlation was demonstrated between growth rate, histological subtype or stage 

of disease at presentation. The relatively slow growth rate may be a consequence of 

the artificial culture environment and lack of factors from the tumour micro-

enviroment. 
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Figure 3-2 Growth rate of PCO cultures. 

Results are doubling time with 95 % CI. Results are average of 6 experimental 
repeats grown for 10 days. Median doubling time was 135 hrs. 

 

3.3.1.3 PCO Cultures Storage  

Paired sets of 50 ml aliquots of ascitic fluid were centrifuged at 400 x G for 5 min (N = 

6). The resultant cell pellets were resuspended in cryopreservative media, stored at -

80°C or in liquid nitrogen and thawed at 6 weeks and 6 months. Cultures were 

successfully grown from both storage conditions after 6 weeks, with no difference 

observed in morphology, growth rate or functional assessment (ODonnell et al., 
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2014). However, following 6 months, a significant difference in success of 

subsequent culture from the two conditions was observed. Ascitic pellets stored in 

liquid nitrogen were successfully cultured in 83 % cases, whereas, no cultures stored 

at -80°C could be successfully grown.  

3.3.1.4 Transfection into PCO cultures 

A number of functional assays require transfection of vectors into cells (Bau et al., 

2007, Ohashi et al., 2005). Two methods of transfection were optimised in PCO 

cultures. Firstly, viral transduction using MISSION™ shRNA lentiviral transduction 

particles was attempted. Cells continued to grow in puromycin media following the 

transduction thus suggesting successful transfection (Figure 3-3). Long term 

transduction could not be assessed due to the short term life-span of the PCO 

cultures.  

Viral transduction is not applicable to all assays and therefore transfection of pGL2 

luciferase expressing vector using Lipofectamine LTX and electroporation was 

attempted. Transfection efficiency was assessed by luciferase expression and 

compared to control cell lines. Despite optimisation, both lipofectamine and 

electroporation transfection methods failed to yield a high enough transfection 

efficiency in PCO cultures for functional assays (Figure 3-4).  

 

Figure 3-3 Viral transduction of shRNA to DNA-PK and ATR into PCO 204. 
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A 

 

B 

 

C 

 

 

Figure 3-4 Transfection of pGL2 luciferase expressing vector into PCO cultures.  

A. Transfection using Lipofectamine LTX (positive control - OSEC-2 cell line); B. 
Transfection using electroporation at 350mV; C Transfection of 3mg vector using 
increasing voltage. Results are expressed as luciferase readings. 

3.3.2  HR Function in PCO Cultures 

HR function assessment was performed in 41 PCO cultures. HR assays were 

performed by me, Michelle Dixon and Rachel O’Donnell.  

Hypothesis: HR function is defective in 50 % of ovarian cancer cultures  

A two fold increase in γH2AX and RAD51 is used as a cut off to define HRC. > 2 fold 

increase in γH2AX and RAD51 cells are deemed HRC, whilst > 2 fold increase in 

γH2AX but < 2 fold increase in RAD51 cells are deemed HRD (Mukhopadhyay et al., 

2010, Drew et al., 2011). 19 out of 41 (46 %) PCO cultures were deemed HRD and 

22 out of 40 (54 %) of PCO cultures were HRC. However, as can be seen in Figure 

3-5, the foci fold increase from control was highly variable.  
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Figure 3-5 HR function in PCO cultures. RAD51 foci fold rise above controls.   

 

3.3.2.1 Correlation of HR with Progression Free and Overall Survival 

Previously published data demonstrated an association of HRD with improved 

survival (Mukhopadhyay et al., 2012). In this study no significant difference in PFS or 

OS was seen between HRC and HRD groups (Figure 3-6).  
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Figure 3-6 Kaplan-Meier survival curves for PFS/OS by HR status.  

A. Median progression free survival was 14 months for HRC compared to 19 months 
for HRD group, log rank Chi square 1.0 p = 0.31. Patients who had not progressed 
were censored at last follow up. B. Median overall survival was 30 months for HRC 
group and 21 months for HRD group. Log rank Chi square 0.004 p = 0.94. Patients 
were censored at last follow up. 
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3.3.3 Sensitivity of PCO Cultures to Rucaparib and Cisplatin  

For immortalised cell lines, cytotoxicity is assessed over 3 doubling times using SRB 

assay. For PCO cultures it was not feasible to determine the doubling time of each 

culture prior to cytotoxicity assay due to their limited life span. The median doubling 

time for PCO was 134.6 hrs and therefore, a standard incubation time of 10 days was 

adopted. 

The sensitivity of PCO cultures to both rucaparib and cisplatin was assessed using 

SRB assay. The sensitivity for both drugs varied greatly; the median survival of cells 

after 10 days of treatment with 10 µM rucaparib was 63.34 %, and the median 

survival after 10 days of treatment with 10 µM cisplatin was 43.49 %. There was 

good correlation between sensitivity to both agents (Pearson R2 was 0.245 and p = 

0.001).  
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Figure 3-7 Correlation of rucaparib and cisplatin sensitivity of PCO cultures.  

Results are the percentage cell survival after 10 µM rucaparib and the percentage 
cell survival after 10 µM cisplatin treatment. N = 42. 

 

3.3.3.1 Correlation of Rucaparib and Cisplatin Sensitivity with HR Function 

HRD cultures were more sensitive to rucaparib (p = 0.011, Figure 3-8) and more 

sensitive to cisplatin (p = 0.041, Figure 3-8) compared to HRC cultures.  
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Figure 3-8 Rucaparib and cisplatin cytotoxicity in PCO cultures by HR function.  

Cell survival calculated as cell growth after 10 days treatment with 10 µM rucaparib 
or 10 µM cisplatin as a fraction of DMSO. Control growth for PCO cultures was 
assessed by SRB assay, and results were divided by HR status. Error bars are SEM.  

 

3.3.3.2 Correlation of Sensitivity to Rucaparib and Cisplatin with Progression Free 

and Overall Survival 

The correlation of in vitro sensitivity to rucaparib and cisplatin with patient survival 

was assessed. Cultures with < 60 % survival after 10 day treatment with 10 µM 

rucaparib and < 40 % growth after 10 day treatment with 10 µM cisplatin were 

deemed sensitive. Longer PFS and OS were found for cultures deemed to be 

sensitive to rucaparib and cisplatin (Figure 3-9), however the differences were not 

found to be statistically significant. 
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Figure 3-9 Kaplan-Meier survival curves for PFS/OS by sensitivity to rucaparib and 
cisplatin. Patients who had not progressed were censored at last follow up. 

A. Median PFS was 18 months for rucaparib sensitive compared to 14 months for 
resistant cultures, log rank Chi square 0.15 p = 0.7. N = 20 sensitive and N = 26 
resistant cultures. Patients who had not progressed were censored at last follow up. 
B. Median OS was 67 months for rucaparib sensitive compared to 21 months for 
resistant cultures. Log rank Chi square 2.1 p = 0.14. Patients were censored at last 
follow up. C. Median PFS was 20 months for cisplatin sensitive compared to 16.5 
months for resistant cultures, log rank Chi square 0.2 p = 0.6. N = 25 sensitive and N 
= 12 resistant cultures. Patients who had not progressed were censored at last follow 
up. D. Median OS was 27 months for cisplatin sensitive compared to 21 months for 
resistant cultures. Log rank Chi square 1.2 p = 0.27. Patients were censored at last 
follow up. 
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3.3.4 RNA Genome Expression Arrays to Assess HR Function 

DNA micro-arrays have become an established tool to study gene expression 

patterns in ovarian cancers for both diagnostic and prognostic markers (Hibbs, 2004, 

Spentzos, 2004). This approach has the advantages of high throughput analysis, as 

well as using RNA, which can be extracted easily from clinical material including 

FFPE tissues. Gene expression profiling using FFPE samples showed a BRCA-like 

profile in many of the sporadic EOC (Jazaeri, 2002, Konstantinopoulos et al., 2010). 

The ‘BRCAness profile’, now understood to be HRD has been shown to correlate 

with responsiveness to platinum and PARPi.  

Hypothesis: Gene expression profiles for HRD and HRC cultures differ and can be 

used as an assay to predict HR status 

 

Using RNA extracted from the PCO ascitic cultures characterised for HR function, 

genome wide expression was determined by the Oxford genomics centre (Oxford, 

UK) using Illumina Genome Studio and HumanHT 12v4.0 R1 15002873 array, as per 

manufacturer’s instructions, and as described in section 2.12. All RNA samples were 

extracted from the same ascitic fluid primary culture as used in the functional HR 

assay and cytotoxicity assays. 

3.3.4.1.1 Unsupervised Hierarchical Clustering 

In order to identify a potential HRD signature, RNA expression was analysed using 

unsupervised hierarchical clustering (Figure 3-10). PCOs 157 and 142 were clear 

outliers in terms of expression clustering. PCO 142 was later renamed as the NUOC-

1 cell line, as it spontaneously immortalised. The difference in mRNA expression for 

this cell line may therefore be linked to its spontaneous immortalisation. PCO 157 

however, did not immortalise and the reason for its obvious difference in mRNA 

expression is unclear.  

Despite removal of the two outlier samples no clustering by HR function was 

observed of the PCO cultures (Figure 3-10.C-D).   
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Figure 3-10 RNA Genome expression array.  

A. PCA plot of all PCO samples. Sample relation based on 27343 genes with sd/mean >0.1 HRD cultures are in red and HRC in black. 
B. Dendrogram after normalization. PCO142 and PCO 157 were deemed outliers. C. PCA plot after outlier cultures were removed. 
Sample relation based on 26415 genes with sd/mean >0.1. D. Dendrogram after normalization after outlier cultures were removed from 
analysis.
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3.3.4.1.2 Hierarchical Clustering of RNA Expression 

In view of the lack of association in unsupervised clustering, the relative expression 

of 15 key components of the HR pathway were assessed and compared between 

HRD and HRC cultures (Figure 3-11).   

Illumina Genome Studio Gene expression software was used to extract relative gene 

expression across samples, clustering them into functional groups. The comparative 

Ct (ΔΔCt) method was used to assess the expression level of the components of 

each pathway, relative to endogenous controls normalised to the reference panel. 

The expression of two genes were significantly different between the two groups; 

RAD51 (p = 0.008) and XRCC2 (p < 0.0001) were both downregulated in the HRC 

group. Further evaluation of these components for use as a biomarker for HR status 

is required. 
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Figure 3-11 Hierarchical clustering of HR pathway genes expression.  
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3.4 Characterisation of NUOC-1 Cell Line 

The NUOC-1 cell line was derived from the ascites of a chemotherapy naive patient 

with a mixed histology tumour. The patient was of Caucasian background and was 

62 years old at the time of diagnosis. She presented with stage IIIC high grade mixed 

ovarian carcinoma and underwent primary surgery. Ascites was collected at the time 

of surgery. The patient was considered optimally debulked, however, due to frailty did 

not receive any chemotherapy and only survived 52 days following surgery. She did 

not have any known relevant familial history. Pathology of the tumour consisted of 

80 % endometrioid, 15 % clear cell and 5 % serous carcinoma. 

The ascites was prepared and processed as described in section 2.2.2. The growth 

of NUOC-1 cells was initially slow, with a 128 hr doubling time at passage 2; but with 

continued culture this decreased to 58 hrs at passage 14.  

3.4.1 Confirmation of Epithelial Origin 

Hypothesis: NUOC-1 cells are epithelial cells 

 

Figure 3-12 NUOC-1 characterisation panel.  

A. Brightfield demonstrating cobblestone monolayer; immunoflourescent images with 
antibodies targeted against: B. Alexafluor 596 anti-CA125; C. FITC-anti-
pancytokeratin; D. Alexflour 488 anti-EpCAM; E. Alexafluor 596 anti-MOC 31; F. 
Alexaflour 596 anti-Vimentin. 
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Upon bright field microscopy examination, a cobblestone morphology, characteristic 

of epithelial cells, was noted; this was maintained during repeated passage. NUOC-1 

cells stained positive for proteins characteristic of epithelial ovarian carcinoma 

(pancytokeritin, EpCAM, MOC31 and CA125), and stained negative for Vimentin 

(Figure 3-12). The epithelial cell phenotype of the NUOC-1 cells and the expression 

of antigens commonly expressed in ovarian cancer were consistently expressed at 

passage 2 and 14.  

3.4.2  Assessment of Hormone and Tyrosine Kinase Receptor Expression 

Hypothesis: NUOC-1 cells express hormone and tyrosine receptors  

The effect of steroid hormones in carcinogenesis has been studied in breast and 

endometrial cancer, with well-known and promising results for therapy. However, for 

ovarian cancer, the results have been conflicting (de Toledo et al., 2014). In NUOC-

1, hormone receptor expression was characterised using western blotting. This work 

was carried out with Eleanor Earp (MRes, 2013).  

For the expression of hormone and tyrosine receptors, appropriate controls were 

selected. The MCF7 cell line was used as a positive control for ER, PR and HER3 

expression; the LnCap cell line was used as a positive control for AR, HER2 and 

HER3 expression. The MDA-MB-231 triple negative breast cancer cell line and AR 

negative PC3 cell lines were used as negative controls. NUOC-1 cells stained 

negative for oestrogen, progesterone and androgen receptors (Figure 3-13). The 

NUOC-1 cells were found to express the HER-3 receptor and the HER-2 receptor at 

a higher level than LnCap and SKOV3 cell lines (Figure 3-13). 



 

97 
 

N
U

O
C

-1
 

M
C

F
7

 

M
D

A
-M

B
-2

3
1

 

L
N

C
A

P
 

P
C

3
 

H
e
la

 

S
K

O
V

3
  

 

 

 

Figure 3-13 Tyrosine kinase and endocrine receptor expression in the NUOC-1 cell 
line. 

NUOC-1 cells express the HER-3 receptor (positive control MCF7) and over-express 
the HER-2 receptor (positive control LNCAP and SKOV3). NUOC-1 cells do not 
express the oestrogen receptor (positive control MCF7), the progesterone receptor 
(positive control MCF7) or the androgen receptor (positive control LNCAP).  Blots are 
representative of three independent experiments. 

3.4.3  p53 Function Assessment 

HGSOC of the ovary is genomically characterised by ubiquitous TP53 mutations 

(Ahmed et al., 2010, Cancer Genome Atlas Research, 2011). TP53 mutational and 

p53 functional status was determined. This work was undertaken with Katharine Elliot 

(MRes, 2013).  

Hypothesis: NUOC-1 cells are wildtype for p53 consistent with endometrioid / clear 

cell origin  
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3.4.3.1 Assessment for P53 Mutations  

TP53 mutation status was assessed by PCR amplification and off-site Sanger 

dideoxy sequencing. No mutations were detected in exons 3-9, but a codon 72 C→G 

(Arg/Pro) polymorphism in exon 4 was detected (Figure 3-14).  

 

Figure 3-14 Illustration of chromatogram of TP53 gene.  

Exon 4 sense sequence codon 72 C→G polymorphism highlighted. 

 

3.4.3.2 Functional P53 assessment 

p53 transcriptionally activates MDM2, which then acts to inhibit further p53 mediated 

transactivation by binding to the transactivation domain located in the N-terminal 

(Kussie et al., 1996). MDM2 exerts further regulatory action by inducing the nuclear 

export and degradation of p53 (Gorringe et al., 2007). The MDM2 antagonist Nutlin-3 

inhibits the MDM2-p53 interaction by binding MDM2 in the hydrophobic cleft, where 

p53 would normally bind. MDM2 antagonism leads to the stabilisation of p53, with 

increases in transcriptional activity, leading to elevated p21 and MDM2 expression 

(Vassilev et al., 2004).  

Treatment with Nutlin-3 resulted in an accumulation of MDM2 in NUOC-1 cell lines, 

corresponding to a concentration-dependent increase in p53 (Figure 3-15). The p53 

downstream growth inhibitory target, p21, also increased in a concentration-

dependent manner. This was consistent with the results in the TP53 wildtype A2780 

cell line. Analysis of the same Nutlin-3 treatment in TP53 mutant CP70 cells showed 

significantly higher p53 levels with no induction of p53 upon treatment.  
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Figure 3-15 MDM2, p53, and p21 expression in response to Nutlin3.  

Blots are representative of three independent experiments. 
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Figure 3-16 NUOC-1 cell line response to Nutlin3.  

Results are mean GI50 values between the CP70, TP53 mutant cell line and each 
TP53 wild-type cell line: A2780, NUOC-1. Results are mean of three independent 
experiments. Error bars are SEM. 

 

Nutlin-3 had a higher growth inhibitory effect in TP53 wild-type NUOC-1 cells (GI50 

0.7 µM +/- 0.03 µM) compared to mutant CP70 cells (23.5 µM +/- 0.9 µM; p < 

0.00001), but comparable to TP53 wildtype A2780 (1.3 µM +/- 0.4 µM) (Figure 3-16). 



 

100 
 

3.4.4  NUOC-1 DNA Repair Assessment 

Functional assessment of NUOC-1 HR was undertaken as part of PCO culture 

characterization, as discussed in section 3.3.2. NUOC-1 cells were deemed HRC 

with a 2.84 fold rise in RAD51 foci, compared to untreated controls.  

3.4.4.1 BER Function in NUOC-1 Cells  

Previous studies have reported APE1 overexpression in ovarian cancer as described 

in section 1.4.4 and XRCC1 SNPs. Defects in BER pathway in ovarian cancer have 

not been reported. 

Hypothesis: NUOC-1 cells are BER competent   

Excess production of 8-OHdG inferred the non-functioning of BER and was 

quantified by competitive ELISA in NUOC-1 cells (Figure 3-17). AA8 (BER 

competent) with its derivative EM9 cell lines (BER deficient due to XRCC1 mutation) 

were used as positive and negative controls. The HT 8-oxo-dG ELISA kit II (Trevigen, 

USA, 4380-096-K), is a competition ELISA of immobilised 8-OHdG on pre-coated 

wells with 8-OHdG in the sample for monoclonal antibody binding, which is then 

quantified by spectrophotometry. High 8-OHdG corresponds to low BER.  
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Figure 3-17 Base excision repair of NUOC-1 assessed by competitive ELISA. 

Results are the measurement of 8-OHdG levels. AA8 (BER proficient) cell line was 
used as positive control, EM9 (BER deficient) cell line was used as a negative 
control.  
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The mean 8-OHdG in EM9 cells with XRCC1 mutation conferring BER dysfunction 

was 7.42 nM +/- 2.7 Nm, compared to parental BER function in the AA8 cell line of 

0.79 nM +/- 0.54 nM, p = 0.014. NUOC-1 cell 8-OHdG level was 4.0 nM +/- 0.64 nM, 

indicating that NUOC-1 cells were BER defective. Mechanisms of BER deficiency 

were not assessed in this project but may have an important role in NUOC-1 cell 

chemo-sensitivity. 

3.4.5 Drug Sensitivity Assessment 

Ovarian clear cell carcinoma is associated with chemo-resistance and poor prognosis 

(Itamochi et al., 2008). The literature reports an initial response rate (RR) to first-line 

treatment of 22 - 56 % in clear cell carcinoma, which is significantly lower than the 

initial RR of other subtypes of EOC of 80 % (Anglesio et al., 2011).  

Hypothesis: NUOC-1 cells exhibit a chemoresistant phenotype consistent with clear 

cell carcinoma 

The sensitivity to common cytotoxics was assessed using a SRB assay, comparing 

the NUOC-1 cells to the OSEC-2 cells (Table 3-3). This work was done with Eleanor 

Earp (MRes, 2013).  

Compared to the OSEC-2 cells, NUOC-1 cells were found to be more sensitive to 

camptothecin (mean GI50 6.35 nM +/- 2.6 nM for NUOC-1 compared to 172.4 nM +/- 

71.55 nM for OSEC-2, p < 0.0001). NUOC-1 cells were more resistant to paclitaxel 

(mean GI50 251.7 nM +/- 36.5 nM for NUOC-1 compared to 100.9 nM +/- 29.4 nM for 

OSEC-2, p = 0.003).  
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Table 3-3 Sensitivity of NUOC-1 and OSEC-2 cell lines to cytotoxic agents.  

Results are mean GI50 and 95 % CI assessed by SRB assay. Results are the 
average of 3 independent experiments. 

Cytotoxic agent Mean GI
50

 and 95 % confidence interval Paired t-test  

 OSEC-2                         NUOC-1 P =  

Cisplatin (µM) 2.73 

0.83 to 8.95 

1.46  

0.59 to 3.6 

0.97 

Paclitaxel (nM) 100.9 

71.63 to 142.2 

251.7 

116.2 to 545.4 

0.003 

Camptothecin (nM) 172.4 

86.41 to 343.9 

6.35 

2.98 to 13.53 

<0.0001 

Doxorubicin (nM) 35.52 

21.80 to 57.86 

31.30 

7.41 to 132.3 

0.96 

Rucaparib (µM) 5.53 

2.62 to 11.68 

5.48 

1.67 to 1.80 

0.99 

Irradiation (Gy) 5.1 

3.92 to 6.64 

3.15 

2.23 to 4.45 

0.98 

3.4.6  Assessment for ARID1A Mutations 

Located on chromosome 1, the ARID1A gene encodes for the adenine-thymine (AT)-

rich interactive domain-containing protein 1A. This protein forms an integral part of a 

complex essential in chromatin remodeling, known as the adenosine triphosphate-

dependent chromatin modeling complex switch/sucrose-nonfermentable (SWI/SNF). 

Functioning through epigenetic regulation of gene expression and chromatin, the 

SWI/SNF complex has roles in cell-cycle control, DNA repair and apoptosis (Guan et 

al., 2011, Wu and Roberts, 2013). Mutations in the ARID1A gene are reported in 

46 % of ovarian clear cell carcinomas (Wiegand et al., 2010, Jones et al., 2010).  

Hypothesis: NUOC-1 cells contain ARID1A mutation commonly found in clear cell 

carcinomas 

Assessment of the ARID1A mutation status in NUOC-1 cells and germline DNA was 

undertaken using PCR amplification and off-site Sanger dideoxy sequencing. This 

work was carried out with Eleanor Earp (MRes, 2013). A single T nucleotide insertion 

within exon 9 of the ARID1A gene was found (Figure 3-18). Using the TRANSLATE 

tool within ExPASy (Bioinformatics resource portal) it was predicted that this insertion 

frame shift mutation causes a premature stop codon and shortened protein.  
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Figure 3-18 Illustration of chromatogram of ARID1A gene.  

A. Reference sequence and B. Somatic insertion of T in exon 9 of ARID1A gene in 
NUOC-1. 

 

 

Figure 3-19 A schematic of ARID1A protein product.  

Top panel - reference ARID1A transcript and protein. The protein product shows 2 
conserved domains: ARID (located at amino acid position 1017-1104) and DUF3518 
(located amino acid position 1957-2231). Bottom panel - NUOC-1 ARID1A transcript 
and protein. The truncated protein product is 1280 amino acids shorter than the wild-
type and is missing the 2 conserved domains. 

 

As this missense mutation occurs upstream of the two known ARID1A gene 

conserved domains- ARID/BRIGHT DNA binding domain and Domain of unknown 

function (DUF3518), it would almost certainly affect protein function, and it is likely to 

result in a loss of function mutation (Figure 3-19). However, it should be noted that, 

these are virtual translations, and may never be translated due to nonsense 

mediated decay. A review of the COSMIC database did not identify previous reports 

of this exact mutation. Due to the time constraints of this project, protein expression 

of ARID1A was not analysed. 

A  

 

 

 

 

 

B 
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3.4.7  PTEN Function  

Located on chromosome 10, PTEN is the primary negative regulator of the PI3K 

pathway. Activation of PI3K signaling is associated with poor prognosis in multiple 

tumour types, including ovarian clear cell carcinoma (Huang et al., 2011b, Kuo et al., 

2009). PTEN’s role in drug sensitivity is still unclear due to conflicting evidence. 

PTEN function in the NUOC-1 cell line and role in drug sensitivity was assessed in 

this study.  

Hypothesis: NUOC-1 cells contain PTEN mutations commonly found in endometrioid 

/ clear cell carcinomas 

PTEN mutations in exons 2-5, 6-7 and 9-10 were assessed using PCR amplification 

and off-site Sanger dideoxy sequencing in the NUOC-1 cell line and matched 

genomic DNA. A point mutation was detected (1508G>GA, 159R>R, Figure 3-20), 

however, no somatic mutations were observed in any of the PTEN coding 

sequences. 

 

Figure 3-20 Illustration of chromatogram of PTEN gene.  

Point mutation of PTEN gene in NUOC-1. 

 

PTEN expression at mRNA and protein level was assessed in NUOC-1 cells using 

RT-qPCR and western blotting (Figure 3-21). OSEC-2 cells were used as positive 

control; LnCap cells, which carry a single deletion of PTEN and a mutated remaining 

allele (McMenamin et al., 1999), and PC3 cells, which have a homozygous deletion, 

were used as negative controls. This work was done with Charlotte Leeson 

(Undergrad, 2013).  
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A

 

B 

 

 

Figure 3-21 PTEN expression levels in NUOC-1 cells.  

A. mRNA expression assessed by real time RT-PCR and B. protein expression 
assessed by western blot analysis. LnCap and PC3 cells serve as negative controls 
whilst OSEC-2 is a positive control. 

 

PTEN mRNA expression in NUOC-1 was comparable to OSEC-2 cells and was 

significantly higher than negative controls: LnCap (p = 0.0001) and PC3 (p = 0.0017) 

(Figure 3-21.A). When the protein levels were assessed, NUOC-1 expression of 

PTEN was again comparable to OSEC-2 cells, and no protein bands were visualised 

in LnCap and PC3 cells (Figure 3-21.B). 

3.4.7.1 PTEN Knockdown in OSEC-2 and NUOC-1 Cells 

OSEC-2 and NUOC-1 cells were virally transduced with MISSION®shRNA lentiviral 

transduction particles containing PTEN shRNA, as described in section 2.18. Five 

constructs were used to achieve optimal silencing. Controls were transduced with a 

non-target control construct. In OSEC-2 cells, knockdown was assessed for all 5 

constructs. In NUOC-1 cells, only constructs 2746 and 2747 grew successfully. 

Knockdown levels were confirmed at mRNA level by RT-PCR (Figure 3-22). This 

work was done with Charlotte Leeson (Undergrad, 2013).  

Significant knockdown was achieved in OSEC-2 cells with constructs 2745 (53 %, p 

= 0.005) and 2746 (68 %, p = 0.0005), and in NUOC-1 cells with constructs 2746 

(87 %, p < 0.0001) and 2747 (82 %, p < 0.0001). For consistency, knockdown with 

construct 2746 was selected to be used in further experiments for both cell lines. 
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Figure 3-22 PTEN mRNA expression in OSEC-2 and NUOC-1 cells.  
mRNA expression was normalised to expression of GAPDH. Results are then 
normalised to non target shRNA = 1. Results are average of three independent 
experiments. Error bars are SEM. 

 

3.4.7.2 PTEN Knockdown Effect on HR  

A link between PTEN loss and HR deficiency is debated, with some groups reporting 

that PTEN attenuates RAD51 gene expression and recruitment to DSBs and 

stabilises replication forks (McEllin et al., 2010, He et al., 2015), whilst others refute 

this (Fraser et al., 2012, Hunt et al., 2012).  

Hypothesis: Loss of PTEN results in HRD 

PTEN knockdown did not significantly affect HR function in either OSEC-2 or NUOC-

1 cells (Figure 3-23).  
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Figure 3-23 The effect of PTEN knockdown on HR function. 

Assessed by ƴH2AX/RAD51 foci formation assay after 24 hr treatment with 10 µM 
rucaparib and 2 Gy IR and compared to DMSO treated un-irradiated control. BRCA1 
mutated UWB1.289 cells were used as a HRD control and BRCA1 reconstituted 
UWB1.289+BRCA1 cells were used as a HRC control. Results are mean of 3 
independent experiments. Error bars are SEM. 

3.4.7.3 PTEN Knockdown Effect on Sensitisation to Common Cytotoxics 

PTEN’s role in drug sensitivity is still unclear due to conflicting evidence. The effect of 

PTEN knockdown on drug sensitivity was therefore assessed by measuring growth 

inhibition using a SRB assay. This work was carried out with Eleanor Earp (MRes, 

2013). 

Hypothesis: PTEN in an important determinant of ovarian cancer sensitivity to 

common therapeutic agents 

In OSEC-2 cells, PTEN knock-down had no significant effect on any of the cytotoxic 

agents, sensitivity; whilst in NUOC-1 cells, PTEN knockdown enhanced sensitivity to 

all the cytotoxics assessed, with the exception of camptothecin to which NUOC-1 

was exquisitely sensitive (Figure 3-24).  
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Figure 3-24 Sensitivity of OSEC-2 and NUOC-1 to common therapeutics.  

A. Cisplatin, B. Paclitaxel, C. Campthecin, D. Doxorubicin, E. Rucaparib, F. 
Irradiation. Results are average of three independent experiments. Error bars are 
SEM. 
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The results from this study suggest that PTEN inhibition increases the sensitivity of 

NUOC-1 cells, but not normal epithelium cells, to cytotoxic agents. Potentially, PTEN 

could be a tumour specific target for chemo and radiotherapy sensitisation if these 

results can be replicated in other models of tumour vs normal tissue. 

3.4.7.4 PTEN Mutations and Expression in PCO Cultures  

Hypothesis: PTEN mutations in ovarian cancer are independent of HR function, but 

are associated with chemo-sensitivity and improved survival 

To further explore the role of PTEN in ovarian cancer, PTEN expression was 

assessed in 28 unselected PCO cultures. DNA from PCO cultures and matched 

genomic DNA were screened for PTEN mutations in exons 2-5, 6-7 and 9-10 using 

PCR amplification and off-site Sanger dideoxy sequencing. 

A 

 
B 

 
Figure 3-25 Illustration of sequence chromatograms of PTEN gene.  

Two point mutations were noted in PTEN gene in PCO cultures. A. 1508G>GA, 
159R>R in 4 cultures and B.1654G>GT, 208G>G/V in 6 cultures. 

The cultures included 20 high grade serous, 7 endometroid / clear cell and 1 

mucinous carcinoma. Mutations that were observed in genomic DNA as well as PCO 

cultures, were excluded. Two somatic point mutations were detected in PCO cultures 

(1654G>GT, 208G>G/V in 6 cultures and 1508G>GA, 159R>R in 4 cultures) (Figure 

3-25). Neither mutation resulted in amino acid change in the PTEN coding 

sequences. The mutations that were found also did not correlate with histological 
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type. Mutations were noted in 2 endometrioid / clear cell carcinomas and 8 high 

grade serous carcinomas. 

Expression of PTEN mRNA was assessed in 34 PCO cultures (Figure 3-26). LnCap 

and PC3 cells were used as negative controls for PTEN expression. The median 

PTEN expression mRNA expression normalised to GAPDH for PCO cultures was 

0.79 this was significantly higher than LnCap (0.212 +/- 0.014, p < 0.0001) and PC3 

(0.006 +/- 0.0007, p < 0.0001). Point mutations which were detected in the panel 

analysed, did not correlate with the mRNA expression in this panel (Figure 3-26). 

This result suggests that the two point mutations have no functional significance.  

 

Figure 3-26 PTEN mRNA expression In PCO cultures.  

Black bars – cell line controls (negative – PC3 and LNCAP, positive – OSEC-1 and 
OSEC-2). Expression is normalised to GAPDH expression. Cultures with point 
mutations are marked with red (1508G>GA) and green (1654G>GT) arrows.  

 

Supporting the findings of knockdown experients, PTEN mRNA expression was not 

found to correlate with HR function (Figure 3-27). There was also no correlation of 

PTEN expression with the sensitivity to rucaparib or cisplatin. Pearsons correlation 

was R2 = 0.018, p = 0.57 for rucaparib and R2 = 0.045, p = 0.47 for cisplatin (Figure 

3-28). 
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Figure 3-27 PTEN mRNA expression divided by HR function status in PCO cultures.  

mRNA results are normalised to GAPDH housekeeper gene. 
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Figure 3-28 Correlation of PTEN mRNA expression with sensitivity to cisplatin and 
rucaparib in PCO cultures.  

mRNA results are normalised to GAPDH housekeeper gene. Sensitivity is expressed 
as GI50 in µM.  

 

3.4.7.5 PTEN Influence on Survival of Ovarian Cancer Patients  

The TCGA 2011 ovarian cystadenocarcinoma database was used to validate findings 

in our patient cohort. The alteration rate of PTEN in the TCGA dataset was 25/316 

(8 %) with 2 mutations (1 missense and 1 truncating), and 23 putative copy number 
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changes (2 amplification and 21 deep deletion). A trend approaching significance 

was found for PFS in PTEN mutation cases (Figure 3-29). Median disease free 

survival was 21.22 months in PTEN mutated cases, compared to 15.64 months in 

control cases (logrank test p = 0.06). A similar trend was observed for overall survival 

(median overall survival 55.88 months in PTEN mutated cases, compared to 43.5 

months in control cases (Logrank test p = 0.13), (Figure 3-29).  

Differential PTEN expression was found in 39/316 (12 %) of tumours (upregulation in 

6 and downregulation in 33 cases). There was no association between PTEN mRNA 

expression and PFS (p = 0.22) and OS (p = 0.21). 

 

Figure 3-29 PTEN association with survival benefits from TCGA database.  

Survival curves for PTEN mutated cases N=25 (red line) and control cases N = 291 
(blue line). A. Disease free survival. PTEN alterations N = 21, cases relapsed N = 13, 
median months disease free 21.22. Cases without PTEN alteration N = 239, cases 
relapsed N = 176, median months disease free 15.64. Logrank test P = 0.06 B. 
Overall survival Kaplan-meier estimate. PTEN alterations N = 25, cases deceased N 
= 11, median months survival 55.88. Cases without PTEN alteration N = 290, cases 
deceased N = 170, median months survival 43.5. Logrank test p = 0.13. 

3.4.8 Assessment of the Tumourgenic Potential of NUOC-1 Cells 

Hypothesis: NUOC-1 cells are capable of forming xenografts in SCID mice 

The tumourgenic potential of the cell line was assessed based on its ability to form 

tumours in 8-10 week old female SCID mice at subcutaneous right gluteal sites. Five 

mice were transplanted with 5 × 106 cells suspended in 50 % medium / 50 % v/v 

matrigel subcut. The animals were housed under sterile conditions in a laminar flow 
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environment with ad-lib access to food and water. Tumour formation was assessed 

by observation for 100 days, after which no tumour formation was detected. This 

work was kindly performed by Huw Thomas. 

As subcutaneous site is not the site for ovarian cancer growth, the tumorigenic 

potential of this cell line was then assessed based on its ability to form intraperitoneal 

(IP) tumours in 8-10 week old female SCID mice. 

Firstly, the NUOC-1 cells were transduced with SLIEW lentiviral vector. This vector 

was kind gift from Dr Alex Elder. Transfection was confirmed by an increase in GFP 

expression on FACS flow cytometry, as described in section 2.17.2. Five mice were 

transplanted with 5 × 106 cells suspended in PBS. The animals were housed under 

sterile conditions in a laminar flow environment with ad-lib access to food and water.  

Tumour formation was assessed by non-invasive whole-body imaging at 0, 10, 55 

and 85 days after implantation (Figure 3-30) using the IVIS Spectrum Imaging 

system (Caliper Life Sciences, Hopkington, USA). Animal handling was performed by 

Dr Helen Blair. No formation of ascites was noted in the animals. Luciferase signal 

was present at day 10 and in one mouse at day 55, however the signal reduced over 

time (Figure 3-31) and no signal could be found in any of the mice at day 85. 
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Figure 3-30 NUOC-1 tumourgenicity 
assessment bioluminescent images.  

Mice were transplanted with luciferase-
expressing NUOC-1 cells IP. 
Bioluminescent imaging was performed 
on day 0, 10, 55 and 85. Mice were 
marked with ear notches to allow 
recognition (left notch (LN), Right notch 
(RN), bilateral notches (BN), no 
notches (NN) and 2 left notches (2LN). 
Day 0 images are shown on a different 
radiance scale to avoid image 
saturation.

LN              RN                BN             NN            2LN 

Day 0 

Day 10 

Day 55 

Day 85 
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Figure 3-31 Quantification of bioluminescent imaging.  

Mice were transplanted with luciferase-expressing NUOC-1 cells IP. Bioluminescent 
imaging was performed on day 0 and day 10. Mice were marked with ear notches to 
allow recognition (left notch (LN), Right notch (RN), bilateral notches (BN), no 
notches (NN) and 2 left notches (2LN). Graph shows the total luminescence for each 
mouse at the two time points. 
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3.4.9 NUOC-1 Karyotype  

The NUOC-1 karyotype was assessed off-site by the Cytogenetics Laboratory at the 

Newcastle Institute of Genetic Medicine. The result was a composite of four 

metaphases (Figure 3-32). NUOC-1 cells revealed a complex, near-tetraploid 

karyotype, with loss of chromosomes 3,6,11,16 and 19, and structural abnormalities 

including rearrangements of 5q, 9q, 17p and 18q.   

  

Figure 3-32 NUOC-1 karyotype.  

Picture is a representative G-banded metaphase. The result is a composite of 4 
metaphases. Arrows indicate the chromosomal abnormalities present in all 
metaphases assessed. 
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3.4.10  Clonal Evolution in NUOC-1 Cells 

Hypothesis: NUOC-1 cell line is a mixed population of cells which contain gene 

alterations commonly described in Type I ovarian cancers  

To assess clonal evolution, two NUOC-1 subpopulations were derived. NUOC-1 cells 

were split at passage 4 and either grown continuously to passage 14 (NUOC-1-A1) 

or frozen and stored in liquid nitrogen for 12 months before being thawed and the 

also grown to passage 14 (NUOC-1-A2).  

Intra-chromosomal copy number alterations deviating from the baseline copy number 

state (tetrapoloid) were identified in NUOC-1-A1, NUOC-1-A2 and parent NUOC-1 

cells using OmniExpress Exome BeadChip genotyping data. Both sub population cell 

lines carried numerous common copy number alterations, indicating a shared recent 

ancestry (Figure 3-33). However, each cell line also carried a small number of unique 

copy number alterations not seen in the other cell line, indicating ongoing genomic 

evolution. Specifically, NUOC-1-A1 and NUOC-1-A2 carried a total of 121 and 116 

copy number/CN LOH alterations, respectively; of which 107 were common to both 

cell lines. The vast majority (>95 %) of copy number alterations were gains, indicating 

a pro-amplification genotype in both cell lines, with an average amplicon size of 2.6 

Mb and 1.2 Mb in NUOC-1-A1 and NUOC-1-A2, respectively. Furthermore, there was 

clear evidence that both NUOC-1-A1 and NUOC-1-A2 were heterogeneous with 

respect to copy number alterations, with some alterations being present in virtually all 

of the cells whereas, other alterations were clearly carried in sub-clones. There was 

also clear evidence of multiple independent alterations affecting the same genomic 

regions. 

The vast majority of copy number alterations shared by NUOC-1-A1 and NUOC-1-A2 

were also visible in parental NUOC-1 cells. Furthermore, the vast majority of copy 

number alterations seen in NUOC-1-A2 but not NUOC-1-A1 were visible in the 

parental line, but not those copy number changes which were seen in NUOC-1-A1 

but not NUOC-1-A2. The low quality of data derived from parental NUOC-1 cells 

prohibits the visualisation of some small and/or low magnitude copy number 

alterations. The majority of copy number alterations unique to NUOC-1-A1 were not 

discernible in the data derived from parental NUOC-1 cells, thus suggesting that the 

cell population from which NUOC-1-A1 derived was present as a very minor sub-
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clone in the parental NUOC-1 cells. In contrast, the evidence suggests that the cells 

from which NUOC-1-A2 ultimately derived constituted the major population of NUOC-

1 cells.  

With regard to the unique copy number alterations, genes implicated in type II 

ovarian cancer pathogenesis are also affected by copy number alterations in NUOC-

1-A1 and/or NUOC-1-A2 (Figure 3-34). For example, the HINF1B and ERBB2 genes 

are captured by amplicons of 405Kb and 115Kb, respectively, on chromosome 17 in 

both NUOC-1-A1 and NUOC-1-A2 cells. Likewise, the AKT1 gene is captured by a 

155Kb amplicon on chromosome 14. The ARID1A gene is captured by a large region 

of copy neutral loss of heterozygosity on chromosome 1, which could unmask a 

recessive gene mutation. 

Gains 

 

Losses 

 

Copy neutral LOH 

 

 

Figure 3-33 Copy number variations in NUOC-1, NUOC-1-A1 and NUOC-1-A2 cells. 
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A- ARID1A, chr 1 

 
 

B - PIK3CA, chr 3 

 

C - PPM1D, chr 17

 

D -AKT1, chr 14

 

E - ERBB2 (HER2), chr 17 

 

F - HINF1B, chr 17 

 
Figure 3-34 Copy number profiles of NUOC-1-A1 and NUOC-1-A2 cell lines.  

Each SNP marker is represented and aligned to its position on the chromosomes as well as its designated copy number state. 
An ideogram of the chromosome is positioned below the SNP marker plots. A. ARID1A captured by a large region of copy 
neutral LOH on chr 1. B. PIK3CA located in a region of apparent copy neutral LOH. C. PPM1D located in a region of apparent 
copy neutral LOH. D. AKT1, captured by a 155Kb amplicon on chr 14. E. ERBB2 (HER2), captured by amplicon of 405Kb on chr 
17. F. HINF1B, captured by amplicon of 115Kb on chr 17.
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NUOC-1-A1 cells had a low level copy number gain affecting the long arm and some 

of the short arm of chromosome 8 that was not seen in NUOC-1-A2. However, 

NUOC-1-A2 has a complex high level amplification on chromosome 8 that captures 

the c-MYC locus (Figure 3-35), and which was present in the dominant clone. It is not 

possible to discern from the genotyping data the exact copy number in either cell line, 

although it is clear that NUOC-1-A1 and NUOC-1-A2 will differ significantly in c-MYC 

gene copy number. 

 

Figure 3-35 Copy number profile of chromosome 8 in NUOC-1 cells.  

A. NUOC-1, B. NUOC-1-A1 and C. NUOC-1-A2 cell lines. Each SNP marker is 
represented and aligned to its position on the chromosomes as well as its designated 
copy number state. An ideogram of chromosome 8 is positioned below the SNP 
marker plots. MYC gene location is marked. 

3.4.11 Assessment of MYC Amplification 

To further analyse the amplification of MYC and the differences observed between 

NUOC-1-A1 and NUOC-1-A2, FISH for MYC analysis was carried out off-site by the 

Cytogenetics Laboratory at the Newcastle Institute of Genetic Medicine. MYC was 

assessed in samples at four stages of cell line development. These included FFPE 

tissue of the tumour (collected at the time of surgery), ascites sample from which 

NUOC-1 was derived (frozen on the day of collection) and the two subpopulations of 

NUOC-1 – NUOC-1-A1 and NUOC-1-A2, using a break apart MYC probe as 

described in section 2.15. The results are shown in Table 3-4 and Figure 3-36. 
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Table 3-4 FISH for MYC results for NUOC-1. 

MYC was assessed in paraffin embedded tumour sample from the patient NUOC-1 

cell line was derived, ascites sample, NUOC-1-A1 and NUOC-1-A2 cells. The 

percentage of normal, increased chromosome and MYC amplified cells is stated. 

HSR - homogeneously staining regions. 

Sample Normal MYC (%) Modal signal 

pattern MYC x3~6 

(%) 

MYC 

amplification (%) 

Paraffin section  20 69 11 

NUOC-1 Ascites  14 4 82, HSR 

NUOC-1-A1 0 98 

MYC x3 (55 %) and 

MYC x6 (28 %) 

2 

NUOC-1-A2 0 0 100 

  

  

   
Figure 3-36 FISH immunofluorescent images for MYC in NUOC-1.  

Results are A. FFPE embedded tumour sample, B. NUOC-1 ascites sample, C. 
NUOC-1-A1, D. NUOC-1-A2. 

 

FFPE section of tumour was found to contain a modal MYC signal pattern x 3~6 in 

69 %, MYC amplification in 11 % and normal MYC signal in 20 % of cells analysed. 

Ascites sample contained 14 % normal MYC expressing cells. These cells are likely 
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to be normal mesenchymal cells present in ascites. The majority of cells contain MYC 

amplification (82 %) with a small number of modal signal pattern (4 %) also. This 

finding demonstrates heterogeneity between ascites and solid tumour.  

The differences of MYC between NUOC-1-A1 and NUOC-1-A2 are very clear and 

closely relate to the findings from the SNP array. Mostly modal signal pattern was 

detected in NUOC-1-A1 (98 %), which would be seen as normal copy number in the 

SNP array, in comparison to 100 % MYC amplification observed in NUOC-1-A2. Also 

consistently the results support the hypothesis that NUOC-1-A2 forms the major and 

NUOC-1-A1, the minor clones in the original cell line. Importantly NUOC-1-A1 is likely 

to represent a major clone in the solid tumour based on MYC expression. However, 

this hypothesis needs to be assessed using other targets. 

No separation of MYC probes was seen in cells with increased chromosome 

numbers, suggesting that MYC translocation was not present. In cells with HRS 

amplification, greater numbers of first compared to second probe were observed. 

This suggests the presence of varied size amplicons. 

3.5 Chapter Summary 

In this study two models of ovarian cancer were characterised. PCO cultures were 

generated with an 88 % success rate. The main findings included: 

 Slow growing and to senesce at passage 4-5.  

 Variable expression of antigens including epithelial markers and CA125. 

 Viral particle transduction into PCO cultures was optimised, but transfection 

using Lipofectamine and electroporation was not possible. 

 46 % of PCO cultures were found to be HRD. HRD correlated with increased 

sensitivity to rucaparib and cisplatin in vitro, but not clinical survival outcomes. 

During the project one PCO culture immortalised and was therefore characterised as 

a novel ovarian cancer cell line. NUOC-1 was derived from the ascites of a chemo 

naive, caucasian patient at the time of primary surgery. Evidence of intra-tumour 

heterogeneity between solid and ascites samples was found during the analysis of 

MYC expression. The main findings included:   

 Expression of Pancytokeritin, EpCAM, MOC31 and CA125, but not Vimentin.  
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 No expression of oestrogen, progesterone and androgen receptors, but 

positive expression of HER-3 and overexpression of HER-2 receptor.  

 NUOC-1 cells were wildtype for p53 and PTEN. 

 ARID1A mutation. 

 Knockdown of PTEN resulted in, growth inhibition and sensitisation to 

cytotoxic agents. 

 Near tetraploid karyotype, with chromosomal abnormalities of all 

chromosomes and mixed population of cells.  

 Failure to form tumours in SCID mice.  

 Unstable and pro-amplification tendency.  

 Two subpopulations were derived which were isogenic for MYC amplification. 

NUOC-1-A1 formed minority population in NUOC-1 parent line whilst NUOC-1-

A2 formed the majority subpopulation.  

3.6 Discussion 

In order to establish new cellular models of ovarian cancer, all the samples of ovarian 

tissue collected by our group were processed to derive PCO cultures (ODonnell et 

al., 2014). Two distinct models for the study of ovarian cancer were characterised in 

this chapter.  

3.6.1 Characterisation of PCO Cultures 

The ability to generate and utilise primary cultures of ovarian cancer has several 

advantages over other models, including established cell lines and animal models. It 

is now recognised that many cell lines in long term culture will undergo further 

genetic aberrations rendering them dissimilar from their tissue of origin. Furthermore, 

even a large panel of cell lines cannot accurately represent the heterogeneity that is 

seen in EOC. The 88 % success rate of viable cultures of epithelial cells is sufficiently 

high to justify the feasible use of these techniques in clinical practice if diagnostic 

tests were developed. Furthermore, the ability to store cultures in liquid nitrogen long 

term allows the possibility of collaboration for research or post hoc diagnostic 

analysis. One of the strengths of developing models of viable cancer cells is that it 

allows for the use of functional assays which would not be possible using FFPE 

tissue or even fresh frozen tissue. This is likely to become increasingly important in 
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the development of biomarkers for treatments which depend upon the dysregulation 

of a complete pathway, as opposed to aberration of a single gene. 

It is not clear why culture from ascites is unsuccessful in a proportion of cases, why 

senescence occurs at variable passages or why only one culture has immortalised. It 

is likely, that this is a consequence of a lack of the essential factors required for 

growth, which are provided in vivo by the complex interactions within the tumour 

microenvironment, but are absent in the artificial culture setting. A recent study 

described a novel method for establishing cell lines from primary tumour cells using a 

novel medium with a much higher success rate of immortalisation (Ince et al., 2015). 

A further explanation could be that cells in the ascites are not always the most viable 

of tumour cells and stem cells need to be considered.  

3.6.2 HR Function in PCO Cultures  

As previously demonstrated (Mukhopadhyay et al., 2010), 46 % of PCO cultures 

were found to be HRD; and HRD cultures were found to be more sensitive to 

rucaparib and cisplatin, compared to HRC cultures. Replication of these findings 

provides further support for the constancy of HRD in ovarian cancer, and the 

importance of HRD in platinum and rucaparib sensitivity. The literature suggests a 

correlation between chemo sensitivity to platinum and PARPi. In clinical studies, 

response to the oral PARPi olaparib correlated with platinum free interval (Fong et 

al., 2010). The result from PCO cultures supports this finding with a positive 

correlation between ex vivo sensitivity to rucaparib and cisplatin.  

Lack of association between HR function and survival was contradictory to previous 

evidence (Mukhopadhyay et al., 2012). Furthermore, ex vivo sensitivity to rucaparib 

and cisplatin was also not associated with a statistically significant difference in 

survival. The lack of association observed may be due to a number of factors. Firstly, 

the survival data is not complete, due to time limitations of the project. Assessment of 

this data in a few years with complete set of clinical data may provide different 

findings. Secondly, the standardised SRB protocol used, which did not take into 

account the doubling time of individual cultures, may have overestimated sensitivity 

in rapidly growing cultures and underestimated sensitivity in slow growing cultures. 

Thirdly, the assessment of ex vivo cultures only translates into clinical survival if the 

cultures are representative of the tumour. The adherent monolayer of cells cultured 
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may only represent one subpopulation of ascitic cells collected. Assessment of how 

representative PCO cultures are of the residual microscopic tumour following surgery 

are still required. Evidence from NUOC-1 MYC assessment demonstrate discordance 

between the ascites and solid tumour sample as well as a mixed population which 

over time developed into two separate cell lines. To capture the heterogeneity of 

PCO cultures the characterisation of PCO cultures should therefore ideally be 

performed at time 0, prior to passage. Finally, this analysis has not taken into 

account histological subtype, the residual volume of tumour at the end of surgery, 

and chemotherapy treatments actually given, which have all previously been 

identified as being important in the prediction of clinical outcome (Von Heideman, 

2014). 

3.6.3 Prediction of HR Function by Genome Expression Arrays 

There is a pressing need to identify biomarkers of HRD which would predict the 

benefit from PARPi in ovarian cancer and potentially multiple other cancer types, 

regardless of the underlying molecular mechanism (Turner, 2011). Several 

approaches to the identification of HRD tumours using mutational screening, gene 

expression profiling, loss of heterozygosity (LOH) assays, telomeric allelic 

imbalances and large scale transition scores have been developed (Watkins et al., 

2014). These gene signatures, however, have not yet achieved widespread use. 

Several unsupervised multi-strategy approaches and statistical methods have been 

developed from a high throughput genomic data to identify differentially expressed 

genes (Liu, 2010, Li, 2008, Kang, 2012) and may represent a superior method of 

analysis in future studies. The ongoing ARIEL 2 (NCT01891344), a phase 2 trial of 

rucaparib therapy for women with relapsed HGSOC or endometrioid ovarian cancer, 

aims to identify a molecular signature of HRD. This will be evaluated further in ARIEL 

3 (NCT01968213) which aims to assess rucaparib as a maintenance therapy.  

The unsupervised hierarchical clustering in this small dataset found no difference in 

RNA expression signatures between HRD and HRC cultures. The upregulation of 

RAD51 and XRCC2 in HRD cultures is promising, but should not be over interpreted. 

It is unlikely that one marker in isolation is capable of predicting function of the entire 

pathway. The significantly higher RAD51 expression in HRD cultures in comparison 

to HRC cultures was unexpected. Based upon the HR pathway, higher RAD51 

expression was hypothesised in HRC cultures. The HR assay is not based upon 
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absolute levels of RAD51 to determine functional status, but a change in level in 

response to DNA damage. This higher baseline level in the HRD cultured may 

therefore represent dysfunctional Rad51 present in the nucleus of HRD cells. This 

finding needs to be explored further.  

3.6.4 Molecular Characterisation of NUOC-1 Cell Line 

In this study the establishment and characterisation of a novel ovarian cancer cell 

line, derived from a chemotherapy naïve patient has been described. PCO cultures 

provide a model that better represents the tremendous heterogeneity of ovarian 

cancer. This however, has a major limitation, in that the very short life span and slow 

growth limits the characterisation that is possible in these cultures, as well as their 

use in repeat experiments. Of the 156 primary cultures established in our laboratory 

so far, NUOC-1 is the only culture to spontaneously immortalise. NUOC-1 cells 

continue to maintain their morphology and epithelial marker expression over 

repeated passages.  

A recent meta-analysis found that progesterone receptor (PR) expression predicted 

favourable survival, while HER2 expression had a negative effect on survival. NUOC-

1 was found to be hormone receptor negative and tyrosine receptor positive. This is 

consistent with the very poor survival observed in this patient. This phenotype of 

NUOC-1 cells would make this cell line a useful model in study of receptor function.   

3.6.5 NUOC-1 Cell Line Represents Endometrioid / Clear Cell Ovarian 

Carcinoma 

NUOC-1 cells were found to contain a polymorphism in exon 4, however functional 

assessment determined that NUOC-1 cells were wildtype for p53. NUOC-1 cell line 

was derived from ascites of a mixed histology tumour. TP53 mutations are reported 

in the majority of serous ovarian cancer (Ahmed et al., 2010, Cancer Genome Atlas 

Research, 2011), therefore the p53 wildtype phenotype of NUOC-1 is inconsistent 

with HGSOC histology and suggests that the small proportion of HGSOC cells were 

not represented in the sample or failed to immortalise in culture. A recent study has 

also demonstrated that HGSOC establish cell lines less frequently (Domcke et al., 

2013).   
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Therefore, the NUOC-1 cell line probably represents endometrioid / clear cell ovarian 

carcinoma. The endometrioid and clear cell carcinomas are both linked to 

endometriosis and contain similar driver mutations. Endometrioid / clear cell histology 

for NUOC-1 is also supported by the findings of alterations in genes that are 

commonly altered in these tumours. These included an insertion mutation in the 

ARID1A gene. As well as the ARID1A gene being captured by a large region of copy 

neutral LOH on chromosome 1 found on SNP array. ARID1A is reported to be lost or 

mutated in 50 % of clear cell carcinoma (Anglesio et al., 2011, Tan et al., 2013). 

Other genes located in regions of copy neutral LOH included PIK3CA and PPM1D. 

PIK3CA has been reported to be mutated in 40 %, and PPM1D in 10 %, of clear cell 

carcinomas (Anglesio et al., 2011, Tan et al., 2013). SNP array also found AKT1, 

ERBB2 and HINF1B to be captured by amplicons. HINF1B is reported to be 

upregulated in almost 100 % of clear cell carcinoma (Anglesio et al., 2011, Tan et al., 

2013). AKT and ERBB2 amplifications are reported in 14 % of clear cell carcinoma 

(Anglesio et al., 2011, Tan et al., 2013). Resistance to paclitaxel, as exhibited by 

NUOC-1 cells, is also commonly seen in clear cell carcinoma (Itamochi et al., 2008).  

3.6.6 PTEN is a Potential Target for Ovarian Cancer Sensitisation to Cytotoxic 

Agents 

PTEN mutations are reported in 50 % of clear cell / endometrioid carcinomas. NUOC-

1 cells were found be wildtype for PTEN. As a negative regulator of growth it was 

hypothesised that PTEN inhibition would increase chemo-resistance. Chemo-

resistance, particularly to cisplatin has been reported in PTEN-mutated cancers 

(Keniry and Parsons, 2008, Stewart, 2007). However, in this study, PTEN knockdown 

caused chemo- and radio-sensitisation in NUOC-1 cells, but had no effect in OSEC-2 

cells.  

In the PCO model, no association between PTEN expression and sensitivity to 

rucaparib or cisplatin was observed. This was supported by a lack of association of 

PTEN expression with survival in the TCGA cohort. This difference may be due to 

histological differences between NUOC-1 and PCO cohorts, as the majority of PCO 

cultures were HGSOC, and only 8 endometrioid / clear cell. A further explanation for 

the difference may be that knockdown models represent in vitro alteration of PTEN 

expression, which may not be representative of baseline activity in PCO cultures 

(Hunt et al., 2012). Previous groups have similarly found that experimentally removed 
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PTEN in cell line models do not behave like cancer cells developed in a PTEN-null 

genotype context, possibly due to accumulated genetic aberrations that occur in a 

PTEN-independent manner (Hunt et al., 2012). An important further reason for the 

lack of association is that only mRNA expression was assessed. Post translational 

modification including phosphorylation, acetylation, methylation, oxidation have been 

reported (Minami et al., 2014). 

Additionally PTEN loss has been demonstrated to induce sensitivity to PARPi in cell 

line models, however recent findings from TOPARP trial (NCT01682772) indicate 

that PTEN loss does not confer sensitivity to PARPi (Mateo et al., 2015). However, 

association of PTEN mutations with a trend towards improved survival suggests that 

PTEN loss may be a useful biomarker for treatment sensitivity and survival 

outcomes. These results need to be validated in further large cohorts of ovarian 

cancer.  

A link between PTEN loss and HR deficiency is debated with some groups reporting 

that PTEN attenuates RAD51 gene expression and recruitment to double strand DNA 

breaks (McEllin et al., 2010), whilst others refute this (Fraser et al., 2012, Hunt et al., 

2012). In this study no association of PTEN with HR function was found, either in 

knockdown models or our primary culture cohort. These results provide further 

evidence to suggest that PTEN has little or no role in HR pathway function.  

3.6.7 NUOC-1 Cells are HRC, but BER Defective 

Functional assessment found NUOC-1 cells to be HRC. This finding is supported by 

the sensitivity of NUOC-1 to rucaparib, cisplatin and irradiation, being equivalent to 

the OSEC-2 cell line, which was derived from normal ovarian epithelium.  

NUOC-1 cells were found to be BER defective. NUOC-1 cells were also exquisitively 

sensitive to the Topo I poison camptothecin. Sensitivity to Topo I poisons due to BER 

defects has been previously demonstrated comparing isogenic cell lines EM9 and 

AA8 (Plo et al., 2003). Further confirmation of BER defects could be confirmed by 

assessing sensitivity to H2O2 and temozolomide and topotecan. BER defective cells 

have been shown to be sensitive to all these therapies (Illuzzi and Wilson, 2012). 

Stratification of ovarian cancer by BER status would be useful in selection for second 

line therapy with topotecan versus liposomal doxorubicin. The NUOC-1 cell line is 



 

129 
 

therefore a useful model for the assessment of further novel therapeutics in BER 

defective ovarian cancer. 

3.6.8 Xenograft Development was not possible from NUOC-1 Cells 

NUOC-1 cells were not able to form xenografts in SCID mice. It has been previously 

suggested that cell lines derived from patients with indolent disease exhibit low 

tumourgenicity (Laks et al., 2009). This is not the case for the NUOC-1 cell line, as 

the patient from which the cell line originated had extremely aggressive disease and 

lived only 52 days post optimal debulking surgery. Whilst the inability of NUOC-1 

cells to form xenografts limits its use by some researchers, this should not detract 

from the phenotype of this cell line. Furthermore, NUOC-1 tumourgenicity in mice 

with complete absence of immune function was not assessed due to the time and 

resource limitations of this study. 

3.6.9 NUOC-1 Cells Reflect the Genomic Instability and Heterogeneity of 

Ovarian Cancer 

The results obtained with the G-banding karyotype reflect previously published 

karyotype studies on epithelial ovarian cancer, where high genomic instability is 

observed (Deger et al., 1997). Low grade cancers generally have a normal karyotype 

and therefore the NUOC-1 karyotype would suggest it to be a high grade clear cell / 

endometrioid tumour.  

The heterogeneity of cells observed in NUOC-1 better reflects the heterogeneity of 

ovarian cancer not seen in cell lines derived from a single clonal population. SNP 

array results provide further insight into the extensive genomic alterations present in 

this cell line. Further investigation of the lesions in this cell line in the NUOC-1-A1 

and NUOC-1-A2 subpopulations may provide insights into the molecular events that 

contribute to ovarian cancer initiation and progression. 

High levels of c-MYC have been linked to poor PFS and OS in ovarian cancer and 

siRNA-mediated c-MYC silencing has been explored as a potential target in platinum 

resistant ovarian cancer with positive results (Reyes-Gonzalez et al., 2015). SNP and 

FISH analyses of MYC provide evidence for heterogeneity of solid tumour and 

ascites samples and for NUOC-1-A2 subpopulation being derived from a majority 
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and NUOC-1-A1 from a minority population of the ascites. The two subpopulations of 

NUOC-1 provide a good isogenic model for the exploration of c-MYC.  

3.7 Future Work 

Validation of targets identified by SNP array are planned to be carried out. Validation 

of ERB2 expression by IHC in FFPE tissue of the tumour is also planned. ERB2 

validation will be carried out in collaboration with the Pathology Lab at the Royal 

Victoria Infirmary. Completion of ARID1A protein and function assessment in NUOC-

1 culture would add to the characterisation of the cell line. Furthermore, assessment 

of PTEN mutational and functional status in a larger cohort of PCO cultures would 

add to the body of knowledge of the role of PTEN in ovarian cancer.   

Further to the submission of the NUOC-1 cell line manuscript for publication, the 

immediate plan for the cell line is to make it commercially available. The unique 

phenotype of the cell line which has been extensively characterised here, would 

make NUOC-1 an invaluable model for the study of type I ovarian cancer.  
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CHAPTER 4 ASSESSMENT OF NHEJ FUNCTION IN OVARIAN 

CANCER  

4.1 Introduction 

The NHEJ pathway plays an important role in genome maintenance after DNA 

damage. NHEJ has been demonstrated to repair up to 90 % of DNA DSBs in human 

cells and to function throughout the cell cycle (Valerie and Povirk, 2003). As 

discussed in section 1.4.5.2, the classical NHEJ pathway is initiated by the binding of 

the Ku heterodimer (Ku70 and Ku80) to a DNA DSB and subsequent association, 

and autophosphorylation of the DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs) (Walker et al., 2001). This trimeric DNA-PK complex facilitates ligation by 

recruitment of the XRCC4/LIG4 complex. Mutations in classical NHEJ pathway 

components have been linked to immunodeficiency and developmental abnormalities 

(O'Driscoll et al., 2004, Sekiguchi and Ferguson, 2006). Furthermore, underactivity of 

the NHEJ pathway has also been linked to bladder cancer (Bentley et al., 2004, 

Bentley et al., 2009, Windhofer et al., 2008) and leukaemia (Gaymes et al., 2002, 

Deriano et al., 2005). These findings underscore the importance of the NHEJ 

pathway for maintaining genome integrity. 

The DNA damage response (DDR) is becoming increasingly recognised as an 

important determinant of response to cancer therapeutics. This interest was initially 

provoked by the paradigm shifting discovery that inhibition of BER with PARPi was 

synthetically lethal in HRD tumours (Bryant et al 2005, Farmer et al 2005). PARPi 

were therefore selectively targeting the defect arising in the tumour, but not in normal 

tissues (Ashworth, 2008b, Bryant et al., 2005, McCabe et al., 2006). Given the 

finding that ≥ 50 % of ovarian cancer were HRD (Mukhopadhyay et al., 2010, Cancer 

Genome Atlas Research, 2011), as well as building evidence for efficacy of PARPi in 

ovarian cancer, means that PARPi are likely to play an important role in the future 

treatment of ovarian cancer. A number of studies also indicate a connection between 

NHEJ and PARP-1. In particular, PARP-1 interacts with the Ku proteins in vitro and in 

vivo (Wang et al., 2006b, Galande and Kohwi-Shigematsu, 1999, Couto et al., 2011), 

and Ku70, Ku80 and DNA-PKcs have been shown to be capable of binding to ADP 

ribose polymers (Pleschke et al., 2000, Li et al., 2004a, Gagne et al., 2008). The 

genetic ablation of KU70 and LIG4 has been shown to restore the survival of PARP1-

deficient cells exposed to agents inducing DSBs (Wang et al., 2006b, Hochegger et 
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al., 2006). Also, DNA-PK inhibition and depletion has been shown to result in HR 

function recovery and PARPi resistance in vitro (Patel et al., 2011).  

Many in vitro studies have demonstrated that complementary DNA ends are joined in 

an efficient and accurate manner by NHEJ (Baumann and West, 1998, Labhart, 

1999). However, in vivo, DSBs are often chemically modified, staggered, and/or are 

comprised partially or completely of incompatible DNA ends that require modification 

before joining can take place (Valerie and Povirk, 2003). The recruitment of proteins 

involved in the processing of DNA ends depends on the type of modification required 

(Bentley et al., 2004). Such end processing may result in the loss of a small number 

of terminal nucleotides at the resultant junctions, such that NHEJ is an error prone 

repair pathway and is potentially a mutagenic process (Lieber et al., 2003).  

In the absence of the classical NHEJ pathway, there is evidence that an alternative 

Ku-independent mechanism for the end-joining (A-EJ) of DSBs can be utilised 

(Pannunzio et al., 2014, Rai et al., 2010, Iliakis et al., 2004, Wang et al., 2003, Yan et 

al., 2007, Corneo et al., 2007). This mechanism uses small regions of microhomology 

at internal sites on the DNA substrate, but unlike HR, A-EJ is inherently error-prone. 

This is because the use of microhomology leads to deletion of sequences from the 

strand being repaired, and also to chromosomal translocations (Ceccaldi et al., 

2015a, Mateos-Gomez et al., 2015). A-EJ has recently been reported to be 

overexpressed in HGSOC (Ceccaldi et al., 2015a), however, to date NHEJ function 

in ovarian cancer is unknown. The selection of repair mechanisms has been 

discussed in section 1.4.5.4. 

A number of methods for assessing the function of a pathway are described in the 

literature. Mutations of the genes in question can be used to assess the function of a 

pathway. The benefit of this method is the applicability of a high throughput approach 

in analysing large numbers of samples. Furthermore, many publically available 

databases have already analysed mutations in genes in the NHEJ pathway. 

However, not all mutations result in functional alterations and therefore may not have 

any impact on the function of the gene or the overall pathway. In the NHEJ pathway, 

the majority of mutations reported are SNPs, with many of them having contradicting 

reports of functionality and association with cancer, as summarised in appendix 1.  

mRNA and protein expression may be a better assessment of pathway function. 

However, the minimal expression required for the pathway to function is unclear for 
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many proteins. Functional assessment of the pathway would evaluate its function 

independently of alterations of specific genes. For this study, NHEJ function was 

examined using functional assays. Furthermore, possible biomarkers for clinical 

application and heterogeneity of the NHEJ function were assessed.    

4.2 Aims for Chapter 4 

Despite the mounting evidence for NHEJ role in PARPi sensitivity, NHEJ function has 

not been investigated in ovarian cancer in vivo to date. The aim for these 

investigations was therefore to assess NHEJ function in ovarian cancer cultures, and 

to relate the function to HR competence and to rucaparib and cisplatin sensitivity. 

Specifically the experimental aims were as follows:  

 Optimise functional NHEJ assays.  

 Assess NHEJ function in a panel of ovarian cancer cell lines and a panel of 

primary ovarian cancer cultures. 

 Correlate rucaparib and cisplatin sensitivity with NHEJ function. 

 Assess the expression of NHEJ mRNA and protein, and correlate the 

expression with end joining competence. Assess the feasibility for the use of 

mRNA and protein expression as possible biomarkers. 

 Assess DNA-PK autophosphorylation, as a potential biomarker for NHEJ 

function. 

 Validate NHEJ biomarkers in FFPE tissue from tumour samples matched to 

ascites samples.  

 Examine heterogeneity of NHEJ function in ovarian cancer.   

4.3 Results 

The TCGA bioportal was used to assess the frequency of NHEJ gene aberrations in 

a primary ovarian cancer cohort (Figure 4-1). Assessment of the TCGA data found 

aberrations in NHEJ genes in 60 % of cases. The majority of alterations (41 %) were 

found in XRCC6 (Ku70). The alterations included amplifications, deletions and 

mutations. At mRNA level both up and downregulation were reported. It is unclear as 

to which of the alterations results in functional loss of NHEJ.  
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Figure 4-1 NHEJ gene aberrations reported in the TCGA database.  

NHEJ genes were found to be altered in 190 (60 %) of 316 cases / patients.
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4.3.1 Optimising NHEJ Assay 

A number of assays are described in the literature for assessing end joining. Two 

assays were selected from a literature review, and optimised for this study. The 

selected end joining assays were initially optimised in a cell line derived from normal 

ovarian epithelium (OSEC-2) and cell lines with known NHEJ function, by using DNA-

PKcs competent and defective isogenic cell lines.  

4.3.1.1 End Joining Accuracy Depends on DSBs Compatibility 

Three vectors were used for this assay, all were a kind gift from Dr A. Kiltie, Oxford. 

Digestion with BstXI resulted in the formation of either compatible DSB (Co), 2 base 

mismatch (2I) or 4 base mismatch (4I) (Figure 4-2). The digestion optimisation is 

described in section 2.6.1.2. 

 

Figure 4-2 Diagrammatic representation of BstXI digested products. 

 

T4 ligase ligated Co substrates, but incompatible substrates could not be joined 

without the addition of the appropriate λDNA (Figure 4-3). OSEC-2 cells were able to 

rejoin 34.8 % of Co, 15.9 % of 2I and 13.7 % of 4I substrates (Figure 4-3 and Figure 

4-4). The addition of the λDNA fragment increased the rejoining rate of incompatible 

substrates (50.8 %, p < 0.001 of 2I and 43.3 %, p = 0.0004 of 4I), but had no effect 

on the rejoining of compatible substrates. As both 2I and 4I had similar rejoining 

rates, assessment of cell line and PCO panels was performed using Co and 2I 

substrates only.  
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Figure 4-3 Rejoining of BstXI substrates.  

Results are for compatible (Co), 2 base mismatch (2I) and 4 base mismatch (4I) 
substrates with or without addition of λ substrate by T4ligase and OSEC-2 cells. 
Successful rejoining is demonstrated by the presence of multimer bands. Gels are 
representative of 3 independent experiments. 
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Figure 4-4 Densitometry quantification of OSEC-2 rejoining of BstXI substrates.  

Results are for compatible (Co), 2 base mismatch (2I) and 4 base mismatch (4I) 
substrates, with or without addition of λ substrate. Rejoining of results are expressed 
as total rejoined products / total DNA loaded. Error bars are SEM. 

 

Comparison of the rejoining undertaken in paired DNA-PK deficient and proficient cell 

lines, demonstrated that whilst compatible ends are largely rejoined correctly by all 

cell lines, DNA-PK deficient V3 and M059J cells were unable to rejoin 2I substrates 

(Figure 4-5). 
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Figure 4-5 PCR analysis of cell line rejoining of Co or 2I BstXI substrates. 

Cell lines used were: V3YAC (DNA-PKcs corrected) and V3 (DNA-PKcs deficient), 
M059FUS-1 (DNA-PKcs corrected), M059J (DNA-PKcs deficient). The rejoint 
products were amplified using pFOR and pREV primers. Correct rejoining produces 
products of 551bps. Inaccurate rejoining with loss of bases results in smaller or no 
product formation. Gels are representative of 3 independent experiments. 

4.3.1.2 Confirmation of NHEJ Inhibition by NU7441 

The DNA-PK inhibitor NU7441 was found to inhibit end joining in a concentration-

dependent manner in DNA-PKcs complemented V3YAC cells, but had no effect in 

DNA-PKcs deficient V3 cells (Figure 4-6).  

 
Figure 4-6 Inhibition of end joining of BstXI digested Co substrates by NU7441.  

Results are for V3YAC (DNA-PKcs proficient) and V3 (DNA-PKcs deficient) cell lines. 
End joining is analysed by agarose gel electrophoresis and GelRed staining. Gels 
are representative of three independent experiments. 
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4.3.2 DNA End Joining in Established Epithelial Ovarian Cancer Cell Lines 

To ensure the cell free extract assay represented the cellular end joining accurately, 

NHEJ function was assessed in a panel of immortalised cell lines using both the cell 

extract assay and a cellular luciferase assay.  

Whilst immortalised non-cancerous ovarian surface epithelium OSEC cells were able 

to rejoin 2I ends accurately, four of the six EOC cell lines were unable to rejoin 2I 

substrate, thus indicating NHEJ deficiency (Figure 4-7). This correlated with a mean 

accurate rejoining rate of 24.6 % (95 % confidence interval (CI) = 11.5 to 37.6 %) by 

cell lines capable of rejoining 2I substrates, compared to 11.5 % (95 % CI = 6.8 to 

16.3 %, p = 0.03) by cell lines unable to rejoin 2I substrates, when assessed using 

the luciferase cellular assay (Figure 4-8), (pearson correlation r = 0.79 p=0.007, 

Figure 4-9).  

 

 

 

Figure 4-7 End joining of compatible and 2I BstXI substrates by ovarian cell lines.  

Gels are representative of 3 independent experiments. 
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Figure 4-8 Intracellular end joining of linearised pGL2 vector by cell lines.  

Measured as precise rejoining / overall end joining x 100. Data are average of three 
independent experiments. Error bars are SEM. 

 
Figure 4-9 Correlation of luciferase cellular assay and cell extract assay.   

4.3.3 DNA End Joining in PCO Cultures 

To understand if the frequency of NHEJ defects in immortalised cell lines represents 

the frequency in ovarian cancer in vivo, NHEJ function was assessed in a collection 

of PCO cultures. 
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4.3.3.1 Cell Extract NHEJ Assay Optimisation in PCO Cultures 

Hypothesis: Functional assessment of NHEJ can be undertaken in primary ovarian 

cancer cultures  

Rejoining by PCO extracts was optimised using PCO 138, 139 and 142 (Figure 4-

10). For each PCO culture two extracts were prepared from passages 1 and 2. 

Consistent rejoining was noted between passages. For the remainder of the study, 

end joining was quantified using 3 separate lysates for each PCO culture from 

passage 1-3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 End joining of compatible BstXI substrates by PCO cultures.  

GelRed detection and quantification of end joining of BstXI A. compatible and B. 2I 
incompatible substrates. Gels are representative of 3 independent experiments. 
T4Ligase, OSEC-2 and V3YAC (DNA-PKcs corrected) were used as positive 
controls. V3 and M059J (both DNA-PKcs deficient) cell lines were used as a negative 
controls. Water was used as a contamination control. 

 

As described in section 3.3.1.4, transfection of vectors into PCO cultures was not 

possible. Therefore, the decision was made to assess end joining function using the 

cell extract assay only. 

V3YAC 

V3YAC 

A 

 

 

 

 

 

 

B 
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4.3.3.2 NHEJ Function in PCO Cultures  

Hypothesis: NHEJ pathway is defective in a significant proportion of ovarian cancer 

cultures  

NHEJ was assessed in 40 PCO cultures. There was significant inter-sample 

variability (rejoining range 5 % to 39 % of loaded DNA). The majority of extracts end 

joined DNA substrates to form dimers whilst 5 cultures (12.5 %) also formed trimers 

and further multimers. (Figure 4-11). PCR analysis of the junctions formed 

demonstrated that the rejoining of the Co substrate was accurate (Figure 4-12).  

18 of the 40 PCO cultures were found to be NHEJD, as demonstrated by incubation 

with 2I substrates producing either no products, or forming products of significantly 

smaller size (Figure 4-12). Furthermore, some cultures formed multiple bands of 

different sizes indicating loss of differing numbers of nucleotides. Extensive resection 

has been demonstrated to be due to use of microhomologies in this vector in the 

absence of the functional NHEJ pathway (Bentley et al., 2004).  

Repair of 2I substrates was independent of the repair of competent substrates 

(median 23.59 % (95 % CI = 13.72 to 28.31 %) by NHEJC cultures, compared to 

17.05 % (95 % CI = 12.9 to 27.65 %) by NHEJD cultures, unpaired t test p = 0.59).  
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Figure 4-11 End joining of compatible BstXI substrates by PCO cultures. GelRed detection and quantification of end joining of BstXI 
compatible substrates.  

Gels are representative of 3 independent experiments. OSEC-2 and V3YAC (DNA-PKcs corrected) were used as positive controls. V3 
(DNA-PKcs deficient) cell line was used as a negative control. Water was used as a contamination control. Error bars are SEM. N = 40.
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Figure 4-12 Accuracy of rejoining of 2I BstXI substrates by PCO cultures.  

PCR analysis of rejoined DNA of Co and 2I substrates amplified using pFOR and pREV primers. Correct rejoining produces products of 
551bps. Inaccurate rejoining with loss of bases results in smaller or no product formation. Gels are representative of three independent 
experiments. N = 40.
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4.3.4 Biomarker Development for NHEJ Function 

In order to identify potential biomarkers of the NHEJ pathway which would be 

suitable for clinical use, a panel of RNA and protein species was examined and 

correlated with NHEJ function.   

Hypothesis: DNA-PK autophosphorylation is a potential biomarker for NHEJ function 

4.3.4.1 pDNA-PK Foci Formation Correlation with NHEJ Function  

The first potential biomarker which was assessed was the use of phospho-DNA-PK 

foci formation after irradiation. Consistent with the cell extract and cellular assays, a 

statistically significant increase in phospho-DNA-PKcs foci formation was 

demonstrated in NHEJC cell lines. Meanwhile, NHEJD cell lines did not show a 

significant increase in the formation of phospho-DNA-PKcs foci after DNA damage 

(Figure 4-13).  

 

Figure 4-13 NHEJ assessment by immunofluorescence.  

Phospho-DNA-PK foci count per cell in cell lines. Results are foci numbers 1 hr after 
irradiation normalised to un-irradiated controls. Results are the average of 3 
independent experiments. Error bars are SEM. Cell lines found to be functionally 
NHEJC are shown in black and NHED in white bars. 

 

However, DNA-PK autophosphorylation did not correlate with NHEJ function in PCO 

cultures (Figure 4-14). Phospho-DNA-PKcs formation in PCO cultures also did not 
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correlate with γH2AX foci formation, therefore the amount of DNA damage induced is 

not responsible for the lack of association observed. 

A 

 

B 

 
  

Figure 4-14 DNA-PK autophosphorylation as a marker of NHEJ function.  

A. DNA-PK foci fold rise above controls 1 hr after 2Gy IR in primary ovarian cancer 
cultures. Divided by NHEJ status. Results are average of 3 independent 
experiments. B. Correlation of pDNA-PK and γH2AX foci fold rise above controls 
after 2Gy IR in primary ovarian cancer cultures. Results are average of 3 
independent experiments. 

 

4.3.4.2 Correlation of Protein and mRNA Expression with NHEJ Status  

The proteins involved in the NHEJ pathway are required for pathway function. 

Therefore, the expression of Ku, DNA-PKcs, LIG4 and XRCC4 was assessed at both 

mRNA and protein level. 

Hypothesis: NHEJ function correlates with mRNA and protein expression levels of 

essential NHEJ protein  

The analysis of the NHEJ pathway components showed protein, but not mRNA 

expression of Ku70, Ku80 and DNA-PKcs, were all significantly lower in NHEJD 

cultures (Figure 4-15.A-B).  
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Figure 4-15 Prediction of NHEJ function by mRNA and protein expression of pathway 
components.  

A. mRNA expression of NHEJ components PCO cultures assessed by RT-qPCR. 
Full circles are NHEJC, open circles are NHEJD. B. Protein expression of NHEJ 
components in PCO cultures assessed by western blotting. Western bands were 
quantified using Fuji LAS-300 Image Analyser System. Full circles – NHEJC, follow 
circles – NHEJD. Protein and mRNA levels were normalised to GAPDH expression. 
Results are average of 3 independent experiments. Error bars are SEM. C. ROC 
curves for Ku70, Ku80 and DNA-PKcs protein expression as predictors of NHEJ 
function. ROC curves were generated and AUC calculated using PRISM software. 
NHEJC N = 22; NHEJD N = 18. 
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Ku70, Ku80 and DNA-PKcs protein expression levels were found to be good 

predictors (AUC 0.798, 0.762 and 0.852 respectively) for NHEJ function (Figure 4-

15.C). Discordance between protein and mRNA expression was noted. 

4.3.4.3 Prediction of NHEJ Function by Genome RNA Expression Arrays 

Using RNA extracted from the PCO ascitic cultures characterised for NHEJ function, 

the relative expression of genes was determined by the Oxford genomics centre 

(Oxford, UK) using Illumina Genome Studio and the HumanHT 12v4.0 R1 15002873 

array, as per the manufacturer’s instructions, as described in section 2.12. All RNA 

samples were extracted from the same ascitic fluid primary culture used in the 

functional NHEJ assay and cytotoxicity assays. RNA expression was analysed using 

unsupervised hierarchical clustering (Figure 4-16). No clustering by NHEJ function 

was observed in the PCO cultures.  

Differential expression analysis confirmed that after multiple test correlations, no 

genes were significantly differentially expressed between NHEJD and NHEJC 

cohorts (Table 4-1). The top 20 genes, when ranked by p value without multiple test 

correlation, did not include any DNA repair genes. This is consistent with the RNA 

expression analysis of NHEJ genes assessed by PCR in section 4.3.4.2.
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Figure 4-16 PCO genome RNA expression microarray.  

A. PCA plot of all PCO samples. Sample relation based on 27343 genes with sd / mean > 0.1 NHEJD cultures are in red and NHEJC in 
black. B. PCA plot after outlier cultures were removed. Sample relation based on 26415 genes with sd / mean > 0.1.  
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Table 4-1 PCO RNA differential expression after multiple test correlation.  

No genes were found to have a significant difference in expression (adj p < 0.05). Table demonstrates the top 20 results ranked by p 
value. N = 24. 

Gene symbol Gene name Av. Expr t p =  adj. p = 

UQCC1 ubiquinol-cytochrome c reductase complex assembly factor 1 9.55 4.24 0.0003 0.93 

IRX5 iroquois homeobox 5 7.67 4.15 0.0004 0.93 

KYNU kynureninase 8.56 4.03 0.0006 0.93 

GALNT6 polypeptide N-acetylgalactosaminyltransferase 6 8.37 3.89 0.0008 0.93 

TXLNA taxilin alpha 11.00 -3.81 0.0010 0.93 

FBLN1 fibulin 1 9.21 -3.73 0.0012 0.93 

TNIP3 TNFAIP3 interacting protein 3 8.00 3.71 0.0012 0.93 

BHLHE41 basic helix-loop-helix family, member e41 8.43 3.65 0.0014 0.93 

IFNAR2 interferon (alpha, beta and omega) receptor 2 8.80 3.51 0.0020 0.93 

DMKN dermokine 8.78 -3.48 0.0021 0.93 

TNFSF14 tumor necrosis factor (ligand) superfamily, member 14 7.80 3.39 0.0026 0.93 

KYNU kynureninase 8.13 3.39 0.0026 0.93 

CBLL1 Cbl proto-oncogene-like 1, E3 ubiquitin protein ligase 9.28 -3.36 0.0029 0.93 

FNIP2 folliculin interacting protein 2 8.39 3.35 0.0029 0.93 

SCARA3 scavenger receptor class A, member 3 8.26 -3.32 0.0031 0.93 

TRIM24 tripartite motif containing 24 7.68 3.31 0.0032 0.93 

RBPMS2 RNA binding protein with multiple splicing 2 9.71 -3.31 0.0032 0.93 

HTRA4 HtrA serine peptidase 4 8.16 3.28 0.0034 0.93 

PRPF38A pre-mRNA processing factor 38A 7.84 -3.27 0.0035 0.93 

ADD3 adducin 3 (gamma) 9.66 3.27 0.0036 0.93 
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4.3.5 Interaction of HR and NHEJ Pathways 

In vitro studies have demonstrated an interaction between HR and NHEJ pathways 

(Edwards et al., 2008, Tavecchio et al., 2012). Furthermore NHEJ pathway has been 

suggested to be critical in driving the lethality of PARPi in HRD cells (Patel et al., 

2011). 

Hypothesis: NHEJ function correlates with rucaparib sensitivity 

4.3.5.1 Effect of DNA-PKcs on Rucaparib Sensitivity and HR  

To assess the hypothesis that NHEJ function has a role in rucaparib sensitivity, DNA-

PKcs defective M059J and the paired competent M059FUS-1 cell line were used. 

DNA-PKcs competent M059FUS-1 cells were significantly more sensitive to 

rucaparib compared to DNA-PKcs defective M059J cells (mean GI50 2.75 µM 95 % 

CI = 0.90 to 2.93 µM vs 17.45 µM, 95 % CI = 13.0 to 22.25 µM, p < 0.0001, Figure 

4-17.A).  
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Figure 4-17 Rucaparib sensitivity and HR function in M059J and M059FUS-1 cells.  

A. sensitivity to rucaparib was assessed using SRB assay. DNA-PKcs was inhibited 
by addition of 1 µM NU7441 at the time of treatment. Results are mean of 3 
independent experiments and error bars are SEM. B. RAD51 and γH2AX focus 
formation was assessed 24 hrs after 2 Gy irradiation compared to untreated controls. 
Foci were counted across > 100 nuclei and results are expressed as fold rise above 
controls. 
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The role of DNA-PK kinase activity in this sensitivity was further confirmed by a 

significant induction of resistance in M059FUS-1 cells by the addition of the DNA-PK 

inhibitor NU7441 (mean GI50 7.89 µM, 95 % CI = 5 to 11.29 µM, p = 0.035). NU7441 

had no significant effect in DNA-PKcs defective M059J cells. To assess if HR 

function was different between the two cell lines, the γH2AX/RAD51 formation assay 

was used. Both cell lines were deemed HRC with a >2 fold rise in RAD51 foci 

formation after induction of DNA damage compared to controls. However, the mean 

fold rise in RAD51 foci in M059J cells was significantly higher compared to 

M059FUS-1 cells (mean 12.54 +/- 6.2 fold compared to 2.96 +/- 2.5 fold, p < 0.0001, 

Figure 4-17.B). This finding suggests that in the absence of NHEJ function, HR is 

increased.  

4.3.5.2 Interaction of NHEJ and HR in PCO Cultures 

In the cohort of PCO cultures, NHEJ function was independent of HR competence. 

12 cultures were functional for both pathways, 6 cultures were defective for both 

pathways, while 10 and 12 cultures showed defects in either NHEJ or HR but not 

both, respectively.  

HR and NHEJ function were found to be independent of PCO culture growth rate 

(Figure 4-18).  
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Figure 4-18 Growth of PCO cultures divided by HR and NHEJ status.  

Growth was assessed by SRB assay over 10 days. 
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4.3.6 Effect of NHEJ Function on Sensitivity to Rucaparib and Cisplatin  

Increased sensitivity of HRD PCO cultures to rucaparib and cisplatin has been 

previously demonstrated (Mukhopadhyay et al., 2010), and has been confirmed in 

chapter 3. Sensitivity of immortalised cell lines and each PCO culture to rucaparib 

and cisplatin was determined using SRB proliferation assays. Sensitivity was 

assessed over 3 doubling times for immortalised cell lines and 10 days for PCO 

cultures.  

When cell lines were grouped by NHEJ status, NHEJC cell lines were found to be 

more sensitive to rucaparib (mean GI50 2.6 µM 95 % CI = 0 to 11.6 µM vs 14.15 µM, 

95 % CI = 1 to 27.3 µM, p = 0.036, Table 4-2). The difference in cisplatin sensitivity 

was not statistically significant.  

Table 4-2 Rucaparib and cisplatin cytotoxicity and NHEJ status of cell lines.  

GI50 was determined by SRB assay. 

Cell line NHEJ status GI50 for 

Rucaparib (µM) 

GI50 for Cisplatin 

(µM) 

OVCAR3 NHEJC 0.93 0.26 

A2780 NHEJC 0.14 2.49 

CP70 NHEJD 8.10 2.22 

SKOV3 NHEJD 17.87 4.13 

IGROV-1 NHEJD 16.46 1.79 

MDAH NHEJD Not determined Not determined 

 

4.3.6.1 Correlation of Rucaparib and Cisplatin Sensitivity with DNA DSBs Repair 

There was no association between end joining rates of Co BstXI substrates and drug 

sensitivity. Co substrates assessed overall end joining which includes end joining by 

A-EJ pathway. Therefore, the lack of association is not surprising. Defects in the 

NHEJ pathway, as defined by the inability to rejoin 2I BstXI substrates, were 

associated with resistance to rucaparib in PCO cultures (p = 0.002, Figure 4-19). 

NHEJ function had no significant effect on cisplatin sensitivity (Figure 4-20). Inhibition 

of DNA-PK resulted in rucaparib resistance in sensitive cultures (p = 0.002, Figure 

4-19). DNA-PK inhibition had no effect on rucaparib resistant cultures and no effect 

on cisplatin sensitivity (Figure 4-20). 
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Figure 4-19 Rucaparib cytotoxicity in PCO cultures divided by NHEJ status.  

Cell survival calculated as mean cell growth after 10 days treatment with 10 µM 
rucaparib, as a fraction of DMSO control growth for PCO cultures, as assessed by 
SRB assay. Results were divided by NHEJ status (NHEJC/ NHEJD) or comparison of 
sensitive cultures +/- 1 µM Nu7441. Error bars are SEM.  

 
 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 4-20 Cisplatin cytotoxicity in PCO cultures divided by NHEJ status.  

Cell survival calculated as mean cell growth after 10 days treatment with 10 µM 
cisplatin as a fraction of SDW control growth for PCO cultures, as assessed by SRB 
assay. Results were divided by NHEJ status (NHEJC / NHEJD) or cell growth after 
addition of 1 µM NU7441 to cisplatin. Error bars are SEM.  
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When HR and NHEJ functions were taken into account, only NHEJC/HRD cultures 

were sensitive to rucaparib (Figure 4-21). As predicted from HR function association 

with rucaparib sensitivity, both groups with HRC cultures were resistant to rucaparib 

(NHEJC/HRC and NHEJD/HRC). The surprising and interesting group, however, was 

the NHEJD/HRD group. From HR function alone, this group would be expected to be 

sensitive to rucaparib, however the percentage of cells surviving at 10 µM rucaparib 

was similar to that of the two HRC groups. Importantly this also correlated positively 

with the RAD51 foci rise after DNA DSBs induction (Pearson r2 = 0.9486, p = 0.03).
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Figure 4-21 Rucaparib and cisplatin cytotoxicity plotted by NHEJ and HR status.  

Results are percent mean cell survival after 10 days treatment with A. 10 µM 
rucaparib compared to DMSO control and B. 10 µM cisplatin compared to SDW 
control for PCO cultures shown by HR and NHEJ status. Error bars are SEM. 
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4.3.6.2 The Effect of Cisplatin on NHEJ Function  

Cisplatin has previously been reported to inhibit NHEJ (Diggle et al., 2005). In view of 

the lack of association of NHEJ function with cisplatin sensitivity in both cell lines and 

PCO cultures, the effect of cisplatin on NHEJ function was assessed in OSEC-2 

cells. Cisplatin was found to inhibit rejoining of Co and 2I ends significantly at a 

concentration of 4 nM, when compared to the control (Figure 4-22). Therefore the 

lack of association observed at 10 µM of cisplatin treatment is likely to be due to 

cisplatin inhibition of NHEJ.  
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Figure 4-22 Cisplatin inhibition of end joining of Co and 2I BstXI substrates.  

End joining was assessed in OSEC-2 cell line. Results are average of three 
independent experiments. Error bars are SEM.
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4.3.7 Correlation of NHEJ Status with Clinical Outcomes  

No significant differences were observed between the clinical outcomes and 

histological characteristics of the NHEJC and NHEJD PCO culture groups (Table 

4-3). 

Table 4-3 Patient characteristics for PCO samples divided by NHEJ status.  

  Total 

(N=40)  

NHEJ C  

(N=22) 

NHEJ D 

(N=18) 

P = 

Age at 

diagnosis  

Median  66 68  64 0.42 

 Range 45-85 46-85 45-78 - 

Histology HGSOC 28 16 12 0.88 

 Endometrioid / 

clear cell  

5 3 2 >0.99 

 Mixed 3 1 2 0.85 

 Mucinous 2 1 1 > 0.99 

 Carcinosarcoma 1 0 1 0.92 

 Low grade 

serous 

1 1 0 0.97 

Stage 1 1 0 1 0.99 

 2 1 0 1 0.99 

 3 A 1 0 1 0.99 

 3 B 1 1 0 0.99 

 3 C 32 19 13 0.58 

 4 4 2 2 > 0.99 

Pre-op 

Ca125 

Median 1087 1354 699 0.30 

Type of 

surgery 

Primary 

diagnosis 

29 16 13 0.85 

 Following NACT  11 6 5 0.85 

Outcome 

of surgery 

Complete 5 2 3 0.83 

 Optimal 28 15 13 0.98 

 Suboptimal 6 4 2 0.86 

 No surgery  1 1 0 0.96 
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4.3.7.1 Correlation of NHEJ with Progression Free and Overall Survival 

As the patients from whom the PCO cultures were collected were treated with 

standard therapy, and NHEJ function did not correlate with cisplatin sensitivity, it was 

hypothesised that no correlation with clinical outcomes would be seen.  
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Figure 4-23 Kaplan-Meier survival curves for PFS/OS by NHEJ status.  

A. Median PFS was 14.5 months for NHEJD compared to 12 months for NHEJC 
group, log rank Chi square 0.16, p = 0.68. B. Median overall survival was 27 months 
for NHEJC group, and 26 months for NHEJD group. Log rank Chi square 1.0, p = 
0.32. 

 

There was no significant difference between the PFS or the OS between NHEJC and 

NHEJD groups (Figure 4-23). When PFS was sub divided into NHEJ and HR 

competence there was no significant difference between PFS (NHEJC/HRC - 11.5 

months, NHEJC/HRD - 9.3 months, NHEJD/HRC - 18 months, NHEJD/HRD group 

failed to reach median follow up). 

4.3.8 Assessment of NHEJ Targets in FFPE Tissue 

Tumours collected during surgery in clinical practice were formalin fixed and paraffin 

embedded. The DNA-PK complex protein (DNA-PKcs, Ku70 and Ku80) were 

individually assessed as biomarkers of the NHEJ pathway. This work was performed 

with Richard O’Sullivan (MRes, 2014) and Dr Peter Donoghue. 
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Hypothesis: NHEJ function can be assessed in FFPE tissue by using differentially 

expressed protein targets 

Table 4-4 DNA-PKcs, Ku70 and Ku80 mRNA and protein expression by NHEJ 
status. 

  IHC Protein Expression 

 

qPCR mRNA expression 

Normalised to HPRT 

PCO  Functional 

NHEJ Assay 

DNA-

PKcs 

Ku70 Ku80 DNA-

PKcs 

Ku70 Ku80 

139 Competent    0.27  0.60 

142 Competent 6.71 12.40 8.45 0.78 18.57 1.14 

143 Competent 14.38 2.04 7.79 0.15 2.25 0.18 

144 Competent 4.57 1.55 4.22 0.03 0.29 0.08 

156 Competent    0.34 2.97 0.34 

160 Competent 5.16 2.73 4.97 1.18 0.44 1.10 

168 Competent 12.05 3.07 4.27 1.05 1.68 1.46 

187 Competent 16.15 13.25 14.97 0.29 0.05 0.36 

197 Competent    0.14 2.55 0.16 

202 Competent 11.81  11.36 0.51 0.10 0.47 

211 Competent 9.48 9.18 11.65 0.36 3.18 0.28 

149 Defective 11.30 11.86 12.44 0.12 0.20 0.25 

153 Defective 12.07 9.96 12.19 0.29 0.90 0.28 

154 Defective 6.25   0.77 6.07 0.49 

157 Defective 13.32 1.90 5.70 0.19 0.05 0.19 

158 Defective 12.85 6.10 13.47 0.55 3.70 0.46 

162 Defective 10.77 8.16 6.47 0.70 10.75 0.70 

163 Defective 15.65 12.73 16.56 0.37 0.05 0.32 

174 Defective 9.64 1.53 6.46 0.38 2.95 0.38 

175 Defective 5.27 11.37 8.94 0.19 0.51 0.22 

184 Defective 14.86 9.94 12.94 0.75 2.60 0.46 

209 Defective    0.56 1.34 0.49 

210 Defective 12.03 9.44 13.44 0.22 0.81 0.31 

221 Defective 7.71  11.93 0.82 0.15 0.61 

 

4.3.8.1 Protein Expression of DNA-PKcs, Ku80, Ku70 

Ovarian cancer TMA sections were stained for DNA-PKcs, Ku70 and Ku80 as 

described in section 2.8. No significant differences in biomarker expression were 

noted between tumours matched to NHEJC and NHEJD PCO cultures (Figure 4-24). 
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Figure 4-24 DNA-PKcs, Ku70 and Ku80 protein expression grouped by NHEJ status.  

Protein expression was assessed by modified H Score. Scoring was performed by 2 
scorers. 

4.3.8.2 mRNA Expression of DNA-PKcs, Ku80, Ku70 

24 study samples were amplified by QPCR. No significant differences in biomarker 

expression were noted between NHEJC and NHEJD tumours (Figure 4-25).  

 

Figure 4-25 DNA-PKcs, Ku70 and Ku80 mRNA expression grouped by NHEJ status.  

mRNA expression is normalised to HPRT1 expression. 

 

Discordance was found between the protein and mRNA expression of all targets 

assessed (Figure 4-26). 
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Figure 4-26 Correlation of DNA-PKcs, Ku70 and Ku80 mRNA and protein 
expression. 

4.3.9 Assessment of NHEJ Heterogeneity 

Hypothesis: Subpopulations of ovarian cancer cells exist exhibiting heterogeneity in 

NHEJ function 

Inter and intra tumour heterogeneity of HR function has been demonstrated in 

ovarian cancer (O'Donnell et al., 2015). For NHEJ function biomarkers to be used to 

select patients for treatment, an assessment of heterogeneity is required. From the 

data so far, inter tumour heterogeneity of NHEJ is clear, with important effects on 

rucaparib sensitivity. Gene expression studies have indicated different biological 

profiles in the cancer cells derived from ascites and solid ovarian cancer tumours 

from the same patient, in terms of metastasis, invasion and angiogenesis (Le Page et 

al., 2006).  

4.3.9.1 Protein and mRNA Expression in FFPE Tissue and Matched Ascites 

In view of lack of correlation between DNA-PK complex protein expression in FFPE 

tissue and NHEJ function of matched ascites samples, the expression of the mRNA 

and protein from FFPE and ascites samples were correlated. Spearman’s rank 

correlation was performed to assess correlation between FFPE and ascites mRNA 

and protein expression (Figure 4-27). No positive correlation was noted between 

protein or mRNA expression in FFPE and in ascitic samples from matched patients.  

Expression discordance could be due to the different techniques used to assess 

protein expression, and different house keeper genes used for mRNA quantification. 
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Different housekeeper genes were used for FFPE tissue mRNA due to excessive 

degradation of GAPDH in FFPE extracted mRNA (Richard O’Sullivan MRes thesis, 

2014). However, more importantly, discordance may also be due to intra tumour 

heterogeneity between the solid cancer cells captured in FFPE and that of cancer 

cells in ascites samples.  

 
Figure 4-27 Correlations of FFPE and ascites mRNA and protein expression.  

 

4.3.9.2 Intra-tumour Heterogeneity of NHEJ Protein Expression  

To explore tumour heterogeneity further, multiple solid samples were collected from 

six patients undergoing primary surgery for ovarian carcinoma. There was no 

correlation noted between DNA-PK, Ku70 or Ku80 protein expression in multiple 

biopsies (Figure 4-28). The expression for both samples was analysed using the 

same method of extraction and western blotting technique. The discordance noted is 

therefore, likely to be due to intra-tumour heterogeneity.  
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Figure 4-28 Correlations of NHEJ protein expression in multiple biopsies.  

A. DNA-PKcs, B. Ku80, C. Ku70 protein expression normalised to expression of 
GAPDH. Two solid samples were collected at the time of surgery. The site of solid 
sample varied between cases.  

 

In order to assess if the tissue of origin affected the expression of DNA-PK complex 

protein, multiple solid samples collected from patients were assessed. Ovarian, 

fallopian tube and omental cancer deposits were sampled. There was no significant 

difference noted between the expression of DNA-PKcs, or Ku protein between the 

three sampling sites (Figure 4-29). 
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Figure 4-29 DNA-PKcs, Ku70 and Ku80 protein expression grouped by tumour site.  

Protein expression was normalised to the expression of GAPDH. 
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4.3.9.3 Expression of NHEJ Proteins in Tumour and Ascites Samples Compared to 

Normal Ovarian / Fallopian Epithelium from Healthy Volunteers  

Solid samples from ovarian and fallopian tube tissue were collected from patients 

undergoing hysterectomy for menorrhagia. Samples from these patients were used 

as normal controls to cancer samples. The expression of DNA-PKcs, Ku80 and Ku70 

protein was assessed using western blotting and correlated with solid samples 

collected from patients undergoing surgery for ovarian carcinoma and PCO ascites 

cultures (Figure 4-30).  

Expression of all three proteins was significantly lower in PCO ascites samples 

compared to normal controls. When comparing normal control samples to solid 

cancer samples, there was significantly higher expression of DNA-PKcs in normal 

samples compared to cancer samples (normalised to GAPDH mean expression 3.62 

+/- 1.4 fold vs 0.67 +/- 0.17 fold, p = 0.005). The differences for Ku protein were not 

statistically significant. The expression of Ku70 was significantly higher in cancer 

samples compared to ascites cultures (normalised to GAPDH mean expression 4.4 

+/- 1.2 fold in solid cancer samples vs 0.93 +/- 0.05 fold in ascites, p < 0.0001).  
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Figure 4-30 DNA-PKcs, Ku70 and Ku80 protein expression in ovarian carcinoma and 
healthy control samples.  

Protein expression was assessed by western blotting and normalised to GAPDH 
expression. Results are mean of 3 independent experiments. N = 19 cancer solid 
samples, 11 normal control samples and 38 ascites culture samples. 
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4.4 Chapter Summary 

 NHEJ function can be measured in extracts from ovarian cancer cell lines and 

primary cultures and 40 % of PCO cultures are NHEJD. 

 NHEJD is associated with resistance to rucaparib.  

 Cisplatin was found to inhibit NHEJ function and cisplatin sensitivity was 

independent of NHEJ. 

 NHEJ function was found to be independent of HR competence. 

 There was no significant correlation of NHEJ function with clinical outcomes in 

this cohort. 

 NHEJ function can be predicted by the protein expression of DNA-PKcs, Ku70 

and Ku80, in primary cultures. However, further biomarker development is 

required, as these correlations could not be demonstrated in FFPE or fresh 

solid tissue.  

 Heterogeneity of NHEJ function was noted in primary ovarian cancer.    

4.5 Discussion 

In this chapter NHEJ function was measured in extracts from ovarian cancer cell lines 

and PCO cultures. NHEJ function assessment was optimised by two different 

functional assays. 60 % of ovarian cancer cell lines and 40 % of PCO cultures were 

found to be NHEJD. This is the first study to assess NHEJ function in a primary 

ovarian cancer cohort and to quantify the frequency of defects. The differences in the 

frequency of NHEJ defects between cell lines and PCOs may be due to a small 

number of cell lines assessed. The cell lines assessed are also known to harbor 

other defects. Such as p53 status and MMR status, namely the CP70 cell line was 

derived from the A2780 and is MMR deficient and mutant for p53, which are also 

known to affect sensitivity to cisplatin. 

4.5.1 NHEJ Function is Independent of HR and NHEJD is Associated with 

Rucaparib Resistance 

Contrary to HRD association with rucaparib sensitivity, NHEJD was found to be 

associated with resistance to rucaparib. Previous studies in cell lines have shown 

that deletion of DNA-PK can restore HR function and PARPi resistance in BRCA 

mutated cells (Patel et al., 2011). This is the first study to demonstrate this correlation 
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in primary cultures. The sensitivity of HRD cancers to PARPi has been attributed to 

the concept of synthetic lethality, however, the exquisite sensitivity of HRD cells seen 

in vitro has not been reproduced in clinical trials. The concept of synthetic lethality 

has been based on the theory that HRD cells are unable to repair DNA DSBs. 

However, as HR repairs unpaired DSBs (such as collapsed replication forks) and is 

not functional in the G0/G1 phases of the cell cycle, the majority of DSBs are 

repaired by the NHEJ pathway (Bentley et al., 2004). The role of NHEJ function in 

error free repair has been shown in this study by the mainly error free rejoining by 

DNA-PKcs proficient V3YAC and M059-FUS1 cell lines compared to the mainly error 

prone repair in DNA-PK deficient V3 and M059J counterparts. The role of NHEJ 

function in PARPi sensitivity is supported by the observation that NU7441 caused 

rucaparib resistance in all sensitive cultures, independent of HR function. Therefore, 

NHEJ is an important determinant of DSB repair and as shown in this study, 

sensitivity to PARPi.  

HR and NHEJ function were found to be independent of one another; with some 

PCO cultures were found to be competent in both, some defective in just one, whilst 

a small cohort were defective in both pathways. Independence of the two pathways is 

documented in the literature (Bee et al., 2013). The two pathways function in different 

stages of the cell cycle and repair different forms of DSBs (Bee et al., 2013). As 

PARPi causes collapsed replication forks in cycling cells, which can only be repaired 

by HR, it is also unsurprising that HRC cultures were resistant to rucaparib (Bryant et 

al., 2009, Sugimura et al., 2008). However, the role of PARP1 in DSBs, beyond 

causation of collapsed replication forks due to unrepaired SSBs, is also documented 

in the literature (Hegan et al., 2010, Benjamin and Gill, 1980, Haince et al., 2008); as 

well as the interaction between PARP1 and the NHEJ pathway (Ruscetti et al., 1998, 

Veuger et al., 2003, Veuger et al., 2004, Mitchell et al., 2009a). The independent role 

of NHEJ function in PARPi sensitivity is demonstrated in this study. The hypothesis 

put forward for the role of NHEJ in PARPi resistance is based on the error proneness 

of NHEJ. The errors in repair are suggested to cause lethal defects in DNA, which, in 

the absence of HR, results in apoptosis. Therefore, NHEJC/HRD cells are sensitive 

to PARPi. Cells with competent NHEJ and HR pathways are able to repair DNA 

damage and are, therefore, resistant to PARPi. In the abscence of NHEJ, the slower 

error free HR takes over repair. This notion is supported by findings of greater HR 

function, demonstrated by greater RAD51 foci formation in the DNA-PK deficient cell 
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line in this study as well as literature (Middleton et al., 2015). Therefore, in the 

absence of NHEJ function, the lack of error prone repair results in resistance to 

PARPi (Patel et al., 2011). In cells which are NHEJD/HRD repair is undertaken A-EJ, 

which is a mutagenic process due to excessive resection. The interaction of A-EJ is 

still not fully understood and its assessment was beyond the scope of this project. 

The precise interaction between HR, NHEJ and PARP-1 is further explored in 

chapter 5.  

4.5.2 Cisplatin Inhibits NHEJ Function 

An important observation is the finding of a lack of association of NHEJ function with 

cisplatin sensitivity in the primary cultures. Whilst HRD has been shown to sensitise 

cancers to cisplatin and PARPi (Mukhopadhyay et al., 2012), NHEJ appears to be 

important for PARPi sensitivity only. Inhibition of NHEJ function by cisplatin has been 

previously reported (Diggle et al., 2005), and has been reproduced in this study, 

which is likely to be the reason for the lack of association observed. Whether cisplatin 

inhibition of NHEJ has important consequences to ovarian cancer genomic instability 

remains to be explored.  

There was also no association noted between NHEJ status and the clinical outcomes 

of patients the PCO cultures were collected from. As all patients in this cohort were 

treated with standard platinum based therapy, the lack of correlation is therefore not 

surprising. To assess the role of NHEJ in patient outcomes, NHEJ function needs to 

be determined in a cohort of patients treated with PARPi. 

4.5.3 Protein Expression of Ku and DNA-PK are Potential Biomarkers for NHEJ 

Function 

For an assay to be clinically applicable, simple and reliable biomarker tests are 

required. This study suggests that expression of the NHEJ related proteins Ku70, 

Ku80 and DNA-PKcs may be useful as biomarkers to determine NHEJ status in 

cancer samples. Failure to see a positive correlation between mRNA expression and 

pathway function in PCR and genome expression arrays may be due to a number of 

reasons. Firstly, this may be due to assay limitations as only single mRNA samples 

were collected, and therefore, repeat expression assessment was not possible. As 

mRNA extraction was performed in batches and stored at -80 ºC prior to use, 

different handling of the samples may affect the results. Furthermore, samples for 



 

167 
 

this cohort were collected over a period of two years, and so different biological or 

experimental mRNA and protein degradation rates might affect the mRNA and 

protein correlations. Secondly, differences between mRNA and protein expression 

may also be due to biological processes, i.e. transcriptional splicing, post-

transcriptional splicing, translational modifications and regulation, and protein 

complex formation; these might all affect the relative quantities of mRNA and protein, 

to various degrees (Guo et al., 2008, Chen et al., 2002). Discordance between mRNA 

and protein has been reported previously in the literature in other cancer tissues 

(Guo et al., 2008, Chen et al., 2002). 

4.5.4 Tumour Heterogeneity of NHEJ Function  

The assessment of Ku70, Ku80 and DNA-PKcs in FFPE and fresh solid samples did 

not correlate with the same proteins assessed by WB, or with NHEJ function in the 

PCOs. A number of explanations may account for these findings. Firstly, both FFPE 

and fresh solid samples studies were limited by the small sample size available. 

Secondly, it was clear from the scatter plots presented that within both competent 

and defective tumours there was a wide range of protein and mRNA expression. This 

could point to both tumour and sample heterogeneity. IHC scoring only assessed an 

extremely small area of tumour and it was noted that varying intensities of expression 

were observed between cores from the same tumour, and also within individual 

cores. Some areas of a tumour may be NHEJC, whilst others are NHEJD, and so a 

more widespread assessment of a tumour, with possibly more cores, is required. 

Differences between populations of cells in ascites and within solid tumour may also 

account for the differences seen. Gene expression studies have indicated different 

biological profiles in the cancer cells derived from these two sources from the same 

patient in terms of metastasis, invasion and angiogenesis (Le Page et al., 2006). A 

further explanation for the differences however, could also be the difference in the 

sample nature and handling; namely ascites samples were cultured in the laboratory 

whilst solid samples were lysed directly. Significant genetic alterations in cell line 

during culture have been reported (Korch et al., 2012). This notion is supported by 

the finding of significantly lower expression of DNA-PKcs and Ku protein in ascites 

compared to both normal and cancer solid samples. Assessment of ascites directly 

after collection may provide lower heterogeneity in the samples.   
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Tumour heterogeneity of NHEJ function is an important finding of this study to 

consider. Whilst the areas of tumour which are NHEJC, and so are sensitive to 

PARPi treatment, are likely to respond to treatment and regress, areas of NHEJD 

tumour would remain refractory to treatment and continue to grow. Therefore, only 

partial response to treatment would be seen, with refractory disease developing over 

time. Treatment with PARPi in clinical practice has been found to prolong life, rather 

than cure, and NHEJD areas of tumour may be one of the explanations for the 

refractory disease development. For this theory to be assessed, repeat biopsies for 

NHEJ function assessment over the length of treatment are required.  

The expression of DNA-PKcs protein in cancer samples was overall, lower than in 

solid samples collected from healthy patients. Ku70 and Ku80 were also reduced in 

the ascites cultures, suggesting an overall reduction in NHEJ capacity. Lower NHEJ 

function has been reported in other cancers; namely, in the peripheral blood 

mononuclear cells of breast cancer patients (Bau et al., 2007). Furthermore, a dose-

response relationship is reported between end joining capacity and the risk of breast 

cancer (Bau et al., 2007). NHEJ activity has been reported to be reduced and 

increasingly error prone in invasive, as compared to non-invasive, bladder cancers 

(Bentley et al., 2009, Bentley et al., 2004, Windhofer et al., 2008). The evidence for 

the role of the NHEJ pathway in tumourgenesis is further provided by reports of 

increased DNA binding by Ku in low grade, low stage bladder tumours (grade 1–2, 

pTa–T1), but a 1.5 to 3 fold decrease in Ku binding in high grade invasive tumours 

(Stronati et al., 2001). Therefore, defects in the NHEJ pathway may cause sufficient 

genomic instability for cancer to develop due to failure to repair DSBs. The frequency 

of NHEJ defects noted in ovarian cancer may have important implications beyond 

PARPi sensitivity. HGSOC have been reported to almost universally carry 

inactivating mutations in p53 and a large number of genomic deletions/amplifications, 

as well as a copy number alterations (Ahmed et al., 2010, Cancer Genome Atlas 

Research, 2011). NHEJD combined with p53 mutation, resulting in the highly 

mutagenic joining of DSBs via sequence microhomologies, may contribute to the 

increased genomic instability observed.  

The ability to select the correct patient for the correct treatment at the right time is 

required for personalised medicine. Whilst attempts are currently being made to 

develop predictive biomarkers of HR function, this study suggests that in ovarian 

cancer, NHEJ function is also an independent predictor of sensitivity to PARPi.  
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4.6 Future Work 

Assessment of NHEJ function in a larger cohort of homogenised fresh / frozen 

tumour tissue, along with biomarker expression, is required to gather further 

evidence for the role of NHEJ function in ovarian cancer. It is also not clear if NHEJ 

has a role in ovarian cancer development. This needs to be assessed by analysing 

NHEJ in multiple biopsies from different stages of EOCs.     

NHEJ function will only have an important role in cancer biology, if it is associated 

with clinical outcomes. As the patients in this cohort were treated with platinum 

chemotherapy and platinum has been found to inhibit NHEJ, the lack of association 

was not surprising. However, the effect of NHEJ function on survival outcomes in 

patients undergoing PARPi therapy is an important future study to undertake.    
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CHAPTER 5 ASSESSMENT OF THE EFFECT OF ATR AND DNA-PK 

INHIBITION ON CELLULAR BIOLOGY AND PARPI SENSITIVITY  

5.1 Introduction 

As cells face an ongoing assault from environmental and endogenous sources of 

DNA damage, the DNA damage response (DDR) is essential to maintain genomic 

stability (Hoeijmakers, 2009). The DDR signals cell cycle checkpoints that arrest the 

cell cycle to allow sufficient time for repair or apoptosis to be completed. The 

response to DSBs and collapsed replication forks is crucial, as these are difficult to 

repair. The independent functions of the NHEJ and HR pathways that were found in 

chapter 3 in PCO cultures require further investigation. The aim of this chapter is, 

therefore, to assess the biological interaction of the two pathways in ovarian cancer 

and normal ovarian epithelium, and to assess the interaction of HR and NHEJ with 

PARP-1.  

Three PI3-Kinase-related kinases (PIKKs), ATM, ATR and DNA-PKcs are intimately 

connected with DDR (Thompson, 2012). This study concentrates on two – ATR and 

DNA-PKcs.  

5.1.1 ATR 

The ATR gene is located at chromosome position 3q23 and comprises 2644 amino 

acids (approximately 301kDa) (Bentley et al., 1996). ATR−/− mice die on embryonic 

day 7 due to increased apoptosis and chromosomal fragmentation (Brown and 

Baltimore, 2000). No human germ-line homozygous ATR deletions have been 

identified, however, autosomal-recessive disease Seckel syndrome sufferers have a 

hypomorphic mutation in ATR resulting from an A2101G substitution, causing 

changes in splicing and resulting in low levels of the protein. Sufferers exhibit growth 

restriction, short stature, microcephaly and are hypersensitive to UV (O'Driscoll et al., 

2003). 

5.1.1.1 Role of ATR in DNA Damage Repair 

ATR is possibly the most versatile of the three PIKKs in that it is activated by single-

stranded DNA adjoining double-stranded DNA that occurs during NER, following 

resection of DSBs and collapsed replication forks (Cortez, 2003, Dunkern et al., 
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2001, Minca and Kowalski, 2011, Cortez, 2005). ATR is activated by these lesions to 

phosphorylate a number of targets involved in HR and the re-start of replication forks, 

but its major target is CHK1 (Chen et al., 2012). By phosphorylation of CHK1, ATR 

initiates the S and G2 checkpoint cascade (Zhao and Piwnica-Worms, 2001). ATR 

has also been shown to be activated by the MMR protein (Yoshioka et al., 2006), to 

phosphorylate DNA-PKcs (Yajima et al., 2006), and to indirectly influence the BER 

pathway (Stauffer et al., 2007).  

5.1.1.2 ATR Activity in Cancer 

Many studies have investigated ATR mutations in relation to breast and ovarian 

cancer risk; however, no germline mutations have been reported to be involved 

(Durocher et al., 2006, Heikkinen et al., 2005, Kontorovich et al., 2008). A high 

frequency frameshift mutation of the A(10) repeat from the codon 774 of the ATR 

gene, resulting in a truncated form of ATR, was noted in 21 % of stomach cancers 

(Menoyo et al., 2001). The A(10) repeat has also been found to be altered in a third 

of MSI positive endometrial cell lines (Mironov et al., 1999, Lewis et al., 2005, 

Vassileva et al., 2002). Microsatelites are unstable in MMR defective cancers. MMR 

deficiency has been reported in up to 39 % of ovarian tumours, and therefore the 

A(10) repeat in ATR may have an important role in some ovarian cancers (Buller et 

al., 2001, Helleman et al., 2006). 

Many of the anticancer agents that are in routine clinical use act by causing DNA 

damage. Platinum agents cause bulky adducts or ICLs, IR and topoisomerase II 

poisons induce DSBs, and gemcitabine is incorporated into DNA causing chain 

termination and therefore, stalled replication forks (Hoeijmakers, 2001). All these 

lesions trigger ATR, thus inhibition of ATR should promote cell killing. Cancer cells 

undergo continuous proliferation and often have dysregulated G1 control, making 

them reliant on their remaining S and G2 checkpoints (Massague, 2004). This means 

that cancerous cells are much more likely than normal cells to enter S-phase with 

damaged DNA. Therefore, they have a high level of replicative stress, stalled 

replication forks and DSBs. In addition, there are higher levels of ROS in tumours 

due to increased metabolic activity, mitochondrial dysfunction and various oxidases 

(Storz, 2005). These give rise to approximately 100-fold higher levels of oxidative 

DNA lesions in tumours than in normal tissues (Wiseman and Halliwell, 1996). 
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Therefore, inhibition of ATR is thought to have a significant effect on the tumour, but 

not normal cells, thus limiting toxicity to the patient. 

5.1.1.3 ATR as a Therapeutic Target 

Recent studies identified that numerous cellular defects confer sensitivity to single 

agent ATR inhibitors (ATRi). These include defects in ATM, XRCC1 and BRCA1 and 

overexpression of DNA-PKcs (Peasland et al., 2011, Sultana et al., 2013, Middleton 

et al., 2015, Mohni et al., 2014). Inactivation of ATR is also synthetically lethal in 

oncogene-activated cancer cells (Gilad et al., 2010), and cells with induced over-

expression of cyclin E (Toledo et al., 2011). Two ATRi, VX-970 and AZD-6738, are 

currently undergoing clinical evaluation. VX-970 is being evaluated both as a single 

agent and in combination with both platinum-based chemotherapy (clinicaltrials.gov 

identifier: NCT02157792) and AZD-6738 in haematological malignancies with 11q 

deletions (ATM defective) (clinicaltrials.gov identifier: NCT01955668). In this study, 

the Newcastle-developed ATR inhibitor, NU6027, which has Ki of 100nM and IC50 of 

6.7µM, was used. NU6027 was developed as a CDK2 inhibitor, and although its 

potency for CDK2 is limited, it has to be noted that, some of the effects seen, may be 

through CDK2 inhibition rather than ATR.  

5.1.2 DNA-PK 

DNA-PKcs is a key player in the NHEJ pathway of DSB repair and has additional 

functions in the mammalian cell including telomere maintenance and induction of 

apoptosis (Burma and Chen, 2004, Kim et al., 1999). The DNA-PKcs is located at 

chromosome position 8q11 and comprises 4128 amino acids (approximately 

469kDa). Mouse knockout models remain viable but demonstrate growth restriction, 

whilst mouse DNA-PKcs mutant models demonstrate immunodeficiency (Thacker 

and Zdzienicka, 2003, Burma et al., 2006). 

5.1.2.1 Role of DNA-PKcs in DNA Damage Repair 

The recruitment of DNA-PKcs to DSBs by Ku results in activation of its kinase 

function such that it can now phosphorylate other proteins as well as itself. DNA-

PKcs tethers the broken ends to facilitate rejoining (Cary et al., 1997), and also 

recruits and activates proteins involved in DNA end-processing and ligation. The 

dissociation of DNA-PKcs from DNA breaks is dependent on phosphorylation of 
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several S/TQ residues, most notably on T2609 and S2056 (Burma and Chen, 2004, 

Chen et al., 2005). DNA-PKcs interacts with artemis and the artemis:DNA-PKcs cuts 

various forms of damaged DNA ends (Ma et al., 2005). Pol µ and pol λ can bind to 

the Ku:DNA complex, and are capable of template-dependent, and in the case of pol 

µ, template independent synthesis. DNA-PKcs also stimulates the ligase activity of 

the XLF:XRCC4:LIGIV complex which can ligate across gaps and ligate incompatible 

DNA ends with high efficiency (Gu et al., 2007b, Gu et al., 2007a). DNA-PKcs is also 

phosphorylated by ATM and ATR (Yajima et al., 2006, Chen et al., 2007). 

5.1.2.2 DNA-PKcs Activity in Cancer 

DNA-PKcs down regulation, in many instances through SNPs of the DNA-PKcs 

gene, has been reported in several human cancers (McKean-Cowdin et al., 2009, 

Moll et al., 1999, Sakata et al., 2001, Danoy et al., 2008, Lee et al., 2007a, Kurimasa 

et al., 1999, Someya et al., 2006, Robinson-Bennett et al., 2008). A further 

mechanism for loss of DNA-PKcs function is by mutation in one of the two 

microsatellite mononucleotide repeats [poly(A8) and poly(A10) tracts]; this has been 

reported in gastric, colorectal and urothelial carcinomas (Lee et al., 2007a, Li et al., 

2004b, Mongiat-Artus et al., 2006). Loss of DNA-PKcs function has also been 

reported to be associated with a higher risk of metastasis to lymph nodes, tumour 

progression and poor survival in malignant spindle cell tumours of the extremities, 

lung and gastric cancers (Cho et al., 2002, Xing et al., 2008, Lee et al., 2007a, Lee et 

al., 2005).  

On the other hand, DNA-PKcs over expression was reported in oral cancer (Shintani 

et al., 2003, Um et al., 2004) and neuroblastoma (Deutsch et al., 2001). In breast and 

lung cancers, DNA-PKcs has been suggested to be a potential susceptibility gene 

(Someya et al., 2006), with significantly lower DNA-PK activity in peripheral blood 

lymphocytes in cancer patients compared to healthy controls (Moll et al., 1999, Fu et 

al., 2003, Auckley et al., 2001). Contrary to the prognostic effects of loss of DNA-

PKcs function, increased DNA-PKcs expression has been reported to be associated 

with drug resistance in B-CLL (Shen et al., 1998, Kim et al., 2000, Deriano et al., 

2005). The increased DNA-PKcs expression in cancer tissues is likely to be due to 

increased genomic stress, and its association with poor survival may not only provide 

a useful prognostic marker but also a treatment target. It would appear, therefore, 

that in addition to SNPs which predispose to various cancers, pertubations in the 
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DNA-PKcs gene are common. In general, loss of expression is associated with poor 

survival, but interestingly, increased expression may be associated with 

chemotherapy resistance. 

5.1.2.3 DNA-PK as a Therapeutic Agent 

Cells defective in NHEJ are not only sensitive to IR, but also topoisomerase II 

poisons that cause DSBs (Jeggo et al., 1989). Inhibition of DNA-PK is, therefore, an 

attractive target for modulating resistance to therapeutically induced DSBs. DNA-PKi 

have been suggested as radio- and chemo- potentiators by in vitro and in vivo 

studies (Rosenzweig et al., 1997, Boulton et al., 2000, Kashishian et al., 2003, 

Shinohara et al., 2005, Tavecchio et al., 2012, Zhao et al., 2006). A proof-of-principle 

study of dual DNA-PK and PI3K inhibitor (KU-0060648) has demonstrated chemo-

sensitisation in vitro and in vivo with limited toxicity, thus suggesting that further 

evaluation of DNA-PKi is required (Munck et al., 2012). PARP-1 and DNA-PK 

interaction in radio-sensitisation has also been demonstrated, which suggests that 

the combined use of these inhibitors may also be effective; although, whether this 

would be by mutual stimulation or competition is still unclear (Ruscetti et al., 1998, 

Veuger et al., 2003, Veuger et al., 2004, Mitchell et al., 2009a, Boulton et al., 1999). 

In this study the Newcastle-developed potent DNA-PKi, NU7441 was used. NU7441 

has an IC50 of only 13 nM and at least 100-fold selectivity for this enzyme compared 

with other PI3KK family kinases (Leahy et al., 2004).  

5.2 Aims for Chapter 5 

The aim of this study was to assess the role and the interaction of ATR and DNA-PK 

in DNA damage recognition in ovarian cancer. Furthermore, this study aimed to 

assess the interaction of DNA-PK and ATR with PARP inhibitors. Specific aims were: 

 to assess the effect of ATR and DNA-PK inhibition on cell growth, cell survival, 

cell cycle, and DSBs recognition and repair, in normal ovarian epithelium and 

in ovarian cancer.  

 to assess the interaction between ATR and DNA-PK with PARP-1 inhibition in 

terms of cell growth, cell survival and DSBs recognition and repair.  

 to assess DSB recognition and repair in PCO cultures. 
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5.3 Results 

Two cell line models were selected – a normal ovarian epithelial cell line (OSEC-2) 

and an ovarian carcinoma cell line (NUOC-1) (Table 5-1). OSEC-2 cell line was 

developed at Newcastle University (Davies et al., 2003). NUOC-1 cell line is a 

spontaneously immortalised PCO culture that was characterised in chapter 3. 

 Table 5-1 Cell line models.  

Cell line Morphology Derived from  Doubling 
time (hrs) 

OSEC-2 

 

Derived from normal 
ovarian surface epithelium. 
Immortalised with SV40 
large T antigen, hTERT 

27 

NUOC-1 

 

Spontaneously 
immortalised primary 
culture derived from 
ascites collected from a 
patient with clear cell / 
endometrioid ovarian 
carcinoma. 
 

58 

5.3.1.1 Selection of ATR vs ATM for Inhibition of HR Function 

Both ATR and ATM are signaling proteins that are reported to initiate HR. The HR 

assay was carried out using ATR and ATM inhibitors to assess which of the two 

proteins has a more important role in HR. A two fold increase in γH2AX and RAD51 

is used as a cut off to define HRC. > 2 fold increase in γH2AX and RAD51 cells are 

deemed HRC, whilst > 2 fold increase in γH2AX but < 2 fold increase in RAD51 cells 

are deemed HRD.  

Relative to un-irradiated controls, neither ATR nor ATM inhibitors had a significant 

effect on γH2AX foci number 24 hrs after treatment with 10 µM rucaparib and 2Gy IR 

(Figure 5-1). ATR inhibition caused HRD, as there was only a 1.4-fold increase in 

RAD51 foci after IR+rucaparib. ATM inhibition did not impair HR, as there was a 2.2-

fold increase in RAD51 foci after IR+rucaparib in ATM inhibited cells. Therefore, ATR 

was selected for this study. Inhibition of NHEJ by the DNA-PK inhibitor NU7441 was 

confirmed in chapter 4.   
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Figure 5-1 Assessment of HR in response to ATR and ATM inhibition.  

DNA damage by ƴH2AX foci and HR function assessed by the formation of RAD51 
foci 24 hrs after 2Gy IR in OSEC-2 cells. ATR (NU6027) and ATM (KU59403) 
inhibitors were added 1 hrs prior to IR treatment. 

5.3.1.2 Optimisation of Inhibition of ATR and DNA-PK 

To avoid the complication of off-target cytotoxicity of the inhibitors the minimum 

concentration needed to inhibit enzymatic activity in cells by 80 % was determined by 

assessing phosphoDNA-PK expression after 2 Gy IR by western blotting. Although 

significant inhibition of DNA-PK phosphorylation was found at all concentrations, 1 

µM NU7441 was selected, as it produced a mean 78 % reduction in activity, and this 

concentration had been used in previous studies with this compound (Figure 5-2).   

A 

 

B

 
Figure 5-2 Optimisation of inhibition of DNA-PK in OSEC-2 cell line.  

A. Representative western blot and B. band density results for pDNA-PK inhibition by 

NU7441 1 hr after 2 Gy IR. 
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ATR function was assessed by the assessment of phosphorylation of CHK1 after 

treatment with HU. All those concentrations tested except 1 µM NU6027, significantly 

reduced pCHK1 (Figure 5-3). 10 µM NU6027 was selected, as it produced a mean 

80 % reduction in activity and this concentration had been used in previous studies 

with this compound.   

A 

 

 

B

 
Figure 5-3 Optimisation of inhibition of ATR in OSEC-2 cell line. 

Western blot and band density results of pCHK1 inhibition after 24 hr incubation with 
NU6027. 10 µM Hydroxyurea (HU) was used to induce DNA damage. 

5.3.1.3 Development of Knockdown Models for ATR and DNA-PK 

Knockdown models of ATR and DNA-PKcs were generated to assess the effect of an 

absent protein, as compared to an inhibited protein. OSEC-2 and NUOC-1 cells were 

virally transduced with MISSION®shRNA lentiviral transduction particles. Five 

constructs for each protein were assessed. A non target control construct was used 

for control of transduction. In OSEC-2 cells knockdown was assessed for all 5 

constructs for ATR and DNA-PKcs. In NUOC-1 cells 4 DNA-PKcs and 3 ATR 

knockdowns grew successfully for analysis.  

5.3.1.3.1 Assessment of Knockdown by mRNA and Protein Expression 

Knockdown levels were confirmed at mRNA level by RT-qPCR and at protein level by 

western blotting. This work was done with Charlotte Leeson (Undergrad, 2013).  
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Figure 5-4 Silencing of ATR and DNA-PKcs in OSEC-2 and NUOC-1 cells.  

A. DNA-PKcs mRNA expression analysed by real time RT-qPCR. Expression was normalised to GAPDH housekeeper gene. Results 
were then normalised to non target control. B. ATR mRNA expression C. DNA-PKcs protein expression analysed by western blotting. 
Densitometry was normalised to α-tubulin loading control. Results were then normalised to non target control. D. ATR protein expression. 
All results are average of three independent experiments. Error bars are SEM. 
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For DNA-PKcs knockdowns the 6255 construct achieved the best knockdown, as 

measured by both mRNA (61 % knockdown in OSEC-2, p = 0.0002, and 52 % 

knockdown in NUOC-1 cells, p = 0.001) and protein (46 % knockdown in OSEC-2, p 

= 0.006 and 73 % knockdown in NUOC-1 cells, p < 0.0001) levels in both OSEC-2 

and NUOC-1 cells, and therefore, this construct was selected for use in further 

experiments (Figure 5-4). 

For ATR knockdown no single construct was comparable in both cell lines, and 

therefore, construct 10613 was selected for OSEC-2 (68 % knockdown at mRNA, p = 

0.003, and 94 % knockdown at protein level, p < 0.0001) cells and 10300 for NUOC-

1 cells (61 % knockdown at mRNA, p = 0.0006, and 78 % knockdown at protein level, 

p = 0.0004) for use in further experiments. 

5.3.1.3.2 Development of Double Knockdown Models 

To analyse the interactions of ATR and DNA-PK, double knockdown models were 

created. The models were firstly developed in OSEC-2 cells.  

A B 

 

 
 

Figure 5-5 ATR and DNA-PK double knockdown in OSEC-2 cells.  

A. DNA-PKcs and ATR mRNA expression was analysed by real time RT-qPCR. B. 
DNA-PKcs and ATR protein expression was analysed by western blotting. 
Expression was normalised to GAPDH housekeeper gene. Results were then 
normalised to controls. All results are average of three independent experiments. 
Error bars are SEM. 
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Greater than 50 % DNA-PK knockdown was successful in all combinations of 

knockdown (Figure 5-5). However, the only combination where ATR knockdown was 

successful was when ATR knockdown was performed first, followed by DNA-PK 

knockdown, thus producing a 30 % ATR and 50 % DNA-PK knockdown. The level of 

knockdown was below that achieved with individual knockdowns. Furthermore, when 

protein levels were assessed double knockdown was found not to be possible. 

Therefore, the decision was made to combine knockdown with drug treatments.   

5.3.1.3.3 Assessment of HR and NHEJ Function in Knockdown Models 

Functional assessment of knockdown models for HR and NHEJ was undertaken 

using validated assays. Knockdown of ATR blocked the increase in RAD51 foci after 

DNA damage (mean 1.0 +/- 0.1 fold rise in OSEC-2 10613 knockdown, compared to 

2.6 +/- 0.1 fold in OSEC-2 controls, p = 0.003, and mean 1.3 +/- 0.3 fold in NUOC-1 

10300 knockdown, compared to 2.5 +/- 0.2 fold in NUOC-1 controls, p = 0.007) 

(Figure 5-6.A). ATR knockdown cells were therefore deemed HRD.  
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Figure 5-6 HR and NHEJ function in knockdown models.  

A. HR function assessed by fold rise in RAD51 foci after 2Gy IR and 24 hr treatment 
with 10µM rucaparib in OSEC-2 and NUOC-1 non target shRNA controls and ATR 
knockdowns (10613 and 10300). RAD51 foci were assessed by immunofluorescence 
and quantified using ImageJ. B. NHEJ function assessed by rejoining of 2I BstXI cut 
vector DNA by OSEC-2 and NUOC-1 non target shRNA and DNA-PKcs knockdown 
(6255). Rejoining was assessed by GelRed stained agarose gel and quantified by 
densitometry. All results are mean of three independent experiments. Error bars are 
SEM.  
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To determine NHEJ function, the rate of rejoining of 2I BstXI substrates was 

assessed. Knockdown of DNA-PKcs approximately halved the rejoining of 2I BstXI 

cut vectors (mean 11.5 +/- 1.3  % in OSEC-2 6255 knockdown compared to 24.1 +/- 

2.8 fold in OSEC-2 controls, p = 0.001, and mean 12.0 +/- 0.5  % in NUOC-1 6255 

knockdown compared to 21.1 +/- 2.1 fold in NUOC-1 controls, p = 0.02), and so were 

deemed NHEJD (Figure 5-6.B). 

5.3.2 Assessment of the Effect of ATR and DNA-PK Inhibition on Cellular 

Biology 

Both ATR and DNA-PKcs have cellular effects outside the DDR. Therefore, the effect 

on cellular biology was assessed for the inhibitors and knockdown models 

individually and combined. 

Hypothesis: Inhibition of ATR and DNA-PK results in reduction in cell growth and cell 

survival with synergistic effect due to inhibition of DNA repair 

5.3.2.1 The Effect of ATR and DNA-PK on Cell Growth 

Inhibition of ATR resulted in significant growth inhibition in OSEC-2 and NUOC-1 

cells (Figure 5-7). The results were consistent between inhibitor (47 % reduction, p = 

0.007 for OSEC-2, and 78 %, p < 0.0001 for NUOC-1) and shRNA knockdown (29 % 

reduction, p = 0.03 for OSEC-2, and 41 % reduction, p = 0.02 for NUOC-1). This 

finding is likely to be due to the impairment of DNA damage repair.  

DNA-PK inhibition was found to have inconsistent results between knockdown and 

inhibition in NUOC-1 cells (30 % reduction when treated with inhibitor and 40 % 

increase in growth seen in shRNA knockdown) and had no effect in OSEC-2 cell 

growth.  
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Figure 5-7 The effect of ATR and DNA-PK inhibition on cell growth.  

All results are normalised to DMSO controls for drug treatments and non target 
shRNA for knockdown models. All treatments were grown for three doubling times. 
Results are average of three independent experiments with 6 experimental repeats. 
Error bars are SEM. Statistical significance was assessed by two way Anova with 
Bonferroni correction for multiple analysis. 

 

Combined pharmacological inhibition of ATR and DNA-PKcs resulted in significant 

inhibition of cell growth in both cell lines (56 % reduction, p = 0.001 for OSEC-2, and 

82 % reduction, p < 0.0001 for NUOC-1), which was similar to the result of ATR 

knockdown combined with NU7441 (56 % reduction, p = 0.001 for OSEC-2, and 

65 % reduction, p = 0.0001 for NUOC-1). However, the addition of NU6027 to DNA-

PK knockdown was found to have no effect on cell growth in either cell line compared 

to controls. In the NUOC-1 cell line, addition of NU6027 to DNA-PK shRNA did 

significantly reduce cell growth compared to DNA-PK shRNA alone (39 % reduction, 

p < 0.0001).   

5.3.2.2 The Effect of ATR and DNA-PK on Cell Survival 

To assess if, further to inhibition of cell growth, overall cell survival is inhibited by loss 

of ATR and DNA-PKcs, clonogenics assays were used (Figure 5-8). Despite 

significant growth inhibition by ATRi in OSEC-2 cells, the only treatment found to 

have a significant reduction in cell survival was the combination of ATR shRNA with 

NU7441 (65 % reduction in cell survival, p = 0.045).  
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Figure 5-8 The effect of ATR and DNA-PK inhibition on cell survival.  

All results are normalised to DMSO controls for drug treatments and non target 
shRNA for knockdown models.  OSEC-2 treatments were grown for 14 days and 
NUOC-1 for 30 days. All treatments were grown for three doubling times. Results are 
average of three independent experiments with 3 experimental repeats. Error bars 
are SEM. Statistical significance was assessed by two way Anova with Bonferroni 
correction for multiple analysis. 

 

In NUOC-1 cells, neither inhibition, nor knockdown of ATR or DNA-PK individually 

reduced cell survival significantly. Combination of ATR and DNA-PK inhibitors 

together (83 % reduction in cell survival, p = 0.028) and shRNA knockdown with ATRi 

(79 % reduction in cell survival, p = 0.042) and DNA-PKi (90 % reduction in cell 

survival, p = 0.014) resulted in reduced cell survival. 

5.3.2.3 The Effect of ATR and DNA-PK on Cell Cycle  

Hypothesis: Inhibition of ATR and DNA-PK results in cell cycle arrest 

Due to the observed discrepancy between growth inhibition and cell survival assays, 

cell cycle analysis was performed. The effects of ATR and DNA-PKcs inhibition and 

knockdown on phases of the cell cycle were analysed using PI staining and FACS 

analysis (Figure 5-9).  

In OSEC-2 cells, ATR inhibition resulted in significant G1 arrest (15 %, p < 0.0001), 

whilst knockdown of DNA-PKcs resulted in a significant G2/M arrest (9 %, p = 

0.0007). The results between knockdown and drug inhibition were not consistent. 

Also non target shRNA produced a significant G1 arrest (14 %, p < 0.0001), which 

suggests off target cell cycle effects. This effect of non target shRNA may also be 

masking any effects from the ATR and DNA-PK knockdown. Due to NUOC-1 
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tetraploid and mixed population phenotype, cell cycle analysis could not be 

performed in NUOC-1 cells (determined in section 2.9.4).  

 

Figure 5-9 The effect of ATR and DNA-PKcs on cell cycle.  

DNA-PKcs was inhibited with NU7441 or knockdown with shRNA, and ATR was 
inhibited with NU6027 or shRNA knockdown in exponentially growing cells. 10,000 
cells were counted. Pharmacologically inhibited cells are compared to DMSO control, 
and shRNA-knockdown cells are compared to non target shRNA control. Results are 
mean of 3 independent experiments. 

5.3.2.4 The Effect of ATR and DNA-PK on DNA Repair 

ATR and DNA-PK are essential for DSB repair. DSBs repair was assessed by 

inducing DSBs using 2 Gy IR, and measuring the mean numbers of γH2AX foci, a 

marker for DSBs, and the mean numbers of RAD51, a marker for HR. OSEC-2 cells 

were used for these experiments. 

Hypothesis: Inhibition of ATR and DNA-PK results in reduction of DNA damage 

recognition. DNA-PK is involved in fast phase of repair via NHEJ, whilst ATR 

activates slow phase of repair via HR  
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A 

 

B 

 

Figure 5-10 DSBs formation and recovery after inhibition of ATR and DNA-PKcs.  

Inhibitors were added to OSEC-2 cells 1 hr prior to irradiation. Foci formation was 
assessed using immunofluorescence after 2Gy IR. Foci numbers were quantified 
using ImageJ. Average number of foci per nucleus are expressed. A. γH2AX foci, B. 
RAD51 foci. The results are average of three independent experiments. Error bars 
are SEM.   

 

An initial rapid peak in γH2AX foci was seen after 2 Gy IR, peaking at 2 hrs in this 

cell line model (Figure 5-10). After the initial peak, the γH2AX foci disappeared in a 

biphasic manner with an initial rapid disappearance, followed by a more gradual 

decline. RAD51 foci increased steadily peaking at 12 hrs after irradiation; the counts 

were then maintained until 24 hrs, after which, the number of foci had returned to the 

baseline count by 48 hrs.   

Inhibition of ATR with NU6027 resulted in the inhibition of γH2AX foci formation, 

consistent with γH2AX phosphorylation by ATR, with 25 % lower foci counts at 2 hrs 

(p = 0.033, Figure 5-10.A); and also in the reduction of RAD51 foci formation, with 

55 % lower RAD51 foci counts at 12 hrs (p = 0.004), and 43 % lower at 24 hrs (p = 

0.03) (Figure 5-10.B).  
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Inhibition of DNA-PK with NU7441 resulted in a lower peak γH2AX foci count at 2 hrs 

(28 % lower, p = 0.03), consistent with γH2AX phosphorylation by DNA-PK; and a 

delay in γH2AX foci recovery, consistent with the impairment of DSB repair by NHEJ, 

with 69 % higher γH2AX foci counts at 6 hrs (p = 0.008), 200 % higher at 12 hrs (p = 

0.004), 250 % higher at 24 hrs (p = 0.005) and 230 % higher at 48 hrs (p = 0.007) 

(Figure 5-10.A.). Furthermore, significantly higher RAD51 foci counts were found at 

24 hrs (21 % higher, p = 0.047) and 48 hrs (297 % higher, p < 0.0001) (Figure 

5-10.B).  

Combination of ATR and DNA-PKcs inhibitors resulted in a lower γH2AX peak, with 

60 % lower mean counts at 15 min (p = 0.005), and 50 % lower at 2 hrs (p = 0.003). 

The γH2AX foci peak was also delayed to 6 hrs after IR, compared to 2 hrs in the 

controls. This result demonstrates the synergistic actions of ATR and DNA-PKcs in 

DSBs recognition. RAD51 foci numbers were found to be lower than in IR control 

cells, but higher than in cells treated with ATR inhibitor alone; these differences were 

not statistically significant. ATR and DNA-PK, therefore, have opposing effects on the 

numbers of RAD51 foci forming in these cells after irradiation. 

5.3.2.5 The Effect of ATR and DNA-PK Inhibition on Chemo-sensitivity Ovarian Cells 

Further to the baseline assessment of the sensitivities of NUOC-1 and OSEC-2 cell 

lines to common therapeutics, as discussed in chapter 3, the role of ATR and DNA-

PKcs inhibition in chemo-sensitivity was assessed.  

Hypothesis: Inhibition of ATR results in sensitisation to common therapeutics due to 

inhibition of HR, whilst inhibition of DNA-PK results in radio-sensitisation, but 

resistance to PARPi due to inhibition of NHEJ 

Growth inhibition assays were performed to evaluate the effect of ATR and DNA-

PKcs inhibition in OSEC-2 and NUOC-1 cell line sensitivity to irradiation, rucaparib, 

cisplatin and paclitaxel. Inhibition and shRNA knockdown models for ATR and DNA-

PKcs were used. Inhibition was compared to DMSO treated controls, and shRNA 

knockdown to non target shRNA controls. 

 



 

 

1
8

7
 

 

 

Table 5-2 Sensitisation of NUOC-1 and OSEC-2 cells to common therapeutics by ATR and DNA-PK inhibition and knockdown.  

Treatments assessed were radiation, rucaparib, cisplatin and paclitaxel with ATR or DNA-PKcs inhibition using drug and shRNA 
knockdowns. Multiple T tests compared to controls were carried out, with bonferroni adjustment for multiple comparisons. Significant 
results are marked in bold. 

 Drug Irradiation 

GI50 

p= Rucaparib 

GI50 

p= Cisplatin 

GI50 

p= Paclitaxel 

GI50 

p= 

 

 

 

NUOC-1 

Control 4.14 - 8.3 - 1.18 - 0.41 - 

ATR inhibited 4.46 0.82 4.67 0.003 0.51 0.014 0.35 0.06 

DNA-PK inhibited 2.01 0.009 6.55 0.41 0.97 0.18 0.32 0.53 

Non target 2.95 - 7.01 - 1.07 - 0.32 - 

ATR shRNA 2.53 0.50 2.53 0.014 0.38 0.044 0.18 0.53 

DNA-PK shRNA 0.75 <0.0001 5.19 0.09 0.80 0.61 0.25 0.90 

          

 

 

 

OSEC-2 

Control 5.84 - 17.47 - 2.83 - 0.44 - 

ATR inhibited 3.77 0.17 12.82 0.39 1.43 0.11 0.39 0.89 

DNA-PK inhibited 1.36 0.025 34.76 0.12 2.33 0.51 0.45 0.19 

Non target 2.99 - 7.21 - 4.33 - 0.24 - 

ATR shRNA 3.63 0.95 4.82 0.009 2.96 0.49 0.24 0.74 

DNA-PK shRNA 3.35 0.88 8.38 0.26 4.35 0.99 0.15 0.14 
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DNA-PK inactivation was found to have significant radio-sensitisation in the NUOC-1 

cell line as seen in the inhibition (51 % reduction in GI50, p = 0.009) and shRNA 

knockdown (75 % reduction in GI50, p < 0.0001) cells (Table 5-2). In OSEC-2 cells, 

the radio-sensitisation was statistically significant for NU7441 treatment (76 % 

reduction in GI50, p = 0.025), but not shRNA knockdown.  

ATR inhibition resulted in significant sensitisation of NUOC-1 cells to rucaparib (44 % 

reduction in GI50, p = 0.003 for ATR inhibition, and 64 % reduction in GI50, p = 0.014 

for shRNA knockdown), and cisplatin (57 % reduction in GI50, p = 0.014 for ATR 

inhibition, and 65 % reduction in GI50, p = 0.044 for shRNA knockdown). The only 

statistically significant sensitisation of OSEC-2 cells was to rucaparib in ATR shRNA 

knockdown (p = 0.009).  

Neither ATR nor DNA-PKcs inhibition had any significant effect on sensitivity of either 

cell line to Paclitaxel. This result was anticipated as paclitaxel is a mitotic spindle 

inhibitor; and thus DNA is not its primary target. 

5.3.3 Interaction of ATRi and DNA-PKi with PARPi 

Interaction of PARPi and DNA-PKi in radio-sensitisation has also been demonstrated 

(Ruscetti et al., 1998, Veuger et al., 2003, Veuger et al., 2004, Mitchell et al., 2009a). 

In other studies, PARP-1 has been shown to have a protective role in HR by 

suppressing the access of NHEJ to DSBs (Hochegger et al., 2006, Saberi et al., 

2007). The interaction of PARPi with DNA-PKi and ATRi in cell biology was assessed 

in this study. 

5.3.3.1 Optimisation of PARP Inhibition  

To reduce the complication of off-target cytotoxicity, the minimum concentration of 

rucaparib necessary to inhibit PARP activity by > 80 % was determined. 1 µM 

rucaparib dose was selected for further experiments (Figure 5-11).  
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Figure 5-11 Optimisation of inhibition of PARP.  

PAR assay A. representative blot and B. band density results for PARP activity 
inhibition by rucaparib. 

 

5.3.3.2 The Interaction of PARP Inhibition with ATR and DNA-PK Inhibition on Cell 

Growth 

Hypothesis: Addition of rucaparib results in synergistic inhibition of cell growth and 

survival with ATRi, but opposing effects with DNA-PKi 

The growth of OSEC-2 and NUOC-1 cells was not inhibited by 1 µM of rucaparib 

alone. The interaction of PARPi with ATRi and DNA-PKi on cell growth was assessed 

by treatment with 1 µM of rucaparib with 1 µM NU7441 or 10 µM NU6027 or shRNA 

knockdown of either protein.  

In OSEC-2 cells, there was no additional growth inhibitory effect of rucaparib above 

ATRi or ATR shRNA (Figure 5-12 and Appendix 4). Furthermore, no significant 

alteration of cell growth, compared to controls, was seen when rucaparib was 

combined with DNA-PKi or DNA-PKcs shRNA.  
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Figure 5-12 The effect of PARPi combined with ATRi and DNA-PKi on cell growth.  

All results are normalised to appropriate control. All treatments were grown for three 
doubling times. Results are average of three independent experiments with 6 
experimental repeats. Error bars are SEM. Statistical comparisons are in appendix 4. 

 

In NUOC-1 cells, inhibition with rucaparib resulted in a significant reduction in cell 

growth when added in combination with ATR shRNA (61 % growth reduction, p < 

0.0001), and DNA-PKcs shRNA (52 % growth reduction, p < 0.0001) knockdowns 

(Figure 5-12 and Appendix 4). This growth inhibition was not reproduced when 

inhibitor combinations were used. However, the combination of all three inhibitors 

resulted in a significant reduction of cell growth compared to rucaparib alone (52 % 

reduction, p = 0.02, in OSEC-2, and 66 % growth reduction, p = 0.03, in NUOC-1 cell 

lines), but not compared to ATRi or DNA-PKi alone.  
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5.3.3.3 The Interaction of PARP Inhibition with ATR and DNA-PK Inhibition on Cell 

Survival 

To assess if the combination of rucaparib with ATRi and DNA-PKi were cytotoxic, as 

well cytostatic, clonogenic assays were performed (Figure 5-13 and Appendix 4).  

In the OSEC-2 cell line, rucaparib resulted in a 27 % reduction in cell survival, 

compared to DMSO control. The combination of rucaparib with NU6027 resulted in a 

51 % reduction in cell survival, compared to NU6027 alone, but this change was not 

significant compared to rucaparib alone. After correction for multiple comparisons, 

these results were also not found to be statistically significant. The addition of 

rucaparib to ATR shRNA resulted in a 63 % reduction in cell survival, compared to 

rucaparib alone, and a 61 % reduction in cell survival, compared to ATR shRNA. 

Consistent reduction in cell survival was also seen when rucaparib was added to 

NU7441 (52 %) and DNA-PK shRNA (52 %).  

The combination of the three inhibitors only produced a 27 % reduction in cell 

survival, however, triple inhibition when either DNA-PK shRNA or ATR shRNA were 

used produced a 50 % and a 77.5 % (p = 0.04) reduction in cell survival, respectively, 

compared to untreated controls.  

In NUOC-1 cells rucaparib alone, and also in combination with ATRi and DNA-PKi 

did not produce a significant reduction in cell survival. However, the addition of 

rucaparib to ATR shRNA resulted in a 67 % reduction in cell survival, compared to 

ATR shRNA, and 99 % reduction, when compared to rucaparib alone (p = 0.01). The 

addition of rucaparib to DNA-PK shRNA also resulted in a reduction of cell survival 

(38.5 % compared to DNA-PK shRNA and 86 % compared to rucaparib).  

In NUOC-1 cells, using triple inhibitors produced a 47 % reduction in cell survival, 

however, triple inhibition when shRNA was used resulted in only 1.5 % cell survival 

for DNA-PK shRNA + NU6027 + rucaparib (p = 0.013), and no cell survival at all 

when ATR shRNA was combined with NU7441 and rucaparib (p = 0.011).  
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Figure 5-13 The effect of PARPi combined with ATRi and DNA-PKi on cell survival.  

All results are normalised to appropriate control. OSEC-2 treatments were grown for 
14 days and NUOC-1 for 30 days. All treatments were grown for three doubling 
times. Results are average of three independent experiments with 3 experimental 
repeats. Error bars are SEM. Statistical comparisons are in appendix 4. 

 

5.3.3.4 The Interaction of PARP Inhibition with ATR and DNA-PK Inhibition on DNA 

Repair 

PARP-1 binds to and is activated by stalled replication forks (Bryant et al., 2009, 

Sugimura et al., 2008) and is necessary for the accumulation of MRE11 and NBS1 at 

the site of DSBs (Hegan et al., 2010, Benjamin and Gill, 1980, Haince et al., 2008). 

The role of PARP-1 in DSBs recognition and repair was assessed by time-course of 

γH2AX / RAD51 foci formation and recovery.  

Hypothesis: Inhibition of PARP inhibits DNA DSBs recognition and repair via HR  
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PARP-1 inhibition resulted in a 35 % reduction in γH2AX foci numbers at 2 hrs (mean 

32.6 +/- 7.6 foci / cell in rucaparib treated, compared to 50.5 +/- 4.4 foci / cell in 

untreated controls, p = 0.025) (Figure 5-14). The number of RAD51 foci was lower in 

PARPi treated cells, but this was not statistically significant.   

 

Figure 5-14 DNA DSBs formation and recovery after inhibition of PARP-1.  

Assessed by γH2AX and RAD51 foci formation in OSEC-2 cells. Inhibitors were 
added 1 hr prior to irradiation. Foci formation was assessed using 
immunofluorescence after 2Gy IR. Foci numbers were quantified using ImageJ 
macro. Average number of foci per nucleus are expressed. Black lines – γH2AX foci, 
red lines – RAD51 foci. The results are average of three independent experiments. 
Error bars are SEM. 

 

To test the interaction of PARP-1 with DNA-PK and ATR in DSBs repair, cells were 

treated with a combination of PARPi, ATRi, and DNA-PKi and γH2AX and RAD51 

foci formation was then assessed (Figure 5-15).  

The combination of ATRi and PARPi resulted in a rise in γH2AX foci, compared to 

control level at 2 hrs, and whilst a delay in foci recovery was seen, this was not 

statistically significant. RAD51 foci formation again returned baseline IR levels when 

both inhibitors were combined. 
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A  

 
B 

 
Figure 5-15 DNA DSBs formation and recovery after inhibition of PARP-1 and ATR.  

Assessed by γH2AX and RAD51 foci formation in OSEC-2 cells. Inhibitors were 
added 1 hr prior to irradiation. Foci formation was assessed using 
immunofluorescence after 2Gy IR. Foci numbers were quantified using ImageJ 
macro. Average number of foci per nucleus are expressed. A. γH2AX foci, B. RAD51 
foci. The results are average of three independent experiments. Error bars are SEM. 

 

A statistically significant delay in γH2AX foci recovery was seen after the combination 

of PARPi and DNA-PKi (Figure 5-16). 59 % more foci, compared to IR controls were 

found at 8 hrs, 157 % more foci at 12 hrs (Tukeys multiple comparison p = 0.015), 

222 % at 24 hrs (p = 0.014) and 188 % at 48 hrs (p = 0.044). The difference between 

DNA-PKi and the combination of inhibitors was not significant. This finding 

demonstrates the predominant role of NHEJ in DSBs repair.  
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A  
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Figure 5-16 DNA DSBs formation and recovery after inhibition of PARP-1 and DNA-
PK.  

Assessed by γH2AX and RAD51 foci formation in OSEC-2 cells. Inhibitors were 
added 1 hr prior to irradiation. Foci formation was assessed using 
immunofluorescence after 2Gy IR. Foci numbers were quantified using ImageJ 
macro. Average number of foci per nucleus are expressed. A. γH2AX foci, B. RAD51 
foci. The results are average of three independent experiments. Error bars are SEM. 

 

Whilst PARPi resulted in a non-statistically significant reduction in RAD51 foci 

formation, RAD51 foci formation was significantly increased when the inhibitors were 

combined above the level for DNA-PKi alone at 6 hrs (133 % higher, p = 0.0006, 

compared to IR; 290 % higher, p < 0.0001, compared to rucaparib; and 179 % 

higher, p = 0.0001 compared to DNA-PKi), at 24 hrs (92 % higher, p < 0.0001, 

compared to IR; 180 % higher, p < 0.0001, compared to rucaparib; and 41 % higher, 

p = 0.026, compared to DNA-PKi.) and at 48 hrs (643 % higher, p < 0.0001, 

compared to IR; 977 % higher, p < 0.0001, compared to rucaparib; and 64 % higher, 
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p = 0.013, compared to DNA-PKi) (Figure 5-16.B). This finding suggests that PARP-1 

inhibits HR. This is in contradiction to reports of the PARP-1 protective role of HR 

(Hochegger et al., 2006). However, it is in agreement with reports that in the absence 

of PARP-1, HR is increased (Helleday et al., 2005). PARP-1 has been reported to 

function in the A-EJ pathway, and A-EJ has been reported to compete with HR 

(Ceccaldi et al., 2015a, Mateos-Gomez et al., 2015). In the absence of NHEJ and A-

EJ, HR appears to be increased.  

5.3.4 DNA Damage Recognition and Repair in Primary Cultures 

To see if the findings from cell line experiments could be extended to primary human 

tissue the PCO culture collection was used. 

Hypothesis: Expression of ATR and DNA-PK and PARP function are variable and 

independent of each other in PCO cultures  

5.3.4.1 Expression of ATR and DNA-PKcs at mRNA Level 

The expression of ATR and DNA-PKcs mRNA was assessed by RT-qPCR. A range 

of expression of both ATR and DNA-PKcs mRNA was found in all the PCO cultures 

assessed. All PCO cultures expressed a lower level of ATR and DNA-PK mRNA, 

compared to the OSEC-2 cell line. The mRNA level in OSEC-1 closer resembled the 

expression in PCO cultures. Therefore, differences are unlikely to be due to higher 

expression in normal cells as both OSEC-1 and OSEC-2 were derived from normal 

epithelium. There was a positive correlation between expression of ATR and DNA-

PKcs mRNA in PCO cultures (Pearson r = 0.44, p = 0.007) (Figure 5-17). 
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A 

 

B 

 

C 

 

Figure 5-17 ATR and DNA-PKcs mRNA expression and correlation in PCO cultures.  

Expression was assessed by RT-qPCR and normalised to expression of 
housekeeper gene GAPDH. A. ATR mRNA expression. B. DNA-PKcs mRNA 
expression. C. Correlation between ATR and DNA-PKcs mRNA expression. 
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PARP activity was analysed in a selection of PCO cultures. The experiments were 

kindly performed by James Murray. A range of PARP activity was found in PCO 

cultures. There was no correlation with the expression of ATR or DNA-PKcs mRNA 

levels and PARP-1 activity (Figure 5-18.B-C). 

A 

 
B

 

 

 
Figure 5-18 PARP activity in PCO cultures correlated with ATR and DNA-PKcs 
mRNA expression.  

A. PAR assay band density results for activated PAR. Activity in each PCO was 
normalised to activity in control cell line L1210. B. correlation between PAR activity 
and ATR mRNA. C. Correlation between PAR activity and DNA-PKcs mRNA. 

 

As previously discussed, the interaction of PARP-1 with HR and NHEJ is still not 
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cultures was assessed. No positive correlation between PARP function and either 

HR or NHEJ was noted (Figure 5-19).  

The expression of PARP-1 mRNA was assessed in a RNA Genome expression array 

(Figure 5-20). Consistent with PARP activity, the expression of PARP-1 mRNA was 

independent of HR and NHEJ function in PCO cultures. Furthermore, no correlation 

between PARP-1 mRNA and PAR activity was detected (Figure 5-21). 
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Figure 5-19 PARP-1 activity in PCO cultures shown by NHEJ and HR status.  

Stimulated PAR activity expressed as mean PAR pmol/106 cells was assessed in 
duplicate and normalised to L1210 control. Error bars are SD. 

 

Figure 5-20 PARP-1 expression in PCO cultures shown by HR and NHEJ status.  

Error bars are SD. Expression was assessed using RNA genome microarray. 
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Figure 5-21 Correlation between PAR activity and PARP-1 mRNA.  

PAR assay band density results for activated PAR. Activity in each PCO was 
normalised to activity in control cell line L1210. Expression was assessed using RNA 
genome microarray. 

5.3.4.2 ATR Induced Sensitisation to Rucaparib and Cisplatin 

The results from section 5.3.2.5 demonstrating ATRi sensitisation to rucaparib and 

cisplatin were encouraging. Therefore, in a cohort of PCO cultures the effect of ATRi 

on sensitivity to rucaparib and cisplatin was assessed (Figure 5-22). The addition of 

ATRi reduced the mean survival after 10 days treatment with 10 µM rucaparib from 

56 % to 42 % (p = 0.0065), and the mean survival after 10 days treatment with 10 µM 

cisplatin from 34 % to 22 % (p = 0.0028).  
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Figure 5-22 ATRi sensitisation of PCO cultures to rucaparib and cisplatin. 

Results are percent cell survival after 10 days treatment with 10 µM rucaparib and 10 
µM cisplatin, +/- 10 µM NU6027, compared to DMSO control. Error bars are SEM. 

 

5.3.4.3 DSB Activation and Repair in Primary Ovarian Cultures 

In the cell line experiments in section 5.3.2.4, inhibition of ATR resulted in a reduced 

peak of γH2AX foci formation. Meanwhile, inhibition of DNA-PK reduced the peak of 

γH2AX foci formation and delayed recovery. To confirm the results from cell line 

inhibition experiments, the rate of γH2AX formation and recovery was assessed in 

PCO cultures.  

Hypothesis: γH2AX foci formation in HRD cells is lower than in HRC cells. γH2AX 

foci formation is lower and recovery delayed in NHEJD, compared to NHEJC cultures  

Each culture was irradiated at 2Gy and cover slips were fixed at the following time 

points: pre-IR, 10 min, 1 hr, 2 hrs, 4 hrs, 12 hrs, 24 hrs and 48 hrs. 
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A

 

 

B 

 

 

  

Figure 5-23 DNA DSBs formation and recovery in PCO cultures.  

Assessed by γH2AX foci formation after 2Gy IR using IF in A. HRC compared to 
HRD cultures, and B. NHEJC compared to NHEJD cultures. Foci numbers were 
quantified using ImageJ macro. Average number of foci per nucleus are expressed. 
The results are average of three independent experiments. Error bars are SEM. 

 

Confirming the results of the cell line experiments, the HRD cultures had a lower 

peak of γH2AX foci. However, the difference was not statistically significant (Figure 

5-23.A). NHEJD cultures had a delayed peak of γH2AX foci (Figure 5-23.B). 
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Significantly lower number of foci formed immediately after irradiation (mean 20.3 +/- 

2.9 foci in NHEJC, compared to mean 12.4 +/- 2.2 foci in NHEJD, p = 0.029) and at 1 

hr (mean 25.8 +/- 1.9 foci in NHEJC, compared to mean 17.5 +/- 2.3 foci in NHEJD, p 

= 0.01). A slower recovery of γH2AX foci was also observed in NHEJD PCO cultures 

(Figure 5-23.B).  

In PCO cultures RAD51 foci formation was assessed at 24 hrs only. The mean 

increase in RAD51 foci above controls was significantly higher at 5.45 fold in HRC 

compared to 1.28 fold HRD cultures (p < 0.0001) (Figure 5-24.A). The increase in 

RAD51 foci was also higher in NHEJD cultures compared to NHEJC cultures (p = 

0.03). The increase in HR in the absence of DNA-PK is consistent with the inhibition 

results in section 5.3.2.4, and previous studies (Cornell et al., 2015) suggesting that 

when NHEJ is impaired there is a shift to HR.  
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Figure 5-24 RAD51 foci fold rise and DNA-PK expression shown by HR or NHEJ 
status.  

A. RAD51 foci fold rise above controls in primary ovarian cancer cultures divided by 
HR or NHEJ status. RAD51 foci were assessed as mean foci count per cell in 
samples after 24 hrs of 10 µM rucaparib and 2 Gy IR treatment, compared to 
untreated controls. Foci were counted across 3 fields of view for each sample 
counting >50 cells in each sample. N = 40. Error bars are SEM. B. DNA-PKcs protein 
expression in primary ovarian cancer cultures shown by HR or NHEJ status. DNA-PK 
protein expression was assessed by western blotting and normalised to GAPDH 
house keeper gene. N = 36. Error bars are SEM. 

 

DNA-PKcs expression was 64 % higher in NHEJC (0.72 of GAPDH expression, 95 % 

CI = 0.5 - 0.9), compared to NHEJD cultures (0.26, 95 % CI = 0.2 - 0.4, p < 0.0001) 

(Figure 5-24.B). Interestingly, DNA-PKcs expression was also 59 % higher in HRC 
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cells (0.78 of GAPDH expression, 95 % CI = 0.6-0.9), compared to HRD cells (0.32, 

95 % CI = 0.2-0.4, p < 0.0001) (Figure 5-24.B).  

5.3.4.4 Correlation between γH2AX foci recovery and sensitivity to rucaparib and 

cisplatin 

To validate the observation that γH2AX foci formation and recovery differs depending 

on HR and NHEJ function, the association of γH2AX foci formation and recovery with 

rucaparib and cisplatin sensitivity was assessed (Figure 5-25). 

A                                                                  B 

 
 

Figure 5-25 The association of γH2AX foci formation and recovery with rucaparib and 
cisplatin sensitivity. 

A. PCO cultures were divided into two groups based on median foci numbers at 2 
hrs. Sensitivity was assessed by SRB assay after 10 days growth in 10 µM rucaparib 
and 10 µM cisplatin treatment, compared to DMSO treated controls. B. PCO cultures 
were divided into two groups based on median foci numbers at 4 hrs. Sensitivity was 
assessed by SRB assay after 10 days growth in 10 µM rucaparib and 10 µM cisplatin 
treatment, compared to DMSO treated controls. One way Anova with Sidak multiple 
analysis correction was performed. Error bars are SEM. 

 

Cultures with a reduced peak in γH2AX foci at 2 hrs were found to be more sensitive 

to rucaparib (p = 0.001) and cisplatin (p = 0.04). Cultures which had a delay in 

γH2AX foci recovery, with above median γH2AX foci numbers at 4 hrs were found to 

be less sensitive to rucaparib (p = 0.021) but not cisplatin. These cultures were 

predicted to be NHEJD. Therefore the results are consistent with sensitivity 
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association found in chapter 4. The results suggest that sensitivity to rucaparib and 

cisplatin could be predicted by a single test assessing overall DSBs repair in PCO 

cultures.  

5.4 Summary of Chapter 

In this study HR and NHEJ pathway interaction was assessed using pharmacological 

inhibition and shRNA knockdown models of ATR and DNA-PK in OSEC-2 (cell line 

derived from normal epithelium) and NUOC-1 (cell line derived from endometrioid / 

clear cell carcinoma).  

Both ATR and DNA-PK inhibition was found to be cytostatic and causing G1 and G2 

arrest, respectively. Inhibition of DNA-PK resulted in reduced recognition of DNA 

DSBs and delay in repair. It was also found to increase HR. Inhibition of ATR 

resulted in reduced DSBs recognition and reduction in HR, but not in the overall rate 

of DSBs repair. Combination of the two inhibitors resulted in continued HR, 

suggesting an alternative activation. Previously reported radio-sensitisation induced 

by DNA-PKi, and sensitisation to rucaparib and cisplatin by ATRi were confirmed. 

The sensitisation was specific to the NUOC-1 cell line, and was not reproducible in 

OSEC-2 cells, thus suggesting a cancer cell specificity. ATRi sensitisation to 

rucaparib and cisplatin was confirmed in PCO cultures. 

ATR and DNA-PK interaction with PARP-1 was assessed by the addition of a 

nontoxic dose of rucaparib to ATR inhibited and DNA-PKcs inhibited models. The 

previously reported role for PARP-1 in DSB recognition was confirmed. Combination 

of PARPi and DNA-PKi resulted in a delay in DSBs repair and a synergistic increase 

in HR. The combined inhibition of ATR and PARP also caused a reduction in DSB 

recognition, but an increase in HR, overcoming the inhibition of HR by ATRi.  

The observations were validated by assessing the interaction of ATR and DNA-PKc 

in PCO cultures. In PCO cultures a positive correlation was found between ATR and 

DNA-PK mRNA expression. PARP function was independent of HR and NHEJ. 

Reduced DSBs recognition in HRD, and reduced recognition and delayed repair in 

NHEJD cells was observed. Rucaparib and cisplatin sensitivity correlated positively 

with a high γH2AX foci peak at 2 hrs, and rucaparib sensitivity correlated with a rapid 

recovery of γH2AX foci. These results suggest that rucaparib and cisplatin sensitivity 

could be predicted by a single test.    
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5.5 Discussion 

In this study interaction of NHEJ, HR and PARP-1 was assessed by using cell line 

and PCO culture models.  

5.5.1 Protein Inhibition and Knockdown may not be Directly Comparable  

The level of inhibition achieved using inhibitors was higher than that achieved using 

knockdown. Whilst both HR and NHEJ function were reduced in both knockdown and 

inhibited cells, some function of both pathways remained. It was not ascertained if a 

critical level of either protein exists in the cells. Thus, some of the differences 

observed may be due to different levels of inhibition of each protein. Furthermore, the 

presence of inactive protein rather than absence of the protein achieved in 

knockdown models may have a dominant negative effect. A further important point to 

consider is that NU6027 is also a CDK2 inhibitor. Therefore some of the observed 

effects may be CDK2 driven. Confirmation of these findings in a larger cohort of cell 

lines, and by using different inhibitors for ATR and DNA-PK is required.  

5.5.2 ATR and DNA-PK Inhibition Effects are Cell Line Specific 

The most important observation noted was that throughout the study the loss of ATR 

or DNA-PKcs had a significantly more pronounced effect in NUOC-1 than in OSEC-2 

cells, suggesting that NUOC-1 cells are more reliant on the DDR mechanism than 

OSEC-2 cells. Cancer cells often contain dysregulation of their cell cycle control 

(Massague, 2004), have high levels of replicative stress, stalled replication forks and 

DSBs, therefore, inhibition of DDR is thought to have a significant effect in tumour, 

but not normal cells (Wiseman and Halliwell, 1996), thereby limiting toxicity to the 

patient.  

However, these observations may also be due to differences seen in the level of 

inhibition of both ATR and DNA-PK between the two cell lines and baseline levels of 

these proteins. Knockdown achieved by shRNA was different between the two cell 

lines, DNA-PK was only 44 % knockdown in OSEC-2, compared to 73 % in the 

NUOC-1 cell line. This is likely to explain the lack of radio-sensitivity observed in the 

OSEC-2 cell line after DNA-PK shRNA knockdown, despite the documented role of 

DNA-PK in radio-sensitivity in the literature, and the observation with NU7441 

inhibitor. The converse was seen in ATR knockdown were >90 % knockdown was 
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achieved in OSEC-2, but only 78 % knockdown in NUOC-1 cells. In this case, 

despite a higher level of knockdown OSEC-2 cells were not sensitised to rucaparib or 

cisplatin by the absence of ATR. This was consistent with the NU6027 inhibitor, and 

is therefore, likely to represent a true difference between reliance of NUOC-1 and 

OSEC-2 cells on ATR.  

5.5.3 ATR and DNA-PK Inhibition are Cytostatic 

Both ATR and DNA-PK inhibition was found to be cytostatic, but not cytotoxic, as 

assessed by SRB and Clonogenics assays. Cytostatic effects are likely to be due to 

cell cycle arrest induced by the lack of both proteins. This is in agreement with 

multiple studies, that inactivation of ATR causes a G2/M checkpoint failure and 

subsequent G1 arrest (Brown and Baltimore, 2003, Peasland et al., 2011). 

Conversely, G2 arrest follows DNA-PK inhibition, as DNA-PK is thought to 

phosphorylate p53, which mediates G1 arrest (Kachnic et al., 1999). The cytotoxic 

effects of ATRi have, however, been described in the presence of BER defects 

(Peasland et al., 2011, Sultana et al., 2013, Mohni et al., 2014) in cells with 

oncogene-activation (Gilad et al., 2010) and cyclin E over-expression (Toledo et al., 

2011). NUOC-1 cells were found to be BER defective, as described in chapter 3, 

therefore, would be expected to be sensitive to ATR inhibition. These results are 

contradictory and demand further investigation.  

The inhibition of both ATR and DNA-PK was found to be cytotoxic in NUOC-1 but not 

OSEC-2 cells, and underlies the importance of DDR mechanisms in cancer cell 

survival. This finding has also been observed with the combination of NU7441 and 

VE-821 ATRi (Middleton et al., 2015).  

5.5.4 DNA-PK is required for the Rapid Phase Whilst ATR in Slow Phase of 

DNA DSBs Repair 

The role of ATR and DNA-PKcs in DSB repair is well described. In this study the 

interaction between the two proteins in DSB repair was assessed. Inhibition of either 

ATR or DNA-PK resulted in lower mean γH2AX foci numbers. The combination 

further impaired focus formation, reflecting the phosphorylation of H2AX by both 

DNA-PK and ATR. The recovery of γH2AX foci was significantly delayed in DNA-PK 

inhibited cells, but the speed of recovery was not significantly affected by ATRi.  
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When repairing DSBs, HR is more accurate than NHEJ, because it uses an 

undamaged sister chromatid as a template for repair, but it is therefore, restricted to 

the S-G2 phases of the cell cycle (San Filippo et al., 2008). HR is a more complex 

form of repair and takes more than 7 hrs to complete, whereas, NHEJ can be 

completed in 30 min (Mao et al., 2008). Therefore, the effect of inhibition of DNA-PK, 

and thus NHEJ, has a pronounced effect on the rapid phase of γH2AX foci decline; 

whilst ATR, and thus HR inhibition, does not affect this phase of γH2AX foci decline.  

The combination of ATRi and DNA-PKi resulted in a further reduction in mean γH2AX 

foci and delay in the timing of the peak foci numbers. Curiously, inhibition of both 

ATR and DNA-PK did not appear to affect the rate of disappearance of γH2AX foci, 

suggesting other mechanisms of repair may be activated under these circumstances. 

To confirm this, physiological measures of DNA breakage and repair, e.g. Comet 

assay, would be needed. 

As the rapid phase of repair was completed, the emergence of RAD51 foci was 

observed, which accumulated during the slow phase of γH2AX foci resolution. This 

demonstrates the shift from the faster NHEJ to the slower HR repair. The later 

accumulation of RAD51 foci could also reflect IR induced single-stranded lesions 

encountering the replication fork. Experiments in synchronised cells would need to be 

performed to assess this finding.  

Assessment of RAD51 foci noted opposing effects of ATR and DNA-PK. As 

expected, the absence of DNA-PK resulted in an increase in RAD51 foci, and thus, 

HR, despite DNA-PK having no direct role in HR. This data suggests that when NHEJ 

is inhibited there is a shunting of DSB repair to HR, which has been observed 

previously (Allen et al., 2003). This is consistent with NHEJ and HR competing for 

DSB repair (Allen et al., 2003, Chapman et al., 2012b). Potential crosstalk between 

HR and NHEJ, mediated by DNA-PK, has been investigated, and certain specific 

phosphorylation sites on DNA-PKcs which promote HR whilst inhibiting NHEJ have 

been identified (Convery et al., 2005, Neal et al., 2011).  

As previously demonstrated, inhibition of ATR, essential in HR, resulted in a 

reduction of RAD51 foci (Peasland et al., 2011). Inhibition of RAD51 by the ATRi was 

lower when combined with the DNA-PKi. This observation has been previously 

described in isogenic cell lines (Middleton et al., 2015). This finding suggests that 

that DNA-PKcs suppresses HR and in the absence of both ATR and DNA-PK, HR 
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continues and must be reliant on another mechanism of activation. The primary 

activation of HR in this setting is likely to be ATM. ATM signals in response to 

chromosomal DNA damage by phosphorylating BRCA1, NBS1 and RAD51 (Cortez 

et al., 1999, Gatei et al., 2000). To validate these findings the effect of ATM inhibition 

alone, and in combination with ATR and DNA-PK inhibition needs to be determined. 

Further investigations could be to use comet assays to assess overall DSBs repair, 

and to repeat these experiments in other cell lines.  

5.5.5 ATR Inhibition Sensitises to Rucaparib and Cisplatin whilst DNA-PK 

Inhibition to Irradiation 

Inhibition of DNA-PK has been consistently shown to cause radio-sensitisation in a 

number of different studies (Price and Youmell, 1996, Rosenzweig et al., 1997, 

Boulton et al., 2000, Kashishian et al., 2003, Shinohara et al., 2005, Tavecchio et al., 

2012, Zhao et al., 2006). This has been confirmed in this study.  

The HRD phenotype has been demonstrated to result in cisplatin and rucaparib 

sensitivity (Mukhopadhyay et al., 2012, Mukhopadhyay et al., 2010, Li et al., 2016). 

This has been confirmed by the inhibition of ATR in the NUOC-1 cell line, and in PCO 

cultures. In clinical terms, the effect of ATRi and DNA-PKi combination suggests that 

the inhibition of ATR on the background of functional NHEJ, would result in a HRD 

phenotype. Therefore, ATRi may be an important chemo sensitiser in ovarian cancer. 

An ongoing trial investigating ATRi as a single agent, and in combination with 

platinum-based chemotherapy (clinicaltrials.gov identifier: NCT02157792), is likely to 

provide important knowledge in this field. However, the mechanisms of HR activation, 

independent of ATR, need to be assessed.    

Importantly, sensitisation was achieved in NUOC-1 cells, but not OSEC-2 cells. 

These findings are important on 2 counts. Firstly, this provides evidence for the use 

of ATRi to sensitise HRC cancers to platinum based chemotherapy and PARPi. 

Secondly, this data suggests that the intrinsic molecular defects in cancer cells 

combined with DDR inhibition causes chemo- and radio-sensitisation, supporting the 

concept of cancer-cell specific synthetic lethality. It has to be noted that the OSEC-2 

cell line has been altered, and is functionally p53 mutant, therefore, its function 

cannot be directly extrapolated to represent normal ovarian epithelium. However, it is 

the closest model of normal ovarian epithelium available in laboratory settings and 



 

210 
 

sets a useful basis for hypothesis generating. This observation does need to be 

validated by in vivo studies.  

The failure of paclitaxel sensitisation with the DSB repair pathway inhibition is 

unsurprising, given its chemotherapeutic effects do not come through elicitation of 

DNA damage. However, this finding is contradictory to reported paclitaxel 

sensitisation by DNA-PK inhibition in multidrug resistant ovarian cancer cell lines 

(Mould et al., 2014), and needs to be evaluated in other cell line models. 

5.5.6 Interaction of ATR and DNA-PK with PARP-1 

The overall aim of this project was to improve the understanding of the interaction 

between NHEJ, HR and PARP-1. In the second part of this study the interaction 

between ATR and PARP-1, and DNA-PK and PARP-1 was analysed. In terms of 

growth, the combination of 1 µM rucaparib with either 1 µM NU7441 or 10 µM 

NU6027, did not produce additional growth inhibition in either cell line. The addition 

of 1 µM of rucaparib to ATR and DNA-PK knockdown in NUOC-1 cells, however, 

resulted in significant growth inhibition compared to each knockdown alone. The 

result is cell line specific as this effect was not observed in OSEC-2 cells. The result 

is also in contradiction to resistance induced by NU7441 inhibition in PCO cultures, 

as described in chapter 4. PARP-1 inhibition has been reported to lead to the 

activation of DNA-PK in BRCA2-deficient cells, but not in cells with wild-type BRCA2 

(Patel et al., 2011). The interaction between DNA-PK and PARP-1 may therefore be 

cell specific, and dependent on other cell defects. An alternative explanation may be 

that the effect of experimental knockdown of DNA-PK is different to that of the 

defective NHEJ pathway. These findings need to be further evaluated in other cell 

line models. 

5.5.7 PARP-1 Affects DNA DSBs Recognition and Selection of Repair Pathway 

The role for PARP-1 in DNA DSBs repair has been previously described. PARP-1 

binds to and is activated by stalled replication forks (Bryant et al., 2009, Sugimura et 

al., 2008) and is necessary for the accumulation of MRE11 and NBS1 at the site of 

DSBs (Hegan et al., 2010, Benjamin and Gill, 1980, Haince et al., 2008). Inhibition of 

PARP-1 has been shown to retard the rejoining of IR-induced DNA DSBs (Mitchell et 

al., 2009b, Boulton et al., 1999). In this study 1 µM rucaparib significantly reduced the 

peak number of γH2AX foci and delayed the recovery of γH2AX. This supports the 
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essential role for PARP-1 in DDR. The effect on RAD51 foci was not significant, 

suggesting that PARP inhibition does not affect HR directly. This is in contrast to 

studies reporting PARP-1 to have a protective role in HR by suppressing access of 

NHEJ to DSBs (Hochegger et al., 2006, Saberi et al., 2007).  

When combined with ATR inhibition, both the mean number of γH2AX and RAD51 

foci at each time point resembled that of the IR control, and not each inhibitor alone. 

This supports previous reports that the role of PARP-1 in DSB repair is in the A-EJ 

pathway. The function of PARP-1 in the A-EJ has been shown by both in vitro and in 

vivo studies (Audebert et al., 2006, Lu et al., 2006, Audebert et al., 2008). A-EJ has 

been described to compete with HR, as well as act in the absence of HR (Nik-Zainal 

et al., 2012, Ceccaldi et al., 2015a, Mateos-Gomez et al., 2015). Therefore, PARP 

inhibition may re-establish HR by inhibiting the A-EJ pathway. This may be the 

possible explanation for the observed resistance of NHEJD/HRD PCO cultures to 

rucaparib in chapter 4.  

The combination of rucaparib with DNA-PK inhibition resulted in a lower peak of 

γH2AX foci and slow recovery, which is similar to DNA-PKi alone. This finding agrees 

with previous reports, which suggest that PARP-1 and DNA-PK are epistatic (Mitchell 

et al., 2009a). The combination of DNA-PKi and PARPi resulted in a further increase 

in RAD51 foci formation, again suggesting that PARPi increases HR. This finding is 

consistent with that of ATR and PARPi combination, however, it is in contradiction to 

the finding of sensitisation of ATR inhibitor to rucaparib treatment. These findings 

therefore, need to be further explored. 

5.5.8 In PCO Cultures ATR and DNA-PK Expression Correlate but are 

Independent of PARP-1  

To determine the clinical relevance of the cell line findings, the interaction of ATR and 

DNA-PK in PCO cultures was assessed. Whilst the expression of each protein varied 

in the unselected cohort of PCO cultures, a positive correlation between ATR and 

DNA-PK mRNA levels was found. This finding suggests that the expression of ATR 

and DNA-PKcs may be concomitantly regulated in certain tumours. This has been 

previously noted in glioblastoma (Middleton et al., 2015). The correlation was 

suggested to be due to DNA-PKcs and ATR being held in a complex with cMYC and 

CHK1. Discordance between mRNA and protein levels were seen in chapter 4. A 
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comparison of the expression of ATR and DNA-PK protein is required for this finding 

to be validated.  

There was no correlation observed between PARP activity and either ATR or DNA-

PK mRNA levels. Furthermore, the assessment PARP activity by HR and NHEJ 

function confirms the independence of PARP activity from the HR and NHEJ 

functions. This result is supported by the finding of no correlation of PARP-1 mRNA 

expression with either the HR or NHEJ status of PCO cultures. These findings are in 

contrast to previous studies describing the interaction of PARP-1 with HR, and need 

to be explored further. 

5.5.9 DNA DSBS Recognition and Repair is Inhibited in NHEJ and HRD PCO 

Cultures 

Confirming the findings of inhibition experiments, a lower peak of γH2AX in both the 

NHEJD and HRD PCO cultures. Lower peak of γH2AX foci was associated with 

increased sensitivity to both rucaparib and cisplatin. Also, as seen in the inhibition 

experiments, NHEJD cultures were found to have a delay in γH2AX foci recovery, 

whilst the recovery rate was not significantly different between HRD and HRC cells. 

Confirming association of NHEJD with rucaparib resistance, PCO cultures with 

delayed recovery of γH2AX foci were less sensitive to rucaparib. These findings 

suggest that HR and NHEJ function can be predicted by the assessment of γH2AX 

foci formation and recovery. Whilst further development is required, a single assay for 

DNA DSBs formation and repair may be a potential tool for patient selection for 

treatment. 

RAD51 foci time line experiments were not performed in PCO cultures, however, the 

RAD51 foci fold increase at 24 hrs was assessed as part of the HR assay. Similarly 

to the inhibition experiments NHEJD PCO cultures also had a mean RAD51 foci 

which was higher than NHEJC cultures. Therefore, NHEJD may result in an increase 

in HR, however, this may be dependent on the type of defect resulting in HRD. The 

effect of DNA-PK inhibition in HRD cells due to different mutations is assessed in the 

next chapter.  
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5.6 Future Work 

In this study, inhibitors and shRNA knockdown were used to assess the roles of ATR 

and DNA-PK. Inhibitors are known to have off target effects, and therefore, validation 

with knockdown supports the findings. To further strengthen these findings, validation 

using isogenic cell lines is important undertake in the future.  

The assessment of DNA repair by different methods is also required. To further 

develop on the possibility to assess HR and NHEJ by a single method, assays such 

as, single point comet assays, need to be explored. The benefit of this assay over a 

functional NHEJ / HR assay is that it does not require growing cells. Therefore, 

frozen cells could be used. Use of frozen cells is a more likely to translated into 

clinical practice compared to cell culture.  

Although growth inhibition data demonstrated that ATRi significantly sensitised cells 

to cisplatin, and that rucaparib and DNA-PK inhibition potentiated radiation 

sensitivity, this needs to be confirmed in an in vivo setting. An in vivo study design 

could involve xenograft studies to confirm the enhanced efficacy of the combinations, 

and to confirm that they are specific to cancer cells by assessing the toxicity of the 

combinations. Furthermore, the toxicity of the combinations of inhibitors with 

chemotherapy agents could be evaluated. If this study yielded positive findings, a 

human explant xenograft study would then be undertaken to further evaluate the role 

of ATR and DNA-PK inhibitors.   
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CHAPTER 6 ASSESSMENT OF THE ROLE OF DNA REPAIR IN 

RESISTANCE TO RUCAPARIB AND CISPLATIN  

6.1 Introduction 

The current standard treatment of ovarian cancer, in both early and advanced 

stages, consists of cytoreductive surgery followed by chemotherapy, based on 

carboplatin with or without paclitaxel (Bristow et al., 2002, Elattar et al., 2011, Al 

Rawahi et al., 2013). The initial response rate is high (70 - 80 %), but the majority of 

patients with advanced disease relapse within two years. Recurrent ovarian cancer is 

not curable, due to the development of chemo-resistance (du Bois et al., 2005). 

Platinum-resistant disease is also characterised by resistance to other cytotoxic 

agents (Ledermann and Kristeleit, 2010). Studies have confirmed a correlation 

between platinum sensitivity and PARPi response, with higher response rates in 

platinum sensitive compared with platinum-resistant and refractory patients (Fong et 

al., 2010). However, responses in the platinum resistant and refractory cases provide 

evidence for different mechanisms of resistance and suggest incomplete crossover of 

sensitivity. The mechanisms for cisplatin and rucaparib resistance were investigated 

in this study.   

6.1.1 Mechanism of Platinum Chemotherapy 

Platinum agents are transported into the cell by passive diffusion or mediated by a 

copper transporter (CTR1). Once inside the cell, cisplatin / carboplatin are activated 

and bind DNA (Jamieson and Lippard, 1999), forming monoadducts. Intra- and inter-

strand DNA crosslinks are subsequently formed causing conformational DNA 

changes, impairing replication and DNA synthesis (Siddik, 2003). Platinum-induced 

DNA lesions attract DNA binding proteins which either signal for apoptosis or initiate 

DNA repair (Tapia, 2012).  

6.1.2 Mechanisms of Platinum Resistance 

Whilst platinum resistance is still not completely understood, three main mechanisms 

have been documented. These include reduced intracellular accumulation of 

platinum, intracellular inactivation of platinum, and increased DNA repair. Each 

mechanism will be discussed in turn and summarised in Figure 6-1. 
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6.1.2.1 Reduced Intracellular Drug Accumulation 

Decreased cellular uptake of cisplatin by resistant cells is one of the major 

mechanisms of resistance described in vitro. This is either by reduced influx 

mediated by internalisation of the CTR1 copper transporter (Holzer et al., 2004), or 

by increased efflux, with exporters ATP7A, ATP7B, MRP-related transport proteins 

and P-glycoprotein (P-Glyc) (Samimi et al., 2004, Korita et al., 2010, Hoffmann et al., 

2010). 

6.1.2.2 Intracellular Cisplatin Inactivation  

Glutathione (GSH) contributes to the detoxification and inactivation of many cellular 

toxins, including cisplatin and its analogues. GSH has been associated with cisplatin 

resistance in ovarian, cervical and lung cancer cell lines (Li et al., 2009b). 

Platinum sensitive cell  

 
Platinum resistant cell  

 
Figure 6-1 Schematic of the mechanisms contributing to platinum resistance. 
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6.1.2.3 Increased DNA Repair 

The NER pathway is predominantly responsible for repairing intra-strand platinum-

DNA adducts in cellular DNA, and increased NER has been correlated with cisplatin 

resistance (Dabholkar et al., 1994). Loss of DNA MMR has also been linked to 

platinum resistance (Helleman et al., 2006). 

During DNA replication inter-strand DNA cross-linking causes DNA DSBs. These 

DSBs are repaired by HR. HRD has been linked to increased platinum sensitivity and 

concomitant survival benefits (Mukhopadhyay et al., 2012). However, BRCA1/2 

mutated cancers also develop platinum resistance, which has been suggested to be 

mediated by secondary intragenic mutations in BRCA1/2. Secondary mutations can 

reverse stop codons, usually resulting in an open reading frame, thereby restoring 

HR function (Sakai et al., 2008, Swisher et al., 2008, Edwards et al., 2008). BRCA1/2 

restoration does not, however, explain all cases of cisplatin resistance, therefore 

further investigations are still required. 

6.2 PARP Inhibitor Function  

PARP-1 reaches DNA damage sites rapidly and activates different cellular responses 

to DNA damage (Javle and Curtin, 2011). The activated PARP-1 splits the substrate 

nicotinamide adenine dinucleotide (NAD+) to release ADP-ribose, nicotinamide, and 

protons (Shah et al., 2011). PARP-1 then forms polymers of ADP-ribose (PAR) that 

post-translationally modify nuclear proteins, largely PARP-1 itself and histones. 

PARP-1 controls a wide array of cellular processes, such as cell death, transcription, 

cell division, and DNA repair (Krishnakumar and Kraus, 2010). Among the DNA 

repair pathways, PARP-1 is widely recognised for its impact on BER, but it also 

influences HR, NHEJ, MMR and NER (Pines et al., 2012, De Vos et al., 2012, Liu et 

al., 2011). Competitive PARPi are analogs of nicotinamide that compete with the 

substrate NAD+ to bind to the enzyme (Montoni et al., 2013). PARPi have been 

shown to be lethal as a monotherapy to HRD cells (Aly and Ganesan, 2011, 

Mukhopadhyay et al., 2010, Patel et al., 2011). Furthermore, it has been suggested 

that since PARP-1 plays a role in reactivating stalled replication forks, this may be a 

further mechanism of PARPi function (Helleday, 2011). PARPi sensitivity has also 

been reported via inhibition of NF-kB, which mediates transcription of prosurvival 

genes in breast cancer cells (Nowsheen et al., 2012). Further to use as 
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monotherapy, PARPi also potentiates lethality of chemotherapeutic agents or IR 

(Javle and Curtin, 2011).  

6.2.1 Mechanisms of PARP Inhibitor Resistance 

PARP inhibitor resistance has been described via four main mechanisms. These are, 

decreased levels or activity of PARP-1, decreased intracellular availability of PARPi, 

increased HR capacity and altered NHEJ capacity (Montoni et al., 2013). The 

mechanisms of PARPi resistance are summarised in Figure 6-2. 

 PARPi sensitive cell  

 
PARPi resistant cell  

 
 

Figure 6-2 Schematic of the mechanisms contributing to PARPi resistance. 

 

6.2.1.1 Decreased Levels or Activity of PARP-1 

PARPi prevent activation of the PARP-1 that is bound to DNA strand breaks to form 

PAR, or facilitate DNA repair events. Therefore, reduced levels of PARP-1 could 

result in resistance to PARPi, as has been demonstrated in colorectal carcinoma (Liu 

et al., 2009). The effectiveness of PARPi is also linked to the catalytic activity of 
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PARP-1. Thus, decreased activity of PARP-1 independent of normal expression 

could influence the efficacy of PARPi (Oplustilova et al., 2012, Gottipati et al., 2010). 

Furthermore, variant forms of PARP-1 with decreased catalytic activity, such as those 

created by the single nucleotide polymorphism (SNP)V762/A (Lockett et al., 2004), 

could make cancer cells resistant to PARPi. 

6.2.1.2  Decreased Intracellular Availability of PARPi 

Further to the role of P-glycoprotein in cisplatin resistance described earlier, P-Glyc is 

also involved in the efflux of the PARPi Olaparib (Oplustilova et al., 2012). Inhibition 

of P-Glyc has been reported to re-sensitise PARPi-resistant BRCA1 deficient cells to 

PARPi (Rottenberg et al., 2008, Jaspers et al., 2013). 

6.2.1.3  Increased HR Capacity 

Resistance to PARPi in BRCA deficient tumours can occur via reverse mutations in 

BRCA1/2 and restoration of HR function (Sakai et al., 2008, Swisher et al., 2008, 

Edwards et al., 2008, Barber et al., 2013, Norquist et al., 2011). The genomic 

instability associated with BRCA loss could be a cause for reverse mutations of 

BRCA genes (Aly and Ganesan, 2011). Selection of cells with restored BRCA 

function could confer resistance to PARPi. A further alteration to BRCA function is by 

regulation of BRCA expression. BRCA1 expression is negatively regulated by the 

microRNA miR-182, and overexpression sensitises BRCA1-proficient breast cancer 

cells to PARPi, whereas, downregulation results in resistance (Moskwa et al., 2011).  

53BP1 is a nuclear protein that plays a key role in DNA repair responses and 

checkpoint control (Bunting et al., 2010). Together, BRCA1 and 53BP1 determine the 

balance between NHEJ and HR. Loss of 53BP1 suppresses NHEJ and promotes 

HR. While cells with a defect in BRCA1 alone are susceptible to PARPi, an additional 

loss of 53BP1 was shown to increase HR repair and induce PARPi resistance 

(Bunting et al., 2010, Brandsma and Gent, 2012, Oplustilova et al., 2012). 

6.2.1.4  Altered NHEJ Capacity 

It has been suggested that one of the causes of synthetic lethality of PARPi in HRD 

cells is an upregulation of the error-prone NHEJ pathway that is normally suppressed 

by PARP-1 (Patel et al., 2011). However, data from chapters 4 and 5 do not support 

this model. Decreased NHEJ capacity in HRD cells has been suggested to lead to 
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resistance to PARPi. This has been demonstrated in vitro in BRCA2-deficient cell 

lines, where inhibition or downregulation of Ku80, Artemis, or DNA-PK resulted in 

resistance to PARPi (Patel et al., 2011), and which has been confirmed in chapters 4 

and 5.  

A further mechanism implicating NHEJ in PARPi resistance, is the suggestion that 

normal NHEJ function leads to genomic instability. This could be responsible for the 

reversion of mutated BRCA1/2, restoration of partial HR capacities and development 

of resistance to PARPi in HRD tumours (Chiarugi, 2012). Depletion of NHEJ 

components DNA-PK and Ku80 also results in PARPi sensitivity in HRC cells (Bryant 

and Helleday, 2006). Thus, both increased and decreased NHEJ capacity has been 

hypothesised to result in PARPi resistance. The results in chapter 4 suggest that in 

ovarian primary culture NHEJ is defective in 40 % of cultures, which is associated 

with PARPi resistance. 

Research into resistance mechanisms (“insights into treatment failure”) was outlined 

as one of the key lines of research in the “Focus on Cancer” March 2011 issue of 

Nature Medicine. Resistance to cisplatin has been intensively researched and a 

number of mechanisms have been described, however, it still remains poorly 

understood. Furthermore, PARPi are a new treatment still in clinical trial settings, 

therefore, further insight into the mechanisms of function will emerge as the trials 

mature. Understanding of the overlapping and separate mechanisms of resistance 

not only provides the ability to better select the correct treatment for patients based 

on the cancer genetics, but also possibly provide targets for overcoming the 

resistance of both platinum and PARPi.  

6.3 Aims of Chapter 6 

The purpose of these investigations was to determine the roles of DNA repair 

pathways in chemo-resistance in ovarian cancer. Furthermore, to investigate whether 

common or different mechanisms are involved in the resistance to cisplatin and 

rucaparib. Specifically the experimental aims were as follows: 

 Treat cell lines with escalating doses of cisplatin or rucaparib over an 

extended period of time to determine if stable drug resistant cultures could be 

established.  

 Determine the HR, NHEJ and BER status of the resistant cultures. 
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 Assess the mechanisms of resistance by performing exome mutational 

analysis and whole genome expression array.  

 Identify any potential targets of resistance to cisplatin and rucaparib. 

6.4 Results  

Two HRD cell lines were selected for use in these experiments, UWB1.289 and 

PEO1 cells. These cell lines were selected as they harbor BRCA1 and BRCA2 gene 

mutations respectively. They also have paired HRC isogenic cell lines for controls. 

The PEO1 cell line was also selected as it has been previously used in the 

development of cisplatin resistance. 

6.4.1 Basal Cell Line Characteristics 

Cell line pairs were characterised prior to resistance induction. The cell line 

morphology was assessed using light microscopy. Both cell line pairs had 

cobblestone appearance and were morphologically similar to their BRCA 

complemented pairs. Cell doubling time was determined using the SRB assay as 

described in chapter 2, and consistently the BRCA-mutant cells showed a slower 

growth rate compared to BRCA competent controls.  
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Table 6-1 Cell line model characteristics. 

Cell line BRCA status Histology of tumour 

from which cell line 

was derived 

Patient 

characteristics 

Source Morphology  Doubling 

time 

(hrs) 

UWB1.289 Germline BRCA1 

mutation within exon 

11 and a deletion of 

the wild-type allele 

p53 mutant 

Derived from papillary 

serous histology 

carcinoma 

The patient 

developed breast 

cancer at age 42, 

ovarian cancer at age 

54, and died at age 

56 

ATCC 

 

136 

UWB1.289 

+BRCA1 

Wild-type BRCA1 

was restored 

Derived from 

UWB1.289 cell line by 

transfection of human 

BRCA1 

Derived from 

UWB1.289 cell line 

ATCC 

 

96 

PEO1 BRCA2 mutation 

[5193C>G (Y1655X)] 

Derived from peritoneal 

ascites of a patient with 

a poorly differentiated 

serous 

adenocarcinoma 

The patient previously 

received cisplatin, 5-

fluorouracil and 

chlorambucil 

treatment 

PEA 

 

100 

PEO4 Secondary BRCA2 

mutation [5193C>T 

(Y1655Y)] which 

restored full length 

BRCA2  

Derived from the same 

patient as PEO1 after 

clinical resistance 

developed to 

chemotherapy 

The patient previously 

received cisplatin, 5-

fluorouracil and 

chlorambucil 

treatment 

PEA 

 

91 
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6.4.1.1 HR Status of Cell Line Models 

The HR status of the four cell lines was determined using the previously described 

γH2AX/RAD51 foci assay. > 2 fold rise in γH2AX was used as an indication of 

induction of DNA DSBs. >2 fold rise in RAD51 was used as a definition of HRC. As 

expected, in BRCA1 and BRCA2 deficient cell lines there was no significant increase 

in RAD51 foci after IR+rucaparib (Figure 6-3). HR function was not significantly 

affected by DNA-PK inhibition in UWB1.289+BRCA1 and PEO4 cells, as expected. 

However, treatment with NU7441 of BRCA1-mutant UWB1.289 cells recovered HR 

function, and there was a nearly 3-fold increase in RAD51 foci following exposure to 

IR+rucaparib. NU7441 treatment did not, however, recover HRC in the BRCA2 

mutant PEO1. Thus, HR function recovery in BRCA1 but not BRCA2 mutant cells, 

suggests that the effect of DNA-PK inhibition may be lesion specific.  
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Figure 6-3 HR status of model cell lines.  

HR status was assessed using ƴH2AX/RAD51 assay. A. Cells were treated with 2 Gy 
IR and 10 µM rucaparib for 24 hrs before number of ƴH2AX and RAD51 foci in each 
cell was determined. Two fold RAD51 foci increase above controls in deemed HR 
competent. B. RAD51 foci counts of HR assay performed +/- 1 µM NU7441. Results 
are average of 3 independent experiments. Error bars are SEM. 
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6.4.1.2 NHEJ Status of Cell Line Models  

The NHEJ status of the four cell lines was assessed using the previously described 

cellular luciferase vector rejoining assay. The DNA-PKcs deficient V3 cell line was 

used as a negative control, and its DNA-PK corrected cell line, V3YAC, provided a 

positive control for rejoining. All four human ovarian cancer cell lines were deemed 

NHEJ competent (Figure 6-4). 
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Figure 6-4 NHEJ status of model cell lines.  

NHEJ status was assessed by using luciferase vector rejoining assay. Intracellular 
end joining of linearised pGL2 vector by cell lines was measured by luciferase 
activity. Measured as precise rejoining / overall end joining x 100. Data are average 
of three independent experiments. Error bars are SEM.  

 

6.4.1.3 Sensitivity to Rucaparib and Cisplatin 

As expected BRCA mutant cells were found to be significantly more sensitive to both 

rucaparib and cisplatin (Figure 6-5). Mean GI50 and LC50 are listed in Table 6-2. 
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Figure 6-5 Chemo-sensitivity of cell lines assessed by Clonogenic assay.  

A. UWB1.289 cell sensitivity to Cisplatin. B. PEO cells sensitivity to cisplatin. C. UWB1.289 cells sensitivity to rucaparib. D. PEO cells 
sensitivity to rucaparib. Results are average of 3 independent experiments with 3 experimental repeats. Error bars are SEM.
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Table 6-2 Sensitivity of UWB1-289 and PEO cell lines to rucaparib and cisplatin. 

Rucaparib and cisplatin GI50 (assessed by SRB assay) and LC50 (assessed by 
clonogenics) in paired UWB1-289 and PEO cell lines. 

Cells GI50 rucaparib LC50 rucaparib GI50 cisplatin LC50 cisplatin 

UWB1-289 1.6µM 1.3µM 280nM 75nM 

UWB1-289-

BRCA1 

14.3µM 13.92µM 1420nM 183nM 

Fold increase  

(t-test p =) 

8.9  

(0.035) 

10.7 

(< 0.0001) 

5.0 

(0.041) 

2.4 

(0.008) 

PEO1 7.8µM 0.78µM 552nM 9.3nM 

PEO4 16.59µM 9.6µM 1238nM 1440nM 

Fold increase  

(t-test p =) 

2.1 

(0.005) 

12.3 

(0.034) 

2.24 

(0.0007) 

155 

(< 0.0001) 

6.4.2  Development of Resistant Cell Lines 

Hypothesis: Stable drug resistant cell lines can be derived from HRD cell lines by 

treatment with escalating doses of drug and incremental irradiation. 

UWB1.289 and PEO1 cells were grown in T75 flasks in recommended media at 

37 °C, and supplemented with increasing concentration of cisplatin or rucaparib over 

a period of 18 months. The starting drug concentrations were the LC50 for each drug 

for each cell line. The media was changed twice a week, and cells were passaged as 

required. The concentration of drug was increased when exponential growth was 

achieved at each concentration. Parallel flasks at the lower concentration were 

maintained alongside higher concentration, in case the higher concentration proved 

lethal. In those cases a smaller incremental increase in drug concentration was used. 

The final drug concentrations achieved were 20 µM rucaparib for PEO1 (2.5 x GI50 

and 25 x LC50) and UW1.289 (12.5 x GI50 and 15 x LC50) 2 µM cisplatin for PEO1 

(3.6 x GI50 and > 200 x LC50) and 3 µM cisplatin for UWB1.289 (10.7 x GI50 and 40 x 

LC50). The final concentrations exceeded the LC50 and GI50 of BRCA corrected 

paired cell lines PEO4 and UWB1.289+BRCA1.  

A further method for the assessment of resistance development is the induction of 

nonspecific DNA mutations prior to selection for resistance. Irradiation was used to 

induce DNA mutations in PEO1 and UWB1.289 cells. The flasks were exposed to 

fractional irradiation of 5 Gy, followed by cell recovery, and the next irradiation was 

performed after a single passage and exponential growth was regained. Total 
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irradiation for each derived cell line was 60 Gy. The 5 Gy fractioning was used as it 

has been previously described in other studies (Wade et al., 2015). 

6.4.3 Validation of Resistant Models 

Resistant lines were passaged without additional drug 3 times before being used for 

further experiments. Initially the cells were characterised by assessing morphology, 

growth and sensitivity to cisplatin and rucaparib. No changes in the morphology of 

the UWB1.289 resistant lines were noted (Table 6-3). Rucaparib resistant PEO1 lines 

were morphologically similar to PEO1. However, PEO1-CDDPR cells were 

morphologically more similar to the PEO4 cell line (Table 6-4). 

 Table 6-3 Morphology and doubling time of UWB1.289 derived cell lines. 

Parent cell 

lines 

Morphological 

appearance 

Doubling 

time (hrs) 

Derived 

cell lines 

Morphological 

appearance 

Doubling 

time (hrs) 

UWB1.289 

 

136 
UWB1.289-

699R 

 

128 

UWB1.289

+BRCA1 

 

96 
UWB1.289-

CDDPR 

 

82 

   
UWB1.289-

IR 

 

113 
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Table 6-4 Morphology and doubling time of PEO1 derived cell lines. 

Parent 

cell lines 

Morphological 

appearance 

Doubling 

time (hrs) 

Derived 

cell lines 

Morphological 

appearance 

Doubling 

time (hrs) 

PEO1 

 

100 
PEO1-

699R 

 

89 

PEO4 

 

91 
PEO1-

CDDPR 

 

105 

   PEO1-IR 

 

84 

 

BRCA competent UWB1.289+BRCA1 and PEO4 were found to have faster growth 

rates compared to their BRCA deficient pairs. The growth of resistant cell lines was 

also found to be consistently higher that the parent lines. 

6.4.4 Assessment of Sensitivity to Rucaparib and Cisplatin 

Cytotoxicity assays following passage in drug free media demonstrated that all 

UWB1.289 derivatives were resistant to cisplatin, compared to UWB1.289 cells. This 

indicates that the mechanisms of resistance were stable and that cells did not require 

continuous exposure to the drugs they were derived in. The sensitivity was not 

significantly different from that of the UWB1.289+BRCA1 cell line. The only exception 

was UWB1.289-CDDPR cells, which were significantly more resistant to cisplatin 

than all the other derivatives, including the UWB1.289+BRCA1 cell line (Figure 6-6.A 

and Table 6-5). This suggests that there are multiple methods of resistance beyond 

HR function.  
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Figure 6-6 Chemo-sensitivity of derived cell lines assessed by Clonogenic assay. 

A. UWB1.289 derivative cells sensitivity to Cisplatin. B. PEO derivative cells sensitivity to cisplatin. C. UWB1.289 derivative cells 
sensitivity to rucaparib. D. PEO derivative cells sensitivity to rucaparib. Results are average of 3 independent experiments with 3 
experimental repeats. Error bars are SEM.
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Table 6-5 Cisplatin and Rucaparib sensitivity in derivative cell lines. LC50 assessed by clonogenics assay.   

Cell line Cisplatin  

LC50(µM) 

95 % CI 

(µM) 

Comparison 

to parent line  

Fold increase 

(F test p = ) 

Comparison to 

BRCA competent 

line Fold 

increase   

(F test p = ) 

Rucaparib 

LC50(µM) 

95 % 

CI(µM) 

Comparison 

to parent line  

Fold 

increase 

(F test p = ) 

Comparison to 

BRCA competent 

line Fold 

increase   

(F test p = ) 

UWB1.289 0.04 0.02 to 

0.07 

-  0.3 

(0.015) 

1.33 0.82 to 

2.17 

- 0.08 

(<0.0001) 

UWB1.289-699R 0.12 0.07 to 

0.2 

3.0  

(0.0079) 

0.9 

(0.77) 

8.86 4.81 to 

16.34 

6.7 

(<0.0001) 

0.5 

(0.12) 

UWB1.289-CDDPR 0.49 0.4 to 

0.7 

12.25 

(<0.0001) 

3.8 

(0.0005) 

6.29 1.45 to 

27.23 

4.7 

(0.022) 

0.4 

(0.15) 

UWB1.289-IR 0.15 0.1 to 

0.2 

3.75 

(0.0001) 

1.2 

(0.69) 

1.03 0.60 to 

1.75 

0.8 

(0.41) 

0.06 

(<0.0001) 

UWB1.289+BRCA1 0.13 0.06 to 

0.3 

3.25 

(0.015) 

- 16.92 9.68 to 

29.55 

12.7 

(<0.0001) 

- 

PEO1 0.015 0.006 to 

0.04 

- 0.06 

(0.0004) 

1.69 0.57 to 5.0

  

- 0.1 

(0.018) 

PEO1-699R 0.19 0.2 to 

0.4 

12.7 

(0.002) 

0.7 

(0.2) 

40.07  12.54 to 

128.0 

23.7 

(0.0007) 

3.0 

(0.11) 

PEO1-CDDPR 0.53 0.21 to 

1.35 

35.3 

(0.0013) 

2.0 

(0.15) 

23.72 

 

8.04 to 

70.00 

14.0 

(0.0045) 

1.8 

(0.4) 

PEO1-IR 0.15 0.11 to 

0.2 

10.0 

(0.0059) 

0.6 

(0.14) 

3.16 2.22 to 

4.49 

1.9 

(0.3) 

0.2 

(0.004) 

PEO4 0.27 0.17 to 

0.4 

18.0 

(0.0004) 

- 13.03 5.44 to 

31.22 

7.7 

(0.018) 

- 
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UWB1.289-699R and UWB1.289-CDDPR derivatives were resistant to rucaparib 

(Figure 6-6.C and Table 6-5). Again, resistance was not significantly different from 

the UWB1.289+BRCA1 cell line. UWB1.289-IR cells were sensitive to rucaparib at a 

similar level to the UWB1.289 parent line, which was significantly lower than 

UWB1.289+BRCA1 cells (Figure 6-6.C and Table 6-5). 

All PEO1 derivatives showed similar levels of resistance, compared to the BRCA2 

competent PEO4 cells (Figure 6-6.B and Table 6-5). Again, all derivatives with the 

exception of PEO1-IR were resistant to rucaparib (Figure 6-6.D and Table 6-5). 

6.4.4.1 Assessment of HR Status in Resistant Cell Lines 

Hypothesis: Resistant cell lines regain HR competence 

HR function was assessed using the γH2AX/RAD51 assay for all derivatives. All 

derivatives grown in rucaparib and cisplatin were found to be HRC (Figure 6-7). Both 

PEO1 and UWB1.289 IR derivatives remained HRD, consistent with the HR status of 

the parent lines.  
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Figure 6-7 HR status of derivative cell lines.  

HR status was assessed using the ƴH2AX/RAD51 assay. Cells were treated with 2 
Gy IR and 10 µM rucaparib for 24 hrs before the number of ƴH2AX and RAD51 foci 
in each cell was determined. Two fold RAD51 foci increase above controls is deemed 
HR competent. Results are average of 3 independent experiments expressed as fold 
increase above controls. Error bars are SEM.  
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6.4.4.2 Assessment of NHEJ status in Resistant Cell Lines 

Hypothesis: Resistant cell lines will develop NHEJ deficiency during the process of 

resistance development. 

All derivatives were able to rejoin compatible (Co) and incompatible (2 base 

mismatch - 2I) BstXI vectors (Figure 6-8 and Figure 6-9).  

 

Figure 6-8 End joining of Co BstXI substrates by resistant cell lines. 

V3YAC and T4Lig were used as positive controls, V3 was used as a negative control. 
Gels are representative of three independent experiments. 

 

 

Figure 6-9 End joining of 2I BstXI substrates by resistant cell lines.  

V3YAC was used as a positive control and V3 as negative control. H2O was used as 
a control for PCR contamination. Gels are representative of three independent 
experiments. 
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The ability to rejoin both indicated NHEJ competence. A second band was seen in all 

derived cell lines, suggesting some error prone rejoining, however, competent 

rejoining was also evident (Figure 6-9). No change of end joining from the parent 

lines was seen. When protein expression was assessed, again no change in 

expression of DNA-PKcs, Ku70 or Ku80 was seen in the derived cell lines, compared 

to the parent lines (Figure 6-10). 
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Figure 6-10 DNA-PKcs, Ku80 and Ku70 protein expression in resistant cell lines.  

M059J was used as a negative control, M059FUS-1 and OSEC-2 as positive 
controls. A. UWB1.289 derivative cell lines, B. PEO1 derivative cell lines. The results 
are mean of three independent experiments. Error bars are SEM. 
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6.4.4.3 Assessment of BER Function in Resistant Cell Lines 

Hypothesis: Resistant cell lines will develop BER deficiency during the process of 

resistance development. 

The BER status of all cell lines was assessed using the previously described 

competitive ELISA assay. AA8 (BER competent) with its derivative EM9 cell lines 

(BER deficient mutant with XRCC1 mutation) were used as positive and negative 

controls. Mean 8-OHdG for cell line models ranged from 3.11 to 5.26 (Figure 6-11). 

No significant change of 8-OHdG levels from the parent lines were observed for any 

of the resistance cell lines.   
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Figure 6-11 BER function in resistant cell lines assessed by competitive ELISA.  

Results are the measurement of 8-OHdG levels. AA8 (BER proficient) cell line was 
used as positive control, EM9 (BER deficient) cell line was used as a negative 
control. 

6.4.5  Mutation Analysis 

Exome sequencing analysis was performed off site by Oxford Gene Technology 

(OGT). A number of novel somatic mutations were noted in the resistant, compared 

to parent cell lines. The majority of the mutations were heterozygous. Numerous 
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mutations were present in the parent line at low allelic frequency, but were noted at a 

higher frequency in the derived lines. These mutations are likely to have been 

selected for in the resistance development process.  

To identify those mutations that were of potential importance to the chemo-resistant 

phenotype, selection criteria was applied to the raw data. Firstly known SNPs were 

excluded during the analysis. Secondly, the frequency of mutation reported in both 

parent and resistant lines was determined; mutations which were present in > 5 % of 

read in the parent line were excluded. Mutations that were present in less than 25 % 

of reads (and therefore < 50 % of cells, assuming heterozygosity) in the resistant 

lines were excluded. And lastly, mutations which were found to be less than three 

times higher in resistant compared to parent cell line were excluded. The mutations 

which met the selection criteria were plotted on circos plots using http://circos.ca/ 

(Krzywinski et al., 2009) by Dr Sirintra Nakjang (Figures 6-12 to 6-14). Mutations are 

located throughout all the chromosomes. OGT software applied predictions for the 

likely mutations which had deleterious protein consequences.  

Hypothesis: Mutational analysis will show different targets for rucaparib compared to 

cisplatin resistant cell lines. 

Novel gene mutations in UWB1.289-699R and PEO1-699R are shown in Figure 

6-12. Significantly more new mutations were noted in the UWB1.289-699 model, 

compared to the parental PEO1-699R model, although this did not include mutations 

in BRCA1/2. This suggests that HR function recovery in both cell lines was by 

mechanisms other than BRCA gene reversion. Numerous post translational 

modifications of the HR protein have been described (Heyer et al., 2010) and would 

need to be assessed in these cell lines. Common to both rucaparib resistant cell lines 

was a novel mutation in the GMPR2 gene, which is involved in metabolism, and has 

been reported to promote monocytic differentiation of leukemia cells (Zhang et al., 

2003). 

 



 

 
 

2
3

5
 

A  

 

B 

 

 

 

 

Figure 6-12 Circos plots for rucaparib resistant cell line derivatives.  

A. New mutations in UWB1.289-699R compared to UWB1.289. B. New mutations in PEO1-699R compared to PEO1. Genes with 
mutations present in parent line but selected for in resistant lines are noted in black, novel mutations are shown in blue, mutations which 
are predicted to be deleterious are shown in red, and those which are novel and predicted to be deleterious are shown in green.   
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Figure 6-13 Circos plots for cisplatin resistant cell line derivatives.  

A. New mutations in UWB1.289-CDDPR compared to UWB1.289. B. New mutations in PEO1-CDDPR compared to PEO1. Genes with 
mutations present in parent line, but selected for in resistant lines are noted in black, novel mutations are shown in blue, mutations which 
are predicted to be deleterious are shown in red, and those which are novel and predicted to be deleterious are shown in green.   
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Figure 6-14 Circos plots for irradiation cell line derivatives.  

A. New mutations in UWB1.289-IR compared to UWB1.289. B. New mutations in PEO1-IR compared to PEO1. Genes with mutations 
present in parent lines but selected for in resistant lines are noted in black, novel mutations are shown in blue, mutations which are 
predicted to be deleterious are shown in red, and those which are novel and predicted to be deleterious are shown in green.
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Figure 6-13 demonstrates the novel mutations in UWB1.289-CDDPR and PEO1-

CDDPR cells, which carry mutations across all chromosomes. Again, whilst HR 

function was regained in both cell lines, no novel BRCA mutations were noted. Two 

common genes were found to contain mutations - PRSS1 and LRP1. LRP1 codes for 

an endocytic receptor involved in several cellular processes, including intracellular 

signaling, lipid homeostasis, and clearance of apoptotic cells. PRSS1 encodes for a 

trypsinogen, which is a member of the trypsin family of serine proteases, and 

mutations in this gene are associated with hereditary pancreatitis (Pfuetzer et al., 

2001). 

As noted in rucaparib resistant cell line derivatives, UWB1.289-IR was found to 

contain significantly more novel mutations, compared to PEO1-IR (Figure 6-14). Two 

commonly mutated genes were found. RGSL1 (Regulator Of G-Protein Signaling 

Like 1) has been reported to be mutated in breast cancer (Wiechec et al., 2011). 

COL19A1 codes for the alpha chain of type XIX collagen, although there are no 

reports of this gene being involved in ovarian cancer or radio-sensitivity. 

6.4.5.1  Mutations in DNA Repair Genes in Resistant Cell Lines 

The first aim was to identify mutated genes involved in DNA repair pathways. No 

novel BRCA1 or BRCA2 mutations were noted in any of the derived cell lines when 

compared to the parent cell lines. A number of other DNA repair genes were 

somatically mutated (Table 6-6). In all three UWB1.289 resistant derivative lines, an 

identical A to T base change substitution was noted on Chromosome 14, at position 

68331668, mapping to the RAD51B. This mutation was not observed in the parental 

cells. Mutation in other HR gene EME1 was noted in UWB1.289-IR cell line.  

No novel mutations in the BER genes were noted. This is consistent with the 

functional assessment of BER of the derivative and the parent cell lines.  
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Table 6-6 Somatic mutations in DNA repair genes in derived cell lines not found in parent cell lines.  

Derived cell lines Gene 

Name 

Position Ref. Variant Ref. 

read in 

parent 

cell 

line 

Variant 

read in 

parent 

cell line 

Ref. read 

in 

resistant 

cell line 

Variant 

read in 

resistant 

cell line 

 % read 

variant in 

resistant 

cell line 

Amino 

acid 

change 

Pathway  

UWB1.289-699R RAD51B 68331668 A T 22 0 21 13 38 W HR 

ERCC1 45918893 C +AA 24 2 18 8 31 */+AA NER 

UWB1.289-CDDPR XRCC2 152346278 G C 152 0 95 51 35 S HR 

GTF2H1 18380070 A T 33 0 34 13 28 W NER 

RAD51B 68331668 A T 22 0 18 8 31 W HR 

UWB1.289-IR RAD51B 68331668 A T 22 0 25 9 26 W HR 

EME1 48456440 T A 28 0 19 15 44 W HR 

PEO1-699R TP53BP1 43739686 G -A 22 0 14 7 33 */-A NHEJ 

PEO1-CDDPR                     

PEO1-IR  RAD23B 110086162 G A 26 0 6 20 77 A NER 

ERCC2 45859053 C A 69 0 41 24 37 M NER 
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No novel mutations were noted in the NHEJ pathway genes. This finding is 

consistent with no change in the NHEJ function in the derived cell lines. A novel 

mutation in TP53BP1 was noted in PEO1-699R. Overexpression of 53BP1 results in 

inhibition of NHEJ and upregulation of HR. The effect of this mutation on protein 

expression is not known, but no significant effect on NHEJ function was noted in the 

PEO1-699R cell line.  

A number of NER pathway genes were found to be mutated in the UWB1.289-699R, 

UWB1.289-CDDP and PEO1 derived cell lines. As functional assessment of NER 

was not undertaken, the significance of these mutations is unknown.  

6.4.5.1.1 Pathway Analysis of Novel Mutations in Resistant Cell Lines  

To understand the mechanism of resistance development, pathway analysis was 

performed on the mutated genes list. Analysis was performed with Dr. Sirintra 

Nakjang. Ingenuity (http://www.ingenuity.com) and KEGG pathway analysis 

programs were used, and the results are detailed in Table 6-7. The two different 

analysis programs yielded different pathways for the mutated genes. Differences 

between the two software programs are likely to be due to the differences in the 

annotation used by each software package, and have been reported previously (Li et 

al., 2009b). This, therefore, warrants further investigation. 

Cell proliferation MAPK and the PI3K pathways have both been reported to be 

mutated in ovarian cancer (Geyer et al., 2009, Nakayama et al., 2006, Willner et al., 

2007). Pathway analysis found that at least one gene in the MAPK pathway was 

mutated in all the resistant cells (table 6-8). 

Furthermore, although not yet functionally validated, mutations in the PI3CA/AKT 

pathway were noted in all except the PEO1-IR derivative (Table 6-9). The frequent 

mutation of this pathway suggests an important role in cisplatin resistance. 

Importantly, in vivo studies have demonstrated that inhibition of PI3K downregulates 

BRCA1/2 and sensitises to PARPi. Phase one trial combining PI3Ki and olaparib in 

HGSOC is underway (NCT01623349). 
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Table 6-7 Pathway enrichment of mutated genes in resistant cell lines.  

Resistant 

cell line 

Ingenuity (top canonical pathways) KEGG (top pathways) 

UWB1.289-

699R 

CDK5 Signaling (p=1.12E-03) 

IL-15 Signaling (p=8.23E-03) 

STAT3 Pathway (p=9.99E-03) 

BMP signaling pathway (p=1.08E-02) 

Endocytosis 

PI3K-AKT signaling pathway 

MAPK signaling pathway 

cAMP signaling pathway 

UWB1.289-

CDDPR 

Glutamate Receptor Signaling 

(p=1.04E-02)  

Histidine Degradation (p=2.15E-02)  

Estrogen Receptor Signaling 

(p=4.64E-02)  

 

Neuroactive ligand-receptor 

interaction 

Ribosome biogenesis in 

eukaryotes 

Focal adhesion 

Glutamatergic synapse 

UWB1.289-

IR 

Glutathione Redox Reactions II 

(p=8.25E-03) 

CNTF Signaling (p=9.06E-03) 

Growth Hormone Signaling (p=1.56E-

02) 

Selenocysteine Biosynthesis II 

(p=p=1.64E-02) 

TNF signaling pathway 

cAMP signaling pathway 

PI3K-Akt signaling pathway 

Focal adhesion 

PEO1-699R Phototransduction Pathway (p=2.83E-

02)  

Regulation of Cellular Mechanics by 

Calpain Protease (p=3.04E-02) 

Gs Signaling (p=5.75E-02) 

eNOS Signaling (p=7.43E-02) 

Purine metabolism 

Ribosome 

PEO1-

CDDPR 

Methylmalonyl Pathway (p=3.84E-05) 

2-oxobutanoate Degradation I 

(p=6.39E-05) 

Methionine Degradation (p=3.03E-03)  

ABC transporters 

Spliceosome 

Neuroactive ligand-receptor 

interaction 

Endocytosis 

Cell adhesion molecules  

 

PEO1-IR Cell Cycle: G2/M DNA Damage 

Checkpoint Regulation (p=2.86E-02) 

Cytokine Signaling (p=3.66E-02) 

 

Purine metabolism 

Nucleotide excision repair 

MAPK signaling pathway 

Thyroid hormone signaling 

pathway 



 

 

2
4

2
 

 

 

 

Table 6-8 MAPK pathway genes mutated in resistant lines. 

Resistant cell line Genes 

affected 

Position Ref. Variant Ref. 

read in 

parent 

cell 

line 

Variant 

read in 

parent 

cell 

line 

Ref. 

read in 

resistant 

cell line 

Variant 

read in 

resistant 

cell line 

 % read 

variant 

in 

resistant 

cell line 

Amino acid 

change 

UWB1.289-699R NTRK1 156843742 C A 80 0 56 21 27 C → M 

MAPK13 36098412 C T 64 0 32 19 37 C → Y 

FLNA 153581219 C A 37 0 19 17 47 C → M 

UWB1.289-CDDPR PLA2G4C  48591828 T G 37 0 17 13 43 T → K 

UWB1.289-IR RPS6KA4   64128672 C T 39 2 45 15 25 C → Y 

AKT1 105242929 A C 50 0 9 11 55 A → M 

PEO1-699R MECOM 168862931 A -

ACACAC 

32 1 20 7 26 A → */-

ACACAC 

PEO1-CDDPR PDGFRB 149500563 C G 35 0 16 20 56 C → S 

PEO1-IR MAPK8IP2  51042447 G A 62 0 43 28 39 G → R 

MECOM 168862931 A -

ACACAC 

32 1 20 7 26 A → */-

ACACAC 

 

 

 



 

 

2
4

3
 

 

Table 6-9 Genes in PI3CA /AKT pathway mutated in resistant lines. 

Resistant 

cell line 

Genes 

affected 

Position Ref. Variant Ref. read 

in parent 

cell line 

Variant 

read in 

parent cell 

line 

Ref. read 

in resistant 

cell line 

Variant 

read in 

resistant 

cell line 

 % read 

variant in 

resistant 

cell line 

Amino 

acid 

change 

UWB1.289-

699R 

PPP2R5B 

 

64684436 

 

C T 60 0 29 12 31 C → Y 

LAMA1 6949179 T G 70 0 27 24 47 T → K 

IL2RB  

 

37539613 C A 51 2 21 25 54 C → M 

PRKCZ 2121101 A G 33 1 19 7 27 A → R 

UWB1.289-

CDDPR 

TNN 175036953 G A 50 0 19 12 39 G → R 

UWB1.289-

IR 

AKT1  105242929 A C 50 0 9 11 55 A → M 

CCND1 69458653 C T 90 1 64 22 26 C → Y 

LAMA1 7012218 C T 31 0 16 7 30 C → Y 

PEO1-

699R 

LAMA4 112537566 T G 129 0 111 41 27 T → K 

PEO1-

CDDPR 

PDGFRB  149500563 C G 35 0 16 20 56 C → S 

COL4A6           

PEO1-IR           

 

 

 



 

 

2
4

4
 

 

 

Table 6-10 Calcium signalling pathway mutated genes. 

Resistant 

cell line 

Genes 

affected 

Position Ref. Variant Ref. read 

in parent 

cell line 

Variant 

read in 

parent cell 

line 

Ref. read 

in resistant 

cell line 

Variant 

read in 

resistant 

cell line 

 % read 

variant in 

resistant 

cell line 

Amino 

acid 

change 

UWB1.289-

699R 

CAMK2A 149631531 T A 40 0 35 12 25.53 T → W 

UWB1.289-

CDDPR 

TRHR 110100496 G C 25 0 15 8 34.78 G → S 

UWB1.289-

IR 

RYR2 237617933 G T 45 0 17 8 32 G → K 

BDKRB2 96707166 G A 43 0 22 12 35.29 G → R 

PEO1-

699R 

HRH2 175112511 C T 126 0 89 31 25.83 C → Y 

PEO1-

CDDPR 

PDGFRB 149500563 C G 35 0 16 20 55.56 C → S 

PEO1-IR ATP2A2 110788113 G T 77 0  29 15 34.09 G    → K 
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Calcium is a prominent regulator of cell migration, exerting multiple effects on the 

contractility of the actin cytoskeleton (Leung et al., 2014, Furukawa et al., 2003). 

Furthermore, dysregulation of calcium signaling has been linked to platinum 

resistance and ovarian cancer metastasis in vitro (Al-Bahlani et al., 2011, Leung et 

al., 2014). Mutations in the genes involved in the calcium signaling pathway were 

noted in all derived cell lines (Table 6-10). This data supports previous reports 

suggesting a role for calcium signaling in cisplatin resistance.  

6.4.6 Gene Expression Profiling and Analysis 

Further to the assessment of gene mutations, gene expression profiling was 

undertaken. Gene expression profiling studies have reported putative signatures for 

resistance to a number of chemotherapies (Devapatla et al., 2014, Sherman-Baust et 

al., 2011). Gene expression profiling offers functional assessment of the cell 

alteration in resistance development, which is not possible to see from gene mutation 

analysis alone.  

Hypothesis: mRNA expression analysis will show different gene alterations for 

rucaparib compared to cisplatin resistant cell lines. 

The top 10 upregulated and top 10 downregulated genes for each derived cell line 

compared to parent control expression are listed in Table 6-11. LogFC is also listed 

for each gene. A number of genes were noted in more than one cell line list, and 

these are highlighted.  

S100A4 was upregulated in both UWB1.289-IR and PEO1-IR. Considerable 

evidence suggests that activation of the WNT signaling pathway plays an important 

role in human tumorigenesis and radio-sensitivity (Chang et al., 2008b). A further 

inhibitor of WNT signaling is DKK1, which inhibits cell motility and blocks invasion 

(Anastas and Moon, 2013), was downregulated in both UWB1.289-BRCA1 and 

PEO4. Furthermore, DKK1 negatively regulates cellular resistance to cisplatin in 

head and neck cancers (Shen et al., 2012).  
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Table 6-11 Top 10 genes differentially expressed in resistant cell lines.  

Top 10 upregulated and top 10 downregulated genes in each cell lines compared to parent line controls were selected. Genes which are 
common to two or more cell lines are marked in red.  

UWB1.289-

699R 

log

FC 

UWB1.2

89-

CDDPR 

log

FC 

UWB1.28

9-IR 

log

FC 

UWB1.28

9-BRCA1 

log

FC 

PEO1-699R log

FC 

PEO1-

CDDPR 

log

FC 

PEO1-IR log

FC 

PEO4 log

FC 

Top 10 upregulated genes 

CA2 

TPK1 

S100A9 

IGFBP7 

DUSP1 

SNAR-A1 

SPOCK1 

CCNA1 

CRYAB 

CXXC5 

3.1 

2.6 

2.6 

2.3 

2.2 

2.2 

1.9 

1.9 

1.8 

1.8 

PAEP 

TNC 

OBP2B 

PAEP 

COMMD1 

TNC 

FAM107A 

GAMT 

DKK3 

GLRX  

2.9 

2.7 

2.2 

2.2 

2.0 

1.9 

1.9 

1.9 

1.9 

1.8 

BGN 

TUBB2B 

FBLN1 

APOE 

THY1 

FBLN1 

S100A4 

GAMT 

TFPI2 

HKDC1 

3.4 

2.4 

2.1 

1.9 

1.7 

1.7 

1.6 

1.6 

1.5 

1.5 

IGFBP5 

TMEM178A 

NPR3 

KCNIP1 

TPK1 

ACKR2 

ABCA4 

PASD1 

TMEM178A 

LMCD1 

3.7 

2.4 

2.3 

2.3 

2.2 

2.2 

2.2 

2.1 

1.9 

1.9 

CLDN23 

TRIB1 

ARHGEF35 

MARCKSL1 

PKD1L1 

ARPC1B 

LY6E 

CARD9 

BAIAP2L1 

BTBD2 

1.7 

1.4 

1.3 

1.2 

1.1 

1.1 

1.0 

1.0 

1.0 

0.9 

TXNIP 

MMP7 

MID1 

MMP7 

FOXC1 

TM4SF1 

MECOM 

SLC16A3 

EFEMP1 

CBR3 

2.3 

2.2 

2.2 

2.1 

1.8 

1.8 

1.8 

1.7 

1.7 

1.6 

CRABP2 

FOXC1 

FST 

CDH2 

LTB 

CUTA 

KRT13 

S100A4 

SGK1 

GPNMB 

2.7 

2.3 

2.1 

1.3 

1.2 

1.2 

1.1 

1.1 

1.1 

1.1 

CRABP2 

MX1 

AKR1D1 

IFIT1 

IFITM1 

EMX2 

ISG15 

IFI44 

IFIT2 

IFITM2 

5.0 

4.6 

4.2 

4.2 

3.9 

3.8 

3.8 

3.6 

3.5 

3.5 

Top 10 downregulated genes 

ETFB 

UCHL1 

BCAT1 

COCH 

KLHL35 

ETFB 

MARCKSL1 

MGST1 

CLDN11 

MCOLN2 

-2.4 

-2.1 

-2.1 

-2.0 

-2.0 

-2.0 

-1.8 

-1.8 

-1.8 

-1.8 

KRT6A 

LAD1 

ANGPTL4 

CDH6 

MGST1 

IL1RL1 

THBS1 

STEAP1 

IFI27 

TXNRD1 

-2.9 

-2.3 

-2.2 

-2.1 

-1.9 

-1.9 

-1.9 

-1.9 

-1.8 

-1.8 

KRT6A 

PI3 

LCN2 

ANXA2 

SOD2 

SLPI 

RNASET2 

RHPN2 

AADAC 

SNHG7 

-2.1 

-2.1 

-1.9 

-1.4 

-1.3 

-1.2 

-1.1 

-1.0 

-1.0 

-1.0 

TM4SF1 

MUC1 

REC8 

DKK1 

MUC1 

VIM 

CLDN11 

VIM 

CAMK2N1 

FOXQ1 

-3.2 

-3.1 

-2.8 

-2.7 

-2.3 

-2.2 

-2.1 

-2.0 

-2.0 

-1.9 

RASIP1 

IER3 

SLIT2 

MKX 

IL1R2 

CBLN1 

P3H2 

CSRP1 

HDGFRP3 

GLIPR1 

-2.7 

-2.1 

-1.6 

-1.6 

-1.5 

-1.3 

-1.3 

-1.1 

-1.1 

-1.0 

IL1R2 

IER3 

MKX 

FLG 

CBLN1 

C1QTNF1 

PNOC 

SLC4A11 

CPA4 

GABBR2 

-3.9 

-3.5 

-3.2 

-2.2 

-2.1 

-1.9 

-1.9 

-1.9 

-1.9 

-1.8 

DIRAS3 

LRRFIP2 

ACAA1 

RPL14 

GJB2 

CTSH 

SDHAF3 

MYD88 

OXSR1 

GSTP1 

-2.5 

-1.8 

-1.5 

-1.4 

-1.4 

-1.4 

-1.4 

-1.3 

-1.3 

-1.3 

IL1R2 

PROM1 

MKX 

BEX1 

RBP7 

SCG5 

HOXB8 

DKK1 

DIRAS3 

IER3 

-4.4 

-4.2 

-3.6 

-3.2 

-3.2 

-3.0 

-3.0 

-2.9 

-2.9 

-2.8 
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TPK1 and CLDN1 were commonly altered in UWB1.289-699R and UWB1.289-

BRCA1. TPK1 is reported to potentiate the growth inhibitory effects of cisplatin in 

ovarian cancer cell lines (Arora et al., 2010). CLDN11 encodes the extracellular 

matrix protein that functions as cell-cell adhesion molecules, and when disrupted, 

may contribute to the invasion and metastasis of cancer (DelloRusso et al., 2007). 

Contrary to previous studies reporting that MGST1 is elevated in cisplatin resistant 

ovarian cell lines (Li et al., 2007), in this study MGST1 was downregulated in both 

UWB1.289-699R and UWB1.289-CDDPR derivatives. FOXC1 was upregulated in 

both PEO1-CDDP and PEO1-IR cell lines. This gene has been previously associated 

with cisplatin resistance in lung cancer (Guo et al., 2010), and may also have an 

important role in cisplatin resistance in these cell lines.  

In the top 10 altered genes, MARCKSL1 was upregulated in PEO1-699R, but 

downregulated in UWB1.289-699R. This finding suggests no consistent role in 

resistance development.  

6.4.6.1 Common Gene Expression Alterations in Resistant Cell Lines 

Gene expression profiling from the two parent cell lines identified very different 

expression signatures, which were initially analysed separately. The majority of the 

over- and under-expressed genes were specific for each derived cell line, but some 

were common to both cell lines. All UWB1.289 cell line derivatives were found to 

overexpress four, and under-express five common genes (Figure 6-15.A). Common 

genes found to be upregulated in platinum resistant UWB1.289 cells, including 

CXXC5, PJA2, NDUFA2 and TUBB2B, have not been previously reported in the 

cancer literature. However, some of the downregulated genes have been reported to 

be linked to a number of human cancers, including LCN2, TMED3, and SEMA4B, as 

summarised in Table 6-12. All three are reported to be have roles in the inhibition of 

progression, growth and metastasis. Therefore, the downregulation seen in the 

platinum resistant cell lines may be important in resistance development.  
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A 

 
B  

 
Figure 6-15 Differential expression analysis of resistant cell lines.  

Venn diagrams of differentially expressed gene counts in each cell lines compared to 
parent line controls (http://bioinfogp.cnb.csic.es/tools/venny). Genes included in 
analysis were found to have > 1.5 fold alteration in expression and adjusted p < 0.05. 
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Table 6-12 Reported links to human cancer of genes with altered expression in 
resistant cell lines. 

Gene Potential role Cancer Reference 

LCN2 Early detection 

Progression 

Pancreatic cancer 

Breast cancer 

(Cheng et al., 2014, 

Slater et al., 2013) 

TMED3 Drug target  

Metastatic suppressor 

Prostate cancer 

Colon cancer 

(Duquet et al., 2014, 

Vainio et al., 2012) 

SEMA4B Inhibits growth Lung cancer (Jian et al., 2015) 

SOCS2 Tumourgenesis 

Promote growth 

 

Oxaloparib resistance 

GI cancers  

Prostate and 

breast cancers  

Ovarian cell lines 

(Zhou et al., 2015, 

Hoefer et al., 2014, 

Haffner et al., 2007) 

(Varma et al., 2005) 

IFI16 Growth suppressor Prostate cancer (Bui et al., 2009) 

SLCO2A1 Mediate invasion  

Modulate susceptibility 

Lung cancer  

Colorectal cancer 

(Zhu et al., 2015) 

(Pereira et al., 2014) 

BEX1  Biomarker for resistance 

to neoadjuvant 

chemotherapy 

HER-2-negative 

breast cancer 

(de Ronde et al., 

2013) 

TMEM158 Biomarker for cisplatin 

sensitivity 

Lung cancer (Mohammed et al., 

2012) 

SERPINE2 Promotor for lymph 

node metastasis 

Testicular cancer (Nagahara et al., 

2010) 

AKR1C3 Regulator of 

proliferation and 

doxorubicin resistance  

 

Pathogenesis 

Breast cancer  

 

 

 

Prostate cancer 

(Murugan et al., 

2012) (Zhong et al., 

2015) (Liu et al., 

2015, Yepuru et al., 

2013) 

BAIAP2L1 Promotion of cell 

proliferation and 

inhibiting apoptosis 

Ovarian cancer (Chao et al., 2015) 

MCM7 Progression Prostate cancer (Ren et al., 2006) 

RHBDD2 Over expressed Breast cancer and 

advanced 

colorectal cancer 

(Lacunza et al., 2012, 

Abba et al., 2009) 

SF3A1 Polymorphisms increase 

the risk   

Pancreatic and 

colorectal cancer 

(Tian et al., 2015, 

Chen et al., 2015) 

SLIT2 Hypermethylation  

 

Poor prognosis and 

metastases 

Ovarian cancer 

 

Breast cancer, 

esophageal and 

pancreatic cancers 

(Dong et al., 2012) 

(Gonin et al., 2010, 

Qin et al., 2015) 

(Gohrig et al., 2014, 

Tseng et al., 2015) 

IER3 Mediate of apoptosis Cervical cancer (Jin et al., 2015) 
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When PEO1 derivatives were analysed, no common overexpressed genes were 

noted, however two under expressed genes were common to all the cell line 

derivatives these were SOCS2 and CBLN1 (Figure 6-15.B). The SOCS2 reported 

role in promoting growth and oxaloparib resistance (Table 6-12) suggests that it may 

be an important target for resistance to both platinum and rucaparib. 

When only rucaparib resistant cell lines were analysed, five common genes were 

found to be upregulated and twenty five downregulated (Figure 6-15.A). Of those that 

were downregulated, a number may be potential targets for drug resistance; with 

previously reported roles in growth, metastasis and chemo resistance, these include 

IFI16, SLCO2A1, BEX1, TMEM158, SERPINE2 and AKR1C3 (Table 6-12) (Bui et al., 

2009, Zhu et al., 2015, de Ronde et al., 2013, Mohammed et al., 2012, Nagahara et 

al., 2010, Murugan et al., 2012, Zhong et al., 2015).  

In PEO1 derivatives resistant to rucaparib, twelve upregulated and ten 

downregulated genes were found to be common (Figure 6-15.B). Of these genes, 

two may be important targets; these are BAIAP2L1, which promotes cell proliferation 

and inhibits apoptosis (Chao et al., 2015), and MCM7 which promotes progression 

(Ren et al., 2006). Of the genes which were found to be under expressed, a number 

have also been reported in the literature to be linked to human cancers, and 

therefore, could be potential therapeutic targets; these include SLIT2, which is 

associated with metastases (Gonin et al., 2010, Qin et al., 2015, Gohrig et al., 2014, 

Tseng et al., 2015), and IER3, a mediator of apoptosis (Jin et al., 2015). The altered 

function of all of these genes may represent potential mechanisms for rucaparib 

resistance, which are independent of platinum sensitivity. However, no common 

targets were found between the two cell lines.  

Next, gene expression profiles in cell lines derived by exposure to the same 

treatment were compared (Figure 6-16). Rucaparib derived cell lines share only 2 

commonly upregulated genes (ARHGEF35 and BAIAP2L1) and no down regulated 

genes (Figure 6-16.A). Irradiated cell lines were found to have three upregulated and 

four downregulated genes in common (Figure 6-16.B). Cisplatin derived cell lines had 

24 upregulated and 26 downregulated genes in common (Figure 6-16.C). Of the 

genes discussed already, SLIT2 and SOD2 were found to be upregulated in both 

PEO1-CDDPR and UWB1.289-CDDPR cells, and are therefore, likely to be important 

targets which need to be explored further. 
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A B 

 

 
C D 

  
Figure 6-16 Differential expression analysis by drug treatment in resistant cell lines.  

Venn diagrams of differentially expressed gene counts in each cell line compared to 
parent line controls. A. Rucaparib derived cell lines, B. Irradiated derivative cell lines, 
C. Cisplatin treatment derived cell lines, D. BRCA competent paired cell lines.  Genes 
included in analysis were found to have >1.5 fold alteration in expression and 
adjusted p < 0.05. 

 

Interestingly, the largest similarities were found between the two BRCA competent 

cell line controls, UWB1.289+BRCA1 and PEO4 (Figure 6-16.D), with 41 upregulated 

and 55 downregulated commonly shared genes. These two cell lines were generated 

in very different ways; UWB1.289+BRCA1 was derived from UWB1.289 by 

transfection of BRCA1, whilst PEO4 was derived from the same patient as PEO1 
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after clinical resistance development. This finding is therefore surprising and needs 

further exploration. 

6.4.6.2 Pathway Enrichment of Genes with Altered Expression in Resistant Cell 

Lines 

In order to gain some insight into the possible mechanisms that are important in the 

development of resistance to these drugs, pathway analysis was performed using 

genes that were found to show significant differences in expression, in each 

resistance phenotype. KEGG, GO, and IPA databases were used for enrichment of 

any potential pathways/terms in the drug resistant cell lines (Table 6-13). While many 

pathways were found to be enriched in each resistant phenotype, some pathways 

emerged as consistently identified in at least two databases.  

In UWB1.289-699, the predominant pathway noted was involved in cell cycle control 

(Table 6-13), which has been linked to anoikis and taxol resistance in ovarian cancer 

in vitro (Carduner et al., 2014, Wang et al., 2013a).  In contrast, in PEO1-699R, actin 

regulation was the predominant pathway with altered expression (Table 6-13). A 

recent study reported actin remodelling as a potential mechanism in cisplatin 

resistance (Sharma et al., 2012). The ribosome biogenesis was the pathway 

consistently altered in UWB1.289-CDDPR cells. Altered ribosomal biogenesis has 

been linked to PFS in serous ovarian cancer (Flavin et al., 2008).



 

 
 

2
5

3
 

Table 6-13 Pathway enrichment analysis in resistant cell lines.  

Pathways/Terms found enriched in the indicated databases for each of the resistance derivatives. 

Cell line Ingenuity (top canonical pathways) KEGG (adjP<0.05) GO (p<0.02) 

UWB1.289-

699R 

Cyclins and Cell Cycle Regulation 

(p=3.25E-05) 

Isoleucine Degradation I (p=7.78E-05) 

Cell cycle (adjP=0.0005) 

Metabolic pathway (adjP=0.042) 

Apoptosis (adjP=0.001) 

Amino acid metabolism (adjP=0.001) 

Protein binding (adjP=4.99e-08) 

UWB1.289-

CDDPR 

Mitochondrial Dysfunction (p=1.32E-03) 

Protein Ubiquitination (p=1.63E-03)  

Putrescine Degradation III (p=3.30E-03) 

Metabolic pathways (adjP=0.004) 

Glycosphingolipid biosynthesis 

(adjP=0.04) 

Ribosome biogenesis (adjP=0.04) 

Apoptosis (adjP=0.009) 

Ribosome biogenesis (adjP=0.009) 

Cellular component biogenesis (adjP=0.0004) 

Response to chemical stimulus (adjP=0.001) 

rRNA metabolic process (adjP=0.009) 

Response to oxidative stress (adjP=0.009) 

UWB1.289-

IR 

Histamine Degradation (p=8.96E-04) 

Fatty Acid oxidation (p=1.79E-03) 

- Protein binding (adjP=0.002) 

PEO1-699R Cleavage and Polyadenylation of Pre-

mRNA (p=1.09E-03) 

Actin Nucleation (p=1.62E-03) 

Regulation of Actin-based Motility 

(p=5.64E-03) 

Endocytosis Signalling (p=7.16E-03) 

Fc gamma R-mediated 

phagocytosis (adjP=0.0009) 

Regulation of actin cytoskeleton 

(adjP=0.005) 

Actin polymerization (adjP=0.01) 

Negative regulation of chemotaxis (adjP=0.01) 

PEO1-

CDDPR 

Endocytosis Signaling (p=2.13E-03) 

Phagosome maturation (p=6.03E-03) 

Phosphatidylcholine Biosynthesis  

(p=6.60E-03) 

Superoxide Radicals Degradation 

(p=6.60E-03) 

- Cellular component organization (adjP=0.005) 

Cell morphogenesis and migration (adjP=0.01) 

Cell-substrate junction assembly (adjP=0.01) 

Cell growth (adjP=0.014) 

Signal transduction (adjP=0.014) 

Protein binding  (adjP=1.60e-05) 

PEO1-IR Mismatch Repair (p=6.17E-03) 

Cell junction signalling (p=6.26E-03) 

ERK5 Signalling (p=1.11E-02) 

- Tumour necrosis factor receptor 

binding (adjP=0.007) 



 

 
 

2
5

4
 

Table 6-14 Genes with mutations and altered expression in derived cell lines and previously reported links to human cancers. 

Derived cell 

line 

Gene logFC AveEx

pr 

t adj.P.

Val 

Reported in  Ref 

UWB1.289-

699R 

EFEMP2 -1.33 8.48 -8.62 0.00 Biomarker for early detection of colorectal cancer (Yao et al., 2012) 

PCNXL4 -0.65 9.09 -4.74 0.01   

TIAM2 0.59 8.01 4.23 0.01   

UWB1.289-

CDDPR 

SOD2 -1.11 9.92 -10.70 0.00 Increased risk of ovarian cancer and pro-survival 

in ovarian cancer cells in vitro. Implicated in lung, 

colon and prostate. 

(Dier et al., 2013, Miar et 

al., 2015) 

LRSAM1 0.75 8.89 10.07 0.00   

PDE2A 0.82 7.14 7.06 0.00   

LTBP4 0.84 7.40 4.91 0.01   

GNL3 -0.62 10.67 -4.73 0.01 Biomarker predicting treatment response in breast 

cancer  

Metastasis susceptibility gene in prostate cancer  

(Tamura et al., 2010, 

Lee et al., 2015) 

UWB1.289-IR ETFA -0.61 10.51 -6.08 0.00   

PHLDB1 0.81 8.24 4.80 0.01   

LAMA1 0.63 7.05 3.95 0.04   

PEO1-699R LZTR1 -0.66 8.56 -5.95 0.02   

        

PEO1-CDDPR DLX1 -0.98 8.42 -5.50 0.00   

SF3A3 0.61 10.22 4.99 0.01   

ABCA1 0.92 7.03 4.06 0.02 Poor prognosis in serous ovarian carcinoma  (Hedditch et al., 2015, 

Chou et al., 2015) 

PCCB 0.70 10.39 4.03 0.02   

LAMB3 -0.89 9.32 -3.72 0.04 Susceptibility gene in cervical cancer 

Pro-metastasis gene in lung cancer  

(Wang et al., 2013b, 

Zhou et al., 2010) 
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6.4.6.3  Genes with Mutations and Altered mRNA Expression  

A subset of genes was noted in which gene mutations were accompanied with an 

altered expression (Table 6-14), with either up or down regulation at the mRNA level. 

Assessment of the protein level alteration is needed before the functional effects can 

be ascertained, however these genes may potentially be important resistance 

targets. Of the genes in Table 6-14, two, ABCA1 and SODS2 have previously been 

reported in association with ovarian cancer. LAMB3, EFEMP2 and GNL3 have been 

reported in association with other human cancers, and may be potential targets for 

chemo-resistance.  

6.4.6.4  The Expression of Potential Target Genes in PCO Cultures 

The effect of gene alteration on survival would provide the greatest information of the 

role of these targets in resistance development. However, publically available 

databases that contain gene alteration and survival outcomes are for patients treated 

with standard therapy and not PARPi. Therefore, targets for PARPi resistance may 

not have a measurable effect on survival outcomes. In order to address this question, 

a selected sample of PCO cultures were assessed for gene expression, and for 

rucaparib and cisplatin resistance in vitro. Differences for the expression of 

potentially important genes were assessed. 

Of those genes assessed, SERPINE2 and IER3 were significantly differentially 

expressed between the rucaparib resistant and sensitive PCO cultures (Figure 6-17). 

In PCO cultures, expression was higher in resistant cohorts, but expression from this 

gene was downregulated in the resistant cell line derivatives. IER3 gene expression 

was found to be significantly lower in resistant cell lines and PCO cultures, and may 

therefore be an important target to explore in further studies. Of the potential targets 

selected for platinum resistance, no significant differential gene expression was 

noted in PCO cultures (Figure 6-18).  
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Figure 6-17 Expression of potential rucaparib resistance target genes in PCO 
cultures. 

Expression was assessed by full genome array. Expression of individual genes was 
plotted by level of PCO sensitivity to rucaparib, assessed by SRB assay.  

 

 

Figure 6-18 Expression of potential cisplatin resistance target genes in PCO cultures.  

Expression was assessed by full genome array. Expression of individual genes was 
plotted by level of PCO sensitivity to cisplatin, assessed by SRB assay. 
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6.5 Summary of Chapter 

In this study resistant cell lines were derived from BRCA mutant ovarian cancer cell 

lines by continued exposure to cisplatin, rucaparib or fractionated irradiation. 

Characterisation of these cell lines found that:  

 Cell lines derived by exposure to cisplatin and rucaparib were cross resistant 

to both drugs, whereas, cell lines derived by fractionated irradiation were only 

resistant to cisplatin. 

 Cell lines derived by increasing the concentration of cisplatin and rucaparib 

were HRC. 

 No significant alteration in NHEJ or BER pathways was seen in resistant 

derivatives.  

 Multiple mutations were noted in all derived cell lines, compared to parent 

lines. The majority were somatic single nucleotide alterations. 

 Genome expression arrays found a number of gene expression levels to be 

altered. Gene expression levels of each parent cell line derived lines were 

very different from each other.  

 A few potential targets for resistance mechanisms were identified, which had 

altered expression in common across all rucaparib or all cisplatin resistant 

lines. 

6.6 Discussion 

In this study six resistant cell lines were derived from two parent HRD cell lines. In 

both models cells grown in either rucaparib or cisplatin were resistant to both agents. 

Therefore, significant overlap between the two resistance mechanisms is evident. In 

both models, cells which were irradiated were resistant to cisplatin, but not rucaparib, 

thus suggesting that some mechanisms which result in cisplatin resistance do not 

produce resistance to rucaparib. This is evident from studies demonstrating the 

response of cisplatin resistant tumours to PARPi in clinical trials (Fong et al., 2010).   

6.6.1 Regaining of HRC is Associated with Rucaparib Resistance 

In these models rucaparib and cisplatin derived resistant cells regained HR function. 

Irradiation derived cell lines did not regain HR function. Results from this study 

confirm the importance of the HR function in rucaparib resistance reported in the 
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literature (Sakai et al., 2008, Swisher et al., 2008, Edwards et al., 2008, Barber et al., 

2013, Norquist et al., 2011). However, in contrast to published reports, reverse 

mutations in BRCA were not found in any of the resistant cell lines. Also, no 

significant change in expression level of BRCA were found in any of the resistant cell 

lines. Epigenetic alterations and protein expression of BRCA genes was not 

assessed in this study. Furthermore, the genome expression arrays carried out did 

not include microRNA, and so the expression of microRNA miR-182 which negatively 

influences BRCA1 expression (Moskwa et al., 2011) could not be assessed. 

Therefore alteration in BRCA function may still be a potential mechanism for HRC 

recovery however, not by mutation or BRCA genes.  

A somatic point mutation in 53BP1 in PEO1-699R was noted in 33 % of reads. This 

translates to 66 % of cells harboring a 53BP1 mutation. The evidence from the 

literature supports an interaction of 53BP1 with BRCA1 (Bunting et al., 2010, 

Brandsma and Gent, 2012, Oplustilova et al., 2012). The PEO1 cell line harbors a 

BRCA2 and not a BRCA1 mutation. Therefore, mutations in 53BP1 may also have a 

role in regaining HR competence beyond interaction with BRCA1. An increase of HR 

function by 53BP1 mutation could be the explanation for gaining HR function in this 

cell line, and may be linked to rucaparib resistance. However, further assessment of 

this interaction is required before conclusions could be drawn. Also 53BP1 mutations 

were not found in any of the other derived cell lines, therefore, it alone is unlikely to 

explain HR function recovery. 

RAD51B mutations were noted in all three UWB1.289 derivatives. The most likely 

explanation for finding the same point mutation in all three cell lines is that this 

mutation is found in a subclone of the parent line. UWB1.289-IR also harbors the 

RAD51B mutation, however this cell line derivative did not regain HR function. It is 

therefore unlikely that this mutation has an important role in HR function or rucaparib 

resistance. RAD51B mutations have been reported as a predisposition risk for breast 

cancer (Golmard et al., 2013, Orr et al., 2012). The patient from whom the UWB1.289 

cell line was derived developed breast cancer at age 42, followed by ovarian cancer 

at age 54. Therefore, as well as the BRCA1 mutation, the RAD51B mutation may be 

a germline mutation that this patient carried. As germline DNA for this patient is not 

available this hypothesis cannot be confirmed.  
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Mutations in a number of NER pathway genes were also noted in derived cell lines. 

These include ERCC1, GTF2H1, RAD23B and ERCC2. Platinum-based 

chemotherapy forms DNA adducts, which subsequently inhibit DNA replication. 

Removing platinum intra-strand DNA adducts requires the NER pathway. Links 

between NER defects and platinum sensitivity are well described. However, a recent 

study, using the TCGA ovarian dataset, has described a subgroup of HGSOC with 

NER alterations associated with a phenotype of platinum sensitivity similar to that of 

BRCA1/2 mutated tumors, with improved OS and PFS (Gayarre et al., 2016, 

Ceccaldi et al., 2015b). Importantly however, NER alterations were also linked to 

PARPi resistance. The reported alterations were polymorphisms of genes ERCC4 

and ERCC6, which were not noted to be mutated in resistance lines from this cohort 

(Ceccaldi et al., 2015b). However, an ERCC1 mutation was noted in the UWB1.289-

699R cell line in this project. Therefore, NER defects may have a potential role in 

rucaparib resistance in this cell line. Validation of NER pathway function in all the cell 

lines is required before any conclusions could be drawn.  

6.6.2 NHEJ Pathway was not Altered During Resistance Development 

Contrary to the evidence of NHEJ function in the resistance to rucaparib in the 

literature and in chapter 4, no change in NHEJ function was found in any resistant 

cell lines. The explanation for this may be that NHEJ function is an inherent 

determinant of sensitivity, and is not an acquired resistance mechanism. Further 

evidence for this is the fact that the BRCA competent counterparts of these cell lines 

had the same NHEJ function as the BRCA defective cell lines at the start of the 

study. Cisplatin has been shown to inhibit NHEJ function in this study and by other 

groups (Diggle et al., 2005). The fact that NHEJ function remained unchanged after 

cisplatin treatment was removed would suggest that NHEJ inhibition by cisplatin is 

only a temporary effect whilst the drug is applied to the cells. This finding needs to be 

further assessed as it may have important implications for clinical practice. 

Combination therapy is commonly used in the treatment of ovarian cancer, a number 

of trials are underway combining platinum and PARP inhibitors. These include phase 

one trials to assess the maximum tolerated dose of olaparib in combination with 

carboplatin (NCT02418624), as well as in combination with carboplatin and/or 

paclitaxel (NCT00516724) and a phase 1b trial of olaparib plus weekly carboplatin 

and paclitaxel in relapsed ovarian cancer (NCT01650376). Therefore, as NHEJ 

inhibition results in PARPi resistance, the combination of PARPi and platinum based 
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therapy could be predicted to have no significant benefits. Results of ongoing 

combination trials will be important for observation of this effect.  

6.6.3 Mutations Signatures are Dependent on Pre-existing Defects and Drug 

Treatment 

The mutation signatures obtained were very different for each derived cell line. This 

echoes a number of studies in the literature which all report different signatures for 

resistance. Furthermore, the signatures for resistance to different drugs, whilst very 

different, resulted in cross resistance in -699R and -CDDPR derivatives. This finding 

suggests that mutations in the cells are dependent on existing defects, as well as the 

drug treatment used. The important differences observed were between the number 

of mutations noted in UWB1.289 derivatives, compared to PEO1 derivatives treated 

with rucaparib and irradiation. The relatively few mutations in PEO1 cell lines suggest 

that the resistance in this line is more likely to be clone selection, rather than 

mutation based. This cannot be concluded without validating each mutation that was 

found.  

No point mutations in PARP-1 were noted in these resistance cell lines, and PARP-1 

expression at mRNA level was not significantly altered. Due to the time limit of this 

study, PARP activity was not assessed, which may provide important answers into 

the resistance mechanisms of these cell lines.  

Mutations in PI3CA/AKT and MAPK pathways were found in all resistant cell lines, 

and therefore are likely to have an important role in platinum resistance. Again, as 

mutations in these pathways are found in all derivative cell lines, these are likely to 

be a generic resistance mechanism, as described in the literature.  

6.6.4 Gene Expression Signatures are Dependent on Pre-existing Defects and 

Drug Treatment 

Expression array analysis demonstrated that the derivatives of the two cell lines were 

very different from each other. This adds further evidence to the complexity of 

resistance development, as both cell lines were exposed to the same drug and 

irradiation treatments at the same time. The evidence for the significant difference 

between RNA profiles of cells resistant to different drugs has previously been 

published (Sherman-Baust et al., 2011, Koussounadis et al., 2014). The results from 
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this study provide support to the notion that resistance development is both drug and 

tissue specific. A possible explanation for this clear difference may be that the 

majority of the resistance mechanisms are found in subclones in the parent lines and 

the drug treatments select for these subclones. This is supported by the finding of a 

number of mutations which were selected for from parent to resistant line. Therefore, 

assessing the common expression profiles of all the derived cell lines resistant to 

rucaparib, from PEO1 and UWB1.289 derivatives, produced a short list of potential 

targets for rucaparib resistance. An assessment of literature has noted that a number 

of these targets have been reported to be associated with either cancer susceptibility, 

metastasis, drug resistance or poor outcome. However, most of the evidence is from 

small studies in different cancers. Assessment of publically available databases, 

such as the TCGA database, provides some insight into the role of targets in ovarian 

cancer chemo-sensitivity; however, as the patients in the database were treated with 

standard platinum therapy and not PARPi, it does not provide all the answers. An 

assessment of these targets in a rucaparib treated population is required for full 

validation.  

6.7 Further Work 

To validate the findings of this study, identified targets will need to be validated. This 

is planned to be done firstly by RT-qPCR of the selected top candidates of the genes. 

Furthermore, as protein expression can be altered post transcription, western blotting 

validation is required for the top candidates. Validation of these targets by 

experimental inhibition / upregulation is then required to assess their function. The 

assessment of BRCA1 and BRCA2 protein expression is especially important, as the 

literature reports BRCA mutations as the mechanism for HR recovery. Protein 

expression and function of other proteins involved in HR would give a greater insight, 

demonstrating any post translational modification which resulted in HR recovery.  

An assessment of the other DNA repair pathways documented to result in platinum 

resistance needs to be undertaken in the resistant cell lines. This includes NER and 

MMR function of all derived cell lines. These assays were not performed in the 

laboratory at the time of this project, but the NER assay has now been optimised 

(Woodhouse et al., 2014) and assessment of these cell lines is planned. Assessment 

of PARP activity in resistant cell lines would also provide further insight into PARP 

resistance.  
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Important further work planned, is to develop xenografts from the parent and derived 

cell lines, and assess their biology in vivo. This would give insight into tumour 

development and the spread of HR defective and HR recovered resistant cell lines.  
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CHAPTER 7 CONCLUDING DISCUSSION AND FUTURE DIRECTIONS  

Increased understanding of the underlying genetics and aetiology of ovarian cancer 

provides further insights into its complexity, and subsequently, the hope that a single 

cure will be developed begins to dissipate. A major limitation for the treatment of 

ovarian cancer is the late stage of presentation. The search for effective screening 

tools has so far failed to translate into improved outcomes (Menon et al., 2009). 

Earlier diagnosis would rely on a better understanding of the development and 

progression of ovarian cancer. It is therefore more realistic, whilst further 

understanding is being gathered, to concentrate on life prolonging treatment and 

patient selection for treatment, rather than a cure. The immediate aim should 

therefore be to turn ovarian cancer into a chronic disease, rather than the ‘silent killer’ 

which it is currently regarded as.  

Surgery plays an essential role in the management of ovarian cancer, and this should 

be undertaken at a time when complete cytoreduction is thought to be achievable. A 

good response at presentation is observed from the combination of platinum and 

taxane agents, and more recently by addition of bevacizumab. At relapse the 

development of resistance limits the available choice of agents. The polypharmacy of 

secondary chemotherapy agents has not been shown to be effective. Furthermore, 

the toxic profile of most of the available agents, coupled with the typically advanced 

age and multiple comorbidities of patients, limit the use of polypharmacy (Markman, 

2009). A better treatment strategy would be to select patients for the appropriate 

treatment at the appropriate stage of the disease, based on the biomarkers for 

response. This strategy is restricted by our limited ability to accurately predict the 

response to treatment. Further understanding of the response and resistance 

mechanisms, for not only standard chemotherapy, but also novel agents and 

biomarkers to predict response is essential. This understanding would not only allow 

prediction and monitoring for resistance development and clinical relapse, but also 

selection of the most appropriate novel agents for each phase of treatment, which 

may add overall survival benefit, whilst limiting toxicity.  

DNA damaging chemotherapy has been at the forefront for cancer therapy since the 

discovery of nitrogen mustard (Gilman, 1963). Genomic instability is an enabling 

characteristic of cancer (Hanahan and Weinberg, 2011), with dysregulation of DNA 

repair contributing to the instability, and ovarian cancer is no exception. 
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Chemotherapy drugs have become increasingly more targeted, however, they still 

rely on the underlying derangement of DNA repair mechanisms in the cancerous 

cells. DSBs are the most toxic form of DNA damage, and if unrepaired result in cell 

death. The application of PARPi in clinical practice is currently limited to BRCA 

mutant tumours. This is based on the association of HRD with sensitivity to PARPi. 

However, DSBs are repaired by the three pathways described so far, and in ovarian 

cancer only HR has been evaluated. Also, understanding of the interaction of the 

three pathways is still incomplete. This project addressed the function and interaction 

of the two main DNA DSBs repair pathways NHEJ and HR, and their role in 

determining chemo-sensitivity.  

7.1 Summary of Results 

A summary of the main objectives, and the additional objectives added during the 

evolution of the project are shown in Table 7-1. 

Table 7-1 Project aims and outcomes  

Aim Comment Publication / 

presentation  

To characterise 

PCO cultures 

PCO cultures were successfully derived with an 

88 % success rate. Varied growth and 

expression of epithelial antigens and CA125 

was noted. 46 % of PCO cultures were found to 

be HRD and associated with increased 

sensitivity to rucaparib and cisplatin in vitro, but 

not survival outcomes. 

(ODonnell et 

al., 2014) 

To characterise 

a novel ovarian 

cancer cell line  

NUOC-1 cells were found to be of epithelial 

origin, and to be hormone receptor negative, but 

tyrosine kinase receptor positive. NUOC-1 cells 

were found to be wildtype for P53 and PTEN, 

but to carry mutations in ARID1. NUOC-1 cells 

were HRC and NHEJC, but BER deficient. 

Two subpopulations of NUOC-1 were derived 

which contain a number of differences including 

copy number changes and MYC amplification. 

New genomic alterations occurred during the 

growth of each cell line. 

Manuscript 

submitted for 

publication 

To assess the 

role of PTEN in 

ovarian cancer 

PTEN mutations in ovarian cancer are rare, but 

may be associated with a survival benefit. 

Inhibition of PTEN is a potential chemo-

sensitiser. 

(McCormick 

et al., 2016) 



  

265 
 

To assess 

NHEJ function 

in PCO cultures 

and correlate 

with sensitivity 

to rucaparib and 

cisplatin 

Assays to assess NHEJ function were 

optimised, and 40 % of PCO cultures were 

found to be NHEJD. HR and NHEJ function in 

PCO cultures were independent of each other. 

Intra-tumour heterogeneity of NHEJ function 

was noted. NHEJD was associated with 

resistance to rucaparib. When combined 

together, only HRD/NHEJC cultures were 

sensitive to rucaparib. Cisplatin inhibited NHEJ 

function. 

Oral and 

poster 

presentations. 

 

Manuscript 

provisionally 

accepted by 

Clinical 

Cancer 

Research  

To assess the 

interactions of 

NHEJ and HR 

pathways in 

ovarian cancer 

biology 

ATR and DNA-PK inhibition was found to be 

cytostatic. DNA-PKi resulted in reduced 

recognition and delay in DSBs repair and 

increase in HR. Inhibition of ATR resulted in 

reduced DSBs recognition and reduction in HR.  

Combination of the two inhibitors resulted in 

continued HR, suggesting an alternative 

activation. DNA-PKi induced radio-sensitisation, 

whilst ATRi induced sensitisation to cisplatin 

and rucaparib in NUOC-1 but not OSEC2 cells.  

Poster 

presentation 

To assess the 

interactions of 

NHEJ and HR 

with PARP-1 

PARPi inhibited DSBs recognition and repair. 

Combination of PARPi and DNA-PKi resulted in 

a delay in DSBs repair, and synergistic increase 

in HR. The combined inhibition of ATR and 

PARP caused a reduction in DSBs recognition, 

but an increase in HR, overcoming the inhibition 

of HR by ATRi.  

 

To develop 

rucaparib and 

cisplatin 

resistant cell 

lines, and to 

assess the role 

of DNA repair in 

resistance  

Resistant cell lines were derived from two HRD 

cell lines. Cross resistance between rucaparib 

and cisplatin was linked to HR recovery. 

Cisplatin resistance in the HRD cell line model 

was also noted. NHEJ and BER pathways were 

not altered in resistant cell lines.  

Poster 

presentation  

To perform 

genome-wide 

molecular 

analysis to 

investigate the 

mechanisms of 

resistance  

A number of mutations and gene expression 

alterations were discovered in resistant cell 

lines. BRCA1 deficient cell line derivatives were 

found to contain more mutations, compared to 

BRCA2 deficient cell line derivatives. No BRCA 

revertant mutations were noted in any of the 

resistant lines. No single target for resistance 

was identified.   

Will form the 

basis for 

subsequent 

grant 

applications 
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7.2 Models for the Research of Ovarian Cancer 

Two models for the study of ovarian cancer biology were characterised: primary 

cultures and a novel ovarian cancer cell line. The use of primary ascitic cultures, 

described in this project, has provided a valuable resource for the study of ovarian 

cancer biology. Use of this model has many advantages over commercially available 

cell lines, but also has several limitations. The heterogeneity of PCO cultures in terms 

of antigen expression, growth rate, morphology, and DNA DSB repair is now clear. 

Whilst the multiple biopsy cohort in this study was small, intra-tumour heterogeneity 

of NHEJ function was also evident. Without assessing the intra-tumoural 

heterogeneity, it is unrealistic to expect a single assay to accurately predict the 

response to a particular cytotoxic agent, and there is a danger that clinical trials that 

do not take this into account may underestimate the actual clinical benefit.  

Cell lines are the most commonly used models to study ovarian cancer with a 

number of advantages; including high proliferative capacity, clonogenicity and 

extended life span in culture. However, a number of disadvantages have also been 

reported with acquired genetic alterations from their cells of origin and loss of 

heterogeneity (Daniel et al., 2009, Domcke et al., 2013). Furthermore, the majority of 

the most commonly used cell lines have been shown not to represent HGSOC 

(Domcke et al., 2013). These disadvantages question the application of many cell 

lines as models for the heterogenous nature of ovarian cancer. However with 

increasing understanding of the genomics of ovarian cancer, appropriate cell lines 

models can be selected. The novel ovarian cancer cell line (NUOC-1), has provided 

further insight into the complexity of ovarian cancer, as well as clonal evolution during 

the growth of the cell line. The mixed population of NUOC-1 cells represents a better 

model for the study of the heterogenous nature of ovarian cancer compared to cell 

lines derived from single clone cells. Further models of this nature are required for 

the academic community. 

An important aspect to consider for the academic community is the difference 

between protein absence and protein inhibition. In this study opposing results were 

found between absence and inhibition of PTEN and of DNA-PKcs. Previous groups 

have also reported that experimentally knockdown protein in cell line models do not 

behave like cancer cells developed in absence of that protein (Hunt et al., 2012, 

Middleton et al., 2015). The differences may be due to the accumulated genetic 
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aberrations in absence of PTEN or DNA-PKcs. However, inhibited protein may also 

produce effects which are not seen in its absence; namely DNA-PKcs auto-

phosphorylation is thought to be necessary for its dissociation from DNA for the 

NHEJ pathway to complete DSB repair. DNA-PKcs binding to DNA DSB may also 

obstruct the recruitment of HR protein. Therefore, inhibition of the kinase activity may 

hinder DNA-PKcs dissociation and hence further impair DNA repair, leading to cell 

death. These differences between inhibition and knockdown have also been 

observed for PARPi (Horton and Wilson, 2013), ATMi (Yamamoto et al., 2012) and 

for the combination of NU7441 and VE-821 ATRi (Middleton et al., 2015). The 

differences between the role of the protein and the pathway also need to be 

considered. Many protein involved in DNA repair have other described functions, 

therefore, inhibition may exert effects through the alternative roles. An example of 

this is increased sensitivity of Ku80 but not in DNA-PKcs defective cell lines to ATRi 

VE-821 (Middleton et al., 2015).  

7.3 DNA DSBs Repair in Ovarian Cancer 

This study provides growing evidence of the degree of dysfunction within the DNA 

repair pathways in ovarian cancer. This is the first study to assess NHEJ function in 

primary ovarian cancer and to quantify the frequency of the deficiencies. Importantly, 

this study has shown that whilst inhibition of NHEJ results in an increase in HR, the 

competencies of the two pathways in PCO cultures are independent. Therefore, 

assessment of both pathways is needed for best selection of patients for treatment 

with PARPi. The lack of assessment of NHEJ function may be one of the factors 

responsible for the variable response to PARPi seen in clinical trials (summarised in 

appendix 2).  

The evolution of HR and NHEJ loss within the pathogenesis of ovarian cancer 

remains however unknown. Whilst evidence exists for the loss of HR being a driving 

mechanism for ovarian cancer, understanding of NHEJ is lacking. The evidence from 

this project suggests that NHEJ is an inherent mechanism of resistance, and not 

acquired during treatment. Evidence in the literature shows a reduced NHEJ function 

in the healthy cells of cancer patients (Bau et al., 2007) – does this mean that NHEJ 

is a driver for carcinogenesis? The assessment of NHEJ function in healthy cells of 

ovarian cancer patients is still required.  
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The third mechanism of DSBs repair, A-EJ, was not formally assessed during this 

project, however, evidence is building for the role of A-EJ in ovarian cancer, 

(Ceccaldi et al., 2015a, Mateos-Gomez et al., 2015). In this project evidence of A-EJ 

was also seen in primary cultures which were NHEJD. Formal assessment of A-EJ 

and its interaction with HR and NHEJ still remains to be investigated.  

Further to the three DNA DSBs pathways, three DNA SSBs repair pathways have 

been described. All of these have also been shown to have variable functions, with 

clinical implications in ovarian cancer. However, DNA repair is only a small fraction of 

the biological function in the cell, with a number of other pathways altered in ovarian 

cancer. As the ability to profile tumours continues to grow, and the effects of 

molecular aberrations on overall function of the cells and subsequent response to 

therapy increases, then more questions arise. If multiple pathways are dysfunctional, 

then how will the pathways interact? Are there dominant pathways or mutations that 

are most important, and if present, do they dictate management? Understanding the 

interplay of all the important pathways in ovarian cancer, alongside the highly 

variable and influential clinical factors, is a sizable challenge for the academic 

community. This challenge is perhaps unachievable using current technologies and 

with groups working in isolation on single aspects. The introduction of novel 

technologies, such as biological programming with artificial intelligence systems 

(Enshaei, 2015), will allow greater profiling and selection of patients for the best 

available therapy. 

7.4 Prediction of Response to PARPi 

Olaparib has been licensed for clinical use for BRCA mutated patients. It has been 

recently demonstrated that 15-20 % of ovarian cancers are BRCA mutated, and 

therefore mainstream clinical testing for germline BRCA mutations is being rolled out 

at present. However, this approach will limit the number of patients who are likely to 

benefit from PARPi, due to much higher rates of HRD in the ovarian cancer 

population. Conversely, not all patients who harbor a BRCA1/2 mutation are HRD, 

and are therefore there will be non responders to PARPi in this group. NHEJ function 

will not be assessed in these patients. Results from this and previous studies have 

demonstrated NHEJD results in resistance to PARPi. Furthermore, the loss of the 

53BP1 protein has been show to restore PARPi resistance in previously sensitive 

BRCA1 mutant models. As demonstrated in chapter 6, BRCA mutated cancers can 
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develop HRC during the process of resistance development through cell and drug 

specific complex mechanisms, which are yet to be fully understood. Therefore, these 

patients will be wrongly selected for a treatment from which they will not benefit.  

Identification of HRD cells by a functional RAD51 assay, and NHEJD cells by a 

functional end joining assay, have been described in this study. The function of both 

of these pathways has been shown to affect in vitro sensitivity to PARPi. Application 

of these assays in clinical practice would allow the selection of patients for the correct 

treatment, however, this approach is still a long way off. A number of weaknesses in 

using such assays have previously been put forward, although many of which have 

been addressed. Firstly, obtaining viable replicating cancer cells from patient 

sources, such as ascites or pleural fluid. The growth and storage of ascitic fluid 

cultures was optimised in chapter 3, with an 88 % success rate. Expanding the use of 

the assay to solid culture biopsies (ODonnell et al., 2014) and effusion from other 

cancers (Patterson et al., 2014) widens the applicability of the assay.  

There is a risk that in developing primary cultures one might exhibit a selection 

pressure on the cell tumour burden. Significant differences have been described 

between cultured cells and primary tumour samples. Heterogeneity between the 

ascites that the NUOC-1 cell line was derived from, and the solid tumour from the 

same patient, as well as observed clonal evolution, further demonstrates these 

differences. Therefore, functional assays need to be optimised to use fresh tissue, 

without the development of primary cultures. An example of this, NHEJ function using 

the monomer end joining assay can be assessed directly using fresh solid samples, 

as described in chapter 4 and also previously described in bladder cancer (Diggle et 

al., 2003). Efforts were also made to adapt the HR assay to be used on fresh tissue 

(ODonnell et al., 2014), however, this has so far been unsuccessful and needs 

further study.  

Another challenge for the development of biomarkers is that the DNA repair function 

may be dependent on the tumour environment. For example, Chan and colleagues 

demonstrated that chronic hypoxia results in the reduced synthesis of essential HR 

proteins, with a three-fold reduction in HR capacity and increased sensitivity to DNA 

damaging agents and PARPi (Chan and Bristow, 2010, Chan et al., 2008). This is 

supported by recent findings that antiangiogenic treatments increase the sensitivity of 
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cancers to PARPi (Benafif and Hall, 2015). Hypoxia is a common feature of solid 

tumours, however may not be replicated in laboratory environment.  

A number of genome wide sequencing approaches are being explored to predict HR 

function. These include sequencing of all HR genes (Turner et al., 2004, Pennington 

et al., 2014), gene expression profiling (http://www.almacgroup.com/news/almac-

validates-novel-test-for-ovarian-cancer-patients), assessing methylation (Ibragimova 

and Cairns, 2011), and patterns of genomic profiling (Abkevich et al., 2012, 

Stefansson et al., 2009). However, as shown in chapter 6, it is not always possible to 

predict HR function from gene mutations or expression studies. More recently 

combination scores encompassing a number of tests, such as genome wide SNP 

profiles, BRCA1/2 mutation screening, and BRCA1 promoter methylation data 

combined HRD score have been explored (Timms et al., 2014). These assays utilise 

high through put technology, do not rely on live cells and have demonstrated an 

association with HRD and cisplatin sensitivity (Telli et al., 2016). Patterns of genomic 

profiling may be acquired during cancer development in HRD tumours, however, 

tumours whose genome has undergone one or more events that restore HR function 

are likely to be misclassified as HRD as a result of prior repair deficiency and its 

genomic scarring (Watkins et al., 2014). Proposals have been made to integrate a 

genomic scar-based biomarker with a marker of resistance in an attempt to improve 

the performance of any companion diagnostic for PARPi, but as yet this has not been 

tested in clinical samples (Watkins et al., 2014). Furthermore, as demonstrated in 

chapter 6, clear biomarkers for resistance to PARPi are still required. In the current 

climate, the cost of genomic studies also need to be taken into account, as it is 

currently not practical for every cancer patient to undergo genomic profiling of the 

tumour.  

7.5 New Treatment Strategies for Ovarian Cancer 

Unlike other cancers, development and approval of new chemotherapy agents in 

ovarian cancers has been limited in the last decade. Bevacizumab and Olaparib are 

the first two drugs to have been approved since 2006. This is likely to be due to the 

improved understanding of ovarian cancer biology and the move away from 

managing ovarian cancer as one disease. These new therapies move us a step 

closer to targeted therapy, and make ovarian cancer an exciting field of development, 

both academically and clinically. A combination of debulking surgery paired with the 
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proven most effective cytotoxic agent, platinum, should remain central to the primary 

management. However, the addition of targeted agents should be based on 

biomarker selection. Importantly, in view of tumour heterogeneity, it is the residual 

tumour that cannot be excised at the time of surgery that should be sampled for 

biomarker selection, as it is this residual tumour that will expand and cause 

relapse/recurrence, and therefore, it is the biology of this tumour that is important for 

targeted therapy.  

In view of the altered function of HR in a resistance setting, as shown in chapter 6, at 

the time of relapse, the tumour should be re-biopsied and re-characterised with 

regards to a biomarker panel. This will enable the selection of the subsequent 

targeted cytotoxic agent, and thus enable the provision of an effective therapy, whilst 

minimising side effects and, hopefully, improve the survival for the patient. 

However, this treatment strategy is not currently possible. Despite the excitement 

from the introduction of the new drugs, the current choice of cytotoxic agents 

available for the treatment of ovarian cancer is relatively limited. Furthermore, no 

current treatments have been paired with a reliable biomarker. This project adds to 

the understanding of sensitivity of ovarian cancer to PARPi and platinum agents. 

Further mechanisms of sensitivity and resistance still need to be explored to ensure 

the correct selection of therapy with minimal toxicity. Further novel agents also still 

need to be developed, which will work predictably in cancers identified by a clinically 

useful assay to be sensitive to that agent.   

A major finding of this study is the complex mechanism of resistance development to 

cisplatin and rucaparib. This study adds to the knowledge of tissue and drug specific 

mechanisms of resistance. Furthermore, the results demonstrate that in addition to 

the published mechanisms of HRC recovery, there are likely to be further 

mechanisms that will need to be explored.  

As well as novel therapies and patient selection, patient monitoring also needs to be 

updated. RECIST (Response Evaluation Criteria In Solid Tumours) is a set of 

published rules that define responsive, stable or progressive disease during 

treatment (Eisenhauer, 2009). RECIST helps to categorise tumours based upon their 

radiological appearance, giving an overall summary of the changes seen. With the 

knowledge of the presence of intra-tumour heterogeneity and the appreciation that 
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distinct areas of tumour are likely to behave differently, modification of RECIST may 

be needed to enable the description of individual tumour areas.  

7.6 Strengths and Weaknesses of This Project  

There are numerous models for the study of cancer that can be applied by the 

research community, and a broad selection of these were used throughout this study. 

The demonstration of the differences between experimental alteration of a target, 

compared to the biological absence in clinical samples is an important strength of this 

project. Whilst this does mean that conflicting results were found in some cases, it 

demonstrates the importance of good models, and use of primary tissue to elucidate 

true roles of targets in ovarian cancer.    

A significant limitation of this project is the lack of complete assessments of the 

mechanisms of resistance in chapter 6. This was mostly due to time limitations, as 

the resistance development took significantly longer than initially expected, thus 

limiting the remaining time for characterisation. Importantly, however the results 

obtained provide evidence of extreme complexity of resistance development. This 

provides an explanation for why, despite extensive research and a number of 

suggested targets, chemo-resistance remains a huge burden to the treatment of 

ovarian cancer. This work will also form the basis of a planned grant application.  

The heterogeneous group of primary cultures, in terms of histological subtypes, 

timing and outcome of surgery, initially appears to be a limitation of this project; 

especially in regard to the current move of clinical trials to separate different 

histological subtypes. However, this is also a great strength of this project, as it 

demonstrates that functional characterisation of tumours is a superior method of 

categorisation, compared to histology, in predicting outcome or response to 

treatment.  

The fact that the patients were treated with standard therapy and not PARPi was 

another important limitation of this study, as the effect on clinical survival could not be 

assessed. However, one strength of our study, in terms of clinical, pathological and 

survival data, is that it was a prospective study collecting sequential samples. The 

clinicians involved in managing the patients were not aware of the in vitro results 

from any of the samples. 
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The limited number of solid samples is an important limitation of this study. However, 

even this number was able to provide evidence of tumour heterogeneity, in terms of 

NHEJ function, and provides sufficient pilot data to justify a larger trial. Clearly, 

standardisation of the number and location of biopsies and a larger number of 

participants will be required for a meaningful analysis of the effect of heterogeneity 

upon patient outcome.  

7.7 Future Work 

The work in this study adds to the growing evidence regarding the importance of the 

DNA DSBs recognition and repair pathways within ovarian cancer. However, it has 

also generated a number of further questions. In order to answer these questions, a 

number of potential future projects are being considered. The immediate plan for the 

NUOC-1 cell line is to make the cell line commercially available, and to undertake a 

MYC project in collaboration with Prof JM. Allan, utilising the isogenic nature of the 

two NUOC-1 subcultures in terms of MYC amplification. Validation of the targets that 

have been identified by SNP array in NUOC-1 cell line, is also planned.  

The assessment of NHEJ function in a larger cohort of fresh / frozen tumour tissue, 

along with biomarker expression in PARPi treated patients is required to gather 

further evidence for the role of NHEJ function in ovarian cancer. As recognition and 

repair of DSBs in NHEJD cells is lower than NHEJC cells, it may be possible to 

predict NHEJD cultures by experiments, such as single point comet assay. This 

needs to be explored alongside assessment of NHEJ function. 

In vivo xenograft studies to confirm ATRi and DNA-PKi interactions are required. In 

vivo experiments would also allow toxicity of the combinations of inhibitors with 

chemotherapy agents to be evaluated.  

To validate the findings of the resistance mechanism study, a number of further 

experiments are planned, and the identified targets will need to be validated. In the 

first instance, this is planned to be done by RT-qPCR of the selected top candidates 

of genes. As the protein expression can be altered post transcription, western blotting 

validation is required for these candidates as well. The next step of validation 

planned is to perform resistance target identification, by experimental knockdown or 

upregulation of selected targets, and to assess if sensitivity is restored in the 
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resistant cell lines. Assessment of PARP activity in resistant cell lines would also 

provide further insight into PARP resistance.  

To gain further understanding into the mechanism for HR recovery, it is important to 

assess the protein expression and function of individual HR genes. This would 

provide a greater insight into any post translational modification which resulted in HR 

recovery. An assessment of the other DNA repair pathway documented to result in 

platinum resistance, would need to be undertaken in the resistant cell lines too. This 

includes NER and MMR function of all the derived cell lines. These assays were not 

performed in the laboratory at the time of this project, but the NER assay has now 

been optimised (Woodhouse et al., 2014), and assessment of these cell lines is 

planned.  

And lastly, the development of xenografts from the parent and derived cell lines, and 

assessment of their biology in vivo, would give insight into tumour development and 

spread of the HR defective and HR recovered resistant cell lines, as well as, the 

ability to assess therapies in a resistant setting.  
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Appendix 1: NHEJ Gene Defects in Human Cancers  

Gene dbSNP ID Intron/ 

Exon 

Original 

Study ID 

Chrom 

position 

Nucleot

ide 

change 

Amino 

Acid 

change 

MAF Increased 

Cancer Risk 

Reference Decreased 

Cancer 

Risk 

Reference 

KU70 rs2267437 5'UTR C-61G 42016699 C>G  0.278 Breast (Willems et 

al., 2008, Fu 

et al., 2003) 

  

rs5751129 5'UTR T-991C 42015765 C>T  0.288 Renal cell, 

Gastric  

(Chang et al., 

2012, Wang 

et al., 2012, 

Yang et al., 

2011) 

  

rs132770 5'UTR A-31G 42017264 A>G  0.157 Renal cell (Chang et al., 

2012, Wang 

et al., 2012) 

  

rs132793 3’UTR A46922G 42063681 A>G  0.157 Breast (Sobczuk et 

al., 2010) 

  

KU80 rs2440 3’UTR G841A 217070766 C>T  0.466 Breast (Willems et 

al., 2008) 

  

rs1051677 3’UTR G-238A 217070248 T>C  0.125 Thyroid (Gomes et al., 

2010) 

  

rs1051685 3’UTR A466G 217070376 A>G  0.143 Thyroid (Gomes et al., 

2010) 

  

DNA-

PKcs 

rs7003908 Intron 

48 

6721G 48770702 C>A  0.291 Glioblastoma (McKean-

Cowdin et al., 

2009) 

  

 

rs6869366 5'UTR T-1394G 82371746 T>G  0.095 Gastric, lung, 

breast, 

prostate, 

colorectal, 

bladder 

(Fu et al., 

2003, Chiu et 

al., 2008b, 

Bau et al., 

2010),(Hsu et 

al., 2009, 

Prostate, 

lung, 

bladder 

(Mandal et 

al., 2011),(Yu 

et al., 

2011),(Chang 

et al., 2009) 
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Zhou et al., 

2012, Chang 

et al., 2008a), 

(Bau et al., 

2010),(Mittal 

et al., 2012) 

rs28360071 Intron 3 intron3 

DIP 

82438112 ->Ins*  N/A Prostate, oral (Mandal et al., 

2011),(Chiu et 

al., 2008a) 

  

rs28360317 Intron 7 intron7 

DIP 

82619560 ->CCT  N/A Bladder, 

prostate 

(Mandal et al., 

2011, Mittal et 

al., 2012) 

  

rs3734091 Exon 6 G739T 82500734 G>T Ala247Se

r 

0.037 Oral (Tseng et al., 

2008) 

  

rs2075685 5'UTR G-652T 82372665 G>T  0.386   Breast (Zhou et al., 

2012) 

rs10057194 3'UTR A9509G 82658571 A>G  0.184   Breast (Zhou et al., 

2012) 

rs10080123 Intron 7 A-30323C 82461266 A>C  0.284   Breast (Monsees et 

al., 2011) 

rs2075686 5’UTR C-571T 82372746 C>T  0.092 Breast (Zhou et al., 

2012) 

  

rs1193693 Intron 6 G-17030A 82537319 G>A  0.304   Breast (Monsees et 

al., 2011) 

rs1017794 Intron 1  82382055 C>A  0.404   Breast (Monsees et 

al., 2011) 

rs10040363 Intron 3  82473645 A>G  0.404   Breast (Monsees et 

al., 2011) 

rs1011981 Intron 1  82393688 A>G  0.314   Breast (Monsees et 

al., 2011) 

rs10042854 intron 3  82439695 C>T  0.399   Breast (Monsees et 

al., 2011) 
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rs4591730 Intron 3  82447802 G>A  0.4   Breast (Monsees et 

al., 2011) 

rs11949301 Intron 6  82505153 C>A  0.224   Breast (Monsees et 

al., 2011) 

LIG IV rs1805388 Exon 4 C54T 108863591 C>T Thr9Ile 0.153 Pancreatic, 

NSCLC,  

(Li et al., 

2009a, Lieber 

et al., 2003, 

Tseng et al., 

2009, Hill et 

al., 2006) 

Childhood 

ALL, NHL, 

MM, CML, 

follicular 

lymphoma,  

B-cell 

lymphoma 

(Andreae et 

al., 2007, 

Roddam et 

al., 2002, 

Sallmyr et al., 

2008),(Hill et 

al., 2006) 

rs3093739 Intron 1 T5482C 107665402 T>C  0.131 Glioma (Liu et al., 

2008) 

  

rs2232641 Exon 4 A2245G 108861645 A>G Ile658Val 0.008 Adenocarcino

ma and 

squamous 

carcinoma of 

the lung 

(Sakiyama et 

al., 2005) 

  

rs1805386 Exon 4 T1977C 108861913 T>C Asp568As

p 

0.093 Breast (Goode et al., 

2002),(Han et 

al., 2004) 

Breast (Kuschel et 

al., 2002) 

rs10489442

1 

Exon 4 G833A 108862784 G>A Agr278Hi

s 

ND Leukaemia (Riballo et al., 

1999) 

  

rs1805389 Exon 4 C26T 107661610 C>T Ala3Val 0.057   MM, ALL (Roddam et 

al., 

2002),(Andre

ae et al., 

2007) 
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Appendix 2: Summary of Clinical Trials of PARPi use in Ovarian Cancer 

Cancer Study 

Population 

Regimen Phase Outcome Refs 

BRCA1/2 breast/ovarian,  

Triple negative breast,  

Sporadic ovarian  

Olaparib 100 mg bd to 

600 mg bd 

I RECIST criteria partial / complete response reported 

in 23 %. GCIG criteria of the CA-125 level, six patients 

with a BRCA mutation had a decline of more than 50 

%.  

Most toxicities were grade 1-2, consisting of nausea 

(32 %), fatigue (30 %), vomiting (20 %), taste 

alteration (13 %), anorexia (12 %), anaemia (5 %), 

and 3 % developed grade 4 thrombocytopenia.  

(Fong et al., 

2009) 

Advanced stage pre-

treated ovarian with 

BRCA1/2 mutations 

Olaparib 40mg od to 

600mg bd.  

I Overall clinical benefit in 46 % (95 % CI, 32 % to 61 

%) of BRCA patients. Median response duration was 

28 weeks. RECIST criteria stable disease / partial / 

complete response or CA125 response was reported 

in 69 %, 45 % and 23 % respectively in platinum 

sensitive, platinum resistant and platinum refractory 

subgroups. 

(Fong et al., 

2010) 

BRCA1/2 ovarian   

Recurrent sporadic 

ovarian  

Olaparib 400mg bd or 

100mg bd  

II Objective tumour response in 33 % for 400mg dose. 

The median progression free survival was 5.8 months 

and clinical benefit rate (complete response / partial 

response / stable disease for >/= 8 weeks) was 52 % 

in the 400 mg bd cohort. Grade 1-2 toxicity: nausea 

(42 %), fatigue (30 %) and anaemia (15 %). Grade 3-4 

toxicity: nausea (6 %), fatigue (3 %) and anaemia (3 

%). 

(Audeh et al., 

2010) 
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Sporadic triple negative 

breast  

Sporadic ovarian 

Olaparib 400mg bd II 25/63 ovarian cancer patients had clinical response 

(28 of which were BRCA1/2 mutant).  

(Gelmon, 2011) 

Platinum sensitive 

relapsed ovarian pre-

treated with 2+ platinum 

agents 

Olaparib 400mg bd vs. 

placebo 

RCT  PFS: median, 8.4 months for Olaparib vs. 4.8 months 

for placebo. Hazard ratio for progression or death - 

0.35. No significant difference was seen for OS.  

Grade 1-2 toxicity - nausea (68 % vs. 35 %), fatigue 

(49 % vs. 38 %), vomiting (32 % vs. 14 %), and 

anaemia (17 % vs. 5 %). 

(Ledermann et 

al., 2012) 

BRCA1/2 relapsed 

ovarian after platinum 

therapy 

Olaparib 400mg bd vs. 

doxorubicin 50mg/m2 

iv every 4 weeks 

II   (NCT00628251) 

BRCA1/2 breast and  

ovarian  

Rucaparib  II Dose escalation followed by open-label multicentre 

study. 

(NCT00664781) 

Platinum-sensitive and 

platinum-resistant 

ovarian  

 

Olaparib 400 mg BID 

PO d1–7 q21d with 

escalating dosages of 

carboplatin 

II Grade 3/4 neutropenia (23 %) and thrombocytopenia 

(20 %).  

(Chiou et al., 

2015) 

Recurrent 

ovarian, breast, 

pancreatic, and 

prostate with BRCA1/2 

mutations 

Olaparib 400 mg 

BID PO daily 

 

II Tumor response rate 31.1 % (ovarian); 12.9 % 

(breast); 21.7 % (pancreatic); 50.0 % (prostate). 

(Kaufman et al., 

2015) 

BRCA1/2 

positive ovarian 

with 

recurrence <12 

Olaparib 200 mg 

BID PO daily vs. 

olaparib 400 mg 

BID PO daily vs. 

II PFS and RECIST assessed odds ratio not significant 

for combined olaparib doses vs. PLD. 

 

(Kaye et al., 

2012) 
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months post 

platinum therapy 

PLD 50 mg/m2  i.v. 

q28 days 

Platinum sensitive, 

HGS ovarian, platinum 

pretreated, 

progression free 

at least 6 months 

Paclitaxel 175 mg/m2  

i.v. day 1 + / - olaparib 

200 mg BID PO d1–10 

followed by 

monotherapy 400 mg 

BID daily Carboplatin  

II PFS for olaparib 12.2 months vs. 9.6 months  

ChemoRx arm. Hazard ration 0.51 (0.21 for BRCA 

mutation carriers).  

Grade 3 toxicity: neutropenia and anemia.  

(Oza et al., 

2013) 

 

Platinum sensitive, 

recurrent, HGS / 

endometrioid 

ovarian, tubal / 

peritoneal with BRCA1/2 

mutations 

Olaparib 400 mg BID 

PO or olaparib 200 mg 

BID PO plus cediranib 

30 mg PO daily 

II median PFS 17.7 vs.9.0 months (hazard ration 0.42).  

Grade 3-4 toxicity: fatigue, diarrhea, hypertension. 

(Liu et al., 

2014) 

HGS / endometrioid with 

BRCA1/2 mutations 

platinum sensitive 

Olaparib III  (NCT01844986) 

HGS / endometrioid Valiparib III  GOG3005 

Relapsed HGS / 

endometrioid with 

BRCA1/2 mutation. 

Platinum sensitive 

Olaparib III  NCT01874363 

Relapsed HGS / 

endometrioid, platinum 

sensitive 

Rucaparib III  NCT01968213 

Relapsed HGS with 

BRCA1/2 mutations 

Niraparib III  NCT01847274 
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Appendix 4: Multiple Comparisons for Inhibition and Knockdown of ATR and DNA-PK with PARPi 

Table 8-1 Tukey’s adjusted for multiple comparisons two way Anova comparisons of treatments in OSEC-2 and NUOC-1 cells.  

Significant results are marked in bold. 

Comparisons OSEC-2   NUOC-1 

 Percent 

reduction in 

cell growth 

Tukey’s 

adjusted P = 

Percent  

reduction in cell  

growth   

     Tukey’s 

adjusted P = 

Control vs. Rucaparib 9.4 0.9999 36 0.1854 

Control vs. NU6027 47 0.0189 68 < 0.0001 

Control vs. NU6027 + rucaparib 56 0.0024 72 < 0.0001 

Control vs. NU7441 -8.7 > 0.9999 41 0.0698 

Control vs. NU7441 + rucaparib 18 0.9619 53 0.0042 

Control vs. NU6027 + NU7441 + rucaparib 58 0.0013 83 < 0.0001 

Control vs. ATR shRNA 29 0.4982 30 0.4381 

Control vs. ATR shRNA + rucaparib 35 0.2302 73 < 0.0001 

Control vs. DNA-PK shRNA 5.4 > 0.9999 -39 0.0992 

Control vs. DNA-PK shRNA + rucaparib 34 0.2722 33 0.2985 

Control vs. DNA-PKcs shRNA + NU6027 + rucaparib 35 0.2238 49 0.0116 

Control vs. ATR shRNA + NU7441 + rucaparib 57 0.0018 77 < 0.0001 

Rucaparib vs. NU6027 + rucaparib 50.6 0.0244 36.3 0.2008 

Rucaparib vs. NU7441 + rucaparib 9.23 > 0.9999 26.56 0.9679 

Rucaparib vs. NU6027 + NU7441 + rucaparib 52.8 0.0142 73.4 0.0203 

Rucaparib vs. ATR shRNA + rucaparib 27.5 0.6987 37.8 0.1596 

Rucaparib vs. DNA-PK shRNA + rucaparib 26.4 0.7538 -4.7 > 0.9999 

Rucaparib vs. DNA-PKcs shRNA + NU6027 + rucaparib 27.5 0.6893 20.3 0.9965 

Rucaparib vs. ATR shRNA + NU7441 + rucaparib 51.7 0.0183 64 0.0670 

NU6027 vs. NU6027 + rucaparib 15.7 > 0.9999 9.4 > 0.9999 
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NU6027 vs. NU6027 + NU7441 + rucaparib 20.75 0.9996 43.8 0.9928 

NU6027 vs. DNA-PKcs shRNA + NU6027 + rucaparib -22.6 0.9982 -19.4 0.9372 

NU6027 + rucaparib vs. NU6027 + NU7441 + rucaparib 5.23 > 0.9999 39.3 0.9992 

NU6027 + rucaparib vs. DNA-PKcs shRNA + NU6027 + rucaparib -21.7 0.8952 -22 0.8430 

NU7441 vs. NU7441 + rucaparib 24.6 0.6314 20.3 0.9985 

NU7441 vs. NU6027 + NU7441 + rucaparib 60.9 0.0001 71.2 0.0638 

NU7441 vs. ATR shRNA + NU7441 + rucaparib 60 0.0002 13.7 0.1791 

NU7441 + rucaparib vs. NU6027 + NU7441 + rucaparib 40.8 0.0886 30.8 0.4661 

NU7441 + rucaparib vs. ATR shRNA + NU7441 + rucaparib 43.0 0.1091 24 0.7609 

ATR shRNA vs. ATR shRNA + rucaparib 8 > 0.9999 61.4 0.0506 

ATR shRNA vs. ATR shRNA + NU7441 + rucaparib 39.4 0.5579 67.1 0.0183 

ATR shRNA + rucaparib vs. ATR shRNA + NU7441 + rucaparib 33.9 0.8452 17 > 0.9999 

DNA-PK shRNA vs. DNA-PK shRNA + rucaparib 29.5 0.5407 51.4 < 0.0001 

DNA-PK shRNA vs. DNA-PKcs shRNA + NU6027 + rucaparib 30.5 0.4716 63.6 < 0.0001 

DNA-PK shRNA + rucaparib vs. DNA-PKcs shRNA + NU6027 rucaparib 2 > 0.9999 23.9 0.9800 



  

 
 

2
8

5
 

Table 8-2 Tukey’s multiple comparisons adjusted two way Anova comparisons of treatments with PARPi in OSEC-2 and NUOC-1 cells.  

Significant results are marked in bold. 

Comparisons OSEC-2   NUOC-1 

 Percent reduction 

in cell growth 

Tukey’s 

adjusted P = 

Percent  

reduction in cell  

growth   

     Tukey’s 

adjusted P = 

Control vs. Rucaparib 26.6 0.9968 -3 > 0.9999 

Control vs. NU6027 -26.8 0.9966 40.4 0.9137 

Control vs. NU6027 + rucaparib 38.5 0.9372 5.4 > 0.9999 

Control vs. NU7441 5.3 > 0.9999 11.8 > 0.9999 

Control vs. NU7441 + rucaparib 49.2 0.7388 48 0.7700 

Control vs. NU6027 + NU7441 + rucaparib 26.6 0.9969 46.6 0.8007 

Control vs. ATR shRNA 30.1 0.9905 29.6 0.9917 

Control vs. ATR shRNA + rucaparib 72.9 0.1774 97 0.0151 

Control vs. DNA-PK shRNA -39.4 0.9258 44.4 0.8460 

Control vs. DNA-PK shRNA + rucaparib 33 0.9797 83 0.0250 

Control vs. DNA-PKcs shRNA + NU6027 + rucaparib 49.4 0.7354 98.5 0.0127 

Control vs. ATR shRNA + NU7441 + rucaparib 77.5 0.0352 100 0.0105 

Rucaparib vs. NU6027 + rucaparib 11.8 > 0.9999 8.4 > 0.9999 

Rucaparib vs. NU7441 + rucaparib 22.6 0.9993 51 0.6947 

Rucaparib vs. NU6027 + NU7441 + rucaparib 0.9 > 0.9999 49.6 0.7291 

Rucaparib vs. ATR shRNA + rucaparib 46.3 0.8083 100 0.0106 

Rucaparib vs. DNA-PK shRNA + rucaparib 6.4 > 0.9999 86 0.0512 

Rucaparib vs. DNA-PKcs shRNA + NU6027 + rucaparib 22.7 0.9993 100 0.0088 

Rucaparib vs. ATR shRNA + NU7441 + rucaparib 50.9 0.6977 100 0.0073 

NU6027 vs. NU6027 + rucaparib 65.2 0.3216 -35 0.9684 

NU6027 vs. NU6027 + NU7441 + rucaparib 53.3 0.6320 6.2 > 0.9999 

NU6027 vs. DNA-PKcs shRNA + NU6027 + rucaparib 76.1 > 0.9999 58.1 0.5010 
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NU6027 + rucaparib vs. NU6027 + NU7441 + rucaparib -11.9 > 0.9999 41.2 0.9016 

NU6027 + rucaparib vs. DNA-PKcs shRNA + NU6027 + rucaparib 10.9 0.9307 93.0 0.0237 

NU7441 vs. NU7441 + rucaparib 54.6 0.5974 59.8 0.4564 

NU7441 vs. NU6027 + NU7441 + rucaparib 31.9 0.9846 58.4 0.4923 

NU7441 vs. ATR shRNA + NU7441 + rucaparib 82.8 0.0707 112 0.0024 

NU7441 + rucaparib vs. NU6027 + NU7441 + rucaparib -22.7 0.9993 1.3 > 0.9999 

NU7441 + rucaparib vs. ATR shRNA + NU7441 + rucaparib 28.3 0.9945 52.1 0.6655 

ATR shRNA vs. ATR shRNA + rucaparib 42.8 0.8758 67.4 0.2761 

ATR shRNA vs. ATR shRNA + NU7441 + rucaparib 47.4 0.7830 70.4 0.2179 

ATR shRNA + rucaparib vs. ATR shRNA + NU7441 + rucaparib 4.5 > 0.9999 3.1 > 0.9999 

DNA-PK shRNA vs. DNA-PK shRNA + rucaparib 72.4 0.1848 38.5 0.9366 

DNA-PK shRNA vs. DNA-PKcs shRNA + NU6027 + rucaparib 88.8 0.0379 54 0.6130 

DNA-PK shRNA + rucaparib vs. DNA-PKcs shRNA + NU6027 rucaparib 16.4 > 0.9999 15.5 > 0.9999 
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