
Algorithm Selection for Power Flow
Management

James Edward King

School of Electrical and Electronic Engineering

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

June 2016

For my family.

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it has not been
the subject of any previous application for a degree, and that all sources of information have
been duly acknowledged.

Parts of this work, as indicated in the text, have been the subject of previous publications:

1. J. E. King, S. C. E. Jupe, and P. C. Taylor, “Autonomic control algorithm selection
in decentralised power systems: a voltage control case study,” in 22nd International
Conference and Exhibition on Electricity Distribution (CIRED), Stockholm, 2013.

2. J. E. King, S. C. E. Jupe, and P. C. Taylor, “Performance evaluation of control al-
gorithms for active distribution networks - the potential for algorithm selection,” in
CIGRÉ Session, Paris, 2014.

3. J. King, S. Jupe, and P. Taylor, “The potential of network state-based algorithm
selection to improve power flow management,” in 2014 IEEE PES General Meeting,
Washington DC, 2014, pp. 1–5.

4. J. E. King, S. C. E. Jupe, and P. C. Taylor, “Network State-Based Algorithm Selection
for Power Flow Management Using Machine Learning,” IEEE Transactions on Power
Systems, vol. 30, no. 5, pp. 2657–2664, 2015.

James Edward King
June 2016

Acknowledgements

Although a PhD is a qualification granted to an individual, this work would not have been
possible without the generous help of a number of people.

Firstly, my employer, WSP | Parsons Brinckerhoff, has been extraordinarily generous in
fully funding my PhD and granting me time to pursue my research. Within the company,
I am particularly grateful to Katherine Jackson, who provided me with the opportunity to
pursue a PhD while remaining at the company, and supported my pursuit of research.

My sincere thanks go to my supervisors: Prof. Phil Taylor, my academic supervisor, Dr.
Samuel Jupe, my industrial supervisor, and Dr. Haris Patsios, my academic co-supervisor.
They have provided me with excellent support, wise guidance, and necessary challenge
throughout my research, even through changes in organisation. It really has been a privilege
to have received such excellent supervision.

My fellow researchers at Durham, Newcastle, and from elsewhere on the Autonomic
Power Systems project have made the day-to-day process of research more interesting and
less of a solo enterprise. In particular, my thanks go to Barbara and Ivan for their excellent
company and for the time spent bouncing around research (and non-research) ideas.

During my research I have used a number of software tools, which have made the research
possible and also more efficient, such as the Python programming language, MATPOWER,
WEKA, LATEX, and matplotlib. These are all free and open source, so I am grateful to all the
people who have volunteered their time and expertise in developing them.

I owe an enormous amount to my parents and family. They brought me up and allowed
me to develop my interest in science and engineering from an early age. They made sure I
had the right education and attitude so that I could even pursue a PhD. They are my most
important people and knowing their faith in me has got me through the hardest times – not
all of them being during my PhD!

My greatest thanks go to my wife, Kirsteen, for her unwavering support throughout the
most intense and demanding period of work in my life. She provided encouragement, took
on all the housework, was my proof reader, and shouldered the burden of a lot of other things
while I wrote up (buying a house, moving home, wedding planning, etc.). Without her love
and support I would not have been able to complete this work.

Abstract

Algorithms are essential for solving many important problems, including in power systems
control, where they can allow the connection of new demand and generation whilst deferring
or avoiding the need for network reinforcement. However, in many problem domains no
algorithm always delivers the best performance for all problems, so better performance can
be achieved by using algorithm selection to select the best algorithms for each problem.

This work applies algorithm selection to power systems control, with power flow manage-
ment using generator curtailment examined as a representative power systems control task.
The first half of this work focuses on whether potential performance benefits are available
if algorithms are selected optimally for each network state. Five power flow management
algorithms are implemented, which use diverse approaches such as optimal power flow,
constraint satisfaction, power flow sensitivity factors, and linear programming. Four case
study power systems – an 11 kV radial distribution system, a 33 kV meshed distribution
system, the IEEE 14-bus system, and the IEEE 57-bus system – are used to test the algorithms
over a extensive range of network states. None of the algorithms give the most effective
performance for every state, in terms of minimising either the number or energy of overloads,
whilst minimising curtailment. By optimally selecting algorithms for each state there are
potential performance benefits for three of the four case study systems

In the second half of this work, algorithm selection systems (selectors) are created in
order to exploit and deliver the observed potential performance benefits of per-state algorithm
selection. Existing techniques for creating algorithm selectors are adapted and extended
for the power flow management application, which includes the development of a training
method that allows selectors to consider two objectives simultaneously. The selectors created
take measurements of network state as input and use machine learning models to make
algorithm selection decisions. The models either directly predict which algorithm is likely to
be the most effective, or predict the performance of each algorithm, with the algorithm with
the most effective predicted performance then being selected. Both of these approaches are
shown to be effective in creating algorithm selectors for power flow management that deliver
statistically significant performance benefits. In some cases, the selectors are able to match
the optimum performance that could be achieved by selecting between the algorithms.

Table of contents

List of figures xvii

List of tables xxi

Nomenclature xxvii

1 Introduction 1
1.1 Background . 1

1.2 Motivating example . 2

1.3 Research objectives . 4

1.4 Structure of this work . 5

2 Algorithms for power systems control 9
2.1 Control in power systems . 9

2.2 Power flow management: literature survey 12

2.2.1 OPF-based methods . 12

2.2.2 Sensitivity factor-based methods 13

2.2.3 Other methods . 14

2.2.4 Comparison of methods . 16

2.2.5 Selection of methods to be implemented 16

2.3 Power flow management: implemented algorithms 19

2.3.1 PFM-CSP . 20

2.3.2 PFM-OPF . 22

2.3.3 PFSF-Egal . 26

2.3.4 PFSF-TMA . 28

2.3.5 PFSF-LP . 29

2.4 Conclusions . 32

xii Table of contents

3 Control algorithm testing environment 33
3.1 Requirements for testing environment . 33
3.2 Overview of testing environment . 35

3.2.1 Main components . 36
3.2.2 Components within a TestCell 38

3.3 Power system modelling . 40
3.3.1 Component parameters . 41
3.3.2 Power system component modelling capabilities 41
3.3.3 Load flow . 46

3.4 Communications system modelling . 47
3.4.1 Functions . 47
3.4.2 Communications system objects 47

3.5 Control algorithm modelling . 48
3.6 Running single tests . 49
3.7 Running multiple tests . 51

3.7.1 Process . 51
3.7.2 Failure tolerance . 53

3.8 Evaluation against requirements . 53
3.9 Conclusions . 58

4 Performance of power flow management algorithms 59
4.1 Methodology . 61

4.1.1 Case study power systems . 61
4.1.2 Performance evaluation . 64
4.1.3 Statistical analysis of performance 65

4.2 Case study: 11 kV radial distribution system 67
4.2.1 System description . 67
4.2.2 Test states . 67
4.2.3 Baseline performance . 68
4.2.4 Algorithm performance . 68

4.3 Case study: 33 kV meshed distribution system 70
4.3.1 System description . 70
4.3.2 Test states . 72
4.3.3 Baseline performance . 72
4.3.4 Algorithm performance . 73

4.4 Case study: IEEE 14-bus system . 75
4.4.1 System description . 75

Table of contents xiii

4.4.2 Test states . 76
4.4.3 Baseline performance . 76
4.4.4 Algorithm performance . 78

4.5 Case study: IEEE 57-bus system . 81
4.5.1 System description . 81
4.5.2 Test states . 81
4.5.3 Baseline performance . 83
4.5.4 Algorithm performance . 83

4.6 Cross-case study analysis . 86
4.6.1 Comparison of algorithm performance 86
4.6.2 Analysis of algorithm performance: PFM-OPF 89
4.6.3 Analysis of algorithm performance: PFM-CSP 91
4.6.4 Analysis of algorithm performance: PFSF-based algorithms 93
4.6.5 Execution times . 97

4.7 Conclusions . 99

5 Potential performance benefits from per-state selection of algorithms 101
5.1 Method for assessing the potential performance benefit 101
5.2 Potential performance benefits for each system 103

5.2.1 11 kV radial distribution system 103
5.2.2 33 kV meshed distribution system 104
5.2.3 IEEE 14-bus system . 105
5.2.4 IEEE 57-bus system . 106
5.2.5 Summary for all case study systems 109

5.3 Algorithm selection frequency . 112
5.4 Performance with different sets of algorithms 114
5.5 Conclusions . 118

6 Previous work on algorithm selection 121
6.1 The Algorithm Selection Problem . 121

6.1.1 Rice’s model . 121
6.1.2 Framing the problem . 122
6.1.3 Application to power flow management 123

6.2 Creating a selection mapping . 124
6.3 Machine learning . 126
6.4 Using machine learning for algorithm selectors 127

6.4.1 Timing . 127

xiv Table of contents

6.4.2 Model output . 128
6.4.3 Selector output . 128
6.4.4 Learning . 129
6.4.5 Model type . 130
6.4.6 Features . 130

6.5 Previous applications . 131
6.6 Conclusions . 131

7 Design and development of algorithm selectors for power flow management 133
7.1 Preparation of training data for direct selectors 134

7.1.1 Selectors using unweighted training examples 134
7.1.2 Selectors for a single objective using weighted training examples . . 138
7.1.3 Selectors for two objectives using tuned weights 140

7.2 Preparation of training data for EPM-based selectors 146
7.3 Machine learning models . 149

7.3.1 Models used in this work . 149
7.3.2 Descriptions of machine learning model categories 150
7.3.3 Model variations . 154

7.4 Feature construction and selection . 154
7.4.1 Feature construction . 155
7.4.2 Feature selection . 155
7.4.3 Features used in this work . 157

7.5 Training data volume . 157
7.6 Conclusions . 159

8 Performance of algorithm selectors for power flow management 161
8.1 Preliminary remarks . 162

8.1.1 Direct selectors . 162
8.1.2 EPM-based selectors . 162
8.1.3 Machine learning model types . 163
8.1.4 Objectives . 163

8.2 Performance overview . 163
8.3 Most effective selectors . 166
8.4 Relationship between objectives and performance 175

8.4.1 33 kV meshed distribution system 175
8.4.2 IEEE 14-bus system . 176
8.4.3 IEEE 57-bus system . 177

Table of contents xv

8.4.4 Summary . 179
8.5 Effect of considering different algorithm sets 179

8.5.1 Method . 179
8.5.2 Summary of results . 181

8.6 Effect of different model types . 182
8.6.1 Effect of model type on direct selectors 182
8.6.2 Effect of model type on EPM-based selectors 185
8.6.3 Summary . 195

8.7 Effect of tuning on direct weighted selectors 195
8.8 Conclusions . 197

9 Discussion 201
9.1 Implementation outline . 201
9.2 Selector design choices . 201
9.3 Data requirements . 202
9.4 Time requirements . 205
9.5 Financial assessment . 207

10 Conclusions 209
10.1 Evaluation against research objectives . 209
10.2 Contributions . 212
10.3 Outlook and future work . 213

References 217

Appendix A Data model for power system model (SysModel) 229

Appendix B Case study system data 243
B.1 11 kV radial distribution system . 243
B.2 33 kV meshed distribution system . 244
B.3 IEEE 14-bus system . 247
B.4 IEEE 57-bus system . 249

Appendix C Additional power flow management algorithm performance data 257

List of figures

1.1 System schematic and results for pilot study into voltage control algorithm
selection . 3

2.1 General overview of control . 9
2.2 Control architectures . 10
2.3 Flowchart for the processes of the PFM-CSP algorithm 21
2.4 Flowchart for the processes of the PFM-OPF algorithm 23
2.5 Bus real power flexibility as used in the PFM-OPF algorithm 24
2.6 Cost curves for generators within PFM-OPF 25
2.7 Flowchart for the processes of the PFSF-Egal and PFSF-TMA algorithms . 27
2.8 Derivation of Pmax

l within the PFSF-LP algorithm 28
2.9 Flowchart for the processes of the PFSF-LP algorithm 30
2.10 Relationship of real power variables used in the PFSF-LP algorithm 31

3.1 Overview of the architecture of the testing environment 37
3.2 Overview of the modelling components within a TestCell 39
3.3 Examples of generator real power operation modes 45
3.4 Flow chart of process for running a single test within a TestCell 50
3.5 Sequence diagram for running tests in parallel 52

4.1 Overview of methodology for testing the performance of power flow man-
agement algorithms . 60

4.2 Single line diagram of the 11 kV radial distribution system used in this work 67
4.3 Overview of power flow management algorithm performance when applied

to the 11 kV radial distribution system . 69
4.4 Single line diagram of the 33 kV meshed distribution system used in this work 71
4.5 Overview of power flow management algorithm performance when applied

to the 33 kV meshed distribution system 74
4.6 Single line diagram of the IEEE 14-bus system as used in this work 75

xviii List of figures

4.7 Frequency of simultaneous overloads for the IEEE 14-bus system 77
4.8 Overview of power flow management algorithm performance when applied

to the IEEE 14-bus system . 79
4.9 Single line diagram of the IEEE 57-bus system as used in this work 82
4.10 Frequency of simultaneous overloads for the IEEE 57-bus system 83
4.11 Overview of power flow management algorithm performance when applied

to the IEEE 57-bus system . 84
4.12 Comparison of the relative performance of every algorithm across the case

study systems, for each of the three performance measures 87
4.13 Distribution of the amount of curtailment applied by the PFM-OPF algorithm

for the initially overloaded states in the IEEE 57-bus system, for different
numbers of overloads remaining . 90

4.14 Simple power system for illustrating overload performance weaknesses of
PFM-CSP algorithm . 92

4.15 Percentage of initially overloaded states in the IEEE 57-bus system where
the PFSF-Egal and PFSF-TMA algorithms report errors 96

4.16 Algorithm execution times for the overloaded states within each case study
system . 98

5.1 Potential performance gains for each system that could be achieved by
optimally selecting algorithms on a per-state basis 111

5.2 Frequency of algorithms appearing as the sole algorithm in the selection sets
represented by the oracles for each of the case study systems 113

5.3 Comparison of the potential performance for the 33 kV meshed distribution
system with different algorithm combinations considered for selection (oracle 1)115

5.4 Comparison of the potential performance for the IEEE 14-bus system with
different algorithm combinations considered for selection (oracle 1) 116

5.5 Comparison of the potential performance for the IEEE 57-bus system with
different algorithm combinations considered for selection (oracle 2) 117

6.1 Rice’s conceptual model of the Algorithm Selection Problem 121

7.1 Structure of a direct algorithm selector . 134
7.2 Visualisation of the state space for the IEEE 57-bus system, showing the

states where a single algorithm is most effective at minimising the number
of overloads whilst also minimising the curtailment applied 135

7.3 Example of different options for labelling “don’t care” states where no
algorithm (from a pair of algorithms) is uniquely the most effective 136

List of figures xix

7.4 Effect of varying weight multiplier cCT with cOL = 1.0 for a selector using
a RandomForest model to select between the PFM-OPF and PFSF-TMA
algorithms, trained and tested on states from the 33 kV meshed distribution
system . 142

7.5 Example of the operation of the procedure for tuning selector weight multi-
plier c2 . 144

7.6 Example structure of an EPM-based algorithm selector 146

7.7 Amount of power flow management algorithm performance data per system
for use training and testing algorithm selectors 158

8.1 Performance of the direct and EPM-based selectors for the 33 kV meshed
distribution system, with respect to the number of overloads and the amount
of curtailment . 167

8.2 Performance of the direct and EPM-based selectors for the IEEE 14-bus
system, with respect to the number of overloads and the amount of curtailment168

8.3 Performance of the direct and EPM-based selectors for the IEEE 14-bus
system, with respect to overload energy and the amount of curtailment . . . 169

8.4 Performance of the direct and EPM-based selectors for the IEEE 57-bus
system, with respect to the number of overloads and the amount of curtailment170

8.5 Performance of the direct and EPM-based selectors for the IEEE 57-bus
system, with respect to the overload energy and the amount of curtailment . 171

8.6 Comparison of the proportion of effective selectors (for either overload
objective) produced per objective set for the 33 kV meshed distribution system175

8.7 Comparison of the proportion of effective selectors (for each of the overload
objectives) produced per objective set for the IEEE 14-bus system 176

8.8 Comparison of the proportion of effective selectors (for each of the overload
objectives) produced per objective set for the IEEE 57-bus system 178

8.9 Matrix comparing the performance of the most effective selectors created by
each machine learning model type for each system and overload objective . 183

8.10 Matrix comparing the performance of the most effective selectors created by
each combination of primary and secondary EPM model types to PFM-OPF
for the 33 kV meshed distribution system 187

8.11 Matrix comparing the performance of the most effective selectors (for min-
imising the number of overloads whilst minimising curtailment) created by
each combination of primary and secondary EPM model types to PFM-OPF
for the IEEE 14-bus system . 189

xx List of figures

8.12 Matrix comparing the performance of the most effective selectors (for min-
imising overload energy whilst minimising curtailment) created by each
combination of primary and secondary EPM model types to PFSF-TMA for
the IEEE 14-bus system . 190

8.13 Matrix comparing the performance of the most effective selectors (for min-
imising the number of overloads whilst minimising curtailment) created by
each combination of primary and secondary EPM model types to PFM-OPF
for the IEEE 57-bus system . 193

8.14 Matrix comparing the performance of the most effective selectors (for min-
imising overload energy whilst minimising curtailment) created by each
combination of primary and secondary EPM model types to PFM-OPF for
the IEEE 57-bus system . 194

9.1 Effect of training set size on overload performance of unweighted selectors
created for the IEEE 14-bus system, with the selectors only considering
minimising overloads . 203

9.2 Box plot of time taken to train the 10 machine learning model types that had
the longest training time . 205

C.1 Comparison of the performance of oracle 1 for the 11 kV radial distribution
system with different algorithm combinations considered for selection . . . 258

C.2 Comparison of the performance of oracle 2 for the 11 kV radial distribution
system with different algorithm combinations considered for selection . . . 259

C.3 Comparison of the performance of oracle 1 for the 33 kV meshed distribution
system with different algorithm combinations considered for selection . . . 260

C.4 Comparison of the performance of oracle 2 for the 33 kV meshed distribution
system with different algorithm combinations considered for selection . . . 261

C.5 Comparison of the performance of oracle 1 for the IEEE 14-bus system with
different algorithm combinations considered for selection 262

C.6 Comparison of the performance of oracle 2 for the IEEE 14-bus system with
different algorithm combinations considered for selection 263

C.7 Comparison of the performance of oracle 1 for the IEEE 57-bus system with
different algorithm combinations considered for selection 264

C.8 Comparison of the performance of oracle 2 for the IEEE 57-bus system with
different algorithm combinations considered for selection 265

List of tables

2.1 Comparison of surveyed power flow management algorithms 18

3.1 Evaluation of testing environment against requirements 54

4.1 Baseline loadings for the overloaded branches within the 11 kV radial distri-
bution system . 68

4.2 Baseline loadings for the overloaded branches within the 33 kV meshed
distribution system . 73

4.3 Baseline loadings for the overloaded branches within the IEEE 14-bus system 77

4.4 Statistical significance of differences in the distribution of the number of
overloads for the power flow management algorithms applied to the IEEE 14-
bus system . 78

4.5 Statistical significance of differences in the distribution of overload energy
for the power flow management algorithms applied to the IEEE 14-bus system 80

4.6 Statistical significance of differences in the distribution of the amount of cur-
tailment for the power flow management algorithms applied to the IEEE 14-
bus system . 80

4.7 Baseline loadings for the overloaded branches within the IEEE 57-bus system 85

4.8 Ranking of the power flow management algorithms against the different
performance measures across the four case study systems 88

4.9 Additional metrics related to the performance of the PFSF-based algorithms 94

5.1 Overview of algorithm performance and the potential performance from
optimally selecting algorithms on a per-state basis for the 11 kV radial distri-
bution system . 103

5.2 Overview of algorithm performance and the potential performance from
optimally selecting algorithms on a per-state basis for the 33 kV meshed
distribution system . 105

xxii List of tables

5.3 Overview of algorithm performance and the potential performance from
optimally selecting algorithms on a per-state basis for the IEEE 14-bus system106

5.4 Overview of algorithm performance and the potential performance from
optimally selecting algorithms on a per-state basis for the IEEE 57-bus system107

5.5 Performance comparison of the most effective algorithms for each system
against the potential performance that could be obtained by per-state algo-
rithm selection . 109

7.1 Machine learning models used in this work 151

8.1 Summary of direct and EPM-based selectors giving performance benefits for
each system and overload objective . 165

8.2 Performance of the most effective power flow management algorithms, se-
lectors (direct and EPM-based) and oracles for each of the case study systems173

8.3 Configurations of the most effective direct selectors 174
8.4 Configurations of the most effective EPM-based selectors 174
8.5 Analysis of decline in selector performance when a larger set of power flow

management algorithms is considered . 180
8.6 Model types that created effective selectors for every case study system . . 196
8.7 Performance differences from applying tuning to (untuned) weighted selectors197

A.1 System data model . 230

B.1 Bus data for 11 kV radial distribution system 243
B.2 Circuit data for 11 kV radial distribution system 243
B.3 Transformer data for 11 kV radial distribution system 244
B.4 Load data for 11 kV radial distribution system 244
B.5 Generator data for 11 kV radial distribution system 244
B.6 Bus data for 33 kV meshed distribution system 244
B.7 Circuit data for 33 kV meshed distribution system 245
B.8 Transformer data for 33 kV meshed distribution system 246
B.9 Load data for 33 kV meshed distribution system 247
B.10 Generator data for 33 kV meshed distribution system 247
B.11 Bus data for IEEE 14-bus system . 247
B.12 Circuit data for IEEE 14-bus system . 248
B.13 Transformer data for IEEE 14-bus system 248
B.14 Load data for IEEE 14-bus system . 249
B.15 Generator data for IEEE 14-bus system 249

List of tables xxiii

B.16 Bus data for IEEE 57-bus system . 249
B.17 Circuit data for IEEE 57-bus system . 251
B.18 Transformer data for IEEE 57-bus system 253
B.19 Load data for IEEE 57-bus system . 254
B.20 Generator data for IEEE 57-bus system 255

List of Algorithms

7.1 Procedure used to tune selector weight multiplier c2 143

Nomenclature

Roman Symbols

A algorithm space in an Algorithm Selection Problem

a algorithms in an Algorithm Selection Problem

B set of buses

c number of features in an Algorithm Selection Problem

cy weight component multiplier for performance measure y

d number of performance measures in an Algorithm Selection Problem

F feature space in an Algorithm Selection Problem

f features in an Algorithm Selection Problem

G set of generators

i state (of a power system)

k size of domains in PFM-CSP algorithm

L set of branches

l iteration counter

lmax max iterations

N sample size

n number of generator in PFM-CSP algorithm

P problem space in an Algorithm Selection Problem

xxviii Nomenclature

p performance measures in an Algorithm Selection Problem

Pb sum of real power injections of generators aggregated at bus b [MW]

P−
b “down” flexibility available from generators aggregated at bus b [MW]

P+
b “up” flexibility available from generators aggregated at bus b [MW]

Pbias
b flexibility “bias” of generators aggregated at bus b [MW]

P⋆
b real power injection at bus b from OPF solution [MW]

Pmin
b minimum operating point for generators aggregated at bus b [MW]

Pmax
b maximum operating point for generators aggregated at bus b [MW]

Ptarget
b target operating point for generators aggregated at bus b [MW]

Pg real power injection from generator g [MW]

Plim
g real power output limit for generator g [MW]

Pl real power flow along branch l [MW]

Pmax
l maximum allowable real power flow along branch l [MW]

pr hypothesis r in a family of hypotheses

Ql reactive power flow along branch l [MVAr]

r index of threshold p-value

S selection mapping in an Algorithm Selection Problem

s number of hypotheses in a family

Srating
l thermal rating of branch l [MVA]

wi,a weight for training example representing state i and algorithm a

x problem instance in an Algorithm Selection Problem

Y performance space space in an Algorithm Selection Problem

Greek Symbols

α significance level

Nomenclature xxix

εµN relative error of sample

Φ “egalitarian” proportional signal from PFSF-Egal algorithm

Φ−1 inverse Gaussian cumulative probability distribution

µN sample mean

σ2
N sample variance

Superscripts

Y set of performance measures

y performance measure index

Subscripts

b bus index

g generator index

l branch index

Other Symbols

δ target relative error

△P+
b dummy variable, decrease in real power injection from generator g [MW]

△P+
b dummy variable, increase in real power injection from generator g [MW]

△P⋆
l calculated change in real power along branch l [MW]

△Pl required change of real power along branch l [MW]

Acronyms / Abbreviations

ANM active network management

AuRA-NMS Autonomous Regional Active Network Management System

AVC automatic voltage control

AVR automatic voltage regulator

CBR case-based reasoning

xxx Nomenclature

CSP constraint satisfaction problem

CT curtailment

DSR demand side response

EPM empirical performance model

FACTS Flexible AC Transmission Systems

GA genetic algorithm

HDF5 Hierarchical Data Format (version 5)

LP linear program

OE overload energy

OL number of overloads

OLTC on-load tap changer

OPF optimal power flow

PFSF power flow sensitivity factor

PSO particle swarm optimisation

pu per unit

PV photovoltaic

RTDS real-time digital simulator

SCADA supervisory control and data acquisition

SVM support vector machines

TMA technically most appropriate

UK United Kingdom

unw. unweighted

US United States

wei. weighted

XML Extensible Markup Language

Chapter 1

Introduction

This first chapter provides background on the topic of this work including a motivating
example (as published in [1]). The scope and objectives of the research are then outlined,
followed by an overview of the structure of this work.

The essence of this work is to explore if selecting power system control algorithms on a
per-state basis – where the state of a system is the conditions that exist for a particular instant
or period in time – can improve the performance available from automated control, over and
above the performance from using the same algorithm for all states.

1.1 Background

Electric power systems are one of the most essential infrastructures in the modern world.
The energy they deliver lights and heats our homes, drives many of the wheels of our
transportation networks, provides the power behind industry and manufacturing, and even
saves lives. Much of human progress in the last century would have been impeded – or even
have been impossible – without electric power systems.

Control must be exerted within a power system under both normal and abnormal circum-
stances in order to maintain satisfactory operating conditions, such as maintaining frequency,
voltages and equipment loading within limits. The integration of new demands – such as
through the electrification of heat and transport – and of new generation – such as intermit-
tent solar and wind – increases the stress on a power system but also adds new sources of
flexibility. Due to both the increased scale and the speed of the interactions between the
elements of a power system, the complexity of control is only going to increase, necessi-
tating increased adoption of automated control approaches throughout a power system [2].
Furthermore, adoption of control systems such as active network management (ANM) may
allow investment in additional network infrastructure to be reduced, deferred, or avoided [3].

2 Introduction

Control systems that rely on digital computers use algorithms to make automated control
decisions. Algorithms are sequences of instructions describing processes to solve problems,
which can be concretely expressed computer programs [4]. Given a problem to solve, then
a natural question to ask is which algorithm should be used in order to obtain the best
performance? This could be in terms of the time taken to solve the problem, or some measure
of the quality of the solution, such as in optimisation.

For search and optimisation algorithms at least, there is no single answer to the question
of which algorithm is the best to be used on all problems. The “No Free Lunch” theorems
of Wolpert and Macready [5], which were stated for search and optimisation, essentially
state that over a broad enough selection of problems the average performance of different
algorithms will be the same. Thus, no algorithm can outperform all others in all problems,
so the only way to achieve the best possible performance is to select the best algorithms for
each problem, rather than always using the same algorithm.

The idea that different algorithms give the best performance has been exploited in
numerous problem domains – from planning [6] and search [7] within computer science,
to bioinformatics [8], computational chemistry [9], and financial trading [10] – in order
to obtain improved performance by selecting algorithms for specific problems. This work
explores whether such fine-grained selection of algorithms can be applied to power systems
control. In particular, this work examines whether any performance benefit can be obtained
by selecting control algorithms on a per-state basis, where different algorithms may be used
as the system conditions change.

1.2 Motivating example

A small-scale pilot study was conducted into whether per-state algorithm selection could be
of benefit in power system control applications [1]. In particular, the study examined voltage
control within a model of a radial distribution system (shown in Figure 1.1a) that featured an
infeed at 33 kV, transformation down to 11 kV using transformers with on-load tap changers
(OLTCs), and two 11 kV feeders, one containing two generators. 2625 different system states
were modelled, with the OLTC tap position, load level and the outputs of the two generators
varied in discrete steps, and it was observed that under these conditions, for 21.45% of the
states the voltages within the network fell outside the limits assumed for the study.

In addition to modelling the base condition of the network, the conditions following the
application of three different algorithms were modelled:

• AVC (0.98): the first algorithm was an implementation of automatic voltage control
(AVC) [11], which acted on the transformer tap positions only in order to achieve

1.2 Motivating example 3

G

G

33/11 kV

Loads Generator

#2

Grid infeed

Generator

#1

Loads

(a) System schematic

0% 20
%

40
%

60
%

80
%

10
0%

States with voltages within limits

None

AVC (0.98)

AVC (1.02)

CBR

21.45%

79.20%

78.40%

70.63%

(b) Results for each control algorithm

Fig. 1.1 System schematic and results for pilot study into voltage control algorithm selection

a voltage set point target of 0.98 pu on the low voltage terminals of the distribution
transformers.

• AVC (1.02): the second algorithm also implemented AVC, but with a voltage set point
target of 1.02 pu.

• CBR: the third algorithm used an artificial intelligence approach, case-based reasoning
(CBR) that acted on the OLTC tap positions and the outputs of the generators [12].
This algorithm contained a “case base” of previous voltage excursion events and
the pre-determined actions taken to mitigate the excursions. When a new voltage
excursion event is encountered, it is matched to a previous event based on the similarity
of network conditions, and the control actions taken in the previous event are then
applied to mitigate the current excursion.

As Figure 1.1b shows, each of the algorithms was able to reduce the number of states in
which the voltages within the network were outside limits, although no algorithm was able to
keep voltages within limits for every state. However, for each state there was at least one
algorithm that could keep voltages within limits, so it was possible to keep voltages within
limits if the algorithm used for control was varied between states, thus there was a potential
performance benefit by per-state algorithm selection.

To examine if this potential performance benefit could be realised, a machine learning
algorithm (the C4.5 tree learning algorithm [13]) was used to create an algorithm selector
that predicted which algorithm would be able to keep voltages within limits, based on
measurements of the system state. 66% of the modelled system states were selected at

4 Introduction

random to be used in the training data for creating the algorithm selector. The remaining 34%
of states were used for testing the algorithm selector and to compare its performance to that
of each of the voltage control algorithms. The best performing algorithm for the states used
to test the selector was AVC (0.98), which could keep voltages within limits for 78.92% of
the test states, a similar proportion to that algorithm’s performance on all the modelled states.
The machine learning-based algorithm selector, however, could outperform this and was able
to keep voltages within limits for all the test states, by selecting appropriate algorithms for
each state. Thus, the algorithm selector was able to exploit the potential performance benefit
from per-state algorithm selection.

1.3 Research objectives

The pilot study not only demonstrated that there was a potential performance benefit from
per-state algorithm selection, but also that an algorithm selector could be created -– using
machine learning — to exploit the performance benefit. Although the results were promising,
the scope of the study was limited, restricting the possibility to generalise the findings. The
main weaknesses were, in particular:

1. Only one system was studied. In order to generalise the findings, studies on networks
of different scales and topologies would be needed.

2. The discrete state space may ignore subspaces where the performance of the algorithms
is more varied; furthermore, only a limited, and finite, number of states were available
for creating and testing algorithm selectors. To generalise the findings would require
continuous state spaces, with states distributed to represent a range of system conditions
and to more fully characterise the performance of the algorithms used.

3. Although three control algorithms were tested, two of these were just different parame-
terisations of the same algorithm (AVC), so only two diverse approaches were tested.
There could be other algorithms that are more effective for some or all states.

4. Only one machine learning algorithm was used to create an algorithm selector. The
results of the pilot study are insufficient to say whether that algorithm would produce
effective selectors for other power systems, states, and sets of control algorithms.

Another weakness is that variations in voltage are a localised phenomenon, so voltage
control tends to be restricted to limited regions within a power system. Other phenomena
and their related control tasks may operate on wider scales – such as the control of frequency

1.4 Structure of this work 5

– or operate on a range of scales – such as controlling power flows. The absence of these
characteristics from voltage control limits the potential to generalise any findings about
per-state algorithm selection for voltage control to many other power systems control tasks.

In order to examine what benefits per-state algorithm selection could have more generally
for power systems control, and considering the weaknesses of the pilot study, the research
presented in this work has the following objectives:

1. Examine if potential performance benefits for power systems control can be derived
by selecting the algorithms on a per-state basis. This objective has the following
sub-objectives:

(a) Identify a power systems control task that has characteristics shared with many
other power systems control tasks, so the results for the one control task are likely
to be generalisable to other tasks.

(b) Implement and test several power systems control algorithms for the chosen
control task, which represent diverse approaches to tackling the control task.

(c) Test the algorithms on power system models that represent different network
designs.

(d) Simulate a wide range of conditions within the power system models, in order to
exercise the performance of the power system control algorithms.

2. If the answer to research objective 1 is affirmative, the research shall investigate if
algorithm selection systems (algorithm selectors) can be created to exploit the potential
performance benefits for power systems control from per-state algorithm selection.
This includes:

(a) Identifying existing algorithm selection techniques that could be applicable to
developing algorithm selectors for power systems control.

(b) Exploiting the existing algorithm selection techniques to create algorithm selec-
tors for power systems control.

(c) Extending the existing techniques and, when necessary, developing new tech-
niques to allow algorithm selection to be applied to power systems control.

1.4 Structure of this work

This work splits into two sets of chapters, which address each of the research objectives in
turn. The first set (Chapters 2 to 5) addresses research objective 1, exploring the performance

6 Introduction

of several power system control algorithms before examining if any performance benefit
exists from using per-state algorithm selection. The second set of chapters (Chapters 6 to 8)
deal with research objective 2, and thus investigate if any potential performance benefit from
algorithm selection can be exploited by creating algorithm selectors.

Chapter 2 follows the present chapter and focusses on algorithms for power systems
control. An overview of control within power systems is provided, before focussing on power
flow management, which is the example power system control task that is used throughout
this work. Existing power flow management algorithms are surveyed, in order to identify
the main approaches and to determine a set of diverse algorithms to be implemented for this
work. The implementation of each of those algorithms is then described in detail.

Chapter 3 describes the software system that was developed in order to allow large-scale
testing of the control algorithms described in Chapter 2. This includes detail of power system
modelling capabilities and the particular design features that allowed for repeatable testing
of multiple control algorithms in parallel.

Having established the control algorithms to be tested in Chapter 2, and the environment
used for testing them in Chapter 3, Chapter 4 presents results from testing the algorithms on
four case study power systems. First, the testing and evaluation methodology is described,
including the performance measures and statistical tests that are used for the remainder of
this work. Then, for each case study system, a description of the system and the states
simulated within it are provided, followed by the baseline performance of the system and of
each control algorithm. A cross-case study analysis is then provided, which includes analysis
of the performance of each algorithm and their execution times.

While Chapter 4 presents results for each control algorithm that were aggregated across
all states, in Chapter 5 the same results are examined on a state-by-state basis, to determine
whether there are any potential performance benefits from per-state algorithm selection. Any
potential performance benefits are quantified and their significance assessed, in order to
satisfy research objective 1.

Chapter 6 is the first of three chapters that concentrate on developing algorithm selectors
for power systems control. Specifically, this chapter surveys previous work on algorithm se-
lection, starting with describing the algorithm selection problem in general, before reviewing
previous approaches and applications. An overview of machine learning is also provided, as
that is highly pertinent to the creation of algorithm selection systems, and is also used in the
subsequent chapters of this work.

Chapter 7 is based on the findings of Chapter 6 and develops two main algorithm
selector designs to be applied to per-state algorithm selection for power flow management.
These selector designs rely on measurements of a power system’s state in order to make

1.4 Structure of this work 7

selection decisions, and do not know a priori which algorithm will provide the most effective
performance for any state. Although based on existing algorithm selection approaches, the
selector designs and their variants presented in the chapter include new developments to
tailor them to the power flow management application. The design choices specific to each
design and those that are common to both are described, as well as stating the design options
that have been investigated in this work.

Chapter 8 presents the results of using the selector designs described in Chapter 7 to
select power flow management algorithms within the case study systems. The effectiveness
of the the selectors is assessed, along with the effect of each of the design choices.

Chapter 9 is a discussion of aspects relevant to the implementation of algorithm selectors,
based on the results presented in earlier chapters.

Chapter 10 concludes the work. The outcomes of research are assessed against the
objectives set in Section 1.3, and the major contributions of the work identified. Finally,
prospects for applying algorithm selection more generally within power systems control are
outlined, along with future work that could develop this research further.

Chapter 2

Algorithms for power systems control

This chapter provides background on control within power systems, before focusing on the
control task that this work is concerned with: power flow management. Existing algorithms
for power flow management are surveyed and several diverse approaches are identified for
implementation. The implementations of these algorithms for this work are then described.

2.1 Control in power systems

Sensors Actuators

System under

control

Controller

… …

Fig. 2.1 General overview of control

Control is the act of exerting influence on a system to achieve a desired state. Illustrated
in Figure 2.1, a controller observes the system state through sensors and exerts influence on
the the system under control via actuators.

10 Algorithms for power systems control

Controller

(a) Centralised (b) Hierarchical (c) Distributed

Sensors / actuators

(d) Decentralised

Fig. 2.2 Control architectures

There may be one or more controllers acting on a system, and, as shown in Figure 2.2,
four control architectures can be distinguished, as described in [14]:

• Centralised (Figure 2.2a): a single controller interacts with all sensors and actuators.

• Hierarchical (Figure 2.2b): an extension of a centralised architecture where there is one
controller that coordinates the actions of all actuators through intermediate controllers.

• Distributed (Figure 2.2c): multiple controllers coexist and coordinate their actions
through communications between the controllers.

• Decentralised (Figure 2.2d): multiple controllers coexist and act independently of each
other; there is no direct communication apart from interactions within the controlled
system (known as stigmergy [15]).

Within the context of power systems, control is necessary to maintain acceptable operating
conditions while the system is subject to continual perturbations. These perturbations come
from different sources and vary in magnitude and duration. Generation is subject to plant
outages, either due to faults or due to maintenance or upgrades, and is also subject output
changes caused by variations in the energy source – for renewable generation such as wind or
solar – or driven by market conditions. Demand changes throughout a day due to customer
behaviour and weather, and the daily patterns vary across the days in a week, between
different seasons, and between years; with changes in demand over longer timescales coming
from the uptake of new devices such as through the electrification of heat and transport. The
network itself changes, with equipment outages, due to faults or for maintenance or upgrades,
and changes in equipment performance due to age and external factors, such as the weather.

There are a wide variety of actuators within a power system that can be used to effect
control. These include adjusting generator real and reactive power output, transformer

2.1 Control in power systems 11

tap changers, transformer phase shifting, switching shunt devices such as capacitor banks,
Flexible AC Transmission Systems (FACTS) devices, demand response such as load shedding,
and network switching. Furthermore, there are wide variety of sensors within a power system
that could be used as inputs for control, particularly at the transmission voltage levels, such
as current and voltage transformers, weather stations, and smart meters.

Controlling a power system is a complex task. However, due to the varied nature of
the perturbations affecting power systems and the different characteristics of actuators, it is
possible to split the overall control task into a number of decoupled control tasks [16]. The
control tasks can be decomposed in time; for example, on shorter timescales are tasks such as
protection (which acts on the order or milliseconds), and on longer timescales are tasks such
as tap changer control (which acts on the order of seconds to minutes). Control tasks can be
decomposed in space; from the scale of device-level controllers, such as generator automatic
voltage regulators (AVRs), to system-wide control, such as generator scheduling and dispatch.
Control tasks can also be decomposed according to the physical quantity controlled; for
instance, frequency and voltage can be controlled independently.

In this work, the potential for applying algorithm selection to power systems control is
explored through investigating a particular control task: power flow management. Power
flow management is a type of congestion management, which is a general term for actions
associated with maintaining system operation within thermal, voltage and stability limits.
Congestion management includes control but has also been used in reference to other aspects
of power systems, such as market structures and determining the installation locations of new
FACTS devices [17]. In this work, power flow management is defined as a type of congestion
management that is concerned with adjusting the real power injection of generators in order
to alleviate the thermal overloading of branches within a power system. Generators whose
output is adjusted to below their target output level are said to be “curtailed”, and power flow
management can be extended to also consider the adjustment of the real power draw of loads.

Power flow management shares a number of features with other power systems control
tasks. It considers the same actions as other control tasks, for example, adjusting generator
outputs is fundamental to economic dispatch and can also be considered for voltage con-
trol [18]. Power flow management can be used to control devices across a wide area, similar
to network reconfiguration and frequency control. Furthermore, several algorithms have been
proposed for power flow management (as described in the literature survey that follows),
and there are numerous other control tasks for which several algorithms have been proposed.
These shared features indicate that power flow management is generally representative of a
number of power systems control tasks, and therefore results of the application of algorithm
selection to power flow management could be applied more broadly in power systems control.

12 Algorithms for power systems control

2.2 Power flow management: literature survey

This section surveys existing power flow management algorithms in order to identify a
number of algorithms that will be implemented for testing in later chapters.

2.2.1 OPF-based methods

Optimal power flow (OPF), introduced by Carpentier [19], is a family of related optimisation
problems that consider a set of power flow equations within their constraints [20].

The numerous formulations of OPF are in general non-linear and non-convex, and
consider different objectives, decision variables and constraints, for example:

• Objectives: minimisation of generation costs, minimisation of system losses.

• Decision variables: these consider different controllable items within the power system,
and can be either continuous – such as generator output levels – or discrete – such as
transformer tap settings.

• Constraints: these can include equality constraints – such as the power flow equations –
and inequality constraints – such as circuit thermal ratings and bus voltage limits.

There are numerous OPF formulations within the large body of OPF literature (the IEEE
lists over 2000 publications that mention “optimal power flow” [21]), along with various solu-
tion methods. These include deterministic methods such as gradient methods [22], sequential
linear programming [23], and interior point methods [24], as well as non-deterministic ap-
proaches such as genetic algorithms [25, 26] and particle swarm optimisation [27]. Particular
solution methods are more suited for particular OPF formulations, and convergence speed
and convergence guarantees vary between the methods. Convergence to the global optimum
of a non-convex OPF problem is often not guaranteed; however, recent work by Lavaei
and Low [28] has shown that under certain conditions, non-convex OPF problems have
an equivalent convex problem (a semidefinite program). If the OPF is feasible, a globally
optimal solution of the equivalent problem can be found and then translated in to a globally
optimal solution of the original non-convex OPF.

Power flow management can be formulated as a form of OPF problem where the set
of constraints include circuit ratings and the decision variables include controllable items
that affect power flows. This was the approach taken for the Autonomous Regional Ac-
tive Network Management System (AuRA-NMS) project [29–31], where the formulation
considered minimising the amount of generator curtailment while keeping branch loadings
within limits. The objective function also included scaling terms for the curtailment variable

2.2 Power flow management: literature survey 13

of each generator, which allows a curtailment priority order to be enforced. The OPF was
implemented within the commercially-available PowerWorld [32] power system analysis
package and applied to distribution network models with both radial (11 kV) and meshed
(33 kV) topologies. In addition to the PowerWorld-based algorithm, there was also some
work on a bespoke interior point solver [33]. Recent work by members of the same research
group [34] has extended the OPF approach to multiple time instants with temporal constraints
considered: the so called “dynamic optimal power flow”.

Alnaser and Ochoa [35] describe another OPF-based approach to power flow manage-
ment. They formulate an OPF problem within the AIMMS [36] optimisation software that
maximises the output of controlled generators (thus minimising curtailment) while satisfying
limits for branch flow, voltage and generator power factor. Along with generator curtailment,
the formulation also considers changing transformer tap positions and the reactive power
setpoints of the generators. In a case study where voltage was the binding constraint on
maximising the power export from generators, considering these other control actions was
found to significantly reduce the amount that generators were curtailed.

2.2.2 Sensitivity factor-based methods

A number of authors have developed power flow management algorithms that use sensitivity
factors that relate changes in real power injections at buses to changes in power flows along
branches (variously referred to as power flow sensitivity factors (PFSFs) [37], power transfer
distribution factors [38], or generation shift factors [39]). These sensitivity factors are derived
from load flow solutions and represent a linearisation of power system behaviour around a
particular operating point.

Jupe et al. [37, 40, 41] present different methods for power flow management based on
sensitivity factors:

• One method curtails generators according to a priority order, in this case the order of
connection (last-in first-out – LIFO), with the amount that each generator is curtailed
calculated from the magnitude of the overload and the generator’s sensitivity factor
in relation to the overloaded branch. Different priority orders (termed principles of
access) can have an effect on the overall amount of generator curtailment [42].

• There is another method that is similar to the above, but uses a priority order based on
the magnitude of each generator’s sensitivity factor relating to the overloaded branch.
This order means that the generators that have a greater influence on a particular
overload – that is, those that are “technically most appropriate” (TMA) to remove an
overload – are curtailed first. Chang and Hsu [43] describe a similar approach but

14 Algorithms for power systems control

use an order based on the total power change that each generator could contribute
to alleviating an overload, which is calculated from the sensitivity factors and the
maximum amount that each generator can be curtailed.

• Another method uses the sensitivity factors and the amount that each generator can be
curtailed to calculate an “egalitarian” curtailment signal that curtails all generators by
the same proportion of their present output.

Each of the methods was implemented in a system that included a full AC load flow
engine, which was used to validate that the calculated curtailments did alleviate overloads.
Case studies on different power system models, including meshed network topologies,
indicate that each method is able to alleviate overloads, but with significant differences in the
amount of curtailment applied to the generators.

Sensitivity factors provide linear relationships between the key variables involved in
power flow management, and, if linear power flow constraints are assumed, allow for power
flow management to be formulated as a linear program (LP). This is the approach taken by
Skokljev et al. [44], whose formulation considers increases and decreases in power injections
at each bus, so can be applied to both generator curtailment and load shedding. The objective
of the LP is to minimise the magnitude of changes applied to the generators and loads
within the network, subject to power flow constraints represented as linear inequalities. The
approach was demonstrated on the IEEE Reliability Test System model [45], which has a
meshed network topology.

Sensitivity factors can be pre-calculated and can be manipulated using simple, linear
operations, which allow algorithms that use them to be lightweight and execute quickly.
However, a major weakness of sensitivity factors is that they are a linearisation of the (non-
linear) system around one operating point, and that they can become inaccurate as the system
moves away from that operating point.

2.2.3 Other methods

Another approach developed during the AuRA-NMS project was to take a method from
computer science, constraint programming, and apply it to power flow management [29, 31,
46, 47]. In particular, power flow management was formulated as a constraint satisfaction
problem (CSP), consisting of the following three elements:

• Variables: these represent the control variables, which are the amount each generator
is curtailed and, in recent work [47], the amount that responsive demand that is shed.

2.2 Power flow management: literature survey 15

• Domains: these describe the possible values that each variable is allowed to take; in
particular, discrete domains containing four or five values were used for AuRA-NMS.

• Constraints: these are additional restrictions on what values one or more variables are
allowed to take. In the AuRA-NMS work, three constraints were considered:

1. Overloads: an assignment of the values to variables – the curtailment and load
shedding levels – must not result in any branch being overloaded. This constraint
is evaluated by applying candidate variable assignments to a power system model,
executing a full AC load flow, and checking branch loadings.

2. Order: the order in which the generators are curtailed (or loads shed) must
satisfy a particular priority order, defined within principles of access. The ability
to directly represent these kind of constraints – which may be defined within
connection contracts – is a particular advantage of using CSP.

3. Preference: this soft constraint is used to favour valid assignments of values to
variables that have the least amount of generator curtailment (or load shedding).

A solution to a CSP is any assignment of values to variables where the values are drawn
from the domains and all constraints are satisfied. Solutions are found using search algorithms,
and in the AuRA-NMS work an off-the-shelf best-first backtracking search algorithm is used.
The best-first aspect of the search algorithm refers to it using some heuristic to determine
which is the most promising search direction, while backtracking refers to search directions
being abandoned during the search if partial solutions are found to be invalid. A CSP may
have a number of valid solutions, which is why the preference constraint (3) is used to sort
through these to return solutions with minimal curtailment (or load shedding).

The CSP approach has been successfully demonstrated on case study distribution system
models, of both radial (11 kV) and meshed (33 kV) network topologies. Although it appears
adaptable to different network topologies, the CSP approach to power flow management is
limited by poor scalability characteristics. The worst-case time complexity of the algorithm
is of the order O ∼ kn [29], where k is the size of the domains and n the number of generators.
This limits the CSP approach to small numbers of generators (and loads), and small domain
sizes that give only coarse curtailment values.

Currie et al. [48] present an approach to power flow management that uses pre-set branch
operating margins to determine when to “trim” (partially curtail) or “trip” (fully curtail)
generators’ output. These margins are calculated for each branch that could potentially
become overloaded, with values based on the branch thermal ratings and the maximum real
power ramp rates of the generators that contribute to the overloading of a branch. The method

16 Algorithms for power systems control

does not calculate by how much a generator needs to be curtailed to alleviate an overload;
instead, the “trim” signal simply instructs generators to start reducing their output until the
branch rating goes below the “trim” margin. Inherent in the method is the identification
of which generators contribute to the overloading of particular circuits, which is required
for determining the operating margins and which generators each set of margins applied to.
This is straightforward for radial networks, but it is unclear whether the method could be
generalised to meshed networks also.

2.2.4 Comparison of methods

Most of the surveyed algorithms have only been tested in isolation, so it is difficult to
compare the performance of the methods. Comparative studies have been performed by
Dolan et al. [31] – for the CSP- and OPF-based approaches developed for AuRA-NMS –
and Jupe et al. [37] – for the LIFO, TMA and “egalitarian’ sensitivity factor-based methods.
However, these studies were limited to small sets of algorithms and a small number of test
cases – either in terms of the number of networks used for testing, or the number of network
states that the algorithms were tested on. Therefore, there is a need to perform comparative
studies of a number of the surveyed algorithms, on a number of networks and also across a
number of network states (which aligns with research objectives 1(b) and 1(d)).

2.2.5 Selection of methods to be implemented

Table 2.1 presents a summary of the surveyed power flow management algorithms, consider-
ing the following aspects:

• Reference: a descriptive identifier for each algorithm and publication references.

• Network type: if the algorithm can be applied to any network topology (radial or
meshed), otherwise it can be only be applied to radial networks.

• Generator controls: whether the algorithm can be used to control generators.

• Load controls: whether the algorithm can be used to control loads.

• Voltage limits: whether the algorithm also considers bus voltage limits along with
branch thermal limits.

• Availability: whether an implementation of the algorithm is available as a whole or
in part. For some algorithms, source code is available (either open-source, or closed-
source available to the author), whereas for others, only the description in literature is

2.2 Power flow management: literature survey 17

available. Also indicated is where solvers for part of the algorithm’s process are easily
available.

• Comments: any further observations about each method.

In selecting which algorithms to implement, the characteristics of the algorithms were
considered in isolation and also as part of a set of algorithms. Firstly, it was vital that
each algorithm was able to be implemented. Secondly, the set of algorithms needed to
be representative of the diverse range of methods that have been surveyed. Thirdly, the
algorithms needed to act on the same set of control devices – specifically, generators, for
power flow management as defined in this work – otherwise, differences in algorithm
performance could be attributed to the difference in what control devices were used rather
than the algorithm’s processes. Finally, each algorithm within the set must be capable of
running on the same networks and range of states within those networks as all the other
algorithms in the set, otherwise performance comparisons could not be made. This included
the need for algorithms that could be applied to a sequence of states (simulating network
operation for a time period) and also to individual “snapshot” states.

The first two OPF methods in Table 2.1 consider controlling generators to alleviate branch
overloads. However, the Alnaser and Ochoa OPF approach considers additional control
devices (tap changer settings and generator reactive power) as well as considering bus voltage
limits. These additions are not shared by any of the other algorithms in the table, and, if
ignored, would make the algorithm essentially the same as the AuRA-NMS OPF approach.
For this reason, the Alnaser and Ochoa OPF approach is disregarded.

Non-deterministic OPF approaches such as GA and PSO, represented in the third row
in Table 2.1, could be adapted for use as power flow management algorithms. Although
an appropriate formulation of power flow management for input in to a non-deterministic
optimisation algorithm would need to be created, the optimisation algorithms themselves
could be implemented from readily available libraries. However, by their very nature,
non-deterministic algorithms may give different results when repeatedly applied to exactly
the same problem. Therefore, to characterise their performance on a problem requires
multiple tests – which would result in additional tests compared with the other algorithms
– and necessitate looking at their average performance – which complicates analysis and
comparison to the other (deterministic) algorithms. For these reasons, non-deterministic
approaches were disregarded. Although this means a distinct approach for power flow
management has not been examined in this work, the set of algorithms considered for
implementation still represents a range of diverse approaches.

18 Algorithms for power systems control

Ta
bl

e
2.

1
C

om
pa

ri
so

n
of

su
rv

ey
ed

po
w

er
flo

w
m

an
ag

em
en

ta
lg

or
ith

m
s

R
ef

er
en

ce
N

et
w

or
k

ty
pe

G
en

er
at

or
co

nt
ro

ls
L

oa
d

co
nt

ro
ls

Vo
lta

ge
lim

its
A

va
ila

bi
lit

y
C

om
m

en
ts

A
uR

A
-N

M
S

O
PF

[2
9–

31
]

A
ny

Y
es

–
–

D
es

cr
ip

tio
n

in
lit

er
at

ur
e

on
ly

,
O

PF
so

lv
er

s
av

ai
la

bl
e

C
an

ac
ce

pt
pr

io
ri

ty
or

de
rf

or
ge

ne
ra

to
rs

A
ln

as
er

an
d

O
ch

oa
O

PF
[3

5]
A

ny
Y

es
–

Y
es

D
es

cr
ip

tio
n

in
lit

er
at

ur
e

on
ly

,
us

es
co

m
m

er
ci

al
op

tim
is

a-
tio

n
so

ft
w

ar
e

A
ls

o
co

ns
id

er
s

ta
p

se
tti

ng
s

an
d

ge
ne

ra
to

rr
ea

ct
iv

e
po

w
er

N
on

-d
et

er
m

in
is

tic
O

PF
(e

.g
.

G
A

[2
5,

26
],

PS
O

[2
7]

)

A
ny

Y
es

Po
ss

ib
le

Po
ss

ib
le

G
en

er
al

de
sc

ri
pt

io
ns

in
lit

er
-

at
ur

e,
G

A
an

d
PS

O
lib

ra
ri

es
av

ai
la

bl
e

W
ou

ld
re

qu
ir

e
re

-
fo

rm
ul

at
io

n
of

O
PF

fo
r

po
w

er
flo

w
m

an
ag

em
en

t

Ju
pe

et
al

.L
IF

O
[3

7,
40

,4
1]

A
ny

Y
es

–
–

So
ur

ce
co

de
av

ai
la

bl
e

R
eq

ui
re

s
ge

ne
ra

to
r

pr
io

ri
ty

or
de

r
Ju

pe
et

al
.T

M
A

[3
7,

40
,4

1]
A

ny
Y

es
–

–
So

ur
ce

co
de

av
ai

la
bl

e
–

Ju
pe

et
al

.
“e

ga
lit

ar
-

ia
n”

[3
7,

40
,4

1]
A

ny
Y

es
–

–
So

ur
ce

co
de

av
ai

la
bl

e
–

C
ha

ng
an

d
H

su
[4

3]
A

ny
Y

es
Y

es
–

D
es

cr
ip

tio
n

in
lit

er
at

ur
e

on
ly

V
er

y
si

m
ila

r
to

Ju
pe

et
al

.
T

M
A

Sk
ok

lje
v

et
al

.
L

P
[4

4]
A

ny
Y

es
Y

es
–

D
es

cr
ip

tio
n

in
lit

er
at

ur
e

on
ly

,
L

P
so

lv
er

s
av

ai
la

bl
e

–

A
uR

A
-N

M
S

C
SP

[2
9,

31
,4

6,
47

]
A

ny
Y

es
Y

es
–

D
es

cr
ip

tio
n

in
lit

er
at

ur
e

on
ly

,
C

SP
so

lv
er

s
av

ai
la

bl
e

–

C
ur

ri
e

et
al

.
“t

ri
m

”
an

d
“t

ri
p”

[4
8]

R
ad

ia
l

Y
es

–
–

D
es

cr
ip

tio
n

in
lit

er
at

ur
e

on
ly

,
pa

te
nt

ed
–

2.3 Power flow management: implemented algorithms 19

Both the AuRA-NMS OPF and Jupe et al. LIFO algorithms recognise generator priorities,
which allows generators to be curtailed in a specific order (principles of access). However,
this feature is not shared with the other algorithms in Table 2.1. For the AuRA-NMS OPF
algorithm, priority lists are optional and can be ignored, but for the Jupe et al. LIFO algorithm,
priority lists are essential for the method to work. For this reason, the Jupe et al. LIFO
algorithm is disregarded.

The Jupe et al. TMA algorithm and the algorithm of Chang and Hsu have little difference
in their approaches. It was more straightforward to implement the Jupe et al. TMA algorithm
as its source code was made available to the author, and its description in literature provides
more implementation detail. For this reason, the Chang and Hsu algorithm is disregarded.

All of the surveyed algorithms can be applied to both radial and meshed networks, except
for the Currie et al. “trim and trip” algorithm. That algorithm only appears to be applicable to
radial networks, which would severely limit the range of networks that the set of algorithms
could be tested on. The algorithm also relies on past information about the system under
control (specifically, the past outputs of generators, in order to determine ramp rates), so
it could not be applied to determine control actions for “snapshot” problems where only
a single state is simulated, whereas the other methods can be applied to such problems.
Furthermore, as it is a patented method, it would be less straightforward to implement than
the other algorithms, if not impossible. For these reasons, the Currie et al. “trim and trip”
algorithm is disregarded.

2.3 Power flow management: implemented algorithms

Following the analysis in Section 2.2.5, five algorithms remain, which were implemented for
this work:

1. AuRA-NMS CSP

2. AuRA-NMS OPF

3. Jupe et al. “egalitarian”

4. Jupe et al. TMA

5. Skokljev et al. LP

The implementations of these algorithms that were used for this work are described
within this section, including any changes or assumptions made from the algorithms’ original
description in literature.

20 Algorithms for power systems control

2.3.1 PFM-CSP

The PFM-CSP algorithm used for this work is an implementation of the CSP-based power
flow management algorithm developed for the AuRA-NMS project [29, 31, 46, 47]. Fig-
ure 2.3 is a flowchart of the processof the algorithm when applied to an individual state of
a power system. This process essentially consists of: 1) checking if there are overloaded
branches or curtailed generators in the network, 2) formulating and solving the CSP, if there
are overloads or curtailed generators, and 3) taking one of the CSP solutions and applying
it to the generators in the network. Rather than specifying output setpoints, the PFM-CSP
algorithm determines output limits for the generators within the network, which they will
then operate within.

For PFM-CSP, the three constituents of the CSP problem are as follows:

• Variables: each variable represents the output limit, in relation to each generator’s
rated output, to be applied to one of the controllable generators in the network.

• Domains: these are discrete lists of the possible values each variable is allowed to
take. Similar to previous work, the domain of each variable is {0%,50%,100%},
where 100% represents no output limit applied (generator can run uncurtailed), and
0% represents an output limit that would fully curtail a generator.

• Constraints: two of the three constraints from AuRA-NMS are implemented:

– The “overloads” constraint is implemented by applying an assignment of vari-
ables (the output limits), defined by a candidate solution, as output setpoints
to generators within a network model internal to the algorithm. A load flow is
then executed and branch loadings checked, in order to determine whether the
“overloads” constraint has been violated. The internal network model is updated
using measurements from the network under control before the CSP solution
process starts, and is reset to that condition before each constraint check.

– The “preference” constraint is implemented by sorting through the CSP solutions,
finding the solution with the least generator curtailment, and then applying that
solution to the network.

– The “order” constraint was not implemented as it was assumed that there was no
priority ranking of generators.

To find feasible solutions to the CSP a best-first backtracking search algorithm is used,
as per the AuRA-NMS approach. In particular, the PFM-CSP implementation uses the
open-source “constraint” Python package [49] to both formulate and solve the CSP.

2.3 Power flow management: implemented algorithms 21

START

Read in branch flows and current

generator curtailments from network

END

Update internal model from network

measurements

Set up CSP (linked to model)

Branches

overloaded?

Generators

curtailed?

Solve CSP

Select solution with minimum

curtailment

Apply solution to network

No

No

Yes

Yes

Solutions

found?

No

Yes

Fig. 2.3 Flowchart for the processes of the PFM-CSP algorithm

22 Algorithms for power systems control

2.3.2 PFM-OPF

The PFM-OPF algorithm is based on the OPF-based power flow management algorithm
developed for the AuRA-NMS project [29–31]. The algorithm’s process, shown in flowchart
form in Figure 2.4, is similar to that of PFM-CSP, and can be summarised as: 1) checking
if there are overloaded branches or curtailed generators in the network, 2) formulating and
solving the OPF problem, if there are overloads or curtailed generators, and 3) taking the
OPF solution and applying it to the generators in the network. Unlike PFM-CSP, PFM-OPF
is used to determine generator output setpoints, rather than output limits.

The “PyPower” package [50], which is a Python translation of the MATPOWER [51]
power systems analysis toolbox, is used for the formulation and solution of the OPF. The
input provided to PyPower is in the form of a “case”, which is a set of matrices describing
the buses, branches, generators and generator cost functions of the network. The case is a
model internal to the PFM-OPF algorithm and can be used for load flow as well as OPF.
The case for a particular network is generated before the algorithm’s process based on data
about the network being controlled, and is updated during PFM-OPF’s process from network
measurements. Once the case is updated, a load flow is executed to check that the model is
in close agreement with the network measurements. Once the case is verified, PyPower’s
built-in primal-dual interior point solver is used to solve the OPF.

The OPF within PyPower has the objective function of minimising generator costs,
subject to a standard set of constraints, namely: the power flow equations, branch thermal
limits, bus voltage magnitude limits, and generator real and reactive power limits. The
extensible OPF framework within PyPower (MATPOWER) allows for the OPF formulation
to be augmented to suit a particular application. This framework was utilised to tailor the
standard formulation for PFM-OPF with respect to: 1) the control variables, 2) the cost
functions, and 3) the constraints.

Rather than using the output of each individual generator as a control variable, PFM-
OPF aggregates all the generators at a particular bus into a single generator whose output is
determined by the solution process. This reduces the number of variables in the OPF, speeding
up its solution. For each aggregated generator, a number of variables are defined that describe
the real power “flexibility” at a bus, b, as shown in Figure 2.5. In the figure, Pb represents
the sum of the present power injections of the aggregated generators, Ptarget

b represents the
sum of the target operating points for the aggregated generators (as the generators may be
operating away from their target operating points), while Pmin

b and Pmax
b are the sum of the

minimum and maximum operating points for the aggregated generators, respectively. Based
on these variables, the “down” and “up” flexibility at a bus can be defined, respectively, as:
P−

b = Ptarget
b −Pmin

b and P+
b = Pmax

b −Ptarget
b ; along with a flexibility “bias”, Pbias

b , to account

2.3 Power flow management: implemented algorithms 23

START

Read in branch flows and ratings

Read in generator information

Calculate power flexibility per bus

Run load flow, check calculated

branch flows against measurements

Solve OPF case

OPF

solved?

Apply new set points to generators

Calculate new generator set points

based on OPF solution

END

No

Yes

Initialise OPF case, update bus,

branch, generator and cost matrices

Generators

curtailed?

Branches

overloaded?

Yes

No

Yes

No

Flows in

agreement?

Use flexibility data to update

generator limits, costs and bus loads

No

Yes

Fig. 2.4 Flowchart for the processes of the PFM-OPF algorithm

24 Algorithms for power systems control

Pb
min

Pb
–

Pb
target

Pb
+

Pb
maxPb

Pb
bias

Power

injection

Fig. 2.5 Bus real power flexibility as used in the PFM-OPF algorithm

for any differences between the present and target real power injections at a bus. Although
PFM-OPF only considers controllable generators, it would be trivial to include adjustable
loads when aggregating real power flexibility.

The standard OPF objective function of minimising generator costs is used; however, the
cost functions of the generators are modified so that the OPF minimises the deviation from
the target operating points (Ptarget

b) at each aggregated generator bus. For each aggregated
generator, one of the piecewise-linear cost functions shown in Figure 2.6 is used, depending
on the flexibility available:

• If no flexibility is available, then a flat cost of zero is assumed for all real power
injection values (Figure 2.6a).

• If only “down” flexibility is available, then a cost function with a single line section
is assumed (Figure 2.6b). This has a minimum cost (zero) where the power injection
results in the target operating point, Ptarget

b , being achieved (when the power injection is
equal to the “down” flexibility); and a maximum cost when the power injection results
in the maximum curtailment (when the power injection is equal to zero). The gradient
of the line section is −1/2.

• If only “up” flexibility is available, then a cost function with a single line section is
assumed (Figure 2.6c). Similar to the case with only “down” flexibility, the minimum
cost (zero) is where the power injection results in the target operating point being
achieved, in this case when the power injection is zero. The maximum cost is when
the power injection is equal to the “up” flexibility, P+

b . The gradient of the line section
is +1/2.

• If both “down” and “up” flexibility are available, then a cost function with two line
sections is assumed (Figure 2.6d). The cost function contains the “down” flexibility
curve (as per Figure 2.6b) followed by the “up” flexibility curve (as per Figure 2.6c), so

2.3 Power flow management: implemented algorithms 25

C
o

st

Power injection

Zero cost

everywhere

(a) P−
b = 0 and P+

b = 0

C
o

st

Pb
–(0,)

Power injection

(Pb
–, 0)

(b) P−
b > 0 and P+

b = 0

C
o

st

Power injection
(0, 0)

(Pb
+, Pb

+)

(c) P−
b = 0 and P+

b > 0

C
o

st

Pb
–(0,)

Power injection

Pb
+Pb

– +(, Pb
+)

(Pb
–, 0)

(d) P−
b > 0 and P+

b > 0

Fig. 2.6 Cost curves for generators within PFM-OPF

that the minimum cost (zero) is where the power injection equals the target operating
point. This cost function ensures that deviations away from the target operating point
are penalised by the same amount in either the “down” or “up” direction.

Within the OPF problem, the real power constraints for each of the aggregated generators
are set to [0,P−

b +P+
b], while reactive power is constrained to zero (except for the generator

on the slack bus). To account for generators that are not operating at their minimum outputs,
the difference between the present output Pb and the minimum output Pmin

b is added to the
fixed demand at the relevant bus.

The OPF formulation includes voltage constraints for each bus. However, these are not
relevant for power flow management so are set to a wide range (±0.50pu) so that voltage is
unlikely to become a binding constraint. For the slack bus a much narrower voltage range of
±0.01pu is used.

The OPF solution will indicate the real power flexibility usage per bus, so it is necessary
to disaggregate these results to the individual generators at each bus. This is achieved by
calculating the proportion of flexibility used (P⋆

b /(P
−
b +P+

b), where P⋆
b is the power injection

at the bus from the OPF solution) and applying this to each generator at the bus.

26 Algorithms for power systems control

2.3.3 PFSF-Egal

This algorithm is based on the PFSF-based “egalitarian” algorithm of Jupe et al. [37, 40, 41].
It calculates an “egalitarian” proportional signal of present real power output, Φ, by which
all generators are curtailed.

The PFSFs relate changes in generator real power injections Pg to changes in branch real
power flows Pl: ∂Pl/∂Pg. The PFSFs used within PFSF-Egal are calculated offline by
executing a load flow on a network model, retrieving the Jacobian matrix, and deriving the
sensitivity factors from its inverse. PFSFs are linearisations of the non-linear power flow
equations around a particular operating point, so are only an approximation of the actual
change in power flows. It is assumed that any changes of injections are compensated at the
slack bus, maintaining overall power balance.

Although source code from Jupe et al. was available to the author, this algorithm (and the
next, PFSF-TMA) were re-implemented from scratch so that they could be integrated with
the test environment described in Chapter 3.

Figure 2.7 shows the flowchart of the algorithm’s process. This begins by PFSF-Egal
reading in measurements from the network under control and using these to update an
internal network model. The main loop of the algorithm then starts, which iterates until an
exit condition is satisfied or an iteration limit is reached. In this implementation the limit is
10 iterations, in order to restrict the algorithms to executing in a reasonable time.

Each iteration of the main loop begins by retrieving branch loadings (from the internal
network model) and selecting the branch with the largest loading on rating. If this branch is
not overloaded, then no other branches are overloaded, so the algorithm can exit – applying
any curtailments defined in previous iterations first. If the branch is overloaded, and the
iteration limit has not been reached, the algorithm continues.

The next step is to calculate the required change in real power along the branch △Pl to
bring the branch loading within rating:

△Pl =

{
Pmax

l −Pl, if Pl ≥ 0
−Pmax

l −Pl, otherwise
(2.1)

In (2.1), the maximum real power Pmax
l =

√
(Srating

l)2 −Q2
l , Ql is the reactive power flow

along the branch, and Srating
l is the branch thermal rating (adjusted to 99% to account for

the PFSFs being approximations). The relationship between these variables is illustrated in
Figure 2.8.

2.3 Power flow management: implemented algorithms 27

Apply all calculated to internal

network model

START

Read in branch flows and generator

outputs from network under control

END

Update internal model from network

measurements and run load flow

Reset iteration counter

Apply any

curtailments

Branch

overloaded?

=

At iteration

limit?

Increment iteration counter

Calculate for branch

Calculate for generators and

resultant (method varies

between PFSF-Egal and TMA)

Run load flow on internal model,

read in flows and generator outputs

Select branch with largest loading

compared with rating

No

Yes

No

Yes

No

Yes

Pg
lim

Pg
lim

Pl
⋆ Pl ?

Pl
⋆

Pl

Fig. 2.7 Flowchart for the processes of the PFSF-Egal and PFSF-TMA algorithms

28 Algorithms for power systems control

Ql| |

P
l
max| |

P
l

| |

| |S
l

rating

P

Q

Operating point

exceeding rating

Operating point not

exceeding rating

Fig. 2.8 Derivation of Pmax
l within the PFSF-LP algorithm

The output limits Plim
g for each generator in the set of generators G are derived from △Pl

and Φ:

Φ =
△Pl

∑g∈G−(∂Pl/∂Pg)Pg
(2.2)

Plim
g =

{
(1−Φ)Pg, if 0 ≤ Φ ≤ 1
0, otherwise

(2.3)

The effect of the generator output limits are calculated, for comparison with △Pl:

△P⋆
l = ∑

g∈G
(∂Pl/∂Pg)(Plim

g −Pg) (2.4)

If △P⋆
l ̸=△Pl , then the generators cannot alleviate the overload and the algorithm exits

early. Otherwise, the output limits are applied to the generators within the internal network
model. A load flow is then executed to provide a starting point for the next iteration.

2.3.4 PFSF-TMA

This algorithm is based on the PFSF-based “technically most appropriate” (TMA) algorithm
of Jupe et al. [37, 40, 41]. The implementation is almost exactly the same as the PFSF-Egal
algorithm (the flowchart of Figure 2.7 describes both algorithms), and only differs in the

2.3 Power flow management: implemented algorithms 29

calculation of the generator output limits Plim
g and the change in branch real power flow they

achieve △P⋆
l .

Rather than curtailing all generators by the same proportion, PFSF-TMA ranks generators
in an order determined by their ability to change the power flow along the overloaded branch,
assessed by the magnitude and direction of their PFSF relating to the overloaded branch. The
algorithm then calculates Plim

g for each generator in order, until △P⋆
l =△Pl or all generators

having PFSFs that can positively influence the overload are fully curtailed.

Plim
g is calculated from:

Plim
g = max(0,Pg +

△Pl −△P⋆
l

(∂Pl/∂Pg)
) (2.5)

Whereas △P⋆
l is set initially to zero and then updated for each Plim

g calculated:

△P⋆
l :=△P⋆

l +(∂Pl/∂Pg)(Plim
g −Pg) (2.6)

2.3.5 PFSF-LP

PFSF-LP is based on the sensitivity factor-based method of Skokljev et al. [44] that formulates
power flow management as a linear program. Figure 2.9 is a flowchart of the process followed
by the algorithm, which is similar to the process of PFM-OPF, and can be summarised as:
1) checking if there are overloaded branches or curtailed generators in the network, 2)
formulating and solving the LP problem, if there are overloads or curtailed generators, and 3)
taking the LP solution and applying it to the generators in the network.

Another similarity to the PFM-OPF algorithm is that PFSF-LP aggregates generators
together at each bus. This reduces the number of variables in the problem, speeding up
solution time, as well as allowing PFSF-LP to use common code with PFM-OPF, reducing
the algorithm development time.

PFSF-LP considers increases (△P+
b) and decreases (△P−

b) in real power injection from
the generators, around a target operating point. How these variables relate to the real
power flexibility variables previously described for PFM-OPF (see Figure 2.5) is shown in
Figure 2.10.

The objective of the LP is to minimise deviation away from the target operating points
for each bus b from a set of buses B:

30 Algorithms for power systems control

START

Read in branch flows

Read in generator information

Calculate power flexibility per bus

Set up LP variables

Set up LP constraints

Set up LP objective function

Solve LP problem

LP solved?

Apply new set points to generators

Calculate new generator set points

based on LP solution

END

No

Yes

Retrieve PFSFs

Formulation of

LP problem

Generators

curtailed?

Branches

overloaded?

Q overload?

No

Yes

No

Yes

No

Yes

Fig. 2.9 Flowchart for the processes of the PFSF-LP algorithm

2.3 Power flow management: implemented algorithms 31

Pb
min

Pb
– max

Pb
target

Pb
+ max

Pb
maxPb

Pb
bias

Power

injection

Fig. 2.10 Relationship of real power variables used in the PFSF-LP algorithm

min ∑
b∈B

△P+
b +△P−

b (2.7)

This objective is subject to constraints relating to: 1) branch maximum real power flows,
2) flexibility limits, and 3) non-negativity of decision variables. For the first constraint –
branch maximum real power flows – two inequality constraints are created for each branch,
from the set of branches L, that relate to flows in either direction.

For flows in the positive direction, the following constraint is defined:

∑
b∈B

[(∂Pl/∂Pb)(Pbias
b +△P+

b −△P−
b)]+Pl ≤+Pmax

l ∀ l ∈ L (2.8)

This relates the change in real power injections (△P+
b and △P−

b , with the initial power
injections accounted for in the Pbias

b term) and initial branch real power loading Pl to the
maximum real power flow Pmax

l . A similar constraint is defined in the reverse flow direction:

∑
b∈B

[(∂Pl/∂Pb)(Pbias
b +△P+

b −△P−
b)]+Pl ≥−Pmax

l ∀ l ∈ L (2.9)

Constraints on the changes in real power injections ensure that the flexibility limits are
not exceeded:

△P+
b ≤ Pmax

b −Ptarget
b ∀ b ∈ B (2.10)

32 Algorithms for power systems control

△P−
b ≤ Ptarget

b −Pmin
b ∀ b ∈ B (2.11)

Furthermore, there are additional non-negativity constraints imposed on the changes in
real power injections:

△P+
b ≥ 0 ∀ b ∈ B (2.12)

△P−
b ≥ 0 ∀ b ∈ B (2.13)

The method for disaggregating the per-bus injection changes to individual generators is
the same as that described for PFM-OPF.

2.4 Conclusions

This chapter has outlined the subject of control within power systems and introduced the
particular power systems control task that this work concentrates on. This task is power flow
management, which shares a number of features with other power systems control tasks and
is therefore not unrepresentative of power systems control in general.

Existing algorithms for power flow management have been surveyed, and a diverse set of
these algorithms have been identified and implemented for testing in the subsequent chapters
of this work. These algorithms consider the same control actions – changes in generator real
power output – and can be applied to both radial and meshed network topologies. However,
the poor scalability properties of one algorithm (PFM-CSP) does limit the algorithms’
application to networks with only a small number of controllable generators.

The literature survey also identified that existing comparative studies of power flow
management algorithms are limited, in terms of the numbers of studies available, the number
of algorithms tested, and the range of networks and networks states that the algorithms are
tested on. Therefore, there is a need to perform wider-ranging comparative studies of power
flow management algorithms, which is something that the diverse set of implemented power
flow management algorithm enables when coupled with the automated test environment
described in following chapter, Chapter 3.

Chapter 3

Control algorithm testing environment

This chapter introduces the software system that was developed in support of research
objective 1, which was used for testing the performance of power system control algorithms
applied to different scenarios within a variety of power system models.

In Section 3.1 the requirements defined for the system are outlined, followed in Section 3.2
by an overview of the testing environment that was developed to fulfil the requirements.
The subsequent sections then describe the main components of the testing environment,
including the power system modelling capabilities (Section 3.3), the communication system
modelling (Section 3.4), and the modelling of control algorithms (Section 3.5). How the
various components work together to execute tests is described in Section 3.6 for single tests,
and Section 3.7 for multiple tests. Finally, in Section 3.8 the test environment is evaluated
against the requirements, and the chapter concludes with Section 3.9.

3.1 Requirements for testing environment

Before developing the testing environment, requirements for its functionality were defined
based on the research objectives and with consideration of experimental design [52, 53] – as
the testing of power systems control algorithms can be treated as an experiment – and power
system modelling [54, 55]. These requirements are listed below:

1. Requirements for tests:

(a) Repeatability: each test shall be deterministic and it must be possible to prescribe
and record all factors that can affect the outcome of a test, so that any test can be
repeated and the same outcome obtained.

34 Control algorithm testing environment

(b) Observability: it must be possible to observe and record any parameter relevant to
a test, in order to gather results for analysis and also to allow tests to be repeated
if necessary with the same conditions.

(c) Flexibility: as required by research objective 1(c), it must be possible to run tests
on a variety of networks; furthermore, as required by research objective 1(d) it
must be possible to simulate different operating scenarios within each network
including conditions that change over time.

(d) Automation: the environment must be capable of running multiple tests and
recording their results, without user intervention, in order to enable the large
scale testing envisaged by research objective 1(d).

(e) Reliability: the environment must be tolerant of failed tests. If a test fails for
whatever reason, then the failure should be recorded. Furthermore, the failure of
one test should not influence the outcome of any other test.

(f) Speed: the environment should allow testing to be completed as quickly as
possible within the resources available. However, the environment is not required
to operate in real-time and match the “wall clock” time like a real-time digital
simulator (RTDS) [56].

2. Requirements for power system modelling:

(a) The environment must be capable of running full AC load flow.

(b) The environment must allow for the simulation of real-time network operation
over a time period, comprising a series of steady states separated by a constant
time interval.

(c) The environment must allow for representations of standard power system com-
ponents and for components that could be expected in future power systems, in
order to allow existing and emerging control algorithms to be tested.

(d) The environment must allow time-based characteristics of components to be
simulated, in order to reflect real-world operation.

3. Requirements for modelling control algorithms and communications system:

(a) The environment must support the simulation of multiple control algorithms, in
order to fulfil research objective 1(b).

3.2 Overview of testing environment 35

(b) It must be possible to specify a set of components that each control algorithm can
control. Any control action request that falls outside an algorithm’s specified set
of controllable devices shall be ignored, so that the control scope of individual
algorithms can be restricted to particular zones of operation [2, 57].

(c) Algorithms must only be able to modify the operational parameters of compo-
nents. Modification of fixed parameters – such as circuit impedances – or internal
parameters – such as the state of charge of a battery storage unit – shall not be
allowed, in order to reflect real-world operation.

(d) Any interaction that an algorithm has with the power system model must be
observable and should be able to be captured for inspection and analysis, such as
for debugging when prototyping a control algorithm.

(e) It should be possible for the environment to be extended to include modelling of
communications system characteristics, such as delays and data drop-outs, which
could be used as factors to influence the behaviour of control algorithms.

(f) Any information that is preserved by an algorithm between executions must be
available for inspection. Furthermore, it should be possible to capture and restore
this preserved information, so that tests can be restarted at any point without
invalidating the requirement for repeatability.

3.2 Overview of testing environment

A testing environment was developed using the Python programming language in order to
meet the requirements listed in Section 3.1. Python has a number of features that made it
suited to the creation of the testing environment. Firstly, it is an object-oriented language,
which was useful for representing different elements of a modelled system, and other aspects
of the testing environment needed to execute tests. Secondly, there is an extensive library
of free add-on packages which allowed development time to be reduced as certain features
(such as database interfaces) did not need to be developed from scratch. Thirdly, it is an
interpreted language, which was beneficial when prototyping and debugging, although this
can be at the expense of slower execution compared with a compiled language such as C.

Figure 3.1 provides an overview of the architecture of the testing environment. The
components within this architecture can be split in to two categories: firstly, at the top of
the figure are in-memory software objects that exist at run time; secondly, at the bottom are
stored objects that reside within the file system of the computer that hosts the environment.

36 Control algorithm testing environment

The in-memory components can be further split down according to their function. On the
left of Figure 3.1, the DriverProcess is used to administer series of tests, while on the right,
the TestProcess objects are used to execute individual test runs. In between are two queues
that are used to pass information between the objects. This structure allows the objects to
operate in parallel on separate cores of the computer’s processor, which presents a significant
speed advantage when running multiple tests.

3.2.1 Main components

The main components of the testing environment are described below:

• DriverProcess: this object is responsible for administering a series of tests. It
communicates with the runs database to determine what test runs need to be completed,
and then adds these to the task queue. Any completed test runs are retrieved from the
results queue, and the DriverProcess then records the results of these within the runs
database and data archive file.

• TestProcess: these objects run individual tests. A TestProcess will begin by
interrogating the task queue to obtain a test run that needs to be completed. Test runs
are set up within the TestCell contained within the TestProcess, and then the test is
executed and results gathered. The results of a test run are then placed in to the results
queue, ready for the DriverProcess to collect them. The TestProcess essentially
acts as a “wrapper” around a TestCell to enable parallel processing.

• Task queue: this contains details of test runs that need to be completed. Each test run
in the queue is specified in terms of:

– The control algorithm that should be tested.

– The power system that is to be simulated.

– The scenario that is to be applied to the power system, which defines a period of
time to be studied including the initial conditions and any changes that occur to
the power system over time – such as changes of load or generation.

• Results queue: this contains results of test runs that have been completed by the
TestProcess objects. Each set of results includes any control actions taken by the
control algorithm and measurements from the studied power system for each time step
within the scenario. Furthermore, the test run to which the result belongs is identified
(in particular, the power system, scenario and algorithm tested).

3.2 Overview of testing environment 37

D
r
i
v
e
r
P
r
o
c
e
s
s

R
u

n
s

d
at

ab
as

e

A
lg

o
ri

th
m

m
o

d
u

le
s

h
d

f5

D
at

a

ar
ch

iv
e

fi
le

T
e
s
t
C
e
l
l

T
e
s
t
P
r
o
c
e
s
s

T
as

k

q
u

eu
e

R
es

u
lt

q
u

eu
e

T
e
s
t
C
e
l
l

T
e
s
t
P
r
o
c
e
s
s

C
o

re
 1

C
o

re
 N

C
o

re
 0

S
y
st

em
 m

o
d

el

X
M

L
 f

il
es

In-memory objects Stored objects

x
m

l
p

y

Fi
g.

3.
1

O
ve

rv
ie

w
of

th
e

ar
ch

ite
ct

ur
e

of
th

e
te

st
in

g
en

vi
ro

nm
en

t

38 Control algorithm testing environment

• Data archive file: this is used for bulk storage of test run results. The HDF5 (Hierarchi-
cal Data Format, version 5) format allows for structured storage of large datasets, which
was ideal for the purposes of the testing environment as running several thousands tests
– a quantity required by the testing described in Chapter 4 – can result in Gigabytes of
data.

• Runs database: this contains records of each power system, scenario (initial conditions
and changes to these) and algorithm, along with their combinations, which define
the test runs. The runs database stores each test run that needs to be completed and
each test run that has been completed; however, only a minimal amount of data about
completed test runs is stored, with the majority of results data being stored in a data
archive file.

• Algorithm modules: these are Python files that define each control algorithm.

• System model XML files: these are used to store representations of the power systems
to be studied, encoded using an XML format.

There is an additional in-memory object, the StatsProcess, that has been omitted from
Figure 3.1 to aid clarity. This object polls the DriverProcess and each TestProcess, in
order to provide status information to the user of the testing environment, such as the size of
the queues and the number of test runs completed.

3.2.2 Components within a TestCell

The TestCell objects shown in Figure 3.1 contain objects within them that are used to
model the control algorithms being tested, the power system that the algorithms are being
tested on, and a communications system that sits between the algorithms and the power
system. The objects within a TestCell and their relationships to each other are shown in
Figure 3.2. In the figure, the components are arranged vertically in three layers according to
what they model:

• Power system: this is modelled by the three objects in the bottom layer in the figure,
namely SysModel, LFEngine, and PyPower. The SysModel is a data structure repre-
senting the components and parameters of the power system being modelled; however,
this is not an electrical model, so PyPower is used to perform load flow calculations
using an electrical model generated on-the-fly from the SysModel. The LFEngine acts
as an interface to PyPower, updating the PyPower electrical model from the SysModel
data and storing the results of load flow calculations. LFEngine provides a layer of

3.2 Overview of testing environment 39

C
o
m
m
s
I
n
t
e
r
f
a
c
e

O
n
l
i
n
e
P
r
o
c
e
s
s

C
o
m
m
s
L
o
g
g
e
r

C
o
m
m
s
T
i
m
e
r

C
o
n
tr

o
l

al
g
o
ri

th
m

C
o
m
m
s
E
n
g
i
n
e

S
y
s
M
o
d
e
l

L
F
E
n
g
i
n
e

P
y
P
o
w
e
r

O
n
l
i
n
e
P
r
o
c
e
s
s

C
o
n
tr

o
l

al
g
o
ri

th
m

C
o
m
m
s
I
n
t
e
r
f
a
c
e

C
o
m
m
s
L
o
g
g
e
r

Communications system Power systemAlgorithms

A
d
d
it

io
n
al

 c
o
m

p
o
n
en

ts
 f

o
r

ea
ch

 a
lg

o
ri

th
m

 t
es

te
d

Fi
g.

3.
2

O
ve

rv
ie

w
of

th
e

m
od

el
lin

g
co

m
po

ne
nt

s
w

ith
in

a
T
e
s
t
C
e
l
l

40 Control algorithm testing environment

abstraction above PyPower so a different load flow calculation engine could be used
without needing to modify any of the objects in the testing environment aside from
LFEngine. Modelling of power systems is described in further detail in Section 3.3.

• Communications system: the CommsEngine is the main object in this layer and handles
all communications between the algorithms and the power system modelling objects.
Algorithms can either request data or provide control actions, which are routed to the
appropriate objects by the CommsEngine. Data requests are either sent to the SysModel,
in the case of component parameter data, or sent to the LFEngine, in the case of load
flow results. Control actions are passed on to the SysModel, which modifies the
parameters of the power system components that the control actions related to. Each
control algorithm has a dedicated CommsInterface, which simply serves to forward
communications on to the CommsEngine for processing. The CommsLogger objects
record the communications traffic from each algorithm, while the CommsTimer is used
to set the current time step being studied. Modelling of the communications system is
described in further detail in Section 3.4.

• Algorithms: each OnlineProcess object represents a single control algorithm, which
determine control actions to be applied to the modelled power system based on data
obtained from the power system system model via the communications system. Al-
though Figure 3.2 shows multiple algorithms, only a single algorithm at a time was
tested during all the tests described in this work. Modelling of the control algorithms
is described in further detail in Section 3.5.

An overview of the process used by these objects to execute single and multiple algorithm
tests is described in Sections 3.6 and 3.7.

3.3 Power system modelling

Within the testing environment, power systems are represented as data structures (SysModel
objects) that contain information about every component within a particular system. Which
types of power system component are allowed and what parameters are valid for each
component type is defined within a data model.

3.3 Power system modelling 41

3.3.1 Component parameters

Each power system component has a number of parameters that determine how it is modelled,
as defined in the data model. The testing environment has several types of parameter, for
different purposes, as described below:

• ID: an identifier that is unique for each component of a particular type. Each component
can only have one ID-type parameter.

• Static: properties that do not change over time, such as busbar nominal voltages and
generator output limits.

• Dynamic: properties that change over time but are not controllable by the control
algorithms, such as demands or circuit ratings.

• Control: properties that change over time and can be controlled by the control algo-
rithms, such as the output of a generator.

• Mode: a property that indicates a particular mode of operation, taken from within a
given set of modes (defined by a mode list-type parameter). Control algorithms are
allowed to change component modes.

• Mode list: a list of available modes.

• Internal: a variable required for internal calculation, such as the last power setting of a
storage unit, which is used to calculate state of charge.

• Measurement: these are read-only parameters determined by load flow calculations,
such as the real and reactive power flows along a circuit. The values of measurement
parameters are stored within LFEngine objects rather than within a SysModel.

3.3.2 Power system component modelling capabilities

The different types of power system component that the testing environment can model are
described below. A summary of each component type is presented, including their name
(such as bus), an overview of their main parameters and some essential features of their
operation. Appendix A provides a full listing of the parameters for each component type.

42 Control algorithm testing environment

Busbars (bus)

Each busbar has an assigned nominal voltage and has voltage magnitude and angle available
as measurements. The bus type for load flow (Vθ , PQ or PV) is determined automatically by
the types of components that are connected to the bus. The number of components that can
be connected to each bus is unlimited.

Circuits (cct)

Circuits can represent either overhead lines or cables, depending on the parameters entered
(resistance, reactance and charging). Each circuit has a static power rating that can be
overridden by a dynamic rating value. The real and reactive power flows at each end of a
circuit are available as measurements.

Transformers (tx)

These are modelled in a similar way to circuits, but with the addition of having a variable
voltage ratio and phase shift. The voltage ratio and phase shift can be adjusted in discrete
tapping steps. The transformer representation can limit the number of voltage or phase
shifting tap steps taken within a time step, simulating lock-out delays. The real and reactive
power flows at each end of a transformer are available as measurements.

DC interconnectors (dcx)

These represent point-to-point DC links, with four-quadrant AC/DC converters on both ends.
The real power transfer across the link is defined as a controllable parameter and is subject
to losses, which are proportional to the power transfer. The reactive power at each end is
independently controllable, with each end being in one of three control modes:

1. Q: reactive power import or export is set directly

2. PF: a fixed power factor is assumed, so reactive power import or export is proportional
to the real power import or export at the end in this control mode

3. V: voltage-control mode, with reactive power import or export modulated automatically
to control the voltage at the connecting bus.

Changes in real power transfer and reactive power at each end are subject to ramp rate
limits. At for circuit (cct) components, dcx components have a static power rating that can
be overridden by a dynamic rating value. The real and reactive power flows at each end of
the link are available as measurements.

3.3 Power system modelling 43

In the PyPower electrical model, each end of a dcx is represented in the same way as a
gen component.

Circuit breakers (brk)

Each circuit breaker can be associated any number of circuits, which are taken out of service
if the circuit breaker is set to “open”.

Loads (ld)

Loads represent aggregated demand, such as at a metering point, and include a block of
demand side response (DSR) that can be activated by the control algorithms. The real and
reactive power of both the demand and the DSR can be varied over throughout a simulation.

Generators (gen)

These components have the flexibility to represent a variety of different generation units,
including fully dispatchable plant, plant with limited dispatchability – such as a wind farm
that can whose output can be curtailed – and non-dispatchable plant – such as domestic solar
photovoltaic (PV). The “prime mover” power of each generator can be time-varying, as is the
amount that this can be adjusted “up” or “down”. This allows plant with different dispatching
abilities to be represented. For example, for a wind generator, the “prime mover” power
would be the power available from the wind, the “up” adjustment of real power would be
zero – as the power output cannot exceed the amount of power collected from the wind –
while the “down” adjustment of real power can be equal to the current “prime mover” power
– representing a wind generator that can be curtailed to zero real power output.

Control algorithms that control generators can apply one of two real power operating
modes, which are illustrated in Figure 3.3 and explained below:

1. CAP: as shown in Figure 3.3a, the real power output matches the prime mover power
within “cap” limits set by the control algorithm. If the prime mover power is greater
than the upper cap limit, then the real power output is set to the greater of the upper
cap limit value, or the prime mover power minus the down power adjustment value.
Similarly, if the prime mover power is less than the lower cap limit, then the real power
output is set to the lesser of the lower cap limit value, or the prime mover power plus
the up power adjustment value.

2. SET: in this mode, shown in Figure 3.3b, the control algorithm sets a desired real power
output value. This set point value will be used as the real power output of the generator

44 Control algorithm testing environment

so long as it is within the bounds of the up and down adjustments around the current
prime mover power. If the real power set point value is outside the adjustment bounds,
the generator output is set to the value of the closet bound.

The reactive power output of each generator can be set to one of three operating modes
previously defined for DC interconnectors (dcx, namely Q, PF or V. The reactive power mode
is set independently from the real power mode, and separate real and reactive power ramp
rates can be set.

Storage devices (sto)

These represent storage devices that have a power electronics interface. They operate in
almost exactly the same way as gen components, with the same operating modes and ramp
rate limitations, except that the “prime mover” power is further limited by the state of charge
of the storage. The storage capacity is fixed, and a bi-directional conversion efficiency can
be specified. Furthermore, the charge and discharge rates can be set to different values.

Capacitor/reactor banks (qbk)

These consist of fixed steps of reactance, either inductive or capacitative. A control algorithm
can activate any number of steps, though the number of steps that can be changed at one time
can be restricted, in the same way that tap operations for a transformer can be time limited.

Slacks (slk)

These component transform the busbar they are connected to into a slack bus. Their voltage
magnitude and angle are adjustable parameters, whilst the amount real and reactive power
they infeed are available as measurements.

Zones (zn)

Zones are virtual components that define which components each control algorithm may act
upon. Each zone contains a list of busbars that are considered to be within the zone. Each
busbar can only be assigned to a single zone so that no zones overlap, although it is not
necessary for zones to be contiguous. Control actions determined by a control algorithm are
only applied to the components connected at the busbars within that algorithm’s zone.

Within each power system model a “slack” zone is defined containing the slack bus.
This zone is in addition to the zones required for the control algorithms, and ensures the
algorithms are not allowed to control the slack bus.

3.3 Power system modelling 45

Up adjustment

Down adjustment

Prime mover

power

Output real

power

Time

R
ea

l
p
o
w

er

Upper cap limit

Lower cap limit

(a) CAP mode

Time

R
ea

l
p
o
w

er

Up adjustment

Down adjustment

Prime mover

power

Output real

power

Real power set point

Real power ramp

rate limitation

(b) SET mode

Fig. 3.3 Examples of generator real power operation modes

46 Control algorithm testing environment

3.3.3 Load flow

The data model described above is used as a template for the data structure within the
SysModel objects, which contain the information necessary to represent the components of
a power system and their parameters. This information encompasses the independent state
of the power system, but does not include the dependent state of the system, such as the
voltages at each busbar and the currents flowing through each circuit.

In order to derive the dependent state of the power system it is necessary to execute a load
flow calculation. However, the SysModel does not support this calculation directly. Instead,
the LFEngine object is called, which creates a lower-level electrical model based on the
SysModel and uses a separate solver (PyPower) to execute a load flow using the electrical
model. The resultant dependent state is stored within the LFEngine where it can be accessed
as measurements via the CommsEngine.

The PyPower [50] solver is used for the load flow calculation as: 1) it is a direct port of
MATPOWER [51], so benefits from MATPOWER’s active development and established support
within the research community; 2) it allows for full AC load flow to be calculated using a
Newton-Raphson algorithm; 3) PyPower is Python-based so allows for easy integration with
the other objects within the testing environment.

The electrical model that is provided as input to PyPower is in the form of data matrices:

• Bus matrix: each busbar in the SysModel is represented as a row within this matrix. An
aggregate real and reactive power demand for each bus is calculated by summing the
contributions from all ld, gen and dcx components connected to the busbar. Any gen

or dcx components in V control mode are ignored, as their reactive power contribution
can only be determined during the load flow calculation. A similar aggregation process
is used to sum the contributions of all the qbk components connected to a bus.

• Branch matrix: this contains impedance, charging, rating, voltage ratio, phase shift and
status data for each circuit (cct) and transformer (tx).

• Generator matrix: each row in this matrix contains data for either a generator (gen)
component or for one of the ends of each DC interconnector (dcx). Additional rows
are included for each slack within the system. The data in each row is updated from the
relevant parameters within the SysModel; for example, reactive power limits within
the generator matrix are set based on the last reactive power setting and ramp rate
limits given in the SysModel for each relevant component. If a gen or dcx end is not
in V control mode, the corresponding row in the generator matrix is disabled, and the
component’s real and reactive power contribution is added to the total real and reactive
power for its connecting bus, as recorded in the bus matrix.

3.4 Communications system modelling 47

• Generator cost matrix: this contains cost curves for each row of the generator matrix.
Although cost data is not needed in the load flow calculation, the solver requires the
matrix to be provided so it is initialised to the correct dimensions but left empty.

3.4 Communications system modelling

The testing environment includes a separation between the power system model and the
control algorithms that can act on the components within the power system, in which sits a
layer of objects that represent a communications system.

3.4.1 Functions

The primary functions of the communications system in the testing environment are threefold:

1. To provide an interface for algorithms to access data about the power system model,
including component parameters and measurements. As would be expected in a real
system, the access provided does not include parameters internal to the components.

2. To restrict which components the algorithms are able to control, if needed for a test.

3. To log the communications traffic associated with each algorithm, allowing for inspec-
tion and debugging.

The version of the testing environment used for this work does not include modelling of
communications system characteristics such as delays and failures, and does not restrict the
component parameters that are visible to the algorithms (aside from parameters internal to
the components). However, the architecture of the testing environment would allow these
characteristics to be added without making it necessary to modify the control algorithms or
the power system modelling objects.

3.4.2 Communications system objects

The communications system layer is implemented with the following objects, which are
shown schematically in the middle layer in Figure 3.2:

• CommsEngine: this is the main component of the communications system, and there
is only ever one CommsEngine object per SysModel. The CommsEngine has methods
that can be called to retrieve and to set values within the testing environment, so
long as the requests are valid. Values are retrieved from either the SysModel for

48 Control algorithm testing environment

component parameters or from the LFEngine for measurements. Only values relating
to component parameters in the SysModel can be set.

• CommsInterface: each control algorithm has an associated CommsInterface object,
which sits between the algorithm and the CommsEngine. This arrangement limits the
interfaces that are exposed to each algorithm and allows the algorithm’s action to
be restricted to within its zone only, as each CommsInterface is associated with a
particular zone. Additionally, any communications across a CommsInterface triggers
the associated CommsLogger object.

• CommsLogger: these objects are used to store the communications traffic between a
control algorithm and the power system it is controlling. There is one CommsLogger
per CommsInterface, and, therefore, per control algorithm.

• CommsTimer: when a number of sequential states are modelled, this object is used to
track which state has been reached.

3.5 Control algorithm modelling

Each control algorithm that is tested within the testing environment exists as a Python
module that must contain the following two classes: an OnlineProcess, which is a runtime
representation of an algorithm, and an OfflineProcess, which is used to automatically
configure the algorithm to be applied to a new power system model.

The OnlineProcess contains a number of “housekeeping” methods that are needed at
runtime, such as to start, stop and reset an algorithm. There is also the vital run method
that encapsulates the calculations and logic that define how each algorithm determines
control actions. When the run method is called, the algorithm will use its associated
CommsInterface to retrieve any power system parameters and measurements that it requires,
use these to determine any control actions, and then communicate these actions back to the
power system model via the CommsInterface.

The processes of some control algorithms rely on random number generators. However,
this can lead to the algorithm producing different control actions when applied to exactly
the same power system and state, contradicting the requirement for repeatability within the
testing environment. However, if started with the same seed, a random number generator
will output the same sequence of random numbers, and an algorithm that used the output
of that generator would produce the same control actions. Therefore, each OnlineProcess

must accept a pre-defined integer that is used as the seed for any random number generator

3.6 Running single tests 49

within the algorithm. This removes any variance between tests due randomness within an
algorithm’s process.

In addition to a pre-set random seed, another aid to repeatability is that any information
that is preserved between executions of an OnlineProcess is stored as an accessible Python
data structure. This allows the preserved information to be interrogated, stored and reinstated,
so that test runs can be restarted from the beginning or part-way through.

An algorithm’s OfflineProcess is only used once per power system model, to calculate
parameters for the OnlineProcess that will tailor the algorithm to a particular power system
model. For example, the PFSF-Egal algorithm (see Section 2.3.3) has an OfflineProcess

that calculates PFSFs for any power system model that it needs to be applied to.

3.6 Running single tests

A TestCell object is used to perform a single test of a control algorithm. As shown
previously in Figure 3.2, the TestCell contains objects that model the power system,
communications system and algorithms necessary for a test; however, the TestCell is
responsible for executing a test and sequencing the modelling objects during test execution.

Before a test can begin, the TestCell object must be initialised and the parameters of
the test set up, namely:

• The power system that the test will be performed on, supplied as a SysModel object

• The scenario to be tested, consisting of the initial system state and any changes to the
parameters within the SysModel that are to be made over a number of time steps

• The algorithm to be tested, supplied as an OnlineProcess object

• The random seed to be used by the algorithm

• A list of parameters and measurements (load flow results) that should be captured from
the system state at every time step.

The process that the TestCell follows to execute a test is illustrated in the flow chart
of Figure 3.4. The first steps of this process set up the test, and begin by creating a copy
of the SysModel for use during the test, so that the original SysModel is not altered by
the testing process. The communications system objects (CommsEngine, CommsInterface,
CommsLogger and CommsTimer) are then initialised and linked in to the other modelling
objects (SysModel, LFEngine and the algorithm’s OnlineProcess). The initial control

50 Control algorithm testing environment

START

Create internal SysModel copy

Initialise communications objects

Apply initial control actions to

SysModel copy and run load flow

Set up and start up control

algorithms’ OnlineProcess

Last time

step?

Advance to next time step

Call control algorithms and obtain

control actions

Record control actions for time step

Apply algorithm- and scenario-

defined control actions to internal

SysModel copy

Update internal SysModel copy

and run load flow

Collect and store results

Shut down algorithms’
OnlineProcess

END

Loop over

time steps

Yes

No

Test set up

Fig. 3.4 Flow chart of process for running a single test within a TestCell

3.7 Running multiple tests 51

actions, as defined by the scenario, are then applied to the SysModel copy and a load flow is
performed based on the updated power system model. This ensures that the SysModel and
the load flow results in the LFEngine represent the initial time step of the scenario being
studied. The last step before running the test is to set up and start the control algorithm’s
OnlineProcess, which includes linking it to the CommsInterface.

The TestCell then loops over the time steps within the scenario, where the control algo-
rithms are called to provide control actions, these actions are then applied to the SysModel
along with any control actions defined in the scenario, the LFEngine is then updated from
the SysModel and a load flow executed, with the results stored temporarily in memory. In
modelling the evolution of a power system’s state over time, it is assumed that the algorithm’s
control actions are not applied to the power system model instantaneously. Instead, the
control actions determined by an algorithm for one time step are applied at the next time step,
in addition to any controls for that time step as defined by the scenario.

The execution time of the control algorithm is recorded for each time step. This is
achieved by monitoring the elapsed processor time for the computer process within which
the algorithm is being executed. This gives a more accurate indication of the computational
resources required the algorithm than measuring the real “wall clock” time that has elapsed, as
that can be significantly affected by other processes that are being executed on the processor
at the same time.

3.7 Running multiple tests

All the objects shown in Figure 3.1 are used to run multiple tests of algorithms in an
automated manner. A key feature of the testing environment is that the objects within it
are able to operate in parallel, allowing the process that administers a series of tests (the
DriverProcess) to run at the same time as multiple processes that are executing tests (the
TestProcess objects). Queues are used in between these processes to achieve inter-process
communication.

Section 3.2.1 described the functions of the objects related to running multiple tests. This
section describes how these objects work together in order to achieve automated testing.

3.7.1 Process

The sequence starts with the DriverProcess interrogating the runs database to retrieve test
runs that need to be completed, which are then put onto the task queue. In the diagram, this
is illustrated by point (a), where 2 test runs are put onto the test queue.

52 Control algorithm testing environment

Queue sizes

Result
Driver

Process

Task

queue

Result

queue

Test

Process

put

put

get

get

get

poll

put

put

put

get

put

a

b

c

d

e

f

g

h

i

T
im

e

1

2

1

2

1

1

Task

Fig. 3.5 Sequence diagram for running tests in parallel

3.8 Evaluation against requirements 53

The TestProcess monitors the task queue and retrieves the first available test that needs
to be completed (point (b)). Although only one TestProcess is shown in the figure, multiple
TestProcess objects can have access to the queue and can retrieve tests from it without
conflict. The TestProcess will then set up and execute the test that it has retrieved from
the task queue. Once completed, the results of the test are taken from the TestCell within
the TestProcess and put onto the result queue (c). The TestProcess can then repeat the
process: retrieving another test from the task queue (d), executing the test and then putting
the results onto the results queue (e). The TestProcess will continue to repeat this process
until there are no new test runs added to the task queue.

While the TestProcess is executing tests, the DriverProcess is acting to store the
results of completed tests and to keep the task queue populated with new tests to be completed.
The DriverProcess achieves this by repeatedly checking the results queue ((f) and (g)). If
there are completed tests in the results queue, these are retrieved (g) and then stored: in the
runs database, the test is marked as done and a small set of details are recorded, while the
data archive is used for storing the complete set of results from the test. The DriverProcess
will then check the status of the task queue (h). If that queue is found to be under-populated,
the DriverProcess will interrogate the runs database for additional test runs that need to be
completed, and these will be added to the task queue (i).

3.7.2 Failure tolerance

In order to allow automated testing, it was essential for the testing environment to be robust to
failures without requiring user intervention. This was achieved by introducing error handling
at multiple points throughout the environment. For example, the TestCell within each
TestProcess was encapsulated so that any error arising during a test – such as algorithms
being unable to determine control actions, or the load flow not converging – would be
intercepted and not cause the TestCell to crash. Any test runs that failed in this way would
be identified by the DriverProcess, reported to the user, and barred from being added to
the task queue in the future (as a failed test run will appear within the runs database as a test
run that needs completing). The testing environment also allowed the used to interrupt and
halt testing at any time without test data becoming corrupted.

3.8 Evaluation against requirements

Table 3.1 evaluates whether each requirement listed in Section 3.1 has been met, partly met,
or not met, by the testing environment that has been developed, as described in this chapter.

54 Control algorithm testing environment

Most of the requirements have been met, with requirements 1(f) and 3(a) only partly
met. However, despite these limitations, the test environment was suitable for the testing,
described in Chapter 4, which was required in pursuit of research objective 1.

Table 3.1 Evaluation of testing environment against requirements

No. Requirement Met? Comment
1 (a) Repeatability: each test shall be de-

terministic and it must be possible to
prescribe and record all factors that
can affect the outcome of a test, so
that any test can be repeated and the
same outcome obtained.

Yes Achieved through using the test runs
database to store all parameters that
affect each test, including the value
used to seed any random number
generator used by an algorithm.

1 (b) Observability: it must be possible
to observe and record any parameter
relevant to a test, in order to gather
results for analysis and also to allow
tests to be repeated if necessary with
the same conditions.

Yes Full state information for the power
system being modelled is available
within the SysModel and LFEngine

objects, and these are captured and
stored in a data archive file for each
test. Furthermore, the state of each
algorithm can be captured, stored
and reinstated at any point.

1 (c) Flexibility: as required by research
objective 1(c), it must be possible to
run tests on a variety of networks;
furthermore, as required by research
objective 1(d) it must be possible to
simulate different operating scenar-
ios within each network including
conditions that change over time.

Yes The SysModel object can be used
to represent any power system that
comprises the component types
listed in Section 3.3.2, and can be
used to represent a particular oper-
ating condition by altering compo-
nent parameters. The runs database
allows scenarios with changing con-
ditions to be stored and used for test-
ing.

(continued on next page)

3.8 Evaluation against requirements 55

Table 3.1 (continued from previous page)
No. Requirement Met? Comment
1 (d) Automation: the environment must

be capable of running multiple tests
and recording their results, without
user intervention, in order to enable
the large scale testing envisaged by
research objective 1(d).

Yes Achieved, mainly by the
DriverProcess that automates test
runs that are pre-defined in the runs
database.

1 (e) Reliability: the environment must be
tolerant of failed tests. If a test fails
for whatever reason, then the failure
should be recorded. Furthermore,
the failure of one test should not
influence the outcome of any other
test.

Yes Achieved through the failure-
tolerant design of the
DriverProcess and TestProcess

objects (please refer to Sec-
tion 3.7.2).

1 (f) Speed: the environment should al-
low testing to be completed as
quickly as possible within the re-
sources available. However, the en-
vironment is not required to oper-
ate in real-time and match the “wall
clock” time like a real-time digital
simulator (RTDS) [56].

Partly The architecture of the testing en-
vironment is based on parallel pro-
cessing, which allows testing to ex-
ploit the speed advantage of multi-
core processors. However, the use of
Python for implementing the test en-
vironment may result in speed penal-
ties compared with other program-
ming languages.

2 (a) The environment must be capable of
running full AC load flow.

Yes The PyPower load flow engine pro-
vides full AC load flow calculation,
using the Newton-Raphson solution
method.

2 (b) The environment must allow for the
simulation of real-time network op-
eration over a time period, compris-
ing a series of steady states sepa-
rated by a constant time interval.

Yes Each test in the runs database con-
sists of an initial state followed by
any number of condition changes,
representing a series of steady-states
at a constant time step.

(continued on next page)

56 Control algorithm testing environment

Table 3.1 (continued from previous page)
No. Requirement Met? Comment
2 (c) The environment must allow for

representations of standard power
system components and for compo-
nents that could be expected in fu-
ture power systems, in order to allow
existing and emerging control algo-
rithms to be tested.

Yes Section 3.3.2 details which compo-
nents can be represented. The mix
of component types includes some
that are prevalent in today’s power
systems, such as transformers and
generators, while other types are still
emerging, such as energy storage
units and embedded DC links.

2 (d) The environment must allow time-
based characteristics of components
to be simulated, in order to reflect
real-world operation.

Yes Section 3.3.2 describes a number of
components that can be represented
within a SysModel that can include
time-based characteristics that are
updated between time steps, such
as the state of charge of an energy
storage (sto) unit.

3 (a) The environment must support the
simulation of multiple control algo-
rithms, in order to fulfil research ob-
jective 1(b).

Partly The architecture of the test environ-
ment is flexible to allow different al-
gorithms to be implemented within
it, and for tests be run on each;
although the version implemented
does not allow multiple algorithms
to execute simultaneously during a
single test run. However, this limi-
tation did not impinge on the scope
of testing performed for this work,
in particular that presented in Chap-
ter 4.

(continued on next page)

3.8 Evaluation against requirements 57

Table 3.1 (continued from previous page)
No. Requirement Met? Comment
3 (b) It must be possible to specify a set

of components that each control al-
gorithm can control. Any control
action request that falls outside an
algorithm’s specified set of control-
lable devices shall be ignored, so
that the control scope of individual
algorithms can be restricted to par-
ticular zones of operation [2, 57].

Yes Zone (zn) components can be used
to control which components each
algorithm can control down to the
per-busbar level. Additionally, each
component has an enable parame-
ter that disallows algorithm control
at a per-component level, regardless
of zone.

3 (c) Algorithms must only be able to
modify the operational parameters
of components. Modification of
fixed parameters – such as circuit
impedances – or internal parameters
– such as the state of charge of a bat-
tery storage unit – shall not be al-
lowed, in order to reflect real-world
operation.

Yes The components within the
SysModel can have different types
of parameters, as listed in Sec-
tion 3.3.1, and algorithms are only
allowed to modify some of these
(namely, control- and mode-type
parameters).

3 (d) Any interaction that an algorithm
has with the power system model
must be observable and should be
able to be captured for inspection
and analysis, such as for debugging
when prototyping a control algo-
rithm.

Yes This is achieved by having the com-
munications system between the
algorithms and the power system
model, as described in Section 3.4.

3 (e) It should be possible for the envi-
ronment to be extended to include
modelling of communications sys-
tem characteristics, such as delays
and data drop-outs, which could be
used as factors to influence the be-
haviour of control algorithms.

Yes The communications system objects
described in Section 3.4 could be
modified to represent those charac-
teristics, without necessitating mod-
ifications to any of the other objects
within the testing environment.

(continued on next page)

58 Control algorithm testing environment

Table 3.1 (continued from previous page)
No. Requirement Met? Comment
3 (f) Any information that is preserved

by an algorithm between executions
must be available for inspection.
Furthermore, it should be possible
to capture and restore this preserved
information, so that tests can be
restarted at any point without inval-
idating the requirement for repeata-
bility.

Yes The structure of each algorithm’s
OnlineProcess requires that any
preserved information is available in
an externally-accessible data struc-
ture.

3.9 Conclusions

This chapter has introduced the testing environment that was used to test power system
control algorithms. The requirements for the testing environment were elaborated, including
those relating to the ability to run automated tests, model particular power system components
and characteristics, implement a communications system model and also those related to the
representation of control algorithms under test. Most of those requirements were met by the
environment that was developed, and those that were not met fully have not limited the work
described in subsequent chapters.

The development of testing environment was essential to enable testing of control algo-
rithms to take place, as required by research objective 1. For the next chapter, Chapter 4, the
testing environment was used to test the five power flow management algorithms described in
Chapter 2 on four different case study power systems, with 10,000 or more states simulated
for each system.

Chapter 4

Performance of power flow management
algorithms

This chapter addresses research objectives 1(b), 1(c), and 1(d), by evaluating the performance
of the five power flow management algorithms introduced in Chapter 2 when they are tested
on four different case study power systems.

Firstly, in Section 4.1, the methodology for the test and evaluation of the power flow
management algorithms is outlined, including the performance measures used and the
method for statistical analysis of the algorithms’ performance. Each of Sections 4.2 to 4.5 is
dedicated to one of the case study power systems, and includes a description of the system,
the states tested, and the performance of the algorithms. A cross-case study analysis follows
in Section 4.6, which examines the performance of each algorithm, including aspects of their
designs that lead to particular performance traits. Finally, in Section 4.7, conclusions are
drawn on the performance of the power flow management algorithms.

Some of the work presented in this chapter has been the subject of previous publications
by the author, in particular, the results of testing the power flow management algorithms
on three of four case study power systems. Results from testing on the 33 kV meshed
distribution system were presented in [58], results from the IEEE 14-bus system were in [59],
while in [60] results for both of those systems and the IEEE 57-bus system were presented.
However, results from the 11 kV radial distribution system (Section 4.2) have not been
published previously, nor has the statistical analysis of the algorithms’ performance or the
cross-case study analysis presented in Section 4.6.

60 Performance of power flow management algorithms

A
lg

o
ri

th
m

s
S

y
st

em

m
o
d
el

s

T
es

ti
n
g

st
at

es

B
as

el
in

e

P
F

M
-C

S
P

P
F

M
-O

P
F

P
F

S
F

-T
M

A

P
F

S
F

-L
P

P
F

S
F

-E
g
al

1
1

 k
V

 r
ad

ia
l

d
is

tr
ib

u
ti

o
n

sy
st

em

3
3
 k

V
 r

ad
ia

l

d
is

tr
ib

u
ti

o
n

sy
st

em

IE
E

E
 1

4
-b

u
s

sy
st

em

IE
E

E
 5

7
-b

u
s

sy
st

em

+

+

+

+

A
lg

o
ri

th
m

 t
es

ti
n
g
 o

n
 s

y
st

em
 s

ta
te

s

u
si

n
g
 t

es
ti

n
g
 e

n
v
ir

o
n
m

en
t

P
er

fo
rm

an
ce

 a
n
al

y
si

s

T
es

t
d
a
ta

Fi
g.

4.
1

O
ve

rv
ie

w
of

m
et

ho
do

lo
gy

fo
rt

es
tin

g
th

e
pe

rf
or

m
an

ce
of

po
w

er
flo

w
m

an
ag

em
en

ta
lg

or
ith

m
s

4.1 Methodology 61

4.1 Methodology

The methodology for testing the performance of the power flow management algorithms is
illustrated in Figure 4.1 and consists of taking each of the algorithms described in Chapter 2
(and listed in the figure) and applying them to four case study power systems. For each
system, a number of states are simulated and each of the power flow management algorithms
is then applied separately to each state. As the algorithms are deterministic, it is only
necessary to test each algorithm once on each state in order to characterise its performance on
that state. The testing environment described in Chapter 3 is used for simulating the operation
of the power systems with the various control algorithms applied, and for automating the
testing process. Data about the resultant network state after the application of each algorithm
is captured, and from this data performance measures are derived and analysed.

4.1.1 Case study power systems

Four case study power systems are used in this work, which are either benchmark systems or
have been used in previous work to evaluate the performance of power flow management
algorithms: an 11 kV system derived from a real UK distribution network, a second system
derived from a real UK distribution network at 33 kV, the IEEE 14-bus system, and the
IEEE 57-bus system.

Previous work evaluating the performance of power flow management algorithms have
typically used one [35, 37, 40, 43, 44, 47] or two [29–31] power systems as case studies.
However, four systems are used in this work to represent a more diverse range of networks
and thus the performance of the power flow management algorithms can be more fully
characterised. Due to their distribution or transmission origins, the systems feature either
radial or meshed network topologies, and with branches mainly consisting of either overhead
line or cable, with some transformers. The systems vary in scale in terms of the number of
buses and branches, along with featuring different numbers of branches that can become
overloaded, either independently or simultaneously.

Due to the poor scalability of the PFM-CSP algorithm to controlling multiple generators
(please refer to Section 2.2.3), the systems selected feature four or fewer generators so that the
PFM-CSP algorithm can be executed in a reasonable amount of time. Although this precludes
the algorithms’ performance being characterised for networks with many more generators,
there is still a variation in the number and the size of generators, which allows for some
characterisation of the effects of scale on the performance of the algorithms. Furthermore,
Chapter 2 found that the PFM-CSP is a distinctive approach to power flow management and
therefore it is worthwhile to evaluate its performance alongside the other algorithms.

62 Performance of power flow management algorithms

Modifications to the case study systems

For each of the case study systems it was necessary to make modifications so that the genera-
tors within the systems could cause branches to become overloaded, thus creating conditions
where power flow management algorithms could be applied. As it was desirable to observe
the performance of each algorithm on a significant number of states with overload conditions,
the modifications were made in such a way that the systems would frequently produce over-
load conditions. Furthermore, the modifications also ensured that any encountered overload
condition could be resolved by adjusting the outputs of the generators within the systems.
Only branch ratings and the location and sizing of generators were modified to these ends,
using the following iterative process:

1. Execute a series of load flows for: (a) a number of states with generators off and all
loads scaled in 10% steps between 0% and 100%, and (b) 1000 states with all loads
and the output of each generator scaled by independent random variables between 0%
and 100%, sampled from uniform distributions. For each state within each of (a) and
(b), capture real, reactive and apparent power of each branch.

2. Find the maximum real, reactive, and apparent power for each branch in (a) and (b).

3. Calculate a minimum rating for each branch based on the maximum apparent power
in dataset (a) (so that loads alone cannot cause branch overloads) and the absolute
maximum reactive power in both datasets (so that reactive power alone cannot cause
branch overloads).

4. Calculate the maximum percentage loading for each branch, based on the minimum
rating and the maximum apparent power within datasets (a) and (b).

5. If none or few of the branches are overloaded, or the maximum overload is negligible,
then the generation in the network is adjusted (either by increasing the maximum
output of individual generators or by changing the locations of the generators) and the
process is restarted from step 1.

6. Select a number of the most overloaded branches, and increase their ratings to above
the minimum rating but below the maximum loading, such that at least 25% of states
in dataset (b) have overloaded branches.

7. For the remaining branches, set their ratings above the minimum rating so that those
branches should not become overloaded for any network state.

Data for each case study system can be found in Appendix B.

4.1 Methodology 63

Test states

For each of the case study systems, the states that the algorithms were tested on represent
different levels of general load and output levels for each of the generators within the systems.
In contrast to previous work, where some of the power flow management algorithms were
tested on only a small number of test states [29–31, 35, 43, 44, 47], in this work at least
10,000 states are used per system for testing, so that the performance of each power flow
management algorithm is more fully characterised. The large number of states tested also
provides a large sample size for statistical analysis of the algorithms’ performance.

For three out of the four case study systems, the states were generated randomly by a
Monte Carlo approach, sampling independent uniform random distributions to determine
values for the load and generator output levels. This random approach allows for an arbitrary
number of test states to be generated and gives uniform coverage of the state space – where
the state variables are a scaling factor for all loads and the outputs levels for each of the
generators – and could expose performance strengths and weaknesses of the algorithms at
the more extreme limits of network operation.

In Monte Carlo approaches it is important that the sample size (the number of states in
this case) is sufficient to characterise the system behaviour. Monte Carlo simulations in [61]
and [62] use a stopping rule to determine when a sample is sufficiently large enough that the
relative error of the sample, εµN , is equal to or below a target maximum relative error, δ . εµN

was calculated for the stopping rules in [61, 62] using:

εµN =

Φ−1
(

1− δ

2

)√
σ2

N
N

µN
(4.1)

Where Φ−1 is the inverse Gaussian cumulative probability distribution (mean of 0,
standard deviation of 1), N is the sample size, µN is the sample mean, and σ2

N is the sample
variance. This stopping rule was adapted for this work as a post-hoc test applied to the
randomly generated test states to assess whether the number of states was sufficient to give
εµN ≤ δ . The test was repeated for each of the performance measures (detailed in the next
section, 4.1.2) for the baseline performance of a system across all tested states. A target
relative error of δ = 0.05 was used, in alignment with the significance level used in the
statistical analysis of algorithm performance (introduced in Section 4.1.3). The results of
applying the test can be found in the subsequent sections for each of the systems whose states
were generated randomly (Sections 4.2, 4.4, and 4.5).

64 Performance of power flow management algorithms

In real power systems the distribution of the state variables may not be uniform, and
the state variables may be interrelated and therefore not independent. For these reasons,
the states for the remaining system (the 33 kV distribution system) were generated from
monitored data, rather than randomly, and thus the distribution and dependences of the state
variables follows those of the underlying real data. This system was chosen in particular as
the profile data available aligned with the generation types (wind and hydro) known to be in
the network. More information about the generation of states is presented in the individual
sections for each case study system (Sections 4.2 to 4.5).

4.1.2 Performance evaluation

The algorithm testing environment allows for a large number of parameters to be captured
for each test of an algorithm on a particular state. Based on the captured data, the following
performance measures are used to evaluate the performance of the power flow management
algorithms and the baseline performance of a system with no algorithm applied:

1. Number of overloads: the number of branches that remain overloaded after the
application of an algorithm.

2. Overload energy: calculated from the sum of loadings above rating for each state,
multiplied by the time period each state represents.

3. Total curtailment: the sum of the generator output power curtailed in each state after
the application of an algorithm, multiplied by the time period that each state represents.

In the subsequent analysis, it is assumed that the objective of power flow management
is firstly to minimise the number (or the energy) of overloads, and secondly to minimise
the curtailment applied to the generators. Thus, when comparing the performance of two
algorithms, the algorithm that has the smallest number (or energy) of overloads is deemed to
be better performing; and in the case of tied performance, the algorithm that then applies the
least curtailment is deemed to be better performing. In practice, this absolute prioritisation of
minimising the number (or energy) of overloads above minimising the amount of generator
curtailment may not always hold; for example, if there is a cost associated with generator
curtailment, it could be more economic to allow some overloads when the marginal increase in
replacement costs (due to decreased asset lifespan) associated with an overload is outweighed
by the curtailment reimbursement cost owed to a generator.

In addition to the three performance measures relating to the ability of the algorithms to
solve power flow management problems, the computational performance of each algorithm is

4.1 Methodology 65

assessed by timing their execution, in order to understand their suitability for real-time control.
The background processor load when an algorithm is executed can affect its execution time,
so to ensure a fair comparison of execution times the background processor load is assessed
before executing a series of tests (every 10 minutes during testing) by timing the execution
of a dummy program that has a fixed number of instructions. As the execution time of the
dummy program is directly proportional to the background processor load, it can be used
to scale the execution times of the subsequent algorithm tests to remove the influence of
background processor load. Furthermore, as each algorithm test is executed on a separate
processor core, there should not be any influence on execution times from other algorithm
tests being run concurrently.

4.1.3 Statistical analysis of performance

The results presented for each case study system aggregates the performance of the baseline
system, and each algorithm, across all states tested for that system. However, statistical
analysis is required to determine if differences in performance are statistically significant.

As the algorithms are tested on the same set of states, the performance of any two
algorithms for any of the performance measures can be considered as paired samples. For
testing whether there is a difference in the distributions of two paired samples, the paired
t-test or the non-parametric Wilcoxon signed-rank test can be used [63]. The paired t-test
assumes the data are normally distributed and compares the mean of differences between
the pairs. The Wilcoxon signed-rank test is used as an alternative to the t-test when the
distribution of the data is severely non-normal, and compares the median of the differences
between the paired data.

Large sample sizes are used in this work (10,000 or more states), so, under the Central
Limit Theorem, it is assumed that the distribution of the mean differences in performance
between algorithms approximates a normal distribution. Under this assumption, the paired
t-test is used to evaluate the following null hypothesis when considering the performance of
algorithms A and B for performance measure O (either the number of overloads, overload
energy, or amount of generator curtailment) on system S: algorithms A and B have the same
distribution of performance for measure O on system S. If the performance of the algorithms
A and B are such that this null hypothesis fails to be rejected, then there is no statistically
significant difference in those algorithms’ performance. On the other hand, if the data allows
for this null hypothesis to be rejected, then there is statistically significant difference in the
performance of the algorithms.

Each comparison of two sets of performance data using the paired t-test returns a p-value.
If the p-value is less than or equal to a value known as the significance level (α) then the null

66 Performance of power flow management algorithms

hypothesis defined above can be rejected, which indicates that the differences in algorithm
performance are statistically significant. In this work, a significance level of α = 0.05 is
used, which is a conventional choice of significance level for research [64].

When sets of data are compared using the t-test, such as for the multiple pair-wise
comparisons performed in this chapter, each comparison constitutes a separate hypothesis.
Multiple hypotheses are known as a family when they are a collection “for which it is
meaningful to take into account some combined measure of error” [65]; in other words,
when they are related to one another. In this work, the pair-wise comparisons of algorithm
performance are considered as separate families of hypotheses for each case study power
system due to the comparisons of algorithm performance being made separately for each
system. However, for each system, the comparisons for different performance measures are
considered as being within the same family of hypotheses.

When there is a family of multiple hypotheses, increasing the number of hypotheses tested
increases the likelihood of a result appearing to be significant by chance alone. Therefore, it
becomes necessary to correct for making multiple comparisons in order to control for type I
errors (known as false discoveries or false positives). In this work the Benjamini-Hochberg
procedure [66] is used to correct for making multiple comparisons, which consists of:

1. For each family of s hypotheses, rank the p-values of each hypothesis (a comparison
using the paired t-test) in ascending order p1 . . . ps.

2. For the significance level α , find the largest r such that pr ≤ (r/s)×α .

3. For the hypotheses up to the threshold r (p1 . . . pr), the null hypothesis can be rejected
(therefore the t-test indicates statistically significant differences); for any remaining
hypotheses the null hypothesis fails to be rejected.

The Benjamini-Hochberg procedure is a common way to correct for multiple compar-
isons [67], although other methods exist. For example, with the Bonferroni correction [68]
the significance of each hypothesis is tested against a modified significance value, which
is simply α/s. Although straightforward to apply, the Bonferroni correction becomes con-
servative as the size of a family of hypotheses increases, and can increase the likelihood of
making type II errors (false negatives). A less conservative method, the Holm-Bonferroni
procedure [69], is similar to Benjamini-Hochberg as p-values are ranked and compared to a
modified significance level. However, Benjamini-Hochberg has more detection power than
Holm-Bonferroni [67], so is used in this work when correcting for multiple comparisons.

In the next chapter (Chapter 5), the algorithm performance data used in this chapter are
supplemented by additional data for what are essentially two other algorithms, and extra

4.2 Case study: 11 kV radial distribution system 67

pair-wise comparisons of the combined performance data are performed using the paired
t-test. As the extra comparisons are related to the tests performed in this chapter, they
constitute single families of hypotheses for each system. In order to account for the extra
comparisons, the Benjamini-Hochberg procedure was applied only to the combined data for
each system to determine the statistical significance of every comparison made. Therefore,
the corrections for multiple comparisons in this chapter account for the extra comparisons,
although the results of those extra comparisons are not described until Chapter 5.

4.2 Case study: 11 kV radial distribution system

4.2.1 System description

G

3 4 5 6 7 8 9 10 2 1

Slack bus

G
33/11 kV

Bus with load Bus without load

Transformer Circuit

Generator G KEY:

Circuit (overloaded)

Fig. 4.2 Single line diagram of the 11 kV radial distribution system used in this work

This system is based on network data for part of an 11 kV distribution network from
the south east of England [70], which was used in previous AuRA-NMS work testing the
PFM-OPF and PFM-CSP algorithms [29–31]. As shown in Figure 4.2, the system has an
infeed at 33 kV, transformation down to 11 kV, and a single feeder with a radial topology.
The system features 10 buses (6 with loads), 8 cable sections, a single transformer, and
2 generators, which are situated at the towards the remote end of the feeder. As per the
descriptions within previous work using this system [29–31], the two circuits highlighted in
red in Figure 4.2 (5-6 and 8-9) have had their ratings reduced so that they can potentially
become overloaded due to power exported from the generators. Appropriate ratings to
achieve this were determined by using the process outlined in Section 4.1.1.

4.2.2 Test states

10,000 system states were generated randomly for the 11 kV radial distribution system in
order to test the power flow management algorithms. The following parameters were varied
for each state:

68 Performance of power flow management algorithms

Table 4.1 Baseline loadings for the overloaded branches within the 11 kV radial distribution
system

Branch Rating
[MVA]

Min.
loading

[%]

Mean
loading

[%]

Max.
loading

[%]

No. of
overloads
[count]

Mean
overload

[%]
Circuit 5-6 2.00 5.70 62.81 164.30 1472 117.42
Circuit 8-9 1.50 0.34 59.60 132.09 1872 112.79

• System load: all loads within the system were scaled by the same amount, between 0%
and 100%. The scaling factor was drawn from a uniform random distribution.

• Generator output: the real power output of each of the generators within the system
were scaled between 0% and 100%. Separate scaling factors were used for each
generator, and these were drawn from independent uniform random distributions.

4.2.3 Baseline performance

Each of the 10,000 states was simulated for the system with no algorithm applied in order
to understand the baseline performance of the system. 2462 (24.62%) of the states tested
featured overloads, and 882 (35.82%) of these have both circuits overloaded. This gives a
total of 3344 overloads, which have a total energy of 871.95 MVAh.

Table 4.1 provides a summary of the loadings along the two overloaded circuits within
the 11 kV radial distribution system. Circuit 5-6 can become more heavily overloaded as it
has both generators feeding in to it, although circuit 8-9 is more frequently overloaded.

Applying the relative error test (Section 4.1.1) for the baseline performance with respect
to the number of overloads across the 10,000 tested states yields εµN = 0.037, whereas for
overload energy εµN = 0.048. Both of these values are below the target maximum relative
error (δ = 0.05) so generating additional states and testing the system’s behaviour on those
states was not required. Curtailment was not considered for the relative error test as that
performance measure had the same value (0.0 MWh) for all states.

4.2.4 Algorithm performance

Figure 4.3 summarises the performance of the power flow management algorithms when
applied to the 10,000 test states in the 11 kV radial distribution system. Four of the algorithms
are able to remove all the overloads, and thus have identical performance with respect to the
number and energy of overloads. PFM-OPF is the only algorithm that fails to remove all
overloads, leaving 2 overloads in the system with a total energy of 0.10 MVAh.

4.2 Case study: 11 kV radial distribution system 69

0 500 1000 1500 2000 2500 3000 3500
Number of overloads [count]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

3344

0

2

0

0

0

0 100 200 300 400 500 600 700 800 900
Overload energy [MVAh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

871.95

0.00

0.10

0.00

0.00

0.00

0 500 1000 1500 2000 2500
Total curtailment [MWh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

0.00

2121.40

769.94

856.20

891.01

773.33

Fig. 4.3 Overview of power flow management algorithm performance when applied to the
11 kV radial distribution system

70 Performance of power flow management algorithms

Comparing the distribution of performance of PFM-OPF against any of the four other
algorithms using the paired t-test yields p-values of 0.1573 and 0.1627 for the number
and energy of overloads, respectively. The Benjamini-Hochberg correction for multiple
comparisons (as described in Section 4.1.3) was applied to these p-values – along with the
p-values of all the other pair-wise t-test comparisons in the family of hypotheses for this case
study system – to determine their statistical significance. This revealed that the results of the
t-tests comparing the overload performance of PFM-OPF to each of the other power flow
management algorithms fail to reject the null hypothesis (described in Section 4.1.3) that the
distributions of the algorithms’ performance are the same.

While there is no statistically significant difference in the algorithms’ performance with
respect to removing overloads, the amount of curtailment applied varies significantly between
the algorithms. PFM-OPF applies the least curtailment, with PFSF-LP applying just 0.44%
more. PFSF-Egal applies 11.20% more curtailment than PFM-OPF, and PFSF-TMA applies
15.72% more. PFM-CSP is the worst performing algorithm, applying over double the amount
of curtailment of any other algorithm and 175.53% more than PFM-OPF.

Although the difference in the amount of curtailment applied by PFM-OPF and PFSF-LP
appears small, using the paired t-test to compare the distribution of curtailment performance
for these two algorithms yields a p-value < 0.0001. Applying the same analysis to all other
pair-wise combinations of algorithms reveals similar p-values (< 0.0001). After correcting
for multiple comparisons using the Benjamini-Hochberg procedure, all of these p-values
reject the null hypothesis that the distributions of performance are the same, so there are
statistically significant differences in the distribution of curtailment applied by the algorithms.

Based on these results, PFM-OPF is the power flow management algorithm that gives the
best performance for the 11 kV radial distribution system, as it applies the least curtailment
whilst minimising the number and energy of overloads to a level where there is no statistically
significant difference to the other algorithms. However, if the absolute number of overloads
is considered, then the amount of curtailment, PFSF-LP is the most effective algorithm.

4.3 Case study: 33 kV meshed distribution system

4.3.1 System description

Similar to the 11 kV radial distribution system, this system was used previously in the
AuRA-NMS work for testing the PFM-OPF and PFM-CSP algorithms [29–31]. It is based
on network data for part of a 33 kV distribution network within Wales [71], and has a meshed
network topology as shown in Figure 4.4.

4.3 Case study: 33 kV meshed distribution system 71

3
4

5

6

7

8 9

11

15

16

17

18

23

26 27

G

G

G

G

Slack bus

1

2

10

12

13

14

19 20

21

22

24 25

Bus with load Bus without load

Transformer Circuit

Generator G KEY:

Circuit (overloaded)

275/132 kV

132/132 kV

132/33 kV

132/33 kV

132/33 kV
33/11 kV

11/0.69 kV

Fig. 4.4 Single line diagram of the 33 kV meshed distribution system used in this work

72 Performance of power flow management algorithms

The system features an infeed from the transmission network at 275 kV, represented by
a slack bus. There is then transformation down to 132 kV and then to 33 kV, which is the
predominant voltage level within the system model. There are 27 buses and 10 of these
have loads connected. There are 26 circuits, almost all constructed of overhead lines, and 9
transformers. The three circuits highlighted in the figure were allowed to become overloaded
due to generator export, in line with previous work [29–31]. It was necessary to use the
process outlined in Section 4.1.1 in order to determine appropriate ratings for those circuits.

The system features a number of wind or hydroelectric generation sites. In the source
network data some of these appeared as multiple generators connected to a bus, representing,
for example, the individual turbines at a wind farm. However, this resulted in a large number
of generators, which made execution of the PFM-CSP algorithm intractable due to its poor
scalability to systems with multiple controllable generators (please refer to Section 2.2.3).
To mitigate against this, where a bus had multiple generators connected, the generators were
lumped together, leaving a total of four generators in the system.

4.3.2 Test states

For the 33 kV meshed distribution system the test states were generated from real load and
generation profiles. Profile data from the United Kingdom Generic Distribution Systems
(UKGDS) project [72] was used to scale each of the loads (by a profile representing an
average domestic customer) and the outputs of the generators (by either a “wind” or “hydro”
profile, as appropriate). Each profile covers a whole year at a half-hour time step, resulting in
17,520 test states in total for this system.

4.3.3 Baseline performance

With no algorithm applied in the 33 kV meshed distribution system, 6719 (38.35%) of the
17,520 test states feature overloads. Out of these overloaded states, 1449 (21.57%) have a
single circuit overloaded, 2480 (36.91%) have two circuits overloaded, and the remaining
2790 (41.52%) have all three circuits overloaded (highlighted in Figure 4.4). This gives a
total of 14,779 overloads and a total overload energy of 9445.74 MVAh.

Table 4.2 provides a summary of the loading for the three overloaded circuits within the
system. Circuit 13-22 is both the most frequently overloaded and the most heavily loaded
circuit. Circuits 13-14 and 13-19 are loaded at a similar frequency to each other and have
similar loadings.

4.3 Case study: 33 kV meshed distribution system 73

Table 4.2 Baseline loadings for the overloaded branches within the 33 kV meshed distribution
system

Branch Rating
[MVA]

Min.
loading

[%]

Mean
loading

[%]

Max.
loading

[%]

No. of
overloads
[count]

Mean
overload

[%]
Circuit 13-14 7.00 25.25 82.55 144.96 4193 112.80
Circuit 13-19 12.00 37.30 84.06 139.08 4189 110.20
Circuit 13-22 10.00 39.37 90.72 152.70 6397 115.64

4.3.4 Algorithm performance

Figure 4.5 summarises the performance of the power flow management algorithms when
applied to the 17,520 test states within the 33 kV meshed distribution system.

PFM-OPF is the best performing algorithm as it is the only one that is able to remove
all overloads within this system. PFM-CSP is the second best algorithm at removing and
reducing overloads, while the PFSF-based algorithms perform worse by at least an order of
magnitude. PFSF-Egal removes the least overloads (24.40% remain), and although it also
reduces the total overload energy the least, it still manages to reduce the overload energy to
0.83% compared with the baseline performance of the system.

PFSF-TMA applies the least curtailment, with PFSF-LP applying a slightly higher amount
(0.12% more), which is correlated with fewer overloads remaining (4.41% less). PFM-OPF,
despite removing all overloads, applies just 1.39% more curtailment than PFSF-TMA. PFSF-
Egal applies 50.91% more curtailment than PFSF-TMA, and PFM-CSP, the worst performing
algorithm in terms of the amount of curtailment, applies 93.76% more than PFSF-TMA.

For each pair-wise combination of algorithms, comparing the distributions of each of
the three performance measures shown in Figure 4.5 using the paired t-test gives p-values
< 0.0001. After correcting for multiple comparisons using the Benjamini-Hochberg procedure
(described in Section 4.1.3), all of these p-values successfully reject the null hypothesis that
the distributions of performance are the same. Therefore, the differences in performance of
the algorithms are statistically significant for the 33 kV meshed distribution system for all
three of the performance measures.

These results show that PFM-OPF is the best performing algorithm in terms of minimising
the number and energy of overloads for this case study system, whilst also reducing the
amount of curtailment applied.

74 Performance of power flow management algorithms

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of overloads [count]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

14779

194

0

3594

1903

1819

0 2000 4000 6000 8000 10000
Overload energy [MVAh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

9445.74

10.56

0.00

78.25

40.41

36.48

0 10000 20000 30000 40000 50000 60000 70000 80000
Total curtailment [MWh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

0.00

76910.75

40246.45

59905.56

39694.49

39743.66

Fig. 4.5 Overview of power flow management algorithm performance when applied to the
33 kV meshed distribution system

4.4 Case study: IEEE 14-bus system 75

6

2

5

12

13

11
10

14

9

4

7 8

3

1

G
G

G

G

Slack bus

Capacitor bankBus with load Bus without load

Transformer Circuit

GeneratorGKEY:

Circuit (overloaded)

Fig. 4.6 Single line diagram of the IEEE 14-bus system as used in this work

4.4 Case study: IEEE 14-bus system

4.4.1 System description

Figure 4.6 shows the version of the IEEE 14-bus system used in this work. The network
topology and electrical parameters of transformers and circuits are taken from a common
repository for network data [73]. However, the generators and the branch ratings have been
modified using the process defined in Section 4.1.1 in order to create a system in which the
generators can cause overloads and thus power flow management algorithms can be applied.

The IEEE 14-bus system is originally derived from a US transmission system and
comprises 14 buses, 15 circuits, and 5 transformers (if the 3-winding transformer between
buses 4, 8, and 9 is treated as a set of 2-winding transformers). Due to its transmission origin,
the circuits are mainly overhead lines whose X/R ratio is between 2 and 4; furthermore,
the original data does not include ratings for the circuits and transformers. The slack bus
is located at bus 1, and the original configuration from [73] features a single generator (at

76 Performance of power flow management algorithms

bus 2) and three synchronous condensers (at buses 3, 6, and 8). Loads are spread amongst 11
of the buses, with bus 9 also featuring a shunt capacitor.

The original configuration of a single generator and branches without ratings does not
present a power flow management problem, creating the need to modify the system. As
shown in Figure 4.6, the generator and synchronous condensers have been removed, and
instead four generators have been added at buses 10, 11, 12, and 14. The generators are
assumed to operate with a unity power factor, and their sizes were determined using the
process described in Section 4.1.1. That process was also used to determine ratings for
the branches within the system, and the 7 branches whose ratings allow them to become
overloaded due to generator output are highlighted red in the figure.

4.4.2 Test states

The same method as used for the 11 kV radial distribution system was used to randomly
generate 10,000 test states for the IEEE 14-bus system, with random variables drawn from
independent uniform distributions used to scale:

• All loads by a common scaling factor.

• Each of the four generators, by separate scaling factors.

4.4.3 Baseline performance

Out of the 10,000 states tested using the IEEE 14-bus system, 4,008 (40.08%) result in
overloads. As shown in Figure 4.7, a number of states feature more than one overload, giving
5345 overloads, with a total energy of 9116.25 MVAh.

Table 4.3 tabulates a summary of the loadings for each of the seven circuits within the
IEEE 14-bus system that can become overloaded. No circuit is overloaded for more than 25%
of all states. Circuits 9-10 and 10-11 are the most heavily loaded, in terms of: 1) the number
of overloads, with these two circuits appearing in 58.71% and 37.62% of the overloaded
states, respectively; and 2) the magnitudes of the overloads, with these two circuits having
both the largest mean overload (120.79% and 113.24%, respectively) and maximum loading
(190.58% and 157.00%, respectively).

Applying the relative error test (Section 4.1.1) yields εµN = 0.027 for the number of
overloads and εµN = 0.035 for overload energy. Both of these values are below the target
maximum relative error (δ = 0.05) so the number of states generated and tested is adequate.

4.4 Case study: IEEE 14-bus system 77

1 2 3 4
Number of simultaneous overloads

0

500

1000

1500

2000

2500

3000

N
um

be
r o

f s
ta

te
s [

co
un

t]

2839

1012

146
11

Fig. 4.7 Frequency of simultaneous overloads for the IEEE 14-bus system

Table 4.3 Baseline loadings for the overloaded branches within the IEEE 14-bus system

Branch Rating
[MVA]

Min.
loading

[%]

Mean
loading

[%]

Max.
loading

[%]

No. of
overloads
[count]

Mean
overload

[%]
Circuit 3-4 30.00 10.28 60.82 116.32 558 104.55

Circuit 6-11 10.00 6.91 45.14 133.72 147 107.48
Circuit 9-10 10.00 2.44 75.14 190.58 2353 120.79
Circuit 9-14 15.00 0.62 50.74 142.03 738 112.10

Circuit 10-11 10.00 10.32 66.14 157.00 1508 113.24
Circuit 12-13 10.00 1.61 40.08 101.98 2 101.53
Circuit 13-14 10.00 2.28 36.95 117.62 39 104.18

78 Performance of power flow management algorithms

Table 4.4 Statistical significance of differences in the distribution of the number of overloads
for the power flow management algorithms applied to the IEEE 14-bus system

p-values (bold if not statistically significant)
Algorithm Performance

[count]
Baseline PFM-

CSP
PFM-
OPF

PFSF-
Egal

PFSF-
TMA

PFSF-
LP

Baseline 5345 – 0.0000 0.0000 0.0000 0.0000 0.0000
PFM-CSP 45 – 0.0366 0.0462 0.1432 0.0000
PFM-OPF 24 – 0.0001 0.0007 0.0000
PFSF-Egal 66 – 0.3546 0.0000
PFSF-TMA 60 – 0.0000

PFSF-LP 1172 –

4.4.4 Algorithm performance

Figure 4.8 summarises the performance of the power flow management algorithms when
applied to the 10,000 test states in the IEEE 14-bus system.

In terms of minimising the number of overloads, PFM-OPF is the most effective algorithm
as it leaves only 24 overloads, compared with 45 or more remaining after the application
of any of the other algorithms. The overload performance for PFM-CSP, PFSF-Egal, and
PFSF-TMA are within the same order of magnitude, whereas the number of overloads
remaining after the application of PFSF-LP is two orders of magnitude higher.

The statistical analysis in Tables 4.4, 4.5, and 4.6 show the p-values of the pair-wise
t-test comparisons of the algorithms’ performance for each of the performance measures.
Values that fail to reject the null hypothesis of no difference in algorithm performance,
following the application of the Benjamini-Hochberg procedure, are shown in bold. The
remaining p-values indicate statistically significant differences in performance. With respect
to the differences in performance for the number of overloads, Table 4.4 shows that the
differences between PFSF-TMA and both of PFSF-Egal and PFM-CSP are not statistically
significant; however, the differences in performance between all other pair-wise combinations
of algorithms are statistically significant.

Although PFM-OPF removes the most overloads, it is not the most effective algorithm at
reducing the total overload energy. Rather, PFSF-TMA is the most effective, and is able to
reduce overload energy by an additional 96.68% compared with PFM-OPF. When compared
with the baseline performance of the system, this represents a 99.98% reduction in overload
energy. PFSF-Egal reduces overload energy by a similar amount as PFSF-TMA, and the
analysis in Table 4.5 indicates that the difference in performance for these two algorithms is
not statistically significant. The performance of PFM-CSP sits between PFSF-TMA (and
PFSF-Egal) and PFM-OPF, while PFSF-LP gives the worst performance, with overload

4.4 Case study: IEEE 14-bus system 79

0 1000 2000 3000 4000 5000 6000
Number of overloads [count]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

5345

45

24

66

60

1172

0 2000 4000 6000 8000 10000
Overload energy [MVAh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

9116.25

11.01

49.97

1.75

1.57

105.55

0 10000 20000 30000 40000 50000 60000
Total curtailment [MWh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

0.00

58855.10

19544.04

33900.57

21797.45

19503.16

Fig. 4.8 Overview of power flow management algorithm performance when applied to the
IEEE 14-bus system

80 Performance of power flow management algorithms

Table 4.5 Statistical significance of differences in the distribution of overload energy for the
power flow management algorithms applied to the IEEE 14-bus system

p-values (bold if not statistically significant)
Algorithm Performance

[MVAh]
Baseline PFM-

CSP
PFM-
OPF

PFSF-
Egal

PFSF-
TMA

PFSF-
LP

Baseline 9116.25 – 0.0000 0.0000 0.0000 0.0000 0.0000
PFM-CSP 11.01 – 0.0211 0.0000 0.0000 0.0000
PFM-OPF 49.97 – 0.0040 0.0039 0.0014
PFSF-Egal 1.75 – 0.3197 0.0000
PFSF-TMA 1.57 – 0.0000

PFSF-LP 105.55 –

Table 4.6 Statistical significance of differences in the distribution of the amount of curtailment
for the power flow management algorithms applied to the IEEE 14-bus system

p-values (bold if not statistically significant)
Algorithm Performance

[MWh]
Baseline PFM-

CSP
PFM-
OPF

PFSF-
Egal

PFSF-
TMA

PFSF-
LP

Baseline 0.00 – 0.0000 0.0000 0.0000 0.0000 0.0000
PFM-CSP 58855.10 – 0.0000 0.0000 0.0000 0.0000
PFM-OPF 19544.04 – 0.0000 0.0000 0.6957
PFSF-Egal 33900.57 – 0.0000 0.0000
PFSF-TMA 21797.45 – 0.0000

PFSF-LP 19503.16 –

energy of over the double that of PFM-OPF, although PFSF-LP still removes 98.84% of
overload energy when compared with the system baseline performance.

PFSF-LP applies the least curtailment out of the five algorithms; however, Table 4.6
shows there is no statistically significant difference in the curtailment it applies compared
with PFM-OPF. This is despite the PFM-OPF being the most effective algorithm at reducing
the number of overloads, while PFSF-LP is the least effective for the same performance
measure. The differences in the amount of curtailment applied by the other three algorithms
is stark, however, and is surprising given their similar performance at reducing the number
and energy of overloads. PFM-CSP applies the most curtailment, 73.61% higher than the
next worst algorithm, PFSF-Egal. PFSF-Egal, in turn, applies 55.53% more curtailment than
the next worst algorithm, PFSF-TMA. The amount of curtailment applied by PFSF-TMA is
of a similar order to that applied by PFM-OPF, although it is 11.53% higher and, as Table 4.6
indicates, this is a statistically significant difference in performance.

Out of the algorithms tested on the IEEE 14-bus system, which algorithm performs most
effectively depends on whether the number or energy of overloads is of most interest. If the

4.5 Case study: IEEE 57-bus system 81

objective is minimising the number of overloads, while also minimising the curtailment ap-
plied, then PFM-OPF is the most effective algorithm. However, if the objective is minimising
the energy of overloads, while minimising the curtailment applied, then PFSF-TMA is the
most effective algorithm.

4.5 Case study: IEEE 57-bus system

4.5.1 System description

Figure 4.9 shows the version of the IEEE 57-bus system used in this work. The network
topology and electrical parameters of transformers and circuits are taken from same common
repository of network data as for the IEEE 14-bus system [73]. The generator locations
are unchanged from the original data; however, the generator and branch ratings have been
modified using the process defined in Section 4.1.1 in order to create a system in which the
generators can cause overloads and thus power flow management algorithms can be applied.

The IEEE 57-bus system is originally derived from a US transmission system and
comprises 57 buses (of which 41 have loads connected), 62 circuits, and 18 transformers.
The circuits are mainly overhead lines whose X/R ratio is between 1.5 and 5, and no ratings
data is available. The slack bus is located at bus 1, and there are six generators within
the system. The source data has three of these generators (at buses 2, 6, and 9) acting as
synchronous condensers, with the remainder (at buses 3, 8 and 12) export real power.

The system was modified in order to create conditions where generator real power export
could create branch overloads, using the process described in Section 4.1.1. The modified
branches are shown in red in Figure 4.9. The ratings of the three real power-exporting
generators were increased. All the generators were left in voltage control mode, and their
reactive power ranges were increased to avoid load flow non-convergence due to voltage
collapse. Ratings for the circuits and transformers were assigned, with the 13 circuits
highlighted in the figure given ratings that could result in them becoming overloaded due to
generator real power export.

4.5.2 Test states

Similar to the 11 kV radial distribution and IEEE 14-bus systems, 10,000 states were gener-
ated randomly for testing the power flow management algorithms on. In each state, all loads
and each of the generators’ output were scaled by independent uniform random variables.

82 Performance of power flow management algorithms

2

3

4

18

19

20

21

22 23

30

31

43

41

40 56

44

45

48

50 51

42 37

39

57

11

6

5

53

32 33

54

55

9 8

26

27

28

29

7

52

34

35

36

14

46

47
13

15

1

38
49

10

12

17

16

G

G

G

G

G

G

Slack bus

24

25

Bus with load Bus without load

Transformer Circuit

Generator G KEY:

Circuit (overloaded)

Fig. 4.9 Single line diagram of the IEEE 57-bus system as used in this work

4.5 Case study: IEEE 57-bus system 83

1 2 3 4 5 6 7 8 9 10 11
Number of simultaneous overloads

0

200

400

600

800

1000

N
um

be
r o

f s
ta

te
s [

co
un

t] 801
720 756 748

328

224

949

436

205
252

36

Fig. 4.10 Frequency of simultaneous overloads for the IEEE 57-bus system

4.5.3 Baseline performance

Out of the 10,000 states tested using the IEEE 57-bus system, 5,455 (54.55%) result in
overloads. As shown in Figure 4.10, the majority of these states feature more than one
overload, giving 25,377 overloads with a total energy of 678,836.34 MVAh.

Table 4.7 summarises the loadings for the 13 circuits whose ratings are such that they can
become overloaded. Circuit 8-9 is the most heavily loaded and most frequently overloaded
branch. It is overloaded for 51.03% of states and is amongst the seven branches that are
overloaded more than 1,000 times. Circuits 9-13 and 10-12 are overloaded significantly less
frequently than the other branches, being overloaded for just 0.48% and 0.18% of the 10,000
states, respectively.

Applying the relative error test (Section 4.1.1) yields εµN = 0.024 for the number of
overloads and εµN = 0.027 for overload energy. Both of these values are below the target
maximum relative error (δ = 0.05) so the number of states generated and tested is adequate
for this system.

4.5.4 Algorithm performance

Figure 4.11 summarises the performance of each power flow management algorithm when
applied to the 10,000 test states in the IEEE 57-bus system.

PFM-OPF is the most effective algorithm at minimising the number of overloads, with
5.39% overloads remaining after its application. PFM-CSP is the next most effective algo-

84 Performance of power flow management algorithms

0 5000 10000 15000 20000 25000 30000
Number of overloads [count]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

25377

3660

1367

24823

24247

12863

0 100000 200000 300000 400000 500000 600000 700000
Overload energy [MVAh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

678836.34

30389.77

1241.44

670366.33

653798.21

241625.85

0 200000 400000 600000 800000 1000000
Total curtailment [MWh]

Baseline

PFM-CSP

PFM-OPF

PFSF-Egal

PFSF-TMA

PFSF-LP

0.00

982967.03

749899.56

30780.23

43312.05

405575.30

Fig. 4.11 Overview of power flow management algorithm performance when applied to the
IEEE 57-bus system

4.5 Case study: IEEE 57-bus system 85

Table 4.7 Baseline loadings for the overloaded branches within the IEEE 57-bus system

Branch Rating
[MVA]

Min.
loading

[%]

Mean
loading

[%]

Max.
loading

[%]

No. of
overloads
[count]

Mean
overload

[%]
Circuit 3-15 70.00 4.27 56.52 125.47 554 108.07
Circuit 6-7 80.00 18.58 56.46 121.28 619 106.62
Circuit 6-8 70.00 23.02 75.53 160.60 3039 122.38
Circuit 7-8 70.00 16.90 91.04 189.96 4412 137.52
Circuit 8-9 150.00 33.46 106.83 227.53 5103 155.45

Circuit 9-10 40.00 37.82 86.72 187.05 3659 130.50
Circuit 9-11 95.00 12.60 58.03 113.72 700 104.07
Circuit 9-12 40.00 37.44 75.59 174.46 2559 123.69
Circuit 9-13 100.00 10.69 52.25 104.39 48 101.33

Circuit 10-12 60.00 13.81 38.84 106.35 18 102.14
Circuit 27-28 25.00 0.38 64.64 126.81 2027 111.75
Circuit 28-29 25.00 0.93 65.95 127.64 2170 112.60
Circuit 57-56 3.00 47.86 72.93 111.10 469 103.78

rithm, and leaves 14.42% of overloads in the system, which is 167.74% more then PFM-OPF.
PFSF-LP leaves 50.69% of the overloads. PFSF-TMA and PFSF-Egal perform similarly,
although PFSF-Egal is the worst performing of the two and leaves 95.57% of overloads after
its application.

The ranking of the algorithms regarding overload energy follows the same pattern as
their performance at reducing the number of overloads. PFM-OPF is the most effective
algorithm as it minimises total overload energy. It also produces the lowest overload energy
as a proportion of the overloads remaining, achieving 0.91 MVAh per overload compared
with 8.30 MVAh per overload for PFM-CSP and higher for the other algorithms.

For the IEEE 57-bus system, the ranking for the amount of curtailment applied by the
algorithms is almost the inverse of the ranking for the other two performance measures, with
PFSF-Egal applying the least, followed by PFSF-TMA and PFSF-LP. PFM-OPF applies the
second highest amount of curtailment, while PFM-CSP applies the highest amount. Despite
applying much more curtailment, PFM-CSP does not perform as well as PFM-OPF with
respect to removing overloads.

For each pair-wise combination of algorithms, comparing the distributions of each of
the three performance measures using the paired t-test gives p-values < 0.0001. All of these
p-values successfully reject the null hypothesis that the distributions of performance are the
same, after using the Benjamini-Hochberg procedure to correct for multiple comparisons.

86 Performance of power flow management algorithms

Thus the differences in performance are statistically significant for the IEEE 57-bus system,
for every performance measure and pair-wise combination of algorithms.

Considering the performance of all the algorithms, PFM-OPF is the most effective, as it
both minimises the number and energy of overloads. However, it does not apply the least
amount of curtailment, although this is to be expected as curtailment is required to remove
overloads, and the algorithms that apply less curtailment perform significantly worse at
removing overloads.

4.6 Cross-case study analysis

This section analyses the performance of the algorithms across all the case study systems.
This includes consideration of the reasons behind the differences in the performance of the
algorithms.

4.6.1 Comparison of algorithm performance

Figure 4.12 compares the performance of the power flow management algorithms across
all the case study systems, for the three performance measures relating to the number of
overloads, overload energy, and curtailment applied. Also shown is the baseline performance
of each system. The height of each bar gives the relative performance of an algorithm (or the
baseline) compared with the maximum performance value for each system. For the overload
performance measures, the baseline systems give the maximum values so the algorithms’
performances are scaled relative to those values. For curtailment, PFM-CSP consistently
applies the most curtailment across all systems, and the performance of the other algorithms
are scaled relative to the amount of curtailment applied by PFM-CSP for each system.

With respect to the number of overloads, there is a pattern in how the relative performances
of the algorithms change between systems. For the 11 kV radial distribution system the
algorithms are able to remove all (or almost all) overloads. For the IEEE 14-bus system, there
is an increase in the number of overloads relative to the baseline performance of the system,
though this increase is to 1.23% or less for all algorithms except PFSF-LP, whose relative
performance is an order of magnitude higher at 21.93%. The 33 kV meshed distribution
system sees an increase in the relative number of overloads for all algorithms except PFM-
OPF. All algorithms perform relatively worse on the IEEE 57-bus compared with the other
systems, particularly the PFSF-based algorithms, with PFSF-Egal failing to remove almost
all overloads.

4.6 Cross-case study analysis 87

Baseline PFM-CSP PFM-OPF PFSF-Egal PFSF-TMA PFSF-LP
0%

20%

40%

60%

80%

100%

%
 o

f m
ax

. n
um

be
r o

f o
ve

rlo
ad

s 10
0.

00
%

0.
00

%

0.
06

%

0.
00

%

0.
00

%

0.
00

%

10
0.

00
%

1.
31

%

0.
00

%

24
.3

2%

12
.8

8%

12
.3

1%

10
0.

00
%

0.
84

%

0.
45

%

1.
23

%

1.
12

%

21
.9

3%

10
0.

00
%

14
.4

2%

5.
39

%

97
.8

2%

95
.5

5%

50
.6

9%

11 kV radial distribution system
33 kV meshed distribution system

IEEE 14-bus system
IEEE 57-bus system

Baseline PFM-CSP PFM-OPF PFSF-Egal PFSF-TMA PFSF-LP
0%

20%

40%

60%

80%

100%

%
 o

f m
ax

. o
ve

rlo
ad

 e
ne

rg
y 10

0.
00

%

0.
00

%

0.
01

%

0.
00

%

0.
00

%

0.
00

%

10
0.

00
%

0.
11

%

0.
00

%

0.
83

%

0.
43

%

0.
39

%

10
0.

00
%

0.
12

%

0.
55

%

0.
02

%

0.
02

%

1.
16

%

10
0.

00
%

4.
48

%

0.
18

%

98
.7

5%

96
.3

1%

35
.5

9%

Baseline PFM-CSP PFM-OPF PFSF-Egal PFSF-TMA PFSF-LP
0%

20%

40%

60%

80%

100%

%
 o

f m
ax

. t
ot

al
 c

ur
ta

ilm
en

t

0.
00

%

10
0.

00
%

36
.2

9%

40
.3

6%

42
.0

0%

36
.4

5%

0.
00

%

10
0.

00
%

52
.3

3%

77
.8

9%

51
.6

1%

51
.6

8%

0.
00

%

10
0.

00
%

33
.2

1%

57
.6

0%

37
.0

4%

33
.1

4%

0.
00

%

10
0.

00
%

76
.2

9%

3.
13

%

4.
41

%

41
.2

6%

Fig. 4.12 Comparison of the relative performance of every algorithm across the case study
systems, for each of the three performance measures

88 Performance of power flow management algorithms

Table 4.8 Ranking of the power flow management algorithms against the different perfor-
mance measures across the four case study systems

Performance
measure

Algorithm
Ranking – for each performance measure and system
11 kV
radial

33 kV
meshed

IEEE
14-bus

IEEE
57-bus

Average

Total
number of
overloads

PFM-OPF 3 1 1 1 11⁄2
PFM-CSP 3 2 3 2 21⁄2
PFSF-LP 3 3 5 3 31⁄2

PFSF-TMA 3 4 3 4 31⁄2
PFSF-Egal 3 5 3 5 4

Total
overload
energy

PFM-OPF 3 1 4 1 21⁄4
PFM-CSP 3 2 3 2 21⁄2

PFSF-TMA 3 4 11⁄2 4 31⁄8
PFSF-LP 3 3 5 3 31⁄2

PFSF-Egal 3 5 11⁄2 5 35⁄8

Total
curtailment

PFSF-LP 2 2 11⁄2 3 21⁄8
PFM-OPF 1 3 11⁄2 4 23⁄8

PFSF-TMA 4 1 3 2 21⁄2
PFSF-Egal 3 4 4 1 3
PFM-CSP 5 5 5 5 5

The pattern of changes in relative performance for overload energy is similar to that for
the number of overloads, although the degree of change is less for all systems apart from the
IEEE 57-bus system.

With respect to the amount of curtailment, the pattern of the relative curtailment applied
(compared with PFM-CSP) is fairly consistent. The relative curtailment applied by the
algorithms on the 33 kV system is more than what they apply on the 11 kV system, while for
the IEEE 14-bus system it is less (with the exception of PFSF-Egal, which applies an amount
between what it applies for the 11 kV and 33 kV distribution systems). For the IEEE 57-bus
system, there is different pattern in the amount of curtailment applied by the algorithms,
with PFM-OPF applying its highest amount of curtailment while PFSF-Egal and PFSF-TMA
apply their least.

Table 4.8 ranks the performance of the algorithms. For each performance measure, the
ranks of the algorithms for each system is shown, along with average ranks across all systems.
Where there are two or more algorithms with no statistically significant difference in their
performance – such as for the number of overloads on the 11 kV radial distribution system –
those algorithms are all given the same average rank.

As seen in Figure 4.12 and in the rankings in Table 4.8, PFM-OPF is, on average, the
most effective algorithm at reducing the number and energy of overloads. For the same

4.6 Cross-case study analysis 89

two performance measures, PFM-CSP is the second most effective algorithm, followed by
PFSF-LP and PFSF-TMA, with PFSF-Egal the least effective algorithm. The rankings for
PFSF-LP and PFSF-TMA swap between the two performance measures, with PFSF-LP
ranking higher with respect to minimising the number of overloads and PFSF-TMA ranking
higher with respect to minimising overload energy.

With respect to minimising the curtailment applied to the generators, it could be expected
that the algorithm that removes the least overloads on average (PFSF-Egal) would also apply
the least curtailment on average, as applying curtailment is necessary to remove overloads.
However, this is not the case, as PFSF-LP applies the least curtailment, on average, across the
case study systems; despite not ranking last with respect to minimising the number or energy
of overloads. PFSF-OPF ranks second, followed by PFSF-TMA, PFSF-Egal, and PFM-CSP,
which is the worst performing algorithm for this performance measure as it consistently
applies the most curtailment on every system.

4.6.2 Analysis of algorithm performance: PFM-OPF

Although PFM-OPF is the most effective algorithm on average for reducing the number and
energy of overloads, it fails to remove some overloads within each of the systems, except for
the 33 kV meshed distribution system. For the 11 kV radial distribution and the IEEE 14-bus
systems, PFM-OPF fails to remove overloads for 2 and 11 states, respectively, and all of these
are due to non-convergence of the OPF algorithm. For the IEEE 57-bus system, however,
there are no convergence issues for the 10,000 states tested, despite the larger scale of that
system, and PFM-OPF’s failure to remove overloads stems from a different cause.

For the 5455 states with overloads in the IEEE 57-bus system, PFM-OPF always detects
the overloads and applies some curtailment, but fails to remove all overloads for 1358 states.
In 1349 (99.34%) of the states with overloads remaining, PFM-OPF leaves a single overload
in the system, while in the remaining 9 (0.66%) states, two overloads are left. Figure 4.13
shows the distribution of curtailment applied across all states that initially contain overloads,
with the data split according to the number of overloads that remain after PFM-OPF is
applied. The figure shows an association between increased numbers of overloads remaining
and an increased amount of curtailment being applied.

The link between the amount of curtailment and the number of remaining overloads for
PFM-OPF in the IEEE 57-bus system can be explained by considering two factors. The first
factor is that any curtailment applied will cause the system under control to deviate away
from its initial state, but larger amounts of curtailment will cause this deviation to be more
significant. This becomes pertinent when considering the second factor, which is the model
of the system under control that is used internally within the PFM-OPF algorithm.

90 Performance of power flow management algorithms

0 100 200 300
Curtailment [MWh]

0

200

400

600

Fr
eq

ue
nc

y
[c

ou
nt

]

(a) Overloads remaining = 0

0 100 200 300
Curtailment [MWh]

0

100

200

300

(b) Overloads remaining = 1

0 100 200 300
Curtailment [MWh]

0

2

4

6

(c) Overloads remaining = 2

Fig. 4.13 Distribution of the amount of curtailment applied by the PFM-OPF algorithm for
the initially overloaded states in the IEEE 57-bus system, for different numbers of overloads
remaining

The model internal to PFM-OPF assumes that only the slack bus is in voltage control
mode (with tolerance limits of ±0.01 pu), whereas the IEEE 57-bus system used in this work
has generators at other buses in voltage control mode in addition to the slack bus. At the start
of the solution process, the internal model is updated to match the initial state of the system
under control, which ensures that the reactive power contributions from the generators in
voltage control mode are appropriately represented. However, once the OPF solution process
starts and potential curtailments are trialled, the state of the internal model will deviate from
the initial state. Crucially, due to the assumptions about voltage control, the state of the
internal model will also deviate from the equivalent state of the system under control if
the same curtailments were applied. This means that PFM-OPF may find a solution that
removes all overloads in its internal model, but some overloads may remain when the same
curtailments are applied to the system under control. This is particularly apparent when
larger amounts of curtailment are applied, which results in larger deviations between the
initial and final states of the internal model and thus larger differences between the final state
of internal model and the state of the system under control. This explains the association
between increased numbers of overloads remaining and increased amounts of curtailment
being applied shown in Figure 4.13.

The results from the four case study systems show that although PFM-OPF most fre-
quently minimises the number of overloads, there are states where one or more of the other
algorithms can do the same but with less curtailment, such as for the 33 kV meshed distribu-
tion system. The key factor behind this is an assumption within PFM-OPF’s internal model
that adjusts branch ratings to 99% of their actual value, which results in PFM-OPF sometimes

4.6 Cross-case study analysis 91

applying more curtailment than necessary to remove an overload. During prototyping, this
assumption was found to be essential in ensuring that PFM-OPF would not leave marginal
overloads in the system under control when its internal model had no overloads, due to
numerical differences. The marginal overloads caused PFM-OPF to have very poor perfor-
mance with respect to the number of overloads, so it was desirable to improve this. Similar
assumptions are used in the other algorithms in order to account for approximations and help
to improve the algorithms’ performance with respect to the number of overloads, although
with little effect of their performance with respect to overload energy and curtailment.

4.6.3 Analysis of algorithm performance: PFM-CSP

PFM-CSP is on average the second most effective algorithm at removing overloads. It failed
to remove overloads on all three systems with a meshed network topology, due to a feature
of its design rather than execution errors.

PFM-CSP uses an internal network model to check candidate generator output limits
during the CSP solution process. This internal model is updated to match the initial state of
the system under control, including the current output set points of the generators. When the
internal model is used during the CSP solution process, candidate output limits are applied
as new set points to the generators within the model to assess whether overloads would
occur if the generators were operating at those limits. This ignores the available power from
each generator, so, for example, a generator with only 50% of its maximum power available
would have a output limit of 100% tested in the internal model by setting the appropriate
generator to 100% output, rather than 50% output. This allows the maximum output limits
to be determined, which the generators can increase their output to match, but means that
PFM-CSP does not check that the overloads are removed when the output limits are applied
to the generators in the system under control. A consequence of this is that PFM-CSP may
fail to remove overloads within meshed systems, as explained below.

To explain how this phenomena occurs, consider the simple power system illustrated in
Figure 4.14a. This example system has a meshed topology consisting of four buses, of which
two feature generators and one is the slack bus. It is assumed that the generators are the
same size and the parameters of all branches (except their ratings) are identical. With this
configuration, the power flowing through circuit 3-4 combines the output of both generators,
while power will only flow along circuit 1-2 if the output of the generators are different.

The state space for this system comprises two variables, which are the output levels of the
two generators. Therefore, the state space can be represented in two dimensions, as shown
in Figure 4.14b. Assuming that the ratings of circuits 1-2 and 3-4 are such as to cause a
power flow management problem due to export of power from the generators, the operating

92 Performance of power flow management algorithms

G G

2 1

3

4

(a) System schematic

A

B 50%

100%

0%

0% 50% 100%

Circuit 1-2

limits

Circuit 3-4

limit

Generator 1 output
G

en
er

at
o
r

2
 o

u
tp

u
t

Operation

within

limits

(b) System state space

Fig. 4.14 Simple power system for illustrating overload performance weaknesses of PFM-
CSP algorithm

conditions that lead to overloads can be represented within the state space, as shown by the
shaded areas in the figure. Also represented in the figure (by the nine coloured dots) are
the output limits that the PFM-CSP algorithm would check within its internal model if an
overload condition occurs. It is obvious that the only valid output limits that the algorithm
would find are the points highlighted in green, which represent an output limit of 0% applied
to both generators, and an output limit of 50% applied to both generators.

In Figure 4.14b point A is an example of an operating state in which circuit 1-2 is
overloaded, due to the generators at bus 1 and 2 operating at different output levels (20%
and 80%, respectively). The PFM-CSP algorithm would detect the overload and use its
internal model to assess what output limits would lead to the overload being removed, by
applying the nine operating points (represented by the coloured dots: (0%, 0%), (50%, 0%),
etc.) to the generators in the internal model. Due to the algorithm’s preference constraint of
minimising curtailment (refer to Section 2.3.1), the operating limits from point (50%, 50%)
would be determined to be both a valid and the preferred solution. Applying a 50% limit to
both generators would result in the output of the generator at bus 1 staying the same (as 20%
< 50 %), while the output of the generator at bus 2 would fall from 80% to 50%. Although the
system would be in a new state (point B) within the output limits defined by the PFM-CSP
algorithm, this new state is still inside the region of the state space in which circuit 1-2 is
overloaded. Therefore, although PFM-CSP may find a solution that removes all overloads
when applied as output limits to its internal model, when the same limits are applied to the
system under control, overloads may remain.

Aside from the failure of PFM-CSP to remove certain overloads, it applies the most
curtailment of all the algorithms on each of the case study systems. This is due to the discrete

4.6 Cross-case study analysis 93

domains used in CSP process for the output limits, which can lead to more curtailment
being applied than necessary. For example, if a generator operating at 100% (full output)
only needed to operate at 99% output in order to remove an overload, PFM-CSP would not
recognise this and would apply an output limit based on the closest value from the discrete
domain that was less than or equal to that value, which in this case would be 50%.

The failure of PFM-CSP to remove certain overloads is down to a fundamental aspect of
the algorithm’s design and re-designing the algorithm to overcome that issue – for example,
by determining an operating “envelope” for the generators to operate within rather than just
output limits – is outside the scope of this work. The issue of PFM-CSP applying excessive
curtailment can be resolved more simply by increasing the number of values in the domain
to make the output limits less coarse. This has a significant performance drawback, however,
due to the poor scalability characteristics of PFM-CSP to increased domain sizes and numbers
of generators, as noted in Section 2.2.3. For example, for the IEEE 14-bus system with four
generators, changing the domains from {0%,50%,100%} to {0%,25%,50%,75%,100%}
increases the worst-case execution time by a factor of 54 / 34 ≈ 7.72.

4.6.4 Analysis of algorithm performance: PFSF-based algorithms

These three algorithms all use PFSFs and share some common code, with PFSF-Egal and
PFSF-TMA only differing on a few key lines of their process (see Section 2.3.4). As these
lines have a common effect on their performance, these algorithms are analysed together in
this section. This analysis makes reference to Table 4.9, which tabulates a number of metrics
regarding the performance of these three algorithms across the four case study systems,
including the number of states where the algorithms report errors during their process. The
tabulated metrics are numbered for ease of reference.

PFSFs linearise the power flow equations around a particular operating point and can be
manipulated using basic arithmetic operations, so can speed up execution when compared
with algorithms that use a full non-linear representation of the system. However, because
PFSFs are a linearisation of a non-linear system around one state, they are approximations
and can become inaccurate when used to calculate power flows for states that deviate from
the initial state. The effect of this is that the PFSF-based algorithms, which use a common set
of PFSFs that are calculated offline for a single state in each system, may overestimate the
change in power flows for particular curtailment values, and thus leave overloads remaining
in the system under control. Similarly, the algorithms may also underestimate the effect of
some curtailments, applying more curtailment than necessary to remove an overload.

The algorithms employ various design features to mitigate the approximation inherent
in using PFSFs. The first is to adjust ratings to 99% within their internal processes so that

94 Performance of power flow management algorithms

Table 4.9 Additional metrics related to the performance of the PFSF-based algorithms

1. Number of overloads
Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal 0 3594 66 24823
PFSF-TMA 0 1903 60 24247

PFSF-LP 0 1819 1172 12863
2. States with overloads

Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal 0 3594 66 5165
PFSF-TMA 0 1903 60 4995

PFSF-LP 0 1819 1029 5262
3. States with overloads and curtailment

Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal 0 3406 56 503
PFSF-TMA 0 1715 50 951

PFSF-LP 0 1631 1019 5239
4. States with overloads but no curtailment

Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal 0 188 10 4662
PFSF-TMA 0 188 10 4044

PFSF-LP 0 188 10 23
5. States with overloads, no curtailment, and algorithm error

Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal 0 0 0 4639
PFSF-TMA 0 0 0 4021

PFSF-LP 0 0 0 0
6. States with overloads, no curtailment, but no algorithm error

Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal 0 188 10 23
PFSF-TMA 0 188 10 23

PFSF-LP 0 188 10 23
7. States with no overloads but with curtailment

Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal 2546 3186 4017 297
PFSF-TMA 2546 4877 4023 467

PFSF-LP 2546 4961 3054 200
8. Mean remaining overload energy versus baseline (%) for

overloaded states with curtailment
Algorithm 11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
PFSF-Egal – 10.25 17.78 6.95
PFSF-TMA – 17.14 19.69 3.86

PFSF-LP – 17.66 3.71 37.23

4.6 Cross-case study analysis 95

the algorithms will tend to overestimate the amount of curtailment needed, which can help
remove overloads when the PFSFs overestimate the effect of curtailments. The second design
feature is to run a full non-linear load flow to validate the curtailment values derived using
PFSFs, which is used within PFSF-Egal and PFSF-TMA.

One design feature shared by these algorithms is that the logic used to detect overloads
calculates the apparent power flowing through a branch from the average real and reactive
power measured at both ends, rather than calculating the apparent power at both ends and
comparing the maximum of these to the branch rating. This feature allows each branch to
be associated with single values of real and reactive power, which simplifies the algorithms’
logic and speeds up execution. For example, PFSF-LP could be adapted to consider power
flow constraints at both ends of a branch, rather than looking at a constraint based on average
flows; however, this would double the number of variables in the LP.

This design feature of the overload detection logic does not cause an issue for many of the
tested states, due to the branch loading limit of 99% assumed to mitigate the approximation
inherent in using PFSFs. This lowers the detection threshold, so the algorithms are more
likely to correctly detect an overload, although, conversely, they may falsely detect an
overload and apply curtailment when none is needed. This is quantified by metric 7 in
Table 4.9, which shows the number of states within each system for which the algorithms
falsely detect overloads and then apply curtailment. However, under certain conditions a
branch may be overloaded at one or both ends, but the apparent power calculated from the
average real and reactive powers at both ends may still be within the 99% limit used within
the algorithms. Under these conditions, this design feature of the algorithms becomes a
flaw as they will fail to detect overloads and thus no curtailment will be applied to remove
the overloads. As shown in Table 4.9 (metric 6), for the 33 kV meshed distribution system,
there are 188 states in which the PFSF-based algorithms fail to detect overloads; for the
IEEE 14-bus system there are 10 such states; and for the IEEE 57-bus system there are 23.
All overloads in the 11 kV radial distribution system are correctly detected.

For the 33 kV meshed distribution system and the IEEE 14-bus system, failure to detect
overloads accounts for all the states where the PFSF-based algorithms do not apply any
curtailment despite there being overloads. However, for the IEEE 57-bus system, there is
a different aspect of designs of PFSF-Egal and PFSF-TMA that leads to these algorithms
failing to apply curtailment when there are overloads, which is the iteration limit that ensures
the algorithms execute in a reasonable time (described in Section 2.3.3). For a significant
number of states (metric 5 in Table 4.9), the algorithms reach the iteration limit within
their processes before the overloads within their internal models are removed, and then exit,
reporting an error and applying no curtailment.

96 Performance of power flow management algorithms

0 1 2 3 4 5 6 7 8 9 10 11
Initial number of overloads

0%

20%

40%

60%

80%

100%

%
 o

f s
ta

te
s w

ith
 e

rr
or

s

PFSF-Egal PFSF-TMA

Fig. 4.15 Percentage of initially overloaded states in the IEEE 57-bus system where the
PFSF-Egal and PFSF-TMA algorithms report errors

As can be seen in Figure 4.15, there is a link between the initial number of overloads in
the system and the propensity for the algorithms to reach their iteration limit and report an
error. PFSF-TMA is less likely than PFSF-Egal to reach its iteration limit and report an error
for states with three or fewer overloads initially; however, for all states with 5 overloads or
more, both algorithms always reach their iteration limits and report errors. The design of the
algorithms is such that when the iteration limit is reached they will report an error and exit
without applying curtailment. The consequence of this is that all overloads will remain in the
system, resulting in the significant number of overloads for PFSF-Egal and PFSF-TMA on
the IEEE 57-bus system, and making that the only system where these two algorithms are
outperformed by PFSF-LP in terms of the reducing the number and energy of overloads.

Aside from the states in which overloads remain due to missed detection (metric 6 in
Table 4.9) or algorithm error (metric 5), for the majority of states with overloads remaining
the algorithms operate correctly according to their designs and apply some curtailment
to the generators within the systems (metric 3). In these cases, the algorithms determine
curtailments that are able to remove all overloads within their internal system models, but
leave one or more overloads when applied to the actual system under control.

For the PFSF-LP algorithm, the difference between the internal solution and the external
reality stems from the linearised form of the system response (the PFSFs) within the LP
that are used to determine the curtailments. The curtailments calculated from the linearised

4.6 Cross-case study analysis 97

system representation are directly applied to the non-linear system under control, so may
incorrectly estimate the effect on power flows that the curtailments aim to achieve.

For the PFSF-Egal and PFSF-TMA algorithms, the curtailments calculated using a
linearised representation of the system are then validated by performing an AC load flow
using a full non-linear representation of the system under control. While this validation
step should correctly determine the change in power flows due to the curtailments, the
overload detection logic used in these algorithms may fail to detect marginal overloads that
may remain in the internal models. As no overloads are detected in the internal model, the
curtailments are then applied to the system under control, but overloads may still remain.
However, overload energy will be reduced, as shown by metric 8 in Table 4.9.

4.6.5 Execution times

The execution times of the algorithms were measured in order to evaluate their suitability
for real-time control operation, and also to understand the effect of the different case study
systems. Figure 4.16 presents the execution times of the algorithms for the overloaded states
in the four case study systems as box-and-whisker plots. In the figure, median execution
times of the algorithms on each system are shown with a vertical black line with the value
given underneath; mean execution times are shown as a black square; the 25th and 75th

percentiles of the execution time data are shown by the extent of the boxes, while the 5th and
95th percentiles are shown by the whiskers. Outliers are plotted individually.

The execution times of the three PFSF-based algorithms lie within the same range and do
not exceed 1.0 seconds, while the execution times of PFM-CSP and PFM-OPF are typically
an order of magnitude higher for each case study system. The minimum median execution
times for each algorithm occurs for the 11 kV radial distribution system, which is the simplest
of the four case study systems as it contains the least buses, generators and potential overloads.
With the exception of PFM-CSP, the maximum median execution times for each algorithm
occurs for the IEEE 57-bus system, which has the most buses and potential overloads of all
the case study systems. PFM-CSP has its maximum median execution time on the 33 kV
meshed distribution system. Although this is not the largest system, it does feature four
generators and PFM-CSP scales poorly to increased numbers of generators. The IEEE 14-bus
system has the same number of generators, so the lower median execution time for that
system must be because it is quicker to execute a load flow on the IEEE 14-bus system model
internal to PFM-CSP compared with the internal model of 33 kV system.

The execution times on each system for PFSF-Egal and PFSF-TMA follow a similar
pattern to each other, which is to be expected as those algorithms follow the same processes
for the majority of their execution. PFSF-LP has the lowest median execution times for each

98 Performance of power flow management algorithms

10-2 10-1 100 101

Execution time [s]

PF
SF

-L
P

PF
SF

-T
M

A
PF

SF
-E

ga
l

PF
M

-O
PF

PF
M

-C
SP

0.234

0.452

0.468

3.229

2.839

0.047

0.094

0.109

0.915

2.777

0.078

0.062

0.078

1.076

3.432

0.016

0.047

0.047

0.608

0.281

11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus

Fig. 4.16 Algorithm execution times for the overloaded states within each case study system

4.7 Conclusions 99

system except on the 33 kV system, where PFSF-TMA is the fastest algorithm based on
median execution time.

This analysis shows that the execution times of the algorithms are relatively small when
compared with the length of time each state represents. The PFSF-based algorithms are, on
average, and order of magnitude faster than PFM-OPF and PFM-CSP. Although there is
variation in the execution times observed across the systems, the algorithms would need to
be tested on a larger number of systems in order to determine what characteristics of power
systems influence changes in execution times.

4.7 Conclusions

In this chapter, five different power flow management algorithms (as described in Chapter 2)
have been applied to four case study power systems, which represent different network
topologies (radial, meshed), voltage levels (transmission, distribution) and geographies (UK,
US). For each case study system, at least 10,000 different system states have been simulated,
with many featuring overloads, to which the algorithms were applied and tested.

PFM-OPF was found to be the most effective algorithm overall for most of the systems,
with respect to minimising the number and energy of overloads whilst also minimising the
amount of curtailment. However, for the IEEE 14-bus system, PFSF-TMA was more effective
at reducing overload energy, whilst minimising the amount of curtailment; and for the 11 kV
radial distribution system, PFM-OPF could only provide a performance benefit in terms of
reducing the curtailment applied, as there was no statistically significant difference in the
number or energy of overloads removed by each of the power flow management algorithms
tested. For all of the case study systems, the algorithms were found to execute in a reasonable
time when compared with the time period that each simulated state represented; although
additional systems would need to be tested in order to draw any empirical conclusions about
the scalability of the algorithms.

The performance of each algorithm across all of the case study systems was examined.
Design features of the algorithms which were most likely the causes of particular performance
traits were identified, and the findings regarding these features could be helpful for research
developing improved and novel power flow management algorithms.

This chapter has established the performance of the power flow management algorithms
when aggregated across all the states simulated. In the next chapter, the performance of the
algorithms is examined for each state, in order to understand if any potential performance
benefits can be obtained by selecting different algorithms on a per-state basis.

Chapter 5

Potential performance benefits from
per-state selection of algorithms

The previous chapter took the five power flow management algorithms introduced in Chap-
ter 2 and assessed their performance on aggregate across all states tested for each of the four
case study systems. This chapter aims to complete research objective 1, by examining the
performance of the algorithms for each state individually, in order to determine if there is any
potential performance benefit if algorithms were selected on a per-state basis, rather than
selecting one algorithm to be used for all states.

This chapter is structured as follows: Section 5.1 presents the method used to determine
the potential benefit that could be obtained from per-state algorithm selection, Section 5.2
applies that method to assess the potential benefits for each of the case study systems,
Section 5.3 examines how frequently each algorithm is the most effective for each sys-
tem, Section 5.4 examines how the potential performance benefits vary if different sets of
algorithms are considered, and Section 5.5 concludes the chapter.

Some of the work in this chapter has been published previously. The potential per-
formance benefits from per-state selection for the 33 kV meshed distribution system were
published in [58], the benefits for the IEEE 14-bus system were in [59], while in [60] the
benefits for both of those systems and the IEEE 57-bus system were presented.

5.1 Method for assessing the potential performance benefit

The potential performance benefit that could be obtained by selecting algorithms on a per-
state basis is calculated using a two-step process, which is repeated for each of the overload
performance measures of 1) the number of overloads, and 2) the energy of overloads:

102 Potential performance benefits from per-state selection of algorithms

1. First, the optimal algorithm selections are determined for each state. This is achieved
by post-processing the performance data of all algorithms, and determining, for each
state, the set of algorithms that minimises either the number or energy of overloads for
that state. Considering that set of algorithms only, the subset that minimises curtailment
is determined, referred to as the “selection set”. If the selection set is a singleton, then
there is only a single most effective algorithm for the state with respect to minimising
either the number or energy of overloads, while also minimising curtailment; and this
algorithm represents the optimal selection. However, if a number of algorithms remain
in the selection set, then which represents the optimal selection is arbitrary as the
overload and curtailment performances of the remaining algorithms are identical.

2. Second, the optimal selections for each state are used to extract the performance data
of the selected algorithms. This performance data is aggregated to give the theoretical
limit for the performance that can be obtained by optimally selecting between the
considered set of algorithms on a per-state basis. This performance can be compared
with the performance of the individual algorithms to determine if there is any potential
performance benefit from selecting different algorithms for each state.

As the sequence of selections is made post-hoc with perfect information about how all
the algorithms perform on each state, the selection are referred to as being made by “oracles”,
as the selections are always optimal for each state with respect to the performance measures
considered. Performance results for two oracles are presented: 1) an oracle that minimises
the number of overloads, then the amount of curtailment, and 2) an oracle that minimises the
energy of overloads, then also minimises the amount of curtailment.

In the reporting of results for each case study system, the number of times each algorithm
appears in the selection sets of each oracle is provided, along with the number of times each
algorithm is the sole algorithm in the selection set (when the set is a singleton). This indicates
how often each algorithm is uniquely the most effective algorithm.

In the subsequent analysis, the performance of the algorithms is compared to the potential
performance that the oracles would allow. The statistical significance of any performance
differences are assessed using the same method as used in the previous chapter for comparing
the performance of the algorithms, as described in Section 4.1.3. In summary, for each system,
the distributions of performance for every performance measure and pair-wise combination
of algorithms (including the oracles) are compared using a paired t-test, yielding p-values.
The Benjamini-Hochberg procedure is then used to determine which p-values (and therefore
which differences in performance) are statistically significant, while correcting for making
multiple comparisons.

5.2 Potential performance benefits for each system 103

Table 5.1 Overview of algorithm performance and the potential performance from optimally
selecting algorithms on a per-state basis for the 11 kV radial distribution system

performance

Algorithm
Over-
loads

[count]

Over-
loaded
states

Overload
energy

[MVAh]

Total cur-
tailment
[MWh]

Algorithm in selection set
(sole algorithm in set)
Oracle 1 Oracle 2

Baseline 3344 2462 871.95 0.00 7538 (0) 7538 (0)
PFM-CSP 0 0 0.00 2121.40 7538 (0) 7538 (0)
PFM-OPF 2 2 0.10 769.94 9997 (2459) 9997 (2459)
PFSF-Egal 0 0 0.00 856.20 7454 (0) 7454 (0)
PFSF-TMA 0 0 0.00 891.01 7455 (1) 7455 (1)

PFSF-LP 0 0 0.00 773.33 7456 (2) 7456 (2)
Oracle 1 0 0 0.00 770.08 – –
Oracle 2 0 0 0.00 770.08 – –

5.2 Potential performance benefits for each system

5.2.1 11 kV radial distribution system

Table 5.1 summarises the performance of the power flow management algorithms and the
potential performance that would be achieved if, for each state, only the most effective
algorithms were selected and used. As explained in Section 5.1, the potential performance
from optimally selecting algorithms on a per-state basis is represented by two “oracles”, with
oracle 1 optimally selecting algorithms that minimise the number of overloads for a state,
and oracle 2 optimally selecting algorithms that minimise the overload energy for a state.
When more than one algorithm gives the optimal performance, minimisation of curtailment
is additionally taken into account for the oracles.

As well as showing performance, Table 5.1 also shows (in the right-hand columns) the
frequency of each algorithm appearing in the selection sets of each oracle. In other words,
this is the number of states that each algorithm is the amongst the most effective. For
each algorithm, two figures are given per oracle: the first is the frequency of the algorithm
appearing in the oracle’s selection set; whereas the second figure (in parentheses) is the
frequency of the algorithm appearing in the selection set when the set is a singleton, therefore,
when the algorithm is uniquely the most effective. For example, PFM-OPF (the third row)
appears in the selection sets of oracle 1 for almost all states (9997 out of 10,000), which means
it is the most effective algorithm at minimising the number of overloads, while minimising
curtailment, for those 9997 states. It can be inferred from the table that for many of those
states, other algorithms give the same performance as PFM-OPF and are therefore also the

104 Potential performance benefits from per-state selection of algorithms

most effective. However, for 2459 states, PFM-OPF is the uniquely the most effective, with
all the other algorithms giving worse performance.

For this system, both oracles give identical performance. Compared with the single
best algorithm, PFM-OPF, the oracles allow all overloads to be removed – giving identical
performance to all the other algorithms except PFM-OPF – although this is at the expense of
applying more curtailment. These differences in performance come from only 3 states where
PFM-OPF is not in the selection set, and is thus not an optimal algorithm to select. Two of
these states are when PFM-OPF fails to remove overloads and PFSF-LP is selected, whereas
the other state is when PFSF-TMA applies less curtailment when removing an overload.

Comparing the distribution of performance of the oracles against PFM-OPF using the
paired t-test gives p-values of 0.1573, 0.1627, and 0.1616, respectively, for the number
of overloads, the overload energy, and the curtailment applied. These fail to reject the
null hypothesis that the distributions of performance are the same, following application of
the Benjamini-Hochberg procedure. Therefore, the performance differences between the
oracles and PFM-OPF are not statistically significant with respect to overload and curtailment
performance. Therefore, selecting algorithms on a per-state basis does not offer a potential
performance benefit for this case study system.

5.2.2 33 kV meshed distribution system

Table 5.2 is similar to Table 5.1 and summarises the performance of the power flow manage-
ment algorithms for the 17,520 states tested within the 33 kV meshed distribution system.
Also shown is the potential performance that could be achieved if the algorithms are optimally
selected for each state, represented by the two oracles (see Section 5.1), and the frequency of
each algorithm appearing in the selection sets of the oracles.

The potential performance represented by the two oracles is identical for all the perfor-
mance measures, and is the same as PFM-OPF with respect to overloads. As PFM-OPF
is able to remove all overloads, there is no potential performance benefit from selecting
algorithms on a per-state basis with respect to minimising the number or energy of overloads.

However, if algorithms are optimally selected on a per-state basis, potentially 0.91% less
curtailment can be applied than PFM-OPF. This potential performance benefit comes from
2158 states (32.12% of the states with overloads) where PFM-OPF is not in the selection set
and alternative algorithms are the most effective, removing the same number of overloads as
PFM-OPF but doing so with less curtailment applied to the generators. For 1069 (49.54%) of
these states, PFSF-TMA is the most effective algorithm, while PFSF-LP is most effective for
799 (37.03%), PFM-CSP for 82 (3.80%), and two or more algorithms are the most effective
for each of the remaining 208 states (9.64%).

5.2 Potential performance benefits for each system 105

Table 5.2 Overview of algorithm performance and the potential performance from optimally
selecting algorithms on a per-state basis for the 33 kV meshed distribution system

Algorithm
Over-
loads

[count]

Over-
loaded
states

Overload
energy

[MVAh]

Total cur-
tailment
[MWh]

Algorithm in selection set
(sole algorithm in set)
Oracle 1 Oracle 2

Baseline 14779 6719 9445.74 0.00 10801 (0) 10801 (0)
PFM-CSP 194 194 10.56 76910.75 10883 (82) 10883 (82)
PFM-OPF 0 0 0.00 40246.45 15362 (4561) 15362 (4561)
PFSF-Egal 3594 3594 78.25 59905.56 10948 (0) 10948 (0)
PFSF-TMA 1903 1903 40.41 39694.49 12017 (1069) 12017 (1069)

PFSF-LP 1819 1819 36.48 39743.66 11539 (799) 11539 (799)
Oracle 1 0 0 0.00 39879.06 – –
Oracle 2 0 0 0.00 39879.06 – –

Comparing the distribution of curtailment that would be applied by the oracles against that
of PFM-OPF using the paired t-test gives p-values < 0.0001. After applying the Benjamini-
Hochberg procedure, these p-values successfully reject the null hypothesis and therefore
the performance differences are statistically significant. Based on these results, algorithm
selection on a per-state basis does potentially offer a statistically significant performance
benefit for this case study system. This benefit is in terms of reducing the amount of
curtailment applied to the generators, as no performance gain is possible in terms of reducing
the number or energy of overloads.

5.2.3 IEEE 14-bus system

Table 5.3 summarises the performance of the power flow management algorithms across the
10,000 states tested within the IEEE 14-bus system, along with the performance achieved if
the algorithms are optimally selected for each state, represented by the oracles. Also shown
is the frequency of each algorithm being in the selection sets of each oracle.

Out of the 4008 states with overloads, there is only a single state where the selection set
contains more than one algorithm, in this case PFSF-TMA and PFSF-LP. In the remaining
4007 states the selection set is a singleton. For 58.10% of these states, PFSF-LP is the
most effective algorithm, in terms of minimising the number and energy of overloads, while
also minimising curtailment, despite it having the worst performance overall against all the
performance measures. All the other algorithms feature at least once in a singleton selection
set, with PFSF-TMA being the algorithm that is second most frequently selected on its own
(21.41%) compared with PFSF-LP, followed by PFM-OPF (18.64%), PFM-Egal (1.47%),
and PFM-CSP (0.37%).

106 Potential performance benefits from per-state selection of algorithms

Table 5.3 Overview of algorithm performance and the potential performance from optimally
selecting algorithms on a per-state basis for the IEEE 14-bus system

Algorithm
Over-
loads

[count]

Over-
loaded
states

Overload
energy

[MVAh]

Total cur-
tailment
[MWh]

Algorithm in selection set
(sole algorithm in set)
Oracle 1 Oracle 2

Baseline 5345 4008 9116.25 0.00 5992 (0) 5992 (0)
PFM-CSP 45 45 11.01 58855.10 6007 (15) 6007 (15)
PFM-OPF 24 11 49.97 19544.04 6739 (747) 6739 (747)
PFSF-Egal 66 66 1.75 33900.57 5976 (59) 5976 (59)
PFSF-TMA 60 60 1.57 21797.45 6776 (858) 6776 (858)

PFSF-LP 1172 1029 105.55 19503.16 8246 (2328) 8246 (2328)
Oracle 1 0 0 0.00 19311.40 – –
Oracle 2 0 0 0.00 19311.40 – –

If the algorithms are selected optimally for each state, it is possible to remove all overloads,
outperforming each of the algorithms if only one is used for all states. Furthermore, it is also
potentially possible to reduce the amount of curtailment applied by at least 0.98%, which also
outperforms each of the algorithms. Comparing the distributions of performance for each
performance measure of each algorithm against the the potential performance represented
by the oracles using the paired t-test yields p-values < 0.01. After applying the Benjamini-
Hochberg procedure, each of these p-values successfully reject the null hypothesis that the
distributions of performance are the same. Therefore, the potential performance benefits are
statistically significant.

For the IEEE 14-bus system, selecting algorithms on a per-state basis clearly offers
potential performance benefits, both in terms of minimising the number and energy of
overloads, but also in terms of minimising the amount of curtailment applied.

5.2.4 IEEE 57-bus system

Table 5.4 summarises the performance of the power flow management algorithms when
applied to the 10,000 test states within the IEEE 57-bus system, and the performance achieved
if the algorithms are optimally selected for each state, represented by the oracles. Also shown
is the frequency of each algorithm being in the selection sets of each oracle.

This is the only case study system for which the potential performance represented by
the oracles differs, which is due to there being a number of states for which no algorithm
can remove all overloads. If there are several algorithms that can minimise the number of
overloads for a state, but none of the algorithms can remove all overloads, the energy of
remaining overloads and the amount of curtailment applied by the algorithms may differ.

5.2 Potential performance benefits for each system 107

Table 5.4 Overview of algorithm performance and the potential performance from optimally
selecting algorithms on a per-state basis for the IEEE 57-bus system

Algorithm
Over-
loads

[count]

Over-
loaded
states

Overload
energy

[MVAh]

Total cur-
tailment
[MWh]

Algorithm in selection set
(sole algorithm in set)
Oracle 1 Oracle 2

Baseline 25377 5455 678836.34 0.00 4546 (0) 4545 (0)
PFM-CSP 3660 2882 30389.77 982967.03 5736 (1190) 5308 (763)
PFM-OPF 1367 1358 1241.44 749899.56 8364 (3819) 8784 (4239)
PFSF-Egal 24823 5165 670366.33 30780.23 4538 (0) 4546 (8)
PFSF-TMA 24247 4995 653798.21 43312.05 4792 (254) 4792 (254)

PFSF-LP 12863 5262 241625.85 405575.30 4729 (191) 4729 (191)
Oracle 1 768 760 4352.19 821087.30 – –
Oracle 2 769 760 985.14 826709.24 – –

Generally, increased curtailment results in a reduction in overload energy, so the selection
sets of the oracles will differ as oracle 1 represents the case where the optimal algorithms
to select are those that minimise the number of overloads and then minimise the amount of
curtailment, whereas oracle 2 represents the case where the optimal algorithms to select are
those that minimise the overload energy and then minimise the amount of curtailment.

As Table 5.4 shows, the number of overloads can be substantially reduced by optimally
selecting algorithms on a per-state basis. The potential performance represented by oracle 1
allows for a reduction in the number of overloads by 43.82% compared with PFM-OPF,
which is the most effective algorithm for that performance measure. Using the paired t-
test to compare the distributions of this performance measure between each oracle and
each algorithm results in p-values < 0.0001. Following the application of the Benjamini-
Hochberg procedure, these p-values successfully reject the null hypothesis of no difference
in performance, so the differences in performance are statistically significant. Although
selecting algorithms for each state potentially allows each of the power flow management
algorithms to be outperformed with respect to minimising the number of overloads, the
differences between performances represented by the oracles for this performance measure
are not statistically significant, as comparing the performance using the paired t-test yields a
p-value of 0.3173, which fails to reject the null hypothesis.

There is a statistically significant difference in the performance represented the oracles
with respect to overload energy. Indeed, applying the t-test to compare the performance
for this measure of all pair-wise combinations of algorithms and oracles yields p-values of
< 0.0001, all of which reject the null hypothesis of the performances being the same following
the application of the Benjamini-Hochberg procedure. The optimal selections represented
by oracle 2 would allow the overload energy to be reduced by 20.65% compared with PFM-

108 Potential performance benefits from per-state selection of algorithms

OPF, which is the most effective algorithm with respect to minimising this performance
measure. However, the optimal selections represented by oracle 1 would result in an increase
in overload energy by 250.58% compared with PFM-OPF, as the minimisation of the amount
of curtailment is prioritised once the number of overloads has been minimised.

If the algorithms are selected optimally on a per-state basis to minimise overloads
(number or energy) and then curtailment, at least 9.49% more curtailment would be applied
compared with PFM-OPF. However, this extra curtailment translates into the removal of more
overloads. Furthermore, the relative amount of curtailment applied per overload removed
is not dissimilar that of PFM-OPF, as the optimal selections represented by oracle 1 would
allow 24,609 overloads to be removed, compared with 24,010 removed by PFM-OPF, which
translates into 33.37 and 31.23 MWh of curtailment per overload removed, respectively.

The optimal selections represented by the oracles differ in the curtailment that would be
applied. The selections represented by oracle 1 would results in 0.68% less curtailment than
the selection represented by oracle 2, with the difference due to the different prioritisation of
objectives in the selections. Comparing the distributions of curtailment represented by the
oracles to each other and to each of the algorithms yields p-values of < 0.0001. This p-value
rejects null hypothesis that the distributions of performance are the same, following the
application of the Benjamini-Hochberg procedure. Therefore the differences in curtailment
are statistically significant.

The right-hand side of Table 5.4 shows the frequency of each algorithm appearing in the
selection sets of each oracle, including the frequency that each algorithm is the sole algorithm
in the selection set (when there is a singleton selection set). For oracle 1, only 1 of the 5455
states with overloads has a non-singleton selection set, in which no algorithm can reduce the
number of overloads in the system. All overloaded states have a singleton selection set for
oracle 2, meaning that for each of these states there is only a single most effective algorithm
at minimising the overload energy, while also minimising the amount of curtailment.

PFM-OPF most frequently appears in the selection sets of both oracles, followed by PFM-
CSP, PFSF-TMA and PFSF-Egal. The major difference in selection frequencies between the
oracles is a shift from PFM-CSP for oracle 1 to PFM-OPF for oracle 2. PFM-CSP is selected
for 427 fewer states by oracle 2, whereas PFM-OPF is selected for 420 more states. For
the vast majority of these states, the two algorithms remove the same number of overloads;
however, PFM-CSP does so with less curtailment (hence is selected by oracle 1), whereas
PFM-OPF leaves less overload energy (hence is selected by oracle 2). For similar reasons,
PFSF-Egal only appears in the selection sets of oracle 2.

For this case study system there is a statistically significant performance benefit from
selecting between the algorithms on a per-state basis, as the number and energy of overloads

5.2 Potential performance benefits for each system 109

Table 5.5 Performance comparison of the most effective algorithms for each system against
the potential performance that could be obtained by per-state algorithm selection

Values in bold indicate a statistically significant difference between the distribution of perfor-
mance that could be achieved by per-state algorithm selection (represented by the oracles)
and the algorithm each is compared to, after using the Benjamini-Hochberg procedure.

System
Oracle or

algorithm for
comparison

Number of
overloads
[count]

Overload
energy

[MVAh]

Total
curtailment

[MWh]
11 kV
radial

Oracle 1 & 2 0 0.00 770.08
PFSF-LP 0 0.00 773.33

33 kV
meshed

Oracle 1 & 2 0 0.00 39879.06
PFM-OPF 0 0.00 40246.45

IEEE
14-bus

Oracle 1 0 0.00 19311.40
PFM-OPF 24 49.97 19544.04
Oracle 2 0 0.00 19311.40

PFSF-TMA 60 1.57 21797.45

IEEE
57-bus

Oracle 1 768 4352.19 821087.30
PFM-OPF 1367 1241.44 749899.56
Oracle 2 769 985.14 826709.24

PFM-OPF 1367 1241.44 749899.56

remaining in the system are significantly reduced. This does result in increased curtailment
compared with the most effective algorithm (PFM-OPF), although the relative amount of
curtailment applied per overload removed is not dissimilar.

5.2.5 Summary for all case study systems

Table 5.5 summarises the potential performance for each case study system that could be
achieved if the algorithms are selected optimally on a per-state basis. The oracles represent
the potential performance that could be achieved if the optimal selections minimise the
number (oracle 1) or energy (oracle 2) of overloads, whilst minimising curtailment. The
potential performances are compared with the algorithms that are most effective overall with
respect to the same objectives used when determining the optimal selections. Where the
performance represented by the two oracles is the same, and one algorithm is most effective
at both reducing the number and energy of overloads – such as for the 11 kV and 33 kV
systems – then the results are grouped together to save duplication.

Bold values in Table 5.5 indicate where there is a statistically significant difference in
the distribution of performance between the potential performance from per-state algorithm

110 Potential performance benefits from per-state selection of algorithms

selection and the algorithm it is compared against. For example, for the IEEE 14-bus system
the potential performance that could be obtained if algorithms are optimally selected for each
state to minimise the number of overloads, whilst also minimising curtailment (represented
by oracle 1), is compared with PFM-OPF, which is the most effective algorithm overall for
those objectives. The bold values for performance represented by oracle 1 indicate that the
potential performance if algorithms are optimally selecting on a per-state basis is statistically
significantly different to the performance of PFM-OPF.

Figure 5.1 presents the data from Table 5.5 in terms of the potential performance gain
from per-state algorithm selection, relative to the performance of the algorithms that are
most effective overall. As in the table, the potential performance represented by each oracle
is compared against the algorithms that are most effective overall with respect to the same
objectives as used when determining the optimal selections. The result of this comparison
is shown by the percentage performance gain (or loss). Positive values represent improved
performance; for example, if algorithms are optimally selected on a per-state basis for the
IEEE 14-bus system, there is potential to remove 100% of the overloads that the most
effective algorithms would otherwise leave in the system.

For the 11 kV radial distribution system, all the algorithms tested except PFM-OPF could
remove all overloads. Amongst these, PFSF-LP applied the least curtailment, so it is used
to compare with the performance represented by the oracles. As it is possible to remove
all overloads with a single algorithm, there is no performance gain in terms of reducing the
number or energy of overloads. Per-state algorithm selection could potentially result in a
0.42% reduction in the amount of curtailment applied to achieve no overloads; however, as
explained in Section 5.2.1, this is not a statistically significant performance improvement.

For the 33 kV meshed distribution system the potential performance from per-state
algorithm selection is compared against PFM-OPF, as it was able to remove all overloads.
Due to this, there is no potential performance gain in terms of reducing the number or
energy of overloads. There is, however, the potential for a small but statistically significant
improvement in the amount of curtailment applied, which can be reduced by 0.91% if
algorithms are selected optimally for each state.

For the IEEE 14-bus system, every algorithm leaves some overloads remaining, but
optimally selecting algorithms for each state can allow for all overloads to be removed. The
potential performance represented by oracle 1 is compared with PFM-OPF as that algorithm
minimised the number of overloads, whereas the potential performance represented by
oracle 2 is compared with PFSF-TMA, which is the algorithm that minimised overload
energy. Algorithm selection on a per-state basis potentially offers a statistically significant
performance benefit in terms of minimising the number and energy of overloads on the

5.2 Potential performance benefits for each system 111

11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

%
 g

ai
n

fo
r n

um
be

r o
f o

ve
rlo

ad
s

0.00% 0.00%

100.00%

43.82%

0.00% 0.00%

100.00%

43.75%

Oracle 1 Oracle 2

11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
-300.0%

-250.0%

-200.0%

-150.0%

-100.0%

-50.0%

0.0%

50.0%

100.0%

%
 g

ai
n

fo
r o

ve
rlo

ad
 e

ne
rg

y

0.00% 0.00%

100.00%

-250.58%

0.00% 0.00%

100.00%

20.65%

11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

%
 g

ai
n

fo
r t

ot
al

 c
ur

ta
ilm

en
t

0.42% 0.91% 1.19%

-9.49%

0.42% 0.91%

11.41%

-10.24%

Fig. 5.1 Potential performance gains for each system that could be achieved by optimally
selecting algorithms on a per-state basis

112 Potential performance benefits from per-state selection of algorithms

IEEE 14-bus system. Additionally, per-state algorithm selection can also allow statistically
significantly less curtailment to be applied compared with the most effective algorithms for
the two overload performance measures.

Similar to the IEEE 14-bus system, for the IEEE 57-bus system no algorithm can remove
all overloads. The potential performances represented by both oracles are compared with
PFM-OPF, as it is the most effective algorithm with respect to both minimising the number
and energy of overloads. Per-state algorithm selection can potentially reduce the number
of overloads by up to 43.82% and the overload energy by up to 20.65%, although it is
not possible to remove all overloads completely. If minimising the number of overloads
is prioritised (oracle 1), there is potentially a significant performance loss in terms of
overload energy, with a 250.58% increase compared to PFM-OPF. This is because the
optimal selections represented by oracle 1, though they minimise the number of overloads,
also minimise the amount of curtailment applied, which can lead to larger overloads remaining
for states where no algorithm can remove the overloads. However, if the optimal selections
prioritise minimising the overload energy (oracle 2), there is a potential performance gain
for both the number and energy of overloads, with the performance gain for the number of
overloads being almost exactly the same as that represented by oracle 1. Per-state algorithm
selection does not offer a potential performance benefit regarding the amount of curtailment
applied, although this can be expected as reductions in overloads is associated with the
application of additional curtailment.

5.3 Algorithm selection frequency

In Sections 5.2.1 to 5.2.4, the frequency of each algorithm being the most effective for
individual states was reported for each case study power system. In this section, the frequency
of each algorithm being the most effective – in other words, the frequency of each algorithm
being the optimal algorithm to select – is analysed across all of the systems, in order to
discern any trends in the selection frequency.

Figures 5.2a and 5.2b show, for each case study system, the percentage of states for which
each algorithm appears individually in the selection sets represented by oracle 1 and oracle 2,
respectively. These are for the states where there is a singleton selection set, when only one
algorithm is uniquely most effective at minimising the number (or energy) of overloads with
the least curtailment applied.

PFM-OPF, PFSF-LP and PFSF-TMA appear individually in the selection sets for each
system, whereas PFM-CSP appears in the selection sets for three systems, and PFSF-Egal
appears individually in the selection sets of only two systems.

5.3 Algorithm selection frequency 113

11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

%
 o

f s
ta

te
s

0.
00

%

0.
47

%

0.
15

%

11
.9

0%

24
.5

9%

26
.0

3%

7.
47

%

38
.1

9%

0.
00

%

0.
00

%

0.
59

%

0.
00

%

0.
01

%

6.
10

% 8.
58

%

2.
54

%

0.
02

% 4.
56

%

23
.2

8%

1.
91

%

PFM-CSP PFM-OPF PFSF-Egal PFSF-TMA PFSF-LP

(a) Oracle 1 (minimise number of overloads, then minimise curtailment)

11 kV radial 33 kV meshed IEEE 14-bus IEEE 57-bus
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

%
 o

f s
ta

te
s

0.
00

%

0.
47

%

0.
15

%

7.
63

%

24
.5

9%

26
.0

3%

7.
47

%

42
.3

9%

0.
00

%

0.
00

%

0.
59

%

0.
08

%

0.
01

%

6.
10

%

8.
58

%

2.
54

%

0.
02

% 4.
56

%

23
.2

8%

1.
91

%

PFM-CSP PFM-OPF PFSF-Egal PFSF-TMA PFSF-LP

(b) Oracle 2 (minimise energy of overloads, then minimise curtailment)

Fig. 5.2 Frequency of algorithms appearing as the sole algorithm in the selection sets
represented by the oracles for each of the case study systems

114 Potential performance benefits from per-state selection of algorithms

PFM-OPF and is most frequently selected algorithm, across all systems except the
IEEE 14-bus system, where PFSF-LP is the most frequently selected algorithm, despite
being the least effective algorithm overall for that system. For the 11 kV radial distribution
system, PFM-OPF is only absent from the selection sets of three states, where PFSF-LP or
PFSF-TMA are selected instead.

The number of algorithms that appear individually in the selection sets varies across the
systems: for the 11 kV radial distribution system, only 3 algorithms appear, for the 33 kV
meshed distribution system, 4 algorithms appear, whereas all of the algorithms appear in the
selection sets of the IEEE 14- and 57-bus systems. This suggests that some of the systems
may have characteristics – perhaps relating to their scale or complexity – that particularly
favour a more diverse range of algorithms.

The selection frequencies represented by the two oracles only differ for the IEEE 57-bus
system, where minimising the number of overloads (represented by oracle 1) leads to PFM-
CSP being selected more frequently than if the optimal selections are those that minimise
overload energy (oracle 2).

This analysis shows that which algorithms are most effective on particular states (and
appear in singleton selection sets) varies between the networks, and some algorithms are
not solely most effective on any state for particular systems. For example, PFSF-Egal does
not appear in the singleton selection sets for two of the case study systems, while some
algorithms – such as PFM-OPF and PFSF-TMA – are selected on their own at least once for
each system. Furthermore, the relative selection frequency of the algorithms varies across
the systems, and the most frequently selected algorithm (for the singleton selection sets)
may not necessarily be the most effective algorithm overall. For example, PFSF-LP is most
frequently selected on its own for the IEEE 14-bus system, despite being the least effective
algorithm overall for that system in terms of reducing the number and energy of overloads.

5.4 Performance with different sets of algorithms

The previous section looked at how frequently each algorithm appeared in the optimal
selection sets, whereas this section considers the effect of considering different combinations
of algorithms for selection. This allows the performance gain offered by the inclusion of
each individual algorithm for selection to be assessed.

Figures 5.3, 5.4, and 5.5 show, for three of the case study systems, the differences in
potential performance that could be obtained making the optimal algorithm selections for
each state, but considering different sets of algorithms for selection. Each column in the
figures represents different combinations of three algorithms from the set, with bold letters

5.4 Performance with different sets of algorithms 115

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 14779 194 0 194 0 0 0

E T L 3594 3594 42 0 42 0 0 0

E T L 1903 1903 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1903 1903 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 76910.75 40246.45 76894.78 40246.45 40230.24 40230.24

E T L 59905.56 57677.23 65971.97 40166.77 65956.11 40166.77 40150.83 40150.83

E T L 39694.49 39098.60 53549.92 39908.24 53538.15 39908.24 39893.69 39893.69

E T L 39743.66 39147.76 53214.32 39895.97 53202.56 39895.97 39881.42 39881.42

E T L 39694.49 39098.60 53549.92 39908.24 53538.15 39908.24 39893.69 39893.69

E T L 39737.32 39141.42 53214.32 39895.97 53202.55 39895.97 39881.42 39881.42

E T L 39727.48 39131.59 53211.91 39893.60 53200.14 39893.60 39879.06 39879.06

E T L 39727.48 39131.59 53211.91 39893.60 53200.14 39893.60 39879.06 39879.06

(b) Total curtailment applied [MWh]

Fig. 5.3 Comparison of the potential performance for the 33 kV meshed distribution system
with different algorithm combinations considered for selection (oracle 1)

used to indicate which algorithms a column represents: baseline (the option to not apply any
algorithm at all, denoted by “B”), PFM-CSP (denoted “C”), and PFM-OPF (“O”). Similarly,
the rows represent different combinations of the remaining three algorithms: PFSF-Egal
(“E”), PFSF-TMA (“T”), and PFSF-LP (“L”). Thus, each cell represents an intersection of
these algorithm combinations and every possible combination of the five algorithms (plus the
option of not applying any algorithm) is represented. For example, the second cell down in
the third column of Figure 5.3a shows the number of overloads (42) that would occur in the
33 kV meshed distribution system if PFM-CSP (“C”) and PFSF-Egal (“E”) were optimally
selected between on a per-state basis.

The shading of the cells in the figures shows the relative change in a performance measure
with respect to the potential performance if all algorithms are optimally selected between.
Cells coloured green (�) indicates improved performance, while red (�) indicates decreased
performance. Note that, for the sake of brevity, similar figures for every system, performance
measure, and oracle, are not shown here but can be found in Appendix C.

116 Potential performance benefits from per-state selection of algorithms

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 5345 45 24 45 24 0 0

E T L 66 66 0 0 0 0 0 0

E T L 60 60 0 1 0 1 0 0

E T L 1172 1169 16 1 16 1 0 0

E T L 42 42 0 0 0 0 0 0

E T L 46 46 0 0 0 0 0 0

E T L 45 45 0 0 0 0 0 0

E T L 42 42 0 0 0 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 58855.10 19544.04 58598.26 19544.04 19863.94 19863.94

E T L 33900.57 33855.96 33156.06 19652.35 33156.06 19652.35 19645.63 19645.63

E T L 21797.45 21735.54 22204.86 19544.02 22204.86 19544.02 19529.00 19529.00

E T L 19503.16 16188.67 32475.44 19471.93 32429.97 19471.93 19466.91 19466.91

E T L 21150.71 21124.05 21582.88 19445.80 21582.88 19445.80 19439.74 19439.74

E T L 24424.79 24396.11 24509.66 19416.65 24509.66 19416.65 19410.59 19410.59

E T L 20655.58 20629.02 21106.55 19372.05 21106.55 19372.05 19363.73 19363.73

E T L 20388.98 20362.42 20849.00 19317.46 20849.00 19317.46 19311.40 19311.40

(b) Total curtailment applied [MWh]

Fig. 5.4 Comparison of the potential performance for the IEEE 14-bus system with different
algorithm combinations considered for selection (oracle 1)

Figure 5.3 shows the potential performance, with respect to the number of overloads and
the curtailment applied, that different combinations of algorithms could achieve for the 33 kV
meshed distribution system if optimal per-state selections are made that prioritise minimising
the number of overloads (oracle 1). As noted in Section 4.3.4, PFM-OPF can remove all
overloads for this system, though as Figure 5.3a shows, the combination of PFM-CSP and
PFSF-TMA can remove all but 13 overloads. Although PFM-OPF can remove all overloads
on the 33 kV system, selecting between it and other algorithms allows for less curtailment
to be applied while still removing all overloads. Figure 5.3b shows what combination of
algorithms is necessary to achieve this, which is all algorithms with the exception of PFSF-
Egal (and the baseline option of not applying any algorithm). This explains why PFSF-Egal
is not selected individually at all for this system, as shown in Figure 5.2a.

Figure 5.4 shows the potential performance, with respect to the number of overloads
and the curtailment applied, that different combinations of algorithms could achieve for the
IEEE 14-bus system if optimal per-state selections are made that prioritise minimising the

5.4 Performance with different sets of algorithms 117

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 678836.34 30389.77 1241.44 30385.38 1241.44 986.91 986.91

E T L 670366.33 670366.33 24974.82 1239.67 24974.82 1239.67 985.14 985.14

E T L 653798.21 653798.21 24421.55 1241.44 24421.55 1241.44 986.91 986.91

E T L 241625.85 241625.85 26967.29 1241.44 26967.29 1241.44 986.91 986.91

E T L 652049.04 652049.04 23296.29 1239.67 23296.29 1239.67 985.14 985.14

E T L 238886.58 238886.58 24768.12 1239.67 24768.12 1239.67 985.14 985.14

E T L 232140.18 232140.18 23782.87 1241.44 23782.87 1241.44 986.91 986.91

E T L 231512.94 231512.94 23155.66 1239.67 23155.66 1239.67 985.14 985.14

(a) Energy of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 982967.03 749899.56 981644.69 749899.56 827822.94 827822.94

E T L 30780.23 30765.98 995253.47 750047.46 995253.47 750047.46 827970.85 827970.85

E T L 43312.05 43305.44 974117.95 748622.97 974117.95 748622.97 826579.29 826579.29

E T L 405575.30 405571.69 988936.13 748989.57 988936.13 748989.57 826917.82 826917.82

E T L 48519.55 48512.94 978436.37 748777.42 978436.37 748777.42 826733.74 826733.74

E T L 417997.22 417993.61 989173.76 749144.03 989173.76 749144.03 827072.27 827072.27

E T L 423089.93 423086.32 975305.54 748596.65 975305.54 748596.65 826554.79 826554.79

E T L 426519.49 426515.88 978687.63 748751.10 978687.63 748751.10 826709.24 826709.24

(b) Total curtailment applied [MWh]

Fig. 5.5 Comparison of the potential performance for the IEEE 57-bus system with different
algorithm combinations considered for selection (oracle 2)

number of overloads (oracle 1). Although no algorithm can remove all overloads individually,
there are several sets of two algorithms that can: PFM-CSP and PFSF-Egal, PFM-CSP and
PFSF-TMA, PFM-CSP and PFM-OPF, or PFM-OPF and PFSF-Egal. The benefit of using
more than two algorithms, however, is a reduction in curtailment, and the figure shows that
all the power flow management algorithms are required in order to minimise the curtailment
applied while also removing all overloads.

Figure 5.5 shows the potential performance, with respect to overload energy and the
curtailment applied, that different combinations of algorithms could achieve for the IEEE 57-
bus system if optimal per-state selections are made that prioritise minimising overload energy
(oracle 2). Overload energy is minimised by a combination of three algorithms: PFM-OPF,
PFM-CSP and PFSF-Egal. This is despite PFSF-Egal being the least effective algorithm
overall at reducing overloads on the IEEE 57-bus system. Any combination missing one of
these algorithms results in increased overload energy. To minimise the curtailment, while still

118 Potential performance benefits from per-state selection of algorithms

minimising the overload energy, it is necessary to consider both of the remaining algorithms
(PFSF-TMA and PFSF-LP).

Figure 5.5 also shows that selecting between applying an algorithm and not applying an
algorithm can sometimes give better performance than always selecting an algorithm. On
its own, PFM-CSP reduces the overload energy to 30389.77 MVAh. However, if the oracle
selects between PFM-CSP and the baseline, this actually reduces to 30385.38 MVAh.

Similar to the analysis of algorithm selection frequencies in the previous section, this
analysis has revealed that different sets of algorithms are required for each system to achieve
particular objectives. For example, only PFM-OPF is required to minimise the number of
overloads for the 33 kV distribution system, while three algorithms are required to minimise
the energy of overloads for the IEEE 57-bus system. These sets may contain algorithms that
have poor performance overall, but that can provide a performance benefit when selected
amongst other algorithms, such as PFSF-Egal being needed to minimise the overload energy
on the IEEE 57-bus system. Furthermore, sometimes a number of different sets of algorithms
can achieve an objective on a particular system, as seen with the four pairs of algorithms that
can minimise the number of overloads for the IEEE 14-bus system.

5.5 Conclusions

In this chapter, the performances of the power flow management algorithms tested in Chap-
ter 4 have been examined for each state tested for the four case study power systems. This
has revealed that none of the algorithms is always the most effective for every state, in
terms of minimising either the number or energy of overloads whilst also minimising the
amount of curtailment applied. If the most effective algorithms are selected on a per-state
basis, potential performance benefits could be obtained for each system in comparison to the
algorithms that were most effective overall:

• For the 11 kV radial distribution system, the potential performance benefit was a
0.42% reduction in the amount of curtailment applied in order to remove all overloads;
however, this difference in curtailment was not statistically significant.

• For the 33 kV meshed distribution system, there was a statistically significant perfor-
mance benefit in terms of a 0.91% reduction in the amount of curtailment needed in
order to remove all overloads.

• For the IEEE 14-bus system, all overloads could be removed (a 100% improvement
with respect to minimising the number or energy of overloads), and this could be

5.5 Conclusions 119

achieved with at least 1.19% less curtailment. Furthermore, both of these performance
benefits were statistically significant.

• For the IEEE 57-bus system, there was a statistically significant performance benefit in
terms of either a 43.82% reduction in the number of overloads, or a 20.65% reduction in
overload energy. However, these reductions result in statistically significant increases
in the curtailment applied, and, despite these increases, a number of overloads could
not be removed completely.

To achieve the potential performance benefits from selecting algorithms for each system
state, several, if not all, of the power flow management algorithms needed to be considered
for selection. Conversely, for some systems there were particular algorithms that did not need
to be considered for selection at all, as they were not uniquely the most effective algorithm
for any state. The relative selection frequency of the algorithms varied across the systems,
and the most frequently selected algorithm for a system was not necessarily the algorithm
that was most effective overall. Furthermore, the analysis showed that even algorithms that
perform poorly overall can provide a potential performance benefit if they are considered for
selection alongside algorithms that are more effective overall.

Although optimally selecting algorithms on a per-state basis was found to offer statis-
tically significant performance benefits for three of the case study systems – namely: the
33 kV meshed distribution system, the IEEE 14-bus system, and the IEEE 57-bus system –
these are just potential benefits, obtained by deriving the optimal selections through post-hoc
analysis of algorithm performance data, represented by abstract “oracle” selectors. The
oracles in this work had objectives that considered performance measures relevant to power
flow management: minimising the number or energy of overloads is important to network
operators, whilst minimising the amount of curtailment is important to generator operators.
However, use of different objectives – for example, to minimise the execution time of the
algorithms, if control response time were sufficiently important – could give different results
with respect to the potential performance benefits from per-state algorithm selection.

The selections represented by the oracles rely on perfect foresight, which is not available
in reality. However, concrete algorithm selectors, which do not rely on perfect foresight,
have been developed for a number of applications. The next three chapters examine the
background, the design, and the performance of such systems when used to select power
flow management algorithms for each system state, in an attempt to exploit and realise the
potential performance benefits shown in this chapter.

In conclusion, this chapter has built upon the preceding chapters in order to provide
an answer to research objective 1: yes, potential performance benefits for power systems

120 Potential performance benefits from per-state selection of algorithms

control can be derived by selecting the algorithms on a per-state basis – at least for power
flow management within three of the four case study power systems as used in this work.
The remainder of this work addresses research objective 2, examining if algorithm selectors
can be created to exploit the potential performance benefits.

Chapter 6

Previous work on algorithm selection

This chapter aims to satisfy research objective 2(a) by identifying existing algorithm selection
techniques that could be applied to power system control; in particular for the selection
of power flow management algorithms. First, a formal model for selecting algorithms is
presented, which is then instantiated for the per-state selection of power flow management
algorithms. This is followed by review of previous work that has created algorithm selectors
for various applications, with a concentration on a particular suite of techniques – machine
learning – as these have been frequently used to create algorithm selectors.

6.1 The Algorithm Selection Problem

6.1.1 Rice’s model

x ∈P
Problem

space

f (x) ∈F

Feature
space

S(f (x))

Selection
mapping

a ∈A
Algorithm

space

y(a,x) ∈ Y

Performance
space

Fig. 6.1 Rice’s conceptual model of the Algorithm Selection Problem

The problem of selecting “an effective or good or best” algorithm was formalised in 1976
by the computer scientist John Rice as the Algorithm Selection Problem. In the paper that
formalised the problem [74], an abstract model of the problem was introduced, which is
shown in Figure 6.1. This model contains the following elements:

122 Previous work on algorithm selection

• The problem space, P , containing problem instances, x, drawn from a particular
problem domain or application. One example given by Rice was for computer job
scheduling, where each instance, x, represents a different set of jobs to be executed.

• The feature space, F , containing features, f (x), that are characteristics extracted
from the problem instances. For c features, F = Rc, which may be of a lower
dimension than P . For the scheduling example given by Rice, the features could
include the priorities of individual jobs, the expected processor time, and the expected
memory usage.

• The algorithm space, A , containing the algorithms, a, that can be applied to the
problem instances. For the scheduling example given by Rice, each a represents an
algorithm for scheduling the jobs contained within x.

• The performance space, Y , containing performance measures, y(a,x), describing
the performance of an algorithm a applied to problem instance x. For d performance
measures, Y = Rd . For the scheduling example, the performance measures could
include the median and maximum turnaround time for jobs, and the total number of
jobs processed per unit time.

• The selection mapping, S(f (x)), also referred to as an algorithm selector, which maps
from problem instance features to an algorithm selection (S : f (x)→ a), in order to
optimise an objective function of the performance measures.

6.1.2 Framing the problem

There is not a single Algorithm Selection Problem; rather, an instance of the Algorithm
Selection Problem is formulated for each application to a problem domain that requires
algorithms to be selected. The characteristics of the problem domain will influence what the
elements within the model shown in Figure 6.1 contain.

What the problem instances represent and the scope of the problem space is an important
aspect of formulating an Algorithm Selection Problem. Each problem instance should
represent a distinct example of a single problem drawn from the problem domain. If problems
can develop over time, then a decision has to be made as to what time period a problem
instance can represent. Some problems allow for partial solutions, which allows the solution
process to be paused and potentially completed by a different algorithm. If a problem can
have partial solutions, then these may also be considered in the problem space as problem
instances.

6.1 The Algorithm Selection Problem 123

The scope of the problem space covers all potential problem instances considered from the
problem domain. Depending on whether the problem instances are characterised by a fixed
or changeable number of variables, and whether those variables are discrete or continuous,
there could be a finite or infinite number of instances within the problem space.

The structure of some problems may allow them to be split in to separate sub-problems,
which may allow for algorithms to be applied recursively to each sub-problem, such as
in [75] for sorting, or in parallel, such as could be imagined for voltage control in separate
areas of a power system. If the sub-problems are independent of each other, then they can be
considered as problem instances in themselves.

The choice of features depends on what the problem instances represent, what aspects of
them are relevant when selecting algorithms, and also whether the features can be computed.
Depending on the choice, there may be a non-unique mapping between problem instances
and features, so that some problem instances are not separated within the feature space.

The algorithms considered can simply be limited to those that are available to be applied
to the problem instances. However, some work (such as [76]) does not limit the algorithm
space to contain a fixed, small set of algorithms; instead the algorithm space is parameterised
to contain all possible algorithm configurations.

The choice of performance measures is linked to the overall objectives that the algorithms
are being applied for. The measures can relate to the quality of the solution process – such as
the execution time required by the algorithms, which is a common performance measure in
literature – or the quality of the solution – such as the prediction error of machine learning
algorithms [77].

6.1.3 Application to power flow management

In this work, a separate instantiation of the Algorithm Selection Problem is considered for
each case study power system, as each system is independent from the others. This allows
for the following high-level formulation of the Algorithm Selection Problem to be created
for each case study system:

• Problem space: each problem instance represents a state of the system, described by
continuous state variables. Although the continuous state variables should mean the
state spaces should be infinite, the states within the problem spaces are restricted to the
finite sets of states considered in Chapter 4.

• Feature space: this contains features derived from the problem instances (states), such
as the values of load and generation within a power system. Determining a set of

124 Previous work on algorithm selection

features to use is a task during the creation of an algorithm selector, and which features
are used in this work is discussion in Chapter 7.

• Algorithm space: this contains the five power flow management algorithms described
in Chapter 2 (PFM-CSP, PFM-OPF, PFSF-Egal, PFSF-TMA, and PFSF-LP), along
with the baseline option of not applying any control.

• Performance space: this contains the three performance measures considered in
Chapter 4, namely: the number of overloads, the energy of overloads, and the amount
of generator curtailment applied.

• Selection mapping: the objectives that the mappings should consider are the same as
those used in Section 4.1.2 to evaluate the performance of the power flow management
algorithms; namely: minimising either the number or energy of overloads, while
minimising curtailment. Previous work on creating selection mappings is discussed in
the next section.

6.2 Creating a selection mapping

Once a particular application has been formulated as an Algorithm Selection Problem, the
next task is to derive a selection mapping (an algorithm selector) that is able to select
algorithms to best achieve the desired objectives.

In the paper that introduced the Algorithm Selection Problem, Rice originally proposed
that the tools of approximation theory could be used to create selection mappings. Approxi-
mation theory is concerned with deriving mathematical functions to closely represent other
– typically more complex – functions. When applied to the Algorithm Selection Problem,
approximation theory exposes such questions as whether a best selection mapping exists,
whether it is unique, and how is “best” characterised? However, Rice considered these to be
mostly irrelevant and emphasised that it is more important to find a good – rather than the
best – selection mapping, and also to find a appropriate form for the approximation, which
was left as an open research question.

One of the earliest examples of the concrete application of the Algorithm Selection
Problem and the creation of an algorithm selector was the ATHENA system created by Rice,
Houstis and others [78], which formed part of the ELLPACK system for solving partial
differential equations. Each equation to be solved represented a problem instance, and
ATHENA was used to select solver algorithms to apply to the equations in order to meet
user-specified requirements for accuracy and execution time. The algorithm selector was

6.2 Creating a selection mapping 125

based on an expert system – rather than approximation theory – that featured a knowledge
base of performance profiles of each solver, which could be updated with new performance
data each time a solver was used. For a new problem instance, past performance on similar
problems was used to predict the performance of the solvers, which was then used to make a
selection decision.

Another early example of a concrete algorithm selector is the work of Brodley [79],
which had the objective of selecting classification algorithms in order to reduce classifi-
cation error. Hand-crafted rules were used to select algorithms, which where related to a
number of features of the classification data . Other authors have also developed algorithm
selectors using hand-crafted rules, such as the work of Beck and Freuder [80] on selecting
scheduling algorithms. Although hand-crafted selection rules were used successfully in these
applications, formulating rules requires domain expertise that may be unavailable for other
applications.

Lobjois and Lemaître [81] took a different approach to select between four branch and
bound search algorithms that were used to solve constraint satisfaction problems, with the
aim of minimising execution time. Rather than selecting algorithms based on rules or models
of algorithm performance, the algorithms’ execution time per problem instance was predicted
by executing the algorithms for a short time on the instance. The prediction combined the
measured execution time per search node with an estimate of the size of the search tree, and
the algorithm with the lowest predicted time was then selected. This approach was shown
to work well when compared with alternative strategies, such as executing the algorithms
interleaved with one another or selecting algorithms at random. Although successful, this
approach requires that the problem instances can be easily duplicated, which is not possible
in some problem domains, such as if the problem instances represent a physical system that
only has a single instantiation. Furthermore, the approach relies on the observed performance
when initially solving a problem being a good predictor of the overall performance, which
may not always be the case, if indeed it is possible to partially solve the problem in order to
derive a prediction of execution time.

Although this early work trialled a variety of approaches and had some success, the
majority of recent work on creating algorithm selectors has used machine learning applied
to algorithm performance data. An introduction to machine learning is provided in the next
section, followed by a review of how it has been applied to create algorithm selectors.

126 Previous work on algorithm selection

6.3 Machine learning

Machine learning is a branch of artificial intelligence concerned with creating systems that
can learn (improve their performance) through experience (exposure to data) [82]. Although
the roots of machine learning can be traced back at least as far as the work on perceptrons (a
form of artificial neural network) in the late 1950s [83], there has been a recent resurgence in
interest in the subject due to ever increasing computer power and access to large amounts
of data, such as can be found on the world wide web. Machine learning has been used in a
variety of diverse applications, from the automated translation of speech [84], to classifying
astronomical objects [85], to self-driving vehicles [86].

Russell and Norvig [82] distinguish four paradigms of how a learning algorithm can be
applied to data:

• Supervised learning: this is where the learning algorithm is given a set of data that
consists of inputs labelled with outputs, and the task is to create a model or hypothesis
from that data that maps from the inputs to the outputs. Some supervised learning
models and algorithms allow for online learning, where new data can be taken in to
account and the model updated. Others can only learn in batch mode, where the model
is learnt once, offline, and cannot be updated.

Supervised learning is subdivided according to the nature of the outputs: if the outputs
come from a finite set of discrete values (or classes), then the task of predicting the
output is known as classification; otherwise, if the values are real-valued, then the
prediction task is known as regression.

The use of supervised learning shares much of Rice’s original vision of using approxi-
mation theory to create algorithm selectors. Indeed, one type of supervised learning
model (artificial neural networks) have been shown to be universal approximators [87].

• Unsupervised learning: this is where only input data is given, and the task is to
discover patterns in the data. An example of this is clustering, where algorithms such
as k-means [88] are used to find groupings of data that are most self-similar.

• Semi-supervised learning: this sits in a continuum between supervised and unsuper-
vised learning, where some training examples are labelled (perhaps with inaccuracies)
and others are not. The learning task is similar to supervised learning: to create a
mapping between inputs and outputs.

• Reinforcement learning: this is where the learning algorithm receives rewards for
the actions it takes, so must learn which actions should be taken in order to maximise

6.4 Using machine learning for algorithm selectors 127

reward. Algorithms such as Q-learning [89] can be used to learn a mapping between
system state, action taken, and reward gained. Reinforcement learning is particularly
suited to online applications, where the learning algorithm interacts directly with the
system that the actions are applied to.

6.4 Using machine learning for algorithm selectors

Numerous authors have used a variety of machine learning techniques to create algorithm
selectors, and the most pertinent aspects of using machine learning are presented below.
These aspects include the timing of the selection decisions, the form of output from the
machine learning models, the form of output from the selector that the models are used
within, how and when learning is incorporated in to the selector, the choice of machine
learning model type, and the features used for selection.

6.4.1 Timing

When the selection decisions are made depends on the nature of the problem instances and
influences how machine learning can be applied. Gagliolo and Schmidhuber [90] distinguish
two types of selectors according to the timing of their selection decisions:

• Static selectors make a single selection decision for each problem instance, before
any algorithm is executed. While they are straightforward to understand and have been
implemented by many authors, static selectors assume that the performance of the
algorithms is reasonably predictable before they are executed on a problem instance.

• Dynamic selectors make selection decisions while algorithms are executing to solve a
problem instance. This allows information about how the algorithms are performing
on a problem instance to be used to make selection decisions, so are useful if the
performance of algorithms is only reasonably predictable after execution has started.

Dynamic selectors can be more complex than static selectors [90]. The timing of dynamic
selection decisions can be critical, as short intervals between decisions may not allow algo-
rithm performance to be observed adequately, while lengthy intervals may allow a previous
poor choice of algorithm to waste resources. Dynamic selection decisions may be triggered
in response to changes during the problem solution; for example, if the problem changes or
the solution reaches a specific state, such as a branching point [75, 79]. Alternatively, if there
are no obvious triggers, dynamic decisions may be made according to a predefined schedule,
such as in [90].

128 Previous work on algorithm selection

When algorithms are used that return partial solutions when interrupted — so-called
“anytime” algorithms — the selector can exploit the partial solutions by passing them to the
next algorithms, possibly reducing the total time needed to solve a problem [91]. If partial
solutions are to be passed on, there is a choice of which partial solutions are passed on to the
next algorithms: those returned by the last algorithms executed [9], the best so far [91], or
the last partial solution returned by the same algorithm (if it has already been executed on
the problem) [92]. Which of these yields the best performance depends on characteristics
implicit to the problems and algorithms, and can be resolved through experimentation.

6.4.2 Model output

A selector may contain a machine learning model that directly represents the selection
mapping. In this setting, classification models can be used, with their inputs being the
features extracted from the problem instances and the outputs of the models (classes) being the
algorithm selections. Numerous authors have used this approach, with applications including
the selection of sorting and matrix multiplication algorithms [93], quadratic assignment
solvers [94], and simulation algorithms [95].

Reinforcement learning models can also be used for directly representing the selection
mapping, such as in [75] for selecting sorting algorithms. For these models, the algorithm
selections are represented as the actions taken by the models.

An alternative to directly predicting which algorithm is most likely to be the best perform-
ing for a problem instance is to use models to predict the performance of each algorithm, and
then select the algorithm with the best predicted performance. Machine learning is used to
create empirical performance models (EPMs) [96] of each algorithm, which approximate a
mapping from the feature space to the performance space. Either regression or classification
models can be used, depending on the nature of the performance measure being predicted.
Often the EPMs are used to predict algorithm execution time; for example, in [97], ridge re-
gression models are used to predict the runtime of solvers for boolean satisfiability problems,
whereas in [98], a nearest-neighbour approach is used to predict the runtime of constraint
satisfaction solvers. Other authors have predicted other performance measures; for example,
Fink [99] predicted the probability of planning algorithms completing within a particular
time bound.

6.4.3 Selector output

In the most straightforward setting, a selector will only select a single algorithm at a time.
However, selectors can be created to select sets of algorithms – referred to as portfolios [100]

6.4 Using machine learning for algorithm selectors 129

– to be applied to a problem instance. There are a number of different ways that multiple
algorithms can be applied, which depend upon the characteristics of the problem instances
and of the algorithms:

• Multiple algorithms operating sequentially on the same problem instance. This requires
that partial solutions to the problem instances can be represented, and “anytime”
algorithms that will provide partial solutions whenever their execution is interrupted.
The selector will provide a sequence for the execution of the algorithms, perhaps
including a time allocation for each, such as in [98] for constraint satisfaction solvers.

• Multiple algorithms operating in parallel on independent copies of the problem instance.
Gagliolo and Schmidhuber [90] used this approach for creating dynamic selectors for
constraint satisfaction and the auction winner determination problem. All algorithms
were allowed to execute in parallel, and were periodically interrupted to observe their
performance. The selector, which was based on reinforcement learning, then used this
partial performance information in order to allocate time shares to the algorithms, with
the most promising being prioritised.

• Multiple algorithms operating in parallel on a shared copy of the problem instance.
This could be encountered if the problem instances represented a physical system
that could not be duplicated. If the problems can be decomposed in to sub-problems,
then the algorithms could be applied to each sub-problem independently. Otherwise,
mechanisms would need to be put in place to allow the algorithms to co-operatively
execute on a single instantiation of a problem instance.

6.4.4 Learning

The timing of when learning occurs to create or update a selector can be either:

• Offline learning which occurs once before the selector is applied to make any selection
decisions. This is most suitable when supervised learning algorithms are used.

• Online learning involves updating the selector once selection decisions have been
made. Reinforcement learning techniques are particularly suited to being used to
create selectors with online learning. Online learning can be further sub-divided
according to when the learning takes place: inter-instance learning occurs between
problem instances, so that past performance can be used to improve the selector, such
as in [90, 99]; whereas intra-instance online learning occurs while algorithms are

130 Previous work on algorithm selection

being executed on a problem instance, such as in [9, 91], so therefore can only occur
in dynamic selectors.

As algorithm selectors must produce an output (the algorithm selections), then only
supervised (including semi-supervised) and reinforcement learning techniques can be used.
However, that does not preclude the use of unsupervised learning to assist the creation
of selectors. For example, in [101] clustering in the feature space is used to select the
neighbourhood size for a selector based on a nearest neighbour classifier.

6.4.5 Model type

The choice of machine learning model type is one of the most important when creating an
algorithm selector. Although many different models have been used previously, few works
have created selectors using a variety of model types, in order to see which tend to lead to
selectors that perform well.

Kotthoff et al. [7] compared the performance of 30 different machine learning models
used as direct and EPM-based algorithm selectors for five different types of constraint
satisfaction and search problems. Most of the models could not outperform a “winner takes
all” approach of simply selecting the algorithm that most often gave the best performance.
However, support vector machines (SVMs), a type of classification model, were identified as
being particularly promising to create algorithm selectors.

Hutter et al. [96] created EPMs for 11 combinatorial optimisation algorithms for 35
different problem instance distributions. Out of the 6 different regression models used to
create EPMs, random forests were found to most often produce the most accurate performance
predictions, followed by Gaussian processes.

Although these findings indicate particularly promising model types for creating algo-
rithm selectors, there are no guarantees that their findings can apply to other problem domains.
Furthermore, many machine learning models have parameters that can significantly alter
their performance and could mean other model types are more promising.

6.4.6 Features

Developing and choosing relevant high-level features is one “one of the most important, yet
nebulous, aspects of the Algorithm Selection Problem” [74], as well as being a major concern
generally in machine learning. Features are high-level abstractions of the most important
characteristics of the problem instances that relate to how algorithms perform. However,
features do not need to be limited to simple metrics calculated from the problem instances.

6.5 Previous applications 131

For example, in dynamic selectors the features can include performance measures relating to
the algorithms that are currently being executed on the problem instances. The performance
predictions of EPMs may be used as features in a direct selector, such as in Kotthoff’s
work [102] on creating a “hybrid” selector for constraint satisfaction and search problems.
The feature sets may also be augmented with the performance of simpler algorithms executed
on a problem instance, that may be indicative of – or “landmark” – the performance of more
complex algorithms [103].

The choice of features is problem domain specific and the creation of a candidate set of
relevant features requires domain knowledge. This does not guarantee that the features are all
relevant, but automatic techniques can be used to select the most predictive sub-sets, such as
in [97] and [7]. Although past work on algorithm selection has relied on hand-crafted high-
level features, recent advances in deep learning [104] give promise that relevant higher-level
abstractions can be learned automatically from very low-level features.

6.5 Previous applications

Although the examples presented so far of work applying the Algorithm Selection Problem
and creating algorithm selectors have been in computer science applications, there have been
some wider applications. For example, in [10], an EPM-based selector is created for stock
market trading algorithms, and selectors have been created to select prediction algorithms
for both electrical load [105] and wind power [106]. However, apart from the author’s own
work there does not appear to be any other previous applications of the Algorithm Selection
Problem to power systems problems.

6.6 Conclusions

This survey of the algorithm selection literature has revealed that machine learning is the
predominant suite of techniques used for creating algorithm selectors. There are numerous
variations in how machine learning can be used, although one of the major differentiations
is in how the selection mapping is represented by the machine learning model: either the
mapping is represented directly, or machine learning models are used as EPMs to predict the
performance of each algorithm, with the algorithm predicted to best then selected. There is no
consensus on which machine learning algorithms are most promising for creating algorithm
selectors, particularly if they are being developed for new problem domains.

A high-level formulation of the Algorithm Selection Problem for power flow management
was presented, which will be used as the basis for developing algorithm selectors in the next

132 Previous work on algorithm selection

chapter. Particular aspects of the problem and its formulation restrict the scope of selector
designs that can be considered. The power flow algorithms (described in Chapter 2) are not
“anytime” algorithms and must be allowed to complete their execution before any solution is
provided, therefore dynamic selectors are inapplicable. This means static selectors are to be
produced; therefore offline, supervised learning techniques are most suitable. In summary,
static selectors are to be created that select a single algorithm for each state, with purely
offline learning, using either direct or EPM-based designs.

Chapter 7

Design and development of algorithm
selectors for power flow management

This chapter contributes towards fulfilling research objective 2, in particular research ob-
jectives 2(b) and 2(c), by developing designs for algorithm selectors for per-state selection
of power flow management algorithms. Based on the findings of the literature review in
Chapter 6, designs have been developed for both direct and empirical performance model
(EPM) based selectors. This chapter provides an overview of the design and development of
the selectors, with their performance being the subject of the next chapter, Chapter 8.

This chapter splits in to two halves. In the first half, the methods that have been developed
in this work for preparing training data to create per-state algorithm selectors for power flow
management are described, with Section 7.1 describing the methods for direct selectors, and
Section 7.2 describing the methods for EPM-based selectors. These descriptions include
the design choices that are specific to each selector design, and the options that have been
investigated in this work. The second half of the chapter discusses a number of design choices
that are shared by all of the selector designs, which are: the choice of machine learning model
(Section 7.3), the features used by the models (Section 7.4), and the volume of training data
used (Section 7.5, which also discusses how additional data was generated in this work for
training the selectors).

The work in this chapter relating to direct selectors (Section 7.1) has been published
previously in a reduced form in [60]. However, the remaining content – such as the develop-
ment of EPM-based algorithm selectors for power flow management, and the discussion of
common design options – has not been published previously.

134 Design and development of algorithm selectors for power flow management

Features
Direct

selector

Algorithm

selection

Fig. 7.1 Structure of a direct algorithm selector

7.1 Preparation of training data for direct selectors

This section describes three different methods for preparing data to train classifiers to be
used as direct algorithm selectors. These selectors directly represent the selection mapping
(as described in Section 6.4.2) and, as illustrated in Figure 7.1, use input features to predict
which algorithm is likely to be the most effective.

As shown in Figure 7.2, where one algorithm is more effective than all other algorithms
can be visualised within the state space of a system; in this case, the IEEE 57-bus system,
where the algorithms shown are those that are solely most effective at minimising the number
of overloads whilst also minimising curtailment for a state. Although the figure can only
show two-dimensional combinations of the state variables, for some combinations it is clear
to see regions where particular algorithms are more effective than others; for example, within
the plot of the generator 8 and 12 outputs, there are distinct regions where each of PFM-OPF,
PFM-CSP, and PFSF-TMA dominate. Intuitively, if the state variables are used as features,
classifiers used as algorithm selectors can be thought of as identifying regions within the
feature space where one algorithm is most effective and therefore should be selected.

The three methods outlined below are differentiated by the number of objectives that the
selector can consider (either a single objective or multiple) and by whether examples are
weighted or not during training.

7.1.1 Selectors using unweighted training examples

In this method, the training examples are unweighted, so misclassification cost is the same for
each training example. Each state considered for training is represented by at most a single
training example, which can only be labelled with a single power flow management algorithm.
The labelling is based on determining the selection set for each state, using either a single
or multiple objectives. The selection set for a state will contain either a single algorithm
(the one that is most effective) or multiple algorithms (if they are equally most effective).
Labelling a training example is straightforward for a state with a singleton selection set: the

7.1 Preparation of training data for direct selectors 135

0.0 0.2 0.4 0.6 0.8 1.0
Load

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

or
 3

0.0 0.2 0.4 0.6 0.8 1.0
Generator 12

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

or
 3

0.0 0.2 0.4 0.6 0.8 1.0
Load

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

or
 8

0.0 0.2 0.4 0.6 0.8 1.0
Generator 12

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

or
 8

0.0 0.2 0.4 0.6 0.8 1.0
Load

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

or
 1

2

0.0 0.2 0.4 0.6 0.8 1.0
Generator 3

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

or
 8

Baseline PFM-CSP PFM-OPF PFSF-Egal PFSF-TMA PFSF-LP

Fig. 7.2 Visualisation of the state space for the IEEE 57-bus system, showing the states
where a single algorithm is most effective at minimising the number of overloads whilst also
minimising the curtailment applied

136 Design and development of algorithm selectors for power flow management

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

2

A B A or B

(a) “Don’t care” states shown

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

2

A B A or B

(b) “Don’t care” states discarded

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

2

(c) “Don’t care” states labelled with algorithm A

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

2

(d) “Don’t care” states labelled with algorithm B

Fig. 7.3 Example of different options for labelling “don’t care” states where no algorithm
(from a pair of algorithms) is uniquely the most effective

7.1 Preparation of training data for direct selectors 137

example is labelled with the sole algorithm in the set. However, for non-singleton selection
sets it is not obvious which algorithm the examples should be labelled with.

Labelling a training example with an arbitrary algorithm in the case of a non-singleton
selection set can make the selection mapping harder to learn, and thus deleteriously affect
the performance of a selector. To illustrate this, consider the two-dimensional feature space
shown in Figure 7.3a, in which states are shown where one of two algorithms (A or B) is
most effective and thus the selection set is a singleton, along with “don’t care” states where
both algorithms deliver the same performance and thus there is a non-singleton selection set.

Figures 7.3c and 7.3d show the same feature space but with each state representing a
training example and the “don’t care” states with non-singleton selection sets labelled with
an arbitrary algorithm from the set. Figure 7.3c represents the case where algorithm A is used
for the arbitrary label, while Figure 7.3d represents where the same states are labelled with
algorithm B. Figure 7.3b is the same, except that all “don’t care” states have been discarded
and are thus not used as training examples. When the “don’t care” states are discarded, it
is clear to see where each algorithm should be selected, and a very simple classifier could
be constructed to be used as an algorithm selector which only considers whether feature 2
is above or below a single value (0.5, for example). However, when the “don’t care” states
are kept and arbitrarily labelled, multiple regions emerge where each algorithm should be
selected, making the selection mapping inherently more complicated, which can reduce the
accuracy of any classifier trained as an algorithm selector using those datasets.

With this method, it is possible to consider multiple objectives by iteratively determining,
for each state, the selection sets of each objective. For example, if minimising the number
of overloads and the amount of curtailment were both considered (with minimising the
number of overloads prioritised), for each state the selection set that minimises the number
of overloads would be determined first. If a state had a singleton selection set, then the
sole algorithm in the set would be used to label the training example representing that state.
However, if a state had a non-singleton set (where two or more of the considered algorithms
remove the same number of overloads) then the minimisation of curtailment would also be
considered to further refine the selection set. If the refined selection set was then a singleton,
then the remaining algorithm would be used to label the training example; otherwise, the
state would effectively be a “don’t care” state with no algorithm uniquely most effective, and
the training example representing the state would be discarded.

There are three design choices specific to this design:

1. Objectives: the set of objectives used to determine the selection sets. In this work, the
following design options for the sets of objectives are investigated:

138 Design and development of algorithm selectors for power flow management

• Single objectives (2 options): (1) minimising the number of overloads or (2) the
overload energy. This option was not investigated for the 33 kV meshed distribu-
tion system as the PFM-OPF algorithm could remove all overloads.

• Two objectives (4 options): minimising the number of overloads whilst also min-
imising (1) the overload energy or (2) the amount of curtailment; or minimising
the overload energy whilst also minimising (3) the number of overloads or (4) the
amount of curtailment.

• Three objectives (2 options): (1) minimising the number of overloads whilst also
minimising the overload energy and then the amount of curtailment; or (2) min-
imising the overload energy whilst also minimising the number of overloads and
then the amount of curtailment.

2. Algorithms: which sets of algorithms are considered for selection. In this work, the
following sets of algorithms were investigated as design options for the selectors
developed for each system, based on the analysis of different algorithm sets presented
in Section 8.5:

• 33 kV meshed distribution system (5 options): PFM-OPF with either (1) PFM-
CSP, (2) PFSF-Egal, (3) PFSF-TMA, or (4) PFSF-LP, plus (5) the set of all
algorithms, including the baseline option of not applying any control.

• IEEE 14-bus system (5 options): each of the pairs of algorithms that could
remove all overloads were considered, namely: (1) PFM-CSP and PFSF-Egal,
(2) PFM-CSP and PFSF-TMA, (3) PFM-CSP and PFM-OPF, and (4) PFM-OPF
and PFSF-Egal; plus (5) the set of all algorithms).

• IEEE 57-bus system (3 options): (1) PFM-CSP and PFM-OPF, which is the pair
of algorithms that minimises the number and energy of overloads, when compared
with all other pairs of algorithms for that system; (2) PFM-OPF, PFM-CSP, and
PFSF-Egal, which is the set of algorithms that minimises the overload energy;
and (3) the set of all algorithms.

3. Discarding “don’t care” states: the states where the selection set is a non-singleton can
either be retained, and labelled with an arbitrary algorithm; or discarded. In this work
the single design option of discarding all “don’t care” states is investigated.

7.1.2 Selectors for a single objective using weighted training examples

For the method described in the previous section, when only two algorithms are considered,
the states with non-singleton selection sets are those where both algorithms are equally

7.1 Preparation of training data for direct selectors 139

effective, and no information is lost when those states are disregarded from becoming
training examples. However, when three or more algorithms are considered, there may
be states with non-singleton selection sets where one or more of the algorithms are not as
effective as the others. Therefore, when those states are disregarded as training examples,
potentially important information about differences in algorithm performance – and therefore,
which algorithms should be selected – can be lost, can deleteriously affect the performance of
selectors trained using that data. Another issue is that for the states with singleton selection
sets, the “cost” (in terms of difference in performance) may vary between states. For example,
for one state the performance difference between using one algorithm over another could
be the removal of a substantial number of overloads, while for another state the difference
could only be a marginal decrease in the amount of curtailment. Without modification, the
classifiers used as algorithm selectors will only assume the same cost of misclassification for
every state, and thus will not recognise important cost differences.

The optimisation processes within the algorithms that are used to train classifiers seek to
minimise misclassification error, which usually considers the cost of misclassifying a training
example to be equal across all examples in the training dataset. However, when using a
classifier as an algorithm selector the actual cost of misclassification – that is, choosing an
algorithm that is not the most effective for a state – may vary between states, as explained
above. Therefore, it is desirable to have selectors that can recognise the different costs
of misclassification (selecting an algorithm that is not the most effective), and this can be
achieved by weighting the training examples used when training a classifier to be used as an
algorithm selector.

In contrast to using unweighted training examples (as in Section 7.1.1), when using
weighted training examples it is not necessary to disregard states with non-singleton selection
sets when creating the test dataset. In fact, every state is duplicated in the training dataset,
with one example created per algorithm for each state. Each example is then weighted
according to the algorithm’s performance on the state, with the largest weight being assigned
to the example representing the most effective algorithm (for the performance measure being
selected for). For an algorithm a and state i, the weight for the corresponding training
example is calculated as follows:

wi,a = pmax
i,y − pi,y,a (7.1)

Where pi,y,a is the performance of the algorithm on the state for performance measure
y, and pmax

i,y is the maximum value of performance for all algorithms considered (in other
words, the performance of the worst performing algorithm for the state). Thus, each training

140 Design and development of algorithm selectors for power flow management

example is weighted according to the relative performance gain that can be achieved by
selecting the algorithm that the example represents.

This selector design has the following specific design choices:

1. Objectives: which objective is used to determine the selection sets. In this work, two
objectives are investigated as design options: (1) minimising the number of overloads,
and (2) minimising the overload energy.

2. Algorithms: the set of algorithms considered for selection. In this work, the following
sets of algorithms were investigated as design options for each system:

• 33 kV meshed distribution system: as PFM-OPF can remove all overloads, and
the objectives for this selector design only considered overloads, this particular
selector design was not investigated for the 33 kV distribution system.

• IEEE 14-bus system (5 options): the same sets of algorithms were considered as
for the direct (unweighted) selectors (Section 7.1.1).

• IEEE 57-bus system (3 options): the same sets of algorithms were considered as
for the direct (unweighted) selectors (Section 7.1.1).

7.1.3 Selectors for two objectives using tuned weights

The method outlined in the previous section can be extended to consider multiple objectives,
by weighting training examples according to all objectives considered. This can be achieved
by calculating weight components for each performance measure y, and then summing the
components with scalar multipliers (cy) applied to prioritise particular objectives; using:

wi,a = ∑
y∈Y

cy(pmax
i,y − pi,y,a) (7.2)

The prioritisation of multiple objectives is an application-specific decision, which in-
fluences the values of the weight component multipliers, cy, that are used when training
classifiers to be used as selectors. Determining what multiplier values to use constitutes a
multi-objective optimisation problem, where the decision variables are the multipliers and
the objective function comprises the performance of the algorithms selected by a selector that
has been trained with data using those multipliers. Since each evaluation of a candidate set of
multipliers requires a classifier to be trained and then tested, the process of finding appropriate
multiplier values is suited to so-called “black-box” or “derivative-free” optimisers, such as
grid search or a genetic algorithm [107], which can optimise arbitrary functions.

7.1 Preparation of training data for direct selectors 141

Out of the three objectives considered in this work, two combinations have been used for
creating selectors that consider multiple objectives, namely:

1. Minimising the number of overloads whilst minimising the amount of curtailment, or:

2. Minimising the overload energy whilst minimising the amount of curtailment.

For both of these combinations, the objectives are ordered such that the first objective
is prioritised over and above the second objective. In other words, the performance of the
algorithms selected by one selector compared with those selected by a different selector can
only be considered superior if there is a reduction in the number or energy of overloads, or,
in cases where number or energy of overloads removed is the same, there is a reduction in
the amount of curtailment applied.

A procedure has been developed in this work for tuning the weight multiplier, c2, associ-
ated with the second of two ordered objectives. This procedure is based on an observation
made when developing a direct selector for the 33 kV meshed distribution system. During
this development, RandomForest model (described in Section 7.3) was used and the selector
considered the nested objectives of minimising the number of overloads whilst also minimis-
ing the amount of curtailment applied, with each objective having weight multipliers of cOL

and cCT, respectively. A range of cCT values were used to create training data with different
weights, with a fixed value of cOL = 1.0. A basic set of features (described in Section 7.4.3)
and the 10,000 system states from the “A” training split of power flow management perfor-
mance data for the 33 kV distribution system (described in Section 7.5) were used to create
the training data, which were used to train selectors. The selection decisions of each selector
were then determined for the 17,520 test states for the 33 kV distribution system, with the
performance of each selector calculated from the performance of the algorithms selected.

Figure 7.4 shows the effect of varying the weight multiplier cCT on the performance of
the selectors, with respect to the number of overloads and the amount of curtailment applied.
The figure clearly shows the shift in the prioritisation of the objectives as the value of cCT

increases, with curtailment reducing at the same time as the number of overloads increases.
Importantly, there is a range of cCT values (< 0.01) where the amount of curtailment decreases
but not at the expense of incurring additional overloads. The tuning procedure developed
in this work exploits this observation that, for particular selectors, the weight multiplier of
a second objective (c2) can be increased to a non-zero value, thus improving performance
against the second objective, without a performance penalty with respect to the first objective.

The procedure for tuning c2 is outlined in Algorithm 7.1, with an example of its operation
illustrated in Figure 7.5. In essence, the procedure searches along the c2 axis to find the
maximum c2 value that, when used to train and test a selector, does not cause a decrease

142 Design and development of algorithm selectors for power flow management

0.00 0.01 0.02 0.03 0.04 0.05
Multiplier cCT

19950

20000

20050

20100

20150

C
ur

ta
ilm

en
t [

M
W

h]

0

20

40

60

80

100

120

140

160

180

N
um

be
r o

f o
ve

rlo
ad

s [
co

un
t]

Fig. 7.4 Effect of varying weight multiplier cCT with cOL = 1.0 for a selector using a
RandomForest model to select between the PFM-OPF and PFSF-TMA algorithms, trained
and tested on states from the 33 kV meshed distribution system

in the performance measure for the first objective, p1. Each iteration, l, of the procedure
comprises training and evaluating a selector for the c2 value for that iteration (lines 3-6), and
determining the next c2 value to try (lines 7-27). The first value of c2 trialled is 0.0, and the
performance of the selector trained using that c2 is captured with respect of the first objective
as ptarget

1 (line 8). The search position is then incremented by a variable length step, △c2

(line 24), which for the first iteration is set to a minimum length of △cmin
2 . For each of the

subsequent c2 values trialled, the progress of the search depends on the the performance, p1,
of the selector trained using that c2 value.

If p1 meets the value of ptarget
1 (lines 9-15), such as for iterations 2 and 3 in Figure 7.5,

then the current c2 value is recorded as the best known position, cbest
2 , and the search is

expanded by doubling the last step size, up to a maximum step length of △cmax
2 . If the new

step length would take the search up to or past the search limit, climit
2 , such as for iteration 6

in the figure, then the step length is reduced to △cmin
2 . This prevents unnecessary iterations

trialling c2 values past the search limit.
If p1 does not meet ptarget

1 (lines 16-22), such as for iteration 4 in Figure 7.5, the current
c2 position is recorded as the search limit, climit

2 , then the search is contracted by reducing the
step size, △c2, to the minimum length, △cmin

2 , and by reversing the search position to one
step after the best known position, cbest

2 +△c2. If, for this second case, the step is already
at its minimum length, then no further increase of c2 is possible and the search terminates.
The search will also terminate if the next search position meets or exceeds the search limit,

7.1 Preparation of training data for direct selectors 143

Algorithm 7.1 Procedure used to tune selector weight multiplier c2

Require: c1, △cmin
2 , △cmax

2 , lmax, training/test data, machine learning model type
1: Initialise c2 := 0, cbest

2 := 0, climit
2 := ∞, △c2 :=△cmin

2
2: for l := 1, lmax do
3: Create training dataset using weight multipliers c1 and c2
4: Use training dataset to train algorithm selector
5: Evaluate selector using supplied test data
6: Determine value for performance measure p1
7: if l = 1 then
8: ptarget

1 := p1

9: else if p1 meets ptarget
1 then

10: ptarget
1 := p1

11: cbest
2 := c2

12: △c2 := min(2×△c2,△cmax
2))

13: if c2 > climit
2 then

14: △c2 :=△cmin
2

15: end if
16: else
17: climit

2 := c2
18: if △c2 >△cmin

2 then
19: △c2 :=△cmin

2
20: else
21: break
22: end if
23: end if
24: c2 := c2 +△c2
25: if c2 > climit

2 then
26: break
27: end if
28: end for
29: return c2 := cbest

2

144 Design and development of algorithm selectors for power flow management

0
10
20
30
40
50
60
70

Pe
rf

or
m

an
ce

 p
1

Underlying p1 trend Search progress

0 1 2 3 4 5 6 7 8 9 10
Weight multiplier c2 (× 4cmin

2)

1

2

3

4

5

6

7

Se
ar

ch
 it

er
at

io
ns

Fig. 7.5 Example of the operation of the procedure for tuning selector weight multiplier c2

climit
2 , or the iteration limit lmax is reached. In all cases, the procedure will return cbest

2 on
termination.

This selector design has a number of design choices. These are described below, along
with the options investigated in this work:

1. Objectives: the method outlined above requires there to be two ordered objectives. In
this work, two options are investigated for the objectives: (1) minimising the number
of overloads whilst minimising the amount of curtailment, and (2) minimising the
overload energy whilst minimising curtailment.

2. Algorithms: which algorithms are considered for selection. As with the other direct
selectors, considering different sub-sets of the power flow management algorithms for
selection can simplify the learning task and thus affect the performance of a selector.
The following sets of algorithms are considered for selection for each system:

• 33 kV meshed distribution system (4 options): (1) PFM-OPF and PFSF-TMA,
(2) PFM-OPF and PFSF-LP, (3) PFM-OPF, PFSF-TMA, and PFSF-LP; plus
(4) the set of all algorithms (including the baseline option of not applying any
algorithm).

7.1 Preparation of training data for direct selectors 145

• IEEE 14-bus system (5 options): each of the pairs of algorithms that could
remove all overloads were considered, namely: (1) PFM-CSP and PFSF-Egal,
(2) PFM-CSP and PFSF-TMA, (3) PFM-CSP and PFM-OPF, and (4) PFM-OPF
and PFSF-Egal; along with (5) the set of all algorithms.

• IEEE 57-bus system (3 options): (1) PFM-CSP and PFM-OPF, which is the
pair of algorithms that minimises the number and energy of overloads, when
compared with all other algorithm pairs for that system; (2) PFM-OPF, PFM-CSP,
and PFSF-Egal, which is the set of algorithms that minimises the overload energy;
and (3) the set of all algorithms.

3. Tuning parameters: the values of △cmin
2 , △cmax

2 , and lmax affect the search process in
Algorithm 7.1 and may affect the performance of the resulting selector, particularly as
the precision at which △cmin

2 is found depends on △cmin
2 . However, these parameters

are not as important as the other design choices so their values have been fixed in this
work, in order to limit the scope of this work to a tractable number of design variants.
The values used are: △cmin

2 = 1.0×10−3, △cmax
2 = 10.0, and lmax = 100.

There is an additional design choice with respect to the tuning that is not explicitly
shown in Algorithm 7.1, which is how to split the available data for selector training
into training and test data during the tuning process. This is required as it is good
practice in machine learning to use independent data sets for any testing during a
tuning process (often referred to as a validation set) and for the final evaluation of a
tuned model. In this work, a 2:1 split is used for the training and validation data during
tuning; additionally, once the tuning process has been used to determine a c2 value for
a particular model, the model is then re-trained using all the training data available.

4. Comparison used in search: as seen in Figure 7.4, the value p1 of the performance
measure related to the first objective (the number of overloads in the figure) may not
increase monotonically. Furthermore, as has been observed during the development
of selectors for this work, p1 may decrease before increasing as c2 becomes larger.
Because of the potential non-monotonicity of p1, the choice of comparison used in
line 9 of Algorithm 7.1 is critical for determining how quickly the tuning process will
terminate, which could result in a c2 value lower than could be obtained if the search
process continued for additional steps. For this reason, two design options for the
comparison are investigated in this work: (1) p1 = ptarget

1 , and (2) p1 ≤ ptarget
1 .

146 Design and development of algorithm selectors for power flow management

EPM
(A2)

EPM
(A1)

EPM
(B2)

EPM
(B1)

Features

Selection logic

(based on performance predictions)

Performance

prediction for

algorithm A,

measure 1

EPMs for

algorithm B

Performance

predictions

Algorithm selection

EPMs for

performance

measure 1

EPMs for

performance

measure 2

EPMs for

algorithm A

Different

sub-sets of

feature may

be used

Features may be

used by the

selection logic

Fig. 7.6 Example structure of an EPM-based algorithm selector

7.2 Preparation of training data for EPM-based selectors

Figure 7.6 illustrates the structure of an EPM-based algorithm selector. Within this structure
there is an EPM for each combination of algorithm and performance measure. The EPMs
provide performance predictions when given features as inputs, which for a particular EPM
may be a sub-set of the features that are available. The performance predictions, perhaps
supplemented by feature values, are used within the selection logic element to make an
algorithm selection decision. Although the structure shown in the figure is for two algorithms
(A and B) and two performance measures (1 and 2), it can be extended to an arbitrary number
of algorithms and measures by increasing the number of EPMs.

7.2 Preparation of training data for EPM-based selectors 147

An EPM-based selector has the following design choices:

1. Performance measures: the performance measures that the EPMs are used to predict
depend upon the performance objectives considered. Where there are multiple ob-
jectives, the design choice is whether some of the performance measures should be
ignored, which could help improve the performance of an EPM-based selector if the
performance measures in question cannot be predicted accurately.

2. Algorithms: the design choice here is whether to predict the performance of, and
subsequently select from within, the set of all available algorithms or a particular
sub-set. If one algorithm’s performance cannot be predicted accurately, which could
confuse the selection logic, the overall performance of the EPM-based selector may be
improved by ignoring that algorithm in the selector.

3. Features provided to EPMs: the design choice here is whether a common sub-set of
features is supplied as inputs to every EPM, or if different sub-sets are provided to
particular EPMs.

4. Features provided to selection logic: a choice between whether a sub-set of features
are provided to supplement the performance predictions as inputs to the selection logic
element, or if only the performance predictions are provided.

5. Machine learning models: which machine learning models and parameters are used for
creating the EPMs, including whether the same type of model is used for all EPMs or
if different models are used for particular EPMs; for example, the type of model used
could be varied depending on which performance measure is being predicted, such as
using a classifier to predict an integer-valued performance measure that takes on only a
few values, or using a regression model to predict a real-valued performance measure.

6. Selection logic: the function of this element is to make selection decisions based on the
performance predictions and the sub-set of features, if they are provided, so a variety
of decision strategies could be employed. For example, one strategy would be simply
to select the algorithm with the best predicted performance; while another would be to
create a direct selector that accepts performance predictions as inputs, and to use that
as the selection logic element.

Although there are only a handful of design choices, each may be associated with a
large number of options and the effect of exploring different options for each choice is
multiplicative. Therefore, investigating even a small number of options for each design

148 Design and development of algorithm selectors for power flow management

choice can quickly become intractable. For example, if 10 different machine learning models
were trialled for each EPM in Figure 7.6, it would result in 102×2 = 10,000 different EPM-
based selector designs to be evaluated. If the structure in the figure were extended to the five
power flow management algorithms (as well as the option to not apply any control) used in
this work, there would be 1012 possible selector designs, which is an intractable number of
selectors to investigate.

Due to the high dimensionality associated with the different possible EPM-based selector
designs, the number of design options has been restricted in this work in order to make a
study of EPM-based selector designs tractable. However, the design options selected still
allow for a range of designs to be examined, which increases the likelihood of there being
some selectors that deliver effective performance. In particular, the following design options
have been investigated:

1. Performance measures: EPMs for each performance measure have been produced,
which have been combined to consider each of these sets of objectives: (1) minimising
the number of overloads, (2) minimising the overload energy, (3) minimising the
number of overloads whilst also minimising the curtailment, and (4) minimising
the overload energy whilst also minimising the curtailment. For the 33 kV meshed
distribution system, (1) and (2) have not been investigated, as there is no potential
performance benefit per-state algorithm selection for either of the overload measures
due to PFM-OPF being able to remove all overloads.

2. Algorithms: the algorithm combinations described in Section 7.1.1 have been used.

3. Features provided to EPMs: only one design option has been investigated, which is
where the same set of features is supplied to all EPMs within a selector.

4. Features provided to selection logic: only one design option has been investigated,
which is where only the performance predictions of the EPMs are provided.

5. Machine learning models: a number of options have been investigated, with EPMs
being created using a number of different machine learning models (listed in Sec-
tion 7.3). To reduce the number of possible designs investigated, the EPMs for a
particular performance measure within an EPM were restricted to being only a single
machine learning model type.

6. Selection logic: only one design option has been investigated, which is to select
the algorithm with the best predicted performance, assessed against the objectives
considered. In the event of a tie, when two or more algorithms give the best predicted

7.3 Machine learning models 149

performance for a state, then the algorithm from the set that has the best overall
performance on the training states is selected.

7.3 Machine learning models

7.3.1 Models used in this work

In pursuit of research objective 2, a broad selection of machine learning models have been
investigated to create algorithm selectors for per-state selection of power flow management
algorithms. The intention was not to perform an exhaustive evaluation of all possible machine
learning models to find which was “best” for creating selectors for power flow management;
rather, the intention was to perform an extensive evaluation – using models from the main
model families – in order to ascertain if machine learning can be used to create effective
selectors for power flow management.

The investigation of a broad selection of machine learning models was enabled by
using the Java-based WEKA software [108] to train machine learning models to be used as
algorithm selectors for power flow management. WEKA is well established in the machine
learning research community and includes implementations of many popular state-of-the-art
machine learning algorithms, including those that train models for classification or regression.

Many machine learning algorithms have a number of parameters that can be tuned to
optimise the performance of the trained models; however, tuning involves an iterative process
of training and testing different model parameterisations, which can require a significant
amount of time. Therefore, in order to limit the machine learning task to a tractable size, no
tuning has been performed and the models trained in this work have been trained using the
default parameters from WEKA. However, there are a select few models whose parameters
were known a priori to significantly affect the performance of the trained models, so a small
number of parameter variations have been investigated for those models.

Table 7.1 lists the machine learning models investigated in this work. Strictly speaking,
the table lists the algorithms used to train the models, but in the following discussion, the
names of machine learning algorithms are used synonymously to refer to the models that
they produce. The following information is presented in the table:

• WEKA class name: the name of the Java class of the model within WEKA.

• Model category: the family of models or other grouping to which the model belongs.
A description of each category is provided in Section 7.3.2

150 Design and development of algorithm selectors for power flow management

• Type: if the model can be used for classification (“C”), regression (“R”), or both.
All the direct selectors use classification models, while the EPM-based selectors use
regression models for the EPMs with the exception of the EPMs that predict the
number of overloads. As the number of overloads can be treated as a discrete class,
both classification and regression models have been investigated to produce EPMs for
that performance measure.

• Variations: whether multiple variations of a model, with different parameter values,
have been investigated. Details of the variations used are given in Section 7.3.3.

• Ref.: reference describing the model and the algorithm used for learning.

In total, 55 models for classification have been investigated (38 base model types plus a
number of variations), and 35 models for regression (24 base models plus variations).

7.3.2 Descriptions of machine learning model categories

Artificial neural networks

Artificial neural networks (ANNs) consist of interconnected layers of nodes – the neurons –
that are analogous to biological neural networks. The output of a neuron is determined by an
activation function, which is a function of the weighted outputs of the neurons it is connected
to. The layers of neurons are arranged into a single input layer, which takes the features as
input, followed by one or more hidden layers, with a final output layer, which provides the
prediction of the model. For classification, there is one output neuron per class, whereas for
regression there is usually a single output neuron with a linear activation function. Typically,
the size of an ANN is set before training, and the training process is used to determine the
strength (weights) of the connections between the neurons.

Both ANN models used in this work (MLPRegressor and MultilayerPerceptron)
create a type of ANN known as a multilayer perceptron, which are feedforward networks
with sigmoid activation functions.

Bayesian learners

These methods apply Bayes’ theorem to estimate the probability that an example belongs
to a particular class. NaiveBayes uses the training data to learn conditional probability
distributions for the features (given the class), whereas BayesNet learns a Bayesian network
where the nodes represent different conditional probability distributions.

7.3 Machine learning models 151

Table 7.1 Machine learning models used in this work

WEKA class name Model category Type Variations Ref.
AdaBoostM1 Ensemble C - [109]
ADTree Tree C - [110]
Bagging Ensemble C - [111]
BayesNet Bayesian C - [108]
BFTree Tree C - [112]
ConjunctiveRule Rule C & R - [108]
DecisionStump Tree C & R - [108]
DecisionTable Rule C & R - [113]
DTNB Rule C - [114]
FT Tree C - [115]
GaussianProcesses Other R - [116]
HoeffdingTree Tree C - [117]
HyperPipes Other C - [108]
IBk Lazy C & R Y [118]
IsotonicRegression Other R - [108]
J48 Tree C Y [13]
J48graft Tree C Y [119]
JRip Rule C - [120]
KStar Lazy C & R - [121]
LADTree Tree C - [122]
LeastMedSq Linear regression R - [123]
LibSVM SVM C & R Y [124]
LinearRegression Linear regression R - [108]
LMT Tree C - [115]
Logistic Other C - [125]
LWL Lazy C & R - [126]
M5P Tree R - [127]
M5Rules Rule R - [128]
MLPRegressor Artificial neural network R - [108]
MultilayerPerceptron Artificial neural network C & R - [108]
NaiveBayes Bayesian C - [129]
NBTree Tree C - [130]

(continued on next page)

152 Design and development of algorithm selectors for power flow management

Table 7.1 (continued from previous page)
WEKA class name Model category Type Variations Ref.
OneR Rule C - [131]
PaceRegression Linear regression R - [132]
PART Rule C - [133]
RandomForest Ensemble C & R - [134]
RandomTree Tree C & R - [108]
RBFClassifier Other C - [135]
RBFNetwork Other C & R - [135]
RBFRegressor Other R - [135]
REPTree Tree C & R - [108]
Ridor Rule C - [136]
SGD Other C - [108]
SimpleCart Tree C - [137]
SimpleLinearRegression Linear regression R - [108]
SimpleLogistic Other C - [138]
SMO SVM C - [139]
SMOreg SVM R - [140]
ZeroR Rule C & R - [108]

Ensembles

These methods (which are also referred to as learning meta-algorithms) combine the predic-
tions of a group of other models – the ensemble – in order to make a prediction. Often, the
predictive performance of an ensemble is more powerful than the individual models that the
ensemble is comprised of.

The main difference between the ensemble methods is in how they train the constituent
models and combine their predictions. For example, the Bagging method trains models on
separate random sub-samples of the training data, whereas AdaBoostM1 iteratively trains a
sequence of models with training sets that are altered to accentuate misclassified examples.
Bagging makes predictions by combining the outputs of the constituent models by voting
(for classification) or averaging (for regression), whereas AdaBoostM1 – which can only be
used for classification – uses a weighted sum of the class probabilities from each model. The
choice of which models are used in an ensemble is usually an adjustable parameter, although
for some ensemble methods this choice is fixed, such as RandomForest, which only uses
RandomTree models.

7.3 Machine learning models 153

Lazy learners

Lazy learners essentially do no training at all, instead using the training set directly to make
predictions. IBk, for example, is a nearest-neighbour model that predicts the class or value
of an example based on the k training examples that are closest to it in the feature space.

Linear regression

These methods create linear functions of the feature values that are used to predict the value
of an example, with the parameters of the function fitted to minimise error when the model
is applied to the training data. One of the main differences between the methods listed in
the table is how error is treated during training, for example LinearRegression uses the
method of least squares (minimising the sum of the squared errors), while LeastMedSq

minimises the median of the squared errors.

SVM-based learners

Support vector machines (SVMs) use kernel functions to project the feature space into a
higher-dimensional space. A hyper-plane is then fitted to the higher-dimensional represen-
tation that achieves the maximum separation between examples of different classes (in the
case of using a SVM for classification), or that most closely fits the training example target
values (in the case of regression).

Rule learners

These are different methods that induce rules from the training data, where each rule repre-
sents a particular prediction and is activated if the feature values match those described in the
rule. The main differences between the methods listed in the table is how single rules are
learned and what post-processing of the set of rules take place, such as pruning rules from
the set to prevent overfitting.

Tree learners

These models take the form of decisions trees, which are hierarchical structures consisting
of decision nodes (branches), where feature values are used to determine which branch is
followed, and terminal nodes (leaves), which determine the predicted output. The different
tree learning methods listed in the table vary in how they determine which features are used
at the branches – for example, J48 uses the feature that results in the most information gain,
while RandomTree chooses features at random – as well as varying in what form the leaves

154 Design and development of algorithm selectors for power flow management

take – most simply label a leaf with the predicted output, although some methods use other
models at their leaves, for example LMT uses logistic regression models.

Other learners

These methods are not from a single model family and use a variety of approaches. For
example, GaussianProcesses, also known as Kriging, is a regression method that inter-
polates between known data points (from the training set) using a Gaussian process; while
Logistic and SimpleLogistic implement logistic regression, which – despite its name –
is a classification method that fits a logistic function of the weighted sum of feature values.

7.3.3 Model variations

For the following models, the stated parameter variations were investigated:

• AdaBoostM1 and Bagging: five different models were used within these ensem-
ble learners: DecisionStump (the default ensemble model within AdaBoostM1),
NaiveBayes, LogisticRegression, OneR, and REPTree (the default ensemble model
within Bagging).

• IBk: the following number of nearest neighbours were used: 1 (the default), 5, 10, 50,
and 100.

• J48 and J48graft: both pruned and unpruned trees were trained.

• LibSVM: for classification the default C-SVC training algorithm was used, while for
regression both the epsilon-SVR and nu-SVR algorithms were used. Four different
kernels were used (linear, polynomial, radial basis function, and sigmoid) for each
training algorithm.

7.4 Feature construction and selection

It is vital that a machine learning model is provided with features as inputs that are predictive
of the target output for each training and testing example. Some features can be informative
and will relate to the targets while others may be uninformative, with no relationship to the
targets, or redundant, with values that are strongly or perfectly correlated with the values of
other features. If there are too few features used, important information may be missed that
is necessary to make good predictions. Conversely, too many features can lead to overfitting,
where a model becomes biased towards the examples in the training set and thus generalises

7.4 Feature construction and selection 155

poorly (when this happens, the model can accurately predict the targets values of training
examples but performs poorly when applied to test examples). Furthermore, the number of
features used will also affect the time and space required to train a model.

When machine learning is used to construct algorithm selectors, the features represent
characteristics of the problems the algorithms are being applied to, which relate to a power
system’s state when selecting algorithms for power flow management. In this context, it is
important that the features are predictive of which algorithm should be selected (in the case
of direct selectors) or are predictive of individual algorithms’ performance with respect to
particular performance measures (in the case of EPM-based selectors).

In a review paper on the subject, Guyon and Elisseef [141] describe two main aspects
to consider with relation to features: (1) feature construction, and (2) feature selection.
These two aspects are discussed below, particularly in relation to using machine learning for
algorithm selection.

7.4.1 Feature construction

Feature construction is concerned with what characteristics of the training and testing exam-
ples are represented. Domain knowledge can be used to determine features that are relevant
to what the examples represent, so for algorithm selection for power flow management, the
features will relate to the state of the power systems that the algorithms are being selected
for. Feature construction also involves applying transformations to the base set of features.
Transformations include normalisation and scaling (so that all features vary across a similar
range, which many machine learning algorithms require), dimensionality reduction (where
a higher-dimensional feature space is transformed into a lower-dimensional space, using
techniques such as principal components analysis), and feature expansion (creating new
features by applying functions to existing features; for instance, constructing features that
are the products of other features). Although transformations do not increase the amount of
information available to the machine learning models – in fact, some transformations such as
dimensionality reduction may actually reduce the amount of information – they can reveal
important relationships in the data, and thus help improve predictive performance.

7.4.2 Feature selection

Feature selection is concerned with determining a subset of a set of potential features that
is either particularly predictive, particularly concise and therefore efficient in terms of the
time and space requirements for training and testing a model, or that reveal more information
about the process that generated the data.

156 Design and development of algorithm selectors for power flow management

Guyon and Elisseef [141] distinguish the following broad strategies for feature selection:

1. Filter methods: these are applied as a pre-processing step to determine potentially
relevant feature sets before training a machine learning model. Each feature is ranked
according to a particular criterion; for example, the correlation between a feature and
the targets, or information theoretic criteria such as the mutual information between a
feature and the targets. From the ranks, a subset of features can be determined.

The main advantage of filter methods is that they are applied before the model is
trained, so can therefore be efficient in terms of the time and space required for their
application. They are also agnostic of the machine learning model used. However,
filter methods may result in redundant features being selected (as relationships between
different features may not be recognised), and they may ignore features that may be
low ranking, and therefore appear irrelevant, but that could be highly predictive when
combined with other features.

2. Wrapper methods: this is where candidate feature subsets are ranked by using them
to train and then evaluate a machine learning model, which is treated as a black box.
This typically involves splitting the training set in two, with one part being used for
training a model, given a particular feature set, while the other part – the validation set
– is used for evaluating the predictive performance of the trained model.

The feature subsets are determined iteratively, either by adding features to a subset that
is initially empty, based on what predictive performance they add (forward selection),
or by removing features from a subset that initially contains all features, based on how
little they add to predictive performance (backward elimination). Which feature is
added or removed at each step is determined by a search algorithm, such as best-first,
branch-and-bound, or genetic algorithms.

The main advantages of wrapper methods are that they can help to avoid overfitting
and that they consider how each variable affects the predictive performance of the
trained model, thus better rejecting redundant features. The main disadvantage is the
“brute force” nature of training models to evaluate candidate feature subsets, which can
be expensive in terms of the time and space required.

3. Embedded methods: these are feature selection methods that form part of a particular
machine learning algorithm. For example, the J48 algorithm (WEKA’s implementation
of the C4.5 decision tree learning algorithm [13]) implicitly performs feature selection
when it considers what feature to split on for each decision node in the tree, based on
the information gain associated with each feature.

7.5 Training data volume 157

7.4.3 Features used in this work

For the power flow management algorithm selection application considered in this work, the
training and test examples represent particular states of the case study power systems. The
state space of each system consists of only a few variables, and these have been used as the
feature set for machine learning. In particular, the feature set for each system comprises:

• The output level of each generator. Where two or more generators are scaled by the
same factor (and therefore always have the same output level as each other), the output
level of only one of the generators is included in the feature set, preventing duplication.

• The load level (scaling factor).

For the 33 kV meshed distribution system, the feature set comprises three variables, while
the IEEE 14-bus system has five, and the IEEE 57-bus has four. These fixed feature sets are
consistently used for all the machine learning algorithms considered, in order to allow fair
comparison of the machine learning algorithms. The features, as they are the state variables,
fully characterise each state so no information is lost but the information is at a high-level,
which some models may not be able to use effectively. Although using a fixed feature
set may restrict the predictive performance of some model types that could perform better
with different features, performing feature selection for each machine learning algorithm
considered would be prohibitively slow, so is not performed in this work.

7.5 Training data volume

In any machine learning application, a model trained with too few training examples will have
high variance and will be unable to generalise well when applied to separate test examples.
Conversely, increasing the number of training examples may not result in an improvement
in prediction performance, and is associated with greater time and space requirements. The
amount of predictive performance that can be attained from a particular amount of training
data can be determined empirically; however, in the machine learning literature it is typical
to use ratios of training to test data of between 60:40 and 80:20.

The typical ratios of training to test data are achieved in this work by generating additional
power flow management algorithm performance data. This required testing the power flow
management algorithms on an extra 30,000 states for each case study system, over and above
the states described in Chapter 4.

For IEEE 14- and 57-bus systems, the additional states were generated randomly using
the same methods as described in Sections 4.4.2 and 4.5.2, for each system respectively.

158 Design and development of algorithm selectors for power flow management

T
ra

in
in

g
 (
C

)

1
0

,0
0
0

 s
ta

te
s

T
ra

in
in

g
 (
B

)

1
0

,0
0

0
 s

ta
te

s

T
ra

in
in

g
 (
A

)

1
0
,0

0
0

 s
ta

te
s

T
es

t

1
0

,0
0
0
 s

ta
te

s

T
ra

in
in

g
 (
C

)

1
0

,0
0

0
 s

ta
te

s

T
ra

in
in

g
 (
B

)

1
0

,0
0

0
 s

ta
te

s

T
ra

in
in

g
 (
A

)

1
0

,0
0

0
 s

ta
te

s

T
es

t

1
7

,5
2
0

 s
ta

te
s

T
ra

in
in

g
 (
C

)

1
0

,0
0

0
 s

ta
te

s

T
ra

in
in

g
 (
B

)

1
0

,0
0

0
 s

ta
te

s

T
ra

in
in

g
 (
A

)

1
0

,0
0

0
 s

ta
te

s

T
es

t

1
0

,0
0

0
 s

ta
te

s

3
3

 k
V

m
es

h
ed

IE
E

E

1
4

-b
u

s

IE
E

E

5
7

-b
u

s

5
0

N
u

m
b
er

 o
f

st
at

es
 (

x
1

0
3
)

4
0

3
0

2
0

1
0

0

Fi
g.

7.
7

A
m

ou
nt

of
po

w
er

flo
w

m
an

ag
em

en
ta

lg
or

ith
m

pe
rf

or
m

an
ce

da
ta

pe
rs

ys
te

m
fo

ru
se

tr
ai

ni
ng

an
d

te
st

in
g

al
go

ri
th

m
se

le
ct

or
s

7.6 Conclusions 159

For the 33 kV meshed distribution system, the year-long profile data which was used to
generate the states described in Section 4.3.2 had already been completely used to create
the previously used to test the power flow management algorithms, so an alternative method
was required to generate additional states. This was achieved by replacing each profile with
random variables drawn from independent uniform distributions, similar to how states were
generated for the other case study systems, which allowed for an arbitrary number of test
states to be generated.

A summary of the performances of the power flow management algorithms when applied
to the additional test states can be found in Appendix C.

Figure 7.7 illustrates, to scale, the amount of data available per case study system for
training and testing machine learning algorithms as algorithm selectors. For each system, the
data is divided into four splits:

1. The test split, being the states originally used for testing the power flow management
algorithms as described in Chapter 4. For the 33 kV meshed distribution system, this
split contains performance data for each power flow management on 17,520 states,
while for the other systems there are 10,000 states in the test split.

2. The training (A) split, comprising the first 10,000 states of the additional states tested
for each system.

3. The training (B) split, comprising the second 10,000 additional states.

4. The training (C) split, comprising the remaining 10,000 additional states.

In this work, each model has been trained with 30,000 states (all three training sets). For
the direct selectors with tuned weights, the (A) and (B) sets were used for training during
the tuning process, with the (C) sets used for validation. In addition, a small number of the
models were re-trained using different training set sizes in order to investigate the effect of
the training data volume on the performance of the selectors.

7.6 Conclusions

This chapter has summarised the different designs developed in this work for per-state
algorithm selectors for power flow management, namely direct and EPM-based selectors.
Specific design choices associated with each selector design have been described along
with the design options investigated in this work. Additionally, design choices that are
common across all of the designs have been described – the choice of machine learning

160 Design and development of algorithm selectors for power flow management

model, features used, and the volume of training data – along with the options for these that
have been investigated. The work in this chapter forms the basis for the next, Chapter 8,
where the performance of each selector design variant is tested and analysed.

Chapter 8

Performance of algorithm selectors for
power flow management

This chapter reports the results of implementing the direct and EPM-based selector designs
described in Chapter 7. The performance of the selectors is evaluated in order to determine
whether machine learning-based algorithm selectors can provide performance benefits for
power flow management, in support of research objective 2.

The chapter begins with Section 8.1 with a reminder of the selector designs and introduces
a number of conventions used throughout the chapter. An overview of the performance of all
the selectors created in this work is then provided, in Section 8.2, followed in Section 8.3 by
the performance of the most effective selectors created for each design variant.

The subsequent sections then analyse how particular aspects of the selectors’ designs, as
described in Chapter 7, affect the selectors’ performance. Section 8.4 examines whether the
objectives considered when creating the selectors are reflected in the selectors’ performance.
Section 8.5 examines whether selectors that consider larger set of algorithms are able to
exploit the potential performance that the larger set can provide, or whether considering
larger sets decreases the performance of the selectors. Section 8.6 compares the performance
of selectors created using different machine learning model types, in order to identify
which models are most promising for use in algorithm selectors for power systems control.
Section 8.7 concentrates on weighted direct selectors, and investigates whether tuning the
weights can provide performance benefits.

The chapter then closes with conclusions drawn about the performance of the selectors
created for power flow management.

162 Performance of algorithm selectors for power flow management

8.1 Preliminary remarks

This section provides a reminder of the selector design variants investigated (direct and EPM-
based, as described in Chapter 7) and introduces a number of presentational conventions that
are used throughout this chapter.

8.1.1 Direct selectors

Direct selectors (described in Section 7.1), use machine learning models to directly predict
which algorithm is likely to have the best performance. Three designs were investigated:

• Unweighted direct selectors (whose design is described in Section 7.1.1), which were
created using training examples without weights associated with them, so each training
example was treated with equal importance during training.

• Weighted direct selectors (Section 7.1.2), which were created using training examples
with weights. The weights were determined according to a particular single objective
(minimising either the number or energy of overloads) so that training examples that
provided a larger performance gain were prioritised.

• Tuned direct selectors (Section 7.1.3), which also had weighted training examples.
However, the weights represent two different objectives, with the balance between
the two objectives being set by a process of “tuning” the weights so a particular
performance of the resultant selector was obtained.

Note that in some of the tables and figures in this chapter, “unweighted” and “weighted”
are abbreviated to “unw.” and “wei.”, respectively, where concise presentation was necessary.

8.1.2 EPM-based selectors

EPM-based selectors use machine learning models to predict the performance of each
algorithm, with the algorithm with the best predicted performance then selected. Their design
is discussed in Section 7.2.

The EPM-based selectors in this work have either one or two sets of EPMs: the first set
(subsequently referred to as the “primary” EPMs) predicts the performance of the power flow
management algorithms with respect to either the number or energy of overloads; whereas
the optional second set of EPMs (subsequently referred to as “secondary” EPMs) predicts
curtailment performance.

8.2 Performance overview 163

Note that results are not presented for three of the machine learning model types listed in
Section 7.3.1. For ADTree and SGD, no selectors were produced as these are binary classifiers,
which could not be applied to predict either the number or energy of overloads as those
performance measures could take on more than two values. GaussianProcesses has poor
scalability to large numbers of training examples (O ∼ N3, where N is the number of training
examples [142]), which meant that training required more memory than was available on the
machine used for this work.

8.1.3 Machine learning model types

When discussing the different machine learning model types, the WEKA class names listed in
Section 7.3.1 are used. A number of the model types have several variants, and the following
nomenclature has been used:

• For the ensemble learners AdaBoostM1 and Bagging, the name of the model type used
within the ensembles is given in parentheses, for example: AdaBoostM1 (DecisionStump).

• For the nearest-neighbour IBk model, the number of nearest neighbours is given in
parentheses, for example: IBk (10 NN).

• For J48 and J48graft, whether pruning was used is indicated in parentheses.

• For the LibSVM variants, the training algorithm and kernel are indicated in parenthe-
ses, for example: LibSVM (nu-SVR, poly), where “poly” is an abbreviated form of
“polynomial” kernel.

• Although only a single variant of MultilayerPerceptron has been used in this work,
it is referred to as MLP where concise presentation was needed.

8.1.4 Objectives

The names of the objectives have been abbreviated where concise presentation was necessary
to: number of overloads (OL), overload energy (OE), and curtailment (CT).

8.2 Performance overview

This section provides an overview of the performance of the direct and EPM-based selectors
developed for the 33 kV meshed distribution system and the IEEE 14- and 57-bus systems.
The overview is provided via three means. Firstly, a table (Table 8.1) lists the numbers

164 Performance of algorithm selectors for power flow management

of selectors created for each selector design variant, the number of those that provide
performance benefits, and the number of selectors that provide statistically significant
performance benefits. The definition of “performance benefit” depends on the system and
the performance measure considered, and is explained in the subsequent text for each system.
Secondly, a series of plots (Figures 8.1 to 8.5) present the performance of the selectors
graphically, alongside the performance of the oracles and the power flow management
algorithms. The plots include general views (such as Figure 8.1a) of the entire performance
space, showing the performance of all the selectors, and detailed views (such as Figure 8.1b)
that show the performance of the selectors whose performance is close to the both the
oracles and the most effective power flow management algorithms. Thirdly, the text provides
an explanation of the table and figures, and draws out the key findings about the overall
performance of the selectors.

Whether a performance benefit is statistically significant is assessed using the same
method as used for comparing the performance of the power flow management algorithms
and the oracles in Chapters 4 and 5 (described in Section 4.1.3). The performance of a
selector is compared to that of the most effective algorithm for the performance measure
of interest using a paired t-test, yielding a p-value. The p-values of all the comparisons of
performance made for a particular system and performance measures of interest are then
collected together (they are treated as a single family of hypotheses for each system) and
the Benjamini-Hochberg procedure is applied to determine which represent statistically
significant results, while correcting for making multiple comparisons. As in the previous
chapters, a significance level of α = 0.05 is used. Note the families of hypotheses in this
chapter are considered to be separate to those in Chapters 4 and 5, as the hypotheses in those
chapters were comparing the performance of all the power flow management algorithms (and
oracles) for all performance measures, whereas the hypotheses in this chapter compare the
performance of algorithm selectors to that of one or two power flow management algorithms
for the performance measures of interest.

A summary of the overall performance of the direct and EPM-based selectors created for
the 33 kV meshed distribution system is shown in the first group of four rows of Table 8.1.
As described in Section 7.1.2, no (untuned) weighted selectors were created for this system
as two objectives needed to be considered by the selectors. For this system, the performance
benefit is when a selector applies less curtailment than PFM-OPF, while still removing all
overloads (the same as PFM-OPF). So, for example, the table shows (in the first row) that
1.47% of the unweighted direct selectors apply statistically significantly less curtailment than
PFM-OPF, while still removing all overloads.

8.2 Performance overview 165

Table 8.1 Summary of direct and EPM-based selectors giving performance benefits for each
system and overload objective

System &
(overload
objective)

Selector
design
variant

Total
selectors

Number of selectors
giving a performance

benefit

No. of selectors with
statistically significant
performance benefit

33 kV
meshed
(either)

Unw. direct 1628 24 (1.47%) 24 (1.47%)
Wei. direct - - - - -

Tuned direct 419 20 (4.77%) 15 (3.58%)
EPM-based 21,175 186 (0.88%) 143 (0.68%)

IEEE
14-bus

(number)

Unw. direct 2144 892 (41.60%) 738 (34.42%)
Wei. direct 530 298 (56.23%) 196 (36.98%)

Tuned direct 526 282 (53.61%) 195 (37.07%)
EPM-based 21,175 5896 (27.84%) 2887 (13.63%)

IEEE
14-bus

(energy)

Unw. direct 2144 612 (28.54%) 402 (18.75%)
Wei. direct 530 222 (41.89%) 181 (34.15%)

Tuned direct 526 216 (41.06%) 168 (31.94%)
EPM-based 21,175 5316 (25.11%) 3165 (14.95%)

IEEE
57-bus

(number)

Unw. direct 1288 1040 (80.75%) 1009 (78.34%)
Wei. direct 301 165 (54.82%) 163 (54.15%)

Tuned direct 292 159 (54.45%) 157 (53.77%)
EPM-based 12,705 6443 (50.71%) 6301 (49.59%)

IEEE
57-bus

(energy)

Unw. direct 1288 298 (23.14%) 172 (13.35%)
Wei. direct 301 38 (12.62%) 27 (8.97%)

Tuned direct 292 35 (11.99%) 26 (8.90%)
EPM-based 12,705 1453 (11.44%) 1248 (9.82%)

166 Performance of algorithm selectors for power flow management

Figure 8.1 plots the performance of every selector created for the 33 kV meshed distri-
bution system, in terms of the number of overloads and the curtailment applied. The figure
shows that some of the selectors always select the same algorithm, which is shown by the
markers indicating the performance of selector overlapping with the marker of one of the
power flow management algorithms. However, numerous markers of selectors’ performance
do not overlap the markers of the algorithms’ performance, which shows that those selectors
are selecting at least two different algorithms for a number of states.

For the IEEE 14-bus system, the definition of “performance benefit” depends on which
overload objective is considered. If minimising the number of overloads is considered (the
second group of four rows in Table 8.1) then a selector delivers a performance benefit if it
leaves fewer overloads than PFM-OPF. If minimising overload energy is considered (the
third group of rows in Table 8.1) then there is a performance benefit if a selector leads to
lower overload energy than PFSF-TMA. The performance of the selectors created for the
IEEE 14-bus system is shown graphically in Figure 8.2, in terms of the number of overloads
and the amount of curtailment, and in Figure 8.3, in terms of overload energy and curtailment.

For the IEEE 57-bus system, the same definitions of “performance benefit” are used
as for the IEEE 14-bus system, however, the comparisons for both overload objectives are
made relative to the performance of PFM-OPF. The fourth and fifth groups of four rows in
Table 8.1 provide a summary of the selectors created for this system, according to the overload
performance measure considered. The performance of the selectors for the IEEE 57-bus
system is shown graphically in Figures 8.4 and 8.5 for the number and energy of overloads,
respectively, against the amount of curtailment applied.

The results summarised in Table 8.1 show that each of the selector design variants
considered is able to produce selectors that offer statistically significant performance benefits
for each of the case study systems. There are variations in the proportion of selectors that give
a performance benefit across the different systems, design variants and overload objectives
considered. For example, for the 33 kV meshed distribution system, relatively few selectors
provide performance benefits, which is likely due to the curtailment performance benefit also
requiring algorithms to be selected that remove all overloads. Furthermore, for the IEEE 14-
and 57-bus systems, each selector design variant is less likely to produce a selector that offers
a performance benefit for overload energy, than for the number of overloads.

8.3 Most effective selectors

The previous section provided an overview of the performance of all the selectors created for
each system, whereas this section concentrates only on the most effective selectors produced

8.3 Most effective selectors 167

0 2000 4000 6000 8000 10000 12000 14000
Number of overloads [count]

0

10000

20000

30000

40000

50000

60000

70000

80000

C
ur

ta
ilm

en
t [

M
W

h]

Baseline
PFM-CSP
PFM-OPF
PFSF-Egal
PFSF-TMA
PFSF-LP
Oracle 1
Oracle 2
Unweighted direct
Tuned direct
EPM-based selectors

(a) View showing all selectors, power flow management algorithms and oracles

0 5 10 15 20
Number of overloads [count]

39800

39900

40000

40100

40200

40300

40400

C
ur

ta
ilm

en
t [

M
W

h]

(b) Detailed view, including selectors that remove all overloads with less curtailment than PFM-OPF

Fig. 8.1 Performance of the direct and EPM-based selectors for the 33 kV meshed distribution
system, with respect to the number of overloads and the amount of curtailment

168 Performance of algorithm selectors for power flow management

0 1000 2000 3000 4000 5000 6000
Number of overloads [count]

0

10000

20000

30000

40000

50000

60000

C
ur

ta
ilm

en
t [

M
W

h]

Baseline
PFM-CSP
PFM-OPF
Oracle 1
Unweighted direct
Weighted direct

PFSF-Egal
PFSF-TMA
PFSF-LP
Oracle 2
Tuned direct
EPM-based selectors

(a) View showing all selectors, power flow management algorithms and oracles

0 20 40 60 80
Number of overloads [count]

20000

30000

40000

50000

60000

C
ur

ta
ilm

en
t [

M
W

h]

(b) Detailed view, including selectors that provide a performance benefit with respect to minimising
the number of overloads

Fig. 8.2 Performance of the direct and EPM-based selectors for the IEEE 14-bus system,
with respect to the number of overloads and the amount of curtailment

8.3 Most effective selectors 169

0 2000 4000 6000 8000 10000
Overload energy [MVAh]

0

10000

20000

30000

40000

50000

60000

C
ur

ta
ilm

en
t [

M
W

h]

Baseline
PFM-CSP
PFM-OPF
Oracle 1
Unweighted selectors
Weighted selectors

PFSF-Egal
PFSF-TMA
PFSF-LP
Oracle 2
Tuned selectors
EPM-based selectors

(a) View showing all selectors, power flow management algorithms and oracles

0.0 0.5 1.0 1.5 2.0
Overload energy [MVAh]

20000

30000

40000

50000

60000

C
ur

ta
ilm

en
t [

M
W

h]

(b) Detailed view, including selectors that provide a performance benefit with respect to minimising
overload energy

Fig. 8.3 Performance of the direct and EPM-based selectors for the IEEE 14-bus system,
with respect to overload energy and the amount of curtailment

170 Performance of algorithm selectors for power flow management

0 5000 10000 15000 20000 25000
Number of overloads [count]

0

200

400

600

800

1000

C
ur

ta
ilm

en
t [

M
W

h]
 (
×1

03
)

Baseline
PFM-CSP
PFM-OPF
Oracle 1
Unweighted direct
Weighted direct

PFSF-Egal
PFSF-TMA
PFSF-LP
Oracle 2
Tuned direct
EPM-based selectors

(a) View showing all selectors, power flow management algorithms and oracles

800 900 1000 1100 1200 1300 1400
Number of overloads [count]

750

800

850

900

950

1000

C
ur

ta
ilm

en
t [

M
W

h]
 (
×1

03
)

(b) Detailed view, including selectors that provide a performance benefit with respect to minimising
the number of overloads, and thus approach the performance of the oracles

Fig. 8.4 Performance of the direct and EPM-based selectors for the IEEE 57-bus system,
with respect to the number of overloads and the amount of curtailment

8.3 Most effective selectors 171

0 100000 200000 300000 400000 500000 600000 700000
Overload energy [MVAh]

0

200

400

600

800

1000

C
ur

ta
ilm

en
t [

M
W

h]
 (
×1

03
)

Baseline
PFM-CSP
PFM-OPF
Oracle 1
Unweighted direct
Weighted direct

PFSF-Egal
PFSF-TMA
PFSF-LP
Oracle 2
Tuned direct
EPM-based selectors

(a) View showing all selectors, power flow management algorithms and oracles

1000 2000 3000 4000 5000
Overload energy [MVAh]

750

800

850

900

950

1000

C
ur

ta
ilm

en
t [

M
W

h]
 (
×1

03
)

(b) Detailed view, including the selectors, both
oracles and PFM-OPF

1000 1050 1100 1150 1200 1250
Overload energy [MVAh]

750

800

850

900

950

1000

C
ur

ta
ilm

en
t [

M
W

h]
 (
×1

03
)

(c) Detailed view, including the selectors, ora-
cle 2 and PFM-OPF

Fig. 8.5 Performance of the direct and EPM-based selectors for the IEEE 57-bus system,
with respect to the overload energy and the amount of curtailment

172 Performance of algorithm selectors for power flow management

for each design variant. This shows the extent of performance benefit that can be achieved
from algorithm selectors using the designs considered in this work.

Table 8.2 lists the performance of the most effective selectors produced by each of the
three direct selector design variants and for the EPM-based selectors. The table is subdivided
by system, and by the overload objective considered when determining which selector is
most effective. Each of the selectors shown is the most effective for that design variant with
respect to minimising the stated overload objective whilst also minimising curtailment. The
configurations of the selectors listed in Table 8.2 are described in Table 8.3 for the direct
selectors, and Table 8.4 for the EPM-based selectors. The configuration tables include the
model types, objectives sets, and algorithm sets used to create the selectors.

For the 33 kV meshed distribution system, the most effective selectors produced using all
three of the selector designs considered (selectors (1) to (3)) are able to provide a performance
benefit compared to PFM-OPF, in terms of minimising the number or energy of overloads,
whilst minimising curtailment. Comparing the differences in curtailment performance for
each of the selectors with PFM-OPF using paired t-tests yields p < 0.001. After applying the
Benjamini-Hochberg procedure, these p-values are found to represent statistically significant
differences in performance (note that for this system the p-value at the threshold between
significant and non-significant results was found to be 0.046984). However, the tuned direct
selector gives the larger performance benefit, and is able to close 51.04% of the curtailment
performance gap between PFM-OPF and the oracles, although the remaining performance
gap is still statistically significant (p < 0.001).

For the IEEE 14-bus system, the most effective selectors for all of the direct selector
design variants are able to remove all overloads, thus matching the performance of both
oracles with respect to the overload performance measures. The most effective EPM-based
selector leaves a single overload, although comparing its performance for the number (or the
energy) of overloads to either of the oracles using the paired t-test yields p = 0.3173. This
does not represent a statistically significant difference in performance (the threshold p-value
for this system after applying the Benjamini-Hochberg procedure was found to be 0.040743).
All of the most effective selectors apply more curtailment than PFM-OPF, PFSF-TMA, and
the two oracles.

For the IEEE 57-bus system, the most effective direct selectors with respect to minimising
the number of overloads remove the same number of overloads (771), and close 99.50%
of the performance gap between PFM-OPF and oracle 1. The most effective EPM-based
selector leaves only one additional overload compared with the most effective direct selectors.
Comparing the performance of each of the selectors and oracle 1 with respect to the number of
overloads using paired t-test yields p-values > 0.083, so the differences are not statistically

8.3 Most effective selectors 173

Table 8.2 Performance of the most effective power flow management algorithms, selectors
(direct and EPM-based) and oracles for each of the case study systems

System Overload
objective

Algorithm, selector or
oracle

Number of
overloads
[count]

Overload
energy

[MVAh]

Curtailment
[MWh]

33 kV
meshed

Number
or energy

PFM-OPF 0 0.00 40246.45
Selector (1) – unweighted 0 0.00 40243.50

Selector (2) – tuned 0 0.00 40058.93
Selector (3) – EPM-based 0 0.00 40114.12

Oracle 1 & 2 0 0.00 39879.06

IEEE
14-bus

Number

PFM-OPF 24 49.97 19544.04
Selector (4) – unweighted 0 0.00 23775.17
Selector (5) – weighted 0 0.00 24880.62

Selector (6) – tuned 0 0.00 24880.62
Selector (7) – EPM-based 1 < 0.01 42003.45

Oracle 1 0 0.00 19311.40

Energy

PFSF-TMA 60 1.57 21797.45
Selector (4) – unweighted 0 0.00 23775.17
Selector (5) – weighted 0 0.00 24880.62

Selector (6) – tuned 0 0.00 24880.62
Selector (7) – EPM-based 1 < 0.01 42003.45

Oracle 2 0 0.00 19311.40

IEEE
57-bus

Number

PFM-OPF 1367 1241.44 749899.56
Selector (8) – unweighted 771 1557.06 900733.95
Selector (9) – weighted 771 1920.04 917846.93
Selector (10) – tuned 771 1920.04 917846.93

Selector (11) – EPM-based 772 2432.60 926645.90
Oracle 1 768 4352.19 821087.30

Energy

PFM-OPF 1367 1241.44 749899.56
Selector (12) – unweighted 774 989.01 934569.31
Selector (13) – weighted 833 1008.38 834089.75

Selector (14) – tuned 799 1000.24 885244.98
Selector (15) – EPM-based 842 1011.69 836116.32

Oracle 2 769 985.14 826709.24

174 Performance of algorithm selectors for power flow management

Table 8.3 Configurations of the most effective direct selectors

System Ref Variant Model Objectives Algorithm set
33 kV
meshed

(1) Unw. LMT OL + CT PFM-CSP, PFM-OPF
(2) Tuned MLP OL + CT PFM-OPF, PFSF-TMA

IEEE
14-bus

(4) Unw. AdaBoostM1 (REPTree) OL PFM-CSP, PFM-OPF
(5) Wei. FT OE PFM-CSP, PFM-OPF
(6) Tuned FT OE + CT PFM-CSP, PFM-OPF

IEEE
57-bus

(8) Unw. MLP OL All algorithms
(9) Wei. MLP OL PFM-CSP, PFM-OPF
(10) Tuned MLP OL + CT PFM-CSP, PFM-OPF
(12) Unw. MLP OL + OE All algorithms
(13) Wei. IBk (10 NN) OE PFM-CSP, -OPF, PFSF-Egal
(14) Tuned AdaBoost (REPTree) OE + CT PFM-CSP, PFM-OPF

Table 8.4 Configurations of the most effective EPM-based selectors

System Ref. Primary EPM Secondary EPM Algorithm set
33 kV meshed (3) OL/OE: IBk (10 NN) CT: IBk (1 NN) PFM-OPF, PFSF-LP
IEEE 14-bus (7) OL: RBFRegressor – PFM-CSP, PFSF-Egal

IEEE 57-bus
(11) OL: RandomForest CT: IBk (1 NN) All algorithms
(15) OE: IBk (5 NN) – All algorithms

significant (the threshold p-value for this system was found to be 0.048739). Note that
selectors (9) and (10) are identical, as the tuned selector (10) has c2 = 0.

The performance of the selectors that are most effective at minimising overload energy
for the IEEE 57-bus system has more variation than for the selectors that are most effective at
minimising the number of overloads. The unweighted selector (12) gives the best performance
for overload energy, and closes 98.49% of the performance gap between PFM-OPF and
oracle 2. Although this is close to the performance of the oracle, a paired t-test comparing
the selector performance to that of oracle 2 yields a p-value < 0.001, so the performance
difference is statistically significant. The tuned selector (14) performs slightly worse than the
unweighted selector with respect to overload energy, followed by the weighted selector (13)
and the EPM-based selector (15). Each of the selectors also removes more overloads than
PFM-OPF, although with more curtailment applied.

Overall, the most effective direct selectors give better performance than the EPM-based
selectors, with a tuned direct selector being the most effective for the 33 kV meshed dis-
tribution system, and unweighted direct selectors being the most effective with respect to
both overload objectives on the other two case study systems. However, the performance
differences between the most effective direct and EPM-based selectors are minimal in some

8.4 Relationship between objectives and performance 175

O
L+

O
E

O
L+

C
T

O
L+

O
E+

C
T

O
E+

O
L+

C
T

O
E+

C
T

O
E+

O
L

O
L+

C
T

O
E+

C
T

O
L

O
L+

C
T

O
E+

C
T

O
E

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 se
le

ct
or

s

Unweighted Tuned EPM-based
Selector design variant and objective set

0.
00

%

2.
20

%

2.
20

%

2.
20

%

2.
20

%

0.
00

%

6.
73

%

0.
47

%

0.
00

%

0.
56

%

1.
04

%

0.
00

%

Fig. 8.6 Comparison of the proportion of effective selectors (for either overload objective)
produced per objective set for the 33 kV meshed distribution system

cases. For example, for the IEEE 14-bus system, there is no statistically significant difference
between the oracles and both the most effective direct and EPM-based selectors, with respect
to minimising the number or energy of overloads. Furthermore, for the IEEE 57-bus system
the most effective direct and EPM-based selectors differed by a single overload.

8.4 Relationship between objectives and performance

For all the selector design variants, different sets of objectives were considered when creating
selectors. This section examines if the objectives considered by the selectors is reflected
in their performance. This is achieved by comparing the proportion of effective selectors
produced by each objective set.

8.4.1 33 kV meshed distribution system

Figure 8.6 shows the proportion of “effective” selectors produced by each objective set
considered for the 33 kV meshed distribution system. No (untuned) weighted selectors were
created for this system, so only results for the unweighted and tuned direct selectors are
shown, along with results for the EPM-based selectors. For this system, “effective” selectors
are those that remove all overloads and do so with statistically significant less curtailment
than PFM-OPF.

As could be expected, only the selectors that have objective sets that consider minimis-
ing curtailment in addition to minimising overloads (number or energy) produce effective

176 Performance of algorithm selectors for power flow management

O
L

O
L+

O
E

O
L+

C
T

O
L+

O
E+

C
T

O
E+

O
L+

C
T

O
E+

C
T

O
E+

O
L

O
E

O
L

O
E

O
L+

C
T

O
E+

C
T

O
L

O
L+

C
T

O
E+

C
T

O
E

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 se
le

ct
or

s

Unweighted Weighted Tuned EPM-based
Selector design variant and objective set

68
.8

2%

69
.5

8%

0.
73

%

0.
73

%

0.
73

%

0.
73

%

69
.5

8%

69
.5

8%

47
.5

5%

26
.4

2% 47
.5

3%

26
.6

2%

13
.3

3%

12
.8

5%

15
.5

9%

16
.4

7%34
.9

8%

37
.2

6%

1.
47

%

1.
47

%

1.
47

%

1.
47

%

37
.2

6%

37
.2

6%

29
.8

1%

38
.4

9%

29
.6

6%

34
.2

2%

5.
98

%

12
.2

7%

22
.1

6%

25
.8

8%

Number of overloads Overload energy

Fig. 8.7 Comparison of the proportion of effective selectors (for each of the overload objec-
tives) produced per objective set for the IEEE 14-bus system

selectors for this system. For the unweighted selectors, the choice of overload objective
considered does not affect the likelihood of producing an effective selector; however, for
the tuned selectors, selectors that consider the number of overloads are more likely to be
effective, whereas for the EPM-based selectors, those that consider overload energy (in the
primary EPMs) are more likely to be effective.

8.4.2 IEEE 14-bus system

Figure 8.7 is similar to Figure 8.6, but examines the performance of all three direct selector
design variants and the EPM-based selectors created for the IEEE 14-bus system. For this
system, the “effective” selectors are those that either: leave statistically significantly fewer
overloads in comparison to PFM-OPF, or lead to statistically significantly less overload
energy in comparison to PFSF-TMA. The results presented in the figure are split by which
overload objective is used to determine the effectiveness of the selectors. For example, the
first pair of bars represent all the unweighted selectors created using minimisation of the
number of overloads as the sole objective during training. The first bar of the pair represents
the proportion of those selectors that were effective, if minimising the number of overloads
was considered as the first objective for determining effectiveness; whereas the second bar
represents the proportion of those selectors that were effective if minimising the overload
energy was considered first.

8.4 Relationship between objectives and performance 177

For the unweighted selectors shown in Figure 8.7, when curtailment is considered in
the objective set, then the proportion of effective selectors drops considerably. This is
potentially due to the training sets for these selectors lacking differentiation between training
examples where an algorithm should be selected for overload performance, and those where
the difference is only for curtailment. For the remaining objective sets that contain only
overload objectives, these have substantially more selectors that are effective. These objective
sets typically have twice the number of selectors that are effective with respect to the number
of overloads, than those that are effective with respect to overload energy, regardless of which
overload objective is considered first. When overload energy is considered in the objective
set, the proportion of selectors that are effective for that objective does increase, but there is
still a bias towards minimising the number of overloads.

The weighted and tuned selectors both consider only two sets of objectives, and produce
similar results. The objective sets that consider the number of overloads lead to a greater
proportion of selectors that are effective against that performance measure, rather than
being effective at minimising overload energy. Conversely, the objective sets that consider
overload energy lead to greater proportions of selectors that are effective at minimising the
energy, rather than the number, of overloads. This is contrary to the trends observed for
the unweighted selectors – that minimising the number of overloads consistently outweighs
minimising overload energy for the selectors that only consider overload objectives – and
suggests that the performance of the weighted selectors is more strongly dependent on the
overload objective considered when creating the selectors.

For the EPM-based selectors, which overload objective is considered by the selectors
is reflected in the proportion that are effective for each overload objective, similar to the
weighted and tuned selectors. When the selectors consider minimising the number of
overloads (in the primary EPMs), a greater proportion of selectors are effective for the
objective rather than for minimising overload energy. When the selectors consider minimising
the overload energy, then the inverse is true, as well as the proportion of effective selectors
increasing for both overload objectives.

8.4.3 IEEE 57-bus system

Figure 8.8 is similar to Figures 8.6 and 8.7, but shows results for all selector design variants
created for the IEEE 57-bus system. The “effective” selectors for this system are those
that can reduce either the number or energy of overloads compared with PFM-OPF. For
the unweighted selectors similar trends are observed to those seen for the IEEE 14-bus
system. Firstly, there is a reduction in the proportion of effective selectors when curtailment
is considered in the objective set, although the reduction is less dramatic than that seen

178 Performance of algorithm selectors for power flow management

O
L

O
L+

O
E

O
L+

C
T

O
L+

O
E+

C
T

O
E+

O
L+

C
T

O
E+

C
T

O
E+

O
L

O
E

O
L

O
E

O
L+

C
T

O
E+

C
T

O
L

O
L+

C
T

O
E+

C
T

O
E

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 se
le

ct
or

s

Unweighted Weighted Tuned EPM-based
Selector design variant and objective set

90
.6

8%

90
.0

6%

77
.6

4%

65
.2

2%

61
.4

9%

61
.4

9%

90
.0

6%

90
.0

6%

63
.5

8%

44
.6

7% 61
.9

0%

45
.5

2%

81
.9

9%

54
.3

9%

35
.2

9%

35
.2

9%

0.
62

% 18
.0

1%

0.
00

% 17
.3

9%

18
.0

1%

18
.0

1%

17
.3

9%

17
.3

9%

0.
00

% 18
.0

0%

0.
00

% 17
.9

3% 29
.1

2%

2.
56

%

26
.4

7%

26
.4

7%

Number of overloads Overload energy

Fig. 8.8 Comparison of the proportion of effective selectors (for each of the overload objec-
tives) produced per objective set for the IEEE 57-bus system

for the IEEE 14-bus system. Secondly, there is a bias towards minimising the number of
overloads, regardless of what overload objectives are considered. Despite this, a dependence
is observed between objective sets considering minimising overload energy and an increase
in the proportion of selectors that are effective for that objective. For instance, only 0.62% of
selectors that consider just the number overloads are effective with respect to minimising
overload energy; however, at least 17.39% of selectors created for each objective set that
considers overload energy are effective with respect to minimising overload energy.

For the weighted, tuned, and EPM-based selectors, there is a dependence between each
overload objective and the proportion of selectors that are effective against that objective,
similar to what was observed for the IEEE 14-bus system. This is particularly stark for the
weighted and tuned selectors, as none of the selectors that consider minimising the number
of overloads are effective for minimising the overload energy, while there are selectors that
consider minimising overload energy that are effective against that objective. However, for
all the selector design variants there is a bias towards producing more selectors that are
effective at minimising the number, rather than the energy, of overloads.

For the EPM-based selectors, the effect of considering curtailment – that is, using
secondary EPMs – depends on what overload objective is considered by the selector. For
the selectors that consider minimising the number of overloads, also considering curtailment
leads to a drop in the proportion of effective selectors, which is particularly severe for overload
energy performance. However, when the selectors consider overload energy, the proportion of

8.5 Effect of considering different algorithm sets 179

effective selectors is the same regardless of whether curtailment is also considered, suggesting
that the secondary EPMs have no effect for those selectors.

8.4.4 Summary

These results have shown that the performance of the selectors does depend on the objectives
considered when creating the selectors. For the 33 kV meshed distribution system, where
effective performance required the minimisation of overloads, only the selectors that consid-
ered minimising curtailment were effective. For the IEEE 14- and 57-bus systems, selectors
that considered minimising the number of overloads were more likely to be effective for that
objective, whereas if the selectors considered minimising overload energy then there was a
relative increase in the proportion of selector effective for that objective. However, there was
a general bias towards selectors that were effective at minimising the number of overloads.

8.5 Effect of considering different algorithm sets

For each of the case study systems, selectors have been created that consider different sets
of power flow management algorithms, with at least two different set sizes considered for
each system. As explained in Section 5.4, considering a larger set of algorithms for selection
compared with using a smaller set – where the smaller set is an exact sub-set of the larger
set – will yield either the same or improved performance, if the optimal selection decisions
are made. However, for machine learning-based selectors, the performance may decline if
larger sets of algorithms are considered, as the larger sets may make the machine learning
task more difficult and thus reduce the accuracy of the selectors produced.

8.5.1 Method

To investigate whether considering a larger set of algorithms leads to differences in selector
performance, the performance of selectors with different algorithm sets (which were other-
wise identical) were compared. Table 8.5 tabulates the results of these comparisons, which are
subdivided according to: the system, the algorithm sets compared (typically several smaller
sets were compared against a larger set containing all algorithms), the overload objective
considered when determining which selectors are the most effective, and the selector design
variant. The number of “configurations” is stated for each subdivision, which is the number
of selector designs that were identical (such as using the same model type and objective set)
apart from the algorithm sets considered. Some configurations have been omitted where
selectors could not be created for one or more of the algorithm sets.

180 Performance of algorithm selectors for power flow management

Table 8.5 Analysis of decline in selector performance when a larger set of power flow
management algorithms is considered

System Small
algorithm

sets

Large
algorithm

set

Overload
objective

Selector
design
variant

No. of
config-

urations

Configurations with
performance decline
from using large set

33 kV
meshed

Pairs All
Number

Unw. 316 176 (55.70%)
EPM 4235 3392 (80.09%)

Energy
Unw. 316 173 (54.75%)
EPM 4235 3392 (80.09%)

Pairs Trio
Number Tuned 105 40 (38.10%)
Energy Tuned 105 39 (37.14%)

Pairs &
Trio

All
Number Tuned 95 66 (69.47%)
Energy Tuned 95 66 (69.47%)

IEEE
14-bus

Pairs All

Number

Unw. 384 380 (98.96%)
Wei. 97 96 (98.97%)

Tuned 93 93 (100.00%)
EPM 4235 3988 (94.17%)

Energy

Unw. 384 376 (97.92%)
Wei. 97 96 (98.97%)

Tuned 93 92 (98.92%)
EPM 4235 4087 (96.51%)

IEEE
57-bus

Pair Trio

Number

Unw. 424 200 (47.17%)
Wei. 100 70 (70.00%)

Tuned 96 71 (73.96%)
EPM 4235 3367 (79.50%)

Energy

Unw. 424 165 (38.92%)
Wei. 100 59 (59.00%)

Tuned 96 67 (69.79%)
EPM 4235 3148 (74.33%)

Pair &
Trio

All

Number

Unw. 424 332 (78.30%)
Wei. 97 85 (87.63%)

Tuned 92 81 (88.04%)
EPM 4235 3507 (82.81%)

Energy

Unw. 424 323 (76.18%)
Wei. 97 74 (76.29%)

Tuned 92 75 (81.52%)
EPM 4235 3405 (80.40%)

8.5 Effect of considering different algorithm sets 181

The last columns in Table 8.5 state the result of the comparison of the selectors that use
different algorithm sets. To derive the values shown, the selectors from each configuration
that considered the smaller sets of algorithms were compared, and the most effective of
these determined, in terms of minimising the overload objective stated in the table, whilst
also minimising curtailment. For each configuration, the most effective selector (from the
selectors that considered the smaller algorithm sets) was then compared to the selector that
considered the larger set, and it was recorded whether the selector with the larger set led to a
decline in performance.

What constituted a “decline” in performance when going from the smaller to the larger
algorithm sets depended on the overload objective considered. If the number of overloads was
considered, the decline in performance was either: an increase in the number of overloads,
or an increase in the overload energy whilst the number of overloads stayed constant, or
increased curtailment with no change in overloads. Alternatively, if overload energy was
considered, the decline in performance was either: an increase in the overload energy, or an
increase in the number of overloads whilst the overload energy stayed constant, or increased
curtailment with no change in overloads.

For example, the first row in Table 8.5 (33 kV meshed → Pairs → All → Number →
Unw.) concerns the unweighted direct selectors created for the 33 kV meshed distribution
system, and whether otherwise identical selectors (the “configurations’) created for that
system experience a decline in performance if a larger set of algorithms is considered by the
selector during its creation. For this row, the decline in performance considers the number
of overloads as the primary objective. Here, the smaller sets of algorithms are two pairs:
PFM-OPF and PFSF-LP, or PFM-OPF and PFSF-TMA; while the larger set is the set of all
power flow management algorithms. The table shows that out of the 316 unweighted direct
selector configurations, 176 (55.70%) see a decline in performance when the selectors are
created considering the set of all algorithms, rather than either one of the pairs.

Different algorithm sets are considered by the selectors for each system, with not all the
same sets used by all the selector designs. The algorithm sets considered by each selector
design variant are detailed in the relevant sections in Chapter 7: Section 7.1.1 for unweighted
direct selectors, Section 7.1.2 for (untuned) weighted direct selectors, Section 7.1.3 for tuned
weighted direct selectors, and Section 7.2 for EPM-based selectors.

8.5.2 Summary of results

Table 8.5 shows that most of the selector configurations are more likely to see a decline in
performance if a larger set of algorithms is considered when creating the selectors. This is
particularly apparent for the IEEE 14-bus system, where almost all of the configurations see

182 Performance of algorithm selectors for power flow management

a performance decline when the set of all algorithms is considered for selection rather than
just a pair of algorithms.

For the IEEE 57-bus system, the proportion of configurations that see a performance
decline is less when the larger algorithm set is the trio, compared with when the larger set is
the set of all algorithms. For example, 47.17% of the unweighted selector combinations see
a performance decline (when the number of overloads is considered) when the selectors are
created using the trio, rather than the pair of algorithms. However, a larger proportion of the
same combinations (78.30%) see a performance decline when the larger set of all algorithms
is used to create the selectors. The same trend is seen for the other selector design variants
on the IEEE 57-bus system, and for the tuned selectors on the 33 kV meshed distribution
system, reinforcing the observation that the machine learning-based algorithm selectors tend
to perform worse when larger sets of algorithms are considered.

Although considering larger sets of algorithms often leads to a decline in selector perfor-
mance, that does not necessarily mean that effective selectors cannot be created that consider
larger algorithm sets. For example, the most effective unweighted direct and EPM-based
selectors for the IEEE 57-bus system (selectors (8) and (12) in Table 8.3, and selectors (11)
and (15) in Table 8.4, respectively) consider the full set of algorithms.

8.6 Effect of different model types

Several machine learning model types were used to create the selectors, as described in
Section 7.3.1. This section examines the performance of the selectors produced by each
model type, in order to ascertain which model types lead to effective selectors. Direct and
EPM-based selectors are treated in separate sections – Sections 8.6.1 and 8.6.2, respectively –
as how the models are used is different for each selector design.

8.6.1 Effect of model type on direct selectors

Figure 8.9 is a matrix summarising the performance of the selectors created using each
model type (listed in the columns) subdivided (in the rows) according to the system and
selector design variant used for creating the selectors, and the overload objective used when
comparing performance. Each cell in the matrix represents the selector created for a particular
system, model type and selector design variant, which is most effective at minimising either
the number or energy of overloads whilst also minimising curtailment. Each selector is
then compared with the most effective power flow management algorithm for the objective
considered, which is PFM-OPF for all comparisons except for minimising overload energy

8.6 Effect of different model types 183

O
ve

rl
oa

ds
de

cr
ea

se
C

ur
ta

ilm
en

td
ec

re
as

e
C

ur
ta

ilm
en

ti
nc

re
as

e
O

ve
rl

oa
ds

in
cr

ea
se

N
o

di
ff

er
en

ce
O

ve
rl

oa
ds

de
c.

(s
ta

t.
si

g.
)

C
ur

ta
ilm

en
td

ec
.(

st
at

.s
ig

.)
C

ur
ta

ilm
en

ti
nc

.(
st

at
.s

ig
.)

O
ve

rl
oa

ds
in

c.
(s

ta
t.

si
g.

)

AdaBoostM1(DecisionStump)
AdaBoostM1(Logistic)
AdaBoostM1(NaiveBayes)
AdaBoostM1(OneR)
AdaBoostM1(REPTree)
ADTree
Bagging(DecisionStump)
Bagging(Logistic)
Bagging(NaiveBayes)
Bagging(OneR)
Bagging(REPTree)
BayesNet
BFTree
ConjunctiveRule
DecisionStump
DecisionTable
DTNB
FT
HoeffdingTree
HyperPipes
IBk(1NN)
IBk(5NN)
IBk(10NN)
IBk(50NN)
IBk(100NN)
J48(pruned)
J48(unpruned)
J48graft(pruned)
J48graft(unpruned)
JRip
KStar
LADTree
LibSVM(C-SVC,linear)
LibSVM(C-SVC,poly)
LibSVM(C-SVC,radial)
LibSVM(C-SVC,sigmoid)
LMT
Logistic
LWL
MultilayerPerceptron
NaiveBayes
NBTree
OneR
PART
RBFClassifier
RBFNetwork
REPTree
RandomForest
Ridor
RandomTree
SGD
SimpleCart
SimpleLogistic
SMO
ZeroR

33kVmeshed

Either

U
nw

.
W

ei
.

Tu
ne

d

IEEE14-bus

Number

U
nw

.
W

ei
.

Tu
ne

d

Energy

U
nw

.
W

ei
.

Tu
ne

d

IEEE57-bus

Number

U
nw

.
W

ei
.

Tu
ne

d

Energy

U
nw

.
W

ei
.

Tu
ne

d

System

Overloadobjective

Selectortype

M
od

el
ty

pe

Fi
g.

8.
9

M
at

ri
x

co
m

pa
ri

ng
th

e
pe

rf
or

m
an

ce
of

th
e

m
os

te
ff

ec
tiv

e
se

le
ct

or
s

cr
ea

te
d

by
ea

ch
m

ac
hi

ne
le

ar
ni

ng
m

od
el

ty
pe

fo
r

ea
ch

sy
st

em
an

d
ov

er
lo

ad
ob

je
ct

iv
e

184 Performance of algorithm selectors for power flow management

for the IEEE 14-bus system, where PFSF-TMA is used for the comparisons as it is the most
effective algorithm for that objective.

The colours of the cells are used to indicate the results of the comparison between the
most effective selector and the most effective algorithm. Dark green (�) indicates that
the selector gives a performance benefit in terms of reducing the number or energy of
overloads in comparison to the most effective algorithm, and that the difference is statistically
significant. Light green (�) similarly represents a reduction in the number or energy of
overloads, but that the difference to the most effective algorithm is not statistically significant.
Dark blue (�) indicates that a selector provides a performance benefit by applying less
curtailment than the most effective algorithm whilst giving the same overload performance
as the most effective selector, and with the difference in the amount of curtailment applied
being statistically significant. Light blue (�) is similar, but indicates combinations where
the reduction in curtailment is not statistically significant. Grey (�) indicates a selector
that performs the same as the most effective algorithm, so therefore does not provide any
performance benefit. Dark orange (�) indicates a selector that applies more curtailment
than the most effective algorithm, but that gives the same overload performance, with the
difference in the curtailment applied being statistically significant. Light orange (�) is similar,
but where the difference is not statistically significant. Dark red (�) indicates selectors that
result in an increase in the number or energy of overloads, where the difference to the most
effective algorithm is statistically significant. Light red (�) indicates selectors that incur
more overloads or overload energy, but where the difference to the most effective algorithm
is not statistically significant. A blank cell indicates that no selectors were created for a
system using a particular model and selector design variant.

As an example of how to interpret the matrix, consider the column for the model type
LADTree. The cell in the first row of that column represents the most effective unweighted
selector created using LADTree for the 33 kV meshed distribution system, with respect to
minimising the number of overloads whilst also minimising curtailment. This selector has
been compared to PFM-OPF, and, as indicated by the dark blue colour (�), the selector is
able to produce a statistically significant reduction in curtailment, whilst achieving the same
overload performance as PFM-OPF. The third cell down also represents a most effective
selector for the 33 kV meshed distribution system, with respect to minimising the number
of overloads whilst minimising curtailment, but the selector in this case – a tuned selector –
just provides the same performance as PFM-OPF, indicated by the grey colour (�). Moving
down to the tenth row, the cell there represents the most effective unweighted selector created
using LADTree for the IEEE 14-bus system, with respect to minimising the overload energy
whilst also minimising curtailment. This selector has been compared to PFSF-TMA, and,

8.6 Effect of different model types 185

as indicated by the dark green colour (�), the selector is able to reduce the overload energy
compared to PFSF-TMA by a statistically significant amount. The next cell down uses the
same objectives, but represents the most effective weighted selector created using LADTree

for the IEEE 14-bus system. This particular selector, as indicated by the dark red colour (�),
results in statistically significantly more overload energy remaining than PFSF-TMA.

For the 33 kV meshed distribution system, only unweighted and tuned selectors were
created, as two objectives needed to be considered but (untuned) weighted selectors were
limited to consider one objective only (as described in Section 7.1.2). The majority of the
model types produce most effective unweighted selectors that just select PFM-OPF for all
states, so therefore give no performance gain for the 33 kV meshed distribution system. There
are, however, 6 model types (all of them tree learners) that can offer a performance benefit
when used to create unweighted selectors, in terms of reducing the amount of curtailment (by
a statistically significant amount) compared to PFM-OPF while still achieving zero overloads.
A larger number of model types (10) are able to produce tuned selectors that provide a
statistically significant performance benefit.

With the exception of ZeroR, all the model types can create unweighted selectors for
the IEEE 14-bus system that leave statistically significantly fewer overloads. The same
model types also reduce the overload energy left by the most effective unweighted selectors,
although for 7 of these the performance difference to PFSF-TMA is not statistically significant.
Most of the model types also create weighted and tuned selectors that provide statistically
significant performance benefits: 41 with respect to minimising the number of overloads, and
40 with respect to minimising overload energy.

Most model types (51 of the 55) can produce unweighted selectors for the IEEE 57-bus
system that are able to reduce the number of overloads by a statistically significant amount
compared to PFM-OPF, although there are fewer (20) that can reduce overload energy by
a statistically significant amount. Similarly, for the weighted and tuned selectors, fewer
model types produce selectors that provide a statistically significant performance benefit with
respect to overload energy (20), that for the number of overloads (40).

8.6.2 Effect of model type on EPM-based selectors

The EPM-based selectors developed in this work contain up to two model types, one used
for the primary EPMs and the other for the secondary EPMs (sometimes omitted). If
selectors are looked at in isolation, it is difficult to determine which of the model types
has the most influence on the performance of the selector. However, by comparing the
performance of selectors that have the same primary EPMs, or the same secondary EPMs,
patterns in performance can be observed that help illustrate which model types lead to better

186 Performance of algorithm selectors for power flow management

performance. In the following section, the performance of the most effective selectors for
each combination of primary and secondary model type is visualised in order to reveal any
patterns in performance.

33 kV meshed distribution system

Figure 8.10 is a matrix showing all combinations of model types used for creating EPM-based
selectors for the 33 kV meshed distribution system. Each combination comprises a model
type used for the primary EPM (either the number or energy of overloads – listed in the
columns in the matrix) and those used for the secondary EPMs (for curtailment – listed in
the rows), including where no secondary EPM is used (the first row). The performance of the
most effective selector produced by each combination – in terms of minimising the number
of overloads, whilst also minimising curtailment – is compared with the performance of
PFM-OPF, which is the most effective algorithm overall for the 33 kV meshed distribution
system and can remove all overloads. This is similar to the process used to create the model
type comparison matrix for the direct selectors (Figure 8.9), and the same colours are used to
indicate the results of the comparisons. In addition to showing a performance comparison for
each combination, for each model type used for primary EPMs, a comparison of the most
effective selector drawn from all combinations involving that model type is provided at the
end of the columns. Similarly, a summary for each of the model types used for secondary
EPMs is provided at the end of the rows.

As an example of how to interpret the matrix, taking the fifth column across (AdaBoostM1
(REPTree)), it can be seen that when that model type is used solely as a primary EPM to
predict the number or energy of overloads (first row), the combination is coloured grey (�),
as the most effective of the selectors that are produced for this combination gives the same
performance as PFM-OPF. Going down to the third row, where DecisionStump is also used
to predict curtailment performance, the combination is coloured light blue (�), as the most
effective selector produced does give improved performance compared with PFM-OPF, in
terms of reducing the curtailment applied, but this performance difference is not statistically
significant. Moving down to near the middle of the rows, where LibSVM (nu-SVR, poly)
is used to predict curtailment performance, the combination is coloured dark blue (�) to
indicate that the most effective selector produced for this combination applies less curtailment
than PFM-OPF, and that the difference in performance is statistically significant.

The combinations that only consider a single objective (the first row) lead to selectors that
either just select PFM-OPF, and thus match its performance, or achieve worse performance
than PFM-OPF, such as most of the LibSVM variants, M5P, and M5Rules. When these single-
objective selectors are extended to include EPMs to allow minimising curtailment to also be

8.6 Effect of different model types 187

O
ve

rl
oa

ds
de

cr
ea

se
C

ur
ta

ilm
en

td
ec

re
as

e
C

ur
ta

ilm
en

ti
nc

re
as

e
O

ve
rl

oa
ds

in
cr

ea
se

N
o

di
ff

er
en

ce
O

ve
rl

oa
ds

de
c.

(s
ta

t.
si

g.
)

C
ur

ta
ilm

en
td

ec
.(

st
at

.s
ig

.)
C

ur
ta

ilm
en

ti
nc

.(
st

at
.s

ig
.)

O
ve

rl
oa

ds
in

c.
(s

ta
t.

si
g.

)

AdaBoostM1(DecisionStump)
AdaBoostM1(Logistic)
AdaBoostM1(NaiveBayes)
AdaBoostM1(OneR)
AdaBoostM1(REPTree)
Bagging(DecisionStump)
Bagging(Logistic)
Bagging(NaiveBayes)
Bagging(OneR)
Bagging(REPTree)
BayesNet
BFTree
ConjunctiveRule
DecisionStump
DecisionTable
DTNB
FT
HoeffdingTree
HyperPipes
IBk(1NN)
IBk(5NN)
IBk(10NN)
IBk(50NN)
IBk(100NN)
IsotonicRegression
J48(pruned)
J48(unpruned)
J48graft(pruned)
J48graft(unpruned)
JRip
KStar
LADTree
LeastMedSq
LibSVM(C-SVC,linear)
LibSVM(C-SVC,poly)
LibSVM(C-SVC,radial)
LibSVM(C-SVC,sigmoid)
LibSVM(epsilon-SVR,linear)
LibSVM(epsilon-SVR,poly)
LibSVM(epsilon-SVR,radial)
LibSVM(epsilon-SVR,sigmoid)
LibSVM(nu-SVR,linear)
LibSVM(nu-SVR,poly)
LibSVM(nu-SVR,radial)
LibSVM(nu-SVR,sigmoid)
LinearRegression
LMT
Logistic
LWL
M5P
M5Rules
MultilayerPerceptron
MLPRegressor
NaiveBayes
NBTree
OneR
PaceRegression
PART
RBFClassifier
RBFNetwork
RBFRegressor
REPTree
RandomForest
Ridor
RandomTree
SimpleCart
SimpleLinearRegression
SimpleLogistic
SMO
SMOreg
ZeroR

Z
e
r
o
R

S
M
O
r
e
g

S
i
m
p
l
e
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

R
a
n
d
o
m
T
r
e
e

R
a
n
d
o
m
F
o
r
e
s
t

R
E
P
T
r
e
e

R
B
F
R
e
g
r
e
s
s
o
r

R
B
F
N
e
t
w
o
r
k

P
a
c
e
R
e
g
r
e
s
s
i
o
n

M
L
P
R
e
g
r
e
s
s
o
r

M
u
l
t
i
l
a
y
e
r
P
e
r
c
e
p
t
r
o
n

M
5
R
u
l
e
s

M
5
P

L
W
L

L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

L
i
b
S
V
M

(n
u-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(n
u-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(n
u-

SV
R

,p
ol

y)
L
i
b
S
V
M

(n
u-

SV
R

,l
in

ea
r)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,p
ol

y)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,l
in

ea
r)

L
e
a
s
t
M
e
d
S
q

K
S
t
a
r

I
s
o
t
o
n
i
c
R
e
g
r
e
s
s
i
o
n

I
B
k

(1
00

N
N

)
I
B
k

(5
0

N
N

)
I
B
k

(1
0

N
N

)
I
B
k

(5
N

N
)

I
B
k

(1
N

N
)

D
e
c
i
s
i
o
n
T
a
b
l
e

D
e
c
i
s
i
o
n
S
t
u
m
p

C
o
n
j
u
n
c
t
i
v
e
R
u
l
e

N
o

se
co

nd
ar

y
E

PM

Pr
im

ar
y

E
PM

m
od

el
ty

pe

SecondaryEPMmodeltype

Fi
g.

8.
10

M
at

ri
x

co
m

pa
ri

ng
th

e
pe

rf
or

m
an

ce
of

th
e

m
os

te
ff

ec
tiv

e
se

le
ct

or
s

cr
ea

te
d

by
ea

ch
co

m
bi

na
tio

n
of

pr
im

ar
y

an
d

se
co

nd
ar

y
E

PM
m

od
el

ty
pe

s
to

PF
M

-O
PF

fo
rt

he
33

kV
m

es
he

d
di

st
ri

bu
tio

n
sy

st
em

188 Performance of algorithm selectors for power flow management

considered, then the performance of the selectors produced may improve or decline. In some
cases, such as for most of the LibSVM variants, the performance of the selectors does not
change, which suggests that EPMs in those selectors for the first (overload) objectives always
produce singleton selection sets, therefore no selection based on curtailment takes place.

The most effective selectors produced by the majority (1709, 68.77%) of the combinations
simply always select PFM-OPF, and therefore provide no performance benefit. The next
largest group, of 488 combinations (19.64%), produce selectors that incur some overloads,
with the difference in performance compared with PFM-OPF being statistically significant
for 428 (17.22%) of the combinations. The third largest group, of 227 combinations (9.13%),
have most effective selectors that remove all overloads but with more curtailment than PFM-
OPF, and for 201 (8.09%) combinations the difference is statistically significant. There are
61 (2.45%) combinations that produce selectors that can improve on the performance of
PFM-OPF, by reducing the amount of curtailment applied, with 40 (1.61%) providing a
difference that is statistically significant.

Of the 71 model types used for primary EPMs (the rows of the matrix), 14 of these
produce selectors that can give a statistically significant performance benefit. These in-
clude all the variants of IBk, with IBk (50 NN) appearing the most frequently, being in
10 combinations that give statistically significant performance benefits. Of the 35 model
types used for secondary EPMs (the columns), 15 result in combinations that provide a
statistically significant performance benefit. Out of these, LibSVM (nu-SVR, poly) appears
most frequently (in 8 combinations).

IEEE 14-bus system

Figure 8.11 shows all combinations of model types used for the IEEE 14-bus system. In this
matrix, the most effective selector for each combination is that which minimises the number
of overloads whilst also minimising curtailment. The performance of the most effective
selectors is compared with PFM-OPF, with the outcome indicated by the colours of each
combination in the figure (using the same colours as Figure 8.9).

The majority of combinations (1450, 58.35%) lead to selectors that remove more over-
loads than PFM-OPF, and for 865 (34.81%) combinations this performance improvement is
statistically significant. The next largest group, comprising 510 (20.52%) combinations, leave
the same number of overloads as PFM-OPF but with more curtailment. For 472 (18.99%) of
the combinations the increase in curtailment is statistically significant. 243 (9.78%) of the
combinations lead to an increase in the number of overloads, but none of these increases are
statistically significant.

8.6 Effect of different model types 189

O
ve

rl
oa

ds
de

cr
ea

se
C

ur
ta

ilm
en

td
ec

re
as

e
C

ur
ta

ilm
en

ti
nc

re
as

e
O

ve
rl

oa
ds

in
cr

ea
se

N
o

di
ff

er
en

ce
O

ve
rl

oa
ds

de
c.

(s
ta

t.
si

g.
)

C
ur

ta
ilm

en
td

ec
.(

st
at

.s
ig

.)
C

ur
ta

ilm
en

ti
nc

.(
st

at
.s

ig
.)

O
ve

rl
oa

ds
in

c.
(s

ta
t.

si
g.

)

AdaBoostM1(DecisionStump)
AdaBoostM1(Logistic)
AdaBoostM1(NaiveBayes)
AdaBoostM1(OneR)
AdaBoostM1(REPTree)
Bagging(DecisionStump)
Bagging(Logistic)
Bagging(NaiveBayes)
Bagging(OneR)
Bagging(REPTree)
BayesNet
BFTree
ConjunctiveRule
DecisionStump
DecisionTable
DTNB
FT
HoeffdingTree
HyperPipes
IBk(1NN)
IBk(5NN)
IBk(10NN)
IBk(50NN)
IBk(100NN)
IsotonicRegression
J48(pruned)
J48(unpruned)
J48graft(pruned)
J48graft(unpruned)
JRip
KStar
LADTree
LeastMedSq
LibSVM(C-SVC,linear)
LibSVM(C-SVC,poly)
LibSVM(C-SVC,radial)
LibSVM(C-SVC,sigmoid)
LibSVM(epsilon-SVR,linear)
LibSVM(epsilon-SVR,poly)
LibSVM(epsilon-SVR,radial)
LibSVM(epsilon-SVR,sigmoid)
LibSVM(nu-SVR,linear)
LibSVM(nu-SVR,poly)
LibSVM(nu-SVR,radial)
LibSVM(nu-SVR,sigmoid)
LinearRegression
LMT
Logistic
LWL
M5P
M5Rules
MultilayerPerceptron
MLPRegressor
NaiveBayes
NBTree
OneR
PaceRegression
PART
RBFClassifier
RBFNetwork
RBFRegressor
REPTree
RandomForest
Ridor
RandomTree
SimpleCart
SimpleLinearRegression
SimpleLogistic
SMO
SMOreg
ZeroR

Z
e
r
o
R

S
M
O
r
e
g

S
i
m
p
l
e
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

R
a
n
d
o
m
T
r
e
e

R
a
n
d
o
m
F
o
r
e
s
t

R
E
P
T
r
e
e

R
B
F
R
e
g
r
e
s
s
o
r

R
B
F
N
e
t
w
o
r
k

P
a
c
e
R
e
g
r
e
s
s
i
o
n

M
L
P
R
e
g
r
e
s
s
o
r

M
u
l
t
i
l
a
y
e
r
P
e
r
c
e
p
t
r
o
n

M
5
R
u
l
e
s

M
5
P

L
W
L

L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

L
i
b
S
V
M

(n
u-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(n
u-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(n
u-

SV
R

,p
ol

y)
L
i
b
S
V
M

(n
u-

SV
R

,l
in

ea
r)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,p
ol

y)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,l
in

ea
r)

L
e
a
s
t
M
e
d
S
q

K
S
t
a
r

I
s
o
t
o
n
i
c
R
e
g
r
e
s
s
i
o
n

I
B
k

(1
00

N
N

)
I
B
k

(5
0

N
N

)
I
B
k

(1
0

N
N

)
I
B
k

(5
N

N
)

I
B
k

(1
N

N
)

D
e
c
i
s
i
o
n
T
a
b
l
e

D
e
c
i
s
i
o
n
S
t
u
m
p

C
o
n
j
u
n
c
t
i
v
e
R
u
l
e

N
o

se
co

nd
ar

y
E

PM

Pr
im

ar
y

E
PM

m
od

el
ty

pe

SecondaryEPMmodeltype

Fi
g.

8.
11

M
at

rix
co

m
pa

rin
g

th
e

pe
rf

or
m

an
ce

of
th

e
m

os
te

ff
ec

tiv
e

se
le

ct
or

s
(f

or
m

in
im

is
in

g
th

e
nu

m
be

ro
fo

ve
rlo

ad
s

w
hi

ls
tm

in
im

is
in

g
cu

rt
ai

lm
en

t)
cr

ea
te

d
by

ea
ch

co
m

bi
na

tio
n

of
pr

im
ar

y
an

d
se

co
nd

ar
y

E
PM

m
od

el
ty

pe
s

to
PF

M
-O

PF
fo

rt
he

IE
E

E
14

-b
us

sy
st

em

190 Performance of algorithm selectors for power flow management

O
ve

rl
oa

ds
de

cr
ea

se
C

ur
ta

ilm
en

td
ec

re
as

e
C

ur
ta

ilm
en

ti
nc

re
as

e
O

ve
rl

oa
ds

in
cr

ea
se

N
o

di
ff

er
en

ce
O

ve
rl

oa
ds

de
c.

(s
ta

t.
si

g.
)

C
ur

ta
ilm

en
td

ec
.(

st
at

.s
ig

.)
C

ur
ta

ilm
en

ti
nc

.(
st

at
.s

ig
.)

O
ve

rl
oa

ds
in

c.
(s

ta
t.

si
g.

)

AdaBoostM1(DecisionStump)
AdaBoostM1(Logistic)
AdaBoostM1(NaiveBayes)
AdaBoostM1(OneR)
AdaBoostM1(REPTree)
Bagging(DecisionStump)
Bagging(Logistic)
Bagging(NaiveBayes)
Bagging(OneR)
Bagging(REPTree)
BayesNet
BFTree
ConjunctiveRule
DecisionStump
DecisionTable
DTNB
FT
HoeffdingTree
HyperPipes
IBk(1NN)
IBk(5NN)
IBk(10NN)
IBk(50NN)
IBk(100NN)
IsotonicRegression
J48(pruned)
J48(unpruned)
J48graft(pruned)
J48graft(unpruned)
JRip
KStar
LADTree
LeastMedSq
LibSVM(C-SVC,linear)
LibSVM(C-SVC,poly)
LibSVM(C-SVC,radial)
LibSVM(C-SVC,sigmoid)
LibSVM(epsilon-SVR,linear)
LibSVM(epsilon-SVR,poly)
LibSVM(epsilon-SVR,radial)
LibSVM(epsilon-SVR,sigmoid)
LibSVM(nu-SVR,linear)
LibSVM(nu-SVR,poly)
LibSVM(nu-SVR,radial)
LibSVM(nu-SVR,sigmoid)
LinearRegression
LMT
Logistic
LWL
M5P
M5Rules
MultilayerPerceptron
MLPRegressor
NaiveBayes
NBTree
OneR
PaceRegression
PART
RBFClassifier
RBFNetwork
RBFRegressor
REPTree
RandomForest
Ridor
RandomTree
SimpleCart
SimpleLinearRegression
SimpleLogistic
SMO
SMOreg
ZeroR

Z
e
r
o
R

S
M
O
r
e
g

S
i
m
p
l
e
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

R
a
n
d
o
m
T
r
e
e

R
a
n
d
o
m
F
o
r
e
s
t

R
E
P
T
r
e
e

R
B
F
R
e
g
r
e
s
s
o
r

R
B
F
N
e
t
w
o
r
k

P
a
c
e
R
e
g
r
e
s
s
i
o
n

M
L
P
R
e
g
r
e
s
s
o
r

M
u
l
t
i
l
a
y
e
r
P
e
r
c
e
p
t
r
o
n

M
5
R
u
l
e
s

M
5
P

L
W
L

L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

L
i
b
S
V
M

(n
u-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(n
u-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(n
u-

SV
R

,p
ol

y)
L
i
b
S
V
M

(n
u-

SV
R

,l
in

ea
r)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,p
ol

y)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,l
in

ea
r)

L
e
a
s
t
M
e
d
S
q

K
S
t
a
r

I
s
o
t
o
n
i
c
R
e
g
r
e
s
s
i
o
n

I
B
k

(1
00

N
N

)
I
B
k

(5
0

N
N

)
I
B
k

(1
0

N
N

)
I
B
k

(5
N

N
)

I
B
k

(1
N

N
)

D
e
c
i
s
i
o
n
T
a
b
l
e

D
e
c
i
s
i
o
n
S
t
u
m
p

C
o
n
j
u
n
c
t
i
v
e
R
u
l
e

N
o

se
co

nd
ar

y
E

PM

Pr
im

ar
y

E
PM

m
od

el
ty

pe

SecondaryEPMmodeltype

Fi
g.

8.
12

M
at

ri
x

co
m

pa
ri

ng
th

e
pe

rf
or

m
an

ce
of

th
e

m
os

t
ef

fe
ct

iv
e

se
le

ct
or

s
(f

or
m

in
im

is
in

g
ov

er
lo

ad
en

er
gy

w
hi

ls
t

m
in

im
is

in
g

cu
rt

ai
lm

en
t)

cr
ea

te
d

by
ea

ch
co

m
bi

na
tio

n
of

pr
im

ar
y

an
d

se
co

nd
ar

y
E

PM
m

od
el

ty
pe

s
to

PF
SF

-T
M

A
fo

rt
he

IE
E

E
14

-b
us

sy
st

em

8.6 Effect of different model types 191

The performance of the most effective selectors produced by particular model types
used to predict the number of overloads stays constant regardless of what model type is
then used to predict the amount of curtailment. For example, when LibSVM (epsilon-SVR,
linear) is used for the primary EPMs and is then combined with any other model type, the
most effective selectors all leave 10 overloads remaining. Because the performance does not
change, this suggests that within these selectors, the selection sets derived from the predicted
overload performance are singletons, and therefore no further selection based on the predicted
curtailment performance takes place. Note that, because the figure indicates the performance
of each combination relative to PFM-OPF, rather than the absolute overload and curtailment
performance values, it may mask where there are absolute difference in performance between
combinations. In other words, the figure shows if there is a performance difference to PFM-
OPF, but not how much a performance difference may be. For example, all the combinations
that use IBk (100 NN) as the primary EPM consistently remove statistically significantly
more overloads than PFM-OPF, however, the number of overloads removed varies: most of
the combinations leave 6 overloads, but when used alone or combined with LeastMedSq,
only 2 overloads are left.

Where the inclusion of secondary EPMs leads to changes in performance, this suggests
that the selections using the primary EPM can lead to non-singleton selection sets, so further
selection based on the predictions of the secondary EPM can take place. For most of the
model types used for the secondary EPMs, there are trends in how the EPM will affect
the performance of a combination. For example, for many of the combinations that use a
LibSVM variant as a secondary EPM, the number of overloads does not change, compared
to PFM-OPF, but there is a statistically significant increase the amount of curtailment
applied. In some cases – such as for most of the combinations that use MLPRegressor or
MultilayerPerceptron as secondary EPMs – the inclusion of a secondary EPM can lead
to improved overload performance, even though the secondary EPM is not used to predict
that performance measure. This suggests the primary EPM is not accurately predicting the
number or energy of overloads – otherwise, it would not produce non-singleton selection
sets containing algorithms with dissimilar overload performance – and that the algorithm
that leaves fewer overloads is predicted to have less curtailment by the secondary EPM –
either because it does have less curtailment, or the EPM is inaccurate and just predicts that
the curtailment is less.

Figure 8.12 is similar to Figure 8.11, but the most effective selectors for each combination
is that which minimises overload energy (rather than the number) whilst minimising curtail-
ment. Furthermore, the performance of the selectors is compared to PFSF-TMA, which is
the most effective algorithm when those objectives are considered.

192 Performance of algorithm selectors for power flow management

The majority (1910, 76.86%) of combinations can reduce the total overload energy com-
pared with PFSF-TMA, with a statistically significant difference for 1385 (55.73%) of the
combinations. This is a larger number of combinations than those that could provide a perfor-
mance benefit with respect to minimising the number of overloads. The next largest group in
Figure 8.12, of 334 (13.44%) combinations, produce increases in overload energy, although
there are only 74 (2.98%) combinations where the difference is statistically significant. The
most effective selectors produced by the remaining combinations give the same performance
as PFSF-TMA with respect to overload energy; 78 (3.14%) apply less curtailment, with the
difference being statistically significant for 51 (2.05%) combinations; 62 (2.49%) apply the
same amount of curtailment as PFSF-TMA; and 27 (1.09%) apply more curtailment, with
the difference being statistically significant for 25 (1.01%) combinations.

IEEE 57-bus system

Figure 8.13 shows all combinations of model types used for the IEEE 57-bus system. The
most effective selector for each combination, in terms of minimising the number of overloads
whilst also minimising curtailment, is compared to the performance of PFM-OPF. The
outcomes of these comparisons are indicated using the same colours as Figure 8.9.

As can be seen in Figure 8.13, the majority of combinations (1554, 62.54%) lead to
selectors that can remove more overloads than PFM-OPF, with the performance difference
being statistically significant for 1512 (60.85%) combinations. The next largest group,
of 861 (34.65%) combinations, lead to a worsening of overload performance, and for
838 (33.72%) combinations the performance difference compared with PFM-OPF is statisti-
cally significant. 67 (2.70%) of the combinations give the same performance as PFM-OPF,
while 3 (0.12%) lead to a (statistically significant) increase in the amount of curtailment
applied, whilst keeping the same overload performance. No combinations have most effective
selectors that leave the same number of overloads as PFM-OPF but with less curtailment.

Figure 8.14 compares the performance of the most effective selectors produced by each
combination for the IEEE 57-bus system, with respect to minimising overload energy whilst
also minimising curtailment, to the performance of PFM-OPF. In contrast to the matrix that
considered minimising the number of overloads as the first objective (Figure 8.13), far fewer
combinations (550, 22.13%) lead to selectors that provide a performance benefit with respect
to minimising overload energy, with the difference to PFM-OPF being statistically significant
for 467 (18.79%) combinations. In fact, the majority of combinations (1828, 73.56%) lead to
an increase in overload energy, with the difference to PFM-OPF being statistically significant
for 1742 (70.10%) combinations. The remaining 107 (4.31%) combinations achieve the
same performance as PFM-OPF.

8.6 Effect of different model types 193

O
ve

rl
oa

ds
de

cr
ea

se
C

ur
ta

ilm
en

td
ec

re
as

e
C

ur
ta

ilm
en

ti
nc

re
as

e
O

ve
rl

oa
ds

in
cr

ea
se

N
o

di
ff

er
en

ce
O

ve
rl

oa
ds

de
c.

(s
ta

t.
si

g.
)

C
ur

ta
ilm

en
td

ec
.(

st
at

.s
ig

.)
C

ur
ta

ilm
en

ti
nc

.(
st

at
.s

ig
.)

O
ve

rl
oa

ds
in

c.
(s

ta
t.

si
g.

)

AdaBoostM1(DecisionStump)
AdaBoostM1(Logistic)
AdaBoostM1(NaiveBayes)
AdaBoostM1(OneR)
AdaBoostM1(REPTree)
Bagging(DecisionStump)
Bagging(Logistic)
Bagging(NaiveBayes)
Bagging(OneR)
Bagging(REPTree)
BayesNet
BFTree
ConjunctiveRule
DecisionStump
DecisionTable
DTNB
FT
HoeffdingTree
HyperPipes
IBk(1NN)
IBk(5NN)
IBk(10NN)
IBk(50NN)
IBk(100NN)
IsotonicRegression
J48(pruned)
J48(unpruned)
J48graft(pruned)
J48graft(unpruned)
JRip
KStar
LADTree
LeastMedSq
LibSVM(C-SVC,linear)
LibSVM(C-SVC,poly)
LibSVM(C-SVC,radial)
LibSVM(C-SVC,sigmoid)
LibSVM(epsilon-SVR,linear)
LibSVM(epsilon-SVR,poly)
LibSVM(epsilon-SVR,radial)
LibSVM(epsilon-SVR,sigmoid)
LibSVM(nu-SVR,linear)
LibSVM(nu-SVR,poly)
LibSVM(nu-SVR,radial)
LibSVM(nu-SVR,sigmoid)
LinearRegression
LMT
Logistic
LWL
M5P
M5Rules
MultilayerPerceptron
MLPRegressor
NaiveBayes
NBTree
OneR
PaceRegression
PART
RBFClassifier
RBFNetwork
RBFRegressor
REPTree
RandomForest
Ridor
RandomTree
SimpleCart
SimpleLinearRegression
SimpleLogistic
SMO
SMOreg
ZeroR

Z
e
r
o
R

S
M
O
r
e
g

S
i
m
p
l
e
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

R
a
n
d
o
m
T
r
e
e

R
a
n
d
o
m
F
o
r
e
s
t

R
E
P
T
r
e
e

R
B
F
R
e
g
r
e
s
s
o
r

R
B
F
N
e
t
w
o
r
k

P
a
c
e
R
e
g
r
e
s
s
i
o
n

M
L
P
R
e
g
r
e
s
s
o
r

M
u
l
t
i
l
a
y
e
r
P
e
r
c
e
p
t
r
o
n

M
5
R
u
l
e
s

M
5
P

L
W
L

L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

L
i
b
S
V
M

(n
u-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(n
u-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(n
u-

SV
R

,p
ol

y)
L
i
b
S
V
M

(n
u-

SV
R

,l
in

ea
r)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,p
ol

y)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,l
in

ea
r)

L
e
a
s
t
M
e
d
S
q

K
S
t
a
r

I
s
o
t
o
n
i
c
R
e
g
r
e
s
s
i
o
n

I
B
k

(1
00

N
N

)
I
B
k

(5
0

N
N

)
I
B
k

(1
0

N
N

)
I
B
k

(5
N

N
)

I
B
k

(1
N

N
)

D
e
c
i
s
i
o
n
T
a
b
l
e

D
e
c
i
s
i
o
n
S
t
u
m
p

C
o
n
j
u
n
c
t
i
v
e
R
u
l
e

N
o

se
co

nd
ar

y
E

PM

Pr
im

ar
y

E
PM

m
od

el
ty

pe

SecondaryEPMmodeltype

Fi
g.

8.
13

M
at

rix
co

m
pa

rin
g

th
e

pe
rf

or
m

an
ce

of
th

e
m

os
te

ff
ec

tiv
e

se
le

ct
or

s
(f

or
m

in
im

is
in

g
th

e
nu

m
be

ro
fo

ve
rlo

ad
s

w
hi

ls
tm

in
im

is
in

g
cu

rt
ai

lm
en

t)
cr

ea
te

d
by

ea
ch

co
m

bi
na

tio
n

of
pr

im
ar

y
an

d
se

co
nd

ar
y

E
PM

m
od

el
ty

pe
s

to
PF

M
-O

PF
fo

rt
he

IE
E

E
57

-b
us

sy
st

em

194 Performance of algorithm selectors for power flow management

O
ve

rl
oa

ds
de

cr
ea

se
C

ur
ta

ilm
en

td
ec

re
as

e
C

ur
ta

ilm
en

ti
nc

re
as

e
O

ve
rl

oa
ds

in
cr

ea
se

N
o

di
ff

er
en

ce
O

ve
rl

oa
ds

de
c.

(s
ta

t.
si

g.
)

C
ur

ta
ilm

en
td

ec
.(

st
at

.s
ig

.)
C

ur
ta

ilm
en

ti
nc

.(
st

at
.s

ig
.)

O
ve

rl
oa

ds
in

c.
(s

ta
t.

si
g.

)

AdaBoostM1(DecisionStump)
AdaBoostM1(Logistic)
AdaBoostM1(NaiveBayes)
AdaBoostM1(OneR)
AdaBoostM1(REPTree)
Bagging(DecisionStump)
Bagging(Logistic)
Bagging(NaiveBayes)
Bagging(OneR)
Bagging(REPTree)
BayesNet
BFTree
ConjunctiveRule
DecisionStump
DecisionTable
DTNB
FT
HoeffdingTree
HyperPipes
IBk(1NN)
IBk(5NN)
IBk(10NN)
IBk(50NN)
IBk(100NN)
IsotonicRegression
J48(pruned)
J48(unpruned)
J48graft(pruned)
J48graft(unpruned)
JRip
KStar
LADTree
LeastMedSq
LibSVM(C-SVC,linear)
LibSVM(C-SVC,poly)
LibSVM(C-SVC,radial)
LibSVM(C-SVC,sigmoid)
LibSVM(epsilon-SVR,linear)
LibSVM(epsilon-SVR,poly)
LibSVM(epsilon-SVR,radial)
LibSVM(epsilon-SVR,sigmoid)
LibSVM(nu-SVR,linear)
LibSVM(nu-SVR,poly)
LibSVM(nu-SVR,radial)
LibSVM(nu-SVR,sigmoid)
LinearRegression
LMT
Logistic
LWL
M5P
M5Rules
MultilayerPerceptron
MLPRegressor
NaiveBayes
NBTree
OneR
PaceRegression
PART
RBFClassifier
RBFNetwork
RBFRegressor
REPTree
RandomForest
Ridor
RandomTree
SimpleCart
SimpleLinearRegression
SimpleLogistic
SMO
SMOreg
ZeroR

Z
e
r
o
R

S
M
O
r
e
g

S
i
m
p
l
e
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

R
a
n
d
o
m
T
r
e
e

R
a
n
d
o
m
F
o
r
e
s
t

R
E
P
T
r
e
e

R
B
F
R
e
g
r
e
s
s
o
r

R
B
F
N
e
t
w
o
r
k

P
a
c
e
R
e
g
r
e
s
s
i
o
n

M
L
P
R
e
g
r
e
s
s
o
r

M
u
l
t
i
l
a
y
e
r
P
e
r
c
e
p
t
r
o
n

M
5
R
u
l
e
s

M
5
P

L
W
L

L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n

L
i
b
S
V
M

(n
u-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(n
u-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(n
u-

SV
R

,p
ol

y)
L
i
b
S
V
M

(n
u-

SV
R

,l
in

ea
r)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,s
ig

m
oi

d)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,p
ol

y)
L
i
b
S
V
M

(e
ps

ilo
n-

SV
R

,l
in

ea
r)

L
e
a
s
t
M
e
d
S
q

K
S
t
a
r

I
s
o
t
o
n
i
c
R
e
g
r
e
s
s
i
o
n

I
B
k

(1
00

N
N

)
I
B
k

(5
0

N
N

)
I
B
k

(1
0

N
N

)
I
B
k

(5
N

N
)

I
B
k

(1
N

N
)

D
e
c
i
s
i
o
n
T
a
b
l
e

D
e
c
i
s
i
o
n
S
t
u
m
p

C
o
n
j
u
n
c
t
i
v
e
R
u
l
e

N
o

se
co

nd
ar

y
E

PM

Pr
im

ar
y

E
PM

m
od

el
ty

pe

SecondaryEPMmodeltype

Fi
g.

8.
14

M
at

ri
x

co
m

pa
ri

ng
th

e
pe

rf
or

m
an

ce
of

th
e

m
os

t
ef

fe
ct

iv
e

se
le

ct
or

s
(f

or
m

in
im

is
in

g
ov

er
lo

ad
en

er
gy

w
hi

ls
t

m
in

im
is

in
g

cu
rt

ai
lm

en
t)

cr
ea

te
d

by
ea

ch
co

m
bi

na
tio

n
of

pr
im

ar
y

an
d

se
co

nd
ar

y
E

PM
m

od
el

ty
pe

s
to

PF
M

-O
PF

fo
rt

he
IE

E
E

57
-b

us
sy

st
em

8.7 Effect of tuning on direct weighted selectors 195

8.6.3 Summary

The results presented in this section show that many model types are able to produce effective
selectors when used within one or more of the selector design variants for one or more case
study power systems. However, fewer model types lead to effective selectors in all of the
systems, and these are listed in Table 8.6. For each of the selector design variants listed, a
“Y” indicates that a model type produced selectors of that variant which were effective (for
either of the overload objectives) in each of the case study systems. No differentiation is
made between the three direct selector variants, but for the EPM-based selectors the table
differentiates between where a model type was used for the primary or secondary EPMs.

The model types listed in Table 8.6 are considered the most promising of those tested in
this work for creating algorithm selectors for power systems control, as they can produce
selectors for each of the systems that provide statistically significant performance benefits.
As well as producing effective selectors, some of the model types listed in the table also
produce the most effective selectors for each of the systems, as all of the model types used in
the most effective selectors (Section 8.3) are represented in the table.

It is important to note that the list of model types used in this work is not exhaustive:
there are other model types, and other variants of the model types used. Furthermore, no
optimisation of the models took place, as default parameters were used for all model types
(with a few exceptions, as described in Section 7.3.1), and the same set of features and
amount of training data were used for all models created for a particular case study system.
It is possible that other model types than those listed in Table 8.6 could produce effective
selectors, if different model types, parameters, features, or training set sizes were used.

8.7 Effect of tuning on direct weighted selectors

The results of the previous sections have generally shown that the tuned weighted selectors
give broadly similar performance to the (untuned) weighted selectors. Many of the tuned
selectors were found to have weight multipliers c2 that were zero, and were therefore identical
to weighted selectors with the same configuration. Therefore it was pertinent to investigate
whether tuning could provide performance benefits beyond the performance that could be
obtained by an (untuned) weighted selector of the same configuration.

Table 8.7 presents the results of comparing pairs of (untuned) weighted and tuned
selectors, that had otherwise identical configurations (such as the model type and algorithm
set). The values in the table count the number of selector pairs where the tuned selector
leads to a particular difference in performance. For example, the first row shows that for the
IEEE 14-bus system, there were 7 tuned selectors that could reduce the number of overloads

196 Performance of algorithm selectors for power flow management

Table 8.6 Model types that created effective selectors for every case study system

Model type
Selector design variant / usage

Direct EPM
(primary)

EPM
(secondary)

All

AdaBoostM1 (REPTree) Y Y – –
ADTree Y – – –
DecisionTable – Y Y –
IBk (1 NN) – Y Y –
IBk (5 NN) – Y Y –
IBk (10 NN) – Y Y –
IBk (50 NN) Y Y Y Y
IBk (100 NN) Y Y Y Y
J48 (pruned) Y Y – –
J48 (unpruned) Y Y – –
J48graft (pruned) Y Y – –
J48graft (unpruned) Y Y – –
KStar – – Y –
LADTree Y – – –
LibSVM (nu-SVR, poly) – – Y –
LinearRegression – – Y –
LMT Y – – –
M5P – – Y –
M5Rules – – Y –
MultilayerPerceptron Y – – –
PaceRegression – – Y –
RBFNetwork – – Y –
REPTree – Y Y –
RandomForest Y Y Y Y
RandomTree – Y – –

8.8 Conclusions 197

Table 8.7 Performance differences from applying tuning to (untuned) weighted selectors

System Overload
objective

Overload
change

Curtailment change
Decrease Same Increase

IEEE 14-bus

Number
Decrease 7 0 14

Same 23 394 8
Increase 60 0 20

Energy
Decrease 7 0 17

Same 20 394 7
Increase 63 0 18

IEEE 57-bus

Number
Decrease 12 0 19

Same 3 179 7
Increase 32 0 39

Energy
Decrease 15 0 20

Same 2 179 4
Increase 30 0 41

and the amount of curtailment compared with equivalent (untuned) weighted selectors; and
that there were 14 tuned selectors that could reduce the number of overloads compared with
equivalent weighted selectors, but with an increase in curtailment.

Table 8.7 shows that, at least for the IEEE 14- and 57-bus systems, the majority of the
tuned selectors just provide the same performance as equivalent weighted selectors. This
is not unexpected, however, performance gains come primarily from reducing the number
or energy of overloads, whereas the tuning process is focussed on optimising curtailment
performance. For both systems, if there is a performance change, it is most likely to be
a decline in performance, with an increase in either the number or energy of overloads.
Although it would seem that tuning tends to lead to no performance change, or a decline in
performance, there are some tuned selectors that provide a performance improvement, either
by reducing the number or energy of overloads, or by reducing the curtailment applied.

In addition to tuned selectors having zero weights, some were found to have arbitrarily
high weights after reaching the iteration limit within the tuning process. Essentially, those
selectors were insensitive to tuning, and several of the model types were found to be consis-
tently insensitive and therefore not recommended for tuning: HyperPipes, KStar, LADTree,
all the LibSVM variants, OneR, and SGD.

8.8 Conclusions

This chapter has shown that machine learning can be used to create effective algorithm
selectors for power flow management for each of the three case study systems, answering

198 Performance of algorithm selectors for power flow management

research objective 2 in the affirmative. Effective selectors have been created using both direct
and EPM-based designs that provide statistically significant performance benefits, and in
some cases, match the performances of the oracles. Although the most effective selectors
for each system were direct selectors, the performances provided by the most effective
EPM-based selectors were not dissimilar, so there is no strong evidence to suggest that either
design is most promising for power systems control applications.

The performance of the selectors created in this work is summarised below for each case
study system:

• For the 33 kV meshed distribution system, selectors were created that applied statisti-
cally significantly less curtailment than PFM-OPF, while still removing all overloads.
The most effective selector – a tuned selector using a MultilayerPerceptron model
– was able to close 51.04% of the performance gap between PFM-OPF and the oracles.

• For the IEEE 14-bus system, selectors were created that could provide a statistically sig-
nificant performance benefit by minimising the number and energy of overloads. Sev-
eral selectors could remove all overloads, thus matching the performance of the oracles.
The most effective selector – an unweighted selector using an AdaBoostM1 (REPTree)
model – applied the least curtailment whilst removing all overloads.

• For the IEEE 57-bus system, selectors were created that could provide a statistically
significant performance benefit by minimising either the number or energy of overloads.
The most effective selector at minimising the number of overloads – an unweighted
selector using a MultilayerPerceptron model – could close 99.50% of the perfor-
mance gap between PFM-OPF and oracle 1. In fact, the difference in the number of
overloads between that selector and oracle 1 was not statistically significant. The most
effective selector at minimising overload energy – another unweighted selector using
a MultilayerPerceptron model – was able to close 98.49% of the performance
gap between PFM-OPF and oracle 2 (although the performance difference was still
statistically significant).

This chapter has also revealed the effect of some aspects of the selectors’ designs:

• The objectives considered when creating the selectors were found to be reflected in
how likely the resultant selectors were to be effective against each of the performance
measures. For example, only the selectors that considered minimising curtailment were
effective for that performance measure on the 33 kV meshed distribution system. For
the IEEE 14- and 57-bus a dependence on the overload objective (number or energy)

8.8 Conclusions 199

and the performance against each objective was observed, although there was a general
bias towards minimising the number of overloads.

• Selectors that consider larger algorithm sets have worse performance than equivalent
selectors that consider smaller sets, likely due to the increased complexity of the learn-
ing task if more algorithms are considered. This suggests smaller sets of algorithms
should be considered when creating a selector.

• Which of the 74 machine learning model types and variants used in this work produced
effective selectors was found to vary, depending on the system, the selector design
variant, and the objectives used to assess performance. However, relatively few could
produce effective selectors for each of the systems, and those that could (listed in
Table 8.6) are considered the most promising for power systems control applications.

• Tuning the weights of weighted direct selectors delivered a performance benefit for
the 33 kV meshed distribution system, as the equivalent untuned selectors – whose
weights only represented overload performance – simply just selected PFM-OPF for
all states. Furthermore, the most effective tuned selector had better performance than
the most effective unweighted selector for that system. For the other two systems, the
performance of the tuned selectors was often found to match – and sometimes be worse
than – that of an equivalent untuned selector, although sometimes performance could
improve with tuning. For those two systems, the overload objectives were paramount,
so it is not an unexpected finding that the tuning process – which optimises the second
objective, which was minimising curtailment in this work – did not offer much of a
performance benefit for those systems. However, the example of tuning in this work
shows tuning can be beneficial, depending on the system and objectives considered.

Chapter 9

Discussion

This chapter considers a few points relevant to the implementation of algorithm selection
systems, based on the findings presented in previous chapters.

9.1 Implementation outline

The first step when considering implementing an algorithm selection system is to ascertain
what the potential performance benefit could be, which can be achieved using offline simu-
lations with several algorithms as described in Chapters 2 to 5. Once a potential benefit is
established, then techniques such as those developed in this work (explained in Chapters 6
and 7) can be used to develop selectors, while also considering the points discussed below.

9.2 Selector design choices

The results of the previous chapter showed that which selector design (direct or EPM-
based) and which model types produced effective selectors – and those that produced the
most effective selectors – varied between the case study systems. As well as the model
types varying, so did the model families, with the most effective model types representing
artificial neural networks (MultilayerPerceptron), ensembles (AdaBoostM1 (REPTree)),
lazy learners (IBk), tree learners (FT, LMT, and RandomForest), and other approaches
(RBFRegressor). Although there was no consensus on which model type produces the
most effective selectors, the concise set of model configurations listed in Table 8.6 are
recommended for preliminary evaluations of whether effective machine learning-based
algorithm selectors can be created for a new application.

202 Discussion

9.3 Data requirements

At its very essence, machine learning is concerned with finding relationships in data, so
the availability of data is essential for creating and using machine learning-based algorithm
selectors. The quantity of data available is important for training, while the quality of the
data – in terms of what features it contains, and whether there is missing or erroneous data –
is important for both training selectors, which can be a purely offline process, and the testing
selectors of selectors, when they are used online to make algorithm selection decisions.

Data quantity

The amount of data (the number of states for per-state algorithm selection) required to train a
machine learning model to achieve a particular level of predictive performance is not known
a priori, if indeed the model is sufficiently complex to represent the underlying relationship
in the data. The amount of data required can be expected to vary between machine learning
model types, as well as depending on the features used, the system that the states describe,
and the distribution of states during training and during use (testing).

Although the amount of data required is not known a priori, a general observation from
machine learning is that larger quantities of training data tends to lead to machine learning
models with improved predictive performance [143]. This relationship has been observed
when using machine learning to create power flow management algorithm selectors, as can
be seen in Figure 9.1. The figure shows the effect of changing the training set size for three
different model types used to create unweighted direct selectors for the IEEE 14-bus system.
The minimisation of overloads was the objective considered when creating the selectors, and
it can be seen that the performance against this objective tends to improve as larger training
set sizes are used. However, if the underlying relationship in the data is more complex than
what the machine learning model can represent, then predictive performance will plateau,
such as for the OneR-based selector in Figure 9.1. In this case, larger quantities of data will
only lead to longer training times. Furthermore, there is the risk of overtraining when larger
quantities of training data are used, where the model has good performance during training
but does not generalise well, giving poor performance on the test set.

Related to the question of what quantity of data is required is that of whether such data is
available. If the data comes from a real-world system, it may already be available, such as
stored SCADA data, or may be collected specifically for creating algorithm selectors. It is
expected that visibility within power systems will increase in the future [2], so the availability
of data may not constrain the creation of algorithm selectors. However, direct selectors
require that each of the algorithms is tested on exactly the same set of states, otherwise it is

9.3 Data requirements 203

5000 10000 15000 20000 25000 30000
Training set size

0

5

10

15

20

25

N
um

be
ro

fo
ve

rl
oa

ds
LibSVM (C-SVC, sigmoid) Logistic OneR

Fig. 9.1 Effect of training set size on overload performance of unweighted selectors created
for the IEEE 14-bus system, with the selectors only considering minimising overloads

not possible to determine which algorithm is most effective for each state. As encountering
exactly the same state twice in a real-world system is highly improbable, it would be difficult
– if not impossible – to create a direct selector just from collected data.

An alternative to using data from a real-world system is to generate the data from
simulations. This was the approach taken in this work, with the main constraints being
processor time for the simulations and storage space for retaining results. As simulations rely
on models, it is important that the model used can sufficiently approximate the behaviour
of the real-world system and therefore will have a similar state space. Even if the state
space of the model is close to that of the real-world system, the distribution of states in
the simulations – and then subsequently used for creating an algorithm selector – may be
different to the distribution of states encountered when using (testing) the selector. For
example, the states used in this work to train the selectors for the 33 kV meshed distribution
system were generated by drawing the state variables from independent uniform random
distributions, so there was an unbiased distribution of states within the state space; however,
the test states for that system were based on real-world data that was non-uniform, so the
distribution of states was different to that used for training. However, this did not appear to
prevent the creation of effective algorithm selectors.

It may be beneficial to have a different distribution of states for training than that found
during the use of a selector. In a classification task there may be classes that have high costs,
but appear infrequently in the test data, and it has been observed that a classifier trained using

204 Discussion

data which over-represents those classes may perform better than if training data was used
that had a similar distribution of examples to the test set [144]. This could be expected to
apply to classifiers used for algorithm selection, so for example, it could be beneficial for
power flow management algorithm selection to skew the distribution of states in the training
data to favour states where overloads occur and there are performance differences between
the algorithms.

Data quality

For power flow management algorithm selection, the features used by the selectors represent
characteristics of the system state that are predictive of algorithm performance, and are
therefore helpful in making algorithm selection decisions. Features could include the branch
loadings, busbar voltages, and switch statuses if the network topology is subject to change.

Although the feature sets used in this work fully describe the systems’ states, and therefore
fully characterise the problems that the power flow management algorithms are applied to,
they do so at a high level. Because of this, some information that could potentially be
relevant to selecting a power flow management algorithm – for example, the loadings of the
circuits that can become overloaded – are only available by executing a load flow, which is a
non-linear function of the state variables (contained in the feature sets). Such information
could help improve the predictive performance of a direct selector or EPM used within
a selector, as a number of the machine learning algorithms evaluated in this work do not
consider non-linear relationships between the features. However, the effect of different
feature sets has not been investigated in this work in order to limit the scope, although the
features that were used did not prevent effective selectors from being produced.

A particular set of features may produce the most effective selector, but in an implemen-
tation of an algorithm selection system it would also be important to consider whether those
features are available as measurements from the system that the algorithms are being selected
for. It could be expected that some measurements would already be available, as required by
the control algorithms, so these could be utilised for the algorithm selector. Another issue
with a real-world implementation of an algorithm selection system is that the measurements
would be subject to noise and failures, so the algorithm selectors – and indeed the control
algorithms – would need to be robust to this. Creating models that are robust to noise is a
common concern in machine learning, and there are existing techniques that could be applied,
such as artificially adding noise to the training data [145].

9.4 Time requirements 205

C
o
n
j
u
n
c
t
i
v
e
R
u
l
e

L
M
T

L
i
b
S
V
M

(C
-S

V
C

,r
ad

ia
l)

L
i
b
S
V
M

(C
-S

V
C

,l
in

ea
r)

L
i
b
S
V
M

(C
-S

V
C

,p
ol

y)

L
i
b
S
V
M

(n
u-

SV
R

,r
ad

ia
l)

L
i
b
S
V
M

(C
-S

V
C

,s
ig

m
oi

d)

R
B
F
N
e
t
w
o
r
k

S
M
O

S
M
O
r
e
g

S
i
m
p
l
e
C
a
r
t

Machine learning model

10−1

100

101

102

103

104

105

E
xe

cu
tio

n
tim

e
[s

]

Fig. 9.2 Box plot of time taken to train the 10 machine learning model types that had the
longest training time

9.4 Time requirements

Aside from the data required for an algorithm selector, another important factor to consider
is the time requirements, both in terms of creating the selector, and in its use.

Time required to create a selector

The time required to create a selector can be split in to two main components. The first
component is the time required to obtain the data to be used for training. If data needs to
be generated synthetically, the time required will vary depending on such factors as the
number of states simulated, the complexity of the power system studied (as that will influence
the execution time for load flow), and the number of algorithms to be simulated. This
could take considerable time – for example, generating all of the power flow management
performance data used in this work (as described in Chapters 3 and 4) took around 2 weeks
of computation – although this can be reduced through optimising the simulation code and
using high-performance computing. This time is of course unnecessary if data already exists
that can be used for training, but even then, there may still be time associated with preparing
the data to make it suitable to be used for training selectors.

206 Discussion

The second component of the time required to create a selector is that associated with
training, once training data has been obtained. This varies according to the same factors as
considered for the generation of training data, as well as varying with the machine learning
model type used. The majority (62 of 74) of the model types and variants investigated in
this work took less than 10 minutes for a single training run (here, the meaning of “run”
depends on the selector design: for unweighted and weighted direct selectors, it is the single
training pass associated with those designs; for tuned direct selectors, it is the re-training step
at the end of the tuning process; and for EPM-based selectors, it is the training of a single
EPM, rather than all EPMs in a selector). The training times for the remaining model types
– with the exception of GaussianProcesses, for which no runs were completed (please
refer to Section 8.1.2) – are shown in Figure 9.2. The figure is a box plot showing the range
of training times for each model type, with the extent of the boxes indicating the lower
and upper quartiles, the mid point of each box showing the median time, and the whiskers
indicating the minimum and maximum. The figure shows that four of the model types can
take over 104 seconds for a single training run, with SMO having the longest (13782 seconds,
which is almost four hours).

Once the selector is implemented, if there are changes to the power system – thus altering
the state space – then new training data will need to be obtained, and the selector re-trained.
Similarly, if an additional algorithm need to be consider for selection, then new training will
need to be obtained – but only for the one algorithm – and the selector re-trained. In this case,
direct selectors would need to be completely retrained; however, for EPM-based selectors it
would only be necessary to create new EPMs for the additional algorithm and then integrate
that in to the selection logic. In this respect EPM-based selectors are more scalable.

Time required to use a selector

All of the model types take on average less than a second to make a prediction for a single
state, with the exception of KStar, which can take up to 5.32 seconds on average. In fact,
the majority (62 out of 74) model types take less than 0.01 seconds to make a prediction for
a single state. Such short time requirements for generating algorithm selection decisions
should be suitable for use online in real-time control applications [3, 31], although the time
associated with receiving measurements from the power system (the features) would also
need to be taken into account when implementing an algorithm selection system.

9.5 Financial assessment 207

9.5 Financial assessment

This work has demonstrated that algorithm selection for power flow management can deliver
statistically signification benefits, in terms of reducing overloads and curtailment. However,
for any real-world implementation a cost-benefit analysis would need to be undertaken to
ascertain whether algorithm selection would provide an overall financial benefit, compared
with only using a single algorithm, or alternative options such as network reinforcement.
The financial benefits and costs associated with an algorithm selection system would be
project-specific, so are not evaluated here; however, the main factors that would influence the
cost-benefit analysis are described below.

The main costs to consider would be:

• Development and validation: this would include obtaining and preparing training data,
choosing a selector design, training the selector, testing the selector offline (validation),
and wrapping the selector in a software environment ready for deployment.

• Processing hardware: the selector would require a computational platform to run
on, which could be located locally on the network or remotely, such as in a control
centre. Potentially, the computational platform could have no extra cost if the hardware
required to support the control algorithms is used.

• Sensors and communications: these would be required to obtain the measurements
used as features by the selector. The measurements already required by the control
algorithms could be used, which would have little or no extra cost. If additional
measurements would improve the performance of the selector, further analysis would
be required to compare the costs of obtaining the extra measurements against the
benefits of the performance improvement of the selector.

• Other: the algorithm selection system may have additional costs such as commissioning,
training, maintenance, and the licence costs of each control algorithm that is considered
for selection.

The main financial benefits to consider would be:

• Increased asset lifespan: a reduction in overloading of assets would increase their
lifespan, thus deferring investment in replacements.

• Improved utilisation of existing capacity: using the control algorithms selected by an
algorithm selection system could allow existing assets to be utilised more effectively,

208 Discussion

which could defer, reduce or remove the need for investment in reinforcement to
provide additional capacity.

• Reduced costs associated with curtailment: the generators would be expected to
increase their revenue as they would be able to export more energy. Furthermore,
the operator of the power system may also see a reduction in their costs, if they are
otherwise required to reimburse the generators for curtailment.

Chapter 10

Conclusions

This chapter concludes this work. First, the research presented in this work is evaluated
against the objectives that were outlined at the start in Chapter 1, and then the major
contributions highlighted. Finally, an outlook for applying algorithm selection more generally
within power systems is elaborated, along with some areas for future work to extend this
research.

10.1 Evaluation against research objectives

At the start of this work, Section 1.3 listed the objectives for this research. The objectives are
reiterated below (in italics), along with descriptions of the work that has been presented to
address each objective.

1. Examine if potential performance benefits for power systems control can be derived by
selecting the algorithms on a per-state basis.

Overall, this objective has been met and answered in the affirmative. Power system
modelling and extensive simulations (Chapters 2-4) were conducted to characterise
the performance of several power flow management algorithms. Chapter 5 used these
results to demonstrate there were statistically significant potential performance benefits
if algorithms were optimally selected on a per-state basis for three of the four case
study systems.

This objective had the following sub-objectives:

(a) Identify a power systems control task that has characteristics shared with many
other power systems control tasks, so the results for the one control task are likely
to be generalisable to other tasks.

210 Conclusions

Chapter 2 identified power flow management as a control task that shares a number
of characteristics with other power system control tasks, such as considering
similar control actions, applying across a range of scales within power systems,
and that multiple algorithms are available to achieve the control task. Due to
these shared characteristics, the findings of this work for power flow management
are expected to apply more generally to other power system control tasks.

(b) Implement and test several power systems control algorithms for the chosen
control task, which represent diverse approaches to tackling the control task.

In Chapter 2, a survey of existing power flow management algorithms identified
five algorithms that were subsequently implemented. As described in the chapter,
those algorithms represented diverse approaches, which included optimal power
flow, constraint satisfaction, and linear programming. The algorithms were tested
in a purpose-built test environment (described in Chapter 3)), with the results
presented in Chapter 4.

(c) Test the algorithms on power system models that represent different network
designs.

Four case study power systems were used in this work, which were diverse in a
number of aspects of their designs: their topologies (radial and meshed), their
voltage levels (transmission and distribution), their origins (UK and the US), and
their scale (in terms of the number of buses, branches and generators). The case
study systems were described in Chapter 4, along with the results of testing the
power flow management algorithms within each system.

(d) Simulate a wide range of conditions within the power system models, in order to
exercise the performance of the power system control algorithms.

The results presented in Chapter 4 were for at least 10,000 states simulated per
system. For three of the four case study systems, the simulated states were dis-
tributed within the state spaces in a random and unbiased manner, so represented
a wide range of conditions. For the remaining system, the values of the state
variables were taken from real data, so although a range of states were simulated,
the distribution of states followed that of what could be found in a real system.

2. If the answer to research objective 1 is affirmative, the research shall investigate if
algorithm selection systems (algorithm selectors) can be created to exploit the potential
performance benefits for power systems control from per-state algorithm selection.

As the answer to research objective 1 was in the affirmative, research was conducted
to develop and evaluate algorithm selectors to perform per-state algorithm selection

10.1 Evaluation against research objectives 211

for power flow management. For the three case study systems that exhibited potential
performance benefits from per-state algorithm selection, algorithm selectors were
successfully created that could exploit some of the potential performance benefits and
outperform the most effective algorithms by statistically significant amounts, as shown
by the results presented in Chapter 8.

This objective included:

(a) Identifying existing algorithm selection techniques that could be applicable to
developing algorithm selectors for power systems control.

A review of existing algorithm selection techniques in Chapter 6 identified ma-
chine learning-based approaches as the predominant way to create algorithm
selectors, across a number of problem domains. The review also identified two
main variants of the machine learning-based approach: the creation of direct
selectors, or those based on empirical performance models.

(b) Exploiting the existing algorithm selection techniques to create algorithm selec-
tors for power systems control.

Based on the findings of the review in Chapter 6, Chapter 7 describes how the
existing algorithm selection techniques were adapted and extended for selecting
power flow management algorithms, with the performance of the created selectors
presented in Chapter 8.

Selectors were created based on the two main design variants (direct and EPM-
based). For the three case study power systems for which selectors were created,
the results show that both selector design variants could create effective algorithm
selectors, for the power flow management algorithms, performance objectives,
and machine learning model types considered in this work. However, the most
effective direct selectors outperformed the most effective EPM-based selectors.

Additionally, the influence of other aspects of the selectors’ design were examined.
The machine learning model type used to create the selectors was found to have
a significant influence on performance, although which model type produced
the most effective selectors was found to vary between systems and selector
design variants. Restricting the number of algorithms considered by a selector
was found to be beneficial, as selectors that considered larger sets were more
likely to perform worse than otherwise identical selectors that considered smaller
sets. Finally, the results showed that the objectives considered by the selectors
were reflected in their performance, demonstrating that algorithm selectors can
be tailored to the objectives of interest.

212 Conclusions

(c) Extending the existing techniques and, when necessary, developing new tech-
niques to allow algorithm selection to be applied to power systems control.

In addition to the adaptations necessary to exploit existing algorithm selection
techniques for power flow management, an additional technique was developed
that allowed two nested objectives to be considered (described in Section 7.1.3).
The technique varied (tuned) the weights of the data used to create a direct
selector so that two objectives could be balanced against one another. This was
useful in particular for the 33 kV meshed distribution system, where the potential
benefit of per-state algorithm selection was minimising curtailment, whilst also
ensuring all overloads were removed.

10.2 Contributions

The main contributions of this work are as follows:

1. Large-scale testing of power flow management algorithms, including developing a test
environment that allows testing of other power system control algorithms. Five power
flow management algorithms that represented different approaches were tested across
a range of conditions on four case study power system models, which had varying
scales and topologies. Results presented for each algorithm included the number and
energy of overloads, the amount of generator curtailment applied, and execution times.

2. Demonstrated that none of the algorithms tested provided the most effective perfor-
mance for every state in each of the case study systems, for the particular performance
objectives considered.

3. Demonstrated that if power flow management algorithms were optimally selected on a
per-state basis, there were statistically significant potential performance benefits for
three of the four case study systems.

(a) For the 33 kV meshed distribution system, the potential performance benefit was
a reduction in curtailment, while still removing all overloads.

(b) For the IEEE 14-bus system, the potential performance benefits were a reduction
in the number or energy of overloads, as well as a reduction in curtailment
compared with the most effective algorithms at removing overloads.

(c) For the IEEE 57-bus system, the potential performance benefits were a reduction
in the number or energy of overloads.

10.3 Outlook and future work 213

4. Evaluated machine learning-based algorithm selectors for power flow management,
including direct and EPM-based selector designs, by adapting and further developing
existing algorithm selection techniques. The influence of a number of design choices
was examined, including the choice of machine learning model type, the objective
used by the selectors, and the sets of algorithms considered for selection. A total of 74
machine learning model types were evaluated, which is in excess of other studies that
have used a large range of models to create algorithm selectors for other applications,
such as [7] and [96].

5. Developed methods to create algorithm selectors that considered two nested objectives,
using tuning of training set weights.

6. Demonstrated that machine learning-based algorithm selectors could realise some of
the potential performance benefits offered by per-state algorithm selection.

(a) For the 33 kV meshed distribution system, the most effective algorithm selectors
applied statistically significantly less curtailment than the most effective power
flow management algorithm, whilst still removing all overloads.

(b) For the IEEE 14-bus system, the most effective selectors could reduce the number
or energy of overloads by a statistically significant amount, in comparison to the
most effective algorithms for each of those performance measures. Furthermore,
some of the selectors were able to remove all overloads entirely, thus making the
optimal selection decisions with respect to minimising the number and energy of
overloads.

(c) For the IEEE 57-bus system, the most effective selectors could provide statis-
tically significant performance benefits in terms of reducing either the number
or energy of overloads. In comparison to the number of overloads left if the
optimal selection decisions were made to minimise that performance measure,
one selector had such similar performance that the difference was not statistically
significant.

10.3 Outlook and future work

This work has demonstrated the per-state algorithm selection for power flow management
can not only offer a potential performance benefit, but that machine learning-based algorithm
selectors can exploit and deliver some of that performance benefit. The case study power
systems used to demonstrate this are diverse in a number of ways – so therefore offer the

214 Conclusions

promise of generalising the findings to other power systems – but share one thing in common:
they represent existing power systems.

In contrast to the systems examined in this work, future power systems are expected to be
more complex, and also more uncertain [2]. The complexity will come from the number of
active participants in the management of the system, as potentially millions of active devices
are connected in. The uncertainty will come, for example, increasingly large amounts of
intermittent generation injecting power throughout the system, and through shifts in the
temporal and spatial patterns of load. In addition to these two factors, economic, social,
environmental and other constraints will limit possibilities to reinforce the system. Therefore,
the challenge of ensuring the system is kept within acceptable operating limits will not just
rely on investing in assets, but increasingly on using algorithms to manage the system. In
this context, while control algorithms will be more vital, the increasing complexity and
uncertainty will reduce the likelihood that any single algorithm will always provide the most
effective performance, and thus the potential for using – and benefiting from – algorithm
selection could be greater. Although the increased complexity and uncertainty would also
affect the selectors, they would be expected to scale as well as the algorithms they select, so
if complexity or uncertainty meant no algorithm could be used, whether a selector would be
able to make an appropriate selection decision would be irrelevant.

Based on these observations, it is suggested that the research presented in this work could
be extended in the following ways:

• Applying the techniques developed in this work to other power systems and conditions
within those systems, including system models that represent what would be expected
for future power systems.

• Evaluating other power system control applications – such as frequency control, or
power electronic converter control – to assess whether per-state algorithm selection
can offer performance benefits. If potential benefits are found, then the techniques
developed in this work could be adapted to exploit the performance benefits. Potentially,
other tasks within the power systems domain where multiple algorithms are be applied
could benefit from some form of fine-grained algorithm selection.

• Examine if machine learning techniques other than those examined in this work and
variations of the machine learning processes – such as tailoring model parameters, the
features, and the amount of training data used – can create algorithm selectors that are
able to further exploit the potential performance benefits on offer.

10.3 Outlook and future work 215

• Investigating the performance of algorithm selectors for power systems control ap-
plications in a hardware-in-the-loop simulation, to validate their performance in a
real-world setting.

• Developing algorithm selectors that are able to select a sequence of algorithms over a
time horizon, as the selectors in this work can only provide an algorithm selection for
a single time instant.

• Developing algorithm selectors for non-deterministic algorithms.

References

[1] J. E. King, S. C. E. Jupe, and P. C. Taylor, “Autonomic control algorithm selection
in decentralised power systems: a voltage control case study,” in 22nd International
Conference and Exhibition on Electricity Distribution (CIRED), Stockholm, 2013.

[2] S. D. J. McArthur, P. C. Taylor, G. W. Ault, J. E. King, D. Athanasiadis, V. D. Alimisis,
and M. Czaplewski, “The Autonomic Power System - Network operation and control
beyond smart grids,” in 2012 3rd IEEE PES Innovative Smart Grid Technologies
Europe, ISGT Europe, Berlin, 2012, p. IEEE Power and Energy Society; Technische
Universi. [Online]. Available: http://dx.doi.org/10.1109/ISGTEurope.2012.6465807

[3] D. Roberts, “Network Management Systems for Active Distribution Networks - A
Feasibility Study,” DTI, Tech. Rep., 2004.

[4] D. Harel and Y. A. Feldman, Algorithmics: The Spirit of Computing. Addison Wesley,
2004. [Online]. Available: http://books.google.co.uk/books?id=txxLovFWkCUC

[5] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[6] M. Streeter, D. Golovin, and S. F. Smith, “Combining multiple heuristics online,”
in Proceedings of the 22nd national conference on Artificial intelligence - Volume
2, ser. AAAI’07. AAAI Press, 2007, pp. 1197–1203. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1619797.1619838

[7] L. Kotthoff, I. P. Gent, and I. Miguel, “A Preliminary Evaluation of Machine Learning
in Algorithm Selection for Search Problems,” in Fourth International Symposium
on Combinatorial Search (SoCS-2011), 2011, pp. 84–91. [Online]. Available:
https://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/viewFile/4006/4362

[8] J. Seo, M. Bakay, Y.-W. Chen, S. Hilmer, B. Shneiderman, and E. P. Hoffman,
“Interactively optimizing signal-to-noise ratios in expression profiling: project-specific
algorithm selection and detection p-value weighting in Affymetrix microarrays,”
Bioinformatics, vol. 20, no. 16, pp. 2534–2544, Nov. 2004. [Online]. Available:
http://bioinformatics.oxfordjournals.org/content/20/16/2534.abstract

[9] W. Armstrong, P. Christen, E. McCreath, and A. P. Rendell, “Dynamic Algorithm
Selection Using Reinforcement Learning,” in International Workshop on Integrating
AI and Data Mining (AIDM ’06), 2006, pp. 18–25.

http://dx.doi.org/10.1109/ISGTEurope.2012.6465807
http://books.google.co.uk/books?id=txxLovFWkCUC
http://dl.acm.org/citation.cfm?id=1619797.1619838
https://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/viewFile/4006/4362
http://bioinformatics.oxfordjournals.org/content/20/16/2534.abstract

218 References

[10] J. Yang and B. Jiu, “Algorithm selection: a quantitative approach,” Trading, vol. 2006,
no. 1, pp. 26–34, 2006. [Online]. Available: http://www.iijournals.com/doi/abs/10.
3905/tr.2006.664138

[11] M. Thomson, “Automatic voltage control relays and embedded generation. I,” Power
Engineering Journal, vol. 14, no. 2, pp. 71–76, 2000.

[12] T. Xu, N. Wade, E. Davidson, P. C. Taylor, S. McArthur, and W. Garlick,
“Case-based reasoning for coordinated voltage control on distribution networks,”
Electric Power Systems Research, vol. 81, no. 12, pp. 2088–2098, Dec. 2011. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0378779611001921http:
//linkinghub.elsevier.com/retrieve/pii/S0378779611001921

[13] J. R. Quinlan, C4.5: programs for machine learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1993.

[14] S. Riccardo, “Architectures for distributed and hierarchical Model Predictive Control –
A review,” Journal of Process Control, vol. 19, no. 5, pp. 723–731, May 2009. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0959152409000353

[15] G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos, “Self-Organisation
and Emergence in MAS : An Overview,” Informatica, vol. 30, pp.
45–54, 2006. [Online]. Available: http://www.informatica.si/PDF/30-1/03_
Serugendo-Self-OrganisationandEmergencein...pdf

[16] G. Anderson, “Dynamics and Control of Electric
Power Systems,” pp. 36–46, 2012. [Online]. Avail-
able: http://www.eeh.ee.ethz.ch/fileadmin/user_upload/eeh/studies/courses/power_
system_dynamics_and_control/Documents/DynamicsPartI_lecture_notes_2012.pdf

[17] A. Pillay, S. Prabhakar Karthikeyan, and D. P. Kothari, “Congestion management
in power systems – A review,” International Journal of Electrical Power &
Energy Systems, vol. 70, no. 0, pp. 83–90, Sep. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0142061515000411

[18] Q. Zhou and J. W. Bialek, “Generation curtailment to manage voltage constraints in
distribution networks,” IET Generation, Transmission & Distribution, vol. 1, no. 3, pp.
492–498, 2007.

[19] J. Carpentier, “Contribution a l’etude du dispaching economique,” Bulletin de la
Societe Francaise des Electriciens, vol. 3, no. 8, pp. 431–447, 1962.

[20] S. Frank, I. Steponavice, and S. Rebennack, “Optimal power flow: a bibliographic
survey I,” Energy Systems, vol. 3, no. 3, pp. 221–258, Apr. 2012. [Online].
Available: http://dx.doi.org/10.1007/s12667-012-0056-yhttp://link.springer.com/10.
1007/s12667-012-0056-y

[21] “IEEE Xplore - Search Results.” [Online]. Available: http://ieeexplore.ieee.org/search/
searchresult.jsp?queryText%3D.QT.optimal+power+flow.QT.

[22] H. W. Dommel and W. F. Tinney, “Optimal Power Flow Solutions,” IEEE Transactions
on Power Apparatus and Systems, vol. PAS-87, no. 10, pp. 1866–1876, 1968.

http://www.iijournals.com/doi/abs/10.3905/tr.2006.664138
http://www.iijournals.com/doi/abs/10.3905/tr.2006.664138
http://www.sciencedirect.com/science/article/pii/S0378779611001921 http://linkinghub.elsevier.com/retrieve/pii/S0378779611001921
http://www.sciencedirect.com/science/article/pii/S0378779611001921 http://linkinghub.elsevier.com/retrieve/pii/S0378779611001921
http://www.sciencedirect.com/science/article/pii/S0959152409000353
http://www.informatica.si/PDF/30-1/03_Serugendo-Self-Organisation and Emergence in...pdf
http://www.informatica.si/PDF/30-1/03_Serugendo-Self-Organisation and Emergence in...pdf
http://www.eeh.ee.ethz.ch/fileadmin/user_upload/eeh/studies/courses/power_system_dynamics_and_control/Documents/DynamicsPartI_lecture_notes_2012.pdf
http://www.eeh.ee.ethz.ch/fileadmin/user_upload/eeh/studies/courses/power_system_dynamics_and_control/Documents/DynamicsPartI_lecture_notes_2012.pdf
http://www.sciencedirect.com/science/article/pii/S0142061515000411
http://dx.doi.org/10.1007/s12667-012-0056-y http://link.springer.com/10.1007/s12667-012-0056-y
http://dx.doi.org/10.1007/s12667-012-0056-y http://link.springer.com/10.1007/s12667-012-0056-y
http://ieeexplore.ieee.org/search/searchresult.jsp?queryText%3D.QT.optimal+power+flow.QT.
http://ieeexplore.ieee.org/search/searchresult.jsp?queryText%3D.QT.optimal+power+flow.QT.

References 219

[23] D. S. Kirschen and H. P. Van Meeteren, “MW/voltage control in a linear programming
based optimal power flow,” IEEE Transactions on Power Systems, vol. 3, no. 2, pp.
481–489, 1988.

[24] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Trans-
actions on Power Systems, vol. 9, no. 1, pp. 136–146, 1994.

[25] L. L. Lai, J. T. Ma, R. Yokoyama, and M. Zhao, “Improved genetic algorithms for
optimal power flow under both normal and contingent operation states,” International
Journal of Electrical Power & Energy Systems, vol. 19, no. 5, pp. 287–292,
Jun. 1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0142061596000518

[26] A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, “Optimal power flow by
enhanced genetic algorithm,” IEEE Transactions on Power Systems, vol. 17, no. 2, pp.
229–236, 2002.

[27] M. A. Abido, “Optimal power flow using particle swarm optimization,” International
Journal of Electrical Power & Energy Systems, vol. 24, no. 7, pp. 563–571,
Oct. 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0142061501000679

[28] J. Lavaei and S. H. Low, “Zero Duality Gap in Optimal Power Flow Problem,” IEEE
Transactions on Power Systems, vol. 27, no. 1, pp. 92–107, 2012.

[29] E. M. Davidson, M. J. Dolan, S. D. J. McArthur, and G. W. Ault, “The Use of
Constraint Programming for the Autonomous Management of Power Flows,” in 15th
International Conference on Intelligent System Applications to Power Systems, 2009.
ISAP ’09., 2009, pp. 1–7.

[30] M. J. Dolan, E. M. Davidson, I. Kockar, G. W. Ault, and S. D. J. McArthur, “Distribu-
tion Power Flow Management Utilizing an Online Optimal Power Flow Technique,”
IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 790–799, 2012.

[31] ——, “Reducing Distributed Generator Curtailment Through Active Power Flow
Management,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 149–157, 2014.

[32] “PowerWorld » The visual approach to electric power systems.” [Online]. Available:
http://www.powerworld.com/

[33] A. R. Ahmadi and T. C. Green, “Optimal power flow for autonomous regional active
network management system,” in Power & Energy Society General Meeting, 2009.
PES ’09. IEEE, 2009, pp. 1–7.

[34] S. Gill, I. Kockar, and G. W. Ault, “Dynamic Optimal Power Flow for Active Distribu-
tion Networks,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 121–131,
2014.

[35] S. W. Alnaser and L. F. Ochoa, “Distribution network management system: An AC
OPF approach,” in 2013 IEEE Power and Energy Society General Meeting (PES),
2013, pp. 1–5.

http://www.sciencedirect.com/science/article/pii/S0142061596000518
http://www.sciencedirect.com/science/article/pii/S0142061596000518
http://www.sciencedirect.com/science/article/pii/S0142061501000679
http://www.sciencedirect.com/science/article/pii/S0142061501000679
http://www.powerworld.com/

220 References

[36] “AIMMS.” [Online]. Available: http://www.aimms.com/

[37] S. Jupe, P. C. Taylor, and A. Michiorri, “Coordinated output control of multiple
distributed generation schemes,” IET Renewable Power Generation, vol. 4, no. 3, pp.
283–297, 2010. [Online]. Available: http://link.aip.org/link/ISETCN/v4/i3/p283/s1&
Agg=doi

[38] L. L. Grigsby, Power Systems, Third Edition, ser. The electric power engineering
handbook. CRC Press, 2012. [Online]. Available: https://books.google.co.uk/books?
id=h0jNBQAAQBAJ

[39] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control. Wiley,
2012. [Online]. Available: http://books.google.co.uk/books?id=ItuC5oZ-16QC

[40] S. Jupe and P. C. Taylor, “Strategies for the control of multiple distributed generation
schemes,” in 20th International Conference and Exhibition on Electricity Distribution
(CIRED), 2009, pp. 1–4.

[41] S. C. E. Jupe and P. C. Taylor, “Distributed generation output control for network power
flow management,” IET Renewable Power Generation, vol. 3, no. 4, pp. 371–386,
2009.

[42] L. Kane, G. Ault, and S. Gill, “An Assessment of Principles of Access for Wind Gen-
eration Curtailment in Active Network Management Schemes,” in 22nd International
Conference and Exhibition on Electricity Distribution (CIRED), no. 0237, 2013.

[43] C.-L. Chang and Y.-Y. Hsu, “Steady-state security control using a sensitivity-
based approach,” Electric Power Systems Research, vol. 18, no. 1, pp. 1–10,
Jan. 1990. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
037877969090040A

[44] I. Skokljev, V. Maksimovic, and H. Weber, “Symbolic analysis congestion manage-
ment,” in IEEE Power Tech, vol. 2, Bologna, 2003.

[45] P. Wong, P. Albrecht, R. Allan, R. Billinton, Q. Chen, C. Fong, S. Haddad, W. Li,
R. Mukerji, D. Patton, A. Schneider, M. Shahidehpour, and C. Singh, “The IEEE
Reliability Test System-1996. A report prepared by the Reliability Test System Task
Force of the Application of Probability Methods Subcommittee,” IEEE Transactions
on Power Systems, vol. 14, no. 3, pp. 1010–1020, 1999.

[46] M. J. Dolan, E. M. Davidson, G. W. Ault, K. R. W. Bell, and S. D. J. McArthur,
“Distribution Power Flow Management Utilizing an Online Constraint Programming
Method,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 798–805, 2013.

[47] T. Luo, M. J. Dolan, E. M. Davidson, and G. W. Ault, “Assessment of a New Con-
straint Satisfaction-Based Hybrid Distributed Control Technique for Power Flow
Management in Distribution Networks with Generation and Demand Response,” IEEE
Transactions on Smart Grid, vol. 6, no. 1, pp. 271–278, 2015.

http://www.aimms.com/
http://link.aip.org/link/ISETCN/v4/i3/p283/s1&Agg=doi
http://link.aip.org/link/ISETCN/v4/i3/p283/s1&Agg=doi
https://books.google.co.uk/books?id=h0jNBQAAQBAJ
https://books.google.co.uk/books?id=h0jNBQAAQBAJ
http://books.google.co.uk/books?id=ItuC5oZ-16QC
http://www.sciencedirect.com/science/article/pii/037877969090040A
http://www.sciencedirect.com/science/article/pii/037877969090040A

References 221

[48] R. A. F. Currie, G. W. Ault, C. E. T. Foote, and J. R. McDonald, “Active power-flow
management utilising operating margins for the increased connection of distributed
generation,” IET Generation, Transmission & Distribution,, vol. 1, no. 1, pp. 197–202,
2007.

[49] “constraint 0.4.1 : Python Package Index.” [Online]. Available: https:
//pypi.python.org/pypi/constraint/

[50] “PYPOWER 4.0.1 : Python Package Index.” [Online]. Available: https:
//pypi.python.org/pypi/PYPOWER/4.0.1

[51] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-
State Operations, Planning, and Analysis Tools for Power Systems Research and
Education,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, 2011.

[52] K. T. Fang, R. Li, and A. Sudjianto, Design and Modeling for Computer Experiments,
ser. Chapman & Hall/CRC Computer Science & Data Analysis. CRC Press, 2005.
[Online]. Available: https://books.google.co.uk/books?id=VGqbyIUVZw8C

[53] K. Hinkelmann and O. Kempthorne, Design and Analysis of Experiments, Introduction
to Experimental Design, ser. Design and Analysis of Experiments. Wiley, 2007.
[Online]. Available: https://books.google.co.uk/books?id=T3wWj2kVYZgC

[54] G. Andersson, “Modelling and analysis of electric power systems,” 2008. [Online].
Available: http://www.eeh.ee.ethz.ch/uploads/tx_ethstudies/modelling_hs08_script_
02.pdf

[55] F. Milano, Power system modelling and scripting. Springer, 2010. [Online].
Available: http://books.google.com/books?hl=en&lr=&id=MQu7IqoLrfYC&oi=
fnd&pg=PR4&dq=Power+System+Modelling+and+Scripting&ots=ajftJtiBPa&sig=
FPZPVxWvsx5FVFZkzGCaUvZB9w0

[56] R. Kuffel, J. Giesbrecht, T. Maguire, R. P. Wierckx, and P. McLaren, “RTDS-a fully
digital power system simulator operating in real time,” in IEEE WESCANEX 95.
Communications, Power, and Computing., vol. 2, 1995, pp. 300–305 vol.2.

[57] V. Alimisis, C. Piacentini, J. E. King, and P. C. Taylor, “Operation and Control Zones
for Future Complex Power Systems,” in 2013 IEEE Green Technologies Conference,
2013, pp. 259–265.

[58] J. E. King, S. C. E. Jupe, and P. C. Taylor, “Performance evaluation of control
algorithms for active distribution networks - the potential for algorithm selection,” in
CIGRÉ Session, Paris, 2014.

[59] J. King, S. Jupe, and P. Taylor, “The potential of network state-based algorithm
selection to improve power flow management,” in 2014 IEEE PES General Meeting
| Conference & Exposition, Washington DC, 2014, pp. 1–5. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6938918

[60] J. E. King, S. C. E. Jupe, and P. C. Taylor, “Network State-Based Algorithm Selection
for Power Flow Management Using Machine Learning,” IEEE Transactions on Power
Systems, vol. 30, no. 5, pp. 2657–2664, 2015.

https://pypi.python.org/pypi/constraint/
https://pypi.python.org/pypi/constraint/
https://pypi.python.org/pypi/PYPOWER/4.0.1
https://pypi.python.org/pypi/PYPOWER/4.0.1
https://books.google.co.uk/books?id=VGqbyIUVZw8C
https://books.google.co.uk/books?id=T3wWj2kVYZgC
http://www.eeh.ee.ethz.ch/uploads/tx_ethstudies/modelling_hs08_script_02.pdf
http://www.eeh.ee.ethz.ch/uploads/tx_ethstudies/modelling_hs08_script_02.pdf
http://books.google.com/books?hl=en&lr=&id=MQu7IqoLrfYC&oi=fnd&pg=PR4&dq=Power+System+Modelling+and+Scripting&ots=ajftJtiBPa&sig=FPZPVxWvsx5FVFZkzGCaUvZB9w0
http://books.google.com/books?hl=en&lr=&id=MQu7IqoLrfYC&oi=fnd&pg=PR4&dq=Power+System+Modelling+and+Scripting&ots=ajftJtiBPa&sig=FPZPVxWvsx5FVFZkzGCaUvZB9w0
http://books.google.com/books?hl=en&lr=&id=MQu7IqoLrfYC&oi=fnd&pg=PR4&dq=Power+System+Modelling+and+Scripting&ots=ajftJtiBPa&sig=FPZPVxWvsx5FVFZkzGCaUvZB9w0
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6938918

222 References

[61] J. L. Rueda, D. G. Colome, and I. Erlich, “Assessment and Enhancement of Small
Signal Stability Considering Uncertainties,” IEEE Transactions on Power Systems,
vol. 24, no. 1, pp. 198–207, 2009.

[62] R. Preece and J. V. Milanovic, “Efficient Estimation of the Probability of Small-
Disturbance Instability of Large Uncertain Power Systems,” IEEE Transactions on
Power Systems, vol. 31, no. 2, pp. 1063–1072, 2016.

[63] W. Mendenhall, R. Beaver, and B. Beaver, Introduction to Probability and Statistics,
ser. Available 2010 Titles Enhanced Web Assign Series. Cengage Learning, 2008.
[Online]. Available: https://books.google.co.uk/books?id=-39d6IwtdPkC

[64] G. Argyrous, Statistics for Research: With a Guide to SPSS. SAGE Publications,
2011. [Online]. Available: https://books.google.co.uk/books?id=XYv_DIyN4YYC

[65] Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures. New York, NY,
USA: John Wiley & Sons, Inc., 1987.

[66] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 57, no. 1, pp. 289–300, 1995. [Online]. Available:
http://www.jstor.org/stable/2346101

[67] C. Genovese, “False Discovery Rate Control,” in Brain Mapping: An Encyclopedic
Reference, A. W. Toga, Ed. Elsevier Science, 2015, pp. 501–507. [Online]. Available:
https://books.google.co.uk/books?id=ysucBAAAQBAJ

[68] O. J. Dunn, “Multiple Comparisons among Means,” Journal of the American
Statistical Association, vol. 56, no. 293, pp. 52–64, Mar. 1961. [Online]. Available:
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1961.10482090

[69] S. Holm, “A Simple Sequentially Rejective Multiple Test Procedure,” Scandinavian
Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979. [Online]. Available:
http://www.jstor.org/stable/4615733

[70] “UK Power Networks - Long Term Development Statement.” [On-
line]. Available: http://www.ukpowernetworks.co.uk/internet/en/about-us/
regulatory-information/long-term-development-statement.html

[71] “Long Term Development Statement - SP Energy Networks.” [Online]. Available:
http://www.spenergynetworks.co.uk/pages/long_term_development_statement.asp

[72] “United Kingdom Generic Distribution System.” [Online]. Available: http:
//monaco.eee.strath.ac.uk/ukgds

[73] University of Washington, “Power Systems Test Case Archive,” 2013. [Online].
Available: http://www.ee.washington.edu/research/pstca/

[74] J. Rice, “The algorithm selection problem,” Advances in Computers, vol. 15, pp.
65–118, 1976. [Online]. Available: http://docs.lib.purdue.edu/cgi/viewcontent.cgi?
article=1098&context=cstech

https://books.google.co.uk/books?id=-39d6IwtdPkC
https://books.google.co.uk/books?id=XYv_DIyN4YYC
http://www.jstor.org/stable/2346101
https://books.google.co.uk/books?id=ysucBAAAQBAJ
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1961.10482090
http://www.jstor.org/stable/4615733
http://www.ukpowernetworks.co.uk/internet/en/about-us/regulatory-information/long-term-development-statement.html
http://www.ukpowernetworks.co.uk/internet/en/about-us/regulatory-information/long-term-development-statement.html
http://www.spenergynetworks.co.uk/pages/long_term_development_statement.asp
http://monaco.eee.strath.ac.uk/ukgds
http://monaco.eee.strath.ac.uk/ukgds
http://www.ee.washington.edu/research/pstca/
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1098&context=cstech
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1098&context=cstech

References 223

[75] M. G. Lagoudakis and M. L. Littman, “Algorithm Selection using Reinforcement
Learning,” in Proceedings of the Seventeenth International Conference on
Machine Learning, ser. ICML ’00. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, pp. 511–518. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645529.657981

[76] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS: An Automatic
Algorithm Configuration Framework,” Journal of Artificial Intelligence Research,
vol. 36, pp. 267–306, Oct. 2009.

[77] S. Ali and K. A. Smith, “On learning algorithm selection for classification,”
Applied Soft Computing, vol. 6, no. 2, pp. 119–138, Jan. 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494605000049

[78] C. E. Houstis, E. N. Houstis, M. Katzouraki, T. S. Papatheodorou, and J. R. Rice,
“ATHENA: A Knowledge Base System for//ELLPACK,” 1990.

[79] C. Brodley, “Addressing the selective superiority problem: Automatic algorithm/model
class selection,” in 10th International Conference on Machine Learning, Amherst,
MA, 1993, pp. 17–24. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.13.3831&rep=rep1&type=pdf

[80] J. Beck and E. Freuder, “Simple Rules for Low-Knowledge Algorithm Selection,” in
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, ser. Lecture Notes in Computer Science, J.-C. Régin and
M. Rueher, Eds. Springer Berlin Heidelberg, 2004, vol. 3011, pp. 50–64. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-24664-0_4

[81] L. Lobjois and M. Lemaître, “Branch and bound algorithm selection by performance
prediction,” in Proceedings of the fifteenth national/tenth conference on Artificial
intelligence/Innovative applications of artificial intelligence, ser. AAAI ’98/IAAI ’98.
Menlo Park, CA, USA: American Association for Artificial Intelligence, 1998, pp.
353–358. [Online]. Available: http://dl.acm.org/citation.cfm?id=295240.295633

[82] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson, 2014.

[83] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[84] Microsoft, “Microsoft demos breakthrough in real-time translated conversations - The
Official Microsoft Blog,” 2014. [Online]. Available: http://blogs.microsoft.com/blog/
2014/05/27/microsoft-demos-breakthrough-in-real-time-translated-conversations/

[85] N. M. Ball and R. J. Brunner, “DATA MINING AND MACHINE LEARNING IN
ASTRONOMY,” International Journal of Modern Physics D, vol. 19, no. 07, pp. 1049–
1106, Jul. 2010. [Online]. Available: http://dx.doi.org/10.1142/S0218271810017160

[86] The Atlantic, “The Trick That Makes Google’s Self-Driving Cars Work,”
2014. [Online]. Available: http://www.theatlantic.com/technology/archive/2014/05/
all-the-world-a-track-the-trick-that-makes-googles-self-driving-cars-work/370871/

http://dl.acm.org/citation.cfm?id=645529.657981
http://dl.acm.org/citation.cfm?id=645529.657981
http://www.sciencedirect.com/science/article/pii/S1568494605000049
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.3831&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.3831&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-24664-0_4
http://dl.acm.org/citation.cfm?id=295240.295633
http://blogs.microsoft.com/blog/2014/05/27/microsoft-demos-breakthrough-in-real-time-translated-conversations/
http://blogs.microsoft.com/blog/2014/05/27/microsoft-demos-breakthrough-in-real-time-translated-conversations/
http://dx.doi.org/10.1142/S0218271810017160
http://www.theatlantic.com/technology/archive/2014/05/all-the-world-a-track-the-trick-that-makes-googles-self-driving-cars-work/370871/
http://www.theatlantic.com/technology/archive/2014/05/all-the-world-a-track-the-trick-that-makes-googles-self-driving-cars-work/370871/

224 References

[87] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0893608089900208

[88] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering algorithm,”
Applied statistics, pp. 100–108, 1979.

[89] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.
279–292, 1992.

[90] M. Gagliolo and J. Schmidhuber, “Learning dynamic algorithm portfolios,” Annals of
Mathematics and Artificial Intelligence, vol. 47, no. 3-4, pp. 295–328, 2006. [Online].
Available: http://dx.doi.org/10.1007/s10472-006-9036-z

[91] T. Carchrae and J. C. Beck, “Applying Machine Learning to Low-Knowledge Control
of Optimization Algorithms,” Computational Intelligence, vol. 21, no. 4, pp. 372–387,
2005. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8640.2005.00278.x

[92] ——, “Low-Knowledge Algorithm Control,” in Proceedings of the National
Conference on Artificial Intelligence, 2004, pp. 49–54. [Online]. Available:
http://www.aaai.org/Papers/AAAI/2004/AAAI04-008.pdf

[93] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger,
“A framework for adaptive algorithm selection in STAPL,” in Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel programming, ser.
PPoPP ’05. New York, NY, USA: ACM, 2005, pp. 277–288. [Online]. Available:
http://doi.acm.org/10.1145/1065944.1065981

[94] K. A. Smith-Miles, “Towards insightful algorithm selection for optimisation using
meta-learning concepts,” in IEEE International Joint Conference on Neural Networks
(IJCNN 2008), 2008, pp. 4118–4124.

[95] R. Ewald, J. Himmelspach, and A. M. Uhrmacher, “An Algorithm Selection Approach
for Simulation Systems,” in 22nd Workshop on Principles of Advanced and Distributed
Simulation (PADS ’08), 2008, pp. 91–98.

[96] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artificial Intelligence, vol. 206, pp. 79–111,
Jan. 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0004370213001082

[97] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-based
Algorithm Selection for SAT,” Journal of Artificial Intelligence Research, vol. 32, pp.
565–606, Jun. 2008.

[98] E. O’Mahony, E. Hebrard, and A. Holland, “Using case-based reasoning in an
algorithm portfolio for constraint solving,” in 19th Irish Conference on AI, 2008.
[Online]. Available: http://4c.ucc.ie/~aholland/publications/cpHydra.pdf

http://www.sciencedirect.com/science/article/pii/0893608089900208
http://dx.doi.org/10.1007/s10472-006-9036-z
http://dx.doi.org/10.1111/j.1467-8640.2005.00278.x
http://www.aaai.org/Papers/AAAI/2004/AAAI04-008.pdf
http://doi.acm.org/10.1145/1065944.1065981
http://www.sciencedirect.com/science/article/pii/S0004370213001082
http://www.sciencedirect.com/science/article/pii/S0004370213001082
http://4c.ucc.ie/~aholland/publications/cpHydra.pdf

References 225

[99] E. Fink, “How to Solve It Automatically: Selection Among Problem-Solving
Methods,” in Proceedings of the Fourth International Conference on Artificial
Intelligence Planning Systems, Pittsburgh, 1998, pp. 128–136. [Online]. Available:
http://www.aaai.org/Papers/AIPS/1998/AIPS98-016.pdf

[100] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelligence, vol. 126,
no. 1–2, pp. 43–62, Feb. 2001. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0004370200000813

[101] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann,
“Algorithm selection and scheduling,” in Proceedings of the 17th International
Conference on Principles and Practice of Constraint Programming, ser. CP’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 454–469. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2041160.2041198

[102] L. Kotthoff, “Hybrid Regression-Classification Models for Algorithm Selection,” in
20th European Conference on Artificial Intelligence, Montpellier, France, 2012.
[Online]. Available: http://4c.ucc.ie/~larsko/papers/stacking-crc.pdfhttps://www.haiti.
cs.uni-potsdam.de/proceedings/ECAI2012/content/ecai/ecai2012083.pdf

[103] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, “Meta-learning by landmarking
various learning algorithms,” in Proceedings of the 17th International Conference on
Machine Learning, ICML’2000. Bristol, UK: University of Bristol, 2000.

[104] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436–444, May 2015. [Online]. Available: http://dx.doi.org/10.1038/nature1453910.
1038/nature14539

[105] M. Matijaš, J. A. K. Suykens, and S. Krajcar, “Load forecasting using a multivariate
meta-learning system,” Expert Systems with Applications, vol. 40, no. 11, pp.
4427–4437, Sep. 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S095741741300078X

[106] M. Graff, R. Peña, A. Medina, and H. J. Escalante, “Wind speed forecasting
using a portfolio of forecasters,” Renewable Energy, vol. 68, no. 0, pp. 550–559,
Aug. 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0960148114001323

[107] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes. lulu.com,
2011. [Online]. Available: http://www.cleveralgorithms.com/

[108] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
WEKA data mining software: an update,” SIGKDD Explorations, vol. 11, no. 1, pp.
10–18, Nov. 2009. [Online]. Available: http://doi.acm.org/10.1145/1656274.1656278

[109] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in
Thirteenth International Conference on Machine Learning. San Francisco: Morgan
Kaufmann, 1996, pp. 148–156.

[110] Y. Freund and L. Mason, “The alternating decision tree learning algorithm,” in Proceed-
ing of the Sixteenth International Conference on Machine Learning, Bled, Slovenia,
1999, pp. 124–133.

http://www.aaai.org/Papers/AIPS/1998/AIPS98-016.pdf
http://www.sciencedirect.com/science/article/pii/S0004370200000813
http://www.sciencedirect.com/science/article/pii/S0004370200000813
http://dl.acm.org/citation.cfm?id=2041160.2041198
http://4c.ucc.ie/~larsko/papers/stacking-crc.pdf https://www.haiti.cs.uni-potsdam.de/proceedings/ECAI2012/content/ecai/ecai2012083.pdf
http://4c.ucc.ie/~larsko/papers/stacking-crc.pdf https://www.haiti.cs.uni-potsdam.de/proceedings/ECAI2012/content/ecai/ecai2012083.pdf
http://dx.doi.org/10.1038/nature14539 10.1038/nature14539
http://dx.doi.org/10.1038/nature14539 10.1038/nature14539
http://www.sciencedirect.com/science/article/pii/S095741741300078X
http://www.sciencedirect.com/science/article/pii/S095741741300078X
http://www.sciencedirect.com/science/article/pii/S0960148114001323
http://www.sciencedirect.com/science/article/pii/S0960148114001323
http://www.cleveralgorithms.com/
http://doi.acm.org/10.1145/1656274.1656278

226 References

[111] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140,
1996.

[112] H. Shi, “Best-first decision tree learning,” Master’s thesis, University of Waikato,
Hamilton, NZ, 2007.

[113] R. Kohavi, “The Power of Decision Tables,” in 8th European Conference on Machine
Learning. Springer, 1995, pp. 174–189.

[114] M. Hall and E. Frank, “Combining Naive Bayes and Decision Tables,” in Proceedings
of the 21st Florida Artificial Intelligence Society Conference (FLAIRS). AAAI press,
2008, pp. 318–319.

[115] N. Landwehr, M. Hall, and E. Frank, “Logistic Model Trees,” Machine Learning,
vol. 95, no. 1-2, pp. 161–205, 2005.

[116] D. J. C. MacKay, Introduction to Gaussian processes, 1998.

[117] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” in
ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining. ACM Press,
2001, pp. 97–106.

[118] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine Learning, vol. 6,
pp. 37–66, 1991.

[119] G. Webb, “Decision Tree Grafting From the All-Tests-But-One Partition.” San
Francisco, CA: Morgan Kaufmann, 1999.

[120] W. W. Cohen, “Fast Effective Rule Induction,” in Twelfth International Conference on
Machine Learning. Morgan Kaufmann, 1995, pp. 115–123.

[121] J. G. Cleary and L. E. Trigg, “K*: An Instance-based Learner Using an Entropic
Distance Measure,” in 12th International Conference on Machine Learning, 1995, pp.
108–114.

[122] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall, “Multiclass alternating
decision trees,” in ECML. Springer, 2001, pp. 161–172.

[123] P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection, 1987.

[124] C.-C. Chang and C.-J. Lin, “LIBSVM - A Library for Support Vector Machines,” 2001.
[Online]. Available: http://www.csie.ntu.edu.tw/$\delimiter"026E30F$~cjlin/libsvm/

[125] S. le Cessie and J. C. van Houwelingen, “Ridge Estimators in Logistic Regression,”
Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[126] C. Atkeson, A. Moore, and S. Schaal, “Locally weighted learning,” AI Review, 1996.

[127] Y. Wang and I. H. Witten, “Induction of model trees for predicting continuous classes,”
in Poster papers of the 9th European Conference on Machine Learning. Springer,
1997.

http://www.csie.ntu.edu.tw/$\delimiter "026E30F $~cjlin/libsvm/

References 227

[128] G. Holmes, M. Hall, and E. Frank, “Generating Rule Sets from Model Trees,” in
Twelfth Australian Joint Conference on Artificial Intelligence. Springer, 1999, pp.
1–12.

[129] G. H. John and P. Langley, “Estimating Continuous Distributions in Bayesian
Classifiers,” in Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, ser. UAI’95. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1995, pp. 338–345. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2074158.2074196

[130] R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree
Hybrid,” in Second International Conference on Knoledge Discovery and Data Mining,
1996, pp. 202–207.

[131] R. C. Holte, “Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets,” Machine Learning, vol. 11, no. 1, pp. 63–90, 1993. [Online].
Available: http://dx.doi.org/10.1023/A:1022631118932

[132] Y. Wang and I. H. Witten, “Modeling for optimal probability prediction,” in Pro-
ceedings of the Nineteenth International Conference in Machine Learning, Sydney,
Australia, 2002, pp. 650–657.

[133] E. Frank and I. H. Witten, “Generating Accurate Rule Sets Without Global Optimiza-
tion,” in Fifteenth International Conference on Machine Learning, J. Shavlik, Ed.
Morgan Kaufmann, 1998, pp. 144–151.

[134] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
[Online]. Available: http://dx.doi.org/10.1023/A:1010933404324

[135] E. Frank, “Fully supervised training of Gaussian radial basis function networks in
WEKA,” Tech. Rep., 2014.

[136] B. R. Gaines and P. Compton, “Induction of Ripple-down Rules Applied to Modeling
Large Databases,” J. Intell. Inf. Syst., vol. 5, no. 3, pp. 211–228, Nov. 1995. [Online].
Available: http://dx.doi.org/10.1007/BF00962234

[137] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regres-
sion Trees. Belmont, California: Wadsworth International Group, 1984.

[138] M. Sumner, E. Frank, and M. Hall, “Speeding up Logistic Model Tree Induction,”
in 9th European Conference on Principles and Practice of Knowledge Discovery in
Databases. Springer, 2005, pp. 675–683.

[139] J. Platt, “Fast Training of Support Vector Machines using Sequential Minimal
Optimization,” in Advances in Kernel Methods - Support Vector Learning,
B. Schoelkopf, C. Burges, and A. Smola, Eds. MIT Press, 1998. [Online]. Available:
http://research.microsoft.com/$\delimiter"026E30F$~jplatt/smo.html

[140] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to
the SMO Algorithm for SVM Regression,” in IEEE Transactions on Neural Networks,
1999.

http://dl.acm.org/citation.cfm?id=2074158.2074196
http://dl.acm.org/citation.cfm?id=2074158.2074196
http://dx.doi.org/10.1023/A:1022631118932
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00962234
http://research.microsoft.com/$\delimiter "026E30F $~jplatt/smo.html

228 References

[141] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal
of Machine Learning Research, vol. 3, pp. 1157–1182, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944968

[142] W. Zhuo, Prabhat, C. Paciorek, C. Kaufman, and W. Bethel, “Parallel Kriging Analysis
for Large Spatial Datasets,” in Data Mining Workshops (ICDMW), 2011 IEEE 11th
International Conference on, 2011, pp. 38–44.

[143] M. Banko and E. Brill, “Scaling to Very Very Large Corpora for Natural
Language Disambiguation,” in Proceedings of the 39th Annual Meeting on
Association for Computational Linguistics, ser. ACL ’01. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2001, pp. 26–33. [Online]. Available:
http://dx.doi.org/10.3115/1073012.1073017

[144] N. Chawla and K. Bowyer, “SMOTE: Synthetic Minority Over-sampling Technique,”
Journal of Artificial Intelligence Research, vol. 16, no. 1, pp. 321–357, Jun.
2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=1622407.1622416http:
//arxiv.org/abs/1106.1813

[145] L. Holmstrom and P. Koistinen, “Using additive noise in back-propagation training,”
IEEE Transactions on Neural Networks, vol. 3, no. 1, pp. 24–38, 1992.

http://dl.acm.org/citation.cfm?id=944919.944968
http://dx.doi.org/10.3115/1073012.1073017
http://dl.acm.org/citation.cfm?id=1622407.1622416 http://arxiv.org/abs/1106.1813
http://dl.acm.org/citation.cfm?id=1622407.1622416 http://arxiv.org/abs/1106.1813

Appendix A

Data model for power system model
(SysModel)

230 Data model for power system model (SysModel)
Ta

bl
e

A
.1

Sy
st

em
da

ta
m

od
el

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

b
r
k

b
r
a
n
c
h
_
l
i
s
t

St
at

ic
l
i
s
t

L
is

to
fc

ct
,t

x
an

d
dc

x
th

at
th

e
br

ea
ke

rc
an

tr
ip

.
b
r
k

b
u
s

St
at

ic
s
t
r

B
us

(n
am

e)
th

at
th

e
br

ea
ke

ri
s

as
so

ci
at

ed
w

ith
.

b
r
k

e
n
a
b
l
e
d

D
yn

am
ic

b
o
o
l

E
na

bl
es

co
nt

ro
lb

y
an

al
go

ri
th

m
.

b
r
k

n
a
m
e

ID
s
t
r

B
us

na
m

e,
m

us
tb

e
un

iq
ue

.
b
r
k

t
r
i
p

C
on

tr
ol

b
o
o
l

W
he

th
er

th
e

br
ea

ke
ri

s
tr

ip
pe

d.
b
r
k

t
y
p
e

St
at

ic
s
t
r

U
ni

tt
yp

e
ta

g/
co

m
m

en
t.

b
u
s

g
e
o
_
x

St
at

ic
f
l
o
a
t

G
eo

gr
ap

hi
ca

ll
on

gi
tu

de
.

b
u
s

g
e
o
_
y

St
at

ic
f
l
o
a
t

G
eo

gr
ap

hi
ca

ll
at

itu
de

.
b
u
s

n
a
m
e

ID
s
t
r

B
us

na
m

e,
m

us
tb

e
un

iq
ue

.
b
u
s

t
y
p
e

St
at

ic
s
t
r

U
ni

tt
yp

e
ta

g/
co

m
m

en
t.

b
u
s

v
o
l
t
s
_
d
e
g

M
ea

su
re

m
en

t
f
l
o
a
t

Vo
lta

ge
an

gl
e,

in
de

gr
ee

s.
b
u
s

v
o
l
t
s
_
n
o
m

St
at

ic
f
l
o
a
t

N
om

in
al

bu
s

vo
lta

ge
,i

n
kV

.
b
u
s

v
o
l
t
s
_
p
u

M
ea

su
re

m
en

t
f
l
o
a
t

Vo
lta

ge
m

ag
ni

tu
de

,i
n

pu
.

c
c
t

_
s
t
a
t
u
s

In
te

rn
al

b
o
o
l

C
ir

cu
it

st
at

us
(i

n/
ou

t)
.

c
c
t

b
u
s
_
f
r
o
m

St
at

ic
s
t
r

B
us

th
at

ci
rc

ui
t/t

ra
ns

fo
rm

er
is

fr
om

.
c
c
t

b
u
s
_
t
o

St
at

ic
s
t
r

B
us

th
at

ci
rc

ui
t/t

ra
ns

fo
rm

er
is

to
.

c
c
t

e
l
e
c
_
b

St
at

ic
f
l
o
a
t

C
ha

rg
in

g
su

sc
ep

ta
nc

e,
in

pu
.

c
c
t

e
l
e
c
_
r

St
at

ic
f
l
o
a
t

R
es

is
ta

nc
e,

in
pu

.
c
c
t

e
l
e
c
_
x

St
at

ic
f
l
o
a
t

R
ea

ct
an

ce
,i

n
pu

.
c
c
t

n
a
m
e

ID
s
t
r

C
ir

cu
it/

tr
an

sf
or

m
er

na
m

e,
m

us
tb

e
un

iq
ue

.
(c

on
tin

ue
d

on
ne

xt
pa

ge
)

231
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

c
c
t

p
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

lp
ow

er
at

’f
ro

m
’e

nd
to

w
ar

ds
’to

’e
nd

.
c
c
t

p
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

lp
ow

er
at

’to
’e

nd
to

w
ar

ds
’f

ro
m

’e
nd

.
c
c
t

q
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

ct
iv

e
po

w
er

at
’f

ro
m

’e
nd

to
w

ar
ds

’to
’e

nd
.

c
c
t

q
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

ct
iv

e
po

w
er

at
’to

’e
nd

to
w

ar
ds

’f
ro

m
’e

nd
.

c
c
t

r
a
t
i
n
g
_
d
y
n
a
m
i
c

D
yn

am
ic

f
l
o
a
t

D
yn

am
ic

ra
tin

g,
in

M
VA

.
c
c
t

r
a
t
i
n
g
_
s
t
a
t
i
c

St
at

ic
f
l
o
a
t

St
at

ic
ra

tin
g,

in
M

VA
.

c
c
t

s
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

A
pp

ar
en

tp
ow

er
m

ag
ni

tu
de

at
’f

ro
m

’
en

d
to

w
ar

ds
’to

’e
nd

.
c
c
t

s
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

A
pp

ar
en

t
po

w
er

m
ag

ni
tu

de
at

’t
o’

en
d

to
w

ar
ds

’f
ro

m
’e

nd
.

c
c
t

t
y
p
e

St
at

ic
s
t
r

U
ni

tt
yp

e
ta

g/
co

m
m

en
t.

d
c
x

_
p
_
f
r
o
m

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
al

po
w

er
ou

to
f’

fr
om

’e
nd

.
d
c
x

_
p
_
f
r
o
m
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

lp
ow

er
ou

to
f’

fr
om

’e
nd

.
d
c
x

_
p
_
t
o

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
al

po
w

er
ou

to
f’

to
’e

nd
.

d
c
x

_
p
_
t
o
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

lp
ow

er
ou

to
f’

to
’e

nd
.

d
c
x

_
q
_
f
r
o
m

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
ac

tiv
e

po
w

er
ou

to
f’

fr
om

’e
nd

.
d
c
x

_
q
_
f
r
o
m
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

ct
iv

e
po

w
er

ou
to

f’
fr

om
’e

nd
.

d
c
x

_
q
_
f
r
o
m
_
m
a
x

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
ax

im
um

re
ac

tiv
e

po
w

er
ou

to
f’

fr
om

’
en

d.
d
c
x

_
q
_
f
r
o
m
_
m
i
n

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
in

im
um

re
ac

tiv
e

po
w

er
ou

to
f

’f
ro

m
’

en
d.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

232 Data model for power system model (SysModel)
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

d
c
x

_
q
_
t
o

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
ac

tiv
e

po
w

er
ou

to
f’

to
’e

nd
.

d
c
x

_
q
_
t
o
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

ct
iv

e
po

w
er

ou
to

f’
to

’e
nd

.
d
c
x

_
q
_
t
o
_
m
a
x

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
ax

im
um

re
ac

tiv
e

po
w

er
ou

to
f’

to
’e

nd
.

d
c
x

_
q
_
t
o
_
m
i
n

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
in

im
um

re
ac

tiv
e

po
w

er
ou

to
f’

to
’e

nd
.

d
c
x

_
s
t
a
t
u
s

In
te

rn
al

b
o
o
l

C
ir

cu
it

st
at

us
(i

n/
ou

t)
.

d
c
x

_
v
_
f
r
o
m

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

vo
lta

ge
at

’f
ro

m
’e

nd
,0

in
Q

/P
F

m
od

e.
d
c
x

_
v
_
t
o

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

vo
lta

ge
at

’to
’e

nd
,0

in
Q

/P
F

m
od

e.
d
c
x

b
u
s
_
f
r
o
m

St
at

ic
s
t
r

B
us

th
at

ci
rc

ui
t/t

ra
ns

fo
rm

er
is

fr
om

.
d
c
x

b
u
s
_
t
o

St
at

ic
s
t
r

B
us

th
at

ci
rc

ui
t/t

ra
ns

fo
rm

er
is

to
.

d
c
x

c
o
n
t
r
o
l
_
a
t
_
f
r
o
m

D
yn

am
ic

b
o
o
l

To
gg

le
s

if
’f

ro
m

’e
nd

co
nt

ro
ls

po
w

er
tr

an
sf

er
.

d
c
x

e
f
f
i
c
i
e
n
c
y

St
at

ic
f
l
o
a
t

R
ea

lp
ow

er
tr

an
sf

er
ef

fic
ie

nc
y

of
th

e
D

C
lin

k.
d
c
x

e
n
a
b
l
e
d

D
yn

am
ic

b
o
o
l

To
gg

le
s

w
he

th
er

al
go

ri
th

m
s

ca
n

ha
ve

co
nt

ro
l.

d
c
x

m
o
d
e
_
q
_
f
r
o
m

M
od

e
s
t
r

M
od

e
se

le
ct

ed
fo

rr
ea

ct
iv

e
po

w
er

at
’f

ro
m

’e
nd

.
d
c
x

m
o
d
e
_
q
_
f
r
o
m
_
l
i
s
tM

od
el

is
t

l
i
s
t

M
od

es
av

ai
la

bl
e

fo
rr

ea
ct

iv
e

po
w

er
at

’f
ro

m
’e

nd
.

d
c
x

m
o
d
e
_
q
_
t
o

M
od

e
s
t
r

M
od

e
se

le
ct

ed
fo

rr
ea

ct
iv

e
po

w
er

at
’to

’e
nd

.
d
c
x

m
o
d
e
_
q
_
t
o
_
l
i
s
t

M
od

el
is

t
l
i
s
t

M
od

es
av

ai
la

bl
e

fo
rr

ea
ct

iv
e

po
w

er
at

’to
’e

nd
.

d
c
x

n
a
m
e

ID
s
t
r

C
ir

cu
it/

tr
an

sf
or

m
er

na
m

e,
m

us
tb

e
un

iq
ue

.
d
c
x

p
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

re
al

po
w

er
tr

an
sf

er
in

’t
o’

di
re

ct
io

n.
N

eg
at

iv
e

va
lu

es
ar

e
ca

lc
ul

at
ed

at
th

e
’t

o’
en

d
to

-
w

ar
ds

th
e

’f
ro

m
’e

nd
.

d
c
x

p
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

lp
ow

er
at

’f
ro

m
’e

nd
to

w
ar

ds
’to

’e
nd

.
(c

on
tin

ue
d

on
ne

xt
pa

ge
)

233
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

d
c
x

p
_
r
a
m
p

St
at

ic
f
l
o
a
t

M
ax

im
um

re
al

po
w

er
ra

m
p

ra
te

of
th

e
D

C
lin

k.
d
c
x

p
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

lp
ow

er
at

’to
’e

nd
to

w
ar

ds
’f

ro
m

’e
nd

.
d
c
x

p
f
_
f
r
o
m
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

po
w

er
fa

ct
or

at
’f

ro
m

’e
nd

.
d
c
x

p
f
_
f
r
o
m
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

at
’f

ro
m

’e
nd

.
d
c
x

p
f
_
f
r
o
m
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

at
’f

ro
m

’e
nd

.
d
c
x

p
f
_
t
o
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

po
w

er
fa

ct
or

at
’to

’e
nd

.
d
c
x

p
f
_
t
o
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

at
’to

’e
nd

.
d
c
x

p
f
_
t
o
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

at
’to

’e
nd

.
d
c
x

q
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

ct
iv

e
po

w
er

at
’f

ro
m

’e
nd

to
w

ar
ds

’to
’e

nd
.

d
c
x

q
_
f
r
o
m
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

re
ac

tiv
e

po
w

er
ou

to
f’

fr
om

’e
nd

.
d
c
x

q
_
f
r
o
m
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ou

to
f’

fr
om

’e
nd

.
d
c
x

q
_
f
r
o
m
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

re
ac

tiv
e

po
w

er
ou

to
f’

fr
om

’e
nd

.
d
c
x

q
_
f
r
o
m
_
r
a
m
p

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ra

m
p

ra
te

at
’f

ro
m

’e
nd

.
d
c
x

q
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

ct
iv

e
po

w
er

at
’to

’e
nd

to
w

ar
ds

’f
ro

m
’e

nd
.

d
c
x

q
_
t
o
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

re
ac

tiv
e

po
w

er
ou

to
f’

to
’e

nd
.

d
c
x

q
_
t
o
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ou

to
f’

to
’e

nd
.

d
c
x

q
_
t
o
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

re
ac

tiv
e

po
w

er
ou

to
f’

to
’e

nd
.

d
c
x

q
_
t
o
_
r
a
m
p

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ra

m
p

ra
te

at
’to

’e
nd

.
d
c
x

r
a
t
i
n
g
_
d
y
n
a
m
i
c

D
yn

am
ic

f
l
o
a
t

D
yn

am
ic

ra
tin

g,
in

M
W

.
d
c
x

r
a
t
i
n
g
_
s
t
a
t
i
c

St
at

ic
f
l
o
a
t

St
at

ic
ra

tin
g,

in
M

W
.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

234 Data model for power system model (SysModel)
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

d
c
x

s
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

A
pp

ar
en

tp
ow

er
m

ag
ni

tu
de

at
’f

ro
m

’
en

d
to

w
ar

ds
’to

’e
nd

.
d
c
x

s
_
f
r
o
m
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

ap
pa

re
nt

po
w

er
of

’f
ro

m
’e

nd
.

d
c
x

s
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

A
pp

ar
en

t
po

w
er

m
ag

ni
tu

de
at

’t
o’

en
d

to
w

ar
ds

’f
ro

m
’e

nd
.

d
c
x

s
_
t
o
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

ap
pa

re
nt

po
w

er
of

’to
’e

nd
.

d
c
x

t
y
p
e

St
at

ic
s
t
r

U
ni

tt
yp

e
ta

g/
co

m
m

en
t.

d
c
x

v
_
f
r
o
m
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

vo
lta

ge
at

’f
ro

m
’e

nd
.

d
c
x

v
_
f
r
o
m
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

vo
lta

ge
at

’f
ro

m
’e

nd
.

d
c
x

v
_
f
r
o
m
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

vo
lta

ge
at

’f
ro

m
’e

nd
.

d
c
x

v
_
t
o
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

vo
lta

ge
at

’to
’e

nd
.

d
c
x

v
_
t
o
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

vo
lta

ge
at

’to
’e

nd
.

d
c
x

v
_
t
o
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

vo
lta

ge
at

’to
’e

nd
.

g
e
n

_
p

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
al

po
w

er
ou

tp
ut

.
g
e
n

_
p
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

lp
ow

er
ou

tp
ut

.
g
e
n

_
q

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
ac

tiv
e

po
w

er
ou

tp
ut

.
g
e
n

_
q
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

ct
iv

e
po

w
er

ou
tp

ut
.

g
e
n

_
q
_
m
a
x

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
ax

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
g
e
n

_
q
_
m
i
n

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
in

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
g
e
n

_
v

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

vo
lta

ge
of

un
it,

0
in

Q
/P

F
m

od
e.

g
e
n

b
u
s

St
at

ic
s
t
r

B
us

(n
am

e)
th

at
th

e
un

it
is

at
ta

ch
ed

to
.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

235
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

g
e
n

e
n
a
b
l
e
d

D
yn

am
ic

b
o
o
l

E
na

bl
es

co
nt

ro
lb

y
an

al
go

ri
th

m
.

g
e
n

m
o
d
e
_
p

M
od

e
s
t
r

M
od

e
se

le
ct

ed
fo

rr
ea

lp
ow

er
.

g
e
n

m
o
d
e
_
p
_
l
i
s
t

M
od

el
is

t
l
i
s
t

M
od

es
av

ai
la

bl
e

fo
rr

ea
lp

ow
er

.
g
e
n

m
o
d
e
_
q

M
od

e
s
t
r

M
od

e
se

le
ct

ed
fo

rr
ea

ct
iv

e
po

w
er

.
g
e
n

m
o
d
e
_
q
_
l
i
s
t

M
od

el
is

t
l
i
s
t

M
od

es
av

ai
la

bl
e

fo
rr

ea
ct

iv
e

po
w

er
.

g
e
n

n
a
m
e

ID
s
t
r

G
en

er
at

or
na

m
e,

m
us

tb
e

un
iq

ue
.

g
e
n

p
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

al
po

w
er

ou
tp

ut
of

un
it.

g
e
n

p
_
a
d
j
_
d
n

D
yn

am
ic

f
l
o
a
t

H
ow

m
uc

h
th

e
de

si
re

d
re

al
po

w
er

ca
n

be
re

du
ce

d.
g
e
n

p
_
a
d
j
_
u
p

D
yn

am
ic

f
l
o
a
t

H
ow

m
uc

h
th

e
de

si
re

d
re

al
po

w
er

ca
n

be
in

cr
ea

se
d.

g
e
n

p
_
c
a
p
_
m
a
x

C
on

tr
ol

f
l
o
a
t

A
lg

or
ith

m
-s

et
m

ax
im

um
re

al
po

w
er

in
C

A
P

m
od

e.
g
e
n

p
_
c
a
p
_
m
i
n

C
on

tr
ol

f
l
o
a
t

A
lg

or
ith

m
-s

et
m

in
im

um
re

al
po

w
er

in
C

A
P

m
od

e.
g
e
n

p
_
c
m
d

C
on

tr
ol

f
l
o
a
t

A
lg

or
ith

m
-s

et
re

al
po

w
er

ta
rg

et
in

SE
T

m
od

e.
g
e
n

p
_
d
e
s

D
yn

am
ic

f
l
o
a
t

T
he

de
si

re
d

re
al

po
w

er
ou

tp
ut

of
th

e
un

it.
g
e
n

p
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

re
al

po
w

er
ou

tp
ut

.
g
e
n

p
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

re
al

po
w

er
ou

tp
ut

.
g
e
n

p
_
r
a
m
p

St
at

ic
f
l
o
a
t

M
ax

im
um

re
al

po
w

er
ra

m
p

ra
te

.
g
e
n

p
f
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

po
w

er
fa

ct
or

(e
xp

or
t)

.
g
e
n

p
f
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

.
g
e
n

p
f
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

.
g
e
n

q
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

ac
tiv

e
po

w
er

ou
tp

ut
of

un
it.

g
e
n

q
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

re
ac

tiv
e

po
w

er
ou

tp
ut

.
(c

on
tin

ue
d

on
ne

xt
pa

ge
)

236 Data model for power system model (SysModel)
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

g
e
n

q
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
g
e
n

q
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
g
e
n

q
_
r
a
m
p

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ra

m
p

ra
te

.
g
e
n

s
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

ap
pa

re
nt

po
w

er
of

un
it.

g
e
n

t
y
p
e

St
at

ic
s
t
r

U
ni

tt
yp

e
ta

g/
co

m
m

en
t.

g
e
n

v
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

vo
lta

ge
at

ou
tp

ut
.

g
e
n

v
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

vo
lta

ge
of

ou
tp

ut
.

g
e
n

v
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

vo
lta

ge
of

ou
tp

ut
.

l
d

_
p

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
al

po
w

er
of

lo
ad

.
l
d

_
q

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
ac

tiv
e

po
w

er
of

lo
ad

.
l
d

b
u
s

St
at

ic
s
t
r

B
us

(n
am

e)
th

at
th

e
lo

ad
is

at
ta

ch
ed

to
.

l
d

d
s
r
_
p

D
yn

am
ic

f
l
o
a
t

R
ea

lp
ow

er
th

at
ca

n
be

sh
ed

th
ro

ug
h

D
SR

.
l
d

d
s
r
_
q

D
yn

am
ic

f
l
o
a
t

R
ea

ct
iv

e
po

w
er

th
at

ca
n

be
sh

ed
th

ro
ug

h
D

SR
.

l
d

e
n
a
b
l
e
d

D
yn

am
ic

b
o
o
l

E
na

bl
es

co
nt

ro
lb

y
an

al
go

ri
th

m
.

l
d

m
o
d
e
_
d
s
r

M
od

e
s
t
r

M
od

e
se

le
ct

ed
fo

rD
SR

(O
FF

or
SH

E
D

).
l
d

m
o
d
e
_
d
s
r
_
l
i
s
t

M
od

el
is

t
l
i
s
t

M
od

es
av

ai
la

bl
e

fo
rD

SR
(O

FF
or

SH
E

D
).

l
d

n
a
m
e

ID
s
t
r

L
oa

d
na

m
e,

m
us

tb
e

un
iq

ue
.

l
d

p
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

al
po

w
er

de
m

an
d

of
lo

ad
.

l
d

p
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

re
al

po
w

er
th

at
a

lo
ad

ca
n

ta
ke

on
.

l
d

p
_
n
o
w

D
yn

am
ic

f
l
o
a
t

C
ur

re
nt

re
al

po
w

er
de

m
an

de
d

by
lo

ad
.

l
d

q
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

ac
tiv

e
po

w
er

de
m

an
d

of
lo

ad
.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

237
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

l
d

q
_
n
o
w

D
yn

am
ic

f
l
o
a
t

C
ur

re
nt

re
ac

tiv
e

po
w

er
de

m
an

de
d

by
lo

ad
.

l
d

t
y
p
e

St
at

ic
s
t
r

L
oa

d
ty

pe
ta

g/
co

m
m

en
t.

q
b
k

_
q

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
ac

tiv
e

po
w

er
of

ba
nk

.
q
b
k

_
q
_
s
t
e
p
_
l
a
s
t

In
te

rn
al

i
n
t

L
as

tr
ea

ct
iv

e
po

w
er

st
ep

se
tti

ng
.

q
b
k

b
u
s

St
at

ic
s
t
r

B
us

(n
am

e)
th

at
th

e
ba

nk
is

at
ta

ch
ed

to
.

q
b
k

e
n
a
b
l
e
d

D
yn

am
ic

b
o
o
l

E
na

bl
es

co
nt

ro
lb

y
an

al
go

ri
th

m
.

q
b
k

n
a
m
e

ID
s
t
r

C
ap

ac
ito

r/
re

ac
to

rb
an

k
na

m
e,

m
us

tb
e

un
iq

ue
.

q
b
k

p
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

al
po

w
er

ou
tp

ut
of

un
it.

q
b
k

q
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

ac
tiv

e
po

w
er

ou
tp

ut
of

un
it.

q
b
k

q
_
s
t
e
p

D
yn

am
ic

i
n
t

C
ur

re
nt

re
ac

tiv
e

po
w

er
st

ep
se

tti
ng

,0
is

’o
ff

’s
te

p.
q
b
k

q
_
s
t
e
p
_
c
m
d

C
on

tr
ol

i
n
t

Ta
rg

et
nu

m
be

ro
fr

ea
ct

iv
e

po
w

er
st

ep
s

ac
tiv

e.
q
b
k

q
_
s
t
e
p
_
c
o
u
n
t
d
o
w
nD

yn
am

ic
i
n
t

St
ep

sw
itc

hi
ng

op
er

at
io

n
de

la
y

re
m

ai
ni

ng
.

q
b
k

q
_
s
t
e
p
_
d
e
l
a
y

St
at

ic
i
n
t

R
es

tr
ic

ts
th

e
nu

m
be

r
of

st
ep

sw
itc

hi
ng

op
er

at
io

ns
:

+n
de

la
ys

op
er

at
io

ns
fo

rn
in

te
rv

al
s,

-n
re

st
ri

ct
s

op
-

er
at

io
ns

to
n

w
ith

in
an

in
te

rv
al

,0
is

un
re

st
ri

ct
ed

.
q
b
k

q
_
s
t
e
p
_
s
i
z
e

St
at

ic
f
l
o
a
t

M
VA

ro
fe

ac
h

re
ac

tiv
e

po
w

er
st

ep
,+

ve
fo

rr
ea

ct
or

.
q
b
k

q
_
s
t
e
p
s

St
at

ic
i
n
t

N
um

be
ro

fr
ea

ct
iv

e
po

w
er

st
ep

s
av

ai
la

bl
e.

T
hi

s
in

-
cl

ud
es

th
e

’o
ff

’s
te

p
so

ne
ed

s
to

be
2

or
m

or
e.

q
b
k

t
y
p
e

St
at

ic
s
t
r

L
oa

d
ty

pe
ta

g/
co

m
m

en
t.

s
l
k

b
u
s
_
n
a
m
e

ID
s
t
r

B
us

na
m

e
of

sl
ac

k,
m

us
tb

e
un

iq
ue

.
s
l
k

p
M

ea
su

re
m

en
t

f
l
o
a
t

R
ea

lp
ow

er
im

po
rt

at
sl

ac
k. (c

on
tin

ue
d

on
ne

xt
pa

ge
)

238 Data model for power system model (SysModel)
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

s
l
k

q
M

ea
su

re
m

en
t

f
l
o
a
t

R
ea

ct
iv

e
po

w
er

im
po

rt
at

sl
ac

k.
s
l
k

v
o
l
t
s
_
d
e
g

D
yn

am
ic

f
l
o
a
t

Vo
lta

ge
an

gl
e

se
tp

oi
nt

of
sl

ac
k,

in
de

gr
ee

s.
s
l
k

v
o
l
t
s
_
p
u

D
yn

am
ic

f
l
o
a
t

Vo
lta

ge
m

ag
ni

tu
de

se
tp

oi
nt

of
sl

ac
k,

in
pu

.
s
t
o

_
p

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
al

po
w

er
ou

tp
ut

.
s
t
o

_
p
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

lp
ow

er
ou

tp
ut

.
s
t
o

_
q

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

re
ac

tiv
e

po
w

er
ou

tp
ut

.
s
t
o

_
q
_
l
a
s
t

In
te

rn
al

f
l
o
a
t

L
as

tr
ea

ct
iv

e
po

w
er

ou
tp

ut
.

s
t
o

_
q
_
m
a
x

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
ax

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
s
t
o

_
q
_
m
i
n

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

m
in

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
s
t
o

_
v

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

vo
lta

ge
of

un
it,

0
in

Q
/P

F
m

od
e.

s
t
o

b
u
s

St
at

ic
s
t
r

B
us

(n
am

e)
th

at
th

e
un

it
is

at
ta

ch
ed

to
.

s
t
o

c
a
p
a
c
i
t
y

St
at

ic
f
l
o
a
t

St
or

ag
e

ca
pa

ci
ty

,i
n

M
W

x
in

te
rv

al
s.

s
t
o

e
f
f
i
c
i
e
n
c
y

St
at

ic
f
l
o
a
t

C
ha

rg
e/

di
sc

ha
rg

e
ef

fic
ie

nc
y.

s
t
o

e
n
a
b
l
e
d

D
yn

am
ic

b
o
o
l

E
na

bl
es

co
nt

ro
lb

y
an

al
go

ri
th

m
.

s
t
o

m
o
d
e
_
p

M
od

e
s
t
r

M
od

e
se

le
ct

ed
fo

rr
ea

lp
ow

er
.

s
t
o

m
o
d
e
_
p
_
l
i
s
t

M
od

el
is

t
l
i
s
t

M
od

es
av

ai
la

bl
e

fo
rr

ea
lp

ow
er

.
s
t
o

m
o
d
e
_
q

M
od

e
s
t
r

M
od

e
se

le
ct

ed
fo

rr
ea

ct
iv

e
po

w
er

.
s
t
o

m
o
d
e
_
q
_
l
i
s
t

M
od

el
is

t
l
i
s
t

M
od

es
av

ai
la

bl
e

fo
rr

ea
ct

iv
e

po
w

er
.

s
t
o

n
a
m
e

ID
s
t
r

St
or

ag
e

un
it

na
m

e,
m

us
tb

e
un

iq
ue

.
s
t
o

p
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

al
po

w
er

ou
tp

ut
of

un
it.

s
t
o

p
_
a
d
j
_
d
n

D
yn

am
ic

f
l
o
a
t

H
ow

m
uc

h
th

e
de

si
re

d
re

al
po

w
er

ca
n

be
re

du
ce

d.
(c

on
tin

ue
d

on
ne

xt
pa

ge
)

239
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

s
t
o

p
_
a
d
j
_
u
p

D
yn

am
ic

f
l
o
a
t

H
ow

m
uc

h
th

e
de

si
re

d
re

al
po

w
er

ca
n

be
in

cr
ea

se
d.

s
t
o

p
_
c
a
p
_
m
a
x

C
on

tr
ol

f
l
o
a
t

A
lg

or
ith

m
-s

et
m

ax
im

um
re

al
po

w
er

in
C

A
P

m
od

e.
s
t
o

p
_
c
a
p
_
m
i
n

C
on

tr
ol

f
l
o
a
t

A
lg

or
ith

m
-s

et
m

in
im

um
re

al
po

w
er

in
C

A
P

m
od

e.
s
t
o

p
_
c
m
d

C
on

tr
ol

f
l
o
a
t

A
lg

or
ith

m
-s

et
re

al
po

w
er

ta
rg

et
in

SE
T

m
od

e.
s
t
o

p
_
d
e
s

D
yn

am
ic

f
l
o
a
t

T
he

de
si

re
d

re
al

po
w

er
ou

tp
ut

of
th

e
un

it.
s
t
o

p
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

re
al

po
w

er
ou

tp
ut

.
s
t
o

p
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

re
al

po
w

er
ou

tp
ut

.
s
t
o

p
_
r
a
m
p

St
at

ic
f
l
o
a
t

M
ax

im
um

re
al

po
w

er
ra

m
p

ra
te

.
s
t
o

p
f
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

po
w

er
fa

ct
or

(e
xp

or
t)

.
s
t
o

p
f
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

.
s
t
o

p
f
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

po
w

er
fa

ct
or

(i
n

pf
m

od
e)

.
s
t
o

q
M

ea
su

re
m

en
t

f
l
o
a
t

M
ea

su
re

d
re

ac
tiv

e
po

w
er

ou
tp

ut
of

un
it.

s
t
o

q
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

re
ac

tiv
e

po
w

er
ou

tp
ut

.
s
t
o

q
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
s
t
o

q
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

re
ac

tiv
e

po
w

er
ou

tp
ut

.
s
t
o

q
_
r
a
m
p

St
at

ic
f
l
o
a
t

M
ax

im
um

re
ac

tiv
e

po
w

er
ra

m
p

ra
te

.
s
t
o

s
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

ap
pa

re
nt

po
w

er
of

un
it.

s
t
o

s
o
c

D
yn

am
ic

f
l
o
a
t

St
at

e
of

ch
ar

ge
.

s
t
o

t
y
p
e

St
at

ic
s
t
r

U
ni

tt
yp

e
ta

g/
co

m
m

en
t.

s
t
o

v
_
c
m
d

C
on

tr
ol

f
l
o
a
t

C
om

m
an

de
d

vo
lta

ge
at

ou
tp

ut
.

s
t
o

v
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

vo
lta

ge
of

ou
tp

ut
.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

240 Data model for power system model (SysModel)
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

s
t
o

v
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

vo
lta

ge
of

ou
tp

ut
.

s
y
s

c
o
m
m
e
n
t
s

St
at

ic
s
t
r

C
om

m
en

ts
ab

ou
tt

he
ne

tw
or

k.
s
y
s

n
a
m
e

ID
s
t
r

Sy
st

em
na

m
e.

s
y
s

v
e
r
s
i
o
n

St
at

ic
s
t
r

N
et

w
or

k/
sy

st
em

ve
rs

io
n.

t
x

_
s
h
i
f
t
_
a
n
g
l
e

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

ph
as

e
sh

if
ta

ng
le

.
t
x

_
s
h
i
f
t
_
l
a
s
t

In
te

rn
al

i
n
t

L
as

tp
ha

se
sh

if
tt

ap
va

lu
e.

t
x

_
s
t
a
t
u
s

In
te

rn
al

b
o
o
l

C
ir

cu
it

st
at

us
(i

n/
ou

t)
.

t
x

_
t
a
p
_
l
a
s
t

In
te

rn
al

i
n
t

L
as

tt
ap

va
lu

e.
t
x

_
t
a
p
_
r
a
t
i
o

In
te

rn
al

f
l
o
a
t

C
al

cu
la

te
d

tr
an

sf
or

m
er

ra
tio

.
t
x

b
u
s
_
f
r
o
m

St
at

ic
s
t
r

B
us

th
at

ci
rc

ui
t/t

ra
ns

fo
rm

er
is

fr
om

.
t
x

b
u
s
_
t
o

St
at

ic
s
t
r

B
us

th
at

ci
rc

ui
t/t

ra
ns

fo
rm

er
is

to
.

t
x

c
o
n
t
r
o
l
_
a
t
_
f
r
o
m

D
yn

am
ic

b
o
o
l

To
gg

le
s

w
he

th
er

’f
ro

m
’e

nd
co

nt
ro

ls
th

e
tx

.
t
x

e
l
e
c
_
b

St
at

ic
f
l
o
a
t

C
ha

rg
in

g
su

sc
ep

ta
nc

e,
in

pu
.

t
x

e
l
e
c
_
r

St
at

ic
f
l
o
a
t

R
es

is
ta

nc
e,

in
pu

.
t
x

e
l
e
c
_
x

St
at

ic
f
l
o
a
t

R
ea

ct
an

ce
,i

n
pu

.
t
x

e
n
a
b
l
e
d

D
yn

am
ic

b
o
o
l

To
gg

le
s

w
he

th
er

an
al

go
ri

th
m

ca
n

co
nt

ro
lt

he
tx

.
t
x

n
a
m
e

ID
s
t
r

C
ir

cu
it/

tr
an

sf
or

m
er

na
m

e,
m

us
tb

e
un

iq
ue

.
t
x

p
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

lp
ow

er
at

’f
ro

m
’e

nd
to

w
ar

ds
’to

’e
nd

.
t
x

p
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

lp
ow

er
at

’to
’e

nd
to

w
ar

ds
’f

ro
m

’e
nd

.
t
x

q
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

ct
iv

e
po

w
er

at
’f

ro
m

’e
nd

to
w

ar
ds

’to
’e

nd
.

t
x

q
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

R
ea

ct
iv

e
po

w
er

at
’to

’e
nd

to
w

ar
ds

’f
ro

m
’e

nd
.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

241
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

t
x

r
a
t
i
n
g
_
d
y
n
a
m
i
c

D
yn

am
ic

f
l
o
a
t

D
yn

am
ic

ra
tin

g,
in

M
VA

.
t
x

r
a
t
i
n
g
_
s
t
a
t
i
c

St
at

ic
f
l
o
a
t

St
at

ic
ra

tin
g,

in
M

VA
.

t
x

s
_
f
r
o
m

M
ea

su
re

m
en

t
f
l
o
a
t

A
pp

ar
en

tp
ow

er
m

ag
ni

tu
de

at
’f

ro
m

’
en

d
to

w
ar

ds
’to

’e
nd

.
t
x

s
_
t
o

M
ea

su
re

m
en

t
f
l
o
a
t

A
pp

ar
en

t
po

w
er

m
ag

ni
tu

de
at

’t
o’

en
d

to
w

ar
ds

’f
ro

m
’e

nd
.

t
x

s
h
i
f
t

D
yn

am
ic

i
n
t

C
ur

re
nt

ph
as

e
sh

if
tt

ap
va

lu
e.

t
x

s
h
i
f
t
_
c
m
d

C
on

tr
ol

i
n
t

C
ur

re
nt

sh
if

tt
ap

se
tti

ng
co

m
m

an
d,

st
ar

ts
at

0.
t
x

s
h
i
f
t
_
c
o
u
n
t
d
o
w
n

D
yn

am
ic

i
n
t

Sh
if

to
pe

ra
tio

n
de

la
y

re
m

ai
ni

ng
.

t
x

s
h
i
f
t
_
d
e
l
a
y

St
at

ic
i
n
t

R
es

tri
ct

s
th

e
nu

m
be

ro
fs

hi
ft

ta
pp

in
g

op
er

at
io

ns
:+

n
de

la
ys

op
er

at
io

ns
fo

rn
in

te
rv

al
s,

-n
re

st
ri

ct
s

op
er

a-
tio

ns
to

n
w

ith
in

an
in

te
rv

al
,0

is
un

re
st

ri
ct

ed
.

t
x

s
h
i
f
t
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

ph
as

e
sh

if
t,

in
de

gr
ee

s.
t
x

s
h
i
f
t
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

ph
as

e
sh

if
t,

in
de

gr
ee

s.
t
x

s
h
i
f
t
_
s
t
e
p
s

St
at

ic
i
n
t

N
um

be
ro

fp
ha

se
sh

if
tt

ap
st

ep
s,

1
as

a
m

in
im

um
.

t
x

t
a
p

D
yn

am
ic

i
n
t

C
ur

re
nt

ta
p

va
lu

e.
t
x

t
a
p
_
c
m
d

C
on

tr
ol

i
n
t

C
ur

re
nt

ta
p

se
tti

ng
co

m
m

an
d,

st
ar

ts
at

0.
t
x

t
a
p
_
c
o
u
n
t
d
o
w
n

D
yn

am
ic

i
n
t

Ta
p

op
er

at
io

n
de

la
y

re
m

ai
ni

ng
.

t
x

t
a
p
_
d
e
l
a
y

St
at

ic
i
n
t

R
es

tr
ic

ts
th

e
nu

m
be

r
of

ta
p

op
er

at
io

ns
:

+n
de

la
ys

op
er

at
io

ns
fo

rn
in

te
rv

al
s,

-n
re

st
ri

ct
s

op
er

at
io

ns
to

n
w

ith
in

an
in

te
rv

al
,0

is
un

re
st

ri
ct

ed
.

(c
on

tin
ue

d
on

ne
xt

pa
ge

)

242 Data model for power system model (SysModel)
Ta

bl
e

A
.1

(c
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge
)

Ty
pe

N
am

e
Pa

ra
m

et
er

N
am

e
Pa

ra
m

et
er

Ty
pe

Py
th

on
D

at
a

Ty
pe

C
om

m
en

t

t
x

t
a
p
_
m
a
x

St
at

ic
f
l
o
a
t

M
ax

im
um

ta
p,

%
aw

ay
fr

om
no

m
in

al
.

t
x

t
a
p
_
m
i
n

St
at

ic
f
l
o
a
t

M
in

im
um

ta
p,

%
aw

ay
fr

om
no

m
in

al
.

t
x

t
a
p
_
s
t
e
p
s

St
at

ic
i
n
t

N
um

be
ro

ft
ap

st
ep

s,
1

as
a

m
in

im
um

.
t
x

t
y
p
e

St
at

ic
s
t
r

U
ni

tt
yp

e
ta

g/
co

m
m

en
t.

z
n

b
u
s
e
s

D
yn

am
ic

l
i
s
t

L
is

to
fb

us
es

w
ith

in
zo

ne
.

z
n

i
d

ID
s
t
r

Z
on

e
id

,m
us

tb
e

un
iq

ue
.

Appendix B

Case study system data

B.1 11 kV radial distribution system

Table B.1 Bus data for 11 kV radial distribution system

Name Nominal voltage [kV]
Bus 1 33.000

Bus 10 11.000
Bus 2 11.000
Bus 3 11.000
Bus 4 11.000
Bus 5 11.000
Bus 6 11.000
Bus 7 11.000
Bus 8 11.000
Bus 9 11.000

Table B.2 Circuit data for 11 kV radial distribution system

Name R [pu] X [pu] B [pu] Rating [MVA]
Circuit 2-3 0.17385 0.08455 0.00000 7.62
Circuit 3-4 0.00097 0.00052 0.00000 7.43
Circuit 4-5 0.05190 0.02782 0.00000 7.43
Circuit 5-6 0.00339 0.00165 0.00000 2.00
Circuit 6-7 0.03916 0.01904 0.00000 7.62

(continued on next page)

244 Case study system data

Table B.2 (continued from previous page)
Name R [pu] X [pu] B [pu] Rating [MVA]

Circuit 7-8 0.00068 0.00033 0.00000 7.62
Circuit 8-9 0.01612 0.00784 0.00000 1.50
Circuit 9-10 0.29930 0.08139 0.00000 5.14

Table B.3 Transformer data for 11 kV radial distribution system

Name R [pu] X [pu] Rating [MVA] Tap min Tap max Tap steps
Transformer 1-2 0.00000 1.00000 16.00 -10.00% 10.00% 21

Table B.4 Load data for 11 kV radial distribution system

Name Bus P [MW] Q [MVAr]
Load 3 Bus 3 0.28 0.14
Load 4 Bus 4 0.52 0.25
Load 5 Bus 5 0.36 0.17
Load 7 Bus 7 0.81 0.39
Load 8 Bus 8 0.81 0.39
Load 9 Bus 9 0.38 0.20

Table B.5 Generator data for 11 kV radial distribution system

Name Bus P max [MW] Q min [MVAr] Q max [MVAr] Voltage [pu]
Generator 10 Bus 10 2.00 0.00 0.00 1.00000
Generator 6 Bus 6 1.60 0.00 0.00 1.00000

B.2 33 kV meshed distribution system

Table B.6 Bus data for 33 kV meshed distribution system

Name Nominal voltage [kV]
Bus 1 275.000

Bus 10 132.000
Bus 11 132.000

(continued on next page)

B.2 33 kV meshed distribution system 245

Table B.6 (continued from previous page)
Name Nominal voltage [kV]
Bus 12 33.000
Bus 13 33.000
Bus 14 33.000
Bus 15 11.000
Bus 16 11.000
Bus 17 0.690
Bus 18 33.000
Bus 19 33.000
Bus 2 132.000

Bus 20 33.000
Bus 21 33.000
Bus 22 33.000
Bus 23 33.000
Bus 24 33.000
Bus 25 33.000
Bus 26 33.000
Bus 27 33.000
Bus 3 132.000
Bus 4 132.000
Bus 5 132.000
Bus 6 132.000
Bus 7 132.000
Bus 8 132.000
Bus 9 132.000

Table B.7 Circuit data for 33 kV meshed distribution system

Name R [pu] X [pu] B [pu] Rating [MVA]
Circuit 10-11 0.01080 0.02484 0.00660 88.80
Circuit 13-14 0.24530 0.48450 0.00000 7.00
Circuit 13-19 0.21940 0.43340 0.00000 12.00
Circuit 14-18 0.11644 0.19593 0.00302 16.40
Circuit 16-15 0.21548 0.09862 0.00000 100.00
Circuit 19-18 0.03949 0.04220 0.00331 16.80

(continued on next page)

246 Case study system data

Table B.7 (continued from previous page)
Name R [pu] X [pu] B [pu] Rating [MVA]

Circuit 19-20 0.01470 0.02390 0.00000 16.80
Circuit 19-21 0.01120 0.01730 0.00000 16.48
Circuit 19-22 0.13620 0.18800 0.00000 17.60
Circuit 19-25 0.24960 0.47190 0.00000 16.48
Circuit 2-3 0.00918 0.03197 0.01373 80.00
Circuit 2-4 0.02225 0.09060 0.03959 80.00

Circuit 22-13 0.20291 0.39960 0.00884 10.00
Circuit 23-22 0.34455 0.66949 0.00000 16.48
Circuit 23-24 0.25578 0.50288 0.00000 17.20
Circuit 24-25 0.30772 0.60641 0.00000 13.44
Circuit 25-26 0.08620 0.16440 0.00000 16.48
Circuit 27-26 0.24060 0.47470 0.00000 16.88
Circuit 3-4 0.01465 0.06606 0.02671 80.00

Circuit 4-5 (1) 0.00959 0.04221 0.01556 80.00
Circuit 4-5 (2) 0.01710 0.04541 0.00893 80.00

Circuit 5-6 0.02064 0.04875 0.01426 71.20
Circuit 5-8 0.02340 0.05528 0.01093 80.00
Circuit 6-7 0.03499 0.08265 0.01634 88.80
Circuit 8-10 0.04407 0.10408 0.02058 80.00
Circuit 8-9 0.00102 0.00241 0.00048 80.00

Table B.8 Transformer data for 33 kV meshed distribution system

Name R [pu] X [pu] Rating [MVA] Tap min Tap max Tap steps
Transformer 1-2 (1) 0.00167 0.08333 384.00 -15.00% 15.00% 19
Transformer 1-2 (2) 0.00167 0.08333 384.00 -15.00% 15.00% 19
Transformer 1-2 (3) 0.00167 0.08333 100.00 -15.00% 15.00% 19
Transformer 1-2 (4) 0.00167 0.08333 192.00 -15.00% 15.00% 19
Transformer 10-13 0.01430 0.28266 60.00 -20.00% 10.00% 19
Transformer 11-12 0.01083 0.25000 72.00 -20.00% 10.00% 19
Transformer 14-15 0.13330 1.33333 100.00 -10.00% 10.00% 17
Transformer 17-16 0.08330 0.83350 100.00 0.00% 0.00% 1
Transformer 7-19 0.01593 0.27760 60.00 -20.00% 10.00% 19

B.3 IEEE 14-bus system 247

Table B.9 Load data for 33 kV meshed distribution system

Name Bus P [MW] Q [MVAr]
Load 14 Bus 14 3.59 0.51
Load 18 Bus 18 7.98 7.97
Load 19 Bus 19 7.01 1.09
Load 20 Bus 20 4.88 1.20
Load 21 Bus 21 7.21 2.23
Load 22 Bus 22 9.62 0.97
Load 24 Bus 24 3.56 0.94
Load 25 Bus 25 4.09 0.97
Load 26 Bus 26 4.96 0.64
Load 27 Bus 27 4.41 0.43

Table B.10 Generator data for 33 kV meshed distribution system

Name Bus P max [MW] Q min [MVAr] Q max [MVAr] Voltage [pu]
Generator 12 Bus 12 58.00 0.00 0.00 1.00000
Generator 13 Bus 13 44.40 0.00 0.00 1.00000
Generator 17 Bus 17 9.30 0.00 0.00 1.00000
Generator 23 Bus 23 10.20 0.00 0.00 1.00000

B.3 IEEE 14-bus system

Table B.11 Bus data for IEEE 14-bus system

Name Nominal voltage [kV]
Bus 1 1.000

Bus 10 1.000
Bus 11 1.000
Bus 12 1.000
Bus 13 1.000
Bus 14 1.000
Bus 2 1.000
Bus 3 1.000

(continued on next page)

248 Case study system data

Table B.11 (continued from previous page)
Name Nominal voltage [kV]
Bus 4 1.000
Bus 5 1.000
Bus 6 1.000
Bus 7 1.000
Bus 8 1.000
Bus 9 1.000

Table B.12 Circuit data for IEEE 14-bus system

Name R [pu] X [pu] B [pu] Rating [MVA]
Circuit 1-2 0.01938 0.05917 0.05280 250.00
Circuit 1-5 0.05403 0.22304 0.04920 100.00

Circuit 10-11 0.08205 0.19207 0.00000 10.00
Circuit 12-13 0.22092 0.19988 0.00000 10.00
Circuit 13-14 0.17093 0.34802 0.00000 10.00
Circuit 2-3 0.04699 0.19797 0.04380 100.00
Circuit 2-4 0.05811 0.17632 0.03400 75.00
Circuit 2-5 0.05695 0.17388 0.03460 50.00
Circuit 3-4 0.06701 0.17103 0.01280 30.00
Circuit 4-5 0.01335 0.04211 0.00000 75.00
Circuit 6-11 0.09498 0.19890 0.00000 10.00
Circuit 6-12 0.12291 0.25581 0.00000 15.00
Circuit 6-13 0.06615 0.13027 0.00000 25.00
Circuit 9-10 0.03181 0.08450 0.00000 10.00
Circuit 9-14 0.12711 0.27038 0.00000 15.00

Table B.13 Transformer data for IEEE 14-bus system

Name R [pu] X [pu] Rating [MVA] Tap min Tap max Tap steps
Transformer 4-7 0.00000 0.20912 50.00 -2.20% -2.20% 1
Transformer 4-9 0.00000 0.55618 25.00 -3.10% -3.10% 1
Transformer 5-6 0.00000 0.25202 75.00 -6.80% -6.80% 1
Transformer 7-8 0.00000 0.17615 25.00 0.00% 0.00% 1

(continued on next page)

B.4 IEEE 57-bus system 249

Table B.13 (continued from previous page)
Name R [pu] X [pu] Rating [MVA] Tap min Tap max Tap steps

Transformer 7-9 0.00000 0.11001 50.00 0.00% 0.00% 1

Table B.14 Load data for IEEE 14-bus system

Name Bus P [MW] Q [MVAr]
Load 10 Bus 10 9.00 5.80
Load 11 Bus 11 3.50 1.80
Load 12 Bus 12 6.10 1.60
Load 13 Bus 13 13.50 5.80
Load 14 Bus 14 14.90 5.00
Load 2 Bus 2 21.70 12.70
Load 3 Bus 3 94.20 19.00
Load 4 Bus 4 47.80 -3.90
Load 5 Bus 5 7.60 1.60
Load 6 Bus 6 11.20 7.50
Load 9 Bus 9 29.50 16.60

Table B.15 Generator data for IEEE 14-bus system

Name Bus P max [MW] Q min [MVAr] Q max [MVAr] Voltage [pu]
Generator 10 Bus 10 10.00 -5.00 5.00 1.00000
Generator 11 Bus 11 20.00 -10.00 10.00 1.00000
Generator 12 Bus 12 20.00 -10.00 10.00 1.00000
Generator 14 Bus 14 30.00 -15.00 15.00 1.00000

B.4 IEEE 57-bus system

Table B.16 Bus data for IEEE 57-bus system

Name Nominal voltage [kV]
Bus 1 1.000

Bus 10 1.000
Bus 11 1.000

(continued on next page)

250 Case study system data

Table B.16 (continued from previous page)
Name Nominal voltage [kV]
Bus 12 1.000
Bus 13 1.000
Bus 14 1.000
Bus 15 1.000
Bus 16 1.000
Bus 17 1.000
Bus 18 1.000
Bus 19 1.000
Bus 2 1.000

Bus 20 1.000
Bus 21 1.000
Bus 22 1.000
Bus 23 1.000
Bus 24 1.000
Bus 25 1.000
Bus 26 1.000
Bus 27 1.000
Bus 28 1.000
Bus 29 1.000
Bus 3 1.000

Bus 30 1.000
Bus 31 1.000
Bus 32 1.000
Bus 33 1.000
Bus 34 1.000
Bus 35 1.000
Bus 36 1.000
Bus 37 1.000
Bus 38 1.000
Bus 39 1.000
Bus 4 1.000

Bus 40 1.000
Bus 41 1.000

(continued on next page)

B.4 IEEE 57-bus system 251

Table B.16 (continued from previous page)
Name Nominal voltage [kV]
Bus 42 1.000
Bus 43 1.000
Bus 44 1.000
Bus 45 1.000
Bus 46 1.000
Bus 47 1.000
Bus 48 1.000
Bus 49 1.000
Bus 5 1.000

Bus 50 1.000
Bus 51 1.000
Bus 52 1.000
Bus 53 1.000
Bus 54 1.000
Bus 55 1.000
Bus 56 1.000
Bus 57 1.000
Bus 6 1.000
Bus 7 1.000
Bus 8 1.000
Bus 9 1.000

Table B.17 Circuit data for IEEE 57-bus system

Name R [pu] X [pu] B [pu] Rating [MVA]
Circuit 1-15 0.01780 0.09100 0.09880 580.00
Circuit 1-16 0.04540 0.20600 0.05460 300.00
Circuit 1-17 0.02380 0.10800 0.02860 320.00
Circuit 1-2 0.00830 0.02800 0.12900 440.00

Circuit 10-12 0.02770 0.12620 0.03280 60.00
Circuit 11-13 0.02230 0.07320 0.01880 120.00
Circuit 12-13 0.01780 0.05800 0.06040 160.00
Circuit 12-16 0.01800 0.08130 0.02160 250.00
Circuit 12-17 0.03970 0.17900 0.04760 270.00

(continued on next page)

252 Case study system data

Table B.17 (continued from previous page)
Name R [pu] X [pu] B [pu] Rating [MVA]

Circuit 13-14 0.01320 0.04340 0.01100 170.00
Circuit 13-15 0.02690 0.08690 0.02300 230.00
Circuit 14-15 0.01710 0.05470 0.01480 240.00
Circuit 18-19 0.46100 0.68500 0.00000 7.00
Circuit 19-20 0.28300 0.43400 0.00000 3.00
Circuit 2-3 0.02980 0.08500 0.08180 430.00

Circuit 21-22 0.07360 0.11700 0.00000 10.00
Circuit 22-23 0.00990 0.01520 0.00000 40.00
Circuit 22-38 0.01920 0.02950 0.00000 40.00
Circuit 23-24 0.16600 0.25600 0.00840 40.00
Circuit 25-30 0.13500 0.20200 0.00000 10.00
Circuit 26-27 0.16500 0.25400 0.00000 40.00
Circuit 27-28 0.06180 0.09540 0.00000 25.00
Circuit 28-29 0.04180 0.05870 0.00000 25.00
Circuit 29-52 0.14420 0.18700 0.00000 30.00
Circuit 3-15 0.01620 0.05300 0.05440 70.00
Circuit 3-4 0.01120 0.03660 0.03800 270.00

Circuit 30-31 0.32600 0.49700 0.00000 3.50
Circuit 31-32 0.50700 0.75500 0.00000 10.00
Circuit 32-33 0.03920 0.03600 0.00000 10.00
Circuit 34-35 0.05200 0.07800 0.00320 20.00
Circuit 35-36 0.04300 0.05370 0.00160 20.00
Circuit 36-37 0.02900 0.03660 0.00000 30.00
Circuit 36-40 0.03000 0.04660 0.00000 10.00
Circuit 37-38 0.06510 0.10090 0.00200 40.00
Circuit 37-39 0.02390 0.03790 0.00000 10.00
Circuit 38-44 0.02890 0.05850 0.00200 70.00
Circuit 38-48 0.03120 0.04820 0.00000 40.00
Circuit 38-49 0.11500 0.17700 0.00300 20.00
Circuit 4-5 0.06250 0.13200 0.02580 100.00
Circuit 4-6 0.04300 0.14800 0.03480 140.00

Circuit 41-42 0.20700 0.35200 0.00000 10.00
Circuit 44-45 0.06240 0.12420 0.00400 90.00

(continued on next page)

B.4 IEEE 57-bus system 253

Table B.17 (continued from previous page)
Name R [pu] X [pu] B [pu] Rating [MVA]

Circuit 46-47 0.02300 0.06800 0.00320 80.00
Circuit 47-48 0.01820 0.02330 0.00000 40.00
Circuit 48-49 0.08340 0.12900 0.00480 30.00
Circuit 49-50 0.08010 0.12800 0.00000 40.00
Circuit 5-6 0.03020 0.06410 0.01240 90.00

Circuit 50-51 0.13860 0.22000 0.00000 25.00
Circuit 52-53 0.07620 0.09840 0.00000 15.00
Circuit 53-54 0.18780 0.23200 0.00000 20.00
Circuit 54-55 0.17320 0.22650 0.00000 30.00
Circuit 56-41 0.55300 0.54900 0.00000 5.00
Circuit 56-42 0.21250 0.35400 0.00000 10.00
Circuit 57-56 0.17400 0.26000 0.00000 3.00
Circuit 6-7 0.02000 0.10200 0.02760 80.00
Circuit 6-8 0.03390 0.17300 0.04700 70.00
Circuit 7-8 0.01390 0.07120 0.01940 70.00
Circuit 8-9 0.00990 0.05050 0.05480 150.00

Circuit 9-10 0.03690 0.16790 0.04400 40.00
Circuit 9-11 0.02580 0.08480 0.02180 95.00
Circuit 9-12 0.06480 0.29500 0.07720 40.00
Circuit 9-13 0.04810 0.15800 0.04060 100.00

Table B.18 Transformer data for IEEE 57-bus system

Name R [pu] X [pu] Rating [MVA] Tap min Tap max Tap steps
Transformer 10-51 0.00000 0.07120 50.00 -7.00% -7.00% 1
Transformer 11-41 0.00000 0.74900 20.00 -4.50% -4.50% 1
Transformer 11-43 0.00000 0.15300 20.00 -4.20% -4.20% 1
Transformer 13-49 0.00000 0.19100 60.00 -10.50% -10.50% 1
Transformer 14-46 0.00000 0.07350 80.00 -10.00% -10.00% 1
Transformer 15-45 0.00000 0.10420 90.00 -4.50% -4.50% 1
Transformer 21-20 0.00000 0.77670 10.00 4.30% 4.30% 1

Transformer 24-25 (1) 0.00000 1.18200 10.00 0.00% 0.00% 1
Transformer 24-25 (2) 0.00000 1.23000 10.00 0.00% 0.00% 1

Transformer 24-26 0.00000 0.04730 40.00 4.30% 4.30% 1
(continued on next page)

254 Case study system data

Table B.18 (continued from previous page)
Name R [pu] X [pu] Rating [MVA] Tap min Tap max Tap steps

Transformer 34-32 0.00000 0.95300 20.00 -2.50% -2.50% 1
Transformer 39-57 0.00000 1.35500 10.00 -2.00% -2.00% 1

Transformer 4-18 (1) 0.00000 0.55500 20.00 -3.00% -3.00% 1
Transformer 4-18 (2) 0.00000 0.43000 30.00 -2.20% -2.20% 1
Transformer 40-56 0.00000 1.19500 10.00 -4.20% -4.20% 1
Transformer 41-43 0.00000 0.04730 20.00 0.00% 0.00% 1
Transformer 7-29 0.00000 0.06480 80.00 -3.30% -3.30% 1
Transformer 9-55 0.00000 0.12050 40.00 -6.00% -6.00% 1

Table B.19 Load data for IEEE 57-bus system

Name Bus P [MW] Q [MVAr]
Load 10 Bus 10 5.00 2.00
Load 12 Bus 12 377.00 24.00
Load 13 Bus 13 18.00 2.30
Load 14 Bus 14 10.50 5.30
Load 15 Bus 15 22.00 5.00
Load 16 Bus 16 43.00 3.00
Load 17 Bus 17 42.00 8.00
Load 18 Bus 18 27.20 9.80
Load 19 Bus 19 3.30 0.60
Load 2 Bus 2 3.00 88.00

Load 20 Bus 20 2.30 1.00
Load 23 Bus 23 6.30 2.10
Load 25 Bus 25 6.30 3.20
Load 27 Bus 27 9.30 0.50
Load 28 Bus 28 4.60 2.30
Load 29 Bus 29 17.00 2.60
Load 3 Bus 3 41.00 21.00

Load 30 Bus 30 3.60 1.80
Load 31 Bus 31 5.80 2.90
Load 32 Bus 32 1.60 0.80
Load 33 Bus 33 3.80 1.90
Load 35 Bus 35 6.00 3.00

(continued on next page)

B.4 IEEE 57-bus system 255

Table B.19 (continued from previous page)
Name Bus P [MW] Q [MVAr]

Load 38 Bus 38 14.00 7.00
Load 41 Bus 41 6.30 3.00
Load 42 Bus 42 7.10 4.40
Load 43 Bus 43 2.00 1.00
Load 44 Bus 44 12.00 1.80
Load 47 Bus 47 29.70 11.60
Load 49 Bus 49 18.00 8.50
Load 5 Bus 5 13.00 4.00

Load 50 Bus 50 21.00 10.50
Load 51 Bus 51 18.00 5.30
Load 52 Bus 52 4.90 2.20
Load 53 Bus 53 20.00 10.00
Load 54 Bus 54 4.10 1.40
Load 55 Bus 55 6.80 3.40
Load 56 Bus 56 7.60 2.20
Load 57 Bus 57 6.70 2.00
Load 6 Bus 6 75.00 2.00
Load 8 Bus 8 150.00 22.00
Load 9 Bus 9 121.00 26.00

Table B.20 Generator data for IEEE 57-bus system

Name Bus P max [MW] Q min [MVAr] Q max [MVAr] Voltage [pu]
Generator 12 Bus 12 410.00 -500.00 500.00 1.01500
Generator 2 Bus 2 0.00 -500.00 500.00 1.01000
Generator 3 Bus 3 140.00 -500.00 500.00 0.98500
Generator 6 Bus 6 0.00 -500.00 500.00 0.98000
Generator 8 Bus 8 550.00 -500.00 500.00 1.00500
Generator 9 Bus 9 0.00 -500.00 500.00 0.98000

Appendix C

Additional power flow management
algorithm performance data

258 Additional power flow management algorithm performance data

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 3344 0 2 0 2 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 871.95 0.00 0.10 0.00 0.10 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 2121.40 769.94 2121.40 769.94 771.46 771.46

E T L 856.20 855.40 855.40 770.08 855.40 770.08 770.08 770.08

E T L 891.01 890.34 882.49 770.08 882.49 770.08 770.08 770.08

E T L 773.33 772.66 772.66 770.08 772.66 770.08 770.08 770.08

E T L 776.81 776.14 776.14 770.08 776.14 770.08 770.08 770.08

E T L 773.33 772.66 772.66 770.08 772.66 770.08 770.08 770.08

E T L 773.29 772.62 772.62 770.08 772.62 770.08 770.08 770.08

E T L 773.29 772.62 772.62 770.08 772.62 770.08 770.08 770.08

(c) Total curtailment applied [MWh]

Fig. C.1 Comparison of the performance of oracle 1 for the 11 kV radial distribution system
with different algorithm combinations considered for selection

259

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 3344 0 2 0 2 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

E T L 0 0 0 0 0 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 871.95 0.00 0.10 0.00 0.10 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E T L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 2121.40 769.94 2121.40 769.94 771.46 771.46

E T L 856.20 855.40 855.40 770.08 855.40 770.08 770.08 770.08

E T L 891.01 890.34 882.49 770.08 882.49 770.08 770.08 770.08

E T L 773.33 772.66 772.66 770.08 772.66 770.08 770.08 770.08

E T L 776.81 776.14 776.14 770.08 776.14 770.08 770.08 770.08

E T L 773.33 772.66 772.66 770.08 772.66 770.08 770.08 770.08

E T L 773.29 772.62 772.62 770.08 772.62 770.08 770.08 770.08

E T L 773.29 772.62 772.62 770.08 772.62 770.08 770.08 770.08

(c) Total curtailment applied [MWh]

Fig. C.2 Comparison of the performance of oracle 2 for the 11 kV radial distribution system
with different algorithm combinations considered for selection

260 Additional power flow management algorithm performance data

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 14779 194 0 194 0 0 0

E T L 3594 3594 42 0 42 0 0 0

E T L 1903 1903 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1903 1903 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 9445.74 10.56 0.00 12.73 0.00 0.00 0.00

E T L 78.25 224.40 1.44 0.00 3.59 0.00 0.00 0.00

E T L 40.41 119.24 0.73 0.00 2.33 0.00 0.00 0.00

E T L 36.48 115.31 0.73 0.00 2.33 0.00 0.00 0.00

E T L 40.41 119.24 0.73 0.00 2.33 0.00 0.00 0.00

E T L 37.52 116.34 0.73 0.00 2.33 0.00 0.00 0.00

E T L 38.31 117.14 0.73 0.00 2.33 0.00 0.00 0.00

E T L 38.31 117.14 0.73 0.00 2.33 0.00 0.00 0.00

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 76910.75 40246.45 76894.78 40246.45 40230.24 40230.24

E T L 59905.56 57677.23 65971.97 40166.77 65956.11 40166.77 40150.83 40150.83

E T L 39694.49 39098.60 53549.92 39908.24 53538.15 39908.24 39893.69 39893.69

E T L 39743.66 39147.76 53214.32 39895.97 53202.56 39895.97 39881.42 39881.42

E T L 39694.49 39098.60 53549.92 39908.24 53538.15 39908.24 39893.69 39893.69

E T L 39737.32 39141.42 53214.32 39895.97 53202.55 39895.97 39881.42 39881.42

E T L 39727.48 39131.59 53211.91 39893.60 53200.14 39893.60 39879.06 39879.06

E T L 39727.48 39131.59 53211.91 39893.60 53200.14 39893.60 39879.06 39879.06

(c) Total curtailment applied [MWh]

Fig. C.3 Comparison of the performance of oracle 1 for the 33 kV meshed distribution system
with different algorithm combinations considered for selection

261

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 14779 194 0 194 0 0 0

E T L 3594 3594 42 0 42 0 0 0

E T L 1903 1903 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1903 1903 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

E T L 1819 1819 13 0 13 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 9445.74 10.56 0.00 10.56 0.00 0.00 0.00

E T L 78.25 78.25 0.47 0.00 0.47 0.00 0.00 0.00

E T L 40.41 40.41 0.11 0.00 0.11 0.00 0.00 0.00

E T L 36.48 36.48 0.11 0.00 0.11 0.00 0.00 0.00

E T L 40.37 40.37 0.11 0.00 0.11 0.00 0.00 0.00

E T L 36.47 36.47 0.11 0.00 0.11 0.00 0.00 0.00

E T L 36.48 36.48 0.11 0.00 0.11 0.00 0.00 0.00

E T L 36.47 36.47 0.11 0.00 0.11 0.00 0.00 0.00

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 76910.75 40246.45 76910.75 40246.45 40230.24 40230.24

E T L 59905.56 59892.74 66096.69 40166.77 66096.69 40166.77 40150.83 40150.83

E T L 39694.49 39686.60 53554.47 39908.24 53554.47 39908.24 39893.69 39893.69

E T L 39743.66 39735.77 53218.87 39895.97 53218.87 39895.97 39881.42 39881.42

E T L 39802.81 39794.92 53554.47 39908.24 53554.47 39908.24 39893.69 39893.69

E T L 39744.51 39736.62 53218.87 39895.97 53218.87 39895.97 39881.42 39881.42

E T L 39741.25 39733.36 53216.46 39893.60 53216.46 39893.60 39879.06 39879.06

E T L 39742.10 39734.21 53216.46 39893.60 53216.46 39893.60 39879.06 39879.06

(c) Total curtailment applied [MWh]

Fig. C.4 Comparison of the performance of oracle 2 for the 33 kV meshed distribution system
with different algorithm combinations considered for selection

262 Additional power flow management algorithm performance data

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 5345 45 24 45 24 0 0

E T L 66 66 0 0 0 0 0 0

E T L 60 60 0 1 0 1 0 0

E T L 1172 1169 16 1 16 1 0 0

E T L 42 42 0 0 0 0 0 0

E T L 46 46 0 0 0 0 0 0

E T L 45 45 0 0 0 0 0 0

E T L 42 42 0 0 0 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 9116.25 11.01 49.97 92.60 49.97 0.00 0.00

E T L 1.75 6.17 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.57 8.54 0.00 0.01 0.00 0.01 0.00 0.00

E T L 105.55 2175.08 0.90 0.01 29.51 0.01 0.00 0.00

E T L 1.21 4.37 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.30 4.75 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.29 4.46 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.21 4.37 0.00 0.00 0.00 0.00 0.00 0.00

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 58855.10 19544.04 58598.26 19544.04 19863.94 19863.94

E T L 33900.57 33855.96 33156.06 19652.35 33156.06 19652.35 19645.63 19645.63

E T L 21797.45 21735.54 22204.86 19544.02 22204.86 19544.02 19529.00 19529.00

E T L 19503.16 16188.67 32475.44 19471.93 32429.97 19471.93 19466.91 19466.91

E T L 21150.71 21124.05 21582.88 19445.80 21582.88 19445.80 19439.74 19439.74

E T L 24424.79 24396.11 24509.66 19416.65 24509.66 19416.65 19410.59 19410.59

E T L 20655.58 20629.02 21106.55 19372.05 21106.55 19372.05 19363.73 19363.73

E T L 20388.98 20362.42 20849.00 19317.46 20849.00 19317.46 19311.40 19311.40

(c) Total curtailment applied [MWh]

Fig. C.5 Comparison of the performance of oracle 1 for the IEEE 14-bus system with different
algorithm combinations considered for selection

263

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 5345 45 24 45 24 0 0

E T L 66 66 0 0 0 0 0 0

E T L 60 60 0 1 0 1 0 0

E T L 1172 1172 16 1 16 1 0 0

E T L 42 42 0 0 0 0 0 0

E T L 46 46 0 0 0 0 0 0

E T L 45 45 0 0 0 0 0 0

E T L 42 42 0 0 0 0 0 0

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 9116.25 11.01 49.97 11.01 49.97 0.00 0.00

E T L 1.75 1.75 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.57 1.57 0.00 0.01 0.00 0.01 0.00 0.00

E T L 105.55 105.55 0.55 0.01 0.55 0.01 0.00 0.00

E T L 1.16 1.16 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.26 1.26 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.25 1.25 0.00 0.00 0.00 0.00 0.00 0.00

E T L 1.16 1.16 0.00 0.00 0.00 0.00 0.00 0.00

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 58855.10 19544.04 58855.10 19544.04 19863.94 19863.94

E T L 33900.57 33889.36 33156.06 19652.35 33156.06 19652.35 19645.63 19645.63

E T L 21797.45 21793.06 22204.86 19544.02 22204.86 19544.02 19529.00 19529.00

E T L 19503.16 19498.88 32497.32 19471.93 32497.32 19471.93 19466.91 19466.91

E T L 21151.11 21146.72 21582.88 19445.80 21582.88 19445.80 19439.74 19439.74

E T L 24426.80 24422.51 24509.66 19416.65 24509.66 19416.65 19410.59 19410.59

E T L 20655.89 20651.61 21106.55 19372.05 21106.55 19372.05 19363.73 19363.73

E T L 20389.40 20385.11 20849.00 19317.46 20849.00 19317.46 19311.40 19311.40

(c) Total curtailment applied [MWh]

Fig. C.6 Comparison of the performance of oracle 2 for the IEEE 14-bus system with different
algorithm combinations considered for selection

264 Additional power flow management algorithm performance data

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 25377 3660 1367 3660 1367 768 768

E T L 24823 24823 3332 1367 3332 1367 768 768

E T L 24247 24246 3363 1367 3363 1367 768 768

E T L 12863 12860 3411 1367 3411 1367 768 768

E T L 24138 24138 3278 1367 3278 1367 768 768

E T L 12630 12630 3300 1367 3300 1367 768 768

E T L 12330 12329 3342 1367 3342 1367 768 768

E T L 12260 12260 3274 1367 3274 1367 768 768

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 678836.34 30389.77 1241.44 33971.65 1258.29 4352.19 4352.19

E T L 670366.33 672813.97 29762.04 1241.44 30233.15 1258.29 4352.19 4352.19

E T L 653798.21 659729.93 28731.76 1241.44 31325.87 1258.29 4352.19 4352.19

E T L 241625.85 257912.76 35238.65 1241.44 37764.98 1258.29 4352.19 4352.19

E T L 655545.49 657868.24 29481.80 1241.44 29953.45 1258.29 4352.19 4352.19

E T L 254935.47 256246.22 35949.43 1241.44 36365.57 1258.29 4352.19 4352.19

E T L 246650.62 249934.92 35272.47 1241.44 37196.98 1258.29 4352.19 4352.19

E T L 247791.31 249102.07 35756.55 1241.44 36172.68 1258.29 4352.19 4352.19

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 982967.03 749899.56 975409.24 749868.60 822355.45 822355.45

E T L 30780.23 22468.60 983543.98 749893.01 982710.51 749862.06 822348.91 822348.91

E T L 43312.05 33183.32 967312.15 748622.97 962925.43 748592.01 821111.80 821111.80

E T L 405575.30 384360.23 974953.65 748989.57 970722.55 748958.62 821450.33 821450.33

E T L 41612.79 37567.73 967215.58 748622.97 966412.40 748592.01 821111.80 821111.80

E T L 393904.95 391578.92 967797.68 748989.57 967088.52 748958.62 821450.33 821450.33

E T L 403351.97 397717.90 956545.37 748596.65 953292.44 748565.69 821087.30 821087.30

E T L 402806.21 400480.19 956923.44 748596.65 956214.28 748565.69 821087.30 821087.30

(c) Total curtailment applied [MWh]

Fig. C.7 Comparison of the performance of oracle 1 for the IEEE 57-bus system with different
algorithm combinations considered for selection

265

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 25377 3660 1367 3660 1367 769 769

E T L 24823 24823 3332 1367 3332 1367 769 769

E T L 24247 24247 3365 1367 3365 1367 769 769

E T L 12863 12863 3414 1367 3414 1367 769 769

E T L 24140 24140 3280 1367 3280 1367 769 769

E T L 12631 12631 3302 1367 3302 1367 769 769

E T L 12331 12331 3346 1367 3346 1367 769 769

E T L 12263 12263 3278 1367 3278 1367 769 769

(a) Number of overloads [count]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 678836.34 30389.77 1241.44 30385.38 1241.44 986.91 986.91

E T L 670366.33 670366.33 24974.82 1239.67 24974.82 1239.67 985.14 985.14

E T L 653798.21 653798.21 24421.55 1241.44 24421.55 1241.44 986.91 986.91

E T L 241625.85 241625.85 26967.29 1241.44 26967.29 1241.44 986.91 986.91

E T L 652049.04 652049.04 23296.29 1239.67 23296.29 1239.67 985.14 985.14

E T L 238886.58 238886.58 24768.12 1239.67 24768.12 1239.67 985.14 985.14

E T L 232140.18 232140.18 23782.87 1241.44 23782.87 1241.44 986.91 986.91

E T L 231512.94 231512.94 23155.66 1239.67 23155.66 1239.67 985.14 985.14

(b) Magnitude of overloads [MVAh]

B C O B C O B C O B C O B C O B C O B C O B C O

E T L - 0.00 982967.03 749899.56 981644.69 749899.56 827822.94 827822.94

E T L 30780.23 30765.98 995253.47 750047.46 995253.47 750047.46 827970.85 827970.85

E T L 43312.05 43305.44 974117.95 748622.97 974117.95 748622.97 826579.29 826579.29

E T L 405575.30 405571.69 988936.13 748989.57 988936.13 748989.57 826917.82 826917.82

E T L 48519.55 48512.94 978436.37 748777.42 978436.37 748777.42 826733.74 826733.74

E T L 417997.22 417993.61 989173.76 749144.03 989173.76 749144.03 827072.27 827072.27

E T L 423089.93 423086.32 975305.54 748596.65 975305.54 748596.65 826554.79 826554.79

E T L 426519.49 426515.88 978687.63 748751.10 978687.63 748751.10 826709.24 826709.24

(c) Total curtailment applied [MWh]

Fig. C.8 Comparison of the performance of oracle 2 for the IEEE 57-bus system with different
algorithm combinations considered for selection

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Motivating example
	1.3 Research objectives
	1.4 Structure of this work

	2 Algorithms for power systems control
	2.1 Control in power systems
	2.2 Power flow management: literature survey
	2.2.1 OPF-based methods
	2.2.2 Sensitivity factor-based methods
	2.2.3 Other methods
	2.2.4 Comparison of methods
	2.2.5 Selection of methods to be implemented

	2.3 Power flow management: implemented algorithms
	2.3.1 PFM-CSP
	2.3.2 PFM-OPF
	2.3.3 PFSF-Egal
	2.3.4 PFSF-TMA
	2.3.5 PFSF-LP

	2.4 Conclusions

	3 Control algorithm testing environment
	3.1 Requirements for testing environment
	3.2 Overview of testing environment
	3.2.1 Main components
	3.2.2 Components within a TestCell

	3.3 Power system modelling
	3.3.1 Component parameters
	3.3.2 Power system component modelling capabilities
	3.3.3 Load flow

	3.4 Communications system modelling
	3.4.1 Functions
	3.4.2 Communications system objects

	3.5 Control algorithm modelling
	3.6 Running single tests
	3.7 Running multiple tests
	3.7.1 Process
	3.7.2 Failure tolerance

	3.8 Evaluation against requirements
	3.9 Conclusions

	4 Performance of power flow management algorithms
	4.1 Methodology
	4.1.1 Case study power systems
	4.1.2 Performance evaluation
	4.1.3 Statistical analysis of performance

	4.2 Case study: 11kV radial distribution system
	4.2.1 System description
	4.2.2 Test states
	4.2.3 Baseline performance
	4.2.4 Algorithm performance

	4.3 Case study: 33kV meshed distribution system
	4.3.1 System description
	4.3.2 Test states
	4.3.3 Baseline performance
	4.3.4 Algorithm performance

	4.4 Case study: IEEE 14-bus system
	4.4.1 System description
	4.4.2 Test states
	4.4.3 Baseline performance
	4.4.4 Algorithm performance

	4.5 Case study: IEEE 57-bus system
	4.5.1 System description
	4.5.2 Test states
	4.5.3 Baseline performance
	4.5.4 Algorithm performance

	4.6 Cross-case study analysis
	4.6.1 Comparison of algorithm performance
	4.6.2 Analysis of algorithm performance: PFM-OPF
	4.6.3 Analysis of algorithm performance: PFM-CSP
	4.6.4 Analysis of algorithm performance: PFSF-based algorithms
	4.6.5 Execution times

	4.7 Conclusions

	5 Potential performance benefits from per-state selection of algorithms
	5.1 Method for assessing the potential performance benefit
	5.2 Potential performance benefits for each system
	5.2.1 11kV radial distribution system
	5.2.2 33kV meshed distribution system
	5.2.3 IEEE 14-bus system
	5.2.4 IEEE 57-bus system
	5.2.5 Summary for all case study systems

	5.3 Algorithm selection frequency
	5.4 Performance with different sets of algorithms
	5.5 Conclusions

	6 Previous work on algorithm selection
	6.1 The Algorithm Selection Problem
	6.1.1 Rice's model
	6.1.2 Framing the problem
	6.1.3 Application to power flow management

	6.2 Creating a selection mapping
	6.3 Machine learning
	6.4 Using machine learning for algorithm selectors
	6.4.1 Timing
	6.4.2 Model output
	6.4.3 Selector output
	6.4.4 Learning
	6.4.5 Model type
	6.4.6 Features

	6.5 Previous applications
	6.6 Conclusions

	7 Design and development of algorithm selectors for power flow management
	7.1 Preparation of training data for direct selectors
	7.1.1 Selectors using unweighted training examples
	7.1.2 Selectors for a single objective using weighted training examples
	7.1.3 Selectors for two objectives using tuned weights

	7.2 Preparation of training data for EPM-based selectors
	7.3 Machine learning models
	7.3.1 Models used in this work
	7.3.2 Descriptions of machine learning model categories
	7.3.3 Model variations

	7.4 Feature construction and selection
	7.4.1 Feature construction
	7.4.2 Feature selection
	7.4.3 Features used in this work

	7.5 Training data volume
	7.6 Conclusions

	8 Performance of algorithm selectors for power flow management
	8.1 Preliminary remarks
	8.1.1 Direct selectors
	8.1.2 EPM-based selectors
	8.1.3 Machine learning model types
	8.1.4 Objectives

	8.2 Performance overview
	8.3 Most effective selectors
	8.4 Relationship between objectives and performance
	8.4.1 33kV meshed distribution system
	8.4.2 IEEE 14-bus system
	8.4.3 IEEE 57-bus system
	8.4.4 Summary

	8.5 Effect of considering different algorithm sets
	8.5.1 Method
	8.5.2 Summary of results

	8.6 Effect of different model types
	8.6.1 Effect of model type on direct selectors
	8.6.2 Effect of model type on EPM-based selectors
	8.6.3 Summary

	8.7 Effect of tuning on direct weighted selectors
	8.8 Conclusions

	9 Discussion
	9.1 Implementation outline
	9.2 Selector design choices
	9.3 Data requirements
	9.4 Time requirements
	9.5 Financial assessment

	10 Conclusions
	10.1 Evaluation against research objectives
	10.2 Contributions
	10.3 Outlook and future work

	References
	Appendix A Data model for power system model (SysModel)
	Appendix B Case study system data
	B.1 11kV radial distribution system
	B.2 33kV meshed distribution system
	B.3 IEEE 14-bus system
	B.4 IEEE 57-bus system

	Appendix C Additional power flow management algorithm performance data

